

1 / 253

[MS -WMI] ð v20140502
 Windows Management Instrumentation Remote Protocol

 Copyright © 2014 Microsoft Corporation.

 Release: Thursday, May 15, 2014

[MS - WMI]:
Windows Management Instrumentation Remote Protocol

Intellectual Property Rights Notice for Open Specifications Documentation

Á Technical Documentation. Microsoft publishes Open Specifications documentation for

protocols, file formats, languages, standards as well as overviews of the interaction among each
of these technologies.

Á Copyrights. This documentation is covered by Microsoft copyrights. Regardles s of any other
terms that are contained in the terms of use for the Microsoft website that hosts this

documentation, you may make copies of it in order to develop implementations of the
technologies described in the Open Specifications and may distribute p ortions of it in your
implementations using these technologies or your documentation as necessary to properly

document the implementation. You may also distribute in your implementation, with or without
modification, any schema, IDLôs, or code samples that are included in the documentation. This
permission also applies to any documents that are referenced in the Open Specifications.

Á No Trade Secrets. Microsoft does not claim any trade secret rights in this documentation.

Á Patents. Microsoft has patents that may cover your implementations of the technologies
described in the Open Specifications. Neither this notice nor Microsoft's delivery of the
documentation grants any licenses under those or any other Microsoft patents. However, a given

Open Specification may be covered by Microsoft Open Specification Promise or the Community
Promise . If you would prefer a written license, or if the te chnologies described in the Open
Specifications are not covered by the Open Specifications Promise or Community Promise, as

applicable, patent licenses are available by contacting iplg@microsoft.com .

Á Trademarks. The names of companies and products contained in this documentation may be
covered by trademarks or similar intellectual property rights. This notice does not grant any

licenses under those rights. For a list of Microsoft trademarks, visit
www.microsoft.com/trademarks .

Á Fictitious Names. The example companies, organizations, products, domain names, email
addresses, logos, people, places, and events depicted in this documentation are fictitious. No
associatio n with any real company, organization, product, domain name, email address, logo,
person, place, or event is intended or should be inferred.

Reservation of Rights. All other rights are reserved, and this notice does not grant any rights

other than specific ally described above, whether by implication, estoppel, or otherwise.

Tools. The Open Specifications do not require the use of Microsoft programming tools or

programming environments in order for you to develop an implementation. If you have access to
Micr osoft programming tools and environments you are free to take advantage of them. Certain
Open Specifications are intended for use in conjunction with publicly available standard
specifications and network programming art, and assumes that the reader either is familiar with the
aforementioned material or has immediate access to it.

http://go.microsoft.com/fwlink/?LinkId=214445
http://go.microsoft.com/fwlink/?LinkId=214448
http://go.microsoft.com/fwlink/?LinkId=214448
mailto:iplg@microsoft.com
http://www.microsoft.com/trademarks

2 / 253

[MS -WMI] ð v20140502
 Windows Management Instrumentation Remote Protocol

 Copyright © 2014 Microsoft Corporation.

 Release: Thursday, May 15, 2014

Revision Summary

Date

Revision

History

Revision

Class Comments

03/02/2007 1.0 Version 1.0 release

04/03/2007 1.1 Version 1.1 release

05/11/2007 1.2 Version 1.2 release

06/01/2007 1.2.1 Editorial Revised and edited the technical content.

07/03/2007 1.2.2 Editorial Revised and edited the technical content.

08/10/2007 1.2.3 Editorial Revised and edited the technical content.

09/28/2007 1.3 Minor Updated the technical content.

10/23/2007 2.0 Major Converted the document to unified format, and updated

the technical content.

01/25/2008 2.1 Minor Updated the technical content.

03/14/2008 3.0 Major Updated and revised the technical content.

06/20/2 008 4.0 Major Updated and revised the technical content.

07/25/2008 4.1 Minor Updated the technical content.

08/29/2008 5.0 Major Updated and revised the technical content.

10/24/2008 5.1 Minor Updated the technical content.

12/05/2008 5.2 Minor Updated the technical content.

01/16/2009 5.3 Minor Updated the technical content.

02/27/2009 5.4 Minor Updated the technical content.

04/10/2009 6.0 Major Updated and revised the technical content.

05/22/2009 7.0 Major Updated and revised the technical content.

07/02/2009 8.0 Major Updated and revised the technical content.

08/14/2009 8.1 Minor Updated the technical content.

09/25/2009 8.2 Minor Updated the technical content.

11/06/2009 9.0 Major Updated and revised the technical content.

12/18/2009 10.0 Major Updated and revised the technical content.

01/29/2010 11.0 Major Updated and revised the technical content.

03/12/2010 11.1 Minor Updated the technical content.

3 / 253

[MS -WMI] ð v20140502
 Windows Management Instrumentation Remote Protocol

 Copyright © 2014 Microsoft Corporation.

 Release: Thursday, May 15, 2014

Date

Revision

History

Revision

Class Comments

04/23/2010 12.0 Major Updated and revised the technical content.

06/04/2010 13.0 Major Updated and revised the technical content.

07/16/2010 13.0 No change No changes to the meaning, language, or formatting of

the technical content.

08/27/2010 14.0 Major Significantly changed the technical content.

10/08/2010 15.0 Major Significantly changed the technical content.

11/19/2010 16.0 Major Significantly changed the technical content.

01/07/2011 17.0 Major Significantly changed the technical content.

02/11/2011 18.0 Major Significantly changed the technical content.

03/25/2011 19.0 Major Significantly changed the technical content.

05/06/2011 20.0 Major Significantly changed the technical content.

06/17/2011 20.1 Minor Clarified the meaning of the technical content.

09/23/2011 21.0 Major Significantly changed the technical content.

12/16/2011 22.0 Major Significantly changed the technical content.

03/30/2012 23.0 Major Significantly changed the technical content.

07/12/2012 24.0 Major Significantly changed the technical content.

10/25/2012 25.0 Major Significantly changed the technical content.

01/31/2013 25.0 No change No changes to the meaning, language, or formatting of

the technical content.

08/08/2013 26.0 Major Significantly changed the technical content.

11/14/2013 26.0 No change No changes to the meaning, language, or formatting of

the technical content.

02/13/2014 26.0 No change No changes to the meaning, language, or formatting of

the technical content.

05/15/2014 26.0 No change No changes to the meaning, language, or formatting of

the technical content.

4 / 253

[MS -WMI] ð v20140502
 Windows Management Instrumentation Remote Protocol

 Copyright © 2014 Microsoft Corporation.

 Release: Thursday, May 15, 2014

Contents

1 Introduction 9
1.1 Glossary 9
1.2 References 10

1.2.1 Normative References 11
1.2.2 Informative References 11

1.3 Overview 12
1.4 Relationship to Other Protocols 15
1.5 Prerequisites/Preconditions 15
1.6 Applicability Statement 16
1.7 Versioning and Capability Negotiation 16
1.8 Ven dor -Extensible Fields 16
1.9 Standards Assignments 16

2 Messages 18
2.1 Transport 18
2.2 Common Data Types 18

2.2.1 WQL Query 18
2.2.1.1 WQL Schema and Data Query 18
2.2.1.2 WQL Event Query 24

2.2.2 CIM Path and Namespace 26
2.2.3 Protocol Return Codes 28
2.2.4 IWbemClassObject Interface 28

2.2.4.1 Prototype Result Object 29
2.2.4.2 Extrinsic Events 30

2.2.5 WBEM_CHANGE_FLAG_TYPE Enumeration 30
2.2.6 WBEM_GENERIC_FLAG_TYPE Enumeration 31
2.2.7 WBEM_STATUS_TYPE Enumeration 32
2.2.8 WBEM_TIMEOUT_TYPE Enumeration 32
2.2.9 WBEM_QUERY_FLAG_TYPE Enumeration 33
2.2.10 WBEM_BACKUP_RESTORE_FLAGS Enumeration 33
2.2.11 WBEMSTATUS Enumeration 34
2.2.12 WBEM_CONNECT_OPTIONS Enumeration 38
2.2.13 IW bemContext 39

2.2.13.1 IWbemContextBuffer Marshaling Structure 41
2.2.13.2 IWbemContextProperty Marshaling Structure 41
2.2.13.3 IWbemContextString Marshaling Structure 42
2.2 .13.4 IWbemContextArray Marshaling Structure 43

2.2.14 ObjectArray Structure 44
2.2.14.1 WBEM_DATAPACKET_OBJECT Structure 45
2.2.14.2 WBEMOBJECT_CLASS Structure 46
2.2.14.3 WBEMOBJECT_INSTANCE Structure 47
2.2.14.4 WBEMOBJECT_INSTANCE_NOCLASS Structure 47

2.2.15 WBEM_REFRESHED_OBJECT Structure 48
2.2.16 WBEM_INSTANCE_BLOB Enumeration 49
2.2.17 WBEM_INSTANCE_BLOB_TYPE Enumeration 49
2.2.18 RefreshedInstances 49
2.2.19 RefreshedSingleI nstance 50
2.2.20 _WBEM_REFRESH_INFO Structure 50
2.2.21 _WBEM_REFRESHER_ID Structure 51
2.2.22 _WBEM_RECONNECT_INFO Structure 51

5 / 253

[MS -WMI] ð v20140502
 Windows Management Instrumentation Remote Protocol

 Copyright © 2014 Microsoft Corporation.

 Release: Thursday, May 15, 2014

2.2.23 _WBEM_RECONNECT_RESULTS Structure 51
2.2.24 _WBEM_RECONNECT_TYPE Enumeration 52
2.2.25 WBEM_REFRESH_TYPE Enumeratio n 52
2.2.26 _WBEM_REFRESH_INFO_NON_HIPERF Structure 52
2.2.27 _WBEM_REFRESH_INFO_REMOTE Structure 53
2.2.28 _WBEM_REFRESH_INFO_UNION Union 53
2.2.29 WMI Locale Formats 53
2.2.30 __SystemSecurity Class 54

2.2.30.1 __SystemSecurity::GetSD 54
2.2.30.2 __SystemSecurity::SetSD 54
2.2.30.3 RequiresEncryption 55

2.2.31 Default System Classes 55
2.2.32 Supported WMI Qualifiers 56

3 Protocol Details 58
3.1 Server Details 58

3.1.1 Abstract Data Model 59
3.1.1.1 Delivering Results to Client 64

3.1.1.1.1 Synchronous Calls 64
3.1.1.1.2 Semisynchronous Calls 64

3.1.1.1.2.1 Semisynchronous Operations Returning Multiple Objects 64
3.1.1.1.2.2 Semisynchronous Operations Returning a Single Object 65

3.1.1.1.3 Asynchronous calls 65
3.1.1.2 Localization Support 66

3.1.2 Timers 67
3.1.3 Initialization 67
3.1.4 Message Processing Events and Sequencing Rules 68

3.1.4.1 IWbemLevel1Login Interface 71
3.1.4.1.1 IWbemLevel1Login::Establi shPosition (Opnum 3) 71
3.1.4.1.2 IWbemLevel1Login::RequestChallenge (Opnum 4) 72
3.1.4.1.3 IWbemLevel1Login::WBEMLogin (Opnum 5) 73
3.1.4.1.4 IWbemLevel1Login::NTLMLogin (Opnum 6) 73

3.1 .4.2 IWbemObjectSink Interface Server Details 74
3.1.4.2.1 IWbemObjectSink::Indicate (Opnum 3) Server details 75
3.1.4.2.2 IWbemObjectSink::SetStatus (Opnum 4) Server Details 76

3.1.4.3 IWbemServices Interface 77
3.1.4.3.1 IWbemServices::OpenNamespace (Opnum 3) 79
3.1 .4.3.2 IWbemServices::CancelAsyncCall (Opnum 4) 81
3.1.4.3.3 IWbemServices::QueryObjectSink (Opnum 5) 82
3.1.4.3.4 IWbemServices::GetObject (Opnum 6) 82
3.1.4.3.5 IWbemServices::GetObjectAsync (Opnum 7) 85
3.1.4.3.6 IWbemServices::PutClass (Opnum 8) 86
3.1.4.3 .7 IWbemServices::PutClassAsync (Opnum 9) 89
3.1.4.3.8 IWbemServices::DeleteClass (Opnum 10) 92
3.1.4.3.9 IWbemServices::DeleteClassAsync (Opnum 11) 94
3.1.4.3.10 IWbemServices::CreateClassEnum (Opnum 12) 95
3.1.4.3.11 IWbemServices::CreateClassEnumAsync (Opnum 13) 97
3.1.4.3.12 IWbemServices::PutInstance (Opnum 14) 99
3.1.4.3.13 IWbemServices::PutInstanceAsync (Opnum 15) 102
3.1.4.3.14 IWbemServices::DeleteInstance (Opnum 16) 104
3.1.4.3.15 IWbemServices::DeleteInstanceAsync (Opnum 17) 106
3.1.4.3.16 IWbemServices::CreateInstanceEnum (Opnum 18) 108
3.1.4.3.17 IWbemServices::CreateInstanceEnumAsync (Opnum 19) 109

6 / 253

[MS -WMI] ð v20140502
 Windows Management Instrumentation Remote Protocol

 Copyright © 2014 Microsoft Corporation.

 Release: Thursday, May 15, 2014

3.1.4.3.18 IWbemServices::ExecQuery (Opnum 20) 111
3.1.4.3.19 IWbemServices::ExecQueryAsync (Opnum 21) 115
3.1.4.3.20 IWbemServices::ExecNotificationQuery (Opnum 22) 117
3.1.4.3.21 IWbemServices::ExecNotificationQueryAsync (Opnum 23) 119
3.1.4.3.22 IWbemServices::ExecMethod (Opnum 24) 121
3.1.4.3.23 IWbemServices::ExecMethodAsync (Opnum 25) 124

3.1.4.4 IEnumWbemClassObject Interface 125
3.1.4.4.1 IEnumWbemClassObject::Reset (Opnum 3) 126
3.1.4.4.2 IEnumWbemClassObject::Next (Opnum 4) 127
3.1.4 .4.3 IEnumWbemClassObject::NextAsync (Opnum 5) 128
3.1.4.4.4 IEnumWbemClassObject::Clone (Opnum 6) 130
3.1.4.4.5 IEnumWbemClassObject::Skip (Opnum 7) 131

3.1.4.5 IWbemCallResult Interface 132
3.1.4.5.1 IWbemCallResult::GetResultObject (Opnum 3) 132
3.1.4.5.2 IWbemCallResult::GetResultString (Opnum 4) 133
3.1.4.5.3 IWbemCallResult::GetResultServices (Opnum 5) 134
3.1.4.5.4 IWbemCallResult::GetCallStatus (Opnum 6) 135

3.1.4.6 IWbemFetchSmartEnum Interface 136
3.1.4.6.1 IWbemFetchSmartEnum::GetSmartEnum (Opnum 3) 137

3.1.4.7 IWbemWCOSmartEnum Interface 137
3.1.4.7.1 IWbemWCOSmartEnum::Next (Opnum 3) 137

3.1.4.8 IWbemLoginClientID Interface 139
3.1.4.8.1 IWbemLoginClientID::SetClientInfo (Opnum 3) 139

3.1.4.9 IWbemLoginHelper Interface 140
3.1.4.9.1 IWbemLoginHelper::SetEvent (Opnum 3) 140

3.1.4.10 IWbemBackupRestore Interface 140
3.1.4.10.1 IWbemBackupRestore::Backup (Opnum 3) 141
3.1.4.10.2 IWbemBackupRestore::Restore (Opnum 4) 142

3.1.4.11 IWbemBackupRestoreEx Interface 143
3.1.4.11.1 IWbemBackupRestoreEx::Pause (Opnum 5) 143
3.1.4.11.2 IWbemBackupRestoreEx::Resume (Opnum 6) 144

3.1.4.12 IWbemRefreshingServices Interface 144
3.1.4.12.1 IWbemRefreshingServices::AddObjectToRefresher (Opnum 3) 145
3.1.4.12.2 IWbemRefreshingServices::AddObjectToRefresherByTemplate (Opnum

4) 146
3.1.4.12.3 IWbemRefreshingServices::AddEnumToRefresher (Opnum 5) 148
3.1.4.12.4 IWbemRefreshingService s::RemoveObjectFromRefresher (Opnum 6) 149
3.1.4.12.5 IWbemRefreshingServices::GetRemoteRefresher (Opnum 7) 150
3.1.4.12.6 IWbemRefreshingServices::ReconnectRemoteRefresher (Opnum 8) 151

3.1.4.13 IWbemRemoteRefresher Interface 152
3.1.4.13.1 IWbemRemoteRefresher::RemoteRefresh (Opnum 3) 153
3.1.4.13.2 IWbemRemoteRefresher::StopRefreshing (Opnum 4) 153
3.1.4.13.3 IWbemRemoteRefresher::Opnum5NotUsedOnWire (Opnum 5) 154

3.1.4.14 IWbemShutdown Interface 155
3.1.4.14.1 IWbemShutdown::Shutdown (Opnum 3) 155

3.1.4.15 IUnsecuredApartment Interface 156
3.1.4.15.1 IUnsecuredApartment::CreateObjectStub (Opnum 3) 156

3.1.4.16 IWbemUnsecuredApartment Interface 156
3.1.4.16.1 IWbemUnsecuredApartment::CreateSinkStub (Opnum 3) 157

3.1.4.17 Abstract Provider Interface 157
3.1.4.17.1 En umerate Instances of a Given Class 158
3.1.4.17.2 Enumerate the Subclasses of a Given Class 158
3.1.4.17.3 Get Properties within an Instance of a Class 158

7 / 253

[MS -WMI] ð v20140502
 Windows Management Instrumentation Remote Protocol

 Copyright © 2014 Microsoft Corporation.

 Release: Thursday, May 15, 2014

3.1.4.17.4 Get Properties Within a Class 158
3.1.4.17.5 Update Properties within an Instance of a Class 159
3.1.4.17.6 Update Properties within a Class 159
3.1.4.17.7 Create an Instance of a Class 159
3.1.4.17.8 Create a Class 159
3.1.4.17.9 Delete an Instance of a Class 159
3.1.4.17.10 Delete a Class 159
3.1.4.17.11 Execute a Provider's Method 159
3.1.4.17. 12 Cancel an Existing Operation 160
3.1.4.17.13 Subscribe for Event Notification 160
3.1.4.17.14 Is Dynamic Class Supported 160
3.1.4.17.15 Execute Query 160

3.1.4.18 Namespaces 160
3.1.4.18.1 Creating Namespaces 160
3.1.4.18.2 Reading Namespace Information 161
3.1.4.18.3 Updating Namespace Information 161
3.1.4.18.4 Deleting Namespaces 161

3.1.5 Timer Events 161
3.1.6 Other Local Events 162

3.1.6.1 Indication Event Is Generated 162
3.1.6.2 Load Provider 163
3.1.6.3 Unload Provider 163

3.2 Client Details 163
3.2.1 Abstract Data Model 163
3.2.2 Timers 163
3.2.3 Initialization 163
3.2.4 Message Processing Events and Sequencing Rules 164

3.2.4.1 IWbemObjectSink Interface Client Details 164
3.2.4.1.1 IWbemObjectSink::Indicate Client Details 164
3.2.4.1.2 IWbemObjectSink::SetStatus Client Details 165

3.2.4.2 IWbemServices Interface Client Details 166
3.2.4.2.1 Sending Events to Server 166
3.2.4.2.2 Calli ng Put Interfaces for CIM Objects with Amended Qualifiers 166
3.2.4.2.3 Deleting Class Objects with Amended Qualifiers 166
3.2.4.2.4 Invoking Synchronous Methods Returing No Object 166
3.2.4.2.5 IWbemServices::ExecMethod and IWbemServices::ExecMethodAsync 167
3.2.4.2.6 Invoking Synchronous Methods Returning Single Object 167
3.2.4.2.7 Invoking Semisynchronous Methods That Return a Single Object 167
3.2.4.2.8 Invoking Synchronous and Semisy nchronous Operations Returning

Multiple Objects 168
3.2.4.2.9 Invoking Asynchronous Operations 169

3.2.4.3 IWbemBackupRestore Interface Client Details 170
3.2.4.4 IWbemBackupRestoreEx Interface Client Details 170
3.2.4.5 IWbemRefreshingServices Interface Client Details 170

3.2.4.5.1 IWbemRefreshingServices::AddObjectToRefresher and
IWb emRefreshingServices::AddObjectToRefresherByTemplate 170

3.2.4.5.2 IWbemRefreshingServices::AddEnumToRefresher 171
3.2.4.5.3 IWbemRefreshingServices::GetRemoteRefresher 171
3.2.4.5.4 IWbemRefreshingServices::ReconnectRemoteRefresher 172

3.2.4.6 IUnsecuredApartment Interface Client Details 172
3.2.4.7 IWbemUnsecuredApartment Interface Client Details 172
3.2.4.8 IWbemShutdown Interface Client Details 172

3.2.5 Timer Events 172

8 / 253

[MS -WMI] ð v20140502
 Windows Management Instrumentation Remote Protocol

 Copyright © 2014 Microsoft Corporation.

 Release: Thursday, May 15, 2014

3.2.6 Other Local Events 172
3.2.6.1 Shutdown 173

4 Protocol Examples 174
4.1 Protocol Initialization 174

4.1.1 Protocol Initialization Trace 175
4.1.2 Example Captures 177

4.2 Synchronous Operations 178
4.2.1 Synchronous Delivery of a Single Result 178
4.2.2 Synchronous Delivery of Result Sets 178

4.2.2.1 Unoptimized Client and Unoptimized Server 179
4.2.2.2 Unoptimized Client and Optimized Server 179
4.2.2.3 Optimized Client and Optimized Server 180
4.2.2.4 Optimized Client and Unoptimized Server 182

4.2.3 Synchronous Delivery Traces 183
4.2.3.1 Synchronous Delivery of IWbemServices ExecQuery and ExecMethod

Operations 183
4.2.3.2 Synchronous Delivery of IwbemServices PutInstance, DeleteInstance, and

CreateInstanceEnum Operations 187
4.3 Semisynchronous Operations 191

4.3.1 S emisynchronous Delivery of a Single Result 192
4.3.2 Semisynchronous Delivery of Result Sets 192
4.3.3 Semisynchronous Delivery Traces 193

4.3.3.1 Semisynchronous Delivery of IWbemServices ExecQuery and ExecMethod
Operations 193

4.3.3.2 Semisynchronous Delivery of IwbemServices PutInstance, DeleteInstance,
and CreateInstanceEnum Operations 197

4.4 Asynchronous Delivery of Results 203
4.5 Optimized Asynchronous Delivery of Results 204
4.6 Configuring Refreshing Services 205
4.7 Using the Refresher Interface 206

5 Security 208
5.1 Security Considerations for Impleme nters 208
5.2 Index of Security Parameters 208

6 Appendix A: Full IDL 210

7 Appendix B: Product Behavior 223

8 Appendix C: Addit ional Error Codes 243

9 Appendix D: Enumerating Class Schema 248

10 Change Tracking 249

11 Index 250

9 / 253

[MS -WMI] ð v20140502
 Windows Management Instrumentation Remote Protocol

 Copyright © 2014 Microsoft Corporation.

 Release: Thursday, May 15, 2014

1 Introduction

Windows Management Instrumentation (WMI) Remote Protocol is a Distributed Component
Object Model (DCOM) , as specified in [MS -DCOM] , a client/server ïbased framework that provides
an open and automated means of systems management. WMI leverages the Common
Information Model (CIM) , as specified in [DMTF -DSP0004] , to represent various components of
the operating system. CIM is the conceptual model for storing enterprise management information.
The information available from CIM is specified by a series of classes and associations, and the
elements co ntained in them (methods, properties, and references). These constructs describe the

data available to WMI clients.

Sections 1.8, 2, and 3 of this specification are normative and can contain the terms MAY, SHOULD,
MUST, MUST NOT, and SHOULD NOT as defined in RFC 2119. Sections 1.5 and 1.9 are also
normative but cannot contain those terms. All other sections and examples in this specification are
informative.

1.1 Glossary

The following terms are defined in [MS -GLOS] :

activation
Augmented Backus - Naur Form (ABNF)
authentication level
class identifier (CLSID)

Common Information Model (CIM)
Common Information Model (CIM) class
Common Information Model (CIM) instance
Common Information Model (CIM) method
Common Information Model (CIM) namespace
Common Information Model (CIM) object
Common Information Model (CIM) path

Common Information Model (CIM) property
Common Information Mode l (CIM) relative path
Distributed Component Object Model (DCOM)
extrinsic event
globally unique identifier (GUID)
Interface Definition Language (IDL)
interface pointer

intrinsic event
language code identifier (LCID)
manageable entity
Microsoft Interface De finition Language (MIDL)
opnum
release

remote procedure call (RPC)
security principal

security provider
Security Support Provider Interface (SSPI)
semisynchronous operation
superclasses and subclasses
synchronous operation

Unicode character

%5bMS-GLOS%5d.pdf
%5bMS-GLOS%5d.pdf
%5bMS-DCOM%5d.pdf
%5bMS-GLOS%5d.pdf
%5bMS-GLOS%5d.pdf
http://go.microsoft.com/fwlink/?LinkId=89848
%5bMS-GLOS%5d.pdf

10 / 253

[MS -WMI] ð v20140502
 Windows Management Instrumentation Remote Protocol

 Copyright © 2014 Microsoft Corporation.

 Release: Thursday, May 15, 2014

universally uni que identifier (UUID)
Windows Management Instrumentation (WMI)

The following terms are specific to this document:

amended qualifier: A qualifier whose value can be localized to the desired locale as needed.

For example, a description qualifier can be local ized to give the description of the subject in
the user's locale.

asynchronous operation: An operation executed on the server side. The client continues
executing and does not check whether a response is available from the server.

CIM database: A persistent database that holds information about CIM objects and namespaces.

CIM localizable information: The portion of information in a CIM class definition that could be
language -specific or country -specific.

CIM provider : An executable that can return or set information about a given managed object ,

as described in [DMTF -DSP0004] . The objects (class, instance, or indication) that are passed
to or returned from t hese local implementations are referred to as "dynamic objects".

client: In the context of this specification, "client" is used to identify the system that consumes
WMI services and initiates [MS -DCOM] calls to WMI servers.

dynamic CIM object: A CIM class or instance whose content is provided by a provider .

empty CIM object: A data structure that conforms to the WMI serialization model ðhas no
properties, no method, an d no derivation.

managed object: The actual item in the system environment that is accessed by the provider ,
as described in [DMTF -DSP0004] .

qualifier: Additional information about a class, prope rty, method or method parameter. For
example, an abstract qualifier describes that the class is abstract and cannot have instances,

an IN qualifier describes the method parameter is used as input parameter.

server: In the context of this specification, ser ver is used to identify the system that
implements WMI services, provides management services, and accepts [MS -DCOM] calls from
WMI clients.

static CIM object: A CIM class or instance whose conten t is stored in the CIM database .

WMI Query Language (WQL): A subset of the American National Standards Institute
Structured Query Language (ANSI SQL). WQL differs from standard SQL in that it retrieves
from classes rather than from tables, and returns CIM classes or CIM instances rather than

rows. WQL is specified in section 2.2.1 .

MAY, SHOULD, MUST, SHOULD NOT, MUST NOT: These terms (in all caps) are used as
described in [RFC2119] . All statements of optional behavior use either MAY, SHOULD, or
SHOULD NOT.

1.2 References

References to Microsoft Open Specifications documentation do not include a publishing year because
links are to the latest version of the documents, which are updated frequently. References to other
documents include a publishing year when one is available .

%5bMS-GLOS%5d.pdf
http://go.microsoft.com/fwlink/?LinkId=89848
%5bMS-DCOM%5d.pdf
%5bMS-GLOS%5d.pdf
%5bMS-GLOS%5d.pdf
http://go.microsoft.com/fwlink/?LinkId=89848
%5bMS-GLOS%5d.pdf
%5bMS-GLOS%5d.pdf
%5bMS-GLOS%5d.pdf
%5bMS-GLOS%5d.pdf
http://go.microsoft.com/fwlink/?LinkId=90317

11 / 253

[MS -WMI] ð v20140502
 Windows Management Instrumentation Remote Protocol

 Copyright © 2014 Microsoft Corporation.

 Release: Thursday, May 15, 2014

1.2.1 Normative References

We conduct frequent surveys of the normative references to assure their continued availability. If
you have any issue with finding a normative reference, please contact dochelp@microsoft.com . We

will assist you in finding the relevant information.

[C706] The Open Group, "DCE 1.1: Remote Procedure Call", C706, August 1997,
https://www2.opengroup.org/ogsys/catalog /c706

[DMTF -DSP0004] Distributed Management Task Force, "Common Information Model (CIM)
Infrastructure Specification", version 2.3, October 2005,
http://www.dmtf.org/standards/published_documents /DSP0004V2.3_final.pdf

[FIPS127] FIPS PUBS, "Database Language SQL", FIPS PUB 127 -2, June 1993,

http://www.itl.nist.gov/fipspubs/fip127 -2.htm

[IEEE754] Institute of Electrical and Electronics Eng ineers, "Standard for Binary Floating -Point
Arithmetic", IEEE 754 -1985, October 1985, http://ieeexplore.ieee.org/servlet/opac?punumber=2355

[MS -DCOM] Microsoft Corporation, " Distributed Component Object Model (DCOM) Remote Protocol ".

[MS -DTYP] Microsoft Corporation, " Windows Data Types ".

[MS -ERREF] Microsoft Corporation, " Windows Error Codes ".

[MS -LCID] Micr osoft Corporation, " Windows Language Code Identifier (LCID) Reference ".

[MS -OAUT] Microsoft Corporation, " OLE Automation Protocol ".

[MS -RPCE] Microsoft Corporation, " Remote Procedure Call Protocol Extensions ".

[MS -WMIO] Microsoft Corporation, " Windows Management Instrumentation Encoding Version 1.0
Protocol ".

[RFC2119] Bradner, S., "Key words for use in RFCs to Indicate Requirement Levels" , BCP 14, RFC

2119, March 1997, http://www.rfc -editor.org/rfc/rfc2119.txt

[RFC4234] Crocker, D., Ed., and Overell, P., "Augmented BNF for Syntax Specifications: ABNF", RFC
4234, October 2005, http://www.ietf.org/rfc/rfc4234.txt

[UNICODE] The Unicode Consortium, "Unicode Home Page", 2006, http://www.unicode.org/

1.2.2 Informative References

[MS -GLOS] Microsoft Corporation, " Windows Protocols Master Glossary ".

[MSDN -GetSystemDefaultLangID] Microsoft Corporation, "GetSystemDefaultLangID function",

http://msdn.microsoft.com/en -us/library/dd318120(VS.85).aspx

[MSDN -OpenEvent] Microsoft Corporation, "OpenEvent function", http://msdn .microsoft.com/en -
us/library/ms684305.aspx

[MSDN -QUAL] Microsoft Corporation, "WMI -Specific Qualifiers", http://msdn.microsoft.com/en -
us/library/aa394581.aspx

[MSDN -WQL] Microsoft Corporation, " Querying with WQL", http://msdn.microsoft.com/en -

us/library/aa392902.aspx

mailto:dochelp@microsoft.com
http://go.microsoft.com/fwlink/?LinkId=89824
http://go.microsoft.com/fwlink/?LinkId=89848
http://go.microsoft.com/fwlink/?LinkId=89865
http://go.microsoft.com/fwlink/?LinkId=89903
%5bMS-DCOM%5d.pdf
%5bMS-DTYP%5d.pdf
%5bMS-ERREF%5d.pdf
%5bMS-LCID%5d.pdf
%5bMS-OAUT%5d.pdf
%5bMS-RPCE%5d.pdf
%5bMS-WMIO%5d.pdf
%5bMS-WMIO%5d.pdf
http://go.microsoft.com/fwlink/?LinkId=90317
http://go.microsoft.com/fwlink/?LinkId=90462
http://go.microsoft.com/fwlink/?LinkId=90550
%5bMS-GLOS%5d.pdf
http://go.microsoft.com/fwlink/?LinkId=165531
http://go.microsoft.com/fwlink/?LinkId=137274
http://go.microsoft.com/fwlink/?LinkId=137274
http://go.microsoft.com/fwlink/?LinkId=212965
http://go.microsoft.com/fwlink/?LinkId=212965
http://go.microsoft.com/fwlink/?LinkId=90168
http://go.microsoft.com/fwlink/?LinkId=90168

12 / 253

[MS -WMI] ð v20140502
 Windows Management Instrumentation Remote Protocol

 Copyright © 2014 Microsoft Corporation.

 Release: Thursday, May 15, 2014

[SysDocCap -WMI] Microsoft Corporation, "Microsoft System Document Captures associated MS -
WMI", February 2009, http://sysdoccap.codeplex.com/wikipage?title=MS -WMI&referringTitle=Home

1.3 Overview

The Windows Management Instrumentation (WMI) Remote Protocol is used to communicate
management data conforming to Common Information Model (CIM), as specified in [DMTF -
DSP0004] . The Windows Management Instrumentation Remote Protocol uses CIM as the conceptual
model for representing enterprise management information that can be managed by an
administrator. However WMI is not fully compliant with [DMTF -DSP0004] . The exceptions are
documented where applicable in [MS -WMI].

The Windows Management Instrumentation Remote Protocol is implemented as a three - tier

architecture, as illustrated in the following figure.

Figure 1: Windows Management Instrumentation Remote Protocol architecture

http://go.microsoft.com/fwlink/?LinkId=207637
http://go.microsoft.com/fwlink/?LinkId=89848
http://go.microsoft.com/fwlink/?LinkId=89848
http://go.microsoft.com/fwlink/?LinkId=89848

13 / 253

[MS -WMI] ð v20140502
 Windows Management Instrumentation Remote Protocol

 Copyright © 2014 Microsoft Corporation.

 Release: Thursday, May 15, 2014

At layer 3, the Providers are designed to interact locally with WMI Management Data Sources.
Providers implement abstract interface as specified in section 3.1.4.17 . Windows Management

Instrumentation Remote Protocol management data sources are designed to interact locally with
manageable entities . Layer 2 supports the core of th e Windows Management Instrumentation

Remote Protocol service and is called the CIM Object Manager (CIMOM). CIMOM interacts with CIM
database for storing or accessing CIM class and CIM instances that are static; CIM providers for
storing or accessing CIM cl ass and CIM instances that are dynamic from the [DMTF -DSP0004] . WMI
DCOM Client Interfaces in Layer 1 and WMI DCOM Server Interfaces in Layer 2 implement the
Distributed Component Object Model in terfaces (as specified in [MS -DCOM]) that are used by the
Windows Management Instrumentation Remote Protocol to communicate over the network between
Windows Management Instrumentation Remote Protocol clie nts and servers . This layer is the only

layer that communicates over the network. Network communication is achieved by using the
Distributed Component Object Model (DCOM) Remote Protocol and a set of Windows Management
Instrumentatio n Remote Protocol DCOM interfaces, as specified in section 3.1.4 .

%5bMS-GLOS%5d.pdf
http://go.microsoft.com/fwlink/?LinkId=89848
%5bMS-DCOM%5d.pdf

14 / 253

[MS -WMI] ð v20140502
 Windows Management Instrumentation Remote Protocol

 Copyright © 2014 Microsoft Corporation.

 Release: Thursday, May 15, 2014

Figure 2: Clients can be local or remote from the server

Windows Management Instrumentation Remote P rotocol clients can be local or remote from the
server, as illustrated in the preceding figure. In either case, the same set of Windows Management
Instrumentation Remote Protocol interfaces is used.

The communication works the same way between clients and server; all interactions between clients
and server are made through the DCOM Remote Protocol locally or remotely. Therefore, clients are
always acting in a message submission mode through the DCOM Remote Protocol to leverage the

Windows Management Instrum entation Remote Protocol interfaces that are implemented on the
server side.

The client may call the server in one of the following ways:

15 / 253

[MS -WMI] ð v20140502
 Windows Management Instrumentation Remote Protocol

 Copyright © 2014 Microsoft Corporation.

 Release: Thursday, May 15, 2014

Á Synchronous calls

Á Semisynchronous calls

Á Asynchronous calls

The server APIs for synchronous and semisynchronous APIs ar e the same, but the call is executed
synchronously if the flags do not contain WBEM_FLAG_RETURN_IMMEDIATELY. If the flag
WBEM_FLAG_RETURN_IMMEDIATELY is specified, the call is executed semisynchronously. Examples
of such APIs include IWbemServices::GetObject (section 3.1.4.3.4) ,
IWbemServices::PutClass (section 3.1.4.3.6) , and so on.

The IWbemServices methods that end with Async are asynchronous counterparts for their

synchro nous APIs. Example of async APIs are IWbemServices::GetObjectAsync (section
3.1.4.3.5) , IWbemServices::PutClassAsync (section 3.1.4.3.7) , and so on

The management information that is exchanged b etween clients and server (and server and clients)
is transmitted over the network by the Windows Management Instrumentation Remote Protocol as a

custom -marshaled payload, as specified in [MS -DCOM] (section 2.2.18.6) .

The Windows Management Instrumentation Remote Protocol serializes the management information
that is transmitted, as specified in [MS -WMIO] . Before reading this Windows Mana gement

Instrumentation Remote Protocol document, acquire a working knowledge of the concepts,
structures, and communication protocols as specified in [MS -DCOM], [DMTF -DSP0004] , and [MS -
WMIO] . Namespace security is controlled by using security descriptors, as specified in [MS -DTYP] .

1.4 Relationship to Other Protocols

The Windows Management Instrumentation Remote Protocol uses the DCOM Remote Protocol to
communicate over the network and to authenticate all requests issued against the infrastructure.

The DCOM Remote Protocol is actually the foundation for the Windows Man agement Instrumentation
Remote Protocol and is used to accomplish the following:

Á Establish the protocol.

Á Secure the communication channel.

Á Authenticate clients.

Á Implement reliable communication between clients and servers.

This implies that the DCOM Remo te Protocol implementation provides and uses all underlying
protocols, as specified in [MS -RPCE], [MS -DCOM] , and [C706] .

In addition t o DCOM Remote Protocol support, the Windows Management Instrumentation Remote
Protocol uses a special encoding, as specified in [MS -WMIO] , to transfer information as specified in
[DMTF -DSP0004] over the network.

1.5 Prerequisites/Preconditions

The client that uses the protocol possesses valid credentials that are recognized by the server
accepting the client requests. The client uses security providers that recognize such credentials to
authenticate to the remote server by using the Security Support Provider Interface (SSPI) ,
which is supported by the Remote Procedure Call Protocol Extensions, as specified in [MS -RPCE].

%5bMS-DCOM%5d.pdf
%5bMS-DCOM%5d.pdf
%5bMS-DCOM%5d.pdf
%5bMS-WMIO%5d.pdf
http://go.microsoft.com/fwlink/?LinkId=89848
%5bMS-WMIO%5d.pdf
%5bMS-WMIO%5d.pdf
%5bMS-DTYP%5d.pdf
%5bMS-RPCE%5d.pdf
%5bMS-DCOM%5d.pdf
http://go.microsoft.com/fwlink/?LinkId=89824
%5bMS-WMIO%5d.pdf
http://go.microsoft.com/fwlink/?LinkId=89848
%5bMS-GLOS%5d.pdf
%5bMS-GLOS%5d.pdf
%5bMS-RPCE%5d.pdf

16 / 253

[MS -WMI] ð v20140502
 Windows Management Instrumentation Remote Protocol

 Copyright © 2014 Microsoft Corporation.

 Release: Thursday, May 15, 2014

The server system is started with the DCOM Remote Protocol activation service fully initialized
before the activation request. The client is configured to receive activation requests from the server

if it wants to call the service asynchronously, as specified in section 4.4 .

An implementation of the DCOM Remote Protocol, as specified in [MS -DCOM] , needs to be available .

1.6 Applicability Statement

The Windows Management Instrumentation Remote Protocol implementation is designed for
managing components that are represented by CIM classes on remote clients and servers. This
protocol is designed to act as a transport for CIM -compatible management objects and operations
on CIM objects .

1.7 Versioning and Capability Negotiation

This document covers versioning issues in the following areas. The Windows Management
Instrumentation Remote Protocol does explicit negotiation as follows:

Á The client of this protocol uses the mechanism, as specified in [MS -DCOM] section 1.7, to

discover which interfaces are supported by the exported object and to interpret the
E_NOINTERFACE result, as specified in [MS -DCOM] section 1.7. The client then adjusts its

behavior based on the availability of the requested interface, as specified in sections 3.2.3 and
3.2.4.2.8 .

Á The protocol uses return codes as a capability discovery mechanism; the client interprets them as

a capability negotiation, as specified in section 3.2.4.1.1 .

Á The protocol uses return values and parameters to negotiate the locale capabilities of the server

as specified in section 3.2.3 .

1.8 Vendor - Extensible Fields

In order to extend the CIM schema using the Windows Management Instrumentation Remote

Protocol, vendors MUST use operations as specified in section 3.1.4.3 .

This protocol uses HRESULT values as specified in [MS -ERREF]. Vendors can define their own
HRESULT values, provided they set the C bit (0x20000000) for each vendor -defined value,

indicating that the value is a customer code.

1.9 Standards Assignments

There are no standards assignments for this protocol. This protocol uses the following class
identifiers (CLSIDs) (as specified in [MS -DCOM] section 1.9):

Á CLSID_WbemLevel1Login ({8BC3F05E -D86B -11D0 -A075 -00C04FB68820})

Á CLSID_WbemBackupRestore ({C49E32C6 -BC8B-11D2 -85D4 -00105A1F8304})

The following GUIDs are used for the interfaces:

Á IID_IWbemLevel1Login ({F309AD18 -D86A -11d0 -A075 -00 C04FB68820})

Á IID_IWbemLoginClientID ({d4781cd6 -e5d3 -44df -ad94 -930efe48a887})

Á IID_IWbemLoginHelper ({541679AB -2E5F-11d3 -B34E -00104BCC4B4A})

Á IID_IWbemServices ({9556DC99 -828C -11CF-A37E -00AA003240C7})

%5bMS-GLOS%5d.pdf
%5bMS-DCOM%5d.pdf
%5bMS-GLOS%5d.pdf
%5bMS-GLOS%5d.pdf
%5bMS-DCOM%5d.pdf
%5bMS-DCOM%5d.pdf
%5bMS-ERREF%5d.pdf
%5bMS-GLOS%5d.pdf
%5bMS-GLOS%5d.pdf
%5bMS-DCOM%5d.pdf
%5bMS-GLOS%5d.pdf

17 / 253

[MS -WMI] ð v20140502
 Windows Management Instrumentation Remote Protocol

 Copyright © 2014 Microsoft Corporation.

 Release: Thursday, May 15, 2014

Á IID_IWbemBackupRestore ({C49E32C7 -BC8B-11d2 -85D4 -00105A1F8 304})

Á IID_IWbemBackupRestoreEx ({A359DEC5 -E813 -4834 -8A2A -BA7F1D777D76})

Á IID_IWbemClassObject ({DC12A681 -737F -11CF-884D -00AA004B2E24})

Á IID_IWbemContext ({44aca674 -e8fc -11d0 -a07c -00c04fb68820})

18 / 253

[MS -WMI] ð v20140502
 Windows Management Instrumentation Remote Protocol

 Copyright © 2014 Microsoft Corporation.

 Release: Thursday, May 15, 2014

2 Messages

The following sections specify how Windows Management Instrumentation Remote Protocol
messages are transported and specify Windows Management Instrumentation Remote Protocol
message syntax.

2.1 Transport

Windows Management Instrumentation Remote Protocol messages MUST be transported via the
DCOM Remote Protocol. The Windows Management Instrumentation Remote Protocol objects that

are exported by the Windows Management Instrumentation (WMI) server MUST be capable of
DCOM activation, as specified in [MS -DCOM] section 3.2.4.1.1.

The client connection MUST be secured at an authentication level th at is negotiated by the DCOM
Remote Protocol infrastructure.

2.2 Common Data Types

2.2.1 WQL Query

A client has the capability to express a query against a server. This query MUST be expressed in the
WMI Query Language (WQL) . WQL is a subset of the American National Standards Institute
Structured Query Language, as specified in [FIPS127] and [MSDN -WQL] . WQ L differs from the
standard SQL in that WQL retrieves from classes rather than tables, and returns CIM classes or CIM
instances rather than rows. WQL supports a specific semantic designed to query against CIM
classes or CIM in stances with their related characteristics. Queries MUST be of one of the following 3

forms:

Á Schema queries: Queries focused on CIM classes.

Á Data queries: Queries focused on CIM instances.

Á Event queries: Queries focused on events triggered by state chan ges of CIM classes or CIM

instances. Events triggered on CIM instances can be internal to the infrastructure (intrinsic) or

external to the infrastructure (extrinsic). Events can also be timer events.

WQL uses terminologies and concepts, as specified in [DMTF -DSP0004] , except as noted below, and
requires familiarity with the CIM model. The server MUST treat a backslash as an escape character
in a WQL query, except within a LIKE clause. The server MUST treat literal strings in WQL data as
case - insensitive, contrary to what [DMTF -DSP0004] specifies.

The next section specifies the complete syntax of WQL queries for schema, data, and event q ueries.

2.2.1.1 WQL Schema and Data Query

The syntax for the WQL schema and data queries is provided in Augmented Backus - Naur Form
(ABNF) .

; -----------------------------------

; WQL schema and data queries

; -----------------------------------

DATA- WQL =

 ("SELECT" <PROPERTY- LIST> "FROM" <CLASS - NAME>

%5bMS-GLOS%5d.pdf
%5bMS-DCOM%5d.pdf
%5bMS-GLOS%5d.pdf
%5bMS-DCOM%5d.pdf
%5bMS-DCOM%5d.pdf
http://go.microsoft.com/fwlink/?LinkId=89865
http://go.microsoft.com/fwlink/?LinkId=90168
%5bMS-GLOS%5d.pdf
%5bMS-GLOS%5d.pdf
http://go.microsoft.com/fwlink/?LinkId=89848
http://go.microsoft.com/fwlink/?LinkId=89848
%5bMS-GLOS%5d.pdf
%5bMS-GLOS%5d.pdf

19 / 253

[MS -WMI] ð v20140502
 Windows Management Instrumentation Remote Protocol

 Copyright © 2014 Microsoft Corporation.

 Release: Thursday, May 15, 2014

 <OPTIONAL- SEL- WHERE>)/

 ("SELECT" ASTERISK "FROM" <CLASS - NAME> <OPTIONAL- SEL- WHERE>)/

 ("SELECT" ASTERISK "FROM META_CLASS" <OPTIONAL - META- WHERE>)/

 ("A SSOCIATORS OF {" <OBJECT - REL- PATH> "}"

 <OPTIONAL- ASSOC- WHERE>)/

 ("REFERENCES OF {" <OBJECT - REL- PATH> "}" <OPTIONAL - REF- WHERE>)

PROPERTY- LIST = <PROPERTY - NAME> <PROPERTY- LIST2>

PROPERTY- LIST2 = [COMMA <PROPERTY- LIST>]

OPTIONAL- SEL- WHERE = ["WHERE" < EXPR>]

OPTIONAL- META- WHERE = ["WHERE __THIS ISA" <CLASS - NAME>]

OPTIONAL- ASSOC- WHERE =

 ["WHERE" ["AssocClass=" <CLASS - NAME> BLANK]

 ["RequiredAssocQualifier=" <QUALIFIER - NAME> BLANK]

 ["RequiredQualifier=" <QUALIFIER - NAME> BLANK]

 ["ResultClass=" <CLASS- NAME> BLANK]

 ["ResultRole=" <PROPERTY - NAME> BLANK]

 ["Role=" <PROPERTY - NAME> BLANK]

 ["KeysOnly" BLANK]

 ["ClassDefsOnly" BLANK]

]

OPTIONAL- REF- WHERE =

 ["WHERE" ["RequiredQualifier=" <QUALIFIER - NAME> BLANK]

 ["ResultClass=" <CLASS - NAME> BLANK]

 ["Role=" <PROPERTY - NAME> BLANK]

 ["KeysOnly" BLANK]

 ["ClassDefsOnly" BLANK]

]

OBJECT- REL- PATH =

 <CLASS- NAME> "=" <TYPED - CONSTANT> <OBJECT- REL- PATH2>

OBJECT- REL- PATH2 =

 [COMMA <OBJECT- REL- PATH>]

; -----------------------------------

; Expression

; -----------------------------------

EXPR =

 ([OPEN - PARENTHESIS] <PROPERTY- EVALUATION>

 <EXPR2> [CLOSE- PARENTHESIS]) /

 ([OPEN - PARENTHESIS] "__CLASS" <EQUIVALENT - OPERATOR>

 <CLASS- NAME> <EXPR2> [CLOSE- PARENTHESIS])

EXPR2 = (["OR" [OPEN - PARENTHESIS] <EXPR> [CLOSE - PARENTHESIS]])/

 (["AND" [OPEN - PARENTHESIS] <EXPR> [CLOSE - PARENTHESIS]])

PROPERTY- EVALUATION =

 (<PROPERTY- NAME> <OPERATOR> <TYPED- CONSTANT>) /

 (<PROPERTY- NAME> <IS- OPERATOR> "NULL")

OPERATOR = <EQUIVALENT- OPERATOR> /

 <COMPARE- OPERATOR>

EQUIVALENT- OPERATOR = "=" / "!=" / "<>"

COMPARE- OPERATOR = "<=" / ">=" / "<" / ">" / "LIKE"

IS - OPERATOR = "IS" / "IS NOT"

20 / 253

[MS -WMI] ð v20140502
 Windows Management Instrumentation Remote Protocol

 Copyright © 2014 Microsoft Corporation.

