

1 / 368

[MS-VDS] — v20130722
 Virtual Disk Service (VDS) Protocol

 Copyright © 2013 Microsoft Corporation.

 Release: Monday, July 22, 2013

[MS-VDS]:
Virtual Disk Service (VDS) Protocol

Intellectual Property Rights Notice for Open Specifications Documentation

 Technical Documentation. Microsoft publishes Open Specifications documentation for

protocols, file formats, languages, standards as well as overviews of the interaction among each
of these technologies.

 Copyrights. This documentation is covered by Microsoft copyrights. Regardless of any other
terms that are contained in the terms of use for the Microsoft website that hosts this

documentation, you may make copies of it in order to develop implementations of the
technologies described in the Open Specifications and may distribute portions of it in your
implementations using these technologies or your documentation as necessary to properly

document the implementation. You may also distribute in your implementation, with or without
modification, any schema, IDL’s, or code samples that are included in the documentation. This
permission also applies to any documents that are referenced in the Open Specifications.

 No Trade Secrets. Microsoft does not claim any trade secret rights in this documentation.

 Patents. Microsoft has patents that may cover your implementations of the technologies
described in the Open Specifications. Neither this notice nor Microsoft's delivery of the
documentation grants any licenses under those or any other Microsoft patents. However, a given

Open Specification may be covered by Microsoft Open Specification Promise or the Community
Promise. If you would prefer a written license, or if the technologies described in the Open
Specifications are not covered by the Open Specifications Promise or Community Promise, as

applicable, patent licenses are available by contacting iplg@microsoft.com.

 Trademarks. The names of companies and products contained in this documentation may be
covered by trademarks or similar intellectual property rights. This notice does not grant any

licenses under those rights. For a list of Microsoft trademarks, visit
www.microsoft.com/trademarks.

 Fictitious Names. The example companies, organizations, products, domain names, email
addresses, logos, people, places, and events depicted in this documentation are fictitious. No
association with any real company, organization, product, domain name, email address, logo,
person, place, or event is intended or should be inferred.

Reservation of Rights. All other rights are reserved, and this notice does not grant any rights

other than specifically described above, whether by implication, estoppel, or otherwise.

Tools. The Open Specifications do not require the use of Microsoft programming tools or

programming environments in order for you to develop an implementation. If you have access to
Microsoft programming tools and environments you are free to take advantage of them. Certain
Open Specifications are intended for use in conjunction with publicly available standard
specifications and network programming art, and assumes that the reader either is familiar with the
aforementioned material or has immediate access to it.

http://go.microsoft.com/fwlink/?LinkId=214445
http://go.microsoft.com/fwlink/?LinkId=214448
http://go.microsoft.com/fwlink/?LinkId=214448
mailto:iplg@microsoft.com
http://www.microsoft.com/trademarks

2 / 368

[MS-VDS] — v20130722
 Virtual Disk Service (VDS) Protocol

 Copyright © 2013 Microsoft Corporation.

 Release: Monday, July 22, 2013

Revision Summary

Date

Revision

History

Revision

Class Comments

12/18/2006 0.1 MCPP Milestone 2 Initial Availability

03/02/2007 1.0 MCPP Milestone 2

04/03/2007 1.1 Monthly release

05/11/2007 1.2 Monthly release

06/01/2007 2.0 Major Updated and revised the technical content.

07/03/2007 3.0 Major Added IVdsVolume::SetFlags and IVdsVolume::ClearFlags.

07/20/2007 3.0.1 Editorial Revised and edited the technical content.

08/10/2007 3.0.2 Editorial Revised and edited the technical content.

09/28/2007 4.0 Major Added two interfaces.

10/23/2007 4.0.1 Editorial Revised and edited the technical content.

11/30/2007 4.0.2 Editorial Revised and edited the technical content.

01/25/2008 4.0.3 Editorial Revised and edited the technical content.

03/14/2008 5.0 Major Corrected CREATE_PARTITION_PARAMETERS structure;

assorted editorial revisions.

05/16/2008 5.0.1 Editorial Revised and edited the technical content.

06/20/2008 6.0 Major Updated and revised the technical content.

07/25/2008 7.0 Major Updated and revised the technical content.

08/29/2008 8.0 Major Updated and revised the technical content.

10/24/2008 8.0.1 Editorial Revised and edited the technical content.

12/05/2008 9.0 Major Updated and revised the technical content.

01/16/2009 10.0 Major Updated and revised the technical content.

02/27/2009 11.0 Major Updated and revised the technical content.

04/10/2009 12.0 Major Updated and revised the technical content.

05/22/2009 13.0 Major Updated and revised the technical content.

07/02/2009 14.0 Major Updated and revised the technical content.

08/14/2009 15.0 Major Updated and revised the technical content.

09/25/2009 16.0 Major Updated and revised the technical content.

3 / 368

[MS-VDS] — v20130722
 Virtual Disk Service (VDS) Protocol

 Copyright © 2013 Microsoft Corporation.

 Release: Monday, July 22, 2013

Date

Revision

History

Revision

Class Comments

11/06/2009 16.1 Minor Updated the technical content.

12/18/2009 16.2 Minor Updated the technical content.

01/29/2010 16.2.1 Editorial Revised and edited the technical content.

03/12/2010 17.0 Major Updated and revised the technical content.

04/23/2010 18.0 Major Updated and revised the technical content.

06/04/2010 19.0 Major Updated and revised the technical content.

07/16/2010 20.0 Major Significantly changed the technical content.

08/27/2010 20.1 Minor Clarified the meaning of the technical content.

10/08/2010 20.1 No change No changes to the meaning, language, or formatting of

the technical content.

11/19/2010 20.1 No change No changes to the meaning, language, or formatting of

the technical content.

01/07/2011 20.2 Minor Clarified the meaning of the technical content.

02/11/2011 21.0 Major Significantly changed the technical content.

03/25/2011 21.0 No change No changes to the meaning, language, or formatting of

the technical content.

05/06/2011 21.0 No change No changes to the meaning, language, or formatting of

the technical content.

06/17/2011 21.1 Minor Clarified the meaning of the technical content.

09/23/2011 21.1 No change No changes to the meaning, language, or formatting of

the technical content.

12/16/2011 22.0 Major Significantly changed the technical content.

03/30/2012 22.0 No change No changes to the meaning, language, or formatting of

the technical content.

07/12/2012 23.0 Major Significantly changed the technical content.

10/25/2012 23.0 No change No changes to the meaning, language, or formatting of

the technical content.

01/31/2013 23.0 No change No changes to the meaning, language, or formatting of

the technical content.

08/08/2013 24.0 Major Significantly changed the technical content.

4 / 368

[MS-VDS] — v20130722
 Virtual Disk Service (VDS) Protocol

 Copyright © 2013 Microsoft Corporation.

 Release: Monday, July 22, 2013

Contents

1 Introduction ... 14
1.1 Glossary ... 14
1.2 References .. 19

1.2.1 Normative References ... 19
1.2.2 Informative References ... 20

1.3 Overview .. 21
1.4 Relationship to Other Protocols .. 22
1.5 Prerequisites and Preconditions ... 22
1.6 Applicability Statement ... 22
1.7 Versioning and Capability Negotiation ... 22
1.8 Vendor-Extensible Fields ... 23
1.9 Standards Assignments .. 23

2 Messages.. 26
2.1 Transport .. 26
2.2 Message Syntax .. 26

2.2.1 Common Data Types .. 26
2.2.1.1 Data Types .. 26

2.2.1.1.1 ULONGLONG... 26
2.2.1.1.2 DWORD ... 26
2.2.1.1.3 VDS_OBJECT_ID ... 26
2.2.1.1.4 VDS_LUN_INFORMATION ... 27
2.2.1.1.5 ACCESS_MASK ... 27

2.2.1.2 Enumerations ... 27
2.2.1.2.1 VDS_HEALTH .. 27
2.2.1.2.2 VDS_NOTIFICATION_TARGET_TYPE .. 28
2.2.1.2.3 VDS_RECOVER_ACTION ... 28
2.2.1.2.4 VDS_ASYNC_OUTPUT_TYPE.. 29
2.2.1.2.5 VDS_STORAGE_BUS_TYPE ... 30
2.2.1.2.6 VDS_STORAGE_IDENTIFIER_CODE_SET .. 31
2.2.1.2.7 VDS_STORAGE_IDENTIFIER_TYPE .. 32
2.2.1.2.8 VDS_INTERCONNECT_ADDRESS_TYPE .. 32
2.2.1.2.9 VDS_FILE_SYSTEM_TYPE ... 33
2.2.1.2.10 VDS_FILE_SYSTEM_FLAG ... 33
2.2.1.2.11 VDS_FILE_SYSTEM_PROP_FLAG .. 35
2.2.1.2.12 VDS_FILE_SYSTEM_FORMAT_SUPPORT_FLAG 35
2.2.1.2.13 VDS_DISK_EXTENT_TYPE ... 35
2.2.1.2.14 VDS_PARTITION_STYLE ... 36
2.2.1.2.15 VDS_PARTITION_FLAG... 36
2.2.1.2.16 VDS_VOLUME_TYPE ... 37
2.2.1.2.17 VDS_TRANSITION_STATE .. 37
2.2.1.2.18 VDS_FORMAT_OPTION_FLAGS .. 37
2.2.1.2.19 VDS_DISK_FLAG ... 38
2.2.1.2.20 VDS_DISK_STATUS ... 39
2.2.1.2.21 VDS_LUN_RESERVE_MODE .. 40
2.2.1.2.22 VDS_VOLUME_STATUS .. 40
2.2.1.2.23 VDS_VOLUME_FLAG .. 41

2.2.1.3 Structures ... 43
2.2.1.3.1 VDS_SERVICE_NOTIFICATION .. 43
2.2.1.3.2 VDS_PACK_NOTIFICATION ... 43

5 / 368

[MS-VDS] — v20130722
 Virtual Disk Service (VDS) Protocol

 Copyright © 2013 Microsoft Corporation.

 Release: Monday, July 22, 2013

2.2.1.3.3 VDS_DISK_NOTIFICATION ... 44
2.2.1.3.4 VDS_VOLUME_NOTIFICATION .. 44
2.2.1.3.5 VDS_PARTITION_NOTIFICATION ... 45
2.2.1.3.6 VDS_DRIVE_LETTER_NOTIFICATION ... 46
2.2.1.3.7 VDS_FILE_SYSTEM_NOTIFICATION ... 46
2.2.1.3.8 VDS_MOUNT_POINT_NOTIFICATION ... 47
2.2.1.3.9 VDS_NOTIFICATION .. 47
2.2.1.3.10 VDS_ASYNC_OUTPUT .. 48
2.2.1.3.11 VDS_PARTITION_INFO_MBR ... 49
2.2.1.3.12 VDS_PARTITION_INFO_GPT ... 50
2.2.1.3.13 VDS_STORAGE_IDENTIFIER ... 50
2.2.1.3.14 VDS_STORAGE_DEVICE_ID_DESCRIPTOR .. 51
2.2.1.3.15 VDS_INTERCONNECT ... 51
2.2.1.3.16 VDS_LUN_INFORMATION ... 52
2.2.1.3.17 VDS_FILE_SYSTEM_PROP ... 53
2.2.1.3.18 VDS_FILE_SYSTEM_FORMAT_SUPPORT_PROP 53
2.2.1.3.19 VDS_DISK_EXTENT ... 54
2.2.1.3.20 VDS_PARTITION_PROP .. 54
2.2.1.3.21 VDS_INPUT_DISK ... 55
2.2.1.3.22 CREATE_PARTITION_PARAMETERS .. 56
2.2.1.3.23 VIRTUAL_STORAGE_TYPE ... 57

2.2.2 Interface-Specific Data Types .. 57
2.2.2.1 IVdsService Data Types ... 57

2.2.2.1.1 Data Types ... 57
2.2.2.1.1.1 MAX_FS_NAME_SIZE ... 57

2.2.2.1.2 Enumerations ... 58
2.2.2.1.2.1 VDS_OBJECT_TYPE .. 58
2.2.2.1.2.2 VDS_SERVICE_FLAG .. 58
2.2.2.1.2.3 VDS_QUERY_PROVIDER_FLAG .. 59
2.2.2.1.2.4 VDS_DRIVE_LETTER_FLAG ... 60

2.2.2.1.3 Structures .. 60
2.2.2.1.3.1 VDS_SERVICE_PROP.. 60
2.2.2.1.3.2 VDS_DRIVE_LETTER_PROP ... 60
2.2.2.1.3.3 VDS_FILE_SYSTEM_TYPE_PROP .. 61

2.2.2.2 IVdsServiceSAN Data Types ... 61
2.2.2.2.1 Enumerations ... 61

2.2.2.2.1.1 VDS_SAN_POLICY ... 61
2.2.2.3 IVdsServiceIscsi Data Types .. 62

2.2.2.3.1 Structures .. 62
2.2.2.3.1.1 VDS_ISCSI_SHARED_SECRET ... 62

2.2.2.4 IVdsHbaPort Data Types .. 63
2.2.2.4.1 Enumerations ... 63

2.2.2.4.1.1 VDS_HBAPORT_TYPE ... 63
2.2.2.4.1.2 VDS_HBAPORT_STATUS ... 64
2.2.2.4.1.3 VDS_HBAPORT_SPEED_FLAG .. 65
2.2.2.4.1.4 VDS_PATH_STATUS ... 65

2.2.2.4.2 Structures .. 66
2.2.2.4.2.1 VDS_WWN .. 66
2.2.2.4.2.2 VDS_HBAPORT_PROP .. 66

2.2.2.5 IVdsIscsiInitiatorAdapter Data Types ... 67
2.2.2.5.1 Structures .. 67

2.2.2.5.1.1 VDS_ISCSI_INITIATOR_ADAPTER_PROP .. 67
2.2.2.6 IVdsIscsiInitiatorPortal Data Types ... 67

6 / 368

[MS-VDS] — v20130722
 Virtual Disk Service (VDS) Protocol

 Copyright © 2013 Microsoft Corporation.

 Release: Monday, July 22, 2013

2.2.2.6.1 Enumerations ... 67
2.2.2.6.1.1 VDS_IPADDRESS_TYPE .. 67

2.2.2.6.2 Structures .. 68
2.2.2.6.2.1 VDS_IPADDRESS ... 68
2.2.2.6.2.2 VDS_ISCSI_INITIATOR_PORTAL_PROP .. 68

2.2.2.7 IVdsProvider Data Types ... 69
2.2.2.7.1 Enumerations ... 69

2.2.2.7.1.1 VDS_PROVIDER_TYPE .. 69
2.2.2.7.1.2 VDS_PROVIDER_FLAG ... 69

2.2.2.7.2 Structures .. 70
2.2.2.7.2.1 VDS_PROVIDER_PROP ... 70

2.2.2.8 IVdsPack Data Types ... 71
2.2.2.8.1 Enumerations ... 71

2.2.2.8.1.1 VDS_PACK_STATUS ... 71
2.2.2.8.1.2 VDS_PACK_FLAG ... 71

2.2.2.8.2 Structures .. 72
2.2.2.8.2.1 VDS_PACK_PROP .. 72

2.2.2.9 IVdsDisk Data Types ... 72
2.2.2.9.1 Structures .. 72

2.2.2.9.1.1 VDS_DISK_PROP ... 72
2.2.2.10 IVdsDisk3 Data Types ... 75

2.2.2.10.1 Enumerations ... 75
2.2.2.10.1.1 VDS_DISK_OFFLINE_REASON ... 75

2.2.2.10.2 Structures .. 75
2.2.2.10.2.1 VDS_DISK_PROP2 ... 75
2.2.2.10.2.2 VDS_DISK_FREE_EXTENT ... 78

2.2.2.11 IVdsAdvancedDisk Data Types .. 78
2.2.2.11.1 Structures .. 78

2.2.2.11.1.1 CHANGE_ATTRIBUTES_PARAMETERS ... 78
2.2.2.12 IVdsAdvancedDisk2 Data Types .. 79

2.2.2.12.1 Structures .. 79
2.2.2.12.1.1 CHANGE_PARTITION_TYPE_PARAMETERS 79

2.2.2.13 IVdsAdvancedDisk3 Data Types .. 80
2.2.2.13.1 Structures .. 80

2.2.2.13.1.1 VDS_ADVANCEDDISK_PROP ... 80
2.2.2.14 IVdsVolume Data Types ... 82

2.2.2.14.1 Structures .. 82
2.2.2.14.1.1 VDS_VOLUME_PROP .. 82

2.2.2.15 IVdsVolume2 Data Types ... 83
2.2.2.15.1 Structures .. 83

2.2.2.15.1.1 VDS_VOLUME_PROP2 ... 83
2.2.2.16 IVdsVolumeMF Data Types ... 84

2.2.2.16.1 Data Types ... 84
2.2.2.16.1.1 MAX_PATH .. 84

2.2.2.16.2 Structures .. 84
2.2.2.16.2.1 VDS_REPARSE_POINT_PROP ... 84

2.2.2.17 IVdsVolumePlex Data Types ... 85
2.2.2.17.1 Enumeration ... 85

2.2.2.17.1.1 VDS_VOLUME_PLEX_TYPE .. 85
2.2.2.17.1.2 VDS_VOLUME_PLEX_STATUS .. 85

2.2.2.17.2 Structures .. 86
2.2.2.17.2.1 VDS_VOLUME_PLEX_PROP .. 86

2.2.2.18 IVdsVdProvider Data Types .. 86

7 / 368

[MS-VDS] — v20130722
 Virtual Disk Service (VDS) Protocol

 Copyright © 2013 Microsoft Corporation.

 Release: Monday, July 22, 2013

2.2.2.18.1 Enumerations ... 87
2.2.2.18.1.1 CREATE_VIRTUAL_DISK_FLAG .. 87

2.2.2.18.2 Structures .. 87
2.2.2.18.2.1 VDS_CREATE_VDISK_PARAMETERS ... 87

2.2.2.19 IVdsVDisk Data Types ... 88
2.2.2.19.1 Enumerations ... 88

2.2.2.19.1.1 VDS_VDISK_STATE .. 88
2.2.2.19.1.2 OPEN_VIRTUAL_DISK_FLAG .. 90
2.2.2.19.1.3 DEPENDENT_DISK_FLAG .. 90
2.2.2.19.1.4 VIRTUAL_DISK_ACCESS_MASK ... 91

2.2.2.19.2 Structures .. 92
2.2.2.19.2.1 VDS_VDISK_PROPERTIES ... 92

2.2.2.20 IVdsOpenVDisk Data Types .. 93
2.2.2.20.1 Enumerations ... 93

2.2.2.20.1.1 ATTACH_VIRTUAL_DISK_FLAG .. 93
2.2.2.20.1.2 DETACH_VIRTUAL_DISK_FLAG .. 94
2.2.2.20.1.3 COMPACT_VIRTUAL_DISK_FLAG .. 94
2.2.2.20.1.4 MERGE_VIRTUAL_DISK_FLAG ... 94
2.2.2.20.1.5 EXPAND_VIRTUAL_DISK_FLAG .. 95

2.2.3 Error Codes ... 95

3 Protocol Details .. 119
3.1 Interfaces .. 119

3.1.1 Enumeration Object Interfaces .. 123
3.1.1.1 IEnumVdsObject Interface .. 123

3.1.2 Callback Object Interfaces .. 123
3.1.2.1 IVdsAdviseSink Interface .. 123

3.1.3 Asynchronous Operation Object Interfaces ... 124
3.1.3.1 IVdsAsync Interface ... 124

3.1.4 Service Loader Interfaces ... 124
3.1.4.1 IVdsServiceLoader Interface ... 124

3.1.5 Service Object Interfaces ... 125
3.1.5.1 IVdsService Interface ... 125
3.1.5.2 IVdsServiceInitialization Interface .. 126
3.1.5.3 IVdsServiceUninstallDisk Interface ... 127
3.1.5.4 IVdsServiceHba Interface ... 127
3.1.5.5 IVdsServiceIscsi Interface ... 127
3.1.5.6 IVdsServiceSAN Interface ... 128
3.1.5.7 IVdsServiceSw Interface ... 129

3.1.6 HBA Port Object Interfaces ... 129
3.1.6.1 IVdsHbaPort Interface .. 129

3.1.7 Initiator Adapter Object Interfaces .. 129
3.1.7.1 IVdsIscsiInitiatorAdapter Interface ... 129

3.1.8 Initiator Portal Object Interfaces ... 130
3.1.8.1 IVdsIscsiInitiatorPortal Interface .. 130

3.1.9 Provider Object Interfaces .. 131
3.1.9.1 IVdsProvider Interface .. 131
3.1.9.2 IVdsSwProvider Interface ... 131
3.1.9.3 IVdsHwProvider Interface ... 132
3.1.9.4 IVdsVdProvider Interface .. 132

3.1.10 Subsystem Object Interfaces .. 133
3.1.10.1 IVdsSubSystemImportTarget Interface ... 133

3.1.11 Pack Object Interfaces ... 133

8 / 368

[MS-VDS] — v20130722
 Virtual Disk Service (VDS) Protocol

 Copyright © 2013 Microsoft Corporation.

 Release: Monday, July 22, 2013

3.1.11.1 IVdsPack Interface ... 133
3.1.11.2 IVdsPack2 Interface ... 134

3.1.12 Disk Object Interfaces .. 135
3.1.12.1 IVdsDisk Interface ... 135
3.1.12.2 IVdsDisk2 Interface .. 135
3.1.12.3 IVdsDisk3 Interface .. 136
3.1.12.4 IVdsAdvancedDisk Interface .. 136
3.1.12.5 IVdsAdvancedDisk2 Interface .. 137
3.1.12.6 IVdsAdvancedDisk3 Interface .. 137
3.1.12.7 IVdsCreatePartitionEx Interface ... 138
3.1.12.8 IVdsDiskOnline Interface .. 138
3.1.12.9 IVdsDiskPartitionMF Interface .. 139
3.1.12.10 IVdsDiskPartitionMF2 Interface .. 139
3.1.12.11 IVdsRemovable Interface .. 139

3.1.13 Volume Object Interfaces ... 140
3.1.13.1 IVdsVolume Interface ... 140
3.1.13.2 IVdsVolume2 Interface ... 141
3.1.13.3 IVdsVolumeMF Interface ... 141
3.1.13.4 IVdsVolumeMF2 Interface ... 142
3.1.13.5 IVdsVolumeMF3 Interface ... 143
3.1.13.6 IVdsVolumeShrink Interface .. 143
3.1.13.7 IVdsVolumeOnline Interface .. 143

3.1.14 Volume Plex Object Interfaces ... 144
3.1.14.1 IVdsVolumePlex Interface ... 144

3.1.15 Virtual Disk Object Interfaces .. 144
3.1.15.1 IVdsVDisk Interface ... 144
3.1.15.2 IVdsOpenVDisk Interface .. 145

3.2 Common Details ... 146
3.2.1 Abstract Data Model .. 146

3.2.1.1 Method Invocation ... 146
3.2.1.1.1 Method Sequencing Requirements .. 146
3.2.1.1.2 Storage Object Relationships ... 146

3.2.1.2 Service and Providers ... 150
3.2.1.3 Packs ... 151
3.2.1.4 Disks ... 152
3.2.1.5 Volumes ... 153
3.2.1.6 Virtual Disks ... 153
3.2.1.7 File Systems, Drive Letters, and Access Paths ... 154

3.2.2 Timers ... 155
3.2.3 Initialization ... 155
3.2.4 Message Processing Events and Sequencing Rules ... 155
3.2.5 Timer Events .. 155
3.2.6 Other Local Events .. 155

3.3 Client Details .. 155
3.3.1 Abstract Data Model .. 155

3.3.1.1 Notification Callback Objects ... 155
3.3.2 Timers ... 156
3.3.3 Initialization ... 156
3.3.4 Message Processing Events and Sequencing Rules ... 156

3.3.4.1 Processing Server Replies to Method Calls .. 156
3.3.4.2 Processing Notifications Sent from the Server to the Client 156
3.3.4.3 IVdsAdviseSink Methods ... 157

3.3.4.3.1 IVdsAdviseSink::OnNotify (Opnum 3) ... 157

9 / 368

[MS-VDS] — v20130722
 Virtual Disk Service (VDS) Protocol

 Copyright © 2013 Microsoft Corporation.

 Release: Monday, July 22, 2013

3.3.5 Timer Events .. 157
3.3.6 Other Local Events .. 157

3.4 Server Details .. 157
3.4.1 Abstract Data Model .. 157

3.4.1.1 Service Object ... 158
3.4.1.2 Storage Management Objects.. 158
3.4.1.3 Enumeration of Objects .. 161
3.4.1.4 Notification Callback Objects ... 162
3.4.1.5 Asynchronous Tasks ... 163

3.4.2 Timers ... 164
3.4.3 Initialization ... 164

3.4.3.1 Storage Management Objects.. 164
3.4.3.2 Notification Callback Objects ... 165

3.4.4 Higher-Layer Triggered Events .. 165
3.4.5 Message Processing Events and Sequencing Rules ... 165

3.4.5.1 Sequencing Rules .. 165
3.4.5.1.1 Adding Pack Objects for Dynamic Providers ... 165
3.4.5.1.2 Removing Pack Objects for Dynamic Providers 165
3.4.5.1.3 Adding Disk Objects ... 166
3.4.5.1.4 Removing Disk Objects ... 168
3.4.5.1.5 Adding Volume Objects ... 168
3.4.5.1.6 Removing Volume Objects ... 169
3.4.5.1.7 Adding Virtual Disk Objects ... 169
3.4.5.1.8 Removing Virtual Disk Objects ... 170
3.4.5.1.9 Handling Asynchronous Tasks .. 170

3.4.5.2 Message Processing Details ... 171
3.4.5.2.1 IEnumVdsObject Methods.. 171

3.4.5.2.1.1 IEnumVdsObject::Next (Opnum 3) ... 171
3.4.5.2.1.2 IEnumVdsObject::Skip (Opnum 4) .. 172
3.4.5.2.1.3 IEnumVdsObject::Reset (Opnum 5) .. 173
3.4.5.2.1.4 IEnumVdsObject::Clone (Opnum 6) .. 173

3.4.5.2.2 IVdsAsync Methods .. 174
3.4.5.2.2.1 IVdsAsync::Cancel (Opnum 3) ... 174
3.4.5.2.2.2 IVdsAsync::Wait (Opnum 4) .. 174
3.4.5.2.2.3 IVdsAsync::QueryStatus (Opnum 5) ... 175

3.4.5.2.3 IVdsServiceLoader Methods ... 176
3.4.5.2.3.1 IVdsServiceLoader::LoadService (Opnum 3) 176

3.4.5.2.4 IVdsService Methods .. 177
3.4.5.2.4.1 IVdsService::IsServiceReady (Opnum 3) ... 177
3.4.5.2.4.2 IVdsService::WaitForServiceReady (Opnum 4) 177
3.4.5.2.4.3 IVdsService::GetProperties (Opnum 5) ... 177
3.4.5.2.4.4 IVdsService::QueryProviders (Opnum 6) ... 178
3.4.5.2.4.5 IVdsService::QueryUnallocatedDisks (Opnum 8) 178
3.4.5.2.4.6 IVdsService::GetObject (Opnum 9) .. 179
3.4.5.2.4.7 IVdsService::QueryDriveLetters (Opnum 10) 179
3.4.5.2.4.8 IVdsService::QueryFileSystemTypes (Opnum 11) 180
3.4.5.2.4.9 IVdsService::Reenumerate (Opnum 12) .. 181
3.4.5.2.4.10 IVdsService::Refresh (Opnum 13) .. 181
3.4.5.2.4.11 IVdsService::CleanupObsoleteMountPoints (Opnum 14) 182
3.4.5.2.4.12 IVdsService::Advise (Opnum 15) .. 182
3.4.5.2.4.13 IVdsService::Unadvise (Opnum 16) .. 183
3.4.5.2.4.14 IVdsService::Reboot (Opnum 17) ... 183
3.4.5.2.4.15 IVdsService::SetFlags (Opnum 18) ... 183

10 / 368

[MS-VDS] — v20130722
 Virtual Disk Service (VDS) Protocol

 Copyright © 2013 Microsoft Corporation.

 Release: Monday, July 22, 2013

3.4.5.2.4.16 IVdsService::ClearFlags (Opnum 19) .. 184
3.4.5.2.5 IVdsServiceInitialization Methods ... 184

3.4.5.2.5.1 IVdsServiceInitialization::Initialize (Opnum 3) 184
3.4.5.2.6 IVdsServiceUninstallDisk Methods .. 185

3.4.5.2.6.1 IVdsServiceUninstallDisk::GetDiskIdFromLunInfo (Opnum 3) 185
3.4.5.2.6.2 IVdsServiceUninstallDisk::UninstallDisks (Opnum 4) 185

3.4.5.2.7 IVdsServiceHba Methods ... 187
3.4.5.2.7.1 IVdsServiceHba::QueryHbaPorts (Opnum 3) 187

3.4.5.2.8 IVdsServiceIscsi Methods .. 187
3.4.5.2.8.1 IVdsServiceIscsi::GetInitiatorName (Opnum 3) 187
3.4.5.2.8.2 IVdsServiceIscsi::QueryInitiatorAdapters (Opnum 4) 188
3.4.5.2.8.3 IVdsServiceIscsi::SetInitiatorSharedSecret (Opnum 8) 188

3.4.5.2.9 IVdsServiceSAN Methods .. 189
3.4.5.2.9.1 IVdsServiceSAN::GetSANPolicy (Opnum 3) 189
3.4.5.2.9.2 IVdsServiceSAN::SetSANPolicy (Opnum 4) 189

3.4.5.2.10 IVdsServiceSw Methods .. 189
3.4.5.2.10.1 IVdsServiceSw::GetDiskObject (Opnum 3)..................................... 189

3.4.5.2.11 IVdsHbaPort Methods .. 190
3.4.5.2.11.1 IVdsHbaPort::GetProperties (Opnum 3) ... 190
3.4.5.2.11.2 IVdsHbaPort::SetAllPathStatuses (Opnum 4) 191

3.4.5.2.12 IVdsIscsiInitiatorAdapter Methods .. 191
3.4.5.2.12.1 IVdsIscsiInitiatorAdapter::GetProperties (Opnum 3)........................ 191
3.4.5.2.12.2 IVdsIscsiInitiatorAdapter::QueryInitiatorPortals (Opnum 4) 191

3.4.5.2.13 IVdsIscsiInitiatorPortal Methods ... 192
3.4.5.2.13.1 IVdsIscsiInitiatorPortal::GetProperties (Opnum 3) 192
3.4.5.2.13.2 IVdsIscsiInitiatorPortal::GetInitiatorAdapter (Opnum 4) 192

3.4.5.2.14 IVdsProvider Methods ... 193
3.4.5.2.14.1 IVdsProvider::GetProperties (Opnum 3) .. 193

3.4.5.2.15 IVdsSwProvider Methods ... 193
3.4.5.2.15.1 IVdsSwProvider::QueryPacks (Opnum 3) 193
3.4.5.2.15.2 IVdsSwProvider::CreatePack (Opnum 4) .. 194

3.4.5.2.16 IVdsHwProvider Methods ... 195
3.4.5.2.16.1 IVdsHwProvider::QuerySubSystems (Opnum 3) 195

3.4.5.2.17 IVdsVdProvider Methods .. 195
3.4.5.2.17.1 IVdsVdProvider::QueryVDisks (Opnum 3) 195
3.4.5.2.17.2 IVdsVdProvider::CreateVDisk (Opnum 4) 196
3.4.5.2.17.3 IVdsVdProvider::AddVDisk (Opnum 5) .. 197
3.4.5.2.17.4 IVdsVdProvider::GetDiskFromVDisk (Opnum 6) 198
3.4.5.2.17.5 IVdsVdProvider::GetVDiskFromDisk (Opnum 7) 199

3.4.5.2.18 IVdsSubSystemImportTarget Methods .. 199
3.4.5.2.18.1 IVdsSubSystemImportTarget::GetImportTarget (Opnum 3) 199
3.4.5.2.18.2 IVdsSubSystemImportTarget::SetImportTarget (Opnum 4) 200

3.4.5.2.19 IVdsPack Methods .. 200
3.4.5.2.19.1 IVdsPack::GetProperties (Opnum 3) ... 200
3.4.5.2.19.2 IVdsPack::GetProvider (Opnum 4) .. 201
3.4.5.2.19.3 IVdsPack::QueryVolumes (Opnum 5) .. 201
3.4.5.2.19.4 IVdsPack::QueryDisks (Opnum 6) ... 202
3.4.5.2.19.5 IVdsPack::CreateVolume (Opnum 7) ... 202
3.4.5.2.19.6 IVdsPack::AddDisk (Opnum 8) ... 204
3.4.5.2.19.7 IVdsPack::MigrateDisks (Opnum 9) ... 205
3.4.5.2.19.8 IVdsPack::RemoveMissingDisk (Opnum 11) 206
3.4.5.2.19.9 IVdsPack::Recover (Opnum 12).. 207

3.4.5.2.20 IVdsPack2 Methods ... 209

11 / 368

[MS-VDS] — v20130722
 Virtual Disk Service (VDS) Protocol

 Copyright © 2013 Microsoft Corporation.

 Release: Monday, July 22, 2013

3.4.5.2.20.1 IVdsPack2::CreateVolume2 (Opnum 3) ... 209
3.4.5.2.21 IVdsDisk Methods ... 210

3.4.5.2.21.1 IVdsDisk::GetProperties (Opnum 3) .. 210
3.4.5.2.21.2 IVdsDisk::GetPack (Opnum 4) .. 210
3.4.5.2.21.3 IVdsDisk::GetIdentificationData (Opnum 5) 211
3.4.5.2.21.4 IVdsDisk::QueryExtents (Opnum 6) .. 211
3.4.5.2.21.5 IVdsDisk::ConvertStyle (Opnum 7) ... 212
3.4.5.2.21.6 IVdsDisk::SetFlags (Opnum 8) ... 212
3.4.5.2.21.7 IVdsDisk::ClearFlags (Opnum 9)... 213

3.4.5.2.22 IVdsDisk2 Methods ... 214
3.4.5.2.22.1 IVdsDisk2::SetSANMode (Opnum 3) ... 214

3.4.5.2.23 IVdsDisk3 Methods ... 214
3.4.5.2.23.1 IVdsDisk3::GetProperties2 (Opnum 3) .. 214
3.4.5.2.23.2 IVdsDisk3::QueryFreeExtents (Opnum 6) 215

3.4.5.2.24 IVdsAdvancedDisk Methods ... 216
3.4.5.2.24.1 IVdsAdvancedDisk::GetPartitionProperties (Opnum 3) 216
3.4.5.2.24.2 IVdsAdvancedDisk::QueryPartitions (Opnum 4) 216
3.4.5.2.24.3 IVdsAdvancedDisk::CreatePartition (Opnum 5) 217
3.4.5.2.24.4 IVdsAdvancedDisk::DeletePartition (Opnum 6) 219
3.4.5.2.24.5 IVdsAdvancedDisk::ChangeAttributes (Opnum 7) 220
3.4.5.2.24.6 IVdsAdvancedDisk::AssignDriveLetter (Opnum 8) 222
3.4.5.2.24.7 IVdsAdvancedDisk::DeleteDriveLetter (Opnum 9) 222
3.4.5.2.24.8 IVdsAdvancedDisk::GetDriveLetter (Opnum 10) 223
3.4.5.2.24.9 IVdsAdvancedDisk::FormatPartition (Opnum 11) 223
3.4.5.2.24.10 IVdsAdvancedDisk::Clean (Opnum 12) .. 226

3.4.5.2.25 IVdsAdvancedDisk2 Methods.. 227
3.4.5.2.25.1 IVdsAdvancedDisk2::ChangePartitionType (Opnum 3) 227

3.4.5.2.26 IVdsAdvancedDisk3 Methods.. 229
3.4.5.2.26.1 IVdsAdvancedDisk3::GetProperties (Opnum 3) 229
3.4.5.2.26.2 IVdsAdvancedDisk3::GetUniqueId (Opnum 4) 229

3.4.5.2.27 IVdsCreatePartitionEx Methods .. 230
3.4.5.2.27.1 IVdsCreatePartitionEx::CreatePartitionEx (Opnum 3) 230

3.4.5.2.28 IVdsDiskOnline Methods .. 232
3.4.5.2.28.1 IVdsDiskOnline::Online (Opnum 3) ... 232
3.4.5.2.28.2 IVdsDiskOnline::Offline (Opnum 4) ... 232

3.4.5.2.29 IVdsDiskPartitionMF Methods ... 233
3.4.5.2.29.1 IVdsDiskPartitionMF::GetPartitionFileSystemProperties (Opnum 3) ... 233
3.4.5.2.29.2 IVdsDiskPartitionMF::GetPartitionFileSystemTypeName (Opnum 4) ... 233
3.4.5.2.29.3 IVdsDiskPartitionMF::QueryPartitionFileSystemFormatSupport

(Opnum 5) ... 234
3.4.5.2.29.4 IVdsDiskPartitionMF::FormatPartitionEx (Opnum 6) 235

3.4.5.2.30 IVdsDiskPartitionMF2 Methods ... 237
3.4.5.2.30.1 IVdsDiskPartitionMF2::FormatPartitionEx2 (Opnum 3) 237

3.4.5.2.31 IVdsRemovable Methods ... 239
3.4.5.2.31.1 IVdsRemovable::QueryMedia (Opnum 3) 239
3.4.5.2.31.2 IVdsRemovable::Eject (Opnum 4) ... 240

3.4.5.2.32 IVdsVolume Methods .. 241
3.4.5.2.32.1 IVdsVolume::GetProperties (Opnum 3) ... 241
3.4.5.2.32.2 IVdsVolume::GetPack (Opnum 4) ... 242
3.4.5.2.32.3 IVdsVolume::QueryPlexes (Opnum 5) ... 242
3.4.5.2.32.4 IVdsVolume::Extend (Opnum 6) ... 242
3.4.5.2.32.5 IVdsVolume::Shrink (Opnum 7) ... 244
3.4.5.2.32.6 IVdsVolume::AddPlex (Opnum 8) ... 245

12 / 368

[MS-VDS] — v20130722
 Virtual Disk Service (VDS) Protocol

 Copyright © 2013 Microsoft Corporation.

 Release: Monday, July 22, 2013

3.4.5.2.32.7 IVdsVolume::BreakPlex (Opnum 9) ... 247
3.4.5.2.32.8 IVdsVolume::RemovePlex (Opnum 10) .. 248
3.4.5.2.32.9 IVdsVolume::Delete (Opnum 11) .. 249
3.4.5.2.32.10 IVdsVolume::SetFlags (Opnum 12) ... 250
3.4.5.2.32.11 IVdsVolume::ClearFlags (Opnum 13)... 252

3.4.5.2.33 IVdsVolume2 Methods ... 252
3.4.5.2.33.1 IVdsVolume2::GetProperties2 (Opnum 3) 252

3.4.5.2.34 IVdsVolumeMF Methods .. 253
3.4.5.2.34.1 IVdsVolumeMF::GetFileSystemProperties (Opnum 3) 253
3.4.5.2.34.2 IVdsVolumeMF::Format (Opnum 4) ... 253
3.4.5.2.34.3 IVdsVolumeMF::AddAccessPath (Opnum 5) 256
3.4.5.2.34.4 IVdsVolumeMF::QueryAccessPaths (Opnum 6) 257
3.4.5.2.34.5 IVdsVolumeMF::QueryReparsePoints (Opnum 7) 257
3.4.5.2.34.6 IVdsVolumeMF::DeleteAccessPath (Opnum 8) 258
3.4.5.2.34.7 IVdsVolumeMF::Mount (Opnum 9) .. 259
3.4.5.2.34.8 IVdsVolumeMF::Dismount (Opnum 10) ... 260
3.4.5.2.34.9 IVdsVolumeMF::SetFileSystemFlags (Opnum 11) 260
3.4.5.2.34.10 IVdsVolumeMF::ClearFileSystemFlags (Opnum 12) 261

3.4.5.2.35 IVdsVolumeMF2 Methods ... 261
3.4.5.2.35.1 IVdsVolumeMF2::GetFileSystemTypeName (Opnum 3) 261
3.4.5.2.35.2 IVdsVolumeMF2::QueryFileSystemFormatSupport (Opnum 4) 262
3.4.5.2.35.3 IVdsVolumeMF2::FormatEx (Opnum 5) ... 262

3.4.5.2.36 IVdsVolumeMF3 Methods ... 265
3.4.5.2.36.1 IVdsVolumeMF3::QueryVolumeGuidPathnames (Opnum 3) 265
3.4.5.2.36.2 IVdsVolumeMF3::FormatEx2 (Opnum 4) .. 265
3.4.5.2.36.3 IVdsVolumeMF3::OfflineVolume (Opnum 5) 268

3.4.5.2.37 IVdsVolumeShrink Methods ... 268
3.4.5.2.37.1 IVdsVolumeShrink::QueryMaxReclaimableBytes (Opnum 3) 268
3.4.5.2.37.2 IVdsVolumeShrink::Shrink (Opnum 4) .. 269

3.4.5.2.38 IVdsVolumeOnline Methods ... 270
3.4.5.2.38.1 IVdsVolumeOnline::Online (Opnum 3) ... 270

3.4.5.2.39 IVdsVolumePlex Methods ... 271
3.4.5.2.39.1 IVdsVolumePlex::GetProperties (Opnum 3) 271
3.4.5.2.39.2 IVdsVolumePlex::GetVolume (Opnum 4) 271
3.4.5.2.39.3 IVdsVolumePlex::QueryExtents (Opnum 5) 272
3.4.5.2.39.4 IVdsVolumePlex::Repair (Opnum 6) .. 272

3.4.5.2.40 IVdsVDisk Methods ... 274
3.4.5.2.40.1 IVdsVDisk::Open (Opnum 3) .. 274
3.4.5.2.40.2 IVdsVDisk::GetProperties (Opnum 4) .. 275
3.4.5.2.40.3 IVdsVDisk::GetHostVolume (Opnum 5) ... 275
3.4.5.2.40.4 IVdsVDisk::GetDeviceName (Opnum 6) ... 276

3.4.5.2.41 IVdsOpenVDisk Methods .. 276
3.4.5.2.41.1 IVdsOpenVDisk::Attach (Opnum 3) ... 276
3.4.5.2.41.2 IVdsOpenVDisk::Detach (Opnum 4) .. 277
3.4.5.2.41.3 IVdsOpenVDisk::DetachAndDelete (Opnum 5) 278
3.4.5.2.41.4 IVdsOpenVDisk::Compact (Opnum 6) ... 278
3.4.5.2.41.5 IVdsOpenVDisk::Merge (Opnum 7) ... 279
3.4.5.2.41.6 IVdsOpenVDisk::Expand (Opnum 8) ... 281

3.4.6 Timer Events .. 282
3.4.7 Other Local Events .. 282

3.4.7.1 Disk Pack Arrival (Dynamic Disks) ... 282
3.4.7.2 Disk Pack Removal (Dynamic Disks) .. 282
3.4.7.3 Pack Modification ... 282

13 / 368

[MS-VDS] — v20130722
 Virtual Disk Service (VDS) Protocol

 Copyright © 2013 Microsoft Corporation.

 Release: Monday, July 22, 2013

3.4.7.4 Disk Arrival ... 282
3.4.7.5 Disk Removal .. 282
3.4.7.6 Disk Modification ... 283
3.4.7.7 Volume Arrival .. 283
3.4.7.8 Volume Removal ... 283
3.4.7.9 Volume Modification ... 283
3.4.7.10 File System Modification ... 283
3.4.7.11 Mount Point Change ... 284
3.4.7.12 Drive Letter Assignment ... 284
3.4.7.13 Drive Letter Removal .. 284
3.4.7.14 Media Arrival ... 285
3.4.7.15 Media Removal .. 285

4 Protocol Examples .. 287
4.1 VDS Sessions ... 287

4.1.1 Starting Sessions .. 287
4.1.2 Ending Sessions .. 290

4.2 VDS Client Notifications ... 290
4.2.1 Registering for Notifications .. 290
4.2.2 Receiving Notifications ... 291
4.2.3 Unregistering for Notifications ... 291

4.3 Querying Enumerations of VDS Objects ... 292
4.4 Retrieving the Properties and IDs of VDS Objects ... 293
4.5 Performing Asynchronous Tasks ... 294
4.6 Sample IVdsAdviseSink::OnNotify Implementation ... 296

5 Security .. 299
5.1 Security Considerations for Implementers .. 299
5.2 Index of Security Parameters ... 299

6 Appendix A: Full IDL ... 300

7 Appendix B: Product Behavior .. 342

8 Change Tracking... 359

9 Index ... 361

14 / 368

[MS-VDS] — v20130722
 Virtual Disk Service (VDS) Protocol

 Copyright © 2013 Microsoft Corporation.

 Release: Monday, July 22, 2013

1 Introduction

The Virtual Disk Service (VDS) Remote Protocol is a set of Distributed Component Object Model
(DCOM) interfaces for managing the configuration of disk storage on a computer. The Virtual Disk
Service Remote Protocol deals with detailed low-level operating system and storage concepts.

Although this specification outlines the basic concepts that you need to know, this specification
assumes that you are familiar with these technologies. For information about storage, disk, and
volume concepts, see [MSDN-STC] and [MSDN-PARTITIONINFO]; for information on disk
management, see [MSDN-DISKMAN]. For more information about programming VDS, see [MSDN-

VDSPG].

The Virtual Disk Service Remote Protocol is used to programmatically enumerate and configure
disks, volumes, host bus adapter (HBA) ports, and iSCSI initiators on remote computers. This
protocol supersedes the Disk Management Remote Protocol, as specified in [MS-DMRP].

Sections 1.8, 2, and 3 of this specification are normative and can contain the terms MAY, SHOULD,

MUST, MUST NOT, and SHOULD NOT as defined in RFC 2119. Sections 1.5 and 1.9 are also
normative but cannot contain those terms. All other sections and examples in this specification are

informative.

1.1 Glossary

The following terms are defined in [MS-GLOS]:

allocation unit size

basic disk
basic provider
BitLocker
boot configuration file
boot loader

boot partition
boot volume

bus
Challenge-Handshake Authentication Protocol (CHAP)
cluster
cluster size
Compact Disc File System (CDFS)
Component Object Model (COM)
cylinder

disk
disk extent
disk group
Disk Management Remote Protocol
disk pack
disk signature

disk type
Distributed Component Object Model (DCOM)
drive letter
dynamic disk
dynamic provider
dynamic volume
extended partition

%5bMS-GLOS%5d.pdf
%5bMS-GLOS%5d.pdf
%5bMS-GLOS%5d.pdf
%5bMS-GLOS%5d.pdf
http://go.microsoft.com/fwlink/?LinkId=90139
http://go.microsoft.com/fwlink/?LinkId=90059
http://go.microsoft.com/fwlink/?LinkId=89992
http://go.microsoft.com/fwlink/?LinkId=90696
http://go.microsoft.com/fwlink/?LinkId=90696
%5bMS-GLOS%5d.pdf
%5bMS-DMRP%5d.pdf
%5bMS-GLOS%5d.pdf

15 / 368

[MS-VDS] — v20130722
 Virtual Disk Service (VDS) Protocol

 Copyright © 2013 Microsoft Corporation.

 Release: Monday, July 22, 2013

Extensible Firmware Interface (EFI)
FAT file system

FAT32 file system
fault-tolerant

fiber channel bus
file system label
foreign
format
free space
globally unique identifier (GUID)
GUID partitioning table (GPT)

hard disk
host bus adapter (HBA)
HRESULT
interface
Interface Definition Language (IDL)
Internet SCSI (iSCSI)

Logical Disk Manager (LDM)
logical unit number (LUN)
master boot record (MBR)
mirrored volume
NTFS
offline
online

opnum
pack
page file or paging file
partition
partition table
partition type
path

plex
quick format

RAID-0
RAID-1
RAID-5
RAID column

read-only
redundant arrays of independent disks (RAID)
reference count
region
remote procedure call (RPC)
removable media
reparse point

RPC protocol sequence
sector
shadow copy
small computer system interface (SCSI) bus

snapshot
system partition
track

unallocated disk
Universal Disk Format (UDF)
universal serial bus (USB)
universally unique identifier (UUID)

16 / 368

[MS-VDS] — v20130722
 Virtual Disk Service (VDS) Protocol

 Copyright © 2013 Microsoft Corporation.

 Release: Monday, July 22, 2013

Virtual Disk Service (VDS) session
volume

volume data
volume label

volume manager
volume plex

The following terms are specific to this document:

active partition: A partition on a master boot record (MBR) disk that becomes the system
partition at system startup if the basic input/output system (BIOS) is configured to select
that disk for startup. An MBR disk can have exactly one active partition. The active
partition is stored in the partition table on the disk. GUID partitioning table (GPT)

disks do not have active partitions. See also master boot record (MBR), system
partition, and partition table.

active volume: For volumes that consist of single partitions, active volume is synonymous
with active partition. For volumes that consist of multiple partitions, active volume

refers to a volume in which one of the partitions is an active partition (generally mirrored
volumes because partitions on striped volumes or RAID-5 volumes do not have

complete copies of volume data). See also active partition.

attach: To create and expose a disk device object for a virtual disk on the operating system.
For example, when a user creates a virtual disk, a virtual disk file is allocated as the
backing store for the virtual disk. However, creating the virtual disk does not cause an
operating system disk object to be created and exposed; attaching does this.

backing store: The virtual disk file that stores the data for a virtual disk.

Cluster Shared Volume File System (CSVFS): Cluster Shared Volume File System is a

technology that simplifies configuration and management of clustered virtual machines by
enabling multiple clustered virtual machines to use the same LUN while still allowing
independent failover capability.

detach: To delete a virtual disk object from the operating system. See attach.

differencing chain: The set of virtual disks defined by a differencing disk and its parent or
parents. For example, differencing disk A's parent may be differencing disk B, and
differencing disk B's parent may be virtual disk C. In this example, disks A, B, and C

create a differencing chain where disk A is the child and disks B and C are both parents.

differencing disk: The current state of a virtual disk represented as a set of modified blocks
storing differences from the parent virtual disk. A differencing disk is not independent; it
depends on the parent virtual disk to be fully functional. A differencing disk may be the
parent to another differencing disk. See differencing chain.

disk quorum: The minimum number of disks in a disk group that is required to enable the

online status of a disk group. A disk quorum is defined as n/2 + 1, where n is the total
number of disks in the group. A disk quorum prevents disk groups from gaining online
status on more than one computer.

EUI-64: The IEEE-defined 64-bit extended unique identifier (EUI-64). EUI-64 is a
concatenation of the 24-bit company_id value by the IEEE Registration Authority and a 40-bit
extension identifier that is assigned by the organization with that company_id assignment. For
more information, see [EUI64].

%5bMS-GLOS%5d.pdf
%5bMS-GLOS%5d.pdf
%5bMS-GLOS%5d.pdf
%5bMS-GLOS%5d.pdf
%5bMS-GLOS%5d.pdf
%5bMS-GLOS%5d.pdf
%5bMS-GLOS%5d.pdf
%5bMS-GLOS%5d.pdf
%5bMS-GLOS%5d.pdf
%5bMS-GLOS%5d.pdf
%5bMS-GLOS%5d.pdf
%5bMS-GLOS%5d.pdf
%5bMS-GLOS%5d.pdf
%5bMS-GLOS%5d.pdf
%5bMS-GLOS%5d.pdf
%5bMS-GLOS%5d.pdf
%5bMS-GLOS%5d.pdf
%5bMS-GLOS%5d.pdf
%5bMS-GLOS%5d.pdf
%5bMS-GLOS%5d.pdf
%5bMS-GLOS%5d.pdf
%5bMS-GLOS%5d.pdf
%5bMS-GLOS%5d.pdf
%5bMS-GLOS%5d.pdf
%5bMS-GLOS%5d.pdf
%5bMS-GLOS%5d.pdf
%5bMS-GLOS%5d.pdf
%5bMS-GLOS%5d.pdf
%5bMS-GLOS%5d.pdf
%5bMS-GLOS%5d.pdf
%5bMS-GLOS%5d.pdf
%5bMS-GLOS%5d.pdf
%5bMS-GLOS%5d.pdf
%5bMS-GLOS%5d.pdf
%5bMS-GLOS%5d.pdf
%5bMS-GLOS%5d.pdf
%5bMS-GLOS%5d.pdf
%5bMS-GLOS%5d.pdf
%5bMS-GLOS%5d.pdf
%5bMS-GLOS%5d.pdf
http://go.microsoft.com/fwlink/?LinkId=89861

17 / 368

[MS-VDS] — v20130722
 Virtual Disk Service (VDS) Protocol

 Copyright © 2013 Microsoft Corporation.

 Release: Monday, July 22, 2013

file system: A set of data structures for naming, organizing, and storing files in a volume.
NTFS, FAT, and FAT32 are examples of file system types.

full-volume encryption: Encryption of the entire volume, including user files, system files,
swap files, and hibernation files.

import target: An iSCSI target with which the LUNs being imported to the subsystem are
associated.

iSCSI initiator: A client of a SCSI interface. An iSCSI initiator issues SCSI commands to
request services from components, which are logical units of a server known as a "target". For
more information, see [RFC3720] section 1.

iSCSI initiator adapter: The hardware that allows an iSCSI initiator to communicate with
other computers on the network. For more information, see [RFC3720] section 9.1.

iSCSI initiator portal: The component of an iSCSI initiator that has a TCP/IP network address
and that may be used by an iSCSI node in that network entity for the connections in one of its

iSCSI sessions. For more information, see [RFC3720] section 3.4.

iSCSI session: A group of TCP connections that link an iSCSI initiator with a target. For more
information, see [RFC3720] section 3.4.

iSCSI target: A server of a SCSI interface, or a logical unit of a server that responds to SCSI

command requests from an iSCSI initiator for servers that contain multiple SCSI target
ports, device servers, and associated logical units. For more information, see [RFC3720]
section 1.

Logical Disk Manager Administrative Service: The part of Disk Management Services that
implements the disk and volume management operations (see [MSDN-VOLMAN]). Disk
Management Services provides support for disk and volume management operations and
monitors disk arrivals and removals and other changes in the storage subsystem.

mount point: A file system directory that contains a linked path to a second volume. A user

may link a path on one volume to another. For example, given two volumes, drive C and
drive D, a user can create a directory or folder that is called C:\MountD, and can link that
directory with volume D. The path C:\MountD can then be used to access the root folder of
volume D.

Resilient File System (ReFS): The Resilient File System is a file system that provides
maximum data availability, scalability, and data integrity despite hardware or software

failures. ReFS is frequently used together with Storage Spaces.

SCSI name string identifier: An identifier string that is used to identify a SCSI bus device. For
more information, see [SPC-3].

secure digital (SD) bus: A computer bus that transfers data between a host controller and a
secure digital card, which is a non-volatile memory card format commonly used in a portable
device.

shared secret: A symmetric encryption key that is shared by two entities, such as a user and a
domain controller, and that has a long lifetime. A password is a common example of a shared
secret. Also called a "secret key".

Storage Spaces: Storage Spaces enables virtualization of storage by grouping industry-standard
disks into storage pools, and then allocating storage from the available capacity in the storage
pools.

%5bMS-GLOS%5d.pdf
%5bMS-GLOS%5d.pdf
%5bMS-GLOS%5d.pdf
%5bMS-GLOS%5d.pdf
%5bMS-GLOS%5d.pdf
%5bMS-GLOS%5d.pdf
http://go.microsoft.com/fwlink/?LinkId=90443
http://go.microsoft.com/fwlink/?LinkId=90443
http://go.microsoft.com/fwlink/?LinkId=90443
http://go.microsoft.com/fwlink/?LinkId=90443
%5bMS-GLOS%5d.pdf
http://go.microsoft.com/fwlink/?LinkId=90443
%5bMS-GLOS%5d.pdf
%5bMS-GLOS%5d.pdf
http://go.microsoft.com/fwlink/?LinkId=90154
%5bMS-GLOS%5d.pdf
%5bMS-GLOS%5d.pdf
%5bMS-GLOS%5d.pdf
%5bMS-GLOS%5d.pdf
%5bMS-GLOS%5d.pdf
%5bMS-GLOS%5d.pdf
%5bMS-GLOS%5d.pdf
%5bMS-GLOS%5d.pdf
%5bMS-GLOS%5d.pdf
%5bMS-GLOS%5d.pdf
%5bMS-GLOS%5d.pdf
%5bMS-GLOS%5d.pdf
http://go.microsoft.com/fwlink/?LinkId=90528

18 / 368

[MS-VDS] — v20130722
 Virtual Disk Service (VDS) Protocol

 Copyright © 2013 Microsoft Corporation.

 Release: Monday, July 22, 2013

striped volume: See RAID-0.

subsystem: A storage device that coordinates and controls the operation of one or more disk
drives.

super floppy: A high-capacity floppy disk. A super floppy layout is one in which there is no

MBR, so there is no partition table. The entire disk (from start to end) is one giant
partition.

system volume: For volumes that consist of single partitions, system volume is
synonymous with system partition. For volumes that consist of multiple partitions,
system volume refers to a volume in which one of the partitions is a system partition
(generally mirrored volumes, because partitions on striped or RAID-5 volumes do not
have complete copies of volume data). See also system partition.

virtual disk: A disk that does not have a physical mechanical counterpart to it, and is not
exposed as a hardware array LUN. It is a disk that uses a file to store its data. When this file
is exposed to the operating system as a disk device, the exposed disk device emulates and,

for all intents and purposes, behaves like a physical disk.

virtual disk file: The file that is the backing store for a virtual disk. This file may be exposed
to an operating system as a disk device. The exposed disk device is referred to as a virtual

disk.

virtual disk provider: A VDS object that allows query and management of virtual disks on a
system.

Virtual Disk Service (VDS): If the term is used as a noun, VDS refers to the service
component that runs on the server. If VDS is used as an adjective, it refers to the protocol
that is specified in this document (which the service uses to communicate with clients).

virtual hard disk: Same as a virtual disk.

VDS object: An instance of a class that exposes one or more DCOM interfaces to query or

configure the VDS service, the operating system device (such as a disk or volume), or the
concept (such as a software provider) that the object represents. Each object has an
associated type that indicates the type of device or concept that it represents. Unless
otherwise indicated, the term "object" refers to a VDS object.

volume plex member: A RAID construct for organizing disks and volumes. Also called a
RAID column.

Windows Event log: An audit trail created by Windows instrumentation manifest to monitor the
health of the operating system and to help troubleshoot issues when they arise. The event
logs can be browsed and managed by Windows Event Viewer.

Windows Preinstallation Environment (Windows PE): A minimal Windows system
environment that provides limited services based on the Windows XP, Windows Server 2003,
or Windows Vista kernels. It provides the minimum set of features that are required to run the

operating system setup, perform system recovery, access and install operating systems from

the network, script basic repetitive tasks, and validate hardware.

MAY, SHOULD, MUST, SHOULD NOT, MUST NOT: These terms (in all caps) are used as
described in [RFC2119]. All statements of optional behavior use either MAY, SHOULD, or
SHOULD NOT.

%5bMS-GLOS%5d.pdf
%5bMS-GLOS%5d.pdf
%5bMS-GLOS%5d.pdf
%5bMS-GLOS%5d.pdf
%5bMS-GLOS%5d.pdf
%5bMS-GLOS%5d.pdf
%5bMS-GLOS%5d.pdf
%5bMS-GLOS%5d.pdf
%5bMS-GLOS%5d.pdf
%5bMS-GLOS%5d.pdf
%5bMS-GLOS%5d.pdf
%5bMS-GLOS%5d.pdf
%5bMS-GLOS%5d.pdf
%5bMS-GLOS%5d.pdf
%5bMS-GLOS%5d.pdf
%5bMS-GLOS%5d.pdf
%5bMS-GLOS%5d.pdf
%5bMS-GLOS%5d.pdf
%5bMS-GLOS%5d.pdf
%5bMS-GLOS%5d.pdf
%5bMS-GLOS%5d.pdf
%5bMS-GLOS%5d.pdf
%5bMS-GLOS%5d.pdf
%5bMS-GLOS%5d.pdf
%5bMS-GLOS%5d.pdf
%5bMS-GLOS%5d.pdf
%5bMS-GLOS%5d.pdf
%5bMS-GLOS%5d.pdf
%5bMS-GLOS%5d.pdf
%5bMS-GLOS%5d.pdf
%5bMS-GLOS%5d.pdf
%5bMS-GLOS%5d.pdf
%5bMS-GLOS%5d.pdf
%5bMS-GLOS%5d.pdf
%5bMS-GLOS%5d.pdf
%5bMS-GLOS%5d.pdf
http://go.microsoft.com/fwlink/?LinkId=90317

19 / 368

[MS-VDS] — v20130722
 Virtual Disk Service (VDS) Protocol

 Copyright © 2013 Microsoft Corporation.

 Release: Monday, July 22, 2013

1.2 References

References to Microsoft Open Specifications documentation do not include a publishing year because
links are to the latest version of the documents, which are updated frequently. References to other

documents include a publishing year when one is available.

A reference marked "(Archived)" means that the reference document was either retired and is no
longer being maintained or was replaced with a new document that provides current implementation
details. We archive our documents online [Windows Protocol].

1.2.1 Normative References

We conduct frequent surveys of the normative references to assure their continued availability. If

you have any issue with finding a normative reference, please contact dochelp@microsoft.com. We
will assist you in finding the relevant information. Please check the archive site,
http://msdn2.microsoft.com/en-us/library/E4BD6494-06AD-4aed-9823-445E921C9624, as an
additional source.

[C706] The Open Group, "DCE 1.1: Remote Procedure Call", C706, August 1997,
http://www.opengroup.org/public/pubs/catalog/c706.htm

[EUI64] IEEE Standards Association, "Guidelines for 64-bit Global Identifier (EUI-64) Registration
Authority", http://standards.ieee.org/regauth/oui/tutorials/EUI64.html

[HBAAPI] Storage Networking Industry Association, "Common HBA API", T11 Document 02-149v0,
March 2002, ftp://ftp.t11.org/t11/docs/02-149v0.pdf

[IEC60908] International Electrotechnical Commission, "Audio Recording - Compact Disc Digital
Audio System", IEC 60908 Ed. 2.0, 1999.

If you have any trouble finding [IEC60908], please check here.

[MS-CHAP] Microsoft Corporation, "Extensible Authentication Protocol Method for Microsoft
Challenge Handshake Authentication Protocol (CHAP)".

[MS-DCOM] Microsoft Corporation, "Distributed Component Object Model (DCOM) Remote Protocol".

[MS-DMRP] Microsoft Corporation, "Disk Management Remote Protocol".

[MS-DTYP] Microsoft Corporation, "Windows Data Types".

[MS-ERREF] Microsoft Corporation, "Windows Error Codes".

[MS-RPCE] Microsoft Corporation, "Remote Procedure Call Protocol Extensions".

[RFC2119] Bradner, S., "Key words for use in RFCs to Indicate Requirement Levels", BCP 14, RFC
2119, March 1997, http://www.rfc-editor.org/rfc/rfc2119.txt

[RFC3720] Satran, J., Meth, K., Sapuntzakis, C., et al., "Internet Small Computer Systems Interface
(iSCSI)", RFC 3720, April 2004, http://www.ietf.org/rfc/rfc3720.txt

[SPC-3] International Committee on Information Technology Standards, "SCSI Primary Commands -
3 (SPC-3)", Project T10/1416-D, May 2005, http://www.t10.org/cgi-bin/ac.pl?t=f&f=/spc3r23.pdf

http://msdn.microsoft.com/en-us/library/jj633107.aspx
mailto:dochelp@microsoft.com
http://msdn2.microsoft.com/en-us/library/E4BD6494-06AD-4aed-9823-445E921C9624
http://go.microsoft.com/fwlink/?LinkId=89824
http://go.microsoft.com/fwlink/?LinkId=89861
http://go.microsoft.com/fwlink/?LinkId=89878
http://msdn2.microsoft.com/en-us/library/E4BD6494-06AD-4aed-9823-445E921C9624
%5bMS-CHAP%5d.pdf
%5bMS-CHAP%5d.pdf
%5bMS-DCOM%5d.pdf
%5bMS-DMRP%5d.pdf
%5bMS-DTYP%5d.pdf
%5bMS-ERREF%5d.pdf
%5bMS-RPCE%5d.pdf
http://go.microsoft.com/fwlink/?LinkId=90317
http://go.microsoft.com/fwlink/?LinkId=90443
http://go.microsoft.com/fwlink/?LinkId=90528

20 / 368

[MS-VDS] — v20130722
 Virtual Disk Service (VDS) Protocol

 Copyright © 2013 Microsoft Corporation.

 Release: Monday, July 22, 2013

1.2.2 Informative References

[ANSI-131-1994] American National Standards Institute, "Information Systems - Small Computer
Systems Interface-2 (SCSI-2)", ANSI INCITS 131-1994 (R1999),

http://webstore.ansi.org/RecordDetail.aspx?sku=ANSI+INCITS+131-1994+(R1999)

Note There is a charge to download the specification.

[ANSI-289-1996] American National Standards Institute, "Fibre Channel - Fabric Generic
Requirements (FC-FG)", ANSI INCITS 289-1996 (R2001), 2001,
http://webstore.ansi.org/RecordDetail.aspx?sku=ANSI+INCITS+289-1996+(R2001)

Note There is a charge to download the specification.

[ANSI/INCITS-397-2005] ANSI, "AT Attachment with Packet Interface - 7", (ATA/ATAPI-7) Volumes

1-3, http://webstore.ansi.org/RecordDetail.aspx?sku=ANSI+INCITS+397-2005+Package

Note There is a charge to download the specification.

[ANSI/INCITS-451-2008] ANSI, "AT Attachment-8 - ATA/ATAPI Architecture Model (ATA8-AAM)",
http://webstore.ansi.org/RecordDetail.aspx?sku=INCITS+451-2008

Note There is a charge to download the specification.

[ANSI/INCITS-457-2010] ANSI, "Serial Attached SCSI - 2 (SAS-2)",

http://webstore.ansi.org/RecordDetail.aspx?sku=INCITS+457-2010

Note There is a charge to download the specification.

[ECMA-119] ECMA International, "Volume and File Structure of CDROM for Information
Interchange", ECMA-119, December 1987, http://www.ecma-
international.org/publications/files/ECMA-ST/Ecma-119.pdf

[IEEE1394-2008] Institute of Electrical and Electronics Engineers, "IEEE Standard for a High
Performance Serial Bus - Description", IEEE Std 1394, October 2008,

http://standards.ieee.org/findstds/standard/1394-2008.html

Note There is a charge to download the specification.

[IEEE-SSA] Judd, I.D., Murfet, P.J, Palmer, M. J., "Serial Storage Architecture", IBM J. RES.
DEVFU.OP. Volume 40, Issue:6, November 1996,
http://ieeexplore.ieee.org/search/srchabstract.jsp?tp=&arnumber=5389403&queryText%3DSerial+
Storage+Architecture%26openedRefinements%3D*%26searchField%3DSearch+All

[JEDEC-MO227-A] JEDEC, "Registration - 13 Pin Full Size MultiMediaCard (MMC) Outline - MMCplus

32 x 24 x 1.4 mm. RL-PLGA/MMCplus", September 2006,http://www.jedec.org/

[KB102873] Microsoft Corporation "BOOT.INI and ARC Path Naming Conventions and Usage",
http://support.microsoft.com/kb/102873/EN-US/

[MS-GLOS] Microsoft Corporation, "Windows Protocols Master Glossary".

[MSDN-CoCreateInstance] Microsoft Corporation, "CoCreateInstance",
http://msdn.microsoft.com/en-us/library/ee488147.aspx

[MSDN-CoCreateInstanceEx] Microsoft Corporation, "CoCreateInstanceEx",
http://msdn.microsoft.com/en-us/library/ee488519.aspx

http://go.microsoft.com/fwlink/?LinkId=90512
http://go.microsoft.com/fwlink/?LinkId=193114
http://go.microsoft.com/fwlink/?LinkId=208130
http://go.microsoft.com/fwlink/?LinkId=208131
http://go.microsoft.com/fwlink/?LinkId=208133
http://go.microsoft.com/fwlink/?LinkId=208348
http://go.microsoft.com/fwlink/?LinkId=208348
http://go.microsoft.com/fwlink/?LinkId=89900
http://go.microsoft.com/fwlink/?LinkId=208136
http://go.microsoft.com/fwlink/?LinkId=208136
http://go.microsoft.com/fwlink/?LinkId=208756
http://go.microsoft.com/fwlink/?LinkId=208754
%5bMS-GLOS%5d.pdf
http://go.microsoft.com/fwlink/?LinkId=208350
http://go.microsoft.com/fwlink/?LinkId=208352

21 / 368

[MS-VDS] — v20130722
 Virtual Disk Service (VDS) Protocol

 Copyright © 2013 Microsoft Corporation.

 Release: Monday, July 22, 2013

[MSDN-CompactVirtualDisk] Microsoft Corporation, "CompactVirtualDisk function",
http://msdn.microsoft.com/en-us/library/dd323655(v=VS.85).aspx

[MSDN-DATA] Microsoft Corporation, "Windows Data Types", http://msdn.microsoft.com/en-
us/library/aa383751.aspx

[MSDN-DISKMAN] Microsoft Corporation, "Disk Management", http://msdn.microsoft.com/en-
us/library/aa363978.aspx

[MSDN-EFFS] Microsoft Corporation, "Extended FAT File System", http://msdn.microsoft.com/en-
us/library/aa914353.aspx

[MSDN-ExpandVirtualDisk] Microsoft Corporation, "ExpandVirtualDisk function",
http://msdn.microsoft.com/en-us/library/dd323664(v=VS.85).aspx

[MSDN-MergeVirtualDisk] Microsoft Corporation, "MergeVirtualDisk function",

http://msdn.microsoft.com/en-us/library/dd323676(v=VS.85).aspx

[MSDN-PARTITIONINFO] Microsoft Corporation, "PARTITION_INFORMATION_EX",
http://msdn.microsoft.com/en-us/library/aa365448.aspx

[MSDN-SDDLforDevObj] Microsoft Corporation, "SDDL for Device Objects",
http://msdn.microsoft.com/en-us/library/ff563667.aspx

[MSDN-SetVirtualDiskInfo] Microsoft Corporation, "SetVirtualDiskInformation function",

http://msdn.microsoft.com/en-us/library/dd323685(v=VS.85).aspx

[MSDN-STC] Microsoft Corporation, "Storage Technologies Collection", March 2003,
http://technet2.microsoft.com/WindowsServer/en/Library/616e5e77-958b-42f0-a87f-
ba229ccd81721033.mspx

[MSDN-STRGEDEVNUM] Microsoft Corporation, "STORAGE_DEVICE_NUMBER structure",
http://msdn.microsoft.com/en-us/library/bb968801(VS.85).aspx

[MSDN-VDSPG] Microsoft Corporation, "Virtual Disk Service Programming Guide",

http://msdn.microsoft.com/en-us/library/aa383063.aspx

[MSDN-VIRTDSKACCMSK] Microsoft Corporation, "VIRTUAL_DISK_ACCESS_MASK enumeration",
http://msdn.microsoft.com/en-us/library/dd323702(v=VS.85).aspx

[MSDN-VOLMAN] Microsoft Corporation, "Volume Management", http://msdn.microsoft.com/en-
us/library/aa365728.aspx

[MSFT-WSM/WEDWNK] Microsoft Corporation, "Windows Security Model: What Every Driver Writer
Needs to Know", http://www.microsoft.com/whdc/driver/security/drvsecure.mspx

[OSTA-UDFS] Optical Storage Technology Association, "Universal Disk Format Specification", version
2.60, March 2005, http://www.osta.org/specs/pdf/udf260.pdf

[SATA-3.0] SATA,"Serial ATA Revision 3.0", Gold Revision, 2009, http://www.sata-
io.org/technology/6Gbdetails.asp

1.3 Overview

The Virtual Disk Service Remote Protocol provides a mechanism for remote configuration of disks,
partitions, volumes, and iSCSI initiators on a server. Through the Virtual Disk Service Remote
Protocol, a client can change the configuration of disks into partitions, partitions into volumes, and

http://go.microsoft.com/fwlink/?LinkId=208355
http://go.microsoft.com/fwlink/?LinkId=89988
http://go.microsoft.com/fwlink/?LinkId=89988
http://go.microsoft.com/fwlink/?LinkId=89992
http://go.microsoft.com/fwlink/?LinkId=89992
http://go.microsoft.com/fwlink/?LinkId=208354
http://go.microsoft.com/fwlink/?LinkId=208354
http://go.microsoft.com/fwlink/?LinkId=208356
http://go.microsoft.com/fwlink/?LinkId=208357
http://go.microsoft.com/fwlink/?LinkId=90059
http://go.microsoft.com/fwlink/?LinkId=114214
http://go.microsoft.com/fwlink/?LinkId=208358
http://go.microsoft.com/fwlink/?LinkId=90139
http://go.microsoft.com/fwlink/?LinkId=90139
http://go.microsoft.com/fwlink/?LinkId=208346
http://go.microsoft.com/fwlink/?LinkId=90696
http://go.microsoft.com/fwlink/?LinkId=208359
http://go.microsoft.com/fwlink/?LinkId=90154
http://go.microsoft.com/fwlink/?LinkId=90154
http://go.microsoft.com/fwlink/?LinkId=208360
http://go.microsoft.com/fwlink/?LinkId=208349
http://go.microsoft.com/fwlink/?LinkId=208135
http://go.microsoft.com/fwlink/?LinkId=208135
%5bMS-GLOS%5d.pdf

22 / 368

[MS-VDS] — v20130722
 Virtual Disk Service (VDS) Protocol

 Copyright © 2013 Microsoft Corporation.

 Release: Monday, July 22, 2013

volumes into file systems. The protocol also enables clients to obtain notifications of changes to
these storage objects.

In the Virtual Disk Service Remote Protocol, two entities are involved: the server, whose storage is
configured, and the client, which accesses and requests changes to the server storage configuration.

The Virtual Disk Service Remote Protocol is expressed as a set of DCOM interfaces. For a server,
this protocol implements support for the DCOM interface in order to manage storage. For a client,
this protocol invokes method calls on the interface in order to perform disk and volume configuration
tasks on the server.<1>

1.4 Relationship to Other Protocols

The Virtual Disk Service Remote Protocol relies on DCOM [MS-DCOM], which uses remote

procedure call (RPC) as its transport.

The Virtual Disk Service Remote Protocol was designed to replace the Disk Management Remote
Protocol [MS-DMRP] for storage management tasks.

1.5 Prerequisites and Preconditions

The Virtual Disk Service Remote Protocol is implemented over DCOM (as specified in [MS-DCOM])

and RPC; as a result, it has DCOM prerequisites, as specified in [MS-DCOM] and [MS-RPCE], as
being common to DCOM and RPC interfaces.

The Virtual Disk Service Remote Protocol assumes that a client has obtained the name of a server
that supports this protocol suite before the protocol is invoked. The protocol also assumes that the
client has sufficient security privileges to configure disks and volumes on the server.

An operating system on which an implementation of the Virtual Disk Service Remote Protocol is to
run must be able to dynamically requery the list of storage devices and mount points that are

available during run time. For more information on these requirements, see sections 3.4.5.2.4.10
and 3.4.5.2.4.11.

1.6 Applicability Statement

The Virtual Disk Service Remote Protocol applies when an application needs to remotely configure
disks, volumes, and iSCSI initiators.

Applications may also use DMRP, as specified in [MS-DMRP], to perform logical functions that are

similar to those that the Virtual Disk Service Remote Protocol performs.<2>

1.7 Versioning and Capability Negotiation

Supported Transports: The Virtual Disk Service Remote Protocol uses the DCOM Remote Protocol (as
specified in [MS-DCOM]), which in turn uses RPC over TCP as its only transport. For more
information about transport, see section 2.1.

Protocol Version: The Virtual Disk Service Remote Protocol comprises a set of DCOM interfaces,

which are all version 0.0. The following interfaces are common to all storage management:
IEnumVdsObject, IVdsAdviseSink, IVdsAsync, IVdsService, and
IVdsServiceInitialization.<3>

Functionality Negotiation: The client negotiates for a specified set of server functionality by
specifying the UUID that corresponds to the necessary RPC interface by means of COM
IUnknown::QueryInterface when binding to the server. Certain interfaces are implemented by only

%5bMS-GLOS%5d.pdf
%5bMS-DCOM%5d.pdf
%5bMS-GLOS%5d.pdf
%5bMS-GLOS%5d.pdf
%5bMS-DMRP%5d.pdf
%5bMS-DCOM%5d.pdf
%5bMS-RPCE%5d.pdf
%5bMS-DMRP%5d.pdf
%5bMS-DCOM%5d.pdf
%5bMS-GLOS%5d.pdf
%5bMS-GLOS%5d.pdf

23 / 368

[MS-VDS] — v20130722
 Virtual Disk Service (VDS) Protocol

 Copyright © 2013 Microsoft Corporation.

 Release: Monday, July 22, 2013

particular objects on the server. For more information on storage management objects, see section
3.4.1.2.

Security and Authentication Methods: For more information, see [MS-DCOM] and [MS-RPCE].

1.8 Vendor-Extensible Fields

The Virtual Disk Service Remote Protocol does not define any vendor-extensible fields.

Unless otherwise specified, all methods MUST return zero or a non-error HRESULT (as specified in
[MS-ERREF]) to indicate success or return an implementation-specific nonzero error code to indicate
failure. For the HRESULT values predefined by the Virtual Disk Service Remote Protocol, see section
2.2.3.

The Virtual Disk Service Remote Protocol uses HRESULTs, which are vendor-extensible. Vendors are

free to choose their own values for HRESULTs; however, the C bit (0x20000000) MUST be set as
specified in [MS-ERREF] to indicate that it is a customer code.

1.9 Standards Assignments

The following table shows the Microsoft private assignments for the Virtual Disk Service Remote
Protocol.

Parameter Value Reference

RPC interface UUID for IEnumVdsObject 118610B7-8D94-4030-

B5B8-500889788E4E

None

RPC interface UUID for IVdsAdviseSink 8326CD1D-CF59-4936-

B786-5EFC08798E25

None

RPC interface UUID for IVdsAsync D5D23B6D-5A55-4492-

9889-397A3C2D2DBC

None

RPC interface UUID for IVdsServiceLoader E0393303-90D4-4A97-

AB71-E9B671EE2729

None

RPC interface UUID for IVdsService 0818A8EF-9BA9-40D8-

A6F9-E22833CC771E

None

RPC interface UUID for IVdsServiceInitialization 4AFC3636-DB01-4052-

80C3-03BBCB8D3C69

None

RPC interface UUID for IVdsServiceSw 15fc031c-0652-4306-

b2c3-f558b8f837e2

None

RPC interface UUID for IVdsProvider 10C5E575-7984-4E81-

A56B-431F5F92AE42

None

RPC interface UUID for IVdsSwProvider 9AA58360-CE33-4F92-

B658-ED24B14425B8

None

RPC interface UUID for IVdsHwProvider D99BDAAE-B13A-4178-

9FDB-E27F16B4603E

None

RPC interface UUID for IVdsSubSystemImportTarget 83BFB87F-43FB-4903-

BAA6-127F01029EEC

None

%5bMS-RPCE%5d.pdf
%5bMS-GLOS%5d.pdf
%5bMS-ERREF%5d.pdf

24 / 368

[MS-VDS] — v20130722
 Virtual Disk Service (VDS) Protocol

 Copyright © 2013 Microsoft Corporation.

 Release: Monday, July 22, 2013

Parameter Value Reference

RPC interface UUID for IVdsPack 3B69D7F5-9D94-4648-

91CA-79939BA263BF

None

RPC interface UUID for IVdsDisk 07E5C822-F00C-47A1-

8FCE-B244DA56FD06

None

RPC interface UUID for IVdsAdvancedDisk 6E6F6B40-977C-4069-

BDDD-AC710059F8C0

None

RPC interface UUID for IVdsCreatePartitionEx 9882F547-CFC3-420B-

9750-00DFBEC50662

None

RPC interface UUID for IVdsDiskPartitionMF 538684E0-BA3D-4BC0-

ACA9-164AFF85C2A9

None

RPC interface UUID for IVdsRemovable 0316560B-5DB4-4ED9-

BBB5-213436DDC0D9

None

RPC interface UUID for IVdsVolume 88306BB2-E71F-478C-

86A2-79DA200A0F11

None

RPC interface UUID for IVdsVolumeMF EE2D5DED-6236-4169-

931D-B9778CE03DC6

None

RPC interface UUID for IVdsVolumeShrink D68168C9-82A2-4F85-

B6E9-74707C49A58F

None

RPC interface UUID for IVdsVolumeOnline 1BE2275A-B315-4F70-

9E44-879B3A2A53F2

None

RPC interface UUID for IVdsVolumePlex 4DAA0135-E1D1-40F1-

AAA5-3CC1E53221C3

None

RPC interface UUID for IVdsPack2 13B50BFF-290A-47DD-

8558-B7C58DB1A71A

None

RPC interface UUID for IVdsDisk2 40F73C8B-687D-4A13-

8D96-3D7F2E683936

None

RPC interface UUID for IVdsAdvancedDisk2 9723F420-9355-42DE-

AB66-E31BB15BEEAC

None

RPC interface UUID for IVdsAdvancedDisk3 3858C0D5-0F35-4BF5-

9714-69874963BC36

None

RPC interface UUID for IVdsVolumeMF2 4DBCEE9A-6343-4651-

B85F-5E75D74D983C

None

RPC interface UUID for IVdsServiceUninstallDisk B6B22DA8-F903-4BE7-

B492-C09D875AC9DA

None

RPC interface UUID for IVdsServiceHba 0AC13689-3134-47C6-

A17C-4669216801BE

None

RPC interface UUID for IVdsServiceIscsi 14FBE036-3ED7-4E10-

90E9-A5FF991AFF01

None

RPC interface UUID for IVdsHbaPort 2ABD757F-2851-4997- None

25 / 368

[MS-VDS] — v20130722
 Virtual Disk Service (VDS) Protocol

 Copyright © 2013 Microsoft Corporation.

 Release: Monday, July 22, 2013

Parameter Value Reference

9A13-47D2A885D6CA

RPC interface UUID for IVdsIscsiInitiatorAdapter B07FEDD4-1682-4440-

9189-A39B55194DC5

None

RPC interface UUID for IVdsIscsiInitiatorPortal 38A0A9AB-7CC8-4693-

AC07-1F28BD03C3DA

None

COM class UUID for service object class

Used to create a VDS session (see section 4.1.1)

7D1933CB-86F6-4A98-

8628-01BE94C9A575

None

RPC interface UUID for IVdsVdProvider B481498C-8354-45F9-

84A0-0BDD2832A91F

None

RPC interface UUID for IVdsVDisk 1E062B84-E5E6-4B4B-

8A25-67B81E8F13E8

None

RPC interface UUID for IVdsOpenDisk 75C8F324-F715-4FE3-

A28E-F9011B61A4A1

None

RPC interface UUID for IVdsDiskPartitionMF2 9CBE50CA-F2D2-4BF4-

ACE1-96896B729625

None

RPC interface UUID for IVdsVolumeMF3 6788FAF9-214E-4B85-

BA59-266953616E09

None

RPC interface UUID for IVdsDisk3 8F4B2F5D-EC15-4357-

992F-473EF10975B9

None

RPC interface UUID for IVdsVolume2 72AE6713-DCBB-4A03-

B36B-371F6AC6B53D

None

Microsoft Virtual Disk Provider Vendor Identifier

VIRTUAL_STORAGE_TYPE_VENDOR_MICROSOFT

EC984AEC-A0F9-47E9-

901F-71415A66345B

None

26 / 368

[MS-VDS] — v20130722
 Virtual Disk Service (VDS) Protocol

 Copyright © 2013 Microsoft Corporation.

 Release: Monday, July 22, 2013

2 Messages

The following sections specify how Virtual Disk Service Remote Protocol messages are transported
and also specify VDS Remote Protocol message syntax.

2.1 Transport

The Virtual Disk Service Remote Protocol uses the DCOM Remote Protocol, as specified in [MS-
DCOM], as its transport. On its behalf, the DCOM Remote Protocol uses the following RPC protocol
sequence: RPC over TCP, as defined in [MS-RPCE].

To access an interface, the client requests a DCOM connection to its object UUID endpoint on the
server, as specified in section 1.9.

The RPC version number for all interfaces is 0.0.

An implementation of the Virtual Disk Service Remote Protocol MUST configure its DCOM
implementation or underlying RPC transport with the RPC_C_AUTHN_LEVEL_PKT_PRIVACY security
parameter.<4>

The Virtual Disk Service Remote Protocol interfaces make use of the underlying DCOM security

framework, as specified in [MS-DCOM], and rely on it for access control. DCOM differentiates
between launch and access. An implementation of the Virtual Disk Service Remote Protocol MAY
differentiate between launch and access permission, and MAY impose different authorization
requirements for each interface.<5>

2.2 Message Syntax

The following sections specify Virtual Disk Service Remote Protocol message syntax. Unless

otherwise stated, all data types and messages for the Virtual Disk Service Remote Protocol MUST be
supported.

All enumeration structures contain a zero value defined as VDS_XXX_UNKNOWN. The zero values in
the enumerations are never valid as an input parameter. They are only used as an output
parameter.

2.2.1 Common Data Types

2.2.1.1 Data Types

2.2.1.1.1 ULONGLONG

The ULONGLONG data type is defined in [MS-DTYP].

2.2.1.1.2 DWORD

The DWORD data type is defined in [MS-DTYP].

2.2.1.1.3 VDS_OBJECT_ID

The VDS_OBJECT_ID data type defines the VDS object identifier as a GUID for Virtual Disk
Service Remote Protocol storage objects.

This type is declared as follows:

%5bMS-DCOM%5d.pdf
%5bMS-DCOM%5d.pdf
%5bMS-GLOS%5d.pdf
%5bMS-GLOS%5d.pdf
%5bMS-RPCE%5d.pdf
%5bMS-DTYP%5d.pdf
%5bMS-DTYP%5d.pdf
%5bMS-GLOS%5d.pdf

27 / 368

[MS-VDS] — v20130722
 Virtual Disk Service (VDS) Protocol

 Copyright © 2013 Microsoft Corporation.

 Release: Monday, July 22, 2013

typedef GUID VDS_OBJECT_ID;

2.2.1.1.4 VDS_LUN_INFORMATION

Constant/value Description

VDS_LUN_INFORMATION

0x00000001

Defines the current version of the VDS_LUN_INFORMATION structure.

2.2.1.1.5 ACCESS_MASK

The ACCESS_MASK data type is defined in [MS-DTYP].

2.2.1.2 Enumerations

2.2.1.2.1 VDS_HEALTH

The VDS_HEALTH enumeration defines the possible health states of the storage objects in the
Virtual Disk Service Remote Protocol. The storage objects are packs, volumes, volume plexes and

disks.

typedef enum _VDS_HEALTH

{

 VDS_H_UNKNOWN = 0x00000000,

 VDS_H_HEALTHY = 0x00000001,

 VDS_H_REBUILDING = 0x00000002,

 VDS_H_STALE = 0x00000003,

 VDS_H_FAILING = 0x00000004,

 VDS_H_FAILING_REDUNDANCY = 0x00000005,

 VDS_H_FAILED_REDUNDANCY = 0x00000006,

 VDS_H_FAILED_REDUNDANCY_FAILING = 0x00000007,

 VDS_H_FAILED = 0x00000008

} VDS_HEALTH;

VDS_H_UNKNOWN: The health of the object cannot be determined.

VDS_H_HEALTHY: The object indicates online status. If the object is a disk, the disk is not
missing, dynamic disk log and configuration files are synchronized, and the disk is free of
input/output errors. If the object is a LUN or volume, all plexes (mirrored, simple, spanned,
and striped) and columns (RAID-5) are active. For a volume, VDS_H_HEALTHY implies no
disks containing volume extents have IO errors. For a LUN, VDS_H_HEALTHY implies no drives

containing LUN extents have IO errors.

VDS_H_REBUILDING: The volume is resynchronizing all plexes, or a striped with parity (RAID-

5) plex is regenerating the parity.

VDS_H_STALE: The object configuration is stale.

VDS_H_FAILING: The object is failing but still working. For example, a volume with failing
health might produce occasional input/output errors from which it can still recover.

%5bMS-DTYP%5d.pdf
%5bMS-DTYP%5d.pdf
%5bMS-GLOS%5d.pdf
%5bMS-GLOS%5d.pdf
%5bMS-GLOS%5d.pdf
%5bMS-GLOS%5d.pdf
%5bMS-GLOS%5d.pdf
%5bMS-GLOS%5d.pdf
%5bMS-GLOS%5d.pdf

28 / 368

[MS-VDS] — v20130722
 Virtual Disk Service (VDS) Protocol

 Copyright © 2013 Microsoft Corporation.

 Release: Monday, July 22, 2013

VDS_H_FAILING_REDUNDANCY: One or more plexes have errors, but the object is working
and all plexes are online.

VDS_H_FAILED_REDUNDANCY: One or more plexes have failed, but at least one plex is
working.

VDS_H_FAILED_REDUNDANCY_FAILING: The last working plex is failing.

VDS_H_FAILED: The object has failed. Any object with a failed health status also has a failed
object status.

2.2.1.2.2 VDS_NOTIFICATION_TARGET_TYPE

The VDS_NOTIFICATION_TARGET_TYPE enumeration defines the set of valid target types
(subjects) of a Virtual Disk Service Remote Protocol notification.

typedef enum _VDS_NOTIFICATION_TARGET_TYPE

{

 VDS_NTT_UNKNOWN = 0x00000000,

 VDS_NTT_PACK = 0x0000000A,

 VDS_NTT_VOLUME = 0x0000000B,

 VDS_NTT_DISK = 0x0000000D,

 VDS_NTT_PARTITION = 0x0000003C,

 VDS_NTT_DRIVE_LETTER = 0x0000003D,

 VDS_NTT_FILE_SYSTEM = 0x0000003E,

 VDS_NTT_MOUNT_POINT = 0x0000003F,

 VDS_NTT_SERVICE = 0x000000C8

} VDS_NOTIFICATION_TARGET_TYPE;

VDS_NTT_UNKNOWN: Notification is of an unknown type.

VDS_NTT_PACK: Notification refers to a pack.

VDS_NTT_VOLUME: Notification refers to a volume.

VDS_NTT_DISK: Notification refers to a disk.

VDS_NTT_PARTITION: Notification refers to a partition.

VDS_NTT_DRIVE_LETTER: Notification refers to a drive letter.

VDS_NTT_FILE_SYSTEM: Notification refers to a file system.

VDS_NTT_MOUNT_POINT: Notification refers to a mount point.

VDS_NTT_SERVICE: Notification refers to the Virtual Disk Service.<6>

2.2.1.2.3 VDS_RECOVER_ACTION

The VDS_RECOVER_ACTION enumeration defines the set of valid client actions to be taken in

response to a notification with target type VDS_NTT_SERVICE.

typedef enum _VDS_RECOVER_ACTION

{

 VDS_RA_UNKNOWN = 0,

 VDS_RA_REFRESH = 1,

 VDS_RA_RESTART = 2

%5bMS-GLOS%5d.pdf

29 / 368

[MS-VDS] — v20130722
 Virtual Disk Service (VDS) Protocol

 Copyright © 2013 Microsoft Corporation.

 Release: Monday, July 22, 2013

} VDS_RECOVER_ACTION;

VDS_RA_UNKNOWN: Client action to be taken is unknown.

VDS_RA_REFRESH: Client action to be taken is to call the IVdsService::Refresh (section
3.4.5.2.4.10) method.

VDS_RA_RESTART: Client action to be taken is to restart the service.

2.2.1.2.4 VDS_ASYNC_OUTPUT_TYPE

The VDS_ASYNC_OUTPUT_TYPE enumeration defines the types of operation information that the

VDS_ASYNC_OUTPUT structure returns.

typedef enum _VDS_ASYNC_OUTPUT_TYPE

{

 VDS_ASYNCOUT_UNKNOWN = 0,

 VDS_ASYNCOUT_CREATEVOLUME = 1,

 VDS_ASYNCOUT_EXTENDVOLUME = 2,

 VDS_ASYNCOUT_SHRINKVOLUME = 3,

 VDS_ASYNCOUT_ADDVOLUMEPLEX = 4,

 VDS_ASYNCOUT_BREAKVOLUMEPLEX = 5,

 VDS_ASYNCOUT_REMOVEVOLUMEPLEX = 6,

 VDS_ASYNCOUT_REPAIRVOLUMEPLEX = 7,

 VDS_ASYNCOUT_RECOVERPACK = 8,

 VDS_ASYNCOUT_REPLACEDISK = 9,

 VDS_ASYNCOUT_CREATEPARTITION = 10,

 VDS_ASYNCOUT_CLEAN = 11,

 VDS_ASYNCOUT_CREATELUN = 50,

 VDS_ASYNCOUT_FORMAT = 101,

 VDS_ASYNCOUT_CREATE_VDISK = 200,

 VDS_ASYNCOUT_ATTACH_VDISK = 201,

 VDS_ASYNCOUT_COMPACT_VDISK = 202,

 VDS_ASYNCOUT_MERGE_VDISK = 203,

 VDS_ASYNCOUT_EXPAND_VDISK = 204

} VDS_ASYNC_OUTPUT_TYPE;

VDS_ASYNCOUT_UNKNOWN: Information is about an unknown type of operation.

VDS_ASYNCOUT_CREATEVOLUME: Information is about creating a volume.

VDS_ASYNCOUT_EXTENDVOLUME: Information is about extending the size of a volume.

VDS_ASYNCOUT_SHRINKVOLUME: Information is about shrinking the size of a volume.

VDS_ASYNCOUT_ADDVOLUMEPLEX: Information is about adding a volume plex.

VDS_ASYNCOUT_BREAKVOLUMEPLEX: Information is about breaking a volume plex.

VDS_ASYNCOUT_REMOVEVOLUMEPLEX: Information is about removing a volume plex.

VDS_ASYNCOUT_REPAIRVOLUMEPLEX: Information is about repairing a volume plex.

VDS_ASYNCOUT_RECOVERPACK: Information is about recovering a pack.

VDS_ASYNCOUT_REPLACEDISK: Information is about replacing a disk.

30 / 368

[MS-VDS] — v20130722
 Virtual Disk Service (VDS) Protocol

 Copyright © 2013 Microsoft Corporation.

 Release: Monday, July 22, 2013

VDS_ASYNCOUT_CREATEPARTITION: Information is about creating a partition.

VDS_ASYNCOUT_CLEAN: Information is about cleaning a disk.

VDS_ASYNCOUT_CREATELUN: Information is about creating a LUN.

VDS_ASYNCOUT_FORMAT: Information is about formatting a file system.

VDS_ASYNCOUT_CREATE_VDISK: Information is about creating a virtual disk.

VDS_ASYNCOUT_ATTACH_VDISK: Information is about attaching a virtual disk.

VDS_ASYNCOUT_COMPACT_VDISK: Information is about compacting a virtual disk.

VDS_ASYNCOUT_MERGE_VDISK: Information is about merging a virtual disk.

VDS_ASYNCOUT_EXPAND_VDISK: Information is about expanding a virtual disk.

2.2.1.2.5 VDS_STORAGE_BUS_TYPE

The VDS_STORAGE_BUS_TYPE enumeration defines the type of bus on which a disk resides.

typedef enum _VDS_STORAGE_BUS_TYPE

{

 VDSBusTypeUnknown = 0x00000000,

 VDSBusTypeScsi = 0x00000001,

 VDSBusTypeAtapi = 0x00000002,

 VDSBusTypeAta = 0x00000003,

 VDSBusType1394 = 0x00000004,

 VDSBusTypeSsa = 0x00000005,

 VSDBusTypeFibre = 0x00000006,

 VDSBusTypeUsb = 0x00000007,

 VDSBusTypeRAID = 0x00000008,

 VDSBusTypeiScsi = 0x00000009,

 VDSBusTypeSas = 0x0000000A,

 VDSBusTypeSata = 0x0000000B,

 VDSBusTypeSd = 0x0000000C,

 VDSBusTypeMmc = 0x0000000D,

 VDSBusTypeMax = 0x0000000E,

 VDSBusTypeVirtual = 0x0000000E,

 VDSBusTypeFileBackedVirtual = 0x0000000F,

 VDSBusTypeSpaces = 0x00000010,

 VDSBusTypeMaxReserved = 0x0000007F

} VDS_STORAGE_BUS_TYPE;

VDSBusTypeUnknown: Bus type is unknown.

VDSBusTypeScsi: Disk resides on a SCSI bus.

VDSBusTypeAtapi: Disk resides on an AT Attachment Packet Interface (ATAPI) bus. For more

information on this bus type, see [ANSI/INCITS-397-2005].

VDSBusTypeAta: Disk resides on an AT Attached (ATA) bus. For more information on this bus
type, see [ANSI/INCITS-451-2008].

VDSBusType1394: Disk resides on an IEEE 1394 bus. For more information, see [IEEE1394-
2008].

%5bMS-GLOS%5d.pdf
%5bMS-GLOS%5d.pdf
http://go.microsoft.com/fwlink/?LinkId=208130
http://go.microsoft.com/fwlink/?LinkId=208131
http://go.microsoft.com/fwlink/?LinkId=89900
http://go.microsoft.com/fwlink/?LinkId=89900

31 / 368

[MS-VDS] — v20130722
 Virtual Disk Service (VDS) Protocol

 Copyright © 2013 Microsoft Corporation.

 Release: Monday, July 22, 2013

VDSBusTypeSsa: Disk resides on a serial storage architecture (SSA) bus. For more information
on this bus type, see [IEEE-SSA].

VSDBusTypeFibre: Disk resides on a fiber channel bus.

VDSBusTypeUsb: Disk resides on a universal serial bus (USB).

VDSBusTypeRAID: Disk resides on a RAID bus.

VDSBusTypeiScsi: Disk resides on an iSCSI bus.

VDSBusTypeSas: Disk resides on a Serial Attached SCSI (SAS) bus. For more information on
this bus type, see [ANSI/INCITS-457-2010].

VDSBusTypeSata: Disk resides on a Serial ATA (SATA) bus. For more information on this bus
type, see [SATA-3.0].

VDSBusTypeSd: Disk resides on a secure digital (SD) bus.

VDSBusTypeMmc: Indicates a multimedia card (MMC) bus type. For information on multimedia
cards, which are a flash memory card standard, see [JEDEC-MO227-A].

VDSBusTypeMax: Maximum bus type value. Note that this value does not identify a particular
bus type; rather, it serves as an end value of the enumeration.<7>

VDSBusTypeVirtual: Disk resides on a virtual bus

VDSBusTypeFileBackedVirtual: Disk is backed by a file.

VDSBusTypeSpaces: Disk is backed by Storage Spaces.

VDSBusTypeMaxReserved: Maximum reserved bus type value. Bus type values below this
range are reserved.

2.2.1.2.6 VDS_STORAGE_IDENTIFIER_CODE_SET

The VDS_STORAGE_IDENTIFIER_CODE_SET enumeration defines the code set that is used by
the storage device identifier, as specified in [SPC-3]

typedef enum _VDS_STORAGE_IDENTIFIER_CODE_SET

{

 VDSStorageIdCodeSetReserved = 0x00000000,

 VDSStorageIdCodeSetBinary = 0x00000001,

 VDSStorageIdCodeSetAscii = 0x00000002,

 VDSStorageIdCodeSetUtf8 = 0x00000003

} VDS_STORAGE_IDENTIFIER_CODE_SET;

VDSStorageIdCodeSetReserved: This value is reserved by the SPC-3 standard and is not
used.

VDSStorageIdCodeSetBinary: The identifier contains binary values.

VDSStorageIdCodeSetAscii: The identifier contains ASCII values.

VDSStorageIdCodeSetUtf8: The identifier contains UTF-8 values.

http://go.microsoft.com/fwlink/?LinkId=208136
%5bMS-GLOS%5d.pdf
%5bMS-GLOS%5d.pdf
%5bMS-GLOS%5d.pdf
%5bMS-GLOS%5d.pdf
http://go.microsoft.com/fwlink/?LinkId=208133
http://go.microsoft.com/fwlink/?LinkId=208135
http://go.microsoft.com/fwlink/?LinkId=208756
http://go.microsoft.com/fwlink/?LinkId=90528

32 / 368

[MS-VDS] — v20130722
 Virtual Disk Service (VDS) Protocol

 Copyright © 2013 Microsoft Corporation.

 Release: Monday, July 22, 2013

2.2.1.2.7 VDS_STORAGE_IDENTIFIER_TYPE

The VDS_STORAGE_IDENTIFIER_TYPE enumeration defines the types of storage device
identifiers, as specified in [SPC-3].

typedef enum _VDS_STORAGE_IDENTIFIER_TYPE

{

 VDSStorageIdTypeVendorSpecific = 0x00000000,

 VDSStorageIdTypeVendorId = 0x00000001,

 VDSStorageIdTypeEUI64 = 0x00000002,

 VDSStorageIdTypeFCPHName = 0x00000003,

 VDSStorageIdTypePortRelative = 0x00000004,

 VDSStorageIdTypeTargetPortGroup = 0x00000005,

 VDSStorageIdTypeLogicalUnitGroup = 0x00000006,

 VDSStorageIdTypeMD5LogicalUnitIdentifier = 0x00000007,

 VDSStorageIdTypeScsiNameString = 0x00000008

} VDS_STORAGE_IDENTIFIER_TYPE;

VDSStorageIdTypeVendorSpecific: Storage identifier is vendor-specific.

VDSStorageIdTypeVendorId: Storage identifier is a vendor identifier.

VDSStorageIdTypeEUI64: Storage identifier is a 64-bit extended unique identifier (EUI-
64).

VDSStorageIdTypeFCPHName: Storage identifier is a Fibre Channel Physical and Signaling
Interface (FC-PH) identifier.

VDSStorageIdTypePortRelative: Storage identifier is a relative target port identifier.

VDSStorageIdTypeTargetPortGroup: Storage identifier is a target port group number.

VDSStorageIdTypeLogicalUnitGroup: Storage identifier is a logical unit group number.

VDSStorageIdTypeMD5LogicalUnitIdentifier: Storage identifier is an MD5 logical unit
number (LUN).

VDSStorageIdTypeScsiNameString: Storage identifier is an SCSI name string identifier.

2.2.1.2.8 VDS_INTERCONNECT_ADDRESS_TYPE

The VDS_INTERCONNECT_ADDRESS_TYPE enumeration defines the set of valid address types of
a physical interconnect.

typedef enum _VDS_INTERCONNECT_ADDRESS_TYPE

{

 VDS_IA_UNKNOWN = 0x00000000,

 VDS_IA_FCFS = 0x00000001,

 VDS_IA_FCPH = 0x00000002,

 VDS_IA_FCPH3 = 0x00000003,

 VDS_IA_MAC = 0x00000004,

 VDS_IA_SCSI = 0x00000005

} VDS_INTERCONNECT_ADDRESS_TYPE;

VDS_IA_UNKNOWN: This value is reserved.

http://go.microsoft.com/fwlink/?LinkId=90528

33 / 368

[MS-VDS] — v20130722
 Virtual Disk Service (VDS) Protocol

 Copyright © 2013 Microsoft Corporation.

 Release: Monday, July 22, 2013

VDS_IA_FCFS: Address type is first come, first served.

VDS_IA_FCPH: Address type is FC-PH. For more information, see [ANSI-289-1996].

VDS_IA_FCPH3: Address type is FC-PH-3. For more information, see [ANSI-289-1996].

VDS_IA_MAC: Address type is media access control (MAC).

VDS_IA_SCSI: Address type is SCSI.

2.2.1.2.9 VDS_FILE_SYSTEM_TYPE

The VDS_FILE_SYSTEM_TYPE enumeration defines the set of valid types for a file system.

typedef enum _VDS_FILE_SYSTEM_TYPE

{

 VDS_FST_UNKNOWN = 0x00000000,

 VDS_FST_RAW = 0x00000001,

 VDS_FST_FAT = 0x00000002,

 VDS_FST_FAT32 = 0x00000003,

 VDS_FST_NTFS = 0x00000004,

 VDS_FST_CDFS = 0x00000005,

 VDS_FST_UDF = 0x00000006,

 VDS_FST_EXFAT = 0x00000007,

 VDS_FST_CSVFS = 0x00000008,

 VDS_FST_REFS = 0x00000009

} VDS_FILE_SYSTEM_TYPE;

VDS_FST_UNKNOWN: The file system is unknown.

VDS_FST_RAW: The file system is raw.

VDS_FST_FAT: The file system is a FAT file system.

VDS_FST_FAT32: The file system is FAT32.

VDS_FST_NTFS: The file system is the NTFS file system.

VDS_FST_CDFS: The file system is the Compact Disc File System (CDFS).

VDS_FST_UDF: The file system is Universal Disk Format (UDF).

VDS_FST_EXFAT: The file system is Extended File Allocation Table (ExFAT). For more
information, see [MSDN-EFFS].

VDS_FST_CSVFS: The file system is Cluster Shared Volume File System (CSVFS).

VDS_FST_REFS: The file system is Resilient File System (ReFS).

2.2.1.2.10 VDS_FILE_SYSTEM_FLAG

The VDS_FILE_SYSTEM_FLAG enumeration defines the set of valid flags for a file system format
type.

If more than one flag is specified, the file system type supports all the file system allocation sizes
that are specified. However, a specific file system on a volume does not have multiple allocation
sizes at the same time.

http://go.microsoft.com/fwlink/?LinkId=193114
http://go.microsoft.com/fwlink/?LinkId=193114
%5bMS-GLOS%5d.pdf
%5bMS-GLOS%5d.pdf
%5bMS-GLOS%5d.pdf
%5bMS-GLOS%5d.pdf
%5bMS-GLOS%5d.pdf
http://go.microsoft.com/fwlink/?LinkId=208354
%5bMS-GLOS%5d.pdf

34 / 368

[MS-VDS] — v20130722
 Virtual Disk Service (VDS) Protocol

 Copyright © 2013 Microsoft Corporation.

 Release: Monday, July 22, 2013

typedef enum _VDS_FILE_SYSTEM_FLAG

{

 VDS_FSF_SUPPORT_FORMAT = 0x00000001,

 VDS_FSF_SUPPORT_QUICK_FORMAT = 0x00000002,

 VDS_FSF_SUPPORT_COMPRESS = 0x00000004,

 VDS_FSF_SUPPORT_SPECIFY_LABEL = 0x00000008,

 VDS_FSF_SUPPORT_MOUNT_POINT = 0x00000010,

 VDS_FSF_SUPPORT_REMOVABLE_MEDIA = 0x00000020,

 VDS_FSF_SUPPORT_EXTEND = 0x00000040,

 VDS_FSF_ALLOCATION_UNIT_512 = 0x00010000,

 VDS_FSF_ALLOCATION_UNIT_1K = 0x00020000,

 VDS_FSF_ALLOCATION_UNIT_2K = 0x00040000,

 VDS_FSF_ALLOCATION_UNIT_4K = 0x00080000,

 VDS_FSF_ALLOCATION_UNIT_8K = 0x00100000,

 VDS_FSF_ALLOCATION_UNIT_16K = 0x00200000,

 VDS_FSF_ALLOCATION_UNIT_32K = 0x00400000,

 VDS_FSF_ALLOCATION_UNIT_64K = 0x00800000,

 VDS_FSF_ALLOCATION_UNIT_128K = 0x01000000,

 VDS_FSF_ALLOCATION_UNIT_256K = 0x02000000

} VDS_FILE_SYSTEM_FLAG;

VDS_FSF_SUPPORT_FORMAT: If set, the file system format type supports format.

VDS_FSF_SUPPORT_QUICK_FORMAT: If set, the file system format type supports quick
format.

VDS_FSF_SUPPORT_COMPRESS: If set, the file system format type supports file
compression.

VDS_FSF_SUPPORT_SPECIFY_LABEL: If set, the file system format type supports file

system labels.

VDS_FSF_SUPPORT_MOUNT_POINT: If set, the file system format type supports mount
points.

VDS_FSF_SUPPORT_REMOVABLE_MEDIA: If set, the file system format type supports
removable media.

VDS_FSF_SUPPORT_EXTEND: If set, the file system format type supports extending volumes.

VDS_FSF_ALLOCATION_UNIT_512: If set, the file system format supports allocation units of
512 bytes.

VDS_FSF_ALLOCATION_UNIT_1K: If set, the file system format type supports allocation
units of 1 kilobyte.

VDS_FSF_ALLOCATION_UNIT_2K: If set, the file system format type supports allocation
units of 2 kilobytes.

VDS_FSF_ALLOCATION_UNIT_4K: If set, the file system format type supports allocation

units of 4 kilobytes.

VDS_FSF_ALLOCATION_UNIT_8K: If set, the file system format type supports allocation
units of 8 kilobytes.

VDS_FSF_ALLOCATION_UNIT_16K: If set, the file system format type supports allocation
units of 16 kilobytes.

%5bMS-GLOS%5d.pdf
%5bMS-GLOS%5d.pdf
%5bMS-GLOS%5d.pdf
%5bMS-GLOS%5d.pdf
%5bMS-GLOS%5d.pdf

35 / 368

[MS-VDS] — v20130722
 Virtual Disk Service (VDS) Protocol

 Copyright © 2013 Microsoft Corporation.

 Release: Monday, July 22, 2013

VDS_FSF_ALLOCATION_UNIT_32K: If set, the file system format type supports allocation
units of 32 kilobytes.

VDS_FSF_ALLOCATION_UNIT_64K: If set, the file system format type supports allocation
units of 64 kilobytes.

VDS_FSF_ALLOCATION_UNIT_128K: If set, the file system format type supports allocation
units of 128 kilobytes.

VDS_FSF_ALLOCATION_UNIT_256K: If set, the file system format type supports allocation
units of 256 kilobytes.

2.2.1.2.11 VDS_FILE_SYSTEM_PROP_FLAG

The VDS_FILE_SYSTEM_PROP_FLAG enumeration defines the set of fields for a file system. A

value that accepts these flags SHOULD have the following flag set.

typedef enum _VDS_FILE_SYSTEM_PROP_FLAG

{

 VDS_FPF_COMPRESSED = 0x00000001

} VDS_FILE_SYSTEM_PROP_FLAG;

VDS_FPF_COMPRESSED: If set, the file system supports file compression.

2.2.1.2.12 VDS_FILE_SYSTEM_FORMAT_SUPPORT_FLAG

The VDS_FILE_SYSTEM_FORMAT_SUPPORT_FLAG enumeration defines the properties of file
systems that are supported for formatting volumes.<8>

typedef enum _VDS_FILE_SYSTEM_FORMAT_SUPPORT_FLAG

{

 VDS_FSS_DEFAULT = 0x00000001,

 VDS_FSS_PREVIOUS_REVISION = 0x00000002,

 VDS_FSS_RECOMMENDED = 0x00000004

} VDS_FILE_SYSTEM_FORMAT_SUPPORT_FLAG;

VDS_FSS_DEFAULT: The file system is the default file system for formatting the volume.

VDS_FSS_PREVIOUS_REVISION: The revision of the file system is not the latest revision that
is supported for formatting the volume.

VDS_FSS_RECOMMENDED: The file system is the recommended file system for formatting the
volume.

2.2.1.2.13 VDS_DISK_EXTENT_TYPE

The VDS_DISK_EXTENT_TYPE enumeration defines the set of valid types for a disk extent.

typedef enum _VDS_DISK_EXTENT_TYPE

{

 VDS_DET_UNKNOWN = 0x00000000,

 VDS_DET_FREE = 0x00000001,

 VDS_DET_DATA = 0x00000002,

 VDS_DET_OEM = 0x00000003,

 VDS_DET_ESP = 0x00000004,

%5bMS-GLOS%5d.pdf

36 / 368

[MS-VDS] — v20130722
 Virtual Disk Service (VDS) Protocol

 Copyright © 2013 Microsoft Corporation.

 Release: Monday, July 22, 2013

 VDS_DET_MSR = 0x00000005,

 VDS_DET_LDM = 0x00000006,

 VDS_DET_UNUSABLE = 0x00007FFF

} VDS_DISK_EXTENT_TYPE;

VDS_DET_UNKNOWN: The extent belongs to an unknown partition type.

VDS_DET_FREE: The extent belongs to an area of free space.

VDS_DET_DATA: The extent belongs to a volume.

VDS_DET_OEM: The extent belongs to an OEM partition.

VDS_DET_ESP: The extent belongs to an Extensible Firmware Interface (EFI) system
partition.

VDS_DET_MSR: The extent belongs to a Microsoft Reserved (MSR) partition.

VDS_DET_LDM: The extent belongs to a disk management metadata partition.

VDS_DET_UNUSABLE: The extent belongs to an area of unusable space.

2.2.1.2.14 VDS_PARTITION_STYLE

The VDS_PARTITION_STYLE enumeration defines the styles of partitions.

typedef enum _VDS_PARTITION_STYLE

{

 VDS_PST_UNKNOWN = 0x00000000,

 VDS_PST_MBR = 0x00000001,

 VDS_PST_GPT = 0x00000002

} VDS_PARTITION_STYLE;

VDS_PST_UNKNOWN: The partition format is unknown.

VDS_PST_MBR: The partition format is master boot record (MBR).

VDS_PST_GPT: The partition format is GUID partitioning table (GPT).

