

1 / 56

[MS-WMHTTP-Diff] - v20180912
Windows Media HTTP Push Distribution Protocol
Copyright © 2018 Microsoft Corporation
Release: September 12, 2018

[MS-WMHTTP-Diff]:

Windows Media HTTP Push Distribution Protocol

Intellectual Property Rights Notice for Open Specifications Documentation

▪ Technical Documentation. Microsoft publishes Open Specifications documentation (“this
documentation”) for protocols, file formats, data portability, computer languages, and standards
support. Additionally, overview documents cover inter-protocol relationships and interactions.

▪ Copyrights. This documentation is covered by Microsoft copyrights. Regardless of any other
terms that are contained in the terms of use for the Microsoft website that hosts this
documentation, you can make copies of it in order to develop implementations of the technologies

that are described in this documentation and can distribute portions of it in your implementations
that use these technologies or in your documentation as necessary to properly document the

implementation. You can also distribute in your implementation, with or without modification, any
schemas, IDLs, or code samples that are included in the documentation. This permission also
applies to any documents that are referenced in the Open Specifications documentation.

▪ No Trade Secrets. Microsoft does not claim any trade secret rights in this documentation.
▪ Patents. Microsoft has patents that might cover your implementations of the technologies

described in the Open Specifications documentation. Neither this notice nor Microsoft's delivery of
this documentation grants any licenses under those patents or any other Microsoft patents.
However, a given Open Specifications document might be covered by the Microsoft Open
Specifications Promise or the Microsoft Community Promise. If you would prefer a written license,
or if the technologies described in this documentation are not covered by the Open Specifications
Promise or Community Promise, as applicable, patent licenses are available by contacting
iplg@microsoft.com.

▪ License Programs. To see all of the protocols in scope under a specific license program and the
associated patents, visit the Patent Map.

▪ Trademarks. The names of companies and products contained in this documentation might be

covered by trademarks or similar intellectual property rights. This notice does not grant any
licenses under those rights. For a list of Microsoft trademarks, visit
www.microsoft.com/trademarks.

▪ Fictitious Names. The example companies, organizations, products, domain names, email
addresses, logos, people, places, and events that are depicted in this documentation are fictitious.
No association with any real company, organization, product, domain name, email address, logo,
person, place, or event is intended or should be inferred.

Reservation of Rights. All other rights are reserved, and this notice does not grant any rights other
than as specifically described above, whether by implication, estoppel, or otherwise.

Tools. The Open Specifications documentation does not require the use of Microsoft programming

tools or programming environments in order for you to develop an implementation. If you have access
to Microsoft programming tools and environments, you are free to take advantage of them. Certain
Open Specifications documents are intended for use in conjunction with publicly available standards
specifications and network programming art and, as such, assume that the reader either is familiar

with the aforementioned material or has immediate access to it.

Support. For questions and support, please contact dochelp@microsoft.com.

http://go.microsoft.com/fwlink/?LinkId=214445
http://go.microsoft.com/fwlink/?LinkId=214445
https://go.microsoft.com/fwlink/?LinkId=214448
mailto:iplg@microsoft.com
https://msdn.microsoft.com/en-us/openspecifications/dn750984

2 / 56

[MS-WMHTTP-Diff] - v20180912
Windows Media HTTP Push Distribution Protocol
Copyright © 2018 Microsoft Corporation
Release: September 12, 2018

Revision Summary

Date
Revision
History

Revision
Class Comments

4/3/2007 0.01 New Version 0.01 release

7/3/2007 1.0 Major MLonghorn+90

7/20/2007 1.0.1 Editorial Changed language and formatting in the technical content.

8/10/2007 1.1 Minor Clarified the meaning of the technical content.

9/28/2007 1.1.1 Editorial Changed language and formatting in the technical content.

10/23/2007 1.1.2 Editorial Changed language and formatting in the technical content.

11/30/2007 1.1.3 Editorial Changed language and formatting in the technical content.

1/25/2008 1.1.4 Editorial Changed language and formatting in the technical content.

3/14/2008 1.2 Minor Clarified the meaning of the technical content.

5/16/2008 2.0 Major Updated and revised the technical content.

6/20/2008 3.0 Major Updated and revised the technical content.

7/25/2008 3.1 Minor Clarified the meaning of the technical content.

8/29/2008 3.2 Minor Clarified the meaning of the technical content.

10/24/2008 4.0 Major Updated and revised the technical content.

12/5/2008 4.1 Minor Clarified the meaning of the technical content.

1/16/2009 5.0 Major Updated and revised the technical content.

2/27/2009 6.0 Major Updated and revised the technical content.

4/10/2009 7.0 Major Updated and revised the technical content.

5/22/2009 8.0 Major Updated and revised the technical content.

7/2/2009 8.0.1 Editorial Changed language and formatting in the technical content.

8/14/2009 8.0.2 Editorial Changed language and formatting in the technical content.

9/25/2009 8.1 Minor Clarified the meaning of the technical content.

11/6/2009 8.1.1 Editorial Changed language and formatting in the technical content.

12/18/2009 8.1.2 Editorial Changed language and formatting in the technical content.

1/29/2010 9.0 Major Updated and revised the technical content.

3/12/2010 10.0 Major Updated and revised the technical content.

4/23/2010 10.0.1 Editorial Changed language and formatting in the technical content.

6/4/2010 10.0.2 Editorial Changed language and formatting in the technical content.

7/16/2010 10.0.2 None
No changes to the meaning, language, or formatting of the
technical content.

3 / 56

[MS-WMHTTP-Diff] - v20180912
Windows Media HTTP Push Distribution Protocol
Copyright © 2018 Microsoft Corporation
Release: September 12, 2018

Date
Revision
History

Revision
Class Comments

8/27/2010 10.1 Minor Clarified the meaning of the technical content.

10/8/2010 11.0 Major Updated and revised the technical content.

11/19/2010 11.0 None
No changes to the meaning, language, or formatting of the
technical content.

1/7/2011 11.0 None
No changes to the meaning, language, or formatting of the
technical content.

2/11/2011 11.0 None
No changes to the meaning, language, or formatting of the
technical content.

3/25/2011 11.0 None
No changes to the meaning, language, or formatting of the
technical content.

5/6/2011 11.0 None
No changes to the meaning, language, or formatting of the
technical content.

6/17/2011 11.1 Minor Clarified the meaning of the technical content.

9/23/2011 11.1 None
No changes to the meaning, language, or formatting of the
technical content.

12/16/2011 12.0 Major Updated and revised the technical content.

3/30/2012 12.0 None
No changes to the meaning, language, or formatting of the
technical content.

7/12/2012 12.0 None
No changes to the meaning, language, or formatting of the
technical content.

10/25/2012 12.0 None
No changes to the meaning, language, or formatting of the
technical content.

1/31/2013 12.0 None
No changes to the meaning, language, or formatting of the
technical content.

8/8/2013 13.0 Major Updated and revised the technical content.

11/14/2013 13.0 None
No changes to the meaning, language, or formatting of the
technical content.

2/13/2014 13.0 None
No changes to the meaning, language, or formatting of the
technical content.

5/15/2014 13.0 None
No changes to the meaning, language, or formatting of the
technical content.

6/30/2015 14.0 Major Significantly changed the technical content.

10/16/2015 14.0 None
No changes to the meaning, language, or formatting of the
technical content.

7/14/2016 14.0 None
No changes to the meaning, language, or formatting of the
technical content.

6/1/2017 14.0 None
No changes to the meaning, language, or formatting of the
technical content.

9/15/2017 15.0 Major Significantly changed the technical content.

4 / 56

[MS-WMHTTP-Diff] - v20180912
Windows Media HTTP Push Distribution Protocol
Copyright © 2018 Microsoft Corporation
Release: September 12, 2018

Date
Revision
History

Revision
Class Comments

9/12/2018 16.0 Major Significantly changed the technical content.

5 / 56

[MS-WMHTTP-Diff] - v20180912
Windows Media HTTP Push Distribution Protocol
Copyright © 2018 Microsoft Corporation
Release: September 12, 2018

Table of Contents

1 Introduction .. 7
1.1 Glossary ... 7
1.2 References .. 7

1.2.1 Normative References ... 7
1.2.2 Informative References ... 8

1.3 Overview .. 8
1.4 Relationship to Other Protocols .. 9
1.5 Prerequisites/Preconditions ... 9
1.6 Applicability Statement ... 9
1.7 Versioning and Capability Negotiation ... 9
1.8 Vendor-Extensible Fields ... 10
1.9 Standards Assignments ... 10

2 Messages ... 11
2.1 Transport .. 11
2.2 Message Syntax ... 11

2.2.1 HTTP Header Fields ... 11
2.2.1.1 Content-Type ... 11

2.2.1.1.1 application/x-wms-pushsetup ... 12
2.2.1.1.2 application/x-wms-pushstart ... 12

2.2.1.2 Cache-Control .. 12
2.2.1.3 Cookie ... 12

2.2.1.3.1 push-id .. 12
2.2.1.4 Pragma .. 12

2.2.1.4.1 no-cache .. 13
2.2.1.4.2 timeout .. 13

2.2.1.5 Server ... 13
2.2.1.6 Set-Cookie ... 13
2.2.1.7 Supported .. 13
2.2.1.8 User-Agent ... 13
2.2.1.9 X-Accept-Authentication .. 14
2.2.1.10 X-Accept-Proxy-Authentication ... 14

2.2.2 Request Types.. 14
2.2.2.1 PushSetup Request ... 15

2.2.2.1.1 Template-URL ... 16
2.2.2.1.2 AutoDestroy ... 16

2.2.2.2 PushStart Request .. 17
2.2.3 Packet Types .. 18

2.2.3.1 Common Definitions .. 18
2.2.3.1.1 Framing Header .. 18

2.2.3.2 $C (Stream Change Notification) ... 18
2.2.3.3 $D (Data) .. 19
2.2.3.4 $E (End-of-Stream Notification) .. 19
2.2.3.5 $F (Filler) ... 20
2.2.3.6 $H (Header) ... 20

3 Protocol Details ... 21
3.1 Client Details ... 21

3.1.1 Abstract Data Model .. 21
3.1.2 Timers .. 21
3.1.3 Initialization ... 21
3.1.4 Higher-Layer Triggered Events ... 21

3.1.4.1 Request to Configure the Server ... 21
3.1.4.1.1 Sending the PushSetup Request .. 22

3.1.4.2 Request to Start Streaming Content .. 22

6 / 56

[MS-WMHTTP-Diff] - v20180912
Windows Media HTTP Push Distribution Protocol
Copyright © 2018 Microsoft Corporation
Release: September 12, 2018

3.1.4.2.1 Sending the PushStart Request ... 23
3.1.4.3 ASF Packet Is Available to Send .. 24
3.1.4.4 Notification of the Last Packet .. 24
3.1.4.5 Notification of New ASF Header File ... 25

3.1.5 Message Processing Events and Sequencing Rules .. 26
3.1.5.1 Receiving a PushSetup Response .. 26
3.1.5.2 Receiving a PushStart Response ... 27

3.1.6 Timer Events .. 27
3.1.7 Other Local Events .. 28

3.1.7.1 TCP Connection Is Disconnected ... 28
3.2 Server Details .. 28

3.2.1 Abstract Data Model .. 28
3.2.2 Timers .. 28
3.2.3 Initialization ... 28
3.2.4 Higher-Layer Triggered Events ... 29

3.2.4.1 Administrative Disconnect .. 29
3.2.5 Message Processing Events and Sequencing Rules .. 29

3.2.5.1 Receiving a PushSetup Request .. 29
3.2.5.2 Receiving a PushStart Request ... 31

3.2.5.2.1 Sending a PushStart Response .. 32
3.2.5.3 Receiving an $H Packet .. 32
3.2.5.4 Receiving a $D Packet ... 32
3.2.5.5 Receiving an $E Packet .. 33
3.2.5.6 Receiving a $C Packet ... 33
3.2.5.7 Receiving an $F Packet .. 33

3.2.6 Timer Events .. 34
3.2.6.1 Idle-Timeout Timer Expires .. 34
3.2.6.2 Inactivity-Timeout Timer Expires .. 34

3.2.7 Other Local Events .. 34
3.2.7.1 TCP Connection Is Disconnected ... 34

4 Protocol Examples ... 35
4.1 General Push Distribution Sequence ... 35
4.2 General Push Distribution Sequence with $F Packets .. 36
4.3 Push Distribution with AutoDestroy and Template-URL .. 38
4.4 General Push Distribution Sequence with $C Packet .. 39
4.5 General Push Distribution Sequence with Server and Proxy Server 41
4.6 Server Push State Diagram ... 42

4.6.1 Expanded Streaming State Diagram .. 44
4.7 Client Push State Diagram ... 45

4.7.1 Expanded PushState_InProgress Diagram .. 46
4.8 Message Exchange During Push Distribution .. 47

5 Security ... 49
5.1 Security Considerations for Implementers ... 49
5.2 Index of Security Parameters .. 49

6 (Updated Section) Appendix A: Product Behavior.. 50

7 Change Tracking .. 52

8 Index ... 53

7 / 56

[MS-WMHTTP-Diff] - v20180912
Windows Media HTTP Push Distribution Protocol
Copyright © 2018 Microsoft Corporation
Release: September 12, 2018

1 Introduction

The Windows Media HTTP Push Distribution Protocol is based on the Hypertext Transfer Protocol
(HTTP) (as specified in [RFC2616]). It is used for transferring real-time multimedia data (for example,
audio and video) from a client to a server. The client of the Windows Media HTTP Push Distribution
Protocol is likely to be an encoder application, perhaps implemented by using the Windows Media
Encoder software development kit (SDK). For more information, see [WMESDK].

Sections 1.5, 1.8, 1.9, 2, and 3 of this specification are normative. All other sections and examples in
this specification are informative.

1.1 Glossary

This document uses the following terms:

Advanced Systems Format (ASF): An extensible file format that is designed to facilitate
streaming digital media data over a network. This file format is used by Windows Media.

content: Multimedia data. content is always in ASF, for example, a single ASF music file or a single
ASF video file. Data in general. A file that an application accesses. Examples of content include
web pages and documents stored on either web servers or SMB file servers.

encoder: A device that uses software and/or hardware to encode content.

little-endian: Multiple-byte values that are byte-ordered with the least significant byte stored in
the memory location with the lowest address.

playlist: One or more content items that are streamed sequentially.

push (or push distribution): A method by which a client initiates and manages the transmission
of content to a server.

session: The state maintained by the server when it is streaming content to a client. If a server-

side playlist is used, the same session is used for all content in the playlist.

stream: A sequence of ASF media objects ([ASF] section 5.2) that can be selected individually. For
example, if a movie has an English and a Spanish soundtrack, each may be encoded in the ASF
file as a separate stream. The video data would also be a separate stream.

streaming: The act of transferring content from a sender to a receiver.

MAY, SHOULD, MUST, SHOULD NOT, MUST NOT: These terms (in all caps) are used as defined
in [RFC2119]. All statements of optional behavior use either MAY, SHOULD, or SHOULD NOT.

1.2 References

Links to a document in the Microsoft Open Specifications library point to the correct section in the
most recently published version of the referenced document. However, because individual documents
in the library are not updated at the same time, the section numbers in the documents may not

match. You can confirm the correct section numbering by checking the Errata.

