
1 / 342

[MS-VDS] - v20170601
Virtual Disk Service (VDS) Protocol
Copyright © 2017 Microsoft Corporation
Release: June 1, 2017

[MS-VDS]:

Virtual Disk Service (VDS) Protocol

Intellectual Property Rights Notice for Open Specifications Documentation

 Technical Documentation. Microsoft publishes Open Specifications documentation (“this
documentation”) for protocols, file formats, data portability, computer languages, and standards
support. Additionally, overview documents cover inter-protocol relationships and interactions.

 Copyrights. This documentation is covered by Microsoft copyrights. Regardless of any other
terms that are contained in the terms of use for the Microsoft website that hosts this
documentation, you can make copies of it in order to develop implementations of the technologies

that are described in this documentation and can distribute portions of it in your implementations
that use these technologies or in your documentation as necessary to properly document the

implementation. You can also distribute in your implementation, with or without modification, any
schemas, IDLs, or code samples that are included in the documentation. This permission also
applies to any documents that are referenced in the Open Specifications documentation.

 No Trade Secrets. Microsoft does not claim any trade secret rights in this documentation.
 Patents. Microsoft has patents that might cover your implementations of the technologies

described in the Open Specifications documentation. Neither this notice nor Microsoft's delivery of
this documentation grants any licenses under those patents or any other Microsoft patents.
However, a given Open Specifications document might be covered by the Microsoft Open
Specifications Promise or the Microsoft Community Promise. If you would prefer a written license,
or if the technologies described in this documentation are not covered by the Open Specifications
Promise or Community Promise, as applicable, patent licenses are available by contacting
iplg@microsoft.com.

 License Programs. To see all of the protocols in scope under a specific license program and the
associated patents, visit the Patent Map.

 Trademarks. The names of companies and products contained in this documentation might be
covered by trademarks or similar intellectual property rights. This notice does not grant any

licenses under those rights. For a list of Microsoft trademarks, visit
www.microsoft.com/trademarks.

 Fictitious Names. The example companies, organizations, products, domain names, email
addresses, logos, people, places, and events that are depicted in this documentation are fictitious.
No association with any real company, organization, product, domain name, email address, logo,
person, place, or event is intended or should be inferred.

Reservation of Rights. All other rights are reserved, and this notice does not grant any rights other
than as specifically described above, whether by implication, estoppel, or otherwise.

Tools. The Open Specifications documentation does not require the use of Microsoft programming

tools or programming environments in order for you to develop an implementation. If you have access
to Microsoft programming tools and environments, you are free to take advantage of them. Certain
Open Specifications documents are intended for use in conjunction with publicly available standards
specifications and network programming art and, as such, assume that the reader either is familiar
with the aforementioned material or has immediate access to it.

Support. For questions and support, please contact dochelp@microsoft.com.

http://go.microsoft.com/fwlink/?LinkId=214445
http://go.microsoft.com/fwlink/?LinkId=214445
http://go.microsoft.com/fwlink/?LinkId=214448
mailto:iplg@microsoft.com
https://msdn.microsoft.com/en-us/openspecifications/dn750984
http://www.microsoft.com/trademarks
mailto:dochelp@microsoft.com

2 / 342

[MS-VDS] - v20170601
Virtual Disk Service (VDS) Protocol
Copyright © 2017 Microsoft Corporation
Release: June 1, 2017

Revision Summary

Date
Revision
History

Revision
Class Comments

12/18/2006 0.1 New Version 0.1 release

3/2/2007 1.0 Major Version 1.0 release

4/3/2007 1.1 Minor Version 1.1 release

5/11/2007 1.2 Minor Version 1.2 release

6/1/2007 2.0 Major Updated and revised the technical content.

7/3/2007 3.0 Major Added IVdsVolume::SetFlags and IVdsVolume::ClearFlags.

7/20/2007 3.0.1 Editorial Changed language and formatting in the technical content.

8/10/2007 3.0.2 Editorial Changed language and formatting in the technical content.

9/28/2007 4.0 Major Added two interfaces.

10/23/2007 4.0.1 Editorial Changed language and formatting in the technical content.

11/30/2007 4.0.2 Editorial Changed language and formatting in the technical content.

1/25/2008 4.0.3 Editorial Changed language and formatting in the technical content.

3/14/2008 5.0 Major
Corrected CREATE_PARTITION_PARAMETERS structure; assorted
editorial revisions.

5/16/2008 5.0.1 Editorial Changed language and formatting in the technical content.

6/20/2008 6.0 Major Updated and revised the technical content.

7/25/2008 7.0 Major Updated and revised the technical content.

8/29/2008 8.0 Major Updated and revised the technical content.

10/24/2008 8.0.1 Editorial Changed language and formatting in the technical content.

12/5/2008 9.0 Major Updated and revised the technical content.

1/16/2009 10.0 Major Updated and revised the technical content.

2/27/2009 11.0 Major Updated and revised the technical content.

4/10/2009 12.0 Major Updated and revised the technical content.

5/22/2009 13.0 Major Updated and revised the technical content.

7/2/2009 14.0 Major Updated and revised the technical content.

8/14/2009 15.0 Major Updated and revised the technical content.

9/25/2009 16.0 Major Updated and revised the technical content.

11/6/2009 16.1 Minor Clarified the meaning of the technical content.

12/18/2009 16.2 Minor Clarified the meaning of the technical content.

1/29/2010 16.2.1 Editorial Changed language and formatting in the technical content.

3/12/2010 17.0 Major Updated and revised the technical content.

3 / 342

[MS-VDS] - v20170601
Virtual Disk Service (VDS) Protocol
Copyright © 2017 Microsoft Corporation
Release: June 1, 2017

Date
Revision
History

Revision
Class Comments

4/23/2010 18.0 Major Updated and revised the technical content.

6/4/2010 19.0 Major Updated and revised the technical content.

7/16/2010 20.0 Major Updated and revised the technical content.

8/27/2010 20.1 Minor Clarified the meaning of the technical content.

10/8/2010 20.1 None
No changes to the meaning, language, or formatting of the
technical content.

11/19/2010 20.1 None
No changes to the meaning, language, or formatting of the
technical content.

1/7/2011 20.2 Minor Clarified the meaning of the technical content.

2/11/2011 21.0 Major Updated and revised the technical content.

3/25/2011 21.0 None
No changes to the meaning, language, or formatting of the
technical content.

5/6/2011 21.0 None
No changes to the meaning, language, or formatting of the
technical content.

6/17/2011 21.1 Minor Clarified the meaning of the technical content.

9/23/2011 21.1 None
No changes to the meaning, language, or formatting of the
technical content.

12/16/2011 22.0 Major Updated and revised the technical content.

3/30/2012 22.0 None
No changes to the meaning, language, or formatting of the
technical content.

7/12/2012 23.0 Major Updated and revised the technical content.

10/25/2012 23.0 None
No changes to the meaning, language, or formatting of the
technical content.

1/31/2013 23.0 None
No changes to the meaning, language, or formatting of the
technical content.

8/8/2013 24.0 Major Updated and revised the technical content.

11/14/2013 24.0 None
No changes to the meaning, language, or formatting of the
technical content.

2/13/2014 24.0 None
No changes to the meaning, language, or formatting of the
technical content.

5/15/2014 24.0 None
No changes to the meaning, language, or formatting of the
technical content.

6/30/2015 25.0 Major Significantly changed the technical content.

10/16/2015 25.0 None
No changes to the meaning, language, or formatting of the
technical content.

7/14/2016 26.0 Major Significantly changed the technical content.

6/1/2017 26.0 None
No changes to the meaning, language, or formatting of the
technical content.

4 / 342

[MS-VDS] - v20170601
Virtual Disk Service (VDS) Protocol
Copyright © 2017 Microsoft Corporation
Release: June 1, 2017

Table of Contents

1 Introduction .. 13
1.1 Glossary ... 13
1.2 References .. 21

1.2.1 Normative References ... 21
1.2.2 Informative References ... 22

1.3 Overview .. 23
1.4 Relationship to Other Protocols .. 24
1.5 Prerequisites and Preconditions .. 24
1.6 Applicability Statement ... 24
1.7 Versioning and Capability Negotiation ... 24
1.8 Vendor-Extensible Fields ... 24
1.9 Standards Assignments ... 25

2 Messages ... 28
2.1 Transport .. 28
2.2 Message Syntax ... 28

2.2.1 Common Data Types ... 28
2.2.1.1 Data Types ... 28

2.2.1.1.1 ULONGLONG ... 28
2.2.1.1.2 DWORD .. 28
2.2.1.1.3 VDS_OBJECT_ID ... 28
2.2.1.1.4 VDS_LUN_INFORMATION ... 29
2.2.1.1.5 ACCESS_MASK .. 29

2.2.1.2 Enumerations ... 29
2.2.1.2.1 VDS_HEALTH .. 29
2.2.1.2.2 VDS_NOTIFICATION_TARGET_TYPE ... 29
2.2.1.2.3 VDS_RECOVER_ACTION ... 30
2.2.1.2.4 VDS_ASYNC_OUTPUT_TYPE .. 30
2.2.1.2.5 VDS_STORAGE_BUS_TYPE ... 31
2.2.1.2.6 VDS_STORAGE_IDENTIFIER_CODE_SET .. 33
2.2.1.2.7 VDS_STORAGE_IDENTIFIER_TYPE ... 33
2.2.1.2.8 VDS_INTERCONNECT_ADDRESS_TYPE ... 34
2.2.1.2.9 VDS_FILE_SYSTEM_TYPE ... 34
2.2.1.2.10 VDS_FILE_SYSTEM_FLAG ... 35
2.2.1.2.11 VDS_FILE_SYSTEM_PROP_FLAG .. 36
2.2.1.2.12 VDS_FILE_SYSTEM_FORMAT_SUPPORT_FLAG 36
2.2.1.2.13 VDS_DISK_EXTENT_TYPE ... 36
2.2.1.2.14 VDS_PARTITION_STYLE ... 37
2.2.1.2.15 VDS_PARTITION_FLAG ... 37
2.2.1.2.16 VDS_VOLUME_TYPE ... 38
2.2.1.2.17 VDS_TRANSITION_STATE .. 38
2.2.1.2.18 VDS_FORMAT_OPTION_FLAGS .. 38
2.2.1.2.19 VDS_DISK_FLAG ... 39
2.2.1.2.20 VDS_DISK_STATUS ... 40
2.2.1.2.21 VDS_LUN_RESERVE_MODE... 41
2.2.1.2.22 VDS_VOLUME_STATUS .. 41
2.2.1.2.23 VDS_VOLUME_FLAG .. 41

2.2.1.3 Structures .. 43
2.2.1.3.1 VDS_SERVICE_NOTIFICATION .. 43
2.2.1.3.2 VDS_PACK_NOTIFICATION ... 44
2.2.1.3.3 VDS_DISK_NOTIFICATION ... 44
2.2.1.3.4 VDS_VOLUME_NOTIFICATION ... 45
2.2.1.3.5 VDS_PARTITION_NOTIFICATION ... 45
2.2.1.3.6 VDS_DRIVE_LETTER_NOTIFICATION ... 46
2.2.1.3.7 VDS_FILE_SYSTEM_NOTIFICATION ... 46

5 / 342

[MS-VDS] - v20170601
Virtual Disk Service (VDS) Protocol
Copyright © 2017 Microsoft Corporation
Release: June 1, 2017

2.2.1.3.8 VDS_MOUNT_POINT_NOTIFICATION ... 47
2.2.1.3.9 VDS_NOTIFICATION .. 47
2.2.1.3.10 VDS_ASYNC_OUTPUT .. 48
2.2.1.3.11 VDS_PARTITION_INFO_MBR ... 49
2.2.1.3.12 VDS_PARTITION_INFO_GPT ... 49
2.2.1.3.13 VDS_STORAGE_IDENTIFIER ... 50
2.2.1.3.14 VDS_STORAGE_DEVICE_ID_DESCRIPTOR .. 50
2.2.1.3.15 VDS_INTERCONNECT ... 51
2.2.1.3.16 VDS_LUN_INFORMATION ... 51
2.2.1.3.17 VDS_FILE_SYSTEM_PROP ... 52
2.2.1.3.18 VDS_FILE_SYSTEM_FORMAT_SUPPORT_PROP 52
2.2.1.3.19 VDS_DISK_EXTENT ... 53
2.2.1.3.20 VDS_PARTITION_PROP .. 54
2.2.1.3.21 VDS_INPUT_DISK ... 54
2.2.1.3.22 CREATE_PARTITION_PARAMETERS .. 55
2.2.1.3.23 VIRTUAL_STORAGE_TYPE ... 56

2.2.2 Interface-Specific Data Types ... 56
2.2.2.1 IVdsService Data Types ... 56

2.2.2.1.1 Data Types ... 56
2.2.2.1.1.1 MAX_FS_NAME_SIZE ... 56

2.2.2.1.2 Enumerations.. 56
2.2.2.1.2.1 VDS_OBJECT_TYPE .. 56
2.2.2.1.2.2 VDS_SERVICE_FLAG .. 57
2.2.2.1.2.3 VDS_QUERY_PROVIDER_FLAG .. 58
2.2.2.1.2.4 VDS_DRIVE_LETTER_FLAG ... 58

2.2.2.1.3 Structures .. 58
2.2.2.1.3.1 VDS_SERVICE_PROP .. 58
2.2.2.1.3.2 VDS_DRIVE_LETTER_PROP ... 59
2.2.2.1.3.3 VDS_FILE_SYSTEM_TYPE_PROP .. 59

2.2.2.2 IVdsServiceSAN Data Types ... 60
2.2.2.2.1 Enumerations.. 60

2.2.2.2.1.1 VDS_SAN_POLICY .. 60
2.2.2.3 IVdsServiceIscsi Data Types ... 60

2.2.2.3.1 Structures .. 60
2.2.2.3.1.1 VDS_ISCSI_SHARED_SECRET ... 61

2.2.2.4 IVdsHbaPort Data Types .. 61
2.2.2.4.1 Enumerations.. 61

2.2.2.4.1.1 VDS_HBAPORT_TYPE ... 61
2.2.2.4.1.2 VDS_HBAPORT_STATUS ... 62
2.2.2.4.1.3 VDS_HBAPORT_SPEED_FLAG .. 63
2.2.2.4.1.4 VDS_PATH_STATUS ... 63

2.2.2.4.2 Structures .. 64
2.2.2.4.2.1 VDS_WWN .. 64
2.2.2.4.2.2 VDS_HBAPORT_PROP ... 64

2.2.2.5 IVdsIscsiInitiatorAdapter Data Types ... 65
2.2.2.5.1 Structures .. 65

2.2.2.5.1.1 VDS_ISCSI_INITIATOR_ADAPTER_PROP 65
2.2.2.6 IVdsIscsiInitiatorPortal Data Types .. 65

2.2.2.6.1 Enumerations.. 65
2.2.2.6.1.1 VDS_IPADDRESS_TYPE .. 65

2.2.2.6.2 Structures .. 65
2.2.2.6.2.1 VDS_IPADDRESS ... 66
2.2.2.6.2.2 VDS_ISCSI_INITIATOR_PORTAL_PROP ... 66

2.2.2.7 IVdsProvider Data Types .. 66
2.2.2.7.1 Enumerations.. 67

2.2.2.7.1.1 VDS_PROVIDER_TYPE .. 67
2.2.2.7.1.2 VDS_PROVIDER_FLAG .. 67

2.2.2.7.2 Structures .. 68

6 / 342

[MS-VDS] - v20170601
Virtual Disk Service (VDS) Protocol
Copyright © 2017 Microsoft Corporation
Release: June 1, 2017

2.2.2.7.2.1 VDS_PROVIDER_PROP .. 68
2.2.2.8 IVdsPack Data Types ... 68

2.2.2.8.1 Enumerations.. 69
2.2.2.8.1.1 VDS_PACK_STATUS ... 69
2.2.2.8.1.2 VDS_PACK_FLAG ... 69

2.2.2.8.2 Structures .. 69
2.2.2.8.2.1 VDS_PACK_PROP ... 69

2.2.2.9 IVdsDisk Data Types ... 70
2.2.2.9.1 Structures .. 70

2.2.2.9.1.1 VDS_DISK_PROP ... 70
2.2.2.10 IVdsDisk3 Data Types .. 72

2.2.2.10.1 Enumerations.. 72
2.2.2.10.1.1 VDS_DISK_OFFLINE_REASON ... 72

2.2.2.10.2 Structures .. 72
2.2.2.10.2.1 VDS_DISK_PROP2 ... 72
2.2.2.10.2.2 VDS_DISK_FREE_EXTENT ... 75

2.2.2.11 IVdsAdvancedDisk Data Types .. 75
2.2.2.11.1 Structures .. 75

2.2.2.11.1.1 CHANGE_ATTRIBUTES_PARAMETERS ... 75
2.2.2.12 IVdsAdvancedDisk2 Data Types .. 76

2.2.2.12.1 Structures .. 76
2.2.2.12.1.1 CHANGE_PARTITION_TYPE_PARAMETERS 76

2.2.2.13 IVdsAdvancedDisk3 Data Types .. 77
2.2.2.13.1 Structures .. 77

2.2.2.13.1.1 VDS_ADVANCEDDISK_PROP ... 77
2.2.2.14 IVdsVolume Data Types ... 79

2.2.2.14.1 Structures .. 79
2.2.2.14.1.1 VDS_VOLUME_PROP .. 79

2.2.2.15 IVdsVolume2 Data Types ... 80
2.2.2.15.1 Structures .. 80

2.2.2.15.1.1 VDS_VOLUME_PROP2 ... 80
2.2.2.16 IVdsVolumeMF Data Types ... 80

2.2.2.16.1 Data Types ... 80
2.2.2.16.1.1 MAX_PATH .. 80

2.2.2.16.2 Structures .. 81
2.2.2.16.2.1 VDS_REPARSE_POINT_PROP ... 81

2.2.2.17 IVdsVolumePlex Data Types ... 81
2.2.2.17.1 Enumeration ... 81

2.2.2.17.1.1 VDS_VOLUME_PLEX_TYPE .. 81
2.2.2.17.1.2 VDS_VOLUME_PLEX_STATUS .. 81

2.2.2.17.2 Structures .. 82
2.2.2.17.2.1 VDS_VOLUME_PLEX_PROP .. 82

2.2.2.18 IVdsVdProvider Data Types .. 83
2.2.2.18.1 Enumerations.. 83

2.2.2.18.1.1 CREATE_VIRTUAL_DISK_FLAG .. 83
2.2.2.18.2 Structures .. 83

2.2.2.18.2.1 VDS_CREATE_VDISK_PARAMETERS ... 83
2.2.2.19 IVdsVDisk Data Types ... 84

2.2.2.19.1 Enumerations.. 84
2.2.2.19.1.1 VDS_VDISK_STATE .. 84
2.2.2.19.1.2 OPEN_VIRTUAL_DISK_FLAG .. 86
2.2.2.19.1.3 DEPENDENT_DISK_FLAG .. 86
2.2.2.19.1.4 VIRTUAL_DISK_ACCESS_MASK ... 87

2.2.2.19.2 Structures .. 88
2.2.2.19.2.1 VDS_VDISK_PROPERTIES ... 88

2.2.2.20 IVdsOpenVDisk Data Types .. 89
2.2.2.20.1 Enumerations.. 89

2.2.2.20.1.1 ATTACH_VIRTUAL_DISK_FLAG .. 89

7 / 342

[MS-VDS] - v20170601
Virtual Disk Service (VDS) Protocol
Copyright © 2017 Microsoft Corporation
Release: June 1, 2017

2.2.2.20.1.2 DETACH_VIRTUAL_DISK_FLAG .. 89
2.2.2.20.1.3 COMPACT_VIRTUAL_DISK_FLAG .. 90
2.2.2.20.1.4 MERGE_VIRTUAL_DISK_FLAG ... 90
2.2.2.20.1.5 EXPAND_VIRTUAL_DISK_FLAG .. 90

2.2.3 Error Codes.. 90

3 Protocol Details ... 114
3.1 Interfaces .. 114

3.1.1 Enumeration Object Interfaces .. 117
3.1.1.1 IEnumVdsObject Interface .. 118

3.1.2 Callback Object Interfaces .. 118
3.1.2.1 IVdsAdviseSink Interface .. 118

3.1.3 Asynchronous Operation Object Interfaces .. 118
3.1.3.1 IVdsAsync Interface ... 119

3.1.4 Service Loader Interfaces ... 119
3.1.4.1 IVdsServiceLoader Interface .. 119

3.1.5 Service Object Interfaces .. 119
3.1.5.1 IVdsService Interface ... 119
3.1.5.2 IVdsServiceInitialization Interface .. 121
3.1.5.3 IVdsServiceUninstallDisk Interface ... 121
3.1.5.4 IVdsServiceHba Interface .. 122
3.1.5.5 IVdsServiceIscsi Interface ... 122
3.1.5.6 IVdsServiceSAN Interface ... 123
3.1.5.7 IVdsServiceSw Interface ... 123

3.1.6 HBA Port Object Interfaces ... 123
3.1.6.1 IVdsHbaPort Interface .. 123

3.1.7 Initiator Adapter Object Interfaces ... 124
3.1.7.1 IVdsIscsiInitiatorAdapter Interface ... 124

3.1.8 Initiator Portal Object Interfaces .. 124
3.1.8.1 IVdsIscsiInitiatorPortal Interface .. 124

3.1.9 Provider Object Interfaces .. 125
3.1.9.1 IVdsProvider Interface .. 125
3.1.9.2 IVdsSwProvider Interface .. 125
3.1.9.3 IVdsHwProvider Interface .. 126
3.1.9.4 IVdsVdProvider Interface .. 126

3.1.10 Subsystem Object Interfaces .. 127
3.1.10.1 IVdsSubSystemImportTarget Interface ... 127

3.1.11 Pack Object Interfaces ... 127
3.1.11.1 IVdsPack Interface ... 127
3.1.11.2 IVdsPack2 Interface ... 128

3.1.12 Disk Object Interfaces .. 129
3.1.12.1 IVdsDisk Interface ... 129
3.1.12.2 IVdsDisk2 Interface .. 129
3.1.12.3 IVdsDisk3 Interface .. 130
3.1.12.4 IVdsAdvancedDisk Interface .. 130
3.1.12.5 IVdsAdvancedDisk2 Interface .. 131
3.1.12.6 IVdsAdvancedDisk3 Interface .. 131
3.1.12.7 IVdsCreatePartitionEx Interface ... 131
3.1.12.8 IVdsDiskOnline Interface ... 132
3.1.12.9 IVdsDiskPartitionMF Interface .. 132
3.1.12.10 IVdsDiskPartitionMF2 Interface .. 133
3.1.12.11 IVdsRemovable Interface .. 133

3.1.13 Volume Object Interfaces ... 133
3.1.13.1 IVdsVolume Interface ... 133
3.1.13.2 IVdsVolume2 Interface ... 134
3.1.13.3 IVdsVolumeMF Interface ... 135
3.1.13.4 IVdsVolumeMF2 Interface ... 135
3.1.13.5 IVdsVolumeMF3 Interface ... 136

8 / 342

[MS-VDS] - v20170601
Virtual Disk Service (VDS) Protocol
Copyright © 2017 Microsoft Corporation
Release: June 1, 2017

3.1.13.6 IVdsVolumeShrink Interface .. 136
3.1.13.7 IVdsVolumeOnline Interface .. 137

3.1.14 Volume Plex Object Interfaces ... 137
3.1.14.1 IVdsVolumePlex Interface ... 137

3.1.15 Virtual Disk Object Interfaces .. 138
3.1.15.1 IVdsVDisk Interface .. 138
3.1.15.2 IVdsOpenVDisk Interface .. 138

3.2 Common Details ... 139
3.2.1 Abstract Data Model ... 139

3.2.1.1 Method Invocation ... 139
3.2.1.1.1 Method Sequencing Requirements .. 139
3.2.1.1.2 Storage Object Relationships ... 139

3.2.1.2 Service and Providers ... 143
3.2.1.3 Packs ... 144
3.2.1.4 Disks .. 144
3.2.1.5 Volumes ... 145
3.2.1.6 Virtual Disks .. 146
3.2.1.7 File Systems, Drive Letters, and Access Paths .. 146

3.2.2 Timers ... 147
3.2.3 Initialization .. 147
3.2.4 Message Processing Events and Sequencing Rules ... 147
3.2.5 Timer Events ... 147
3.2.6 Other Local Events ... 147

3.3 Client Details .. 147
3.3.1 Abstract Data Model ... 147

3.3.1.1 Notification Callback Objects ... 147
3.3.2 Timers ... 148
3.3.3 Initialization .. 148
3.3.4 Message Processing Events and Sequencing Rules ... 148

3.3.4.1 Processing Server Replies to Method Calls ... 148
3.3.4.2 Processing Notifications Sent from the Server to the Client........................ 149
3.3.4.3 IVdsAdviseSink Methods ... 149

3.3.4.3.1 IVdsAdviseSink::OnNotify (Opnum 3) ... 149
3.3.5 Timer Events ... 149
3.3.6 Other Local Events ... 149

3.4 Server Details ... 149
3.4.1 Abstract Data Model ... 149

3.4.1.1 Service Object ... 150
3.4.1.2 Storage Management Objects .. 150
3.4.1.3 Enumeration of Objects .. 153
3.4.1.4 Notification Callback Objects ... 154
3.4.1.5 Asynchronous Tasks ... 154

3.4.2 Timers ... 155
3.4.3 Initialization .. 156

3.4.3.1 Storage Management Objects .. 156
3.4.3.2 Notification Callback Objects ... 156

3.4.4 Higher-Layer Triggered Events .. 156
3.4.5 Message Processing Events and Sequencing Rules ... 156

3.4.5.1 Sequencing Rules ... 156
3.4.5.1.1 Adding Pack Objects for Dynamic Providers 156
3.4.5.1.2 Removing Pack Objects for Dynamic Providers 157
3.4.5.1.3 Adding Disk Objects .. 157
3.4.5.1.4 Removing Disk Objects ... 159
3.4.5.1.5 Adding Volume Objects ... 159
3.4.5.1.6 Removing Volume Objects ... 160
3.4.5.1.7 Adding Virtual Disk Objects .. 161
3.4.5.1.8 Removing Virtual Disk Objects ... 161
3.4.5.1.9 Handling Asynchronous Tasks .. 161

9 / 342

[MS-VDS] - v20170601
Virtual Disk Service (VDS) Protocol
Copyright © 2017 Microsoft Corporation
Release: June 1, 2017

3.4.5.2 Message Processing Details ... 162
3.4.5.2.1 IEnumVdsObject Methods .. 162

3.4.5.2.1.1 IEnumVdsObject::Next (Opnum 3).. 162
3.4.5.2.1.2 IEnumVdsObject::Skip (Opnum 4) .. 163
3.4.5.2.1.3 IEnumVdsObject::Reset (Opnum 5) .. 164
3.4.5.2.1.4 IEnumVdsObject::Clone (Opnum 6) .. 164

3.4.5.2.2 IVdsAsync Methods ... 165
3.4.5.2.2.1 IVdsAsync::Cancel (Opnum 3) .. 165
3.4.5.2.2.2 IVdsAsync::Wait (Opnum 4) ... 165
3.4.5.2.2.3 IVdsAsync::QueryStatus (Opnum 5) ... 166

3.4.5.2.3 IVdsServiceLoader Methods ... 167
3.4.5.2.3.1 IVdsServiceLoader::LoadService (Opnum 3) 167

3.4.5.2.4 IVdsService Methods ... 167
3.4.5.2.4.1 IVdsService::IsServiceReady (Opnum 3) 167
3.4.5.2.4.2 IVdsService::WaitForServiceReady (Opnum 4) 168
3.4.5.2.4.3 IVdsService::GetProperties (Opnum 5) .. 168
3.4.5.2.4.4 IVdsService::QueryProviders (Opnum 6) 168
3.4.5.2.4.5 IVdsService::QueryUnallocatedDisks (Opnum 8) 169
3.4.5.2.4.6 IVdsService::GetObject (Opnum 9) ... 169
3.4.5.2.4.7 IVdsService::QueryDriveLetters (Opnum 10) 170
3.4.5.2.4.8 IVdsService::QueryFileSystemTypes (Opnum 11) 171
3.4.5.2.4.9 IVdsService::Reenumerate (Opnum 12) 171
3.4.5.2.4.10 IVdsService::Refresh (Opnum 13) .. 171
3.4.5.2.4.11 IVdsService::CleanupObsoleteMountPoints (Opnum 14) 172
3.4.5.2.4.12 IVdsService::Advise (Opnum 15) .. 172
3.4.5.2.4.13 IVdsService::Unadvise (Opnum 16) .. 173
3.4.5.2.4.14 IVdsService::Reboot (Opnum 17) ... 173
3.4.5.2.4.15 IVdsService::SetFlags (Opnum 18) ... 174
3.4.5.2.4.16 IVdsService::ClearFlags (Opnum 19) ... 174

3.4.5.2.5 IVdsServiceInitialization Methods ... 174
3.4.5.2.5.1 IVdsServiceInitialization::Initialize (Opnum 3) 174

3.4.5.2.6 IVdsServiceUninstallDisk Methods... 175
3.4.5.2.6.1 IVdsServiceUninstallDisk::GetDiskIdFromLunInfo (Opnum 3) 175
3.4.5.2.6.2 IVdsServiceUninstallDisk::UninstallDisks (Opnum 4) 175

3.4.5.2.7 IVdsServiceHba Methods ... 176
3.4.5.2.7.1 IVdsServiceHba::QueryHbaPorts (Opnum 3) 176

3.4.5.2.8 IVdsServiceIscsi Methods .. 177
3.4.5.2.8.1 IVdsServiceIscsi::GetInitiatorName (Opnum 3) 177
3.4.5.2.8.2 IVdsServiceIscsi::QueryInitiatorAdapters (Opnum 4) 177
3.4.5.2.8.3 IVdsServiceIscsi::SetInitiatorSharedSecret (Opnum 8) 178

3.4.5.2.9 IVdsServiceSAN Methods ... 178
3.4.5.2.9.1 IVdsServiceSAN::GetSANPolicy (Opnum 3) 178
3.4.5.2.9.2 IVdsServiceSAN::SetSANPolicy (Opnum 4) 179

3.4.5.2.10 IVdsServiceSw Methods .. 179
3.4.5.2.10.1 IVdsServiceSw::GetDiskObject (Opnum 3) 179

3.4.5.2.11 IVdsHbaPort Methods .. 180
3.4.5.2.11.1 IVdsHbaPort::GetProperties (Opnum 3) 180
3.4.5.2.11.2 IVdsHbaPort::SetAllPathStatuses (Opnum 4) 180

3.4.5.2.12 IVdsIscsiInitiatorAdapter Methods .. 180
3.4.5.2.12.1 IVdsIscsiInitiatorAdapter::GetProperties (Opnum 3) 180
3.4.5.2.12.2 IVdsIscsiInitiatorAdapter::QueryInitiatorPortals (Opnum 4) 181

3.4.5.2.13 IVdsIscsiInitiatorPortal Methods ... 181
3.4.5.2.13.1 IVdsIscsiInitiatorPortal::GetProperties (Opnum 3)......................... 181
3.4.5.2.13.2 IVdsIscsiInitiatorPortal::GetInitiatorAdapter (Opnum 4) 182

3.4.5.2.14 IVdsProvider Methods ... 182
3.4.5.2.14.1 IVdsProvider::GetProperties (Opnum 3) 182

3.4.5.2.15 IVdsSwProvider Methods ... 183
3.4.5.2.15.1 IVdsSwProvider::QueryPacks (Opnum 3) 183

10 / 342

[MS-VDS] - v20170601
Virtual Disk Service (VDS) Protocol
Copyright © 2017 Microsoft Corporation
Release: June 1, 2017

3.4.5.2.15.2 IVdsSwProvider::CreatePack (Opnum 4) 183
3.4.5.2.16 IVdsHwProvider Methods ... 184

3.4.5.2.16.1 IVdsHwProvider::QuerySubSystems (Opnum 3) 184
3.4.5.2.17 IVdsVdProvider Methods .. 184

3.4.5.2.17.1 IVdsVdProvider::QueryVDisks (Opnum 3) 184
3.4.5.2.17.2 IVdsVdProvider::CreateVDisk (Opnum 4) 185
3.4.5.2.17.3 IVdsVdProvider::AddVDisk (Opnum 5) ... 186
3.4.5.2.17.4 IVdsVdProvider::GetDiskFromVDisk (Opnum 6) 187
3.4.5.2.17.5 IVdsVdProvider::GetVDiskFromDisk (Opnum 7) 187

3.4.5.2.18 IVdsSubSystemImportTarget Methods .. 188
3.4.5.2.18.1 IVdsSubSystemImportTarget::GetImportTarget (Opnum 3) 188
3.4.5.2.18.2 IVdsSubSystemImportTarget::SetImportTarget (Opnum 4) 188

3.4.5.2.19 IVdsPack Methods .. 189
3.4.5.2.19.1 IVdsPack::GetProperties (Opnum 3) .. 189
3.4.5.2.19.2 IVdsPack::GetProvider (Opnum 4) .. 189
3.4.5.2.19.3 IVdsPack::QueryVolumes (Opnum 5) .. 190
3.4.5.2.19.4 IVdsPack::QueryDisks (Opnum 6) ... 190
3.4.5.2.19.5 IVdsPack::CreateVolume (Opnum 7) ... 191
3.4.5.2.19.6 IVdsPack::AddDisk (Opnum 8) ... 192
3.4.5.2.19.7 IVdsPack::MigrateDisks (Opnum 9) ... 193
3.4.5.2.19.8 IVdsPack::RemoveMissingDisk (Opnum 11) 195
3.4.5.2.19.9 IVdsPack::Recover (Opnum 12) .. 195

3.4.5.2.20 IVdsPack2 Methods ... 197
3.4.5.2.20.1 IVdsPack2::CreateVolume2 (Opnum 3) 197

3.4.5.2.21 IVdsDisk Methods ... 197
3.4.5.2.21.1 IVdsDisk::GetProperties (Opnum 3) .. 197
3.4.5.2.21.2 IVdsDisk::GetPack (Opnum 4) .. 198
3.4.5.2.21.3 IVdsDisk::GetIdentificationData (Opnum 5) 198
3.4.5.2.21.4 IVdsDisk::QueryExtents (Opnum 6) .. 199
3.4.5.2.21.5 IVdsDisk::ConvertStyle (Opnum 7) ... 199
3.4.5.2.21.6 IVdsDisk::SetFlags (Opnum 8) ... 200
3.4.5.2.21.7 IVdsDisk::ClearFlags (Opnum 9) ... 201

3.4.5.2.22 IVdsDisk2 Methods ... 201
3.4.5.2.22.1 IVdsDisk2::SetSANMode (Opnum 3) ... 201

3.4.5.2.23 IVdsDisk3 Methods ... 202
3.4.5.2.23.1 IVdsDisk3::GetProperties2 (Opnum 3) ... 202
3.4.5.2.23.2 IVdsDisk3::QueryFreeExtents (Opnum 6) 202

3.4.5.2.24 IVdsAdvancedDisk Methods ... 203
3.4.5.2.24.1 IVdsAdvancedDisk::GetPartitionProperties (Opnum 3) 203
3.4.5.2.24.2 IVdsAdvancedDisk::QueryPartitions (Opnum 4) 203
3.4.5.2.24.3 IVdsAdvancedDisk::CreatePartition (Opnum 5) 204
3.4.5.2.24.4 IVdsAdvancedDisk::DeletePartition (Opnum 6) 206
3.4.5.2.24.5 IVdsAdvancedDisk::ChangeAttributes (Opnum 7) 207
3.4.5.2.24.6 IVdsAdvancedDisk::AssignDriveLetter (Opnum 8) 209
3.4.5.2.24.7 IVdsAdvancedDisk::DeleteDriveLetter (Opnum 9) 209
3.4.5.2.24.8 IVdsAdvancedDisk::GetDriveLetter (Opnum 10) 210
3.4.5.2.24.9 IVdsAdvancedDisk::FormatPartition (Opnum 11) 210
3.4.5.2.24.10 IVdsAdvancedDisk::Clean (Opnum 12) .. 212

3.4.5.2.25 IVdsAdvancedDisk2 Methods.. 214
3.4.5.2.25.1 IVdsAdvancedDisk2::ChangePartitionType (Opnum 3) 214

3.4.5.2.26 IVdsAdvancedDisk3 Methods.. 215
3.4.5.2.26.1 IVdsAdvancedDisk3::GetProperties (Opnum 3) 215
3.4.5.2.26.2 IVdsAdvancedDisk3::GetUniqueId (Opnum 4) 215

3.4.5.2.27 IVdsCreatePartitionEx Methods... 216
3.4.5.2.27.1 IVdsCreatePartitionEx::CreatePartitionEx (Opnum 3) 216

3.4.5.2.28 IVdsDiskOnline Methods .. 218
3.4.5.2.28.1 IVdsDiskOnline::Online (Opnum 3) ... 218
3.4.5.2.28.2 IVdsDiskOnline::Offline (Opnum 4) ... 218

11 / 342

[MS-VDS] - v20170601
Virtual Disk Service (VDS) Protocol
Copyright © 2017 Microsoft Corporation
Release: June 1, 2017

3.4.5.2.29 IVdsDiskPartitionMF Methods ... 219
3.4.5.2.29.1 IVdsDiskPartitionMF::GetPartitionFileSystemProperties (Opnum 3) .. 219
3.4.5.2.29.2 IVdsDiskPartitionMF::GetPartitionFileSystemTypeName (Opnum 4) . 219
3.4.5.2.29.3 IVdsDiskPartitionMF::QueryPartitionFileSystemFormatSupport (Opnum

5) ... 220
3.4.5.2.29.4 IVdsDiskPartitionMF::FormatPartitionEx (Opnum 6) 221

3.4.5.2.30 IVdsDiskPartitionMF2 Methods ... 223
3.4.5.2.30.1 IVdsDiskPartitionMF2::FormatPartitionEx2 (Opnum 3) 223

3.4.5.2.31 IVdsRemovable Methods ... 225
3.4.5.2.31.1 IVdsRemovable::QueryMedia (Opnum 3) 225
3.4.5.2.31.2 IVdsRemovable::Eject (Opnum 4) ... 226

3.4.5.2.32 IVdsVolume Methods .. 227
3.4.5.2.32.1 IVdsVolume::GetProperties (Opnum 3) .. 227
3.4.5.2.32.2 IVdsVolume::GetPack (Opnum 4) ... 227
3.4.5.2.32.3 IVdsVolume::QueryPlexes (Opnum 5) ... 227
3.4.5.2.32.4 IVdsVolume::Extend (Opnum 6) ... 228
3.4.5.2.32.5 IVdsVolume::Shrink (Opnum 7) .. 230
3.4.5.2.32.6 IVdsVolume::AddPlex (Opnum 8) ... 231
3.4.5.2.32.7 IVdsVolume::BreakPlex (Opnum 9) ... 232
3.4.5.2.32.8 IVdsVolume::RemovePlex (Opnum 10) .. 233
3.4.5.2.32.9 IVdsVolume::Delete (Opnum 11) .. 234
3.4.5.2.32.10 IVdsVolume::SetFlags (Opnum 12) ... 235
3.4.5.2.32.11 IVdsVolume::ClearFlags (Opnum 13) .. 236

3.4.5.2.33 IVdsVolume2 Methods ... 237
3.4.5.2.33.1 IVdsVolume2::GetProperties2 (Opnum 3) 237

3.4.5.2.34 IVdsVolumeMF Methods .. 238
3.4.5.2.34.1 IVdsVolumeMF::GetFileSystemProperties (Opnum 3) 238
3.4.5.2.34.2 IVdsVolumeMF::Format (Opnum 4) ... 238
3.4.5.2.34.3 IVdsVolumeMF::AddAccessPath (Opnum 5) 241
3.4.5.2.34.4 IVdsVolumeMF::QueryAccessPaths (Opnum 6) 242
3.4.5.2.34.5 IVdsVolumeMF::QueryReparsePoints (Opnum 7)........................... 242
3.4.5.2.34.6 IVdsVolumeMF::DeleteAccessPath (Opnum 8) 243
3.4.5.2.34.7 IVdsVolumeMF::Mount (Opnum 9) .. 244
3.4.5.2.34.8 IVdsVolumeMF::Dismount (Opnum 10).. 244
3.4.5.2.34.9 IVdsVolumeMF::SetFileSystemFlags (Opnum 11) 245
3.4.5.2.34.10 IVdsVolumeMF::ClearFileSystemFlags (Opnum 12) 245

3.4.5.2.35 IVdsVolumeMF2 Methods ... 245
3.4.5.2.35.1 IVdsVolumeMF2::GetFileSystemTypeName (Opnum 3) 246
3.4.5.2.35.2 IVdsVolumeMF2::QueryFileSystemFormatSupport (Opnum 4) 246
3.4.5.2.35.3 IVdsVolumeMF2::FormatEx (Opnum 5).. 246

3.4.5.2.36 IVdsVolumeMF3 Methods ... 249
3.4.5.2.36.1 IVdsVolumeMF3::QueryVolumeGuidPathnames (Opnum 3) 249
3.4.5.2.36.2 IVdsVolumeMF3::FormatEx2 (Opnum 4) 249
3.4.5.2.36.3 IVdsVolumeMF3::OfflineVolume (Opnum 5) 252

3.4.5.2.37 IVdsVolumeShrink Methods ... 252
3.4.5.2.37.1 IVdsVolumeShrink::QueryMaxReclaimableBytes (Opnum 3) 252
3.4.5.2.37.2 IVdsVolumeShrink::Shrink (Opnum 4) ... 252

3.4.5.2.38 IVdsVolumeOnline Methods ... 254
3.4.5.2.38.1 IVdsVolumeOnline::Online (Opnum 3) ... 254

3.4.5.2.39 IVdsVolumePlex Methods ... 254
3.4.5.2.39.1 IVdsVolumePlex::GetProperties (Opnum 3) 254
3.4.5.2.39.2 IVdsVolumePlex::GetVolume (Opnum 4) 255
3.4.5.2.39.3 IVdsVolumePlex::QueryExtents (Opnum 5) 255
3.4.5.2.39.4 IVdsVolumePlex::Repair (Opnum 6) .. 256

3.4.5.2.40 IVdsVDisk Methods ... 257
3.4.5.2.40.1 IVdsVDisk::Open (Opnum 3) .. 257
3.4.5.2.40.2 IVdsVDisk::GetProperties (Opnum 4) .. 258
3.4.5.2.40.3 IVdsVDisk::GetHostVolume (Opnum 5) 258

12 / 342

[MS-VDS] - v20170601
Virtual Disk Service (VDS) Protocol
Copyright © 2017 Microsoft Corporation
Release: June 1, 2017

3.4.5.2.40.4 IVdsVDisk::GetDeviceName (Opnum 6) 259
3.4.5.2.41 IVdsOpenVDisk Methods .. 259

3.4.5.2.41.1 IVdsOpenVDisk::Attach (Opnum 3) ... 259
3.4.5.2.41.2 IVdsOpenVDisk::Detach (Opnum 4) .. 260
3.4.5.2.41.3 IVdsOpenVDisk::DetachAndDelete (Opnum 5) 261
3.4.5.2.41.4 IVdsOpenVDisk::Compact (Opnum 6) .. 261
3.4.5.2.41.5 IVdsOpenVDisk::Merge (Opnum 7) ... 262
3.4.5.2.41.6 IVdsOpenVDisk::Expand (Opnum 8).. 263

3.4.6 Timer Events ... 264
3.4.7 Other Local Events ... 264

3.4.7.1 Disk Pack Arrival (Dynamic Disks) .. 264
3.4.7.2 Disk Pack Removal (Dynamic Disks) ... 264
3.4.7.3 Pack Modification ... 265
3.4.7.4 Disk Arrival ... 265
3.4.7.5 Disk Removal .. 265
3.4.7.6 Disk Modification .. 265
3.4.7.7 Volume Arrival ... 265
3.4.7.8 Volume Removal .. 265
3.4.7.9 Volume Modification ... 265
3.4.7.10 File System Modification ... 266
3.4.7.11 Mount Point Change ... 266
3.4.7.12 Drive Letter Assignment ... 266
3.4.7.13 Drive Letter Removal .. 267
3.4.7.14 Media Arrival ... 267
3.4.7.15 Media Removal .. 268

4 Protocol Examples ... 269
4.1 VDS Sessions ... 269

4.1.1 Starting Sessions ... 269
4.1.2 Ending Sessions .. 271

4.2 VDS Client Notifications ... 272
4.2.1 Registering for Notifications .. 272
4.2.2 Receiving Notifications ... 273
4.2.3 Unregistering for Notifications ... 273

4.3 Querying Enumerations of VDS Objects ... 274
4.4 Retrieving the Properties and IDs of VDS Objects .. 276
4.5 Performing Asynchronous Tasks .. 277
4.6 Sample IVdsAdviseSink::OnNotify Implementation .. 278

5 Security ... 281
5.1 Security Considerations for Implementers .. 281
5.2 Index of Security Parameters ... 281

6 Appendix A: Full IDL .. 282

7 Appendix B: Product Behavior ... 318

8 Change Tracking .. 334

9 Index ... 335

13 / 342

[MS-VDS] - v20170601
Virtual Disk Service (VDS) Protocol
Copyright © 2017 Microsoft Corporation
Release: June 1, 2017

1 Introduction

The Virtual Disk Service (VDS) Remote Protocol is a set of Distributed Component Object Model
(DCOM) interfaces for managing the configuration of disk storage on a computer. The Virtual Disk
Service Remote Protocol deals with detailed low-level operating system and storage concepts.

 Although this specification outlines the basic concepts that you need to know, this specification
assumes that you are familiar with these technologies. For information about storage, disk, and

volume concepts, see [MSDN-STC] and [MSDN-PARTITIONINFO]; for information on disk
management, see [MSDN-DISKMAN]. For more information about programming VDS, see [MSDN-
VDSPG].

The Virtual Disk Service Remote Protocol is used to programmatically enumerate and configure disks,
volumes, host bus adapter (HBA) ports, and iSCSI initiators on remote computers. This protocol
supersedes the Disk Management Remote Protocol, as specified in [MS-DMRP].

Sections 1.5, 1.8, 1.9, 2, and 3 of this specification are normative. All other sections and examples in

this specification are informative.

1.1 Glossary

This document uses the following terms:

active partition: A partition on a master boot record (MBR) disk that becomes the system
partition at system startup if the basic input/output system (BIOS) is configured to select that
disk for startup. An MBR disk can have exactly one active partition. The active partition is
stored in the partition table on the disk. GUID partitioning table (GPT) disks do not have
active partitions. See also master boot record (MBR), system partition, and partition
table.

active volume: For volumes that consist of single partitions, active volume is synonymous

with active partition. For volumes that consist of multiple partitions, active volume refers
to a volume in which one of the partitions is an active partition (generally mirrored

volumes because partitions on striped volumes or RAID-5 volumes do not have complete
copies of volume data). See also active partition.

allocation unit size: The size (expressed in bytes) of the units used by the file system to
allocate space on a disk for the file system used by the volume. The size, in bytes, must be a

power of two and must be a multiple of the size of the sectors on the disk. Typical allocation
unit sizes of most file systems range from 512 bytes to 64 KB.

attach: To create and expose a disk device object for a virtual disk on the operating system. For
example, when a user creates a virtual disk, a virtual disk file is allocated as the backing
store for the virtual disk. However, creating the virtual disk does not cause an operating
system disk object to be created and exposed; attaching does this.

backing store: The virtual disk file that stores the data for a virtual disk.

basic disk: A disk on which each volume can be composed of exclusively one partition.

basic provider: A virtual disk service (VDS) provider that manages basic disks.

BitLocker: BitLocker Drive Encryption. A Microsoft-developed feature appearing in Windows Vista
operating system that provides encryption for an entire volume.

boot configuration file: A file that contains a list of paths to boot partitions. On architectures
featuring the Extensible Firmware Interface (EFI), the boot configuration file can be
stored on other nonvolatile media, such as nonvolatile random access memory (NVRAM). On all

other architectures, it resides in the system partition.

https://go.microsoft.com/fwlink/?LinkId=90139
https://go.microsoft.com/fwlink/?LinkId=90059
https://go.microsoft.com/fwlink/?LinkId=89992
https://go.microsoft.com/fwlink/?LinkId=90696
https://go.microsoft.com/fwlink/?LinkId=90696
%5bMS-DMRP%5d.pdf#Section_19a16e20072f4d74a245ce4df2f1ecdd

14 / 342

[MS-VDS] - v20170601
Virtual Disk Service (VDS) Protocol
Copyright © 2017 Microsoft Corporation
Release: June 1, 2017

boot loader: An architecture-specific file that loads the operating system on the boot partition as
specified by the boot configuration file.

boot partition: A partition containing the operating system.

boot volume: See boot partition.

bus: Computer hardware to which peripheral devices can be connected. Messages are sent
between the CPU and the peripheral devices using the bus. Examples of bus types include
SCSI, USB, and 1394.

Challenge-Handshake Authentication Protocol (CHAP): A protocol for user authentication to a
remote resource. For more information, see [RFC1994] and [RFC2759].

cluster: A group of computers that are able to dynamically assign resource tasks among nodes in
a group.

Cluster Shared Volume File System (CSVFS): Cluster Shared Volume File System is a
technology that simplifies configuration and management of clustered virtual machines by

enabling multiple clustered virtual machines to use the same LUN while still allowing
independent failover capability.

cluster size: See allocation unit size.

Compact Disc File System (CDFS): A file system used for storing files on CD-ROMs.

Component Object Model (COM): An object-oriented programming model that defines how
objects interact within a single process or between processes. In COM, clients have access to an
object through interfaces implemented on the object. For more information, see [MS-DCOM].

crash dump file: A file that can be created by an operating system when an unrecoverable fault
occurs. This file contains the contents of memory at the time of the crash and can be used to
debug the problem creator.

cylinder: The set of disk tracks that appear in the same location on each platter of a disk.

detach: To delete a virtual disk object from the operating system. See attach.

differencing chain: The set of virtual disks defined by a differencing disk and its parent or
parents. For example, consider a scenario in which differencing disk A's parent is
differencing disk B, and differencing disk B's parent is virtual disk C. In this example,
disks A, B, and C create a differencing chain where disk A is the child and disks B and C are
both parents.

differencing disk: The current state of a virtual disk represented as a set of modified blocks

storing differences from the parent virtual disk. A differencing disk is not independent; it
depends on the parent virtual disk to be fully functional. A differencing disk can be the
parent to another differencing disk. See also differencing chain.

disk: A persistent storage device that can include physical hard disks, removable disk units, optical
drive units, and logical unit numbers (LUNs) unmasked to the system.

disk extent: A contiguous set of one or more disk sectors. A disk extent can be used as a partition

or part of a volume, or it can be free, which indicates that it is not in use or that it might be
unusable for creating partitions or volumes.

disk group: In the context of dynamic disks, this term describes a logical grouping of disks.

disk pack: See disk group.

https://go.microsoft.com/fwlink/?LinkId=90305
https://go.microsoft.com/fwlink/?LinkId=90379
%5bMS-DCOM%5d.pdf#Section_4a893f3dbd2948cd9f43d9777a4415b0

15 / 342

[MS-VDS] - v20170601
Virtual Disk Service (VDS) Protocol
Copyright © 2017 Microsoft Corporation
Release: June 1, 2017

disk quorum: The minimum number of disks in a disk group that is required to enable the
online status of a disk group. A disk quorum is defined as n/2 + 1, where n is the total

number of disks in the group. A disk quorum prevents disk groups from gaining online
status on more than one computer.

disk signature: A unique identifier for a disk. For a master boot record (MBR)-formatted disk,
this identifier is a 4-byte value stored at the end of the MBR, which is located in sector 0 on the
disk. For a GUID partitioning table (GPT)-formatted disk, this value is a GUID stored in the
GPT disk header at the beginning of the disk.

disk type: A disk that is hardware-specific. A disk can only communicate with the CPU using a bus
of matching type. Examples of bus types include SCSI, USB, and 1394.

Distributed Component Object Model (DCOM): The Microsoft Component Object Model (COM)

specification that defines how components communicate over networks, as specified in [MS-
DCOM].

drive letter: One of the 26 alphabetical characters A-Z, in uppercase or lowercase, that is

assigned to a volume. Drive letters serve as a namespace through which data on the volume
can be accessed. A volume with a drive letter can be referred to with the drive letter followed by
a colon (for example, C:).

dynamic disk: A disk on which volumes can be composed of more than one partition on disks of
the same pack, as opposed to basic disks where a partition and a volume are equivalent.

dynamic provider: A Virtual Disk Service (VDS) provider that manages dynamic disks.

dynamic volume: A volume on a dynamic disk.

EUI-64: The IEEE-defined 64-bit extended unique identifier (EUI-64). EUI-64 is a concatenation
of the 24-bit company_id value by the IEEE Registration Authority and a 40-bit extension
identifier that is assigned by the organization with that company_id assignment. For more

information, see [EUI64].

extended partition: A construct that is used to partition a disk into logical units. A disk can have

up to four primary partitions or up to three primary partitions and one extended partition.
The extended partition can be further subdivided into multiple logical drives.

Extensible Firmware Interface (EFI): A system developed by Intel designed to replace the
BIOS. It is responsible for bootstrapping the operating system on GUID partitioning table disks.

FAT file system: A file system used to organize and manage files. The file allocation table

(FAT) is a data structure that the operating system creates when a volume is formatted by
using FAT or FAT32 file systems. The operating system stores information about each file in
the FAT so that it can retrieve the file later.

FAT32 file system: A derivative of the file allocation table (FAT) file system. FAT32 supports
smaller cluster sizes and larger volumes than FAT, which results in more efficient space
allocation on FAT32 volumes. FAT32 uses 32-bit addressing.

fault-tolerant: The ability of computer hardware or software to ensure data integrity when

hardware failures occur. Fault-tolerant features appear in many server operating systems and
include mirrored volumes and RAID-5 volumes. A fault-tolerant volume maintains more than
one copy of the volume's data. In the event of disk failure, a copy of the data is still available.

fiber channel bus: A bus technology that uses optical fiber for communication.

file allocation table (FAT): A data structure that the operating system creates when a volume is
formatted by using FAT or FAT32 file systems. The operating system stores information about

each file in the FAT so that it can retrieve the file later.

https://go.microsoft.com/fwlink/?LinkId=89861

16 / 342

[MS-VDS] - v20170601
Virtual Disk Service (VDS) Protocol
Copyright © 2017 Microsoft Corporation
Release: June 1, 2017

file system: A set of data structures for naming, organizing, and storing files in a volume. NTFS,
FAT, and FAT32 are examples of file system types.

file system label: A non-unique string of characters that the file system assigns to the volume,
as specified by the user when formatting the volume.

foreign: A dynamic disk group that is not part of a machine's primary disk group. The term
foreign denotes "foreign to this machine". Foreign disk and foreign disk groups are not
online. This means that these disks may not be configured and no data input/output (I/O) to the
disks or the volumes on the disks is permitted.

format: To submit a command for a volume to write metadata to the disk, which is used by the
file system to organize the data on the disk. A volume is formatted with a specific file
system.

free space: Space on a disk not in use by any volumes, primary partitions, or logical drives.

full-volume encryption: Encryption of the entire volume, including user files, system files, swap
files, and hibernation files.

globally unique identifier (GUID): A term used interchangeably with universally unique
identifier (UUID) in Microsoft protocol technical documents (TDs). Interchanging the usage of
these terms does not imply or require a specific algorithm or mechanism to generate the value.

Specifically, the use of this term does not imply or require that the algorithms described in
[RFC4122] or [C706] must be used for generating the GUID. See also universally unique
identifier (UUID).

GUID partition table (GPT): A disk-partitioning scheme that is used by the Extensible Firmware
Interface (EFI). GPT offers more advantages than master boot record (MBR) partitioning
because it allows up to 128 partitions per disk, provides support for volumes up to 18
exabytes in size, allows primary and backup partition tables for redundancy, and supports

unique disk and partition IDs through the use of globally unique identifiers (GUIDs). Disks
with GPT schemes are referred to as GPT disks.

hard disk: A peripheral device that provides persistent data storage and does not have removable

media.

host bus adapter (HBA): A hardware device that adapts the signals of one electronic interface to
another.

HRESULT: An integer value that indicates the result or status of an operation. A particular

HRESULT can have different meanings depending on the protocol using it. See [MS-ERREF]
section 2.1 and specific protocol documents for further details.

import target: An iSCSI target with which the LUNs being imported to the subsystem are
associated.

interface: A specification in a Component Object Model (COM) server that describes how to
access the methods of a class. For more information, see [MS-DCOM].

Interface Definition Language (IDL): The International Standards Organization (ISO) standard

language for specifying the interface for remote procedure calls. For more information, see
[C706] section 4.

Internet SCSI (iSCSI): For terms related to iSCSI, see [RFC3720].

iSCSI initiator: A client of a SCSI interface. An iSCSI initiator issues SCSI commands to request
services from components, which are logical units of a server known as a "target". For more
information, see [RFC3720] section 1.

https://go.microsoft.com/fwlink/?LinkId=90460
https://go.microsoft.com/fwlink/?LinkId=89824
%5bMS-ERREF%5d.pdf#Section_1bc92ddfb79e413cbbaa99a5281a6c90
https://go.microsoft.com/fwlink/?LinkId=90443

17 / 342

[MS-VDS] - v20170601
Virtual Disk Service (VDS) Protocol
Copyright © 2017 Microsoft Corporation
Release: June 1, 2017

iSCSI initiator adapter: The hardware that allows an iSCSI initiator to communicate with other
computers on the network. For more information, see [RFC3720] section 9.1.

iSCSI initiator portal: The component of an iSCSI initiator that has a TCP/IP network address
and that can be used by an iSCSI node in that network entity for the connections in one of its

iSCSI sessions. For more information, see [RFC3720] section 3.4.

iSCSI session: A group of TCP connections that link an iSCSI initiator with a target. For more
information, see [RFC3720] section 3.4.

iSCSI target: A server of a SCSI interface, or a logical unit of a server that responds to SCSI
command requests from an iSCSI initiator for servers that contain multiple SCSI target ports,
device servers, and associated logical units. For more information, see [RFC3720] section 1.

Logical Disk Manager (LDM): A subsystem of Windows that manages dynamic disks. Dynamic

disks contain a master boot record (MBR) at the beginning of the disk, one LDM partition, and
an LDM database at the end. The LDM database contains partitioning information used by the
LDM.

Logical Disk Manager Administrative Service: The part of Disk Management Services that
implements the disk and volume management operations (see [MSDN-VOLMAN]). Disk
Management Services provides support for disk and volume management operations and

monitors disk arrivals and removals and other changes in the storage subsystem.

logical unit number (LUN): A number that is used to identify a disk on a given disk controller.

master boot record (MBR): Metadata such as the partition table, the disk signature, and the
executable code for initiating the operating system boot process that is located on the first
sector of a disk. Disks that have MBRs are referred to as MBR disks. GUID partitioning table
(GPT) disks, instead, have unused dummy data in the first sector where the MBR would
normally be.

mirrored volume: A fault-tolerant volume that maintains two or more copies of the volume's
data. In the event that a disk is lost, at least one copy of the volume's data remains and can be
accessed.

mount point: See mounted folder.

NT file system (NTFS): A proprietary Microsoft file system. For more information, see [MSFT-
NTFS].

NULL GUID: A GUID of all zeros.

offline: An operational state applicable to volumes and disks. In the offline state, the volume or
disk is unavailable for data input/output (I/O) or configuration.

online: An operational state applicable to volumes and disks. In the online state, the volume or
disk is available for data input/output (I/O) or configuration.

opnum: An operation number or numeric identifier that is used to identify a specific remote
procedure call (RPC) method or a method in an interface. For more information, see [C706]

section 12.5.2.12 or [MS-RPCE].

pack: See disk group.

page file or paging file: A file that is used by operating systems for managing virtual memory.

partition: In the context of hard disks, a logical region of a hard disk. A hard disk may be
subdivided into one or more partitions.

https://go.microsoft.com/fwlink/?LinkId=90154
https://go.microsoft.com/fwlink/?LinkId=90200
https://go.microsoft.com/fwlink/?LinkId=90200
%5bMS-RPCE%5d.pdf#Section_290c38b192fe422991e64fc376610c15

18 / 342

[MS-VDS] - v20170601
Virtual Disk Service (VDS) Protocol
Copyright © 2017 Microsoft Corporation
Release: June 1, 2017

partition table: An area of a disk that is used to store metadata information about the partitions
on the disk. See also, GUID partitioning table (GPT).

partition type: A value indicating the partition's intended use, or indicating the type of file
system on the partition. For example, partition type 0x07 indicates that the partition is

formatted with the NTFS file system. Original equipment manufacturers can designate a
partition type of 0x12 to indicate that manufacturer-specific data is stored on the partition.

path: When referring to a file path on a file system, a hierarchical sequence of folders. When
referring to a connection to a storage device, a connection through which a machine can
communicate with the storage device.

plex: See volume plex.

quick format: A formatting that does not zero the data sectors on the volume at the time the file

system metadata is created.

RAID column: A RAID construct for organizing disks and volumes.

RAID-0: A RAID volume that stripes its data across multiple RAID columns. Also called a striped
volume.

RAID-1: See mirrored volume.

RAID-5: A fault-tolerant volume that maintains the volume's data across multiple RAID columns.

Fault tolerance is provided by writing parity data for each stripe. In the event that one disk
encounters a fault, that disk's data can be reconstructed using the parity data located on the
other disks.

read-only: An attribute of storage media that denotes that the media is not available to be
written.

redundant arrays of independent disks (RAID): A set of disk-organization techniques that is
designed to achieve high-performance storage access and availability.

reference count: An integer value that is used to keep track of a Component Object Model (COM)
object. When an object is created, its reference count is set to 1. Every time an interface is
bound to the object, its reference count is incremented; when the interface connection is
destroyed, the reference count is decremented. The object is destroyed when the reference
count reaches zero. All interfaces to that object are then invalid.

region: See disk extent.

remote procedure call (RPC): A context-dependent term commonly overloaded with three

meanings. Note that much of the industry literature concerning RPC technologies uses this term
interchangeably for any of the three meanings. Following are the three definitions: (*) The
runtime environment providing remote procedure call facilities. The preferred usage for this
meaning is "RPC runtime". (*) The pattern of request and response message exchange between
two parties (typically, a client and a server). The preferred usage for this meaning is "RPC
exchange". (*) A single message from an exchange as defined in the previous definition. The

preferred usage for this term is "RPC message". For more information about RPC, see [C706].

removable media: Any type of storage that is not permanently attached to the computer. A
persistent storage device stores its data on media. If the media can be removed from the
device, the media is considered removable. For example, a floppy disk drive uses removable
media.

reparse point: An attribute that can be added to a file to store a collection of user-defined data
that is opaque to NTFS or ReFS. If a file that has a reparse point is opened, the open will

normally fail with STATUS_REPARSE, so that the relevant file system filter driver can detect the

19 / 342

[MS-VDS] - v20170601
Virtual Disk Service (VDS) Protocol
Copyright © 2017 Microsoft Corporation
Release: June 1, 2017

open of a file associated with (owned by) this reparse point. At that point, each installed filter
driver can check to see if it is the owner of the reparse point, and, if so, perform any special

processing required for a file with that reparse point. The format of this data is understood by
the application that stores the data and the file system filter that interprets the data and

processes the file. For example, an encryption filter that is marked as the owner of a file's
reparse point could look up the encryption key for that file. A file can have (at most) 1 reparse
point associated with it. For more information, see [MS-FSCC].

Resilient File System (ReFS): The Resilient File System is a file system that provides maximum
data availability, scalability, and data integrity despite hardware or software failures. ReFS is
frequently used together with Storage Spaces.

RPC protocol sequence: A character string that represents a valid combination of a remote

procedure call (RPC) protocol, a network layer protocol, and a transport layer protocol, as
described in [C706] and [MS-RPCE].

SCSI name string identifier: An identifier string that is used to identify a SCSI bus device. For
more information, see [SPC-3].

sector: The smallest addressable unit of a disk.

secure digital (SD) bus: A computer bus that transfers data between a host controller and a

secure digital card, which is a non-volatile memory card format commonly used in a portable
device.

shadow copy: A duplicate of data held on a volume at a well-defined instant in time.

shared secret: A piece of data that is known only to the security principal and an authenticating
authority; for example, a user and a domain controller. It is used to prove the principal's
identity. A password is a common example of a shared secret. Also called a "secret key".

small computer system interface (SCSI) bus: A standard for connecting peripheral devices to a

computer. A SCSI bus is an implementation of this standard.

snapshot: The point in time at which a shadow copy of a volume is made.

Storage Spaces: Storage Spaces enables virtualization of storage by grouping industry-standard
disks into storage pools, and then allocating storage from the available capacity in the storage
pools.

subsystem: A storage device that coordinates and controls the operation of one or more disk
drives.

super floppy: A high-capacity floppy disk. A super floppy layout is one in which there is no
MBR, so there is no partition table. The entire disk (from start to end) is one giant partition.

system partition: A partition that contains the boot loader needed to invoke the operating system
on the boot partition. A system partition must also be an active partition. It can be, but is not
required to be, the same partition as the boot partition.

system volume: For volumes that consist of single partitions, system volume is synonymous

with system partition. For volumes that consist of multiple partitions, system volume
refers to a volume in which one of the partitions is a system partition (generally mirrored
volumes, because partitions on striped or RAID-5 volumes do not have complete copies of
volume data). See also system partition.

track: Any of the concentric circles on a disk platter over which a magnetic head (used for reading
and writing data on the disk) passes while the head is stationary but the disk is spinning. A track
is subdivided into sectors, upon which data is read and written.

%5bMS-FSCC%5d.pdf#Section_efbfe12773ad41409967ec6500e66d5e
https://go.microsoft.com/fwlink/?LinkId=90528

20 / 342

[MS-VDS] - v20170601
Virtual Disk Service (VDS) Protocol
Copyright © 2017 Microsoft Corporation
Release: June 1, 2017

unallocated disk: A disk that is visible to the local machine but is not formatted with a recognized
partitioning format such as master boot record (MBR) or GUID partitioning table (GPT).

Universal Disk Format (UDF): A type of file system for storing files on optical media.

universal serial bus (USB): An external bus that supports Plug and Play installation. It allows

devices to be connected and disconnected without shutting down or restarting the computer.

universally unique identifier (UUID): A 128-bit value. UUIDs can be used for multiple
purposes, from tagging objects with an extremely short lifetime, to reliably identifying very
persistent objects in cross-process communication such as client and server interfaces, manager
entry-point vectors, and RPC objects. UUIDs are highly likely to be unique. UUIDs are also
known as globally unique identifiers (GUIDs) and these terms are used interchangeably in
the Microsoft protocol technical documents (TDs). Interchanging the usage of these terms does

not imply or require a specific algorithm or mechanism to generate the UUID. Specifically, the
use of this term does not imply or require that the algorithms described in [RFC4122] or [C706]
must be used for generating the UUID.

user-defined function (UDF): A function that is coded in a Microsoft Visual Basic for Applications
(VBA) module, macro sheet, add-in, or Excel Linked Library (XLL). A UDF can be used in
formulas to return values to a worksheet, similar to built-in functions.

VDS: Virtual Disk Service (VDS) Protocol.

VDS object: An instance of a class that exposes one or more DCOM interfaces to query or
configure the VDS service, the operating system device (such as a disk or volume), or the
concept (such as a software provider) that the object represents. Each object has an associated
type that indicates the type of device or concept that it represents. Unless otherwise indicated,
the term "object" refers to a VDS object.

virtual disk: A disk that does not have a physical mechanical counterpart to it, and is not exposed

as a hardware array LUN. It is a disk that uses a file to store its data. When this file is exposed
to the operating system as a disk device, the exposed disk device emulates and, for all intents
and purposes, behaves like a physical disk.

virtual disk file: The file that is the backing store for a virtual disk. This file may be exposed to
an operating system as a disk device. The exposed disk device is referred to as a virtual disk.

virtual disk provider: A VDS object that allows query and management of virtual disks on a
system.

Virtual Disk Service (VDS): If the term is used as a noun, VDS refers to the service component
that runs on the server. If VDS is used as an adjective, it refers to the protocol that is specified
in this document (which the service uses to communicate with clients).

Virtual Disk Service (VDS) session: The point at which a client receives an instance of the VDS
service object until the point at which it releases it. Unless otherwise indicated, the term session
refers to a VDS session.

virtual hard disk: Same as a virtual disk.

volume: A group of one or more partitions that forms a logical region of storage and the basis for
a file system. A volume is an area on a storage device that is managed by the file system as a
discrete logical storage unit. A partition contains at least one volume, and a volume can exist
on one or more partitions.

volume label: See file system label.

volume manager: A system component that manages communication and data transfer between

applications and disks.

21 / 342

[MS-VDS] - v20170601
Virtual Disk Service (VDS) Protocol
Copyright © 2017 Microsoft Corporation
Release: June 1, 2017

volume plex: A member of a volume that represents a complete copy of data stored. For
instance, mirrored volumes have more than one plex.

volume plex member: A RAID construct for organizing disks and volumes. Also called a RAID
column.

Windows Event log: An audit trail created by Windows instrumentation manifest to monitor the
health of the operating system and to help troubleshoot issues when they arise. The event logs
can be browsed and managed by Windows Event Viewer.

Windows Preinstallation Environment (Windows PE): A minimal Windows system
environment that provides limited services based on the Windows XP operating system,
Windows Server 2003 operating system, or Windows Vista kernels. It provides the minimum set
of features that are required to run the operating system setup, perform system recovery,

access and install operating systems from the network, script basic repetitive tasks, and validate
hardware.

MAY, SHOULD, MUST, SHOULD NOT, MUST NOT: These terms (in all caps) are used as defined

in [RFC2119]. All statements of optional behavior use either MAY, SHOULD, or SHOULD NOT.

1.2 References

Links to a document in the Microsoft Open Specifications library point to the correct section in the
most recently published version of the referenced document. However, because individual documents
in the library are not updated at the same time, the section numbers in the documents may not
match. You can confirm the correct section numbering by checking the Errata.

1.2.1 Normative References

We conduct frequent surveys of the normative references to assure their continued availability. If you
have any issue with finding a normative reference, please contact dochelp@microsoft.com. We will
assist you in finding the relevant information.

[C706] The Open Group, "DCE 1.1: Remote Procedure Call", C706, August 1997,
https://www2.opengroup.org/ogsys/catalog/c706

[HBAAPI] Storage Networking Industry Association, "Common HBA API", T11 Document 02-149v0,
March 2002, https://standards.incits.org/apps/group_public/documents.php?page=3

[IEC60908] International Electrotechnical Commission, "Audio Recording - Compact Disc Digital Audio
System", IEC 60908 Ed. 2.0, 1999.

[MS-CHAP] Microsoft Corporation, "Extensible Authentication Protocol Method for Microsoft Challenge

Handshake Authentication Protocol (CHAP)".

[MS-DCOM] Microsoft Corporation, "Distributed Component Object Model (DCOM) Remote Protocol".

[MS-DMRP] Microsoft Corporation, "Disk Management Remote Protocol".

[MS-DTYP] Microsoft Corporation, "Windows Data Types".

[MS-ERREF] Microsoft Corporation, "Windows Error Codes".

[MS-RPCE] Microsoft Corporation, "Remote Procedure Call Protocol Extensions".

[RFC2119] Bradner, S., "Key words for use in RFCs to Indicate Requirement Levels", BCP 14, RFC

2119, March 1997, http://www.rfc-editor.org/rfc/rfc2119.txt

https://go.microsoft.com/fwlink/?LinkId=90317
http://msdn.microsoft.com/en-us/library/dn781092.aspx
mailto:dochelp@microsoft.com
https://go.microsoft.com/fwlink/?LinkId=89824
https://go.microsoft.com/fwlink/?LinkId=89878
%5bMS-CHAP%5d.pdf#Section_8fea1dd166d6487488a534bcdbb58907
%5bMS-CHAP%5d.pdf#Section_8fea1dd166d6487488a534bcdbb58907
%5bMS-DCOM%5d.pdf#Section_4a893f3dbd2948cd9f43d9777a4415b0
%5bMS-DMRP%5d.pdf#Section_19a16e20072f4d74a245ce4df2f1ecdd
%5bMS-DTYP%5d.pdf#Section_cca2742956894a16b2b49325d93e4ba2
%5bMS-ERREF%5d.pdf#Section_1bc92ddfb79e413cbbaa99a5281a6c90
%5bMS-RPCE%5d.pdf#Section_290c38b192fe422991e64fc376610c15
https://go.microsoft.com/fwlink/?LinkId=90317

22 / 342

[MS-VDS] - v20170601
Virtual Disk Service (VDS) Protocol
Copyright © 2017 Microsoft Corporation
Release: June 1, 2017

[SPC-3] International Committee on Information Technology Standards, "SCSI Primary Commands - 3
(SPC-3)", Project T10/1416-D, May 2005, http://www.t10.org/cgi-bin/ac.pl?t=f&f=/spc3r23.pdf

1.2.2 Informative References

[ANSI-131-1994] American National Standards Institute, "Information Systems - Small Computer
Systems Interface-2 (SCSI-2)", ANSI INCITS 131-1994 (R1999),
http://webstore.ansi.org/RecordDetail.aspx?sku=ANSI+INCITS+131-1994+(R1999)

Note There is a charge to download the specification.

[ANSI-289-1996] American National Standards Institute, "Fibre Channel - Fabric Generic
Requirements (FC-FG)", ANSI INCITS 289-1996 (R2001), 2001,
http://webstore.ansi.org/RecordDetail.aspx?sku=ANSI+INCITS+289-1996+(R2001)

Note There is a charge to download the specification.

[ANSI/INCITS-397-2005] ANSI, "AT Attachment with Packet Interface - 7", (ATA/ATAPI-7) Volumes 1-

3, http://webstore.ansi.org/RecordDetail.aspx?sku=ANSI+INCITS+397-2005+Package

Note There is a charge to download the specification.

[ANSI/INCITS-451-2008] ANSI, "AT Attachment-8 - ATA/ATAPI Architecture Model (ATA8-AAM)",
http://webstore.ansi.org/RecordDetail.aspx?sku=INCITS+451-2008

Note There is a charge to download the specification.

[ANSI/INCITS-457-2010] ANSI, "Serial Attached SCSI - 2 (SAS-2)",
http://webstore.ansi.org/RecordDetail.aspx?sku=INCITS+457-2010

Note There is a charge to download the specification.

[ECMA-119] ECMA International, "Volume and File Structure of CDROM for Information Interchange",
ECMA-119, December 1987, http://www.ecma-international.org/publications/files/ECMA-ST/Ecma-

119.pdf

[IEEE-SSA] Judd, I.D., Murfet, P.J, Palmer, M. J., "Serial Storage Architecture", IBM J. RES.
DEVFU.OP. Volume 40, Issue:6, November 1996,
http://ieeexplore.ieee.org/search/srchabstract.jsp?tp=&arnumber=5389403&queryText%3DSerial+St
orage+Architecture%26openedRefinements%3D*%26searchField%3DSearch+All

Note There is a charge to download this document.

[IEEE1394-2008] Institute of Electrical and Electronics Engineers, "IEEE Standard for a High
Performance Serial Bus - Description", IEEE Std 1394, October 2008,
http://standards.ieee.org/findstds/standard/1394-2008.html

Note There is a charge to download the specification.

[JEDEC-MO227-A] JEDEC, "Registration - 13 Pin Full Size MultiMediaCard (MMC) Outline - MMCplus 32

x 24 x 1.4 mm. RL-PLGA/MMCplus", September 2006, http://www.jedec.org/

[KB102873] Microsoft Corporation, "BOOT.INI and ARC Path Naming Conventions and Usage",
http://support.microsoft.com/kb/102873/EN-US/

[MSDN-CoCreateInstanceEx] Microsoft Corporation, "CoCreateInstanceEx",
http://msdn.microsoft.com/en-us/library/ee488519.aspx

[MSDN-CoCreateInstance] Microsoft Corporation, "CoCreateInstance", http://msdn.microsoft.com/en-
us/library/ee488147.aspx

https://go.microsoft.com/fwlink/?LinkId=90528
https://go.microsoft.com/fwlink/?LinkId=90512
https://go.microsoft.com/fwlink/?LinkId=193114
https://go.microsoft.com/fwlink/?LinkId=208130
https://go.microsoft.com/fwlink/?LinkId=208131
https://go.microsoft.com/fwlink/?LinkId=208133
https://go.microsoft.com/fwlink/?LinkId=208348
https://go.microsoft.com/fwlink/?LinkId=208348
https://go.microsoft.com/fwlink/?LinkId=208136
https://go.microsoft.com/fwlink/?LinkId=208136
https://go.microsoft.com/fwlink/?LinkId=89900
https://go.microsoft.com/fwlink/?LinkId=208756
https://go.microsoft.com/fwlink/?LinkId=208754
https://go.microsoft.com/fwlink/?LinkId=208352
https://go.microsoft.com/fwlink/?LinkId=208350
https://go.microsoft.com/fwlink/?LinkId=208350

23 / 342

[MS-VDS] - v20170601
Virtual Disk Service (VDS) Protocol
Copyright © 2017 Microsoft Corporation
Release: June 1, 2017

[MSDN-CompactVirtualDisk] Microsoft Corporation, "CompactVirtualDisk function",
http://msdn.microsoft.com/en-us/library/dd323655(v=VS.85).aspx

[MSDN-DISKMAN] Microsoft Corporation, "Disk Management", http://msdn.microsoft.com/en-
us/library/aa363978.aspx

[MSDN-EFFS] Microsoft Corporation, "Extended FAT File System", http://msdn.microsoft.com/en-
us/library/aa914353.aspx

[MSDN-ExpandVirtualDisk] Microsoft Corporation, "ExpandVirtualDisk function",
http://msdn.microsoft.com/en-us/library/dd323664(v=VS.85).aspx

[MSDN-MergeVirtualDisk] Microsoft Corporation, "MergeVirtualDisk function",
http://msdn.microsoft.com/en-us/library/dd323676(v=VS.85).aspx

[MSDN-PARTITIONINFO] Microsoft Corporation, "PARTITION_INFORMATION_EX structure",
http://msdn.microsoft.com/en-us/library/aa365448.aspx

[MSDN-SDDLforDevObj] Microsoft Corporation, "SDDL for Device Objects",
http://msdn.microsoft.com/en-us/library/ff563667.aspx

[MSDN-SetVirtualDiskInfo] Microsoft Corporation, "SetVirtualDiskInformation function",

http://msdn.microsoft.com/en-us/library/dd323685(v=VS.85).aspx

[MSDN-STC] Microsoft Corporation, "Storage Technologies Collection", March 2003,
http://technet2.microsoft.com/WindowsServer/en/Library/616e5e77-958b-42f0-a87f-
ba229ccd81721033.mspx

[MSDN-STRGEDEVNUM] Microsoft Corporation, "STORAGE_DEVICE_NUMBER structure",
http://msdn.microsoft.com/en-us/library/bb968801(VS.85).aspx

[MSDN-VDSPG] Microsoft Corporation, "Virtual Disk Service Programming Guide",

http://msdn.microsoft.com/en-us/library/aa383063.aspx

[MSDN-VIRTDSKACCMSK] Microsoft Corporation, "VIRTUAL_DISK_ACCESS_MASK enumeration",
http://msdn.microsoft.com/en-us/library/dd323702(v=VS.85).aspx

[MSFT-WSM/WEDWNK] Microsoft Corporation, "Windows Security Model: What Every Driver Writer
Needs to Know", http://www.microsoft.com/whdc/driver/security/drvsecure.mspx

[OSTA-UDFS] Optical Storage Technology Association, "Universal Disk Format Specification", version

2.60, March 2005, http://www.osta.org/specs/pdf/udf260.pdf

[SATA-3.0] SATA, "Serial ATA Revision 3.0", Gold Revision, 2009, http://www.sata-
io.org/technology/6Gbdetails.asp

1.3 Overview

The Virtual Disk Service Remote Protocol provides a mechanism for remote configuration of disks,

partitions, volumes, and iSCSI initiators on a server. Through the Virtual Disk Service Remote
Protocol, a client can change the configuration of disks into partitions, partitions into volumes, and
volumes into file systems. The protocol also enables clients to obtain notifications of changes to

these storage objects.

In the Virtual Disk Service Remote Protocol, two entities are involved: the server, whose storage is
configured, and the client, which accesses and requests changes to the server storage configuration.

The Virtual Disk Service Remote Protocol is expressed as a set of DCOM interfaces. For a server, this
protocol implements support for the DCOM interface in order to manage storage. For a client, this

https://go.microsoft.com/fwlink/?LinkId=208355
https://go.microsoft.com/fwlink/?LinkId=89992
https://go.microsoft.com/fwlink/?LinkId=89992
https://go.microsoft.com/fwlink/?LinkId=208354
https://go.microsoft.com/fwlink/?LinkId=208354
https://go.microsoft.com/fwlink/?LinkId=208356
https://go.microsoft.com/fwlink/?LinkId=208357
https://go.microsoft.com/fwlink/?LinkId=90059
https://go.microsoft.com/fwlink/?LinkId=114214
https://go.microsoft.com/fwlink/?LinkId=208358
https://go.microsoft.com/fwlink/?LinkId=90139
https://go.microsoft.com/fwlink/?LinkId=90139
https://go.microsoft.com/fwlink/?LinkId=208346
https://go.microsoft.com/fwlink/?LinkId=90696
https://go.microsoft.com/fwlink/?LinkId=208359
https://go.microsoft.com/fwlink/?LinkId=208360
https://go.microsoft.com/fwlink/?LinkId=208349
https://go.microsoft.com/fwlink/?LinkId=208135
https://go.microsoft.com/fwlink/?LinkId=208135

24 / 342

[MS-VDS] - v20170601
Virtual Disk Service (VDS) Protocol
Copyright © 2017 Microsoft Corporation
Release: June 1, 2017

protocol invokes method calls on the interface in order to perform disk and volume configuration tasks
on the server.<1>

1.4 Relationship to Other Protocols

The Virtual Disk Service Remote Protocol relies on DCOM [MS-DCOM], which uses remote procedure
call (RPC) as its transport.

The Virtual Disk Service Remote Protocol was designed to replace the Disk Management Remote
Protocol [MS-DMRP] for storage management tasks.

1.5 Prerequisites and Preconditions

The Virtual Disk Service Remote Protocol is implemented over DCOM (as specified in [MS-DCOM]) and
RPC; as a result, it has DCOM prerequisites, as specified in [MS-DCOM] and [MS-RPCE], as being
common to DCOM and RPC interfaces.

The Virtual Disk Service Remote Protocol assumes that a client has obtained the name of a server that
supports this protocol suite before the protocol is invoked. The protocol also assumes that the client
has sufficient security privileges to configure disks and volumes on the server.

An operating system on which an implementation of the Virtual Disk Service Remote Protocol runs
needs the ability to dynamically requery the list of storage devices and mount points that are
available during run time. For more information on these requirements, see sections 3.4.5.2.4.10 and
3.4.5.2.4.11.

1.6 Applicability Statement

The Virtual Disk Service Remote Protocol applies when an application needs to remotely configure
disks, volumes, and iSCSI initiators.

Applications MAY<2> also use DMRP, as specified in [MS-DMRP], to perform logical functions that are
similar to those that the VDS Remote Protocol performs.

1.7 Versioning and Capability Negotiation

Supported Transports: The Virtual Disk Service Remote Protocol uses the DCOM Remote Protocol (as

specified in [MS-DCOM]), which in turn uses RPC over TCP as its only transport. For more information
about transport, see section 2.1.

Protocol Version: The Virtual Disk Service Remote Protocol comprises a set of DCOM interfaces, which
are all version 0.0. The following interfaces are common to all storage management: IEnumVdsObject,
IVdsAdviseSink, IVdsAsync, IVdsService, and IVdsServiceInitialization.<3>

 Functionality Negotiation: The client negotiates for a specified set of server functionality by specifying
the UUID that corresponds to the necessary RPC interface by means of COM

IUnknown::QueryInterface when binding to the server. Certain interfaces are implemented by only
particular objects on the server. For more information on storage management objects, see section

3.4.1.2.

 Security and Authentication Methods: For more information, see [MS-DCOM] and [MS-RPCE].

1.8 Vendor-Extensible Fields

The Virtual Disk Service Remote Protocol does not define any vendor-extensible fields.

%5bMS-DCOM%5d.pdf#Section_4a893f3dbd2948cd9f43d9777a4415b0
%5bMS-DMRP%5d.pdf#Section_19a16e20072f4d74a245ce4df2f1ecdd
%5bMS-DCOM%5d.pdf#Section_4a893f3dbd2948cd9f43d9777a4415b0
%5bMS-RPCE%5d.pdf#Section_290c38b192fe422991e64fc376610c15
%5bMS-DMRP%5d.pdf#Section_19a16e20072f4d74a245ce4df2f1ecdd
%5bMS-DCOM%5d.pdf#Section_4a893f3dbd2948cd9f43d9777a4415b0
%5bMS-RPCE%5d.pdf#Section_290c38b192fe422991e64fc376610c15

25 / 342

[MS-VDS] - v20170601
Virtual Disk Service (VDS) Protocol
Copyright © 2017 Microsoft Corporation
Release: June 1, 2017

Unless otherwise specified, all methods MUST return zero or a non-error HRESULT (as specified in
[MS-ERREF]) to indicate success or return an implementation-specific nonzero error code to indicate

failure. For the HRESULT values predefined by the Virtual Disk Service Remote Protocol, see section
2.2.3.

The Virtual Disk Service Remote Protocol uses HRESULTs, which are vendor-extensible. Vendors are
free to choose their own values for HRESULTs; however, the C bit (0x20000000) MUST be set as
specified in [MS-ERREF] to indicate that it is a customer code.

1.9 Standards Assignments

The following table shows the Microsoft private assignments for the Virtual Disk Service Remote
Protocol.

 Parameter Value

Reference

RPC interface UUID for IEnumVdsObject 118610B7-8D94-4030-
B5B8-500889788E4E

None

RPC interface UUID for IVdsAdviseSink 8326CD1D-CF59-4936-
B786-5EFC08798E25

None

RPC interface UUID for IVdsAsync D5D23B6D-5A55-4492-
9889-397A3C2D2DBC

None

RPC interface UUID for IVdsServiceLoader E0393303-90D4-4A97-
AB71-E9B671EE2729

None

RPC interface UUID for IVdsService 0818A8EF-9BA9-40D8-
A6F9-E22833CC771E

None

RPC interface UUID for IVdsServiceInitialization 4AFC3636-DB01-4052-
80C3-03BBCB8D3C69

None

RPC interface UUID for IVdsServiceSw 15fc031c-0652-4306-b2c3-
f558b8f837e2

None

RPC interface UUID for IVdsProvider 10C5E575-7984-4E81-
A56B-431F5F92AE42

None

RPC interface UUID for IVdsSwProvider 9AA58360-CE33-4F92-
B658-ED24B14425B8

None

RPC interface UUID for IVdsHwProvider D99BDAAE-B13A-4178-
9FDB-E27F16B4603E

None

RPC interface UUID for IVdsSubSystemImportTarget 83BFB87F-43FB-4903-
BAA6-127F01029EEC

None

RPC interface UUID for IVdsPack 3B69D7F5-9D94-4648-
91CA-79939BA263BF

None

RPC interface UUID for IVdsDisk 07E5C822-F00C-47A1-
8FCE-B244DA56FD06

None

RPC interface UUID for IVdsAdvancedDisk 6E6F6B40-977C-4069-

BDDD-AC710059F8C0

None

RPC interface UUID for IVdsCreatePartitionEx 9882F547-CFC3-420B-
9750-00DFBEC50662

None

RPC interface UUID for IVdsDiskPartitionMF 538684E0-BA3D-4BC0- None

%5bMS-ERREF%5d.pdf#Section_1bc92ddfb79e413cbbaa99a5281a6c90

26 / 342

[MS-VDS] - v20170601
Virtual Disk Service (VDS) Protocol
Copyright © 2017 Microsoft Corporation
Release: June 1, 2017

 Parameter Value

Reference

ACA9-164AFF85C2A9

RPC interface UUID for IVdsRemovable 0316560B-5DB4-4ED9-
BBB5-213436DDC0D9

None

RPC interface UUID for IVdsVolume 88306BB2-E71F-478C-
86A2-79DA200A0F11

None

RPC interface UUID for IVdsVolumeMF EE2D5DED-6236-4169-
931D-B9778CE03DC6

None

RPC interface UUID for IVdsVolumeShrink D68168C9-82A2-4F85-
B6E9-74707C49A58F

None

RPC interface UUID for IVdsVolumeOnline 1BE2275A-B315-4F70-

9E44-879B3A2A53F2

None

RPC interface UUID for IVdsVolumePlex 4DAA0135-E1D1-40F1-
AAA5-3CC1E53221C3

None

RPC interface UUID for IVdsPack2 13B50BFF-290A-47DD-
8558-B7C58DB1A71A

None

RPC interface UUID for IVdsDisk2 40F73C8B-687D-4A13-
8D96-3D7F2E683936

None

RPC interface UUID for IVdsAdvancedDisk2 9723F420-9355-42DE-
AB66-E31BB15BEEAC

None

RPC interface UUID for IVdsAdvancedDisk3 3858C0D5-0F35-4BF5-
9714-69874963BC36

None

RPC interface UUID for IVdsVolumeMF2 4DBCEE9A-6343-4651-
B85F-5E75D74D983C

None

RPC interface UUID for IVdsServiceUninstallDisk B6B22DA8-F903-4BE7-
B492-C09D875AC9DA

None

RPC interface UUID for IVdsServiceHba 0AC13689-3134-47C6-
A17C-4669216801BE

None

RPC interface UUID for IVdsServiceIscsi 14FBE036-3ED7-4E10-
90E9-A5FF991AFF01

None

RPC interface UUID for IVdsHbaPort 2ABD757F-2851-4997-
9A13-47D2A885D6CA

None

RPC interface UUID for IVdsIscsiInitiatorAdapter B07FEDD4-1682-4440-
9189-A39B55194DC5

None

RPC interface UUID for IVdsIscsiInitiatorPortal 38A0A9AB-7CC8-4693-
AC07-1F28BD03C3DA

None

COM class UUID for service object class

Used to create a VDS session (see section 4.1.1)

7D1933CB-86F6-4A98-
8628-01BE94C9A575

None

RPC interface UUID for IVdsVdProvider B481498C-8354-45F9-
84A0-0BDD2832A91F

None

RPC interface UUID for IVdsVDisk 1E062B84-E5E6-4B4B-
8A25-67B81E8F13E8

None

27 / 342

[MS-VDS] - v20170601
Virtual Disk Service (VDS) Protocol
Copyright © 2017 Microsoft Corporation
Release: June 1, 2017

 Parameter Value

Reference

RPC interface UUID for IVdsOpenDisk 75C8F324-F715-4FE3-
A28E-F9011B61A4A1

None

RPC interface UUID for IVdsDiskPartitionMF2 9CBE50CA-F2D2-4BF4-
ACE1-96896B729625

None

RPC interface UUID for IVdsVolumeMF3 6788FAF9-214E-4B85-
BA59-266953616E09

None

RPC interface UUID for IVdsDisk3 8F4B2F5D-EC15-4357-
992F-473EF10975B9

None

RPC interface UUID for IVdsVolume2 72AE6713-DCBB-4A03-
B36B-371F6AC6B53D

None

Microsoft Virtual Disk Provider Vendor Identifier
VIRTUAL_STORAGE_TYPE_VENDOR_MICROSOFT

EC984AEC-A0F9-47E9-
901F-71415A66345B

None

28 / 342

[MS-VDS] - v20170601
Virtual Disk Service (VDS) Protocol
Copyright © 2017 Microsoft Corporation
Release: June 1, 2017

2 Messages

The following sections specify how Virtual Disk Service Remote Protocol messages are transported and
also specify VDS Remote Protocol message syntax.

2.1 Transport

The Virtual Disk Service Remote Protocol uses the DCOM Remote Protocol, as specified in [MS-DCOM],
as its transport. On its behalf, the DCOM Remote Protocol uses the following RPC protocol
sequence: RPC over TCP, as defined in [MS-RPCE].

To access an interface, the client requests a DCOM connection to its object UUID endpoint on the
server, as specified in section 1.9.

The RPC version number for all interfaces is 0.0.

An implementation of the Virtual Disk Service Remote Protocol MUST configure its DCOM
implementation or underlying RPC transport with the RPC_C_AUTHN_LEVEL_PKT_PRIVACY security
parameter.<4>

The Virtual Disk Service Remote Protocol interfaces make use of the underlying DCOM security
framework, as specified in [MS-DCOM], and rely on it for access control. DCOM differentiates between
launch and access. An implementation of the Virtual Disk Service Remote Protocol MAY differentiate

between launch and access permission, and MAY impose different authorization requirements for each
interface.<5>

2.2 Message Syntax

The following sections specify Virtual Disk Service Remote Protocol message syntax. Unless otherwise

stated, all data types and messages for the Virtual Disk Service Remote Protocol MUST be supported.

All enumeration structures contain a zero value defined as VDS_XXX_UNKNOWN. The zero values in

the enumerations are never valid as an input parameter. They are only used as an output parameter.

2.2.1 Common Data Types

2.2.1.1 Data Types

2.2.1.1.1 ULONGLONG

The ULONGLONG data type is defined in [MS-DTYP].

2.2.1.1.2 DWORD

The DWORD data type is defined in [MS-DTYP].

2.2.1.1.3 VDS_OBJECT_ID

The VDS_OBJECT_ID data type defines the VDS object identifier as a GUID for Virtual Disk Service

Remote Protocol storage objects.

This type is declared as follows:

 typedef GUID VDS_OBJECT_ID;

%5bMS-DCOM%5d.pdf#Section_4a893f3dbd2948cd9f43d9777a4415b0
%5bMS-RPCE%5d.pdf#Section_290c38b192fe422991e64fc376610c15
%5bMS-DTYP%5d.pdf#Section_cca2742956894a16b2b49325d93e4ba2
%5bMS-DTYP%5d.pdf#Section_cca2742956894a16b2b49325d93e4ba2

29 / 342

[MS-VDS] - v20170601
Virtual Disk Service (VDS) Protocol
Copyright © 2017 Microsoft Corporation
Release: June 1, 2017

2.2.1.1.4 VDS_LUN_INFORMATION

Constant/value Description

VDS_LUN_INFORMATION

0x00000001

Defines the current version of the VDS_LUN_INFORMATION structure.

2.2.1.1.5 ACCESS_MASK

The ACCESS_MASK data type is defined in [MS-DTYP] section 2.4.3.

2.2.1.2 Enumerations

2.2.1.2.1 VDS_HEALTH

The VDS_HEALTH enumeration defines the possible health states of the storage objects in the Virtual

Disk Service Remote Protocol. The storage objects are packs, volumes, volume plexes and disks.

 typedef enum _VDS_HEALTH
 {
 VDS_H_UNKNOWN = 0x00000000,
 VDS_H_HEALTHY = 0x00000001,
 VDS_H_REBUILDING = 0x00000002,
 VDS_H_STALE = 0x00000003,
 VDS_H_FAILING = 0x00000004,
 VDS_H_FAILING_REDUNDANCY = 0x00000005,
 VDS_H_FAILED_REDUNDANCY = 0x00000006,
 VDS_H_FAILED_REDUNDANCY_FAILING = 0x00000007,
 VDS_H_FAILED = 0x00000008
 } VDS_HEALTH;

VDS_H_UNKNOWN: The health of the object cannot be determined.

VDS_H_HEALTHY: The object indicates online status. If the object is a disk, the disk is not missing,
dynamic disk log and configuration files are synchronized, and the disk is free of input/output
errors. If the object is a LUN or volume, all plexes (mirrored, simple, spanned, and striped) and

columns (RAID-5) are active. For a volume, VDS_H_HEALTHY implies no disks containing volume
extents have IO errors. For a LUN, VDS_H_HEALTHY implies no drives containing LUN extents
have IO errors.

VDS_H_REBUILDING: The volume is resynchronizing all plexes, or a striped with parity (RAID-5)
plex is regenerating the parity.

VDS_H_STALE: The object configuration is stale.

VDS_H_FAILING: The object is failing but still working. For example, a volume with failing health
might produce occasional input/output errors from which it can still recover.

VDS_H_FAILING_REDUNDANCY: One or more plexes have errors, but the object is working and

all plexes are online.

VDS_H_FAILED_REDUNDANCY: One or more plexes have failed, but at least one plex is working.

VDS_H_FAILED_REDUNDANCY_FAILING: The last working plex is failing.

VDS_H_FAILED: The object has failed. Any object with a failed health status also has a failed object

status.

2.2.1.2.2 VDS_NOTIFICATION_TARGET_TYPE

%5bMS-DTYP%5d.pdf#Section_cca2742956894a16b2b49325d93e4ba2

30 / 342

[MS-VDS] - v20170601
Virtual Disk Service (VDS) Protocol
Copyright © 2017 Microsoft Corporation
Release: June 1, 2017

The VDS_NOTIFICATION_TARGET_TYPE enumeration defines the set of valid target types (subjects) of
a Virtual Disk Service Remote Protocol notification.

 typedef enum _VDS_NOTIFICATION_TARGET_TYPE
 {
 VDS_NTT_UNKNOWN = 0x00000000,
 VDS_NTT_PACK = 0x0000000A,
 VDS_NTT_VOLUME = 0x0000000B,
 VDS_NTT_DISK = 0x0000000D,
 VDS_NTT_PARTITION = 0x0000003C,
 VDS_NTT_DRIVE_LETTER = 0x0000003D,
 VDS_NTT_FILE_SYSTEM = 0x0000003E,
 VDS_NTT_MOUNT_POINT = 0x0000003F,
 VDS_NTT_SERVICE = 0x000000C8
 } VDS_NOTIFICATION_TARGET_TYPE;

VDS_NTT_UNKNOWN: Notification is of an unknown type.

VDS_NTT_PACK: Notification refers to a pack.

VDS_NTT_VOLUME: Notification refers to a volume.

VDS_NTT_DISK: Notification refers to a disk.

VDS_NTT_PARTITION: Notification refers to a partition.

VDS_NTT_DRIVE_LETTER: Notification refers to a drive letter.

VDS_NTT_FILE_SYSTEM: Notification refers to a file system.

VDS_NTT_MOUNT_POINT: Notification refers to a mount point.

VDS_NTT_SERVICE: Notification refers to the Virtual Disk Service.<6>

2.2.1.2.3 VDS_RECOVER_ACTION

The VDS_RECOVER_ACTION enumeration defines the set of valid client actions to be taken in
response to a notification with target type VDS_NTT_SERVICE.

 typedef enum _VDS_RECOVER_ACTION
 {
 VDS_RA_UNKNOWN = 0,
 VDS_RA_REFRESH = 1,
 VDS_RA_RESTART = 2
 } VDS_RECOVER_ACTION;

VDS_RA_UNKNOWN: Client action to be taken is unknown.

VDS_RA_REFRESH: Client action to be taken is to call the
IVdsService::Refresh (section 3.4.5.2.4.10) method.

VDS_RA_RESTART: Client action to be taken is to restart the service.

2.2.1.2.4 VDS_ASYNC_OUTPUT_TYPE

The VDS_ASYNC_OUTPUT_TYPE enumeration defines the types of operation information that the

VDS_ASYNC_OUTPUT structure returns.

 typedef enum _VDS_ASYNC_OUTPUT_TYPE
 {

31 / 342

[MS-VDS] - v20170601
Virtual Disk Service (VDS) Protocol
Copyright © 2017 Microsoft Corporation
Release: June 1, 2017

 VDS_ASYNCOUT_UNKNOWN = 0,
 VDS_ASYNCOUT_CREATEVOLUME = 1,
 VDS_ASYNCOUT_EXTENDVOLUME = 2,
 VDS_ASYNCOUT_SHRINKVOLUME = 3,
 VDS_ASYNCOUT_ADDVOLUMEPLEX = 4,
 VDS_ASYNCOUT_BREAKVOLUMEPLEX = 5,
 VDS_ASYNCOUT_REMOVEVOLUMEPLEX = 6,
 VDS_ASYNCOUT_REPAIRVOLUMEPLEX = 7,
 VDS_ASYNCOUT_RECOVERPACK = 8,
 VDS_ASYNCOUT_REPLACEDISK = 9,
 VDS_ASYNCOUT_CREATEPARTITION = 10,
 VDS_ASYNCOUT_CLEAN = 11,
 VDS_ASYNCOUT_CREATELUN = 50,
 VDS_ASYNCOUT_FORMAT = 101,
 VDS_ASYNCOUT_CREATE_VDISK = 200,
 VDS_ASYNCOUT_SURFACE_VDISK = 201,
 VDS_ASYNCOUT_COMPACT_VDISK = 202,
 VDS_ASYNCOUT_MERGE_VDISK = 203,
 VDS_ASYNCOUT_EXPAND_VDISK = 204
 } VDS_ASYNC_OUTPUT_TYPE;

VDS_ASYNCOUT_UNKNOWN: Information is about an unknown type of operation.

VDS_ASYNCOUT_CREATEVOLUME: Information is about creating a volume.

VDS_ASYNCOUT_EXTENDVOLUME: Information is about extending the size of a volume.

VDS_ASYNCOUT_SHRINKVOLUME: Information is about shrinking the size of a volume.

VDS_ASYNCOUT_ADDVOLUMEPLEX: Information is about adding a volume plex.

VDS_ASYNCOUT_BREAKVOLUMEPLEX: Information is about breaking a volume plex.

VDS_ASYNCOUT_REMOVEVOLUMEPLEX: Information is about removing a volume plex.

VDS_ASYNCOUT_REPAIRVOLUMEPLEX: Information is about repairing a volume plex.

VDS_ASYNCOUT_RECOVERPACK: Information is about recovering a pack.

VDS_ASYNCOUT_REPLACEDISK: Information is about replacing a disk.

VDS_ASYNCOUT_CREATEPARTITION: Information is about creating a partition.

VDS_ASYNCOUT_CLEAN: Information is about cleaning a disk.

VDS_ASYNCOUT_CREATELUN: Information is about creating a LUN.

VDS_ASYNCOUT_FORMAT: Information is about formatting a file system.

VDS_ASYNCOUT_CREATE_VDISK: Information is about creating a virtual disk.

VDS_ASYNCOUT_SURFACE_VDISK: Information is about attaching a virtual disk.

VDS_ASYNCOUT_COMPACT_VDISK: Information is about compacting a virtual disk.

VDS_ASYNCOUT_MERGE_VDISK: Information is about merging a virtual disk.

VDS_ASYNCOUT_EXPAND_VDISK: Information is about expanding a virtual disk.

2.2.1.2.5 VDS_STORAGE_BUS_TYPE

The VDS_STORAGE_BUS_TYPE enumeration defines the type of bus on which a disk resides.

32 / 342

[MS-VDS] - v20170601
Virtual Disk Service (VDS) Protocol
Copyright © 2017 Microsoft Corporation
Release: June 1, 2017

 typedef enum _VDS_STORAGE_BUS_TYPE
 {
 VDSBusTypeUnknown = 0x00000000,
 VDSBusTypeScsi = 0x00000001,
 VDSBusTypeAtapi = 0x00000002,
 VDSBusTypeAta = 0x00000003,
 VDSBusType1394 = 0x00000004,
 VDSBusTypeSsa = 0x00000005,
 VDSBusTypeFibre = 0x00000006,
 VDSBusTypeUsb = 0x00000007,
 VDSBusTypeRAID = 0x00000008,
 VDSBusTypeiScsi = 0x00000009,
 VDSBusTypeSas = 0x0000000A,
 VDSBusTypeSata = 0x0000000B,
 VDSBusTypeSd = 0x0000000C,
 VDSBusTypeMmc = 0x0000000D,
 VDSBusTypeMax = 0x0000000E,
 VDSBusTypeVirtual = 0x0000000E,
 VDSBusTypeFileBackedVirtual = 0x0000000F,
 VDSBusTypeSpaces = 0x00000010,
 VDSBusTypeMaxReserved = 0x0000007F
 } VDS_STORAGE_BUS_TYPE;

VDSBusTypeUnknown: Bus type is unknown.

VDSBusTypeScsi: Disk resides on a SCSI bus.

VDSBusTypeAtapi: Disk resides on an AT Attachment Packet Interface (ATAPI) bus. For more
information on this bus type, see [ANSI/INCITS-397-2005].

VDSBusTypeAta: Disk resides on an AT Attached (ATA) bus. For more information on this bus type,
see [ANSI/INCITS-451-2008].

VDSBusType1394: Disk resides on an IEEE 1394 bus. For more information, see [IEEE1394-2008].

VDSBusTypeSsa: Disk resides on a serial storage architecture (SSA) bus. For more information on

this bus type, see [IEEE-SSA].

VDSBusTypeFibre: Disk resides on a fiber channel bus.

VDSBusTypeUsb: Disk resides on a universal serial bus (USB).

VDSBusTypeRAID: Disk resides on a RAID bus.

VDSBusTypeiScsi: Disk resides on an iSCSI bus.

VDSBusTypeSas: Disk resides on a Serial Attached SCSI (SAS) bus. For more information on this

bus type, see [ANSI/INCITS-457-2010].

VDSBusTypeSata: Disk resides on a Serial ATA (SATA) bus. For more information on this bus type,
see [SATA-3.0].

VDSBusTypeSd: Disk resides on a secure digital (SD) bus.

VDSBusTypeMmc: Indicates a multimedia card (MMC) bus type. For information on multimedia
cards, which are a flash memory card standard, see [JEDEC-MO227-A].

VDSBusTypeMax: Maximum bus type value. Note that this value does not identify a particular bus

type; rather, it serves as an end value of the enumeration.<7>

VDSBusTypeVirtual: The disk SHOULD<8> reside on a virtual bus

VDSBusTypeFileBackedVirtual: Disk is backed by a file.

https://go.microsoft.com/fwlink/?LinkId=208130
https://go.microsoft.com/fwlink/?LinkId=208131
https://go.microsoft.com/fwlink/?LinkId=89900
https://go.microsoft.com/fwlink/?LinkId=208136
https://go.microsoft.com/fwlink/?LinkId=208133
https://go.microsoft.com/fwlink/?LinkId=208135
https://go.microsoft.com/fwlink/?LinkId=208756

33 / 342

[MS-VDS] - v20170601
Virtual Disk Service (VDS) Protocol
Copyright © 2017 Microsoft Corporation
Release: June 1, 2017

VDSBusTypeSpaces: The disk SHOULD<9> be backed by Storage Spaces.

VDSBusTypeMaxReserved: Maximum reserved bus type value. Bus type values below this range

are reserved.

2.2.1.2.6 VDS_STORAGE_IDENTIFIER_CODE_SET

The VDS_STORAGE_IDENTIFIER_CODE_SET enumeration defines the code set that is used by the
storage device identifier, as specified in [SPC-3]

 typedef enum _VDS_STORAGE_IDENTIFIER_CODE_SET
 {
 VDSStorageIdCodeSetReserved = 0x00000000,
 VDSStorageIdCodeSetBinary = 0x00000001,
 VDSStorageIdCodeSetAscii = 0x00000002,
 VDSStorageIdCodeSetUtf8 = 0x00000003
 } VDS_STORAGE_IDENTIFIER_CODE_SET;

VDSStorageIdCodeSetReserved: This value is reserved by the SPC-3 standard and is not used.

VDSStorageIdCodeSetBinary: The identifier contains binary values.

VDSStorageIdCodeSetAscii: The identifier contains ASCII values.

VDSStorageIdCodeSetUtf8: The identifier contains UTF-8 values.

2.2.1.2.7 VDS_STORAGE_IDENTIFIER_TYPE

The VDS_STORAGE_IDENTIFIER_TYPE enumeration defines the types of storage device identifiers, as
specified in [SPC-3].

 typedef enum _VDS_STORAGE_IDENTIFIER_TYPE
 {
 VDSStorageIdTypeVendorSpecific = 0x00000000,
 VDSStorageIdTypeVendorId = 0x00000001,
 VDSStorageIdTypeEUI64 = 0x00000002,
 VDSStorageIdTypeFCPHName = 0x00000003,
 VDSStorageIdTypePortRelative = 0x00000004,
 VDSStorageIdTypeTargetPortGroup = 0x00000005,
 VDSStorageIdTypeLogicalUnitGroup = 0x00000006,
 VDSStorageIdTypeMD5LogicalUnitIdentifier = 0x00000007,
 VDSStorageIdTypeScsiNameString = 0x00000008
 } VDS_STORAGE_IDENTIFIER_TYPE;

VDSStorageIdTypeVendorSpecific: Storage identifier is vendor-specific.

VDSStorageIdTypeVendorId: Storage identifier is a vendor identifier.

VDSStorageIdTypeEUI64: Storage identifier is a 64-bit extended unique identifier (EUI-64).

VDSStorageIdTypeFCPHName: Storage identifier is a Fibre Channel Physical and Signaling
Interface (FC-PH) identifier.

VDSStorageIdTypePortRelative: Storage identifier is a relative target port identifier.

VDSStorageIdTypeTargetPortGroup: Storage identifier is a target port group number.

VDSStorageIdTypeLogicalUnitGroup: Storage identifier is a logical unit group number.

https://go.microsoft.com/fwlink/?LinkId=90528
https://go.microsoft.com/fwlink/?LinkId=90528

34 / 342

[MS-VDS] - v20170601
Virtual Disk Service (VDS) Protocol
Copyright © 2017 Microsoft Corporation
Release: June 1, 2017

VDSStorageIdTypeMD5LogicalUnitIdentifier: Storage identifier is an MD5 logical unit number
(LUN).

VDSStorageIdTypeScsiNameString: Storage identifier is an SCSI name string identifier.

2.2.1.2.8 VDS_INTERCONNECT_ADDRESS_TYPE

The VDS_INTERCONNECT_ADDRESS_TYPE enumeration defines the set of valid address types of a
physical interconnect.

 typedef enum _VDS_INTERCONNECT_ADDRESS_TYPE
 {
 VDS_IA_UNKNOWN = 0x00000000,
 VDS_IA_FCFS = 0x00000001,
 VDS_IA_FCPH = 0x00000002,
 VDS_IA_FCPH3 = 0x00000003,
 VDS_IA_MAC = 0x00000004,
 VDS_IA_SCSI = 0x00000005
 } VDS_INTERCONNECT_ADDRESS_TYPE;

VDS_IA_UNKNOWN: This value is reserved.

VDS_IA_FCFS: Address type is first come, first served.

VDS_IA_FCPH: Address type is FC-PH. For more information, see [ANSI-289-1996].

VDS_IA_FCPH3: Address type is FC-PH-3. For more information, see [ANSI-289-1996].

VDS_IA_MAC: Address type is media access control (MAC).

VDS_IA_SCSI: Address type is SCSI.

2.2.1.2.9 VDS_FILE_SYSTEM_TYPE

The VDS_FILE_SYSTEM_TYPE enumeration defines the set of valid types for a file system.

 typedef enum _VDS_FILE_SYSTEM_TYPE
 {
 VDS_FST_UNKNOWN = 0x00000000,
 VDS_FST_RAW = 0x00000001,
 VDS_FST_FAT = 0x00000002,
 VDS_FST_FAT32 = 0x00000003,
 VDS_FST_NTFS = 0x00000004,
 VDS_FST_CDFS = 0x00000005,
 VDS_FST_UDF = 0x00000006,
 VDS_FST_EXFAT = 0x00000007,
 VDS_FST_CSVFS = 0x00000008,
 VDS_FST_REFS = 0x00000009
 } VDS_FILE_SYSTEM_TYPE;

VDS_FST_UNKNOWN: The file system is unknown.

VDS_FST_RAW: The file system is raw.

VDS_FST_FAT: The file system is a FAT file system.

VDS_FST_FAT32: The file system is FAT32.

VDS_FST_NTFS: The file system is the NTFS file system.

VDS_FST_CDFS: The file system is the Compact Disc File System (CDFS).

https://go.microsoft.com/fwlink/?LinkId=193114

35 / 342

[MS-VDS] - v20170601
Virtual Disk Service (VDS) Protocol
Copyright © 2017 Microsoft Corporation
Release: June 1, 2017

VDS_FST_UDF: The file system is Universal Disk Format (UDF).

VDS_FST_EXFAT: The file system is Extended File Allocation Table (ExFAT). For more information,

see [MSDN-EFFS].

VDS_FST_CSVFS<10>: The file system is Cluster Shared Volume File System (CSVFS).

VDS_FST_REFS<11>: The file system is Resilient File System (ReFS).

2.2.1.2.10 VDS_FILE_SYSTEM_FLAG

The VDS_FILE_SYSTEM_FLAG enumeration defines the set of valid flags for a file system format
type.

If more than one flag is specified, the file system type supports all the file system allocation sizes that
are specified. However, a specific file system on a volume does not have multiple allocation sizes at

the same time.

 typedef enum _VDS_FILE_SYSTEM_FLAG
 {
 VDS_FSF_SUPPORT_FORMAT = 0x00000001,
 VDS_FSF_SUPPORT_QUICK_FORMAT = 0x00000002,
 VDS_FSF_SUPPORT_COMPRESS = 0x00000004,
 VDS_FSF_SUPPORT_SPECIFY_LABEL = 0x00000008,
 VDS_FSF_SUPPORT_MOUNT_POINT = 0x00000010,
 VDS_FSF_SUPPORT_REMOVABLE_MEDIA = 0x00000020,
 VDS_FSF_SUPPORT_EXTEND = 0x00000040,
 VDS_FSF_ALLOCATION_UNIT_512 = 0x00010000,
 VDS_FSF_ALLOCATION_UNIT_1K = 0x00020000,
 VDS_FSF_ALLOCATION_UNIT_2K = 0x00040000,
 VDS_FSF_ALLOCATION_UNIT_4K = 0x00080000,
 VDS_FSF_ALLOCATION_UNIT_8K = 0x00100000,
 VDS_FSF_ALLOCATION_UNIT_16K = 0x00200000,
 VDS_FSF_ALLOCATION_UNIT_32K = 0x00400000,
 VDS_FSF_ALLOCATION_UNIT_64K = 0x00800000,
 VDS_FSF_ALLOCATION_UNIT_128K = 0x01000000,
 VDS_FSF_ALLOCATION_UNIT_256K = 0x02000000
 } VDS_FILE_SYSTEM_FLAG;

VDS_FSF_SUPPORT_FORMAT: If set, the file system format type supports format.

VDS_FSF_SUPPORT_QUICK_FORMAT: If set, the file system format type supports quick format.

VDS_FSF_SUPPORT_COMPRESS: If set, the file system format type supports file compression.

VDS_FSF_SUPPORT_SPECIFY_LABEL: If set, the file system format type supports file system
labels.

VDS_FSF_SUPPORT_MOUNT_POINT: If set, the file system format type supports mount points.

VDS_FSF_SUPPORT_REMOVABLE_MEDIA: If set, the file system format type supports
removable media.

VDS_FSF_SUPPORT_EXTEND: If set, the file system format type supports extending volumes.

VDS_FSF_ALLOCATION_UNIT_512: If set, the file system format supports allocation units of 512
bytes.

VDS_FSF_ALLOCATION_UNIT_1K: If set, the file system format type supports allocation units of 1
kilobyte.

https://go.microsoft.com/fwlink/?LinkId=208354

36 / 342

[MS-VDS] - v20170601
Virtual Disk Service (VDS) Protocol
Copyright © 2017 Microsoft Corporation
Release: June 1, 2017

VDS_FSF_ALLOCATION_UNIT_2K: If set, the file system format type supports allocation units of 2
kilobytes.

VDS_FSF_ALLOCATION_UNIT_4K: If set, the file system format type supports allocation units of 4
kilobytes.

VDS_FSF_ALLOCATION_UNIT_8K: If set, the file system format type supports allocation units of 8
kilobytes.

VDS_FSF_ALLOCATION_UNIT_16K: If set, the file system format type supports allocation units of
16 kilobytes.

VDS_FSF_ALLOCATION_UNIT_32K: If set, the file system format type supports allocation units of
32 kilobytes.

VDS_FSF_ALLOCATION_UNIT_64K: If set, the file system format type supports allocation units of

64 kilobytes.

VDS_FSF_ALLOCATION_UNIT_128K: If set, the file system format type supports allocation units

of 128 kilobytes.