2.2.1.2.15 VDS_PARTITION_FLAG

The VDS_PARTITION_FLAG enumeration defines flags that describe partitions. A value that

accepts these flags MUST have the following flag set or MUST have the value set to 0 if the flag is
not applicable to a given partition.

typedef enum _VDS_PARTITION_FLAG

{

 VDS_PTF_SYSTEM = 0x00000001

} VDS_PARTITION_FLAG;

VDS_PTF_SYSTEM: Value that indicates that the partition is a system partition.

%5bMS-GLOS%5d.pdf
%5bMS-GLOS%5d.pdf
%5bMS-GLOS%5d.pdf
%5bMS-GLOS%5d.pdf
%5bMS-GLOS%5d.pdf
%5bMS-GLOS%5d.pdf
%5bMS-GLOS%5d.pdf

37 / 368

[MS-VDS] — v20130722
 Virtual Disk Service (VDS) Protocol

 Copyright © 2013 Microsoft Corporation.

 Release: Monday, July 22, 2013

2.2.1.2.16 VDS_VOLUME_TYPE

The VDS_VOLUME_TYPE enumeration defines the set of valid types for a volume object.

typedef enum _VDS_VOLUME_TYPE

{

 VDS_VT_UNKNOWN = 0x00000000,

 VDS_VT_SIMPLE = 0x0000000A,

 VDS_VT_SPAN = 0x0000000B,

 VDS_VT_STRIPE = 0x0000000C,

 VDS_VT_MIRROR = 0x0000000D,

 VDS_VT_PARITY = 0x0000000E

} VDS_VOLUME_TYPE;

VDS_VT_UNKNOWN: The status of the volume is unknown.

VDS_VT_SIMPLE: The volume type is simple: it is composed of extents from exactly one disk.

VDS_VT_SPAN: The volume type is spanned: it is composed of extents from more than one
disk.

VDS_VT_STRIPE: The volume type is striped, which is equivalent to RAID-0.

VDS_VT_MIRROR: The volume type is mirrored, which is equivalent to RAID-1.

VDS_VT_PARITY: The volume type is striped with parity, which accounts for RAID levels 3, 4,
5, and 6.

2.2.1.2.17 VDS_TRANSITION_STATE

The VDS_TRANSITION_STATE enumeration defines the set of valid transition state values for a
VDS object.

typedef enum _VDS_TRANSITION_STATE

{

 VDS_TS_UNKNOWN = 0x00000000,

 VDS_TS_STABLE = 0x00000001,

 VDS_TS_EXTENDING = 0x00000002,

 VDS_TS_SHRINKING = 0x00000003,

 VDS_TS_RECONFIGING = 0x00000004

} VDS_TRANSITION_STATE;

VDS_TS_UNKNOWN: The transition state of the object cannot be determined.

VDS_TS_STABLE: The object is stable. No configuration activity is currently in progress.

VDS_TS_EXTENDING: The object is being extended.

VDS_TS_SHRINKING: The object is being shrunk.

VDS_TS_RECONFIGING: The object is being automatically reconfigured.

2.2.1.2.18 VDS_FORMAT_OPTION_FLAGS

The VDS_FORMAT_OPTION_FLAGS enumeration defines the set of valid format option values.

%5bMS-GLOS%5d.pdf
%5bMS-GLOS%5d.pdf

38 / 368

[MS-VDS] — v20130722
 Virtual Disk Service (VDS) Protocol

 Copyright © 2013 Microsoft Corporation.

 Release: Monday, July 22, 2013

typedef enum _VDS_FORMAT_OPTION_FLAGS

{

 VDS_ESOF_NONE = 0x00000000,

 VDS_ESOF_FORCE = 0x00000001,

 VDS_ESOF_QUICK = 0x00000002,

 VDS_ESOF_COMPRESSION = 0x00000004,

 VDS_ESOF_DUPLICATE_METADATA = 0x00000008

} VDS_FORMAT_OPTION_FLAGS;

VDS_ESOF_NONE: No format options are specified.

VDS_ESOF_FORCE: Determines whether the format is forced, regardless of whether the
volume is in use.

VDS_ESOF_QUICK: Determines whether a file system is quick formatted. A quick format does
not verify each sector on the volume.

VDS_ESOF_COMPRESSION: Determines whether a file system is created with compression
enabled.

VDS_ESOF_DUPLICATE_METADATA: Determines whether the metadata is duplicated (UDF
file system only).

2.2.1.2.19 VDS_DISK_FLAG

The VDS_DISK_FLAG enumeration defines the properties of a disk.

typedef enum _VDS_DISK_FLAG

{

 VDS_DF_AUDIO_CD = 0x1,

 VDS_DF_HOTSPARE = 0x2,

 VDS_DF_RESERVE_CAPABLE = 0x4,

 VDS_DF_MASKED = 0x8,

 VDS_DF_STYLE_CONVERTIBLE = 0x10,

 VDS_DF_CLUSTERED = 0x20,

 VDS_DF_READ_ONLY = 0x40,

 VDS_DF_SYSTEM_DISK = 0x80,

 VDS_DF_BOOT_DISK = 0x100,

 VDS_DF_PAGEFILE_DISK = 0x200,

 VDS_DF_HIBERNATIONFILE_DISK = 0x400,

 VDS_DF_CRASHDUMP_DISK = 0x800,

 VDS_DF_HAS_ARC_PATH = 0x1000,

 VDS_DF_DYNAMIC = 0x2000,

 VDS_DF_BOOT_FROM_DISK = 0x4000,

 VDS_DF_CURRENT_READ_ONLY = 0x8000

} VDS_DISK_FLAG;

VDS_DF_AUDIO_CD: The disk is an audio CD, as specified in [IEC60908].

VDS_DF_HOTSPARE: The disk is a hot spare.

VDS_DF_RESERVE_CAPABLE: The disk can be reserved for a host.

VDS_DF_MASKED: The disk is currently hidden from the host.

%5bMS-GLOS%5d.pdf

39 / 368

[MS-VDS] — v20130722
 Virtual Disk Service (VDS) Protocol

 Copyright © 2013 Microsoft Corporation.

 Release: Monday, July 22, 2013

VDS_DF_STYLE_CONVERTIBLE: The disk is convertible between the MBR partition format and
the GPT partition format.

VDS_DF_CLUSTERED: The disk is clustered.

VDS_DF_READ_ONLY: The disk read-only attribute is set.

VDS_DF_SYSTEM_DISK: The disk contains the system volume.

VDS_DF_BOOT_DISK: The disk contains the boot volume.

VDS_DF_PAGEFILE_DISK: The disk contains the paging file on one of its volumes.

VDS_DF_HIBERNATIONFILE_DISK: The disk contains the hibernation file on one of its
volumes.

VDS_DF_CRASHDUMP_DISK: The disk is configured to contain a crash-dump file on one of its
volumes.

VDS_DF_HAS_ARC_PATH: The disk has an Advanced RISC Computing (ARC) path specified in
the BIOS. For information on ARC paths, see [KB102873].

VDS_DF_DYNAMIC: The disk is a logical disk manager dynamic disk.

VDS_DF_BOOT_FROM_DISK: Indicates the disk from which the machine will boot. Note that
this is BIOS disk 0 on the MBR, not the current system volume disk. For example, if the
machine boots to Windows PE, this flag is set on BIOS disk 0. For EFI machines, this flag is

set on a disk containing the EFI system partition used to boot the machine.

VDS_DF_CURRENT_READ_ONLY: Indicates that the disk is in a read-only state. If this flag is
not set, the disk is read/write. Unlike the VDS_DF_READ_ONLY flag, which is used to indicate
the disk's read-only attribute maintained by the operating system, this flag reflects the actual
disk state. This flag cannot be set by using the IVdsDisk::SetFlags method or cleared by
using the IVdsDisk::ClearFlags method.

The disk will be in a read-only state if its read-only attribute is set. However, a disk can be in

a read-only state even if its read-only attribute is not set, if the underlying hardware is read-
only. For example, if the LUN is in read-only state or if the disk is a virtual hard disk that
resides on a volume that is read-only, the underlying hardware is read-only and therefore the
disk is in a read-only state.

2.2.1.2.20 VDS_DISK_STATUS

The VDS_DISK_STATUS enumeration defines the status of a disk.

typedef enum _VDS_DISK_STATUS

{

 VDS_DS_UNKNOWN = 0x00000000,

 VDS_DS_ONLINE = 0x00000001,

 VDS_DS_NOT_READY = 0x00000002,

 VDS_DS_NO_MEDIA = 0x00000003,

 VDS_DS_OFFLINE = 0x00000004,

 VDS_DS_FAILED = 0x00000005,

 VDS_DS_MISSING = 0x00000006

} VDS_DISK_STATUS;

VDS_DS_UNKNOWN: The disk status is unknown.

%5bMS-GLOS%5d.pdf
%5bMS-GLOS%5d.pdf
%5bMS-GLOS%5d.pdf
%5bMS-GLOS%5d.pdf
http://go.microsoft.com/fwlink/?LinkId=208754

40 / 368

[MS-VDS] — v20130722
 Virtual Disk Service (VDS) Protocol

 Copyright © 2013 Microsoft Corporation.

 Release: Monday, July 22, 2013

VDS_DS_ONLINE: The disk is online.

VDS_DS_NOT_READY: The disk is not ready.

VDS_DS_NO_MEDIA: The disk has no media.

VDS_DS_OFFLINE: The disk is offline. Offline disks have no volume devices exposed.

VDS_DS_FAILED: The disk failed.

VDS_DS_MISSING: The disk is missing; it is no longer available to the operating system.

2.2.1.2.21 VDS_LUN_RESERVE_MODE

The VDS_LUN_RESERVE_MODE enumeration defines the sharing mode of a disk.

typedef enum _VDS_LUN_RESERVE_MODE

{

 VDS_LRM_NONE = 0x00000000,

 VDS_LRM_EXCLUSIVE_RW = 0x00000001,

 VDS_LRM_EXCLUSIVE_RO = 0x00000002,

 VDS_LRM_SHARED_RO = 0x00000003,

 VDS_LRM_SHARED_RW = 0x00000004

} VDS_LUN_RESERVE_MODE;

VDS_LRM_NONE: The disk has no assigned sharing mode.

VDS_LRM_EXCLUSIVE_RW: The disk is reserved for exclusive access.

VDS_LRM_EXCLUSIVE_RO: The disk is available for read access.

VDS_LRM_SHARED_RO: The disk is available for shared read access.

VDS_LRM_SHARED_RW: The disk is available for shared read/write access.

2.2.1.2.22 VDS_VOLUME_STATUS

The VDS_VOLUME_STATUS enumeration defines the set of object status values for a volume.

typedef enum _VDS_VOLUME_STATUS

{

 VDS_VS_UNKNOWN = 0x00000000,

 VDS_VS_ONLINE = 0x00000001,

 VDS_VS_NO_MEDIA = 0x00000003,

 VDS_VS_OFFLINE = 0x00000004,

 VDS_VS_FAILED = 0x00000005

} VDS_VOLUME_STATUS;

VDS_VS_UNKNOWN: The status of the volume is unknown.

VDS_VS_ONLINE: The volume is available.

VDS_VS_NO_MEDIA: The volume belongs to a removable media device, such as a CD-ROM or
DVD-ROM drive, but the device does not currently have media in the drive.

%5bMS-GLOS%5d.pdf

41 / 368

[MS-VDS] — v20130722
 Virtual Disk Service (VDS) Protocol

 Copyright © 2013 Microsoft Corporation.

 Release: Monday, July 22, 2013

VDS_VS_OFFLINE: When this status is set, it (1) indicates that no path names for the volume
are available for use by applications, and (2) prevents READ and READ|WRITE handles to the

volume device being opened. When a volume transitions to this state, calls to open a new
handle against the volume device fail, but any in-progress I/O against the volume will

complete before all I/O to the volume is stopped.<9>

VDS_VS_FAILED: The volume is unavailable.

2.2.1.2.23 VDS_VOLUME_FLAG

The VDS_VOLUME_FLAG enumeration defines the set of valid flags for a volume object.

typedef enum _VDS_VOLUME_FLAG

{

 VDS_VF_SYSTEM_VOLUME = 0x00000001,

 VDS_VF_BOOT_VOLUME = 0x00000002,

 VDS_VF_ACTIVE = 0x00000004,

 VDS_VF_READONLY = 0x00000008,

 VDS_VF_HIDDEN = 0x00000010,

 VDS_VF_CAN_EXTEND = 0x00000020,

 VDS_VF_CAN_SHRINK = 0x00000040,

 VDS_VF_PAGEFILE = 0x00000080,

 VDS_VF_HIBERNATION = 0x00000100,

 VDS_VF_CRASHDUMP = 0x00000200,

 VDS_VF_INSTALLABLE = 0x00000400,

 VDS_VF_LBN_REMAP_ENABLED = 0x00000800,

 VDS_VF_FORMATTING = 0x00001000,

 VDS_VF_NOT_FORMATTABLE = 0x00002000,

 VDS_VF_NTFS_NOT_SUPPORTED = 0x00004000,

 VDS_VF_FAT32_NOT_SUPPORTED = 0x00008000,

 VDS_VF_FAT_NOT_SUPPORTED = 0x00010000,

 VDS_VF_NO_DEFAULT_DRIVE_LETTER = 0x00020000,

 VDS_VF_PERMANENTLY_DISMOUNTED = 0x00040000,

 VDS_VF_PERMANENT_DISMOUNT_SUPPORTED = 0x00080000,

 VDS_VF_SHADOW_COPY = 0x00100000,

 VDS_VF_FVE_ENABLED = 0x00200000,

 VDS_VF_DIRTY = 0x00400000,

 VDS_VF_REFS_NOT_SUPPORTED = 0x00800000

} VDS_VOLUME_FLAG;

VDS_VF_SYSTEM_VOLUME: If set, the volume is a system volume. It contains the boot

loader that is used to invoke the operating system on the boot volume.

VDS_VF_BOOT_VOLUME: If set, the volume is a boot volume that contains the operating

system.

VDS_VF_ACTIVE: If set, the volume is an active volume. It can become the system volume
at system startup if the BIOS is configured to select that disk for startup.

VDS_VF_READONLY: If set, the volume can be read from but not written to.

VDS_VF_HIDDEN: If set, the volume does not automatically get assigned mount points or
drive letters that can be used to access the volume.

VDS_VF_CAN_EXTEND: If set, the volume size can be extended.

VDS_VF_CAN_SHRINK: If set, the volume size can be reduced.

%5bMS-GLOS%5d.pdf
%5bMS-GLOS%5d.pdf

42 / 368

[MS-VDS] — v20130722
 Virtual Disk Service (VDS) Protocol

 Copyright © 2013 Microsoft Corporation.

 Release: Monday, July 22, 2013

VDS_VF_PAGEFILE: If this flag is set, the volume contains a page file.

VDS_VF_HIBERNATION: If set, the volume holds the files that are used when the system
hibernates.

VDS_VF_CRASHDUMP: If set, the volume acts as a crash-dump device.

VDS_VF_INSTALLABLE: If set, callers can use the volume to install an operating system.

VDS_VF_LBN_REMAP_ENABLED: If set, VDS can dynamically change the position of the
volume on the disk. This flag is not valid for basic and dynamic volumes and is only
supported by some third-party volume managers.

VDS_VF_FORMATTING: If set, the volume is being formatted.

VDS_VF_NOT_FORMATTABLE: If set, the volume cannot be formatted.

VDS_VF_NTFS_NOT_SUPPORTED: If set, the volume does not support the NTFS file system

but can support other file systems.

VDS_VF_FAT32_NOT_SUPPORTED: If set, the volume does not support FAT32.

VDS_VF_FAT_NOT_SUPPORTED: If set, the volume does not support FAT.

VDS_VF_NO_DEFAULT_DRIVE_LETTER: If set, the operating system does not automatically
assign a drive letter when the volume is created or a disk containing existing volumes is
connected to the operating system. When cleared, the operating system assigns a drive letter

to the volume. Callers can set and clear this flag. For basic GPT volumes and dynamic disk
volumes, assigning or removing a drive letter toggles this flag.<10>

The flag is set by default for dynamic disk and basic GPT disk volumes.

VDS_VF_PERMANENTLY_DISMOUNTED: If set, the volume is unavailable and requires a
mount-point assignment. VDS sets this flag after the caller invokes the
IVdsVolumeMF::Dismount method, setting the bForce and bPermanent parameters to

TRUE.

VDS_VF_PERMANENT_DISMOUNT_SUPPORTED: If set, the volume supports bPermanent
for the IVdsVolumeMF::Dismount method. This flag cannot be set or cleared by the client.
This flag is set by the server if it applies.

VDS_VF_SHADOW_COPY: If set, the volume is a shadow copy of another volume. This flag
is set when the snapshot is taken, and it is cleared when the snapshot is broken from the
original volume. The VDS_VF_SHADOW_COPY flag is an indication for software-like file
system filter drivers (for example, antivirus) to avoid attaching to the volume. Applications

can use the attribute to differentiate snapshots from production volumes. Applications that
create a Fast Recovery, in which a shadow copy LUN is made into a non-snapshot by clearing
the read-only and hidden bit, will need to clear this bit as well.

VDS_VF_FVE_ENABLED: The volume is encrypted with full-volume encryption.<11>

VDS_VF_DIRTY: The volume's dirty bit is set.

VDS_VF_REFS_NOT_SUPPORTED: The volume does not support ReFS.

VDS_VF_HIDDEN, VDF_VF_READ_ONLY, VDS_VF_SHADOW_COPY, and
VDS_VF_NO_DEFAULT_DRIVE_LETTER are set as follows:

%5bMS-GLOS%5d.pdf
%5bMS-GLOS%5d.pdf
%5bMS-GLOS%5d.pdf
%5bMS-GLOS%5d.pdf
%5bMS-GLOS%5d.pdf

43 / 368

[MS-VDS] — v20130722
 Virtual Disk Service (VDS) Protocol

 Copyright © 2013 Microsoft Corporation.

 Release: Monday, July 22, 2013

Dynamic disk volumes - The flag is per volume. VDS_VF_NO_DEFAULT_DRIVE_LETTER is

set at volume creation. <12>The flag toggles when drive letters are assigned or removed, and

can also be set or cleared using any of the Set/ClearFlags methods.

MBR basic disk volumes - The flag is applied to all volumes created on the disk after the flag is

set. It is set per disk for basic MBR disks, not per volume. The flag is only set or cleared if an
explicit call is made to the IVdsVolume::SetFlags (section 3.4.5.2.32.10) and
IVdsVolume::ClearFlag (section 3.4.5.2.32.11) methods, respectively. For example, the
VDS_VF_NO_DEFAULT_DRIVE_LETTER flag is not toggled as drive letters are assigned to or
removed from specific volumes.

GPT basic disk volumes - The flag is per volume, data partitions only.

VDS_VF_NO_DEFAULT_DRIVE_LETTER is set at volume creation and toggled when drive
letters are assigned or removed (by VDS).

2.2.1.3 Structures

2.2.1.3.1 VDS_SERVICE_NOTIFICATION

The VDS_ SERVICE _NOTIFICATION structure provides information about state changes to the
service object.<13>

typedef struct _VDS_SERVICE_NOTIFICATION {

 ULONG ulEvent;

 VDS_RECOVER_ACTION action;

} VDS_SERVICE_NOTIFICATION;

ulEvent: The type of service notification; it MUST be set to the following value.

Value Meaning

VDS_NF_SERVICE_OUT_OF_SYNC

0x0000012D

The service's cache has become inconsistent or the service

has encountered an error requiring client action.

action: The type of action required by the client to return the service to a functioning,
consistent state; it MUST be one of the following values.

Value Meaning

VDS_RA_UNKNOWN

0x00000000

The client corrective action is unknown.

VDS_RA_REFRESH

0x00000001

The client corrective action is to call the IVdsService::Refresh (section

3.4.5.2.4.10) method.

VDS_RA_RESTART

0x00000002

The client corrective action is to restart the service.

2.2.1.3.2 VDS_PACK_NOTIFICATION

The VDS_PACK_NOTIFICATION structure provides information about a pack notification.

typedef struct _VDS_PACK_NOTIFICATION {

44 / 368

[MS-VDS] — v20130722
 Virtual Disk Service (VDS) Protocol

 Copyright © 2013 Microsoft Corporation.

 Release: Monday, July 22, 2013

 unsigned long ulEvent;

 VDS_OBJECT_ID packId;

} VDS_PACK_NOTIFICATION;

ulEvent: The type of pack notification; it MUST be one of the following values.

Value Meaning

VDS_NF_PACK_ARRIVE

0x00000001

The pack was newly created.

VDS_NF_PACK_DEPART

0x00000002

The pack was deleted.

VDS_NF_PACK_MODIFY

0x00000003

The pack was modified.

packId: The VDS object ID of the pack object to which the notification refers.

2.2.1.3.3 VDS_DISK_NOTIFICATION

The VDS_DISK_NOTIFICATION structure provides information about a disk notification.

typedef struct _VDS_DISK_NOTIFICATION {

 unsigned long ulEvent;

 VDS_OBJECT_ID diskId;

} VDS_DISK_NOTIFICATION;

ulEvent: The type of disk notification; it MUST be one of the following values.

Value Meaning

VDS_NF_DISK_ARRIVE

0x00000008

The disk has become visible to the operating system.

VDS_NF_DISK_DEPART

0x00000009

The disk is no longer visible to the operating system.

VDS_NF_DISK_MODIFY

0x0000000A

The disk or its properties were modified.

diskId: The VDS object ID of the disk object to which the notification refers.

2.2.1.3.4 VDS_VOLUME_NOTIFICATION

The VDS_VOLUME_NOTIFICATION structure provides information about a volume change
notification.

typedef struct _VDS_VOLUME_NOTIFICATION {

 unsigned long ulEvent;

 VDS_OBJECT_ID volumeId;

 VDS_OBJECT_ID plexId;

45 / 368

[MS-VDS] — v20130722
 Virtual Disk Service (VDS) Protocol

 Copyright © 2013 Microsoft Corporation.

 Release: Monday, July 22, 2013

 unsigned long ulPercentCompleted;

} VDS_VOLUME_NOTIFICATION;

ulEvent: Determines the volume event for which an application will be notified; it MUST be one
of the following values.

Value Meaning

VDS_NF_VOLUME_ARRIVE

0x00000004

A new volume is visible to the operating system.

VDS_NF_VOLUME_DEPART

0x00000005

An existing volume is no longer visible to the

operating system.

VDS_NF_VOLUME_MODIFY

0x00000006

The volume was modified.

VDS_NF_VOLUME_REBUILDING_PROGRESS

0x00000007

A fault tolerant volume is being regenerated or

resynchronized.

volumeId: The VDS object ID of the volume object to which the notification refers.

plexId: The VDS object ID of a volume plex object to which the notification refers, if any. VDS
applies this identifier during the rebuild operation, which can execute on multiple plexes at
different rates.

ulPercentCompleted: The percentage of completion for the operation. Valid values range from
0-100.

2.2.1.3.5 VDS_PARTITION_NOTIFICATION

The VDS_PARTITION_NOTIFICATION structure provides information about a partition
notification.

typedef struct _VDS_PARTITION_NOTIFICATION {

 unsigned long ulEvent;

 VDS_OBJECT_ID diskId;

 ULONGLONG ullOffset;

} VDS_PARTITION_NOTIFICATION;

ulEvent: Determines the partition event for which an application will be notified; it MUST be one

of the following values.

Value Meaning

VDS_NF_PARTITION_ARRIVE

0x0000000B

A new partition is visible to the operating system.

VDS_NF_PARTITION_DEPART

0x0000000C

An existing partition is no longer visible to the operating system.

VDS_NF_PARTITION_MODIFY An existing partition changed.

46 / 368

[MS-VDS] — v20130722
 Virtual Disk Service (VDS) Protocol

 Copyright © 2013 Microsoft Corporation.

 Release: Monday, July 22, 2013

Value Meaning

0x0000000D

diskId: The VDS object ID of the disk object containing the partition that triggered the event.

ullOffset: The byte offset of the partition from the beginning of the disk.

2.2.1.3.6 VDS_DRIVE_LETTER_NOTIFICATION

The VDS_DRIVE_LETTER_NOTIFICATION structure provides information about a drive letter
notification.

typedef struct _VDS_DRIVE_LETTER_NOTIFICATION {

 unsigned long ulEvent;

 WCHAR wcLetter;

 VDS_OBJECT_ID volumeId;

} VDS_DRIVE_LETTER_NOTIFICATION;

ulEvent: Determines the drive-letter event for which an application will be notified; it MUST be

one of the following values.

Value Meaning

VDS_NF_DRIVE_LETTER_FREE

0x000000C9

The drive letter is no longer in use.

VDS_NF_DRIVE_LETTER_ASSIGN

0x000000CA

The drive letter has been assigned to a volume.

wcLetter: The drive letter that triggered the event, as a single uppercase or lowercase

alphabetical (A-Z) Unicode character.

volumeId: The VDS object ID of the volume object to which the drive letter is assigned. If the
drive letter is freed, the volume identifier is GUID_NULL.

2.2.1.3.7 VDS_FILE_SYSTEM_NOTIFICATION

The VDS_FILE_SYSTEM_NOTIFICATION structure provides information about a file system
notification.

typedef struct _VDS_FILE_SYSTEM_NOTIFICATION {

 unsigned long ulEvent;

 VDS_OBJECT_ID volumeId;

 DWORD dwPercentCompleted;

} VDS_FILE_SYSTEM_NOTIFICATION;

ulEvent: Determines the file system event for which an application will be notified; it MUST be

one of the following values.

47 / 368

[MS-VDS] — v20130722
 Virtual Disk Service (VDS) Protocol

 Copyright © 2013 Microsoft Corporation.

 Release: Monday, July 22, 2013

Value Meaning

VDS_NF_FILE_SYSTEM_MODIFY

0x000000CB

A volume received a new label, or a file system was

extended or shrunk; does not include a change to

the file system compression flags.

VDS_NF_FILE_SYSTEM_FORMAT_PROGRESS

0x000000CC

A file system is being formatted.

volumeId: The VDS object ID of the volume object containing the file system that triggered the
event.

dwPercentCompleted: The completed format progress as a percentage of the whole.

2.2.1.3.8 VDS_MOUNT_POINT_NOTIFICATION

The VDS_MOUNT_POINT_NOTIFICATION structure provides information about a mount point

change notification.

typedef struct _VDS_MOUNT_POINT_NOTIFICATION {

 unsigned long ulEvent;

 VDS_OBJECT_ID volumeId;

} VDS_MOUNT_POINT_NOTIFICATION;

ulEvent: Determines the mount point event for which an application will be notified; it MUST be

the following value.

Value Meaning

VDS_NF_MOUNT_POINTS_CHANGE

0x000000CD

The mount point changed.

volumeId: The VDS object ID of the volume object containing the mount point that triggered

the event.

2.2.1.3.9 VDS_NOTIFICATION

The VDS_NOTIFICATION structure provides information about a notification.

typedef struct _VDS_NOTIFICATION {

 VDS_NOTIFICATION_TARGET_TYPE objectType;

 [switch_is(objectType)] union {

 [case(VDS_NTT_PACK)]

 VDS_PACK_NOTIFICATION Pack;

 [case(VDS_NTT_DISK)]

 VDS_DISK_NOTIFICATION Disk;

 [case(VDS_NTT_VOLUME)]

 VDS_VOLUME_NOTIFICATION Volume;

 [case(VDS_NTT_PARTITION)]

 VDS_PARTITION_NOTIFICATION Partition;

 [case(VDS_NTT_DRIVE_LETTER)]

 VDS_DRIVE_LETTER_NOTIFICATION Letter;

 [case(VDS_NTT_FILE_SYSTEM)]

 VDS_FILE_SYSTEM_NOTIFICATION FileSystem;

48 / 368

[MS-VDS] — v20130722
 Virtual Disk Service (VDS) Protocol

 Copyright © 2013 Microsoft Corporation.

 Release: Monday, July 22, 2013

 [case(VDS_NTT_MOUNT_POINT)]

 VDS_MOUNT_POINT_NOTIFICATION MountPoint;

 [case(VDS_NTT_SERVICE)]

 VDS_SERVICE_NOTIFICATION Service;

 [default] ;

 };

} VDS_NOTIFICATION;

objectType: A value defined in the VDS_NOTIFICATION_TARGET_TYPE enumeration that

describes the type of notification.

Pack: A VDS_PACK_NOTIFICATION structure that describes a pack change.

Disk: A VDS_DISK_NOTIFICATION structure that describes a disk change.

Volume: A VDS_VOLUME_NOTIFICATION structure that describes a volume change.

Partition: A VDS_PARTITION_NOTIFICATION structure that describes a partition change.

Letter: A VDS_DRIVE_LETTER_NOTIFICATION structure that describes a drive letter

change.

FileSystem: A VDS_FILE_SYSTEM_NOTIFICATION structure that describes a file system
change.

MountPoint: A VDS_MOUNT_POINT_NOTIFICATION structure that describes a mount point
change.

Service: A VDS_SERVICE_NOTIFICATION structure that provides information about a state
change to the service object.

2.2.1.3.10 VDS_ASYNC_OUTPUT

The VDS_ASYNC_OUTPUT structure provides information from a completed asynchronous
operation.

typedef struct _VDS_ASYNC_OUTPUT {

 VDS_ASYNC_OUTPUT_TYPE type;

 [switch_is(type)] union {

 [case(VDS_ASYNCOUT_CREATEPARTITION)]

 struct _cp {

 ULONGLONG ullOffset;

 VDS_OBJECT_ID volumeId;

 } cp;

 [case(VDS_ASYNCOUT_CREATEVOLUME)]

 struct _cv {

 IUnknown* pVolumeUnk;

 } cv;

 [case(VDS_ASYNCOUT_BREAKVOLUMEPLEX)]

 struct _bvp {

 IUnknown* pVolumeUnk;

 } bvp;

 [case(VDS_ASYNCOUT_SHRINKVOLUME)]

 struct _sv {

 ULONGLONG ullReclaimedBytes;

 } sv;

49 / 368

[MS-VDS] — v20130722
 Virtual Disk Service (VDS) Protocol

 Copyright © 2013 Microsoft Corporation.

 Release: Monday, July 22, 2013

 [case(VDS_ASYNCOUT_CREATE_VDISK)]

 struct _cvd {

 IUnknown* pVDiskUnk;

 } cvd;

 [default] ;

 };

} VDS_ASYNC_OUTPUT;

type: A value from the VDS_ASYNC_OUTPUT_TYPE enumeration that indicates the type of

operation information.

cp: The cp structure provides information about a newly created partition.

ullOffset: The byte offset of the partition from the beginning of the disk.

volumeId: The VDS object ID of the associated volume object, if the partition is a

volume.

cv: The cv structure provides information about a newly created volume.

pVolumeUnk: A pointer to the IUnknown interface of the newly created volume.

bvp: The bvp structure provides information about a volume after a plex is broken.

pVolumeUnk: A pointer to the IUnknown interface of the volume that was broken off.

sv: The sv structure provides information about a volume shrink operation.

ullReclaimedBytes: The number of bytes that the volume shrink operation reclaimed.

cvd: The cvd structure provides information about a newly created virtual disk.

pVDiskUnk: A pointer to the IUnknown interface of the newly created virtual disk.

2.2.1.3.11 VDS_PARTITION_INFO_MBR

The VDS_PARTITION_INFO_MBR structure provides information about an MBR partition.

typedef struct _VDS_PARTITION_INFO_MBR {

 byte partitionType;

 BOOLEAN bootIndicator;

 BOOLEAN recognizedPartition;

 DWORD hiddenSectors;

} VDS_PARTITION_INFO_MBR;

partitionType: The byte value indicating the partition type.<14>

bootIndicator: A Boolean value that indicates whether the partition is bootable.

recognizedPartition: A Boolean value that indicates whether the partition will be exposed as a
volume.

hiddenSectors: The number of sectors between the start of the partition and the partition's
first usable area.

50 / 368

[MS-VDS] — v20130722
 Virtual Disk Service (VDS) Protocol

 Copyright © 2013 Microsoft Corporation.

 Release: Monday, July 22, 2013

2.2.1.3.12 VDS_PARTITION_INFO_GPT

The VDS_PARTITION_INFO_GPT structure provides information about a partition in a GPT.

typedef struct _VDS_PARTITION_INFO_GPT {

 GUID partitionType;

 GUID partitionId;

 ULONGLONG attributes;

 WCHAR name[36];

} VDS_PARTITION_INFO_GPT;

partitionType: A GUID indicating the partition type.<15>

partitionId: The GUID of the partition.

attributes: The attributes of the partition; they may have a combination of the following values.

Value Meaning

GPT_ATTRIBUTE_PLATFORM_REQUIRED

0x0000000000000001

Partition is required for the platform to

function properly.<16>

GPT_BASIC_DATA_ATTRIBUTE_READ_ONLY

0x1000000000000000

Partition cannot be written to but can be read

from. Used only with the basic data partition

type.

GPT_BASIC_DATA_ATTRIBUTE_SHADOW_COPY

0x2000000000000000

Partition is a shadow copy. Used only with

the basic data partition type.

GPT_BASIC_DATA_ATTRIBUTE_HIDDEN

0x4000000000000000

Partition is hidden and will not be mounted.

Used only with the basic data partition type.

GPT_BASIC_DATA_ATTRIBUTE_NO_DRIVE_LETTER

0x8000000000000000

Partition does not receive a drive letter by

default when moving the disk to another

machine. Used only with the basic data

partition type.

name: Null-terminated Unicode name of the partition.

2.2.1.3.13 VDS_STORAGE_IDENTIFIER

The VDS_STORAGE_IDENTIFIER structure provides information about a storage identifier.

typedef struct _VDS_STORAGE_IDENTIFIER {

 VDS_STORAGE_IDENTIFIER_CODE_SET m_CodeSet;

 VDS_STORAGE_IDENTIFIER_TYPE m_Type;

 unsigned long m_cbIdentifier;

 [size_is(m_cbIdentifier)] byte* m_rgbIdentifier;

} VDS_STORAGE_IDENTIFIER;

m_CodeSet: Value from the VDS_STORAGE_IDENTIFIER_CODE_SET enumeration that

defines the code set of the storage identifier.

51 / 368

[MS-VDS] — v20130722
 Virtual Disk Service (VDS) Protocol

 Copyright © 2013 Microsoft Corporation.

 Release: Monday, July 22, 2013

m_Type: Value from the VDS_STORAGE_IDENTIFIER_TYPE enumeration that defines the
type of the storage identifier.

m_cbIdentifier: Length of the m_rgbIdentifier identifier in bytes.

m_rgbIdentifier: Value of the storage identifier. These identifiers depend on both the code set

and the type.

2.2.1.3.14 VDS_STORAGE_DEVICE_ID_DESCRIPTOR

The VDS_STORAGE_DEVICE_ID_DESCRIPTOR structure provides information about a device
identification descriptor.

typedef struct _VDS_STORAGE_DEVICE_ID_DESCRIPTOR {

 unsigned long m_version;

 unsigned long m_cIdentifiers;

 [size_is(m_cIdentifiers)] VDS_STORAGE_IDENTIFIER* m_rgIdentifiers;

} VDS_STORAGE_DEVICE_ID_DESCRIPTOR;

m_version: The version number of the VDS_STORAGE_DEVICE_ID_DESCRIPTOR structure

as specified by the device manufacturer and in [SPC-3].

m_cIdentifiers: The number of elements in the m_rgIdentifiers array.

m_rgIdentifiers: The array of VDS_STORAGE_IDENTIFIER structures that contain the
storage identifier information.

2.2.1.3.15 VDS_INTERCONNECT

The VDS_INTERCONNECT structure defines the address data of a physical interconnect, as
specified in [SPC-3].

typedef struct _VDS_INTERCONNECT {

 VDS_INTERCONNECT_ADDRESS_TYPE m_addressType;

 unsigned long m_cbPort;

 [size_is(m_cbPort)] byte* m_pbPort;

 unsigned long m_cbAddress;

 [size_is(m_cbAddress)] byte* m_pbAddress;

} VDS_INTERCONNECT;

m_addressType: A VDS_INTERCONNECT_ADDRESS_TYPE structure that stores the address

type of the interconnect.

m_cbPort: The size, in bytes, of the interconnect address data for the LUN port to which
m_pbPort refers.

m_pbPort: A pointer to the interconnect address data for the LUN port.

m_cbAddress: The size, in bytes, of the interconnect address data for the LUN to which
m_pbAddress refers.

m_pbAddress: A pointer to the interconnect address data for the LUN.

http://go.microsoft.com/fwlink/?LinkId=90528
http://go.microsoft.com/fwlink/?LinkId=90528

52 / 368

[MS-VDS] — v20130722
 Virtual Disk Service (VDS) Protocol

 Copyright © 2013 Microsoft Corporation.

 Release: Monday, July 22, 2013

2.2.1.3.16 VDS_LUN_INFORMATION

The VDS_LUN_INFORMATION structure provides information about a SCSI-2 device. For
information about a SCSI-2 device, see [ANSI-131-1994].

typedef struct _VDS_LUN_INFORMATION {

 unsigned long m_version;

 byte m_DeviceType;

 byte m_DeviceTypeModifier;

 long m_bCommandQueueing;

 VDS_STORAGE_BUS_TYPE m_BusType;

 [string] char* m_szVendorId;

 [string] char* m_szProductId;

 [string] char* m_szProductRevision;

 [string] char* m_szSerialNumber;

 GUID m_diskSignature;

 VDS_STORAGE_DEVICE_ID_DESCRIPTOR m_deviceIdDescriptor;

 unsigned long m_cInterconnects;

 [size_is(m_cInterconnects)] VDS_INTERCONNECT* m_rgInterconnects;

} VDS_LUN_INFORMATION;

m_version: The version number of the VDS_LUN_INFORMATION structure. As of the current

version of this protocol, this value is always VER_VDS_LUN_INFORMATION (0x00000001).

m_DeviceType: The SCSI-2 device type of the device, as specified in [SPC-3].

m_DeviceTypeModifier: The SCSI-2 device type modifier, if any, as specified in [SPC-3].

m_bCommandQueueing: A Boolean value that indicates whether the device supports multiple
outstanding commands.

m_BusType: A value from the VDS_STORAGE_BUS_TYPE enumeration that indicates the bus
type of the device.

m_szVendorId: The null-terminated vendor identification Unicode string of the device. This
value is NULL if no vendor ID exists.

m_szProductId: The null-terminated product identification Unicode string of the device. This

value is NULL if no product ID exists.

m_szProductRevision: The null-terminated product revision Unicode string of the device. This
value is NULL if no product revision information exists.

m_szSerialNumber: The null-terminated serial number of the device. This value is NULL if no
serial number exists.

m_diskSignature: The disk signature of the disk.

m_deviceIdDescriptor: A VDS_STORAGE_DEVICE_ID_DESCRIPTOR structure that

contains the identification descriptor of the device.

m_cInterconnects: The number of elements in the m_rgInterconnects array.

m_rgInterconnects: Any array of VDS_INTERCONNECT structures that describe the physical
interconnects to the device.

http://go.microsoft.com/fwlink/?LinkId=90512
http://go.microsoft.com/fwlink/?LinkId=90528
http://go.microsoft.com/fwlink/?LinkId=90528
%5bMS-GLOS%5d.pdf

53 / 368

[MS-VDS] — v20130722
 Virtual Disk Service (VDS) Protocol

 Copyright © 2013 Microsoft Corporation.

 Release: Monday, July 22, 2013

2.2.1.3.17 VDS_FILE_SYSTEM_PROP

The VDS_FILE_SYSTEM_PROP structure provides information about the properties of a file
system.

typedef struct _VDS_FILE_SYSTEM_PROP {

 VDS_FILE_SYSTEM_TYPE type;

 VDS_OBJECT_ID volumeId;

 unsigned long ulFlags;

 ULONGLONG ullTotalAllocationUnits;

 ULONGLONG ullAvailableAllocationUnits;

 unsigned long ulAllocationUnitSize;

 [string] WCHAR* pwszLabel;

} VDS_FILE_SYSTEM_PROP,

 *PVDS_FILE_SYSTEM_PROP;

type: A VDS_FILE_SYSTEM_TYPE value that provides information about the type of the file

system.

volumeId: The VDS object ID of the volume object on which the file system resides.

ulFlags: The combination of any values, by using the bitwise OR operator, that are defined in
the VDS_FILE_SYSTEM_PROP_FLAG enumeration.

ullTotalAllocationUnits: The total number of allocation units on the file system.

ullAvailableAllocationUnits: The number of allocation units available on the file system.

ulAllocationUnitSize: The size of the allocation units in use by the file system.

pwszLabel: A null-terminated Unicode label of the file system.

2.2.1.3.18 VDS_FILE_SYSTEM_FORMAT_SUPPORT_PROP

The VDS_FILE_SYSTEM_FORMAT_SUPPORT_PROP structure provides information about file
systems that are supported for formatting volumes.<17>

typedef struct _VDS_FILE_SYSTEM_FORMAT_SUPPORT_PROP {

 unsigned long ulFlags;

 unsigned short usRevision;

 unsigned long ulDefaultUnitAllocationSize;

 unsigned long rgulAllowedUnitAllocationSizes[32];

 WCHAR wszName[32];

} VDS_FILE_SYSTEM_FORMAT_SUPPORT_PROP,

 *PVDS_FILE_SYSTEM_FORMAT_SUPPORT_PROP;

ulFlags: The combination of any values, by using the bitwise OR operator, that are defined in

the VDS_FILE_SYSTEM_FORMAT_SUPPORT_FLAG enumeration.

usRevision: A 16-bit, binary-coded decimal number that indicates the file system version, if
any. The first two (most significant) digits (8-bits) indicate the major version while the last

two (least significant) digits (8-bits) indicate the minor version. For example, a value that has
a bit pattern of 00000010 01010000 (0x0250 in hexadecimal) represents version 2.50;
0x1195 represents version 11.95, and so on.

%5bMS-GLOS%5d.pdf

54 / 368

[MS-VDS] — v20130722
 Virtual Disk Service (VDS) Protocol

 Copyright © 2013 Microsoft Corporation.

 Release: Monday, July 22, 2013

ulDefaultUnitAllocationSize: The default allocation unit size, in bytes, that the file system
uses for formatting the volume. This value MUST be a power of 2 and MUST also appear in

rgulAllowedUnitAllocationSizes.

rgulAllowedUnitAllocationSizes: A zero-terminated array of allocation unit sizes, in bytes,

that the file system supports for formatting the volume. An array is not zero-terminated if the
array contains 32 elements. Each of the values in the array MUST be a power of 2.

wszName: A null-terminated Unicode wide-character string that indicates the name of the file
system.

2.2.1.3.19 VDS_DISK_EXTENT

The VDS_DISK_EXTENT structure provides information about a disk extent.

typedef struct _VDS_DISK_EXTENT {

 VDS_OBJECT_ID diskId;

 VDS_DISK_EXTENT_TYPE type;

 ULONGLONG ullOffset;

 ULONGLONG ullSize;

 VDS_OBJECT_ID volumeId;

 VDS_OBJECT_ID plexId;

 unsigned long memberIdx;

} VDS_DISK_EXTENT,

 *PVDS_DISK_EXTENT;

diskId: The VDS object ID of the disk object on which the extent resides.

type: The value from the VDS_DISK_EXTENT_TYPE enumeration that indicates the type of
the extent.

ullOffset: The byte offset of the disk extent from the beginning of the disk.

ullSize: The size, in bytes, of the extent.

volumeId: The VDS object ID of the volume object to which the extent belongs, if any.

plexId: The VDS object ID of the volume plex object to which the extent belongs, if it belongs
to a volume.

memberIdx: The zero-based index of the volume plex member to which the extent belongs,
if it belongs to a volume plex.

2.2.1.3.20 VDS_PARTITION_PROP

The VDS_PARTITION_PROP structure provides information about partition properties.

typedef struct _VDS_PARTITION_PROP {

 VDS_PARTITION_STYLE PartitionStyle;

 unsigned long ulFlags;

 unsigned long ulPartitionNumber;

 ULONGLONG ullOffset;

 ULONGLONG ullSize;

 [switch_is(PartitionStyle)] union {

 [case(VDS_PST_MBR)]

55 / 368

[MS-VDS] — v20130722
 Virtual Disk Service (VDS) Protocol

 Copyright © 2013 Microsoft Corporation.

 Release: Monday, July 22, 2013

 VDS_PARTITION_INFO_MBR Mbr;

 [case(VDS_PST_GPT)]

 VDS_PARTITION_INFO_GPT Gpt;

 [default] ;

 };

} VDS_PARTITION_PROP;

PartitionStyle: The value from the VDS_PARTITION_STYLE enumeration that describes the

partition format of the disk where the partition resides.

ulFlags: The combination of any values, by using the bitwise OR operator, from the
VDS_PARTITION_FLAG enumeration describing the partition.

ulPartitionNumber: The one-based index number of the partition that the operating system
assigns.

ullOffset: The byte offset of the partition from the beginning of the disk.

ullSize: The size of the partition, in bytes.

Mbr: A VDS_PARTITION_INFO_MBR structure that describes the MBR partition.

Gpt: A VDS_PARTITION_INFO_GPT structure that describes the GPT partition.

2.2.1.3.21 VDS_INPUT_DISK

The VDS_INPUT_DISK structure provides information about a disk for volume creation and

modification.

typedef struct _VDS_INPUT_DISK {

 VDS_OBJECT_ID diskId;

 ULONGLONG ullSize;

 VDS_OBJECT_ID plexId;

 unsigned long memberIdx;

} VDS_INPUT_DISK;

diskId: The VDS object ID of the disk object.

ullSize: The size of the disk to use, in bytes.

plexId: When extending a volume, the VDS object ID of the plex object to which the disk will be
added. A volume can only be extended by extending all members of all plexes in the same
operation. This member is used when extending any volume and ignored when creating a
volume or repairing a RAID-5 volume.

memberIdx: The zero-based member index of the disk to which the extent belongs. Either

specify a memberIdx for all disks or specify it for none. VDS uses disks with the same

memberIdx in the order they appear in the array. For example, the first disk in the array is
always used first, even if it does not have the lowest index. This member is ignored when
repairing a RAID-5 volume.

56 / 368

[MS-VDS] — v20130722
 Virtual Disk Service (VDS) Protocol

 Copyright © 2013 Microsoft Corporation.

 Release: Monday, July 22, 2013

2.2.1.3.22 CREATE_PARTITION_PARAMETERS

The CREATE_PARTITION_PARAMETERS structure provides information about partition
properties.

typedef struct _CREATE_PARTITION_PARAMETERS {

 VDS_PARTITION_STYLE style;

 [switch_is(style)] union {

 [case(VDS_PST_MBR)]

 struct {

 byte partitionType;

 BOOLEAN bootIndicator;

 } MbrPartInfo;

 [case(VDS_PST_GPT)]

 struct {

 GUID partitionType;

 GUID partitionId;

 ULONGLONG attributes;

 WCHAR name[24];

 } GptPartInfo;

 [default] ;

 };

} CREATE_PARTITION_PARAMETERS;

style: A value from the VDS_PARTITION_STYLE enumeration that describes the disk partition

format.

MbrPartInfo: Contains information for an MBR partition.

partitionType: The byte value that indicates the partition type to create.

bootIndicator: A Boolean value that indicates whether the partition is bootable.

GptPartInfo: Contains information about a GPT partition.

partitionType: A GUID that indicates the partition type to create.<18>

partitionId: The GUID of the partition.

attributes: A bitwise OR operator of attributes that is used to create the partition; it can
have a combination of the following values.

Value Meaning

GPT_ATTRIBUTE_PLATFORM_REQUIRED

0x0000000000000001

A partition is required for the platform

to function properly.<19>

GPT_BASIC_DATA_ATTRIBUTE_READ_ONLY

0x1000000000000000

The partition can be read from, but not

written to. Used only with the basic

data partition type.

GPT_BASIC_DATA_ATTRIBUTE_HIDDEN

0x4000000000000000

The partition is hidden and is not

mounted. Used only with the basic

data partition type.

GPT_BASIC_DATA_ATTRIBUTE_NO_DRIVE_LETTER The partition does not receive a drive

57 / 368

[MS-VDS] — v20130722
 Virtual Disk Service (VDS) Protocol

 Copyright © 2013 Microsoft Corporation.

 Release: Monday, July 22, 2013

Value Meaning

0x8000000000000000 letter by default when moving the disk

to another computer. Used only with

the basic data partition type.

name: The null-terminated Unicode name of the partition.

2.2.1.3.23 VIRTUAL_STORAGE_TYPE

The VIRTUAL_STORAGE_TYPE structure specifies the device and vendor of the virtual disk.<20>

typedef struct _VIRTUAL_STORAGE_TYPE {

 ULONG DeviceId;

 GUID VendorId;

} VIRTUAL_STORAGE_TYPE,

 *PVIRTUAL_STORAGE_TYPE;

DeviceId: The virtual disk type. It can have one of the following values.

Value Meaning

VIRTUAL_STORAGE_TYPE_DEVICE_UNKNOWN

0

The virtual disk type is unknown.

VIRTUAL_STORAGE_TYPE_DEVICE_ISO

1

The virtual disk is an ISO image (.iso) file. For

more information, see [ECMA-119] and [OSTA-

UDFS].

VIRTUAL_STORAGE_TYPE_DEVICE_VHD

2

The virtual disk is a virtual hard disk (.vhd) file.

VendorId: A GUID that uniquely identifies the virtual disk vendor.

2.2.2 Interface-Specific Data Types

2.2.2.1 IVdsService Data Types

This section lists data types that are used exclusively by methods in the IVdsService interface.

2.2.2.1.1 Data Types

2.2.2.1.1.1 MAX_FS_NAME_SIZE

Constant/value Description

MAX_FS_NAME_SIZE

0x00000008

The MAX_FS_NAME_SIZE defines the maximum character length of a file

system name.

http://go.microsoft.com/fwlink/?LinkId=208348
http://go.microsoft.com/fwlink/?LinkId=208349
http://go.microsoft.com/fwlink/?LinkId=208349
%5bMS-GLOS%5d.pdf
%5bMS-DTYP%5d.pdf

58 / 368

[MS-VDS] — v20130722
 Virtual Disk Service (VDS) Protocol

 Copyright © 2013 Microsoft Corporation.

 Release: Monday, July 22, 2013

2.2.2.1.2 Enumerations

2.2.2.1.2.1 VDS_OBJECT_TYPE

The VDS_OBJECT_TYPE enumeration defines the set of valid VDS object types.

typedef enum _VDS_OBJECT_TYPE

{

 VDS_OT_UNKNOWN = 0x00000000,

 VDS_OT_PROVIDER = 0x00000001,

 VDS_OT_PACK = 0x0000000A,

 VDS_OT_VOLUME = 0x0000000B,

 VDS_OT_VOLUME_PLEX = 0x0000000C,

 VDS_OT_DISK = 0x0000000D,

 VDS_OT_HBAPORT = 0x0000005A,

 VDS_OT_INIT_ADAPTER = 0x0000005B,

 VDS_OT_INIT_PORTAL = 0x0000005C,

 VDS_OT_ASYNC = 0x00000064,

 VDS_OT_ENUM = 0x00000065,

 VDS_OT_VDISK = 0x000000C8,

 VDS_OT_OPEN_VDISK = 0x000000C9

} VDS_OBJECT_TYPE;

VDS_OT_UNKNOWN: The object has an unknown type.

VDS_OT_PROVIDER: The object is a provider.

VDS_OT_PACK: The object is a pack (a disk group).

VDS_OT_VOLUME: The object is a volume.

VDS_OT_VOLUME_PLEX: The object is a plex of a volume.

VDS_OT_DISK: The object is a disk.

VDS_OT_HBAPORT: The object is an HBA port.

VDS_OT_INIT_ADAPTER: The object is an iSCSI initiator adapter.

VDS_OT_INIT_PORTAL: The object is an iSCSI initiator portal.

VDS_OT_ASYNC: The object maintains the status of an asynchronous VDS operation.

VDS_OT_ENUM: The object is an enumerator that contains an enumeration of other VDS
objects.

VDS_OT_VDISK: The object is a virtual disk.

VDS_OT_OPEN_VDISK: The object represents an open virtual disk (an OpenVirtualDisk
object).

2.2.2.1.2.2 VDS_SERVICE_FLAG

The VDS_SERVICE_FLAG enumeration defines the properties of the service.

typedef enum _VDS_SERVICE_FLAG

{

%5bMS-GLOS%5d.pdf

59 / 368

[MS-VDS] — v20130722
 Virtual Disk Service (VDS) Protocol

 Copyright © 2013 Microsoft Corporation.

 Release: Monday, July 22, 2013

 VDS_SVF_SUPPORT_DYNAMIC = 0x00000001,

 VDS_SVF_SUPPORT_FAULT_TOLERANT = 0x00000002,

 VDS_SVF_SUPPORT_GPT = 0x00000004,

 VDS_SVF_SUPPORT_DYNAMIC_1394 = 0x00000008,

 VDS_SVF_CLUSTER_SERVICE_CONFIGURED = 0x00000010,

 VDS_SVF_AUTO_MOUNT_OFF = 0x00000020,

 VDS_SVF_OS_UNINSTALL_VALID = 0x00000040,

 VDS_SVF_EFI = 0x00000080,

 VDS_SVF_SUPPORT_MIRROR = 0x00000100,

 VDS_SVF_SUPPORT_RAIDS = 0x00000200,

 VDS_SVF_SUPPORT_REFS = 0x0000400L

} VDS_SERVICE_FLAG;

VDS_SVF_SUPPORT_DYNAMIC: The server supports dynamic disks.

VDS_SVF_SUPPORT_FAULT_TOLERANT: The server supports fault-tolerant disks.

VDS_SVF_SUPPORT_GPT: The server supports the GPT partition format.

VDS_SVF_SUPPORT_DYNAMIC_1394: The server supports dynamic disks that use the IEEE

1394 interface for the host bus adapter connection. For more information on IEEE 1394, see
[IEEE1394-2008].

VDS_SVF_CLUSTER_SERVICE_CONFIGURED: The server is running on a cluster.

VDS_SVF_AUTO_MOUNT_OFF: The server will not automatically mount disks.

VDS_SVF_OS_UNINSTALL_VALID: The server has an uninstall image to which it can roll
back.

VDS_SVF_EFI: The computer starts an EFI from a GPT partition.

VDS_SVF_SUPPORT_MIRROR: The server supports mirrored volumes (RAID-1).

VDS_SVF_SUPPORT_RAIDS: The server supports striped with parity volumes (RAID-5).

VDS_SVF_SUPPORT_REFS: The server supports the ReFS.

2.2.2.1.2.3 VDS_QUERY_PROVIDER_FLAG

The VDS_QUERY_PROVIDER_FLAG enumeration defines the set of valid flags for provider query
operations. Callers can query for hardware providers, software providers, or both.<21>

typedef enum _VDS_QUERY_PROVIDER_FLAG

{

 VDS_QUERY_SOFTWARE_PROVIDERS = 0x1,

 VDS_QUERY_HARDWARE_PROVIDERS = 0x2,

 VDS_QUERY_VIRTUALDISK_PROVIDERS = 0x4

} VDS_QUERY_PROVIDER_FLAG;

VDS_QUERY_SOFTWARE_PROVIDERS: If set, the operation queries for software providers.

VDS_QUERY_HARDWARE_PROVIDERS: If set, the operation queries for hardware providers.

VDS_QUERY_VIRTUALDISK_PROVIDERS: If set, the operation queries for virtual disk
providers.

%5bMS-GLOS%5d.pdf
http://go.microsoft.com/fwlink/?LinkId=89900
%5bMS-GLOS%5d.pdf

60 / 368

[MS-VDS] — v20130722
 Virtual Disk Service (VDS) Protocol

 Copyright © 2013 Microsoft Corporation.

 Release: Monday, July 22, 2013

2.2.2.1.2.4 VDS_DRIVE_LETTER_FLAG

The VDS_DRIVE_LETTER_FLAG enumeration defines the set of valid flags for a drive letter.

typedef enum _VDS_DRIVE_LETTER_FLAG

{

 VDS_DLF_NON_PERSISTENT = 0x00000001

} VDS_DRIVE_LETTER_FLAG;

VDS_DLF_NON_PERSISTENT: If set, the drive letter no longer appears after the computer is

restarted.

2.2.2.1.3 Structures

2.2.2.1.3.1 VDS_SERVICE_PROP

The VDS_SERVICE_PROP structure provides information about the properties of a service.

typedef struct _VDS_SERVICE_PROP {

 [string] WCHAR* pwszVersion;

 unsigned long ulFlags;

} VDS_SERVICE_PROP;

pwszVersion: The version of VDS; a human-readable, null-terminated Unicode string. This

string can be any human-readable, null-terminated Unicode value.<22>

ulFlags: A combination of any values, by using the bitwise OR operator, that is defined in the
VDS_SERVICE_FLAG enumeration.

2.2.2.1.3.2 VDS_DRIVE_LETTER_PROP

The VDS_DRIVE_LETTER_PROP structure provides information about a drive letter.

typedef struct _VDS_DRIVE_LETTER_PROP {

 WCHAR wcLetter;

 VDS_OBJECT_ID volumeId;

 unsigned long ulFlags;

 long bUsed;

} VDS_DRIVE_LETTER_PROP,

 *PVDS_DRIVE_LETTER_PROP;

wcLetter: The drive letter as a single uppercase or lowercase alphabetical (A-Z) Unicode

character.

volumeId: The VDS object ID of the volume object to which the drive letter is assigned. If the

drive letter is not assigned to any volume, the value MUST be GUID_NULL.

ulFlags: The combination of any values, by using a bitwise OR operator, that is defined in the
VDS_DRIVE_LETTER_FLAG enumeration.

bUsed: A Boolean value that indicates whether the drive letter is already in use.

61 / 368

[MS-VDS] — v20130722
 Virtual Disk Service (VDS) Protocol

 Copyright © 2013 Microsoft Corporation.

 Release: Monday, July 22, 2013

2.2.2.1.3.3 VDS_FILE_SYSTEM_TYPE_PROP

The VDS_FILE_SYSTEM_TYPE_PROP structure provides information about a file system
format.<23>

typedef struct _VDS_FILE_SYSTEM_TYPE_PROP {

 VDS_FILE_SYSTEM_TYPE type;

 WCHAR wszName[8];

 unsigned long ulFlags;

 unsigned long ulCompressionFlags;

 unsigned long ulMaxLabelLength;

 [string] WCHAR* pwszIllegalLabelCharSet;

} VDS_FILE_SYSTEM_TYPE_PROP,

 *PVDS_FILE_SYSTEM_TYPE_PROP;

type: A value from the VDS_FILE_SYSTEM_TYPE enumeration that indicates the file system

format type.

wszName: A null-terminated Unicode name of the file system format, for example, NTFS or
FAT32.

ulFlags: A combination of any values, by using a bitwise OR operator, that are defined in the

VDS_FILE_SYSTEM_FLAG enumeration.

ulCompressionFlags: A bitwise OR operator of any allocation units that are defined in the
VDS_FILE_SYSTEM_PROP_FLAG enumeration.

ulMaxLabelLength: The maximum allowable length of a label for the file system format.

pwszIllegalLabelCharSet: A null-terminated sequence of Unicode characters that are not
allowed in the label of the file system format.

2.2.2.2 IVdsServiceSAN Data Types

This section lists data types that are used exclusively by methods in the IVdsServiceSAN interface.

2.2.2.2.1 Enumerations

2.2.2.2.1.1 VDS_SAN_POLICY

The VDS_SAN_POLICY enumeration defines the set of valid SAN policy values.

typedef enum _VDS_SAN_POLICY

{

 VDS_SP_UNKNOWN = 0x0,

 VDS_SP_ONLINE = 0x1,

 VDS_SP_OFFLINE_SHARED = 0x2,

 VDS_SP_OFFLINE = 0x3,

 VDS_SP_OFFLINE_INTERNAL = 0x4,

 VDS_SP_MAX = 0x5

} VDS_SAN_POLICY;

VDS_SP_UNKNOWN: The SAN policy is unknown.

62 / 368

[MS-VDS] — v20130722
 Virtual Disk Service (VDS) Protocol

 Copyright © 2013 Microsoft Corporation.

 Release: Monday, July 22, 2013

VDS_SP_ONLINE: All newly discovered disks are brought online and made WRITABLE. If the
disk is offline, no volume devices are exposed for the disk. If the disk is online, the volume

devices for the disk are exposed. WRITABLE is the normal state for a disk. A disk can also be
made READONLY. If the disk is READONLY, disk data and metadata may be read, but writes to

the disk will fail.

VDS_SP_OFFLINE_SHARED: All newly discovered disks not residing on a shared bus are
brought online and made WRITABLE. If the disk is offline, no volume devices are exposed for
the disk. If the disk is online, the volume devices for the disk are exposed. WRITABLE is the
normal state for a disk. A disk can also be made READONLY. If the disk is READONLY, disk
data and metadata may be read, but writes to the disk will fail.

VDS_SP_OFFLINE: All newly discovered disks remain offline and READONLY. If the disk is

offline, no volume devices are exposed for the disk. If the disk is online, the volume devices
for the disk are exposed. WRITABLE is the normal state for a disk. A disk can also be made
READONLY. If the disk is READONLY, disk data and metadata may be read, but writes to the
disk will fail.

VDS_SP_OFFLINE_INTERNAL: All newly discovered internal disks remain offline and
READONLY. If the disk is offline, no volume devices are exposed for the disk. If the disk is

online, the volume devices for the disk are exposed. WRITABLE is the normal state for a disk.
A disk can also be made READONLY. If the disk is READONLY, disk data and metadata may be
read, but writes to the disk will fail.

VDS_SP_MAX: Denotes the maximum acceptable value for this type. VDS_SP_MAX - 1, ('4'), is
the maximum acceptable value.

2.2.2.3 IVdsServiceIscsi Data Types

This section lists data types that the IVdsServiceIscsi methods of the IVdsServiceIscsi interface
use exclusively.

2.2.2.3.1 Structures

2.2.2.3.1.1 VDS_ISCSI_SHARED_SECRET

The VDS_ISCSI_SHARED_SECRET structure defines the Challenge-Handshake Authentication

Protocol (CHAP), as specified in [MS-CHAP], shared secret for an iSCSI initiator.

typedef struct _VDS_ISCSI_SHARED_SECRET {

 [size_is(ulSharedSecretSize)] unsigned char* pSharedSecret;

 unsigned long ulSharedSecretSize;

} VDS_ISCSI_SHARED_SECRET;

pSharedSecret: A pointer to an array of bytes that contains the secret.

ulSharedSecretSize: The number of bytes contained in the array that pSharedSecret

references. Bytes MUST be at least 12 and less than or equal to 16.<24> If a shared secret of
size less than 12 bytes is used, the server does not return an error. However, the operation
will not complete.

%5bMS-GLOS%5d.pdf
%5bMS-GLOS%5d.pdf
%5bMS-CHAP%5d.pdf

63 / 368

[MS-VDS] — v20130722
 Virtual Disk Service (VDS) Protocol

 Copyright © 2013 Microsoft Corporation.

 Release: Monday, July 22, 2013

2.2.2.4 IVdsHbaPort Data Types

This section lists data types that the IVdsHbaPort methods of the IVdsHbaPort interface use
exclusively.

2.2.2.4.1 Enumerations

2.2.2.4.1.1 VDS_HBAPORT_TYPE

The VDS_HBAPORT_TYPE enumeration defines the set of valid types for an HBA port. These types
correspond to the HBA_PORTTYPE values, as specified in [HBAAPI]. These values are used in the
type member of the VDS_HBAPORT_PROP structure.<25>

typedef enum _VDS_HBAPORT_TYPE

{

 VDS_HPT_UNKNOWN = 0x00000001,

 VDS_HPT_OTHER = 0x00000002,

 VDS_HPT_NOTPRESENT = 0x00000003,

 VDS_HPT_NPORT = 0x00000005,

 VDS_HPT_NLPORT = 0x00000006,

 VDS_HPT_FLPORT = 0x00000007,

 VDS_HPT_FPORT = 0x00000008,

 VDS_HPT_EPORT = 0x00000009,

 VDS_HPT_GPORT = 0x0000000A,

 VDS_HPT_LPORT = 0x00000014,

 VDS_HPT_PTP = 0x00000015

} VDS_HBAPORT_TYPE;

VDS_HPT_UNKNOWN: The port type is unknown.

Corresponding HBA_PORTTYPE value: HBA_PORTTYPE_UNKNOWN

VDS_HPT_OTHER: The port type is another (undefined) type.

Corresponding HBA_PORTTYPE value: HBA_PORTTYPE_OTHER

VDS_HPT_NOTPRESENT: The port type is not present.

Corresponding HBA_PORTTYPE value: HBA_PORTTYPE_NOTPRESENT

VDS_HPT_NPORT: The port type is a fabric.

Corresponding HBA_PORTTYPE value: HBA_PORTTYPE_NPORT

VDS_HPT_NLPORT: The port type is a public loop.

Corresponding HBA_PORTTYPE value: HBA_PORTTYPE_NLPORT

VDS_HPT_FLPORT: The port type is a fabric on a loop.

Corresponding HBA_PORTTYPE value: HBA_PORTTYPE_FLPORT

VDS_HPT_FPORT: The port type is a fabric port.

Corresponding HBA_PORTTYPE value: HBA_PORTTYPE_FPORT

VDS_HPT_EPORT: The port type is a fabric expansion port.

http://go.microsoft.com/fwlink/?LinkId=89878

64 / 368

[MS-VDS] — v20130722
 Virtual Disk Service (VDS) Protocol

 Copyright © 2013 Microsoft Corporation.

 Release: Monday, July 22, 2013

Corresponding HBA_PORTTYPE value: HBA_PORTTYPE_EPORT

VDS_HPT_GPORT: The port type is a generic fabric port.

Corresponding HBA_PORTTYPE value: HBA_PORTTYPE_GPORT

VDS_HPT_LPORT: The port type is a private loop.

Corresponding HBA_PORTTYPE value: HBA_PORTTYPE_LPORT

VDS_HPT_PTP: The port type is point-to-point.

Corresponding HBA_PORTTYPE value: HBA_PORTTYPE_PTP

2.2.2.4.1.2 VDS_HBAPORT_STATUS

The VDS_HBAPORT_STATUS enumeration defines the set of valid statuses for an HBA port. These
values are used in the status member of the VDS_HBAPORT_PROP structure. These states

correspond to the HBA_PORTSTATE values, as specified in [HBAAPI].<26>

typedef enum _VDS_HBAPORT_STATUS

{

 VDS_HPS_UNKNOWN = 0x00000001,

 VDS_HPS_ONLINE = 0x00000002,

 VDS_HPS_OFFLINE = 0x00000003,

 VDS_HPS_BYPASSED = 0x00000004,

 VDS_HPS_DIAGNOSTICS = 0x00000005,

 VDS_HPS_LINKDOWN = 0x00000006,

 VDS_HPS_ERROR = 0x00000007,

 VDS_HPS_LOOPBACK = 0x00000008

} VDS_HBAPORT_STATUS;

VDS_HPS_UNKNOWN: The HBA port status is unknown.

Corresponding HBA_PORTSTATE value: HBA_PORTSTATE_UNKNOWN

VDS_HPS_ONLINE: The HBA port is operational.

Corresponding HBA_PORTSTATE value: HBA_PORTSTATE_ONLINE

VDS_HPS_OFFLINE: The HBA port was set offline by a user.

Corresponding HBA_PORTSTATE value: HBA_PORTSTATE_OFFLINE

VDS_HPS_BYPASSED: The HBA port is bypassed.

Corresponding HBA_PORTSTATE value: HBA_PORTSTATE_BYPASSED

VDS_HPS_DIAGNOSTICS: The HBA port is in diagnostics mode.

Corresponding HBA_PORTSTATE value: HBA_PORTSTATE_DIAGNOSTICS

VDS_HPS_LINKDOWN: The HBA port link is down.

Corresponding HBA_PORTSTATE value: HBA_PORTSTATE_LINKDOWN

VDS_HPS_ERROR: The HBA port has an error.

http://go.microsoft.com/fwlink/?LinkId=89878

65 / 368

[MS-VDS] — v20130722
 Virtual Disk Service (VDS) Protocol

 Copyright © 2013 Microsoft Corporation.

 Release: Monday, July 22, 2013

Corresponding HBA_PORTSTATE value: HBA_PORTSTATE_ERROR

VDS_HPS_LOOPBACK: The HBA port is loopback.

Corresponding HBA_PORTSTATE value: HBA_PORTSTATE_LOOPBACK

2.2.2.4.1.3 VDS_HBAPORT_SPEED_FLAG

The VDS_HBAPORT_SPEED_FLAG enumeration type defines the set of valid flags for determining
the speeds that an HBA port supports. These values are used in the ulPortSpeed member of the
VDS_HBAPORT_PROP structure. These flags correspond to the HBA_PORTSPEED flags, as specified
in [HBAAPI].<27>

typedef enum _VDS_HBAPORT_SPEED_FLAG

{

 VDS_HSF_UNKNOWN = 0x00000000,

 VDS_HSF_1GBIT = 0x00000001,

 VDS_HSF_2GBIT = 0x00000002,

 VDS_HSF_10GBIT = 0x00000004,

 VDS_HSF_4GBIT = 0x00000008,

 VDS_HSF_NOT_NEGOTIATED = 0x00008000

} VDS_HBAPORT_SPEED_FLAG;

VDS_HSF_UNKNOWN: The HBA port speed is unknown.

Corresponding HBA_PORTSPEED value: HBA_PORTSPEED_UNKNOWN

VDS_HSF_1GBIT: The HBA port supports a transfer rate of 1 gigabit per second.

Corresponding HBA_PORTSPEED value: HBA_PORTSPEED_1GBIT

VDS_HSF_2GBIT: The HBA port supports a transfer rate of 2 gigabits per second.

Corresponding HBA_PORTSPEED value: HBA_PORTSPEED_2GBIT

VDS_HSF_10GBIT: The HBA port supports a transfer rate of 10 gigabits per second.

Corresponding HBA_PORTSPEED value: HBA_PORTSPEED_10GBIT

VDS_HSF_4GBIT: The HBA port supports a transfer rate of 4 gigabits per second.

Corresponding HBA_PORTSPEED value: HBA_PORTSPEED_4GBIT

VDS_HSF_NOT_NEGOTIATED: The HBA port speed has not been established.

Corresponding HBA_PORTSPEED value: HBA_PORTSPEED_NOT_NEGOTIATED

2.2.2.4.1.4 VDS_PATH_STATUS

The VDS_PATH_STATUS enumeration defines the set of status values for a path to a storage

device.

typedef enum _VDS_PATH_STATUS

{

 VDS_MPS_UNKNOWN = 0x00000000,

 VDS_MPS_ONLINE = 0x00000001,

 VDS_MPS_FAILED = 0x00000005,

http://go.microsoft.com/fwlink/?LinkId=89878

66 / 368

[MS-VDS] — v20130722
 Virtual Disk Service (VDS) Protocol

 Copyright © 2013 Microsoft Corporation.

 Release: Monday, July 22, 2013

 VDS_MPS_STANDBY = 0x00000007

} VDS_PATH_STATUS;

VDS_MPS_UNKNOWN: The status of the path is unknown.

VDS_MPS_ONLINE: The path is available.

VDS_MPS_FAILED: The path is unavailable.

VDS_MPS_STANDBY: The path is on standby; it is available but will not be used unless other
paths fail.

2.2.2.4.2 Structures

2.2.2.4.2.1 VDS_WWN

The VDS_WWN structure defines a worldwide name (WWN). This structure corresponds to the

HBA_WWN structure, as specified in [HBAAPI], which also defines the WWN term.<28>

typedef struct _VDS_WWN {

 unsigned char rguchWwn[8];

} VDS_WWN;

rguchWwn: An array of 8 bytes that specifies the 64-bit WWN value. The first element of the

array is the most significant byte of the WWN, and the most significant bit of that byte is the
most significant bit of the WWN.

2.2.2.4.2.2 VDS_HBAPORT_PROP

The VDS_HBAPORT_PROP structure defines the properties of an HBA port.<29>

typedef struct _VDS_HBAPORT_PROP {

 VDS_OBJECT_ID id;

 VDS_WWN wwnNode;

 VDS_WWN wwnPort;

 VDS_HBAPORT_TYPE type;

 VDS_HBAPORT_STATUS status;

 unsigned long ulPortSpeed;

 unsigned long ulSupportedPortSpeed;

} VDS_HBAPORT_PROP;

id: The VDS object ID of the HBA port object.

wwnNode: The node WWN for the HBA port.

wwnPort: The port WWN of the HBA port.

type: The type of the HBA port that VDS_HBAPORT_TYPE enumerates.

status: The status of the HBA port that VDS_HBAPORT_STATUS enumerates.

http://go.microsoft.com/fwlink/?LinkId=89878

67 / 368

[MS-VDS] — v20130722
 Virtual Disk Service (VDS) Protocol

 Copyright © 2013 Microsoft Corporation.

 Release: Monday, July 22, 2013

ulPortSpeed: The speed of the HBA port that VDS_HBAPORT_SPEED_FLAG enumerates.
Only one bit may be set in this bitmask.

ulSupportedPortSpeed: The combination of values, by using a bitwise OR operator, from the
VDS_HBAPORT_SPEED_FLAG enumeration that describes the set of supported speeds of

the HBA port.

2.2.2.5 IVdsIscsiInitiatorAdapter Data Types

This section lists data types that are used exclusively by the IVdsIscsiInitiatorAdapter methods of
the IVdsIscsiInitiatorAdapter interface.

2.2.2.5.1 Structures

2.2.2.5.1.1 VDS_ISCSI_INITIATOR_ADAPTER_PROP

The VDS_ISCSI_INITIATOR_ADAPTER_PROP structure defines the properties of an iSCSI

initiator adapter.<30>

typedef struct _VDS_ISCSI_INITIATOR_ADAPTER_PROP {

 VDS_OBJECT_ID id;

 [string] WCHAR* pwszName;

} VDS_ISCSI_INITIATOR_ADAPTER_PROP;

id: The VDS object ID of the initiator adapter object.

pwszName: A human-readable, null-terminated Unicode string that is the name of the initiator
adapter.

2.2.2.6 IVdsIscsiInitiatorPortal Data Types

This section lists data types that are used exclusively by the IVdsIscsiInitiatorPortal methods of the
IVdsIscsiInitiatorPortal interface.

2.2.2.6.1 Enumerations

2.2.2.6.1.1 VDS_IPADDRESS_TYPE

The VDS_IPADDRESS_TYPE enumeration defines the set of valid types for an IP address. These
type values are used in the type member of the VDS_IPADDRESS structure.<31>

typedef enum _VDS_IPADDRESS_TYPE

{

 VDS_IPT_TEXT = 0x00000000,

 VDS_IPT_IPV4 = 0x00000001,

 VDS_IPT_IPV6 = 0x00000002,

 VDS_IPT_EMPTY = 0x00000003

} VDS_IPADDRESS_TYPE;

VDS_IPT_TEXT: The IP address is a text string.

VDS_IPT_IPV4: The IP address is an IPv4 address.

68 / 368

[MS-VDS] — v20130722
 Virtual Disk Service (VDS) Protocol

 Copyright © 2013 Microsoft Corporation.

 Release: Monday, July 22, 2013

VDS_IPT_IPV6: The IP address is an IPv6 address.

VDS_IPT_EMPTY: An IP address is not specified.

2.2.2.6.2 Structures

2.2.2.6.2.1 VDS_IPADDRESS

The VDS_IPADDRESS structure defines an IP address and port.<32>

typedef struct _VDS_IPADDRESS {

 VDS_IPADDRESS_TYPE type;

 unsigned long ipv4Address;

 unsigned char ipv6Address[16];

 unsigned long ulIpv6FlowInfo;

 unsigned long ulIpv6ScopeId;

 WCHAR wszTextAddress[257];

 unsigned long ulPort;

} VDS_IPADDRESS;

type: The type of address as enumerated by VDS_IPADDRESS_TYPE.

ipv4Address: If the type member is VDS_IPT_IPV4, this member contains the binary IPv4

address in network byte order. The field 3 (last octet) byte value is contained in bits 0 through
7. The byte value for field 2 is contained in bits 8 through 15. The byte value for field 1 is
contained in bits 16 through 23. The byte value for field 0 is contained in bits 24 through 31.
Otherwise, this value is ignored.

ipv6Address: If the type member is VDS_IPT_IPV6, this member contains the binary IPv6
address in network byte order. Otherwise, this value is ignored.

ulIpv6FlowInfo: If the type member is VDS_IPT_IPV6, this member contains the flow

information as defined in IPv6. Otherwise, this value is ignored.

ulIpv6ScopeId: If the type member is VDS_IPT_IPV6, this member contains the scope ID as
defined in IPv6. Otherwise, this value is ignored.

wszTextAddress: If the type member is VDS_IPT_TEXT, this member contains the null-
terminated Unicode text address, which is either a DNS address, an IPv4 dotted address, or
an IPv6 hexadecimal address. Otherwise, this value is ignored.

ulPort: If the type member is VDS_IPT_IPV4, VDS_IPT_IPV6, or VDS_IPT_TEXT, this member

contains the TCP port number. Otherwise, this value is ignored.

2.2.2.6.2.2 VDS_ISCSI_INITIATOR_PORTAL_PROP

The VDS_ISCSI_INITIATOR_PORTAL_PROP structure defines the properties of an iSCSI initiator
portal.<33>

typedef struct _VDS_ISCSI_INITIATOR_PORTAL_PROP {

 VDS_OBJECT_ID id;

 VDS_IPADDRESS address;

 unsigned long ulPortIndex;

} VDS_ISCSI_INITIATOR_PORTAL_PROP;

69 / 368

[MS-VDS] — v20130722
 Virtual Disk Service (VDS) Protocol

 Copyright © 2013 Microsoft Corporation.

 Release: Monday, July 22, 2013

id: The VDS object ID of the initiator portal object.

address: The IP address and port of the portal.

ulPortIndex: The port index that the iSCSI initiators service assigned to the portal.

2.2.2.7 IVdsProvider Data Types

This section lists data types that are used exclusively by the IVdsProvider methods.

2.2.2.7.1 Enumerations

2.2.2.7.1.1 VDS_PROVIDER_TYPE

The VDS_PROVIDER_TYPE enumeration defines the set of valid types for a provider.

typedef enum _VDS_PROVIDER_TYPE

{

 VDS_PT_UNKNOWN = 0x00000000,

 VDS_PT_SOFTWARE = 0x00000001,

 VDS_PT_HARDWARE = 0x00000002,

 VDS_PT_VIRTUALDISK = 0x00000003,

 VDS_PT_MAX = 0x00000004

} VDS_PROVIDER_TYPE;

VDS_PT_UNKNOWN: The type is neither a software nor a hardware provider.

VDS_PT_SOFTWARE: The type indicates a program that is responsible for volume
management.

VDS_PT_HARDWARE: The type indicates a program that is responsible for aspects of hardware
storage management.

VDS_PT_VIRTUALDISK: The type indicates a program that is responsible for aspects of

hardware storage management.

VDS_PT_MAX: Denotes the maximum acceptable value for this type. VDS_PT_MAX - 1, ('3'), is
the maximum acceptable value.

2.2.2.7.1.2 VDS_PROVIDER_FLAG

The VDS_PROVIDER_FLAG enumeration defines the set of valid flags for a provider object.

typedef enum _VDS_PROVIDER_FLAG

{

 VDS_PF_DYNAMIC = 0x00000001,

 VDS_PF_INTERNAL_HARDWARE_PROVIDER = 0x00000002,

 VDS_PF_ONE_DISK_ONLY_PER_PACK = 0x00000004,

 VDS_PF_ONE_PACK_ONLINE_ONLY = 0x00000008,

 VDS_PF_VOLUME_SPACE_MUST_BE_CONTIGUOUS = 0x00000010,

 VDS_PF_SUPPORT_MIRROR = 0x00000020,

 VDS_PF_SUPPORT_RAID5 = 0x00000040,

70 / 368

[MS-VDS] — v20130722
 Virtual Disk Service (VDS) Protocol

 Copyright © 2013 Microsoft Corporation.

 Release: Monday, July 22, 2013

 VDS_PF_SUPPORT_DYNAMIC_1394 = 0x20000000,

 VDS_PF_SUPPORT_FAULT_TOLERANT = 0x40000000,

 VDS_PF_SUPPORT_DYNAMIC = 0x80000000

} VDS_PROVIDER_FLAG;

VDS_PF_DYNAMIC: If set, all disks that the current provider manages are dynamic. This flag

MUST be set only by a dynamic provider. By definition, dynamic providers manage only
dynamic disks.

VDS_PF_INTERNAL_HARDWARE_PROVIDER: Reserved for internal use.

VDS_PF_ONE_DISK_ONLY_PER_PACK: If set, the provider supports single disk packs only.
Typically, the basic provider sets this flag to simulate a disk pack that has one disk.

VDS_PF_ONE_PACK_ONLINE_ONLY: If set, the dynamic provider supports online status for
only one pack at a time.

VDS_PF_VOLUME_SPACE_MUST_BE_CONTIGUOUS: If set, all volumes that this provider
manages MUST have contiguous space. This flag applies to the basic provider only.

VDS_PF_SUPPORT_MIRROR: If set, the provider supports mirrored volumes (RAID-1).

VDS_PF_SUPPORT_RAID5: If set, the provider supports striped with parity volumes (RAID-5).

VDS_PF_SUPPORT_DYNAMIC_1394: If set, the provider supports IEEE 1394 dynamic disks.
This flag MUST be set only by the dynamic provider on systems that support IEEE 1394
dynamic disks.

VDS_PF_SUPPORT_FAULT_TOLERANT: If set, the provider supports fault-tolerant disks. This
flag MUST be set only by the dynamic provider on systems that support fault-tolerant

volumes.

VDS_PF_SUPPORT_DYNAMIC: If set, the provider supports managing dynamic disks. This

flag MUST be set only by the dynamic provider on systems that support dynamic disks.

2.2.2.7.2 Structures

2.2.2.7.2.1 VDS_PROVIDER_PROP

The VDS_PROVIDER_PROP structure provides information about provider properties.

typedef struct _VDS_PROVIDER_PROP {

 VDS_OBJECT_ID id;

 [string] WCHAR* pwszName;

 GUID guidVersionId;

 [string] WCHAR* pwszVersion;

 VDS_PROVIDER_TYPE type;

 unsigned long ulFlags;

 unsigned long ulStripeSizeFlags;

 short sRebuildPriority;

} VDS_PROVIDER_PROP;

id: The VDS object ID of the provider object.

%5bMS-GLOS%5d.pdf
%5bMS-GLOS%5d.pdf
%5bMS-GLOS%5d.pdf

71 / 368

[MS-VDS] — v20130722
 Virtual Disk Service (VDS) Protocol

 Copyright © 2013 Microsoft Corporation.

 Release: Monday, July 22, 2013

pwszName: The null-terminated Unicode name of the provider.

guidVersionId: The version GUID of the provider. This GUID MUST be unique to each version
of the provider.

pwszVersion: The null-terminated Unicode version string of the provider. The convention for

this string is <major version number>.<minor version number>.

type: A value from the VDS_PROVIDER_TYPE enumeration that indicates the provider type.

ulFlags: A combination of any values, by using a bitwise OR operator, from the
VDS_PROVIDER_FLAG enumeration.

ulStripeSizeFlags: Stripe size that the provider supports, which MUST be a power of 2. Each bit
in the 32-bit integer represents a size that the provider supports. For example, if the nth bit is
set, the provider supports a stripe size of 2^n. This parameter is used only for software

providers. The basic provider sets this value to zero and the dynamic provider sets this value
to 64K.

sRebuildPriority: The rebuild priority of all volumes that the provider manages. It specifies the
regeneration order when a mirrored or RAID-5 volume requires rebuilding. Priority levels
MUST be from 0 through 15. A higher value indicates a higher priority. This parameter is used
only for software providers and does not apply to the basic provider.

2.2.2.8 IVdsPack Data Types

This section lists the data types that are used exclusively by the IVdsPack methods.

2.2.2.8.1 Enumerations

2.2.2.8.1.1 VDS_PACK_STATUS

The VDS_PACK_STATUS enumeration defines the set of object status values for a disk pack.

typedef enum _VDS_PACK_STATUS

{

 VDS_PS_UNKNOWN = 0x00000000,

 VDS_PS_ONLINE = 0x00000001,

 VDS_PS_OFFLINE = 0x00000004

} VDS_PACK_STATUS;

VDS_PS_UNKNOWN: The status of the disk pack cannot be determined.

VDS_PS_ONLINE: The disk pack is available.

VDS_PS_OFFLINE: The disk pack is unavailable; the disks are not accessible.

2.2.2.8.1.2 VDS_PACK_FLAG

The VDS_PACK_FLAG enumeration defines the set of valid flags for a disk pack object.

typedef enum _VDS_PACK_FLAG

{

 VDS_PKF_FOREIGN = 0x00000001,

 VDS_PKF_NOQUORUM = 0x00000002,

%5bMS-GLOS%5d.pdf

72 / 368

[MS-VDS] — v20130722
 Virtual Disk Service (VDS) Protocol

 Copyright © 2013 Microsoft Corporation.

 Release: Monday, July 22, 2013

 VDS_PKF_POLICY = 0x00000004,

 VDS_PKF_CORRUPTED = 0x00000008,

 VDS_PKF_ONLINE_ERROR = 0x00000010

} VDS_PACK_FLAG;

VDS_PKF_FOREIGN: If set, an external disk pack is eligible for online status.

VDS_PKF_NOQUORUM: If set, a dynamic disk pack lacks the required disk quorum.

VDS_PKF_POLICY: If set, management policy forbids the disk pack from gaining online status.

VDS_PKF_CORRUPTED: If set, a disk pack contains a disk that has a corrupted LDM database.

VDS_PKF_ONLINE_ERROR: If set, a disk pack with sufficient disk quorum failed to achieve
online status due to an error.

2.2.2.8.2 Structures

2.2.2.8.2.1 VDS_PACK_PROP

The VDS_PACK_PROP structure provides information about the properties of a disk pack.

typedef struct _VDS_PACK_PROP {

 VDS_OBJECT_ID id;

 [string] WCHAR* pwszName;

 VDS_PACK_STATUS status;

 unsigned long ulFlags;

} VDS_PACK_PROP,

 *PVDS_PACK_PROP;

id: The VDS object ID of the disk pack object.

pwszName: The null-terminated Unicode name of the disk pack. If the pack has no name, this
pointer is set to NULL.

status: The value from the VDS_PACK_STATUS enumeration that indicates the status of the
disk pack.

ulFlags: A combination of any values, by using a bitwise OR operator, of the disk pack flags that
are defined in the VDS_PACK_FLAG enumeration. ulFlags may be 0 if none of the
VDS_PACK_FLAG values apply.

2.2.2.9 IVdsDisk Data Types

This section lists data types that are used exclusively by the IVdsDisk methods.

2.2.2.9.1 Structures

2.2.2.9.1.1 VDS_DISK_PROP

The VDS_DISK_PROP structure provides the properties of a disk.

typedef struct _VDS_DISK_PROP {

%5bMS-GLOS%5d.pdf

73 / 368

[MS-VDS] — v20130722
 Virtual Disk Service (VDS) Protocol

 Copyright © 2013 Microsoft Corporation.

 Release: Monday, July 22, 2013

 VDS_OBJECT_ID id;

 VDS_DISK_STATUS status;

 VDS_LUN_RESERVE_MODE ReserveMode;

 VDS_HEALTH health;

 DWORD dwDeviceType;

 DWORD dwMediaType;

 ULONGLONG ullSize;

 unsigned long ulBytesPerSector;

 unsigned long ulSectorsPerTrack;

 unsigned long ulTracksPerCylinder;

 unsigned long ulFlags;

 VDS_STORAGE_BUS_TYPE BusType;

 VDS_PARTITION_STYLE PartitionStyle;

 [switch_is(PartitionStyle)] union {

 [case(VDS_PST_MBR)]

 DWORD dwSignature;

 [case(VDS_PST_GPT)]

 GUID DiskGuid;

 [default] ;

 };

 [string] WCHAR* pwszDiskAddress;

 [string] WCHAR* pwszName;

 [string] WCHAR* pwszFriendlyName;

 [string] WCHAR* pwszAdaptorName;

 [string] WCHAR* pwszDevicePath;

} VDS_DISK_PROP,

 *PVDS_DISK_PROP;

id: The VDS object ID of the disk object.

status: The value from the VDS_DISK_STATUS enumeration that indicates the disk status.

ReserveMode: The value from the VDS_LUN_RESERVE_MODE enumeration that indicates

the sharing mode of the disk.

health: The value from the VDS_HEALTH enumeration that indicates the health of the disk.

dwDeviceType: The device type of the disk. Note that this value refers to the disk type and
not the drive type. Thus, if there is CD media in a DVD/CD drive, it is identified as

FILE_DEVICE_CD_ROM; however, DVD media in the same drive is identified as
FILE_DEVICE_DVD. This field can have the following values.

Value Meaning

FILE_DEVICE_CD_ROM

0x00000002

The device is a CD-ROM.

FILE_DEVICE_DISK

0x00000007

The device is a hard disk or removable device.

FILE_DEVICE_DVD

0x00000033

The device is a DVD.

dwMediaType: The media type of the disk; it can have the following values.

%5bMS-GLOS%5d.pdf

74 / 368

[MS-VDS] — v20130722
 Virtual Disk Service (VDS) Protocol

 Copyright © 2013 Microsoft Corporation.

 Release: Monday, July 22, 2013

Value Meaning

Unknown

0x00000000

The disk media type is unknown.

RemovableMedia

0x0000000B

The disk media is removable.

FixedMedia

0x0000000C

The disk media is fixed.

ullSize: The size of the disk, in bytes.

ulBytesPerSector: The size of the sectors for the disk, in bytes.

ulSectorsPerTrack: The number of sectors per track on the disk.

ulTracksPerCylinder: The number of tracks per cylinder on the disk.

ulFlags: The combination of any values, by using a bitwise OR operator, that are defined in the
VDS_DISK_FLAG enumeration. This field may be zero if none of the VDS_DISK_FLAG

values apply.

BusType: The value from the VDS_STORAGE_BUS_TYPE enumeration that indicates the type
of bus where the disk resides.

PartitionStyle: The value from the VDS_PARTITION_STYLE enumeration that indicates the
partitioning format of the disk.

dwSignature: The MBR disk signature of the disk.

DiskGuid: The GUID in the GPT that identifies the disk.

pwszDiskAddress: The null-terminated Unicode address of the disk, if the disk uses a SCSI-like

address; otherwise, NULL. If present, a client can use this property to determine the port
number, bus, target number, and LUN of the disk.

pwszName: The null-terminated Unicode name that the operating system uses to identify the
disk. If present, a client can use this property to determine the disk's PNP device number. This
is the number obtained from the DeviceNumber member of STORAGE_DEVICE_NUMBER (see

[MSDN-STRGEDEVNUM]). For a hard disk, this name has the format \\?\PhysicalDriveN, where
N signifies the device number of the disk. For a DVD/CD drive, this name has the format
\\?\CdRomN, where N signifies the device number of the DVD/CD drive. A client can use this
property to identify the disk.

pwszFriendlyName: The null-terminated Unicode friendly (human-readable) name of the disk
as assigned by the operating system. This property MAY be NULL. If present, a client can use
this property to display a human-readable name of the disk.

pwszAdaptorName: The null-terminated Unicode name that the operating system assigns to

the adapter to which the disk is attached. This property MAY be NULL. If present, a client can
use this property to display the adapter name of the disk.

pwszDevicePath: The null-terminated Unicode device path that the operating system uses to
identify the device for the disk. This property MAY be NULL. If present, a client can use this
property to display the device path of the disk. This string is used to load the property page
information for a disk.

%5bMS-GLOS%5d.pdf
%5bMS-GLOS%5d.pdf
http://go.microsoft.com/fwlink/?LinkId=208346

75 / 368

[MS-VDS] — v20130722
 Virtual Disk Service (VDS) Protocol

 Copyright © 2013 Microsoft Corporation.

 Release: Monday, July 22, 2013

2.2.2.10 IVdsDisk3 Data Types

This section lists data types that are used exclusively by the IVdsDisk3 methods.

2.2.2.10.1 Enumerations

2.2.2.10.1.1 VDS_DISK_OFFLINE_REASON

The VDS_DISK_OFFLINE_REASON enumeration defines the reason for the disk to be kept offline.

typedef enum _VDS_DISK_OFFLINE_REASON

{

 VDSDiskOfflineReasonNone = 0,

 VDSDiskOfflineReasonPolicy = 1,

 VDSDiskOfflineReasonRedundantPath = 2,

 VDSDiskOfflineReasonSnapshot = 3,

 VDSDiskOfflineReasonCollision = 4,

 VDSDiskOfflineReasonResourceExhaustion = 5,

 VDSDiskOfflineReasonWriteFailure = 6,

 VDSDiskOfflineReasonDIScan = 7

} VDS_DISK_OFFLINE_REASON;

VDSDiskOfflineReasonNone: The reason is unknown.

VDSDiskOfflineReasonPolicy: The disk is offline because of the SAN policy.

VDSDiskOfflineReasonRedundantPath: The disk is offline because it was determined that the

disk is a redundant path to another disk that is online.

VDSDiskOfflineReasonSnapshot: The disk is offline because it is a snapshot disk.

VDSDiskOfflineReasonCollision: The disk is offline because its disk signature is the same as
the disk signature of another disk that is online.

VDSDiskOfflineReasonResourceExhaustion: The disk is offline because of lack of capacity.

VDSDiskOfflineReasonWriteFailure: The disk is offline because of critical write failures.

VDSDiskOfflineReasonDIScan: The disk is offline because a data integrity scan is required.

2.2.2.10.2 Structures

2.2.2.10.2.1 VDS_DISK_PROP2

The VDS_DISK_PROP2 structure provides the properties of a disk.

typedef struct _VDS_DISK_PROP2 {

 VDS_OBJECT_ID id;

 VDS_DISK_STATUS status;

 VDS_DISK_OFFLINE_REASON OfflineReason;

 VDS_LUN_RESERVE_MODE ReserveMode;

 VDS_HEALTH health;

 DWORD dwDeviceType;

 DWORD dwMediaType;

 ULONGLONG ullSize;

 unsigned long ulBytesPerSector;

76 / 368

[MS-VDS] — v20130722
 Virtual Disk Service (VDS) Protocol

 Copyright © 2013 Microsoft Corporation.

 Release: Monday, July 22, 2013

 unsigned long ulSectorsPerTrack;

 unsigned long ulTracksPerCylinder;

 unsigned long ulFlags;

 VDS_STORAGE_BUS_TYPE BusType;

 VDS_PARTITION_STYLE PartitionStyle;

 [switch_is(PartitionStyle)] union {

 [case(VDS_PST_MBR)]

 DWORD dwSignature;

 [case(VDS_PST_GPT)]

 GUID DiskGuid;

 [default] ;

 };

 [string] WCHAR* pwszDiskAddress;

 [string] WCHAR* pwszName;

 [string] WCHAR* pwszFriendlyName;

 [string] WCHAR* pwszAdaptorName;

 [string] WCHAR* pwszDevicePath;

 [string] WCHAR* pwszLocationPath;

} VDS_DISK_PROP2,

 *PVDS_DISK_PROP2;

id: The VDS object ID of the disk object.

status: The value from the VDS_DISK_STATUS enumeration that indicates the disk status.

OfflineReason: The value from VDS_DISK_OFFLINE_REASON that indicates the reason for
keeping the disk offline.

ReserveMode: The value from the VDS_LUN_RESERVE_MODE enumeration that includes the
sharing mode of the disk.

health: The value from the VDS_HEALTH enumeration that indicates the health of the disk.

dwDeviceType: The device type of the disk. Note that this volume refers to the disk type and
not the drive type. Thus, if there is CD media in a DVD/CD drive, it is identified as
FILE_DEVICE_CD_ROM; however, DVD media in the same drive is identified as
FILE_DEVICE_DVD. This field can have the following values.

Value Meaning

FILE_DEVICE_CD_ROM

0x00000002

The device is a CD-ROM.

FILE_DEVICE_DISK

0x00000007

The device is a hard disk or removable device.

FILE_DEVICE_DVD

0x00000033

The device is a DVD.

dwMediaType: The media type of the disk. It can have the following values.

Value Meaning

Unknown

0x00000000

The disk media type is unknown.

77 / 368

[MS-VDS] — v20130722
 Virtual Disk Service (VDS) Protocol

 Copyright © 2013 Microsoft Corporation.

 Release: Monday, July 22, 2013

Value Meaning

RemovableMedia

0x0000000B

The disk is removable media.

FixedMedia

0x0000000C

The disk media is fixed.

ullSize: The size of the disk, in bytes.

ulBytesPerSector: The size of the sectors for the disk, in bytes.

ulSectorsPerTrack: The number of sectors per track on the disk.

ulTracksPerCylinder: The number of tracks per cylinder on the disk.

ulFlags: The combination of any values, by using a bitwise OR operator, that are defined in the
VDS_DISK_FLAG enumeration.

BusType: The value from the VDS_STORAGE_BUS_TYPE enumeration that indicates the type

of bus where the disk resides.

PartitionStyle: The value from the VDS_PARTITION_STYLE enumeration that indicates the
partitioning format of the disk.

dwSignature: The MBR disk signature of the disk.

DiskGuid: The GUID in the GPT that identifies the disk.

pwszDiskAddress: The null-terminated Unicode address of the disk, if the disk uses a SCSI-like
address. Otherwise, NULL. If present, a client can use this property to determine the port

number, bus, target number, and LUN of the disk.

pwszName: The null-terminated Unicode name that the operating system uses to identify the

disk. If present, a client can use this property to determine the disk's PNP device number. For
a hard disk, this name has the format \\?\PhysicalDriveN; where N signifies the device number
of the disk. For a DVD/CD drive, this name has the format \\?\CdRomN; where N signifies the
device number of the DVD/CD drive. A client can use this property to identify the disk.

pwszFriendlyName: The null-terminated Unicode friendly (human-readable) name of the disk

as assigned by the operating system. This property MAY be NULL. If present, a client can use
this property to display a human-readable name of the disk.

pwszAdaptorName: The null-terminated Unicode name that the operating system assigns to
the adapter to which the disk is attached. This property MAY be NULL. If present, a client can
use this property to display the adapter name of the disk.

pwszDevicePath: The null-terminated Unicode device path that the operating system uses to

identify the device for the disk. This property MAY be NULL. If present, a client can use this
property to display the device path of the disk. This string is used to load the property page

information for a disk.

pwszLocationPath: This string is built from a combination of the
DEVPKEY_Device_LocationPaths value for the disk's adapter, the bus type, and the SCSI
address. The DEVPKEY_Device_LocationPaths property represents the location of a device
instance in the device tree.

78 / 368

[MS-VDS] — v20130722
 Virtual Disk Service (VDS) Protocol

 Copyright © 2013 Microsoft Corporation.

 Release: Monday, July 22, 2013

The following table shows examples of location paths built for various bus/disk types.

Bus/disk type Location path

IDE\ATA\PATA\SATA PCIROOT(0)#PCI(0100)#ATA(C01T03L00)

SCSI PCIROOT(0)#PCI(1C00)#PCI(0000)#SCSI(P00T01L01)

SAS PCIROOT(1)#PCI(0300)#SAS(P00T03L00)

PCI RAID PCIROOT(0)#PCI(0200)#PCI(0003)#PCI(0100)#RAID(P02T00L00)

2.2.2.10.2.2 VDS_DISK_FREE_EXTENT

The VDS_DISK_FREE_EXTENT structure provides information about a disk extent associated with
free space on the disk.

typedef struct VDS_DISK_FREE_EXTENT {

 VDS_OBJECT_ID diskId;

 ULONGLONG ullOffset;

 ULONGLONG ullSize;

} VDS_DISK_FREE_EXTENT,

 *PVDS_DISK_FREE_EXTENT;

diskId: The VDS object ID of the disk object on which the extent resides.

ullOffset: The byte offset of the disk extent from the beginning of the disk.

ullSize: The size, in bytes, of the extent.

2.2.2.11 IVdsAdvancedDisk Data Types

This section lists data types that are used exclusively by the IVdsAdvancedDisk methods.

2.2.2.11.1 Structures

2.2.2.11.1.1 CHANGE_ATTRIBUTES_PARAMETERS

The CHANGE_ATTRIBUTES_PARAMETERS structure describes the attributes to change on a
partition.

typedef struct _CHANGE_ATTRIBUTES_PARAMETERS {

 VDS_PARTITION_STYLE style;

 [switch_is(style)] union {

 [case(VDS_PST_MBR)]

 struct {

 BOOLEAN bootIndicator;

 } MbrPartInfo;

 [case(VDS_PST_GPT)]

 struct {

 ULONGLONG attributes;

 } GptPartInfo;

 [default] ;

 };

79 / 368

[MS-VDS] — v20130722
 Virtual Disk Service (VDS) Protocol

 Copyright © 2013 Microsoft Corporation.

 Release: Monday, July 22, 2013

} CHANGE_ATTRIBUTES_PARAMETERS;

style: The value from the VDS_PARTITION_STYLE enumeration that describes the partition

format of the disk. If the disk partitioning format is MBR, the only value that may be changed
is the bootIndicator. If the disk partitioning format is GPT, the only value that may be changed
is the GPT attribute.

MbrPartInfo: Contains information for an MBR partition.

bootIndicator: The Boolean value that indicates whether the partition is bootable.

GptPartInfo: Contains information for a partition in a GPT.

attributes: The bitwise OR operator of attributes to change; it can have a combination of

the following values.

Value Meaning

GPT_ATTRIBUTE_PLATFORM_REQUIRED

0x0000000000000001

Partition is required for the platform to

function properly.<34>

GPT_BASIC_DATA_ATTRIBUTE_READ_ONLY

0x1000000000000000

The partition can be read from but not

written to. Used only with the basic

data partition type.

GPT_BASIC_DATA_ATTRIBUTE_HIDDEN

0x4000000000000000

The partition is hidden and is not

mounted. Used only with the basic

data partition type.

GPT_BASIC_DATA_ATTRIBUTE_NO_DRIVE_LETTER

0x8000000000000000

The partition does not receive a drive

letter by default when moving the disk

to another machine. Used only with the

basic data partition type.

2.2.2.12 IVdsAdvancedDisk2 Data Types

This section lists data types that are used exclusively by the IVdsAdvancedDisk2 methods.

2.2.2.12.1 Structures

2.2.2.12.1.1 CHANGE_PARTITION_TYPE_PARAMETERS

The CHANGE_PARTITION_TYPE_PARAMETERS structure describes parameters to use when
changing a partition type.<35>

typedef struct _CHANGE_PARTITION_TYPE_PARAMETERS {

 VDS_PARTITION_STYLE style;

 [switch_is(style)] union {

 [case(VDS_PST_MBR)]

 struct {

 byte partitionType;

 } MbrPartInfo;

 [case(VDS_PST_GPT)]

 struct {

80 / 368

[MS-VDS] — v20130722
 Virtual Disk Service (VDS) Protocol

 Copyright © 2013 Microsoft Corporation.

 Release: Monday, July 22, 2013

 GUID partitionType;

 } GptPartInfo;

 [default] ;

 };

} CHANGE_PARTITION_TYPE_PARAMETERS;

style: A value from the VDS_PARITION_STYLE enumeration that describes the disk partition

format.

MbrPartInfo: Contains information for an MBR partition.

partitionType: The byte value indicating the partition type to change the partition to.

GptPartInfo: Contains information for the partition of a GPT.

partitionType: The GUID indicating the partition type to change the partition to.<36>

2.2.2.13 IVdsAdvancedDisk3 Data Types

This section lists data types that are used exclusively by the IVdsAdvancedDisk3 methods.

2.2.2.13.1 Structures

2.2.2.13.1.1 VDS_ADVANCEDDISK_PROP

The VDS_ADVANCEDDISK_PROP structure provides the properties of a disk.

typedef struct _VDS_ADVANCEDDISK_PROP {

 [string] LPWSTR pwszId;

 [string] LPWSTR pwszPathname;

 [string] LPWSTR pwszLocation;

 [string] LPWSTR pwszFriendlyName;

 [string] LPWSTR pswzIdentifier;

 USHORT usIdentifierFormat;

 ULONG ulNumber;

 [string] LPWSTR pwszSerialNumber;

 [string] LPWSTR pwszFirmwareVersion;

 [string] LPWSTR pwszManufacturer;

 [string] LPWSTR pwszModel;

 ULONGLONG ullTotalSize;

 ULONGLONG ullAllocatedSize;

 ULONG ulLogicalSectorSize;

 ULONG ulPhysicalSectorSize;

 ULONG ulPartitionCount;

 VDS_DISK_STATUS status;

 VDS_HEALTH health;

 VDS_STORAGE_BUS_TYPE BusType;

 VDS_PARTITION_STYLE PartitionStyle;

 [switch_is(PartitionStyle)] union {

 [case(VDS_PST_MBR)]

 DWORD dwSignature;

 [case(VDS_PST_GPT)]

 GUID DiskGuid;

 [default] ;

 };

81 / 368

[MS-VDS] — v20130722
 Virtual Disk Service (VDS) Protocol

 Copyright © 2013 Microsoft Corporation.

 Release: Monday, July 22, 2013

 ULONG ulFlags;

 DWORD dwDeviceType;

} VDS_ADVANCEDDISK_PROP, *PVDS_ADVANCEDISK_PROP;

pwszId: The null-terminated Unicode device path that the operating system uses to identify the

device for the disk. This property MAY be NULL. If present, a client can use this property to
display the device path of the disk.

pwszPathname: The null-terminated Unicode device path that the operating system uses to
identify the device for the disk. This property MAY be NULL. If present, a client can use this
property to display the device path of the disk.

pwszLocation: This string is built from a combination of the DEVPKEY_Device_LocationPaths
value for the disk's adapter, the bus type, and the SCSI address. The
DEVPKEY_Device_LocationPaths property represents the location of a device instance in the
device tree.

The following table shows examples of location paths built for various bus/disk types.

Bus/disk type Location path

IDE\ATA\PATA\SATA PCIROOT(0)#PCI(0100)#ATA(C01T03L00)

SCSI PCIROOT(0)#PCI(1C00)#PCI(0000)#SCSI(P00T01L01)

SAS PCIROOT(1)#PCI(0300)#SAS(P00T03L00)

PCI RAID PCIROOT(0)#PCI(0200)#PCI(0003)#PCI(0100)#RAID(P02T00L00)

pwszFriendlyName: The null-terminated Unicode friendly (human-readable) name of the disk
as assigned by the operating system. This property MAY be NULL. If present, a client can use

this property to display a human-readable name of the disk.

pswzIdentifier: The VPD 0x83 Identifier for the disk.

usIdentifierFormat: The VPD 0x83 Identifier for the disk.

ulNumber: The device number of the disk.

pwszSerialNumber: The null-terminated serial number of the device. This value is NULL if no
serial number exists.

pwszFirmwareVersion: The firmware version number as specified by the device manufacturer.

This value is NULL if no firmware version exists.

pwszManufacturer: The null-terminated name of the device manufacturer. This value is NULL
if no manufacturer name exists.

pwszModel: The model as specified by the device manufacturer. This value is NULL if no model
name exists.

ullTotalSize: The size of the disk, in bytes.

ullAllocatedSize: The allocated size of the disk, in bytes. It is the total size minus the total size

of free extents on the disk.

82 / 368

[MS-VDS] — v20130722
 Virtual Disk Service (VDS) Protocol

 Copyright © 2013 Microsoft Corporation.

 Release: Monday, July 22, 2013

ulLogicalSectorSize: The size of the logical sectors for the disk, in bytes This may be different
from physical in the case of 512 emulated devices.

ulPhysicalSectorSize: The size of the physical sectors for the disk, in bytes.

ulPartitionCount: The number of partitions on the disk.

status: The value from the VDS_DISK_STATUS enumeration that indicates the disk status.

health: The value from the VDS_HEALTH enumeration that indicates the health of the disk.

BusType: The value from the VDS_STORAGE_BUS_TYPE enumeration that indicates the type of
bus where the disk resides.

PartitionStyle: The value from the VDS_PARTITION_STYLE enumeration that indicates the
partitioning format of the disk.

ulFlags: The combination of any values, by using a bitwise OR operator, that are defined in the

VDS_DISK_FLAG enumeration.

dwDeviceType: The device type of the disk. Note that this volume refers to the disk type and
not the drive type. Thus, if there is CD media in a DVD/CD drive, it is identified as
FILE_DEVICE_CD_ROM; however, DVD media in the same drive is identified as
FILE_DEVICE_DVD. This field can have the following values.

Value Meaning

FILE_DEVICE_CD_ROM

0x00000002

The device is a CD-ROM.

FILE_DEVICE_DISK

0x00000007

The device is a hard disk or removable device.

FILE_DEVICE_DVD

0x00000033

The device is a DVD.

2.2.2.14 IVdsVolume Data Types

This section lists data types that are used exclusively by the IVdsVolume methods.

2.2.2.14.1 Structures

2.2.2.14.1.1 VDS_VOLUME_PROP

The VDS_VOLUME_PROP structure that provides the properties of a volume.

typedef struct _VDS_VOLUME_PROP {

 VDS_OBJECT_ID id;

 VDS_VOLUME_TYPE type;

 VDS_VOLUME_STATUS status;

 VDS_HEALTH health;

 VDS_TRANSITION_STATE TransitionState;

 ULONGLONG ullSize;

 unsigned long ulFlags;

 VDS_FILE_SYSTEM_TYPE RecommendedFileSystemType;

 [string] WCHAR* pwszName;

83 / 368

[MS-VDS] — v20130722
 Virtual Disk Service (VDS) Protocol

 Copyright © 2013 Microsoft Corporation.

 Release: Monday, July 22, 2013

} VDS_VOLUME_PROP,

 *PVDS_VOLUME_PROP;

id: The VDS object ID of the volume object.

type: The value from the VDS_VOLUME_TYPE enumeration that defines the type of the

volume.

status: The value from the VDS_VOLUME_STATUS enumeration that defines the status of the
volume.

health: The value from the VDS_HEALTH enumeration that defines the health of the volume.

TransitionState: The value from the VDS_TRANSITION_STATE enumeration that defines the
configuration stability of the volume.

ullSize: The size of the volume, in bytes.

ulFlags: The combination of any values by using the bitwise OR operator of volume flags from
the VDS_VOLUME_FLAG enumeration.

RecommendedFileSystemType: The value from the VDS_FILE_SYSTEM_TYPE enumeration
that defines the recommended file system type for the volume.

pwszName: The null-terminated Unicode name that the operating system uses to identify the
volume.

2.2.2.15 IVdsVolume2 Data Types

This section lists data types that are used exclusively by the IVdsVolume2 methods.

2.2.2.15.1 Structures

2.2.2.15.1.1 VDS_VOLUME_PROP2

The VDS_VOLUME_PROP2 structure provides the properties of a volume.

typedef struct _VDS_VOLUME_PROP2 {

 VDS_OBJECT_ID id;

 VDS_VOLUME_TYPE type;

 VDS_VOLUME_STATUS status;

 VDS_HEALTH health;

 VDS_TRANSITION_STATE TransitionState;

 ULONGLONG ullSize;

 unsigned long ulFlags;

 VDS_FILE_SYSTEM_TYPE RecommendedFileSystemType;

 ULONG cbUniqueId;

 [string] WCHAR* pwszName;

 [size_is(cbUniqueId)] BYTE* pUniqueId;

} VDS_VOLUME_PROP2,

 *PVDS_VOLUME_PROP2;

id: The VDS object ID of the volume object.

84 / 368

[MS-VDS] — v20130722
 Virtual Disk Service (VDS) Protocol

 Copyright © 2013 Microsoft Corporation.

 Release: Monday, July 22, 2013

type: The value from the VDS_VOLUME_TYPE enumeration that defines the type of the
volume.

status: The value from the VDS_VOLUME_STATUS enumeration that defines the status of the
volume.

health: The value from the VDS_HEALTH enumeration that defines the health of the volume.

TransitionState: The value from the VDS_TRANSITION_STATE enumeration that defines the
configuration stability of the volume.

ullSize: The size of the volume, in bytes.

ulFlags: The combination of any values, by using the bitwise OR operator, of volume flags from
the VDS_VOLUME_FLAG enumeration.

RecommendedFileSystemType: The value from the VDS_FILE_SYSTEM_TYPE enumeration

that defines the recommended file system type for the volume.

cbUniqueId: Count of bytes for pUniqueId.

pwszName: The null-terminated Unicode name that the operating system uses to identify the
volume.

pUniqueId: A byte array containing the volume's unique id.

2.2.2.16 IVdsVolumeMF Data Types

This section lists data types that are used exclusively by the IVdsVolumeMF methods.

2.2.2.16.1 Data Types

2.2.2.16.1.1 MAX_PATH

Constant/value Description

MAX_PATH

0x00000104

The maximum character length of a path.

2.2.2.16.2 Structures

2.2.2.16.2.1 VDS_REPARSE_POINT_PROP

The VDS_REPARSE_POINT_PROP structure defines the reparse point properties of the mount
point to a volume object.

typedef struct VDS_REPARSE_POINT_PROP {

 VDS_OBJECT_ID SourceVolumeId;

 [string] WCHAR* pwszPath;

} VDS_REPARSE_POINT_PROP,

 *PVDS_REPARSE_POINT_PROP;

SourceVolumeId: The VDS object ID of the volume object that the reparse point refers to.

%5bMS-GLOS%5d.pdf

85 / 368

[MS-VDS] — v20130722
 Virtual Disk Service (VDS) Protocol

 Copyright © 2013 Microsoft Corporation.