1.2.1 Normative References

We conduct frequent surveys of the normative references to assure their continued availability. If you
have any issue with finding a normative reference, please contact dochelp@microsoft.com. We will

assist you in finding the relevant information.

8 / 56

[MS-WMHTTP-Diff] - v20180912
Windows Media HTTP Push Distribution Protocol
Copyright © 2018 Microsoft Corporation
Release: September 12, 2018

[ASF] Microsoft Corporation, "Advanced Systems Format Specification", December 2004,
http://download.microsoft.com/download/7/9/0/790fecaa-f64a-4a5e-a430-

0bccdab3f1b4/ASF_Specification.doc

[MS-DTYP] Microsoft Corporation, "Windows Data Types".

[MS-ERREF] Microsoft Corporation, "Windows Error Codes".

[MS-NLMP] Microsoft Corporation, "NT LAN Manager (NTLM) Authentication Protocol".

[MS-NTHT] Microsoft Corporation, "NTLM Over HTTP Protocol".

[MS-WMSP] Microsoft Corporation, "Windows Media HTTP Streaming Protocol".

[RFC2068] Fielding, R., Gettys, J., Mogul, J., et al., "Hypertext Transfer Protocol -- HTTP/1.1", RFC
2068, January 1997, http://www.ietf.org/rfc/rfc2068.txt

[RFC2109] Kristol, D., and Montulli, L., "HTTP State Management Mechanism", RFC 2109, February

1997, http://www.rfc-editor.org/rfc/rfc2109.txt

[RFC2119] Bradner, S., "Key words for use in RFCs to Indicate Requirement Levels", BCP 14, RFC

2119, March 1997, http://www.rfc-editor.org/rfc/rfc2119.txt

[RFC2616] Fielding, R., Gettys, J., Mogul, J., et al., "Hypertext Transfer Protocol -- HTTP/1.1", RFC
2616, June 1999, http://www.rfc-editor.org/rfc/rfc2616.txt

[RFC2617] Franks, J., Hallam-Baker, P., Hostetler, J., et al., "HTTP Authentication: Basic and Digest
Access Authentication", RFC 2617, June 1999, http://www.rfc-editor.org/rfc/rfc2617.txt

[RFC3629] Yergeau, F., "UTF-8, A Transformation Format of ISO 10646", STD 63, RFC 3629,

November 2003, http://www.ietf.org/rfc/rfc3629.txt

[RFC3986] Berners-Lee, T., Fielding, R., and Masinter, L., "Uniform Resource Identifier (URI): Generic
Syntax", STD 66, RFC 3986, January 2005, http://www.rfc-editor.org/rfc/rfc3986.txt

[RFC4234] Crocker, D., Ed., and Overell, P., "Augmented BNF for Syntax Specifications: ABNF", RFC
4234, October 2005, http://www.rfc-editor.org/rfc/rfc4234.txt

[RFC4559] Jaganathan, K., Zhu, L., and Brezak, J., "SPNEGO-based Kerberos and NTLM HTTP
Authentication in Microsoft Windows", RFC 4559, June 2006, http://www.rfc-editor.org/rfc/rfc4559.txt

[WMESDK] Microsoft Corporation, "Windows Media Encoder 9 Series SDK",
https://msdn.microsoft.com/en-us/library/windows/desktop/dd873819(v=vs.85).aspx

1.2.2 Informative References

None.

1.3 Overview

The Windows Media HTTP Push Distribution Protocol is used for transferring real-time multimedia data
(for example, audio and video) from a client to a server. Push distribution is ideal for broadcasting
company meetings or live presentations. In such scenarios, the client is likely to be an encoder
software application, perhaps implemented by using the Windows Media Encoder SDK. For more
information, see [WMESDK].

The protocol depends on HTTP for the transfer of all protocol messages, including the transfer of the
multimedia data. In this specification, the entity that initiates the HTTP connection is referred to as the

9 / 56

[MS-WMHTTP-Diff] - v20180912
Windows Media HTTP Push Distribution Protocol
Copyright © 2018 Microsoft Corporation
Release: September 12, 2018

client, and the entity that responds to the HTTP connection is referred to as the server. With the
Windows Media HTTP Push Distribution Protocol, multimedia data flows from the client to the server—

the opposite of other streaming protocols, such as the Windows Media HTTP Streaming Protocol as
specified in [MS-WMSP].

For the purposes of this specification, the terms client and encoder have the same meaning and are
used interchangeably.

1.4 Relationship to Other Protocols

This protocol depends on HTTP as specified in [RFC2616]. Either HTTP version 1.1 or HTTP version 1.0
can be used with this protocol. However the benefits exposed through HTTP version 1.1 might not be
available when using HTTP version 1.0.

This protocol also uses headers, packet types, and other components from the Windows Media HTTP
Streaming Protocol, as specified in [MS-WMSP].

1.5 Prerequisites/Preconditions

This protocol does not provide a mechanism for a client to discover the URL to the server. Thus, it is a
prerequisite that the client obtain a URL to the server before this protocol can be used.

1.6 Applicability Statement

This protocol is suitable for "streaming" delivery of broadcast multimedia data. The term streaming
means that the data is transmitted at a fixed rate or at a rate that is related to the rate at which the
data will be consumed (for example, displayed) by the receiver.

This protocol can also be appropriate if a firewall prevents a communicating entity A (A) from initiating
a TCP connection to communicating entity B (B) for the purpose of receiving multimedia data from B.

In this situation, the Windows Media HTTP Push Distribution protocol might be appropriate because, in
spite of the firewall, it might still be possible for B to initiate a TCP connection to A, and the protocol

allows B to transmit multimedia data to A.

If none of the preceding applies, it might be more appropriate to use the Windows Media HTTP
Streaming Protocol (as specified in [MS-WMSP]) to transfer the data instead of using this protocol.

1.7 Versioning and Capability Negotiation

This document covers versioning issues in the following areas:

Supported Transports: This protocol can be implemented on top of HTTP, as specified in section 2.1.

Protocol Versions: Clients specify the protocol version by using the User-Agent header. Servers
specify the protocol version by using the Server header.

Security and Authentication Methods: This protocol supports the HTTP access authentication, as

specified in [RFC2616] section 11. This protocol supports NTLM [MS-NLMP] authorization but only

during PushSetup process. If an implementation requires validating authorization during PushStart
process, the preferred authorization is digest.

Localization: This specification does not specify any localization-dependent protocol behavior.

Capability Negotiation: This protocol does explicit capability negotiation by using the X-Accept-
Authentication header.

This protocol does not use operating system versioning because operating systems typically include
multiple client implementations with different capabilities. Furthermore, the client software

10 / 56

[MS-WMHTTP-Diff] - v20180912
Windows Media HTTP Push Distribution Protocol
Copyright © 2018 Microsoft Corporation
Release: September 12, 2018

components are frequently updated independently of the rest of the operating system. Instead, the
protocol versioning mechanism relies on the version number of the software product that is sending

the request or the response to be stated on the User-Agent (section 2.2.1.8) and
Server (section 2.2.1.5) headers, respectively.

1.8 Vendor-Extensible Fields

This protocol uses HRESULTs as specified in [MS-DTYP]. Vendors are free to choose their own values,
as long as the C bit (0x20000000) is set, indicating that it is a customer code.

1.9 Standards Assignments

None.

11 / 56

[MS-WMHTTP-Diff] - v20180912
Windows Media HTTP Push Distribution Protocol
Copyright © 2018 Microsoft Corporation
Release: September 12, 2018

2 Messages

2.1 Transport

The Windows Media HTTP Push Distribution Protocol uses HTTP, as specified in [RFC2616], as the

transport layer.

A TCP port has not been reserved for this protocol. TCP port 80 is commonly used because many HTTP
proxy servers forward only HTTP traffic that uses port 80.

The protocol uses the access authentication functionality of the HTTP layer. The supported HTTP
access authentication schemes are implementation-specific. Clients SHOULD use the X-Accept-
Authentication (section 2.2.1.9) header to specify the preferred list of authentication schemes. Details

about HTTP access authentication are as specified in [RFC2616] section 11.

2.2 Message Syntax

This section includes the following:

▪ HTTP Header Fields (section 2.2.1) specifies the syntax for HTTP headers defined by this protocol.

▪ Request Types (section 2.2.2) specifies the types of requests that are defined by this protocol and
how each request type is mapped to HTTP.

▪ Packet Types (section 2.2.3) specifies the syntax for the binary packet format that is used in the
payloads of the HTTP messages.

2.2.1 HTTP Header Fields

The Windows Media HTTP Push Distribution Protocol uses existing headers as specified in [RFC2616]
and [MS-WMSP]. Some headers defined by these specifications are further restrained by the Windows
Media HTTP Push Distribution Protocol in how they can be used. These additionally restrained headers

are defined in this section.

Unless specified otherwise, the headers defined in this specification and any tokens (also called tags or

directives) used on those headers are defined for use in both requests and responses.

If a client or server receives an HTTP header that is not defined in this section, or if the header is not
defined in the current context (for example, receiving a request-only header in a response), the
header MUST be interpreted as specified in [RFC2616].

If a client or server receives an HTTP header defined in this section, and the header contains an
unknown token or the token is not defined in the current context (for example, receiving a request-
only token in a response), the token MUST be ignored.

This section defines the syntax of the HTTP headers that use the Augmented Backus-Naur Form
(ABNF) syntax, as specified in [RFC4234]. Any ABNF syntax rules that are not specified in [RFC4234]
use the ABNF extensions that are as specified in [RFC2616] or [MS-WMSP].

2.2.1.1 Content-Type

The Content-Type header specifies the type of data that is included in the message payload (that is,
the message body of a POST request).

The syntax of the Content-Type header is defined as follows.

 Ctype = "application/x-wms-pushsetup" /

12 / 56

[MS-WMHTTP-Diff] - v20180912
Windows Media HTTP Push Distribution Protocol
Copyright © 2018 Microsoft Corporation
Release: September 12, 2018

 "application/x-wms-pushstart"

 Content-Type = "Content-Type: " Ctype [";charset=UTF-8"] CRLF

Example: Content-Type: application/x-wms-pushsetup;charset=UTF-8

2.2.1.1.1 application/x-wms-pushsetup

This content-type is used in a POST request to initiate the push distribution session with a server. For
more details, see the definition of the PushSetup request (section 2.2.2.1).

2.2.1.1.2 application/x-wms-pushstart

This content-type specifies that the message body of the POST request contains packet types as
specified in section 2.2.3. For more details, see the definition of the PushStart

request (section 2.2.2.2).

2.2.1.2 Cache-Control

The Cache-Control header field is defined only for use in responses sent to a client; However, the
header is not used by clients that implement the Windows Media HTTP Push Distribution Protocol.

2.2.1.3 Cookie

The syntax of the Cookie header MUST conform to the format as specified in [RFC2109].

This header is defined for use in requests sent to the server. The Cookie header MUST be specified

with a push-id (section 2.2.1.3.1).

The syntax of the Cookie header is defined as follows.

 Cookie = "Cookie: "
 push-id ; section 2.2.1.3.1
 CRLF

Example: Cookie: push-id=0

2.2.1.3.1 push-id

The value of this cookie, which consists of an array of characters, identifies the streaming session. The
session identifier is assigned by the server in the response to the PushSetup request. The identifier "0"
indicates that the client requests the server to create a new session.

The syntax of the push-id cookie is defined as follows.

 session-id = 1*VCHAR ; any combination of characters except 0
 push-id = "push-id=" ("0" / session-id)

2.2.1.4 Pragma

The Windows Media HTTP Push Distribution Protocol uses the HTTP Pragma header field to
communicate information specific to the operation of the protocol. The Pragma header consists of one
or more comma-separated tokens, as specified in [RFC2616] section 14.32.

13 / 56

[MS-WMHTTP-Diff] - v20180912
Windows Media HTTP Push Distribution Protocol
Copyright © 2018 Microsoft Corporation
Release: September 12, 2018

Details about the handling of error conditions related to Pragma header tokens are as specified in [MS-
WMSP] section 2.2.1.4.

The Pragma header field is defined only for use in responses sent to a client; however, the header is
not used by clients that implement the Windows Media HTTP Push Distribution Protocol.

The Pragma header tokens used by the Windows Media HTTP Push Distribution Protocol are defined in
the following two sections.

2.2.1.4.1 no-cache

Details about the no-cache token are as specified in [MS-WMSP] section 2.2.1.4.12.

2.2.1.4.2 timeout

Details about the timeout token are as specified in [MS-WMSP] section 2.2.1.4.29.

2.2.1.5 Server

The Server header specifies the major and minor version numbers of the software product that is

responding to the HTTP request.

This header is defined only for use in responses sent to a client.

Details about the Server header are as specified in [MS-WMSP] section 2.2.1.5.

2.2.1.6 Set-Cookie

The syntax of the Set-Cookie header MUST conform to the format as specified in [RFC2109].

This header is defined for use in responses sent to a client. The Set-Cookie header MUST be specified
with a push-id (section 2.2.1.3.1).

The syntax of the Set-Cookie header is defined as follows.

 Set-Cookie = "Set-Cookie: "
 "push-id="
 session-id ; section 2.2.1.3.1
 CRLF

Example: Set-Cookie: push-id=1234567890

2.2.1.7 Supported

The Supported header is used for specifying features of the protocol that are supported by the server.

This header is defined only for use in responses sent to a client; and none of the features listed by this
header are supported in the Windows Media HTTP Push Distribution protocol.

For information about the Supported header, see [MS-WMSP] section 2.2.1.7.

2.2.1.8 User-Agent

The User-Agent header specifies the major and minor version number of the software product that is
sending the HTTP request.

This header is defined only for use in requests sent to a server.

14 / 56

[MS-WMHTTP-Diff] - v20180912
Windows Media HTTP Push Distribution Protocol
Copyright © 2018 Microsoft Corporation
Release: September 12, 2018

The syntax of the User-Agent header is defined as follows.

 major = 1*2DIGIT
 minor = 1*2DIGIT ["." 1*4DIGIT "." 1*4DIGIT]
 product = ; as defined in section 3.8 of [RFC2616]
 user-agent-data = "WMEncoder" "/" major "." minor
 *(SP product)
 User-Agent= "User-Agent: " user-agent-data CRLF

Example: User-Agent: WMEncoder/11.0.5721.5145

Clients MUST assign the values of the major and minor ABNF syntax elements to one of the values in

the table.

 Major Minor

9 0

10 0

11 0

12 0

2.2.1.9 X-Accept-Authentication

The X-Accept-Authentication header specifies the authentication schemes that the client supports.

Details about the X-Accept-Authentication header are as specified in [MS-WMSP] section 2.2.1.9.

2.2.1.10 X-Accept-Proxy-Authentication

The X-Accept-Proxy-Authentication header is not used by clients or servers that implement the

Windows Media HTTP Push Distribution Protocol.

2.2.2 Request Types

The Windows Media HTTP Push Distribution Protocol defines requests that a client can send to a
server.

The requests from the client and the corresponding responses from the server are exchanged using

HTTP request methods. Each request defined by the Windows Media HTTP Push Distribution Protocol is
mapped to the HTTP POST request method.