 Release: Thursday, May 15, 2014

; ----------- ------------------------

; Characters

; -----------------------------------

ALPHA = %x41 - 5A

DIGIT = %x30 - 39

COMMA = ","

ASTERISK = "*"

OPEN- PARENTHESIS = "("

CLOSE- PARENTHESIS = ")"

BLANK = " " / " \ x09"

DOUBLEUNDERSCORE = %x5f %x5f

STRING- IDENTIFIER = A LPHA *(ALPHA / DIGIT / (*("_") ALPHA / DIGIT))

CLASS- NAME = [DOUBLEUNDERSCORE]<STRING- IDENTIFIER>

PROPERTY- NAME = [DOUBLEUNDERSCORE]<STRING- IDENTIFIER>

QUALIFIER- NAME = <STRING- IDENTIFIER>

TYPED- CONSTANT = INT /

 REAL /

 UNICODE- STRING /

 DATETIME /

 BOOL

INT = "[- +]? \ d+"

REAL = "[- +]?(\ d* \ . \ d+)|(\ d+)"

STRING = ["]([a - z][A - Z] \ d)*["]

DATETIME is specified in section 2.2.1 of [DMTF - DSP0004]

BOOL = "TRUE" / "FALSE"

Schema objects and

keywords Description

UNICODE -STRING A string constant with Unicode characters. This string constant must be

surrounded by ("") or a ('').

CLASS-NAME Identifies the CIM class name to be queried.

PROPERTY-NAME Identifies the name of a property of the CIM class.

QUALIFIER -NAME In the context of a WQL query, QUALIFIER -NAME is an attribute of a PROPERTY -

NAME defining the nature of an association with another CIM class. All

qualifiers, including any custom -defined qualifier, MUST be supported within the

context of a WQL query.

DATA-WQL A string expressing the WQL query. The WQL string uses different WQL

reserved keywords to select the type of information desired.

SELECT A keyword expressing the selection of information requested (similar to SQL

SELECT). SELECT expresses the CIM class or CIM instance to be queried. It

21 / 253

[MS -WMI] ð v20140502
 Windows Management Instrumentation Remote Protocol

 Copyright © 2014 Microsoft Corporation.

 Release: Thursday, May 15, 2014

Schema objects and

keywords Description

MUST be specified when the ASSOCIATORS OF or the REFERENCES OF keyword

is not used. It MUST NOT be used wh en the ASSOCIATORS OF or the

REFERENCES OF keyword is used.

PROPERTY-LIST A list of PROPERTY -NAME values. PROPERTY -NAME values in the list MUST be

separated by a comma (",").

ASTERISK Requires all properties of a CIM class or a CIM instance.

FROM A keyword that MUST be specified with the SELECT statement to express the

CIM class or CIM instance the query MUST be executed against.

OPTIONAL -SEL-WHERE The WHERE statement narrows the scope of a SELECT.

OPTIONAL -META-

WHERE

The WHERE statement narrows the scope of a SELECT. The WHERE statement

followed by the __THIS ISA statement is narrowing the scope of the WQL query

to return CIM instances according to the following rule: The only CIM instances

returned are the instances of the class CLASS -NAME and a ll the subclasses in

CLASS-NAME's class inheritance hierarchy.

__CLASS A keyword referring to the CIM object, indicating the class of the current CIM

object. The __CLASS keyword in a WHERE clause only selects CIM instances of

derived classes made out of t he CLASS -NAME.

ASSOCIATORS OF A keyword that is a WQL statement to locate associated CIM classes or CIM

instances. It MUST NOT be used in combination with the SELECT keyword and

the REFERENCES OF keyword.

OPTIONAL -ASSOC-

WHERE

If the WHERE statement is sp ecified in an ASSOCIATORS OF WQL query, it

narrows the scope to one or several characteristics of the association and

associated CIM classes. The filter expression can be made of several specific

keywords and expressions to validate these characteristics. Each expression

MUST be separated by a BLANK character, as specified in the preceding ABNF

notation. Each expression MUST NOT be used more than once in a single WQL

query. The keyword supported to narrow the scope of an ASSOCIATORS OF

query are AssocClass, RequiredAssocQualifier, RequiredQualifier, ResultClass,

ResultRole, Role, KeysOnly, and ClassDefsOnly.

REFERENCES OF A keyword that is a WQL statement to locate the CIM classes or CIM instances

associating CIM classes or CIM instances. It MUST NOT be use d in combination

with the SELECT keyword and the ASSOCIATORS OF keyword.

OPTIONAL -REF-WHERE If the WHERE statement is specified in a REFERENCES OF query, it narrows the

scope to one or several characteristics of the association and associated classes.

The filter expression can be made of several specific keywords and expressions

to express these characteristics. Each expression MUST be separated by a

BLANK character. Each expression MUST NOT be used more than once in a

single WQL query. The keywords suppor ted to narrow the scope of a

REFERENCES OF query are RequiredQualifier, ResultClass, Role, KeysOnly, and

ClassDefsOnly.

OBJECT-REL-PATH The CIM relative path of the CIM class or CIM instance to be queried. It MUST

be specified for ASSOCIATORS OF and REFERENCES OF queries.

KeysOnly If the KeysOnly keyword is being used in ASSOCIATORS OF and REFERENCES

OF queries, only the key properties of resulting CIM instan ces MUST be

populated.

%5bMS-GLOS%5d.pdf

22 / 253

[MS -WMI] ð v20140502
 Windows Management Instrumentation Remote Protocol

 Copyright © 2014 Microsoft Corporation.

 Release: Thursday, May 15, 2014

Schema objects and

keywords Description

ClassDefsOnly If the ClassDefsOnly keyword is being used in ASSOCIATORS OF and

REFERENCES OF queries only the CIM class definitions of resulting CIM

instances MUST be returned.

AssocClass If the AssocClass keyword is being used in ASSOCIATORS OF queries, the

resulting CIM instances MUST be associated with association class or CIM

instances made out of the CLASS -NAME specified.

RequiredAssocQualifier If the RequiredAssocQualifier keyword is being used in ASSOCIATORS OF

queries, the returned CIM instances must be associated with the source object

through an association class that included the specified qualifier. For example,

in the following query:

ASSOCIATORS OF {Win32_LogicalDisk.DeviceID="C:"} WHERE

RequiredAssocQualifier = Assoc iation

the returned CIM instances must be associated with the source object

represented by {Win32_LogicalDisk.DeviceID="C:"} through an association

class that includes the qualifier "association".

RequiredQualifier If the RequiredQualifier keyword is bein g used in ASSOCIATORS OF and

REFERENCES OF queries, the resulting CIM instances MUST have the CIM

qualifier of the given name set.

ResultClass If the ResultClass keyword is being used in ASSOCIATORS OF and REFERENCES

OF queries, the resulting CIM instanc es MUST belong to or be derived from the

class specified by CLASS -NAME.

Role If the Role keyword is being used in ASSOCIATORS OF and REFERENCES OF

queries, the result MUST only return CIM instances where the role matches the

reference CIM property name of the association class.

ResultRole If the ResultRole keyword is being used in ASSOCIATORS OF queries, the result

MUST only return CIM instances where the role matches the reference CIM

property name of the CIM instances.

Operator Description

Applicable

Type

= Test the equivalence of two values. string,

numeric,

reference,

datetime

!= Test the negated equivalence of two values. string,

numeric,

reference,

datetime

> Test whether the value of the property is greater than that of the typed -

constant.

string,

numeric,

datetime

< Test whether the value of the property is less than that of the typed -

constant.

string,

numeric,

%5bMS-GLOS%5d.pdf

23 / 253

[MS -WMI] ð v20140502
 Windows Management Instrumentation Remote Protocol

 Copyright © 2014 Microsoft Corporation.

 Release: Thursday, May 15, 2014

Operator Description

Applicable

Type

datetime

>= Test whether the value of the property is greater than or equal to that of

the typed -constant.

string,

numeric,

datetime

<= Test whether the valu e of the property is less than or equal to that of the

typed -constant.

string,

numeric,

datetime

LIKE Test whether a given character string of the property value matches a

specified pattern of the typed -constant. The specified pattern can contain

exactly the characters to match, or it can contain meta characters. The

table below lists the meta characters. If used with a non -string property,

the behavior is the same as the '=' operator, and it tests the equivalence

of two values. The use of meta characters mentioned below with a non -

string property results in the error WBEM_E_INVALID_QUERY.

string

IS Test whether the value of the property is null. string,

numeric,

reference,

datetime,

object

IS NOT Test whether the value of property is not null. string,

numeric,

reference,

datetime,

object

If typed -constant is string, the operator MUST perform a case - insensitive lexicographic relation test.
If the operator is not applicable to the property type, the server MUST return

WBEM_E_INVALID_QUERY.

The f ollowing characters have special meaning within a LIKE clause:

Character Description

[Any one character within a range specified as a sequence of one or more of the following

formats, terminated by a "]":

Á A non -caret followed by " - " or "=" followed by any character except the terminating "]"

matches any character in a sequential range of characters. For instance, "[a - f]" or
"[a=f]" matches any character from "a" through "f".

Á A non -caret followed by " - " or "=" followed by the terminating "]" matches the two literal

characters inside the brackets: the non -caret and the " -" or "=".

Á A caret followed by any character except the terminating "]" matches any character

except those in the sequence(s) following the c aret, up to the terminating "]". For
example, "[^ad - f]" matches anything except an "a", "d", "e", or "f".

Á A caret followed by a closing bracket matches the caret itself: "[^]".

Á Any other character matches the literal character itself.

24 / 253

[MS -WMI] ð v20140502
 Windows Management Instrumentation Remote Protocol

 Copyright © 2014 Microsoft Corporation.

 Release: Thursday, May 15, 2014

Character Description

Note that "%", "_", a nd "[" serve as literals within a bracketed sequence.

% Any string of 0 (zero) or more characters. The following example finds all instances where

"Win" is found anywhere in the class name: SELECT * FROM meta_class WHERE __Class

LIKE "%Win%"

_ Any one ch aracter. Any literal underscore used in the query string MUST be escaped by

placing it inside [] (square brackets).

2.2.1.2 WQL Event Query

The following example shows the syntax for WQL event queries in ABNF notation.

; -----------------------------------

; WQL event queries

; -----------------------------------

EVENT- WQL = "SELECT" <PROPERTY- LIST> "FROM" /

 <EVENT- CLASS- NAME> <OPTIONAL- WITHIN> <EVENT- WHERE>

OPTIONAL- WITHIN = ["WITHIN" <INTERVAL>]

INTERVAL = 1*MODULOREAL

EVENT- WHERE = ["WHERE" <EVENT- EXPR>]

EVENT- EXPR = ((<INSTANCE - STATE> "ISA" <CLASS - NAME> <EXPR2>) /

 <EXPR>)

 ["GROUP WITHIN" <INTERVAL>

 (["BY" [<INSTANCE - STATE> DOT] <PROPERTY- NAME>]

 ["HAVING" <EXPR>])]

INSTANCE- STATE = "TARGETINSTANCE" / "PREVIOUSINSTANCE"

; -----------------------------------

; Expressi on

; -----------------------------------

EXPR =

 [OPEN- PARENTHESIS] <PROPERTY- EVALUATION> /

 <EXPR2> [CLOSE- PARENTHESIS]

EXPR2 = (["OR" [OPEN - PARENTHESIS] <EXPR> /

 [CLOSE- PARENTHESIS]]) /

 (["AND" [OPEN - PARENTHESIS] <EXPR> /

 [CLOSE- PARENTHESIS]])

PROPERTY- EVALUATION =

 (<PROPERTY- NAME> <OPERATOR> <TYPED- CONSTANT>) /

 (<PROPERTY- NAME> <IS- OPERATOR> "NULL")

OPERATOR = <EQUIVALENT- OPERATOR> /

 <COMPARE- OPERATOR>

EQUIVALENT- OPERATOR = "=" / "!=" / "<>"

COMPARE- OPERATOR = "<=" / ">=" / "<" / ">" / "LIKE"

IS - OPERATOR = "IS" / "IS NOT"

; -----------------------------------

; Characters

25 / 253

[MS -WMI] ð v20140502
 Windows Management Instrumentation Remote Protocol

 Copyright © 2014 Microsoft Corporation.

 Release: Thursday, May 15, 2014

; -----------------------------------

ALPHA = %x41 - 5A

DIGIT = %x30 - 39

DOT = ","

COMMA = "."

ASTERISK = "*"

OPEN- PARENTHESIS = "("

CLOSE- PARENTHESIS = ")"

STRING- IDENTIFIER = ALPHA *(ALPHA / DIGIT / (*("_") ALPHA / DIGIT))

DOUBLEUNDERSCORE = "__"

CLASS- NAME = [DOUBLEUNDERSCORE]<STRING- IDENTIFIER>

EVENT- CLASS- NAME = [DOUBLEUNDERSCORE]<STRING- IDENTIFIER>

PROPERTY- NAME = [DOUBLEUNDERSCORE]<STRING- IDENTIFIER>

TYPED- CONSTANT = INT /

 REAL /

 STRING /

 DATETIME /

 BOOL

INT = "[- +]? \ d*"

REAL = "[- +]? \ d*(\ . \ d+)?"

MODULOREAL = ñ[+]?\ d*(\ . \ d+)?ò

STRING = ["]([a - z][A - Z] \ d)*["]

DATETIME is specified in section 2.2.1 of [DMTF - DSP0004]

BOOL = "TRUE" / "FALSE"

Objects and

keywords Description

CLASS-NAME Identifies a CIM class name to be queried for events.

PROPERTY-

NAME

Identifies the name of a CIM property of a CIM class.

EVENT-WQL A string expressing the WQL event query. The WQL string uses different WQL reserved

keywords to select the type of information wanted.

SELECT A keyword expressing the selection of informatio n requested (similar to SQL SELECT).

SELECT expresses the CIM class or CIM instance to be queried. It MUST be specified in a

WQL event query.

PROPERTY-

LIST

A list of PROPERTY -NAME values. PROPERTY -NAME values in the list MUST be separated

by a comma (",") .

ASTERISK Requires all properties of a CIM class or a CIM instance.

FROM A keyword that MUST be specified with the SELECT statement to express the CIM class or

CIM instance that the query MUST be run against.

EVENT-

CLASS-NAME

MUST be specified and MUS T be an intrinsic, an extrinsic, or a timer event class. An

intrinsic event class is a class derived from __InstanceOperationEvent,

__ClassOperationEvent, or __NamespaceOperationEvent, representing possible intrinsic

events. A n extrinsic event class is a class derived from __ExtrinsicEvent, representing

%5bMS-GLOS%5d.pdf
%5bMS-GLOS%5d.pdf

26 / 253

[MS -WMI] ð v20140502
 Windows Management Instrumentation Remote Protocol

 Copyright © 2014 Microsoft Corporation.

 Release: Thursday, May 15, 2014

Objects and

keywords Description

possible extrinsic events. A timer event class is a class derived from __TimerEvent event

class, representing possible timer events.

WITHIN A keyword indicating the server to poll the system for an event. In case of an intrinsic

EVENT-CLASS-NAME, the WITHIN keyword MUST be specified. The WITHIN keyword is

optional for extrinsic EVENT -CLASS-NAME. If the WITHIN keyword is specified, the

INTERVAL MUST be specified.

INTERVAL INTERVAL specifies the polling interval. It MUST be expressed in seconds. If "WITHIN" is

specified, the INTERVAL MUST be specified.

EVENT-

WHERE

The WHERE statement narrows the scope of a SELECT event query if the EVENT -CLASS-

NAME is an extrinsic or timer event CIM class. The WHERE statement MUST be specified to

narrow the scope of a SELECT event query if the EVENT -CLASS-NAME is an intrinsic CIM

class.

INSTANCE -

STATE

Indicates the type of instance to be evaluated. INSTANCE -STATE MUST be specified if

CLASS-NAME is an intrinsic CIM class. INSTANCE -STATE is optional if CLASS -NAME is an

extrinsic CIM class. If specified, INSTANCE -STATE MUST be PREVIOUSINSTANCE (to

indicate that the state of the CIM class or CIM instance before the event MUST be

evaluated) or TARGETINSTANCE (to indicate that the state of the CIM class or CIM

instance after the event MUST be evaluated).

ISA A keyword that MUST be used in combination with the INSTANCE -STATE keyword. It is

used as a comparative operato r between the INSTANCE -STATE and a CLASS -NAME to

reduce the scope of events returned to the CIM instances made out of the CLASS -NAME.

GROUP

WITHIN

If the GROUP WITHIN keyword is used, the INTERVAL MUST be specified. This keyword

indicates that all events occurring during the WITHIN INTERVAL period MUST be grouped

as one event.

HAVING If the HAVING keyword is specified, it MUST be followed by EXPR to filter the selection of

events. This keyword indicates that all events grouped during the GROUP WITHIN period

MUST meet the expression specified in EXPR before being returned as one event.

BY A keyword that groups event instances sharing a same value on a specified PROPERTY -

NAME. In such a case, events are returned that represent a group of events sharing the

same PROPERTY-NAME value. The system MUST return as many events representing a

gro up of events as there are PROPERTY -NAME values.

EVENT-EXPR An expression for filtering WMI events.

2.2.2 CIM Path and Namespace

The syntax for CIM path and namespace is provided in ABNF notation.

; -----------------------------------

; CIM PATH

; -----------------------------------

CIMPATH = (<NAMESPACE- PATH> COLON <OBJECT- PATH>) /

 <OBJECT- PATH>

 NAMESPACE- PATH = [<MACHINE - PATH>] NAMESPACE

 MACHINE- PATH = BACKSLASH BACKSLASH <MACHINENAME> BACKSLASH

 OBJECT- PATH = <CLASS- NAME> [<INSTANCE- KEY>]

 INSTANCE- KEY = (EQUAL "@") / DOT <KEY - VALUE- LIST>

27 / 253

[MS -WMI] ð v20140502
 Windows Management Instrumentation Remote Protocol

 Copyright © 2014 Microsoft Corporation.

 Release: Thursday, May 15, 2014

 KEY- VALUE- LIST = <PROPERTY - NAME> EQUAL

 <TYPED- CONSTANT> <KEY- VALUE- LIST2>

 KEY- VALUE- LIST2 = [COMMA KEY - VALUE- LIST]

CLASS- NAME = [__]<STRING - IDENTIFIER>

PROPERTY- NAME = [__]<STRING - IDENTIFIER>

; -----------------------------------

; NAMESPACE

; -----------------------------------

NAMESPACE = <STRING- IDENTIFIER> <SUB - NAMESPACE>

<SUB- NAMESPACE> = [BACKSLASH <NAMESPACE>]

TYPED- CONSTANT = INT /

 REAL /

 STRING /

 DATETIME /

 BOOL

INT = "[- +]? \ d*"

REAL = "[- +]? \ d*(\ . \ d+)?"

STRING = ["]([a - z][A - Z] \ d)*["]

DATETIME =

"(\ d\ d\ d\ d)(0 \ d|1[012])(0 \ d|[12][0 - 9]|3[01])([0 - 1] \ d|2[0 - 3])([0 - 5] \ d)([0 -

5] \ d)[.] \ d\ d\ d\ d\ d\ d[+ -]([0 - 6][02468][0]|7[0 - 2][0])"

BOOL = "TRUE" / "FALSE"

; --------------------------------- --

; Characters

; -----------------------------------

ALPHA = %x41 - 5A

DIGIT = %x30 - 39

BACKSLASH = " \ "

DOT = "."

STRING- IDENTIFIER = ALPHA *(ALPHA / DIGIT / (*("_") ALPHA / DIGIT))

COLON=":"

MACHINENAME = <STRING- IDENTIFIER> / DOT

Objects and

k eywords Description

OBJECT-PATH The path of the CIM class or CIM instance to be referenced.

MACHINENAME The network - identifiable name of the machine where the referenced WMI class,

instance, or namespace resides.

CLASS-NAME Identifies a CIM class name.

INSTANCE -KEY Uniquely identifies the instance of a given CIM class.

KEY-VALUE-LIST List of property names and their values, separated by a ",". Each property value

pair is represented in propertyName=value format.

28 / 253

[MS -WMI] ð v20140502
 Windows Management Instrumentation Remote Protocol

 Copyright © 2014 Microsoft Corporation.

 Release: Thursday, May 15, 2014

Objects and

k eywords Description

PROPERTY-NAME Identifies the name of a property of the CIM class.

2.2.3 Protocol Return Codes

Codes that are returned by the protocol are represented as an HRESULT, as specified in [MS -ERREF]
section 2.1.

The HRESULT values that are documented in the following table are interpreted by the protocol

through a specific set of interface methods, as specified in sections 3.1.4.3 , 3.1.4.4.2 , and
3.2.4.1.1 .

The severity bit of HRESULT MUST be interpreted as specified in [MS -ERREF] section 2.1. HRESULT
errors are not recoverable by the protocol. HRESULT successes, other than the ones specified in the
following table, MUST be considered as equal to WBEM_S_NO_ERROR.

Constant/value Description

WBEM_S_NO_ERROR

0x00000000

The operation was successful.

WBEM_S_FALSE

0x00000001

Either no more CIM objects are available, the number of returned CIM objects is

less than the number requested, or this is the end of an enumeration.

WBEM_S_TIMEDOUT

0x00040004

A call timed out. This is not an error condition.

WBEM_S_NEW_STYLE

0x000400FF

The operation was successful and indicates that the receiver of the call is able to

receive optimized IWbemObjectSink::Indicate calls.

2.2.4 IWbemClassObject Interface

The signatures of many methods that are related to the Windows Management Instrumentation

Remote Protocol include a parameter to specify an IWbemClassObject interface pointer . This
parameter MUST be custom marshaled by the DCOM Remote Protocol, as specified in the following
table. The IWbemClassObject interface represents a WMI object, such as a WMI class or an object
instance. All CIM objects (CIM classes and CIM instances) t hat are passed during WMI calls between
the client and server are objects of this interface.

Parameter/source Value/description

Interface UUID {DC12A681 -737F -11CF-884D -00AA004B2E24 }

Marshaling buffer

layout

The buffer representing a CIM object MUST be encoded using the EncodingUnit

object block, as specified in [MS -WMIO] section 2.2.1.

Unmarshaler CLSID {4590F812 -1D3A -11D 0-891F -00AA004B2E24}

This CLSID MUST represent the unmarshaler CLSID that is supplied by WMI to

DCOM and MUST be sent over the network by DCOM when custom marshaling is

implemented. For more information (OBJREF_CUSTOM), see the [MS -DCOM] .

%5bMS-ERREF%5d.pdf
%5bMS-ERREF%5d.pdf
%5bMS-GLOS%5d.pdf
%5bMS-GLOS%5d.pdf
%5bMS-WMIO%5d.pdf
%5bMS-WMIO%5d.pdf
%5bMS-DCOM%5d.pdf

29 / 253

[MS -WMI] ð v20140502
 Windows Management Instrumentation Remote Protocol

 Copyright © 2014 Microsoft Corporation.

 Release: Thursday, May 15, 2014

2.2.4.1 Prototype Result Object

The prototype result object is an IWbemClassObject (section 2.2.4) that is returned when the
lFlags parameter of the IWbemServices::ExecQuery (section 3.1.4.3.18) or

IWbemServices::ExecQueryAsync (section 3.1.4.3.19) method includes the
WBEM_FLAG_PROTOTYPE flag.

The query returns the CIM class object that is specified in the CLASS -NAME of the query that is
modified to match the query.

If the query specifies PROPERTY - LIST , as specified in section 2.2.1.1 , the class object is modified
to represent the results of the query by removing all the properties that are not specified in the
PROPERTY - LIST of the query and by adding selected properties with the Order qual ifier (see the

2nd paragraph following concerning the Order qualifier). In this case, the CIM class is encoded as an
IWbemClassObject object, with an ObjectFlags block that contains a 0x10 value that is set as
specified in [MS -WMIO] section 2.2.6. If any key property is removed because it is not specified in
PROPERTY - LIST , the 0x40 flag is set on ObjectFlags .

If the query specifies ASTERISK , as specified in section 2.2.1.1 , the class object is returned with all
the properties added to the Order qualifier. In this case, the CIM class is encoded as an

IWbemClassObject object and the 0x10 flag is not set in ObjectFlags .

The Order qualifier (QUALIFIER -NAME attribute set to Order , see section 2.2.1.1) is an array of 32 -
bit signed integers. Each value in the array represents the position of the property in PROPERTY -
LIST (if PROPERT Y- LIST is specified) or represents the order in which the property appears in the
class (if the query specifies ASTERISK). The position is encoded starting from 0.

For example,

select prop1,prop2,prop1 from class1

results in class1 containing only two pro perties, prop1 and prop2 . The prop1 property is added to

an Order qualifier that has a value of {0,2}, and the prop2 property is added to an Order qualifier

that has a value of {1}.

Note The prop1 property occurs twice in the PROPERTY - LIST , at positions 1 and 3, and

therefore, has two values {0,2}.

If the query specifies a PROPERTY - LIST that does not contain at least one of the following
properties, the DerivationList in ClassPart of the CurrentClass , as specified in [MS -WMIO] section
2.2.17, is encoded as empty:

Á __DERIVATION

Á __SUPERCLASS

Á __DYNASTY

Otherwise, the DerivationList in ClassPart of the CurrentClass is encoded in the same way a s the

actual CIM class that represents the CLASS - NAME of the query.

The PropertyLookupTable , NdTable , ValueTable , and ClassHeap in ClassPart of the CurrentClass (as
specified in [MS -WMIO] section 2.2.15) are encoded to contain only the selected properties in the
query.

%5bMS-WMIO%5d.pdf
%5bMS-WMIO%5d.pdf
%5bMS-WMIO%5d.pdf
%5bMS-WMIO%5d.pdf
%5bMS-WMIO%5d.pdf
%5bMS-WMIO%5d.pdf
%5bMS-WMIO%5d.pdf
%5bMS-WMIO%5d.pdf
%5bMS-WMIO%5d.pdf
%5bMS-WMIO%5d.pdf
%5bMS-WMIO%5d.pdf

30 / 253

[MS -WMI] ð v20140502
 Windows Management Instrumentation Remote Protocol

 Copyright © 2014 Microsoft Corporation.

 Release: Thursday, May 15, 2014

Remaining items are encoded in the same way as the CIM class that represents the CLASS - NAME
that is specified in the query.

2.2.4.2 Extrinsic Events

Extrinsic events are events generated by a component outside the implementation. In WMI ,
extrinsic events are represented as instances of a class that is derived from the __ExtrinsicEvent
class. If any component wants to generate an event, the component defines a class that is derived
from the __ExtrinsicEvent class. Instances of the derived class defined by the component,
represented by using IWbemClassObject (section 2.2.4) , are used to send events.

__ExtrinsicEvent class is defined by WMI as shown in the following MOF text.

[abstract]

class __SystemClass

{

};

[abstract]

class __IndicationRelated : __SystemClass

{

};

 [abstract: DisableOverride ToInstance ToSubClass]

class __Event : __IndicationRelated

{

 uint64 TIME_CREATED;

 uint8 SECURITY_DESCRIPTOR[];

};

class __ExtrinsicEvent : __Event

{

};

Where TIME_CREATED is the time at which the event is generated, represented as a 64 -bit value

that represents the number of 100 -nan osecond intervals since January 1, 1601 (UTC), and
SECURITY_DESCRIPTOR is a security descriptor , as defined in [MS -DTYP] , represented as an
array of bytes. The security descriptor MUST specify sec urity for events as specified in section
5.2 .

2.2.5 WBEM_CHANGE_FLAG_TYPE Enumeration

The WBEM_CHANGE_FLAG_TYPE enumeration is used to indicate and update the type of the flag.

typedef [v1_enum] enum tag_WBEM_CHANGE_FLAG_TYPE

{

 WBEM_FLAG_CREATE_OR_UPDATE = 0x00,

 WBEM_FLAG_UPDATE_ONLY = 0x01,

 WBEM_FLAG_CREATE_ONLY = 0x02,

 WBEM_FLAG_UPDATE_SAFE_MODE = 0x20,

 WBEM_FLAG_UPDATE_FORCE_MODE = 0x40

} WBEM_CHANGE_FLAG_TYPE;

%5bMS-DTYP%5d.pdf
%5bMS-DTYP%5d.pdf

31 / 253

[MS -WMI] ð v20140502
 Windows Management Instrumentation Remote Protocol

 Copyright © 2014 Microsoft Corporation.

 Release: Thursday, May 15, 2014

WBEM_FLAG_CREATE_OR_UPDATE: This flag causes the put operation to update the class or

instance if it does not exist, or to o verwrite the class or instance if it exists already.

WBEM_FLAG_UPDATE_ONLY: This flag causes the put operation to update the class or
instance. The class or instance MUST exist for the call to be successful.

WBEM_FLAG_CREATE_ONLY: This flag causes the pu t operation to create the class or
instance. For the call to be successful, the class or instance MUST NOT exist.

WBEM_FLAG_UPDATE_SAFE_MODE: This flag allows updates of classes even if there are
child classes, as long as the change does not cause any con flicts with child classes. An
example of an update that this flag allows is the adding of a new property to the base class
that was not previously mentioned in any of the child classes. If the class has instances, the
update fails.

WBEM_FLAG_UPDATE_FORCE_M ODE: This flag forces updates of classes when conflicting
child classes exist. An example of an update that this flag forces is when a class qualifier is
defined in a child class and the base class tries to add the same qualifier that conflicted with

the existing one. In force mode, this conflict is resolved by deleting the conflicting qualifier in
the child class.

2.2.6 WBEM_GENERIC_FLAG_TYPE Enumeration

The WBEM_GENERIC_FLAG_TYPE enumeration is used to indicate and update the type of the
flag.

typedef [v1_enum] enum tag_WBEM_GENERIC_FLAG_TYPE

{

 WBEM_FLAG_RETURN_WBEM_COMPLETE = 0x0,

 WBEM_FLAG_RETURN_IMMEDIATELY = 0x10,

 WBEM_FLAG_FORWARD_ONLY = 0x20,

 WBEM_FLAG_NO_ERROR_OBJECT = 0x40,

 WBEM_FLAG_SEND_STATUS = 0x80,

 WBEM_FLAG_ENSURE_LOCATABLE = 0x100,

 WBEM_FLAG_DIRECT_READ = 0x200,

 WBEM_MASK_RESERVED_FLAGS = 0x1F000,

 WBEM_FLAG_USE_AMENDED_QUALIFIERS = 0x20000,

 WBEM_FLAG_STRONG_VALIDATION = 0x100000

} WBEM_GENERIC_FLAG_TYPE;

WBEM_FLAG_RETURN_WBEM_COMPLETE: This flag makes the operation synchronous. This

is the default behavior and so this flag need not be explicitly speci fied.

WBEM_FLAG_RETURN_IMMEDIATELY: This flag causes the call to return without waiting for
the operation to complete. The call result parameter contains the IWbemCallResult object by
using the status of the operation that can be retrieved.

WBEM_FLAG_FORW ARD_ONLY: This flag causes a forward -only enumerator,

IEnumWbemClassObject, (section 3.1.4.4) , t o be returned. Forward -only enumerators

are typically much faster and use less memory than conventional enumerators; however, they
do not allow calls to IEnumWbemClassObject::Clone or
IEnumWbemClassObject::Reset .

WBEM_FLAG_NO_ERROR_OBJECT: This flag MUST NOT be set, and MUST be ignored on
receipt.

32 / 253

[MS -WMI] ð v20140502
 Windows Management Instrumentation Remote Protocol

 Copyright © 2014 Microsoft Corporation.

 Release: Thursday, May 15, 2014

WBEM_FLAG_SEND_STATUS: This flag registers a request with WMI to receive intermediate
status reports thro ugh the client implementation of IWbemObjectSink::SetStatus , if

supported by the server implementation.

WBEM_FLAG_ENSURE_LOCATABLE: This flag ensures that any returned objects have enough

information in them so that system properties, such as __PATH, __RELPATH, and
__SERVER, <1> are non -NULL.

WBEM_FLAG_DIRECT_READ: This flag causes direct access to the specified class without
regard to its parent class or subclasses .

WBEM_MASK_RESERVED_FLAGS: This flag MUST NOT be set, and MUST be ignored on
receipt.

WBEM_FLAG_USE_AMENDED_QUALIFIERS: If this flag is set, the server retrieves any

qualifiers in the CIM object that can be localized in the current connection's locale. The set of
localized qualifiers and the list of locales for which the qualifier is localized are implementation
dependent. When the localized information is available, the server retrieves the loca lized

values using the client -preferred locale. If the localized values are not available, the server
returns values using the default locale.

The localized qualifiers or amended qualifiers are identified by the qualifier flavor as

defined in [MS -WMIO] section 2.2.62.

If this flag is not set, the server does not retrieve any localized qualifiers for the CIM object.

WBEM_FLAG_STRONG_VALIDATION: This flag MUST NOT be set, and MUST be ignored on
receipt.

2.2.7 WBEM_STATUS_TYPE Enumeration

The WBEM_STATUS_TYPE enumeration gives information about the status of the operation.

typedef enum tag_WBEM_STATUS_TYPE

{

 WBEM_STATUS_COMPLETE = 0,

 WBEM_STATUS_REQUIREMENTS = 0x01,

 WBEM_STATUS_PROGRESS = 0x02

} WBEM_STATUS_TYPE;

WBEM_STATUS_COMPLETE: When the WMI operation is completed, WMI calls

IWbemObjectSink::SetStatus with WBEM_STATUS_COMPLETE.

WBEM_STATUS_REQUIREMENTS: This flag MUST NOT be set, and M UST be ignored on
receipt.

WBEM_STATUS_PROGRESS: WMI reports the progress of the operation to
IWbemObjectSink::SetStatus with flag WBEM_STATUS_PROGRESS.

2.2.8 WBEM_TIMEOUT_TYPE Enumeration

The WBEM_TIMEOUT_TYPE enumeration gives information about the type of time -out for the
process.

typedef [v1_enum] enum tag_WBEM_TIMEOUT_TYPE

%5bMS-GLOS%5d.pdf
%5bMS-WMIO%5d.pdf

33 / 253

[MS -WMI] ð v20140502
 Windows Management Instrumentation Remote Protocol

 Copyright © 2014 Microsoft Corporation.

 Release: Thursday, May 15, 2014

{

 WBEM_NO_WAIT = 0,

 WBEM_INFINITE = 0xFFFFFFFF

} WBEM_TIMEOUT_TYPE;

WBEM_NO_WAIT: If passed as a time -out parameter to the IEnumWbemClassObject::Next

method, the call returns the available objects, if any, at the time of the call; it does not wait
for any more objects.

WBEM_INFINITE: If passed as a time -out parameter to IEnumWbemClassObject::Next , the
call blocks until objects are available.

2.2.9 WBEM_QUERY_FLAG_TYPE Enumeration

The WBEM_QUERY_FLAG_TYPE enumeration gives information about the type of the flag.

typedef [v1_enum] enum tag_WBEM_QUERY_FLAG_TYPE

{

 WBEM_FLAG_DEEP = 0,

 WBEM_FLAG_SHALLOW = 1,

 WBEM_FLAG_PROTOTYPE = 2

} WBEM_QUERY_FLAG_TYPE;

WBEM_FLAG_DEEP: If used in IWbemServices::CreateClassEnum or

IWbemServices::CreateClassEnumAsync , the WBEM_FLAG_DEEP constant causes the
enumeration to return all the subclasses in the hierarchy of a specified class but to not return

the class itself.

If used in IWbemServices::CreateInstanceEnum or
IWbemServices::CreateInstanceEnumAsync , this constant causes the enumeration to
return the instances of this class and also the instances of subclasses in the hierarchy of the
class.

WBEM_FLAG_SHALLOW: If used in IWbemServices::Cr eateClassEnum or
IWbemServices::CreateClassEnumAsync , the WBEM_FLAG_SHALLOW constant causes the

enumeration to return the immediate subclasses of a specified class.

If used in IWbemServices::CreateInstanceEnum or
IWbemServices::CreateInstanceEnumAsync , thi s constant causes the enumeration to
return only the instances of this class and excludes all instances of subclasses.

WBEM_FLAG_PROTOTYPE: This flag is used for prototyping. It does not run the query;
instead, it returns the Prototype Result Object as specified in section 2.2.4.1 .

2.2.10 WBEM_BACKUP_RESTORE_FLAGS Enumeration

The WBEM_BACKUP_RESTORE_FLAGS enumeration gives information about the backup and

restore state of the process.

typedef [v1_enum] enum tag_WBEM_BACKUP_RESTORE_FLAGS

{

 WBEM_FLAG_BACKUP_RESTORE_FORCE_SHUTDOWN = 1

} WBEM_BACKUP_RESTORE_FLAGS;

34 / 253

[MS -WMI] ð v20140502
 Windows Management Instrumentation Remote Protocol

 Copyright © 2014 Microsoft Corporation.

 Release: Thursday, May 15, 2014

WBEM_FLAG_BACKUP_RESTORE_FORCE_SHUTDOWN: While the CIM database is being

restored, any clients connected to WMI are forcibly disconnected.

2.2.11 WBEMSTATUS Enumeration

The WBEMSTATUS enumeration gives information about the status of an operation. If the server
encounters an error condition for which this protocol does not explicitly state an error value, the
server can return any HRESULT to indicate failure by setting the Severity (S bit) of the HRESULT, as
defined in [MS -ERREF] section 2.1.

The statuses of operations that are not explicitly called out in this document but are part of the
associated IDL are deemed to be local -only and are implementation -specific.

typedef [v1_enum] enum tag_WBEMSTATUS

{

 WBEM_S_NO_ERROR = 0x00,

 WBEM_S_FALSE = 0x01,

 WBEM_S_TIMEDOUT = 0x40004,

 WBEM_S_NEW_STYLE = 0x400FF,

 WBEM_S_PARTIAL_RESULTS = 0x40010,

 WBEM_E_FAILED = 0x80041001,

 WBEM_E_NOT_FOUND = 0x80041002,

 WBEM_E_ACCESS_DENIED = 0x80041003,

 WBEM_E_PROVIDER_FAILURE = 0x80041004,

 WBEM_E_TYPE_MISMATCH = 0x80041005,

 WBEM_E_OUT_OF_MEMORY = 0x80041006,

 WBEM_E_INVALID_CONTEXT = 0x80041007,

 WBEM_E_INVALID_PARAMETER = 0x80041008,

 WBEM_E_NOT_AVAILABLE = 0x80041009,

 WBEM_E_CRITICAL_ERROR = 0x8004100a,

 WBEM_E_NOT_SUPPORTED = 0x8004100c,

 WBEM_E_PROVIDER_NOT_FOUND = 0x80041011,

 WBEM_E_INVALID_PROVIDER_REGISTRATION = 0x80041012,

 WBEM_E_PROVIDER_LOAD_FAILURE = 0x80041013,

 WBEM_E_INITIALIZATION_FAILURE = 0x80041014,

 WBEM_E_TRANSPORT_FAILURE = 0x80041015,

 WBEM_E_INVALID_OPERATION = 0x80041016,

 WBEM_E_ALREADY_EXISTS = 0x80041019,

 WBEM_E_UNEXPECTED = 0x8004101d,

 WBEM_E_INCOMPLETE_CLASS = 0x80041020,

 WBEM_E_SHUTTING_DOWN = 0x80041033,

 E_NOTIMPL = 0x80004001,

 WBEM_E_INVALID_SUPERCLASS = 0x8004100D,

 WBEM_E_INVALID_NAMESPACE = 0x8004100E,

 WBEM_E_INVALID_OBJECT = 0x8004100F,

 WBEM_E_INVALID_CLASS = 0x80041010,

 WBEM_E_INVALID_QUERY = 0x80041017,

 WBEM_E_INVALID_QUERY_TYPE = 0x80041018,

 WBEM_E_PROVIDER_NOT_CAPABLE = 0x80041024,

 WBEM_E_CLASS_HAS_CHILDREN = 0x80041025,

 WBEM_E_CLASS_HAS_INSTANCES = 0x80041026,

 WBEM_E_ILLEGAL_NULL = 0x80041028,

 WBEM_E_INVALID_CIM_TYPE = 0x8004102D,

 WBEM_E_INVALID_METHOD = 0x8004102E,

 WBEM_E_INVALID_METHOD_PARAMETERS = 0x8004102F,

 WBEM_E_INVALID_PROPERTY = 0x80041031,

 WBEM_E_CALL_CANCELLED = 0x80041032,

 WBEM_E_INVALID_OBJECT_PATH = 0x8004103A,

%5bMS-ERREF%5d.pdf
%5bMS-ERREF%5d.pdf
%5bMS-GLOS%5d.pdf

35 / 253

[MS -WMI] ð v20140502
 Windows Management Instrumentation Remote Protocol

 Copyright © 2014 Microsoft Corporation.

 Release: Thursday, May 15, 2014

 WBEM_E_OUT_OF_DISK_SPACE = 0x8004103B,

 WBEM_E_UNSUPPORTED_PUT_EXTENSION = 0x8004103D,

 WBEM_E_QUOTA_VIOLATION = 0x8004106c,

 WBEM_E_SERVER_TOO_BUSY = 0x80041045,

 WBEM_E_METHOD_NOT_IMPLEMENTED = 0x80041055,

 WBEM_E_METHOD_DISABLED = 0x80041056,

 WBEM_E_UNPARSABLE_QUERY = 0x80041058,

 WBEM_E_NOT_EVENT_CLASS = 0x80041059,

 WBEM_E_MISSING_GROUP_WITHIN = 0x8004105A,

 WBEM_E_MISSING_AGGREGATION_LIST = 0x8004105B,

 WBEM_E_PROPERTY_NOT_AN_OBJECT = 0x8004105c,

 WBEM_E_AGGREGATING_BY_OBJECT = 0x8004105d,

 WBEM_E_BACKUP_RESTORE_WINMGMT_RUNNING = 0x80041060,

 WBEM_E_QUEUE_OVERFLOW = 0x80041061,

 WBEM_E_PRIVILEGE_NOT_HELD = 0x80041062,

 WBEM_E_INVALID_OPERATOR = 0x80041063,

 WBEM_E_CANNOT_BE_ABSTRACT = 0x80041065,

 WBEM_E_AMENDED_OBJECT = 0x80041066,

 WBEM_E_VETO_PUT = 0x8004107A,

 WBEM_E_PROVIDER_SUSPENDED = 0x80041081,

 WBEM_E_ENCRYPTED_CONNECTION_REQUIRED = 0x80041087,

 WBEM_E_PROVIDER_TIMED_OUT = 0x80041088,

 WBEM_E_NO_KEY = 0x80041089,

 WBEM_E_PROVIDER_DISABLED = 0x8004108a,

 WBEM_E_REGISTRATION_TOO_BROAD = 0x80042001,

 WBEM_E_REGISTRATION_TOO_PRECISE = 0x80042002

} WBEMSTATUS;

WBEM_S_NO_ERROR: The operation completed successfully.

WBEM_S_FALSE: Either no more CIM objects are available, the numbe r of returned CIM
objects is less than the number requested, or this is the end of an enumeration. This error
code is returned from the IEnumWbemClassObject and IWbemWCOSmartEnum interface
methods.

WBEM_S_TIMEDOUT: The attempt to establish the connection has expired.

WBEM_S_NEW_STYLE: The server supports ObjectArray encoding; see section 3.1.4.2.1 for
details.

WBEM_S_PARTIAL_RESULTS: The server could not return all the objects and/or properties
requested.

WBEM_E_FAILED: The server has encountered an unknown error while processing the client's
request.

WBEM_E_NOT_FOUND: The object specified in th e path does not exist.

WBEM_E_ACCESS_DENIED: The permission required to perform the operation is not helped
by the security principal performing the operation.

WBEM_E_PROVIDER_FAILURE: The server has encountered an unknown e rror while
processing the client's request.

WBEM_E_TYPE_MISMATCH: The server has found an incorrect data type associated with
property or input parameter in client's request.

%5bMS-GLOS%5d.pdf

36 / 253

[MS -WMI] ð v20140502
 Windows Management Instrumentation Remote Protocol

 Copyright © 2014 Microsoft Corporation.

 Release: Thursday, May 15, 2014

WBEM_E_OUT_OF_MEMORY: The server ran out of memory before completing the operat ion.

WBEM_E_INVALID_CONTEXT: The IWbemContext object sent as part of client's request
does not contain the required properties.

WBEM_E_INVALID_PARAMETER: One or more of the parameters passed to the method is not

valid. Methods return this error in any of the following circumstances: (1) a parameter is NULL
where a non -NULL value is required, (2) the flags specified in the lFlags parameter are not
allowed in this method.

WBEM_E_NOT_AVAILABLE: The resource is unavailable.

WBEM_E_CRITICAL_ERROR: The server has encountered a catastrophic failure and cannot
process any client's request.

WBEM_E_NOT_SUPPORTED: The attempted operation is not supported.

WBEM_E_PR OVIDER_NOT_FOUND: The server has encountered an implementation -specific

error.

WBEM_E_INVALID_PROVIDER_REGISTRATION: The server has encountered an
implementation -specific error.

WBEM_E_PROVIDER_LOAD_FAILURE: The server has encountered an implementation -
specific error.

WBEM_E_INITIALIZATION_FAILURE: The server has encountered failure during its
initialization.

WBEM_E_TRANSPORT_FAILURE: There is a network problem detected in reaching the
server.

WBEM_E_INVALID_OPERATION: The operation performed is not v alid.

WBEM_E_ALREADY_EXISTS: When a Put method is called for a CIM object with the flag

WBEM_FLAG_CREATE_ONLY and the object already exists, WBEM_E_ALREADY_EXISTS is

returned.

WBEM_E_UNEXPECTED: An unspecified error has occurred.

WBEM_E_INCOMPLETE_CLASS: The object passed doesn't correspond to any of classes
registered with WMI.

WBEM_E_SHUTTING_DOWN: The server cannot process the requested operation as it is
shutting down.

E_NOTIMPL: The attempted operation is not implemented. The value of this element is as

specified in [MS -ERREF] section 2.1.

WBEM_E_INVALID_SUPERCLASS: When putting a class, the server did not find the parent
class specified for the new class to be added.

WBEM_E_INVALID_NAMESPACE: When connecting to WMI, the namespace specified is not
found.

WBEM_E_INVALID_OBJECT: The CIM instance passed to the server doesn't have required

information.

%5bMS-ERREF%5d.pdf

37 / 253

[MS -WMI] ð v20140502
 Windows Management Instrumentation Remote Protocol

 Copyright © 2014 Microsoft Corporation.

 Release: Thursday, May 15, 2014

WBEM_E_INVALID_CLASS: The class name is invalid.

WBEM_E_INVALID_QUERY: The query sent to the se rver doesn't semantically conform to the
rules specified in section 2.2.1 .

WBEM_E_INVALID_QUERY_TYPE: The query language specified is invalid.

WBEM_E_PROVIDER_NOT_CAPABLE: The server does not support t he requested operation
on the given CIM class.

WBEM_E_CLASS_HAS_CHILDREN: The class cannot be updated because it has derived
classes.

WBEM_E_CLASS_HAS_INSTANCES: The class cannot be updated because it has instances.

WBEM_E_ILLEGAL_NULL: The server ident ifies that one of the non -nullable NULL properties
was set to NULL in the Put operation.

WBEM_E_INVALID_CIM_TYPE: The CIM type specified is not valid.

WBEM_E_INVALID_METHOD: The CIM object does not implement the specified method.

WBEM_E_INVALID_METHOD_PA RAMETERS: One or more of the parameters passed to the
CIM method are not valid.

WBEM_E_INVALID_PROPERTY: The property for which the operation is made is no longer
present in the CIM database.

WBEM_E_CALL_CANCELLED: The server canceled the execution of the request due to
resource constraints. The client can try the call again.

WBEM_E_INVALID_OBJECT_PATH: The object path is not syntactically valid.

WBEM_E_OUT_OF_DISK_SPACE: Insufficient resources on the server to sat isfy the client's
request.

WBEM_E_UNSUPPORTED_PUT_EXTENSION: The server has encountered an
implementation -specific error.

WBEM_E_QUOTA_VIOLATION: Quota violation.

WBEM_E_SERVER_TOO_BUSY: The server cannot complete the operation at this point.

WBEM_E_MET HOD_NOT_IMPLEMENTED: An attempt was made to execute a method not
marked with "implemented" in this class or any of its derived classes.

WBEM_E_METHOD_DISABLED: An attempt was made to execute a method marked with
"disabled" qualifier in MOF.

WBEM_E_UNPARS ABLE_QUERY: The query sent to the server doesn't syntactically conform

to the rules specified in section 2.2.1 .

WBEM_E_NOT_EVENT_CLASS: The FROM clause of WQL Event Query (section 2.2.1.2)
represents a class that is not derived from Event.

WBEM_E_MISSING_GROUP_WITHIN: The GROUP BY clause of WQL query does not have
WITHIN specified.

