

1 / 21

[MS-WDHCE-Diff] - v20180912
Wi-Fi Display Protocol: Hardware Cursor Extension
Copyright © 2018 Microsoft Corporation
Release: September 12, 2018

[MS-WDHCE-Diff]:

Wi-Fi Display Protocol: Hardware Cursor Extension

Intellectual Property Rights Notice for Open Specifications Documentation

▪ Technical Documentation. Microsoft publishes Open Specifications documentation (“this
documentation”) for protocols, file formats, data portability, computer languages, and standards
support. Additionally, overview documents cover inter-protocol relationships and interactions.

▪ Copyrights. This documentation is covered by Microsoft copyrights. Regardless of any other
terms that are contained in the terms of use for the Microsoft website that hosts this
documentation, you can make copies of it in order to develop implementations of the technologies

that are described in this documentation and can distribute portions of it in your implementations
that use these technologies or in your documentation as necessary to properly document the

implementation. You can also distribute in your implementation, with or without modification, any
schemas, IDLs, or code samples that are included in the documentation. This permission also
applies to any documents that are referenced in the Open Specifications documentation.

▪ No Trade Secrets. Microsoft does not claim any trade secret rights in this documentation.
▪ Patents. Microsoft has patents that might cover your implementations of the technologies

described in the Open Specifications documentation. Neither this notice nor Microsoft's delivery of
this documentation grants any licenses under those patents or any other Microsoft patents.
However, a given Open Specifications document might be covered by the Microsoft Open
Specifications Promise or the Microsoft Community Promise. If you would prefer a written license,
or if the technologies described in this documentation are not covered by the Open Specifications
Promise or Community Promise, as applicable, patent licenses are available by contacting
iplg@microsoft.com.

▪ License Programs. To see all of the protocols in scope under a specific license program and the
associated patents, visit the Patent Map.

▪ Trademarks. The names of companies and products contained in this documentation might be

covered by trademarks or similar intellectual property rights. This notice does not grant any
licenses under those rights. For a list of Microsoft trademarks, visit
www.microsoft.com/trademarks.

▪ Fictitious Names. The example companies, organizations, products, domain names, email
addresses, logos, people, places, and events that are depicted in this documentation are fictitious.
No association with any real company, organization, product, domain name, email address, logo,
person, place, or event is intended or should be inferred.

Reservation of Rights. All other rights are reserved, and this notice does not grant any rights other
than as specifically described above, whether by implication, estoppel, or otherwise.

Tools. The Open Specifications documentation does not require the use of Microsoft programming

tools or programming environments in order for you to develop an implementation. If you have access
to Microsoft programming tools and environments, you are free to take advantage of them. Certain
Open Specifications documents are intended for use in conjunction with publicly available standards
specifications and network programming art and, as such, assume that the reader either is familiar

with the aforementioned material or has immediate access to it.

Support. For questions and support, please contact dochelp@microsoft.com.

http://go.microsoft.com/fwlink/?LinkId=214445
http://go.microsoft.com/fwlink/?LinkId=214445
https://go.microsoft.com/fwlink/?LinkId=214448
mailto:iplg@microsoft.com
https://msdn.microsoft.com/en-us/openspecifications/dn750984

2 / 21

[MS-WDHCE-Diff] - v20180912
Wi-Fi Display Protocol: Hardware Cursor Extension
Copyright © 2018 Microsoft Corporation
Release: September 12, 2018

Revision Summary

Date
Revision
History

Revision
Class Comments

6/30/2015 1.0 New Released new document.

10/16/2015 2.0 Major Significantly changed the technical content.

7/14/2016 3.0 Major Significantly changed the technical content.

6/1/2017 3.0 None
No changes to the meaning, language, or formatting of the
technical content.

9/12/2018 4.0 Major Significantly changed the technical content.

3 / 21

[MS-WDHCE-Diff] - v20180912
Wi-Fi Display Protocol: Hardware Cursor Extension
Copyright © 2018 Microsoft Corporation
Release: September 12, 2018

Table of Contents

1 Introduction .. 4
1.1 Glossary ... 4
1.2 References .. 4

1.2.1 (Updated Section) Normative References ... 4
1.2.2 Informative References ... 4

1.3 Overview .. 4
1.4 Relationship to Other Protocols .. 5
1.5 Prerequisites/Preconditions ... 5
1.6 Applicability Statement ... 5
1.7 (Updated Section) Versioning and Capability Negotiation .. 5
1.8 Vendor-Extensible Fields ... 6
1.9 Standards Assignments ... 6

2 Messages ... 7
2.1 Transport .. 7
2.2 Message Syntax ... 7

2.2.1 Namespaces .. 8
2.2.2 (Updated Section) Mouse pointer position message ... 8
2.2.3 Mouse pointer shape message .. 8