This section defines the syntax of those requests that use ABNF syntax as specified in [RFC4234]. Any
ABNF syntax rules that are not specified in [RFC4234] use the ABNF extensions that are specified in
[RFC2616] or [MS-WMSP].

In addition to complying with the ABNF syntax, all requests MUST also include a request line, all of the
required headers, and one or more Pragma headers with the required Pragma header tokens. In the

ABNF syntax for each request type, these components are indicated by the inclusion of "-Line", "-
Header-REQ", and "-Token-REQ" in the associated ABNF rule name, respectively.

The following are some common constructions used throughout this section.

 HTTP-Header-Types = *((general-header
 / request-header

15 / 56

[MS-WMHTTP-Diff] - v20180912
Windows Media HTTP Push Distribution Protocol
Copyright © 2018 Microsoft Corporation
Release: September 12, 2018

 / entity-header) CRLF)

2.2.2.1 PushSetup Request

The purpose of the PushSetup request is to request permission to start streaming Advanced Systems
Format (ASF) data packets to the server.

The URL specified by the client in the HTTP request line of the POST request identifies the "publishing
point". The concept of a publishing point is similar to that of a broadcast channel. A server might have
multiple publishing points, and different publishing points can have different access permissions

associated with them. For example, some publishing points require HTTP access authentication (as
specified in [RFC2616] section 11). As another example, publishing points can also allow only clients
that connect from a specific IP address.

The Windows Media HTTP Push Distribution Protocol allows for publishing points to be created by the
PushSetup request. The optional Template-URL (section 2.2.2.1.1) syntax element in the message
body of the POST request specifies the path to an existing publishing point on the server that is to be

used as a template when creating the new publishing point.

The client can specify if the server can remove the publishing point after the streaming session has
ended. This removal is performed by using the AutoDestroy (section 2.2.2.1.2) syntax element in the
message body of the POST request.

A server that receives a POST request can identify it as a PushSetup request through the Content-
Type (section 2.2.1.1) header. The media type specified on the Content-Type header MUST be
"application/x-wms-pushsetup".

The syntax of the PushSetup request is defined as follows.

 WMS-PushSetup-Request = WMS-PushSetup-Req-Line
 WMS-PushSetReq-Headers
 CRLF
 WMS-PushSetReq-Body

 WMS-PushSetup-Req-Line = "POST" SP Request-URI SP HTTP-Version CRLF

 WMS-PushSetReq-Headers= *(PushSetReq-Header-REQ
 / PushSetReq-Header-OPT
 / HTTP-Header-Types)

 PushSetReq-Header-REQ = Content-Length ; section 14.13 of [RFC2616]
 / Content-Type ; section 2.2.1.1
 / Host ; section 14.23 of [RFC2616]
 / User-Agent ; section 2.2.1.8

 PushSetReq-Header-OPT = Authorization ; [RFC2616] section 14.8
 / Cache-Control; [RFC2616] section 14.9
 / Cookie ; section 2.2.1.3
 / Proxy-Authorization ; [RFC2616] section 14.34
 / X-Accept-Authentication ; section 2.2.1.9

 WMS-PushSetReq-Body = [*1Template-Url ; section 2.2.2.1.1
 AutoDestroy] ; section 2.2.2.1.2

The syntax of the PushSetup response is defined as follows:

 WMS-PushSetup-Response = Status-Line
 WMS-PushSetResp-Headers

16 / 56

[MS-WMHTTP-Diff] - v20180912
Windows Media HTTP Push Distribution Protocol
Copyright © 2018 Microsoft Corporation
Release: September 12, 2018

 WMS-PushSetResp-Headers = *(PushSetResp-Header-REQ
 / PushSetResp-Header-OPT
 / PushSetResp-Pragma
 / HTTP-Header-Types)

 PushSetResp-Header-REQ = Cache-Control; section 2.2.1.1 of [MS-WMSP]
 / Server ; section 2.2.1.5
 / Set-Cookie ; section 2.2.1.6

 PushSetResp-Header-OPT = Content-Length ; section 14.13 of [RFC2616]
 / Location; [RFC2616] section 14.30
 / Proxy-Authenticate ; [RFC2616] section 14.33
 / Supported ; section 2.2.1.7
 / Via; [RFC2616] section 14.45
 / WWW-Authenticate; [RFC2616] section 14.47

 PushSetResp-Pragma = "Pragma: " #PushSetResp-Pragma-Types CRLF

 PushSetResp-Pragma-Types = PushSetResp-Token-REQ
 / PushSetResp-Token-OPT

 PushSetResp-Token-REQ = no-cache ; section 2.2.1.4.1

 PushSetResp-Token-OPT = timeout ; section 2.2.1.4.2

2.2.2.1.1 Template-URL

This directive instructs the server to create a new publishing point that will be identified by using the

URL that is specified on the request line of the POST request. The new publishing point SHOULD be
created using the same settings as an existing publishing point on the server identified by the path-
absolute syntax element.

Exactly which settings are copied from the existing publishing point to the new publishing point is
implementation-specific.

If the publishing point identified on the request line of the POST request already exists, the server
MUST ignore the Template-URL directive.

The Template-URL directive MUST use ASCII characters. Thus, if the existing publishing point is
identified using a string of Unicode characters, those characters MUST first be encoded by using UTF-
8, as specified in [RFC3629], and any unsafe characters in the resulting string MUST be encoded using
percent-encoding, as specified in [RFC3986] section 2.1.

The syntax of the Template-URL directive is defined as follows.

 Template-URL= "Template-URL:" [SP] %x22
 path-absolute; section 3.3 of [RFC3986]
 %x22 CRLF

Example: Template-URL: "/pub"

2.2.2.1.2 AutoDestroy

This directive requests the server to destroy the publishing point at the end of the streaming session.

A value of 1 means that the server has been requested to remove the publishing point at the end of
the streaming session; that is, when the session state is deleted. A value of 0 means that the server
has been requested to keep the publishing point for an indefinite amount of time, even after the end
of the streaming session. By keeping the publishing point, the client (or possibly a different client) can
connect to the server at a later time and start streaming data to the same publishing point.

17 / 56

[MS-WMHTTP-Diff] - v20180912
Windows Media HTTP Push Distribution Protocol
Copyright © 2018 Microsoft Corporation
Release: September 12, 2018

If the AutoDestroy directive is not specified, the server MUST assume a value of 0.

The syntax of the AutoDestroy directive is defined as follows.

 AutoDestroy= "AutoDestroy:" [SP] ("0" / "1") CRLF

Example: AutoDestroy: 1

2.2.2.2 PushStart Request

The purpose of the PushStart request is to stream ASF data packets to the server. The message body
of the first PushStart request that the client sends after the PushSetup request always begins with an
$H (Header) packet (which contains the ASF file header), which is then followed by the $D (Data)
packets (each of which contains an ASF data packet). Subsequent PushStart requests can start with
either a $C (Stream Change Notification) packet or a $D packet.

A server that receives a POST request can identify it as a PushStart request through the Content-

Type (section 2.2.1.1) header. The media type specified on the Content-Type header MUST be

"application/x-wms-pushstart".

The syntax of the PushStart request is defined as follows.

 WMS-PushStart-Request = WMS-PushStart-Req-Line
 WMS-PushStrtReq-Headers
 CRLF
 WMS-PushStrtReq-Body

 WMS-PushStart-Req-Line = "POST" SP Request-URI SP HTTP-Version CRLF

 WMS-PushStrtReq-Headers = *(PushStrtReq-Header-REQ
 / PushStrtReq-Header-OPT
 / HTTP-Header-Types)

 PushStrtReq-Header-REQ = Content-Length ; section 14.13 of [RFC2616]
 / Content-Type; section 2.2.1.1
 / Cookie; section 2.2.1.3
 / Host; section 14.23 of [RFC2616]
 / User-Agent; section 2.2.1.8

 PushStrtReq-Header-OPT = Authorization ; [RFC2616] section 14.8
 / Cache-Control ; section 2.2.1.1 of [MS-WMSP]
 / Proxy-Authorization ; [RFC2616] section 14.34
 / X-Accept-Authentication; section 2.2.1.9

 Playlist-Entry = *<$D Data packet> ; section 2.2.3.3
 (1*<$E EOS packet>; section 2.2.3.4
 / 1*<$F Fill packet>) ; section 2.2.3.5

 WMS-PushStrtReq-Body = *1<$H Header packet>; section 2.2.3.6
 Playlist-Entry
 *(<$C packet> ; section 2.2.3.2
 Playlist-Entry)

The syntax of the PushStart response is defined as follows.

 WMS-PushStart-Response = Status-Line
 WMS-PushStrtResp-Headers

 WMS-PushStrtResp-Headers = *(PushStrtResp-Header-REQ
 / PushStrtResp-Header-OPT

18 / 56

[MS-WMHTTP-Diff] - v20180912
Windows Media HTTP Push Distribution Protocol
Copyright © 2018 Microsoft Corporation
Release: September 12, 2018

 / PushStrtResp-Pragma
 / HTTP-Header-Types)

 PushStrtResp-Header-REQ = Cache-Control; section 2.2.1.1 of [MS-WMSP]
 / Server; section 2.2.1.5

 PushStrtResp-Header-OPT = Proxy-Authenticate ; [RFC2616] section 14.33
 / Set-Cookie; section 2.2.1.6
 / Supported ; section 2.2.1.7
 / Via; [RFC2616] section 14.45
 / WWW-Authenticate; [RFC2616] section 14.47

 PushStrtResp-Pragma = "Pragma: " #PushStrtResp-Pragma-Types CRLF
 PushStrtResp-Pragma-Types = PushStrtResp-Token-REQ
 / PushStrtResp-Token-OPT

 PushStrtResp-Token-REQ = no-cache; section 2.2.1.4.1

 PushStrtResp-Token-OPT = timeout; section 2.2.1.4.2

2.2.3 Packet Types

This section defines the packet types used by the Windows Media HTTP Push Distribution Protocol. The
packets appear in the message body of a PushStart request (section 2.2.2.2) sent by the client to the
server.

All packet types start with a Framing header (section 2.2.3.1.1). All packet types, except the $E (End-
of-Stream Notification) packet, are followed by a variable-size field called the Payload field. The
interpretation of the Payload field is specified in the definition of each packet type, when applicable.

The remainder of this section includes the following:

▪ Common Definitions defines data structures and field definitions that are common to multiple
packet types.

▪ The remaining sections describe individual packet types.

2.2.3.1 Common Definitions

All integer fields are transmitted in little-endian byte order. If a field is set to an invalid value, clients
are free to handle that situation in an implementation-specific manner.

2.2.3.1.1 Framing Header

The Framing header is used by all packet types and is used as specified in [MS-WMSP] section
2.2.3.1.1 with the following additional details.

B: This flag MUST always be set to 0.

PacketLength: This field MUST be set to the size of the Payload field, if any, that follows the
Framing header, plus the size of the Reason field, if any. Thus, the value of this field MUST be

equal to the number of bytes in the packet, which are counted starting from the end of this field.

2.2.3.2 $C (Stream Change Notification)

The $C (Stream Change Notification) packet is used to send the new ASF file header to the server

when the client has switched to the next entry in a playlist or otherwise made a change to the ASF file
header.

19 / 56

[MS-WMHTTP-Diff] - v20180912
Windows Media HTTP Push Distribution Protocol
Copyright © 2018 Microsoft Corporation
Release: September 12, 2018

The $C packet MUST start with a Framing header (section 2.2.3.1.1) with the following additional
details.

PacketID: This field MUST be set to the character "C" (0x43).

Reason: This field MUST be set to 0x00000000.

The variable-size Payload field MUST contain the ASF file header. The ASF file header consists of the
entire ASF Header Object (as specified in [ASF] section 3.1), plus the 50-byte fixed initial portion of
the ASF Data Object (as specified in [ASF] section 5.1). The size of the ASF file header MUST NOT be
larger than 65,527 bytes.

2.2.3.3 $D (Data)

The $D (Data) packet is used by the client to transfer an ASF data packet to the server.

The $D packet MUST start with a Framing header (section 2.2.3.1.1) with the following additional
details.

PacketID: This field MUST be set to the "D" (0x44) character.

Reason: This field MUST NOT be present.

The variable-size Payload field MUST contain exactly one complete ASF data packet. If the ASF data
packet contains a Padding Data field (defined in [ASF] section 5.2.4), that field SHOULD be removed
before encapsulating the ASF data packet in the $D packet. If the Padding Data field is removed, the
Padding Length field in the ASF payload parsing information section ([ASF] section 5.2.2) MUST be
updated to indicate a nonexistent Padding Data field.

2.2.3.4 $E (End-of-Stream Notification)

The $E (End-of-Stream Notification) packet is used by the client to specify that the last $D (Data)
packet for the content has been transmitted. The $E packet also specifies whether this was the last

content in a playlist or if the server expects to receive a $C (Stream Change Notification) packet.

The $E packet is defined as a Framing header (section 2.2.3.1.1) with the following additional details.

PacketID: This field MUST be set to the "E" (0x45) character.

Reason: This field MUST be present. The HRESULT code specifies the error, if any, that caused the
client to send the $E packet. HRESULT codes that have special meaning in the context of an $E packet
are defined in the following table.

 Value Meaning

S_OK

0x00000000

The client has finished streaming, and no more $D packets will be transmitted until the next
PushStart request.

S_FALSE

0x00000001

The client has finished streaming the current playlist entry. Other playlist entries still remain to be
streamed. The client will transmit a $C packet when it switches to the next entry.

Any other HRESULT code has the meaning defined in [MS-ERREF] section 2.1, except if it is a vendor-

assigned HRESULT code, which is indicated by the C bit being set to 1 in the HRESULT code. The use
of any HRESULT code other than S_FALSE implies that the client has finished streaming and no more
$D packets will be transmitted until the next PushStart request.

Unlike other packet types, the $E packet does not have a Payload field.

20 / 56

[MS-WMHTTP-Diff] - v20180912
Windows Media HTTP Push Distribution Protocol
Copyright © 2018 Microsoft Corporation
Release: September 12, 2018

2.2.3.5 $F (Filler)

The purpose of the $F (Filler) packet is to increase the size of the message body of the POST request
in order to ensure that the total length of the message body equals the size specified by the client in

the Content-Length header (defined in [RFC2616] section 14.13).

The $F packet MUST start with a Framing header (section 2.2.3.1.1) with the following additional
details.

PacketID: This field MUST be set to the character "F" (0x46).

Reason: This field MUST NOT be present.

The variable-size Payload field MUST consist of zero or more padding bytes. The maximum size of
this field is 65,531 bytes. Each byte SHOULD be set to 0x00 and MUST be ignored by the server.

2.2.3.6 $H (Header)

The $H (Header) packet is used to send the first ASF file header to the server.

The $H packet MUST start with a Framing header (section 2.2.3.1.1) with the following additional

details.

PacketID: This field MUST be set to the character "H" (0x48).

Reason: This field MUST NOT be present.

The variable-size Payload field MUST contain an ASF file header. The ASF file header consists of the
entire ASF Header Object (as specified in [ASF] section 3.1) plus the 50-byte fixed initial portion of the
ASF Data Object (as specified in [ASF] section 5.1). The size of the ASF file header MUST NOT be
larger than 65,531 bytes.