VDS_FSF_ALLOCATION_UNIT_256K: If set, the file system format type supports allocation units
of 256 kilobytes.

2.2.1.2.11 VDS_FILE_SYSTEM_PROP_FLAG

The VDS_FILE_SYSTEM_PROP_FLAG enumeration defines the set of fields for a file system. A value
that accepts these flags SHOULD have the following flag set.

 typedef enum _VDS_FILE_SYSTEM_PROP_FLAG
 {
 VDS_FPF_COMPRESSED = 0x00000001
 } VDS_FILE_SYSTEM_PROP_FLAG;

VDS_FPF_COMPRESSED: If set, the file system supports file compression.

2.2.1.2.12 VDS_FILE_SYSTEM_FORMAT_SUPPORT_FLAG

The VDS_FILE_SYSTEM_FORMAT_SUPPORT_FLAG enumeration defines the properties of file systems

that are supported for formatting volumes.<12>

 typedef enum _VDS_FILE_SYSTEM_FORMAT_SUPPORT_FLAG
 {
 VDS_FSS_DEFAULT = 0x00000001,
 VDS_FSS_PREVIOUS_REVISION = 0x00000002,
 VDS_FSS_RECOMMENDED = 0x00000004
 } VDS_FILE_SYSTEM_FORMAT_SUPPORT_FLAG;

VDS_FSS_DEFAULT: The file system is the default file system for formatting the volume.

VDS_FSS_PREVIOUS_REVISION: The revision of the file system is not the latest revision that is
supported for formatting the volume.

VDS_FSS_RECOMMENDED: The file system is the recommended file system for formatting the

volume.

2.2.1.2.13 VDS_DISK_EXTENT_TYPE

37 / 342

[MS-VDS] - v20170601
Virtual Disk Service (VDS) Protocol
Copyright © 2017 Microsoft Corporation
Release: June 1, 2017

The VDS_DISK_EXTENT_TYPE enumeration defines the set of valid types for a disk extent.

 typedef enum _VDS_DISK_EXTENT_TYPE
 {
 VDS_DET_UNKNOWN = 0x00000000,
 VDS_DET_FREE = 0x00000001,
 VDS_DET_DATA = 0x00000002,
 VDS_DET_OEM = 0x00000003,
 VDS_DET_ESP = 0x00000004,
 VDS_DET_MSR = 0x00000005,
 VDS_DET_LDM = 0x00000006,
 VDS_DET_UNUSABLE = 0x00007FFF
 } VDS_DISK_EXTENT_TYPE;

VDS_DET_UNKNOWN: The extent belongs to an unknown partition type.

VDS_DET_FREE: The extent belongs to an area of free space.

VDS_DET_DATA: The extent belongs to a volume.

VDS_DET_OEM: The extent belongs to an OEM partition.

VDS_DET_ESP: The extent belongs to an Extensible Firmware Interface (EFI) system

partition.

VDS_DET_MSR: The extent belongs to a Microsoft Reserved (MSR) partition.

VDS_DET_LDM: The extent belongs to a disk management metadata partition.

VDS_DET_UNUSABLE: The extent belongs to an area of unusable space.

2.2.1.2.14 VDS_PARTITION_STYLE

The VDS_PARTITION_STYLE enumeration defines the styles of partitions.

 typedef enum _VDS_PARTITION_STYLE
 {
 VDS_PST_UNKNOWN = 0x00000000,
 VDS_PST_MBR = 0x00000001,
 VDS_PST_GPT = 0x00000002
 } VDS_PARTITION_STYLE;

VDS_PST_UNKNOWN: The partition format is unknown.

VDS_PST_MBR: The partition format is master boot record (MBR).

VDS_PST_GPT: The partition format is GUID partitioning table (GPT).

2.2.1.2.15 VDS_PARTITION_FLAG

The VDS_PARTITION_FLAG enumeration defines flags that describe partitions. A value that accepts
these flags MUST have the following flag set or MUST have the value set to 0 if the flag is not
applicable to a given partition.

 typedef enum _VDS_PARTITION_FLAG
 {
 VDS_PTF_SYSTEM = 0x00000001
 } VDS_PARTITION_FLAG;

38 / 342

[MS-VDS] - v20170601
Virtual Disk Service (VDS) Protocol
Copyright © 2017 Microsoft Corporation
Release: June 1, 2017

VDS_PTF_SYSTEM: Value that indicates that the partition is a system partition.

2.2.1.2.16 VDS_VOLUME_TYPE

The VDS_VOLUME_TYPE enumeration defines the set of valid types for a volume object.

 typedef enum _VDS_VOLUME_TYPE
 {
 VDS_VT_UNKNOWN = 0x00000000,
 VDS_VT_SIMPLE = 0x0000000A,
 VDS_VT_SPAN = 0x0000000B,
 VDS_VT_STRIPE = 0x0000000C,
 VDS_VT_MIRROR = 0x0000000D,
 VDS_VT_PARITY = 0x0000000E
 } VDS_VOLUME_TYPE;

VDS_VT_UNKNOWN: The status of the volume is unknown.

VDS_VT_SIMPLE: The volume type is simple: it is composed of extents from exactly one disk.

VDS_VT_SPAN: The volume type is spanned: it is composed of extents from more than one disk.

VDS_VT_STRIPE: The volume type is striped, which is equivalent to RAID-0.

VDS_VT_MIRROR: The volume type is mirrored, which is equivalent to RAID-1.

VDS_VT_PARITY: The volume type is striped with parity, which accounts for RAID levels 3, 4, 5,
and 6.

2.2.1.2.17 VDS_TRANSITION_STATE

The VDS_TRANSITION_STATE enumeration defines the set of valid transition state values for a VDS
object.

 typedef enum _VDS_TRANSITION_STATE
 {
 VDS_TS_UNKNOWN = 0x00000000,
 VDS_TS_STABLE = 0x00000001,
 VDS_TS_EXTENDING = 0x00000002,
 VDS_TS_SHRINKING = 0x00000003,
 VDS_TS_RECONFIGING = 0x00000004
 } VDS_TRANSITION_STATE;

VDS_TS_UNKNOWN: The transition state of the object cannot be determined.

VDS_TS_STABLE: The object is stable. No configuration activity is currently in progress.

VDS_TS_EXTENDING: The object is being extended.

VDS_TS_SHRINKING: The object is being shrunk.

VDS_TS_RECONFIGING: The object is being automatically reconfigured.

2.2.1.2.18 VDS_FORMAT_OPTION_FLAGS

The VDS_FORMAT_OPTION_FLAGS enumeration defines the set of valid format option values.

 typedef enum _VDS_FORMAT_OPTION_FLAGS
 {
 VDS_FSOF_NONE = 0x00000000,

39 / 342

[MS-VDS] - v20170601
Virtual Disk Service (VDS) Protocol
Copyright © 2017 Microsoft Corporation
Release: June 1, 2017

 VDS_FSOF_FORCE = 0x00000001,
 VDS_FSOF_QUICK = 0x00000002,
 VDS_FSOF_COMPRESSION = 0x00000004,
 VDS_FSOF_DUPLICATE_METADATA = 0x00000008
 } VDS_FORMAT_OPTION_FLAGS;

VDS_ESOF_NONE: No format options are specified.

VDS_ESOF_FORCE: Determines whether the format is forced, regardless of whether the volume is
in use.

VDS_ESOF_QUICK: Determines whether a file system is quick formatted. A quick format does not
verify each sector on the volume.

VDS_ESOF_COMPRESSION: Determines whether a file system is created with compression

enabled.

VDS_ESOF_DUPLICATE_METADATA: Determines whether the metadata is duplicated (UDF file

system only).

2.2.1.2.19 VDS_DISK_FLAG

The VDS_DISK_FLAG enumeration defines the properties of a disk.

 typedef enum _VDS_DISK_FLAG
 {
 VDS_DF_AUDIO_CD = 0x1,
 VDS_DF_HOTSPARE = 0x2,
 VDS_DF_RESERVE_CAPABLE = 0x4,
 VDS_DF_MASKED = 0x8,
 VDS_DF_STYLE_CONVERTIBLE = 0x10,
 VDS_DF_CLUSTERED = 0x20,
 VDS_DF_READ_ONLY = 0x40,
 VDS_DF_SYSTEM_DISK = 0x80,
 VDS_DF_BOOT_DISK = 0x100,
 VDS_DF_PAGEFILE_DISK = 0x200,
 VDS_DF_HIBERNATIONFILE_DISK = 0x400,
 VDS_DF_CRASHDUMP_DISK = 0x800,
 VDS_DF_HAS_ARC_PATH = 0x1000,
 VDS_DF_DYNAMIC = 0x2000,
 VDS_DF_BOOT_FROM_DISK = 0x4000,
 VDS_DF_CURRENT_READ_ONLY = 0x8000
 } VDS_DISK_FLAG;

VDS_DF_AUDIO_CD: The disk is an audio CD, as specified in [IEC60908].

VDS_DF_HOTSPARE: The disk is a hot spare.

VDS_DF_RESERVE_CAPABLE: The disk can be reserved for a host.

VDS_DF_MASKED: The disk is currently hidden from the host.

VDS_DF_STYLE_CONVERTIBLE: The disk is convertible between the MBR partition format and
the GPT partition format.

VDS_DF_CLUSTERED: The disk is clustered.

VDS_DF_READ_ONLY: The disk read-only attribute is set.

VDS_DF_SYSTEM_DISK: The disk contains the system volume.

40 / 342

[MS-VDS] - v20170601
Virtual Disk Service (VDS) Protocol
Copyright © 2017 Microsoft Corporation
Release: June 1, 2017

VDS_DF_BOOT_DISK: The disk contains the boot volume.

VDS_DF_PAGEFILE_DISK: The disk contains the paging file on one of its volumes.

VDS_DF_HIBERNATIONFILE_DISK: The disk contains the hibernation file on one of its volumes.

VDS_DF_CRASHDUMP_DISK: The disk is configured to contain a crash-dump file on one of its

volumes.

VDS_DF_HAS_ARC_PATH: The disk has an Advanced RISC Computing (ARC) path specified in the
BIOS. For information on ARC paths, see [KB102873].

VDS_DF_DYNAMIC: The disk is a logical disk manager dynamic disk.

VDS_DF_BOOT_FROM_DISK: Indicates the disk from which the machine will boot. Note that this is
BIOS disk 0 on the MBR, not the current system volume disk. For example, if the machine boots to
Windows PE, this flag is set on BIOS disk 0. For EFI machines, this flag is set on a disk

containing the EFI system partition used to boot the machine.

VDS_DF_CURRENT_READ_ONLY: Indicates that the disk is in a read-only state. If this flag is not
set, the disk is read/write. Unlike the VDS_DF_READ_ONLY flag, which is used to indicate the
disk's read-only attribute maintained by the operating system, this flag reflects the actual disk
state. This flag cannot be set by using the IVdsDisk::SetFlags method or cleared by using the
IVdsDisk::ClearFlags method.

The disk will be in a read-only state if its read-only attribute is set. However, a disk can be in a
read-only state even if its read-only attribute is not set, if the underlying hardware is read-only.
For example, if the LUN is in read-only state or if the disk is a virtual hard disk that resides on a
volume that is read-only, the underlying hardware is read-only and therefore the disk is in a
read-only state.

2.2.1.2.20 VDS_DISK_STATUS

The VDS_DISK_STATUS enumeration defines the status of a disk.

 typedef enum _VDS_DISK_STATUS
 {
 VDS_DS_UNKNOWN = 0x00000000,
 VDS_DS_ONLINE = 0x00000001,
 VDS_DS_NOT_READY = 0x00000002,
 VDS_DS_NO_MEDIA = 0x00000003,
 VDS_DS_OFFLINE = 0x00000004,
 VDS_DS_FAILED = 0x00000005,
 VDS_DS_MISSING = 0x00000006
 } VDS_DISK_STATUS;

VDS_DS_UNKNOWN: The disk status is unknown.

VDS_DS_ONLINE: The disk is online.

VDS_DS_NOT_READY: The disk is not ready.

VDS_DS_NO_MEDIA: The disk has no media.

VDS_DS_OFFLINE: The disk is offline. Offline disks have no volume devices exposed.

VDS_DS_FAILED: The disk failed.

VDS_DS_MISSING: The disk is missing; it is no longer available to the operating system.

https://go.microsoft.com/fwlink/?LinkId=208754

41 / 342

[MS-VDS] - v20170601
Virtual Disk Service (VDS) Protocol
Copyright © 2017 Microsoft Corporation
Release: June 1, 2017

2.2.1.2.21 VDS_LUN_RESERVE_MODE

The VDS_LUN_RESERVE_MODE enumeration defines the sharing mode of a disk.

 typedef enum _VDS_LUN_RESERVE_MODE
 {
 VDS_LRM_NONE = 0x00000000,
 VDS_LRM_EXCLUSIVE_RW = 0x00000001,
 VDS_LRM_EXCLUSIVE_RO = 0x00000002,
 VDS_LRM_SHARED_RO = 0x00000003,
 VDS_LRM_SHARED_RW = 0x00000004
 } VDS_LUN_RESERVE_MODE;

VDS_LRM_NONE: The disk has no assigned sharing mode.

VDS_LRM_EXCLUSIVE_RW: The disk is reserved for exclusive access.

VDS_LRM_EXCLUSIVE_RO: The disk is available for read access.

VDS_LRM_SHARED_RO: The disk is available for shared read access.

VDS_LRM_SHARED_RW: The disk is available for shared read/write access.

2.2.1.2.22 VDS_VOLUME_STATUS

The VDS_VOLUME_STATUS enumeration defines the set of object status values for a volume.

 typedef enum _VDS_VOLUME_STATUS
 {
 VDS_VS_UNKNOWN = 0x00000000,
 VDS_VS_ONLINE = 0x00000001,
 VDS_VS_NO_MEDIA = 0x00000003,
 VDS_VS_OFFLINE = 0x00000004,
 VDS_VS_FAILED = 0x00000005
 } VDS_VOLUME_STATUS;

VDS_VS_UNKNOWN: The status of the volume is unknown.

VDS_VS_ONLINE: The volume is available.

VDS_VS_NO_MEDIA: The volume belongs to a removable media device, such as a CD-ROM or
DVD-ROM drive, but the device does not currently have media in the drive.

VDS_VS_OFFLINE: When this status is set, it (1) indicates that no path names for the volume are
available for use by applications, and (2) prevents READ and READ|WRITE handles to the volume
device being opened. When a volume transitions to this state, calls to open a new handle against
the volume device fail, but any in-progress I/O against the volume will complete before all I/O to
the volume is stopped.<13>

VDS_VS_FAILED: The volume is unavailable.

2.2.1.2.23 VDS_VOLUME_FLAG

The VDS_VOLUME_FLAG enumeration defines the set of valid flags for a volume object.

 typedef enum _VDS_VOLUME_FLAG
 {
 VDS_VF_SYSTEM_VOLUME = 0x00000001,
 VDS_VF_BOOT_VOLUME = 0x00000002,
 VDS_VF_ACTIVE = 0x00000004,

42 / 342

[MS-VDS] - v20170601
Virtual Disk Service (VDS) Protocol
Copyright © 2017 Microsoft Corporation
Release: June 1, 2017

 VDS_VF_READONLY = 0x00000008,
 VDS_VF_HIDDEN = 0x00000010,
 VDS_VF_CAN_EXTEND = 0x00000020,
 VDS_VF_CAN_SHRINK = 0x00000040,
 VDS_VF_PAGEFILE = 0x00000080,
 VDS_VF_HIBERNATION = 0x00000100,
 VDS_VF_CRASHDUMP = 0x00000200,
 VDS_VF_INSTALLABLE = 0x00000400,
 VDS_VF_LBN_REMAP_ENABLED = 0x00000800,
 VDS_VF_FORMATTING = 0x00001000,
 VDS_VF_NOT_FORMATTABLE = 0x00002000,
 VDS_VF_NTFS_NOT_SUPPORTED = 0x00004000,
 VDS_VF_FAT32_NOT_SUPPORTED = 0x00008000,
 VDS_VF_FAT_NOT_SUPPORTED = 0x00010000,
 VDS_VF_NO_DEFAULT_DRIVE_LETTER = 0x00020000,
 VDS_VF_PERMANENTLY_DISMOUNTED = 0x00040000,
 VDS_VF_PERMANENT_DISMOUNT_SUPPORTED = 0x00080000,
 VDS_VF_SHADOW_COPY = 0x00100000,
 VDS_VF_FVE_ENABLED = 0x00200000,
 VDS_VF_DIRTY = 0x00400000,
 VDS_VF_REFS_NOT_SUPPORTED = 0x00800000
 } VDS_VOLUME_FLAG;

VDS_VF_SYSTEM_VOLUME: If set, the volume is a system volume. It contains the boot loader

that is used to invoke the operating system on the boot volume.

VDS_VF_BOOT_VOLUME: If set, the volume is a boot volume that contains the operating system.

VDS_VF_ACTIVE: If set, the volume is an active volume. It can become the system volume at
system startup if the BIOS is configured to select that disk for startup.

VDS_VF_READONLY: If set, the volume can be read from but not written to.

VDS_VF_HIDDEN: If set, the volume does not automatically get assigned mount points or drive

letters that can be used to access the volume.

VDS_VF_CAN_EXTEND: If set, the volume size can be extended.

VDS_VF_CAN_SHRINK: If set, the volume size can be reduced.

VDS_VF_PAGEFILE: If this flag is set, the volume contains a page file.

VDS_VF_HIBERNATION: If set, the volume holds the files that are used when the system
hibernates.

VDS_VF_CRASHDUMP: If set, the volume acts as a crash-dump device.

VDS_VF_INSTALLABLE: If set, callers can use the volume to install an operating system.

VDS_VF_LBN_REMAP_ENABLED: If set, VDS can dynamically change the position of the volume
on the disk. This flag is not valid for basic and dynamic volumes and is only supported by some
third-party volume managers.

VDS_VF_FORMATTING: If set, the volume is being formatted.

VDS_VF_NOT_FORMATTABLE: If set, the volume cannot be formatted.

VDS_VF_NTFS_NOT_SUPPORTED: If set, the volume does not support the NTFS file system but

can support other file systems.

VDS_VF_FAT32_NOT_SUPPORTED: If set, the volume does not support FAT32.

VDS_VF_FAT_NOT_SUPPORTED: If set, the volume does not support FAT.

43 / 342

[MS-VDS] - v20170601
Virtual Disk Service (VDS) Protocol
Copyright © 2017 Microsoft Corporation
Release: June 1, 2017

VDS_VF_NO_DEFAULT_DRIVE_LETTER: If set, the operating system does not automatically
assign a drive letter when the volume is created or a disk containing existing volumes is connected

to the operating system. When cleared, the operating system assigns a drive letter to the volume.
Callers can set and clear this flag. For basic GPT volumes and dynamic disk volumes, assigning

or removing a drive letter toggles this flag.<14>

The flag is set by default for dynamic disk and basic GPT disk volumes.

VDS_VF_PERMANENTLY_DISMOUNTED: If set, the volume is unavailable and requires a mount-
point assignment. VDS sets this flag after the caller invokes the IVdsVolumeMF::Dismount
method, setting the bForce and bPermanent parameters to TRUE.

VDS_VF_PERMANENT_DISMOUNT_SUPPORTED: If set, the volume supports bPermanent for the
IVdsVolumeMF::Dismount method. This flag cannot be set or cleared by the client. This flag is set

by the server if it applies.

VDS_VF_SHADOW_COPY: If set, the volume is a shadow copy of another volume. This flag is set
when the snapshot is taken, and it is cleared when the snapshot is broken from the original

volume. The VDS_VF_SHADOW_COPY flag is an indication for software-like file system filter
drivers (for example, antivirus) to avoid attaching to the volume. Applications can use the
attribute to differentiate snapshots from production volumes. Applications that create a Fast

Recovery, in which a shadow copy LUN is made into a non-snapshot by clearing the read-only and
hidden bit, will need to clear this bit as well.

VDS_VF_FVE_ENABLED: The volume is encrypted with full-volume encryption.<15>

VDS_VF_DIRTY<16>: The volume's dirty bit is set.

VDS_VF_REFS_NOT_SUPPORTED<17>: The volume does not support ReFS.

VDS_VF_HIDDEN, VDF_VF_READ_ONLY, VDS_VF_SHADOW_COPY, and
VDS_VF_NO_DEFAULT_DRIVE_LETTER are set as follows:

 Dynamic disk volumes - The flag is per volume. VDS_VF_NO_DEFAULT_DRIVE_LETTER
is set at volume creation. <18>The flag toggles when drive letters are assigned or removed,

and can also be set or cleared using any of the Set/ClearFlags methods.

 MBR basic disk volumes - The flag is applied to all volumes created on the disk after the
flag is set. It is set per disk for basic MBR disks, not per volume. The flag is only set or
cleared if an explicit call is made to the IVdsVolume::SetFlags (section 3.4.5.2.32.10) and
IVdsVolume::ClearFlag (section 3.4.5.2.32.11) methods, respectively. For example, the

VDS_VF_NO_DEFAULT_DRIVE_LETTER flag is not toggled as drive letters are assigned to
or removed from specific volumes.

 GPT basic disk volumes - The flag is per volume, data partitions only.
VDS_VF_NO_DEFAULT_DRIVE_LETTER is set at volume creation and toggled when drive
letters are assigned or removed (by VDS).

2.2.1.3 Structures

2.2.1.3.1 VDS_SERVICE_NOTIFICATION

The VDS_ SERVICE _NOTIFICATION structure provides information about state changes to the service
object.<19>

 typedef struct _VDS_SERVICE_NOTIFICATION {
 ULONG ulEvent;
 VDS_RECOVER_ACTION action;
 } VDS_SERVICE_NOTIFICATION;

44 / 342

[MS-VDS] - v20170601
Virtual Disk Service (VDS) Protocol
Copyright © 2017 Microsoft Corporation
Release: June 1, 2017

ulEvent: The type of service notification; it MUST be set to the following value.

Value Meaning

VDS_NF_SERVICE_OUT_OF_SYNC

0x0000012D

The service's cache has become inconsistent or the service has
encountered an error requiring client action.

action: The type of action required by the client to return the service to a functioning, consistent
state; it MUST be one of the following values.

Value Meaning

VDS_RA_UNKNOWN

0x00000000

The client corrective action is unknown.

VDS_RA_REFRESH

0x00000001

The client corrective action is to call the IVdsService::Refresh (section 3.4.5.2.4.10)
method.

VDS_RA_RESTART

0x00000002

The client corrective action is to restart the service.

2.2.1.3.2 VDS_PACK_NOTIFICATION

The VDS_PACK_NOTIFICATION structure provides information about a pack notification.

 typedef struct _VDS_PACK_NOTIFICATION {
 unsigned long ulEvent;
 VDS_OBJECT_ID packId;
 } VDS_PACK_NOTIFICATION;

ulEvent: The type of pack notification; it MUST be one of the following values.

Value Meaning

VDS_NF_PACK_ARRIVE

0x00000001

The pack was newly created.

VDS_NF_PACK_DEPART

0x00000002

The pack was deleted.

VDS_NF_PACK_MODIFY

0x00000003

The pack was modified.

packId: The VDS object ID of the pack object to which the notification refers.

2.2.1.3.3 VDS_DISK_NOTIFICATION

The VDS_DISK_NOTIFICATION structure provides information about a disk notification.

 typedef struct _VDS_DISK_NOTIFICATION {
 unsigned long ulEvent;
 VDS_OBJECT_ID diskId;
 } VDS_DISK_NOTIFICATION;

45 / 342

[MS-VDS] - v20170601
Virtual Disk Service (VDS) Protocol
Copyright © 2017 Microsoft Corporation
Release: June 1, 2017

ulEvent: The type of disk notification; it MUST be one of the following values.

Value Meaning

VDS_NF_DISK_ARRIVE

0x00000008

The disk has become visible to the operating system.

VDS_NF_DISK_DEPART

0x00000009

The disk is no longer visible to the operating system.

VDS_NF_DISK_MODIFY

0x0000000A

The disk or its properties were modified.

diskId: The VDS object ID of the disk object to which the notification refers.

2.2.1.3.4 VDS_VOLUME_NOTIFICATION

The VDS_VOLUME_NOTIFICATION structure provides information about a volume change notification.

 typedef struct _VDS_VOLUME_NOTIFICATION {
 unsigned long ulEvent;
 VDS_OBJECT_ID volumeId;
 VDS_OBJECT_ID plexId;
 unsigned long ulPercentCompleted;
 } VDS_VOLUME_NOTIFICATION;

ulEvent: Determines the volume event for which an application will be notified; it MUST be one of
the following values.

Value Meaning

VDS_NF_VOLUME_ARRIVE

0x00000004

A new volume is visible to the operating system.

VDS_NF_VOLUME_DEPART

0x00000005

An existing volume is no longer visible to the operating
system.

VDS_NF_VOLUME_MODIFY

0x00000006

The volume was modified.

VDS_NF_VOLUME_REBUILDING_PROGRESS

0x00000007

A fault tolerant volume is being regenerated or
resynchronized.

volumeId: The VDS object ID of the volume object to which the notification refers.

plexId: The VDS object ID of a volume plex object to which the notification refers, if any. VDS
applies this identifier during the rebuild operation, which can execute on multiple plexes at
different rates.

ulPercentCompleted: The percentage of completion for the operation. Valid values range from 0-

100.

2.2.1.3.5 VDS_PARTITION_NOTIFICATION

The VDS_PARTITION_NOTIFICATION structure provides information about a partition notification.

 typedef struct _VDS_PARTITION_NOTIFICATION {

46 / 342

[MS-VDS] - v20170601
Virtual Disk Service (VDS) Protocol
Copyright © 2017 Microsoft Corporation
Release: June 1, 2017

 unsigned long ulEvent;
 VDS_OBJECT_ID diskId;
 ULONGLONG ullOffset;
 } VDS_PARTITION_NOTIFICATION;

ulEvent: Determines the partition event for which an application will be notified; it MUST be one of
the following values.

Value Meaning

VDS_NF_PARTITION_ARRIVE

0x0000000B

A new partition is visible to the operating system.

VDS_NF_PARTITION_DEPART

0x0000000C

An existing partition is no longer visible to the operating system.

VDS_NF_PARTITION_MODIFY

0x0000000D

An existing partition changed.

diskId: The VDS object ID of the disk object containing the partition that triggered the event.

ullOffset: The byte offset of the partition from the beginning of the disk.

2.2.1.3.6 VDS_DRIVE_LETTER_NOTIFICATION

The VDS_DRIVE_LETTER_NOTIFICATION structure provides information about a drive letter
notification.

 typedef struct _VDS_DRIVE_LETTER_NOTIFICATION {
 unsigned long ulEvent;
 WCHAR wcLetter;
 VDS_OBJECT_ID volumeId;
 } VDS_DRIVE_LETTER_NOTIFICATION;

ulEvent: Determines the drive-letter event for which an application will be notified; it MUST be one
of the following values.

Value Meaning

VDS_NF_DRIVE_LETTER_FREE

0x000000C9

The drive letter is no longer in use.

VDS_NF_DRIVE_LETTER_ASSIGN

0x000000CA

The drive letter has been assigned to a volume.

wcLetter: The drive letter that triggered the event, as a single uppercase or lowercase alphabetical
(A-Z) Unicode character.

volumeId: The VDS object ID of the volume object to which the drive letter is assigned. If the drive

letter is freed, the volume identifier is GUID_NULL.

2.2.1.3.7 VDS_FILE_SYSTEM_NOTIFICATION

The VDS_FILE_SYSTEM_NOTIFICATION structure provides information about a file system
notification.

47 / 342

[MS-VDS] - v20170601
Virtual Disk Service (VDS) Protocol
Copyright © 2017 Microsoft Corporation
Release: June 1, 2017

 typedef struct _VDS_FILE_SYSTEM_NOTIFICATION {
 unsigned long ulEvent;
 VDS_OBJECT_ID volumeId;
 DWORD dwPercentCompleted;
 } VDS_FILE_SYSTEM_NOTIFICATION;

ulEvent: Determines the file system event for which an application will be notified; it MUST be one of
the following values.

Value Meaning

VDS_NF_FILE_SYSTEM_MODIFY

0x000000CB

A volume received a new label, or a file system was
extended or shrunk; does not include a change to the file
system compression flags.

VDS_NF_FILE_SYSTEM_FORMAT_PROGRESS

0x000000CC

A file system is being formatted.

volumeId: The VDS object ID of the volume object containing the file system that triggered the
event.

dwPercentCompleted: The completed format progress as a percentage of the whole.

2.2.1.3.8 VDS_MOUNT_POINT_NOTIFICATION

The VDS_MOUNT_POINT_NOTIFICATION structure provides information about a mount point change
notification.

 typedef struct _VDS_MOUNT_POINT_NOTIFICATION {
 unsigned long ulEvent;
 VDS_OBJECT_ID volumeId;
 } VDS_MOUNT_POINT_NOTIFICATION;

ulEvent: Determines the mount point event for which an application will be notified; it MUST be the
following value.

Value Meaning

VDS_NF_MOUNT_POINTS_CHANGE

0x000000CD

The mount point changed.

volumeId: The VDS object ID of the volume object containing the mount point that triggered the
event.

2.2.1.3.9 VDS_NOTIFICATION

The VDS_NOTIFICATION structure provides information about a notification.

 typedef struct _VDS_NOTIFICATION {
 VDS_NOTIFICATION_TARGET_TYPE objectType;
 [switch_is(objectType)] union {
 [case(VDS_NTT_PACK)]
 VDS_PACK_NOTIFICATION Pack;
 [case(VDS_NTT_DISK)]
 VDS_DISK_NOTIFICATION Disk;
 [case(VDS_NTT_VOLUME)]
 VDS_VOLUME_NOTIFICATION Volume;
 [case(VDS_NTT_PARTITION)]

48 / 342

[MS-VDS] - v20170601
Virtual Disk Service (VDS) Protocol
Copyright © 2017 Microsoft Corporation
Release: June 1, 2017

 VDS_PARTITION_NOTIFICATION Partition;
 [case(VDS_NTT_DRIVE_LETTER)]
 VDS_DRIVE_LETTER_NOTIFICATION Letter;
 [case(VDS_NTT_FILE_SYSTEM)]
 VDS_FILE_SYSTEM_NOTIFICATION FileSystem;
 [case(VDS_NTT_MOUNT_POINT)]
 VDS_MOUNT_POINT_NOTIFICATION MountPoint;
 [case(VDS_NTT_SERVICE)]
 VDS_SERVICE_NOTIFICATION Service;
 };
 } VDS_NOTIFICATION;

objectType: A value defined in the VDS_NOTIFICATION_TARGET_TYPE enumeration that describes
the type of notification.

Pack: A VDS_PACK_NOTIFICATION structure that describes a pack change.

Disk: A VDS_DISK_NOTIFICATION structure that describes a disk change.

Volume: A VDS_VOLUME_NOTIFICATION structure that describes a volume change.

Partition: A VDS_PARTITION_NOTIFICATION structure that describes a partition change.

Letter: A VDS_DRIVE_LETTER_NOTIFICATION structure that describes a drive letter change.

FileSystem: A VDS_FILE_SYSTEM_NOTIFICATION structure that describes a file system change.

MountPoint: A VDS_MOUNT_POINT_NOTIFICATION structure that describes a mount point change.

Service: A VDS_SERVICE_NOTIFICATION structure that provides information about a state change to
the service object.

2.2.1.3.10 VDS_ASYNC_OUTPUT

The VDS_ASYNC_OUTPUT structure provides information from a completed asynchronous operation.

 typedef struct _VDS_ASYNC_OUTPUT {
 VDS_ASYNC_OUTPUT_TYPE type;
 [switch_is(type)] union {
 [case(VDS_ASYNCOUT_CREATEPARTITION)]
 struct _cp {
 ULONGLONG ullOffset;
 VDS_OBJECT_ID volumeId;
 } cp;
 [case(VDS_ASYNCOUT_CREATEVOLUME)]
 struct _cv {
 IUnknown* pVolumeUnk;
 } cv;
 [case(VDS_ASYNCOUT_BREAKVOLUMEPLEX)]
 struct _bvp {
 IUnknown* pVolumeUnk;
 } bvp;
 [case(VDS_ASYNCOUT_SHRINKVOLUME)]
 struct _sv {
 ULONGLONG ullReclaimedBytes;
 } sv;
 [case(VDS_ASYNCOUT_CREATE_VDISK)]
 struct _cvd {
 IUnknown* pVDiskUnk;
 } cvd;
 [default] ;
 };
 } VDS_ASYNC_OUTPUT;

49 / 342

[MS-VDS] - v20170601
Virtual Disk Service (VDS) Protocol
Copyright © 2017 Microsoft Corporation
Release: June 1, 2017

type: A value from the VDS_ASYNC_OUTPUT_TYPE enumeration that indicates the type of operation
information.

cp: The cp structure provides information about a newly created partition.

ullOffset: The byte offset of the partition from the beginning of the disk.

volumeId: The VDS object ID of the associated volume object, if the partition is a volume.

cv: The cv structure provides information about a newly created volume.

pVolumeUnk: A pointer to the IUnknown interface of the newly created volume.

bvp: The bvp structure provides information about a volume after a plex is broken.

pVolumeUnk: A pointer to the IUnknown interface of the volume that was broken off.

sv: The sv structure provides information about a volume shrink operation.

ullReclaimedBytes: The number of bytes that the volume shrink operation reclaimed.

cvd: The cvd structure provides information about a newly created virtual disk.

pVDiskUnk: A pointer to the IUnknown interface of the newly created virtual disk.

2.2.1.3.11 VDS_PARTITION_INFO_MBR

The VDS_PARTITION_INFO_MBR structure provides information about an MBR partition.

 typedef struct _VDS_PARTITION_INFO_MBR {
 byte partitionType;
 boolean bootIndicator;
 boolean recognizedPartition;
 DWORD hiddenSectors;
 } VDS_PARTITION_INFO_MBR;

partitionType: The byte value indicating the partition type.<20>

bootIndicator: A Boolean value that indicates whether the partition is bootable.

recognizedPartition: A Boolean value that indicates whether the partition will be exposed as a
volume.

hiddenSectors: The number of sectors between the start of the partition and the partition's first
usable area.

2.2.1.3.12 VDS_PARTITION_INFO_GPT

The VDS_PARTITION_INFO_GPT structure provides information about a partition in a GPT.

 typedef struct _VDS_PARTITION_INFO_GPT {
 GUID partitionType;
 GUID partitionId;
 ULONGLONG attributes;
 WCHAR name[36];
 } VDS_PARTITION_INFO_GPT;

partitionType: A GUID indicating the partition type.<21>

partitionId: The GUID of the partition.

50 / 342

[MS-VDS] - v20170601
Virtual Disk Service (VDS) Protocol
Copyright © 2017 Microsoft Corporation
Release: June 1, 2017

attributes: The attributes of the partition; they can have a combination of the following values.

Value Meaning

GPT_ATTRIBUTE_PLATFORM_REQUIRED

0x0000000000000001

Partition is required for the platform to function
properly.<22>

GPT_BASIC_DATA_ATTRIBUTE_READ_ONLY

0x1000000000000000

Partition cannot be written to but can be read from.
Used only with the basic data partition type.

GPT_BASIC_DATA_ATTRIBUTE_SHADOW_COPY

0x2000000000000000

Partition is a shadow copy. Used only with the basic
data partition type.

GPT_BASIC_DATA_ATTRIBUTE_HIDDEN

0x4000000000000000

Partition is hidden and will not be mounted. Used only
with the basic data partition type.

GPT_BASIC_DATA_ATTRIBUTE_NO_DRIVE_LETTER

0x8000000000000000

Partition does not receive a drive letter by default
when moving the disk to another machine. Used only
with the basic data partition type.

name: Null-terminated Unicode name of the partition.

2.2.1.3.13 VDS_STORAGE_IDENTIFIER

The VDS_STORAGE_IDENTIFIER structure provides information about a storage identifier.

 typedef struct _VDS_STORAGE_IDENTIFIER {
 VDS_STORAGE_IDENTIFIER_CODE_SET m_CodeSet;
 VDS_STORAGE_IDENTIFIER_TYPE m_Type;
 unsigned long m_cbIdentifier;
 [size_is(m_cbIdentifier)] byte* m_rgbIdentifier;
 } VDS_STORAGE_IDENTIFIER;

m_CodeSet: Value from the VDS_STORAGE_IDENTIFIER_CODE_SET enumeration that defines the
code set of the storage identifier.

m_Type: Value from the VDS_STORAGE_IDENTIFIER_TYPE enumeration that defines the type of the
storage identifier.

m_cbIdentifier: Length of the m_rgbIdentifier identifier in bytes.

m_rgbIdentifier: Value of the storage identifier. These identifiers depend on both the code set and
the type.

2.2.1.3.14 VDS_STORAGE_DEVICE_ID_DESCRIPTOR

The VDS_STORAGE_DEVICE_ID_DESCRIPTOR structure provides information about a device
identification descriptor.

 typedef struct _VDS_STORAGE_DEVICE_ID_DESCRIPTOR {
 unsigned long m_version;
 unsigned long m_cIdentifiers;
 [size_is(m_cIdentifiers)] VDS_STORAGE_IDENTIFIER* m_rgIdentifiers;
 } VDS_STORAGE_DEVICE_ID_DESCRIPTOR;

m_version: The version number of the VDS_STORAGE_DEVICE_ID_DESCRIPTOR structure as
specified by the device manufacturer and in [SPC-3].

https://go.microsoft.com/fwlink/?LinkId=90528

51 / 342

[MS-VDS] - v20170601
Virtual Disk Service (VDS) Protocol
Copyright © 2017 Microsoft Corporation
Release: June 1, 2017

m_cIdentifiers: The number of elements in the m_rgIdentifiers array.

m_rgIdentifiers: The array of VDS_STORAGE_IDENTIFIER structures that contain the storage

identifier information.

2.2.1.3.15 VDS_INTERCONNECT

The VDS_INTERCONNECT structure defines the address data of a physical interconnect, as specified in
[SPC-3].

 typedef struct _VDS_INTERCONNECT {
 VDS_INTERCONNECT_ADDRESS_TYPE m_addressType;
 unsigned long m_cbPort;
 [size_is(m_cbPort)] byte* m_pbPort;
 unsigned long m_cbAddress;
 [size_is(m_cbAddress)] byte* m_pbAddress;
 } VDS_INTERCONNECT;

m_addressType: A VDS_INTERCONNECT_ADDRESS_TYPE structure that stores the address type of
the interconnect.

m_cbPort: The size, in bytes, of the interconnect address data for the LUN port to which m_pbPort
refers.

m_pbPort: A pointer to the interconnect address data for the LUN port.

m_cbAddress: The size, in bytes, of the interconnect address data for the LUN to which

m_pbAddress refers.

m_pbAddress: A pointer to the interconnect address data for the LUN.

2.2.1.3.16 VDS_LUN_INFORMATION

The VDS_LUN_INFORMATION structure provides information about a SCSI-2 device. For information

about a SCSI-2 device, see [ANSI-131-1994].

 typedef struct _VDS_LUN_INFORMATION
 {
 unsigned long m_version;
 byte m_DeviceType;
 byte m_DeviceTypeModifier;
 long m_bCommandQueuing;
 VDS_STORAGE_BUS_TYPE m_BusType;
 [string] char * m_szVendorId;
 [string] char * m_szProductId;
 [string] char * m_szProductRevision;
 [string] char * m_szSerialNumber;
 GUID m_diskSignature;
 VDS_STORAGE_DEVICE_ID_DESCRIPTOR m_deviceIdDescriptor;
 unsigned long m_cInterconnects;
 [size_is(m_cInterconnects)] VDS_INTERCONNECT * m_rgInterconnects;
 } VDS_LUN_INFORMATION;

m_version: The version number of the VDS_LUN_INFORMATION structure. As of the current version
of this protocol, this value is always VER_VDS_LUN_INFORMATION (0x00000001).

m_DeviceType: The SCSI-2 device type of the device, as specified in [SPC-3].

m_DeviceTypeModifier: The SCSI-2 device type modifier, if any, as specified in [SPC-3].

https://go.microsoft.com/fwlink/?LinkId=90528
https://go.microsoft.com/fwlink/?LinkId=90512
https://go.microsoft.com/fwlink/?LinkId=90528

52 / 342

[MS-VDS] - v20170601
Virtual Disk Service (VDS) Protocol
Copyright © 2017 Microsoft Corporation
Release: June 1, 2017

m_bCommandQueuing: A Boolean value that indicates whether the device supports multiple
outstanding commands.

m_BusType: A value from the VDS_STORAGE_BUS_TYPE enumeration that indicates the bus type of
the device.

m_szVendorId: The null-terminated vendor identification Unicode string of the device. This value is
NULL if no vendor ID exists.

m_szProductId: The null-terminated product identification Unicode string of the device. This value is
NULL if no product ID exists.

m_szProductRevision: The null-terminated product revision Unicode string of the device. This value
is NULL if no product revision information exists.

m_szSerialNumber: The null-terminated serial number of the device. This value is NULL if no serial

number exists.

m_diskSignature: The disk signature of the disk.

m_deviceIdDescriptor: A VDS_STORAGE_DEVICE_ID_DESCRIPTOR structure that contains the
identification descriptor of the device.

m_cInterconnects: The number of elements in the m_rgInterconnects array.

m_rgInterconnects: Any array of VDS_INTERCONNECT structures that describe the physical

interconnects to the device.

2.2.1.3.17 VDS_FILE_SYSTEM_PROP

The VDS_FILE_SYSTEM_PROP structure provides information about the properties of a file system.

 typedef struct _VDS_FILE_SYSTEM_PROP {
 VDS_FILE_SYSTEM_TYPE type;
 VDS_OBJECT_ID volumeId;
 unsigned long ulFlags;
 ULONGLONG ullTotalAllocationUnits;
 ULONGLONG ullAvailableAllocationUnits;
 unsigned long ulAllocationUnitSize;
 [string] WCHAR* pwszLabel;
 } VDS_FILE_SYSTEM_PROP,
 *PVDS_FILE_SYSTEM_PROP;

type: A VDS_FILE_SYSTEM_TYPE value that provides information about the type of the file system.

volumeId: The VDS object ID of the volume object on which the file system resides.

ulFlags: The combination of any values, by using the bitwise OR operator, that are defined in the
VDS_FILE_SYSTEM_PROP_FLAG enumeration.

ullTotalAllocationUnits: The total number of allocation units on the file system.

ullAvailableAllocationUnits: The number of allocation units available on the file system.

ulAllocationUnitSize: The size of the allocation units in use by the file system.

pwszLabel: A null-terminated Unicode label of the file system.

2.2.1.3.18 VDS_FILE_SYSTEM_FORMAT_SUPPORT_PROP

53 / 342

[MS-VDS] - v20170601
Virtual Disk Service (VDS) Protocol
Copyright © 2017 Microsoft Corporation
Release: June 1, 2017

The VDS_FILE_SYSTEM_FORMAT_SUPPORT_PROP structure provides information about file systems
that are supported for formatting volumes.<23>

 typedef struct _VDS_FILE_SYSTEM_FORMAT_SUPPORT_PROP {
 unsigned long ulFlags;
 unsigned short usRevision;
 unsigned long ulDefaultUnitAllocationSize;
 unsigned long rgulAllowedUnitAllocationSizes[32];
 WCHAR wszName[32];
 } VDS_FILE_SYSTEM_FORMAT_SUPPORT_PROP,
 *PVDS_FILE_SYSTEM_FORMAT_SUPPORT_PROP;

ulFlags: The combination of any values, by using the bitwise OR operator, that are defined in the

VDS_FILE_SYSTEM_FORMAT_SUPPORT_FLAG enumeration.

usRevision: A 16-bit, binary-coded decimal number that indicates the file system version, if any. The
first two (most significant) digits (8-bits) indicate the major version while the last two (least
significant) digits (8-bits) indicate the minor version. For example, a value that has a bit pattern of

00000010 01010000 (0x0250 in hexadecimal) represents version 2.50; 0x1195 represents
version 11.95, and so on.

ulDefaultUnitAllocationSize: The default allocation unit size, in bytes, that the file system uses
for formatting the volume. This value MUST be a power of 2 and MUST also appear in
rgulAllowedUnitAllocationSizes.

rgulAllowedUnitAllocationSizes: A zero-terminated array of allocation unit sizes, in bytes, that the
file system supports for formatting the volume. An array is not zero-terminated if the array
contains 32 elements. Each of the values in the array MUST be a power of 2.

wszName: A null-terminated Unicode wide-character string that indicates the name of the file

system.

2.2.1.3.19 VDS_DISK_EXTENT

The VDS_DISK_EXTENT structure provides information about a disk extent.

 typedef struct _VDS_DISK_EXTENT {
 VDS_OBJECT_ID diskId;
 VDS_DISK_EXTENT_TYPE type;
 ULONGLONG ullOffset;
 ULONGLONG ullSize;
 VDS_OBJECT_ID volumeId;
 VDS_OBJECT_ID plexId;
 unsigned long memberIdx;
 } VDS_DISK_EXTENT,
 *PVDS_DISK_EXTENT;

diskId: The VDS object ID of the disk object on which the extent resides.

type: The value from the VDS_DISK_EXTENT_TYPE enumeration that indicates the type of the

extent.

ullOffset: The byte offset of the disk extent from the beginning of the disk.

ullSize: The size, in bytes, of the extent.

volumeId: The VDS object ID of the volume object to which the extent belongs, if any.

plexId: The VDS object ID of the volume plex object to which the extent belongs, if it belongs to a
volume.

54 / 342

[MS-VDS] - v20170601
Virtual Disk Service (VDS) Protocol
Copyright © 2017 Microsoft Corporation
Release: June 1, 2017

memberIdx: The zero-based index of the volume plex member to which the extent belongs, if it
belongs to a volume plex.

2.2.1.3.20 VDS_PARTITION_PROP

The VDS_PARTITION_PROP structure provides information about partition properties.

 typedef struct _VDS_PARTITION_PROP {
 VDS_PARTITION_STYLE PartitionStyle;
 unsigned long ulFlags;
 unsigned long ulPartitionNumber;
 ULONGLONG ullOffset;
 ULONGLONG ullSize;
 [switch_is(PartitionStyle)] union {
 [case(VDS_PST_MBR)]
 VDS_PARTITION_INFO_MBR Mbr;
 [case(VDS_PST_GPT)]
 VDS_PARTITION_INFO_GPT Gpt;
 [default] ;
 };
 } VDS_PARTITION_PROP;

PartitionStyle: The value from the VDS_PARTITION_STYLE enumeration that describes the partition
format of the disk where the partition resides.

ulFlags: The combination of any values, by using the bitwise OR operator, from the
VDS_PARTITION_FLAG enumeration describing the partition.

ulPartitionNumber: The one-based index number of the partition that the operating system assigns.

ullOffset: The byte offset of the partition from the beginning of the disk.

ullSize: The size of the partition, in bytes.

Mbr: A VDS_PARTITION_INFO_MBR structure that describes the MBR partition.

Gpt: A VDS_PARTITION_INFO_GPT structure that describes the GPT partition.

2.2.1.3.21 VDS_INPUT_DISK

The VDS_INPUT_DISK structure provides information about a disk for volume creation and
modification.

 typedef struct _VDS_INPUT_DISK {
 VDS_OBJECT_ID diskId;
 ULONGLONG ullSize;
 VDS_OBJECT_ID plexId;
 unsigned long memberIdx;
 } VDS_INPUT_DISK;

diskId: The VDS object ID of the disk object.

ullSize: The size of the disk to use, in bytes.

plexId: When extending a volume, the VDS object ID of the plex object to which the disk will be

added. A volume can only be extended by extending all members of all plexes in the same
operation. This member is used when extending any volume and ignored when creating a volume
or repairing a RAID-5 volume.

55 / 342

[MS-VDS] - v20170601
Virtual Disk Service (VDS) Protocol
Copyright © 2017 Microsoft Corporation
Release: June 1, 2017

memberIdx: The zero-based member index of the disk to which the extent belongs. Either specify a
memberIdx for all disks or specify it for none. VDS uses disks with the same memberIdx in the

order they appear in the array. For example, the first disk in the array is always used first, even if
it does not have the lowest index. This member is ignored when repairing a RAID-5 volume.

2.2.1.3.22 CREATE_PARTITION_PARAMETERS

The CREATE_PARTITION_PARAMETERS structure provides information about partition properties.

 typedef struct _CREATE_PARTITION_PARAMETERS {
 VDS_PARTITION_STYLE style;
 [switch_is(style)] union {
 [case(VDS_PST_MBR)]
 struct {
 byte partitionType;
 boolean bootIndicator;
 } MbrPartInfo;
 [case(VDS_PST_GPT)]
 struct {
 GUID partitionType;
 GUID partitionId;
 ULONGLONG attributes;
 WCHAR name[24];
 } GptPartInfo;
 [default] ;
 };
 } CREATE_PARTITION_PARAMETERS;

style: A value from the VDS_PARTITION_STYLE enumeration that describes the disk partition

format.

MbrPartInfo: Contains information for an MBR partition.

partitionType: The byte value that indicates the partition type to create.

bootIndicator: A Boolean value that indicates whether the partition is bootable.

GptPartInfo: Contains information about a GPT partition.

partitionType: A GUID that indicates the partition type to create.<24>

partitionId: The GUID of the partition.

attributes: A bitwise OR operator of attributes that is used to create the partition; it can have a
combination of the following values.

Value Meaning

GPT_ATTRIBUTE_PLATFORM_REQUIRED

0x0000000000000001

A partition is required for the platform to function
properly.<25>

GPT_BASIC_DATA_ATTRIBUTE_READ_ONLY

0x1000000000000000

The partition can be read from, but not written to.
Used only with the basic data partition type.

GPT_BASIC_DATA_ATTRIBUTE_HIDDEN

0x4000000000000000

The partition is hidden and is not mounted. Used only
with the basic data partition type.

GPT_BASIC_DATA_ATTRIBUTE_NO_DRIVE_LETTER

0x8000000000000000

The partition does not receive a drive letter by
default when moving the disk to another computer.
Used only with the basic data partition type.

56 / 342

[MS-VDS] - v20170601
Virtual Disk Service (VDS) Protocol
Copyright © 2017 Microsoft Corporation
Release: June 1, 2017

name: The null-terminated Unicode name of the partition.

2.2.1.3.23 VIRTUAL_STORAGE_TYPE

The VIRTUAL_STORAGE_TYPE structure specifies the device and vendor of the virtual disk.<26>

 typedef struct _VIRTUAL_STORAGE_TYPE {
 ULONG DeviceId;
 GUID VendorId;
 } VIRTUAL_STORAGE_TYPE;

DeviceId: The virtual disk type. It can have one of the following values.

Value Meaning

VIRTUAL_STORAGE_TYPE_DEVICE_UNKNOWN

0

The virtual disk type is unknown.

VIRTUAL_STORAGE_TYPE_DEVICE_ISO

1

The virtual disk is an ISO image (.iso) file. For more
information, see [ECMA-119] and [OSTA-UDFS].

VIRTUAL_STORAGE_TYPE_DEVICE_VHD

2

The virtual disk is a virtual hard disk (.vhd) file.

VendorId: A GUID that uniquely identifies the virtual disk vendor.

2.2.2 Interface-Specific Data Types

2.2.2.1 IVdsService Data Types

This section lists data types that are used exclusively by methods in the IVdsService interface.

2.2.2.1.1 Data Types

2.2.2.1.1.1 MAX_FS_NAME_SIZE

Constant/value Description

MAX_FS_NAME_SIZE

0x00000008

The MAX_FS_NAME_SIZE defines the maximum character length of a file system
name.

2.2.2.1.2 Enumerations

2.2.2.1.2.1 VDS_OBJECT_TYPE

The VDS_OBJECT_TYPE enumeration defines the set of valid VDS object types.

 typedef enum _VDS_OBJECT_TYPE
 {
 VDS_OT_UNKNOWN = 0x00000000,
 VDS_OT_PROVIDER = 0x00000001,
 VDS_OT_PACK = 0x0000000A,
 VDS_OT_VOLUME = 0x0000000B,
 VDS_OT_VOLUME_PLEX = 0x0000000C,

https://go.microsoft.com/fwlink/?LinkId=208348
https://go.microsoft.com/fwlink/?LinkId=208349

57 / 342

[MS-VDS] - v20170601
Virtual Disk Service (VDS) Protocol
Copyright © 2017 Microsoft Corporation
Release: June 1, 2017

 VDS_OT_DISK = 0x0000000D,
 VDS_OT_HBAPORT = 0x0000005A,
 VDS_OT_INIT_ADAPTER = 0x0000005B,
 VDS_OT_INIT_PORTAL = 0x0000005C,
 VDS_OT_ASYNC = 0x00000064,
 VDS_OT_ENUM = 0x00000065,
 VDS_OT_VDISK = 0x000000C8,
 VDS_OT_OPEN_VDISK = 0x000000C9
 } VDS_OBJECT_TYPE;

VDS_OT_UNKNOWN: The object has an unknown type.

VDS_OT_PROVIDER: The object is a provider.

VDS_OT_PACK: The object is a pack (a disk group).

VDS_OT_VOLUME: The object is a volume.

VDS_OT_VOLUME_PLEX: The object is a plex of a volume.

VDS_OT_DISK: The object is a disk.

VDS_OT_HBAPORT: The object is an HBA port.

VDS_OT_INIT_ADAPTER: The object is an iSCSI initiator adapter.

VDS_OT_INIT_PORTAL: The object is an iSCSI initiator portal.

VDS_OT_ASYNC: The object maintains the status of an asynchronous VDS operation.

VDS_OT_ENUM: The object is an enumerator that contains an enumeration of other VDS objects.

VDS_OT_VDISK: The object is a virtual disk.

VDS_OT_OPEN_VDISK: The object represents an open virtual disk (an OpenVirtualDisk object).

2.2.2.1.2.2 VDS_SERVICE_FLAG

The VDS_SERVICE_FLAG enumeration defines the properties of the service.

 typedef enum _VDS_SERVICE_FLAG
 {
 VDS_SVF_SUPPORT_DYNAMIC = 0x00000001,
 VDS_SVF_SUPPORT_FAULT_TOLERANT = 0x00000002,
 VDS_SVF_SUPPORT_GPT = 0x00000004,
 VDS_SVF_SUPPORT_DYNAMIC_1394 = 0x00000008,
 VDS_SVF_CLUSTER_SERVICE_CONFIGURED = 0x00000010,
 VDS_SVF_AUTO_MOUNT_OFF = 0x00000020,
 VDS_SVF_OS_UNINSTALL_VALID = 0x00000040,
 VDS_SVF_EFI = 0x00000080,
 VDS_SVF_SUPPORT_MIRROR = 0x00000100,
 VDS_SVF_SUPPORT_RAIDS = 0x00000200,
 VDS_SVF_SUPPORT_REFS = 0x00000400L
 } VDS_SERVICE_FLAG;

VDS_SVF_SUPPORT_DYNAMIC: The server supports dynamic disks.

VDS_SVF_SUPPORT_FAULT_TOLERANT: The server supports fault-tolerant disks.

VDS_SVF_SUPPORT_GPT: The server supports the GPT partition format.

58 / 342

[MS-VDS] - v20170601
Virtual Disk Service (VDS) Protocol
Copyright © 2017 Microsoft Corporation
Release: June 1, 2017

VDS_SVF_SUPPORT_DYNAMIC_1394: The server supports dynamic disks that use the IEEE 1394
interface for the host bus adapter connection. For more information on IEEE 1394, see [IEEE1394-

2008].

VDS_SVF_CLUSTER_SERVICE_CONFIGURED: The server is running on a cluster.

VDS_SVF_AUTO_MOUNT_OFF: The server will not automatically mount disks.

VDS_SVF_OS_UNINSTALL_VALID: The server has an uninstall image to which it can roll back.

VDS_SVF_EFI: The computer starts an EFI from a GPT partition.

VDS_SVF_SUPPORT_MIRROR: The server supports mirrored volumes (RAID-1).

VDS_SVF_SUPPORT_RAIDS: The server supports striped with parity volumes (RAID-5).

VDS_SVF_SUPPORT_REFS<27>: The server supports the ReFS.

2.2.2.1.2.3 VDS_QUERY_PROVIDER_FLAG

The VDS_QUERY_PROVIDER_FLAG enumeration defines the set of valid flags for provider query
operations. Callers can query for hardware providers, software providers, or both.<28>

 typedef enum _VDS_QUERY_PROVIDER_FLAG
 {
 VDS_QUERY_SOFTWARE_PROVIDERS = 0x1,
 VDS_QUERY_HARDWARE_PROVIDERS = 0x2,
 VDS_QUERY_VIRTUALDISK_PROVIDERS = 0x4
 } VDS_QUERY_PROVIDER_FLAG;

VDS_QUERY_SOFTWARE_PROVIDERS: If set, the operation queries for software providers.

VDS_QUERY_HARDWARE_PROVIDERS: If set, the operation queries for hardware providers.

VDS_QUERY_VIRTUALDISK_PROVIDERS: If set, the operation queries for virtual disk
providers.

2.2.2.1.2.4 VDS_DRIVE_LETTER_FLAG

The VDS_DRIVE_LETTER_FLAG enumeration defines the set of valid flags for a drive letter.

 typedef enum _VDS_DRIVE_LETTER_FLAG
 {
 VDS_DLF_NON_PERSISTENT = 0x00000001
 } VDS_DRIVE_LETTER_FLAG;

VDS_DLF_NON_PERSISTENT: If set, the drive letter no longer appears after the computer is
restarted.

2.2.2.1.3 Structures

2.2.2.1.3.1 VDS_SERVICE_PROP

The VDS_SERVICE_PROP structure provides information about the properties of a service.

 typedef struct _VDS_SERVICE_PROP {
 [string] WCHAR* pwszVersion;
 unsigned long ulFlags;

https://go.microsoft.com/fwlink/?LinkId=89900
https://go.microsoft.com/fwlink/?LinkId=89900

59 / 342

[MS-VDS] - v20170601
Virtual Disk Service (VDS) Protocol
Copyright © 2017 Microsoft Corporation
Release: June 1, 2017

 } VDS_SERVICE_PROP;

pwszVersion: The version of VDS; a human-readable, null-terminated Unicode string. This string
can be any human-readable, null-terminated Unicode value.<29>

ulFlags: A combination of any values, by using the bitwise OR operator, that is defined in the
VDS_SERVICE_FLAG enumeration.

2.2.2.1.3.2 VDS_DRIVE_LETTER_PROP

The VDS_DRIVE_LETTER_PROP structure provides information about a drive letter .

 typedef struct _VDS_DRIVE_LETTER_PROP {
 WCHAR wcLetter;
 VDS_OBJECT_ID volumeId;
 unsigned long ulFlags;
 long bUsed;
 } VDS_DRIVE_LETTER_PROP,
 *PVDS_DRIVE_LETTER_PROP;

wcLetter: The drive letter as a single uppercase or lowercase alphabetical (A-Z) Unicode character.

volumeId: The VDS object ID of the volume object to which the drive letter is assigned. If the
drive letter is not assigned to any volume, the value MUST be GUID_NULL.

ulFlags: The combination of any values, by using a bitwise OR operator, that is defined in the
VDS_DRIVE_LETTER_FLAG enumeration.

bUsed: A Boolean value that indicates whether the drive letter is already in use.

2.2.2.1.3.3 VDS_FILE_SYSTEM_TYPE_PROP

The VDS_FILE_SYSTEM_TYPE_PROP structure provides information about a file system format.<30>

 typedef struct _VDS_FILE_SYSTEM_TYPE_PROP {
 VDS_FILE_SYSTEM_TYPE type;
 WCHAR wszName[8];
 unsigned long ulFlags;
 unsigned long ulCompressionFlags;
 unsigned long ulMaxLabelLength;
 [string] WCHAR* pwszIllegalLabelCharSet;
 } VDS_FILE_SYSTEM_TYPE_PROP,
 *PVDS_FILE_SYSTEM_TYPE_PROP;

type: A value from the VDS_FILE_SYSTEM_TYPE enumeration that indicates the file system format
type.

wszName: A null-terminated Unicode name of the file system format, for example, NTFS or FAT32.

ulFlags: A combination of any values, by using a bitwise OR operator, that are defined in the
VDS_FILE_SYSTEM_FLAG enumeration.

ulCompressionFlags: A bitwise OR operator of any allocation units that are defined in the
VDS_FILE_SYSTEM_PROP_FLAG enumeration.

ulMaxLabelLength: The maximum allowable length of a label for the file system format.

60 / 342

[MS-VDS] - v20170601
Virtual Disk Service (VDS) Protocol
Copyright © 2017 Microsoft Corporation
Release: June 1, 2017

pwszIllegalLabelCharSet: A null-terminated sequence of Unicode characters that are not allowed in
the label of the file system format.

2.2.2.2 IVdsServiceSAN Data Types

This section lists data types that are used exclusively by methods in the IVdsServiceSAN interface.

2.2.2.2.1 Enumerations

2.2.2.2.1.1 VDS_SAN_POLICY

The VDS_SAN_POLICY enumeration defines the set of valid SAN policy values.

 typedef enum _VDS_SAN_POLICY
 {
 VDS_SP_UNKNOWN = 0x0,
 VDS_SP_ONLINE = 0x1,
 VDS_SP_OFFLINE_SHARED = 0x2,
 VDS_SP_OFFLINE = 0x3,
 VDS_SP_OFFLINE_INTERNAL = 0x4,
 VDS_SP_MAX = 0x5
 } VDS_SAN_POLICY;

VDS_SP_UNKNOWN: The SAN policy is unknown.

VDS_SP_ONLINE: All newly discovered disks are brought online and made WRITABLE. If the disk
is offline, no volume devices are exposed for the disk. If the disk is online, the volume devices
for the disk are exposed. WRITABLE is the normal state for a disk. A disk can also be made
READONLY. If the disk is READONLY, disk data and metadata can be read, but writes to the disk
will fail.

VDS_SP_OFFLINE_SHARED: All newly discovered disks not residing on a shared bus are brought

online and made WRITABLE. If the disk is offline, no volume devices are exposed for the disk. If

the disk is online, the volume devices for the disk are exposed. WRITABLE is the normal state for
a disk. A disk can also be made READONLY. If the disk is READONLY, disk data and metadata can
be read, but writes to the disk will fail.

VDS_SP_OFFLINE: All newly discovered disks remain offline and READONLY. If the disk is offline, no
volume devices are exposed for the disk. If the disk is online, the volume devices for the disk are
exposed. WRITABLE is the normal state for a disk. A disk can also be made READONLY. If the disk

is READONLY, disk data and metadata can be read, but writes to the disk will fail.

VDS_SP_OFFLINE_INTERNAL<31>: All newly discovered internal disks remain offline and
READONLY. If the disk is offline, no volume devices are exposed for the disk. If the disk is online,
the volume devices for the disk are exposed. WRITABLE is the normal state for a disk. A disk can
also be made READONLY. If the disk is READONLY, disk data and metadata can be read, but
writes to the disk will fail.

VDS_SP_MAX<32>: Denotes the maximum acceptable value for this type. VDS_SP_MAX - 1, ('4'),

is the maximum acceptable value.

2.2.2.3 IVdsServiceIscsi Data Types

This section lists data types that the IVdsServiceIscsi methods of the IVdsServiceIscsi interface use

exclusively.

2.2.2.3.1 Structures

61 / 342

[MS-VDS] - v20170601
Virtual Disk Service (VDS) Protocol
Copyright © 2017 Microsoft Corporation
Release: June 1, 2017

2.2.2.3.1.1 VDS_ISCSI_SHARED_SECRET

The VDS_ISCSI_SHARED_SECRET structure defines the Challenge-Handshake Authentication
Protocol (CHAP), as specified in [MS-CHAP], shared secret for an iSCSI initiator.

 typedef struct _VDS_ISCSI_SHARED_SECRET {
 [size_is(ulSharedSecretSize)] unsigned char* pSharedSecret;
 unsigned long ulSharedSecretSize;
 } VDS_ISCSI_SHARED_SECRET;

pSharedSecret: A pointer to an array of bytes that contains the secret.

ulSharedSecretSize: The number of bytes contained in the array that pSharedSecret references.
Bytes MUST be at least 12 and less than or equal to 16.<33> If a shared secret of size less than
12 bytes is used, the server does not return an error. However, the operation will not complete.

2.2.2.4 IVdsHbaPort Data Types

This section lists data types that the IVdsHbaPort methods of the IVdsHbaPort interface use
exclusively.

2.2.2.4.1 Enumerations

2.2.2.4.1.1 VDS_HBAPORT_TYPE

The VDS_HBAPORT_TYPE enumeration defines the set of valid types for an HBA port. These types
correspond to the HBA_PORTTYPE values, as specified in [HBAAPI]. These values are used in the type
member of the VDS_HBAPORT_PROP structure.<34>

 typedef enum _VDS_HBAPORT_TYPE
 {
 VDS_HPT_UNKNOWN = 0x00000001,
 VDS_HPT_OTHER = 0x00000002,
 VDS_HPT_NOTPRESENT = 0x00000003,
 VDS_HPT_NPORT = 0x00000005,
 VDS_HPT_NLPORT = 0x00000006,
 VDS_HPT_FLPORT = 0x00000007,
 VDS_HPT_FPORT = 0x00000008,
 VDS_HPT_EPORT = 0x00000009,
 VDS_HPT_GPORT = 0x0000000A,
 VDS_HPT_LPORT = 0x00000014,
 VDS_HPT_PTP = 0x00000015
 } VDS_HBAPORT_TYPE;

VDS_HPT_UNKNOWN: The port type is unknown.

Corresponding HBA_PORTTYPE value: HBA_PORTTYPE_UNKNOWN

VDS_HPT_OTHER: The port type is another (undefined) type.

Corresponding HBA_PORTTYPE value: HBA_PORTTYPE_OTHER

VDS_HPT_NOTPRESENT: The port type is not present.

Corresponding HBA_PORTTYPE value: HBA_PORTTYPE_NOTPRESENT

VDS_HPT_NPORT: The port type is a fabric.

Corresponding HBA_PORTTYPE value: HBA_PORTTYPE_NPORT

%5bMS-CHAP%5d.pdf#Section_8fea1dd166d6487488a534bcdbb58907
https://go.microsoft.com/fwlink/?LinkId=89878

62 / 342

[MS-VDS] - v20170601
Virtual Disk Service (VDS) Protocol
Copyright © 2017 Microsoft Corporation
Release: June 1, 2017

VDS_HPT_NLPORT: The port type is a public loop.

Corresponding HBA_PORTTYPE value: HBA_PORTTYPE_NLPORT

VDS_HPT_FLPORT: The port type is a fabric on a loop.

Corresponding HBA_PORTTYPE value: HBA_PORTTYPE_FLPORT

VDS_HPT_FPORT: The port type is a fabric port.

Corresponding HBA_PORTTYPE value: HBA_PORTTYPE_FPORT

VDS_HPT_EPORT: The port type is a fabric expansion port.

Corresponding HBA_PORTTYPE value: HBA_PORTTYPE_EPORT

VDS_HPT_GPORT: The port type is a generic fabric port.

Corresponding HBA_PORTTYPE value: HBA_PORTTYPE_GPORT

VDS_HPT_LPORT: The port type is a private loop.

Corresponding HBA_PORTTYPE value: HBA_PORTTYPE_LPORT

VDS_HPT_PTP: The port type is point-to-point.

Corresponding HBA_PORTTYPE value: HBA_PORTTYPE_PTP

2.2.2.4.1.2 VDS_HBAPORT_STATUS

The VDS_HBAPORT_STATUS enumeration defines the set of valid statuses for an HBA port. These

values are used in the status member of the VDS_HBAPORT_PROP structure. These states correspond
to the HBA_PORTSTATE values, as specified in [HBAAPI].<35>

 typedef enum _VDS_HBAPORT_STATUS
 {
 VDS_HPS_UNKNOWN = 0x00000001,
 VDS_HPS_ONLINE = 0x00000002,
 VDS_HPS_OFFLINE = 0x00000003,
 VDS_HPS_BYPASSED = 0x00000004,
 VDS_HPS_DIAGNOSTICS = 0x00000005,
 VDS_HPS_LINKDOWN = 0x00000006,
 VDS_HPS_ERROR = 0x00000007,
 VDS_HPS_LOOPBACK = 0x00000008
 } VDS_HBAPORT_STATUS;

VDS_HPS_UNKNOWN: The HBA port status is unknown.

Corresponding HBA_PORTSTATE value: HBA_PORTSTATE_UNKNOWN

VDS_HPS_ONLINE: The HBA port is operational.

Corresponding HBA_PORTSTATE value: HBA_PORTSTATE_ONLINE

VDS_HPS_OFFLINE: The HBA port was set offline by a user.

Corresponding HBA_PORTSTATE value: HBA_PORTSTATE_OFFLINE

VDS_HPS_BYPASSED: The HBA port is bypassed.

Corresponding HBA_PORTSTATE value: HBA_PORTSTATE_BYPASSED

https://go.microsoft.com/fwlink/?LinkId=89878

63 / 342

[MS-VDS] - v20170601
Virtual Disk Service (VDS) Protocol
Copyright © 2017 Microsoft Corporation
Release: June 1, 2017

VDS_HPS_DIAGNOSTICS: The HBA port is in diagnostics mode.

Corresponding HBA_PORTSTATE value: HBA_PORTSTATE_DIAGNOSTICS

VDS_HPS_LINKDOWN: The HBA port link is down.

Corresponding HBA_PORTSTATE value: HBA_PORTSTATE_LINKDOWN

VDS_HPS_ERROR: The HBA port has an error.

Corresponding HBA_PORTSTATE value: HBA_PORTSTATE_ERROR

VDS_HPS_LOOPBACK: The HBA port is loopback.

Corresponding HBA_PORTSTATE value: HBA_PORTSTATE_LOOPBACK

2.2.2.4.1.3 VDS_HBAPORT_SPEED_FLAG

The VDS_HBAPORT_SPEED_FLAG enumeration type defines the set of valid flags for determining the

speeds that an HBA port supports. These values are used in the ulPortSpeed member of the
VDS_HBAPORT_PROP structure. These flags correspond to the HBA_PORTSPEED flags, as specified in
[HBAAPI].<36>

 typedef enum _VDS_HBAPORT_SPEED_FLAG
 {
 VDS_HSF_UNKNOWN = 0x00000000,
 VDS_HSF_1GBIT = 0x00000001,
 VDS_HSF_2GBIT = 0x00000002,
 VDS_HSF_10GBIT = 0x00000004,
 VDS_HSF_4GBIT = 0x00000008,
 VDS_HSF_NOT_NEGOTIATED = 0x00008000
 } VDS_HBAPORT_SPEED_FLAG;

VDS_HSF_UNKNOWN: The HBA port speed is unknown.

Corresponding HBA_PORTSPEED value: HBA_PORTSPEED_UNKNOWN

VDS_HSF_1GBIT: The HBA port supports a transfer rate of 1 gigabit per second.

Corresponding HBA_PORTSPEED value: HBA_PORTSPEED_1GBIT

VDS_HSF_2GBIT: The HBA port supports a transfer rate of 2 gigabits per second.

Corresponding HBA_PORTSPEED value: HBA_PORTSPEED_2GBIT

VDS_HSF_10GBIT: The HBA port supports a transfer rate of 10 gigabits per second.

Corresponding HBA_PORTSPEED value: HBA_PORTSPEED_10GBIT

VDS_HSF_4GBIT: The HBA port supports a transfer rate of 4 gigabits per second.

Corresponding HBA_PORTSPEED value: HBA_PORTSPEED_4GBIT

VDS_HSF_NOT_NEGOTIATED: The HBA port speed has not been established.

Corresponding HBA_PORTSPEED value: HBA_PORTSPEED_NOT_NEGOTIATED

2.2.2.4.1.4 VDS_PATH_STATUS

The VDS_PATH_STATUS enumeration defines the set of status values for a path to a storage device.

https://go.microsoft.com/fwlink/?LinkId=89878

64 / 342

[MS-VDS] - v20170601
Virtual Disk Service (VDS) Protocol
Copyright © 2017 Microsoft Corporation
Release: June 1, 2017

 typedef enum _VDS_PATH_STATUS
 {
 VDS_MPS_UNKNOWN = 0x00000000,
 VDS_MPS_ONLINE = 0x00000001,
 VDS_MPS_FAILED = 0x00000005,
 VDS_MPS_STANDBY = 0x00000007
 } VDS_PATH_STATUS;

VDS_MPS_UNKNOWN: The status of the path is unknown.

VDS_MPS_ONLINE: The path is available.

VDS_MPS_FAILED: The path is unavailable.

VDS_MPS_STANDBY: The path is on standby; it is available but will not be used unless other paths
fail.

2.2.2.4.2 Structures

2.2.2.4.2.1 VDS_WWN

The VDS_WWN structure defines a worldwide name (WWN). This structure corresponds to the
HBA_WWN structure, as specified in [HBAAPI], which also defines the WWN term.<37>

 typedef struct _VDS_WWN {
 unsigned char rguchWwn[8];
 } VDS_WWN;

rguchWwn: An array of 8 bytes that specifies the 64-bit WWN value. The first element of the array
is the most significant byte of the WWN, and the most significant bit of that byte is the most
significant bit of the WWN.

2.2.2.4.2.2 VDS_HBAPORT_PROP

The VDS_HBAPORT_PROP structure defines the properties of an HBA port.<38>

 typedef struct _VDS_HBAPORT_PROP {
 VDS_OBJECT_ID id;
 VDS_WWN wwnNode;
 VDS_WWN wwnPort;
 VDS_HBAPORT_TYPE type;
 VDS_HBAPORT_STATUS status;
 unsigned long ulPortSpeed;
 unsigned long ulSupportedPortSpeed;
 } VDS_HBAPORT_PROP;

id: The VDS object ID of the HBA port object.

wwnNode: The node WWN for the HBA port.

wwnPort: The port WWN of the HBA port.

type: The type of the HBA port that VDS_HBAPORT_TYPE enumerates.

status: The status of the HBA port that VDS_HBAPORT_STATUS enumerates.

ulPortSpeed: The speed of the HBA port that VDS_HBAPORT_SPEED_FLAG enumerates. Only one bit
can be set in this bitmask.

https://go.microsoft.com/fwlink/?LinkId=89878

65 / 342

[MS-VDS] - v20170601
Virtual Disk Service (VDS) Protocol
Copyright © 2017 Microsoft Corporation
Release: June 1, 2017

ulSupportedPortSpeed: The combination of values, by using a bitwise OR operator, from the
VDS_HBAPORT_SPEED_FLAG enumeration that describes the set of supported speeds of the HBA

port.

2.2.2.5 IVdsIscsiInitiatorAdapter Data Types

This section lists data types that are used exclusively by the IVdsIscsiInitiatorAdapter methods of the
IVdsIscsiInitiatorAdapter interface.

2.2.2.5.1 Structures

2.2.2.5.1.1 VDS_ISCSI_INITIATOR_ADAPTER_PROP

The VDS_ISCSI_INITIATOR_ADAPTER_PROP structure defines the properties of an iSCSI initiator
adapter.<39>

 typedef struct _VDS_ISCSI_INITIATOR_ADAPTER_PROP {
 VDS_OBJECT_ID id;
 [string] WCHAR* pwszName;
 } VDS_ISCSI_INITIATOR_ADAPTER_PROP;

id: The VDS object ID of the initiator adapter object.

pwszName: A human-readable, null-terminated Unicode string that is the name of the initiator

adapter.

2.2.2.6 IVdsIscsiInitiatorPortal Data Types

This section lists data types that are used exclusively by the IVdsIscsiInitiatorPortal methods of the

IVdsIscsiInitiatorPortal interface.

2.2.2.6.1 Enumerations

2.2.2.6.1.1 VDS_IPADDRESS_TYPE

The VDS_IPADDRESS_TYPE enumeration defines the set of valid types for an IP address. These type
values are used in the type member of the VDS_IPADDRESS structure.<40>

 typedef enum _VDS_IPADDRESS_TYPE
 {
 VDS_IPT_TEXT = 0x00000000,
 VDS_IPT_IPV4 = 0x00000001,
 VDS_IPT_IPV6 = 0x00000002,
 VDS_IPT_EMPTY = 0x00000003
 } VDS_IPADDRESS_TYPE;

VDS_IPT_TEXT: The IP address is a text string.

VDS_IPT_IPV4: The IP address is an IPv4 address.

VDS_IPT_IPV6: The IP address is an IPv6 address.

VDS_IPT_EMPTY: An IP address is not specified.

2.2.2.6.2 Structures

66 / 342

[MS-VDS] - v20170601
Virtual Disk Service (VDS) Protocol
Copyright © 2017 Microsoft Corporation
Release: June 1, 2017

2.2.2.6.2.1 VDS_IPADDRESS

The VDS_IPADDRESS structure defines an IP address and port.<41>

 typedef struct _VDS_IPADDRESS {
 VDS_IPADDRESS_TYPE type;
 unsigned long ipv4Address;
 unsigned char ipv6Address[16];
 unsigned long ulIpv6FlowInfo;
 unsigned long ulIpv6ScopeId;
 WCHAR wszTextAddress[256 + 1];
 unsigned long ulPort;
 } VDS_IPADDRESS;

type: The type of address as enumerated by VDS_IPADDRESS_TYPE.

ipv4Address: If the type member is VDS_IPT_IPV4, this member contains the binary IPv4 address in
network byte order. The field 3 (last octet) byte value is contained in bits 0 through 7. The byte

value for field 2 is contained in bits 8 through 15. The byte value for field 1 is contained in bits 16
through 23. The byte value for field 0 is contained in bits 24 through 31. Otherwise, this value is
ignored.

ipv6Address: If the type member is VDS_IPT_IPV6, this member contains the binary IPv6 address in
network byte order. Otherwise, this value is ignored.

ulIpv6FlowInfo: If the type member is VDS_IPT_IPV6, this member contains the flow information
as defined in IPv6. Otherwise, this value is ignored.

ulIpv6ScopeId: If the type member is VDS_IPT_IPV6, this member contains the scope ID as defined
in IPv6. Otherwise, this value is ignored.

wszTextAddress: If the type member is VDS_IPT_TEXT, this member contains the null-terminated
Unicode text address, which is either a DNS address, an IPv4 dotted address, or an IPv6
hexadecimal address. Otherwise, this value is ignored.

ulPort: If the type member is VDS_IPT_IPV4, VDS_IPT_IPV6, or VDS_IPT_TEXT, this member

contains the TCP port number. Otherwise, this value is ignored.

2.2.2.6.2.2 VDS_ISCSI_INITIATOR_PORTAL_PROP

The VDS_ISCSI_INITIATOR_PORTAL_PROP structure defines the properties of an iSCSI initiator
portal.<42>

 typedef struct _VDS_ISCSI_INITIATOR_PORTAL_PROP {
 VDS_OBJECT_ID id;
 VDS_IPADDRESS address;
 unsigned long ulPortIndex;
 } VDS_ISCSI_INITIATOR_PORTAL_PROP;

id: The VDS object ID of the initiator portal object.

address: The IP address and port of the portal.

ulPortIndex: The port index that the iSCSI initiators service assigned to the portal.

2.2.2.7 IVdsProvider Data Types

This section lists data types that are used exclusively by the IVdsProvider methods.

67 / 342

[MS-VDS] - v20170601
Virtual Disk Service (VDS) Protocol
Copyright © 2017 Microsoft Corporation
Release: June 1, 2017

2.2.2.7.1 Enumerations

2.2.2.7.1.1 VDS_PROVIDER_TYPE

The VDS_PROVIDER_TYPE enumeration defines the set of valid types for a provider.

 typedef enum _VDS_PROVIDER_TYPE
 {
 VDS_PT_UNKNOWN = 0x00000000,
 VDS_PT_SOFTWARE = 0x00000001,
 VDS_PT_HARDWARE = 0x00000002,
 VDS_PT_VIRTUALDISK = 0x00000003,
 VDS_PT_MAX = 0x00000004
 } VDS_PROVIDER_TYPE;

VDS_PT_UNKNOWN: The type is neither a software nor a hardware provider.

VDS_PT_SOFTWARE: The type indicates a program that is responsible for volume management.

VDS_PT_HARDWARE: The type indicates a program that is responsible for aspects of hardware
storage management.

VDS_PT_VIRTUALDISK: The type indicates a program that is responsible for aspects of hardware

storage management.

VDS_PT_MAX: Denotes the maximum acceptable value for this type. VDS_PT_MAX - 1, ('3'), is the
maximum acceptable value.

2.2.2.7.1.2 VDS_PROVIDER_FLAG

The VDS_PROVIDER_FLAG enumeration defines the set of valid flags for a provider object.

 typedef enum _VDS_PROVIDER_FLAG
 {
 VDS_PF_DYNAMIC = 0x00000001,
 VDS_PF_INTERNAL_HARDWARE_PROVIDER = 0x00000002,
 VDS_PF_ONE_DISK_ONLY_PER_PACK = 0x00000004,
 VDS_PF_ONE_PACK_ONLINE_ONLY = 0x00000008,
 VDS_PF_VOLUME_SPACE_MUST_BE_CONTIGUOUS = 0x00000010,
 VDS_PF_SUPPORT_MIRROR = 0x00000020,
 VDS_PF_SUPPORT_RAID5 = 0x00000040,
 VDS_PF_SUPPORT_DYNAMIC_1394 = 0x20000000,
 VDS_PF_SUPPORT_FAULT_TOLERANT = 0x40000000,
 VDS_PF_SUPPORT_DYNAMIC = 0x80000000
 } VDS_PROVIDER_FLAG;

VDS_PF_DYNAMIC: If set, all disks that the current provider manages are dynamic. This flag MUST
be set only by a dynamic provider. By definition, dynamic providers manage only dynamic

disks.

VDS_PF_INTERNAL_HARDWARE_PROVIDER: Reserved for internal use.

VDS_PF_ONE_DISK_ONLY_PER_PACK: If set, the provider supports single disk packs only.
Typically, the basic provider sets this flag to simulate a disk pack that has one disk.

VDS_PF_ONE_PACK_ONLINE_ONLY: If set, the dynamic provider supports online status for only
one pack at a time.

VDS_PF_VOLUME_SPACE_MUST_BE_CONTIGUOUS: If set, all volumes that this provider

manages MUST have contiguous space. This flag applies to the basic provider only.

68 / 342

[MS-VDS] - v20170601
Virtual Disk Service (VDS) Protocol
Copyright © 2017 Microsoft Corporation
Release: June 1, 2017

VDS_PF_SUPPORT_MIRROR: If set, the provider supports mirrored volumes (RAID-1).

VDS_PF_SUPPORT_RAID5: If set, the provider supports striped with parity volumes (RAID-5).

VDS_PF_SUPPORT_DYNAMIC_1394: If set, the provider supports IEEE 1394 dynamic disks. This
flag MUST be set only by the dynamic provider on systems that support IEEE 1394 dynamic disks.

VDS_PF_SUPPORT_FAULT_TOLERANT: If set, the provider supports fault-tolerant disks. This
flag MUST be set only by the dynamic provider on systems that support fault-tolerant volumes.

VDS_PF_SUPPORT_DYNAMIC: If set, the provider supports managing dynamic disks. This flag
MUST be set only by the dynamic provider on systems that support dynamic disks.

2.2.2.7.2 Structures

2.2.2.7.2.1 VDS_PROVIDER_PROP

The VDS_PROVIDER_PROP structure provides information about provider properties.

 typedef struct _VDS_PROVIDER_PROP {
 VDS_OBJECT_ID id;
 [string] WCHAR* pwszName;
 GUID guidVersionId;
 [string] WCHAR* pwszVersion;
 VDS_PROVIDER_TYPE type;
 unsigned long ulFlags;
 unsigned long ulStripeSizeFlags;
 short sRebuildPriority;
 } VDS_PROVIDER_PROP;

id: The VDS object ID of the provider object.

pwszName: The null-terminated Unicode name of the provider.

guidVersionId: The version GUID of the provider. This GUID MUST be unique to each version of the

provider.

pwszVersion: The null-terminated Unicode version string of the provider. The convention for this
string is <major version number>.<minor version number>.

type: A value from the VDS_PROVIDER_TYPE enumeration that indicates the provider type.

ulFlags: A combination of any values, by using a bitwise OR operator, from the
VDS_PROVIDER_FLAG enumeration.

ulStripeSizeFlags: Stripe size that the provider supports, which MUST be a power of 2. Each bit in

the 32-bit integer represents a size that the provider supports. For example, if the nth bit is set,
the provider supports a stripe size of 2^n. This parameter is used only for software providers. The
basic provider sets this value to zero and the dynamic provider sets this value to 64K.

sRebuildPriority: The rebuild priority of all volumes that the provider manages. It specifies the

regeneration order when a mirrored or RAID-5 volume requires rebuilding. Priority levels MUST
be from 0 through 15. A higher value indicates a higher priority. This parameter is used only for

software providers and does not apply to the basic provider.

2.2.2.8 IVdsPack Data Types

This section lists the data types that are used exclusively by the IVdsPack methods.

69 / 342

[MS-VDS] - v20170601
Virtual Disk Service (VDS) Protocol
Copyright © 2017 Microsoft Corporation
Release: June 1, 2017

2.2.2.8.1 Enumerations

2.2.2.8.1.1 VDS_PACK_STATUS

The VDS_PACK_STATUS enumeration defines the set of object status values for a disk pack.

 typedef enum _VDS_PACK_STATUS
 {
 VDS_PS_UNKNOWN = 0x00000000,
 VDS_PS_ONLINE = 0x00000001,
 VDS_PS_OFFLINE = 0x00000004
 } VDS_PACK_STATUS;

VDS_PS_UNKNOWN: The status of the disk pack cannot be determined.

VDS_PS_ONLINE: The disk pack is available.

VDS_PS_OFFLINE: The disk pack is unavailable; the disks are not accessible.

2.2.2.8.1.2 VDS_PACK_FLAG

The VDS_PACK_FLAG enumeration defines the set of valid flags for a disk pack object.

 typedef enum _VDS_PACK_FLAG
 {
 VDS_PKF_FOREIGN = 0x00000001,
 VDS_PKF_NOQUORUM = 0x00000002,
 VDS_PKF_POLICY = 0x00000004,
 VDS_PKF_CORRUPTED = 0x00000008,
 VDS_PKF_ONLINE_ERROR = 0x00000010
 } VDS_PACK_FLAG;

VDS_PKF_FOREIGN: If set, an external disk pack is eligible for online status.

VDS_PKF_NOQUORUM: If set, a dynamic disk pack lacks the required disk quorum.

VDS_PKF_POLICY: If set, management policy forbids the disk pack from gaining online status.

VDS_PKF_CORRUPTED: If set, a disk pack contains a disk that has a corrupted LDM database.

VDS_PKF_ONLINE_ERROR: If set, a disk pack with sufficient disk quorum failed to achieve online

status due to an error.

2.2.2.8.2 Structures

2.2.2.8.2.1 VDS_PACK_PROP

The VDS_PACK_PROP structure provides information about the properties of a disk pack.

 typedef struct _VDS_PACK_PROP {
 VDS_OBJECT_ID id;
 [string] WCHAR* pwszName;
 VDS_PACK_STATUS status;
 unsigned long ulFlags;
 } VDS_PACK_PROP,
 *PVDS_PACK_PROP;

id: The VDS object ID of the disk pack object.

70 / 342

[MS-VDS] - v20170601
Virtual Disk Service (VDS) Protocol
Copyright © 2017 Microsoft Corporation
Release: June 1, 2017

pwszName: The null-terminated Unicode name of the disk pack. If the pack has no name, this
pointer is set to NULL.

status: The value from the VDS_PACK_STATUS enumeration that indicates the status of the disk
pack.

ulFlags: A combination of any values, by using a bitwise OR operator, of the disk pack flags that are
defined in the VDS_PACK_FLAG enumeration. ulFlags can be 0 if none of the VDS_PACK_FLAG
values apply.

2.2.2.9 IVdsDisk Data Types

This section lists data types that are used exclusively by the IVdsDisk methods.

2.2.2.9.1 Structures

2.2.2.9.1.1 VDS_DISK_PROP

The VDS_DISK_PROP structure provides the properties of a disk.

 typedef struct _VDS_DISK_PROP {
 VDS_OBJECT_ID id;
 VDS_DISK_STATUS status;
 VDS_LUN_RESERVE_MODE ReserveMode;
 VDS_HEALTH health;
 DWORD dwDeviceType;
 DWORD dwMediaType;
 ULONGLONG ullSize;
 unsigned long ulBytesPerSector;
 unsigned long ulSectorsPerTrack;
 unsigned long ulTracksPerCylinder;
 unsigned long ulFlags;
 VDS_STORAGE_BUS_TYPE BusType;
 VDS_PARTITION_STYLE PartitionStyle;
 [switch_is(PartitionStyle)] union {
 [case(VDS_PST_MBR)]
 DWORD dwSignature;
 [case(VDS_PST_GPT)]
 GUID DiskGuid;
 [default] ;
 };
 [string] WCHAR* pwszDiskAddress;
 [string] WCHAR* pwszName;
 [string] WCHAR* pwszFriendlyName;
 [string] WCHAR* pwszAdaptorName;
 [string] WCHAR* pwszDevicePath;
 } VDS_DISK_PROP,
 *PVDS_DISK_PROP;

id: The VDS object ID of the disk object.

status: The value from the VDS_DISK_STATUS enumeration that indicates the disk status.

ReserveMode: The value from the VDS_LUN_RESERVE_MODE enumeration that indicates the

sharing mode of the disk.

health: The value from the VDS_HEALTH enumeration that indicates the health of the disk.

dwDeviceType: The device type of the disk. Note that this value refers to the disk type and not the
drive type. Thus, if there is CD media in a DVD/CD drive, it is identified as
FILE_DEVICE_CD_ROM; however, DVD media in the same drive is identified as
FILE_DEVICE_DVD. This field can have the following values.

71 / 342

[MS-VDS] - v20170601
Virtual Disk Service (VDS) Protocol
Copyright © 2017 Microsoft Corporation
Release: June 1, 2017

Value Meaning

FILE_DEVICE_CD_ROM

0x00000002

The device is a CD-ROM.

FILE_DEVICE_DISK

0x00000007

The device is a hard disk or removable device.

FILE_DEVICE_DVD

0x00000033

The device is a DVD.

dwMediaType: The media type of the disk; it can have the following values.

Value Meaning

Unknown

0x00000000

The disk media type is unknown.

RemovableMedia

0x0000000B

The disk media is removable.

FixedMedia

0x0000000C

The disk media is fixed.

ullSize: The size of the disk, in bytes.

ulBytesPerSector: The size of the sectors for the disk, in bytes.

ulSectorsPerTrack: The number of sectors per track on the disk.

ulTracksPerCylinder: The number of tracks per cylinder on the disk.

ulFlags: The combination of any values, by using a bitwise OR operator, that are defined in the

VDS_DISK_FLAG enumeration. This field can be zero if none of the VDS_DISK_FLAG values apply.

BusType: The value from the VDS_STORAGE_BUS_TYPE enumeration that indicates the type of bus

where the disk resides.

PartitionStyle: The value from the VDS_PARTITION_STYLE enumeration that indicates the
partitioning format of the disk.

dwSignature: The MBR disk signature of the disk.

DiskGuid: The GUID in the GPT that identifies the disk.

pwszDiskAddress: The null-terminated Unicode address of the disk, if the disk uses a SCSI-like
address; otherwise, NULL. If present, a client can use this property to determine the port number,

bus, target number, and LUN of the disk.

pwszName: The null-terminated Unicode name that the operating system uses to identify the disk. If

present, a client can use this property to determine the disk's PNP device number. This is the
number obtained from the DeviceNumber member of STORAGE_DEVICE_NUMBER (see [MSDN-
STRGEDEVNUM]). For a hard disk, this name has the format \\?\PhysicalDriveN, where N
signifies the device number of the disk. For a DVD/CD drive, this name has the format
\\?\CdRomN, where N signifies the device number of the DVD/CD drive. A client can use this

property to identify the disk.

https://go.microsoft.com/fwlink/?LinkId=208346
https://go.microsoft.com/fwlink/?LinkId=208346

72 / 342

[MS-VDS] - v20170601
Virtual Disk Service (VDS) Protocol
Copyright © 2017 Microsoft Corporation
Release: June 1, 2017

pwszFriendlyName: The null-terminated Unicode friendly (human-readable) name of the disk as
assigned by the operating system. This property MAY be NULL. If present, a client can use this

property to display a human-readable name of the disk.

pwszAdaptorName: The null-terminated Unicode name that the operating system assigns to the

adapter to which the disk is attached. This property MAY be NULL. If present, a client can use this
property to display the adapter name of the disk.

pwszDevicePath: The null-terminated Unicode device path that the operating system uses to
identify the device for the disk. This property MAY be NULL. If present, a client can use this
property to display the device path of the disk. This string is used to load the property page
information for a disk.

2.2.2.10 IVdsDisk3 Data Types

This section lists data types that are used exclusively by the IVdsDisk3 methods.

2.2.2.10.1 Enumerations

2.2.2.10.1.1 VDS_DISK_OFFLINE_REASON

The VDS_DISK_OFFLINE_REASON enumeration defines the reason for the disk to be kept offline.

 typedef enum _VDS_DISK_OFFLINE_REASON
 {
 VDSDiskOfflineReasonNone = 0,
 VDSDiskOfflineReasonPolicy = 1,
 VDSDiskOfflineReasonRedundantPath = 2,
 VDSDiskOfflineReasonSnapshot = 3,
 VDSDiskOfflineReasonCollision = 4,
 VDSDiskOfflineReasonResourceExhaustion = 5,
 VDSDiskOfflineReasonWriteFailure = 6,
 VDSDiskOfflineReasonDIScan = 7
 } VDS_DISK_OFFLINE_REASON;

VDSDiskOfflineReasonNone: The reason is unknown.

VDSDiskOfflineReasonPolicy: The disk is offline because of the SAN policy.

VDSDiskOfflineReasonRedundantPath: The disk is offline because it was determined that the disk
is a redundant path to another disk that is online.

VDSDiskOfflineReasonSnapshot: The disk is offline because it is a snapshot disk.

VDSDiskOfflineReasonCollision: The disk is offline because its disk signature is the same as the

disk signature of another disk that is online.

VDSDiskOfflineReasonResourceExhaustion<43>: The disk is offline because of lack of capacity.

VDSDiskOfflineReasonWriteFailure<44>: The disk is offline because of critical write failures.

VDSDiskOfflineReasonDIScan<45>: The disk is offline because a data integrity scan is required.

2.2.2.10.2 Structures

2.2.2.10.2.1 VDS_DISK_PROP2

The VDS_DISK_PROP2 structure provides the properties of a disk.

73 / 342

[MS-VDS] - v20170601
Virtual Disk Service (VDS) Protocol
Copyright © 2017 Microsoft Corporation
Release: June 1, 2017

 typedef struct _VDS_DISK_PROP2 {
 VDS_OBJECT_ID id;
 VDS_DISK_STATUS status;
 VDS_LUN_RESERVE_MODE ReserveMode;
 VDS_HEALTH health;
 DWORD dwDeviceType;
 DWORD dwMediaType;
 ULONGLONG ullSize;
 unsigned long ulBytesPerSector;
 unsigned long ulSectorsPerTrack;
 unsigned long ulTracksPerCylinder;
 unsigned long ulFlags;
 VDS_STORAGE_BUS_TYPE BusType;
 VDS_PARTITION_STYLE PartitionStyle;
 [switch_is(PartitionStyle)] union {
 [case(VDS_PST_MBR)]
 DWORD dwSignature;
 [case(VDS_PST_GPT)]
 GUID DiskGuid;
 [default] ;
 };
 [string] WCHAR *pwszDiskAddress;
 [string] WCHAR *pwszName;
 [string] WCHAR *pwszFriendlyName;
 [string] WCHAR *pwszAdaptorName;
 [string] WCHAR *pwszDevicePath;
 [string] WCHAR *pwszLocationPath;
 } VDS_DISK_PROP2,
 *PVDS_DISK_PROP2;

id: The VDS object ID of the disk object.

status: The value from the VDS_DISK_STATUS enumeration that indicates the disk status.

ReserveMode: The value from the VDS_LUN_RESERVE_MODE enumeration that includes the sharing

mode of the disk.

health: The value from the VDS_HEALTH enumeration that indicates the health of the disk.

dwDeviceType: The device type of the disk. Note that this volume refers to the disk type and not
the drive type. Thus, if there is CD media in a DVD/CD drive, it is identified as
FILE_DEVICE_CD_ROM; however, DVD media in the same drive is identified as
FILE_DEVICE_DVD. This field can have the following values.

Value Meaning

FILE_DEVICE_CD_ROM

0x00000002

The device is a CD-ROM.

FILE_DEVICE_DISK

0x00000007

The device is a hard disk or removable device.

FILE_DEVICE_DVD

0x00000033

The device is a DVD.

dwMediaType: The media type of the disk. It can have the following values.

Value Meaning

Unknown

0x00000000

The disk media type is unknown.

74 / 342

[MS-VDS] - v20170601
Virtual Disk Service (VDS) Protocol
Copyright © 2017 Microsoft Corporation
Release: June 1, 2017

Value Meaning

RemovableMedia

0x0000000B

The disk is removable media.

FixedMedia

0x0000000C

The disk media is fixed.

ullSize: The size of the disk, in bytes.

ulBytesPerSector: The size of the sectors for the disk, in bytes.

ulSectorsPerTrack: The number of sectors per track on the disk.

ulTracksPerCylinder: The number of tracks per cylinder on the disk.

ulFlags: The combination of any values, by using a bitwise OR operator, that are defined in the
VDS_DISK_FLAG enumeration.

BusType: The value from the VDS_STORAGE_BUS_TYPE enumeration that indicates the type of bus
where the disk resides.

PartitionStyle: The value from the VDS_PARTITION_STYLE enumeration that indicates the

partitioning format of the disk.

dwSignature: The MBR disk signature of the disk.

DiskGuid: The GUID in the GPT that identifies the disk.

pwszDiskAddress: The null-terminated Unicode address of the disk, if the disk uses a SCSI-like
address. Otherwise, NULL. If present, a client can use this property to determine the port number,
bus, target number, and LUN of the disk.

pwszName: The null-terminated Unicode name that the operating system uses to identify the disk. If

present, a client can use this property to determine the disk's PNP device number. For a hard disk,
this name has the format \\?\PhysicalDriveN; where N signifies the device number of the disk. For
a DVD/CD drive, this name has the format \\?\CdRomN; where N signifies the device number of
the DVD/CD drive. A client can use this property to identify the disk.

pwszFriendlyName: The null-terminated Unicode friendly (human-readable) name of the disk as
assigned by the operating system. This property MAY be NULL. If present, a client can use this

property to display a human-readable name of the disk.

pwszAdaptorName: The null-terminated Unicode name that the operating system assigns to the
adapter to which the disk is attached. This property MAY be NULL. If present, a client can use this
property to display the adapter name of the disk.

pwszDevicePath: The null-terminated Unicode device path that the operating system uses to
identify the device for the disk. This property MAY be NULL. If present, a client can use this
property to display the device path of the disk. This string is used to load the property page

information for a disk.

pwszLocationPath: This string is built from a combination of the DEVPKEY_Device_LocationPaths
value for the disk's adapter, the bus type, and the SCSI address. The
DEVPKEY_Device_LocationPaths property represents the location of a device instance in the device
tree.

The following table shows examples of location paths built for various bus/disk types.

75 / 342

[MS-VDS] - v20170601
Virtual Disk Service (VDS) Protocol
Copyright © 2017 Microsoft Corporation
Release: June 1, 2017

Bus/disk type Location path

IDE\ATA\PATA\SATA PCIROOT(0)#PCI(0100)#ATA(C01T03L00)

SCSI PCIROOT(0)#PCI(1C00)#PCI(0000)#SCSI(P00T01L01)

SAS PCIROOT(1)#PCI(0300)#SAS(P00T03L00)

PCI RAID PCIROOT(0)#PCI(0200)#PCI(0003)#PCI(0100)#RAID(P02T00L00)

2.2.2.10.2.2 VDS_DISK_FREE_EXTENT

The VDS_DISK_FREE_EXTENT structure provides information about a disk extent associated with

free space on the disk.

 typedef struct _VDS_DISK_FREE_EXTENT {
 VDS_OBJECT_ID diskId;
 ULONGLONG ullOffset;
 ULONGLONG ullSize;
 } VDS_DISK_FREE_EXTENT,
 *PVDS_DISK_FREE_EXTENT;

diskId: The VDS object ID of the disk object on which the extent resides.

ullOffset: The byte offset of the disk extent from the beginning of the disk.

ullSize: The size, in bytes, of the extent.

2.2.2.11 IVdsAdvancedDisk Data Types

This section lists data types that are used exclusively by the IVdsAdvancedDisk methods.

2.2.2.11.1 Structures

2.2.2.11.1.1 CHANGE_ATTRIBUTES_PARAMETERS

The CHANGE_ATTRIBUTES_PARAMETERS structure describes the attributes to change on a partition.

 typedef struct _CHANGE_ATTRIBUTES_PARAMETERS {
 VDS_PARTITION_STYLE style;
 [switch_is(style)] union {
 [case(VDS_PST_MBR)]
 struct {
 boolean bootIndicator;
 } MbrPartInfo;
 [case(VDS_PST_GPT)]
 struct {
 ULONGLONG attributes;
 } GptPartInfo;
 [default] ;
 };
 } CHANGE_ATTRIBUTES_PARAMETERS;

style: The value from the VDS_PARTITION_STYLE enumeration that describes the partition format of
the disk. If the disk partitioning format is MBR, the only value that can be changed is the
bootIndicator. If the disk partitioning format is GPT, the only value that can be changed is the
GPT attribute.

76 / 342

[MS-VDS] - v20170601
Virtual Disk Service (VDS) Protocol
Copyright © 2017 Microsoft Corporation
Release: June 1, 2017

MbrPartInfo: Contains information for an MBR partition.

bootIndicator: The Boolean value that indicates whether the partition is bootable.

GptPartInfo: Contains information for a partition in a GPT.

attributes: The bitwise OR operator of attributes to change; it can have a combination of the

following values.

Value Meaning

GPT_ATTRIBUTE_PLATFORM_REQUIRED

0x0000000000000001

Partition is required for the platform to function
properly.<46>

GPT_BASIC_DATA_ATTRIBUTE_READ_ONLY

0x1000000000000000

The partition can be read from but not written to.
Used only with the basic data partition type.

GPT_BASIC_DATA_ATTRIBUTE_HIDDEN

0x4000000000000000

The partition is hidden and is not mounted. Used only
with the basic data partition type.

GPT_BASIC_DATA_ATTRIBUTE_NO_DRIVE_LETTER

0x8000000000000000

The partition does not receive a drive letter by

default when moving the disk to another machine.
Used only with the basic data partition type.

2.2.2.12 IVdsAdvancedDisk2 Data Types

This section lists data types that are used exclusively by the IVdsAdvancedDisk2 methods.

2.2.2.12.1 Structures

2.2.2.12.1.1 CHANGE_PARTITION_TYPE_PARAMETERS

The CHANGE_PARTITION_TYPE_PARAMETERS structure describes parameters to use when changing a
partition type.<47>

 typedef struct _CHANGE_PARTITION_TYPE_PARAMETERS {
 VDS_PARTITION_STYLE style;
 [switch_is(style)] union {
 [case(VDS_PST_MBR)]
 struct {
 byte partitionType;
 } MbrPartInfo;
 [case(VDS_PST_GPT)]
 struct {
 GUID partitionType;
 } GptPartInfo;
 [default] ;
 };
 } CHANGE_PARTITION_TYPE_PARAMETERS;

style: A value from the VDS_PARITION_STYLE enumeration that describes the disk partition
format.

MbrPartInfo: Contains information for an MBR partition.

partitionType: The byte value indicating the partition type to change the partition to.

GptPartInfo: Contains information for the partition of a GPT.

77 / 342

[MS-VDS] - v20170601
Virtual Disk Service (VDS) Protocol
Copyright © 2017 Microsoft Corporation
Release: June 1, 2017

partitionType: The GUID indicating the partition type to change the partition to.<48>

2.2.2.13 IVdsAdvancedDisk3 Data Types

This section lists data types that are used exclusively by the IVdsAdvancedDisk3 methods.

2.2.2.13.1 Structures

2.2.2.13.1.1 VDS_ADVANCEDDISK_PROP

The VDS_ADVANCEDDISK_PROP structure<49> provides the properties of a disk.

 typedef struct _VDS_ADVANCEDDISK_PROP
 {
 [string] LPWSTR pwszId;
 [string] LPWSTR pwszPathname;
 [string] LPWSTR pwszLocation;
 [string] LPWSTR pwszFriendlyName;
 [string] LPWSTR pswzIdentifier;
 USHORT usIdentifierFormat;
 ULONG ulNumber;
 [string] LPWSTR pwszSerialNumber;
 [string] LPWSTR pwszFirmwareVersion;
 [string] LPWSTR pwszManufacturer;
 [string] LPWSTR pwszModel;
 ULONGLONG ullTotalSize;
 ULONGLONG ullAllocatedSize;
 ULONG ulLogicalSectorSize;
 ULONG ulPhysicalSectorSize;
 ULONG ulPartitionCount;
 VDS_DISK_STATUS status;
 VDS_HEALTH health;
 VDS_STORAGE_BUS_TYPE BusType;
 VDS_PARTITION_STYLE PartitionStyle;
 [switch_is(PartitionStyle)] union
 {
 [case(VDS_PST_MBR)]
 DWORD dwSignature;
 [case(VDS_PST_GPT)]
 GUID DiskGuid;
 [default];
 };
 ULONG ulFlags;
 DWORD dwDeviceType;
 } VDS_ADVANCEDDISK_PROP, *PVDS_ADVANCEDDISK_PROP;

pwszId: The null-terminated Unicode device path that the operating system uses to identify the
device for the disk. This property MAY be NULL. If present, a client can use this property to display
the device path of the disk.

pwszPathname: The null-terminated Unicode device path that the operating system uses to identify
the device for the disk. This property MAY be NULL. If present, a client can use this property to

display the device path of the disk.

pwszLocation: This string is built from a combination of the DEVPKEY_Device_LocationPaths value
for the disk's adapter, the bus type, and the SCSI address. The DEVPKEY_Device_LocationPaths
property represents the location of a device instance in the device tree.

The following table shows examples of location paths built for various bus/disk types.

78 / 342

[MS-VDS] - v20170601
Virtual Disk Service (VDS) Protocol
Copyright © 2017 Microsoft Corporation
Release: June 1, 2017

Bus/disk type Location path

IDE\ATA\PATA\SATA PCIROOT(0)#PCI(0100)#ATA(C01T03L00)

SCSI PCIROOT(0)#PCI(1C00)#PCI(0000)#SCSI(P00T01L01)

SAS PCIROOT(1)#PCI(0300)#SAS(P00T03L00)

PCI RAID PCIROOT(0)#PCI(0200)#PCI(0003)#PCI(0100)#RAID(P02T00L00)

pwszFriendlyName: The null-terminated Unicode friendly (human-readable) name of the disk as
assigned by the operating system. This property MAY be NULL. If present, a client can use this
property to display a human-readable name of the disk.

pswzIdentifier: The VPD 0x83 Identifier for the disk.

usIdentifierFormat: The VPD 0x83 Identifier for the disk.

ulNumber: The device number of the disk.

pwszSerialNumber: The null-terminated serial number of the device. This value is NULL if no serial
number exists.

pwszFirmwareVersion: The firmware version number as specified by the device manufacturer. This
value is NULL if no firmware version exists.

pwszManufacturer: The null-terminated name of the device manufacturer. This value is NULL if no

manufacturer name exists.

pwszModel: The model as specified by the device manufacturer. This value is NULL if no model
name exists.

ullTotalSize: The size of the disk, in bytes.

ullAllocatedSize: The allocated size of the disk, in bytes. It is the total size minus the total size of

free extents on the disk.

ulLogicalSectorSize: The size of the logical sectors for the disk, in bytes This can be different from

physical in the case of 512 emulated devices.

ulPhysicalSectorSize: The size of the physical sectors for the disk, in bytes.

ulPartitionCount: The number of partitions on the disk.

status: The value from the VDS_DISK_STATUS enumeration that indicates the disk status.

health: The value from the VDS_HEALTH enumeration that indicates the health of the disk.

BusType: The value from the VDS_STORAGE_BUS_TYPE enumeration that indicates the type of bus

where the disk resides.

PartitionStyle: The value from the VDS_PARTITION_STYLE enumeration that indicates the

partitioning format of the disk.

ulFlags: The combination of any values, by using a bitwise OR operator, that are defined in the
VDS_DISK_FLAG enumeration.

dwDeviceType: The device type of the disk. Note that this volume refers to the disk type and not
the drive type. Thus, if there is CD media in a DVD/CD drive, it is identified as

FILE_DEVICE_CD_ROM; however, DVD media in the same drive is identified as
FILE_DEVICE_DVD. This field can have the following values.

79 / 342

[MS-VDS] - v20170601
Virtual Disk Service (VDS) Protocol
Copyright © 2017 Microsoft Corporation
Release: June 1, 2017

Value Meaning

FILE_DEVICE_CD_ROM

0x00000002

The device is a CD-ROM.

FILE_DEVICE_DISK

0x00000007

The device is a hard disk or removable device.

FILE_DEVICE_DVD

0x00000033

The device is a DVD.

2.2.2.14 IVdsVolume Data Types

This section lists data types that are used exclusively by the IVdsVolume methods.

2.2.2.14.1 Structures

2.2.2.14.1.1 VDS_VOLUME_PROP

The VDS_VOLUME_PROP structure that provides the properties of a volume.

 typedef struct _VDS_VOLUME_PROP {
 VDS_OBJECT_ID id;
 VDS_VOLUME_TYPE type;
 VDS_VOLUME_STATUS status;
 VDS_HEALTH health;
 VDS_TRANSITION_STATE TransitionState;
 ULONGLONG ullSize;
 unsigned long ulFlags;
 VDS_FILE_SYSTEM_TYPE RecommendedFileSystemType;
 [string] WCHAR* pwszName;
 } VDS_VOLUME_PROP,
 *PVDS_VOLUME_PROP;

id: The VDS object ID of the volume object.

type: The value from the VDS_VOLUME_TYPE enumeration that defines the type of the volume.

status: The value from the VDS_VOLUME_STATUS enumeration that defines the status of the
volume.

health: The value from the VDS_HEALTH enumeration that defines the health of the volume.

TransitionState: The value from the VDS_TRANSITION_STATE enumeration that defines the
configuration stability of the volume.

ullSize: The size of the volume, in bytes.

ulFlags: The combination of any values by using the bitwise OR operator of volume flags from the
VDS_VOLUME_FLAG enumeration.

RecommendedFileSystemType: The value from the VDS_FILE_SYSTEM_TYPE enumeration that
defines the recommended file system type for the volume.

pwszName: The null-terminated Unicode name that the operating system uses to identify the
volume.

80 / 342

[MS-VDS] - v20170601
Virtual Disk Service (VDS) Protocol
Copyright © 2017 Microsoft Corporation
Release: June 1, 2017

2.2.2.15 IVdsVolume2 Data Types

This section lists data types that are used exclusively by the IVdsVolume2 methods.

2.2.2.15.1 Structures

2.2.2.15.1.1 VDS_VOLUME_PROP2

The VDS_VOLUME_PROP2 structure provides the properties of a volume.

 typedef struct _VDS_VOLUME_PROP2 {
 VDS_OBJECT_ID id;
 VDS_VOLUME_TYPE type;
 VDS_VOLUME_STATUS status;
 VDS_HEALTH health;
 VDS_TRANSITION_STATE TransitionState;
 ULONGLONG ullSize;
 unsigned long ulFlags;
 VDS_FILE_SYSTEM_TYPE RecommendedFileSystemType;
 ULONG cbUniqueId;
 [string] WCHAR* pwszName;
 [size_is(cbUniqueId)] BYTE* pUniqueId;
 } VDS_VOLUME_PROP2,
 *PVDS_VOLUME_PROP2;

id: The VDS object ID of the volume object.

type: The value from the VDS_VOLUME_TYPE enumeration that defines the type of the volume.

status: The value from the VDS_VOLUME_STATUS enumeration that defines the status of the
volume.

health: The value from the VDS_HEALTH enumeration that defines the health of the volume.

TransitionState: The value from the VDS_TRANSITION_STATE enumeration that defines the

configuration stability of the volume.

ullSize: The size of the volume, in bytes.

ulFlags: The combination of any values, by using the bitwise OR operator, of volume flags from the
VDS_VOLUME_FLAG enumeration.

RecommendedFileSystemType: The value from the VDS_FILE_SYSTEM_TYPE enumeration that
defines the recommended file system type for the volume.

cbUniqueId: Count of bytes for pUniqueId.

pwszName: The null-terminated Unicode name that the operating system uses to identify the

volume.

pUniqueId: A byte array containing the volume's unique id.

2.2.2.16 IVdsVolumeMF Data Types

This section lists data types that are used exclusively by the IVdsVolumeMF methods.

2.2.2.16.1 Data Types

2.2.2.16.1.1 MAX_PATH

81 / 342

[MS-VDS] - v20170601
Virtual Disk Service (VDS) Protocol
Copyright © 2017 Microsoft Corporation
Release: June 1, 2017

Constant/value Description

MAX_PATH

0x00000104

The maximum character length of a path.

2.2.2.16.2 Structures

2.2.2.16.2.1 VDS_REPARSE_POINT_PROP

The VDS_REPARSE_POINT_PROP structure defines the reparse point properties of the mount point
to a volume object.

 typedef struct VDS_REPARSE_POINT_PROP {
 VDS_OBJECT_ID SourceVolumeId;
 [string] WCHAR* pwszPath;
 } VDS_REPARSE_POINT_PROP,
 *PVDS_REPARSE_POINT_PROP;

SourceVolumeId: The VDS object ID of the volume object that the reparse point refers to.

pwszPath: The null-terminated Unicode path of the reparse point. The path does not contain a
drive letter; for example, "\mount".

2.2.2.17 IVdsVolumePlex Data Types

This section lists data types that are used exclusively by the IVdsVolumePlex methods.

2.2.2.17.1 Enumeration

2.2.2.17.1.1 VDS_VOLUME_PLEX_TYPE

The VDS_VOLUME_PLEX_TYPE enumeration defines the set of valid types for a volume plex.

 typedef enum _VDS_VOLUME_PLEX_TYPE
 {
 VDS_VPT_UNKNOWN = 0x00000000,
 VDS_VPT_SIMPLE = 0x0000000A,
 VDS_VPT_SPAN = 0x0000000B,
 VDS_VPT_STRIPE = 0x0000000C,
 VDS_VPT_PARITY = 0x0000000E
 } VDS_VOLUME_PLEX_TYPE;

VDS_VPT_UNKNOWN: The volume plex type is unknown.

VDS_VPT_SIMPLE: The plex type is simple; it is composed of extents from exactly one disk.

VDS_VPT_SPAN: The plex type is spanned; it is composed of extents from more than one disk.

VDS_VPT_STRIPE: The plex type is striped, which is equivalent to RAID-0.

VDS_VPT_PARITY: The plex type is striped with parity, which accounts for RAID levels 3, 4, 5, and
6.

2.2.2.17.1.2 VDS_VOLUME_PLEX_STATUS

82 / 342

[MS-VDS] - v20170601
Virtual Disk Service (VDS) Protocol
Copyright © 2017 Microsoft Corporation
Release: June 1, 2017

The VDS_VOLUME_PLEX_STATUS enumeration defines the set of object status values for a volume
plex.

 typedef enum _VDS_VOLUME_PLEX_STATUS
 {
 VDS_VPS_UNKNOWN = 0x00000000,
 VDS_VPS_ONLINE = 0x00000001,
 VDS_VPS_NO_MEDIA = 0x00000003,
 VDS_VPS_FAILED = 0x00000005
 } VDS_VOLUME_PLEX_STATUS;

VDS_VPS_UNKNOWN: The status of the volume plex is unknown.

VDS_VPS_ONLINE: The volume plex is available.

VDS_VPS_NO_MEDIA: The volume plex has no media.

VDS_VPS_FAILED: The volume plex is unavailable.