2.3 Directory Service Schema Elements ... 10

3 Protocol Details ... 11
3.1 Source Details ... 11

3.1.1 Abstract Data Model .. 11
3.1.2 Timers .. 11
3.1.3 Initialization ... 12
3.1.4 Higher-Layer Triggered Events ... 12
3.1.5 Message Processing Events and Sequencing Rules .. 12
3.1.6 Timer Events .. 12
3.1.7 Other Local Events .. 12

3.2 Sink Details ... 12
3.2.1 Abstract Data Model .. 12
3.2.2 Timers .. 12
3.2.3 Initialization ... 12
3.2.4 Higher-Layer Triggered Events ... 12
3.2.5 Message Processing Events and Sequencing Rules .. 12
3.2.6 Timer Events .. 13
3.2.7 Other Local Events .. 13

4 Protocol Examples ... 15

5 Security ... 17
5.1 Security Considerations for Implementers ... 17
5.2 Index of Security Parameters .. 17

6 (Updated Section) Appendix A: Product Behavior.. 18

7 Change Tracking .. 19

8 Index ... 20

4 / 21

[MS-WDHCE-Diff] - v20180912
Wi-Fi Display Protocol: Hardware Cursor Extension
Copyright © 2018 Microsoft Corporation
Release: September 12, 2018

1 Introduction

This documentation specifies an extension to the Miracast v1.1 Wireless Display protocol
[WF-DTS1.1].

Sections 1.5, 1.8, 1.9, 2, and 3 of this specification are normative. All other sections and examples in
this specification are informative.

1.1 Glossary

MAY, SHOULD, MUST, SHOULD NOT, MUST NOT: These terms (in all caps) are used as defined
in [RFC2119]. All statements of optional behavior use either MAY, SHOULD, or SHOULD NOT.

1.2 References

Links to a document in the Microsoft Open Specifications library point to the correct section in the

most recently published version of the referenced document. However, because individual documents
in the library are not updated at the same time, the section numbers in the documents may not
match. You can confirm the correct section numbering by checking the Errata.

1.2.1 (Updated Section) Normative References

We conduct frequent surveys of the normative references to assure their continued availability. If you
have any issue with finding a normative reference, please contact dochelp@microsoft.com. We will
assist you in finding the relevant information.

[MS-ERREF] Microsoft Corporation, "Windows Error Codes".

[RFC2119] Bradner, S., "Key words for use in RFCs to Indicate Requirement Levels", BCP 14, RFC
2119, March 1997, http://www.rfc-editor.org/rfc/rfc2119.txt

[WF-DTS1.1] Wi-Fi Alliance, "Wi-Fi Display Technical Specification v1.1", April 2014, https://www.wi-

fi.org/file/wi-fi-display-technical-specification-v11downloads-registered-guest/Wi-
Fi_Display_Specification_v1.1.zip/29558

Note There is a charge to download the specification.

1.2.2 Informative References

None.

1.3 Overview

The Miracast v1.1 protocol [WF-DTS1.1] only supports a single stream from the source to the sink,
this means that the mouse image has to be part of the desktop image that is encoded and streamed
to the sink. This binds the mouse cursor refresh rate and latency to that of the desktop image.

Currently the Miracast stream is typically 30 Hz with a screen to screen latency of around 200ms. As a

reference point the screen to screen latency over HDMI wire is around 32ms. We know from usability
studies that mouse cursor latency is more noticeable to the user than the rest of the desktop. So it
would be desirable to decouple the mouse cursor from the rest of the desktop image.

It is possible to send the mouse cursor information in a separate stream to the sink so the update rate
of the cursor can be de-coupled from the update rate of the desktop image. This would require the

graphics driver to send the information and the Miracast receiver to be able to receive 2 streams and
then blend the cursor image with the desktop image.

5 / 21

[MS-WDHCE-Diff] - v20180912
Wi-Fi Display Protocol: Hardware Cursor Extension
Copyright © 2018 Microsoft Corporation
Release: September 12, 2018

This document describes the hardware capabilities that a sink would need in order to process and
display the cursor information and additional detail the protocol changes required to send this

additional stream to the sink.
This document assumes that the mouse cursor and position information is sent by the source and

received by the sink. Any bitmap/cursor shape information has been successfully transmitted in a
lossless manner.

For the Miracast scenario, the cursor image size would typically be smaller than 48x48, even in high
DPI scenarios the cursor image is expected to be less than 64x64. Ultimately the application is in
control of the cursor shape (max 256x256) so the solution has to work with arbitrary cursors.

In an artificial scenario where the user is moving an animated cursor constantly, we observed a max
of 100 mouse positions updates per second and 20 mouse cursor shape changes per second.