21 / 56

[MS-WMHTTP-Diff] - v20180912
Windows Media HTTP Push Distribution Protocol
Copyright © 2018 Microsoft Corporation
Release: September 12, 2018

3 Protocol Details

3.1 Client Details

3.1.1 Abstract Data Model

This section describes a conceptual model of possible data organization that an implementation
maintains to participate in this protocol. The described organization is provided to facilitate the
explanation of how the protocol behaves. This document does not mandate that implementations

adhere to this model as long as their external behavior is consistent with that described in this
document.

Length-Remaining: An unsigned numerical value that stores the number of bytes that the client has
to transmit until it has transmitted the entire message body in the PushStart request. The initial
value of this variable is 0.

Push-ID: A string variable that stores the value of the push-id HTTP cookie. The initial value of this
variable is "0".

UsingProxy: A flag that is set to 1 if the client is connecting to the server through a proxy server.
The initial value of this variable is 0.

InitialRequest: A flag that is set to 1 if the client has already connected to the server. The initial
value of this variable is 0.

3.1.2 Timers

Client implementations MAY implement an additional timer at their discretion to recover from the
situation that an HTTP response from the server does not arrive in a timely manner. The expiration
time of such a timer is implementation-specific.<1>

3.1.3 Initialization

Initialization of the protocol occurs when the higher layer configures the server to receive streaming
content. This event is specified in section 3.1.4.1.

The variables specified by the abstract data model MUST initially assume their default values, if any.

3.1.4 Higher-Layer Triggered Events

3.1.4.1 Request to Configure the Server

When the higher layer needs to configure the server to receive content, it MUST cause the client to
send a PushSetup request to the server as detailed in the remainder of this section.

The higher layer MUST provide the URL that will be specified in all requests sent by the client. The URL

specifies a "publishing point" on the server, which is the destination of the ASF data packets that the
client intends to stream to the server.

If the InitialRequest value is 0, then this is the first request that is sent by the client, the client MUST
perform the initialization of the protocol as specified in section 3.1.3, and set the InitialRequest value

to 1.

The client MUST then establish a TCP connection to the server, using the IP address and port number
obtained by parsing the URL as specified in [RFC2616] section 3.2.2. Use of HTTP proxy servers is

22 / 56

[MS-WMHTTP-Diff] - v20180912
Windows Media HTTP Push Distribution Protocol
Copyright © 2018 Microsoft Corporation
Release: September 12, 2018

permitted, in which case the TCP connection is made to the proxy server specified by the higher layer
instead of to the server specified in the URL. If a proxy server is used, the value of the UsingProxy flag

in the abstract data model MUST be set to 1.

Next, the client MUST send the PushSetup request to the server, as specified in section 3.1.4.1.1.

3.1.4.1.1 Sending the PushSetup Request

The PushSetup request MUST adhere to the syntax specified in section 2.2.2.1.

The request sent by the client MUST NOT specify any of the headers and tokens specified in section
2.2.1 which are defined only for use in responses.

The client MUST specify the User-Agent (section 2.2.1.8) header in the request.

The client MUST specify the Content-Type (section 2.2.1.1) header.

The client MUST specify the Content-Length header as specified in [RFC2616] section 14.13. Thus, it
follows that chunked transfer coding (as specified in [RFC2616] section 3.6.1) MUST NOT be used.

The client SHOULD specify the X-Accept-Authentication (section 2.2.1.9) header.<2>

If the client is responding to an HTTP authentication challenge, it MUST include the Authorization
header (as specified in [RFC2616] section 14.8) if the challenge is from a server, or the Proxy-
Authorization header (as specified in [RFC2616] section 14.34) if the challenge is from a proxy.

Note If NTLM is used with HTTP 1.0 it is necessary to include the "Connection: keep-alive" in the
request. For details about the usage of the Connection header in HTTP 1.0, see section 19.7.1 in
[RFC2068].

The Cookie header SHOULD be included in the request. The push-id cookie MUST be included on the
Cookie header, and the value of the cookie MUST be equal to the value of the Push-ID variable.

If the higher layer specifies a "template" publishing point on the server, the name of that publishing
point MUST be included by using the Template-URL (section 2.2.2.1.1) directive in the message body

of the POST request (If the publishing point identified by the URL on the HTTP request line does not
yet exist, the server might use the Template-URL publishing point as a "template" when creating the
publishing point).

If the higher layer requests that the publishing point identified by the URL on the HTTP request line be
removed at the end of the streaming session, the message body of the POST request MUST include
the AutoDestroy (section 2.2.2.1.2) directive. If the Template-URL directive is included in the message
body, the AutoDestroy directive SHOULD also be included, even if the higher layer does not request

the publishing point to be removed.

After sending the request, the client MUST wait for the response to be received. How to process the
response is specified in section 3.1.5.1.

3.1.4.2 Request to Start Streaming Content

When a higher layer requests that the streaming of content starts, it causes the client to send a
PushStart request to the server.

As a prerequisite for this event, the higher layer MUST already have configured the server to receive
content, as specified in section 3.1.4.1, and the client MUST have received a response to the
PushSetup request indicating that the PushSetup request succeeded (as specified in section 3.1.5.1),
but the client MUST NOT have sent any PushStart requests previously.

The higher layer MUST provide an ASF file header to send to the server. The client MUST encapsulate
it in an $H packet, according to the rules specified in section 2.2.3.6.

23 / 56

[MS-WMHTTP-Diff] - v20180912
Windows Media HTTP Push Distribution Protocol
Copyright © 2018 Microsoft Corporation
Release: September 12, 2018

Next, the client MUST send the PushStart request to the server, as specified in section 3.1.4.2.1.

Immediately after sending the HTTP request line and the HTTP headers of the PushStart request, the

client MUST send the $H packet to the server. Thus, the message body of the PushStart request
begins with the $H packet.

3.1.4.2.1 Sending the PushStart Request

If the TCP connection that was used for sending the most recent HTTP request to the server was
closed, the client MUST establish a new TCP connection to the server by using the IP address and port
number obtained by parsing the URL (this is the same URL that was used for the PushSetup request).
Using HTTP proxy servers is permitted, in which case the TCP connection is made to the proxy server
instead of to the server specified in the URL. If a proxy server is used, the value of the UsingProxy

flag in the abstract data model MUST be set to 1.

The PushStart request MUST adhere to the syntax specified in section 2.2.2.2.

The request sent by the client MUST NOT specify any of the headers and tokens specified in section

2.2.1 that are defined only for use in responses.

The client MUST specify the User-Agent (section 2.2.1.8) header in the request.

The client MUST specify the Content-Type (section 2.2.1.1) header.

If the value of the UsingProxy variable in the abstract data model is 1, the value of the Length-
Remaining variable in the abstract data model SHOULD be set to approximately the number of bytes
that the client expects to stream to the server in a 60-second period. Length-Remaining MAY be set
to 2147483647, which is the maximum positive value for a 32-bit signed integer. If the duration and
size of the stream being encoded and/or transmitted is unknown, then Length-Remaining SHOULD
be set to 2147483647.

If the value of the UsingProxy variable in the abstract data model is 0, the value of the Length-

Remaining variable SHOULD be set to 2147483647.

Under any circumstances, the value of Length-Remaining MUST NOT be set to a value that is less
than the size of three maximum-size $D packets or less than the maximum size of an $H or $C packet
that the client intends to send plus 4. A maximum-size $D packet is a $D packet where the ASF data
packet did not have a Padding Data field to remove prior to encapsulation in the $D packet. Details
are specified in section 2.2.3.3.

The client MUST specify the Content-Length header (as specified in [RFC2616] section 14.13), and the

numerical value specified on that header MUST be equal to the value of the Length-Remaining
variable. It follows from the use of a Content-Length header that chunked transfer coding (as specified
in [RFC2616] section 3.6.1) MUST NOT be used.

The client SHOULD specify the X-Accept-Authentication (section 2.2.1.9) header.<3>

If the client is responding to an HTTP authentication challenge, it MUST include the Authorization
header (as specified in [RFC2616] section 14.8) if the challenge is from a server, or the Proxy-

Authorization header (as specified in [RFC2616] section 14.34) if the challenge is from a proxy.

The Cookie (section 2.2.1.3) header MUST be included in the request. The push-id cookie MUST be
included on the Cookie header, and the value of Push-ID variable in the abstract data model MUST be
used as the value for that cookie.

Next, the client MUST send the request line and headers of the PushStart request but not the message
body.

24 / 56

[MS-WMHTTP-Diff] - v20180912
Windows Media HTTP Push Distribution Protocol
Copyright © 2018 Microsoft Corporation
Release: September 12, 2018

If a PushStart request has not been previously and successfully sent, then the client MUST send the
$H packet at this time, as specified in section 3.1.4.2, and Length-Remaining MUST be decreased by

the number of bytes in the $H packet.

The client MUST then notify the higher layer that it has sent the PushStart request because the

sending of this request might trigger events from the higher layer.

The client MUST then wait for a higher-layer triggered event or for the response to the PushStart
request to be received. How to process the response is specified in section 3.1.5.2.

3.1.4.3 ASF Packet Is Available to Send

Notification that an ASF packet is available to send occurs while the client is sending a PushStart
request, as specified in section 3.1.4.2.1. At this point, the client has already sent the request line and
the HTTP headers of the PushStart request, but has not yet completed sending the message body of
the request.

The higher layer MUST provide an ASF data packet to send to the server.

In order to send the ASF packet, the value of the Length-Remaining variable in the abstract data

model MUST be greater than zero. If the value of the Length-Remaining variable is zero, the ASF
data packet cannot be accepted at this time, and the higher layer MUST hold on to the ASF data
packet (that is, queue it) until Length-Remaining becomes greater than zero.

When sending the ASF packet, the client MUST encapsulate it in a $D packet, according to the rules
specified in section 2.2.3.3.

If the value of Length-Remaining is greater than the size of the $D packet, in bytes, plus the size of
the framing header, the client MUST send the $D packet to the server and the value of Length-

Remaining MUST be decreased by the number of bytes in the $D packet.

If the size of the $D packet, in bytes, plus the size of the framing header, is larger than the value of
the Length-Remaining variable in the abstract data model, the client MUST send an $F packet to the
server, as specified in section 2.2.3.5. The size of the Payload field in the $F packet MUST be equal to

the value of Length-Remaining minus the framing header, except if Length-Remaining is greater
than 65535. If Length-Remaining is greater than 65535, the client MUST send multiple $F packets,

choosing the size of each $F packet such that the sum of all sizes of $F packets equal the value of
Length-Remaining. The value of Length-Remaining MUST then be set to zero.

If the client is sending one or more $F packets, the ASF data packet MUST be returned to the higher
layer (that is, queued at the higher layer). Because Length-Remaining is zero, the ASF data packet
cannot be sent at this time.

If the value of Length-Remaining is now equal to zero, the client MUST wait for the response to the
PushStart request to be received.

Otherwise, the client MUST wait for either another higher-layer triggered event or for the response to
the PushStart request to be received.

How to process the response to the PushStart request is specified in section 3.1.5.2.

3.1.4.4 Notification of the Last Packet

Notification that the last ASF packet has been sent occurs while the client is sending a PushStart
request, as specified in section 3.1.4.2.1. At this point, the client has already sent the PushStart
request line and the HTTP headers but has not yet completed sending the message body of the
request.

25 / 56

[MS-WMHTTP-Diff] - v20180912
Windows Media HTTP Push Distribution Protocol
Copyright © 2018 Microsoft Corporation
Release: September 12, 2018

The value of the Length-Remaining variable in the abstract data model MUST be greater than zero.
If the value of the Length-Remaining variable is zero, the notification cannot be accepted at this

time, and the higher layer MUST hold on to the notification (that is, queue it) until Length-
Remaining becomes greater than zero.

If the value of Length-Remaining is less than eight, the client MUST send an $F packet to the
server, as specified in section 2.2.3.5. The size of the Payload field in the $F packet MUST be equal to
four. The value of Length-Remaining MUST then be set to zero.

If the client is sending an $F packet, the notification MUST be returned to the higher layer (that is,
queued at the higher layer). Because Length-Remaining is zero, the notification cannot be
processed at this time.

In case the value of Length-Remaining is greater than or equal to eight, the client MUST create an

$E packet.

The higher layer MUST specify if a new ASF file header is forthcoming, that is, if there are additional
entries in the server side playlist, or if this was the last entry in the playlist, so that the Reason field

in the $E packet can be filled in correctly.

If the value of Length-Remaining is greater than or equal to eight, then the client MUST send the $E
packet to the server, and the value of Length-Remaining MUST be decreased by eight.

If the $E packet was sent to the server, and the value of the Reason field was not equal to
0x00000001 (which means that there is not a new ASF file header forthcoming), then the client
SHOULD close the TCP connection to the server. This action also ends the streaming session. All
session states SHOULD be deleted and this event MUST be reported to the higher layer.

If the TCP connection to the server is still open, and if the value of Length-Remaining is now equal to
zero, the client MUST wait for the response to the PushStart request to be received.

Otherwise, as long as the TCP connection is still open, the client MUST wait for either another higher-

layer triggered event or for the response to the PushStart request to be received.

How to process the response to the PushStart request is specified in section 3.1.5.2.

3.1.4.5 Notification of New ASF Header File

As a prerequisite for notification that a new ASF header file is available, the higher layer MUST already
have notified the server that it has sent the last ASF data packet for the previous playlist entry, as
specified in section 3.1.4.4.

This event occurs while the client is sending a PushStart request. At this point, the client has already
sent the request line and the HTTP headers of the PushStart request, and it has sent an $E packet, but
it has not yet completed sending the message body of the request.

The value of the Length-Remaining variable in the abstract data model MUST be greater than zero.

If the value of the Length-Remaining variable is zero, the ASF file header cannot be accepted at this
time, and the higher layer MUST hold on to the ASF file header (that is, queue it) until Length-
Remaining becomes greater than zero.

The higher layer MUST provide an ASF file header to send to the server. The client MUST encapsulate
it in a $C packet, according to the rules specified in section 2.2.3.2.

If the size of the $C packet, in bytes, plus 4, is larger than the value of the Length-Remaining
variable in the abstract data model, the client MUST send an $F packet to the server. The size of the

Payload field in the $F packet MUST be equal to the value of Length-Remaining minus 4, except if
Length-Remaining is greater than 65535. If Length-Remaining is greater than 65535, the client
MUST send multiple $F packets, choosing the size of each $F packet such that the sum of all sizes of

26 / 56

[MS-WMHTTP-Diff] - v20180912
Windows Media HTTP Push Distribution Protocol
Copyright © 2018 Microsoft Corporation
Release: September 12, 2018

$F packets equal the value of Length-Remaining. The value of Length-Remaining MUST then be
set to zero.

If the client is sending one or more $F packets, the ASF file header MUST be returned to the higher
layer (that is, queued at the higher layer). Because Length-Remaining is zero, the ASF file header

cannot be sent at this time.

If the value of Length-Remaining is greater than zero, the client MUST send the $C packet to the
server and the value of Length-Remaining MUST be decreased by the number of bytes in the $C
packet.

If the value of Length-Remaining is now equal to zero, the client MUST wait for the response to the
PushStart request to be received.