%5bMS-GLOS%5d.pdf

38 / 253

[MS -WMI] ð v20140502
 Windows Management Instrumentation Remote Protocol

 Copyright © 2014 Microsoft Corporation.

 Release: Thursday, May 15, 2014

WBEM_E_MISSING_AGGREGATION_LIST: The GROUP BY clause was used with aggregation,
which is not supported.

WBEM_E_PROPERTY_NOT_AN_OBJECT: The GROUP BY clause references an object that is
an embedded object without usin g Dot notation.

WBEM_E_AGGREGATING_BY_OBJECT: The GROUP BY clause references an object that is an
embedded object without using Dot notation.

WBEM_E_BACKUP_RESTORE_WINMGMT_RUNNING: A request for backing up or restoring
the CIM datab ase was sent while the server was using it.

WBEM_E_QUEUE_OVERFLOW: The EventQueue on the server has more events than can be
consumed by the client.

WBEM_E_PRIVILEGE_NOT_HELD: The server could not find the required privilege for

performing operations on C IM classes or CIM instances.

WBEM_E_INVALID_OPERATOR: An operator in the WQL query is invalid for this property
type.

WBEM_E_CANNOT_BE_ABSTRACT: The CIM class on the server had the abstract qualifier set
to true, while its parent class does not have the abstract qualifier set to false.

WBEM_E_AMENDED_OBJECT: A CIM instance with amended qualifier set to true is being

updated without WBEM_FLAG_USE_AMENDED_QUALIFIERS flag.

WBEM_E_VETO_PUT: The server cannot perform a PUT operation because it is not support ed
for the given CIM class.

WBEM_E_PROVIDER_SUSPENDED: The server has encountered an implementation -specific
error.

WBEM_E_ENCRYPTED_CONNECTION_REQUIRED: The server has encountered an

implementation -specific error.

WBEM_E_PROVIDER_TIMED_OUT:

WBEM_E_NO_ KEY: The IWbemServices::PuInstance or IWbemServices::PutInstanceAsync
operation was attempted with no value set for the key properties.

WBEM_E_PROVIDER_DISABLED: The server has encountered an implementation -specific
error.

WBEM_E_REGISTRATION_TOO_BROAD: The server has encountered an implementation -
specific error.

WBEM_E_REGISTRATION_TOO_PRECISE: The WQL query for intrinsic events for a class
issued without a WITHIN clause.

2.2.12 WBEM_CONNECT_OPTIONS Enumeration

The WBEM_CONNECT_OPTIONS enumeration gives information about the type of options of the
connection.

typedef [v1_enum] enum tag_WBEM_CONNECT_OPTIONS

{

39 / 253

[MS -WMI] ð v20140502
 Windows Management Instrumentation Remote Protocol

 Copyright © 2014 Microsoft Corporation.

 Release: Thursday, May 15, 2014

 WBEM_FLAG_CONNECT_REPOSITORY_ONLY = 0x40,

 WBEM_FLAG_CONNECT_PROVIDERS = 0x100

} WBEM_CONNECT_OPTIONS;

WBEM_FLAG_CONNECT_REPOSITORY_ONLY: Reserved for local use.

WBEM_FLAG_CONNECT_PROVIDERS: Reserved for local use. <2>

2.2.13 IWbemContext

The signatures of many methods that are related to the Windows Management Instrumentation
Remote Protocol include a parameter to specify an IWbemContext interface pointer. The
IWbemContext interface represents an IWbemContext object, which acts as a property bag (a
specialized container for properties that store variants) that a client MAY use to store additional
information to be used by the server. This information MUST be composed of a property list, the

property types, and the assigned property values.

The following properties may be passed as part of any call where IWbemContext is passed as a
parameter to the server. <3>

PropertyName PropertyType PropertyValue Description

__ProviderArchitecture VT_I 4 32 or 64 Indicates the

provider

architecture to be

used. This

parameter directs

WMI to choose the

specified type of

provider, if

available. If

omitted, WMI is

directed to choose

the native

architecture of the

server.

__RequiredArchitecture VT_BOOL True or False Indicates whether

the requested WMI

provider

architecture is

required.

__MI_DESTINATIONOPTIONS_DATA_LOCALE VT_BSTR MUST be a locale

name in the

"MS_xxx" format

(see section

2.2.29 .

A locale that

indicates the

preferred format

for culture -specific

information such

as time and date.

__MI_DESTINATIONOPTIONS_UI_LOCALE VT_BSTR MUST be a locale

name in the

"MS_xxx" format

(see section

2.2.29 .

A locale that

indicates the

preferred language

to use for human -

readable strings.

__CorrelationId VT_BSTR GUID in string This value SHOULD

40 / 253

[MS -WMI] ð v20140502
 Windows Management Instrumentation Remote Protocol

 Copyright © 2014 Microsoft Corporation.

 Release: Thursday, May 15, 2014

PropertyName PropertyType PropertyValue Description

form. be used in tracing

or debugging to

group client

operation and WMI

server tasks

related to client

operat ion.

When used through Windows Management Instrumentation Remote Protocol methods, the

IWbemContext parameter MUST be custom marshaled by the DCOM Remote Protocol (see [MS -
DCOM]), as specified in the following list.

Parameter /source Value/description

Interface UUID {44ACA674 -E8FC-11D0 -A07C -00C04FB68820}

Marshaling buffer

layout

The marshaling buffer has the format of the IWbemContextBuffer structure, as

specified in section 2.2.13.1 .

Unmarshaler CLSID {674B6698 -EE92-11D0 -AD71 -00C04FD8FDFF}

This CLSID represents the unmarshaler CLSID that is supplied by the Windows

Management Instrumentat ion Remote Protocol to the DCOM Remote Protocol and

MUST be sent over the network by the DCOM Remote Protocol when custom

marshaling is implemented. For more information, refer to [MS -DCOM] section

2.2.18.6.

For the IDL of th ese two IWbemContext interfaces, see Appendix A , which contains the full IDL of
the Windows Management Instrumentation Remote Protocol.

All scalar types that are encountered in the following structures M UST be stored in little -endian
format.

The IWbemContext interface is marshaled or unmarshaled by using the following data structures.

Structure Description

IWbemContextBuffer Marshaling Structure requirements for marshaling a buffer.

IWbemContextProperty Marshaling Structure requirements for marshaling a property.

IWbemContextString Marshaling Structure requirements for marshaling a string.

IWbemContextArray Marshaling Structure requirements for marshaling an array.

The IWbemContext interface pointer is specified as a parameter f or many remote methods in WMI.
The data structures that are listed here define the wire formats for the data that is used by this
protocol.

The integer formats OCTET, UINT16, and UINT32 are encoded as defined in [MS -WMIO] sect ion

2.2.72.

%5bMS-DCOM%5d.pdf
%5bMS-DCOM%5d.pdf
%5bMS-DCOM%5d.pdf
%5bMS-WMIO%5d.pdf

41 / 253

[MS -WMI] ð v20140502
 Windows Management Instrumentation Remote Protocol

 Copyright © 2014 Microsoft Corporation.

 Release: Thursday, May 15, 2014

2.2.13.1 IWbemContextBuffer Marshaling Structure

The IWbemContextBuffer data structure defines the wire format for buffer data that is used by this
protocol. Its structure has the following encoding format (defined in ABNF notation as specified in

[RFC4234]).

IWbemContextBuffer = NumGuids *GUID NumProps *IWbemContextProperty

Á The stream MUST start with a 32 -bit integer (NumGUIDs , in the following list). The following

ABNF represents the numbe r of GUIDs that are present in the next GuidArray . GUID is defined

in [MS -DTYP] section 2.3.4.

NumGuids = UINT32

Á NumGuids MUST be set to 1, MUST be followed by an array of standard GUIDs, and MUST

contain NumGuids elements. Since the NumGuids value is set to 1, only one GUID needs to

be present.

Á The stream MUST contain a 32 -bit integer that represents the property count.

NumProps = UINT32

Á The property list MUST immediately follow the property count and MUST be marshaled as a

continuous list without padding between properties, as specified in IWbemContextProperty
(section 2.2.13.2) . The number of IWbemContextProperty properties MUST be equal to
NumProps .

2.2.13.2 IWbemContextProperty Marshaling Structure

The IWbemContextProperty data structure defines the wire format for property data that is used by

this protocol. The property is a variable - length structure and has the following structure:

IWbemContextProperty = PropertyName PropertyFlags PropertyType PropertyValue

Á PropertyName MUST be the name of the property, marshaled as a string in the

IWbemContextString format specified in 2.2.13.3 .

PropertyName = IWbemContextString

Á PropertyFlags is a 32 -bit integer. It MUST be set to 0 and ignored.

PropertyFlags = UINT32

Á PropertyType is a 16 -bit unsigned integer that represents the type of the prope rty.

PropertyType = UINT16

MUST have one of the following values as specified in [MS -OAUT] section 2.2.7:

http://go.microsoft.com/fwlink/?LinkId=90462
%5bMS-DTYP%5d.pdf
%5bMS-DTYP%5d.pdf
%5bMS-OAUT%5d.pdf

42 / 253

[MS -WMI] ð v20140502
 Windows Management Instrumentation Remote Protocol

 Copyright © 2014 Microsoft Corporation.

 Release: Thursday, May 15, 2014

Á VT_NULL

Á VT_I2

Á VT_I4

Á VT_R4

Á VT_R8

Á VT_BSTR

Á VT_BOOL

Á VT_UI1

Á VT_UI2

Á VT_UI4

Á VT_UNKNOWN

Á VT_I1

If the value is an array, the list ed property types MUST be combined by using the bitwise OR
operation with VT_ARRAY (also specified in [MS -OAUT] section 2.2.7).

Á PropertyValue is marshaled as shown in the following table.

Property types Marshaling

VT_BSTR MUST be marshaled as an IWbemContextString .

VT_IUNKNOWN MUST be marshaled as a buffer for the IWbemClassObject interface.

VT_NULL MUST be marshaled as an array of size 0.

VT_UI1, VT_I1 MUST be marshaled as an array of 8 bytes with the first byte containing the value

of the property.

VT_I2, VT_UI2,

VT_BOOL

MUST be marshaled as an array of 8 bytes with the first 2 bytes containing the

value of the property.

VT_I4, VT_UI4 MUST be marshal ed as an array of 8 bytes with the first 4 bytes containing the

value of the property.

VT_R4 MUST be marshaled as an array of 8 bytes with the first 4 bytes containing the

value of the property, as specified in [IEEE754] , a 4 -byte floating -point format.

VT_R8 MUST be marshaled in an 8 -byte floating -point format as specified in [IEEE754] .

VT_ARRAY | VT_* MUST be marshaled as an IWbemContextArray structure, as specified in 2.2.13.4 .

2.2.13.3 IWbemContextString Marshaling Structure

The IWbemContextString data structure defines the wire format for the string data that is used by
this protocol. Strings (property names and VT_BSTR properties values) MUST be represented as a
32 -bit character count and followed by a sequence of characters that are encoded in UTF -16, as
specified in [UNICODE] .

%5bMS-OAUT%5d.pdf
http://go.microsoft.com/fwlink/?LinkId=89903
http://go.microsoft.com/fwlink/?LinkId=89903
http://go.microsoft.com/fwlink/?LinkId=90550

43 / 253

[MS -WMI] ð v20140502
 Windows Management Instrumentation Remote Protocol

 Copyright © 2014 Microsoft Corporation.

 Release: Thursday, May 15, 2014

IWbemContextString has the following structure.

IWbemContextString = StringLength *UnicodeCharacter

Á StringLength MUST represent the length of the string as a character count.

StringLength = UINT32

UnicodeCharacter = 2OCTET

Á StringLength MUST be followed by a sequence of characters encoded with UTF -16, as specified in

[UNICODE] . The length of the sequence MUST be equal to StringLength . The string MUST NOT

have a terminating NIL (0x0000) character.

2.2.13.4 IWbemContextArray Marshaling Structure

The IWbemContextArray data structure defines the wire format for array data that is used by this

protocol. IWbemContextArray has the following structure:

IWbemContextArray = ElementCount ElementSize *Elements

Á ElementCount MUST be an integer that represents the number of elements in the array.

ElementCount = UINT32.

Á ElementSize MUST represent the size of a single element in the array. The size MUST match the

size of the elements. ElementSize = UINT32.

Á Elements is a variable stream of bytes that represent all element values in the array. (Array

elements are marshaled in a different representation from nonarray elements.)

Each element MUST be marshaled as an a rray of bytes that use the following representation.

Type Marshaling

VT_BSTR MUST be marshaled as an IWbemContextString . In this case, ElementSize

SHOULD be set to 4 or 8. <4>

VT_IUNKNOWN MUST be marshaled as an array of bytes that represent a marshaling buffer for the

IWbemClassObject interface. In this case, ElementSize SHOULD be set to 4 or

8. <5>

VT_NULL MUST be marshaled as 0 bytes.

VT_I1, VT_UI1 MUST be marshaled as 1 byte.

VT_I4, VT_UI4 MUST be marshaled in 4 -byte little -endian format.

VT_R4 MUST be marshaled as an array of 8 bytes with the first 4 bytes containing the

value of the property, as specified in [IEEE754] , in a 4 -byte floating -point format.

VT_R8 MUST be marshaled as a n 8 -byte floating -point format, as specified in [IEEE754] .

VT_I2, VT_BOOL,

VT_UI2

MUST be marshaled as a 2 -byte little -endian format.

http://go.microsoft.com/fwlink/?LinkId=90550
http://go.microsoft.com/fwlink/?LinkId=89903
http://go.microsoft.com/fwlink/?LinkId=89903

44 / 253

[MS -WMI] ð v20140502
 Windows Management Instrumentation Remote Protocol

 Copyright © 2014 Microsoft Corporation.

 Release: Thursday, May 15, 2014

2.2.14 ObjectArray Structure

The ObjectArray structure MUST be used to encode multiple CIM objects that are returned in
response to the IWbemWCOSmartEnum::Next (section 3.1.4.7.1) method. This structure is

also used to encode parameters of the optimized IWbemObjectSin k::Indicate (section
3.1.4.2.1) method. <6> To minimize network bandwidth, a server SHOULD support the ObjectArray
structure whe n an array of CIM objects is sent.

The optimization MUST be achieved by sending the CIM class information just once at the beginning
of the communication for the same class type. Instances of different classes are allowed, in which
case only the first ins tance of every unique class MUST contain the CIM class information for
optimization. This CIM class MUST be identified by a randomly generated GUID, generated by the

server, that that is maintained by both the server and the client for the duration of the method call.
The remaining CIM instances MUST be sent without the CIM class information. The CIM class
definition that is identified by the GUID is used to reconstruct the full CIM instances on the client
side.

0

1

2

3

4

5

6

7

8

9

1

0

1

2

3

4

5

6

7

8

9

2

0

1

2

3

4

5

6

7

8

9

3

0

1

dwByteOrdering

abSignature

...

dwSizeOfHeader1

dwDataSize1

dwFlags

bVersion bPacketType dwSizeOfHeader2

... dwDataSize2

... dwSizeOfHeader3

... dwDataSize3

... dwNumObjects

... wbemObjects (variable)

...

dwByteOrdering (4 bytes): The byte ordering. It MUST be value 0.

45 / 253

[MS -WMI] ð v20140502
 Windows Management Instrumentation Remote Protocol

 Copyright © 2014 Microsoft Corporation.

 Release: Thursday, May 15, 2014

Value Meaning

0x00000000 The value when byte ordering is little -endian.

abSignature (8 bytes): MUST be set to {0x57, 0x42, 0x45, 0x4D, 0x44, 0x41, 0x54, 0x41} (a
byte array containing the unquoted, unterminated ASCII string "WBEMDATA").

dwSizeOfHeader1 (4 bytes): This stores the total size of these fields: dwByteOrdering ,
abSignature , dwSizeofHead er1 , dwDataSize1 , dwFlags , bVersion , and bPacketType .

The size of the header MUST be 0x0000001A. Data immediately follows the header.

dwDataSize1 (4 bytes): MUST indicate the length, in bytes, of the data that follows this
header, starting at the dwSizeOf Header2 field.

dwFlags (4 bytes): The flag value MUST be 0x00000000.

bVersion (1 byte): The version number of the header. The version MUST be 1.

bPacketType (1 byte): The value of this field is dependent on the call context.

Value Meaning

0x00000000 The value in the context of an optimized IWbemObjectSink::Indicate call.

0x00000001 The value in the context of an optimized IWbemWCOSmartEnum::Next call.

dwSizeOfHeader2 (4 bytes): This stores the size of these fields: dwSizeofHeader2 and
dwDataSize2 .

This value MUST be 8. Data immediately follows after the field dwDataSize2 .

dwDataSize2 (4 bytes): MUST be the size, in bytes, of the data that follows this field.

dwSizeOfHeader3 (4 bytes): This stores the size of these fields: dwSizeofHeader3 ,
dwDataSi ze3 , and dwNumObjects . This value MUST be 12. Data immediately follows after
the field dwNumObjects .

dwDataSize3 (4 bytes): MUST indicate the length of the remaining data, starting at the

wbemObjects field.

dwNumObjects (4 bytes): MUST be the number of C IM objects in the ObjectArray.

wbemObjects (variable): The objects array that contains the CIM class definition and CIM
instances. These CIM objects MUST be encoded in the WBEM_DATAPACKET_OBJECT structu re.

2.2.14.1 WBEM_DATAPACKET_OBJECT Structure

The WBEM_DATAPACKET_OBJECT MUST contain the CIM class definition and CIM instances.

0

1

2

3

4

5

6

7

8

9

1

0

1

2

3

4

5

6

7

8

9

2

0

1

2

3

4

5

6

7

8

9

3

0

1

dwSizeOfHeader

46 / 253

[MS -WMI] ð v20140502
 Windows Management Instrumentation Remote Protocol

 Copyright © 2014 Microsoft Corporation.

 Release: Thursday, May 15, 2014

dwSizeOfData

bObjectType Object (variable)

...

dwSizeOfHeader (4 bytes): The size, in bytes, of the WBEM_DATAPACKET_OBJECT header,
which MUST be 0x00000009.

dwSizeOfData (4 bytes): The size, in bytes, of the data following the
WBEM_DATAPACKET_OBJECT header.

bObjectType (1 byte): The type of data in the data packet. The type MUST take one of the
following specified values.

Value Meaning

1 Object is type WBEMOBJECT_CLASS.

Structure contains the complete CIM Class definition.

2 Object is type WBEMOBJECT_INSTANCE .

Structure contains the complete CIM Insta nce definition.

3 Object is type WBEMOBJECT_INSTANCE_NOCLASS .

Structure contains CIM Instance without the CIM Class definition.

Object (variable): The CIM object carried into the WBEM_DATAPACKET_OBJECT, having
dwSizeOfData bytes. The embedded CIM object MUST match the selector field bObjectType .

2.2.14.2 WBEMOBJECT_CLASS Structure

The WBEMOBJECT_CLASS structure MUST contain a complete CIM class definition.

0

1

2

3

4

5

6

7

8

9

1

0

1

2

3

4

5

6

7

8

9

2

0

1

2

3

4

5

6

7

8

9

3

0

1

dwSizeOfHeader

dwSizeOfData

ObjectData (variable)

...

dwSizeOfHeader (4 bytes): The size, in bytes, of the header, which MUST be 0x00000008.

dwSizeOfData (4 bytes): The size, in bytes, of the data that follows the header.

ObjectData (variable): Contains the string of bytes that represent the CIM class, encoded as
EncodingUnitObjectBlock , as specified in [MS -WMIO] section 2.2.2.

%5bMS-WMIO%5d.pdf
%5bMS-WMIO%5d.pdf

47 / 253

[MS -WMI] ð v20140502
 Windows Management Instrumentation Remote Protocol

 Copyright © 2014 Microsoft Corporation.

 Release: Thursday, May 15, 2014

2.2.14.3 WBEMOBJECT_INSTANCE Structure

The WBEMOBJECT_INSTANCE structure MUST contain a complete CIM instance.

0

1

2

3

4

5

6

7

8

9

1

0

1

2

3

4

5

6

7

8

9

2

0

1

2

3

4

5

6

7

8

9

3

0

1

dwSizeOfHeader

dwSizeOfData

classID

...

...

...

ObjectData (variable)

...

dwSizeOfHeader (4 bytes): The size, in bytes, of the header, which MUST be 0x00000018.

dwSizeOfData (4 bytes): The size, in bytes, of the data that follows the header.

classID (16 bytes): The unique identifier of the CIM class type.

ObjectData (variable): Contains the string of bytes that represent the CIM instance, encoded

as EncodingUnitObjectBlock , as specified in [MS -WMIO] section 2.2.2.

2.2.14.4 WBEMOBJECT_INSTANCE_NOCLASS Structure

The WBEMOBJECT_INSTANCE_NOCLASS structure MUST contain a CIM instance without the CIM

class definition.

0

1

2

3

4

5

6

7

8

9

1

0

1

2

3

4

5

6

7

8

9

2

0

1

2

3

4

5

6

7

8

9

3

0

1

dwSizeOfHeader

dwSizeOfData

classID

...

...

%5bMS-WMIO%5d.pdf
%5bMS-WMIO%5d.pdf

48 / 253

[MS -WMI] ð v20140502
 Windows Management Instrumentation Remote Protocol

 Copyright © 2014 Microsoft Corporation.

 Release: Thursday, May 15, 2014

...

ObjectData (variable)

...

dwSizeOfHeader (4 bytes): The size, in bytes, of the header, which MUST be 0x00000018.

dwSizeOfData (4 bytes): The size, in bytes, of the data that follows the header.

classID (16 bytes): The unique identifier of the CIM class type.

ObjectData (variable): Contains the string of bytes that represent the CIM instance, encoded
as the EncodingUnitInstanceNoClass object block, as specified in [MS -WMIO] section 2.2.3.
The CIM instance transmitted using EncodingUnitInstanceNoClass does not have a

CurrentClass block (as specified in [MS -WMIO] section 2.2.13) to minimize the data

transmitted because CurrentClass contains the same data for all the CIM instances.

The CurrentClass for another instance of the same CIM class is previously sent using the
WBEMOBJECT_INSTANCE structure. To match the WBEMOBJECT_INSTANCE structure that has the
CurrentClass block, the classID specified in WBEMOBJECT_INSTANCE_NOCLASS MUST be matched
with the classID of WBEMOBJECT_INSTAN CE. If a matching WBEMOBJECT_INSTANCE is found, the
CurrentClass block in the WBEMOBJECT_INSTANCE MUST be used to encode or decode

EncodingUnitInstanceNoClass. If no matching WBEMOBJECT_INSTANCE is found during decoding, it
MUST be treated as an error. If no matching WBEMOBJECT_INSTANCE is found during encoding, the
CIM instance MUST be encoded as a WBEMOBJECT_INSTANCE structure.

2.2.15 WBEM_REFRESHED_OBJECT Structure

The WBEM_REFRESHED_OBJECT structure MUST be used to encode the results of the remote
refreshing service that is returned by the IWbemRemoteRefresher::RemoteRefresh (section

3.1.4.13.1) interface method.

typedef struct _WBEM_REFRESHED_OBJECT {

 long m_lRequestId;

 long m_lBlob Type;

 long m_lBlobLength;

 [size_is(m_lBlobLength)] byte* m_pBlob;

} WBEM_REFRESHED_OBJECT;

m_lRequestId: MUST contain the request ID.

m_lBlobType: MUST represent the type of the CIM object that is encoded in m_pbBlob as
specified in 2.2.17 .

m_lBlobLength: MUST represent the length of the m_pbBlob array.

m_pBlob: When the m_lBlobType parameter is set to WBEM_BLOB_TYPE_ALL, it MUST contain
the instance information that is represented in the RefreshedSingleInstance format for a single
IWbemClassObject interface pointer being part of the refreshing result.

When m_lBlobType is set to WBEM_BLOB_TYPE _ERROR, the m_lBlobLength parameter MUST

be set to NULL.

%5bMS-WMIO%5d.pdf
%5bMS-WMIO%5d.pdf
%5bMS-WMIO%5d.pdf
%5bMS-WMIO%5d.pdf

49 / 253

[MS -WMI] ð v20140502
 Windows Management Instrumentation Remote Protocol

 Copyright © 2014 Microsoft Corporation.

 Release: Thursday, May 15, 2014

When m_lBlobType is set to WBEM_BLOB_TYPE_ENUM, it MUST contain the instance
information that is represented in the WBEM_INSTANCE_BLOB format for several

IWbemClassObject interface pointers being part of the refreshing result.

2.2.16 WBEM_INSTANCE_BLOB Enumeration

The WBEM_INSTANCE_BLOB is used to represent the refreshed object or enumeration in the
m_pBlob attribute of the WBEM_REFRESHED_OBJECT structure.

0

1

2

3

4

5

6

7

8

9

1

0

1

2

3

4

5

6

7

8

9

2

0

1

2

3

4

5

6

7

8

9

3

0

1

Version

numObjects

Objects (variable)

...

Version (4 bytes): MUST represent the encoding version. Version MUST be set to 0x00000001.

numObjects (4 bytes): MUST represent the number of CIM objects encoded that are contained
in the package.

Objects (variable): MUST contain a sequence of IWbemClassObjects of count numObjects ,

with each IWbemClassObject encoded in RefreshedInstances format.

2.2.17 WBEM_INSTANCE_BLOB_TYPE Enumeration

The WBEM_INSTANCE_BLOB_TYPE enumeration is used to indicate the type of a CIM object.

typedef [v1_enum] enum _WBEM_INSTANCE_BLOB_TYPE

{

 WBEM_BLOB_TYPE_ALL = 2,

 WBEM_BLOB_TYPE_ERROR = 3,

 WBEM_BLOB_TYPE_ENUM = 4

} WBEM_INSTANCE_BLOB_TYPE;

WBEM_BLOB_TYPE_ALL: The object is a single CIM object.

WBEM_BLOB_TYPE_ERROR: Represents an error condition. In this case the object is NULL.

WBEM_BLOB_TYPE_ENUM: The object is an enumeration of object s of a specific CIM type.

2.2.18 RefreshedInstances

The RefreshedInstances packet is contained within the WBEM_INSTANCE_BLOB .

50 / 253

[MS -WMI] ð v20140502
 Windows Management Instrumentation Remote Protocol

 Copyright © 2014 Microsoft Corporation.

 Release: Thursday, May 15, 2014

0

1

2

3

4

5

6

7

8

9

1

0

1

2

3

4

5

6

7

8

9

2

0

1

2

3

4

5

6

7

8

9

3

0

1

blobSize

Blob (variable)

...

blobSize (4 bytes): MUST represent the length of the blob array.

Blob (variable): MUST be a byte stream representing an IWbemClassObject encoded as a
RefreshedSingleInstance .

2.2.19 RefreshedSingleInstance

The RefreshedSingeInstance MUST be encoded as a sequence of bytes representing the following
elements of the original IWbemClassObject , without any padding:

1. InstanceHeap size (encoded as 4 bytes)

2. NdTable

3. InstanceData

4. InstanceQualifierSet

5. InstanceHeap

The elements of IWbemClassObject are defined in [MS -WMIO] .

2.2.20 _WBEM_REFRESH_INFO Structure

The _WBEM_REFRESH_INFO structure MUST be populated by the Windows Management
Instrumentation Remote Protocol service that provides the refresher information. The structure
MUST be used to return to information from IWbemRefreshingServices (section 3.1.4.12)
interface methods.

typedef struct {

 long m_lType;

 [switch_is(m_lType)] WBEM_REFRESH_INFO_UNION m_Info;

 long m_lCancelId;

} _WBEM_REFRESH_INFO;

m_lType: MUST be one of the constants specified in WBEM_REFRESH_TYPE .

m_Info: MUST be one of the WBEM_REFRESH_INFO_UNION types.

m_lCancelId: MUST be a unique identifier for the refresher object that is being used to cancel

the refreshing object when the refresher object is using
IWbemRemoteRefresher::StopRefreshing (section 3.1.4.13.2) .

%5bMS-WMIO%5d.pdf

51 / 253

[MS -WMI] ð v20140502
 Windows Management Instrumentation Remote Protocol

 Copyright © 2014 Microsoft Corporation.

 Release: Thursday, May 15, 2014

2.2.21 _WBEM_REFRESHER_ID Structure

The _WBEM_REFRESHER_ID structure identifies the client that is requesting refreshing services.
The structure MUST be used to return information from IWbemRefreshingServices (section

3.1.4.12) interface methods.

typedef struct {

 [string] PSTR m_szMachineName;

 DWORD m_dwProcessId;

 GUID m_guidRe fresherId;

} _WBEM_REFRESHER_ID;

m_szMachineName: MUST be the NetBIOS name of the client machine.

m_dwProcessId : It MUST be an identifier created by the client and it MUST be unique within
the context of the client. <7>

m_guidRefr esherId: MUST be a client -generated GUID.

2.2.22 _WBEM_RECONNECT_INFO Structure

The _WBEM_RECONNECT_INFO structure MUST contain the type for the information about the

target CIM instance.

typedef struct {

 long m_lType;

 [string] LPCWSTR m_pwcsPath;

} _WBEM_RECONNECT_INFO;

m_lType: MUST be one of the WBEM_RECONNECT_TYPE enumeration values.

m_pwcsPath : MUST be a CIM path to the remote CIM instance to be added to the refresher.

2.2.23 _WBEM_RECONNECT_RESULTS Structure

The _WBEM_RECONNECT_RESULTS structure defines the status of a reconnect operation. The
structure MUST be used to return information from IWbemRefreshingServices (section

3.1.4.12) interface methods.

typedef struct {

 long m_lId;

 HRESULT m_hr;

} _WBEM_RECONNECT_RESULTS;

m_lId: MUST be a unique identifier for the refresher object used to cancel the refreshing object

by using the IWbemRemoteRefresher::StopRefreshing (section 3.1.4 .13.2) interface
method.

m_hr: MUST be the HRESULT of the reconnect operation.

%5bMS-GLOS%5d.pdf

52 / 253

[MS -WMI] ð v20140502
 Windows Management Instrumentation Remote Protocol

 Copyright © 2014 Microsoft Corporation.

 Release: Thursday, May 15, 2014

2.2.24 _WBEM_RECONNECT_TYPE Enumeration

The _WBEM_RECONNECT_TYPE enumeration defines possible types of remote CIM instances. The
structure MUST be used to return to information from IWbemRefreshingServices (section

3.1.4.12) interface methods.

typedef enum

{

 WBEM_RECONNECT_TYPE_OBJECT = 0,

 WBEM_RECONNECT_TYPE_ENUM = 1,

 WBEM_RECONNECT_TYPE_LAST = 2

} WBEM_RECONNECT_TYPE;

WBEM_RECONNECT_TYPE_OBJECT: The refresher MUST connect to refresh an object.

WBEM_RECONNECT_TYPE_ENUM: The refresher MUST connect to refresh an enumeration.

WBEM_RECONNECT_TYPE_LAST: This member is used only by the server to track the range
of values for this enumeration. It MUST NOT be used by the client.

2.2.25 WBEM_REFRESH_TYPE Enumeration

The WBEM_REFRESH_TYPE enumeration defines refresh types for the _WBEM_REFRESH_INFO

structure.

typedef enum

{

 WBEM_REFRESH_TYPE_INVALID = 0,

 WBEM_REFRESH_TYPE_REMOTE = 3,

 WBEM_REFRESH_TYPE_NON_HIPERF = 6

} WBEM_REFRESH_TYPE;

WBEM_REFRESH_TYPE_INVALID: The server uses this value internally. The server MUST

NOT return this value.

WBEM_REFRESH_TYPE_REMOTE: The m_Info member of the _WBEM_REFR ESH_INFO
structure contains the _WBEM_REFRESH_INFO_REMOTE structure.

WBEM_REFRESH_TYPE_NON_HIPERF: The m_Info member of the
_WBEM_REFRESH_INFO structure contains the _WBEM_REFRESH_INFO_NON_HIPERF
structure.

2.2.26 _WBEM_REFRESH_INFO_NON_HIPERF Structure

The _WBEM_REFRESH_INFO_NON_HIPERF structure MUST be returned by the server when the
requested CIM instance cannot be part of the refreshing results.

typedef struct {

 [string] WCHAR* m_wszNamespace;

 IWbemClassObject* m_pTemplate;

} _WBEM_REFRESH_INFO_NON_HIPERF;

m_wszNamespace: MUST be a CIM namespace where enumeration of a given class exists.

%5bMS-GLOS%5d.pdf

53 / 253

[MS -WMI] ð v20140502
 Windows Management Instrumentation Remote Protocol

 Copyright © 2014 Microsoft Corporation.

 Release: Thursday, May 15, 2014

m_pTemplate: MUST be a pointer to an IWbemClassObject interface, which MUST represent a
CIM instance with all properties set to the default values. Default property values are as

specified in [MS -WMIO] section 2.2.26.

2.2.27 _WBEM_REFRESH_INFO_REMOTE Structure

The _WBEM_REFRESH_INFO_REMOTE structure MUST be used when the client is on a different
computer than the computer on which the WMI service providing the refreshed information resides.

typedef struct {

 IWbemRemoteRefresher* m_pRefresher;

 IWbemClassObject* m_pTemplate;

 GUID m_Guid;

} _WBEM_REFRESH_INFO_REMOTE;

m_pRefresher: MUST be a pointer to the IWbemRemoteRefresher interface that the client used

to retrieve the refreshed information.

m_pTempl ate: MUST be a pointer to an IWbemClassObject interface that MUST represent a
CIM instance with all properties set to the default values as specified in [MS -WMIO] section
2.2.26.

m_Guid: MUST be a globally unique identifier (GUID) created to identify this
_WBEM_REFRESH_INFO object.

2.2.28 _WBEM_REFRESH_INFO_UNION Union

The _WBEM_REFRESH_INFO_UNION union defines a union of one of the following types:
m_Remote, m_NonHiPerf, or m_hres.

typedef

[switch_type(long)]

 union _WBEM_REFRESH_INFO_UNION {

 [case(WBEM_REFRESH_TYPE_REMOTE)]

 _WBEM_REFRESH_INFO_REMOTE m_Remote;

 [case(WBEM_REFRESH_TYPE_NON_HIPERF)]

 _WBEM_REFRESH_INFO_NON_HIPERF m_NonHiPerf;

 [case(WBEM_REFRESH_TYPE_INVALID)]

 HRESULT m_hres;

} WBEM_REFRESH_INFO_UNION;

m_Remote: An m_Remote _WBEM_REFRESH_INFO_REMOTE type.

m_NonHiPerf: An m_NonHiPerf _WBEM_REFRESH_INFO_NON_HIPERF type.

m_hres: An m_hres HRESULT type.

2.2.29 WMI Locale Formats

The client can request data from the WMI server in a client -preferred locale. The format of each

locale MUST conform to one of the following:

%5bMS-WMIO%5d.pdf
%5bMS-WMIO%5d.pdf

54 / 253

[MS -WMI] ð v20140502
 Windows Management Instrumentation Remote Protocol

 Copyright © 2014 Microsoft Corporation.

 Release: Thursday, May 15, 2014

Á "MS_xxx" format, where "xxx" is a string representation of LCID in BASE16, which identifies the

locale as specified in [MS -LCID] . For example, to send LCID 1033 (0x409), the string is

"MS_409".

Á Locale name format as specified in [MS -LCID]. For example, LCID 1033 (0x409) maps to en -US

and is passed as "en -US" in this representation.

2.2.30 __SystemSecurity Class

The __SystemSecurity class is used to read or modify the security descriptor for a CIM namespace.
The class is defined by WMI as shown in the following MOF text.

[singleton: DisableOverride ToInstance ToSubClass]

class __SystemSecurity

{

 [Static] uint32 GetSD([out] uint8 sd[]);

 [Static] uint32 SetSD([in] uint8 sd[]);

};

2.2.30.1 __SystemSecurity::GetSD

The GetSD method gets the security descriptor in the NamespaceConnection of the namespace.
This method is called using the IWbemServices interface as described in section 3.2.4.2.5 .

void GetSD (

 [out] Uint32 sd

);

sd: Exchanges a byte array containing a self - relative SECURITY_DESCRIPTOR structure, as

defin ed in [MS -DTYP] (section 2.4.6).

A return value of 0 indicates success. Any nonzero value indicates failure. <8>

2.2.30.2 __SystemSecurity::SetSD

The SetSD method changes the security descriptor in the NamespaceConnection of the namespace.
If there is a parent namespace, server MUST add access control entries of the parent to the security
descriptor using the following rules.

If the Discretionary Access Cont rol List of the parent security descriptor is not protected, meaning
that if the SE_DACL_PROTECTED bit is not set in the parent security descriptor, then execute the

following algorithm using the DACL of the parent and child security descriptors.

If the S ystem Access Control List of the parent security descriptor is not protected, meaning that if
the SE_SACL_PROTECTED bit is not set in the parent security descriptor, then execute the following
algorithm using the SACL of the parent and child security descr iptors.

1. For each Access Control Entry of parent ACL, if CONTAINER_INHERIT_ACE bit is not set, then
ignore this ACE.

2. Otherwise, append the parent ACE to the ACL in the child security descriptor. If

NO_PROPAGATE_INHERIT_ACE bit is set in the parent ACE, server MUST clear the
CONTAINER_INHERIT_ACE bit from the appended ACE.

%5bMS-GLOS%5d.pdf
%5bMS-LCID%5d.pdf
%5bMS-DTYP%5d.pdf
%5bMS-DTYP%5d.pdf
%5bMS-DTYP%5d.pdf

55 / 253

[MS -WMI] ð v20140502
 Windows Management Instrumentation Remote Protocol

 Copyright © 2014 Microsoft Corporation.

 Release: Thursday, May 15, 2014

3. If INHERIT_ONLY_ACE bit is set in the parent ACE, server MUST clear this bit from the appended
ACE.

This method is called using IWbemServices interface as described in section 3.2.4.2.5 .

void SetSD (

 [out] Uint32 sd

);

sd: Exchanges a byte array containing a self - relative SECURITY_DESCRIPTOR structure, as

defined in [MS -DTYP] (section 2.4.6).

A return value of 0 indicates success. Any nonzero value indicates failure. <9>

2.2.30.3 RequiresEncryption

The RequiresEncryption qualifier has a Boolean data type. If the RequiresEncryption qualifier is

present and set to TRUE for the __SystemSecurity singleton instance, the server SHOULD set the
RequiresEncryption flag for the containing CIM namespace. If RequiresEncryption is set, the
server MUST reject the client request with authentication levels that are not equal to
RPC_C_AUTHN_LEVEL_PKT_PRIVACY. <10>

2.2.31 Default System Classes

Classes whose names begin with an underscore are termed system classes . WMI defines certain

system classes as listed as below. MOF representation of each of the class objects can be obtained
by using the script specified in Appendix D: Enumerating Class Schema .

__SystemCla ss : Base class from which for all of the system classes below.

__SystemSecurity : Contains methods that let you access and modify the security settings for a
namespace as specified in section 2.2.30 .

__In dicationRelated : Serves as a parent class for all event - related classes.

__Namespace : Represents a WMI namespace.

__PARAMETERS : Defines the input and output parameters for methods.

__Event : An abstract base class that serves as the parent class for all int rinsic and extrinsic events.

__ExtrinsicEvent : Serves as a parent class for all user -defined event types, also known as
extrinsic events.

__NamespaceOperationEvent : A base class for all intrinsic events that relate to a namespace.

__NamespaceCreationEvent : Reports a namespace creation event, which is a type of intrinsic

event generated when a new namespace is added to the current namespace.

__NamespaceDeletionEvent : Reports a namespace deletion event, which is a type of intrinsic
event that is generated whe n a subnamespace is removed from the current namespace.

__NamespaceModificationEvent : Reports a namespace modification event, which is a type of
intrinsic event that is generated when a namespace is modified.

__ClassOperationEvent : A base class for all int rinsic events that relate to a class.

%5bMS-DTYP%5d.pdf
%5bMS-DTYP%5d.pdf
%5bMS-DTYP%5d.pdf

56 / 253

[MS -WMI] ð v20140502
 Windows Management Instrumentation Remote Protocol

 Copyright © 2014 Microsoft Corporation.

 Release: Thursday, May 15, 2014

__ClassCreationEvent : Represents a class creation event, which is a type of intrinsic event
generated when a new class is added to the namespace.

__ClassDeletionEvent : Represents a class deletion event, which is a type of intrinsic event
generated when a class is removed from the namespace.

__ClassModificationEvent : Represents a class modification event, which is a type of intrinsic
event generated when a class is changed in the namespace.

__InstanceOperationEvent : Serv es as a base class for all intrinsic events that relate to an
instance.

__InstanceCreationEvent : Reports an instance creation event, which is a type of intrinsic event
that is generated when a new instance is added to the namespace.

__InstanceDeletionEvent : Reports an instance deletion event, which is a type of intrinsic event

generated when an instance is deleted from the namespace.

__InstanceModificationEvent : Reports an instance modification event, which is a type of intrinsic
event generated when an ins tance changes in the namespace.

__AggregateEvent : Represents an event of several individual intrinsic or extrinsic events. WMI
generates an instance of __AggregateEvent rather than __Event when consumers register with
the GROUP WITHIN clause in their event query.

__TimerEvent : Reports an event generated by WMI in response to an event consumer's request
for an interval timer event or an absolute timer event.

__ExtendedStatus : Used to report detailed status and error information.

2.2.32 Supported WMI Qualifiers

The CIM standard qualifiers supported by WMI are referenced in [DMTF -DSP0004] .

The following table lists WMI -specific qualifiers described in [MSDN -QUAL] and the processing rules

for each of them.

Qualifier Description

CIMType Data type: VT_BSTR

Applies to: properties, method parameters

This qualifier MUST be created by the server for all properties and method

parameters at the time of their creation. Its value MUST contain text

describing the type of a property or a method parameter. For CIM_reference

properties, the value must be "ref:ClassName" where ClassName is the name

of the cla ss that the property is a reference of. For embedded objects (of type

CIM_Object) the value should be "object:EmbedClass" where EmbedClass is

the name of the class that the embedded objects is a type of.

Amendment Data type: Boolean

Applies to: classes

In dicates that a class contains amended qualifiers that are localized.

ClassContext Data type: VT_BSTR

Applies to: classes

http://go.microsoft.com/fwlink/?LinkId=89848
http://go.microsoft.com/fwlink/?LinkId=212965

57 / 253

[MS -WMI] ð v20140502
 Windows Management Instrumentation Remote Protocol

 Copyright © 2014 Microsoft Corporation.

 Release: Thursday, May 15, 2014

Qualifier Description

Dynamic Data type: Boolean

Applies to: classes, instances

Indicates a class in which instances are created dynamically.

Fixed Data type: CIM_BOOLEAN

Applies to: instances

A client MAY treat the value of this qualifier as a hint that the value of this

property cannot change during the lifetime of the instance.

InstanceContext Data type: VT_BSTR

Applies to: instances

The server MU ST pass the value of this qualifier to the provider for any

processing.

Locale Data type: VT_BSTR

Applies to: classes or instances

A client MAY treat the value of this qualifier as a hint for the locale for the

class or instance. See WMI Locale Formats (section 2.2.29) .

NamespaceSecuritySDDL Data type: string array

Applies to: namespace instances <11>

See sections 3.1.4.18.1 and 3.1.4.18.2 for more details.

PropertyContext Data type: VT_BSTR

Applies to: properties

This qua lifier value contains provider -specific data related to a class property.

The server MUST pass the value of this qualifier to the provider for any

processing.

Provider Data type: VT_BSTR

Applies to: classes

RequiresEncryption Data type: Boolean

Applies t o: namespace instances

If set to TRUE, RequiresEncryption marks a namespace so that the client MUST

connect with encrypted authentication. Section 2.2.30.3 describes this qualifier

in detail.

Singleton Data type: Boolean

Applies to: classes

The server MUST treat a class with this qualifier as having only one instance

and if the value is omitted, then it must be interpreted as TRUE.

58 / 253

[MS -WMI] ð v20140502
 Windows Management Instrumentation Remote Protocol

 Copyright © 2014 Microsoft Corporation.

 Release: Thursday, May 15, 2014

3 Protocol Details

The following sections specify details of the Windows Management Instrumentation Remote Protocol,
including abstract data models, interface method syntax, and message processing rules. A client in
the context of this specification is a machine that issues a Windows Management Instrumentation
Remote Protocol request. The request is issued against a Windows Management Instrumentation
Remote Protocol server. In this context, a server is a machine that handles the request issued by
the client. Detailed sequence diagrams are as specified in section 4.

3.1 Server Details

A client in the context of this specification is a machine that issues a Windows Management
Instrumentation Remote Protocol request. The request is issued against a Windows Management
Instrumentation Remote Protocol server. In this context, a server is a m achine that handles the
request issued by the client. Detailed sequence diagrams are as specified in section 4. However, an
overview of a typical protocol sequence is illustrated as follows.

59 / 253

[MS -WMI] ð v20140502
 Windows Management Instrumentation Remote Protocol

 Copyright © 2014 Microsoft Corporation.

 Release: Thursday, May 15, 2014

Figure 3: Typical protocol sequence

3.1.1 Abstract Data Model

Unless otherwise indicated, each of the following elements is maintained in volatile storage.

The server MUST maintain a security descriptor for each namespace .

The server MUST maintain an InitSuccess Boolean value that shows whether all the data structures
were initialized successfully.

%5bMS-GLOS%5d.pdf

60 / 253

[MS -WMI] ð v20140502
 Windows Management Instrumentation Remote Protocol

 Copyright © 2014 Microsoft Corporation.

 Release: Thursday, May 15, 2014

The server MUST maintain an EventDropLimit DWORD value that represents the threshold used for
dropping the events on the server.

The server MUST maintain a MaxRequestLimit integer value that represents the maximum number
of requests the server can handle at a time. This value is implementation -specific. <12>

The server MUST maintain a CurrentRequestCount counter that represents the numbe r of
IWbemServices calls in progress.

The server SHOULD maintain in persistent storage an AllowAnonymousCallback Boolean flag as a
global value. The flag indicates whether the server allows anonymous callbacks to the client.

The server SHOULD maintain an UnsecAppAccessControlDefault Boolean flag as a global value.
The flag indicates whether the server checks for an acceptable authentication level in callbacks.

The server MUST maintain a global BackupInProgress flag that indicates whether an

IWbemBackupResto re::Backup operation has been triggered by a client and is in progress.

The server MUST maintain a global RestoreInProgress flag that indicates whether an
IWbemBackupRestore::Restore operation has been triggered by a client and is in progress.

The server M UST maintain a global IsServerPaused flag that indicates whether an
IWbemBackupRestore::Pause operation has been triggered by a client and is in progress.

The server MUST maintain a global IsServerShuttingDown flag that indicates whether the server

is in t he process of shutting down.

The server MUST maintain a table NamespaceConnectionTable in the CIM database, where each
entry contains:

Name: A string that represents the namespace name.

Security Descriptor: The scheme used for initializing the security de scriptor is implementation -
dependent. <13>

RequiresEncryption: A flag that indicates whether a DCOM client request must have the

security level set to RPC_C_AUTHN_LEVEL_PKT_PRIVACY.

ClassTable: A ClassTable (see below) that contains i nformation about the classes in the
namespace.

The server MUST maintain the following information:

EventBindingTable: A table of bindings, where each binding contains:

EventFilter: The WHERE clause of a notification query.

EventConsumer: An interface point er back to the client through which the client is notified

of events.

EventPollingTimer: A timer that specifies the interval at which WMI will poll the provider

responsible for the class for intrinsic events.

EventGroupingTimer: A timer that specifies for how long events for a given consumer
and filter should be withheld before being delivered.

EventQueue: A collection of events that have occurred and have yet to be dispatched to

the Event Consumer.

61 / 253

[MS -WMI] ð v20140502
 Windows Management Instrumentation Remote Protocol

 Copyright © 2014 Microsoft Corporation.

 Release: Thursday, May 15, 2014

EventGroupAggregateQueue: A col lection of AggregateEvent events that has yet to be
dispatched to the Event Consumer.

ClientSecurityContext: Security context of the client.

PrevInstances: Array of IWbemClassObject objects that are instances of the class in

the event filter. This informat ion is used in the generation of intrinsic events.

IWbemServices: The object created on the server upon successful completion of
IWbemLevel1Login::NTLMLogin. This contains the following:

ClientPreferredLocales: Used by the server uses to return localizable information as
specified in 3.1.1.2 .

NamespaceConnection reference: Reference to the NamespaceConnection object
(which corresponds to the namespace informati on passed by the client) that is stored in

the NamespaceConnectionTable .

GrantedAccess: The set of access rights (enumerated in section 5.2) that have been
granted to the client in this namespace.

ClassT able: A table in the CIM database of CIM classes that are registered within a namespace,
where each entry contains:

ClassDeclaration: The CIM class specification as defined in [DMTF -DSP0004] .

Der ivedClassTable: A reference to the parent class entry in the ClassTable .

InstanceProviderId: A locally unique string that specifies the provider from which the
instances are being returned. This is the same as the value of the [provider] qualifier of
the c lass definition. If the instances are returned from the CIM database rather than a
provider, this value MUST be set to NULL.

ClassInstancesTable: A list of instances of the given CIM class.

The ClassTable MUST include entries defining the system classes in sections 2.2.30 and 2.2.31 . If

the server supports the dynamic objects, the server MUST maintain a ProviderTable in the CIM
database where each entry contains:

ProviderId: Unique Id of the provider in the system.