 Release: Monday, July 22, 2013

pwszPath: The null-terminated Unicode path of the reparse point. The path does not contain a
drive letter; for example, "\mount".

2.2.2.17 IVdsVolumePlex Data Types

This section lists data types that are used exclusively by the IVdsVolumePlex methods.

2.2.2.17.1 Enumeration

2.2.2.17.1.1 VDS_VOLUME_PLEX_TYPE

The VDS_VOLUME_PLEX_TYPE enumeration defines the set of valid types for a volume plex.

typedef enum _VDS_VOLUME_PLEX_TYPE

{

 VDS_VPT_UNKNOWN = 0x00000000,

 VDS_VPT_SIMPLE = 0x0000000A,

 VDS_VPT_SPAN = 0x0000000B,

 VDS_VPT_STRIPE = 0x0000000C,

 VDS_VPT_PARITY = 0x0000000E

} VDS_VOLUME_PLEX_TYPE;

VDS_VPT_UNKNOWN: The volume plex type is unknown.

VDS_VPT_SIMPLE: The plex type is simple; it is composed of extents from exactly one disk.

VDS_VPT_SPAN: The plex type is spanned; it is composed of extents from more than one disk.

VDS_VPT_STRIPE: The plex type is striped, which is equivalent to RAID-0.

VDS_VPT_PARITY: The plex type is striped with parity, which accounts for RAID levels 3, 4, 5,
and 6.

2.2.2.17.1.2 VDS_VOLUME_PLEX_STATUS

The VDS_VOLUME_PLEX_STATUS enumeration defines the set of object status values for a
volume plex.

typedef enum _VDS_VOLUME_PLEX_STATUS

{

 VDS_VPS_UNKNOWN = 0x00000000,

 VDS_VPS_ONLINE = 0x00000001,

 VDS_VPS_NO_MEDIA = 0x00000003,

 VDS_VPS_FAILED = 0x00000005

} VDS_VOLUME_PLEX_STATUS;

VDS_VPS_UNKNOWN: The status of the volume plex is unknown.

VDS_VPS_ONLINE: The volume plex is available.

VDS_VPS_NO_MEDIA: The volume plex has no media.

VDS_VPS_FAILED: The volume plex is unavailable.

86 / 368

[MS-VDS] — v20130722
 Virtual Disk Service (VDS) Protocol

 Copyright © 2013 Microsoft Corporation.

 Release: Monday, July 22, 2013

2.2.2.17.2 Structures

2.2.2.17.2.1 VDS_VOLUME_PLEX_PROP

The VDS_VOLUME_PLEX_PROP structure provides information about the properties of a volume
plex.

typedef struct _VDS_VOLUME_PLEX_PROP {

 VDS_OBJECT_ID id;

 VDS_VOLUME_PLEX_TYPE type;

 VDS_VOLUME_PLEX_STATUS status;

 VDS_HEALTH health;

 VDS_TRANSITION_STATE TransitionState;

 ULONGLONG ullSize;

 unsigned long ulStripeSize;

 unsigned long ulNumberOfMembers;

} VDS_VOLUME_PLEX_PROP,

 *PVDS_VOLUME_PLEX_PROP;

id: The GUID of the plex object.

type: The plex type that is enumerated by VDS_VOLUME_PLEX_TYPE. The type of the plex
need not match that of the volume to which it belongs. For example, a mirrored RAID-1
volume can be composed of plexes that are simple (composed of extents from exactly one
disk).

status: The status of the plex object that is enumerated by VDS_VOLUME_PLEX_STATUS.
The status of the plex need not match that of the volume to which it belongs. For example, a
volume plex may have a failed status (VDS_VPS_FAILED), but if the volume is fault-tolerant
and its other plexes are online (VDS_VPS_ONLINE), the volume will still be online
(VDS_VS_ONLINE).

health: Value from the VDS_HEALTH enumeration that defines the health of the volume. The
health of the plex need not match that of the volume to which it belongs. For instance, a

volume's plex may have failed health (VDS_H_FAILED), but if the volume is a mirror volume
(RAID-1) and its other plexes are healthy (VDS_H_HEALTHY), the volume will have failed
redundancy health (VDS_H_FAILED_REDUNDANCY).

TransitionState: Value from the VDS_TRANSITION_STATE enumeration that defines the
configuration stability of the plex. The TransitionState of the plex matches the TransitionState
of the volume to which it belongs.

ullSize: The size of the plex, in bytes. The size can be equal to, or greater than, that of the

volume to which it belongs. The plex cannot be smaller than the volume.

ulStripeSize: The stripe interleave size, in bytes. This member applies only for plexes of type
VDS_VPT_STRIPE (striped) and VDS_VPT_PARITY (striped with parity).

ulNumberOfMembers: The number of members (RAID columns) in the volume plex.

2.2.2.18 IVdsVdProvider Data Types

This section lists data types that are used exclusively by methods in the IVdsVdProvider (section

3.1.9.4) interface.

%5bMS-GLOS%5d.pdf

87 / 368

[MS-VDS] — v20130722
 Virtual Disk Service (VDS) Protocol

 Copyright © 2013 Microsoft Corporation.

 Release: Monday, July 22, 2013

2.2.2.18.1 Enumerations

2.2.2.18.1.1 CREATE_VIRTUAL_DISK_FLAG

The CREATE_VIRTUAL_DISK_FLAG enumeration defines the properties of a virtual disk that is
being created.

typedef enum _CREATE_VIRTUAL_DISK_FLAG

{

 CREATE_VIRTUAL_DISK_FLAG_NONE = 0x0,

 CREATE_VIRTUAL_DISK_FLAG_FULL_PHYSICAL_ALLOCATION = 0x1

} CREATE_VIRTUAL_DISK_FLAG;

CREATE_VIRTUAL_DISK_FLAG_NONE: Indicates to the server that no flags have been

specified. CREATE_VIRTUAL_DISK_FLAG_NONE specifies that a virtual disk file will be
allocated as the backing store for the virtual disk and that this file will automatically increase
in size to accommodate the allocated data.

A virtual disk created using the CREATE_ VIRTUAL_DISK_FLAG_NONE flag has a virtual disk

file backing store that at any given time is as large as the actual data written to it, plus the
size of the header and footer. As more data is written, the virtual disk file automatically
increases in size.

For example, if the CREATE_VIRTUAL_DISK_FLAG_NONE flag is used to create a virtual disk
that is 2 gigabytes in size, the initial size of the virtual disk file backing store may only be 2
megabytes. As data is written to this disk, the virtual disk file backing store increases in size,
with a maximum size of 2 gigabytes.

CREATE_VIRTUAL_DISK_FLAG_FULL_PHYSICAL_ALLOCATION: Specifies that the server
should preallocate all physical space necessary for the virtual size of the virtual disk. A fixed
size virtual disk file will be allocated as the backing store for the virtual disk. For example,
creating a fixed size virtual disk that is 2 gigabytes in size using this flag will result in a virtual

disk file that is approximately 2 gigabytes in size.

2.2.2.18.2 Structures

2.2.2.18.2.1 VDS_CREATE_VDISK_PARAMETERS

The VDS_CREATE_VDISK_PARAMETERS structure contains the parameters to be used when a
virtual disk is created.

typedef struct _VDS_CREATE_VDISK_PARAMETERS {

 GUID UniqueId;

 ULONGLONG MaximumSize;

 ULONG BlockSizeInBytes;

 ULONG SectorSizeInBytes;

 [string] LPWSTR pParentPath;

 [string] LPWSTR pSourcePath;

} VDS_CREATE_VDISK_PARAMETERS,

 *PVDS_CREATE_VDISK_PARAMETERS;

UniqueId: A unique and non-zero GUID value to be assigned to the virtual disk.

%5bMS-DTYP%5d.pdf

88 / 368

[MS-VDS] — v20130722
 Virtual Disk Service (VDS) Protocol

 Copyright © 2013 Microsoft Corporation.

 Release: Monday, July 22, 2013

MaximumSize: The maximum virtual size, in bytes, of the virtual disk object.

BlockSizeInBytes: The internal block size, in bytes, of the virtual disk object. If the virtual disk
object being created is a differencing disk, this value MUST be 0. If the virtual disk object
being created is not a differencing disk, setting this value to 0 causes the virtual disk object

being created to use the default block size.<37>

SectorSizeInBytes: Internal sector size, in bytes, of the virtual disk object. This value MUST be
set to 512 (CREATE_VIRTUAL_DISK_PARAMETERS_DEFAULT_SECTOR_SIZE).

pParentPath: A null-terminated wide-character string containing an optional path to a parent
virtual disk object. This member associates the new virtual hard disk with an existing virtual
hard disk. Used when creating a differencing disk. The differencing disk gets its size from its
parent.

A differencing disk represents the current state of the virtual disk as a set of modified blocks
in comparison to a parent disk. A differencing disk is not independent; it depends on the
parent disk to be fully functional. A differencing disk must be created using the

CREATE_VIRTUAL_DISK_FLAG_NONE flag. The parent disk can be created using either the
CREATE_VIRTUAL_DISK_FLAG_NONE or
CREATE_VIRTUAL_DISK_FLAG_FULL_PHYSICAL_ALLOCATION flag. The parent disk can be

another differencing disk.

pSourcePath: A null-terminated wide-character string containing an optional path to a source
of data to be copied to the new virtual hard disk. When pSourcePath is specified, data from
the input virtual disk file is copied block for block from the input virtual disk file to the created
virtual disk file. There is no parent-child relationship established.

2.2.2.19 IVdsVDisk Data Types

This section lists data types that are used exclusively by methods in the IVdsVDisk interface.

2.2.2.19.1 Enumerations

2.2.2.19.1.1 VDS_VDISK_STATE

The VDS_VDISK_STATE enumeration describes the state of a virtual disk.

typedef enum

{

 VDS_VST_UNKNOWN = 0,

 VDS_VST_ADDED = 1,

 VDS_VST_OPEN = 2,

 VDS_VST_ATTACH_PENDING = 3,

 VDS_VST_ATTACHED_NOT_OPEN = 4,

 VDS_VST_ATTACHED = 5,

 VDS_VST_DETACH_PENDING = 6,

 VDS_VST_COMPACTING = 7,

 VDS_VST_MERGING = 8,

 VDS_VST_EXPANDING = 9,

 VDS_VST_DELETED = 10,

 VDS_VST_MAX = 11

} VDS_VDISK_STATE;

VDS_VST_UNKNOWN: VDS was not able to identify the disk's current status.

89 / 368

[MS-VDS] — v20130722
 Virtual Disk Service (VDS) Protocol

 Copyright © 2013 Microsoft Corporation.

 Release: Monday, July 22, 2013

VDS_VST_ADDED: The virtual disk is added to the service's list of objects.

VDS_VST_OPEN: The virtual disk has been added to the service's list of objects, and the virtual
disk file has been opened using IVdsVDisk::Open.

VDS_VST_ATTACH_PENDING: The virtual disk has been added to the service's list of objects,

the virtual disk file has been opened using IVdsVDisk::Open, and the virtual disk is in the
process of being attached.

VDS_VST_ATTACHED_NOT_OPEN: The virtual disk has been added to the service's list of
objects and the virtual disk is attached, but the virtual disk file is not open.

VDS_VST_ATTACHED: The virtual disk has been added to the service's list of objects, the
virtual disk file has been opened using IVdsVDisk::Open, and the virtual disk is attached.

VDS_VST_DETACH_PENDING: The virtual disk has been added to the service's list of objects,

the virtual disk file has been opened using IVdsVDisk::Open, and the virtual disk is in the
process of being detached.

VDS_VST_COMPACTING: The virtual disk has been added to the service's list of objects, the
virtual disk file has been opened using IVdsVDisk::Open, and the virtual disk is being
compacted.

VDS_VST_MERGING: The virtual disk has been added to the service's list of objects, the virtual

disk file has been opened using IVdsVDisk::Open, and the virtual disk is being merged.

VDS_VST_EXPANDING: The virtual disk has been added to the service's list of objects, the
virtual disk file has been opened using IVdsVDisk::Open, and the virtual disk is being
expanded.

VDS_VST_DELETED: The virtual disk has been deleted.

VDS_VST_MAX: Denotes the maximum acceptable value for this type. VDS_VST_MAX - 1 is the
maximum acceptable value.

When the service has been made aware of a virtual disk, the state is set to VDS_VST_ADDED. In
order to perform any operations on the virtual disk such as attaching it, detaching it, merging,
compacting, or expanding, the virtual disk file is opened using IVdsVDisk::Open. Once the virtual
disk is opened, its state transitions to VDS_VST_OPEN.

Attach: To attach a virtual disk, the virtual disk object is first added to the service's list of objects
and its state is set to VDS_VS_ADDED. Next IVdsVDisk::Open MUST be called against the virtual
disk, and the state transitions to VDS_VST_OPEN. When the attach operation is initiated against the

virtual disk, the state of the virtual disk transitions to VDS_VST_ATTACH_PENDING. The virtual disk
remains in this state until the operating system disk object corresponding to the virtual disk has
been instantiated. Once this object is instantiated, the virtual disk object's state transitions to
VDS_VST_ATTACHED. The IVdsOpenVDisk interface is then released, the OpenVirtualDisk object is
removed, and the state transitions to VDS_VST_ATTACHED_NOT_OPEN.

Detach: To detach a virtual disk, the virtual disk object is first added to the service's list of objects

and its state is set to VDS_VST_ADDED. Next IVdsVDisk::Open MUST be called against the virtual
disk, and the state transitions to VDS_VST_OPEN. When the detach operation is initiated against the
virtual disk, the state of the virtual disk transitions to VDS_VST_DETACH_PENDING. The virtual disk
remains in this state until the operating system disk object corresponding to the virtual disk has
been removed. Once this object is removed, the virtual disk object's state transitions to
VDS_VST_OPEN. The IVdsOpenVDisk interface is then released, the OpenVirtualDisk object is
removed, and the state transitions to VDS_VST_ADDED.

90 / 368

[MS-VDS] — v20130722
 Virtual Disk Service (VDS) Protocol

 Copyright © 2013 Microsoft Corporation.

 Release: Monday, July 22, 2013

Compact: A compact operation may be performed against either an attached virtual disk or a
detached virtual disk. To compact a virtual disk, the virtual disk object is first added to the service's

list of objects and its state is set to VDS_VST_ADDED.

To compact a detached virtual disk, IVdsVDisk::Open MUST be called against the virtual disk, and

the state transitions to VDS_VST_OPEN. When the compact operation is initiated against the virtual
disk, the state transitions to VDS_VST_COMPACTING. Once the compact operation has completed,
the state then transitions back to VDS_VST_OPEN. The IVdsOpenVDisk interface is then released,
the OpenVirtualDisk object is removed, and the new state is VDS_VST_ADDED.

An attached virtual disk for which there is no OpenVirtualDisk object will have the state
VDS_VST_ATTACHED_NOT_OPEN. To compact an attached virtual disk, IVdsVDisk::Open MUST be
called against the virtual disk, and the state transitions to VDS_VST_ATTACHED. When the compact

operation is initiated against the virtual disk, the state transitions to VDS_VST_COMPACTING. Once
the compact operation has completed, the state then transitions back to VDS_VST_ATTACHED. The
IVdsOpenVDisk interface is then released, the OpenVirtualDisk object is removed, and the new
state is VDS_VST_ATTACHED_NOT_OPEN.

Merge or Expand: Merge and expand operate on detached virtual disks. To merge or expand a
virtual disk, the virtual disk object is first added to the service's list of objects and its state is set to

VDS_VS_ADDED. Next IVdsVDisk::Open MUST be called against the virtual disk, and the state
transitions to VDS_VST_OPEN. When the merge or expand operation is initiated against the virtual
disk, the state of the virtual disk transitions to VDS_VST_MERGING or VDS_VST_EXPANDING. Once
the merge or expand operation has completed, the state then transitions back to VDS_VST_OPEN.
The IVdsOpenVDisk interface is then released, the OpenVirtualDisk object is removed, and the
new state is VDS_VST_ADDED.

2.2.2.19.1.2 OPEN_VIRTUAL_DISK_FLAG

The OPEN_VIRTUAL_DISK_FLAG enumeration defines flags that are used to open a virtual disk
object.

typedef enum _OPEN_VIRTUAL_DISK_FLAG

{

 OPEN_VIRTUAL_DISK_FLAG_NONE = 0x0,

 OPEN_VIRTUAL_DISK_FLAG_NO_PARENTS = 0x1,

 OPEN_VIRTUAL_DISK_FLAG_BLANK_FILE = 0x2,

 OPEN_VIRTUAL_DISK_FLAG_BOOT_DRIVE = 0x4

} OPEN_VIRTUAL_DISK_FLAG;

OPEN_VIRTUAL_DISK_FLAG_NONE: Indicates that no flag has been specified.

OPEN_VIRTUAL_DISK_FLAG_NO_PARENTS: Applicable only to differencing type virtual
disks. Opens the backing store without opening the backing store for any differencing chain
parents.

OPEN_VIRTUAL_DISK_FLAG_BLANK_FILE: Opens the backing store as an empty file
without performing virtual disk verification.

OPEN_VIRTUAL_DISK_FLAG_BOOT_DRIVE: This flag MUST not be used by VDS virtual disk
providers or their clients.<38>

2.2.2.19.1.3 DEPENDENT_DISK_FLAG

The DEPENDENT_DISK_FLAG enumeration contains virtual disk dependency information flags.

91 / 368

[MS-VDS] — v20130722
 Virtual Disk Service (VDS) Protocol

 Copyright © 2013 Microsoft Corporation.

 Release: Monday, July 22, 2013

typedef enum _DEPENDENT_DISK_FLAG

{

 DEPENDENT_DISK_FLAG_NONE = 0x00000000,

 DEPENDENT_DISK_FLAG_MULT_BACKING_FILES = 0x00000001,

 DEPENDENT_DISK_FLAG_FULLY_ALLOCATED = 0x00000002,

 DEPENDENT_DISK_FLAG_READ_ONLY = 0x00000004,

 DEPENDENT_DISK_FLAG_REMOTE = 0x00000008,

 DEPENDENT_DISK_FLAG_SYSTEM_VOLUME = 0x00000010,

 DEPENDENT_DISK_FLAG_SYSTEM_VOLUME_PARENT = 0x00000020,

 DEPENDENT_DISK_FLAG_REMOVABLE = 0x00000040,

 DEPENDENT_DISK_FLAG_NO_DRIVE_LETTER = 0x00000080,

 DEPENDENT_DISK_FLAG_PARENT = 0x00000100,

 DEPENDENT_DISK_FLAG_NO_HOST_DISK = 0x00000200,

 DEPENDENT_DISK_FLAG_PERMANENT_LIFETIME = 0x00000400

} DEPENDENT_DISK_FLAG;

DEPENDENT_DISK_FLAG_NONE: No flags specified. Use system defaults.

DEPENDENT_DISK_FLAG_MULT_BACKING_FILES: Multiple files backing the virtual disk.

DEPENDENT_DISK_FLAG_FULLY_ALLOCATED: Fully allocated virtual disk.

DEPENDENT_DISK_FLAG_READ_ONLY: Read-only virtual disk.

DEPENDENT_DISK_FLAG_REMOTE: The backing file of the virtual disk is not on a local
physical disk.

DEPENDENT_DISK_FLAG_SYSTEM_VOLUME: Reserved.

DEPENDENT_DISK_FLAG_SYSTEM_VOLUME_PARENT: The backing file of the virtual disk is
on the system volume.

DEPENDENT_DISK_FLAG_REMOVABLE: The backing file of the virtual disk is on a removable
physical disk.

DEPENDENT_DISK_FLAG_NO_DRIVE_LETTER: Drive letters are not automatically assigned
to the volumes on the virtual disk.

DEPENDENT_DISK_FLAG_PARENT: The virtual disk is a parent in a differencing chain.

DEPENDENT_DISK_FLAG_NO_HOST_DISK: The virtual disk is not surfaced on (attached to)
the local host. For example, it is attached to a guest virtual machine.

DEPENDENT_DISK_FLAG_PERMANENT_LIFETIME: The lifetime of the virtual disk is not tied
to any application or process.

2.2.2.19.1.4 VIRTUAL_DISK_ACCESS_MASK

The VIRTUAL_DISK_ACCESS_MASK enumeration contains the bit mask for specifying access

rights to a virtual hard disk (VHD).

typedef enum _VIRTUAL_DISK_ACCESS_MASK

{

 VIRTUAL_DISK_ACCESS_SURFACE_RO = 0x00010000,

 VIRTUAL_DISK_ACCESS_SURFACE_RW = 0x00020000,

 VIRTUAL_DISK_ACCESS_UNSURFACE = 0x00040000,

 VIRTUAL_DISK_ACCESS_GET_INFO = 0x00080000,

92 / 368

[MS-VDS] — v20130722
 Virtual Disk Service (VDS) Protocol

 Copyright © 2013 Microsoft Corporation.

 Release: Monday, July 22, 2013

 VIRTUAL_DISK_ACCESS_CREATE = 0x00100000,

 VIRTUAL_DISK_ACCESS_METAOPS = 0x00200000,

 VIRTUAL_DISK_ACCESS_READ = 0x000d0000,

 VIRTUAL_DISK_ACCESS_ALL = 0x003f0000,

 VIRTUAL_DISK_ACCESS_WRITABLE = 0x00320000

} VIRTUAL_DISK_ACCESS_MASK;

VIRTUAL_DISK_ACCESS_SURFACE_RO: Open the VHD for read-only surfacing (attaching)

access. The caller must have READ access to the virtual disk image file. If used in a request to
open a VHD that is already open, the other handles must be limited to either
VIRTUAL_DISK_ACCESS_UNSURFACE or VIRTUAL_DISK_ACCESS_GET_INFO access;
otherwise, the open request with this flag will fail.

VIRTUAL_DISK_ACCESS_SURFACE_RW: Open the VHD for read-write surfacing (attaching)
access. The caller must have (READ | WRITE) access to the virtual disk image file. If used in a
request to open a VHD that is already open, the other handles must be limited to either
VIRTUAL_DISK_ACCESS_UNSURFACE or VIRTUAL_DISK_ACCESS_GET_INFO access;

otherwise, the open request with this flag will fail. If the VHD is part of a differencing chain,
the disk number for this request cannot be less than the ReadWriteDepth specified during the
prior open request for that differencing chain.

VIRTUAL_DISK_ACCESS_UNSURFACE: Open the VHD to allow unsurfacing (detaching) of a
surfaced (attached) VHD. The caller must have (FILE_READ_ATTRIBUTES | FILE_READ_DATA)
access to the virtual disk image file.

VIRTUAL_DISK_ACCESS_GET_INFO: Open the VHD for retrieval of information. The caller
must have READ access to the virtual disk image file.

VIRTUAL_DISK_ACCESS_CREATE: Open the VHD for creation.

VIRTUAL_DISK_ACCESS_METAOPS: Open the VHD to perform offline metaoperations. For

information on the offline metaoperations, see [MSDN-CompactVirtualDisk], [MSDN-
ExpandVirtualDisk], [MSDN-MergeVirtualDisk], [MSDN-SetVirtualDiskInfo], and [MSDN-

VIRTDSKACCMSK]. The caller must have (READ | WRITE) access to the virtual disk image file,
up to ReadWriteDepth if working with a differencing chain. If the VHD is part of a differencing
chain, the backing store (host volume) is opened in read/write exclusive mode up to
ReadWriteDepth.

VIRTUAL_DISK_ACCESS_READ: Reserved.

VIRTUAL_DISK_ACCESS_ALL: Allows unrestricted access to the VHD. The caller must have
unrestricted access rights to the virtual disk image file.

VIRTUAL_DISK_ACCESS_WRITABLE: Reserved.

2.2.2.19.2 Structures

2.2.2.19.2.1 VDS_VDISK_PROPERTIES

The VDS_VDISK_PROPERTIES structure defines the properties of a virtual disk.

typedef struct _VDS_VDISK_PROPERTIES {

 VDS_OBJECT_ID Id;

 VDS_VDISK_STATE State;

 VIRTUAL_STORAGE_TYPE VirtualDeviceType;

http://go.microsoft.com/fwlink/?LinkId=208355
http://go.microsoft.com/fwlink/?LinkId=208356
http://go.microsoft.com/fwlink/?LinkId=208356
http://go.microsoft.com/fwlink/?LinkId=208357
http://go.microsoft.com/fwlink/?LinkId=208358
http://go.microsoft.com/fwlink/?LinkId=208359
http://go.microsoft.com/fwlink/?LinkId=208359

93 / 368

[MS-VDS] — v20130722
 Virtual Disk Service (VDS) Protocol

 Copyright © 2013 Microsoft Corporation.

 Release: Monday, July 22, 2013

 ULONGLONG VirtualSize;

 ULONGLONG PhysicalSize;

 [string] LPWSTR pPath;

 [string] LPWSTR pDeviceName;

 DEPENDENT_DISK_FLAG DiskFlag;

 BOOL bIsChild;

 LPWSTR pParentPath;

} VDS_VDISK_PROPERTIES,

 *PVDS_VDISK_PROPERTIES;

Id: A unique VDS-specific session identifier of the disk.

State: A VDS_VDISK_STATE enumeration value that specifies the virtual disk state.

VirtualDeviceType: A pointer to a VIRTUAL_STORAGE_TYPE structure that specifies the
storage device type of the virtual disk.

VirtualSize: The size, in bytes, of the virtual disk.

PhysicalSize: The on-disk size, in bytes, of the virtual hard disk backing file.

pPath: A null-terminated wide-character string containing the name and directory path of the
backing file for the virtual hard disk.

pDeviceName: A null-terminated wide-character string containing the name and device path of

the disk device object for the volume where the virtual hard disk resides.

DiskFlag: Type of virtual disk that uses values from the DEPENDENT_DISK_FLAG (section
2.2.2.19.1.3) enumeration.

bIsChild: A Boolean value that specifies if the virtual disk is a child virtual disk.

pParentPath: A null-terminated wide-character string containing an optional path to the parent

virtual disk.

2.2.2.20 IVdsOpenVDisk Data Types

This section lists data types that are used exclusively by methods in the IVdsOpenVDisk interface.

2.2.2.20.1 Enumerations

2.2.2.20.1.1 ATTACH_VIRTUAL_DISK_FLAG

The ATTACH_VIRTUAL_DISK_FLAG enumeration defines options for attaching a virtual disk.

typedef enum _ATTACH_VIRTUAL_DISK_FLAG

{

 ATTACH_VIRTUAL_DISK_FLAG_NONE = 0x00000000,

 ATTACH_VIRTUAL_DISK_FLAG_READ_ONLY = 0x00000001,

 ATTACH_VIRTUAL_DISK_FLAG_NO_DRIVE_LETTER = 0x00000002,

 ATTACH_VIRTUAL_DISK_FLAG_PERMANENT_LIFETIME = 0x00000004,

 ATTACH_VIRTUAL_DISK_FLAG_NO_LOCAL_HOST = 0x00000008

} ATTACH_VIRTUAL_DISK_FLAG;

94 / 368

[MS-VDS] — v20130722
 Virtual Disk Service (VDS) Protocol

 Copyright © 2013 Microsoft Corporation.

 Release: Monday, July 22, 2013

ATTACH_VIRTUAL_DISK_FLAG_NONE: Indicates that no flag has been specified. This flag

implies that the operating system disk device created when the virtual disk is attached will be

read\write.

ATTACH_VIRTUAL_DISK_FLAG_READ_ONLY: Attaches the operating system disk device

created when the virtual disk is attached as read-only.

ATTACH_VIRTUAL_DISK_FLAG_NO_DRIVE_LETTER: If this flag is set, no drive letters are
assigned to the disk's volumes.

ATTACH_VIRTUAL_DISK_FLAG_PERMANENT_LIFETIME: MUST NOT be used by virtual disk
providers or their clients.<39>

ATTACH_VIRTUAL_DISK_FLAG_NO_LOCAL_HOST: Specifies that the operating system disk
device created when the virtual disk is attached will not be exposed to the local system, but

rather to a virtual machine running on the local system.

2.2.2.20.1.2 DETACH_VIRTUAL_DISK_FLAG

The DETACH_VIRTUAL_DISK_FLAG enumeration defines options for detaching a virtual disk.

typedef enum _DETACH_VIRTUAL_DISK_FLAG

{

 DETACH_VIRTUAL_DISK_FLAG_NONE = 0x00000000

} DETACH_VIRTUAL_DISK_FLAG;

DETACH_VIRTUAL_DISK_FLAG_NONE: Indicates that no flag has been specified. Currently,
this is the only flag defined.

2.2.2.20.1.3 COMPACT_VIRTUAL_DISK_FLAG

The COMPACT_VIRTUAL_DISK_FLAG enumeration defines options for compacting a virtual disk.

typedef enum _COMPACT_VIRTUAL_DISK_FLAG

{

 COMPACT_VIRTUAL_DISK_FLAG_NONE = 0x00000000

} COMPACT_VIRTUAL_DISK_FLAG;

COMPACT_VIRTUAL_DISK_FLAG_NONE: Indicates that no flag has been specified.

Currently, this is the only flag defined.

2.2.2.20.1.4 MERGE_VIRTUAL_DISK_FLAG

The MERGE_VIRTUAL_DISK_FLAG enumeration defines options for merging a virtual disk.

typedef enum _MERGE_VIRTUAL_DISK_FLAG

{

 MERGE_VIRTUAL_DISK_FLAG_NONE = 0x00000000

} MERGE_VIRTUAL_DISK_FLAG;

MERGE_VIRTUAL_DISK_FLAG_NONE: Indicates that no flag has been specified. Currently,

this is the only flag defined.

95 / 368

[MS-VDS] — v20130722
 Virtual Disk Service (VDS) Protocol

 Copyright © 2013 Microsoft Corporation.

 Release: Monday, July 22, 2013

2.2.2.20.1.5 EXPAND_VIRTUAL_DISK_FLAG

The EXPAND_VIRTUAL_DISK_FLAG enumeration defines options for expanding a virtual disk.

typedef enum _EXPAND_VIRTUAL_DISK_FLAG

{

 EXPAND_VIRTUAL_DISK_FLAG_NONE = 0x00000000

} EXPAND_VIRTUAL_DISK_FLAG;

EXPAND_VIRTUAL_DISK_FLAG_NONE: Indicates that no flag has been specified. Currently,

this is the only flag defined.

2.2.3 Error Codes

The following HRESULT return codes are defined by the Virtual Disk Service Remote Protocol and,
together with the HRESULTs specified in [MS-ERREF], SHOULD be returned by the server to indicate
additional information about the result of a method call or about the reason a call failed. If the result

is an error rather than simple status information, the most significant bit of the HRESULT is set (as
specified in [MS-ERREF]).

Return value/code Description

0x80042400

VDS_E_NOT_SUPPORTED

The operation is not supported by the

object.

0x80042401

VDS_E_INITIALIZED_FAILED

VDS or the provider failed to initialize.

0x80042402

VDS_E_INITIALIZE_NOT_CALLED

VDS did not call the hardware

provider's initialization method.

0x80042403

VDS_E_ALREADY_REGISTERED

The provider is already registered.

0x80042404

VDS_E_ANOTHER_CALL_IN_PROGRESS

A concurrent second call is made on an

object before the first call is

completed.

0x80042405

VDS_E_OBJECT_NOT_FOUND

The specified object was not found.

0x80042406

VDS_E_INVALID_SPACE

The specified space is neither free nor

valid.

0x80042407

VDS_E_PARTITION_LIMIT_REACHED

No more partitions can be created on

the specified disk.

0x80042408

VDS_E_PARTITION_NOT_EMPTY

The extended partition is not empty.

0x80042409

VDS_E_OPERATION_PENDING

The operation is still in progress.

0x8004240A

VDS_E_OPERATION_DENIED

The operation is not permitted on the

specified disk, partition, or volume.

%5bMS-ERREF%5d.pdf
%5bMS-ERREF%5d.pdf

96 / 368

[MS-VDS] — v20130722
 Virtual Disk Service (VDS) Protocol

 Copyright © 2013 Microsoft Corporation.

 Release: Monday, July 22, 2013

Return value/code Description

0x8004240B

VDS_E_OBJECT_DELETED

The object no longer exists.

0x8004240C

VDS_E_CANCEL_TOO_LATE

The operation can no longer be

canceled.

0x8004240D

VDS_E_OPERATION_CANCELED

The operation has already been

canceled.

0x8004240E

VDS_E_CANNOT_EXTEND

The file system does not support

extending this volume.

0x8004240F

VDS_E_NOT_ENOUGH_SPACE

There is not enough space to complete

the operation.

0x80042410

VDS_E_NOT_ENOUGH_DRIVE

There are not enough free disk drives

in the subsystem to complete the

operation.

0x80042411

VDS_E_BAD_COOKIE

The cookie was not found.

0x80042412

VDS_E_NO_MEDIA

There is no removable media in the

drive.

0x80042413

VDS_E_DEVICE_IN_USE

The device is currently in use.

0x80042414

VDS_E_DISK_NOT_EMPTY

The disk contains partitions or

volumes.

0x80042415

VDS_E_INVALID_OPERATION

The specified operation is not valid.

0x80042416

VDS_E_PATH_NOT_FOUND

The specified path was not found.

0x80042417

VDS_E_DISK_NOT_INITIALIZED

The specified disk has not been

initialized.

0x80042418

VDS_E_NOT_AN_UNALLOCATED_DISK

The specified disk is not an unallocated

disk.

0x80042419

VDS_E_UNRECOVERABLE_ERROR

An unrecoverable error occurred. The

service must shut down.

0x0004241A

VDS_S_DISK_PARTIALLY_CLEANED

The clean operation was not a full

clean or was canceled before it could

be completed.

0x8004241B

VDS_E_DMADMIN_SERVICE_CONNECTION_FAILED

The provider failed to connect to the

Logical Disk Manager

Administrative service.

0x8004241C

VDS_E_PROVIDER_INITIALIZATION_FAILED

The provider failed to initialize.

97 / 368

[MS-VDS] — v20130722
 Virtual Disk Service (VDS) Protocol

 Copyright © 2013 Microsoft Corporation.

 Release: Monday, July 22, 2013

Return value/code Description

0x8004241D

VDS_E_OBJECT_EXISTS

The object already exists.

0x8004241E

VDS_E_NO_DISKS_FOUND

No disks were found on the target

machine.

0x8004241F

VDS_E_PROVIDER_CACHE_CORRUPT

The cache for a provider is corrupt.

0x80042420

VDS_E_DMADMIN_METHOD_CALL_FAILED

A method call to the Logical Disk

Manager Administrative service failed.

0x00042421

VDS_S_PROVIDER_ERROR_LOADING_CACHE

The provider encountered errors while

loading the cache. For more

information, see the Windows Event

Log.

0x80042422

VDS_E_PROVIDER_VOL_DEVICE_NAME_NOT_FOUND

The device form of the volume

pathname could not be retrieved.

0x80042423

VDS_E_PROVIDER_VOL_OPEN

Failed to open the volume device

0x80042424

VDS_E_DMADMIN_CORRUPT_NOTIFICATION

A corrupt notification was sent from

the Logical Disk Manager

Administrative service.

0x80042425

VDS_E_INCOMPATIBLE_FILE_SYSTEM

The file system is incompatible with

the specified operation.

0x80042426

VDS_E_INCOMPATIBLE_MEDIA

The media is incompatible with the

specified operation.

0x80042427

VDS_E_ACCESS_DENIED

Access is denied. A VDS operation

must run under the Backup Operator

or Administrators group account.

0x80042428

VDS_E_MEDIA_WRITE_PROTECTED

The media is write-protected.

0x80042429

VDS_E_BAD_LABEL

The volume label is not valid.

0x8004242A

VDS_E_CANT_QUICK_FORMAT

The volume cannot be quick-

formatted.

0x8004242B

VDS_E_IO_ERROR

An I/O error occurred during the

operation.

0x8004242C

VDS_E_VOLUME_TOO_SMALL

The volume size is too small.

0x8004242D

VDS_E_VOLUME_TOO_BIG

The volume size is too large.

0x8004242E

VDS_E_CLUSTER_SIZE_TOO_SMALL

The cluster size is too small.

98 / 368

[MS-VDS] — v20130722
 Virtual Disk Service (VDS) Protocol

 Copyright © 2013 Microsoft Corporation.

 Release: Monday, July 22, 2013

Return value/code Description

0x8004242F

VDS_E_CLUSTER_SIZE_TOO_BIG

The cluster size is too large.

0x80042430

VDS_E_CLUSTER_COUNT_BEYOND_32BITS

The number of clusters is too large to

be represented as a 32-bit integer.

0x80042431

VDS_E_OBJECT_STATUS_FAILED

The component that the object

represents has failed and is unable to

perform the requested operation.

0x80042432

VDS_E_VOLUME_INCOMPLETE

The volume is incomplete.

0x80042433

VDS_E_EXTENT_SIZE_LESS_THAN_MIN

The specified extent size is too small.

0x00042434

VDS_S_UPDATE_BOOTFILE_FAILED

The operation was successful, but VDS

failed to update the boot options in the

Boot Configuration Data (BCD) store or

boot.ini file.

0x00042436

VDS_S_BOOT_PARTITION_NUMBER_CHANGE

The boot partition's partition number

will change as a result of the

operation.

0x80042436

VDS_E_BOOT_PARTITION_NUMBER_CHANGE

The boot partition's partition number

will change as a result of the migration

operation.

0x80042437

VDS_E_NO_FREE_SPACE

The specified disk does not have

enough free space to complete the

operation.

0x80042438

VDS_E_ACTIVE_PARTITION

An active partition was detected on

the selected disk, and it is not the

active partition that was used to boot

the active operating system.

0x80042439

VDS_E_PARTITION_OF_UNKNOWN_TYPE

The partition information cannot be

read.

0x8004243A

VDS_E_LEGACY_VOLUME_FORMAT

A partition with an unknown type was

detected on the specified disk.

0x8004243B

VDS_E_NON_CONTIGUOUS_DATA_PARTITIONS

The selected GPT disk contains two

basic data partitions that are

separated by an OEM partition.

0x8004243C

VDS_E_MIGRATE_OPEN_VOLUME

A volume on the specified disk could

not be opened.

0x8004243D

VDS_E_VOLUME_NOT_ONLINE

The volume is not online.

0x8004243E

VDS_E_VOLUME_NOT_HEALTHY

The volume is failing or has failed.

99 / 368

[MS-VDS] — v20130722
 Virtual Disk Service (VDS) Protocol

 Copyright © 2013 Microsoft Corporation.

 Release: Monday, July 22, 2013

Return value/code Description

0x8004243F

VDS_E_VOLUME_SPANS_DISKS

The volume spans multiple disks.

0x80042440

VDS_E_REQUIRES_CONTIGUOUS_DISK_SPACE

The volume consists of multiple disk

extents. The operation failed because

it requires the volume to consist of a

single disk extent.

0x80042441

VDS_E_BAD_PROVIDER_DATA

A provider returned bad data.

0x80042442

VDS_E_PROVIDER_FAILURE

A provider failed to complete an

operation.

0x00042443

VDS_S_VOLUME_COMPRESS_FAILED

The file system was formatted

successfully but could not be

compressed.

0x80042444

VDS_E_PACK_OFFLINE

The pack is offline.

0x80042445

VDS_E_VOLUME_NOT_A_MIRROR

The volume is not a mirror.

0x80042446

VDS_E_NO_EXTENTS_FOR_VOLUME

No extents were found for the volume.

0x80042447

VDS_E_DISK_NOT_LOADED_TO_CACHE

The migrated disk failed to load to the

cache.

0x80042448

VDS_E_INTERNAL_ERROR

VDS encountered an internal error. For

more information, see the Windows

Event Log.

0x8004244A

VDS_E_PROVIDER_TYPE_NOT_SUPPORTED

The method call is not supported for

the specified provider type.

0x8004244B

VDS_E_DISK_NOT_ONLINE

One or more of the specified disks are

not online.

0x8004244C

VDS_E_DISK_IN_USE_BY_VOLUME

One or more extents of the disk are

already being used by the volume.

0x0004244D

VDS_S_IN_PROGRESS

The asynchronous operation is in

progress.

0x8004244E

VDS_E_ASYNC_OBJECT_FAILURE

Failure initializing the asynchronous

object.

0x8004244F

VDS_E_VOLUME_NOT_MOUNTED

The volume is not mounted.

0x80042450

VDS_E_PACK_NOT_FOUND

The pack was not found.

0x80042451

VDS_E_IMPORT_SET_INCOMPLETE

An attempt was made to import a

subset of the disks in the foreign pack.

100 / 368

[MS-VDS] — v20130722
 Virtual Disk Service (VDS) Protocol

 Copyright © 2013 Microsoft Corporation.

 Release: Monday, July 22, 2013

Return value/code Description

0x80042452

VDS_E_DISK_NOT_IMPORTED

A disk in the import's source pack was

not imported.

0x80042453

VDS_E_OBJECT_OUT_OF_SYNC

The reference to the object might be

stale.

0x80042454

VDS_E_MISSING_DISK

The specified disk could not be found.

0x80042455

VDS_E_DISK_PNP_REG_CORRUPT

The provider's list of PnP registered

disks has become corrupted.

0x80042456

VDS_E_LBN_REMAP_ENABLED_FLAG

The provider does not support the

VDS_VF_LBN REMAP_ENABLED volume

flag.

0x80042457

VDS_E_NO_DRIVELETTER_FLAG

The provider does not support the

VDS_VF_NO DRIVELETTER volume

flag.

0x80042458

VDS_E_REVERT_ON_CLOSE

The bRevertOnClose parameter can

only be set to TRUE if the

VDS_VF_HIDDEN,

VDS_VF_READONLY,

VDS_VF_NO_DEFAULT_DRIVE_LETTER

, or VDS_VF_SHADOW_COPY volume

flag is set in the ulFlags parameter. For

more information, see

IVdsVolume::SetFlags.

0x80042459

VDS_E_REVERT_ON_CLOSE_SET

Some volume flags are already set.

The software must clear these flags

first, then call IVdsVolume::SetFlags

again, specifying TRUE for the

bRevertOnClose parameter.

0x8004245A

VDS_E_IA64_BOOT_MIRRORED_TO_MBR

Not used. The boot volume has been

mirrored on a GPT disk to an MBR disk.

The machine will not be bootable from

the secondary plex.

0x0004245A

VDS_S_IA64_BOOT_MIRRORED_TO_MBR

The boot volume has been mirrored on

a GPT disk to an MBR disk. The

machine will not be bootable from the

secondary plex.

0x0004245B

VDS_S_UNABLE_TO_GET_GPT_ATTRIBUTES

Unable to retrieve the GPT attributes

for this volume, (hidden, read only and

no drive letter).

0x8004245C

VDS_E_VOLUME_TEMPORARILY_DISMOUNTED

The volume is already dismounted

temporarily.

0x8004245D

VDS_E_VOLUME_PERMANENTLY_DISMOUNTED

The volume is already permanently

dismounted. It cannot be dismounted

temporarily until it becomes

mountable.

101 / 368

[MS-VDS] — v20130722
 Virtual Disk Service (VDS) Protocol

 Copyright © 2013 Microsoft Corporation.

 Release: Monday, July 22, 2013

Return value/code Description

0x8004245E

VDS_E_VOLUME_HAS_PATH

The volume cannot be dismounted

permanently because it still has an

access path.

0x8004245F

VDS_E_TIMEOUT

The operation timed out.

0x80042460

VDS_E_REPAIR_VOLUMESTATE

The volume plex cannot be repaired.

The volume and plex must be online,

and must not be healthy or rebuilding.

0x80042461

VDS_E_LDM_TIMEOUT

The operation timed out in the Logical

Disk Manager Administrative service.

Retry the operation.

0x80042462

VDS_E_REVERT_ON_CLOSE_MISMATCH

The flags to be cleared do not match

the flags that were set previously

when the IVdsVolume::SetFlags

method was called with the

bRevertOnClose parameter set to

TRUE.

0x80042463

VDS_E_RETRY

The operation failed. Retry the

operation.

0x80042464

VDS_E_ONLINE_PACK_EXISTS

The operation failed, because an online

pack object already exists.

0x00042465

VDS_S_EXTEND_FILE_SYSTEM_FAILED

The volume was extended successfully

but the file system failed to extend.

0x80042466

VDS_E_EXTEND_FILE_SYSTEM_FAILED

The file system failed to extend.

0x00042467

VDS_S_MBR_BOOT_MIRRORED_TO_GPT

The boot volume has been mirrored on

an MBR disk to a GPT disk. The

machine will not be bootable from the

secondary plex.

0x80042468

VDS_E_MAX_USABLE_MBR

Only the first 2TB are usable on large

MBR disks. Cannot create partitions

beyond the 2TB mark, nor convert the

disk to dynamic.

0x00042469

VDS_S_GPT_BOOT_MIRRORED_TO_MBR

The boot volume on a GPT disk has

been mirrored to an MBR disk. The

new plex cannot be used to boot the

computer.

0x80042500

VDS_E_NO_SOFTWARE_PROVIDERS_LOADED

There are no software providers

loaded.

0x80042501

VDS_E_DISK_NOT_MISSING

The disk is not missing.

0x80042502

VDS_E_NO_VOLUME_LAYOUT

The volume's layout could not be

retrieved.

102 / 368

[MS-VDS] — v20130722
 Virtual Disk Service (VDS) Protocol

 Copyright © 2013 Microsoft Corporation.

 Release: Monday, July 22, 2013

Return value/code Description

0x80042503

VDS_E_CORRUPT_VOLUME_INFO

The volume's driver information is

corrupted.

0x80042504

VDS_E_INVALID_ENUMERATOR

The enumerator is corrupted

0x80042505

VDS_E_DRIVER_INTERNAL_ERROR

An internal error occurred in the

volume management driver.

0x80042507

VDS_E_VOLUME_INVALID_NAME

The volume name is not valid.

0x00042508

VDS_S_DISK_IS_MISSING

The disk is missing and not all

information could be returned.

0x80042509

VDS_E_CORRUPT_PARTITION_INFO

The disk's partition information is

corrupted.

0x0004250A

VDS_S_NONCONFORMANT_PARTITION_INFO

The disk's partition information does

not conform to what is expected on a

dynamic disk. The disk's partition

information is corrupted.

0x8004250B

VDS_E_CORRUPT_EXTENT_INFO

The disk's extent information is

corrupted.

0x8004250C

VDS_E_DUP_EMPTY_PACK_GUID

An empty pack already exists. Release

the existing empty pack before

creating another empty pack.

0x8004250D

VDS_E_DRIVER_NO_PACK_NAME

The volume management driver did

not return a pack name. Internal driver

error.

0x0004250E

VDS_S_SYSTEM_PARTITION

Warning: There was a failure while

checking for the system partition.

0x8004250F

VDS_E_BAD_PNP_MESSAGE

The PNP service sent a corrupted

notification to the provider.

0x80042510

VDS_E_NO_PNP_DISK_ARRIVE

No disk arrival notification was

received.

0x80042511

VDS_E_NO_PNP_VOLUME_ARRIVE

No volume arrival notification was

received.

0x80042512

VDS_E_NO_PNP_DISK_REMOVE

No disk removal notification was

received.

0x80042513

VDS_E_NO_PNP_VOLUME_REMOVE

No volume removal notification was

received.

0x80042514

VDS_E_PROVIDER_EXITING

The provider is exiting.

0x80042515

VDS_E_EXTENT_EXCEEDS_DISK_FREE_SPACE

The specified disk extent size is larger

than the amount of free disk space.

103 / 368

[MS-VDS] — v20130722
 Virtual Disk Service (VDS) Protocol

 Copyright © 2013 Microsoft Corporation.

 Release: Monday, July 22, 2013

Return value/code Description

0x80042516

VDS_E_MEMBER_SIZE_INVALID

The specified plex member size is not

valid.

0x00042517

VDS_S_NO_NOTIFICATION

No volume arrival notification was

received. The software may need to

call IVdsService::Refresh.

0x00042518

VDS_S_DEFAULT_PLEX_MEMBER_IDS

Defaults have been used for the

member ids or plex ids.

0x80042519

VDS_E_INVALID_DISK

The specified disk is not valid.

0x8004251A

VDS_E_INVALID_PACK

The specified disk pack is not valid.

0x8004251B

VDS_E_VOLUME_ON_DISK

This operation is not allowed on disks

with volumes.

0x8004251C

VDS_E_DRIVER_INVALID_PARAM

The driver returned an invalid

parameter error.

0x8004251D

VDS_E_TARGET_PACK_NOT_EMPTY

The target pack is not empty.

0x8004251E

VDS_E_CANNOT_SHRINK

The file system does not support

shrinking this volume.

0x8004251F

VDS_E_MULTIPLE_PACKS

Specified disks are not all from the

same pack.

0x80042520

VDS_E_PACK_ONLINE

This operation is not allowed on online

packs. The pack must be offline.

0x80042521

VDS_E_INVALID_PLEX_COUNT

The plex count for the volume must be

greater than zero.

0x80042522

VDS_E_INVALID_MEMBER_COUNT

The member count for the volume

must be greater than zero.

0x80042523

VDS_E_INVALID_PLEX_ORDER

The plex indexes must start at zero

and increase monotonically.

0x80042524

VDS_E_INVALID_MEMBER_ORDER

The member indexes must start at

zero and increase monotonically.

0x80042525

VDS_E_INVALID_STRIPE_SIZE

The stripe size in bytes must be a

power of 2 for striped and RAID-5

volume types and must be zero for all

other volume types.

0x80042526

VDS_E_INVALID_DISK_COUNT

The number of disks specified is not

valid for this operation.

0x80042527

VDS_E_INVALID_EXTENT_COUNT

An invalid number of extents was

specified for at least one disk.

104 / 368

[MS-VDS] — v20130722
 Virtual Disk Service (VDS) Protocol

 Copyright © 2013 Microsoft Corporation.

 Release: Monday, July 22, 2013

Return value/code Description

0x80042528

VDS_E_SOURCE_IS_TARGET_PACK

The source and target packs must be

distinct.

0x80042529

VDS_E_VOLUME_DISK_COUNT_MAX_EXCEEDED

The specified number of disks is too

large. VDS imposes a 32-disk limit on

spanned, striped, and striped with

parity (RAID-5) volumes.

0x8004252A

VDS_E_CORRUPT_NOTIFICATION_INFO

The driver's notification information is

corrupt.

0x8004252C

VDS_E_INVALID_PLEX_GUID

GUID_NULL is not a valid plex GUID.

0x8004252D

VDS_E_DISK_NOT_FOUND_IN_PACK

The specified disks do not belong to

the same pack.

0x8004252E

VDS_E_DUPLICATE_DISK

The same disk was specified more than

once.

0x8004252F

VDS_E_LAST_VALID_DISK

The operation cannot be completed

because there is only one valid disk in

the pack.

0x80042530

VDS_E_INVALID_SECTOR_SIZE

All disks holding extents for a given

volume must have the same sector

size, and the sector size must be valid.

0x80042531

VDS_E_ONE_EXTENT_PER_DISK

A single disk cannot contribute to

multiple members or multiple plexes of

the same volume.

0x80042532

VDS_E_INVALID_BLOCK_SIZE

Neither the volume stripe size nor the

disk sector size was found to be non-

zero.

0x80042533

VDS_E_PLEX_SIZE_INVALID

The size of the volume plex is invalid.

0x80042534

VDS_E_NO_EXTENTS_FOR_PLEX

No extents were found for the plex.

0x80042535

VDS_E_INVALID_PLEX_TYPE

The plex type is invalid.

0x80042536

VDS_E_INVALID_PLEX_BLOCK_SIZE

The plex block size must be non-zero.

0x80042537

VDS_E_NO_HEALTHY_DISKS

All of the disks involved in the

operation are either missing or failed.

0x80042538

VDS_E_CONFIG_LIMIT

The Logical Disk Management

database is full and no more volumes

or disks may be configured.

0x80042539

VDS_E_DISK_CONFIGURATION_CORRUPTED

The disk configuration data is

corrupted.

105 / 368

[MS-VDS] — v20130722
 Virtual Disk Service (VDS) Protocol

 Copyright © 2013 Microsoft Corporation.

 Release: Monday, July 22, 2013

Return value/code Description

0x8004253A

VDS_E_DISK_CONFIGURATION_NOT_IN_SYNC

The disk configuration is not in sync

with the in-memory configuration.

0x8004253B

VDS_E_DISK_CONFIGURATION_UPDATE_FAILED

One or more disks failed to be updated

with the new configuration.

0x8004253C

VDS_E_DISK_DYNAMIC

The disk is already dynamic.

0x8004253D

VDS_E_DRIVER_OBJECT_NOT_FOUND

The object was not found in the driver

cache.

0x8004253E

VDS_E_PARTITION_NOT_CYLINDER_ALIGNED

The disk layout contains partitions

which are not cylinder aligned.

0x8004253F

VDS_E_DISK_LAYOUT_PARTITIONS_TOO_SMALL

The disk layout contains partitions

which are less than the minimum

required size.

0x80042540

VDS_E_DISK_IO_FAILING

The IO to the disk is failing.

0x80042541

VDS_E_DYNAMIC_DISKS_NOT_SUPPORTED

Dynamic disks are not supported by

this operating system or server

configuration. Dynamic disks are not

supported on clusters.

0x80042542

VDS_E_FAULT_TOLERANT_DISKS_NOT_SUPPORTED

The fault tolerant disks are not

supported by this operating system.

0x80042543

VDS_E_GPT_ATTRIBUTES_INVALID

Invalid GPT attributes were specified.

0x80042544

VDS_E_MEMBER_IS_HEALTHY

The member is not stale or detached.

0x80042545

VDS_E_MEMBER_REGENERATING

The member is regenerating.

0x80042546

VDS_E_PACK_NAME_INVALID

The pack name is invalid.

0x80042547

VDS_E_PLEX_IS_HEALTHY

The plex is not stale or detached.

0x80042548

VDS_E_PLEX_LAST_ACTIVE

The last healthy plex cannot be

removed.

0x80042549

VDS_E_PLEX_MISSING

The plex is missing.

0x8004254A

VDS_E_MEMBER_MISSING

The member is missing.

0x8004254B

VDS_E_PLEX_REGENERATING

The plex is regenerating.

106 / 368

[MS-VDS] — v20130722
 Virtual Disk Service (VDS) Protocol

 Copyright © 2013 Microsoft Corporation.

 Release: Monday, July 22, 2013

Return value/code Description

0x8004254D

VDS_E_UNEXPECTED_DISK_LAYOUT_CHANGE

An unexpected layout change occurred

external to the volume manager.

0x8004254E

VDS_E_INVALID_VOLUME_LENGTH

The volume length is invalid.

0x8004254F

VDS_E_VOLUME_LENGTH_NOT_SECTOR_SIZE_MULTIPLE

The volume length is not a multiple of

the sector size.

0x80042550

VDS_E_VOLUME_NOT_RETAINED

The volume does not have a retained

partition association.

0x80042551

VDS_E_VOLUME_RETAINED

The volume already has a retained

partition association.

0x80042553

VDS_E_ALIGN_BEYOND_FIRST_CYLINDER

The specified alignment is beyond the

first cylinder.

0x80042554

VDS_E_ALIGN_NOT_SECTOR_SIZE_MULTIPLE

The specified alignment is not a

multiple of the sector size.

0x80042555

VDS_E_ALIGN_NOT_ZERO

The specified partition type cannot be

created with a non-zero alignment.

0x80042556

VDS_E_CACHE_CORRUPT

The service's cache has become

corrupt.

0x80042557

VDS_E_CANNOT_CLEAR_VOLUME_FLAG

The specified volume flag cannot be

cleared.

0x80042558

VDS_E_DISK_BEING_CLEANED

The operation is not allowed on a disk

that is in the process of being cleaned.

0x80042559

VDS_E_DISK_NOT_CONVERTIBLE

The specified disk is not convertible.

CDROMs and DVDs are examples of

disk that are not convertible.

0x8004255A

VDS_E_DISK_REMOVEABLE

The operation is not supported on

removable media.

0x8004255B

VDS_E_DISK_REMOVEABLE_NOT_EMPTY

The operation is not supported on a

non-empty removable disk.

0x8004255C

VDS_E_DRIVE_LETTER_NOT_FREE

The specified drive letter is not free to

be assigned.

0x8004255D

VDS_E_EXTEND_MULTIPLE_DISKS_NOT_SUPPORTED

Extending the volume onto multiple

disks is not supported by this provider.

0x8004255E

VDS_E_INVALID_DRIVE_LETTER

The specified drive letter is not valid.

0x8004255F

VDS_E_INVALID_DRIVE_LETTER_COUNT

The specified number of drive letters

to retrieve is not valid.

0x80042560

VDS_E_INVALID_FS_FLAG

The specified file system flag is not

valid.

107 / 368

[MS-VDS] — v20130722
 Virtual Disk Service (VDS) Protocol

 Copyright © 2013 Microsoft Corporation.

 Release: Monday, July 22, 2013

Return value/code Description

0x80042561

VDS_E_INVALID_FS_TYPE

The specified file system is not valid.

0x80042562

VDS_E_INVALID_OBJECT_TYPE

The specified object type is not valid.

0x80042563

VDS_E_INVALID_PARTITION_LAYOUT

The specified partition layout is invalid.

0x80042564

VDS_E_INVALID_PARTITION_STYLE

VDS only supports MBR or GPT

partition style disks.

0x80042565

VDS_E_INVALID_PARTITION_TYPE

The specified partition type is not valid

for this operation.

0x80042566

VDS_E_INVALID_PROVIDER_CLSID

The specified provider clsid cannot be

a NULL GUID.

0x80042567

VDS_E_INVALID_PROVIDER_ID

The specified provider id cannot be a

NULL GUID.

0x80042568

VDS_E_INVALID_PROVIDER_NAME

The specified provider name is invalid.

0x80042569

VDS_E_INVALID_PROVIDER_TYPE

The specified provider type is invalid.

0x8004256A

VDS_E_INVALID_PROVIDER_VERSION_GUID

The specified provider version GUID

cannot be a NULL GUID.

0x8004256B

VDS_E_INVALID_PROVIDER_VERSION_STRING

The specified provider version string is

invalid.

0x8004256C

VDS_E_INVALID_QUERY_PROVIDER_FLAG

The specified query provider flag is

invalid.

0x8004256D

VDS_E_INVALID_SERVICE_FLAG

The specified service flag is invalid.

0x8004256E

VDS_E_INVALID_VOLUME_FLAG

The specified volume flag is invalid.

0x8004256F

VDS_E_PARTITION_NOT_OEM

The operation is only supported on an

OEM, ESP, or unknown partition.

0x80042570

VDS_E_PARTITION_PROTECTED

Cannot delete a protected partition

without the force protected parameter

set, (see bForceProtected parameter in

IVdsAdvancedDisk::DeletePartition

).

0x80042571

VDS_E_PARTITION_STYLE_MISMATCH

The specified partition style is not the

same as the disk's partition style.

0x80042572

VDS_E_PROVIDER_INTERNAL_ERROR

An internal error has occurred in the

provider.

108 / 368

[MS-VDS] — v20130722
 Virtual Disk Service (VDS) Protocol

 Copyright © 2013 Microsoft Corporation.

 Release: Monday, July 22, 2013

Return value/code Description

0x80042573

VDS_E_SHRINK_SIZE_LESS_THAN_MIN

The specified shrink size is less than

the minimum shrink size allowed.

0x80042574

VDS_E_SHRINK_SIZE_TOO_BIG

The specified shrink size is too large

and will cause the volume to be

smaller than the minimum volume

size.

0x80042575

VDS_E_UNRECOVERABLE_PROVIDER_ERROR

An unrecoverable error occurred in a

provider. The service must be shut

down to regain full functionality.

0x80042576

VDS_E_VOLUME_HIDDEN

Cannot assign a mount point to a

hidden volume.

0x00042577

VDS_S_DISMOUNT_FAILED

Failed to dismount the volume after

setting the volume flags.

0x00042578

VDS_S_REMOUNT_FAILED

Failed to remount the volume after

setting the volume flags.

0x80042579

VDS_E_FLAG_ALREADY_SET

Cannot set the specified flag as revert-

on-close because it is already set. For

more information, see the

bRevertOnClose parameter of

IVdsVolume::SetFlags.

0x0004257A

VDS_S_RESYNC_NOTIFICATION_TASK_FAILED

Failure. If the volume is a mirror

volume or a raid5 volume, no

resynchronization notifications will be

sent.

0x8004257B

VDS_E_DISTINCT_VOLUME

The input volume id cannot be the id of

the volume that is the target of the

operation.

0x8004257C

VDS_E_VOLUME_NOT_FOUND_IN_PACK

The specified volumes do not belong to

the same pack.

0x8004257D

VDS_E_PARTITION_NON_DATA

The specified partition is a not a

primary or logical volume.

0x8004257E

VDS_E_CRITICAL_PLEX

The specified plex is the current

system or boot plex.

0x8004257F

VDS_E_VOLUME_SYNCHRONIZING

The operation cannot be completed

because the volume is synchronizing.

0x80042580

VDS_E_VOLUME_REGENERATING

The operation cannot be completed

because the volume is regenerating.

0x00042581

VDS_S_VSS_FLUSH_AND_HOLD_WRITES

Failed to flush and hold Volume

Snapshot Service writes.

0x00042582

VDS_S_VSS_RELEASE_WRITES

Failed to release Volume Snapshot

Service writes.

109 / 368

[MS-VDS] — v20130722
 Virtual Disk Service (VDS) Protocol

 Copyright © 2013 Microsoft Corporation.

 Release: Monday, July 22, 2013

Return value/code Description

0x00042583

VDS_S_FS_LOCK

Failed to obtain a file system lock.

0x80042584

VDS_E_READONLY

The volume is read only.

0x80042585

VDS_E_INVALID_VOLUME_TYPE

The volume type is invalid for this

operation.

0x80042586

VDS_E_BAD_BOOT_DISK

The boot disk experienced failures

when the driver attempted to online

the pack.

0x80042587

VDS_E_LOG_UPDATE

The driver failed to update the log on

at least one disk.

0x80042588

VDS_E_VOLUME_MIRRORED

This operation is not supported on a

mirrored volume.

0x80042589

VDS_E_VOLUME_SIMPLE_SPANNED

The operation is only supported on

simple or spanned volumes.

0x8004258A

VDS_E_NO_VALID_LOG_COPIES

This pack has no valid log copies.

0x0004258B

VDS_S_PLEX_NOT_LOADED_TO_CACHE

This plex is present in the driver, but

has not yet been loaded to the

provider cache. A volume modified

notification will be sent by the service

once the plex has been loaded to the

provider cache.

0x8004258B

VDS_E_PLEX_NOT_LOADED_TO_CACHE

This plex is present in the driver, but

has not yet been loaded to the

provider cache. A volume modified

notification will be sent by the service

once the plex has been loaded to the

provider cache.

0x8004258C

VDS_E_PARTITION_MSR

The operation is not supported on MSR

partitions.

0x8004258D

VDS_E_PARTITION_LDM

The operation is not supported on LDM

partitions.

0x0004258E

VDS_S_WINPE_BOOTENTRY

The boot entries cannot be updated

automatically on WinPE. It may be

necessary to manually update the boot

entry for any installed operating

systems.

0x8004258F

VDS_E_ALIGN_NOT_A_POWER_OF_TWO

The alignment is not a power of two.

0x80042590

VDS_E_ALIGN_IS_ZERO

The alignment is zero.

110 / 368

[MS-VDS] — v20130722
 Virtual Disk Service (VDS) Protocol

 Copyright © 2013 Microsoft Corporation.

 Release: Monday, July 22, 2013

Return value/code Description

0x80042591

VDS_E_SHRINK_IN_PROGRESS

A defragmentation or volume shrink

operation is already in progress. Only

one of these operations can run at a

time.

0x80042592

VDS_E_CANT_INVALIDATE_FVE

BitLocker encryption could not be

disabled for the volume.

0x80042593

VDS_E_FS_NOT_DETERMINED

The default file system could not be

determined.

0x80042595

VDS_E_DISK_NOT_OFFLINE

This disk is already online.

0x80042596

VDS_E_FAILED_TO_ONLINE_DISK

The online operation failed.

0x80042597

VDS_E_FAILED_TO_OFFLINE_DISK

The offline operation failed.

0x80042598

VDS_E_BAD_REVISION_NUMBER

The operation could not be completed

because the specified revision number

is not supported.

0x80042599

VDS_E_SHRINK_USER_CANCELLED

The shrink operation was canceled by

the user.

0x8004259A

VDS_E_SHRINK_DIRTY_VOLUME

The volume selected for shrink may be

corrupted. Use a file system repair

utility to fix the corruption problem

and then try to shrink the volume

again.

0x00042700

VDS_S_NAME_TRUNCATED

The name was set successfully but had

to be truncated.

0x80042701

VDS_E_NAME_NOT_UNIQUE

The specified name is not unique.

0x00042702

VDS_S_STATUSES_INCOMPLETELY_SET

At least one path's status was not

successfully set due to a nonfatal error

(for example, the status conflicts with

the current load balance policy).

0x80042703

VDS_E_ADDRESSES_INCOMPLETELY_SET

At least one portal's tunnel address,

which is the address of a portal that is

running IPsec in tunnel mode, is not

set successfully.

0x80042705

VDS_E_SECURITY_INCOMPLETELY_SET

At least one portal's security settings

are not set successfully.

0x80042706

VDS_E_TARGET_SPECIFIC_NOT_SUPPORTED

The initiator service does not support

setting target-specific shared secrets.

0x80042707

VDS_E_INITIATOR_SPECIFIC_NOT_SUPPORTED

The target does not support setting

initiator-specific shared secrets.

111 / 368

[MS-VDS] — v20130722
 Virtual Disk Service (VDS) Protocol

 Copyright © 2013 Microsoft Corporation.

 Release: Monday, July 22, 2013

Return value/code Description

0x80042708

VDS_E_ISCSI_LOGIN_FAILED

Another operation is in progress. This

operation cannot proceed until the

previous operations are complete.

0x80042709

VDS_E_ISCSI_LOGOUT_FAILED

The attempt to log out from the

specified iSCSI session failed.

0x8004270A

VDS_E_ISCSI_SESSION_NOT_FOUND

VDS could not find a session matching

the specified iSCSI target.

0x8004270B

VDS_E_ASSOCIATED_LUNS_EXIST

LUNs are associated with this target.

All LUNs must be disassociated from

this target before the target can be

deleted.

0x8004270C

VDS_E_ASSOCIATED_PORTALS_EXIST

Portals are associated with this portal

group. All portals must be

disassociated from this portal group

before the portal group can be deleted.

0x8004270D

VDS_E_NO_DISCOVERY_DOMAIN

The initiator does not exist in an iSNS

discovery domain.

0x8004270E

VDS_E_MULTIPLE_DISCOVERY_DOMAINS

The initiator exists in more than one

iSNS discovery domain.

0x8004270F

VDS_E_NO_DISK_PATHNAME

The disk's path could not be retrieved.

Some operations on the disk may fail.

0x80042710

VDS_E_ISCSI_LOGOUT_INCOMPLETE

At least one iSCSI session logout

operation did not complete

successfully.

0x80042711

VDS_E_NO_VOLUME_PATHNAME

The path could not be retrieved for one

or more volumes.

0x80042712

VDS_E_PROVIDER_CACHE_OUTOFSYNC

The provider's cache is not in sync with

the driver cache.

0x80042713

VDS_E_NO_IMPORT_TARGET

No import target was set for the

subsystem.

0x00042714

VDS_S_ALREADY_EXISTS

The object already exists.

0x00042715

VDS_S_PROPERTIES_INCOMPLETE

Some, but not all, of the properties

were successfully retrieved. Note that

there are many possible reasons for

failing to retrieve all properties,

including device removal.

0x00042800

VDS_S_ISCSI_SESSION_NOT_FOUND_PERSISTENT_LOGIN_REMOV

ED

VDS could not find any sessions

matching the specified iSCSI target,

but one or more persistent logins were

found and removed.

0x00042801 If a persistent login was set up for the

112 / 368

[MS-VDS] — v20130722
 Virtual Disk Service (VDS) Protocol

 Copyright © 2013 Microsoft Corporation.

 Release: Monday, July 22, 2013

Return value/code Description

VDS_S_ISCSI_PERSISTENT_LOGIN_MAY_NOT_BE_REMOVED target, it may not have been removed.

Check the iSCSI Initiator Control Panel

to remove it if necessary.

0x00042802

VDS_S_ISCSI_LOGIN_ALREAD_EXISTS

The attempt to log in to the iSCSI

target failed because the session

already exists.

0x80042803

VDS_E_UNABLE_TO_FIND_BOOT_DISK

Volume disk extent information could

not be retrieved for the boot volume.

0x80042804

VDS_E_INCORRECT_BOOT_VOLUME_EXTENT_INFO

More than two disk extents were

reported for the boot volume. This is a

system error.

0x80042805

VDS_E_GET_SAN_POLICY

A driver error was reported when

getting the SAN policy.

0x80042806

VDS_E_SET_SAN_POLICY

A driver error was reported when

setting the SAN policy.

0x80042807

VDS_E_BOOT_DISK

Disk attributes cannot be changed on

the boot disk.

0x00042808

VDS_S_DISK_MOUNT_FAILED

One or more of the volumes on the

disk could not be mounted, possibly

because it was already mounted.

0x00042809

VDS_S_DISK_DISMOUNT_FAILED

One or more of the volumes on the

disk could not be dismounted, possibly

because it was already dismounted.

0x8004280A

VDS_E_DISK_IS_OFFLINE

The operation cannot be performed on

a disk that is offline.

0x8004280B

VDS_E_DISK_IS_READ_ONLY

The operation cannot be performed on

a disk that is read-only.

0x8004280C

VDS_E_PAGEFILE_DISK

The operation cannot be performed on

a disk that contains a pagefile volume.

0x8004280D

VDS_E_HIBERNATION_FILE_DISK

The operation cannot be performed on

a disk that contains a hibernation file

volume.

0x8004280E

VDS_E_CRASHDUMP_DISK

The operation cannot be performed on

a disk that contains a crashdump file

volume.

0x8004280F

VDS_E_UNABLE_TO_FIND_SYSTEM_DISK

A system error occurred while

retrieving the system disk information.

0x80042810

VDS_E_INCORRECT_SYSTEM_VOLUME_EXTENT_INFO

Multiple disk extents reported for the

system volume - system error.

0x80042811

VDS_E_SYSTEM_DISK

Disk attributes may not be changed on

the current system disk or BIOS disk

113 / 368

[MS-VDS] — v20130722
 Virtual Disk Service (VDS) Protocol

 Copyright © 2013 Microsoft Corporation.

 Release: Monday, July 22, 2013

Return value/code Description

0.

0x80042812

VDS_E_VOLUME_SHRINK_FVE_LOCKED

The volume could not be shrunken

because it is locked by BitLocker.

Unlock the volume and try again.

0x80042813

VDS_E_VOLUME_SHRINK_FVE_CORRUPT

The volume could not be shrunken

because it is locked due to a BitLocker

error. Use BitLocker tools to recover

the volume and try again.

0x80042814

VDS_E_VOLUME_SHRINK_FVE_RECOVERY

The volume could not be shrunken

because it is marked for BitLocker

recovery. Use BitLocker tools to

recover the volume and try again.

0x80042815

VDS_E_VOLUME_SHRINK_FVE

The volume could not be shrunken

because it is encrypted by BitLocker

and Fveapi.dll could not be loaded to

determine its status. For this operation

to succeed, Fveapi.dll must be

available in

%SystemRoot%\System32\.

0x80042816

VDS_E_SHRINK_OVER_DATA

The SHRINK operation against the

selected LUN cannot be completed.

Completing the operation using the

specified parameters will overwrite

volumes containing user data.

0x80042817

VDS_E_INVALID_SHRINK_SIZE

The SHRINK operation against the

selected LUN cannot be completed.

The specified size is greater than the

size of the LUN.

0x80042818

VDS_E_LUN_DISK_MISSING

The SHRINK operation against the

selected LUN cannot be completed.

The current state of the disk

associated with the LUN is MISSING.

0x80042819

VDS_E_LUN_DISK_FAILED

The SHRINK operation against the

selected LUN cannot be completed.

The current state of the disk

associated with the LUN is FAILED.

0x8004281A

VDS_E_LUN_DISK_NOT_READY

The SHRINK operation against the

selected LUN cannot be completed.

The current state of the disk

associated with the LUN is NOT READY.

0x8004281B

VDS_E_LUN_DISK_NO_MEDIA

The SHRINK operation against the

selected LUN cannot be completed.

The current state of the disk

associated with the LUN is NO MEDIA.

0x8004281C

VDS_E_LUN_NOT_READY

The SHRINK operation against the

selected LUN cannot be completed.

114 / 368

[MS-VDS] — v20130722
 Virtual Disk Service (VDS) Protocol

 Copyright © 2013 Microsoft Corporation.

 Release: Monday, July 22, 2013

Return value/code Description

The current state of the LUN is NOT

READY.

0x8004281D

VDS_E_LUN_OFFLINE

The SHRINK operation against the

selected LUN cannot be completed.

The current state of the LUN is

OFFLINE.

0x8004281E

VDS_E_LUN_FAILED

The SHRINK operation against the

selected LUN cannot be completed.

The current state of the LUN is FAILED.

0x8004281F

VDS_E_VOLUME_EXTEND_FVE_LOCKED

The volume could not be extended

because it is locked by BitLocker.

Unlock the volume and retry the

operation.

0x80042820

VDS_E_VOLUME_EXTEND_FVE_CORRUPT

The volume could not be extended

because it is locked due to a BitLocker

error. Use BitLocker tools to recover

the volume and retry the operation.

0x80042821

VDS_E_VOLUME_EXTEND_FVE_RECOVERY

The volume could not be extended

because it is marked for BitLocker

recovery. Use BitLocker tools to

recover the volume and retry the

operation.

0x80042822

VDS_E_VOLUME_EXTEND_FVE

The volume could not be extended

because it is encrypted by BitLocker

and Fveapi.dll could not be loaded to

determine its status. For this operation

to succeed, Fveapi.dll must be

available in

%SystemRoot%\System32\.

0x80042823

VDS_E_SECTOR_SIZE_ERROR

The sector size must be non-zero, a

power of 2, and less than the

maximum sector size.

0x80042900

VDS_E_INITIATOR_ADAPTER_NOT_FOUND

The initiator adapter was not found.

For calls to GetPathInfo(), the initiator

adapter is associated with the path end

point.

0x80042901

VDS_E_TARGET_PORTAL_NOT_FOUND

The target portal was not found. For

calls to GetPathInfo(), the target portal

is associated with the path end point.

0x80042902

VDS_E_INVALID_PORT_PATH

The path returned for the port is

invalid. Either it has an incorrect port

type specified, or, the HBA port

properties structure is NULL.

0x80042903

VDS_E_INVALID_ISCSI_TARGET_NAME

An invalid iSCSI target name was

returned from the provider.

115 / 368

[MS-VDS] — v20130722
 Virtual Disk Service (VDS) Protocol

 Copyright © 2013 Microsoft Corporation.

 Release: Monday, July 22, 2013

Return value/code Description

0x80042904

VDS_E_SET_TUNNEL_MODE_OUTER_ADDRESS

Call to set the iSCSI tunnel mode outer

address failed.

0x80042905

VDS_E_ISCSI_GET_IKE_INFO

Call to get the iSCSI IKE info failed.

0x80042906

VDS_E_ISCSI_SET_IKE_INFO

Call to set the iSCSI IKE info failed.

0x80042907

VDS_E_SUBSYSTEM_ID_IS_NULL

The provider returned a NULL

subsystem identification string.

0x80042908

VDS_E_ISCSI_INITIATOR_NODE_NAME

Failed to get the iSCSI initiator node

name.

0x80042909

VDS_E_ISCSI_GROUP_PRESHARE_KEY

Failed to set iSCSI group pre-shared

key.

0x8004290A

VDS_E_ISCSI_CHAP_SECRET

Failed to set iSCSI initiator CHAP

secret.

0x8004290B

VDS_E_INVALID_IP_ADDRESS

An invalid IP address was encountered.

0x8004290C

VDS_E_REBOOT_REQUIRED

A reboot is required before any further

operations may be initiated. Without a

reboot, machine behavior and machine

state are undefined for any further

operations.

0x8004290D

VDS_E_VOLUME_GUID_PATHNAME_NOT_ALLOWED

Volume GUID pathnames are not valid

input to this method.

0x8004290E

VDS_E_BOOT_PAGEFILE_DRIVE_LETTER

Assigning or removing drive letters on

the current boot or pagefile volume is

not allowed.

0x8004290F

VDS_E_DELETE_WITH_CRITICAL

Delete is not allowed on the current

boot, system, pagefile, crashdump or

hibernation volume.

0x80042910

VDS_E_CLEAN_WITH_DATA

The FORCE parameter, (see the bForce

parameter in

IVdsAdvancedDisk::Clean), must be

set to TRUE in order to clean a disk

that contains a data volume.

0x80042911

VDS_E_CLEAN_WITH_OEM

The FORCE parameter, (see the

bForceOEM parameter in

IVdsAdvancedDisk::Clean), must be

set to TRUE in order to clean a disk

that contains an OEM volume.

0x80042912

VDS_E_CLEAN_WITH_CRITICAL

Clean is not allowed on the disk

containing the current boot, system,

pagefile, crashdump or hibernation

volume.

116 / 368

[MS-VDS] — v20130722
 Virtual Disk Service (VDS) Protocol

 Copyright © 2013 Microsoft Corporation.

 Release: Monday, July 22, 2013

Return value/code Description

0x80042913

VDS_E_FORMAT_CRITICAL

Format is not allowed on the current

boot, system, pagefile, crashdump or

hibernation volume.

0x80042914

VDS_E_NTFS_FORMAT_NOT_SUPPORTED

The NTFS file system format is not

supported on this volume.

0x80042915

VDS_E_FAT32_FORMAT_NOT_SUPPORTED

The FAT32 file system format is not

supported on this volume.

0x80042916

VDS_E_FAT_FORMAT_NOT_SUPPORTED

The FAT file system format is not

supported on this volume.

0x80042917

VDS_E_FORMAT_NOT_SUPPORTED

The volume is not formattable.

0x80042918

VDS_E_COMPRESSION_NOT_SUPPORTED

The specified file system does not

support compression.

0x80042919

VDS_E_VDISK_NOT_OPEN

The virtual disk object has not been

opened yet.

0x8004291A

VDS_E_VDISK_INVALID_OP_STATE

The requested operation cannot be

performed on the virtual disk object,

because it is not in a state that permits

it.

0x8004291B

VDS_E_INVALID_PATH

The path returned for the LUN is

invalid. It has an incorrect path type

specified.

0x8004291C

VDS_E_INVALID_ISCSI_PATH

The path returned for the LUN is

invalid. Either it has an incorrect path

type specified, or, the initiator portal

properties structure is NULL.

0x8004291D

VDS_E_SHRINK_LUN_NOT_UNMASKED

The SHRINK operation against the

selected LUN cannot be completed.

The LUN is not unmasked to the local

server.

0x8004291E

VDS_E_LUN_DISK_READ_ONLY

The SHRINK operation against the

selected LUN cannot be completed.

The current state of the disk

associated with the LUN is READ ONLY.

0x8004291F

VDS_E_LUN_UPDATE_DISK

The operation against the selected LUN

completed, but there was a failure

updating the status of the disk

associated with the LUN. Call REFRESH

to retry the status update for the disk.

0x80042920

VDS_E_LUN_DYNAMIC

The SHRINK operation against the

selected LUN cannot be completed.

The current state of the disk

associated with the LUN is DYNAMIC.

117 / 368

[MS-VDS] — v20130722
 Virtual Disk Service (VDS) Protocol

 Copyright © 2013 Microsoft Corporation.

 Release: Monday, July 22, 2013

Return value/code Description

0x80042921

VDS_E_LUN_DYNAMIC_OFFLINE

The SHRINK operation against the

selected LUN cannot be completed.

The current state of the disk

associated with the LUN is DYNAMIC

OFFLINE.

0x80042922

VDS_E_LUN_SHRINK_GPT_HEADER

The SHRINK operation against the

selected LUN cannot be completed.

The disk has the GPT partitioning

format. The specified new LUN size

does not allow space for a new GPT

backup header to be created. Please

increase the resulting LUN size.

0x80042923

VDS_E_MIRROR_NOT_SUPPORTED

Mirrored volumes are not supported by

this operating system.

0x80042924

VDS_E_RAID5_NOT_SUPPORTED

RAID-5 volumes are not supported by

this operating system.

0x80042925

VDS_E_DISK_NOT_CONVERTIBLE_SIZE

The specified disk is not convertible

because the size is less than the

minimum size required for GPT disks.

0x80042926

VDS_E_OFFLINE_NOT_SUPPORTED

The volume does not support offlining.

0x80042927

VDS_E_VDISK_PATHNAME_INVALID

The pathname for a virtual disk must

be fully qualified.

0x80042928

VDS_E_EXTEND_TOO_MANY_CLUSTERS

The volume cannot be extended

because the number of clusters will

exceed the maximum number of

clusters supported by the file system.

0x80042929

VDS_E_EXTEND_UNKNOWN_FILESYSTEM

The volume cannot be extended

because the volume does not contain a

recognized file system.

0x8004292A

VDS_E_SHRINK_UNKNOWN_FILESYSTEM

The volume cannot be shrunken

because the volume does not contain a

recognized file system.

0x8004292B

VDS_E_VD_DISK_NOT_OPEN

The requested operation requires that

the virtual disk be opened.

0x8004292C

VDS_E_VD_DISK_IS_EXPANDING

The requested operation cannot be

performed while the virtual disk is

expanding.

0x8004292D

VDS_E_VD_DISK_IS_COMPACTING

The requested operation cannot be

performed while the virtual disk is

compacting.

0x8004292E

VDS_E_VD_DISK_IS_MERGING

The requested operation cannot be

performed while the virtual disk is

merging.

118 / 368

[MS-VDS] — v20130722
 Virtual Disk Service (VDS) Protocol

 Copyright © 2013 Microsoft Corporation.

 Release: Monday, July 22, 2013

Return value/code Description

0x8004292F

VDS_E_VD_IS_ATTACHED

The requested operation cannot be

performed while the virtual disk is

attached.

0x80042930

VDS_E_VD_DISK_ALREADY_OPEN

The virtual disk is already open and

cannot be opened a second time.

Please close all clients that may have

opened the virtual disk and retry.

0x80042931

VDS_E_VD_DISK_ALREADY_EXPANDING

The virtual disk is already in the

process of expanding.

0x80042932

VDS_E_VD_ALREADY_COMPACTING

The virtual disk is already in the

process of compacting.

0x80042933

VDS_E_VD_ALREADY_MERGING

The virtual disk is already in the

process of merging.

0x80042934

VDS_E_VD_ALREADY_ATTACHED

The virtual disk is already attached.

0x80042935

VDS_E_VD_ALREADY_DETACHED

The virtual disk is already detached.

0x80042936

VDS_E_VD_NOT_ATTACHED_READONLY

The requested operation requires that

the virtual disk be attached read only.

0x80042937

VDS_E_VD_IS_BEING_ATTACHED

The requested operation cannot be

performed while the virtual disk is

being attached.

0x80042938

VDS_E_VD_IS_BEING_DETACHED

The requested operation cannot be

performed while the virtual disk is

being detached.

0x00044244

VDS_S_ACCESS_PATH_NOT_DELETED

The access paths on the volume may

not be deleted.

119 / 368

[MS-VDS] — v20130722
 Virtual Disk Service (VDS) Protocol

 Copyright © 2013 Microsoft Corporation.

 Release: Monday, July 22, 2013

3 Protocol Details

The following sections specify details of the VDS Remote Protocol, including abstract data models,
interface method syntax, and message processing rules.

3.1 Interfaces

All VDS interfaces that are listed in this section inherit the IUnknown interface. For all VDS
interfaces, method opnum field values start with 3; opnum values 0, 1, and 2 represent the
IUnknown::QueryInterface, IUnknown::AddRef, and IUnknown::Release methods, respectively. For

more information, see [MS-DCOM] section 3.1.1.5.8.

The interfaces in this section are listed in the following order:

Generic object interfaces: Enumeration Object Interfaces (section 3.1.1) through Asynchronous

Operation Object Interfaces (section 3.1.3).

Service object interfaces: Service Object Interfaces (section 3.1.5) through HBA Port Object

Interfaces (section 3.1.6).

Provider interfaces: Provider Object Interfaces (section 3.1.9).

Pack interfaces: Pack Object Interfaces (section 3.1.11).

Disk interfaces: Disk Object Interfaces (section 3.1.12).

Volume interfaces: Volume Object Interfaces (section 3.1.13).

Volume plex interfaces: Volume Plex Object Interfaces (section 3.1.14).

This order reflects the logical hierarchy of objects in VDS. For more information, see section 3.4.1.

To retrieve the interfaces of a particular object, call the QueryInterface method on the DCOM

IUnknown interfaces of the object. For more information, see [MS-DCOM] section 3.1.1.5.8.

Unless otherwise specified, all methods MUST return zero or a nonerror HRESULT (as specified in
[MS-ERREF]) on success, or an implementation-specific nonzero error code on failure (see section
2.2.3 for more information on the HRESULT values predefined by the Virtual Disk Service Remote

Protocol).

Unless otherwise specified, client implementations of this protocol MUST NOT take any action on an
error code, but rather, return the error to the invoking application.

The set of required and optional interfaces is organized into five groups. Group 1 is the required set
of interfaces. Groups 2 through 6 are optional sets of interfaces.<40>

If one interface from an optional group is implemented, all interfaces in that group MUST be

implemented.

The groups form an additive set: Group 1 is required. If one interface from group 2 is implemented,
all interfaces in group 1 and group 2 are implemented. If one interface from group 3 is
implemented, that implies that all interfaces in groups 1, 2, and 3 are implemented.

Group 1

%5bMS-GLOS%5d.pdf
%5bMS-DCOM%5d.pdf
%5bMS-DCOM%5d.pdf
%5bMS-ERREF%5d.pdf
%5bMS-ERREF%5d.pdf

120 / 368

[MS-VDS] — v20130722
 Virtual Disk Service (VDS) Protocol

 Copyright © 2013 Microsoft Corporation.

 Release: Monday, July 22, 2013

Parameter Value

Additive set of interfaces that

MUST be implemented

RPC interface UUID for

IEnumVdsObject

118610B7-8D94-4030-B5B8-

500889788E4E

Group 1

RPC interface UUID for

IVdsAdviseSink

8326CD1D-CF59-4936-B786-

5EFC08798E25

Group 1

RPC interface UUID for IVdsAsync D5D23B6D-5A55-4492-9889-

397A3C2D2DBC

Group 1

RPC interface UUID for

IVdsServiceLoader

E0393303-90D4-4A97-AB71-

E9B671EE2729

Group 1

RPC interface UUID for IVdsService 0818A8EF-9BA9-40D8-A6F9-

E22833CC771E

Group 1

RPC interface UUID for

IVdsServiceInitialization

4AFC3636-DB01-4052-80C3-

03BBCB8D3C69

Group 1

RPC interface UUID for

IVdsProvider

10C5E575-7984-4E81-A56B-

431F5F92AE42

Group 1

RPC interface UUID for

IVdsSwProvider

9AA58360-CE33-4F92-B658-

ED24B14425B8

Group 1

RPC interface UUID for

IVdsHwProvider

D99BDAAE-B13A-4178-9FDB-

E27F16B4603E

Group 1

RPC interface UUID for IVdsPack 3B69D7F5-9D94-4648-91CA-

79939BA263BF

Group 1

RPC interface UUID for IVdsDisk 07E5C822-F00C-47A1-8FCE-

B244DA56FD06

Group 1

RPC interface for UUID for

IVdsAdvancedDisk

6E6F6B40-977C-4069-BDDD-

AC710059F8C0

Group 1

RPC interface UUID for

IVdsRemovable

0316560B-5DB4-4ED9-BBB5-

213436DDC0D9

Group 1

RPC interface UUID for IVdsVolume 88306BB2-E71F-478C-86A2-

79DA200A0F11

Group 1

RPC interface UUID for

IVdsVolumeMF

EE2D5DED-6236-4169-931D-

B9778CE03DC6

Group 1

RPC interface UUID for

IVdsVolumePlex

4DAA0135-E1D1-40F1-AAA5-

3CC1E53221C3

Group 1

COM class UUID for the VDS

service object class

Used to create a VDS session (see

section 4.1.1)

7D1933CB-86F6-4A98-8628-

01BE94C9A575

Group 1

Group 2

121 / 368

[MS-VDS] — v20130722
 Virtual Disk Service (VDS) Protocol

 Copyright © 2013 Microsoft Corporation.

 Release: Monday, July 22, 2013

Parameter Value

Additive set of interfaces that

MUST be implemented

RPC interface UUID for

IVdsCreatePartitionEx

9882F547-CFC3-420B-

9750-00DFBEC50662

Groups 1-2

RPC interface UUID for

IVdsServiceUninstallDisk

B6B22DA8-F903-4BE7-

B492-C09D875AC9DA

Groups 1-2

RPC interface UUID for

IVdsSubSystemImportTarget

83BFB87F-43FB-4903-

BAA6-127F01029EEC

Groups 1-2

RPC interface UUID for IVdsServiceHba 0AC13689-3134-47C6-

A17C-4669216801BE

Groups 1-2

RPC interface UUID for

IVdsServiceIscsi

14FBE036-3ED7-4E10-

90E9-A5FF991AFF01

Groups 1-2

RPC interface UUID for IVdsHbaPort 2ABD757F-2851-4997-

9A13-47D2A885D6CA

Groups 1-2

RPC interface UUID for

IVdsIscsiInitiatorAdapter

B07FEDD4-1682-4440-

9189-A39B55194DC5

Groups 1-2

RPC interface UUID for

IVdsIscsiInitiatorPortal

38A0A9AB-7CC8-4693-

AC07-1F28BD03C3DA

Groups 1-2

Group 3

Parameter Value

Additive set of interfaces that

MUST be implemented

RPC interface UUID for

IVdsPack2

13B50BFF-290A-47DD-8558-

B7C58DB1A71A

Groups 1-3

RPC interface UUID for

IVdsDisk2

40F73C8B-687D-4A13-8D96-

3D7F2E683936

Groups 1-3

RPC interface UUID for

IVdsAdvancedDisk2

9723F420-9355-42DE-AB66-

E31BB15BEEAC

Groups 1-3

RPC interface UUID for

IVdsVolumeMF2

4DBCEE9A-6343-4651-B85F-

5E75D74D983C

Groups 1-3

RPC interface UUID for

IVdsDiskPartitionMF

538684E0-BA3D-4BC0-ACA9-

164AFF85C2A9

Groups 1-3

RPC interface UUID for

IVdsVolumeShrink

D68168C9-82A2-4F85-B6E9-

74707C49A58F

Groups 1-3

Group 4

Parameter Value

Additive set of interfaces that

MUST be implemented

RPC interface UUID for

IVdsServiceSAN

FC5D23E8-A88B-41A5-8DE0-

2D2F73C5A630

Groups 1-4

122 / 368

[MS-VDS] — v20130722
 Virtual Disk Service (VDS) Protocol

 Copyright © 2013 Microsoft Corporation.

 Release: Monday, July 22, 2013

Parameter Value

Additive set of interfaces that

MUST be implemented

RPC interface UUID for

IVdsDiskOnline

90681B1D-6A7F-48E8-9061-

31B7AA125322

Groups 1-4

Group 5

Parameter Value

Additive set of

interfaces that

MUST be

implemented

RPC interface UUID for IVdsDiskPartitionMF2 9CBE50CA-F2D2-

4BF4-ACE1-

96896B729625

Groups 1-5

RPC interface UUID for IVdsVolumeMF3 6788FAF9-214E-

4B85-BA59-

266953616E09

Groups 1-5

RPC interface UUID for IVdsDisk3 8F4B2F5D-EC15-

4357-992F-

473EF10975B9

Groups 1-5

RPC interface UUID for IVdsVolume2 72AE6713-DCBB-

4A03-B36B-

371F6AC6B53D

Groups 1-5

Microsoft Virtual Disk Provider Vendor Identifier

VIRTUAL_STORAGE_TYPE_VENDOR_MICROSOFT

EC984AEC-A0F9-

47E9-901F-

71415A66345B

Groups 1-5

RPC interface UUID for IVdsVdProvider B481498C-8354-

45F9-84A0-

0BDD2832A91F

Groups 1-5

RPC interface UUID for IVdsVDisk 1E062B84-E5E6-

4B4B-8A25-

67B81E8f13E8

Groups 1-5

RPC interface UUID for IVdsOpenVDisk 75C8F324-F715-

4FE3-A28E-

F9011B61A4A1

Groups 1-5

RPC interface UUID for IVdsVolumeOnline 1BE2275A-B315-

4F70-9E44-

879B3A2A53F2

Groups 1-5

Group 6

Parameter Value

Additive set of interfaces that

MUST be implemented

RPC interface UUID for

IVdsServiceSw

15fc031c-0652-4306-b2c3-

f558b8f837e2

Groups 1-6

RPC interface UUID for 3858C0D5-0F35-4BF5-9714- Groups 1-6

123 / 368

[MS-VDS] — v20130722
 Virtual Disk Service (VDS) Protocol

 Copyright © 2013 Microsoft Corporation.

 Release: Monday, July 22, 2013

Parameter Value

Additive set of interfaces that

MUST be implemented

IVdsAdvancedDisk3 69874963BC36

3.1.1 Enumeration Object Interfaces

This section includes interfaces that are used to interact with enumeration objects (enum objects)
on the server.

Enumeration objects are returned from methods of other interfaces and are used to enumerate

through a set of VDS objects of a specified type. The type of object that is enumerated depends on
the interface and method from which the enumeration object was returned.

Objects can be HBA ports, initiator adapters, initiator portals, providers, packs, disks, volumes, or
volume plexes.

3.1.1.1 IEnumVdsObject Interface

The IEnumVdsObject interface enumerates through a set of VDS objects.

The UUID for this interface is {118610B7-8D94-4030-B5B8-500889788E4E}.

The IEnumVdsObject methods are specified in section 3.4.5.2.1.

Methods in RPC Opnum Order

Method Description

Next Returns a specified number of objects in the enumeration. It begins from the current point.

Opnum: 3

Skip Skips a specified number of objects in the enumeration.

Opnum: 4

Reset Resets the enumerator to the beginning of the collection.

Opnum: 5

Clone Creates a new enumeration that has the same state as the current enumeration.

Opnum: 6

All methods MUST NOT throw exceptions.

3.1.2 Callback Object Interfaces

This section includes interfaces that the server uses to interact with the callback object on the client.

3.1.2.1 IVdsAdviseSink Interface

The client implements the IVdsAdviseSink interface in order to receive notification of VDS object
changes.

The UUID for this interface is {8326CD1D-CF59-4936-B786-5EFC08798E25}.

IVdsAdviseSink methods are specified in section 3.3.4.3.

124 / 368

[MS-VDS] — v20130722
 Virtual Disk Service (VDS) Protocol

 Copyright © 2013 Microsoft Corporation.

 Release: Monday, July 22, 2013

Methods in RPC Opnum Order

Method Description

OnNotify Passes notifications from VDS to applications.

Opnum: 3

All methods MUST NOT throw exceptions.

3.1.3 Asynchronous Operation Object Interfaces

This section includes interfaces that are used to interact with asynchronous operation objects
(async objects) on the server.

3.1.3.1 IVdsAsync Interface

The IVdsAsync interface manages asynchronous operations. Methods that initiate asynchronous

operations return a pointer to an IVdsAsync interface, allowing the caller to optionally cancel, wait
for, or query the status of the asynchronous operation.

The UUID for this interface is {D5D23B6D-5A55-4492-9889-397A3C2D2DBC}.

The IVdsAsync methods are specified in section 3.4.5.2.2.

Methods in RPC Opnum Order

Method Description

Cancel Cancels the asynchronous operation.

Opnum: 3

Wait Blocks and returns when the asynchronous operation has either finished successfully or

failed.

Opnum: 4

QueryStatus Retrieves the status of the asynchronous operation.

Opnum: 5

All methods MUST NOT throw exceptions.

3.1.4 Service Loader Interfaces

This section includes the interfaces that are used to load VDS service objects on the server.

3.1.4.1 IVdsServiceLoader Interface

Servers implement the IVdsServiceLoader interface, which can be used by clients to load the VDS

service object on remote machines.

The UUID for this interface is {E0393303-90D4-4A97-AB71-E9B671EE2729}.

The IVdsServiceLoader methods are specified in section 3.4.5.2.3.

All methods MUST NOT throw exceptions.

125 / 368

[MS-VDS] — v20130722
 Virtual Disk Service (VDS) Protocol

 Copyright © 2013 Microsoft Corporation.

 Release: Monday, July 22, 2013

Methods in RPC Opnum Order

Method Description

LoadService Loads the VDS service on the machine that is specified by an input parameter and returns

a pointer to the IVdsService interface.

Opnum: 3

3.1.5 Service Object Interfaces

This section includes interfaces that are used to interact with the VDS service object on the server.

3.1.5.1 IVdsService Interface

Servers implement the IVdsService interface in order to support storage management.

The UUID for this interface is {0818A8EF-9BA9-40D8-A6F9-E22833CC771E}.

The IVdsService methods are specified in section 3.4.5.2.4. A method is not listed for opnum 7
because the Virtual Disk Service Remote Protocol does not use it. Attempting to call a method with
opnum 7 may result in NDR raising a RPC_X_BAD_STUB_DATA exception. For more information, see
[MS-DCOM].

Methods in RPC Opnum Order

Method Description

IsServiceReady Determines whether a service is finished initializing.

Opnum: 3

WaitForServiceReady Waits for VDS initialization to complete and then returns the status of

the VDS initialization in the HRESULT.

Opnum: 4

GetProperties Retrieves the properties of the service that is represented by the

object that exposes this interface and method.

Opnum: 5

QueryProviders Enumerates the providers of the server.

Opnum: 6

Opnum07NotUsedOnWire Reserved for local use.

Opnum: 7

QueryUnallocatedDisks Enumerates the unallocated disks on the server.

Opnum: 8

GetObject Retrieves an IUnknown pointer to a specified object.

Opnum: 9

QueryDriveLetters Enumerates the drive letters of the server.

Opnum: 10

QueryFileSystemTypes Returns property details for all file systems that are known to VDS.

%5bMS-DCOM%5d.pdf
%5bMS-GLOS%5d.pdf

126 / 368

[MS-VDS] — v20130722
 Virtual Disk Service (VDS) Protocol

 Copyright © 2013 Microsoft Corporation.

 Release: Monday, July 22, 2013

Method Description

Opnum: 11

Reenumerate Discovers newly added and newly removed disks and returns the

status of the operation in the HRESULT.

Opnum: 12

Refresh Refreshes the ownership and layout of disks on the server.

Opnum: 13

CleanupObsoleteMountPoints Removes any mount points that point to volumes that no longer exist.

Opnum: 14

Advise Registers a notification callback with the server. Clients pass the

callback object to the server to receive notifications.

Opnum: 15

Unadvise Unregisters a client from notification of changes to storage objects by

the server.

Opnum: 16

Reboot Restarts the computer on which the server is running.

Opnum: 17

SetFlags Assigns property flags to the server.

Opnum: 18

ClearFlags Clears property flags from the service.

Opnum: 19

All methods MUST NOT throw exceptions.

In the previous table, the term "Reserved for local use" means that the client MUST NOT send the

opnum, and the server behavior is undefined because it does not affect interoperability.

3.1.5.2 IVdsServiceInitialization Interface

The IVdsServiceInitialization interface is implemented by VDS and is used by clients to start
initialization of the service.

The UUID for this interface is {4AFC3636-DB01-4052-80C3-03BBCB8D3C69}.

The IVdsServiceInitialization methods are specified in section 3.4.5.2.5.

Methods in RPC Opnum Order

Method Description

Initialize Starts the initialization of the server.

Opnum: 3

All methods MUST NOT throw exceptions.

127 / 368

[MS-VDS] — v20130722
 Virtual Disk Service (VDS) Protocol

 Copyright © 2013 Microsoft Corporation.

 Release: Monday, July 22, 2013

Note If the IVdsServiceLoader::LoadService method is used to instantiate the server, there is
no need to QueryInterface for the IVdsServiceInitialization interface, or to call

IVdsServiceInitialization::Initialize. See section 3.4.5.2.3.1.

3.1.5.3 IVdsServiceUninstallDisk Interface

The service object implements the IVdsServiceUninstallDisk interface in order to provide a way
to query VDS for disks that correspond to particular LUN information structures and to remove these
disks and the volumes wholly or partially contained in them.

The UUID for this interface is {B6B22DA8-F903-4BE7-B492-C09D875AC9DA}.

The IVdsServiceUninstallDisk methods are specified in section 3.4.5.2.6.<41>

Methods in RPC Opnum Order

Method Description

GetDiskIdFromLunInfo Retrieves the VDS object ID of a disk that corresponds to a specified LUN

information structure.

Opnum: 3

UninstallDisks Uninstalls a specific set of disks when it is given a list of the VDS object IDs

for the disks.

Opnum: 4

All methods MUST NOT throw exceptions.

3.1.5.4 IVdsServiceHba Interface

The IVdsServiceHba interface provides a method to query HBA ports on the server.<42>

The UUID for this interface is {0AC13689-3134-47C6-A17C-4669216801BE}.

The IVdsServiceHba methods are specified in section 3.4.5.2.7.

Methods in RPC Opnum Order

Method Description

QueryHbaPorts Returns an IEnumVdsObject enumeration object that contains a list of the HBA ports

that are known to VDS on the system.

Opnum: 3

All methods MUST NOT throw exceptions.

3.1.5.5 IVdsServiceIscsi Interface

The IVdsServiceIscsi interface provides methods to interact with the iSCSI initiators service on the
server. It includes the ability to set CHAP security settings and to log in to targets.<43>

The UUID for this interface is {14FBE036-3ED7-4E10-90E9-A5FF991AFF01}.

The IVdsServiceIscsi methods are specified in section 3.4.5.2.8. No methods with opnums 5, 6, 7,

and 9 are listed because the Virtual Disk Service Remote Protocol does not use them.

128 / 368

[MS-VDS] — v20130722
 Virtual Disk Service (VDS) Protocol

 Copyright © 2013 Microsoft Corporation.

 Release: Monday, July 22, 2013

Methods in RPC Opnum Order

Method Description

GetInitiatorName Returns the iSCSI name of the local initiator service.

Opnum: 3

QueryInitiatorAdapters Returns an object that enumerates the iSCSI initiator adapters of the

initiator.

Opnum: 4

Opnum05NotUsedOnWire Reserved for local use.

Opnum: 5

Opnum06NotUsedOnWire Reserved for local use.

Opnum: 6

Opnum07NotUsedOnWire Reserved for local use.

Opnum: 7

SetInitiatorSharedSecret Sets the initiator CHAP shared secret that is used for mutual CHAP

authentication, when the initiator authenticates the target.

Opnum: 8

Opnum09NotUsedOnWire Reserved for local use.

Opnum: 9

In the preceding table, the phrase "Reserved for local use" means that the client MUST NOT send
the opnum, and the server behavior is undefined because it does not affect interoperability.

All methods MUST NOT throw exceptions.

3.1.5.6 IVdsServiceSAN Interface

Servers implement the IvdsServiceSAN interface in order to support storage management.

The UUID for this interface is {FC5D23E8-A88B-41A5-8DE0-2D2F73C5A630}.

The IvdsServiceSAN methods are specified in section 3.4.5.2.9.

Methods in RPC Opnum Order

Method Description

GetSANPolicy Returns the current SAN policy.

Opnum: 3

SetSANPolicy Sets the SAN policy.

Opnum: 4

All methods MUST NOT throw exceptions.

129 / 368

[MS-VDS] — v20130722
 Virtual Disk Service (VDS) Protocol

 Copyright © 2013 Microsoft Corporation.

 Release: Monday, July 22, 2013

3.1.5.7 IVdsServiceSw Interface

Servers implement the IVdsServiceSw interface in order to support storage management.

The UUID for this interface is {15fc031c-0652-4306-b2c3-f558b8f837e2}.

The IvdsServiceSAN methods are specified in section 3.4.5.2.10.

Methods in RPC Opnum Order

Method Description

GetDiskObject Returns the disk for the given PnP Device ID string.

Opnum: 3

All methods MUST NOT throw exceptions.

3.1.6 HBA Port Object Interfaces

This section includes the interfaces that are used to interact with HBA port objects on the server.

3.1.6.1 IVdsHbaPort Interface

The IVdsHbaPort interface provides methods to query and interact with HBA ports on the
server.<44>

The UUID for this interface is {2ABD757F-2851-4997-9A13-47D2A885D6CA}.

The IVdsHbaPort methods are specified in section 3.4.5.2.11.

Methods in RPC Opnum Order

Method Description

GetProperties Retrieves the properties of the HBA port that is represented by the object

exposing this interface and method.

Opnum: 3

SetAllPathStatuses Sets the statuses of all paths that originate from the HBA port to a specified

status.

Opnum: 4

All methods MUST NOT throw exceptions.

3.1.7 Initiator Adapter Object Interfaces

This section includes interfaces that are used to interact with iSCSI initiator adapter objects on the

server.

3.1.7.1 IVdsIscsiInitiatorAdapter Interface

The IVdsIscsiInitiatorAdapter interface provides methods to query and interact with iSCSI
initiator adapters on the server.<45>

The UUID for this interface is {B07FEDD4-1682-4440-9189-A39B55194DC5}.

130 / 368

[MS-VDS] — v20130722
 Virtual Disk Service (VDS) Protocol

 Copyright © 2013 Microsoft Corporation.

 Release: Monday, July 22, 2013

The IVdsIscsiInitiatorAdapter methods are specified in section 3.4.5.2.12. No methods are listed
with opnums 5 and 6 because the Virtual Disk Service Remote Protocol does not use them.

Methods in RPC Opnum Order

Method Description

GetProperties Retrieves the properties of the initiator adapter that is represented by the

object exposing this interface and method.

Opnum: 3

QueryInitiatorPortals Returns an object that enumerates the iSCSI initiator portals of the initiator

adapter.

Opnum: 4

Opnum05NotUsedOnWire Reserved for local use.

Opnum: 5

Opnum06NotUsedOnWire Reserved for local use.

Opnum: 6

In the preceding table, the phrase "Reserved for local use" means that the client MUST NOT send
the opnum, and the server behavior is undefined<46> because it does not affect interoperability.

All methods MUST NOT throw exceptions.

3.1.8 Initiator Portal Object Interfaces

This section includes interfaces that are used to interact with iSCSI initiator portal objects on the
server.

3.1.8.1 IVdsIscsiInitiatorPortal Interface

The IVdsIscsiInitiatorPortal interface provides methods to query and interact with iSCSI initiator
portals on the server.<47>

The UUID for this interface is {38A0A9AB-7CC8-4693-AC07-1F28BD03C3DA}.

The IVdsIscsiInitiatorPortal methods are specified in section 3.4.5.2.13. No methods with
opnums 5, 6, and 7 are listed because the Virtual Disk Service Remote Protocol does not use them.

Methods in RPC Opnum Order

Method Description

GetProperties Retrieves the properties of the initiator portal that is represented by the object

that exposes this interface and method.

Opnum: 3

GetInitiatorAdapter Returns the initiator adapter to which the initiator portal belongs.

Opnum: 4

Opnum05NotUsedOnWire Reserved for local use.

Opnum: 5

131 / 368

[MS-VDS] — v20130722
 Virtual Disk Service (VDS) Protocol

 Copyright © 2013 Microsoft Corporation.

 Release: Monday, July 22, 2013

Method Description

Opnum06NotUsedOnWire Reserved for local use.

Opnum: 6

Opnum07NotUsedOnWire Reserved for local use.

Opnum: 7

In the preceding table, the phrase "Reserved for local use" means that the client MUST NOT send

the opnum, and the server behavior is undefined because it does not affect interoperability.

All methods MUST NOT throw exceptions.

3.1.9 Provider Object Interfaces

This section includes interfaces that are used to interact with provider objects on the server.

3.1.9.1 IVdsProvider Interface

Providers implement the IVdsProvider interface in order to support provider management.

The UUID for this interface is {10C5E575-7984-4E81-A56B-431F5F92AE42}.

The IVdsProvider methods are specified in section 3.4.5.2.14.

Methods in RPC Opnum Order

Method Description

GetProperties Retrieves the properties of the provider that is represented by the object exposing this

interface and method.

Opnum: 3

All methods MUST NOT throw exceptions.

3.1.9.2 IVdsSwProvider Interface

Software providers implement the IVdsSwProvider interface in order to support management of
disk packs.

The UUID for this interface is {9AA58360-CE33-4F92-B658-ED24B14425B8}.

The IVdsSwProvider methods are specified in section 3.4.5.2.15.

Methods in RPC Opnum Order

Method Description

QueryPacks Retrieves the provider disk packs.

Opnum: 3

CreatePack Creates a disk pack.

Opnum: 4

132 / 368

[MS-VDS] — v20130722
 Virtual Disk Service (VDS) Protocol

 Copyright © 2013 Microsoft Corporation.

 Release: Monday, July 22, 2013

All methods MUST NOT throw exceptions.

3.1.9.3 IVdsHwProvider Interface

Hardware providers implement the IVdsHwProvider interface to support management of

subsystems.

The UUID for this interface is {D99BDAAE-B13A-4178-9FDB-E27F16B4603E}.

The IVdsHwProvider methods are specified in section 3.4.5.2.16.

All methods MUST NOT throw exceptions.

Methods in RPC Opnum Order

Method Description

QuerySubSystems Retrieves the subsystems that are managed by the provider.

Opnum: 3

Opnum04NotUsedOnWire Reserved for local use.

Opnum: 4

Opnum05NotUsedOnWire Reserved for local use.

Opnum: 5

3.1.9.4 IVdsVdProvider Interface

Virtual disk providers implement the IVdsVdProvider interface in order to support management of
virtual disks.

The UUID for this interface is {B481498C-8354-45F9-84A0-0BDD2832A91F}.

The IVdsVdProvider methods are specified in section 3.4.5.2.17.

Methods in RPC Opnum Order

Method Description

QueryVDisks Returns a list of the virtual disks that are managed by the provider.

Opnum: 3

CreateVDisk Defines a virtual hard disk by creating a virtual disk file backing store and adds a

virtual hard disk object to the provider. Does NOT instantiate an operating system

disk device.

Opnum: 4

AddVDisk Adds a virtual disk object for the specified virtual disk file to the provider and

returns an IVdsVDisk interface pointer to it.

Opnum: 5

GetDiskFromVDisk Returns an IVdsDisk interface pointer for a virtual disk object given an

IVdsVDisk interface pointer. The virtual disk must be attached.

Opnum: 6

133 / 368

[MS-VDS] — v20130722
 Virtual Disk Service (VDS) Protocol

 Copyright © 2013 Microsoft Corporation.

 Release: Monday, July 22, 2013

Method Description

GetVDiskFromDisk Returns an IVdsVDisk interface pointer for the virtual disk object given an

IVdsDisk interface pointer. The virtual disk must be attached.

Opnum: 7

All methods MUST NOT throw exceptions.

3.1.10 Subsystem Object Interfaces

This section includes interfaces that are used to interact with subsystem objects on the server.

3.1.10.1 IVdsSubSystemImportTarget Interface

The IVdsSubSystemImportTarget interface is implemented by a subsystem object to manage the
import targets for the subsystem.

The UUID for the interface is {83BFB87F-43FB-4903-BAA6-127F01029EEC}.

The IVdsSubSystemImportTarget methods are specified in section 3.4.5.2.18.

All methods MUST NOT throw exceptions.

Methods in RPC Opnum Order

Method Description

GetImportTarget Retrieves the import targets for the subsystem.

Opnum: 3

SetImportTarget Sets the import targets for the subsystem.

Opnum: 4

3.1.11 Pack Object Interfaces

This section includes interfaces that are used to interact with disk pack objects on the server.

3.1.11.1 IVdsPack Interface

The IVdsPack interface is implemented by disk pack objects to support management of disk packs.
Attempting to call a method with opnum 10 may result in NDR raising an RPC_X_BAD_STUB_DATA
exception. For more information, see [MS-DCOM].

The UUID for this interface is {3B69D7F5-9D94-4648-91CA-79939BA263BF}.

The IVdsPack methods are specified in section 3.4.5.2.19. No method with opnum 10 is listed
because it is not used by this protocol.

Methods in RPC Opnum Order

Method Description

GetProperties Retrieves the properties of the disk pack that is represented by the object

exposing this interface and method.

%5bMS-DCOM%5d.pdf

134 / 368

[MS-VDS] — v20130722
 Virtual Disk Service (VDS) Protocol

 Copyright © 2013 Microsoft Corporation.

 Release: Monday, July 22, 2013

Method Description

Opnum: 3

GetProvider Retrieves the provider to which the disk pack belongs.

Opnum: 4

QueryVolumes Retrieves the volumes of a disk pack.

Opnum: 5

QueryDisks Retrieves the disks of a disk pack.

Opnum: 6

CreateVolume Creates a volume in a disk pack.

Opnum: 7

AddDisk Initializes a disk that has no defined partitioning format and adds it to the disk

pack.

Opnum: 8

MigrateDisks Migrates a set of disks from one pack to another pack.

Opnum: 9

Opnum10NotUsedOnWire Reserved for local use.

Opnum: 10

RemoveMissingDisk Removes the specified missing disk from a disk pack.

Opnum: 11

Recover Restores a disk pack to a healthy state.