2.2.2.17.2 Structures

2.2.2.17.2.1 VDS_VOLUME_PLEX_PROP

The VDS_VOLUME_PLEX_PROP structure provides information about the properties of a volume plex.

 typedef struct _VDS_VOLUME_PLEX_PROP {
 VDS_OBJECT_ID id;
 VDS_VOLUME_PLEX_TYPE type;
 VDS_VOLUME_PLEX_STATUS status;
 VDS_HEALTH health;
 VDS_TRANSITION_STATE TransitionState;
 ULONGLONG ullSize;
 unsigned long ulStripeSize;
 unsigned long ulNumberOfMembers;
 } VDS_VOLUME_PLEX_PROP,
 *PVDS_VOLUME_PLEX_PROP;

id: The GUID of the plex object.

type: The plex type that is enumerated by VDS_VOLUME_PLEX_TYPE. The type of the plex need not
match that of the volume to which it belongs. For example, a mirrored RAID-1 volume can be
composed of plexes that are simple (composed of extents from exactly one disk).

status: The status of the plex object that is enumerated by VDS_VOLUME_PLEX_STATUS. The status
of the plex need not match that of the volume to which it belongs. For example, a volume plex can
have a failed status (VDS_VPS_FAILED), but if the volume is fault-tolerant and its other plexes
are online (VDS_VPS_ONLINE), the volume will still be online (VDS_VS_ONLINE).

health: Value from the VDS_HEALTH enumeration that defines the health of the volume. The health
of the plex need not match that of the volume to which it belongs. For instance, a volume's plex

can have failed health (VDS_H_FAILED), but if the volume is a mirror volume (RAID-1) and its

other plexes are healthy (VDS_H_HEALTHY), the volume will have failed redundancy health
(VDS_H_FAILED_REDUNDANCY).

TransitionState: Value from the VDS_TRANSITION_STATE enumeration that defines the
configuration stability of the plex. The TransitionState of the plex matches the TransitionState of
the volume to which it belongs.

83 / 342

[MS-VDS] - v20170601
Virtual Disk Service (VDS) Protocol
Copyright © 2017 Microsoft Corporation
Release: June 1, 2017

ullSize: The size of the plex, in bytes. The size can be equal to, or greater than, that of the volume
to which it belongs. The plex cannot be smaller than the volume.

ulStripeSize: The stripe interleave size, in bytes. This member applies only for plexes of type
VDS_VPT_STRIPE (striped) and VDS_VPT_PARITY (striped with parity).

ulNumberOfMembers: The number of members (RAID columns) in the volume plex.

2.2.2.18 IVdsVdProvider Data Types

This section lists data types that are used exclusively by methods in the

IVdsVdProvider (section 3.1.9.4) interface.

2.2.2.18.1 Enumerations

2.2.2.18.1.1 CREATE_VIRTUAL_DISK_FLAG

The CREATE_VIRTUAL_DISK_FLAG enumeration defines the properties of a virtual disk that is being
created.

 typedef enum _CREATE_VIRTUAL_DISK_FLAG
 {
 CREATE_VIRTUAL_DISK_FLAG_NONE = 0x0,
 CREATE_VIRTUAL_DISK_FLAG_FULL_PHYSICAL_ALLOCATION = 0x1
 } CREATE_VIRTUAL_DISK_FLAG;

CREATE_VIRTUAL_DISK_FLAG_NONE: Indicates to the server that no flags have been specified.
CREATE_VIRTUAL_DISK_FLAG_NONE specifies that a virtual disk file will be allocated as the
backing store for the virtual disk and that this file will automatically increase in size to

accommodate the allocated data.

A virtual disk created using the CREATE_ VIRTUAL_DISK_FLAG_NONE flag has a virtual disk file
backing store that at any given time is as large as the actual data written to it, plus the size of the

header and footer. As more data is written, the virtual disk file automatically increases in size.

For example, if the CREATE_VIRTUAL_DISK_FLAG_NONE flag is used to create a virtual disk that
is 2 gigabytes in size, the initial size of the virtual disk file backing store can only be 2 megabytes.
As data is written to this disk, the virtual disk file backing store increases in size, with a maximum

size of 2 gigabytes.

CREATE_VIRTUAL_DISK_FLAG_FULL_PHYSICAL_ALLOCATION: Specifies that the server
preallocates all physical space necessary for the virtual size of the virtual disk. A fixed size virtual
disk file will be allocated as the backing store for the virtual disk. For example, creating a fixed
size virtual disk that is 2 gigabytes in size using this flag will result in a virtual disk file that is
approximately 2 gigabytes in size.

2.2.2.18.2 Structures

2.2.2.18.2.1 VDS_CREATE_VDISK_PARAMETERS

The VDS_CREATE_VDISK_PARAMETERS structure contains the parameters to be used when a virtual
disk is created.

 typedef struct _VDS_CREATE_VDISK_PARAMETERS {
 GUID UniqueId;
 ULONGLONG MaximumSize;
 ULONG BlockSizeInBytes;
 ULONG SectorSizeInBytes;

84 / 342

[MS-VDS] - v20170601
Virtual Disk Service (VDS) Protocol
Copyright © 2017 Microsoft Corporation
Release: June 1, 2017

 [string] LPWSTR pParentPath;
 [string] LPWSTR pSourcePath;
 } VDS_CREATE_VDISK_PARAMETERS,
 *PVDS_CREATE_VDISK_PARAMETERS;

UniqueId: A unique and non-zero GUID value to be assigned to the virtual disk.

MaximumSize: The maximum virtual size, in bytes, of the virtual disk object.

BlockSizeInBytes: The internal block size, in bytes, of the virtual disk object. If the virtual disk

object being created is a differencing disk, this value MUST be 0. If the virtual disk object being
created is not a differencing disk, setting this value to 0 causes the virtual disk object being
created to use the default block size.<50>

SectorSizeInBytes: Internal sector size, in bytes, of the virtual disk object. This value MUST be set
to 512 (CREATE_VIRTUAL_DISK_PARAMETERS_DEFAULT_SECTOR_SIZE).

pParentPath: A null-terminated wide-character string containing an optional path to a parent virtual

disk object. This member associates the new virtual hard disk with an existing virtual hard disk.

Used when creating a differencing disk. The differencing disk gets its size from its parent.

A differencing disk represents the current state of the virtual disk as a set of modified blocks in
comparison to a parent disk. A differencing disk is not independent; it depends on the parent disk
to be fully functional. A differencing disk MUST be created using the
CREATE_VIRTUAL_DISK_FLAG_NONE flag. The parent disk can be created using either the
CREATE_VIRTUAL_DISK_FLAG_NONE or
CREATE_VIRTUAL_DISK_FLAG_FULL_PHYSICAL_ALLOCATION flag. The parent disk can be another

differencing disk.

pSourcePath: A null-terminated wide-character string containing an optional path to a source of
data to be copied to the new virtual hard disk. When pSourcePath is specified, data from the input
virtual disk file is copied block for block from the input virtual disk file to the created virtual disk
file. There is no parent-child relationship established.

2.2.2.19 IVdsVDisk Data Types

This section lists data types that are used exclusively by methods in the IVdsVDisk interface.

2.2.2.19.1 Enumerations

2.2.2.19.1.1 VDS_VDISK_STATE

The VDS_VDISK_STATE enumeration describes the state of a virtual disk.

 typedef enum _VDS_VDISK_STATE
 {
 VDS_VST_UNKNOWN = 0,
 VDS_VST_ADDED,
 VDS_VST_OPEN,
 VDS_VST_ATTACH_PENDING,
 VDS_VST_ATTACHED_NOT_OPEN,
 VDS_VST_ATTACHED,
 VDS_VST_DETACH_PENDING,
 VDS_VST_COMPACTING,
 VDS_VST_MERGING,
 VDS_VST_EXPANDING,
 VDS_VST_DELETED,
 VDS_VST_MAX
 } VDS_VDISK_STATE;

85 / 342

[MS-VDS] - v20170601
Virtual Disk Service (VDS) Protocol
Copyright © 2017 Microsoft Corporation
Release: June 1, 2017

VDS_VST_UNKNOWN: VDS was not able to identify the disk's current status.

VDS_VST_ADDED: The virtual disk is added to the service's list of objects.

VDS_VST_OPEN: The virtual disk has been added to the service's list of objects, and the virtual
disk file has been opened using IVdsVDisk::Open.

VDS_VST_ATTACH_PENDING: The virtual disk has been added to the service's list of objects, the
virtual disk file has been opened using IVdsVDisk::Open, and the virtual disk is in the process of
being attached.

VDS_VST_ATTACHED_NOT_OPEN: The virtual disk has been added to the service's list of objects
and the virtual disk is attached, but the virtual disk file is not open.

VDS_VST_ATTACHED: The virtual disk has been added to the service's list of objects, the virtual
disk file has been opened using IVdsVDisk::Open, and the virtual disk is attached.

VDS_VST_DETACH_PENDING: The virtual disk has been added to the service's list of objects, the
virtual disk file has been opened using IVdsVDisk::Open, and the virtual disk is in the process of

being detached.

VDS_VST_COMPACTING: The virtual disk has been added to the service's list of objects, the virtual
disk file has been opened using IVdsVDisk::Open, and the virtual disk is being compacted.

VDS_VST_MERGING: The virtual disk has been added to the service's list of objects, the virtual disk

file has been opened using IVdsVDisk::Open, and the virtual disk is being merged.

VDS_VST_EXPANDING: The virtual disk has been added to the service's list of objects, the virtual
disk file has been opened using IVdsVDisk::Open, and the virtual disk is being expanded.

VDS_VST_DELETED: The virtual disk has been deleted.

VDS_VST_MAX: Denotes the maximum acceptable value for this type. VDS_VST_MAX - 1 is the
maximum acceptable value.

When the service has been made aware of a virtual disk, the state is set to VDS_VST_ADDED. In

order to perform any operations on the virtual disk such as attaching it, detaching it, merging,
compacting, or expanding, the virtual disk file is opened using IVdsVDisk::Open. Once the virtual disk
is opened, its state transitions to VDS_VST_OPEN.

Attach: To attach a virtual disk, the virtual disk object is first added to the service's list of objects and
its state is set to VDS_VS_ADDED. Next IVdsVDisk::Open MUST be called against the virtual disk, and
the state transitions to VDS_VST_OPEN. When the attach operation is initiated against the virtual disk,
the state of the virtual disk transitions to VDS_VST_ATTACH_PENDING. The virtual disk remains in

this state until the operating system disk object corresponding to the virtual disk has been
instantiated. Once this object is instantiated, the virtual disk object's state transitions to
VDS_VST_ATTACHED. The IVdsOpenVDisk interface is then released, the OpenVirtualDisk object is
removed, and the state transitions to VDS_VST_ATTACHED_NOT_OPEN.

Detach: To detach a virtual disk, the virtual disk object is first added to the service's list of objects and
its state is set to VDS_VST_ADDED. Next IVdsVDisk::Open MUST be called against the virtual disk,

and the state transitions to VDS_VST_OPEN. When the detach operation is initiated against the virtual
disk, the state of the virtual disk transitions to VDS_VST_DETACH_PENDING. The virtual disk remains
in this state until the operating system disk object corresponding to the virtual disk has been
removed. Once this object is removed, the virtual disk object's state transitions to VDS_VST_OPEN.
The IVdsOpenVDisk interface is then released, the OpenVirtualDisk object is removed, and the state
transitions to VDS_VST_ADDED.

86 / 342

[MS-VDS] - v20170601
Virtual Disk Service (VDS) Protocol
Copyright © 2017 Microsoft Corporation
Release: June 1, 2017

Compact: A compact operation is performed against either an attached virtual disk or a detached
virtual disk. To compact a virtual disk, the virtual disk object is first added to the service's list of

objects and its state is set to VDS_VST_ADDED.

To compact a detached virtual disk, IVdsVDisk::Open MUST be called against the virtual disk, and the

state transitions to VDS_VST_OPEN. When the compact operation is initiated against the virtual disk,
the state transitions to VDS_VST_COMPACTING. Once the compact operation has completed, the state
then transitions back to VDS_VST_OPEN. The IVdsOpenVDisk interface is then released, the
OpenVirtualDisk object is removed, and the new state is VDS_VST_ADDED.

An attached virtual disk for which there is no OpenVirtualDisk object will have the state
VDS_VST_ATTACHED_NOT_OPEN. To compact an attached virtual disk, IVdsVDisk::Open MUST be
called against the virtual disk, and the state transitions to VDS_VST_ATTACHED. When the compact

operation is initiated against the virtual disk, the state transitions to VDS_VST_COMPACTING. Once
the compact operation has completed, the state then transitions back to VDS_VST_ATTACHED. The
IVdsOpenVDisk interface is then released, the OpenVirtualDisk object is removed, and the new state is
VDS_VST_ATTACHED_NOT_OPEN.

Merge or Expand: Merge and expand operate on detached virtual disks. To merge or expand a virtual
disk, the virtual disk object is first added to the service's list of objects and its state is set to

VDS_VS_ADDED. Next IVdsVDisk::Open MUST be called against the virtual disk, and the state
transitions to VDS_VST_OPEN. When the merge or expand operation is initiated against the virtual
disk, the state of the virtual disk transitions to VDS_VST_MERGING or VDS_VST_EXPANDING. Once
the merge or expand operation has completed, the state then transitions back to VDS_VST_OPEN. The
IVdsOpenVDisk interface is then released, the OpenVirtualDisk object is removed, and the new state is
VDS_VST_ADDED.

2.2.2.19.1.2 OPEN_VIRTUAL_DISK_FLAG

The OPEN_VIRTUAL_DISK_FLAG enumeration defines flags that are used to open a virtual disk
object.

 typedef enum _OPEN_VIRTUAL_DISK_FLAG
 {
 OPEN_VIRTUAL_DISK_FLAG_NONE = 0x0,
 OPEN_VIRTUAL_DISK_FLAG_NO_PARENTS = 0x1,
 OPEN_VIRTUAL_DISK_FLAG_BLANK_FILE = 0x2,
 OPEN_VIRTUAL_DISK_FLAG_BOOT_DRIVE = 0x4
 } OPEN_VIRTUAL_DISK_FLAG;

OPEN_VIRTUAL_DISK_FLAG_NONE: Indicates that no flag has been specified.

OPEN_VIRTUAL_DISK_FLAG_NO_PARENTS: Applicable only to differencing type virtual disks.
Opens the backing store without opening the backing store for any differencing chain parents.

OPEN_VIRTUAL_DISK_FLAG_BLANK_FILE: Opens the backing store as an empty file without
performing virtual disk verification.

OPEN_VIRTUAL_DISK_FLAG_BOOT_DRIVE: This flag MUST not be used by VDS virtual disk

providers or their clients.<51>

2.2.2.19.1.3 DEPENDENT_DISK_FLAG

The DEPENDENT_DISK_FLAG enumeration contains virtual disk dependency information flags.

 typedef enum _DEPENDENT_DISK_FLAG
 {
 DEPENDENT_DISK_FLAG_NONE = 0x0,
 DEPENDENT_DISK_FLAG_MULT_BACKING_FILES = 0x1,

87 / 342

[MS-VDS] - v20170601
Virtual Disk Service (VDS) Protocol
Copyright © 2017 Microsoft Corporation
Release: June 1, 2017

 DEPENDENT_DISK_FLAG_FULLY_ALLOCATED = 0x2,
 DEPENDENT_DISK_FLAG_READ_ONLY = 0x4,
 DEPENDENT_DISK_FLAG_REMOTE = 0x8,
 DEPENDENT_DISK_FLAG_SYSTEM_VOLUME = 0x10,
 DEPENDENT_DISK_FLAG_SYSTEM_VOLUME_PARENT = 0x20,
 DEPENDENT_DISK_FLAG_REMOVABLE = 0x40,
 DEPENDENT_DISK_FLAG_NO_DRIVE_LETTER = 0x80,
 DEPENDENT_DISK_FLAG_PARENT = 0x100,
 DEPENDENT_DISK_FLAG_NO_HOST_DISK = 0x200,
 DEPENDENT_DISK_FLAG_PERMANENT_LIFETIME = 0x400
 } DEPENDENT_DISK_FLAG;

DEPENDENT_DISK_FLAG_NONE: No flags specified. Use system defaults.

DEPENDENT_DISK_FLAG_MULT_BACKING_FILES: Multiple files backing the virtual disk.

DEPENDENT_DISK_FLAG_FULLY_ALLOCATED: Fully allocated virtual disk.

DEPENDENT_DISK_FLAG_READ_ONLY: Read-only virtual disk.

DEPENDENT_DISK_FLAG_REMOTE: The backing file of the virtual disk is not on a local physical
disk.

DEPENDENT_DISK_FLAG_SYSTEM_VOLUME: Reserved.

DEPENDENT_DISK_FLAG_SYSTEM_VOLUME_PARENT: The backing file of the virtual disk is on
the system volume.

DEPENDENT_DISK_FLAG_REMOVABLE: The backing file of the virtual disk is on a removable
physical disk.

DEPENDENT_DISK_FLAG_NO_DRIVE_LETTER: Drive letters are not automatically assigned to the

volumes on the virtual disk.

DEPENDENT_DISK_FLAG_PARENT: The virtual disk is a parent in a differencing chain.

DEPENDENT_DISK_FLAG_NO_HOST_DISK: The virtual disk is not surfaced on (attached to) the
local host. For example, it is attached to a guest virtual machine.

DEPENDENT_DISK_FLAG_PERMANENT_LIFETIME: The lifetime of the virtual disk is not tied to
any application or process.

2.2.2.19.1.4 VIRTUAL_DISK_ACCESS_MASK

The VIRTUAL_DISK_ACCESS_MASK enumeration contains the bit mask for specifying access rights to
a virtual hard disk (VHD).

 typedef enum _VIRTUAL_DISK_ACCESS_MASK
 {
 VIRTUAL_DISK_ACCESS_SURFACE_RO = 0x00010000,
 VIRTUAL_DISK_ACCESS_SURFACE_RW = 0x00020000,
 VIRTUAL_DISK_ACCESS_UNSURFACE = 0x00040000,
 VIRTUAL_DISK_ACCESS_GET_INFO = 0x00080000,
 VIRTUAL_DISK_ACCESS_CREATE = 0x00100000,
 VIRTUAL_DISK_ACCESS_METAOPS = 0x00200000,
 VIRTUAL_DISK_ACCESS_READ = 0x000d0000,
 VIRTUAL_DISK_ACCESS_ALL = 0x003f0000,
 VIRTUAL_DISK_ACCESS_WRITABLE = 0x00320000
 } VIRTUAL_DISK_ACCESS_MASK;

88 / 342

[MS-VDS] - v20170601
Virtual Disk Service (VDS) Protocol
Copyright © 2017 Microsoft Corporation
Release: June 1, 2017

VIRTUAL_DISK_ACCESS_SURFACE_RO: Open the VHD for read-only surfacing (attaching)
access. The caller MUST have READ access to the virtual disk image file. If used in a request to

open a VHD that is already open, the other handles are limited to either
VIRTUAL_DISK_ACCESS_UNSURFACE or VIRTUAL_DISK_ACCESS_GET_INFO access; otherwise,

the open request with this flag will fail.

VIRTUAL_DISK_ACCESS_SURFACE_RW: Open the VHD for read-write surfacing (attaching)
access. The caller MUST have (READ | WRITE) access to the virtual disk image file. If used in a
request to open a VHD that is already open, the other handles are limited to either
VIRTUAL_DISK_ACCESS_UNSURFACE or VIRTUAL_DISK_ACCESS_GET_INFO access; otherwise,
the open request with this flag will fail. If the VHD is part of a differencing chain, the disk number
for this request cannot be less than the ReadWriteDepth specified during the prior open request

for that differencing chain.

VIRTUAL_DISK_ACCESS_UNSURFACE: Open the VHD to allow unsurfacing (detaching) of a
surfaced (attached) VHD. The caller MUST have (FILE_READ_ATTRIBUTES | FILE_READ_DATA)
access to the virtual disk image file.

VIRTUAL_DISK_ACCESS_GET_INFO: Open the VHD for retrieval of information. The caller MUST
have READ access to the virtual disk image file.

VIRTUAL_DISK_ACCESS_CREATE: Open the VHD for creation.

VIRTUAL_DISK_ACCESS_METAOPS: Open the VHD to perform offline metaoperations. For
information on the offline metaoperations, see [MSDN-CompactVirtualDisk], [MSDN-
ExpandVirtualDisk], [MSDN-MergeVirtualDisk], [MSDN-SetVirtualDiskInfo], and [MSDN-
VIRTDSKACCMSK]. The caller MUST have (READ | WRITE) access to the virtual disk image file, up
to ReadWriteDepth if working with a differencing chain. If the VHD is part of a differencing chain,
the backing store (host volume) is opened in read/write exclusive mode up to ReadWriteDepth.

VIRTUAL_DISK_ACCESS_READ: Reserved.

VIRTUAL_DISK_ACCESS_ALL: Allows unrestricted access to the VHD. The caller MUST have
unrestricted access rights to the virtual disk image file.

VIRTUAL_DISK_ACCESS_WRITABLE: Reserved.

2.2.2.19.2 Structures

2.2.2.19.2.1 VDS_VDISK_PROPERTIES

The VDS_VDISK_PROPERTIES structure defines the properties of a virtual disk.

 typedef struct _VDS_VDISK_PROPERTIES {
 VDS_OBJECT_ID Id;
 VDS_VDISK_STATE State;
 VIRTUAL_STORAGE_TYPE VirtualDeviceType;
 ULONGLONG VirtualSize;
 ULONGLONG PhysicalSize;
 [string] LPWSTR pPath;
 [string] LPWSTR pDeviceName;
 DEPENDENT_DISK_FLAG DiskFlag;
 BOOL bIsChild;
 [string] LPWSTR pParentPath;
 } VDS_VDISK_PROPERTIES,
 *PVDS_VDISK_PROPERTIES;

Id: A unique VDS-specific session identifier of the disk.

State: A VDS_VDISK_STATE enumeration value that specifies the virtual disk state.

https://go.microsoft.com/fwlink/?LinkId=208355
https://go.microsoft.com/fwlink/?LinkId=208356
https://go.microsoft.com/fwlink/?LinkId=208356
https://go.microsoft.com/fwlink/?LinkId=208357
https://go.microsoft.com/fwlink/?LinkId=208358
https://go.microsoft.com/fwlink/?LinkId=208359
https://go.microsoft.com/fwlink/?LinkId=208359

89 / 342

[MS-VDS] - v20170601
Virtual Disk Service (VDS) Protocol
Copyright © 2017 Microsoft Corporation
Release: June 1, 2017

VirtualDeviceType: A pointer to a VIRTUAL_STORAGE_TYPE structure that specifies the storage
device type of the virtual disk.

VirtualSize: The size, in bytes, of the virtual disk.

PhysicalSize: The on-disk size, in bytes, of the virtual hard disk backing file.

pPath: A null-terminated wide-character string containing the name and directory path of the
backing file for the virtual hard disk.

pDeviceName: A null-terminated wide-character string containing the name and device path of the
disk device object for the volume where the virtual hard disk resides.

DiskFlag: Type of virtual disk that uses values from the
DEPENDENT_DISK_FLAG (section 2.2.2.19.1.3) enumeration.

bIsChild: A Boolean value that specifies if the virtual disk is a child virtual disk.

pParentPath: A null-terminated wide-character string containing an optional path to the parent

virtual disk.

2.2.2.20 IVdsOpenVDisk Data Types

This section lists data types that are used exclusively by methods in the IVdsOpenVDisk interface.

2.2.2.20.1 Enumerations

2.2.2.20.1.1 ATTACH_VIRTUAL_DISK_FLAG

The ATTACH_VIRTUAL_DISK_FLAG enumeration defines options for attaching a virtual disk.

 typedef enum _ATTACH_VIRTUAL_DISK_FLAG
 {
 ATTACH_VIRTUAL_DISK_FLAG_NONE = 0x00000000,
 ATTACH_VIRTUAL_DISK_FLAG_READ_ONLY = 0x00000001,
 ATTACH_VIRTUAL_DISK_FLAG_NO_DRIVE_LETTER = 0x00000002,
 ATTACH_VIRTUAL_DISK_FLAG_PERMANENT_LIFETIME = 0x00000004,
 ATTACH_VIRTUAL_DISK_FLAG_NO_LOCAL_HOST = 0x00000008,
 } ATTACH_VIRTUAL_DISK_FLAG;

ATTACH_VIRTUAL_DISK_FLAG_NONE: Indicates that no flag has been specified. This flag implies
that the operating system disk device created when the virtual disk is attached will be
read\write.

ATTACH_VIRTUAL_DISK_FLAG_READ_ONLY: Attaches the operating system disk device created
when the virtual disk is attached as read-only.

ATTACH_VIRTUAL_DISK_FLAG_NO_DRIVE_LETTER: If this flag is set, no drive letters are
assigned to the disk's volumes.

ATTACH_VIRTUAL_DISK_FLAG_PERMANENT_LIFETIME: MUST NOT be used by virtual disk
providers or their clients.<52>

ATTACH_VIRTUAL_DISK_FLAG_NO_LOCAL_HOST: Specifies that the operating system disk
device created when the virtual disk is attached will not be exposed to the local system, but rather
to a virtual machine running on the local system.

2.2.2.20.1.2 DETACH_VIRTUAL_DISK_FLAG

90 / 342

[MS-VDS] - v20170601
Virtual Disk Service (VDS) Protocol
Copyright © 2017 Microsoft Corporation
Release: June 1, 2017

The DETACH_VIRTUAL_DISK_FLAG enumeration defines options for detaching a virtual disk.

 typedef enum _DETACH_VIRTUAL_DISK_FLAG
 {
 DETACH_VIRTUAL_DISK_FLAG_NONE = 0x00000000
 } DETACH_VIRTUAL_DISK_FLAG;

DETACH_VIRTUAL_DISK_FLAG_NONE: Indicates that no flag has been specified. Currently, this is
the only flag defined.

2.2.2.20.1.3 COMPACT_VIRTUAL_DISK_FLAG

The COMPACT_VIRTUAL_DISK_FLAG enumeration defines options for compacting a virtual disk.

 typedef enum _COMPACT_VIRTUAL_DISK_FLAG
 {
 COMPACT_VIRTUAL_DISK_FLAG_NONE = 0x00000000
 } COMPACT_VIRTUAL_DISK_FLAG;

COMPACT_VIRTUAL_DISK_FLAG_NONE: Indicates that no flag has been specified. Currently, this
is the only flag defined.

2.2.2.20.1.4 MERGE_VIRTUAL_DISK_FLAG

The MERGE_VIRTUAL_DISK_FLAG enumeration defines options for merging a virtual disk.

 typedef enum _MERGE_VIRTUAL_DISK_FLAG
 {
 MERGE_VIRTUAL_DISK_FLAG_NONE = 0x00000000
 } MERGE_VIRTUAL_DISK_FLAG;

MERGE_VIRTUAL_DISK_FLAG_NONE: Indicates that no flag has been specified. Currently, this is
the only flag defined.

2.2.2.20.1.5 EXPAND_VIRTUAL_DISK_FLAG

The EXPAND_VIRTUAL_DISK_FLAG enumeration defines options for expanding a virtual disk.

 typedef enum _EXPAND_VIRTUAL_DISK_FLAG
 {
 EXPAND_VIRTUAL_DISK_FLAG_NONE = 0x00000000
 } EXPAND_VIRTUAL_DISK_FLAG;

EXPAND_VIRTUAL_DISK_FLAG_NONE: Indicates that no flag has been specified. Currently, this is
the only flag defined.

2.2.3 Error Codes

The following HRESULT return codes are defined by the Virtual Disk Service Remote Protocol and,
together with the HRESULTs specified in [MS-ERREF], SHOULD be returned by the server to indicate
additional information about the result of a method call or about the reason a call failed. If the result
is an error rather than simple status information, the most significant bit of the HRESULT is set (as
specified in [MS-ERREF]).

%5bMS-ERREF%5d.pdf#Section_1bc92ddfb79e413cbbaa99a5281a6c90

91 / 342

[MS-VDS] - v20170601
Virtual Disk Service (VDS) Protocol
Copyright © 2017 Microsoft Corporation
Release: June 1, 2017

Return value/code Description

0x80042400

VDS_E_NOT_SUPPORTED

The operation is not supported by the
object.

0x80042401

VDS_E_INITIALIZED_FAILED

VDS or the provider failed to initialize.

0x80042402

VDS_E_INITIALIZE_NOT_CALLED

VDS did not call the hardware provider's
initialization method.

0x80042403

VDS_E_ALREADY_REGISTERED

The provider is already registered.

0x80042404

VDS_E_ANOTHER_CALL_IN_PROGRESS

A concurrent second call is made on an
object before the first call is completed.

0x80042405

VDS_E_OBJECT_NOT_FOUND

The specified object was not found.

0x80042406

VDS_E_INVALID_SPACE

The specified space is neither free nor
valid.

0x80042407

VDS_E_PARTITION_LIMIT_REACHED

No more partitions can be created on
the specified disk.

0x80042408

VDS_E_PARTITION_NOT_EMPTY

The extended partition is not empty.

0x80042409

VDS_E_OPERATION_PENDING

The operation is still in progress.

0x8004240A

VDS_E_OPERATION_DENIED

The operation is not permitted on the
specified disk, partition, or volume.

0x8004240B

VDS_E_OBJECT_DELETED

The object no longer exists.

0x8004240C

VDS_E_CANCEL_TOO_LATE

The operation can no longer be
canceled.

0x8004240D

VDS_E_OPERATION_CANCELED

The operation has already been
canceled.

0x8004240E

VDS_E_CANNOT_EXTEND

The file system does not support
extending this volume.

0x8004240F

VDS_E_NOT_ENOUGH_SPACE

There is not enough space to complete
the operation.

0x80042410

VDS_E_NOT_ENOUGH_DRIVE

There are not enough free disk drives in
the subsystem to complete the
operation.

0x80042411

VDS_E_BAD_COOKIE

The cookie was not found.

0x80042412

VDS_E_NO_MEDIA

There is no removable media in the
drive.

92 / 342

[MS-VDS] - v20170601
Virtual Disk Service (VDS) Protocol
Copyright © 2017 Microsoft Corporation
Release: June 1, 2017

Return value/code Description

0x80042413

VDS_E_DEVICE_IN_USE

The device is currently in use.

0x80042414

VDS_E_DISK_NOT_EMPTY

The disk contains partitions or volumes.

0x80042415

VDS_E_INVALID_OPERATION

The specified operation is not valid.

0x80042416

VDS_E_PATH_NOT_FOUND

The specified path was not found.

0x80042417

VDS_E_DISK_NOT_INITIALIZED

The specified disk has not been
initialized.

0x80042418

VDS_E_NOT_AN_UNALLOCATED_DISK

The specified disk is not an unallocated

disk.

0x80042419

VDS_E_UNRECOVERABLE_ERROR

An unrecoverable error occurred. The
service MUST shut down.

0x0004241A

VDS_S_DISK_PARTIALLY_CLEANED

The clean operation was not a full clean
or was canceled before it could be
completed.

0x8004241B

VDS_E_DMADMIN_SERVICE_CONNECTION_FAILED

The provider failed to connect to the
Logical Disk Manager
Administrative service.

0x8004241C

VDS_E_PROVIDER_INITIALIZATION_FAILED

The provider failed to initialize.

0x8004241D

VDS_E_OBJECT_EXISTS

The object already exists.

0x8004241E

VDS_E_NO_DISKS_FOUND

No disks were found on the target
machine.

0x8004241F

VDS_E_PROVIDER_CACHE_CORRUPT

The cache for a provider is corrupt.

0x80042420

VDS_E_DMADMIN_METHOD_CALL_FAILED

A method call to the Logical Disk
Manager Administrative service failed.

0x00042421

VDS_S_PROVIDER_ERROR_LOADING_CACHE

The provider encountered errors while
loading the cache. For more
information, see the Windows Event
Log.

0x80042422

VDS_E_PROVIDER_VOL_DEVICE_NAME_NOT_FOUND

The device form of the volume
pathname could not be retrieved.

0x80042423

VDS_E_PROVIDER_VOL_OPEN

Failed to open the volume device

0x80042424

VDS_E_DMADMIN_CORRUPT_NOTIFICATION

A corrupt notification was sent from the
Logical Disk Manager Administrative
service.

93 / 342

[MS-VDS] - v20170601
Virtual Disk Service (VDS) Protocol
Copyright © 2017 Microsoft Corporation
Release: June 1, 2017

Return value/code Description

0x80042425

VDS_E_INCOMPATIBLE_FILE_SYSTEM

The file system is incompatible with the
specified operation.

0x80042426

VDS_E_INCOMPATIBLE_MEDIA

The media is incompatible with the
specified operation.

0x80042427

VDS_E_ACCESS_DENIED

Access is denied. A VDS operation MUST
run under the Backup Operator or
Administrators group account.

0x80042428

VDS_E_MEDIA_WRITE_PROTECTED

The media is write-protected.

0x80042429

VDS_E_BAD_LABEL

The volume label is not valid.

0x8004242A

VDS_E_CANT_QUICK_FORMAT

The volume cannot be quick-formatted.

0x8004242B

VDS_E_IO_ERROR

An I/O error occurred during the
operation.

0x8004242C

VDS_E_VOLUME_TOO_SMALL

The volume size is too small.

0x8004242D

VDS_E_VOLUME_TOO_BIG

The volume size is too large.

0x8004242E

VDS_E_CLUSTER_SIZE_TOO_SMALL

The cluster size is too small.

0x8004242F

VDS_E_CLUSTER_SIZE_TOO_BIG

The cluster size is too large.

0x80042430

VDS_E_CLUSTER_COUNT_BEYOND_32BITS

The number of clusters is too large to
be represented as a 32-bit integer.

0x80042431

VDS_E_OBJECT_STATUS_FAILED

The component that the object
represents has failed and is unable to
perform the requested operation.

0x80042432

VDS_E_VOLUME_INCOMPLETE

The volume is incomplete.

0x80042433

VDS_E_EXTENT_SIZE_LESS_THAN_MIN

The specified extent size is too small.

0x00042434

VDS_S_UPDATE_BOOTFILE_FAILED

The operation was successful, but VDS
failed to update the boot options in the
Boot Configuration Data (BCD) store or
boot.ini file.

0x00042436

VDS_S_BOOT_PARTITION_NUMBER_CHANGE

The boot partition's partition number
will change as a result of the operation.

0x80042436

VDS_E_BOOT_PARTITION_NUMBER_CHANGE

The boot partition's partition number
will change as a result of the migration
operation.

94 / 342

[MS-VDS] - v20170601
Virtual Disk Service (VDS) Protocol
Copyright © 2017 Microsoft Corporation
Release: June 1, 2017

Return value/code Description

0x80042437

VDS_E_NO_FREE_SPACE

The specified disk does not have
enough free space to complete the
operation.

0x80042438

VDS_E_ACTIVE_PARTITION

An active partition was detected on
the selected disk, and it is not the
active partition that was used to boot
the active operating system.

0x80042439

VDS_E_PARTITION_OF_UNKNOWN_TYPE

The partition information cannot be
read.

0x8004243A

VDS_E_LEGACY_VOLUME_FORMAT

A partition with an unknown type was
detected on the specified disk.

0x8004243B

VDS_E_NON_CONTIGUOUS_DATA_PARTITIONS

The selected GPT disk contains two
basic data partitions that are separated
by an OEM partition.

0x8004243C

VDS_E_MIGRATE_OPEN_VOLUME

A volume on the specified disk could not
be opened.

0x8004243D

VDS_E_VOLUME_NOT_ONLINE

The volume is not online.

0x8004243E

VDS_E_VOLUME_NOT_HEALTHY

The volume is failing or has failed.

0x8004243F

VDS_E_VOLUME_SPANS_DISKS

The volume spans multiple disks.

0x80042440

VDS_E_REQUIRES_CONTIGUOUS_DISK_SPACE

The volume consists of multiple disk
extents. The operation failed because it
requires the volume to consist of a
single disk extent.

0x80042441

VDS_E_BAD_PROVIDER_DATA

A provider returned bad data.

0x80042442

VDS_E_PROVIDER_FAILURE

A provider failed to complete an
operation.

0x00042443

VDS_S_VOLUME_COMPRESS_FAILED

The file system was formatted
successfully but could not be
compressed.

0x80042444

VDS_E_PACK_OFFLINE

The pack is offline.

0x80042445

VDS_E_VOLUME_NOT_A_MIRROR

The volume is not a mirror.

0x80042446

VDS_E_NO_EXTENTS_FOR_VOLUME

No extents were found for the volume.

0x80042447

VDS_E_DISK_NOT_LOADED_TO_CACHE

The migrated disk failed to load to the
cache.

0x80042448 VDS encountered an internal error. For

95 / 342

[MS-VDS] - v20170601
Virtual Disk Service (VDS) Protocol
Copyright © 2017 Microsoft Corporation
Release: June 1, 2017

Return value/code Description

VDS_E_INTERNAL_ERROR more information, see the Windows
Event Log.

0x8004244A

VDS_E_PROVIDER_TYPE_NOT_SUPPORTED

The method call is not supported for the
specified provider type.

0x8004244B

VDS_E_DISK_NOT_ONLINE

One or more of the specified disks are
not online.

0x8004244C

VDS_E_DISK_IN_USE_BY_VOLUME

One or more extents of the disk are
already being used by the volume.

0x0004244D

VDS_S_IN_PROGRESS

The asynchronous operation is in
progress.

0x8004244E

VDS_E_ASYNC_OBJECT_FAILURE

Failure initializing the asynchronous

object.

0x8004244F

VDS_E_VOLUME_NOT_MOUNTED

The volume is not mounted.

0x80042450

VDS_E_PACK_NOT_FOUND

The pack was not found.

0x80042451

VDS_E_IMPORT_SET_INCOMPLETE

An attempt was made to import a
subset of the disks in the foreign pack.

0x80042452

VDS_E_DISK_NOT_IMPORTED

A disk in the import's source pack was
not imported.

0x80042453

VDS_E_OBJECT_OUT_OF_SYNC

The reference to the object might be
stale.

0x80042454

VDS_E_MISSING_DISK

The specified disk could not be found.

0x80042455

VDS_E_DISK_PNP_REG_CORRUPT

The provider's list of PnP registered
disks has become corrupted.

0x80042456

VDS_E_LBN_REMAP_ENABLED_FLAG

The provider does not support the
VDS_VF_LBN REMAP_ENABLED volume
flag.

0x80042457

VDS_E_NO_DRIVELETTER_FLAG

The provider does not support the
VDS_VF_NO DRIVELETTER volume flag.

0x80042458

VDS_E_REVERT_ON_CLOSE

The bRevertOnClose parameter can only
be set to TRUE if the VDS_VF_HIDDEN,
VDS_VF_READONLY,
VDS_VF_NO_DEFAULT_DRIVE_LETTER,
or VDS_VF_SHADOW_COPY volume flag
is set in the ulFlags parameter. For
more information, see
IVdsVolume::SetFlags.

0x80042459

VDS_E_REVERT_ON_CLOSE_SET

Some volume flags are already set. The
software clears these flags first, then
calls IVdsVolume::SetFlags again,
specifying TRUE for the bRevertOnClose

96 / 342

[MS-VDS] - v20170601
Virtual Disk Service (VDS) Protocol
Copyright © 2017 Microsoft Corporation
Release: June 1, 2017

Return value/code Description

parameter.

0x8004245A

VDS_E_IA64_BOOT_MIRRORED_TO_MBR

Not used. The boot volume has been
mirrored on a GPT disk to an MBR disk.
The machine will not be bootable from
the secondary plex.

0x0004245A

VDS_S_IA64_BOOT_MIRRORED_TO_MBR

The boot volume has been mirrored on
a GPT disk to an MBR disk. The machine
will not be bootable from the secondary
plex.

0x0004245B

VDS_S_UNABLE_TO_GET_GPT_ATTRIBUTES

Unable to retrieve the GPT attributes for
this volume, (hidden, read only and no
drive letter).

0x8004245C

VDS_E_VOLUME_TEMPORARILY_DISMOUNTED

The volume is already dismounted
temporarily.

0x8004245D

VDS_E_VOLUME_PERMANENTLY_DISMOUNTED

The volume is already permanently
dismounted. It cannot be dismounted
temporarily until it becomes mountable.

0x8004245E

VDS_E_VOLUME_HAS_PATH

The volume cannot be dismounted
permanently because it still has an
access path.

0x8004245F

VDS_E_TIMEOUT

The operation timed out.

0x80042460

VDS_E_REPAIR_VOLUMESTATE

The volume plex cannot be repaired.
The volume and plex MUST be online,
and MUST not be healthy or rebuilding.

0x80042461

VDS_E_LDM_TIMEOUT

The operation timed out in the Logical
Disk Manager Administrative service.
Retry the operation.

0x80042462

VDS_E_REVERT_ON_CLOSE_MISMATCH

The flags to be cleared do not match
the flags that were set previously when
the IVdsVolume::SetFlags method was
called with the bRevertOnClose
parameter set to TRUE.

0x80042463

VDS_E_RETRY

The operation failed. Retry the
operation.

0x80042464

VDS_E_ONLINE_PACK_EXISTS

The operation failed, because an online
pack object already exists.

0x00042465

VDS_S_EXTEND_FILE_SYSTEM_FAILED

The volume was extended successfully
but the file system failed to extend.

0x80042466

VDS_E_EXTEND_FILE_SYSTEM_FAILED

The file system failed to extend.

0x00042467

VDS_S_MBR_BOOT_MIRRORED_TO_GPT

The boot volume has been mirrored on

an MBR disk to a GPT disk. The machine
will not be bootable from the secondary
plex.

97 / 342

[MS-VDS] - v20170601
Virtual Disk Service (VDS) Protocol
Copyright © 2017 Microsoft Corporation
Release: June 1, 2017

Return value/code Description

0x80042468

VDS_E_MAX_USABLE_MBR

Only the first 2TB are usable on large
MBR disks. Cannot create partitions
beyond the 2TB mark, nor convert the
disk to dynamic.

0x00042469

VDS_S_GPT_BOOT_MIRRORED_TO_MBR

The boot volume on a GPT disk has
been mirrored to an MBR disk. The new
plex cannot be used to boot the
computer.

0x80042500

VDS_E_NO_SOFTWARE_PROVIDERS_LOADED

There are no software providers loaded.

0x80042501

VDS_E_DISK_NOT_MISSING

The disk is not missing.

0x80042502

VDS_E_NO_VOLUME_LAYOUT

The volume's layout could not be
retrieved.

0x80042503

VDS_E_CORRUPT_VOLUME_INFO

The volume's driver information is
corrupted.

0x80042504

VDS_E_INVALID_ENUMERATOR

The enumerator is corrupted

0x80042505

VDS_E_DRIVER_INTERNAL_ERROR

An internal error occurred in the volume
management driver.

0x80042507

VDS_E_VOLUME_INVALID_NAME

The volume name is not valid.

0x00042508

VDS_S_DISK_IS_MISSING

The disk is missing and not all
information could be returned.

0x80042509

VDS_E_CORRUPT_PARTITION_INFO

The disk's partition information is
corrupted.

0x0004250A

VDS_S_NONCONFORMANT_PARTITION_INFO

The disk's partition information does not
conform to what is expected on a
dynamic disk. The disk's partition
information is corrupted.

0x8004250B

VDS_E_CORRUPT_EXTENT_INFO

The disk's extent information is
corrupted.

0x8004250C

VDS_E_DUP_EMPTY_PACK_GUID

An empty pack already exists. Release
the existing empty pack before creating
another empty pack.

0x8004250D

VDS_E_DRIVER_NO_PACK_NAME

The volume management driver did not
return a pack name. Internal driver
error.

0x0004250E

VDS_S_SYSTEM_PARTITION

Warning: There was a failure while
checking for the system partition.

0x8004250F

VDS_E_BAD_PNP_MESSAGE

The PNP service sent a corrupted
notification to the provider.

98 / 342

[MS-VDS] - v20170601
Virtual Disk Service (VDS) Protocol
Copyright © 2017 Microsoft Corporation
Release: June 1, 2017

Return value/code Description

0x80042510

VDS_E_NO_PNP_DISK_ARRIVE

No disk arrival notification was received.

0x80042511

VDS_E_NO_PNP_VOLUME_ARRIVE

No volume arrival notification was
received.

0x80042512

VDS_E_NO_PNP_DISK_REMOVE

No disk removal notification was
received.

0x80042513

VDS_E_NO_PNP_VOLUME_REMOVE

No volume removal notification was
received.

0x80042514

VDS_E_PROVIDER_EXITING

The provider is exiting.

0x80042515

VDS_E_EXTENT_EXCEEDS_DISK_FREE_SPACE

The specified disk extent size is larger

than the amount of free disk space.

0x80042516

VDS_E_MEMBER_SIZE_INVALID

The specified plex member size is not
valid.

0x00042517

VDS_S_NO_NOTIFICATION

No volume arrival notification was
received. The software might need to
call IVdsService::Refresh.

0x00042518

VDS_S_DEFAULT_PLEX_MEMBER_IDS

Defaults have been used for the
member ids or plex ids.

0x80042519

VDS_E_INVALID_DISK

The specified disk is not valid.

0x8004251A

VDS_E_INVALID_PACK

The specified disk pack is not valid.

0x8004251B

VDS_E_VOLUME_ON_DISK

This operation is not allowed on disks
with volumes.

0x8004251C

VDS_E_DRIVER_INVALID_PARAM

The driver returned an invalid
parameter error.

0x8004251D

VDS_E_TARGET_PACK_NOT_EMPTY

The target pack is not empty.

0x8004251E

VDS_E_CANNOT_SHRINK

The file system does not support
shrinking this volume.

0x8004251F

VDS_E_MULTIPLE_PACKS

Specified disks are not all from the
same pack.

0x80042520

VDS_E_PACK_ONLINE

This operation is not allowed on online
packs. The pack MUST be offline.

0x80042521

VDS_E_INVALID_PLEX_COUNT

The plex count for the volume MUST be
greater than zero.

0x80042522

VDS_E_INVALID_MEMBER_COUNT

The member count for the volume
MUST be greater than zero.

99 / 342

[MS-VDS] - v20170601
Virtual Disk Service (VDS) Protocol
Copyright © 2017 Microsoft Corporation
Release: June 1, 2017

Return value/code Description

0x80042523

VDS_E_INVALID_PLEX_ORDER

The plex indexes MUST start at zero and
increase monotonically.

0x80042524

VDS_E_INVALID_MEMBER_ORDER

The member indexes MUST start at zero
and increase monotonically.

0x80042525

VDS_E_INVALID_STRIPE_SIZE

The stripe size in bytes MUST be a
power of 2 for striped and RAID-5
volume types and zero for all other
volume types.

0x80042526

VDS_E_INVALID_DISK_COUNT

The number of disks specified is not
valid for this operation.

0x80042527

VDS_E_INVALID_EXTENT_COUNT

An invalid number of extents was
specified for at least one disk.

0x80042528

VDS_E_SOURCE_IS_TARGET_PACK

The source and target packs MUST be
distinct.

0x80042529

VDS_E_VOLUME_DISK_COUNT_MAX_EXCEEDED

The specified number of disks is too
large. VDS imposes a 32-disk limit on
spanned, striped, and striped with
parity (RAID-5) volumes.

0x8004252A

VDS_E_CORRUPT_NOTIFICATION_INFO

The driver's notification information is
corrupt.

0x8004252C

VDS_E_INVALID_PLEX_GUID

GUID_NULL is not a valid plex GUID.

0x8004252D

VDS_E_DISK_NOT_FOUND_IN_PACK

The specified disks do not belong to the
same pack.

0x8004252E

VDS_E_DUPLICATE_DISK

The same disk was specified more than
once.

0x8004252F

VDS_E_LAST_VALID_DISK

The operation cannot be completed
because there is only one valid disk in
the pack.

0x80042530

VDS_E_INVALID_SECTOR_SIZE

All disks holding extents for a given
volume MUST have the same valid
sector size.

0x80042531

VDS_E_ONE_EXTENT_PER_DISK

A single disk cannot contribute to
multiple members or multiple plexes of
the same volume.

0x80042532

VDS_E_INVALID_BLOCK_SIZE

Neither the volume stripe size nor the
disk sector size was found to be non-
zero.

0x80042533

VDS_E_PLEX_SIZE_INVALID

The size of the volume plex is invalid.

0x80042534

VDS_E_NO_EXTENTS_FOR_PLEX

No extents were found for the plex.

100 / 342

[MS-VDS] - v20170601
Virtual Disk Service (VDS) Protocol
Copyright © 2017 Microsoft Corporation
Release: June 1, 2017

Return value/code Description

0x80042535

VDS_E_INVALID_PLEX_TYPE

The plex type is invalid.

0x80042536

VDS_E_INVALID_PLEX_BLOCK_SIZE

The plex block size MUST be nonzero.

0x80042537

VDS_E_NO_HEALTHY_DISKS

All of the disks involved in the operation
are either missing or failed.

0x80042538

VDS_E_CONFIG_LIMIT

The Logical Disk Management database
is full and no more volumes or disks can
be configured.

0x80042539

VDS_E_DISK_CONFIGURATION_CORRUPTED

The disk configuration data is corrupted.

0x8004253A

VDS_E_DISK_CONFIGURATION_NOT_IN_SYNC

The disk configuration is not in sync
with the in-memory configuration.

0x8004253B

VDS_E_DISK_CONFIGURATION_UPDATE_FAILED

One or more disks failed to be updated
with the new configuration.

0x8004253C

VDS_E_DISK_DYNAMIC

The disk is already dynamic.

0x8004253D

VDS_E_DRIVER_OBJECT_NOT_FOUND

The object was not found in the driver
cache.

0x8004253E

VDS_E_PARTITION_NOT_CYLINDER_ALIGNED

The disk layout contains partitions
which are not cylinder aligned.

0x8004253F

VDS_E_DISK_LAYOUT_PARTITIONS_TOO_SMALL

The disk layout contains partitions
which are less than the minimum
required size.

0x80042540

VDS_E_DISK_IO_FAILING

The IO to the disk is failing.

0x80042541

VDS_E_DYNAMIC_DISKS_NOT_SUPPORTED

Dynamic disks are not supported by this
operating system or server
configuration. Dynamic disks are not
supported on clusters.

0x80042542

VDS_E_FAULT_TOLERANT_DISKS_NOT_SUPPORTED

The fault tolerant disks are not
supported by this operating system.

0x80042543

VDS_E_GPT_ATTRIBUTES_INVALID

Invalid GPT attributes were specified.

0x80042544

VDS_E_MEMBER_IS_HEALTHY

The member is not stale or detached.

0x80042545

VDS_E_MEMBER_REGENERATING

The member is regenerating.

0x80042546

VDS_E_PACK_NAME_INVALID

The pack name is invalid.

101 / 342

[MS-VDS] - v20170601
Virtual Disk Service (VDS) Protocol
Copyright © 2017 Microsoft Corporation
Release: June 1, 2017

Return value/code Description

0x80042547

VDS_E_PLEX_IS_HEALTHY

The plex is not stale or detached.

0x80042548

VDS_E_PLEX_LAST_ACTIVE

The last healthy plex cannot be
removed.

0x80042549

VDS_E_PLEX_MISSING

The plex is missing.

0x8004254A

VDS_E_MEMBER_MISSING

The member is missing.

0x8004254B

VDS_E_PLEX_REGENERATING

The plex is regenerating.

0x8004254D

VDS_E_UNEXPECTED_DISK_LAYOUT_CHANGE

An unexpected layout change occurred

external to the volume manager.

0x8004254E

VDS_E_INVALID_VOLUME_LENGTH

The volume length is invalid.

0x8004254F

VDS_E_VOLUME_LENGTH_NOT_SECTOR_SIZE_MULTIPLE

The volume length is not a multiple of
the sector size.

0x80042550

VDS_E_VOLUME_NOT_RETAINED

The volume does not have a retained
partition association.

0x80042551

VDS_E_VOLUME_RETAINED

The volume already has a retained
partition association.

0x80042553

VDS_E_ALIGN_BEYOND_FIRST_CYLINDER

The specified alignment is beyond the
first cylinder.

0x80042554

VDS_E_ALIGN_NOT_SECTOR_SIZE_MULTIPLE

The specified alignment is not a multiple
of the sector size.

0x80042555

VDS_E_ALIGN_NOT_ZERO

The specified partition type cannot be
created with a non-zero alignment.

0x80042556

VDS_E_CACHE_CORRUPT

The service's cache has become corrupt.

0x80042557

VDS_E_CANNOT_CLEAR_VOLUME_FLAG

The specified volume flag cannot be
cleared.

0x80042558

VDS_E_DISK_BEING_CLEANED

The operation is not allowed on a disk
that is in the process of being cleaned.

0x80042559

VDS_E_DISK_NOT_CONVERTIBLE

The specified disk is not convertible.
CDROMs and DVDs are examples of disk
that are not convertible.

0x8004255A

VDS_E_DISK_REMOVEABLE

The operation is not supported on
removable media.

0x8004255B

VDS_E_DISK_REMOVEABLE_NOT_EMPTY

The operation is not supported on a
non-empty removable disk.

102 / 342

[MS-VDS] - v20170601
Virtual Disk Service (VDS) Protocol
Copyright © 2017 Microsoft Corporation
Release: June 1, 2017

Return value/code Description

0x8004255C

VDS_E_DRIVE_LETTER_NOT_FREE

The specified drive letter is not free to
be assigned.

0x8004255D

VDS_E_EXTEND_MULTIPLE_DISKS_NOT_SUPPORTED

Extending the volume onto multiple
disks is not supported by this provider.

0x8004255E

VDS_E_INVALID_DRIVE_LETTER

The specified drive letter is not valid.

0x8004255F

VDS_E_INVALID_DRIVE_LETTER_COUNT

The specified number of drive letters to
retrieve is not valid.

0x80042560

VDS_E_INVALID_FS_FLAG

The specified file system flag is not
valid.

0x80042561

VDS_E_INVALID_FS_TYPE

The specified file system is not valid.

0x80042562

VDS_E_INVALID_OBJECT_TYPE

The specified object type is not valid.

0x80042563

VDS_E_INVALID_PARTITION_LAYOUT

The specified partition layout is invalid.

0x80042564

VDS_E_INVALID_PARTITION_STYLE

VDS only supports MBR or GPT partition
style disks.

0x80042565

VDS_E_INVALID_PARTITION_TYPE

The specified partition type is not valid
for this operation.

0x80042566

VDS_E_INVALID_PROVIDER_CLSID

The specified provider clsid cannot be a
NULL GUID.

0x80042567

VDS_E_INVALID_PROVIDER_ID

The specified provider id cannot be a
NULL GUID.

0x80042568

VDS_E_INVALID_PROVIDER_NAME

The specified provider name is invalid.

0x80042569

VDS_E_INVALID_PROVIDER_TYPE

The specified provider type is invalid.

0x8004256A

VDS_E_INVALID_PROVIDER_VERSION_GUID

The specified provider version GUID
cannot be a NULL GUID.

0x8004256B

VDS_E_INVALID_PROVIDER_VERSION_STRING

The specified provider version string is
invalid.

0x8004256C

VDS_E_INVALID_QUERY_PROVIDER_FLAG

The specified query provider flag is
invalid.

0x8004256D

VDS_E_INVALID_SERVICE_FLAG

The specified service flag is invalid.

0x8004256E

VDS_E_INVALID_VOLUME_FLAG

The specified volume flag is invalid.

103 / 342

[MS-VDS] - v20170601
Virtual Disk Service (VDS) Protocol
Copyright © 2017 Microsoft Corporation
Release: June 1, 2017

Return value/code Description

0x8004256F

VDS_E_PARTITION_NOT_OEM

The operation is only supported on an
OEM, ESP, or unknown partition.

0x80042570

VDS_E_PARTITION_PROTECTED

Cannot delete a protected partition
without the force protected parameter
set, (see bForceProtected parameter in
IVdsAdvancedDisk::DeletePartition).

0x80042571

VDS_E_PARTITION_STYLE_MISMATCH

The specified partition style is not the
same as the disk's partition style.

0x80042572

VDS_E_PROVIDER_INTERNAL_ERROR

An internal error has occurred in the
provider.

0x80042573

VDS_E_SHRINK_SIZE_LESS_THAN_MIN

The specified shrink size is less than the
minimum shrink size allowed.

0x80042574

VDS_E_SHRINK_SIZE_TOO_BIG

The specified shrink size is too large and
will cause the volume to be smaller than
the minimum volume size.

0x80042575

VDS_E_UNRECOVERABLE_PROVIDER_ERROR

An unrecoverable error occurred in a
provider. The service MUST be shut
down to regain full functionality.

0x80042576

VDS_E_VOLUME_HIDDEN

Cannot assign a mount point to a
hidden volume.

0x00042577

VDS_S_DISMOUNT_FAILED

Failed to dismount the volume after
setting the volume flags.

0x00042578

VDS_S_REMOUNT_FAILED

Failed to remount the volume after
setting the volume flags.

0x80042579

VDS_E_FLAG_ALREADY_SET

Cannot set the specified flag as revert-
on-close because it is already set. For

more information, see the
bRevertOnClose parameter of
IVdsVolume::SetFlags.

0x0004257A

VDS_S_RESYNC_NOTIFICATION_TASK_FAILED

Failure. If the volume is a mirror
volume or a raid5 volume, no
resynchronization notifications will be
sent.

0x8004257B

VDS_E_DISTINCT_VOLUME

The input volume id cannot be the id of
the volume that is the target of the
operation.

0x8004257C

VDS_E_VOLUME_NOT_FOUND_IN_PACK

The specified volumes do not belong to
the same pack.

0x8004257D

VDS_E_PARTITION_NON_DATA

The specified partition is a not a primary
or logical volume.

0x8004257E

VDS_E_CRITICAL_PLEX

The specified plex is the current system
or boot plex.

0x8004257F The operation cannot be completed

104 / 342

[MS-VDS] - v20170601
Virtual Disk Service (VDS) Protocol
Copyright © 2017 Microsoft Corporation
Release: June 1, 2017

Return value/code Description

VDS_E_VOLUME_SYNCHRONIZING because the volume is synchronizing.

0x80042580

VDS_E_VOLUME_REGENERATING

The operation cannot be completed
because the volume is regenerating.

0x00042581

VDS_S_VSS_FLUSH_AND_HOLD_WRITES

Failed to flush and hold Volume
Snapshot Service writes.

0x00042582

VDS_S_VSS_RELEASE_WRITES

Failed to release Volume Snapshot
Service writes.

0x00042583

VDS_S_FS_LOCK

Failed to obtain a file system lock.

0x80042584

VDS_E_READONLY

The volume is read only.

0x80042585

VDS_E_INVALID_VOLUME_TYPE

The volume type is invalid for this
operation.

0x80042586

VDS_E_BAD_BOOT_DISK

The boot disk experienced failures when
the driver attempted to online the pack.

0x80042587

VDS_E_LOG_UPDATE

The driver failed to update the log on at
least one disk.

0x80042588

VDS_E_VOLUME_MIRRORED

This operation is not supported on a
mirrored volume.

0x80042589

VDS_E_VOLUME_SIMPLE_SPANNED

The operation is only supported on
simple or spanned volumes.

0x8004258A

VDS_E_NO_VALID_LOG_COPIES

This pack has no valid log copies.

0x0004258B

VDS_S_PLEX_NOT_LOADED_TO_CACHE

This plex is present in the driver, but
has not yet been loaded to the provider
cache. A volume modified notification
will be sent by the service once the plex
has been loaded to the provider cache.

0x8004258B

VDS_E_PLEX_NOT_LOADED_TO_CACHE

This plex is present in the driver, but
has not yet been loaded to the provider
cache. A volume modified notification
will be sent by the service once the plex
has been loaded to the provider cache.

0x8004258C

VDS_E_PARTITION_MSR

The operation is not supported on MSR
partitions.

0x8004258D

VDS_E_PARTITION_LDM

The operation is not supported on LDM
partitions.

0x0004258E

VDS_S_WINPE_BOOTENTRY

The boot entries cannot be updated
automatically on WinPE. It might be
necessary to manually update the boot
entry for any installed operating
systems.

105 / 342

[MS-VDS] - v20170601
Virtual Disk Service (VDS) Protocol
Copyright © 2017 Microsoft Corporation
Release: June 1, 2017

Return value/code Description

0x8004258F

VDS_E_ALIGN_NOT_A_POWER_OF_TWO

The alignment is not a power of two.

0x80042590

VDS_E_ALIGN_IS_ZERO

The alignment is zero.

0x80042591

VDS_E_SHRINK_IN_PROGRESS

A defragmentation or volume shrink
operation is already in progress. Only
one of these operations can run at a
time.

0x80042592

VDS_E_CANT_INVALIDATE_FVE

BitLocker encryption could not be
disabled for the volume.

0x80042593

VDS_E_FS_NOT_DETERMINED

The default file system could not be
determined.

0x80042595

VDS_E_DISK_NOT_OFFLINE

This disk is already online.

0x80042596

VDS_E_FAILED_TO_ONLINE_DISK

The online operation failed.

0x80042597

VDS_E_FAILED_TO_OFFLINE_DISK

The offline operation failed.

0x80042598

VDS_E_BAD_REVISION_NUMBER

The operation could not be completed
because the specified revision number is
not supported.

0x80042599

VDS_E_SHRINK_USER_CANCELLED

The shrink operation was canceled by
the user.

0x8004259A

VDS_E_SHRINK_DIRTY_VOLUME

The volume selected for shrink might be
corrupted. Use a file system repair
utility to fix the corruption problem and

then try to shrink the volume again.

0x00042700

VDS_S_NAME_TRUNCATED

The name was set successfully but had
to be truncated.

0x80042701

VDS_E_NAME_NOT_UNIQUE

The specified name is not unique.

0x00042702

VDS_S_STATUSES_INCOMPLETELY_SET

At least one path's status was not
successfully set due to a nonfatal error
(for example, the status conflicts with
the current load balance policy).

0x80042703

VDS_E_ADDRESSES_INCOMPLETELY_SET

At least one portal's tunnel address,
which is the address of a portal that is
running IPsec in tunnel mode, is not set
successfully.

0x80042705

VDS_E_SECURITY_INCOMPLETELY_SET

At least one portal's security settings
are not set successfully.

0x80042706

VDS_E_TARGET_SPECIFIC_NOT_SUPPORTED

The initiator service does not support
setting target-specific shared secrets.

106 / 342

[MS-VDS] - v20170601
Virtual Disk Service (VDS) Protocol
Copyright © 2017 Microsoft Corporation
Release: June 1, 2017

Return value/code Description

0x80042707

VDS_E_INITIATOR_SPECIFIC_NOT_SUPPORTED

The target does not support setting
initiator-specific shared secrets.

0x80042708

VDS_E_ISCSI_LOGIN_FAILED

Another operation is in progress. This
operation cannot proceed until the
previous operations are complete.

0x80042709

VDS_E_ISCSI_LOGOUT_FAILED

The attempt to log out from the
specified iSCSI session failed.

0x8004270A

VDS_E_ISCSI_SESSION_NOT_FOUND

VDS could not find a session matching
the specified iSCSI target.

0x8004270B

VDS_E_ASSOCIATED_LUNS_EXIST

LUNs are associated with this target. All
LUNs MUST be disassociated from this
target before the target can be deleted.

0x8004270C

VDS_E_ASSOCIATED_PORTALS_EXIST

Portals are associated with this portal
group. All portals MUST be
disassociated from this portal group
before the portal group can be deleted.

0x8004270D

VDS_E_NO_DISCOVERY_DOMAIN

The initiator does not exist in an iSNS
discovery domain.

0x8004270E

VDS_E_MULTIPLE_DISCOVERY_DOMAINS

The initiator exists in more than one
iSNS discovery domain.

0x8004270F

VDS_E_NO_DISK_PATHNAME

The disk's path could not be retrieved.
Some operations on the disk might fail.

0x80042710

VDS_E_ISCSI_LOGOUT_INCOMPLETE

At least one iSCSI session logout
operation did not complete successfully.

0x80042711

VDS_E_NO_VOLUME_PATHNAME

The path could not be retrieved for one
or more volumes.

0x80042712

VDS_E_PROVIDER_CACHE_OUTOFSYNC

The provider's cache is not in sync with
the driver cache.

0x80042713

VDS_E_NO_IMPORT_TARGET

No import target was set for the
subsystem.

0x00042714

VDS_S_ALREADY_EXISTS

The object already exists.

0x00042715

VDS_S_PROPERTIES_INCOMPLETE

Some, but not all, of the properties
were successfully retrieved. Note that
there are many possible reasons for
failing to retrieve all properties,
including device removal.

0x00042800

VDS_S_ISCSI_SESSION_NOT_FOUND_PERSISTENT_LOGIN_REMOVED

VDS could not find any sessions
matching the specified iSCSI target, but
one or more persistent logins were
found and removed.

0x00042801

VDS_S_ISCSI_PERSISTENT_LOGIN_MAY_NOT_BE_REMOVED

If a persistent login was set up for the
target, it possibly was not removed.

107 / 342

[MS-VDS] - v20170601
Virtual Disk Service (VDS) Protocol
Copyright © 2017 Microsoft Corporation
Release: June 1, 2017

Return value/code Description

Check the iSCSI Initiator Control Panel
to remove it if necessary.

0x00042802

VDS_S_ISCSI_LOGIN_ALREAD_EXISTS

The attempt to log in to the iSCSI target
failed because the session already
exists.

0x80042803

VDS_E_UNABLE_TO_FIND_BOOT_DISK

Volume disk extent information could
not be retrieved for the boot volume.

0x80042804

VDS_E_INCORRECT_BOOT_VOLUME_EXTENT_INFO

More than two disk extents were
reported for the boot volume. This is a
system error.

0x80042805

VDS_E_GET_SAN_POLICY

A driver error was reported when
getting the SAN policy.

0x80042806

VDS_E_SET_SAN_POLICY

A driver error was reported when
setting the SAN policy.

0x80042807

VDS_E_BOOT_DISK

Disk attributes cannot be changed on
the boot disk.

0x00042808

VDS_S_DISK_MOUNT_FAILED

One or more of the volumes on the disk
could not be mounted, possibly because
it was already mounted.

0x00042809

VDS_S_DISK_DISMOUNT_FAILED

One or more of the volumes on the disk
could not be dismounted, possibly
because it was already dismounted.

0x8004280A

VDS_E_DISK_IS_OFFLINE

The operation cannot be performed on a
disk that is offline.

0x8004280B

VDS_E_DISK_IS_READ_ONLY

The operation cannot be performed on a
disk that is read-only.

0x8004280C

VDS_E_PAGEFILE_DISK

The operation cannot be performed on a
disk that contains a pagefile volume.

0x8004280D

VDS_E_HIBERNATION_FILE_DISK

The operation cannot be performed on a
disk that contains a hibernation file
volume.

0x8004280E

VDS_E_CRASHDUMP_DISK

The operation cannot be performed on a
disk that contains a crashdump file
volume.

0x8004280F

VDS_E_UNABLE_TO_FIND_SYSTEM_DISK

A system error occurred while retrieving
the system disk information.

0x80042810

VDS_E_INCORRECT_SYSTEM_VOLUME_EXTENT_INFO

Multiple disk extents reported for the
system volume - system error.

0x80042811

VDS_E_SYSTEM_DISK

Disk attributes cannot be changed on
the current system disk or BIOS disk 0.

0x80042812

VDS_E_VOLUME_SHRINK_FVE_LOCKED

The volume could not be shrunken
because it is locked by BitLocker.
Unlock the volume and try again.

108 / 342

[MS-VDS] - v20170601
Virtual Disk Service (VDS) Protocol
Copyright © 2017 Microsoft Corporation
Release: June 1, 2017

Return value/code Description

0x80042813

VDS_E_VOLUME_SHRINK_FVE_CORRUPT

The volume could not be shrunken
because it is locked due to a BitLocker
error. Use BitLocker tools to recover the
volume and try again.

0x80042814

VDS_E_VOLUME_SHRINK_FVE_RECOVERY

The volume could not be shrunken
because it is marked for BitLocker
recovery. Use BitLocker tools to recover
the volume and try again.

0x80042815

VDS_E_VOLUME_SHRINK_FVE

The volume could not be shrunken
because it is encrypted by BitLocker and
Fveapi.dll could not be loaded to

determine its status. For this operation
to succeed, Fveapi.dll MUST be available
in %SystemRoot%\System32\.

0x80042816

VDS_E_SHRINK_OVER_DATA

The SHRINK operation against the
selected LUN cannot be completed.
Completing the operation using the
specified parameters will overwrite
volumes containing user data.

0x80042817

VDS_E_INVALID_SHRINK_SIZE

The SHRINK operation against the
selected LUN cannot be completed. The
specified size is greater than the size of
the LUN.

0x80042818

VDS_E_LUN_DISK_MISSING

The SHRINK operation against the
selected LUN cannot be completed. The
current state of the disk associated with
the LUN is MISSING.

0x80042819

VDS_E_LUN_DISK_FAILED

The SHRINK operation against the
selected LUN cannot be completed. The
current state of the disk associated with
the LUN is FAILED.

0x8004281A

VDS_E_LUN_DISK_NOT_READY

The SHRINK operation against the
selected LUN cannot be completed. The
current state of the disk associated with
the LUN is NOT READY.

0x8004281B

VDS_E_LUN_DISK_NO_MEDIA

The SHRINK operation against the
selected LUN cannot be completed. The
current state of the disk associated with
the LUN is NO MEDIA.

0x8004281C

VDS_E_LUN_NOT_READY

The SHRINK operation against the
selected LUN cannot be completed. The

current state of the LUN is NOT READY.

0x8004281D

VDS_E_LUN_OFFLINE

The SHRINK operation against the
selected LUN cannot be completed. The
current state of the LUN is OFFLINE.

0x8004281E

VDS_E_LUN_FAILED

The SHRINK operation against the
selected LUN cannot be completed. The
current state of the LUN is FAILED.

0x8004281F

VDS_E_VOLUME_EXTEND_FVE_LOCKED

The volume could not be extended
because it is locked by BitLocker.
Unlock the volume and retry the

109 / 342

[MS-VDS] - v20170601
Virtual Disk Service (VDS) Protocol
Copyright © 2017 Microsoft Corporation
Release: June 1, 2017

Return value/code Description

operation.

0x80042820

VDS_E_VOLUME_EXTEND_FVE_CORRUPT

The volume could not be extended
because it is locked due to a BitLocker
error. Use BitLocker tools to recover the
volume and retry the operation.

0x80042821

VDS_E_VOLUME_EXTEND_FVE_RECOVERY

The volume could not be extended
because it is marked for BitLocker
recovery. Use BitLocker tools to recover
the volume and retry the operation.

0x80042822

VDS_E_VOLUME_EXTEND_FVE

The volume could not be extended
because it is encrypted by BitLocker and
Fveapi.dll could not be loaded to
determine its status. For this operation
to succeed, Fveapi.dll MUST be available
in %SystemRoot%\System32\.

0x80042823

VDS_E_SECTOR_SIZE_ERROR

The sector size MUST be non-zero, a
power of 2, and less than the maximum
sector size.

0x80042900

VDS_E_INITIATOR_ADAPTER_NOT_FOUND

The initiator adapter was not found. For
calls to GetPathInfo(), the initiator
adapter is associated with the path end
point.

0x80042901

VDS_E_TARGET_PORTAL_NOT_FOUND

The target portal was not found. For
calls to GetPathInfo(), the target portal
is associated with the path end point.

0x80042902

VDS_E_INVALID_PORT_PATH

The path returned for the port is invalid.

Either it has an incorrect port type
specified, or, the HBA port properties
structure is NULL.

0x80042903

VDS_E_INVALID_ISCSI_TARGET_NAME

An invalid iSCSI target name was
returned from the provider.

0x80042904

VDS_E_SET_TUNNEL_MODE_OUTER_ADDRESS

Call to set the iSCSI tunnel mode outer
address failed.

0x80042905

VDS_E_ISCSI_GET_IKE_INFO

Call to get the iSCSI IKE info failed.

0x80042906

VDS_E_ISCSI_SET_IKE_INFO

Call to set the iSCSI IKE info failed.

0x80042907

VDS_E_SUBSYSTEM_ID_IS_NULL

The provider returned a NULL
subsystem identification string.

0x80042908

VDS_E_ISCSI_INITIATOR_NODE_NAME

Failed to get the iSCSI initiator node
name.

0x80042909

VDS_E_ISCSI_GROUP_PRESHARE_KEY

Failed to set iSCSI group pre-shared
key.

0x8004290A

VDS_E_ISCSI_CHAP_SECRET

Failed to set iSCSI initiator CHAP secret.

110 / 342

[MS-VDS] - v20170601
Virtual Disk Service (VDS) Protocol
Copyright © 2017 Microsoft Corporation
Release: June 1, 2017

Return value/code Description

0x8004290B

VDS_E_INVALID_IP_ADDRESS

An invalid IP address was encountered.

0x8004290C

VDS_E_REBOOT_REQUIRED

A reboot is required before any further
operations are initiated. Without a
reboot, machine behavior and machine
state are undefined for any further
operations.

0x8004290D

VDS_E_VOLUME_GUID_PATHNAME_NOT_ALLOWED

Volume GUID pathnames are not valid
input to this method.

0x8004290E

VDS_E_BOOT_PAGEFILE_DRIVE_LETTER

Assigning or removing drive letters on
the current boot or pagefile volume is
not allowed.

0x8004290F

VDS_E_DELETE_WITH_CRITICAL

Delete is not allowed on the current
boot, system, pagefile, crashdump or
hibernation volume.

0x80042910

VDS_E_CLEAN_WITH_DATA

The FORCE parameter, (see the bForce
parameter in
IVdsAdvancedDisk::Clean), MUST be
set to TRUE in order to clean a disk that
contains a data volume.

0x80042911

VDS_E_CLEAN_WITH_OEM

The FORCE parameter, (see the
bForceOEM parameter in
IVdsAdvancedDisk::Clean), MUST be
set to TRUE in order to clean a disk that
contains an OEM volume.

0x80042912

VDS_E_CLEAN_WITH_CRITICAL

Clean is not allowed on the disk

containing the current boot, system,
pagefile, crashdump or hibernation
volume.

0x80042913

VDS_E_FORMAT_CRITICAL

Format is not allowed on the current
boot, system, pagefile, crashdump or
hibernation volume.

0x80042914

VDS_E_NTFS_FORMAT_NOT_SUPPORTED

The NTFS file system format is not
supported on this volume.

0x80042915

VDS_E_FAT32_FORMAT_NOT_SUPPORTED

The FAT32 file system format is not
supported on this volume.

0x80042916

VDS_E_FAT_FORMAT_NOT_SUPPORTED

The FAT file system format is not
supported on this volume.

0x80042917

VDS_E_FORMAT_NOT_SUPPORTED

The volume is not formattable.

0x80042918

VDS_E_COMPRESSION_NOT_SUPPORTED

The specified file system does not
support compression.

0x80042919

VDS_E_VDISK_NOT_OPEN

The virtual disk object has not been
opened yet.

0x8004291A The requested operation cannot be

111 / 342

[MS-VDS] - v20170601
Virtual Disk Service (VDS) Protocol
Copyright © 2017 Microsoft Corporation
Release: June 1, 2017

Return value/code Description

VDS_E_VDISK_INVALID_OP_STATE performed on the virtual disk object,
because it is not in a state that permits
it.

0x8004291B

VDS_E_INVALID_PATH

The path returned for the LUN is invalid.
It has an incorrect path type specified.

0x8004291C

VDS_E_INVALID_ISCSI_PATH

The path returned for the LUN is invalid.
Either it has an incorrect path type
specified, or, the initiator portal
properties structure is NULL.

0x8004291D

VDS_E_SHRINK_LUN_NOT_UNMASKED

The SHRINK operation against the
selected LUN cannot be completed. The
LUN is not unmasked to the local
server.

0x8004291E

VDS_E_LUN_DISK_READ_ONLY

The SHRINK operation against the
selected LUN cannot be completed. The
current state of the disk associated with
the LUN is READ ONLY.

0x8004291F

VDS_E_LUN_UPDATE_DISK

The operation against the selected LUN
completed, but there was a failure
updating the status of the disk
associated with the LUN. Call REFRESH
to retry the status update for the disk.

0x80042920

VDS_E_LUN_DYNAMIC

The SHRINK operation against the
selected LUN cannot be completed. The
current state of the disk associated with
the LUN is DYNAMIC.

0x80042921

VDS_E_LUN_DYNAMIC_OFFLINE

The SHRINK operation against the
selected LUN cannot be completed. The
current state of the disk associated with
the LUN is DYNAMIC OFFLINE.

0x80042922

VDS_E_LUN_SHRINK_GPT_HEADER

The SHRINK operation against the
selected LUN cannot be completed. The
disk has the GPT partitioning format.
The specified new LUN size does not
allow space for a new GPT backup
header to be created. Please increase
the resulting LUN size.

0x80042923

VDS_E_MIRROR_NOT_SUPPORTED

Mirrored volumes are not supported by
this operating system.

0x80042924

VDS_E_RAID5_NOT_SUPPORTED

RAID-5 volumes are not supported by
this operating system.

0x80042925

VDS_E_DISK_NOT_CONVERTIBLE_SIZE

The specified disk is not convertible
because the size is less than the
minimum size required for GPT disks.

0x80042926

VDS_E_OFFLINE_NOT_SUPPORTED

The volume does not support offlining.

0x80042927

VDS_E_VDISK_PATHNAME_INVALID

The pathname for a virtual disk MUST
be fully qualified.

112 / 342

[MS-VDS] - v20170601
Virtual Disk Service (VDS) Protocol
Copyright © 2017 Microsoft Corporation
Release: June 1, 2017

Return value/code Description

0x80042928

VDS_E_EXTEND_TOO_MANY_CLUSTERS

The volume cannot be extended
because the number of clusters will
exceed the maximum number of
clusters supported by the file system.

0x80042929

VDS_E_EXTEND_UNKNOWN_FILESYSTEM

The volume cannot be extended
because the volume does not contain a
recognized file system.

0x8004292A

VDS_E_SHRINK_UNKNOWN_FILESYSTEM

The volume cannot be shrunken
because the volume does not contain a
recognized file system.

0x8004292B

VDS_E_VD_DISK_NOT_OPEN

The requested operation requires that
the virtual disk be opened.

0x8004292C

VDS_E_VD_DISK_IS_EXPANDING

The requested operation cannot be
performed while the virtual disk is
expanding.

0x8004292D

VDS_E_VD_DISK_IS_COMPACTING

The requested operation cannot be
performed while the virtual disk is
compacting.

0x8004292E

VDS_E_VD_DISK_IS_MERGING

The requested operation cannot be
performed while the virtual disk is
merging.

0x8004292F

VDS_E_VD_IS_ATTACHED

The requested operation cannot be
performed while the virtual disk is
attached.

0x80042930

VDS_E_VD_DISK_ALREADY_OPEN

The virtual disk is already open and
cannot be opened a second time. Please
close all clients that have opened the
virtual disk and retry.

0x80042931

VDS_E_VD_DISK_ALREADY_EXPANDING

The virtual disk is already in the process
of expanding.

0x80042932

VDS_E_VD_ALREADY_COMPACTING

The virtual disk is already in the process
of compacting.

0x80042933

VDS_E_VD_ALREADY_MERGING

The virtual disk is already in the process
of merging.

0x80042934

VDS_E_VD_ALREADY_ATTACHED

The virtual disk is already attached.

0x80042935

VDS_E_VD_ALREADY_DETACHED

The virtual disk is already detached.

0x80042936

VDS_E_VD_NOT_ATTACHED_READONLY

The requested operation requires that
the virtual disk be attached read only.

0x80042937

VDS_E_VD_IS_BEING_ATTACHED

The requested operation cannot be
performed while the virtual disk is being

attached.

0x80042938 The requested operation cannot be
performed while the virtual disk is being

113 / 342

[MS-VDS] - v20170601
Virtual Disk Service (VDS) Protocol
Copyright © 2017 Microsoft Corporation
Release: June 1, 2017

Return value/code Description

VDS_E_VD_IS_BEING_DETACHED detached.

0x00044244

VDS_S_ACCESS_PATH_NOT_DELETED

The access paths on the volume is not
deleted.

114 / 342

[MS-VDS] - v20170601
Virtual Disk Service (VDS) Protocol
Copyright © 2017 Microsoft Corporation
Release: June 1, 2017

3 Protocol Details

The following sections specify details of the VDS Remote Protocol, including abstract data models,
interface method syntax, and message processing rules.

3.1 Interfaces

All VDS interfaces that are listed in this section inherit the IUnknown interface. For all VDS interfaces,
method opnum field values start with 3; opnum values 0, 1, and 2 represent the
IUnknown::QueryInterface, IUnknown::AddRef, and IUnknown::Release methods, respectively. For
more information, see [MS-DCOM] section 3.1.1.5.8.

The interfaces in this section are listed in the following order:

 Generic object interfaces: Enumeration Object Interfaces (section 3.1.1) through Asynchronous
Operation Object Interfaces (section 3.1.3).

 Service object interfaces: Service Object Interfaces (section 3.1.5) through HBA Port Object
Interfaces (section 3.1.6).

 Provider interfaces: Provider Object Interfaces (section 3.1.9).

 Pack interfaces: Pack Object Interfaces (section 3.1.11).

 Disk interfaces: Disk Object Interfaces (section 3.1.12).

 Volume interfaces: Volume Object Interfaces (section 3.1.13).

 Volume plex interfaces: Volume Plex Object Interfaces (section 3.1.14).

This order reflects the logical hierarchy of objects in VDS. For more information, see section 3.4.1.

To retrieve the interfaces of a particular object, call the QueryInterface method on the DCOM
IUnknown interfaces of the object as defined in [MS-DCOM] section 3.1.1.5.8.

Unless otherwise specified, all methods MUST return zero or a nonerror HRESULT (as specified in [MS-
ERREF]) on success, or an implementation-specific nonzero error code on failure (see section 2.2.3 for

more information on the HRESULT values predefined by the Virtual Disk Service Remote Protocol).

Unless otherwise specified, client implementations of this protocol MUST NOT take any action on an
error code, but rather, return the error to the invoking application.

The set of required and optional interfaces is organized into five groups. Group 1 is the required set of
interfaces. Groups 2 through 6 are optional sets of interfaces.<53>

If one interface from an optional group is implemented, all interfaces in that group MUST be

implemented.

The groups form an additive set: Group 1 is required. If one interface from group 2 is implemented, all
interfaces in group 1 and group 2 are implemented. If one interface from group 3 is implemented, that

implies that all interfaces in groups 1, 2, and 3 are implemented.

Group 1

Parameter Value
Additive set of interfaces that
MUST be implemented

RPC interface UUID for
IEnumVdsObject

118610B7-8D94-4030-B5B8-
500889788E4E

Group 1

%5bMS-DCOM%5d.pdf#Section_4a893f3dbd2948cd9f43d9777a4415b0
%5bMS-ERREF%5d.pdf#Section_1bc92ddfb79e413cbbaa99a5281a6c90
%5bMS-ERREF%5d.pdf#Section_1bc92ddfb79e413cbbaa99a5281a6c90

115 / 342

[MS-VDS] - v20170601
Virtual Disk Service (VDS) Protocol
Copyright © 2017 Microsoft Corporation
Release: June 1, 2017

Parameter Value
Additive set of interfaces that
MUST be implemented

RPC interface UUID for
IVdsAdviseSink

8326CD1D-CF59-4936-B786-
5EFC08798E25

Group 1

RPC interface UUID for IVdsAsync D5D23B6D-5A55-4492-9889-
397A3C2D2DBC

Group 1

RPC interface UUID for
IVdsServiceLoader

E0393303-90D4-4A97-AB71-
E9B671EE2729

Group 1

RPC interface UUID for IVdsService 0818A8EF-9BA9-40D8-A6F9-
E22833CC771E

Group 1

RPC interface UUID for
IVdsServiceInitialization

4AFC3636-DB01-4052-80C3-
03BBCB8D3C69

Group 1

RPC interface UUID for IVdsProvider 10C5E575-7984-4E81-A56B-
431F5F92AE42

Group 1

RPC interface UUID for
IVdsSwProvider

9AA58360-CE33-4F92-B658-
ED24B14425B8

Group 1

RPC interface UUID for
IVdsHwProvider

D99BDAAE-B13A-4178-9FDB-
E27F16B4603E

Group 1

RPC interface UUID for IVdsPack 3B69D7F5-9D94-4648-91CA-
79939BA263BF

Group 1

RPC interface UUID for IVdsDisk 07E5C822-F00C-47A1-8FCE-
B244DA56FD06

Group 1

RPC interface for UUID for
IVdsAdvancedDisk

6E6F6B40-977C-4069-BDDD-
AC710059F8C0

Group 1

RPC interface UUID for
IVdsRemovable

0316560B-5DB4-4ED9-BBB5-
213436DDC0D9

Group 1

RPC interface UUID for IVdsVolume 88306BB2-E71F-478C-86A2-
79DA200A0F11

Group 1

RPC interface UUID for
IVdsVolumeMF

EE2D5DED-6236-4169-931D-
B9778CE03DC6

Group 1

RPC interface UUID for
IVdsVolumePlex

4DAA0135-E1D1-40F1-AAA5-
3CC1E53221C3

Group 1

COM class UUID for the VDS service
object class

Used to create a VDS session (see
section 4.1.1)

7D1933CB-86F6-4A98-8628-
01BE94C9A575

Group 1

Group 2

Parameter Value
Additive set of interfaces that
MUST be implemented

RPC interface UUID for
IVdsCreatePartitionEx

9882F547-CFC3-420B-9750-
00DFBEC50662

Groups 1-2

RPC interface UUID for
IVdsServiceUninstallDisk

B6B22DA8-F903-4BE7-B492-
C09D875AC9DA

Groups 1-2

116 / 342

[MS-VDS] - v20170601
Virtual Disk Service (VDS) Protocol
Copyright © 2017 Microsoft Corporation
Release: June 1, 2017

Parameter Value
Additive set of interfaces that
MUST be implemented

RPC interface UUID for
IVdsSubSystemImportTarget

83BFB87F-43FB-4903-BAA6-
127F01029EEC

Groups 1-2

RPC interface UUID for IVdsServiceHba 0AC13689-3134-47C6-A17C-
4669216801BE

Groups 1-2

RPC interface UUID for IVdsServiceIscsi 14FBE036-3ED7-4E10-90E9-
A5FF991AFF01

Groups 1-2

RPC interface UUID for IVdsHbaPort 2ABD757F-2851-4997-9A13-
47D2A885D6CA

Groups 1-2

RPC interface UUID for
IVdsIscsiInitiatorAdapter

B07FEDD4-1682-4440-9189-
A39B55194DC5

Groups 1-2

RPC interface UUID for
IVdsIscsiInitiatorPortal

38A0A9AB-7CC8-4693-AC07-
1F28BD03C3DA

Groups 1-2

Group 3

Parameter Value
Additive set of interfaces that MUST
be implemented

RPC interface UUID for IVdsPack2 13B50BFF-290A-47DD-8558-
B7C58DB1A71A

Groups 1-3

RPC interface UUID for IVdsDisk2 40F73C8B-687D-4A13-8D96-
3D7F2E683936

Groups 1-3

RPC interface UUID for
IVdsAdvancedDisk2

9723F420-9355-42DE-AB66-
E31BB15BEEAC

Groups 1-3

RPC interface UUID for
IVdsVolumeMF2

4DBCEE9A-6343-4651-B85F-
5E75D74D983C

Groups 1-3

RPC interface UUID for
IVdsDiskPartitionMF

538684E0-BA3D-4BC0-ACA9-
164AFF85C2A9

Groups 1-3

RPC interface UUID for
IVdsVolumeShrink

D68168C9-82A2-4F85-B6E9-
74707C49A58F

Groups 1-3

Group 4

Parameter Value
Additive set of interfaces that MUST
be implemented

RPC interface UUID for
IVdsServiceSAN

FC5D23E8-A88B-41A5-8DE0-
2D2F73C5A630

Groups 1-4

RPC interface UUID for
IVdsDiskOnline

90681B1D-6A7F-48E8-9061-
31B7AA125322

Groups 1-4

Group 5

117 / 342

[MS-VDS] - v20170601
Virtual Disk Service (VDS) Protocol
Copyright © 2017 Microsoft Corporation
Release: June 1, 2017

Parameter Value

Additive set of
interfaces that MUST
be implemented

RPC interface UUID for IVdsDiskPartitionMF2 9CBE50CA-F2D2-
4BF4-ACE1-
96896B729625

Groups 1-5

RPC interface UUID for IVdsVolumeMF3 6788FAF9-214E-4B85-
BA59-266953616E09

Groups 1-5

RPC interface UUID for IVdsDisk3 8F4B2F5D-EC15-
4357-992F-
473EF10975B9

Groups 1-5

RPC interface UUID for IVdsVolume2 72AE6713-DCBB-
4A03-B36B-
371F6AC6B53D

Groups 1-5

Microsoft Virtual Disk Provider Vendor Identifier
VIRTUAL_STORAGE_TYPE_VENDOR_MICROSOFT

EC984AEC-A0F9-
47E9-901F-
71415A66345B

Groups 1-5

RPC interface UUID for IVdsVdProvider B481498C-8354-
45F9-84A0-
0BDD2832A91F

Groups 1-5

RPC interface UUID for IVdsVDisk 1E062B84-E5E6-
4B4B-8A25-
67B81E8f13E8

Groups 1-5

RPC interface UUID for IVdsOpenVDisk 75C8F324-F715-4FE3-
A28E-F9011B61A4A1

Groups 1-5

RPC interface UUID for IVdsVolumeOnline 1BE2275A-B315-
4F70-9E44-
879B3A2A53F2

Groups 1-5

Group 6<54>

Parameter Value
Additive set of interfaces that MUST
be implemented

RPC interface UUID for
IVdsServiceSw

15fc031c-0652-4306-b2c3-
f558b8f837e2

Groups 1-6

RPC interface UUID for
IVdsAdvancedDisk3

3858C0D5-0F35-4BF5-9714-
69874963BC36

Groups 1-6

3.1.1 Enumeration Object Interfaces

This section includes interfaces that are used to interact with enumeration objects (enum objects) on
the server.

Enumeration objects are returned from methods of other interfaces and are used to enumerate
through a set of VDS objects of a specified type. The type of object that is enumerated depends on
the interface and method from which the enumeration object was returned.

Objects can be HBA ports, initiator adapters, initiator portals, providers, packs, disks, volumes, or
volume plexes.

118 / 342

[MS-VDS] - v20170601
Virtual Disk Service (VDS) Protocol
Copyright © 2017 Microsoft Corporation
Release: June 1, 2017

3.1.1.1 IEnumVdsObject Interface

The IEnumVdsObject interface enumerates through a set of VDS objects.

The UUID for this interface is {118610B7-8D94-4030-B5B8-500889788E4E}.

The IEnumVdsObject methods are specified in section 3.4.5.2.1.

Methods in RPC Opnum Order

Method Description

Next Returns a specified number of objects in the enumeration. It begins from the current point.

Opnum: 3

Skip Skips a specified number of objects in the enumeration.

Opnum: 4

Reset Resets the enumerator to the beginning of the collection.

Opnum: 5

Clone Creates a new enumeration that has the same state as the current enumeration.

Opnum: 6

All methods MUST NOT throw exceptions.

3.1.2 Callback Object Interfaces

This section includes interfaces that the server uses to interact with the callback object on the client.

3.1.2.1 IVdsAdviseSink Interface

The client implements the IVdsAdviseSink interface in order to receive notification of VDS object

changes.

The UUID for this interface is {8326CD1D-CF59-4936-B786-5EFC08798E25}.

IVdsAdviseSink methods are specified in section 3.3.4.3.

Methods in RPC Opnum Order

Method Description

OnNotify Passes notifications from VDS to applications.

Opnum: 3

All methods MUST NOT throw exceptions.

3.1.3 Asynchronous Operation Object Interfaces

This section includes interfaces that are used to interact with asynchronous operation objects (async
objects) on the server.

119 / 342

[MS-VDS] - v20170601
Virtual Disk Service (VDS) Protocol
Copyright © 2017 Microsoft Corporation
Release: June 1, 2017

3.1.3.1 IVdsAsync Interface

The IVdsAsync interface manages asynchronous operations. Methods that initiate asynchronous
operations return a pointer to an IVdsAsync interface, allowing the caller to optionally cancel, wait for,

or query the status of the asynchronous operation.

The UUID for this interface is {D5D23B6D-5A55-4492-9889-397A3C2D2DBC}.

The IVdsAsync methods are specified in section 3.4.5.2.2.

Methods in RPC Opnum Order

Method Description

Cancel Cancels the asynchronous operation.

Opnum: 3

Wait Blocks and returns when the asynchronous operation has either finished successfully or failed.

Opnum: 4

QueryStatus Retrieves the status of the asynchronous operation.

Opnum: 5

All methods MUST NOT throw exceptions.

3.1.4 Service Loader Interfaces

This section includes the interfaces that are used to load VDS service objects on the server.

3.1.4.1 IVdsServiceLoader Interface

Servers implement the IVdsServiceLoader interface, which can be used by clients to load the VDS

service object on remote machines.

The UUID for this interface is {E0393303-90D4-4A97-AB71-E9B671EE2729}.

The IVdsServiceLoader methods are specified in section 3.4.5.2.3.

All methods MUST NOT throw exceptions.

Methods in RPC Opnum Order

Method Description

LoadService Loads the VDS service on the machine that is specified by an input parameter and returns a
pointer to the IVdsService interface.

Opnum: 3

3.1.5 Service Object Interfaces

This section includes interfaces that are used to interact with the VDS service object on the server.

3.1.5.1 IVdsService Interface

Servers implement the IVdsService interface in order to support storage management.

120 / 342

[MS-VDS] - v20170601
Virtual Disk Service (VDS) Protocol
Copyright © 2017 Microsoft Corporation
Release: June 1, 2017

The UUID for this interface is {0818A8EF-9BA9-40D8-A6F9-E22833CC771E}.

The IVdsService methods are specified in section 3.4.5.2.4. A method is not listed for opnum 7

because the Virtual Disk Service Remote Protocol does not use it. Attempting to call a method with
opnum 7 can result in NDR raising a RPC_X_BAD_STUB_DATA exception. For more information, see

[MS-DCOM].

Methods in RPC Opnum Order

Method Description

IsServiceReady Determines whether a service is finished initializing.

Opnum: 3

WaitForServiceReady Waits for VDS initialization to complete and then returns the status of the VDS
initialization in the HRESULT.

Opnum: 4

GetProperties Retrieves the properties of the service that is represented by the object that
exposes this interface and method.

Opnum: 5

QueryProviders Enumerates the providers of the server.

Opnum: 6

Opnum07NotUsedOnWire Reserved for local use.

Opnum: 7

QueryUnallocatedDisks Enumerates the unallocated disks on the server.

Opnum: 8

GetObject Retrieves an IUnknown pointer to a specified object.

Opnum: 9

QueryDriveLetters Enumerates the drive letters of the server.

Opnum: 10

QueryFileSystemTypes Returns property details for all file systems that are known to VDS.

Opnum: 11

Reenumerate Discovers newly added and newly removed disks and returns the status of the
operation in the HRESULT.

Opnum: 12

Refresh Refreshes the ownership and layout of disks on the server.

Opnum: 13

CleanupObsoleteMountPoints Removes any mount points that point to volumes that no longer exist.

Opnum: 14

Advise Registers a notification callback with the server. Clients pass the callback object to
the server to receive notifications.

Opnum: 15

Unadvise Unregisters a client from notification of changes to storage objects by the server.

Opnum: 16

Reboot Restarts the computer on which the server is running.

Opnum: 17

%5bMS-DCOM%5d.pdf#Section_4a893f3dbd2948cd9f43d9777a4415b0

121 / 342

[MS-VDS] - v20170601
Virtual Disk Service (VDS) Protocol
Copyright © 2017 Microsoft Corporation
Release: June 1, 2017

Method Description

SetFlags Assigns property flags to the server.

Opnum: 18

ClearFlags Clears property flags from the service.

Opnum: 19

All methods MUST NOT throw exceptions.

In the previous table, the term "Reserved for local use" means that the client MUST NOT send the

opnum, and the server behavior is undefined because it does not affect interoperability.

3.1.5.2 IVdsServiceInitialization Interface

The IVdsServiceInitialization interface is implemented by VDS and is used by clients to start
initialization of the service.

The UUID for this interface is {4AFC3636-DB01-4052-80C3-03BBCB8D3C69}.

The IVdsServiceInitialization methods are specified in section 3.4.5.2.5.

Methods in RPC Opnum Order

Method Description

Initialize Starts the initialization of the server.

Opnum: 3

All methods MUST NOT throw exceptions.

Note If the IVdsServiceLoader::LoadService method is used to instantiate the server, there is no
need to QueryInterface for the IVdsServiceInitialization interface, or to call

IVdsServiceInitialization::Initialize. See section 3.4.5.2.3.1.

3.1.5.3 IVdsServiceUninstallDisk Interface

The service object implements the IVdsServiceUninstallDisk interface in order to provide a way to
query VDS for disks that correspond to particular LUN information structures and to remove these
disks and the volumes wholly or partially contained in them.

The UUID for this interface is {B6B22DA8-F903-4BE7-B492-C09D875AC9DA}.

The IVdsServiceUninstallDisk methods are specified in section 3.4.5.2.6.<55>

Methods in RPC Opnum Order

Method Description

GetDiskIdFromLunInfo Retrieves the VDS object ID of a disk that corresponds to a specified LUN information
structure.

Opnum: 3

UninstallDisks Uninstalls a specific set of disks when it is given a list of the VDS object IDs for the
disks.

Opnum: 4

All methods MUST NOT throw exceptions.

122 / 342

[MS-VDS] - v20170601
Virtual Disk Service (VDS) Protocol
Copyright © 2017 Microsoft Corporation
Release: June 1, 2017

3.1.5.4 IVdsServiceHba Interface

The IVdsServiceHba interface provides a method to query HBA ports on the server.<56>

The UUID for this interface is {0AC13689-3134-47C6-A17C-4669216801BE}.

The IVdsServiceHba methods are specified in section 3.4.5.2.7.

Methods in RPC Opnum Order

Method Description

QueryHbaPorts Returns an IEnumVdsObject enumeration object that contains a list of the HBA ports that are

known to VDS on the system.

Opnum: 3

All methods MUST NOT throw exceptions.

3.1.5.5 IVdsServiceIscsi Interface

The IVdsServiceIscsi interface provides methods to interact with the iSCSI initiators service on the
server. It includes the ability to set CHAP security settings and to log in to targets.<57>

The UUID for this interface is {14FBE036-3ED7-4E10-90E9-A5FF991AFF01}.

The IVdsServiceIscsi methods are specified in section 3.4.5.2.8. No methods with opnums 5, 6, 7,
and 9 are listed because the Virtual Disk Service Remote Protocol does not use them.

Methods in RPC Opnum Order

Method Description

GetInitiatorName Returns the iSCSI name of the local initiator service.

Opnum: 3

QueryInitiatorAdapters Returns an object that enumerates the iSCSI initiator adapters of the initiator.

Opnum: 4

Opnum05NotUsedOnWire Reserved for local use.

Opnum: 5

Opnum06NotUsedOnWire Reserved for local use.

Opnum: 6

Opnum07NotUsedOnWire Reserved for local use.

Opnum: 7

SetInitiatorSharedSecret Sets the initiator CHAP shared secret that is used for mutual CHAP authentication,
when the initiator authenticates the target.

Opnum: 8

Opnum09NotUsedOnWire Reserved for local use.

Opnum: 9

In the preceding table, the phrase "Reserved for local use" means that the client MUST NOT send the
opnum, and the server behavior is undefined because it does not affect interoperability.

All methods MUST NOT throw exceptions.

123 / 342

[MS-VDS] - v20170601
Virtual Disk Service (VDS) Protocol
Copyright © 2017 Microsoft Corporation
Release: June 1, 2017

3.1.5.6 IVdsServiceSAN Interface

Servers implement the IvdsServiceSAN interface in order to support storage management.

The UUID for this interface is {FC5D23E8-A88B-41A5-8DE0-2D2F73C5A630}.

The IvdsServiceSAN methods are specified in section 3.4.5.2.9.

Methods in RPC Opnum Order

Method Description

GetSANPolicy Returns the current SAN policy.

Opnum: 3

SetSANPolicy Sets the SAN policy.

Opnum: 4

All methods MUST NOT throw exceptions.

3.1.5.7 IVdsServiceSw Interface

Servers implement the IVdsServiceSw interface<58> in order to support storage management.

The UUID for this interface is {15fc031c-0652-4306-b2c3-f558b8f837e2}.

The IvdsServiceSAN methods are specified in section 3.4.5.2.10.

Methods in RPC Opnum Order

Method Description

GetDiskObject Returns the disk for the given PnP Device ID string.

Opnum: 3

All methods MUST NOT throw exceptions.

3.1.6 HBA Port Object Interfaces

This section includes the interfaces that are used to interact with HBA port objects on the server.

3.1.6.1 IVdsHbaPort Interface

The IVdsHbaPort interface provides methods to query and interact with HBA ports on the server.<59>

The UUID for this interface is {2ABD757F-2851-4997-9A13-47D2A885D6CA}.

The IVdsHbaPort methods are specified in section 3.4.5.2.11.

Methods in RPC Opnum Order

Method Description

GetProperties Retrieves the properties of the HBA port that is represented by the object exposing this
interface and method.

Opnum: 3

124 / 342

[MS-VDS] - v20170601
Virtual Disk Service (VDS) Protocol
Copyright © 2017 Microsoft Corporation
Release: June 1, 2017

Method Description

SetAllPathStatuses Sets the statuses of all paths that originate from the HBA port to a specified status.

Opnum: 4

All methods MUST NOT throw exceptions.

3.1.7 Initiator Adapter Object Interfaces

This section includes interfaces that are used to interact with iSCSI initiator adapter objects on the
server.

3.1.7.1 IVdsIscsiInitiatorAdapter Interface

The IVdsIscsiInitiatorAdapter interface provides methods to query and interact with iSCSI initiator
adapters on the server.<60>

The UUID for this interface is {B07FEDD4-1682-4440-9189-A39B55194DC5}.

The IVdsIscsiInitiatorAdapter methods are specified in section 3.4.5.2.12. No methods are listed with
opnums 5 and 6 because the Virtual Disk Service Remote Protocol does not use them.

Methods in RPC Opnum Order

Method Description

GetProperties Retrieves the properties of the initiator adapter that is represented by the object
exposing this interface and method.

Opnum: 3

QueryInitiatorPortals Returns an object that enumerates the iSCSI initiator portals of the initiator
adapter.

Opnum: 4

Opnum05NotUsedOnWire Reserved for local use.

Opnum: 5

Opnum06NotUsedOnWire Reserved for local use.

Opnum: 6

In the preceding table, the phrase "Reserved for local use" means that the client MUST NOT send the
opnum, and the server behavior is undefined<61> because it does not affect interoperability.

All methods MUST NOT throw exceptions.

3.1.8 Initiator Portal Object Interfaces

This section includes interfaces that are used to interact with iSCSI initiator portal objects on the

server.

3.1.8.1 IVdsIscsiInitiatorPortal Interface

The IVdsIscsiInitiatorPortal interface provides methods to query and interact with iSCSI initiator
portals on the server.<62>

The UUID for this interface is {38A0A9AB-7CC8-4693-AC07-1F28BD03C3DA}.

125 / 342

[MS-VDS] - v20170601
Virtual Disk Service (VDS) Protocol
Copyright © 2017 Microsoft Corporation
Release: June 1, 2017

The IVdsIscsiInitiatorPortal methods are specified in section 3.4.5.2.13. No methods with opnums 5,
6, and 7 are listed because the Virtual Disk Service Remote Protocol does not use them.

Methods in RPC Opnum Order

Method Description

GetProperties Retrieves the properties of the initiator portal that is represented by the object that
exposes this interface and method.

Opnum: 3

GetInitiatorAdapter Returns the initiator adapter to which the initiator portal belongs.

Opnum: 4

Opnum05NotUsedOnWire Reserved for local use.

Opnum: 5

Opnum06NotUsedOnWire Reserved for local use.

Opnum: 6

Opnum07NotUsedOnWire Reserved for local use.

Opnum: 7

In the preceding table, the phrase "Reserved for local use" means that the client MUST NOT send the
opnum, and the server behavior is undefined because it does not affect interoperability.

All methods MUST NOT throw exceptions.

3.1.9 Provider Object Interfaces

This section includes interfaces that are used to interact with provider objects on the server.

3.1.9.1 IVdsProvider Interface

Providers implement the IVdsProvider interface in order to support provider management.

The UUID for this interface is {10C5E575-7984-4E81-A56B-431F5F92AE42}.

The IVdsProvider methods are specified in section 3.4.5.2.14.

Methods in RPC Opnum Order

Method Description

GetProperties Retrieves the properties of the provider that is represented by the object exposing this interface
and method.

Opnum: 3

All methods MUST NOT throw exceptions.

3.1.9.2 IVdsSwProvider Interface

Software providers implement the IVdsSwProvider interface in order to support management of disk
packs.

The UUID for this interface is {9AA58360-CE33-4F92-B658-ED24B14425B8}.

The IVdsSwProvider methods are specified in section 3.4.5.2.15.

126 / 342

[MS-VDS] - v20170601
Virtual Disk Service (VDS) Protocol
Copyright © 2017 Microsoft Corporation
Release: June 1, 2017

Methods in RPC Opnum Order

Method Description

QueryPacks Retrieves the provider disk packs.

Opnum: 3

CreatePack Creates a disk pack.

Opnum: 4

All methods MUST NOT throw exceptions.

3.1.9.3 IVdsHwProvider Interface

Hardware providers implement the IVdsHwProvider interface to support management of subsystems.

The UUID for this interface is {D99BDAAE-B13A-4178-9FDB-E27F16B4603E}.

The IVdsHwProvider methods are specified in section 3.4.5.2.16.

All methods MUST NOT throw exceptions.

Methods in RPC Opnum Order

Method Description

QuerySubSystems Retrieves the subsystems that are managed by the provider.

Opnum: 3

Opnum04NotUsedOnWire Reserved for local use.

Opnum: 4

Opnum05NotUsedOnWire Reserved for local use.

Opnum: 5

3.1.9.4 IVdsVdProvider Interface

Virtual disk providers implement the IVdsVdProvider interface in order to support management of
virtual disks.

The UUID for this interface is {B481498C-8354-45F9-84A0-0BDD2832A91F}.

The IVdsVdProvider methods are specified in section 3.4.5.2.17.

Methods in RPC Opnum Order

Method Description

QueryVDisks Returns a list of the virtual disks that are managed by the provider.

Opnum: 3

CreateVDisk Defines a virtual hard disk by creating a virtual disk file backing store and adds a virtual
hard disk object to the provider. Does NOT instantiate an operating system disk device.

Opnum: 4

AddVDisk Adds a virtual disk object for the specified virtual disk file to the provider and returns an

127 / 342

[MS-VDS] - v20170601
Virtual Disk Service (VDS) Protocol
Copyright © 2017 Microsoft Corporation
Release: June 1, 2017

Method Description

IVdsVDisk interface pointer to it.

Opnum: 5

GetDiskFromVDisk Returns an IVdsDisk interface pointer for a virtual disk object given an IVdsVDisk interface
pointer. The virtual disk MUST be attached.

Opnum: 6

GetVDiskFromDisk Returns an IVdsVDisk interface pointer for the virtual disk object given an IVdsDisk interface
pointer. The virtual disk MUST be attached.

Opnum: 7

All methods MUST NOT throw exceptions.

3.1.10 Subsystem Object Interfaces

This section includes interfaces that are used to interact with subsystem objects on the server.

3.1.10.1 IVdsSubSystemImportTarget Interface

The IVdsSubSystemImportTarget interface is implemented by a subsystem object to manage the
import targets for the subsystem.

The UUID for the interface is {83BFB87F-43FB-4903-BAA6-127F01029EEC}.

The IVdsSubSystemImportTarget methods are specified in section 3.4.5.2.18.

All methods MUST NOT throw exceptions.

Methods in RPC Opnum Order

Method Description

GetImportTarget Retrieves the import targets for the subsystem.

Opnum: 3

SetImportTarget Sets the import targets for the subsystem.

Opnum: 4

3.1.11 Pack Object Interfaces

This section includes interfaces that are used to interact with disk pack objects on the server.

3.1.11.1 IVdsPack Interface

The IVdsPack interface is implemented by disk pack objects to support management of disk packs.
Attempting to call a method with opnum 10 can result in NDR raising an RPC_X_BAD_STUB_DATA
exception. For more information, see [MS-DCOM].

The UUID for this interface is {3B69D7F5-9D94-4648-91CA-79939BA263BF}.

The IVdsPack methods are specified in section 3.4.5.2.19. No method with opnum 10 is listed because
it is not used by this protocol.

%5bMS-DCOM%5d.pdf#Section_4a893f3dbd2948cd9f43d9777a4415b0

128 / 342

[MS-VDS] - v20170601
Virtual Disk Service (VDS) Protocol
Copyright © 2017 Microsoft Corporation
Release: June 1, 2017

Methods in RPC Opnum Order

Method Description

GetProperties Retrieves the properties of the disk pack that is represented by the object exposing
this interface and method.

Opnum: 3

GetProvider Retrieves the provider to which the disk pack belongs.

Opnum: 4

QueryVolumes Retrieves the volumes of a disk pack.

Opnum: 5

QueryDisks Retrieves the disks of a disk pack.

Opnum: 6

CreateVolume Creates a volume in a disk pack.

Opnum: 7

AddDisk Initializes a disk that has no defined partitioning format and adds it to the disk
pack.

Opnum: 8

MigrateDisks Migrates a set of disks from one pack to another pack.

Opnum: 9

Opnum10NotUsedOnWire Reserved for local use.

Opnum: 10

RemoveMissingDisk Removes the specified missing disk from a disk pack.

Opnum: 11

Recover Restores a disk pack to a healthy state.

Opnum: 12

In the preceding table, the phrase "Reserved for local use" means that the client MUST NOT send the

opnum, and the server behavior is undefined because it does not affect interoperability.

All methods MUST NOT throw exceptions.

3.1.11.2 IVdsPack2 Interface

The IVdsPack2 interface is implemented by disk pack objects to support creating volumes that are
aligned to a particular byte-size boundary.

The UUID for this interface is {13B50BFF-290A-47DD-8558-B7C58DB1A71A}.

The IVdsPack2 methods are specified in section 3.4.5.2.20.

Methods in RPC Opnum Order

Method Description

CreateVolume2 Creates a volume in a disk pack with an optional alignment parameter.

Opnum: 3

All methods MUST NOT throw exceptions.

129 / 342

[MS-VDS] - v20170601
Virtual Disk Service (VDS) Protocol
Copyright © 2017 Microsoft Corporation
Release: June 1, 2017

3.1.12 Disk Object Interfaces

This section includes interfaces that are used to interact with disk objects on the server.

3.1.12.1 IVdsDisk Interface

The IVdsDisk interface is implemented by disk objects in order to support disk management.

The UUID for this interface is {07E5C822-F00C-47A1-8FCE-B244DA56FD06}.

The IVdsDisk methods are specified in section 3.4.5.2.21.

Methods in RPC Opnum Order

Method Description

GetProperties Retrieves the properties of the disk that is represented by the object exposing this
interface and method.

Opnum: 3

GetPack Retrieves the disk pack to which the disk belongs.

Opnum: 4

GetIdentificationData Retrieves information that uniquely identifies a disk.

Opnum: 5

QueryExtents Enumerates the extents of a disk.

Opnum: 6

ConvertStyle Converts the partitioning format of a disk. This method is not implemented for
removable disks.

Opnum: 7

SetFlags Sets the read-only flag of a disk. This method is not implemented for removable disks.

Opnum: 8

ClearFlags Clears the read-only flag of a disk. This method is not implemented for removable disks.

Opnum: 9

All methods MUST NOT throw exceptions.

3.1.12.2 IVdsDisk2 Interface

The IVdsDisk2 interface is implemented by disk objects in order to support bringing disks online and
offline.

The UUID for this interface is {40F73C8B-687D-4A13-8D96-3D7F2E683936}.

The IVdsDisk2 methods are specified in section 3.4.5.2.22.

Methods in RPC Opnum Order

Method Description

SetSANMode Sets the SAN mode of a disk to either offline (read-only mode) or online (read/write mode).

Opnum: 3

All methods MUST NOT throw exceptions.

130 / 342

[MS-VDS] - v20170601
Virtual Disk Service (VDS) Protocol
Copyright © 2017 Microsoft Corporation
Release: June 1, 2017

3.1.12.3 IVdsDisk3 Interface

The IVdsDisk3 interface is implemented by disk objects in order to support disk management.

The UUID for this interface is {8F4B2F5D-EC15-4357-992F-473EF10975B9}.

The IVdsDisk3 methods are specified in section 3.4.5.2.23.1.

Methods in RPC Opnum Order

Method Description

GetProperties2 Retrieves the properties of the disk that is represented by the object exposing this interface

and method. Adds the pwszLocationPath member to the disk properties.

Opnum: 3

QueryFreeExtents Retrieves the list of free extents for a disk.

Opnum: 4

All methods MUST NOT throw exceptions.

3.1.12.4 IVdsAdvancedDisk Interface

The IVdsAdvancedDisk interface is implemented by disk objects in order to support advanced disk
management.

The UUID for this interface is {6E6F6B40-977C-4069-BDDD-AC710059F8C0}.

The IVdsAdvancedDisk methods are specified in section 3.4.5.2.24.

Methods in RPC Opnum Order

Method Description

GetPartitionProperties Retrieves the properties of a partition on the disk at a specified byte offset.

Opnum: 3

QueryPartitions Enumerates a disk's partitions.

Opnum: 4

CreatePartition Creates a partition on a disk at a specified byte offset.

Opnum: 5

DeletePartition Deletes a partition from the disk at a specified byte offset. This method is not
implemented for removable disks.

Opnum: 6

ChangeAttributes Changes the attributes of the partition at byte offset ullOffset on the disk.

Opnum: 7

AssignDriveLetter Assigns a drive letter to an existing OEM, ESP, or unknown partition. This method is not
implemented for removable disks.

Opnum: 8

DeleteDriveLetter Deletes a drive letter that is assigned to an OEM, ESP, or unknown partition.

Opnum: 9

GetDriveLetter Retrieves the drive letter of a partition on the disk at a specified byte offset. This method
is not implemented for removable disks.

131 / 342

[MS-VDS] - v20170601
Virtual Disk Service (VDS) Protocol
Copyright © 2017 Microsoft Corporation
Release: June 1, 2017

Method Description

Opnum: 10

FormatPartition Formats an existing OEM, ESP, or unknown partition. This method is not implemented
for removable disks.

Opnum: 11

Clean Cleans a disk.<63>

Opnum: 12

All methods MUST NOT throw exceptions.

3.1.12.5 IVdsAdvancedDisk2 Interface

The IVdsAdvancedDisk2 interface is implemented by disk objects in order to support changing

partition types.

The UUID for this interface is {9723F420-9355-42DE-AB66-E31BB15BEEAC}.

The IVdsAdvancedDisk2 methods are specified in section 3.4.5.2.25.

Methods in RPC Opnum Order

Method Description

ChangePartitionType Changes the partition type on the disk at a specified byte offset.

Opnum: 3

All methods MUST NOT throw exceptions.

3.1.12.6 IVdsAdvancedDisk3 Interface

The IVdsAdvancedDisk3 interface<64> is implemented by disk objects in order to return
VDS_ADVANCEDDISK_PROP structures and unique ID values.

The UUID for this interface is {3858C0D5-0F35-4BF5-9714-69874963BC36}.

The IVdsAdvancedDisk3 methods are specified in section 3.4.5.2.26

Methods in RPC Opnum Order

Method Description

GetProperties Retrieves the properties of the disk that is represented by the object exposing this interface and
method.

Opnum: 3

GetUniqueId Retrieves the device path that the operating system uses to identify this disk.

Opnum: 4

All methods MUST NOT throw exceptions.

3.1.12.7 IVdsCreatePartitionEx Interface

The IVdsCreatePartitionEx interface is implemented by the disk object in order to support creating
partitions that are aligned to a particular byte size boundary.

132 / 342

[MS-VDS] - v20170601
Virtual Disk Service (VDS) Protocol
Copyright © 2017 Microsoft Corporation
Release: June 1, 2017

The UUID for this interface is {9882F547-CFC3-420B-9750-00DFBEC50662}.