ProviderEntryPoint: A pointer to the provider instance that the server should communicate
with.

IsClassProvider: A Boolean that is true if the provider creates dynamic CIM classes, or false if it
only creates dynamic instances.

ProviderArchitectureType: The provider architecture, either 32 -bit or 64 -bit. ProviderId is
the same for each ProviderArchitectureType value. ProviderId and
ProviderArchitectureType uniquely determine the ProviderEntryPoint to be used to
forward the calls to a given provider in the system.

SupportsGet: A Boolean value that is TRUE if the abstract interface Get Properties within an
Instance of a Class (sec tion 3.1.4.17.3) or Get Properties within a Class (section 3.1.4.17.4) is

supported by the provider. By default, this value is set to FALSE.

SupportsPut: A Boolean value that is TRUE if one of the following abstract interfaces is
supported by the provider. By default, this value is set to FALSE.

http://go.microsoft.com/fwlink/?LinkId=89848

62 / 253

[MS -WMI] ð v20140502
 Windows Management Instrumentation Remote Protocol

 Copyright © 2014 Microsoft Corporation.

 Release: Thursday, May 15, 2014

Á Update Properties Within an Instance of a Class (section 3.1.4.17.5)

Á Update Properties Within a Class (section 3.1.4.17.6)

Á Create an Instance of a Class (section 3.1.4.17.7)

Á Create a Class (section 3.1.4.17.8)

SupportsDelete: A Boolean value that is TRUE if the abstract interface Delete an Instance of a
Class (section 3.1.4.17.9) or Delete a Class (section 3.1.4.17.10) is supported by the
provider. By default, this value is set to FALSE.

SupportsEnumerate: A Boolean value that is TRUE if the abstract interface Enumerate
Instances of a Given Class (section 3.1.4.17.1) or Enumerate the Subclasses of a Given Class

(section 3.1.4.17.2) is supported by the provider. By default, this value is set to FALSE.

SupportsRefr esher: A Boolean value that is TRUE if the provider supports refreshing the CIM
object. By default, this value is set to FALSE.

EventQueryList: A list of WQL query strings representing events that can be produced by this
provider. See section 3.1.4.3.20 for details.

ResultSetQueries: A list of WQL query strings; see section 3.1.4 for details.

QuerySupportLevels: An array of strings that present the quer y capabilities of the provider.
The values MUST be the combination of zero or more of the following strings:
"WQL:Associators","WQL:V1ProviderDefined","WQL:UnarySelect","WQL:References". <14>

AsyncOperationTable: A table to store the information of asynchronous calls (see section
3.1.1.1.3) in progress. Each entry of this table corresponds to one asynchronous call, where
each entry contains the following:

ClientSyncPointer: A pointer to IWbemObjectSink passed as a response handler by the

client as part of an asynchronous call. This can be used to identify a client asynchronous

call on the server.

CallbackInProgress: A Boolean value that is set to TRUE if there is an
IWbemObjectSink::Indicate or IWbemObjectSink::SetStatus with a currently - in -
progress message. The value is set to FALSE if there is no IWbemObjectSink::Indicate
and IWbemObjectSink::SetStatus in progress f or the operation. See sections 3.2.4.1.1
and 3.2.4.1.2 for more details.

CallCancelled: A Boolean value that is set to TRUE if the operation is cancel ed. The initial
value of this variable is FALSE.

SetStatusWithFinalResultCalled: A Boolean value that is set to TRUE if
IWbemObjectSink::SetStatus with a final result is called. The initial value of this variable
is FALSE.

WbemCallResultTable: A table to s tore information about pending single - result

semisynchronous operations (see section 3.2.4.2.7 for a list of single - result semisynchronous
operations). Each entry in this table corresponds to one semisyn chronous call, where each
entry contains the following:

WbemCallResultPointer: A pointer to a server -created IWbemCallResult object.

FinalResult: An HRESULT to store the result status of the call.

63 / 253

[MS -WMI] ð v20140502
 Windows Management Instrumentation Remote Protocol

 Copyright © 2014 Microsoft Corporation.

 Release: Thursday, May 15, 2014

Result Object: A pointer to IWbemClassObject to store the result object of the call.

ResultService: A pointer to IWbemServices, used to store the result only if this is an
IWbemServices::OpenNamespace call.

ResultString: A pointer to a string.

OperationFinished: A Boolean value to store if the operation is completed. This value is
initially set to FALSE.

The following ADM elements are used to store information about semisynchronous calls returning
multiple objects (see section 3.2.4.2.8 for a list of multiple - result semisynchronous calls).

SemiSinkResultSetObject: A structure to store the results of multiple - result semisynchronous
calls. One instance of this structure is created for every multiple - result semisync hronous call.
The structure contains the following:

ResultArray: An array of IWbemClassObjects to store the result objects.

CurrentTotalCount: An integer value to store the count of the valid number of array
elements.

OperationFinished: A Boolean value to store if the operation is completed. This value is
initially set to FALSE.

RefCount: An integer indicating the count of IEnumWbemClassObject pointers that point to

this instance of SemiSinkResultObject. When this count becomes zero, the object is
freed.

Flags: The lFlags parameter value passed in as part of a semisynchronous call.

FinalResult: An HRESULT to store the result status of the call.

ClientSecurityContext: The security context of the client.

EnumWbemClassObjectTable: A table to store information about the pending result of
semisynchronous operations. Each entry in this table either corresponds to one

semisynchronous call or is a clone of another IEnumWbemClassObject instance. Each entry
contains the following:

EnumWbemClassObjectPointer: A pointer to SemiSinkResultSetObject.

ResultSetPointer: A pointer to SemiSinkResultSetObject.

CurrentIndex: An integer value pointing to the index of the next object to be given to t he
client.

SinkQueue: A queue to store the information about pending NextAsync calls. Each

element of this queue contains the following:

WbemObjectSinkPointer: A pointer to the client passed in IWbemObjectSink.

RemainingRequestCount: An integer representin g the remaining number of objects to
be given as part of the callbacks on this sink.

64 / 253

[MS -WMI] ð v20140502
 Windows Management Instrumentation Remote Protocol

 Copyright © 2014 Microsoft Corporation.

 Release: Thursday, May 15, 2014

3.1.1.1 Delivering Results to Client

3.1.1.1.1 Synchronous Calls

The server MUST complete the requested operation before returning from the synchronous method
call. The status of the operation is returned as return value of the method. On successful execution
of the synchronous methods, the server MUST return result obj ect or objects in the out parameter of
the method.

3.1.1.1.2 Semisynchronous Calls

The server MUST start the requested operation and MUST return the appropriate response without

waiting for the operation to complete. If the requested operation fails to start, the server MUST
return an error as a return value of the method and MUST NOT re turn IEnumWbemClassObject or
IWbemCallResult as an out parameter.

3.1.1.1.2.1 Semisynchronous Operations Returning Multiple Objects

For the requested operation to begin successfully, the server MUST create and return an object of
type IEnumWbemClassObject for the following methods, and the return value MUST be

WBEM_S_NO_ERROR, as specified in section 2.2.11 . When the client calls the methods of
IEnumWbemClassObject , the IEnumWbemClassObject method MUST d eliver the results of the
requested operation. The enumeration of IEnumWbemClassObject MUST return the same result
set as the corresponding synchronous operation .

Before returning WBEM_S_NO_ERROR, the server MUST create an ins tance of the
SemiSinkResultSetObject ADM element and initialize CurrentTotalCount to zero,

OperationFinished to FALSE, and RefCount to 1. The server MUST also copy the lFlags parameter of
the operation. The server MUST create an entry in EnumWbemClassObjec tTable for
IEnumWbemClassObject by storing a pointer to SemiSinkResultSetObject created for this
operation in ResultSetPointer. The server initializes CurrentIndex of EnumWbemClassObjectTable
to start the index of ResultArray and stores the security contex t of the client in

ClientSecurityContext .

Á IWbemServices::ExecQuery (section 3.1.4.3.18)

Á IWbemServices::CreateInstanceEnum (section 3.1.4.3.16)

Á IWbemServices::CreateClassEnum (section 3.1.4.3.10)

Á IWbemServices::ExecNotificationQuery (secti on 3.1.4.3.20)

The server stores the results of the operation in SemiSinkResultSetObject and tracks the client
fetching the results by using the entry in EnumWbemClassObjectTable .

The server updates the SemiSinkResultSetObject EnumWbemClassObjectTable entry as
follows:

1. The server MUST store the results of the operation in ResultArray as they are available and

update CurrentTotalCount to reflect the total results.

2. The server MUST set OperationFinished to TRUE when the operation is finished.

3. When the operation is finished, either completed or failed, the server MUST set FinalResult with

the result code as specified in section 2.2.11 and set OperationFinished to TRUE.

%5bMS-GLOS%5d.pdf

65 / 253

[MS -WMI] ð v20140502
 Windows Management Instrumentation Remote Protocol

 Copyright © 2014 Microsoft Corporation.

 Release: Thursday, May 15, 2014

4. When the client releases the reference to IEnumWbemClas sObject , the server MUST delete
the EnumWbemClassObjectTable entry and decrement RefCount by 1 for the

SemiSinkResultSetObject referenced in ResultSetPointer .

5. When the RefCount of SemiSinkResultSetObject is zero, the server MUST free the result

stored in ResultArray and delete this instance of SemiSinkResultSetObject .

3.1.1.1.2.2 Semisynchronous Operations Returning a Single Object

If the requested operation begins successfully, the server MUST return an IWbemCallResult object
for the following methods, and the return value MUST be WBEM_S_NO_ERROR. When the client
calls the methods of IWbemCallResult , IWbemCallResult MUST deliver the result of the
requested operation.

Before returning WBEM_S_NO_ERROR, the server MUST cre ate an entry in WbemCallResultTable
by keeping a reference to IEnumWbemClassObject in WbemCallResultPointer and initializing
ResultObject , ResultString , and ResultService to NULL. The server MUST set
OperationFinished to FALSE.

Á IWbemServices::OpenNamespace (section 3.1.4.3.1)

Á IWbemServices::PutInsta nce (section 3.1.4.3.12)

Á IWbemServices::GetObject (section 3.1.4.3.4)

Á IWbemServices::PutClass (section 3.1.4.3.6)

Á IWbemServices::DeleteClass (section 3.1.4.3.8)

Á IWbemServices::DeleteInstance (section 3.1.4.3.14)

Á IWbemServices::ExecMethod (section 3.1.4.3.22)

The server sets ResultObject , ResultString , and ResultService as the results become available

for the respective operations. When an operation is finished, the server MUST set FinalResult with
the operation result and set OperationFinished to TRUE. The server MUST remove the entry for
this operation from WbemCallResultTable when the client releases its last reference of
IEnumWbemClassObject .

3.1.1.1.3 Asynchronous calls

The server MUST start the requested operation and MUST return the appropriate response without
waiting for the completion of the operation. If starting the requested operation fails, the server
MUST return the error as a return value of the method; MUST NO T keep a reference to
IWbemObjectSink (passed as a response handler); and MUST NOT call
IWbemObjectSink::Indicate or IWbemObjectSink::SetStatus .

Section 3.2.4.2.9 lists the asynchronous method calls. Before starting an asynchronous operation,
the server method MUST create an entry in AsyncOperationT able, storing a reference to the client's
IWbemObjectSink in ClientSyncPointer, and set other fields (CallbackInprogress , CallCancelled ,

and SetStatusWithFinalResultCalled) to FALSE.

For the requested operation to begin successfully, the server MUST return WBEM_S_NO_ERROR, as
specified in section 2.2.11 and MUST keep a reference to IWbemObjectSink passed as a response
handler.

66 / 253

[MS -WMI] ð v20140502
 Windows Management Instrumentation Remote Protocol

 Copyright © 2014 Microsoft Corporation.

 Release: Thursday, May 15, 2014

The server MUST invoke the IWbemObjectSink::Indicate and IWbemObjectSink::SetSt atus
methods, as specified in sections 3.2.4.1.1 and 3.2.4.1.2 . If the call to

IWbemObjectSink::Indicate or IWbemObjectSink::SetStatus fails, the serv er MUST cancel the
asynchronous operation .

The server MAY call IWbemObjectSink::SetStatus multiple times when it executes the
asynchronous operation in order to report the operation progress, <15> as explicitly r equested by a
client using a WBEM_SEND_STATUS flag. In this situation, the HRESULT parameter contains the
progress information.

Calls made by the server into the client -provided IWbemObjectSink interface SHOULD use an
authentication level that is greater t han NONE. If that fails, and if the
UnsecAppAccessControlDefault flag is set to false and AllowAnonymousCallback flag is set to

true, the server SHOULD retry with an authentication level of NONE. <16> The server MUST try to
make the c alls by using the machine principal name.

The total number of client operations is limited by MaxRequestLimit as described in section
3.1.4.3 .

3.1.1.2 Localization Support

The server MUST support storage of CIM localizable information . The localizable class properties
MUST have amended qualifiers in the MOF class definition.

The server MUST store each class with amended qualifiers as two or more objects:

Á A locale -neutral object that contains all properties, with all amended qualifiers stripped.

Á A localized object for each supported locale. The class object contains only the pr operties that

have amended qualifiers, and their respective qualifiers. This localized object MUST be stored in a

namespace that is a direct child of the namespace (from NamespaceConnectionTable) in
which a locale -neutral object exists and the name of the namespace MUST be a locale name in
the "MS_xxx" format (see section 2.2.29).

When the server updates an existing class, it MUST observe the
WBEM_FLAG_USE_AMENDED_QUALIFIERS flag:

Á If the client specifies the flag, then both locale -neutral and locale -specific objects MUST be

updated.

Á If the client does not specify the flag, only the locale -neutral object MUST be updated. If the

class sent by the client contains amended qualifiers, then the server MUST updat e the locale -
neutral class exactly as requested, rather than removing the amended qualifiers.

When the client creates a new class, the server MUST create the class only in the locale -neutral area
(regardless whether WBEM_FLAG_USE_AMENDED_QUALIFIERS is set) . The amended qualifiers

MUST not be stripped.

When the client retrieves a class object and the WBEM_FLAG_USE_AMENDED_QUALIFIERS is
set, the server MUST merge the locale -neutral and locale -dependent class definitions and present

them as one class to the cl ient using the following algorithm.

Á Retrieve the locale -neutral class. Then it MUST search for localized class objects, using the list of

locales in the NamespaceConnection object's ClientPreferredLocales . The search for the
class is made in the order of t he locales in ClientPreferredLocales . When the requested class is

found in one locale namespace, the server MUST stop looking.

67 / 253

[MS -WMI] ð v20140502
 Windows Management Instrumentation Remote Protocol

 Copyright © 2014 Microsoft Corporation.

 Release: Thursday, May 15, 2014

Á If present, the localized object MUST be merged with the neutral object (which has priority over

any qualifier present in the loc alized object).

When a client retrieves a class object and the WBEM_FLAG_USE_AMENDED_QUALIFIERS flag is

not set, the server MUST return the locale -neutral object as - is, without checking for localized
definitions. If the locale -neutral class is not found, t he server MUST return WBEM_E_NOT_FOUND,
regardless of whether WBEM_FLAG_USE_AMENDED_QUALIFIERS is specified, even if locale -
specific objects exist.

Note The class will have amended qualifiers if the class object was originally created without
stripping th e amended qualifiers.

If a class is annotated with the Amendment qualifier, attempts to create instances of the class MUST

fail with a WBEM_E_INVALID_OPERATION error.

When a client deletes a class object and the WBEM_FLAG_USE_AMENDED_QUALIFIERS flag is
not set, the server MUST delete the locale -neutral object as - is, without checking for localized
definitions.

When a client deletes a class object and the WBEM_FLAG_USE_AMENDED_QUALIFIERS flag is
set, the server MUST fail with a WBEM_E_INVALID_PARAMETER error.

3.1.2 Timers

The server MUST use timers to ensure that the conversation between itself and its clients remains
active. The Windows Management Instrumentation Remote Protocol uses the following timers:

Sink timer: Each asynchronous operation has a corresponding timer, which MUST be initialized
to 30 seconds when the server calls the client back using IWbemObjectSink . The timer
MUST be reset when the call completes.

Backup timer: Each IWbemBackupRestoreEx has a corresponding timer, which MUST be

initialized to 15 minutes when the server receives an IWbemBackupRestoreEx::Pause . The
timer MUST be reset when the server receives an IWbemBackupRestoreEx::Resume .

EventPollingTimer: This timer tracks the polling interval specified by the WITHIN clause of an
event query. The timer interval is t he number of seconds specified in the query. The minimum
value of the polling interval is 0.001 (equivalent to 1 millisecond) and the maximum value is
418937 (0xffffffff/1000).

EventGroupingTimer: This timer tracks the grouping interval specified by the GROUP WITHIN
clause of an event query. The timer interval is the number of seconds specified in the query.
The minimum value of the polling interval is 0.001 (equivalent to 1 millisecond) and the
maximum value is 418937 (0xffffffff/1000).

3.1.3 Initialization

The protocol MUST be initialized after successful activation of one of the two interfaces that are

registered with the DCOM Remote Protocol infrastructure, as specified in [MS -DCOM] section 1.9.

All the global flags and other elements mentioned in ADM are volatile unless they are loaded and
stored from CIM database. Unless otherwise specified, the updates to the ADM elements directly
happen in CIM database.

The server MUST initialize InitSuccess to false.

The server MUST initialize EventDropLimit to 1000.

%5bMS-DCOM%5d.pdf

68 / 253

[MS -WMI] ð v20140502
 Windows Management Instrumentation Remote Protocol

 Copyright © 2014 Microsoft Corporation.

 Release: Thursday, May 15, 2014

The server MUST initialize MaxRequestLimit to 5000.

The server MUST initialize CurrentRequestCount to 0.

The server MUST initialize UnsecAppAccessControlDefault to false.

The server MUST enumerate the NamespaceConnectionTable and ensure that a single

__SystemSecurity instance is present in each namespace and matches the namespace's
RequiresEncryption flag and security descriptor.

If the server has dynamic CIM classes or CIM instances in the system, the server MUST load each
provider of the ProviderTable as described in 3.1.6.2 .

The server MUST create an empty EventBindingTable object during its initialization. The
information kept in this object i s volatile and is not persisted during the server's shutdown.

The server MUST initialize the BackupInProgress flag to False.

The server MUST initialize the RestoreInProgress flag to False.

The server MUST initialize the IsServerPaused flag to False.

The s erver MUST initialize the IsServerShuttingDown flag to False.

The server SHOULD initialize AllowAnonymousCallback to False. <17>

When the server has successfully initialized the above data structures, it MUST set InitSuccess to
True.

3.1.4 Message Processing Events and Sequencing Rules

The server MUST accept multiple parallel invocations from different clients running under different
security principals that the server impersonates. On each interface, the server MUST support
multiple outstanding calls.

The errors returned by the server are not actionable unless explicitly specified in this section. The
server MUST perform an access check against all oper ations and ensure secure access to the results.

If the access check fails, the server MUST return WBEM_E_ACCESS_DENIED.

If the impersonation level is not RPC_C_IMPL_LEVEL_IMPERSONATE or
RPC_C_IMPL_LEVEL_DELEGATE, the server MUST return WBEM_E_ACCESS_DENIED .

The methods MUST be secured by using access rights as specified in section 5.2 .

The server MUST treat characters as Unicode characters and represent them in 16 bits. This is
contrary to the requirement of [DMTF -DSP0004] where the string data type must be interpreted as
a UCS character.

The server MAY NOT support ordered array types, contrary to the requirement of [DMTF -
DSP0004] .<18>

If the server detects that the IWbemClassObject that is sent by the client does not conform to [MS -
WMIO] encoding, as specified in section 2.2.4 , the server MUST return an HRESULT that has the S
(severity) bit set as specified in [MS -ERREF]. The exact code is implementation -dependent.

If the server is expected to set the value of the output parameter, but the output parameter is set to

NULL upon input, the server SHOULD return an error to indicate failure. In this case, the server
cannot modify the output parameter.

%5bMS-GLOS%5d.pdf
http://go.microsoft.com/fwlink/?LinkId=89848
http://go.microsoft.com/fwlink/?LinkId=89848
http://go.microsoft.com/fwlink/?LinkId=89848
%5bMS-WMIO%5d.pdf
%5bMS-WMIO%5d.pdf
%5bMS-ERREF%5d.pdf

69 / 253

[MS -WMI] ð v20140502
 Windows Management Instrumentation Remote Protocol

 Copyright © 2014 Microsoft Corporation.

 Release: Thursday, May 15, 2014

For all methods, the server MUST enforce that the DCOM security level is at least at the
RPC_C_AUTHN_LEVEL_CONNECT level, and SHOULD be RPC_C_AUTHN_LEVEL_PKT_INTEGRITY; the

server MUST also evaluate the secur ity principal rights to open a CIM namespace. <19> The server
MUST fail the operation if the security requirements are not met.

For all IwbemServices methods, the server MUST verify that the client has been granted the
access rights specified in the method description, by testing that those rights are included in
GrantedAccess .

For all methods, if the server cannot find the NamespaceConnection associated with
IWbemServices in the Nam espaceConnectionTable (either because the table no longer contains a
row for the namespace or because the NamespaceConnection was replaced during
IWbemBackupRestore::Restore), the server MUST return WBEM_E_INVALID_NAMESPACE.

For all methods that create, query, update, or delete the CIM instances, the server MUST obtain
InstanceProviderId for the given class from the ClassTable .

If InstanceProviderId is NULL, the server MUST forward the request to the CIM database. If

Instance ProviderId is not NULL, and if the IWbemContext object is passed to the server, WMI
MUST obtain the ProviderArchitecture from the IWbemContext object, and use the following
algorithm to locate the correct provider.

Á If ProviderArchitecture is not present or if IWbemContext object is not passed, then the server

MUST find the ProviderEntryPoint corresponding to InstanceProviderId in the ProviderTable.

Á If ProviderArchitecture is present:

Á If its value is neither 32 nor 64, the server MUST return WBEM_E_INVALID_P ARAMETER.

Á If RequiredArchitecture is present and is set to TRUE, the server MUST find the

ProviderEntryPoint in ProviderTable corresponding to ProviderArchitecture and
InstanceProviderId.

Á If RequiredArchitecture is not present or set to FALSE, the server MUST find the

ProviderEntryPoint in ProviderTable corresponding to ProviderArchitecture and
InstanceProviderId . If there is no ProviderEntryPoint found, the server MUST find
ProviderEntryPoint for the given InstanceProviderId ignoring the ProviderArchitect ure.

If the server cannot find ProviderEntryPoint , it MUST return WBEM_E_PROVIDER_LOAD_FAILURE.
If the ProviderEntryPoint is found, the server MUST use the abstract interface defined in 3.1.4.17
to comm unicate with the provider.

For all methods that create, query, update, or delete the CIM class where InstanceProviderId is
not zero, the server MUST go through each of the WQL queries in ResultSetQueries and evaluate
the WHERE clause. If the expression eva luates to TRUE for the given CIM class (that is, the provider
supports the CIM class), then the server MUST proceed with the rest of the processing for the

method as specified in the method -specific processing rules in 3.1.4 . If FALSE, the server MUST
return WBEM_E_PROVIDER_NOT_CAPABLE.

For all methods that query, update, or delete the CIM classes, the server MUST obtain

InstanceProviderId for the given class from the ClassTable . If InstanceProviderId is not NULL,
and if the IWbemContext object is passed to the server, the server MUST obtain the
ProviderArchitecture from IWbemContext object. The same algorithm is used as for CIM instances.

For all methods that query, update, or delete the CIM instances, th e server MAY allow the static
properties to be modified, contrary to [DMTF -DSP0004] requirements. <20>

http://go.microsoft.com/fwlink/?LinkId=89848

70 / 253

[MS -WMI] ð v20140502
 Windows Management Instrumentation Remote Protocol

 Copyright © 2014 Microsoft Corporation.

 Release: Thursday, May 15, 2014

If the server cannot find ProviderEntryPoint , it MUST return WBEM_E_PR OVIDER_LOAD_FAILURE.
If the ProviderEntryPoint is found, the server MUST use the abstract interface defined in section

3.1.4.17 to communicate with the provider.

For all methods where the request is sent to the provider, the provider MAY choose to perform

additional authentication or authorization, or perform the operations within the context of security
principal in which ProviderEntryPoint was called <21>

Specific rules related to creation, deletion, navigation, and persistence of the namespaces are
covered as part of section 3.1.4.18 .

The server SHOULD fail the operation and return WBEM_E_ACCESS_DENIED i f the namespace has
the RequiresEncryption flag set and if the DCOM security level is lower than
RPC_C_AUTHN_LEVEL_PKT_PRIVACY. <22>

The server MAY return WBEM_E_QUOTA_VIOLATION if the number of active IWbemServices objects
is more th an an implementation -defined limit for a given namespace. <23>

The server MUST fail the operation and return CO_E_SERVER_STOPPING if the RestoreInProgress
flag is set to True.

The server MUST fail the operation and return WBEM_E_SHUTTING_DOWN if the
IsServerShuttingDown flag is set to True.

If either of the BackupInProgress or IsServerPaused flags are set to True, the server MUST
buffer the request (unless the request exceeds Ma xRequestLimit as described in section 3.1.4.3)
until both the BackupInProgress and IsServerPaused flags are set to False before performing
the operation.

For all methods that update the CIM class, if CIM class on the server had abstract qualifier set to
true, while its parent class does not have abstract qualifier set to false, the server MUST return
WBEM_E_CANNOT_BE_ABSTRACT.

For all methods that update CIM instance, if a CIM instance with amended qualif ier set to true is

being updated without WBEM_FLAG_USE_AMENDED_QUALIFIERS flag, the server MUST return
WBEM_E_AMENDED_OBJECT.

When an IWbemContext object is passed to an IWbemServices method, the following optional
parameters could be present:

Á If __MI_DEST INATIONOPTIONS_DATA_LOCALE is present:

Á The WMI server SHOULD <24> indicate to the provider to use this locale to format the culture -

specific information such as date/time format; otherwise, it MUST indicate the first
ClientPreferredLo cale .

Á If __MI_DESTINATIONOPTIONS_UI_LOCALE is present:

Á The WMI Server SHOULD <25> indicate to the provider to use this locale to determine the

display language for human - readable strings; otherwise, it MUST indicate the first

ClientPr eferredLocale .

Á If __CorrelationId is present:

Á The WMI Server SHOULD <26> store this value and use as part of internal logging.

Á The WMI server SHOULD pass this to the provider as part of IWbemContext, and the provider

can use this valu e as part of its own logging.

71 / 253

[MS -WMI] ð v20140502
 Windows Management Instrumentation Remote Protocol

 Copyright © 2014 Microsoft Corporation.

 Release: Thursday, May 15, 2014

3.1.4.1 IWbemLevel1Login Interface

The IWbemLevel1Login interface allows a user to connect to the management services interface
in a particular namespace. The interface MUST be uniquely identified by the UUID {F309AD18 -

D86A -11d0 -A075 -00C04FB68820}.

Methods in RPC Opnum Order

Method Description

EstablishPosition Opnum: 3

RequestChallenge Opnum: 4

WBEMLogin Opnum: 5

NTLMLogin Opnum: 6

The object that exports this interface also implements the IWbemLoginClientID and

IWbemLoginHelper interfaces. The IRemUnknown and IRemUnknown2 interfaces, as specified
in [MS -DCOM] , MUST be used t o manage the interfaces exposed by the object. The object MUST be
uniquely identified with the CLSID {8BC3F05E -D86B -11D0 -A075 -00C04FB68820}.

Figure 4: The IWbemLevel1Login interface

3.1.4.1.1 IWbemLevel1Login::EstablishPosition (Opnum 3)

The IWbemLevel1Login::EstablishPosition method does not perform any action. The return

value and output parameter are used in locale negotiation as specified in section 3.2.3 .

HRESULT EstablishPosition(

 [in, unique, string] wchar_t* reserved1,

 [in] DWORD reserved2,

 [out] DWORD* LocaleVersion

%5bMS-DCOM%5d.pdf
%5bMS-DCOM%5d.pdf
%5bMS-DCOM%5d.pdf

72 / 253

[MS -WMI] ð v20140502
 Windows Management Instrumentation Remote Protocol

 Copyright © 2014 Microsoft Corporation.

 Release: Thursday, May 15, 2014

);

reserved1: MUST be set to NULL when sent and MUST be ignored on receipt.

reserved2: MUST be set to 0 when sent and MUST be ignored on receipt.

LocaleVersion: The server MUST set the value of LocaleVersion based on the server behavior
when IWbemLevel1Login::NTLMLogin is passe d an unrecognized locale name in the
wszPreferredLocale parameter:

The return value and LocaleVersion are used for Locale capability negotiation before calling
IWbemLevel1Login::NTLMLogin , as specified in section 3.2.3 .

Á If the server ignores an unrecognized locale name in the Locale Name Format, as specified

in section 2.2.29 , passed to IWbemLevel1Login::NTLMLogin while all other parameters
are valid, a nd completes the execution of the IWbemLevel1Login::NTLMLogin method,
the server MUST set the LocaleVersion parameter to 1.

Á If the server returns an error for an unrecognized locale name in Locale Name Format, as

specified in section 2.2.29 , passed to IWbemLevel1Login::NTLMLogin , while all other

parameters are valid, the server MUST set the LocaleVersion parameter to 0.

Return Values: The server MUST return one of the following values, based on server beh avior
for the wszPreferredLocale parameter in IWbemLevel1Login::NTLMLogin .

Return value/code Description

0x00

WBEM_S_NO_ERROR

The connection was established and no error occurred. <27>

0x80004001

E_NOTIMPL

The attempted operation is not implemented. The value of this element is

as specified in [MS -ERREF] section 2.1. <28>

3.1.4.1.2 IWbemLevel1Login::RequestChallenge (Opnum 4)

This method does not perform any action.

HRESULT RequestChallenge(

 [in, unique, string] wchar_t* reserved1,

 [in, unique, string] wchar_t* reserved2,

 [out, size_is(16), length_is(16)]

 unsigned char* reserved3

);

reserved1: MUST be set to NULL when sent and MUST be ignored on receipt.

reserved2: MUST be set to NULL when sent and MUST be ignored on receipt.

reserved3: MUST be set to NULL when sent and MUST be ignored on receipt.

Retur n value/code Description

0x8004100c

WBEM_E_NOT_SUPPORTED

The server SHOULD return this value.

%5bMS-ERREF%5d.pdf

73 / 253

[MS -WMI] ð v20140502
 Windows Management Instrumentation Remote Protocol

 Copyright © 2014 Microsoft Corporation.

 Release: Thursday, May 15, 2014

3.1.4.1.3 IWbemLevel1Login::WBEMLogin (Opnum 5)

This method does not perform any action.

HRESULT WBEMLogin(

 [in, unique, string] wchar_t* reserved1,

 [in, size_is(16), length_is(16), unique]

 unsigned char* reserved2,

 [in] long reserved3,

 [in] IWbemContext* reserved4,

 [out] IWbemServices** reserved5

);

reserved1: MUST be set to NULL when sent and MUST be ignored on receipt.

reserved2: MUST be set to NULL when sent and MUST be ignored on receipt.

reserved3: MUST be set to 0 when sent and MUST be ignored on receipt.

reserved4: MUST be set to NULL when sent and MUST be ignored on receipt.

reserved5: MUST be set to NULL when sent and MUST be ignored on receipt.

Return value/code Description

0x80004001

E_NOTIMPL

The server SHOULD return this value.

3.1.4.1.4 IWbemLevel1Login::NTLMLogin (Opnum 6)

The IWbemLevel1Login::NTLMLogin method MUST connect a user to the management services
interface in a specified namespace.

HRESULT NTLMLogin(

 [in, unique, string] LPWSTR wszNetworkResource,

 [in, unique, string] LPWSTR wszPreferredLocale,

 [in] long lFlags,

 [in] IWbemContext* pCtx,

 [out] IWbemServices** ppNamespace

);

wszNetworkResource: The string MUST represent the namespace on the server to which the
returned IWbemServices object is associated. This parameter MUST NOT be NULL and MUST

match the namespace syntax as specified in section 2.2.2 .

wszPreferredLocale: MUST be a pointer t o a string that MUST specify the locale values in the
preferred order, separated by a comma. If the client does not supply it, the server creates a
default list which is implementation -specific. <29> Each locale format SHOULD conform to the

WMI locale format, as specified in WMI Locale Formats (section 2.2.29) . Any subsequent cal ls
that request CIM localizable information (WBEM_FLAG_USE_AMENDED_QUALIFIERS)
SHOULD return the localized information in the order of preference if the information is

available in the LCID. <30> The server MUST save this information in
ClientPreferredLocales .

74 / 253

[MS -WMI] ð v20140502
 Windows Management Instrumentation Remote Protocol

 Copyright © 2014 Microsoft Corporation.

 Release: Thursday, May 15, 2014

lFlags: MUST be 0. The server SHOULD consider any other value as not valid and return
WBEM_E_INVALID_PARAMETER; otherwise, the server behavior is implementation -

specific. <31>

pCtx: MUST be a pointer to an IWbemContext interface, which MUST contain additional

information sent by the client. If pCtx is NULL, the parameter MUST be ignored.

ppNamespace: If t he call succeeds, ppNamespace MUST return a pointer to an
IWbemServices interface pointer. This parameter MUST be set to NULL when an error
occurs.

Return Values: This method MUST return an HRESULT value that MUST indicate the status of
the method call. The server MUST return WBEM_S_NO_ERROR, as specified in section 2.2.11 ,
to indicate the successful completion of the method.

WBEM_S_NO_ERROR (0x00)

The server MUST return WBEM_E_INITIALIZATION_FAILURE if InitSuccess is false.

The server MUST determine the client's access rights by comparing
RpcImpersonationAccessToken.Sids[UserIndex] as defined in [MS -RPCE] section 3.3.3.4.3
against the security descriptor stored in NamespaceConnection .

The security principal that makes the call MUST have WBEM_REMOTE_ENABLE and WBEM_ENABLE
access to the namespace; otherwise, WBEM_ACCESS_DENIED MUST be r eturned.

In response to the IWbemLevel1Login::NTLMLogin method, the server MUST return an
IWbemServices interface that corresponds to the wszNetworkResource parameter.

The server SHOULD enforce a maximum length for the wszNetworkResource parameter, and ret urn
WBEM_E_QUOTA_VIOLATION if the limit is exceeded. <32>

When the call succeeds, the server MUST create an IWbemServices object. The server MUST store

the wszPreferredLocale inside the object. The server MUST find the NamespaceConnec tion object
for wszNetworkResource passed into the NamespaceConnectionTable , and store its reference in
the IWbemServices object. The server MUST return WBEM_E_INVALID_NAMESPACE if the
NamespaceConnection object cannot be found. The server MUST set Granted Access to the set
of access rights granted to the client by the namespace security descriptor.

All subsequent IWbemServices method invocations that request localized information MUST return
the information in the language that is specified in wszPreferredL ocale . When the preferred locale is

NULL, the server SHOULD <33> use implementation -specific logic to decide the locale.

The successful method execution MUST fill the ppNamespace parameter with an IWbemServices
interface pointer and M UST return WBEM_S_NO_ERROR.

The failed method execution MUST set the output parameter to NULL and MUST return an error in
the format specified in section 2.2.3 . If the namespace does not exist, the serve r MUST return a
WBEM_E_INVALID_NAMESPACE HRESULT value.

3.1.4.2 IWbemObjectSink Interface Server Details

The IWbemObjectSink interface MUST be implemented by the WMI client if the WMI client uses
asynchronous method calls as specified in section 3.2.4.2.9 . In this case, the WMI client acts as an
IWbemObjectSink server. The WMI server acts as an IWbemObjectSink client and invokes the

%5bMS-RPCE%5d.pdf

75 / 253

[MS -WMI] ð v20140502
 Windows Management Instrumentation Remote Protocol

 Copyright © 2014 Microsoft Corporation.

 Release: Thursday, May 15, 2014

IWbemObjectSink methods to deliver the results (IWbemClassObjects, if any, and the status code)
of the IWbemServices method f or which this IWbemObjectSink is passed as a response handler.

If the WMI client calls the IWbemServices::QueryObjectSink method, the IWbemObjectSink
interface MUST be implemented by the WMI server and M UST be returned to the client in the

ppResponseHandler parameter, as specified in section 3.1.4.3.3 . In this case, the WMI server acts
as an IWbemObjectSink server. The WMI client acts as an IWbemObjectS ink client and invokes the
IWbemObjectSink methods to deliver the results, that is, IWbemClassObjects that represent the
extrinsic events the client wants to deliver to the server.

Because this interface is implemented by the WMI client and the WMI server and called by both, the
server in this section refers to the implementer of this interface and the client refers to the caller in
a specific scenario.

The IWbemObjectSink interface is a DCOM Remote Protocol (as specified in [M S-DCOM])
interface. The interface MUST be uniquely identified by UUID {7c857801 -7381 -11cf -884d -
00aa004b2e24}.

Methods in RPC Opnum Order

Method Description

Indicate The server receives the IWbemClassObject interfaces, which are sent in an ObjectArray

structure. These objects are the result of an IW bemServices asynchronous method call

that was started with this sink as the response handler.

Opnum: 3

SetStatus The server receives either a completion status code or information about the progress of the

operation that was started with this sink as the response handler.

Opnum: 4

3.1.4.2.1 IWbemObjectSink::Indicate (Opnum 3) Server details

When the IWbemObjectSink::Indicate method is called, the apObjArray parameter MUST contain
additional result objects as an array of an IWbemClassObject, sent by the client to the server. The
IWbemObjectSink::Indicate method has the following syntax, expressed in Microsoft Interface
Definition Language (MIDL) .

HRESULT Indicate(

 [in] long lObjectCount,

 [in, size_is(lObjectCount)] IWbemClassObject** apObjArray

);

lObjectCount: MUST be the number of CIM objects in the array of pointers in the ppObjArray

parameter.

apObjArray: MUST contain an array of result objects sent by the caller.

Return Values: This method MUST return an HRESULT value that MUST indicate the status of
the method call.

WBEM_S_NO_ERROR (0x00)

%5bMS-DCOM%5d.pdf
%5bMS-GLOS%5d.pdf
%5bMS-GLOS%5d.pdf

76 / 253

[MS -WMI] ð v20140502
 Windows Management Instrumentation Remote Protocol

 Copyright © 2014 Microsoft Corporation.

 Release: Thursday, May 15, 2014

When the IWbemObjectSink::Indicate method is called for the first time, the server that
implements the ObjectArray structure MUST return WBEM_S_NEW_STYL E if the execution of the

method succeeds. If a server does not implement the ObjectArray structure, it MUST return
WBEM_S_NO_ERROR for successful execution of the method.

If the server implements the ObjectArray structure and WBEM_S_NEW_STYLE is returned during the
first call to the IWbemObjectSink::Indicate method, the server MUST support subsequent calls to
the IWbemObjectSink::Indicate method by using both the DCOM Remote Protocol marshaling
and the ObjectArray structure as specified in section 2.2.14 .

3.1.4.2.2 IWbemObjectSink::SetStatus (Opnum 4) Server Details

When the IWbemObjectSink::SetStatus method is called, the parameter MUST contain the result

of the operation or the progress status information.

HRESULT SetStatus(

 [in] long lFlags,

 [in] HRESULT hResult,

 [in] BSTR strParam,

 [in] IWbemClassObject* pObjParam

);

lFlags: Flags that give information about the operation status. The flags MUST be interpreted as

specified in the following table.

Note The flags are not bit flags and can not be combined.

Value Meaning

WBEM_STATUS_COMPLETE

0x00000000

Indicates the end of the asynchronous operation.

WBEM_STATUS_PROGRESS

0x00000002

Indicates the progress state of the asynchronous operation.

Any other DWORD value that does not match the condition shown MUST be treated as not
valid and an error MUST be returned.

hResult: The HRESULT value of the asynchronous operation or notification. This hResult MUST
be the same HRESULT that the WMI client ge ts from the matching synchronous operation
when the WMI client makes an asynchronous request to the WMI server.

strParam: If the parameter is NULL, the server MUST ignore the parameter. If the parameter is
not NULL, it MUST represent the operational result of the asynchronous operation. The string

MUST be the same as the string that is returned from the IWbemCallResult::GetResultString
(Opnum 4) method when the operation is executed synchronously.

pObjPar am: If the parameter is NULL, the server MUST ignore the parameter. If the parameter

is not NULL, the object MUST contain additional error information for the asynchronous
operation failure.

Return Values: This method MUST return an HRESULT value that MUST indicate the status of
the method call. The server MUST return WBEM_S_NO_ERROR (specified in section 2.2.11)

to indicat e the successful completion of the method.

%5bMS-DCOM%5d.pdf
%5bMS-DTYP%5d.pdf

77 / 253

[MS -WMI] ð v20140502
 Windows Management Instrumentation Remote Protocol

 Copyright © 2014 Microsoft Corporation.

 Release: Thursday, May 15, 2014

WBEM_S_NO_ERROR (0x00)

3.1.4.3 IWbemServices Interface

The IWbemServices interface exposes methods that MUST provide management services to client
processes. The implementation MUST implement all methods and return errors if the semantics of
the operation cannot be completed. IWbemServices defines the execution scope for all m ethods
implemented on the interface. The initial scope MUST be established by the
IWbemLevel1Login::NTLMLogin call, which returns the interface pointer.

Methods in RPC Opnum Order

Method Description

OpenNamespace Provides the client with an IWbemServices interface pointer that is

scoped to the requested namespace.

Opnum: 3

CancelAsyncCall Cancels a currently pending asynchronous method call identified by the

IWbemObjectSink pointer passed to the initial asynchronous method.

Opnum: 4

QueryObjectSink Obtains a notification handler that allows the c lient to send events

directly to the server.

Opnum: 5

GetObject Retrieves a CIM class or a CIM instance.

Opnum: 6

GetObjectAsync Asynchronous version of the IWbemServices::GetObject method.

Opnum: 7

PutClass Creates a new class or updates an existing class in the namespace

associated with the current IWbemServices interface.

Opnum: 8

PutClassAsync Asynchronous version of the IWbemServices::PutClass method.

Opnum: 9

DeleteClass Deletes a specified class from the namespace associated with the

current IWbemServices interface.

Opnum: 10

DeleteClassAsync Asynchronous version of the IWbemServices::DeleteClass method.

Opnum: 11

CreateClassEnum Creates a class enumeration.

Opnum: 12

CreateClassEnumAsync Asynchronous version of the IWbemServices::CreateClassEnum method.

Opnum: 13

PutInstance Creates or updates an instance of an existing class.

78 / 253

[MS -WMI] ð v20140502
 Windows Management Instrumentation Remote Protocol

 Copyright © 2014 Microsoft Corporation.

 Release: Thursday, May 15, 2014

Method Description

Opnum: 14

PutInstanceAsync Asynchronous version of the PutInstance method.

Opnu m: 15

DeleteInstance Deletes an instance of an existing class from the namespace that is

pointed to by the IWbemServices interface object that is used to call

the method.

Opnum: 16

DeleteInstanceAsync Asynchronous version of the IWbemServices::DeleteInstance

method.

Opnum: 17

CreateInstanceEnum Creates an instance enumeration of all class instances that satisfy the

selection criteria.

Opnum: 18

CreateInstanceEnumAsync Asynchronous version of the IWbemServices::CreateInstanceEnum

method.

Opnum: 19

ExecQuery Returns an enumerable collection of IWbemClassObject interface

objects based on a query.

Opnum: 20

ExecQueryAsync Asynchronous version of the IWbemServices::ExecQuery method.

Opnum: 21

ExecNotificationQuery Server runs a query to receive events when called by a client to request

subscription to the events.

Opnum: 22

ExecNotificationQueryAsync Asynchronous version of the IWbemServices::ExecNotificationQuery

method.

Opnum: 23

ExecMethod Executes a CIM method implemented by a CIM class or a CIM instance

retrieved from the IWbemServices interface.

Opnum: 24

ExecMethodAsync Asynchronous version of the IWbemServices::ExecMethod method.

Opnum: 25

IWbemServic es MUST be a DCOM Remote Protocol interface. The interface MUST be uniquely
identified by UUID {9556dc99 -828c -11cf -a37e -00aa003240c7}. The object exporting this interface

also implements the IWbemRefreshingServices interface, as shown in the following diagram.

%5bMS-DCOM%5d.pdf

79 / 253

[MS -WMI] ð v20140502
 Windows Management Instrumentation Remote Protocol

 Copyright © 2014 Microsoft Corporation.

 Release: Thursday, May 15, 2014

Figure 5: The IWbemServices interface

For all methods, the server MUST increment CurrentRequestCount at the start of the method, a nd
decrement it when returning from the method.

If IsServerPaused flag is set to True, the server MUST return WBEM_E_SERVER_TOO_BUSY if
CurrentRequestCount is greater than MaxRequestLimit . The class names used in the operations
MUST conform to the CLASS -NAME element of the WQL query. The server MUST treat class names

in a case - insensitive manner.

3.1.4.3.1 IWbemServices::OpenNamespace (Opnum 3)

The IWbemServices::OpenNamespace method provides the client with an IWbemServices
interface pointer that is scoped to the requested namespace. The specified namespace MUST be a
child namespace of the current namespace through which this method is called.

HRESULT OpenNamespace(

 [in] const BSTR strNamespace,

 [in] long lFlags,

 [in] IWbemContext* pCt x,

 [in, out, unique] IWbemServices** ppWorkingNamespace,

 [in, out, unique] IWbemCallResult** ppResult

);

strNamespace: MUST be the CIM path to the target namespace. This parameter MUST NOT be
NULL.

lFlags: Flags that affect the behavior of the OpenName space method. The behavior of each

flag MUST be interpreted as follows:

Á If this bit is not set, the server MUST make the method call synchronous.

Á If this bit is set, the server MUST make the method call semisynchronously.

Name Value

WBEM_FLAG_RETURN_IMMED IATELY 0x00000010

80 / 253

[MS -WMI] ð v20140502
 Windows Management Instrumentation Remote Protocol

 Copyright © 2014 Microsoft Corporation.

 Release: Thursday, May 15, 2014

Any other DWORD value that does not match the preceding condition MUST be treated as
invalid.

pCtx: This parameter MUST be NULL.

ppWorkingNamespace: This parameter MUST NOT be NULL on input when

WBEM_FLAG_RETURN_IMMEDIATELY is not set. If the method returns WBEM_S_NO_ERROR,
ppWorkingNamespace MUST receive a pointer to an IWbemServices interface pointer to the
requested namespace.

The output parameter M UST be based on the state of the lFlags parameter (whether
WBEM_FLAG_RETURN_IMMEDIATELY is set) as listed in the following table.

Flag state Success operation Failure operation

WBEM_FLAG_RETURN_IMMEDIATELY is

not set.

MUST be set to the

requested IWbemSer vices

interface.

MUST be set to NULL if

the input parameter is

not -NULL.

WBEM_FLAG_RETURN_IMMEDIATELY is

set.

MUST be set to NULL if the

input parameter is not -NULL.

MUST be set to NULL if

the input parameter is

not -NULL.

ppResult: The output parameter MUST be filled according to the state of the lFlags parameter
(whether WBEM_FLAG_RETURN_IMMEDIATELY is set) as listed in the following table.

Flag state Success operation Failure operation

WBEM_FLAG_RETURN_IMMEDIATELY is

not set.

MUST be set to NULL if the

input parameter is not -

NULL.

MUST be set to NULL if

the input parameter is

not -NULL.

WBEM_FLAG_RETURN_IMMEDIATELY is

set.

MUST be set to the

requested IWbemCallResult

interface.

MUST be set to NULL if

the input parameter is

not -NULL.

This parameter MUST NOT be NULL on input when WBEM_FLAG_RETURN_IMMEDIATELY
equals 1. In such a case, it receives a pointer to an IWbemCallResult interface pointer.

Return Values: This method MUST return an HRESULT value that MUST indicate the status of
the method call. The server MUST return WBEM_S_NO_ERROR, as specified in section 2.2.11 ,
to indicate the successful completion of the method.

WBEM_S_NO_ERROR (0x00)

Requirements described in the parameter definitions are checked, and if the requirements are not
met, the server returns WBEM_E_INVALID_PARAMETER.

In response to the IWbemServices::OpenNamespace method, the server MUST evaluate whether

the strNamespace parameter, which is specified in the preceding list, is a child of the namespace
that is associated with the current interface pointer. If the requested namespace does not exist as a
child namespace, the server MUST return WBEM_E_INVALID_NAMESPACE. If the requested

namespace exists as a child namespace of the current interface pointer, the server MUST create
another IWbemServices interface pointer associated with this namespace and return
WBEM_S_NO_ERROR.

81 / 253

[MS -WMI] ð v20140502
 Windows Management Instrumentation Remote Protocol

 Copyright © 2014 Microsoft Corporation.

 Release: Thursday, May 15, 2014

If the method retu rns a success code, the method MUST fill one of the two output parameters, as
indicated by the use of the lFlags parameter, which is previously specified.

The successful synchronous method execution MUST fill the ppWorkingNamespace parameter with
an IWbem Services interface pointer and MUST return WBEM_S_NO_ERROR.

The semisynchronous method execution MUST follow the rules that are specified in section
3.1.1.1.2 .