Opnum: 12

In the preceding table, the phrase "Reserved for local use" means that the client MUST NOT send
the opnum, and the server behavior is undefined because it does not affect interoperability.

All methods MUST NOT throw exceptions.

3.1.11.2 IVdsPack2 Interface

The IVdsPack2 interface is implemented by disk pack objects to support creating volumes that are
aligned to a particular byte-size boundary.

The UUID for this interface is {13B50BFF-290A-47DD-8558-B7C58DB1A71A}.

The IVdsPack2 methods are specified in section 3.4.5.2.20.

Methods in RPC Opnum Order

Method Description

CreateVolume2 Creates a volume in a disk pack with an optional alignment parameter.

Opnum: 3

All methods MUST NOT throw exceptions.

135 / 368

[MS-VDS] — v20130722
 Virtual Disk Service (VDS) Protocol

 Copyright © 2013 Microsoft Corporation.

 Release: Monday, July 22, 2013

3.1.12 Disk Object Interfaces

This section includes interfaces that are used to interact with disk objects on the server.

3.1.12.1 IVdsDisk Interface

The IVdsDisk interface is implemented by disk objects in order to support disk management.

The UUID for this interface is {07E5C822-F00C-47A1-8FCE-B244DA56FD06}.

The IVdsDisk methods are specified in section 3.4.5.2.21.

Methods in RPC Opnum Order

Method Description

GetProperties Retrieves the properties of the disk that is represented by the object exposing

this interface and method.

Opnum: 3

GetPack Retrieves the disk pack to which the disk belongs.

Opnum: 4

GetIdentificationData Retrieves information that uniquely identifies a disk.

Opnum: 5

QueryExtents Enumerates the extents of a disk.

Opnum: 6

ConvertStyle Converts the partitioning format of a disk. This method is not implemented for

removable disks.

Opnum: 7

SetFlags Sets the read-only flag of a disk. This method is not implemented for

removable disks.

Opnum: 8

ClearFlags Clears the read-only flag of a disk. This method is not implemented for

removable disks.

Opnum: 9

All methods MUST NOT throw exceptions.

3.1.12.2 IVdsDisk2 Interface

The IVdsDisk2 interface is implemented by disk objects in order to support bringing disks online

and offline.

The UUID for this interface is {40F73C8B-687D-4A13-8D96-3D7F2E683936}.

The IVdsDisk2 methods are specified in section 3.4.5.2.22.

Methods in RPC Opnum Order

136 / 368

[MS-VDS] — v20130722
 Virtual Disk Service (VDS) Protocol

 Copyright © 2013 Microsoft Corporation.

 Release: Monday, July 22, 2013

Method Description

SetSANMode Sets the SAN mode of a disk to either offline (read-only mode) or online (read/write

mode).

Opnum: 3

All methods MUST NOT throw exceptions.

3.1.12.3 IVdsDisk3 Interface

The IVdsDisk3 interface is implemented by disk objects in order to support disk management.

The UUID for this interface is {8F4B2F5D-EC15-4357-992F-473EF10975B9}.

The IVdsDisk3 methods are specified in section 3.4.5.2.23.1.

Methods in RPC Opnum Order

Method Description

GetProperties2 Retrieves the properties of the disk that is represented by the object exposing this

interface and method. Adds the pwszLocationPath member to the disk properties.

Opnum: 3

QueryFreeExtents Retrieves the list of free extents for a disk.

Opnum: 4

All methods MUST NOT throw exceptions.

3.1.12.4 IVdsAdvancedDisk Interface

The IVdsAdvancedDisk interface is implemented by disk objects in order to support advanced disk

management.

The UUID for this interface is {6E6F6B40-977C-4069-BDDD-AC710059F8C0}.

The IVdsAdvancedDisk methods are specified in section 3.4.5.2.24.

Methods in RPC Opnum Order

Method Description

GetPartitionProperties Retrieves the properties of a partition on the disk at a specified byte offset.

Opnum: 3

QueryPartitions Enumerates a disk's partitions.

Opnum: 4

CreatePartition Creates a partition on a disk at a specified byte offset.

Opnum: 5

DeletePartition Deletes a partition from the disk at a specified byte offset. This method is not

implemented for removable disks.

Opnum: 6

137 / 368

[MS-VDS] — v20130722
 Virtual Disk Service (VDS) Protocol

 Copyright © 2013 Microsoft Corporation.

 Release: Monday, July 22, 2013

Method Description

ChangeAttributes Changes the attributes of the partition at byte offset ullOffset on the disk.

Opnum: 7

AssignDriveLetter Assigns a drive letter to an existing OEM, ESP, or unknown partition. This

method is not implemented for removable disks.

Opnum: 8

DeleteDriveLetter Deletes a drive letter that is assigned to an OEM, ESP, or unknown partition.

Opnum: 9

GetDriveLetter Retrieves the drive letter of a partition on the disk at a specified byte offset.

This method is not implemented for removable disks.

Opnum: 10

FormatPartition Formats an existing OEM, ESP, or unknown partition. This method is not

implemented for removable disks.

Opnum: 11

Clean Cleans a disk.<48>

Opnum: 12

All methods MUST NOT throw exceptions.

3.1.12.5 IVdsAdvancedDisk2 Interface

The IVdsAdvancedDisk2 interface is implemented by disk objects in order to support changing
partition types.

The UUID for this interface is {9723F420-9355-42DE-AB66-E31BB15BEEAC}.

The IVdsAdvancedDisk2 methods are specified in section 3.4.5.2.25.

Methods in RPC Opnum Order

Method Description

ChangePartitionType Changes the partition type on the disk at a specified byte offset.

Opnum: 3

All methods MUST NOT throw exceptions.

3.1.12.6 IVdsAdvancedDisk3 Interface

The IVdsAdvancedDisk3 interface is implemented by disk objects in order to return
VDS_ADVANCEDDISK_PROP structures and unique ID values.

The UUID for this interface is {3858C0D5-0F35-4BF5-9714-69874963BC36}.

The IVdsAdvancedDisk3 methods are specified in section 3.4.5.2.26

Methods in RPC Opnum Order

138 / 368

[MS-VDS] — v20130722
 Virtual Disk Service (VDS) Protocol

 Copyright © 2013 Microsoft Corporation.

 Release: Monday, July 22, 2013

Method Description

GetProperties Retrieves the properties of the disk that is represented by the object exposing this

interface and method.

Opnum: 3

GetUniqueId Retrieves the device path that the operating system uses to identify this disk.

Opnum: 4

All methods MUST NOT throw exceptions.

3.1.12.7 IVdsCreatePartitionEx Interface

The IVdsCreatePartitionEx interface is implemented by the disk object in order to support
creating partitions that are aligned to a particular byte size boundary.

The UUID for this interface is {9882F547-CFC3-420B-9750-00DFBEC50662}.

The IVdsCreatePartitionEx methods are specified in section 3.4.5.2.27.

Methods in RPC Opnum Order

Method Description

CreatePartitionEx Creates a partition on a disk at a specified byte offset, with an optional alignment

parameter.

Opnum: 3

All methods MUST NOT throw exceptions.

3.1.12.8 IVdsDiskOnline Interface

The IvdsDiskOnline interface is implemented by disk objects in order to support onlining or
offlining a disk.

The UUID for this interface is {90681B1D-6A7F-48E8-9061-31B7AA125322}.

The IvdsDiskOnline methods are specified in section 3.1.12.8.

Methods in RPC Opnum Order

Method Description

Online Brings the disk to the online state. An online disk exposes the volumes on that disk.

Opnum: 3

Offline Brings the disk to the offline state. An offline disk does not expose any volumes.

Opnum: 4

All methods MUST NOT throw exceptions.

139 / 368

[MS-VDS] — v20130722
 Virtual Disk Service (VDS) Protocol

 Copyright © 2013 Microsoft Corporation.

 Release: Monday, July 22, 2013

3.1.12.9 IVdsDiskPartitionMF Interface

The IVdsDiskPartitionMF interface is implemented by disk objects in order to support file system
management on partitions. This interface is not implemented for removable disks.

The UUID for this interface is {538684E0-BA3D-4BC0-ACA9-164AFF85C2A9}.

The IVdsDiskPartitionMF methods are specified in section 3.4.5.2.29.

Methods in RPC Opnum Order

Method Description

GetPartitionFileSystemProperties Returns property details about the file system on a

partition on the disk at a specified byte offset.

Opnum: 3

GetPartitionFileSystemTypeName Retrieves the name of the file system on a partition on a

disk at a specified byte offset.

Opnum: 4

QueryPartitionFileSystemFormatSupport Retrieves the properties of the file systems that are

supported for formatting a partition on the disk at a

specified byte offset.

Opnum: 5

FormatPartitionEx Formats an existing OEM, ESP, or unknown partition.

Opnum: 6

All methods MUST NOT throw exceptions.

3.1.12.10 IVdsDiskPartitionMF2 Interface

The IVdsDiskPartitionMF2 interface is implemented by disk objects in order to support file system
management on partitions. This interface adds support for UDF metadata duplication.

The UUID for this interface is {9CBE50CA-F2D2-4BF4-ACE1-96896B729625}.

The IVdsDiskPartitionMF2 methods are specified in section 3.4.5.2.30.

Methods in RPC Opnum Order

Method Description

FormatPartitionEx2 Formats an existing OEM, ESP, or unknown partition. Adds support for UDF file

system metadata duplication.

Opnum: 3

All methods MUST NOT throw exceptions.

3.1.12.11 IVdsRemovable Interface

The IVdsRemovable interface is implemented by disk objects in order to support management of

removable media. The methods on this interface are only implemented for removable disks.

140 / 368

[MS-VDS] — v20130722
 Virtual Disk Service (VDS) Protocol

 Copyright © 2013 Microsoft Corporation.

 Release: Monday, July 22, 2013

The UUID for this interface is {0316560B-5DB4-4ED9-BBB5-213436DDC0D9}.

The IVdsRemovable methods are specified in section 3.4.5.2.31.

Methods in RPC Opnum Order

Method Description

QueryMedia Identifies the media in the drive.

Opnum: 3

Eject Ejects the media in the drive.

Opnum: 4

All methods MUST NOT throw exceptions.

3.1.13 Volume Object Interfaces

This section includes interfaces that are used to interact with volume objects on the server.

3.1.13.1 IVdsVolume Interface

The IVdsVolume interface provides methods to manage volumes.

The UUID for this interface is {88306BB2-E71F-478C-86A2-79DA200A0F11}.

The IVdsVolume methods are specified in section 3.4.5.2.32.

All methods MUST NOT throw exceptions.

Methods in RPC Opnum Order

Method Description

GetProperties Retrieves the properties of the volume that is represented by the object exposing this

interface and method.

Opnum: 3

GetPack Retrieves the disk pack to which the volume belongs.

Opnum: 4

QueryPlexes Enumerates the plexes of a volume.

Opnum: 5

Extend Expands the size of the current volume by adding disk extents to each member of each

plex.

Opnum: 6

Shrink Reduces the size of the volume and all plexes and returns the released extents to free

space.

Opnum: 7

AddPlex Adds a volume as a plex to the current volume.

Opnum: 8

141 / 368

[MS-VDS] — v20130722
 Virtual Disk Service (VDS) Protocol

 Copyright © 2013 Microsoft Corporation.

 Release: Monday, July 22, 2013

Method Description

BreakPlex Removes a specified plex from the current volume.

Opnum: 9

RemovePlex Removes a specified plex from a volume. The last plex of a volume cannot be removed.

Opnum: 10

Delete Deletes all plexes in a volume. This method is not implemented for removable disks.

Opnum: 11

SetFlags Assigns flags to a volume. This method is not implemented for removable disks.

Opnum: 12

ClearFlags Clears flags from a volume. This method is not implemented for removable disks.

Opnum: 13

3.1.13.2 IVdsVolume2 Interface

The IVdsVolume2 interface provides methods to manage volumes.

The UUID for this interface is {72AE6713-DCBB-4A03-B36B-371F6AC6B53D}.

The IVdsVolume2 methods are specified in section 3.4.5.2.33.

Methods in RPC Opnum Order

Method Description

GetProperties2 Retrieves the properties of the volume that is represented by the object exposing this

interface and method.

Opnum: 3

3.1.13.3 IVdsVolumeMF Interface

The IVdsVolumeMF interface is implemented by volume objects in order to support file system
management.

The UUID for this interface is {EE2D5DED-6236-4169-931D-B9778CE03DC6}.

The IVdsVolumeMF methods are specified in section 3.4.5.2.34.

Methods in RPC Opnum Order

Method Description

GetFileSystemProperties Returns property details about the file system on the current volume.

Opnum: 3

Format Formats a file system on the current volume.

Opnum: 4

AddAccessPath Adds an access path to the current volume.

142 / 368

[MS-VDS] — v20130722
 Virtual Disk Service (VDS) Protocol

 Copyright © 2013 Microsoft Corporation.

 Release: Monday, July 22, 2013

Method Description

Opnum: 5

QueryAccessPaths Returns a list of access paths and a drive letter as a single case-insensitive

Unicode character, if one exists, for the current volume.

Opnum: 6

QueryReparsePoints Returns all reparse points for the current volume.

Opnum: 7

DeleteAccessPath Removes the access path from the current volume.

Opnum: 8

Mount Mounts a volume.

Opnum: 9

Dismount Dismounts a mounted volume.

Opnum: 10

SetFileSystemFlags Sets the file system flags.

Opnum: 11

ClearFileSystemFlags Clears the file system flags.

Opnum: 12

All methods MUST NOT throw exceptions.

3.1.13.4 IVdsVolumeMF2 Interface

The IVdsVolumeMF2 interface is implemented by volume objects in order to support additional file
system management functionality.

The UUID for this interface is {4DBCEE9A-6343-4651-B85F-5E75D74D983C}.

The IVdsVolumeMF2 methods are specified in section 3.4.5.2.35.

Methods in RPC Opnum Order

Method Description

GetFileSystemTypeName Retrieves the name of the file system on a volume.

Opnum: 3

QueryFileSystemFormatSupport Retrieves the properties of the file systems that are supported for

formatting a volume.

Opnum: 4

FormatEx Formats a file system on a volume.

Opnum: 5

All methods MUST NOT throw exceptions.

143 / 368

[MS-VDS] — v20130722
 Virtual Disk Service (VDS) Protocol

 Copyright © 2013 Microsoft Corporation.

 Release: Monday, July 22, 2013

3.1.13.5 IVdsVolumeMF3 Interface

The IVdsVolumeMF3 interface is implemented by volume objects in order to support additional file
system management functionality.

The UUID for this interface is {6788FAF9-214E-4B85-BA59-266953616E09}.

The IVdsVolumeMF3 methods are specified in section 3.4.5.2.36.

Methods in RPC Opnum Order

Method Description

QueryVolumeGuidPathnames Retrieves the volume GUID path names associated with a volume.

Opnum: 3

FormatEx2 Formats a file system on a volume.

Opnum: 4

OfflineVolume Offlines a volume.

Opnum: 5

All methods MUST NOT throw exceptions.

3.1.13.6 IVdsVolumeShrink Interface

The IVdsVolumeShrink interface is implemented by the volume objects in order to support volume
shrinking.

The UUID for this interface is {D68168C9-82A2-4F85-B6E9-74707C49A58F}.

The IVdsVolumeShrink methods are specified in section 3.4.5.2.37.

Methods in RPC Opnum Order

Method Description

QueryMaxReclaimableBytes Retrieves the maximum number of bytes that can be reclaimed from the

current volume.

Opnum: 3

Shrink Shrinks the volume and all plexes and returns the released extents.

Opnum: 4

All methods MUST NOT throw exceptions.

3.1.13.7 IVdsVolumeOnline Interface

The IVdsVolumeOnline interface is implemented by the volume objects in order to support
bringing single volumes online.

The UUID for this interface is {1BE2275A-B315-4f70-9E44-879B3A2A53F2}.

The IVdsVolumeOnline methods are specified in section 3.4.5.2.38.

144 / 368

[MS-VDS] — v20130722
 Virtual Disk Service (VDS) Protocol

 Copyright © 2013 Microsoft Corporation.

 Release: Monday, July 22, 2013

Methods in RPC Opnum Order

Method Description

Online Brings the volume online.

Opnum: 3

All methods MUST NOT throw exceptions.

3.1.14 Volume Plex Object Interfaces

This section includes interfaces that are used to interact with volume plex objects on the server.

3.1.14.1 IVdsVolumePlex Interface

The IVdsVolumePlex interface is implemented by volume plex objects in order to support volume
plex management.

The UUID for this interface is {4DAA0135-E1D1-40F1-AAA5-3CC1E53221C3}.

The IVdsVolumePlex methods are specified in section 3.4.5.2.39.

Methods in RPC Opnum Order

Method Description

GetProperties Retrieves the properties of the volume plex that are represented by the object exposing

this interface and method.

Opnum: 3

GetVolume Retrieves the volume that the volume plex belongs to.

Opnum: 4

QueryExtents Returns all extents for the current plex.

Opnum: 5

Repair Repairs a fault-tolerant volume plex by moving defective members to good disks.

Opnum: 6

All methods MUST NOT throw exceptions.

3.1.15 Virtual Disk Object Interfaces

3.1.15.1 IVdsVDisk Interface

The IVdsVDisk interface is implemented by the virtual disk objects to support virtual disk
management.

The UUID for this interface is {1E062B84-E5E6-4B4B-8A25-67B81E8F13E8}.

The IVdsVDisk methods are specified in section 3.4.5.2.40.

Methods in RPC Opnum Order

145 / 368

[MS-VDS] — v20130722
 Virtual Disk Service (VDS) Protocol

 Copyright © 2013 Microsoft Corporation.

 Release: Monday, July 22, 2013

Method Description

Open Opens a handle to the specified virtual disk file and returns an IVdsOpenVDisk

interface pointer to the object that represents the opened handle.

Opnum: 3

GetProperties Returns disk property information for the volume where the virtual disk resides.

Opnum: 4

GetHostVolume Returns an interface pointer to the volume object for the volume where the virtual

disk resides.

Opnum: 5

GetDeviceName Returns the device name for the volume where the virtual disk resides.

Opnum: 6

All methods MUST NOT throw exceptions.

3.1.15.2 IVdsOpenVDisk Interface

The IVdsOpenVDisk interface is implemented by the virtual disk objects to support virtual disk
management.

The UUID for this interface is {75C8F324-F715-4FE3-A28E-F9011B61A4A1}.

The IVdsOpenVDisk methods are specified in section 3.4.5.2.41.

Methods in RPC Opnum Order

Method Description

Attach Creates an operating system disk device for a virtual disk.

Opnum: 3

Detach Removes the operating system disk device associated with the virtual disk.

Opnum: 4

DetachAndDelete Removes the operating system disk device associated with the virtual disk and

deletes any backing store files.

Opnum: 5

Compact Reduces the physical size of the virtual disk's backing store file.

Opnum: 6

Merge Causes all blocks in a child differencing disk to be moved into the parent.

Opnum: 7

Expand Increases the size of a virtual disk's backing store (the virtual disk file).

Opnum: 8

All methods MUST NOT throw exceptions.

146 / 368

[MS-VDS] — v20130722
 Virtual Disk Service (VDS) Protocol

 Copyright © 2013 Microsoft Corporation.

 Release: Monday, July 22, 2013

3.2 Common Details

3.2.1 Abstract Data Model

This section describes a conceptual model of possible data organization that an implementation
maintains to participate in this protocol. The described organization is provided to facilitate the
explanation of how the protocol behaves. This document does not mandate that implementations
adhere to this model as long as their external behavior is consistent with that described in this
document.

3.2.1.1 Method Invocation

3.2.1.1.1 Method Sequencing Requirements

Some method calls require no prerequisite calls against the server; they simply query for
information or pass in parameters that are constructed by the client.

In general, the prerequisite call is to an object enumeration method, which retrieves information
about a specific set of storage objects, such as volumes or disks. Information that the object
enumeration method returns is then used to supply input parameters for subsequent calls. Calls with

such prerequisites are grouped in the next section by storage object type.

3.2.1.1.2 Storage Object Relationships

This section describes the hierarchy of interfaces and objects that the Virtual Disk Service Remote
Protocol uses and the relationships between those objects.

147 / 368

[MS-VDS] — v20130722
 Virtual Disk Service (VDS) Protocol

 Copyright © 2013 Microsoft Corporation.

 Release: Monday, July 22, 2013

Figure 1: Relationships between VDS remote protocol objects

Service Loader and Service: The first interface the client obtains is the IVdsServiceLoader
interface. The client invokes IVdsServiceLoader::LoadService to load the VDS service on the
specified machine. The server responds with an IVdsService interface for the VDS service that is

loaded.

Service and Providers: The client invokes IVdsService::QueryProviders to obtain a list of
providers. The server responds with an IEnumVdsObject interface, which enumerates a list of
IUnknown interfaces, one for each provider that is available on the server. The client invokes
QueryInterface on the IUnknown interface to retrieve a IVdsSwProvider or IVdsProvider
interface on the provider object.

Service and Subsystems: The client invokes IVdsService::QueryProviders with the flag

VDS_QUERY_HARDWARE_PROVIDERS to obtain a list of VDS hardware providers. The server
responds with an IEnumVdsObject interface, which enumerates a list of IUnknown interfaces,
one for each hardware provider that is available on the server. The client invokes QueryInterface

on the IUnknown interface to retrieve an IVdsHwProvider interface on the provider object. The
client invokes IVdsHwProvider::QuerySubSystems to obtain a list of subsystems. The server
responds with an IEnumVdsObject interface, which enumerates a list of IUnknown interfaces,

one for each subsystem that is available on the server. The client invokes QueryInterface on the
IUnknown interface to retrieve an IVdsSubSystemImportTarget interface.

148 / 368

[MS-VDS] — v20130722
 Virtual Disk Service (VDS) Protocol

 Copyright © 2013 Microsoft Corporation.

 Release: Monday, July 22, 2013

Virtual Disk Providers and Virtual Disks: Similar to hardware-providers, the client invokes
IVdsService::QueryProviders with the flag VDS_QUERY_VIRTUALDISK_PROVIDERS to obtain a

list of VDS virtual disk providers, each of which implement an IVdsVdProvider interface. The client
invokes the IUnknown QueryInterface method to retrieve an IVdsVdProvider interface on the

virtual disk provider object. The client then invokes IVdsVdProvider::QueryVDisks to obtain a list
of virtual disks that the provider maintains. The server responds with a IEnumVdsObject interface,
which enumerates a list of IUnknown interfaces, one for each virtual disk. The client invokes
IUnknown::QueryInterface to retrieve an IVdsVDisk interface on the virtual disk object.

Service and Unallocated Disks: The client invokes IVdsService::QueryUnallocatedDisks to obtain
a list of disks that do not have a recognized disk partitioning format. The server responds with an
IEnumVdsObject interface, which enumerates a list of IUnknown interfaces, one for each

unallocated disk that is available on the server. The client invokes IUnknown::QueryInterface to
retrieve an IVdsDisk, IVdsDisk2, IVdsDisk3, IVdsAdvancedDisk, IVdsAdvancedDisk2,
IVdsAdvancedDisk3, IVdsDiskPartitionMF, IVdsDiskPartitionMF2, IVdsCreatePartitionEx,
IvdsDiskOnline, or IVdsRemovable interface on the disk object.

Service and Disks: The client invokes IUnknown::QueryInterface on the IVdsService interface

to retrieve the IVdsServiceUninstallDisk interface. The client invokes

IVdsServiceUninstallDisk::UninstallDisks to uninstall one or more disks that are installed on the
server. See section 3.2.1.4. The client invokes IUnknown::QueryInterface on the IVdsService
interface to retrieve the IVdsServiceSAN interface. The client invokes
IVdsServiceSAN::GetSANPolicy to query the current SAN policy setting, and
IVdsServiceSAN::SetSANPolicy to set the SAN policy.

Service and File System Types: The client invokes IVdsService::QueryFileSystemTypes to obtain
a list of the file system types that are available for use in formatting volumes. The server returns a

list of VDS_FILE_SYSTEM_TYPE_PROP structures.

Service and Drive Letters: The client invokes IVdsService::QueryDriveLetters to obtain a list of
drive letters on the system. The server returns a list of VDS_DRIVE_LETTER_PROP structures;
the bUsed member indicates whether the drive letter is in use.

Service and HBA Ports: The client invokes IUnknown::QueryInterface on the IVdsService
interface to retrieve the IVdsServiceHba interface. The client invokes
IVdsServiceHba::QueryHbaPorts to obtain a list of the HBA ports that are connected to the

server. The server responds with an IEnumVdsObject interface, which enumerates a list of
IUnknown interfaces, one for each HBA port that is connected to the machine. The client invokes
IUnknown::QueryInterface to retrieve an IVdsHbaPort interface on the HBA port object.

Service and Initiator Adapters: The client invokes IUnknown::QueryInterface on the
IVdsService interface to retrieve the IVdsServiceIscsi interface. The client invokes
IVdsServiceIscsi::QueryInitiatorAdapters to obtain a list of the iSCSI initiator adapters that are

connected to the server. The server responds with an IEnumVdsObject interface, which
enumerates a list of IUnknown interfaces, one for each initiator adapter that is connected to the
machine. The client invokes IUnknown::QueryInterface to retrieve an
IVdsIscsiInitiatorAdapter interface on the initiator adapter object.

Service and Initiator Portals: The client invokes

IVdsIscsiInitiatorAdapter::QueryInitiatorPortals to obtain a list of the iSCSI initiator portals
that the initiator adapter maintains. The server responds with an IEnumVdsObject interface, which

enumerates a list of IUnknown interfaces, one for each initiator portal. The client invokes
IUnknown::QueryInterface to retrieve an IVdsIscsiInitiatorPortal interface on the initiator
portal object.

%5bMS-DCOM%5d.pdf

149 / 368

[MS-VDS] — v20130722
 Virtual Disk Service (VDS) Protocol

 Copyright © 2013 Microsoft Corporation.

 Release: Monday, July 22, 2013

Providers and Packs: The client invokes IVdsSwProvider::QueryPacks to obtain a list of the packs
that the provider maintains. The server responds with an IEnumVdsObject interface, which

enumerates a list of IUnknown interfaces, one for each pack. The client invokes
IUnknown::QueryInterface to retrieve an IVdsPack or IVdsPack2 interface on the pack object.

Packs and Disks: The client invokes IVdsPack::QueryDisks to obtain a list of the disks in the pack.
The server responds with an IEnumVdsObject interface, which enumerates a list of IUnknown
interfaces, one for each disk in the pack. The client invokes IUnknown::QueryInterface to
retrieve an IVdsDisk, IVdsDisk2, IVdsDisk3, IVdsAdvancedDisk, IVdsAdvancedDisk2,
IVdsAdvancedDisk3,IVdsDiskPartitionMF, IVdsDiskPartitionMF2, IVdsCreatePartitionEx,
IvdsDiskOnline, or IVdsRemovable interface on the disk object.

Packs and Volumes: The client invokes IVdsPack::QueryVolumes to obtain a list of the volumes in

the pack. The server responds with an IEnumVdsObject interface, which enumerates a list of
IUnknown interfaces, one for each volume in the pack. The client invokes
IUnknown::QueryInterface to retrieve an IVdsVolume, IVdsVolume2, IVdsVolumeOnline, or
IVdsVolumeShrink interface on the volume object.

Volumes and Plexes: The client invokes IVdsVolume::QueryPlexes to obtain a list of the plexes
for a volume. The server responds with an IEnumVdsObject interface, which enumerates a list of

IUnknown interfaces, one for each plex that is associated with the volume. The client invokes
IUnknown::QueryInterface to retrieve an IVdsVolumePlex interface on the plex object.

Plexes and Extents: The client invokes IVdsVolumePlex::QueryExtents to obtain a list of the
extents for a specified plex. The server returns a list of VDS_DISK_EXTENT structures, one for
each extent in use by the plex.

Volumes and Drive Letters: The client invokes IVdsService::QueryDriveLetters to obtain a list of
drive letters on the system. The server returns a list of VDS_DRIVE_LETTER_PROP structures;

the volumeId member indicates the volume that is associated with the drive letter.

Volumes and Reparse Points: For the IVdsVolume interface, the client invokes
IUnknown::QueryInterface to retrieve an IVdsVolumeMF interface. The client then invokes
IVdsVolumeMF::QueryReparsePoints to obtain a list of mount points on the volume. The server

returns a list of VDS_REPARSE_POINT_PROP structures; the SourceVolumeId member
indicates the mounted volume. For example, for drive D mounted to C:\MountD, drive D is the
mounted volume.

Volumes and Access Paths: The client invokes IUnknown::QueryInterface to retrieve an
IVdsVolumeMF interface. The client then invokes IVdsVolumeMF::QueryAccessPaths to obtain
a list of user mode path names for the volume. The server returns a list of drive letters and mount
points for the volume. For drive D mounted to C:\MountD, drive D is the mounted volume and
C:\MountD is the mount point.

Volumes and Supported File System Formats: The client invokes IUnknown::QueryInterface to

retrieve an IVdsVolumeMF2 interface. The client invokes
IVdsVolumeMF2::QueryFileSystemFormatSupport to obtain a list of file systems that are
supported for the volume. The server returns a list of
VDS_FILE_SYSTEM_FORMAT_SUPPORT_PROP structures, one for each file system that is

supported on the volume.

Disks and Extents: The client invokes IVdsDisk::QueryExtents to obtain a list of the extents for a
specified disk. The server returns a list of VDS_DISK_EXTENT structures, one for each extent on

the disk. Alternatively, the client invokes IVdsDisk3::QueryFreeExtents to obtain a list of the free
extents for a specified disk. The server returns a list of VDS_DISK_FREE_EXTENT structures, one
for each extent on the disk that is associated with free space on the disk.

150 / 368

[MS-VDS] — v20130722
 Virtual Disk Service (VDS) Protocol

 Copyright © 2013 Microsoft Corporation.

 Release: Monday, July 22, 2013

For a VDS_DISK_EXTENT or VDS_DISK_FREE_EXTENT that describes a disk extent, a client
maps the extent to its disk by obtaining a list of VDS_DISK_PROP or VDS_DISK_PROP2

structures. The client obtains this list by invoking IVdsPack::QueryDisks followed by
IVdsDisk::GetProperties or IVdsDisk3::GetProperties2 for each disk. The server returns a

VDS_DISK_PROP structure from IVdsDisk::GetProperties or a VDS_DISK_PROP2 structure
from IVdsDisk3::GetProperties2. The client matches the VDS_DISK_EXTENT::diskId or
VDS_DISK_FREE_EXTENT::diskId member to the VDS_DISK_PROP::id or
VDS_DISK_PROP2::id member.

Disks and Partitions: The client invokes IUnknown::QueryInterface to obtain the
IVdsAdvancedDisk interface. The client invokes IVdsAdvancedDisk::QueryPartitions to obtain
a list of the partitions for a specified disk. The server returns a list of VDS_PARTITION_PROP

structures, one for each partition on the disk.

Extents and Volumes: For a VDS_DISK_EXTENT that describes a disk extent, a client maps the
extent to its volume by obtaining a list of VDS_VOLUME_PROP structures. The client obtains this
list by invoking IVdsPack::QueryVolumes, followed by IVdsVolume::GetProperties or
IVdsVolume2::GetProperties2 for each volume. The server returns a VDS_VOLUME_PROP

structure from IVdsVolume::GetProperties or a VDS_VOLUME_PROP2 structure from

IVdsVolume2::GetProperties2. The client matches the VDS_DISK_EXTENT::volumeId
member to the VDS_VOLUME_PROP::id or VDS_VOLUME_PROP2::id member.

Extents and Plexes: For a VDS_DISK_EXTENT that describes a disk extent, a client maps the
extent to its volume plex by obtaining a list of VDS_VOLUME_PLEX_PROP structures. The client
obtains this list by invoking IVdsVolume::QueryPlexes, followed by
IVdsVolumePlex::GetProperties for each plex. The server returns a
VDS_VOLUME_PLEX_PROP structure from IVdsVolumePlex::GetProperties or

IVdsVolume2::GetProperties2. The client matches the VDS_DISK_EXTENT::plexId member to
the VDS_VOLUME_PLEX_PROP::id member.

Volumes and File Systems: For a VDS_FILE_SYSTEM_PROP structure that describes a file system,
a client maps the file system to a volume by obtaining a list of VDS_VOLUME_PROP structures.
The client invokes IVdsPack::QueryVolumes, followed by IVdsVolume::GetProperties for each

volume. The server returns a VDS_VOLUME_PROP structure from IVdsVolume::GetProperties
or IVdsVolume2::GetProperties2. The client matches the

VDS_FILE_SYSTEM_PROP::volumeId member to the VDS_VOLUME_PROP::id or
VDS_VOLUME_PROP2::id member.

Volumes and Drive Letters: For a VDS_DRIVE_LETTER_PROP structure that describes a drive
letter, a client maps the drive letter to a volume by obtaining a list of VDS_VOLUME_PROP
structures. The client invokes IVdsPack::QueryVolumes, followed by
IVdsVolume::GetProperties or IVdsVolume2::GetProperties2 for each volume. The server

returns a VDS_VOLUME_PROP structure from IVdsVolume::GetProperties or a
VDS_VOLUME_PROP2 structure from IVdsVolume2::GetProperties2. The client matches the
VDS_DRIVE_LETTER_PROP::volumeId member to the VDS_VOLUME_PROP::id or
VDS_VOLUME_PROP2::id member.

3.2.1.2 Service and Providers

IVdsService::GetObject: "XXX" is a placeholder for provider, pack, disk, virtual disk, volume,

volume plex, or HBA port. Prior to invoking GetObject, the client invokes QueryXXXs on interfaces
that have a QueryXXXs method. The server responds with an IEnumVdsObject interface, which
enumerates a list of IUnknown interfaces, one for each object that is associated with the
enumeration. The client invokes IUnknown::QueryInterface to retrieve an IVdsXXX interface on
the object. The client invokes IVdsXXX::GetProperties to retrieve the object ID. The client passes

151 / 368

[MS-VDS] — v20130722
 Virtual Disk Service (VDS) Protocol

 Copyright © 2013 Microsoft Corporation.

 Release: Monday, July 22, 2013

this returned value as the id input parameter to the GetObject method. IVdsXXX::GetProperties
returns this value as the VDS_PROVIDER_PROP id member, VDS_PACK_PROP id member,

VDS_DISK_PROP id member, VDS_VDISK_PROPERTIES Id member, VDS_VOLUME_PROP id
member, VDS_VOLUME_PLEX_PROP id member, or VDS_HBAPORT_PROP id member. The

client can cache the object IDs for the lifetime of the object; it can later be used to retrieve an
interface to the object without having to cache the interface to the object itself, or having to
enumerate and find the object every time it needs the object.

IVdsService::Advise: Prior to invoking Advise, the client calls
IVdsService::WaitForServiceReady or polls by using IVdsService::IsServiceReady
successfully. The client invokes IVdsService::Advise to retrieve the client identification value
parameter. The client passes the client identification value as the dwCookie input parameter to the

Unadvise method.

IVdsService::Unadvise: Prior to invoking Unadvise, the client invokes IVdsService::Advise to
retrieve the client identification value. The client passes the client identification value as the
dwCookie input parameter to the Unadvise method.

3.2.1.3 Packs

IVdsPack::CreateVolume: Prior to invoking CreateVolume, the client invokes
IVdsDisk::GetProperties or IVdsDisk3::GetProperties2 to retrieve the disk ID parameter. The
client passes this returned value as the VDS_INPUT_DISK::diskId input parameter to the
CreateVolume method. CreateVolume takes an array of one or more VDS_INPUT_DISK
structures, and IVdsDisk::GetProperties or IVdsDisk3::GetProperties2 is called once for each
disk in this array. IVdsDisk::GetProperties and IVdsDisk3::GetProperties2 return this value as
the VDS_DISK_PROP::id or VDS_DISK_PROP2::id output parameter.

IVdsPack::AddDisk: Prior to invoking AddDisk, the client invokes IVdsDisk::GetProperties or
IVdsDisk3::GetProperties2 to retrieve the disk ID parameter. The client passes this returned
value as the DiskId input parameter to the AddDisk method. IVdsDisk::GetProperties and
IVdsDisk3::GetProperties2 return this value as the id output parameter.

IVdsPack::MigrateDisks: Prior to invoking MigrateDisks, the client invokes
IVdsDisk::GetProperties for each disk in the input array, to retrieve the list of disk id parameters.
The client passes this returned value as the pDiskArray input parameter to the MigrateDisks

method. IVdsDisk::GetProperties returns this value as the VDS_DISK_PROP::id output
parameter.

Prior to invoking MigrateDisks, the client invokes IVdsPack::GetProperties to retrieve the target
pack ID parameter. The client passes this returned value as the TargetPack input parameter to the
MigrateDisks method. IVdsPack::GetProperties returns this value as the VDS_PACK_PROP::id
output parameter.

IVdsPack::RemoveMissingDisk: Prior to invoking RemoveMissingDisk, the client invokes
IVdsDisk::GetProperties to retrieve the disk ID parameter. The client passes this returned value
as the DiskId input parameter to the RemoveMissingDisk method. IVdsDisk::GetProperties and
IVdsDisk3::GetProperties2 return this value as the VDS_DISK_PROP::id or
VDS_DISK_PROP2::id output parameter.

IVdsPack2::CreateVolume2: CreateVolume2 has the same call sequence description as
IVdsPack::CreateVolume.

152 / 368

[MS-VDS] — v20130722
 Virtual Disk Service (VDS) Protocol

 Copyright © 2013 Microsoft Corporation.

 Release: Monday, July 22, 2013

3.2.1.4 Disks

IVdsAdvancedDisk::GetPartitionProperties: Prior to invoking GetPartitionProperties, the
client invokes IVdsDisk::QueryExtents or IVdsVolumePlex::QueryExtents to retrieve the offset

parameter. The client passes this returned value as the ullOffset input parameter to the
GetPartitionProperties method. IVdsDisk::QueryExtents or IVdsVolumePlex::QueryExtents
returns this value as the VDS_DISK_EXTENT::ullOffset output parameter.

IVdsAdvancedDisk::CreatePartition: Prior to invoking CreatePartition, the client invokes
IVdsDisk::QueryExtents , IVdsDisk3::QueryFreeExtents, or
IVdsVolumePlex::QueryExtents to retrieve the free disk extents. Using the list of free disk
extents, the client can calculate an offset and size for the new partition. The client passes these

calculated values as the ullOffset and ullSize input parameters to the CreatePartition method.
IVdsDisk::QueryExtents returns a list of VDS_DISK_EXTENT structures as an output parameter.
These structures contain the offset and size of the free extent as VDS_DISK_EXTENT::ullOffset
and VDS_DISK_EXTENT::ullSize. IVdsDisk3::QueryFreeExtents, and
IVdsVolumePlex::QueryExtents return a list of VDS_DISK_FREE_EXTENT structures as an

output parameter. These structures contain the offset and size of the free extent as

VDS_DISK_FREE_EXTENT::ullOffset and VDS_DISK_FREE_EXTENT::ullSize.

Prior to invoking CreatePartition, the client invokes
IVdsAdvancedDisk::GetPartitionProperties to retrieve the partition type (partition style) for the
disk. The client passes this value as the CREATE_PARTITION_PARAMETERS::style input
parameter to the CreatePartition method. IVdsAdvancedDisk::GetPartitionProperties returns
this value as the VDS_PARTITION_PROP::PartitionStyle structure member.

Prior to invoking CreatePartition, the client invokes IVdsPack::AddDisk to set the partitioning

format for the disk if the disk is not initialized.

IVdsAdvancedDisk::DeletePartition: Prior to invoking DeletePartition, the client invokes
IVdsAdvancedDisk::GetPartitionProperties, IVdsDisk::QueryExtents, or
IVdsVolumePlex::QueryExtents to retrieve the offset parameter. The client passes this returned
value as the ullOffset input parameter to the DeletePartition method. If an invalid offset is passed

to this method, it will fail. IVdsDisk::QueryExtents or IVdsVolumePlex::QueryExtents returns
this value as the VDS_DISK_EXTENT::ullOffset output parameter.

IVdsAdvancedDisk::GetPartitionProperties returns this value as the
VDS_PARTITION_PROP::ullOffset output parameter.

IVdsAdvancedDisk::ChangeAttributes: ChangeAttributes has the same call sequence
description as DeletePartition.

IVdsAdvancedDisk::AssignDriveLetter: AssignDriveLetter has the same call sequence
description as DeletePartition.

IVdsAdvancedDisk::GetDriveLetter: GetDriveLetter has the same call sequence description as
DeletePartition.

IVdsAdvancedDisk::FormatPartition: For call sequencing related to the ullOffset input
parameter, see the description for IVdsAdvancedDisk::DeletePartition. For call sequencing, see

sections 3.2.1.1.2, 3.4.1.4, 3.4.1.5, and 4.5.

IVdsAdvancedDisk2::ChangePartitionType: For call sequencing related to the ullOffset input
parameter, see the description for IVdsAdvancedDisk::FormatPartition.

Prior to invoking ChangePartitionType, the client invokes
IVdsAdvancedDisk::GetPartitionProperties to retrieve the partition type for the disk. The client

153 / 368

[MS-VDS] — v20130722
 Virtual Disk Service (VDS) Protocol

 Copyright © 2013 Microsoft Corporation.

 Release: Monday, July 22, 2013

passes this value as the CHANGE_PARTITION_TYPE_PARAMETERS::style input parameter to
the ChangePartitionType method. IVdsAdvancedDisk::GetPartitionProperties returns this

value as the VDS_PARTITION_PROP::PartitionStyle structure member.

IVdsCreatePartitionEx::CreatePartitionEx: IVdsCreatePartitionEx has the same call sequence

description as IVdsAdvancedDisk::CreatePartition.

IVdsServiceUninstallDisk::GetDiskIdFromLunInfo: Prior to invoking GetDiskIdFromLunInfo,
the client invokes IVdsDisk::GetIdentificationData to retrieve the logical unit number (LUN)
information for the disk. The client passes this returned value as the pLunInfo input parameter to
the GetDiskIdFromLunInfo method. IVdsDisk::GetIdentificationData returns this value as the
pLunInfo output parameter.

IVdsServiceUninstallDisk::UninstallDisks: Prior to invoking UninstallDisks, the client invokes

IVdsDisk::GetProperties or IVdsDisk3::GetProperties2 for each disk in the input array, to
retrieve the list of disk IDs. The client passes this returned value as the pDiskIdArray input
parameter to the UninstallDisks method. IVdsDisk::GetProperties and
IVdsDisk3::GetProperties2 return this value as the VDS_DISK_PROP::id or

VDS_DISK_PROP2::id output parameter.

3.2.1.5 Volumes

IVdsVolume::Extend: Prior to invoking Extend, the client invokes IVdsDisk::GetProperties or
IVdsDisk3::GetProperties2 for each disk in the input array in order to retrieve the list of disk IDs.
The client passes this returned value as the pInputDiskArray input parameter to the Extend
method. IVdsDisk::GetProperties and IVdsDisk3::GetProperties2 return this value as the
VDS_DISK_PROP::id or VDS_DISK_PROP2::id output parameter.

 IVdsVolume::AddPlex: Prior to invoking AddPlex, the client invokes

IVdsVolume::GetProperties or IVdsVolume2::GetProperties2 to retrieve the volume ID. The
client passes this returned value as the VolumeId input parameter to the AddPlex method.
IVdsVolume::GetProperties or IVdsVolume2::GetProperties2 returns this value as the
VDS_VOLUME_PROP::id or VDS_VOLUME_PROP2::id output parameter. For more information,

see section 3.2.1.1.2.

IVdsVolume::BreakPlex: Prior to invoking BreakPlex, the client invokes
IVdsVolumePlex::GetProperties to retrieve the plex ID. The client passes this returned value as

the plexId input parameter to the BreakPlex method. IVdsVolumePlex::GetProperties returns
this value as the VDS_VOLUME_PLEX_PROP::id output parameter. For more information, see
section 3.2.1.1.2.

IVdsVolume::RemovePlex: RemovePlex has the same call sequence description as
IVdsVolume::BreakPlex.

IVdsVolumePlex::Repair: Repair has the same call sequence description as

IVdsVolume::Extend.

3.2.1.6 Virtual Disks

IVdsOpenVDisk::Attach: Prior to invoking Attach, the client invokes
IVdsVdProvider::QueryVDisks or IVdsVdProvider::CreateVDisk or
IVdsVdProvider::AddVDisk to retrieve the virtual disk object. Then the client invokes
IVdsVDisk::Open to retrieve the OpenVirtualDisk object.

IVdsOpenVDisk::Detach: Prior to invoking Detach, the client invokes
IVdsVdProvider::QueryVDisks or IVdsVdProvider::GetVDiskFromDisk to retrieve an interface

154 / 368

[MS-VDS] — v20130722
 Virtual Disk Service (VDS) Protocol

 Copyright © 2013 Microsoft Corporation.

 Release: Monday, July 22, 2013

pointer to the virtual disk object to detach. Then the client invokes IVdsVDisk::Open to retrieve
the OpenVirtualDisk object.

IVdsOpenVDisk::DetachAndDelete: DetachAndDelete has the same call sequence description
as IVdsOpenVDisk::Detach.

IVdsOpenVDisk::Compact: Compact can be done on an attached virtual disk or on a detached
virtual disk. Calling Compact on a detached virtual disk has the same call sequence description as
IVdsOpenVDisk::Attach. Calling Compact on an attached virtual disk has the same call sequence
as IVdsOpenVDisk::Detach.

IVdsOpenVDisk::Merge: Merge has the same call sequence description as
IVdsOpenVDisk::Attach.

IVdsOpenVDisk::Expand: Expand has the same call sequence description as

IVdsOpenVDisk::Attach.

IVdsVDisk::Open: Prior to invoking Open, the client invokes IVdsVdProvider::QueryVDisks,

IVdsVdProvider::GetVDiskFromDisk, or IVdsVdProvider::AddVDisk to retrieve an interface
pointer to the virtual disk object to open.

IVdsVDisk::GetProperties: GetProperties has the same call sequence description as
IVdsVDisk::Open.

IVdsVDisk::GetHostVolume: GetHostVolume has the same call sequence description as
IVdsVDisk::Open.

IVdsVDisk::GetDeviceName: GetDeviceName has the same call sequence description as
IVdsVDisk::Open.

3.2.1.7 File Systems, Drive Letters, and Access Paths

IVdsVolumeMF::Format and IVdsVolumeMF3::FormatEx2: For call sequencing related to the

type input parameter, see "Service and File System Types" in section 3.2.1.1.2.

IVdsVolumeMF::DeleteAccessPath: For call sequencing related to the pwszPath input parameter,
see "Volumes and Access Paths" and "Volumes and Drive Letters" in section 3.2.1.1.2.

IVdsVolumeMF2::FormatEx and IVdsVolumeMF3::FormatEx2: Prior to invoking
IVdsVolumeMF2::FormatEx or IVdsVolumeMF3::FormatEx2, the client invokes
IVdsDiskPartitionMF::QueryPartitionFileSystemFormatSupport or
IVdsVolumeMF2::QueryFileSystemFormatSupport to retrieve the list of supported file system

type names and the associated file system version number. The client passes these returned values
as the pwszFileSystemTypeName and usFileSystemRevision input parameters to the FormatEx
method. IVdsDiskPartitionMF::QueryPartitionFileSystemFormatSupport and
IVdsVolumeMF2::QueryFileSystemFormatSupport return these values as the
VDS_FILE_SYSTEM_FORMAT_SUPPORT_PROP::wszName and
VDS_FILE_SYSTEM_FORMAT_SUPPORT_PROP::usRevision output parameters.

IVdsDiskPartitionMF::GetPartitionFileSystemProperties: GetPartitionFileSystemProperties

has the same call sequencing description as IVdsAdvancedDisk::DeletePartition.

IVdsDiskPartitionMF::GetPartitionFileSystemTypeName: GetPartitionFileSystemTypeName
has the same call sequencing description as IVdsAdvancedDisk::DeletePartition.

155 / 368

[MS-VDS] — v20130722
 Virtual Disk Service (VDS) Protocol

 Copyright © 2013 Microsoft Corporation.

 Release: Monday, July 22, 2013

IVdsDiskPartitionMF::QueryPartitionFileSystemFormatSupport:
QueryPartitionFileSystemFormatSupport has the same call sequencing description as

IVdsAdvancedDisk::DeletePartition.

IVdsDiskPartitionMF::FormatPartitionEx and IVdsDiskPartitionMF2::FormatPartitionEx2:

For call sequencing related to the ullOffset input parameter, see the preceding description for
IVdsAdvancedDisk::DeletePartition. For call sequencing related to the
pwszFileSystemTypeName and usFileSystemRevision input parameters, see the description for
IVdsVolumeMF2::FormatEx and IVdsVolumeMF3::FormatEx2.

3.2.2 Timers

None.

3.2.3 Initialization

None.

3.2.4 Message Processing Events and Sequencing Rules

None.

3.2.5 Timer Events

None.

3.2.6 Other Local Events

None.

3.3 Client Details

3.3.1 Abstract Data Model

The client MUST maintain the following information for use in queries and commands to the server.

3.3.1.1 Notification Callback Objects

Clients can register callback objects in order to receive VDS event notifications from the server. (For
more information and for an example of how clients can do this, see section 4.2.)

For each client notification callback object that is registered with the server, the client MUST
maintain the following information:

Cookie: A unique 32-bit value that identifies the callback and that is maintained until the callback
object is unregistered.

The cookie is assigned by the server and returned to the client so that the client can use it to

later unregister the callback.

The client MUST NOT change the cookie.

When the client unregisters a callback, it MUST use the cookie that the server gave to it when it

originally registered the callback.

156 / 368

[MS-VDS] — v20130722
 Virtual Disk Service (VDS) Protocol

 Copyright © 2013 Microsoft Corporation.

 Release: Monday, July 22, 2013

3.3.2 Timers

None.

3.3.3 Initialization

A client initializes by creating an RPC binding handle to the IVdsServiceLoader interface. For more
information on how to get a client-side RPC binding handle for an IVdsServiceLoader interface,
see [MS-DCOM] section 3.2.4.

After the client obtains the IVdsServiceLoader interface, the client MUST invoke
IVdsServiceLoader::LoadService on the interface to retrieve the IVdsService interface.

If the IVdsService interface was NOT obtained by calling IVdsServiceLoader::LoadService, the

client MUST invoke IUnknown::QueryInterface to retrieve the IVdsServiceInitialization interface.
If the IVdsService interface was obtained by calling CoCreateInstance (see [MSDN-
CoCreateInstance]) on the VDS server with the class GUID of the VDS service, then the client
MUST:

Invoke IUnknown::QueryInterface on the interface to retrieve the IVdsServiceInitialization

interface.

After the client obtains the IVdsServiceInitialization interface, the client MUST invoke the

IVdsServiceInitialization::Initialize method on the interface before invoking any other
method.

All the clients MUST then do one of the following before invoking any other methods:

Invoke IVdsService::WaitForServiceReady and wait for it to return with a success code.

Invoke IVdsService::IsServiceReady in a loop until this method returns a success code.

3.3.4 Message Processing Events and Sequencing Rules

3.3.4.1 Processing Server Replies to Method Calls

After the client receives a reply from the server in response to a method call, the client MUST
validate the return code. Return codes from all method calls are HRESULTs. If the HRESULT

indicates success, the client can assume that any output parameters are present and valid.

Certain calls must be performed in sequence. For example, where method A is a prerequisite call for
method B, the client will pass output parameters from method A as input parameters to method B,
as described in section 3.2.1.1.1. If method B is called, then the client must retain A's output
parameters until B completes.

The client MUST release any DCOM interfaces that the server returns when the client no longer
needs them.

3.3.4.2 Processing Notifications Sent from the Server to the Client

The client SHOULD choose to implement the IVdsAdviseSink interface in order to receive
notification from the server of changes to the storage objects on the server. Notifications are sent to
the client for creating, deleting, and modifying storage objects. The client can choose to take other
action based on these notifications. The client can also choose to ignore notifications from the
server.

%5bMS-DCOM%5d.pdf
http://go.microsoft.com/fwlink/?LinkId=208350
http://go.microsoft.com/fwlink/?LinkId=208350

157 / 368

[MS-VDS] — v20130722
 Virtual Disk Service (VDS) Protocol

 Copyright © 2013 Microsoft Corporation.

 Release: Monday, July 22, 2013

Notifications that are related to storage object modification indicate a state change, such as when a
disk status changes from VDS_DS_ONLINE to VDS_DS_FAILED, or when a volume length changes

because of a call to IVdsVolume::Extend.

3.3.4.3 IVdsAdviseSink Methods

3.3.4.3.1 IVdsAdviseSink::OnNotify (Opnum 3)

The OnNotify method passes notifications from VDS to applications.

HRESULT OnNotify(

 [in, range(1,100)] long lNumberOfNotifications,

 [in, size_is(lNumberOfNotifications)]

 VDS_NOTIFICATION* pNotificationArray

);

lNumberOfNotifications: The number of notifications that are specified in pNotificationArray.

This parameter MUST be a value from 1 through 100.

pNotificationArray: An array of VDS_NOTIFICATION structures.

Return Values: The method MUST return zero or a non-error HRESULT (as specified in [MS-
ERREF]) to indicate success or return an implementation-specific nonzero error code to
indicate failure. For the HRESULT values predefined by the Virtual Disk Service Remote
Protocol, see section 2.2.3.

3.3.5 Timer Events

None.

3.3.6 Other Local Events

None.<49>

3.4 Server Details

Unless otherwise specified, all methods MUST return zero or a non-error HRESULT (as specified in
[MS-ERREF]) to indicate success, or return an implementation-specific nonzero error code to

indicate failure. For the HRESULT values predefined by the Virtual Disk Service Remote Protocol, see
section 2.2.3.

3.4.1 Abstract Data Model

The server maintains the following information to use in responding to client queries and commands.
Unless otherwise specified, zero indicates success.

This section describes a conceptual model of possible data organization that an implementation

maintains to participate in this protocol. The described organization is provided to facilitate the
explanation of how the protocol behaves. This document does not mandate that implementations
adhere to this model as long as their external behavior is consistent with that described in this
document.

%5bMS-ERREF%5d.pdf
%5bMS-ERREF%5d.pdf
%5bMS-ERREF%5d.pdf

158 / 368

[MS-VDS] — v20130722
 Virtual Disk Service (VDS) Protocol

 Copyright © 2013 Microsoft Corporation.

 Release: Monday, July 22, 2013

3.4.1.1 Service Object

The service object exposes DCOM interfaces for retrieving and interacting with all storage
management objects. The service object:

Implements IVdsService and IVdsServiceInitialization interfaces.

Implements IVdsServiceUninstallDisk, IVdsServiceHba, IVdsServiceSAN, and

IVdsServiceIscsi interfaces.<50>

Maintains a value that indicates the ready state of the service. The service-ready state values are

"not ready", "ready", or "failed". When an object is created, this value will be "not ready". When

the service is finished initializing, this value will be changed to "ready". After the value is "ready",
it will not change.

3.4.1.2 Storage Management Objects

The server maintains a list of the following VDS objects:

HBA Port

The server maintains an object for each HBA port on the system.

Each HBA port object exposes DCOM interfaces for querying information from an HBA port on

the system.

Each HBA port object implements the IVdsHbaPort interface.

Initiator Adapter

The server maintains an object for each initiator adapter on the system.

Each initiator adapter object exposes DCOM interfaces for querying information from an iSCSI

initiator adapter on the system.

Each initiator adapter object implements the IVdsIscsiInitiatorAdapter interface.

Initiator Portal

The server maintains an object for each initiator portal on the system.

Each initiator portal object exposes DCOM interfaces for querying information from an iSCSI

initiator portal on the system.

Each initiator portal object implements the IVdsIscsiInitiatorPortal interface.

Each initiator portal object maintains a pointer to the initiator adapter object to which it

belongs.

Software Provider

The server maintains an object for each provider on the system.

The basic provider is for managing basic disks.

The dynamic provider is for managing dynamic disks.

%5bMS-GLOS%5d.pdf

159 / 368

[MS-VDS] — v20130722
 Virtual Disk Service (VDS) Protocol

 Copyright © 2013 Microsoft Corporation.

 Release: Monday, July 22, 2013

Each software provider object exposes DCOM interfaces for managing storage objects (packs,

volumes, plexes, and disks) on the system.

Each software provider object implements the IVdsProvider and IVdsSwProvider

interfaces.

Hardware Provider

The server maintains an object for each hardware provider on the system.

Each hardware provider object exposes DCOM interfaces for managing subsystems.

Each hardware provider object implements the IVdsProvider and IVdsHwProvider

interfaces.

Virtual Disk Provider

The server maintains an object for each hardware provider on the system.

Each virtual disk provider object exposes DCOM interfaces for managing virtual disks.

Each hardware provider object implements the IVdsProvider and IVdsVdProvider

interfaces.

Subsystem

The server maintains an object for each subsystem on the system.

Each subsystem object exposes DCOM interfaces for managing the subsystem.

Each subsystem object implements the IVdsSubSystemImportTarget interface.

Pack

The server maintains an object for each pack on the system.

Each pack object exposes DCOM interfaces for managing a logical group of disks and the

volumes that they contain.

Each pack object implements the IVdsPack interface.

Each pack object implements the IVdsPack2 interface.

Each pack object maintains a pointer to the software provider object to which it belongs.

Disk

The server maintains an object for each disk on the system.

Each disk object exposes DCOM interfaces for managing a disk, which can include physical

hard disks, removable disk units, optical drive units, and the LUNs that are unmasked to the
system.

Each disk object implements the IVdsDisk and IVdsAdvancedDisk interfaces.

If the disk is removable, the disk object implements the IVdsRemovable interface;

otherwise, the IVdsRemovable interface is not implemented.

160 / 368

[MS-VDS] — v20130722
 Virtual Disk Service (VDS) Protocol

 Copyright © 2013 Microsoft Corporation.

 Release: Monday, July 22, 2013

If the disk is a removable drive with no media, the disk object sets its status to

VDS_DS_NO_MEDIA and the values for ulBytesPerSector, ulSectorsPerTrack,

ulTracksPerCylinder, and ullSize to zero.

Each disk object implements the IVdsDisk2, IVdsDisk3, IVdsAdvancedDisk2,

IVdsAdvancedDisk3, IVdsCreatePartitionEx, IVdsDiskPartitionMF,
IVdsDiskPartitionMF2, and IvdsDiskOnline interfaces.

Each disk object--if the disk is basic or dynamic--maintains a pointer to the pack object to

which it belongs.

Volume

The server maintains an object for each volume on the system.

Each volume object exposes DCOM interfaces for managing a volume, which is a logical unit of

storage that exists over regions of one or more disks that belong to the same pack.

Each volume object implements the IVdsVolume, IVdsVolume2, IVdsVolumeMF,

IVdsVolumeMF2, IVdsVolumeMF3, IVdsVolumeShrink, and IVdsVolumeOnline

interfaces.

Each volume object maintains a pointer to the pack object to which it belongs.

Removable media drives contain one volume, and the volume is associated with the drive. If

there is no media in the drive, the status of the volume is set to VDS_VS_NO_MEDIA and
ullsize is set to zero.<51>

Volume Plex

The server maintains an object for each volume plex on the system.

Each volume plex object exposes DCOM interfaces for managing a volume plex, which

represents a complete copy of the data that is stored on a mirrored volume.

Each volume plex object implements the IVdsVolumePlex interface.

The volume object on a removable media drive contains one volume plex, and the volume

plex is associated with the drive. If there is no media in the drive, the status of the volume
plex is set to VDS_VPS_NO_MEDIA and ullsize is set to zero.

Each volume plex object maintains a pointer to the volume object to which it belongs.

Virtual Disk

The server maintains an object for each attached virtual disk on the system.

The server maintains an object for each virtual disk that has been created using

IVdsVdProvider::CreateVDisk after the server starts, or has been added to the server's
cache using IVdsVdProvider::AddVDisk.

Each virtual disk object exposes DCOM interfaces for managing a virtual disk.

Each virtual disk object implements the IVdsVDisk interface.

When a virtual disk is opened, it MUST create an object to represent the open virtual disk

(an OpenVirtualDisk object), which MUST implement the IVdsOpenVDisk interface.

%5bMS-GLOS%5d.pdf

161 / 368

[MS-VDS] — v20130722
 Virtual Disk Service (VDS) Protocol

 Copyright © 2013 Microsoft Corporation.

 Release: Monday, July 22, 2013

Each attached virtual disk object maintains an association with an actual disk (basic, dynamic,

or unallocated disk) that has been exposed to the system as a result of attaching the virtual

disk.

Each VDS object maintains the following information:

VDS Object Identifier: A unique identifier of type VDS_OBJECT_ID.

The server may generate these identifiers at run time.

The server MUST NOT assign two objects to the same identifier.

The server MUST NOT change the identifier for the entire duration of a VDS session or until the

object is removed from the list. A VDS session is defined to be from the point at which a client

receives a pointer to the service object, to the point at which the client releases all references to
it.

The server facilitates ID-based object retrieval.

Object Type: A value of type VDS_OBJECT_TYPE, which indicates the type of device that the
object represents.

When a VDS object is created, the server assigns its corresponding object type:

HBA port: VDS_OT_HBAPORT

Initiator adapter: VDS_OT_INIT_ADAPTER

Initiator portal: VDS_OT_INIT_PORTAL

Provider: VDS_OT_PROVIDER

Pack: VDS_OT_PACK

Disk: VDS_OT_DISK

Volume: VDS_OT_VOLUME

Volume plex: VDS_OT_VOLUME_PLEX

Virtual disk: VDS_OT_VDISK

Virtual disk that has been opened: VDS_OT_OPEN_VDISK

The objects can be used by more than one VDS session at a time. Objects can be added or removed
as a result of client requests or events that the operating system triggers, such as when a disk is no
longer being reported by its bus, or when the disk's bus reports a new disk.

If objects are removed while a client still has references to them, the server MUST return a value of

VDS_E_OBJECT_DELETED (HRESULT of 0x8004240bL) whenever the client attempts to access the
object interface methods.

3.4.1.3 Enumeration of Objects

All VDS objects that are listed in Storage Management Objects--except for the service object--are
returned by means of enumeration objects. For an example of how these objects are created and
used, see section 4.3.

%5bMS-GLOS%5d.pdf

162 / 368

[MS-VDS] — v20130722
 Virtual Disk Service (VDS) Protocol

 Copyright © 2013 Microsoft Corporation.

 Release: Monday, July 22, 2013

When the client calls a method to request an enumeration, the server creates an enumeration object
that implements the IEnumVdsObject interface and returns the interface pointer to the client to

allow it to enumerate through the requested objects. The server maintains this object until the client
releases all references to the interface. For each enumeration object, the server maintains the

following information:

Objects Being Enumerated: A list of pointers to the VDS objects being enumerated.

When the enumeration object is created, the server populates this list with the objects to return,

dictated by the particular specification of the method that the client calls.

The server does not list the same object more than once.

After the list is populated, the server does not reorder the entries in the list.

If a new VDS object is added to the server, the server does not add the object to the list of

objects being enumerated.

If a VDS object is removed from the server, the server does not remove the object from the list

of objects being enumerated. If the client later accesses the removed object, the server returns
VDS_E_OBJECT_DELETED whenever the client attempts to access the object interface methods.

Index: A value that keeps track of which object to return next to the client, when the client requests
more objects from the enumeration.

When the enumeration object is created, this value is initialized to the index of the first VDS

object (whether this is 0, 1, or any other value is an implementation detail) in the list of objects
being enumerated.

If the client requests a certain number of objects from the enumeration by means of the

IEnumVdsObject::Next (Opnum 3) method, the server returns the requested number of
pointers to the objects in the list, starting at the current index value. However, if the server
reaches the end of the list, the server returns the remaining pointers to the objects in the list,
and indicates the actual number of objects that are returned to the client and the return code of

S_FALSE. The server increments the index by the number of objects that are returned to the
client.

If the client requests to skip a certain number of objects in the enumeration by means of the

IEnumVdsObject::Skip (Opnum 4) method, the server increments the index by that number.

If the index goes past the end of the list, all subsequent requests for more objects from the

enumeration will return zero pointers and a return code of S_FALSE until the enumeration is
reset.

If the client calls the IEnumVdsObject::Reset (Opnum 5) method, the server sets the index

back to the first object in the list.

3.4.1.4 Notification Callback Objects

Clients can register callback objects in order to receive VDS event notifications from the server. (For

more information and for an example of how clients can do this, see section 4.2.)

For each client notification callback object that is registered with the server, the server maintains

the following information in its list of callback objects:

Cookie: A unique 32-bit value that identifies the callback and that is maintained until the callback
object is unregistered.

163 / 368

[MS-VDS] — v20130722
 Virtual Disk Service (VDS) Protocol

 Copyright © 2013 Microsoft Corporation.

 Release: Monday, July 22, 2013

The cookie is assigned by the server and returned to the client so that the client can use it to

later unregister the callback.

The server does not change the identifier and does not assign it to another callback object until

the original callback object is unregistered.

Callback Object Interface: A pointer to the IVdsAdviseSink interface that is implemented by the
callback object that is used to receive notifications from the server.

Whenever a notification must be sent to the client, the server calls the

IVdsAdviseSink::OnNotify (Opnum 3) method of the object in order to notify it of the event.

3.4.1.5 Asynchronous Tasks

Certain tasks in VDS may be long-running. The methods that trigger these tasks are asynchronous
and have an IVdsAsync interface pointer as an output parameter. When the client calls a method
that initiates these tasks, the server creates an async object that implements the IVdsAsync
interface and returns the interface pointer to the client in order for it to monitor the task status. (For

more information and for examples of how async objects can be used, see section 4.5.) The server
maintains this object until the client releases all references to the interface.

For each async object, the server maintains the following information:

Async Output Type: A value of type VDS_ASYNC_OUTPUT_TYPE that indicates the type of task
that the async object is monitoring.

The server assigns this value when the object is created, and the server does not change it.

Percent Completed: An integer from 0 through 100, which indicates the percentage of progress for
the task being completed.

This value is initialized to 0 when the object is created.

If the task can be subdivided into meaningful progress milestones, the server updates this value

after each milestone is passed.

The value always increases whenever the value is updated unless the task fails, in which case,

the server sets the value to 0.

If the task is successfully completed, the server sets the value to 100.

When the client calls the IVdsAsync::QueryStatus (Opnum 5) method, the server returns this

value in the value that the pulPercentCompleted output parameter references.

Signal State: A Boolean value that indicates whether the task is still in progress (FALSE); or if the
task has finished, whether it finished successfully or unsuccessfully (TRUE).

This value is initialized to FALSE when the object is created.

The server changes the signal state to TRUE when the task fails or when the task successfully

completes.

If the signal state is TRUE, the server does not change the signal state back to FALSE.

If the signal state is FALSE and the client calls the IVdsAsync::Wait (Opnum 4) method, the

server blocks the call until the signal state is changed to TRUE, at which point the server

unblocks the call and return the results of the task.

164 / 368

[MS-VDS] — v20130722
 Virtual Disk Service (VDS) Protocol

 Copyright © 2013 Microsoft Corporation.

 Release: Monday, July 22, 2013

If the signal state is TRUE and the client calls the IVdsAsync::Wait (Opnum 4) method, the

server returns the results of the task immediately.

Return Code: The server returns to the client the HRESULT value that indicates the final result of the

task after it completes.

The server sets this value when the task fails or when the task successfully completes.

Task-Specific Return Values: Certain tasks may need to return information or pointers to objects
when they complete.

If a task (determined by VDS_ASYNC_OUTPUT_TYPE) returns such values, the server returns

these values to the client by means of the VDS_ASYNC_OUTPUT structure that the

IVdsAsync::Wait (Opnum 4) method returns after the task is successfully completed.

3.4.2 Timers

None.

3.4.3 Initialization

During initialization of the Virtual Disk Service Remote Protocol, the service MUST start enumerating

storage objects on the system and assign unique VDS object IDs to these objects, as specified in
section 3.4.1.2.

The server MUST NOT report different identifiers for the same object within one server session to
the same or to different VDS clients. The VDS object IDs are generated at server startup and when
a new object arrives. These IDs are not persistent across server instantiations; if the service is
stopped and restarted, new VDS object IDs will be generated.

If service initialization has not started when the client calls the

IVdsServiceInitialization::Initialize (Opnum 3) (section 3.4.5.2.5.1) method, the service
MUST start initializing.

3.4.3.1 Storage Management Objects

The server creates a service object and returns its interface pointer to the client that is requesting
the service. The server initializes an empty list of storage management objects and populates it with

provider objects that correspond to the installed providers on the system (the basic and dynamic
providers and also the virtual disk provider). The server MUST assign each provider object a unique
VDS_OBJECT_ID.

The server populates the list of storage management objects on the system. For more details about
how each disk object is added for the basic provider, which also populates the associated pack and
volume objects, see section 3.4.5.1.3. For more details about how each pack object is added for the
dynamic provider, see section 3.4.5.1.1. For more details about how each disk object is added, see

section 3.4.5.1.3. For more details about how each volume is added, which also populates the
associated volume plex object, see section 3.4.5.1.5. For more details about how each virtual disk
object or opened virtual disk object is added, see section 3.4.5.1.7.

The server also queries for the HBA ports that are discoverable by using the HBA API, as well as the
iSCSI initiator adapters and iSCSI initiator portals that are discoverable by using the iSCSI initiator,
if they are available on the system. The service object MUST create a corresponding HBA port, an
initiator adapter, and initiator portal objects, and assign each of these objects a unique

VDS_OBJECT_ID. For an initiator portal object, the server MUST set its initiator adapter pointer to

165 / 368

[MS-VDS] — v20130722
 Virtual Disk Service (VDS) Protocol

 Copyright © 2013 Microsoft Corporation.

 Release: Monday, July 22, 2013

the initiator adapter object that corresponds to the initiator adapter that contains the initiator portal.
The server MUST add these objects to the list of storage management objects.

After initialization is complete, the server MUST set the service object's service-ready state to
"ready". If initialization fails, the server MUST set the service object's service-ready state to "failed".

3.4.3.2 Notification Callback Objects

The server initializes an empty list of callback objects.

3.4.4 Higher-Layer Triggered Events

None.

3.4.5 Message Processing Events and Sequencing Rules

3.4.5.1 Sequencing Rules

3.4.5.1.1 Adding Pack Objects for Dynamic Providers

The server MUST maintain a list of detected dynamic disk packs. When the server discovers a new
pack (either during initialization or when a new pack arrives after initialization), it MUST create a

corresponding pack object and MUST assign it a unique VDS_OBJECT_ID.

The server MUST set the pack object's provider pointer to the provider object that corresponds to
the dynamic provider. The server MUST add the pack object to the list of storage management
objects. For each callback object that is registered in the list of callback objects, the server MUST
call the callback object's IVdsAdviseSink::OnNotify (Opnum 3) method with a
VDS_NOTIFICATION structure that has the following attributes:

objectType member is VDS_NTT_PACK.

Pack member is a VDS_PACK_NOTIFICATION that has the following attributes:

ulEvent is VDS_NF_PACK_ARRIVE.

packId is the VDS_OBJECT_ID of the pack object that was added.

3.4.5.1.2 Removing Pack Objects for Dynamic Providers

The server MUST maintain a list of detected dynamic disk packs. When the server discovers that a
pack was removed, it MUST remove the corresponding pack object from the list of storage
management objects. For each callback object that is registered in the list of callback objects, the
server MUST call the IVdsAdviseSink::OnNotify (Opnum 3) method for the callback object with a
VDS_NOTIFICATION structure that has the following attributes:

objectType member set to VDS_NTT_PACK.

Pack member set to a VDS_PACK_NOTIFICATION that has the following attributes:

ulEvent set to VDS_NF_PACK_DEPART.

packId set to the VDS_OBJECT_ID of the pack object that was removed.

166 / 368

[MS-VDS] — v20130722
 Virtual Disk Service (VDS) Protocol

 Copyright © 2013 Microsoft Corporation.

 Release: Monday, July 22, 2013

3.4.5.1.3 Adding Disk Objects

The server MUST maintain a list of detected disks. When the server discovers a new disk (either
during initialization or when a new disk arrives after initialization), it checks whether it is a basic

disk, a dynamic disk, or unallocated (neither).

Basic Disk: If the disk is a basic disk, the server MUST first create a pack object and assign it a
unique VDS_OBJECT_ID. The server MUST set the provider pointer of the pack object to the
provider object that corresponds to the basic provider. The server MUST add the pack object to the
list of storage management objects. For each callback object that is registered in the list of callback
objects, the server MUST call the callback object's IVdsAdviseSink::OnNotify method with a
VDS_NOTIFICATION structure that has the following attributes:

objectType member is VDS_NTT_PACK.

Pack member is a VDS_PACK_NOTIFICATION that has the following attributes:

ulEvent is VDS_NF_PACK_ARRIVE.

packId is the VDS_OBJECT_ID of the pack object that was added.

The server MUST create a corresponding disk object and MUST assign it a unique
VDS_OBJECT_ID. The server MUST set the disk object's pack pointer to the pack object that was
created. The server MUST add the disk object to the list of storage management objects.

The server then looks for all volumes that are contained on the disk. If the disk is a removable
media drive, it MUST contain one (and only one) volume that is associated with the drive itself,
rather than with the media. If the disk is not a removable media drive, each partition on the disk
that is not an extended partition may be considered a volume.

For each volume on the disk, the server MUST create a corresponding volume object and MUST
assign it a unique VDS_OBJECT_ID. The server MUST set the volume object's pack pointer to the
pack object that was created. The server MUST add the volume object to the list of storage
management objects.

For each callback object that is registered in the list of callback objects, the server MUST call the
callback object's IVdsAdviseSink::OnNotify method with a VDS_NOTIFICATION structure that
has the following attributes:

objectType member is VDS_NTT_DISK.

Disk member is a VDS_DISK_NOTIFICATION that has the following attributes:

ulEvent is VDS_NF_DISK_ARRIVE.

diskId is the VDS_OBJECT_ID of the disk object that was added.

Next, if the disk is not a removable media drive, for each partition on the disk (whether or not they
are considered volumes), for each callback object that is registered in the list of callback objects, the
server MUST call the callback object's IVdsAdviseSink::OnNotify method with a

VDS_NOTIFICATION structure that has the following attributes:

objectType member is VDS_NTT_PARTITION.

Partition member is a VDS_PARTITION_NOTIFICATION that has the following attributes:

ulEvent is VDS_NF_PARTITION_ARRIVE.

%5bMS-GLOS%5d.pdf

167 / 368

[MS-VDS] — v20130722
 Virtual Disk Service (VDS) Protocol

 Copyright © 2013 Microsoft Corporation.

 Release: Monday, July 22, 2013

diskId is the VDS_OBJECT_ID of the disk object that was added.

ullOffset is the byte offset at which the partition starts on the disk.

Finally, for each volume on the disk, for each callback object that is registered in the list of callback

objects, the server MUST call the callback object's IVdsAdviseSink::OnNotify method with a
VDS_NOTIFICATION structure that has the following attributes:

objectType member is VDS_NTT_VOLUME.

Volume member is a VDS_VOLUME_NOTIFICATION that has the following attributes:

ulEvent is VDS_NF_VOLUME_ARRIVE.

volumeId is the VDS_OBJECT_ID of the volume object.

plexId SHOULD be GUID_NULL, but it is not relevant when ulEvent is

VDS_NF_VOLUME_ARRIVE.

ulPercentCompleted needs to be in the range from 0-100 and is implementation-specific;

however, it is not relevant when ulEvent is VDS_NF_VOLUME_ARRIVE.

Dynamic Disk: If the disk is a dynamic disk, the server MUST create a corresponding disk object and
MUST assign it a unique VDS_OBJECT_ID. The server MUST set the disk object's pack pointer to
the pack object that corresponds to the pack that the disk belongs to.

Note that for dynamic disks, pack object creation occurs separately from disk object creation. This
behavior is different from basic disks, where pack objects are created when the disk object is
created, because on basic providers, packs can have only one disk. For information on pack object
creation for dynamic disk packs, see section 3.4.5.1.1.

The server MUST add the disk object to the list of storage management objects. Then, for each
callback object that is registered in the list of callback objects, the server MUST call the callback
object's IVdsAdviseSink::OnNotify method with a VDS_NOTIFICATION structure that has the

following attributes:

objectType member is VDS_NTT_DISK.

Disk member is a VDS_DISK_NOTIFICATION that has the following attributes:

ulEvent is VDS_NF_DISK_ARRIVE.

diskId is the VDS_OBJECT_ID of the disk object that was added.

Unallocated Disk: If the disk is an unallocated disk, the server MUST create a corresponding disk
object and MUST assign it a unique VDS_OBJECT_ID. The server MUST add the disk object to the
list of storage management objects. Then, for each callback object that is registered in the list of

callback objects, the server MUST call the callback object's IVdsAdviseSink::OnNotify method
with a VDS_NOTIFICATION structure that has the following attributes:

objectType member is VDS_NTT_DISK.

Disk member is a VDS_DISK_NOTIFICATION that has the following attributes:

ulEvent is VDS_NF_DISK_ARRIVE.

diskId is the VDS_OBJECT_ID of the disk object that was added.

168 / 368

[MS-VDS] — v20130722
 Virtual Disk Service (VDS) Protocol

 Copyright © 2013 Microsoft Corporation.

 Release: Monday, July 22, 2013

3.4.5.1.4 Removing Disk Objects

The server MUST maintain a list of detected disks. When the server discovers that a disk was
removed, it MUST remove the corresponding disk object from the list of storage management

objects. For each callback object that is registered in the list of callback objects, the server MUST
call the callback object's IVdsAdviseSink::OnNotify (Opnum 3) method with a
VDS_NOTIFICATION structure that has the following attributes:

objectType member is VDS_NTT_DISK.

disk member is a VDS_DISK_NOTIFICATION that has the following attributes:

ulEvent is VDS_NF_DISK_DEPART.

diskId is the VDS_OBJECT_ID of the disk object that was removed.

If the disk being removed is a basic disk, the pack that the disk belongs to is also removed. In this
case, the server MUST remove the corresponding pack object from the list of storage management

objects. Then, for each callback object that is registered in the list of callback objects, the server
MUST call the callback object's IVdsAdviseSink::OnNotify (Opnum 3) method with a

VDS_NOTIFICATION structure that has the following attributes:

objectType member is VDS_NTT_PACK.

pack member is a VDS_PACK_NOTIFICATION that has the following attributes:

ulEvent is VDS_NF_PACK_DEPART.

packId is the VDS_OBJECT_ID of the pack object that was removed.

3.4.5.1.5 Adding Volume Objects

The server MUST maintain a list of detected volumes. When the server discovers a new volume
(either during initialization or when a new volume arrives after initialization), it checks whether the

volume resides on a basic disk or on one or more dynamic disks.

Basic Disk: If the volume is on a basic disk, the server MUST create a corresponding volume object
and MUST assign it a unique VDS_OBJECT_ID. The server MUST set the volume object's pack

pointer to the pack object that corresponds to the pack to which the disk on which the volume is
contained belongs. The server MUST add the volume object to the list of storage management
objects.

For each callback object that is registered in the list of callback objects, the server MUST call the
callback object's IVdsAdviseSink::OnNotify (Opnum 3) method with a VDS_NOTIFICATION
structure that has the following attributes:

objectType member is VDS_NTT_VOLUME.

volume member is a VDS_VOLUME_NOTIFICATION that has the following attributes:

ulEvent is VDS_NF_VOLUME_ARRIVE.

volumeId is the VDS_OBJECT_ID of the volume object that was added.

Dynamic Disk: If the volume is on dynamic disks, the server MUST create a corresponding volume

object and MUST assign it a unique VDS_OBJECT_ID. The server MUST set the volume object's

169 / 368

[MS-VDS] — v20130722
 Virtual Disk Service (VDS) Protocol

 Copyright © 2013 Microsoft Corporation.

 Release: Monday, July 22, 2013

pack pointer to the pack object that corresponds to the pack the volume belongs to. The server
MUST add the volume object to the list of storage management objects.

For each volume plex on the volume, the server MUST create a corresponding volume plex object
and MUST assign it a unique VDS_OBJECT_ID. The server MUST set the volume plex object's

volume pointer to the volume object that was created. The server MUST add the volume plex object
to the list of storage management objects.

Finally, for each callback object that is registered in the list of callback objects, the server MUST call
the callback object's IVdsAdviseSink::OnNotify (Opnum 3) method with a
VDS_NOTIFICATION structure that has the following attributes:

objectType member is VDS_NTT_VOLUME.

volume member is a VDS_VOLUME_NOTIFICATION that has the following attributes:

ulEvent is VDS_NF_VOLUME_ARRIVE.

volumeId is the VDS_OBJECT_ID of the volume object that was added.

plexId SHOULD be GUID_NULL, but this is not relevant when ulEvent is

VDS_NF_VOLUME_ARRIVE.

ulPercentCompleted needs to be from 0 to 100 and is implementation-specific, but it is not

relevant when ulEvent is VDS_NF_VOLUME_ARRIVE.

3.4.5.1.6 Removing Volume Objects

The server MUST maintain a list of detected volumes. When the server discovers that a volume was
removed, it MUST remove the corresponding volume object from the list of storage management

objects.

If the volume is a dynamic disk, the server MUST remove the volume plex objects that correspond
to the volume's volume plex from the list of storage management objects.

For each callback object that is registered in the list of callback objects, the server MUST call the
callback object's IVdsAdviseSink::OnNotify (Opnum 3) method with a VDS_NOTIFICATION
structure that has the following attributes:

objectType member is VDS_NTT_VOLUME.

The volume member is a VDS_VOLUME_NOTIFICATION that has the following attributes:

ulEvent is VDS_NF_VOLUME_DEPART.

volumeId is the VDS_OBJECT_ID of the volume object that was removed.

plexId SHOULD be GUID_NULL, but it is not relevant when ulEvent is

VDS_NF_VOLUME_DEPART.

ulPercentCompleted needs to be from 0-100 and is implementation-specific; however, it is

not relevant when ulEvent is VDS_NF_VOLUME_DEPART.

3.4.5.1.7 Adding Virtual Disk Objects

The server MUST maintain a list of virtual disks. Virtual disks may be added directly by a client using

the IVdsVdProvider::AddVDisk (section 3.4.5.2.17.3) method. The server MUST also detect

170 / 368

[MS-VDS] — v20130722
 Virtual Disk Service (VDS) Protocol

 Copyright © 2013 Microsoft Corporation.

 Release: Monday, July 22, 2013

whether a basic, dynamic, or unallocated disk is a virtual disk and create a corresponding virtual
disk object for it. The mechanism of detection is implementation-specific.<52>

The server MUST also maintain a list of OpenVirtualDisk objects. An OpenVirtualDisk object is
created when a client calls IVdsVDisk::Open.

3.4.5.1.8 Removing Virtual Disk Objects

The server MUST maintain a list of virtual disks. Virtual disks SHOULD be removed when all of the
clients release their reference to the virtual disk object. The server MUST also detect whether the
basic, dynamic, or unallocated disk that has been removed is a virtual disk and remove the
corresponding virtual disk object. The mechanism of detection is implementation-specific.<53>

The server MUST also maintain a list of OpenVirtualDisk objects. An OpenVirtualDisk object may be

removed when all the clients release their reference to the OpenVirtualDisk object.

3.4.5.1.9 Handling Asynchronous Tasks

When the client calls a method that initiates a task that returns an async object, the server MUST
create an async object that implements the IVdsAsync interface and return the interface pointer to
the client to allow it to monitor the task's status. For examples of how async objects can be used,

see section 4.5.

If the task has completed successfully and the client calls the IVdsAsync::Wait method on the
async object, the server MUST return the following task-specific return values to the client by means
of the VDS_ASYNC_OUTPUT structure returned by the method. The return values are determined
by the async output type:

VDS_ASYNCOUT_CREATEPARTITION:

The byte offset at which the partition was created (returned in the cp.ullOffset member).

The VDS_OBJECT_ID of the associated volume if the partition is a volume (returned in the

cp.volumeId member).

VDS_ASYNCOUT_CREATEVOLUME:

The IUnknown pointer of the volume object created (returned in the cv.pVolumeUnk

member).

VDS_ASYNCOUT_BREAKVOLUMEPLEX:

The IUnknown pointer of the volume object that resulted when the volume plex was broken

from the original volume (returned in the bvp.pVolumeUnk member).

VDS_ASYNCOUT_SHRINKVOLUME:

The number of bytes reclaimed by the shrink operation (returned in the sv.ullReclaimedBytes

member).

VDS_ASYNCOUT_CREATE_VDISK:

The IUnknown pointer of the virtual disk object created (returned in the cvd.pVDiskUnk

member).

If the async output type is none of the preceding or if the task did not complete successfully, no

data other than the return code of the operation MAY be returned. This means that if the task fails

171 / 368

[MS-VDS] — v20130722
 Virtual Disk Service (VDS) Protocol

 Copyright © 2013 Microsoft Corporation.

 Release: Monday, July 22, 2013

before the method call returns to the client, the method will return an error code and MAY not return
the IVdsAsync interface.

If the task fails after the method call has returned to the client but before the task has completed,
the IVdsAsync interface will return an error code and MAY not contain any other information.

3.4.5.2 Message Processing Details

Before processing the methods that are listed in the following sections, the server SHOULD obtain
identity and authorization information about the client from the underlying DCOM or RPC runtime.
The server does this in order to verify that the client has sufficient permissions to create, modify, or
delete the object as appropriate. These methods SHOULD impose an authorization policy decision
before performing the function. The suggested minimum requirement is that the caller has

permission to create, modify, or delete the object as appropriate.<54>

If any method is called before the server returns success from either the
IVdsService::IsServiceReady (Opnum 3) method or the IVdsService::WaitForServiceReady
(Opnum 4) method, the VDS_E_INITIALIZED_FAILED value is returned.

If parameter validation fails, the server MUST immediately fail the operation, returning a vendor-
specific error as its response to the client.

3.4.5.2.1 IEnumVdsObject Methods

The server MUST maintain the enumeration object until the client releases all references to the
interface.

3.4.5.2.1.1 IEnumVdsObject::Next (Opnum 3)

The Next method returns a specified number of objects in the enumeration. It begins from the

current point.

[helpstring("method Next")] HRESULT Next(

 [in] unsigned long celt,

 [out, size_is(celt), length_is(*pcFetched)]

 IUnknown** ppObjectArray,

 [out] unsigned long* pcFetched

);

celt: The number of elements to retrieve from the enumeration.

ppObjectArray: A pointer to an array of IUnknown interfaces. The size of this array MUST be
equal to celt. If successfully completed, it receives an array of the IUnknown interfaces of the
next objects in the enumeration; the number of elements in this array MUST be equal in size
to the value of pcFetched. Callers MUST release each IUnknown interface that is received.

pcFetched: A pointer to a variable that, upon successful completion, receives the number of
elements that are successfully received in ppObjectArray.

Return Values: The method MUST return zero or a non-error HRESULT (as specified in [MS-
ERREF]) to indicate success or return an implementation-specific nonzero error code to
indicate failure. For the HRESULT values predefined by the Virtual Disk Service Remote
Protocol, see section 2.2.3.

%5bMS-ERREF%5d.pdf
%5bMS-ERREF%5d.pdf

172 / 368

[MS-VDS] — v20130722
 Virtual Disk Service (VDS) Protocol

 Copyright © 2013 Microsoft Corporation.

 Release: Monday, July 22, 2013

If S_FALSE is returned, the client MUST check the value that pcFetched references and not
access more than the number of elements returned in ppObjectArray.

When the server receives this message, it MUST validate the following parameters:

Verify that ppObjectArray is not NULL.

Verify that pcFetched is not NULL.

The server MUST perform the following:

If the number of objects from the current index to the end of the enumeration is greater than or

equal to the number of objects being requested in celt:

Populate the IUnknown pointers in ppObjectArray with the next IUnknown pointers (the

amount of which celt specifies) in the enumeration that is starting from the current index.

Set the value that pcFetched references to celt.

Increment the current index by celt.

Return an HRESULT that indicates failure or success.

If the number of objects from the current index to the end of the enumeration is less than the

number of objects being requested in celt:

Populate the IUnknown pointers in ppObjectArray with the next IUnknown pointers in the

enumeration. Start from the current index to the end of the enumeration.

Set the value that pcFetched references to the number of objects that were populated in

ppObjectArray.

Increment the current index by the number of objects that were populated in ppObjectArray.

Return S_FALSE (HRESULT of 0x00000001) if successful, or any non-zero error for failure.

If the current index is already past the list of objects in the enumeration, set the value that

pcFetched references to 0 and return S_FALSE (HRESULT of 0x00000001) if successful, or any
non-zero error for failure.

3.4.5.2.1.2 IEnumVdsObject::Skip (Opnum 4)

The Skip method skips a specified number of objects in the enumeration.

[helpstring("method Skip")] HRESULT Skip(

 [in] unsigned long celt

);

celt: The number of objects to skip.

Return Values: The method MUST return zero or a non-error HRESULT (as specified in [MS-

ERREF]) to indicate success or return an implementation-specific nonzero error code to
indicate failure. For the HRESULT values predefined by the Virtual Disk Service Remote
Protocol, see section 2.2.3.

If S_FALSE is returned, the enumeration has ended and the client MUST either stop
enumerating or reset the enumeration back to the beginning.

%5bMS-ERREF%5d.pdf
%5bMS-ERREF%5d.pdf

173 / 368

[MS-VDS] — v20130722
 Virtual Disk Service (VDS) Protocol

 Copyright © 2013 Microsoft Corporation.

 Release: Monday, July 22, 2013

When the server receives this message, it MUST perform the following:

If the number of objects from the current index to the end of the enumeration is greater than or

equal to the number in celt, increment the current index by celt and return an HRESULT that

indicates failure or success.

If the number of objects from the current index to the end of the enumeration is less than the

number of objects that celt requested, increment the current index by the number of objects
from the current index to the end of the enumeration and return S_FALSE (HRESULT of
0x00000001) if successful.

If the current index is already past the list of objects in the enumeration, return S_FALSE

(HRESULT of 0x00000001) if successful.

3.4.5.2.1.3 IEnumVdsObject::Reset (Opnum 5)

The Reset method resets the enumerator to the beginning of the collection.

[helpstring("method Reset")] HRESULT Reset();

This method has no parameters.

Return Values: The method MUST return zero or a non-error HRESULT (as specified in [MS-
ERREF]) to indicate success or return an implementation-specific nonzero error code to
indicate failure. For the HRESULT values predefined by the Virtual Disk Service Remote
Protocol, see section 2.2.3.

When the server receives this message, it MUST set the current index to the beginning of the

enumeration and return an HRESULT that indicates failure or success.

3.4.5.2.1.4 IEnumVdsObject::Clone (Opnum 6)

The Clone method creates a new enumeration that has the same state as the current enumeration.

[helpstring("method Clone")] HRESULT Clone(

 [out] IEnumVdsObject** ppEnum

);

ppEnum: A pointer to an IEnumVdsObject interface that, if successfully completed, receives

the IEnumVdsObject interface of the cloned enumeration. Callers MUST release the interface
that is received when they are done with it.

Return Values: The method MUST return zero or a non-error HRESULT (as specified in [MS-
ERREF]) to indicate success or return an implementation-specific nonzero error code to
indicate failure. For the HRESULT values predefined by the Virtual Disk Service Remote
Protocol, see section 2.2.3.

When the server receives this message, it MUST validate the parameter:

Verify that ppEnum is not NULL.

The server MUST perform the following:

Create a new enumeration object that implements the IEnumVdsObject interface. Then set the

pointer that ppEnum references to the interface.

%5bMS-ERREF%5d.pdf
%5bMS-ERREF%5d.pdf
%5bMS-ERREF%5d.pdf
%5bMS-ERREF%5d.pdf

174 / 368

[MS-VDS] — v20130722
 Virtual Disk Service (VDS) Protocol

 Copyright © 2013 Microsoft Corporation.

 Release: Monday, July 22, 2013

Set the list of objects in the new enumeration object to equal the list of objects in this

enumeration.

Set the current index in the new enumeration to equal the current index in this enumeration.

Return an HRESULT that indicates failure or success.

3.4.5.2.2 IVdsAsync Methods

3.4.5.2.2.1 IVdsAsync::Cancel (Opnum 3)

The Cancel method cancels the asynchronous operation.

HRESULT Cancel();

This method has no parameters.

Return Values: The method MUST return zero or a non-error HRESULT (as specified in [MS-
ERREF]) to indicate success or return an implementation-specific nonzero error code to
indicate failure. For the HRESULT values predefined by the Virtual Disk Service Remote

Protocol, see section 2.2.3.

When the server receives this message, it MUST attempt to cancel the asynchronous
operation and return an HRESULT that indicates failure or success. If the server succeeds in
canceling the operation, it MUST set the signal state of the async object to TRUE and set the
return code to VDS_E_OPERATION_CANCELED.

The server MAY set the percentage completed to 0. If the server is unable to cancel the

operation, it MUST return VDS_E_CANCEL_TOO_LATE or VDS_E_NOT_SUPPORTED and leave
the signal state of the async object and percentage completed as is.

3.4.5.2.2.2 IVdsAsync::Wait (Opnum 4)

The Wait method blocks and returns when the asynchronous operation has either finished
successfully or failed.

HRESULT Wait(

 [out] HRESULT* pHrResult,

 [out] VDS_ASYNC_OUTPUT* pAsyncOut

);

pHrResult: A pointer to a variable which, if the Wait method successfully completes, receives

the returned HRESULT.

pAsyncOut: A pointer to a VDS_ASYNC_OUTPUT structure that, if the asynchronous operation
is successfully completed, receives extra information about the operation, if any information
exists. Multiple methods from other interfaces also return async objects. Consult the method

that returned the async object to determine what extra information to return, if any. If the
asynchronous operation fails, pAsyncOut MAY be left as is without returning any value.

Return Values: The method MUST return zero or a non-error HRESULT (as specified in [MS-
ERREF]) to indicate success or return an implementation-specific nonzero error code to
indicate failure. For the HRESULT values predefined by the Virtual Disk Service Remote
Protocol, see section 2.2.3.

%5bMS-ERREF%5d.pdf
%5bMS-ERREF%5d.pdf
%5bMS-ERREF%5d.pdf
%5bMS-ERREF%5d.pdf

175 / 368

[MS-VDS] — v20130722
 Virtual Disk Service (VDS) Protocol

 Copyright © 2013 Microsoft Corporation.

 Release: Monday, July 22, 2013

The HRESULT that pHrResult references MUST return zero to indicate success, or an
implementation-specific nonzero error code to indicate failure of the asynchronous operation

that is associated with the IVdsAsync object.

When the server receives this message, it MUST validate the following parameters:

Verify that pHrResult is not NULL.

Verify that pAsyncOut is not NULL.

The server MUST perform the following:

Wait for the asynchronous operation to complete.

If the server implements a maximum amount of time to wait for an asynchronous operation to

complete, and that maximum time is exceeded, then the server MUST return VDS_E_TIMEOUT.
The maximum amount of time is implementation-specific.

Set the pHrResult output parameter for the operation based on the return code for the

asynchronous operation.

If the asynchronous operation has successfully completed, set the pAsyncOut output parameter

fields based on the operation type. If the asynchronous operation has failed, this parameter may
be left uninitialized.

Return an HRESULT that indicates success or failure for the Wait method.

3.4.5.2.2.3 IVdsAsync::QueryStatus (Opnum 5)

The QueryStatus method retrieves the status of the asynchronous operation.

HRESULT QueryStatus(

 [out] HRESULT* pHrResult,

 [out] unsigned long* pulPercentCompleted

);

pHrResult: A pointer to a variable that receives the HRESULT that signals the current state of

the asynchronous operation.

pulPercentCompleted: A pointer to a variable that receives the completion percentage of the
asynchronous operation. If the asynchronous operation is in progress, the value MUST be
between 0 and 99. If the operation has finished, the value MUST be 100. If the progress of the
operation cannot be estimated, the value MUST be 0.

Return Values: The method MUST return zero or a non-error HRESULT (as specified in [MS-

ERREF]) to indicate success or return an implementation-specific nonzero error code to
indicate failure. For the HRESULT values predefined by the Virtual Disk Service Remote
Protocol, see section 2.2.3.

When the server receives this message, it MUST validate the following parameters:

Verify that pHrResult is not NULL.

Verify that pulPercentCompleted is not NULL.

The server MUST perform the following:

%5bMS-ERREF%5d.pdf
%5bMS-ERREF%5d.pdf

176 / 368

[MS-VDS] — v20130722
 Virtual Disk Service (VDS) Protocol

 Copyright © 2013 Microsoft Corporation.

 Release: Monday, July 22, 2013

Set the pHrResult output parameter based on the return code for the asynchronous operation. If

the asynchronous operation is still in progress, this parameter MUST be set to

VDS_E_OPERATION_PENDING (HRESULT of 0x00042409).

Set the pulPercentCompleted output parameter based on the completion percentage of the

asynchronous operation.

Return an HRESULT that indicates success or failure for the QueryStatus method.

3.4.5.2.3 IVdsServiceLoader Methods

3.4.5.2.3.1 IVdsServiceLoader::LoadService (Opnum 3)

The LoadService method is used by client applications to load the VDS service on a remote
machine.

HRESULT LoadService(

 [in, unique, string] LPWSTR pwszMachineName,

 [out] IVdsService** ppService

);

pwszMachineName: A pointer to a string that contains the name of the machine on which the

loader should load the VDS service.

ppService: A pointer to the IVdsService interface that, if successfully completed, returns the

IVdsService interface to the VDS service that runs on the machine represented by
pwszMachineName.

Return Values: The method MUST return zero or a non-error HRESULT (as specified in [MS-
ERREF]) to indicate success or return an implementation-specific nonzero error code to
indicate failure. For the HRESULT values predefined by the Virtual Disk Service Remote
Protocol, see section 2.2.3.

When the server receives this message, it MUST validate the following parameter:

Verify that ppService is not NULL.

The server MUST:

Load the VDS service on the computer specified by pwszMachineName parameter.

QueryInterface for the IVdsServiceInitialization interface.

Call the IVdsServiceInitialization::Initialize method, passing the pwszMachineName

parameter input to this method.

Point ppService to the IVdsService interface for the VDS service that is loaded.

Return an HRESULT that indicates failure or success.

The server object that is created when this method is called MUST implement only these interfaces:

IVdsService

IVdsServiceHba

IVdsServiceIscsi

%5bMS-ERREF%5d.pdf
%5bMS-ERREF%5d.pdf
%5bMS-DTYP%5d.pdf

177 / 368

[MS-VDS] — v20130722
 Virtual Disk Service (VDS) Protocol

 Copyright © 2013 Microsoft Corporation.

 Release: Monday, July 22, 2013

IVdsServiceUninstallDisk

IVdsServiceSAN

3.4.5.2.4 IVdsService Methods

3.4.5.2.4.1 IVdsService::IsServiceReady (Opnum 3)

The IsServiceReady method determines whether a service is finished initializing. Until the service
initialization completes, an application SHOULD NOT call any method other than
GetProperties.<55>

HRESULT IsServiceReady();

This method has no parameters.

Return Values: The method MUST return zero or a non-error HRESULT (as specified in [MS-
ERREF]) to indicate success, or return an implementation-specific nonzero error code to
indicate failure. For the HRESULT values predefined by the Virtual Disk Service Remote

Protocol, see section 2.2.3.

3.4.5.2.4.2 IVdsService::WaitForServiceReady (Opnum 4)

The WaitForServiceReady method waits for VDS initialization to complete and returns the status
of the VDS initialization in the HRESULT.

HRESULT WaitForServiceReady();

This method has no parameters.

Return Values: The method MUST return zero to indicate success or the error code

VDS_E_INITIALIZED_FAILED if the service-ready state is "failed".

Upon receiving this message, if the service-ready state is or becomes "failed", the server MUST
return VDS_E_INITIALIZED_FAILED (HRESULT of 0x80042401). The server MUST block the call until

the service-ready state is "ready", after which it MUST return success (HRESULT of 0x00000000).

3.4.5.2.4.3 IVdsService::GetProperties (Opnum 5)

The GetProperties method retrieves the properties of the service that is represented by the object
that exposes this interface and method.

HRESULT GetProperties(

 [out] VDS_SERVICE_PROP* pServiceProp

);

pServiceProp: A pointer to a VDS_SERVICE_PROP structure that, if the operation is

successfully completed, receives the properties of the service.

Return Values: The method MUST return zero or a non-error HRESULT (as specified in [MS-
ERREF]) to indicate success, or return an implementation-specific nonzero error code to
indicate failure. For the HRESULT values predefined by the Virtual Disk Service Remote
Protocol, see section 2.2.3.

%5bMS-ERREF%5d.pdf
%5bMS-ERREF%5d.pdf
%5bMS-ERREF%5d.pdf
%5bMS-ERREF%5d.pdf

178 / 368

[MS-VDS] — v20130722
 Virtual Disk Service (VDS) Protocol

 Copyright © 2013 Microsoft Corporation.

 Release: Monday, July 22, 2013

When the server receives this message, it MUST validate the following parameter:

Verify that pServiceProp is not NULL.

The server MUST populate the VDS_SERVICE_PROP structure that pServiceProp references with

the properties of the server and return an HRESULT that indicates failure or success.

3.4.5.2.4.4 IVdsService::QueryProviders (Opnum 6)

The QueryProviders method enumerates the providers of the server.

HRESULT QueryProviders(

 [in] DWORD masks,

 [out] IEnumVdsObject** ppEnum

);

masks: The combination of any values, by using a bitwise OR operator, that the

VDS_QUERY_PROVIDER_FLAG enumeration defines. The values that are set in the mask
specify the types of providers to return.

ppEnum: A pointer to an IEnumVdsObject interface that, if successfully completed, receives
the IEnumVdsObject interface of the object that contains an enumeration of provider objects
on the server. Callers MUST release the interface that is received when they are done with it.

Return Values: The method MUST return zero or a non-error HRESULT (as specified in [MS-
ERREF]) to indicate success, or return an implementation-specific nonzero error code to
indicate failure. For the HRESULT values predefined by the Virtual Disk Service Remote

Protocol, see section 2.2.3.

When the server receives this message, it MUST validate the following parameter:

Verify that ppEnum is not NULL.

The server MUST point ppEnum to an IEnumVdsObject interface that contains the enumeration of
provider objects in the list of cached storage management objects, as specified in section 3.4.1.3,
and return an HRESULT that indicates failure or success.

3.4.5.2.4.5 IVdsService::QueryUnallocatedDisks (Opnum 8)

The QueryUnallocatedDisks method enumerates the unallocated disks on the server.

HRESULT QueryUnallocatedDisks(

 [out] IEnumVdsObject** ppEnum

);

ppEnum: A pointer to an IEnumVdsObject interface that, if the operation is successfully

completed, receives the IEnumVdsObject interface of the object that contains an
enumeration of disk objects that correspond to unallocated disks on the server. Callers MUST

release the interface that is received when they are done with it.

Return Values: The method MUST return zero or a non-error HRESULT (as specified in [MS-
ERREF]) to indicate success, or return an implementation-specific nonzero error code to
indicate failure. For the HRESULT values predefined by the Virtual Disk Service Remote
Protocol, see section 2.2.3.

%5bMS-ERREF%5d.pdf
%5bMS-ERREF%5d.pdf
%5bMS-ERREF%5d.pdf
%5bMS-ERREF%5d.pdf

179 / 368

[MS-VDS] — v20130722
 Virtual Disk Service (VDS) Protocol

 Copyright © 2013 Microsoft Corporation.

 Release: Monday, July 22, 2013

When the server receives this message, it MUST validate the following parameter:

Verify that ppEnum is not NULL.

The server MUST point ppEnum to an IEnumVdsObject interface that contains the enumeration of

unallocated disk objects in the list of cached storage management objects, as specified in section
3.4.1.3, and return an HRESULT indicating failure or success.

3.4.5.2.4.6 IVdsService::GetObject (Opnum 9)

The GetObject method retrieves an IUnknown pointer to a specified object.

HRESULT GetObject(

 [in] VDS_OBJECT_ID ObjectId,

 [in] VDS_OBJECT_TYPE type,

 [out] IUnknown** ppObjectUnk

);

ObjectId: The GUID of the desired object.

type: The object type that VDS_OBJECT_TYPE enumerates. All object types are valid except
VDS_OT_UNKNOWN, VDS_OT_PROVIDER, VDS_OT_ASYNC, and VDS_OT_ENUM.

ppObjectUnk: A pointer to an IUnknown interface that, if the operation is successfully
completed, receives an IUnknown interface of the object. Callers MUST release the interface
that is received when they are done with it.

Return Values: The method MUST return zero or a non-error HRESULT (as specified in [MS-
ERREF]) to indicate success, or return an implementation-specific nonzero error code to
indicate failure. For the HRESULT values predefined by the Virtual Disk Service Remote

Protocol, see section 2.2.3.

When the server receives this message, it MUST validate the following parameter:

Verify that ppObjectUnk is not NULL.

The server MUST point ppObjectUnk to an IUnknown interface of the object in the list of cached
storage management objects that match the VDS object identifier that ObjectId specifies and the
object type that is specified by type. The server MUST then return an HRESULT indicating failure or

success.

If the object cannot be found in the server cache, then the server MUST return
VDS_E_OBJECT_NOT_FOUND.

3.4.5.2.4.7 IVdsService::QueryDriveLetters (Opnum 10)

The QueryDriveLetters method enumerates the drive letters of the server.

HRESULT QueryDriveLetters(

 [in] WCHAR wcFirstLetter,

 [in] DWORD count,

 [out, size_is(count)] VDS_DRIVE_LETTER_PROP* pDriveLetterPropArray

);

%5bMS-ERREF%5d.pdf
%5bMS-ERREF%5d.pdf

180 / 368

[MS-VDS] — v20130722
 Virtual Disk Service (VDS) Protocol

 Copyright © 2013 Microsoft Corporation.

 Release: Monday, July 22, 2013

wcFirstLetter: The first drive letter to query as a single uppercase or lowercase alphabetical (A-

Z) Unicode character.

count: The total number of drive letters to retrieve, beginning with the letter that wcFirstLetter
specifies. This MUST also be the number of elements in the pDriveLetterPropArray. It MUST

NOT exceed the total number of drive letters between the letter in wcFirstLetter and the last
possible drive letter (Z), inclusive.

pDriveLetterPropArray: An array of VDS_DRIVE_LETTER_PROP structures that, if the
operation is successfully completed, receives the array of drive letter properties.

Return Values: The method MUST return zero or a non-error HRESULT (as specified in [MS-
ERREF]) to indicate success, or return an implementation-specific nonzero error code to
indicate failure. For the HRESULT values predefined by the Virtual Disk Service Remote

Protocol, see section 2.2.3.

When the server receives this message, it MUST validate the following parameters:

Verify that wcFirstLetter is an uppercase or lowercase alphabetical character (A-Z) in Unicode

format.

Verify that the count does not exceed the total number of drive letters between the letter in

wcFirstLetter and the last possible drive letter (Z), inclusive.

Verify that pDriveLetterPropArray is not NULL.

The server MUST populate the VDS_DRIVE_LETTER_PROP structure that pDriveLetterPropArray
references with information about each drive letter that is requested. The server MUST then return
an HRESULT indicating failure or success.

3.4.5.2.4.8 IVdsService::QueryFileSystemTypes (Opnum 11)

The QueryFileSystemTypes method returns property details for all file systems that are known to
VDS.

HRESULT QueryFileSystemTypes(

 [out, size_is(,*plNumberOfFileSystems)]

 VDS_FILE_SYSTEM_TYPE_PROP** ppFileSystemTypeProps,

 [out] long* plNumberOfFileSystems

);

ppFileSystemTypeProps: A pointer to an array of VDS_FILE_SYSTEM_TYPE_PROP

structures that, if the operation is successfully completed, receives the array of file system
type properties.

plNumberOfFileSystems: A pointer to a variable that, if the operation is successfully
completed, receives the total number of elements returned in ppFileSystemTypeProps.

Return Values: The method MUST return zero or a non-error HRESULT (as specified in [MS-

ERREF]) to indicate success, or return an implementation-specific nonzero error code to
indicate failure. For the HRESULT values predefined by the Virtual Disk Service Remote
Protocol, see section 2.2.3.

When the server receives this message, it MUST validate the following parameters:

Verify that ppFileSystemTypeProps is not NULL.

%5bMS-ERREF%5d.pdf
%5bMS-ERREF%5d.pdf
%5bMS-ERREF%5d.pdf
%5bMS-ERREF%5d.pdf

181 / 368

[MS-VDS] — v20130722
 Virtual Disk Service (VDS) Protocol

 Copyright © 2013 Microsoft Corporation.

 Release: Monday, July 22, 2013

Verify that plNumberOfFileSystems is not NULL.

The server MUST point ppFileSystemTypeProps to an array of VDS_FILE_SYSTEM_TYPE_PROP
structures containing information about each file system that VDS is aware of, point

plNumberOfFileSystems to the size of the array, and return an HRESULT indicating failure or
success.<56>

3.4.5.2.4.9 IVdsService::Reenumerate (Opnum 12)

The Reenumerate method discovers newly added and newly removed disks and returns the status
of the operation in the HRESULT.

HRESULT Reenumerate();

This method has no parameters.

Return Values: The method MUST return zero or a non-error HRESULT (as specified in [MS-

ERREF]) to indicate success, or return an implementation-specific nonzero error code to
indicate failure. For the HRESULT values predefined by the Virtual Disk Service Remote

Protocol, see section 2.2.3.

When the server receives this message, it MUST issue a request to all buses on the machine. The
request causes the buses to report any new devices, or devices no longer present, to the operating
system. The server MUST also return an HRESULT indicating failure or success.

3.4.5.2.4.10 IVdsService::Refresh (Opnum 13)

The Refresh method refreshes the ownership and layout of disks on the server.

HRESULT Refresh();

This method has no parameters.

Return Values: The method MUST return zero or a non-error HRESULT (as specified in [MS-
ERREF]) to indicate success, or return an implementation-specific nonzero error code to

indicate failure. For the HRESULT values predefined by the Virtual Disk Service Remote
Protocol, see section 2.2.3.

When the server receives this message, it MUST requery the list of storage devices from the
operating system, refresh its list of storage management objects based on the result of the requery,
and return an HRESULT indicating failure or success.

Result of requery Action server MUST take

New pack found Add pack to list; see section 3.4.5.1.1

New disk found Add disk to list; see section 3.4.5.1.3

New volume found Add volume to list; see section 3.4.5.1.5

Pack currently in list not found Remove pack from list; see section 3.4.5.1.2

Disk currently in list not found Remove disk from list; see section 3.4.5.1.4

%5bMS-ERREF%5d.pdf
%5bMS-ERREF%5d.pdf
%5bMS-ERREF%5d.pdf
%5bMS-ERREF%5d.pdf

182 / 368

[MS-VDS] — v20130722
 Virtual Disk Service (VDS) Protocol

 Copyright © 2013 Microsoft Corporation.

 Release: Monday, July 22, 2013

Result of requery Action server MUST take

Volume currently in list not found Remove volume from list; see section 3.4.5.1.6

3.4.5.2.4.11 IVdsService::CleanupObsoleteMountPoints (Opnum 14)

The CleanupObsoleteMountPoints method removes any mount points that point to volumes that
no longer exist.

HRESULT CleanupObsoleteMountPoints();

This method has no parameters.

Return Values: The method MUST return zero or a non-error HRESULT (as specified in [MS-
ERREF]) to indicate success, or return an implementation-specific nonzero error code to
indicate failure. For the HRESULT values predefined by the Virtual Disk Service Remote

Protocol, see section 2.2.3.

When the server receives this message, it MUST requery the assigned mount points from the
operating system, remove mount points from the operating system if they are assigned to volumes

that no longer exist, and return an HRESULT indicating failure or success.

3.4.5.2.4.12 IVdsService::Advise (Opnum 15)

The Advise method registers a notification callback with the server. Clients pass the callback object
to the server to receive notifications.

HRESULT Advise(

 [in] IVdsAdviseSink* pSink,

 [out] DWORD* pdwCookie

);

pSink: A pointer to an IVdsAdviseSink interface of the callback object to register with the server

for notification of object changes.

pdwCookie: A pointer to a variable that, if the operation is successfully completed, receives a
unique cookie value that the client can later use to unregister the callback object from
receiving notification changes from the service. For information about how to register callback
objects, see section 3.3.1.1.

Return Values: The method MUST return zero or a non-error HRESULT (as specified in [MS-

ERREF]) to indicate success, or return an implementation-specific nonzero error code to
indicate failure. For the HRESULT values predefined by the Virtual Disk Service Remote
Protocol, see section 2.2.3.

When the server receives this message, it MUST validate the following parameters:

Verify that pSink is not NULL.

Verify that pdwCookie is not NULL.

The server MUST perform the following:

%5bMS-ERREF%5d.pdf
%5bMS-ERREF%5d.pdf
%5bMS-ERREF%5d.pdf
%5bMS-ERREF%5d.pdf

183 / 368

[MS-VDS] — v20130722
 Virtual Disk Service (VDS) Protocol

 Copyright © 2013 Microsoft Corporation.

 Release: Monday, July 22, 2013

Point pdwCookie to a unique cookie value that is associated with the IVdsAdviseSink interface

that pSink specifies.

Add the IVdsAdviseSink interface that pSink specifies to the list of callback objects.

Return an HRESULT indicating failure or success.

3.4.5.2.4.13 IVdsService::Unadvise (Opnum 16)

The Unadvise method unregisters a client from being notified by the server of changes to storage
objects.

HRESULT Unadvise(

 [in] DWORD dwCookie

);

dwCookie: The cookie value generated when the IVdsAdviseSink interface was registered.