Otherwise, the client MUST wait for either another higher-layer triggered event or for the response to

the PushStart request to be received.

How to process the response to the PushStart request is specified in section 3.1.5.2.

3.1.5 Message Processing Events and Sequencing Rules

3.1.5.1 Receiving a PushSetup Response

The client MUST verify that the response adheres to the syntax specified in section 2.2.2.1.

If the HTTP status code in the response is in the range 300 through 305, the server is requesting the
client to connect to another server. The client MUST connect to the server specified in the response,

by following the rules as specified in [RFC2616] section 10.3. A brief summary of the rules is, if the
status code is 305, the URL on the Location header (as specified in [RFC2616] section 14.30) is for a
proxy, and the URL that is used in the PushSetup request MUST remain unchanged. For status codes
300 through 304, the URL on the Location header MUST replace the URL used in the PushSetup
request. The client MUST close the current TCP connection and establish a new TCP connection to the
server or proxy server, as appropriate, depending on the status code. If a proxy server is used, the

value of the UsingProxy flag in the abstract data model MUST be set to one. Otherwise, it MUST be
set to zero. The client MUST then continue by following the steps specified in section 3.1.4.1.1.

If the HTTP status code in the response is 401, the server requires access authentication. Status code
407 means that a proxy server requires access authentication. The rules for access authentication, as
specified in [RFC2616] section 11, MUST be followed. When the client is ready to resubmit the HTTP
request with the authentication credentials that the server requested, the client MUST establish a new
TCP connection to the server and send the HTTP request on that connection. When resubmitting the

request, the client MUST follow the steps specified in section 3.1.4.1.1.<4>

Otherwise, if the HTTP status code indicates that the request succeeded, the client MUST perform the
following steps:

1. The client MUST inspect the Server (section 2.2.1.5) header in the response. If the Server header
is missing or if the server-token parameter on the Server header does not match any of the values
used by this protocol (as specified in [MS-WMSP] section 2.2.1.5), the server is not compatible

with the Windows Media HTTP Push Distribution Protocol and is probably a regular HTTP web

server. Because this protocol does not interoperate with incompatible servers, this incompatibility
MUST be treated as an error and reported as such to the higher layer.

2. If the Set-Cookie (section 2.2.1.6) header is present in the response, the value of the Push-ID
variable in the abstract data model MUST be set to the value of the push-id cookie. Any other
cookies that are specified SHOULD be saved for inclusion in the Cookie header in subsequent
requests.

27 / 56

[MS-WMHTTP-Diff] - v20180912
Windows Media HTTP Push Distribution Protocol
Copyright © 2018 Microsoft Corporation
Release: September 12, 2018

3. If the Via header (as specified in [RFC2616] section 14.45) is present in the response, the value
of the UsingProxy flag in the abstract data model MUST be set to one.

Note Proxy servers that only support HTTP 1.0 are not likely to send the Via header.

4. The client SHOULD keep the TCP connection to the server open, so that it can be used for sending

the PushStart request.

5. The client MUST inform the higher layer that the PushSetup request succeeded and that it is now
possible to start streaming data to the server. The client MUST wait for a higher-layer triggered
event.

3.1.5.2 Receiving a PushStart Response

The client MUST verify that the response adheres to the syntax specified in section 2.2.2.2.

If the HTTP status code in the response is 401, the server requires access authentication. Status code
407 means that a proxy server requires access authentication. The rules for access authentication as

specified in [RFC2616] section 11 MUST be followed. If the value of the Length-Remaining variable
in the abstract data model is greater than zero, the client MUST close the TCP connection. Otherwise,

the client SHOULD keep the TCP connection open because it will be needed to resubmit the request.
When the client is ready to resubmit the HTTP request with the authentication credentials that the
server requested, the HTTP request MUST be sent on the same TCP connection on which the 401 or
407 response was received, unless that TCP connection has been closed. If the TCP connection has
been closed, the client MUST establish a new TCP connection to the server and send the HTTP request
on that connection. When resubmitting the request, the client MUST follow the steps specified in
section 3.1.4.2.1.<5>

Otherwise, if the HTTP status code indicates that the request succeeded, the client MUST perform the
following steps:

1. The client MUST inspect the Server header in the response. If the Server header is missing, or if
the server-token parameter on the Server header does not match any of the values used by this
protocol (as specified in [MS-WMSP] section 2.2.1.5), the server is not compatible with the

Windows Media HTTP Push Distribution Protocol and is probably a regular HTTP web server.

Because this protocol does not interoperate with incompatible servers, this incompatibility MUST
be treated as an error and reported as such to the higher layer.

2. If the Set-Cookie header is present in the response, the value of the Push-ID variable in the
abstract data model MUST be set to the value of the push-id cookie. Any other cookies specified
SHOULD be saved for inclusion in the Cookie header in subsequent requests.

3. If the Via header (as specified in [RFC2616] section 14.45) is present in the response, the value
of the UsingProxy flag in the abstract data model MUST be set to one.

Note Proxy servers that only support HTTP 1.0 are not likely to send the Via header.

4. The client MUST send a PushStart request to the server, as specified in section 3.1.4.2.1.

3.1.6 Timer Events

None.

28 / 56

[MS-WMHTTP-Diff] - v20180912
Windows Media HTTP Push Distribution Protocol
Copyright © 2018 Microsoft Corporation
Release: September 12, 2018

3.1.7 Other Local Events

3.1.7.1 TCP Connection Is Disconnected

If the TCP connection to the server is disconnected when the client has sent a request (but before it
has completely received the response), and it was not the client itself that initiated the disconnection,
the client MUST report this as an error to the higher layer.<6>

3.2 Server Details

None.

3.2.1 Abstract Data Model

This section describes a conceptual model of possible data organization that an implementation
maintains to participate in this protocol. The described organization is provided to facilitate the

explanation of how the protocol behaves. This document does not mandate that implementations
adhere to this model as long as their external behavior is consistent with that described in this
document.

AutoDestroy: This flag is set to TRUE if the resource identified by the URL in the PushSetup or

PushStart requests (sometimes called "publishing point") is to be deleted at the end of the
streaming session. The initial value of this flag is FALSE.

Push-ID: This string variable stores an identifier assigned by the server for the current streaming
session. The initial value is undefined.

3.2.2 Timers

Idle-Timeout: This timer is used for cleaning up unused session states during a HTTP PushStart
interaction. If the client has not sent any new $H, $D and $C packets (within the timeout period), then
the expiry of this timer allows the server to delete the session state. The minimum allowed value for

the time-out period is 10 seconds, and the maximum value is 4,294,967,295 milliseconds. The default
value of this timer is 60 seconds.

Inactivity-Timeout: This timer is used for cleaning up unused session states between PushStart
transactions. The Inactivity-Timeout timer determines the amount of time allowed on a per session
basis between PushSetup and PushStart transactions, and between PushStart transactions. The expiry
of this timer allows the server to delete the session state. The minimum allowed value for the time-out
period is zero seconds; there is no maximum value. The default value of this timer is 120
seconds.<7>

3.2.3 Initialization

Initialization of the protocol occurs when a PushSetup request is received and the request did not
specify a push-id cookie on the Cookie header or the value of the push-id cookie did not match the
value of the Push-ID variable.

The variables defined by the abstract data model MUST initially assume their default values. Variables
that do not have a default defined MUST be initialized as follows.

The value of the Push-ID variable SHOULD be assigned to a random alphanumerical string and MUST
NOT exceed 255 characters in length. If the server allows multiple simultaneous streaming sessions,
each instance of the protocol state MUST use a different value for the Push-ID variable. The Push-ID
variable MUST NOT be set to the string "0".

The Idle-Timeout timer MUST be started.

29 / 56

[MS-WMHTTP-Diff] - v20180912
Windows Media HTTP Push Distribution Protocol
Copyright © 2018 Microsoft Corporation
Release: September 12, 2018

If the Inactivity-Timer is already running during the initialization of the protocol, then its state MUST
NOT be changed; otherwise, the inactivity timer MUST be stopped.

3.2.4 Higher-Layer Triggered Events

3.2.4.1 Administrative Disconnect

This event occurs when the server is receiving the message body of a PushStart
request (section 2.2.2.2) and the server administrator wants to disconnect a client from the server.

The server MUST send a PushStart response (section 3.2.5.2.1) with a valid HTTP error status code as
specified in [RFC2616]. The response MUST be sent immediately; that is, without waiting for the
complete message body of the request to be received.

If the value of the AutoDestroy flag in the abstract data model is TRUE, the server SHOULD remove
the publishing point; that is, the resource identified by the client in the PushStart request.

After having sent the response, if any, the server MUST close the TCP connection to the client.

The server MUST delete all session state.

3.2.5 Message Processing Events and Sequencing Rules

3.2.5.1 Receiving a PushSetup Request

The server MUST inspect the User-Agent header in the HTTP request. If the User-Agent header is
missing, or if the user-agent-data parameter on the User-Agent header does not adhere to the syntax
specified in section 2.2.1.8, the client is not compatible with the Windows Media HTTP Push

Distribution Protocol and is probably a regular HTTP web client. Because this protocol does not
interoperate with incompatible clients, this incompatibility MUST be treated as an error. The server
SHOULD respond with a success code, or the server MAY respond to the request with an HTTP error
status code, or the server MAY return data that redirects the web client to some other suitable

URL.<8>

The server MUST validate that the HTTP request adheres to the syntax for PushSetup
requests (section 2.2.2.1). If the validation fails, the server MUST respond with a valid HTTP error

status code as specified in [RFC2616].

The server MUST check with the higher layer to determine whether the client will be redirected to a
different server or to a proxy server (The presence, or absence, of a Via header in the request can be
used to determine whether the request was delivered directly by the client or through a proxy server.
The Via header is specified in [RFC2616] section 14.45).

If the higher layer indicates that the client shall be redirected to another server, the server MUST
respond with status code 302. If the client shall be redirected to a proxy server, the server SHOULD

respond with status code 305. In both cases, the URL of the server, or proxy server, MUST be
specified on the Location header (as specified in [RFC2616] section 14.30) in the response.

After having sent a response with status codes 302 or 305, the server MUST delete the session state,
if any, and close the TCP connection to the client.

If the higher layer requires the client to authenticate itself, the server MUST process the Authorization
header (as specified in [RFC2616] section 14.8) if it is present in the request. If the server is acting as

a proxy server, it MUST process the Proxy-Authorization header (as specified in [RFC2616] section
14.34) instead of the Authorization header.<9>

If it is necessary to send an authentication challenge to the client (for example, because the
Authorization header was missing or specified incorrect credentials), the server SHOULD use one of

30 / 56

[MS-WMHTTP-Diff] - v20180912
Windows Media HTTP Push Distribution Protocol
Copyright © 2018 Microsoft Corporation
Release: September 12, 2018

the authentication schemes that the client listed on the X-Accept-Authentication header in the request,
if that header is present. If the X-Accept-Authentication header is not present, then the server MUST

use one of the authentication schemes that are enabled for the content.

If the server sends an authentication challenge to the client, it MUST be specified using the WWW-

Authenticate header (as specified in [RFC2616] section 14.34), and the status code of the response
MUST be 401. If the server is acting as a proxy server, it MUST specify the Proxy-Authenticate header
(as specified in [RFC2616] section 14.33) instead of the WWW-Authenticate header, and the status
code of the response MUST be 407.<10>

After having sent a response with status codes 401 or 407, if the authentication scheme used in the
authentication challenge is NTLM [MS-NTHT], the server SHOULD NOT close the TCP connection to the
client. The Inactivity-Timeout timer MUST be started if it is not already running or MUST be restarted

if it is already running.

Note If the request is a HTTP 1.0 request and the server is sending an authentication challenge to
the client, and the authentication scheme is NTLM, then it is necessary to include the "Connection:
keep-alive" header in the response. For details about the usage of the Connection header in HTTP

1.0, see section 19.7.1 in [RFC2068].

If the server is not sending a response with an error status code, and if the request includes a Cookie

header with a push-id cookie, and the value of the push-id cookie is not equal to "0", the server MUST
load the state that has a Push-ID variable with the same value as the value of the push-id cookie. If
the matching state cannot be found, this MUST be treated as an error. The server MUST respond to
the client with a valid HTTP error status code as specified in [RFC2616]. If the matching state is found
and the server is currently receiving streaming data from the client on another TCP connection (that
is, a PushStart request is in progress and the $E(0) (section 2.2.3.4) packet has not been received),
this is an error situation. In this case, the server MUST respond to the PushSetup request with a valid

HTTP error status code as specified in [RFC2616].

The server MUST check with the higher layer that the URL the client specified in the request is valid. A
valid URL might specify a resource that does not yet exist, in which case the message body of the
request MUST include the Template-URL directive that specifies an existing resource that the server is
supposed to use as a template when creating the new resource.

If the URL is invalid, this is an error, and the server MUST respond with a valid HTTP error status code
as specified in [RFC2616].

If the AutoDestroy directive is present in the message body, the value of the AutoDestroy flag in the
abstract data model MUST be set to TRUE if the directive specified the value 1.

If the server is not sending a response with an error status code (for example, 302 or 305), and if the
request does not specify a push-id cookie on a Cookie header, or if the value of the push-id cookie is
"0", the server MUST create a new state by performing the initialization procedure as specified in
section 3.2.3.

The PushSetup response MUST follow the rules in PushSetup request (section 2.2.2.1).

Because the PushSetup response does not have a message body, the status code in the response
SHOULD be 204. The status code MAY be 200.

The response MUST include a Set-Cookie header, and the value of the push-id cookie on that header
MUST be equal to the value of the Push-ID variable in the abstract data model.

The response sent by the server MUST NOT specify any of the headers and tokens specified in section
2.2.1 that are defined only for use in requests.

After having sent the response, the TCP connection to the client SHOULD be left open as the client is
likely to want to send a PushStart request on the same connection.

31 / 56

[MS-WMHTTP-Diff] - v20180912
Windows Media HTTP Push Distribution Protocol
Copyright © 2018 Microsoft Corporation
Release: September 12, 2018

The Inactivity-Timeout timer MUST be started if it is not already running or restarted if it is already
running.

The server MUST wait for the PushStart request to be received. As soon as the request line and all of
the HTTP headers in the PushStart request have been received, the server MUST process the rules as

specified in section 3.2.5.2. The server MUST NOT wait for the entire message body of the PushStart
request to be received before processing the request.

3.2.5.2 Receiving a PushStart Request

The server MUST validate that the HTTP request line and the HTTP message headers adhere to the
syntax for PushStart requests (section 2.2.2.2). If the validation fails, the server MUST respond with a
valid HTTP error status code as specified in [RFC2616].

If the higher layer requires the client to authenticate itself, the server MUST process the Authorization
header (as specified in [RFC2616] section 14.8), if it is present in the request. If the server is acting
as a proxy server, it MUST process the Proxy-Authorization header (as specified in [RFC2616] section
14.34) instead of the Authorization header.<11>

Note NTLM authentication is not supported in the PushStart request.

If it is necessary to send an authentication challenge to the client (for example, because the
Authorization header was missing or specified incorrect credentials), the server MAY use one of the
authentication schemes that the client listed on the X-Accept-Authentication header in the request, if
that header is present.