The IVdsCreatePartitionEx methods are specified in section 3.4.5.2.27.

Methods in RPC Opnum Order

Method Description

CreatePartitionEx Creates a partition on a disk at a specified byte offset, with an optional alignment parameter.

Opnum: 3

All methods MUST NOT throw exceptions.

3.1.12.8 IVdsDiskOnline Interface

The IvdsDiskOnline interface is implemented by disk objects in order to support onlining or offlining
a disk.

The UUID for this interface is {90681B1D-6A7F-48E8-9061-31B7AA125322}.

The IvdsDiskOnline methods are specified in section 3.1.12.8.

Methods in RPC Opnum Order

Method Description

Online Brings the disk to the online state. An online disk exposes the volumes on that disk.

Opnum: 3

Offline Brings the disk to the offline state. An offline disk does not expose any volumes.

Opnum: 4

All methods MUST NOT throw exceptions.

3.1.12.9 IVdsDiskPartitionMF Interface

The IVdsDiskPartitionMF interface is implemented by disk objects in order to support file system
management on partitions. This interface is not implemented for removable disks.

The UUID for this interface is {538684E0-BA3D-4BC0-ACA9-164AFF85C2A9}.

The IVdsDiskPartitionMF methods are specified in section 3.4.5.2.29.

Methods in RPC Opnum Order

Method Description

GetPartitionFileSystemProperties Returns property details about the file system on a partition on the
disk at a specified byte offset.

Opnum: 3

GetPartitionFileSystemTypeName Retrieves the name of the file system on a partition on a disk at a
specified byte offset.

Opnum: 4

QueryPartitionFileSystemFormatSupport Retrieves the properties of the file systems that are supported for
formatting a partition on the disk at a specified byte offset.

Opnum: 5

133 / 342

[MS-VDS] - v20170601
Virtual Disk Service (VDS) Protocol
Copyright © 2017 Microsoft Corporation
Release: June 1, 2017

Method Description

FormatPartitionEx Formats an existing OEM, ESP, or unknown partition.

Opnum: 6

All methods MUST NOT throw exceptions.

3.1.12.10 IVdsDiskPartitionMF2 Interface

The IVdsDiskPartitionMF2 interface is implemented by disk objects in order to support file system
management on partitions. This interface adds support for UDF metadata duplication.

The UUID for this interface is {9CBE50CA-F2D2-4BF4-ACE1-96896B729625}.

The IVdsDiskPartitionMF2 methods are specified in section 3.4.5.2.30.

Methods in RPC Opnum Order

Method Description

FormatPartitionEx2 Formats an existing OEM, ESP, or unknown partition. Adds support for UDF file system
metadata duplication.

Opnum: 3

All methods MUST NOT throw exceptions.

3.1.12.11 IVdsRemovable Interface

The IVdsRemovable interface is implemented by disk objects in order to support management of
removable media. The methods on this interface are only implemented for removable disks.

The UUID for this interface is {0316560B-5DB4-4ED9-BBB5-213436DDC0D9}.

The IVdsRemovable methods are specified in section 3.4.5.2.31.

Methods in RPC Opnum Order

Method Description

QueryMedia Identifies the media in the drive.

Opnum: 3

Eject Ejects the media in the drive.

Opnum: 4

All methods MUST NOT throw exceptions.

3.1.13 Volume Object Interfaces

This section includes interfaces that are used to interact with volume objects on the server.

3.1.13.1 IVdsVolume Interface

The IVdsVolume interface provides methods to manage volumes.

The UUID for this interface is {88306BB2-E71F-478C-86A2-79DA200A0F11}.

134 / 342

[MS-VDS] - v20170601
Virtual Disk Service (VDS) Protocol
Copyright © 2017 Microsoft Corporation
Release: June 1, 2017

The IVdsVolume methods are specified in section 3.4.5.2.32.

All methods MUST NOT throw exceptions.

Methods in RPC Opnum Order

Method Description

GetProperties Retrieves the properties of the volume that is represented by the object exposing this interface
and method.

Opnum: 3

GetPack Retrieves the disk pack to which the volume belongs.

Opnum: 4

QueryPlexes Enumerates the plexes of a volume.

Opnum: 5

Extend Expands the size of the current volume by adding disk extents to each member of each plex.

Opnum: 6

Shrink Reduces the size of the volume and all plexes and returns the released extents to free space.

Opnum: 7

AddPlex Adds a volume as a plex to the current volume.

Opnum: 8

BreakPlex Removes a specified plex from the current volume.

Opnum: 9

RemovePlex Removes a specified plex from a volume. The last plex of a volume cannot be removed.

Opnum: 10

Delete Deletes all plexes in a volume. This method is not implemented for removable disks.

Opnum: 11

SetFlags Assigns flags to a volume. This method is not implemented for removable disks.

Opnum: 12

ClearFlags Clears flags from a volume. This method is not implemented for removable disks.

Opnum: 13

3.1.13.2 IVdsVolume2 Interface

The IVdsVolume2 interface provides methods to manage volumes.

The UUID for this interface is {72AE6713-DCBB-4A03-B36B-371F6AC6B53D}.

The IVdsVolume2 methods are specified in section 3.4.5.2.33.

Methods in RPC Opnum Order

Method Description

GetProperties2 Retrieves the properties of the volume that is represented by the object exposing this interface
and method.

135 / 342

[MS-VDS] - v20170601
Virtual Disk Service (VDS) Protocol
Copyright © 2017 Microsoft Corporation
Release: June 1, 2017

Method Description

Opnum: 3

3.1.13.3 IVdsVolumeMF Interface

The IVdsVolumeMF interface is implemented by volume objects in order to support file system
management.

The UUID for this interface is {EE2D5DED-6236-4169-931D-B9778CE03DC6}.

The IVdsVolumeMF methods are specified in section 3.4.5.2.34.

Methods in RPC Opnum Order

Method Description

GetFileSystemProperties Returns property details about the file system on the current volume.

Opnum: 3

Format Formats a file system on the current volume.

Opnum: 4

AddAccessPath Adds an access path to the current volume.

Opnum: 5

QueryAccessPaths Returns a list of access paths and a drive letter as a single case-insensitive Unicode
character, if one exists, for the current volume.

Opnum: 6

QueryReparsePoints Returns all reparse points for the current volume.

Opnum: 7

DeleteAccessPath Removes the access path from the current volume.

Opnum: 8

Mount Mounts a volume.

Opnum: 9

Dismount Dismounts a mounted volume.

Opnum: 10

SetFileSystemFlags Sets the file system flags.

Opnum: 11

ClearFileSystemFlags Clears the file system flags.

Opnum: 12

All methods MUST NOT throw exceptions.

3.1.13.4 IVdsVolumeMF2 Interface

The IVdsVolumeMF2 interface is implemented by volume objects in order to support additional file

system management functionality.

The UUID for this interface is {4DBCEE9A-6343-4651-B85F-5E75D74D983C}.

136 / 342

[MS-VDS] - v20170601
Virtual Disk Service (VDS) Protocol
Copyright © 2017 Microsoft Corporation
Release: June 1, 2017

The IVdsVolumeMF2 methods are specified in section 3.4.5.2.35.

Methods in RPC Opnum Order

Method Description

GetFileSystemTypeName Retrieves the name of the file system on a volume.

Opnum: 3

QueryFileSystemFormatSupport Retrieves the properties of the file systems that are supported for formatting
a volume.

Opnum: 4

FormatEx Formats a file system on a volume.

Opnum: 5

All methods MUST NOT throw exceptions.

3.1.13.5 IVdsVolumeMF3 Interface

The IVdsVolumeMF3 interface is implemented by volume objects in order to support additional file
system management functionality.

The UUID for this interface is {6788FAF9-214E-4B85-BA59-266953616E09}.

The IVdsVolumeMF3 methods are specified in section 3.4.5.2.36.

Methods in RPC Opnum Order

Method Description

QueryVolumeGuidPathnames Retrieves the volume GUID path names associated with a volume.

Opnum: 3

FormatEx2 Formats a file system on a volume.

Opnum: 4

OfflineVolume Offlines a volume.

Opnum: 5

All methods MUST NOT throw exceptions.

3.1.13.6 IVdsVolumeShrink Interface

The IVdsVolumeShrink interface is implemented by the volume objects in order to support volume
shrinking.

The UUID for this interface is {D68168C9-82A2-4F85-B6E9-74707C49A58F}.

The IVdsVolumeShrink methods are specified in section 3.4.5.2.37.

Methods in RPC Opnum Order

Method Description

QueryMaxReclaimableBytes Retrieves the maximum number of bytes that can be reclaimed from the current
volume.

Opnum: 3

137 / 342

[MS-VDS] - v20170601
Virtual Disk Service (VDS) Protocol
Copyright © 2017 Microsoft Corporation
Release: June 1, 2017

Method Description

Shrink Shrinks the volume and all plexes and returns the released extents.

Opnum: 4

All methods MUST NOT throw exceptions.

3.1.13.7 IVdsVolumeOnline Interface

The IVdsVolumeOnline interface is implemented by the volume objects in order to support bringing
single volumes online.

The UUID for this interface is {1BE2275A-B315-4f70-9E44-879B3A2A53F2}.

The IVdsVolumeOnline methods are specified in section 3.4.5.2.38.

Methods in RPC Opnum Order

Method Description

Online Brings the volume online.

Opnum: 3

All methods MUST NOT throw exceptions.

3.1.14 Volume Plex Object Interfaces

This section includes interfaces that are used to interact with volume plex objects on the server.

3.1.14.1 IVdsVolumePlex Interface

The IVdsVolumePlex interface is implemented by volume plex objects in order to support volume

plex management.

The UUID for this interface is {4DAA0135-E1D1-40F1-AAA5-3CC1E53221C3}.

The IVdsVolumePlex methods are specified in section 3.4.5.2.39.

Methods in RPC Opnum Order

Method Description

GetProperties Retrieves the properties of the volume plex that are represented by the object exposing this
interface and method.

Opnum: 3

GetVolume Retrieves the volume that the volume plex belongs to.

Opnum: 4

QueryExtents Returns all extents for the current plex.

Opnum: 5

Repair Repairs a fault-tolerant volume plex by moving defective members to good disks.

Opnum: 6

All methods MUST NOT throw exceptions.

138 / 342

[MS-VDS] - v20170601
Virtual Disk Service (VDS) Protocol
Copyright © 2017 Microsoft Corporation
Release: June 1, 2017

3.1.15 Virtual Disk Object Interfaces

3.1.15.1 IVdsVDisk Interface

The IVdsVDisk interface is implemented by the virtual disk objects to support virtual disk
management.

The UUID for this interface is {1E062B84-E5E6-4B4B-8A25-67B81E8F13E8}.

The IVdsVDisk methods are specified in section 3.4.5.2.40.

Methods in RPC Opnum Order

Method Description

Open Opens a handle to the specified virtual disk file and returns an IVdsOpenVDisk interface pointer
to the object that represents the opened handle.

Opnum: 3

GetProperties Returns disk property information for the volume where the virtual disk resides.

Opnum: 4

GetHostVolume Returns an interface pointer to the volume object for the volume where the virtual disk resides.

Opnum: 5

GetDeviceName Returns the device name for the volume where the virtual disk resides.

Opnum: 6

All methods MUST NOT throw exceptions.

3.1.15.2 IVdsOpenVDisk Interface

The IVdsOpenVDisk interface is implemented by the virtual disk objects to support virtual disk

management.

The UUID for this interface is {75C8F324-F715-4FE3-A28E-F9011B61A4A1}.

The IVdsOpenVDisk methods are specified in section 3.4.5.2.41.

Methods in RPC Opnum Order

Method Description

Attach Creates an operating system disk device for a virtual disk.

Opnum: 3

Detach Removes the operating system disk device associated with the virtual disk.

Opnum: 4

DetachAndDelete Removes the operating system disk device associated with the virtual disk and deletes any
backing store files.

Opnum: 5

Compact Reduces the physical size of the virtual disk's backing store file.

Opnum: 6

Merge Causes all blocks in a child differencing disk to be moved into the parent.

Opnum: 7

139 / 342

[MS-VDS] - v20170601
Virtual Disk Service (VDS) Protocol
Copyright © 2017 Microsoft Corporation
Release: June 1, 2017

Method Description

Expand Increases the size of a virtual disk's backing store (the virtual disk file).

Opnum: 8

All methods MUST NOT throw exceptions.

3.2 Common Details

3.2.1 Abstract Data Model

This section describes a conceptual model of possible data organization that an implementation
maintains to participate in this protocol. The described organization is provided to facilitate the

explanation of how the protocol behaves. This document does not mandate that implementations
adhere to this model as long as their external behavior is consistent with that described in this
document.

3.2.1.1 Method Invocation

3.2.1.1.1 Method Sequencing Requirements

Some method calls require no prerequisite calls against the server; they simply query for information
or pass in parameters that are constructed by the client.

In general, the prerequisite call is to an object enumeration method, which retrieves information about
a specific set of storage objects, such as volumes or disks. Information that the object enumeration

method returns is then used to supply input parameters for subsequent calls. Calls with such
prerequisites are grouped in the next section by storage object type.

3.2.1.1.2 Storage Object Relationships

This section describes the hierarchy of interfaces and objects that the Virtual Disk Service Remote
Protocol uses and the relationships between those objects.

140 / 342

[MS-VDS] - v20170601
Virtual Disk Service (VDS) Protocol
Copyright © 2017 Microsoft Corporation
Release: June 1, 2017

Figure 1: Relationships between VDS remote protocol objects

Service Loader and Service: The first interface the client obtains is the IVdsServiceLoader interface.

The client invokes IVdsServiceLoader::LoadService to load the VDS service on the specified machine.
The server responds with an IVdsService interface for the VDS service that is loaded.

Service and Providers: The client invokes IVdsService::QueryProviders to obtain a list of providers.
The server responds with an IEnumVdsObject interface, which enumerates a list of IUnknown
interfaces, one for each provider that is available on the server. The client invokes QueryInterface on
the IUnknown interface to retrieve a IVdsSwProvider or IVdsProvider interface on the provider object.

Service and Subsystems: The client invokes IVdsService::QueryProviders with the flag
VDS_QUERY_HARDWARE_PROVIDERS to obtain a list of VDS hardware providers. The server responds
with an IEnumVdsObject interface, which enumerates a list of IUnknown interfaces, one for each

hardware provider that is available on the server. The client invokes QueryInterface on the IUnknown
interface to retrieve an IVdsHwProvider interface on the provider object. The client invokes
IVdsHwProvider::QuerySubSystems to obtain a list of subsystems. The server responds with an
IEnumVdsObject interface, which enumerates a list of IUnknown interfaces, one for each subsystem

that is available on the server. The client invokes QueryInterface on the IUnknown interface to
retrieve an IVdsSubSystemImportTarget interface.

Virtual Disk Providers and Virtual Disks: Similar to hardware-providers, the client invokes
IVdsService::QueryProviders with the flag VDS_QUERY_VIRTUALDISK_PROVIDERS to obtain a list of
VDS virtual disk providers, each of which implement an IVdsVdProvider interface. The client invokes

141 / 342

[MS-VDS] - v20170601
Virtual Disk Service (VDS) Protocol
Copyright © 2017 Microsoft Corporation
Release: June 1, 2017

the IUnknown QueryInterface method to retrieve an IVdsVdProvider interface on the virtual disk
provider object. The client then invokes IVdsVdProvider::QueryVDisks to obtain a list of virtual disks

that the provider maintains. The server responds with a IEnumVdsObject interface, which enumerates
a list of IUnknown interfaces, one for each virtual disk. The client invokes IUnknown::QueryInterface

to retrieve an IVdsVDisk interface on the virtual disk object.

Service and Unallocated Disks: The client invokes IVdsService::QueryUnallocatedDisks to obtain a
list of disks that do not have a recognized disk partitioning format. The server responds with an
IEnumVdsObject interface, which enumerates a list of IUnknown interfaces, one for each unallocated
disk that is available on the server. The client invokes IUnknown::QueryInterface to retrieve an
IVdsDisk, IVdsDisk2, IVdsDisk3, IVdsAdvancedDisk, IVdsAdvancedDisk2, IVdsAdvancedDisk3,
IVdsDiskPartitionMF, IVdsDiskPartitionMF2, IVdsCreatePartitionEx, IvdsDiskOnline, or IVdsRemovable

interface on the disk object.

Service and Disks: The client invokes IUnknown::QueryInterface on the IVdsService interface to
retrieve the IVdsServiceUninstallDisk interface. The client invokes
IVdsServiceUninstallDisk::UninstallDisks to uninstall one or more disks that are installed on the
server. See section 3.2.1.4. The client invokes IUnknown::QueryInterface on the IVdsService interface

to retrieve the IVdsServiceSAN interface. The client invokes IVdsServiceSAN::GetSANPolicy to query

the current SAN policy setting, and IVdsServiceSAN::SetSANPolicy to set the SAN policy.

Service and File System Types: The client invokes IVdsService::QueryFileSystemTypes to obtain a list
of the file system types that are available for use in formatting volumes. The server returns a list of
VDS_FILE_SYSTEM_TYPE_PROP structures.

Service and Drive Letters: The client invokes IVdsService::QueryDriveLetters to obtain a list of drive
letters on the system. The server returns a list of VDS_DRIVE_LETTER_PROP structures; the bUsed
member indicates whether the drive letter is in use.

Service and HBA Ports: The client invokes IUnknown::QueryInterface on the IVdsService interface to
retrieve the IVdsServiceHba interface. The client invokes IVdsServiceHba::QueryHbaPorts to obtain a
list of the HBA ports that are connected to the server. The server responds with an IEnumVdsObject
interface, which enumerates a list of IUnknown interfaces, one for each HBA port that is connected to
the machine. The client invokes IUnknown::QueryInterface to retrieve an IVdsHbaPort interface on the

HBA port object.

Service and Initiator Adapters: The client invokes IUnknown::QueryInterface on the IVdsService

interface to retrieve the IVdsServiceIscsi interface. The client invokes
IVdsServiceIscsi::QueryInitiatorAdapters to obtain a list of the iSCSI initiator adapters that are
connected to the server. The server responds with an IEnumVdsObject interface, which enumerates a
list of IUnknown interfaces, one for each initiator adapter that is connected to the machine. The client
invokes IUnknown::QueryInterface to retrieve an IVdsIscsiInitiatorAdapter interface on the initiator
adapter object.

 Service and Initiator Portals: The client invokes IVdsIscsiInitiatorAdapter::QueryInitiatorPortals to
obtain a list of the iSCSI initiator portals that the initiator adapter maintains. The server responds
with an IEnumVdsObject interface, which enumerates a list of IUnknown interfaces, one for each
initiator portal. The client invokes IUnknown::QueryInterface to retrieve an IVdsIscsiInitiatorPortal
interface on the initiator portal object.

Providers and Packs: The client invokes IVdsSwProvider::QueryPacks to obtain a list of the packs that
the provider maintains. The server responds with an IEnumVdsObject interface, which enumerates a

list of IUnknown interfaces, one for each pack. The client invokes IUnknown::QueryInterface to
retrieve an IVdsPack or IVdsPack2 interface on the pack object.

Packs and Disks: The client invokes IVdsPack::QueryDisks to obtain a list of the disks in the pack. The
server responds with an IEnumVdsObject interface, which enumerates a list of IUnknown interfaces,
one for each disk in the pack. The client invokes IUnknown::QueryInterface to retrieve an IVdsDisk,
IVdsDisk2, IVdsDisk3, IVdsAdvancedDisk, IVdsAdvancedDisk2,

142 / 342

[MS-VDS] - v20170601
Virtual Disk Service (VDS) Protocol
Copyright © 2017 Microsoft Corporation
Release: June 1, 2017

IVdsAdvancedDisk3,IVdsDiskPartitionMF, IVdsDiskPartitionMF2, IVdsCreatePartitionEx, IvdsDiskOnline,
or IVdsRemovable interface on the disk object.

Packs and Volumes: The client invokes IVdsPack::QueryVolumes to obtain a list of the volumes in the
pack. The server responds with an IEnumVdsObject interface, which enumerates a list of IUnknown

interfaces, one for each volume in the pack. The client invokes IUnknown::QueryInterface to retrieve
an IVdsVolume, IVdsVolume2, IVdsVolumeOnline, or IVdsVolumeShrink interface on the volume
object.

Volumes and Plexes: The client invokes IVdsVolume::QueryPlexes to obtain a list of the plexes for a
volume. The server responds with an IEnumVdsObject interface, which enumerates a list of IUnknown
interfaces, one for each plex that is associated with the volume. The client invokes
IUnknown::QueryInterface to retrieve an IVdsVolumePlex interface on the plex object.

Plexes and Extents: The client invokes IVdsVolumePlex::QueryExtents to obtain a list of the extents
for a specified plex. The server returns a list of VDS_DISK_EXTENT structures, one for each extent in
use by the plex.

Volumes and Drive Letters: The client invokes IVdsService::QueryDriveLetters to obtain a list of drive
letters on the system. The server returns a list of VDS_DRIVE_LETTER_PROP structures; the
volumeId member indicates the volume that is associated with the drive letter.

Volumes and Reparse Points: For the IVdsVolume interface, the client invokes
IUnknown::QueryInterface to retrieve an IVdsVolumeMF interface. The client then invokes
IVdsVolumeMF::QueryReparsePoints to obtain a list of mount points on the volume. The server
returns a list of VDS_REPARSE_POINT_PROP structures; the SourceVolumeId member indicates the
mounted volume. For example, for drive D mounted to C:\MountD, drive D is the mounted volume.

Volumes and Access Paths: The client invokes IUnknown::QueryInterface to retrieve an
IVdsVolumeMF interface. The client then invokes IVdsVolumeMF::QueryAccessPaths to obtain a list of

user mode path names for the volume. The server returns a list of drive letters and mount points for
the volume. For drive D mounted to C:\MountD, drive D is the mounted volume and C:\MountD is the
mount point.

Volumes and Supported File System Formats: The client invokes IUnknown::QueryInterface to
retrieve an IVdsVolumeMF2 interface. The client invokes
IVdsVolumeMF2::QueryFileSystemFormatSupport to obtain a list of file systems that are supported for
the volume. The server returns a list of VDS_FILE_SYSTEM_FORMAT_SUPPORT_PROP structures, one

for each file system that is supported on the volume.

Disks and Extents: The client invokes IVdsDisk::QueryExtents to obtain a list of the extents for a
specified disk. The server returns a list of VDS_DISK_EXTENT structures, one for each extent on the
disk. Alternatively, the client invokes IVdsDisk3::QueryFreeExtents to obtain a list of the free extents
for a specified disk. The server returns a list of VDS_DISK_FREE_EXTENT structures, one for each
extent on the disk that is associated with free space on the disk.

For a VDS_DISK_EXTENT or VDS_DISK_FREE_EXTENT that describes a disk extent, a client maps
the extent to its disk by obtaining a list of VDS_DISK_PROP or VDS_DISK_PROP2 structures. The
client obtains this list by invoking IVdsPack::QueryDisks followed by IVdsDisk::GetProperties or
IVdsDisk3::GetProperties2 for each disk. The server returns a VDS_DISK_PROP structure from

IVdsDisk::GetProperties or a VDS_DISK_PROP2 structure from IVdsDisk3::GetProperties2. The client
matches the VDS_DISK_EXTENT::diskId or VDS_DISK_FREE_EXTENT::diskId member to the
VDS_DISK_PROP::id or VDS_DISK_PROP2::id member.

Disks and partitions: The client invokes IUnknown::QueryInterface to obtain the IVdsAdvancedDisk
interface. The client invokes IVdsAdvancedDisk::QueryPartitions to obtain a list of the partitions for a
specified disk. The server returns a list of VDS_PARTITION_PROP structures, one for each partition on
the disk.

143 / 342

[MS-VDS] - v20170601
Virtual Disk Service (VDS) Protocol
Copyright © 2017 Microsoft Corporation
Release: June 1, 2017

Extents and Volumes: For a VDS_DISK_EXTENT that describes a disk extent, a client maps the extent
to its volume by obtaining a list of VDS_VOLUME_PROP structures. The client obtains this list by

invoking IVdsPack::QueryVolumes, followed by IVdsVolume::GetProperties or
IVdsVolume2::GetProperties2 for each volume. The server returns a VDS_VOLUME_PROP structure

from IVdsVolume::GetProperties or a VDS_VOLUME_PROP2 structure from
IVdsVolume2::GetProperties2. The client matches the VDS_DISK_EXTENT::volumeId member to the
VDS_VOLUME_PROP::id or VDS_VOLUME_PROP2::id member.

Extents and Plexes: For a VDS_DISK_EXTENT that describes a disk extent, a client maps the extent to
its volume plex by obtaining a list of VDS_VOLUME_PLEX_PROP structures. The client obtains this list
by invoking IVdsVolume::QueryPlexes, followed by IVdsVolumePlex::GetProperties for each plex. The
server returns a VDS_VOLUME_PLEX_PROP structure from IVdsVolumePlex::GetProperties or

IVdsVolume2::GetProperties2. The client matches the VDS_DISK_EXTENT::plexId member to the
VDS_VOLUME_PLEX_PROP::id member.

Volumes and File Systems: For a VDS_FILE_SYSTEM_PROP structure that describes a file system, a
client maps the file system to a volume by obtaining a list of VDS_VOLUME_PROP structures. The
client invokes IVdsPack::QueryVolumes, followed by IVdsVolume::GetProperties for each volume. The

server returns a VDS_VOLUME_PROP structure from IVdsVolume::GetProperties or

IVdsVolume2::GetProperties2. The client matches the VDS_FILE_SYSTEM_PROP::volumeId member
to the VDS_VOLUME_PROP::id or VDS_VOLUME_PROP2::id member.

Volumes and Drive Letters: For a VDS_DRIVE_LETTER_PROP structure that describes a drive letter, a
client maps the drive letter to a volume by obtaining a list of VDS_VOLUME_PROP structures. The
client invokes IVdsPack::QueryVolumes, followed by IVdsVolume::GetProperties or
IVdsVolume2::GetProperties2 for each volume. The server returns a VDS_VOLUME_PROP structure
from IVdsVolume::GetProperties or a VDS_VOLUME_PROP2 structure from

IVdsVolume2::GetProperties2. The client matches the VDS_DRIVE_LETTER_PROP::volumeId
member to the VDS_VOLUME_PROP::id or VDS_VOLUME_PROP2::id member.

3.2.1.2 Service and Providers

IVdsService::GetObject: "XXX" is a placeholder for provider, pack, disk, virtual disk, volume,

volume plex, or HBA port. Prior to invoking GetObject, the client invokes QueryXXXs on interfaces
that have a QueryXXXs method. The server responds with an IEnumVdsObject interface, which
enumerates a list of IUnknown interfaces, one for each object that is associated with the enumeration.
The client invokes IUnknown::QueryInterface to retrieve an IVdsXXX interface on the object. The
client invokes IVdsXXX::GetProperties to retrieve the object ID. The client passes this returned value
as the id input parameter to the GetObject method. IVdsXXX::GetProperties returns this value as the

VDS_PROVIDER_PROP id member, VDS_PACK_PROP id member, VDS_DISK_PROP id member,
VDS_VDISK_PROPERTIES Id member, VDS_VOLUME_PROP id member, VDS_VOLUME_PLEX_PROP id
member, or VDS_HBAPORT_PROP id member. The client can cache the object IDs for the lifetime of
the object; it can later be used to retrieve an interface to the object without having to cache the
interface to the object itself, or having to enumerate and find the object every time it needs the
object.

IVdsService::Advise: Prior to invoking Advise, the client calls IVdsService::WaitForServiceReady or

polls by using IVdsService::IsServiceReady successfully. The client invokes IVdsService::Advise to
retrieve the client identification value parameter. The client passes the client identification value as

the dwCookie input parameter to the Unadvise method.

IVdsService::Unadvise: Prior to invoking Unadvise, the client invokes IVdsService::Advise to retrieve
the client identification value. The client passes the client identification value as the dwCookie input
parameter to the Unadvise method.

144 / 342

[MS-VDS] - v20170601
Virtual Disk Service (VDS) Protocol
Copyright © 2017 Microsoft Corporation
Release: June 1, 2017

3.2.1.3 Packs

IVdsPack::CreateVolume: Prior to invoking CreateVolume, the client invokes IVdsDisk::GetProperties
or IVdsDisk3::GetProperties2 to retrieve the disk ID parameter. The client passes this returned value

as the VDS_INPUT_DISK::diskId input parameter to the CreateVolume method. CreateVolume takes
an array of one or more VDS_INPUT_DISK structures, and IVdsDisk::GetProperties or
IVdsDisk3::GetProperties2 is called once for each disk in this array. IVdsDisk::GetProperties and
IVdsDisk3::GetProperties2 return this value as the VDS_DISK_PROP::id or VDS_DISK_PROP2::id
output parameter.

IVdsPack::AddDisk: Prior to invoking AddDisk, the client invokes IVdsDisk::GetProperties or
IVdsDisk3::GetProperties2 to retrieve the disk ID parameter. The client passes this returned value as

the DiskId input parameter to the AddDisk method. IVdsDisk::GetProperties and
IVdsDisk3::GetProperties2 return this value as the id output parameter.

IVdsPack::MigrateDisks: Prior to invoking MigrateDisks, the client invokes IVdsDisk::GetProperties for
each disk in the input array, to retrieve the list of disk id parameters. The client passes this returned
value as the pDiskArray input parameter to the MigrateDisks method. IVdsDisk::GetProperties returns

this value as the VDS_DISK_PROP::id output parameter.

Prior to invoking MigrateDisks, the client invokes IVdsPack::GetProperties to retrieve the target pack
ID parameter. The client passes this returned value as the TargetPack input parameter to the
MigrateDisks method. IVdsPack::GetProperties returns this value as the VDS_PACK_PROP::id output
parameter.

IVdsPack::RemoveMissingDisk: Prior to invoking RemoveMissingDisk, the client invokes
IVdsDisk::GetProperties to retrieve the disk ID parameter. The client passes this returned value as the
DiskId input parameter to the RemoveMissingDisk method. IVdsDisk::GetProperties and

IVdsDisk3::GetProperties2 return this value as the VDS_DISK_PROP::id or VDS_DISK_PROP2::id
output parameter.

IVdsPack2::CreateVolume2: CreateVolume2 has the same call sequence description as
IVdsPack::CreateVolume.

3.2.1.4 Disks

IVdsAdvancedDisk::GetPartitionProperties: Prior to invoking GetPartitionProperties, the client invokes
IVdsDisk::QueryExtents or IVdsVolumePlex::QueryExtents to retrieve the offset parameter. The client
passes this returned value as the ullOffset input parameter to the GetPartitionProperties method.
IVdsDisk::QueryExtents or IVdsVolumePlex::QueryExtents returns this value as the
VDS_DISK_EXTENT::ullOffset output parameter.

IVdsAdvancedDisk::CreatePartition: Prior to invoking CreatePartition, the client invokes
IVdsDisk::QueryExtents , IVdsDisk3::QueryFreeExtents, or IVdsVolumePlex::QueryExtents to retrieve
the free disk extents. Using the list of free disk extents, the client can calculate an offset and size for
the new partition. The client passes these calculated values as the ullOffset and ullSize input
parameters to the CreatePartition method. IVdsDisk::QueryExtents returns a list of
VDS_DISK_EXTENT structures as an output parameter. These structures contain the offset and size of
the free extent as VDS_DISK_EXTENT::ullOffset and VDS_DISK_EXTENT::ullSize.

IVdsDisk3::QueryFreeExtents, and IVdsVolumePlex::QueryExtents return a list of
VDS_DISK_FREE_EXTENT structures as an output parameter. These structures contain the offset and
size of the free extent as VDS_DISK_FREE_EXTENT::ullOffset and
VDS_DISK_FREE_EXTENT::ullSize.

Prior to invoking CreatePartition, the client invokes IVdsAdvancedDisk::GetPartitionProperties to
retrieve the partition type (partition style) for the disk. The client passes this value as the
CREATE_PARTITION_PARAMETERS::style input parameter to the CreatePartition method.

IVdsAdvancedDisk::GetPartitionProperties returns this value as the
VDS_PARTITION_PROP::PartitionStyle structure member.

145 / 342

[MS-VDS] - v20170601
Virtual Disk Service (VDS) Protocol
Copyright © 2017 Microsoft Corporation
Release: June 1, 2017

Prior to invoking CreatePartition, the client invokes IVdsPack::AddDisk to set the partitioning format
for the disk if the disk is not initialized.

IVdsAdvancedDisk::DeletePartition: Prior to invoking DeletePartition, the client invokes
IVdsAdvancedDisk::GetPartitionProperties, IVdsDisk::QueryExtents, or IVdsVolumePlex::QueryExtents

to retrieve the offset parameter. The client passes this returned value as the ullOffset input parameter
to the DeletePartition method. If an invalid offset is passed to this method, it will fail.
IVdsDisk::QueryExtents or IVdsVolumePlex::QueryExtents returns this value as the
VDS_DISK_EXTENT::ullOffset output parameter. IVdsAdvancedDisk::GetPartitionProperties returns
this value as the VDS_PARTITION_PROP::ullOffset output parameter.

IVdsAdvancedDisk::ChangeAttributes: ChangeAttributes has the same call sequence description as
DeletePartition.

IVdsAdvancedDisk::AssignDriveLetter: AssignDriveLetter has the same call sequence description as
DeletePartition.

IVdsAdvancedDisk::GetDriveLetter: GetDriveLetter has the same call sequence description as

DeletePartition.

IVdsAdvancedDisk::FormatPartition: For call sequencing related to the ullOffset input parameter, see
the description for IVdsAdvancedDisk::DeletePartition. For call sequencing, see sections 3.2.1.1.2,

3.4.1.4, 3.4.1.5, and 4.5.

IVdsAdvancedDisk2::ChangePartitionType: For call sequencing related to the ullOffset input
parameter, see the description for IVdsAdvancedDisk::FormatPartition.

Prior to invoking ChangePartitionType, the client invokes IVdsAdvancedDisk::GetPartitionProperties to
retrieve the partition type for the disk. The client passes this value as the
CHANGE_PARTITION_TYPE_PARAMETERS::style input parameter to the ChangePartitionType method.
IVdsAdvancedDisk::GetPartitionProperties returns this value as the

VDS_PARTITION_PROP::PartitionStyle structure member.

IVdsCreatePartitionEx::CreatePartitionEx: IVdsCreatePartitionEx has the same call sequence
description as IVdsAdvancedDisk::CreatePartition.

IVdsServiceUninstallDisk::GetDiskIdFromLunInfo: Prior to invoking GetDiskIdFromLunInfo, the client
invokes IVdsDisk::GetIdentificationData to retrieve the logical unit number (LUN) information for
the disk. The client passes this returned value as the pLunInfo input parameter to the
GetDiskIdFromLunInfo method. IVdsDisk::GetIdentificationData returns this value as the pLunInfo

output parameter.

IVdsServiceUninstallDisk::UninstallDisks: Prior to invoking UninstallDisks, the client invokes
IVdsDisk::GetProperties or IVdsDisk3::GetProperties2 for each disk in the input array, to retrieve the
list of disk IDs. The client passes this returned value as the pDiskIdArray input parameter to the
UninstallDisks method. IVdsDisk::GetProperties and IVdsDisk3::GetProperties2 return this value as
the VDS_DISK_PROP::id or VDS_DISK_PROP2::id output parameter.

3.2.1.5 Volumes

IVdsVolume::Extend: Prior to invoking Extend, the client invokes IVdsDisk::GetProperties or
IVdsDisk3::GetProperties2 for each disk in the input array in order to retrieve the list of disk IDs. The
client passes this returned value as the pInputDiskArray input parameter to the Extend method.

IVdsDisk::GetProperties and IVdsDisk3::GetProperties2 return this value as the VDS_DISK_PROP::id
or VDS_DISK_PROP2::id output parameter.

 IVdsVolume::AddPlex: Prior to invoking AddPlex, the client invokes IVdsVolume::GetProperties or
IVdsVolume2::GetProperties2 to retrieve the volume ID. The client passes this returned value as the
VolumeId input parameter to the AddPlex method. IVdsVolume::GetProperties or

146 / 342

[MS-VDS] - v20170601
Virtual Disk Service (VDS) Protocol
Copyright © 2017 Microsoft Corporation
Release: June 1, 2017

IVdsVolume2::GetProperties2 returns this value as the VDS_VOLUME_PROP::id or
VDS_VOLUME_PROP2::id output parameter. For more information, see section 3.2.1.1.2.

IVdsVolume::BreakPlex: Prior to invoking BreakPlex, the client invokes
IVdsVolumePlex::GetProperties to retrieve the plex ID. The client passes this returned value as the

plexId input parameter to the BreakPlex method. IVdsVolumePlex::GetProperties returns this value as
the VDS_VOLUME_PLEX_PROP::id output parameter. For more information, see section 3.2.1.1.2.

IVdsVolume::RemovePlex: RemovePlex has the same call sequence description as
IVdsVolume::BreakPlex.

IVdsVolumePlex::Repair: Repair has the same call sequence description as IVdsVolume::Extend.

3.2.1.6 Virtual Disks

IVdsOpenVDisk::Attach: Prior to invoking Attach, the client invokes IVdsVdProvider::QueryVDisks or
IVdsVdProvider::CreateVDisk or IVdsVdProvider::AddVDisk to retrieve the virtual disk object. Then
the client invokes IVdsVDisk::Open to retrieve the OpenVirtualDisk object.

IVdsOpenVDisk::Detach: Prior to invoking Detach, the client invokes IVdsVdProvider::QueryVDisks or

IVdsVdProvider::GetVDiskFromDisk to retrieve an interface pointer to the virtual disk object to detach.
Then the client invokes IVdsVDisk::Open to retrieve the OpenVirtualDisk object.

IVdsOpenVDisk::DetachAndDelete: DetachAndDelete has the same call sequence description as
IVdsOpenVDisk::Detach.

IVdsOpenVDisk::Compact: Compact can be done on an attached virtual disk or on a detached
virtual disk. Calling Compact on a detached virtual disk has the same call sequence description as
IVdsOpenVDisk::Attach. Calling Compact on an attached virtual disk has the same call sequence as

IVdsOpenVDisk::Detach.

IVdsOpenVDisk::Merge: Merge has the same call sequence description as IVdsOpenVDisk::Attach.

IVdsOpenVDisk::Expand: Expand has the same call sequence description as IVdsOpenVDisk::Attach.

IVdsVDisk::Open: Prior to invoking Open, the client invokes IVdsVdProvider::QueryVDisks,
IVdsVdProvider::GetVDiskFromDisk, or IVdsVdProvider::AddVDisk to retrieve an interface pointer to
the virtual disk object to open.

IVdsVDisk::GetProperties: GetProperties has the same call sequence description as IVdsVDisk::Open.

IVdsVDisk::GetHostVolume: GetHostVolume has the same call sequence description as
IVdsVDisk::Open.

IVdsVDisk::GetDeviceName: GetDeviceName has the same call sequence description as
IVdsVDisk::Open.

3.2.1.7 File Systems, Drive Letters, and Access Paths

IVdsVolumeMF::Format and IVdsVolumeMF3::FormatEx2: For call sequencing related to the type input

parameter, see "Service and File System Types" in section 3.2.1.1.2.

IVdsVolumeMF::DeleteAccessPath: For call sequencing related to the pwszPath input parameter, see
"Volumes and Access Paths" and "Volumes and Drive Letters" in section 3.2.1.1.2.

IVdsVolumeMF2::FormatEx and IVdsVolumeMF3::FormatEx2: Prior to invoking

IVdsVolumeMF2::FormatEx or IVdsVolumeMF3::FormatEx2, the client invokes
IVdsDiskPartitionMF::QueryPartitionFileSystemFormatSupport or
IVdsVolumeMF2::QueryFileSystemFormatSupport to retrieve the list of supported file system type

147 / 342

[MS-VDS] - v20170601
Virtual Disk Service (VDS) Protocol
Copyright © 2017 Microsoft Corporation
Release: June 1, 2017

names and the associated file system version number. The client passes these returned values as the
pwszFileSystemTypeName and usFileSystemRevision input parameters to the FormatEx method.

IVdsDiskPartitionMF::QueryPartitionFileSystemFormatSupport and
IVdsVolumeMF2::QueryFileSystemFormatSupport return these values as the

VDS_FILE_SYSTEM_FORMAT_SUPPORT_PROP::wszName and
VDS_FILE_SYSTEM_FORMAT_SUPPORT_PROP::usRevision output parameters.

IVdsDiskPartitionMF::GetPartitionFileSystemProperties: GetPartitionFileSystemProperties has the same
call sequencing description as IVdsAdvancedDisk::DeletePartition.

IVdsDiskPartitionMF::GetPartitionFileSystemTypeName: GetPartitionFileSystemTypeName has the
same call sequencing description as IVdsAdvancedDisk::DeletePartition.

IVdsDiskPartitionMF::QueryPartitionFileSystemFormatSupport:

QueryPartitionFileSystemFormatSupport has the same call sequencing description as
IVdsAdvancedDisk::DeletePartition.

IVdsDiskPartitionMF::FormatPartitionEx and IVdsDiskPartitionMF2::FormatPartitionEx2: For call

sequencing related to the ullOffset input parameter, see the preceding description for
IVdsAdvancedDisk::DeletePartition. For call sequencing related to the pwszFileSystemTypeName and
usFileSystemRevision input parameters, see the description for IVdsVolumeMF2::FormatEx and

IVdsVolumeMF3::FormatEx2.

3.2.2 Timers

None.

3.2.3 Initialization

None.

3.2.4 Message Processing Events and Sequencing Rules

None.

3.2.5 Timer Events

None.

3.2.6 Other Local Events

None.

3.3 Client Details

3.3.1 Abstract Data Model

The client MUST maintain the following information for use in queries and commands to the server.

3.3.1.1 Notification Callback Objects

Clients can register callback objects in order to receive VDS event notifications from the server. (For

more information and for an example of how clients can do this, see section 4.2.)

148 / 342

[MS-VDS] - v20170601
Virtual Disk Service (VDS) Protocol
Copyright © 2017 Microsoft Corporation
Release: June 1, 2017

For each client notification callback object that is registered with the server, the client MUST maintain
the following information:

Cookie: A unique 32-bit value that identifies the callback and that is maintained until the callback
object is unregistered.

 The cookie is assigned by the server and returned to the client so that the client can use it to later
unregister the callback.

 The client MUST NOT change the cookie.

 When the client unregisters a callback, it MUST use the cookie that the server gave to it when it
originally registered the callback.

3.3.2 Timers

None.

3.3.3 Initialization

A client initializes by creating an RPC binding handle to the IVdsServiceLoader interface. For more
information on how to get a client-side RPC binding handle for an IVdsServiceLoader interface, see
[MS-DCOM] section 3.2.4.

 After the client obtains the IVdsServiceLoader interface, the client MUST invoke
IVdsServiceLoader::LoadService on the interface to retrieve the IVdsService interface.

 If the IVdsService interface was NOT obtained by calling IVdsServiceLoader::LoadService, the client

MUST invoke IUnknown::QueryInterface to retrieve the IVdsServiceInitialization interface. If the
IVdsService interface was obtained by calling CoCreateInstance (see [MSDN-CoCreateInstance]) on
the VDS server with the class GUID of the VDS service, then the client MUST:

 Invoke IUnknown::QueryInterface on the interface to retrieve the IVdsServiceInitialization
interface.

 After the client obtains the IVdsServiceInitialization interface, the client MUST invoke the

IVdsServiceInitialization::Initialize method on the interface before invoking any other method.

All the clients MUST then do one of the following before invoking any other methods:

 Invoke IVdsService::WaitForServiceReady and wait for it to return with a success code.

 Invoke IVdsService::IsServiceReady in a loop until this method returns a success code.

3.3.4 Message Processing Events and Sequencing Rules

3.3.4.1 Processing Server Replies to Method Calls

After the client receives a reply from the server in response to a method call, the client MUST validate

the return code. Return codes from all method calls are HRESULTs. If the HRESULT indicates success,

the client can assume that any output parameters are present and valid.

Certain calls need to be performed in sequence. For example, where method A is a prerequisite call for
method B, the client will pass output parameters from method A as input parameters to method B, as
described in section 3.2.1.1.1. If method B is called, then the client retains A's output parameters until
B completes.

%5bMS-DCOM%5d.pdf#Section_4a893f3dbd2948cd9f43d9777a4415b0
https://go.microsoft.com/fwlink/?LinkId=208350

149 / 342

[MS-VDS] - v20170601
Virtual Disk Service (VDS) Protocol
Copyright © 2017 Microsoft Corporation
Release: June 1, 2017

The client MUST release any DCOM interfaces that the server returns when the client no longer needs
them.

3.3.4.2 Processing Notifications Sent from the Server to the Client

The client SHOULD choose to implement the IVdsAdviseSink interface in order to receive notification
from the server of changes to the storage objects on the server. Notifications are sent to the client for
creating, deleting, and modifying storage objects. The client can choose to take other action based on
these notifications. The client can also choose to ignore notifications from the server.

Notifications that are related to storage object modification indicate a state change, such as when a
disk status changes from VDS_DS_ONLINE to VDS_DS_FAILED, or when a volume length changes
because of a call to IVdsVolume::Extend.

3.3.4.3 IVdsAdviseSink Methods

3.3.4.3.1 IVdsAdviseSink::OnNotify (Opnum 3)

The OnNotify method passes notifications from VDS to applications.

 HRESULT OnNotify(
 [in, range(1,100)] long lNumberOfNotifications,
 [in, size_is(lNumberOfNotifications)]
 VDS_NOTIFICATION* pNotificationArray
);

lNumberOfNotifications: The number of notifications that are specified in pNotificationArray. This
parameter MUST be a value from 1 through 100.

pNotificationArray: An array of VDS_NOTIFICATION structures.

Return Values: The method MUST return zero or a non-error HRESULT (as specified in [MS-ERREF])

to indicate success or return an implementation-specific nonzero error code to indicate failure. For
the HRESULT values predefined by the Virtual Disk Service Remote Protocol, see section 2.2.3.

3.3.5 Timer Events

None.

3.3.6 Other Local Events

None.<65>

3.4 Server Details

Unless otherwise specified, all methods MUST return zero or a non-error HRESULT (as specified in

[MS-ERREF]) to indicate success, or return an implementation-specific nonzero error code to indicate
failure. For the HRESULT values predefined by the Virtual Disk Service Remote Protocol, see section
2.2.3.

3.4.1 Abstract Data Model

The server maintains the following information to use in responding to client queries and commands.
Unless otherwise specified, zero indicates success.

%5bMS-ERREF%5d.pdf#Section_1bc92ddfb79e413cbbaa99a5281a6c90
%5bMS-ERREF%5d.pdf#Section_1bc92ddfb79e413cbbaa99a5281a6c90

150 / 342

[MS-VDS] - v20170601
Virtual Disk Service (VDS) Protocol
Copyright © 2017 Microsoft Corporation
Release: June 1, 2017

This section describes a conceptual model of possible data organization that an implementation
maintains to participate in this protocol. The described organization is provided to facilitate the

explanation of how the protocol behaves. This document does not mandate that implementations
adhere to this model as long as their external behavior is consistent with that described in this

document.

3.4.1.1 Service Object

The service object exposes DCOM interfaces for retrieving and interacting with all storage

management objects. The service object:

 Implements IVdsService and IVdsServiceInitialization interfaces.

 Implements IVdsServiceUninstallDisk, IVdsServiceHba, IVdsServiceSAN, and IVdsServiceIscsi
interfaces.<66>

 Maintains a value that indicates the ready state of the service. The service-ready state values are
"not ready", "ready", or "failed". When an object is created, this value will be "not ready". When

the service is finished initializing, this value will be changed to "ready". After the value is "ready",

it will not change.

3.4.1.2 Storage Management Objects

The server maintains a list of the following VDS objects:

 HBA Port

 The server maintains an object for each HBA port on the system.

 Each HBA port object exposes DCOM interfaces for querying information from an HBA port on
the system.

 Each HBA port object implements the IVdsHbaPort interface.

 Initiator Adapter

 The server maintains an object for each initiator adapter on the system.

 Each initiator adapter object exposes DCOM interfaces for querying information from an
iSCSI initiator adapter on the system.

 Each initiator adapter object implements the IVdsIscsiInitiatorAdapter interface.

 Initiator Portal

 The server maintains an object for each initiator portal on the system.

 Each initiator portal object exposes DCOM interfaces for querying information from an iSCSI
initiator portal on the system.

 Each initiator portal object implements the IVdsIscsiInitiatorPortal interface.

 Each initiator portal object maintains a pointer to the initiator adapter object to which it
belongs.

 Software Provider

 The server maintains an object for each provider on the system.

 The basic provider is for managing basic disks.

151 / 342

[MS-VDS] - v20170601
Virtual Disk Service (VDS) Protocol
Copyright © 2017 Microsoft Corporation
Release: June 1, 2017

 The dynamic provider is for managing dynamic disks.

 Each software provider object exposes DCOM interfaces for managing storage objects (packs,

volumes, plexes, and disks) on the system.

 Each software provider object implements the IVdsProvider and IVdsSwProvider

interfaces.

 Hardware Provider

 The server maintains an object for each hardware provider on the system.

 Each hardware provider object exposes DCOM interfaces for managing subsystems.

 Each hardware provider object implements the IVdsProvider and IVdsHwProvider interfaces.

 Virtual Disk Provider

 The server maintains an object for each hardware provider on the system.

 Each virtual disk provider object exposes DCOM interfaces for managing virtual disks.

 Each hardware provider object implements the IVdsProvider and IVdsVdProvider interfaces.

 Subsystem

 The server maintains an object for each subsystem on the system.

 Each subsystem object exposes DCOM interfaces for managing the subsystem.

 Each subsystem object implements the IVdsSubSystemImportTarget interface.

 Pack

 The server maintains an object for each pack on the system.

 Each pack object exposes DCOM interfaces for managing a logical group of disks and the
volumes that they contain.

 Each pack object implements the IVdsPack interface.

 Each pack object implements the IVdsPack2 interface.

 Each pack object maintains a pointer to the software provider object to which it belongs.

 Disk

 The server maintains an object for each disk on the system.

 Each disk object exposes DCOM interfaces for managing a disk, which can include physical
hard disks, removable disk units, optical drive units, and the LUNs that are unmasked to the
system.

 Each disk object implements the IVdsDisk and IVdsAdvancedDisk interfaces.

 If the disk is removable, the disk object implements the IVdsRemovable interface;

otherwise, the IVdsRemovable interface is not implemented.

 If the disk is a removable drive with no media, the disk object sets its status to
VDS_DS_NO_MEDIA and the values for ulBytesPerSector, ulSectorsPerTrack,
ulTracksPerCylinder, and ullSize to zero.

152 / 342

[MS-VDS] - v20170601
Virtual Disk Service (VDS) Protocol
Copyright © 2017 Microsoft Corporation
Release: June 1, 2017

 Each disk object implements the IVdsDisk2, IVdsDisk3, IVdsAdvancedDisk2,
IVdsAdvancedDisk3, IVdsCreatePartitionEx, IVdsDiskPartitionMF, IVdsDiskPartitionMF2,

and IvdsDiskOnline interfaces.

 Each disk object--if the disk is basic or dynamic--maintains a pointer to the pack object to

which it belongs.

 Volume

 The server maintains an object for each volume on the system.

 Each volume object exposes DCOM interfaces for managing a volume, which is a logical unit
of storage that exists over regions of one or more disks that belong to the same pack.

 Each volume object implements the IVdsVolume, IVdsVolume2, IVdsVolumeMF,
IVdsVolumeMF2, IVdsVolumeMF3, IVdsVolumeShrink, and IVdsVolumeOnline interfaces.

 Each volume object maintains a pointer to the pack object to which it belongs.

 Removable media drives contain one volume, and the volume is associated with the drive. If
there is no media in the drive, the status of the volume is set to VDS_VS_NO_MEDIA and
ullsize is set to zero.<67>

 Volume Plex

 The server maintains an object for each volume plex on the system.

 Each volume plex object exposes DCOM interfaces for managing a volume plex, which
represents a complete copy of the data that is stored on a mirrored volume.

 Each volume plex object implements the IVdsVolumePlex interface.

 The volume object on a removable media drive contains one volume plex, and the volume
plex is associated with the drive. If there is no media in the drive, the status of the volume
plex is set to VDS_VPS_NO_MEDIA and ullsize is set to zero.

 Each volume plex object maintains a pointer to the volume object to which it belongs.

 Virtual Disk

 The server maintains an object for each attached virtual disk on the system.

 The server maintains an object for each virtual disk that has been created using
IVdsVdProvider::CreateVDisk after the server starts, or has been added to the server's cache
using IVdsVdProvider::AddVDisk.

 Each virtual disk object exposes DCOM interfaces for managing a virtual disk.

 Each virtual disk object implements the IVdsVDisk interface.

 When a virtual disk is opened, it MUST create an object to represent the open virtual disk
(an OpenVirtualDisk object), which MUST implement the IVdsOpenVDisk interface.

 Each attached virtual disk object maintains an association with an actual disk (basic, dynamic,
or unallocated disk) that has been exposed to the system as a result of attaching the virtual
disk.

Each VDS object maintains the following information:

VDS Object Identifier: A unique identifier of type VDS_OBJECT_ID.

 The server generates these identifiers at run time.

153 / 342

[MS-VDS] - v20170601
Virtual Disk Service (VDS) Protocol
Copyright © 2017 Microsoft Corporation
Release: June 1, 2017

 The server MUST NOT assign two objects to the same identifier.

 The server MUST NOT change the identifier for the entire duration of a VDS session or until the

object is removed from the list. A VDS session is defined to be from the point at which a client
receives a pointer to the service object, to the point at which the client releases all references to

it.

 The server facilitates ID-based object retrieval.

Object Type: A value of type VDS_OBJECT_TYPE, which indicates the type of device that the object
represents.

 When a VDS object is created, the server assigns its corresponding object type:

 HBA port: VDS_OT_HBAPORT

 Initiator adapter: VDS_OT_INIT_ADAPTER

 Initiator portal: VDS_OT_INIT_PORTAL

 Provider: VDS_OT_PROVIDER

 Pack: VDS_OT_PACK

 Disk: VDS_OT_DISK

 Volume: VDS_OT_VOLUME

 Volume plex: VDS_OT_VOLUME_PLEX

 Virtual disk: VDS_OT_VDISK

 Virtual disk that has been opened: VDS_OT_OPEN_VDISK

The objects can be used by more than one VDS session at a time. Objects can be added or removed
as a result of client requests or events that the operating system triggers, such as when a disk is no

longer being reported by its bus, or when the disk's bus reports a new disk.

If objects are removed while a client still has references to them, the server MUST return a value of
VDS_E_OBJECT_DELETED (HRESULT of 0x8004240bL) whenever the client attempts to access the

object interface methods.

3.4.1.3 Enumeration of Objects

All VDS objects that are listed in Storage Management Objects--except for the service object--are

returned by means of enumeration objects. For an example of how these objects are created and
used, see section 4.3.

When the client calls a method to request an enumeration, the server creates an enumeration object
that implements the IEnumVdsObject interface and returns the interface pointer to the client to allow
it to enumerate through the requested objects. The server maintains this object until the client

releases all references to the interface. For each enumeration object, the server maintains the
following information:

Objects Being Enumerated: A list of pointers to the VDS objects being enumerated.

 When the enumeration object is created, the server populates this list with the objects to return,
dictated by the particular specification of the method that the client calls.

 The server does not list the same object more than once.

154 / 342

[MS-VDS] - v20170601
Virtual Disk Service (VDS) Protocol
Copyright © 2017 Microsoft Corporation
Release: June 1, 2017

 After the list is populated, the server does not reorder the entries in the list.

 If a new VDS object is added to the server, the server does not add the object to the list of objects

being enumerated.

 If a VDS object is removed from the server, the server does not remove the object from the list of

objects being enumerated. If the client later accesses the removed object, the server returns
VDS_E_OBJECT_DELETED whenever the client attempts to access the object interface methods.

Index: A value that keeps track of which object to return next to the client, when the client requests
more objects from the enumeration.

 When the enumeration object is created, this value is initialized to the index of the first VDS object
(whether this is 0, 1, or any other value is an implementation detail) in the list of objects being
enumerated.

 If the client requests a certain number of objects from the enumeration by means of the
IEnumVdsObject::Next (Opnum 3) method, the server returns the requested number of pointers
to the objects in the list, starting at the current index value. However, if the server reaches the

end of the list, the server returns the remaining pointers to the objects in the list, and indicates
the actual number of objects that are returned to the client and the return code of S_FALSE. The
server increments the index by the number of objects that are returned to the client.

 If the client requests to skip a certain number of objects in the enumeration by means of the
IEnumVdsObject::Skip (Opnum 4) method, the server increments the index by that number.

 If the index goes past the end of the list, all subsequent requests for more objects from the
enumeration will return zero pointers and a return code of S_FALSE until the enumeration is reset.

 If the client calls the IEnumVdsObject::Reset (Opnum 5) method, the server sets the index back
to the first object in the list.

3.4.1.4 Notification Callback Objects

Clients can register callback objects in order to receive VDS event notifications from the server. (For
more information and for an example of how clients can do this, see section 4.2.)

For each client notification callback object that is registered with the server, the server maintains the

following information in its list of callback objects:

Cookie: A unique 32-bit value that identifies the callback and that is maintained until the callback
object is unregistered.

 The cookie is assigned by the server and returned to the client so that the client can use it to later
unregister the callback.

 The server does not change the identifier and does not assign it to another callback object until
the original callback object is unregistered.

 Callback Object Interface: A pointer to the IVdsAdviseSink interface that is implemented by the

callback object that is used to receive notifications from the server.

 Whenever a notification needs to be sent to the client, the server calls the
IVdsAdviseSink::OnNotify (Opnum 3) method of the object in order to notify it of the event.

3.4.1.5 Asynchronous Tasks

Certain tasks in VDS can be long-running. The methods that trigger these tasks are asynchronous and
have an IVdsAsync interface pointer as an output parameter. When the client calls a method that

155 / 342

[MS-VDS] - v20170601
Virtual Disk Service (VDS) Protocol
Copyright © 2017 Microsoft Corporation
Release: June 1, 2017

initiates these tasks, the server creates an async object that implements the IVdsAsync interface and
returns the interface pointer to the client in order for it to monitor the task status. (For more

information and for examples of how async objects can be used, see section 4.5.) The server
maintains this object until the client releases all references to the interface.

For each async object, the server maintains the following information:

Async Output Type: A value of type VDS_ASYNC_OUTPUT_TYPE that indicates the type of task that
the async object is monitoring.

 The server assigns this value when the object is created, and the server does not change it.

Percent Completed: An integer from 0 through 100, which indicates the percentage of progress for the
task being completed.

 This value is initialized to 0 when the object is created.

 If the task can be subdivided into meaningful progress milestones, the server updates this value
after each milestone is passed.

 The value always increases whenever the value is updated unless the task fails, in which case, the
server sets the value to 0.

 If the task is successfully completed, the server sets the value to 100.

 When the client calls the IVdsAsync::QueryStatus (Opnum 5) method, the server returns this

value in the value that the pulPercentCompleted output parameter references.

Signal State: A Boolean value that indicates whether the task is still in progress (FALSE); or if the task
has finished, whether it finished successfully or unsuccessfully (TRUE).

 This value is initialized to FALSE when the object is created.

 The server changes the signal state to TRUE when the task fails or when the task successfully
completes.

 If the signal state is TRUE, the server does not change the signal state back to FALSE.

 If the signal state is FALSE and the client calls the IVdsAsync::Wait (Opnum 4) method, the server
blocks the call until the signal state is changed to TRUE, at which point the server unblocks the call
and return the results of the task.

 If the signal state is TRUE and the client calls the IVdsAsync::Wait (Opnum 4) method, the server
returns the results of the task immediately.

Return Code: The server returns to the client the HRESULT value that indicates the final result of the
task after it completes.

 The server sets this value when the task fails or when the task successfully completes.

Task-Specific Return Values: Certain tasks need to return information or pointers to objects when they
complete.

 If a task (determined by VDS_ASYNC_OUTPUT_TYPE) returns such values, the server returns
these values to the client by means of the VDS_ASYNC_OUTPUT structure that the
IVdsAsync::Wait (Opnum 4) method returns after the task is successfully completed.

3.4.2 Timers

None.

156 / 342

[MS-VDS] - v20170601
Virtual Disk Service (VDS) Protocol
Copyright © 2017 Microsoft Corporation
Release: June 1, 2017

3.4.3 Initialization

During initialization of the Virtual Disk Service Remote Protocol, the service MUST start enumerating
storage objects on the system and assign unique VDS object IDs to these objects, as specified in

section 3.4.1.2.

The server MUST NOT report different identifiers for the same object within one server session to the
same or to different VDS clients. The VDS object IDs are generated at server startup and when a new
object arrives. These IDs are not persistent across server instantiations; if the service is stopped and
restarted, new VDS object IDs will be generated.

If service initialization has not started when the client calls the IVdsServiceInitialization::Initialize
(Opnum 3) (section 3.4.5.2.5.1) method, the service MUST start initializing.

3.4.3.1 Storage Management Objects

The server creates a service object and returns its interface pointer to the client that is requesting the
service. The server initializes an empty list of storage management objects and populates it with

provider objects that correspond to the installed providers on the system (the basic and dynamic
providers and also the virtual disk provider). The server MUST assign each provider object a unique
VDS_OBJECT_ID.

The server populates the list of storage management objects on the system. For more details about
how each disk object is added for the basic provider, which also populates the associated pack and
volume objects, see section 3.4.5.1.3. For more details about how each pack object is added for the
dynamic provider, see section 3.4.5.1.1. For more details about how each disk object is added, see

section 3.4.5.1.3. For more details about how each volume is added, which also populates the
associated volume plex object, see section 3.4.5.1.5. For more details about how each virtual disk
object or opened virtual disk object is added, see section 3.4.5.1.7.

The server also queries for the HBA ports that are discoverable by using the HBA API, as well as the
iSCSI initiator adapters and iSCSI initiator portals that are discoverable by using the iSCSI
initiator, if they are available on the system. The service object MUST create a corresponding HBA

port, an initiator adapter, and initiator portal objects, and assign each of these objects a unique

VDS_OBJECT_ID. For an initiator portal object, the server MUST set its initiator adapter pointer to the
initiator adapter object that corresponds to the initiator adapter that contains the initiator portal. The
server MUST add these objects to the list of storage management objects.

After initialization is complete, the server MUST set the service object's service-ready state to "ready".
If initialization fails, the server MUST set the service object's service-ready state to "failed".

3.4.3.2 Notification Callback Objects

The server initializes an empty list of callback objects.

3.4.4 Higher-Layer Triggered Events

None.

3.4.5 Message Processing Events and Sequencing Rules

3.4.5.1 Sequencing Rules

3.4.5.1.1 Adding Pack Objects for Dynamic Providers

157 / 342

[MS-VDS] - v20170601
Virtual Disk Service (VDS) Protocol
Copyright © 2017 Microsoft Corporation
Release: June 1, 2017

The server MUST maintain a list of detected dynamic disk packs. When the server discovers a new
pack (either during initialization or when a new pack arrives after initialization), it MUST create a

corresponding pack object and MUST assign it a unique VDS_OBJECT_ID.

The server MUST set the pack object's provider pointer to the provider object that corresponds to the

dynamic provider. The server MUST add the pack object to the list of storage management objects.
For each callback object that is registered in the list of callback objects, the server MUST call the
callback object's IVdsAdviseSink::OnNotify (Opnum 3) method with a VDS_NOTIFICATION structure
that has the following attributes:

 objectType member is VDS_NTT_PACK.

 Pack member is a VDS_PACK_NOTIFICATION that has the following attributes:

 ulEvent is VDS_NF_PACK_ARRIVE.

 packId is the VDS_OBJECT_ID of the pack object that was added.

3.4.5.1.2 Removing Pack Objects for Dynamic Providers

The server MUST maintain a list of detected dynamic disk packs. When the server discovers that a
pack was removed, it MUST remove the corresponding pack object from the list of storage
management objects. For each callback object that is registered in the list of callback objects, the

server MUST call the IVdsAdviseSink::OnNotify (Opnum 3) method for the callback object with a
VDS_NOTIFICATION structure that has the following attributes:

 objectType member set to VDS_NTT_PACK.

 Pack member set to a VDS_PACK_NOTIFICATION that has the following attributes:

 ulEvent set to VDS_NF_PACK_DEPART.

 packId set to the VDS_OBJECT_ID of the pack object that was removed.

3.4.5.1.3 Adding Disk Objects

The server MUST maintain a list of detected disks. When the server discovers a new disk (either
during initialization or when a new disk arrives after initialization), it checks whether it is a basic
disk, a dynamic disk, or unallocated (neither).

Basic Disk: If the disk is a basic disk, the server MUST first create a pack object and assign it a
unique VDS_OBJECT_ID. The server MUST set the provider pointer of the pack object to the provider
object that corresponds to the basic provider. The server MUST add the pack object to the list of

storage management objects. For each callback object that is registered in the list of callback objects,
the server MUST call the callback object's IVdsAdviseSink::OnNotify method with a
VDS_NOTIFICATION structure that has the following attributes:

 objectType member is VDS_NTT_PACK.

 Pack member is a VDS_PACK_NOTIFICATION that has the following attributes:

 ulEvent is VDS_NF_PACK_ARRIVE.

 packId is the VDS_OBJECT_ID of the pack object that was added.

The server MUST create a corresponding disk object and MUST assign it a unique VDS_OBJECT_ID.
The server MUST set the disk object's pack pointer to the pack object that was created. The server
MUST add the disk object to the list of storage management objects.

The server then looks for all volumes that are contained on the disk. If the disk is a removable
media drive, it MUST contain one (and only one) volume that is associated with the drive itself, rather

158 / 342

[MS-VDS] - v20170601
Virtual Disk Service (VDS) Protocol
Copyright © 2017 Microsoft Corporation
Release: June 1, 2017

than with the media. If the disk is not a removable media drive, each partition on the disk that is not
an extended partition can be considered a volume.

For each volume on the disk, the server MUST create a corresponding volume object and MUST assign
it a unique VDS_OBJECT_ID. The server MUST set the volume object's pack pointer to the pack object

that was created. The server MUST add the volume object to the list of storage management objects.

For each callback object that is registered in the list of callback objects, the server MUST call the
callback object's IVdsAdviseSink::OnNotify method with a VDS_NOTIFICATION structure that has the
following attributes:

 objectType member is VDS_NTT_DISK.

 Disk member is a VDS_DISK_NOTIFICATION that has the following attributes:

 ulEvent is VDS_NF_DISK_ARRIVE.

 diskId is the VDS_OBJECT_ID of the disk object that was added.

Next, if the disk is not a removable media drive, for each partition on the disk (whether or not they
are considered volumes), for each callback object that is registered in the list of callback objects, the
server MUST call the callback object's IVdsAdviseSink::OnNotify method with a VDS_NOTIFICATION
structure that has the following attributes:

 objectType member is VDS_NTT_PARTITION.

 Partition member is a VDS_PARTITION_NOTIFICATION that has the following attributes:

 ulEvent is VDS_NF_PARTITION_ARRIVE.

 diskId is the VDS_OBJECT_ID of the disk object that was added.

 ullOffset is the byte offset at which the partition starts on the disk.

Finally, for each volume on the disk, for each callback object that is registered in the list of callback

objects, the server MUST call the callback object's IVdsAdviseSink::OnNotify method with a
VDS_NOTIFICATION structure that has the following attributes:

 objectType member is VDS_NTT_VOLUME.

 Volume member is a VDS_VOLUME_NOTIFICATION that has the following attributes:

 ulEvent is VDS_NF_VOLUME_ARRIVE.

 volumeId is the VDS_OBJECT_ID of the volume object.

 plexId SHOULD be GUID_NULL, but it is not relevant when ulEvent is
VDS_NF_VOLUME_ARRIVE.

 ulPercentCompleted needs to be in the range from 0-100 and is implementation-specific;

however, it is not relevant when ulEvent is VDS_NF_VOLUME_ARRIVE.

Dynamic Disk: If the disk is a dynamic disk, the server MUST create a corresponding disk object and
MUST assign it a unique VDS_OBJECT_ID. The server MUST set the disk object's pack pointer to the
pack object that corresponds to the pack that the disk belongs to.

Note that for dynamic disks, pack object creation occurs separately from disk object creation. This
behavior is different from basic disks, where pack objects are created when the disk object is created,

because on basic providers, packs can have only one disk. For information on pack object creation for
dynamic disk packs, see section 3.4.5.1.1.

159 / 342

[MS-VDS] - v20170601
Virtual Disk Service (VDS) Protocol
Copyright © 2017 Microsoft Corporation
Release: June 1, 2017

The server MUST add the disk object to the list of storage management objects. Then, for each
callback object that is registered in the list of callback objects, the server MUST call the callback

object's IVdsAdviseSink::OnNotify method with a VDS_NOTIFICATION structure that has the following
attributes:

 objectType member is VDS_NTT_DISK.

 Disk member is a VDS_DISK_NOTIFICATION that has the following attributes:

 ulEvent is VDS_NF_DISK_ARRIVE.

 diskId is the VDS_OBJECT_ID of the disk object that was added.

Unallocated Disk: If the disk is an unallocated disk, the server MUST create a corresponding disk
object and MUST assign it a unique VDS_OBJECT_ID. The server MUST add the disk object to the list
of storage management objects. Then, for each callback object that is registered in the list of callback

objects, the server MUST call the callback object's IVdsAdviseSink::OnNotify method with a
VDS_NOTIFICATION structure that has the following attributes:

 objectType member is VDS_NTT_DISK.

 Disk member is a VDS_DISK_NOTIFICATION that has the following attributes:

 ulEvent is VDS_NF_DISK_ARRIVE.

 diskId is the VDS_OBJECT_ID of the disk object that was added.

3.4.5.1.4 Removing Disk Objects

The server MUST maintain a list of detected disks. When the server discovers that a disk was
removed, it MUST remove the corresponding disk object from the list of storage management objects.
For each callback object that is registered in the list of callback objects, the server MUST call the
callback object's IVdsAdviseSink::OnNotify (Opnum 3) method with a VDS_NOTIFICATION structure
that has the following attributes:

 objectType member is VDS_NTT_DISK.

 disk member is a VDS_DISK_NOTIFICATION that has the following attributes:

 ulEvent is VDS_NF_DISK_DEPART.

 diskId is the VDS_OBJECT_ID of the disk object that was removed.

If the disk being removed is a basic disk, the pack that the disk belongs to is also removed. In this
case, the server MUST remove the corresponding pack object from the list of storage management
objects. Then, for each callback object that is registered in the list of callback objects, the server

MUST call the callback object's IVdsAdviseSink::OnNotify (Opnum 3) method with a
VDS_NOTIFICATION structure that has the following attributes:

 objectType member is VDS_NTT_PACK.

 pack member is a VDS_PACK_NOTIFICATION that has the following attributes:

 ulEvent is VDS_NF_PACK_DEPART.

 packId is the VDS_OBJECT_ID of the pack object that was removed.

3.4.5.1.5 Adding Volume Objects

160 / 342

[MS-VDS] - v20170601
Virtual Disk Service (VDS) Protocol
Copyright © 2017 Microsoft Corporation
Release: June 1, 2017

The server MUST maintain a list of detected volumes. When the server discovers a new volume
(either during initialization or when a new volume arrives after initialization), it checks whether the

volume resides on a basic disk or on one or more dynamic disks.

Basic Disk: If the volume is on a basic disk, the server MUST create a corresponding volume object

and MUST assign it a unique VDS_OBJECT_ID. The server MUST set the volume object's pack pointer
to the pack object that corresponds to the pack to which the disk on which the volume is contained
belongs. The server MUST add the volume object to the list of storage management objects.

For each callback object that is registered in the list of callback objects, the server MUST call the
callback object's IVdsAdviseSink::OnNotify (Opnum 3) method with a VDS_NOTIFICATION structure
that has the following attributes:

 objectType member is VDS_NTT_VOLUME.

 volume member is a VDS_VOLUME_NOTIFICATION that has the following attributes:

 ulEvent is VDS_NF_VOLUME_ARRIVE.

 volumeId is the VDS_OBJECT_ID of the volume object that was added.

Dynamic Disk: If the volume is on dynamic disks, the server MUST create a corresponding volume
object and MUST assign it a unique VDS_OBJECT_ID. The server MUST set the volume object's pack
pointer to the pack object that corresponds to the pack the volume belongs to. The server MUST add

the volume object to the list of storage management objects.

For each volume plex on the volume, the server MUST create a corresponding volume plex object
and MUST assign it a unique VDS_OBJECT_ID. The server MUST set the volume plex object's volume
pointer to the volume object that was created. The server MUST add the volume plex object to the list
of storage management objects.

Finally, for each callback object that is registered in the list of callback objects, the server MUST call
the callback object's IVdsAdviseSink::OnNotify (Opnum 3) method with a VDS_NOTIFICATION

structure that has the following attributes:

 objectType member is VDS_NTT_VOLUME.

 volume member is a VDS_VOLUME_NOTIFICATION that has the following attributes:

 ulEvent is VDS_NF_VOLUME_ARRIVE.

 volumeId is the VDS_OBJECT_ID of the volume object that was added.

 plexId SHOULD be GUID_NULL, but this is not relevant when ulEvent is
VDS_NF_VOLUME_ARRIVE.

 ulPercentCompleted needs to be from 0 to 100 and is implementation-specific, but it is not
relevant when ulEvent is VDS_NF_VOLUME_ARRIVE.

3.4.5.1.6 Removing Volume Objects

The server MUST maintain a list of detected volumes. When the server discovers that a volume was
removed, it MUST remove the corresponding volume object from the list of storage management

objects.

If the volume is a dynamic disk, the server MUST remove the volume plex objects that correspond
to the volume's volume plex from the list of storage management objects.

For each callback object that is registered in the list of callback objects, the server MUST call the
callback object's IVdsAdviseSink::OnNotify (Opnum 3) method with a VDS_NOTIFICATION structure
that has the following attributes:

161 / 342

[MS-VDS] - v20170601
Virtual Disk Service (VDS) Protocol
Copyright © 2017 Microsoft Corporation
Release: June 1, 2017

 objectType member is VDS_NTT_VOLUME.

 The volume member is a VDS_VOLUME_NOTIFICATION that has the following attributes:

 ulEvent is VDS_NF_VOLUME_DEPART.

 volumeId is the VDS_OBJECT_ID of the volume object that was removed.

 plexId SHOULD be GUID_NULL, but it is not relevant when ulEvent is
VDS_NF_VOLUME_DEPART.

 ulPercentCompleted needs to be from 0-100 and is implementation-specific; however, it is
not relevant when ulEvent is VDS_NF_VOLUME_DEPART.

3.4.5.1.7 Adding Virtual Disk Objects

The server MUST maintain a list of virtual disks. Virtual disks can be added directly by a client using

the IVdsVdProvider::AddVDisk (section 3.4.5.2.17.3) method. The server MUST also detect whether a
basic, dynamic, or unallocated disk is a virtual disk and create a corresponding virtual disk object

for it. The mechanism of detection is implementation-specific.<68>

The server MUST also maintain a list of OpenVirtualDisk objects. An OpenVirtualDisk object is created
when a client calls IVdsVDisk::Open.

3.4.5.1.8 Removing Virtual Disk Objects

The server MUST maintain a list of virtual disks. Virtual disks SHOULD be removed when all of the
clients release their reference to the virtual disk object. The server MUST also detect whether the
basic, dynamic, or unallocated disk that has been removed is a virtual disk and remove the
corresponding virtual disk object. The mechanism of detection is implementation-specific.<69>

The server MUST also maintain a list of OpenVirtualDisk objects. An OpenVirtualDisk object can be
removed when all the clients release their reference to the OpenVirtualDisk object.

3.4.5.1.9 Handling Asynchronous Tasks

When the client calls a method that initiates a task that returns an async object, the server MUST
create an async object that implements the IVdsAsync interface and return the interface pointer to
the client to allow it to monitor the task's status. For examples of how async objects can be used, see
section 4.5.

If the task has completed successfully and the client calls the IVdsAsync::Wait method on the async

object, the server MUST return the following task-specific return values to the client by means of the
VDS_ASYNC_OUTPUT structure returned by the method. The return values are determined by the
async output type:

 VDS_ASYNCOUT_CREATEPARTITION:

 The byte offset at which the partition was created (returned in the cp.ullOffset member).

 The VDS_OBJECT_ID of the associated volume if the partition is a volume (returned in the
cp.volumeId member).

 VDS_ASYNCOUT_CREATEVOLUME:

 The IUnknown pointer of the volume object created (returned in the cv.pVolumeUnk member).

 VDS_ASYNCOUT_BREAKVOLUMEPLEX:

162 / 342

[MS-VDS] - v20170601
Virtual Disk Service (VDS) Protocol
Copyright © 2017 Microsoft Corporation
Release: June 1, 2017

 The IUnknown pointer of the volume object that resulted when the volume plex was broken
from the original volume (returned in the bvp.pVolumeUnk member).

 VDS_ASYNCOUT_SHRINKVOLUME:

 The number of bytes reclaimed by the shrink operation (returned in the sv.ullReclaimedBytes

member).

 VDS_ASYNCOUT_CREATE_VDISK:

 The IUnknown pointer of the virtual disk object created (returned in the cvd.pVDiskUnk
member).

If the async output type is none of the preceding or if the task did not complete successfully, no data
other than the return code of the operation MAY be returned. This means that if the task fails before
the method call returns to the client, the method will return an error code and MAY not return the

IVdsAsync interface.

If the task fails after the method call has returned to the client but before the task has completed, the

IVdsAsync interface will return an error code and MAY not contain any other information.

3.4.5.2 Message Processing Details

Before processing the methods that are listed in the following sections, the server SHOULD obtain
identity and authorization information about the client from the underlying DCOM or RPC runtime.
The server does this in order to verify that the client has sufficient permissions to create, modify, or
delete the object as appropriate. These methods SHOULD impose an authorization policy decision
before performing the function. The suggested minimum requirement is that the caller has permission
to create, modify, or delete the object as appropriate.<70>

If any method is called before the server returns success from either the IVdsService::IsServiceReady
(Opnum 3) method or the IVdsService::WaitForServiceReady (Opnum 4) method, the
VDS_E_INITIALIZED_FAILED value is returned.

If parameter validation fails, the server MUST immediately fail the operation, returning a vendor-
specific error as its response to the client.

3.4.5.2.1 IEnumVdsObject Methods

The server MUST maintain the enumeration object until the client releases all references to the
interface.

3.4.5.2.1.1 IEnumVdsObject::Next (Opnum 3)

The Next method returns a specified number of objects in the enumeration. It begins from the current
point.

 [helpstring("method Next")] HRESULT Next(
 [in] unsigned long celt,
 [out, size_is(celt), length_is(*pcFetched)]
 IUnknown** ppObjectArray,
 [out] unsigned long* pcFetched
);

celt: The number of elements to retrieve from the enumeration.

ppObjectArray: A pointer to an array of IUnknown interfaces. The size of this array MUST be equal to
celt. If successfully completed, it receives an array of the IUnknown interfaces of the next objects

163 / 342

[MS-VDS] - v20170601
Virtual Disk Service (VDS) Protocol
Copyright © 2017 Microsoft Corporation
Release: June 1, 2017

in the enumeration; the number of elements in this array MUST be equal in size to the value of
pcFetched. Callers MUST release each IUnknown interface that is received.

pcFetched: A pointer to a variable that, upon successful completion, receives the number of elements
that are successfully received in ppObjectArray.

Return Values: The method MUST return zero or a non-error HRESULT (as specified in [MS-ERREF])
to indicate success or return an implementation-specific nonzero error code to indicate failure. For
the HRESULT values predefined by the Virtual Disk Service Remote Protocol, see section 2.2.3.

If S_FALSE is returned, the client MUST check the value that pcFetched references and not access
more than the number of elements returned in ppObjectArray.

When the server receives this message, it MUST validate the following parameters:

 Verify that ppObjectArray is not NULL.

 Verify that pcFetched is not NULL.

The server MUST perform the following:

 If the number of objects from the current index to the end of the enumeration is greater than or
equal to the number of objects being requested in celt:

 Populate the IUnknown pointers in ppObjectArray with the next IUnknown pointers (the
amount of which celt specifies) in the enumeration that is starting from the current index.

 Set the value that pcFetched references to celt.

 Increment the current index by celt.

 Return an HRESULT that indicates failure or success.

 If the number of objects from the current index to the end of the enumeration is less than the
number of objects being requested in celt:

 Populate the IUnknown pointers in ppObjectArray with the next IUnknown pointers in the
enumeration. Start from the current index to the end of the enumeration.

 Set the value that pcFetched references to the number of objects that were populated in
ppObjectArray.

 Increment the current index by the number of objects that were populated in ppObjectArray.

 Return S_FALSE (HRESULT of 0x00000001) if successful, or any non-zero error for failure.

 If the current index is already past the list of objects in the enumeration, set the value that
pcFetched references to 0 and return S_FALSE (HRESULT of 0x00000001) if successful, or any
non-zero error for failure.

3.4.5.2.1.2 IEnumVdsObject::Skip (Opnum 4)

 The Skip method skips a specified number of objects in the enumeration.

 [helpstring("method Skip")] HRESULT Skip(
 [in] unsigned long celt
);

celt: The number of objects to skip.

%5bMS-ERREF%5d.pdf#Section_1bc92ddfb79e413cbbaa99a5281a6c90

164 / 342

[MS-VDS] - v20170601
Virtual Disk Service (VDS) Protocol
Copyright © 2017 Microsoft Corporation
Release: June 1, 2017

Return Values: The method MUST return zero or a non-error HRESULT (as specified in [MS-ERREF])
to indicate success or return an implementation-specific nonzero error code to indicate failure. For

the HRESULT values predefined by the Virtual Disk Service Remote Protocol, see section 2.2.3.

If S_FALSE is returned, the enumeration has ended and the client MUST either stop enumerating

or reset the enumeration back to the beginning.

When the server receives this message, it MUST perform the following:

 If the number of objects from the current index to the end of the enumeration is greater than or
equal to the number in celt, increment the current index by celt and return an HRESULT that
indicates failure or success.

 If the number of objects from the current index to the end of the enumeration is less than the
number of objects that celt requested, increment the current index by the number of objects from

the current index to the end of the enumeration and return S_FALSE (HRESULT of 0x00000001) if
successful.

 If the current index is already past the list of objects in the enumeration, return S_FALSE

(HRESULT of 0x00000001) if successful.

3.4.5.2.1.3 IEnumVdsObject::Reset (Opnum 5)

The Reset method resets the enumerator to the beginning of the collection.

 [helpstring("method Reset")] HRESULT Reset();

This method has no parameters.

Return Values: The method MUST return zero or a non-error HRESULT (as specified in [MS-ERREF])
to indicate success or return an implementation-specific nonzero error code to indicate failure. For

the HRESULT values predefined by the Virtual Disk Service Remote Protocol, see section 2.2.3.

When the server receives this message, it MUST set the current index to the beginning of the
enumeration and return an HRESULT that indicates failure or success.

3.4.5.2.1.4 IEnumVdsObject::Clone (Opnum 6)

The Clone method creates a new enumeration that has the same state as the current enumeration.

 [helpstring("method Clone")] HRESULT Clone(
 [out] IEnumVdsObject** ppEnum
);

ppEnum: A pointer to an IEnumVdsObject interface that, if successfully completed, receives the
IEnumVdsObject interface of the cloned enumeration. Callers MUST release the interface that is
received when they are done with it.

Return Values: The method MUST return zero or a non-error HRESULT (as specified in [MS-ERREF])
to indicate success or return an implementation-specific nonzero error code to indicate failure. For
the HRESULT values predefined by the Virtual Disk Service Remote Protocol, see section 2.2.3.

When the server receives this message, it MUST validate the parameter:

 Verify that ppEnum is not NULL.

The server MUST perform the following:

%5bMS-ERREF%5d.pdf#Section_1bc92ddfb79e413cbbaa99a5281a6c90
%5bMS-ERREF%5d.pdf#Section_1bc92ddfb79e413cbbaa99a5281a6c90
%5bMS-ERREF%5d.pdf#Section_1bc92ddfb79e413cbbaa99a5281a6c90

165 / 342

[MS-VDS] - v20170601
Virtual Disk Service (VDS) Protocol
Copyright © 2017 Microsoft Corporation
Release: June 1, 2017

 Create a new enumeration object that implements the IEnumVdsObject interface. Then set the
pointer that ppEnum references to the interface.

 Set the list of objects in the new enumeration object to equal the list of objects in this
enumeration.

 Set the current index in the new enumeration to equal the current index in this enumeration.

 Return an HRESULT that indicates failure or success.

3.4.5.2.2 IVdsAsync Methods

3.4.5.2.2.1 IVdsAsync::Cancel (Opnum 3)

The Cancel method cancels the asynchronous operation.

 HRESULT Cancel();

This method has no parameters.

Return Values: The method MUST return zero or a non-error HRESULT (as specified in [MS-ERREF])
to indicate success or return an implementation-specific nonzero error code to indicate failure. For the

HRESULT values predefined by the Virtual Disk Service Remote Protocol, see section 2.2.3.

When the server receives this message, it MUST attempt to cancel the asynchronous operation and
return an HRESULT that indicates failure or success. If the server succeeds in canceling the operation,
it MUST set the signal state of the async object to TRUE and set the return code to
VDS_E_OPERATION_CANCELED.

The server MAY set the percentage completed to 0. If the server is unable to cancel the operation, it
MUST return VDS_E_CANCEL_TOO_LATE or VDS_E_NOT_SUPPORTED and leave the signal state of the

async object and percentage completed as is.

3.4.5.2.2.2 IVdsAsync::Wait (Opnum 4)

The Wait method blocks and returns when the asynchronous operation has either finished successfully
or failed.

 HRESULT Wait(
 [out] HRESULT* pHrResult,
 [out] VDS_ASYNC_OUTPUT* pAsyncOut
);

pHrResult: A pointer to a variable which, if the Wait method successfully completes, receives the

returned HRESULT.

pAsyncOut: A pointer to a VDS_ASYNC_OUTPUT structure that, if the asynchronous operation is
successfully completed, receives extra information about the operation, if any information exists.

Multiple methods from other interfaces also return async objects. Consult the method that
returned the async object to determine what extra information to return, if any. If the
asynchronous operation fails, pAsyncOut MAY be left as is without returning any value.

Return Values: The method MUST return zero or a non-error HRESULT (as specified in [MS-ERREF])

to indicate success or return an implementation-specific nonzero error code to indicate failure. For
the HRESULT values predefined by the Virtual Disk Service Remote Protocol, see section 2.2.3.

%5bMS-ERREF%5d.pdf#Section_1bc92ddfb79e413cbbaa99a5281a6c90
%5bMS-ERREF%5d.pdf#Section_1bc92ddfb79e413cbbaa99a5281a6c90

166 / 342

[MS-VDS] - v20170601
Virtual Disk Service (VDS) Protocol
Copyright © 2017 Microsoft Corporation
Release: June 1, 2017

The HRESULT that pHrResult references MUST return zero to indicate success, or an
implementation-specific nonzero error code to indicate failure of the asynchronous operation that

is associated with the IVdsAsync object.

When the server receives this message, it MUST validate the following parameters:

 Verify that pHrResult is not NULL.

 Verify that pAsyncOut is not NULL.

The server MUST perform the following:

 Wait for the asynchronous operation to complete.

 If the server implements a maximum amount of time to wait for an asynchronous operation to
complete, and that maximum time is exceeded, then the server MUST return VDS_E_TIMEOUT.
The maximum amount of time is implementation-specific.

 Set the pHrResult output parameter for the operation based on the return code for the

asynchronous operation.

 If the asynchronous operation has successfully completed, set the pAsyncOut output parameter
fields based on the operation type. If the asynchronous operation has failed, this parameter can
be left uninitialized.

 Return an HRESULT that indicates success or failure for the Wait method.

3.4.5.2.2.3 IVdsAsync::QueryStatus (Opnum 5)

The QueryStatus method retrieves the status of the asynchronous operation.

 HRESULT QueryStatus(
 [out] HRESULT* pHrResult,
 [out] unsigned long* pulPercentCompleted
);

pHrResult: A pointer to a variable that receives the HRESULT that signals the current state of the
asynchronous operation.

pulPercentCompleted: A pointer to a variable that receives the completion percentage of the

asynchronous operation. If the asynchronous operation is in progress, the value MUST be between
0 and 99. If the operation has finished, the value MUST be 100. If the progress of the operation
cannot be estimated, the value MUST be 0.

Return Values: The method MUST return zero or a non-error HRESULT (as specified in [MS-ERREF])
to indicate success or return an implementation-specific nonzero error code to indicate failure. For
the HRESULT values predefined by the Virtual Disk Service Remote Protocol, see section 2.2.3.

When the server receives this message, it MUST validate the following parameters:

 Verify that pHrResult is not NULL.

 Verify that pulPercentCompleted is not NULL.

The server MUST perform the following:

 Set the pHrResult output parameter based on the return code for the asynchronous operation. If
the asynchronous operation is still in progress, this parameter MUST be set to
VDS_E_OPERATION_PENDING (HRESULT of 0x00042409).

%5bMS-ERREF%5d.pdf#Section_1bc92ddfb79e413cbbaa99a5281a6c90

167 / 342

[MS-VDS] - v20170601
Virtual Disk Service (VDS) Protocol
Copyright © 2017 Microsoft Corporation
Release: June 1, 2017

 Set the pulPercentCompleted output parameter based on the completion percentage of the
asynchronous operation.

 Return an HRESULT that indicates success or failure for the QueryStatus method.

3.4.5.2.3 IVdsServiceLoader Methods

3.4.5.2.3.1 IVdsServiceLoader::LoadService (Opnum 3)

The LoadService method is used by client applications to load the VDS service on a remote machine.

 HRESULT LoadService(
 [in, unique, string] LPWSTR pwszMachineName,
 [out] IVdsService** ppService
);

pwszMachineName: A pointer to a string that contains the name of the machine on which the VDS

service is loaded.

ppService: A pointer to the IVdsService interface that, if successfully completed, returns the
IVdsService interface to the VDS service that runs on the machine represented by
pwszMachineName.

Return Values: The method MUST return zero or a non-error HRESULT (as specified in [MS-ERREF])
to indicate success or return an implementation-specific nonzero error code to indicate failure. For
the HRESULT values predefined by the Virtual Disk Service Remote Protocol, see section 2.2.3.

When the server receives this message, it MUST validate the following parameter:

 Verify that ppService is not NULL.

The server MUST:

 Load the VDS service on the computer specified by pwszMachineName parameter.

 QueryInterface for the IVdsServiceInitialization interface.

 Call the IVdsServiceInitialization::Initialize method, passing the pwszMachineName parameter
input to this method.

 Point ppService to the IVdsService interface for the VDS service that is loaded.

 Return an HRESULT that indicates failure or success.

The server object that is created when this method is called MUST implement only these interfaces:

 IVdsService

 IVdsServiceHba

 IVdsServiceIscsi

 IVdsServiceUninstallDisk

 IVdsServiceSAN

3.4.5.2.4 IVdsService Methods

3.4.5.2.4.1 IVdsService::IsServiceReady (Opnum 3)

%5bMS-ERREF%5d.pdf#Section_1bc92ddfb79e413cbbaa99a5281a6c90

168 / 342

[MS-VDS] - v20170601
Virtual Disk Service (VDS) Protocol
Copyright © 2017 Microsoft Corporation
Release: June 1, 2017

The IsServiceReady method determines whether a service is finished initializing. Until the service
initialization completes, an application SHOULD NOT call any method other than GetProperties.<71>

 HRESULT IsServiceReady();

This method has no parameters.

Return Values: The method MUST return zero or a non-error HRESULT (as specified in [MS-ERREF])
to indicate success, or return an implementation-specific nonzero error code to indicate failure. For
the HRESULT values predefined by the Virtual Disk Service Remote Protocol, see section 2.2.3.

3.4.5.2.4.2 IVdsService::WaitForServiceReady (Opnum 4)

The WaitForServiceReady method waits for VDS initialization to complete and returns the status of the
VDS initialization in the HRESULT.

 HRESULT WaitForServiceReady();

This method has no parameters.

Return Values: The method MUST return zero to indicate success or the error code
VDS_E_INITIALIZED_FAILED if the service-ready state is "failed".

Upon receiving this message, if the service-ready state is or becomes "failed", the server MUST return
VDS_E_INITIALIZED_FAILED (HRESULT of 0x80042401). The server MUST block the call until the
service-ready state is "ready", after which it MUST return success (HRESULT of 0x00000000).

3.4.5.2.4.3 IVdsService::GetProperties (Opnum 5)

The GetProperties method retrieves the properties of the service that is represented by the object that
exposes this interface and method.

 HRESULT GetProperties(
 [out] VDS_SERVICE_PROP* pServiceProp
);

pServiceProp: A pointer to a VDS_SERVICE_PROP structure that, if the operation is successfully
completed, receives the properties of the service.

Return Values: The method MUST return zero or a non-error HRESULT (as specified in [MS-ERREF])
to indicate success, or return an implementation-specific nonzero error code to indicate failure. For
the HRESULT values predefined by the Virtual Disk Service Remote Protocol, see section 2.2.3.

When the server receives this message, it MUST validate the following parameter:

 Verify that pServiceProp is not NULL.

The server MUST populate the VDS_SERVICE_PROP structure that pServiceProp references with the
properties of the server and return an HRESULT that indicates failure or success.

3.4.5.2.4.4 IVdsService::QueryProviders (Opnum 6)

The QueryProviders method enumerates the providers of the server.

 HRESULT QueryProviders(
 [in] DWORD masks,

%5bMS-ERREF%5d.pdf#Section_1bc92ddfb79e413cbbaa99a5281a6c90
%5bMS-ERREF%5d.pdf#Section_1bc92ddfb79e413cbbaa99a5281a6c90

169 / 342

[MS-VDS] - v20170601
Virtual Disk Service (VDS) Protocol
Copyright © 2017 Microsoft Corporation
Release: June 1, 2017

 [out] IEnumVdsObject** ppEnum
);

masks: The combination of any values, by using a bitwise OR operator, that the
VDS_QUERY_PROVIDER_FLAG enumeration defines. The values that are set in the mask specify
the types of providers to return.

ppEnum: A pointer to an IEnumVdsObject interface that, if successfully completed, receives the

IEnumVdsObject interface of the object that contains an enumeration of provider objects on the
server. Callers MUST release the interface that is received when they are done with it.

Return Values: The method MUST return zero or a non-error HRESULT (as specified in [MS-ERREF])
to indicate success, or return an implementation-specific nonzero error code to indicate failure. For
the HRESULT values predefined by the Virtual Disk Service Remote Protocol, see section 2.2.3.

When the server receives this message, it MUST validate the following parameter:

 Verify that ppEnum is not NULL.

The server MUST point ppEnum to an IEnumVdsObject interface that contains the enumeration of
provider objects in the list of cached storage management objects, as specified in section 3.4.1.3, and
return an HRESULT that indicates failure or success.

3.4.5.2.4.5 IVdsService::QueryUnallocatedDisks (Opnum 8)

The QueryUnallocatedDisks method enumerates the unallocated disks on the server.

 HRESULT QueryUnallocatedDisks(
 [out] IEnumVdsObject** ppEnum
);

ppEnum: A pointer to an IEnumVdsObject interface that, if the operation is successfully completed,

receives the IEnumVdsObject interface of the object that contains an enumeration of disk objects
that correspond to unallocated disks on the server. Callers MUST release the interface that is

received when they are done with it.

Return Values: The method MUST return zero or a non-error HRESULT (as specified in [MS-ERREF])
to indicate success, or return an implementation-specific nonzero error code to indicate failure. For
the HRESULT values predefined by the Virtual Disk Service Remote Protocol, see section 2.2.3.

When the server receives this message, it MUST validate the following parameter:

 Verify that ppEnum is not NULL.

The server MUST point ppEnum to an IEnumVdsObject interface that contains the enumeration of

unallocated disk objects in the list of cached storage management objects, as specified in section
3.4.1.3, and return an HRESULT indicating failure or success.

3.4.5.2.4.6 IVdsService::GetObject (Opnum 9)

The GetObject method retrieves an IUnknown pointer to a specified object.

 HRESULT GetObject(
 [in] VDS_OBJECT_ID ObjectId,
 [in] VDS_OBJECT_TYPE type,
 [out] IUnknown** ppObjectUnk
);

%5bMS-ERREF%5d.pdf#Section_1bc92ddfb79e413cbbaa99a5281a6c90
%5bMS-ERREF%5d.pdf#Section_1bc92ddfb79e413cbbaa99a5281a6c90

170 / 342

[MS-VDS] - v20170601
Virtual Disk Service (VDS) Protocol
Copyright © 2017 Microsoft Corporation
Release: June 1, 2017

ObjectId: The GUID of the desired object.

type: The object type that VDS_OBJECT_TYPE enumerates. All object types are valid except

VDS_OT_UNKNOWN, VDS_OT_PROVIDER, VDS_OT_ASYNC, and VDS_OT_ENUM.

ppObjectUnk: A pointer to an IUnknown interface that, if the operation is successfully completed,

receives an IUnknown interface of the object. Callers MUST release the interface that is received
when they are done with it.

Return Values: The method MUST return zero or a non-error HRESULT (as specified in [MS-ERREF])
to indicate success, or return an implementation-specific nonzero error code to indicate failure. For
the HRESULT values predefined by the Virtual Disk Service Remote Protocol, see section 2.2.3.

When the server receives this message, it MUST validate the following parameter:

 Verify that ppObjectUnk is not NULL.

The server MUST point ppObjectUnk to an IUnknown interface of the object in the list of cached
storage management objects that match the VDS object identifier that ObjectId specifies and the

object type that is specified by type. The server MUST then return an HRESULT indicating failure or
success.

If the object cannot be found in the server cache, then the server MUST return
VDS_E_OBJECT_NOT_FOUND.

3.4.5.2.4.7 IVdsService::QueryDriveLetters (Opnum 10)

The QueryDriveLetters method enumerates the drive letters of the server.

 HRESULT QueryDriveLetters(
 [in] WCHAR wcFirstLetter,
 [in] DWORD count,
 [out, size_is(count)] VDS_DRIVE_LETTER_PROP* pDriveLetterPropArray
);

wcFirstLetter: The first drive letter to query as a single uppercase or lowercase alphabetical (A-Z)
Unicode character.

count: The total number of drive letters to retrieve, beginning with the letter that wcFirstLetter
specifies. This MUST also be the number of elements in the pDriveLetterPropArray. It MUST NOT
exceed the total number of drive letters between the letter in wcFirstLetter and the last possible
drive letter (Z), inclusive.

pDriveLetterPropArray: An array of VDS_DRIVE_LETTER_PROP structures that, if the operation is

successfully completed, receives the array of drive letter properties.

Return Values: The method MUST return zero or a non-error HRESULT (as specified in [MS-ERREF])
to indicate success, or return an implementation-specific nonzero error code to indicate failure. For
the HRESULT values predefined by the Virtual Disk Service Remote Protocol, see section 2.2.3.

When the server receives this message, it MUST validate the following parameters:

 Verify that wcFirstLetter is an uppercase or lowercase alphabetical character (A-Z) in Unicode

format.

 Verify that the count does not exceed the total number of drive letters between the letter in
wcFirstLetter and the last possible drive letter (Z), inclusive.

 Verify that pDriveLetterPropArray is not NULL.

%5bMS-ERREF%5d.pdf#Section_1bc92ddfb79e413cbbaa99a5281a6c90
%5bMS-ERREF%5d.pdf#Section_1bc92ddfb79e413cbbaa99a5281a6c90

171 / 342

[MS-VDS] - v20170601
Virtual Disk Service (VDS) Protocol
Copyright © 2017 Microsoft Corporation
Release: June 1, 2017

The server MUST populate the VDS_DRIVE_LETTER_PROP structure that pDriveLetterPropArray
references with information about each drive letter that is requested. The server MUST then return an

HRESULT indicating failure or success.

3.4.5.2.4.8 IVdsService::QueryFileSystemTypes (Opnum 11)

 The QueryFileSystemTypes method returns property details for all file systems that are known to
VDS.

 HRESULT QueryFileSystemTypes(
 [out, size_is(,*plNumberOfFileSystems)]
 VDS_FILE_SYSTEM_TYPE_PROP** ppFileSystemTypeProps,
 [out] long* plNumberOfFileSystems
);

ppFileSystemTypeProps: A pointer to an array of VDS_FILE_SYSTEM_TYPE_PROP structures that, if
the operation is successfully completed, receives the array of file system type properties.

plNumberOfFileSystems: A pointer to a variable that, if the operation is successfully completed,
receives the total number of elements returned in ppFileSystemTypeProps.

Return Values: The method MUST return zero or a non-error HRESULT (as specified in [MS-ERREF])
to indicate success, or return an implementation-specific nonzero error code to indicate failure. For

the HRESULT values predefined by the Virtual Disk Service Remote Protocol, see section 2.2.3.

When the server receives this message, it MUST validate the following parameters:

 Verify that ppFileSystemTypeProps is not NULL.

 Verify that plNumberOfFileSystems is not NULL.

The server MUST point ppFileSystemTypeProps to an array of VDS_FILE_SYSTEM_TYPE_PROP
structures containing information about each file system that VDS is aware of, point
plNumberOfFileSystems to the size of the array, and return an HRESULT indicating failure or

success.<72>

3.4.5.2.4.9 IVdsService::Reenumerate (Opnum 12)

The Reenumerate method discovers newly added and newly removed disks and returns the status of
the operation in the HRESULT.

 HRESULT Reenumerate();

This method has no parameters.

Return Values: The method MUST return zero or a non-error HRESULT (as specified in [MS-ERREF])
to indicate success, or return an implementation-specific nonzero error code to indicate failure. For
the HRESULT values predefined by the Virtual Disk Service Remote Protocol, see section 2.2.3.

When the server receives this message, it MUST issue a request to all buses on the machine. The

request causes the buses to report any new devices, or devices no longer present, to the operating
system. The server MUST also return an HRESULT indicating failure or success.

3.4.5.2.4.10 IVdsService::Refresh (Opnum 13)

The Refresh method refreshes the ownership and layout of disks on the server.

%5bMS-ERREF%5d.pdf#Section_1bc92ddfb79e413cbbaa99a5281a6c90
%5bMS-ERREF%5d.pdf#Section_1bc92ddfb79e413cbbaa99a5281a6c90

172 / 342

[MS-VDS] - v20170601
Virtual Disk Service (VDS) Protocol
Copyright © 2017 Microsoft Corporation
Release: June 1, 2017

 HRESULT Refresh();

This method has no parameters.

Return Values: The method MUST return zero or a non-error HRESULT (as specified in [MS-ERREF])
to indicate success, or return an implementation-specific nonzero error code to indicate failure. For
the HRESULT values predefined by the Virtual Disk Service Remote Protocol, see section 2.2.3.

When the server receives this message, it MUST requery the list of storage devices from the operating
system, refresh its list of storage management objects based on the result of the requery, and return
an HRESULT indicating failure or success.

 Result of requery Action server MUST take

New pack found Add pack to list; see section 3.4.5.1.1

New disk found Add disk to list; see section 3.4.5.1.3

New volume found Add volume to list; see section 3.4.5.1.5

Pack currently in list not found Remove pack from list; see section 3.4.5.1.2

Disk currently in list not found Remove disk from list; see section 3.4.5.1.4

Volume currently in list not found Remove volume from list; see section 3.4.5.1.6

3.4.5.2.4.11 IVdsService::CleanupObsoleteMountPoints (Opnum 14)

The CleanupObsoleteMountPoints method removes any mount points that point to volumes that no
longer exist.

 HRESULT CleanupObsoleteMountPoints();

This method has no parameters.

Return Values: The method MUST return zero or a non-error HRESULT (as specified in [MS-ERREF])
to indicate success, or return an implementation-specific nonzero error code to indicate failure. For
the HRESULT values predefined by the Virtual Disk Service Remote Protocol, see section 2.2.3.

When the server receives this message, it MUST requery the assigned mount points from the
operating system, remove mount points from the operating system if they are assigned to volumes
that no longer exist, and return an HRESULT indicating failure or success.

3.4.5.2.4.12 IVdsService::Advise (Opnum 15)

The Advise method registers a notification callback with the server. Clients pass the callback object to

the server to receive notifications.

 HRESULT Advise(
 [in] IVdsAdviseSink* pSink,
 [out] DWORD* pdwCookie
);

%5bMS-ERREF%5d.pdf#Section_1bc92ddfb79e413cbbaa99a5281a6c90
%5bMS-ERREF%5d.pdf#Section_1bc92ddfb79e413cbbaa99a5281a6c90

173 / 342

[MS-VDS] - v20170601
Virtual Disk Service (VDS) Protocol
Copyright © 2017 Microsoft Corporation
Release: June 1, 2017

pSink: A pointer to an IVdsAdviseSink interface of the callback object to register with the server for
notification of object changes.

pdwCookie: A pointer to a variable that, if the operation is successfully completed, receives a unique
cookie value that the client can later use to unregister the callback object from receiving

notification changes from the service. For information about how to register callback objects, see
section 3.3.1.1.

Return Values: The method MUST return zero or a non-error HRESULT (as specified in [MS-ERREF])
to indicate success, or return an implementation-specific nonzero error code to indicate failure. For
the HRESULT values predefined by the Virtual Disk Service Remote Protocol, see section 2.2.3.

When the server receives this message, it MUST validate the following parameters:

 Verify that pSink is not NULL.

 Verify that pdwCookie is not NULL.

The server MUST perform the following:

 Point pdwCookie to a unique cookie value that is associated with the IVdsAdviseSink interface that
pSink specifies.

 Add the IVdsAdviseSink interface that pSink specifies to the list of callback objects.

 Return an HRESULT indicating failure or success.

3.4.5.2.4.13 IVdsService::Unadvise (Opnum 16)

The Unadvise method unregisters a client from being notified by the server of changes to storage
objects.

 HRESULT Unadvise(
 [in] DWORD dwCookie
);

dwCookie: The cookie value generated when the IVdsAdviseSink interface was registered.

Return Values: The method MUST return zero or a non-error HRESULT (as specified in [MS-ERREF])
to indicate success, or return an implementation-specific nonzero error code to indicate failure. For
the HRESULT values predefined by the Virtual Disk Service Remote Protocol, see section 2.2.3.

When the server receives this message, it MUST validate the following parameter:

 Verify that dwCookie corresponds to a callback object in the list of callback objects.

 Remove the IVdsAdviseSink interface that pSink specifies from the list of callback objects.

The server MUST return an HRESULT indicating failure or success.

3.4.5.2.4.14 IVdsService::Reboot (Opnum 17)

The Reboot method restarts the computer on which the server is running.<73>

 HRESULT Reboot();

This method has no parameters.

%5bMS-ERREF%5d.pdf#Section_1bc92ddfb79e413cbbaa99a5281a6c90
%5bMS-ERREF%5d.pdf#Section_1bc92ddfb79e413cbbaa99a5281a6c90

174 / 342

[MS-VDS] - v20170601
Virtual Disk Service (VDS) Protocol
Copyright © 2017 Microsoft Corporation
Release: June 1, 2017

Return Values: The method MUST return zero or a non-error HRESULT (as specified in [MS-ERREF])
to indicate success, or return an implementation-specific nonzero error code to indicate failure. For

the HRESULT values predefined by the Virtual Disk Service Remote Protocol, see section 2.2.3.

When the server receives this message, it MUST send a request to the operating system to restart the

computer and return an HRESULT indicating failure or success.

3.4.5.2.4.15 IVdsService::SetFlags (Opnum 18)

The SetFlags method assigns property flags to the server.

 HRESULT SetFlags(
 [in] unsigned long ulFlags
);

ulFlags: A value from the VDS_SERVICE_FLAG enumeration. Only the VDS_SVF_AUTO_MOUNT_OFF
flag is valid for this method.

Return Values: The method MUST return zero or a nonerror HRESULT (as specified in [MS-ERREF])
to indicate success, or return an implementation-specific nonzero error code to indicate failure. For
the HRESULT values predefined by the Virtual Disk Service Remote Protocol, see section 2.2.3.

When the server receives this message, it MUST validate the following parameter:

 Verify that ulFlags does not contain any flags that the parameter specification disallows.

The server MUST attempt to set the service flags that ulFlags specifies and return an HRESULT
indicating failure or success.

3.4.5.2.4.16 IVdsService::ClearFlags (Opnum 19)

The ClearFlags method clears property flags from the service.

 HRESULT ClearFlags(
 [in] unsigned long ulFlags
);

ulFlags: A value from the VDS_SERVICE_FLAG enumeration. Only the VDS_SVF_AUTO_MOUNT_OFF
flag is valid for this method.

Return Values: The method MUST return zero or a non-error HRESULT (as specified in [MS-ERREF])

to indicate success, or return an implementation-specific nonzero error code to indicate failure. For
the HRESULT values predefined by the Virtual Disk Service Remote Protocol, see section 2.2.3.

When the server receives this message, it MUST validate the following parameter:

 Verify that ulFlags does not contain any flags that the parameter specification disallows.

The server MUST attempt to clear the service flags that ulFlags specifies and return an HRESULT
indicating failure or success.

3.4.5.2.5 IVdsServiceInitialization Methods

3.4.5.2.5.1 IVdsServiceInitialization::Initialize (Opnum 3)

 The Initialize method starts the initialization of the server.

%5bMS-ERREF%5d.pdf#Section_1bc92ddfb79e413cbbaa99a5281a6c90
%5bMS-ERREF%5d.pdf#Section_1bc92ddfb79e413cbbaa99a5281a6c90
%5bMS-ERREF%5d.pdf#Section_1bc92ddfb79e413cbbaa99a5281a6c90

175 / 342

[MS-VDS] - v20170601
Virtual Disk Service (VDS) Protocol
Copyright © 2017 Microsoft Corporation
Release: June 1, 2017

 HRESULT Initialize(
 [in, unique, string] WCHAR* pwszMachineName
);

pwszMachineName: Reserved; this parameter is not used.

Return Values: The method MUST return zero or a non-error HRESULT (as specified in [MS-ERREF])
to indicate success, or return an implementation-specific nonzero error code to indicate failure. For
the HRESULT values predefined by the Virtual Disk Service Remote Protocol, see section 2.2.3.

When the server receives this message, it MUST initialize the server and return a success value
(HRESULT of 0x00000000) if the operation is successful, or VDS_E_INITIALIZED_FAILED (HRESULT of
0x80042401) if the operation failed. For more information about initialization, see section 3.4.3.

If the IVdsServiceLoader::LoadService method is used to instantiate the server, there is no need to
QueryInterface for the IVdsServiceInitialization interface, or to call IVdsServiceInitialization::Initialize.
See IVdsServiceLoader::LoadService.

3.4.5.2.6 IVdsServiceUninstallDisk Methods

3.4.5.2.6.1 IVdsServiceUninstallDisk::GetDiskIdFromLunInfo (Opnum 3)

The GetDiskIdFromLunInfo method retrieves the VDS object ID of a disk that corresponds to a
specified LUN information structure.

 HRESULT GetDiskIdFromLunInfo(
 [in] VDS_LUN_INFORMATION* pLunInfo,
 [out] VDS_OBJECT_ID* pDiskId
);

pLunInfo: A pointer to a VDS_LUN_INFORMATION structure that stores the disk's LUN information.

pDiskId: A pointer to a VDS_OBJECT_ID structure that, if the operation is successfully completed,
receives the VDS object ID of the disk object that corresponds to the LUN information that
pLunInfo specifies.

Return Values: The method MUST return zero or a non-error HRESULT (as specified in [MS-ERREF])
to indicate success, or return an implementation-specific nonzero error code to indicate failure. For
the HRESULT values predefined by the Virtual Disk Service Remote Protocol, see section 2.2.3.

When the server receives this message, it MUST validate the following parameters:

 Verify that pLunInfo is not NULL.

 Verify that pDiskId is not NULL.

The server MUST set pDiskId to the VDS object identifier of the disk that matches the LUN information

that pLunInfo specifies, and return an HRESULT that indicates failure or success.

3.4.5.2.6.2 IVdsServiceUninstallDisk::UninstallDisks (Opnum 4)

The UninstallDisks method uninstalls a specific set of disks when it is given a list of the VDS object
IDs for the disks. All volumes that are contained wholly or partially on the disks are also uninstalled,
and the obsolete mount points are removed.

 HRESULT UninstallDisks(
 [in, size_is(ulCount)] VDS_OBJECT_ID* pDiskIdArray,
 [in] unsigned long ulCount,

%5bMS-ERREF%5d.pdf#Section_1bc92ddfb79e413cbbaa99a5281a6c90
%5bMS-ERREF%5d.pdf#Section_1bc92ddfb79e413cbbaa99a5281a6c90

176 / 342

[MS-VDS] - v20170601
Virtual Disk Service (VDS) Protocol
Copyright © 2017 Microsoft Corporation
Release: June 1, 2017

 [in] boolean bForce,
 [out] boolean* pbReboot,
 [out, size_is(ulCount)] HRESULT* pResults
);

pDiskIdArray: A pointer to an array of VDS_OBJECT_ID structures that store the VDS object IDs of
the disks to be uninstalled.

ulCount: The number of disks that are specified in pDiskIdArray.

bForce: A Boolean that determines whether the volume dismount is forced.

pbReboot: A pointer to a Boolean that, if the operation is successfully completed, indicates whether
the user is required to reboot the remote machine to complete the uninstall process.

pResults: A pointer to an array of HRESULT values that, if the operation is successfully completed,
receives an HRESULT for each disk uninstall request. There MUST be one HRESULT value in the
array for each disk in pDiskIdArray. If any disk fails to uninstall properly, the error code for that

failure is received in the corresponding entry in pResults.

Return Values: The method MUST return zero or a non-error HRESULT (as specified in [MS-ERREF])
to indicate success, or return an implementation-specific nonzero error code to indicate failure. For
the HRESULT values predefined by the Virtual Disk Service Remote Protocol, see section 2.2.3.

When the server receives this message, it MUST validate the following parameters:

 Verify that pDiskIdArray is not NULL.

 Verify that pbReboot is not NULL.

 Verify that pResults is not NULL.

The server MUST perform the following:

 For each VDS object identifier in the specified pDiskIdArray, lock and dismount all volumes that
have extents on the disk. If the value of the Boolean that bForce references is specified as TRUE,
continue to the next steps, even if the lock or dismount operation fails.

 For each VDS object identifier in the specified pDiskIdArray, take offline (if possible) and
uninstall all volumes that have extents on the disk. For information on removing volumes, see

section 3.4.5.1.6.

 If the volume uninstalls require a reboot to take full effect, set the value of the Boolean that
pbReboot references to TRUE; otherwise, FALSE.

 For each VDS object identifier in the specified pDiskIdArray, uninstall the disk that corresponds to
the identifier. Set the status of each disk operation to the corresponding value in the array that
pResults specifies. For more information on removing disk objects, see section 3.4.5.1.4.

 If the disk uninstalls require a restart to take full effect, set the value of the Boolean that

pbReboot references to TRUE; otherwise, FALSE.

 Clean up any obsolete drive letters and mount points for the volumes that have been uninstalled.

 Return success (HRESULT of 0x00000000) if successful.

3.4.5.2.7 IVdsServiceHba Methods

3.4.5.2.7.1 IVdsServiceHba::QueryHbaPorts (Opnum 3)

%5bMS-ERREF%5d.pdf#Section_1bc92ddfb79e413cbbaa99a5281a6c90

177 / 342

[MS-VDS] - v20170601
Virtual Disk Service (VDS) Protocol
Copyright © 2017 Microsoft Corporation
Release: June 1, 2017

The QueryHbaPorts method returns an IEnumVdsObject enumeration object that contains a list of the
HBA ports that are known to VDS on the system.

 HRESULT QueryHbaPorts(
 [out] IEnumVdsObject** ppEnum
);

ppEnum: A pointer to an IEnumVdsObject interface that, if the operation is successfully completed,
receives the IEnumVdsObject interface of the object that contains an enumeration of the HBA port
objects on the server. Callers MUST release the interface when they are done with it.

Return Values: The method MUST return zero or a non-error HRESULT (as specified in [MS-ERREF])
to indicate success, or return an implementation-specific nonzero error code to indicate failure. For

the HRESULT values predefined by the Virtual Disk Service Remote Protocol, see section 2.2.3.