Return Values: The method MUST return zero or a non-error HRESULT (as specified in [MS-
ERREF]) to indicate success, or return an implementation-specific nonzero error code to
indicate failure. For the HRESULT values predefined by the Virtual Disk Service Remote
Protocol, see section 2.2.3.

When the server receives this message, it MUST validate the following parameter:

Verify that dwCookie corresponds to a callback object in the list of callback objects.

Remove the IVdsAdviseSink interface that pSink specifies from the list of callback objects.

The server MUST return an HRESULT indicating failure or success.

3.4.5.2.4.14 IVdsService::Reboot (Opnum 17)

The Reboot method restarts the computer on which the server is running.<57>

HRESULT Reboot();

This method has no parameters.

Return Values: The method MUST return zero or a non-error HRESULT (as specified in [MS-
ERREF]) to indicate success, or return an implementation-specific nonzero error code to

indicate failure. For the HRESULT values predefined by the Virtual Disk Service Remote
Protocol, see section 2.2.3.

When the server receives this message, it MUST send a request to the operating system to restart
the computer and return an HRESULT indicating failure or success.

3.4.5.2.4.15 IVdsService::SetFlags (Opnum 18)

The SetFlags method assigns property flags to the server.

HRESULT SetFlags(

 [in] unsigned long ulFlags

);

%5bMS-ERREF%5d.pdf
%5bMS-ERREF%5d.pdf
%5bMS-ERREF%5d.pdf
%5bMS-ERREF%5d.pdf

184 / 368

[MS-VDS] — v20130722
 Virtual Disk Service (VDS) Protocol

 Copyright © 2013 Microsoft Corporation.

 Release: Monday, July 22, 2013

ulFlags: A value from the VDS_SERVICE_FLAG enumeration. Only the

VDS_SVF_AUTO_MOUNT_OFF flag is valid for this method.

Return Values: The method MUST return zero or a nonerror HRESULT (as specified in [MS-
ERREF]) to indicate success, or return an implementation-specific nonzero error code to

indicate failure. For the HRESULT values predefined by the Virtual Disk Service Remote
Protocol, see section 2.2.3.

When the server receives this message, it MUST validate the following parameter:

Verify that ulFlags does not contain any flags that the parameter specification disallows.

The server MUST attempt to set the service flags that ulFlags specifies and return an HRESULT
indicating failure or success.

3.4.5.2.4.16 IVdsService::ClearFlags (Opnum 19)

The ClearFlags method clears property flags from the service.

HRESULT ClearFlags(

 [in] unsigned long ulFlags

);

ulFlags: A value from the VDS_SERVICE_FLAG enumeration. Only the
VDS_SVF_AUTO_MOUNT_OFF flag is valid for this method.

Return Values: The method MUST return zero or a non-error HRESULT (as specified in [MS-
ERREF]) to indicate success, or return an implementation-specific nonzero error code to
indicate failure. For the HRESULT values predefined by the Virtual Disk Service Remote
Protocol, see section 2.2.3.

When the server receives this message, it MUST validate the following parameter:

Verify that ulFlags does not contain any flags that the parameter specification disallows.

The server MUST attempt to clear the service flags that ulFlags specifies and return an HRESULT
indicating failure or success.

3.4.5.2.5 IVdsServiceInitialization Methods

3.4.5.2.5.1 IVdsServiceInitialization::Initialize (Opnum 3)

The Initialize method starts the initialization of the server.

HRESULT Initialize(

 [in, unique, string] WCHAR* pwszMachineName

);

pwszMachineName: Reserved; this parameter is not used.

Return Values: The method MUST return zero or a non-error HRESULT (as specified in [MS-
ERREF]) to indicate success, or return an implementation-specific nonzero error code to
indicate failure. For the HRESULT values predefined by the Virtual Disk Service Remote
Protocol, see section 2.2.3.

%5bMS-ERREF%5d.pdf
%5bMS-ERREF%5d.pdf
%5bMS-ERREF%5d.pdf
%5bMS-ERREF%5d.pdf
%5bMS-ERREF%5d.pdf
%5bMS-ERREF%5d.pdf

185 / 368

[MS-VDS] — v20130722
 Virtual Disk Service (VDS) Protocol

 Copyright © 2013 Microsoft Corporation.

 Release: Monday, July 22, 2013

When the server receives this message, it MUST initialize the server and return a success value
(HRESULT of 0x00000000) if the operation is successful, or VDS_E_INITIALIZED_FAILED (HRESULT

of 0x80042401) if the operation failed. For more information about initialization, see section 3.4.3.

If the IVdsServiceLoader::LoadService method is used to instantiate the server, there is no need

to QueryInterface for the IVdsServiceInitialization interface, or to call
IVdsServiceInitialization::Initialize. See IVdsServiceLoader::LoadService.

3.4.5.2.6 IVdsServiceUninstallDisk Methods

3.4.5.2.6.1 IVdsServiceUninstallDisk::GetDiskIdFromLunInfo (Opnum 3)

The GetDiskIdFromLunInfo method retrieves the VDS object ID of a disk that corresponds to a

specified LUN information structure.

HRESULT GetDiskIdFromLunInfo(

 [in] VDS_LUN_INFORMATION* pLunInfo,

 [out] VDS_OBJECT_ID* pDiskId

);

pLunInfo: A pointer to a VDS_LUN_INFORMATION structure that stores the disk's LUN

information.

pDiskId: A pointer to a VDS_OBJECT_ID structure that, if the operation is successfully
completed, receives the VDS object ID of the disk object that corresponds to the LUN
information that pLunInfo specifies.

Return Values: The method MUST return zero or a non-error HRESULT (as specified in [MS-
ERREF]) to indicate success, or return an implementation-specific nonzero error code to
indicate failure. For the HRESULT values predefined by the Virtual Disk Service Remote
Protocol, see section 2.2.3.

When the server receives this message, it MUST validate the following parameters:

Verify that pLunInfo is not NULL.

Verify that pDiskId is not NULL.

The server MUST set pDiskId to the VDS object identifier of the disk that matches the LUN
information that pLunInfo specifies, and return an HRESULT that indicates failure or success.

3.4.5.2.6.2 IVdsServiceUninstallDisk::UninstallDisks (Opnum 4)

The UninstallDisks method uninstalls a specific set of disks when it is given a list of the VDS object

IDs for the disks. All volumes that are contained wholly or partially on the disks are also uninstalled,
and the obsolete mount points are removed.

HRESULT UninstallDisks(

 [in, size_is(ulCount)] VDS_OBJECT_ID* pDiskIdArray,

 [in] unsigned long ulCount,

 [in] boolean bForce,

 [out] boolean* pbReboot,

 [out, size_is(ulCount)] HRESULT* pResults

);

%5bMS-ERREF%5d.pdf
%5bMS-ERREF%5d.pdf

186 / 368

[MS-VDS] — v20130722
 Virtual Disk Service (VDS) Protocol

 Copyright © 2013 Microsoft Corporation.

 Release: Monday, July 22, 2013

pDiskIdArray: A pointer to an array of VDS_OBJECT_ID structures that store the VDS object

IDs of the disks to be uninstalled.

ulCount: The number of disks that are specified in pDiskIdArray.

bForce: A Boolean that determines whether the volume dismount is forced.

pbReboot: A pointer to a Boolean that, if the operation is successfully completed, indicates
whether the user must reboot the remote machine in order to complete the uninstall process.

pResults: A pointer to an array of HRESULT values that, if the operation is successfully
completed, receives an HRESULT for each disk uninstall request. There MUST be one HRESULT
value in the array for each disk in pDiskIdArray. If any disk fails to uninstall properly, the error
code for that failure is received in the corresponding entry in pResults.

Return Values: The method MUST return zero or a non-error HRESULT (as specified in [MS-

ERREF]) to indicate success, or return an implementation-specific nonzero error code to
indicate failure. For the HRESULT values predefined by the Virtual Disk Service Remote

Protocol, see section 2.2.3.

When the server receives this message, it MUST validate the following parameters:

Verify that pDiskIdArray is not NULL.

Verify that pbReboot is not NULL.

Verify that pResults is not NULL.

The server MUST perform the following:

For each VDS object identifier in the specified pDiskIdArray, lock and dismount all volumes that

have extents on the disk. If the value of the Boolean that bForce references is specified as TRUE,
continue to the next steps, even if the lock or dismount operation fails.

For each VDS object identifier in the specified pDiskIdArray, take offline (if possible) and

uninstall all volumes that have extents on the disk. For information on removing volumes, see
section 3.4.5.1.6.

If the volume uninstalls require a reboot to take full effect, set the value of the Boolean that

pbReboot references to TRUE; otherwise, FALSE.

For each VDS object identifier in the specified pDiskIdArray, uninstall the disk that corresponds to

the identifier. Set the status of each disk operation to the corresponding value in the array that
pResults specifies. For more information on removing disk objects, see section 3.4.5.1.4.

If the disk uninstalls require a restart to take full effect, set the value of the Boolean that

pbReboot references to TRUE; otherwise, FALSE.

Clean up any obsolete drive letters and mount points for the volumes that have been uninstalled.

Return success (HRESULT of 0x00000000) if successful.

%5bMS-ERREF%5d.pdf
%5bMS-ERREF%5d.pdf

187 / 368

[MS-VDS] — v20130722
 Virtual Disk Service (VDS) Protocol

 Copyright © 2013 Microsoft Corporation.

 Release: Monday, July 22, 2013

3.4.5.2.7 IVdsServiceHba Methods

3.4.5.2.7.1 IVdsServiceHba::QueryHbaPorts (Opnum 3)

The QueryHbaPorts method returns an IEnumVdsObject enumeration object that contains a list
of the HBA ports that are known to VDS on the system.

HRESULT QueryHbaPorts(

 [out] IEnumVdsObject** ppEnum

);

ppEnum: A pointer to an IEnumVdsObject interface that, if the operation is successfully

completed, receives the IEnumVdsObject interface of the object that contains an
enumeration of the HBA port objects on the server. Callers MUST release the interface when

they are done with it.

Return Values: The method MUST return zero or a non-error HRESULT (as specified in [MS-

ERREF]) to indicate success, or return an implementation-specific nonzero error code to
indicate failure. For the HRESULT values predefined by the Virtual Disk Service Remote
Protocol, see section 2.2.3.

When the server receives this message, it MUST validate the following parameter:

Verify that ppEnum is not NULL.

The server MUST point ppEnum to an IEnumVdsObject interface that contains the enumeration of
the HBA port objects in the list of cached storage management objects, as specified in section
3.4.1.3, and return an HRESULT indicating failure or success.

3.4.5.2.8 IVdsServiceIscsi Methods

3.4.5.2.8.1 IVdsServiceIscsi::GetInitiatorName (Opnum 3)

The GetInitiatorName method returns the iSCSI name of the initiator service.

HRESULT GetInitiatorName(

 [out, string] WCHAR** ppwszIscsiName

);

ppwszIscsiName: A pointer that, if the operation is successfully completed, receives a null-

terminated Unicode string with the iSCSI name.

Return Values: The method MUST return zero or a non-error HRESULT (as specified in [MS-
ERREF]) to indicate success, or return an implementation-specific nonzero error code to

indicate failure. For the HRESULT values predefined by the Virtual Disk Service Remote
Protocol, see section 2.2.3.

When the server receives this message, it MUST validate the following parameter:

Verify that ppwszIscsiName is not NULL.

The server MUST set ppwszIscsiName to point to a string that contains the iSCSI name of the iSCSI
initiator on the system and return an HRESULT indicating failure or success.

%5bMS-ERREF%5d.pdf
%5bMS-ERREF%5d.pdf
%5bMS-ERREF%5d.pdf
%5bMS-ERREF%5d.pdf

188 / 368

[MS-VDS] — v20130722
 Virtual Disk Service (VDS) Protocol

 Copyright © 2013 Microsoft Corporation.

 Release: Monday, July 22, 2013

3.4.5.2.8.2 IVdsServiceIscsi::QueryInitiatorAdapters (Opnum 4)

The QueryInitiatorAdapters method returns an object that enumerates the iSCSI initiator
adapters of the initiator.

HRESULT QueryInitiatorAdapters(

 [out] IEnumVdsObject** ppEnum

);

ppEnum: A pointer to an IEnumVdsObject interface that, if the operation is successfully

completed, receives the IEnumVdsObject interface of the object that contains an
enumeration of initiator adapter objects on the server. Callers MUST release the interface
when they are done with it.

Return Values: The method MUST return zero or a non-error HRESULT (as specified in [MS-

ERREF]) to indicate success, or return an implementation-specific nonzero error code to
indicate failure. For the HRESULT values predefined by the Virtual Disk Service Remote

Protocol, see section 2.2.3.

When the server receives this message, it MUST validate the following parameter:

Verify that ppEnum is not NULL.

The server MUST point ppEnum to an IEnumVdsObject interface that contains the enumeration of

iSCSI initiator adapter objects in the list of cached storage management objects, as specified in
section 3.4.1.3, and return an HRESULT indicating failure or success.

3.4.5.2.8.3 IVdsServiceIscsi::SetInitiatorSharedSecret (Opnum 8)

The SetInitiatorSharedSecret method sets the initiator CHAP shared secret that is used for
mutual CHAP authentication when the initiator authenticates the target. For more information on
CHAP, see [MS-CHAP].<58>

HRESULT SetInitiatorSharedSecret(

 [in, unique] VDS_ISCSI_SHARED_SECRET* pInitiatorSharedSecret,

 [in] VDS_OBJECT_ID targetId

);

pInitiatorSharedSecret: A pointer to a VDS_ISCSI_SHARED_SECRET structure that contains

the CHAP shared secret that is used for mutual CHAP authentication when the initiator
authenticates the target. For more information on CHAP, see [MS-CHAP].

targetId: This parameter is reserved and not used by the protocol. Callers MUST pass in
GUID_NULL. Callers MUST pass in GUID_NULL.

Return Values: The method MUST return zero or a non-error HRESULT (as specified in [MS-

ERREF]) to indicate success, or return an implementation-specific nonzero error code to
indicate failure. For the HRESULT values predefined by the Virtual Disk Service Remote

Protocol, see section 2.2.3.

When the server receives this message, it MUST validate the following parameters:

Verify that pInitiatorSharedSecret is not NULL.

Verify that targetId is GUID_NULL.

%5bMS-ERREF%5d.pdf
%5bMS-ERREF%5d.pdf
%5bMS-CHAP%5d.pdf
%5bMS-ERREF%5d.pdf
%5bMS-ERREF%5d.pdf

189 / 368

[MS-VDS] — v20130722
 Virtual Disk Service (VDS) Protocol

 Copyright © 2013 Microsoft Corporation.

 Release: Monday, July 22, 2013

The server MUST set the CHAP shared secret that pInitiatorSharedSecret specifies in the iSCSI
initiator, and return an HRESULT indicating failure or success.

3.4.5.2.9 IVdsServiceSAN Methods

3.4.5.2.9.1 IVdsServiceSAN::GetSANPolicy (Opnum 3)

The GetSANPolicy method returns the current SAN policy setting.

HRESULT GetSANPolicy(

 [out] VDS_SAN_POLICY* pSanPolicy

);

pSanPolicy: A pointer to a VDS_SAN_POLICY (section 2.2.2.2.1.1) structure that, if the
operation is successfully completed, receives the SAN policy setting's current value.

Return Values: The method MUST return zero or a non-error HRESULT, as specified in [MS-
ERREF], to indicate success or return an implementation-specific nonzero error code to
indicate failure. For the HRESULT values predefined by the Virtual Disk Service Remote
Protocol, see section 2.2.3.

When the server receives this message, it MUST validate the following parameter:

Verify that pSanPolicy is not NULL.

The server MUST populate the VDS_SAN_POLICY structure that pSanPolicy references with the
current SAN policy setting's value, and return an HRESULT that indicates failure or success.

3.4.5.2.9.2 IVdsServiceSAN::SetSANPolicy (Opnum 4)

The SetSANPolicy method sets the SAN policy value.

HRESULT SetSANPolicy(

 [in] VDS_SAN_POLICY SanPolicy

);

SanPolicy: A VDS_SAN_POLICY (section 2.2.2.2.1.1) structure that, if the operation is

successfully completed, is used to set the new value for the SAN policy.

Return Values: The method MUST return zero or a non-error HRESULT, as specified in [MS-
ERREF], to indicate success or return an implementation-specific nonzero error code to
indicate failure. For the HRESULT values predefined by the Virtual Disk Service Remote
Protocol, see section 2.2.3.

When the server receives this message, it MUST set the SAN policy for the machine to the value

indicated in the VDS_SAN_POLICY structure that SanPolicy references, and return an HRESULT
that indicates failure or success.

3.4.5.2.10 IVdsServiceSw Methods

3.4.5.2.10.1 IVdsServiceSw::GetDiskObject (Opnum 3)

The GetDiskObject method returns the disk for the given PnP Device ID string.

%5bMS-ERREF%5d.pdf
%5bMS-ERREF%5d.pdf
%5bMS-ERREF%5d.pdf
%5bMS-ERREF%5d.pdf

190 / 368

[MS-VDS] — v20130722
 Virtual Disk Service (VDS) Protocol

 Copyright © 2013 Microsoft Corporation.

 Release: Monday, July 22, 2013

HRESULT GetDiskObject(

 [in, string] LPCWSTR* pwszDeviceID,

 [out] IUnknown** ppDiskUnk

);

pwszDeviceID: The null-terminated Unicode device path that the operating system uses to

identify the device for the disk.

ppDiskUnk: A pointer to a variable that receives an IUnknown interface pointer. Callers MUST

release the interface pointer when it is no longer needed by calling the IUnknown::Release
method.

Return Values: The method MUST return zero or a non-error HRESULT, as specified in [MS-
ERREF], to indicate success or return an implementation-specific nonzero error code to
indicate failure. For the HRESULT values predefined by the Virtual Disk Service Remote
Protocol, see section 2.2.3.

When the server receives this message, it MUST validate the following parameters:

Verify that pwszDeviceID is not NULL.

Verify that ppDiskUnk is not NULL.

The server MUST find the cached disk object that corresponds to the passed in unique PNP Device
ID string. If the disk object is found, the server MUST set the ppDiskUnk to point to it, and return
S_OK. If the corresponding disk object is not found, the server MUST return
VDS_E_OBJECT_NOT_FOUND.

3.4.5.2.11 IVdsHbaPort Methods

3.4.5.2.11.1 IVdsHbaPort::GetProperties (Opnum 3)

The GetProperties method retrieves the properties of the HBA port that the object exposing this

interface and method represents.

HRESULT GetProperties(

 [out] VDS_HBAPORT_PROP* pHbaPortProp

);

pHbaPortProp: A pointer to a VDS_HBAPORT_PROP structure that, if the operation is

successfully completed, receives the properties of the HBA port.

Return Values: The method MUST return zero or a non-error HRESULT (as specified in [MS-
ERREF]) to indicate success, or return an implementation-specific nonzero error code to
indicate failure. For the HRESULT values predefined by the Virtual Disk Service Remote
Protocol, see section 2.2.3.

When the server receives this message, it MUST validate the following parameter:

Verify that pHbaPortProp is not NULL.

The server MUST populate the VDS_HBAPORT_PROP structure that pHbaPortProp references with
the properties of the HBA port, and return an HRESULT that indicates failure or success. For more
information on the VDS_HBAPORT_PROP structure, see section 2.2.2.4.2.2.

%5bMS-ERREF%5d.pdf
%5bMS-ERREF%5d.pdf
%5bMS-ERREF%5d.pdf
%5bMS-ERREF%5d.pdf

191 / 368

[MS-VDS] — v20130722
 Virtual Disk Service (VDS) Protocol

 Copyright © 2013 Microsoft Corporation.

 Release: Monday, July 22, 2013

3.4.5.2.11.2 IVdsHbaPort::SetAllPathStatuses (Opnum 4)

The SetAllPathStatuses method sets the statuses of all paths that originate from the HBA port to a
specified status.

HRESULT SetAllPathStatuses(

 [in] VDS_PATH_STATUS status

);

status: The status, as defined by VDS_PATH_STATUS, to assign to the paths.

Return Values: The method MUST return zero or a non-error HRESULT (as specified in [MS-
ERREF]) to indicate success, or return an implementation-specific nonzero error code to
indicate failure.<59> For the HRESULT values predefined by the Virtual Disk Service Remote
Protocol, see section 2.2.3.

3.4.5.2.12 IVdsIscsiInitiatorAdapter Methods

3.4.5.2.12.1 IVdsIscsiInitiatorAdapter::GetProperties (Opnum 3)

The GetProperties method retrieves the properties of the initiator adapter that is represented by
the object exposing this interface and method.

HRESULT GetProperties(

 [out] VDS_ISCSI_INITIATOR_ADAPTER_PROP* pInitiatorAdapterProp

);

pInitiatorAdapterProp: A pointer to a VDS_ISCSI_INITIATOR_ADAPTER_PROP structure

that, if the operation is successfully completed, receives the properties of the initiator adapter.

Return Values: The method MUST return zero or a non-error HRESULT (as specified in [MS-

ERREF]) to indicate success, or return an implementation-specific nonzero error code to
indicate failure. For the HRESULT values predefined by the Virtual Disk Service Remote
Protocol, see section 2.2.3.

When the server receives this message, it MUST validate the following parameter:

Verify that pInitiatorAdapterProp is not NULL.

The server MUST populate the VDS_ISCSI_INITIATOR_ADAPTER_PROP structure that
pInitiatorAdapterProp references with the properties of the iSCSI initiator adapter and return an
HRESULT indicating failure or success. For information on the
VDS_ISCSI_INITIATOR_ADAPTER_PROP structure, see section 2.2.2.5.1.1.

3.4.5.2.12.2 IVdsIscsiInitiatorAdapter::QueryInitiatorPortals (Opnum 4)

The QueryInitiatorPortals method returns an object that enumerates the iSCSI initiator portals of

the initiator adapter.

HRESULT QueryInitiatorPortals(

 [out] IEnumVdsObject** ppEnum

);

%5bMS-ERREF%5d.pdf
%5bMS-ERREF%5d.pdf
%5bMS-ERREF%5d.pdf
%5bMS-ERREF%5d.pdf

192 / 368

[MS-VDS] — v20130722
 Virtual Disk Service (VDS) Protocol

 Copyright © 2013 Microsoft Corporation.

 Release: Monday, July 22, 2013

ppEnum: A pointer to an IEnumVdsObject interface that, if the operation is successfully

completed, receives the IEnumVdsObject interface of the object containing an enumeration

of initiator portal objects in the initiator adapter. Callers MUST release the interface when they
are done with it.

Return Values: The method MUST return zero or a nonerror HRESULT (as specified in [MS-
ERREF]) to indicate success, or return an implementation-specific nonzero error code to
indicate failure. For the HRESULT values predefined by the Virtual Disk Service Remote
Protocol, see section 2.2.3.

When the server receives this message, it MUST validate the parameters:

Verify that ppEnum is not NULL.

The server MUST point ppEnum to an IEnumVdsObject interface that contains the enumeration of
iSCSI initiator portal objects in the list of cached storage management objects that have their
initiator adapter pointer set to this initiator adapter object. The server MUST then return an
HRESULT indicating failure or success.

3.4.5.2.13 IVdsIscsiInitiatorPortal Methods

3.4.5.2.13.1 IVdsIscsiInitiatorPortal::GetProperties (Opnum 3)

The GetProperties method retrieves the properties of the initiator portal that the object exposing
this interface and method represents.

HRESULT GetProperties(

 [out] VDS_ISCSI_INITIATOR_PORTAL_PROP* pInitiatorPortalProp

);

pInitiatorPortalProp: A pointer to a VDS_ISCSI_INITIATOR_PORTAL_PROP structure that,
if the operation is successfully completed, receives the properties of the initiator portal.

Return Values: The method MUST return zero or a non-error HRESULT (as specified in [MS-
ERREF]) to indicate success, or return an implementation-specific nonzero error code to
indicate failure. For the HRESULT values predefined by the Virtual Disk Service Remote
Protocol, see section 2.2.3.

When the server receives this message, it MUST validate the following parameter:

Verify that pInitiatorPortalProp is not NULL.

The server MUST populate the VDS_ISCSI_INITIATOR_PORTAL_PROP structure that
pInitiatorPortalProp references with the properties of the iSCSI initiator portal and then return an
HRESULT indicating failure or success. For information on the VDS_ISCSI_INITIATOR_PORTAL_PROP
structure, see section 2.2.2.6.2.2.

3.4.5.2.13.2 IVdsIscsiInitiatorPortal::GetInitiatorAdapter (Opnum 4)

The GetInitiatorAdapter method returns the initiator adapter to the initiator portal it belongs to.

HRESULT GetInitiatorAdapter(

 [out] IVdsIscsiInitiatorAdapter** ppInitiatorAdapter

);

%5bMS-ERREF%5d.pdf
%5bMS-ERREF%5d.pdf
%5bMS-ERREF%5d.pdf
%5bMS-ERREF%5d.pdf

193 / 368

[MS-VDS] — v20130722
 Virtual Disk Service (VDS) Protocol

 Copyright © 2013 Microsoft Corporation.

 Release: Monday, July 22, 2013

ppInitiatorAdapter: A pointer to an IVdsIscsiInitiatorAdapter interface that, if the operation

is successfully completed, receives the IVdsIscsiInitiatorAdapter interface of the initiator

adapter object that the initiator portal belongs to. Callers MUST release the interface when
they are done with it.

Return Values: The method MUST return zero or a non-error HRESULT (as specified in [MS-
ERREF]) to indicate success, or return an implementation-specific nonzero error code to
indicate failure. For the HRESULT values predefined by the Virtual Disk Service Remote
Protocol, see section 2.2.3.

When the server receives this message, it MUST validate the following parameter:

Verify that ppInitiatorAdapter is not NULL.

The server MUST point ppInitiatorAdapter to an IVdsIscsiInitiatorAdapter interface of the
initiator adapter object that the initiator portal object's initiator adapter pointer refers to. The server
MUST then return an HRESULT indicating failure or success.

3.4.5.2.14 IVdsProvider Methods

3.4.5.2.14.1 IVdsProvider::GetProperties (Opnum 3)

The GetProperties method retrieves the properties of the provider that the object exposing this
interface and method represents.

HRESULT GetProperties(

 [out] VDS_PROVIDER_PROP* pProviderProp

);

pProviderProp: A pointer to a VDS_PROVIDER_PROP structure that, if the operation is

successfully completed, receives the properties of the provider.

Return Values: The method MUST return zero or a non-error HRESULT (as specified in [MS-

ERREF]) to indicate success, or return an implementation-specific nonzero error code to
indicate failure. For the HRESULT values predefined by the Virtual Disk Service Remote
Protocol, see section 2.2.3.

When the server receives this message, it MUST validate the following parameter:

Verify that pProviderProp is not NULL.

The server MUST populate the VDS_PROVIDER_PROP structure that pProviderProp references

with the properties of the provider. It MUST then return an HRESULT indicating failure or success.
For information on the VDS_PROVIDER_PROP structure, see section 2.2.2.7.2.1.

3.4.5.2.15 IVdsSwProvider Methods

3.4.5.2.15.1 IVdsSwProvider::QueryPacks (Opnum 3)

The QueryPacks method retrieves the provider disk packs.

HRESULT QueryPacks(

 [out] IEnumVdsObject** ppEnum

);

%5bMS-ERREF%5d.pdf
%5bMS-ERREF%5d.pdf
%5bMS-ERREF%5d.pdf
%5bMS-ERREF%5d.pdf

194 / 368

[MS-VDS] — v20130722
 Virtual Disk Service (VDS) Protocol

 Copyright © 2013 Microsoft Corporation.

 Release: Monday, July 22, 2013

ppEnum: A pointer to an IEnumVdsObject interface that, if the operation is successfully

completed, receives the IEnumVdsObject interface of the object containing an enumeration

of pack objects in the provider. Callers MUST release the interface when they are done with it.

Return Values: The method MUST return zero or a non-error HRESULT (as specified in [MS-

ERREF]) to indicate success, or return an implementation-specific nonzero error code to
indicate failure. For the HRESULT values predefined by the Virtual Disk Service Remote
Protocol, see section 2.2.3.

When the server receives this message, it MUST validate the following parameter:

Verify that ppEnum is not NULL.

The server MUST point ppEnum to an IEnumVdsObject interface that contains the enumeration of

pack objects in the list of cached storage management objects that have their provider pointer set
to this provider object. The server MUST then return an HRESULT indicating failure or success. For
information on enumeration objects, see section 3.4.1.3.

3.4.5.2.15.2 IVdsSwProvider::CreatePack (Opnum 4)

The CreatePack method creates a disk pack.

HRESULT CreatePack(

 [out] IVdsPack** ppPack

);

ppPack: A pointer to an IVdsPack interface that, if the operation is successfully completed,

receives the IVdsPack interface of the newly created disk pack. Callers MUST release the
interface when they are done with it.

Return Values: The method MUST return zero or a non-error HRESULT (as specified in [MS-
ERREF]) to indicate success, or return an implementation-specific nonzero error code to
indicate failure. For the HRESULT values predefined by the Virtual Disk Service Remote

Protocol, see section 2.2.3.

When the server receives this message, it MUST validate the following parameter:

Verify that ppPack is not NULL.

The server MUST perform the following:

Create a new pack object that implements the IVdsPack interface and assign it a unique

VDS_OBJECT_ID.

Set the provider pointer of the disk pack object to this provider object.

Add the pack object to the list of storage management objects.

For each callback object that is registered in the list of callback objects, call the

IVdsAdviseSink::OnNotify (Opnum 3) method of the callback object with a
VDS_NOTIFICATION structure that has the following attributes:

objectType member is VDS_NTT_PACK.

Pack member is a VDS_PACK_NOTIFICATION with the following attributes:

ulEvent is VDS_NF_PACK_ARRIVE.

%5bMS-ERREF%5d.pdf
%5bMS-ERREF%5d.pdf
%5bMS-ERREF%5d.pdf
%5bMS-ERREF%5d.pdf

195 / 368

[MS-VDS] — v20130722
 Virtual Disk Service (VDS) Protocol

 Copyright © 2013 Microsoft Corporation.

 Release: Monday, July 22, 2013

packId is the VDS_OBJECT_ID of the pack object that was added.

Set the pointer that ppPack references to the IVdsPack interface of the pack object.

Return an HRESULT indicating failure or success.

3.4.5.2.16 IVdsHwProvider Methods

3.4.5.2.16.1 IVdsHwProvider::QuerySubSystems (Opnum 3)

The QuerySubSystems method retrieves the subsystems that are managed by the provider.

HRESULT QuerySubSystems(

 [out] IEnumVdsObject** ppEnum

);

ppEnum: A pointer to an IEnumVdsObject interface. If the operation is successfully completed,

the pointer receives the IEnumVdsObject interface of the object, which contains an
enumeration of subsystem objects in the provider. Callers MUST release the interface when
they are finished with it.

Return Values: The method MUST return zero or a non-error HRESULT (as specified in [MS-
ERREF]) to indicate success, or return an implementation-specific nonzero error code to

indicate failure. For the HRESULT values predefined by the Virtual Disk Service Remote
Protocol, see section 2.2.3.

When the server receives this message, it MUST validate the following parameter:

Verify that ppEnum is not NULL.

The server MUST point ppEnum to an IEnumVdsObject interface that contains the enumeration of
subsystem objects in the list of cached storage management objects that have their provider pointer
set to this provider object. The server MUST then return an HRESULT to indicate failure or success.

For information on enumeration objects, see section 3.4.1.3.

3.4.5.2.17 IVdsVdProvider Methods

3.4.5.2.17.1 IVdsVdProvider::QueryVDisks (Opnum 3)

The QueryVDisks method returns a list of virtual disks that are managed by the provider.

HRESULT QueryVDisks(

 [out] IEnumVdsObject** ppEnum

);

ppEnum: A pointer to an IEnumVdsObject (section 3.1.1.1) interface. If the operation is

successfully completed, the pointer receives the IEnumVdsObject interface of the object,
which contains an enumeration of virtual disk objects in the provider. Callers MUST release the
interface when they are finished with it.

Return Values: The method MUST return zero or a nonerror HRESULT (as specified in [MS-
ERREF]) to indicate success, or return an implementation-specific nonzero error code to

%5bMS-ERREF%5d.pdf
%5bMS-ERREF%5d.pdf
%5bMS-DTYP%5d.pdf
%5bMS-ERREF%5d.pdf
%5bMS-ERREF%5d.pdf

196 / 368

[MS-VDS] — v20130722
 Virtual Disk Service (VDS) Protocol

 Copyright © 2013 Microsoft Corporation.

 Release: Monday, July 22, 2013

indicate failure. For the HRESULT values predefined by the Virtual Disk Service Remote
Protocol, see section 2.2.3.

When the server receives this message, it MUST validate the following parameter:

Verify that ppEnum is not NULL.

The server MUST point ppEnum to an IEnumVdsObject interface that contains the enumeration of
virtual disk objects in the list of cached storage management objects that have their provider
pointer set to this provider object. The server MUST then return an HRESULT to indicate failure or
success.

For information on enumeration objects, see section 2.2.2.18.1.

3.4.5.2.17.2 IVdsVdProvider::CreateVDisk (Opnum 4)

The CreateVDisk method defines a new virtual disk. This method creates a virtual disk file to be
used as the backing store for the virtual disk.

HRESULT CreateVDisk(

 [in] PVIRTUAL_STORAGE_TYPE VirtualDeviceType,

 [in, string] LPWSTR pPath,

 [in, string, unique] LPWSTR pStringSecurityDescriptor,

 [in] CREATE_VIRTUAL_DISK_FLAG Flags,

 [in] ULONG ProviderSpecificFlags,

 [in] ULONG Reserved,

 [in] PVDS_CREATE_VDISK_PARAMETERS pCreateDiskParameters,

 [in, out, unique] IVdsAsync** ppAsync

);

VirtualDeviceType: Pointer to a VIRTUAL_STORAGE_TYPE (section 2.2.1.3.23) structure
that specifies the type of virtual hard disk to be created.

pPath: A NULL-terminated wide-character string containing the name and directory path for the
backing file to be created for the virtual hard disk.

pStringSecurityDescriptor: A NULL-terminated wide-character string containing the security
descriptor to be applied to the virtual disk. Security descriptors MUST be in the Security
Descriptor Definition Language (see [MSDN-SDDLforDevObj]).<60> If this parameter is NULL,
the security descriptor in the caller's access token (see [MSFT-WSM/WEDWNK]) MUST be
used.

Flags: Bitmask of flags specifying how the virtual disk is to be created.

ProviderSpecificFlags: A bitmask of flags that are specific to the type of virtual hard disk that
is being surfaced. These flags are provider-specific.<61>

Reserved: The parameter is reserved for future use and MAY be zero.<62>

pCreateDiskParameters: Pointer to a VDS_CREATE_VDISK_PARAMETERS (section
2.2.2.18.2.1) structure that contains the virtual hard disk creation parameters.

ppAsync: A pointer to an IVdsAsync (section 3.1.3.1) interface that, if the operation is

successfully completed, receives the IVdsAsync interface to monitor and control this
operation. Callers MUST release the interface when they are done with it.

%5bMS-DTYP%5d.pdf
http://go.microsoft.com/fwlink/?LinkId=114214
http://go.microsoft.com/fwlink/?LinkId=208360

197 / 368

[MS-VDS] — v20130722
 Virtual Disk Service (VDS) Protocol

 Copyright © 2013 Microsoft Corporation.

 Release: Monday, July 22, 2013

Return Values: The method MUST return zero to indicate success, or return an implementation-
specific nonzero error code to indicate failure. For the HRESULT values predefined by the

Virtual Disk Service Remote Protocol, see section 2.2.3.

When the server receives this message, it MUST validate the following parameters:

Verify that VirtualDeviceType is not NULL.

Verify that pPath is not NULL.

Verify that pStringSecurityDescriptor is not NULL.

Verify that if there are multiple flags, the Flags correspond to a bitwise OR of one or more flags

specified in the CREATE_VIRTUAL_DISK_FLAG (section 2.2.2.18.1.1) enumeration;

otherwise it is just the one flag.

Verify that ppAsync is not NULL.

The server MUST perform the following:

Create a new async object implementing the IVdsAsync interface with an output type of

VDS_ASYNCOUT_CREATE_VDISK and set the pointer ppAsync references to the interface.

Return an HRESULT indicating failure or success. Any errors encountered up through this point

in processing the operation are returned in this HRESULT.

The server MUST then perform the following in sequence. Errors generated in this sequence of steps
are returned in the pHrResult parameter to the IVdsAsync::Wait or IVdsAsyncQueryStatus methods.

Pass the method parameters to the operating system to create the virtual disk.

Set the return code in the async object to an HRESULT indicating failure or success.

If the task completed successfully, set the percentage completed value in the async object to

100.

Set the signal state in the async object to TRUE.

At any point in the preceding sequence--before the percentage completed value in the async object
is 100--the server MUST update the percentage completed value if progress has been made.

3.4.5.2.17.3 IVdsVdProvider::AddVDisk (Opnum 5)

The AddVDisk method creates a virtual disk object representing the specified virtual disk and adds
it to the list of virtual disks managed by the provider. This method returns an IVdsVDisk (section
3.1.15.1) interface pointer to the specified virtual disk object.

HRESULT AddVDisk(

 [in] PVIRTUAL_STORAGE_TYPE VirtualDeviceType,

 [in, string] LPWSTR pPath,

 [in, out, unique] IVdsVDisk** ppVDisk

);

VirtualDeviceType: A pointer to a VIRTUAL_STORAGE_TYPE (section 2.2.1.3.23) structure
that specifies the type of virtual hard disk to open.

%5bMS-DTYP%5d.pdf

198 / 368

[MS-VDS] — v20130722
 Virtual Disk Service (VDS) Protocol

 Copyright © 2013 Microsoft Corporation.

 Release: Monday, July 22, 2013

pPath: A NULL-terminated wide-character string containing the fully qualified pathname for the
virtual disk's backing file.

ppVDisk: A pointer to a variable that, if the operation is successfully completed, receives an
IVdsVDisk interface pointer to the newly created virtual disk object. Callers MUST release the

interface pointer when it is no longer needed by calling the IUnknown::Release method.

Return Values: The method MUST return zero or a nonerror HRESULT (as specified in [MS-
ERREF]) to indicate success, or return an implementation-specific nonzero error code to
indicate failure. For the HRESULT values predefined by the Virtual Disk Service Remote
Protocol, see section 2.2.3.

When the server receives this message, it MUST validate the following parameters:

Verify that VirtualDeviceType is not NULL.

Verify that pPath is not NULL.

Verify that ppVDisk is not NULL.

The server MUST then perform the following in sequence:

Search its cached virtual disk objects for an object whose file name matches the input pPath. If

such an object does not exist, create a new virtual disk cache object that implements the
IVdsVDisk interface and assign it a unique VDS_OBJECT_ID (section 2.2.1.1.3).

Point ppVDisk to an IVdsVDisk interface of the virtual disk object found or created and return an

HRESULT indicating success.

3.4.5.2.17.4 IVdsVdProvider::GetDiskFromVDisk (Opnum 6)

The GetDiskFromVDisk method returns an IVdsDisk (section 3.1.12.1) interface pointer for a

virtual disk given an IVdsVDisk (section 3.1.15.1) interface pointer.

HRESULT GetDiskFromVDisk(

 [in] IVdsVDisk* pVDisk,

 [out] IVdsDisk** ppDisk

);

pVDisk: The IVdsVDisk interface pointer for the virtual disk.

ppDisk: Pointer to a variable that receives an IVdsDisk interface pointer. Callers MUST release
the interface pointer when it is no longer needed by calling the IUnknown::Release method.

Return Values: The method MUST return zero or a non-error HRESULT (as specified in [MS-
ERREF]) to indicate success, or return an implementation-specific nonzero error code to

indicate failure. For the HRESULT values predefined by the Virtual Disk Service Remote
Protocol, see section 2.2.3.

When the server receives this message, it MUST validate the following parameters:

Verify that pVDisk is not NULL.

Verify that ppDisk is not NULL.

The server MUST find the cached disk object that corresponds to the passed in virtual disk. If the
disk object is found, the server MUST set ppDisk to point to it, and return an S_OK. If the

%5bMS-ERREF%5d.pdf
%5bMS-ERREF%5d.pdf
%5bMS-ERREF%5d.pdf
%5bMS-ERREF%5d.pdf

199 / 368

[MS-VDS] — v20130722
 Virtual Disk Service (VDS) Protocol

 Copyright © 2013 Microsoft Corporation.

 Release: Monday, July 22, 2013

corresponding disk object is not found, the server MUST return the HRESULT error
VDS_E_OBJECT_NOT_FOUND. Note that the virtual disk MUST be attached.

3.4.5.2.17.5 IVdsVdProvider::GetVDiskFromDisk (Opnum 7)

The GetVDiskFromDisk method returns an IVdsVDisk (section 3.1.15.1) interface pointer for
the virtual disk given an IVdsDisk (section 3.1.12.1) interface pointer.

HRESULT GetVDiskFromDisk(

 [in] IVdsDisk* pDisk,

 [out] IVdsVDisk** ppVDisk

);

pDisk: The IVdsDisk interface pointer to a disk.

ppVDisk: Pointer to a variable that receives an IVdsVDisk interface pointer. Callers MUST
release the interface pointer when it is no longer needed by calling the IUnknown::Release

method.

Return Values: The method MUST return zero or a non-error HRESULT (as specified in [MS-
ERREF]) to indicate success, or return an implementation-specific nonzero error code to
indicate failure. For the HRESULT values predefined by the Virtual Disk Service Remote
Protocol, see section 2.2.3.

When the server receives this message, it MUST validate the following parameters:

Verify that pDisk is not NULL.

Verify that ppVDisk is not NULL.

The server MUST find the cached virtual disk object that corresponds to the passed in disk. If the
virtual disk object is found, the server MUST set ppVDisk to point to it and return an S_OK. If the
corresponding disk object is not found, the server MUST return the HRESULT error

VDS_E_OBJECT_NOT_FOUND. Note that the virtual disk MUST be attached.

3.4.5.2.18 IVdsSubSystemImportTarget Methods

3.4.5.2.18.1 IVdsSubSystemImportTarget::GetImportTarget (Opnum 3)

The GetImportTarget method retrieves the name of the import target to associate with the LUNs
being imported on the subsystem.

HRESULT GetImportTarget(

 [out, string] LPWSTR* ppwszIscsiName

);

ppwszIscsiName: A pointer to a string that contains the name of the import target of the

subsystem. Callers MUST free the memory that is allocated for the string when they are
finished with it.

Return Values: The method MUST return zero or a non-error HRESULT (as specified in [MS-
ERREF]) to indicate success, or return an implementation-specific nonzero error code to
indicate failure. For the HRESULT values predefined by the Virtual Disk Service Remote
Protocol, see section 2.2.3.

%5bMS-ERREF%5d.pdf
%5bMS-ERREF%5d.pdf
%5bMS-ERREF%5d.pdf
%5bMS-ERREF%5d.pdf

200 / 368

[MS-VDS] — v20130722
 Virtual Disk Service (VDS) Protocol

 Copyright © 2013 Microsoft Corporation.

 Release: Monday, July 22, 2013

When the server receives this message, it MUST validate the following parameter:

Verify that ppwszIscsiName is not NULL.

The server MUST point ppwszIscsiName to a string that contains the name of the import target of

the subsystem. The server MUST then return an HRESULT to indicate failure or success.

3.4.5.2.18.2 IVdsSubSystemImportTarget::SetImportTarget (Opnum 4)

The SetImportTarget method sets the name of the import target to associate with the LUNs being
imported on the subsystem.

HRESULT SetImportTarget(

 [in, unique, string] LPWSTR pwszIscsiName

);

pwszIscsiName: A string that contains the name of the import target of the subsystem.

Return Values: The method MUST return zero or a non-error HRESULT (as specified in [MS-
ERREF]) to indicate success, or return an implementation-specific nonzero error code to
indicate failure. For the HRESULT values predefined by the Virtual Disk Service Remote
Protocol, see section 2.2.3.

When the server receives this message, it MUST validate the following parameter:

Verify that pwszIscsiName is not NULL.

The server MUST set the name of the import target of the subsystem to the string that is specified
by ppwszIscsiName. The server MUST then return an HRESULT to indicate failure or success.

3.4.5.2.19 IVdsPack Methods

3.4.5.2.19.1 IVdsPack::GetProperties (Opnum 3)

The GetProperties method retrieves the properties of the disk pack that the object exposing this

interface and method represents.

HRESULT GetProperties(

 [out] VDS_PACK_PROP* pPackProp

);

pPackProp: A pointer to a VDS_PACK_PROP structure that, if the operation is successfully

completed, receives the properties of the pack.

Return Values: The method MUST return zero or a non-error HRESULT (as specified in [MS-
ERREF]) to indicate success, or return an implementation-specific nonzero error code to

indicate failure. For the HRESULT values predefined by the Virtual Disk Service Remote

Protocol, see section 2.2.3.

When the server receives this message, it MUST validate the following parameter:

Verify that pPackProp is not NULL.

%5bMS-DTYP%5d.pdf
%5bMS-ERREF%5d.pdf
%5bMS-ERREF%5d.pdf
%5bMS-DTYP%5d.pdf
%5bMS-ERREF%5d.pdf
%5bMS-ERREF%5d.pdf

201 / 368

[MS-VDS] — v20130722
 Virtual Disk Service (VDS) Protocol

 Copyright © 2013 Microsoft Corporation.

 Release: Monday, July 22, 2013

The server MUST populate the VDS_PACK_PROP structure that pPackProp references with the
properties of the pack. It MUST then return an HRESULT indicating failure or success. For

information on the VDS_PACK_PROP structure, see section 2.2.2.8.2.1.

3.4.5.2.19.2 IVdsPack::GetProvider (Opnum 4)

The GetProvider method retrieves the provider that the disk pack belongs to.

HRESULT GetProvider(

 [out] IVdsProvider** ppProvider

);

ppProvider: A pointer to an IVdsProvider interface that, if the operation is successfully

completed, receives the IVdsProvider interface of the provider object that the pack belongs
to. Callers MUST release the interface when they are done with it.

Return Values: The method MUST return zero or a non-error HRESULT (as specified in [MS-

ERREF]) to indicate success, or return an implementation-specific nonzero error code to
indicate failure. For the HRESULT values predefined by the Virtual Disk Service Remote
Protocol, see section 2.2.3.

When the server receives this message, it MUST validate the following parameter:

Verify that ppProvider is not NULL.

The server MUST point ppProvider to an IVdsProvider interface of the provider object that the pack
object's provider pointer refers to. The server MUST then return an HRESULT indicating failure or
success.

3.4.5.2.19.3 IVdsPack::QueryVolumes (Opnum 5)

The QueryVolumes method retrieves the volumes of a disk pack.

HRESULT QueryVolumes(

 [out] IEnumVdsObject** ppEnum

);

ppEnum: A pointer to an IEnumVdsObject interface that, if the operation is successfully

completed, receives the IEnumVdsObject interface of the object that contains an
enumeration of volume objects in the pack. Callers MUST release the interface when they are
done with it.

Return Values: The method MUST return zero or a non-error HRESULT (as specified in [MS-
ERREF]) to indicate success, or return an implementation-specific nonzero error code to

indicate failure. For the HRESULT values predefined by the Virtual Disk Service Remote
Protocol, see section 2.2.3.

When the server receives this message, it MUST validate the following parameter:

Verify that ppEnum is not NULL.

The server MUST point ppEnum to an IEnumVdsObject interface that contains the enumeration of
volume objects in the list of cached storage management objects that have their pack pointer set to

this pack object. The server MUST then return an HRESULT indicating failure or success. For
information on enumeration objects, see section 3.4.1.3.

%5bMS-ERREF%5d.pdf
%5bMS-ERREF%5d.pdf
%5bMS-ERREF%5d.pdf
%5bMS-ERREF%5d.pdf

202 / 368

[MS-VDS] — v20130722
 Virtual Disk Service (VDS) Protocol

 Copyright © 2013 Microsoft Corporation.

 Release: Monday, July 22, 2013

3.4.5.2.19.4 IVdsPack::QueryDisks (Opnum 6)

The QueryDisks method retrieves the disks of a disk pack.

HRESULT QueryDisks(

 [out] IEnumVdsObject** ppEnum

);

ppEnum: A pointer to an IEnumVdsObject interface that, if the operation is successfully

completed, receives the IEnumVdsObject interface of the object containing an enumeration
of disk objects in the pack. Callers MUST release the interface when they are done with it.

Return Values: The method MUST return zero or a non-error HRESULT (as specified in [MS-
ERREF]) to indicate success, or return an implementation-specific nonzero error code to
indicate failure. For the HRESULT values predefined by the Virtual Disk Service Remote

Protocol, see section 2.2.3.

When the server receives this message, it MUST validate the following parameter:

Verify that ppEnum is not NULL.

The server MUST point ppEnum to an IEnumVdsObject interface that contains the enumeration of
disk objects in the list of cached storage management objects that have their pack pointer set to
this pack object. The server MUST then return an HRESULT indicating failure or success. For

information on enumeration, see section 3.4.1.3.

3.4.5.2.19.5 IVdsPack::CreateVolume (Opnum 7)

The CreateVolume method creates a volume in a disk pack.

HRESULT CreateVolume(

 [in] VDS_VOLUME_TYPE type,

 [in, size_is(lNumberOfDisks)] VDS_INPUT_DISK* pInputDiskArray,

 [in] long lNumberOfDisks,

 [in] unsigned long ulStripeSize,

 [out] IVdsAsync** ppAsync

);

type: A value from the VDS_VOLUME_TYPE enumeration that indicates the type of volume to

create.

pInputDiskArray: An array of VDS_INPUT_DISK structures that indicate the disks on which to
create the volume.<63>

lNumberOfDisks: The number of elements in pInputDiskArray.

ulStripeSize: The stripe size of the new volume.<64>

ppAsync: A pointer to an IVdsAsync interface that, if the operation is successfully completed,
receives the IVdsAsync interface to monitor and control this operation. Callers MUST release
the interface when they are done with it. If the IVdsAsync::Wait (Opnum 4) method is
called on the interface, the interfaces returned in the VDS_ASYNC_OUTPUT structure MUST
be released as well. For information on handling asynchronous tasks, see section 3.4.5.1.9.

%5bMS-ERREF%5d.pdf
%5bMS-ERREF%5d.pdf

203 / 368

[MS-VDS] — v20130722
 Virtual Disk Service (VDS) Protocol

 Copyright © 2013 Microsoft Corporation.

 Release: Monday, July 22, 2013

Return Values: The method MUST return zero or a non-error HRESULT (as specified in [MS-
ERREF]) to indicate success, or return an implementation-specific nonzero error code to

indicate failure. For the HRESULT values predefined by the Virtual Disk Service Remote
Protocol, see section 2.2.3.

When the server receives this message, it MUST validate the following parameters:

Verify that pInputDiskArray is not NULL.

Verify that the specified disk(s) belong to the given pack.

Verify that ppAsync is not NULL.

The server MUST perform the following:

Verify that the volume size that is specified using the array of VDS_INPUT_DISK structures is

greater than zero. The requested size of the volume is equal to the sum of the ullSize members
of each element in the array of VDS_INPUT_DISK structures. If the volume size is not greater

than zero, then the server MUST return VDS_E_EXTENT_SIZE_LESS_THAN_MIN.

For each VDS_INPUT_DISK structure in the pInputDiskArray parameter, verify that the value of

the ullSize field does not exceed the amount of free space on the given disk. If the volume is

being created within a dynamic disk pack and if this requirement is not met, then the server
MUST return VDS_E_EXTENT_EXCEEDS_DISK_FREE_SPACE. If the volume is being created in a
basic disk pack and if this requirement is not being met, then the server MUST return
VDS_E_NOT_ENOUGH_SPACE.

Create a new async object implementing the IVdsAsync interface with an output type of

VDS_ASYNCOUT_CREATEVOLUME and set the pointer that ppAsync references to the interface.

Return an HRESULT indicating failure or success. Any errors encountered up until this point in

processing the CreateVolume operation are returned in this HRESULT.

The server MUST then perform the following in sequence. Errors generated in this sequence of steps

are returned in the pHrResult parameter to the IVdsAsync::Wait or IVdsAsyncQueryStatus
methods.

Create a new volume that uses the parameters that are specified for this method.

If the volume creation resulted in the renumbering of existing partitions on a boot disk, the

server MUST update the boot configuration file with the new partition numbering.

Create a new volume object that corresponds to the new volume, implement the IVdsVolume

interface, and assign it a unique VDS_OBJECT_ID.

Set the volume object's pack pointer to this pack object.

Create new volume plex objects that correspond to the new volume plexes, implement the

IVdsVolumePlex interface, and assign it a unique VDS_OBJECT_ID.

Set the volume plex object's volume pointer to this volume object.

Add the volume plex object to the list of storage management objects.

Add the volume object to the list of storage management objects.

Set the task-specific return values in the async object to return the values that are associated

with VDS_ASYNCOUT_CREATEVOLUME. See section 3.4.5.1.9.

%5bMS-ERREF%5d.pdf
%5bMS-ERREF%5d.pdf
%5bMS-GLOS%5d.pdf

204 / 368

[MS-VDS] — v20130722
 Virtual Disk Service (VDS) Protocol

 Copyright © 2013 Microsoft Corporation.

 Release: Monday, July 22, 2013

Set the return code in the async object to an HRESULT indicating failure or success.

If the server tried to update the boot configuration file but failed, the return code MUST be set

to VDS_S_UPDATE_BOOTFILE_FAILED (HRESULT of 0x80042434).

If the task completed successfully, set the percentage completed value in the async object to

100.

Set the signal state in the async object to TRUE.

For each callback object registered in the list of callback objects, call the callback object's

IVdsAdviseSink::OnNotify (Opnum 3) method with a VDS_NOTIFICATION structure with

the following attributes:

objectType member is VDS_NTT_VOLUME.

Volume member is a VDS_VOLUME_NOTIFICATION with the following attributes:

ulEvent is VDS_NF_VOLUME_ARRIVE.

volumeId is the VDS_OBJECT_ID of the volume object that was added.

plexId SHOULD be GUID_NULL, but it is not relevant when ulEvent is

VDS_NF_VOLUME_ARRIVE.

ulPercentCompleted ranges from 0-100; however, it is not relevant when ulEvent is

VDS_NF_VOLUME_ARRIVE.

The server MUST update the percentage completed value periodically during the preceding

sequence. How often the percentage completed is updated, and at what point in the sequence, is
implementation-specific.

3.4.5.2.19.6 IVdsPack::AddDisk (Opnum 8)

This method initializes a disk that has no partitioning format defined, and then adds the disk to the
disk pack. AddDisk cannot redefine the partitioning format on a disk.<65>

HRESULT AddDisk(

 [in] VDS_OBJECT_ID DiskId,

 [in] VDS_PARTITION_STYLE PartitionStyle,

 [in] long bAsHotSpare

);

DiskId: The VDS object ID of the disk object.

PartitionStyle: A value from the VDS_PARTITION_STYLE enumeration that indicates the

partition format.

bAsHotSpare: The Virtual Disk Service Remote Protocol does not support this parameter; callers
MUST set it to FALSE.

Return Values: The method MUST return zero or a non-error HRESULT (as specified in [MS-
ERREF]) to indicate success, or return an implementation-specific nonzero error code to
indicate failure. For the HRESULT values predefined by the Virtual Disk Service Remote

Protocol, see section 2.2.3.

When the server receives this message, it MUST validate the following parameters:

%5bMS-ERREF%5d.pdf
%5bMS-ERREF%5d.pdf

205 / 368

[MS-VDS] — v20130722
 Virtual Disk Service (VDS) Protocol

 Copyright © 2013 Microsoft Corporation.

 Release: Monday, July 22, 2013

Verify that DiskId belongs to a disk object in the list of storage management objects

corresponding to an unallocated disk.

Verify that PartitionStyle is a valid partitioning format.

The server MUST add the disk having a VDS_OBJECT_ID specified by DiskId to this pack, initialize
the partitioning format of the disk based on the value of the PartitionStyle parameter, set the disk
object's pack pointer to this pack object, and return an HRESULT indicating failure or success.

3.4.5.2.19.7 IVdsPack::MigrateDisks (Opnum 9)

The MigrateDisks method migrates a set of disks from one pack to another pack.<66>

HRESULT MigrateDisks(

 [in, size_is(lNumberOfDisks)] VDS_OBJECT_ID* pDiskArray,

 [in] long lNumberOfDisks,

 [in] VDS_OBJECT_ID TargetPack,

 [in] long bForce,

 [in] long bQueryOnly,

 [out, size_is(lNumberOfDisks)] HRESULT* pResults,

 [out] long* pbRebootNeeded

);

pDiskArray: A pointer to an array of VDS object IDs--one for each disk object that corresponds

to the disks to migrate.

lNumberOfDisks: The number of disks specified in pDiskArray.

TargetPack: The VDS object ID of the pack object.

bForce: A Boolean that determines whether disk migration is forced. When the client makes the

call to migrate disks, the provider(s) that owns the disks is notified by the server that the
disks are about to be migrated. The provider(s) can respond to this notification with an error.

If this parameter is set to a nonzero value, the migration operation will continue. If the
parameter is set to zero and the provider(s) owning the disks responds to the notification with
an error, the call to migrate the disks will fail.

bQueryOnly: A Boolean that determines whether the disk migration will actually happen.

pResults: A pointer to an array of HRESULT values that, if the operation is successfully

completed, receives the HRESULTs returned by each disk migration request. There MUST be
one HRESULT value in the array for each disk in pDiskArray. If any of the disks fail to migrate
properly, the specific error code for that failure is received in the corresponding entry in
pResults.

pbRebootNeeded: A pointer to a Boolean that, if the operation is successfully completed,
receives an indication of whether the user must reboot the remote machine in order to

complete the migration process.

Return Values: The method MUST return zero or a non-error HRESULT (as specified in [MS-
ERREF]) to indicate success, or return an implementation-specific nonzero error code to
indicate failure. For the HRESULT values predefined by the Virtual Disk Service Remote
Protocol, see section 2.2.3.

%5bMS-ERREF%5d.pdf
%5bMS-ERREF%5d.pdf

206 / 368

[MS-VDS] — v20130722
 Virtual Disk Service (VDS) Protocol

 Copyright © 2013 Microsoft Corporation.

 Release: Monday, July 22, 2013

The HRESULTs in the array that pResults references return zero to indicate success or an
implementation-specific nonzero error code if the migration operation on the associated disk

fails.

ERROR_SUCCESS (0x00000000)

When the server receives this message, it MUST validate the following parameters:

Verify that pDiskArray is not NULL.

Verify that pResults is not NULL.

Verify that pbRebootNeeded is not NULL.

The server MUST perform the following:

If this method is called against a dynamic disk which contains volume extents, and the target

pack is a basic disk pack, then this method MUST return VDS_E_DISK_NOT_EMPTY.<67>

For each VDS object identifier in the specified pDiskArray, migrate the disk that corresponds to

the identifier to this pack. Set the status of each migrate operation to the corresponding value in
the array that pResults specifies.

For each successfully migrated disk, set the disk object's pack pointer to this pack object.

If the disk migrations require a restart to take full effect, set the value of the Boolean that

pbRebootNeeded references to TRUE; otherwise, FALSE.

Return an HRESULT indicating failure or success; also return an HRESULT for each disk that is

involved in the migration by using the pResults output parameter.

The server MAY perform the following:

For each callback object that is registered in the list of callback objects, call the callback object's

IVdsAdviseSink::OnNotify (section 3.3.4.3.1) method by using a VDS_NOTIFICATION
(section 2.2.1.3.9) structure that has the following attributes:

objectType member is the value VDS_NTT_PACK.

Pack member is a VDS_PACK_NOTIFICATION (section 2.2.1.3.2) structure that has the

following attributes:

ulEvent is the value VDS_NF_PACK_MODIFY.

packId is the VDS_OBJECT_ID (section 2.2.1.1.3) value of this pack object.

3.4.5.2.19.8 IVdsPack::RemoveMissingDisk (Opnum 11)

The IVdsPack::RemoveMissingDisk method removes the specified missing disk from a disk pack.
This method only applies to dynamic disks. There must be at least one dynamic disk present in

order to enumerate missing disks.

HRESULT RemoveMissingDisk(

 [in] VDS_OBJECT_ID DiskId

);

207 / 368

[MS-VDS] — v20130722
 Virtual Disk Service (VDS) Protocol

 Copyright © 2013 Microsoft Corporation.

 Release: Monday, July 22, 2013

DiskId: The VDS object ID of the disk object to remove.

Return Values: The method MUST return zero or a non-error HRESULT (as specified in [MS-
ERREF]) to indicate success, or return an implementation-specific nonzero error code to
indicate failure. For the HRESULT values predefined by the Virtual Disk Service Remote

Protocol, see section 2.2.3.

When the server receives this message, it MUST validate the parameters:

Verify that DiskId belongs to a disk object in the list of storage management objects that

correspond to a disk that is missing. The missing disk has its pack pointer set to this pack object.

If this method is called against a disk which contains data volume extents, then this method

MUST return VDS_E_DISK_NOT_EMPTY.

For each callback object that is registered in the list of callback objects, call the callback object's
IVdsAdviseSink::OnNotify (section 3.3.4.3.1) method by using a VDS_NOTIFICATION
(section 2.2.1.3.9) structure that has the following attributes:

objectType member is the value VDS_NTT_PACK.

Pack member is a VDS_PACK_NOTIFICATION (section 2.2.1.3.2) structure that has the

following attributes:

ulEvent is the value VDS_NF_PACK_MODIFY.

packId is the VDS_OBJECT_ID (section 2.2.1.1.3) value of this pack object.

The server MUST remove the disk having a VDS_OBJECT_ID that is specified by DiskId to this
pack, remove the corresponding disk object from the list of storage management objects, and
return an HRESULT indicating failure or success.<68>

3.4.5.2.19.9 IVdsPack::Recover (Opnum 12)

The Recover method restores a disk pack to a healthy state. This method is not supported on basic
disk packs or the INVALID dynamic disk pack (the value of VDS_PACK_PROP::pwszName is
INVALID for this pack). The INVALID dynamic disk pack contains dynamic disks that have failed to
be joined to the owning pack because there are errors or data corruption has occurred.

HRESULT Recover(

 [out] IVdsAsync** ppAsync

);

ppAsync: A pointer to an IVdsAsync interface that, if the operation is successfully completed,

receives the IVdsAsync interface to monitor and control this operation. Callers MUST release
the interface when they are done with it.

Return Values: The method MUST return zero or a non-error HRESULT (as specified in [MS-
ERREF]) to indicate success, or return an implementation-specific nonzero error code to

indicate failure. For the HRESULT values predefined by the Virtual Disk Service Remote

Protocol, see section 2.2.3.

When the server receives this message, it MUST validate the following parameter:

Verify that ppAsync is not NULL.

%5bMS-ERREF%5d.pdf
%5bMS-ERREF%5d.pdf
%5bMS-ERREF%5d.pdf
%5bMS-ERREF%5d.pdf

208 / 368

[MS-VDS] — v20130722
 Virtual Disk Service (VDS) Protocol

 Copyright © 2013 Microsoft Corporation.

 Release: Monday, July 22, 2013

The server MUST perform the following:

Create a new async object implementing the IVdsAsync interface with an output type of

VDS_ASYNCOUT_RECOVERPACK and set the pointer ppAsync references to the interface.

Return an HRESULT indicating failure or success. Any errors encountered up through this point in

processing the operation are returned in this HRESULT.

The server MUST then perform the following in sequence. Errors generated in this sequence of steps
are returned in the pHrResult parameter to the IVdsAsync::Wait or IVdsAsyncQueryStatus methods.

For all disks in the pack, attempt to bring the disk back to a healthy state. For all disks in the

invalid pack, attempt to bring the disk back to a healthy state and rejoin it to its proper pack.

Attempt to resync any mirrored volumes, and regenerate any RAID-5 volumes that are in the
online pack.

Set the return code in the async object to an HRESULT indicating failure or success.

If the task completed successfully, set the percentage completed value in the async object to

100.

Set the signal state in the async object to TRUE.

If changes are made to the pack as a result of the call to recover, then for each callback object

that is registered in the list of callback objects, call the callback object's
IVdsAdviseSink::OnNotify (section 3.3.4.3.1) method by using a VDS_NOTIFICATION
(section 2.2.1.3.9) structure that has the following attributes:

objectType member is the value VDS_NTT_PACK.

Pack member is a VDS_PACK_NOTIFICATION (section 2.2.1.3.2) structure that has the

following attributes:

ulEvent is the value VDS_NF_PACK_MODIFY.

packId is the VDS_OBJECT_ID (section 2.2.1.1.3) value of this pack object.

If the method call results in RAID-5 or mirrored volumes being regenerated or resynchronized,

the server MUST send progress notifications to the client as follows.

For each callback object that is registered in the list of callback objects, call the callback object's
IVdsAdviseSink::OnNotify method by using a VDS_NOTIFICATION structure that has the
following attributes:

objectType member is VDS_NTT_VOLUME.

Volume member is a VDS_VOLUME_NOTIFICATION (section 2.2.1.3.4) structure that

has the following attributes:

ulEvent is the value VDS_NF_VOLUME_REBUILDING_PROGRESS.

volumeId is the VDS_OBJECT_ID value of this volume object being regenerated or

resynchronized.

plexId is the VDS_OBJECT_ID value of the plex object being regenerated or

resynchronized.

209 / 368

[MS-VDS] — v20130722
 Virtual Disk Service (VDS) Protocol

 Copyright © 2013 Microsoft Corporation.

 Release: Monday, July 22, 2013

ulPercentCompleted is a number between 0 and 100 indicating regeneration or

resynchronization progress.

The server MUST update the percentage completed value periodically during the preceding

sequence. How often the percentage completed is updated, and at what point in the sequence, is
implementation-specific.

3.4.5.2.20 IVdsPack2 Methods

3.4.5.2.20.1 IVdsPack2::CreateVolume2 (Opnum 3)

The CreateVolume2 method creates a volume in a disk pack with an optional alignment parameter.

HRESULT CreateVolume2(

 [in] VDS_VOLUME_TYPE type,

 [in, size_is(lNumberOfDisks)] VDS_INPUT_DISK* pInputDiskArray,

 [in] long lNumberOfDisks,

 [in] unsigned long ulStripeSize,

 [in] unsigned long ulAlign,

 [out] IVdsAsync** ppAsync

);

type: A value from the VDS_VOLUME_TYPE enumeration that indicates the type of volume to

create.

pInputDiskArray: An array of VDS_INPUT_DISK structures that indicate the disks on which to
create the volume.<69>

lNumberOfDisks: The number of elements in pInputDiskArray.

ulStripeSize: The stripe size, in bytes, of the new volume.<70>

ulAlign: The number of bytes for the volume alignment. If zero is specified, the server

determines the alignment value based on the size of the disk on which the volume is
created.<71>

ppAsync: A pointer to an IVdsAsync interface that, if the operation is successfully completed,

receives the IVdsAsync interface to monitor and control this operation. Callers MUST release
the interface when they are done with it. If the IVdsAsync::Wait (Opnum 4) method is
called on the interface, the interfaces returned in the VDS_ASYNC_OUTPUT structure MUST
be released as well. For more information on handling asynchronous tasks, see section
3.4.5.1.9.

Return Values: The method MUST return zero or a non-error HRESULT (as specified in [MS-
ERREF]) to indicate success, or return an implementation-specific nonzero error code to

indicate failure. For the HRESULT values predefined by the Virtual Disk Service Remote
Protocol, see section 2.2.3.

IVdsPack2::CreateVolume2 has the same sequencing rules as IVdsPack::CreateVolume

(Opnum 7), as specified in section 3.4.5.2.19.5.

%5bMS-ERREF%5d.pdf
%5bMS-ERREF%5d.pdf

210 / 368

[MS-VDS] — v20130722
 Virtual Disk Service (VDS) Protocol

 Copyright © 2013 Microsoft Corporation.

 Release: Monday, July 22, 2013

3.4.5.2.21 IVdsDisk Methods

3.4.5.2.21.1 IVdsDisk::GetProperties (Opnum 3)

The GetProperties method retrieves the properties of the disk that the object exposing this
interface and method represents.

HRESULT GetProperties(

 [out] VDS_DISK_PROP* pDiskProperties

);

pDiskProperties: A pointer to a VDS_DISK_PROP structure that, if the operation is

successfully completed, receives the properties of the disk.

Return Values: The method MUST return zero or a non-error HRESULT (as specified in [MS-

ERREF]) to indicate success, or return an implementation-specific nonzero error code to
indicate failure. For the HRESULT values predefined by the Virtual Disk Service Remote

Protocol, see section 2.2.3.

When the server receives this message, it MUST validate the following parameter:

Verify that pDiskProperties is not NULL.

The server MUST populate the VDS_DISK_PROP structure that pDiskProperties references with

the properties of the disk; it MUST then return an HRESULT indicating failure or success. For
information on VDS_DISK_PROP, see section 2.2.2.9.1.1.

3.4.5.2.21.2 IVdsDisk::GetPack (Opnum 4)

The GetPack method retrieves the disk pack that the disk belongs to.

HRESULT GetPack(

 [out] IVdsPack** ppPack

);

ppPack: A pointer to an IVdsPack interface that, if the operation is successfully completed,

receives the IVdsPack interface of the pack object that the disk belongs to. Callers MUST
release the interface when they are done with it.

Return Values: The method MUST return zero or a non-error HRESULT (as specified in [MS-
ERREF]) to indicate success, or return an implementation-specific nonzero error code to
indicate failure. For the HRESULT values predefined by the Virtual Disk Service Remote
Protocol, see section 2.2.3.

When the server receives this message, it MUST validate the following parameter:

Verify that ppPack is not NULL.

The server MUST point ppPack to an IVdsPack interface of the pack object that the disk object's
pack pointer refers to, and then return an HRESULT indicating failure or success.

If the disk has no partition format (it is not formatted as either MBR or GPT), then there is no
associated pack and this method MUST return VDS_E_DISK_NOT_INITIALIZED.

%5bMS-ERREF%5d.pdf
%5bMS-ERREF%5d.pdf
%5bMS-ERREF%5d.pdf
%5bMS-ERREF%5d.pdf

211 / 368

[MS-VDS] — v20130722
 Virtual Disk Service (VDS) Protocol

 Copyright © 2013 Microsoft Corporation.

 Release: Monday, July 22, 2013

3.4.5.2.21.3 IVdsDisk::GetIdentificationData (Opnum 5)

The GetIdentificationData method retrieves information that uniquely identifies a disk.

HRESULT GetIdentificationData(

 [out] VDS_LUN_INFORMATION* pLunInfo

);

pLunInfo: A pointer to a VDS_LUN_INFORMATION structure that, if the operation is

successfully completed, receives the LUN information for the disk.

Return Values: The method MUST return zero or a non-error HRESULT (as specified in [MS-
ERREF]) to indicate success, or return an implementation-specific nonzero error code to
indicate failure. For the HRESULT values predefined by the Virtual Disk Service Remote
Protocol, see section 2.2.3.

When the server receives this message, it MUST validate the following parameter:

Verify that pLunInfo is not NULL.

The server MUST populate the VDS_LUN_INFORMATION structure that pLunInfo references with
the LUN information that uniquely identifies the disk; it MUST then return an HRESULT indicating
failure or success. For information on VDS_LUN_INFORMATION, see section 2.2.1.3.16.

3.4.5.2.21.4 IVdsDisk::QueryExtents (Opnum 6)

The QueryExtents method enumerates a disk's extents.

HRESULT QueryExtents(

 [out, size_is(,*plNumberOfExtents)]

 VDS_DISK_EXTENT** ppExtentArray,

 [out] long* plNumberOfExtents

);

ppExtentArray: A pointer to an array of VDS_DISK_EXTENT structures that, if the operation is

successfully completed, receives the array of disk extent properties.

plNumberOfExtents: A pointer to a variable that, if the operation is successfully completed,
receives the total number of elements in ppExtentArray.

Return Values: The method MUST return zero or a non-error HRESULT (as specified in [MS-
ERREF]) to indicate success, or return an implementation-specific nonzero error code to

indicate failure. For the HRESULT values predefined by the Virtual Disk Service Remote
Protocol, see section 2.2.3.

Note Free extents are not returned for CD/DVD or super floppy devices.

When the server receives this message, it MUST validate the following parameters:

Verify that ppExtentArray is not NULL.

Verify that plNumberOfExtents is not NULL.

%5bMS-ERREF%5d.pdf
%5bMS-ERREF%5d.pdf
%5bMS-ERREF%5d.pdf
%5bMS-ERREF%5d.pdf

212 / 368

[MS-VDS] — v20130722
 Virtual Disk Service (VDS) Protocol

 Copyright © 2013 Microsoft Corporation.

 Release: Monday, July 22, 2013

The server MUST point ppExtentArray to an array of VDS_DISK_EXTENT structures containing
information about each disk extent on the disk, point plNumberOfExtents to the number of

elements in the array, and return an HRESULT indicating failure or success.

For removable media drives, the server MUST set the value of volumeId and plexId in the

VDS_DISK_EXTENT structure to the VDS_OBJECT_ID of the volume and volume plex object
associated with the drive.

For removable media drives with no media, the server MUST return a single extent of type
VDS_DET_UNKNOWN with the values of ullOffset and ullSize set to 0.

3.4.5.2.21.5 IVdsDisk::ConvertStyle (Opnum 7)

The ConvertStyle method converts a disk's partitioning format.

HRESULT ConvertStyle(

 [in] VDS_PARTITION_STYLE NewStyle

);

NewStyle: A value from the VDS_PARTITION_STYLE enumeration that indicates the new

partitioning format.

Return Values: The method MUST return zero or a non-error HRESULT (as specified in [MS-
ERREF]) to indicate success, or return an implementation-specific nonzero error code to
indicate failure. For the HRESULT values predefined by the Virtual Disk Service Remote

Protocol, see section 2.2.3.

Note This method is not valid for CD/DVD or super floppy devices.

When the server receives this message, it MUST convert the disk's partitioning format to the style
NewStyle specifies and then return an HRESULT indicating failure or success.

A dynamic disk cannot be converted between GPT and MBR partitioning styles. The dynamic disk

MUST be converted to a basic disk, at which point it can be converted between partitioning styles.

Clients cannot change the partitioning style on a disk with volumes. Clients cannot change the
partitioning style on a disk that contains the system, boot, pagefile, crashdump, or hibernation
volumes.

If this method is called against a disk which contains volume or partition extents, then this method
MUST return VDS_E_DISK_NOT_EMPTY.<72>

3.4.5.2.21.6 IVdsDisk::SetFlags (Opnum 8)

The SetFlags method sets the read-only flag of a disk.<73>

HRESULT SetFlags(

 [in] unsigned long ulFlags

);

ulFlags: MUST be set to VDS_DF_READ_ONLY.

Return Values: The method MUST return zero or a non-error HRESULT (as specified in [MS-
ERREF]) to indicate success, or return an implementation-specific nonzero error code to
indicate failure. For the HRESULT values predefined by the Virtual Disk Service Remote

Protocol, see section 2.2.3.

%5bMS-ERREF%5d.pdf
%5bMS-ERREF%5d.pdf
%5bMS-ERREF%5d.pdf
%5bMS-ERREF%5d.pdf

213 / 368

[MS-VDS] — v20130722
 Virtual Disk Service (VDS) Protocol

 Copyright © 2013 Microsoft Corporation.

 Release: Monday, July 22, 2013

Note This method cannot be used against CD/DVD or super floppy devices.

This method MUST return an HRESULT failure for OS boot disk, system disk, pagefile disk,
hibernation file disk and crash dump disk.

When the server receives this message, it MUST validate the following parameter:

Verify that the ulFlags parameter is VDS_DF_READ_ONLY.

The server MUST perform the following in sequence:

Set the read-only attribute of the disk.

For each callback object that is registered in the list of callback objects, call the callback object's

IVdsAdviseSink::OnNotify (Opnum 3) method by using a VDS_NOTIFICATION structure

that has the following attributes:

objectType member is VDS_NTT_DISK.

Disk member is a VDS_DISK_NOTIFICATION that has the following attributes:

ulEvent is VDS_NF_DISK_MODIFY.

diskId is the VDS_OBJECT_ID of this disk object.

Return an HRESULT indicating failure or success.

3.4.5.2.21.7 IVdsDisk::ClearFlags (Opnum 9)

The ClearFlags method clears the read-only flag of a disk.<74>

HRESULT ClearFlags(

 [in] unsigned long ulFlags

);

ulFlags: MUST be set to VDS_DF_READ_ONLY.

Return Values: The method MUST return zero or a non-error HRESULT (as specified in [MS-
ERREF]) to indicate success, or return an implementation-specific nonzero error code to
indicate failure. For the HRESULT values predefined by the Virtual Disk Service Remote
Protocol, see section 2.2.3.

Note This method is not valid for CD/DVD or super floppy devices.

This method MUST return an HRESULT failure for OS boot disk, system disk, pagefile disk,

hibernation file disk, and crash dump disk.

When the server receives this message, it MUST validate the following parameter:

Verify that the ulFlags parameter is VDS_DF_READ_ONLY.

The server MUST perform the following in sequence:

Clear the read-only attribute of the disk.

%5bMS-ERREF%5d.pdf
%5bMS-ERREF%5d.pdf

214 / 368

[MS-VDS] — v20130722
 Virtual Disk Service (VDS) Protocol

 Copyright © 2013 Microsoft Corporation.

 Release: Monday, July 22, 2013

For each callback object that is registered in the list of callback objects, call the callback object's

IVdsAdviseSink::OnNotify (Opnum 3) method by using a VDS_NOTIFICATION structure

that has the following attributes:

objectType member is VDS_NTT_DISK.

Disk member is a VDS_DISK_NOTIFICATION that has the following attributes:

ulEvent is VDS_NF_DISK_MODIFY.

diskId is the VDS_OBJECT_ID of this disk object.

Return an HRESULT indicating failure or success.

3.4.5.2.22 IVdsDisk2 Methods

3.4.5.2.22.1 IVdsDisk2::SetSANMode (Opnum 3)

The SetSANMode method sets the SAN mode of a disk to either offline or online. A disk that is
offline exposes no volume devices for partitions or volumes with extents on that disk. A disk may be
REAONLY or READWRITE independent of the offline or online setting.

HRESULT SetSANMode(

 [in] long bEnable

);

bEnable: A Boolean value that indicates whether to set the disk to either online or offline.

Return Values: The method MUST return zero or a non-error HRESULT (as specified in [MS-
ERREF]) to indicate success, or return an implementation-specific nonzero error code to
indicate failure. For the HRESULT values predefined by the Virtual Disk Service Remote
Protocol, see section 2.2.3.

ERROR_SUCCESS (0x00000000)

When the server receives this message, it MUST set the SAN mode of the disk to offline or online, as
specified by bEnable, and then return an HRESULT indicating failure or success.<75> <76>

3.4.5.2.23 IVdsDisk3 Methods

3.4.5.2.23.1 IVdsDisk3::GetProperties2 (Opnum 3)

The GetProperties2 method retrieves the properties of the disk that the object exposing this
interface and method represents.

HRESULT GetProperties2(

 [out] VDS_DISK_PROP2* pDiskProperties

);

pDiskProperties: A pointer to a VDS_DISK_PROP2 (section 2.2.2.10.2.1) structure that, if
the operation is successfully completed, receives the properties of the disk.

%5bMS-ERREF%5d.pdf
%5bMS-ERREF%5d.pdf

215 / 368

[MS-VDS] — v20130722
 Virtual Disk Service (VDS) Protocol

 Copyright © 2013 Microsoft Corporation.

 Release: Monday, July 22, 2013

Return Values: The method MUST return zero or a non-error HRESULT (as specified in [MS-
ERREF]) to indicate success, or return an implementation-specific nonzero error code to

indicate failure. For the HRESULT values predefined by the Virtual Disk Service Remote
Protocol, see section 2.2.3.

When the server receives this message, it MUST validate the following parameter:

Verify that pDiskProperties is not NULL.

The server MUST populate the VDS_DISK_PROP2 structure that pDiskProperties references with
the properties of the disk and return an HRESULT that indicates failure or success.

3.4.5.2.23.2 IVdsDisk3::QueryFreeExtents (Opnum 6)

The QueryFreeExtents method enumerates a disk's free extents.Returns all free extents on the
disk and aligns them to the alignment value supplied in the ulAlign parameter. If there is no
alignment value supplied, QueryFreeExtents aligns the free extents based on the default
alignment values.

HRESULT QueryFreeExtents(

 [in] ULONG ulAlign,

 [out] [size_is(,*plNumberOfFreeExtents)]

 VDS_DISK_FREE_EXTENT** ppFreeExtentArray,

 [out] LONG* plNumberOfFreeExtents

);

ulAlign: The alignment value. If ulAlign is 0, the default alignment value is used.

ppFreeExtentArray: Pointer to an array of VDS_DISK_FREE_EXTENT structures that, if the
operation is successful, receives the array of disk extent structures.

plNumberOfFreeExtents: Pointer to a variable that, if the operation is successfully completed,

receives the total number of elements in ppFreeExtentArray.

Return Values: QueryFreeExtents MUST return zero to indicate success, or an
implementation-specific, nonzero error code to indicate failure.

Free extents are not returned for CD/DVD, or super floppy devices.

If the disk has no partition format (it is not formatted as either MBR or GPT), then this method
MUST return VDS_E_DISK_NOT_INITIALIZED.

When the server receives this message, it MUST validate the following parameters:

Verify that the ppFreeExtentArray parameter is not NULL.

Verify that the plNumberOfFreeExtents parameter is not NULL.

The server MUST point ppFreeExtentArray to an array of VDS_DISK_FREE_EXTENT structures

that contain information about each disk extent on the disk, point plNumberOfFreeExtents to the
number of elements in the array, and return an HRESULT indicating failure or success.

%5bMS-ERREF%5d.pdf
%5bMS-ERREF%5d.pdf

216 / 368

[MS-VDS] — v20130722
 Virtual Disk Service (VDS) Protocol

 Copyright © 2013 Microsoft Corporation.

 Release: Monday, July 22, 2013

3.4.5.2.24 IVdsAdvancedDisk Methods

3.4.5.2.24.1 IVdsAdvancedDisk::GetPartitionProperties (Opnum 3)

The GetPartitionProperties method retrieves the properties of a partition on the disk at a
specified byte offset.

HRESULT GetPartitionProperties(

 [in] ULONGLONG ullOffset,

 [out] VDS_PARTITION_PROP* pPartitionProp

);

ullOffset: The byte offset of the partition, from the beginning of the disk. This offset MUST be

the offset of a start of a partition.

pPartitionProp: A pointer to a VDS_PARTITION_PROP structure that, if the operation is
successfully completed, receives the properties of the partition.

Return Values: The method MUST return zero or a non-error HRESULT (as specified in [MS-
ERREF]) to indicate success, or return an implementation-specific nonzero error code to
indicate failure. For the HRESULT values predefined by the Virtual Disk Service Remote
Protocol, see section 2.2.3.

Note This method is not valid for CD/DVD or super floppy devices.

When the server receives this message, it MUST validate the following parameter:

Verify that pPartitionProp is not NULL.

The server MUST populate the VDS_PARTITION_PROP structure that pPartitionProp references
with the properties of the partition at the byte offset from the beginning of the disk that ullOffset
specifies. The server MUST then return an HRESULT indicating failure or success. For information on
VDS_PARTITION_PROP, see section 2.2.1.3.20.

3.4.5.2.24.2 IVdsAdvancedDisk::QueryPartitions (Opnum 4)

The QueryPartitions method enumerates a disk's partitions.

HRESULT QueryPartitions(

 [out, size_is(,*plNumberOfPartitions)]

 VDS_PARTITION_PROP** ppPartitionPropArray,

 [out] long* plNumberOfPartitions

);

ppPartitionPropArray: A pointer to an array of VDS_PARTITION_PROP structures that, if the

operation is successfully completed, receives the array of partition properties.

plNumberOfPartitions: A pointer to a variable that, if the operation is successfully completed,

receives the total number of elements in ppPartitionPropArray.

Return Values: The method MUST return zero or a non-error HRESULT (as specified in [MS-
ERREF]) to indicate success, or return an implementation-specific nonzero error code to

indicate failure. For the HRESULT values predefined by the Virtual Disk Service Remote
Protocol, see section 2.2.3.

%5bMS-ERREF%5d.pdf
%5bMS-ERREF%5d.pdf
%5bMS-ERREF%5d.pdf
%5bMS-ERREF%5d.pdf

217 / 368

[MS-VDS] — v20130722
 Virtual Disk Service (VDS) Protocol

 Copyright © 2013 Microsoft Corporation.

 Release: Monday, July 22, 2013

Note This method is not valid for CD/DVD or super floppy devices. These devices do not
support partition tables.

When the server receives this message, it MUST validate the following parameters:

Verify that ppPartitionPropArray is not NULL.

Verify that plNumberOfPartitions is not NULL.

The server MUST point ppPartitionPropArray to an array of VDS_PARTITION_PROP structures
that contains information about each partition on the disk, point plNumberOfPartitions to the
number of elements in the array, and then return an HRESULT indicating failure or success.

If the disk has no partition format (it is not formatted as either MBR or GPT), then there are no
partitions and this method MUST return VDS_E_DISK_NOT_INITIALIZED.

3.4.5.2.24.3 IVdsAdvancedDisk::CreatePartition (Opnum 5)

The CreatePartition method creates a partition on a disk at a specified byte offset.

HRESULT CreatePartition(

 [in] ULONGLONG ullOffset,

 [in] ULONGLONG ullSize,

 [in] CREATE_PARTITION_PARAMETERS* para,

 [out] IVdsAsync** ppAsync

);

ullOffset: MUST be the byte offset from the beginning of the disk at which to create the new

partition.

The partition is created at or beyond the ullOffset such that the offset is divisible by the
default alignment value of the disk. The offset value returned in the server's partition
notification, after CreatePartition is successful, reflects the rounded-up value.

ullSize: MUST be the size of the new partition, in bytes.

para: MUST be a pointer to a CREATE_PARTITION_PARAMETERS structure that describes the
new partition to create.

ppAsync: MUST be a pointer to an IVdsAsync interface that, upon successful completion,
receives the IVdsAsync interface to monitor and control this operation. Callers MUST release
the interface received when they are done with it. If the IVdsAsync::Wait method is called

on the interface, the interfaces returned in the VDS_ASYNC_OUTPUT structure MUST be
released as well.

Return Values: The method MUST return zero or a non-error HRESULT (as specified in [MS-
ERREF]) to indicate success, or return an implementation-specific nonzero error code to
indicate failure. For the HRESULT values predefined by the Virtual Disk Service Remote
Protocol, see section 2.2.3.<77>

Note Creating or deleting partitions on dynamic disks is not supported.

Note This method is not valid on CD/DVD or super floppy devices. These devices do not
support partition tables.

When the server receives this message, it MUST validate the following parameters:

%5bMS-GLOS%5d.pdf
%5bMS-ERREF%5d.pdf
%5bMS-ERREF%5d.pdf

218 / 368

[MS-VDS] — v20130722
 Virtual Disk Service (VDS) Protocol

 Copyright © 2013 Microsoft Corporation.

 Release: Monday, July 22, 2013

Verify that para is not NULL.

Verify that ppAsync is not NULL.

The server MUST perform the following:

If the partition cannot be created because there is not enough free space on the specified disk,

then the server MUST return VDS_E_NOT_ENOUGH_SPACE.

Create a new async object implementing the IVdsAsync interface with an output type of

VDS_ASYNCOUT_CREATEPARTITION and set the pointer that ppAsync references to the
interface.

Return an HRESULT indicating failure or success. Any errors encountered up through this point in

processing the operation are returned in this HRESULT.

The server MUST then perform the following in sequence. Errors generated in this sequence of steps
are returned in the pHrResult parameter to the IVdsAsync::Wait or IVdsAsyncQueryStatus methods.

Create a new partition following the parameters specified to the method.

If the partition creation resulted in the renumbering of existing partitions on a boot disk, the

server MUST update the boot configuration file with the new partition numbering.

Set the task-specific return values in the async object to return the values associated with

VDS_ASYNCOUT_CREATEPARTITION. For information on asynchronous tasks, see section
3.4.5.1.9.

Set the return code in the async object to an HRESULT indicating failure or success.

If the server was required to update the boot configuration file but failed, the return code

MUST be set to VDS_S_UPDATE_BOOTFILE_FAILED (HRESULT of 0x80042434).

If the task was completed successfully, set the percentage completed value in the async object to

100.

Set the signal state in the async object to TRUE.

For each callback object that is registered in the list of callback objects, call the callback object's

IVdsAdviseSink::OnNotify (Opnum 3) method by using a VDS_NOTIFICATION structure
that has the following attributes:

objectType member is VDS_NTT_PARTITION.

Partition member is a VDS_PARTITION_NOTIFICATION that has the following attributes:

ulEvent is VDS_NF_PARTITION_ARRIVE.

diskId is the VDS_OBJECT_ID of the disk object that corresponds to the disk on which the

partition was added.

ullOffset is the byte offset at which the partition starts on the disk.

If the partition is created on a removable media disk, for each callback object that is registered in

the list of callback objects, call the callback object's IVdsAdviseSink::OnNotify (Opnum 3)

method by using a VDS_NOTIFICATION structure that has the following attributes:

objectType member is VDS_NTT_VOLUME.

219 / 368

[MS-VDS] — v20130722
 Virtual Disk Service (VDS) Protocol

 Copyright © 2013 Microsoft Corporation.

 Release: Monday, July 22, 2013

Volume member is a VDS_VOLUME_NOTIFICATION that has the following attributes:

ulEvent is VDS_NF_VOLUME_MODIFY.

volumeId is the VDS_OBJECT_ID of the volume object corresponding to the removable

media drive.

For each callback object that is registered in the list of callback objects, call the callback object's

IVdsAdviseSink::OnNotify (Opnum 3) method by using a VDS_NOTIFICATION structure that
has the following attributes:

objectType member is VDS_NTT_DISK.

Disk member is a VDS_DISK_NOTIFICATION that has the following attributes:

ulEvent is VDS_NF_DISK_MODIFY.

diskId is the VDS_OBJECT_ID of this disk object.

The server MUST update the percentage completed value periodically during the preceding
sequence. How often the percentage completed is updated, and at what point in the sequence, is

implementation-specific.

3.4.5.2.24.4 IVdsAdvancedDisk::DeletePartition (Opnum 6)

The DeletePartition method deletes a partition from the disk at a specified byte offset.

HRESULT DeletePartition(

 [in] ULONGLONG ullOffset,

 [in] long bForce,

 [in] long bForceProtected

);

ullOffset: The byte offset of the partition, from the beginning of the disk. This offset MUST be

the offset at the start of a partition.

bForce: A Boolean that determines whether the partition deletion is forced. If this parameter is
set to a nonzero value, calls to lock and dismount any file system on the partition that fail are

ignored. If this parameter is set to zero and any file systems on the partition failed to be
locked or dismounted, the server returns VDS_E_DEVICE_IN_USE.

bForceProtected: A Boolean value that determines whether deletion of a protected partition
will be forced.<78>

Return Values: The method MUST return zero or a non-error HRESULT (as specified in [MS-
ERREF]) to indicate success, or return an implementation-specific nonzero error code to

indicate failure. For the HRESULT values predefined by the Virtual Disk Service Remote
Protocol, see section 2.2.3.

Note Creating or deleting partitions on dynamic disks is not supported.

Note This method is not valid for CD/DVD or super floppy devices. These devices do not
support partition tables.

ERROR_SUCCESS (0x00000000)

%5bMS-ERREF%5d.pdf
%5bMS-ERREF%5d.pdf

220 / 368

[MS-VDS] — v20130722
 Virtual Disk Service (VDS) Protocol

 Copyright © 2013 Microsoft Corporation.

 Release: Monday, July 22, 2013

When the server receives this message, it MUST perform the following:

Attempt to get exclusive access to the partition. If the server fails to get exclusive access to the

partition, and the bForce parameter is not set to a non-zero value, then the server MUST return

VDS_E_DEVICE_IN_USE.

Delete the partition following the parameters specified to the method.

If deleting the partition removed a volume, remove the corresponding volume object from the list

of storage management objects. For each callback object that is registered in the list of callback
objects, call the callback object's IVdsAdviseSink::OnNotify method by using a
VDS_NOTIFICATION structure that has the following attributes:

objectType member is VDS_NTT_VOLUME.

Volume member is a VDS_VOLUME_NOTIFICATION that has the following attributes:

ulEvent is VDS_NF_VOLUME_DEPART.

volumeId is the VDS_OBJECT_ID of the volume object that was removed.

For each callback object that is registered in the list of callback objects, call the callback object's

IVdsAdviseSink::OnNotify method by using a VDS_NOTIFICATION structure that has the
following attributes:

objectType member is VDS_NTT_PARTITION.

Partition member is a VDS_PARTITION_NOTIFICATION that has the following attributes:

ulEvent is VDS_NF_PARTITION_DEPART.

diskId is the VDS_OBJECT_ID of the disk object corresponding to the disk from which the

partition was deleted.

ullOffset is the byte offset at which the partition started on the disk.

For each callback object that is registered in the list of callback objects, call the callback object's

IVdsAdviseSink::OnNotify method by using a VDS_NOTIFICATION structure that has the

following attributes:

objectType member is VDS_NTT_DISK.

Disk member is a VDS_DISK_NOTIFICATION that has the following attributes:

ulEvent is VDS_NF_DISK_MODIFY.

diskId is the VDS_OBJECT_ID of this disk object.

Return an HRESULT indicating failure or success.

3.4.5.2.24.5 IVdsAdvancedDisk::ChangeAttributes (Opnum 7)

The ChangeAttributes method changes the attributes of the partition at byte offset ullOffset on the
disk.

HRESULT ChangeAttributes(

 [in] ULONGLONG ullOffset,

 [in] CHANGE_ATTRIBUTES_PARAMETERS* para

221 / 368

[MS-VDS] — v20130722
 Virtual Disk Service (VDS) Protocol

 Copyright © 2013 Microsoft Corporation.

 Release: Monday, July 22, 2013

);

ullOffset: The byte offset of the partition, from the beginning of the disk. This offset MUST be

the offset of the start of a partition.

para: A pointer to a CHANGE_ATTRIBUTES_PARAMETERS structure that describes the
attributes to change.

Return Values: The method MUST return zero or a non-error HRESULT (as specified in [MS-
ERREF]) to indicate success, or return an implementation-specific nonzero error code to
indicate failure. For the HRESULT values predefined by the Virtual Disk Service Remote

Protocol, see section 2.2.3.

Note This method is not valid on CD/DVD or super floppy devices. These devices do not
support partition tables.

When the server receives this message, it MUST validate the following parameters:

Verify that para is not NULL.

Verify that the partition format in input parameter para matches the current partition format of

the disk.

The server MUST perform the following:

Change the attributes of the partition following the parameters specified to the method. If the

disk partitioning format is MBR, the only value that may be changed is the bootIndicator. If the
disk partitioning format is GPT, the only value that may be changed is the GPT attributes. The
disk partitioning format may not be changed using this method. For information on changing

partition attributes, see section 2.2.2.11.1.1.

If attributes on the partition were successfully changed, for each callback object that is registered

in the list of callback objects, call the callback object's IVdsAdviseSink::OnNotify (Opnum 3)

method by using a VDS_NOTIFICATION structure that has the following attributes:

objectType member is VDS_NTT_PARTITION.

Partition member is a VDS_PARTITION_NOTIFICATION that has the following attributes:

ulEvent is VDS_NF_PARTITION_MODIFY.

diskId is the VDS_OBJECT_ID of the disk object corresponding to the disk on which the

partition attribute was modified.

ullOffset is the byte offset where the partition started on the disk.<79>

If attributes on the partition were successfully changed, and a volume exists on the partition, for

each callback object registered in the list of callback objects, call the callback object's
IVdsAdviseSink::OnNotify (Opnum 3) method by using a VDS_NOTIFICATION structure

that has the following attributes:

objectType member is VDS_NTT_VOLUME.

Volume member is a VDS_VOLUME_NOTIFICATION that has the following attributes:

ulEvent is VDS_NF_VOLUME_MODIFY.

%5bMS-ERREF%5d.pdf
%5bMS-ERREF%5d.pdf

222 / 368

[MS-VDS] — v20130722
 Virtual Disk Service (VDS) Protocol

 Copyright © 2013 Microsoft Corporation.

 Release: Monday, July 22, 2013

volumeId is the VDS_OBJECT_ID of this volume object.

Return an HRESULT indicating failure or success.

3.4.5.2.24.6 IVdsAdvancedDisk::AssignDriveLetter (Opnum 8)

The AssignDriveLetter method assigns a drive letter to an existing OEM, ESP, or unknown
partition.

HRESULT AssignDriveLetter(

 [in] ULONGLONG ullOffset,

 [in] WCHAR wcLetter

);

ullOffset: The byte offset of the partition, from the beginning of the disk. This offset MUST be

the offset of a start of a partition.

wcLetter: The drive letter to assign, as a single uppercase or lowercase alphabetical (A-Z)

Unicode character.

Return Values: The method MUST return zero or a non-error HRESULT (as specified in [MS-
ERREF]) to indicate success, or return an implementation-specific nonzero error code to
indicate failure. For the HRESULT values predefined by the Virtual Disk Service Remote
Protocol, see section 2.2.3.

When the server receives this message, it MUST validate the following parameters:

Verify that the partition at the byte offset specified by ullOffset does not have a volume existing

on it.

Verify that the drive letter specified by wcLetter is not already used.

The server MUST assign the drive letter to the partition and return an HRESULT indicating failure or

success.

3.4.5.2.24.7 IVdsAdvancedDisk::DeleteDriveLetter (Opnum 9)

The DeleteDriveLetter method deletes a drive letter that is assigned to an OEM, ESP, or unknown
partition.

HRESULT DeleteDriveLetter(

 [in] ULONGLONG ullOffset,

 [in] WCHAR wcLetter

);

ullOffset: The byte offset of the partition from the beginning of the disk. This offset MUST be the

offset of a start of a partition.

wcLetter: The drive letter to delete as a single uppercase or lowercase alphabetical (A-Z)
Unicode character.

Return Values: The method MUST return zero or a non-error HRESULT (as specified in [MS-
ERREF]) to indicate success, or return an implementation-specific nonzero error code to
indicate failure. For the HRESULT values predefined by the Virtual Disk Service Remote
Protocol, see section 2.2.3.

%5bMS-ERREF%5d.pdf
%5bMS-ERREF%5d.pdf
%5bMS-ERREF%5d.pdf
%5bMS-ERREF%5d.pdf

223 / 368

[MS-VDS] — v20130722
 Virtual Disk Service (VDS) Protocol

 Copyright © 2013 Microsoft Corporation.

 Release: Monday, July 22, 2013

When the server receives this message, it MUST validate the following parameters:

Verify that the partition at the byte offset that is specified by ullOffset does not have a volume

existing on it.

Verify that the partition is using the drive letter specified by wcLetter.

The server MUST delete the drive letter from the partition and return an HRESULT indicating failure
or success.

3.4.5.2.24.8 IVdsAdvancedDisk::GetDriveLetter (Opnum 10)

The GetDriveLetter method retrieves the drive letter of an OEM, ESP, or unknown partition on the
disk at a specified byte offset.

HRESULT GetDriveLetter(

 [in] ULONGLONG ullOffset,

 [out] WCHAR* pwcLetter

);

ullOffset: The byte offset of the partition, from the beginning of the disk. This offset MUST be

the offset of a start of a partition.

pwcLetter: A pointer to a Unicode character that will receive an uppercase or lowercase
alphabetical (A-Z) drive letter for the partition at byte offset ullOffset.

Return Values: The method MUST return zero or a non-error HRESULT (as specified in [MS-
ERREF]) to indicate success, or return an implementation-specific nonzero error code to

indicate failure. For the HRESULT values predefined by the Virtual Disk Service Remote
Protocol, see section 2.2.3.

ERROR_SUCCESS (0x00000000)

When the server receives this message, it MUST validate the following parameters:

Verify that the partition at the byte offset that is specified by ullOffset does not have a volume

existing on it.

Verify that the partition has a drive letter.

Verify that the partition is an OEM, ESP, or unknown partition.

Verify that pwcLetter is not NULL.

The server MUST set a value referenced by pwcLetter with the drive letter of the partition and return

an HRESULT indicating failure or success.

3.4.5.2.24.9 IVdsAdvancedDisk::FormatPartition (Opnum 11)

The FormatPartition method formats an existing OEM, ESP, or unknown partition.

HRESULT FormatPartition(

 [in] ULONGLONG ullOffset,

 [in] VDS_FILE_SYSTEM_TYPE type,

 [in, string] WCHAR* pwszLabel,

%5bMS-ERREF%5d.pdf
%5bMS-ERREF%5d.pdf

224 / 368

[MS-VDS] — v20130722
 Virtual Disk Service (VDS) Protocol

 Copyright © 2013 Microsoft Corporation.

 Release: Monday, July 22, 2013

 [in] DWORD dwUnitAllocationSize,

 [in] long bForce,

 [in] long bQuickFormat,

 [in] long bEnableCompression,

 [out] IVdsAsync** ppAsync

);

ullOffset: The byte offset of the partition, from the beginning of the disk. This offset MUST be

the offset of a start of a partition.

type: A file system type that is enumerated by VDS_FILE_SYSTEM_TYPE. Clients that want to
format by using file systems that are not enumerated by VDS_FILE_SYSTEM_TYPE (section
2.2.1.2.9) may use the IVdsDiskPartitionMF::FormatPartionEx (section 3.4.5.2.29.4) or

IVdsDiskPartitionMF2::FormatPartitionEx2 methods.

pwszLabel: A null-terminated Unicode string representing the partition label. The maximum
label size is file system-dependent.

dwUnitAllocationSize: The size, in bytes, of the allocation unit for the file system. The value
MUST be a power of 2. Allocation unit range is file system-dependent.

bForce: A Boolean that determines whether the format is forced, regardless of whether the
partition is in use.

bQuickFormat: A Boolean that determines whether a file system is quick formatted. A quick
format does not verify each sector on the volume.

bEnableCompression: A Boolean that determines whether a file system is created with
compression enabled.<80>

ppAsync: A pointer to an IVdsAsync interface that, if the operation is successfully completed,
receives the IVdsAsync interface to monitor and control this operation. Callers MUST release
the interface when they are done with it.

Return Values: The method MUST return zero or a non-error HRESULT (as specified in [MS-
ERREF]) to indicate success, or return an implementation-specific nonzero error code to
indicate failure. For the HRESULT values predefined by the Virtual Disk Service Remote
Protocol, see section 2.2.3.

Note This method is not valid on CD/DVD or super floppy devices. These devices do not
support partition tables.

ERROR_SUCCESS (0x00000000)

When the server receives this message, it MUST validate the following parameter:

Verify that ppAsync is not NULL.

The server MUST perform the following:

Create a new async object implementing the IVdsAsync interface by using an output type of

VDS_ASYNCOUT_FORMAT and set the pointer that ppAsync references to the interface.

Return an HRESULT indicating failure or success. Any errors encountered up through this point in

processing the FormatPartition operation are returned in this HRESULT.

%5bMS-ERREF%5d.pdf
%5bMS-ERREF%5d.pdf

225 / 368

[MS-VDS] — v20130722
 Virtual Disk Service (VDS) Protocol

 Copyright © 2013 Microsoft Corporation.

 Release: Monday, July 22, 2013

The server MUST perform the following. Errors generated in this sequence of steps are returned in
the pHrResult parameter to the IVdsAsync::Wait or IVdsAsyncQueryStatus methods.

If the operating system is unable to format the device with the file system type specified using

the type parameter, then this method MUST return VDS_E_INCOMPATIBLE_FILE_SYSTEM.

If the target device\media is write-protected, then this method MUST return

VDS_E_MEDIA_WRITE_PROTECTED.

If the pwszLabel parameter is incompatible with the file system type specified using the type

parameter, then the server MUST return VDS_E_BAD_LABEL.

If the specified file system type has a minimum volume size requirement, and that requirement is

not met, then the server MUST return VDS_E_VOLUME_TOO_SMALL.

If the specified file system type has a maximum volume size requirement, and that requirement

is not met, then the server MUST return VDS_E_VOLUME_TOO_BIG.

If the specified file system type has a minimum or maximum cluster size requirement, and that

requirement is not met, then the server MUST return VDS_E_CLUSTER_SIZE_TOO_SMALL or

VDS_E_CLUSTER_SIZE_TOO_BIG, respectively.

If the specified file system type has a maximum cluster count requirement, and that requirement

is not met, then the server MUST return VDS_E_CLUSTER_COUNT_BEYOND_32BITS.

The server MUST update the percentage completed value periodically during the following sequence,
and send progress notifications to all clients. How often the percentage completed is updated, and at
what point in the sequence, is implementation specific. To send progress notifications to the clients:

For each callback object registered in the list of callback objects, call the callback object's

IVdsAdviseSink::OnNotify (Opnum 3) method with a VDS_NOTIFICATION structure with
the following attributes:

objectType member is VDS_NTT_FILE_SYSTEM.

FileSystem member is a VDS_FILE_SYSTEM_NOTIFICATION with the following

attributes:

ulEvent is VDS_NF_FILE_SYSTEM_FORMAT_PROGRESS.

volumeId is set to GUID_NULL.

dwPercentCompleted is the percentage completed value.

The server MUST then perform the following in sequence:

Format the partition following the parameters specified to the method.

If TRUE is specified for bEnableCompression and the file system being formatted supports

compression, compress the file system after formatting is complete.<81>

Set the return code in the async object to an HRESULT indicating failure or success.

If the server tried to compress the file system after formatting it and failed, the return code

MUST be set to VDS_S_VOLUME_COMPRESS_FAILED--an HRESULT of 0x00042443.

If the task completed successfully, set the percentage completed value in the async object to

100.

%5bMS-GLOS%5d.pdf

226 / 368

[MS-VDS] — v20130722
 Virtual Disk Service (VDS) Protocol

 Copyright © 2013 Microsoft Corporation.

 Release: Monday, July 22, 2013

Set the signal state in the async object to TRUE.

3.4.5.2.24.10 IVdsAdvancedDisk::Clean (Opnum 12)

The Clean method cleans a disk.

HRESULT Clean(

 [in] long bForce,

 [in] long bForceOEM,

 [in] long bFullClean,

 [out] IVdsAsync** ppAsync

);

bForce: A Boolean value that indicates whether the cleaning operation will be forced. If set, the

method attempts to clean the disk, even if data volumes or ESP partitions are present.

bForceOEM: A Boolean value that indicates whether the cleaning operation of an OEM partition

will be forced. If the disk contains an OEM partition, but bForceOEM is not set, the operation
SHOULD fail. If the value is set, the method attempts to clean the disk, even if OEM partitions
are present.<82>

bFullClean: A Boolean value specifying whether the cleaning operation removes all the data
from the disk.

ppAsync: A pointer to an IVdsAsync interface that, if the operation is successfully completed,
receives the IVdsAsync interface to monitor and control this operation. Callers MUST release
the interface when they are done with it.

Return Values: The method MUST return zero or a non-error HRESULT (as specified in [MS-
ERREF]) to indicate success, or return an implementation-specific nonzero error code to
indicate failure. For the HRESULT values predefined by the Virtual Disk Service Remote

Protocol, see section 2.2.3.

Note This method is not valid on CD/DVD devices.

When the server receives this message, it MUST validate the following parameter:

Verify that ppAsync is not NULL.

The server MUST perform the following:

If this method is called against a disk which contains data volume extents or an EFI system

partition (an ESP), and the bForce flag is not set, then this method MUST return
VDS_E_DISK_NOT_EMPTY for a dynamic disk.<83>

If this method is called against a disk which contains a protected OEM partition, and the

bForceOEM flag is not set, then this method MUST return VDS_E_DISK_NOT_EMPTY for a
dynamic disk.<84>

Create a new async object implementing the IVdsAsync interface with an output type of

VDS_ASYNCOUT_CLEAN and set the pointer referenced by ppAsync to the interface.

Return an HRESULT indicating failure or success. Any errors encountered up through this point in

processing the operation are returned in this HRESULT.

%5bMS-ERREF%5d.pdf
%5bMS-ERREF%5d.pdf

227 / 368

[MS-VDS] — v20130722
 Virtual Disk Service (VDS) Protocol

 Copyright © 2013 Microsoft Corporation.

 Release: Monday, July 22, 2013

The server MUST then perform the following in sequence. Errors generated in this sequence of steps
are returned in the pHrResult parameter to the IVdsAsync::Wait or IVdsAsyncQueryStatus methods.

Clean the disk, removing all partition information, following the parameters specified to the

method.

Set the return code in the async object to an HRESULT indicating failure or success.

If TRUE was specified for bFullClean, but the server could not clean particular sectors, the

return code MUST be set to VDS_S_DISK_PARTIALLY_CLEANED.

If the task was completed successfully, set the percentage completed value in the async object to

100.

Set the signal state in the async object to TRUE.

If the disk is a removable media disk, for each callback object registered in the list of callback

objects, call the callback object's IVdsAdviseSink::OnNotify (Opnum 3) method with a

VDS_NOTIFICATION structure with the following attributes:

objectType member is VDS_NTT_VOLUME.

Volume member is a VDS_VOLUME_NOTIFICATION with the following attributes:

ulEvent is VDS_NF_VOLUME_MODIFY.

volumeId is the VDS_OBJECT_ID of the volume object corresponding to the removable

media drive.

For each callback object registered in the list of callback objects, call the callback object's

IVdsAdviseSink::OnNotify (Opnum 3) method with a VDS_NOTIFICATION structure with
the following attributes:

objectType member is VDS_NTT_DISK.

Disk member is a VDS_DISK_NOTIFICATION with the following attributes:

ulEvent is VDS_NF_DISK_MODIFY.

diskId is the VDS_OBJECT_ID of this disk object.

The server MUST update the percentage completed value periodically during the preceding
sequence. How often the percentage completed is updated, and at what point in the sequence, is
implementation-specific.

The server MAY allow the clean operation to be canceled through the IVdsAsync interface.<85>

3.4.5.2.25 IVdsAdvancedDisk2 Methods

3.4.5.2.25.1 IVdsAdvancedDisk2::ChangePartitionType (Opnum 3)

The ChangePartitionType method changes the partition type on the disk at a specified byte offset.

HRESULT ChangePartitionType(

 [in] ULONGLONG ullOffset,

 [in] long bForce,

 [in] CHANGE_PARTITION_TYPE_PARAMETERS* para

228 / 368

[MS-VDS] — v20130722
 Virtual Disk Service (VDS) Protocol

 Copyright © 2013 Microsoft Corporation.

 Release: Monday, July 22, 2013

);

ullOffset: The byte offset of the partition, from the beginning of the disk. This offset MUST be

the offset of a start of a partition.

bForce: A Boolean value that indicates whether a change will be forced even if the volume
cannot be locked for exclusive access. When bForce is false, ChangePartitionType MUST
lock and dismount the volume before changing the partition type. If bForce is true, the volume
MUST be dismounted and the change MUST be made even if the locking of the volume fails.

para: A pointer to a CHANGE_PARTITION_TYPE_PARAMETERS structure that contains the

partition type that the partition at the location specified by ullOffset is changed to.

Return Values: The method MUST return zero or a non-error HRESULT (as specified in [MS-
ERREF]) to indicate success, or return an implementation-specific nonzero error code to
indicate failure. For the HRESULT values predefined by the Virtual Disk Service Remote
Protocol, see section 2.2.3.

Note This method is not valid for CD/DVD or super floppy devices. These devices do not
support partition tables.

ERROR_SUCCESS (0x00000000)

When the server receives this message, it MUST validate the following parameter:

Verify that para is not NULL.

The server MUST perform the following:

Change the partition type following the parameters specified to the method.

If a volume exists on the partition, for each callback object registered in the list of callback

objects, call the callback object's IVdsAdviseSink::OnNotify method with a
VDS_NOTIFICATION structure with the following attributes:

objectType member is VDS_NTT_VOLUME.

Volume member is a VDS_VOLUME_NOTIFICATION with the following attributes:

ulEvent is VDS_NF_VOLUME_MODIFY.

volumeId is the VDS_OBJECT_ID of this volume object.

Return an HRESULT indicating failure or success.

Note If the client changes the partition type from a recognized partition type (a type that indicates
the partition will be exposed as a volume) to a nonrecognized partition type, the volume associated

with the partition will be removed, and the normal volume removal notifications will be sent.
Conversely, if the client changes a partition's partition type from a nonrecognized partition type to a

recognized partition type, a new volume object will be created, and the normal notifications
associated with volume arrivals will be sent.

%5bMS-ERREF%5d.pdf
%5bMS-ERREF%5d.pdf

229 / 368

[MS-VDS] — v20130722
 Virtual Disk Service (VDS) Protocol

 Copyright © 2013 Microsoft Corporation.

 Release: Monday, July 22, 2013

3.4.5.2.26 IVdsAdvancedDisk3 Methods

3.4.5.2.26.1 IVdsAdvancedDisk3::GetProperties (Opnum 3)

The GetProperties method retrieves the properties of the disk that the object exposing this
interface and method represents.

HRESULT GetProperties(

 [out] VDS_ADVANCEDDISK_PROP* pAdvDiskProperties

);

pAdvDiskProperties: A pointer to a VDS_ADVANCEDDISK_PROP structure that receives the

properties of the disk.