In some configurations, it is possible that a device might not support the Microsoft Hardware Cursor
extension but might support the previous standard of Intel Fast Cursor. Applicable information for
Intel Fast Cursor is described in the appropriate sections for devices that support both extensions.

1.4 Relationship to Other Protocols

This document describes an extension to the existing Miracast v1.1 standard for Wireless Display over WiFi

Direct [WF-DTS1.1]. The protocol communicates over RTP/RTSP as described in the Miracast standard and

this extension adds an additional capability query and support for side channel UDP communication between a

source and receiver device during a Miracast session.

1.5 Prerequisites/Preconditions

This extension is to be implemented by a device (either source or receiver) that implements the Miracast v1.1

protocol [WF-DTS1.1]. This extension is only available when used in conjunction with other devices that support

this extension, otherwise the functionality will be ignored.

A source that implements this extension sends mouse cursor information to the sink in a similar
format to an OS passing cursor information to a local display driver. Some sinks cannot support the

XOR operation used by monochrome and color mask cursors, and in order to allow hardware cursor
functionality on those sinks, the sink capabilities include a flag noting whether the sink supports the
XOR operation. If the sink does not support XOR, the source converts any XOR masks into non-XOR
masks. If a sink supports this extension, then it must support the alpha color cursor image type.

With the alpha cursor color image, a 32 bits per pixel ARGB image is supplied, with the 8 bit alpha
value used to blend between the RGB values in the display image and the RGB values in the cursor

image. The result of the blending operation is sent to the display.

1.6 Applicability Statement

The goal for this extension is to improve the end-to-end latency of the mouse cursor when streaming over

Miracast. This is a valuable improvement to the baseline Miracast protocol particularly in scenarios such as

productivity or gaming where low-latency responsive user input with a mouse is a high priority. If both devices

participating in a Miracast session support this extension, it is recommended for use 100% of the time.

1.7 (Updated Section) Versioning and Capability Negotiation

Supported Transports: This protocol is be implemented on top of TCP/UDP as specified in the Miracast v1.1

specification [WF-DTS1.1].

Capability Negotiation: This extension performs explicit capability negation in the M3 capabilities message as

defined in the Miracast protocol.

6 / 21

[MS-WDHCE-Diff] - v20180912
Wi-Fi Display Protocol: Hardware Cursor Extension
Copyright © 2018 Microsoft Corporation
Release: September 12, 2018

A new optional RTSP parameter 'microsoft_cursor' is used to query for hardware cursor support and
capabilities. The following is the ABNF format for the response from the sink to the microsoft_cursor

using the GET_PARAMETER command as specified in [WF-DTS1.1] section 6.2.2.

 microsoft_-cursor = "none" / sink-cursor-caps
 ; 'none'

; "none" means the sink does not support this hardware cursor extension

; otherwise it is assumed that the sink can support per pixel 8bit

; alpha blending of hardware cursor.

 sink-cursor-caps = xor-support SP x-max SP y-max SP port
 xor-support = "none" / "full"
 ; 'none'; "none" means the sink does not support XOR blending operations at

; all, 'full'"full" indicates the sink can perform the XOR blending

; operations.

 x-max = 4HEXDIG

; the maximum width of the cursor the sink supports in pixels, the sink

; supports this width for all cursor formats.

 y-max = 4HEXDIG

; the maximum height of the cursor the sink supports in pixels, the

; sink supports this height for all cursor formats.

 port = 4HEXDIG

; this is the UDP port to which the source sends the mouse cursor

; position

 ; and shape changes to.

In the case that a device supports Intel Fast Cursor as well, the following information also applies. A
new optional RTSP parameter 'intel_fast_cursor' is used to query for Intel Fast Cursor support and
capabilities. The following is the ABNF format for the response from the sink to the intel_fast_cursor
using the GET_PARAMTETER command, as specified in [WF-DTS1.1] section 6.2.2.

 intel-fast-cursor = "intel_fast_cursor:" SP "port=" fast-cursor-port
 fast-cursor-port = IPPORT

Fast cursor ports are a value from the port range (49152 to 65535) with the exception of older Intel

WiDi devices that can only support fast cursor messages on port 1232.

Note that a sink that supports the Intel Fast Cursor extension ignores a fast cursor message if: (1) it
does not conform to the ABNF rules; (2) the x parameter is equal to or greater than the width
parameter; (3) the y parameter is equal to or greater than the height parameter; or (4) the sink has
transmitted a UIBC packet within the previous 100ms. If a sink receives a fast cursor message
containing the current-position ABNF rule, the sink displays a locally rendered cursor at the indicated

location. If a sink receives a fast cursor message containing the hidden ABNF rule (see section 2.2.2),
the sink does not display any locally rendered cursors. If it has been more than 100ms since a fast
cursor message was received, a sink does not display any locally rendered cursors.