When the server receives this message, it MUST validate the following parameter:

 Verify that ppEnum is not NULL.

The server MUST point ppEnum to an IEnumVdsObject interface that contains the enumeration of the
HBA port objects in the list of cached storage management objects, as specified in section 3.4.1.3,
and return an HRESULT indicating failure or success.

3.4.5.2.8 IVdsServiceIscsi Methods

3.4.5.2.8.1 IVdsServiceIscsi::GetInitiatorName (Opnum 3)

The GetInitiatorName method returns the iSCSI name of the initiator service.

 HRESULT GetInitiatorName(
 [out, string] WCHAR** ppwszIscsiName
);

ppwszIscsiName: A pointer that, if the operation is successfully completed, receives a null-
terminated Unicode string with the iSCSI name.

Return Values: The method MUST return zero or a non-error HRESULT (as specified in [MS-ERREF])
to indicate success, or return an implementation-specific nonzero error code to indicate failure. For
the HRESULT values predefined by the Virtual Disk Service Remote Protocol, see section 2.2.3.

When the server receives this message, it MUST validate the following parameter:

 Verify that ppwszIscsiName is not NULL.

The server MUST set ppwszIscsiName to point to a string that contains the iSCSI name of the iSCSI
initiator on the system and return an HRESULT indicating failure or success.

3.4.5.2.8.2 IVdsServiceIscsi::QueryInitiatorAdapters (Opnum 4)

The QueryInitiatorAdapters method returns an object that enumerates the iSCSI initiator adapters

of the initiator.

 HRESULT QueryInitiatorAdapters(
 [out] IEnumVdsObject** ppEnum
);

%5bMS-ERREF%5d.pdf#Section_1bc92ddfb79e413cbbaa99a5281a6c90
%5bMS-ERREF%5d.pdf#Section_1bc92ddfb79e413cbbaa99a5281a6c90

178 / 342

[MS-VDS] - v20170601
Virtual Disk Service (VDS) Protocol
Copyright © 2017 Microsoft Corporation
Release: June 1, 2017

ppEnum: A pointer to an IEnumVdsObject interface that, if the operation is successfully completed,
receives the IEnumVdsObject interface of the object that contains an enumeration of initiator

adapter objects on the server. Callers MUST release the interface when they are done with it.

Return Values: The method MUST return zero or a non-error HRESULT (as specified in [MS-ERREF])

to indicate success, or return an implementation-specific nonzero error code to indicate failure. For
the HRESULT values predefined by the Virtual Disk Service Remote Protocol, see section 2.2.3.

When the server receives this message, it MUST validate the following parameter:

 Verify that ppEnum is not NULL.

The server MUST point ppEnum to an IEnumVdsObject interface that contains the enumeration of
iSCSI initiator adapter objects in the list of cached storage management objects, as specified in
section 3.4.1.3, and return an HRESULT indicating failure or success.

3.4.5.2.8.3 IVdsServiceIscsi::SetInitiatorSharedSecret (Opnum 8)

The SetInitiatorSharedSecret method sets the initiator CHAP shared secret that is used for mutual
CHAP authentication when the initiator authenticates the target. For more information on CHAP, see
[MS-CHAP].<74>

 HRESULT SetInitiatorSharedSecret(
 [in, unique] VDS_ISCSI_SHARED_SECRET* pInitiatorSharedSecret,
 [in] VDS_OBJECT_ID targetId
);

pInitiatorSharedSecret: A pointer to a VDS_ISCSI_SHARED_SECRET structure that contains the

CHAP shared secret that is used for mutual CHAP authentication when the initiator authenticates
the target.

targetId: This parameter is reserved and not used by the protocol. Callers MUST pass in GUID_NULL.
Callers MUST pass in GUID_NULL.

Return Values: The method MUST return zero or a non-error HRESULT (as specified in [MS-ERREF])
to indicate success, or return an implementation-specific nonzero error code to indicate failure. For

the HRESULT values predefined by the Virtual Disk Service Remote Protocol, see section 2.2.3.

When the server receives this message, it MUST validate the following parameters:

 Verify that pInitiatorSharedSecret is not NULL.

 Verify that targetId is GUID_NULL.

The server MUST set the CHAP shared secret that pInitiatorSharedSecret specifies in the iSCSI
initiator, and return an HRESULT indicating failure or success.

3.4.5.2.9 IVdsServiceSAN Methods

3.4.5.2.9.1 IVdsServiceSAN::GetSANPolicy (Opnum 3)

The GetSANPolicy method returns the current SAN policy setting.

 HRESULT GetSANPolicy(
 [out] VDS_SAN_POLICY* pSanPolicy
);

%5bMS-ERREF%5d.pdf#Section_1bc92ddfb79e413cbbaa99a5281a6c90
%5bMS-CHAP%5d.pdf#Section_8fea1dd166d6487488a534bcdbb58907
%5bMS-ERREF%5d.pdf#Section_1bc92ddfb79e413cbbaa99a5281a6c90

179 / 342

[MS-VDS] - v20170601
Virtual Disk Service (VDS) Protocol
Copyright © 2017 Microsoft Corporation
Release: June 1, 2017

pSanPolicy: A pointer to a VDS_SAN_POLICY (section 2.2.2.2.1.1) structure that, if the operation is
successfully completed, receives the SAN policy setting's current value.

Return Values: The method MUST return zero or a non-error HRESULT, as specified in [MS-ERREF],
to indicate success or return an implementation-specific nonzero error code to indicate failure. For

the HRESULT values predefined by the Virtual Disk Service Remote Protocol, see section 2.2.3.

When the server receives this message, it MUST validate the following parameter:

 Verify that pSanPolicy is not NULL.

The server MUST populate the VDS_SAN_POLICY structure that pSanPolicy references with the current
SAN policy setting's value, and return an HRESULT that indicates failure or success.

3.4.5.2.9.2 IVdsServiceSAN::SetSANPolicy (Opnum 4)

The SetSANPolicy method sets the SAN policy value.

 HRESULT SetSANPolicy(
 [in] VDS_SAN_POLICY SanPolicy
);

SanPolicy: A VDS_SAN_POLICY (section 2.2.2.2.1.1) structure that, if the operation is successfully
completed, is used to set the new value for the SAN policy.

Return Values: The method MUST return zero or a non-error HRESULT, as specified in [MS-ERREF],
to indicate success or return an implementation-specific nonzero error code to indicate failure. For
the HRESULT values predefined by the Virtual Disk Service Remote Protocol, see section 2.2.3.

When the server receives this message, it MUST set the SAN policy for the machine to the value
indicated in the VDS_SAN_POLICY structure that SanPolicy references, and return an HRESULT that
indicates failure or success.

3.4.5.2.10 IVdsServiceSw Methods

3.4.5.2.10.1 IVdsServiceSw::GetDiskObject (Opnum 3)

The GetDiskObject method<75> returns the disk for the given PnP Device ID string.

 HRESULT GetDiskObject(
 [in, string] LPCWSTR pwszDeviceID,
 [out] IUnknown** ppDiskUnk
);

pwszDeviceID: The null-terminated Unicode device path that the operating system uses to identify
the device for the disk.

ppDiskUnk: A pointer to a variable that receives an IUnknown interface pointer. Callers MUST

release the interface pointer when it is no longer needed by calling the IUnknown::Release
method.

Return Values: The method MUST return zero or a non-error HRESULT, as specified in [MS-ERREF],
to indicate success or return an implementation-specific nonzero error code to indicate failure. For
the HRESULT values predefined by the Virtual Disk Service Remote Protocol, see section 2.2.3.

When the server receives this message, it MUST validate the following parameters:

 Verify that pwszDeviceID is not NULL.

%5bMS-ERREF%5d.pdf#Section_1bc92ddfb79e413cbbaa99a5281a6c90
%5bMS-ERREF%5d.pdf#Section_1bc92ddfb79e413cbbaa99a5281a6c90
%5bMS-ERREF%5d.pdf#Section_1bc92ddfb79e413cbbaa99a5281a6c90

180 / 342

[MS-VDS] - v20170601
Virtual Disk Service (VDS) Protocol
Copyright © 2017 Microsoft Corporation
Release: June 1, 2017

 Verify that ppDiskUnk is not NULL.

The server MUST find the cached disk object that corresponds to the passed in unique PNP Device ID

string. If the disk object is found, the server MUST set the ppDiskUnk to point to it, and return S_OK.
If the corresponding disk object is not found, the server MUST return VDS_E_OBJECT_NOT_FOUND.

3.4.5.2.11 IVdsHbaPort Methods

3.4.5.2.11.1 IVdsHbaPort::GetProperties (Opnum 3)

The GetProperties method retrieves the properties of the HBA port that the object exposing this
interface and method represents.

 HRESULT GetProperties(
 [out] VDS_HBAPORT_PROP* pHbaPortProp
);

pHbaPortProp: A pointer to a VDS_HBAPORT_PROP structure that, if the operation is successfully
completed, receives the properties of the HBA port.

Return Values: The method MUST return zero or a non-error HRESULT (as specified in [MS-ERREF])
to indicate success, or return an implementation-specific nonzero error code to indicate failure. For

the HRESULT values predefined by the Virtual Disk Service Remote Protocol, see section 2.2.3.

When the server receives this message, it MUST validate the following parameter:

 Verify that pHbaPortProp is not NULL.

The server MUST populate the VDS_HBAPORT_PROP structure that pHbaPortProp references with the
properties of the HBA port, and return an HRESULT that indicates failure or success. For more
information on the VDS_HBAPORT_PROP structure, see section 2.2.2.4.2.2.

3.4.5.2.11.2 IVdsHbaPort::SetAllPathStatuses (Opnum 4)

The SetAllPathStatuses method sets the statuses of all paths that originate from the HBA port to a
specified status.

 HRESULT SetAllPathStatuses(
 [in] VDS_PATH_STATUS status
);

status: The status, as defined by VDS_PATH_STATUS, to assign to the paths.

Return Values: The method MUST return zero or a non-error HRESULT (as specified in [MS-ERREF])
to indicate success, or return an implementation-specific nonzero error code to indicate
failure.<76> For the HRESULT values predefined by the Virtual Disk Service Remote Protocol, see
section 2.2.3.

3.4.5.2.12 IVdsIscsiInitiatorAdapter Methods

3.4.5.2.12.1 IVdsIscsiInitiatorAdapter::GetProperties (Opnum 3)

The GetProperties method retrieves the properties of the initiator adapter that is represented by the
object exposing this interface and method.

 HRESULT GetProperties(
 [out] VDS_ISCSI_INITIATOR_ADAPTER_PROP* pInitiatorAdapterProp

%5bMS-ERREF%5d.pdf#Section_1bc92ddfb79e413cbbaa99a5281a6c90
%5bMS-ERREF%5d.pdf#Section_1bc92ddfb79e413cbbaa99a5281a6c90

181 / 342

[MS-VDS] - v20170601
Virtual Disk Service (VDS) Protocol
Copyright © 2017 Microsoft Corporation
Release: June 1, 2017

);

pInitiatorAdapterProp: A pointer to a VDS_ISCSI_INITIATOR_ADAPTER_PROP structure that, if the
operation is successfully completed, receives the properties of the initiator adapter.

Return Values: The method MUST return zero or a non-error HRESULT (as specified in [MS-ERREF])
to indicate success, or return an implementation-specific nonzero error code to indicate failure. For
the HRESULT values predefined by the Virtual Disk Service Remote Protocol, see section 2.2.3.

When the server receives this message, it MUST validate the following parameter:

 Verify that pInitiatorAdapterProp is not NULL.

The server MUST populate the VDS_ISCSI_INITIATOR_ADAPTER_PROP structure that
pInitiatorAdapterProp references with the properties of the iSCSI initiator adapter and return an
HRESULT indicating failure or success. For information on the VDS_ISCSI_INITIATOR_ADAPTER_PROP
structure, see section 2.2.2.5.1.1.

3.4.5.2.12.2 IVdsIscsiInitiatorAdapter::QueryInitiatorPortals (Opnum 4)

The QueryInitiatorPortals method returns an object that enumerates the iSCSI initiator portals of

the initiator adapter.

 HRESULT QueryInitiatorPortals(
 [out] IEnumVdsObject** ppEnum
);

ppEnum: A pointer to an IEnumVdsObject interface that, if the operation is successfully completed,
receives the IEnumVdsObject interface of the object containing an enumeration of initiator portal

objects in the initiator adapter. Callers MUST release the interface when they are done with it.

Return Values: The method MUST return zero or a nonerror HRESULT (as specified in [MS-ERREF])

to indicate success, or return an implementation-specific nonzero error code to indicate failure. For
the HRESULT values predefined by the Virtual Disk Service Remote Protocol, see section 2.2.3.

When the server receives this message, it MUST validate the parameters:

 Verify that ppEnum is not NULL.

The server MUST point ppEnum to an IEnumVdsObject interface that contains the enumeration of
iSCSI initiator portal objects in the list of cached storage management objects that have their initiator
adapter pointer set to this initiator adapter object. The server MUST then return an HRESULT
indicating failure or success.

3.4.5.2.13 IVdsIscsiInitiatorPortal Methods

3.4.5.2.13.1 IVdsIscsiInitiatorPortal::GetProperties (Opnum 3)

The GetProperties method retrieves the properties of the initiator portal that the object exposing this
interface and method represents.

 HRESULT GetProperties(
 [out] VDS_ISCSI_INITIATOR_PORTAL_PROP* pInitiatorPortalProp
);

%5bMS-ERREF%5d.pdf#Section_1bc92ddfb79e413cbbaa99a5281a6c90
%5bMS-ERREF%5d.pdf#Section_1bc92ddfb79e413cbbaa99a5281a6c90

182 / 342

[MS-VDS] - v20170601
Virtual Disk Service (VDS) Protocol
Copyright © 2017 Microsoft Corporation
Release: June 1, 2017

pInitiatorPortalProp: A pointer to a VDS_ISCSI_INITIATOR_PORTAL_PROP structure that, if the
operation is successfully completed, receives the properties of the initiator portal.

Return Values: The method MUST return zero or a non-error HRESULT (as specified in [MS-ERREF])
to indicate success, or return an implementation-specific nonzero error code to indicate failure. For

the HRESULT values predefined by the Virtual Disk Service Remote Protocol, see section 2.2.3.

When the server receives this message, it MUST validate the following parameter:

 Verify that pInitiatorPortalProp is not NULL.

The server MUST populate the VDS_ISCSI_INITIATOR_PORTAL_PROP structure that
pInitiatorPortalProp references with the properties of the iSCSI initiator portal and then return an
HRESULT indicating failure or success. For information on the VDS_ISCSI_INITIATOR_PORTAL_PROP
structure, see section 2.2.2.6.2.2.

3.4.5.2.13.2 IVdsIscsiInitiatorPortal::GetInitiatorAdapter (Opnum 4)

The GetInitiatorAdapter method returns the initiator adapter to the initiator portal it belongs to.

 HRESULT GetInitiatorAdapter(
 [out] IVdsIscsiInitiatorAdapter** ppInitiatorAdapter
);

ppInitiatorAdapter: A pointer to an IVdsIscsiInitiatorAdapter interface that, if the operation is
successfully completed, receives the IVdsIscsiInitiatorAdapter interface of the initiator adapter
object that the initiator portal belongs to. Callers MUST release the interface when they are done
with it.

Return Values: The method MUST return zero or a non-error HRESULT (as specified in [MS-ERREF])
to indicate success, or return an implementation-specific nonzero error code to indicate failure. For

the HRESULT values predefined by the Virtual Disk Service Remote Protocol, see section 2.2.3.

When the server receives this message, it MUST validate the following parameter:

 Verify that ppInitiatorAdapter is not NULL.

The server MUST point ppInitiatorAdapter to an IVdsIscsiInitiatorAdapter interface of the initiator
adapter object that the initiator portal object's initiator adapter pointer refers to. The server MUST
then return an HRESULT indicating failure or success.

3.4.5.2.14 IVdsProvider Methods

3.4.5.2.14.1 IVdsProvider::GetProperties (Opnum 3)

The GetProperties method retrieves the properties of the provider that the object exposing this
interface and method represents.

 HRESULT GetProperties(
 [out] VDS_PROVIDER_PROP* pProviderProp
);

pProviderProp: A pointer to a VDS_PROVIDER_PROP structure that, if the operation is successfully
completed, receives the properties of the provider.

Return Values: The method MUST return zero or a non-error HRESULT (as specified in [MS-ERREF])
to indicate success, or return an implementation-specific nonzero error code to indicate failure. For
the HRESULT values predefined by the Virtual Disk Service Remote Protocol, see section 2.2.3.

%5bMS-ERREF%5d.pdf#Section_1bc92ddfb79e413cbbaa99a5281a6c90
%5bMS-ERREF%5d.pdf#Section_1bc92ddfb79e413cbbaa99a5281a6c90
%5bMS-ERREF%5d.pdf#Section_1bc92ddfb79e413cbbaa99a5281a6c90

183 / 342

[MS-VDS] - v20170601
Virtual Disk Service (VDS) Protocol
Copyright © 2017 Microsoft Corporation
Release: June 1, 2017

When the server receives this message, it MUST validate the following parameter:

 Verify that pProviderProp is not NULL.

The server MUST populate the VDS_PROVIDER_PROP structure that pProviderProp references with the
properties of the provider. It MUST then return an HRESULT indicating failure or success. For

information on the VDS_PROVIDER_PROP structure, see section 2.2.2.7.2.1.

3.4.5.2.15 IVdsSwProvider Methods

3.4.5.2.15.1 IVdsSwProvider::QueryPacks (Opnum 3)

The QueryPacks method retrieves the provider disk packs.

 HRESULT QueryPacks(
 [out] IEnumVdsObject** ppEnum
);

ppEnum: A pointer to an IEnumVdsObject interface that, if the operation is successfully completed,
receives the IEnumVdsObject interface of the object containing an enumeration of pack objects in
the provider. Callers MUST release the interface when they are done with it.

Return Values: The method MUST return zero or a non-error HRESULT (as specified in [MS-ERREF])

to indicate success, or return an implementation-specific nonzero error code to indicate failure. For
the HRESULT values predefined by the Virtual Disk Service Remote Protocol, see section 2.2.3.

When the server receives this message, it MUST validate the following parameter:

 Verify that ppEnum is not NULL.

The server MUST point ppEnum to an IEnumVdsObject interface that contains the enumeration of pack
objects in the list of cached storage management objects that have their provider pointer set to this

provider object. The server MUST then return an HRESULT indicating failure or success. For

information on enumeration objects, see section 3.4.1.3.

3.4.5.2.15.2 IVdsSwProvider::CreatePack (Opnum 4)

The CreatePack method creates a disk pack.

 HRESULT CreatePack(
 [out] IVdsPack** ppPack
);

ppPack: A pointer to an IVdsPack interface that, if the operation is successfully completed, receives
the IVdsPack interface of the newly created disk pack. Callers MUST release the interface when
they are done with it.

Return Values: The method MUST return zero or a non-error HRESULT (as specified in [MS-ERREF])

to indicate success, or return an implementation-specific nonzero error code to indicate failure. For

the HRESULT values predefined by the Virtual Disk Service Remote Protocol, see section 2.2.3.

When the server receives this message, it MUST validate the following parameter:

 Verify that ppPack is not NULL.

The server MUST perform the following:

%5bMS-ERREF%5d.pdf#Section_1bc92ddfb79e413cbbaa99a5281a6c90
%5bMS-ERREF%5d.pdf#Section_1bc92ddfb79e413cbbaa99a5281a6c90

184 / 342

[MS-VDS] - v20170601
Virtual Disk Service (VDS) Protocol
Copyright © 2017 Microsoft Corporation
Release: June 1, 2017

 Create a new pack object that implements the IVdsPack interface and assign it a unique
VDS_OBJECT_ID.

 Set the provider pointer of the disk pack object to this provider object.

 Add the pack object to the list of storage management objects.

 For each callback object that is registered in the list of callback objects, call the
IVdsAdviseSink::OnNotify (Opnum 3) method of the callback object with a VDS_NOTIFICATION
structure that has the following attributes:

 objectType member is VDS_NTT_PACK.

 Pack member is a VDS_PACK_NOTIFICATION with the following attributes:

 ulEvent is VDS_NF_PACK_ARRIVE.

 packId is the VDS_OBJECT_ID of the pack object that was added.

 Set the pointer that ppPack references to the IVdsPack interface of the pack object.

 Return an HRESULT indicating failure or success.

3.4.5.2.16 IVdsHwProvider Methods

3.4.5.2.16.1 IVdsHwProvider::QuerySubSystems (Opnum 3)

The QuerySubSystems method retrieves the subsystems that are managed by the provider.

 HRESULT QuerySubSystems(
 [out] IEnumVdsObject** ppEnum
);

ppEnum: A pointer to an IEnumVdsObject interface. If the operation is successfully completed, the

pointer receives the IEnumVdsObject interface of the object, which contains an enumeration of

subsystem objects in the provider. Callers MUST release the interface when they are finished with
it.

Return Values: The method MUST return zero or a non-error HRESULT (as specified in [MS-ERREF])
to indicate success, or return an implementation-specific nonzero error code to indicate failure. For
the HRESULT values predefined by the Virtual Disk Service Remote Protocol, see section 2.2.3.

When the server receives this message, it MUST validate the following parameter:

 Verify that ppEnum is not NULL.

The server MUST point ppEnum to an IEnumVdsObject interface that contains the enumeration of
subsystem objects in the list of cached storage management objects that have their provider pointer
set to this provider object. The server MUST then return an HRESULT to indicate failure or success.

For information on enumeration objects, see section 3.4.1.3.

3.4.5.2.17 IVdsVdProvider Methods

3.4.5.2.17.1 IVdsVdProvider::QueryVDisks (Opnum 3)

The QueryVDisks method returns a list of virtual disks that are managed by the provider.

 HRESULT QueryVDisks(

%5bMS-ERREF%5d.pdf#Section_1bc92ddfb79e413cbbaa99a5281a6c90

185 / 342

[MS-VDS] - v20170601
Virtual Disk Service (VDS) Protocol
Copyright © 2017 Microsoft Corporation
Release: June 1, 2017

 [out] IEnumVdsObject** ppEnum
);

ppEnum: A pointer to an IEnumVdsObject (section 3.1.1.1) interface. If the operation is successfully
completed, the pointer receives the IEnumVdsObject interface of the object, which contains an
enumeration of virtual disk objects in the provider. Callers MUST release the interface when they
are finished with it.

Return Values: The method MUST return zero or a nonerror HRESULT (as specified in [MS-ERREF])
to indicate success, or return an implementation-specific nonzero error code to indicate failure. For
the HRESULT values predefined by the Virtual Disk Service Remote Protocol, see section 2.2.3.

When the server receives this message, it MUST validate the following parameter:

 Verify that ppEnum is not NULL.

The server MUST point ppEnum to an IEnumVdsObject interface that contains the enumeration of

virtual disk objects in the list of cached storage management objects that have their provider pointer
set to this provider object. The server MUST then return an HRESULT to indicate failure or success.

For information on enumeration objects, see section 2.2.2.18.1.

3.4.5.2.17.2 IVdsVdProvider::CreateVDisk (Opnum 4)

The CreateVDisk method defines a new virtual disk. This method creates a virtual disk file to be used
as the backing store for the virtual disk.

 HRESULT CreateVDisk(
 [in] PVIRTUAL_STORAGE_TYPE VirtualDeviceType,
 [in, string] LPWSTR pPath,
 [in, string, unique] LPWSTR pStringSecurityDescriptor,
 [in] CREATE_VIRTUAL_DISK_FLAG Flags,
 [in] ULONG ProviderSpecificFlags,
 [in] ULONG Reserved,
 [in] PVDS_CREATE_VDISK_PARAMETERS pCreateDiskParameters,
 [in, out, unique] IVdsAsync** ppAsync
);

VirtualDeviceType: Pointer to a VIRTUAL_STORAGE_TYPE (section 2.2.1.3.23) structure that
specifies the type of virtual hard disk to be created.

pPath: A NULL-terminated wide-character string containing the name and directory path for the
backing file to be created for the virtual hard disk.

pStringSecurityDescriptor: A NULL-terminated wide-character string containing the security

descriptor to be applied to the virtual disk. Security descriptors MUST be in the Security Descriptor
Definition Language (see [MSDN-SDDLforDevObj]).<77> If this parameter is NULL, the security
descriptor in the caller's access token (see [MSFT-WSM/WEDWNK]) MUST be used.

Flags: Bitmask of flags specifying how the virtual disk is to be created.

ProviderSpecificFlags: A bitmask of flags that are specific to the type of virtual hard disk that is
being surfaced. These flags are provider-specific.<78>

Reserved: The parameter is reserved for future use and MAY be zero.<79>

pCreateDiskParameters: Pointer to a VDS_CREATE_VDISK_PARAMETERS (section 2.2.2.18.2.1)
structure that contains the virtual hard disk creation parameters.

%5bMS-ERREF%5d.pdf#Section_1bc92ddfb79e413cbbaa99a5281a6c90
https://go.microsoft.com/fwlink/?LinkId=114214
https://go.microsoft.com/fwlink/?LinkId=208360

186 / 342

[MS-VDS] - v20170601
Virtual Disk Service (VDS) Protocol
Copyright © 2017 Microsoft Corporation
Release: June 1, 2017

ppAsync: A pointer to an IVdsAsync (section 3.1.3.1) interface that, if the operation is successfully
completed, receives the IVdsAsync interface to monitor and control this operation. Callers MUST

release the interface when they are done with it.

Return Values: The method MUST return zero to indicate success, or return an implementation-

specific nonzero error code to indicate failure. For the HRESULT values predefined by the Virtual
Disk Service Remote Protocol, see section 2.2.3.

When the server receives this message, it MUST validate the following parameters:

 Verify that VirtualDeviceType is not NULL.

 Verify that pPath is not NULL.

 Verify that pStringSecurityDescriptor is not NULL.

 Verify that if there are multiple flags, the Flags correspond to a bitwise OR of one or more flags

specified in the CREATE_VIRTUAL_DISK_FLAG (section 2.2.2.18.1.1) enumeration; otherwise it is
just the one flag.

 Verify that ppAsync is not NULL.

The server MUST perform the following:

 Create a new async object implementing the IVdsAsync interface with an output type of
VDS_ASYNCOUT_CREATE_VDISK and set the pointer ppAsync references to the interface.

 Return an HRESULT indicating failure or success. Any errors encountered up through this point in
processing the operation are returned in this HRESULT.

The server MUST then perform the following in sequence. Errors generated in this sequence of steps
are returned in the pHrResult parameter to the IVdsAsync::Wait or IVdsAsyncQueryStatus methods.

 Pass the method parameters to the operating system to create the virtual disk.

 Set the return code in the async object to an HRESULT indicating failure or success.

 If the task completed successfully, set the percentage completed value in the async object to 100.

 Set the signal state in the async object to TRUE.

At any point in the preceding sequence--before the percentage completed value in the async object is
100--the server MUST update the percentage completed value if progress has been made.

3.4.5.2.17.3 IVdsVdProvider::AddVDisk (Opnum 5)

The AddVDisk method creates a virtual disk object representing the specified virtual disk and adds it
to the list of virtual disks managed by the provider. This method returns an

IVdsVDisk (section 3.1.15.1) interface pointer to the specified virtual disk object.

 HRESULT AddVDisk(
 [in] PVIRTUAL_STORAGE_TYPE VirtualDeviceType,
 [in, string] LPWSTR pPath,
 [out] IVdsVDisk** ppVDisk
);

VirtualDeviceType: A pointer to a VIRTUAL_STORAGE_TYPE (section 2.2.1.3.23) structure that

specifies the type of virtual hard disk to open.

187 / 342

[MS-VDS] - v20170601
Virtual Disk Service (VDS) Protocol
Copyright © 2017 Microsoft Corporation
Release: June 1, 2017

pPath: A NULL-terminated wide-character string containing the fully qualified pathname for the virtual
disk's backing file.

ppVDisk: A pointer to a variable that, if the operation is successfully completed, receives an
IVdsVDisk interface pointer to the newly created virtual disk object. Callers MUST release the

interface pointer when it is no longer needed by calling the IUnknown::Release method.

Return Values: The method MUST return zero or a nonerror HRESULT (as specified in [MS-ERREF])
to indicate success, or return an implementation-specific nonzero error code to indicate failure. For
the HRESULT values predefined by the Virtual Disk Service Remote Protocol, see section 2.2.3.

When the server receives this message, it MUST validate the following parameters:

 Verify that VirtualDeviceType is not NULL.

 Verify that pPath is not NULL.

 Verify that ppVDisk is not NULL.

The server MUST then perform the following in sequence:

 Search its cached virtual disk objects for an object whose file name matches the input pPath. If
such an object does not exist, create a new virtual disk cache object that implements the
IVdsVDisk interface and assign it a unique VDS_OBJECT_ID (section 2.2.1.1.3).

 Point ppVDisk to an IVdsVDisk interface of the virtual disk object found or created and return an

HRESULT indicating success.

3.4.5.2.17.4 IVdsVdProvider::GetDiskFromVDisk (Opnum 6)

The GetDiskFromVDisk method returns an IVdsDisk (section 3.1.12.1) interface pointer for a virtual
disk given an IVdsVDisk (section 3.1.15.1) interface pointer.

 HRESULT GetDiskFromVDisk(
 [in] IVdsVDisk* pVDisk,
 [out] IVdsDisk** ppDisk
);

pVDisk: The IVdsVDisk interface pointer for the virtual disk.

ppDisk: Pointer to a variable that receives an IVdsDisk interface pointer. Callers MUST release the
interface pointer when it is no longer needed by calling the IUnknown::Release method.

Return Values: The method MUST return zero or a non-error HRESULT (as specified in [MS-ERREF])
to indicate success, or return an implementation-specific nonzero error code to indicate failure. For
the HRESULT values predefined by the Virtual Disk Service Remote Protocol, see section 2.2.3.

When the server receives this message, it MUST validate the following parameters:

 Verify that pVDisk is not NULL.

 Verify that ppDisk is not NULL.

The server MUST find the cached disk object that corresponds to the passed in virtual disk. If the disk
object is found, the server MUST set ppDisk to point to it, and return an S_OK. If the corresponding
disk object is not found, the server MUST return the HRESULT error VDS_E_OBJECT_NOT_FOUND.
Note that the virtual disk MUST be attached.

3.4.5.2.17.5 IVdsVdProvider::GetVDiskFromDisk (Opnum 7)

%5bMS-ERREF%5d.pdf#Section_1bc92ddfb79e413cbbaa99a5281a6c90
%5bMS-ERREF%5d.pdf#Section_1bc92ddfb79e413cbbaa99a5281a6c90

188 / 342

[MS-VDS] - v20170601
Virtual Disk Service (VDS) Protocol
Copyright © 2017 Microsoft Corporation
Release: June 1, 2017

The GetVDiskFromDisk method returns an IVdsVDisk (section 3.1.15.1) interface pointer for the
virtual disk given an IVdsDisk (section 3.1.12.1) interface pointer.

 HRESULT GetVDiskFromDisk(
 [in] IVdsDisk* pDisk,
 [out] IVdsVDisk** ppVDisk
);

pDisk: The IVdsDisk interface pointer to a disk.

ppVDisk: Pointer to a variable that receives an IVdsVDisk interface pointer. Callers MUST release the
interface pointer when it is no longer needed by calling the IUnknown::Release method.

Return Values: The method MUST return zero or a non-error HRESULT (as specified in [MS-ERREF])
to indicate success, or return an implementation-specific nonzero error code to indicate failure. For
the HRESULT values predefined by the Virtual Disk Service Remote Protocol, see section 2.2.3.

When the server receives this message, it MUST validate the following parameters:

 Verify that pDisk is not NULL.

 Verify that ppVDisk is not NULL.

The server MUST find the cached virtual disk object that corresponds to the passed in disk. If the
virtual disk object is found, the server MUST set ppVDisk to point to it and return an S_OK. If the
corresponding disk object is not found, the server MUST return the HRESULT error
VDS_E_OBJECT_NOT_FOUND. Note that the virtual disk MUST be attached.

3.4.5.2.18 IVdsSubSystemImportTarget Methods

3.4.5.2.18.1 IVdsSubSystemImportTarget::GetImportTarget (Opnum 3)

The GetImportTarget method retrieves the name of the import target to associate with the LUNs

being imported on the subsystem.

 HRESULT GetImportTarget(
 [out, string] LPWSTR* ppwszIscsiName
);

ppwszIscsiName: A pointer to a string that contains the name of the import target of the
subsystem. Callers MUST free the memory that is allocated for the string when they are finished
with it.

Return Values: The method MUST return zero or a non-error HRESULT (as specified in [MS-ERREF])
to indicate success, or return an implementation-specific nonzero error code to indicate failure. For
the HRESULT values predefined by the Virtual Disk Service Remote Protocol, see section 2.2.3.

When the server receives this message, it MUST validate the following parameter:

 Verify that ppwszIscsiName is not NULL.

The server MUST point ppwszIscsiName to a string that contains the name of the import target of the
subsystem. The server MUST then return an HRESULT to indicate failure or success.

3.4.5.2.18.2 IVdsSubSystemImportTarget::SetImportTarget (Opnum 4)

The SetImportTarget method sets the name of the import target to associate with the LUNs being
imported on the subsystem.

%5bMS-ERREF%5d.pdf#Section_1bc92ddfb79e413cbbaa99a5281a6c90
%5bMS-ERREF%5d.pdf#Section_1bc92ddfb79e413cbbaa99a5281a6c90

189 / 342

[MS-VDS] - v20170601
Virtual Disk Service (VDS) Protocol
Copyright © 2017 Microsoft Corporation
Release: June 1, 2017

 HRESULT SetImportTarget(
 [in, unique, string] LPWSTR pwszIscsiName
);

pwszIscsiName: A string that contains the name of the import target of the subsystem.

Return Values: The method MUST return zero or a non-error HRESULT (as specified in [MS-ERREF])
to indicate success, or return an implementation-specific nonzero error code to indicate failure. For
the HRESULT values predefined by the Virtual Disk Service Remote Protocol, see section 2.2.3.

When the server receives this message, it MUST validate the following parameter:

 Verify that pwszIscsiName is not NULL.

The server MUST set the name of the import target of the subsystem to the string that is specified by

ppwszIscsiName. The server MUST then return an HRESULT to indicate failure or success.

3.4.5.2.19 IVdsPack Methods

3.4.5.2.19.1 IVdsPack::GetProperties (Opnum 3)

The GetProperties method retrieves the properties of the disk pack that the object exposing this
interface and method represents.

 HRESULT GetProperties(
 [out] VDS_PACK_PROP* pPackProp
);

pPackProp: A pointer to a VDS_PACK_PROP structure that, if the operation is successfully completed,
receives the properties of the pack.

Return Values: The method MUST return zero or a non-error HRESULT (as specified in [MS-ERREF])

to indicate success, or return an implementation-specific nonzero error code to indicate failure. For
the HRESULT values predefined by the Virtual Disk Service Remote Protocol, see section 2.2.3.

When the server receives this message, it MUST validate the following parameter:

 Verify that pPackProp is not NULL.

The server MUST populate the VDS_PACK_PROP structure that pPackProp references with the
properties of the pack. It MUST then return an HRESULT indicating failure or success. For information

on the VDS_PACK_PROP structure, see section 2.2.2.8.2.1.

3.4.5.2.19.2 IVdsPack::GetProvider (Opnum 4)

The GetProvider method retrieves the provider that the disk pack belongs to.

 HRESULT GetProvider(
 [out] IVdsProvider** ppProvider
);

ppProvider: A pointer to an IVdsProvider interface that, if the operation is successfully completed,
receives the IVdsProvider interface of the provider object that the pack belongs to. Callers MUST
release the interface when they are done with it.

%5bMS-ERREF%5d.pdf#Section_1bc92ddfb79e413cbbaa99a5281a6c90
%5bMS-ERREF%5d.pdf#Section_1bc92ddfb79e413cbbaa99a5281a6c90

190 / 342

[MS-VDS] - v20170601
Virtual Disk Service (VDS) Protocol
Copyright © 2017 Microsoft Corporation
Release: June 1, 2017

Return Values: The method MUST return zero or a non-error HRESULT (as specified in [MS-ERREF])
to indicate success, or return an implementation-specific nonzero error code to indicate failure. For

the HRESULT values predefined by the Virtual Disk Service Remote Protocol, see section 2.2.3.

When the server receives this message, it MUST validate the following parameter:

 Verify that ppProvider is not NULL.

The server MUST point ppProvider to an IVdsProvider interface of the provider object that the pack
object's provider pointer refers to. The server MUST then return an HRESULT indicating failure or
success.

3.4.5.2.19.3 IVdsPack::QueryVolumes (Opnum 5)

The QueryVolumes method retrieves the volumes of a disk pack.

 HRESULT QueryVolumes(
 [out] IEnumVdsObject** ppEnum
);

ppEnum: A pointer to an IEnumVdsObject interface that, if the operation is successfully completed,
receives the IEnumVdsObject interface of the object that contains an enumeration of volume
objects in the pack. Callers MUST release the interface when they are done with it.

Return Values: The method MUST return zero or a non-error HRESULT (as specified in [MS-ERREF])
to indicate success, or return an implementation-specific nonzero error code to indicate failure. For
the HRESULT values predefined by the Virtual Disk Service Remote Protocol, see section 2.2.3.

When the server receives this message, it MUST validate the following parameter:

 Verify that ppEnum is not NULL.

The server MUST point ppEnum to an IEnumVdsObject interface that contains the enumeration of

volume objects in the list of cached storage management objects that have their pack pointer set to

this pack object. The server MUST then return an HRESULT indicating failure or success. For
information on enumeration objects, see section 3.4.1.3.

3.4.5.2.19.4 IVdsPack::QueryDisks (Opnum 6)

The QueryDisks method retrieves the disks of a disk pack.

 HRESULT QueryDisks(
 [out] IEnumVdsObject** ppEnum
);

ppEnum: A pointer to an IEnumVdsObject interface that, if the operation is successfully completed,
receives the IEnumVdsObject interface of the object containing an enumeration of disk objects in
the pack. Callers MUST release the interface when they are done with it.

Return Values: The method MUST return zero or a non-error HRESULT (as specified in [MS-ERREF])

to indicate success, or return an implementation-specific nonzero error code to indicate failure. For
the HRESULT values predefined by the Virtual Disk Service Remote Protocol, see section 2.2.3.

When the server receives this message, it MUST validate the following parameter:

 Verify that ppEnum is not NULL.

%5bMS-ERREF%5d.pdf#Section_1bc92ddfb79e413cbbaa99a5281a6c90
%5bMS-ERREF%5d.pdf#Section_1bc92ddfb79e413cbbaa99a5281a6c90
%5bMS-ERREF%5d.pdf#Section_1bc92ddfb79e413cbbaa99a5281a6c90

191 / 342

[MS-VDS] - v20170601
Virtual Disk Service (VDS) Protocol
Copyright © 2017 Microsoft Corporation
Release: June 1, 2017

The server MUST point ppEnum to an IEnumVdsObject interface that contains the enumeration of
disk objects in the list of cached storage management objects that have their pack pointer set to this

pack object. The server MUST then return an HRESULT indicating failure or success. For information
on enumeration, see section 3.4.1.3.

3.4.5.2.19.5 IVdsPack::CreateVolume (Opnum 7)

The CreateVolume method creates a volume in a disk pack.

 HRESULT CreateVolume(
 [in] VDS_VOLUME_TYPE type,
 [in, size_is(lNumberOfDisks)] VDS_INPUT_DISK* pInputDiskArray,
 [in] long lNumberOfDisks,
 [in] unsigned long ulStripeSize,
 [out] IVdsAsync** ppAsync
);

type: A value from the VDS_VOLUME_TYPE enumeration that indicates the type of volume to create.

pInputDiskArray: An array of VDS_INPUT_DISK structures that indicate the disks on which to
create the volume.<80>

lNumberOfDisks: The number of elements in pInputDiskArray.

ulStripeSize: The stripe size of the new volume.<81>

ppAsync: A pointer to an IVdsAsync interface that, if the operation is successfully completed, receives

the IVdsAsync interface to monitor and control this operation. Callers MUST release the interface
when they are done with it. If the IVdsAsync::Wait (Opnum 4) method is called on the interface,
the interfaces returned in the VDS_ASYNC_OUTPUT structure MUST be released as well. For
information on handling asynchronous tasks, see section 3.4.5.1.9.

Return Values: The method MUST return zero or a non-error HRESULT (as specified in [MS-ERREF])
to indicate success, or return an implementation-specific nonzero error code to indicate failure. For

the HRESULT values predefined by the Virtual Disk Service Remote Protocol, see section 2.2.3.

When the server receives this message, it MUST validate the following parameters:

 Verify that pInputDiskArray is not NULL.

 Verify that the specified disk(s) belong to the given pack.

 Verify that ppAsync is not NULL.

The server MUST perform the following:

 Verify that the volume size that is specified using the array of VDS_INPUT_DISK structures is

greater than zero. The requested size of the volume is equal to the sum of the ullSize members
of each element in the array of VDS_INPUT_DISK structures. If the volume size is not greater
than zero, then the server MUST return VDS_E_EXTENT_SIZE_LESS_THAN_MIN.

 For each VDS_INPUT_DISK structure in the pInputDiskArray parameter, verify that the value of
the ullSize field does not exceed the amount of free space on the given disk. If the volume is
being created within a dynamic disk pack and if this requirement is not met, then the server MUST
return VDS_E_EXTENT_EXCEEDS_DISK_FREE_SPACE. If the volume is being created in a basic

disk pack and if this requirement is not being met, then the server MUST return
VDS_E_NOT_ENOUGH_SPACE.

 Create a new async object implementing the IVdsAsync interface with an output type of
VDS_ASYNCOUT_CREATEVOLUME and set the pointer that ppAsync references to the interface.

%5bMS-ERREF%5d.pdf#Section_1bc92ddfb79e413cbbaa99a5281a6c90

192 / 342

[MS-VDS] - v20170601
Virtual Disk Service (VDS) Protocol
Copyright © 2017 Microsoft Corporation
Release: June 1, 2017

 Return an HRESULT indicating failure or success. Any errors encountered up until this point in
processing the CreateVolume operation are returned in this HRESULT.

The server MUST then perform the following in sequence. Errors generated in this sequence of steps
are returned in the pHrResult parameter to the IVdsAsync::Wait or IVdsAsyncQueryStatus methods.

 Create a new volume that uses the parameters that are specified for this method.

 If the volume creation resulted in the renumbering of existing partitions on a boot disk, the
server MUST update the boot configuration file with the new partition numbering.

 Create a new volume object that corresponds to the new volume, implement the IVdsVolume
interface, and assign it a unique VDS_OBJECT_ID.

 Set the volume object's pack pointer to this pack object.

 Create new volume plex objects that correspond to the new volume plexes, implement the

IVdsVolumePlex interface, and assign it a unique VDS_OBJECT_ID.

 Set the volume plex object's volume pointer to this volume object.

 Add the volume plex object to the list of storage management objects.

 Add the volume object to the list of storage management objects.

 Set the task-specific return values in the async object to return the values that are associated with
VDS_ASYNCOUT_CREATEVOLUME. See section 3.4.5.1.9.

 Set the return code in the async object to an HRESULT indicating failure or success.

 If the server tried to update the boot configuration file but failed, the return code MUST be set
to VDS_S_UPDATE_BOOTFILE_FAILED (HRESULT of 0x80042434).

 If the task completed successfully, set the percentage completed value in the async object to 100.

 Set the signal state in the async object to TRUE.

 For each callback object registered in the list of callback objects, call the callback object's
IVdsAdviseSink::OnNotify (Opnum 3) method with a VDS_NOTIFICATION structure with the

following attributes:

 objectType member is VDS_NTT_VOLUME.

 Volume member is a VDS_VOLUME_NOTIFICATION with the following attributes:

 ulEvent is VDS_NF_VOLUME_ARRIVE.

 volumeId is the VDS_OBJECT_ID of the volume object that was added.

 plexId SHOULD be GUID_NULL, but it is not relevant when ulEvent is
VDS_NF_VOLUME_ARRIVE.

 ulPercentCompleted ranges from 0-100; however, it is not relevant when ulEvent is
VDS_NF_VOLUME_ARRIVE.

The server MUST update the percentage completed value periodically during the preceding sequence.
How often the percentage completed is updated, and at what point in the sequence, is
implementation-specific.

3.4.5.2.19.6 IVdsPack::AddDisk (Opnum 8)

193 / 342

[MS-VDS] - v20170601
Virtual Disk Service (VDS) Protocol
Copyright © 2017 Microsoft Corporation
Release: June 1, 2017

This method initializes a disk that has no partitioning format defined, and then adds the disk to the
disk pack. AddDisk cannot redefine the partitioning format on a disk.<82>

 HRESULT AddDisk(
 [in] VDS_OBJECT_ID DiskId,
 [in] VDS_PARTITION_STYLE PartitionStyle,
 [in] long bAsHotSpare
);

DiskId: The VDS object ID of the disk object.

PartitionStyle: A value from the VDS_PARTITION_STYLE enumeration that indicates the partition
format.

bAsHotSpare: The Virtual Disk Service Remote Protocol does not support this parameter; callers

MUST set it to FALSE.

Return Values: The method MUST return zero or a non-error HRESULT (as specified in [MS-ERREF])

to indicate success, or return an implementation-specific nonzero error code to indicate failure. For
the HRESULT values predefined by the Virtual Disk Service Remote Protocol, see section 2.2.3.

When the server receives this message, it MUST validate the following parameters:

 Verify that DiskId belongs to a disk object in the list of storage management objects
corresponding to an unallocated disk.

 Verify that PartitionStyle is a valid partitioning format.

The server MUST add the disk having a VDS_OBJECT_ID specified by DiskId to this pack, initialize
the partitioning format of the disk based on the value of the PartitionStyle parameter, set the disk
object's pack pointer to this pack object, and return an HRESULT indicating failure or success.

3.4.5.2.19.7 IVdsPack::MigrateDisks (Opnum 9)

The MigrateDisks method migrates a set of disks from one pack to another pack.<83>

 HRESULT MigrateDisks(
 [in, size_is(lNumberOfDisks)] VDS_OBJECT_ID* pDiskArray,
 [in] long lNumberOfDisks,
 [in] VDS_OBJECT_ID TargetPack,
 [in] long bForce,
 [in] long bQueryOnly,
 [out, size_is(lNumberOfDisks)] HRESULT* pResults,
 [out] long* pbRebootNeeded
);

pDiskArray: A pointer to an array of VDS object IDs--one for each disk object that corresponds to
the disks to migrate.

lNumberOfDisks: The number of disks specified in pDiskArray.

TargetPack: The VDS object ID of the pack object.

bForce: A Boolean that determines whether disk migration is forced. When the client makes the call
to migrate disks, the provider(s) that owns the disks is notified by the server that the disks are
about to be migrated. The provider(s) can respond to this notification with an error.

%5bMS-ERREF%5d.pdf#Section_1bc92ddfb79e413cbbaa99a5281a6c90

194 / 342

[MS-VDS] - v20170601
Virtual Disk Service (VDS) Protocol
Copyright © 2017 Microsoft Corporation
Release: June 1, 2017

If this parameter is set to a nonzero value, the migration operation will continue. If the parameter
is set to zero and the provider(s) owning the disks responds to the notification with an error, the

call to migrate the disks will fail.

bQueryOnly: A Boolean that determines whether the disk migration will actually happen.

pResults: A pointer to an array of HRESULT values that, if the operation is successfully completed,
receives the HRESULTs returned by each disk migration request. There MUST be one HRESULT
value in the array for each disk in pDiskArray. If any of the disks fail to migrate properly, the
specific error code for that failure is received in the corresponding entry in pResults.

pbRebootNeeded: A pointer to a Boolean that, if the operation is successfully completed, receives an
indication of whether the user needs to reboot the remote machine in order to complete the
migration process.

Return Values: The method MUST return zero or a non-error HRESULT (as specified in [MS-ERREF])
to indicate success, or return an implementation-specific nonzero error code to indicate failure. For
the HRESULT values predefined by the Virtual Disk Service Remote Protocol, see section 2.2.3.

The HRESULTs in the array that pResults references return zero to indicate success or an
implementation-specific nonzero error code if the migration operation on the associated disk fails.

ERROR_SUCCESS (0x00000000)

When the server receives this message, it MUST validate the following parameters:

 Verify that pDiskArray is not NULL.

 Verify that pResults is not NULL.

 Verify that pbRebootNeeded is not NULL.

The server MUST perform the following:

 If this method is called against a dynamic disk which contains volume extents, and the target

pack is a basic disk pack, then this method MUST return VDS_E_DISK_NOT_EMPTY.<84>

 For each VDS object identifier in the specified pDiskArray, migrate the disk that corresponds to the
identifier to this pack. Set the status of each migrate operation to the corresponding value in the
array that pResults specifies.

 For each successfully migrated disk, set the disk object's pack pointer to this pack object.

 If the disk migrations require a restart to take full effect, set the value of the Boolean that
pbRebootNeeded references to TRUE; otherwise, FALSE.

 Return an HRESULT indicating failure or success; also return an HRESULT for each disk that is

involved in the migration by using the pResults output parameter.

The server MAY perform the following:

 For each callback object that is registered in the list of callback objects, call the callback object's

IVdsAdviseSink::OnNotify (section 3.3.4.3.1) method by using a
VDS_NOTIFICATION (section 2.2.1.3.9) structure that has the following attributes:

 objectType member is the value VDS_NTT_PACK.

 Pack member is a VDS_PACK_NOTIFICATION (section 2.2.1.3.2) structure that has the
following attributes:

 ulEvent is the value VDS_NF_PACK_MODIFY.

%5bMS-ERREF%5d.pdf#Section_1bc92ddfb79e413cbbaa99a5281a6c90

195 / 342

[MS-VDS] - v20170601
Virtual Disk Service (VDS) Protocol
Copyright © 2017 Microsoft Corporation
Release: June 1, 2017

 packId is the VDS_OBJECT_ID (section 2.2.1.1.3) value of this pack object.

3.4.5.2.19.8 IVdsPack::RemoveMissingDisk (Opnum 11)

The IVdsPack::RemoveMissingDisk method removes the specified missing disk from a disk pack. This

method only applies to dynamic disks. At least one dynamic disk needs to be present to enumerate
missing disks.

 HRESULT RemoveMissingDisk(
 [in] VDS_OBJECT_ID DiskId
);

DiskId: The VDS object ID of the disk object to remove.

Return Values: The method MUST return zero or a non-error HRESULT (as specified in [MS-ERREF])
to indicate success, or return an implementation-specific nonzero error code to indicate failure. For
the HRESULT values predefined by the Virtual Disk Service Remote Protocol, see section 2.2.3.

When the server receives this message, it MUST validate the parameters:

 Verify that DiskId belongs to a disk object in the list of storage management objects that
correspond to a disk that is missing. The missing disk has its pack pointer set to this pack object.

 If this method is called against a disk which contains data volume extents, then this method

MUST return VDS_E_DISK_NOT_EMPTY.

For each callback object that is registered in the list of callback objects, call the callback object's
IVdsAdviseSink::OnNotify (section 3.3.4.3.1) method by using a
VDS_NOTIFICATION (section 2.2.1.3.9) structure that has the following attributes:

 objectType member is the value VDS_NTT_PACK.

 Pack member is a VDS_PACK_NOTIFICATION (section 2.2.1.3.2) structure that has the following

attributes:

 ulEvent is the value VDS_NF_PACK_MODIFY.

 packId is the VDS_OBJECT_ID (section 2.2.1.1.3) value of this pack object.

The server MUST remove the disk having a VDS_OBJECT_ID that is specified by DiskId to this pack,
remove the corresponding disk object from the list of storage management objects, and return an
HRESULT indicating failure or success.<85>

3.4.5.2.19.9 IVdsPack::Recover (Opnum 12)

The Recover method restores a disk pack to a healthy state. This method is not supported on basic
disk packs or the INVALID dynamic disk pack (the value of VDS_PACK_PROP::pwszName is INVALID
for this pack). The INVALID dynamic disk pack contains dynamic disks that have failed to be joined to
the owning pack because there are errors or data corruption has occurred.

 HRESULT Recover(
 [out] IVdsAsync** ppAsync
);

ppAsync: A pointer to an IVdsAsync interface that, if the operation is successfully completed, receives
the IVdsAsync interface to monitor and control this operation. Callers MUST release the interface
when they are done with it.

%5bMS-ERREF%5d.pdf#Section_1bc92ddfb79e413cbbaa99a5281a6c90

196 / 342

[MS-VDS] - v20170601
Virtual Disk Service (VDS) Protocol
Copyright © 2017 Microsoft Corporation
Release: June 1, 2017

Return Values: The method MUST return zero or a non-error HRESULT (as specified in [MS-ERREF])
to indicate success, or return an implementation-specific nonzero error code to indicate failure. For

the HRESULT values predefined by the Virtual Disk Service Remote Protocol, see section 2.2.3.

When the server receives this message, it MUST validate the following parameter:

 Verify that ppAsync is not NULL.

The server MUST perform the following:

 Create a new async object implementing the IVdsAsync interface with an output type of
VDS_ASYNCOUT_RECOVERPACK and set the pointer ppAsync references to the interface.

 Return an HRESULT indicating failure or success. Any errors encountered up through this point in
processing the operation are returned in this HRESULT.

The server MUST then perform the following in sequence. Errors generated in this sequence of steps

are returned in the pHrResult parameter to the IVdsAsync::Wait or IVdsAsyncQueryStatus methods.

 For all disks in the pack, attempt to bring the disk back to a healthy state. For all disks in the
invalid pack, attempt to bring the disk back to a healthy state and rejoin it to its proper pack.
Attempt to resync any mirrored volumes, and regenerate any RAID-5 volumes that are in the
online pack.

 Set the return code in the async object to an HRESULT indicating failure or success.

 If the task completed successfully, set the percentage completed value in the async object to 100.

 Set the signal state in the async object to TRUE.

 If changes are made to the pack as a result of the call to recover, then for each callback object
that is registered in the list of callback objects, call the callback object's
IVdsAdviseSink::OnNotify (section 3.3.4.3.1) method by using a
VDS_NOTIFICATION (section 2.2.1.3.9) structure that has the following attributes:

 objectType member is the value VDS_NTT_PACK.

 Pack member is a VDS_PACK_NOTIFICATION (section 2.2.1.3.2) structure that has the
following attributes:

 ulEvent is the value VDS_NF_PACK_MODIFY.

 packId is the VDS_OBJECT_ID (section 2.2.1.1.3) value of this pack object.

 If the method call results in RAID-5 or mirrored volumes being regenerated or resynchronized,
the server MUST send progress notifications to the client as follows.

For each callback object that is registered in the list of callback objects, call the callback object's

IVdsAdviseSink::OnNotify method by using a VDS_NOTIFICATION structure that has the
following attributes:

 objectType member is VDS_NTT_VOLUME.

 Volume member is a VDS_VOLUME_NOTIFICATION (section 2.2.1.3.4) structure that has the
following attributes:

 ulEvent is the value VDS_NF_VOLUME_REBUILDING_PROGRESS.

 volumeId is the VDS_OBJECT_ID value of this volume object being regenerated or
resynchronized.

%5bMS-ERREF%5d.pdf#Section_1bc92ddfb79e413cbbaa99a5281a6c90

197 / 342

[MS-VDS] - v20170601
Virtual Disk Service (VDS) Protocol
Copyright © 2017 Microsoft Corporation
Release: June 1, 2017

 plexId is the VDS_OBJECT_ID value of the plex object being regenerated or
resynchronized.

 ulPercentCompleted is a number between 0 and 100 indicating regeneration or
resynchronization progress.

The server MUST update the percentage completed value periodically during the preceding sequence.
How often the percentage completed is updated, and at what point in the sequence, is
implementation-specific.

3.4.5.2.20 IVdsPack2 Methods

3.4.5.2.20.1 IVdsPack2::CreateVolume2 (Opnum 3)

The CreateVolume2 method creates a volume in a disk pack with an optional alignment parameter.

 HRESULT CreateVolume2(
 [in] VDS_VOLUME_TYPE type,
 [in, size_is(lNumberOfDisks)] VDS_INPUT_DISK* pInputDiskArray,
 [in] long lNumberOfDisks,
 [in] unsigned long ulStripeSize,
 [in] unsigned long ulAlign,
 [out] IVdsAsync** ppAsync
);

type: A value from the VDS_VOLUME_TYPE enumeration that indicates the type of volume to create.

pInputDiskArray: An array of VDS_INPUT_DISK structures that indicate the disks on which to
create the volume.<86>

lNumberOfDisks: The number of elements in pInputDiskArray.

ulStripeSize: The stripe size, in bytes, of the new volume.<87>

ulAlign: The number of bytes for the volume alignment. If zero is specified, the server determines the
alignment value based on the size of the disk on which the volume is created.<88>

ppAsync: A pointer to an IVdsAsync interface that, if the operation is successfully completed, receives
the IVdsAsync interface to monitor and control this operation. Callers MUST release the interface
when they are done with it. If the IVdsAsync::Wait (Opnum 4) method is called on the interface,
the interfaces returned in the VDS_ASYNC_OUTPUT structure MUST be released as well. For more

information on handling asynchronous tasks, see section 3.4.5.1.9.

Return Values: The method MUST return zero or a non-error HRESULT (as specified in [MS-ERREF])
to indicate success, or return an implementation-specific nonzero error code to indicate failure. For
the HRESULT values predefined by the Virtual Disk Service Remote Protocol, see section 2.2.3.

IVdsPack2::CreateVolume2 has the same sequencing rules as IVdsPack::CreateVolume (Opnum 7), as
specified in section 3.4.5.2.19.5.

3.4.5.2.21 IVdsDisk Methods

3.4.5.2.21.1 IVdsDisk::GetProperties (Opnum 3)

The GetProperties method retrieves the properties of the disk that the object exposing this interface
and method represents.

 HRESULT GetProperties(
 [out] VDS_DISK_PROP* pDiskProperties

%5bMS-ERREF%5d.pdf#Section_1bc92ddfb79e413cbbaa99a5281a6c90

198 / 342

[MS-VDS] - v20170601
Virtual Disk Service (VDS) Protocol
Copyright © 2017 Microsoft Corporation
Release: June 1, 2017

);

pDiskProperties: A pointer to a VDS_DISK_PROP structure that, if the operation is successfully
completed, receives the properties of the disk.

Return Values: The method MUST return zero or a non-error HRESULT (as specified in [MS-ERREF])
to indicate success, or return an implementation-specific nonzero error code to indicate failure. For
the HRESULT values predefined by the Virtual Disk Service Remote Protocol, see section 2.2.3.

When the server receives this message, it MUST validate the following parameter:

 Verify that pDiskProperties is not NULL.

The server MUST populate the VDS_DISK_PROP structure that pDiskProperties references with the
properties of the disk; it MUST then return an HRESULT indicating failure or success. For information
on VDS_DISK_PROP, see section 2.2.2.9.1.1.

3.4.5.2.21.2 IVdsDisk::GetPack (Opnum 4)

The GetPack method retrieves the disk pack that the disk belongs to.

 HRESULT GetPack(
 [out] IVdsPack** ppPack
);

ppPack: A pointer to an IVdsPack interface that, if the operation is successfully completed, receives
the IVdsPack interface of the pack object that the disk belongs to. Callers MUST release the
interface when they are done with it.

Return Values: The method MUST return zero or a non-error HRESULT (as specified in [MS-ERREF])

to indicate success, or return an implementation-specific nonzero error code to indicate failure. For
the HRESULT values predefined by the Virtual Disk Service Remote Protocol, see section 2.2.3.

When the server receives this message, it MUST validate the following parameter:

 Verify that ppPack is not NULL.

The server MUST point ppPack to an IVdsPack interface of the pack object that the disk object's pack
pointer refers to, and then return an HRESULT indicating failure or success.

If the disk has no partition format (it is not formatted as either MBR or GPT), then there is no
associated pack and this method MUST return VDS_E_DISK_NOT_INITIALIZED.

3.4.5.2.21.3 IVdsDisk::GetIdentificationData (Opnum 5)

The GetIdentificationData method retrieves information that uniquely identifies a disk.

 HRESULT GetIdentificationData(
 [out] VDS_LUN_INFORMATION* pLunInfo
);

pLunInfo: A pointer to a VDS_LUN_INFORMATION structure that, if the operation is successfully
completed, receives the LUN information for the disk.

Return Values: The method MUST return zero or a non-error HRESULT (as specified in [MS-ERREF])
to indicate success, or return an implementation-specific nonzero error code to indicate failure. For
the HRESULT values predefined by the Virtual Disk Service Remote Protocol, see section 2.2.3.

%5bMS-ERREF%5d.pdf#Section_1bc92ddfb79e413cbbaa99a5281a6c90
%5bMS-ERREF%5d.pdf#Section_1bc92ddfb79e413cbbaa99a5281a6c90
%5bMS-ERREF%5d.pdf#Section_1bc92ddfb79e413cbbaa99a5281a6c90

199 / 342

[MS-VDS] - v20170601
Virtual Disk Service (VDS) Protocol
Copyright © 2017 Microsoft Corporation
Release: June 1, 2017

When the server receives this message, it MUST validate the following parameter:

 Verify that pLunInfo is not NULL.

The server MUST populate the VDS_LUN_INFORMATION structure that pLunInfo references with the
LUN information that uniquely identifies the disk; it MUST then return an HRESULT indicating failure or

success. For information on VDS_LUN_INFORMATION, see section 2.2.1.3.16.

3.4.5.2.21.4 IVdsDisk::QueryExtents (Opnum 6)

The QueryExtents method enumerates a disk's extents.

 HRESULT QueryExtents(
 [out, size_is(,*plNumberOfExtents)]
 VDS_DISK_EXTENT** ppExtentArray,
 [out] long* plNumberOfExtents
);

ppExtentArray: A pointer to an array of VDS_DISK_EXTENT structures that, if the operation is
successfully completed, receives the array of disk extent properties.

plNumberOfExtents: A pointer to a variable that, if the operation is successfully completed, receives
the total number of elements in ppExtentArray.

Return Values: The method MUST return zero or a non-error HRESULT (as specified in [MS-ERREF])

to indicate success, or return an implementation-specific nonzero error code to indicate failure. For
the HRESULT values predefined by the Virtual Disk Service Remote Protocol, see section 2.2.3.

Note Free extents are not returned for CD/DVD or super floppy devices.

When the server receives this message, it MUST validate the following parameters:

 Verify that ppExtentArray is not NULL.

 Verify that plNumberOfExtents is not NULL.

The server MUST point ppExtentArray to an array of VDS_DISK_EXTENT structures containing

information about each disk extent on the disk, point plNumberOfExtents to the number of
elements in the array, and return an HRESULT indicating failure or success.

For removable media drives, the server MUST set the value of volumeId and plexId in the
VDS_DISK_EXTENT structure to the VDS_OBJECT_ID of the volume and volume plex object
associated with the drive.

For removable media drives with no media, the server MUST return a single extent of type
VDS_DET_UNKNOWN with the values of ullOffset and ullSize set to 0.

3.4.5.2.21.5 IVdsDisk::ConvertStyle (Opnum 7)

The ConvertStyle method converts a disk's partitioning format.

 HRESULT ConvertStyle(
 [in] VDS_PARTITION_STYLE NewStyle
);

NewStyle: A value from the VDS_PARTITION_STYLE enumeration that indicates the new partitioning
format.

%5bMS-ERREF%5d.pdf#Section_1bc92ddfb79e413cbbaa99a5281a6c90

200 / 342

[MS-VDS] - v20170601
Virtual Disk Service (VDS) Protocol
Copyright © 2017 Microsoft Corporation
Release: June 1, 2017

Return Values: The method MUST return zero or a non-error HRESULT (as specified in [MS-ERREF])
to indicate success, or return an implementation-specific nonzero error code to indicate failure. For

the HRESULT values predefined by the Virtual Disk Service Remote Protocol, see section 2.2.3.

Note This method is not valid for CD/DVD or super floppy devices.

When the server receives this message, it MUST convert the disk's partitioning format to the style
NewStyle specifies and then return an HRESULT indicating failure or success.

A dynamic disk cannot be converted between GPT and MBR partitioning styles. The dynamic disk
MUST be converted to a basic disk, at which point it can be converted between partitioning styles.
Clients cannot change the partitioning style on a disk with volumes. Clients cannot change the
partitioning style on a disk that contains the system, boot, pagefile, crashdump, or hibernation
volumes.

If this method is called against a disk which contains volume or partition extents, then this method
MUST return VDS_E_DISK_NOT_EMPTY.<89>

3.4.5.2.21.6 IVdsDisk::SetFlags (Opnum 8)

The SetFlags method sets the read-only flag of a disk.<90>

 HRESULT SetFlags(
 [in] unsigned long ulFlags

);

ulFlags: MUST be set to VDS_DF_READ_ONLY.

Return Values: The method MUST return zero or a non-error HRESULT (as specified in [MS-ERREF])
to indicate success, or return an implementation-specific nonzero error code to indicate failure. For
the HRESULT values predefined by the Virtual Disk Service Remote Protocol, see section 2.2.3.

Note This method cannot be used against CD/DVD or super floppy devices.

This method MUST return an HRESULT failure for OS boot disk, system disk, pagefile disk, hibernation
file disk and crash dump disk.

When the server receives this message, it MUST validate the following parameter:

 Verify that the ulFlags parameter is VDS_DF_READ_ONLY.

The server MUST perform the following in sequence:

 Set the read-only attribute of the disk.

 For each callback object that is registered in the list of callback objects, call the callback object's
IVdsAdviseSink::OnNotify (Opnum 3) method by using a VDS_NOTIFICATION structure that has

the following attributes:

 objectType member is VDS_NTT_DISK.

 Disk member is a VDS_DISK_NOTIFICATION that has the following attributes:

 ulEvent is VDS_NF_DISK_MODIFY.

 diskId is the VDS_OBJECT_ID of this disk object.

 Return an HRESULT indicating failure or success.

%5bMS-ERREF%5d.pdf#Section_1bc92ddfb79e413cbbaa99a5281a6c90
%5bMS-ERREF%5d.pdf#Section_1bc92ddfb79e413cbbaa99a5281a6c90

201 / 342

[MS-VDS] - v20170601
Virtual Disk Service (VDS) Protocol
Copyright © 2017 Microsoft Corporation
Release: June 1, 2017

3.4.5.2.21.7 IVdsDisk::ClearFlags (Opnum 9)

The ClearFlags method clears the read-only flag of a disk.<91>

 HRESULT ClearFlags(
 [in] unsigned long ulFlags
);

ulFlags: MUST be set to VDS_DF_READ_ONLY.

Return Values: The method MUST return zero or a non-error HRESULT (as specified in [MS-ERREF])
to indicate success, or return an implementation-specific nonzero error code to indicate failure. For
the HRESULT values predefined by the Virtual Disk Service Remote Protocol, see section 2.2.3.

Note This method is not valid for CD/DVD or super floppy devices.

This method MUST return an HRESULT failure for OS boot disk, system disk, pagefile disk, hibernation
file disk, and crash dump disk.

When the server receives this message, it MUST validate the following parameter:

 Verify that the ulFlags parameter is VDS_DF_READ_ONLY.

The server MUST perform the following in sequence:

 Clear the read-only attribute of the disk.

 For each callback object that is registered in the list of callback objects, call the callback object's
IVdsAdviseSink::OnNotify (Opnum 3) method by using a VDS_NOTIFICATION structure that has
the following attributes:

 objectType member is VDS_NTT_DISK.

 Disk member is a VDS_DISK_NOTIFICATION that has the following attributes:

 ulEvent is VDS_NF_DISK_MODIFY.

 diskId is the VDS_OBJECT_ID of this disk object.

 Return an HRESULT indicating failure or success.

3.4.5.2.22 IVdsDisk2 Methods

3.4.5.2.22.1 IVdsDisk2::SetSANMode (Opnum 3)

The SetSANMode method sets the SAN mode of a disk to either offline or online. A disk that is

offline exposes no volume devices for partitions or volumes with extents on that disk. A disk can be
REAONLY or READWRITE independent of the offline or online setting.

 HRESULT SetSANMode(
 [in] long bEnable
);

bEnable: A Boolean value that indicates whether to set the disk to either online or offline.

Return Values: The method MUST return zero or a non-error HRESULT (as specified in [MS-ERREF])
to indicate success, or return an implementation-specific nonzero error code to indicate failure. For
the HRESULT values predefined by the Virtual Disk Service Remote Protocol, see section 2.2.3.

%5bMS-ERREF%5d.pdf#Section_1bc92ddfb79e413cbbaa99a5281a6c90
%5bMS-ERREF%5d.pdf#Section_1bc92ddfb79e413cbbaa99a5281a6c90

202 / 342

[MS-VDS] - v20170601
Virtual Disk Service (VDS) Protocol
Copyright © 2017 Microsoft Corporation
Release: June 1, 2017

ERROR_SUCCESS (0x00000000)

When the server receives this message, it MUST set the SAN mode of the disk to offline or online, as

specified by bEnable, and then return an HRESULT indicating failure or success.<92><93>

3.4.5.2.23 IVdsDisk3 Methods

3.4.5.2.23.1 IVdsDisk3::GetProperties2 (Opnum 3)

The GetProperties2 method retrieves the properties of the disk that the object exposing this interface
and method represents.

 HRESULT GetProperties2(
 [out] VDS_DISK_PROP2* pDiskProperties
);

pDiskProperties: A pointer to a VDS_DISK_PROP2 (section 2.2.2.10.2.1) structure that, if the

operation is successfully completed, receives the properties of the disk.

Return Values: The method MUST return zero or a non-error HRESULT (as specified in [MS-ERREF])
to indicate success, or return an implementation-specific nonzero error code to indicate failure. For
the HRESULT values predefined by the Virtual Disk Service Remote Protocol, see section 2.2.3.

When the server receives this message, it MUST validate the following parameter:

 Verify that pDiskProperties is not NULL.

The server MUST populate the VDS_DISK_PROP2 structure that pDiskProperties references with the
properties of the disk and return an HRESULT that indicates failure or success.

3.4.5.2.23.2 IVdsDisk3::QueryFreeExtents (Opnum 6)

The QueryFreeExtents method enumerates a disk's free extents.Returns all free extents on the disk

and aligns them to the alignment value supplied in the ulAlign parameter. If there is no alignment
value supplied, QueryFreeExtents aligns the free extents based on the default alignment values.

 HRESULT QueryFreeExtents(
 [in] ULONG ulAlign,
 [out, size_is(,*plNumberOfFreeExtents)]
 VDS_DISK_FREE_EXTENT **ppFreeExtentArray,
 [out] LONG *plNumberOfFreeExtents
);

ulAlign: The alignment value. If ulAlign is 0, the default alignment value is used.

ppFreeExtentArray: Pointer to an array of VDS_DISK_FREE_EXTENT structures that, if the operation
is successful, receives the array of disk extent structures.

plNumberOfFreeExtents: Pointer to a variable that, if the operation is successfully completed,
receives the total number of elements in ppFreeExtentArray.

Return Values: QueryFreeExtents MUST return zero to indicate success, or an implementation-
specific, nonzero error code to indicate failure.

Free extents are not returned for CD/DVD, or super floppy devices.

If the disk has no partition format (it is not formatted as either MBR or GPT), then this method MUST
return VDS_E_DISK_NOT_INITIALIZED.

%5bMS-ERREF%5d.pdf#Section_1bc92ddfb79e413cbbaa99a5281a6c90

203 / 342

[MS-VDS] - v20170601
Virtual Disk Service (VDS) Protocol
Copyright © 2017 Microsoft Corporation
Release: June 1, 2017

When the server receives this message, it MUST validate the following parameters:

 Verify that the ppFreeExtentArray parameter is not NULL.

 Verify that the plNumberOfFreeExtents parameter is not NULL.

The server MUST point ppFreeExtentArray to an array of VDS_DISK_FREE_EXTENT structures that

contain information about each disk extent on the disk, point plNumberOfFreeExtents to the number
of elements in the array, and return an HRESULT indicating failure or success.

3.4.5.2.24 IVdsAdvancedDisk Methods

3.4.5.2.24.1 IVdsAdvancedDisk::GetPartitionProperties (Opnum 3)

The GetPartitionProperties method retrieves the properties of a partition on the disk at a specified

byte offset.

 HRESULT GetPartitionProperties(
 [in] ULONGLONG ullOffset,
 [out] VDS_PARTITION_PROP* pPartitionProp
);

ullOffset: The byte offset of the partition, from the beginning of the disk. This offset MUST be the
offset of a start of a partition.

pPartitionProp: A pointer to a VDS_PARTITION_PROP structure that, if the operation is successfully
completed, receives the properties of the partition.

Return Values: The method MUST return zero or a non-error HRESULT (as specified in [MS-ERREF])

to indicate success, or return an implementation-specific nonzero error code to indicate failure. For
the HRESULT values predefined by the Virtual Disk Service Remote Protocol, see section 2.2.3.

Note This method is not valid for CD/DVD or super floppy devices.

When the server receives this message, it MUST validate the following parameter:

 Verify that pPartitionProp is not NULL.

The server MUST populate the VDS_PARTITION_PROP structure that pPartitionProp references with
the properties of the partition at the byte offset from the beginning of the disk that ullOffset

specifies. The server MUST then return an HRESULT indicating failure or success. For information on
VDS_PARTITION_PROP, see section 2.2.1.3.20.

3.4.5.2.24.2 IVdsAdvancedDisk::QueryPartitions (Opnum 4)

The QueryPartitions method enumerates a disk's partitions.

 HRESULT QueryPartitions(
 [out, size_is(,*plNumberOfPartitions)]
 VDS_PARTITION_PROP** ppPartitionPropArray,
 [out] long* plNumberOfPartitions
);

ppPartitionPropArray: A pointer to an array of VDS_PARTITION_PROP structures that, if the
operation is successfully completed, receives the array of partition properties.

plNumberOfPartitions: A pointer to a variable that, if the operation is successfully completed,
receives the total number of elements in ppPartitionPropArray.

%5bMS-ERREF%5d.pdf#Section_1bc92ddfb79e413cbbaa99a5281a6c90

204 / 342

[MS-VDS] - v20170601
Virtual Disk Service (VDS) Protocol
Copyright © 2017 Microsoft Corporation
Release: June 1, 2017

Return Values: The method MUST return zero or a non-error HRESULT (as specified in [MS-ERREF])
to indicate success, or return an implementation-specific nonzero error code to indicate failure. For

the HRESULT values predefined by the Virtual Disk Service Remote Protocol, see section 2.2.3.

Note This method is not valid for CD/DVD or super floppy devices. These devices do not support

partition tables.

When the server receives this message, it MUST validate the following parameters:

 Verify that ppPartitionPropArray is not NULL.

 Verify that plNumberOfPartitions is not NULL.

The server MUST point ppPartitionPropArray to an array of VDS_PARTITION_PROP structures that
contains information about each partition on the disk, point plNumberOfPartitions to the number of
elements in the array, and then return an HRESULT indicating failure or success.

If the disk has no partition format (it is not formatted as either MBR or GPT), then there are no
partitions and this method MUST return VDS_E_DISK_NOT_INITIALIZED.

3.4.5.2.24.3 IVdsAdvancedDisk::CreatePartition (Opnum 5)

 The CreatePartition method creates a partition on a disk at a specified byte offset.

 HRESULT CreatePartition(
 [in] ULONGLONG ullOffset,
 [in] ULONGLONG ullSize,
 [in] CREATE_PARTITION_PARAMETERS* para,
 [out] IVdsAsync** ppAsync
);

ullOffset: MUST be the byte offset from the beginning of the disk at which to create the new
partition.

The partition is created at or beyond the ullOffset such that the offset is divisible by the default
alignment value of the disk. The offset value returned in the server's partition notification, after
CreatePartition is successful, reflects the rounded-up value.

ullSize: MUST be the size of the new partition, in bytes.

para: MUST be a pointer to a CREATE_PARTITION_PARAMETERS structure that describes the new

partition to create.

ppAsync: MUST be a pointer to an IVdsAsync interface that, upon successful completion, receives the
IVdsAsync interface to monitor and control this operation. Callers MUST release the interface
received when they are done with it. If the IVdsAsync::Wait method is called on the interface, the
interfaces returned in the VDS_ASYNC_OUTPUT structure MUST be released as well.

Return Values: The method MUST return zero or a non-error HRESULT (as specified in [MS-ERREF])
to indicate success, or return an implementation-specific nonzero error code to indicate failure. For

the HRESULT values predefined by the Virtual Disk Service Remote Protocol, see section
2.2.3.<94>

Note Creating or deleting partitions on dynamic disks is not supported.

Note This method is not valid on CD/DVD or super floppy devices. These devices do not support
partition tables.

When the server receives this message, it MUST validate the following parameters:

%5bMS-ERREF%5d.pdf#Section_1bc92ddfb79e413cbbaa99a5281a6c90
%5bMS-ERREF%5d.pdf#Section_1bc92ddfb79e413cbbaa99a5281a6c90

205 / 342

[MS-VDS] - v20170601
Virtual Disk Service (VDS) Protocol
Copyright © 2017 Microsoft Corporation
Release: June 1, 2017

 Verify that para is not NULL.

 Verify that ppAsync is not NULL.

The server MUST perform the following:

 If the partition cannot be created because there is not enough free space on the specified disk,

then the server MUST return VDS_E_NOT_ENOUGH_SPACE.

 Create a new async object implementing the IVdsAsync interface with an output type of
VDS_ASYNCOUT_CREATEPARTITION and set the pointer that ppAsync references to the interface.

 Return an HRESULT indicating failure or success. Any errors encountered up through this point in
processing the operation are returned in this HRESULT.

The server MUST then perform the following in sequence. Errors generated in this sequence of steps
are returned in the pHrResult parameter to the IVdsAsync::Wait or IVdsAsyncQueryStatus methods.

 Create a new partition following the parameters specified to the method.

 If the partition creation resulted in the renumbering of existing partitions on a boot disk, the
server MUST update the boot configuration file with the new partition numbering.

 Set the task-specific return values in the async object to return the values associated with
VDS_ASYNCOUT_CREATEPARTITION. For information on asynchronous tasks, see section
3.4.5.1.9.

 Set the return code in the async object to an HRESULT indicating failure or success.

 If the server was required to update the boot configuration file but failed, the return code
MUST be set to VDS_S_UPDATE_BOOTFILE_FAILED (HRESULT of 0x80042434).

 If the task was completed successfully, set the percentage completed value in the async object to
100.

 Set the signal state in the async object to TRUE.

 For each callback object that is registered in the list of callback objects, call the callback object's

IVdsAdviseSink::OnNotify (Opnum 3) method by using a VDS_NOTIFICATION structure that has
the following attributes:

 objectType member is VDS_NTT_PARTITION.

 Partition member is a VDS_PARTITION_NOTIFICATION that has the following attributes:

 ulEvent is VDS_NF_PARTITION_ARRIVE.

 diskId is the VDS_OBJECT_ID of the disk object that corresponds to the disk on which the
partition was added.

 ullOffset is the byte offset at which the partition starts on the disk.

 If the partition is created on a removable media disk, for each callback object that is registered
in the list of callback objects, call the callback object's IVdsAdviseSink::OnNotify (Opnum 3)
method by using a VDS_NOTIFICATION structure that has the following attributes:

 objectType member is VDS_NTT_VOLUME.

 Volume member is a VDS_VOLUME_NOTIFICATION that has the following attributes:

 ulEvent is VDS_NF_VOLUME_ARRIVE.

206 / 342

[MS-VDS] - v20170601
Virtual Disk Service (VDS) Protocol
Copyright © 2017 Microsoft Corporation
Release: June 1, 2017

 volumeId is the VDS_OBJECT_ID of the volume object corresponding to the removable
media drive.

 plexId is NULL GUID, but it is not relevant when ulEvent is VDS_NF_VOLUME_ARRIVE.

 ulPercentCompleted ranges from 0-100; however, it is not relevant when ulEvent is

VDS_NF_VOLUME_ARRIVE.

 For each callback object that is registered in the list of callback objects, call the callback object's
IVdsAdviseSink::OnNotify (Opnum 3) method by using a VDS_NOTIFICATION structure that has
the following attributes:

 objectType member is VDS_NTT_DISK.

 Disk member is a VDS_DISK_NOTIFICATION that has the following attributes:

 ulEvent is VDS_NF_DISK_MODIFY.

 diskId is the VDS_OBJECT_ID of this disk object.

The server MUST update the percentage completed value periodically during the preceding sequence.
How often the percentage completed is updated, and at what point in the sequence, is
implementation-specific.

3.4.5.2.24.4 IVdsAdvancedDisk::DeletePartition (Opnum 6)

The DeletePartition method deletes a partition from the disk at a specified byte offset.

 HRESULT DeletePartition(
 [in] ULONGLONG ullOffset,
 [in] long bForce,
 [in] long bForceProtected
);

ullOffset: The byte offset of the partition, from the beginning of the disk. This offset MUST be the
offset at the start of a partition.

bForce: A Boolean that determines whether the partition deletion is forced. If this parameter is set to
a nonzero value, calls to lock and dismount any file system on the partition that fail are ignored. If
this parameter is set to zero and any file systems on the partition failed to be locked or
dismounted, the server returns VDS_E_DEVICE_IN_USE.

bForceProtected: A Boolean value that determines whether deletion of a protected partition will be
forced.<95>

Return Values: The method MUST return zero or a non-error HRESULT (as specified in [MS-ERREF])

to indicate success, or return an implementation-specific nonzero error code to indicate failure. For
the HRESULT values predefined by the Virtual Disk Service Remote Protocol, see section 2.2.3.

Note Creating or deleting partitions on dynamic disks is not supported.

Note This method is not valid for CD/DVD or super floppy devices. These devices do not support
partition tables.

ERROR_SUCCESS (0x00000000)

When the server receives this message, it MUST perform the following:

%5bMS-ERREF%5d.pdf#Section_1bc92ddfb79e413cbbaa99a5281a6c90

207 / 342

[MS-VDS] - v20170601
Virtual Disk Service (VDS) Protocol
Copyright © 2017 Microsoft Corporation
Release: June 1, 2017

 Attempt to get exclusive access to the partition. If the server fails to get exclusive access to the
partition, and the bForce parameter is not set to a non-zero value, then the server MUST return

VDS_E_DEVICE_IN_USE.

 Delete the partition following the parameters specified to the method.

 If deleting the partition removed a volume, remove the corresponding volume object from the list
of storage management objects. For each callback object that is registered in the list of callback
objects, call the callback object's IVdsAdviseSink::OnNotify method by using a
VDS_NOTIFICATION structure that has the following attributes:

 objectType member is VDS_NTT_VOLUME.

 Volume member is a VDS_VOLUME_NOTIFICATION that has the following attributes:

 ulEvent is VDS_NF_VOLUME_DEPART.

 volumeId is the VDS_OBJECT_ID of the volume object that was removed.

 plexId is NULL GUID, but it is not relevant when ulEvent is VDS_NF_VOLUME_DEPART.

 ulPercentCompleted range is 0-100 and is implementation specific; however, it is not
relevant when ulEvent is VDS_NF_VOLUME_DEPART.

 For each callback object that is registered in the list of callback objects, call the callback object's
IVdsAdviseSink::OnNotify method by using a VDS_NOTIFICATION structure that has the following

attributes:

 objectType member is VDS_NTT_PARTITION.

 Partition member is a VDS_PARTITION_NOTIFICATION that has the following attributes:

 ulEvent is VDS_NF_PARTITION_DEPART.

 diskId is the VDS_OBJECT_ID of the disk object corresponding to the disk from which the

partition was deleted.

 ullOffset is the byte offset at which the partition started on the disk.

 For each callback object that is registered in the list of callback objects, call the callback object's
IVdsAdviseSink::OnNotify method by using a VDS_NOTIFICATION structure that has the following
attributes:

 objectType member is VDS_NTT_DISK.

 Disk member is a VDS_DISK_NOTIFICATION that has the following attributes:

 ulEvent is VDS_NF_DISK_MODIFY.

 diskId is the VDS_OBJECT_ID of this disk object.

 Return an HRESULT indicating failure or success.

3.4.5.2.24.5 IVdsAdvancedDisk::ChangeAttributes (Opnum 7)

The ChangeAttributes method changes the attributes of the partition at byte offset ullOffset on the
disk.

 HRESULT ChangeAttributes(
 [in] ULONGLONG ullOffset,
 [in] CHANGE_ATTRIBUTES_PARAMETERS* para

208 / 342

[MS-VDS] - v20170601
Virtual Disk Service (VDS) Protocol
Copyright © 2017 Microsoft Corporation
Release: June 1, 2017

);

ullOffset: The byte offset of the partition, from the beginning of the disk. This offset MUST be the
offset of the start of a partition.

para: A pointer to a CHANGE_ATTRIBUTES_PARAMETERS structure that describes the attributes to
change.

Return Values: The method MUST return zero or a non-error HRESULT (as specified in [MS-ERREF])
to indicate success, or return an implementation-specific nonzero error code to indicate failure. For
the HRESULT values predefined by the Virtual Disk Service Remote Protocol, see section 2.2.3.

Note This method is not valid on CD/DVD or super floppy devices. These devices do not support
partition tables.

When the server receives this message, it MUST validate the following parameters:

 Verify that para is not NULL.

 Verify that the partition format in input parameter para matches the current partition format of
the disk.

The server MUST perform the following:

 Change the attributes of the partition following the parameters specified to the method. If the disk
partitioning format is MBR, the only value that can be changed is the bootIndicator. If the disk
partitioning format is GPT, the only value that can be changed is the GPT attributes. The disk
partitioning format cannot be changed using this method. For information on changing partition
attributes, see section 2.2.2.11.1.1.

 If attributes on the partition were successfully changed, for each callback object that is registered

in the list of callback objects, call the callback object's IVdsAdviseSink::OnNotify (Opnum 3)
method by using a VDS_NOTIFICATION structure that has the following attributes:

 objectType member is VDS_NTT_PARTITION.

 Partition member is a VDS_PARTITION_NOTIFICATION that has the following attributes:

 ulEvent is VDS_NF_PARTITION_MODIFY.

 diskId is the VDS_OBJECT_ID of the disk object corresponding to the disk on which the
partition attribute was modified.

 ullOffset is the byte offset where the partition started on the disk.<96>

 If attributes on the partition were successfully changed, and a volume exists on the partition, for
each callback object registered in the list of callback objects, call the callback object's
IVdsAdviseSink::OnNotify (Opnum 3) method by using a VDS_NOTIFICATION structure that has
the following attributes:

 objectType member is VDS_NTT_VOLUME.

 Volume member is a VDS_VOLUME_NOTIFICATION that has the following attributes:

 ulEvent is VDS_NF_VOLUME_MODIFY.

 volumeId is the VDS_OBJECT_ID of this volume object.

 plexId is NULL GUID, but it is not relevant when ulEvent is VDS_NF_VOLUME_MODIFY.

%5bMS-ERREF%5d.pdf#Section_1bc92ddfb79e413cbbaa99a5281a6c90

209 / 342

[MS-VDS] - v20170601
Virtual Disk Service (VDS) Protocol
Copyright © 2017 Microsoft Corporation
Release: June 1, 2017

 ulPercentCompleted range is 0-100 and is implementation specific; however, it is not
relevant when ulEvent is VDS_NF_VOLUME_MODIFY.

 Return an HRESULT indicating failure or success.

3.4.5.2.24.6 IVdsAdvancedDisk::AssignDriveLetter (Opnum 8)

The AssignDriveLetter method assigns a drive letter to an existing OEM, ESP, or unknown partition.

 HRESULT AssignDriveLetter(
 [in] ULONGLONG ullOffset,
 [in] WCHAR wcLetter
);

ullOffset: The byte offset of the partition, from the beginning of the disk. This offset MUST be the
offset of a start of a partition.

wcLetter: The drive letter to assign, as a single uppercase or lowercase alphabetical (A-Z) Unicode
character.

Return Values: The method MUST return zero or a non-error HRESULT (as specified in [MS-ERREF])
to indicate success, or return an implementation-specific nonzero error code to indicate failure. For
the HRESULT values predefined by the Virtual Disk Service Remote Protocol, see section 2.2.3.

When the server receives this message, it MUST validate the following parameters:

 Verify that the partition at the byte offset specified by ullOffset does not have a volume existing
on it.

 Verify that the drive letter specified by wcLetter is not already used.

The server MUST assign the drive letter to the partition and return an HRESULT indicating failure or
success.

3.4.5.2.24.7 IVdsAdvancedDisk::DeleteDriveLetter (Opnum 9)

The DeleteDriveLetter method deletes a drive letter that is assigned to an OEM, ESP, or unknown
partition.

 HRESULT DeleteDriveLetter(
 [in] ULONGLONG ullOffset,
 [in] WCHAR wcLetter
);

ullOffset: The byte offset of the partition from the beginning of the disk. This offset MUST be the
offset of a start of a partition.

wcLetter: The drive letter to delete as a single uppercase or lowercase alphabetical (A-Z) Unicode
character.

Return Values: The method MUST return zero or a non-error HRESULT (as specified in [MS-ERREF])
to indicate success, or return an implementation-specific nonzero error code to indicate failure. For
the HRESULT values predefined by the Virtual Disk Service Remote Protocol, see section 2.2.3.

When the server receives this message, it MUST validate the following parameters:

 Verify that the partition at the byte offset that is specified by ullOffset does not have a volume
existing on it.

%5bMS-ERREF%5d.pdf#Section_1bc92ddfb79e413cbbaa99a5281a6c90
%5bMS-ERREF%5d.pdf#Section_1bc92ddfb79e413cbbaa99a5281a6c90

210 / 342

[MS-VDS] - v20170601
Virtual Disk Service (VDS) Protocol
Copyright © 2017 Microsoft Corporation
Release: June 1, 2017

 Verify that the partition is using the drive letter specified by wcLetter.

The server MUST delete the drive letter from the partition and return an HRESULT indicating failure or

success.

3.4.5.2.24.8 IVdsAdvancedDisk::GetDriveLetter (Opnum 10)

The GetDriveLetter method retrieves the drive letter of an OEM, ESP, or unknown partition on the
disk at a specified byte offset.

 HRESULT GetDriveLetter(
 [in] ULONGLONG ullOffset,
 [out] WCHAR* pwcLetter
);

ullOffset: The byte offset of the partition, from the beginning of the disk. This offset MUST be the
offset of a start of a partition.

pwcLetter: A pointer to a Unicode character that will receive an uppercase or lowercase alphabetical

(A-Z) drive letter for the partition at byte offset ullOffset.

Return Values: The method MUST return zero or a non-error HRESULT (as specified in [MS-ERREF])
to indicate success, or return an implementation-specific nonzero error code to indicate failure. For
the HRESULT values predefined by the Virtual Disk Service Remote Protocol, see section 2.2.3.

ERROR_SUCCESS (0x00000000)

When the server receives this message, it MUST validate the following parameters:

 Verify that the partition at the byte offset that is specified by ullOffset does not have a volume

existing on it.

 Verify that the partition has a drive letter.

 Verify that the partition is an OEM, ESP, or unknown partition.

 Verify that pwcLetter is not NULL.

The server MUST set a value referenced by pwcLetter with the drive letter of the partition and return
an HRESULT indicating failure or success.

3.4.5.2.24.9 IVdsAdvancedDisk::FormatPartition (Opnum 11)

The FormatPartition method formats an existing OEM, ESP, or unknown partition.

 HRESULT FormatPartition(
 [in] ULONGLONG ullOffset,
 [in] VDS_FILE_SYSTEM_TYPE type,
 [in, string] WCHAR* pwszLabel,
 [in] DWORD dwUnitAllocationSize,
 [in] long bForce,
 [in] long bQuickFormat,
 [in] long bEnableCompression,
 [out] IVdsAsync** ppAsync
);

ullOffset: The byte offset of the partition, from the beginning of the disk. This offset MUST be the
offset of a start of a partition.

%5bMS-ERREF%5d.pdf#Section_1bc92ddfb79e413cbbaa99a5281a6c90

211 / 342

[MS-VDS] - v20170601
Virtual Disk Service (VDS) Protocol
Copyright © 2017 Microsoft Corporation
Release: June 1, 2017

type: A file system type that is enumerated by VDS_FILE_SYSTEM_TYPE. Clients that want to format
by using file systems that are not enumerated by VDS_FILE_SYSTEM_TYPE (section 2.2.1.2.9)

can use the IVdsDiskPartitionMF::FormatPartionEx (section 3.4.5.2.29.4) or
IVdsDiskPartitionMF2::FormatPartitionEx2 methods.

pwszLabel: A null-terminated Unicode string representing the partition label. The maximum label size
is file system-dependent.

dwUnitAllocationSize: The size, in bytes, of the allocation unit for the file system. The value MUST
be a power of 2. Allocation unit range is file system-dependent.

bForce: A Boolean that determines whether the format is forced, regardless of whether the partition
is in use.

bQuickFormat: A Boolean that determines whether a file system is quick formatted. A quick format

does not verify each sector on the volume.

bEnableCompression: A Boolean that determines whether a file system is created with compression
enabled.<97>

ppAsync: A pointer to an IVdsAsync interface that, if the operation is successfully completed, receives
the IVdsAsync interface to monitor and control this operation. Callers MUST release the interface
when they are done with it.

Return Values: The method MUST return zero or a non-error HRESULT (as specified in [MS-ERREF])
to indicate success, or return an implementation-specific nonzero error code to indicate failure. For
the HRESULT values predefined by the Virtual Disk Service Remote Protocol, see section 2.2.3.

Note This method is not valid on CD/DVD or super floppy devices. These devices do not support
partition tables.

ERROR_SUCCESS (0x00000000)

When the server receives this message, it MUST validate the following parameter:

 Verify that ppAsync is not NULL.

The server MUST perform the following:

 Create a new async object implementing the IVdsAsync interface by using an output type of
VDS_ASYNCOUT_FORMAT and set the pointer that ppAsync references to the interface.

 Return an HRESULT indicating failure or success. Any errors encountered up through this point in
processing the FormatPartition operation are returned in this HRESULT.

The server MUST perform the following. Errors generated in this sequence of steps are returned in the

pHrResult parameter to the IVdsAsync::Wait or IVdsAsyncQueryStatus methods.

 If the operating system is unable to format the device with the file system type specified using the
type parameter, then this method MUST return VDS_E_INCOMPATIBLE_FILE_SYSTEM.

 If the target device\media is write-protected, then this method MUST return
VDS_E_MEDIA_WRITE_PROTECTED.

 If the pwszLabel parameter is incompatible with the file system type specified using the type

parameter, then the server MUST return VDS_E_BAD_LABEL.

 If the specified file system type has a minimum volume size requirement, and that requirement is
not met, then the server MUST return VDS_E_VOLUME_TOO_SMALL.

%5bMS-ERREF%5d.pdf#Section_1bc92ddfb79e413cbbaa99a5281a6c90

212 / 342

[MS-VDS] - v20170601
Virtual Disk Service (VDS) Protocol
Copyright © 2017 Microsoft Corporation
Release: June 1, 2017

 If the specified file system type has a maximum volume size requirement, and that requirement is
not met, then the server MUST return VDS_E_VOLUME_TOO_BIG.

 If the specified file system type has a minimum or maximum cluster size requirement, and that
requirement is not met, then the server MUST return VDS_E_CLUSTER_SIZE_TOO_SMALL or

VDS_E_CLUSTER_SIZE_TOO_BIG, respectively.

 If the specified file system type has a maximum cluster count requirement, and that requirement
is not met, then the server MUST return VDS_E_CLUSTER_COUNT_BEYOND_32BITS.

The server MUST update the percentage completed value periodically during the following sequence,
and send progress notifications to all clients. How often the percentage completed is updated, and at
what point in the sequence, is implementation specific. To send progress notifications to the clients:

 For each callback object registered in the list of callback objects, call the callback object's

IVdsAdviseSink::OnNotify (Opnum 3) method with a VDS_NOTIFICATION structure with the
following attributes:

 objectType member is VDS_NTT_FILE_SYSTEM.

 FileSystem member is a VDS_FILE_SYSTEM_NOTIFICATION with the following attributes:

 ulEvent is VDS_NF_FILE_SYSTEM_FORMAT_PROGRESS.

 volumeId is set to GUID_NULL.

 dwPercentCompleted is the percentage completed value.

The server MUST then perform the following in sequence:

 Format the partition following the parameters specified to the method.

 If TRUE is specified for bEnableCompression and the file system being formatted supports
compression, compress the file system after formatting is complete.<98>

 Set the return code in the async object to an HRESULT indicating failure or success.

 If the server tried to compress the file system after formatting it and failed, the return code

MUST be set to VDS_S_VOLUME_COMPRESS_FAILED--an HRESULT of 0x00042443.

 If the task completed successfully, set the percentage completed value in the async object to 100.

 Set the signal state in the async object to TRUE.

3.4.5.2.24.10 IVdsAdvancedDisk::Clean (Opnum 12)

The Clean method cleans a disk.

 HRESULT Clean(
 [in] long bForce,
 [in] long bForceOEM,
 [in] long bFullClean,
 [out] IVdsAsync** ppAsync
);

bForce: A Boolean value that indicates whether the cleaning operation will be forced. If set, the
method attempts to clean the disk, even if data volumes or ESP partitions are present.

bForceOEM: A Boolean value that indicates whether the cleaning operation of an OEM partition will be
forced. If the disk contains an OEM partition, but bForceOEM is not set, the operation SHOULD

213 / 342

[MS-VDS] - v20170601
Virtual Disk Service (VDS) Protocol
Copyright © 2017 Microsoft Corporation
Release: June 1, 2017

fail. If the value is set, the method attempts to clean the disk, even if OEM partitions are
present.<99>

bFullClean: A Boolean value specifying whether the cleaning operation removes all the data from the
disk.

ppAsync: A pointer to an IVdsAsync interface that, if the operation is successfully completed, receives
the IVdsAsync interface to monitor and control this operation. Callers MUST release the interface
when they are done with it.

Return Values: The method MUST return zero or a non-error HRESULT (as specified in [MS-ERREF])
to indicate success, or return an implementation-specific nonzero error code to indicate failure. For
the HRESULT values predefined by the Virtual Disk Service Remote Protocol, see section 2.2.3.

Note This method is not valid on CD/DVD devices.

When the server receives this message, it MUST validate the following parameter:

 Verify that ppAsync is not NULL.

The server MUST perform the following:

 If this method is called against a disk which contains data volume extents or an EFI system
partition (an ESP), and the bForce flag is not set, then this method returns
VDS_E_DISK_NOT_EMPTY for a dynamic disk.<100>

 If this method is called against a disk which contains a protected OEM partition, and the
bForceOEM flag is not set, then this method MUST return VDS_E_DISK_NOT_EMPTY for a dynamic
disk.<101>

 Create a new async object implementing the IVdsAsync interface with an output type of
VDS_ASYNCOUT_CLEAN and set the pointer referenced by ppAsync to the interface.

 Return an HRESULT indicating failure or success. Any errors encountered up through this point in
processing the operation are returned in this HRESULT.

The server MUST then perform the following in sequence. Errors generated in this sequence of steps
are returned in the pHrResult parameter to the IVdsAsync::Wait or IVdsAsyncQueryStatus methods.

 Clean the disk, removing all partition information, following the parameters specified to the
method.

 Set the return code in the async object to an HRESULT indicating failure or success.

 If TRUE was specified for bFullClean, but the server could not clean particular sectors, the
return code MUST be set to VDS_S_DISK_PARTIALLY_CLEANED.

 If the task was completed successfully, set the percentage completed value in the async object to
100.

 Set the signal state in the async object to TRUE.

 If the disk is a removable media disk, for each callback object registered in the list of callback
objects, call the callback object's IVdsAdviseSink::OnNotify (Opnum 3) method with a
VDS_NOTIFICATION structure with the following attributes:

 objectType member is VDS_NTT_VOLUME.

 Volume member is a VDS_VOLUME_NOTIFICATION with the following attributes:

 ulEvent is VDS_NF_VOLUME_DEPART.

%5bMS-ERREF%5d.pdf#Section_1bc92ddfb79e413cbbaa99a5281a6c90

214 / 342

[MS-VDS] - v20170601
Virtual Disk Service (VDS) Protocol
Copyright © 2017 Microsoft Corporation
Release: June 1, 2017

 volumeId is the VDS_OBJECT_ID of the volume object corresponding to the removable
media drive.

 plexId is NULL GUID, but it is not relevant when ulEvent is VDS_NF_VOLUME_DEPART.

 ulPercentCompleted range is 0-100 and is implementation specific; however, it is not

relevant when ulEvent is VDS_NF_VOLUME_DEPART.

 For each callback object registered in the list of callback objects, call the callback object's
IVdsAdviseSink::OnNotify (Opnum 3) method with a VDS_NOTIFICATION structure with the
following attributes:

 objectType member is VDS_NTT_DISK.

 Disk member is a VDS_DISK_NOTIFICATION with the following attributes:

 ulEvent is VDS_NF_DISK_DEPART.

 diskId is the VDS_OBJECT_ID of this disk object.

The server MUST update the percentage completed value periodically during the preceding sequence.
How often the percentage completed is updated, and at what point in the sequence, is
implementation-specific.

The server MAY allow the clean operation to be canceled through the IVdsAsync interface.<102>

3.4.5.2.25 IVdsAdvancedDisk2 Methods

3.4.5.2.25.1 IVdsAdvancedDisk2::ChangePartitionType (Opnum 3)

The ChangePartitionType method changes the partition type on the disk at a specified byte offset.

 HRESULT ChangePartitionType(
 [in] ULONGLONG ullOffset,
 [in] long bForce,
 [in] CHANGE_PARTITION_TYPE_PARAMETERS* para
);

ullOffset: The byte offset of the partition, from the beginning of the disk. This offset MUST be the
offset of a start of a partition.

bForce: A Boolean value that indicates whether a change will be forced even if the volume cannot be
locked for exclusive access. When bForce is false, ChangePartitionType MUST lock and dismount
the volume before changing the partition type. If bForce is true, the volume MUST be dismounted
and the change MUST be made even if the locking of the volume fails.

para: A pointer to a CHANGE_PARTITION_TYPE_PARAMETERS structure that contains the partition
type that the partition at the location specified by ullOffset is changed to.

Return Values: The method MUST return zero or a non-error HRESULT (as specified in [MS-ERREF])

to indicate success, or return an implementation-specific nonzero error code to indicate failure. For
the HRESULT values predefined by the Virtual Disk Service Remote Protocol, see section 2.2.3.

Note This method is not valid for CD/DVD or super floppy devices. These devices do not support

partition tables.

ERROR_SUCCESS (0x00000000)

When the server receives this message, it MUST validate the following parameter:

%5bMS-ERREF%5d.pdf#Section_1bc92ddfb79e413cbbaa99a5281a6c90

215 / 342

[MS-VDS] - v20170601
Virtual Disk Service (VDS) Protocol
Copyright © 2017 Microsoft Corporation
Release: June 1, 2017

 Verify that para is not NULL.

The server MUST perform the following:

 Change the partition type following the parameters specified to the method.

 If a volume exists on the partition, for each callback object registered in the list of callback

objects, call the callback object's IVdsAdviseSink::OnNotify method with a VDS_NOTIFICATION
structure with the following attributes:

 objectType member is VDS_NTT_VOLUME.

 Volume member is a VDS_VOLUME_NOTIFICATION with the following attributes:

 ulEvent is VDS_NF_VOLUME_MODIFY.

 volumeId is the VDS_OBJECT_ID of this volume object.

 plexId is NULL GUID, but it is not relevant when ulEvent is VDS_NF_VOLUME_MODIFY.

 ulPercentCompleted range is 0-100 and is implementation-specific; however, it is not
relevant when ulEvent is VDS_NF_VOLUME_MODIFY.

 Return an HRESULT indicating failure or success.

Note If the client changes the partition type from a recognized partition type (a type that indicates
the partition will be exposed as a volume) to a nonrecognized partition type, the volume associated
with the partition will be removed, and the normal volume removal notifications will be sent.

Conversely, if the client changes a partition's partition type from a nonrecognized partition type to a
recognized partition type, a new volume object will be created, and the normal notifications associated
with volume arrivals will be sent.

3.4.5.2.26 IVdsAdvancedDisk3 Methods

3.4.5.2.26.1 IVdsAdvancedDisk3::GetProperties (Opnum 3)

The GetProperties method<103> retrieves the properties of the disk that the object exposing this
interface and method represents.

 HRESULT GetProperties(
 [out] VDS_ADVANCEDDISK_PROP *pAdvDiskProp
);

pAdvDiskProp: A pointer to a VDS_ADVANCEDDISK_PROP structure that receives the properties of

the disk.

Return Values: The method MUST return zero or a non-error HRESULT, as specified in [MS-ERREF],
to indicate success or return an implementation-specific nonzero error code to indicate failure. For
the HRESULT values predefined by the Virtual Disk Service Remote Protocol, see section 2.2.3.

When the server receives this message, it MUST validate the following parameter:

 Verify that pAdvDiskProperties is not NULL.

The server MUST populate the VDS_ADVANCEDDISK_PROP structure that the pAdvDiskProperties

parameter references with the properties of the disk and return an HRESULT that indicates success or
failure.

3.4.5.2.26.2 IVdsAdvancedDisk3::GetUniqueId (Opnum 4)

%5bMS-ERREF%5d.pdf#Section_1bc92ddfb79e413cbbaa99a5281a6c90

216 / 342

[MS-VDS] - v20170601
Virtual Disk Service (VDS) Protocol
Copyright © 2017 Microsoft Corporation
Release: June 1, 2017

The GetUniqueId method<104> retrieves the device path that the operating system uses to identify
the disk.

 HRESULT GetUniqueId(
 [out, string] LPWSTR* ppwszId
);

ppwszId: A pointer to a null-terminated Unicode device path that the operating system uses to
identify the device for the disk.

Return Values: The method MUST return zero or a non-error HRESULT, as specified in [MS-ERREF],
to indicate success or return an implementation-specific nonzero error code to indicate failure. For
the HRESULT values predefined by the Virtual Disk Service Remote Protocol, see section 2.2.3.

When the server receives this message, it MUST validate the following parameter:

 Verify that ppwszId is not NULL.

The server MUST set the ppwszId parameter to the address of a null-terminated Unicode string and
then return an HRESULT that indicates success or failure.

3.4.5.2.27 IVdsCreatePartitionEx Methods

3.4.5.2.27.1 IVdsCreatePartitionEx::CreatePartitionEx (Opnum 3)

 The CreatePartitionEx method creates a partition on a disk at a specified byte offset, with an
optional alignment parameter.

 HRESULT CreatePartitionEx(
 [in] ULONGLONG ullOffset,
 [in] ULONGLONG ullSize,
 [in] unsigned long ulAlign,
 [in] CREATE_PARTITION_PARAMETERS* para,
 [out] IVdsAsync** ppAsync
);

ullOffset: The byte offset from the beginning of the disk where the new partition will be created. If
ulAlign is not zero, the offset MUST fall within the first cylinder for an MBR disk (GPT disks do
not have this restriction).

ullSize: The size of the new partition, in bytes.<105>

ulAlign: The number of bytes for volume alignment. The offset specified in ullOffset will be rounded
up or down to an alignment boundary. If zero is specified, the server will base the alignment value

on the size of the disk on which the volume is created.<106>

para: A pointer to a CREATE_PARTITION_PARAMETERS structure that describes the new partition to
create.

ppAsync: A pointer to an IVdsAsync interface that, if the operation is successfully completed, receives
the IVdsAsync interface to monitor and control this operation. Callers MUST release the interface
when they are done with it. If the IVdsAsync::Wait method is called on the interface, the

interfaces returned in the VDS_ASYNC_OUTPUT structure MUST be released as well. For
information on asynchronous tasks, see section 3.4.5.1.9.

Return Values: The method MUST return zero or a non-error HRESULT (as specified in [MS-ERREF])
to indicate success, or return an implementation-specific nonzero error code to indicate failure. For
the HRESULT values predefined by the Virtual Disk Service Remote Protocol, see section 2.2.3.

%5bMS-ERREF%5d.pdf#Section_1bc92ddfb79e413cbbaa99a5281a6c90
%5bMS-ERREF%5d.pdf#Section_1bc92ddfb79e413cbbaa99a5281a6c90

217 / 342

[MS-VDS] - v20170601
Virtual Disk Service (VDS) Protocol
Copyright © 2017 Microsoft Corporation
Release: June 1, 2017

Note Creating or deleting partitions on dynamic disks is not supported.

Note This method is not valid on CD/DVD or super floppy devices. These devices do not support

partition tables.

ERROR_SUCCESS (0x00000000)

When the server receives this message, it MUST validate the following parameters:

 Verify that para is not NULL.

 Verify that ppAsync is not NULL.

The server MUST perform the following:

 If the partition cannot be created because there is not enough free space on the specified disk,
then the server MUST return VDS_E_NOT_ENOUGH_SPACE.

 Create a new async object implementing the IVdsAsync interface with an output type of

VDS_ASYNCOUT_CREATEPARTITION and set the pointer ppAsync references to the interface.

 Return an HRESULT indicating failure or success. Any errors encountered up through this point in
processing the operation are returned in this HRESULT.

The server MUST then perform the following in sequence. Errors generated in this sequence of steps
are returned in the pHrResult parameter to the IVdsAsync::Wait or IVdsAsyncQueryStatus methods.

 Create a new partition following the parameters specified to the method.

 If the partition creation resulted in the renumbering of existing partitions on a boot disk, the
server MUST update the boot configuration file with the new partition numbering.

 Set the task-specific return values in the async object to return the values associated with
VDS_ASYNCOUT_CREATEPARTITION (as specified in section 3.4.5.1.9).

 Set the return code in the async object to an HRESULT indicating failure or success.

 If the server was required to update the boot configuration file but failed, the return code
MUST be set to VDS_S_UPDATE_BOOTFILE_FAILED (HRESULT of 0x80042434).

 If the task completed successfully, set the percentage completed value in the async object to 100.

 Set the signal state in the async object to TRUE.

 For each callback object registered in the list of callback objects, call the callback object's
IVdsAdviseSink::OnNotify method with a VDS_NOTIFICATION structure with the following
attributes:

 objectType member is VDS_NTT_PARTITION.

 Partition member is a VDS_PARTITION_NOTIFICATION with the following attributes:

 ulEvent is VDS_NF_PARTITION_ARRIVE.

 diskId is the VDS_OBJECT_ID of the disk object corresponding to the disk on which the
partition was added.

 ullOffset is the byte offset at which the partition starts on the disk.

 If the partition is created on a removable media disk, for each callback object registered in the
list of callback objects, call the callback object's IVdsAdviseSink::OnNotify method with a

VDS_NOTIFICATION structure with the following attributes:

218 / 342

[MS-VDS] - v20170601
Virtual Disk Service (VDS) Protocol
Copyright © 2017 Microsoft Corporation
Release: June 1, 2017

 objectType member is VDS_NTT_VOLUME.

 Volume member is a VDS_VOLUME_NOTIFICATION with the following attributes:

 ulEvent is VDS_NF_VOLUME_ARRIVE.

 volumeId is the VDS_OBJECT_ID of the volume object corresponding to the removable

media drive.

 plexId is NULL GUID, but it is not relevant when ulEvent is VDS_NF_VOLUME_ARRIVE.

 ulPercentCompleted range is 0-100 and is implementation-specific; however, it is not
relevant when ulEvent is VDS_NF_VOLUME_ARRIVE.

 For each callback object registered in the list of callback objects, call the callback object's
IVdsAdviseSink::OnNotify method with a VDS_NOTIFICATION structure with the following
attributes:

 objectType member is VDS_NTT_DISK.

 Disk member is a VDS_DISK_NOTIFICATION with the following attributes:

 ulEvent is VDS_NF_DISK_MODIFY.

 diskId is the VDS_OBJECT_ID of this disk object.

The server MUST update the percentage completed value periodically during the preceding sequence.
How often the percentage completed is updated, and at what point in the sequence, is

implementation-specific.

3.4.5.2.28 IVdsDiskOnline Methods

3.4.5.2.28.1 IVdsDiskOnline::Online (Opnum 3)

The Online method brings a disk to the online state. An online disk exposes volume devices to those

volumes that have associated extents on the given disk.

 HRESULT Online(void);

This method has no parameters.

Return Values: The method MUST return zero or a non-error HRESULT, as specified in [MS-ERREF],
to indicate success or return an implementation-specific nonzero error code to indicate failure. For

the HRESULT values predefined by the Virtual Disk Service Remote Protocol, see section 2.2.3.

ERROR_SUCCESS(0x00000000)

The server MUST bring the disk to the online state by creating volume objects for any volumes with
associated extents on the given disk. The server MUST then return an HRESULT indicating failure or
success. For more information on the VDS_FILE_SYSTEM_PROP structure, see 2.2.1.3.17.

3.4.5.2.28.2 IVdsDiskOnline::Offline (Opnum 4)

The Offline method brings a disk to the offline state. An offline disk exposes no volume devices.

 HRESULT Offline(void);

This method has no parameters.

%5bMS-ERREF%5d.pdf#Section_1bc92ddfb79e413cbbaa99a5281a6c90

219 / 342

[MS-VDS] - v20170601
Virtual Disk Service (VDS) Protocol
Copyright © 2017 Microsoft Corporation
Release: June 1, 2017

Return Values: The method MUST return zero or a non-error HRESULT, as specified in [MS-ERREF],
to indicate success or return an implementation-specific nonzero error code to indicate failure. For

the HRESULT values predefined by the Virtual Disk Service Remote Protocol, see section 2.2.3.

ERROR_SUCCESS(0x00000000)

The server MUST bring the disk to the offline state by removing the volume objects for any volumes
with associated extents on the given disk. The server MUST send volume removal notifications for any
volume objects that are removed as a result of bringing the disk to an offline state. The server MUST
then return an HRESULT indicating failure or success. For more information on the
VDS_FILE_SYSTEM_PROP structure, see 2.2.1.3.17.

3.4.5.2.29 IVdsDiskPartitionMF Methods

3.4.5.2.29.1 IVdsDiskPartitionMF::GetPartitionFileSystemProperties (Opnum 3)

The GetPartitionFileSystemProperties method returns property details about the file system on a
disk partition at a specified byte offset. This method is only supported on OEM, ESP, recovery, and

unknown partitions.

 HRESULT GetPartitionFileSystemProperties(
 [in] ULONGLONG ullOffset,
 [out] VDS_FILE_SYSTEM_PROP* pFileSystemProp
);

ullOffset: The byte offset of the partition from the beginning of the disk. This MUST be the offset at

the start of a partition.

pFileSystemProp: A pointer to a VDS_FILE_SYSTEM_PROP structure that, if the operation is
successfully completed, receives the properties of the file system on the partition.

Return Values: The method MUST return zero or a non-error HRESULT (as specified in [MS-ERREF])
to indicate success, or return an implementation-specific nonzero error code to indicate failure. For

the HRESULT values predefined by the Virtual Disk Service Remote Protocol, see section 2.2.3.

Note This method is not valid on CD/DVD or super floppy devices. These devices do not support

partition tables.

ERROR_SUCCESS (0x00000000)

When the server receives this message, it MUST validate the following parameter:

 Verify that pFileSystemProp is not NULL.

 Verify that the partition at offset ullOffset is an OEM, ESP, recovery, or unknown partition.

The server MUST populate the VDS_FILE_SYSTEM_PROP structure that pFileSystemProp references

with the properties of the file system on the partition at the byte offset from the beginning of the disk
that ullOffset specifies. The server MUST then return an HRESULT indicating failure or success. For

more information on the VDS_FILE_SYSTEM_PROP structure, see section 2.2.1.3.17.

3.4.5.2.29.2 IVdsDiskPartitionMF::GetPartitionFileSystemTypeName (Opnum 4)

The GetPartitionFileSystemTypeName method retrieves the name of the file system on a disk
partition at a specified byte offset. This method is only supported on OEM, ESP, recovery, and

unknown partitions.