Return Values: The method MUST return zero or a non-error HRESULT, as specified in [MS-

ERREF], to indicate success or return an implementation-specific nonzero error code to
indicate failure. For the HRESULT values predefined by the Virtual Disk Service Remote

Protocol, see section 2.2.3.

When the server receives this message, it MUST validate the following parameter:

Verify that pAdvDiskProperties is not NULL.

The server MUST populate the VDS_ADVANCEDDISK_PROP structure that the pAdvDiskProperties

parameter references with the properties of the disk and return an HRESULT that indicates success
or failure.

3.4.5.2.26.2 IVdsAdvancedDisk3::GetUniqueId (Opnum 4)

The GetUniqueId method retrieves the device path that the operating system uses to identify the
disk.

HRESULT GetUniqueId(

 [out, string] LPWSTR* ppwszId

);

ppwszId: A pointer to a null-terminated Unicode device path that the operating system uses to

identify the device for the disk.

Return Values: The method MUST return zero or a non-error HRESULT, as specified in [MS-
ERREF], to indicate success or return an implementation-specific nonzero error code to
indicate failure. For the HRESULT values predefined by the Virtual Disk Service Remote
Protocol, see section 2.2.3.

When the server receives this message, it MUST validate the following parameter:

Verify that ppwszId is not NULL.

The server MUST set the ppwszId parameter to the address of a null-terminated Unicode string and
then return an HRESULT that indicates success or failure.

%5bMS-ERREF%5d.pdf
%5bMS-ERREF%5d.pdf
%5bMS-DTYP%5d.pdf
%5bMS-ERREF%5d.pdf
%5bMS-ERREF%5d.pdf
%5bMS-DTYP%5d.pdf

230 / 368

[MS-VDS] — v20130722
 Virtual Disk Service (VDS) Protocol

 Copyright © 2013 Microsoft Corporation.

 Release: Monday, July 22, 2013

3.4.5.2.27 IVdsCreatePartitionEx Methods

3.4.5.2.27.1 IVdsCreatePartitionEx::CreatePartitionEx (Opnum 3)

The CreatePartitionEx method creates a partition on a disk at a specified byte offset, with an
optional alignment parameter.

HRESULT CreatePartitionEx(

 [in] ULONGLONG ullOffset,

 [in] ULONGLONG ullSize,

 [in] unsigned long ulAlign,

 [in] CREATE_PARTITION_PARAMETERS* para,

 [out] IVdsAsync** ppAsync

);

ullOffset: The byte offset from the beginning of the disk where the new partition will be created.

If ulAlign is not zero, the offset MUST fall within the first cylinder for an MBR disk (GPT disks

do not have this restriction).

ullSize: The size of the new partition, in bytes.<86>

ulAlign: The number of bytes for volume alignment. The offset specified in ullOffset will be
rounded up or down to an alignment boundary. If zero is specified, the server will base the
alignment value on the size of the disk on which the volume is created.<87>

para: A pointer to a CREATE_PARTITION_PARAMETERS structure that describes the new
partition to create.

ppAsync: A pointer to an IVdsAsync interface that, if the operation is successfully completed,
receives the IVdsAsync interface to monitor and control this operation. Callers MUST release
the interface when they are done with it. If the IVdsAsync::Wait method is called on the
interface, the interfaces returned in the VDS_ASYNC_OUTPUT structure MUST be released
as well. For information on asynchronous tasks, see section 3.4.5.1.9.

Return Values: The method MUST return zero or a non-error HRESULT (as specified in [MS-
ERREF]) to indicate success, or return an implementation-specific nonzero error code to
indicate failure. For the HRESULT values predefined by the Virtual Disk Service Remote
Protocol, see section 2.2.3.

Note Creating or deleting partitions on dynamic disks is not supported.

Note This method is not valid on CD/DVD or super floppy devices. These devices do not
support partition tables.

ERROR_SUCCESS (0x00000000)

When the server receives this message, it MUST validate the following parameters:

Verify that para is not NULL.

Verify that ppAsync is not NULL.

The server MUST perform the following:

%5bMS-ERREF%5d.pdf
%5bMS-ERREF%5d.pdf

231 / 368

[MS-VDS] — v20130722
 Virtual Disk Service (VDS) Protocol

 Copyright © 2013 Microsoft Corporation.

 Release: Monday, July 22, 2013

If the partition cannot be created because there is not enough free space on the specified disk,

then the server MUST return VDS_E_NOT_ENOUGH_SPACE.

Create a new async object implementing the IVdsAsync interface with an output type of

VDS_ASYNCOUT_CREATEPARTITION and set the pointer ppAsync references to the interface.

Return an HRESULT indicating failure or success. Any errors encountered up through this point in

processing the operation are returned in this HRESULT.

The server MUST then perform the following in sequence. Errors generated in this sequence of steps
are returned in the pHrResult parameter to the IVdsAsync::Wait or IVdsAsyncQueryStatus methods.

Create a new partition following the parameters specified to the method.

If the partition creation resulted in the renumbering of existing partitions on a boot disk, the

server MUST update the boot configuration file with the new partition numbering.

Set the task-specific return values in the async object to return the values associated with

VDS_ASYNCOUT_CREATEPARTITION (as specified in section 3.4.5.1.9).

Set the return code in the async object to an HRESULT indicating failure or success.

If the server was required to update the boot configuration file but failed, the return code

MUST be set to VDS_S_UPDATE_BOOTFILE_FAILED (HRESULT of 0x80042434).

If the task completed successfully, set the percentage completed value in the async object to

100.

Set the signal state in the async object to TRUE.

For each callback object registered in the list of callback objects, call the callback object's

IVdsAdviseSink::OnNotify method with a VDS_NOTIFICATION structure with the following
attributes:

objectType member is VDS_NTT_PARTITION.

Partition member is a VDS_PARTITION_NOTIFICATION with the following attributes:

ulEvent is VDS_NF_PARTITION_ARRIVE.

diskId is the VDS_OBJECT_ID of the disk object corresponding to the disk on which the

partition was added.

ullOffset is the byte offset at which the partition starts on the disk.

If the partition is created on a removable media disk, for each callback object registered in the

list of callback objects, call the callback object's IVdsAdviseSink::OnNotify method with a
VDS_NOTIFICATION structure with the following attributes:

objectType member is VDS_NTT_VOLUME.

Volume member is a VDS_VOLUME_NOTIFICATION with the following attributes:

ulEvent is VDS_NF_VOLUME_MODIFY.

volumeId is the VDS_OBJECT_ID of the volume object corresponding to the removable

media drive.

232 / 368

[MS-VDS] — v20130722
 Virtual Disk Service (VDS) Protocol

 Copyright © 2013 Microsoft Corporation.

 Release: Monday, July 22, 2013

For each callback object registered in the list of callback objects, call the callback object's

IVdsAdviseSink::OnNotify method with a VDS_NOTIFICATION structure with the following

attributes:

objectType member is VDS_NTT_DISK.

Disk member is a VDS_DISK_NOTIFICATION with the following attributes:

ulEvent is VDS_NF_DISK_MODIFY.

diskId is the VDS_OBJECT_ID of this disk object.

The server MUST update the percentage completed value periodically during the preceding

sequence. How often the percentage completed is updated, and at what point in the sequence, is
implementation-specific.

3.4.5.2.28 IVdsDiskOnline Methods

3.4.5.2.28.1 IVdsDiskOnline::Online (Opnum 3)

The Online method brings a disk to the online state. An online disk exposes volume devices to

those volumes that have associated extents on the given disk.

HRESULT Online();

This method has no parameters.

Return Values: The method MUST return zero or a non-error HRESULT, as specified in [MS-

ERREF], to indicate success or return an implementation-specific nonzero error code to
indicate failure. For the HRESULT values predefined by the Virtual Disk Service Remote
Protocol, see section 2.2.3.

ERROR_SUCCESS(0x00000000)

The server MUST bring the disk to the online state by creating volume objects for any volumes with
associated extents on the given disk. The server MUST then return an HRESULT indicating failure or
success. For more information on the VDS_FILE_SYSTEM_PROP structure, see 2.2.1.3.17.

3.4.5.2.28.2 IVdsDiskOnline::Offline (Opnum 4)

The Offline method brings a disk to the offline state. An offline disk exposes no volume devices.

HRESULT Offline();

This method has no parameters.

Return Values: The method MUST return zero or a non-error HRESULT, as specified in [MS-

ERREF], to indicate success or return an implementation-specific nonzero error code to
indicate failure. For the HRESULT values predefined by the Virtual Disk Service Remote
Protocol, see section 2.2.3.

ERROR_SUCCESS(0x00000000)

The server MUST bring the disk to the offline state by removing the volume objects for any volumes

with associated extents on the given disk. The server MUST send volume removal notifications for

%5bMS-ERREF%5d.pdf
%5bMS-ERREF%5d.pdf
%5bMS-ERREF%5d.pdf
%5bMS-ERREF%5d.pdf

233 / 368

[MS-VDS] — v20130722
 Virtual Disk Service (VDS) Protocol

 Copyright © 2013 Microsoft Corporation.

 Release: Monday, July 22, 2013

any volume objects that are removed as a result of bringing the disk to an offline state. The server
MUST then return an HRESULT indicating failure or success. For more information on the

VDS_FILE_SYSTEM_PROP structure, see 2.2.1.3.17.

3.4.5.2.29 IVdsDiskPartitionMF Methods

3.4.5.2.29.1 IVdsDiskPartitionMF::GetPartitionFileSystemProperties (Opnum 3)

The GetPartitionFileSystemProperties method returns property details about the file system on a
disk partition at a specified byte offset. This method is only supported on OEM, ESP, recovery, and
unknown partitions.

HRESULT GetPartitionFileSystemProperties(

 [in] ULONGLONG ullOffset,

 [out] VDS_FILE_SYSTEM_PROP* pFileSystemProp

);

ullOffset: The byte offset of the partition from the beginning of the disk. This MUST be the offset

at the start of a partition.

pFileSystemProp: A pointer to a VDS_FILE_SYSTEM_PROP structure that, if the operation is
successfully completed, receives the properties of the file system on the partition.

Return Values: The method MUST return zero or a non-error HRESULT (as specified in [MS-
ERREF]) to indicate success, or return an implementation-specific nonzero error code to
indicate failure. For the HRESULT values predefined by the Virtual Disk Service Remote

Protocol, see section 2.2.3.

Note This method is not valid on CD/DVD or super floppy devices. These devices do not
support partition tables.

ERROR_SUCCESS (0x00000000)

When the server receives this message, it MUST validate the following parameter:

Verify that pFileSystemProp is not NULL.

Verify that the partition at offset ullOffset is an OEM, ESP, recovery, or unknown partition.

The server MUST populate the VDS_FILE_SYSTEM_PROP structure that pFileSystemProp
references with the properties of the file system on the partition at the byte offset from the
beginning of the disk that ullOffset specifies. The server MUST then return an HRESULT indicating
failure or success. For more information on the VDS_FILE_SYSTEM_PROP structure, see section

2.2.1.3.17.

3.4.5.2.29.2 IVdsDiskPartitionMF::GetPartitionFileSystemTypeName (Opnum 4)

The GetPartitionFileSystemTypeName method retrieves the name of the file system on a disk
partition at a specified byte offset. This method is only supported on OEM, ESP, recovery, and
unknown partitions.

HRESULT GetPartitionFileSystemTypeName(

 [in] ULONGLONG ullOffset,

 [out, string] WCHAR** ppwszFileSystemTypeName

%5bMS-ERREF%5d.pdf
%5bMS-ERREF%5d.pdf

234 / 368

[MS-VDS] — v20130722
 Virtual Disk Service (VDS) Protocol

 Copyright © 2013 Microsoft Corporation.

 Release: Monday, July 22, 2013

);

ullOffset: The byte offset of the partition from the beginning of the disk. This MUST be the offset

at the start of a partition.

ppwszFileSystemTypeName: A pointer that, if the operation is successfully completed,
receives a null-terminated Unicode string with the file system name.

Return Values: The method MUST return zero or a non-error HRESULT (as specified in [MS-
ERREF]) to indicate success, or return an implementation-specific nonzero error code to
indicate failure. For the HRESULT values predefined by the Virtual Disk Service Remote

Protocol, see section 2.2.3.

Note This method is not valid on CD/DVD or super floppy devices. These devices do not
support partition tables.

When the server receives this message, it MUST validate the following parameter:

Verify that ppwszFileSystemTypeName is not NULL.

Verify that the partition at offset ullOffset is an OEM, ESP, recovery, or unknown partition.

The server MUST point ppwszFileSystemTypeName to a string containing the file system name
on the partition at the byte offset from the beginning of the disk that ullOffset specifies and then
return an HRESULT indicating failure or success.

3.4.5.2.29.3 IVdsDiskPartitionMF::QueryPartitionFileSystemFormatSupport

(Opnum 5)

The QueryPartitionFileSystemFormatSupport method retrieves the properties of the file
systems that support formatting a disk partition at a specified byte offset. This method is only
supported on OEM, ESP, recovery, and unknown partitions.

Note This method is not valid on CD/DVD or super floppy devices. These devices do not support
partition tables.

HRESULT QueryPartitionFileSystemFormatSupport(

 [in] ULONGLONG ullOffset,

 [out, size_is(,*plNumberOfFileSystems)]

 VDS_FILE_SYSTEM_FORMAT_SUPPORT_PROP** ppFileSystemSupportProps,

 [out] long* plNumberOfFileSystems

);

ullOffset: The byte offset of the partition from the beginning of the disk. This MUST be the offset

at the start of a partition.

ppFileSystemSupportProps: A pointer to an array of

VDS_FILE_SYSTEM_FORMAT_SUPPORT_PROP structures which, if the operation

completes successfully, receives an array of properties of each supported file system.

plNumberOfFileSystems: A pointer to a variable which, if the operation completes successfully,
receives the total number of elements returned in ppFileSystemSupportProps.

Return Values: The method MUST return zero or a non-error HRESULT (as specified in [MS-
ERREF]) to indicate success, or return an implementation-specific nonzero error code to

%5bMS-ERREF%5d.pdf
%5bMS-ERREF%5d.pdf
%5bMS-ERREF%5d.pdf
%5bMS-ERREF%5d.pdf

235 / 368

[MS-VDS] — v20130722
 Virtual Disk Service (VDS) Protocol

 Copyright © 2013 Microsoft Corporation.

 Release: Monday, July 22, 2013

indicate failure. For the HRESULT values predefined by the Virtual Disk Service Remote
Protocol, see section 2.2.3.<88>

ERROR_SUCCESS (0x00000000)

When the server receives this message, it MUST validate the following parameters:

Verify that ppFileSystemSupportProps is not NULL.

Verify that plNumberOfFileSystems is not NULL.

Verify that the partition at offset ullOffset is an OEM, ESP, recovery, or unknown partition.

The server MUST point ppFileSystemSupportProps to an array of

VDS_FILE_SYSTEM_FORMAT_SUPPORT_PROP structures containing information about each file
system that supports formatting a partition at the byte offset from the beginning of the disk that
ullOffset specifies. The server MUST then point plNumberOfFileSystems to the size of the array

and then return an HRESULT indicating failure or success.

3.4.5.2.29.4 IVdsDiskPartitionMF::FormatPartitionEx (Opnum 6)

The FormatPartitionEx method formats an existing OEM, ESP, or unknown partition. This method

is only supported on OEM, ESP, recovery, and unknown partitions.

HRESULT FormatPartitionEx(

 [in] ULONGLONG ullOffset,

 [in, unique, string] WCHAR* pwszFileSystemTypeName,

 [in] unsigned short usFileSystemRevision,

 [in] unsigned long ulDesiredUnitAllocationSize,

 [in, unique, string] WCHAR* pwszLabel,

 [in] long bForce,

 [in] long bQuickFormat,

 [in] long bEnableCompression,

 [out] IVdsAsync** ppAsync

);

ullOffset: The byte offset of the partition from the beginning of the disk. This MUST be the offset

at the start of a partition.

pwszFileSystemTypeName: A null-terminated Unicode string that contains the name of the file
system with which to format the partition.

usFileSystemRevision: A 16-bit, binary-coded decimal number that indicates the revision of the

file system, if any. The first two (most significant) digits (8-bits) indicate the major revision
while the last two (least significant) digits (8-bits) indicate the minor revision (for example,
0x0250 represents revision 2.50).

ulDesiredUnitAllocationSize: The size, in bytes, of the allocation unit for the file system. The

value MUST be a power of 2. If the value is 0, a default allocation unit determined by the file
system type is used. The allocation unit range is file system-dependent.

pwszLabel: The null-terminated Unicode string to assign to the new file system. The maximum

label size is file system-dependent.

236 / 368

[MS-VDS] — v20130722
 Virtual Disk Service (VDS) Protocol

 Copyright © 2013 Microsoft Corporation.

 Release: Monday, July 22, 2013

bForce: A Boolean that determines whether a file system format is forced, even if the partition is
in use.

bQuickFormat: A Boolean that determines whether a file system is quick formatted. A quick
format does not verify each sector on the volume.

bEnableCompression: A Boolean that determines whether a file system is created with
compression enabled.<89>

ppAsync: A pointer to an IVdsAsync interface that, if the operation is successfully completed,
receives the IVdsAsync interface to monitor and control this operation. Callers MUST release
the interface when they are done with it.

Return Values: The method MUST return zero or a non-error HRESULT (as specified in [MS-
ERREF]) to indicate success, or return an implementation-specific nonzero error code to

indicate failure. For the HRESULT values predefined by the Virtual Disk Service Remote
Protocol, see section 2.2.3.

Note This method is not valid on CD/DVD or super floppy devices. These devices do not
support partition table.

ERROR_SUCCESS (0x00000000)

When the server receives this message, it MUST validate the following parameter:

Verify that ppAsync is not NULL.

Verify that the partition at offset ullOffset is an OEM, ESP, recovery, or unknown partition.

Create a new async object implementing the IVdsAsync interface with an output type of

VDS_ASYNCOUT_FORMAT and set the pointer ppAsync references to the interface.

Return an HRESULT indicating failure or success. Any errors encountered up through this point in

processing the FormatPartitionEx operation are returned in this HRESULT.

The server MUST perform the following. Errors generated in this sequence of steps are returned in
the pHrResult parameter to the IVdsAsync::Wait or IVdsAsyncQueryStatus methods.

If the operating system is unable to format the device using the file system type that is specified

using the type parameter, then this method MUST return VDS_E_INCOMPATIBLE_FILE_SYSTEM.

If the target device\media is write-protected, then this method MUST return

VDS_E_MEDIA_WRITE_PROTECTED.

If the pwszLabel parameter is incompatible with the file system type specified using the type

parameter, then the server MUST return VDS_E_BAD_LABEL.

If the specified file system type has a minimum volume size requirement, and that requirement is

not met, then the server MUST return VDS_E_VOLUME_TOO_SMALL.

If the specified file system type has a maximum volume size requirement, and that requirement

is not met, then the server MUST return VDS_E_VOLUME_TOO_BIG.

If the specified file system type has a minimum or maximum cluster size requirement, and that

requirement is not met, then the server MUST return VDS_E_CLUSTER_SIZE_TOO_SMALL or
VDS_E_CLUSTER_SIZE_TOO_BIG, respectively.

%5bMS-ERREF%5d.pdf
%5bMS-ERREF%5d.pdf

237 / 368

[MS-VDS] — v20130722
 Virtual Disk Service (VDS) Protocol

 Copyright © 2013 Microsoft Corporation.

 Release: Monday, July 22, 2013

If the specified file system type has a maximum cluster count requirement, and that requirement

is not met, then the server MUST return VDS_E_CLUSTER_COUNT_BEYOND_32BITS.

The server MUST update the percentage completed value periodically during the following sequence,

and send progress notifications to all clients. How often the percentage completed is updated, and at
what point in the sequence, is implementation specific. To send progress notifications to the clients:

For each callback object registered in the list of callback objects, call the callback object's

IVdsAdviseSink::OnNotify (Opnum 3) method with a VDS_NOTIFICATION structure with
the following attributes:

objectType member is VDS_NTT_FILE_SYSTEM.

FileSystem member is a VDS_FILE_SYSTEM_NOTIFICATION with the following

attributes:

ulEvent is VDS_NF_FILE_SYSTEM_FORMAT_PROGRESS.

volumeId is set to GUID_NULL.

dwPercentCompleted is the percentage completed value.

The server MUST then perform the following in sequence:

Format the partition following the parameters specified to the method.

If TRUE is specified for bEnableCompression and the file system being formatted supports

compression, compress the file system after formatting is complete.<90>

Set the return code in the async object to an HRESULT indicating failure or success.

If the server was required to compress the file system after formatting but could not, the

return code MUST be set to VDS_S_VOLUME_COMPRESS_FAILED (HRESULT of 0x00042443).

If the task completed successfully, set the percentage completed value in the async object to

100.

Set the signal state in the async object to TRUE.

3.4.5.2.30 IVdsDiskPartitionMF2 Methods

3.4.5.2.30.1 IVdsDiskPartitionMF2::FormatPartitionEx2 (Opnum 3)

The FormatPartitionEx2 method formats an existing OEM, ESP, or unknown partition. This method
is only supported on OEM, ESP, recovery, and unknown partitions.

HRESULT FormatPartitionEx2(

 [in] ULONGLONG ullOffset,

 [in, unique, string] LPWSTR pwszFileSystemTypeName,

 [in] USHORT usFileSystemRevision,

 [in] ULONG ulDesiredUnitAllocationSize,

 [in, unique, string] LPWSTR pwszLabel,

 [in] DWORD Options,

 [out] IVdsAsync** ppAsync

);

238 / 368

[MS-VDS] — v20130722
 Virtual Disk Service (VDS) Protocol

 Copyright © 2013 Microsoft Corporation.

 Release: Monday, July 22, 2013

ullOffset: The byte offset of the partition from the beginning of the disk. This MUST be the offset

at the start of a partition.

pwszFileSystemTypeName: A null-terminated Unicode string that contains the name of the file
system with which to format the partition.

usFileSystemRevision: A 16-bit, binary-coded decimal number that indicates the revision of the
file system, if any. The first two (most significant) digits (8-bits) indicate the major revision
while the last two (least significant) digits (8-bits) indicate the minor revision (for example,
0x0250 represents version 2.50).

ulDesiredUnitAllocationSize: The size, in bytes, of the allocation unit for the file system. The
value MUST be a power of 2. If the value is 0, a default allocation unit determined by the file
system type is used. The allocation unit range is file system-dependent.

pwszLabel: The null-terminated Unicode string to assign to the new file system. The maximum
label size is file system-dependent.

Options: The combination of any values, by using a bitwise OR operator, that are defined in the
VDS_FORMAT_OPTION_FLAGS enumeration.

ppAsync: A pointer to an IVdsAsync interface that, if the operation is successfully completed,
receives the IVdsAsync interface pointer to monitor and control this operation. Callers MUST

release the interface when they are done with it.

Return Values: The method MUST return zero or a non-error HRESULT (as specified in [MS-
ERREF]) to indicate success, or return an implementation-specific nonzero error code to
indicate failure. For the HRESULT values predefined by the Virtual Disk Service Remote
Protocol, see section 2.2.3.

Note This method is not valid on CD/DVD or super floppy devices. These devices do not
support partition tables.

When the server receives this message, it MUST validate the following parameters:

Verify that ppAsync is not NULL.

Verify that the partition at offset ullOffset is an OEM, ESP, recovery, or unknown partition.

The server MUST perform the following:

Create a new async object implementing the IVdsAsync interface with an output type of

VDS_ASYNCOUT_FORMAT and set the pointer ppAsync references to the interface.

Return an HRESULT indicating failure or success. Any errors encountered up through this point in

processing the FormatPartitionEx2 operation are returned in this HRESULT.

The server MUST perform the following. Errors generated in this sequence of steps are returned in
the pHrResult parameter to the IVdsAsync::Wait or IVdsAsyncQueryStatus methods.

If the operating system is unable to format the device with the file system type specified using

the type parameter, then this method MUST return VDS_E_INCOMPATIBLE_FILE_SYSTEM.

If the target device\media is write-protected, then this method MUST return

VDS_E_MEDIA_WRITE_PROTECTED.

If the pwszLabel parameter is incompatible with the file system type specified using the type

parameter, then the server MUST return VDS_E_BAD_LABEL.

%5bMS-ERREF%5d.pdf
%5bMS-ERREF%5d.pdf

239 / 368

[MS-VDS] — v20130722
 Virtual Disk Service (VDS) Protocol

 Copyright © 2013 Microsoft Corporation.

 Release: Monday, July 22, 2013

If the specified file system type has a minimum volume size requirement and that requirement is

not met, then the server MUST return VDS_E_VOLUME_TOO_SMALL.

If the specified file system type has a maximum volume size requirement and that requirement is

not met, then the server MUST return VDS_E_VOLUME_TOO_BIG.

If the specified file system type has a minimum or maximum cluster size requirement and that

requirement is not met, then the server MUST return VDS_E_CLUSTER_SIZE_TOO_SMALL or
VDS_E_CLUSTER_SIZE_TOO_BIG, respectively.

If the specified file system type has a maximum cluster count requirement and that requirement

is not met, then the server MUST return VDS_E_CLUSTER_COUNT_BEYOND_32BITS.

The server MUST update the percentage completed value periodically during the following sequence,
and send progress notifications to all clients. How often the percentage completed is updated, and at
what point in the sequence, is implementation specific. To send progress notifications to the clients:

For each callback object registered in the list of callback objects, call the callback object's

IVdsAdviseSink::OnNotify (Opnum 3)method with a VDS_NOTIFICATION structure with
the following attributes:

objectType member is VDS_NTT_FILE_SYSTEM.

FileSystem member is a VDS_FILE_SYSTEM_NOTIFICATION with the following

attributes:

ulEvent is VDS_NF_FILE_SYSTEM_FORMAT_PROGRESS.

volumeId is set to GUID_NULL.

dwPercentCompleted is the percentage completed value.

The server MUST then perform the following in sequence:

Format the partition following the parameters specified to the method.

If VDS_FSOF_COMPRESSION is specified and the file system being formatted supports

compression, compress the file system after formatting is complete.<91>

Set the return code in the async object to an HRESULT indicating failure or success.

If the server was required to compress the file system after formatting but could not, the

return code MUST be set to VDS_S_VOLUME_COMPRESS_FAILED (HRESULT of 0x00042443).

If the task completed successfully, set the percentage completed value in the async object to

100.

Set the signal state in the async object to TRUE.

3.4.5.2.31 IVdsRemovable Methods

3.4.5.2.31.1 IVdsRemovable::QueryMedia (Opnum 3)

The QueryMedia method identifies the media in the drive.

HRESULT QueryMedia();

240 / 368

[MS-VDS] — v20130722
 Virtual Disk Service (VDS) Protocol

 Copyright © 2013 Microsoft Corporation.

 Release: Monday, July 22, 2013

This method has no parameters.

Return Values: The method MUST return zero or a non-error HRESULT (as specified in [MS-
ERREF]) to indicate success, or return an implementation-specific nonzero error code to
indicate failure. For the HRESULT values predefined by the Virtual Disk Service Remote

Protocol, see section 2.2.3.

ERROR_SUCCESS (0x00000000)

When the server receives this message, it MUST perform the following:

Refresh any cached disk and volume properties of the removable media drive.

If the disk properties (VDS_DISK_PROP values) for the media have changed, for each callback

object registered in the list of callback objects, call the callback object's
IVdsAdviseSink::OnNotify method with a VDS_NOTIFICATION structure with the following
attributes:

objectType member is VDS_NTT_DISK.

Disk member is a VDS_DISK_NOTIFICATION with the following attributes:

ulEvent is VDS_NF_DISK_MODIFY.

diskId is the VDS_OBJECT_ID of this disk object.

If the volume properties (VDS_VOLUME_PROP values) for the media have changed, for each

callback object registered in the list of callback objects, call the callback object's
IVdsAdviseSink::OnNotify method with a VDS_NOTIFICATION structure with the following

attributes:

objectType member is VDS_NTT_VOLUME.

Volume member is a VDS_VOLUME_NOTIFICATION with the following attributes:

ulEvent is VDS_NF_VOLUME_MODIFY.

volumeId is the VDS_OBJECT_ID of the volume object corresponding to the removable

media drive.

Return an HRESULT indicating failure or success.

3.4.5.2.31.2 IVdsRemovable::Eject (Opnum 4)

The Eject method ejects the media in the drive.

HRESULT Eject();

This method has no parameters.

Return Values: The method MUST return zero or a non-error HRESULT (as specified in [MS-
ERREF]) to indicate success, or return an implementation-specific nonzero error code to
indicate failure. For the HRESULT values predefined by the Virtual Disk Service Remote
Protocol, see section 2.2.3.

When the server receives this message, it MUST perform the following:

%5bMS-ERREF%5d.pdf
%5bMS-ERREF%5d.pdf
%5bMS-ERREF%5d.pdf
%5bMS-ERREF%5d.pdf

241 / 368

[MS-VDS] — v20130722
 Virtual Disk Service (VDS) Protocol

 Copyright © 2013 Microsoft Corporation.

 Release: Monday, July 22, 2013

Attempt to eject the media in the removable media drive.

For each callback object that is registered in the list of callback objects, call the callback object's

IVdsAdviseSink::OnNotify (Opnum 3) method with a VDS_NOTIFICATION structure with

the following attributes:

objectType member is VDS_NTT_VOLUME.

Volume member is a VDS_VOLUME_NOTIFICATION with the following attributes:

ulEvent is VDS_NF_VOLUME_MODIFY.

volumeId is the VDS_OBJECT_ID of the volume object corresponding to the removable

media drive.

If media was present in the drive, for each callback object that is registered in the list of callback

objects, the server MUST call the callback object's IVdsAdviseSink::OnNotify method by using
a VDS_NOTIFICATION structure that has the following attributes:

objectType member is VDS_NTT_DISK.

Disk member is VDS_DISK_NOTIFICATION that has the following attributes:

ulEvent is VDS_NF_DISK_MODIFY.

diskId is the VDS_OBJECT_ID of the disk object corresponding to the removable media

drive.

Return an HRESULT indicating failure or success.

3.4.5.2.32 IVdsVolume Methods

3.4.5.2.32.1 IVdsVolume::GetProperties (Opnum 3)

The GetProperties method retrieves the properties of the volume that is represented by the object
exposing this interface and method.

HRESULT GetProperties(

 [out] VDS_VOLUME_PROP* pVolumeProperties

);

pVolumeProperties: A pointer to a VDS_VOLUME_PROP structure that, if the operation is

successfully completed, receives the properties of the volume.

Return Values: The method MUST return zero or a non-error HRESULT (as specified in [MS-
ERREF]) to indicate success, or return an implementation-specific nonzero error code to
indicate failure. For the HRESULT values predefined by the Virtual Disk Service Remote
Protocol, see section 2.2.3.

When the server receives this message, it MUST validate the following parameter:

Verify that pVolumeProperties is not NULL.

The server MUST populate the VDS_VOLUME_PROP structure that pVolumeProperties
references with the properties of the volume, and then return an HRESULT indicating failure or
success. For information on VDS_VOLUME_PROP, see section 2.2.2.14.1.1.

%5bMS-ERREF%5d.pdf
%5bMS-ERREF%5d.pdf

242 / 368

[MS-VDS] — v20130722
 Virtual Disk Service (VDS) Protocol

 Copyright © 2013 Microsoft Corporation.

 Release: Monday, July 22, 2013

3.4.5.2.32.2 IVdsVolume::GetPack (Opnum 4)

The GetPack method retrieves the disk pack to which the volume belongs.

HRESULT GetPack(

 [out] IVdsPack** ppPack

);

ppPack: A pointer to an IVdsPack interface that, if the operation is successfully completed,

receives the IVdsPack interface of the pack object to which the volume belongs. Callers MUST
release the interface when they are done with it.

Return Values: The method MUST return zero or a non-error HRESULT (as specified in [MS-
ERREF]) to indicate success, or return an implementation-specific nonzero error code to
indicate failure. For the HRESULT values predefined by the Virtual Disk Service Remote

Protocol, see section 2.2.3.

When the server receives this message, it MUST validate the following parameter:

Verify that ppPack is not NULL.

The server MUST point ppPack to an IVdsPack interface of the pack object that the volume object's
pack pointer refers to. It MUST then return an HRESULT indicating failure or success.

3.4.5.2.32.3 IVdsVolume::QueryPlexes (Opnum 5)

The QueryPlexes method enumerates the plexes of a volume.

HRESULT QueryPlexes(

 [out] IEnumVdsObject** ppEnum

);

ppEnum: A pointer to an IEnumVdsObject interface that, if the operation is successfully

completed, receives the IEnumVdsObject interface of the object that contains an
enumeration of volume plex objects in the volume. Callers MUST release the interface when
they are done with it.

Return Values: The method MUST return zero or a non-error HRESULT (as specified in [MS-
ERREF]) to indicate success, or return an implementation-specific nonzero error code to
indicate failure. For the HRESULT values predefined by the Virtual Disk Service Remote
Protocol, see section 2.2.3.

When the server receives this message, it MUST validate the following parameter:

Verify that ppEnum is not NULL.

The server MUST point ppEnum to an IEnumVdsObject interface that contains the enumeration of
volume plex objects in the list of cached storage management objects that have their volume

pointer set to this volume object, as specified in section 3.4.1.3. The server MUST then return an
HRESULT indicating failure or success.

3.4.5.2.32.4 IVdsVolume::Extend (Opnum 6)

The Extend method expands the size of the current volume by adding disk extents to each member

of each plex.

%5bMS-ERREF%5d.pdf
%5bMS-ERREF%5d.pdf
%5bMS-ERREF%5d.pdf
%5bMS-ERREF%5d.pdf

243 / 368

[MS-VDS] — v20130722
 Virtual Disk Service (VDS) Protocol

 Copyright © 2013 Microsoft Corporation.

 Release: Monday, July 22, 2013

HRESULT Extend(

 [in, unique, size_is(lNumberOfDisks)]

 VDS_INPUT_DISK* pInputDiskArray,

 [in] long lNumberOfDisks,

 [out] IVdsAsync** ppAsync

);

pInputDiskArray: A pointer to an array of VDS_INPUT_DISK structures that describe the disk

extents to add to the volume--one structure for each disk. Callers SHOULD specify the
member index for all the disk extents together with the Extend method, unless the volume
has only one plex with only one member.

lNumberOfDisks: The number of elements in pInputDiskArrray.<92>

ppAsync: A pointer to an IVdsAsync interface that, if the operation is successfully completed,
receives the IVdsAsync interface to monitor and control this operation. Callers MUST release
the interface when they are done with it.

Return Values: The method MUST return zero or a non-error HRESULT (as specified in [MS-
ERREF]) to indicate success, or return an implementation-specific nonzero error code to
indicate failure. For the HRESULT values predefined by the Virtual Disk Service Remote
Protocol, see section 2.2.3.

When the server receives this message, it MUST validate the following parameters:

Verify that pInputDiskArray is not NULL.

Verify that ppAsync is not NULL.

The server MUST perform the following:

If the volume's file system does not support extend operations, then this method MUST return

VDS_E_CANNOT_EXTEND. For example, on operating systems where both volumes are formatted

with the NTFS file system, volumes that have no file system formatting will return this error.

For each VDS_INPUT_DISK structure in the pInputDiskArray parameter, verify that the value of

the ullSize field does not exceed the amount of free space on the given disk. If the volume is
being created within a dynamic disk pack and if this requirement is not met, then the server
MUST return VDS_E_EXTENT_EXCEEDS_DISK_FREE_SPACE. If the volume is being created

within a basic disk pack and if this requirement is not met, then the server MUST return
VDS_E_NOT_ENOUGH_SPACE.

Create a new async object implementing the IVdsAsync interface with an output type of

VDS_ASYNCOUT_EXTENDVOLUME and set the pointer ppAsync references to the interface.

Return an HRESULT indicating failure or success. Any errors encountered up through this point in

processing the operation are returned in this HRESULT.

The server MUST then perform the following in sequence. Errors generated in this sequence of steps

are returned in the pHrResult parameter to the IVdsAsync::Wait or IVdsAsyncQueryStatus methods.

Extend the volume following the parameters specified to the method.

If the volume's size is changed, then for each callback object registered in the list of callback

objects, call the callback object's IVdsAdviseSink::OnNotify (section 3.3.4.3.1) method with
a VDS_NOTIFICATION (section 2.2.1.3.9) structure with the following attributes:

%5bMS-ERREF%5d.pdf
%5bMS-ERREF%5d.pdf

244 / 368

[MS-VDS] — v20130722
 Virtual Disk Service (VDS) Protocol

 Copyright © 2013 Microsoft Corporation.

 Release: Monday, July 22, 2013

objectType member is VDS_NTT_VOLUME.

Volume member is a VDS_VOLUME_NOTIFICATION with the following attributes:

ulEvent is VDS_NF_VOLUME_MODIFY.

volumeId is the VDS_OBJECT_ID of this volume object.

The file system on the volume MAY<93> need to be extended to fill the newly extended volume.

If the file system on the volume supports extension, for example, the NTFS or RAW file system,

extend the file system to fill the newly extended volume. If no VDS_VOLUME_MODIFIED
notification was sent during the previous steps because the volume's size is not changed and if

the file system's size is changed, then for each callback object registered in the list of callback
objects, call the callback object's IVdsAdviseSink::OnNotify method with a
VDS_NOTIFICATION structure with the following attributes:

objectType member is VDS_NTT_FILE_SYSTEM.

The Filesystem member is a VDS_FILE_SYSTEM_NOTIFICATION with the following

attributes:

ulEvent is VDS_NF_FILE_SYSTEM_MODIFY.

volumeId is the VDS_OBJECT_ID of this volume object.

Set the return code in the async object to an HRESULT indicating failure or success.

If the task completed successfully, set the percentage completed value in the async object to

100.<94>

Set the signal state in the async object to TRUE.

The server MUST update the percentage completed value periodically during the preceding
sequence. How often the percentage completed is updated, and at what point in the sequence, is

implementation-specific.

3.4.5.2.32.5 IVdsVolume::Shrink (Opnum 7)

The Shrink method reduces the size of the volume and all plexes and returns the released extents
to free space.<95>

HRESULT Shrink(

 [in] ULONGLONG ullNumberOfBytesToRemove,

 [out] IVdsAsync** ppAsync

);

ullNumberOfBytesToRemove: The number of bytes by which to shrink the volume.

ppAsync: A pointer to an IVdsAsync interface that, if the operation is successfully completed,

receives the IVdsAsync interface to monitor and control this operation. Callers MUST release

the interface when they are done with it.

Return Values: The method MUST return zero or a non-error HRESULT (as specified in [MS-
ERREF]) to indicate success, or return an implementation-specific nonzero error code to
indicate failure. For the HRESULT values predefined by the Virtual Disk Service Remote
Protocol, see section 2.2.3.

%5bMS-ERREF%5d.pdf
%5bMS-ERREF%5d.pdf

245 / 368

[MS-VDS] — v20130722
 Virtual Disk Service (VDS) Protocol

 Copyright © 2013 Microsoft Corporation.

 Release: Monday, July 22, 2013

When the server receives this message, it MUST validate the following parameter:

Verify that ppAsync is not NULL.<96>

The server MUST perform the following:

Create a new async object implementing the IVdsAsync interface with an output type of

VDS_ASYNCOUT_SHRINKVOLUME and set the pointer ppAsync references to the interface.

Return an HRESULT indicating failure or success. Any errors encountered up through this point in

processing the operation are returned in this HRESULT.

The server MUST then perform the following in sequence. Errors generated in this sequence of steps
are returned in the pHrResult parameter to the IVdsAsync::Wait or IVdsAsyncQueryStatus methods.

The file system<97> MAY need to shrink, if the file system on the volume supports shrinking,

following the parameters specified to the method.

Shrink the volume following the parameters specified to the method.

For each callback object registered in the list of callback objects, call the callback object's

IVdsAdviseSink::OnNotify() method with a VDS_NOTIFICATION structure with the following

attributes:

objectType member is VDS_NTT_VOLUME.

The volume member is a VDS_VOLUME_NOTIFICATION with the following attributes:

ulEvent is VDS_NF_VOLUME_MODIFY.

volumeId is the VDS_OBJECT_ID of this volume object.

Set the return code in the async object to an HRESULT indicating failure or success.

If the task completed successfully, set the percentage completed value in the async object to

100.<98>

Set the signal state in the async object to TRUE.

The server MUST update the percentage completed value periodically during the preceding

sequence. How often the percentage completed is updated, and at what point in the sequence, is
implementation-specific.

3.4.5.2.32.6 IVdsVolume::AddPlex (Opnum 8)

The AddPlex method adds a volume as a plex to the current volume.

HRESULT AddPlex(

 [in] VDS_OBJECT_ID VolumeId,

 [out] IVdsAsync** ppAsync

);

VolumeId: The VDS object ID of the volume object to add as a plex.

ppAsync: A pointer to an IVdsAsync interface that, if the operation is successfully completed,
receives the IVdsAsync interface to monitor and control this operation. Callers MUST release
the interface when they are done with it.

246 / 368

[MS-VDS] — v20130722
 Virtual Disk Service (VDS) Protocol

 Copyright © 2013 Microsoft Corporation.

 Release: Monday, July 22, 2013

Return Values: The method MUST return zero or a non-error HRESULT (as specified in [MS-
ERREF]) to indicate success, or return an implementation-specific nonzero error code to

indicate failure. For the HRESULT values predefined by the Virtual Disk Service Remote
Protocol, see section 2.2.3.

When the server receives this message, it MUST validate the following parameters:

Verify that the volume corresponding to the VDS_OBJECT_ID that VolumeId specifies has only

one volume plex.

Verify that ppAsync is not NULL.

If the volume resides on a basic disk, the server MUST return VDS_E_NOT_SUPPORTED (HRESULT
of 0x80042400).

The server MUST perform the following:

Verify that the size of the volume specified using the VolumeId parameter has a size that is

greater than, or equal to, the size of the volume to which the plex is being added. If the size of
the volume specified using the VolumeId parameter is less than the size of the volume to which a
plex is being added, then the server MUST return VDS_E_VOLUME_TOO_SMALL.

Verify that the volume specified using the VolumeId parameter has no extents located on disks

that contain extents belonging to the volume to which the plex is being added. If the volume
specified using the VolumeId parameter fails this requirement, then the server MUST return
VDS_E_DISK_IN_USE_BY_VOLUME.

Create a new async object implementing the IVdsAsync interface with an output type of

VDS_ASYNCOUT_ADDVOLUMEPLEX and set the pointer that ppAsync references to the interface.

Return an HRESULT indicating failure or success. Any errors encountered up through this point in

processing the operation are returned in this HRESULT.

The server MUST then perform the following in sequence. Errors generated in this sequence of steps

are returned in the pHrResult parameter to the IVdsAsync::Wait or IVdsAsyncQueryStatus methods.

Add the volume plex of the volume corresponding to the VDS_OBJECT_ID that VolumeId

specifies as a volume plex to this volume.

Set the volume plex's volume pointer to this volume object.

Remove the volume object corresponding to the VDS_OBJECT_ID that VolumeId specifies from

the list of storage management objects.

Set the return code in the async object to an HRESULT indicating failure or success.

If the task completed successfully, set the percentage completed value in the async object to

100.

Set the signal state in the async object to TRUE.

The server MUST update the percentage completed value periodically during the preceding
sequence. How often the percentage completed is updated, and at what point in the sequence, is
implementation-specific.

%5bMS-ERREF%5d.pdf
%5bMS-ERREF%5d.pdf

247 / 368

[MS-VDS] — v20130722
 Virtual Disk Service (VDS) Protocol

 Copyright © 2013 Microsoft Corporation.

 Release: Monday, July 22, 2013

3.4.5.2.32.7 IVdsVolume::BreakPlex (Opnum 9)

The BreakPlex method removes a specified plex from the current volume. The interface pointer for
the new volume object can be retrieved by calling IVdsAsync::Wait through the ppAsync

parameter. The VDS_ASYNC_OUTPUT structure that is returned contains the volume object
interface pointer in the bvp.pVolumeUnk member.

HRESULT BreakPlex(

 [in] VDS_OBJECT_ID plexId,

 [out] IVdsAsync** ppAsync

);

plexId: The GUID of the plex to be broken.

ppAsync: A pointer to an IVdsAsync interface that, if the operation is successfully completed,
receives the IVdsAsync interface to monitor and control this operation. Callers MUST release
the interface when they are done with it. If the IVdsAsync::Wait method is called on the

interface, the interfaces returned in the VDS_ASYNC_OUTPUT structure MUST be released
as well. For information on asynchronous tasks, see section 3.4.5.1.9.

Return Values: The method MUST return zero or a non-error HRESULT (as specified in [MS-
ERREF]) to indicate success, or return an implementation-specific nonzero error code to
indicate failure. For the HRESULT values predefined by the Virtual Disk Service Remote
Protocol, see section 2.2.3.

When the server receives this message, it MUST validate the following parameter:

Verify that ppAsync is not NULL.

The server MUST perform the following:

Create a new async object implementing the IVdsAsync interface with an output type of

VDS_ASYNCOUT_BREAKVOLUMEPLEX and set the pointer that ppAsync references to the

interface.

Return an HRESULT indicating failure or success. Any errors encountered up through this point in

processing the operation are returned in this HRESULT.

If the volume resides on a basic disk, the server MUST return VDS_E_NOT_SUPPORTED (HRESULT
of 0x80042400).

The server MUST then perform the following in sequence. Errors generated in this sequence of steps
are returned in the pHrResult parameter to the IVdsAsync::Wait or IVdsAsyncQueryStatus methods.

Break the volume plex corresponding to the VDS_OBJECT_ID that PlexId specifies for this

volume.

Create a new volume object that corresponds to the new volume, implements the IVdsVolume

interface, and assigns it a unique VDS_OBJECT_ID.

Set the new volume object's pack pointer to the pack object that this volume's pack pointer

references.

Add the new volume object to the list of storage management objects.

%5bMS-ERREF%5d.pdf
%5bMS-ERREF%5d.pdf

248 / 368

[MS-VDS] — v20130722
 Virtual Disk Service (VDS) Protocol

 Copyright © 2013 Microsoft Corporation.

 Release: Monday, July 22, 2013

Set the volume plex's volume pointer to the new volume object. Set the task-specific return

values in the async object to return the values that are associated with

VDS_ASYNCOUT_BREAKVOLUMEPLEX (as specified in section 3.4.5.1.9).

Set the return code in the async object to an HRESULT indicating failure or success.

If the task completed successfully, set the percentage completed value in the async object to

100.

Set the signal state in the async object to TRUE.

The server MUST update the percentage completed value periodically during the preceding
sequence. How often the percentage completed is updated, and at what point in the sequence, is

implementation-specific.

3.4.5.2.32.8 IVdsVolume::RemovePlex (Opnum 10)

The RemovePlex method removes a specified plex from a volume. The last plex of a volume cannot

be removed.

HRESULT RemovePlex(

 [in] VDS_OBJECT_ID plexId,

 [out] IVdsAsync** ppAsync

);

plexId: The VDS object ID of the volume plex object to remove.

ppAsync: A pointer to an IVdsAsync interface that, if the operation is successfully completed,
receives the IVdsAsync interface to monitor and control this operation. Callers MUST release
the interface when they are done with it.

Return Values: The method MUST return zero or a non-error HRESULT (as specified in [MS-
ERREF]) to indicate success, or return an implementation-specific nonzero error code to

indicate failure. For the HRESULT values predefined by the Virtual Disk Service Remote

Protocol, see section 2.2.3.

When the server receives this message, it MUST validate the following parameter:

Verify that ppAsync is not NULL.

The server MUST perform the following:

Create a new async object implementing the IVdsAsync interface with an output type of

VDS_ASYNCOUT_REMOVEVOLUMEPLEX and set the pointer that ppAsync references to the

interface.

If the volume resides on a basic disk, the server MUST return VDS_E_NOT_SUPPORTED

(HRESULT of 0x80042400).

Return an HRESULT indicating failure or success. Any errors encountered up through this point in

processing the operation are returned in this HRESULT.

The server MUST then perform the following in sequence. Errors generated in this sequence of steps

are returned in the pHrResult parameter to the IVdsAsync::Wait or IVdsAsyncQueryStatus methods.

%5bMS-ERREF%5d.pdf
%5bMS-ERREF%5d.pdf

249 / 368

[MS-VDS] — v20130722
 Virtual Disk Service (VDS) Protocol

 Copyright © 2013 Microsoft Corporation.

 Release: Monday, July 22, 2013

Remove the volume plex that corresponds to the VDS_OBJECT_ID PlexId specifies from this

volume.

Remove the corresponding volume plex object from the list of storage management objects.

Set the return code in the async object to an HRESULT indicating failure or success.

If the task completed successfully, set the percentage completed value in the async object to

100.

Set the signal state in the async object to TRUE.

The server MUST update the percentage completed value periodically during the preceding

sequence. How often the percentage completed is updated, and at what point in the sequence, is
implementation-specific.

3.4.5.2.32.9 IVdsVolume::Delete (Opnum 11)

The Delete method deletes all plexes in a volume.<99>

HRESULT Delete(

 [in] long bForce

);

bForce: A Boolean that determines whether all plexes in a volume are deleted when the volume

is in use.

Return Values: The method MUST return zero or a non-error HRESULT (as specified in [MS-
ERREF]) to indicate success, or return an implementation-specific nonzero error code to
indicate failure. For the HRESULT values predefined by the Virtual Disk Service Remote
Protocol, see section 2.2.3.

ERROR_SUCCESS (0x00000000)

When the server receives this message, it MUST perform the following:

Attempt to get exclusive access to the volume. If the server fails to get exclusive access to the

volume, and the bForce parameter is not set to true, then the server MUST return
VDS_E_DEVICE_IN_USE.

Delete all volume plexes in the volume. Remove the corresponding volume plex objects from the

list of storage management objects.<100>

Remove this volume object from the list of storage management objects.

For each callback object that is registered in the list of callback objects, call the callback object's

IVdsAdviseSink::OnNotify() method with a VDS_NOTIFICATION structure with the following
attributes:

objectType member is VDS_NTT_VOLUME.

Volume member is a VDS_VOLUME_NOTIFICATION with the following attributes:

ulEvent is VDS_NF_VOLUME_DEPART.

volumeId is the VDS_OBJECT_ID of this volume.

%5bMS-ERREF%5d.pdf
%5bMS-ERREF%5d.pdf

250 / 368

[MS-VDS] — v20130722
 Virtual Disk Service (VDS) Protocol

 Copyright © 2013 Microsoft Corporation.

 Release: Monday, July 22, 2013

If the volume resided on a basic disk, for each callback object that is registered in the list of

callback objects, call the callback object's IVdsAdviseSink::OnNotify() method with a

VDS_NOTIFICATION structure with the following attributes:

objectType member is VDS_NTT_PARTITION.

Partition member is a VDS_PARTITION_NOTIFICATION with the following attributes:

ulEvent is VDS_NF_PARTITION_DEPART.

diskId is the VDS_OBJECT_ID of the disk object on which the volume resided.

ullOffset is the byte offset at which the volume's partition started on the disk.

If the volume resides on a basic disk and if the partition the volume resides on is the last

remaining partition in an extended partition, delete the extended partition as well. Then for each
callback object registered in the list of callback objects, call the callback object's
IVdsAdviseSink::OnNotify() method with a VDS_NOTIFICATION structure with the following

attributes:

objectType member is VDS_NTT_PARTITION.

Partition member is a VDS_PARTITION_NOTIFICATION with the following attributes:

ulEvent is VDS_NF_PARTITION_DEPART.

diskId is the VDS_OBJECT_ID of the disk object on which the extended partition resided.

ullOffset is the byte offset at which the extended partition started on the disk.

If the volume resided on a basic disk, for each callback object registered in the list of callback

objects, call the callback object's IVdsAdviseSink::OnNotify() method with a
VDS_NOTIFICATION structure with the following attributes:

objectType member is VDS_NTT_DISK.

Disk member is a VDS_DISK_NOTIFICATION with the following attributes:

ulEvent is VDS_NF_DISK_MODIFY.

diskId is the VDS_OBJECT_ID of the disk object on which the volume resided.

Return an HRESULT indicating failure or success.

3.4.5.2.32.10 IVdsVolume::SetFlags (Opnum 12)

The SetFlags method assigns flags to a volume.<101>

HRESULT SetFlags(

 [in] unsigned long ulFlags,

 [in] long bRevertOnClose

);

ulFlags: The combination of any values, by using a bitwise OR operator, that are defined in the

VDS_VOLUME_FLAG enumeration.<102>

251 / 368

[MS-VDS] — v20130722
 Virtual Disk Service (VDS) Protocol

 Copyright © 2013 Microsoft Corporation.

 Release: Monday, July 22, 2013

bRevertOnClose: A Boolean that determines whether the flags should be temporarily set. If
they are temporarily set, VDS_VF_READONLY, VDS_VF_HIDDEN,

VDS_VF_NO_DEFAULT_DRIVE_LETTER, and VDS_VF_SHADOW_COPY are the only valid flags
that can be set, and the server reverts the flags after the client releases its last reference to

the volume object.<103><104>

Return Values: The method MUST return zero or a non-error HRESULT (as specified in [MS-
ERREF]) to indicate success, or return an implementation-specific nonzero error code to
indicate failure. For the HRESULT values predefined by the Virtual Disk Service Remote
Protocol, see section 2.2.3.

When the server receives this message, it MUST validate the following parameters:

Verify that ulFlags contains only those valid flags defined in the VDS_VOLUME_FLAG

enumeration. If bRevertOnClose is set, then verify that ulFlags only contains
VDS_VF_READONLY, VDS_VF_HIDDEN, VDS_VF_NO_DEFAULT_DRIVE_LETTER, and/or
VDS_VF_SHADOW_COPY.

If bRevertOnClose is set, verify that the volume object does not have flags that were previously

set with bRevertOnClose and are yet to be reverted on close.

If bRevertOnClose is not set:

Verify that the flags being set do not contain a flag that was previously set with

bRevertOnClose and is yet to be reverted on close.

Verify that ulFlags only contains VDS_VF_HIDDEN, VDS_VF_READONLY,

VDS_VF_NO_DEFAULT_DRIVE_LETTER, VDS_VF_SHADOW_COPY, and/or

VDS_VF_INSTALLABLE.<105>

The server MUST perform the following:

If the ulFlags parameter specifies that the VDS_VF_READONLY or VDS_VF_HIDDEN flags be set

on a volume located on an MBR disk, and that disk contains a critical volume, such as the

system, boot, hibernation, page file, or crash dump volumes, then the server MUST fail this
method and return VDS_E_OPERATION_DENIED.

Set the volume flags specified by ulFlags.

If bRevertOnClose is set, the server MUST be prepared to automatically revert the volume flags

if a client releases the last reference to the volume object.

For each callback object registered in the list of callback objects, call the callback object's

IVdsAdviseSink::OnNotify() method with a VDS_NOTIFICATION structure with the following
attributes:

objectType member is VDS_NTT_VOLUME.

Volume member is a VDS_VOLUME_NOTIFICATION with the following attributes:

ulEvent is VDS_NF_VOLUME_MODIFY.

volumeId is the VDS_OBJECT_ID of this volume object.

Return an HRESULT indicating failure or success.

%5bMS-ERREF%5d.pdf
%5bMS-ERREF%5d.pdf
%5bMS-GLOS%5d.pdf

252 / 368

[MS-VDS] — v20130722
 Virtual Disk Service (VDS) Protocol

 Copyright © 2013 Microsoft Corporation.

 Release: Monday, July 22, 2013

3.4.5.2.32.11 IVdsVolume::ClearFlags (Opnum 13)

The ClearFlags method clears flags from a volume.<106>

HRESULT ClearFlags(

 [in] unsigned long ulFlags

);

ulFlags: The combination of any values, by using the bitwise OR operator, that are defined in the

VDS_VOLUME_FLAG enumeration.<107>

Return Values: The method MUST return zero or a non-error HRESULT (as specified in [MS-
ERREF]) to indicate success, or return an implementation-specific nonzero error code to
indicate failure. For the HRESULT values predefined by the Virtual Disk Service Remote
Protocol, see section 2.2.3.

When the server receives this message, it MUST validate the following parameters:

Verify that ulFlags contains only valid flags defined in the VDS_VOLUME_FLAG enumeration.

If volume flags were set previously by calling SetFlags with bRevertOnClose set, and those

flags have not yet been reverted, verify that the flags that ulFlags specifies are exactly the same
as the flags set by a call to SetFlags.

The server MUST perform the following:

Clear the volume flags that ulFlags specifies. If the flags being cleared were set temporarily by

calling SetFlags with bRevertOnClose set, and those flags had not yet been reverted, the
server SHOULD NOT revert the flags automatically when a client releases the last reference to
the volume object or dismounts the volume.

For each callback object that is registered in the list of callback objects, call the

IVdsAdviseSink::OnNotify() method of the callback object by using a VDS_NOTIFICATION

structure that has the following attributes:

objectType member is VDS_NTT_VOLUME.

Volume member is a VDS_VOLUME_NOTIFICATION that has the following attributes:

ulEvent is VDS_NF_VOLUME_MODIFY.

volumeId is the VDS_OBJECT_ID of this volume object.

Return an HRESULT indicating failure or success.

3.4.5.2.33 IVdsVolume2 Methods

3.4.5.2.33.1 IVdsVolume2::GetProperties2 (Opnum 3)

The GetProperties2 method retrieves the properties of the volume that is represented by the

object exposing this interface and method.

HRESULT GetProperties2(

 [out] VDS_VOLUME_PROP2 pVolumeProperties

);

%5bMS-ERREF%5d.pdf
%5bMS-ERREF%5d.pdf

253 / 368

[MS-VDS] — v20130722
 Virtual Disk Service (VDS) Protocol

 Copyright © 2013 Microsoft Corporation.

 Release: Monday, July 22, 2013

pVolumeProperties: A pointer to a VDS_VOLUME_PROP2 (section 2.2.2.15.1.1) structure

that, if the operation is successfully completed, receives the properties of the volume.

Return Values: The method MUST return zero or a non-error HRESULT (as specified in [MS-
ERREF]) to indicate success, or return an implementation-specific nonzero error code to

indicate failure. For the HRESULT values predefined by the Virtual Disk Service Remote
Protocol, see section 2.2.3.

When the server receives this message, it MUST validate the following parameter:

Verify that pVolumeProperties is not NULL.

The server MUST populate the VDS_VOLUME_PROP2 structure that pVolumeProperties references
with the properties of the volume, and return an HRESULT indicating failure or success.

3.4.5.2.34 IVdsVolumeMF Methods

3.4.5.2.34.1 IVdsVolumeMF::GetFileSystemProperties (Opnum 3)

The GetFileSystemProperties method returns property details about the file system on the
current volume.

HRESULT GetFileSystemProperties(

 [out] VDS_FILE_SYSTEM_PROP* pFileSystemProp

);

pFileSystemProp: A pointer to a VDS_FILE_SYSTEM_PROP structure that, if the operation is

successfully completed, receives the properties of the file system on the volume.

Return Values: The method MUST return zero or a non-error HRESULT (as specified in [MS-
ERREF]) to indicate success, or return an implementation-specific nonzero error code to
indicate failure. For the HRESULT values predefined by the Virtual Disk Service Remote

Protocol, see section 2.2.3.

When the server receives this message, it MUST validate the following parameter:

Verify that pFileSystemProp is not NULL.

The server MUST populate the VDS_FILE_SYSTEM_PROP structure (as specified in section
2.2.1.3.17) that pFileSystemProp references by using the properties of the file system on the
volume. The server MUST then return an HRESULT indicating failure or success.

If the volume is associated with a removable device and there is no media present, then this

method MUST return VDS_E_NO_MEDIA.

If the volume is in the OFFLINE state, then this method SHOULD<108> return
VDS_E_VOLUME_NOT_ONLINE.

If the user level access granted to the thread that makes this method call does not have sufficient

privileges, then this method MUST convert the Win32 error ERROR_ACCESS_DENIED to an HRESULT
and return the result to the calling application.

3.4.5.2.34.2 IVdsVolumeMF::Format (Opnum 4)

The Format method formats a file system on the current volume.

%5bMS-DTYP%5d.pdf
%5bMS-ERREF%5d.pdf
%5bMS-ERREF%5d.pdf
%5bMS-ERREF%5d.pdf
%5bMS-ERREF%5d.pdf

254 / 368

[MS-VDS] — v20130722
 Virtual Disk Service (VDS) Protocol

 Copyright © 2013 Microsoft Corporation.

 Release: Monday, July 22, 2013

HRESULT Format(

 [in] VDS_FILE_SYSTEM_TYPE type,

 [in, string] WCHAR* pwszLabel,

 [in] DWORD dwUnitAllocationSize,

 [in] long bForce,

 [in] long bQuickFormat,

 [in] long bEnableCompression,

 [out] IVdsAsync** ppAsync

);

type: A file system type that is enumerated by VDS_FILE_SYSTEM_TYPE. Clients that format

by using file systems that are not enumerated by VDS_FILE_SYSTEM_TYPE may use the
IVdsVolumeMF2::FormatEx method.

pwszLabel: A null-terminated Unicode label to assign to the new file system. The maximum
label size is file system-dependent.

dwUnitAllocationSize: The size, in bytes, of the allocation unit for the file system. The value
MUST be a power of 2. The allocation unit range is file system-dependent.

bForce: A Boolean that determines whether the format is forced, even if the volume is in use.

bQuickFormat: A Boolean that determines whether a file system is quick format. A quick format
does not verify each sector on the volume.

bEnableCompression: A Boolean that determines whether a file system is created with
compression enabled.<109>

ppAsync: A pointer to an IVdsAsync interface that, if the operation is successfully completed,
receives the IVdsAsync interface to monitor and control this operation. Callers MUST release
the interface when they are done with it.

Return Values: The method MUST return zero or a non-error HRESULT (as specified in [MS-

ERREF]) to indicate success, or return an implementation-specific nonzero error code to
indicate failure. For the HRESULT values predefined by the Virtual Disk Service Remote
Protocol, see section 2.2.3.

When the server receives this message, it MUST validate the following parameter:

Verify that ppAsync is not NULL.

If parameter validation fails, the server MUST fail the operation immediately, returning a vendor-
specific error as its response to the client.

The server MUST perform the following:

Create a new async object implementing the IVdsAsync interface with an output type of

VDS_ASYNCOUT_FORMAT and set the pointer referenced by ppAsync to the interface.

Return an HRESULT indicating failure or success. Any errors encountered up through this point in

processing the FormatPartition operation are returned in this HRESULT.

The server MUST perform the following. Errors generated in this sequence of steps are returned in
the pHrResult parameter to the IVdsAsync::Wait or IVdsAsyncQueryStatus methods.

%5bMS-ERREF%5d.pdf
%5bMS-ERREF%5d.pdf

255 / 368

[MS-VDS] — v20130722
 Virtual Disk Service (VDS) Protocol

 Copyright © 2013 Microsoft Corporation.

 Release: Monday, July 22, 2013

Attempt to get exclusive access to the volume. If the server fails to get exclusive access to the

volume, and the bForce parameter is not set to a non-zero value, then the server MUST return

VDS_E_DEVICE_IN_USE.

If the operating system is unable to format the device using the file system type specified using

the type parameter, then this method MUST return VDS_E_INCOMPATIBLE_FILE_SYSTEM.

If the target device\media is write-protected, then this method MUST return

VDS_E_MEDIA_WRITE_PROTECTED.

If the pwszLabel parameter is incompatible with the file system type that is specified using the

type parameter, then the server MUST return VDS_E_BAD_LABEL.

If the specified file system type has a minimum volume size requirement, and that requirement is

not met, then the server MUST return VDS_E_VOLUME_TOO_SMALL.

If the specified file system type has a maximum volume size requirement, and that requirement

is not met, then the server MUST return VDS_E_VOLUME_TOO_BIG.

If the specified file system type has a minimum or maximum cluster size requirement, and that

requirement is not met, then the server MUST return VDS_E_CLUSTER_SIZE_TOO_SMALL or
VDS_E_CLUSTER_SIZE_TOO_BIG, respectively.

If the specified file system type has a maximum cluster count requirement, and that requirement

is not met, then the server MUST return VDS_E_CLUSTER_COUNT_BEYOND_32BITS.

The server MUST update the percentage completed value periodically during the following sequence,
and send progress notifications to all clients. How often the percentage completed is updated, and at

what point in the sequence, is implementation specific. To send progress notifications to the clients:

For each callback object registered in the list of callback objects, call the callback object's

IVdsAdviseSink::OnNotify (Opnum 3) method with a VDS_NOTIFICATION structure with
the following attributes:

objectType member is VDS_NTT_FILE_SYSTEM.

FileSystem member is a VDS_FILE_SYSTEM_NOTIFICATION with the following

attributes:

ulEvent is VDS_NF_FILE_SYSTEM_FORMAT_PROGRESS.

volumeId is the VDS_OBJECT_ID of the volume object

dwPercentCompleted is the percentage completed value.

The server MUST then perform the following in sequence. Errors generated in this sequence of steps
are returned in the pHrResult parameter to the IVdsAsync::Wait or IVdsAsyncQueryStatus methods.

Format the volume following the parameters specified to the method.

For each callback object registered in the list of callback objects, call the callback object's

IVdsAdviseSink::OnNotify() method with a VDS_NOTIFICATION structure with the following
attributes:

objectType member is VDS_NTT_VOLUME.

Volume member is a VDS_VOLUME_NOTIFICATION with the following attributes:

256 / 368

[MS-VDS] — v20130722
 Virtual Disk Service (VDS) Protocol

 Copyright © 2013 Microsoft Corporation.

 Release: Monday, July 22, 2013

ulEvent is VDS_NF_VOLUME_MODIFY.

volumeId is the VDS_OBJECT_ID of this volume object.

If TRUE is specified for bEnableCompression and the file system being formatted supports

compression, compress the file system after formatting is complete.<110>

Set the return code in the async object to an HRESULT indicating failure or success.

If the server tried to compress the file system after formatting but failed, the return code

MUST be set to VDS_S_VOLUME_COMPRESS_FAILED (HRESULT of 0x00042443).

If the task completed successfully, set the percentage completed value in the async object to

100.

Set the signal state in the async object to TRUE.

3.4.5.2.34.3 IVdsVolumeMF::AddAccessPath (Opnum 5)

The AddAccessPath method adds an access path to the current volume.<111>

HRESULT AddAccessPath(

 [in, max_is(MAX_PATH - 1), string]

 WCHAR* pwszPath

);

pwszPath: A null-terminated Unicode string that indicates the access path. A trailing backslash

MUST be included if the access path is a drive letter (for example, "F:\").

Return Values: The method MUST return zero or a non-error HRESULT (as specified in [MS-
ERREF]) to indicate success, or return an implementation-specific nonzero error code to
indicate failure. For the HRESULT values predefined by the Virtual Disk Service Remote
Protocol, see section 2.2.3.

When the server receives this message, it MUST validate the following parameter:

Verify that pwszPath is not NULL.

The server MUST then perform the following in sequence:<112>

Add the access path to the volume.

If the server determines that a mounted folder path name was added to the volume, for each

callback object that is registered in the list of callback objects, the server MUST call the callback

object's IVdsAdviseSink::OnNotify() method by using a VDS_NOTIFICATION structure that
has the following attributes:

objectType member is VDS_NTT_MOUNT_POINT.

MountPoint member is a VDS_MOUNT_POINT_NOTIFICATION with the following

attributes:

ulEvent is VDS_NF_MOUNT_POINTS_CHANGE.

volumeId is the VDS_OBJECT_ID of the volume object whose mount point was

assigned.<113>

%5bMS-ERREF%5d.pdf
%5bMS-ERREF%5d.pdf

257 / 368

[MS-VDS] — v20130722
 Virtual Disk Service (VDS) Protocol

 Copyright © 2013 Microsoft Corporation.

 Release: Monday, July 22, 2013

If the server determines that a drive letter was added to the volume, for each callback object

that is registered in the list of callback objects, the server MUST call the callback object's

IVdsAdviseSink::OnNotify() method by using a VDS_NOTIFICATION structure that has the

following attributes:

objectType member is VDS_NTT_DRIVE_LETTER.

Letter member is a VDS_DRIVE_LETTER_NOTIFICATION that has the following

attributes:

ulEvent is VDS_NF_DRIVE_LETTER_ASSIGN.

wcLetter is the drive letter that was assigned to the volume.

volumeId is the VDS_OBJECT_ID of the volume object whose drive letter was assigned.

Return an HRESULT indicating failure or success.

3.4.5.2.34.4 IVdsVolumeMF::QueryAccessPaths (Opnum 6)

The QueryAccessPaths method returns a list of access paths and a drive letter as a single case-

insensitive Unicode character, if one exists, for the current volume.

HRESULT QueryAccessPaths(

 [out, string, size_is(,*plNumberOfAccessPaths)]

 LPWSTR** pwszPathArray,

 [out] long* plNumberOfAccessPaths

);

pwszPathArray: A pointer to an array of strings that, if the operation is successfully completed,

receives the array of access paths.

plNumberOfAccessPaths: A pointer to a variable that, if the operation is successfully

completed, receives the total number of elements returned in pwszPathArray.

Return Values: The method MUST return zero or a non-error HRESULT (as specified in [MS-
ERREF]) to indicate success, or return an implementation-specific nonzero error code to

indicate failure. For the HRESULT values predefined by the Virtual Disk Service Remote
Protocol, see section 2.2.3.

When the server receives this message, it MUST validate the following parameters:

Verify that pwszPathArray is not NULL.

Verify that plNumberOfAccessPaths is not NULL.

If parameter validation fails, the server MUST fail the operation immediately, returning a vendor-

specific error as its response to the client.

The server MUST point pwszPathArray to an array of strings that contains the access paths to the

volume, point plNumberOfAccessPaths to the size of the array, and return an HRESULT indicating
failure or success.

3.4.5.2.34.5 IVdsVolumeMF::QueryReparsePoints (Opnum 7)

The QueryReparsePoints method returns all reparse points for the current volume.

%5bMS-ERREF%5d.pdf
%5bMS-ERREF%5d.pdf

258 / 368

[MS-VDS] — v20130722
 Virtual Disk Service (VDS) Protocol

 Copyright © 2013 Microsoft Corporation.

 Release: Monday, July 22, 2013

HRESULT QueryReparsePoints(

 [out, size_is(,*plNumberOfReparsePointProps)]

 VDS_REPARSE_POINT_PROP** ppReparsePointProps,

 [out] long* plNumberOfReparsePointProps

);

ppReparsePointProps: A pointer to an array of VDS_REPARSE_POINT_PROP structures

that, if the operation is successfully completed, receives the array of reparse point properties.

plNumberOfReparsePointProps: A pointer to a variable that, if the operation is successfully
completed, receives the total number of elements returned in ppReparsePointPorps.

Return Values: The method MUST return zero or a non-error HRESULT (as specified in [MS-
ERREF]) to indicate success, or return an implementation-specific nonzero error code to
indicate failure. For the HRESULT values predefined by the Virtual Disk Service Remote
Protocol, see section 2.2.3.

When the server receives this message, it MUST validate the following parameters:

Verify that ppReparsePointProps is not NULL.

Verify that plNumberOfReparsePointProps is not NULL.

The server MUST point ppReparsePointProps to an array of VDS_REPARSE_POINT_PROP
structures that contain information about each reparse point on the volume, point
plNumberOfReparsePointProps to the size of the array, and return an HRESULT indicating failure
or success.

3.4.5.2.34.6 IVdsVolumeMF::DeleteAccessPath (Opnum 8)

The DeleteAccessPath method removes the access path from the current volume.

HRESULT DeleteAccessPath(

 [in, max_is(MAX_PATH - 1), string]

 WCHAR* pwszPath,

 [in] long bForce

);

pwszPath: A Unicode string indicating the access path, for example,

"C:\myfolder\mydocuments".

bForce: A Boolean that determines whether an access is deleted unconditionally, even if the
volume is in use. This parameter is meaningful only when the access path is a drive letter.

Return Values: The method MUST return zero or a non-error HRESULT (as specified in [MS-
ERREF]) to indicate success, or return an implementation-specific nonzero error code to

indicate failure. For the HRESULT values predefined by the Virtual Disk Service Remote
Protocol, see section 2.2.3.

When the server receives this message, it MUST validate the following parameters:

Verify that pwszPath is not NULL.

Verify that the access path that pwszPath specifies is an access point to the volume.

%5bMS-ERREF%5d.pdf
%5bMS-ERREF%5d.pdf
%5bMS-ERREF%5d.pdf
%5bMS-ERREF%5d.pdf

259 / 368

[MS-VDS] — v20130722
 Virtual Disk Service (VDS) Protocol

 Copyright © 2013 Microsoft Corporation.

 Release: Monday, July 22, 2013

The server MUST then perform the following in sequence:<114>

Attempt to get exclusive access to the volume. If the server fails to get exclusive access to the

volume, and the bForce parameter is not set to a non-zero value, then the server MUST return

VDS_E_DEVICE_IN_USE.

Delete the access point from the volume.

If the server determines that a mount point was removed from the volume, for each callback

object that is registered in the list of callback objects, the server MUST call the callback object's
IVdsAdviseSink::OnNotify() method by using a VDS_NOTIFICATION structure that has the
following attributes:

objectType member is VDS_NTT_MOUNT_POINT.

MountPoint member is a VDS_MOUNT_POINT_NOTIFICATION with the following

attributes:

ulEvent is VDS_NF_MOUNT_POINTS_CHANGE.

volumeId is the VDS_OBJECT_ID of the volume object whose mount point was removed.

If the server determines that a drive letter was removed from the volume, for each callback

object that is registered in the list of callback objects, the server MUST call the callback object's
IVdsAdviseSink::OnNotify() method by using a VDS_NOTIFICATION structure that has the
following attributes:

objectType member is VDS_NTT_DRIVE_LETTER.

Letter member is a VDS_DRIVE_LETTER_NOTIFICATION that has the following

attributes:

ulEvent is VDS_NF_DRIVE_LETTER_FREE.

wcLetter is the drive letter that was removed from the volume.

volumeId is the VDS_OBJECT_ID of the volume object whose drive letter was removed.

Return an HRESULT indicating failure or success.

3.4.5.2.34.7 IVdsVolumeMF::Mount (Opnum 9)

The Mount method mounts a volume.

HRESULT Mount();

This method has no parameters.

Return Values: The method MUST return zero or a non-error HRESULT (as specified in [MS-
ERREF]) to indicate success, or return an implementation-specific nonzero error code to

indicate failure. For the HRESULT values predefined by the Virtual Disk Service Remote
Protocol, see section 2.2.3.

When the server receives the message, it MUST perform the following in sequence:

If the volume was dismounted permanently, bring the volume online.

%5bMS-ERREF%5d.pdf
%5bMS-ERREF%5d.pdf

260 / 368

[MS-VDS] — v20130722
 Virtual Disk Service (VDS) Protocol

 Copyright © 2013 Microsoft Corporation.

 Release: Monday, July 22, 2013

Mount the volume.

Return an HRESULT indicating failure or success.

3.4.5.2.34.8 IVdsVolumeMF::Dismount (Opnum 10)

The Dismount method dismounts a mounted volume.

HRESULT Dismount(

 [in] long bForce,

 [in] long bPermanent

);

bForce: A Boolean that determines whether the current volume is dismounted unconditionally,

even if the volume is in use.

bPermanent: A Boolean that determines whether a volume MUST be dismounted permanently

by taking the volume offline after dismounting it.

Return Values: The method MUST return zero or a non-error HRESULT (as specified in [MS-
ERREF]) to indicate success, or return an implementation-specific nonzero error code to
indicate failure. For the HRESULT values predefined by the Virtual Disk Service Remote
Protocol, see section 2.2.3.

When the server receives this message, it MUST validate the following:

Attempt to get exclusive access to the volume. If the server fails to get exclusive access to the

volume, and the bForce parameter is not set to a non-zero value, then the server MUST return
VDS_E_DEVICE_IN_USE.

Verify that the volume is not currently temporarily dismounted.

If bPermanent is set, verify that the volume supports permanent dismount by checking the

volume flag VDS_VF_PERMANENT_DISMOUNT_SUPPORTED.

If bPermanent is set, verify that the volume does not have any access paths.

If bPermanent is not set, verify that the volume is not currently permanently dismounted.

The server MUST then perform the following in sequence:

Dismount the volume.

If bForce is set, force the dismount, even if the volume is in use.

If bPermanent is set, take the volume offline.<115>

Return an HRESULT indicating failure or success.

3.4.5.2.34.9 IVdsVolumeMF::SetFileSystemFlags (Opnum 11)

The SetFileSystemFlags method sets the file system flags.

HRESULT SetFileSystemFlags(

 [in] unsigned long ulFlags

);

%5bMS-ERREF%5d.pdf
%5bMS-ERREF%5d.pdf

261 / 368

[MS-VDS] — v20130722
 Virtual Disk Service (VDS) Protocol

 Copyright © 2013 Microsoft Corporation.

 Release: Monday, July 22, 2013

ulFlags: Callers MUST set the VDS_FPF_COMPRESSED flag.

Return Values: The method MUST return zero or a non-error HRESULT (as specified in [MS-
ERREF]) to indicate success, or return an implementation-specific nonzero error code to
indicate failure. For the HRESULT values predefined by the Virtual Disk Service Remote

Protocol, see section 2.2.3.

When the server receives this message, it MUST validate the following:

Verify that ulFlags does not contain any flags other than VDS_FPF_COMPRESSED.

The server MUST set the file system flags specified by ulFlags and return an HRESULT indicating
failure or success.

3.4.5.2.34.10 IVdsVolumeMF::ClearFileSystemFlags (Opnum 12)

The ClearFileSystemFlags method clears the file system flags.

HRESULT ClearFileSystemFlags(

 [in] unsigned long ulFlags

);

ulFlags: Callers MUST clear the VDS_FPF_COMPRESSED flag.

Return Values: The method MUST return zero or a non-error HRESULT (as specified in [MS-
ERREF]) to indicate success, or return an implementation-specific nonzero error code to

indicate failure. For the HRESULT values predefined by the Virtual Disk Service Remote
Protocol, see section 2.2.3.

When the server receives this message, it MUST validate the following parameter:

Verify that ulFlags does not contain any flags other than VDS_FPF_COMPRESSED.

The server MUST clear the file system flags that ulFlags specifies and return an HRESULT indicating
failure or success.

3.4.5.2.35 IVdsVolumeMF2 Methods

3.4.5.2.35.1 IVdsVolumeMF2::GetFileSystemTypeName (Opnum 3)

The GetFileSystemTypeName method retrieves the name of the file system on a volume.

HRESULT GetFileSystemTypeName(

 [out, string] WCHAR** ppwszFileSystemTypeName

);

ppwszFileSystemTypeName: A pointer that, if the operation is successfully completed,

receives a null-terminated Unicode string with the file system name.

Return Values: The method MUST return zero or a non-error HRESULT (as specified in [MS-
ERREF]) to indicate success, or return an implementation-specific nonzero error code to
indicate failure. For the HRESULT values predefined by the Virtual Disk Service Remote
Protocol, see section 2.2.3.

When the server receives this message, it MUST validate the following parameter:

%5bMS-ERREF%5d.pdf
%5bMS-ERREF%5d.pdf
%5bMS-ERREF%5d.pdf
%5bMS-ERREF%5d.pdf
%5bMS-ERREF%5d.pdf
%5bMS-ERREF%5d.pdf

262 / 368

[MS-VDS] — v20130722
 Virtual Disk Service (VDS) Protocol

 Copyright © 2013 Microsoft Corporation.

 Release: Monday, July 22, 2013

Verify that ppwszFileSystemTypeName is not NULL.

The server MUST point ppwszFileSystemTypeName to a string that contains the name of the file
system on the volume, and then return an HRESULT indicating failure or success.

3.4.5.2.35.2 IVdsVolumeMF2::QueryFileSystemFormatSupport (Opnum 4)

The QueryFileSystemFormatSupport method retrieves the properties of the file systems that are
supported for formatting a volume.

HRESULT QueryFileSystemFormatSupport(

 [out, size_is(,*plNumberOfFileSystems)]

 VDS_FILE_SYSTEM_FORMAT_SUPPORT_PROP** ppFileSystemSupportProps,

 [out] long* plNumberOfFileSystems

);

ppFileSystemSupportProps: A pointer to an array of

VDS_FILE_SYSTEM_FORMAT_SUPPORT_PROP structures which, if the operation
completes successfully, receives an array of properties of each supported file-system.

plNumberOfFileSystems: A pointer to a variable which, if the operation completes successfully,

receives the total number of elements returned in ppFileSystemSupportProps.

Return Values: The method MUST return zero or a non-error HRESULT (as specified in [MS-
ERREF]) to indicate success, or return an implementation-specific nonzero error code to
indicate failure. For the HRESULT values predefined by the Virtual Disk Service Remote
Protocol, see section 2.2.3.

When the server receives this message, it MUST validate the following parameters:

Verify that ppFileSystemSupportProps is not NULL.

Verify that plNumberOfFileSystems is not NULL.

The server MUST point ppFileSystemSupportProps to an array of
VDS_FILE_SYSTEM_FORMAT_SUPPORT_PROP structures that contains information about each
file system that is supported for formatting the volume, point plNumberOfFileSystems to the size
of the array, and return an HRESULT indicating failure or success.

3.4.5.2.35.3 IVdsVolumeMF2::FormatEx (Opnum 5)

The FormatEx method formats a file system on a volume.

HRESULT FormatEx(

 [in, unique, string] WCHAR* pwszFileSystemTypeName,

 [in] unsigned short usFileSystemRevision,

 [in] unsigned long ulDesiredUnitAllocationSize,

 [in, unique, string] WCHAR* pwszLabel,

 [in] long bForce,

 [in] long bQuickFormat,

 [in] long bEnableCompression,

 [out] IVdsAsync** ppAsync

);

%5bMS-ERREF%5d.pdf
%5bMS-ERREF%5d.pdf

263 / 368

[MS-VDS] — v20130722
 Virtual Disk Service (VDS) Protocol

 Copyright © 2013 Microsoft Corporation.

 Release: Monday, July 22, 2013

pwszFileSystemTypeName: A null-terminated Unicode string that contains the name of the file

systems to format the volume with.

usFileSystemRevision: A 16-bit, binary-coded decimal number that indicates the revision of the
file system, if any. The first two (most significant) digits (8-bits) indicate the major revision,

and the last two (least significant) digits (8-bits) indicate the minor revision.

Note 0x0250 represents revision 2.50.

ulDesiredUnitAllocationSize: The size, in bytes, of the allocation unit for the file system. The
value MUST be a power of 2. If the value is 0, a default allocation unit that is determined by
the file system type is used. The allocation unit range is file system-dependent.

pwszLabel: A null-terminated Unicode string to assign to the new file system. The maximum
label size is file system-dependent.

bForce: A Boolean that determines whether a file system format is forced, even if the volume is
in use.

bQuickFormat: A Boolean that determines whether a file system is quick formatted. A quick
format does not verify each sector on the volume.

bEnableCompression: A Boolean that determines whether a file system is created with
compression enabled.<116>

ppAsync: A pointer to an IVdsAsync interface that, if the operation is successfully completed,
receives the IVdsAsync interface to monitor and control this operation. Callers MUST release
the interface when they are done with it.

Return Values: The method MUST return zero or a non-error HRESULT (as specified in [MS-
ERREF]) to indicate success, or return an implementation-specific nonzero error code to
indicate failure. For the HRESULT values predefined by the Virtual Disk Service Remote
Protocol, see section 2.2.3.

When the server receives this message, it MUST validate the following parameter:

Verify that ppAsync is not NULL.

The server MUST perform the following:

Create a new async object that implements the IVdsAsync interface with an output type of

VDS_ASYNCOUT_FORMAT and then set the pointer that ppAsync references to the interface.

Return an HRESULT indicating failure or success. Any errors encountered up through this point in

processing the operation are returned in this HRESULT.

The server MUST perform the following. Errors generated in this sequence of steps are returned in
the pHrResult parameter to the IVdsAsync::Wait or IVdsAsyncQueryStatus methods.

Attempt to get exclusive access to the volume. If the server fails to get exclusive access to the

volume, and the bForce parameter is not set to a non-zero value, then the server MUST return

VDS_E_DEVICE_IN_USE.

If the operating system is unable to format the device by using the file system type that is

specified using the type parameter, then this method MUST return
VDS_E_INCOMPATIBLE_FILE_SYSTEM.

%5bMS-ERREF%5d.pdf
%5bMS-ERREF%5d.pdf

264 / 368

[MS-VDS] — v20130722
 Virtual Disk Service (VDS) Protocol

 Copyright © 2013 Microsoft Corporation.

 Release: Monday, July 22, 2013

If the target device\media is write-protected, then this method MUST return

VDS_E_MEDIA_WRITE_PROTECTED.

If the pwszLabel parameter is incompatible with the file system type specified using the type

parameter, then the server MUST return VDS_E_BAD_LABEL.

If the specified file system type does not support quick formatting, then the server MUST return

VDS_E_CANT_QUICK_FORMAT.

If the specified file system type has a minimum volume size requirement, and that requirement is

not met, then the server MUST return VDS_E_VOLUME_TOO_SMALL.

If the specified file system type has a maximum volume size requirement, and that requirement

is not met, then the server MUST return VDS_E_VOLUME_TOO_BIG.

If the specified file system type has a minimum or maximum cluster size requirement, and that

requirement is not met, then the server MUST return VDS_E_CLUSTER_SIZE_TOO_SMALL or
VDS_E_CLUSTER_SIZE_TOO_BIG, respectively.

If the specified file system type has a maximum cluster count requirement, and that requirement

is not met, then the server MUST return VDS_E_CLUSTER_COUNT_BEYOND_32BITS.

The server MUST update the percentage completed value periodically during the following sequence,
and send progress notifications to all clients. How often the percentage completed is updated, and at
what point in the sequence, is implementation specific. To send progress notifications to the clients:

For each callback object registered in the list of callback objects, call the callback object's

IVdsAdviseSink::OnNotify (Opnum 3) method with a VDS_NOTIFICATION structure with the

following attributes:

objectType member is VDS_NTT_FILE_SYSTEM.

FileSystem member is a VDS_FILE_SYSTEM_NOTIFICATION with the following

attributes:

ulEvent is VDS_NF_FILE_SYSTEM_FORMAT_PROGRESS.

volumeId is the VDS_OBJECT_ID of the volume object

dwPercentCompleted is the percentage completed value.

The server MUST then perform the following in sequence:

Format the volume following the parameters specified to the method.

For each callback object that is registered in the list of callback objects, call the callback object's

IVdsAdviseSink::OnNotify() method by using a VDS_NOTIFICATION structure that has the
following attributes:

objectType member is VDS_NTT_VOLUME.

volume member is a VDS_VOLUME_NOTIFICATION with the following attributes:

ulEvent is VDS_NF_VOLUME_MODIFY.

volumeId is the VDS_OBJECT_ID of this volume object.

265 / 368

[MS-VDS] — v20130722
 Virtual Disk Service (VDS) Protocol

 Copyright © 2013 Microsoft Corporation.

 Release: Monday, July 22, 2013

If TRUE is specified for bEnableCompression and the file system being formatted supports

compression, compress the file system after formatting is complete.<117>

Set the return code in the async object to an HRESULT indicating failure or success.

If the server tried to compress the file systems after formatting but failed, the return code

MUST be set to VDS_S_VOLUME_COMPRESS_FAILED (HRESULT of 0x00042443).

If the task completed successfully, set the percentage completed value in the async object to

100.

Set the signal state in the async object to TRUE.

3.4.5.2.36 IVdsVolumeMF3 Methods

3.4.5.2.36.1 IVdsVolumeMF3::QueryVolumeGuidPathnames (Opnum 3)

The QueryVolumeGuidPathnames method returns a volume's volume GUID path names.

HRESULT QueryVolumeGuidPathnames(

 [out, string, size_is(,*pulNumberOfPaths)]

 LPWSTR** pwszPathArray,

 [out] ULONG* pulNumberOfPaths

);

pwszPathArray: Returns an array of null-terminated Unicode strings; one string for each
volume GUID path name associated with the volume.

pulNumberOfPaths: Returns the number of volume GUID path names returned in
pwszPathArray.

Return Values: The method MUST return zero or a non-error HRESULT (as specified in [MS-
ERREF]) to indicate success, or return an implementation-specific nonzero error code to

indicate failure. For the HRESULT values predefined by the Virtual Disk Service Remote
Protocol, see section 2.2.3.

When the server receives this message, it MUST validate the following parameter:

Verify that pwszPathArray is not NULL.

Verify that pulNumberOfPaths is not NULL.

The server MUST then perform the following:

Allocate a buffer to hold the volume GUID path names associated with the volume, and initialize

pwszPathArray with the address of the buffer.

Populate the output buffer with the volume GUID path names. Set the value of

pulNumberOfPaths to the number of the volume GUID path names being returned.

Return an HRESULT indicating failure or success.

3.4.5.2.36.2 IVdsVolumeMF3::FormatEx2 (Opnum 4)

The FormatEx2 method formats a file system on a volume.

%5bMS-DTYP%5d.pdf
%5bMS-ERREF%5d.pdf
%5bMS-ERREF%5d.pdf

266 / 368

[MS-VDS] — v20130722
 Virtual Disk Service (VDS) Protocol

 Copyright © 2013 Microsoft Corporation.

 Release: Monday, July 22, 2013

HRESULT FormatEx2(

 [in, unique, string] LPWSTR pwszFileSystemTypeName,

 [in] USHORT usFileSystemRevision,

 [in] ULONG ulDesiredUnitAllocationSize,

 [in, unique, string] LPWSTR pwszLabel,

 [in] DWORD Options,

 [out] IVdsAsync** ppAsync

);

pwszFileSystemTypeName: A null-terminated Unicode string that contains the name of the file

systems to format the volume with.

usFileSystemRevision: A 16-bit, binary-coded decimal number that indicates the revision of the
file system, if any. The first two (most significant) digits (8 bits) indicate the major revision,
and the last two (least significant) digits (8 bits) indicate the minor revision. For example,
0x0250 represents revision 2.50.

ulDesiredUnitAllocationSize: The size, in bytes, of the allocation unit for the file system. The

value MUST be a power of 2. If the value is 0, a default allocation unit that is determined by
the file system type is used. The allocation unit range is file system-dependent.

pwszLabel: A null-terminated Unicode string to assign to the new file system. The maximum
label size is file system-dependent.

Options: The combination of any values, by using a bitwise OR operator, that are defined in the
VDS_FORMAT_OPTION_FLAGS enumeration.

ppAsync: A pointer to an IVdsAsync interface that, if the operation is successfully completed,

receives the IVdsAsync interface to monitor and control this operation. Callers MUST release
the interface when they are done with it.

Return Values: The method MUST return zero or a non-error HRESULT (as specified in [MS-
ERREF]) to indicate success, or return an implementation-specific nonzero error code to

indicate failure. For the HRESULT values predefined by the Virtual Disk Service Remote
Protocol, see section 2.2.3.

When the server receives this message, it MUST validate the following parameter:

Verify that ppAsync is not NULL.

Create a new async object that implements the IVdsAsync interface with an output type of

VDS_ASYNCOUT_FORMAT, and then set the pointer that ppAsync references to the interface.

Return an HRESULT indicating failure or success. Any errors encountered up through this point in

processing the operation are returned in this HRESULT.

The server MUST then perform the following. Errors generated in this sequence of steps are
returned in the pHrResult parameter to the IVdsAsync::Wait or IVdsAsyncQueryStatus methods.

Attempt to get exclusive access to the volume. If the server fails to get exclusive access to the

volume, and the VDS_FSOF_FORCE flag in the Options parameter is not set to true, then the
server MUST return VDS_E_DEVICE_IN_USE.

If the operating system is unable to format the device using the file system type specified using

the type parameter, then this method MUST return VDS_E_INCOMPATIBLE_FILE_SYSTEM.

%5bMS-DTYP%5d.pdf
%5bMS-ERREF%5d.pdf
%5bMS-ERREF%5d.pdf

267 / 368

[MS-VDS] — v20130722
 Virtual Disk Service (VDS) Protocol

 Copyright © 2013 Microsoft Corporation.

 Release: Monday, July 22, 2013

If the target device\media is write-protected, then this method MUST return

VDS_E_MEDIA_WRITE_PROTECTED.

If the pwszLabel parameter is incompatible with the file system type specified using the type

parameter, then the server MUST return VDS_E_BAD_LABEL.

If the specified file system type does not support quick formatting, then the server MUST return

VDS_E_CANT_QUICK_FORMAT.

If the specified file system type has a minimum volume size requirement, and that requirement is

not met, then the server MUST return VDS_E_VOLUME_TOO_SMALL.

If the specified file system type has a maximum volume size requirement, and that requirement

is not met, then the server MUST return VDS_E_VOLUME_TOO_BIG.

If the specified file system type has a minimum or maximum cluster size requirement, and that

requirement is not met, then the server MUST return VDS_E_CLUSTER_SIZE_TOO_SMALL or
VDS_E_CLUSTER_SIZE_TOO_BIG, respectively.

If the specified file system type has a maximum cluster count requirement, and that requirement

is not met, then the server MUST return VDS_E_CLUSTER_COUNT_BEYOND_32BITS.

The server MUST update the percentage completed value periodically during the following sequence,
and send progress notifications to all clients. How often the percentage completed is updated, and at
what point in the sequence, is implementation specific. To send progress notifications to the clients:

For each callback object registered in the list of callback objects, call the callback object's

IVdsAdviseSink::OnNotify (Opnum 3) method with a VDS_NOTIFICATION structure with the

following attributes:

objectType member is VDS_NTT_FILE_SYSTEM.

FileSystem member is a VDS_FILE_SYSTEM_NOTIFICATION with the following

attributes:

ulEvent is VDS_NF_FILE_SYSTEM_FORMAT_PROGRESS.

volumeId is the VDS_OBJECT_ID of the volume object

dwPercentCompleted is the percentage completed value.

The server MUST perform the following in sequence:

Format the volume following the parameters specified to the method.

For each callback object that is registered in the list of callback objects, call the callback object's

IVdsAdviseSink::OnNotify (Opnum 3) method by using a VDS_NOTIFICATION structure that
has the following attributes:

The objectType member is VDS_NTT_VOLUME.

The Volume member is a VDS_VOLUME_NOTIFICATION with the following attributes:

ulEvent is VDS_NF_VOLUME_MODIFY.

volumeId is the VDS_OBJECT_ID of this volume object.

268 / 368

[MS-VDS] — v20130722
 Virtual Disk Service (VDS) Protocol

 Copyright © 2013 Microsoft Corporation.

 Release: Monday, July 22, 2013

If VDS_FSOF_COMPRESSION is specified and the file system being formatted supports

compression, compress the file system after formatting is complete.<118>

Set the return code in the async object to an HRESULT indicating failure or success.

If the server tried to compress the file systems after formatting but failed, the return code

MUST be set to VDS_S_VOLUME_COMPRESS_FAILED (HRESULT of 0x00042443).

If the task completed successfully, set the percentage-completed value in the async object to

100.

Set the signal state in the async object to TRUE.

3.4.5.2.36.3 IVdsVolumeMF3::OfflineVolume (Opnum 5)

The OfflineVolume method offlines a volume. An offline volume will fail data IO. The volume may
be opened for configuration.

HRESULT OfflineVolume();

This method has no parameters.

Return Values: The method MUST return zero or a non-error HRESULT (as specified in [MS-
ERREF]) to indicate success, or return an implementation-specific nonzero error code to
indicate failure. For the HRESULT values predefined by the Virtual Disk Service Remote
Protocol, see section 2.2.3.

When the server receives this message, it MUST put the volume into the offline state.

3.4.5.2.37 IVdsVolumeShrink Methods

3.4.5.2.37.1 IVdsVolumeShrink::QueryMaxReclaimableBytes (Opnum 3)

The QueryMaxReclaimableBytes method retrieves the maximum number of bytes that can be
reclaimed from the current volume.

HRESULT QueryMaxReclaimableBytes(

 [out] ULONGLONG* pullMaxNumberOfReclaimableBytes

);

pullMaxNumberOfReclaimableBytes: A pointer to a variable that, if the operation is

successfully completed, receives the maximum number of bytes that can be reclaimed from
the current volume. This number is always a multiple of the file system cluster size, which is
in turn a multiple of the disk sector size.

Return Values: The method MUST return zero or a non-error HRESULT (as specified in [MS-
ERREF]) to indicate success, or return an implementation-specific nonzero error code to

indicate failure. For the HRESULT values predefined by the Virtual Disk Service Remote
Protocol, see section 2.2.3.

When the server receives this message, it MUST validate the following parameter:

Verify that pullMaxNumberOfReclaimableBytes is not NULL.

%5bMS-DTYP%5d.pdf
%5bMS-ERREF%5d.pdf
%5bMS-ERREF%5d.pdf
%5bMS-ERREF%5d.pdf
%5bMS-ERREF%5d.pdf

269 / 368

[MS-VDS] — v20130722
 Virtual Disk Service (VDS) Protocol

 Copyright © 2013 Microsoft Corporation.

 Release: Monday, July 22, 2013

The server MUST set values that pullMaxNumberOfReclaimableBytes references with the
maximum number of bytes that can be reclaimed from the volume and then return an HRESULT

indicating failure or success.

3.4.5.2.37.2 IVdsVolumeShrink::Shrink (Opnum 4)

The Shrink method shrinks the volume and all plexes, and then returns the released extents. The
Shrink method compacts the files toward the beginning of the volume, creating free space at the
end of the volume. The Shrink method also truncates the file system, reducing its size, and then
truncates the partition or dynamic volume.

HRESULT Shrink(

 [in] ULONGLONG ullDesiredNumberOfReclaimableBytes,

 [in] ULONGLONG ullMinNumberOfReclaimableBytes,

 [out] IVdsAsync** ppAsync

);

ullDesiredNumberOfReclaimableBytes: The desired number of bytes to be reclaimed from
the volume. The method SHOULD attempt to reclaim the desired number of bytes as specified

by this parameter. If it is unable to do so, it SHOULD attempt to reclaim a size smaller than
ullDesiredNumberOfReclaimableBytes but greater than or equal to
ullMinNumberOfReclaimableBytes. Additionally ullMinNumberOfReclaimableBytes
MUST be at least 1048576 bytes (1 MB). The actual number of bytes reclaimed is always a
multiple of the file system cluster size, which is in turn a multiple of the disk sector size.

ullMinNumberOfReclaimableBytes: The minimum number of bytes to be reclaimed from the
volume. If the method cannot reclaim at least the minimum number of bytes as specified by

this parameter, the method MUST fail and MUST NOT reclaim any bytes.

ppAsync: A pointer to an IVdsAsync interface that, if the operation is successfully completed,
receives the IVdsAsync interface to monitor and control this operation. Callers MUST release
the interface when they are done with it.

Return Values: The method MUST return zero or a non-error HRESULT (as specified in [MS-
ERREF]) to indicate success, or return an implementation-specific nonzero error code to

indicate failure. For the HRESULT values predefined by the Virtual Disk Service Remote
Protocol, see section 2.2.3.

When the server receives this message, it MUST validate the following parameter:

Verify that ppAsync is not NULL.<119>

Verify that ullDesiredNumberOfReclaimableBytes is not zero.

Verify that ullDesiredNumberOfReclaimableBytes is greater than or equal to

ullMinNumberOfReclaimableBytes.

The server MUST perform the following:

Create a new async object implementing the IVdsAsync interface with an output type of

VDS_ASYNCOUT_SHRINKVOLUME and set the pointer ppAsync references to the interface.

Return an HRESULT indicating failure or success. Any errors encountered up through this point in

processing the operation are returned in this HRESULT.

%5bMS-ERREF%5d.pdf
%5bMS-ERREF%5d.pdf

270 / 368

[MS-VDS] — v20130722
 Virtual Disk Service (VDS) Protocol

 Copyright © 2013 Microsoft Corporation.

 Release: Monday, July 22, 2013

The server MUST then perform the following in sequence. Errors generated in this sequence of steps
are returned in the pHrResult parameter to the IVdsAsync::Wait or IVdsAsyncQueryStatus methods.

The file system<120> need to shrink, if the file system on the volume supports shrinking

following the parameters specified to the method.

Shrink the volume and all its plexes following the parameters specified to the method.

Release the extents that have been reclaimed and mark them as free extents.

For each callback object that is registered in the list of callback objects, call the callback object's

IVdsAdviseSink::OnNotify() method by using a VDS_NOTIFICATION structure that has the
following attributes:

objectType member is VDS_NTT_VOLUME.

Volume member is a VDS_VOLUME_NOTIFICATION with the following attributes:

ulEvent is VDS_NF_VOLUME_MODIFY.

volumeId is the VDS_OBJECT_ID of this volume object.

Set the return code in the async object to an HRESULT indicating failure or success.

If the task completed successfully, set the percentage completed value in the async object to

100.

Set the signal state in the async object to TRUE.

The server MUST update the percentage completed value periodically during the preceding

sequence. How often the percentage completed is updated, and at what point in the sequence, is
implementation-specific.

3.4.5.2.38 IVdsVolumeOnline Methods

3.4.5.2.38.1 IVdsVolumeOnline::Online (Opnum 3)

The Online method attempts to recover a dynamic disk volume that is experiencing errors or failed

redundancy. This method will attempt to bring the volume's VDS_HEALTH (section 2.2.1.2.1)
member value to VDS_H_HEALTHY.

HRESULT Online();

This method has no parameters.

Return Values: The method MUST return zero or a non-error HRESULT (as specified in [MS-

ERREF]) to indicate success, or return an implementation-specific nonzero error code to
indicate failure. For the HRESULT values predefined by the Virtual Disk Service Remote
Protocol, see section 2.2.3.

When the server receives this message, it MUST attempt to bring the volume online and then return
an HRESULT indicating failure or success.

%5bMS-ERREF%5d.pdf
%5bMS-ERREF%5d.pdf

271 / 368

[MS-VDS] — v20130722
 Virtual Disk Service (VDS) Protocol

 Copyright © 2013 Microsoft Corporation.

 Release: Monday, July 22, 2013

3.4.5.2.39 IVdsVolumePlex Methods

3.4.5.2.39.1 IVdsVolumePlex::GetProperties (Opnum 3)

The GetProperties method retrieves the properties of the volume plex that are represented by the
object exposing this interface and method.

HRESULT GetProperties(

 [out] VDS_VOLUME_PLEX_PROP* pPlexProperties

);

pPlexProperties: A pointer to a VDS_VOLUME_PLEX_PROP structure that, if the operation is

successfully completed, receives the properties of the volume plex.

Return Values: The method MUST return zero or a non-error HRESULT (as specified in [MS-

ERREF]) to indicate success, or return an implementation-specific nonzero error code to
indicate failure. For the HRESULT values predefined by the Virtual Disk Service Remote

Protocol, see section 2.2.3.

When the server receives this message, it MUST validate the following parameter:

Verify that pPlexProperties is not NULL.

The server MUST populate the VDS_VOLUME_PLEX_PROP structure that pPlexProperties

references with the properties of the volume plex, and then return an HRESULT indicating failure or
success. For information on the VDS_VOLUME_PLEX_PROP structure, see section 2.2.2.17.2.1.

3.4.5.2.39.2 IVdsVolumePlex::GetVolume (Opnum 4)

The GetVolume method retrieves the volume that the volume plex belongs to.

HRESULT GetVolume(

 [out] IVdsVolume** ppVolume

);

ppVolume: A pointer to an IVdsVolume interface that, if the operation is successfully

completed, receives the IVdsVolume interface of the volume object that the volume plex
belongs to. Callers MUST release the interface when they are done with it.

Return Values: The method MUST return zero or a non-error HRESULT (as specified in [MS-
ERREF]) to indicate success, or return an implementation-specific nonzero error code to
indicate failure. For the HRESULT values predefined by the Virtual Disk Service Remote
Protocol, see section 2.2.3.

When the server receives this message, it MUST validate the following parameter:

Verify that ppVolume is not NULL.

The server MUST point ppVolume to an IVdsVolume interface of the volume object that the
volume plex object's volume pointer refers. The server MUST then return an HRESULT indicating
failure or success.

%5bMS-ERREF%5d.pdf
%5bMS-ERREF%5d.pdf
%5bMS-ERREF%5d.pdf
%5bMS-ERREF%5d.pdf

272 / 368

[MS-VDS] — v20130722
 Virtual Disk Service (VDS) Protocol

 Copyright © 2013 Microsoft Corporation.

 Release: Monday, July 22, 2013

3.4.5.2.39.3 IVdsVolumePlex::QueryExtents (Opnum 5)

The QueryExtents method returns all extents for the current plex.

HRESULT QueryExtents(

 [out, size_is(,*plNumberOfExtents)]

 VDS_DISK_EXTENT** ppExtentArray,

 [out] long* plNumberOfExtents

);

ppExtentArray: A pointer to an array of VDS_DISK_EXTENT structures that, if the operation is

successfully completed, receives the array of disk extent properties.

plNumberOfExtents: A pointer to a variable that, if the operation is successfully completed,
receives the total number of elements in ppExtentArray.

Return Values: The method MUST return zero or a non-error HRESULT (as specified in [MS-

ERREF]) to indicate success, or return an implementation-specific nonzero error code to
indicate failure. For the HRESULT values predefined by the Virtual Disk Service Remote
Protocol, see section 2.2.3.

When the server receives this message, it MUST validate the following parameters:

Verify that ppExtentArray is not NULL.

Verify that plNumberOfExtents is not NULL.

The server MUST point ppExtentArray to an array of VDS_DISK_EXTENT structures that contain
information about each disk extent on the volume plex, point plNumberOfExtents to the size of
the array, and then return an HRESULT indicating failure or success.

For removable media drives, the server MUST set the value of diskId in the VDS_DISK_EXTENT
structure to the VDS_OBJECT_ID of the drive associated with the plex object.

For a removable media drive with no media, the server MUST return a single extent of type
VDS_DET_UNKNOWN with values of ullOffset and ullSize set to 0.

3.4.5.2.39.4 IVdsVolumePlex::Repair (Opnum 6)

The Repair method repairs a fault-tolerant volume plex by moving defective members to good

disks. Only plexes that are RAID-5, striped with parity, can be repaired with this method.

HRESULT Repair(

 [in, size_is(lNumberOfDisks)] VDS_INPUT_DISK* pInputDiskArray,

 [in] long lNumberOfDisks,

 [out] IVdsAsync** ppAsync

);

pInputDiskArray: An array of VDS_INPUT_DISK structures that describe the replacement

disks. Only diskId and ullSize SHOULD be specified in each VDS_INPUT_DISK element.
Only one new disk can be passed to this method at a time.

lNumberOfDisks: The number of elements in pInputDiskArray. Only one new disk can be
passed to this method at a time.

%5bMS-ERREF%5d.pdf
%5bMS-ERREF%5d.pdf

273 / 368

[MS-VDS] — v20130722
 Virtual Disk Service (VDS) Protocol

 Copyright © 2013 Microsoft Corporation.

 Release: Monday, July 22, 2013

ppAsync: A pointer to an IVdsAsync interface that, if the operation is successfully completed,
receives the IVdsAsync interface to monitor and control this operation. Callers MUST release

the interface when they are done with it. If the Wait method is called on the interface, the
interface returned in the VDS_ASYNC_OUTPUT structure MUST be released as well. For

information on asynchronous tasks, see section 3.4.5.1.9.

Return Values: The method MUST return zero or a non-error HRESULT (as specified in [MS-
ERREF]) to indicate success, or return an implementation-specific nonzero error code to
indicate failure. For the HRESULT values predefined by the Virtual Disk Service Remote
Protocol, see section 2.2.3.

ERROR_SUCCESS (0x00000000)

When the server receives this message, it MUST validate the following parameters:

Verify that the volume plex is RAID-5.

Verify that pInputDiskArray is not NULL.

Verify that ppAsync is not NULL.

If the volume resides on a basic disk, the server MUST return VDS_E_NOT_SUPPORTED (HRESULT

of 0x80042400) or E_NOTIMPL (HRESULT of 0x80004001, which means that the method is not
implemented).

The server MUST perform the following:

Verify that the disks specified using the pInputDiskArray parameter have no extents belonging to

the volume that is being repaired. If the pInputDiskArray parameter fails this requirement, then
the server MUST return VDS_E_DISK_IN_USE_BY_VOLUME.

Create a new async object implementing the IVdsAsync interface with an output type of

VDS_ASYNCOUT_REPAIRVOLUMEPLEX and set the pointer that ppAsync references to the

interface.

Return an HRESULT indicating failure or success. Any errors encountered up through this point in

processing the operation are returned in this HRESULT.

The server MUST then perform the following in sequence. Errors generated in this sequence of steps

are returned in the pHrResult parameter to the IVdsAsync::Wait or IVdsAsyncQueryStatus methods.

Repair the volume plex corresponding to the VDS_OBJECT_ID that PlexId specifies from this

volume by moving defective members to good disks.

Set the return code in the async object to an HRESULT indicating failure or success.

If the task completed successfully, set the percentage completed value in the async object to

100.

Set the signal state in the async object to TRUE.

The server MUST update the percentage completed value periodically during the preceding
sequence. How often the percentage completed is updated, and at what point in the sequence, is
implementation-specific.

%5bMS-ERREF%5d.pdf
%5bMS-ERREF%5d.pdf

274 / 368

[MS-VDS] — v20130722
 Virtual Disk Service (VDS) Protocol

 Copyright © 2013 Microsoft Corporation.

 Release: Monday, July 22, 2013

3.4.5.2.40 IVdsVDisk Methods

3.4.5.2.40.1 IVdsVDisk::Open (Opnum 3)

The Open method opens a handle to the specified virtual disk file and returns an IVdsOpenVDisk
(section 3.1.15.2) interface pointer to an object representing the open virtual disk (an
OpenVirtualDisk object). Release the IVdsOpenVDisk interface to close the handle to the virtual disk.

HRESULT Open(

 [in] VIRTUAL_DISK_ACCESS_MASK AccessMask,

 [in] OPEN_VIRTUAL_DISK_FLAG Flags,

 [in] ULONG ReadWriteDepth,

 [out] IVdsOpenVDisk** ppOpenVDisk

);

AccessMask: A VIRTUAL_DISK_ACCESS_MASK (section 2.2.2.19.1.4) structure that

contains the set of access rights to be applied to the opened virtual disk.

Flags: A bitmask of OPEN_VIRTUAL_DISK_FLAG (section 2.2.2.19.1.2) flags specifying how
the virtual disk is to be opened.

ReadWriteDepth: This is applicable only to differencing type virtual disks. The number of

backing stores (files) to open read/write. This count includes the child. The remaining stores in
the differencing chain MUST be opened as read-only. For example, given a differencing disk
with two parents (diskA is the differencing disk whose parent is diskB, and since diskB is a
differencing disk, it has a parent which is diskC), entering '2' for this parameter will open the
differencing disk (diskA) and the parent used to create this differencing disk (diskB) as read-
write. In this case, diskB is also a differencing disk and its parent (diskC) is opened as read-
only.

ppOpenVDisk: A pointer to a variable that, if the operation is successfully completed, receives
an IVdsOpenVDisk interface pointer to the newly opened virtual disk object. Callers MUST

release the interface pointer when it is no longer needed by calling the IUnknown::Release
method.

Return Values: The method MUST return zero to indicate success, or return an implementation-
specific nonzero error code to indicate failure.

When the server receives this message, it MUST validate the following parameters:

Verify that ppOpenVDisk is not NULL.

The server MUST then perform the following in sequence:

Pass the input parameters to the operating system to open the virtual disk file.

If the operating system failed to open the file, return an implementation-specific error code.

Otherwise, if the file was successfully opened, the server MUST:

Mark the state of the object that implements IVdsVDisk as "open". For more information, see

section 2.2.2.19.1.1.

Create an object that implements the IVdsOpenVDisk interface to represent the virtual disk

file in the open state.

275 / 368

[MS-VDS] — v20130722
 Virtual Disk Service (VDS) Protocol

 Copyright © 2013 Microsoft Corporation.

 Release: Monday, July 22, 2013

Point ppOpenVDisk to an IVdsOpenVDisk interface of the virtual disk object created and

return an HRESULT indicating success.

3.4.5.2.40.2 IVdsVDisk::GetProperties (Opnum 4)

The GetProperties method returns details of the virtual disk.

HRESULT GetProperties(

 [out] PVDS_VDISK_PROPERTIES pDiskProperties

);

pDiskProperties: Receives a pointer to a VDS_VDISK_PROPERTIES (section 2.2.2.19.2.1)

structure containing the disk property information.

Return Values: The method MUST return zero or a non-error HRESULT (as specified in [MS-
ERREF]) to indicate success, or return an implementation-specific nonzero error code to

indicate failure. For the HRESULT values predefined by the Virtual Disk Service Remote

Protocol, see section 2.2.3.

When the server receives this message, it MUST validate the following parameters:

Verify that pDiskProperties is not NULL.

The server MUST perform the following:

Fill all the fields of VDS_VDISK_PROPERTIES.

Return an HRESULT indicating failure or success.

3.4.5.2.40.3 IVdsVDisk::GetHostVolume (Opnum 5)

The GetHostVolume method returns an interface pointer to the volume object for the volume on
which the virtual disk backing store file resides.<121>

HRESULT GetHostVolume(

 [out] IVdsVolume** ppVolume

);

ppVolume: Pointer to a variable that receives an IVdsVolume (section 3.1.13.1) interface

pointer for the volume. Callers MUST release the interface pointer when it is no longer needed
by calling the IUnknown::Release method.