1.8 Vendor-Extensible Fields

This protocol uses HRESULT values as defined in [MS-ERREF] section 2.1. Vendors can define their
own HRESULT values, provided they set the C bit (0x20000000) for each vendor-defined value,

indicating the value is a customer code.

1.9 Standards Assignments

None.

7 / 21

[MS-WDHCE-Diff] - v20180912
Wi-Fi Display Protocol: Hardware Cursor Extension
Copyright © 2018 Microsoft Corporation
Release: September 12, 2018

2 Messages

2.1 Transport

As defined by the Miracast v1.1 protocol [WF-DTS1.1], this extension uses RTSP, which uses TCP at the

transport layer to maintain an end-to-end connection. The capability negotiation portion of this extension occurs

over RTSP.

A new RTSP parameter is defined that is part of M3 capabilities request that will query for the sink’s

support of hardware cursor and capabilities. If supported, the source will send mouse pointer position
and shape updates to the sink over UDP, and the sink MUST decide which UDP port to use.

There will not be any acknowledgment scheme to ensure delivery of the mouse point position or shape
changes, but because mouse pointer image packets are bigger and missing one greatly affects the
user experience, the source sends the update multiple times to ensure the sink receives the update.

The source will expand all monochrome cursors into masked color cursors before sending to the sink.

2.2 Message Syntax

Both the mouse position and shape packets use an RTP header as follows.

bit
offset 0-1 2 3

4-
7 8

9-
15 16-31

0 Version P X CC M PT Sequence Number

32 Timestamp

64 SSRC identifier

We define a new ‘Microsoft cursor’ application profile. For this protocol extension, the following values
are used in the RTP header.

Field Name (Size) Value

Version (2 bits) 2

P (1 bit) 0 (No padding)

X (1 bit) 0 (No extension)

CC (4 bits) 0 (No CSRC)

M (1 bit) 0 (No marker used)

PT (7 bits) 0 (Mouse position/shape update payload for this profile)

Sequence Number (16 bits) Incrementing sequence number starting at zero

Timestamp (32 bits) 0 (Not used)

SSRC identifier (32 bits) 0 (Not used)

All network data is transmitted in network byte order.

8 / 21

[MS-WDHCE-Diff] - v20180912
Wi-Fi Display Protocol: Hardware Cursor Extension
Copyright © 2018 Microsoft Corporation
Release: September 12, 2018

2.2.1 Namespaces

None.

2.2.2 (Updated Section) Mouse pointer position message

When the graphics driver is informed of a mouse position change, it sends a message to the sink so
that the sink can update the screen location of the mouse pointer on the wireless display. The UDP
messages have an RTP header (as specified in section 2.2) followed by a binary message in the
following format.

Field name Type Details

MsgType 8 bit
unsigned

The type of cursor message, valid values

0x01 Mouse cursor position update

0x02 Mouse cursor shape update

0x03 Mouse cursor shape continuation

For mouse cursor position update this will be 0x01

PacketMsgSize 16 bit
unsigned

The total size of this message in bytes, for mouse pointer update
this is 0x0007

XPos 16 bit
signed

The X position of the upper-left corner of the pointer position
relative to this Miracast display, see notes below.

YPos 16 bit
signed

The Y position of the upper-left corner of the pointer position
relative to this Miracast display, see notes below

The mouse position update packet MUST always be in its own UDP packet and hence will always be
located directly after the RTP header.

If Intel Fast Cursor is supported<1> the following variation of the mouse pointer position message will
be used. One 32-bit fast cursor message will be sent for each UDP packet, formatted as follows.

 fast-cursor-message = "fast_-cursor=" hidden / current_-position
hidden = "0:0:0:0:0"

current-position = width ":" height ":" x ":" y ":" orientation

width = 1*4(DIGIT) 4DIGIT

; total pixel width of the host screen (e.g. 1920)

height = 1*4(DIGIT) 4DIGIT

; total pixel height of the host screen (e.g., 1080)

x = 1*4(DIGIT)4DIGIT ; x coordinate of the cursor position [0..width-1]

y = 1*4(DIGIT)4DIGIT ; y coordinate of the cursor [0..height-1]

orientation = "0" / "90" / "180" / "270" ; degrees of display rotation

2.2.3 Mouse pointer shape message

When the graphics driver is given a new mouse pointer shape, it sends a mouse pointer position
update to the sink. The network message contains an RTP header, as specified in section 2.2, followed

by a binary message in the following format.

Note Because the cursor shape packet can be bigger than the UDP packet, we split the mouse shape
data into a single start mouse shape packet and potentially multiple mouse shape continuation
packets. Below is the definition of the start packet.