 HRESULT GetPartitionFileSystemTypeName(
 [in] ULONGLONG ullOffset,

%5bMS-ERREF%5d.pdf#Section_1bc92ddfb79e413cbbaa99a5281a6c90
%5bMS-ERREF%5d.pdf#Section_1bc92ddfb79e413cbbaa99a5281a6c90

220 / 342

[MS-VDS] - v20170601
Virtual Disk Service (VDS) Protocol
Copyright © 2017 Microsoft Corporation
Release: June 1, 2017

 [out, string] WCHAR** ppwszFileSystemTypeName
);

ullOffset: The byte offset of the partition from the beginning of the disk. This MUST be the offset at
the start of a partition.

ppwszFileSystemTypeName: A pointer that, if the operation is successfully completed, receives a
null-terminated Unicode string with the file system name.

Return Values: The method MUST return zero or a non-error HRESULT (as specified in [MS-ERREF])
to indicate success, or return an implementation-specific nonzero error code to indicate failure. For
the HRESULT values predefined by the Virtual Disk Service Remote Protocol, see section 2.2.3.

Note This method is not valid on CD/DVD or super floppy devices. These devices do not support
partition tables.

When the server receives this message, it MUST validate the following parameter:

 Verify that ppwszFileSystemTypeName is not NULL.

 Verify that the partition at offset ullOffset is an OEM, ESP, recovery, or unknown partition.

The server MUST point ppwszFileSystemTypeName to a string containing the file system name on
the partition at the byte offset from the beginning of the disk that ullOffset specifies and then return
an HRESULT indicating failure or success.

3.4.5.2.29.3 IVdsDiskPartitionMF::QueryPartitionFileSystemFormatSupport (Opnum

5)

The QueryPartitionFileSystemFormatSupport method retrieves the properties of the file systems that
support formatting a disk partition at a specified byte offset. This method is only supported on
OEM, ESP, recovery, and unknown partitions.

Note This method is not valid on CD/DVD or super floppy devices. These devices do not support
partition tables.

 HRESULT QueryPartitionFileSystemFormatSupport(
 [in] ULONGLONG ullOffset,
 [out, size_is(,*plNumberOfFileSystems)]
 VDS_FILE_SYSTEM_FORMAT_SUPPORT_PROP** ppFileSystemSupportProps,
 [out] long* plNumberOfFileSystems
);

ullOffset: The byte offset of the partition from the beginning of the disk. This MUST be the offset at
the start of a partition.

ppFileSystemSupportProps: A pointer to an array of VDS_FILE_SYSTEM_FORMAT_SUPPORT_PROP
structures which, if the operation completes successfully, receives an array of properties of each
supported file system.

plNumberOfFileSystems: A pointer to a variable which, if the operation completes successfully,

receives the total number of elements returned in ppFileSystemSupportProps.

Return Values: The method MUST return zero or a non-error HRESULT (as specified in [MS-ERREF])
to indicate success, or return an implementation-specific nonzero error code to indicate failure. For
the HRESULT values predefined by the Virtual Disk Service Remote Protocol, see section
2.2.3.<107>

%5bMS-ERREF%5d.pdf#Section_1bc92ddfb79e413cbbaa99a5281a6c90
%5bMS-ERREF%5d.pdf#Section_1bc92ddfb79e413cbbaa99a5281a6c90

221 / 342

[MS-VDS] - v20170601
Virtual Disk Service (VDS) Protocol
Copyright © 2017 Microsoft Corporation
Release: June 1, 2017

ERROR_SUCCESS (0x00000000)

When the server receives this message, it MUST validate the following parameters:

 Verify that ppFileSystemSupportProps is not NULL.

 Verify that plNumberOfFileSystems is not NULL.

 Verify that the partition at offset ullOffset is an OEM, ESP, recovery, or unknown partition.

The server MUST point ppFileSystemSupportProps to an array of
VDS_FILE_SYSTEM_FORMAT_SUPPORT_PROP structures containing information about each file system
that supports formatting a partition at the byte offset from the beginning of the disk that ullOffset
specifies. The server MUST then point plNumberOfFileSystems to the size of the array and then
return an HRESULT indicating failure or success.

3.4.5.2.29.4 IVdsDiskPartitionMF::FormatPartitionEx (Opnum 6)

 The FormatPartitionEx method formats an existing OEM, ESP, or unknown partition. This method is

only supported on OEM, ESP, recovery, and unknown partitions.

 HRESULT FormatPartitionEx(
 [in] ULONGLONG ullOffset,
 [in, unique, string] WCHAR* pwszFileSystemTypeName,
 [in] unsigned short usFileSystemRevision,
 [in] unsigned long ulDesiredUnitAllocationSize,
 [in, unique, string] WCHAR* pwszLabel,
 [in] long bForce,
 [in] long bQuickFormat,
 [in] long bEnableCompression,
 [out] IVdsAsync** ppAsync
);

ullOffset: The byte offset of the partition from the beginning of the disk. This MUST be the offset at
the start of a partition.

pwszFileSystemTypeName: A null-terminated Unicode string that contains the name of the file
system with which to format the partition.

usFileSystemRevision: A 16-bit, binary-coded decimal number that indicates the revision of the file

system, if any. The first two (most significant) digits (8-bits) indicate the major revision while the
last two (least significant) digits (8-bits) indicate the minor revision (for example, 0x0250
represents revision 2.50).

ulDesiredUnitAllocationSize: The size, in bytes, of the allocation unit for the file system. The value
MUST be a power of 2. If the value is 0, a default allocation unit determined by the file system
type is used. The allocation unit range is file system-dependent.

pwszLabel: The null-terminated Unicode string to assign to the new file system. The maximum label

size is file system-dependent.

bForce: A Boolean that determines whether a file system format is forced, even if the partition is in
use.

bQuickFormat: A Boolean that determines whether a file system is quick formatted. A quick format
does not verify each sector on the volume.

bEnableCompression: A Boolean that determines whether a file system is created with compression

enabled.<108>

222 / 342

[MS-VDS] - v20170601
Virtual Disk Service (VDS) Protocol
Copyright © 2017 Microsoft Corporation
Release: June 1, 2017

ppAsync: A pointer to an IVdsAsync interface that, if the operation is successfully completed, receives
the IVdsAsync interface to monitor and control this operation. Callers MUST release the interface

when they are done with it.

Return Values: The method MUST return zero or a non-error HRESULT (as specified in [MS-ERREF])

to indicate success, or return an implementation-specific nonzero error code to indicate failure. For
the HRESULT values predefined by the Virtual Disk Service Remote Protocol, see section 2.2.3.

Note This method is not valid on CD/DVD or super floppy devices. These devices do not support
partition table.

ERROR_SUCCESS (0x00000000)

When the server receives this message, it MUST validate the following parameter:

 Verify that ppAsync is not NULL.

 Verify that the partition at offset ullOffset is an OEM, ESP, recovery, or unknown partition.

 Create a new async object implementing the IVdsAsync interface with an output type of
VDS_ASYNCOUT_FORMAT and set the pointer ppAsync references to the interface.

 Return an HRESULT indicating failure or success. Any errors encountered up through this point in
processing the FormatPartitionEx operation are returned in this HRESULT.

The server MUST perform the following. Errors generated in this sequence of steps are returned in the

pHrResult parameter to the IVdsAsync::Wait or IVdsAsyncQueryStatus methods.

 If the operating system is unable to format the device using the file system type that is specified
using the type parameter, then this method MUST return VDS_E_INCOMPATIBLE_FILE_SYSTEM.

 If the target device\media is write-protected, then this method MUST return
VDS_E_MEDIA_WRITE_PROTECTED.

 If the pwszLabel parameter is incompatible with the file system type specified using the type

parameter, then the server MUST return VDS_E_BAD_LABEL.

 If the specified file system type has a minimum volume size requirement, and that requirement is
not met, then the server MUST return VDS_E_VOLUME_TOO_SMALL.

 If the specified file system type has a maximum volume size requirement, and that requirement is
not met, then the server MUST return VDS_E_VOLUME_TOO_BIG.

 If the specified file system type has a minimum or maximum cluster size requirement, and that
requirement is not met, then the server MUST return VDS_E_CLUSTER_SIZE_TOO_SMALL or
VDS_E_CLUSTER_SIZE_TOO_BIG, respectively.

 If the specified file system type has a maximum cluster count requirement, and that requirement
is not met, then the server MUST return VDS_E_CLUSTER_COUNT_BEYOND_32BITS.

The server MUST update the percentage completed value periodically during the following sequence,

and send progress notifications to all clients. How often the percentage completed is updated, and at
what point in the sequence, is implementation specific. To send progress notifications to the clients:

 For each callback object registered in the list of callback objects, call the callback object's

IVdsAdviseSink::OnNotify (Opnum 3) method with a VDS_NOTIFICATION structure with the
following attributes:

 objectType member is VDS_NTT_FILE_SYSTEM.

 FileSystem member is a VDS_FILE_SYSTEM_NOTIFICATION with the following attributes:

%5bMS-ERREF%5d.pdf#Section_1bc92ddfb79e413cbbaa99a5281a6c90

223 / 342

[MS-VDS] - v20170601
Virtual Disk Service (VDS) Protocol
Copyright © 2017 Microsoft Corporation
Release: June 1, 2017

 ulEvent is VDS_NF_FILE_SYSTEM_FORMAT_PROGRESS.

 volumeId is set to GUID_NULL.

 dwPercentCompleted is the percentage completed value.

The server MUST then perform the following in sequence:

 Format the partition following the parameters specified to the method.

 If TRUE is specified for bEnableCompression and the file system being formatted supports
compression, compress the file system after formatting is complete.<109>

 Set the return code in the async object to an HRESULT indicating failure or success.

 If the server was required to compress the file system after formatting but could not, the
return code MUST be set to VDS_S_VOLUME_COMPRESS_FAILED (HRESULT of 0x00042443).

 If the task completed successfully, set the percentage completed value in the async object to 100.

 Set the signal state in the async object to TRUE.

3.4.5.2.30 IVdsDiskPartitionMF2 Methods

3.4.5.2.30.1 IVdsDiskPartitionMF2::FormatPartitionEx2 (Opnum 3)

The FormatPartitionEx2 method formats an existing OEM, ESP, or unknown partition. This method is

only supported on OEM, ESP, recovery, and unknown partitions.

 HRESULT FormatPartitionEx2(
 [in] ULONGLONG ullOffset,
 [in, unique, string] LPWSTR pwszFileSystemTypeName,
 [in] unsigned short usFileSystemRevision,
 [in] unsigned long ulDesiredUnitAllocationSize,
 [in, unique, string] LPWSTR pwszLabel,
 [in] DWORD Options,
 [out] IVdsAsync **ppAsync
);

ullOffset: The byte offset of the partition from the beginning of the disk. This MUST be the offset at
the start of a partition.

pwszFileSystemTypeName: A null-terminated Unicode string that contains the name of the file
system with which to format the partition.

usFileSystemRevision: A 16-bit, binary-coded decimal number that indicates the revision of the file
system, if any. The first two (most significant) digits (8-bits) indicate the major revision while the
last two (least significant) digits (8-bits) indicate the minor revision (for example, 0x0250
represents version 2.50).

ulDesiredUnitAllocationSize: The size, in bytes, of the allocation unit for the file system. The value

MUST be a power of 2. If the value is 0, a default allocation unit determined by the file system
type is used. The allocation unit range is file system-dependent.

pwszLabel: The null-terminated Unicode string to assign to the new file system. The maximum label
size is file system-dependent.

Options: The combination of any values, by using a bitwise OR operator, that are defined in the
VDS_FORMAT_OPTION_FLAGS enumeration.

224 / 342

[MS-VDS] - v20170601
Virtual Disk Service (VDS) Protocol
Copyright © 2017 Microsoft Corporation
Release: June 1, 2017

ppAsync: A pointer to an IVdsAsync interface that, if the operation is successfully completed,
receives the IVdsAsync interface pointer to monitor and control this operation. Callers MUST

release the interface when they are done with it.

Return Values: The method MUST return zero or a non-error HRESULT (as specified in [MS-ERREF])

to indicate success, or return an implementation-specific nonzero error code to indicate failure. For
the HRESULT values predefined by the Virtual Disk Service Remote Protocol, see section 2.2.3.

Note This method is not valid on CD/DVD or super floppy devices. These devices do not support
partition tables.

When the server receives this message, it MUST validate the following parameters:

 Verify that ppAsync is not NULL.

 Verify that the partition at offset ullOffset is an OEM, ESP, recovery, or unknown partition.

The server MUST perform the following:

 Create a new async object implementing the IVdsAsync interface with an output type of
VDS_ASYNCOUT_FORMAT and set the pointer ppAsync references to the interface.

 Return an HRESULT indicating failure or success. Any errors encountered up through this point in
processing the FormatPartitionEx2 operation are returned in this HRESULT.

The server MUST perform the following. Errors generated in this sequence of steps are returned in the

pHrResult parameter to the IVdsAsync::Wait or IVdsAsyncQueryStatus methods.

 If the operating system is unable to format the device with the file system type specified using the
type parameter, then this method MUST return VDS_E_INCOMPATIBLE_FILE_SYSTEM.

 If the target device\media is write-protected, then this method MUST return
VDS_E_MEDIA_WRITE_PROTECTED.

 If the pwszLabel parameter is incompatible with the file system type specified using the type

parameter, then the server MUST return VDS_E_BAD_LABEL.

 If the specified file system type has a minimum volume size requirement and that requirement is
not met, then the server MUST return VDS_E_VOLUME_TOO_SMALL.

 If the specified file system type has a maximum volume size requirement and that requirement is
not met, then the server MUST return VDS_E_VOLUME_TOO_BIG.

 If the specified file system type has a minimum or maximum cluster size requirement and that
requirement is not met, then the server MUST return VDS_E_CLUSTER_SIZE_TOO_SMALL or
VDS_E_CLUSTER_SIZE_TOO_BIG, respectively.

 If the specified file system type has a maximum cluster count requirement and that requirement
is not met, then the server MUST return VDS_E_CLUSTER_COUNT_BEYOND_32BITS.

The server MUST update the percentage completed value periodically during the following sequence,

and send progress notifications to all clients. How often the percentage completed is updated, and at
what point in the sequence, is implementation specific. To send progress notifications to the clients:

 For each callback object registered in the list of callback objects, call the callback object's

IVdsAdviseSink::OnNotify (Opnum 3)method with a VDS_NOTIFICATION structure with the
following attributes:

 objectType member is VDS_NTT_FILE_SYSTEM.

 FileSystem member is a VDS_FILE_SYSTEM_NOTIFICATION with the following attributes:

%5bMS-ERREF%5d.pdf#Section_1bc92ddfb79e413cbbaa99a5281a6c90

225 / 342

[MS-VDS] - v20170601
Virtual Disk Service (VDS) Protocol
Copyright © 2017 Microsoft Corporation
Release: June 1, 2017

 ulEvent is VDS_NF_FILE_SYSTEM_FORMAT_PROGRESS.

 volumeId is set to GUID_NULL.

 dwPercentCompleted is the percentage completed value.

The server MUST then perform the following in sequence:

 Format the partition following the parameters specified to the method.

 If VDS_FSOF_COMPRESSION is specified and the file system being formatted supports
compression, compress the file system after formatting is complete.<110>

 Set the return code in the async object to an HRESULT indicating failure or success.

 If the server was required to compress the file system after formatting but could not, the
return code MUST be set to VDS_S_VOLUME_COMPRESS_FAILED (HRESULT of 0x00042443).

 If the task completed successfully, set the percentage completed value in the async object to 100.

 Set the signal state in the async object to TRUE.

3.4.5.2.31 IVdsRemovable Methods

3.4.5.2.31.1 IVdsRemovable::QueryMedia (Opnum 3)

The QueryMedia method identifies the media in the drive.

 HRESULT QueryMedia();

This method has no parameters.

Return Values: The method MUST return zero or a non-error HRESULT (as specified in [MS-ERREF])
to indicate success, or return an implementation-specific nonzero error code to indicate failure. For

the HRESULT values predefined by the Virtual Disk Service Remote Protocol, see section 2.2.3.

ERROR_SUCCESS (0x00000000)

When the server receives this message, it MUST perform the following:

 Refresh any cached disk and volume properties of the removable media drive.

 If the disk properties (VDS_DISK_PROP values) for the media have changed, for each callback
object registered in the list of callback objects, call the callback object's IVdsAdviseSink::OnNotify
method with a VDS_NOTIFICATION structure with the following attributes:

 objectType member is VDS_NTT_DISK.

 Disk member is a VDS_DISK_NOTIFICATION with the following attributes:

 ulEvent is VDS_NF_DISK_MODIFY.

 diskId is the VDS_OBJECT_ID of this disk object.

 If the volume properties (VDS_VOLUME_PROP values) for the media have changed, for each
callback object registered in the list of callback objects, call the callback object's
IVdsAdviseSink::OnNotify method with a VDS_NOTIFICATION structure with the following

attributes:

 objectType member is VDS_NTT_VOLUME.

%5bMS-ERREF%5d.pdf#Section_1bc92ddfb79e413cbbaa99a5281a6c90

226 / 342

[MS-VDS] - v20170601
Virtual Disk Service (VDS) Protocol
Copyright © 2017 Microsoft Corporation
Release: June 1, 2017

 Volume member is a VDS_VOLUME_NOTIFICATION with the following attributes:

 ulEvent is VDS_NF_VOLUME_MODIFY.

 volumeId is the VDS_OBJECT_ID of the volume object corresponding to the removable
media drive.

 plexId is NULL GUID, but it is not relevant when ulEvent is VDS_NF_VOLUME_MODIFY.

 ulPercentCompleted range is 0-100 and is implementation-specific; however, it is not
relevant when ulEvent is VDS_NF_VOLUME_MODIFY.

 Return an HRESULT indicating failure or success.

3.4.5.2.31.2 IVdsRemovable::Eject (Opnum 4)

The Eject method ejects the media in the drive.

 HRESULT Eject();

This method has no parameters.

Return Values: The method MUST return zero or a non-error HRESULT (as specified in [MS-ERREF])
to indicate success, or return an implementation-specific nonzero error code to indicate failure. For

the HRESULT values predefined by the Virtual Disk Service Remote Protocol, see section 2.2.3.

When the server receives this message, it MUST perform the following:

 Attempt to eject the media in the removable media drive.

 For each callback object that is registered in the list of callback objects, call the callback object's
IVdsAdviseSink::OnNotify (Opnum 3) method with a VDS_NOTIFICATION structure with the
following attributes:

 objectType member is VDS_NTT_VOLUME.

 Volume member is a VDS_VOLUME_NOTIFICATION with the following attributes:

 ulEvent is VDS_NF_VOLUME_MODIFY.

 volumeId is the VDS_OBJECT_ID of the volume object corresponding to the removable
media drive.

 plexId is NULL GUID, but it is not relevant when ulEvent is VDS_NF_VOLUME_MODIFY.

 ulPercentCompleted is from 0-100 and is implementation-specific; however, it is not

relevant when ulEvent is VDS_NF_VOLUME_MODIFY.

 If media was present in the drive, for each callback object that is registered in the list of callback
objects, the server MUST call the callback object's IVdsAdviseSink::OnNotify method by using a

VDS_NOTIFICATION structure that has the following attributes:

 objectType member is VDS_NTT_DISK.

 Disk member is VDS_DISK_NOTIFICATION that has the following attributes:

 ulEvent is VDS_NF_DISK_MODIFY.

 diskId is the VDS_OBJECT_ID of the disk object corresponding to the removable media
drive.

%5bMS-ERREF%5d.pdf#Section_1bc92ddfb79e413cbbaa99a5281a6c90

227 / 342

[MS-VDS] - v20170601
Virtual Disk Service (VDS) Protocol
Copyright © 2017 Microsoft Corporation
Release: June 1, 2017

 Return an HRESULT indicating failure or success.

3.4.5.2.32 IVdsVolume Methods

3.4.5.2.32.1 IVdsVolume::GetProperties (Opnum 3)

The GetProperties method retrieves the properties of the volume that is represented by the object
exposing this interface and method.

 HRESULT GetProperties(
 [out] VDS_VOLUME_PROP* pVolumeProperties
);

pVolumeProperties: A pointer to a VDS_VOLUME_PROP structure that, if the operation is
successfully completed, receives the properties of the volume.

Return Values: The method MUST return zero or a non-error HRESULT (as specified in [MS-ERREF])

to indicate success, or return an implementation-specific nonzero error code to indicate failure. For
the HRESULT values predefined by the Virtual Disk Service Remote Protocol, see section 2.2.3.

When the server receives this message, it MUST validate the following parameter:

 Verify that pVolumeProperties is not NULL.

The server MUST populate the VDS_VOLUME_PROP structure that pVolumeProperties references
with the properties of the volume, and then return an HRESULT indicating failure or success. For
information on VDS_VOLUME_PROP, see section 2.2.2.14.1.1.

3.4.5.2.32.2 IVdsVolume::GetPack (Opnum 4)

The GetPack method retrieves the disk pack to which the volume belongs.

 HRESULT GetPack(
 [out] IVdsPack** ppPack
);

ppPack: A pointer to an IVdsPack interface that, if the operation is successfully completed, receives
the IVdsPack interface of the pack object to which the volume belongs. Callers MUST release the
interface when they are done with it.

Return Values: The method MUST return zero or a non-error HRESULT (as specified in [MS-ERREF])
to indicate success, or return an implementation-specific nonzero error code to indicate failure. For
the HRESULT values predefined by the Virtual Disk Service Remote Protocol, see section 2.2.3.

When the server receives this message, it MUST validate the following parameter:

 Verify that ppPack is not NULL.

The server MUST point ppPack to an IVdsPack interface of the pack object that the volume object's
pack pointer refers to. It MUST then return an HRESULT indicating failure or success.

3.4.5.2.32.3 IVdsVolume::QueryPlexes (Opnum 5)

The QueryPlexes method enumerates the plexes of a volume.

 HRESULT QueryPlexes(
 [out] IEnumVdsObject** ppEnum

%5bMS-ERREF%5d.pdf#Section_1bc92ddfb79e413cbbaa99a5281a6c90
%5bMS-ERREF%5d.pdf#Section_1bc92ddfb79e413cbbaa99a5281a6c90

228 / 342

[MS-VDS] - v20170601
Virtual Disk Service (VDS) Protocol
Copyright © 2017 Microsoft Corporation
Release: June 1, 2017

);

ppEnum: A pointer to an IEnumVdsObject interface that, if the operation is successfully completed,
receives the IEnumVdsObject interface of the object that contains an enumeration of volume plex
objects in the volume. Callers MUST release the interface when they are done with it.

Return Values: The method MUST return zero or a non-error HRESULT (as specified in [MS-ERREF])
to indicate success, or return an implementation-specific nonzero error code to indicate failure. For
the HRESULT values predefined by the Virtual Disk Service Remote Protocol, see section 2.2.3.

When the server receives this message, it MUST validate the following parameter:

 Verify that ppEnum is not NULL.

The server MUST point ppEnum to an IEnumVdsObject interface that contains the enumeration of
volume plex objects in the list of cached storage management objects that have their volume pointer
set to this volume object, as specified in section 3.4.1.3. The server MUST then return an HRESULT

indicating failure or success.

3.4.5.2.32.4 IVdsVolume::Extend (Opnum 6)

The Extend method expands the size of the current volume by adding disk extents to each member
of each plex.

 HRESULT Extend(
 [in, unique, size_is(lNumberOfDisks)]
 VDS_INPUT_DISK* pInputDiskArray,
 [in] long lNumberOfDisks,
 [out] IVdsAsync** ppAsync
);

pInputDiskArray: A pointer to an array of VDS_INPUT_DISK structures that describe the disk

extents to add to the volume--one structure for each disk. Callers SHOULD specify the member
index for all the disk extents together with the Extend method, unless the volume has only one
plex with only one member.

lNumberOfDisks: The number of elements in pInputDiskArrray.<111>

ppAsync: A pointer to an IVdsAsync interface that, if the operation is successfully completed, receives
the IVdsAsync interface to monitor and control this operation. Callers MUST release the interface
when they are done with it.

Return Values: The method MUST return zero or a non-error HRESULT (as specified in [MS-ERREF])
to indicate success, or return an implementation-specific nonzero error code to indicate failure. For

the HRESULT values predefined by the Virtual Disk Service Remote Protocol, see section 2.2.3.

When the server receives this message, it MUST validate the following parameters:

 Verify that pInputDiskArray is not NULL.

 Verify that ppAsync is not NULL.

The server MUST perform the following:

 If the volume's file system does not support extend operations, then this method MUST return
VDS_E_CANNOT_EXTEND. For example, on operating systems where both volumes are

formatted with the NTFS file system, volumes that have no file system formatting will return this
error.

%5bMS-ERREF%5d.pdf#Section_1bc92ddfb79e413cbbaa99a5281a6c90
%5bMS-ERREF%5d.pdf#Section_1bc92ddfb79e413cbbaa99a5281a6c90

229 / 342

[MS-VDS] - v20170601
Virtual Disk Service (VDS) Protocol
Copyright © 2017 Microsoft Corporation
Release: June 1, 2017

 For each VDS_INPUT_DISK structure in the pInputDiskArray parameter, verify that the value of
the ullSize field does not exceed the amount of free space on the given disk. If the volume is

being created within a dynamic disk pack and if this requirement is not met, then the server
MUST return VDS_E_EXTENT_EXCEEDS_DISK_FREE_SPACE. If the volume is being created within

a basic disk pack and if this requirement is not met, then the server MUST return
VDS_E_NOT_ENOUGH_SPACE.

 Create a new async object implementing the IVdsAsync interface with an output type of
VDS_ASYNCOUT_EXTENDVOLUME and set the pointer ppAsync references to the interface.

 Return an HRESULT indicating failure or success. Any errors encountered up through this point in
processing the operation are returned in this HRESULT.

The server MUST then perform the following in sequence. Errors generated in this sequence of steps

are returned in the pHrResult parameter to the IVdsAsync::Wait or IVdsAsyncQueryStatus methods.

 Extend the volume following the parameters specified to the method.

 If the volume's size is changed, then for each callback object registered in the list of callback

objects, call the callback object's IVdsAdviseSink::OnNotify (section 3.3.4.3.1) method with a
VDS_NOTIFICATION (section 2.2.1.3.9) structure with the following attributes:

 objectType member is VDS_NTT_VOLUME.

 Volume member is a VDS_VOLUME_NOTIFICATION with the following attributes:

 ulEvent is VDS_NF_VOLUME_MODIFY.

 volumeId is the VDS_OBJECT_ID of this volume object.

 plexId is NULL GUID, but it is not relevant when ulEvent is VDS_NF_VOLUME_MODIFY.

 ulPercentCompleted range is 0-100 and is implementation-specific; however, it is not
relevant when ulEvent is VDS_NF_VOLUME_MODIFY.

 The file system on the volume MAY<112> need to be extended to fill the newly extended

volume.

 If the file system on the volume supports extension, for example, the NTFS or RAW file system,
extend the file system to fill the newly extended volume. If no VDS_VOLUME_MODIFIED
notification was sent during the previous steps because the volume's size is not changed and if the
file system's size is changed, then for each callback object registered in the list of callback objects,
call the callback object's IVdsAdviseSink::OnNotify method with a VDS_NOTIFICATION structure
with the following attributes:

 objectType member is VDS_NTT_FILE_SYSTEM.

 The Filesystem member is a VDS_FILE_SYSTEM_NOTIFICATION with the following attributes:

 ulEvent is VDS_NF_FILE_SYSTEM_MODIFY.

 volumeId is the VDS_OBJECT_ID of this volume object.

 Set the return code in the async object to an HRESULT indicating failure or success.

 If the task completed successfully, set the percentage completed value in the async object to

100.<113>

 Set the signal state in the async object to TRUE.

230 / 342

[MS-VDS] - v20170601
Virtual Disk Service (VDS) Protocol
Copyright © 2017 Microsoft Corporation
Release: June 1, 2017

The server MUST update the percentage completed value periodically during the preceding sequence.
How often the percentage completed is updated, and at what point in the sequence, is

implementation-specific.

3.4.5.2.32.5 IVdsVolume::Shrink (Opnum 7)

The Shrink method reduces the size of the volume and all plexes and returns the released extents to
free space.<114>

 HRESULT Shrink(
 [in] ULONGLONG ullNumberOfBytesToRemove,
 [out] IVdsAsync** ppAsync
);

ullNumberOfBytesToRemove: The number of bytes by which to shrink the volume.

ppAsync: A pointer to an IVdsAsync interface that, if the operation is successfully completed, receives

the IVdsAsync interface to monitor and control this operation. Callers MUST release the interface

when they are done with it.

Return Values: The method MUST return zero or a non-error HRESULT (as specified in [MS-ERREF])
to indicate success, or return an implementation-specific nonzero error code to indicate failure. For
the HRESULT values predefined by the Virtual Disk Service Remote Protocol, see section 2.2.3.

When the server receives this message, it MUST validate the following parameter:

 Verify that ppAsync is not NULL.<115>

The server MUST perform the following:

 Create a new async object implementing the IVdsAsync interface with an output type of
VDS_ASYNCOUT_SHRINKVOLUME and set the pointer ppAsync references to the interface.

 Return an HRESULT indicating failure or success. Any errors encountered up through this point in

processing the operation are returned in this HRESULT.

The server MUST then perform the following in sequence. Errors generated in this sequence of steps
are returned in the pHrResult parameter to the IVdsAsync::Wait or IVdsAsyncQueryStatus methods.

 The file system <116> MAY need to shrink, if the file system on the volume supports shrinking,
following the parameters specified to the method.

 Shrink the volume following the parameters specified to the method.

 For each callback object registered in the list of callback objects, call the callback object's
IVdsAdviseSink::OnNotify() method with a VDS_NOTIFICATION structure with the following
attributes:

 objectType member is VDS_NTT_VOLUME.

 The volume member is a VDS_VOLUME_NOTIFICATION with the following attributes:

 ulEvent is VDS_NF_VOLUME_MODIFY.

 volumeId is the VDS_OBJECT_ID of this volume object.

 plexId is NULL GUID, but it is not relevant when ulEvent is VDS_NF_VOLUME_MODIFY.

 ulPercentCompleted range is 0-100 and is implementation-specific; however, it is not
relevant when ulEvent is VDS_NF_VOLUME_MODIFY.

%5bMS-ERREF%5d.pdf#Section_1bc92ddfb79e413cbbaa99a5281a6c90

231 / 342

[MS-VDS] - v20170601
Virtual Disk Service (VDS) Protocol
Copyright © 2017 Microsoft Corporation
Release: June 1, 2017

 Set the return code in the async object to an HRESULT indicating failure or success.

 If the task completed successfully, set the percentage completed value in the async object to

100.<117>

 Set the signal state in the async object to TRUE.

The server MUST update the percentage completed value periodically during the preceding sequence.
How often the percentage completed is updated, and at what point in the sequence, is
implementation-specific.

3.4.5.2.32.6 IVdsVolume::AddPlex (Opnum 8)

The AddPlex method adds a volume as a plex to the current volume.

 HRESULT AddPlex(
 [in] VDS_OBJECT_ID VolumeId,
 [out] IVdsAsync** ppAsync
);

VolumeId: The VDS object ID of the volume object to add as a plex.

ppAsync: A pointer to an IVdsAsync interface that, if the operation is successfully completed, receives
the IVdsAsync interface to monitor and control this operation. Callers MUST release the interface
when they are done with it.

Return Values: The method MUST return zero or a non-error HRESULT (as specified in [MS-ERREF])
to indicate success, or return an implementation-specific nonzero error code to indicate failure. For
the HRESULT values predefined by the Virtual Disk Service Remote Protocol, see section 2.2.3.

When the server receives this message, it MUST validate the following parameters:

 Verify that the volume corresponding to the VDS_OBJECT_ID that VolumeId specifies has only one
volume plex.

 Verify that ppAsync is not NULL.

If the volume resides on a basic disk, the server MUST return VDS_E_NOT_SUPPORTED (HRESULT of
0x80042400).

The server MUST perform the following:

 Verify that the size of the volume specified using the VolumeId parameter has a size that is
greater than, or equal to, the size of the volume to which the plex is being added. If the size of
the volume specified using the VolumeId parameter is less than the size of the volume to which a
plex is being added, then the server MUST return VDS_E_VOLUME_TOO_SMALL.

 Verify that the volume specified using the VolumeId parameter has no extents located on disks
that contain extents belonging to the volume to which the plex is being added. If the volume

specified using the VolumeId parameter fails this requirement, then the server MUST return

VDS_E_DISK_IN_USE_BY_VOLUME.

 Create a new async object implementing the IVdsAsync interface with an output type of
VDS_ASYNCOUT_ADDVOLUMEPLEX and set the pointer that ppAsync references to the interface.

 Return an HRESULT indicating failure or success. Any errors encountered up through this point in
processing the operation are returned in this HRESULT.

The server MUST then perform the following in sequence. Errors generated in this sequence of steps

are returned in the pHrResult parameter to the IVdsAsync::Wait or IVdsAsyncQueryStatus methods.

%5bMS-ERREF%5d.pdf#Section_1bc92ddfb79e413cbbaa99a5281a6c90

232 / 342

[MS-VDS] - v20170601
Virtual Disk Service (VDS) Protocol
Copyright © 2017 Microsoft Corporation
Release: June 1, 2017

 Add the volume plex of the volume corresponding to the VDS_OBJECT_ID that VolumeId
specifies as a volume plex to this volume.

 Set the volume plex's volume pointer to this volume object.

 Remove the volume object corresponding to the VDS_OBJECT_ID that VolumeId specifies from the

list of storage management objects.

 Set the return code in the async object to an HRESULT indicating failure or success.

 If the task completed successfully, set the percentage completed value in the async object to 100.

 Set the signal state in the async object to TRUE.

The server MUST update the percentage completed value periodically during the preceding sequence.
How often the percentage completed is updated, and at what point in the sequence, is
implementation-specific.

3.4.5.2.32.7 IVdsVolume::BreakPlex (Opnum 9)

The BreakPlex method removes a specified plex from the current volume. The interface pointer for
the new volume object can be retrieved by calling IVdsAsync::Wait through the ppAsync parameter.
The VDS_ASYNC_OUTPUT structure that is returned contains the volume object interface pointer in
the bvp.pVolumeUnk member.

 HRESULT BreakPlex(
 [in] VDS_OBJECT_ID plexId,
 [out] IVdsAsync** ppAsync
);

plexId: The GUID of the plex to be broken.

ppAsync: A pointer to an IVdsAsync interface that, if the operation is successfully completed, receives
the IVdsAsync interface to monitor and control this operation. Callers MUST release the interface

when they are done with it. If the IVdsAsync::Wait method is called on the interface, the
interfaces returned in the VDS_ASYNC_OUTPUT structure MUST be released as well. For
information on asynchronous tasks, see section 3.4.5.1.9.

Return Values: The method MUST return zero or a non-error HRESULT (as specified in [MS-ERREF])
to indicate success, or return an implementation-specific nonzero error code to indicate failure. For
the HRESULT values predefined by the Virtual Disk Service Remote Protocol, see section 2.2.3.

When the server receives this message, it MUST validate the following parameter:

 Verify that ppAsync is not NULL.

The server MUST perform the following:

 Create a new async object implementing the IVdsAsync interface with an output type of

VDS_ASYNCOUT_BREAKVOLUMEPLEX and set the pointer that ppAsync references to the

interface.

 Return an HRESULT indicating failure or success. Any errors encountered up through this point in
processing the operation are returned in this HRESULT.

If the volume resides on a basic disk, the server MUST return VDS_E_NOT_SUPPORTED (HRESULT of
0x80042400).

The server MUST then perform the following in sequence. Errors generated in this sequence of steps

are returned in the pHrResult parameter to the IVdsAsync::Wait or IVdsAsyncQueryStatus methods.

%5bMS-ERREF%5d.pdf#Section_1bc92ddfb79e413cbbaa99a5281a6c90

233 / 342

[MS-VDS] - v20170601
Virtual Disk Service (VDS) Protocol
Copyright © 2017 Microsoft Corporation
Release: June 1, 2017

 Break the volume plex corresponding to the VDS_OBJECT_ID that PlexId specifies for this
volume.

 Create a new volume object that corresponds to the new volume, implements the IVdsVolume
interface, and assigns it a unique VDS_OBJECT_ID.

 Set the new volume object's pack pointer to the pack object that this volume's pack pointer
references.

 Add the new volume object to the list of storage management objects.

 Set the volume plex's volume pointer to the new volume object. Set the task-specific return
values in the async object to return the values that are associated with
VDS_ASYNCOUT_BREAKVOLUMEPLEX (as specified in section 3.4.5.1.9).

 Set the return code in the async object to an HRESULT indicating failure or success.

 If the task completed successfully, set the percentage completed value in the async object to 100.

 Set the signal state in the async object to TRUE.

The server MUST update the percentage completed value periodically during the preceding sequence.
How often the percentage completed is updated, and at what point in the sequence, is
implementation-specific.

3.4.5.2.32.8 IVdsVolume::RemovePlex (Opnum 10)

 The RemovePlex method removes a specified plex from a volume. The last plex of a volume cannot
be removed.

 HRESULT RemovePlex(
 [in] VDS_OBJECT_ID plexId,
 [out] IVdsAsync** ppAsync
);

plexId: The VDS object ID of the volume plex object to remove.

ppAsync: A pointer to an IVdsAsync interface that, if the operation is successfully completed, receives
the IVdsAsync interface to monitor and control this operation. Callers MUST release the interface

when they are done with it.

Return Values: The method MUST return zero or a non-error HRESULT (as specified in [MS-ERREF])
to indicate success, or return an implementation-specific nonzero error code to indicate failure. For
the HRESULT values predefined by the Virtual Disk Service Remote Protocol, see section 2.2.3.

When the server receives this message, it MUST validate the following parameter:

 Verify that ppAsync is not NULL.

The server MUST perform the following:

 Create a new async object implementing the IVdsAsync interface with an output type of
VDS_ASYNCOUT_REMOVEVOLUMEPLEX and set the pointer that ppAsync references to the
interface.

 If the volume resides on a basic disk, the server MUST return VDS_E_NOT_SUPPORTED (HRESULT
of 0x80042400).

 Return an HRESULT indicating failure or success. Any errors encountered up through this point in
processing the operation are returned in this HRESULT.

%5bMS-ERREF%5d.pdf#Section_1bc92ddfb79e413cbbaa99a5281a6c90

234 / 342

[MS-VDS] - v20170601
Virtual Disk Service (VDS) Protocol
Copyright © 2017 Microsoft Corporation
Release: June 1, 2017

The server MUST then perform the following in sequence. Errors generated in this sequence of steps
are returned in the pHrResult parameter to the IVdsAsync::Wait or IVdsAsyncQueryStatus methods.

 Remove the volume plex that corresponds to the VDS_OBJECT_ID PlexId specifies from this
volume.

 Remove the corresponding volume plex object from the list of storage management objects.

 Set the return code in the async object to an HRESULT indicating failure or success.

 If the task completed successfully, set the percentage completed value in the async object to 100.

 Set the signal state in the async object to TRUE.

The server MUST update the percentage completed value periodically during the preceding sequence.
How often the percentage completed is updated, and at what point in the sequence, is
implementation-specific.

3.4.5.2.32.9 IVdsVolume::Delete (Opnum 11)

The Delete method deletes all plexes in a volume.<118>

 HRESULT Delete(
 [in] long bForce
);

bForce: A Boolean that determines whether all plexes in a volume are deleted when the volume is in
use.

Return Values: The method MUST return zero or a non-error HRESULT (as specified in [MS-ERREF])
to indicate success, or return an implementation-specific nonzero error code to indicate failure. For
the HRESULT values predefined by the Virtual Disk Service Remote Protocol, see section 2.2.3.

ERROR_SUCCESS (0x00000000)

When the server receives this message, it MUST perform the following:

 Attempt to get exclusive access to the volume. If the server fails to get exclusive access to the
volume, and the bForce parameter is not set to true, then the server MUST return
VDS_E_DEVICE_IN_USE.

 Delete all volume plexes in the volume. Remove the corresponding volume plex objects from the
list of storage management objects.<119>

 Remove this volume object from the list of storage management objects.

 For each callback object that is registered in the list of callback objects, call the callback object's
IVdsAdviseSink::OnNotify() method with a VDS_NOTIFICATION structure with the following
attributes:

 objectType member is VDS_NTT_VOLUME.

 Volume member is a VDS_VOLUME_NOTIFICATION with the following attributes:

 ulEvent is VDS_NF_VOLUME_DEPART.

 volumeId is the VDS_OBJECT_ID of this volume.

 plexId is NULL GUID, but it is not relevant when ulEvent is VDS_NF_VOLUME_DEPART.

%5bMS-ERREF%5d.pdf#Section_1bc92ddfb79e413cbbaa99a5281a6c90

235 / 342

[MS-VDS] - v20170601
Virtual Disk Service (VDS) Protocol
Copyright © 2017 Microsoft Corporation
Release: June 1, 2017

 ulPercentCompleted range is 0-100 and is implementation-specific; however, it is not
relevant when ulEvent is VDS_NF_VOLUME_DEPART.

 If the volume resided on a basic disk, for each callback object that is registered in the list of
callback objects, call the callback object's IVdsAdviseSink::OnNotify() method with a

VDS_NOTIFICATION structure with the following attributes:

 objectType member is VDS_NTT_PARTITION.

 Partition member is a VDS_PARTITION_NOTIFICATION with the following attributes:

 ulEvent is VDS_NF_PARTITION_DEPART.

 diskId is the VDS_OBJECT_ID of the disk object on which the volume resided.

 ullOffset is the byte offset at which the volume's partition started on the disk.

 If the volume resides on a basic disk and if the partition the volume resides on is the last

remaining partition in an extended partition, delete the extended partition as well. Then for

each callback object registered in the list of callback objects, call the callback object's
IVdsAdviseSink::OnNotify() method with a VDS_NOTIFICATION structure with the following
attributes:

 objectType member is VDS_NTT_PARTITION.

 Partition member is a VDS_PARTITION_NOTIFICATION with the following attributes:

 ulEvent is VDS_NF_PARTITION_DEPART.

 diskId is the VDS_OBJECT_ID of the disk object on which the extended partition resided.

 ullOffset is the byte offset at which the extended partition started on the disk.

 If the volume resided on a basic disk, for each callback object registered in the list of callback
objects, call the callback object's IVdsAdviseSink::OnNotify() method with a VDS_NOTIFICATION

structure with the following attributes:

 objectType member is VDS_NTT_DISK.

 Disk member is a VDS_DISK_NOTIFICATION with the following attributes:

 ulEvent is VDS_NF_DISK_MODIFY.

 diskId is the VDS_OBJECT_ID of the disk object on which the volume resided.

 Return an HRESULT indicating failure or success.

3.4.5.2.32.10 IVdsVolume::SetFlags (Opnum 12)

The SetFlags method assigns flags to a volume.<120>

 HRESULT SetFlags(
 [in] unsigned long ulFlags,
 [in] long bRevertOnClose
);

ulFlags: The combination of any values, by using a bitwise OR operator, that are defined in the
VDS_VOLUME_FLAG enumeration.<121>

236 / 342

[MS-VDS] - v20170601
Virtual Disk Service (VDS) Protocol
Copyright © 2017 Microsoft Corporation
Release: June 1, 2017

bRevertOnClose: A Boolean that determines whether the flags SHOULD<122> be temporarily set. If
they are temporarily set, VDS_VF_READONLY, VDS_VF_HIDDEN,

VDS_VF_NO_DEFAULT_DRIVE_LETTER, and VDS_VF_SHADOW_COPY are the only valid flags that
can be set, and the server reverts the flags after the client releases its last reference to the

volume object.

Return Values: The method MUST return zero or a non-error HRESULT (as specified in [MS-ERREF])
to indicate success, or return an implementation-specific nonzero error code to indicate failure. For
the HRESULT values predefined by the Virtual Disk Service Remote Protocol, see section 2.2.3.

When the server receives this message, it MUST validate the following parameters:

 Verify that ulFlags contains only those valid flags defined in the VDS_VOLUME_FLAG
enumeration. If bRevertOnClose is set, then verify that ulFlags only contains

VDS_VF_READONLY, VDS_VF_HIDDEN, VDS_VF_NO_DEFAULT_DRIVE_LETTER, and/or
VDS_VF_SHADOW_COPY.

 If bRevertOnClose is set, verify that the volume object does not have flags that were previously

set with bRevertOnClose and are yet to be reverted on close.

 If bRevertOnClose is not set:

 Verify that the flags being set do not contain a flag that was previously set with

bRevertOnClose and is yet to be reverted on close.

 Verify that ulFlags only contains VDS_VF_HIDDEN, VDS_VF_READONLY,
VDS_VF_NO_DEFAULT_DRIVE_LETTER, VDS_VF_SHADOW_COPY, and/or
VDS_VF_INSTALLABLE.<123>

The server MUST perform the following:

 If the ulFlags parameter specifies that the VDS_VF_READONLY or VDS_VF_HIDDEN flags be set on
a volume located on an MBR disk, and that disk contains a critical volume, such as the system,

boot, hibernation, page file, or crash dump volumes, then the server MUST fail this method and
return VDS_E_OPERATION_DENIED.

 Set the volume flags specified by ulFlags.

 If bRevertOnClose is set, the server MUST be prepared to automatically revert the volume flags
if a client releases the last reference to the volume object.

 For each callback object registered in the list of callback objects, call the callback object's
IVdsAdviseSink::OnNotify() method with a VDS_NOTIFICATION structure with the following

attributes:

 objectType member is VDS_NTT_VOLUME.

 Volume member is a VDS_VOLUME_NOTIFICATION with the following attributes:

 ulEvent is VDS_NF_VOLUME_MODIFY.

 volumeId is the VDS_OBJECT_ID of this volume object.

 plexId is NULL GUID, but it is not relevant when ulEvent is VDS_NF_VOLUME_MODIFY.

 ulPercentCompleted range is 0-100 and is implementation-specific; however, it is not
relevant when ulEvent is VDS_NF_VOLUME_MODIFY.

 Return an HRESULT indicating failure or success.

3.4.5.2.32.11 IVdsVolume::ClearFlags (Opnum 13)

%5bMS-ERREF%5d.pdf#Section_1bc92ddfb79e413cbbaa99a5281a6c90

237 / 342

[MS-VDS] - v20170601
Virtual Disk Service (VDS) Protocol
Copyright © 2017 Microsoft Corporation
Release: June 1, 2017

The ClearFlags method clears flags from a volume.<124>

 HRESULT ClearFlags(
 [in] unsigned long ulFlags
);

ulFlags: The combination of any values, by using the bitwise OR operator, that are defined in the
VDS_VOLUME_FLAG enumeration.<125>

Return Values: The method MUST return zero or a non-error HRESULT (as specified in [MS-ERREF])
to indicate success, or return an implementation-specific nonzero error code to indicate failure. For
the HRESULT values predefined by the Virtual Disk Service Remote Protocol, see section 2.2.3.

When the server receives this message, it MUST validate the following parameters:

 Verify that ulFlags contains only valid flags defined in the VDS_VOLUME_FLAG enumeration.

 If volume flags were set previously by calling SetFlags with bRevertOnClose set, and those flags

have not yet been reverted, verify that the flags that ulFlags specifies are exactly the same as
the flags set by a call to SetFlags.

The server MUST perform the following:

 Clear the volume flags that ulFlags specifies. If the flags being cleared were set temporarily by

calling SetFlags with bRevertOnClose set, and those flags had not yet been reverted, the server
SHOULD NOT revert the flags automatically when a client releases the last reference to the
volume object or dismounts the volume.

 For each callback object that is registered in the list of callback objects, call the
IVdsAdviseSink::OnNotify() method of the callback object by using a VDS_NOTIFICATION
structure that has the following attributes:

 objectType member is VDS_NTT_VOLUME.

 Volume member is a VDS_VOLUME_NOTIFICATION that has the following attributes:

 ulEvent is VDS_NF_VOLUME_MODIFY.

 volumeId is the VDS_OBJECT_ID of this volume object.

 plexId is NULL GUID, but it is not relevant when ulEvent is VDS_NF_VOLUME_MODIFY.

 ulPercentCompleted range is 0-100 and is implementation-specific; however, it is not
relevant when ulEvent is VDS_NF_VOLUME_MODIFY.

 Return an HRESULT indicating failure or success.

3.4.5.2.33 IVdsVolume2 Methods

3.4.5.2.33.1 IVdsVolume2::GetProperties2 (Opnum 3)

The GetProperties2 method retrieves the properties of the volume that is represented by the object
exposing this interface and method.

 HRESULT GetProperties2(
 [out] VDS_VOLUME_PROP2 *pVolumeProperties
);

%5bMS-ERREF%5d.pdf#Section_1bc92ddfb79e413cbbaa99a5281a6c90

238 / 342

[MS-VDS] - v20170601
Virtual Disk Service (VDS) Protocol
Copyright © 2017 Microsoft Corporation
Release: June 1, 2017

pVolumeProperties: A pointer to a VDS_VOLUME_PROP2 (section 2.2.2.15.1.1) structure that, if the
operation is successfully completed, receives the properties of the volume.

Return Values: The method MUST return zero or a non-error HRESULT (as specified in [MS-ERREF])
to indicate success, or return an implementation-specific nonzero error code to indicate failure. For

the HRESULT values predefined by the Virtual Disk Service Remote Protocol, see section 2.2.3.

When the server receives this message, it MUST validate the following parameter:

 Verify that pVolumeProperties is not NULL.

The server MUST populate the VDS_VOLUME_PROP2 structure that pVolumeProperties references with
the properties of the volume, and return an HRESULT indicating failure or success.

3.4.5.2.34 IVdsVolumeMF Methods

3.4.5.2.34.1 IVdsVolumeMF::GetFileSystemProperties (Opnum 3)

The GetFileSystemProperties method returns property details about the file system on the current
volume.

 HRESULT GetFileSystemProperties(
 [out] VDS_FILE_SYSTEM_PROP* pFileSystemProp
);

pFileSystemProp: A pointer to a VDS_FILE_SYSTEM_PROP structure that, if the operation is
successfully completed, receives the properties of the file system on the volume.

Return Values: The method MUST return zero or a non-error HRESULT (as specified in [MS-ERREF])
to indicate success, or return an implementation-specific nonzero error code to indicate failure. For
the HRESULT values predefined by the Virtual Disk Service Remote Protocol, see section 2.2.3.

When the server receives this message, it MUST validate the following parameter:

 Verify that pFileSystemProp is not NULL.

The server MUST populate the VDS_FILE_SYSTEM_PROP structure (as specified in section 2.2.1.3.17)
that pFileSystemProp references by using the properties of the file system on the volume. The
server MUST then return an HRESULT indicating failure or success.

If the volume is associated with a removable device and there is no media present, then this method
MUST return VDS_E_NO_MEDIA.

If the volume is in the OFFLINE state, then this method SHOULD<126> return
VDS_E_VOLUME_NOT_ONLINE.

If the user level access granted to the thread that makes this method call does not have sufficient
privileges, then this method MUST convert the Win32 error ERROR_ACCESS_DENIED to an HRESULT
and return the result to the calling application.

3.4.5.2.34.2 IVdsVolumeMF::Format (Opnum 4)

The Format method formats a file system on the current volume.

 HRESULT Format(
 [in] VDS_FILE_SYSTEM_TYPE type,
 [in, string] WCHAR* pwszLabel,
 [in] DWORD dwUnitAllocationSize,
 [in] long bForce,

%5bMS-ERREF%5d.pdf#Section_1bc92ddfb79e413cbbaa99a5281a6c90
%5bMS-ERREF%5d.pdf#Section_1bc92ddfb79e413cbbaa99a5281a6c90

239 / 342

[MS-VDS] - v20170601
Virtual Disk Service (VDS) Protocol
Copyright © 2017 Microsoft Corporation
Release: June 1, 2017

 [in] long bQuickFormat,
 [in] long bEnableCompression,
 [out] IVdsAsync** ppAsync
);

type: A file system type that is enumerated by VDS_FILE_SYSTEM_TYPE. Clients that format by using
file systems that are not enumerated by VDS_FILE_SYSTEM_TYPE can use the
IVdsVolumeMF2::FormatEx method.

pwszLabel: A null-terminated Unicode label to assign to the new file system. The maximum label size
is file system-dependent.

dwUnitAllocationSize: The size, in bytes, of the allocation unit for the file system. The value MUST
be a power of 2. The allocation unit range is file system-dependent.

bForce: A Boolean that determines whether the format is forced, even if the volume is in use.

bQuickFormat: A Boolean that determines whether a file system is quick format. A quick format

does not verify each sector on the volume.

bEnableCompression: A Boolean that determines whether a file system is created with compression
enabled.<127>

ppAsync: A pointer to an IVdsAsync interface that, if the operation is successfully completed, receives
the IVdsAsync interface to monitor and control this operation. Callers MUST release the interface
when they are done with it.

Return Values: The method MUST return zero or a non-error HRESULT (as specified in [MS-ERREF])
to indicate success, or return an implementation-specific nonzero error code to indicate failure. For

the HRESULT values predefined by the Virtual Disk Service Remote Protocol, see section 2.2.3.

When the server receives this message, it MUST validate the following parameter:

 Verify that ppAsync is not NULL.

If parameter validation fails, the server MUST fail the operation immediately, returning a
vendor-specific error as its response to the client.

The server MUST perform the following:

 Create a new async object implementing the IVdsAsync interface with an output type of
VDS_ASYNCOUT_FORMAT and set the pointer referenced by ppAsync to the interface.

 Return an HRESULT indicating failure or success. Any errors encountered up through this point in
processing the FormatPartition operation are returned in this HRESULT.

The server MUST perform the following. Errors generated in this sequence of steps are returned in the
pHrResult parameter to the IVdsAsync::Wait or IVdsAsyncQueryStatus methods.

 Attempt to get exclusive access to the volume. If the server fails to get exclusive access to the

volume, and the bForce parameter is not set to a non-zero value, then the server MUST return
VDS_E_DEVICE_IN_USE.

 If the operating system is unable to format the device using the file system type specified using
the type parameter, then this method MUST return VDS_E_INCOMPATIBLE_FILE_SYSTEM.

 If the target device\media is write-protected, then this method MUST return
VDS_E_MEDIA_WRITE_PROTECTED.

%5bMS-ERREF%5d.pdf#Section_1bc92ddfb79e413cbbaa99a5281a6c90

240 / 342

[MS-VDS] - v20170601
Virtual Disk Service (VDS) Protocol
Copyright © 2017 Microsoft Corporation
Release: June 1, 2017

 If the pwszLabel parameter is incompatible with the file system type that is specified using the
type parameter, then the server MUST return VDS_E_BAD_LABEL.

 If the specified file system type has a minimum volume size requirement, and that requirement is
not met, then the server MUST return VDS_E_VOLUME_TOO_SMALL.

 If the specified file system type has a maximum volume size requirement, and that requirement is
not met, then the server MUST return VDS_E_VOLUME_TOO_BIG.

 If the specified file system type has a minimum or maximum cluster size requirement, and that
requirement is not met, then the server MUST return VDS_E_CLUSTER_SIZE_TOO_SMALL or
VDS_E_CLUSTER_SIZE_TOO_BIG, respectively.

 If the specified file system type has a maximum cluster count requirement, and that requirement
is not met, then the server MUST return VDS_E_CLUSTER_COUNT_BEYOND_32BITS.

The server MUST update the percentage completed value periodically during the following sequence,
and send progress notifications to all clients. How often the percentage completed is updated, and at
what point in the sequence, is implementation specific. To send progress notifications to the clients:

 For each callback object registered in the list of callback objects, call the callback object's
IVdsAdviseSink::OnNotify (Opnum 3) method with a VDS_NOTIFICATION structure with the
following attributes:

 objectType member is VDS_NTT_FILE_SYSTEM.

 FileSystem member is a VDS_FILE_SYSTEM_NOTIFICATION with the following attributes:

 ulEvent is VDS_NF_FILE_SYSTEM_FORMAT_PROGRESS.

 volumeId is the VDS_OBJECT_ID of the volume object

 dwPercentCompleted is the percentage completed value.

The server MUST then perform the following in sequence. Errors generated in this sequence of steps

are returned in the pHrResult parameter to the IVdsAsync::Wait or IVdsAsyncQueryStatus methods.

 Format the volume following the parameters specified to the method.

 For each callback object registered in the list of callback objects, call the callback object's
IVdsAdviseSink::OnNotify() method with a VDS_NOTIFICATION structure with the following
attributes:

 objectType member is VDS_NTT_VOLUME.

 Volume member is a VDS_VOLUME_NOTIFICATION with the following attributes:

 ulEvent is VDS_NF_VOLUME_MODIFY.

 volumeId is the VDS_OBJECT_ID of this volume object.

 plexId is NULL GUID, but it is not relevant when ulEvent is VDS_NF_VOLUME_MODIFY.

 ulPercentCompleted range is 0-100 and is implementation-specific; however, it is not
relevant when ulEvent is VDS_NF_VOLUME_MODIFY.

 If TRUE is specified for bEnableCompression and the file system being formatted supports
compression, compress the file system after formatting is complete.<128>

 Set the return code in the async object to an HRESULT indicating failure or success.

241 / 342

[MS-VDS] - v20170601
Virtual Disk Service (VDS) Protocol
Copyright © 2017 Microsoft Corporation
Release: June 1, 2017

 If the server tried to compress the file system after formatting but failed, the return code
MUST be set to VDS_S_VOLUME_COMPRESS_FAILED (HRESULT of 0x00042443).

 If the task completed successfully, set the percentage completed value in the async object to 100.

 Set the signal state in the async object to TRUE.

3.4.5.2.34.3 IVdsVolumeMF::AddAccessPath (Opnum 5)

The AddAccessPath method adds an access path to the current volume.<129>

 HRESULT AddAccessPath(
 [in, max_is(MAX_PATH - 1), string]
 WCHAR* pwszPath
);

pwszPath: A null-terminated Unicode string that indicates the access path. A trailing backslash MUST

be included if the access path is a drive letter (for example, "F:\").

Return Values: The method MUST return zero or a non-error HRESULT (as specified in [MS-ERREF])

to indicate success, or return an implementation-specific nonzero error code to indicate failure. For
the HRESULT values predefined by the Virtual Disk Service Remote Protocol, see section 2.2.3.

When the server receives this message, it MUST validate the following parameter:

 Verify that pwszPath is not NULL.

The server MUST then perform the following in sequence:<130>

 Add the access path to the volume.

 If the server determines that a mounted folder path name was added to the volume, for each

callback object that is registered in the list of callback objects, the server MUST call the callback
object's IVdsAdviseSink::OnNotify() method by using a VDS_NOTIFICATION structure that has the

following attributes:

 objectType member is VDS_NTT_MOUNT_POINT.

 MountPoint member is a VDS_MOUNT_POINT_NOTIFICATION with the following attributes:

 ulEvent is VDS_NF_MOUNT_POINTS_CHANGE.

 volumeId is the VDS_OBJECT_ID of the volume object whose mount point was
assigned.<131>

 If the server determines that a drive letter was added to the volume, for each callback object that
is registered in the list of callback objects, the server MUST call the callback object's
IVdsAdviseSink::OnNotify() method by using a VDS_NOTIFICATION structure that has the
following attributes:

 objectType member is VDS_NTT_DRIVE_LETTER.

 Letter member is a VDS_DRIVE_LETTER_NOTIFICATION that has the following attributes:

 ulEvent is VDS_NF_DRIVE_LETTER_ASSIGN.

 wcLetter is the drive letter that was assigned to the volume.

 volumeId is the VDS_OBJECT_ID of the volume object whose drive letter was assigned.

%5bMS-ERREF%5d.pdf#Section_1bc92ddfb79e413cbbaa99a5281a6c90

242 / 342

[MS-VDS] - v20170601
Virtual Disk Service (VDS) Protocol
Copyright © 2017 Microsoft Corporation
Release: June 1, 2017

 Return an HRESULT indicating failure or success.

3.4.5.2.34.4 IVdsVolumeMF::QueryAccessPaths (Opnum 6)

The QueryAccessPaths method returns a list of access paths and a drive letter as a single case-

insensitive Unicode character, if one exists, for the current volume.

 HRESULT QueryAccessPaths(
 [out, string, size_is(,*plNumberOfAccessPaths)]
 LPWSTR** pwszPathArray,
 [out] long* plNumberOfAccessPaths
);

pwszPathArray: A pointer to an array of strings that, if the operation is successfully completed,
receives the array of access paths.

plNumberOfAccessPaths: A pointer to a variable that, if the operation is successfully completed,

receives the total number of elements returned in pwszPathArray.

Return Values: The method MUST return zero or a non-error HRESULT (as specified in [MS-ERREF])
to indicate success, or return an implementation-specific nonzero error code to indicate failure. For
the HRESULT values predefined by the Virtual Disk Service Remote Protocol, see section 2.2.3.

When the server receives this message, it MUST validate the following parameters:

 Verify that pwszPathArray is not NULL.

 Verify that plNumberOfAccessPaths is not NULL.

If parameter validation fails, the server MUST fail the operation immediately, returning a vendor-
specific error as its response to the client.

The server MUST point pwszPathArray to an array of strings that contains the access paths to the
volume, point plNumberOfAccessPaths to the size of the array, and return an HRESULT indicating

failure or success.

3.4.5.2.34.5 IVdsVolumeMF::QueryReparsePoints (Opnum 7)

The QueryReparsePoints method returns all reparse points for the current volume.

 HRESULT QueryReparsePoints(
 [out, size_is(,*plNumberOfReparsePointProps)]
 VDS_REPARSE_POINT_PROP** ppReparsePointProps,
 [out] long* plNumberOfReparsePointProps
);

ppReparsePointProps: A pointer to an array of VDS_REPARSE_POINT_PROP structures that, if the
operation is successfully completed, receives the array of reparse point properties.

plNumberOfReparsePointProps: A pointer to a variable that, if the operation is successfully
completed, receives the total number of elements returned in ppReparsePointPorps.

Return Values: The method MUST return zero or a non-error HRESULT (as specified in [MS-ERREF])
to indicate success, or return an implementation-specific nonzero error code to indicate failure. For

the HRESULT values predefined by the Virtual Disk Service Remote Protocol, see section 2.2.3.

When the server receives this message, it MUST validate the following parameters:

 Verify that ppReparsePointProps is not NULL.

%5bMS-ERREF%5d.pdf#Section_1bc92ddfb79e413cbbaa99a5281a6c90
%5bMS-ERREF%5d.pdf#Section_1bc92ddfb79e413cbbaa99a5281a6c90

243 / 342

[MS-VDS] - v20170601
Virtual Disk Service (VDS) Protocol
Copyright © 2017 Microsoft Corporation
Release: June 1, 2017

 Verify that plNumberOfReparsePointProps is not NULL.

The server MUST point ppReparsePointProps to an array of VDS_REPARSE_POINT_PROP structures

that contain information about each reparse point on the volume, point
plNumberOfReparsePointProps to the size of the array, and return an HRESULT indicating failure

or success.

3.4.5.2.34.6 IVdsVolumeMF::DeleteAccessPath (Opnum 8)

The DeleteAccessPath method removes the access path from the current volume.

 HRESULT DeleteAccessPath(
 [in, max_is(MAX_PATH - 1), string]
 WCHAR* pwszPath,
 [in] long bForce
);

pwszPath: A Unicode string indicating the access path, for example, "C:\myfolder\mydocuments".

bForce: A Boolean that determines whether an access is deleted unconditionally, even if the volume is
in use. This parameter is meaningful only when the access path is a drive letter.

Return Values: The method MUST return zero or a non-error HRESULT (as specified in [MS-ERREF])
to indicate success, or return an implementation-specific nonzero error code to indicate failure. For

the HRESULT values predefined by the Virtual Disk Service Remote Protocol, see section 2.2.3.

When the server receives this message, it MUST validate the following parameters:

 Verify that pwszPath is not NULL.

 Verify that the access path that pwszPath specifies is an access point to the volume.

The server MUST then perform the following in sequence:<132>

 Attempt to get exclusive access to the volume. If the server fails to get exclusive access to the
volume, and the bForce parameter is not set to a non-zero value, then the server MUST return

VDS_E_DEVICE_IN_USE.

 Delete the access point from the volume.

 If the server determines that a mount point was removed from the volume, for each callback
object that is registered in the list of callback objects, the server MUST call the callback object's
IVdsAdviseSink::OnNotify() method by using a VDS_NOTIFICATION structure that has the
following attributes:

 objectType member is VDS_NTT_MOUNT_POINT.

 MountPoint member is a VDS_MOUNT_POINT_NOTIFICATION with the following attributes:

 ulEvent is VDS_NF_MOUNT_POINTS_CHANGE.

 volumeId is the VDS_OBJECT_ID of the volume object whose mount point was removed.

 If the server determines that a drive letter was removed from the volume, for each callback object
that is registered in the list of callback objects, the server MUST call the callback object's
IVdsAdviseSink::OnNotify() method by using a VDS_NOTIFICATION structure that has the

following attributes:

 objectType member is VDS_NTT_DRIVE_LETTER.

%5bMS-ERREF%5d.pdf#Section_1bc92ddfb79e413cbbaa99a5281a6c90

244 / 342

[MS-VDS] - v20170601
Virtual Disk Service (VDS) Protocol
Copyright © 2017 Microsoft Corporation
Release: June 1, 2017

 Letter member is a VDS_DRIVE_LETTER_NOTIFICATION that has the following attributes:

 ulEvent is VDS_NF_DRIVE_LETTER_FREE.

 wcLetter is the drive letter that was removed from the volume.

 volumeId is the VDS_OBJECT_ID of the volume object whose drive letter was removed.

 Return an HRESULT indicating failure or success.

3.4.5.2.34.7 IVdsVolumeMF::Mount (Opnum 9)

The Mount method mounts a volume.

 HRESULT Mount();

This method has no parameters.

Return Values: The method MUST return zero or a non-error HRESULT (as specified in [MS-ERREF])
to indicate success, or return an implementation-specific nonzero error code to indicate failure. For
the HRESULT values predefined by the Virtual Disk Service Remote Protocol, see section 2.2.3.

When the server receives the message, it MUST perform the following in sequence:

 If the volume was dismounted permanently, bring the volume online.

 Mount the volume.

 Return an HRESULT indicating failure or success.

3.4.5.2.34.8 IVdsVolumeMF::Dismount (Opnum 10)

The Dismount method dismounts a mounted volume.

 HRESULT Dismount(
 [in] long bForce,
 [in] long bPermanent
);

bForce: A Boolean that determines whether the current volume is dismounted unconditionally, even if

the volume is in use.

bPermanent: A Boolean that determines whether a volume MUST be dismounted permanently by
taking the volume offline after dismounting it.

Return Values: The method MUST return zero or a non-error HRESULT (as specified in [MS-ERREF])
to indicate success, or return an implementation-specific nonzero error code to indicate failure. For
the HRESULT values predefined by the Virtual Disk Service Remote Protocol, see section 2.2.3.

When the server receives this message, it MUST validate the following:

 Attempt to get exclusive access to the volume. If the server fails to get exclusive access to the
volume, and the bForce parameter is not set to a non-zero value, then the server MUST return
VDS_E_DEVICE_IN_USE.

 Verify that the volume is not currently temporarily dismounted.

 If bPermanent is set, verify that the volume supports permanent dismount by checking the
volume flag VDS_VF_PERMANENT_DISMOUNT_SUPPORTED.

%5bMS-ERREF%5d.pdf#Section_1bc92ddfb79e413cbbaa99a5281a6c90
%5bMS-ERREF%5d.pdf#Section_1bc92ddfb79e413cbbaa99a5281a6c90

245 / 342

[MS-VDS] - v20170601
Virtual Disk Service (VDS) Protocol
Copyright © 2017 Microsoft Corporation
Release: June 1, 2017

 If bPermanent is set, verify that the volume does not have any access paths.

 If bPermanent is not set, verify that the volume is not currently permanently dismounted.

The server MUST then perform the following in sequence:

 Dismount the volume.

 If bForce is set, force the dismount, even if the volume is in use.

 If bPermanent is set, take the volume offline.<133>

 Return an HRESULT indicating failure or success.

3.4.5.2.34.9 IVdsVolumeMF::SetFileSystemFlags (Opnum 11)

The SetFileSystemFlags method sets the file system flags.

 HRESULT SetFileSystemFlags(
 [in] unsigned long ulFlags
);

ulFlags: Callers MUST set the VDS_FPF_COMPRESSED flag.

Return Values: The method MUST return zero or a non-error HRESULT (as specified in [MS-ERREF])
to indicate success, or return an implementation-specific nonzero error code to indicate failure. For
the HRESULT values predefined by the Virtual Disk Service Remote Protocol, see section 2.2.3.

When the server receives this message, it MUST validate the following:

 Verify that ulFlags does not contain any flags other than VDS_FPF_COMPRESSED.

The server MUST set the file system flags specified by ulFlags and return an HRESULT indicating
failure or success.

3.4.5.2.34.10 IVdsVolumeMF::ClearFileSystemFlags (Opnum 12)

The ClearFileSystemFlags method clears the file system flags.

 HRESULT ClearFileSystemFlags(
 [in] unsigned long ulFlags
);

ulFlags: Callers MUST clear the VDS_FPF_COMPRESSED flag.

Return Values: The method MUST return zero or a non-error HRESULT (as specified in [MS-ERREF])

to indicate success, or return an implementation-specific nonzero error code to indicate failure. For
the HRESULT values predefined by the Virtual Disk Service Remote Protocol, see section 2.2.3.

When the server receives this message, it MUST validate the following parameter:

 Verify that ulFlags does not contain any flags other than VDS_FPF_COMPRESSED.

The server MUST clear the file system flags that ulFlags specifies and return an HRESULT indicating
failure or success.

3.4.5.2.35 IVdsVolumeMF2 Methods

%5bMS-ERREF%5d.pdf#Section_1bc92ddfb79e413cbbaa99a5281a6c90
%5bMS-ERREF%5d.pdf#Section_1bc92ddfb79e413cbbaa99a5281a6c90

246 / 342

[MS-VDS] - v20170601
Virtual Disk Service (VDS) Protocol
Copyright © 2017 Microsoft Corporation
Release: June 1, 2017

3.4.5.2.35.1 IVdsVolumeMF2::GetFileSystemTypeName (Opnum 3)

The GetFileSystemTypeName method retrieves the name of the file system on a volume.

 HRESULT GetFileSystemTypeName(
 [out, string] WCHAR** ppwszFileSystemTypeName
);

ppwszFileSystemTypeName: A pointer that, if the operation is successfully completed, receives a
null-terminated Unicode string with the file system name.

Return Values: The method MUST return zero or a non-error HRESULT (as specified in [MS-ERREF])
to indicate success, or return an implementation-specific nonzero error code to indicate failure. For

the HRESULT values predefined by the Virtual Disk Service Remote Protocol, see section 2.2.3.

When the server receives this message, it MUST validate the following parameter:

 Verify that ppwszFileSystemTypeName is not NULL.

The server MUST point ppwszFileSystemTypeName to a string that contains the name of the file
system on the volume, and then return an HRESULT indicating failure or success.

3.4.5.2.35.2 IVdsVolumeMF2::QueryFileSystemFormatSupport (Opnum 4)

The QueryFileSystemFormatSupport method retrieves the properties of the file systems that are
supported for formatting a volume.

 HRESULT QueryFileSystemFormatSupport(
 [out, size_is(,*plNumberOfFileSystems)]
 VDS_FILE_SYSTEM_FORMAT_SUPPORT_PROP** ppFileSystemSupportProps,
 [out] long* plNumberOfFileSystems
);

ppFileSystemSupportProps: A pointer to an array of VDS_FILE_SYSTEM_FORMAT_SUPPORT_PROP
structures which, if the operation completes successfully, receives an array of properties of each
supported file-system.

plNumberOfFileSystems: A pointer to a variable which, if the operation completes successfully,
receives the total number of elements returned in ppFileSystemSupportProps.

Return Values: The method MUST return zero or a non-error HRESULT (as specified in [MS-ERREF])
to indicate success, or return an implementation-specific nonzero error code to indicate failure. For

the HRESULT values predefined by the Virtual Disk Service Remote Protocol, see section 2.2.3.

When the server receives this message, it MUST validate the following parameters:

 Verify that ppFileSystemSupportProps is not NULL.

 Verify that plNumberOfFileSystems is not NULL.

The server MUST point ppFileSystemSupportProps to an array of
VDS_FILE_SYSTEM_FORMAT_SUPPORT_PROP structures that contains information about each file
system that is supported for formatting the volume, point plNumberOfFileSystems to the size of the

array, and return an HRESULT indicating failure or success.

3.4.5.2.35.3 IVdsVolumeMF2::FormatEx (Opnum 5)

The FormatEx method formats a file system on a volume.

%5bMS-ERREF%5d.pdf#Section_1bc92ddfb79e413cbbaa99a5281a6c90
%5bMS-ERREF%5d.pdf#Section_1bc92ddfb79e413cbbaa99a5281a6c90

247 / 342

[MS-VDS] - v20170601
Virtual Disk Service (VDS) Protocol
Copyright © 2017 Microsoft Corporation
Release: June 1, 2017

 HRESULT FormatEx(
 [in, unique, string] WCHAR* pwszFileSystemTypeName,
 [in] unsigned short usFileSystemRevision,
 [in] unsigned long ulDesiredUnitAllocationSize,
 [in, unique, string] WCHAR* pwszLabel,
 [in] long bForce,
 [in] long bQuickFormat,
 [in] long bEnableCompression,
 [out] IVdsAsync** ppAsync
);

pwszFileSystemTypeName: A null-terminated Unicode string that contains the name of the file
systems to format the volume with.

usFileSystemRevision: A 16-bit, binary-coded decimal number that indicates the revision of the file
system, if any. The first two (most significant) digits (8-bits) indicate the major revision, and the
last two (least significant) digits (8-bits) indicate the minor revision.

Note 0x0250 represents revision 2.50.

ulDesiredUnitAllocationSize: The size, in bytes, of the allocation unit for the file system. The
value MUST be a power of 2. If the value is 0, a default allocation unit that is determined by the
file system type is used. The allocation unit range is file system-dependent.

pwszLabel: A null-terminated Unicode string to assign to the new file system. The maximum label
size is file system-dependent.

bForce: A Boolean that determines whether a file system format is forced, even if the volume is in
use.

bQuickFormat: A Boolean that determines whether a file system is quick formatted. A quick format
does not verify each sector on the volume.

bEnableCompression: A Boolean that determines whether a file system is created with compression

enabled.<134>

ppAsync: A pointer to an IVdsAsync interface that, if the operation is successfully completed, receives
the IVdsAsync interface to monitor and control this operation. Callers MUST release the interface
when they are done with it.

Return Values: The method MUST return zero or a non-error HRESULT (as specified in [MS-ERREF])
to indicate success, or return an implementation-specific nonzero error code to indicate failure. For

the HRESULT values predefined by the Virtual Disk Service Remote Protocol, see section 2.2.3.

When the server receives this message, it MUST validate the following parameter:

 Verify that ppAsync is not NULL.

The server MUST perform the following:

 Create a new async object that implements the IVdsAsync interface with an output type of

VDS_ASYNCOUT_FORMAT and then set the pointer that ppAsync references to the interface.

 Return an HRESULT indicating failure or success. Any errors encountered up through this point in

processing the operation are returned in this HRESULT.

The server MUST perform the following. Errors generated in this sequence of steps are returned in the
pHrResult parameter to the IVdsAsync::Wait or IVdsAsyncQueryStatus methods.

%5bMS-ERREF%5d.pdf#Section_1bc92ddfb79e413cbbaa99a5281a6c90

248 / 342

[MS-VDS] - v20170601
Virtual Disk Service (VDS) Protocol
Copyright © 2017 Microsoft Corporation
Release: June 1, 2017

 Attempt to get exclusive access to the volume. If the server fails to get exclusive access to the
volume, and the bForce parameter is not set to a non-zero value, then the server MUST return

VDS_E_DEVICE_IN_USE.

 If the operating system is unable to format the device by using the file system type that is

specified using the type parameter, then this method MUST return
VDS_E_INCOMPATIBLE_FILE_SYSTEM.

 If the target device\media is write-protected, then this method MUST return
VDS_E_MEDIA_WRITE_PROTECTED.

 If the pwszLabel parameter is incompatible with the file system type specified using the type
parameter, then the server MUST return VDS_E_BAD_LABEL.

 If the specified file system type does not support quick formatting, then the server MUST return

VDS_E_CANT_QUICK_FORMAT.

 If the specified file system type has a minimum volume size requirement, and that requirement is
not met, then the server MUST return VDS_E_VOLUME_TOO_SMALL.

 If the specified file system type has a maximum volume size requirement, and that requirement is
not met, then the server MUST return VDS_E_VOLUME_TOO_BIG.

 If the specified file system type has a minimum or maximum cluster size requirement, and that

requirement is not met, then the server MUST return VDS_E_CLUSTER_SIZE_TOO_SMALL or
VDS_E_CLUSTER_SIZE_TOO_BIG, respectively.

 If the specified file system type has a maximum cluster count requirement, and that requirement
is not met, then the server MUST return VDS_E_CLUSTER_COUNT_BEYOND_32BITS.

The server MUST update the percentage completed value periodically during the following sequence,
and send progress notifications to all clients. How often the percentage completed is updated, and at
what point in the sequence, is implementation specific. To send progress notifications to the clients:

 For each callback object registered in the list of callback objects, call the callback object's

IVdsAdviseSink::OnNotify (Opnum 3) method with a VDS_NOTIFICATION structure with the
following attributes:

 objectType member is VDS_NTT_FILE_SYSTEM.

 FileSystem member is a VDS_FILE_SYSTEM_NOTIFICATION with the following attributes:

 ulEvent is VDS_NF_FILE_SYSTEM_FORMAT_PROGRESS.

 volumeId is the VDS_OBJECT_ID of the volume object

 dwPercentCompleted is the percentage completed value.

The server MUST then perform the following in sequence:

 Format the volume following the parameters specified to the method.

 For each callback object that is registered in the list of callback objects, call the callback object's
IVdsAdviseSink::OnNotify() method by using a VDS_NOTIFICATION structure that has the
following attributes:

 objectType member is VDS_NTT_VOLUME.

 volume member is a VDS_VOLUME_NOTIFICATION with the following attributes:

 ulEvent is VDS_NF_VOLUME_MODIFY.

249 / 342

[MS-VDS] - v20170601
Virtual Disk Service (VDS) Protocol
Copyright © 2017 Microsoft Corporation
Release: June 1, 2017

 volumeId is the VDS_OBJECT_ID of this volume object.

 plexId is NULL GUID, but it is not relevant when ulEvent is VDS_NF_VOLUME_MODIFY.

 ulPercentCompleted range is 0-100 and is implementation-specific; however, it is not
relevant when ulEvent is VDS_NF_VOLUME_MODIFY.

 If TRUE is specified for bEnableCompression and the file system being formatted supports
compression, compress the file system after formatting is complete.<135>

 Set the return code in the async object to an HRESULT indicating failure or success.

 If the server tried to compress the file systems after formatting but failed, the return code
MUST be set to VDS_S_VOLUME_COMPRESS_FAILED (HRESULT of 0x00042443).

 If the task completed successfully, set the percentage completed value in the async object to 100.

 Set the signal state in the async object to TRUE.

3.4.5.2.36 IVdsVolumeMF3 Methods

3.4.5.2.36.1 IVdsVolumeMF3::QueryVolumeGuidPathnames (Opnum 3)

The QueryVolumeGuidPathnames method returns a volume's volume GUID path names.

 HRESULT QueryVolumeGuidPathnames(
 [out, string, size_is(,*pulNumberOfPaths)]
 LPWSTR** pwszPathArray,
 [out] ULONG* pulNumberOfPaths
);

pwszPathArray: Returns an array of null-terminated Unicode strings; one string for each volume
GUID path name associated with the volume.

pulNumberOfPaths: Returns the number of volume GUID path names returned in pwszPathArray.

Return Values: The method MUST return zero or a non-error HRESULT (as specified in [MS-ERREF])

to indicate success, or return an implementation-specific nonzero error code to indicate failure. For
the HRESULT values predefined by the Virtual Disk Service Remote Protocol, see section 2.2.3.

When the server receives this message, it MUST validate the following parameter:

 Verify that pwszPathArray is not NULL.

 Verify that pulNumberOfPaths is not NULL.

The server MUST then perform the following:

 Allocate a buffer to hold the volume GUID path names associated with the volume, and initialize

pwszPathArray with the address of the buffer.

 Populate the output buffer with the volume GUID path names. Set the value of pulNumberOfPaths
to the number of the volume GUID path names being returned.

 Return an HRESULT indicating failure or success.

3.4.5.2.36.2 IVdsVolumeMF3::FormatEx2 (Opnum 4)

The FormatEx2 method formats a file system on a volume.

%5bMS-ERREF%5d.pdf#Section_1bc92ddfb79e413cbbaa99a5281a6c90

250 / 342

[MS-VDS] - v20170601
Virtual Disk Service (VDS) Protocol
Copyright © 2017 Microsoft Corporation
Release: June 1, 2017

 HRESULT FormatEx2(
 [in, unique, string] LPWSTR pwszFileSystemTypeName,
 [in] USHORT usFileSystemRevision,
 [in] ULONG ulDesiredUnitAllocationSize,
 [in, unique, string] LPWSTR pwszLabel,
 [in] DWORD Options,
 [out] IVdsAsync** ppAsync
);

pwszFileSystemTypeName: A null-terminated Unicode string that contains the name of the file
systems to format the volume with.

usFileSystemRevision: A 16-bit, binary-coded decimal number that indicates the revision of the file

system, if any. The first two (most significant) digits (8 bits) indicate the major revision, and the
last two (least significant) digits (8 bits) indicate the minor revision. For example, 0x0250
represents revision 2.50.

ulDesiredUnitAllocationSize: The size, in bytes, of the allocation unit for the file system. The value

MUST be a power of 2. If the value is 0, a default allocation unit that is determined by the file
system type is used. The allocation unit range is file system-dependent.

pwszLabel: A null-terminated Unicode string to assign to the new file system. The maximum label
size is file system-dependent.

Options: The combination of any values, by using a bitwise OR operator, that are defined in the
VDS_FORMAT_OPTION_FLAGS enumeration.

ppAsync: A pointer to an IVdsAsync interface that, if the operation is successfully completed, receives
the IVdsAsync interface to monitor and control this operation. Callers MUST release the interface
when they are done with it.

Return Values: The method MUST return zero or a non-error HRESULT (as specified in [MS-ERREF])
to indicate success, or return an implementation-specific nonzero error code to indicate failure. For
the HRESULT values predefined by the Virtual Disk Service Remote Protocol, see section 2.2.3.

When the server receives this message, it MUST validate the following parameter:

 Verify that ppAsync is not NULL.

 Create a new async object that implements the IVdsAsync interface with an output type of
VDS_ASYNCOUT_FORMAT, and then set the pointer that ppAsync references to the interface.

 Return an HRESULT indicating failure or success. Any errors encountered up through this point in
processing the operation are returned in this HRESULT.

The server MUST then perform the following. Errors generated in this sequence of steps are returned
in the pHrResult parameter to the IVdsAsync::Wait or IVdsAsyncQueryStatus methods.

 Attempt to get exclusive access to the volume. If the server fails to get exclusive access to the
volume, and the VDS_FSOF_FORCE flag in the Options parameter is not set to true, then the

server MUST return VDS_E_DEVICE_IN_USE.

 If the operating system is unable to format the device using the file system type specified using
the type parameter, then this method MUST return VDS_E_INCOMPATIBLE_FILE_SYSTEM.

 If the target device\media is write-protected, then this method MUST return
VDS_E_MEDIA_WRITE_PROTECTED.

 If the pwszLabel parameter is incompatible with the file system type specified using the type
parameter, then the server MUST return VDS_E_BAD_LABEL.

%5bMS-ERREF%5d.pdf#Section_1bc92ddfb79e413cbbaa99a5281a6c90

251 / 342

[MS-VDS] - v20170601
Virtual Disk Service (VDS) Protocol
Copyright © 2017 Microsoft Corporation
Release: June 1, 2017

 If the specified file system type does not support quick formatting, then the server MUST return
VDS_E_CANT_QUICK_FORMAT.

 If the specified file system type has a minimum volume size requirement, and that requirement is
not met, then the server MUST return VDS_E_VOLUME_TOO_SMALL.

 If the specified file system type has a maximum volume size requirement, and that requirement is
not met, then the server MUST return VDS_E_VOLUME_TOO_BIG.

 If the specified file system type has a minimum or maximum cluster size requirement, and that
requirement is not met, then the server MUST return VDS_E_CLUSTER_SIZE_TOO_SMALL or
VDS_E_CLUSTER_SIZE_TOO_BIG, respectively.

 If the specified file system type has a maximum cluster count requirement, and that requirement
is not met, then the server MUST return VDS_E_CLUSTER_COUNT_BEYOND_32BITS.

The server MUST update the percentage completed value periodically during the following sequence,
and send progress notifications to all clients. How often the percentage completed is updated, and at
what point in the sequence, is implementation specific. To send progress notifications to the clients:

 For each callback object registered in the list of callback objects, call the callback object's
IVdsAdviseSink::OnNotify (Opnum 3) method with a VDS_NOTIFICATION structure with the
following attributes:

 objectType member is VDS_NTT_FILE_SYSTEM.

 FileSystem member is a VDS_FILE_SYSTEM_NOTIFICATION with the following attributes:

 ulEvent is VDS_NF_FILE_SYSTEM_FORMAT_PROGRESS.

 volumeId is the VDS_OBJECT_ID of the volume object

 dwPercentCompleted is the percentage completed value.

The server MUST perform the following in sequence:

 Format the volume following the parameters specified to the method.

 For each callback object that is registered in the list of callback objects, call the callback object's
IVdsAdviseSink::OnNotify (Opnum 3) method by using a VDS_NOTIFICATION structure that has
the following attributes:

 The objectType member is VDS_NTT_VOLUME.

 The Volume member is a VDS_VOLUME_NOTIFICATION with the following attributes:

 ulEvent is VDS_NF_VOLUME_MODIFY.

 volumeId is the VDS_OBJECT_ID of this volume object.

 If VDS_FSOF_COMPRESSION is specified and the file system being formatted supports
compression, compress the file system after formatting is complete.<136>

 Set the return code in the async object to an HRESULT indicating failure or success.

 If the server tried to compress the file systems after formatting but failed, the return code
MUST be set to VDS_S_VOLUME_COMPRESS_FAILED (HRESULT of 0x00042443).

 If the task completed successfully, set the percentage-completed value in the async object to 100.

 Set the signal state in the async object to TRUE.

252 / 342

[MS-VDS] - v20170601
Virtual Disk Service (VDS) Protocol
Copyright © 2017 Microsoft Corporation
Release: June 1, 2017

3.4.5.2.36.3 IVdsVolumeMF3::OfflineVolume (Opnum 5)

The OfflineVolume method offlines a volume. An offline volume will fail data IO. The volume can be
opened for configuration.

 HRESULT OfflineVolume(void);

This method has no parameters.

Return Values: The method MUST return zero or a non-error HRESULT (as specified in [MS-ERREF])
to indicate success, or return an implementation-specific nonzero error code to indicate failure. For

the HRESULT values predefined by the Virtual Disk Service Remote Protocol, see section 2.2.3.

When the server receives this message, it MUST put the volume into the offline state.

3.4.5.2.37 IVdsVolumeShrink Methods

3.4.5.2.37.1 IVdsVolumeShrink::QueryMaxReclaimableBytes (Opnum 3)

The QueryMaxReclaimableBytes method retrieves the maximum number of bytes that can be

reclaimed from the current volume.

 HRESULT QueryMaxReclaimableBytes(
 [out] ULONGLONG* pullMaxNumberOfReclaimableBytes
);

pullMaxNumberOfReclaimableBytes: A pointer to a variable that, if the operation is successfully
completed, receives the maximum number of bytes that can be reclaimed from the current

volume. This number is always a multiple of the file system cluster size, which is in turn a
multiple of the disk sector size.

Return Values: The method MUST return zero or a non-error HRESULT (as specified in [MS-ERREF])

to indicate success, or return an implementation-specific nonzero error code to indicate failure. For
the HRESULT values predefined by the Virtual Disk Service Remote Protocol, see section 2.2.3.

When the server receives this message, it MUST validate the following parameter:

 Verify that pullMaxNumberOfReclaimableBytes is not NULL.

The server MUST set values that pullMaxNumberOfReclaimableBytes references with the
maximum number of bytes that can be reclaimed from the volume and then return an HRESULT
indicating failure or success.

3.4.5.2.37.2 IVdsVolumeShrink::Shrink (Opnum 4)

The Shrink method shrinks the volume and all plexes, and then returns the released extents. The
Shrink method compacts the files toward the beginning of the volume, creating free space at the end

of the volume. The Shrink method also truncates the file system, reducing its size, and then
truncates the partition or dynamic volume.

 HRESULT Shrink(
 [in] ULONGLONG ullDesiredNumberOfReclaimableBytes,
 [in] ULONGLONG ullMinNumberOfReclaimableBytes,
 [out] IVdsAsync** ppAsync
);

%5bMS-ERREF%5d.pdf#Section_1bc92ddfb79e413cbbaa99a5281a6c90
%5bMS-ERREF%5d.pdf#Section_1bc92ddfb79e413cbbaa99a5281a6c90

253 / 342

[MS-VDS] - v20170601
Virtual Disk Service (VDS) Protocol
Copyright © 2017 Microsoft Corporation
Release: June 1, 2017

ullDesiredNumberOfReclaimableBytes: The desired number of bytes to be reclaimed from the
volume. The method SHOULD attempt to reclaim the desired number of bytes as specified by this

parameter. If it is unable to do so, it SHOULD attempt to reclaim a size smaller than
ullDesiredNumberOfReclaimableBytes but greater than or equal to

ullMinNumberOfReclaimableBytes. Additionally ullMinNumberOfReclaimableBytes MUST be
at least 1048576 bytes (1 MB). The actual number of bytes reclaimed is always a multiple of the
file system cluster size, which is in turn a multiple of the disk sector size.

ullMinNumberOfReclaimableBytes: The minimum number of bytes to be reclaimed from the
volume. If the method cannot reclaim at least the minimum number of bytes as specified by this
parameter, the method MUST fail and MUST NOT reclaim any bytes.

ppAsync: A pointer to an IVdsAsync interface that, if the operation is successfully completed, receives

the IVdsAsync interface to monitor and control this operation. Callers MUST release the interface
when they are done with it.

Return Values: The method MUST return zero or a non-error HRESULT (as specified in [MS-ERREF])
to indicate success, or return an implementation-specific nonzero error code to indicate failure. For

the HRESULT values predefined by the Virtual Disk Service Remote Protocol, see section 2.2.3.

When the server receives this message, it MUST validate the following parameter:

 Verify that ppAsync is not NULL.<137>

 Verify that ullDesiredNumberOfReclaimableBytes is not zero.

 Verify that ullDesiredNumberOfReclaimableBytes is greater than or equal to
ullMinNumberOfReclaimableBytes.

The server MUST perform the following:

 Create a new async object implementing the IVdsAsync interface with an output type of
VDS_ASYNCOUT_SHRINKVOLUME and set the pointer ppAsync references to the interface.

 Return an HRESULT indicating failure or success. Any errors encountered up through this point in

processing the operation are returned in this HRESULT.

The server MUST then perform the following in sequence. Errors generated in this sequence of steps
are returned in the pHrResult parameter to the IVdsAsync::Wait or IVdsAsyncQueryStatus methods.

 The file system <138> needs to shrink, if the file system on the volume supports shrinking
following the parameters specified to the method.

 Shrink the volume and all its plexes following the parameters specified to the method.

 Release the extents that have been reclaimed and mark them as free extents.

 For each callback object that is registered in the list of callback objects, call the callback object's
IVdsAdviseSink::OnNotify() method by using a VDS_NOTIFICATION structure that has the
following attributes:

 objectType member is VDS_NTT_VOLUME.

 Volume member is a VDS_VOLUME_NOTIFICATION with the following attributes:

 ulEvent is VDS_NF_VOLUME_MODIFY.

 volumeId is the VDS_OBJECT_ID of this volume object.

 plexId is NULL GUID, but it is not relevant when ulEvent is VDS_NF_VOLUME_MODIFY.

%5bMS-ERREF%5d.pdf#Section_1bc92ddfb79e413cbbaa99a5281a6c90

254 / 342

[MS-VDS] - v20170601
Virtual Disk Service (VDS) Protocol
Copyright © 2017 Microsoft Corporation
Release: June 1, 2017

 ulPercentCompleted range is 0-100 and is implementation-specific; however, it is not
relevant when ulEvent is VDS_NF_VOLUME_MODIFY.

 Set the return code in the async object to an HRESULT indicating failure or success.

 If the task completed successfully, set the percentage completed value in the async object to 100.

 Set the signal state in the async object to TRUE.

The server MUST update the percentage completed value periodically during the preceding sequence.
How often the percentage completed is updated, and at what point in the sequence, is
implementation-specific.

3.4.5.2.38 IVdsVolumeOnline Methods

3.4.5.2.38.1 IVdsVolumeOnline::Online (Opnum 3)

The Online method attempts to recover a dynamic disk volume that is experiencing errors or failed

redundancy. This method will attempt to bring the volume's VDS_HEALTH (section 2.2.1.2.1) member
value to VDS_H_HEALTHY.

 HRESULT Online();

This method has no parameters.

Return Values: The method MUST return zero or a non-error HRESULT (as specified in [MS-ERREF])
to indicate success, or return an implementation-specific nonzero error code to indicate failure. For
the HRESULT values predefined by the Virtual Disk Service Remote Protocol, see section 2.2.3.

When the server receives this message, it MUST attempt to bring the volume online and then return
an HRESULT indicating failure or success.

3.4.5.2.39 IVdsVolumePlex Methods

3.4.5.2.39.1 IVdsVolumePlex::GetProperties (Opnum 3)

The GetProperties method retrieves the properties of the volume plex that are represented by the
object exposing this interface and method.

 HRESULT GetProperties(
 [out] VDS_VOLUME_PLEX_PROP* pPlexProperties
);

pPlexProperties: A pointer to a VDS_VOLUME_PLEX_PROP structure that, if the operation is
successfully completed, receives the properties of the volume plex.

Return Values: The method MUST return zero or a non-error HRESULT (as specified in [MS-ERREF])

to indicate success, or return an implementation-specific nonzero error code to indicate failure. For

the HRESULT values predefined by the Virtual Disk Service Remote Protocol, see section 2.2.3.

When the server receives this message, it MUST validate the following parameter:

 Verify that pPlexProperties is not NULL.

The server MUST populate the VDS_VOLUME_PLEX_PROP structure that pPlexProperties references
with the properties of the volume plex, and then return an HRESULT indicating failure or success. For
information on the VDS_VOLUME_PLEX_PROP structure, see section 2.2.2.17.2.1.

%5bMS-ERREF%5d.pdf#Section_1bc92ddfb79e413cbbaa99a5281a6c90
%5bMS-ERREF%5d.pdf#Section_1bc92ddfb79e413cbbaa99a5281a6c90

255 / 342

[MS-VDS] - v20170601
Virtual Disk Service (VDS) Protocol
Copyright © 2017 Microsoft Corporation
Release: June 1, 2017

3.4.5.2.39.2 IVdsVolumePlex::GetVolume (Opnum 4)

The GetVolume method retrieves the volume that the volume plex belongs to.

 HRESULT GetVolume(
 [out] IVdsVolume** ppVolume
);

ppVolume: A pointer to an IVdsVolume interface that, if the operation is successfully completed,
receives the IVdsVolume interface of the volume object that the volume plex belongs to. Callers
MUST release the interface when they are done with it.

Return Values: The method MUST return zero or a non-error HRESULT (as specified in [MS-ERREF])

to indicate success, or return an implementation-specific nonzero error code to indicate failure. For
the HRESULT values predefined by the Virtual Disk Service Remote Protocol, see section 2.2.3.

When the server receives this message, it MUST validate the following parameter:

 Verify that ppVolume is not NULL.

The server MUST point ppVolume to an IVdsVolume interface of the volume object that the volume
plex object's volume pointer refers. The server MUST then return an HRESULT indicating failure or
success.

3.4.5.2.39.3 IVdsVolumePlex::QueryExtents (Opnum 5)

The QueryExtents method returns all extents for the current plex.

 HRESULT QueryExtents(
 [out, size_is(,*plNumberOfExtents)]
 VDS_DISK_EXTENT** ppExtentArray,
 [out] long* plNumberOfExtents
);

ppExtentArray: A pointer to an array of VDS_DISK_EXTENT structures that, if the operation is
successfully completed, receives the array of disk extent properties.

plNumberOfExtents: A pointer to a variable that, if the operation is successfully completed, receives
the total number of elements in ppExtentArray.

Return Values: The method MUST return zero or a non-error HRESULT (as specified in [MS-ERREF])
to indicate success, or return an implementation-specific nonzero error code to indicate failure. For

the HRESULT values predefined by the Virtual Disk Service Remote Protocol, see section 2.2.3.

When the server receives this message, it MUST validate the following parameters:

 Verify that ppExtentArray is not NULL.

 Verify that plNumberOfExtents is not NULL.

The server MUST point ppExtentArray to an array of VDS_DISK_EXTENT structures that contain
information about each disk extent on the volume plex, point plNumberOfExtents to the size of the
array, and then return an HRESULT indicating failure or success.

For removable media drives, the server MUST set the value of diskId in the VDS_DISK_EXTENT
structure to the VDS_OBJECT_ID of the drive associated with the plex object.

For a removable media drive with no media, the server MUST return a single extent of type
VDS_DET_UNKNOWN with values of ullOffset and ullSize set to 0.

%5bMS-ERREF%5d.pdf#Section_1bc92ddfb79e413cbbaa99a5281a6c90
%5bMS-ERREF%5d.pdf#Section_1bc92ddfb79e413cbbaa99a5281a6c90

256 / 342

[MS-VDS] - v20170601
Virtual Disk Service (VDS) Protocol
Copyright © 2017 Microsoft Corporation
Release: June 1, 2017

3.4.5.2.39.4 IVdsVolumePlex::Repair (Opnum 6)

The Repair method repairs a fault-tolerant volume plex by moving defective members to good
disks. Only plexes that are RAID-5, striped with parity, can be repaired with this method.

 HRESULT Repair(
 [in, size_is(lNumberOfDisks)] VDS_INPUT_DISK* pInputDiskArray,
 [in] long lNumberOfDisks,
 [out] IVdsAsync** ppAsync
);

pInputDiskArray: An array of VDS_INPUT_DISK structures that describe the replacement disks. Only
diskId and ullSize SHOULD be specified in each VDS_INPUT_DISK element. Only one new disk
can be passed to this method at a time.

lNumberOfDisks: The number of elements in pInputDiskArray. Only one new disk can be passed to
this method at a time.

ppAsync: A pointer to an IVdsAsync interface that, if the operation is successfully completed, receives
the IVdsAsync interface to monitor and control this operation. Callers MUST release the interface
when they are done with it. If the Wait method is called on the interface, the interface returned
in the VDS_ASYNC_OUTPUT structure MUST be released as well. For information on asynchronous

tasks, see section 3.4.5.1.9.

Return Values: The method MUST return zero or a non-error HRESULT (as specified in [MS-ERREF])
to indicate success, or return an implementation-specific nonzero error code to indicate failure. For
the HRESULT values predefined by the Virtual Disk Service Remote Protocol, see section 2.2.3.

ERROR_SUCCESS (0x00000000)

When the server receives this message, it MUST validate the following parameters:

 Verify that the volume plex is RAID-5.

 Verify that pInputDiskArray is not NULL.

 Verify that ppAsync is not NULL.

If the volume resides on a basic disk, the server MUST return VDS_E_NOT_SUPPORTED (HRESULT
of 0x80042400) or E_NOTIMPL (HRESULT of 0x80004001, which means that the method is not
implemented).

The server MUST perform the following:

 Verify that the disks specified using the pInputDiskArray parameter have no extents belonging to

the volume that is being repaired. If the pInputDiskArray parameter fails this requirement, then
the server MUST return VDS_E_DISK_IN_USE_BY_VOLUME.

 Create a new async object implementing the IVdsAsync interface with an output type of
VDS_ASYNCOUT_REPAIRVOLUMEPLEX and set the pointer that ppAsync references to the

interface.

 Return an HRESULT indicating failure or success. Any errors encountered up through this point in

processing the operation are returned in this HRESULT.

The server MUST then perform the following in sequence. Errors generated in this sequence of steps
are returned in the pHrResult parameter to the IVdsAsync::Wait or IVdsAsyncQueryStatus methods.

 Repair the volume plex corresponding to the VDS_OBJECT_ID that PlexId specifies from this
volume by moving defective members to good disks.

%5bMS-ERREF%5d.pdf#Section_1bc92ddfb79e413cbbaa99a5281a6c90

257 / 342

[MS-VDS] - v20170601
Virtual Disk Service (VDS) Protocol
Copyright © 2017 Microsoft Corporation
Release: June 1, 2017

 Set the return code in the async object to an HRESULT indicating failure or success.

 If the task completed successfully, set the percentage completed value in the async object to 100.

 Set the signal state in the async object to TRUE.

The server MUST update the percentage completed value periodically during the preceding sequence.

How often the percentage completed is updated, and at what point in the sequence, is
implementation-specific.

3.4.5.2.40 IVdsVDisk Methods

3.4.5.2.40.1 IVdsVDisk::Open (Opnum 3)

The Open method opens a handle to the specified virtual disk file and returns an

IVdsOpenVDisk (section 3.1.15.2) interface pointer to an object representing the open virtual disk (an
OpenVirtualDisk object). Release the IVdsOpenVDisk interface to close the handle to the virtual disk.

 HRESULT Open(
 [in] VIRTUAL_DISK_ACCESS_MASK AccessMask,
 [in] OPEN_VIRTUAL_DISK_FLAG Flags,
 [in] ULONG ReadWriteDepth,
 [out] IVdsOpenVDisk** ppOpenVDisk
);

AccessMask: A VIRTUAL_DISK_ACCESS_MASK (section 2.2.2.19.1.4) structure that contains the set
of access rights to be applied to the opened virtual disk.

Flags: A bitmask of OPEN_VIRTUAL_DISK_FLAG (section 2.2.2.19.1.2) flags specifying how the
virtual disk is to be opened.

ReadWriteDepth: This is applicable only to differencing type virtual disks. The number of backing
stores (files) to open read/write. This count includes the child. The remaining stores in the

differencing chain MUST be opened as read-only. For example, given a differencing disk with
two parents (diskA is the differencing disk whose parent is diskB, and since diskB is a differencing
disk, it has a parent which is diskC), entering '2' for this parameter will open the differencing disk
(diskA) and the parent used to create this differencing disk (diskB) as read-write. In this case,

diskB is also a differencing disk and its parent (diskC) is opened as read-only.

ppOpenVDisk: A pointer to a variable that, if the operation is successfully completed, receives an
IVdsOpenVDisk interface pointer to the newly opened virtual disk object. Callers MUST release the
interface pointer when it is no longer needed by calling the IUnknown::Release method.

Return Values: The method MUST return zero to indicate success, or return an implementation-
specific nonzero error code to indicate failure.

When the server receives this message, it MUST validate the following parameters:

 Verify that ppOpenVDisk is not NULL.

The server MUST then perform the following in sequence:

 Pass the input parameters to the operating system to open the virtual disk file.

 If the operating system failed to open the file, return an implementation-specific error code.
Otherwise, if the file was successfully opened, the server MUST:

 Mark the state of the object that implements IVdsVDisk as "open". For more information, see
section 2.2.2.19.1.1.

258 / 342

[MS-VDS] - v20170601
Virtual Disk Service (VDS) Protocol
Copyright © 2017 Microsoft Corporation
Release: June 1, 2017

 Create an object that implements the IVdsOpenVDisk interface to represent the virtual disk
file in the open state.

 Point ppOpenVDisk to an IVdsOpenVDisk interface of the virtual disk object created and return
an HRESULT indicating success.

3.4.5.2.40.2 IVdsVDisk::GetProperties (Opnum 4)

The GetProperties method returns details of the virtual disk.

 HRESULT GetProperties(
 [out] PVDS_VDISK_PROPERTIES pDiskProperties
);

pDiskProperties: Receives a pointer to a VDS_VDISK_PROPERTIES (section 2.2.2.19.2.1) structure
containing the disk property information.

Return Values: The method MUST return zero or a non-error HRESULT (as specified in [MS-ERREF])
to indicate success, or return an implementation-specific nonzero error code to indicate failure. For
the HRESULT values predefined by the Virtual Disk Service Remote Protocol, see section 2.2.3.

When the server receives this message, it MUST validate the following parameters:

 Verify that pDiskProperties is not NULL.

The server MUST perform the following:

 Fill all the fields of VDS_VDISK_PROPERTIES.

 Return an HRESULT indicating failure or success.

3.4.5.2.40.3 IVdsVDisk::GetHostVolume (Opnum 5)

The GetHostVolume method returns an interface pointer to the volume object for the volume on which

the virtual disk backing store file resides.<139>

 HRESULT GetHostVolume(
 [out] IVdsVolume** ppVolume
);

ppVolume: Pointer to a variable that receives an IVdsVolume (section 3.1.13.1) interface pointer for
the volume. Callers MUST release the interface pointer when it is no longer needed by calling the

IUnknown::Release method.

Return Values: The method MUST return zero or a non-error HRESULT (as specified in [MS-ERREF])
to indicate success, or return an implementation-specific nonzero error code to indicate failure. For
the HRESULT values predefined by the Virtual Disk Service Remote Protocol, see section 2.2.3.

When the server receives this message, it MUST validate the following parameters:

 Verify that ppVolume is not NULL.

The server MUST perform the following:

 Search all software providers for the volume object on which the virtual disk file resides.

%5bMS-ERREF%5d.pdf#Section_1bc92ddfb79e413cbbaa99a5281a6c90
%5bMS-ERREF%5d.pdf#Section_1bc92ddfb79e413cbbaa99a5281a6c90

259 / 342

[MS-VDS] - v20170601
Virtual Disk Service (VDS) Protocol
Copyright © 2017 Microsoft Corporation
Release: June 1, 2017

 If the volume object is found, ppVolume MUST be set to the IVdsVolume interface exposed by the
volume and MUST return the value of zero; if the volume object is not found, then the server

MUST return the HRESULT error VDS_E_OBJECT_NOT_FOUND.

3.4.5.2.40.4 IVdsVDisk::GetDeviceName (Opnum 6)

The GetDeviceName method returns the device name of the disk.

 HRESULT GetDeviceName(
 [out, string] LPWSTR* ppDeviceName
);

ppDeviceName: A pointer to a variable that receives the device name of the disk.

Return Values: The method MUST return zero to indicate success, or return an implementation-
specific nonzero error code to indicate failure.

When the server receives this message, it MUST validate the following parameter:

 Verify that ppDeviceName is not NULL.

The server MUST perform the following:

 If the virtual disk is an attached state, ppDeviceName MUST be set to the device name of the
disk associated with the virtual disk. For information on the attached state of a virtual disk, see

VDS_VDISK_STATE (section 2.2.2.19.1.1).

 If the virtual disk is not in an attached state, ppDeviceName MUST be set to NULL.

 Return an HRESULT indicating failure or success.

3.4.5.2.41 IVdsOpenVDisk Methods

3.4.5.2.41.1 IVdsOpenVDisk::Attach (Opnum 3)

The Attach method creates an operating system disk device for a virtual disk.

 HRESULT Attach(
 [in, unique] LPWSTR pStringSecurityDescriptor,
 [in] ATTACH_VIRTUAL_DISK_FLAG Flags,
 [in] ULONG ProviderSpecificFlags,
 [in] ULONG TimeoutInMs,
 [out] IVdsAsync** ppAsync
);

pStringSecurityDescriptor: A NULL-terminated wide-character string containing the security

descriptor to be applied to the virtual disk.<140> If this parameter is NULL, the security
descriptor in the caller's access token MUST be used.

Flags: A bitmask of ATTACH_VIRTUAL_DISK_FLAG (section 2.2.2.20.1.1) enumeration values
specifying virtual disk attaching options.

ProviderSpecificFlags: A bitmask of flags that are specific to the type of virtual disk that is being
surfaced. These flags are provider-specific.<141>

TimeoutInMs: The length of time, in milliseconds, before this method MAY<142> return after waiting

for the virtual disk to be surfaced completely. If this parameter is zero, the method returns
immediately without waiting for the disk to be surfaced. If this parameter is INFINITE, the

260 / 342

[MS-VDS] - v20170601
Virtual Disk Service (VDS) Protocol
Copyright © 2017 Microsoft Corporation
Release: June 1, 2017

method does not return until the surfacing operation is complete. If this parameter is set to a
value other than zero or INFINITE and the time-out value is reached, the method guarantees that

the disk is not surfaced after the operation is complete.

ppAsync: A pointer to an IVdsAsync (section 3.1.3.1) interface that, if the operation is successfully

completed, receives the IVdsAsync interface to monitor and control this operation. Callers MUST
release the interface when they are done with it.

Return Values: This method MUST return zero to indicate success, or return an implementation-
specific nonzero error code to indicate failure.

When the server receives this message, it MUST validate the following parameters:

 Verify that ppAsync is not NULL.

The server MUST perform the following:

 Create a new async object implementing the IVdsAsync interface with an output type of
VDS_ASYNCOUT_ATTACH_VDISK and set the pointer ppAsync to the interface.

 Return an HRESULT indicating failure or success. Any errors encountered up through this point in
processing the operation are returned in this HRESULT.

The server MUST then perform the following in sequence. Errors generated in this sequence of steps
are returned in the pHrResult parameter to the IVdsAsync::Wait or IVdsAsyncQueryStatus methods.

 Pass the input parameters to the operating system to attach the virtual disk.

 Set the return code in the async object to an HRESULT indicating failure or success of the
operating system. If the task completed successfully, set the percentage-completed value in the
async object to 100.

 Set the signal state in the async object to TRUE.

At any point in the preceding sequence, before the percentage-completed value in the async object is

100, the server MUST update the percentage-completed value if forward progress is made during the

compact operation.

3.4.5.2.41.2 IVdsOpenVDisk::Detach (Opnum 4)

The Detach method removes the operating system disk device that represents a virtual disk.

 HRESULT Detach(
 [in] DETACH_VIRTUAL_DISK_FLAG Flags,
 [in] ULONG ProviderSpecificFlags
);

Flags: A DETACH_VIRTUAL_DISK_FLAG (section 2.2.2.20.1.2) enumeration value that specifies how
the virtual disk is to be detached.

ProviderSpecificFlags: Flags specific to the type of virtual disk being detached.<143>

Return Values: The method MUST return zero to indicate success, or return an implementation-
specific nonzero error code to indicate failure.

When the server receives this message, it MUST validate the following parameters:

 Verify that Flags contains a bitwise OR of values from the DETACH_VIRTUAL_DISK_FLAG
enumeration.

261 / 342

[MS-VDS] - v20170601
Virtual Disk Service (VDS) Protocol
Copyright © 2017 Microsoft Corporation
Release: June 1, 2017

The server MUST then perform the following in sequence:

 Pass the input parameters to the operating system to detach the disk.

 Return any success or failure based on the operating system's response.

3.4.5.2.41.3 IVdsOpenVDisk::DetachAndDelete (Opnum 5)

The DetachAndDelete method removes the operating system disk device that represents a virtual
disk and deletes any backing store file.

 HRESULT DetachAndDelete(
 [in] DETACH_VIRTUAL_DISK_FLAG Flags,
 [in] ULONG ProviderSpecificFlags
);

Flags: A DETACH_VIRTUAL_DISK_FLAG (section 2.2.2.20.1.2) enumeration value that specifies how

the virtual disk is to be detached.

ProviderSpecificFlags: Flags specific to the type of virtual disk being detached.<144>

Return Values: The method MUST return zero to indicate success, or return an implementation-
specific nonzero error code to indicate failure.

When the server receives this message, it MUST validate the following parameters:

 Verify that Flags contains a bitwise OR of values from the DETACH_VIRTUAL_DISK_FLAG
enumeration.

The server MUST then perform the following in sequence:

 Pass the input parameters to the operating system to detach the disk.

 Delete the file associated with the virtual disk.

 Return any success or a failure if either the detach or the delete failed.

3.4.5.2.41.4 IVdsOpenVDisk::Compact (Opnum 6)

The Compact method reduces the size of the virtual disk file (the backing store). This requires that
the virtual disk be detached. Compact is applicable only to differencing type virtual disks and
virtual disks created using CREATE_VIRTUAL_DISK_FLAG_NONE. The Compact method does not

change the size of the virtual disk.

 HRESULT Compact(
 [in] COMPACT_VIRTUAL_DISK_FLAG Flags,
 [in] ULONG Reserved,
 [out] IVdsAsync** ppAsync
);

Flags: A COMPACT_VIRTUAL_DISK_FLAG (section 2.2.2.20.1.3) enumeration value that specifies how

the virtual disk is to be compacted.

Reserved: This parameter is reserved for system use and MUST be ignored.

ppAsync: A pointer to an IVdsAsync (section 3.1.3.1) interface that if the operation is successfully
completed receives the IVdsAsync interface to monitor and control this operation. Callers MUST
release the interface when they are done with it.

262 / 342

[MS-VDS] - v20170601
Virtual Disk Service (VDS) Protocol
Copyright © 2017 Microsoft Corporation
Release: June 1, 2017

Return Values: The method MUST return zero to indicate success, or return an implementation-
specific nonzero error code to indicate failure.

When the server receives this message, it MUST validate the following parameters:

 Verify that Flags is a bitwise OR of values from the COMPACT_VIRTUAL_DISK_FLAG enumeration.

 Verify that ppAsync is not NULL.

The server MUST perform the following:

 Create a new async object implementing the IVdsAsync interface with an output type of
VDS_ASYNCOUT_COMPACT_VDISK and set the pointer ppAsync to the interface.

 Return an HRESULT indicating failure or success. Any errors encountered up through this point in
processing the operation are returned in this HRESULT.

The server MUST then perform the following in sequence. Errors generated in this sequence of steps

are returned in the pHrResult parameter to the IVdsAsync::Wait or IVdsAsyncQueryStatus methods.

 Pass the input parameters to the operating system to compact the disk.

 Set the return code in the async object to an HRESULT indicating failure or success of the
operating system.

 If the task completed successfully, set the percentage completed value in the async object to 100.

 Set the signal state in the async object to TRUE.

At any point in the preceding sequence--before the percentage completed value in the async object is
100--the server MUST update the percentage completed value if forward progress is made during the
compact operation.

3.4.5.2.41.5 IVdsOpenVDisk::Merge (Opnum 7)

This method is applicable only to differencing type virtual disks. The Merge method moves all data
blocks from a differencing virtual disk into its parent virtual disk. Merging a virtual disk requires that

the virtual disk be detached during the operation. Both the virtual disk and its parent are opened
READ|WRITE using the IVdsVDisk::Open method called against the virtual disk with an appropriate
value for the ReadWriteDepth, as described later in this section.<145>

For example, to merge a differencing disk that is a child of a single parent disk into that parent disk,
call the IVdsVDisk::Open method on the child disk with the ReadWriteDepth parameter set to the
value 2. This value opens both disks with the READ and WRITE flags set, which is necessary for disks
to be merged with subsequent call to the IVdsOpenVDisk::Merge method.

 HRESULT Merge(
 [in] MERGE_VIRTUAL_DISK_FLAG Flags,
 [in] ULONG MergeDepth,
 [out] IVdsAsync** ppAsync
);

Flags: A MERGE_VIRTUAL_DISK_FLAG (section 2.2.2.20.1.4) enumeration value that specifies how
the virtual disk is to be merged.

MergeDepth: Number of parent backing store files in the differencing chain to be updated. For
example, if MergeDepth has a value of 1, the data blocks from the given differencing disk are
moved into its parent. If the given differencing disk's parent is also a differencing disk, (in other
words the given disk is diskA, its parent is diskB, and diskB's parent is diskC), and the
MergeDepth parameter value is 2, the data blocks from the given differencing disk (diskA) are

263 / 342

[MS-VDS] - v20170601
Virtual Disk Service (VDS) Protocol
Copyright © 2017 Microsoft Corporation
Release: June 1, 2017

moved into its parent (diskB), and then its parent's (diskB's) data blocks are moved into its parent
(diskC).<146>

ppAsync: A pointer to an IVdsAsync (section 3.1.3.1) interface that, if the operation is successfully
completed, receives the IVdsAsync interface to monitor and control this operation. Callers MUST

release the interface when they are done with it.