Return Values: The method MUST return zero or a non-error HRESULT (as specified in [MS-
ERREF]) to indicate success, or return an implementation-specific nonzero error code to
indicate failure. For the HRESULT values predefined by the Virtual Disk Service Remote

Protocol, see section 2.2.3.

When the server receives this message, it MUST validate the following parameters:

Verify that ppVolume is not NULL.

The server MUST perform the following:

Search all software providers for the volume object on which the virtual disk file resides.

%5bMS-DTYP%5d.pdf
%5bMS-ERREF%5d.pdf
%5bMS-ERREF%5d.pdf
%5bMS-DTYP%5d.pdf
%5bMS-ERREF%5d.pdf
%5bMS-ERREF%5d.pdf

276 / 368

[MS-VDS] — v20130722
 Virtual Disk Service (VDS) Protocol

 Copyright © 2013 Microsoft Corporation.

 Release: Monday, July 22, 2013

If the volume object is found, ppVolume MUST be set to the IVdsVolume interface exposed by

the volume and MUST return the value of zero; if the volume object is not found, then the server

MUST return the HRESULT error VDS_E_OBJECT_NOT_FOUND.

3.4.5.2.40.4 IVdsVDisk::GetDeviceName (Opnum 6)

The GetDeviceName method returns the device name of the disk.

HRESULT GetDeviceName(

 [out, string] LPWSTR* ppDeviceName

);

ppDeviceName: A pointer to a variable that receives the device name of the disk.

Return Values: The method MUST return zero to indicate success, or return an implementation-
specific nonzero error code to indicate failure.

When the server receives this message, it MUST validate the following parameter:

Verify that ppDeviceName is not NULL.

The server MUST perform the following:

If the virtual disk is an attached state, ppDeviceName MUST be set to the device name of the

disk associated with the virtual disk. For information on the attached state of a virtual disk, see

VDS_VDISK_STATE (section 2.2.2.19.1.1).

If the virtual disk is not in an attached state, ppDeviceName MUST be set to NULL.

Return an HRESULT indicating failure or success.

3.4.5.2.41 IVdsOpenVDisk Methods

3.4.5.2.41.1 IVdsOpenVDisk::Attach (Opnum 3)

The Attach method creates an operating system disk device for a virtual disk.

HRESULT Attach(

 [in] LPWSTR pStringSecurityDescriptor,

 [in] ATTACH_VIRTUAL_DISK_FLAG Flags,

 [in] ULONG ProviderSpecificFlags,

 [in] ULONG TimeoutInMs,

 [out] IVdsAsync** ppAsync

);

pStringSecurityDescriptor: A NULL-terminated wide-character string containing the security

descriptor to be applied to the virtual disk.<122> If this parameter is NULL, the security
descriptor in the caller's access token MUST be used.

Flags: A bitmask of ATTACH_VIRTUAL_DISK_FLAG (section 2.2.2.20.1.1) enumeration
values specifying virtual disk attaching options.

ProviderSpecificFlags: A bitmask of flags that are specific to the type of virtual disk that is
being surfaced. These flags are provider-specific.<123>

%5bMS-DTYP%5d.pdf

277 / 368

[MS-VDS] — v20130722
 Virtual Disk Service (VDS) Protocol

 Copyright © 2013 Microsoft Corporation.

 Release: Monday, July 22, 2013

TimeoutInMs: The length of time, in milliseconds, before this method should return after
waiting for the virtual disk to be surfaced completely. If this parameter is zero, the method

returns immediately without waiting for the disk to be surfaced. If this parameter is INFINITE,
the method does not return until the surfacing operation is complete. If this parameter is set

to a value other than zero or INFINITE and the time-out value is reached, the method
guarantees that the disk is not surfaced after the operation is complete.<124>

ppAsync: A pointer to an IVdsAsync (section 3.1.3.1) interface that, if the operation is
successfully completed, receives the IVdsAsync interface to monitor and control this
operation. Callers MUST release the interface when they are done with it.

Return Values: This method MUST return zero to indicate success, or return an implementation-
specific nonzero error code to indicate failure.

When the server receives this message, it MUST validate the following parameters:

Verify that ppAsync is not NULL.

The server MUST perform the following:

Create a new async object implementing the IVdsAsync interface with an output type of

VDS_ASYNCOUT_ATTACH_VDISK and set the pointer ppAsync to the interface.

Return an HRESULT indicating failure or success. Any errors encountered up through this point

in processing the operation are returned in this HRESULT.

The server MUST then perform the following in sequence. Errors generated in this sequence of steps
are returned in the pHrResult parameter to the IVdsAsync::Wait or IVdsAsyncQueryStatus methods.

Pass the input parameters to the operating system to attach the virtual disk.

Set the return code in the async object to an HRESULT indicating failure or success of the

operating system. If the task completed successfully, set the percentage-completed value in the
async object to 100.

Set the signal state in the async object to TRUE.

At any point in the preceding sequence, before the percentage-completed value in the async object
is 100, the server MUST update the percentage-completed value if forward progress is made during
the compact operation.

3.4.5.2.41.2 IVdsOpenVDisk::Detach (Opnum 4)

The Detach method removes the operating system disk device that represents a virtual disk.

HRESULT Detach(

 [in] DETACH_VIRTUAL_DISK_FLAG Flags,

 [in] ULONG ProviderSpecificFlags

);

Flags: A DETACH_VIRTUAL_DISK_FLAG (section 2.2.2.20.1.2) enumeration value that

specifies how the virtual disk is to be detached.

ProviderSpecificFlags: Flags specific to the type of virtual disk being detached.<125>

%5bMS-DTYP%5d.pdf

278 / 368

[MS-VDS] — v20130722
 Virtual Disk Service (VDS) Protocol

 Copyright © 2013 Microsoft Corporation.

 Release: Monday, July 22, 2013

Return Values: The method MUST return zero to indicate success, or return an implementation-
specific nonzero error code to indicate failure.

When the server receives this message, it MUST validate the following parameters:

Verify that Flags contains a bitwise OR of values from the DETACH_VIRTUAL_DISK_FLAG

enumeration.

The server MUST then perform the following in sequence:

Pass the input parameters to the operating system to detach the disk.

Return any success or failure based on the operating system's response.

3.4.5.2.41.3 IVdsOpenVDisk::DetachAndDelete (Opnum 5)

The DetachAndDelete method removes the operating system disk device that represents a virtual
disk and deletes any backing store file.

HRESULT DetachAndDelete(

 [in] DETACH_VIRTUAL_DISK_FLAG Flags,

 [in] ULONG ProviderSpecificFlags

);

Flags: A DETACH_VIRTUAL_DISK_FLAG (section 2.2.2.20.1.2) enumeration value that

specifies how the virtual disk is to be detached.

ProviderSpecificFlags: Flags specific to the type of virtual disk being detached.<126>

Return Values: The method MUST return zero to indicate success, or return an implementation-
specific nonzero error code to indicate failure.

When the server receives this message, it MUST validate the following parameters:

Verify that Flags contains a bitwise OR of values from the DETACH_VIRTUAL_DISK_FLAG

enumeration.

The server MUST then perform the following in sequence:

Pass the input parameters to the operating system to detach the disk.

Delete the file associated with the virtual disk.

Return any success or a failure if either the detach or the delete failed.

3.4.5.2.41.4 IVdsOpenVDisk::Compact (Opnum 6)

The Compact method reduces the size of the virtual disk file (the backing store). This requires that

the virtual disk be detached. Compact is applicable only to differencing type virtual disks and virtual

disks created using CREATE_VIRTUAL_DISK_FLAG_NONE. The Compact method does not change
the size of the virtual disk.

HRESULT Compact(

 [in] COMPACT_VIRTUAL_DISK_FLAG Flags,

 [in] ULONG Reserved,

 [out] IVdsAsync** ppAsync

279 / 368

[MS-VDS] — v20130722
 Virtual Disk Service (VDS) Protocol

 Copyright © 2013 Microsoft Corporation.

 Release: Monday, July 22, 2013

);

Flags: A COMPACT_VIRTUAL_DISK_FLAG (section 2.2.2.20.1.3) enumeration value that

specifies how the virtual disk is to be compacted.

Reserved: This parameter is reserved for system use and MUST be ignored.

ppAsync: A pointer to an IVdsAsync (section 3.1.3.1) interface that if the operation is
successfully completed receives the IVdsAsync interface to monitor and control this
operation. Callers MUST release the interface when they are done with it.

Return Values: The method MUST return zero to indicate success, or return an implementation-

specific nonzero error code to indicate failure.

When the server receives this message, it MUST validate the following parameters:

Verify that Flags is a bitwise OR of values from the COMPACT_VIRTUAL_DISK_FLAG

enumeration.

Verify that ppAsync is not NULL.

The server MUST perform the following:

Create a new async object implementing the IVdsAsync interface with an output type of

VDS_ASYNCOUT_COMPACT_VDISK and set the pointer ppAsync to the interface.

Return an HRESULT indicating failure or success. Any errors encountered up through this point

in processing the operation are returned in this HRESULT.

The server MUST then perform the following in sequence. Errors generated in this sequence of steps

are returned in the pHrResult parameter to the IVdsAsync::Wait or IVdsAsyncQueryStatus methods.

Pass the input parameters to the operating system to compact the disk.

Set the return code in the async object to an HRESULT indicating failure or success of the

operating system.

If the task completed successfully, set the percentage completed value in the async object to

100.

Set the signal state in the async object to TRUE.

At any point in the preceding sequence--before the percentage completed value in the async object
is 100--the server MUST update the percentage completed value if forward progress is made during
the compact operation.

3.4.5.2.41.5 IVdsOpenVDisk::Merge (Opnum 7)

This method is applicable only to differencing type virtual disks. The Merge method moves all data

blocks from a differencing virtual disk into its parent virtual disk. Merging a virtual disk requires that
the virtual disk be detached during the operation. Both the virtual disk and its parent must be
opened READ|WRITE using the IVdsVDisk::Open method called against the virtual disk with an
appropriate value for the ReadWriteDepth, as described later in this section.<127>

For example, to merge a differencing disk that is a child of a single parent disk into that parent disk,
call the IVdsVDisk::Open method on the child disk with the ReadWriteDepth parameter set to the

%5bMS-DTYP%5d.pdf

280 / 368

[MS-VDS] — v20130722
 Virtual Disk Service (VDS) Protocol

 Copyright © 2013 Microsoft Corporation.

 Release: Monday, July 22, 2013

value 2. This value opens both disks with the READ and WRITE flags set, which is necessary for
disks to be merged with subsequent call to the IVdsOpenVDisk::Merge method.

HRESULT Merge(

 [in] MERGE_VIRTUAL_DISK_FLAG Flags,

 [in] ULONG MergeDepth,

 [out] IVdsAsync** ppAsync

);

Flags: A MERGE_VIRTUAL_DISK_FLAG (section 2.2.2.20.1.4) enumeration value that
specifies how the virtual disk is to be merged.

MergeDepth: Number of parent backing store files in the differencing chain to be updated. For
example, if MergeDepth has a value of 1, the data blocks from the given differencing disk are
moved into its parent. If the given differencing disk's parent is also a differencing disk, (in
other words the given disk is diskA, its parent is diskB, and diskB's parent is diskC), and the
MergeDepth parameter value is 2, the data blocks from the given differencing disk (diskA) are

moved into its parent (diskB), and then its parent's (diskB's) data blocks are moved into its
parent (diskC).<128>

ppAsync: A pointer to an IVdsAsync (section 3.1.3.1) interface that, if the operation is
successfully completed, receives the IVdsAsync interface to monitor and control this
operation. Callers MUST release the interface when they are done with it.

Return Values: The method MUST return zero to indicate success, or return an implementation-
specific nonzero error code to indicate failure.

When the server receives this message, it MUST validate the following parameters:

Verify that Flags is a bitwise OR of values from the MERGE_VIRTUAL_DISK_FLAG

enumeration.

Verify that ppAsync is not NULL.

The server MUST perform the following:

Create a new async object implementing the IVdsAsync interface with an output type of

VDS_ASYNCOUT_MERGE_VDISK and set the pointer ppAsync to the interface.

Return an HRESULT indicating failure or success. Any errors encountered up through this point

in processing the operation are returned in this HRESULT.

The server MUST then perform the following in sequence. Errors generated in this sequence of steps
are returned in the pHrResult parameter to the IVdsAsync::Wait or IVdsAsyncQueryStatus methods.

Pass the input parameters to the operating system to merge the disk with its parents.

Set the return code in the async object to an HRESULT indicating failure or success of the

operating system.

If the task completed successfully, set the percentage completed value in the async object to

100.

Set the signal state in the async object to TRUE.

%5bMS-DTYP%5d.pdf

281 / 368

[MS-VDS] — v20130722
 Virtual Disk Service (VDS) Protocol

 Copyright © 2013 Microsoft Corporation.

 Release: Monday, July 22, 2013

At any point in the preceding sequence before the percentage completed value in the async object is
100, the server MUST update the percentage completed value if forward progress is made during

the merge operation.

3.4.5.2.41.6 IVdsOpenVDisk::Expand (Opnum 8)

The Expand method increases the size of a virtual disk. Expanding a virtual disk requires that the
virtual disk be detached during the operation. The virtual disk file must be opened with READ|WRITE
privileges using the IVdsVDisk::Open method.<129>

HRESULT Expand(

 [in] EXPAND_VIRTUAL_DISK_FLAG Flags,

 [in] ULONGLONG NewSize,

 [out] IVdsAsync** ppAsync

);

Flags: An EXPAND_VIRTUAL_DISK_FLAG (section 2.2.2.20.1.5) enumeration value that

specifies how the virtual disk is to be compacted.

NewSize: The desired size, in bytes, of the expanded virtual disk.

ppAsync: A pointer to an IVdsAsync (section 3.1.3.1) interface that, if the operation is
successfully completed, receives the IVdsAsync interface to monitor and control this
operation. Callers MUST release the interface when they are done with it.

Return Values: The method MUST return zero to indicate success, or return an implementation-
specific nonzero error code to indicate failure.

When the server receives this message, it MUST validate the following parameters:

Verify that Flags is a bitwise OR of values from the EXPAND_VIRTUAL_DISK_FLAG

enumeration.

Verify that ppAsync is not NULL.

The server MUST perform the following:

Create a new async object implementing the IVdsAsync interface with an output type of

VDS_ASYNCOUT_EXPAND_VDISK and set the pointer ppAsync to the interface.

Return an HRESULT indicating failure or success. Any errors encountered up through this point

in processing the operation are returned in this HRESULT.

The server MUST then perform the following in sequence. Errors generated in this sequence of steps
are returned in the pHrResult parameter to the IVdsAsync::Wait or IVdsAsyncQueryStatus methods.

Pass the input parameters to the operating system to expand the disk.

Set the return code in the async object to an HRESULT indicating failure or success of the

operating system.

If the task completed successfully, set the percentage completed value in the async object to

100.

Set the signal state in the async object to TRUE.

%5bMS-DTYP%5d.pdf

282 / 368

[MS-VDS] — v20130722
 Virtual Disk Service (VDS) Protocol

 Copyright © 2013 Microsoft Corporation.

 Release: Monday, July 22, 2013

At any point in the preceding sequence before the percentage completed value in the async object is
100, the server MUST update the percentage completed value if forward progress is made during

the expand operation.

3.4.6 Timer Events

None.

3.4.7 Other Local Events

The server SHOULD track changes in the storage configuration of the computer. These changes may
be due to hardware failures, the administrator changing the hardware configuration, or the
administrator configuring storage objects by using tools such as disk, volume, pack, partition, drive

letter, and file system arrivals, removals, and modifications.<130><131>

Note If the server does not track changes in storage configuration, clients MAY be unable to
perform configuration operations such as the ones that are specified in this section.

3.4.7.1 Disk Pack Arrival (Dynamic Disks)

When the server detects that a new disk pack on the system has dynamic disks, the server MUST
add a disk pack object for it. For information on how to add the pack object, see section 3.4.5.1.1.

3.4.7.2 Disk Pack Removal (Dynamic Disks)

When the server detects that a disk pack with dynamic disks was removed from the system, the
server MUST remove the corresponding pack object. For information on how to remove the pack
object, see section 3.4.5.1.2.

3.4.7.3 Pack Modification

When the server detects that a pack was modified, for each callback object that is registered in the
list of callback objects, the server MUST call the callback object's IVdsAdviseSink::OnNotify

(section 3.3.4.3.1) method by using a VDS_NOTIFICATION (section 2.2.1.3.9) structure that
has the following attributes:

objectType member is VDS_NTT_PACK.

Pack member is a VDS_PACK_NOTIFICATION (section 2.2.1.3.2) with the following

attributes:

ulEvent is VDS_NF_PACK_MODIFY.

packId is the VDS_OBJECT_ID (section 2.2.1.1.3) of the pack object.

3.4.7.4 Disk Arrival

When the server detects a new disk connected to the system, the server MUST add a disk object for
it. For information on how to add a disk object, see section 3.4.5.1.3.

3.4.7.5 Disk Removal

When the server detects that a disk was disconnected from the system, the server MUST remove
the corresponding disk object. For information on how to remove a disk object, see section
3.4.5.1.4.

283 / 368

[MS-VDS] — v20130722
 Virtual Disk Service (VDS) Protocol

 Copyright © 2013 Microsoft Corporation.

 Release: Monday, July 22, 2013

3.4.7.6 Disk Modification

When the server detects that a disk was modified, for each callback object that is registered in the
list of callback objects, the server MUST call the callback object's IVdsAdviseSink::OnNotify

(section 3.3.4.3.1) method by using a VDS_NOTIFICATION (section 2.2.1.3.9) structure that
has the following attributes:

objectType member is VDS_NTT_DISK.

Disk member is a VDS_DISK_NOTIFICATION (section 2.2.1.3.3) with the following

attributes:

ulEvent is VDS_NF_DISK_MODIFY.

diskId is the VDS_OBJECT_ID (section 2.2.1.1.3) of the disk object.

3.4.7.7 Volume Arrival

When the server detects a new volume on the system, the server MUST add a volume object for it.
For information on how to add a volume object, see section 3.4.5.1.5.

3.4.7.8 Volume Removal

When the server detects that a volume was removed from the system, the server MUST remove the
corresponding volume object. For information on how to remove a volume object, see section
3.4.5.1.6.

3.4.7.9 Volume Modification

When the server detects that a volume was modified, for each callback object that is registered in
the list of callback objects, the server MUST call the callback object's IVdsAdviseSink::OnNotify
(section 3.3.4.3.1) method by using a VDS_NOTIFICATION (section 2.2.1.3.9) structure that
has the following attributes:

objectType member is VDS_NTT_VOLUME.

Volume member is a VDS_VOLUME_NOTIFICATION (section 2.2.1.3.4) with the following

attributes:

ulEvent is VDS_NF_VOLUME_MODIFY.

volumeId is the VDS_OBJECT_ID (section 2.2.1.1.3) of the volume object.

plexId SHOULD be GUID_NULL, but it is not relevant when ulEvent is

VDS_NF_VOLUME_MODIFY.

ulPercentCompleted needs to be from 0 to 100 and is implementation-specific, but it is not

relevant when ulEvent is VDS_NF_VOLUME_MODIFY.

3.4.7.10 File System Modification

When the server detects that a volume was formatted, for each callback object that is registered in
the list of callback objects, the server MUST call the callback object's IVdsAdviseSink::OnNotify()
(section 3.3.4.3.1) method by using a VDS_NOTIFICATION (section 2.2.1.3.9) structure that

has the following attributes:

284 / 368

[MS-VDS] — v20130722
 Virtual Disk Service (VDS) Protocol

 Copyright © 2013 Microsoft Corporation.

 Release: Monday, July 22, 2013

objectType member is VDS_NTT_FILE_SYSTEM.

FileSystem member is a VDS_FILE_SYSTEM_NOTIFICATION (section 2.2.1.3.7) with the

following attributes:

ulEvent is VDS_NF_FILE_SYSTEM_MODIFY.

volumeId is the VDS_OBJECT_ID (section 2.2.1.1.3) of the volume object whose file

system was formatted.

dwPercentCompleted is not relevant when ulEvent is VDS_NF_FILE_SYSTEM_MODIFY but

its value needs to be from 0 to 100.

3.4.7.11 Mount Point Change

When the server detects that a volume's mount point has changed, for each callback object that is
registered in the list of callback objects, the server MUST call the callback object's
IVdsAdviseSink::OnNotify() (section 3.3.4.3.1) method by using a VDS_NOTIFICATION

(section 2.2.1.3.9) structure that has the following attributes:

objectType member is VDS_NTT_MOUNT_POINT.

MountPoint member is a VDS_MOUNT_POINT_NOTIFICATION (section 2.2.1.3.8) with

the following attributes:

ulEvent is VDS_NF_MOUNT_POINTS_CHANGE.

volumeId is the VDS_OBJECT_ID (section 2.2.1.1.3) of the volume object whose mount

point was changed.

3.4.7.12 Drive Letter Assignment

When the server detects that a drive letter is assigned to a volume, for each callback object that is
registered in the list of callback objects, the server MUST call the callback object's

IVdsAdviseSink::OnNotify() (section 3.3.4.3.1) method by using a VDS_NOTIFICATION
(section 2.2.1.3.9) structure that has the following attributes:

objectType member is VDS_NTT_DRIVE_LETTER.

Letter member is a VDS_DRIVE_LETTER_NOTIFICATION (section 2.2.1.3.6) that has the

following attributes:

ulEvent is VDS_NF_DRIVE_LETTER_ASSIGN.

wcLetter is the drive letter that was assigned to the volume.

volumeId is the VDS_OBJECT_ID (section 2.2.1.1.3) of the volume object whose drive

letter was assigned.

3.4.7.13 Drive Letter Removal

When the server detects that a drive letter was removed from a volume, for each callback object
that is registered in the list of callback objects, the server MUST call the callback object's

IVdsAdviseSink::OnNotify() (section 3.3.4.3.1) method by using a VDS_NOTIFICATION
(section 2.2.1.3.9) structure with the following attributes:

objectType member is VDS_NTT_DRIVE_LETTER.

285 / 368

[MS-VDS] — v20130722
 Virtual Disk Service (VDS) Protocol

 Copyright © 2013 Microsoft Corporation.

 Release: Monday, July 22, 2013

Letter member is a VDS_DRIVE_LETTER_NOTIFICATION (section 2.2.1.3.6) that has the

following attributes:

ulEvent is VDS_NF_DRIVE_LETTER_FREE.

wcLetter is the drive letter that was removed from the volume.

volumeId is the VDS_OBJECT_ID (section 2.2.1.1.3) of the volume object whose drive

letter was removed.

3.4.7.14 Media Arrival

When the server detects that media was inserted into a removable media drive, for each callback

object that is registered in the list of callback objects, the server MUST call the callback object's
IVdsAdviseSink::OnNotify() (section 3.3.4.3.1) method by using a VDS_NOTIFICATION
(section 2.2.1.3.9) structure with the following attributes:

objectType member is VDS_NTT_VOLUME.

Volume member is a VDS_VOLUME_NOTIFICATION (section 2.2.1.3.4) that has the

following attributes:

ulEvent is VDS_NF_VOLUME_MODIFY.

volumeId is the VDS_OBJECT_ID (section 2.2.1.1.3) of the volume object corresponding

to the removable media drive.

plexId SHOULD be GUID_NULL, but it is not relevant when ulEvent is

VDS_NF_VOLUME_MODIFY.

ulPercentCompleted needs to be from 0 to 100 and is implementation-specific, but it is not

relevant when ulEvent is VDS_NF_VOLUME_MODIFY.

Then, for each callback object that is registered in the list of callback objects, the server MUST call

the callback object's IVdsAdviseSink::OnNotify() method by using a VDS_NOTIFICATION
structure with the following attributes:

objectType member is VDS_NTT_DISK.

Disk member is a VDS_DISK_NOTIFICATION (section 2.2.1.3.3) that has the following

attributes:

ulEvent is VDS_NF_DISK_MODIFY.

diskId is the VDS_OBJECT_ID of the disk object corresponding to the removable media

drive.

3.4.7.15 Media Removal

When the server detects that media was ejected from a removable media drive, for each callback

object that is registered in the list of callback objects, the server MUST call the callback object's
IVdsAdviseSink::OnNotify() (section 3.3.4.3.1) method by using a VDS_NOTIFICATION
(section 2.2.1.3.9) structure with the following attributes:

objectType member is VDS_NTT_VOLUME.

286 / 368

[MS-VDS] — v20130722
 Virtual Disk Service (VDS) Protocol

 Copyright © 2013 Microsoft Corporation.

 Release: Monday, July 22, 2013

Volume member is a VDS_VOLUME_NOTIFICATION (section 2.2.1.3.4) with the following

attributes:

ulEvent is VDS_NF_VOLUME_MODIFY.

volumeId is the VDS_OBJECT_ID (section 2.2.1.1.3) of the volume object corresponding

to the removable media drive.

plexId SHOULD be GUID_NULL, but it is not relevant when ulEvent is

VDS_NF_VOLUME_MODIFY.

ulPercentCompleted needs to be from 0 to 100 and is implementation-specific, but it is not

relevant when ulEvent is VDS_NF_VOLUME_MODIFY.

Then, if media was present in the drive, for each callback object that is registered in the list of
callback objects, the server MUST call the callback object's IVdsAdviseSink::OnNotify() method
by using a VDS_NOTIFICATION structure that has the following attributes:

objectType member is VDS_NTT_DISK.

Disk member is a VDS_DISK_NOTIFICATION (section 2.2.1.3.3) that has the following

attributes:

ulEvent is VDS_NF_DISK_MODIFY.

diskId is the VDS_OBJECT_ID of the disk object corresponding to the removable media

drive.

287 / 368

[MS-VDS] — v20130722
 Virtual Disk Service (VDS) Protocol

 Copyright © 2013 Microsoft Corporation.

 Release: Monday, July 22, 2013

4 Protocol Examples

The following sections provide examples of how a Virtual Disk Service Remote Protocol client and
server communicate in common scenarios.

A VDS client typically performs these operations in the following order:

1. Starts the VDS session.

2. Registers for notifications.

3. Receives notifications.

4. Enumerates the VDS object.

5. Retrieves properties of the VDS object.

6. Performs tasks.

7. Unregisters for notifications.

8. Ends the VDS session.

4.1 VDS Sessions

4.1.1 Starting Sessions

The following is an example of a client starting a VDS session by retrieving an instance of the VDS
service object.

288 / 368

[MS-VDS] — v20130722
 Virtual Disk Service (VDS) Protocol

 Copyright © 2013 Microsoft Corporation.

 Release: Monday, July 22, 2013

Figure 2: Client starting a VDS session by retrieving an instance of the VDS service object

1. The client requests the creation of a VDS session by calling CoCreateInstanceEx (see [MSDN-

CoCreateInstanceEx]) with the class UUID of the VDS service in order to create an instance of
the VDS object on the server.

2. The server returns a reference to the IVdsService interface.

3. The client invokes the interface's IUnknown::QueryInterface method to request for the
IVdsServiceInitialization interface.

http://go.microsoft.com/fwlink/?LinkId=208352
http://go.microsoft.com/fwlink/?LinkId=208352

289 / 368

[MS-VDS] — v20130722
 Virtual Disk Service (VDS) Protocol

 Copyright © 2013 Microsoft Corporation.

 Release: Monday, July 22, 2013

4. The server returns a reference to the IVdsServiceInitialization interface.

5. The client calls the IVdsServiceInitialization::Initialize method.

6. The server begins initializing the service and returns control back to the client.

7. The client calls the IVdsService::WaitForServiceReady method.

8. The server replies to the client with an HRESULT indicating whether the service initialization was
successful. If the VDS service initialization is successful (HRESULT of 0x00000000), the client can
request virtual disk management operations to the server through the methods in the
IVdsService interface.

9. The client initiates the enumeration of providers by calling the IVdsService::QueryProviders
method.

10.Upon successful execution of the IVdsService::QueryProviders method, the server creates an

enumeration object and returns a reference to an IEnumVdsObject interface.

11.The client can call IEnumVdsObject::Next to retrieve the next provider in the enumeration.

12.Upon receiving the IEnumVdsObject::Next request, the server looks for the next provider
object in the enumeration. If there is a provider object in the enumeration, the server returns an
HRESULT of 0x00000000 and a reference to the IUnknown interface to the client. If the server
reaches the end of the enumeration, the server returns a HRESULT of 0x00000001.

13.If the server returns a zero disk, the client invokes the interface's IUnknown::QueryInterface
method to request for the object's IVdsProvider interface.

14.The server returns a HRESULT of 0x00000000 and a reference to the IVdsProvider interface to
the client. The client may access the provider information through the IVdsProvider interface.

15.If the client wants to query the objects in the provider, the client invokes the interface's
IUnknown::QueryInterface method to request for the object's IVdsSwProvider interface.

16.The server returns a HRESULT of 0x00000000 and a reference to the IVdsSwProvider interface

to the client. The client may enumerate the objects in the provider through the IVdsProvider
interface.

17.When a client no longer needs the IVdsProvider interface, the client must release the reference
to the interface by calling IVdsProvider::Release.

18.The server returns a new reference count for IVdsProvider::Release.

19.The client also needs to release the reference to the IUnknown interface by calling
IUnknown::Release.

20.The server returns a new reference count for IUnknown::Release.

21.The client can call IEnumVdsObject::Next again for the next provider in the enumeration.

22.If the server reaches the end of the enumeration, the server returns a HRESULT of 0x00000001.

23.The client no longer needs the IEnumVdsObject interface; therefore, it calls
IEnumVdsObject::Release to release the reference.

24.The server returns a new reference count for IEnumVdsObject.

%5bMS-GLOS%5d.pdf

290 / 368

[MS-VDS] — v20130722
 Virtual Disk Service (VDS) Protocol

 Copyright © 2013 Microsoft Corporation.

 Release: Monday, July 22, 2013

4.1.2 Ending Sessions

The following figure shows an example of a client ending a VDS session.

Figure 3: Client ending a VDS session

1. The client releases the reference to the IVdsService interface by invoking
IVdsService::Release.

2. The server returns the new reference count for the IVdsService interface.

4.2 VDS Client Notifications

4.2.1 Registering for Notifications

The following figure shows an example of a client that registers to receive notifications from a
server.

Figure 4: Client registering to receive notifications from a server

1. The client requests registration by calling the IVdsService::Advise method and by passing an
IVdsAdviseSink interface as a parameter.

2. The server returns a cookie value that uniquely identifies the client registration. The client can
later use the cookie value to unregister for notifications.

291 / 368

[MS-VDS] — v20130722
 Virtual Disk Service (VDS) Protocol

 Copyright © 2013 Microsoft Corporation.

 Release: Monday, July 22, 2013

4.2.2 Receiving Notifications

The following figure shows an example of what happens when one or more VDS events are
triggered.

Figure 5: VDS event triggered

1. For each callback that was registered, the server calls IVdsAdviseSink::OnNotify() with an

array of VDS_NOTIFICATION structures that describe the events that were triggered.

2. The client returns an HRESULT of 0x00000000 to acknowledge the notification.

4.2.3 Unregistering for Notifications

The following figure shows an example of a client that cancels a previous registration for a
notification.

Figure 6: Client canceling previous registration for notification

1. The client requests unregistration by calling the IVdsService::Unadvise method and passing
the cookie value that was received during registration.

292 / 368

[MS-VDS] — v20130722
 Virtual Disk Service (VDS) Protocol

 Copyright © 2013 Microsoft Corporation.

 Release: Monday, July 22, 2013

2. The server determines that the cookie value matches a registered IVdsAdviseSink interface and
invokes the IVdsAdviseSink::Release method to release its reference.

3. The client returns the new reference count for the IVdsAdviseSink interface.

4. The server returns an HRESULT of 0x00000000 in response to an IVdsService::Unadvise call

from the client to acknowledge that the registration is canceled. The server may reuse the cookie
value in the future.

4.3 Querying Enumerations of VDS Objects

Most VDS objects are retrievable only through an enumeration via the IVdsPack interface. The
following figure shows an example of a client enumerating volume objects belonging to a disk pack.

Figure 7: Client enumerating volume objects belonging to a disk pack

293 / 368

[MS-VDS] — v20130722
 Virtual Disk Service (VDS) Protocol

 Copyright © 2013 Microsoft Corporation.

 Release: Monday, July 22, 2013

1. The client initiates the enumeration of volumes by calling the IVdsPack::QueryVolumes
method.

2. Upon successful execution of the IVdspack::QueryVolumes method, the server creates an
enumeration object and returns a reference to an IEnumVdsObject interface.

3. The client can call IEnumVdsObject::Next for the next object in the enumeration that it wants
to retrieve.

4. Upon receiving the IEnumVdsObject::Next request, the server looks for the next volume object
in the enumeration. If one exists, then the server returns an HRESULT of 0x00000000 and a
reference to the IUnknown interface to the client. If the server reaches the end of the
enumeration, the server returns an HRESULT of 0x00000001.

5. Assuming the server returned a zero HRESULT, the client invokes the interface's

IUnknown::QueryInterface method to request for the object's IVdsVolume interface.

6. The server returns an HRESULT of 0x00000000 and a reference to the IVdsVolume interface to

the client. The client may access the volume information through the IVdsVolume interface.

7. When a client no longer needs the IVdsVolume interface, the client must release the reference
to the interface by calling IVdsVolume::Release.

8. The server returns a new reference count for IVdsVolume::Release.

9. The client also needs to release the reference to the IUnknown interface by calling
IUnknown::Release.

10.The server returns a new reference count for IUnknown::Release.

11.The client can call IEnumVDsObject::Next again for the next object in the enumeration.

12.When the server reaches the end of the enumeration, the server returns an HRESULT of
0x00000001.

13.The client no longer needs the IEnumVdsObject interface, so it calls

IEnumVdsObject::Release to release the reference.

14.The server returns a new reference count for IEnumVdsObject.

All other VDS objects that are retrievable via enumeration can be retrieved using similar steps.

4.4 Retrieving the Properties and IDs of VDS Objects

After an object is retrieved, a common task is to look for the VDS object ID, which uniquely
identifies the object and is located in the object's properties structure.

The following figure shows how to retrieve the properties of a volume object, if one exists. For
information on how to retrieve a reference to a volume object, see section 4.3.

294 / 368

[MS-VDS] — v20130722
 Virtual Disk Service (VDS) Protocol

 Copyright © 2013 Microsoft Corporation.

 Release: Monday, July 22, 2013

Figure 8: Retrieving the properties of a volume object

1. The client calls the IVdsVolume::GetProperties method, passing in a reference to a

VDS_VOLUME_PROP structure in which to store the properties.

2. After successful execution of IVdsVolume::GetProperties, the server returns the properties of
the volume, which includes its VDS object ID in the client-provided VDS_VOLUME_PROP
structure.

After successful execution of the IVdsVolume::GetProperties request, which returns a filled
VDS_VOLUME_PROP structure, the client can inspect any members of that structure.

The properties of other VDS objects can be retrieved by using similar steps.

4.5 Performing Asynchronous Tasks

The Virtual Disk Service Remote Protocol exposes certain potentially long-running configuration

tasks. Such tasks can be performed asynchronously. The following figure shows an example of an
asynchronous task, formatting a volume.

295 / 368

[MS-VDS] — v20130722
 Virtual Disk Service (VDS) Protocol

 Copyright © 2013 Microsoft Corporation.

 Release: Monday, July 22, 2013

Figure 9: Asynchronous task of formatting a volume

1. The client requests that a volume be formatted by calling the IVdsVolumeMF::Format method.

2. The server acknowledges the format request and returns an IVdsAsync interface that the client
can use to monitor progress of the format operation.

3. The client checks the current status of the format operation by calling the
IVdsAsync::QueryStatus method on the returned IVdsAsync interface.

4. The server returns the status of the format operation.

5. The client can repeatedly check the status of the format operation by calling the
IVdsAsync::QueryStatus method.

6. For each IVdsAsync::QueryStatus request, the server returns the latest status of the format
operation.

7. The client can wait for the format operation to complete by calling the IVdsAsync::Wait
method.

296 / 368

[MS-VDS] — v20130722
 Virtual Disk Service (VDS) Protocol

 Copyright © 2013 Microsoft Corporation.

 Release: Monday, July 22, 2013

8. When the format operation completes, the server responds to the IVdsAsync::Wait call by
returning the final status of the format.

9. The client invokes the IVdsAsync::Release method to release its reference.

10.The server returns the new reference count for the IVdsAsync interface.

4.6 Sample IVdsAdviseSink::OnNotify Implementation

The following is a sample IVdsAdviseSink::OnNotify implementation.

STDMETHODIMP CNotification::OnNotify(

 __in LONG lNumberOfNotifications,

 __in_ecount(lNumberOfNotifications) VDS_NOTIFICATION *pNotificationArray

)

{

 HRESULT hr;

 WCHAR buffer[50];

 ULONGLONG ulEvent;

 printf("Notification Packet Received: %d notifications\n",

 lNumberOfNotifications);

 for (int i=0; i<lNumberOfNotifications; i++)

 {

 printf(" Notification %d:\n", i+1);

 switch (pNotificationArray[i].objectType)

 {

 case VDS_NTT_PACK:

 ulEvent = pNotificationArray[i].Pack.ulEvent;

 printf(" Event: %s\n",

 ulEvent==VDS_NF_PACK_ARRIVE? "Pack Arrival":

 ulEvent==VDS_NF_PACK_DEPART? "Pack Depart":

 ulEvent==VDS_NF_PACK_MODIFY? "Pack Change":

 "Pack Unknown");

 StringFromGUID2(pNotificationArray[i].Pack.packId, buffer, 50);

 wprintf(L" Object Id: %s\n", buffer);

 break;

 case VDS_NTT_VOLUME:

 ulEvent = pNotificationArray[i].Volume.ulEvent;

 printf(" Event: %s\n",

 ulEvent==VDS_NF_VOLUME_ARRIVE? "Volume Arrival":

 ulEvent==VDS_NF_VOLUME_DEPART? "Volume Depart":

 ulEvent==VDS_NF_VOLUME_MODIFY? "Volume Change":

 ulEvent==VDS_NF_VOLUME_REBUILDING_PROGRESS ?

 "Volume Rebuild" : "Volume Unknown");

 StringFromGUID2(pNotificationArray[i].Volume.volumeId,

 buffer, 50);

 wprintf(L" Object Id: %s\n", buffer);

 StringFromGUID2(pNotificationArray[i].Volume.plexId, buffer, 50);

 wprintf(L" Plex Id: %s\n", buffer);

 printf(" Percent Completed: %d\n",

 pNotificationArray[i].Volume.ulPercentCompleted);

 break;

 case VDS_NTT_DISK:

297 / 368

[MS-VDS] — v20130722
 Virtual Disk Service (VDS) Protocol

 Copyright © 2013 Microsoft Corporation.

 Release: Monday, July 22, 2013

 ulEvent = pNotificationArray[i].Disk.ulEvent;

 printf(" Event: %s\n",

 ulEvent==VDS_NF_DISK_ARRIVE? "Disk Arrival":

 ulEvent==VDS_NF_DISK_DEPART? "Disk Depart":

 ulEvent==VDS_NF_DISK_MODIFY? "Disk Change":

 "Disk Unknown");

 StringFromGUID2(pNotificationArray[i].Disk.diskId, buffer, 50);

 wprintf(L" Object Id: %s\n", buffer);

 break;

 case VDS_NTT_PARTITION:

 ulEvent = pNotificationArray[i].Partition.ulEvent;

 printf(" Event: %s\n",

 ulEvent==VDS_NF_PARTITION_ARRIVE? "Partition Arrival":

 ulEvent==VDS_NF_PARTITION_DEPART? "Partition Depart":

 ulEvent==VDS_NF_PARTITION_MODIFY? "Partition Change" :

 "Partition Unknown");

 StringFromGUID2(pNotificationArray[i].Partition.diskId, buffer,

 50);

 wprintf(L" Disk Id: %s\n", buffer);

 printf(" Offset: %I64u\n",

 pNotificationArray[i].Partition.ullOffset);

 break;

 case VDS_NTT_DRIVE_LETTER:

 ulEvent = pNotificationArray[i].Letter.ulEvent;

 printf(" Event: %s\n",

 ulEvent==VDS_NF_DRIVE_LETTER_ASSIGN? "Drive Letter Assigned":

 ulEvent==VDS_NF_DRIVE_LETTER_FREE? "Drive Letter Freed":

 "Drive Letter Unknown");

 StringFromGUID2(pNotificationArray[i].Letter.volumeId, buffer,

 50);

 wprintf(L" Letter: %c\n",

 pNotificationArray[i].Letter.wcLetter);

 wprintf(L" Volume Id: %s\n", buffer);

 break;

 case VDS_NTT_FILE_SYSTEM:

 ulEvent = pNotificationArray[i].FileSystem.ulEvent;

 printf(" Event: %s\n",

 ulEvent==VDS_NF_FILE_SYSTEM_MODIFY? "File System Modify":

 ulEvent==VDS_NF_FILE_SYSTEM_FORMAT_PROGRESS? "File System Format":

 "File System Unknown");

 if (ulEvent==VDS_NF_FILE_SYSTEM_FORMAT_PROGRESS)

 printf(" %ld Completed.\n",

 pNotificationArray[i].FileSystem.dwPercentCompleted

);

 StringFromGUID2(pNotificationArray[i].FileSystem.volumeId,

 buffer, 50);

 wprintf(L" Volume Id: %s\n", buffer);

 break;

 case VDS_NTT_MOUNT_POINT:

 ulEvent = pNotificationArray[i].MountPoint.ulEvent;

 printf(" Event: %s\n",

 ulEvent==VDS_NF_MOUNT_POINTS_CHANGE? "Mount Points Change":

 "Mount Points Unknown");

 StringFromGUID2(pNotificationArray[i].FileSystem.volumeId, buffer,

 50);

298 / 368

[MS-VDS] — v20130722
 Virtual Disk Service (VDS) Protocol

 Copyright © 2013 Microsoft Corporation.

 Release: Monday, July 22, 2013

 wprintf(L" Volume Id: %s\n", buffer);

 break;

 case VDS_NTT_SERVICE:

 ulEvent = pNotificationArray[i].Service.ulEvent;

 printf(" Event: %s\n",

 ulEvent==VDS_NF_SERVICE_OUT_OF_SYNC? "Service out-of-sync":

 "Service Unknown");

 break;

 default:

 printf(" Unknown object type.\n");

 break;

 }

 }

 return S_OK;

}

299 / 368

[MS-VDS] — v20130722
 Virtual Disk Service (VDS) Protocol

 Copyright © 2013 Microsoft Corporation.

 Release: Monday, July 22, 2013

5 Security

The following sections specify security considerations for implementers of the Virtual Disk Service
Remote Protocol.

5.1 Security Considerations for Implementers

The Virtual Disk Service Remote Protocol introduces no security considerations except those that
apply to DCOM Remote Protocol interfaces, as specified in [MS-DCOM] section 5.

5.2 Index of Security Parameters

None.

%5bMS-DCOM%5d.pdf

300 / 368

[MS-VDS] — v20130722
 Virtual Disk Service (VDS) Protocol

 Copyright © 2013 Microsoft Corporation.

 Release: Monday, July 22, 2013

6 Appendix A: Full IDL

For ease of implementation, the full IDL is provided here; "ms-dtyp.idl" is the IDL that is in [MS-
DTYP] Appendix A.

import "ms-dtyp.idl";

import "ms-dcom.idl";

interface IEnumVdsObject;

interface IVdsAdviseSink;

interface IVdsAsync;

interface IVdsServiceLoader;

interface IVdsService;

interface IVdsServiceInitialization;

interface IVdsServiceUninstallDisk;

interface IVdsServiceHba;

interface IVdsServiceIscsi;

interface IVdsServiceSAN;

interface IVdsServiceSw;

interface IVdsHbaPort;

interface IVdsIscsiInitiatorAdapter;

interface IVdsIscsiInitiatorPortal;

interface IVdsProvider;

interface IVdsSwProvider;

interface IVdsHwProvider;

interface IVdsVdProvider;

interface IVdsSubSystemImportTarget;

interface IVdsPack;

interface IVdsPack2;

interface IVdsDisk;

interface IVdsDisk2;

interface IVdsDisk3;

interface IVdsAdvancedDisk;

interface IVdsAdvancedDisk2;

interface IVdsAdvancedDisk3;

interface IVdsCreatePartitionEx;

interface IVdsDiskOnline;

interface IVdsDiskPartitionMF;

interface IVdsDiskPartitionMF2;

interface IVdsRemovable;

interface IVdsVolume;

interface IVdsVolume2;

interface IVdsVolumeMF;

interface IVdsVolumeMF2;

interface IVdsVolumeMF3;

interface IVdsVolumeShrink;

interface IVdsVolumeOnline;

interface IVdsVolumePlex;

interface IVdsVDisk;

interface IVdsOpenVDisk;

#define MAX_PATH 0x00000104

#define MAX_FS_NAME_SIZE 0x00000008

typedef GUID VDS_OBJECT_ID;

const unsigned long VER_VDS_LUN_INFORMATION = 0x00000001;

%5bMS-GLOS%5d.pdf
%5bMS-DTYP%5d.pdf
%5bMS-DTYP%5d.pdf
%5bMS-DTYP%5d.pdf

301 / 368

[MS-VDS] — v20130722
 Virtual Disk Service (VDS) Protocol

 Copyright © 2013 Microsoft Corporation.

 Release: Monday, July 22, 2013

typedef enum _VDS_HEALTH

{

 VDS_H_UNKNOWN = 0x00000000,

 VDS_H_HEALTHY = 0x00000001,

 VDS_H_REBUILDING = 0x00000002,

 VDS_H_STALE = 0x00000003,

 VDS_H_FAILING = 0x00000004,

 VDS_H_FAILING_REDUNDANCY = 0x00000005,

 VDS_H_FAILED_REDUNDANCY = 0x00000006,

 VDS_H_FAILED_REDUNDANCY_FAILING = 0x00000007,

 VDS_H_FAILED = 0x00000008

} VDS_HEALTH;

typedef enum _VDS_NOTIFICATION_TARGET_TYPE

{

 VDS_NTT_UNKNOWN = 0x00000000,

 VDS_NTT_PACK = 0x0000000A,

 VDS_NTT_VOLUME = 0x0000000B,

 VDS_NTT_DISK = 0x0000000D,

 VDS_NTT_PARTITION = 0x0000003C,

 VDS_NTT_DRIVE_LETTER = 0x0000003D,

 VDS_NTT_FILE_SYSTEM = 0x0000003E,

 VDS_NTT_MOUNT_POINT = 0x0000003F,

 VDS_NTT_SERVICE = 0x000000C8

} VDS_NOTIFICATION_TARGET_TYPE;

typedef enum _VDS_ASYNC_OUTPUT_TYPE

{

 VDS_ASYNCOUT_UNKNOWN = 0,

 VDS_ASYNCOUT_CREATEVOLUME = 1,

 VDS_ASYNCOUT_EXTENDVOLUME = 2,

 VDS_ASYNCOUT_SHRINKVOLUME = 3,

 VDS_ASYNCOUT_ADDVOLUMEPLEX = 4,

 VDS_ASYNCOUT_BREAKVOLUMEPLEX = 5,

 VDS_ASYNCOUT_REMOVEVOLUMEPLEX = 6,

 VDS_ASYNCOUT_REPAIRVOLUMEPLEX = 7,

 VDS_ASYNCOUT_RECOVERPACK = 8,

 VDS_ASYNCOUT_REPLACEDISK = 9,

 VDS_ASYNCOUT_CREATEPARTITION = 10,

 VDS_ASYNCOUT_CLEAN = 11,

 VDS_ASYNCOUT_CREATELUN = 50,

 VDS_ASYNCOUT_FORMAT = 101,

 VDS_ASYNCOUT_CREATE_VDISK = 200,

 VDS_ASYNCOUT_SURFACE_VDISK = 201,

 VDS_ASYNCOUT_COMPACT_VDISK = 202,

 VDS_ASYNCOUT_MERGE_VDISK = 203,

 VDS_ASYNCOUT_EXPAND_VDISK = 204

} VDS_ASYNC_OUTPUT_TYPE;

typedef enum _VDS_STORAGE_BUS_TYPE

{

 VDSBusTypeUnknown = 0x00000000,

 VDSBusTypeScsi = 0x00000001,

 VDSBusTypeAtapi = 0x00000002,

 VDSBusTypeAta = 0x00000003,

 VDSBusType1394 = 0x00000004,

 VDSBusTypeSsa = 0x00000005,

 VDSBusTypeFibre = 0x00000006,

302 / 368

[MS-VDS] — v20130722
 Virtual Disk Service (VDS) Protocol

 Copyright © 2013 Microsoft Corporation.

 Release: Monday, July 22, 2013

 VDSBusTypeUsb = 0x00000007,

 VDSBusTypeRAID = 0x00000008,

 VDSBusTypeiScsi = 0x00000009,

 VDSBusTypeSas = 0x0000000A,

 VDSBusTypeSata = 0x0000000B,

 VDSBusTypeSd = 0x0000000C,

 VDSBusTypeMmc = 0x0000000D,

 VDSBusTypeMax = 0x0000000E,

 VDSBusTypeVirtual = 0x0000000E,

 VDSBusTypeFileBackedVirtual = 0x0000000F,

 VDSBusTypeSpaces = 0x00000010,

 VDSBusTypeMaxReserved = 0x0000007F

} VDS_STORAGE_BUS_TYPE;

typedef enum _VDS_STORAGE_IDENTIFIER_CODE_SET

{

 VDSStorageIdCodeSetReserved = 0x00000000,

 VDSStorageIdCodeSetBinary = 0x00000001,

 VDSStorageIdCodeSetAscii = 0x00000002,

 VDSStorageIdCodeSetUtf8 = 0x00000003

} VDS_STORAGE_IDENTIFIER_CODE_SET;

typedef enum _VDS_STORAGE_IDENTIFIER_TYPE

{

 VDSStorageIdTypeVendorSpecific = 0x00000000,

 VDSStorageIdTypeVendorId = 0x00000001,

 VDSStorageIdTypeEUI64 = 0x00000002,

 VDSStorageIdTypeFCPHName = 0x00000003,

 VDSStorageIdTypePortRelative = 0x00000004,

 VDSStorageIdTypeTargetPortGroup = 0x00000005,

 VDSStorageIdTypeLogicalUnitGroup = 0x00000006,

 VDSStorageIdTypeMD5LogicalUnitIdentifier = 0x00000007,

 VDSStorageIdTypeScsiNameString = 0x00000008

} VDS_STORAGE_IDENTIFIER_TYPE;

typedef enum _VDS_INTERCONNECT_ADDRESS_TYPE

{

 VDS_IA_UNKNOWN = 0x00000000,

 VDS_IA_FCFS = 0x00000001,

 VDS_IA_FCPH = 0x00000002,

 VDS_IA_FCPH3 = 0x00000003,

 VDS_IA_MAC = 0x00000004,

 VDS_IA_SCSI = 0x00000005

} VDS_INTERCONNECT_ADDRESS_TYPE;

typedef enum _VDS_FILE_SYSTEM_TYPE

{

 VDS_FST_UNKNOWN = 0x00000000,

 VDS_FST_RAW = 0x00000001,

 VDS_FST_FAT = 0x00000002,

 VDS_FST_FAT32 = 0x00000003,

 VDS_FST_NTFS = 0x00000004,

 VDS_FST_CDFS = 0x00000005,

 VDS_FST_UDF = 0x00000006,

 VDS_FST_EXFAT = 0x00000007,

 VDS_FST_CSVFS = 0x00000008,

 VDS_FST_REFS = 0x00000009

} VDS_FILE_SYSTEM_TYPE;

303 / 368

[MS-VDS] — v20130722
 Virtual Disk Service (VDS) Protocol

 Copyright © 2013 Microsoft Corporation.

 Release: Monday, July 22, 2013

typedef enum _VDS_FILE_SYSTEM_FLAG

{

 VDS_FSF_SUPPORT_FORMAT = 0x00000001,

 VDS_FSF_SUPPORT_QUICK_FORMAT = 0x00000002,

 VDS_FSF_SUPPORT_COMPRESS = 0x00000004,

 VDS_FSF_SUPPORT_SPECIFY_LABEL = 0x00000008,

 VDS_FSF_SUPPORT_MOUNT_POINT = 0x00000010,

 VDS_FSF_SUPPORT_REMOVABLE_MEDIA = 0x00000020,

 VDS_FSF_SUPPORT_EXTEND = 0x00000040,

 VDS_FSF_ALLOCATION_UNIT_512 = 0x00010000,

 VDS_FSF_ALLOCATION_UNIT_1K = 0x00020000,

 VDS_FSF_ALLOCATION_UNIT_2K = 0x00040000,

 VDS_FSF_ALLOCATION_UNIT_4K = 0x00080000,

 VDS_FSF_ALLOCATION_UNIT_8K = 0x00100000,

 VDS_FSF_ALLOCATION_UNIT_16K = 0x00200000,

 VDS_FSF_ALLOCATION_UNIT_32K = 0x00400000,

 VDS_FSF_ALLOCATION_UNIT_64K = 0x00800000,

 VDS_FSF_ALLOCATION_UNIT_128K = 0x01000000,

 VDS_FSF_ALLOCATION_UNIT_256K = 0x02000000

} VDS_FILE_SYSTEM_FLAG;

typedef enum _VDS_FILE_SYSTEM_PROP_FLAG

{

 VDS_FPF_COMPRESSED = 0x00000001

} VDS_FILE_SYSTEM_PROP_FLAG;

typedef enum _VDS_FILE_SYSTEM_FORMAT_SUPPORT_FLAG

{

 VDS_FSS_DEFAULT = 0x00000001,

 VDS_FSS_PREVIOUS_REVISION = 0x00000002,

 VDS_FSS_RECOMMENDED = 0x00000004

} VDS_FILE_SYSTEM_FORMAT_SUPPORT_FLAG;

typedef enum _VDS_DISK_EXTENT_TYPE

{

 VDS_DET_UNKNOWN = 0x00000000,

 VDS_DET_FREE = 0x00000001,

 VDS_DET_DATA = 0x00000002,

 VDS_DET_OEM = 0x00000003,

 VDS_DET_ESP = 0x00000004,

 VDS_DET_MSR = 0x00000005,

 VDS_DET_LDM = 0x00000006,

 VDS_DET_UNUSABLE = 0x00007FFF

} VDS_DISK_EXTENT_TYPE;

typedef enum _VDS_PARTITION_STYLE

{

 VDS_PST_UNKNOWN = 0x00000000,

 VDS_PST_MBR = 0x00000001,

 VDS_PST_GPT = 0x00000002

} VDS_PARTITION_STYLE;

typedef enum _VDS_PARTITION_FLAG

{

 VDS_PTF_SYSTEM = 0x00000001

} VDS_PARTITION_FLAG;

typedef enum _VDS_VOLUME_TYPE

{

304 / 368

[MS-VDS] — v20130722
 Virtual Disk Service (VDS) Protocol

 Copyright © 2013 Microsoft Corporation.

 Release: Monday, July 22, 2013

 VDS_VT_UNKNOWN = 0x00000000,

 VDS_VT_SIMPLE = 0x0000000A,

 VDS_VT_SPAN = 0x0000000B,

 VDS_VT_STRIPE = 0x0000000C,

 VDS_VT_MIRROR = 0x0000000D,

 VDS_VT_PARITY = 0x0000000E

} VDS_VOLUME_TYPE;

typedef enum _VDS_TRANSITION_STATE

{

 VDS_TS_UNKNOWN = 0x00000000,

 VDS_TS_STABLE = 0x00000001,

 VDS_TS_EXTENDING = 0x00000002,

 VDS_TS_SHRINKING = 0x00000003,

 VDS_TS_RECONFIGING = 0x00000004

} VDS_TRANSITION_STATE;

typedef enum _VDS_FORMAT_OPTION_FLAGS

{

 VDS_FSOF_NONE = 0x00000000,

 VDS_FSOF_FORCE = 0x00000001,

 VDS_FSOF_QUICK = 0x00000002,

 VDS_FSOF_COMPRESSION = 0x00000004,

 VDS_FSOF_DUPLICATE_METADATA = 0x00000008

} VDS_FORMAT_OPTION_FLAGS;

typedef enum _VDS_DISK_FLAG

{

 VDS_DF_AUDIO_CD = 0x1,

 VDS_DF_HOTSPARE = 0x2,

 VDS_DF_RESERVE_CAPABLE = 0x4,

 VDS_DF_MASKED = 0x8,

 VDS_DF_STYLE_CONVERTIBLE = 0x10,

 VDS_DF_CLUSTERED = 0x20,

 VDS_DF_READ_ONLY = 0x40,

 VDS_DF_SYSTEM_DISK = 0x80,

 VDS_DF_BOOT_DISK = 0x100,

 VDS_DF_PAGEFILE_DISK = 0x200,

 VDS_DF_HIBERNATIONFILE_DISK = 0x400,

 VDS_DF_CRASHDUMP_DISK = 0x800,

 VDS_DF_HAS_ARC_PATH = 0x1000,

 VDS_DF_DYNAMIC = 0x2000,

 VDS_DF_BOOT_FROM_DISK = 0x4000,

 VDS_DF_CURRENT_READ_ONLY = 0x8000

} VDS_DISK_FLAG;

typedef enum _VDS_DISK_STATUS

{

 VDS_DS_UNKNOWN = 0x00000000,

 VDS_DS_ONLINE = 0x00000001,

 VDS_DS_NOT_READY = 0x00000002,

 VDS_DS_NO_MEDIA = 0x00000003,

 VDS_DS_OFFLINE = 0x00000004,

 VDS_DS_FAILED = 0x00000005,

 VDS_DS_MISSING = 0x00000006

} VDS_DISK_STATUS;

typedef enum _VDS_LUN_RESERVE_MODE

{

305 / 368

[MS-VDS] — v20130722
 Virtual Disk Service (VDS) Protocol

 Copyright © 2013 Microsoft Corporation.

 Release: Monday, July 22, 2013

 VDS_LRM_NONE = 0x00000000,

 VDS_LRM_EXCLUSIVE_RW = 0x00000001,

 VDS_LRM_EXCLUSIVE_RO = 0x00000002,

 VDS_LRM_SHARED_RO = 0x00000003,

 VDS_LRM_SHARED_RW = 0x00000004

} VDS_LUN_RESERVE_MODE;

typedef enum _VDS_VOLUME_STATUS

{

 VDS_VS_UNKNOWN = 0x00000000,

 VDS_VS_ONLINE = 0x00000001,

 VDS_VS_NO_MEDIA = 0x00000003,

 VDS_VS_OFFLINE = 0x00000004,

 VDS_VS_FAILED = 0x00000005

} VDS_VOLUME_STATUS;

typedef enum _VDS_VOLUME_FLAG

{

 VDS_VF_SYSTEM_VOLUME = 0x00000001,

 VDS_VF_BOOT_VOLUME = 0x00000002,

 VDS_VF_ACTIVE = 0x00000004,

 VDS_VF_READONLY = 0x00000008,

 VDS_VF_HIDDEN = 0x00000010,

 VDS_VF_CAN_EXTEND = 0x00000020,

 VDS_VF_CAN_SHRINK = 0x00000040,

 VDS_VF_PAGEFILE = 0x00000080,

 VDS_VF_HIBERNATION = 0x00000100,

 VDS_VF_CRASHDUMP = 0x00000200,

 VDS_VF_INSTALLABLE = 0x00000400,

 VDS_VF_LBN_REMAP_ENABLED = 0x00000800,

 VDS_VF_FORMATTING = 0x00001000,

 VDS_VF_NOT_FORMATTABLE = 0x00002000,

 VDS_VF_NTFS_NOT_SUPPORTED = 0x00004000,

 VDS_VF_FAT32_NOT_SUPPORTED = 0x00008000,

 VDS_VF_FAT_NOT_SUPPORTED = 0x00010000,

 VDS_VF_NO_DEFAULT_DRIVE_LETTER = 0x00020000,

 VDS_VF_PERMANENTLY_DISMOUNTED = 0x00040000,

 VDS_VF_PERMANENT_DISMOUNT_SUPPORTED = 0x00080000,

 VDS_VF_SHADOW_COPY = 0x00100000,

 VDS_VF_FVE_ENABLED = 0x00200000,

 VDS_VF_DIRTY = 0x00400000,

 VDS_VF_REFS_NOT_SUPPORTED = 0x00800000

} VDS_VOLUME_FLAG;

typedef struct _VDS_PACK_NOTIFICATION

{

 unsigned long ulEvent;

 VDS_OBJECT_ID packId;

} VDS_PACK_NOTIFICATION;

typedef struct _VDS_DISK_NOTIFICATION

{

 unsigned long ulEvent;

 VDS_OBJECT_ID diskId;

} VDS_DISK_NOTIFICATION;

typedef struct _VDS_VOLUME_NOTIFICATION

{

 unsigned long ulEvent;

306 / 368

[MS-VDS] — v20130722
 Virtual Disk Service (VDS) Protocol

 Copyright © 2013 Microsoft Corporation.

 Release: Monday, July 22, 2013

 VDS_OBJECT_ID volumeId;

 VDS_OBJECT_ID plexId;

 unsigned long ulPercentCompleted;

} VDS_VOLUME_NOTIFICATION;

typedef struct _VDS_PARTITION_NOTIFICATION

{

 unsigned long ulEvent;

 VDS_OBJECT_ID diskId;

 ULONGLONG ullOffset;

} VDS_PARTITION_NOTIFICATION;

typedef struct _VDS_DRIVE_LETTER_NOTIFICATION

{

 unsigned long ulEvent;

 WCHAR wcLetter;

 VDS_OBJECT_ID volumeId;

} VDS_DRIVE_LETTER_NOTIFICATION;

typedef struct _VDS_FILE_SYSTEM_NOTIFICATION

{

 unsigned long ulEvent;

 VDS_OBJECT_ID volumeId;

 DWORD dwPercentCompleted;

} VDS_FILE_SYSTEM_NOTIFICATION;

typedef struct _VDS_MOUNT_POINT_NOTIFICATION

{

 unsigned long ulEvent;

 VDS_OBJECT_ID volumeId;

} VDS_MOUNT_POINT_NOTIFICATION;

typedef enum _VDS_RECOVER_ACTION

{

 VDS_RA_UNKNOWN = 0,

 VDS_RA_REFRESH = 1,

 VDS_RA_RESTART = 2

} VDS_RECOVER_ACTION;

typedef struct _VDS_SERVICE_NOTIFICATION

{

 ULONG ulEvent;

 VDS_RECOVER_ACTION action;

} VDS_SERVICE_NOTIFICATION;

typedef struct _VDS_NOTIFICATION

{

 VDS_NOTIFICATION_TARGET_TYPE objectType;

 [switch_is(objectType)] union

 {

 [case(VDS_NTT_PACK)]

 VDS_PACK_NOTIFICATION Pack;

 [case(VDS_NTT_DISK)]

 VDS_DISK_NOTIFICATION Disk;

 [case(VDS_NTT_VOLUME)]

 VDS_VOLUME_NOTIFICATION Volume;

 [case(VDS_NTT_PARTITION)]

 VDS_PARTITION_NOTIFICATION Partition;

 [case(VDS_NTT_DRIVE_LETTER)]

307 / 368

[MS-VDS] — v20130722
 Virtual Disk Service (VDS) Protocol

 Copyright © 2013 Microsoft Corporation.

 Release: Monday, July 22, 2013

 VDS_DRIVE_LETTER_NOTIFICATION Letter;

 [case(VDS_NTT_FILE_SYSTEM)]

 VDS_FILE_SYSTEM_NOTIFICATION FileSystem;

 [case(VDS_NTT_MOUNT_POINT)]

 VDS_MOUNT_POINT_NOTIFICATION MountPoint;

 [case(VDS_NTT_SERVICE)]

 VDS_SERVICE_NOTIFICATION Service; };

} VDS_NOTIFICATION;

typedef struct _VDS_ASYNC_OUTPUT {

 VDS_ASYNC_OUTPUT_TYPE type;

 [switch_is(type)] union

 {

 [case(VDS_ASYNCOUT_CREATEPARTITION)]

 struct _cp

 {

 ULONGLONG ullOffset;

 VDS_OBJECT_ID volumeId;

 } cp;

 [case(VDS_ASYNCOUT_CREATEVOLUME)]

 struct _cv

 {

 IUnknown *pVolumeUnk;

 } cv;

 [case(VDS_ASYNCOUT_BREAKVOLUMEPLEX)]

 struct _bvp

 {

 IUnknown *pVolumeUnk;

 } bvp;

 [case(VDS_ASYNCOUT_SHRINKVOLUME)]

 struct _sv

 {

 ULONGLONG ullReclaimedBytes;

 } sv;

 [case(VDS_ASYNCOUT_CREATE_VDISK)]

 struct _cvd

 {

 IUnknown *pVDiskUnk;

 } cvd;

 [default];

 };

} VDS_ASYNC_OUTPUT;

typedef struct _VDS_PARTITION_INFO_MBR

{

 byte partitionType;

 boolean bootIndicator;

 boolean recognizedPartition;

 DWORD hiddenSectors;

} VDS_PARTITION_INFO_MBR;

typedef struct _VDS_PARTITION_INFO_GPT

{

 GUID partitionType;

 GUID partitionId;

 ULONGLONG attributes;

 WCHAR name[36];

} VDS_PARTITION_INFO_GPT;

308 / 368

[MS-VDS] — v20130722
 Virtual Disk Service (VDS) Protocol

 Copyright © 2013 Microsoft Corporation.

 Release: Monday, July 22, 2013

typedef struct _VDS_STORAGE_IDENTIFIER

{

 VDS_STORAGE_IDENTIFIER_CODE_SET m_CodeSet;

 VDS_STORAGE_IDENTIFIER_TYPE m_Type;

 unsigned long m_cbIdentifier;

 [size_is(m_cbIdentifier)] byte *m_rgbIdentifier;

} VDS_STORAGE_IDENTIFIER;

typedef struct _VDS_STORAGE_DEVICE_ID_DESCRIPTOR

{

 unsigned long m_version;

 unsigned long m_cIdentifiers;

 [size_is(m_cIdentifiers)] VDS_STORAGE_IDENTIFIER

 *m_rgIdentifiers;

} VDS_STORAGE_DEVICE_ID_DESCRIPTOR;

typedef struct _VDS_INTERCONNECT

{

 VDS_INTERCONNECT_ADDRESS_TYPE m_addressType;

 unsigned long m_cbPort;

 [size_is(m_cbPort)] byte *m_pbPort;

 unsigned long m_cbAddress;

 [size_is(m_cbAddress)] byte *m_pbAddress;

} VDS_INTERCONNECT;

typedef struct _VDS_LUN_INFORMATION

{

 unsigned long m_version;

 byte m_DeviceType;

 byte m_DeviceTypeModifier;

 long m_bCommandQueuing;

 VDS_STORAGE_BUS_TYPE m_BusType;

 [string] char * m_szVendorId;

 [string] char * m_szProductId;

 [string] char * m_szProductRevision;

 [string] char * m_szSerialNumber;

 GUID m_diskSignature;

 VDS_STORAGE_DEVICE_ID_DESCRIPTOR m_deviceIdDescriptor;

 unsigned long m_cInterconnects;

 [size_is(m_cInterconnects)] VDS_INTERCONNECT *

 m_rgInterconnects;

} VDS_LUN_INFORMATION;

typedef struct _VDS_FILE_SYSTEM_PROP

{

 VDS_FILE_SYSTEM_TYPE type;

 VDS_OBJECT_ID volumeId;

 unsigned long ulFlags;

 ULONGLONG ullTotalAllocationUnits;

 ULONGLONG ullAvailableAllocationUnits;

 unsigned long ulAllocationUnitSize;

 [string] WCHAR *pwszLabel;

} VDS_FILE_SYSTEM_PROP, *PVDS_FILE_SYSTEM_PROP;

typedef struct _VDS_FILE_SYSTEM_FORMAT_SUPPORT_PROP

{

 unsigned long ulFlags;

 unsigned short usRevision;

 unsigned long ulDefaultUnitAllocationSize;

309 / 368

[MS-VDS] — v20130722
 Virtual Disk Service (VDS) Protocol

 Copyright © 2013 Microsoft Corporation.

 Release: Monday, July 22, 2013

 unsigned long

 rgulAllowedUnitAllocationSizes[32];

 WCHAR wszName[32];

} VDS_FILE_SYSTEM_FORMAT_SUPPORT_PROP,

 *PVDS_FILE_SYSTEM_FORMAT_SUPPORT_PROP;

typedef struct _VDS_DISK_EXTENT

{

 VDS_OBJECT_ID diskId;

 VDS_DISK_EXTENT_TYPE type;

 ULONGLONG ullOffset;

 ULONGLONG ullSize;

 VDS_OBJECT_ID volumeId;

 VDS_OBJECT_ID plexId;

 unsigned long memberIdx;

} VDS_DISK_EXTENT, *PVDS_DISK_EXTENT;

typedef struct _VDS_DISK_FREE_EXTENT

{

 VDS_OBJECT_ID diskId;

 ULONGLONG ullOffset;

 ULONGLONG ullSize;

} VDS_DISK_FREE_EXTENT, *PVDS_DISK_FREE_EXTENT;

typedef struct _VDS_PARTITION_PROP

{

 VDS_PARTITION_STYLE PartitionStyle;

 unsigned long ulFlags;

 unsigned long ulPartitionNumber;

 ULONGLONG ullOffset;

 ULONGLONG ullSize;

 [switch_is(PartitionStyle)] union

 {

 [case(VDS_PST_MBR)]

 VDS_PARTITION_INFO_MBR Mbr;

 [case(VDS_PST_GPT)]

 VDS_PARTITION_INFO_GPT Gpt;

 [default];

 };

} VDS_PARTITION_PROP;

typedef struct _VDS_INPUT_DISK

{

 VDS_OBJECT_ID diskId;

 ULONGLONG ullSize;

 VDS_OBJECT_ID plexId;

 unsigned long memberIdx;

} VDS_INPUT_DISK;

typedef struct _CREATE_PARTITION_PARAMETERS

{

 VDS_PARTITION_STYLE style;

 [switch_is(style)] union

 {

 [case(VDS_PST_MBR)]

 struct

 {

 byte partitionType;

 boolean bootIndicator;

310 / 368

[MS-VDS] — v20130722
 Virtual Disk Service (VDS) Protocol

 Copyright © 2013 Microsoft Corporation.

 Release: Monday, July 22, 2013

 } MbrPartInfo;

 [case(VDS_PST_GPT)]

 struct

 {

 GUID partitionType;

 GUID partitionId;

 ULONGLONG attributes;

 WCHAR name[24];

 } GptPartInfo;

 [default];

 };

} CREATE_PARTITION_PARAMETERS;

typedef struct _VIRTUAL_STORAGE_TYPE

{

 ULONG DeviceId;

 GUID VendorId;

} VIRTUAL_STORAGE_TYPE;

typedef enum tag_VDS_PARTITION_STYLE

{

 VDS_PARTITION_STYLE_MBR = 0,

 VDS_PARTITION_STYLE_GPT = 1,

 VDS_PARTITION_STYLE_RAW = 2

} __VDS_PARTITION_STYLE;

//THEEND

typedef enum _VDS_OBJECT_TYPE

{

 VDS_OT_UNKNOWN = 0x00000000,

 VDS_OT_PROVIDER = 0x00000001,

 VDS_OT_PACK = 0x0000000A,

 VDS_OT_VOLUME = 0x0000000B,

 VDS_OT_VOLUME_PLEX = 0x0000000C,

 VDS_OT_DISK = 0x0000000D,

 VDS_OT_HBAPORT = 0x0000005A,

 VDS_OT_INIT_ADAPTER = 0x0000005B,

 VDS_OT_INIT_PORTAL = 0x0000005C,

 VDS_OT_ASYNC = 0x00000064,

 VDS_OT_ENUM = 0x00000065,

 VDS_OT_VDISK = 0x000000C8,

 VDS_OT_OPEN_VDISK = 0x000000C9

} VDS_OBJECT_TYPE;

typedef enum _VDS_SERVICE_FLAG

{

 VDS_SVF_SUPPORT_DYNAMIC = 0x00000001,

 VDS_SVF_SUPPORT_FAULT_TOLERANT = 0x00000002,

 VDS_SVF_SUPPORT_GPT = 0x00000004,

 VDS_SVF_SUPPORT_DYNAMIC_1394 = 0x00000008,

 VDS_SVF_CLUSTER_SERVICE_CONFIGURED = 0x00000010,

 VDS_SVF_AUTO_MOUNT_OFF = 0x00000020,

 VDS_SVF_OS_UNINSTALL_VALID = 0x00000040,

 VDS_SVF_EFI = 0x00000080,

 VDS_SVF_SUPPORT_MIRROR = 0x00000100,

 VDS_SVF_SUPPORT_RAIDS = 0x00000200,

 VDS_SVF_SUPPORT_REFS = 0x00000400L

} VDS_SERVICE_FLAG;

311 / 368

[MS-VDS] — v20130722
 Virtual Disk Service (VDS) Protocol

 Copyright © 2013 Microsoft Corporation.

 Release: Monday, July 22, 2013

typedef enum _VDS_PROVIDER_TYPE

{

 VDS_PT_UNKNOWN = 0x00000000,

 VDS_PT_SOFTWARE = 0x00000001,

 VDS_PT_HARDWARE = 0x00000002,

 VDS_PT_VIRTUALDISK = 0x00000003,

 VDS_PT_MAX = 0x00000004

} VDS_PROVIDER_TYPE;

typedef enum _VDS_PROVIDER_FLAG

{

 VDS_PF_DYNAMIC = 0x00000001,

 VDS_PF_INTERNAL_HARDWARE_PROVIDER = 0x00000002,

 VDS_PF_ONE_DISK_ONLY_PER_PACK = 0x00000004,

 VDS_PF_ONE_PACK_ONLINE_ONLY = 0x00000008,

 VDS_PF_VOLUME_SPACE_MUST_BE_CONTIGUOUS = 0x00000010,

 VDS_PF_SUPPORT_MIRROR = 0x00000020,

 VDS_PF_SUPPORT_RAID5 = 0x00000040,

 VDS_PF_SUPPORT_DYNAMIC_1394 = 0x20000000,

 VDS_PF_SUPPORT_FAULT_TOLERANT = 0x40000000,

 VDS_PF_SUPPORT_DYNAMIC = 0x80000000

} VDS_PROVIDER_FLAG;

typedef enum _VDS_QUERY_PROVIDER_FLAG

{

 VDS_QUERY_SOFTWARE_PROVIDERS = 0x1,

 VDS_QUERY_HARDWARE_PROVIDERS = 0x2,

 VDS_QUERY_VIRTUALDISK_PROVIDERS = 0x4

} VDS_QUERY_PROVIDER_FLAG;

const unsigned long VDS_NF_PACK_ARRIVE = 0x00000001;

const unsigned long VDS_NF_PACK_DEPART = 0x00000002;

const unsigned long VDS_NF_PACK_MODIFY = 0x00000003;

const unsigned long VDS_NF_VOLUME_ARRIVE = 0x00000004;

const unsigned long VDS_NF_VOLUME_DEPART = 0x00000005;

const unsigned long VDS_NF_VOLUME_MODIFY = 0x00000006;

const unsigned long VDS_NF_VOLUME_REBUILDING_PROGRESS

 = 0x00000007;

const unsigned long VDS_NF_DISK_ARRIVE = 0x00000008;

const unsigned long VDS_NF_DISK_DEPART = 0x00000009;

const unsigned long VDS_NF_DISK_MODIFY = 0x0000000A;

const unsigned long VDS_NF_PARTITION_ARRIVE = 0x0000000B;

const unsigned long VDS_NF_PARTITION_DEPART = 0x0000000C;

const unsigned long VDS_NF_PARTITION_MODIFY = 0x0000000D;

const unsigned long VDS_NF_DRIVE_LETTER_FREE = 0x000000C9;

const unsigned long VDS_NF_DRIVE_LETTER_ASSIGN = 0x000000CA;

const unsigned long VDS_NF_FILE_SYSTEM_MODIFY = 0x000000CB;

const unsigned long VDS_NF_FILE_SYSTEM_FORMAT_PROGRESS

 = 0x000000CC;

const unsigned long VDS_NF_MOUNT_POINTS_CHANGE = 0x000000CD;

312 / 368

[MS-VDS] — v20130722
 Virtual Disk Service (VDS) Protocol

 Copyright © 2013 Microsoft Corporation.

 Release: Monday, July 22, 2013

const ULONG VDS_NF_SERVICE_OUT_OF_SYNC = 0x0000012D;

typedef enum _VDS_DRIVE_LETTER_FLAG

{

 VDS_DLF_NON_PERSISTENT = 0x00000001

} VDS_DRIVE_LETTER_FLAG;

typedef enum _VDS_PACK_STATUS

{

 VDS_PS_UNKNOWN = 0x00000000,

 VDS_PS_ONLINE = 0x00000001,

 VDS_PS_OFFLINE = 0x00000004

} VDS_PACK_STATUS;

typedef enum _VDS_PACK_FLAG

{

 VDS_PKF_FOREIGN = 0x00000001,

 VDS_PKF_NOQUORUM = 0x00000002,

 VDS_PKF_POLICY = 0x00000004,

 VDS_PKF_CORRUPTED = 0x00000008,

 VDS_PKF_ONLINE_ERROR = 0x00000010

} VDS_PACK_FLAG;

typedef enum _VDS_DISK_OFFLINE_REASON

{

 VDSDiskOfflineReasonNone = 0,

 VDSDiskOfflineReasonPolicy = 1,

 VDSDiskOfflineReasonRedundantPath = 2,

 VDSDiskOfflineReasonSnapshot = 3,

 VDSDiskOfflineReasonCollision = 4

 } VDS_DISK_OFFLINE_REASON;

typedef enum _VDS_VOLUME_PLEX_TYPE

{

 VDS_VPT_UNKNOWN = 0x00000000,

 VDS_VPT_SIMPLE = 0x0000000A,

 VDS_VPT_SPAN = 0x0000000B,

 VDS_VPT_STRIPE = 0x0000000C,

 VDS_VPT_PARITY = 0x0000000E

} VDS_VOLUME_PLEX_TYPE;

typedef enum _VDS_VOLUME_PLEX_STATUS

{

 VDS_VPS_UNKNOWN = 0x00000000,

 VDS_VPS_ONLINE = 0x00000001,

 VDS_VPS_NO_MEDIA = 0x00000003,

 VDS_VPS_FAILED = 0x00000005

} VDS_VOLUME_PLEX_STATUS;

typedef enum VDS_IPADDRESS_TYPE

{

 VDS_IPT_TEXT = 0x00000000,

 VDS_IPT_IPV4 = 0x00000001,

 VDS_IPT_IPV6 = 0x00000002,

 VDS_IPT_EMPTY = 0x00000003

} VDS_IPADDRESS_TYPE;

typedef enum _VDS_HBAPORT_TYPE

{

313 / 368

[MS-VDS] — v20130722
 Virtual Disk Service (VDS) Protocol

 Copyright © 2013 Microsoft Corporation.

 Release: Monday, July 22, 2013

 VDS_HPT_UNKNOWN = 0x00000001,

 VDS_HPT_OTHER = 0x00000002,

 VDS_HPT_NOTPRESENT = 0x00000003,

 VDS_HPT_NPORT = 0x00000005,

 VDS_HPT_NLPORT = 0x00000006,

 VDS_HPT_FLPORT = 0x00000007,

 VDS_HPT_FPORT = 0x00000008,

 VDS_HPT_EPORT = 0x00000009,

 VDS_HPT_GPORT = 0x0000000A,

 VDS_HPT_LPORT = 0x00000014,

 VDS_HPT_PTP = 0x00000015

} VDS_HBAPORT_TYPE;

typedef enum _VDS_HBAPORT_STATUS

{

 VDS_HPS_UNKNOWN = 0x00000001,

 VDS_HPS_ONLINE = 0x00000002,

 VDS_HPS_OFFLINE = 0x00000003,

 VDS_HPS_BYPASSED = 0x00000004,

 VDS_HPS_DIAGNOSTICS = 0x00000005,

 VDS_HPS_LINKDOWN = 0x00000006,

 VDS_HPS_ERROR = 0x00000007,

 VDS_HPS_LOOPBACK = 0x00000008

} VDS_HBAPORT_STATUS;

typedef enum _VDS_HBAPORT_SPEED_FLAG

{

 VDS_HSF_UNKNOWN = 0x00000000,

 VDS_HSF_1GBIT = 0x00000001,

 VDS_HSF_2GBIT = 0x00000002,

 VDS_HSF_10GBIT = 0x00000004,

 VDS_HSF_4GBIT = 0x00000008,

 VDS_HSF_NOT_NEGOTIATED = 0x00008000

} VDS_HBAPORT_SPEED_FLAG;

typedef enum _VDS_PATH_STATUS

{

 VDS_MPS_UNKNOWN = 0x00000000,

 VDS_MPS_ONLINE = 0x00000001,

 VDS_MPS_FAILED = 0x00000005,

 VDS_MPS_STANDBY = 0x00000007

} VDS_PATH_STATUS;

typedef struct VDS_REPARSE_POINT_PROP

{

 VDS_OBJECT_ID SourceVolumeId;

 [string] WCHAR *pwszPath;

} VDS_REPARSE_POINT_PROP, *PVDS_REPARSE_POINT_PROP;

typedef struct _VDS_DRIVE_LETTER_PROP

{

 WCHAR wcLetter;

 VDS_OBJECT_ID volumeId;

 unsigned long ulFlags;

 long bUsed;

} VDS_DRIVE_LETTER_PROP, *PVDS_DRIVE_LETTER_PROP;

// IVdsServiceSAN

314 / 368

[MS-VDS] — v20130722
 Virtual Disk Service (VDS) Protocol

 Copyright © 2013 Microsoft Corporation.

 Release: Monday, July 22, 2013

typedef enum _VDS_SAN_POLICY

{

 VDS_SP_UNKNOWN = 0x0,

 VDS_SP_ONLINE = 0x1,

 VDS_SP_OFFLINE_SHARED = 0x2,

 VDS_SP_OFFLINE = 0x3,

 VDS_SP_OFFLINE_INTERNAL = 0x4,

 VDS_SP_MAX = 0x5

} VDS_SAN_POLICY;

typedef struct _VDS_FILE_SYSTEM_TYPE_PROP

{

 VDS_FILE_SYSTEM_TYPE type;

 WCHAR wszName[8];

 unsigned long ulFlags;

 unsigned long ulCompressionFlags;

 unsigned long ulMaxLabelLength;

 [string] WCHAR *pwszIllegalLabelCharSet;

} VDS_FILE_SYSTEM_TYPE_PROP, *PVDS_FILE_SYSTEM_TYPE_PROP;

typedef struct _CHANGE_ATTRIBUTES_PARAMETERS

{

 VDS_PARTITION_STYLE style; // legal values: MBR or GPT

 [switch_is(style)] union

 {

 [case(VDS_PST_MBR)]

 struct

 {

 boolean bootIndicator;

 } MbrPartInfo;

 [case(VDS_PST_GPT)]

 struct

 {

 ULONGLONG attributes;

 } GptPartInfo;

 [default];

 };

} CHANGE_ATTRIBUTES_PARAMETERS;

typedef struct _CHANGE_PARTITION_TYPE_PARAMETERS

{

 VDS_PARTITION_STYLE style;

 [switch_is(style)] union

 {

 [case(VDS_PST_MBR)]

 struct

 {

 byte partitionType;

 } MbrPartInfo;

 [case(VDS_PST_GPT)]

 struct

 {

 GUID partitionType;

 } GptPartInfo;

315 / 368

[MS-VDS] — v20130722
 Virtual Disk Service (VDS) Protocol

 Copyright © 2013 Microsoft Corporation.

 Release: Monday, July 22, 2013

 [default];

 };

} CHANGE_PARTITION_TYPE_PARAMETERS;

typedef struct _VDS_WWN

{

 unsigned char rguchWwn[8];

} VDS_WWN;

typedef struct _VDS_IPADDRESS

{

 VDS_IPADDRESS_TYPE type;

 unsigned long ipv4Address;

 unsigned char ipv6Address[16];

 unsigned long ulIpv6FlowInfo;

 unsigned long ulIpv6ScopeId;

 WCHAR wszTextAddress[256 + 1];

 unsigned long ulPort;

} VDS_IPADDRESS;

typedef struct _VDS_ISCSI_SHARED_SECRET

{

 [size_is(ulSharedSecretSize)] unsigned char *

 pSharedSecret;

 unsigned long ulSharedSecretSize;

} VDS_ISCSI_SHARED_SECRET;

typedef struct _VDS_SERVICE_PROP

{

 [string] WCHAR *pwszVersion;

 unsigned long ulFlags;

} VDS_SERVICE_PROP;

typedef struct _VDS_HBAPORT_PROP

{

 VDS_OBJECT_ID id;

 VDS_WWN wwnNode;

 VDS_WWN wwnPort;

 VDS_HBAPORT_TYPE type;

 VDS_HBAPORT_STATUS status;

 unsigned long ulPortSpeed;

 unsigned long ulSupportedPortSpeed;

} VDS_HBAPORT_PROP;

typedef struct _VDS_ISCSI_INITIATOR_ADAPTER_PROP

{

 VDS_OBJECT_ID id;

 [string] WCHAR *pwszName;

} VDS_ISCSI_INITIATOR_ADAPTER_PROP;

typedef struct _VDS_ISCSI_INITIATOR_PORTAL_PROP

{

 VDS_OBJECT_ID id;

 VDS_IPADDRESS address;

 unsigned long ulPortIndex;

} VDS_ISCSI_INITIATOR_PORTAL_PROP;

316 / 368

[MS-VDS] — v20130722
 Virtual Disk Service (VDS) Protocol

 Copyright © 2013 Microsoft Corporation.

 Release: Monday, July 22, 2013

typedef struct _VDS_PROVIDER_PROP

{

 VDS_OBJECT_ID id;

 [string] WCHAR *pwszName;

 GUID guidVersionId;

 [string] WCHAR *pwszVersion;

 VDS_PROVIDER_TYPE type;

 unsigned long ulFlags;

 unsigned long ulStripeSizeFlags;

 short sRebuildPriority;

} VDS_PROVIDER_PROP;

typedef struct _VDS_PACK_PROP

{

 VDS_OBJECT_ID id;

 [string] WCHAR *pwszName;

 VDS_PACK_STATUS status;

 unsigned long ulFlags;

} VDS_PACK_PROP, *PVDS_PACK_PROP;

typedef struct _VDS_DISK_PROP

{

 VDS_OBJECT_ID id;

 VDS_DISK_STATUS status;

 VDS_LUN_RESERVE_MODE ReserveMode;

 VDS_HEALTH health;

 DWORD dwDeviceType;

 DWORD dwMediaType;

 ULONGLONG ullSize;

 unsigned long ulBytesPerSector;

 unsigned long ulSectorsPerTrack;

 unsigned long ulTracksPerCylinder;

 unsigned long ulFlags;

 VDS_STORAGE_BUS_TYPE BusType;

 VDS_PARTITION_STYLE PartitionStyle;

 [switch_is(PartitionStyle)] union

 {

 [case(VDS_PST_MBR)]

 DWORD dwSignature;

 [case(VDS_PST_GPT)]

 GUID DiskGuid;

 [default];

 };

 [string] WCHAR *pwszDiskAddress;

 [string] WCHAR *pwszName;

 [string] WCHAR *pwszFriendlyName;

 [string] WCHAR *pwszAdaptorName;

 [string] WCHAR *pwszDevicePath;

} VDS_DISK_PROP, *PVDS_DISK_PROP;

typedef struct _VDS_DISK_PROP2

{

 VDS_OBJECT_ID id;

 VDS_DISK_STATUS status;

 VDS_LUN_RESERVE_MODE ReserveMode;

 VDS_HEALTH health;

 DWORD dwDeviceType;

 DWORD dwMediaType;

 ULONGLONG ullSize;

317 / 368

[MS-VDS] — v20130722
 Virtual Disk Service (VDS) Protocol

 Copyright © 2013 Microsoft Corporation.

 Release: Monday, July 22, 2013

 unsigned long ulBytesPerSector;

 unsigned long ulSectorsPerTrack;

 unsigned long ulTracksPerCylinder;

 unsigned long ulFlags;

 VDS_STORAGE_BUS_TYPE BusType;

 VDS_PARTITION_STYLE PartitionStyle;

 [switch_is(PartitionStyle)] union

 {

 [case(VDS_PST_MBR)]

 DWORD dwSignature;

 [case(VDS_PST_GPT)]

 GUID DiskGuid;

 [default];

 };

 [string] WCHAR *pwszDiskAddress;

 [string] WCHAR *pwszName;

 [string] WCHAR *pwszFriendlyName;

 [string] WCHAR *pwszAdaptorName;

 [string] WCHAR *pwszDevicePath;

} VDS_DISK_PROP2, *PVDS_DISK_PROP2;

typedef struct _VDS_ADVANCEDDISK_PROP

{

 [string] LPWSTR pwszId;

 [string] LPWSTR pwszPathname;

 [string] LPWSTR pwszLocation;

 [string] LPWSTR pwszFriendlyName;

 [string] LPWSTR pswzIdentifier;

 USHORT usIdentifierFormat;

 ULONG ulNumber;

 [string] LPWSTR pwszSerialNumber;

 [string] LPWSTR pwszFirmwareVersion;

 [string] LPWSTR pwszManufacturer;

 [string] LPWSTR pwszModel;

 ULONGLONG ullTotalSize;

 ULONGLONG ullAllocatedSize;

 ULONG ulLogicalSectorSize;

 ULONG ulPhysicalSectorSize;

 ULONG ulPartitionCount;

 VDS_DISK_STATUS status;

 VDS_HEALTH health;

 VDS_STORAGE_BUS_TYPE BusType;

 VDS_PARTITION_STYLE PartitionStyle;

 [switch_is(PartitionStyle)] union

 {

 [case(VDS_PST_MBR)]

 DWORD dwSignature;

 [case(VDS_PST_GPT)]

 GUID DiskGuid;

 [default];

 };

 ULONG ulFlags;

 DWORD dwDeviceType;

} VDS_ADVANCEDDISK_PROP, *PVDS_ADVANCEDDISK_PROP;

typedef struct _VDS_VOLUME_PROP

{

 VDS_OBJECT_ID id;

318 / 368

[MS-VDS] — v20130722
 Virtual Disk Service (VDS) Protocol

 Copyright © 2013 Microsoft Corporation.

 Release: Monday, July 22, 2013

 VDS_VOLUME_TYPE type;

 VDS_VOLUME_STATUS status;

 VDS_HEALTH health;

 VDS_TRANSITION_STATE TransitionState;

 ULONGLONG ullSize;

 unsigned long ulFlags;

 VDS_FILE_SYSTEM_TYPE RecommendedFileSystemType;

 [string] WCHAR *pwszName;

} VDS_VOLUME_PROP, *PVDS_VOLUME_PROP;

typedef struct _VDS_VOLUME_PROP2

{

 VDS_OBJECT_ID id;

 VDS_VOLUME_TYPE type;

 VDS_VOLUME_STATUS status;

 VDS_HEALTH health;

 VDS_TRANSITION_STATE TransitionState;

 ULONGLONG ullSize;

 unsigned long ulFlags;

 VDS_FILE_SYSTEM_TYPE RecommendedFileSystemType;

 ULONG cbUniqueId;

 [string] WCHAR *pwszName;

 [size_is(cbUniqueId)] BYTE *pUniqueId;

} VDS_VOLUME_PROP2, *PVDS_VOLUME_PROP2;

typedef struct _VDS_VOLUME_PLEX_PROP

{

 VDS_OBJECT_ID id;

 VDS_VOLUME_PLEX_TYPE type;

 VDS_VOLUME_PLEX_STATUS status;

 VDS_HEALTH health;

 VDS_TRANSITION_STATE TransitionState;

 ULONGLONG ullSize;

 unsigned long ulStripeSize;

 unsigned long ulNumberOfMembers;

} VDS_VOLUME_PLEX_PROP, *PVDS_VOLUME_PLEX_PROP;

typedef enum _CREATE_VIRTUAL_DISK_FLAG

{

 CREATE_VIRTUAL_DISK_FLAG_NONE = 0x0,

 CREATE_VIRTUAL_DISK_FLAG_FULL_PHYSICAL_ALLOCATION = 0x1

} CREATE_VIRTUAL_DISK_FLAG;

typedef enum _OPEN_VIRTUAL_DISK_FLAG

{

 OPEN_VIRTUAL_DISK_FLAG_NONE = 0x0,

 OPEN_VIRTUAL_DISK_FLAG_NO_PARENTS = 0x1,

 OPEN_VIRTUAL_DISK_FLAG_BLANK_FILE = 0x2,

 OPEN_VIRTUAL_DISK_FLAG_BOOT_DRIVE = 0x4

} OPEN_VIRTUAL_DISK_FLAG;

typedef struct _VDS_CREATE_VDISK_PARAMETERS

{

 GUID UniqueId;

 ULONGLONG MaximumSize;

 ULONG BlockSizeInBytes;

 ULONG SectorSizeInBytes;

 [string] LPWSTR pParentPath;

 [string] LPWSTR pSourcePath;

319 / 368

[MS-VDS] — v20130722
 Virtual Disk Service (VDS) Protocol

 Copyright © 2013 Microsoft Corporation.

 Release: Monday, July 22, 2013

} VDS_CREATE_VDISK_PARAMETERS, *PVDS_CREATE_VDISK_PARAMETERS;

typedef enum _VDS_VDISK_STATE

{

 VDS_VST_UNKNOWN = 0,

 VDS_VST_ADDED,

 VDS_VST_OPEN,

 VDS_VST_ATTACH_PENDING,

 VDS_VST_ATTACHED_NOT_OPEN,

 VDS_VST_ATTACHED,

 VDS_VST_DETACH_PENDING,

 VDS_VST_COMPACTING,

 VDS_VST_MERGING,

 VDS_VST_EXPANDING,

 VDS_VST_DELETED,

 VDS_VST_MAX

} VDS_VDISK_STATE;

typedef enum _ATTACH_VIRTUAL_DISK_FLAG

{

 ATTACH_VIRTUAL_DISK_FLAG_NONE = 0x00000000,

 ATTACH_VIRTUAL_DISK_FLAG_READ_ONLY = 0x00000001,

 ATTACH_VIRTUAL_DISK_FLAG_NO_DRIVE_LETTER = 0x00000002,

 ATTACH_VIRTUAL_DISK_FLAG_PERMANENT_LIFETIME = 0x00000004,

 ATTACH_VIRTUAL_DISK_FLAG_NO_LOCAL_HOST = 0x00000008,

} ATTACH_VIRTUAL_DISK_FLAG;

typedef enum _DETACH_VIRTUAL_DISK_FLAG

{

 DETACH_VIRTUAL_DISK_FLAG_NONE = 0x00000000

} DETACH_VIRTUAL_DISK_FLAG;

typedef enum _COMPACT_VIRTUAL_DISK_FLAG

{

 COMPACT_VIRTUAL_DISK_FLAG_NONE = 0x00000000

} COMPACT_VIRTUAL_DISK_FLAG;

typedef enum _MERGE_VIRTUAL_DISK_FLAG

{

 MERGE_VIRTUAL_DISK_FLAG_NONE = 0x00000000

} MERGE_VIRTUAL_DISK_FLAG;

typedef enum _EXPAND_VIRTUAL_DISK_FLAG

{

 EXPAND_VIRTUAL_DISK_FLAG_NONE = 0x00000000

} EXPAND_VIRTUAL_DISK_FLAG;

typedef enum _DEPENDENT_DISK_FLAG

{

 DEPENDENT_DISK_FLAG_NONE = 0x0,

 DEPENDENT_DISK_FLAG_MULT_BACKING_FILES = 0x1,

 DEPENDENT_DISK_FLAG_FULLY_ALLOCATED = 0x2,

 DEPENDENT_DISK_FLAG_READ_ONLY = 0x4,

 DEPENDENT_DISK_FLAG_REMOTE = 0x8,

 DEPENDENT_DISK_FLAG_SYSTEM_VOLUME = 0x10,

 DEPENDENT_DISK_FLAG_SYSTEM_VOLUME_PARENT = 0x20,

 DEPENDENT_DISK_FLAG_REMOVABLE = 0x40,

 DEPENDENT_DISK_FLAG_NO_DRIVE_LETTER = 0x80,

 DEPENDENT_DISK_FLAG_PARENT = 0x100,

320 / 368

[MS-VDS] — v20130722
 Virtual Disk Service (VDS) Protocol

 Copyright © 2013 Microsoft Corporation.

 Release: Monday, July 22, 2013

 DEPENDENT_DISK_FLAG_NO_HOST_DISK = 0x200,

 DEPENDENT_DISK_FLAG_PERMANENT_LIFETIME = 0x400

} DEPENDENT_DISK_FLAG;

typedef struct _VDS_VDISK_PROPERTIES

{

 VDS_OBJECT_ID Id;

 VDS_VDISK_STATE State;

 VIRTUAL_STORAGE_TYPE VirtualDeviceType;

 ULONGLONG VirtualSize;

 ULONGLONG PhysicalSize;

 [string] LPWSTR pPath;

 [string] LPWSTR pDeviceName;

 DEPENDENT_DISK_FLAG DiskFlag;

 BOOL bIsChild;

 [string] LPWSTR pParentPath;

} VDS_VDISK_PROPERTIES, *PVDS_VDISK_PROPERTIES;

typedef enum _VIRTUAL_DISK_ACCESS_MASK

{

 VIRTUAL_DISK_ACCESS_SURFACE_RO = 0x10000,

 VIRTUAL_DISK_ACCESS_SURFACE_RW = 0x20000,

 VIRTUAL_DISK_ACCESS_UNSURFACE = 0x40000,

 VIRTUAL_DISK_ACCESS_GET_INFO = 0x80000,

 VIRTUAL_DISK_ACCESS_CREATE = 0x100000,

 VIRTUAL_DISK_ACCESS_METAOPS = 0x200000,

 VIRTUAL_DISK_ACCESS_READ = 0xd0000,

 VIRTUAL_DISK_ACCESS_ALL = 0x3f0000,

 VIRTUAL_DISK_ACCESS_WRITABLE = 0x320000

} VIRTUAL_DISK_ACCESS_MASK;

typedef struct _VIRTUAL_STORAGE_TYPE *PVIRTUAL_STORAGE_TYPE;

[

 object,

 uuid(118610b7-8d94-4030-b5b8-500889788e4e),

 pointer_default(unique)

]

interface IEnumVdsObject : IUnknown

{

 [helpstring("method Next")]

 HRESULT Next(

 [in] unsigned long celt,

 [out, size_is(celt), length_is(*pcFetched)]

 IUnknown **ppObjectArray,

 [out] unsigned long *pcFetched

);

 [helpstring("method Skip")]

 HRESULT Skip(

 [in] unsigned long celt

);

 [helpstring("method Reset")]

 HRESULT Reset();

 [helpstring("method Clone")]

 HRESULT Clone(

321 / 368

[MS-VDS] — v20130722
 Virtual Disk Service (VDS) Protocol

 Copyright © 2013 Microsoft Corporation.

 Release: Monday, July 22, 2013

 [out] IEnumVdsObject **ppEnum

);

}

[

 object,

 uuid(8326cd1d-cf59-4936-b786-5efc08798e25),

 pointer_default(unique)

]

interface IVdsAdviseSink : IUnknown

{

 [helpstring("method OnNotify")]

 HRESULT OnNotify(

 [in, range(1, 100)] long lNumberOfNotifications,

 [in, size_is(lNumberOfNotifications)]

 VDS_NOTIFICATION *pNotificationArray

);

}

[

 object,

 uuid(d5d23b6d-5a55-4492-9889-397a3c2d2dbc),

 pointer_default(unique)

]

interface IVdsAsync : IUnknown

{

 [helpstring("method Cancel")]

 HRESULT Cancel();

 [helpstring("method Wait")]

 HRESULT Wait(

 [out] HRESULT *pHrResult,

 [out] VDS_ASYNC_OUTPUT *pAsyncOut

);

 [helpstring("method QueryStatus")]

 HRESULT QueryStatus(

 [out] HRESULT *pHrResult,

 [out] unsigned long *pulPercentCompleted

);

}

[

 object,

 uuid(e0393303-90d4-4a97-ab71-e9b671ee2729),

 pointer_default(unique)

]

interface IVdsServiceLoader : IUnknown

{

 [helpstring("method LoadService")]

 HRESULT LoadService(

 [in,unique,string] LPWSTR pwszMachineName,

 [out] IVdsService **ppService

);

}

[

322 / 368

[MS-VDS] — v20130722
 Virtual Disk Service (VDS) Protocol

 Copyright © 2013 Microsoft Corporation.

 Release: Monday, July 22, 2013

 object,

 uuid(0818a8ef-9ba9-40d8-a6f9-e22833cc771e),

 pointer_default(unique)

]

interface IVdsService : IUnknown

{

 [helpstring("method IsServiceReady")]

 HRESULT IsServiceReady();

 [helpstring("method WaitForServiceReady")]

 HRESULT WaitForServiceReady();

 [helpstring("method GetProperties")]

 HRESULT GetProperties(

 [out] VDS_SERVICE_PROP *pServiceProp

);

 [helpstring("method QueryProviders")]

 HRESULT QueryProviders(

 [in] DWORD masks,

 [out] IEnumVdsObject **ppEnum

);

 HRESULT Opnum07NotUsedOnWire(void);

 [helpstring("method QueryUnallocatedDisks")]

 HRESULT QueryUnallocatedDisks(

 [out] IEnumVdsObject **ppEnum

);

 [helpstring("method GetObject")]

 HRESULT GetObject(

 [in] VDS_OBJECT_ID ObjectId,

 [in] VDS_OBJECT_TYPE type,

 [out] IUnknown **ppObjectUnk

);

 [helpstring("method QueryDriveLetters")]

 HRESULT QueryDriveLetters(

 [in] WCHAR wcFirstLetter,

 [in] DWORD count,

 [out, size_is(count)]

 VDS_DRIVE_LETTER_PROP *pDriveLetterPropArray

);

 [helpstring("method QueryFileSystemTypes")]

 HRESULT QueryFileSystemTypes(

 [out, size_is(,*plNumberOfFileSystems)]

 VDS_FILE_SYSTEM_TYPE_PROP

 **ppFileSystemTypeProps,

 [out] long *plNumberOfFileSystems

);

 [helpstring("method Reenumerate")]

 HRESULT Reenumerate();

 [helpstring("method Refresh")]

 HRESULT Refresh();

323 / 368

[MS-VDS] — v20130722
 Virtual Disk Service (VDS) Protocol

 Copyright © 2013 Microsoft Corporation.

 Release: Monday, July 22, 2013

 [helpstring("method CleanupObsoleteMountPoints")]

 HRESULT CleanupObsoleteMountPoints();

 [helpstring("method Advise")]

 HRESULT Advise(

 [in] IVdsAdviseSink *pSink,

 [out] DWORD *pdwCookie

);

 [helpstring("method Unadvise")]

 HRESULT Unadvise(

 [in] DWORD dwCookie

);

 [helpstring("method Reboot")]

 HRESULT Reboot();

 [helpstring("method SetFlags")]

 HRESULT SetFlags(

 [in] unsigned long ulFlags

);

 [helpstring("method ClearFlags")]

 HRESULT ClearFlags(

 [in] unsigned long ulFlags

);

}

[

 object,

 uuid(4afc3636-db01-4052-80c3-03bbcb8d3c69),

 pointer_default(unique)

]

interface IVdsServiceInitialization : IUnknown

{

 [helpstring("method Initialize")]

 HRESULT Initialize(

 [in, unique, string] WCHAR *pwszMachineName

);

}

[

 object,

 uuid(B6B22DA8-F903-4be7-B492-C09D875AC9DA),

 pointer_default(unique)

]

interface IVdsServiceUninstallDisk : IUnknown

{

 [helpstring("method GetDiskIdFromLunInfo")]

 HRESULT GetDiskIdFromLunInfo(

 [in] VDS_LUN_INFORMATION *pLunInfo,

 [out] VDS_OBJECT_ID *pDiskId

);

 [helpstring("method UninstallDisks")]

 HRESULT UninstallDisks(

 [in, size_is(ulCount)]

 VDS_OBJECT_ID *pDiskIdArray,

 [in] unsigned long ulCount,

324 / 368

[MS-VDS] — v20130722
 Virtual Disk Service (VDS) Protocol

 Copyright © 2013 Microsoft Corporation.

 Release: Monday, July 22, 2013

 [in] boolean bForce,

 [out] boolean *pbReboot,

 [out, size_is(ulCount)]

 HRESULT *pResults

);

}

[

 object,

 uuid(0ac13689-3134-47c6-a17c-4669216801be),

 pointer_default(unique)

]

interface IVdsServiceHba : IUnknown

{

 [helpstring("method QueryHbaPorts")]

 HRESULT QueryHbaPorts(

 [out] IEnumVdsObject **ppEnum

);

}

[

 object,

 uuid(14fbe036-3ed7-4e10-90e9-a5ff991aff01),

 pointer_default(unique)

]

interface IVdsServiceIscsi : IUnknown

{

 [helpstring("method GetInitiatorName")]

 HRESULT GetInitiatorName(

 [out, string] WCHAR **ppwszIscsiName

);

 [helpstring("method QueryInitiatorAdapters")]

 HRESULT QueryInitiatorAdapters(

 [out] IEnumVdsObject **ppEnum

);

 HRESULT Opnum05NotUsedOnWire(void);

 HRESULT Opnum06NotUsedOnWire(void);

 HRESULT Opnum07NotUsedOnWire(void);

 [helpstring("method SetInitiatorSharedSecret")]

 HRESULT SetInitiatorSharedSecret(

 [in, unique] VDS_ISCSI_SHARED_SECRET

 *pInitiatorSharedSecret,

 [in] VDS_OBJECT_ID targetId

);

 HRESULT Opnum09NotUsedOnWire(void);

}

[

 object,

 uuid(FC5D23E8-A88B-41a5-8DE0-2D2F73C5A630),

 pointer_default(unique)

]

interface IVdsServiceSAN : IUnknown

325 / 368

[MS-VDS] — v20130722
 Virtual Disk Service (VDS) Protocol

 Copyright © 2013 Microsoft Corporation.

 Release: Monday, July 22, 2013

{

 [helpstring("method GetSANPolicy")]

 HRESULT GetSANPolicy(

 [out] VDS_SAN_POLICY *pSanPolicy

);

 [helpstring("method SetSANPolicy")]

 HRESULT SetSANPolicy (

 [in] VDS_SAN_POLICY SanPolicy

);

}

[

 object,

 uuid(15fc031c-0652-4306-b2c3-f558b8f837e2),

 pointer_default(unique)

]

interface IVdsServiceSw : IUnknown

{

 [helpstring("method GetDiskObject")]

 HRESULT GetDiskObject(

 [in, string] LPCWSTR pwszDeviceID,

 [out] IUnknown** ppDiskUnk

);

}

[

 object,

 uuid(2abd757f-2851-4997-9a13-47d2a885d6ca),

 pointer_default(unique)

]

interface IVdsHbaPort : IUnknown

{

 [helpstring("method GetProperties")]

 HRESULT GetProperties(

 [out] VDS_HBAPORT_PROP *pHbaPortProp

);

 [helpstring("method SetAllPathStatuses")]

 HRESULT SetAllPathStatuses(

 [in] VDS_PATH_STATUS status

);

}

[

 object,

 uuid(b07fedd4-1682-4440-9189-a39b55194dc5),

 pointer_default(unique)

]

interface IVdsIscsiInitiatorAdapter : IUnknown

{

 [helpstring("method GetProperties")]

 HRESULT GetProperties(

 [out] VDS_ISCSI_INITIATOR_ADAPTER_PROP

 *pInitiatorAdapterProp

);

 [helpstring("method QueryInitiatorPortals")]

 HRESULT QueryInitiatorPortals(

 [out] IEnumVdsObject **ppEnum

);

326 / 368

[MS-VDS] — v20130722
 Virtual Disk Service (VDS) Protocol

 Copyright © 2013 Microsoft Corporation.

 Release: Monday, July 22, 2013

 HRESULT Opnum05NotUsedOnWire(void);

 HRESULT Opnum06NotUsedOnWire(void);

}

[

 object,

 uuid(38a0a9ab-7cc8-4693-ac07-1f28bd03c3da),

 pointer_default(unique)

]

interface IVdsIscsiInitiatorPortal : IUnknown

{

 [helpstring("method GetProperties")]

 HRESULT GetProperties(

 [out] VDS_ISCSI_INITIATOR_PORTAL_PROP

 *pInitiatorPortalProp

);

 [helpstring("method GetInitiatorAdapter")]

 HRESULT GetInitiatorAdapter(

 [out] IVdsIscsiInitiatorAdapter

 **ppInitiatorAdapter

);

 HRESULT Opnum05NotUsedOnWire(void);

 HRESULT Opnum06NotUsedOnWire(void);

 HRESULT Opnum07NotUsedOnWire(void);

}

[

 object,

 uuid(10c5e575-7984-4e81-a56b-431f5f92ae42),

 pointer_default(unique)

]

interface IVdsProvider : IUnknown

{

 [helpstring("method GetProperties")]

 HRESULT GetProperties(

 [out] VDS_PROVIDER_PROP *pProviderProp

);

}

[

 object,

 uuid(9aa58360-ce33-4f92-b658-ed24b14425b8),

 pointer_default(unique)

]

interface IVdsSwProvider : IUnknown

{

 [helpstring("method QueryPacks")]

 HRESULT QueryPacks(

 [out] IEnumVdsObject **ppEnum

);

 [helpstring("method CreatePack")]

327 / 368

[MS-VDS] — v20130722
 Virtual Disk Service (VDS) Protocol

 Copyright © 2013 Microsoft Corporation.

 Release: Monday, July 22, 2013

 HRESULT CreatePack(

 [out] IVdsPack **ppPack

);

}

[

 object,

 uuid(d99bdaae-b13a-4178-9fdb-e27f16b4603e),

 pointer_default(unique)

]

interface IVdsHwProvider : IUnknown

{

 [helpstring("method QuerySubSystems")]

 HRESULT QuerySubSystems(

 [out] IEnumVdsObject **ppEnum

);

 HRESULT Opnum04NotUsedOnWire(void);

 HRESULT Opnum05NotUsedOnWire(void);

}

[

 object,

 uuid(b481498c-8354-45f9-84a0-0bdd2832a91f),

 pointer_default(unique)

]

interface IVdsVdProvider : IUnknown

{

 [helpstring("method QueryVDisks")]

 HRESULT QueryVDisks(

 [out] IEnumVdsObject** ppEnum

);

 [helpstring("method CreateVDisk")]

 HRESULT CreateVDisk(

 [in] PVIRTUAL_STORAGE_TYPE VirtualDeviceType,

 [in, string] LPWSTR pPath,

 [in, string, unique] LPWSTR pStringSecurityDescriptor,

 [in] CREATE_VIRTUAL_DISK_FLAG Flags,

 [in] ULONG ProviderSpecificFlags,

 [in] ULONG Reserved,

 [in] PVDS_CREATE_VDISK_PARAMETERS pCreateDiskParameters,

 [in, out, unique] IVdsAsync** ppAsync

);

 [helpstring("method AddVDisk")]

 HRESULT AddVDisk(

 [in] PVIRTUAL_STORAGE_TYPE VirtualDeviceType,

 [in, string] LPWSTR pPath,

 [out] IVdsVDisk** ppVDisk

);

 HRESULT GetDiskFromVDisk(

328 / 368

[MS-VDS] — v20130722
 Virtual Disk Service (VDS) Protocol

 Copyright © 2013 Microsoft Corporation.

 Release: Monday, July 22, 2013

 [in] IVdsVDisk* pVDisk,

 [out] IVdsDisk** ppDisk

);

 HRESULT GetVDiskFromDisk(

 [in] IVdsDisk* pDisk,

 [out] IVdsVDisk** ppVDisk

);

}

[

 object,

 uuid(83bfb87f-43fb-4903-baa6-127f01029eec),

 pointer_default(unique)

]

interface IVdsSubSystemImportTarget : IUnknown

{

 [helpstring("method GetImportTarget")]

 HRESULT GetImportTarget(

 [out,string] LPWSTR *ppwszIscsiName

);

 [helpstring("method SetImportTarget")]

 HRESULT SetImportTarget(

 [in,unique,string] LPWSTR pwszIscsiName

);

}

[

 object,

 uuid(3b69d7f5-9d94-4648-91ca-79939ba263bf),

 pointer_default(unique)

]

interface IVdsPack : IUnknown

{

 [helpstring("method GetProperties")]

 HRESULT GetProperties(

 [out] VDS_PACK_PROP *pPackProp

);

 [helpstring("method GetProvider")]

 HRESULT GetProvider(

 [out] IVdsProvider **ppProvider

);

 [helpstring("method QueryVolumes")]

 HRESULT QueryVolumes(

 [out] IEnumVdsObject **ppEnum

);

 [helpstring("method QueryDisks")]

 HRESULT QueryDisks(

 [out] IEnumVdsObject **ppEnum

);

 [helpstring("method CreateVolume")]

329 / 368

[MS-VDS] — v20130722
 Virtual Disk Service (VDS) Protocol

 Copyright © 2013 Microsoft Corporation.