9 / 21

[MS-WDHCE-Diff] - v20180912
Wi-Fi Display Protocol: Hardware Cursor Extension
Copyright © 2018 Microsoft Corporation
Release: September 12, 2018

Field name Type Details

MsgType 8 bit
unsigned

The type of cursor message, valid values

0x01 Mouse cursor position update

0x02 Mouse cursor shape start

0x03 Mouse cursor shape continuation

For mouse cursor image update this will be 0x02

PacketMsgSize 16 bit
unsigned

The total size of this message in bytes; for mouse pointer shape
update, this includes this header and any image data that is
contained within this packet; this does not include the size of any
data contained within continuation packets.

TotalImageDataSize 32 bit

unsigned

The total size of the image data for this cursor.

Note The image data for a single cursor can be split between
multiple packets.

CursorImageId 16 bit
unsigned

The ID of the cursor images; this will be used to distinguish
between new shapes and re-transmission of current shape

XPos 16 bit
signed

The X position of the upper-left corner of the pointer position
relative to this Miracast display; see notes below.

YPos 16 bit
signed

The Y position of the upper-left corner of the pointer position
relative to this Miracast display; see notes below

CursorImageType 8 bit
unsigned

The type of cursor image being sent; valid values are:

0x01 Disabled

0x02 Masked color image, PNG compressed

0x03 Color cursor image, PNG compressed

HotSpotXPos 16 bit
unsigned

The X-axis offset of the hot spot offset from the upper-left corner
of the cursor image.

HotSpotYPos 16 bit
unsigned

The Y-axis offset of the hot spot offset from the upper-left corner
of the cursor image.

ImageData 8 bit
unsigned
array

Portion of the total cursor image data that is contained within this
packet, the size of image data in this packet is PacketMsgSize-18.

If PacketMsgSize-18 is equal to TotalImageDataSize, the complete
cursor image is contained within this single packet and no
continuation packet is needed for this cursor image update.

Below is the definition of the shape continuation packet that is used if the cursor shape data spans
more than one UDP packet.

Field name Type Details

MsgType 8 bit
unsigned

The type of cursor message, valid values

0x01 Mouse cursor position update

0x02 Mouse cursor shape start

0x03 Mouse cursor shape continuation

For mouse cursor shape continuation this will be 0x03

PacketMsgSize 16 bit The total size of this message in bytes; for mouse pointer shape

10 / 21

[MS-WDHCE-Diff] - v20180912
Wi-Fi Display Protocol: Hardware Cursor Extension
Copyright © 2018 Microsoft Corporation
Release: September 12, 2018

Field name Type Details

unsigned update this includes this header and any image data that is
contained within this packet, this does not include the size of any
data contained within continuation packets.

TotalImageDataSize 32 bit
unsigned

The total size of the image data for this cursor.
Note The image data for a single cursor can be split between
multiple packets.

CursorImageId 16 bit
unsigned

The ID of this cursor images; this will be used to distinguish
between new shapes and re-transmission of current shape

PacketPayloadOffset 32 bit
signed

The offset into the entire mouse shape data buffer (of compressed
PNG data) where the ImageData in this packet should go. This
allows the sink process the packets out of order as this gives them
the information needed to copy this packets part of the mouse
image into the correct location in the buffer.

ImageData 8 bit
unsigned
array

The portion of the total cursor image data that is contained within
this packet, the size of image data in this packet is PacketMsgSize-
13.

The mouse shape messages MUST always start at the beginning of a UDP packet, but can span
multiple UDP packets because of its variable size. In this case, an RTP header is placed at the top of
each UDP package.

The mouse pointer shape messages also contain the current mouse pointer position. Just like the
mouse cursor position, it is updated only once per frame during the vertical blank period. The latest
image replaces any previous image.

2.3 Directory Service Schema Elements

None.

11 / 21

[MS-WDHCE-Diff] - v20180912
Wi-Fi Display Protocol: Hardware Cursor Extension
Copyright © 2018 Microsoft Corporation
Release: September 12, 2018

3 Protocol Details

3.1 Source Details

Source sending mouse pointer position updates:

The source MUST send pointer position update messages as defined in section 2.2.2.

This mouse cursor position update message gives the new location of the upper-left side of the mouse
cursor image. This is not affected by the location of the pointer's hot spot within the cursor image. If
the sink needs to know the position of the hot spot (for example with UIBC), then it MUST add the hot
spot offset that was sent in the last mouse cursor image update.

Note The X and Y position can be negative and the sink MUST perform any clipping that is necessary

to ensure that only the visible part of the mouse cursor is displayed.

Because the UDP packets can be delivered out of order, the sink needs to maintain the RTP sequence

number of the last mouse position update (either mouse position or shape packet) and store the new
mouse position (or shape packet) if the RTP sequence number is higher (accounting for RTP sequence
number wrap).

Source sending mouse pointer shape updates

The source MUST send mouse pointer shape update messages as defined in section 2.2.3.