Return Values: The method MUST return zero to indicate success, or return an implementation-
specific nonzero error code to indicate failure.

When the server receives this message, it MUST validate the following parameters:

 Verify that Flags is a bitwise OR of values from the MERGE_VIRTUAL_DISK_FLAG enumeration.

 Verify that ppAsync is not NULL.

The server MUST perform the following:

 Create a new async object implementing the IVdsAsync interface with an output type of

VDS_ASYNCOUT_MERGE_VDISK and set the pointer ppAsync to the interface.

 Return an HRESULT indicating failure or success. Any errors encountered up through this point in
processing the operation are returned in this HRESULT.

The server MUST then perform the following in sequence. Errors generated in this sequence of steps
are returned in the pHrResult parameter to the IVdsAsync::Wait or IVdsAsyncQueryStatus methods.

 Pass the input parameters to the operating system to merge the disk with its parents.

 Set the return code in the async object to an HRESULT indicating failure or success of the
operating system.

 If the task completed successfully, set the percentage completed value in the async object to 100.

 Set the signal state in the async object to TRUE.

At any point in the preceding sequence before the percentage completed value in the async object is
100, the server MUST update the percentage completed value if forward progress is made during the

merge operation.

3.4.5.2.41.6 IVdsOpenVDisk::Expand (Opnum 8)

The Expand method increases the size of a virtual disk. Expanding a virtual disk requires that the
virtual disk be detached during the operation. The virtual disk file is opened with READ|WRITE
privileges using the IVdsVDisk::Open method.<147>

 HRESULT Expand(
 [in] EXPAND_VIRTUAL_DISK_FLAG Flags,
 [in] ULONGLONG NewSize,
 [out] IVdsAsync** ppAsync
);

Flags: An EXPAND_VIRTUAL_DISK_FLAG (section 2.2.2.20.1.5) enumeration value that specifies how
the virtual disk is to be compacted.

NewSize: The desired size, in bytes, of the expanded virtual disk.

ppAsync: A pointer to an IVdsAsync (section 3.1.3.1) interface that, if the operation is successfully
completed, receives the IVdsAsync interface to monitor and control this operation. Callers MUST
release the interface when they are done with it.

264 / 342

[MS-VDS] - v20170601
Virtual Disk Service (VDS) Protocol
Copyright © 2017 Microsoft Corporation
Release: June 1, 2017

Return Values: The method MUST return zero to indicate success, or return an implementation-
specific nonzero error code to indicate failure.

When the server receives this message, it MUST validate the following parameters:

 Verify that Flags is a bitwise OR of values from the EXPAND_VIRTUAL_DISK_FLAG enumeration.

 Verify that ppAsync is not NULL.

The server MUST perform the following:

 Create a new async object implementing the IVdsAsync interface with an output type of
VDS_ASYNCOUT_EXPAND_VDISK and set the pointer ppAsync to the interface.

 Return an HRESULT indicating failure or success. Any errors encountered up through this point in
processing the operation are returned in this HRESULT.

The server MUST then perform the following in sequence. Errors generated in this sequence of steps

are returned in the pHrResult parameter to the IVdsAsync::Wait or IVdsAsyncQueryStatus methods.

 Pass the input parameters to the operating system to expand the disk.

 Set the return code in the async object to an HRESULT indicating failure or success of the
operating system.

 If the task completed successfully, set the percentage completed value in the async object to 100.

 Set the signal state in the async object to TRUE.

At any point in the preceding sequence before the percentage completed value in the async object is
100, the server MUST update the percentage completed value if forward progress is made during the
expand operation.

3.4.6 Timer Events

None.

3.4.7 Other Local Events

The server SHOULD<148> track changes in the storage configuration of the computer. These changes

can be due to hardware failures, the administrator changing the hardware configuration, or the
administrator configuring storage objects by using tools such as disk, volume, pack, partition,
drive letter, and file system arrivals, removals, and modifications.<149>

Note If the server does not track changes in storage configuration, clients MAY be unable to perform
configuration operations such as the ones that are specified in this section.

3.4.7.1 Disk Pack Arrival (Dynamic Disks)

When the server detects that a new disk pack on the system has dynamic disks, the server MUST

add a disk pack object for it. For information on how to add the pack object, see section 3.4.5.1.1.

3.4.7.2 Disk Pack Removal (Dynamic Disks)

When the server detects that a disk pack with dynamic disks was removed from the system, the
server MUST remove the corresponding pack object. For information on how to remove the pack
object, see section 3.4.5.1.2.

265 / 342

[MS-VDS] - v20170601
Virtual Disk Service (VDS) Protocol
Copyright © 2017 Microsoft Corporation
Release: June 1, 2017

3.4.7.3 Pack Modification

When the server detects that a pack was modified, for each callback object that is registered in the
list of callback objects, the server MUST call the callback object's

IVdsAdviseSink::OnNotify (section 3.3.4.3.1) method by using a
VDS_NOTIFICATION (section 2.2.1.3.9) structure that has the following attributes:

 objectType member is VDS_NTT_PACK.

 Pack member is a VDS_PACK_NOTIFICATION (section 2.2.1.3.2) with the following attributes:

 ulEvent is VDS_NF_PACK_MODIFY.

 packId is the VDS_OBJECT_ID (section 2.2.1.1.3) of the pack object.

3.4.7.4 Disk Arrival

When the server detects a new disk connected to the system, the server MUST add a disk object for

it. For information on how to add a disk object, see section 3.4.5.1.3.

3.4.7.5 Disk Removal

When the server detects that a disk was disconnected from the system, the server MUST remove the
corresponding disk object. For information on how to remove a disk object, see section 3.4.5.1.4.

3.4.7.6 Disk Modification

When the server detects that a disk was modified, for each callback object that is registered in the list
of callback objects, the server MUST call the callback object's
IVdsAdviseSink::OnNotify (section 3.3.4.3.1) method by using a
VDS_NOTIFICATION (section 2.2.1.3.9) structure that has the following attributes:

 objectType member is VDS_NTT_DISK.

 Disk member is a VDS_DISK_NOTIFICATION (section 2.2.1.3.3) with the following attributes:

 ulEvent is VDS_NF_DISK_MODIFY.

 diskId is the VDS_OBJECT_ID (section 2.2.1.1.3) of the disk object.

3.4.7.7 Volume Arrival

When the server detects a new volume on the system, the server MUST add a volume object for it.
For information on how to add a volume object, see section 3.4.5.1.5.

3.4.7.8 Volume Removal

When the server detects that a volume was removed from the system, the server MUST remove the

corresponding volume object. For information on how to remove a volume object, see section
3.4.5.1.6.

3.4.7.9 Volume Modification

When the server detects that a volume was modified, for each callback object that is registered in the
list of callback objects, the server MUST call the callback object's
IVdsAdviseSink::OnNotify (section 3.3.4.3.1) method by using a
VDS_NOTIFICATION (section 2.2.1.3.9) structure that has the following attributes:

266 / 342

[MS-VDS] - v20170601
Virtual Disk Service (VDS) Protocol
Copyright © 2017 Microsoft Corporation
Release: June 1, 2017

 objectType member is VDS_NTT_VOLUME.

 Volume member is a VDS_VOLUME_NOTIFICATION (section 2.2.1.3.4) with the following

attributes:

 ulEvent is VDS_NF_VOLUME_MODIFY.

 volumeId is the VDS_OBJECT_ID (section 2.2.1.1.3) of the volume object.

 plexId SHOULD be GUID_NULL, but it is not relevant when ulEvent is
VDS_NF_VOLUME_MODIFY.

 ulPercentCompleted needs to be from 0 to 100 and is implementation-specific, but it is not
relevant when ulEvent is VDS_NF_VOLUME_MODIFY.

3.4.7.10 File System Modification

When the server detects that a volume was formatted, for each callback object that is registered in

the list of callback objects, the server MUST call the callback object's
IVdsAdviseSink::OnNotify() (section 3.3.4.3.1) method by using a
VDS_NOTIFICATION (section 2.2.1.3.9) structure that has the following attributes:

 objectType member is VDS_NTT_FILE_SYSTEM.

 FileSystem member is a VDS_FILE_SYSTEM_NOTIFICATION (section 2.2.1.3.7) with the following
attributes:

 ulEvent is VDS_NF_FILE_SYSTEM_MODIFY.

 volumeId is the VDS_OBJECT_ID (section 2.2.1.1.3) of the volume object whose file system
was formatted.

 dwPercentCompleted is not relevant when ulEvent is VDS_NF_FILE_SYSTEM_MODIFY but

its value needs to be from 0 to 100.

3.4.7.11 Mount Point Change

When the server detects that a volume's mount point has changed, for each callback object that is

registered in the list of callback objects, the server MUST call the callback object's
IVdsAdviseSink::OnNotify() (section 3.3.4.3.1) method by using a
VDS_NOTIFICATION (section 2.2.1.3.9) structure that has the following attributes:

 objectType member is VDS_NTT_MOUNT_POINT.

 MountPoint member is a VDS_MOUNT_POINT_NOTIFICATION (section 2.2.1.3.8) with the
following attributes:

 ulEvent is VDS_NF_MOUNT_POINTS_CHANGE.

 volumeId is the VDS_OBJECT_ID (section 2.2.1.1.3) of the volume object whose mount point

was changed.

3.4.7.12 Drive Letter Assignment

When the server detects that a drive letter is assigned to a volume, for each callback object that is

registered in the list of callback objects, the server MUST call the callback object's
IVdsAdviseSink::OnNotify() (section 3.3.4.3.1) method by using a
VDS_NOTIFICATION (section 2.2.1.3.9) structure that has the following attributes:

267 / 342

[MS-VDS] - v20170601
Virtual Disk Service (VDS) Protocol
Copyright © 2017 Microsoft Corporation
Release: June 1, 2017

 objectType member is VDS_NTT_DRIVE_LETTER.

 Letter member is a VDS_DRIVE_LETTER_NOTIFICATION (section 2.2.1.3.6) that has the following

attributes:

 ulEvent is VDS_NF_DRIVE_LETTER_ASSIGN.

 wcLetter is the drive letter that was assigned to the volume.

 volumeId is the VDS_OBJECT_ID (section 2.2.1.1.3) of the volume object whose drive letter
was assigned.

3.4.7.13 Drive Letter Removal

When the server detects that a drive letter was removed from a volume, for each callback object
that is registered in the list of callback objects, the server MUST call the callback object's
IVdsAdviseSink::OnNotify() (section 3.3.4.3.1) method by using a
VDS_NOTIFICATION (section 2.2.1.3.9) structure with the following attributes:

 objectType member is VDS_NTT_DRIVE_LETTER.

 Letter member is a VDS_DRIVE_LETTER_NOTIFICATION (section 2.2.1.3.6) that has the following

attributes:

 ulEvent is VDS_NF_DRIVE_LETTER_FREE.

 wcLetter is the drive letter that was removed from the volume.

 volumeId is the VDS_OBJECT_ID (section 2.2.1.1.3) of the volume object whose drive letter
was removed.

3.4.7.14 Media Arrival

When the server detects that media was inserted into a removable media drive, for each callback

object that is registered in the list of callback objects, the server MUST call the callback object's
IVdsAdviseSink::OnNotify() (section 3.3.4.3.1) method by using a
VDS_NOTIFICATION (section 2.2.1.3.9) structure with the following attributes:

 objectType member is VDS_NTT_VOLUME.

 Volume member is a VDS_VOLUME_NOTIFICATION (section 2.2.1.3.4) that has the following
attributes:

 ulEvent is VDS_NF_VOLUME_MODIFY.

 volumeId is the VDS_OBJECT_ID (section 2.2.1.1.3) of the volume object corresponding to
the removable media drive.

 plexId SHOULD be GUID_NULL, but it is not relevant when ulEvent is

VDS_NF_VOLUME_MODIFY.

 ulPercentCompleted needs to be from 0 to 100 and is implementation-specific, but it is not
relevant when ulEvent is VDS_NF_VOLUME_MODIFY.

Then, for each callback object that is registered in the list of callback objects, the server MUST call the
callback object's IVdsAdviseSink::OnNotify() method by using a VDS_NOTIFICATION structure with
the following attributes:

 objectType member is VDS_NTT_DISK.

268 / 342

[MS-VDS] - v20170601
Virtual Disk Service (VDS) Protocol
Copyright © 2017 Microsoft Corporation
Release: June 1, 2017

 Disk member is a VDS_DISK_NOTIFICATION (section 2.2.1.3.3) that has the following attributes:

 ulEvent is VDS_NF_DISK_MODIFY.

 diskId is the VDS_OBJECT_ID of the disk object corresponding to the removable media drive.

3.4.7.15 Media Removal

When the server detects that media was ejected from a removable media drive, for each callback
object that is registered in the list of callback objects, the server MUST call the callback object's
IVdsAdviseSink::OnNotify() (section 3.3.4.3.1) method by using a

VDS_NOTIFICATION (section 2.2.1.3.9) structure with the following attributes:

 objectType member is VDS_NTT_VOLUME.

 Volume member is a VDS_VOLUME_NOTIFICATION (section 2.2.1.3.4) with the following
attributes:

 ulEvent is VDS_NF_VOLUME_MODIFY.

 volumeId is the VDS_OBJECT_ID (section 2.2.1.1.3) of the volume object corresponding to
the removable media drive.

 plexId SHOULD be GUID_NULL, but it is not relevant when ulEvent is
VDS_NF_VOLUME_MODIFY.

 ulPercentCompleted needs to be from 0 to 100 and is implementation-specific, but it is not
relevant when ulEvent is VDS_NF_VOLUME_MODIFY.

Then, if media was present in the drive, for each callback object that is registered in the list of
callback objects, the server MUST call the callback object's IVdsAdviseSink::OnNotify() method by
using a VDS_NOTIFICATION structure that has the following attributes:

 objectType member is VDS_NTT_DISK.

 Disk member is a VDS_DISK_NOTIFICATION (section 2.2.1.3.3) that has the following attributes:

 ulEvent is VDS_NF_DISK_MODIFY.

 diskId is the VDS_OBJECT_ID of the disk object corresponding to the removable media drive.

269 / 342

[MS-VDS] - v20170601
Virtual Disk Service (VDS) Protocol
Copyright © 2017 Microsoft Corporation
Release: June 1, 2017

4 Protocol Examples

The following sections provide examples of how a Virtual Disk Service Remote Protocol client and
server communicate in common scenarios.

A VDS client typically performs these operations in the following order:

1. Starts the VDS session.

2. Registers for notifications.

3. Receives notifications.

4. Enumerates the VDS object.

5. Retrieves properties of the VDS object.

6. Performs tasks.

7. Unregisters for notifications.

8. Ends the VDS session.

4.1 VDS Sessions

4.1.1 Starting Sessions

The following is an example of a client starting a VDS session by retrieving an instance of the VDS
service object.

270 / 342

[MS-VDS] - v20170601
Virtual Disk Service (VDS) Protocol
Copyright © 2017 Microsoft Corporation
Release: June 1, 2017

Figure 2: Client starting a VDS session by retrieving an instance of the VDS service object

1. The client requests the creation of a VDS session by calling CoCreateInstanceEx (see [MSDN-
CoCreateInstanceEx]) with the class UUID of the VDS service in order to create an instance of the

VDS object on the server.

2. The server returns a reference to the IVdsService interface.

3. The client invokes the interface's IUnknown::QueryInterface method to request for the
IVdsServiceInitialization interface.

4. The server returns a reference to the IVdsServiceInitialization interface.

https://go.microsoft.com/fwlink/?LinkId=208352
https://go.microsoft.com/fwlink/?LinkId=208352

271 / 342

[MS-VDS] - v20170601
Virtual Disk Service (VDS) Protocol
Copyright © 2017 Microsoft Corporation
Release: June 1, 2017

5. The client calls the IVdsServiceInitialization::Initialize method.

6. The server begins initializing the service and returns control back to the client.

7. The client calls the IVdsService::WaitForServiceReady method.

8. The server replies to the client with an HRESULT indicating whether the service initialization was

successful. If the VDS service initialization is successful (HRESULT of 0x00000000), the client can
request virtual disk management operations to the server through the methods in the IVdsService
interface.

9. The client initiates the enumeration of providers by calling the IVdsService::QueryProviders
method.

10. Upon successful execution of the IVdsService::QueryProviders method, the server creates an
enumeration object and returns a reference to an IEnumVdsObject interface.

11. The client can call IEnumVdsObject::Next to retrieve the next provider in the enumeration.

12. Upon receiving the IEnumVdsObject::Next request, the server looks for the next provider object in
the enumeration. If there is a provider object in the enumeration, the server returns an HRESULT
of 0x00000000 and a reference to the IUnknown interface to the client. If the server reaches the
end of the enumeration, the server returns a HRESULT of 0x00000001.

13. If the server returns a zero disk, the client invokes the interface's IUnknown::QueryInterface

method to request for the object's IVdsProvider interface.

14. The server returns a HRESULT of 0x00000000 and a reference to the IVdsProvider interface to the
client. The client can access the provider information through the IVdsProvider interface.

15. If the client wants to query the objects in the provider, the client invokes the interface's
IUnknown::QueryInterface method to request for the object's IVdsSwProvider interface.

16. The server returns a HRESULT of 0x00000000 and a reference to the IVdsSwProvider interface to
the client. The client can enumerate the objects in the provider through the IVdsProvider interface.

17. When a client no longer needs the IVdsProvider interface, the client releases the reference to the
interface by calling IVdsProvider::Release.

18. The server returns a new reference count for IVdsProvider::Release.

19. The client also needs to release the reference to the IUnknown interface by calling
IUnknown::Release.

20. The server returns a new reference count for IUnknown::Release.

21. The client can call IEnumVdsObject::Next again for the next provider in the enumeration.

22. If the server reaches the end of the enumeration, the server returns a HRESULT of 0x00000001.

23. The client no longer needs the IEnumVdsObject interface; therefore, it calls
IEnumVdsObject::Release to release the reference.

24. The server returns a new reference count for IEnumVdsObject.

4.1.2 Ending Sessions

The following figure shows an example of a client ending a VDS session.

272 / 342

[MS-VDS] - v20170601
Virtual Disk Service (VDS) Protocol
Copyright © 2017 Microsoft Corporation
Release: June 1, 2017

Figure 3: Client ending a VDS session

1. The client releases the reference to the IVdsService interface by invoking IVdsService::Release.

2. The server returns the new reference count for the IVdsService interface.

4.2 VDS Client Notifications

4.2.1 Registering for Notifications

The following figure shows an example of a client that registers to receive notifications from a server.

Figure 4: Client registering to receive notifications from a server

1. The client requests registration by calling the IVdsService::Advise method and by passing an
IVdsAdviseSink interface as a parameter.

2. The server returns a cookie value that uniquely identifies the client registration. The client can
later use the cookie value to unregister for notifications.

273 / 342

[MS-VDS] - v20170601
Virtual Disk Service (VDS) Protocol
Copyright © 2017 Microsoft Corporation
Release: June 1, 2017

4.2.2 Receiving Notifications

The following figure shows an example of what happens when one or more VDS events are triggered.

Figure 5: VDS event triggered

1. For each callback that was registered, the server calls IVdsAdviseSink::OnNotify() with an array of

VDS_NOTIFICATION structures that describe the events that were triggered.

2. The client returns an HRESULT of 0x00000000 to acknowledge the notification.

4.2.3 Unregistering for Notifications

The following figure shows an example of a client that cancels a previous registration for a notification.

Figure 6: Client canceling previous registration for notification

274 / 342

[MS-VDS] - v20170601
Virtual Disk Service (VDS) Protocol
Copyright © 2017 Microsoft Corporation
Release: June 1, 2017

1. The client requests unregistration by calling the IVdsService::Unadvise method and passing the
cookie value that was received during registration.

2. The server determines that the cookie value matches a registered IVdsAdviseSink interface and
invokes the IVdsAdviseSink::Release method to release its reference.

3. The client returns the new reference count for the IVdsAdviseSink interface.

4. The server returns an HRESULT of 0x00000000 in response to an IVdsService::Unadvise call from
the client to acknowledge that the registration is canceled. The server can reuse the cookie value
in the future.

4.3 Querying Enumerations of VDS Objects

Most VDS objects are retrievable only through an enumeration via the IVdsPack interface. The
following figure shows an example of a client enumerating volume objects belonging to a disk pack.

275 / 342

[MS-VDS] - v20170601
Virtual Disk Service (VDS) Protocol
Copyright © 2017 Microsoft Corporation
Release: June 1, 2017

Figure 7: Client enumerating volume objects belonging to a disk pack

1. The client initiates the enumeration of volumes by calling the IVdsPack::QueryVolumes method.

2. Upon successful execution of the IVdspack::QueryVolumes method, the server creates an
enumeration object and returns a reference to an IEnumVdsObject interface.

3. The client can call IEnumVdsObject::Next for the next object in the enumeration that it wants to
retrieve.

4. Upon receiving the IEnumVdsObject::Next request, the server looks for the next volume object in
the enumeration. If one exists, then the server returns an HRESULT of 0x00000000 and a
reference to the IUnknown interface to the client. If the server reaches the end of the
enumeration, the server returns an HRESULT of 0x00000001.

276 / 342

[MS-VDS] - v20170601
Virtual Disk Service (VDS) Protocol
Copyright © 2017 Microsoft Corporation
Release: June 1, 2017

5. Assuming the server returned a zero HRESULT, the client invokes the interface's
IUnknown::QueryInterface method to request for the object's IVdsVolume interface.

6. The server returns an HRESULT of 0x00000000 and a reference to the IVdsVolume interface to the
client. The client can access the volume information through the IVdsVolume interface.

7. When a client no longer needs the IVdsVolume interface, the client releases the reference to the
interface by calling IVdsVolume::Release.

8. The server returns a new reference count for IVdsVolume::Release.

9. The client also needs to release the reference to the IUnknown interface by calling
IUnknown::Release.

10. The server returns a new reference count for IUnknown::Release.

11. The client can call IEnumVDsObject::Next again for the next object in the enumeration.

12. When the server reaches the end of the enumeration, the server returns an HRESULT of

0x00000001.

13. The client no longer needs the IEnumVdsObject interface, so it calls IEnumVdsObject::Release to
release the reference.

14. The server returns a new reference count for IEnumVdsObject.

All other VDS objects that are retrievable via enumeration can be retrieved using similar steps.

4.4 Retrieving the Properties and IDs of VDS Objects

After an object is retrieved, a common task is to look for the VDS object ID, which uniquely identifies
the object and is located in the object's properties structure.

The following figure shows how to retrieve the properties of a volume object, if one exists. For

information on how to retrieve a reference to a volume object, see section 4.3.

Figure 8: Retrieving the properties of a volume object

1. The client calls the IVdsVolume::GetProperties method, passing in a reference to a
VDS_VOLUME_PROP structure in which to store the properties.

277 / 342

[MS-VDS] - v20170601
Virtual Disk Service (VDS) Protocol
Copyright © 2017 Microsoft Corporation
Release: June 1, 2017

2. After successful execution of IVdsVolume::GetProperties, the server returns the properties of the
volume, which includes its VDS object ID in the client-provided VDS_VOLUME_PROP structure.

After successful execution of the IVdsVolume::GetProperties request, which returns a filled
VDS_VOLUME_PROP structure, the client can inspect any members of that structure.

The properties of other VDS objects can be retrieved by using similar steps.

4.5 Performing Asynchronous Tasks

The Virtual Disk Service Remote Protocol exposes certain potentially long-running configuration tasks.

Such tasks can be performed asynchronously. The following figure shows an example of an
asynchronous task, formatting a volume.

Figure 9: Asynchronous task of formatting a volume

1. The client requests that a volume be formatted by calling the IVdsVolumeMF::Format method.

278 / 342

[MS-VDS] - v20170601
Virtual Disk Service (VDS) Protocol
Copyright © 2017 Microsoft Corporation
Release: June 1, 2017

2. The server acknowledges the format request and returns an IVdsAsync interface that the client
can use to monitor progress of the format operation.

3. The client checks the current status of the format operation by calling the IVdsAsync::QueryStatus
method on the returned IVdsAsync interface.

4. The server returns the status of the format operation.

5. The client can repeatedly check the status of the format operation by calling the
IVdsAsync::QueryStatus method.

6. For each IVdsAsync::QueryStatus request, the server returns the latest status of the format
operation.

7. The client can wait for the format operation to complete by calling the IVdsAsync::Wait method.

8. When the format operation completes, the server responds to the IVdsAsync::Wait call by

returning the final status of the format.

9. The client invokes the IVdsAsync::Release method to release its reference.

10. The server returns the new reference count for the IVdsAsync interface.

4.6 Sample IVdsAdviseSink::OnNotify Implementation

The following is a sample IVdsAdviseSink::OnNotify implementation.

 STDMETHODIMP CNotification::OnNotify(
 __in LONG lNumberOfNotifications,
 __in_ecount(lNumberOfNotifications) VDS_NOTIFICATION *pNotificationArray
)
 {
 HRESULT hr;

 WCHAR buffer[50];
 ULONGLONG ulEvent;

 printf("Notification Packet Received: %d notifications\n",
 lNumberOfNotifications);

 for (int i=0; i<lNumberOfNotifications; i++)
 {
 printf(" Notification %d:\n", i+1);
 switch (pNotificationArray[i].objectType)
 {
 case VDS_NTT_PACK:
 ulEvent = pNotificationArray[i].Pack.ulEvent;
 printf(" Event: %s\n",
 ulEvent==VDS_NF_PACK_ARRIVE? "Pack Arrival":
 ulEvent==VDS_NF_PACK_DEPART? "Pack Depart":
 ulEvent==VDS_NF_PACK_MODIFY? "Pack Change":
 "Pack Unknown");
 StringFromGUID2(pNotificationArray[i].Pack.packId, buffer, 50);
 wprintf(L" Object Id: %s\n", buffer);
 break;

 case VDS_NTT_VOLUME:
 ulEvent = pNotificationArray[i].Volume.ulEvent;
 printf(" Event: %s\n",
 ulEvent==VDS_NF_VOLUME_ARRIVE? "Volume Arrival":
 ulEvent==VDS_NF_VOLUME_DEPART? "Volume Depart":
 ulEvent==VDS_NF_VOLUME_MODIFY? "Volume Change":
 ulEvent==VDS_NF_VOLUME_REBUILDING_PROGRESS ?
 "Volume Rebuild" : "Volume Unknown");
 StringFromGUID2(pNotificationArray[i].Volume.volumeId,

279 / 342

[MS-VDS] - v20170601
Virtual Disk Service (VDS) Protocol
Copyright © 2017 Microsoft Corporation
Release: June 1, 2017

 buffer, 50);
 wprintf(L" Object Id: %s\n", buffer);
 StringFromGUID2(pNotificationArray[i].Volume.plexId, buffer, 50);
 wprintf(L" Plex Id: %s\n", buffer);
 printf(" Percent Completed: %d\n",
 pNotificationArray[i].Volume.ulPercentCompleted);
 break;

 case VDS_NTT_DISK:
 ulEvent = pNotificationArray[i].Disk.ulEvent;
 printf(" Event: %s\n",
 ulEvent==VDS_NF_DISK_ARRIVE? "Disk Arrival":
 ulEvent==VDS_NF_DISK_DEPART? "Disk Depart":
 ulEvent==VDS_NF_DISK_MODIFY? "Disk Change":
 "Disk Unknown");
 StringFromGUID2(pNotificationArray[i].Disk.diskId, buffer, 50);
 wprintf(L" Object Id: %s\n", buffer);
 break;

 case VDS_NTT_PARTITION:
 ulEvent = pNotificationArray[i].Partition.ulEvent;
 printf(" Event: %s\n",
 ulEvent==VDS_NF_PARTITION_ARRIVE? "Partition Arrival":
 ulEvent==VDS_NF_PARTITION_DEPART? "Partition Depart":
 ulEvent==VDS_NF_PARTITION_MODIFY? "Partition Change" :
 "Partition Unknown");
 StringFromGUID2(pNotificationArray[i].Partition.diskId, buffer,
 50);
 wprintf(L" Disk Id: %s\n", buffer);
 printf(" Offset: %I64u\n",
 pNotificationArray[i].Partition.ullOffset);
 break;

 case VDS_NTT_DRIVE_LETTER:
 ulEvent = pNotificationArray[i].Letter.ulEvent;
 printf(" Event: %s\n",
 ulEvent==VDS_NF_DRIVE_LETTER_ASSIGN? "Drive Letter Assigned":
 ulEvent==VDS_NF_DRIVE_LETTER_FREE? "Drive Letter Freed":
 "Drive Letter Unknown");
 StringFromGUID2(pNotificationArray[i].Letter.volumeId, buffer,
 50);
 wprintf(L" Letter: %c\n",
 pNotificationArray[i].Letter.wcLetter);
 wprintf(L" Volume Id: %s\n", buffer);
 break;

 case VDS_NTT_FILE_SYSTEM:
 ulEvent = pNotificationArray[i].FileSystem.ulEvent;
 printf(" Event: %s\n",
 ulEvent==VDS_NF_FILE_SYSTEM_MODIFY? "File System Modify":
 ulEvent==VDS_NF_FILE_SYSTEM_FORMAT_PROGRESS? "File System Format":
 "File System Unknown");
 if (ulEvent==VDS_NF_FILE_SYSTEM_FORMAT_PROGRESS)
 printf(" %ld Completed.\n",
 pNotificationArray[i].FileSystem.dwPercentCompleted
);
 StringFromGUID2(pNotificationArray[i].FileSystem.volumeId,
 buffer, 50);
 wprintf(L" Volume Id: %s\n", buffer);
 break;

 case VDS_NTT_MOUNT_POINT:
 ulEvent = pNotificationArray[i].MountPoint.ulEvent;
 printf(" Event: %s\n",
 ulEvent==VDS_NF_MOUNT_POINTS_CHANGE? "Mount Points Change":
 "Mount Points Unknown");
 StringFromGUID2(pNotificationArray[i].FileSystem.volumeId, buffer,
 50);
 wprintf(L" Volume Id: %s\n", buffer);

280 / 342

[MS-VDS] - v20170601
Virtual Disk Service (VDS) Protocol
Copyright © 2017 Microsoft Corporation
Release: June 1, 2017

 break;

 case VDS_NTT_SERVICE:
 ulEvent = pNotificationArray[i].Service.ulEvent;
 printf(" Event: %s\n",
 ulEvent==VDS_NF_SERVICE_OUT_OF_SYNC? "Service out-of-sync":
 "Service Unknown");
 break;

 default:
 printf(" Unknown object type.\n");
 break;
 }
 }

 return S_OK;
 }

281 / 342

[MS-VDS] - v20170601
Virtual Disk Service (VDS) Protocol
Copyright © 2017 Microsoft Corporation
Release: June 1, 2017

5 Security

The following sections specify security considerations for implementers of the Virtual Disk Service
Remote Protocol.

5.1 Security Considerations for Implementers

The Virtual Disk Service Remote Protocol introduces no security considerations except those that apply
to DCOM Remote Protocol interfaces, as specified in [MS-DCOM] section 5.

5.2 Index of Security Parameters

None.

%5bMS-DCOM%5d.pdf#Section_4a893f3dbd2948cd9f43d9777a4415b0

282 / 342

[MS-VDS] - v20170601
Virtual Disk Service (VDS) Protocol
Copyright © 2017 Microsoft Corporation
Release: June 1, 2017

6 Appendix A: Full IDL

For ease of implementation, the full IDL is provided here; "ms-dtyp.idl" is the IDL that is in [MS-
DTYP] section 5.

 import "ms-dtyp.idl";
 import "ms-dcom.idl";

 interface IEnumVdsObject;
 interface IVdsAdviseSink;
 interface IVdsAsync;
 interface IVdsServiceLoader;
 interface IVdsService;
 interface IVdsServiceInitialization;
 interface IVdsServiceUninstallDisk;
 interface IVdsServiceHba;
 interface IVdsServiceIscsi;
 interface IVdsServiceSAN;
 interface IVdsServiceSw;
 interface IVdsHbaPort;
 interface IVdsIscsiInitiatorAdapter;
 interface IVdsIscsiInitiatorPortal;
 interface IVdsProvider;
 interface IVdsSwProvider;
 interface IVdsHwProvider;
 interface IVdsVdProvider;
 interface IVdsSubSystemImportTarget;
 interface IVdsPack;
 interface IVdsPack2;
 interface IVdsDisk;
 interface IVdsDisk2;
 interface IVdsDisk3;
 interface IVdsAdvancedDisk;
 interface IVdsAdvancedDisk2;
 interface IVdsAdvancedDisk3;
 interface IVdsCreatePartitionEx;
 interface IVdsDiskOnline;
 interface IVdsDiskPartitionMF;
 interface IVdsDiskPartitionMF2;
 interface IVdsRemovable;
 interface IVdsVolume;
 interface IVdsVolume2;
 interface IVdsVolumeMF;
 interface IVdsVolumeMF2;
 interface IVdsVolumeMF3;
 interface IVdsVolumeShrink;
 interface IVdsVolumeOnline;
 interface IVdsVolumePlex;
 interface IVdsVDisk;
 interface IVdsOpenVDisk;

 #define MAX_PATH 0x00000104
 #define MAX_FS_NAME_SIZE 0x00000008

 typedef GUID VDS_OBJECT_ID;

 const unsigned long VER_VDS_LUN_INFORMATION = 0x00000001;

 typedef enum _VDS_HEALTH
 {
 VDS_H_UNKNOWN = 0x00000000,
 VDS_H_HEALTHY = 0x00000001,
 VDS_H_REBUILDING = 0x00000002,
 VDS_H_STALE = 0x00000003,
 VDS_H_FAILING = 0x00000004,
 VDS_H_FAILING_REDUNDANCY = 0x00000005,

%5bMS-DTYP%5d.pdf#Section_cca2742956894a16b2b49325d93e4ba2
%5bMS-DTYP%5d.pdf#Section_cca2742956894a16b2b49325d93e4ba2

283 / 342

[MS-VDS] - v20170601
Virtual Disk Service (VDS) Protocol
Copyright © 2017 Microsoft Corporation
Release: June 1, 2017

 VDS_H_FAILED_REDUNDANCY = 0x00000006,
 VDS_H_FAILED_REDUNDANCY_FAILING = 0x00000007,
 VDS_H_FAILED = 0x00000008
 } VDS_HEALTH;

 typedef enum _VDS_NOTIFICATION_TARGET_TYPE
 {
 VDS_NTT_UNKNOWN = 0x00000000,
 VDS_NTT_PACK = 0x0000000A,
 VDS_NTT_VOLUME = 0x0000000B,
 VDS_NTT_DISK = 0x0000000D,
 VDS_NTT_PARTITION = 0x0000003C,
 VDS_NTT_DRIVE_LETTER = 0x0000003D,
 VDS_NTT_FILE_SYSTEM = 0x0000003E,
 VDS_NTT_MOUNT_POINT = 0x0000003F,
 VDS_NTT_SERVICE = 0x000000C8
 } VDS_NOTIFICATION_TARGET_TYPE;

 typedef enum _VDS_ASYNC_OUTPUT_TYPE
 {
 VDS_ASYNCOUT_UNKNOWN = 0,
 VDS_ASYNCOUT_CREATEVOLUME = 1,
 VDS_ASYNCOUT_EXTENDVOLUME = 2,
 VDS_ASYNCOUT_SHRINKVOLUME = 3,
 VDS_ASYNCOUT_ADDVOLUMEPLEX = 4,
 VDS_ASYNCOUT_BREAKVOLUMEPLEX = 5,
 VDS_ASYNCOUT_REMOVEVOLUMEPLEX = 6,
 VDS_ASYNCOUT_REPAIRVOLUMEPLEX = 7,
 VDS_ASYNCOUT_RECOVERPACK = 8,
 VDS_ASYNCOUT_REPLACEDISK = 9,
 VDS_ASYNCOUT_CREATEPARTITION = 10,
 VDS_ASYNCOUT_CLEAN = 11,
 VDS_ASYNCOUT_CREATELUN = 50,
 VDS_ASYNCOUT_FORMAT = 101,
 VDS_ASYNCOUT_CREATE_VDISK = 200,
 VDS_ASYNCOUT_SURFACE_VDISK = 201,
 VDS_ASYNCOUT_COMPACT_VDISK = 202,
 VDS_ASYNCOUT_MERGE_VDISK = 203,
 VDS_ASYNCOUT_EXPAND_VDISK = 204
 } VDS_ASYNC_OUTPUT_TYPE;

 typedef enum _VDS_STORAGE_BUS_TYPE
 {
 VDSBusTypeUnknown = 0x00000000,
 VDSBusTypeScsi = 0x00000001,
 VDSBusTypeAtapi = 0x00000002,
 VDSBusTypeAta = 0x00000003,
 VDSBusType1394 = 0x00000004,
 VDSBusTypeSsa = 0x00000005,
 VDSBusTypeFibre = 0x00000006,
 VDSBusTypeUsb = 0x00000007,
 VDSBusTypeRAID = 0x00000008,
 VDSBusTypeiScsi = 0x00000009,
 VDSBusTypeSas = 0x0000000A,
 VDSBusTypeSata = 0x0000000B,
 VDSBusTypeSd = 0x0000000C,
 VDSBusTypeMmc = 0x0000000D,
 VDSBusTypeMax = 0x0000000E,
 VDSBusTypeVirtual = 0x0000000E,
 VDSBusTypeFileBackedVirtual = 0x0000000F,
 VDSBusTypeSpaces = 0x00000010,
 VDSBusTypeMaxReserved = 0x0000007F
 } VDS_STORAGE_BUS_TYPE;

 typedef enum _VDS_STORAGE_IDENTIFIER_CODE_SET
 {
 VDSStorageIdCodeSetReserved = 0x00000000,
 VDSStorageIdCodeSetBinary = 0x00000001,
 VDSStorageIdCodeSetAscii = 0x00000002,

284 / 342

[MS-VDS] - v20170601
Virtual Disk Service (VDS) Protocol
Copyright © 2017 Microsoft Corporation
Release: June 1, 2017

 VDSStorageIdCodeSetUtf8 = 0x00000003
 } VDS_STORAGE_IDENTIFIER_CODE_SET;

 typedef enum _VDS_STORAGE_IDENTIFIER_TYPE
 {
 VDSStorageIdTypeVendorSpecific = 0x00000000,
 VDSStorageIdTypeVendorId = 0x00000001,
 VDSStorageIdTypeEUI64 = 0x00000002,
 VDSStorageIdTypeFCPHName = 0x00000003,
 VDSStorageIdTypePortRelative = 0x00000004,
 VDSStorageIdTypeTargetPortGroup = 0x00000005,
 VDSStorageIdTypeLogicalUnitGroup = 0x00000006,
 VDSStorageIdTypeMD5LogicalUnitIdentifier = 0x00000007,
 VDSStorageIdTypeScsiNameString = 0x00000008
 } VDS_STORAGE_IDENTIFIER_TYPE;

 typedef enum _VDS_INTERCONNECT_ADDRESS_TYPE
 {
 VDS_IA_UNKNOWN = 0x00000000,
 VDS_IA_FCFS = 0x00000001,
 VDS_IA_FCPH = 0x00000002,
 VDS_IA_FCPH3 = 0x00000003,
 VDS_IA_MAC = 0x00000004,
 VDS_IA_SCSI = 0x00000005
 } VDS_INTERCONNECT_ADDRESS_TYPE;

 typedef enum _VDS_FILE_SYSTEM_TYPE
 {
 VDS_FST_UNKNOWN = 0x00000000,
 VDS_FST_RAW = 0x00000001,
 VDS_FST_FAT = 0x00000002,
 VDS_FST_FAT32 = 0x00000003,
 VDS_FST_NTFS = 0x00000004,
 VDS_FST_CDFS = 0x00000005,
 VDS_FST_UDF = 0x00000006,
 VDS_FST_EXFAT = 0x00000007,
 VDS_FST_CSVFS = 0x00000008,
 VDS_FST_REFS = 0x00000009
 } VDS_FILE_SYSTEM_TYPE;

 typedef enum _VDS_FILE_SYSTEM_FLAG
 {
 VDS_FSF_SUPPORT_FORMAT = 0x00000001,
 VDS_FSF_SUPPORT_QUICK_FORMAT = 0x00000002,
 VDS_FSF_SUPPORT_COMPRESS = 0x00000004,
 VDS_FSF_SUPPORT_SPECIFY_LABEL = 0x00000008,
 VDS_FSF_SUPPORT_MOUNT_POINT = 0x00000010,
 VDS_FSF_SUPPORT_REMOVABLE_MEDIA = 0x00000020,
 VDS_FSF_SUPPORT_EXTEND = 0x00000040,
 VDS_FSF_ALLOCATION_UNIT_512 = 0x00010000,
 VDS_FSF_ALLOCATION_UNIT_1K = 0x00020000,
 VDS_FSF_ALLOCATION_UNIT_2K = 0x00040000,
 VDS_FSF_ALLOCATION_UNIT_4K = 0x00080000,
 VDS_FSF_ALLOCATION_UNIT_8K = 0x00100000,
 VDS_FSF_ALLOCATION_UNIT_16K = 0x00200000,
 VDS_FSF_ALLOCATION_UNIT_32K = 0x00400000,
 VDS_FSF_ALLOCATION_UNIT_64K = 0x00800000,
 VDS_FSF_ALLOCATION_UNIT_128K = 0x01000000,
 VDS_FSF_ALLOCATION_UNIT_256K = 0x02000000
 } VDS_FILE_SYSTEM_FLAG;

 typedef enum _VDS_FILE_SYSTEM_PROP_FLAG
 {
 VDS_FPF_COMPRESSED = 0x00000001
 } VDS_FILE_SYSTEM_PROP_FLAG;

 typedef enum _VDS_FILE_SYSTEM_FORMAT_SUPPORT_FLAG
 {
 VDS_FSS_DEFAULT = 0x00000001,

285 / 342

[MS-VDS] - v20170601
Virtual Disk Service (VDS) Protocol
Copyright © 2017 Microsoft Corporation
Release: June 1, 2017

 VDS_FSS_PREVIOUS_REVISION = 0x00000002,
 VDS_FSS_RECOMMENDED = 0x00000004
 } VDS_FILE_SYSTEM_FORMAT_SUPPORT_FLAG;

 typedef enum _VDS_DISK_EXTENT_TYPE
 {
 VDS_DET_UNKNOWN = 0x00000000,
 VDS_DET_FREE = 0x00000001,
 VDS_DET_DATA = 0x00000002,
 VDS_DET_OEM = 0x00000003,
 VDS_DET_ESP = 0x00000004,
 VDS_DET_MSR = 0x00000005,
 VDS_DET_LDM = 0x00000006,
 VDS_DET_UNUSABLE = 0x00007FFF
 } VDS_DISK_EXTENT_TYPE;

 typedef enum _VDS_PARTITION_STYLE
 {
 VDS_PST_UNKNOWN = 0x00000000,
 VDS_PST_MBR = 0x00000001,
 VDS_PST_GPT = 0x00000002
 } VDS_PARTITION_STYLE;

 typedef enum _VDS_PARTITION_FLAG
 {
 VDS_PTF_SYSTEM = 0x00000001
 } VDS_PARTITION_FLAG;

 typedef enum _VDS_VOLUME_TYPE
 {
 VDS_VT_UNKNOWN = 0x00000000,
 VDS_VT_SIMPLE = 0x0000000A,
 VDS_VT_SPAN = 0x0000000B,
 VDS_VT_STRIPE = 0x0000000C,
 VDS_VT_MIRROR = 0x0000000D,
 VDS_VT_PARITY = 0x0000000E
 } VDS_VOLUME_TYPE;

 typedef enum _VDS_TRANSITION_STATE
 {
 VDS_TS_UNKNOWN = 0x00000000,
 VDS_TS_STABLE = 0x00000001,
 VDS_TS_EXTENDING = 0x00000002,
 VDS_TS_SHRINKING = 0x00000003,
 VDS_TS_RECONFIGING = 0x00000004
 } VDS_TRANSITION_STATE;

 typedef enum _VDS_FORMAT_OPTION_FLAGS
 {
 VDS_FSOF_NONE = 0x00000000,
 VDS_FSOF_FORCE = 0x00000001,
 VDS_FSOF_QUICK = 0x00000002,
 VDS_FSOF_COMPRESSION = 0x00000004,
 VDS_FSOF_DUPLICATE_METADATA = 0x00000008
 } VDS_FORMAT_OPTION_FLAGS;

 typedef enum _VDS_DISK_FLAG
 {
 VDS_DF_AUDIO_CD = 0x1,
 VDS_DF_HOTSPARE = 0x2,
 VDS_DF_RESERVE_CAPABLE = 0x4,
 VDS_DF_MASKED = 0x8,
 VDS_DF_STYLE_CONVERTIBLE = 0x10,
 VDS_DF_CLUSTERED = 0x20,
 VDS_DF_READ_ONLY = 0x40,
 VDS_DF_SYSTEM_DISK = 0x80,
 VDS_DF_BOOT_DISK = 0x100,
 VDS_DF_PAGEFILE_DISK = 0x200,
 VDS_DF_HIBERNATIONFILE_DISK = 0x400,

286 / 342

[MS-VDS] - v20170601
Virtual Disk Service (VDS) Protocol
Copyright © 2017 Microsoft Corporation
Release: June 1, 2017

 VDS_DF_CRASHDUMP_DISK = 0x800,
 VDS_DF_HAS_ARC_PATH = 0x1000,
 VDS_DF_DYNAMIC = 0x2000,
 VDS_DF_BOOT_FROM_DISK = 0x4000,
 VDS_DF_CURRENT_READ_ONLY = 0x8000
 } VDS_DISK_FLAG;

 typedef enum _VDS_DISK_STATUS
 {
 VDS_DS_UNKNOWN = 0x00000000,
 VDS_DS_ONLINE = 0x00000001,
 VDS_DS_NOT_READY = 0x00000002,
 VDS_DS_NO_MEDIA = 0x00000003,
 VDS_DS_OFFLINE = 0x00000004,
 VDS_DS_FAILED = 0x00000005,
 VDS_DS_MISSING = 0x00000006
 } VDS_DISK_STATUS;

 typedef enum _VDS_LUN_RESERVE_MODE
 {
 VDS_LRM_NONE = 0x00000000,
 VDS_LRM_EXCLUSIVE_RW = 0x00000001,
 VDS_LRM_EXCLUSIVE_RO = 0x00000002,
 VDS_LRM_SHARED_RO = 0x00000003,
 VDS_LRM_SHARED_RW = 0x00000004
 } VDS_LUN_RESERVE_MODE;

 typedef enum _VDS_VOLUME_STATUS
 {
 VDS_VS_UNKNOWN = 0x00000000,
 VDS_VS_ONLINE = 0x00000001,
 VDS_VS_NO_MEDIA = 0x00000003,
 VDS_VS_OFFLINE = 0x00000004,
 VDS_VS_FAILED = 0x00000005
 } VDS_VOLUME_STATUS;

 typedef enum _VDS_VOLUME_FLAG
 {
 VDS_VF_SYSTEM_VOLUME = 0x00000001,
 VDS_VF_BOOT_VOLUME = 0x00000002,
 VDS_VF_ACTIVE = 0x00000004,
 VDS_VF_READONLY = 0x00000008,
 VDS_VF_HIDDEN = 0x00000010,
 VDS_VF_CAN_EXTEND = 0x00000020,
 VDS_VF_CAN_SHRINK = 0x00000040,
 VDS_VF_PAGEFILE = 0x00000080,
 VDS_VF_HIBERNATION = 0x00000100,
 VDS_VF_CRASHDUMP = 0x00000200,
 VDS_VF_INSTALLABLE = 0x00000400,
 VDS_VF_LBN_REMAP_ENABLED = 0x00000800,
 VDS_VF_FORMATTING = 0x00001000,
 VDS_VF_NOT_FORMATTABLE = 0x00002000,
 VDS_VF_NTFS_NOT_SUPPORTED = 0x00004000,
 VDS_VF_FAT32_NOT_SUPPORTED = 0x00008000,
 VDS_VF_FAT_NOT_SUPPORTED = 0x00010000,
 VDS_VF_NO_DEFAULT_DRIVE_LETTER = 0x00020000,
 VDS_VF_PERMANENTLY_DISMOUNTED = 0x00040000,
 VDS_VF_PERMANENT_DISMOUNT_SUPPORTED = 0x00080000,
 VDS_VF_SHADOW_COPY = 0x00100000,
 VDS_VF_FVE_ENABLED = 0x00200000,
 VDS_VF_DIRTY = 0x00400000,
 VDS_VF_REFS_NOT_SUPPORTED = 0x00800000
 } VDS_VOLUME_FLAG;

 typedef struct _VDS_PACK_NOTIFICATION
 {
 unsigned long ulEvent;
 VDS_OBJECT_ID packId;
 } VDS_PACK_NOTIFICATION;

287 / 342

[MS-VDS] - v20170601
Virtual Disk Service (VDS) Protocol
Copyright © 2017 Microsoft Corporation
Release: June 1, 2017

 typedef struct _VDS_DISK_NOTIFICATION
 {
 unsigned long ulEvent;
 VDS_OBJECT_ID diskId;
 } VDS_DISK_NOTIFICATION;

 typedef struct _VDS_VOLUME_NOTIFICATION
 {
 unsigned long ulEvent;
 VDS_OBJECT_ID volumeId;
 VDS_OBJECT_ID plexId;
 unsigned long ulPercentCompleted;
 } VDS_VOLUME_NOTIFICATION;

 typedef struct _VDS_PARTITION_NOTIFICATION
 {
 unsigned long ulEvent;
 VDS_OBJECT_ID diskId;
 ULONGLONG ullOffset;
 } VDS_PARTITION_NOTIFICATION;

 typedef struct _VDS_DRIVE_LETTER_NOTIFICATION
 {
 unsigned long ulEvent;
 WCHAR wcLetter;
 VDS_OBJECT_ID volumeId;
 } VDS_DRIVE_LETTER_NOTIFICATION;

 typedef struct _VDS_FILE_SYSTEM_NOTIFICATION
 {
 unsigned long ulEvent;
 VDS_OBJECT_ID volumeId;
 DWORD dwPercentCompleted;
 } VDS_FILE_SYSTEM_NOTIFICATION;

 typedef struct _VDS_MOUNT_POINT_NOTIFICATION
 {
 unsigned long ulEvent;
 VDS_OBJECT_ID volumeId;
 } VDS_MOUNT_POINT_NOTIFICATION;

 typedef enum _VDS_RECOVER_ACTION
 {
 VDS_RA_UNKNOWN = 0,
 VDS_RA_REFRESH = 1,
 VDS_RA_RESTART = 2
 } VDS_RECOVER_ACTION;

 typedef struct _VDS_SERVICE_NOTIFICATION
 {
 ULONG ulEvent;
 VDS_RECOVER_ACTION action;
 } VDS_SERVICE_NOTIFICATION;

 typedef struct _VDS_NOTIFICATION
 {
 VDS_NOTIFICATION_TARGET_TYPE objectType;
 [switch_is(objectType)] union
 {
 [case(VDS_NTT_PACK)]
 VDS_PACK_NOTIFICATION Pack;
 [case(VDS_NTT_DISK)]
 VDS_DISK_NOTIFICATION Disk;
 [case(VDS_NTT_VOLUME)]
 VDS_VOLUME_NOTIFICATION Volume;
 [case(VDS_NTT_PARTITION)]
 VDS_PARTITION_NOTIFICATION Partition;
 [case(VDS_NTT_DRIVE_LETTER)]

288 / 342

[MS-VDS] - v20170601
Virtual Disk Service (VDS) Protocol
Copyright © 2017 Microsoft Corporation
Release: June 1, 2017

 VDS_DRIVE_LETTER_NOTIFICATION Letter;
 [case(VDS_NTT_FILE_SYSTEM)]
 VDS_FILE_SYSTEM_NOTIFICATION FileSystem;
 [case(VDS_NTT_MOUNT_POINT)]
 VDS_MOUNT_POINT_NOTIFICATION MountPoint;
 [case(VDS_NTT_SERVICE)]
 VDS_SERVICE_NOTIFICATION Service; };
 } VDS_NOTIFICATION;

 typedef struct _VDS_ASYNC_OUTPUT {
 VDS_ASYNC_OUTPUT_TYPE type;
 [switch_is(type)] union
 {
 [case(VDS_ASYNCOUT_CREATEPARTITION)]
 struct _cp
 {
 ULONGLONG ullOffset;
 VDS_OBJECT_ID volumeId;
 } cp;
 [case(VDS_ASYNCOUT_CREATEVOLUME)]
 struct _cv
 {
 IUnknown *pVolumeUnk;
 } cv;
 [case(VDS_ASYNCOUT_BREAKVOLUMEPLEX)]
 struct _bvp
 {
 IUnknown *pVolumeUnk;
 } bvp;
 [case(VDS_ASYNCOUT_SHRINKVOLUME)]
 struct _sv
 {
 ULONGLONG ullReclaimedBytes;
 } sv;
 [case(VDS_ASYNCOUT_CREATE_VDISK)]
 struct _cvd
 {
 IUnknown *pVDiskUnk;
 } cvd;
 [default];
 };
 } VDS_ASYNC_OUTPUT;

 typedef struct _VDS_PARTITION_INFO_MBR
 {
 byte partitionType;
 boolean bootIndicator;
 boolean recognizedPartition;
 DWORD hiddenSectors;
 } VDS_PARTITION_INFO_MBR;

 typedef struct _VDS_PARTITION_INFO_GPT
 {
 GUID partitionType;
 GUID partitionId;
 ULONGLONG attributes;
 WCHAR name[36];
 } VDS_PARTITION_INFO_GPT;

 typedef struct _VDS_STORAGE_IDENTIFIER
 {
 VDS_STORAGE_IDENTIFIER_CODE_SET m_CodeSet;
 VDS_STORAGE_IDENTIFIER_TYPE m_Type;
 unsigned long m_cbIdentifier;
 [size_is(m_cbIdentifier)] byte *m_rgbIdentifier;
 } VDS_STORAGE_IDENTIFIER;

 typedef struct _VDS_STORAGE_DEVICE_ID_DESCRIPTOR
 {

289 / 342

[MS-VDS] - v20170601
Virtual Disk Service (VDS) Protocol
Copyright © 2017 Microsoft Corporation
Release: June 1, 2017

 unsigned long m_version;
 unsigned long m_cIdentifiers;
 [size_is(m_cIdentifiers)] VDS_STORAGE_IDENTIFIER
 *m_rgIdentifiers;
 } VDS_STORAGE_DEVICE_ID_DESCRIPTOR;

 typedef struct _VDS_INTERCONNECT
 {
 VDS_INTERCONNECT_ADDRESS_TYPE m_addressType;
 unsigned long m_cbPort;
 [size_is(m_cbPort)] byte *m_pbPort;
 unsigned long m_cbAddress;
 [size_is(m_cbAddress)] byte *m_pbAddress;
 } VDS_INTERCONNECT;

 typedef struct _VDS_LUN_INFORMATION
 {
 unsigned long m_version;
 byte m_DeviceType;
 byte m_DeviceTypeModifier;
 long m_bCommandQueuing;
 VDS_STORAGE_BUS_TYPE m_BusType;
 [string] char * m_szVendorId;
 [string] char * m_szProductId;
 [string] char * m_szProductRevision;
 [string] char * m_szSerialNumber;
 GUID m_diskSignature;
 VDS_STORAGE_DEVICE_ID_DESCRIPTOR m_deviceIdDescriptor;
 unsigned long m_cInterconnects;
 [size_is(m_cInterconnects)] VDS_INTERCONNECT *
 m_rgInterconnects;
 } VDS_LUN_INFORMATION;

 typedef struct _VDS_FILE_SYSTEM_PROP
 {
 VDS_FILE_SYSTEM_TYPE type;
 VDS_OBJECT_ID volumeId;
 unsigned long ulFlags;
 ULONGLONG ullTotalAllocationUnits;
 ULONGLONG ullAvailableAllocationUnits;
 unsigned long ulAllocationUnitSize;
 [string] WCHAR *pwszLabel;
 } VDS_FILE_SYSTEM_PROP, *PVDS_FILE_SYSTEM_PROP;

 typedef struct _VDS_FILE_SYSTEM_FORMAT_SUPPORT_PROP
 {
 unsigned long ulFlags;
 unsigned short usRevision;
 unsigned long ulDefaultUnitAllocationSize;
 unsigned long
 rgulAllowedUnitAllocationSizes[32];
 WCHAR wszName[32];
 } VDS_FILE_SYSTEM_FORMAT_SUPPORT_PROP,
 *PVDS_FILE_SYSTEM_FORMAT_SUPPORT_PROP;

 typedef struct _VDS_DISK_EXTENT
 {
 VDS_OBJECT_ID diskId;
 VDS_DISK_EXTENT_TYPE type;
 ULONGLONG ullOffset;
 ULONGLONG ullSize;
 VDS_OBJECT_ID volumeId;
 VDS_OBJECT_ID plexId;
 unsigned long memberIdx;
 } VDS_DISK_EXTENT, *PVDS_DISK_EXTENT;

 typedef struct _VDS_DISK_FREE_EXTENT
 {
 VDS_OBJECT_ID diskId;

290 / 342

[MS-VDS] - v20170601
Virtual Disk Service (VDS) Protocol
Copyright © 2017 Microsoft Corporation
Release: June 1, 2017

 ULONGLONG ullOffset;
 ULONGLONG ullSize;
 } VDS_DISK_FREE_EXTENT, *PVDS_DISK_FREE_EXTENT;

 typedef struct _VDS_PARTITION_PROP
 {
 VDS_PARTITION_STYLE PartitionStyle;
 unsigned long ulFlags;
 unsigned long ulPartitionNumber;
 ULONGLONG ullOffset;
 ULONGLONG ullSize;
 [switch_is(PartitionStyle)] union
 {
 [case(VDS_PST_MBR)]
 VDS_PARTITION_INFO_MBR Mbr;
 [case(VDS_PST_GPT)]
 VDS_PARTITION_INFO_GPT Gpt;
 [default];
 };
 } VDS_PARTITION_PROP;

 typedef struct _VDS_INPUT_DISK
 {
 VDS_OBJECT_ID diskId;
 ULONGLONG ullSize;
 VDS_OBJECT_ID plexId;
 unsigned long memberIdx;
 } VDS_INPUT_DISK;

 typedef struct _CREATE_PARTITION_PARAMETERS
 {
 VDS_PARTITION_STYLE style;
 [switch_is(style)] union
 {
 [case(VDS_PST_MBR)]
 struct
 {
 byte partitionType;
 boolean bootIndicator;
 } MbrPartInfo;
 [case(VDS_PST_GPT)]
 struct
 {
 GUID partitionType;
 GUID partitionId;
 ULONGLONG attributes;
 WCHAR name[24];
 } GptPartInfo;
 [default];
 };
 } CREATE_PARTITION_PARAMETERS;

 typedef struct _VIRTUAL_STORAGE_TYPE
 {
 ULONG DeviceId;
 GUID VendorId;
 } VIRTUAL_STORAGE_TYPE;

 typedef enum tag_VDS_PARTITION_STYLE
 {
 VDS_PARTITION_STYLE_MBR = 0,
 VDS_PARTITION_STYLE_GPT = 1,
 VDS_PARTITION_STYLE_RAW = 2
 } __VDS_PARTITION_STYLE;

 //THEEND
 typedef enum _VDS_OBJECT_TYPE
 {
 VDS_OT_UNKNOWN = 0x00000000,

291 / 342

[MS-VDS] - v20170601
Virtual Disk Service (VDS) Protocol
Copyright © 2017 Microsoft Corporation
Release: June 1, 2017

 VDS_OT_PROVIDER = 0x00000001,
 VDS_OT_PACK = 0x0000000A,
 VDS_OT_VOLUME = 0x0000000B,
 VDS_OT_VOLUME_PLEX = 0x0000000C,
 VDS_OT_DISK = 0x0000000D,
 VDS_OT_HBAPORT = 0x0000005A,
 VDS_OT_INIT_ADAPTER = 0x0000005B,
 VDS_OT_INIT_PORTAL = 0x0000005C,
 VDS_OT_ASYNC = 0x00000064,
 VDS_OT_ENUM = 0x00000065,
 VDS_OT_VDISK = 0x000000C8,
 VDS_OT_OPEN_VDISK = 0x000000C9
 } VDS_OBJECT_TYPE;

 typedef enum _VDS_SERVICE_FLAG
 {
 VDS_SVF_SUPPORT_DYNAMIC = 0x00000001,
 VDS_SVF_SUPPORT_FAULT_TOLERANT = 0x00000002,
 VDS_SVF_SUPPORT_GPT = 0x00000004,
 VDS_SVF_SUPPORT_DYNAMIC_1394 = 0x00000008,
 VDS_SVF_CLUSTER_SERVICE_CONFIGURED = 0x00000010,
 VDS_SVF_AUTO_MOUNT_OFF = 0x00000020,
 VDS_SVF_OS_UNINSTALL_VALID = 0x00000040,
 VDS_SVF_EFI = 0x00000080,
 VDS_SVF_SUPPORT_MIRROR = 0x00000100,
 VDS_SVF_SUPPORT_RAIDS = 0x00000200,
 VDS_SVF_SUPPORT_REFS = 0x00000400L
 } VDS_SERVICE_FLAG;

 typedef enum _VDS_PROVIDER_TYPE
 {
 VDS_PT_UNKNOWN = 0x00000000,
 VDS_PT_SOFTWARE = 0x00000001,
 VDS_PT_HARDWARE = 0x00000002,
 VDS_PT_VIRTUALDISK = 0x00000003,
 VDS_PT_MAX = 0x00000004
 } VDS_PROVIDER_TYPE;

 typedef enum _VDS_PROVIDER_FLAG
 {
 VDS_PF_DYNAMIC = 0x00000001,
 VDS_PF_INTERNAL_HARDWARE_PROVIDER = 0x00000002,
 VDS_PF_ONE_DISK_ONLY_PER_PACK = 0x00000004,
 VDS_PF_ONE_PACK_ONLINE_ONLY = 0x00000008,
 VDS_PF_VOLUME_SPACE_MUST_BE_CONTIGUOUS = 0x00000010,
 VDS_PF_SUPPORT_MIRROR = 0x00000020,
 VDS_PF_SUPPORT_RAID5 = 0x00000040,
 VDS_PF_SUPPORT_DYNAMIC_1394 = 0x20000000,
 VDS_PF_SUPPORT_FAULT_TOLERANT = 0x40000000,
 VDS_PF_SUPPORT_DYNAMIC = 0x80000000
 } VDS_PROVIDER_FLAG;

 typedef enum _VDS_QUERY_PROVIDER_FLAG
 {
 VDS_QUERY_SOFTWARE_PROVIDERS = 0x1,
 VDS_QUERY_HARDWARE_PROVIDERS = 0x2,
 VDS_QUERY_VIRTUALDISK_PROVIDERS = 0x4
 } VDS_QUERY_PROVIDER_FLAG;

 const unsigned long VDS_NF_PACK_ARRIVE = 0x00000001;
 const unsigned long VDS_NF_PACK_DEPART = 0x00000002;
 const unsigned long VDS_NF_PACK_MODIFY = 0x00000003;

 const unsigned long VDS_NF_VOLUME_ARRIVE = 0x00000004;
 const unsigned long VDS_NF_VOLUME_DEPART = 0x00000005;
 const unsigned long VDS_NF_VOLUME_MODIFY = 0x00000006;
 const unsigned long VDS_NF_VOLUME_REBUILDING_PROGRESS
 = 0x00000007;

292 / 342

[MS-VDS] - v20170601
Virtual Disk Service (VDS) Protocol
Copyright © 2017 Microsoft Corporation
Release: June 1, 2017

 const unsigned long VDS_NF_DISK_ARRIVE = 0x00000008;
 const unsigned long VDS_NF_DISK_DEPART = 0x00000009;
 const unsigned long VDS_NF_DISK_MODIFY = 0x0000000A;

 const unsigned long VDS_NF_PARTITION_ARRIVE = 0x0000000B;
 const unsigned long VDS_NF_PARTITION_DEPART = 0x0000000C;
 const unsigned long VDS_NF_PARTITION_MODIFY = 0x0000000D;

 const unsigned long VDS_NF_DRIVE_LETTER_FREE = 0x000000C9;
 const unsigned long VDS_NF_DRIVE_LETTER_ASSIGN = 0x000000CA;

 const unsigned long VDS_NF_FILE_SYSTEM_MODIFY = 0x000000CB;
 const unsigned long VDS_NF_FILE_SYSTEM_FORMAT_PROGRESS
 = 0x000000CC;

 const unsigned long VDS_NF_MOUNT_POINTS_CHANGE = 0x000000CD;

 const ULONG VDS_NF_SERVICE_OUT_OF_SYNC = 0x0000012D;

 typedef enum _VDS_DRIVE_LETTER_FLAG
 {
 VDS_DLF_NON_PERSISTENT = 0x00000001
 } VDS_DRIVE_LETTER_FLAG;

 typedef enum _VDS_PACK_STATUS
 {
 VDS_PS_UNKNOWN = 0x00000000,
 VDS_PS_ONLINE = 0x00000001,
 VDS_PS_OFFLINE = 0x00000004
 } VDS_PACK_STATUS;

 typedef enum _VDS_PACK_FLAG
 {
 VDS_PKF_FOREIGN = 0x00000001,
 VDS_PKF_NOQUORUM = 0x00000002,
 VDS_PKF_POLICY = 0x00000004,
 VDS_PKF_CORRUPTED = 0x00000008,
 VDS_PKF_ONLINE_ERROR = 0x00000010
 } VDS_PACK_FLAG;

 typedef enum _VDS_DISK_OFFLINE_REASON
 {
 VDSDiskOfflineReasonNone = 0,
 VDSDiskOfflineReasonPolicy = 1,
 VDSDiskOfflineReasonRedundantPath = 2,
 VDSDiskOfflineReasonSnapshot = 3,
 VDSDiskOfflineReasonCollision = 4,
 VDSDiskOfflineReasonResourceExhaustion = 5,
 VDSDiskOfflineReasonWriteFailure = 6,
 VDSDiskOfflineReasonDIScan = 7
 } VDS_DISK_OFFLINE_REASON;

 typedef enum _VDS_VOLUME_PLEX_TYPE
 {
 VDS_VPT_UNKNOWN = 0x00000000,
 VDS_VPT_SIMPLE = 0x0000000A,
 VDS_VPT_SPAN = 0x0000000B,
 VDS_VPT_STRIPE = 0x0000000C,
 VDS_VPT_PARITY = 0x0000000E
 } VDS_VOLUME_PLEX_TYPE;

 typedef enum _VDS_VOLUME_PLEX_STATUS
 {
 VDS_VPS_UNKNOWN = 0x00000000,
 VDS_VPS_ONLINE = 0x00000001,
 VDS_VPS_NO_MEDIA = 0x00000003,
 VDS_VPS_FAILED = 0x00000005

293 / 342

[MS-VDS] - v20170601
Virtual Disk Service (VDS) Protocol
Copyright © 2017 Microsoft Corporation
Release: June 1, 2017

 } VDS_VOLUME_PLEX_STATUS;

 typedef enum _VDS_IPADDRESS_TYPE
 {
 VDS_IPT_TEXT = 0x00000000,
 VDS_IPT_IPV4 = 0x00000001,
 VDS_IPT_IPV6 = 0x00000002,
 VDS_IPT_EMPTY = 0x00000003
 } VDS_IPADDRESS_TYPE;

 typedef enum _VDS_HBAPORT_TYPE
 {
 VDS_HPT_UNKNOWN = 0x00000001,
 VDS_HPT_OTHER = 0x00000002,
 VDS_HPT_NOTPRESENT = 0x00000003,
 VDS_HPT_NPORT = 0x00000005,
 VDS_HPT_NLPORT = 0x00000006,
 VDS_HPT_FLPORT = 0x00000007,
 VDS_HPT_FPORT = 0x00000008,
 VDS_HPT_EPORT = 0x00000009,
 VDS_HPT_GPORT = 0x0000000A,
 VDS_HPT_LPORT = 0x00000014,
 VDS_HPT_PTP = 0x00000015
 } VDS_HBAPORT_TYPE;

 typedef enum _VDS_HBAPORT_STATUS
 {
 VDS_HPS_UNKNOWN = 0x00000001,
 VDS_HPS_ONLINE = 0x00000002,
 VDS_HPS_OFFLINE = 0x00000003,
 VDS_HPS_BYPASSED = 0x00000004,
 VDS_HPS_DIAGNOSTICS = 0x00000005,
 VDS_HPS_LINKDOWN = 0x00000006,
 VDS_HPS_ERROR = 0x00000007,
 VDS_HPS_LOOPBACK = 0x00000008
 } VDS_HBAPORT_STATUS;

 typedef enum _VDS_HBAPORT_SPEED_FLAG
 {
 VDS_HSF_UNKNOWN = 0x00000000,
 VDS_HSF_1GBIT = 0x00000001,
 VDS_HSF_2GBIT = 0x00000002,
 VDS_HSF_10GBIT = 0x00000004,
 VDS_HSF_4GBIT = 0x00000008,
 VDS_HSF_NOT_NEGOTIATED = 0x00008000
 } VDS_HBAPORT_SPEED_FLAG;

 typedef enum _VDS_PATH_STATUS
 {
 VDS_MPS_UNKNOWN = 0x00000000,
 VDS_MPS_ONLINE = 0x00000001,
 VDS_MPS_FAILED = 0x00000005,
 VDS_MPS_STANDBY = 0x00000007
 } VDS_PATH_STATUS;

 typedef struct VDS_REPARSE_POINT_PROP
 {
 VDS_OBJECT_ID SourceVolumeId;
 [string] WCHAR *pwszPath;
 } VDS_REPARSE_POINT_PROP, *PVDS_REPARSE_POINT_PROP;

 typedef struct _VDS_DRIVE_LETTER_PROP
 {
 WCHAR wcLetter;
 VDS_OBJECT_ID volumeId;
 unsigned long ulFlags;
 long bUsed;
 } VDS_DRIVE_LETTER_PROP, *PVDS_DRIVE_LETTER_PROP;

294 / 342

[MS-VDS] - v20170601
Virtual Disk Service (VDS) Protocol
Copyright © 2017 Microsoft Corporation
Release: June 1, 2017

 // IVdsServiceSAN

 typedef enum _VDS_SAN_POLICY
 {
 VDS_SP_UNKNOWN = 0x0,
 VDS_SP_ONLINE = 0x1,
 VDS_SP_OFFLINE_SHARED = 0x2,
 VDS_SP_OFFLINE = 0x3,
 VDS_SP_OFFLINE_INTERNAL = 0x4,
 VDS_SP_MAX = 0x5
 } VDS_SAN_POLICY;

 typedef struct _VDS_FILE_SYSTEM_TYPE_PROP
 {
 VDS_FILE_SYSTEM_TYPE type;
 WCHAR wszName[8];
 unsigned long ulFlags;
 unsigned long ulCompressionFlags;
 unsigned long ulMaxLabelLength;
 [string] WCHAR *pwszIllegalLabelCharSet;
 } VDS_FILE_SYSTEM_TYPE_PROP, *PVDS_FILE_SYSTEM_TYPE_PROP;

 typedef struct _CHANGE_ATTRIBUTES_PARAMETERS
 {
 VDS_PARTITION_STYLE style; // legal values: MBR or GPT
 [switch_is(style)] union
 {
 [case(VDS_PST_MBR)]
 struct
 {
 boolean bootIndicator;
 } MbrPartInfo;

 [case(VDS_PST_GPT)]
 struct
 {
 ULONGLONG attributes;
 } GptPartInfo;

 [default];
 };
 } CHANGE_ATTRIBUTES_PARAMETERS;

 typedef struct _CHANGE_PARTITION_TYPE_PARAMETERS
 {
 VDS_PARTITION_STYLE style;
 [switch_is(style)] union
 {
 [case(VDS_PST_MBR)]
 struct
 {
 byte partitionType;
 } MbrPartInfo;

 [case(VDS_PST_GPT)]
 struct
 {
 GUID partitionType;
 } GptPartInfo;

 [default];
 };

 } CHANGE_PARTITION_TYPE_PARAMETERS;

 typedef struct _VDS_WWN
 {

295 / 342

[MS-VDS] - v20170601
Virtual Disk Service (VDS) Protocol
Copyright © 2017 Microsoft Corporation
Release: June 1, 2017

 unsigned char rguchWwn[8];
 } VDS_WWN;

 typedef struct _VDS_IPADDRESS
 {
 VDS_IPADDRESS_TYPE type;
 unsigned long ipv4Address;
 unsigned char ipv6Address[16];
 unsigned long ulIpv6FlowInfo;
 unsigned long ulIpv6ScopeId;
 WCHAR wszTextAddress[256 + 1];
 unsigned long ulPort;
 } VDS_IPADDRESS;

 typedef struct _VDS_ISCSI_SHARED_SECRET
 {
 [size_is(ulSharedSecretSize)] unsigned char *
 pSharedSecret;
 unsigned long ulSharedSecretSize;
 } VDS_ISCSI_SHARED_SECRET;

 typedef struct _VDS_SERVICE_PROP
 {
 [string] WCHAR *pwszVersion;
 unsigned long ulFlags;
 } VDS_SERVICE_PROP;

 typedef struct _VDS_HBAPORT_PROP
 {
 VDS_OBJECT_ID id;
 VDS_WWN wwnNode;
 VDS_WWN wwnPort;
 VDS_HBAPORT_TYPE type;
 VDS_HBAPORT_STATUS status;
 unsigned long ulPortSpeed;
 unsigned long ulSupportedPortSpeed;
 } VDS_HBAPORT_PROP;

 typedef struct _VDS_ISCSI_INITIATOR_ADAPTER_PROP
 {
 VDS_OBJECT_ID id;
 [string] WCHAR *pwszName;
 } VDS_ISCSI_INITIATOR_ADAPTER_PROP;

 typedef struct _VDS_ISCSI_INITIATOR_PORTAL_PROP
 {
 VDS_OBJECT_ID id;
 VDS_IPADDRESS address;
 unsigned long ulPortIndex;
 } VDS_ISCSI_INITIATOR_PORTAL_PROP;

 typedef struct _VDS_PROVIDER_PROP
 {
 VDS_OBJECT_ID id;
 [string] WCHAR *pwszName;
 GUID guidVersionId;
 [string] WCHAR *pwszVersion;
 VDS_PROVIDER_TYPE type;
 unsigned long ulFlags;
 unsigned long ulStripeSizeFlags;
 short sRebuildPriority;
 } VDS_PROVIDER_PROP;

 typedef struct _VDS_PACK_PROP
 {
 VDS_OBJECT_ID id;
 [string] WCHAR *pwszName;
 VDS_PACK_STATUS status;
 unsigned long ulFlags;

296 / 342

[MS-VDS] - v20170601
Virtual Disk Service (VDS) Protocol
Copyright © 2017 Microsoft Corporation
Release: June 1, 2017

 } VDS_PACK_PROP, *PVDS_PACK_PROP;

 typedef struct _VDS_DISK_PROP
 {
 VDS_OBJECT_ID id;
 VDS_DISK_STATUS status;
 VDS_LUN_RESERVE_MODE ReserveMode;
 VDS_HEALTH health;
 DWORD dwDeviceType;
 DWORD dwMediaType;
 ULONGLONG ullSize;
 unsigned long ulBytesPerSector;
 unsigned long ulSectorsPerTrack;
 unsigned long ulTracksPerCylinder;
 unsigned long ulFlags;
 VDS_STORAGE_BUS_TYPE BusType;
 VDS_PARTITION_STYLE PartitionStyle;
 [switch_is(PartitionStyle)] union
 {
 [case(VDS_PST_MBR)]
 DWORD dwSignature;
 [case(VDS_PST_GPT)]
 GUID DiskGuid;
 [default];
 };
 [string] WCHAR *pwszDiskAddress;
 [string] WCHAR *pwszName;
 [string] WCHAR *pwszFriendlyName;
 [string] WCHAR *pwszAdaptorName;
 [string] WCHAR *pwszDevicePath;
 } VDS_DISK_PROP, *PVDS_DISK_PROP;

 typedef struct _VDS_DISK_PROP2
 {
 VDS_OBJECT_ID id;
 VDS_DISK_STATUS status;
 VDS_LUN_RESERVE_MODE ReserveMode;
 VDS_HEALTH health;
 DWORD dwDeviceType;
 DWORD dwMediaType;
 ULONGLONG ullSize;
 unsigned long ulBytesPerSector;
 unsigned long ulSectorsPerTrack;
 unsigned long ulTracksPerCylinder;
 unsigned long ulFlags;
 VDS_STORAGE_BUS_TYPE BusType;
 VDS_PARTITION_STYLE PartitionStyle;
 [switch_is(PartitionStyle)] union
 {
 [case(VDS_PST_MBR)]
 DWORD dwSignature;
 [case(VDS_PST_GPT)]
 GUID DiskGuid;
 [default];
 };
 [string] WCHAR *pwszDiskAddress;
 [string] WCHAR *pwszName;
 [string] WCHAR *pwszFriendlyName;
 [string] WCHAR *pwszAdaptorName;
 [string] WCHAR *pwszDevicePath;
 [string] WCHAR *pwszLocationPath;
 } VDS_DISK_PROP2, *PVDS_DISK_PROP2;

 typedef struct _VDS_ADVANCEDDISK_PROP
 {
 [string] LPWSTR pwszId;
 [string] LPWSTR pwszPathname;
 [string] LPWSTR pwszLocation;
 [string] LPWSTR pwszFriendlyName;

297 / 342

[MS-VDS] - v20170601
Virtual Disk Service (VDS) Protocol
Copyright © 2017 Microsoft Corporation
Release: June 1, 2017

 [string] LPWSTR pswzIdentifier;
 USHORT usIdentifierFormat;
 ULONG ulNumber;
 [string] LPWSTR pwszSerialNumber;
 [string] LPWSTR pwszFirmwareVersion;
 [string] LPWSTR pwszManufacturer;
 [string] LPWSTR pwszModel;
 ULONGLONG ullTotalSize;
 ULONGLONG ullAllocatedSize;
 ULONG ulLogicalSectorSize;
 ULONG ulPhysicalSectorSize;
 ULONG ulPartitionCount;
 VDS_DISK_STATUS status;
 VDS_HEALTH health;
 VDS_STORAGE_BUS_TYPE BusType;
 VDS_PARTITION_STYLE PartitionStyle;
 [switch_is(PartitionStyle)] union
 {
 [case(VDS_PST_MBR)]
 DWORD dwSignature;
 [case(VDS_PST_GPT)]
 GUID DiskGuid;
 [default];
 };
 ULONG ulFlags;
 DWORD dwDeviceType;

 } VDS_ADVANCEDDISK_PROP, *PVDS_ADVANCEDDISK_PROP;

 typedef struct _VDS_VOLUME_PROP
 {
 VDS_OBJECT_ID id;
 VDS_VOLUME_TYPE type;
 VDS_VOLUME_STATUS status;
 VDS_HEALTH health;
 VDS_TRANSITION_STATE TransitionState;
 ULONGLONG ullSize;
 unsigned long ulFlags;
 VDS_FILE_SYSTEM_TYPE RecommendedFileSystemType;
 [string] WCHAR *pwszName;
 } VDS_VOLUME_PROP, *PVDS_VOLUME_PROP;

 typedef struct _VDS_VOLUME_PROP2
 {
 VDS_OBJECT_ID id;
 VDS_VOLUME_TYPE type;
 VDS_VOLUME_STATUS status;
 VDS_HEALTH health;
 VDS_TRANSITION_STATE TransitionState;
 ULONGLONG ullSize;
 unsigned long ulFlags;
 VDS_FILE_SYSTEM_TYPE RecommendedFileSystemType;
 ULONG cbUniqueId;
 [string] WCHAR *pwszName;
 [size_is(cbUniqueId)] BYTE *pUniqueId;
 } VDS_VOLUME_PROP2, *PVDS_VOLUME_PROP2;

 typedef struct _VDS_VOLUME_PLEX_PROP
 {
 VDS_OBJECT_ID id;
 VDS_VOLUME_PLEX_TYPE type;
 VDS_VOLUME_PLEX_STATUS status;
 VDS_HEALTH health;
 VDS_TRANSITION_STATE TransitionState;
 ULONGLONG ullSize;
 unsigned long ulStripeSize;
 unsigned long ulNumberOfMembers;
 } VDS_VOLUME_PLEX_PROP, *PVDS_VOLUME_PLEX_PROP;

298 / 342

[MS-VDS] - v20170601
Virtual Disk Service (VDS) Protocol
Copyright © 2017 Microsoft Corporation
Release: June 1, 2017

 typedef enum _CREATE_VIRTUAL_DISK_FLAG
 {
 CREATE_VIRTUAL_DISK_FLAG_NONE = 0x0,
 CREATE_VIRTUAL_DISK_FLAG_FULL_PHYSICAL_ALLOCATION = 0x1
 } CREATE_VIRTUAL_DISK_FLAG;

 typedef enum _OPEN_VIRTUAL_DISK_FLAG
 {
 OPEN_VIRTUAL_DISK_FLAG_NONE = 0x0,
 OPEN_VIRTUAL_DISK_FLAG_NO_PARENTS = 0x1,
 OPEN_VIRTUAL_DISK_FLAG_BLANK_FILE = 0x2,
 OPEN_VIRTUAL_DISK_FLAG_BOOT_DRIVE = 0x4
 } OPEN_VIRTUAL_DISK_FLAG;

 typedef struct _VDS_CREATE_VDISK_PARAMETERS
 {
 GUID UniqueId;
 ULONGLONG MaximumSize;
 ULONG BlockSizeInBytes;
 ULONG SectorSizeInBytes;
 [string] LPWSTR pParentPath;
 [string] LPWSTR pSourcePath;
 } VDS_CREATE_VDISK_PARAMETERS, *PVDS_CREATE_VDISK_PARAMETERS;

 typedef enum _VDS_VDISK_STATE
 {
 VDS_VST_UNKNOWN = 0,
 VDS_VST_ADDED,
 VDS_VST_OPEN,
 VDS_VST_ATTACH_PENDING,
 VDS_VST_ATTACHED_NOT_OPEN,
 VDS_VST_ATTACHED,
 VDS_VST_DETACH_PENDING,
 VDS_VST_COMPACTING,
 VDS_VST_MERGING,
 VDS_VST_EXPANDING,
 VDS_VST_DELETED,
 VDS_VST_MAX
 } VDS_VDISK_STATE;

 typedef enum _ATTACH_VIRTUAL_DISK_FLAG
 {
 ATTACH_VIRTUAL_DISK_FLAG_NONE = 0x00000000,
 ATTACH_VIRTUAL_DISK_FLAG_READ_ONLY = 0x00000001,
 ATTACH_VIRTUAL_DISK_FLAG_NO_DRIVE_LETTER = 0x00000002,
 ATTACH_VIRTUAL_DISK_FLAG_PERMANENT_LIFETIME = 0x00000004,
 ATTACH_VIRTUAL_DISK_FLAG_NO_LOCAL_HOST = 0x00000008,
 } ATTACH_VIRTUAL_DISK_FLAG;

 typedef enum _DETACH_VIRTUAL_DISK_FLAG
 {
 DETACH_VIRTUAL_DISK_FLAG_NONE = 0x00000000
 } DETACH_VIRTUAL_DISK_FLAG;

 typedef enum _COMPACT_VIRTUAL_DISK_FLAG
 {
 COMPACT_VIRTUAL_DISK_FLAG_NONE = 0x00000000
 } COMPACT_VIRTUAL_DISK_FLAG;

 typedef enum _MERGE_VIRTUAL_DISK_FLAG
 {
 MERGE_VIRTUAL_DISK_FLAG_NONE = 0x00000000
 } MERGE_VIRTUAL_DISK_FLAG;

 typedef enum _EXPAND_VIRTUAL_DISK_FLAG
 {
 EXPAND_VIRTUAL_DISK_FLAG_NONE = 0x00000000
 } EXPAND_VIRTUAL_DISK_FLAG;

299 / 342

[MS-VDS] - v20170601
Virtual Disk Service (VDS) Protocol
Copyright © 2017 Microsoft Corporation
Release: June 1, 2017

 typedef enum _DEPENDENT_DISK_FLAG
 {
 DEPENDENT_DISK_FLAG_NONE = 0x0,
 DEPENDENT_DISK_FLAG_MULT_BACKING_FILES = 0x1,
 DEPENDENT_DISK_FLAG_FULLY_ALLOCATED = 0x2,
 DEPENDENT_DISK_FLAG_READ_ONLY = 0x4,
 DEPENDENT_DISK_FLAG_REMOTE = 0x8,
 DEPENDENT_DISK_FLAG_SYSTEM_VOLUME = 0x10,
 DEPENDENT_DISK_FLAG_SYSTEM_VOLUME_PARENT = 0x20,
 DEPENDENT_DISK_FLAG_REMOVABLE = 0x40,
 DEPENDENT_DISK_FLAG_NO_DRIVE_LETTER = 0x80,
 DEPENDENT_DISK_FLAG_PARENT = 0x100,
 DEPENDENT_DISK_FLAG_NO_HOST_DISK = 0x200,
 DEPENDENT_DISK_FLAG_PERMANENT_LIFETIME = 0x400
 } DEPENDENT_DISK_FLAG;

 typedef struct _VDS_VDISK_PROPERTIES
 {
 VDS_OBJECT_ID Id;
 VDS_VDISK_STATE State;
 VIRTUAL_STORAGE_TYPE VirtualDeviceType;
 ULONGLONG VirtualSize;
 ULONGLONG PhysicalSize;
 [string] LPWSTR pPath;
 [string] LPWSTR pDeviceName;
 DEPENDENT_DISK_FLAG DiskFlag;
 BOOL bIsChild;
 [string] LPWSTR pParentPath;
 } VDS_VDISK_PROPERTIES, *PVDS_VDISK_PROPERTIES;

 typedef enum _VIRTUAL_DISK_ACCESS_MASK
 {
 VIRTUAL_DISK_ACCESS_SURFACE_RO = 0x00010000,
 VIRTUAL_DISK_ACCESS_SURFACE_RW = 0x00020000,
 VIRTUAL_DISK_ACCESS_UNSURFACE = 0x00040000,
 VIRTUAL_DISK_ACCESS_GET_INFO = 0x00080000,
 VIRTUAL_DISK_ACCESS_CREATE = 0x00100000,
 VIRTUAL_DISK_ACCESS_METAOPS = 0x00200000,
 VIRTUAL_DISK_ACCESS_READ = 0x000d0000,
 VIRTUAL_DISK_ACCESS_ALL = 0x003f0000,
 VIRTUAL_DISK_ACCESS_WRITABLE = 0x00320000
 } VIRTUAL_DISK_ACCESS_MASK;

 typedef struct _VIRTUAL_STORAGE_TYPE *PVIRTUAL_STORAGE_TYPE;

 [
 object,
 uuid(118610b7-8d94-4030-b5b8-500889788e4e),
 pointer_default(unique)
]
 interface IEnumVdsObject : IUnknown
 {
 [helpstring("method Next")]
 HRESULT Next(
 [in] unsigned long celt,
 [out, size_is(celt), length_is(*pcFetched)]
 IUnknown **ppObjectArray,
 [out] unsigned long *pcFetched
);

 [helpstring("method Skip")]
 HRESULT Skip(
 [in] unsigned long celt
);

 [helpstring("method Reset")]
 HRESULT Reset();

300 / 342

[MS-VDS] - v20170601
Virtual Disk Service (VDS) Protocol
Copyright © 2017 Microsoft Corporation
Release: June 1, 2017

 [helpstring("method Clone")]
 HRESULT Clone(
 [out] IEnumVdsObject **ppEnum
);
 }

 [
 object,
 uuid(8326cd1d-cf59-4936-b786-5efc08798e25),
 pointer_default(unique)
]
 interface IVdsAdviseSink : IUnknown
 {
 [helpstring("method OnNotify")]
 HRESULT OnNotify(
 [in, range(1, 100)] long lNumberOfNotifications,
 [in, size_is(lNumberOfNotifications)]
 VDS_NOTIFICATION *pNotificationArray
);
 }

 [
 object,
 uuid(d5d23b6d-5a55-4492-9889-397a3c2d2dbc),
 pointer_default(unique)
]
 interface IVdsAsync : IUnknown
 {
 [helpstring("method Cancel")]
 HRESULT Cancel();

 [helpstring("method Wait")]
 HRESULT Wait(
 [out] HRESULT *pHrResult,
 [out] VDS_ASYNC_OUTPUT *pAsyncOut
);

 [helpstring("method QueryStatus")]
 HRESULT QueryStatus(
 [out] HRESULT *pHrResult,
 [out] unsigned long *pulPercentCompleted
);
 }

 [
 object,
 uuid(e0393303-90d4-4a97-ab71-e9b671ee2729),
 pointer_default(unique)
]

 interface IVdsServiceLoader : IUnknown
 {
 [helpstring("method LoadService")]
 HRESULT LoadService(
 [in,unique,string] LPWSTR pwszMachineName,
 [out] IVdsService **ppService
);
 }

 [
 object,
 uuid(0818a8ef-9ba9-40d8-a6f9-e22833cc771e),
 pointer_default(unique)
]
 interface IVdsService : IUnknown
 {
 [helpstring("method IsServiceReady")]
 HRESULT IsServiceReady();

301 / 342

[MS-VDS] - v20170601
Virtual Disk Service (VDS) Protocol
Copyright © 2017 Microsoft Corporation
Release: June 1, 2017

 [helpstring("method WaitForServiceReady")]
 HRESULT WaitForServiceReady();

 [helpstring("method GetProperties")]
 HRESULT GetProperties(
 [out] VDS_SERVICE_PROP *pServiceProp
);

 [helpstring("method QueryProviders")]
 HRESULT QueryProviders(
 [in] DWORD masks,
 [out] IEnumVdsObject **ppEnum
);

 HRESULT Opnum07NotUsedOnWire(void);

 [helpstring("method QueryUnallocatedDisks")]
 HRESULT QueryUnallocatedDisks(
 [out] IEnumVdsObject **ppEnum
);

 [helpstring("method GetObject")]
 HRESULT GetObject(
 [in] VDS_OBJECT_ID ObjectId,
 [in] VDS_OBJECT_TYPE type,
 [out] IUnknown **ppObjectUnk
);

 [helpstring("method QueryDriveLetters")]
 HRESULT QueryDriveLetters(
 [in] WCHAR wcFirstLetter,
 [in] DWORD count,
 [out, size_is(count)]
 VDS_DRIVE_LETTER_PROP *pDriveLetterPropArray
);

 [helpstring("method QueryFileSystemTypes")]
 HRESULT QueryFileSystemTypes(
 [out, size_is(,*plNumberOfFileSystems)]
 VDS_FILE_SYSTEM_TYPE_PROP
 **ppFileSystemTypeProps,
 [out] long *plNumberOfFileSystems
);

 [helpstring("method Reenumerate")]
 HRESULT Reenumerate();

 [helpstring("method Refresh")]
 HRESULT Refresh();

 [helpstring("method CleanupObsoleteMountPoints")]
 HRESULT CleanupObsoleteMountPoints();

 [helpstring("method Advise")]
 HRESULT Advise(
 [in] IVdsAdviseSink *pSink,
 [out] DWORD *pdwCookie
);

 [helpstring("method Unadvise")]
 HRESULT Unadvise(
 [in] DWORD dwCookie
);

 [helpstring("method Reboot")]
 HRESULT Reboot();

 [helpstring("method SetFlags")]

302 / 342

[MS-VDS] - v20170601
Virtual Disk Service (VDS) Protocol
Copyright © 2017 Microsoft Corporation
Release: June 1, 2017

 HRESULT SetFlags(
 [in] unsigned long ulFlags
);

 [helpstring("method ClearFlags")]
 HRESULT ClearFlags(
 [in] unsigned long ulFlags
);
 }

 [
 object,
 uuid(4afc3636-db01-4052-80c3-03bbcb8d3c69),
 pointer_default(unique)
]
 interface IVdsServiceInitialization : IUnknown
 {
 [helpstring("method Initialize")]
 HRESULT Initialize(
 [in, unique, string] WCHAR *pwszMachineName
);
 }

 [
 object,
 uuid(B6B22DA8-F903-4be7-B492-C09D875AC9DA),
 pointer_default(unique)
]
 interface IVdsServiceUninstallDisk : IUnknown
 {
 [helpstring("method GetDiskIdFromLunInfo")]
 HRESULT GetDiskIdFromLunInfo(
 [in] VDS_LUN_INFORMATION *pLunInfo,
 [out] VDS_OBJECT_ID *pDiskId
);

 [helpstring("method UninstallDisks")]
 HRESULT UninstallDisks(
 [in, size_is(ulCount)]
 VDS_OBJECT_ID *pDiskIdArray,
 [in] unsigned long ulCount,
 [in] boolean bForce,
 [out] boolean *pbReboot,
 [out, size_is(ulCount)]
 HRESULT *pResults
);
 }

 [
 object,
 uuid(0ac13689-3134-47c6-a17c-4669216801be),
 pointer_default(unique)
]
 interface IVdsServiceHba : IUnknown
 {
 [helpstring("method QueryHbaPorts")]
 HRESULT QueryHbaPorts(
 [out] IEnumVdsObject **ppEnum
);
 }

 [
 object,
 uuid(14fbe036-3ed7-4e10-90e9-a5ff991aff01),
 pointer_default(unique)
]
 interface IVdsServiceIscsi : IUnknown
 {
 [helpstring("method GetInitiatorName")]

303 / 342

[MS-VDS] - v20170601
Virtual Disk Service (VDS) Protocol
Copyright © 2017 Microsoft Corporation
Release: June 1, 2017

 HRESULT GetInitiatorName(
 [out, string] WCHAR **ppwszIscsiName
);

 [helpstring("method QueryInitiatorAdapters")]
 HRESULT QueryInitiatorAdapters(
 [out] IEnumVdsObject **ppEnum
);

 HRESULT Opnum05NotUsedOnWire(void);

 HRESULT Opnum06NotUsedOnWire(void);

 HRESULT Opnum07NotUsedOnWire(void);

 [helpstring("method SetInitiatorSharedSecret")]
 HRESULT SetInitiatorSharedSecret(
 [in, unique] VDS_ISCSI_SHARED_SECRET
 *pInitiatorSharedSecret,
 [in] VDS_OBJECT_ID targetId
);

 HRESULT Opnum09NotUsedOnWire(void);
 }

 [
 object,
 uuid(FC5D23E8-A88B-41a5-8DE0-2D2F73C5A630),
 pointer_default(unique)
]
 interface IVdsServiceSAN : IUnknown
 {
 [helpstring("method GetSANPolicy")]
 HRESULT GetSANPolicy(
 [out] VDS_SAN_POLICY *pSanPolicy
);

 [helpstring("method SetSANPolicy")]
 HRESULT SetSANPolicy (
 [in] VDS_SAN_POLICY SanPolicy
);
 }
 [
 object,
 uuid(15fc031c-0652-4306-b2c3-f558b8f837e2),
 pointer_default(unique)
]
 interface IVdsServiceSw : IUnknown
 {
 [helpstring("method GetDiskObject")]
 HRESULT GetDiskObject(
 [in, string] LPCWSTR pwszDeviceID,
 [out] IUnknown** ppDiskUnk
);
 }
 [
 object,
 uuid(2abd757f-2851-4997-9a13-47d2a885d6ca),
 pointer_default(unique)
]
 interface IVdsHbaPort : IUnknown
 {
 [helpstring("method GetProperties")]
 HRESULT GetProperties(
 [out] VDS_HBAPORT_PROP *pHbaPortProp
);

 [helpstring("method SetAllPathStatuses")]
 HRESULT SetAllPathStatuses(

304 / 342

[MS-VDS] - v20170601
Virtual Disk Service (VDS) Protocol
Copyright © 2017 Microsoft Corporation
Release: June 1, 2017

 [in] VDS_PATH_STATUS status
);
 }

 [
 object,
 uuid(b07fedd4-1682-4440-9189-a39b55194dc5),
 pointer_default(unique)
]
 interface IVdsIscsiInitiatorAdapter : IUnknown
 {
 [helpstring("method GetProperties")]
 HRESULT GetProperties(
 [out] VDS_ISCSI_INITIATOR_ADAPTER_PROP
 *pInitiatorAdapterProp
);

 [helpstring("method QueryInitiatorPortals")]
 HRESULT QueryInitiatorPortals(
 [out] IEnumVdsObject **ppEnum
);

 HRESULT Opnum05NotUsedOnWire(void);

 HRESULT Opnum06NotUsedOnWire(void);
 }

 [
 object,
 uuid(38a0a9ab-7cc8-4693-ac07-1f28bd03c3da),
 pointer_default(unique)
]
 interface IVdsIscsiInitiatorPortal : IUnknown
 {
 [helpstring("method GetProperties")]
 HRESULT GetProperties(
 [out] VDS_ISCSI_INITIATOR_PORTAL_PROP
 *pInitiatorPortalProp
);

 [helpstring("method GetInitiatorAdapter")]
 HRESULT GetInitiatorAdapter(
 [out] IVdsIscsiInitiatorAdapter
 **ppInitiatorAdapter
);

 HRESULT Opnum05NotUsedOnWire(void);

 HRESULT Opnum06NotUsedOnWire(void);

 HRESULT Opnum07NotUsedOnWire(void);

 }

 [
 object,
 uuid(10c5e575-7984-4e81-a56b-431f5f92ae42),
 pointer_default(unique)
]
 interface IVdsProvider : IUnknown
 {
 [helpstring("method GetProperties")]
 HRESULT GetProperties(
 [out] VDS_PROVIDER_PROP *pProviderProp
);
 }

 [
 object,

305 / 342

[MS-VDS] - v20170601
Virtual Disk Service (VDS) Protocol
Copyright © 2017 Microsoft Corporation
Release: June 1, 2017

 uuid(9aa58360-ce33-4f92-b658-ed24b14425b8),
 pointer_default(unique)
]
 interface IVdsSwProvider : IUnknown
 {
 [helpstring("method QueryPacks")]
 HRESULT QueryPacks(
 [out] IEnumVdsObject **ppEnum
);

 [helpstring("method CreatePack")]
 HRESULT CreatePack(
 [out] IVdsPack **ppPack
);
 }

 [
 object,
 uuid(d99bdaae-b13a-4178-9fdb-e27f16b4603e),
 pointer_default(unique)
]

 interface IVdsHwProvider : IUnknown
 {
 [helpstring("method QuerySubSystems")]
 HRESULT QuerySubSystems(
 [out] IEnumVdsObject **ppEnum
);

 HRESULT Opnum04NotUsedOnWire(void);

 HRESULT Opnum05NotUsedOnWire(void);

 }

 [
 object,
 uuid(b481498c-8354-45f9-84a0-0bdd2832a91f),
 pointer_default(unique)
]
 interface IVdsVdProvider : IUnknown
 {
 [helpstring("method QueryVDisks")]
 HRESULT QueryVDisks(
 [out] IEnumVdsObject** ppEnum
);

 [helpstring("method CreateVDisk")]
 HRESULT CreateVDisk(
 [in] PVIRTUAL_STORAGE_TYPE VirtualDeviceType,
 [in, string] LPWSTR pPath,
 [in, string, unique] LPWSTR pStringSecurityDescriptor,
 [in] CREATE_VIRTUAL_DISK_FLAG Flags,
 [in] ULONG ProviderSpecificFlags,
 [in] ULONG Reserved,
 [in] PVDS_CREATE_VDISK_PARAMETERS pCreateDiskParameters,
 [in, out, unique] IVdsAsync** ppAsync
);

 [helpstring("method AddVDisk")]
 HRESULT AddVDisk(
 [in] PVIRTUAL_STORAGE_TYPE VirtualDeviceType,
 [in, string] LPWSTR pPath,
 [out] IVdsVDisk** ppVDisk
);

306 / 342

[MS-VDS] - v20170601
Virtual Disk Service (VDS) Protocol
Copyright © 2017 Microsoft Corporation
Release: June 1, 2017

 HRESULT GetDiskFromVDisk(
 [in] IVdsVDisk* pVDisk,
 [out] IVdsDisk** ppDisk
);

 HRESULT GetVDiskFromDisk(
 [in] IVdsDisk* pDisk,
 [out] IVdsVDisk** ppVDisk
);
 }

 [
 object,
 uuid(83bfb87f-43fb-4903-baa6-127f01029eec),
 pointer_default(unique)
]

 interface IVdsSubSystemImportTarget : IUnknown
 {
 [helpstring("method GetImportTarget")]
 HRESULT GetImportTarget(
 [out,string] LPWSTR *ppwszIscsiName
);

 [helpstring("method SetImportTarget")]
 HRESULT SetImportTarget(
 [in,unique,string] LPWSTR pwszIscsiName
);

 }

 [
 object,
 uuid(3b69d7f5-9d94-4648-91ca-79939ba263bf),
 pointer_default(unique)
]
 interface IVdsPack : IUnknown
 {
 [helpstring("method GetProperties")]
 HRESULT GetProperties(
 [out] VDS_PACK_PROP *pPackProp
);

 [helpstring("method GetProvider")]
 HRESULT GetProvider(
 [out] IVdsProvider **ppProvider
);

 [helpstring("method QueryVolumes")]
 HRESULT QueryVolumes(
 [out] IEnumVdsObject **ppEnum
);

 [helpstring("method QueryDisks")]
 HRESULT QueryDisks(
 [out] IEnumVdsObject **ppEnum
);

 [helpstring("method CreateVolume")]
 HRESULT CreateVolume(
 [in] VDS_VOLUME_TYPE type,
 [in, size_is(lNumberOfDisks)]
 VDS_INPUT_DISK *pInputDiskArray,
 [in] long lNumberOfDisks,
 [in] unsigned long ulStripeSize,
 [out] IVdsAsync **ppAsync
);

307 / 342

[MS-VDS] - v20170601
Virtual Disk Service (VDS) Protocol
Copyright © 2017 Microsoft Corporation
Release: June 1, 2017

 [helpstring("method AddDisk")]
 HRESULT AddDisk(
 [in] VDS_OBJECT_ID DiskId,
 [in] VDS_PARTITION_STYLE PartitionStyle,
 [in] long bAsHotSpare
);

 [helpstring("method MigrateDisks")]
 HRESULT MigrateDisks(
 [in, size_is(lNumberOfDisks)]
 VDS_OBJECT_ID *pDiskArray,
 [in] long lNumberOfDisks,
 [in] VDS_OBJECT_ID TargetPack,
 [in] long bForce,
 [in] long bQueryOnly,
 [out, size_is(lNumberOfDisks)]
 HRESULT *pResults,
 [out] long *pbRebootNeeded
);

 HRESULT Opnum10NotUsedOnWire(void);

 [helpstring("method RemoveMissingDisk")]
 HRESULT RemoveMissingDisk(
 [in] VDS_OBJECT_ID DiskId
);

 [helpstring("method Recover")]
 HRESULT Recover(
 [out] IVdsAsync **ppAsync
);
 }

 [
 object,
 uuid(13B50BFF-290A-47DD-8558-B7C58DB1A71A),
 pointer_default(unique)
]
 interface IVdsPack2 : IUnknown
 {
 [helpstring("method CreateVolume2")]
 HRESULT CreateVolume2(
 [in] VDS_VOLUME_TYPE type,
 [in, size_is(lNumberOfDisks)]
 VDS_INPUT_DISK *pInputDiskArray,
 [in] long lNumberOfDisks,
 [in] unsigned long ulStripeSize,
 [in] unsigned long ulAlign,
 [out] IVdsAsync **ppAsync
);
 }

 [
 object,
 uuid(07e5c822-f00c-47a1-8fce-b244da56fd06),
 pointer_default(unique)
]
 interface IVdsDisk : IUnknown
 {
 [helpstring("method GetProperties")]
 HRESULT GetProperties(
 [out] VDS_DISK_PROP *pDiskProperties
);

 [helpstring("method GetPack")]
 HRESULT GetPack(
 [out] IVdsPack **ppPack
);

308 / 342

[MS-VDS] - v20170601
Virtual Disk Service (VDS) Protocol
Copyright © 2017 Microsoft Corporation
Release: June 1, 2017

 [helpstring("method GetIdentificationData")]
 HRESULT GetIdentificationData(
 [out] VDS_LUN_INFORMATION *pLunInfo
);

 [helpstring("method QueryExtents")]
 HRESULT QueryExtents(
 [out, size_is(,*plNumberOfExtents)]
 VDS_DISK_EXTENT **ppExtentArray,
 [out] long *plNumberOfExtents
);

 [helpstring("method ConvertStyle")]
 HRESULT ConvertStyle(
 [in] VDS_PARTITION_STYLE NewStyle
);

 [helpstring("method SetFlags")]
 HRESULT SetFlags(
 [in] unsigned long ulFlags
);

 [helpstring("method ClearFlags")]
 HRESULT ClearFlags(
 [in] unsigned long ulFlags
);
 }

 [
 object,
 uuid(40F73C8B-687D-4a13-8D96-3D7F2E683936),
 pointer_default(unique)
]
 interface IVdsDisk2 : IUnknown
 {
 [helpstring("method SetSANMode")]
 HRESULT SetSANMode(
 [in] long bEnable
);
 }

 [
 object,
 uuid(8F4B2F5D-EC15-4357-992F-473EF10975B9),
 pointer_default(unique)
]
 interface IVdsDisk3 : IUnknown
 {
 [helpstring("method GetProperties2")]
 HRESULT GetProperties2(
 [out] VDS_DISK_PROP2 *pDiskProperties
);

 [helpstring("method QueryFreeExtents")]
 HRESULT QueryFreeExtents(
 [in] ULONG ulAlign,
 [out, size_is(,*plNumberOfFreeExtents)]
 VDS_DISK_FREE_EXTENT **ppFreeExtentArray,
 [out] LONG *plNumberOfFreeExtents
);
 }

 [
 object,
 uuid(6e6f6b40-977c-4069-bddd-ac710059f8c0),
 pointer_default(unique)
]
 interface IVdsAdvancedDisk : IUnknown
 {

309 / 342

[MS-VDS] - v20170601
Virtual Disk Service (VDS) Protocol
Copyright © 2017 Microsoft Corporation
Release: June 1, 2017

 [helpstring("method GetPartitionProperties")]
 HRESULT GetPartitionProperties(
 [in] ULONGLONG ullOffset,
 [out] VDS_PARTITION_PROP *pPartitionProp
);

 [helpstring("method QueryPartitions")]
 HRESULT QueryPartitions(
 [out, size_is(, *plNumberOfPartitions)]
 VDS_PARTITION_PROP **ppPartitionPropArray,
 [out] long *plNumberOfPartitions
);

 [helpstring("method CreatePartition")]
 HRESULT CreatePartition(
 [in] ULONGLONG ullOffset,
 [in] ULONGLONG ullSize,
 [in] CREATE_PARTITION_PARAMETERS *para,
 [out] IVdsAsync **ppAsync
);

 [helpstring("method DeletePartition")]
 HRESULT DeletePartition(
 [in] ULONGLONG ullOffset,
 [in] long bForce,
 [in] long bForceProtected
);

 [helpstring("method ChangeAttributes")]
 HRESULT ChangeAttributes(
 [in] ULONGLONG ullOffset,
 [in] CHANGE_ATTRIBUTES_PARAMETERS *para
);

 [helpstring("method AssignDriveLetter")]
 HRESULT AssignDriveLetter(
 [in] ULONGLONG ullOffset,
 [in] WCHAR wcLetter
);

 [helpstring("method DeleteDriveLetter")]
 HRESULT DeleteDriveLetter(
 [in] ULONGLONG ullOffset,
 [in] WCHAR wcLetter
);

 [helpstring("method GetDriveLetter")]
 HRESULT GetDriveLetter(
 [in] ULONGLONG ullOffset,
 [out] WCHAR *pwcLetter
);

 [helpstring("method FormatPartition")]
 HRESULT FormatPartition(
 [in] ULONGLONG ullOffset,
 [in] VDS_FILE_SYSTEM_TYPE type,
 [in, string] WCHAR *pwszLabel,
 [in] DWORD dwUnitAllocationSize,
 [in] long bForce,
 [in] long bQuickFormat,
 [in] long bEnableCompression,
 [out] IVdsAsync **ppAsync
);

 HRESULT Clean(
 [in] long bForce,
 [in] long bForceOEM,
 [in] long bFullClean,
 [out] IVdsAsync **ppAsync

310 / 342

[MS-VDS] - v20170601
Virtual Disk Service (VDS) Protocol
Copyright © 2017 Microsoft Corporation
Release: June 1, 2017

);
 }

 [
 object,
 uuid(9723f420-9355-42de-ab66-e31bb15beeac),
 pointer_default(unique)
]
 interface IVdsAdvancedDisk2 : IUnknown
 {
 [helpstring("method ChangePartitionType")]
 HRESULT ChangePartitionType(
 [in] ULONGLONG ullOffset,
 [in] long bForce,
 [in] CHANGE_PARTITION_TYPE_PARAMETERS * para
);
 }

 [
 object,
 uuid(3858C0D5-0F35-4BF5-9714-69874963BC36),
 pointer_default(unique)
]
 interface IVdsAdvancedDisk3 : IUnknown
 {
 [helpstring("method GetProperties")]
 HRESULT GetProperties(
 [out] VDS_ADVANCEDDISK_PROP *pAdvDiskProp
);

 [helpstring("method GetUniqueId")]
 HRESULT GetUniqueId(
 [out, string] LPWSTR *ppwszId
);
 }

 [
 object,
 uuid(9882f547-cfc3-420b-9750-00dfbec50662),
 pointer_default(unique)
]
 interface IVdsCreatePartitionEx : IUnknown
 {
 [helpstring("method CreatePartitionEx")]
 HRESULT CreatePartitionEx(
 [in] ULONGLONG ullOffset,
 [in] ULONGLONG ullSize,
 [in] unsigned long ulAlign,
 [in] CREATE_PARTITION_PARAMETERS *para,
 [out] IVdsAsync **ppAsync
);
 }

 [
 object,
 uuid(90681B1D-6A7F-48e8-9061-31B7AA125322),
 pointer_default(unique)
]
 interface IVdsDiskOnline : IUnknown
 {
 [helpstring("method Online")]
 HRESULT Online(void);

 [helpstring("method Offline")]
 HRESULT Offline(void);
 }

 [
 object,

311 / 342

[MS-VDS] - v20170601
Virtual Disk Service (VDS) Protocol
Copyright © 2017 Microsoft Corporation
Release: June 1, 2017

 uuid(538684e0-ba3d-4bc0-aca9-164aff85c2a9),
 pointer_default(unique)
]
 interface IVdsDiskPartitionMF : IUnknown
 {
 [helpstring("method GetPartitionFileSystemProperties")]
 HRESULT GetPartitionFileSystemProperties(
 [in] ULONGLONG ullOffset,
 [out] VDS_FILE_SYSTEM_PROP *pFileSystemProp
);

 [helpstring("method GetPartitionFileSystemTypeName")]
 HRESULT GetPartitionFileSystemTypeName(
 [in] ULONGLONG ullOffset,
 [out, string] WCHAR **ppwszFileSystemTypeName
);

 [helpstring("method QueryPartitionFileSystemFormatSupport")]
 HRESULT QueryPartitionFileSystemFormatSupport(
 [in] ULONGLONG ullOffset,
 [out, size_is(,*plNumberOfFileSystems)]
 VDS_FILE_SYSTEM_FORMAT_SUPPORT_PROP **ppFileSystemSupportProps,
 [out] long *plNumberOfFileSystems
);

 [helpstring("method FormatPartitionEx")]
 HRESULT FormatPartitionEx(
 [in] ULONGLONG ullOffset,
 [in, unique, string] WCHAR *pwszFileSystemTypeName,
 [in] unsigned short usFileSystemRevision,
 [in] unsigned long ulDesiredUnitAllocationSize,
 [in, unique, string] WCHAR *pwszLabel,
 [in] long bForce,
 [in] long bQuickFormat,
 [in] long bEnableCompression,
 [out] IVdsAsync **ppAsync
);
 }

 [
 object,
 uuid(9CBE50CA-F2D2-4bf4-ACE1-96896B729625),
 pointer_default(unique)
]
 interface IVdsDiskPartitionMF2 : IUnknown
 {
 [helpstring("method FormatPartitionEx2")]
 HRESULT FormatPartitionEx2(
 [in] ULONGLONG ullOffset,
 [in, unique, string] LPWSTR pwszFileSystemTypeName,
 [in] unsigned short usFileSystemRevision,
 [in] unsigned long ulDesiredUnitAllocationSize,
 [in, unique, string] LPWSTR pwszLabel,
 [in] DWORD Options,
 [out] IVdsAsync **ppAsync
);
 }

 [
 object,
 uuid(0316560b-5db4-4ed9-bbb5-213436ddc0d9),
 pointer_default(unique)
]
 interface IVdsRemovable : IUnknown
 {
 [helpstring("method QueryMedia")]
 HRESULT QueryMedia();

 [helpstring("method Eject")]

312 / 342

[MS-VDS] - v20170601
Virtual Disk Service (VDS) Protocol
Copyright © 2017 Microsoft Corporation
Release: June 1, 2017

 HRESULT Eject();
 }

 [
 object,
 uuid(88306bb2-e71f-478c-86a2-79da200a0f11),
 pointer_default(unique)
]
 interface IVdsVolume : IUnknown
 {
 [helpstring("method GetProperties")]
 HRESULT GetProperties(
 [out] VDS_VOLUME_PROP *pVolumeProperties
);

 [helpstring("method GetPack")]
 HRESULT GetPack(
 [out] IVdsPack **ppPack
);

 [helpstring("method QueryPlexes")]
 HRESULT QueryPlexes(
 [out] IEnumVdsObject **ppEnum
);

 [helpstring("method Extend")]
 HRESULT Extend(
 [in, unique, size_is(lNumberOfDisks)]
 VDS_INPUT_DISK *pInputDiskArray,
 [in] long lNumberOfDisks,
 [out] IVdsAsync **ppAsync
);

 [helpstring("method Shrink")]
 HRESULT Shrink(
 [in] ULONGLONG ullNumberOfBytesToRemove,
 [out] IVdsAsync **ppAsync
);

 [helpstring("method AddPlex")]
 HRESULT AddPlex(
 [in] VDS_OBJECT_ID VolumeId,
 [out] IVdsAsync **ppAsync
);

 [helpstring("BreakPlex")]
 HRESULT BreakPlex(
 [in] VDS_OBJECT_ID plexId,
 [out] IVdsAsync **ppAsync
);

 [helpstring("RemovePlex")]
 HRESULT RemovePlex(
 [in] VDS_OBJECT_ID plexId,
 [out] IVdsAsync **ppAsync
);

 [helpstring("method Delete")]
 HRESULT Delete(
 [in] long bForce
);

 [helpstring("method SetFlags")]
 HRESULT SetFlags(
 [in] unsigned long ulFlags,
 [in] long bRevertOnClose
);

 [helpstring("method ClearFlags")]

313 / 342

[MS-VDS] - v20170601
Virtual Disk Service (VDS) Protocol
Copyright © 2017 Microsoft Corporation
Release: June 1, 2017

 HRESULT ClearFlags(
 [in] unsigned long ulFlags
);
 }

 [
 object,
 uuid(72AE6713-DCBB-4a03-B36B-371F6AC6B53D),
 pointer_default(unique)
]
 interface IVdsVolume2 : IUnknown
 {
 [helpstring("method GetProperties2")]
 HRESULT GetProperties2(
 [out] VDS_VOLUME_PROP2 *pVolumeProperties
);
 }

 [
 object,
 uuid(ee2d5ded-6236-4169-931d-b9778ce03dc6),
 pointer_default(unique)
]
 interface IVdsVolumeMF : IUnknown
 {
 [helpstring("method queryFileSystemProperties")]
 HRESULT GetFileSystemProperties(
 [out] VDS_FILE_SYSTEM_PROP *pFileSystemProp
);

 [helpstring("method Format")]
 HRESULT Format(
 [in] VDS_FILE_SYSTEM_TYPE type,
 [in, string] WCHAR *pwszLabel,
 [in] DWORD dwUnitAllocationSize,
 [in] long bForce,
 [in] long bQuickFormat,
 [in] long bEnableCompression,
 [out] IVdsAsync **ppAsync
);

 [helpstring("method AddAccessPath")]
 HRESULT AddAccessPath(
 [in, max_is(MAX_PATH - 1), string] WCHAR
 *pwszPath
);

 [helpstring("method QueryAccessPaths")]
 HRESULT QueryAccessPaths(
 [out, string, size_is(, *plNumberOfAccessPaths)]
 LPWSTR **pwszPathArray,
 [out] long *plNumberOfAccessPaths
);

 [helpstring("method QueryReparsePoints")]
 HRESULT QueryReparsePoints(
 [out, size_is(, *plNumberOfReparsePointProps)]
 VDS_REPARSE_POINT_PROP **ppReparsePointProps,
 [out] long
 *plNumberOfReparsePointProps
);

 [helpstring("method DeleteAccessPath")]
 HRESULT DeleteAccessPath(
 [in, max_is(MAX_PATH - 1), string] WCHAR
 *pwszPath,
 [in] long bForce
);

314 / 342

[MS-VDS] - v20170601
Virtual Disk Service (VDS) Protocol
Copyright © 2017 Microsoft Corporation
Release: June 1, 2017

 [helpstring("method Mount")]
 HRESULT Mount();

 [helpstring("method Dismount")]
 HRESULT Dismount(
 [in] long bForce,
 [in] long bPermanent
);

 [helpstring("method SetFileSystemFlags")]
 HRESULT SetFileSystemFlags(
 [in] unsigned long ulFlags
);

 [helpstring("method ClearFileSystemFlags")]
 HRESULT ClearFileSystemFlags(
 [in] unsigned long ulFlags
);
 }

 [
 object,
 uuid(4dbcee9a-6343-4651-b85f-5e75d74d983c),
 pointer_default(unique)
]
 interface IVdsVolumeMF2 : IUnknown
 {
 [helpstring("method GetFileSystemTypeName")]
 HRESULT GetFileSystemTypeName(
 [out, string] WCHAR **ppwszFileSystemTypeName
);

 [helpstring("method QueryFileSystemFormatSupport")]
 HRESULT QueryFileSystemFormatSupport(
 [out, size_is(,*plNumberOfFileSystems)]
 VDS_FILE_SYSTEM_FORMAT_SUPPORT_PROP
 **ppFileSystemSupportProps,
 [out] long *plNumberOfFileSystems
);

 [helpstring("method FormatEx")]
 HRESULT FormatEx(
 [in, unique, string] WCHAR *pwszFileSystemTypeName,
 [in] unsigned short usFileSystemRevision,
 [in] unsigned long
 ulDesiredUnitAllocationSize,
 [in, unique, string] WCHAR *pwszLabel,
 [in] long bForce,
 [in] long bQuickFormat,
 [in] long bEnableCompression,
 [out] IVdsAsync **ppAsync
);
 }

 [
 object,
 uuid(6788FAF9-214E-4b85-BA59-266953616E09),
 pointer_default(unique)
]
 interface IVdsVolumeMF3 : IUnknown
 {
 [helpstring("method QueryVolumeGuidPathnames")]
 HRESULT QueryVolumeGuidPathnames (
 [out, string, size_is(,*pulNumberOfPaths)] LPWSTR **pwszPathArray,
 [out] ULONG *pulNumberOfPaths
);

 [helpstring("method FormatEx2")]
 HRESULT FormatEx2(

315 / 342

[MS-VDS] - v20170601
Virtual Disk Service (VDS) Protocol
Copyright © 2017 Microsoft Corporation
Release: June 1, 2017

 [in, unique, string] LPWSTR pwszFileSystemTypeName,
 [in] USHORT usFileSystemRevision,
 [in] ULONG ulDesiredUnitAllocationSize,
 [in, unique, string] LPWSTR pwszLabel,
 [in] DWORD Options,
 [out] IVdsAsync **ppAsync
);

 [helpstring("method OfflineVolume")]
 HRESULT OfflineVolume (
 void
);

 }

 [
 object,
 uuid(d68168c9-82a2-4f85-b6e9-74707c49a58f),
 pointer_default(unique)
]
 interface IVdsVolumeShrink : IUnknown
 {
 [helpstring("method QueryMaxReclaimableBytes")]
 HRESULT QueryMaxReclaimableBytes(
 [out] ULONGLONG *pullMaxNumberOfReclaimableBytes
);

 [helpstring("method Shrink")]
 HRESULT Shrink(
 [in] ULONGLONG ullDesiredNumberOfReclaimableBytes,
 [in] ULONGLONG ullMinNumberOfReclaimableBytes,
 [out] IVdsAsync **ppAsync
);
 }

 [
 object,
 uuid(1BE2275A-B315-4f70-9E44-879B3A2A53F2),
 pointer_default(unique)
]

 interface IVdsVolumeOnline : IUnknown
 {
 [helpstring("method Online")]
 HRESULT Online();
 }

 [
 object,
 uuid(4daa0135-e1d1-40f1-aaa5-3cc1e53221c3),
 pointer_default(unique)
]
 interface IVdsVolumePlex : IUnknown
 {
 [helpstring("method GetProperties")]
 HRESULT GetProperties(
 [out] VDS_VOLUME_PLEX_PROP *pPlexProperties
);

 [helpstring("method GetVolume")]
 HRESULT GetVolume(
 [out] IVdsVolume **ppVolume
);

 [helpstring("method QueryExtents")]
 HRESULT QueryExtents(
 [out, size_is(, *plNumberOfExtents)]
 VDS_DISK_EXTENT **ppExtentArray,
 [out] long *plNumberOfExtents

316 / 342

[MS-VDS] - v20170601
Virtual Disk Service (VDS) Protocol
Copyright © 2017 Microsoft Corporation
Release: June 1, 2017

);

 [helpstring("method Repair")]
 HRESULT Repair(
 [in, size_is(lNumberOfDisks)]
 VDS_INPUT_DISK *pInputDiskArray,
 [in] long lNumberOfDisks,
 [out] IVdsAsync **ppAsync
);
 }

 [
 object,
 uuid(1e062b84-e5e6-4b4b-8a25-67b81e8f13e8),
 pointer_default(unique)
]
 interface IVdsVDisk : IUnknown
 {

 HRESULT Open(
 [in] VIRTUAL_DISK_ACCESS_MASK AccessMask,
 [in] OPEN_VIRTUAL_DISK_FLAG Flags,
 [in] ULONG ReadWriteDepth,
 [out] IVdsOpenVDisk** ppOpenVDisk
);

 HRESULT GetProperties(
 [out] PVDS_VDISK_PROPERTIES pDiskProperties
);

 HRESULT GetHostVolume(
 [out] IVdsVolume** ppVolume
);

 HRESULT GetDeviceName(
 [out, string] LPWSTR *ppDeviceName);

 }

 [
 object,
 uuid(75c8f324-f715-4fe3-a28e-f9011b61a4a1),
 pointer_default(unique)
]

 interface IVdsOpenVDisk : IUnknown
 {
 HRESULT Attach(
 [in, unique] LPWSTR pStringSecurityDescriptor,
 [in] ATTACH_VIRTUAL_DISK_FLAG Flags,
 [in] ULONG ProviderSpecificFlags,
 [in] ULONG TimeoutInMs,
 [out] IVdsAsync** ppAsync
);

 HRESULT Detach(
 [in] DETACH_VIRTUAL_DISK_FLAG Flags,
 [in] ULONG ProviderSpecificFlags
);

 HRESULT DetachAndDelete(
 [in] DETACH_VIRTUAL_DISK_FLAG Flags,
 [in] ULONG ProviderSpecificFlags
);

 HRESULT Compact(
 [in] COMPACT_VIRTUAL_DISK_FLAG Flags,

317 / 342

[MS-VDS] - v20170601
Virtual Disk Service (VDS) Protocol
Copyright © 2017 Microsoft Corporation
Release: June 1, 2017

 [in] ULONG Reserved,
 [out] IVdsAsync** ppAsync
);

 HRESULT Merge(
 [in] MERGE_VIRTUAL_DISK_FLAG Flags,
 [in] ULONG MergeDepth,
 [out] IVdsAsync** ppAsync
);

 HRESULT Expand(
 [in] EXPAND_VIRTUAL_DISK_FLAG Flags,
 [in] ULONGLONG NewSize,
 [out] IVdsAsync** ppAsync
);
 }

318 / 342

[MS-VDS] - v20170601
Virtual Disk Service (VDS) Protocol
Copyright © 2017 Microsoft Corporation
Release: June 1, 2017

7 Appendix B: Product Behavior

The information in this specification is applicable to the following Microsoft products or supplemental
software. References to product versions include released service packs.