The failed me thod execution MUST set the output parameters to NULL and MUST return an error in
the format that is specified in section 2.2.11 .

If the ppResult input parameter is non -NULL, the server MUST deliver the result of the requested
operation (regardless whether WBEM_FLAG_RETURN_IMMEDIATELY is set) via the
IWbemCallResult , similar to the semisynchronous execution case.

3.1.4.3.2 IWbemServices::CancelAsyncCall (Opnum 4)

The IWbemServices::CancelAsyncCall method cancels a currently pending asynchronous method
call identified by the IWbemObjectSink pointer passed to the initial asynchronous method.

HRESULT CancelAsyncCall(

 [in] IWbemObjectSink* pSink

);

pSink: MUST be a pointer to the IWbemObjectSink interface object that was passed to the

asynchronous method that the client wants to cancel. This parameter MUST NOT be NULL.

Return Values: This method MUST return an HRESULT value that MUST indicate the status of
the method call. The server MUST return WBEM_S_NO_ERROR (as specified in section 2.2. 11)
to indicate the successful completion of the method.

Return value/code Description

0x00

WBEM_S_NO_ERROR

Indicates a successful completion to the method call.

In response to the IWbemServices::CancelAsyncCall method, the server MUST identify and
canc el all pending asynchronous operations initiated by an asynchronous method execution, such as
IWbemServices::GetObjectAsync , which used the pSink interface pointer parameter as their
response handler. Th e server MUST return an error if the interface pointer is NULL, and it MUST
return an error if the pSink parameter is not associated with an entry in AsyncOperationTable.

As part of the IWbemServices::CancelAsyncCall method, the server MUST set the CallCan celled
value for this asynchronous operation entry in the AsyncOperationTable to TRUE. Setting

CallCancelled to TRUE ensures that no new IWbemObjectSink::Indicate messages or progress
messages using IWbemObjectSink::SetStatus are called to the client. If
SetStatusWithFinalResultCalled is FALSE, the server MUST set

SetStatusWithFinalResultCalled to TRUE and return the error WBEM_E_CALL_CANCELLED.

The server MUST NOT wait for any response from the client to complete the cancellation to prevent
protocol perfor mance degradation.

The successful method execution MUST return WBEM_S_NO_ERROR.

%5bMS-GLOS%5d.pdf

82 / 253

[MS -WMI] ð v20140502
 Windows Management Instrumentation Remote Protocol

 Copyright © 2014 Microsoft Corporation.

 Release: Thursday, May 15, 2014

The failed method execution MUST return an error in the format specified in section 2.2.11 .

3.1.4.3.3 IWbemServices::QueryObjectSink (Opnum 5)

The QueryObjectSink method obtains a notification handler that allows the client to send events

directly to the server.

HRESULT QueryObjectSink(

 [in] long lFlags,

 [out] IWbemObjectSink** ppResponseHandler

);

lFlags: This parameter is not used and its value MUST be 0x0.

ppResponseHandler: MUST be a pointer to a QueryObjectSink interface pointer to the
notification handler that allows the client to send events direc tly to the server. This parameter
MUST be set to NULL on error.

Return Values: This method MUST return an HRESULT value that MUST indicate the status of

the method call. The server MUST return WBEM_S_NO_ERROR (specified in section 2.2.11) to
indicate the successful completion of the method.

WBEM_S_NO_ERROR (0x00)

The security principal that makes the call MUST have WBEM_REMOTE_ENABLE, WBEM_ENABLE, and
WBEM_FULL_WRITE accesses to the namespace; otherwise, WBEM_E_ACCESS_DENIED MUST be
returned.

In response to the IWbemServices::QueryObjectSink method, the server MUST return an
IWbemObjectSink interface pointer in ppResponseHandler . The server MUST return an error if the
ppResponseHandler is NULL or if it is unable to create the requested interface pointer.

The successful method execution MUST fill the ppResponseHandler parameter and MUST return
WBEM_S_NO_ERROR.

The failed method execution MUST set the outp ut parameters to NULL and MUST return an error in

the format as specified in section 2.2.11 .

When extrinsic events are delivered to the server by using IWbemObjectSink::Indicate as
specified in section 3.1.4.2.1 , the server MUST send the event objects to all WMI clients whose
notification query satisfies the event objects that are delivered through
I WbemObjectSink::Indicate and whose security permissions match the security descriptor as
specified in section 5.2 . Refer to section 3.1.6.1 for inform ation on how the result objects are
delivered to the client.

The notification query is made by the client to the server by calling
IWbemServices::ExecNotificationQuery or IWbemServices::ExecNotificationQueryAsync .
Refer to sections 3.1.4.3.20 and 3.1.4.3.21 for informat ion about how the server processes the

client requests for notifications.

3.1.4.3.4 IWbemServices::GetObject (Opnum 6)

The IWbemServices::GetObject method retrieves a CIM class or a CIM instance. This method

MUST retrieve CIM objects from the namespace that is associated with the current IWbemServices
interface.

83 / 253

[MS -WMI] ð v20140502
 Windows Management Instrumentation Remote Protocol

 Copyright © 2014 Microsoft Corporation.

 Release: Thursday, May 15, 2014

HRESULT GetObject(

 [in] const BSTR strObjectPath,

 [in] long lFlags,

 [in] IWbemContext* pCtx,

 [out, in, unique] IWbemClassObject** ppObject,

 [out, in, unique] IWbemCallRes ult** ppCallResult

);

strObjectPath: MUST be the CIM path of the CIM object to be retrieved. If the parameter is

NULL, the server MUST return an empty CIM Object .

lFlags: Specifies the behavior of the IWbemServices::GetObject method. Flag behavior MUST
be interpreted as specified in the following table.

The server MUST allow any combination of zero or more flags from the following table and
MUST comply with all the restrictions in a flag description. Any other DWORD value that does

not match a flag condition MUST be treated as not valid.

Value Meaning

WBEM_FLAG_USE_AMENDED_QUALIFIERS

0x00020000

If this bit is not set, the server SHOULD return no CIM

localizable information.

If this bit is set, the server SHOULD return CIM

localizable information for the CIM object, as specified

in section 2.2.6 .

WBEM_FLAG_RETURN_IMMEDIATELY

0x00000010

If this bit is not set, the server MUST make the

method call synchronously.

If this bit is set, the server MUST make the method

call semisynchronously.

WBEM_FLAG_DIRECT_READ

0x00000200

If this bit is set, the server MUST disregard any

derived class when it searches the result.

If this bit is not set, the server MUST consider the

entire class hierarchy when it returns the result.

pCtx: MUST be a pointer to an IWbemContext interface, which MUST contain additional
information that the client wants to pass for processing to the imp lementer of the CIM object
that is referred to by strObjectPath . If the parameter is set to NULL, the server MUST ignore
it.

ppObject: If the parameter is set to NULL, the server MUST ignore it. In this case, the output
parameter MUST be filled according t o the state of the lFlags parameter (whether

WBEM_FLAG_RETURN_IMMEDIATELY is set) as listed in the following table.

Flag state Success operation Failure operation

WBEM_FLAG_RETURN_IMMEDIATELY is

not set.

MUST contain an

IWbemClassObject interface

pointer.

MUST be set to NULL if

the input parameter is

non -NULL.

WBEM_FLAG_RETURN_IMMEDIATELY is

set.

MUST be set to NULL if the

input parameter is non -NULL.

MUST be set to NULL if

the input parameter is

non -NULL.

84 / 253

[MS -WMI] ð v20140502
 Windows Management Instrumentation Remote Protocol

 Copyright © 2014 Microsoft Corporation.

 Release: Thursday, May 15, 2014

ppCallResult: The output parameter MUST be filled according to the state of the lFlags
parameter (whether WBEM_FLAG_RETURN_IMMEDIATELY is set) as listed in the following

table.

Flag state Success operation

Failure

oper ation

WBEM_FLAG_RETURN_IMMEDIATELY

is not set.

MUST be set to NULL if the ppCallResult

input parameter is non -NULL.

MUST be set

to NULL if the

ppCallResult

input

parameter is

non -NULL.

WBEM_FLAG_RETURN_IMMEDIATELY

is set.

The ppCallResult parameter MUST NOT

be NULL upon input. If NULL, the server

MUST return

WBEM_E_INVALID_PARAMETER. Upon

output, the parameter MUST contain the

IWbemCallResult interface pointer.

MUST be set

to NULL if the

ppCallResult

input

parameter is

non -NULL.

Return Values: This method MUST return an HRESULT that MUST indicate the status of the
method call. The HRESULT MUST have the type and values as specified in section 2.2.11 . The

server MUST return WBEM_S_NO_ERROR (as specified in section 2.2.11) to indicate the
successful completion of the method.

WBEM_S_NO_ERROR (0x00)

The security principal that makes the c all MUST have WBEM_REMOTE_ENABLE and WBEM_ENABLE
accesses to the namespace; otherwise, WBEM_E_ACCESS_DENIED MUST be returned.

In response to the IWbemServices::GetObject method, the server MUST interpret strObjectPath

as defined in [DMTF -DSP0004] section 8.5. If the path refers to a class, the server MUST look it up

in the ClassTable . If found, the server MUST return an object that represents the
ClassDeclaration . If strObjectPath refers to an ins tance, the server MUST check the
InstanceProviderId for the class. If InstanceProviderId is NULL, then the server MUST look up
the CIM database and return the CIM instance. If InstanceProviderId is not NULL, then the server
MUST find the provider entry corresponding to InstanceProviderId in the ProviderTable .

Á If found:

Á If SupportsGet is FALSE, the server MUST return WBEM_E_PROVIDER_NOT_CAPABLE.

Á Else the server MUST use the abstract interface spec ified as part of 3.1.4.17 to communicate

with the provider, and return the appropriate results or the error code.

Á If not found, the server MUST return WBEM_E_PROVIDER_NOT_FOUND.

The successful synchronou s method execution MUST provide the retrieved IWbemClassObject

interface pointer in the ppObject parameter and MUST return WBEM_S_NO_ERROR.

The method MUST fail if the CIM object that is referred to by strObjectPath does not exist, if the
method parameters are not valid as specified in the preceding list, or if the server is unable to
execute the method. The failed method execution MUST set the output parameters to NULL and
MUST return an error in the format specified in section 2.2.11 .

http://go.microsoft.com/fwlink/?LinkId=89848

85 / 253

[MS -WMI] ð v20140502
 Windows Management Instrumentation Remote Protocol

 Copyright © 2014 Microsoft Corporation.

 Release: Thursday, May 15, 2014

The semisynchronous method execution MUST follow the rules that are specified in section
3.1.1.1.2 .

If a class is marked by a Singleton qualifier, the server MUST treat " Class-Name = @" in the object
path as referencing the singleton instance of the class.

3.1.4.3.5 IWbemServices::GetObjectAsync (Opnum 7)

The IWbemServices::GetObjectAsync method is the asynchronous version of the
IWbemServices::GetObject method.

HRESULT GetObjectAsync(

 [in] const BSTR strObjectPath,

 [in] long lFlags,

 [in] IWbemContext* pCtx,

 [in] IWbemObjectSink* pResponseHandler

);

strObjectPath: MUST be the CIM path of the CIM object to be retrieved. If this parameter is set

to NULL, the server MUST return an e mpty CIM object.

lFlags: Specifies the behavior of the GetObjectAsync method. Flag behavior MUST be
interpreted as specified in the following table.

The server MUST accept a combination of zero or more flags from the following table and
MUST comply with al l the restrictions in a flag description. Any other DWORD value that does
not match a flag condition MUST be treated as not valid.

Value Meaning

WBEM_FLAG_USE_AMENDED_QUALIFIERS

0x00020000

If this bit is not set, the server SHOULD return no CIM

localizabl e information.

If this bit is set, the server SHOULD return CIM

localizable information for the CIM object, as specified

in section 2.2.6 .

WBEM_FLAG_SEND_STATUS

0x00000080

If this bit is not set, the server MUST make one final

IWbemObjectSink::SetStatus call on the interface

pointer that is provided in the pResponseHandler

parameter.

If this bit is set, the server MAY make intermediate

IWbemObjectSink::SetStatus calls on the interface

pointer prior to call completion.

WBEM_FLAG_DIRECT_READ

0x00000200

If this bit is not set, the implementer MUST consider

the entire class hierarchy when it returns the result.

If this bit is set, the server MUST disregard any

derived class when it searches the result.

pCtx: MUST be a pointer to an IWbemContext interface, which MUST contain additional
information that the client wants to pro vide to the server about the CIM object referred to by
strObjectPath . If pCtx is NULL, the parameter MUST be ignored.

pResponseHandler: MUST be a pointer to the IWbemObjectSink interface that is

implemented by the caller, where enumeration results must be delivered. The parameter

86 / 253

[MS -WMI] ð v20140502
 Windows Management Instrumentation Remote Protocol

 Copyright © 2014 Microsoft Corporation.

 Release: Thursday, May 15, 2014

MUST NOT be NULL. If the parameter is NULL, the server MUST return
WBEM_E_INVALID_PARAMETER.

Return Values: This method MUST return an HRESULT value th at MUST indicate the status of
the method call. The server MUST return WBEM_S_NO_ERROR (specified in section 2.2.11) to

indicate the successful completion of the method.

WBEM_S_NO_ERROR (0x00)

The follo wing validation occurs before an asynchronous operation is started:

The security principal that makes the call MUST have WBEM_REMOTE_ENABLE and WBEM_ENABLE
accesses to the namespace; otherwise, WBEM_E_ACCESS_DENIED MUST be returned.

Requirements mentioned in the parameter definitions are also checked before an asynchronous

operation is started.

If successful, the server MUST create a new entry in AsyncOperationTable as specified in section
3.1.1.1.3 .

The following validation happens asynchronously.

In response to IwbemServices::GetObjectAsync method, the server MUST interpret
strObjectPath as defined in [DMTF -DSP0004] section 8.5. If the path refe rs to a class, the server

MUST look it up in the ClassTable . If found, the server MUST return an object that represents the
ClassDeclaration . If strObjectPath refers to an instance, the server MUST check the
InstanceProviderId for the class. If InstancePro viderId is NULL, then the server MUST look up
the CIM database and return the CIM instance. If InstanceProviderId is not NULL, then the server
MUST use the abstract interface specified as part of section 3.1.4.18 to communicate with the
provider, and find the provider entry corresponding to the InstanceProviderId in the
ProviderTable .

Á If found:

Á If SupportsGet is FALSE, the server MUST return WBEM_E_PROVIDER_NOT_CAPABLE.

Á Else, the server MUST use the abstr act interface specified in section 3.1.4.17 to communicate

with the provider, and return the appropriate results or the error code.

Á If not found, the server MUST return WBEM_E_PROVIDER_NOT_FOUND.

The method MUST fail if the CIM object that is referred to by strObjectPath does not exist, if the
method parameters are not valid as specified in the preceding list, or if the server is unable to
execute the method. The failed method execution MUST set th e output parameters to NULL and
MUST return an error in the format specified in section 2.2.11 .

If a class is marked by a Singleton qualifier, the server MUST treat "Class -Name = @" in the object
path as referencing the singleton instance of the class.

3.1.4.3.6 IWbemServices::PutClass (Opnum 8)

The IWbemServices::PutClass method creates a new class or updates an existing class in the
namespace that is associated with the current IWbemServices interface. The server MUST NOT
allow the creation of classes that have names that begin or end with an underscore because those
names are reserved for system classes. If the class name does not conform to the CLASS -NAME
element defined in WQL, the server MUST return WBEM_E_INVALID_PARAMETER.

http://go.microsoft.com/fwlink/?LinkId=89848

87 / 253

[MS -WMI] ð v20140502
 Windows Management Instrumentation Remote Protocol

 Copyright © 2014 Microsoft Corporation.

 Release: Thursday, May 15, 2014

HRESULT PutClass(

 [in] IWbemClassObject* pObject,

 [in] long lFlags,

 [in] IWbemContext* pCtx,

 [out, in, unique] IWbemCallResult** ppCallResult

);

pObject: MUST be a pointer to an IWbemClassObject interface pointer that MUST contain the

class information to create a new class or update an existing class. This parameter MUST NOT
be NULL.

lFlags: Specifies the behavior of the PutClass method. Flag behavior MUST be interpreted as
specified in the following table.

The server MUST accept a combination of zero or more flags from the following table and
MUST comply with all the restrictions in a flag description. Any other DWORD value that does
not match a flag conditio n MUST be treated as not valid.

Value Meaning

WBEM_FLAG_USE_AMENDED_QUALIFIERS

0x00020000

If this bit is set, the server SHOULD ignore all the

amended qualifiers while it creates or updates the

CIM class. <34>

If this bit is not set, the server SHOULD include all the

qualifiers, including amended qualifiers, while it

updates or creates the CIM class.

WBEM_FLAG_RETURN_IMMEDIATELY

0x00000010

If this bit is not set, the server MUST make the

method call synchronously.

If this bit is set, the server MUST make the method

call semisynchronously.

WBEM_FLAG_UPDATE_ONLY

0x00000001

The server MUST update a CIM class pObject if the

CIM class is present.

This flag is mutually exclusive with

WBEM_FLAG_CREATE_ONLY. If none of the se flags

are set, the server MUST create or update a CIM class

pObject .

WBEM_FLAG_CREATE_ONLY

0x00000002

The server MUST create a CIM class pObject if the

CIM class is not already present.

WBEM_FLAG_UPDATE_FORCE_MODE

0x00000040

The server MUST update the class even if conflicting

child classes exist.

WBEM_FLAG_UPDATE_SAFE_MODE

0x00000020

The server MUST update the class as long as the

change does not cause any conflicts with existing

child classes or instances.

This flag is mutually exclusive with

WBEM_FLAG_UPDATE_FORCE_MODE. If none of these

flags are set, the server MUST update the class if

there is no derived class, if there is no instance for

that class, or if the class is unchanged.

88 / 253

[MS -WMI] ð v20140502
 Windows Management Instrumentation Remote Protocol

 Copyright © 2014 Microsoft Corporation.

 Release: Thursday, May 15, 2014

pCtx: MUST be a pointer to an IWbemContext interface, which MUST contain additional
information that the client wants to provide to the server about the CIM class that is referred

to by the pObject parameter. If the pCtx parameter is N ULL, it MUST be ignored.

ppCallResult: If the input parameter is non -NULL, the server MUST return WBEM_S_NO_ERROR

and IWbemCallResult MUST deliver the result of the requested operation (regardless
whethe r WBEM_FLAG_RETURN_IMMEDIATELY is set). The output parameter MUST be filled
according to the state of the lFlags parameter (whether WBEM_FLAG_RETURN_IMMEDIATELY
is set) as listed in the following table.

Flag state Operation Started Successfully

Operation

Failed to

Start

WBEM_FLAG_RETURN_IMMEDIATELY

is not set.

MUST be set to IWbemCallResult if the

input parameter is non -NULL.

MUST be set

to NULL if

the input

parameter is

non -NULL.

WBEM_FLAG_RETURN_IMMEDIATELY

is set.

This parameter MUST NOT be NULL upon

input. If NULL, the server MUST return

WBEM_E_INVALID_PARAMETER. On

output, the parameter MUST contain the

IWbemCallResult interface pointer.

MUST be set

to NULL if

the input

parameter is

non -NULL.

If the ppCallResult input parameter is NULL and WBEM_FLAG_RETURN_IMMEDIATELY is not
set, the server MUST deliver the result of the requested operation synchronously.

Return Values: This method MUST return an HRESULT value that MUST indicate the status of
the method call. The server MUST return WBEM_S_N O_ERROR (specified in section 2.2.11) to
indicate the successful completion of the method.

WBEM_S_NO_ERROR (0x00)

The security principal that makes the call MUST have WBEM_REMOTE_ENABLE and WBEM_ENABLE
accesses to the namespace; otherwise, WBEM_E_ACCESS_DENIED MUST be returned.

The server MUST first determine whether the class is dynamic or static. If the class exists in the
ClassTable for the namespace, then it is static when InstanceProviderId is NULL and dynamic
otherwise. If the class does not exist in the ClassTable , then WMI MUST iterate through each entry
in ProviderTable with IsClassProvider set to TRUE, calling the IsClassSupported entrypoint

(described in section 3.1.4.17.14). If a provider returns TRUE, then the algorithm is terminated and
the class is dynamic. Otherwise, the class is static.

If the CIM class being updated is dynamic , the security principal that makes th e call MUST have
WBEM_WRITE_PROVIDER access to the namespace; otherwise, WBEM_E_ACCESS_DENIED MUST
be returned.

If the CIM class being updated is static , the security principal that makes the call MUST have

WBEM_FULL_WRITE access to the namespace; otherwise, WBEM_E_ACCESS_DENIED MUST be
returned.

The server MUST return WBEM_E_CANNOT_BE_SINGLETON if an attempt is made to mark a class
as a singleton that has a nonsingleton superclass or a class with key properties.

89 / 253

[MS -WMI] ð v20140502
 Windows Management Instrumentation Remote Protocol

 Copyright © 2014 Microsoft Corporation.

 Release: Thursday, May 15, 2014

If the CIM class being created or updated is dynamic, the server MUST obtain SupportsP ut for the
given provider in the ProviderTable . If SupportsPut is FALSE, the server MUST return

WBEM_E_PROVIDER_NOT_CAPABLE.

In response to the IWbemServices::PutClass method, the server MUST evaluate the pObject

parameter and MUST add or update this class into the current namespace. The method MUST fail if
pObject represents a read -only class, if the method parameters or their combinations are not valid
as specified in this section, or if the server is unable to execute the method. The method MUST fail
wit h WBEM_E_NOT_FOUND if pObject property __SUPERCLASS is specified but not found in
ClassTable .

If a new class is added or an existing class is updated successfully, ClassTable MUST be updated
with the changes. If pObject property __SUPERCLASS is specified, DerivedClassTable MUST point

to the entry in the ClassTable representing the superclass.

If the CIM class referred by pObject is a new entry in the ClassTable , the server MUST generate a
__ClassCreationEvent event object upon successful creation of the cla ss.

If the CIM class referred by pObject already exists in the ClassTable prior to this method call, the
server MUST generate a __ClassModificationEvent event object upon successfully updating the
class information.

The successful synchronous method execut ion MUST return WBEM_S_NO_ERROR.

The semisynchronous method execution MUST follow the rules that are specified in section
3.1.1.1.2 .

The failed method execution MUST set output parameters to NULL and MUS T return an error in the
format specified in section 2.2.11 .

The server MUST ensure that the value referred by __CLASS conforms to CLASS -NAME in section
2.2.1.1 . In addition:

Á If the value has an underscore character ("_") as the first character, the server MUST return

WBEM_E_INVALID_OPERATION.

Á If the value has an underscore character ("_") as the last character prior to NULL, the server

MUST return WBEM _E_INVALID_OBJECT.

Á The server SHOULD enforce a maximum length for the _CLASS property (2.2) of the object

pointed to by the pObject parameter, and return WBEM_E_QUOTA_VIOLATION if the limit is
exceeded. <35>

3.1.4.3.7 IWbemServices::PutClassAsync (Opnum 9)

The IWbemServices::PutClassAsync method is the asynchronous version of the
IWbemServices::PutClass method. The PutClassAsync method creates a new class or updates
an existing class. The server MUST NOT allow the creation of classes that have names that begin or

end with an underscore because those names are reserved for system classes. If the class name
does not conform to the CLASS-NAME element defined in WQL, the server MUST return

WBEM_E_INVALID_PARAMETER.

HRESULT PutClassAsync(

 [in] IWbemClassObject* pObject,

 [in] long lFlags,

 [in] IWbemContext* pCtx,

 [in] IWbemObjectSink* pResponseHandler

90 / 25 3

[MS -WMI] ð v20140502
 Windows Management Instrumentation Remote Protocol

 Copyright © 2014 Microsoft Corporation.

 Release: Thursday, May 15, 2014

);

pObject: MUST be a point er to an IWbemClassObject interface pointer that MUST contain the

class information to create a new class or update an existing class. The class that is specified
by the parameter MUST have been correctl y initialized with all the required property values.
This parameter MUST NOT be NULL.

lFlags: Specifies the behavior of the PutClassAsync method. Flag behavior MUST be interpreted
as specified in the following table.

The server MUST accept a combination of zero or more flags from the following table and

MUST comply with all the restrictions in a flag description. Any other DWORD value that does
not match a flag condition MUST be treated as not valid.

Value Meaning

WBEM_FLAG_USE_AMENDED_QUALIFIERS

0x0002000 0

If this bit is set, the server SHOULD ignore all the

amended qualifiers while it creates or updates a CIM

class. <36>

If this bit is not set, the server SHOULD include all the

qualifiers, including amended qualifiers, while it

updat es or creates a CIM class.

WBEM_FLAG_UPDATE_ONLY

0x00000001

The server MUST update a CIM class pObject if the

CIM class is present.

This flag is mutually exclusive with

WBEM_FLAG_CREATE_ONLY. If none of these flags

are set, the server MUST create or update a CIM class

pObject .

WBEM_FLAG_CREATE_ONLY

0x00000002

The server MUST create a CIM class pObject if the

CIM class is not already p resent.

WBEM_FLAG_UPDATE_FORCE_MODE

0x00000040

The server MUST forcefully update the class even

when conflicting child classes exist.

WBEM_FLAG_UPDATE_SAFE_MODE

0x00000020

The server MUST update the class as long as the

change does not cause any conflict s with existing

child classes or instances.

This flag is mutually exclusive with

WBEM_FLAG_UPDATE_FORCE_MODE.

If none of these flags are set, the server MUST update

the class if there is no derived class, if there is no

instance for that class, or if the c lass is unchanged.

WBEM_FLAG_SEND_STATUS

0x00000080

If this bit is not set, the server MUST make one final

IWbemObjectSink::SetStatus method call on the

interface pointer that is provided in the

pResponseHandler parameter.

If this bit is set, the server MAY make intermediate

IWbemObjectSink::SetStatus calls on the interface

pointer prior to call completion.

91 / 253

[MS -WMI] ð v20140502
 Windows Management Instrumentation Remote Protocol

 Copyright © 2014 Microsoft Corporation.

 Release: Thursday, May 15, 2014

pCtx: MUST be a pointer to an IWbemCo ntext interface, which MUST contain additional
information that the client wants to pass to the server. If the pCtx parameter is NULL, the

parameter MUST be ignored.

pResponseHandler: MUST be a pointer to an IWbemObjectSink interface object that is

implemented by the client of this method. The parameter MUST NOT be NULL.

Return Values: This method MUST return an HRESULT value that MUST indicate the status of
the method call. The server MUST return WBEM_S_ NO_ERROR (specified in section 2.2.11) to
indicate the successful completion of the method.

WBEM_S_NO_ERROR (0x00)

The following validation happens before asynchronous operation is started:

The security principal that makes the call MUST have WBEM_REMOTE_ENABLE and WBEM_ENABLE
accesses to the namespace; otherwise, WBEM_E_ACCESS_DENIED MUST be returned.

Requirements mentioned in the parameter definitions are also checked before starting asynchrono us
operation.

If successful, the server MUST create a new entry in AsyncOperationTable as specified in section
3.1.1.1.3 .

The following validation happens asynchronously:

The server MUST first determine whether the class is dynamic or static. If the class exists in the
ClassTable for the namespace, then it is static when InstanceProviderId is NULL and dynamic
otherwise. If the class does not exist in the ClassTable , then WMI MUST iterate through each ent ry
in ProviderTable with IsClassProvider set to TRUE, calling the IsClassSupported entrypoint
(described in section 3.1.4.17.14). If a provider returns TRUE, then the algorithm is terminated and
the clas s is dynamic. Otherwise, the class is static.

If the CIM class being updated is dynamic, the security principal that makes the call MUST have
WBEM_WRITE_PROVIDER access to the namespace; otherwise, WBEM_E_ACCESS_DENIED MUST
be returned.

If the CIM class be ing updated is static, the security principal that makes the call MUST have
WBEM_FULL_WRITE access to the namespace; otherwise, WBEM_E_ACCESS_DENIED MUST be
returned.

If the CIM class being created or updated is dynamic, the server MUST obtain SupportsPut for the

given provider in the ProviderTable . If SupportsPut is FALSE, the server MUST return
WBEM_E_PROVIDER_NOT_CAPABLE.

The server MUST return WBEM_E_CANNOT_BE_SINGLETON if an attempt is made to mark a class
as a Singleton that has a nonsingleton supercl ass or a class with key properties.

In response to the IWbemServices::PutClassAsync method, the server MUST evaluate the

pObject parameter (previously specified) and it MUST add or update this class into the current

namespace. The method MUST fail if pObject represents a read -only class, if the method parameters
or their combinations are not valid (as previously specified), or if the server is unable to execute the
method. The method MUST fail with WBEM_E_NOT_FOUND if pObject property __SUPERCLASS is
specified but not found in ClassTable .

92 / 253

[MS -WMI] ð v20140502
 Windows Management Instrumentation Remote Protocol

 Copyright © 2014 Microsoft Corporation.

 Release: Thursday, May 15, 2014

If a new class is added or an existing class is updated, ClassTable MUST be updated with the
changes. If pObject property __SUPERCLASS is specified, DerivedClassTable MUST point to the

entry in the ClassTable represent ing the SuperClass.

If the CIM class referred by pObject is a new entry in the ClassTable , the server MUST generate a

__ClassCreationEvent event object upon successful creation of the class.

If the CIM class referred by pObject already exists in the ClassT able prior to this method call, the
server MUST generate a __ClassModificationEvent event object upon successfully updating the
class information.

The server MUST ensure that the value referred by __CLASS conforms to CLASS -NAME in 2.2.1.1 .
In addition:

Á If the value has an underscore character ("_") as the first character, the server MUST return

WBEM_E_INVALID_OPERATION.

Á If the value has an underscore character as the last character prior to NULL, the ser ver MUST

return WBEM_E_INVALID_OBJECT.

Á The server SHOULD enforce a maximum length for the _CLASS property (see section 2.2) of the

object pointed to by the pObject parameter, and return WBEM_E_QUOTA_VIOL ATION if the limit

is exceeded. <37>

3.1.4.3.8 IWbemServices::DeleteClass (Opnum 10)

The IWbemServices::DeleteClass method MUST delete a specified class from the namespace that
is associated with the current IWbemServices interface.

HRESULT DeleteClass(

 [in] const BSTR strClass,

 [in] long lFlags,

 [in] IWbemContext* pCtx,

 [in, out, unique] IWbemCallResult** ppCallResult

);

strClass: MUST be the name of the class to delete. This parameter MUST NOT be NULL.

lFlags: Specifies the behavior of the DeleteClass method. Flag behavior MUST be interpreted as
specified in the following table.

Value Meaning

WBEM_FLAG_RETURN_IMMEDIATELY

0x00000010

If this bit is set, the server MUST make the method call

semisynchronously.

If this bit is not set, the server MUST make the method call

synchronously.

Any other DWORD value that does not match the preceding condition MUST be treated as
invalid.

pCtx: MUST be a pointer to an IWbemContext interface, which MUST contain additional
information that the client wants to pass to the server. If pCtx is NULL, the parameter MUST
be ignored.

93 / 253

[MS -WMI] ð v20140502
 Windows Management Instrumentation Remote Protocol

 Copyright © 2014 Microsoft Corporation.

 Release: Thursday, May 15, 2014

ppCallResult: The output parameter MUST be filled according to the state of the lFlags
parameter (whether WBE M_FLAG_RETURN_IMMEDIATELY is set) as listed in the following

table.

Flag state Operation Started Successfully

Operation

Failed to

Start

WBEM_FLAG_RETURN_IMMEDIATELY

is not set.

MUST be set to IWbemCallR esult if

the ppCallResult input parameter is non -

NULL.

MUST be set

to NULL if the

ppCallResult

input

parameter is

non -NULL.

WBEM_FLAG_RETURN_IMMEDIATELY

is set.

The ppCallResult parameter MUST NOT

be NULL upon input. If NULL, the server

MUST return

WBEM_E_INVALID_PARAMETER. On

output, the parameter MUST contain the

IWbemCallResult interface pointer.

MUST be set

to NULL if the

ppCallResult

input

parameter is

non -NULL.

Return Values: This method MUST return an HRESULT value that MUST indicate the status of
the method call. The server MUST return WBEM_S_NO_ERROR (specified in section 2.2.11) to
indicate the successful completion of th e method.

WBEM_S_NO_ERROR (0x00)

The security principal that makes the call MUST have WBEM_REMOTE_ENABLE and WBEM_ENABLE

accesses to the namespace; otherwise, WBEM_E_ACCESS_DENIED MUST be returned.

If the CIM class being deleted is dynamic , the security principal that makes the call MUST have
WBEM_WRITE_PROVIDER access to the namespace; otherwise, WBEM_E_ACCESS_DENIED MUST

be returned.

If the CIM class being deleted is static, the security principal that makes the call MUST have
WBEM_FULL_W RITE access to the namespace; otherwise, WBEM_E_ACCESS_DENIED MUST be
returned.

If the CIM class being deleted is dynamic, the server MUST obtain SupportsDelete for the given
provider in the ProviderTable . If SupportsDelete is FALSE, the server MUST return
WBEM_E_PROVIDER_NOT_CAPABLE.

In response to the IWbemServices::DeleteClass method, the server MUST evaluate the strClass
parameter (specified in this section) and MUST delete the strClass parameter from the current
namespace. The server MUST delete all th e instances of the class and recursively delete all the
derived classes. The method MUST fail if the following applies: if strClass does not exist; if the

method parameters or their combinations are not valid as specified in this section; or if the server is
unable to execute the method.

The successful synchronous method execution MUST return WBEM_S_NO_ERROR.

The semisynchronous method execution MUST follow the rules that are specified in section
3.1.1.1. 2.

94 / 253

[MS -WMI] ð v20140502
 Windows Management Instrumentation Remote Protocol

 Copyright © 2014 Microsoft Corporation.

 Release: Thursday, May 15, 2014

The failed method execution MUST set output parameters to NULL and MUST return an error in the
format specified in section 2.2.11 .

If the ppResult input parameter is non -NULL, the server MUST deliver the result of the requested
operation (regardless whether WBEM_FLAG_RETURN_IMMEDIATELY is set) via the

IWbemCallResult , similar to the semisynchronous execution case. If the ppCallResult input
parameter is NULL and WBEM_FLAG_RETURN_IMMEDIATELY is not set, the server MUST deliver the
result of the requested operation synchronously.

If a class is deleted, the corresponding entries for the class and its derived classes MUST be deleted
from the ClassTable .

The server MUST generate a __ClassDeletionEvent event o bject upon successfully deleting the
class information.

The server SHOULD enforce a maximum length for the strClass parameter, and return
WBEM_E_QUOTA_VIOLATION if the limit is exceeded. <38>

3.1.4.3.9 IWbemServices::DeleteClassAsync (Opnum 11)

The IWbemServices::DeleteClassAsync method is the asynchronous version of the
IWbemServices::DeleteClass method. The DeleteClassAsync method MUST delete a specified

class from the namespace.

HRESULT DeleteClassAsync(

 [in] const BSTR strClass,

 [in] long lFlags,

 [in] IWbemContext* pCtx,

 [in] IWbemObjectSink* pResponseHandler

);

strClass: MUST be the name of the class to delete. Th is parameter MUST NOT be NULL.

lFlags: Specifies the behavior of the DeleteClassAsync method. Flag behavior MUST be
interpreted as specified in the following table.

Value Meaning

WBEM_FLAG_SEND_STATUS

0x00000080

If this bit is not set, the server MUST mak e one final

IWbemObjectSink::SetStatus call on the interface pointer that is

provided in the pResponseHandler parameter.

If this bit is set, the server MAY make intermediate

IWbemObjectSink::SetStatus calls on the interface pointer prior

to call completion.

Any other DWORD value that does not match the preceding condition MUST be treated as not
valid.

pCtx: MUST be a pointer to an IWbemContext interface, which MUST contain additional
information that the client wants to pass to the server. If pCtx is NULL, the parameter MUST
be ignored.

pResponseHandler: MUST be a pointer to an IWbemObjectSin k interface object that is
implemented by the client of this method. This parameter MUST NOT be NULL.

95 / 253

[MS -WMI] ð v20140502
 Windows Management Instrumentation Remote Protocol

 Copyright © 2014 Microsoft Corporation.

 Release: Thursday, May 15, 2014

Return Values: This method MUST return an HRESULT value that MUST indicate the status of
the method call. The server MUST return WBEM_S_NO_ERROR (as speci fied in section 2.2.11)

to indicate the successful completion of the method.

WBEM_S_NO_ERROR (0x00)

The following validation occurs before asynchronous operation is started:

The security principal that makes the call MUST have WBEM_REMOTE_ENABLE and WBEM_ENABLE
accesses to the namespace; otherwise, WBEM_E_ACCESS_DENIED MUST be returned.

The server SHOULD enforce a maximum length for the strClass parameter and return
WBEM_E_QUOTA_VIOLATION if the limit is exceeded. <39>

The requirements mentioned in the parameter definitions are also checked before starting the

asynchronous operation.

If successful, the server MUST create a new entry in AsyncOperationTable as specified in section
3.1.1.1.3 .

The following validation occurs asynchronously:

If the CIM class being deleted is dynamic, the security principal that makes the call M UST have
WBEM_WRITE_PROVIDER access to the namespace; otherwise, WBEM_E_ACCESS_DENIED MUST

be returned.

If the CIM class being deleted is static, the security principal that makes the call MUST have
WBEM_FULL_WRITE access to the namespace; otherwise, WBEM_ E_ACCESS_DENIED MUST be
returned.

If the CIM class being deleted is dynamic, the server MUST obtain SupportsDelete for the given
provider in the ProviderTable . If SupportsDelete is FALSE, the server MUST return
WBEM_E_PROVIDER_NOT_CAPABLE.

In response to t he IWbemServices::DeleteClassAsync method, the server MUST evaluate the
strClass parameter (specified in this section) and MUST delete strClass from the current namespace.
The server MUST delete all the instances of the class and recursively delete all the derived classes.
The method MUST fail if the following applies: if strClass does not exist; if the method parameters or
their combinations are not valid as previously specified; or if the server is unable to execute the
method.

If a new class is deleted, the corresponding entries for the class and the derived classes MUST be

deleted from the ClassTable .

The server MUST generate a __ClassDeletionEvent event object upon successfully deleting the
class information.

3.1.4.3.10 IWbemServices::CreateClassEnum (Opnum 12)

The IWbemServices::CreateClassEnum method provides a class enumeration. When this method

is invoked, the server MUST return all classes that satisfy the selection criteria from the namespace
that is associated with the current IWbemServi ces interface.

HRESULT CreateClassEnum(

 [in] const BSTR strSuperClass,

 [in] long lFlags,

96 / 253

[MS -WMI] ð v20140502
 Windows Management Instrumentation Remote Protocol

 Copyright © 2014 Microsoft Corporation.

 Release: Thursday, May 15, 2014

 [in] IWbemContext* pCtx,

 [out] IEnumWbemClassObject** ppEnum

);

strSuperClass: MUST specify a superclass name. Only classes that are subclasses of this class
MUST be returned. If strSuperClass is NULL or a zero - length string, all classes in the

namespace MUST be included in the result set. The results MUST be filtered by using the
lFlags parameter. Classes without a base class MUST be considered to be derived fr om the
NULL superclass.

lFlags: Flags affect the behavior of the CreateClassEnum method. Flag behavior MUST be
interpreted as specified in the following table.

The server MUST allow any combination of zero or more flags from the following table and
MUST co mply with all the restrictions in a flag description. Any other DWORD value that does

not match a flag condition MUST be treated as not valid.

Value Meaning

WBEM_FLAG_USE_AMENDED_QUALIFIERS

0x00020000

If this bit is not set, the server SHOULD return no CI M

localizable information.

If this bit is set, the server SHOULD return CIM

localizable information for the CIM object, as specified

in section 2.2.6 .

WBEM_FLAG_RETURN_IMMEDIATELY

0x00000010

If this bit is not set, the server MUST make the

method call synchronously.

If this bit is set, the server MUST make the method

call semisynchronously.

WBEM_FLAG_SHALLOW

0x00000001

When this bit is not set, the server MUST return all

classes that are deri ved from the requested class and

all its subclasses.

When this bit is set, the server MUST return only the

classes that are directly derived from the requested

class.

WBEM_FLAG_FORWARD_ONLY

0x00000020

When this bit is not set, the server MUST return an

enumerator that has reset capability.

When this bit is set, the server MUST return an

enumerator that does not have reset capability, as

specified in section 3.1.4.4 .

pCtx: MUST be a pointer to an IWbemContext interface that MUST contain additional
information that the client wants to pass to the server. If the pCtx parameter is NULL, it MUST
be ignored.

ppEnum: MUST receive the pointer to the enumerator that implements the

IEnumWbemClassObject interface. This parameter MUST NOT be NULL.

Return Values: This method MUST return an HRESULT value that MUST indicate the status of
the method call. The server MUST return WBEM_S_NO_ERROR (as specified in section 2.2.11)

to indicate the successful completion of the method.

97 / 253

[MS -WMI] ð v20140502
 Windows Management Instrumentation Remote Protocol

 Copyright © 2014 Microsoft Corporation.

 Release: Thursday, May 15, 2014

WBEM_S_NO_ERROR (0x00)

The security principal that makes the call MUST have WBEM_REMOTE_ENABLE and WBEM_ENABLE
accesses to the namespace; oth erwise, WBEM_E_ACCESS_DENIED MUST be returned.

If strSuperClass is dynamic, the server MUST obtain SupportsEnumerate for the given provider in
the ProviderTable . If SupportsEnumerate is FALSE, the server MUST return
WBEM_E_PROVIDER_NOT_CAPABLE.

In response to the IWbemServices::CreateClassEnum method, the server MUST evaluate the
strSuperClass parameter (specified in the preceding list) and MUST return all classes that match the
input parameters from the current namespace. The method MUST fail if strSuperCl ass does not
exist; if the method parameters or their combinations are not valid as previously specified; or if the

server is unable to execute the method.

The successful synchronous method execution MUST fill the ppEnum parameter with an
IEnumWbemClassObj ect interface pointer after all classes are collected and MUST return

WBEM_S_NO_ERROR.

The semisynchronous method execution MUST follow the rules that are specified in section
3.1.1.1.2 .

The failed metho d execution MUST set the value that is referenced by the output parameters to
NULL and MUST return an error in the format that is specified in section 2.2.11 .

The server SHOULD enforce a maximum length f or the strSuperClass parameter, and return
WBEM_E_QUOTA_VIOLATION if the limit is exceeded. <40>

3.1.4.3.11 IWbemServices::CreateClassEnumAsync (Opnum 13)

The IWbemServices::CreateClassEnumAsync method provides an asynchronous class

enumeration. When this method is invoked, the server MUST return all classes that satisfy the
selection criteria.

HRESULT CreateClassEnumAsync(

 [in] const BSTR strSuperClass,

 [in] long lFlags,

 [in] IWbemContext* pCtx,

 [in] IWbemObjectSink* pResponseHandler

);

strSuperClass: Specifies a superclass name. Only classes that are subclasses of this class MUST

be ret urned. If strSuperClass is NULL or a zero - length string, all classes in the namespace
MUST be considered in the result set. The results MUST be filtered by using the lFlags
parameter. Classes without a base class are considered to be derived from the NULL
superclass.

lFlags: Flags that affect the behavior of the CreateClassEnum method. Flag behavior MUST be

interpreted as specified in the following table.

The server MUST allow any combination of zero or m ore flags from the following table and
MUST comply with all the restrictions in a flag description. Any other DWORD value that does
not match a flag condition MUST be treated as not valid.

98 / 253

[MS -WMI] ð v20140502
 Windows Management Instrumentation Remote Protocol

 Copyright © 2014 Microsoft Corporation.

 Release: Thursday, May 15, 2014

Value Meaning

WBEM_FLAG_USE_AMENDED_QUALIFIERS

0x00020000

If this bit is not set, the server SHOULD return no CIM

localizable information.

If this bit is set, the server SHOULD return CIM

localizable information for the CIM object as specified

in section 2.2.6 .

WBEM_FLAG_SEND_STATUS

0x00000080

If this bit is not set, the server MUST make one final

IWbemObjectSink::SetStatus call on the interface

pointer that is provided in the pResponseHandler

parameter.

If thi s bit is set, the server MAY make intermediate

IWbemObjectSink::SetStatus calls on the interface

pointer prior to call completion.

WBEM_FLAG_SHALLOW

0x00000001

When this bit is not set, the server MUST return all

classes that are derived from the requeste d class and

all its subclasses.

When this bit is set, the server MUST only return the

classes that are directly derived from the requested

class.

pCtx: MUST be a pointer to an IWbemContext interface, wh ich MUST contain additional
information that the client wants to pass to the server. If pCtx is NULL, the parameter MUST
be ignored.

pResponseHandler: MUST be a pointer to the IWbemObjectSink that is implemented by the
caller, where enumeration results must be delivered. The parameter MUST NOT be NULL. In
error cases, indicated by the return value, the supplied IWbemObjectSink interface pointer

MUST NOT be used. If WBEM_S_NO_ERROR is returned, the user IWbemObjectSink
interface pointer MUST be called to indicate the results of the CreateClassEnumAsync
operation, as specified later in this section.

Return Values: This method MUST return an HRESULT, which MUST indicate the status of the
method ca ll. The HRESULT MUST have the type and values as specified in section 2.2.11 . The
server MUST return WBEM_S_NO_ERROR (specified in section 2.2.11) to indicate the
successful completion of the method.

WBEM_S_NO_ERROR (0x00)

The following validation occurs before the asynchronous operation starts:

The security principal that makes the call MUST have WBEM_REMOTE_ENABLE and WBEM_ENABLE
accesses to the name space; otherwise, WBEM_E_ACCESS_DENIED MUST be returned.

The server SHOULD enforce a maximum length for the strSuperClass parameter and return

WBEM_E_QUOTA_VIOLATION if the limit is exceeded. <41>

Requirements mentioned in the parame ter definitions are also checked before starting the
asynchronous operation.

If successful, the server MUST create a new entry in AsyncOperationTable as specified in section
3.1.1.1.3 .

99 / 253

[MS -WMI] ð v20140502
 Windows Management Instrumentation Remote Protocol

 Copyright © 2014 Microsoft Corporation.

 Release: Thursday, May 15, 2014

The following vali dation occurs asynchronously:

If strSuperClass is dynamic, the server MUST obtain SupportsEnumerate for the given provider in
the ProviderTable . If SupportsEnumerate is FALSE, the server MUST return
WBEM_E_PROVIDER_NOT_CAPABLE.

In response to the IWbemServ ices::CreateClassEnumAsync method, the server MUST evaluate
the strSuperClass parameter (specified in this section) and MUST return all classes that match the
input parameters from the current namespace. The method MUST fail if strSuperClass does not
exist , if the method parameters or their combinations are not valid as specified earlier in this
section, or if the server is unable to execute the method.

3.1.4.3.12 IWbemServices::PutInstance (Opnum 14)

The IWbemServices::PutInstance method creates or updates an instance of an existing class.

The PutInstance method opnum equals 14.

HRESULT PutInstance(

 [in] IWbemClassObject* pInst,

 [in] long lFlags,

 [in] IWbemContext* pCtx,

 [in, out, unique] IWbemCallResult** ppCallResult

);

pInst: MUST be a pointer to an IWbemClassObject interface object that MUST contain the class

instance that the client wants to create or update. This parameter MUST NOT be NULL.

lFlags: Flags that affect the behavior of the PutInstance method. Flag behavior MUST be
interpreted as specified in the following table.

The server MUST accept a combination of zero or more flags from the following table and
MUST comply with all the restrictions in a flag description. Any other DWORD value that does

not match a flag condition MUST be treated as not valid.

Value Meaning

WBEM_FLAG_USE_ AMENDED_QUALIFIERS

0x00020000

If this bit is set, the server SHOULD ignore all the

amended qualifiers while this method creates or

updates a CIM instance.

If this bit is not set, the server SHOULD include all the

qualifiers, including amended qualifiers, w hile this

method creates or updates a CIM instance.

WBEM_FLAG_RETURN_IMMEDIATELY

0x00000010

If this bit is not set, the server MUST make the

method call synchronously.

If this bit is set, the server MUST make the method

call semisynchronously.

WBEM_FLAG_UPDATE_ONLY

0x00000001

The server MUST update a CIM instance pObject if the

CIM instance is present.

This flag is mutually exclusive with

WBEM_FLAG_CREATE_ONLY. If none of these flags

are set, the server MUST create or update a CIM

instance pObje ct .

%5bMS-GLOS%5d.pdf

100 / 253

[MS -WMI] ð v20140502
 Windows Management Instrumentation Remote Protocol

 Copyright © 2014 Microsoft Corporation.

 Release: Thursday, May 15, 2014

Value Meaning

WBEM_FLAG_CREATE_ONLY

0x00000002

The server MUST create a CIM instance pObject if the

CIM instance is not already present.

pCtx: This parameter is optional. The pCtx parameter MUST be a pointer to an IWbemContext
interface object. The pCtx parameter indicates whether the client is requesting a partial -

instance update or a full - instance update. A partial - instance update modifies a subset of the
CIM instance properties. In contrast, a full - instance up date modifies all the properties. If
NULL, this parameter indicates that the client application is requesting a full - instance update.
When pCtx is used to perform a partial - instance update, the IWbemContext interface object
MUST be filled in with the properties that are specified in the following table. If the
IWbemContext interface object does not contain the properties in the table, the method

MUST return WBEM_E_INVALID_CONTEXT.