If the server sends an authentication challenge to the client, it MUST be specified by using the WWW-
Authenticate header (as specified in [RFC2616] section 14.47), and the status code of the response

MUST be 401. If the server is acting as a proxy server, it MUST specify the Proxy-Authenticate header
(as specified in [RFC2616] section 14.33) instead of the WWW-Authenticate header, and the status
code of the response MUST be 407.<12>

After having sent a response with status codes 401 or 407 the server SHOULD NOT close the TCP
connection to the client. The Idle-Timeout timer MUST be started if it is not already running or

restarted if it is already running.

If the server is not sending a response with an error status code, the server MUST load the state that
has a Push-ID variable with the same value as the value of the push-id (section 2.2.1.3.1) cookie on
the Cookie header. If the matching state cannot be found, or if the client did not specify a push-id
cookie, this MUST be treated as an error.<13> The server MUST respond to the client with a valid
HTTP error status code as specified in [RFC2616]. If the matching state is found and the server is
currently receiving streaming data from the client on another TCP connection (that is, a previous
PushStart request is still in progress), this is an error situation. In this case, the server MUST respond

to the new PushStart request with a valid HTTP error status code as specified in [RFC2616].

The server MUST check with the higher layer that the URL that the client specified in the request is
valid. If the URL is invalid, this is an error, and the server MUST respond with a valid HTTP error
status code as specified in [RFC2616].

The Idle-Timeout and Inactivity-Timeout timer MUST be stopped.

If the server is sending a response with an error status code, or if the entire message body of the
PushStart request has been received, as determined by the Content-Length header (as specified in

[RFC2616] section 14.13), the server MUST send a PushStart response. How to send a PushStart
response is specified in section 3.2.5.2.1.

Otherwise, the Idle-Timeout timer MUST be started, and the server MUST wait for a higher-layer
triggered event or one of the packet types specified in section 2.2.3 to be received as part of the HTTP

32 / 56

[MS-WMHTTP-Diff] - v20180912
Windows Media HTTP Push Distribution Protocol
Copyright © 2018 Microsoft Corporation
Release: September 12, 2018

message body. If this is the first PushStart request received for this session, the first packet MUST be
an $H packet.

How to process a $C packet is specified in section 3.2.5.6. How to process a $D packet is specified in
section 3.2.5.4. How to process an $E packet is specified in section 3.2.5.5. How to process an $F

packet is specified in section 3.2.5.7. How to process an $H packet is specified in section 3.2.5.3.

3.2.5.2.1 Sending a PushStart Response

The PushStart response MUST follow the rules as specified in section 2.2.2.2.

If the response is not intended to convey a particular error status code, the status code in the
response SHOULD be 204 because the PushStart response does not have a message body. The status
code MAY be 200.

The response SHOULD include a Set-Cookie header, and the value of the push-id cookie on that
header MUST be equal to the value of the Push-ID variable in the abstract data model.

The response sent by the server MUST NOT specify any of the headers and tokens specified in section
2.2.1, which are defined only for use in requests.

After having sent the response, if the status code did not indicate an error, the TCP connection to the
client SHOULD be left open because the client likely will send another PushStart request on the same

connection.

Unless the session is being terminated, the server MUST stop the Idle-Timeout timer, MUST start the
Inactivity-Timeout timer, and MUST wait for a PushSetup request or a PushStart request to be
received.

How to process a PushSetup request is specified in section 3.2.5.1. If a PushStart request is being
received, as soon as the request line and all of the HTTP headers in that request have been received,
the server MUST process the rules as specified in section 3.2.5.2. The server MUST NOT wait for the

entire message body of the PushStart request to be received before processing the request.

3.2.5.3 Receiving an $H Packet

The server MUST validate that the packet adheres to the syntax for $H (Header) (section 2.2.3.6)
packets.

The server MUST make the ASF file header available to the higher layer.

If there are no bytes left to receive in the message body of the PushStart request, the server MUST
send a PushStart response, as is specified in section 3.2.5.2.1.

Otherwise, the server MUST restart the Idle-Timeout timer and MUST wait for a higher-layer triggered
event or for a $D, $E, or $F packet.

How to process a $D packet is specified in section 3.2.5.4. How to process an $E packet is specified in

section 3.2.5.5. How to process an $F packet is specified in section 3.2.5.7.

3.2.5.4 Receiving a $D Packet

The server MUST validate that the packet adheres to the syntax for $D (Data) (section 2.2.3.3)
packets.

The server MUST make the ASF data packet available to the higher layer.

If there are no bytes left to receive in the message body of the PushStart request, the server MUST
send a PushStart response, as is specified in section 3.2.5.2.1.

33 / 56

[MS-WMHTTP-Diff] - v20180912
Windows Media HTTP Push Distribution Protocol
Copyright © 2018 Microsoft Corporation
Release: September 12, 2018

Otherwise, the server MUST restart the Idle-Timeout timer and MUST wait for a higher-layer triggered
event or for a $D, $E, or $F packet.

How to process an $E packet is specified in section 3.2.5.5. How to process an $F packet is specified in
section 3.2.5.7.

3.2.5.5 Receiving an $E Packet

The server MUST validate that the packet adheres to the syntax for $E (End-of-Stream
Notification) (section 2.2.3.4) packets.

The server MUST report to the higher layer that no more ASF data packets will be received for the
current playlist entry.

If the value of the Reason field in the $E packet is not 0x00000001, the server MAY close the TCP
connection to the client without sending a PushStart response and MUST delete the session state. If
the value of the AutoDestroy flag is TRUE, deleting the session state includes removing the
"publishing point", that is, the resource identified by the client in the PushStart request.

If the value of the Reason field in the $E packet is 0x00000001, and if there are no bytes left to

receive in the message body of the PushStart request, the server MUST send a PushStart response.
How to send a PushStart response is specified in section 3.2.5.2.1.

If the value of the Reason field in the $E packet is 0x00000001, and if there are bytes left to receive
in the message body of the PushStart request, then the server MUST wait for a higher-layer triggered
event or for a $C, $E, or $F packet.

How to process a $C packet is specified in section 3.2.5.6. How to process an $F packet is specified in
section 3.2.5.7.<14>

3.2.5.6 Receiving a $C Packet

The server MUST validate that the packet adheres to the syntax for $C (Stream Change

Notification) (section 2.2.3.2) packets.

The server MUST make the ASF file header available to the higher layer.

If there are no bytes left to receive in the message body of the PushStart request, the server MUST
send a PushStart response, as is specified in section 3.2.5.2.1.

Otherwise, the server MUST restart the Idle-Timeout timer and MUST wait for a higher-layer triggered
event or for a $D, $E, or $F packet.

How to process a $D packet is specified in section 3.2.5.4. How to process an $E packet is specified in
section 3.2.5.5. How to process an $F packet is specified in section 3.2.5.7.

3.2.5.7 Receiving an $F Packet

The server MUST validate that the packet adheres to the syntax for $F (Filler) (section 2.2.3.5)

packets.

If there are no bytes left to receive in the message body of the PushStart request, the server MUST

send a PushStart response, as is specified in section 3.2.5.2.1.

Otherwise, the server MUST wait for a higher-layer triggered event or for a $C, $D, $E, or $F packet.

How to process a $C packet is specified in section 3.2.5.6. How to process a $D packet is specified in
section 3.2.5.4. How to process an $E packet is specified in section 3.2.5.5.

34 / 56

[MS-WMHTTP-Diff] - v20180912
Windows Media HTTP Push Distribution Protocol
Copyright © 2018 Microsoft Corporation
Release: September 12, 2018

3.2.6 Timer Events

3.2.6.1 Idle-Timeout Timer Expires

If the server is currently receiving a PushStart request, the server MUST send a PushStart response
with some suitable HTTP status code, such as 408. The response MUST be sent immediately, that is,
without waiting for the complete message body of the request to be received. How to send a
PushStart response is specified in section 3.2.5.2.1.

If the value of the AutoDestroy flag in the abstract data model is TRUE, the server SHOULD remove

the "publishing point", that is, the resource identified by the client in the PushStart request.

After having sent the response, if any, the server MUST close the TCP connection to the client.

The server MUST delete all session state.

3.2.6.2 Inactivity-Timeout Timer Expires

If the value of the AutoDestroy flag in the abstract data model is TRUE, the server SHOULD remove
the "publishing point", that is, the resource identified by the client in the PushStart request.

If the server has a TCP connection to the client, the connection MUST be closed.

The server MUST then delete all session state.

3.2.7 Other Local Events

3.2.7.1 TCP Connection Is Disconnected

If the TCP connection to the client is disconnected when the server has started to receive a request
but before it has completely received the entire request (including the message body) and it was not
the server itself that initiated the disconnection, the server SHOULD NOT treat this as a fatal error.

Instead, the Idle-Timeout timer SHOULD be left running, allowing the client to resume the streaming
session if it connects to the server again and sends a new request before the Idle-Timeout timer
expires.

If the TCP connection to the client is disconnected between requests (for example, after a PushStart

request) and its message body has been completely received, the Idle-Timeout timer MUST be
stopped and the Inactivity-Timeout timer MUST be started.

35 / 56

[MS-WMHTTP-Diff] - v20180912
Windows Media HTTP Push Distribution Protocol
Copyright © 2018 Microsoft Corporation
Release: September 12, 2018

4 Protocol Examples

4.1 General Push Distribution Sequence

The following sequence occurs between a client and a server during a push distribution.

1. The client sends a PushSetup request.

2. If the server requires the client to be authenticated, the server and client exchange access
authentication HTTP headers as specified in [RFC2616] section 11.

Note The HTTP exchanges required for authentication are defined by the selected authentication
scheme.

3. If authentication is not required, or if authentication has succeeded, the server responds with a

"204 No Content" HTTP response.

4. The client sends a PushStart request, followed by an $H packet and $D packets.

5. After all $D packets have been sent to the server, the client sends an $E packet with the Reason
field set to 0x00000000 to indicate that the data transfer has been completed. The server then
closes the connection after the reception of the $E(0x00000000) packet.

6. The client closes the TCP connection to the server. This action also ends the streaming session.

The following figure shows a message sequence with a single PushStart request with timer state

changes.

36 / 56

[MS-WMHTTP-Diff] - v20180912
Windows Media HTTP Push Distribution Protocol
Copyright © 2018 Microsoft Corporation
Release: September 12, 2018

Figure 1: General push distribution sequence with a single PushStart request

The timer events in the preceding diagram are as follows.

▪ E1: The server starts the Inactivity-Timer.

▪ E2: The server stops the Inactivity-Timeout timer, and starts the Idle-Timeout timer.

▪ E3: The server restarts the Idle-Timer.

▪ E4: The server restarts the Idle-Timer.

▪ D1: The server deletes the session state, including the timer.

▪ C1: The client closes the TCP connection.

4.2 General Push Distribution Sequence with $F Packets

The following sequence occurs between a client and a server during a push distribution.

1. The client sends a PushSetup request.

2. If the server requires the client to be authenticated, the server and client exchange access
authentication HTTP headers as specified in [RFC2616] section 11.

37 / 56

[MS-WMHTTP-Diff] - v20180912
Windows Media HTTP Push Distribution Protocol
Copyright © 2018 Microsoft Corporation
Release: September 12, 2018

Note The HTTP exchanges required for authentication are defined by the selected authentication
scheme.

3. If authentication is not required, or if authentication has succeeded, the server responds with a
"204 No Content" HTTP response.

4. The client sends a PushStart request, followed by an $H packet and $D packets.

5. The client sends $F filler packets to ensure that the total length of the message body equals the
size specified by the client in the Content-Length header.

6. When the client has sent the amount of data allowed in the PushStart request, the server
responds with a "204 No Content" HTTP response. The client then sends a new PushStart request,
followed by more $D packets.

7. The client sends $F filler packets to ensure that the total length of the message body equals the

size specified by the client in the Content-Length header.

8. When the client has sent the amount of data allowed in the PushStart request, the server

responds with a "204 No Content" HTTP response. The client then sends a new PushStart request,
followed by more $D packets.

9. After all $D packets have been sent to the server, the client sends an $E packet with the Reason
field set to 0x00000000 to indicate that the data transfer has been completed. The server then

closes the connection on receiving the $E(0x00000000) packet.

10. The client closes the TCP connection to the server. This action also ends the streaming session.

The following figure shows a message sequence with three PushStart requests. If it is possible for the
client to determine that a proxy HTTP server is used when connected to the server, then the client
sends Multiple PushStart requests (as specified in section 3.1.4.2.1). Windows clients send a single
PushStart request when HTTP proxy servers are not used.

38 / 56

[MS-WMHTTP-Diff] - v20180912
Windows Media HTTP Push Distribution Protocol
Copyright © 2018 Microsoft Corporation
Release: September 12, 2018

Figure 2: General push distribution sequence with $F packets and multiple PushStart
requests

4.3 Push Distribution with AutoDestroy and Template-URL

The following sequence occurs between a client and a server during a push distribution when the
AutoDestroy (section 2.2.2.1.2) directive is specified.

Note Access authentication has been omitted from this example for brevity.

1. The client sends a PushSetup request, setting the AutoDestroy directive to 1 and setting the

Template-URL to a publishing point.

2. The server responds with a "204 No Content" HTTP response.

39 / 56

[MS-WMHTTP-Diff] - v20180912
Windows Media HTTP Push Distribution Protocol
Copyright © 2018 Microsoft Corporation
Release: September 12, 2018

3. The publishing point specified in the PushSetup request is created by the server, using the same
settings on the server as the existing publishing point specified in the Template_URL.

4. The client sends a PushStart request, followed by an $H packet and $D packets.

5. When the client has sent the amount of data allowed in the PushStart request, the server

responds with a "204 No Content" HTTP response. The client then sends a new PushStart request
followed by more $D packets.

6. After all $D packets have been sent to the server, the client sends an $E packet with the Reason
field set to 0x00000000 to indicate that the data transfer has been completed. The server then
closes the connection on receiving the $E(0x00000000) packet.

7. The publishing point created in step 3 is removed by the server.

8. The client closes the TCP connection to the server. This action also ends the streaming session.

The following diagram shows the sequence described in this example. For simplicity, only a single
PushStart request is shown.

Figure 3: Push distribution with AutoDestroy

In the preceding diagram, the P1 callout identifies where the server obtains the settings to use from
the publishing point specified in the Template_URL

4.4 General Push Distribution Sequence with $C Packet

The following sequence occurs between a client and a server during a push distribution:

40 / 56

[MS-WMHTTP-Diff] - v20180912
Windows Media HTTP Push Distribution Protocol
Copyright © 2018 Microsoft Corporation
Release: September 12, 2018

1. The client sends a PushSetup request.

2. If the server requires the client to be authenticated, the server and client perform HTTP access

authentication as specified in [RFC2616] section 11.

Note The HTTP exchanges required for authentication are defined by the selected authentication

scheme.

If authentication is not required, or if authentication has succeeded, the server responds with a
"204 No Content" HTTP response.

3. The client sends a PushStart request, followed by an $H packet and $D packets.

4. After all $D packets have been sent to the server, the client sends an $E packet with the Reason
field set to 0x00000001 to indicate that the data transfer has been completed.