 Windows Server 2003 operating system

 Windows Server 2003 R2 operating system

 Windows Vista operating system

 Windows Server 2008 operating system

 Windows 7 operating system

 Windows Server 2008 R2 operating system

 Windows 8 operating system

 Windows Server 2012 operating system

 Windows 8.1 operating system

 Windows Server 2012 R2 operating system

 Windows 10 operating system

 Windows Server 2016 operating system

Exceptions, if any, are noted below. If a service pack or Quick Fix Engineering (QFE) number appears
with the product version, behavior changed in that service pack or QFE. The new behavior also applies
to subsequent service packs of the product unless otherwise specified. If a product edition appears
with the product version, behavior is different in that product edition.

Unless otherwise specified, any statement of optional behavior in this specification that is prescribed

using the terms "SHOULD" or "SHOULD NOT" implies product behavior in accordance with the
SHOULD or SHOULD NOT prescription. Unless otherwise specified, the term "MAY" implies that the
product does not follow the prescription.

<1> Section 1.3: The VDS Remote Protocol is implemented by the Windows Virtual Disk Service
(VDS). Windows XP operating system and Windows 2000 operating system do not support VDS, but
the Disk Management Remote Protocol [MS-DMRP] on those operating systems provides a subset of

the functionality that VDS provides.

<2> Section 1.6: The VDS Remote Protocol is the preferred protocol to use except on Windows XP and
Windows 2000, which do not support VDS.

<3> Section 1.7: There is no optional support of interfaces, but a server which is compliant to a
specific Windows Server operating system version is required to implement all interfaces supported by
that Windows Server version.

The following table lists, by operating system version, the interfaces used when managing disks and
volumes.

 Supported operating system version

Interface Windows
Server
2003

Windows
Server
2003 R2

Windows
Vista

Windows
Server
2008
operating

system

Windows
7\Windows
Server
2008 R2

Windows
8/Windows
Server
2012/Windows

8.1/Windows

%5bMS-DMRP%5d.pdf#Section_19a16e20072f4d74a245ce4df2f1ecdd

319 / 342

[MS-VDS] - v20170601
Virtual Disk Service (VDS) Protocol
Copyright © 2017 Microsoft Corporation
Release: June 1, 2017

 Supported operating system version

Server 2012
R2/Windows 10
/Windows Server
2016

IVdsProvider X X X X X X

IVdsSwProvider X X X X X X

IVdsPack X X X X X X

IVdsDisk X X X X X X

IVdsAdvancedDisk X X X X X X

IVdsCreatePartitionEx X X X X X X

IVdsRemovable X X X X X X

IVdsVolume X X X X X X

IVdsVolume2 X X

IVdsVolumeMF X X X X X X

IVdsVolumePlex X X X X X X

IVdsServiceUninstallDisk X X X X X

IVdsPack2 X X X X

IVdsDisk2 X X X X

IVdsDisk3 X X

IVdsAdvancedDisk2 X X X X

IVdsAdvancedDisk3 X

IVdsDiskPartitionMF X X X X

IVdsDiskPartitionMF2 X X

IVdsVolumeMF2 X X X X

IVdsVolumeMF3 X X

IVdsVolumeShrink X X X X

IVdsVolumeOnline X X

IVdsHwProvider X X X X X X

IVdsServiceLoader X X X X X X

IVdsVdProvider X X

IVdsVDisk X X

IVdsOpenVDisk X X

IVdsServiceSw X

320 / 342

[MS-VDS] - v20170601
Virtual Disk Service (VDS) Protocol
Copyright © 2017 Microsoft Corporation
Release: June 1, 2017

 Supported operating system version

IVdsSubSystemImportTarget X X X X X

The following list provides a brief overview of the functionality available for managing disks and
volumes starting with the initial release of the Virtual Disk Service Remote Protocol in Windows Server
2003:

IVdsAdvancedDisk2 extends IVdsAdvancedDisk with new functionality that is related to changing a
partition type.

IVdsAdvancedDisk3 contains new functionality related to disk properties and unique ID.

IVdsServiceUninstallDisk contains new functionality that is related to uninstalling disks and the
volumes that are contained on those disks.

IVdsServiceSw contains new functionality for mapping a PnP Device ID string to a disk object.

IVdsPack2 extends IVdsPack with new functionality that is related to creating aligned volumes.

IVdsDisk2 extends IVdsDisk with new functionality that is related to bringing disks online and offline in

clustered and other scenarios.

IVdsDisk3 extends IVdsDisk with new functionality that is related to detecting the BIOS 0 disk or
system disk. This allows a client to find the disk that will be used at boot as the system disk (hosts the
system partition on MBR disks or the ESP for GPT disks). Also, IVdsDisk3 extends IVdsDisk with
functionality to return the list of free extents associated with a disk and to align those extents. The
output of this method is useful as input when creating partitions and volumes.

IVdsVolume2 extends IVdsVolume with new functionality that is related to volume properties.

IVdsVolumeMF2 extends IVdsVolumeMF with new functionality that is related to file systems.

IVdsVolumeMF3 extends IVdsVolumeMF with new functionality that is related to file systems.

IVdsDiskPartitionMF contains new functionality that is related to file systems.

IVdsDiskPartitionMF2 contains a new format method that allows the user to specify metadata
duplication when formatting as UDF.

IVdsVolumeShrink contains new functionality that is related to shrinking volumes.

IVdsVolumeOnline contains new functionality that is related to bringing volumes back to a healthy

state.

Interfaces that are used when querying HBA and iSCSI initiator information.

The following interfaces, used when querying HBA and iSCSI initiator information, are not supported in
Windows Server 2003: IVdsServiceHba, IVdsServiceIscsi, IVdsHbaPort, IVdsIscsiInitiatorAdapter, and
IVdsIscsiInitiatorPortal.

<4> Section 2.1: Windows configures the underlying RPC transport by using the following flags. For

more information on the meaning of these flags, see [C706] and [MS-RPCE].

 RPC_C_AUTHN_LEVEL_PKT_PRIVACY

 RPC_C_IMP_LEVEL_IDENTIFY

 EOAC_SECURE_REFS | EOAC_NO_CUSTOM_MARSHAL

https://go.microsoft.com/fwlink/?LinkId=89824
%5bMS-RPCE%5d.pdf#Section_290c38b192fe422991e64fc376610c15

321 / 342

[MS-VDS] - v20170601
Virtual Disk Service (VDS) Protocol
Copyright © 2017 Microsoft Corporation
Release: June 1, 2017

<5> Section 2.1: The authorization constraints in Windows do not vary by operating system release.
All interfaces that are described in this document require an access level that corresponds to any of

the following Windows security groups:

 Administrators

 Backup Operators

 SYSTEM

 The VDS Remote Protocol works only when the client and the server are on the same domain,
or in domains that have a trust relationship with one another.

 The VDS Remote Protocol does NOT work when client and server are on a workgroup; server
throws ACCESS_DENIED error.

<6> Section 2.2.1.2.2: Windows does not currently send this notification under any circumstance, but

might do so in future releases.

<7> Section 2.2.1.2.5: Implementations on Windows 8 and Windows Server 2012 interpret this value
as VDSBusTypeVirtual.

<8> Section 2.2.1.2.5: This field is not supported in Windows Server 2003, Windows Server 2003 R2,
Windows Vista, Windows Server 2008, Windows 7, and Windows Server 2008 R2.

<9> Section 2.2.1.2.5: This field is not supported in Windows Server 2003, Windows Server 2003 R2,

Windows Vista, Windows Server 2008, Windows 7, and Windows Server 2008 R2.

<10> Section 2.2.1.2.9: This field is not supported in Windows Server 2003, Windows Server 2003
R2, Windows Vista, Windows Server 2008, Windows 7, and Windows Server 2008 R2.

<11> Section 2.2.1.2.9: This field is not supported in Windows Server 2003, Windows Server 2003
R2, Windows Vista, Windows Server 2008, Windows 7, and Windows Server 2008 R2.

<12> Section 2.2.1.2.12: This enumeration type is used only in Windows Vista and Windows Server

2008.

<13> Section 2.2.1.2.22: No Win32 API path names are created. Win32 APIs such as FindFirstVolume
and FindNextVolume do not enumerate this volume.

<14> Section 2.2.1.2.23: For Windows Server 2003 and Windows Server 2003 R2,
VDS_VF_NO_DEFAULT_DRIVE_LETTER cannot be set or cleared on dynamic disk volumes, and is
always enabled. On basic disks, it is disabled by default, and the flags can only be changed using the
IVdsVolume::SetFlags (section 3.4.5.2.32.10) and IvdsVolume::ClearFlag (section 3.4.5.2.32.11)
methods. Assigning or removing a drive letter does not toggle the flag for basic GPT disks.

<15> Section 2.2.1.2.23: Windows Server 2003 and Windows Server 2003 R2 do not use BitLocker
full-volume encryption; otherwise Windows-based client and servers use BitLocker full-volume
encryption.

<16> Section 2.2.1.2.23: This field is not supported in Windows Server 2003, Windows Server 2003

R2, Windows Vista, Windows Server 2008, Windows 7, and Windows Server 2008 R2.

<17> Section 2.2.1.2.23: This field is not supported in Windows Server 2003, Windows Server 2003

R2, Windows Vista, Windows Server 2008, Windows 7, and Windows Server 2008 R2.

<18> Section 2.2.1.2.23: The settings for dynamic disk volumes are the same as for basic GPT disks
on Windows Vista, Windows Server 2008, Windows 7, and Windows Server 2008 R2 operating system.

<19> Section 2.2.1.3.1: This notification is never sent by the Windows implementation of the Virtual
Disk Service.

322 / 342

[MS-VDS] - v20170601
Virtual Disk Service (VDS) Protocol
Copyright © 2017 Microsoft Corporation
Release: June 1, 2017

<20> Section 2.2.1.3.11: Windows recognizes the following partition types on MBR disks and treats
all others as OEM partitions (which do not automatically get assigned drive letters except in Windows

Preinstallation Environment (Windows PE)):

Value Meaning

0x00 An unused entry.

0x01 Partition with 12-bit FAT entries.

0x04 Partition with 16-bit FAT entries.

0x05 Extended partition entry.

0x06 MS-DOS version 4 huge partition.

0x07 Installable file system (IFS) partition.

0x0B FAT32 partition.

0x0C FAT32 partition using extended INT13 services.

0x0E 16-bit FAT partition using extended INT13 services.

0x0F Extended partition using extended INT13 services.

0x42 Logical disk manager (LDM) data partition.

<21> Section 2.2.1.3.12: Windows recognizes the following partition types on GPT disks.

Value Meaning

{C12A7328-F81F-11D2-BA4B-
00A0C93EC93B}

EFI system partition.

{E3C9E316-0B5C-4DB8-817D-
F92DF00215AE}

MSR space partition; used to reserve space for subsequent use by
operating system software.

{EBD0A0A2-B9E5-4433-87C0-
68B6B72699C7}

A basic data partition.

{5808C8AA-7E8F-42E0-85D2-
E1E90434CFB3}

LDM metadata partition.

{AF9B60A0-1431-4F62-BC68-
3311714A69AD}

LDM data partition.

{DE94BBA4-06D1-4D40-A16A-
BFD50179D6AC}

Microsoft recovery partition.

<22> Section 2.2.1.3.12: The partition is recognized as an OEM partition and will not be converted to
dynamic if the disk is converted to dynamic. The partition will not get a drive letter except in Windows
PE.

<23> Section 2.2.1.3.18: This structure is used only in Windows Vista and Windows Server 2008.

<24> Section 2.2.1.3.22: Only the basic data partition type is allowed.

323 / 342

[MS-VDS] - v20170601
Virtual Disk Service (VDS) Protocol
Copyright © 2017 Microsoft Corporation
Release: June 1, 2017

<25> Section 2.2.1.3.22: The partition is recognized as an OEM partition and is not converted to
dynamic if the disk is converted to dynamic. The partition does not get a drive letter except in

Windows PE.

<26> Section 2.2.1.3.23: The VIRTUAL_STORAGE_TYPE structure is not used in Windows Server

2003, Windows Server 2003 R2, Windows Vista, and Windows Server 2008.

<27> Section 2.2.2.1.2.2: This field is not supported in Windows Server 2003, Windows Server 2003
R2, Windows Vista, Windows Server 2008, Windows 7, and Windows Server 2008 R2.

<28> Section 2.2.2.1.2.3: VDS_QUERY_HARDWARE_PROVIDERS returns no additional providers
when it is used with IVdsService::QueryProviders(Opnum 6) on a Windows installation that has no
additional software installed. Third-party providers need to be installed to get hardware providers.

<29> Section 2.2.2.1.3.1: Each version of Windows has its pwszVersion string set as follows.

Version pwszVersion string

Windows Server 2003 1.0

Windows Server 2003 R2 1.1

Windows Vista 2.0

Windows Server 2008 2.1

Windows Server 2008 R2 3.0

Windows 7 3.0

Windows 8 4.0

Windows Server 2012 4.0

Windows 8.1 4.0

Windows Server 2012 R2 4.0

Windows 10 4.0

Windows Server 2016 4.0

<30> Section 2.2.2.1.3.3: In Windows Server 2003, Windows Server 2003 R2, Windows Vista, and
Windows Server 2008: (1) The first entry's wszName field is overwritten with "UDF". The first entry's
wszName field contains "FAT". (2) The string of illegal label characters for the second entry (the
FAT32 entry), pwszIllegalLabelCharSet, is not set and contains an invalid string. (3) The fifth
entry's wszName field is unset. It is supposed to contain "UDF", but instead contains invalid
characters. (4) The third entry's ulCompressionFlags field is incorrectly set to 0x000F0000 (the
NTFS entry).

In Windows, the third entry's ulCompressionFlags field is incorrectly set to 0x000F0000 (the NTFS
entry).

<31> Section 2.2.2.2.1.1: This field is not supported in Windows Server 2003, Windows Server 2003
R2, Windows Vista, Windows Server 2008, Windows 7, and Windows Server 2008 R2.

<32> Section 2.2.2.2.1.1: This field is not supported in Windows Server 2003, Windows Server 2003
R2, Windows Vista, Windows Server 2008, Windows 7, and Windows Server 2008 R2.

324 / 342

[MS-VDS] - v20170601
Virtual Disk Service (VDS) Protocol
Copyright © 2017 Microsoft Corporation
Release: June 1, 2017

<33> Section 2.2.2.3.1.1: The VDS_ISCSI_SHARED_SECRET structure is not used in Windows Server
2003.

<34> Section 2.2.2.4.1.1: The VDS_HBAPORT_TYPE enumeration type is not used in Windows Server
2003.

<35> Section 2.2.2.4.1.2: The VDS_HBAPORT_STATUS enumeration type is not used in Windows
Server 2003.

<36> Section 2.2.2.4.1.3: The VDS_HBAPORT_SPEED_FLAG enumeration type is not used in Windows
Server 2003.

<37> Section 2.2.2.4.2.1: The VDS_WWN structure is not used in Windows Server 2003.

<38> Section 2.2.2.4.2.2: The VDS_HBAPORT_PROP structure is not used in Windows Server 2003.

<39> Section 2.2.2.5.1.1: The VDS_ISCSI_INITIATOR_ADAPTER_PROP structure is not used in

Windows Server 2003.

<40> Section 2.2.2.6.1.1: The VDS_IPADDRESS_TYPE enumeration type is not used in Windows
Server 2003.

<41> Section 2.2.2.6.2.1: The VDS_IPADDRESS structure is not used in Windows Server 2003.

<42> Section 2.2.2.6.2.2: The VDS_ISCSI_INITIATOR_PORTAL_PROP structure is not used in
Windows Server 2003.

<43> Section 2.2.2.10.1.1: This field is not supported in Windows Server 2003, Windows Server
2003 R2, Windows Vista, Windows Server 2008, Windows 7, and Windows Server 2008 R2.

<44> Section 2.2.2.10.1.1: This field is not supported in Windows Server 2003, Windows Server
2003 R2, Windows Vista, Windows Server 2008, Windows 7, and Windows Server 2008 R2.

<45> Section 2.2.2.10.1.1: This field is not supported in Windows Server 2003, Windows Server
2003 R2, Windows Vista, Windows Server 2008, Windows 7, and Windows Server 2008 R2.

<46> Section 2.2.2.11.1.1: The partition is recognized as an OEM partition and is not converted to

dynamic if the disk is converted to dynamic. The partition does not get a drive letter except in
Windows PE.

<47> Section 2.2.2.12.1.1: The CHANGE_PARTITION_TYPE_PARAMETERS structure is not used in
Windows Server 2003 and Windows Server 2003 R2.

<48> Section 2.2.2.12.1.1: Only the basic data partition type is allowed.

<49> Section 2.2.2.13.1.1: This structure is not supported in Windows Server 2003, Windows Server
2003 R2, Windows Vista, Windows Server 2008, Windows 7, and Windows Server 2008 R2.

<50> Section 2.2.2.18.2.1: The default block size of 2 megabytes is used.

<51> Section 2.2.2.19.1.2: The kernels use this at boot time to load the system disk when booting
from a virtual disk.

<52> Section 2.2.2.20.1.1: This value is available for use by a WIN32 non-VDS API.

<53> Section 3.1: Group 2 is not supported in Windows Server 2003.

Group 3 is not supported in Windows Server 2003 and Windows Server 2003 R2.

Group 4 is not supported in Windows Server 2003, Windows Server 2003 R2, and Windows Vista.

325 / 342

[MS-VDS] - v20170601
Virtual Disk Service (VDS) Protocol
Copyright © 2017 Microsoft Corporation
Release: June 1, 2017

Group 5 is not supported in Windows Server 2003, Windows Server 2003 R2, Windows Vista, and
Windows Server 2008.

Group 6 is not supported in Windows Server 2003, Windows Server 2003 R2, Windows Vista, Windows
Server 2008, Windows 7, and Windows Server 2008 R2.

<54> Section 3.1: This group is not supported in Windows Server 2003, Windows Server 2003 R2,
Windows Vista, and Windows Server 2008.

<55> Section 3.1.5.3: This interface is not supported in Windows Server 2003. If a client attempts to
get the interface in Windows Server 2003 by calling IUnknown::QueryInterface, E_NOINTERFACE
(0x80004002) is returned.

<56> Section 3.1.5.4: This interface is not supported in Windows Server 2003. If a client attempts to
get the interface in Windows Server 2003 by calling IUnknown::QueryInterface, E_NOINTERFACE

(0x80004002) is returned.

<57> Section 3.1.5.5: This interface is not supported in Windows Server 2003. If a client attempts to
get the interface in Windows Server 2003 by calling IUnknown::QueryInterface, E_NOINTERFACE

(0x80004002) is returned. Attempting to call methods with opnums 5, 6, 7, or 9 can result in NDR
raising a RPC_X_BAD_STUB_DATA exception. For more information, see [MS-DCOM].

<58> Section 3.1.5.7: This interface is not supported in Windows Server 2003, Windows Server 2003

R2, Windows Vista, Windows Server 2008, Windows 7, and Windows Server 2008 R2.

<59> Section 3.1.6.1: This interface is not supported in Windows Server 2003. If a client attempts to
get the interface in Windows Server 2003 by calling IUnknown::QueryInterface, E_NOINTERFACE
(0x80004002) is returned.

<60> Section 3.1.7.1: This interface is not supported in Windows Server 2003. If a client attempts to
get the interface in Windows Server 2003 by calling IUnknown::QueryInterface, E_NOINTERFACE
(0x80004002) is returned. Attempting to call these methods with opnums 5 or 6 can result in NDR

raising an RPC_X_BAD_STUB_DATA exception. For more information, see [MS-DCOM].

<61> Section 3.1.7.1: Gaps in the opnum numbering sequence apply to Windows as follows.

Opnum Description

05 Only used locally by Windows, never used remotely.

06 Only used locally by Windows, never used remotely.

<62> Section 3.1.8.1: This interface is not supported in Windows Server 2003. If a client attempts to
get the interface in Windows Server 2003 by calling IUnknown::QueryInterface, E_NOINTERFACE

(0x80004002) is returned. Attempting to call methods with opnums 5, 6, or 7 can result in NDR
raising an RPC_X_BAD_STUB_DATA exception. For more information, see [MS-DCOM].

<63> Section 3.1.12.4: This method is not implemented for removable disks in Windows Server 2003.

<64> Section 3.1.12.6: This interface is not supported in Windows Server 2003, Windows Server
2003 R2, Windows Vista, Windows Server 2008, Windows 7, and Windows Server 2008 R2.

<65> Section 3.3.6: When the sequence shown in the following event log entry is executed
repeatedly in a program (say, 200 times) on Windows Server 2008, the client will occasionally

encounter the error "0x800706BE". This error mainly comes at AddDisk and sometimes on Wait. In
this circumstance, the following entry is recorded in the event log on the server:"====Faulting
application vds.exe, version 6.0.6001.18000, time stamp 0x479198cb, faulting module ntdll.dll,
version 6.0.6001.18000, time stamp 0x4791adec, exception code 0xc0000005, fault offset

%5bMS-DCOM%5d.pdf#Section_4a893f3dbd2948cd9f43d9777a4415b0

326 / 342

[MS-VDS] - v20170601
Virtual Disk Service (VDS) Protocol
Copyright © 2017 Microsoft Corporation
Release: June 1, 2017

0x000000000001f7fa, process id 0xda4, application start time 0x01c967e37ddea470.====-
QueryUnallocatedDisks- CreatePack- AddDisk- Clean- Wait (for clean to complete)"

<66> Section 3.4.1.1: The IVdsServiceUninstallDisk, IVdsServiceHba, and IVdsServiceIscsi interfaces
are not available in Windows Server 2003.

<67> Section 3.4.1.2: In Windows, only partitions on hard disks that have the following partition
types are considered volumes: 0x01, 0x04, 0x06, 0x07, 0x0B, 0x0C, and 0x0E.

<68> Section 3.4.5.1.7: The operating system allows a disk object to be queried to determine
whether it is a virtual disk.

<69> Section 3.4.5.1.8: The operating system allows a disk object to be queried to determine
whether it is a virtual disk.

<70> Section 3.4.5.2: Windows servers enforce authorization checks. For information on the

authorization requirements for the various methods, see section 2.1. In Windows, the client needs to
be a member of the administrator or backup operators groups, or be the local_system account.

<71> Section 3.4.5.2.4.1: In Windows, the IVdsService::GetProperties method will not fail if called
before the service has finished initializing, but the data returned is not valid. Client applications wait
for the service to finish initializing before making any calls against the service, other than
IVdsService::IsServiceReady or IVdsService::WaitForServiceReady.

<72> Section 3.4.5.2.4.8: Note the following issues in Windows Server 2003, Windows Server 2003
R2, Windows Vista, Windows Server 2008 R2, and Windows Server 2012: (1) The first entry's
wszName field is overwritten with "UDF". The first entry's wszName field contains "FAT". (2) The
string of illegal label characters for the second entry (the FAT32 entry), pwszIllegalLabelCharSet, is
not set and contains an invalid string. (3) The fifth entry's wszName field is left unset. It is supposed
to contain "UDF", but instead contains invalid characters.

In Windows, the third entry's ulCompressionFlags field is incorrectly set to 0x000F0000 (the NTFS

entry).

<73> Section 3.4.5.2.4.14: In Windows Vista, Windows Server 2008, Windows 7, Windows Server

2008 R2, Windows 8, Windows Server 2012, Windows 8.1, Windows Server 2012 R2, Windows 10,
and Windows Server 2016 this method succeeds only if the client allows the server to impersonate the
client's security context. The client does so by changing its impersonation level to
RPC_C_IMPL_LEVEL_IMPERSONATE. For more information on the meaning of the
RPC_C_IMPL_LEVEL_IMPERSONATE flag, see [C706] and [MS-RPCE] section 2.2.1.1.9.

<74> Section 3.4.5.2.8.3: The Windows implementation of this method always returns
VDS_E_TARGET_SPECIFIC_NOT_SUPPORTED (0x80042706) if a target ID is specified.

<75> Section 3.4.5.2.10.1: This method is not supported in Windows Server 2003, Windows Server
2003 R2, Windows Vista, Windows Server 2008, Windows 7, and Windows Server 2008 R2.

<76> Section 3.4.5.2.11.2: This method returns VDS_E_NOT_SUPPORTED.

Windows Server 2003 R2 returns the S_OK status whether or not storage is connected to the ends of

the paths.

<77> Section 3.4.5.2.17.2: Windows uses a string in the Security Descriptor Definition Language
(SDDL) format.

<78> Section 3.4.5.2.17.2: For the Microsoft virtual hard disk provider, this parameter is zero.

<79> Section 3.4.5.2.17.2: Windows 7 and Windows 8 ignore this value.

<80> Section 3.4.5.2.19.5: Windows supports at most 32 disks in a volume. Windows servers fail
requests that specify more than 32 disks, and Windows clients never submit such requests.

327 / 342

[MS-VDS] - v20170601
Virtual Disk Service (VDS) Protocol
Copyright © 2017 Microsoft Corporation
Release: June 1, 2017

<81> Section 3.4.5.2.19.5: The Windows implementation requires the stripe size to be 65536 if the
type is VDS_VT_STRIPE or VDS_VT_PARITY. Other volume types are not striped and the stripe size is

0.

<82> Section 3.4.5.2.19.6: If a GPT disk is added to a basic pack, the operation automatically

creates an MSR partition on the disk, except when the server is running in Windows PE because an
administrator might want to create an EFI system partition on the disk. The EFI system partition, if
present, needs to be the first partition on the disk. If a disk is added to a dynamic pack, the operation
does not create an MSR partition.

<83> Section 3.4.5.2.19.7: It is not possible to migrate a basic disk from one basic disk pack to
another basic disk pack. A dynamic disk with volumes cannot be converted to a basic disk.

<84> Section 3.4.5.2.19.7: If the server is running on Windows Server 2003 or Windows Server 2003

R2:

 If this method is called to convert a basic disk to a dynamic disk, and there is not enough space
on the disk to create the dynamic disk metadata database, then this method returns

VDS_E_NO_FREE_SPACE.

 If this method is called to import a set of foreign dynamic disks into the online pack, and the
disks do not all belong to the same foreign pack, then this method returns

VDS_E_IMPORT_SET_INCOMPLETE.

 If this method is called to convert a basic disk to a dynamic disk, and the disk contains an active
partition that is not the current active partition, then this method returns
VDS_E_ACTIVE_PARTITION.

 If this method is called to convert a basic disk to a dynamic disk, and the disk contains a partition
which is of a type not recognized by the Windows operating system, then this method returns
VDS_E_PARTITION_OF_UNKNOWN_TYPE.

 If this method is called to convert a basic disk to a dynamic disk, and the disk contains a partition
which is part of an FtDisk volume, then this method returns VDS_E_LEGACY_VOLUME_FORMAT.

 If this method is called to convert a basic disk to a dynamic disk, then the disk contains a partition
which is either of unknown type, or, which has a type indicating that it is a known OEM partition,
and the aforementioned partition is both preceded and followed by data partitions with recognized
partition types, method returns VDS_E_NON_CONTIGUOUS_DATA_PARTITIONS.

<85> Section 3.4.5.2.19.8: On Windows Server 2003 and Windows Server 2003 R2, removing a

missing disk called against a dynamic disk does two things:

1. Removes the disk from the online disk group.

2. Reverts the disk to basic.

If the missing disk is in the online disk group and is being converted to basic, both steps are
completed. If a missing disk is being removed from the disk group, only step 1 is performed. If the
disk is foreign, only step 2 is performed because the disk is not in the online disk group.

<86> Section 3.4.5.2.20.1: This array's size is 32 objects or less, because Windows imposes a limit of
32 disks that can be used with a single volume.

<87> Section 3.4.5.2.20.1: The stripe size is 65,536 if type is VDS_VT_STRIPE or VDS_VT_PARITY;
otherwise, stripe size is 0.

<88> Section 3.4.5.2.20.1: In Windows, if zero is specified, the server determines the alignment
value that is specified in one of the following registry keys under
HKEY_LOCAL_MACHINE\System\CurrentControlSet\Services\vds\Alignment, depending on the size of

328 / 342

[MS-VDS] - v20170601
Virtual Disk Service (VDS) Protocol
Copyright © 2017 Microsoft Corporation
Release: June 1, 2017

the disk on which the volume is created. The following default values appear after the operating
system is installed and can be overridden by an administrator.

Value Meaning

"Disk Size 4GB"

65536

Registry Key: LessThan4GB

"Disk Size 4 - 8GB"

1048576

Registry Key: Between4_8GB

"Disk Size 8 - 32GB"

1048576

Registry Key: Between8_32GB

"Disk Size > 32GB"

1048576

Registry Key: GreaterThan32GB

<89> Section 3.4.5.2.21.5: For Windows Vista, Windows Server 2008, Windows 7, Windows Server

2008 R2, Windows 8, Windows Server 2012, Windows 8.1, Windows Server 2012 R2, Windows 10,
and Windows Server 2016, if the disk is not convertible because there are data partitions or volumes
on the disk or because the disk is removable, VDS_E_DISK_NOT_CONVERTIBLE is returned. Windows
7, Windows Server 2008 R2, Windows 8, Windows Server 2012, Windows 8.1, Windows Server 2012
R2, Windows 10, and Windows Server 2016, require that the disk have a minimum size of 128 MB in
order for the disk to be converted from the MBR disk partition formatting style to the GPT disk

partition formatting style. If the disk meets all other requirements for conversion, and if the disk's size
is less than this minimum, the error returned will be VDS_E_DISK_NOT_CONVERTIBLE_SIZE.

<90> Section 3.4.5.2.21.6: Not implemented in Windows Server 2003, Windows Server 2003 R2, and
Windows Vista prior to Windows Vista operating system with Service Pack 1 (SP1).

<91> Section 3.4.5.2.21.7: Not implemented in Windows Server 2003, Windows Server 2003 R2, and
Windows Vista prior to Windows Vista SP1.

<92> Section 3.4.5.2.22.1: This method will fail on Windows Server 2008 if called against a basic disk

or dynamic disk, and will only succeed if the disk has no disk partitioning format. This method was
added for Windows Vista, but was superseded by the IVdsDiskOnline::Online method in Windows
Server 2008.

<93> Section 3.4.5.2.22.1: For Windows Server 2008, if this method is called to either online or
offline the disk and the disk is already online or offline, the method returns S_OK or ERROR_SUCCESS
(0x00000000). In Windows Server 2008 R2, Windows Server 2008 R2, Windows Server 2012,
Windows Server 2012 R2, and Windows Server 2016, if this method is called to either online or offline

the disk and the disk is found to already be online or offline, the method returns
VDS_E_DISK_NOT_ONLINE (0x8004244B) or VDS_E_DISK_NOT_OFFLINE (0x80042595),
respectively.

<94> Section 3.4.5.2.24.3: On Windows Vista and Windows Server 2008, the offset supplied to this

method can be rounded up or down to an alignment boundary.

<95> Section 3.4.5.2.24.4: OEM partitions, EFI system partitions, and MSR partitions are considered

protected and cannot be deleted unless bForceProtected is specified.

<96> Section 3.4.5.2.24.5: In Windows, the partition size is returned.

<97> Section 3.4.5.2.24.9: On Windows 7 and Windows Server 2008 R2, if the method call is made
using FAT, FAT32, or ExFAT file system, and the bEnableCompression parameter is TRUE,

329 / 342

[MS-VDS] - v20170601
Virtual Disk Service (VDS) Protocol
Copyright © 2017 Microsoft Corporation
Release: June 1, 2017

VDS_E_COMPRESSION_NOT_SUPPORTED is returned. On all other Windows-based clients and servers
the parameter is ignored.

<98> Section 3.4.5.2.24.9: On Windows 7 and Windows Server 2008 R2, if the method call is made
using FAT, FAT32, or ExFAT file system types, and the bEnableCompression parameter is TRUE,

VDS_E_COMPRESSION_NOT_SUPPORTED is returned. On all other Windows-based clients and servers
the parameter is ignored.

<99> Section 3.4.5.2.24.10: On GPT disks, Windows recognizes any partition with the
GPT_ATTRIBUTE_PLATFORM_REQUIRED flag set as an OEM partition. On MBR disks, Windows
recognizes the following partition types as OEM partitions.

Value Meaning

0x12 EISA partition.

0x27 Microsoft recovery partition (recognized only in Windows Vista, Windows Server 2008, Windows 7,
Windows Server 2008 R2, Windows 8, and Windows Server 2012).

0x84 Hibernation partition for laptops.

0xA0 Diagnostic partition on some HP notebooks.

0xDE Dell partition.

0xFE IBM IML partition.

<100> Section 3.4.5.2.24.10: On Windows Server 2003, Windows Server 2003 R2, Windows Vista,
and Windows Server 2008, this method returns VDS_E_OPERATION_DENIED for a basic disk.
Otherwise, this method returns VDS_E_CLEAN_WITH_DATA for a basic disk.

<101> Section 3.4.5.2.24.10: On Windows Server 2003, Windows Server 2003 R2, Windows Vista,
and Windows Server 2008, this method returns VDS_E_OPERATION_DENIED for a basic disk.

Otherwise, this method returns VDS_E_CLEAN_WITH_OEM for a basic disk.

<102> Section 3.4.5.2.24.10: On Windows Vista and Windows Server 2008, clean operations cannot
be canceled. The basic provider will return VDS_E_CANCEL_TOO_LATE, and the Dynamic Provider will
return VDS_E_NOT_SUPPORTED. For raw disks that belong to neither provider, VDS will return

VDS_E_CANCEL_TOO_LATE.

<103> Section 3.4.5.2.26.1: This method is not supported in Windows Server 2003, Windows Server
2003 R2, Windows Vista, Windows Server 2008, Windows 7, and Windows Server 2008 R2.

<104> Section 3.4.5.2.26.2: This method is not supported in Windows Server 2003, Windows Server
2003 R2, Windows Vista, Windows Server 2008, Windows 7, and Windows Server 2008 R2.

<105> Section 3.4.5.2.27.1: For MBR-formatted disks, partition size is limited to 2^32 sectors. For
example, for a sector size of 512 bytes, there is a 2-terabyte limit for partitions.

<106> Section 3.4.5.2.27.1: In Windows, if zero is specified the server will determine the alignment
value specified in one of the following registry keys under
HKEY_LOCAL_MACHINE\System\CurrentControlSet\Services\vds\Alignment, depending on the size of
the disk on which the volume is created.

The values listed in the following table are the defaults that appear after the operating system is
installed, and can be overridden by an administrator.

330 / 342

[MS-VDS] - v20170601
Virtual Disk Service (VDS) Protocol
Copyright © 2017 Microsoft Corporation
Release: June 1, 2017

Disk Size Registry Key Default Value in Registry

< 4 GB LessThan4GB 65536

4 - 8 GB Between4_8GB 1048576

8 - 32 GB Between8_32GB 1048576

> 32 GB GreaterThan32GB 1048576

<107> Section 3.4.5.2.29.3: This method does not return valid values when called with Windows
Vista as the client and Windows Server 2008 as the server.

<108> Section 3.4.5.2.29.4: If the method call is made using FAT, FAT32, or ExFAT file system types,

and the bEnableCompression parameter is TRUE, VDS_E_COMPRESSION_NOT_SUPPORTED will be
returned in the return value of this method call. On Windows Server 2003, Windows Server 2003 R2,

Windows Vista, and Windows Server 2008, the parameter is ignored.

<109> Section 3.4.5.2.29.4: If the method call is made using FAT, FAT32, or ExFAT file system types,
and the bEnableCompression parameter is TRUE, VDS_E_COMPRESSION_NOT_SUPPORTED will be
returned in the return value of this method call. On Windows Server 2003, Windows Server 2003 R2,
Windows Vista, and Windows Server 2008, the parameter will be ignored.

<110> Section 3.4.5.2.30.1: If the method is called with an Options parameter that includes the
VDS_ESOF_COMPRESSION flag and a file system type of FAT, FAT32, or ExFAT, the method will return
VDS_E_COMPRESSION_NOT_SUPPORTED. Windows Server 2003, Windows Server 2003 R2, Windows
Vista, and Windows Server 2008 ignore this flag in the Options parameter. The NTFS file system
supports compression.

<111> Section 3.4.5.2.32.4: No more than 32 disks are used with a volume; therefore, this value will
not exceed 31.

<112> Section 3.4.5.2.32.4: If the file system on the volume is an NTFS file system, extend the file

system to fill the newly extended volume.

<113> Section 3.4.5.2.32.4: On Windows, when the Extend operation has completed successfully,
calling IVdsAsync::QueryStatus returns S_OK in the pHrResult output parameter but incorrectly
returns 0 in the pulPercentCompleted output parameter. When the operation has completed
successfully, IVdsAsync::QueryStatus is expected to return 100 in the pulPercentCompleted output

parameter.

<114> Section 3.4.5.2.32.5: Only an NTFS file system or raw volumes support this operation. This
method is not implemented on Windows Server 2003 or Windows Server 2003 R2.

<115> Section 3.4.5.2.32.5: The Shrink will only work on volumes with an NTFS file system or RAW
file systems; otherwise, it returns VDS_E_CANNOT_SHRINK (HRESULT of 0x8004251E).

<116> Section 3.4.5.2.32.5: The NTFS file system supports shrinking, the FAT file systems do not.

<117> Section 3.4.5.2.32.5: On Windows Server 2003 R2 when the Shrink operation has completed

successfully, calling IVdsAsync::QueryStatus returns S_OK in the pHrResult output parameter but
incorrectly returns 0 in the pulPercentCompleted output parameter. When the operation has
completed successfully, IVdsAsync::QueryStatus is expected to return 100 in the pulPercentCompleted
output parameter.

<118> Section 3.4.5.2.32.9: On Windows Server 2003, the crash dump and hibernate volumes
remain on the boot partition.

331 / 342

[MS-VDS] - v20170601
Virtual Disk Service (VDS) Protocol
Copyright © 2017 Microsoft Corporation
Release: June 1, 2017

On Windows Server 2003, after the volume is deleted, VDS tries to delete the volume mount points.
If deleting the mount points fails, Delete will return VDS_S_ACCESS_PATH_NOT_DELETED, even

though the volume was successfully deleted.

<119> Section 3.4.5.2.32.9: For Windows Server 2003 R2, the volume plex can continue to be

available for a few seconds after the volume has been deleted.

<120> Section 3.4.5.2.32.10: In Windows, the server does not allow the setting of the
VDS_VF_HIDDEN and VDS_VF_READONLY flags on boot critical volumes, such as the system volume,
boot volume, pagefile volume, hibernation volume, and crashdump volume. If the volume is on a basic
MBR disk and the disk contains any of the boot critical volumes, the server does not allow the setting
of the VDS_VF_HIDDEN and VDS_VF_READONLY flags on the volume.

<121> Section 3.4.5.2.32.10: Windows does not implement the VDS_VF_LBN_REMAP_ENABLED flag

on a volume. Windows does not support setting or clearing the VDS_VF_INSTALLABLE flag on basic
disk volumes.

<122> Section 3.4.5.2.32.10: If bRevertOnClose is set, the server does not dismount the volume. If

flags VDS_VF_READONLY and/or VDS_VF_HIDDEN are being set and bRevertOnClose is not set, the
server dismounts the volume so that the file system is mounted with the new flags when the volume
is mounted. Windows Server 2003 and Windows Server 2003 R2 do not follow this behavior.

<123> Section 3.4.5.2.32.10: In Windows, VDS_VF_INSTALLABLE is only valid for dynamic disk
volumes.

<124> Section 3.4.5.2.32.11: If the VDS_VF_READONLY and/or VDS_VF_HIDDEN flags are being
cleared, the server dismounts the volume so that the file system is mounted with the new flags. If the
volume is a boot critical volume, the server will fail to dismount the volume. Windows Server 2003
and Windows Server 2003 R2 do not follow this behavior.

<125> Section 3.4.5.2.32.11: Windows does not implement the VDS_VF_LBN_REMAP_ENABLED flag

on a volume. Windows does not support setting or clearing the VDS_VF_INSTALLABLE flag on basic
disk volumes.

<126> Section 3.4.5.2.34.1: Windows Server 2008 returns VDS_E_VOLUME_NOT_MOUNTED when

the device is offline.

<127> Section 3.4.5.2.34.2: On Windows 7, Windows Server 2008 R2, Windows 8, and Windows
Server 2012, if the method call is made using FAT, FAT32, or ExFAT file file system, and the
bEnableCompression parameter is TRUE, VDS_E_COMPRESSION_NOT_SUPPORTED will be returned in

the return value of this method call. On Windows Server 2003, Windows Server 2003 R2, Windows
Vista, and Windows Server 2008, the parameter will be ignored.This parameter is ignored if the file
system is not an NTFS file system.

<128> Section 3.4.5.2.34.2: On Windows 7, Windows Server 2008 R2, Windows 8, and Windows
Server 2012, if the method call is made using FAT, FAT32, or ExFAT file system types, and the
bEnableCompression parameter is TRUE, VDS_E_COMPRESSION_NOT_SUPPORTED will be returned in

the return value of this method call. On Windows Server 2003, Windows Server 2003 R2, Windows
Vista, and Windows Server 2008, the parameter will be ignored.

<129> Section 3.4.5.2.34.3: An access path can apply to a drive letter or an empty folder on an NTFS
file system.

<130> Section 3.4.5.2.34.3: Due to an inconsistency in the Windows code, only one notification is
sent. Rather than sending VDS_MOUNT_POINT_NOTIFICATION with ulEvent as
VDS_NF_MOUNT_POINT_CHANGE and VDS_DRIVE_LETTER_NOTIFICATION with ulEvent as

VDS_NF_DRIVE_LETTER_FREE, Windows sends VDS_MOUNT_POINT_NOTIFICATION with ulEvent
VDS_NF_MOUNT_POINT_CHANGE (0x000000CD).

332 / 342

[MS-VDS] - v20170601
Virtual Disk Service (VDS) Protocol
Copyright © 2017 Microsoft Corporation
Release: June 1, 2017

<131> Section 3.4.5.2.34.3: Mounted folder path names cannot be assigned to hidden volumes. A
hidden volume is one that is not reported to the Mount Point Manager because: (1) the

GPT_BASIC_DATA_ATTRIBUTE_HIDDEN flag is set, (2) the partition type is not recognized, (3) the
partition type is a known OEM partition type, or (4) the partition type is either

PARTITION_SYSTEM_GUID (an ESP partition) or PARTITION_MSFT_RECOVERY_GUID (a recovery
partition).

<132> Section 3.4.5.2.34.6: In Windows, only one notification is sent. Rather than sending
VDS_MOUNT_POINT_NOTIFICATION with ulEvent as VDS_NF_MOUNT_POINT_CHANGE and
VDS_DRIVE_LETTER_NOTIFICATION with ulEvent as VDS_NF_DRIVE_LETTER_FREE, Windows sends
VDS_MOUNT_POINT_NOTIFICATION with ulEvent as VDS_NF_MOUNT_POINT_CHANGE.
(0x000000CD).

<133> Section 3.4.5.2.34.8: For Windows Server 2003,Windows Server 2003 R2, Windows Vista,
Windows Server 2008: If the volume is offline, the VDS_VF_PERMANENTLY_DISMOUNTED flag is
set in the ulFlags member of the VDS_VOLUME_PROP (section 2.2.2.14.1.1) or
VDS_VOLUME_PROP2 (section 2.2.2.15.1.1) structure, but the volume status is not updated to
VDS_VS_OFFLINE.

<134> Section 3.4.5.2.35.3: If the method call is made using FAT, FAT32, or ExFAT file system types,

and the bEnableCompression parameter is TRUE, VDS_E_COMPRESSION_NOT_SUPPORTED will be
returned in the return value of this method call. On Windows Server 2003, Windows Server 2003 R2,
Windows Vista, and Windows Server 2008, the parameter will be ignored.

<135> Section 3.4.5.2.35.3: If the method call is made using FAT, FAT32, or ExFAT file system types,
and the bEnableCompression parameter is TRUE, VDS_E_COMPRESSION_NOT_SUPPORTED will be
returned in the return value of this method call. On Windows Server 2003, Windows Server 2003 R2,
Windows Vista, and Windows Server 2008, the parameter will be ignored.

<136> Section 3.4.5.2.36.2: If the method is called with an Options parameter that includes the
VDS_ESOF_COMPRESSION flag and a file system type of FAT, FAT32, or ExFAT, the method will return
VDS_E_COMPRESSION_NOT_SUPPORTED. Windows Server 2003, Windows Server 2003 R2, Windows
Vista, and Windows Server 2008 ignore this flag in the Options parameter. The NTFS file system
supports compression.

<137> Section 3.4.5.2.37.2: The Shrink method works only on volumes that have NTFS or RAW file
systems; otherwise, Shrink returns VDS_E_CANNOT_SHRINK (HRESULT of 0x8004251E).

<138> Section 3.4.5.2.37.2: The NTFS file system supports shrinking; FAT file systems do not.

<139> Section 3.4.5.2.40.3: Windows does not implement the IVdsVDisk::GetHostVolume method.

<140> Section 3.4.5.2.41.1: Windows uses a string in the Security Descriptor Definition Language
(SDDL) format.

<141> Section 3.4.5.2.41.1: For the Microsoft virtual disk provider, this parameter is 0 or 1. If the
parameter is 1, the pStringSecurityDescriptor parameter is NULL.

<142> Section 3.4.5.2.41.1: In Windows, TimeoutInMs is not used.

<143> Section 3.4.5.2.41.2: For the Microsoft provider, this is 0.

<144> Section 3.4.5.2.41.3: For the Microsoft provider, this is 0.

<145> Section 3.4.5.2.41.5: In Windows, once the merge operation completes, the given virtual disk
is still usable but, once the blocks in the differencing disk have been merged into its parent, the list of
changed blocks stored in the differencing disk are duplicates of the same blocks in the parent. It is for
this reason that: (1) It is recommended that the given virtual disk be deleted because it is no longer

necessary and continuing to use the given disk will waste space; by definition, a differencing virtual
disk consists of only the set of blocks that differ from blocks in the parent virtual disk. (2) If a merge

333 / 342

[MS-VDS] - v20170601
Virtual Disk Service (VDS) Protocol
Copyright © 2017 Microsoft Corporation
Release: June 1, 2017

operation fails to complete, then the given differencing disk and its children are still valid. (3) Because
it is recommended that the given virtual disk be deleted, any differencing virtual disks using the given

virtual disk as a parent will become invalid as a result of deleting the given virtual disk.

Also note that once the merge operation has commenced, any other virtual disks using the given

disk's parent as a parent become invalid. These disks will fail all operations. The reason for this is that
any other virtual disks using the given virtual disk's parent as a parent can have change blocks that
conflict with blocks merged into the parent.

To illustrate the above: Given diskA, its parent is diskB, diskB's parent is diskC, and diskX, which also
uses diskC as its parent, then once a merge of diskB into diskC is started (some number of blocks
have been copied from diskB to diskC), diskX becomes invalid.

<146> Section 3.4.5.2.41.5: For the Microsoft virtual disk provider, the disk has been opened with a

ReadWriteDepth at least equal to this value.

<147> Section 3.4.5.2.41.6: In Windows, the expand operation invalidates a virtual disk
differencing chain.

<148> Section 3.4.7: Windows Virtual Disk Service Remote Protocol servers use the Plug and Play
subsystem to register with the operating system to receive notifications of changes to the storage
device.

<149> Section 3.4.7: When the sequence in the behavior log entry shown here is executed repeatedly
in a program (say, 200 times) on Windows Server 2008, the client will occasionally encounter the
error "0x800706BE". This error mainly comes at AddDisk and sometimes on Wait. However, on the
server, the following entry is recorded in the event log: "====Faulting application vds.exe, version
6.0.6001.18000, time stamp 0x479198cb, faulting module ntdll.dll, version 6.0.6001.18000, time
stamp 0x4791adec, exception code 0xc0000005, fault offset 0x000000000001f7fa, process id 0xda4,
application start time 0x01c967e37ddea470.====- QueryUnallocatedDisks- CreatePack- AddDisk-

Clean- Wait (for clean to complete)"

334 / 342

[MS-VDS] - v20170601
Virtual Disk Service (VDS) Protocol
Copyright © 2017 Microsoft Corporation
Release: June 1, 2017

8 Change Tracking

No table of changes is available. The document is either new or has had no changes since its last
release.

335 / 342

[MS-VDS] - v20170601
Virtual Disk Service (VDS) Protocol
Copyright © 2017 Microsoft Corporation
Release: June 1, 2017

9 Index

A

Abstract data model
 client (section 3.2.1 139, section 3.3.1 147)
 server (section 3.2.1 139, section 3.4.1 149)
Access paths
 client 146
 server 146
ACCESS_MASK 29
AddAccessPath method 241
AddDisk method 192
Adding disk objects 157
Adding pack objects for dynamic providers 156
Adding virtual disk objects 161
Adding volume objects 159
AddPlex method 231
AddVDisk method 186
Advise method 172
Applicability 24
AssignDriveLetter method 209
Asynchronous operation object interfaces 118
Asynchronous tasks 154
Asynchronous tasks - performing - example 277

Attach method 259
ATTACH_VIRTUAL_DISK_FLAG enumeration 89

B

BreakPlex method 232

C

Callback object interface 118
Callback objects - client 147
Callback objects - server (section 3.4.1.4 154,

section 3.4.3.2 156)
Cancel method 165
Capability negotiation 24
Change tracking 334
CHANGE_ATTRIBUTES_PARAMETERS structure 75
CHANGE_PARTITION_TYPE_PARAMETERS structure

76
ChangeAttributes method 207
ChangePartitionType method 214
Clean method 212
CleanupObsoleteMountPoints method 172
ClearFileSystemFlags method 245
ClearFlags method (section 3.4.5.2.4.16 174, section

3.4.5.2.21.7 201, section 3.4.5.2.32.11 236)
Client
 abstract data model (section 3.2.1 139, section

3.3.1 147)
 access paths 146
 disks 144
 drive letters 146
 file systems 146
 initialization (section 3.2.3 147, section 3.3.3 148)

 local events (section 3.2.6 147, section 3.3.6 149)
 message processing (section 3.2.4 147, section

3.3.4 148)
 method invocation 139
 notifications examples

 receiving 273
 registering for 272
 unregistering for 273
 other local events 149
 packs 144
 providers 143
 sequencing rules (section 3.2.4 147, section 3.3.4

148)
 service 143
 timer events (section 3.2.5 147, section 3.3.5 149)
 timers (section 3.2.2 147, section 3.3.2 148)
 virtual disks 146
 volumes 145
Clone method 164
Common data types 28
Compact method 261
COMPACT_VIRTUAL_DISK_FLAG enumeration 90
ConvertStyle method 199
CREATE_PARTITION_PARAMETERS structure 55
CREATE_VIRTUAL_DISK_FLAG enumeration 83
CreatePack method 183
CreatePartition method 204
CreatePartitionEx method 216
CreateVDisk method 185
CreateVolume method 191
CreateVolume2 method 197

D

Data model - abstract
 client (section 3.2.1 139, section 3.3.1 147)
 server (section 3.2.1 139, section 3.4.1 149)
Data types
 common 28
 interface-specific 56
 IVdsAdvancedDisk 75
 IVdsAdvancedDisk2 76
 IVdsAdvancedDisk3 77
 IVdsDisk 70
 IVdsHbaPort 61
 IVdsIscsiInitiatorAdapter 65
 IVdsIscsiInitiatorPortal 65
 IVdsPack 68
 IVdsProvider 66
 IVdsService (section 2.2.2.1 56, section 2.2.2.1.1

56)
 IVdsServiceIscsi 60
 IVdsVDisk 84
 IVdsVdProvider 83
 IVdsVolume 79
 IVdsVolumeMF (section 2.2.2.16 80, section

2.2.2.16.1 80)
 IVdsVolumePlex 81
Delete method 234
DeleteAccessPath method 243
DeleteDriveLetter method 209
DeletePartition method 206
DEPENDENT_DISK_FLAG enumeration 86
Detach method 260
DETACH_VIRTUAL_DISK_FLAG enumeration 89
DetachAndDelete method 261
Disk

336 / 342

[MS-VDS] - v20170601
Virtual Disk Service (VDS) Protocol
Copyright © 2017 Microsoft Corporation
Release: June 1, 2017

 arrival 265
 removal 265
Disk object interfaces 129
Disk pack
 arrival 264
 removal 264
Disks
 client 144
 server 144
Dismount method 244
Drive letter
 assignment 266
 removal 267
Drive letters
 client 146
 server 146
DWORD 28

E

Eject method 226
Enumeration - objects 153
Enumeration object interface 117
Enumerations
 common data types 29
 IVdsHbaPort 61
 IVdsIscsiInitiatorPortal 65
 IVdsPack 69
 IVdsProvider 67
 IVdsService 56
 IVdsVDisk 84
 IVdsVdProvider 83
 IVdsVolumePlex 81
 querying example 274
Error codes 90
Error Codes message 90
Examples
 overview 269
 performing asynchronous tasks 277
 querying enumerations of VDS objects 274
 retrieving properties and IDs 276
 sample IVdsAdviseSink::OnNotify implementation

278
 VDS client notifications
 receiving 273
 registering for 272
 unregistering for 273
 VDS sessions
 ending 271
 starting 269
Expand method 263
EXPAND_VIRTUAL_DISK_FLAG enumeration 90
Extend method 228

F

Fields - vendor-extensible 24

File system modification 266
File systems
 client 146
 server 146
Format method 238
FormatEx method 246
FormatEx2 method 249
FormatPartition method 210

FormatPartitionEx method 221
FormatPartitionEx2 method 223
Full IDL 282

G

GetDeviceName method 259
GetDiskFromVDisk method 187
GetDiskIdFromLunInfo method 175
GetDiskObject method 179
GetDriveLetter method 210
GetFileSystemProperties method 238
GetFileSystemTypeName method 246
GetHostVolume method 258
GetIdentificationData method 198
GetImportTarget method 188
GetInitiatorAdapter method 182

GetInitiatorName method 177
GetObject method 169
GetPack method (section 3.4.5.2.21.2 198, section

3.4.5.2.32.2 227)
GetPartitionFileSystemProperties method 219
GetPartitionFileSystemTypeName method 219
GetPartitionProperties method 203
GetProperties method (section 3.4.5.2.4.3 168,

section 3.4.5.2.11.1 180, section 3.4.5.2.12.1
180, section 3.4.5.2.13.1 181, section
3.4.5.2.14.1 182, section 3.4.5.2.19.1 189,
section 3.4.5.2.21.1 197, section 3.4.5.2.26.1
215, section 3.4.5.2.32.1 227, section
3.4.5.2.39.1 254, section 3.4.5.2.40.2 258)

GetProperties2 method (section 3.4.5.2.23.1 202,
section 3.4.5.2.33.1 237)

GetProvider method 189
GetSANPolicy method 178
GetUniqueId method 215
GetVDiskFromDisk method 187
GetVolume method 255
Glossary 13

H

Handling asynchronous tasks 161
HBA port object interfaces 123
Higher-layer triggered events
 server 156
Higher-layer triggered events - server 156

I

ID retrieval example 276

IDL 282
IEnumVdsObject interface 118
IEnumVdsObject methods 162
Implementer - security considerations 281
Index of security parameters 281
Informative references 22
Initialization
 client (section 3.2.3 147, section 3.3.3 148)
 server (section 3.2.3 147, section 3.4.3 156)
Initialize method 174
Initiator object interfaces
 adapter 124
 portal 124
Interfaces

337 / 342

[MS-VDS] - v20170601
Virtual Disk Service (VDS) Protocol
Copyright © 2017 Microsoft Corporation
Release: June 1, 2017

 asynchronous operation object 118
 callback object 118
 disk object 129
 enumeration object 117
 HBA port object 123
 IEnumVdsObject 118
 initiator adapter object 124
 initiator portal object 124
 IVdsAdvancedDisk 130
 IVdsAdvancedDisk2 131
 IVdsAdviseSink 118
 IVdsAsync 119
 IVdsCreatePartitionEx 131
 IVdsDisk 129
 IVdsDiskPartitionMF 132
 IVdsDisks (section 3.1.12.2 129, section 3.1.12.3

130)
 IVdsHbaPort 123
 IVdsHwProvider 126
 IVdsIscsiInitiatorAdapter 124
 IVdsIscsiInitiatorPortal 124
 IVdsPack 127
 IVdsPack2 128

 IVdsProvider 125
 IVdsRemovable 133
 IVdsService 119
 IVdsServiceHba 122
 IVdsServiceInitialization 121
 IVdsServiceIscsi 122
 IVdsServiceLoader 119
 IVdsServiceUninstallDisk 121
 IVdsSubSystemImportTarget 127
 IVdsSwProvider 125
 IVdsVDisk 138
 IVdsVdProvider 126
 IVdsVolume 133
 IVdsVolumeMF 135
 IVdsVolumeMF2 135
 IVdsVolumeOnline 137
 IVdsVolumePlex 137
 IVdsVolumeShrink 136
 overview 114
 pack object 127
 provider object 125
 service loader 119
 service object 119
 subsystem object 127
 virtual disk object 138
 volume object 133
 volume plex object 137
Interfaces - data types 56
Introduction 13
IsServiceReady method 167
IVdsAdvancedDisk
 data types 75
 interface 130
 methods 203
 structures 75
IVdsAdvancedDisk2
 data types 76
 interface 131
 methods 214
 structures 76
IVdsAdvancedDisk3
 data types 77

 structures 77
IVdsAdviseSink
 interface 118
 methods 149
IVdsAdviseSink::OnNotify implementation - sample

278
IVdsAsync
 interface 119
 methods 165
IVdsCreatePartitionEx
 interface 131
 methods 216
IVdsDisk
 data types 70
 interface 129
 methods 197
 structures 70
IVdsDisk2
 interface 129
 methods 201
IVdsDisk3
 interface 130
IVdsDiskPartitionMF

 interface 132
 methods 219
IVdsHbaPort
 data types 61
 enumerations 61
 interface 123
 methods 180
 structures 64
IVdsHwProvider
 interface 126
 methods 184
IVdsIscsiInitiatorAdapter
 data types 65
 interface 124
 methods 180
 structures 65
IVdsIscsiInitiatorPortal
 data types 65
 enumerations 65
 interface 124
 methods 181
 structures 65
IVdsPack
 data types 68
 enumerations 69
 interface 127
 methods 189
 structures 69
IVdsPack2
 interface 128
 methods 197
IVdsProvider
 data types 66
 enumerations 67
 interface 125
 methods 182
 structures 68
IVdsRemovable
 interface 133
 methods 225
IVdsService
 data types 56

338 / 342

[MS-VDS] - v20170601
Virtual Disk Service (VDS) Protocol
Copyright © 2017 Microsoft Corporation
Release: June 1, 2017

 enumerations 56
 interface 119
 methods 167
 structures 58
IVdsService data types - overview 56
IVdsServiceHba
 interface 122
 methods 176
IVdsServiceInitialization
 interface 121
 methods 174
IVdsServiceIscsi
 data types 60
 interface 122
 methods 177
 structures 60
IVdsServiceLoader
 interface 119
 methods 167
IVdsServiceUninstallDisk
 interface 121
 methods 175
IVdsSubSystemImportTarget

 interface 127
 methods 188
IVdsSwProvider
 interface 125
 methods 183
IVdsVDisk
 data types 84
 enumerations 84
 interface 138
 methods 257
 structures 88
IVdsVdProvider
 data types 83
 enumerations 83
 interface 126
 methods 184
 structures 83
IVdsVolume
 data types 79
 interface 133
 methods 227
 structures 79
IVdsVolumeMF
 data types (section 2.2.2.16 80, section 2.2.2.16.1

80)
 interface 135
 methods 238
 structures 81
IVdsVolumeMF2
 interface 135
 methods 245
IVdsVolumeOnline
 interface 137
 methods 254
IVdsVolumePlex
 data types 81
 enumerations 81
 interface 137
 methods 254
 structures 82
IVdsVolumeShrink
 interface 136

 methods 252

L

LoadService method 167
Local events
 client (section 3.2.6 147, section 3.3.6 149)
 server (section 3.2.6 147, section 3.4.7 264)

M

MAX_FS_NAME_SIZE 56

MAX_PATH 80
Media
 arrival 267
 removal 268
Merge method 262
MERGE_VIRTUAL_DISK_FLAG enumeration 90
Message processing
 client (section 3.2.4 147, section 3.3.4 148)
 server (section 3.2.4 147, section 3.4.5.2 162)
Messages
 common data types (section 2.2.1 28, section

2.2.1.1 28)
 enumerations 29
 Error Codes 90
 interface-specific data types 56
 IVdsAdvancedDisk data types 75
 IVdsAdvancedDisk structures 75
 IVdsAdvancedDisk2 data types 76
 IVdsAdvancedDisk2 structures 76
 IVdsAdvancedDisk3 data types 77
 IVdsAdvancedDisk3 structures 77
 IVdsDisk data types 70
 IVdsDisk structures 70
 IVdsHbaPort data types 61
 IVdsHbaPort enumerations 61
 IVdsHbaPort structures 64
 IVdsIscsiInitiatorAdapter data types 65
 IVdsIscsiInitiatorAdapter structures 65
 IVdsIscsiInitiatorPortal data types 65
 IVdsIscsiInitiatorPortal enumerations 65
 IVdsIscsiInitiatorPortal structures 65
 IVdsPack data types 68
 IVdsPack enumerations 69
 IVdsPack structures 69
 IVdsProvider data types 66
 IVdsProvider enumerations 67
 IVdsProvider structures 68
 IVdsService data types (section 2.2.2.1 56, section

2.2.2.1.1 56)
 IVdsService enumerations 56
 IVdsService structures 58
 IVdsServiceIscsi data types 60
 IVdsServiceIscsi structures 60
 IVdsVDisk data types 84
 IVdsVDisk enumerations 84

 IVdsVDisk structures 88
 IVdsVdProvider data types 83
 IVdsVdProvider enumerations 83
 IVdsVdProvider structures 83
 IVdsVolume data types 79
 IVdsVolume structures 79
 IVdsVolumeMF data types (section 2.2.2.16 80,

section 2.2.2.16.1 80)

339 / 342

[MS-VDS] - v20170601
Virtual Disk Service (VDS) Protocol
Copyright © 2017 Microsoft Corporation
Release: June 1, 2017

 IVdsVolumeMF structures 81
 IVdsVolumePlex data types 81
 IVdsVolumePlex enumerations 81
 IVdsVolumePlex structures 82
 overview 28
 structures 43
 syntax 28
 transport 28
Method invocation
 client 139
 server 139
Methods
 IEnumVdsObject 162
 IVdsAdvancedDisk 203
 IVdsAdvancedDisk2 214
 IVdsAdviseSink 149
 IVdsAsync 165
 IVdsCreatePartitionEx 216
 IVdsDisk 197
 IVdsDisk2 201
 IVdsDiskPartitionMF 219
 IVdsHbaPort 180
 IVdsHwProvider 184

 IVdsIscsiInitiatorAdapter 180
 IVdsIscsiInitiatorPortal 181
 IVdsPack 189
 IVdsPack2 197
 IVdsProvider 182
 IVdsRemovable 225
 IVdsService 167
 IVdsServiceHba 176
 IVdsServiceInitialization 174
 IVdsServiceIscsi 177
 IVdsServiceLoader 167
 IVdsServiceUninstallDisk 175
 IVdsSubSystemImportTarget 188
 IVdsSwProvider 183
 IVdsVDisk 257
 IVdsVdProvider 184
 IVdsVolume 227
 IVdsVolumeMF 238
 IVdsVolumeMF2 245
 IVdsVolumeOnline 254
 IVdsVolumePlex 254
 IVdsVolumeShrink 252
 sequencing requirements 139
MigrateDisks method 193
Mount method 244
Mount point change 266

N

Next method 162
Normative references 21
Notification callback objects - client 147
Notification callback objects - server (section 3.4.1.4

154, section 3.4.3.2 156)

O

Object enumeration 153
Offline method 218
OfflineVolume method 252
Online method (section 3.4.5.2.28.1 218, section

3.4.5.2.38.1 254)

OnNotify method 149
Open method 257
OPEN_VIRTUAL_DISK_FLAG enumeration 86
Other local events
 client 149
 server 264
Overview (synopsis) 23

P

Pack object interfaces 127
Packs
 client 144
 server 144
Parameters - security index 281
Paths - access
 client 146

 server 146
Preconditions 24
Prerequisites 24
Processing notifications from server to client 149
Processing server replies to method calls 148
Product behavior 318
Properties retrieval example 276
Protocol Details
 overview 114
Provider object interfaces 125
Providers
 client 143
 server 143
PVDS_CREATE_VDISK_PARAMETERS 83
PVDS_DISK_EXTENT 53
PVDS_DISK_FREE_EXTENT 75
PVDS_DISK_PROP 70
PVDS_DISK_PROP2 72
PVDS_DRIVE_LETTER_PROP 59
PVDS_FILE_SYSTEM_FORMAT_SUPPORT_PROP 52
PVDS_FILE_SYSTEM_PROP 52
PVDS_FILE_SYSTEM_TYPE_PROP 59
PVDS_PACK_PROP 69
PVDS_REPARSE_POINT_PROP 81
PVDS_VDISK_PROPERTIES 88
PVDS_VOLUME_PLEX_PROP 82
PVDS_VOLUME_PROP 79
PVDS_VOLUME_PROP2 80
PVIRTUAL_STORAGE_TYPE 56

Q

QueryAccessPaths method 242
QueryDisks method 190
QueryDriveLetters method 170
QueryExtents method (section 3.4.5.2.21.4 199,

section 3.4.5.2.39.3 255)
QueryFileSystemFormatSupport method 246
QueryFileSystemTypes method 171
QueryFreeExtents method 202

QueryHbaPorts method 176
QueryInitiatorAdapters method 177
QueryInitiatorPortals method 181
QueryMaxReclaimableBytes method 252
QueryMedia method 225
QueryPacks method 183
QueryPartitionFileSystemFormatSupport method 220
QueryPartitions method 203

340 / 342

[MS-VDS] - v20170601
Virtual Disk Service (VDS) Protocol
Copyright © 2017 Microsoft Corporation
Release: June 1, 2017

QueryPlexes method 227
QueryProviders method 168
QueryReparsePoints method 242
QueryStatus method 166
QuerySubSystems method 184
QueryUnallocatedDisks method 169
QueryVDisks method 184
QueryVolumeGuidPathnames method 249
QueryVolumes method 190

R

Reboot method 173
Recover method 195
Reenumerate method 171
References 21
 informative 22

 normative 21
Refresh method 171
Relationship to other protocols 24
RemoveMissingDisk method 195
RemovePlex method 233
Removing disk objects 159
Removing pack objects for dynamic providers 157
Removing virtual disk objects 161
Removing volume objects 160
Repair method 256
Reset method 164

S

Sample IVdsAdviseSink::OnNotify implementation

278
Security
 implementer considerations 281
 overview 281
 parameter index 281
Sequencing rules
 client (section 3.2.4 147, section 3.3.4 148)
 server 147
 adding disk objects 157
 adding pack objects for dynamic providers 156
 adding virtual disk objects 161
 adding volume objects 159
 handling asynchronous tasks 161
 removing disk objects 159
 removing pack objects for dynamic providers

157
 removing virtual disk objects 161
 removing volume objects 160
Server
 abstract data model (section 3.2.1 139, section

3.4.1 149)
 access paths 146
 disks 144
 drive letters 146
 file systems 146

 higher-layer triggered events 156
 initialization (section 3.2.3 147, section 3.4.3 156)
 local events (section 3.2.6 147, section 3.4.7 264)
 message processing (section 3.2.4 147, section

3.4.5.2 162)
 method invocation 139
 other local events 264
 overview 149

 packs 144
 providers 143
 sequencing rules 147
 adding disk objects 157
 adding pack objects for dynamic providers 156
 adding virtual disk objects 161
 adding volume objects 159
 handling asynchronous tasks 161
 removing disk objects 159
 removing pack objects for dynamic providers

157
 removing virtual disk objects 161
 removing volume objects 160
 service 143
 timer events (section 3.2.5 147, section 3.4.6 264)
 timers (section 3.2.2 147, section 3.4.2 155)
 virtual disks 146
 volumes 145
Service
 client 143
 server 143
Service loader interfaces 119
Service object 150

Service object interfaces 119
SetAllPathStatuses method 180
SetFileSystemFlags method 245
SetFlags method (section 3.4.5.2.4.15 174, section

3.4.5.2.21.6 200, section 3.4.5.2.32.10 235)
SetImportTarget method 188
SetInitiatorSharedSecret method 178
SetSANMode method 201
SetSANPolicy method 179
Shrink method (section 3.4.5.2.32.5 230, section

3.4.5.2.37.2 252)
Skip method 163
Standards assignments 25
Storage management objects (section 3.4.1.2 150,

section 3.4.3.1 156)
Storage object relationships 139
Structures
 common data types 43
 IVdsAdvancedDisk 75
 IVdsAdvancedDisk2 76
 IVdsAdvancedDisk3 77
 IVdsDisk 70
 IVdsHbaPort 64
 IVdsIscsiInitiatorAdapter 65
 IVdsIscsiInitiatorPortal 65
 IVdsPack 69
 IVdsProvider 68
 IVdsService 58
 IVdsServiceIscsi 60
 IVdsVDisk 88
 IVdsVdProvider 83
 IVdsVolume 79
 IVdsVolumeMF 81
 IVdsVolumePlex 82
Subsystem object interfaces 127
Syntax - message 28

T

Timer events
 client (section 3.2.5 147, section 3.3.5 149)
 server (section 3.2.5 147, section 3.4.6 264)

341 / 342

[MS-VDS] - v20170601
Virtual Disk Service (VDS) Protocol
Copyright © 2017 Microsoft Corporation
Release: June 1, 2017

Timers
 client (section 3.2.2 147, section 3.3.2 148)
 server (section 3.2.2 147, section 3.4.2 155)
Tracking changes 334
Transport 28
Triggered events - higher-layer
 server 156
Triggered events - higher-layer - server 156

U

ULONGLONG 28
Unadvise method 173
UninstallDisks method 175

V

VDS client notifications
 receiving 273
 registering for 272
 unregistering for 273
VDS sessions examples
 ending 271
 starting 269
VDS_ADVANCEDDISK_PROP
 *PVDS_ADVANCEDISK_PROP structure 77
VDS_ASYNC_OUTPUT structure 48
VDS_ASYNC_OUTPUT_TYPE enumeration 30
VDS_CREATE_VDISK_PARAMETERS structure 83
VDS_DISK_EXTENT structure 53
VDS_DISK_EXTENT_TYPE enumeration 36
VDS_DISK_FLAG enumeration 39
VDS_DISK_FREE_EXTENT structure 75
VDS_DISK_NOTIFICATION structure 44
VDS_DISK_OFFLINE_REASON enumeration 72
VDS_DISK_PROP structure 70
VDS_DISK_PROP2 structure 72
VDS_DISK_STATUS enumeration 40
VDS_DRIVE_LETTER_FLAG enumeration 58
VDS_DRIVE_LETTER_NOTIFICATION structure 46
VDS_DRIVE_LETTER_PROP structure 59
VDS_FILE_SYSTEM_FLAG enumeration 35
VDS_FILE_SYSTEM_FORMAT_SUPPORT_FLAG

enumeration 36
VDS_FILE_SYSTEM_FORMAT_SUPPORT_PROP

structure 52
VDS_FILE_SYSTEM_NOTIFICATION structure 46
VDS_FILE_SYSTEM_PROP structure 52
VDS_FILE_SYSTEM_PROP_FLAG enumeration 36
VDS_FILE_SYSTEM_TYPE enumeration 34
VDS_FILE_SYSTEM_TYPE_PROP structure 59
VDS_FORMAT_OPTION_FLAGS enumeration 38
VDS_HBAPORT_PROP structure 64
VDS_HBAPORT_SPEED_FLAG enumeration 63
VDS_HBAPORT_STATUS enumeration 62
VDS_HBAPORT_TYPE enumeration 61
VDS_HEALTH enumeration 29

VDS_INPUT_DISK structure 54
VDS_INTERCONNECT structure 51
VDS_INTERCONNECT_ADDRESS_TYPE enumeration

34
VDS_IPADDRESS structure 66
VDS_IPADDRESS_TYPE enumeration 65
VDS_ISCSI_INITIATOR_ADAPTER_PROP structure 65
VDS_ISCSI_INITIATOR_PORTAL_PROP structure 66

VDS_ISCSI_SHARED_SECRET structure 61
VDS_LUN_INFORMATION 29
VDS_LUN_INFORMATION structure 51
VDS_LUN_RESERVE_MODE enumeration 41
VDS_MOUNT_POINT_NOTIFICATION structure 47
VDS_NOTIFICATION structure 47
VDS_NOTIFICATION_TARGET_TYPE enumeration 29
VDS_OBJECT_TYPE enumeration 56
VDS_PACK_FLAG enumeration 69
VDS_PACK_NOTIFICATION structure 44
VDS_PACK_PROP structure 69
VDS_PACK_STATUS enumeration 69
VDS_PARTITION_FLAG enumeration 37
VDS_PARTITION_INFO_GPT structure 49
VDS_PARTITION_INFO_MBR structure 49
VDS_PARTITION_NOTIFICATION structure 45
VDS_PARTITION_PROP structure 54
VDS_PARTITION_STYLE enumeration 37
VDS_PATH_STATUS enumeration 63
VDS_PROVIDER_FLAG enumeration 67
VDS_PROVIDER_PROP structure 68
VDS_PROVIDER_TYPE enumeration 67
VDS_QUERY_PROVIDER_FLAG enumeration 58

VDS_RECOVER_ACTION enumeration 30
VDS_REPARSE_POINT_PROP structure 81
VDS_SAN_POLICY enumeration 60
VDS_SERVICE_FLAG enumeration 57
VDS_SERVICE_NOTIFICATION structure 43
VDS_SERVICE_PROP structure 58
VDS_STORAGE_BUS_TYPE enumeration 31
VDS_STORAGE_DEVICE_ID_DESCRIPTOR structure

50
VDS_STORAGE_IDENTIFIER structure 50
VDS_STORAGE_IDENTIFIER_CODE_SET

enumeration 33
VDS_STORAGE_IDENTIFIER_TYPE enumeration 33
VDS_TRANSITION_STATE enumeration 38
VDS_VDISK_PROPERTIES structure 88
VDS_VDISK_STATE enumeration 84
VDS_VOLUME_FLAG enumeration 41
VDS_VOLUME_NOTIFICATION structure 45
VDS_VOLUME_PLEX_PROP structure 82
VDS_VOLUME_PLEX_STATUS enumeration 81
VDS_VOLUME_PLEX_TYPE enumeration 81
VDS_VOLUME_PROP structure 79
VDS_VOLUME_PROP2 structure 80
VDS_VOLUME_STATUS enumeration 41
VDS_VOLUME_TYPE enumeration 38
VDS_WWN structure 64
Vendor-extensible fields 24
Versioning 24
Virtual disk object interfaces 138
Virtual disks
 client 146
 server 146
VIRTUAL_DISK_ACCESS_MASK enumeration 87
VIRTUAL_STORAGE_TYPE structure 56
Volume
 arrival 265
 removal 265
Volume object interfaces 133
Volume plex object interfaces 137
Volumes
 client 145
 server 145

342 / 342

[MS-VDS] - v20170601
Virtual Disk Service (VDS) Protocol
Copyright © 2017 Microsoft Corporation
Release: June 1, 2017

W

Wait method 165
WaitForServiceReady method 168

	1 Introduction
	1.1 Glossary
	1.2 References
	1.2.1 Normative References
	1.2.2 Informative References

	1.3 Overview
	1.4 Relationship to Other Protocols
	1.5 Prerequisites and Preconditions
	1.6 Applicability Statement
	1.7 Versioning and Capability Negotiation
	1.8 Vendor-Extensible Fields
	1.9 Standards Assignments

	2 Messages
	2.1 Transport
	2.2 Message Syntax
	2.2.1 Common Data Types
	2.2.1.1 Data Types
	2.2.1.1.1 ULONGLONG
	2.2.1.1.2 DWORD
	2.2.1.1.3 VDS_OBJECT_ID
	2.2.1.1.4 VDS_LUN_INFORMATION
	2.2.1.1.5 ACCESS_MASK

	2.2.1.2 Enumerations
	2.2.1.2.1 VDS_HEALTH
	2.2.1.2.2 VDS_NOTIFICATION_TARGET_TYPE
	2.2.1.2.3 VDS_RECOVER_ACTION
	2.2.1.2.4 VDS_ASYNC_OUTPUT_TYPE
	2.2.1.2.5 VDS_STORAGE_BUS_TYPE
	2.2.1.2.6 VDS_STORAGE_IDENTIFIER_CODE_SET
	2.2.1.2.7 VDS_STORAGE_IDENTIFIER_TYPE
	2.2.1.2.8 VDS_INTERCONNECT_ADDRESS_TYPE
	2.2.1.2.9 VDS_FILE_SYSTEM_TYPE
	2.2.1.2.10 VDS_FILE_SYSTEM_FLAG
	2.2.1.2.11 VDS_FILE_SYSTEM_PROP_FLAG
	2.2.1.2.12 VDS_FILE_SYSTEM_FORMAT_SUPPORT_FLAG
	2.2.1.2.13 VDS_DISK_EXTENT_TYPE
	2.2.1.2.14 VDS_PARTITION_STYLE
	2.2.1.2.15 VDS_PARTITION_FLAG
	2.2.1.2.16 VDS_VOLUME_TYPE
	2.2.1.2.17 VDS_TRANSITION_STATE
	2.2.1.2.18 VDS_FORMAT_OPTION_FLAGS
	2.2.1.2.19 VDS_DISK_FLAG
	2.2.1.2.20 VDS_DISK_STATUS
	2.2.1.2.21 VDS_LUN_RESERVE_MODE
	2.2.1.2.22 VDS_VOLUME_STATUS
	2.2.1.2.23 VDS_VOLUME_FLAG

	2.2.1.3 Structures
	2.2.1.3.1 VDS_SERVICE_NOTIFICATION
	2.2.1.3.2 VDS_PACK_NOTIFICATION
	2.2.1.3.3 VDS_DISK_NOTIFICATION
	2.2.1.3.4 VDS_VOLUME_NOTIFICATION
	2.2.1.3.5 VDS_PARTITION_NOTIFICATION
	2.2.1.3.6 VDS_DRIVE_LETTER_NOTIFICATION
	2.2.1.3.7 VDS_FILE_SYSTEM_NOTIFICATION
	2.2.1.3.8 VDS_MOUNT_POINT_NOTIFICATION
	2.2.1.3.9 VDS_NOTIFICATION
	2.2.1.3.10 VDS_ASYNC_OUTPUT
	2.2.1.3.11 VDS_PARTITION_INFO_MBR
	2.2.1.3.12 VDS_PARTITION_INFO_GPT
	2.2.1.3.13 VDS_STORAGE_IDENTIFIER
	2.2.1.3.14 VDS_STORAGE_DEVICE_ID_DESCRIPTOR
	2.2.1.3.15 VDS_INTERCONNECT
	2.2.1.3.16 VDS_LUN_INFORMATION
	2.2.1.3.17 VDS_FILE_SYSTEM_PROP
	2.2.1.3.18 VDS_FILE_SYSTEM_FORMAT_SUPPORT_PROP
	2.2.1.3.19 VDS_DISK_EXTENT
	2.2.1.3.20 VDS_PARTITION_PROP
	2.2.1.3.21 VDS_INPUT_DISK
	2.2.1.3.22 CREATE_PARTITION_PARAMETERS
	2.2.1.3.23 VIRTUAL_STORAGE_TYPE

	2.2.2 Interface-Specific Data Types
	2.2.2.1 IVdsService Data Types
	2.2.2.1.1 Data Types
	2.2.2.1.1.1 MAX_FS_NAME_SIZE

	2.2.2.1.2 Enumerations
	2.2.2.1.2.1 VDS_OBJECT_TYPE
	2.2.2.1.2.2 VDS_SERVICE_FLAG
	2.2.2.1.2.3 VDS_QUERY_PROVIDER_FLAG
	2.2.2.1.2.4 VDS_DRIVE_LETTER_FLAG

	2.2.2.1.3 Structures
	2.2.2.1.3.1 VDS_SERVICE_PROP
	2.2.2.1.3.2 VDS_DRIVE_LETTER_PROP
	2.2.2.1.3.3 VDS_FILE_SYSTEM_TYPE_PROP

	2.2.2.2 IVdsServiceSAN Data Types
	2.2.2.2.1 Enumerations
	2.2.2.2.1.1 VDS_SAN_POLICY

	2.2.2.3 IVdsServiceIscsi Data Types
	2.2.2.3.1 Structures
	2.2.2.3.1.1 VDS_ISCSI_SHARED_SECRET

	2.2.2.4 IVdsHbaPort Data Types
	2.2.2.4.1 Enumerations
	2.2.2.4.1.1 VDS_HBAPORT_TYPE
	2.2.2.4.1.2 VDS_HBAPORT_STATUS
	2.2.2.4.1.3 VDS_HBAPORT_SPEED_FLAG
	2.2.2.4.1.4 VDS_PATH_STATUS

	2.2.2.4.2 Structures
	2.2.2.4.2.1 VDS_WWN
	2.2.2.4.2.2 VDS_HBAPORT_PROP

	2.2.2.5 IVdsIscsiInitiatorAdapter Data Types
	2.2.2.5.1 Structures
	2.2.2.5.1.1 VDS_ISCSI_INITIATOR_ADAPTER_PROP

	2.2.2.6 IVdsIscsiInitiatorPortal Data Types
	2.2.2.6.1 Enumerations
	2.2.2.6.1.1 VDS_IPADDRESS_TYPE

	2.2.2.6.2 Structures
	2.2.2.6.2.1 VDS_IPADDRESS
	2.2.2.6.2.2 VDS_ISCSI_INITIATOR_PORTAL_PROP

	2.2.2.7 IVdsProvider Data Types
	2.2.2.7.1 Enumerations
	2.2.2.7.1.1 VDS_PROVIDER_TYPE
	2.2.2.7.1.2 VDS_PROVIDER_FLAG

	2.2.2.7.2 Structures
	2.2.2.7.2.1 VDS_PROVIDER_PROP

	2.2.2.8 IVdsPack Data Types
	2.2.2.8.1 Enumerations
	2.2.2.8.1.1 VDS_PACK_STATUS
	2.2.2.8.1.2 VDS_PACK_FLAG

	2.2.2.8.2 Structures
	2.2.2.8.2.1 VDS_PACK_PROP

	2.2.2.9 IVdsDisk Data Types
	2.2.2.9.1 Structures
	2.2.2.9.1.1 VDS_DISK_PROP

	2.2.2.10 IVdsDisk3 Data Types
	2.2.2.10.1 Enumerations
	2.2.2.10.1.1 VDS_DISK_OFFLINE_REASON

	2.2.2.10.2 Structures
	2.2.2.10.2.1 VDS_DISK_PROP2
	2.2.2.10.2.2 VDS_DISK_FREE_EXTENT

	2.2.2.11 IVdsAdvancedDisk Data Types
	2.2.2.11.1 Structures
	2.2.2.11.1.1 CHANGE_ATTRIBUTES_PARAMETERS

	2.2.2.12 IVdsAdvancedDisk2 Data Types
	2.2.2.12.1 Structures
	2.2.2.12.1.1 CHANGE_PARTITION_TYPE_PARAMETERS

	2.2.2.13 IVdsAdvancedDisk3 Data Types
	2.2.2.13.1 Structures
	2.2.2.13.1.1 VDS_ADVANCEDDISK_PROP

	2.2.2.14 IVdsVolume Data Types
	2.2.2.14.1 Structures
	2.2.2.14.1.1 VDS_VOLUME_PROP

	2.2.2.15 IVdsVolume2 Data Types
	2.2.2.15.1 Structures
	2.2.2.15.1.1 VDS_VOLUME_PROP2

	2.2.2.16 IVdsVolumeMF Data Types
	2.2.2.16.1 Data Types
	2.2.2.16.1.1 MAX_PATH

	2.2.2.16.2 Structures
	2.2.2.16.2.1 VDS_REPARSE_POINT_PROP

	2.2.2.17 IVdsVolumePlex Data Types
	2.2.2.17.1 Enumeration
	2.2.2.17.1.1 VDS_VOLUME_PLEX_TYPE
	2.2.2.17.1.2 VDS_VOLUME_PLEX_STATUS

	2.2.2.17.2 Structures
	2.2.2.17.2.1 VDS_VOLUME_PLEX_PROP

	2.2.2.18 IVdsVdProvider Data Types
	2.2.2.18.1 Enumerations
	2.2.2.18.1.1 CREATE_VIRTUAL_DISK_FLAG

	2.2.2.18.2 Structures
	2.2.2.18.2.1 VDS_CREATE_VDISK_PARAMETERS

	2.2.2.19 IVdsVDisk Data Types
	2.2.2.19.1 Enumerations
	2.2.2.19.1.1 VDS_VDISK_STATE
	2.2.2.19.1.2 OPEN_VIRTUAL_DISK_FLAG
	2.2.2.19.1.3 DEPENDENT_DISK_FLAG
	2.2.2.19.1.4 VIRTUAL_DISK_ACCESS_MASK

	2.2.2.19.2 Structures
	2.2.2.19.2.1 VDS_VDISK_PROPERTIES

	2.2.2.20 IVdsOpenVDisk Data Types
	2.2.2.20.1 Enumerations
	2.2.2.20.1.1 ATTACH_VIRTUAL_DISK_FLAG
	2.2.2.20.1.2 DETACH_VIRTUAL_DISK_FLAG
	2.2.2.20.1.3 COMPACT_VIRTUAL_DISK_FLAG
	2.2.2.20.1.4 MERGE_VIRTUAL_DISK_FLAG
	2.2.2.20.1.5 EXPAND_VIRTUAL_DISK_FLAG

	2.2.3 Error Codes

	3 Protocol Details
	3.1 Interfaces
	3.1.1 Enumeration Object Interfaces
	3.1.1.1 IEnumVdsObject Interface

	3.1.2 Callback Object Interfaces
	3.1.2.1 IVdsAdviseSink Interface

	3.1.3 Asynchronous Operation Object Interfaces
	3.1.3.1 IVdsAsync Interface

	3.1.4 Service Loader Interfaces
	3.1.4.1 IVdsServiceLoader Interface

	3.1.5 Service Object Interfaces
	3.1.5.1 IVdsService Interface
	3.1.5.2 IVdsServiceInitialization Interface
	3.1.5.3 IVdsServiceUninstallDisk Interface
	3.1.5.4 IVdsServiceHba Interface
	3.1.5.5 IVdsServiceIscsi Interface
	3.1.5.6 IVdsServiceSAN Interface
	3.1.5.7 IVdsServiceSw Interface

	3.1.6 HBA Port Object Interfaces
	3.1.6.1 IVdsHbaPort Interface

	3.1.7 Initiator Adapter Object Interfaces
	3.1.7.1 IVdsIscsiInitiatorAdapter Interface

	3.1.8 Initiator Portal Object Interfaces
	3.1.8.1 IVdsIscsiInitiatorPortal Interface

	3.1.9 Provider Object Interfaces
	3.1.9.1 IVdsProvider Interface
	3.1.9.2 IVdsSwProvider Interface
	3.1.9.3 IVdsHwProvider Interface
	3.1.9.4 IVdsVdProvider Interface

	3.1.10 Subsystem Object Interfaces
	3.1.10.1 IVdsSubSystemImportTarget Interface

	3.1.11 Pack Object Interfaces
	3.1.11.1 IVdsPack Interface
	3.1.11.2 IVdsPack2 Interface

	3.1.12 Disk Object Interfaces
	3.1.12.1 IVdsDisk Interface
	3.1.12.2 IVdsDisk2 Interface
	3.1.12.3 IVdsDisk3 Interface
	3.1.12.4 IVdsAdvancedDisk Interface
	3.1.12.5 IVdsAdvancedDisk2 Interface
	3.1.12.6 IVdsAdvancedDisk3 Interface
	3.1.12.7 IVdsCreatePartitionEx Interface
	3.1.12.8 IVdsDiskOnline Interface
	3.1.12.9 IVdsDiskPartitionMF Interface
	3.1.12.10 IVdsDiskPartitionMF2 Interface
	3.1.12.11 IVdsRemovable Interface

	3.1.13 Volume Object Interfaces
	3.1.13.1 IVdsVolume Interface
	3.1.13.2 IVdsVolume2 Interface
	3.1.13.3 IVdsVolumeMF Interface
	3.1.13.4 IVdsVolumeMF2 Interface
	3.1.13.5 IVdsVolumeMF3 Interface
	3.1.13.6 IVdsVolumeShrink Interface
	3.1.13.7 IVdsVolumeOnline Interface

	3.1.14 Volume Plex Object Interfaces
	3.1.14.1 IVdsVolumePlex Interface

	3.1.15 Virtual Disk Object Interfaces
	3.1.15.1 IVdsVDisk Interface
	3.1.15.2 IVdsOpenVDisk Interface

	3.2 Common Details
	3.2.1 Abstract Data Model
	3.2.1.1 Method Invocation
	3.2.1.1.1 Method Sequencing Requirements
	3.2.1.1.2 Storage Object Relationships

	3.2.1.2 Service and Providers
	3.2.1.3 Packs
	3.2.1.4 Disks
	3.2.1.5 Volumes
	3.2.1.6 Virtual Disks
	3.2.1.7 File Systems, Drive Letters, and Access Paths

	3.2.2 Timers
	3.2.3 Initialization
	3.2.4 Message Processing Events and Sequencing Rules
	3.2.5 Timer Events
	3.2.6 Other Local Events

	3.3 Client Details
	3.3.1 Abstract Data Model
	3.3.1.1 Notification Callback Objects

	3.3.2 Timers
	3.3.3 Initialization
	3.3.4 Message Processing Events and Sequencing Rules
	3.3.4.1 Processing Server Replies to Method Calls
	3.3.4.2 Processing Notifications Sent from the Server to the Client
	3.3.4.3 IVdsAdviseSink Methods
	3.3.4.3.1 IVdsAdviseSink::OnNotify (Opnum 3)

	3.3.5 Timer Events
	3.3.6 Other Local Events

	3.4 Server Details
	3.4.1 Abstract Data Model
	3.4.1.1 Service Object
	3.4.1.2 Storage Management Objects
	3.4.1.3 Enumeration of Objects
	3.4.1.4 Notification Callback Objects
	3.4.1.5 Asynchronous Tasks

	3.4.2 Timers
	3.4.3 Initialization
	3.4.3.1 Storage Management Objects
	3.4.3.2 Notification Callback Objects

	3.4.4 Higher-Layer Triggered Events
	3.4.5 Message Processing Events and Sequencing Rules
	3.4.5.1 Sequencing Rules
	3.4.5.1.1 Adding Pack Objects for Dynamic Providers
	3.4.5.1.2 Removing Pack Objects for Dynamic Providers
	3.4.5.1.3 Adding Disk Objects
	3.4.5.1.4 Removing Disk Objects
	3.4.5.1.5 Adding Volume Objects
	3.4.5.1.6 Removing Volume Objects
	3.4.5.1.7 Adding Virtual Disk Objects
	3.4.5.1.8 Removing Virtual Disk Objects
	3.4.5.1.9 Handling Asynchronous Tasks

	3.4.5.2 Message Processing Details
	3.4.5.2.1 IEnumVdsObject Methods
	3.4.5.2.1.1 IEnumVdsObject::Next (Opnum 3)
	3.4.5.2.1.2 IEnumVdsObject::Skip (Opnum 4)
	3.4.5.2.1.3 IEnumVdsObject::Reset (Opnum 5)
	3.4.5.2.1.4 IEnumVdsObject::Clone (Opnum 6)

	3.4.5.2.2 IVdsAsync Methods
	3.4.5.2.2.1 IVdsAsync::Cancel (Opnum 3)
	3.4.5.2.2.2 IVdsAsync::Wait (Opnum 4)
	3.4.5.2.2.3 IVdsAsync::QueryStatus (Opnum 5)

	3.4.5.2.3 IVdsServiceLoader Methods
	3.4.5.2.3.1 IVdsServiceLoader::LoadService (Opnum 3)

	3.4.5.2.4 IVdsService Methods
	3.4.5.2.4.1 IVdsService::IsServiceReady (Opnum 3)
	3.4.5.2.4.2 IVdsService::WaitForServiceReady (Opnum 4)
	3.4.5.2.4.3 IVdsService::GetProperties (Opnum 5)
	3.4.5.2.4.4 IVdsService::QueryProviders (Opnum 6)
	3.4.5.2.4.5 IVdsService::QueryUnallocatedDisks (Opnum 8)
	3.4.5.2.4.6 IVdsService::GetObject (Opnum 9)
	3.4.5.2.4.7 IVdsService::QueryDriveLetters (Opnum 10)
	3.4.5.2.4.8 IVdsService::QueryFileSystemTypes (Opnum 11)
	3.4.5.2.4.9 IVdsService::Reenumerate (Opnum 12)
	3.4.5.2.4.10 IVdsService::Refresh (Opnum 13)
	3.4.5.2.4.11 IVdsService::CleanupObsoleteMountPoints (Opnum 14)
	3.4.5.2.4.12 IVdsService::Advise (Opnum 15)
	3.4.5.2.4.13 IVdsService::Unadvise (Opnum 16)
	3.4.5.2.4.14 IVdsService::Reboot (Opnum 17)
	3.4.5.2.4.15 IVdsService::SetFlags (Opnum 18)
	3.4.5.2.4.16 IVdsService::ClearFlags (Opnum 19)

	3.4.5.2.5 IVdsServiceInitialization Methods
	3.4.5.2.5.1 IVdsServiceInitialization::Initialize (Opnum 3)

	3.4.5.2.6 IVdsServiceUninstallDisk Methods
	3.4.5.2.6.1 IVdsServiceUninstallDisk::GetDiskIdFromLunInfo (Opnum 3)
	3.4.5.2.6.2 IVdsServiceUninstallDisk::UninstallDisks (Opnum 4)

	3.4.5.2.7 IVdsServiceHba Methods
	3.4.5.2.7.1 IVdsServiceHba::QueryHbaPorts (Opnum 3)

	3.4.5.2.8 IVdsServiceIscsi Methods
	3.4.5.2.8.1 IVdsServiceIscsi::GetInitiatorName (Opnum 3)
	3.4.5.2.8.2 IVdsServiceIscsi::QueryInitiatorAdapters (Opnum 4)
	3.4.5.2.8.3 IVdsServiceIscsi::SetInitiatorSharedSecret (Opnum 8)

	3.4.5.2.9 IVdsServiceSAN Methods
	3.4.5.2.9.1 IVdsServiceSAN::GetSANPolicy (Opnum 3)
	3.4.5.2.9.2 IVdsServiceSAN::SetSANPolicy (Opnum 4)

	3.4.5.2.10 IVdsServiceSw Methods
	3.4.5.2.10.1 IVdsServiceSw::GetDiskObject (Opnum 3)

	3.4.5.2.11 IVdsHbaPort Methods
	3.4.5.2.11.1 IVdsHbaPort::GetProperties (Opnum 3)
	3.4.5.2.11.2 IVdsHbaPort::SetAllPathStatuses (Opnum 4)

	3.4.5.2.12 IVdsIscsiInitiatorAdapter Methods
	3.4.5.2.12.1 IVdsIscsiInitiatorAdapter::GetProperties (Opnum 3)
	3.4.5.2.12.2 IVdsIscsiInitiatorAdapter::QueryInitiatorPortals (Opnum 4)

	3.4.5.2.13 IVdsIscsiInitiatorPortal Methods
	3.4.5.2.13.1 IVdsIscsiInitiatorPortal::GetProperties (Opnum 3)
	3.4.5.2.13.2 IVdsIscsiInitiatorPortal::GetInitiatorAdapter (Opnum 4)

	3.4.5.2.14 IVdsProvider Methods
	3.4.5.2.14.1 IVdsProvider::GetProperties (Opnum 3)

	3.4.5.2.15 IVdsSwProvider Methods
	3.4.5.2.15.1 IVdsSwProvider::QueryPacks (Opnum 3)
	3.4.5.2.15.2 IVdsSwProvider::CreatePack (Opnum 4)

	3.4.5.2.16 IVdsHwProvider Methods
	3.4.5.2.16.1 IVdsHwProvider::QuerySubSystems (Opnum 3)

	3.4.5.2.17 IVdsVdProvider Methods
	3.4.5.2.17.1 IVdsVdProvider::QueryVDisks (Opnum 3)
	3.4.5.2.17.2 IVdsVdProvider::CreateVDisk (Opnum 4)
	3.4.5.2.17.3 IVdsVdProvider::AddVDisk (Opnum 5)
	3.4.5.2.17.4 IVdsVdProvider::GetDiskFromVDisk (Opnum 6)
	3.4.5.2.17.5 IVdsVdProvider::GetVDiskFromDisk (Opnum 7)

	3.4.5.2.18 IVdsSubSystemImportTarget Methods
	3.4.5.2.18.1 IVdsSubSystemImportTarget::GetImportTarget (Opnum 3)
	3.4.5.2.18.2 IVdsSubSystemImportTarget::SetImportTarget (Opnum 4)

	3.4.5.2.19 IVdsPack Methods
	3.4.5.2.19.1 IVdsPack::GetProperties (Opnum 3)
	3.4.5.2.19.2 IVdsPack::GetProvider (Opnum 4)
	3.4.5.2.19.3 IVdsPack::QueryVolumes (Opnum 5)
	3.4.5.2.19.4 IVdsPack::QueryDisks (Opnum 6)
	3.4.5.2.19.5 IVdsPack::CreateVolume (Opnum 7)
	3.4.5.2.19.6 IVdsPack::AddDisk (Opnum 8)
	3.4.5.2.19.7 IVdsPack::MigrateDisks (Opnum 9)
	3.4.5.2.19.8 IVdsPack::RemoveMissingDisk (Opnum 11)
	3.4.5.2.19.9 IVdsPack::Recover (Opnum 12)

	3.4.5.2.20 IVdsPack2 Methods
	3.4.5.2.20.1 IVdsPack2::CreateVolume2 (Opnum 3)

	3.4.5.2.21 IVdsDisk Methods
	3.4.5.2.21.1 IVdsDisk::GetProperties (Opnum 3)
	3.4.5.2.21.2 IVdsDisk::GetPack (Opnum 4)
	3.4.5.2.21.3 IVdsDisk::GetIdentificationData (Opnum 5)
	3.4.5.2.21.4 IVdsDisk::QueryExtents (Opnum 6)
	3.4.5.2.21.5 IVdsDisk::ConvertStyle (Opnum 7)
	3.4.5.2.21.6 IVdsDisk::SetFlags (Opnum 8)
	3.4.5.2.21.7 IVdsDisk::ClearFlags (Opnum 9)

	3.4.5.2.22 IVdsDisk2 Methods
	3.4.5.2.22.1 IVdsDisk2::SetSANMode (Opnum 3)

	3.4.5.2.23 IVdsDisk3 Methods
	3.4.5.2.23.1 IVdsDisk3::GetProperties2 (Opnum 3)
	3.4.5.2.23.2 IVdsDisk3::QueryFreeExtents (Opnum 6)

	3.4.5.2.24 IVdsAdvancedDisk Methods
	3.4.5.2.24.1 IVdsAdvancedDisk::GetPartitionProperties (Opnum 3)
	3.4.5.2.24.2 IVdsAdvancedDisk::QueryPartitions (Opnum 4)
	3.4.5.2.24.3 IVdsAdvancedDisk::CreatePartition (Opnum 5)
	3.4.5.2.24.4 IVdsAdvancedDisk::DeletePartition (Opnum 6)
	3.4.5.2.24.5 IVdsAdvancedDisk::ChangeAttributes (Opnum 7)
	3.4.5.2.24.6 IVdsAdvancedDisk::AssignDriveLetter (Opnum 8)
	3.4.5.2.24.7 IVdsAdvancedDisk::DeleteDriveLetter (Opnum 9)
	3.4.5.2.24.8 IVdsAdvancedDisk::GetDriveLetter (Opnum 10)
	3.4.5.2.24.9 IVdsAdvancedDisk::FormatPartition (Opnum 11)
	3.4.5.2.24.10 IVdsAdvancedDisk::Clean (Opnum 12)

	3.4.5.2.25 IVdsAdvancedDisk2 Methods
	3.4.5.2.25.1 IVdsAdvancedDisk2::ChangePartitionType (Opnum 3)

	3.4.5.2.26 IVdsAdvancedDisk3 Methods
	3.4.5.2.26.1 IVdsAdvancedDisk3::GetProperties (Opnum 3)
	3.4.5.2.26.2 IVdsAdvancedDisk3::GetUniqueId (Opnum 4)

	3.4.5.2.27 IVdsCreatePartitionEx Methods
	3.4.5.2.27.1 IVdsCreatePartitionEx::CreatePartitionEx (Opnum 3)

	3.4.5.2.28 IVdsDiskOnline Methods
	3.4.5.2.28.1 IVdsDiskOnline::Online (Opnum 3)
	3.4.5.2.28.2 IVdsDiskOnline::Offline (Opnum 4)

	3.4.5.2.29 IVdsDiskPartitionMF Methods
	3.4.5.2.29.1 IVdsDiskPartitionMF::GetPartitionFileSystemProperties (Opnum 3)
	3.4.5.2.29.2 IVdsDiskPartitionMF::GetPartitionFileSystemTypeName (Opnum 4)
	3.4.5.2.29.3 IVdsDiskPartitionMF::QueryPartitionFileSystemFormatSupport (Opnum 5)
	3.4.5.2.29.4 IVdsDiskPartitionMF::FormatPartitionEx (Opnum 6)

	3.4.5.2.30 IVdsDiskPartitionMF2 Methods
	3.4.5.2.30.1 IVdsDiskPartitionMF2::FormatPartitionEx2 (Opnum 3)

	3.4.5.2.31 IVdsRemovable Methods
	3.4.5.2.31.1 IVdsRemovable::QueryMedia (Opnum 3)
	3.4.5.2.31.2 IVdsRemovable::Eject (Opnum 4)

	3.4.5.2.32 IVdsVolume Methods
	3.4.5.2.32.1 IVdsVolume::GetProperties (Opnum 3)
	3.4.5.2.32.2 IVdsVolume::GetPack (Opnum 4)
	3.4.5.2.32.3 IVdsVolume::QueryPlexes (Opnum 5)
	3.4.5.2.32.4 IVdsVolume::Extend (Opnum 6)
	3.4.5.2.32.5 IVdsVolume::Shrink (Opnum 7)
	3.4.5.2.32.6 IVdsVolume::AddPlex (Opnum 8)
	3.4.5.2.32.7 IVdsVolume::BreakPlex (Opnum 9)
	3.4.5.2.32.8 IVdsVolume::RemovePlex (Opnum 10)
	3.4.5.2.32.9 IVdsVolume::Delete (Opnum 11)
	3.4.5.2.32.10 IVdsVolume::SetFlags (Opnum 12)
	3.4.5.2.32.11 IVdsVolume::ClearFlags (Opnum 13)

	3.4.5.2.33 IVdsVolume2 Methods
	3.4.5.2.33.1 IVdsVolume2::GetProperties2 (Opnum 3)

	3.4.5.2.34 IVdsVolumeMF Methods
	3.4.5.2.34.1 IVdsVolumeMF::GetFileSystemProperties (Opnum 3)
	3.4.5.2.34.2 IVdsVolumeMF::Format (Opnum 4)
	3.4.5.2.34.3 IVdsVolumeMF::AddAccessPath (Opnum 5)
	3.4.5.2.34.4 IVdsVolumeMF::QueryAccessPaths (Opnum 6)
	3.4.5.2.34.5 IVdsVolumeMF::QueryReparsePoints (Opnum 7)
	3.4.5.2.34.6 IVdsVolumeMF::DeleteAccessPath (Opnum 8)
	3.4.5.2.34.7 IVdsVolumeMF::Mount (Opnum 9)
	3.4.5.2.34.8 IVdsVolumeMF::Dismount (Opnum 10)
	3.4.5.2.34.9 IVdsVolumeMF::SetFileSystemFlags (Opnum 11)
	3.4.5.2.34.10 IVdsVolumeMF::ClearFileSystemFlags (Opnum 12)

	3.4.5.2.35 IVdsVolumeMF2 Methods
	3.4.5.2.35.1 IVdsVolumeMF2::GetFileSystemTypeName (Opnum 3)
	3.4.5.2.35.2 IVdsVolumeMF2::QueryFileSystemFormatSupport (Opnum 4)
	3.4.5.2.35.3 IVdsVolumeMF2::FormatEx (Opnum 5)

	3.4.5.2.36 IVdsVolumeMF3 Methods
	3.4.5.2.36.1 IVdsVolumeMF3::QueryVolumeGuidPathnames (Opnum 3)
	3.4.5.2.36.2 IVdsVolumeMF3::FormatEx2 (Opnum 4)
	3.4.5.2.36.3 IVdsVolumeMF3::OfflineVolume (Opnum 5)

	3.4.5.2.37 IVdsVolumeShrink Methods
	3.4.5.2.37.1 IVdsVolumeShrink::QueryMaxReclaimableBytes (Opnum 3)
	3.4.5.2.37.2 IVdsVolumeShrink::Shrink (Opnum 4)

	3.4.5.2.38 IVdsVolumeOnline Methods
	3.4.5.2.38.1 IVdsVolumeOnline::Online (Opnum 3)

	3.4.5.2.39 IVdsVolumePlex Methods
	3.4.5.2.39.1 IVdsVolumePlex::GetProperties (Opnum 3)
	3.4.5.2.39.2 IVdsVolumePlex::GetVolume (Opnum 4)
	3.4.5.2.39.3 IVdsVolumePlex::QueryExtents (Opnum 5)
	3.4.5.2.39.4 IVdsVolumePlex::Repair (Opnum 6)

	3.4.5.2.40 IVdsVDisk Methods
	3.4.5.2.40.1 IVdsVDisk::Open (Opnum 3)
	3.4.5.2.40.2 IVdsVDisk::GetProperties (Opnum 4)
	3.4.5.2.40.3 IVdsVDisk::GetHostVolume (Opnum 5)
	3.4.5.2.40.4 IVdsVDisk::GetDeviceName (Opnum 6)

	3.4.5.2.41 IVdsOpenVDisk Methods
	3.4.5.2.41.1 IVdsOpenVDisk::Attach (Opnum 3)
	3.4.5.2.41.2 IVdsOpenVDisk::Detach (Opnum 4)
	3.4.5.2.41.3 IVdsOpenVDisk::DetachAndDelete (Opnum 5)
	3.4.5.2.41.4 IVdsOpenVDisk::Compact (Opnum 6)
	3.4.5.2.41.5 IVdsOpenVDisk::Merge (Opnum 7)
	3.4.5.2.41.6 IVdsOpenVDisk::Expand (Opnum 8)

	3.4.6 Timer Events
	3.4.7 Other Local Events
	3.4.7.1 Disk Pack Arrival (Dynamic Disks)
	3.4.7.2 Disk Pack Removal (Dynamic Disks)
	3.4.7.3 Pack Modification
	3.4.7.4 Disk Arrival
	3.4.7.5 Disk Removal
	3.4.7.6 Disk Modification
	3.4.7.7 Volume Arrival
	3.4.7.8 Volume Removal
	3.4.7.9 Volume Modification
	3.4.7.10 File System Modification
	3.4.7.11 Mount Point Change
	3.4.7.12 Drive Letter Assignment
	3.4.7.13 Drive Letter Removal
	3.4.7.14 Media Arrival
	3.4.7.15 Media Removal

	4 Protocol Examples
	4.1 VDS Sessions
	4.1.1 Starting Sessions
	4.1.2 Ending Sessions

	4.2 VDS Client Notifications
	4.2.1 Registering for Notifications
	4.2.2 Receiving Notifications
	4.2.3 Unregistering for Notifications

	4.3 Querying Enumerations of VDS Objects
	4.4 Retrieving the Properties and IDs of VDS Objects
	4.5 Performing Asynchronous Tasks
	4.6 Sample IVdsAdviseSink::OnNotify Implementation

	5 Security
	5.1 Security Considerations for Implementers
	5.2 Index of Security Parameters

	6 Appendix A: Full IDL
	7 Appendix B: Product Behavior
	8 Change Tracking
	9 Index