Property name Type Descript ion

__PUT_EXTENSIONS VT_BOOL If this property is set to TRUE, one or more of the

other IWbemContext values have been specified.

To perform a partial instance update, this property

MUST be set to TRUE and the properties that follow

MUST be set as specified in their respective

descriptions.

__PUT_EXT_STRICT_NULLS VT_BOOL If this property is set to TRUE, the server MUST force

the setting of properties to NULL. This parameter is

optional.

__PUT_EXT_PROPERTIES VT_ARRAY |

VT_BSTR

Contains a CIM property list to update. The server

MUST ignore the properties that are not listed. To

perform a partial instance u pdate, the list of

properties MUST be specified.

__PUT_EXT_ATOMIC VT_BOOL If the return code indicates success, all CIM property

updates MUST have been successful.

On failure, the server MUST revert any changes to

the original state for all CIM property that was

updated. On failure, not a single change MUST

remain. The operation is successful when all

properties are updated.

ppCallResult: If the input parameter is non -NULL, the server MUST return WBEM_S_NO_ERROR
and IWbemCallResult MUST deliver the result of the requested operation (regardless
whether WBEM_FLAG_RETURN_IMMEDIATELY is set). The output parameter MUST be filled
according to the state of the lFlags parameter (whether WBEM_FLAG_RETURN_IMMEDIA TELY
is set) as listed in the following table.

Flag state Operation Started Successfully

Operation

Failed to

Start

WBEM_FLAG_RETURN_IMMEDIATELY

is not set.

MUST be set to IWbemCallResult if the

input parameter is non -NULL.

MUST be set

to NULL if

the input

parameter is

non -NULL.

101 / 253

[MS -WMI] ð v20140502
 Windows Management Instrumentation Remote Protocol

 Copyright © 2014 Microsoft Corporation.

 Release: Thursday, May 15, 2014

Flag state Operation Started Successfully

Operation

Failed to

Start

WBEM_FLAG_RETURN_IMMEDIATELY

is set.

This parameter MUST NOT be NULL upon

input. If NULL, the server MUST return

WBEM_E_INVALID_PARAMETER. On

output, the parameter MUST contain the

IWbemCallResult in terface pointer.

MUST be set

to NULL if

the input

parameter is

non -NULL.

If the ppCallResult input parameter is NULL and WBEM_FLAG_RETURN_IMMEDIATELY is not

set, the server MUST deliver the result of the requested operation synchronously.

Return Values: This method MUST return an HRESULT value that MUST indicate the status of
the method call. The server MUST return WBEM_S_NO_ERROR (specified in section 2.2.11) to
indicate the successful completion of the method.

WBEM_S_NO_ERROR (0x00)

The security principal that makes the call MUST have WBEM_REMOTE_ENABLE and WBEM_ENABLE
accesses to the namespace; otherwise, WBEM_E_ACCESS_DENIED MUST be returned.

If the CIM instance being updated is dynamic, the security principal that makes the call MUST have
WBEM_WRITE_PROVIDER access to the namespace; otherwise, WBEM_E_ACCESS_DENIED MUST
be returned.

If the CIM instance being created or updated is dynamic, the server MUST obtain SupportsPut for
the corresponding provider in the ProviderTable . If SupportsPut is FALSE, the server MUST

return WBEM_E_PROVIDER_NOT_CAPABLE.

If the CIM instance being updated is static and if the CIM instance is of a class that has a WMI
system class as one of the c lasses in the parent hierarchy, the security principal that makes the call
MUST have WBEM_FULL_WRITE access to the namespace; otherwise, WBEM_E_ACCESS_DENIED

MUST be returned.

If the CIM instance being updated is static and if the CIM instance is of a clas s that does not have a
WMI system class as one of the classes in the parent hierarchy, the security principal that makes

the call MUST have WBEM_PARTIAL_WRITE_REP access to the namespace; otherwise,
WBEM_E_ACCESS_DENIED MUST be returned.

If the CIM class o f the instance being created has a parent class that is not abstract, the server
MUST fail the operation with WBEM_E_NOT_FOUND. [DMTF -DSP0004] requires that the operation
MUST succeed whenth e pa rent CIM class is abstract.

In response to the IWbemServices::PutInstance method, the server MUST evaluate the pInst

parameter as specified in this section. It MUST add or update this instance into the current
namespace. The method MUST fail if the following applies: if the server does not allow creation of
new instances for the pInst class or does not allow modificatio n of the instance that is represented
by pInst ; if the method parameters or their combinations are not valid as specified in this section;

or if the server is unable to execute the method.

The successful synchronous method execution MUST return WBEM_S_NO_E RROR.

The semisynchronous method execution MUST follow the rules as specified in section 3.1.1.1.2 .

http://go.microsoft.com/fwlink/?LinkId=89848

102 / 253

[MS -WMI] ð v20140502
 Windows Management Instrumentation Remote Protocol

 Copyright © 2014 Microsoft Corporation.

 Release: Thursday, May 15, 2014

The failed method execution MUST set output parameters to NULL and MUST return an error in the
format t hat is specified in section 2.2.11 .

The server SHOULD enforce a maximum length for the __RELPATH system property of the object
pointed to by the pInst parameter, and return WBEM_E_QUOTA_VIOLATION if the limit is

exceeded. <42>

3.1.4.3.13 IWbemServices::PutInstanceAsync (Opnum 15)

The IWbemServices::PutInstanceAsync method is the asynchronous version of the
PutInstance method. The PutInstanceAsync method creates or updates an instance of an
existing class.

HRESULT PutInstanceAsync(

 [in] IWbemClassObject* pInst,

 [in] long lFlags,

 [in] IWbemContext* pCtx,

 [in] IWbemObjectSink* pResponseHandler

);

pInst: MUST be a pointer to an IWbemClassObject interface object that MUST contain the class
instance that the client wants to create or update. This parameter MUST NOT be NULL.

lFlags: Flags that affect the behavior of the PutInstanceAsync method. Flag behavior MUST be
interpreted as specified in the following table.

The server MUST accept a combination of zero or more flags from the following table and
MUST comply with all the restrictions in a flag description. Any other DWORD value that does
not comply with this condition MUST be treated as not valid.

Value Meaning

WBEM_FLAG_USE_AMENDED_QUALIFIERS

0x00020000

If this bit is set, the server SHOULD ignore all the

amended qualifiers while this method creates or

updates a CIM instance.

If this bit is not set, the server SHOULD include all the

qualifiers, including amended qualifiers, while this

method creates or updates a CIM instance.

WBEM_FLAG_UPDATE_ONLY

0x00000001

The server MUST update a CIM instance pObject if the

CIM instance is present.

This flag is mutually exclusive with

WBEM_FLAG_CREATE_ONLY. If none of these flags

are set, the server MUST create or update a CIM

instance pObject .

WBEM_FLAG_CREATE_ONLY

0x00000002

The server MUST create a CIM instance pObject if the

CIM instance is not already present.

WBEM_FLAG_SEND_STATUS

0x00000080

If this bit is not set, the server MUST make one final

IWbemObjectSink::SetStatus call on the interface

pointer that is provided in the pResponseHandler

parameter.

If this bit is set, the server MAY make intermediate

IWbemObjectSink::SetStatus calls on the interface

103 / 253

[MS -WMI] ð v20140502
 Windows Management Instrumentation Remote Protocol

 Copyright © 2014 Microsoft Corporation.

 Release: Thursday, May 15, 2014

Value Meaning

pointer prior to call completion.

pCtx: This parameter is optional. The pCtx parameter MUST be a pointer to an IWbemContext
(section 2.2.13) interface object. The pCtx parameter indicates whether the client is
requesting a partial - instance update or full - instance update. A partial - instance update
modifies a subset of CIM instance properties; a full - instance update modifies all the

properties. If NULL, this parameter ind icates that the client application is requesting a full -
instance update. When pCtx is used to perform a partial - instance update, the IWbemContext
interface MUST be completed with the properties that are specified in the following table. If
the IWbemContext interface object does not contain the properties in the table, the method
MUST return WBEM_E_INVALID_CONTEXT.

Property name Type Description

__PUT_EXTENSIONS VT_BOOL If this property is set to TRUE, one or more of the

other IWbemContext values have been specified. To

perform a partial - instance update, this property

MUST be set to TRUE.

__PUT_EXT_STRICT_NULLS VT_BOOL If this property is set to TRUE, the server MUST

for ce the setting of properties to NULL. This

parameter is optional.

__PUT_EXT_PROPERTIES VT_ARRAY |

VT_BSTR

Contains a CIM property list to update. The server

MUST ignore properties that are not listed. To

perform a partial - instance update, the list of

prop erties MUST be specified.

__PUT_EXT_ATOMIC VT_BOOL If the return code indicates success, all CIM

property updates MUST have been successful.

On failure, the server MUST revert any changes to

the original state for all CIM property updates. On

failure, any changes MUST NOT remain. The

operation is successful when all properties are

updated.

pResponseHandler: MUST be a pointer to an IWbemObjectSink interface object that is
implemented by the client of thi s method. This parameter MUST NOT be NULL.

Return Values: This method MUST return an HRESULT value that MUST indicate the status of
the method call. The server MUST return WBEM_S_NO_ERROR (specified in section 2.2.11) to
indicate the successful completion of the method.

WBEM_S_NO_ERROR (0x00)

The following validation occurs before asynchronous operation is started.

The security principal that makes the call MUST have WBEM_REMOTE_ENABLE and WBEM_ENABLE
accesses to the namespace; otherwise, WBEM_E_ACCESS_DENIED MUST be returned.

The server SHOULD enforce a maximum length for the _RELPATH system property of the object
pointed to by the pInst parameter and return WBEM_E_QUOTA_VIOLATION if the limit is
exceede d. <43>

104 / 253

[MS -WMI] ð v20140502
 Windows Management Instrumentation Remote Protocol

 Copyright © 2014 Microsoft Corporation.

 Release: Thursday, May 15, 2014

Requirements mentioned in the parameter definitions are also checked before the asynchronous
operation is started.

If successful, the server MUST create a new entry in AsyncOperationTable as specified in section
3.1.1.1.3 .

The following validation occurs asynchronously.

If the CIM instance being updated is dynamic , the security principal that makes the call MUST have
WBEM_WRITE_PROVIDER access to the namespace; otherwise, WBEM_E_ACCESS_DENIED MUST
be returned.

If the CIM instance being updated is static and if the CIM instance is of a class that has a WMI
system cl ass as one of the classes in the parent hierarchy, the security principal that makes the call
MUST have WBEM_FULL_WRITE access to the namespace; otherwise, WBEM_E_ACCESS_DENIED

MUST be returned.

If the CIM instance being updated is static and if the CIM in stance is of a class that does not have a

WMI system class as one of the classes in the parent hierarchy, the security principal that makes
the call MUST have WBEM_PARTIAL_WRITE_REP access to the namespace; otherwise,
WBEM_E_ACCESS_DENIED MUST be returned.

If the CIM class of the instance being created has a parent class that is not abstract, the server

MUST fail the operation with WBEM_E_NOT_FOUND. [DMTF -DSP0004] requires that the operation
MUST succeed when the parent CIM class is abstract.

If the CIM instance being created or updated is dynamic, the server MUST obtain SupportsPut for
the corresponding provider in the ProviderTable . If SupportsPut is FALSE, the server MUST
return WBEM_E_PROVIDER_ NOT_CAPABLE.

In response to an IWbemServices::PutInstanceAsync method, the server MUST evaluate the
pInst parameter as specified in this section. It MUST add or update this instance into the current

namespace. The method MUST fail if one of the following i s true: the server does not allow the
creation of new instances for the class of pInst or does not allow modification of the instance that is

represented by pInst ; the method parameters or their combinations are not valid, as specified
earlier in this sect ion; or the server is unable to execute the method.

If the instance belongs to the __Namespace class, then the server MUST create a new namespace
as described in section 3.1.4.3.13 .

3.1.4.3.14 IWbemServices::DeleteInstance (Opnum 16)

The IWbemServices::DeleteInstance method deletes an instance of an existing class from the
namespace that is pointed to by the IWbemServices interface object that is used to call the
method.

HRESULT DeleteInstance(

 [in] const BSTR strObjectPath,

 [in] long lFlags,

 [in] IWbemContext* pCtx,

 [in, out, unique] IWbemCallResult** ppCallResult

);

strObjectPath: MUST be the CIM path to the clas s instance that the client wants to delete. This

parameter MUST NOT be NULL. The CIM path MUST contain the class name and the value of
the key properties.

http://go.microsoft.com/fwlink/?LinkId=89848

105 / 253

[MS -WMI] ð v20140502
 Windows Management Instrumentation Remote Protocol

 Copyright © 2014 Microsoft Corporation.

 Release: Thursday, May 15, 2014

lFlags: Flags that affect the behavior of the IWbemServices::DeleteInstance method. Flag
behavior MUS T be interpreted as specified in the following table.

Value Meaning

WBEM_FLAG_RETURN_IMMEDIATELY

0x00000010

If this bit is not set, the server MUST make the method call

synchronously.

If this bit is set, the server MUST make the method call

semisynchronou sly.

Any other DWORD value that does not match the preceding condition MUST be treated as
invalid.

pCtx: MUST be a pointer to an IWbemContext interface, which MUST contain additional
information that the client wants to pass to the server. If pCtx is NULL, the parameter MUST
be ignored.

ppCallResult: If the input parameter is non -NULL, the server MUST return WBEM_S_NO_ERROR
and IWbemCallResult MUST deliver the result of the requested operation (regardless
whether WBEM_FLAG_RETURN_IMMEDIATELY is set). The output parameter MUST be filled
according to the state of the lFlags parameter (whether WB EM_FLAG_RETURN_IMMEDIATELY

is set) as listed in the following table.

Flag state Operation Started Successfully

Operation

Failed to

Start

WBEM_FLAG_RETURN_IMMEDIATELY

is not set.

MUST be set to IWbemCallResult if the

input parameter is non -NULL.

MUST be se t

to NULL if

the input

parameter is

non -NULL.

WBEM_FLAG_RETURN_IMMEDIATELY

is set.

This parameter MUST NOT be NULL upon

input. If NULL, the server MUST return

WBEM_E_INVALID_PARAMETER. On

output, the parameter MUST contain the

IWbemCallResult interface po inter.

MUST be set

to NULL if

the input

parameter is

non -NULL.

If the ppCallResult input parameter is NULL and WBEM_FLAG_RETURN_IMMEDIATELY is not
set, the server MUST deliver the result of the requested operation synchronously.

Return Values: This method MUST return an HRESULT value that MUST indicate the status of
the method call. The server MUST return WBEM_S_NO_ERROR (specified in section 2.2.11) to
indicate the successful completion of th e method.

WBEM_S_NO_ERROR (0x00)

The security principal that makes the call MUST have WBEM_REMOTE_ENABLE and WBEM_ENABLE
accesses to the namespace; otherwise, WBEM_E_ACCESS_DENIED MUST be returned.

If the CIM instance being updated is dynamic , the security principal that makes the call MUST have
WBEM_WRITE_PROVIDER access to the namespace; otherwise, WBEM_E_ACCESS_DENIED MUST
be returned.

106 / 253

[MS -WMI] ð v20140502
 Windows Management Instrumentation Remote Protocol

 Copyright © 2014 Microsoft Corporation.

 Release: Thursday, May 15, 2014

If the CIM instance being updated is static and if the CIM instance is of a class that has a WMI
system cl ass as one of the classes in the parent hierarchy, the security principal that makes the call

MUST have WBEM_FULL_WRITE access to the namespace; otherwise, WBEM_E_ACCESS_DENIED
MUST be returned.

If the CIM instance being updated is static and if the CIM in stance is of a class that does not have a
WMI system class as one of the classes in the parent hierarchy, the security principal that makes
the call MUST have WBEM_PARTIAL_WRITE_REP access to the namespace; otherwise,
WBEM_E_ACCESS_DENIED MUST be returned.

If the CIM instance being deleted is dynamic, the server MUST obtain SupportsDelete for the given
provider in the ProviderTable . If SupportsDelete is FALSE, the server MUST return
WBEM_E_PROVIDER_NOT_CAPABLE.

In response to the IWbemServices::DeleteInstan ce method, the server MUST evaluate the
strObjectPath parameter (as specified in this section) and MUST delete the instance that is identified
by strObjectPath from the current namespace. The method MUST fail if the following applies: if
strObjectPath does not exist; if the method parameters or their combinations are not valid as

specified in the preceding list; or if the server is unable to execute the method.

The server SHOULD enforce a maximum length for the strObjectPath parameter, and return

WBEM_E_QUO TA_VIOLATION if the limit is exceeded. <44>

The successful synchronous method execution MUST return WBEM_S_NO_ERROR.

The semisynchronous method execution MUST follow the rules as specified in section 3.1.1.1.2 .

The failed method execution MUST set the output parameters to NULL and MUST return an error in
the format specified in section 2.2.11 .

3.1.4.3.15 IWbemServices::DeleteInstanceAsync (Opnum 17)

The IWbemServices::DeleteInstanceAsync method is the asynchronous version of the
IWbemServices::DeleteInstance method. The IWbemServices::DeleteInstanceAsync method

deletes an instance of an existing class from the namespace that is pointed to by the
IWbemServices interface that is used to call the method.

HRESULT DeleteInst anceAsync(

 [in] const BSTR strObjectPath,

 [in] long lFlags,

 [in] IWbemContext* pCtx,

 [in] IWbemObjectSink* pResponseHandler

);

strObjectPath: MUST be the CIM path to the class instance that the client wants to delete. This

parameter MUST NOT be NUL L. The CIM path MUST contain the class name and the value of
the key properties.

lFlags: Flags that affect the behavior of the IWbemServices::DeleteInstanceAsync method.

Flag behavior MUST be interpreted as specified in the following table.

Value Meaning

WBEM_FLAG_SEND_STATUS

0x00000080

If this bit is not set, the server MUST make one final

IWbemObjectSink::SetStatus call on the interface pointer that is

107 / 253

[MS -WMI] ð v20140502
 Windows Management Instrumentation Remote Protocol

 Copyright © 2014 Microsoft Corporation.

 Release: Thursday, May 15, 2014

Value Meaning

provided in the pResponseHandler parameter.

If thi s bit is set, the server MAY make intermediate

IWbemObjectSink::SetStatus calls on the interface pointer prior

to call completion.

Any other DWORD value that does not match the preceding condition MUST be treated as
invalid.

pCtx: MUST be a pointer to an IWbemContext interface, which contains additional information
that the client wants to pass to the server. If pCtx is NULL, the parameter MUST be ignored.

pResponseHandler: MUST be a pointer to an IWbemObjectSink interface object that is
implemented by the client of this method. This parameter MUST NOT be NULL.

Return Values: This method MUST return an HRESULT value that MUST indicate the status of

the method call. The server MUST return WBEM_S_NO_ERROR (specified in section 2.2.11) to
indicate the successful completion of the method.

WBEM_S_NO_ERROR (0x00)

The following validation happens before asynchronous operation is started.

The security principal that makes the call MUST have WBEM_REMOTE_ENABLE and WBEM_ENABLE
accesses to the namespace; otherwise, WBEM_E_ACCESS_DENIED MUST be returned.

The server SHOUL D enforce a maximum length for the strObjectPath parameter and return
WBEM_E_QUOTA_VIOLATION if the limit is exceeded. <45>

The method MUST fail if strObjectPath does not exist.

The requirements mentioned in the parameter definitions are also checked before an asynchronous

operation is started.

If successful, the server MUST create a new entry in AsyncOperationTable as specified in section
3.1.1.1.3 .

The following validation occurs asynchronously.

If the CIM instance being updated is dynamic, the security principal that makes the call MUST have
WBEM_WRITE_PROVIDER access to the namespace; otherwise, WBEM_E_ACCESS_DENIED MUST

be returned.

If the CIM instance being updated is static an d if the CIM instance is of a class that has a WMI
system class as one of the classes in the parent hierarchy, the security principal that makes the call
MUST have WBEM_FULL_WRITE access to the namespace; otherwise, WBEM_E_ACCESS_DENIED
MUST be returned.

I f the CIM instance being updated is static and if the CIM instance is of a class that does not have a
WMI system class as one of the classes in the parent hierarchy, the security principal that makes

the call MUST have WBEM_PARTIAL_WRITE_REP access to the namespace; otherwise,
WBEM_E_ACCESS_DENIED MUST be returned.

108 / 253

[MS -WMI] ð v20140502
 Windows Management Instrumentation Remote Protocol

 Copyright © 2014 Microsoft Corporation.

 Release: Thursday, May 15, 2014

If the CIM instance being deleted is dynamic, the server MUST obtain SupportsDelete for the given
provider in the ProviderTable . If SupportsDelete is FALSE, the server MUST return

WBEM_E_PROVIDER _NOT_CAPABLE.

In response to an IWbemServices::DeleteInstanceAsync method, the server MUST evaluate the

strObjectPath parameter (as specified in this section) and MUST delete the instance that is identified
by strObjectPath from the current namespace. The method MUST fail if the following applies: if
strObjectPath does not exist; if the method parameters or their combinations are not valid as
specified in this section; or if the server is unable to execute the method.

3.1.4.3.16 IWbemServices::CreateInstanceEnum (Opnum 18)

The IWbemServices::CreateInstanceEnum method provides an instance enumeration. When this

method is invoked, the server MUST return all instances for the specific class in the current
namespace.

HRESULT CreateInstanceEnum(

 [in] const BSTR strSuperClass,

 [in] long lFlags,

 [in] IWbemContext* pCtx,

 [out] IEnumWbemClassObject** ppEnum

);

strSuperClass: MUST contain the name of the CIM class for which the client wants instances.

This parameter MUST NOT be NULL.

lFlags: Flags that affect the behavior of the CreateInstanceEnum method. Flag behavior MUST
be interpreted as specified in the following table.

The server MUST allow any combination of zero or more flags from the following table and
MUST comply with all the restrictions in a flag description. Any other DWORD value that does

not match a flag condition MUST be treated as not valid.

Value Meaning

WBEM_FLAG_USE_AMENDED_QUALIFIERS

0x00020000

If this bit is not set, the server SHOULD return no CIM

localizable information.

If this bit is set, the server SHOULD return CIM

localizable information for the CIM object, as specified

in section 2.2.6 .

WBEM_FLAG_RETURN_IMMEDIATELY

0x00000010

If this bit is not set, the server MUST make the

method call synchronously.

If this bit is set, the server MUST make the method

call semisynchronously.

WBEM_FLAG_DIRECT_READ

0x00000200

If this bit is not set, the server MUST consider the

entire class hier archy when it returns the result.

If this bit is set, the server MUST disregard any

derived class when it searches the result.

WBEM_FLAG_SHALLOW

0x00000001

If this bit is set, the server MUST return instances of

the requested class only and MUST exclude i nstances

of classes that are derived from the requested class.

If this bit is not set, the server MUST return all

109 / 253

[MS -WMI] ð v20140502
 Windows Management Instrumentation Remote Protocol

 Copyright © 2014 Microsoft Corporation.

 Release: Thursday, May 15, 2014

Value Meaning

instances of the requested class as well as instances

of classes that are derived from the requested class.

WBEM_FLAG_FORWARD_ONLY

0x00000020

If this bit is not set, the server MUST return an

enumerator that has reset capability.

If this bit is set, the server MUST return an

enumerator that does not have reset capability, as

specified in section 3.1.4.4 .

pCtx: MUST be a pointer to an IWbemContext interface, which contains additional information

that the client wants to pass to the server. If pCtx is NULL, the parameter MUST be ignored.

ppEn um: MUST receive the pointer to the enumerator that is used to enumerate through the
returned class instances, which implements the IEnumWbemClassObject interface. This
parameter MUST NOT be NULL.

Return Values: This method MUST return an HRESULT value that MUST indicate the status of
the method call. The server MUST return the following value (specified in section 2.2.11) to

indicate the successful completion o f the method.

WBEM_S_NO_ERROR (0x00)

The security principal that makes the call MUST have WBEM_ENABLE and WBEM_REMOTE_ENABLE
accesses to the namespace; otherwise, WBEM_E_ACCESS_DENIED MUST be returned.

If strSuperClass is dynamic, the server MUST obtain SupportsEnumerate for the given provider in
the ProviderTable . If SupportsEnumerate is FALSE, the server MUST return

WBEM_E_PROVIDER_NOT_CAPABLE.

In response to the IWbemServices::CreateInstanceEnum method, the server MUST evaluate the
strSuperClass paramet er (as specified in this section) and MUST return all instances for the specific

class in the current namespace. The method MUST fail if the following applies: if strSuperClass does
not exist; if the method parameters or their combinations are not valid, a s specified in this section;
or if the server is unable to execute the method.

The server SHOULD enforce a maximum length for the strSuperClass parameter, and return

WBEM_E_QUOTA_VIOLATION if the limit is exceeded. <46>

The successful synchronous method execution MUST fill the ppEnum parameter with an
IEnumWbemClassObject interface pointer after all instances are collected and MUST return
WBEM_S_NO_ERROR.

The semisynchronous method execution MUST follow the rules as speci fied in section 3.1.1.1.2 .

The failed method execution MUST set the value that is referenced by the output parameters to

NULL and MUST return an error in the format that is specified in section 2.2.11 .

3.1.4.3.17 IWbemServices::CreateInstanceEnumAsync (Opnum 19)

The IWbemServices::CreateInstanceEnumAsync method provides an asynchronous instance
enumeration. When this method is invoked, the server MUST return all instances for the specific
class in the current namespace.

110 / 253

[MS -WMI] ð v20140502
 Windows Management Instrumentation Remote Protocol

 Copyright © 2014 Microsoft Corporation.

 Release: Thursday, May 15, 2014

HRESULT CreateInstanceEnumAsync(

 [in] const BSTR strSuperClass,

 [in] long lFlags,

 [in] IWbemContext* pCtx,

 [in] IWbemObjectSink* pResponseHandler

);

strSuperClass: MUST contain the name of the CIM class for which the client wants instances.

This parameter MUST NOT be NULL.

lFlags: Flags that affect the behavior of the IWbemServices: :CreateInstanceEnumAsync
method. Flag behavior MUST be interpreted as specified in the following table.

The server MUST allow any combination of zero or more flags from the following table and

MUST comply with all the restrictions in a flag description. An y other DWORD value that does
not match a flag condition MUST be treated as not valid.

Value Meaning

WBEM_FLAG_USE_AMENDED_QUALIFIERS

0x00020000

If this bit is not set, the server SHOULD return no CIM

localizable information.

If this bit is set, the serve r SHOULD return CIM

localizable information for the CIM object, as specified

in section 2.2.6 .

WBEM_FLAG_SEND_STATUS

0x00000080

If this bit is not set the server MUST make one final

IWbemObjectSink::SetStatus call on the interface

pointer that is provided in the pResponseHandler

parameter.

If this bit is set, the server MAY make intermediate

IWbemObjectSink::SetStatus calls on the int erface

pointer prior to call completion.

WBEM_FLAG_DIRECT_READ

0x00000200

If this bit is not set, the server MUST consider the

entire class hierarchy when it returns the result.

If this bit is set, the server MUST disregard any

derived class when it searc hes the result.

WBEM_FLAG_SHALLOW

0x00000001

If this bit is set, the server MUST return instances of

the requested class only and MUST exclude instances

of classes that are derived from the requested class.

If this bit is not set, the server MUST return a ll

instances of the requested class as well as instances

of classes that are derived from the requested class.

pCtx: MUST be a pointer to an IWbemContext interface, which MUST contain additional
informa tion that the client wants to pass to the server. If pCtx is NULL, the parameter MUST

be ignored.

pResponseHandler: MUST be a pointer to the IWbemObjectSink interface that is
implemented by the caller an d where enumeration results must be delivered. The parameter
MUST NOT be NULL.

111 / 253

[MS -WMI] ð v20140502
 Windows Management Instrumentation Remote Protocol

 Copyright © 2014 Microsoft Corporation.

 Release: Thursday, May 15, 2014

Return Values: This method MUST return an HRESULT value that MUST indicate the status of
the method call. The server MUST return WBEM_S_NO_ERROR (as specified in section 2.2.11)

to indicate the successful completion of the method.

WBEM_S_NO_ERROR (0x00)

The following validation happens before asynchronous operation is started.

The security principal that makes the call MU ST have WBEM_ENABLE and WBEM_REMOTE_ENABLE
accesses to the namespace; otherwise, WBEM_E_ACCESS_DENIED MUST be returned.

The method MUST fail if strSuperClass does not exist.

The server SHOULD enforce a maximum length for the strSuperClass parameter and ret urn
WBEM_E_QUOTA_VIOLATION if the limit is exceeded. <47>

Requirements mentioned in the parameter definitions are also checked before starting the

asynchronous operation.

If successful, the server MUST create a new entry in AsyncOper ationTable as specified in section
3.1.1.1.3 .

The following validation happens asynchronously.

If strSuperClass is dynamic, the server MUST obtain SupportsEnumerate for the given provider in

the ProviderTable . If SupportsEnumerate is FALSE, the server MUST return
WBEM_E_PROVIDER_NOT_CAPABLE.

In response to IWbemServices::CreateInstanceEnumAsync , the server MUST evaluate the
strSuperClass parameter (as specified in this section) and MUST return all instances for the specified
class in the current namespace. The method MUST fail if the following applies: if the method
parameters or their combinations are not valid as specified earlier in this section or if the server is
unable to execute the method.

3.1.4.3.18 IWbemServices::ExecQuery (Opnum 20)

The IWbemServices::ExecQuery method returns an enumerable collection of IWbemClassObject
interface objects based on a query.

HRESULT ExecQuery(

 [in] const BSTR strQueryLanguage,

 [in] const BSTR strQuery,

 [in] long lFlags,

 [in] IWbemContext* pCtx,

 [out] IEnumWbemClassObject** ppEnum

);

strQueryLanguage: MUST be set to "WQL".

strQuery: MUST contain the "WQL" query text as specified in [UNICODE] (UTF-16) and in
section 2.2.1 . This parameter MUST NOT be NULL.

lFlags: Specifies the behavior of the IWbemServices::ExecQuery method. F lag behavior MUST
be interpreted as specified in the following table.

http://go.microsoft.com/fwlink/?LinkId=90550

112 / 253

[MS -WMI] ð v20140502
 Windows Management Instrumentation Remote Protocol

 Copyright © 2014 Microsoft Corporation.

 Release: Thursday, May 15, 2014

The server MUST allow any combination of zero or more flags from the following table and
MUST comply with all the restrictions in a flag description. Any other DWORD value that does

not match a flag condition MUST be treated as not valid.

Value Meaning

WBEM_FLAG_USE_AMENDED_QUALIFIERS

0x00020000

If this bit is not set, the server SHOULD not return

CIM localizable information.

If this bit is set, the server SHOULD return CIM

localizable i nformation for the CIM object, as specified

in section 2.2.6 .

WBEM_FLAG_RETURN_IMMEDIATELY

0x00000010

If this bit is not set, the server MUST make the

method call synchronously.

If this bit is set, the server MUST make the method

call semisynchronously.

WBEM_FLAG_DIRECT_READ

0x00000200

If this bit is not set, the server MUST consider the

entire class hierarchy when it returns the result.

If this bit is set, the server MUST disreg ard any

derived class when it searches the result.

WBEM_FLAG_PROTOTYPE

0x00000002

If this bit is not set, the server MUST run the query.

If this bit is set, the server MUST only return the class

schema of the resulting objects.

WBEM_FLAG_FORWARD_ONLY

0x0 0000020

If this bit is not set, the server MUST return an

enumerator that has reset capability.

If this bit is set, the server MUST return an

enumerator without reset capability, as specified in

section 3.1.4.4 .

pCtx: MUST be a pointer to an IWbemContext interface, which MUST contain additional

information that the client wants to pass to the server. If pCtx is NULL, the parameter MUST
be ignored.

ppEn um: MUST receive the pointer to the IEnumWbemClassObject that is used to enumerate
through the CIM objects that are returned for the query result set. This parameter MUST NOT
be NULL.

Return Values: This method MUST return an HRESULT value that MUST indica te the status of
the method call. The server MUST return WBEM_S_NO_ERROR (as specified in section 2.2.11)
to indicate the successful completion of the method.

WBEM_S_NO_ERROR (0x00)

The security princip al that makes the call MUST have WBEM_ENABLE and WBEM_REMOTE_ENABLE
accesses to the namespace; otherwise, WBEM_E_ACCESS_DENIED MUST be returned.

In response to IWbemServices::ExecQuery , the server MUST evaluate the strQuery and
strQueryLanguage parameters (as specified in this section) and MUST return all instances that
match the provided query. The method MUST fail if the method parameters or their combinations

are not valid, as specified earlier in this section, or if the server is unable to execute the m ethod.

113 / 253

[MS -WMI] ð v20140502
 Windows Management Instrumentation Remote Protocol

 Copyright © 2014 Microsoft Corporation.

 Release: Thursday, May 15, 2014

The server SHOULD enforce a maximum length for the strQuery parameter, and return
WBEM_E_QUOTA_VIOLATION if the limit is exceeded. <48>

If the strQuery is not syntactically valid or one or more elements in <PROPERTY -LIST> contains
undefined properties, the server MUST return WBEM_E_INVALID_QUERY.

If strQuery is evaluated successfully, the following processing rules MUST be applied. These rules
use the following state variables:

QueryPropertyList: A list of properties to be retrieved, from the WQL SELECT query.

QueryWhereFilter: The WHERE clause of the query.

Á If strQuery begins with SELECT, the server MUST do the following:

1. Find the NamespaceConnection matching the current session.

2. Populate the QueryPropertyList and QueryWhereFilter data from the query.

3. Search the ClassTable for the class -name specified in the FROM clause and find all the classes in
the inheritance hierarchy (through the DerivedClassTab le).

4. For each class:

Á If InstanceProviderId is not zero:

Á Find QuerySupportLevels corresponding to the given ProviderId in the ProviderTable .

Á If QuerySupportLevels contains "WQL:UnarySelect" or "WQL:V1ProviderDefined", the

server MUST call the provider method specified in 3.1.4.17.15 by passing the strQuery .

Á If the results are returned from the provider, then the server MUST skip the remaining

steps.

Á If the provider returned WBEM_E_PROVIDER_NOT_CAPABLE, the server MUST call the

provider method specified in 3.1.4.17.1 to obtain the instances of the class.

Á If Insta nceProviderId is zero:

Á The server MUST find the instances for the class in ClassInstancesTable in the

ClassTable corresponding to the class.

5. Filter the enumerated instances using the QueryWhereFilter (see WQL Query (section 2.2.1)).

6. From the filtered insta nces, select only the properties on the QueryPropertyList to form the

result of the query.

Á If strQuery begins with ASSOCIATORS OF, the server MUST do the following:

1. Find the Namespac eConnection matching the current session.

2. Populate the QueryWhereFilter data from the query.

3. Get all the WMI instances matching the object -path in the query.

4. From the __CLASS property of each instance, get the class -name of all returned WMI objects.

114 / 253

[MS -WMI] ð v20140502
 Windows Management Instrumentation Remote Protocol

 Copyright © 2014 Microsoft Corporation.

 Release: Thursday, May 15, 2014

5. Search in the NamespaceConnection.ClassTable for those classes with properties of type REF
[DMTF -DSP0004] with the class -name matching one of the class names from step 4. Call the

resulting list Associ ationClasses .

6. For each RequiredAssocQualifier clause in the query, remove from AssociationClasses any

class not containing the qualifier value specified with RequiredAssocQualifier .

7. For each class in AssociationClasses :

Á If InstanceProviderId is not zero:

Á Find QuerySupportLevels corresponding to the given ProviderId in the ProviderTable .

Á If QuerySupportLevels contains "WQL:UnarySelect" or "WQL:V1ProviderDefined", the

server MUST call the provider method specified in 3.1.4.17.15 by passing the strQuery .

Á If the results are returned from the provider, then the server MUST skip the remaining

steps.

Á If the provider returned WBEM_E_PROVIDER_NOT_CAPABLE, the server MUST call the

provider method specified in 3.1.4.17.1 to obtain the instances of the class.

Á If InstanceProviderId is zero:

Á The server MUST find the instances for the class in ClassInstancesTable in the

ClassTable corresponding to the class.

8. After all the instances are obtained from the preceding step, select the instances where the REF
property matched one of the instances from step 3.

9. For each remaining instance, look for all other ref properties in the instance and get the object

referenced by them.

10. Filter this list of instances using the QueryWhereFilter .

11. The server SHOULD <49> process the following step. If KeysOnly is specified as part of the
QueryWhereFilter , search the class table again for the classes of the filtered insta nces and get
the list of key properties from ClassDeclaration (key properties will have a qualifier 'key').
Select the values of (only) the key properties to form the result of the query.

12. If ClassDefsOnly is specified as part of the QueryWhereFilter , searc h the ClassTable again

for the classDeclaration of the filtered instances and return the class declaration instead of the
instances as the result of the query.

Á If strQuery begins with REFERENCES OF , the server MUST do the following:

1. Find the NamespaceConnection matching the current session.

2. Populate the QueryWhereFilter data from the query.

3. Get all the WMI instances matching the object -path in the query.

4. From the __CLASS property, get the class -name of all returned WMI objects.

5. Search in the NamespaceConnection.ClassTable for those classes with properties of type REF
[DMTF -DSP0004] with the class -name matching one of the class names from step 4. Call the
resulting list AssociationClasses .

http://go.microsoft.com/fwlink/?LinkId=89848
http://go.microsoft.com/fwlink/?LinkId=89848

115 / 253

[MS -WMI] ð v20140502
 Windows Management Instrumentation Remote Protocol

 Copyright © 2014 Microsoft Corporation.

 Release: Thursday, May 15, 2014

6. For each class in AssociationClasses :

Á If InstanceProviderId is not zero:

Á Find QuerySupportLevels corresponding to the given ProviderId in the ProviderTable .

Á If QuerySupportLevels contains "WQL:UnarySelect" or "WQL:V1ProviderDefined", the

server MUST call the Provider method specified in 3.1.4.17.15 by passing the strQuery .

Á If the results are returned from the p rovider, then the server MUST skip the remaining

steps.

Á If the provider returned WBEM_E_PROVIDER_NOT_CAPABLE, the server MUST call the

provider method specified in 3.1.4.17.1 to obtain the instances of t he class.

Á If InstanceProviderId is zero:

Á The server MUST find the instances for the class in ClassInstancesTable in the

ClassTable corresponding to the class.

7. After all the instances are obtained from the above step, select the instances where the REF
prop erty matched one of the instances from step 3.

8. Filter this list of instances using the QueryWhereFilter .

9. The server SHOULD <50> process the following step. If Keysonly is specified as part of
QueryWhereFilter , search the ClassTable again for the classes of the filtered instances and get
the list of keys from ClassDeclaration (key properties will have a qualifier 'key'). Select the
values of (only) the key properties to form the result of the query.

10. If classdefsonly is specified as p art of the QueryWhereFilter , search the ClassTable again for

the ClassDeclaration of the filtered instances and return the class declaration instead of the
instances as the result of the query.

The successful synchronous method execution MUST fill the ppEn um parameter with a

IEnumWbemClassObject interface pointer after all instances are collected and MUST return
WBEM_S_NO_ERROR.

The semisynchronous method execution MUST follow the rules that are specified in section
3.1.1.1.2 .

The failed method execution MUST set the value that is referenced by the output parameters to
NULL and MUST return an error in the format specified in section 2.2.11 .

3.1.4.3.19 IWbemServices::ExecQueryAsync (Opnum 21)

The IWbemServices::ExecQueryAsync method is the asynchronous version of the
IWbemServices::ExecQuery method. The IWbemServices::ExecQueryAsync method returns
an enumerable collection of IWbemClassObject interface objects based on a query.

HRESULT ExecQueryAsync(

 [in] const BSTR strQueryLanguage,

 [in] const BSTR strQuery,

 [in] long lFlags ,

 [in] IWbemContext* pCtx,

 [in] IWbemObjectSink* pResponseHandler

116 / 253

[MS -WMI] ð v20140502
 Windows Management Instrumentation Remote Protocol

 Copyright © 2014 Microsoft Corporation.

 Release: Thursday, May 15, 2014

);

strQueryLanguage: MUST be set to "WQL".

strQuery: MUST contain the WQL query text as specified in section 2.2.1 . This parameter MU ST
NOT be NULL.

lFlags: Specifies the behavior of the IWbemServices::ExecQueryAsync method. Flag behavior
MUST be interpreted as specified in the following table.

The server MUST allow any combination of zero or more flags from the following table and
MUST comply with all the restrictions in a flag description. Any other DWORD value that does

not match a flag condition MUST be treated as not valid.

Value Meaning

WBEM_FLAG_USE_AMENDED_QUALIFIERS

0x00020000

If this bit is not set, the server SHOULD not retur n

CIM localizable information.

If this bit is set, the server SHOULD return CIM

localizable information for the CIM object, as specified

in section 2.2.6 .

WBEM_FLAG_SEND_STATUS

0x00000080

If this bit is not set the server MUST make one final

IWbemObjectSink::SetStatus call on the interface

pointer that is provided in the pResponseHandler

parameter.

If this bit is set, the server MAY make intermediate

IWbemObjectSink::SetStatus calls on the interface

pointer prior to call completion.

WBEM_FLAG_PROTOTYPE

0x00000002

If this bit is not set, the server MUST run the query.

If this bit is set, the server MUST only return the class

schema of the resulting objects.

WBEM_FLAG_DIRECT_READ

0x00000200

If this bit is not set, the server MUST consider the

entire class hierarchy when it returns the result.

If this bit is set, the server MUST disregard any

derived class when it searches the result.

pCtx: MUST be a pointer to an IWbemContext interface, which MUST contain additional
information that the client wants to pass to the server. If pCtx is NULL, the parameter MUST

be ignored.

pResponseHandl er: MUST be a pointer to the IWbemObjectSink interface that is
implemented by the caller, where enumeration results must be delivered. The parameter
MUST NOT be NULL.

Return Values: This method MUST retu rn an HRESULT value that MUST indicate the status of

the method call. The server MUST return WBEM_S_NO_ERROR (as specified in section 2.2.11)
to indicate the successful completion of the method.

WBEM_S_N O_ERROR (0x00)

The following validation happens before asynchronous operation is started.

117 / 253

[MS -WMI] ð v20140502
 Windows Management Instrumentation Remote Protocol

 Copyright © 2014 Microsoft Corporation.

 Release: Thursday, May 15, 2014

The security principal that makes the call MUST have WBEM_ENABLE and WBEM_REMOTE_ENABLE
accesses to the namespace; otherwise, WBEM_E_ACCESS_DENIED MUST be returned.

This method MUST fail if strQueryLanguage or strQuery does not exist.

The server SHOULD enforce a maximum length for the strQuery parameter and return

WBEM_E_QUOTA_VIOLATION if the limit is exceeded. <51>

Requirements mentioned in th e parameter definitions are also checked before an asynchronous
operation is started.

If successful, the server MUST create a new entry in AsyncOperationTable as specified in section
3.1.1.1.3 .

The follo wing validation happens asynchronously.

In response to an IWbemServices::ExecQueryAsync method call, the server MUST evaluate the

strQueryLanguage and strQuery parameters (as specified in this section) and return all instances

that match the requested query. The method MUST fail if the method parameters or their
combinations are not valid as specified earlier in this section, or if the server is unable to execut e
the method.

If the strQuery is not syntactically valid or one or more elements in <PROPERTY -LIST> contains
undefined properties, the server MUST return WBEM_E_INVALID_QUERY.

See IWbemServices::ExecQuery (Opnum 20) (section 3.1.4.3.18) for more details on the
processing rules for WQL queries.

3.1.4.3.20 IWbemServices::ExecNotificationQuery (Opnum 22)

The IWbemServices::ExecNotificationQuery method provides a subscription for event
notifications. When this method is invoked, the server runs a query to deliver events matching the
query. The call is executed semisynchronously and MUST follow the rules that are specified in

section 3.1.1.1.2 . The WMI client can poll the returned enumerator for events as they arrive.

Releasing the returned enumerator cancels the query.

HRESULT ExecNotificationQuery(

 [in] const BSTR strQueryLanguage,

 [in] con st BSTR strQuery,

 [in] long lFlags,

 [in] IWbemContext* pCtx,

 [out] IEnumWbemClassObject** ppEnum

);

strQueryLanguage: MUST be set to "WQL".

strQuery: MUST contain the WQL event - related query text as specified in section 2.2.1 . This
parameter MUST NOT be NULL.

lFlags: Specifies the behavior of the IWbemServices::ExecNotificationQuery method. Flag
behavior MUST be interpreted as specified in the following table.

The server MUST allow any combination o f zero or more flags from the following table and
MUST comply with all the restrictions in a flag description. Any other DWORD value that does

not match a flag condition MUST be treated as not valid.

118 / 253

[MS -WMI] ð v20140502
 Windows Management Instrumentation Remote Protocol

 Copyright © 2014 Microsoft Corporation.

 Release: Thursday, May 15, 2014

Value Meaning

WBEM_FLAG_USE_AMENDED_QUALIFIERS

0x000200 00

If this bit is not set, the server SHOULD return no CIM

localizable information.

If this bit is set, the server SHOULD return CIM

localizable information for the CIM object, as specified

in section 2. 2.6 .

WBEM_FLAG_RETURN_IMMEDIATELY

0x00000010

If this bit is set, the server MUST make the method

call semisynchronously.

This flag MUST always be set.

WBEM_FLAG_FORWARD_ONLY

0x00000020

If this bit is set, the server MUST return an

enumerator that does not have reset capability, as

specified in section 3.1.4.4 .

This flag MUST always be set.

pCtx: MUST be a pointer to an IWbemContext interface, which MUST contain additional
information that the client wants to pass to the server. If pCtx is NULL, the parameter MUST
be ignored.

ppEnum: MUST receive the pointer to the IEnumWbemClassObject that is used to enumerate
through the CIM objects that are returned for the query result set. This parameter MUST NOT
be NULL.

Return Values: This method MUST return an HRESULT value that MUST indicate the status of
the method call. Th e server MUST return WBEM_S_NO_ERROR (as specified in section 2.2.11)
to indicate the successful completion of the method.

WBEM_S_NO_ERROR (0x00)

The security principal that makes the call MUST have WBE M_ENABLE and WBEM_REMOTE_ENABLE

accesses to the namespace; otherwise, WBEM_E_ACCESS_DENIED MUST be returned.

In response to IWbemServices::ExecNotificationQuery , the server MUST evaluate the strQuery
and strQueryLanguage parameters (as specified in this s ection) and MUST return all events that
match the query. The method MUST fail if the method parameters or their combinations are not
valid as specified earlier in this section, or if the server is unable to execute the method. Because
the stream of events that are returned by the server is not finite, the method
IWbemServices::ExecNotificationQuery MUST NOT be executed synchronously. As previously

specified, this request MUST fail because the method parameters are not valid.

For each provider in the Provide rTable where EventQueryList is not empty:

Á For each query in EventQueryList , the server MUST check whether the instance of a CIM class

passed as part of strQuery is a logical subset of the query.

If no query is matched, the server MUST return WBEM_E_INVALID _CLASS.

If strQuery is evaluated successfully, the server MUST create an entry (row) in the
EventBindingTable . If strQuery includes a WITHIN clause, then the server MUST create an

EventPollingTimer, set its interval to the number of seconds specified in th e WITHIN clause, and
start the timer. If strQuery includes a GROUP WITHIN clause, then the server MUST create an
EventGroupingTimer and set its interval to the number of seconds specified in the GROUP
WITHIN clause. The server MUST set ClientSecurityContex t to

119 / 253

[MS -WMI] ð v20140502
 Windows Management Instrumentation Remote Protocol

 Copyright © 2014 Microsoft Corporation.

 Release: Thursday, May 15, 2014

RpcImpersonationAccessToken.Sids[UserIndex]). The server response to out -of - range time intervals
is implementation -dependent. <52>

If either WITHIN or GROUP WITHIN clause is specified, the server MUST query for the instances of
the underlying CIM class (for which the notifications are requested) in the strQuery and populate

EventBindingTable.PrevInstances with the list of instances.

The server MUST delete the row when the client releases all references to the
IEnumWbemClassObject Interface returned in ppEnum. If strQuery specified an
EventPollingTimer , the server MUST also cancel the timer. If strQuery specified an
EventGroupingTimer , the server MUST also cancel the timer.

The server SHOULD enforce a maximum length for the strQuer y parameter, and return
WBEM_E_QUOTA_VIOLATION if the limit is exceeded. <53>

If the FROM clause of strQuery represents a class that is not derived from __Event, the server MUST
return WBEM_E_NOT_EVENT_CLASS.

If the GROUP BY clause of strQuery does not have WITHIN specified, the server MUST return
WBEM_E_MISSING_GROUP_WITHIN.

If the GROUP BY clause of strQuery was used with aggregation that is not supported, the server
MUST return WBEM_E_MISSING_AGGREGATION_LIS T.

If the GROUP BY clause of strQuery references an object that is an embedded object without using
Dot notation, the server MUST return WBEM_E_AGGREGATING_BY_OBJECT.