Note If the image type is disabled, the sink stops displaying a hardware cursor from the start of the
next frame.

The sink maintains the CursorImageId of the last shape update it received so when it receives a new
mouse pointer shape packet, it can discard the packet if the CursorImageId is not greater than the
previous shape update. In the case where the CursorImageId is the same, the XPos and the YPos can
still be used to update the current pointer position (if RTP sequence number of shape update is greater
than that of the last position update).

Because we do not use an acknowledgement mechanism, the source needs to transmit the cursor
image multiple times to the sink to ensure that the sink displays the correct image. The source sends
the same cursor image up to 4 times at 100ms intervals (1 transmission, then 3 retransmissions), this
resent schedule is reset every time the mouse image is updated.

Testing Note: Even with a 64Kb UDP packet, it is still possible for the compressed image to span
multiple packets, so the source and sink MUST both test with mouse shape updates that span multiple

UDP packets. It is recommended to test with a 256x256 cursor image that compresses to more than
64Kb in size to verify this behavior. For source implementations, it is recommended to compile the
graphics driver to use a very small UDP packet size to test this behavior.

3.1.1 Abstract Data Model

Mouse pointer position: The position of the mouse cursor on the source device's screen.

Mouse pointer shape: The image used to visually represent the mouse pointer, which can change
shape contextually when the user performs actions like clicking links or resizing windows.

3.1.2 Timers

None.

12 / 21

[MS-WDHCE-Diff] - v20180912
Wi-Fi Display Protocol: Hardware Cursor Extension
Copyright © 2018 Microsoft Corporation
Release: September 12, 2018

3.1.3 Initialization

Initialization of this extension occurs during the capabilities query defined by the Miracast standard. A
new optional RTSP parameter ‘microsoft_cursor’ is used to query for hardware cursor support and

capabilities.

3.1.4 Higher-Layer Triggered Events

When a user causes a mouse cursor shape change, the source’s graphics driver is informed, and MUST
send a message to the sink communicating this shape change, as described in section 3.1.1.

3.1.5 Message Processing Events and Sequencing Rules

N/A. Refer to section 1.7 for capability query details.

3.1.6 Timer Events

None.

3.1.7 Other Local Events

None.

3.2 Sink Details

The mouse pointer position and shape on the display should be update once per frame during the
vertical blank period to avoid any tearing of the mouse image.

3.2.1 Abstract Data Model

Mouse pointer position: The position of the mouse cursor on the source device's screen.

Mouse pointer shape: The image used to visually represent the mouse pointer, which can change
shape contextually when the user performs actions like clicking links or resizing windows.

3.2.2 Timers

None.

3.2.3 Initialization

Initialization of this extension occurs during the capabilities query defined by the Miracast standard. A
new optional RTSP parameter ‘microsoft_cursor’ is used to query for hardware cursor support and

capabilities.

3.2.4 Higher-Layer Triggered Events

None.

3.2.5 Message Processing Events and Sequencing Rules

It is unnecessary for the sink to display the mouse pointer for every individual shape or position
message received—just the most recent one. For example, if during one frame the sink receives 10

13 / 21

[MS-WDHCE-Diff] - v20180912
Wi-Fi Display Protocol: Hardware Cursor Extension
Copyright © 2018 Microsoft Corporation
Release: September 12, 2018

position updates and 5 shape changes, then the mouse pointer position and shape for the next frame
should be the most recent position and shape that the sink received.

For example:

Event

Frame
number
being
scanned
out to
TV/monitor

Mouse
position
displayed on
screen

Mouse shape displayed
on screen

VSync of TV/monitor 0 Pos1 Shape1

VSync of TV/monitor 1 Pos1 Shape1

Receive new mouse position Pos2 1 Pos1 Shape1

Receive new mouse position Pos3 1 Pos1 Shape1

Receive new mouse shape Shape2 Pos 4 1 Pos1 Shape1

VSync of TV/monitor 2 Pos4 Shape2

Receive new mouse position Pos5 2 Pos4 Shape2

Receive new mouse shape Shape3 Pos 6 2 Pos4 Shape2

Receive new mouse position Pos7 2 Pos4 Shape2

Receive new mouse shape Shape4 Pos 8 2 Pos4 Shape2

Receive new mouse position Pos9 2 Pos4 Shape2

Receive new mouse position Pos10 2 Pos4 Shape2

VSync of TV/monitor 3 Pos10 Shape4

3.2.6 Timer Events

None.

3.2.7 Other Local Events

Sources can support multiple cursor types, though the source MUST convert the cursor image and
PNG compress it before sending it to the sink. The table below illustrates how the source converts the

different types of cursors into cursor images to send to the sink. As can be seen below, a sink that
supports the XOR operation only receives masked color and color cursor shapes, but in the case where
a sink does not support the XOR operation, it is sent as a color cursor with 8bpp alpha.