5. The $C packet is sent to the server to indicate the encoder switched to the next entry in a playlist

or otherwise made a change to the ASF file header.

6. After the $C packet is sent, the client sends the $D packets for the next entry.

7. After all $D packets have been sent to the server, the client sends an $E packet with the Reason
field set to 0x00000000 to indicate that the data transfer has been completed and closes the
connection. Due to the reliable nature of TCP, the client expects that any data that is sent to the
server is received.

The following figure shows the sequence described in this example.

Figure 4: General push distribution sequence with $C packet

41 / 56

[MS-WMHTTP-Diff] - v20180912
Windows Media HTTP Push Distribution Protocol
Copyright © 2018 Microsoft Corporation
Release: September 12, 2018

4.5 General Push Distribution Sequence with Server and Proxy Server

The following sequence occurs between a client, a proxy server and a server during a push
distribution.

Note Proxy servers and their behaviors are not defined by this protocol. For proxy-specific behavior,
please see [RFC2616].

1. The client sends a PushSetup request to the proxy server.

2. The proxy server forwards the PushSetup request to the server.

3. If the server requires the client to be authenticated, the server and client exchange access
authentication HTTP headers through the proxy server as specified in [RFC2616] section 11.

4. If authentication is not required, or if authentication has succeeded, the server responds with a

"204 No Content" HTTP response.

5. The proxy server then responds with a "204 No Content" HTTP response to the client.

6. The client sends a PushStart request, followed by an $H packet and $D packets.

7. The proxy server forwards the PushStart request, followed by the $H packet and $D packets.

8. The client sends $F filler packets to ensure that the total length of the message body equals the
size specified by the client in the Content-Length header.

9. The proxy server forwards the $F filler packets to the server.

10. When the client has sent the amount of data allowed in the PushStart request, the server
responds with a "204 No Content" HTTP response.

11. The proxy server forwards the response to the client.

12. The client then sends a new PushStart request, followed by more $D packets.

13. The proxy server forwards the new PushStart request, followed by more $D packets.

14. The client sends $F filler packets to ensure that the total length of the message body equals the

size specified by the client in the Content-Length header.

15. The proxy server forwards the $F filler packets to the server.

16. When the client has sent the amount of data allowed in the PushStart request, the server
responds with a "204 No Content" HTTP response.

17. The proxy server forwards the response to the client.

18. The client then sends a new PushStart request, followed by more $D packets.

19. After all $D packets have been sent to the server, the client sends an $E packet with the Reason

field set to 0x00000000 to indicate that the data transfer has been completed.

20. The proxy server forwards the $E packet to the server.

21. The server then closes the connection on receiving the $E(0x00000000) packet.

22. The client closes the TCP connection to the proxy server. This action also ends the streaming
session.

42 / 56

[MS-WMHTTP-Diff] - v20180912
Windows Media HTTP Push Distribution Protocol
Copyright © 2018 Microsoft Corporation
Release: September 12, 2018

The following figure shows a message sequence with three PushStart requests going through a proxy
server. If it is possible for the client to determine that a proxy HTTP server is used when connected to

the server, then the client sends multiple PushStart requests (as specified in section 3.1.4.2.1).

Figure 5: General push distribution sequence with Server and Proxy Server

4.6 Server Push State Diagram

The push state diagram reflects the server's states during the push distribution sequence specified in
section 4.1.

43 / 56

[MS-WMHTTP-Diff] - v20180912
Windows Media HTTP Push Distribution Protocol
Copyright © 2018 Microsoft Corporation
Release: September 12, 2018

Figure 6: Server push state diagram

All requests illustrated in the diagram are sent by the client to the server in the context of an HTTP
request message using the POST method. All server responses are in the context of an HTTP response
message.

In response to a PushSetup request the server evaluates the request and accepts or denies the
request as specified in section 3.2.5.1.

If the Idle-Timeout timer expires, the server closes the TCP connection as specified in section 3.2.6.1.

If accepted, the server responds with a response of request succeeded, and waits to receive a
PushStart request.

If the Inactivity Timeout timer expires, the server shall close the TCP connection as specified in section
3.2.6.2.

44 / 56

[MS-WMHTTP-Diff] - v20180912
Windows Media HTTP Push Distribution Protocol
Copyright © 2018 Microsoft Corporation
Release: September 12, 2018

After receiving the PushStart request, the server responds with an error or it loads the state that has a
Push-ID variable with the same value as the value of the push-id (section 2.2.1.3.1). If there are no

errors, the server begins to process the received packets.

If the PushStart request is done, or the TCP connection is closed, the server will go back to waiting for

a PushStart request.

If, while processing the packets, the Idle-Timeout timer expires or the server receives an $E packet
with the Reason field not equal to 0x00000001, then the server closes the session as specified in
section 3.2.6.1. $E packet processing is specified in section 3.2.5.5.

4.6.1 Expanded Streaming State Diagram

The expanded streaming state diagram reflects the valid transactions between received packets. This
diagram is a more detailed view of the "streaming state" in the server push state diagram in section
4.6.

Figure 7: Expanded Streaming State Diagram

In response to receiving the PushStart request, the server will wait to process subsequent packets. If
this is the initial PushStart request, then the server will expect to receive a $H packet. All subsequent

PushStart requests received by the server will enter the state diagram at the last known state.

If the server receives a $C, $D, or $H packet, the server will expect to receive either a $D, $E, or $F

packet. Information on processing the $C packets can be found in section 3.2.5.6. Information on
processing the $D packets can be found in section 3.2.5.4. Information on processing the $F packets
can be found in section 3.2.5.7.

If the server receives an $E packet with the Reason field not equal to 0x00000001, the server closes
the session as specified in section 3.2.5.5.

45 / 56

[MS-WMHTTP-Diff] - v20180912
Windows Media HTTP Push Distribution Protocol
Copyright © 2018 Microsoft Corporation
Release: September 12, 2018

If the server receives an $E packet with the Reason field equal to 0x00000001, the server will expect
to receive either a $C, $E, or $F packet. Information on processing the $E packets can be found in

section 3.2.5.5.

If the server receives an $F packet, the server will expect to receive either a $C, $D, $E, or $F packet.

Information on processing the $F packets can be found in section 3.2.5.7.

4.7 Client Push State Diagram

The push state diagram reflects the client's states during the push distribution sequence specified in

section 4.1.

Figure 8: Client push state diagram

All requests illustrated in the diagram are sent by the client to the server in the context of an HTTP
request message using the POST method. All server responses are in the context of an HTTP response
message.

Following the PushSetup request, the client verifies that the response adheres to the syntax specified
in section 2.2.2.2.

46 / 56

[MS-WMHTTP-Diff] - v20180912
Windows Media HTTP Push Distribution Protocol
Copyright © 2018 Microsoft Corporation
Release: September 12, 2018

If the response received by the client is a 401 or 407, then authentication is required as specified in
section 3.1.5.2. When the client is ready, the client shall resubmit the HTTP request with the

authentication credentials that the server requested. In the event the HTTP response indicates an
error other than 401 or 407, the session ends.

After the client has received a successful response from the server, the client evaluates the response,
and then send a PushStart request to the server, as specified in section 3.1.4.2.1. The client then
begins sending packets as specified in section 3.1.4.3.

While the client is in the PushStart_InProgress state, it can receive a notification that the last ASF
packet has been sent, as specified in section 3.1.4.2.1. This event causes a transition to the End state.

If the value of the Length-Remaining variable (section 3.1.1) reaches 0 while the client is in the
PushStart_InProgress state, then the client waits for a response to the PushStart request, as specified

in section 3.1.4.4. If the client is in PushStart_InProgress state and it receives a response to a
PushStart request, then it transitions to the PushSetup Complete state.

4.7.1 Expanded PushState_InProgress Diagram

The expanded PushState_InProgress diagram reflects the valid transactions between received
packets. This diagram is a more detailed view of the "streaming state" in the client push state diagram
in section 4.7.

Figure 9: Expanded Streaming State Diagram

The client enters the PushState_InProgress state in response to sending a PushStart request, as
specified in section 3.1.4.2.

If a PushStart request has not been previously and successfully sent, then the client sends the $H

packet at this time, as specified in section 3.1.4.2.

47 / 56

[MS-WMHTTP-Diff] - v20180912
Windows Media HTTP Push Distribution Protocol
Copyright © 2018 Microsoft Corporation
Release: September 12, 2018

If this is not the first PushStart request, then the client will enter this state diagram at the last
packet previously sent.

If the client has sent a $C, $D, or $H packet, the client will expect to send either a $D, $E, or $F
packet. Information on sending the $C packets can be found in section 3.1.4.5. Information on

sending the $D and $F packets can be found in section 3.1.4.3.

If the client sends $E packet with the Reason field not equal to 0x00000001, the client closes the
session as specified in section 3.1.4.4. If the client sends an $E packet with the Reason field equal to
0x00000001, the client will expect to send either a $C, $E, or $F packet. Information on sending the
$E packets can be found in section 3.1.4.4.

If the client is sending an $F packet, the client will expect to send either a $C, $D, $E, or $F packet.
Information on sending the $F packets can be found in section 3.1.4.3.

4.8 Message Exchange During Push Distribution

The following example illustrates the exchange of messages between a client and a server during a

push distribution. This example does not show the binary object headers, such as $C or $H.

 POST /pubPoint HTTP/1.1
 Content-Type: application/x-wms-pushsetup
 X-Accept-Authentication: Negotiate, NTLM, Digest
 User-Agent: WMEncoder/11.0.5721.5145
 Host: MediaServer
 Content-Length: 16
 Cache-Control: no-cache
 Cookie: push-id=0

 AutoDestroy: 1

 HTTP/1.1 401 Unauthorized
 Server: Cougar/9.5.5732.6324
 WWW-Authenticate: Negotiate
 Date: Mon, 01 Jan 2007 17:45:09 GMT
 Pragma: no-cache, timeout=60000
 Set-Cookie: push-id=4124758405
 Supported: com.microsoft.wm.srvppair, com.microsoft.wm.sswitch,
 com.microsoft.wm.predstrm, com.microsoft.wm.fastcache,
 com.microsoft.wm.startupprofile
 Content-Length: 0

 POST /pubPoint HTTP/1.1
 Content-Type: application/x-wms-pushsetup
 X-Accept-Authentication: Negotiate, NTLM, Digest
 User-Agent: WMEncoder/11.0.5721.5145
 Host: MediaServer
 Content-Length: 0
 Cache-Control: no-cache
 Cookie: push-id=4124758405
 Authorization: Negotiate
 TlRMTVNTUAABAAAAB4IIogAAAAAAAAAAAAAAAAAAAAAFASgKAAAADw==

 HTTP/1.1 401 Unauthorized
 Server: Cougar/9.5.5732.6324
 WWW-Authenticate: Negotiate
 TlRMTVNTUAACAAAADgAOADgAAAAFgoqio8hNyf
 74ihkAAAAAAAAAAFgAWABGAAAABgBkFgAAAA9XAE0AUwAyADIAMAA1AAIADgBXAE0AU
 wAyADIAMAA1AAEADgBXAE0AUwAyADIAMAA1AAQADgBXAE0AUwAyADIAMAA1AAMADgBXA
 E0AUwAyADIAMAA1AAcACABEkqlgclfHAQAAAAA=
 Date: Mon, 01 Jan 2007 17:45:16 GMT
 Pragma: no-cache, timeout=60000
 Set-Cookie: push-id=4124758405
 Supported: com.microsoft.wm.srvppair,
 com.microsoft.wm.sswitch, com.microsoft.wm.predstrm,

48 / 56

[MS-WMHTTP-Diff] - v20180912
Windows Media HTTP Push Distribution Protocol
Copyright © 2018 Microsoft Corporation
Release: September 12, 2018

 com.microsoft.wm.fastcache, com.microsoft.wm.startupprofile
 Content-Length: 0

 POST /pubPoint HTTP/1.1
 Content-Type: application/x-wms-pushsetup
 X-Accept-Authentication: Negotiate, NTLM, Digest
 User-Agent: WMEncoder/11.0.5721.5145
 Host: MediaServer
 Content-Length: 16
 Cache-Control: no-cache
 Cookie: push-id=4124758405
 Authorization: Negotiate
 TlRMTVNTUAADAAAAGAAYAIIAAAAYABgAmgAAABAAEABIAAAAGgAaAFgAAAAQABAAcg
 AAAAAAAACyAAAABYKIogUBKAoAAAAPQwBSAE0AVQBSAC0AWAAxAEEAZABtAGkAbgBpA
 HMAdAByAGEAdABvAHIAQwBSAE0AVQBSAC0AWAAxAOxCYicp6dvUAAAAAAAAAAAAAAAA
 AAAAAMBTLr8DoynvziDW1WTSjE40MItgYYsXDA==

 AutoDestroy: 1

 HTTP/1.1 204 No Content
 Server: Cougar/9.5.5732.6324
 Content-Length: 0
 Date: Mon, 01 Jan 2007 17:45:16 GMT
 Pragma: no-cache, timeout=60000
 Cache-Control: no-cache
 Set-Cookie: push-id=4124758405
 Supported: com.microsoft.wm.srvppair, com.microsoft.wm.sswitch,
 com.microsoft.wm.predstrm, com.microsoft.wm.fastcache,
 com.microsoft.wm.startupprofile

 POST /pubPoint HTTP/1.1
 Content-Type: application/x-wms-pushstart
 X-Accept-Authentication: Negotiate, NTLM, Digest
 User-Agent: WMEncoder/11.0.5721.5145
 Host: MediaServer
 Content-Length: 2147483647
 Cache-Control: no-cache
 Cookie: push-id=4124758405

 HTTP/1.1 204 No Content
 Server: Cougar/9.5.5732.6324
 Content-Length: 0
 Date: Mon, 01 Jan 2007 17:45:20 GMT
 Pragma: no-cache, timeout=60000
 Cache-Control: no-cache
 Set-Cookie: push-id=4124758405
 Supported: com.microsoft.wm.srvppair, com.microsoft.wm.sswitch,
 com.microsoft.wm.predstrm, com.microsoft.wm.fastcache,
 com.microsoft.wm.startupprofile

49 / 56

[MS-WMHTTP-Diff] - v20180912
Windows Media HTTP Push Distribution Protocol
Copyright © 2018 Microsoft Corporation
Release: September 12, 2018

5 Security

5.1 Security Considerations for Implementers

The protocol is vulnerable to a session hijacking attack in which the attacker guesses the value of the

push-id (section 2.2.1.3.1) cookie on the Set-Cookie header and the TCP port number used by the
client. This approach works because the attacker makes it appear to the server that the TCP
connection to the client has been lost. The attacker then establishes its own TCP connection to the
server and sends a request with a Cookie header by using the victim's push-id value. To mitigate the
attack, server implementations use a good random number generator when creating push-id values.
Also, if HTTP access authentication is used, the server authenticates access at least once on each new

URL or TCP connection, or preferably, on each PushSetup and PushStart request.

The protocol does not provide support for encryption at the transport level. A client that uses NTLM
with mutual authentication risks sending sensitive data to a spurious/malicious server, therefore each
implementer needs to validate the server's identity if NTLM is used during the PushStart request.