If WITHIN clause is not specified as part of strQuery that contains an intrinsic event cl ass, the server
MUST return WBEM_E_REGISTRATION_TOO_PRECISE.

If the strQuery is not syntactically valid or one or more elements in <PROPERTY -LIST> contains
undefined properties, the server MUST return WBEM_E_INVALID_QUERY.

The failed method execution MUST set the value that is referenced by the output parameters to

NULL and MUST return an error in the format specified in section 2.2.11 .

3.1.4.3.21 IWbemServices::ExecNotificationQueryAsync (Opnum 23)

The IWbemServices::ExecNotificationQueryAsync method is the asynchronous version of the
IWbemServices::ExecNotificationQuery method. The
IWbemServices::ExecNotificationQueryAsync method provides subscription for asynchronous
event notifications. When this method is invoked, the server performs the same task as the

IWbemServices::ExecNotificationQuery method, except that events are supplied to the specified
response handler (pResponseHandler) until the IWbemServices::CancelAsyncCall method is
called.

HRESULT ExecNotificationQueryAsync(

 [in] const BSTR strQueryLanguage,

 [in] const BSTR strQuery,

 [in] long lFlags,

 [in] IWbemContext* pCtx,

 [in] IWbemObjectSink* pResponseHandler

);

strQueryLanguage: MUST be set to "WQL".

120 / 253

[MS -WMI] ð v20140502
 Windows Management Instrumentation Remote Protocol

 Copyright © 2014 Microsoft Corporation.

 Release: Thursday, May 15, 2014

strQuery: MUST contain the WQL event - related query text as specified in section 2.2.1 . This
parameter MUST NOT be NULL.

lFlags: Specifies the behavior of the IWbemServices::ExecNotificationQueryAsync method.
Flag behavior MUST be interpreted as specified in the following table.

The server MUST allow any c ombination of zero or more flags from the following table and
MUST comply with all the restrictions in a flag description. Any other DWORD value that does
not match a flag condition MUST be treated as not valid.

Value Meaning

WBEM_FLAG_USE_AMENDED_QUALIFI ERS

0x00020000

If this bit is not set, the server SHOULD return no CIM

localizable information.

If this bit is set, the server SHOULD return CIM

localizable information.

WBEM_FLAG_SEND_STATUS

0x00000080

This flag is ignored.

pCtx: MUST be a pointer to an IWbemContext interface, which MUST contain additional
information that the client wants to pass to the server. If pCtx is NULL, this parameter MUST

be ignored.

pResponseHandler: MUST be a pointer to the IWbemObjectSink interface that is
implemented by the caller, where enumeration results must be delivered. This parameter
MUST NOT be NULL.

Return Values: This method MUST return a n HRESULT value that MUST indicate the status of
the method call. The server MUST return WBEM_S_NO_ERROR, as specified in section 2.2.11 ,
to indicate the successful completion of the method.

WBEM_S_NO_ERROR (0x00)

The following validation occurs before an asynchronous operation is started.

The security principal that makes the call MUST have WBEM_ENABLE and WBEM_REMOTE_ENABLE
accesses to the namespace; otherwise, WBEM_E_ACCESS_DENIED MUST be returned.

This method MUST fail if strQueryLanguage or strQuery does not exist.

The server SHOULD enforce a maximum length for the strQuery parameter and return

WBEM_E_QUOTA_VIOLATION if the limit is exceeded. <54>

Requirements menti oned in the parameter definitions are also checked before the asynchronous
operation is started.

If successful, the server MUST create a new entry in AsyncOperationTable as specified in section
3.1.1.1.3 .

The following validation happens asynchronously.

In response to IWbemServices::ExecNotificationQueryAsync , the server MUST evaluate the
strQueryLanguage and strQuery parameters (as specified earlier in this section) and MUST start to
provide events that match the requested query. The method MUST fail if the method parameters or

121 / 253

[MS -WMI] ð v20140502
 Windows Management Instrumentation Remote Protocol

 Copyright © 2014 Microsoft Corporation.

 Release: Thursday, May 15, 2014

their combinations are not valid, as specified earlier in this section, or if the server is unable to
execute the method.

For each provider in the ProviderTable where EventQueryLis t is not empty:

Á For each query in EventQueryList , the server MUST check whether the instance of a CIM class

passed as part of strQuery is a logical subset of the query.

If no query is matched, the server MUST return WBEM_E_INVALID_CLASS.

If the FROM clause of strQuery represents a class that is not derived from __Event, the server MUST
return WBEM_E_NOT_EVENT_CLASS.

If the GROUP BY clause of strQuery does not have WITHIN specified, the server MUST return
WBEM_E_MISSING_GROUP_WITHIN.

If the GROUP BY clause o f strQuery was used with aggregation that is not supported, the server
MUST return WBEM_E_MISSING_AGGREGATION_LIST.

If the GROUP BY clause of strQuery references an object that is an embedded object without using
Dot notation, the server MUST return WBEM_E _AGGREGATING_BY_OBJECT.

If WITHIN clause is not specified as part of strQuery that contains an intrinsic event class, the server
MUST return WBEM_E_REGISTRATION_TOO_PRECISE.

If the strQuery is not syntactically valid or one or more elements in < PROPERTY-LIST> contains

undefined properties, the server MUST return WBEM_E_INVALID_QUERY.

If method execution succeeds, the server MUST run the notification query until the query is canceled
or execution fails. The server MUST NOT call IWbemObjectSink::SetStatus to send success or
operation progress information. When query execution fails, the server MUST call
IWbemObjectSink::SetStatus to send the error to the client, and the server MUST release
IWbemObjectSink .

If the strQuery is evaluated successfully, the server MUST create an entry (row) in the
EventBindingTable . If strQuery includes a WITHIN clause, the server MUST create an
EventPollingTimer , set its interval to the number of seconds specifi ed in the WITHIN clause, and
start the timer. If strQuery includes a GROUP WITHIN clause, then the server MUST create an
EventGroupingTimer and set its interval to the number of seconds specified in the GROUP
WITHIN clause. The server MUST set ClientSecuri tyContext to
RpcImpersonationAccessToken.Sids[UserIndex]. The server response to out -of - range time intervals

is implementation -dependent. <55>

If either WITHIN or GROUP WITHIN clause is specified, the server MUST query for the instan ces of
the underlying CIM class (for which the notifications are requested) in the strQuery and populate
EventBindingTable.PrevInstances with the list of instances.

The server MUST delete the row when the client cancels the query. If strQuery specified an
EventPollingTimer , the server MUST also cancel the timer. If strQuery specified an
EventGroupingTimer , the server MUST also cancel the timer.

3.1.4.3.22 IWbemServices::ExecMethod (Opnum 24)

The IWbemServices::ExecMethod method executes a CIM method that is implemented by a CIM
class or a CIM instance that is retrieved from the IWbemServices interface.

HRESULT ExecMethod(

122 / 253

[MS -WMI] ð v20140502
 Windows Management Instrumentation Remote Protocol

 Copyright © 2014 Microsoft Corporation.

 Release: Thursday, May 15, 2014

 [in] const BSTR strObjectPath,

 [in] const BSTR strMethodName,

 [in] long lFlags,

 [in] IWbemContext* pCtx,

 [in] IWbemClassObject* pInParams,

 [out, in, unique] IWbemClassObject** ppOutParams,

 [out, in, unique] IWb emCallResult** ppCallResult

);

strObjectPath: MUST be the CIM path to the class or instance that implements the method. This

parameter MUST NOT be NULL. The CIM path MUST contain the class name and the value of
the key properties.

strMethodName: MUST be th e name of the method to be executed. This parameter MUST NOT
be NULL.

lFlags: Specifies the behavior of the IWbemServices::ExecMethod method. Flag behavior

MUST be interpreted as specified in the following table.

Value Meaning

WBEM_FLAG_RETURN_IMMEDIATELY

0x00000010

If this bit is not set, the server MUST make the method call

synchronously.

If this bit is set, the server MUST make the method call

semisynchronously.

Any other DWORD value that does not match the preceding condition MUST be treated as
invalid.

pCtx: MUST be a pointer to an IWbemContext interface, which MUST contain additional
information that the clie nt wants to pass to the server. If pCtx is NULL, the parameter MUST
be ignored.

pInParams: MUST be a pointer to an IWbemClassObject interface pointer, which MUST
contain an instance of input parameter CI M class as defined in [MS -WMIO] (section 2.3.3),

with method parameter values set as properties. This parameter MUST be NULL when the
method has no input parameters.

ppOutParams: The output parame ter MUST be filled according to the state of the lFlags
parameter (whether WBEM_FLAG_RETURN_IMMEDIATELY is set) as listed in the following
table.

Flag state Success operation

Failure

operation

WBEM_FLAG_RETURN_IMMEDIATELY

is not set.

This parameter MUST NOT be NULL upon

input. If NULL, the server MUST return

WBEM_E_INVALID_PARAMETER. Upon

output, the parameter MUST contain an

IWbemClassObject interface pointer.

MUST be set

to NULL if

the input

parameter is

non -NULL.

WBEM_FLAG_RETURN_IMMEDIATELY

is set.

MUST return NULL. MUST be set

to NULL if

the input

parameter is

%5bMS-WMIO%5d.pdf
%5bMS-WMIO%5d.pdf

123 / 253

[MS -WMI] ð v20140502
 Windows Management Instrumentation Remote Protocol

 Copyright © 2014 Microsoft Corporation.

 Release: Thursday, May 15, 2014

Flag state Success operation

Failure

operation

non -NULL.

ppCallResult: In this situation, the output parameter MUST be filled according to the state of the
lFlags parameter (whether WBEM_FLAG_RETURN_IM MEDIATELY is set) as listed in the
following table.

Condition Success operation

Failure

operation

WBEM_FLAG_RETURN_IMMEDIATELY

is not set.

MUST be set to IWbemCallResult if

the ppCallResult input parame ter is non -

NULL.

MUST be set

to NULL if the

ppCallResult

input

parameter is

non -NULL.

WBEM_FLAG_RETURN_IMMEDIATELY

is set.

The ppCallResult parameter MUST NOT

be NULL upon input. If NULL, the server

MUST return

WBEM_E_INVALID_PARAMETER. Upon

output, the p arameter MUST contain the

IWbemCallResult interface pointer.

MUST be set

to NULL if the

ppCallResult

input

parameter is

non -NULL.

Return Values: This method MUST return an HRESULT, which MUST indicate the status of the
method call. HRESULT MUST have the type and values as specified in section 2.2.11 . The
server MUST return WBEM_S_NO_ERROR (specif ied in section 2.2.11) to indicate the

successful completion of the method.

WBEM_S_NO_ERROR (0x00)

The security principal that makes the call MUST have WBEM_METHOD_EXECUTE and
WBEM_REMOTE_ENABLE accesse s to the namespace; otherwise, WBEM_E_ACCESS_DENIED MUST
be returned.

In response to IWbemServices::ExecMethod , the server MUST evaluate the strObjectPath and

strMethodName parameters (as specified in this section) and MUST execute the method that is
ident ified by strMethodName and implemented by the CIM object that is referred to by
strObjectPath . The server MUST use the input parameters to the CIM method from the pInParams
parameter, which is an instance of the input parameter CIM class as defined in [MS -WMIO] (section
2.3.3). The server MUST execute the CIM method and send the output parameters as an instance of
the output parameter CIM class as defined in [MS -WMIO] (section 2.3.3). The method MUST fail if

the CIM object that is referred to by strObjectPath does not exist, if the method parameters are not
valid, as specified earlier in this section, or if the server is unable to execute the method.

If the strMethodName has "disable d" qualifier set to true, then the server MUST return

WBEM_E_METHOD_DISABLED. If the strMethodName is not implemented by the CIM class as
pointed by the strObjectPath , the server MUST return WBEM_E_METHOD_NOT_IMPLEMENTED.

The successful synchronous method execution MUST return the output parameters that are
encapsulated in an IWbemClassObject interface pointer in the ppObject parameter and MUST return

WBEM_S_NO_ERROR.

%5bMS-WMIO%5d.pdf
%5bMS-WMIO%5d.pdf

124 / 253

[MS -WMI] ð v20140502
 Windows Management Instrumentation Remote Protocol

 Copyright © 2014 Microsoft Corporation.

 Release: Thursday, May 15, 2014

The semisynchronous method execution MUST follow the rules that are specified in section
3.1.1.1.2 .

The failed method execution MUST set the output parameters to NULL and MUST return an error in
the format specified in section 2.2.11 .

3.1.4.3.23 IWbemServices::ExecMethodAsync (Opnum 25)

The IWbemServices::ExecMethodAsync method asynchronously executes a CIM method that is
implemented by a CIM class or a CIM instance that is retrieved from the IWbemServices interface.

HRESULT ExecMethodAsync(

 [in] const BSTR strObjectPath,

 [in] const BSTR strMethodName,

 [in] long lFlags,

 [in] IWbemContext* pCtx,

 [in] IWbemClassObject* pInParams,

 [in] IWbemObjectSink* pResponseHandler

);

strObjectPath: MUST be the CIM path to the class or instance that implements the method. This

parameter MUST NOT be NULL. The CIM path MUST contain the class name and the value of
the key properties.

strMethodName: MUST be the name of the method to be executed. This parameter MUST NOT
be NULL.

lFlags: Specifies the behavior of the ExecMethodAsync method. Flag behavior MUST be

interpreted as specified in the following table.

Value Meaning

WBEM_FLAG_SEND_STATUS

0x0000008 0

If this bit is not set, the server MUST make just one final

IWbemObjectSink::SetStatus call on the interface pointer that is

provided in the pResponseHandler parameter.

If this bit is set, the server M AY make intermediate

IWbemObjectSink::SetStatus calls on the interface pointer prior

to call completion.

Any other DWORD value that does not match the preceding condition MUST be treated as

invalid.

pCtx: MUST be a pointer to an IWbemContext interface, which MUST contain additional
information that the client wants to pass to the server. If pCtx is NULL, the parameter MUST
be ignored.

pInParams: MUST be a pointer to an IWbemClassObject interface pointer, which MUST
contain an instance of input parameter CIM class as defined in [MS -WMIO] (section 2.3.3),

with method param eter values set as properties. This parameter MUST be NULL when the

method has no input parameters.

pResponseHandler: MUST be a pointer to an IWbemObjectSink interface object that is
implemented by the client of this method. This parameter MUST NOT be NULL.

%5bMS-WMIO%5d.pdf
%5bMS-WMIO%5d.pdf

125 / 253

[MS -WMI] ð v20140502
 Windows Management Instrumentation Remote Protocol

 Copyright © 2014 Microsoft Corporation.

 Release: Thursday, May 15, 2014

Return Values: This method MUST return an HRESULT value that MUST indicate the status of
the method call. The server MUST return WBEM_S_NO_ERROR (as specif ied in section 2.2.11)

to indicate the successful completion of the method.

WBEM_S_NO_ERROR (0x00)

The following validation occurs before asynchronous operation is started.

The security principal that m akes the call MUST have WBEM_METHOD_EXECUTE,
WBEM_REMOTE_ENABLE, and WBEM_ENABLE accesses to the namespace; otherwise,
WBEM_E_ACCESS_DENIED MUST be returned.

Requirements mentioned in the parameter definitions are also checked before the asynchronous
oper ation is started.

If successful, the server MUST create a new entry in AsyncOperationTable as specified in section
3.1.1.1.3 .

The following validation happens asynchronously.

In response to IWbemServices ::ExecMethodAsync , the server MUST evaluate strObjectPath and
strMethodName (as specified in this section) and MUST execute the method that is identified by
strMethodName , implemented by the strObjectPath CIM object. The server MUST use the input

parameter s to the CIM method from the pInParams parameter, which is an instance of the input
parameter CIM class as defined in [MS -WMIO] (section 2.3.3). The server MUST execute the CIM
method and send the output parameters as an insta nce of the output parameter CIM class as
defined in [MS -WMIO] (section 2.3.3). The method MUST fail if the method parameters or their
combinations are not valid, as specified earlier in this section, or if the server is unable to execute
the method.

If the strMethodName has "disabled" qualifier set to true, then the server MUST return

WBEM_E_METHOD_DISABLED. If the strMethodName is not implemented by the CIM class as
pointed by the strObjectPath , the server MUST return WBEM_E_M ETHOD_NOT_IMPLEMENTED.

3.1.4.4 IEnumWbemClassObject Interface

The IEnumWbemClassObject interface MUST be used to return results from synchronous and
semisynchronous method calls, which can return multiple CIM objects as result. The interface MUST
be implemented by the server. The interface MUST be uniquely identified by UUID {027947e1 -d731 -

11ce -a357 -000000000001}.

Methods in RPC Opnum Order

Method Description

Reset Causes the server to reset the enumeration sequence to the beginning of the collection of

CIM objects.

Opnum: 3

Next Causes the server to get one or more CIM objects starting at the current position in an

enumeration, and to move the current position by the number of CIM objects in the uCount

parameter.

Opnum: 4

NextAsync Asynchronous version of the IEnumWbemClassObject::Next method.

%5bMS-WMIO%5d.pdf
%5bMS-WMIO%5d.pdf

126 / 253

[MS -WMI] ð v20140502
 Windows Management Instrumentation Remote Protocol

 Copyright © 2014 Microsoft Corporation.

 Release: Thursday, May 15, 2014

Method Description

Opnum: 5

Clone Causes the server to make a logical copy of the entire enumerator.

Opnum: 6

Skip Causes the server to move the current position in an enumeration ahead by a specified

number of CIM objects.

Opnum: 7

An IEnumWbemClassObject interface object MUST be returned by
IWbemServices::CreateClassEnum , IW bemServices::CreateInstanceEnum , or
IWbemServices::ExecQuery , IWbemServices::ExecNotificationQuery , as specified in
IWbemServices section 3.1.4.3.

The object that exports this interface MUST implement the IWbemFetchSmartEnum interface. The

IRemUnknown and IRemUnknown2 interfaces, as specified in [MS -DCOM] , MUST be used to

manage the interfaces exposed by the object.

Figure 6: IEnumWbemClassObject interface

3.1.4.4.1 IEnumWbemClassObject::Reset (Opnum 3)

When the IEnumWbemClassObject::Reset method is invoked, the server MUST reset the
enumeration sequence to the beginning of the collection of CIM objects.

HRESULT Reset();

This method has no parameters.

Return Values: This method MUST return an HRESULT value that MUST indicate the status of
the method call. The server MUST return WBEM_S_NO_ERROR (specified in section 2.2.11) to
indicate the successful c ompletion of the method. If the IEnumWbemClassObject::Reset
method is invoked on an enumerator that does not support reset capability, the server MUST
return WBEM_E_INVALID_OPERATION.

%5bMS-DCOM%5d.pdf
%5bMS-DCOM%5d.pdf
%5bMS-DCOM%5d.pdf

127 / 253

[MS -WMI] ð v20140502
 Windows Management Instrumentation Remote Protocol

 Copyright © 2014 Microsoft Corporation.

 Release: Thursday, May 15, 2014

WBEM_S_NO_ERROR (0x00)

The server MUST locate the entry in EnumWbemClas sObjectTable with
EnumWbemClassObjectPointer matching IEnumWbemClassObject .

The server MUST validate that the security principal that makes the call is the same as the
ClientSecurityContext of the SemiSi nkResultSetObject pointed to by the entry in the
EnumWbemClassObjectTable ; otherwise, WBEM_E_ACCESS_DENIED MUST be returned.

In response to the IEnumWbemClassObject::Reset method, the server MUST reset the status of
the enumeration (as specified in this se ction) if the enumerator is not created by using
WBEM_FLAG_FORWARD_ONLY by setting the CurrentIndex entry in EnumWbemClassObjectTable
to start the index of ResultArray .

If the enumerator is created by using WBEM_FLAG_FORWARD_ONLY, the server MUST return
WBEM_E_INVALID_OPERATION.

A successful method execution MUST return WBEM_S_NO_ERROR.

A failed method execution MUST return an error in the format that is specified in section 2.2.11 .

3.1.4.4.2 IEnumWbemClassObject::Next (Opnum 4)

When the IEnumWbemClassObject::Next method is invoked, the server MUST get zero or more
CIM objects starting at the current position in an enumeration. The server MUST also move the
current position by the number of CIM objects in the uCount parameter. When
IEnumWbemClassObject is created, the current position MUST be set on the first CIM object of
the collection. The order of the CIM objects that are stored in the enumerator is arbitrary.

HRESULT Next(

 [in] long lTimeout,

 [in] ULONG uCount,

 [out, size_is(uCount), length_is(*puReturned)]

 IWbemClassObject** apObjects,

 [out] ULONG* puReturned

);

lTimeout: MUST be the maximum amount of time, in milliseconds, that the

IEnumWbemClassObject::Next method call allows to pass before it times out. If the
constant WBEM_INFINITE (0xFFFFFFFF) is specifi ed, the call MUST wait until one or more CIM
objects are available. If the value 0x0 (WBEM_NO_WAIT) is specified, the call MUST return the

available CIM objects, if any, at the time the call is made, and MUST NOT wait for any more
objects.

uCount: MUST be the number of requested CIM objects to return.

apObjects: MUST be a pointer to an array of IWbemClassObject interface pointers. At entry,
this parameter MUST NOT be NULL. Upon return by the server, this parameter can be NULL if

a failure occurs or if there are no results.

puReturned: MUST be a pointer to a ULONG type that receives the number of CIM objects that

are returned. When sent by the client, this parameter MUST NOT be NULL. Upon return by the
serv er, this parameter value can be zero if a failure occurs or if there are no results.

128 / 253

[MS -WMI] ð v20140502
 Windows Management Instrumentation Remote Protocol

 Copyright © 2014 Microsoft Corporation.

 Release: Thursday, May 15, 2014

Return Values: This method MUST return an HRESULT value that MUST indicate the status of
the method call. The server MUST return WBEM_S_NO_ERROR (specified in section 2.2.11) to

indicate the successful completion of the method.

WBEM_S_NO_ERROR (0x00)

The server MUST locate the entry in EnumWbemClassObjectTable with
EnumWbemClassObjectPointer matching IEnumWbemClassObject .

The server MUST validate that the security principal that makes the call is the same as the
ClientSecurityContext of the SemiSinkResultSetObject pointed to by the entry in
EnumWbemClassObjectTable ; otherwise, WBEM_E_ACCESS_DENIED MUST be returned.

In res ponse to the IEnumWbemClassObject::Next method call, the server MUST evaluate the

uCount and lTimeout parameters (as specified in this section) and MUST return the requested
number of CIM objects, if any are available. The server MUST perform the operation within the time
allowed by lTimeout .

If the earlier semisynchronous operation is finished, and if the server does not have the requested
number of CIM objects, the server MUST return WBEM_S_FALSE with the available CIM objects;
otherwise, WBEM_S_NO_ERROR is returned with the requested number of CIM objects. The current

index position pointed to by the CurrentIndex entry in EnumWbemClassObjectTable MUST be
incremented with the number of CIM objects returned.

If the earlier semisynchronous operation is not finished and the server does not have the requested
number of CIM objects, the method MUST wait the amount of time in lTimeout for the operation to
finish or for the availability of the requested number of ob jects, whichever is earlier. The server
MUST fill the output parameters of the method as specified previously. If the number of the
remaining CIM objects to be given to the client is less than the number of requested CIM objects,

the server MUST return WBE M_S_TIMEDOUT; otherwise, WBEM_S_NO_ERROR is returned. The
current index position pointed to by the CurrentIndex entry in EnumWbemClassObjectTable
MUST be incremented with the number of CIM objects returned.

If the original semisynchronous operation fails, the server MUST return the error code that the
original method would have returned in its synchronous version.

The failed method execution MUST set the value that is referenced by the output parameters to
NULL and MUST return an error in the format that is specified in section 2.2.11 .

3.1.4.4.3 IEnumWbemClassObject::NextAsync (Opnum 5)

The IEnumWbemClassObject::NextAsync method is the asynchronous version of the
IEnumWbemClassObject::Next method. It provides controlled asynchronous retrieval of CIM
objects to a sink. The server MUST asynchronously get one or more CIM objects, starting at the
current position in an enumeration, and MUST move the current position by the number of CIM

objects . When IEnumWbemClassObject is created, the current position MUST be set on the first
CIM object of the collection. The order of the CIM objects that are stored in the enumerator is
arbitrary.

HRESULT NextAsync(

 [in] ULONG uCount,

 [in] IWbemObjectSink* pSink

);

129 / 253

[MS -WMI] ð v20140502
 Windows Management Instrumentation Remote Protocol

 Copyright © 2014 Microsoft Corporation.

 Release: Thursday, May 15, 2014

uCount: MUST be the number of CIM objects being requested.

pSink: MUST be a pointer to the IWbemObjectSink interface, which MUST represent t he sink
to receive the CIM object. As each batch of CIM objects is requested, they MUST be delivered
to the IWbemObjectSink::Indicate method to which pSink points (as specified in section

3.1.4.2.1) and MUST be followed by a final call to the IWbemObjectSink::SetStatus method
to which pSink points, as specified in section 3.1.4.2.2 . This parameter MUST NOT be NULL. In
error cases, indicated by the HRESULT return value, the supplied IWbemObjectSink
interface pointer MUST NOT be used by the server.

Return Values: This method MUST return an HRESULT valu e that MUST indicate the status of
the method call. The server MUST return WBEM_S_NO_ERROR (specified in section 2.2.11) to
indicate the successful completion of the method.

WBEM_S_NO_ERROR (0x00)

The s erver MUST locate the entry in EnumWbemClassObjectTable with

EnumWbemClassObjectPointer matching IEnumWbemClassObject .

The server MUST validate that the security principal that makes the call is the same as the
ClientSecurityContext of the SemiSinkResultSe tObject pointed to by the entry in the

EnumWbemClassObjectTable ; otherwise, WBEM_E_ACCESS_DENIED MUST be returned.

The server MUST serialize execution of the IEnumWbemClassObject::Next call and asynchronous
execution of the IEnumWbemClassObject::NextAsync call, the
IEnumWbemClassObject::Reset call, and the IEnumWbemClassObject::Clone call.

In response to IEnumWbemClassObject::NextAsync , the server MUST synchronously evaluate
the uCount parameter as specified in this section. If the uCount parameter value is zero, the server
MUST return WBEM_S_FALSE. If the uCount parameter value is greater than zero, the server MUST

add a record in SinkQueue of an entry in EnumWbemClassObjectTable for this operation. The
new record in SinkQueue will store a reference to pSink in WbemObjectSinkPointer and store
the requested count in RemainingRequestCount .

The failed method execution MUST return an error in the format sp ecified in section 2.2.11 .

If the method succeeds, the server MUST wait asynchronously until either the
SemiSinkResultSetObject contains RemainingRequestCount objects starting at CurrentIndex ,
or its Ope rationFinished flag is set to true, or the enumeration encounters an error. At that time:

Á If the enumeration encountered an error, the server MUST deliver the error to the client by

calling IWbemObjectSink::SetStatus .

Á If the enumeration finished with fewer than the requested number of objects, the server MUST

deliver them to the client by calling the IWbemObjectSink::Indicate method and then indicate
completion by calling IWbemObjectSink::SetStatus with status WBEM_S_FALSE.

Á Otherwise, the server MUST delive r RemainingRequestCount objects to the client by calling

the IWbemObjectSink::Indicate method and then indicate completion by calling

IWbemObjectSink::SetStatus with status WBEM_S_NO_ERROR.

The current index position pointed to by CurrentIndex in an entry of
EnumWbemClassObjectTable MUST be incremented by the number of CIM objects delivered to
the client.

Finally, the server MUST remove the entry from SinkQueue .

130 / 253

[MS -WMI] ð v20140502
 Windows Management Instrumentation Remote Protocol

 Copyright © 2014 Microsoft Corporation.

 Release: Thursday, May 15, 2014

3.1.4.4.4 IEnumWbemClassObject::Clone (Opnum 6)

The IEnumWbemClassObject::Clone method makes a logical copy of the entire enumerator. The
cloned enumerator MUST have the same current position as the source enumerator.

HRESULT Clone(

 [out] IEnumWbemClassObject** ppEnum

);

ppEnum: Upon return, MUST contain a pointer to an IEnumWbemClassObject interface CIM

object that is a logical copy of the entire enumerator that made the Clone me thod call,
retaining the current position in an enumeration. This parameter MUST NOT be NULL. When
returned by the server, this parameter can be NULL if a failure occurred or if there are no
results.

Return Values: This method MUST return an HRESULT value that MUST indicate the status of
the method call. The server MUST return WBEM_S_NO_ERROR (specified in section 2.2.11) to

indicate the successful completion of the method.

WBEM_S_NO_ERROR (0x00)

The ser ver MUST locate the entry in EnumWbemClassObjectTable with
EnumWbemClassObjectPointer matching the IEnumWbemClassObject .

The server MUST validate that the security principal that makes the call is the same as the
ClientSecurityContext of the SemiSinkResult SetObject pointed to by the entry in
EnumWbemClassObjectTable ; otherwise, WBEM_E_ACCESS_DENIED MUST be returned.

If the earlier semisynchronous operation is created by using WBEM_FLAG_FORWARD_ONLY, then
IEnumWbemClassObject::Clone is not supported and the server MUST return
WBEM_E_INVALID_OPERATION.

The server MUST serialize execution of IEnumWbemClassObject::Next call, asynchronous
callbacks related to IEnumWbemClassObject::NextAsync call,
IEnumWbemClassObject::Reset call, and IEnumWbemClassObject::Clone call.

As part of IEnumWbemClassObject::Clone , the server MUST create a new
IEnumWbemClassObject enumerator as follows. Create a new entry in the
EnumWbemClassObjectTable and store a reference to the newly created enumerator in
EnumWbemClassObjectPointer . The new entry in EnumWbemClassObjectTable will copy the

current pointer index value from the earlie r enumerator. The new entry ResultSetPointer will point
to SemiSinkResultSetObject that was created as part of an earlier semisynchronous operation
and increment the RefCount of SemiSinkResultSetObject by one.

The successful method execution MUST fill the ppEnum parameter with an
IEnumWbemClassObject interface pointer, as specified in section 3.1.4.4 , which MUST be a copy
of the source enumerator that retains the current position in an enumeration. The me thod MUST
return WBEM_S_NO_ERROR.

If the original semisynchronous operation fails, the server MUST return the error code that the
original method would have returned in its synchronous version.

The failed method execution MUST return an error in the format that is specified in section 2.2.11 .

131 / 253

[MS -WMI] ð v20140502
 Windows Management Instrumentation Remote Protocol

 Copyright © 2014 Microsoft Corporation.

 Release: Thursday, May 15, 2014

3.1.4.4.5 IEnumWbemClassObject::Skip (Opnum 7)

When the IEnumWbemClassObject::Skip method is invoked, the server MUST move the current
position in an enumeration ahead by a specified number of CIM objects.

The IEnumWbemClassObject::Skip method opnum equals 7.

HRESULT Skip(

 [in] long lTimeout,

 [in] ULONG nCount

);

lTimeout: MUST be the maximum amount of time, in milliseconds, that the call to Skip allows to

pass before it times out. If the constant WBEM_INFINITE (0xFFFFFFFF) is used, the Skip
meth od call waits until the operation succeeds.

nCount: MUST be the number of CIM objects to skip in the enumeration. If this parameter is

greater than the number of CIM objects that remain to enumerate, the call MUST skip to the

end of the enumeration, and WB EM_S_FALSE MUST be the returned value for the method.

Return Values: This method MUST return an HRESULT value that MUST indicate the status of
the method call. The server MUST return WBEM_S_NO_ERROR (specified in section 2.2.11) to
indicate the successful completion of the method.

WBEM_S_NO_ERROR (0x00)

The server MUST locate the entry in EnumWbemClassObjectTable with

EnumWbemClassObjectPointer matching IEnumWbemClassObject .

The server MUST validate that the security principal that makes the call is the same as the
ClientSecurityContext of the SemiSinkResultSetObject pointed to by the entry in
EnumWbemClassObjectTable ; otherwise, WBEM_E_ACCESS_DENIED MU ST be returned.

In response to the IEnumWbemClassObject::Skip method, the server MUST evaluate the uCount
and lTimeout parameters as specified in this section. The server MUST skip the requested number of

CIM objects from the result set. The server MUST co mplete the operation within the time allowed by
lTimeout . The requested number of CIM objects MUST start from the current index position. The
current index position in the enumeration MUST be incremented by the number of CIM objects
skipped.

If the earlier semisynchronous operation is finished and the server does not have the requested
number of CIM objects to skip, the server MUST return WBEM_S_FALSE by skipping the available
CIM objects; otherwise, the server MUST return WBEM_S_NO_ERROR by skipping the re quested

number of CIM objects. The current index position pointed to by the CurrentIndex entry in
EnumWbemClassObjectTable MUST be incremented with the number of CIM objects skipped.

If the earlier semisynchronous operation is not finished and the server d oes not have the requested
number of CIM objects to skip, this method MUST wait for lTimeout , or for the operation to finish, or

for availability of the requested number of objects, whichever is earliest. If the number of the
remaining CIM objects to be sk ipped is less than the number requested, the server MUST return
WBEM_S_TIMEDOUT; otherwise, the server MUST return WBEM_S_NO_ERROR. The current index

position pointed to by the CurrentIndex entry in EnumWbemClassObjectTable MUST be
incremented with the num ber of CIM objects skipped.

132 / 253

[MS -WMI] ð v20140502
 Windows Management Instrumentation Remote Protocol

 Copyright © 2014 Microsoft Corporation.

 Release: Thursday, May 15, 2014

If the original semisynchronous operation fails, the server MUST return the error code that the
original method would have returned in its synchronous version.

The failed method execution MUST return an error in the format that is specified in section 2.2.11 .

3.1.4.5 IWbemCallResult Interface

The IWbemCallResult interface MUST be used to return call results from semisynchronous calls
that return a single CIM object . The interface MUST be implemented by the server. The interface
MUST be uniquely identified by UUID {44aca675 -e8fc -11d0 -a07c -00c04fb68820}.

Methods in RPC Opnum Order

Method Description

GetResultObject Causes the server to attempt to retrieve a CIM object from a previous

semisynchronous call to the IWbemServices::GetObject method or

IWbemServices::E xecMethod method.

Opnum: 3

GetResultString Causes the server to return the assigned CIM path of a CIM instance that was created

by the IWbemServices: :PutInstance method.

Opnum: 4

GetResultServices Causes the server to retrieve a pointer to the IWbemServices interface that results

from a semisynchr onous call to the IWbemServices::OpenNamespace method.

Opnum: 5

GetCallStatus Causes the server to return the status of the current outstanding semisynchronous

call.

Opnum: 6

3.1.4.5.1 IWbemCallResult::GetResultObject (Opnum 3)

When the IWbemCallResult::GetResultObject method is called, the server MUST attempt to
retrieve a CIM object from a previous semisynchronous operation call to the
IWbemServices::GetObject method or the IWbemServices::ExecMethod method. The entry in

WbemCallResultTable with WbemCallResultPointer pointing to IWbemCallResult is used to
identify the previous semisynchronous call.

HRESULT GetResultObject(

 [in] long lTimeout,

 [out] IWbemClassObject** ppResultObject

);

lTimeout: MUST be the maximum amount of time, i n milliseconds, that the call to the

IWbemCallResult::GetResultObject method allows to pass before it times out. If the

constant WBEM_INFINITE (0xFFFFFFFF) is used, the GetResultObject method call MUST wait
until the operation succeeds. If this parameter i s set to 0 and the result object is available at

the time of the method call, the object MUST be returned in ppResultObject and
WBEM_S_NO_ERROR MUST also be returned. If this parameter is set to 0 but the result object
is not available at the time of the m ethod call, WBEM_S_TIMEDOUT MUST be returned.

133 / 253

[MS -WMI] ð v20140502
 Windows Management Instrumentation Remote Protocol

 Copyright © 2014 Microsoft Corporation.

 Release: Thursday, May 15, 2014

ppResultObject: A pointer to a variable that receives a logical copy of the CIM object when the
semisynchronous operation is complete. A new CIM object MUST NOT be returned on error.

When sent by the client, th is parameter value MUST NOT be NULL. Upon return by the server,
this parameter value can be NULL if there is a failure or if there are no results. The caller of

this method MUST call IWbemClassObject::Release on the returned object when the object is
no lo nger required.

Return Values: This method MUST return an HRESULT value that MUST indicate the status of
the method call. The server MUST return WBEM_S_NO_ERROR (specified in section 2.2.11) to
indicate t he successful completion of the method.

WBEM_S_NO_ERROR (0x00)

The server MUST locate the entry in WbemCallResultTable with WbemCallResultPointer
matching IWbemCallResult .

The IWbemCallResult::GetResultObject method MUST be called on the interface obtaine d in

responses to a previous call to a semisynchronous operation returning an IWbemCallResult
interface.

In response to the IWbemCallResult::GetResultObject method, the server MUST wait for the

operation to finish by waiting up to lTimeout for OperationFin ished to become TRUE for this
operation entry in WbemCallResultTable . If the operation is finished successfully in lTimeout time,
the server MUST return the CIM object in the ppResultObject parameter by making a logical copy of
ResultObject . If the operati on is not finished in lTimeout time, the server MUST return
WBEM_S_TIMEDOUT. The method MUST fail if the method parameters are not valid, as specified
earlier in this section, or if the server is unable to execute the method.

The successful method execution MUST fill ppResultObject with an IWbemClassObject interface

pointer and MUST return WBEM_S_NO_ERROR.

If the operation is not finished in lTimeout time, this method MUST se t the value referenced by the
output parameters to NULL and return WBEM_S_TIMEDOUT. The client is allowed to retry the

operation.

If the operation fails within lTimeout time, the server MUST set the value referenced by the output
parameters to NULL and ret urn the error code that the original method would have returned in its
synchronous version in the format specified in section 2.2.11 .

3.1.4.5.2 IWbemCallResult::GetResultString (Opnum 4)

When the IWbemCallResult::GetResultString method is called, the server MUST return the
assigned CIM path of a CIM instance that was created by the IWbemServices::PutInstance
method that returned IWbemCallResult in the ppCallResult parameter.

HRESULT GetResultString(

 [in] long lTimeout,

 [out] BSTR* pstrResultString

);

lTimeout: MUST be a maximum amount of time, in milliseconds, that the call to

GetResultString allows to pass before timing out. If the constant WBEM_INFINITE
(0xFFFFFFFF) is used, the GetResultString method call MUST wait until the operation
succeeds. This parameter MUST NOT be NULL .

134 / 253

[MS -WMI] ð v20140502
 Windows Management Instrumentation Remote Protocol

 Copyright © 2014 Microsoft Corporation.

 Release: Thursday, May 15, 2014

pstrResultString: MUST be a pointer to a BSTR value, which MUST contain the CIM path of the
CIM object instance, which MUST lead to the CIM instance that was created using

IWbemServices::PutInstance . In case of failure of the semisynchronous operation, t he
returned string MUST be NULL. When sent by the client, this pointer parameter MUST NOT be

NULL. If the original operation does not return a string, the returned string MUST be NULL.

Return Values: This method MUST return an HRESULT value that MUST indic ate the status of
the method call. The server MUST return WBEM_S_NO_ERROR (specified in section 2.2.11) to
indicate the successful completion of the method.

WBEM_S_NO_ERROR (0x00)

The server MUST locate the entry in WbemCallResultTable with WbemCallResultPointer

matching IWbemCallResult . The IWbemCallResult::GetResultString method MUST be called on
the interface obtained in responses to a previous call to a semisynchronous operation returning an
IWbemCal lResult interface.

IWbemCallResult::GetResultString MUST be called to obtain the CIM path created after
IWbemServices::PutInstance execution. In response to the
IWbemCallResult::GetResultString method, the server MUST wait for the operation to finish in

lTimeout time. The operation is finished when OperationFinished is TRUE. If the operation is not
finished in lTimeout time, the server MUST return WBEM_S_TIMEDOUT. If the operation is finished
successfully in lTimeout time, the server MUST make a copy of the ResultString in
WbemCallResultTable for this operation and return it in the pstrResultString parameter. The
method MUST fail if the method parameters are not valid, as specified earlier in this section, or if
the server is unable to execute the method. If the operation is finished successfully, and if
ResultString is set to NULL, the server MUST return WBEM_E_INVALID_OPERATION for this

method.

The successful method execution MUST fill pstrResultString with a string value of type BSTR and
MUST return WBEM_S _NO_ERROR.

The failed method execution sets the value referenced by the output parameters to NULL and MUST

return an error in the format specified in section 2.2.11 . In case the operation is not completed after
lTimeout milliseconds, the server MUST return WBEM_S_TIMEDOUT and MUST allow for further
retries to be made.

If the original semisynchronous operation fails, the IWbemCallResult::GetResultString method
MUST re turn the error code that the original method would have returned in its synchronous
version.

3.1.4.5.3 IWbemCallResult::GetResultServices (Opnum 5)

When the IWbemCallResult::GetResultServices method is called, the server MUST retrieve a

pointer to the IWbemServices interface that results from a semisynchronous call to the
IWbemServices::OpenNamespace method.

HRESULT GetResultServices(

 [in] long lTimeout,

 [out] IWbemServices** ppServices

);

135 / 253

[MS -WMI] ð v20140502
 Windows Management Instrumentation Remote Protocol

 Copyright © 2014 Microsoft Corporation.

 Release: Thursday, May 15, 2014

lTimeout: MUST be th e time, in milliseconds, that the call to GetResultServices allows to pass

before timing out. If the constant WBEM_INFINITE (0xFFFFFFFF) is used, the Skip method call

MUST wait until the operation succeeds.

ppServices: MUST be a pointer to the IWbemService s interface that is requested by the

original call to IWbemServices::OpenNamespace when that interface becomes available. If
the semisynchronous operation fails, the returned parameter MUST be NULL. When sent by
the client, this pointer parameter MUST NOT be NULL. If the original operation does not return
an interface pointer, the returned parameter MUST be NULL.

Return Values: This method MUST return an HRESULT value that MUST indicate the status of
the method call. The server MUST return WBEM_S_NO_ERROR (specified in section 2.2.11) to
indicate the successful completion of the method.

WBEM_S_NO_ERROR (0x00)

The server MUST locate the entry in WbemCallResultTable with WbemCallResultPointer matching

IWbemCallResult . The IWbemCallResult::GetResultServices method MUST be called on the
interface that is obtained in response to a previous call to a semisynchronous operation that returns
an IWbemCallResult in terface.

IWbemCallResult::GetResultServices MUST be called to obtain the IWbemServices interface
pointer that is returned by the IWbemServices::OpenNamespace execution. In response to the
IWbemCallResult::GetResultServices method, the server MUST wait for the operation to finish in
lTimeout time. The operation is finished when OperationFinished is TRUE. If the operation is not
finished in lTimeout time, the server MUST return WBEM_S_TIMEDOUT. If the operation is finished
successfully in lTimeout time, the s erver MUST return the IWbemServices interface pointer result
stored in ResultService of the operation in the ppServices parameter. The method MUST fail if the

method parameters are not valid, as specified earlier in this section, or if the server is unable to
execute the method.

The successful method execution MUST fill the ppServices parameter with an IWbemServices
interface pointer and MUST return WBEM_S_NO_ERROR.

The failed method execution sets the value that is referenced by the output parameters to NU LL and
MUST return an error in the format that is specified in section 2.2.11 . If the operation does not
complete within lTimeout milliseconds, the server MUST return WBEM_S_TIMEDOUT and MUST allow

for further retries to be made.

If the original semisynchronous operation fails, the IWbemCallResult::GetResultServices method
MUST return the error code that the original method would ha ve returned in its synchronous
version.

3.1.4.5.4 IWbemCallResult::GetCallStatus (Opnum 6)

When the IWbemCallResult::GetCallStatus method is invoked, the server MUST return the status
of the current outstanding semisynchronous call.

HRESULT GetCallStatus(

 [in] long lTimeout,

 [out] long* plStatus

);

136 / 253

[MS -WMI] ð v20140502
 Windows Management Instrumentation Remote Protocol

 Copyright © 2014 Microsoft Corporation.

 Release: Thursday, May 15, 2014

lTimeout: MUST be the maximum amount of time, in milliseconds, that the call to

GetCallStatus allows to pass before timing out. If the constant WBEM_INFINITE

(0xFFFFFFFF) is used, the Skip method call waits until the operation suc ceeds.

plStatus: MUST be the status of a call to an IWbemServices method if the

WBEM_S_NO_ERROR code is returned for this method. When sent by the client, this
parameter MUST NOT be NULL. Upon return by the server, this parameter can be NULL if
there is a failure or if there are no results.

Return Values: This method MUST return an HRESULT value that MUST indicate the status of
the method call. The server MUST return WBEM_S_NO_ERROR (specified in section 2.2.11) to
indicate the successful completion of the method.

WBEM_S_NO_ERROR (0x00)

The server MUST locate the entry in WbemCallResultTable with WbemCallResultPointer
matching IWbemCallResult .

The IWbemCallResult::GetCallStatus method MUST be called on the interface that is obtained in
response to a previous call to a semisynchronous operation that returns an IWbemCallResult
interface.

In response to a n IWbemCallResult::GetCallStatus method, the server MUST wait for the
operation to finish in lTimeout time. The operation is finished if OperationFinished becomes TRUE.
If the operation is not finished in lTimeout time, the server MUST return WBEM_S_TIMEDO UT. If the
operation is finished successfully in lTimeout time, the server MUST give the result of the
FinalResult operation in the plStatus parameter. The method MUST fail if the method parameters
are not valid, as specified earlier in this section, or if the server is unable to execute the method.

The successful method execution MUST fill plStatus with the operation status code of the

IWbemServices method operation and MUST return WBEM_S_NO_ERROR.

The failed method execution sets the value that is referen ced by the output parameters to NULL and

MUST return an error in the format that is specified in section 2.2.11 .

3.1.4.6 IWbemFetchSmartEnum Interface

The IWbemFetchSmartEnum interface (an [MS -DCOM] interface) is a helper interface used to
retrieve a network -optimized enumerator interface. The server MUST fail the

IRemUnknown::QueryInterface operation if the interface is not implemented by the server.

The IWbemFetchSmartEnum is a DCOM Remote Protocol interface. The interface MUST be
uniquely identified by the UUID {1C1C45EE -4395 -11d2 -B60B -00104B703EFD}.

Methods in RPC Opnum Order

Method Description

GetSmartEnum Retrieves an IWbemWCOSmartEnum interface, which is a network -optimized

enumerator interface.

Opnum: 3

%5bMS-DCOM%5d.pdf

137 / 253

[MS -WMI] ð v20140502
 Windows Management Instrumentation Remote Protocol

 Copyright © 2014 Microsoft Corporation.

 Release: Thursday, May 15, 2014

3.1.4.6.1 IWbemFetchSmartEnum::GetSmartEnum (Opnum 3)

The IWbemFetchSmartEnum::GetSmartEnum method retrieves an IWbemWCOSmartEnum
(section 3.1.4.7) interface, which is a network -optimized enumerator interface.

HRESULT GetSmartEnum(

 [out] IWbemWCOSmartEnum** ppSmartEnum

);

ppSmartEnum: MUST be a pointer to a network -optimized enumerator interface. This parameter

MUST NOT be NULL. Upon return by the server, this parameter can be NULL if there is a
failure or if there are no results.

Return Values: This method MUST return an HRESULT value that MUST indicate the status of
the method call. The server M UST return WBEM_S_NO_ERROR (specified in section 2.2.11) to

indicate the successful completion of the method.

WBEM_S_NO_ERROR (0x00)

The server MUST locate the associated IEnumWbemClassObject interface pointer in the
EnumWbemClassObjectTable , and validate that the security principal that makes the call is the
same as the ClientSecurityContext of the SemiSinkResultSetObject pointed to by the entry in
th e EnumWbemClassObjectTable ; otherwise, WBEM_E_ACCESS_DENIED MUST be returned.

In response to the IWbemFetchSmartEnum::GetSmartEnum method, the server MUST return an
IWbemWCOSmartEnum interface in the ppSmartEnum output parameter.

A successful execution MUS T return the IWbemWCOSmartEnum interface in the output parameter
and MUST return WBEM_S_NO_ERROR.

The failed method execution MUST set the output parameters to NULL and MUST return an error in
the format specified in section 2.2.11 .

3.1.4.7 IWbemWCOSmartEnum Interface

The server MUST implement the IWbemWCOSmartEnum interface if it implements
IWbemFetchSmartEnum::GetSmartEnum . The IWbemWCOSmartEnum interface is intended
to provide an alternate synchronous enumeration of CIM objects for IEnumWbemClassObject .

The interface MUST be uniquely identified by UUID {423EC01E -2E35 -11d2 -B604 -00104B703EFD}.

Methods in RPC Opnum Order

Method Description

Next Returns an array of IWbemClassObject interface pointers that are encoded by using the

ObjectArray structure for optimization purposes.

Opnum: 3

3.1.4.7.1 IWbemWCOSmartEnum::Next (Opnum 3)

The IWbemWCOSmartEnum::Next method MUST return an array of IWbemClassObject interface

pointers that are encoded by using the ObjectArray structure for optimization purposes. The array of

138 / 253

[MS -WMI] ð v20140502
 Windows Management Instrumentation Remote Protocol

 Copyright © 2014 Microsoft Corporation.