Source cursor type Sink that supports XOR Sink that does not support XOR

Monochrome without XOR pixels Masked color without XOR Color cursor with 8bpp alpha

Monochrome with XOR pixels Masked color with XOR Color cursor with 8bpp alpha

Masked color without XOR pixels Masked color without XOR Color cursor with 8bpp alpha

14 / 21

[MS-WDHCE-Diff] - v20180912
Wi-Fi Display Protocol: Hardware Cursor Extension
Copyright © 2018 Microsoft Corporation
Release: September 12, 2018

Source cursor type Sink that supports XOR Sink that does not support XOR

Masked color with XOR pixels Masked color with XOR Color cursor with 8bpp alpha

Color cursor with 8bpp alpha Color cursor with 8bpp alpha Color cursor with 8bpp alpha

15 / 21

[MS-WDHCE-Diff] - v20180912
Wi-Fi Display Protocol: Hardware Cursor Extension
Copyright © 2018 Microsoft Corporation
Release: September 12, 2018

4 Protocol Examples

On initial connection, a source that has implemented the hardware cursor extension queries the
capabilities of the sink through the M3 message defined in the Miracast protocol [WF-DTS1.1]. The
sink responds with acknowledgement of capabilities and supported extensions.

If the sink reports that it does support the hardware cursor extension, the source sends cursor
position and shape updates as specified by the extension. The following is an example response

message from a sink that supports the hardware cursor extension.

M3 message Sink response

microsoft_cursor full 0x0200 0x0200 50001

The previous example indicates that this sink supports XOR cursor types (full), supports cursor shapes
up to 512x512 pixels, and has chosen to communicate over port 50001.

If the sink does not explicitly report that it supports the hardware cursor extension, the source
encodes the cursor image into the desktop image. Such a source would simply report no support in
the following response.

M3 message Sink response

microsoft_cursor none

When a sink reports support of the hardware cursor extension, it will then receive cursor messages

from the source for the duration of the Miracast session each time the cursor position or shape
changes on the source. The sink will receive multiple mouse cursor message types.

The example below demonstrates a sample mouse cursor position update; when receiving a cursor
position update the sink then updates its internal cursor position. The example message below
indicates that the cursor position has been updated, and is located at the x, y coordinate (13,10).

Message parameter Value

MsgType 0x1

PacketMsgSize 0x7

Xpos 12

Ypos 10

The example below demonstrates a sample mouse shape update message; when receiving a cursor
shape update, the sink updates the cursor image displayed. The example below demonstrates the

more complex example in which the shape change message is large enough that a shape change
continuation message is required as well.

Initial shape change message

Message parameter Value

MsgType 0x2

PacketMsgSize 0x112

TotalImageDataSize 0x200

16 / 21

[MS-WDHCE-Diff] - v20180912
Wi-Fi Display Protocol: Hardware Cursor Extension
Copyright © 2018 Microsoft Corporation
Release: September 12, 2018

Message parameter Value

CursorImageID 0x1234

Xpos 12

Ypos 10

CursorImageType 0x3

HotSpotXPos 18

HotSpotYPos 15

ImageData First 0x100 bytes of PNG
cursor

Shape continuation message

Message parameter Value

MsgType 0x3

PacketMsgSize 0x10D

TotalImageDataSize 0x200

CursorImageID 0x1234

PacketPayloadOffset 0x100

ImageData Next 0x100 bytes of PNG
cursor

For smaller shape change message, the continuation message is not necessary but this example has
shown a larger message for completeness.

Intel Fast Cursor Message

Examples of valid fast cursor messages and the corresponding cursor position when in a 1920x1080

resolution are:

Message Description

fast_cursor=1920:1080:0:0:0 Cursor at upper-left corner

fast_cursor=1920:1080:1919:1079:0 Cursor at lower-right corner

fast_cursor=1366:768:682:383:0 Cursor at center of the screen

fast_cursor=0:0:0:0:0 Cursor is hidden

17 / 21

[MS-WDHCE-Diff] - v20180912
Wi-Fi Display Protocol: Hardware Cursor Extension
Copyright © 2018 Microsoft Corporation
Release: September 12, 2018

5 Security

5.1 Security Considerations for Implementers

None.

5.2 Index of Security Parameters

None.

18 / 21

[MS-WDHCE-Diff] - v20180912
Wi-Fi Display Protocol: Hardware Cursor Extension
Copyright © 2018 Microsoft Corporation
Release: September 12, 2018

6 (Updated Section) Appendix A: Product Behavior

The information in this specification is applicable to the following Microsoft products or supplemental
software. References to product versions include released service packsupdates to those products.