5.2 Index of Security Parameters

 Security parameter Section

HTTP access authentication As specified in section 2.1

50 / 56

[MS-WMHTTP-Diff] - v20180912
Windows Media HTTP Push Distribution Protocol
Copyright © 2018 Microsoft Corporation
Release: September 12, 2018

6 (Updated Section) Appendix A: Product Behavior

The information in this specification is applicable to the following Microsoft products or supplemental
software. References to product versions include updates to those products.

The terms "earlier" and "later", when used with a product version, refer to either all preceding
versions or all subsequent versions, respectively. The term "through" refers to the inclusive range of
versions. Applicable Microsoft products are listed chronologically in this section.

Windows Client

▪ Windows XP operating system

▪ Windows Vista operating system

▪ Windows 7 operating system

▪ Windows 8 operating system

▪ Windows 8.1 operating system

▪ Windows 10 operating system

Windows Server

▪ Windows Server 2003 operating system

▪ Windows Server 2008 operating system

▪ Windows Server 2008 R2 operating system

▪ Windows Server 2012 operating system

▪ Windows Server 2012 R2 operating system

▪ Windows Server 2016 operating system

▪ Windows Server operating system

▪ Windows Server 2019 operating system

Exceptions, if any, are noted in this section. If an update version, service pack or Knowledge Base
(KB) number appears with a product name, the behavior changed in that update. The new behavior
also applies to subsequent updates unless otherwise specified. If a product edition appears with the
product version, behavior is different in that product edition.

Unless otherwise specified, any statement of optional behavior in this specification that is prescribed
using the terms "SHOULD" or "SHOULD NOT" implies product behavior in accordance with the
SHOULD or SHOULD NOT prescription. Unless otherwise specified, the term "MAY" implies that the
product does not follow the prescription.

<1> Section 3.1.2: The Windows implementation of this protocol uses WinInet HTTP API. All WinInet
timers assume their default values, except for the timer that expires when a HTTP response has not

been received after a certain period of time. That timer is disabled.

<2> Section 3.1.4.1.1: Windows Media Format 9 Series SDK, Windows Media Format 9.5 SDK,
Windows Vista and later list support for NTLM authentication (as specified in [MS-NLMP]) and Digest
authentication (as specified in [RFC2617]). Support for SPNEGO-based Kerberos authentication, as
specified in [RFC4559], is also listed if this is enabled in Internet Explorer. Although Basic
authentication, as specified in [RFC2617], is supported, it is not listed.

51 / 56

[MS-WMHTTP-Diff] - v20180912
Windows Media HTTP Push Distribution Protocol
Copyright © 2018 Microsoft Corporation
Release: September 12, 2018

<3> Section 3.1.4.2.1: Windows Media Format 9 Series SDK, Windows Media Format 9.5 SDK,
Windows Vista and later list support for NTLM authentication (as specified in [MS-NLMP]) and Digest

authentication (as specified in [RFC2617]). Support for SPNEGO-based Kerberos authentication, as
specified in [RFC4559], is also listed if this is enabled in Windows Internet Explorer. Although Basic

authentication (as specified in [RFC2617]) is supported, it is not listed.

<4> Section 3.1.5.1: Windows Media Format 9 Series SDK, Windows Media Format 9.5 SDK, Windows
Vista and later support NTLM authentication (as specified in [MS-NLMP]), Basic authentication (as
specified in [RFC2617]), Digest authentication (as specified in [RFC2617]), and SPNEGO-based
Kerberos authentication (as specified in [RFC4559]).

<5> Section 3.1.5.2: Windows Media Format 9 Series SDK, Windows Media Format 9.5 SDK, Windows
Vista and later support NTLM authentication (as specified in [MS-NLMP]), Basic authentication (as

specified in [RFC2617]), Digest authentication (as specified in [RFC2617]), and SPNEGO
authentication (as specified in [RFC4559]).

<6> Section 3.1.7.1: The Windows encoder displays an error if the connection is prematurely
terminated.

<7> Section 3.2.2: Windows specifies the timer to be a random value between 120 and 150 seconds.

<8> Section 3.2.5.1: Windows Media Services will respond to the request with HTTP status code 200,

and the message response of the request will contain an ASX file that contains the same URL that the
client provided in the request. Because ASX files are understood by Windows Media Player, it is the
expectation that the web client will invoke Windows Media Player to parse the ASX file.

<9> Section 3.2.5.1: Windows Media Services support NTLM authentication (as specified in [MS-
NLMP]), Digest authentication (as specified in [RFC2617]), and SPNEGO-based Kerberos
authentication (as specified in [RFC4559]). Windows Media Services does not support acting as a
proxy server for this protocol.

<10> Section 3.2.5.1: Windows Media Services support NTLM authentication (as specified in [MS-
NTHT]), Digest authentication (as specified in [RFC2617]), and SPNEGO-based Kerberos
authentication (as specified in [RFC4559]). Windows Media Services does not support acting as a

proxy server for this protocol.

<11> Section 3.2.5.2: Windows Media Services support NTLM authentication (as specified in [MS-
NLMP]), Digest authentication (as specified in [RFC2617]), and SPNEGO-based Kerberos
authentication (as specified in [RFC4559]). Windows Media Services does not support acting as a

proxy server for this protocol.

<12> Section 3.2.5.2: Windows Media Services support NTLM authentication (as specified in [MS-
NLMP]), Digest authentication (as specified in [RFC2617]), and SPNEGO-based Kerberos
authentication (as specified in [RFC4559]). Windows Media Services does not support acting as a
proxy server for this protocol.

<13> Section 3.2.5.2: Windows Media Services does not follow the prescribed behavior. Instead, it

creates a new state by performing the initialization procedure as specified in section 3.2.3.

<14> Section 3.2.5.5: Windows Media Services does not send a PushStart response if the value of the

Reason field in the $E packet is "0x00000001", and if there are no bytes left to receive in the
message body.

52 / 56

[MS-WMHTTP-Diff] - v20180912
Windows Media HTTP Push Distribution Protocol
Copyright © 2018 Microsoft Corporation
Release: September 12, 2018

7 Change Tracking

This section identifies changes that were made to this document since the last release. Changes are
classified as Major, Minor, or None.

The revision class Major means that the technical content in the document was significantly revised.
Major changes affect protocol interoperability or implementation. Examples of major changes are:

▪ A document revision that incorporates changes to interoperability requirements.

▪ A document revision that captures changes to protocol functionality.

The revision class Minor means that the meaning of the technical content was clarified. Minor changes
do not affect protocol interoperability or implementation. Examples of minor changes are updates to
clarify ambiguity at the sentence, paragraph, or table level.

The revision class None means that no new technical changes were introduced. Minor editorial and
formatting changes may have been made, but the relevant technical content is identical to the last

released version.

The changes made to this document are listed in the following table. For more information, please
contact dochelp@microsoft.com.

Section Description
Revision
class

6 Appendix A: Product
Behavior

Added Windows Server 2019 to the list of applicable
products.

Major

53 / 56

[MS-WMHTTP-Diff] - v20180912
Windows Media HTTP Push Distribution Protocol
Copyright © 2018 Microsoft Corporation
Release: September 12, 2018

8 Index
$

$C (Stream Change Notification) (section 2.2.3.2 18, section 3.2.5.6 33)
$D (Data) (section 2.2.3.3 19, section 3.2.5.4 32)
$E (End-of-Stream Notification) (section 2.2.3.4 19, section 3.2.5.5 33)
$F (Filler) (section 2.2.3.5 20, section 3.2.5.7 33)
$H (Header) (section 2.2.3.6 20, section 3.2.5.3 32)

A

Abstract data model
 client 21
 server 28
Administrative Disconnect 29
Applicability 9
application/x-wms-pushsetup 12
application/x-wms-pushstart 12
ASF header file 25

ASF packet 24
AutoDestroy 16

C

Capability negotiation 9
Change tracking 52
Client
 abstract data model 21
 higher-layer triggered events 21
 initialization 21
 local events 28
 message processing 26
 sequencing rules 26
 timer events 27
 timers 21
Configure the server 21
Content-Type 11
Cookie 12

D

Data model - abstract
 client 21
 server 28
Disconnect
 TCP connection (section 3.1.7.1 28, section 3.2.7.1 34)

E

Examples
 general push distribution sequence example 35
 push distribution with AutoDestroy example 38
 sample message exchange during push distribution 47

F

Fields - vendor-extensible 10
Framing Header 18

G

General push distribution sequence example 35

54 / 56

[MS-WMHTTP-Diff] - v20180912
Windows Media HTTP Push Distribution Protocol
Copyright © 2018 Microsoft Corporation
Release: September 12, 2018

Glossary 7

H

Higher-layer triggered events
 client 21
 server 29
HTTP header fields 11
HTTP Header Fields message 11

I

Idle-Timeout Timer Expires 34
Implementer - security considerations 49
Inactivity-Timeout Timer Expires 34
Index of security parameters 49
Informative references 8
Initialization
 client 21
 server 28
Introduction 7

L

Last packet 24
Local events
 client 28
 server 34

M

Message processing
 client 26
 server 29
Messages
 HTTP Header Fields 11
 Packet Types 18
 Request Types 14
 syntax 11
 transport 11

N

no-cache 13
Normative references 7
Notification
 last packet 24
 new ASF header file 25

O

Overview 8
Overview (synopsis) 8

P

Packet types 18
Packet Types message 18
Parameters - security index 49
Pragma 12
Preconditions 9
Prerequisites 9
Product behavior 50
Push distribution with AutoDestroy example 38

55 / 56

[MS-WMHTTP-Diff] - v20180912
Windows Media HTTP Push Distribution Protocol
Copyright © 2018 Microsoft Corporation
Release: September 12, 2018

push-id 12
PushSetup Request (section 2.2.2.1 15, section 3.1.4.1.1 22, section 3.2.5.1 29)
PushSetup Response 26
PushStart Request (section 2.2.2.2 17, section 3.1.4.2.1 23, section 3.2.5.2 31)
PushStart Response (section 3.1.5.2 27, section 3.2.5.2.1 32)

R

References 7
 informative 8
 normative 7
Relationship to other protocols 9
Request types 14
Request Types message 14

S

Sample message exchange during push distribution example 47
Security
 implementer considerations 49
 parameter index 49
Sequencing rules
 client 26
 server 29
Server
 abstract data model 28
 higher-layer triggered events 29
 initialization 28
 local events 34
 message processing 29
 overview 28
 request to configure 21
 sequencing rules 29
 timer events 34
 timers 28
Server header 13
Set-Cookie 13
Standards assignments 10
Streaming Content 22
Supported 13
Syntax 11

T

TCP connection (section 3.1.7.1 28, section 3.2.7.1 34)
Template-URL 16
timeout 13
Timer events
 client 27
 server 34
Timers

 client 21
 server 28
Tracking changes 52
Transport 11
Triggered events - higher-layer
 client 21
 server 29

U

User-Agent 13

V

56 / 56

[MS-WMHTTP-Diff] - v20180912
Windows Media HTTP Push Distribution Protocol
Copyright © 2018 Microsoft Corporation
Release: September 12, 2018

Vendor-extensible fields 10
Versioning 9

X

X-Accept-Authentication 14

	1 Introduction
	1.1 Glossary
	1.2 References
	1.2.1 Normative References
	1.2.2 Informative References

	1.3 Overview
	1.4 Relationship to Other Protocols
	1.5 Prerequisites/Preconditions
	1.6 Applicability Statement
	1.7 Versioning and Capability Negotiation
	1.8 Vendor-Extensible Fields
	1.9 Standards Assignments

	2 Messages
	2.1 Transport
	2.2 Message Syntax
	2.2.1 HTTP Header Fields
	2.2.1.1 Content-Type
	2.2.1.1.1 application/x-wms-pushsetup
	2.2.1.1.2 application/x-wms-pushstart

	2.2.1.2 Cache-Control
	2.2.1.3 Cookie
	2.2.1.3.1 push-id

	2.2.1.4 Pragma
	2.2.1.4.1 no-cache
	2.2.1.4.2 timeout

	2.2.1.5 Server
	2.2.1.6 Set-Cookie
	2.2.1.7 Supported
	2.2.1.8 User-Agent
	2.2.1.9 X-Accept-Authentication
	2.2.1.10 X-Accept-Proxy-Authentication

	2.2.2 Request Types
	2.2.2.1 PushSetup Request
	2.2.2.1.1 Template-URL
	2.2.2.1.2 AutoDestroy

	2.2.2.2 PushStart Request

	2.2.3 Packet Types
	2.2.3.1 Common Definitions
	2.2.3.1.1 Framing Header

	2.2.3.2 $C (Stream Change Notification)
	2.2.3.3 $D (Data)
	2.2.3.4 $E (End-of-Stream Notification)
	2.2.3.5 $F (Filler)
	2.2.3.6 $H (Header)

	3 Protocol Details
	3.1 Client Details
	3.1.1 Abstract Data Model
	3.1.2 Timers
	3.1.3 Initialization
	3.1.4 Higher-Layer Triggered Events
	3.1.4.1 Request to Configure the Server
	3.1.4.1.1 Sending the PushSetup Request

	3.1.4.2 Request to Start Streaming Content
	3.1.4.2.1 Sending the PushStart Request

	3.1.4.3 ASF Packet Is Available to Send
	3.1.4.4 Notification of the Last Packet
	3.1.4.5 Notification of New ASF Header File

	3.1.5 Message Processing Events and Sequencing Rules
	3.1.5.1 Receiving a PushSetup Response
	3.1.5.2 Receiving a PushStart Response

	3.1.6 Timer Events
	3.1.7 Other Local Events
	3.1.7.1 TCP Connection Is Disconnected

	3.2 Server Details
	3.2.1 Abstract Data Model
	3.2.2 Timers
	3.2.3 Initialization
	3.2.4 Higher-Layer Triggered Events
	3.2.4.1 Administrative Disconnect

	3.2.5 Message Processing Events and Sequencing Rules
	3.2.5.1 Receiving a PushSetup Request
	3.2.5.2 Receiving a PushStart Request
	3.2.5.2.1 Sending a PushStart Response

	3.2.5.3 Receiving an $H Packet
	3.2.5.4 Receiving a $D Packet
	3.2.5.5 Receiving an $E Packet
	3.2.5.6 Receiving a $C Packet
	3.2.5.7 Receiving an $F Packet

	3.2.6 Timer Events
	3.2.6.1 Idle-Timeout Timer Expires
	3.2.6.2 Inactivity-Timeout Timer Expires

	3.2.7 Other Local Events
	3.2.7.1 TCP Connection Is Disconnected

	4 Protocol Examples
	4.1 General Push Distribution Sequence
	4.2 General Push Distribution Sequence with $F Packets
	4.3 Push Distribution with AutoDestroy and Template-URL
	4.4 General Push Distribution Sequence with $C Packet
	4.5 General Push Distribution Sequence with Server and Proxy Server
	4.6 Server Push State Diagram
	4.6.1 Expanded Streaming State Diagram

	4.7 Client Push State Diagram
	4.7.1 Expanded PushState_InProgress Diagram

	4.8 Message Exchange During Push Distribution

	5 Security
	5.1 Security Considerations for Implementers
	5.2 Index of Security Parameters

	6 (Updated Section) Appendix A: Product Behavior
	7 Change Tracking
	8 Index