 Release: Thursday, May 15, 2014

objects that are returned in the ObjectArray structure MUST be identical to the array of CIM objects
that are returned by IEnumWbemClassObject::Next .

HRESULT Next(

 [in] REFGUID proxyGUID,

 [in] long lTimeout,

 [in] ULONG uCount,

 [out] ULONG* puReturned,

 [out] ULONG* pdwBuffSize,

 [out, size_is(,*pdwBuffSize)] byte** pBuffer

);

proxyGUI D: MUST be a client -generated GUID that MUST identify the client. This parameter

MUST NOT be NULL.

lTimeout: MUST be the maximum amount of time, in milliseconds, that the Next method call
allows to pass before it times out. If the constant WBEM_INFINITE (0 xFFFFFFFF) is used, the

Skip method call waits until the operation succeeds. This parameter MUST NOT be NULL.

uCount: MUST be the number of requested CIM objects. This parameter MUST NOT be NULL.

puReturned: MUST be a pointer to a ULONG value that MUST con tain the number of CIM objects
that are returned by the Next method. This parameter MUST NOT be NULL.

pdwBuffSize: MUST be a pointer to a ULONG value that MUST contain the buffer size, in bytes.
This parameter MUST NOT be NULL.

pBuffer: MUST be a pointer t o the byte array that MUST represent the packet. This parameter
MUST NOT be NULL. The byte array represents an array of CIM objects that are encoded by

using the ObjectArray format as specified in section 2.2.14 . When returned by the server, this
parameter can be NULL if a failure occurs or if there are no results to return.

Return Values: This method MUST return an HRESULT value that MUST indicate the status of

the method call. The server MUST return WBE M_S_NO_ERROR (specified in section 2.2.11) to
indicate the successful completion of the method.

If a failure occurs, the server MUST return an HRESULT whose S (severity) bi t is set as
specified in [MS -ERREF] section 2.1. The actual HRESULT value is implementation dependent.

WBEM_S_NO_ERROR (0x00)

The IWbemWCOSmartEnum::Next method MUST be called on an IWbemWCOSmartEnum
interface that is returned by a previous call to IWbemFetchSmartEnum::GetSmartEnum .

The server MUST locate the associated IEnumWbemCla ssObject interface pointer in the
EnumWbemClassObjectTable , and validate that the security principal that makes the call is the

same as the ClientSecurityContext of the SemiSinkResultSetObject pointed to by the entry in
the EnumWbemClassObjectTable ; otherw ise, WBEM_E_ACCESS_DENIED MUST be returned.

In response to IWbemWCOSmartEnum::Next , the server MUST evaluate the lTimeout parameter
(as specified in this section) and MUST evaluate the GUID in order to identify the client. The server
MUST return the maximu m number of CIM objects that are requested by uCount .

If the server is unable to return all the requested CIM objects in the requested amount of time, it
MUST return WBEM_S_TIMEDOUT. The requested number of CIM objects MUST start from the

%5bMS-ERREF%5d.pdf
%5bMS-ERREF%5d.pdf

139 / 253

[MS -WMI] ð v20140502
 Windows Management Instrumentation Remote Protocol

 Copyright © 2014 Microsoft Corporation.

 Release: Thursday, May 15, 2014

current index pos ition. The current index position in the enumeration MUST be incremented by the
number of returned CIM objects.

On success, the server MUST return data in the pBuffer by using an ObjectArray structure as
specified in section 2.2.14 .

The successful method execution MUST return WBEM_S_NO_ERROR. If the number of remaining
CIM objects to be retrieved is less than the number of requested CIM objects, the server MUST
return WBEM_S_FALSE. Regardless, the server MUST fill the output parameters of the method as
specified in section 2.2.14 .

3.1.4.8 IWbemLoginClientID Interface

This interface is not required for the protocol to work.

The interface MUST be uniquely identified by UUID {d4781cd6 -e5d3 -44df -ad94 -930efe48a887}.

Methods in RPC Opnum Order

Method Description

SetClientInfo Passes the client NETBIOS name and a unique client generated number to the server.

Opnum: 3

3.1.4.8.1 IWbemLoginClientID::SetClientInfo (Opnum 3)

The IWbemLoginClientID::SetClientInfo method MUST pass the client NETBIOS name and a
unique client -generated number to the server.

HRESULT SetClientInfo(

 [in, unique, string] LPWSTR wszClientMachine,

 [in] long lClientProcId,

 [in] long lReserved

);

wszClientMachine: MUST specify the client NETBIOS name. This parameter MUST NOT be

NULL.

lClientProcId: Specifies a client -generated number. The server MAY use this for logging
purposes. <56>

lReserved: This parameter is not used, and its value MUST be NULL.

Return Values: This method MUST return an HRESULT value that MUST indicate the status of
the method call. The server MUST return WBEM_S_NO_ERROR (specified in section 2.2.11) to
indicate the successful completion of the method.

In case of failure, the server MUST return an HRESULT whose S (severity) bit is set as

specified in [MS -ERREF] section 2.1. The actual HRESULT value is implementation dependent.

WBEM_S_NO_ERROR (0x00)

%5bMS-ERREF%5d.pdf
%5bMS-ERREF%5d.pdf

140 / 253

[MS -WMI] ð v20140502
 Windows Management Instrumentation Remote Protocol

 Copyright © 2014 Microsoft Corporation.

 Release: Thursday, May 15, 2014

3.1.4.9 IWbemLoginHelper Interface

The server MUST fail the IRemUnknown::QueryInterface operation if the interface is not
implemented by the server. This interface is not required for the protocol to work.

The interface MUST be uniquely identified by UUID {541679AB -2E5F-11d3 -B34E-00104BCC4B4A}.

Methods in RPC Opnum Order

Method Description

SetEvent Signals an event on the server with name that MUST be specified as a parameter of the

method.

Opnum: 3

3.1.4.9.1 IWbemLoginHelper::SetEvent (Opnum 3)

The IWbemLoginHelper::SetEvent MUST return WBEM_S_NO_ERROR. The SetEvent method
SHOULD NOT perform any action. <57>

The opnum of the SetEvent method equals 3.

HRESULT SetEvent(

 [in] LPCSTR sEventToSet

);

sEventToSet: MUST contain the name of the event to be signaled. This parameter MUST NOT be

NULL.

Return Values: This method MUST return an HRESULT value that MUST indicate the status of
the method call. The server MUST return WBEM_S_NO_ERROR (specified in section 2.2.11) to
indicate the successful completion of the method.

If the method fails, the server MUST return an HRESULT whose S (severity) bit is set as
specified in [MS -ERREF] section 2.1. The actual HRESULT value is implementation dependent.

WBEM_S_NO_ERROR (0x00)

3.1.4.10 IWbemBackupRestore Interface

The IWbemBackupRestore interface exposes methods that back up and restore the contents of
the CIM database. The interface MUST be implemented by the server to support backup/restore
scenarios. The interface MUST be uniquely identified by UUID {C49E32C7 -BC8B-11d2 -85D4 -

00105A1F8304}.

Methods in RPC Opnum Order

Method Description

Backup Causes the server to back up the contents of the CIM database.

Opnum: 3

Restore Causes the server to restore the contents of the CIM database.

%5bMS-ERREF%5d.pdf
%5bMS-ERREF%5d.pdf

141 / 253

[MS -WMI] ð v20140502
 Windows Management Instrumentation Remote Protocol

 Copyright © 2014 Microsoft Corporation.

 Release: Thursday, May 15, 2014

Method Description

Opnum: 4

The object e xporting this interface MUST also implement the IWbemBackupRestoreEx interface.
The IRemUnknown and IRemUnknown2 interfaces, as specified in [MS -DCOM] , MUST be used to
manage the interfaces exposed by the object. The object MUST be uniquely identified with CLSID
{C49E32C6 -BC8B-11D2 -85D4 -00105A1F8304}.

Figure 7: The IWbemBackupRes tore interface

3.1.4.10.1 IWbemBackupRestore::Backup (Opnum 3)

On the IWbemBackupRestore::Backup method invocation, the server MUST back up the contents
of the CIM database.

HRESULT Backup(

 [in, string] LPCWSTR strBackupToFile,

 [in] long lFlags

);

strBackupToFile: MUST be a UTF -16 string, which MUST contain the name of the file to which

the CIM database is backed up. This parameter MUST NOT <58> be NULL.

lFlags: This parameter is not used, and its value MUST be 0x0.

Return Va lues: This method MUST return an HRESULT value that MUST indicate the status of
the method call. The server MUST return WBEM_S_NO_ERROR (specified in section 2.2.11) to
ind icate the successful completion of the method.

In case of failure, the server MUST return an HRESULT whose S (severity) bit is set as
specified in [MS -ERREF] section 2.1. The actual HRESULT value is implementation dependent.

WBEM_S_NO_ERROR (0x00)

%5bMS-DCOM%5d.pdf
%5bMS-DCOM%5d.pdf
%5bMS-DCOM%5d.pdf
%5bMS-ERREF%5d.pdf
%5bMS-ERREF%5d.pdf

142 / 253

[MS -WMI] ð v20140502
 Windows Management Instrumentation Remote Protocol

 Copyright © 2014 Microsoft Corporation.

 Release: Thursday, May 15, 2014

The IWbemBackupRestore::Backup method MUST be called on the interface that is obtained
from the DCOM Remote Protocol activation of a CLSID_WbemBackupRestore interface, as specified

in this section.

In r esponse to the IWbemBackupRestore::Backup method, the server MUST set the

BackupInProgress flag to True. The server MUST back up the CIM database in a file that is
specified in the strBackupToFile parameter. The server SHOULD <59> ve rify that the security
principal making the call is allowed to back up the CIM database using implementation -specific
authorization policy. If the security principal is not authorized, the server MUST return
WBEM_E_ACCESS_DENIED.

The Backup operation MUST NOT impact the state of the incoming calls. After the Backup operation
is complete, the server MUST set the BackupInProgress flag to False.

3.1.4.10.2 IWbemBackupRestore::Restore (Opnum 4)

On the IWbemBackupRestore::Restore method invocation, the server MUST restore the contents
of the CIM database.

HRESULT Restore(

 [in, string] LPCWSTR strRestoreFromFile,

 [in] long lFlags

);

strRestoreFromFile: MUST be a UTF -16 string that MUST contain the name of the file from
which to restore the CIM database. This parameter MUST NOT <60> be NULL.

lFlags: Flags that affect the behavior of the Restore method. The flags' behavior MUST be
interpreted as specified in the following table.

Value Meaning

WBEM_FLAG_BACKUP_RESTORE_FORCE_SHUTDOWN

0x00000001

If the bit is not set and if there are any

active clients, the server MUST NOT

perform the restore.

If the bit is set, the server MUST shut

down any active clients before performing

the restore operation.

Return Values: This method MUST return an HRESULT value that MUST indicate the status of
the method call. The server MUST return WBEM_S_NO_ERR OR (specified in section 2.2.11) to
indicate the successful completion of the method.

If the WBEM_FLAG_BACKUP_RESTORE_FORCE_SHUTDOWN flag is not set, the server
MUST return WBEM_E_INVALID_PARAMETER.

In case of failure, the server MUST return an HRESULT whose S (severity) bit is set as
specified in [MS -ERREF] section 2.1. The actual HRESULT value is implementation dependent.

WBEM_S_NO_ERROR (0x00)

In response to the IWbe mBackupRestore::Restore method, the server MUST set the
RestoreInProgress flag to True. The server MUST go through each entry in
NamespaceConnectionTable and delete the corresponding NamespaceConnection object. The

%5bMS-DCOM%5d.pdf
%5bMS-ERREF%5d.pdf
%5bMS-ERREF%5d.pdf

143 / 253

[MS -WMI] ð v20140502
 Windows Management Instrumentation Remote Protocol

 Copyright © 2014 Microsoft Corporation.

 Release: Thursday, May 15, 2014

server MUST restore the CIM database from the file that is specified in the strRestoreFromFile
parameter. The server SHOULD <61> verify that the security principal making the call is allowed to

restore the CIM database using implementation -specific authorization policy. If the security principal
is not authorized, the server MUST return WBEM_E_ACCESS_DENIED.

The server MUST re - initialize the NamespaceConnectionTable with NamespaceConnection
objects after the CIM database restoration is complete.

After the Restore operation i s complete, the server MUST reset the RestoreInProgress flag to
False.

3.1.4.11 IWbemBackupRestoreEx Interface

The IWbemBackupRestoreEx interface extends the IWbemBackupRestore interface and

exposes methods that pause and resume the activity in the Windows Management Instrumentation
Remote Protocol. These methods are used to provide an alternative solution for backing up the
contents of the CIM database. The interface MUST be im plemented in order to support
backup/restore scenarios without stopping the server. The server SHOULD support this

interface. <62>

The IWbemBackupRestoreEx interface is a DCOM Remote Protocol interface (as specified in [MS -

DCOM]). The interface MUST be uniquely identified by UUID {A359DEC5 -E813 -4834 -8A2A -
BA7F1D777D76}.

Methods in RPC Opnum Order

Method Description

Pause Causes the server to lock the CIM database in a consistent state while it is copied.

Opnum: 5

Resume Causes the server to unlock the CIM database and resume operations.

Opnum: 6

3.1.4.11.1 IWbemBackupRestoreEx::Pause (Opnum 5)

On the IWbemBackupRestoreEx::Pause method invocation, the server MUST set the
IsServerPaused flag to True and MUST persist the CIM database in a consistent state.

HRESULT Pause();

This method has no parameters.

Return Values: This method MUST return an HRESULT value that MUST indicate the status of
the method call. The server MUST return WBEM_S_NO_ERROR (specified in section 2.2.11) to
indicate the successful completion of the method.

If Pause is called and the IsServerPaused flag is set to True, the server MUST return
WBEM_E_INVALID_OPERATION. In case of any other failure, the server MUST return an
HRESULT whose S (severity) bit is set as specified in [MS -ERREF] section 2.1. The actual

HRESULT value is implementation dependent.

WBEM_S_NO_ERROR (0x00)

%5bMS-DCOM%5d.pdf
%5bMS-DCOM%5d.pdf
%5bMS-DCOM%5d.pdf
%5bMS-ERREF%5d.pdf
%5bMS-ERREF%5d.pdf

144 / 253

[MS -WMI] ð v20140502
 Windows Management Instrumentation Remote Protocol

 Copyright © 2014 Microsoft Corporation.

 Release: Thursday, May 15, 2014

The IWbemBackupRestoreEx::Pause method MUST be called on the interface that is obtained
from the DCOM Remote Protocol activation of the CLSID_WbemBackupRestore interface, as

specified in this section.

The server MUST NOT reset the backup timer if Pause is called multiple times while the

IsServer Paused flag is set to True.

3.1.4.11.2 IWbemBackupRestoreEx::Resume (Opnum 6)

On the IWbemBackupRestoreEx::Resume method invocation, the server MUST set the
IsServerPaused flag to False.

HRESULT Resume();

This method has no parameters.

Return Values: This method MUST return an HRESULT value that MUST indicate the status of

the method call. The server MUST return a WBEM_S_NO_ERROR (specified in section 2.2.11)
to indicate the successful completion o f the method.

If Resume is called and the IsServerPaused flag is set to False, the server MUST return

WBEM_E_INVALID_OPERATION.

In case of any other failure, the server MUST return an HRESULT whose S (severity) bit is set
as specified in [MS -ERREF] section 2.1. The actual HRESULT value is implementation
dependent.

WBEM_S_NO_ERROR (0x00)

3.1.4.12 IWbemRefreshingServices Interface

The IWbemRefreshingServices interface SHOULD <63> be implemented by the server. This
interface (an [MS -DCOM] interface) provides methods that allow clients to get updates of numerous
objects in a single DCOM Remote Protocol method invocation; whereas the IWbemServices
interface provides methods that allow clie nts to get updates on a class or an instance.

The IWbemRefreshingServices interface requires multiple calls to set up the remote refresher;

however, after the remote refresher is set up, obtaining updates requires only a single call. The
IWbemRefreshingSer vices interface provides a faster CIM instance refreshing service when
updated data on CIM instances have to be retrieved multiple times.

This interface MUST be uniquely identified by UUID {2C9273E0 -1DC3 -11d3 -B364 -00105A1F8177}.

Methods in RPC Opnum Order

Method Description

AddObjectToRefresher Adds a CIM instance to the list of CIM objects to be refreshed.

Opnum: 3

AddObjectToRefresherByTemplate Add s a CIM instance that is identified by its CIM object instance, to

the list of CIM objects to be refreshed.

Opnum: 4

%5bMS-DCOM%5d.pdf
%5bMS-ERREF%5d.pdf
%5bMS-ERREF%5d.pdf
%5bMS-DCOM%5d.pdf

145 / 253

[MS -WMI] ð v20140502
 Windows Management Instrumentation Remote Protocol

 Copyright © 2014 Microsoft Corporation.

 Release: Thursday, May 15, 2014

Method Description

AddEnumToRefresher Adds all CIM instances of the CIM class name to the list of CIM

objects to be refreshed.

Opnum: 5

RemoveObjectFromRefresher Removes a CIM instance from the list of CIM instances to be

refreshed.

Opnum: 6

GetRemoteRefresher Retrieves an IWbemRemoteRefresherinterface pointer.

Opnum: 7

ReconnectRemoteRefresher Restores a set of CIM instances and enumerations to a server

refresher.

Opnum: 8

3.1.4.12.1 IWbemRefreshingServices::AddObjectToRefresher (Opnum 3)

The IWbemRefreshingServices::AddObjectToRefresher method MUST add a CIM instance,
which is identified by its CIM path, to the list of CIM instances that can be refreshed.

HRESULT AddObjectToRefresher(

 [in] _WBEM_REFRESHER_ID* pRefresherId,

 [in, string] LPCWSTR wszPath,

 [in] long lFlags,

 [in] IWbemContext* pContext,

 [in] DWORD dwClientRefrVersion,

 [out] _WBEM_REFRESH_INFO* pInfo,

 [out] DWORD* pdwSvrRefrVersion

);

pRefresherId: MUST be a pointer to the _WBEM_REFRESHER_ID structure, as specified in

section 2.2.21 , which identifies the client that is requesting refreshing services. This
parameter MUST NOT be NULL .

wszPath: MUST be a string that MUST contain the CIM path of the CIM instance. This parameter
MUST NOT be NULL.

lFlags: This parameter is not used, and its value SHOULD be 0x0.

pContext: MUST be a pointer to an IWbemContext interface object, which MUST contain
additional information for the server refresher. If pContext is NULL, the parameter MUST be
ignored.

dwClientRefrVersion: MUST be the version of the client refresher. This value SHOULD <64> be
0x2. The server MUST allow all client versions.

pInfo: MUST be an output parameter that MUST return a _WBEM_REFRESH_INFO structure,

as specified in section 2.2.20 , which MUST contain r efresher information about the CIM
instance in wszPath . It MUST NOT be NULL.

pdwSvrRefrVersion: MUST be an output parameter that MUST be the version of the server
refresher. The value of this parameter SHOULD be 0x1.

146 / 253

[MS -WMI] ð v20140502
 Windows Management Instrumentation Remote Protocol

 Copyright © 2014 Microsoft Corporation.

 Release: Thursday, May 15, 2014

Return Values: This method MUST return an HRESULT value that MUST indicate the status of
the method call. The server MUST return WBEM_S_NO_ERROR (specified in section 2.2.11) to

indicate the successful completion of the method.

WBEM_S_NO_ERRO R (0x00)

The security principal that makes the call MUST have WBEM_REMOTE_ENABLE and WBEM_ENABLE
accesses to the namespace; otherwise, WBEM_E_ACCESS_DENIED MUST be returned.

In response to IWbemRefreshingServices::AddObjectToRefresher , the server MUST eva luate
the CIM path to the CIM instance and MUST return information to the client to handle the specific
CIM instance as specified in this section.

A successful call to IWbemRefreshingServices::AddObjectToRefresher MUST return

WBEM_S_NO_ERROR and MUST fill the output _WBEM_REFRESH_INFO structure as specified in
section 2.2.20 .

The server MUST locate the InstanceProviderId for the instance in wszPath using the algo rithm in
section 3.1.4 . If InstanceProviderId is not empty and the provider's SupportsRefresher field is
TRUE, the server MUST return the _WBEM_REFRESH_INFO structure that has an m_lType that is
set to _ WBEM_REFRESH_INFO_REMOTE , otherwise returning one with m_lType set to

_WBEM_REFRESH_TYPE_NON_HIPERF .

If the server sets m_lType to _WBEM_REFRESH_INFO_REMOTE , the server MUST return an
IWbemRemoteRefresh er interface pointer in _WBEM_REFRESH_INFO_REMOTE that is part of
_WBEM_REFRESH_INFO .

If the server sets m_lType to _WBEM_REFRESH_TYPE_NON_HIPERF , the server MUST return a
_WBEM_REFRESH_INFO_NON_HIPERF structure as part of _WBEM_REFRESH_INFO .

In case of fa ilure, the server MUST fill in the _WBEM_REFRESH_INFO structure with 0x0, set its

m_lType member to WBEM_REFRESH_TYPE_INVALID, and return an HRESULT error in the format
that is specified in section 2.2.1 1.

3.1.4.12.2 IWbemRefreshingServices::AddObjectToRefresherByTemplate (Opnum

4)

The IWbemRefreshingServices::AddObjectToRefresherByTemplate method MUST add a CIM

instance, which is identified by its CIM object instance, to the list of CIM instances to be refreshed.

The AddObjectToRefresherByTemplate method opnum equals 4.

HRESULT AddObjectToRefresherByTemplate(

 [in] _WBEM_REFRESHER_ID* pRefresherId,

 [in] IWbemClassObject* pTemplate,

 [in] long lFlags,

 [in] IWbemContext* pContext,

 [in] DWORD dwClientRefrVersion,

 [out] _WBEM_REFRESH_INFO* pInfo,

 [out] DWORD* pdwSvrRefrVersion

);

pRefresherId: MUST be a pointer to the _WBEM_REFRESHER_ID structure, as specified in
section 2.2.21 , which ide ntifies the client that is requesting refreshing services. This

parameter MUST NOT be NULL.

147 / 253

[MS -WMI] ð v20140502
 Windows Management Instrumentation Remote Protocol

 Copyright © 2014 Microsoft Corporation.

 Release: Thursday, May 15, 2014

pTemplate: MUST be a pointer to an IWbemClassObject interface CIM instance that MUST be
a template for the CIM instances to be refreshed by the refresher. This parameter MUST NOT

be NULL.

lFlags: This parameter is not used, and its value SHOULD be 0x0.

pContext: MUST be a pointer to an IWbemContext interface obje ct, which MUST contain
additional information for the server refresher. If pContext is NULL, the parameter MUST be
ignored.

dwClientRefrVersion: MUST be the version of the client refresher. This value SHOULD <65> be
0x2. The server M UST allow all client versions.

pInfo: MUST be an output parameter that returns a _WBEM_REFRESH_INFO structure, as
specified in section 2.2.20 , which MUST contain refresher information about the CIM insta nce

in wszPath . This parameter MUST NOT be NULL.

pdwSvrRefrVersion: MUST be an output parameter that MUST be the version of the server

refresher. The value of this parameter SHOULD be 0x1.

Return Values: This method MUST return an HRESULT value that MUST i ndicate the status of
the method call. The server MUST return WBEM_S_NO_ERROR (specified in section 2.2.11) to
indicate the successful completion of the method.

WBEM_S_NO_ERROR (0x00)

The security princ ipal that makes the call MUST have WBEM_REMOTE_ENABLE and WBEM_ENABLE
accesses to the namespace; otherwise, WBEM_E_ACCESS_DENIED MUST be returned.

In response to IWbemRefreshingServices::AddObjectToRefresherByTemplate , the server
MUST evaluate the pTemplate parameter that defines the CIM instance, and it MUST return
information to the client to handle the specific CIM instance as specified in this section.

A successful call to IWbemRefreshingServices::AddObjectToRefresherByTemplate MUST
return WBEM_ S_NO_ERROR and MUST fill the output _WBEM_REFRESH_INFO structure, as specified
in this section.

The server MUST locate the InstanceProviderId for the instance in wszPath using the algorithm in
section 3. 1.4 . If InstanceProviderId is not empty and the provider's SupportsRefresher field is
TRUE, the server MUST return the _WBEM_REFRESH_INFO structure that has an m_lType set to
_WBEM_REFRESH_INFO_REMOTE , otherwise returning one with m_lType set to

__WBEM_REF RESH_TYPE_NON_HIPERF .

If the server sets m_lType to _WBEM_REFRESH_INFO_REMOTE , the server MUST return an
IWbemRemoteRefresher interface pointer in _WBEM_REFRESH_INFO_REMOTE that is part of
_WBEM_REFRESH_ INFO .

If the server sets m_lType to _WBEM_REFRESH_TYPE_NON_HIPERF , the server MUST return
the _WBEM_REFRESH_TYPE_NON_HIPERF structure as part of _WBEM_REFRESH_INFO .

In case of failure, the server MUST fill in the _WBEM_REFRESH_INFO parameter with 0x0, set its
m_lType member to WBEM_REFRESH_TYPE_INVALID, and return an error in the format that is
specified in section 2.2.11 .

148 / 253

[MS -WMI] ð v20140502
 Windows Management Instrumentation Remote Protocol

 Copyright © 2014 Microsoft Corporation.

 Release: Thursday, May 15, 2014

3.1.4.12.3 IWbemRefreshingServices::AddEnumToRefresher (Opnum 5)

The IWbemRefreshingServices::AddEnumToRefresher method MUST add all CIM instances that
are identified by the CIM class name to the list of CIM instances to be refreshed.

HRESULT AddEnumToRefresher(

 [in] _WBEM_REFRESHER_ID* pRefresherId,

 [in, string] LPCWSTR wszClass,

 [in] long lFlags,

 [in] IWbemContext* pContext,

 [in] DWORD dwClientRefrVersion,

 [out] _WBEM_REFRESH_INFO* pInfo,

 [out] DWORD* pdwSvrRefrVersion

) ;

pRefresherId: MUST be a pointer to the _WBEM_REFRESHER_ID structure, as specified in

section 2.2.21 , which identifies the client that is requesting refreshing services. This

parameter MUST NOT be NULL.

wszClass: MUST be a string that MUST contain the enumeration CIM class name. This parameter

MUST NOT be NULL.

lFlags: This parameter is not used, and its value SHOULD be 0x0.

pContext: MUST be a pointer to an IWbemContext interface object, which MUST contain
additional information for the server refresher. If pContext is NULL, the parameter is ignored.

dwClientRefrVersion: MUST be the version of the client refresher. This value SHOULD <66> be
0x2. The server MUST allow all client versions.

pInfo: MUST be an output parameter that returns a _WBEM_REFRESH_INFO structure, as

specified in section 2.2.20 , which MUST contain refresher i nformation about the CIM instance
in wszPath . This parameter MUST NOT be NULL.

pdwSvrRefrVersion: MUST be an output parameter, which MUST be the version of the server
refresher. The value of this parameter SHOULD be 0x1.

Return Values: This method MUST ret urn an HRESULT value that MUST indicate the status of
the method call. The server MUST return WBEM_S_NO_ERROR (specified in section 2.2.11) to
indicate the successful completion of the method.

WBEM_S_NO_ ERROR (0x00)

The security principal that makes the call MUST have WBEM_REMOTE_ENABLE and WBEM_ENABLE
accesses to the namespace; otherwise, WBEM_E_ACCESS_DENIED MUST be returned.

In response to IWbemRefreshingServices::AddEnumToRefresher , the server MUST e valuate
the wszClass parameter, and it MUST return information to the client so that the server knows how

to handle the specific class as specified in this section.

This method MUST add all instances of a class, instead of a single instance of a class, as is the case
for the IWbemRefreshingServices::AddObjectToRefresher and
IWbemRefreshingServices::AddObjectToRefresherByTemplate methods.

149 / 253

[MS -WMI] ð v20140502
 Windows Management Instrumentation Remote Protocol

 Copyright © 2014 Microsoft Corporation.

 Release: Thursday, May 15, 2014

A successful call to IWbemRefreshingServices::AddEnumToRefresher MUST return
WBEM_S_NO_ERROR and MUST fill the output _WBEM_REFRESH_INFO structure as specified in

section 2.2.20 .

The server MUST locate t he InstanceProviderId for the class in wszPath using the algorithm in

section 3.1.4 . If InstanceProviderId is not empty and the provider's SupportsRefresher field is
TRUE, the server MUST return the _WBE M_REFRESH_INFO structure that has an m_lType that is
set to _WBEM_REFRESH_INFO_REMOTE , otherwise returning one with m_lType set to
_WBEM_REFRESH_TYPE_NON_HIPERF .

If the server sets m_lType to _WBEM_REFRESH_INFO_REMOTE , the server MUST return an
IWbemRemoteRefresher interface pointer in _WBEM_REFRESH_INFO_REMOTE that is part of
_WBEM_REFRESH_INFO .

If the server sets m_lType to _WBEM_REFRESH_TYPE_NON_HIPERF , the server MUST return
the _WBEM_REFRESH_TYPE_NON _HIPERF structure as part of _WBEM_REFRESH_INFO .

In case of failure, the server MUST fill in the _WBEM_REFRESH_INFO structure with 0x0, set

m_lType to WBEM_REFRESH_TYPE_INVALID, and return an error in the format that is specified in
section 2.2.11 .

3.1.4.12.4 IWbemRefreshingServices::RemoveObjectFromRefresher (Opnum 6)

The IWbemRefreshingServices::RemoveObjectFromRefresher method MUST remove a CIM
instance, which is identified by its CIM path, from the list of CIM instances that can be refreshed.

HRESULT RemoveObjectFromRefresher(

 [in] _WBEM_REFRESHER_ID* pRefresherId,

 [in] long lId,

 [in] long lFlags,

 [in] DWORD dwClientRefrVersion,

 [out] DWORD* pdwSvrRefrVersion

);

pRefresherId: MUST be a pointer to the _WBEM_REFRESHER_ID structure, as s pecified in

section 2.2.21 , that identifies the client that is requesting refreshing services. This parameter
MUST NOT be NULL.

lId: This parameter MUST be an identifier to the object that is being remov ed. This parameter
MUST NOT be NULL.

lFlags: This parameter is not used, and its value SHOULD be 0x0.

dwClientRefrVersion: MUST be the version of the client refresher. This value SHOULD <67> be
0x2. The server MUST allow all client v ersions.

pdwSvrRefrVersion: MUST be an output parameter, which MUST be the version of the server
refresher. This value SHOULD be 0x1.

Return Values: This method MUST return an HRESULT value that MUST indicate the status of
the method call. If there are no failures, the server MUST always return
WBEM_E_NOT_AVAILABLE. <68>

WBEM_E_NOT_AVAILABLE (0x80041009)

%5bMS-DTYP%5d.pdf

150 / 253

[MS -WMI] ð v20140502
 Windows Management Instrumentation Remote Protocol

 Copyright © 2014 Microsoft Corporation.

 Release: Thursday, May 15, 2014

In response to IWbemRefreshingServices::RemoveObjectFromRefresher , the server MUST set
pdwSvrRefrVers ion to 0x1 and return WBEM_E_NOT_AVAILABLE.

In case of failure, the server MUST set pdwSvrRefrVersion to 1 and MUST return an error in the
format specified in section 2.2.11 .

3.1.4.12.5 IWbemRefreshingServices::GetRemoteRefresher (Opnum 7)

The IWbemRefreshingServices::GetRemoteRefresher method MUST return an
IWbemRemoteRefresher interface pointer . This pointer is needed by the client to refresh objects
and enumerations.

HRESULT GetRemoteRefresher(

 [in] _WBEM_REFRESHER_ID* pRefresherId,

 [in] long lFlags,

 [in] DWORD dwClientRefrVersion,

 [out] IWbemRemoteRefresher** ppRemRefresher,

 [out] GU ID* pGuid,

 [out] DWORD* pdwSvrRefrVersion

);

pRefresherId: MUST be a pointer to the _WBEM_REFRESHER_ID structure, as specified in

section 2.2.21 , that identifies the client that is requesting refreshin g services. This parameter
MUST NOT be NULL.

lFlags: This parameter is not used, and its value SHOULD be 0x0.

dwClientRefrVersion: MUST be the version of the client refresher. This value SHOULD <69> be

0x2. The server MUST allow all client versions.

ppRemRefresher: MUST be a pointer to an IWbemRemoteRefresher interface pointer that
the client can use to call the IWbemRemoteRefresher::RemoteRefresh method to refresh
CIM instances and enumerations. This parameter MUST NOT be NULL.

pGuid: MUST be an output parameter that MUST be a pointer to a GUID value that MUST identify
the returned refresher object. This parameter MUST NOT be NULL.

pdwSvrRefrVersion: MUST be an output parameter that MUST be the version of the server

refresher. The value of this parameter SHOULD be 0x1.

Return Values: This method MUST return an HRESULT value that MUST indicate the status of
the method call. The server MUST return WBEM_S_ NO_ERROR (specified in section 2.2.11) to
indicate the successful completion of the method.

In case of failure, the server MUST return an HRESULT whose S (severity) bit is set as
specified in [MS -ERREF] section 2.1. The actual HRESULT value is implementation dependent.

WBEM_S_NO_ERROR (0x00)

The security principal that makes the call MUST have WBEM_REMOTE_ENABLE and WBEM_ENABLE
accesses to the namespace; otherwise, WBEM_E_A CCESS_DENIED MUST be returned.

The IWbemRefreshingServices::GetRemoteRefresher method evaluates the pRefresherID
parameter and MUST return an IWbemRemoteRefresher interface pointer and a GUID that is
randomly generated by the server in order to identify this interface pointer. The

%5bMS-ERREF%5d.pdf
%5bMS-ERREF%5d.pdf

151 / 253

[MS -WMI] ð v20140502
 Windows Management Instrumentation Remote Protocol

 Copyright © 2014 Microsoft Corporation.

 Release: Thursday, May 15, 2014

IWbemRefreshingServices interface pointer MUST have the same value as the one initi ally
returned by the IWbemRefreshingServices::AddObjectToRefresher ,

IWbemRefreshingServices::AddObjectToRefresherByTemplate , or
IWbemRefreshingServices::AddEnumToRefresher method.

A successful call to IWbemRefreshingServices::GetRemoteRefresher MUST return
WBEM_S_NO_ERROR and fill the ppRemRefresher and pGuid fields. The pdwSvrRefrVersion
field is res erved for future use and MUST be set to 0x1.

The returned IWbemRemoteRefresher interface MUST be used in calls to the
IWbemRemoteRefresher::RemoteRefresh and IWbemRemoteRefresher::StopRefreshing
methods.

3.1.4.12.6 IWbemRefreshingServices::ReconnectRemoteRefresher (Opnum 8)

The IWbemRefreshingServices::ReconnectRemoteRefresher method MUST restore a set of
CIM instances and enumerations that are passed in apReconnectInfo to a refresher.

HRESULT ReconnectRemoteRefresher(

 [in] _WBEM_REFRESHER_ID* pRefresherId,

 [in] long lFlags,

 [in] long lNumObjects,

 [in] DWORD dwClientRefrVersion,

 [in, size_is(lNumObjects)] _WBEM_RECONNECT_INFO* apReconnectInfo,

 [in, out, size_is(lNumObjects)]

 _WBEM_RECONNECT_RESULTS* apReconnectResults,

 [out] DWORD* pdwSvrRefrVersion

);

pRefresherId: MUST be a pointer to the _WBEM_REFRESHER_ID structure, as specified in
section 2.2.21 , which identifies the client that is requesting refresh services. This parameter

MUST NOT be NULL.

lFlags: This parameter is not used, and its value SHOULD be 0x0.

lNumObjects: MUST be the number of CIM instances that are contained in the apReconnectInfo
array.

dwClientRef rVersion: MUST be the version of the client refresher. This value SHOULD <70> be
0x2. The server MUST allow all client versions.

apReconnectInfo: MUST be a pointer to the _WBEM_RECONNECT_INFO structure array

(specified in section 2.2.22) that contains a type and a CIM path to the refresher objects. This
parameter MUST NOT be NULL.

apReconnectResults: MUST be a pointer to the _WBEM_RECONNECT_RESULTS structure array,
which MUST contai n the identifier for each CIM instance and enumeration, and the success or
failure status of the reconnection. This parameter MUST NOT be NULL.

pdwSvrRefrVersion: MUST be an output parameter that is the version of the server refresher.

This value SHOULD be 0x1.

Return Values: This method MUST return an HRESULT value that MUST indicate the status of
the method call. The server MUST return WBEM_S_NO_ERROR, as specified in section 2.2.11 ,
to indicate the suc cessful completion of the method.

152 / 253

[MS -WMI] ð v20140502
 Windows Management Instrumentation Remote Protocol

 Copyright © 2014 Microsoft Corporation.

 Release: Thursday, May 15, 2014

WBEM_S_NO_ERROR (0x00)

The security principal that makes the call MUST have WBEM_REMOTE_ENABLE and WBEM_ENABLE
accesses to the namespace; otherwise, WBEM_E_ACCESS_DENIED MUST be returned.

The description of IWbemRefreshingServices is specified in IWbemRefreshingServices
Interface .

In response to IWbemRefreshingServices::ReconnectRemoteRefresher , the server MUST
evaluate the pRefresherId and apReconnectInfo arrays; and MUST reconnect to the refresher the
requested CIM objects and enumerators that are listed in apReconnectInfo , as specified in this
section.

If one of the CIM objects cannot be reconnected, the apReconnectResults element that corresponds

to apReconnectInfo MUST be set with an HRESULT return code.

A successful call to IWbemRefreshingServices::ReconnectRemoteRefresher MUST return

WBEM_S_NO_ERROR and MUST fill the reconnection status in the apReconnectResults array.

In case of failure, the server M UST return an HRESULT value that indicates the status of the method
call. If the failure is due to a class that no longer exists, the server MUST return a
WBEM_E_INVALID_CLASS HRESULT value. If the failure is due to an instance that no longer

exists, the s erver MUST return a WBEM_E_NOT_FOUND HRESULT value.

Each array element MUST contain a refresher CIM object identifier (the m_lId member of
_WBEM_RECONNECT_RESULTS) that can be used to cancel the object. The m_lId member MUST be
a unique identifier for the refresher object that is used to cancel the refreshing object when the
refresher object is using IWbemRemoteRefresher::StopRefreshing .

3.1.4.13 IWbemRemoteRefresher Interface

The IWbemRemoteRefresher interface (an [MS -DCOM] interface) SHOULD <71> be implemented
by the server. The interface MUST be uniquely identified by UUID {F1E9C5B2 -F59B -11d2 -B362 -

00105A1F8177}.

Methods in RPC Opnum Order

Method Description

RemoteRefresh Retrieves the updated set of CIM instances and enumerations configured by

an IWbemRefreshingServices interface pointer.

Opnum: 3

StopRefreshing Removes a set of CIM instance and enumerations configured by

IWbemRefreshingServices interface pointer.

Opnum: 4

Opnum5NotUsedOnWire This method is reserved for local use and is not used remotely.

Opnum: 5

%5bMS-DCOM%5d.pdf

153 / 253

[MS -WMI] ð v20140502
 Windows Management Instrumentation Remote Protocol

 Copyright © 2014 Microsoft Corporation.

 Release: Thursday, May 15, 2014

3.1.4.13.1 IWbemRemoteRefresher::RemoteRefresh (Opnum 3)

The IWbemRemoteRefresher::RemoteRefresh method MUST return the updated collection of
CIM instances and enumerations previously configured by the IWbemRefreshingServices

interface pointer.

HRESULT RemoteRefresh(

 [in] long lFlags,

 [out] long* plNumObjects,

 [out, size_is(,*plNumObjects)]

 WBEM_REFRESHED_OBJECT** paObjects

);

lFlags: This par ameter is not used, and its value MUST be 0x0.

plNumObjects: If successful, plNumObjects MUST be a pointer to the number of CIM instances
and enumerations that the method returns. It MUST NOT be NULL.

If the method fails, the server MUST set plNumObjects to NULL.

paObjects: If successful, paObjects MUST be a pointer to an array of
WBEM_REFRESHED_OBJECT objects specified in section 2.2.15 . The array MUST contain CIM
instances and enumerations. It MUST NOT be NULL.

If the method fails, the server MUST set paObjects to NULL.

Return Values: This method MUST return an HRESULT value that MUST indicate the status of
the method call.

The server MUST return WBEM_S_NO_ERROR (specified in section 2.2.11) to indicate the
successful completion of the method.

WBEM_S_NO_ERROR (0x00)

The IWbemRemoteRefresher::RemoteRefresh method MUST be called on the
IWbemRemoteRef resher interface pointer returned as a member of the _WBEM_REFRESH_INFO
structure from IWbemRefreshingServices methods or on the interface returned by
IWbemRefreshingServices::GetRemoteRefresher method i nvocation.

In response to IWbemRemoteRefresher::RemoteRefresh method, the server MUST read the
current values of all the CIM objects previously added to the set of refreshing objects using

IWbemRefreshingServices methods. The updated values for all CIM obj ects MUST be encoded
into the output parameter using the format specified in this section.

3.1.4.13.2 IWbemRemoteRefresher::StopRefreshing (Opnum 4)

The IWbemRemoteRefresher::StopRefreshing method MUST remove a set of CIM instances or
enumerations from the collection previously configured by the IWbemRefreshingServices

interface pointer.

HRESULT StopRefreshing(

 [in] long lNumIds,

 [in, size_is(lNumIds)] long* aplIds,

 [in] long lFlags

154 / 253

[MS -WMI] ð v20140502
 Windows Management Instrumentation Remote Protocol

 Copyright © 2014 Microsoft Corporation.

 Release: Thursday, May 15, 2014

);

lNumIds: MUST be the number of identifiers in the array of object identifiers in the aplIds

parameter.

aplIds: MUST be an array of object identifiers that MUST identify the CIM instances and
enumerations to stop refreshing. The object identifier is the m_lCancelId member from the
_WBEM_REFRESH_INFO structure th at is specified in section 2.2.20 and MUST be obtained
from a previous call to the IWbemRefreshingServices::AddObjectToRefresher ,
IWbemRefreshingServices::AddObjectToRefresherByTemplate , or

IWbemRefreshingServices::AddEnumToRefresher method specified in section 3.1.4.12 .

lFlags: This parameter is not used, and its value MUST be 0x0.

Return Values: This method MUST return an HRESULT value that MUST indicate the status of
the method call. In case of success, the server MUST return WBEM_S_NO_ERROR (as
specified in section 2.2.11) to indicate the successful completion of the method.

WBEM_S_NO_ERROR (0x00)

The IWbemRemoteRefresher::StopRefreshing method MUST be called on the
IWbemRemoteRefresher interface pointer that is returned as a member of the
_WBEM_REFRESH_INFO structure from the methods of the IWbemRefreshingServices interface
or on the interface that is returned by the IWbemRefreshingServices::GetRemoteRefresher
method invocation.

In response to the IWbemRemoteRefresher::StopRefreshing method, the server MUST remove

a list of CIM objects that were previously added to the set of refreshing ob jects using the
IWbemRefreshingServices methods. The CIM objects MUST be identified by their identifier, the
m_lCancelId member of the _WBEM_REFRESH_INFO structure that is returned by a previous
IWbemRefreshingServices::AddObjectToRefresher ,
IWbemRefreshingServices::AddObjectToRefresherByTemplate , or

IWbemRefreshingServices::AddEnumToRefresher call.

In case of failure the server MUST return an error in the format specified in section 2.2.11 .

3.1.4.13.3 IWbemRemoteRefresher::Opnum5NotUsedOnWire (Opnum 5)

The IWbemRemoteRefresher::Opnum5NotUsedOnWire method MUST return a random GUID
that identifies the server object that receives the call.

HRESULT Opnum5NotUsedOnWire(

 [in] long lFlags,

 [out] GUID* pGuid

);

lFlags: This parameter is not used, and its value MUST be 0x0.

pGuid: MUST be an output parameter, which MUST be a pointer to a GUID value that MUST

identify the server object. This parameter MUST NOT be NULL.<72>

Return Values: This method MUST return an HRESULT value that MUST indicate the status of
the method call. The server MUST return WBEM_S_NO_ERROR (specified in section 2.2.11) to
indicate the successful completion of the method.

%5bMS-DTYP%5d.pdf
%5bMS-ERREF%5d.pdf

155 / 253

[MS -WMI] ð v20140502
 Windows Management Instrumentation Remote Protocol

 Copyright © 2014 Microsoft Corporation.

 Release: Thursday, May 15, 2014

In case of failure, the server MUST return an HRESULT whose S (severity) bit is set as
specified in [MS -ERREF] section 2.1. The actual HRESULT value is implementation dependent.

3.1.4.14 IWbemShutdown Interface

The IwbemShutdown interface allows the server to notify its subsystems of an impending
shutdown. The interface MUST be uniquely identified by the UUID {F309AD18 -D86A -11d0 -A075 -
00C04FB68820}.

Methods in RPC Opnum Order

Method Description

Shutdown The objects that export this interface MUST be uniquely identified with the CLSID

{73E709EA -5D93 -4B2E -BBB0-99B7938DA9E4} or CLSID {1F87137D -0E7C-44d5 -8C73 -

4EFFB68962F2}.

Opnu m: 3

Figure 8: The IWbemShutdown interface

3.1.4.14.1 IWbemShutdown::Shutdown (Opnum 3)

The IWbemShutdown::Shutdown method does not perform any action when called by a remote
client.

HRESULT Shutdown(

 [in] long reserved1,

 [in] ulong reserved2,

 [in] IWbemContext* Reserved3

);

reserved1: MUST be set to 0 when sent and MUST be ignored on receipt.

reserved2: MUST be set to 0 when sent and MUST be ignored on receipt.

Reserved3: MUST be set to NULL when sent and MUST be ignored on receipt.

Return Values: This method MUST return 0x800706ba RPC Server Unavailable.

%5bMS-ERREF%5d.pdf

156 / 253

[MS -WMI] ð v20140502
 Windows Management Instrumentation Remote Protocol

 Copyright © 2014 Microsoft Corporation.

 Release: Thursday, May 15, 2014

3.1.4.15 IUnsecuredApartment Interface

The IUnsecuredApartment interface allows a local client to register a callback for asynchronous
remote operations. The interface MUST be uniquely identified by the UUID {1cfaba8c -1523 -11d1 -

ad79 -00c04fd8fdff}.

Methods in RPC Opnum Order

Method Description

CreateObjectStub The objects that export this interface MUST be uniquely identified with the CLSID

{49bd2028 -1523 -11d1 -ad79 -00c04fd8fdff}

Opnum: 3

Figure 9: The IUnsecuredApartment interface

3.1.4.15.1 IUnsecuredApartment::CreateObjectStub (Opnum 3)

The IUnsecuredApartment::CreateObjectStub method does not perform any action and returns

E_UNEXPECTED when called by a remote client.

HRESULT CreateObjectStub(

 [in] IUnknown* reserved1,

 [out] IUnknown* reserved2

);

reserved1: MUST be set to NULL when sent and MUST be ignored on receipt.

reserved2: MUST be set to NULL when sent and MUST be ignored on receipt.

Return Values: This method MUST return E_UNEXPECTED as specified in [MS -ERREF] section

2.1.

3.1.4.16 IWbemUnsecuredApartment Interface

The IWbemUnsecuredApartment interface allows a local client to register a callback for
asynchronous remote operations. The interface MUST be uniquely identified by the UUID
{31739d04 -3471 -4cf4 -9a7c -57a44ae71956}.

Methods in RPC Opnum Order

%5bMS-ERREF%5d.pdf

157 / 253

[MS -WMI] ð v20140502
 Windows Management Instrumentation Remote Protocol

 Copyright © 2014 Microsoft Corporation.

 Release: Thursday, May 15, 2014

Method Description

CreateSinkStub The objects that export this interface MUST be uniquely identified with the CLSID

{49bd2028 -1523 -11d 1-ad79 -00c04fd8fdff}.

Opnum: 3

Figure 10: The IWbemUnsecuredApartment interface

3.1.4.16.1 IWbemUnsecuredApartment::CreateSinkStub (Opnum 3)

The IWbemUnsecuredApartment::CreateSinkStub method does not perform any action when
called by a remote client.

HRESULT CreateSinkStub(

 [in] IWbemObjectSink* reserved1,

 [in] dword reserved2,

 [in, unique] LPCWSTR reserved3,

 [out] IWbemObjectSink** reserved4

);

reserved1: MUST be set to NULL when sent and MUST be ignored on receipt.

reserved2: MUST be set to 0 when sent and MUST be ignored on receipt.

reserved3: MUST be set to NULL when sent and MUST be ignored on receipt.

reserved4: MUST be set to NULL when sent and MUST be ignored on receipt.

Return Values: This method MUST return E_UNEXPECTED as specified in [MS -ERREF] section
2.1.

3.1.4.17 Abstract Provider Interface

Below are the details of the interface used between CIM server and the providers. The server uses
ProviderEntryPoint stored in ProviderTable for the given provider for performing any operation

below. For sending indications or events to the server, the pro vider MUST trigger 3.1.6.1 .

The server MUST perform the following two processing rules for each invocation of each of the
methods listed below in this section:

%5bMS-ERREF%5d.pdf