▪ Windows 10 operating system

▪ Windows Server 2016 operating system

▪ Windows Server 2019 operating system

Exceptions, if any, are noted below.in this section. If a an update version, service pack or Quick Fix
Engineering (QFEKnowledge Base (KB) number appears with thea product version,name, the behavior
changed in that service pack or QFE.update. The new behavior also applies to subsequent service
packs of the productupdates unless otherwise specified. If a product edition appears with the product
version, behavior is different in that product edition.

Unless otherwise specified, any statement of optional behavior in this specification that is prescribed

using the terms "SHOULD" or "SHOULD NOT" implies product behavior in accordance with the
SHOULD or SHOULD NOT prescription. Unless otherwise specified, the term "MAY" implies that the
product does not follow the prescription.

<1> Section 2.2.2: Intel Fast Cursor is not supported in the Windows 10 v1507 operating system.

19 / 21

[MS-WDHCE-Diff] - v20180912
Wi-Fi Display Protocol: Hardware Cursor Extension
Copyright © 2018 Microsoft Corporation
Release: September 12, 2018

7 Change Tracking

This section identifies changes that were made to this document since the last release. Changes are
classified as Major, Minor, or None.

The revision class Major means that the technical content in the document was significantly revised.
Major changes affect protocol interoperability or implementation. Examples of major changes are:

▪ A document revision that incorporates changes to interoperability requirements.

▪ A document revision that captures changes to protocol functionality.

The revision class Minor means that the meaning of the technical content was clarified. Minor changes
do not affect protocol interoperability or implementation. Examples of minor changes are updates to
clarify ambiguity at the sentence, paragraph, or table level.

The revision class None means that no new technical changes were introduced. Minor editorial and
formatting changes may have been made, but the relevant technical content is identical to the last

released version.

The changes made to this document are listed in the following table. For more information, please
contact dochelp@microsoft.com.

Section Description
Revision
class

6 Appendix A: Product
Behavior

Added Windows Server 2019 to the list of applicable
products.

Major

20 / 21

[MS-WDHCE-Diff] - v20180912
Wi-Fi Display Protocol: Hardware Cursor Extension
Copyright © 2018 Microsoft Corporation
Release: September 12, 2018

8 Index
A

Applicability 5

C

Capability negotiation 5
Change tracking 19

D

Directory service schema elements 10

E

Elements - directory service schema 10

F

Fields - vendor-extensible 6

G

Glossary 4

I

Implementer - security considerations 17
Index of security parameters 17
Informative references 4
Introduction 4

M

Messages
 Mouse pointer position message 8
 Mouse pointer shape message 8
 Namespaces 8
 transport 7
Mouse pointer position message message 8
Mouse pointer shape message message 8

N

Namespaces message 8
Normative references 4

O

Overview (synopsis) 4

P

Parameters - security index 17
Preconditions 5
Prerequisites 5

Product behavior 18

R

21 / 21

[MS-WDHCE-Diff] - v20180912
Wi-Fi Display Protocol: Hardware Cursor Extension
Copyright © 2018 Microsoft Corporation
Release: September 12, 2018

References 4
 informative 4
 normative 4
Relationship to other protocols 5

S

Schema elements - directory service 10
Security
 implementer considerations 17
 parameter index 17
Standards assignments 6

T

Tracking changes 19
Transport 7

V

Vendor-extensible fields 6
Versioning 5

	1 Introduction
	1.1 Glossary
	1.2 References
	1.2.1 (Updated Section) Normative References
	1.2.2 Informative References

	1.3 Overview
	1.4 Relationship to Other Protocols
	1.5 Prerequisites/Preconditions
	1.6 Applicability Statement
	1.7 (Updated Section) Versioning and Capability Negotiation
	1.8 Vendor-Extensible Fields
	1.9 Standards Assignments

	2 Messages
	2.1 Transport
	2.2 Message Syntax
	2.2.1 Namespaces
	2.2.2 (Updated Section) Mouse pointer position message
	2.2.3 Mouse pointer shape message

	2.3 Directory Service Schema Elements

	3 Protocol Details
	3.1 Source Details
	3.1.1 Abstract Data Model
	3.1.2 Timers
	3.1.3 Initialization
	3.1.4 Higher-Layer Triggered Events
	3.1.5 Message Processing Events and Sequencing Rules
	3.1.6 Timer Events
	3.1.7 Other Local Events

	3.2 Sink Details
	3.2.1 Abstract Data Model
	3.2.2 Timers
	3.2.3 Initialization
	3.2.4 Higher-Layer Triggered Events
	3.2.5 Message Processing Events and Sequencing Rules
	3.2.6 Timer Events
	3.2.7 Other Local Events

	4 Protocol Examples
	5 Security
	5.1 Security Considerations for Implementers
	5.2 Index of Security Parameters

	6 (Updated Section) Appendix A: Product Behavior
	7 Change Tracking
	8 Index