 Release: Monday, July 22, 2013

 HRESULT CreateVolume(

 [in] VDS_VOLUME_TYPE type,

 [in, size_is(lNumberOfDisks)]

 VDS_INPUT_DISK *pInputDiskArray,

 [in] long lNumberOfDisks,

 [in] unsigned long ulStripeSize,

 [out] IVdsAsync **ppAsync

);

 [helpstring("method AddDisk")]

 HRESULT AddDisk(

 [in] VDS_OBJECT_ID DiskId,

 [in] VDS_PARTITION_STYLE PartitionStyle,

 [in] long bAsHotSpare

);

 [helpstring("method MigrateDisks")]

 HRESULT MigrateDisks(

 [in, size_is(lNumberOfDisks)]

 VDS_OBJECT_ID *pDiskArray,

 [in] long lNumberOfDisks,

 [in] VDS_OBJECT_ID TargetPack,

 [in] long bForce,

 [in] long bQueryOnly,

 [out, size_is(lNumberOfDisks)]

 HRESULT *pResults,

 [out] long *pbRebootNeeded

);

 HRESULT Opnum10NotUsedOnWire(void);

 [helpstring("method RemoveMissingDisk")]

 HRESULT RemoveMissingDisk(

 [in] VDS_OBJECT_ID DiskId

);

 [helpstring("method Recover")]

 HRESULT Recover(

 [out] IVdsAsync **ppAsync

);

}

[

 object,

 uuid(13B50BFF-290A-47DD-8558-B7C58DB1A71A),

 pointer_default(unique)

]

interface IVdsPack2 : IUnknown

{

 [helpstring("method CreateVolume2")]

 HRESULT CreateVolume2(

 [in] VDS_VOLUME_TYPE type,

 [in, size_is(lNumberOfDisks)]

 VDS_INPUT_DISK *pInputDiskArray,

 [in] long lNumberOfDisks,

 [in] unsigned long ulStripeSize,

 [in] unsigned long ulAlign,

 [out] IVdsAsync **ppAsync

);

330 / 368

[MS-VDS] — v20130722
 Virtual Disk Service (VDS) Protocol

 Copyright © 2013 Microsoft Corporation.

 Release: Monday, July 22, 2013

}

[

 object,

 uuid(07e5c822-f00c-47a1-8fce-b244da56fd06),

 pointer_default(unique)

]

interface IVdsDisk : IUnknown

{

 [helpstring("method GetProperties")]

 HRESULT GetProperties(

 [out] VDS_DISK_PROP *pDiskProperties

);

 [helpstring("method GetPack")]

 HRESULT GetPack(

 [out] IVdsPack **ppPack

);

 [helpstring("method GetIdentificationData")]

 HRESULT GetIdentificationData(

 [out] VDS_LUN_INFORMATION *pLunInfo

);

 [helpstring("method QueryExtents")]

 HRESULT QueryExtents(

 [out, size_is(,*plNumberOfExtents)]

 VDS_DISK_EXTENT **ppExtentArray,

 [out] long *plNumberOfExtents

);

 [helpstring("method ConvertStyle")]

 HRESULT ConvertStyle(

 [in] VDS_PARTITION_STYLE NewStyle

);

 [helpstring("method SetFlags")]

 HRESULT SetFlags(

 [in] unsigned long ulFlags

);

 [helpstring("method ClearFlags")]

 HRESULT ClearFlags(

 [in] unsigned long ulFlags

);

}

[

 object,

 uuid(40F73C8B-687D-4a13-8D96-3D7F2E683936),

 pointer_default(unique)

]

interface IVdsDisk2 : IUnknown

{

 [helpstring("method SetSANMode")]

 HRESULT SetSANMode(

 [in] long bEnable

);

}

331 / 368

[MS-VDS] — v20130722
 Virtual Disk Service (VDS) Protocol

 Copyright © 2013 Microsoft Corporation.

 Release: Monday, July 22, 2013

[

 object,

 uuid(8F4B2F5D-EC15-4357-992F-473EF10975B9),

 pointer_default(unique)

]

interface IVdsDisk3 : IUnknown

{

 [helpstring("method GetProperties2")]

 HRESULT GetProperties2(

 [out] VDS_DISK_PROP2 *pDiskProperties

);

 [helpstring("method QueryFreeExtents")]

 HRESULT QueryFreeExtents(

 [in] ULONG ulAlign,

 [out, size_is(,*plNumberOfFreeExtents)]

 VDS_DISK_FREE_EXTENT **ppFreeExtentArray,

 [out] LONG *plNumberOfFreeExtents

);

 }

[

 object,

 uuid(6e6f6b40-977c-4069-bddd-ac710059f8c0),

 pointer_default(unique)

]

interface IVdsAdvancedDisk : IUnknown

{

 [helpstring("method GetPartitionProperties")]

 HRESULT GetPartitionProperties(

 [in] ULONGLONG ullOffset,

 [out] VDS_PARTITION_PROP *pPartitionProp

);

 [helpstring("method QueryPartitions")]

 HRESULT QueryPartitions(

 [out, size_is(, *plNumberOfPartitions)]

 VDS_PARTITION_PROP **ppPartitionPropArray,

 [out] long *plNumberOfPartitions

);

 [helpstring("method CreatePartition")]

 HRESULT CreatePartition(

 [in] ULONGLONG ullOffset,

 [in] ULONGLONG ullSize,

 [in] CREATE_PARTITION_PARAMETERS *para,

 [out] IVdsAsync **ppAsync

);

 [helpstring("method DeletePartition")]

 HRESULT DeletePartition(

 [in] ULONGLONG ullOffset,

 [in] long bForce,

 [in] long bForceProtected

);

 [helpstring("method ChangeAttributes")]

 HRESULT ChangeAttributes(

332 / 368

[MS-VDS] — v20130722
 Virtual Disk Service (VDS) Protocol

 Copyright © 2013 Microsoft Corporation.

 Release: Monday, July 22, 2013

 [in] ULONGLONG ullOffset,

 [in] CHANGE_ATTRIBUTES_PARAMETERS *para

);

 [helpstring("method AssignDriveLetter")]

 HRESULT AssignDriveLetter(

 [in] ULONGLONG ullOffset,

 [in] WCHAR wcLetter

);

 [helpstring("method DeleteDriveLetter")]

 HRESULT DeleteDriveLetter(

 [in] ULONGLONG ullOffset,

 [in] WCHAR wcLetter

);

 [helpstring("method GetDriveLetter")]

 HRESULT GetDriveLetter(

 [in] ULONGLONG ullOffset,

 [out] WCHAR *pwcLetter

);

 [helpstring("method FormatPartition")]

 HRESULT FormatPartition(

 [in] ULONGLONG ullOffset,

 [in] VDS_FILE_SYSTEM_TYPE type,

 [in, string] WCHAR *pwszLabel,

 [in] DWORD dwUnitAllocationSize,

 [in] long bForce,

 [in] long bQuickFormat,

 [in] long bEnableCompression,

 [out] IVdsAsync **ppAsync

);

 HRESULT Clean(

 [in] long bForce,

 [in] long bForceOEM,

 [in] long bFullClean,

 [out] IVdsAsync **ppAsync

);

}

[

 object,

 uuid(9723f420-9355-42de-ab66-e31bb15beeac),

 pointer_default(unique)

]

interface IVdsAdvancedDisk2 : IUnknown

{

 [helpstring("method ChangePartitionType")]

 HRESULT ChangePartitionType(

 [in] ULONGLONG ullOffset,

 [in] long bForce,

 [in] CHANGE_PARTITION_TYPE_PARAMETERS * para

);

}

[

 object,

333 / 368

[MS-VDS] — v20130722
 Virtual Disk Service (VDS) Protocol

 Copyright © 2013 Microsoft Corporation.

 Release: Monday, July 22, 2013

 uuid(3858C0D5-0F35-4BF5-9714-69874963BC36),

 pointer_default(unique)

]

interface IVdsAdvancedDisk3 : IUnknown

{

 [helpstring("method GetProperties")]

 HRESULT GetProperties(

 [out] VDS_ADVANCEDDISK_PROP *pAdvDiskProp

);

 [helpstring("method GetUniqueId")]

 HRESULT GetUniqueId(

 [out, string] LPWSTR *ppwszId

);

}

[

 object,

 uuid(9882f547-cfc3-420b-9750-00dfbec50662),

 pointer_default(unique)

]

interface IVdsCreatePartitionEx : IUnknown

{

 [helpstring("method CreatePartitionEx")]

 HRESULT CreatePartitionEx(

 [in] ULONGLONG ullOffset,

 [in] ULONGLONG ullSize,

 [in] unsigned long ulAlign,

 [in] CREATE_PARTITION_PARAMETERS *para,

 [out] IVdsAsync **ppAsync

);

}

[

 object,

 uuid(90681B1D-6A7F-48e8-9061-31B7AA125322),

 pointer_default(unique)

]

interface IVdsDiskOnline : IUnknown

{

 [helpstring("method Online")]

 HRESULT Online(void);

 [helpstring("method Offline")]

 HRESULT Offline(void);

}

[

 object,

 uuid(538684e0-ba3d-4bc0-aca9-164aff85c2a9),

 pointer_default(unique)

]

interface IVdsDiskPartitionMF : IUnknown

{

 [helpstring("method GetPartitionFileSystemProperties")]

 HRESULT GetPartitionFileSystemProperties(

 [in] ULONGLONG ullOffset,

 [out] VDS_FILE_SYSTEM_PROP *pFileSystemProp

);

334 / 368

[MS-VDS] — v20130722
 Virtual Disk Service (VDS) Protocol

 Copyright © 2013 Microsoft Corporation.

 Release: Monday, July 22, 2013

 [helpstring("method GetPartitionFileSystemTypeName")]

 HRESULT GetPartitionFileSystemTypeName(

 [in] ULONGLONG ullOffset,

 [out, string] WCHAR **ppwszFileSystemTypeName

);

 [helpstring("method QueryPartitionFileSystemFormatSupport")]

 HRESULT QueryPartitionFileSystemFormatSupport(

 [in] ULONGLONG ullOffset,

 [out, size_is(,*plNumberOfFileSystems)]

 VDS_FILE_SYSTEM_FORMAT_SUPPORT_PROP **ppFileSystemSupportProps,

 [out] long *plNumberOfFileSystems

);

 [helpstring("method FormatPartitionEx")]

 HRESULT FormatPartitionEx(

 [in] ULONGLONG ullOffset,

 [in, unique, string] WCHAR *pwszFileSystemTypeName,

 [in] unsigned short usFileSystemRevision,

 [in] unsigned long ulDesiredUnitAllocationSize,

 [in, unique, string] WCHAR *pwszLabel,

 [in] long bForce,

 [in] long bQuickFormat,

 [in] long bEnableCompression,

 [out] IVdsAsync **ppAsync

);

}

[

 object,

 uuid(9CBE50CA-F2D2-4bf4-ACE1-96896B729625),

 pointer_default(unique)

]

interface IVdsDiskPartitionMF2 : IUnknown

{

 [helpstring("method FormatPartitionEx2")]

 HRESULT FormatPartitionEx2(

 [in] ULONGLONG ullOffset,

 [in, unique, string] LPWSTR pwszFileSystemTypeName,

 [in] unsigned short usFileSystemRevision,

 [in] unsigned long ulDesiredUnitAllocationSize,

 [in, unique, string] LPWSTR pwszLabel,

 [in] DWORD Options,

 [out] IVdsAsync **ppAsync

);

}

[

 object,

 uuid(0316560b-5db4-4ed9-bbb5-213436ddc0d9),

 pointer_default(unique)

]

interface IVdsRemovable : IUnknown

{

 [helpstring("method QueryMedia")]

 HRESULT QueryMedia();

 [helpstring("method Eject")]

335 / 368

[MS-VDS] — v20130722
 Virtual Disk Service (VDS) Protocol

 Copyright © 2013 Microsoft Corporation.

 Release: Monday, July 22, 2013

 HRESULT Eject();

}

[

 object,

 uuid(88306bb2-e71f-478c-86a2-79da200a0f11),

 pointer_default(unique)

]

interface IVdsVolume : IUnknown

{

 [helpstring("method GetProperties")]

 HRESULT GetProperties(

 [out] VDS_VOLUME_PROP *pVolumeProperties

);

 [helpstring("method GetPack")]

 HRESULT GetPack(

 [out] IVdsPack **ppPack

);

 [helpstring("method QueryPlexes")]

 HRESULT QueryPlexes(

 [out] IEnumVdsObject **ppEnum

);

 [helpstring("method Extend")]

 HRESULT Extend(

 [in, unique, size_is(lNumberOfDisks)]

 VDS_INPUT_DISK *pInputDiskArray,

 [in] long lNumberOfDisks,

 [out] IVdsAsync **ppAsync

);

 [helpstring("method Shrink")]

 HRESULT Shrink(

 [in] ULONGLONG ullNumberOfBytesToRemove,

 [out] IVdsAsync **ppAsync

);

 [helpstring("method AddPlex")]

 HRESULT AddPlex(

 [in] VDS_OBJECT_ID VolumeId,

 [out] IVdsAsync **ppAsync

);

 [helpstring("BreakPlex")]

 HRESULT BreakPlex(

 [in] VDS_OBJECT_ID plexId,

 [out] IVdsAsync **ppAsync

);

 [helpstring("RemovePlex")]

 HRESULT RemovePlex(

 [in] VDS_OBJECT_ID plexId,

 [out] IVdsAsync **ppAsync

);

 [helpstring("method Delete")]

 HRESULT Delete(

336 / 368

[MS-VDS] — v20130722
 Virtual Disk Service (VDS) Protocol

 Copyright © 2013 Microsoft Corporation.

 Release: Monday, July 22, 2013

 [in] long bForce

);

 [helpstring("method SetFlags")]

 HRESULT SetFlags(

 [in] unsigned long ulFlags,

 [in] long bRevertOnClose

);

 [helpstring("method ClearFlags")]

 HRESULT ClearFlags(

 [in] unsigned long ulFlags

);

}

[

 object,

 uuid(72AE6713-DCBB-4a03-B36B-371F6AC6B53D),

 pointer_default(unique)

]

interface IVdsVolume2 : IUnknown

{

 [helpstring("method GetProperties2")]

 HRESULT GetProperties2(

 [out] VDS_VOLUME_PROP2 *pVolumeProperties

);

}

[

 object,

 uuid(ee2d5ded-6236-4169-931d-b9778ce03dc6),

 pointer_default(unique)

]

interface IVdsVolumeMF : IUnknown

{

 [helpstring("method queryFileSystemProperties")]

 HRESULT GetFileSystemProperties(

 [out] VDS_FILE_SYSTEM_PROP *pFileSystemProp

);

 [helpstring("method Format")]

 HRESULT Format(

 [in] VDS_FILE_SYSTEM_TYPE type,

 [in, string] WCHAR *pwszLabel,

 [in] DWORD dwUnitAllocationSize,

 [in] long bForce,

 [in] long bQuickFormat,

 [in] long bEnableCompression,

 [out] IVdsAsync **ppAsync

);

 [helpstring("method AddAccessPath")]

 HRESULT AddAccessPath(

 [in, max_is(MAX_PATH - 1), string] WCHAR

 *pwszPath

);

 [helpstring("method QueryAccessPaths")]

 HRESULT QueryAccessPaths(

337 / 368

[MS-VDS] — v20130722
 Virtual Disk Service (VDS) Protocol

 Copyright © 2013 Microsoft Corporation.

 Release: Monday, July 22, 2013

 [out, string, size_is(, *plNumberOfAccessPaths)]

 LPWSTR **pwszPathArray,

 [out] long *plNumberOfAccessPaths

);

 [helpstring("method QueryReparsePoints")]

 HRESULT QueryReparsePoints(

 [out, size_is(, *plNumberOfReparsePointProps)]

 VDS_REPARSE_POINT_PROP **ppReparsePointProps,

 [out] long

 *plNumberOfReparsePointProps

);

 [helpstring("method DeleteAccessPath")]

 HRESULT DeleteAccessPath(

 [in, max_is(MAX_PATH - 1), string] WCHAR

 *pwszPath,

 [in] long bForce

);

 [helpstring("method Mount")]

 HRESULT Mount();

 [helpstring("method Dismount")]

 HRESULT Dismount(

 [in] long bForce,

 [in] long bPermanent

);

 [helpstring("method SetFileSystemFlags")]

 HRESULT SetFileSystemFlags(

 [in] unsigned long ulFlags

);

 [helpstring("method ClearFileSystemFlags")]

 HRESULT ClearFileSystemFlags(

 [in] unsigned long ulFlags

);

}

[

 object,

 uuid(4dbcee9a-6343-4651-b85f-5e75d74d983c),

 pointer_default(unique)

]

interface IVdsVolumeMF2 : IUnknown

{

 [helpstring("method GetFileSystemTypeName")]

 HRESULT GetFileSystemTypeName(

 [out, string] WCHAR **ppwszFileSystemTypeName

);

 [helpstring("method QueryFileSystemFormatSupport")]

 HRESULT QueryFileSystemFormatSupport(

 [out, size_is(,*plNumberOfFileSystems)]

 VDS_FILE_SYSTEM_FORMAT_SUPPORT_PROP

 **ppFileSystemSupportProps,

 [out] long *plNumberOfFileSystems

);

338 / 368

[MS-VDS] — v20130722
 Virtual Disk Service (VDS) Protocol

 Copyright © 2013 Microsoft Corporation.

 Release: Monday, July 22, 2013

 [helpstring("method FormatEx")]

 HRESULT FormatEx(

 [in, unique, string] WCHAR *pwszFileSystemTypeName,

 [in] unsigned short usFileSystemRevision,

 [in] unsigned long

 ulDesiredUnitAllocationSize,

 [in, unique, string] WCHAR *pwszLabel,

 [in] long bForce,

 [in] long bQuickFormat,

 [in] long bEnableCompression,

 [out] IVdsAsync **ppAsync

);

}

[

 object,

 uuid(6788FAF9-214E-4b85-BA59-266953616E09),

 pointer_default(unique)

]

interface IVdsVolumeMF3 : IUnknown

{

 [helpstring("method QueryVolumeGuidPathnames")]

 HRESULT QueryVolumeGuidPathnames (

 [out, string, size_is(,*pulNumberOfPaths)] LPWSTR **pwszPathArray,

 [out] ULONG *pulNumberOfPaths

);

 [helpstring("method FormatEx2")]

 HRESULT FormatEx2(

 [in, unique, string] LPWSTR pwszFileSystemTypeName,

 [in] USHORT usFileSystemRevision,

 [in] ULONG ulDesiredUnitAllocationSize,

 [in, unique, string] LPWSTR pwszLabel,

 [in] DWORD Options,

 [out] IVdsAsync **ppAsync

);

 [helpstring("method OfflineVolume")]

 HRESULT OfflineVolume (

 void

);

}

[

 object,

 uuid(d68168c9-82a2-4f85-b6e9-74707c49a58f),

 pointer_default(unique)

]

interface IVdsVolumeShrink : IUnknown

{

 [helpstring("method QueryMaxReclaimableBytes")]

 HRESULT QueryMaxReclaimableBytes(

 [out] ULONGLONG *pullMaxNumberOfReclaimableBytes

);

 [helpstring("method Shrink")]

 HRESULT Shrink(

339 / 368

[MS-VDS] — v20130722
 Virtual Disk Service (VDS) Protocol

 Copyright © 2013 Microsoft Corporation.

 Release: Monday, July 22, 2013

 [in] ULONGLONG ullDesiredNumberOfReclaimableBytes,

 [in] ULONGLONG ullMinNumberOfReclaimableBytes,

 [out] IVdsAsync **ppAsync

);

}

[

 object,

 uuid(1BE2275A-B315-4f70-9E44-879B3A2A53F2),

 pointer_default(unique)

]

interface IVdsVolumeOnline : IUnknown

{

 [helpstring("method Online")]

 HRESULT Online();

}

[

 object,

 uuid(4daa0135-e1d1-40f1-aaa5-3cc1e53221c3),

 pointer_default(unique)

]

interface IVdsVolumePlex : IUnknown

{

 [helpstring("method GetProperties")]

 HRESULT GetProperties(

 [out] VDS_VOLUME_PLEX_PROP *pPlexProperties

);

 [helpstring("method GetVolume")]

 HRESULT GetVolume(

 [out] IVdsVolume **ppVolume

);

 [helpstring("method QueryExtents")]

 HRESULT QueryExtents(

 [out, size_is(, *plNumberOfExtents)]

 VDS_DISK_EXTENT **ppExtentArray,

 [out] long *plNumberOfExtents

);

 [helpstring("method Repair")]

 HRESULT Repair(

 [in, size_is(lNumberOfDisks)]

 VDS_INPUT_DISK *pInputDiskArray,

 [in] long lNumberOfDisks,

 [out] IVdsAsync **ppAsync

);

}

[

 object,

 uuid(1e062b84-e5e6-4b4b-8a25-67b81e8f13e8),

 pointer_default(unique)

]

interface IVdsVDisk : IUnknown

{

340 / 368

[MS-VDS] — v20130722
 Virtual Disk Service (VDS) Protocol

 Copyright © 2013 Microsoft Corporation.

 Release: Monday, July 22, 2013

 HRESULT Open(

 [in] VIRTUAL_DISK_ACCESS_MASK AccessMask,

 [in] OPEN_VIRTUAL_DISK_FLAG Flags,

 [in] ULONG ReadWriteDepth,

 [out] IVdsOpenVDisk** ppOpenVDisk

);

 HRESULT GetProperties(

 [out] PVDS_VDISK_PROPERTIES pDiskProperties

);

 HRESULT GetHostVolume(

 [out] IVdsVolume** ppVolume

);

 HRESULT GetDeviceName(

 [out, string] LPWSTR *ppDeviceName);

}

[

 object,

 uuid(75c8f324-f715-4fe3-a28e-f9011b61a4a1),

 pointer_default(unique)

]

interface IVdsOpenVDisk : IUnknown

{

 HRESULT Attach(

 [in, unique] LPWSTR pStringSecurityDescriptor,

 [in] ATTACH_VIRTUAL_DISK_FLAG Flags,

 [in] ULONG ProviderSpecificFlags,

 [in] ULONG TimeoutInMs,

 [out] IVdsAsync** ppAsync

);

 HRESULT Detach(

 [in] DETACH_VIRTUAL_DISK_FLAG Flags,

 [in] ULONG ProviderSpecificFlags

);

 HRESULT DetachAndDelete(

 [in] DETACH_VIRTUAL_DISK_FLAG Flags,

 [in] ULONG ProviderSpecificFlags

);

 HRESULT Compact(

 [in] COMPACT_VIRTUAL_DISK_FLAG Flags,

 [in] ULONG Reserved,

 [out] IVdsAsync** ppAsync

);

 HRESULT Merge(

 [in] MERGE_VIRTUAL_DISK_FLAG Flags,

 [in] ULONG MergeDepth,

 [out] IVdsAsync** ppAsync

);

341 / 368

[MS-VDS] — v20130722
 Virtual Disk Service (VDS) Protocol

 Copyright © 2013 Microsoft Corporation.

 Release: Monday, July 22, 2013

 HRESULT Expand(

 [in] EXPAND_VIRTUAL_DISK_FLAG Flags,

 [in] ULONGLONG NewSize,

 [out] IVdsAsync** ppAsync

);

}

342 / 368

[MS-VDS] — v20130722
 Virtual Disk Service (VDS) Protocol

 Copyright © 2013 Microsoft Corporation.

 Release: Monday, July 22, 2013

7 Appendix B: Product Behavior

The information in this specification is applicable to the following Microsoft products or supplemental
software. References to product versions include released service packs:

Windows Server 2003 operating system

Windows Server 2003 R2 operating system

Windows Vista operating system

Windows Server 2008 operating system

Windows 7 operating system

Windows Server 2008 R2 operating system

Windows 8 operating system

Windows Server 2012 operating system

Windows 8.1 operating system

Windows Server 2012 R2 operating system

Exceptions, if any, are noted below. If a service pack or Quick Fix Engineering (QFE) number
appears with the product version, behavior changed in that service pack or QFE. The new behavior
also applies to subsequent service packs of the product unless otherwise specified. If a product
edition appears with the product version, behavior is different in that product edition.

Unless otherwise specified, any statement of optional behavior in this specification that is prescribed
using the terms SHOULD or SHOULD NOT implies product behavior in accordance with the SHOULD

or SHOULD NOT prescription. Unless otherwise specified, the term MAY implies that the product

does not follow the prescription.

<1> Section 1.3: The Virtual Disk Service Remote Protocol is implemented by the Windows Virtual
Disk Service (VDS) on Windows Server 2003, Windows Server 2003 R2, Windows Vista, Windows
Server 2008, Windows 7, Windows Server 2008 R2, Windows 8, Windows Server 2012, Windows
8.1, and Windows Server 2012 R2. Windows XP and Windows 2000 do not support VDS, but the

Disk Management Remote Protocol [MS-DMRP] on those operating systems provides a subset of the
functionality that VDS provides.

<2> Section 1.6: The VDS Remote Protocol is the preferred protocol to use with Windows
Server 2003, Windows Server 2003 R2, Windows Vista, Windows Server 2008, Windows 7, Windows
Server 2008 R2, Windows 8, Windows Server 2012, Windows 8.1, and Windows Server 2012 R2.

<3> Section 1.7: There is no optional support of interfaces, but a server which is compliant to a
specific Windows Server version is required to implement all interfaces supported by that

Windows Server version.

The following table lists, by operating system version, the interfaces used when managing disks and
volumes.

 Supported operating system version

%5bMS-DMRP%5d.pdf

343 / 368

[MS-VDS] — v20130722
 Virtual Disk Service (VDS) Protocol

 Copyright © 2013 Microsoft Corporation.

 Release: Monday, July 22, 2013

 Supported operating system version

Interface

Windo

ws

Server

2003

Windo

ws

Server

2003

R2

Windows

 Vista

Windo

ws

Server

2008

Windows 7\

Windows

Server 2008

R2

Windows

8/Windo

ws Server

2012/Win

dows

8.1/Wind

ows

Server

2012 R2

IVdsProvider X X X X X X

IVdsSwProvider X X X X X X

IVdsPack X X X X X X

IVdsDisk X X X X X X

IVdsAdvancedDisk X X X X X X

IVdsCreatePartitio

nEx

X X X X X X

IVdsRemovable X X X X X X

IVdsVolume X X X X X X

IVdsVolume2 X X

IVdsVolumeMF X X X X X X

IVdsVolumePlex X X X X X X

IVdsServiceUninst

allDisk

 X X X X X

IVdsPack2 X X X X

IVdsDisk2 X X X X

IVdsDisk3 X X

IVdsAdvancedDisk

2

 X X X X

IVdsAdvancedDisk3 X

IVdsDiskPartition

MF

 X X X X

IVdsDiskPartition

MF2

 X X

IVdsVolumeMF2 X X X X

IVdsVolumeMF3 X X

IVdsVolumeShrink X X X X

344 / 368

[MS-VDS] — v20130722
 Virtual Disk Service (VDS) Protocol

 Copyright © 2013 Microsoft Corporation.

 Release: Monday, July 22, 2013

 Supported operating system version

IVdsVolumeOnline X X

IVdsHwProvider X X X X X X

IVdsServiceLoader X X X X X X

IVdsServiceSw X

IVdsSubSystemIm

portTarget

 X X X X X

The following list provides a brief overview of the functionality available for managing disks and

volumes starting with the initial release of the Virtual Disk Service Remote Protocol in Windows
Server 2003:

IVdsAdvancedDisk2 extends IVdsAdvancedDisk with new functionality that is related to

changing a partition type.

IVdsAdvancedDisk3 contains new functionality related to disk properties and unique ID.

IVdsServiceUninstallDisk contains new functionality that is related to uninstalling disks and the

volumes that are contained on those disks.

IVdsServiceSw contains new functionality for mapping a PnP Device ID string to a disk object.

IVdsPack2 extends IVdsPack with new functionality that is related to creating aligned volumes.

IVdsDisk2 extends IVdsDisk with new functionality that is related to bringing disks online and
offline in clustered and other scenarios.

IVdsDisk3 extends IVdsDisk with new functionality that is related to detecting the BIOS 0 disk or
system disk. This allows a client to find the disk that will be used at boot as the system disk (hosts

the system partition on MBR disks or the ESP for GPT disks). Also, IVdsDisk3 extends IVdsDisk
with functionality to return the list of free extents associated with a disk and to align those extents.
The output of this method is useful as input when creating partitions and volumes.

IVdsVolume2 extends IVdsVolume with new functionality that is related to volume properties.

IVdsVolumeMF2 extends IVdsVolumeMF with new functionality that is related to file systems.

IVdsVolumeMF3 extends IVdsVolumeMF with new functionality that is related to file systems.

IVdsDiskPartitionMF contains new functionality that is related to file systems.

IVdsDiskPartitionMF2 contains a new format method that allows the user to specify metadata
duplication when formatting as UDF.

IVdsVolumeShrink contains new functionality that is related to shrinking volumes.

IVdsVolumeOnline contains new functionality that is related to bringing volumes back to a healthy
state.

Interfaces that are used when querying HBA and iSCSI initiator information.

345 / 368

[MS-VDS] — v20130722
 Virtual Disk Service (VDS) Protocol

 Copyright © 2013 Microsoft Corporation.

 Release: Monday, July 22, 2013

The following interfaces, used when querying HBA and iSCSI initiator information, are not supported
in Windows Server 2003: IVdsServiceHba, IVdsServiceIscsi, IVdsHbaPort,

IVdsIscsiInitiatorAdapter, and IVdsIscsiInitiatorPortal.

<4> Section 2.1: Windows configures the underlying RPC transport by using the following flags. For

more information on the meaning of these flags, see [C706] and [MS-RPCE].

RPC_C_AUTHN_LEVEL_PKT_PRIVACY

RPC_C_IMP_LEVEL_IDENTIFY

EOAC_SECURE_REFS | EOAC_NO_CUSTOM_MARSHAL

<5> Section 2.1: The authorization constraints in Windows do not vary by operating system

release. All interfaces that are described in this document require an access level that corresponds
to any of the following Windows security groups:

Administrators

Backup Operators

SYSTEM

The VDS Remote Protocol works only when the client and the server are on the same domain,

or in domains that have a trust relationship with one another.

The VDS Remote Protocol does NOT work when client and server are on a workgroup; server

throws ACCESS_DENIED error.

<6> Section 2.2.1.2.2: Windows does not currently send this notification under any circumstance,
but may do so in future releases.

<7> Section 2.2.1.2.5: Implementations on Windows 8 and Windows Server 2012 SHOULD
interpret this value as VDSBusTypeVirtual.

<8> Section 2.2.1.2.12: This enumeration type is used only in Windows Vista and Windows
Server 2008.

<9> Section 2.2.1.2.22: No Win32 API path names are created. Win32 APIs such as
FindFirstVolume and FindNextVolume do not enumerate this volume.

<10> Section 2.2.1.2.23: For Windows Server 2003 and Windows Server 2003 R2,

VDS_VF_NO_DEFAULT_DRIVE_LETTER cannot be set or cleared on dynamic disk volumes, and
is always enabled. On basic disks, it is disabled by default, and the flags can only be changed using
the IVdsVolume::SetFlags (section 3.4.5.2.32.10) and IvdsVolume::ClearFlag (section
3.4.5.2.32.11) methods. Assigning or removing a drive letter does not toggle the flag for basic GPT
disks.

<11> Section 2.2.1.2.23: Windows Vista, Windows Server 2008, Windows Server 2008 R2,

Windows Server 2012, and Windows Server 2012 R2 use BitLocker full-volume encryption.

<12> Section 2.2.1.2.23: The settings for dynamic disk volumes are the same as for basic GPT
disks on Windows Vista, Windows Server 2008, Windows 7, and Windows Server 2008 R2.

<13> Section 2.2.1.3.1: This notification is never sent by the Windows implementation of the
Virtual Disk Service.

http://go.microsoft.com/fwlink/?LinkId=89824
%5bMS-RPCE%5d.pdf
%5bMS-GLOS%5d.pdf

346 / 368

[MS-VDS] — v20130722
 Virtual Disk Service (VDS) Protocol

 Copyright © 2013 Microsoft Corporation.

 Release: Monday, July 22, 2013

<14> Section 2.2.1.3.11: Windows recognizes the following partition types on MBR disks and treats
all others as OEM partitions (which do not automatically get assigned drive letters except in

Windows Preinstallation Environment (Windows PE)):

Value Meaning

0x00 An unused entry.

0x01 Partition with 12-bit FAT entries.

0x04 Partition with 16-bit FAT entries.

0x05 Extended partition entry.

0x06 MS-DOS version 4 huge partition.

0x07 Installable file system (IFS) partition.

0x0B FAT32 partition.

0x0C FAT32 partition using extended INT13 services.

0x0E 16-bit FAT partition using extended INT13 services.

0x0F Extended partition using extended INT13 services.

0x42 Logical disk manager (LDM) data partition.

<15> Section 2.2.1.3.12: Windows recognizes the following partition types on GPT disks.

Value Meaning

{C12A7328-F81F-11D2-BA4B-

00A0C93EC93B}

EFI system partition.

{E3C9E316-0B5C-4DB8-817D-

F92DF00215AE}

MSR space partition; used to reserve space for subsequent use by

operating system software.

{EBD0A0A2-B9E5-4433-87C0-

68B6B72699C7}

A basic data partition.

{5808C8AA-7E8F-42E0-85D2-

E1E90434CFB3}

LDM metadata partition.

{AF9B60A0-1431-4F62-BC68-

3311714A69AD}

LDM data partition.

{DE94BBA4-06D1-4D40-A16A-

BFD50179D6AC}

Microsoft recovery partition.

<16> Section 2.2.1.3.12: The partition is recognized as an OEM partition and will not be converted
to dynamic if the disk is converted to dynamic. The partition will not get a drive letter except in
Windows PE.

<17> Section 2.2.1.3.18: This structure is used only in Windows Vista and Windows Server 2008.

<18> Section 2.2.1.3.22: Only the basic data partition type is allowed.

347 / 368

[MS-VDS] — v20130722
 Virtual Disk Service (VDS) Protocol

 Copyright © 2013 Microsoft Corporation.

 Release: Monday, July 22, 2013

<19> Section 2.2.1.3.22: The partition is recognized as an OEM partition and is not converted to
dynamic if the disk is converted to dynamic. The partition does not get a drive letter except in

Windows PE.

<20> Section 2.2.1.3.23: This structure is used only in Windows 7, Windows Server 2008 R2,

Windows 8, Windows Server 2012, Windows 8.1, and Windows Server 2012 R2.

<21> Section 2.2.2.1.2.3: VDS_QUERY_HARDWARE_PROVIDERS returns no additional providers
when it is used with IVdsService::QueryProviders(Opnum 6) on a Windows installation that has
no additional software installed. Third-party providers must be installed to get hardware providers.

<22> Section 2.2.2.1.3.1: Each version of Windows has its pwszVersion string set as follows.

Version pwszVersion string

Windows Server 2003 1.0

Windows Server 2003 R2 1.1

Windows Vista 2.0

Windows Server 2008 2.1

Windows Server 2008 R2 3.0

Windows 7 3.0

Windows 8 4.0

Windows Server 2012 4.0

Windows 8.1 4.0

Windows Server 2012 R2 4.0

<23> Section 2.2.2.1.3.3: In Windows Server 2003, Windows Server 2003 R2, Windows Vista, and
Windows Server 2008: (1) The first entry's wszName field is overwritten with "UDF". The first
entry's wszName field should contain "FAT". (2) The string of illegal label characters for the second
entry (the FAT32 entry), pwszIllegalLabelCharSet, is not set and contains an invalid string. (3)
The fifth entry's wszName field is unset. It should contain "UDF", but instead contains invalid

characters. (4) The third entry's ulCompressionFlags field is incorrectly set to 0x000F0000 (the
NTFS entry).

In Windows Server 2003, Windows Server 2003 R2, Windows Vista, Windows Server 2008,
Windows 7, Windows Server 2008 R2, Windows 8, Windows Server 2012, Windows 8.1, and
Windows Server 2012 R2, the third entry's ulCompressionFlags field is incorrectly set to
0x000F0000 (the NTFS entry).

<24> Section 2.2.2.3.1.1: This structure is used only in Windows Server 2003 R2, Windows Vista,

Windows Server 2008, Windows 7, Windows Server 2008 R2, Windows 8, Windows Server 2012,

Windows 8.1, and Windows Server 2012 R2.

<25> Section 2.2.2.4.1.1: This enumeration type is used only in Windows Server 2003 R2,
Windows Vista, Windows Server 2008, Windows 7, Windows Server 2008 R2, Windows 8, Windows
Server 2012, Windows 8.1, and Windows Server 2012 R2.

348 / 368

[MS-VDS] — v20130722
 Virtual Disk Service (VDS) Protocol

 Copyright © 2013 Microsoft Corporation.

 Release: Monday, July 22, 2013

<26> Section 2.2.2.4.1.2: This enumeration type is used only in Windows Server 2003 R2,
Windows Vista, Windows Server 2008, Windows 7, Windows Server 2008 R2, Windows 8, Windows

Server 2012, Windows 8.1, and Windows Server 2012 R2.

<27> Section 2.2.2.4.1.3: This enumeration type is used only in Windows Server 2003 R2,

Windows Vista, Windows Server 2008, Windows 7, Windows Server 2008 R2, Windows 8, Windows
Server 2012, Windows 8.1, and Windows Server 2012 R2.

<28> Section 2.2.2.4.2.1: This structure is used only in Windows Server 2003 R2, Windows Vista,
Windows Server 2008, Windows 7, Windows Server 2008 R2, Windows 8, Windows Server 2012,
Windows 8.1, and Windows Server 2012 R2.

<29> Section 2.2.2.4.2.2: This structure is used only in Windows Server 2003 R2, Windows Vista,
Windows Server 2008, Windows 7, Windows Server 2008 R2, Windows 8, Windows Server 2012,

Windows 8.1, and Windows Server 2012 R2.

<30> Section 2.2.2.5.1.1: This structure is used only in Windows Server 2003 R2, Windows Vista,
Windows Server 2008, Windows 7, Windows Server 2008 R2, Windows 8, Windows Server 2012,

Windows 8.1, and Windows Server 2012 R2.

<31> Section 2.2.2.6.1.1: This enumeration type is used only in Windows Server 2003 R2,
Windows Vista, Windows Server 2008, Windows 7, Windows Server 2008 R2, Windows 8, Windows

Server 2012, Windows 8.1, and Windows Server 2012 R2.

<32> Section 2.2.2.6.2.1: This structure is used only in Windows Server 2003 R2, Windows Vista,
Windows Server 2008, Windows 7, Windows Server 2008 R2, Windows 8, Windows Server 2012,
Windows 8.1, and Windows Server 2012 R2.

<33> Section 2.2.2.6.2.2: This structure is used only in Windows Server 2003 R2, Windows Vista,
Windows Server 2008, Windows 7, Windows Server 2008 R2, Windows 8, Windows Server 2012,
Windows 8.1, and Windows Server 2012 R2.

<34> Section 2.2.2.11.1.1: The partition is recognized as an OEM partition and is not converted to
dynamic if the disk is converted to dynamic. The partition does not get a drive letter except in

Windows PE.

<35> Section 2.2.2.12.1.1: This structure is used only in Windows Vista, Windows Server 2008,
Windows 7, Windows Server 2008 R2, Windows 8, Windows Server 2012, Windows 8.1, and
Windows Server 2012 R2.

<36> Section 2.2.2.12.1.1: Only the basic data partition type is allowed.

<37> Section 2.2.2.18.2.1: Windows 7, Windows Server 2008 R2, Windows 8, Windows Server
2012, Windows 8.1, and Windows Server 2012 R2 implementations use a default block size of 2
megabytes.

<38> Section 2.2.2.19.1.2: The Windows 7, Windows 8, Windows Server 2012, Windows 8.1, and
Windows Server 2012 R2 operating system kernels use it at boot time to load the system disk when
booting from a virtual disk.

<39> Section 2.2.2.20.1.1: In Windows 7, Windows 8, Windows Server 2012, Windows 8.1, and
Windows Server 2012 R2, this is available for use by a WIN32 non-VDS API.

<40> Section 3.1: Group 2 is supported in Windows Server 2003 R2, Windows Vista, Windows
Server 2008, Windows 7, Windows Server 2008 R2, Windows 8, Windows Server 2012, Windows
8.1, and Windows Server 2012 R2.

349 / 368

[MS-VDS] — v20130722
 Virtual Disk Service (VDS) Protocol

 Copyright © 2013 Microsoft Corporation.

 Release: Monday, July 22, 2013

Group 3 is supported in Windows Vista, Windows Server 2008, Windows 7, Windows
Server 2008 R2, Windows 8, Windows Server 2012, Windows 8.1, and Windows Server 2012 R2.

Group 4 is supported in Windows Server 2008, Windows 7, Windows Server 2008 R2, Windows 8,
Windows Server 2012, Windows 8.1, and Windows Server 2012 R2.

Group 5 is supported in Windows 7, Windows Server 2008 R2, Windows 8, and Windows Server
2012.

Group 6 is supported in Windows 8 Windows Server 2012, Windows 8.1, and Windows Server 2012
R2.

<41> Section 3.1.5.3: This interface is only supported in Windows Server 2003 R2, Windows Vista,
Windows Server 2008, Windows 7, Windows Server 2008 R2, Windows 8, Windows Server 2012,
Windows 8.1, and Windows Server 2012 R2. If a client attempts to get the interface in Windows

Server 2003 by calling IUnknown::QueryInterface, E_NOINTERFACE (0x80004002) is returned.

<42> Section 3.1.5.4: This interface is only supported in Windows Server 2003 R2, Windows Vista,

Windows Server 2008, Windows 7, Windows Server 2008 R2, Windows 8, Windows Server 2012,
Windows 8.1, and Windows Server 2012 R2. If a client attempts to get the interface in Windows
Server 2003 by calling IUnknown::QueryInterface, E_NOINTERFACE (0x80004002) is returned.

<43> Section 3.1.5.5: This interface is supported only in Windows Server 2003 R2, Windows Vista,

Windows Server 2008, Windows 7, Windows Server 2008 R2, Windows 8, Windows Server 2012,
Windows 8.1, and Windows Server 2012 R2. If a client attempts to get the interface in Windows
Server 2003 by calling IUnknown::QueryInterface, E_NOINTERFACE (0x80004002) is returned.
Attempting to call methods with opnums 5, 6, 7, or 9 may result in NDR raising a
RPC_X_BAD_STUB_DATA exception. For more information, see [MS-DCOM].

<44> Section 3.1.6.1: This interface is only supported in Windows Server 2003 R2, Windows Vista,
Windows Server 2008, Windows 7, Windows Server 2008 R2, Windows 8, Windows Server 2012,

Windows 8.1, and Windows Server 2012 R2. If a client attempts to get the interface in Windows
Server 2003 by calling IUnknown::QueryInterface, E_NOINTERFACE (0x80004002) is returned.

<45> Section 3.1.7.1: This interface is supported only in Windows Server 2003 R2, Windows Vista,
Windows Server 2008, Windows 7, Windows Server 2008 R2, Windows 8, Windows Server 2012,
Windows 8.1, and Windows Server 2012 R2. If a client attempts to get the interface in Windows
Server 2003 by calling IUnknown::QueryInterface, E_NOINTERFACE (0x80004002) is returned.
Attempting to call these methods with opnums 5 or 6 may result in NDR raising an

RPC_X_BAD_STUB_DATA exception. For more information, see [MS-DCOM].

<46> Section 3.1.7.1: Gaps in the opnum numbering sequence apply to Windows as follows.

Opnum Description

05 Only used locally by Windows, never used remotely.

06 Only used locally by Windows, never used remotely.

<47> Section 3.1.8.1: This interface is supported only in Windows Server 2003 R2, Windows Vista,
Windows Server 2008, Windows 7, Windows Server 2008 R2, Windows 8, Windows Server 2012,
Windows 8.1, and Windows Server 2012 R2. If a client attempts to get the interface in Windows

Server 2003 by calling IUnknown::QueryInterface, E_NOINTERFACE (0x80004002) is returned.
Attempting to call methods with opnums 5, 6, or 7 may result in NDR raising an
RPC_X_BAD_STUB_DATA exception. For more information, see [MS-DCOM].

%5bMS-DCOM%5d.pdf
%5bMS-DCOM%5d.pdf
%5bMS-DCOM%5d.pdf

350 / 368

[MS-VDS] — v20130722
 Virtual Disk Service (VDS) Protocol

 Copyright © 2013 Microsoft Corporation.

 Release: Monday, July 22, 2013

<48> Section 3.1.12.4: This method is not implemented for removable disks in Windows
Server 2003.

<49> Section 3.3.6: When the sequence shown in the following event log entry is executed
repeatedly in a program (say, 200 times) on Windows Server 2008, the client will occasionally

encounter the error "0x800706BE". This error mainly comes at AddDisk and sometimes on Wait. In
this circumstance, the following entry is recorded in the event log on the server:"====Faulting
application vds.exe, version 6.0.6001.18000, time stamp 0x479198cb, faulting module ntdll.dll,
version 6.0.6001.18000, time stamp 0x4791adec, exception code 0xc0000005, fault offset
0x000000000001f7fa, process id 0xda4, application start time 0x01c967e37ddea470.====-
QueryUnallocatedDisks- CreatePack- AddDisk- Clean- Wait (for clean to complete)"

<50> Section 3.4.1.1: The IVdsServiceUninstallDisk, IVdsServiceHba, and IVdsServiceIscsi

interfaces are not available in Windows Server 2003.

<51> Section 3.4.1.2: In Windows, only partitions on hard disks that have the following partition
types are considered volumes: 0x01, 0x04, 0x06, 0x07, 0x0B, 0x0C, and 0x0E.

<52> Section 3.4.5.1.7: In Windows 7, Windows 8, Windows Server 2012, Windows 8.1, and
Windows Server 2012 R2, the operating system allows a disk object to be queried to determine
whether it is a virtual disk.

<53> Section 3.4.5.1.8: In Windows 7, Windows 8, Windows Server 2012, Windows 8.1, and
Windows Server 2012 R2, the operating system allows a disk object to be queried to determine
whether it is a virtual disk.

<54> Section 3.4.5.2: Windows servers enforce authorization checks. For information on the
authorization requirements for the various methods, see section 2.1. In Windows, the client must be
a member of the administrator or backup operators groups, or be the local_system account.

<55> Section 3.4.5.2.4.1: In Windows, the IVdsService::GetProperties method will not fail if

called before the service has finished initializing, but the data returned is not valid. Client
applications wait for the service to finish initializing before making any calls against the service,
other than IVdsService::IsServiceReady or IVdsService::WaitForServiceReady.

<56> Section 3.4.5.2.4.8: Note the following issues in Windows Server 2003, Windows Server 2003
R2, Windows Vista, Windows Server 2008 R2, and Windows Server 2012: (1) The first entry's
wszName field is overwritten with "UDF". The first entry's wszName field should contain "FAT". (2)
The string of illegal label characters for the second entry (the FAT32 entry),

pwszIllegalLabelCharSet, is not set and contains an invalid string. (3) The fifth entry's wszName
field is left unset. It should contain "UDF", but instead contains invalid characters.

In Windows Server 2003, Windows Server 2003 R2, Windows Vista, Windows Server 2008,
Windows 7, Windows Server 2008 R2, Windows 8, Windows Server 2012, Windows 8.1, and
Windows Server 2012 R2, the third entry's ulCompressionFlags field is incorrectly set to
0x000F0000 (the NTFS entry).

<57> Section 3.4.5.2.4.14: In Windows Vista, Windows Server 2008, Windows 7, Windows
Server 2008 R2, Windows 8, Windows Server 2012, Windows 8.1, and Windows Server 2012 R2,
this method succeeds only if the client allows the server to impersonate the client's security context.

The client does so by changing its impersonation level to RPC_C_IMPL_LEVEL_IMPERSONATE. For
more information on the meaning of the RPC_C_IMPL_LEVEL_IMPERSONATE flag, see [C706] and
[MS-RPCE], section 2.2.1.1.9.

<58> Section 3.4.5.2.8.3: The Windows implementation of this method always returns

VDS_E_TARGET_SPECIFIC_NOT_SUPPORTED (0x80042706) if a target ID is specified.

http://go.microsoft.com/fwlink/?LinkId=89824
%5bMS-RPCE%5d.pdf
%5bMS-RPCE%5d.pdf

351 / 368

[MS-VDS] — v20130722
 Virtual Disk Service (VDS) Protocol

 Copyright © 2013 Microsoft Corporation.

 Release: Monday, July 22, 2013

<59> Section 3.4.5.2.11.2: This method returns VDS_E_NOT_SUPPORTED.

Windows Server 2003 R2 returns the S_OK status whether or not storage is connected to the ends
of the paths.

<60> Section 3.4.5.2.17.2: Windows uses a string in the Security Descriptor Definition Language

(SDDL) format.

<61> Section 3.4.5.2.17.2: For the Microsoft virtual hard disk provider, this parameter must be
zero.

<62> Section 3.4.5.2.17.2: Windows 7 and Windows 8 ignore this value.

<63> Section 3.4.5.2.19.5: Windows supports at most 32 disks in a volume. Windows servers fail
requests that specify more than 32 disks, and Windows clients never submit such requests.

<64> Section 3.4.5.2.19.5: The Windows implementation requires the stripe size to be 65536 if the

type is VDS_VT_STRIPE or VDS_VT_PARITY. Other volume types are not striped and the stripe size

is 0.

<65> Section 3.4.5.2.19.6: If a GPT disk is added to a basic pack, the operation automatically
creates an MSR partition on the disk, except when the server is running in Windows PE because an
administrator may want to create an EFI system partition on the disk. The EFI system partition, if
present, must be the first partition on the disk. If a disk is added to a dynamic pack, the operation

does not create an MSR partition.

<66> Section 3.4.5.2.19.7: It is not possible to migrate a basic disk from one basic disk pack to
another basic disk pack. A dynamic disk with volumes cannot be converted to a basic disk.

<67> Section 3.4.5.2.19.7: If the server is running on Windows Server 2003 or Windows
Server 2003 R2:

If this method is called to convert a basic disk to a dynamic disk, and there is not enough space

on the disk to create the dynamic disk metadata database, then this method MUST return

VDS_E_NO_FREE_SPACE.

If this method is called to import a set of foreign dynamic disks into the online pack, and the

disks do not all belong to the same foreign pack, then this method MUST return
VDS_E_IMPORT_SET_INCOMPLETE.

If this method is called to convert a basic disk to a dynamic disk, and the disk contains an active

partition that is not the current active partition, then this method MUST return
VDS_E_ACTIVE_PARTITION.

If this method is called to convert a basic disk to a dynamic disk, and the disk contains a partition

which is of a type not recognized by the Windows operating system, then this method MUST
return VDS_E_PARTITION_OF_UNKNOWN_TYPE.

If this method is called to convert a basic disk to a dynamic disk, and the disk contains a partition

which is part of an FtDisk volume, then this method MUST return

VDS_E_LEGACY_VOLUME_FORMAT.

If this method is called to convert a basic disk to a dynamic disk, then the disk contains a

partition which is either of unknown type, or, which has a type indicating that it is a known OEM
partition, and the aforementioned partition is both preceded and followed by data partitions with
recognized partition types, method MUST return VDS_E_NON_CONTIGUOUS_DATA_PARTITIONS.

%5bMS-GLOS%5d.pdf

352 / 368

[MS-VDS] — v20130722
 Virtual Disk Service (VDS) Protocol

 Copyright © 2013 Microsoft Corporation.

 Release: Monday, July 22, 2013

<68> Section 3.4.5.2.19.8: On Windows Server 2003 and Windows Server 2003 R2, removing a
missing disk called against a dynamic disk does two things:

1. Removes the disk from the online disk group.

2. Reverts the disk to basic.

If the missing disk is in the online disk group and is being converted to basic, both steps are
completed. If a missing disk is being removed from the disk group, only step 1 is performed. If the
disk is foreign, only step 2 is performed because the disk is not in the online disk group.

<69> Section 3.4.5.2.20.1: This array's size is 32 objects or less, because Windows imposes a limit
of 32 disks that can be used with a single volume.

<70> Section 3.4.5.2.20.1: The stripe size is 65,536 if type is VDS_VT_STRIPE or VDS_VT_PARITY;
otherwise, stripe size is 0.

<71> Section 3.4.5.2.20.1: In Windows, if zero is specified, the server determines the alignment

value that is specified in one of the following registry keys under
HKEY_LOCAL_MACHINE\System\CurrentControlSet\Services\vds\Alignment, depending on the size
of the disk on which the volume is created. The following default values appear after the operating
system is installed and may be overridden by an administrator.

Value Meaning

"Disk Size 4GB"

65536

Registry Key: LessThan4GB

"Disk Size 4 - 8GB"

1048576

Registry Key: Between4_8GB

"Disk Size 8 - 32GB"

1048576

Registry Key: Between8_32GB

"Disk Size > 32GB"

1048576

Registry Key: GreaterThan32GB

<72> Section 3.4.5.2.21.5: For Windows Vista, Windows Server 2008, Windows 7, Windows
Server 2008 R2, Windows 8, Windows Server 2012, Windows 8.1, and Windows Server 2012 R2, if

the disk is not convertible because there are data partitions or volumes on the disk or because the
disk is removable, VDS_E_DISK_NOT_CONVERTIBLE is returned. Windows 7, Windows
Server 2008 R2, Windows 8, Windows Server 2012, Windows 8.1, and Windows Server 2012 R2
require that the disk have a minimum size of 128MB in order for the disk to be converted from the
MBR disk partition formatting style to the GPT disk partition formatting style. If the disk meets all
other requirements for conversion, and if the disk's size is less than this minimum, the error
returned will be VDS_E_DISK_NOT_CONVERTIBLE_SIZE.

<73> Section 3.4.5.2.21.6: Implemented for Windows Vista SP1, Windows Server 2008,
Windows 7, Windows Server 2008 R2, Windows 8, Windows Server 2012, Windows 8.1, and
Windows Server 2012 R2.

<74> Section 3.4.5.2.21.7: Implemented for Windows Vista SP1, Windows Server 2008,
Windows 7, Windows Server 2008 R2, Windows 8, Windows Server 2012, Windows 8.1, and
Windows Server 2012 R2.

<75> Section 3.4.5.2.22.1: This method will fail on Windows Server 2008 if called against a basic

disk or dynamic disk, and will only succeed if the disk has no disk partitioning format. This method

353 / 368

[MS-VDS] — v20130722
 Virtual Disk Service (VDS) Protocol

 Copyright © 2013 Microsoft Corporation.

 Release: Monday, July 22, 2013

was added for Windows Vista, but was superseded by the IVdsDiskOnline::Online method in
Windows Server 2008.

<76> Section 3.4.5.2.22.1: For Windows Server 2008, if this method is called to either online or
offline the disk and the disk is already online or offline, the method returns S_OK or

ERROR_SUCCESS (0x00000000). In Windows Server 2008 R2 Windows Server 2012, Windows 8.1,
and Windows Server 2012 R2, if this method is called to either online or offline the disk and the disk
is found to already be online or offline, the method returns VDS_E_DISK_NOT_ONLINE
(0x8004244B) or VDS_E_DISK_NOT_OFFLINE (0x80042595), respectively.

<77> Section 3.4.5.2.24.3: On Windows Vista and Windows Server 2008, the offset supplied to this
method may be rounded up or down to an alignment boundary.

<78> Section 3.4.5.2.24.4: OEM partitions, EFI system partitions, and MSR partitions are

considered protected and cannot be deleted unless bForceProtected is specified.

<79> Section 3.4.5.2.24.5: In Windows, the partition size is returned.

<80> Section 3.4.5.2.24.9: On Windows 7 and Windows Server 2008 R2, if the method call is made
using FAT, FAT32, or ExFAT file system, and the bEnableCompression parameter is TRUE,
VDS_E_COMPRESSION_NOT_SUPPORTED will be returned in the return value of this method call.
On Windows Server 2003, Windows Server 2003 R2, Windows Vista, Windows Server 2008,

Windows 8, Windows Server 2012, Windows 8.1, and Windows Server 2012 R2, the parameter will
be ignored.

<81> Section 3.4.5.2.24.9: On Windows 7 and Windows Server 2008 R2, if the method call is made
using FAT, FAT32, or ExFAT file system types, and the bEnableCompression parameter is TRUE,
VDS_E_COMPRESSION_NOT_SUPPORTED will be returned in the return value of this method call.
On Windows Server 2003, Windows Server 2003 R2, Windows Vista, Windows Server 2008,
Windows 8, Windows Server 2012, Windows 8.1, and Windows Server 2012 R2, the parameter will

be ignored.

<82> Section 3.4.5.2.24.10: On GPT disks, Windows recognizes any partition with the
GPT_ATTRIBUTE_PLATFORM_REQUIRED flag set as an OEM partition. On MBR disks, Windows

recognizes the following partition types as OEM partitions.

Value Meaning

0x12 EISA partition.

0x27 Microsoft recovery partition (recognized only in Windows Vista, Windows Server 2008,

Windows 7, Windows Server 2008 R2, Windows 8, and Windows Server 2012).

0x84 Hibernation partition for laptops.

0xA0 Diagnostic partition on some HP notebooks.

0xDE Dell partition.

0xFE IBM IML partition.

<83> Section 3.4.5.2.24.10: On Windows Server 2003, Windows Server 2003 R2, Windows Vista,
and Windows Server 2008, this method MUST return VDS_E_OPERATION_DENIED for a basic disk.
For Windows 7, Windows Server 2008 R2, Windows 8, Windows Server 2012, Windows 8.1, and
Windows Server 2012 R2, this method MUST return VDS_E_CLEAN_WITH_DATA for a basic disk.

354 / 368

[MS-VDS] — v20130722
 Virtual Disk Service (VDS) Protocol

 Copyright © 2013 Microsoft Corporation.

 Release: Monday, July 22, 2013

<84> Section 3.4.5.2.24.10: On Windows Server 2003, Windows Server 2003 R2, Windows Vista,
and Windows Server 2008, this method MUST return VDS_E_OPERATION_DENIED for a basic disk.

For Windows 7, Windows Server 2008 R2, Windows 8, Windows Server 2012, Windows 8.1, and
Windows Server 2012 R2, this method MUST return VDS_E_CLEAN_WITH_OEM for a basic disk.

<85> Section 3.4.5.2.24.10: On Windows Vista and Windows Server 2008, clean operations cannot
be canceled. The basic provider will return VDS_E_CANCEL_TOO_LATE, and the Dynamic Provider
will return VDS_E_NOT_SUPPORTED. For raw disks that belong to neither provider, VDS will return
VDS_E_CANCEL_TOO_LATE.

<86> Section 3.4.5.2.27.1: For MBR-formatted disks, partition size is limited to 2^32 sectors. For
example, for a sector size of 512 bytes, there is a 2-terabyte limit for partitions.

<87> Section 3.4.5.2.27.1: In Windows, if zero is specified the server will determine the alignment

value specified in one of the following registry keys under
HKEY_LOCAL_MACHINE\System\CurrentControlSet\Services\vds\Alignment, depending on the size
of the disk on which the volume is created.

The values listed in the following table are the defaults that appear after the operating system is
installed, and may be overridden by an administrator.

Disk Size Registry Key Default Value in Registry

< 4 GB LessThan4GB 65536

4 - 8 GB Between4_8GB 1048576

8 - 32 GB Between8_32GB 1048576

> 32 GB GreaterThan32GB 1048576

<88> Section 3.4.5.2.29.3: This method does not return valid values when called with
Windows Vista as the client and Windows Server 2008 as the server.

<89> Section 3.4.5.2.29.4: On Windows 7, Windows Server 2008 R2, Windows 8, Windows Server
2012, Windows 8.1, and Windows Server 2012 R2, if the method call is made using FAT, FAT32, or
ExFAT file system types, and the bEnableCompression parameter is TRUE,

VDS_E_COMPRESSION_NOT_SUPPORTED will be returned in the return value of this method call.
On Windows Server 2003, Windows Server 2003 R2, Windows Vista, and Windows Server 2008, the
parameter will be ignored.

<90> Section 3.4.5.2.29.4: On Windows 7, Windows Server 2008 R2, Windows 8, Windows Server
2012, Windows 8.1, and Windows Server 2012 R2, if the method call is made using FAT, FAT32, or
ExFAT file system types, and the bEnableCompression parameter is TRUE,

VDS_E_COMPRESSION_NOT_SUPPORTED will be returned in the return value of this method call.
On Windows Server 2003, Windows Server 2003 R2, Windows Vista, and Windows Server 2008, the
parameter will be ignored.

<91> Section 3.4.5.2.30.1: On Windows 7, Windows Server 2008 R2, Windows 8, Windows Server

2012, Windows 8.1, and Windows Server 2012 R2, if the method is called with an Options
parameter that includes the VDS_ESOF_COMPRESSION flag and a file system type of FAT, FAT32, or
ExFAT, the method will return VDS_E_COMPRESSION_NOT_SUPPORTED. Windows Server 2003,

Windows Server 2003 R2, Windows Vista, and Windows Server 2008 ignore this flag in the Options
parameter. The NTFS file system supports compression.

355 / 368

[MS-VDS] — v20130722
 Virtual Disk Service (VDS) Protocol

 Copyright © 2013 Microsoft Corporation.

 Release: Monday, July 22, 2013

<92> Section 3.4.5.2.32.4: No more than 32 disks are used with a volume; therefore, this value
will not exceed 31.

<93> Section 3.4.5.2.32.4: If the file system on the volume is an NTFS file system, extend the file
system to fill the newly extended volume.

<94> Section 3.4.5.2.32.4: On Windows Server 2003, Windows Server 2003 R2, Windows Vista,
Windows Server 2008, Windows 7, Windows Server 2008 R2, Windows 8, Windows Server 2012,
Windows 8.1, and Windows Server 2012 R2, when the Extend operation has completed successfully,
calling IVdsAsync::QueryStatus returns S_OK in the pHrResult output parameter but incorrectly
returns 0 in the pulPercentCompleted output parameter. When the operation has completed
successfully, IVdsAsync::QueryStatus is expected to return 100 in the pulPercentCompleted
output parameter.

<95> Section 3.4.5.2.32.5: Only an NTFS file system or raw volumes support this operation. This
method is not implemented on Windows Server 2003 or Windows Server 2003 R2.

<96> Section 3.4.5.2.32.5: The Shrink will only work on volumes with an NTFS file system or RAW

file systems; otherwise, it returns VDS_E_CANNOT_SHRINK (HRESULT of 0x8004251E).

<97> Section 3.4.5.2.32.5: The NTFS file system supports shrinking, the FAT file systems do not.

<98> Section 3.4.5.2.32.5: On Windows Server 2003 R2 when the Shrink operation has completed

successfully, calling IVdsAsync::QueryStatus returns S_OK in the pHrResult output parameter but
incorrectly returns 0 in the pulPercentCompleted output parameter. When the operation has
completed successfully, IVdsAsync::QueryStatus is expected to return 100 in the
pulPercentCompleted output parameter.

<99> Section 3.4.5.2.32.9: On Windows Server 2003, the crash dump and hibernate volumes
remain on the boot partition.

On Windows Server 2003, after the volume is deleted, VDS tries to delete the volume mount points.

If deleting the mount points fails, Delete will return VDS_S_ACCESS_PATH_NOT_DELETED, even
though the volume was successfully deleted.

<100> Section 3.4.5.2.32.9: For Windows Server 2003 R2, the volume plex may continue to be
available for a few seconds after the volume has been deleted.

<101> Section 3.4.5.2.32.10: In Windows, the server does not allow the setting of the
VDS_VF_HIDDEN and VDS_VF_READONLY flags on boot critical volumes, such as the system
volume, boot volume, pagefile volume, hibernation volume, and crashdump volume. If the volume is

on a basic MBR disk and the disk contains any of the boot critical volumes, the server does not allow
the setting of the VDS_VF_HIDDEN and VDS_VF_READONLY flags on the volume.

<102> Section 3.4.5.2.32.10: Windows does not implement the VDS_VF_LBN_REMAP_ENABLED
flag on a volume. Windows does not support setting or clearing the VDS_VF_INSTALLABLE flag on
basic disk volumes.

<103> Section 3.4.5.2.32.10: In Windows Vista, Windows Server 2008, Windows 7, Windows

Server 2008 R2, Windows 8, Windows Server 2012, Windows 8.1, and Windows Server 2012 R2,if

flags VDS_VF_READONLY and/or VDS_VF_HIDDEN are being set and bRevertOnClose is not set,
the server dismounts the volume so that the file system is mounted with the new flags when the
volume is mounted.

<104> Section 3.4.5.2.32.10: If bRevertOnClose is set, the server does not dismount the volume.

%5bMS-GLOS%5d.pdf

356 / 368

[MS-VDS] — v20130722
 Virtual Disk Service (VDS) Protocol

 Copyright © 2013 Microsoft Corporation.

 Release: Monday, July 22, 2013

<105> Section 3.4.5.2.32.10: In Windows, VDS_VF_INSTALLABLE is only valid for dynamic disk
volumes.

<106> Section 3.4.5.2.32.11: In Windows Vista, Windows Server 2008, Windows 7, Windows
Server 2008 R2, Windows 8, Windows Server 2012, Windows 8.1, and Windows Server 2012 R2, if

the VDS_VF_READONLY and/or VDS_VF_HIDDEN flags are being cleared, the server dismounts the
volume so that the file system is mounted with the new flags. If the volume is a boot critical
volume, the server will fail to dismount the volume.

<107> Section 3.4.5.2.32.11: Windows does not implement the VDS_VF_LBN_REMAP_ENABLED
flag on a volume. Windows does not support setting or clearing the VDS_VF_INSTALLABLE flag on
basic disk volumes.

<108> Section 3.4.5.2.34.1: Windows Server 2008 returns VDS_E_VOLUME_NOT_MOUNTED when

the device is offline.

<109> Section 3.4.5.2.34.2: On Windows 7, Windows Server 2008 R2, Windows 8, and Windows
Server 2012, if the method call is made using FAT, FAT32, or ExFAT file file system, and the

bEnableCompression parameter is TRUE, VDS_E_COMPRESSION_NOT_SUPPORTED will be returned
in the return value of this method call. On Windows Server 2003, Windows Server 2003 R2,
Windows Vista, and Windows Server 2008, the parameter will be ignored.This parameter is ignored

if the file system is not an NTFS file system.

<110> Section 3.4.5.2.34.2: On Windows 7, Windows Server 2008 R2, Windows 8, and Windows
Server 2012, if the method call is made using FAT, FAT32, or ExFAT file system types, and the
bEnableCompression parameter is TRUE, VDS_E_COMPRESSION_NOT_SUPPORTED will be returned
in the return value of this method call. On Windows Server 2003, Windows Server 2003 R2,
Windows Vista, and Windows Server 2008, the parameter will be ignored.

<111> Section 3.4.5.2.34.3: An access path can apply to a drive letter or an empty folder on an

NTFS file system.

<112> Section 3.4.5.2.34.3: Due to an inconsistency in the Windows code, only one notification is
sent. Rather than sending VDS_MOUNT_POINT_NOTIFICATION with ulEvent as

VDS_NF_MOUNT_POINT_CHANGE and VDS_DRIVE_LETTER_NOTIFICATION with ulEvent as
VDS_NF_DRIVE_LETTER_FREE, Windows sends VDS_MOUNT_POINT_NOTIFICATION with
ulEvent VDS_NF_MOUNT_POINT_CHANGE (0x000000CD).

<113> Section 3.4.5.2.34.3: Mounted folder path names cannot be assigned to hidden volumes. A

hidden volume is one that is not reported to the Mount Point Manager because: (1) the
GPT_BASIC_DATA_ATTRIBUTE_HIDDEN flag is set, (2) the partition type is not recognized, (3) the
partition type is a known OEM partition type, or (4) the partition type is either
PARTITION_SYSTEM_GUID (an ESP partition) or PARTITION_MSFT_RECOVERY_GUID (a recovery
partition).

<114> Section 3.4.5.2.34.6: In Windows, only one notification is sent. Rather than sending

VDS_MOUNT_POINT_NOTIFICATION with ulEvent as VDS_NF_MOUNT_POINT_CHANGE and
VDS_DRIVE_LETTER_NOTIFICATION with ulEvent as VDS_NF_DRIVE_LETTER_FREE, Windows
sends VDS_MOUNT_POINT_NOTIFICATION with ulEvent as VDS_NF_MOUNT_POINT_CHANGE.

(0x000000CD).

<115> Section 3.4.5.2.34.8: For Windows Server 2003,Windows Server 2003 R2, Windows Vista,
Windows Server 2008: If the volume is offline, the VDS_VF_PERMANENTLY_DISMOUNTED flag
is set in the ulFlags member of the VDS_VOLUME_PROP (section 2.2.2.14.1.1) or

VDS_VOLUME_PROP2 (section 2.2.2.15.1.1) structure, but the volume status is not updated to
VDS_VS_OFFLINE.

357 / 368

[MS-VDS] — v20130722
 Virtual Disk Service (VDS) Protocol

 Copyright © 2013 Microsoft Corporation.

 Release: Monday, July 22, 2013

<116> Section 3.4.5.2.35.3: On Windows 7, Windows Server 2008 R2, Windows 8, Windows Server
2012, Windows 8.1, and Windows Server 2012 R2, if the method call is made using FAT, FAT32, or

ExFAT file system types, and the bEnableCompression parameter is TRUE,
VDS_E_COMPRESSION_NOT_SUPPORTED will be returned in the return value of this method call.

On Windows Server 2003, Windows Server 2003 R2, Windows Vista, and Windows Server 2008, the
parameter will be ignored.

<117> Section 3.4.5.2.35.3: On Windows 7, Windows Server 2008 R2, Windows 8, Windows Server
2012, Windows 8.1, and Windows Server 2012 R2, if the method call is made using FAT, FAT32, or
ExFAT file system types, and the bEnableCompression parameter is TRUE,
VDS_E_COMPRESSION_NOT_SUPPORTED will be returned in the return value of this method call.
On Windows Server 2003, Windows Server 2003 R2, Windows Vista, and Windows Server 2008, the

parameter will be ignored.

<118> Section 3.4.5.2.36.2: On Windows 7, Windows Server 2008 R2, Windows 8, Windows Server
2012, Windows 8.1, and Windows Server 2012 R2, if the method is called with an Options
parameter that includes the VDS_ESOF_COMPRESSION flag and a file system type of FAT, FAT32, or
ExFAT, the method will return VDS_E_COMPRESSION_NOT_SUPPORTED. Windows Server 2003,

Windows Server 2003 R2, Windows Vista, and Windows Server 2008 ignore this flag in the Options

parameter. The NTFS file system supports compression.

<119> Section 3.4.5.2.37.2: The Shrink method works only on volumes that have NTFS or RAW
file systems; otherwise, Shrink returns VDS_E_CANNOT_SHRINK (HRESULT of 0x8004251E).

<120> Section 3.4.5.2.37.2: The NTFS file system supports shrinking; FAT file systems do not. MAY

<121> Section 3.4.5.2.40.3: Windows does not implement the IVdsVDisk::GetHostVolume
method.

<122> Section 3.4.5.2.41.1: Windows uses a string in the Security Descriptor Definition Language

(SDDL) format.

<123> Section 3.4.5.2.41.1: For the Microsoft virtual disk provider, this parameter must be 0 or 1.
If the parameter is 1, the pStringSecurityDescriptor parameter MUST be NULL.

<124> Section 3.4.5.2.41.1: In Windows, TimeoutInMs is not used.

<125> Section 3.4.5.2.41.2: For the Microsoft provider, this must be 0.

<126> Section 3.4.5.2.41.3: For the Microsoft provider, this must be 0.

<127> Section 3.4.5.2.41.5: In Windows, once the merge operation completes, the given virtual

disk is still usable but, once the blocks in the differencing disk have been merged into its parent, the
list of changed blocks stored in the differencing disk are duplicates of the same blocks in the parent.
It is for this reason that: (1) It is recommended that the given virtual disk be deleted because it is
no longer necessary and continuing to use the given disk will waste space; by definition, a
differencing virtual disk should consist of only the set of blocks that differ from blocks in the parent
virtual disk. (2) If a merge operation fails to complete, then the given differencing disk and its

children are still valid. (3) Because it is recommended that the given virtual disk be deleted, any
differencing virtual disks using the given virtual disk as a parent will become invalid as a result of

deleting the given virtual disk.

Also note that once the merge operation has commenced, any other virtual disks using the given
disk's parent as a parent become invalid. These disks will fail all operations. The reason for this is
that any other virtual disks using the given virtual disk's parent as a parent may have change blocks
that conflict with blocks merged into the parent.

358 / 368

[MS-VDS] — v20130722
 Virtual Disk Service (VDS) Protocol

 Copyright © 2013 Microsoft Corporation.

 Release: Monday, July 22, 2013

To illustrate the above: Given diskA, its parent is diskB, diskB's parent is diskC, and diskX, which
also uses diskC as its parent, then once a merge of diskB into diskC is started (some number of

blocks have been copied from diskB to diskC), diskX becomes invalid.

<128> Section 3.4.5.2.41.5: For the Microsoft virtual disk provider, the disk MUST have been

opened with a ReadWriteDepth at least equal to this value.

<129> Section 3.4.5.2.41.6: In Windows, the expand operation invalidates a virtual disk
differencing chain.

<130> Section 3.4.7: Windows Virtual Disk Service Remote Protocol servers use the Plug and Play
subsystem to register with the operating system to receive notifications of changes to the storage
device.

<131> Section 3.4.7: When the sequence in the behavior log entry shown here is executed

repeatedly in a program (say, 200 times) on Windows Server 2008, the client will occasionally
encounter the error "0x800706BE". This error mainly comes at AddDisk and sometimes on Wait.
However, on the server, the following entry is recorded in the event log: "====Faulting application

vds.exe, version 6.0.6001.18000, time stamp 0x479198cb, faulting module ntdll.dll, version
6.0.6001.18000, time stamp 0x4791adec, exception code 0xc0000005, fault offset
0x000000000001f7fa, process id 0xda4, application start time 0x01c967e37ddea470.====-

QueryUnallocatedDisks- CreatePack- AddDisk- Clean- Wait (for clean to complete)"

359 / 368

[MS-VDS] — v20130722
 Virtual Disk Service (VDS) Protocol

 Copyright © 2013 Microsoft Corporation.

 Release: Monday, July 22, 2013

8 Change Tracking

This section identifies changes that were made to the [MS-VDS] protocol document between the
January 2013 and August 2013 releases. Changes are classified as New, Major, Minor, Editorial, or
No change.

The revision class New means that a new document is being released.

The revision class Major means that the technical content in the document was significantly revised.
Major changes affect protocol interoperability or implementation. Examples of major changes are:

A document revision that incorporates changes to interoperability requirements or functionality.

An extensive rewrite, addition, or deletion of major portions of content.

The removal of a document from the documentation set.

Changes made for template compliance.

The revision class Minor means that the meaning of the technical content was clarified. Minor
changes do not affect protocol interoperability or implementation. Examples of minor changes are

updates to clarify ambiguity at the sentence, paragraph, or table level.

The revision class Editorial means that the language and formatting in the technical content was
changed. Editorial changes apply to grammatical, formatting, and style issues.

The revision class No change means that no new technical or language changes were introduced.
The technical content of the document is identical to the last released version, but minor editorial
and formatting changes, as well as updates to the header and footer information, and to the revision

summary, may have been made.

Major and minor changes can be described further using the following change types:

New content added.

Content updated.

Content removed.

New product behavior note added.

Product behavior note updated.

Product behavior note removed.

New protocol syntax added.

Protocol syntax updated.

Protocol syntax removed.

New content added due to protocol revision.

Content updated due to protocol revision.

Content removed due to protocol revision.

New protocol syntax added due to protocol revision.

360 / 368

[MS-VDS] — v20130722
 Virtual Disk Service (VDS) Protocol

 Copyright © 2013 Microsoft Corporation.

 Release: Monday, July 22, 2013

Protocol syntax updated due to protocol revision.

Protocol syntax removed due to protocol revision.

New content added for template compliance.

Content updated for template compliance.

Content removed for template compliance.

Obsolete document removed.

Editorial changes are always classified with the change type Editorially updated.

Some important terms used in the change type descriptions are defined as follows:

Protocol syntax refers to data elements (such as packets, structures, enumerations, and

methods) as well as interfaces.

Protocol revision refers to changes made to a protocol that affect the bits that are sent over

the wire.

The changes made to this document are listed in the following table. For more information, please

contact protocol@microsoft.com.

Section

Tracking number (if applicable)

 and description

Major

change

(Y or

N)

Change

type

2.2.1.2.23

VDS_VOLUME_FLAG

Moved content that is not product-specific into the

main text.

Y Content

updated.

2.2.1.2.23

VDS_VOLUME_FLAG

Moved the flag-setting criteria to the end of the

topic.

N Content

updated.

2.2.2.9.1.1

VDS_DISK_PROP

Moved content into main text from product behavior

note.

Y Content

updated.

7

Appendix B: Product

Behavior

Modified this section to include references to

Windows 8.1 operating system and Windows Server

2012 R2 operating system.

Y Content

updated.

mailto:protocol@microsoft.com

361 / 368

[MS-VDS] — v20130722
 Virtual Disk Service (VDS) Protocol

 Copyright © 2013 Microsoft Corporation.

 Release: Monday, July 22, 2013

9 Index

A

Abstract data model
client (section 3.2.1 146, section 3.3.1 155)
server (section 3.2.1 146, section 3.4.1 157)

Access paths
client 154
server 154

ACCESS_MASK 27
AddAccessPath method 256
AddDisk method 204
Adding disk objects 166
Adding pack objects for dynamic providers 165
Adding virtual disk objects 169
Adding volume objects 168
AddPlex method 245
AddVDisk method 197
Advise method 182
Applicability 22
AssignDriveLetter method 222
Asynchronous operation object interfaces 124
Asynchronous tasks 163
Asynchronous tasks - performing - example 294
Attach method 276
ATTACH_VIRTUAL_DISK_FLAG enumeration 93

B

BreakPlex method 247

C

Callback object interface 123
Callback objects - client 155
Callback objects - server (section 3.4.1.4 162,

section 3.4.3.2 165)
Cancel method 174
Capability negotiation 22
Change tracking 359
CHANGE_ATTRIBUTES_PARAMETERS structure 78
CHANGE_PARTITION_TYPE_PARAMETERS structure

79
ChangeAttributes method 220
ChangePartitionType method 227
Clean method 226
CleanupObsoleteMountPoints method 182
ClearFileSystemFlags method 261
ClearFlags method (section 3.4.5.2.4.16 184,

section 3.4.5.2.21.7 213, section 3.4.5.2.32.11
252)

Client
abstract data model (section 3.2.1 146, section

3.3.1 155)
access paths 154
disks 152
drive letters 154
file systems 154

initialization (section 3.2.3 155, section 3.3.3
156)

local events (section 3.2.6 155, section 3.3.6
157)

message processing (section 3.2.4 155, section
3.3.4 156)

method invocation 146
notifications examples

receiving 291
registering for 290
unregistering for 291

packs 151
providers 150
sequencing rules (section 3.2.4 155, section

3.3.4 156)
service 150
timer events (section 3.2.5 155, section 3.3.5

157)
timers (section 3.2.2 155, section 3.3.2 156)
virtual disks 153
volumes 153

Clone method 173
Common data types 26
Compact method 278
COMPACT_VIRTUAL_DISK_FLAG enumeration 94
ConvertStyle method 212
CREATE_PARTITION_PARAMETERS structure 56
CREATE_VIRTUAL_DISK_FLAG enumeration 87
CreatePack method 194
CreatePartition method 217
CreatePartitionEx method 230
CreateVDisk method 196
CreateVolume method 202
CreateVolume2 method 209

D

Data model - abstract
client (section 3.2.1 146, section 3.3.1 155)
server (section 3.2.1 146, section 3.4.1 157)

Data types
common 26
interface-specific 57
IVdsAdvancedDisk 78
IVdsAdvancedDisk2 79
IVdsAdvancedDisk3 80
IVdsDisk 72
IVdsHbaPort 63
IVdsIscsiInitiatorAdapter 67
IVdsIscsiInitiatorPortal 67
IVdsPack 71
IVdsProvider 69
IVdsService (section 2.2.2.1 57, section 2.2.2.1.1

57)
IVdsServiceIscsi 62
IVdsVDisk 88
IVdsVdProvider 86
IVdsVolume 82

362 / 368

[MS-VDS] — v20130722
 Virtual Disk Service (VDS) Protocol

 Copyright © 2013 Microsoft Corporation.

 Release: Monday, July 22, 2013

IVdsVolumeMF (section 2.2.2.16 84, section
2.2.2.16.1 84)

IVdsVolumePlex 85
Delete method 249
DeleteAccessPath method 258
DeleteDriveLetter method 222
DeletePartition method 219
DEPENDENT_DISK_FLAG enumeration 90
Detach method 277
DETACH_VIRTUAL_DISK_FLAG enumeration 94
DetachAndDelete method 278
Disk

arrival 282
removal 282

Disk object interfaces 135
Disk pack

arrival 282
removal 282

Disks
client 152
server 152

Dismount method 260
Drive letter

assignment 284
removal 284

Drive letters
client 154
server 154

DWORD 26

E

Eject method 240
Enumeration - objects 161
Enumeration object interface 123
Enumerations

common data types 27
IVdsHbaPort 63
IVdsIscsiInitiatorPortal 67
IVdsPack 71
IVdsProvider 69
IVdsService 58
IVdsVDisk 88
IVdsVdProvider 87
IVdsVolumePlex 85
querying example 292

Error codes 95
Examples

overview 287
performing asynchronous tasks 294
querying enumerations of VDS objects 292
retrieving properties and IDs 293
sample IVdsAdviseSink::OnNotify implementation

296
VDS client notifications

receiving 291
registering for 290
unregistering for 291

VDS sessions
ending 290
starting 287

Expand method 281

EXPAND_VIRTUAL_DISK_FLAG enumeration 95
Extend method 242

F

Fields - vendor-extensible 23
File system modification 283
File systems

client 154
server 154

Format method 253
FormatEx method 262
FormatEx2 method 265
FormatPartition method 223
FormatPartitionEx method 235
FormatPartitionEx2 method 237
Full IDL 300

G

GetDeviceName method 276
GetDiskFromVDisk method 198
GetDiskIdFromLunInfo method 185
GetDiskObject method 189
GetDriveLetter method 223
GetFileSystemProperties method 253
GetFileSystemTypeName method 261
GetHostVolume method 275
GetIdentificationData method 211
GetImportTarget method 199
GetInitiatorAdapter method 192
GetInitiatorName method 187
GetObject method 179
GetPack method (section 3.4.5.2.21.2 210, section

3.4.5.2.32.2 242)
GetPartitionFileSystemProperties method 233
GetPartitionFileSystemTypeName method 233
GetPartitionProperties method 216
GetProperties method (section 3.4.5.2.4.3 177,

section 3.4.5.2.11.1 190, section 3.4.5.2.12.1
191, section 3.4.5.2.13.1 192, section
3.4.5.2.14.1 193, section 3.4.5.2.19.1 200,
section 3.4.5.2.21.1 210, section 3.4.5.2.26.1
229, section 3.4.5.2.32.1 241, section
3.4.5.2.39.1 271, section 3.4.5.2.40.2 275)

GetProperties2 method (section 3.4.5.2.23.1 214,
section 3.4.5.2.33.1 252)

GetProvider method 201
GetSANPolicy method 189
GetUniqueId method 229
GetVDiskFromDisk method 199
GetVolume method 271
Glossary 14

H

Handling asynchronous tasks 170

HBA port object interfaces 129
Higher-layer triggered events - server 165

I

363 / 368

[MS-VDS] — v20130722
 Virtual Disk Service (VDS) Protocol

 Copyright © 2013 Microsoft Corporation.

 Release: Monday, July 22, 2013

ID retrieval example 293
IDL 300
IEnumVdsObject interface 123
IEnumVdsObject methods 171
Implementer - security considerations 299
Index of security parameters 299
Informative references 20
Initialization

client (section 3.2.3 155, section 3.3.3 156)
server (section 3.2.3 155, section 3.4.3 164)

Initialize method 184
Initiator object interfaces

adapter 129
portal 130

Interfaces
asynchronous operation object 124
callback object 123
disk object 135
enumeration object 123
HBA port object 129
IEnumVdsObject 123
initiator adapter object 129
initiator portal object 130

IVdsAdvancedDisk 136
IVdsAdvancedDisk2 137
IVdsAdviseSink 123
IVdsAsync 124
IVdsCreatePartitionEx 138
IVdsDisk 135
IVdsDiskPartitionMF 139
IVdsDisks (section 3.1.12.2 135, section 3.1.12.3

136)
IVdsHbaPort 129
IVdsHwProvider 132
IVdsIscsiInitiatorAdapter 129
IVdsIscsiInitiatorPortal 130
IVdsPack 133
IVdsPack2 134
IVdsProvider 131
IVdsRemovable 139
IVdsService 125
IVdsServiceHba 127
IVdsServiceInitialization 126
IVdsServiceIscsi 127
IVdsServiceLoader 124
IVdsServiceUninstallDisk 127
IVdsSubSystemImportTarget 133
IVdsSwProvider 131
IVdsVDisk 144
IVdsVdProvider 132
IVdsVolume 140
IVdsVolumeMF 141
IVdsVolumeMF2 142
IVdsVolumeOnline 143
IVdsVolumePlex 144
IVdsVolumeShrink 143
overview 119
pack object 133
provider object 131
service loader 124
service object 125

subsystem object 133
virtual disk object 144
volume object 140
volume plex object 144

Interfaces - data types 57
Introduction 14
IsServiceReady method 177
IVdsAdvancedDisk

data types 78
interface 136
methods 216
structures 78

IVdsAdvancedDisk2
data types 79
interface 137
methods 227
structures 79

IVdsAdvancedDisk3
data types 80
structures 80

IVdsAdviseSink
interface 123
methods 157

IVdsAdviseSink::OnNotify implementation - sample
296

IVdsAsync
interface 124
methods 174

IVdsCreatePartitionEx
interface 138
methods 230

IVdsDisk
data types 72
interface 135
methods 210
structures 72

IVdsDisk2
interface 135
methods 214

IVdsDisk3
interface 136

IVdsDiskPartitionMF
interface 139
methods 233

IVdsHbaPort
data types 63
enumerations 63
interface 129
methods 190
structures 66

IVdsHwProvider
interface 132
methods 195

IVdsIscsiInitiatorAdapter
data types 67
interface 129
methods 191
structures 67

IVdsIscsiInitiatorPortal
data types 67
enumerations 67

364 / 368

[MS-VDS] — v20130722
 Virtual Disk Service (VDS) Protocol

 Copyright © 2013 Microsoft Corporation.

 Release: Monday, July 22, 2013

interface 130
methods 192
structures 68

IVdsPack
data types 71
enumerations 71
interface 133
methods 200
structures 72

IVdsPack2
interface 134
methods 209

IVdsProvider
data types 69
enumerations 69
interface 131
methods 193
structures 70

IVdsRemovable
interface 139
methods 239

IVdsService
data types 57

enumerations 58
interface 125
methods 177
structures 60

IVdsService data types - overview 57
IVdsServiceHba

interface 127
methods 187

IVdsServiceInitialization
interface 126
methods 184

IVdsServiceIscsi
data types 62
interface 127
methods 187
structures 62

IVdsServiceLoader
interface 124
methods 176

IVdsServiceUninstallDisk
interface 127
methods 185

IVdsSubSystemImportTarget
interface 133
methods 199

IVdsSwProvider
interface 131
methods 193

IVdsVDisk
data types 88
enumerations 88
interface 144
methods 274
structures 92

IVdsVdProvider
data types 86
enumerations 87
interface 132

methods 195
structures 87

IVdsVolume
data types 82
interface 140
methods 241
structures 82

IVdsVolumeMF
data types (section 2.2.2.16 84, section

2.2.2.16.1 84)
interface 141
methods 253
structures 84

IVdsVolumeMF2
interface 142
methods 261

IVdsVolumeOnline
interface 143
methods 270

IVdsVolumePlex
data types 85
enumerations 85
interface 144

methods 271
structures 86

IVdsVolumeShrink
interface 143
methods 268

L

LoadService method 176
Local events

client (section 3.2.6 155, section 3.3.6 157)
server (section 3.2.6 155, section 3.4.7 282)

M

MAX_FS_NAME_SIZE 57
MAX_PATH 84
Media

arrival 285
removal 285

Merge method 279
MERGE_VIRTUAL_DISK_FLAG enumeration 94
Message processing

client (section 3.2.4 155, section 3.3.4 156)
server (section 3.2.4 155, section 3.4.5.2 171)

Messages
common data types (section 2.2.1 26, section

2.2.1.1 26)
enumerations 27
error codes 95
interface-specific data types 57
IVdsAdvancedDisk data types 78
IVdsAdvancedDisk structures 78
IVdsAdvancedDisk2 data types 79
IVdsAdvancedDisk2 structures 79
IVdsAdvancedDisk3 data types 80
IVdsAdvancedDisk3 structures 80
IVdsDisk data types 72

IVdsDisk structures 72

365 / 368

[MS-VDS] — v20130722
 Virtual Disk Service (VDS) Protocol

 Copyright © 2013 Microsoft Corporation.

 Release: Monday, July 22, 2013

IVdsHbaPort data types 63
IVdsHbaPort enumerations 63
IVdsHbaPort structures 66
IVdsIscsiInitiatorAdapter data types 67
IVdsIscsiInitiatorAdapter structures 67
IVdsIscsiInitiatorPortal data types 67
IVdsIscsiInitiatorPortal enumerations 67
IVdsIscsiInitiatorPortal structures 68
IVdsPack data types 71
IVdsPack enumerations 71
IVdsPack structures 72
IVdsProvider data types 69
IVdsProvider enumerations 69
IVdsProvider structures 70
IVdsService data types (section 2.2.2.1 57,

section 2.2.2.1.1 57)
IVdsService enumerations 58
IVdsService structures 60
IVdsServiceIscsi data types 62
IVdsServiceIscsi structures 62
IVdsVDisk data types 88
IVdsVDisk enumerations 88
IVdsVDisk structures 92

IVdsVdProvider data types 86
IVdsVdProvider enumerations 87
IVdsVdProvider structures 87
IVdsVolume data types 82
IVdsVolume structures 82
IVdsVolumeMF data types (section 2.2.2.16 84,

section 2.2.2.16.1 84)
IVdsVolumeMF structures 84
IVdsVolumePlex data types 85
IVdsVolumePlex enumerations 85
IVdsVolumePlex structures 86
overview 26
structures 43
syntax 26
transport 26

Method invocation
client 146
server 146

Methods
IEnumVdsObject 171
IVdsAdvancedDisk 216
IVdsAdvancedDisk2 227
IVdsAdviseSink 157
IVdsAsync 174
IVdsCreatePartitionEx 230
IVdsDisk 210
IVdsDisk2 214
IVdsDiskPartitionMF 233
IVdsHbaPort 190
IVdsHwProvider 195
IVdsIscsiInitiatorAdapter 191
IVdsIscsiInitiatorPortal 192
IVdsPack 200
IVdsPack2 209
IVdsProvider 193
IVdsRemovable 239
IVdsService 177
IVdsServiceHba 187

IVdsServiceInitialization 184
IVdsServiceIscsi 187
IVdsServiceLoader 176
IVdsServiceUninstallDisk 185
IVdsSubSystemImportTarget 199
IVdsSwProvider 193
IVdsVDisk 274
IVdsVdProvider 195
IVdsVolume 241
IVdsVolumeMF 253
IVdsVolumeMF2 261
IVdsVolumeOnline 270
IVdsVolumePlex 271
IVdsVolumeShrink 268
sequencing requirements 146

MigrateDisks method 205
Mount method 259
Mount point change 284

N

Next method 171
Normative references 19
Notification callback objects - client 155
Notification callback objects - server (section

3.4.1.4 162, section 3.4.3.2 165)

O

Object enumeration 161
Offline method 232
OfflineVolume method 268
Online method (section 3.4.5.2.28.1 232, section

3.4.5.2.38.1 270)
OnNotify method 157
Open method 274
OPEN_VIRTUAL_DISK_FLAG enumeration 90
Overview (synopsis) 21

P

Pack object interfaces 133
Packs

client 151
server 151

Parameters - security index 299
Paths - access

client 154
server 154

Preconditions 22
Prerequisites 22
Processing notifications from server to client 156
Processing server replies to method calls 156
Product behavior 342
Properties retrieval example 293
Provider object interfaces 131
Providers

client 150
server 150

PVDS_CREATE_VDISK_PARAMETERS 87
PVDS_DISK_EXTENT 54
PVDS_DISK_FREE_EXTENT 78

366 / 368

[MS-VDS] — v20130722
 Virtual Disk Service (VDS) Protocol

 Copyright © 2013 Microsoft Corporation.

 Release: Monday, July 22, 2013

PVDS_DISK_PROP 72
PVDS_DISK_PROP2 75
PVDS_DRIVE_LETTER_PROP 60
PVDS_FILE_SYSTEM_FORMAT_SUPPORT_PROP 53
PVDS_FILE_SYSTEM_PROP 53
PVDS_FILE_SYSTEM_TYPE_PROP 61
PVDS_PACK_PROP 72
PVDS_REPARSE_POINT_PROP 84
PVDS_VDISK_PROPERTIES 92
PVDS_VOLUME_PLEX_PROP 86
PVDS_VOLUME_PROP 82
PVDS_VOLUME_PROP2 83
PVIRTUAL_STORAGE_TYPE 57

Q

QueryAccessPaths method 257
QueryDisks method 202
QueryDriveLetters method 179

QueryExtents method (section 3.4.5.2.21.4 211,
section 3.4.5.2.39.3 272)

QueryFileSystemFormatSupport method 262
QueryFileSystemTypes method 180
QueryFreeExtents method 215
QueryHbaPorts method 187
QueryInitiatorAdapters method 188
QueryInitiatorPortals method 191
QueryMaxReclaimableBytes method 268
QueryMedia method 239
QueryPacks method 193
QueryPartitionFileSystemFormatSupport method

234
QueryPartitions method 216
QueryPlexes method 242
QueryProviders method 178
QueryReparsePoints method 257
QueryStatus method 175
QuerySubSystems method 195
QueryUnallocatedDisks method 178
QueryVDisks method 195
QueryVolumeGuidPathnames method 265
QueryVolumes method 201

R

Reboot method 183
Recover method 207
Reenumerate method 181
References

informative 20
normative 19

Refresh method 181
Relationship to other protocols 22
RemoveMissingDisk method 206
RemovePlex method 248
Removing disk objects 168
Removing pack objects for dynamic providers 165
Removing virtual disk objects 170
Removing volume objects 169
Repair method 272
Reset method 173

S

Sample IVdsAdviseSink::OnNotify implementation
296

Security
implementer considerations 299
overview 299
parameter index 299

Sequencing rules
client (section 3.2.4 155, section 3.3.4 156)
server 155

adding disk objects 166
adding pack objects for dynamic providers 165
adding virtual disk objects 169
adding volume objects 168
handling asynchronous tasks 170
removing disk objects 168
removing pack objects for dynamic providers

165
removing virtual disk objects 170
removing volume objects 169

Server
abstract data model (section 3.2.1 146, section

3.4.1 157)
access paths 154
disks 152
drive letters 154
file systems 154
higher-layer triggered events 165
initialization (section 3.2.3 155, section 3.4.3

164)
local events (section 3.2.6 155, section 3.4.7

282)
message processing (section 3.2.4 155, section

3.4.5.2 171)
method invocation 146
overview 157
packs 151
providers 150
sequencing rules 155

adding disk objects 166
adding pack objects for dynamic providers 165
adding virtual disk objects 169
adding volume objects 168
handling asynchronous tasks 170
removing disk objects 168
removing pack objects for dynamic providers

165
removing virtual disk objects 170
removing volume objects 169

service 150
timer events (section 3.2.5 155, section 3.4.6

282)
timers (section 3.2.2 155, section 3.4.2 164)
virtual disks 153
volumes 153

Service
client 150
server 150

Service loader interfaces 124
Service object 158

367 / 368

[MS-VDS] — v20130722
 Virtual Disk Service (VDS) Protocol

 Copyright © 2013 Microsoft Corporation.

 Release: Monday, July 22, 2013

Service object interfaces 125
SetAllPathStatuses method 191
SetFileSystemFlags method 260
SetFlags method (section 3.4.5.2.4.15 183, section

3.4.5.2.21.6 212, section 3.4.5.2.32.10 250)
SetImportTarget method 200
SetInitiatorSharedSecret method 188
SetSANMode method 214
SetSANPolicy method 189
Shrink method (section 3.4.5.2.32.5 244, section

3.4.5.2.37.2 269)
Skip method 172
Standards assignments 23
Storage management objects (section 3.4.1.2 158,

section 3.4.3.1 164)
Storage object relationships 146
Structures

common data types 43
IVdsAdvancedDisk 78
IVdsAdvancedDisk2 79
IVdsAdvancedDisk3 80
IVdsDisk 72
IVdsHbaPort 66

IVdsIscsiInitiatorAdapter 67
IVdsIscsiInitiatorPortal 68
IVdsPack 72
IVdsProvider 70
IVdsService 60
IVdsServiceIscsi 62
IVdsVDisk 92
IVdsVdProvider 87
IVdsVolume 82
IVdsVolumeMF 84
IVdsVolumePlex 86

Subsystem object interfaces 133
Syntax - message 26

T

Timer events
client (section 3.2.5 155, section 3.3.5 157)
server (section 3.2.5 155, section 3.4.6 282)

Timers
client (section 3.2.2 155, section 3.3.2 156)
server (section 3.2.2 155, section 3.4.2 164)

Tracking changes 359
Transport 26
Triggered events - higher-layer - server 165

U

ULONGLONG 26
Unadvise method 183
UninstallDisks method 185

V

VDS client notifications
receiving 291
registering for 290
unregistering for 291

VDS sessions examples

ending 290
starting 287

VDS_ADVANCEDDISK_PROP
*PVDS_ADVANCEDISK_PROP structure 80

VDS_ASYNC_OUTPUT structure 48
VDS_ASYNC_OUTPUT_TYPE enumeration 29
VDS_CREATE_VDISK_PARAMETERS structure 87
VDS_DISK_EXTENT structure 54
VDS_DISK_EXTENT_TYPE enumeration 35
VDS_DISK_FLAG enumeration 38
VDS_DISK_FREE_EXTENT structure 78
VDS_DISK_NOTIFICATION structure 44
VDS_DISK_OFFLINE_REASON enumeration 75
VDS_DISK_PROP structure 72
VDS_DISK_PROP2 structure 75
VDS_DISK_STATUS enumeration 39
VDS_DRIVE_LETTER_FLAG enumeration 60
VDS_DRIVE_LETTER_NOTIFICATION structure 46
VDS_DRIVE_LETTER_PROP structure 60
VDS_FILE_SYSTEM_FLAG enumeration 33
VDS_FILE_SYSTEM_FORMAT_SUPPORT_FLAG

enumeration 35
VDS_FILE_SYSTEM_FORMAT_SUPPORT_PROP

structure 53
VDS_FILE_SYSTEM_NOTIFICATION structure 46
VDS_FILE_SYSTEM_PROP structure 53
VDS_FILE_SYSTEM_PROP_FLAG enumeration 35
VDS_FILE_SYSTEM_TYPE enumeration 33
VDS_FILE_SYSTEM_TYPE_PROP structure 61
VDS_FORMAT_OPTION_FLAGS enumeration 37
VDS_HBAPORT_PROP structure 66
VDS_HBAPORT_SPEED_FLAG enumeration 65
VDS_HBAPORT_STATUS enumeration 64
VDS_HBAPORT_TYPE enumeration 63
VDS_HEALTH enumeration 27
VDS_INPUT_DISK structure 55
VDS_INTERCONNECT structure 51
VDS_INTERCONNECT_ADDRESS_TYPE enumeration

32
VDS_IPADDRESS structure 68
VDS_IPADDRESS_TYPE enumeration 67
VDS_ISCSI_INITIATOR_ADAPTER_PROP structure

67
VDS_ISCSI_INITIATOR_PORTAL_PROP structure 68
VDS_ISCSI_SHARED_SECRET structure 62
VDS_LUN_INFORMATION 27
VDS_LUN_INFORMATION structure 52
VDS_LUN_RESERVE_MODE enumeration 40
VDS_MOUNT_POINT_NOTIFICATION structure 47
VDS_NOTIFICATION structure 47
VDS_NOTIFICATION_TARGET_TYPE enumeration 28
VDS_OBJECT_TYPE enumeration 58
VDS_PACK_FLAG enumeration 71
VDS_PACK_NOTIFICATION structure 43
VDS_PACK_PROP structure 72
VDS_PACK_STATUS enumeration 71
VDS_PARTITION_FLAG enumeration 36
VDS_PARTITION_INFO_GPT structure 50
VDS_PARTITION_INFO_MBR structure 49
VDS_PARTITION_NOTIFICATION structure 45
VDS_PARTITION_PROP structure 54

368 / 368

[MS-VDS] — v20130722
 Virtual Disk Service (VDS) Protocol

 Copyright © 2013 Microsoft Corporation.

 Release: Monday, July 22, 2013

VDS_PARTITION_STYLE enumeration 36
VDS_PATH_STATUS enumeration 65
VDS_PROVIDER_FLAG enumeration 69
VDS_PROVIDER_PROP structure 70
VDS_PROVIDER_TYPE enumeration 69
VDS_QUERY_PROVIDER_FLAG enumeration 59
VDS_RECOVER_ACTION enumeration 28
VDS_REPARSE_POINT_PROP structure 84
VDS_SAN_POLICY enumeration 61
VDS_SERVICE_FLAG enumeration 58
VDS_SERVICE_NOTIFICATION structure 43
VDS_SERVICE_PROP structure 60
VDS_STORAGE_BUS_TYPE enumeration 30
VDS_STORAGE_DEVICE_ID_DESCRIPTOR structure

51
VDS_STORAGE_IDENTIFIER structure 50
VDS_STORAGE_IDENTIFIER_CODE_SET

enumeration 31
VDS_STORAGE_IDENTIFIER_TYPE enumeration 32
VDS_TRANSITION_STATE enumeration 37
VDS_VDISK_PROPERTIES structure 92
VDS_VDISK_STATE enumeration 88
VDS_VOLUME_FLAG enumeration 41

VDS_VOLUME_NOTIFICATION structure 44
VDS_VOLUME_PLEX_PROP structure 86
VDS_VOLUME_PLEX_STATUS enumeration 85
VDS_VOLUME_PLEX_TYPE enumeration 85
VDS_VOLUME_PROP structure 82
VDS_VOLUME_PROP2 structure 83
VDS_VOLUME_STATUS enumeration 40
VDS_VOLUME_TYPE enumeration 37
VDS_WWN structure 66
Vendor-extensible fields 23
Versioning 22
Virtual disk object interfaces 144
Virtual disks

client 153
server 153

VIRTUAL_DISK_ACCESS_MASK enumeration 91
VIRTUAL_STORAGE_TYPE structure 57
Volume

arrival 283
removal 283

Volume object interfaces 140
Volume plex object interfaces 144
Volumes

client 153
server 153

W

Wait method 174
WaitForServiceReady method 177

	Contents
	1 Introduction
	1.1 Glossary
	1.2 References
	1.2.1 Normative References
	1.2.2 Informative References

	1.3 Overview
	1.4 Relationship to Other Protocols
	1.5 Prerequisites and Preconditions
	1.6 Applicability Statement
	1.7 Versioning and Capability Negotiation
	1.8 Vendor-Extensible Fields
	1.9 Standards Assignments

	2 Messages
	2.1 Transport
	2.2 Message Syntax
	2.2.1 Common Data Types
	2.2.1.1 Data Types
	2.2.1.1.1 ULONGLONG
	2.2.1.1.2 DWORD
	2.2.1.1.3 VDS_OBJECT_ID
	2.2.1.1.4 VDS_LUN_INFORMATION
	2.2.1.1.5 ACCESS_MASK

	2.2.1.2 Enumerations
	2.2.1.2.1 VDS_HEALTH
	2.2.1.2.2 VDS_NOTIFICATION_TARGET_TYPE
	2.2.1.2.3 VDS_RECOVER_ACTION
	2.2.1.2.4 VDS_ASYNC_OUTPUT_TYPE
	2.2.1.2.5 VDS_STORAGE_BUS_TYPE
	2.2.1.2.6 VDS_STORAGE_IDENTIFIER_CODE_SET
	2.2.1.2.7 VDS_STORAGE_IDENTIFIER_TYPE
	2.2.1.2.8 VDS_INTERCONNECT_ADDRESS_TYPE
	2.2.1.2.9 VDS_FILE_SYSTEM_TYPE
	2.2.1.2.10 VDS_FILE_SYSTEM_FLAG
	2.2.1.2.11 VDS_FILE_SYSTEM_PROP_FLAG
	2.2.1.2.12 VDS_FILE_SYSTEM_FORMAT_SUPPORT_FLAG
	2.2.1.2.13 VDS_DISK_EXTENT_TYPE
	2.2.1.2.14 VDS_PARTITION_STYLE
	2.2.1.2.15 VDS_PARTITION_FLAG
	2.2.1.2.16 VDS_VOLUME_TYPE
	2.2.1.2.17 VDS_TRANSITION_STATE
	2.2.1.2.18 VDS_FORMAT_OPTION_FLAGS
	2.2.1.2.19 VDS_DISK_FLAG
	2.2.1.2.20 VDS_DISK_STATUS
	2.2.1.2.21 VDS_LUN_RESERVE_MODE
	2.2.1.2.22 VDS_VOLUME_STATUS
	2.2.1.2.23 VDS_VOLUME_FLAG

	2.2.1.3 Structures
	2.2.1.3.1 VDS_SERVICE_NOTIFICATION
	2.2.1.3.2 VDS_PACK_NOTIFICATION
	2.2.1.3.3 VDS_DISK_NOTIFICATION
	2.2.1.3.4 VDS_VOLUME_NOTIFICATION
	2.2.1.3.5 VDS_PARTITION_NOTIFICATION
	2.2.1.3.6 VDS_DRIVE_LETTER_NOTIFICATION
	2.2.1.3.7 VDS_FILE_SYSTEM_NOTIFICATION
	2.2.1.3.8 VDS_MOUNT_POINT_NOTIFICATION
	2.2.1.3.9 VDS_NOTIFICATION
	2.2.1.3.10 VDS_ASYNC_OUTPUT
	2.2.1.3.11 VDS_PARTITION_INFO_MBR
	2.2.1.3.12 VDS_PARTITION_INFO_GPT
	2.2.1.3.13 VDS_STORAGE_IDENTIFIER
	2.2.1.3.14 VDS_STORAGE_DEVICE_ID_DESCRIPTOR
	2.2.1.3.15 VDS_INTERCONNECT
	2.2.1.3.16 VDS_LUN_INFORMATION
	2.2.1.3.17 VDS_FILE_SYSTEM_PROP
	2.2.1.3.18 VDS_FILE_SYSTEM_FORMAT_SUPPORT_PROP
	2.2.1.3.19 VDS_DISK_EXTENT
	2.2.1.3.20 VDS_PARTITION_PROP
	2.2.1.3.21 VDS_INPUT_DISK
	2.2.1.3.22 CREATE_PARTITION_PARAMETERS
	2.2.1.3.23 VIRTUAL_STORAGE_TYPE

	2.2.2 Interface-Specific Data Types
	2.2.2.1 IVdsService Data Types
	2.2.2.1.1 Data Types
	2.2.2.1.1.1 MAX_FS_NAME_SIZE

	2.2.2.1.2 Enumerations
	2.2.2.1.2.1 VDS_OBJECT_TYPE
	2.2.2.1.2.2 VDS_SERVICE_FLAG
	2.2.2.1.2.3 VDS_QUERY_PROVIDER_FLAG
	2.2.2.1.2.4 VDS_DRIVE_LETTER_FLAG

	2.2.2.1.3 Structures
	2.2.2.1.3.1 VDS_SERVICE_PROP
	2.2.2.1.3.2 VDS_DRIVE_LETTER_PROP
	2.2.2.1.3.3 VDS_FILE_SYSTEM_TYPE_PROP

	2.2.2.2 IVdsServiceSAN Data Types
	2.2.2.2.1 Enumerations
	2.2.2.2.1.1 VDS_SAN_POLICY

	2.2.2.3 IVdsServiceIscsi Data Types
	2.2.2.3.1 Structures
	2.2.2.3.1.1 VDS_ISCSI_SHARED_SECRET

	2.2.2.4 IVdsHbaPort Data Types
	2.2.2.4.1 Enumerations
	2.2.2.4.1.1 VDS_HBAPORT_TYPE
	2.2.2.4.1.2 VDS_HBAPORT_STATUS
	2.2.2.4.1.3 VDS_HBAPORT_SPEED_FLAG
	2.2.2.4.1.4 VDS_PATH_STATUS

	2.2.2.4.2 Structures
	2.2.2.4.2.1 VDS_WWN
	2.2.2.4.2.2 VDS_HBAPORT_PROP

	2.2.2.5 IVdsIscsiInitiatorAdapter Data Types
	2.2.2.5.1 Structures
	2.2.2.5.1.1 VDS_ISCSI_INITIATOR_ADAPTER_PROP

	2.2.2.6 IVdsIscsiInitiatorPortal Data Types
	2.2.2.6.1 Enumerations
	2.2.2.6.1.1 VDS_IPADDRESS_TYPE

	2.2.2.6.2 Structures
	2.2.2.6.2.1 VDS_IPADDRESS
	2.2.2.6.2.2 VDS_ISCSI_INITIATOR_PORTAL_PROP

	2.2.2.7 IVdsProvider Data Types
	2.2.2.7.1 Enumerations
	2.2.2.7.1.1 VDS_PROVIDER_TYPE
	2.2.2.7.1.2 VDS_PROVIDER_FLAG

	2.2.2.7.2 Structures
	2.2.2.7.2.1 VDS_PROVIDER_PROP

	2.2.2.8 IVdsPack Data Types
	2.2.2.8.1 Enumerations
	2.2.2.8.1.1 VDS_PACK_STATUS
	2.2.2.8.1.2 VDS_PACK_FLAG

	2.2.2.8.2 Structures
	2.2.2.8.2.1 VDS_PACK_PROP

	2.2.2.9 IVdsDisk Data Types
	2.2.2.9.1 Structures
	2.2.2.9.1.1 VDS_DISK_PROP

	2.2.2.10 IVdsDisk3 Data Types
	2.2.2.10.1 Enumerations
	2.2.2.10.1.1 VDS_DISK_OFFLINE_REASON

	2.2.2.10.2 Structures
	2.2.2.10.2.1 VDS_DISK_PROP2
	2.2.2.10.2.2 VDS_DISK_FREE_EXTENT

	2.2.2.11 IVdsAdvancedDisk Data Types
	2.2.2.11.1 Structures
	2.2.2.11.1.1 CHANGE_ATTRIBUTES_PARAMETERS

	2.2.2.12 IVdsAdvancedDisk2 Data Types
	2.2.2.12.1 Structures
	2.2.2.12.1.1 CHANGE_PARTITION_TYPE_PARAMETERS

	2.2.2.13 IVdsAdvancedDisk3 Data Types
	2.2.2.13.1 Structures
	2.2.2.13.1.1 VDS_ADVANCEDDISK_PROP

	2.2.2.14 IVdsVolume Data Types
	2.2.2.14.1 Structures
	2.2.2.14.1.1 VDS_VOLUME_PROP

	2.2.2.15 IVdsVolume2 Data Types
	2.2.2.15.1 Structures
	2.2.2.15.1.1 VDS_VOLUME_PROP2

	2.2.2.16 IVdsVolumeMF Data Types
	2.2.2.16.1 Data Types
	2.2.2.16.1.1 MAX_PATH

	2.2.2.16.2 Structures
	2.2.2.16.2.1 VDS_REPARSE_POINT_PROP

	2.2.2.17 IVdsVolumePlex Data Types
	2.2.2.17.1 Enumeration
	2.2.2.17.1.1 VDS_VOLUME_PLEX_TYPE
	2.2.2.17.1.2 VDS_VOLUME_PLEX_STATUS

	2.2.2.17.2 Structures
	2.2.2.17.2.1 VDS_VOLUME_PLEX_PROP

	2.2.2.18 IVdsVdProvider Data Types
	2.2.2.18.1 Enumerations
	2.2.2.18.1.1 CREATE_VIRTUAL_DISK_FLAG

	2.2.2.18.2 Structures
	2.2.2.18.2.1 VDS_CREATE_VDISK_PARAMETERS

	2.2.2.19 IVdsVDisk Data Types
	2.2.2.19.1 Enumerations
	2.2.2.19.1.1 VDS_VDISK_STATE
	2.2.2.19.1.2 OPEN_VIRTUAL_DISK_FLAG
	2.2.2.19.1.3 DEPENDENT_DISK_FLAG
	2.2.2.19.1.4 VIRTUAL_DISK_ACCESS_MASK

	2.2.2.19.2 Structures
	2.2.2.19.2.1 VDS_VDISK_PROPERTIES

	2.2.2.20 IVdsOpenVDisk Data Types
	2.2.2.20.1 Enumerations
	2.2.2.20.1.1 ATTACH_VIRTUAL_DISK_FLAG
	2.2.2.20.1.2 DETACH_VIRTUAL_DISK_FLAG
	2.2.2.20.1.3 COMPACT_VIRTUAL_DISK_FLAG
	2.2.2.20.1.4 MERGE_VIRTUAL_DISK_FLAG
	2.2.2.20.1.5 EXPAND_VIRTUAL_DISK_FLAG

	2.2.3 Error Codes

	3 Protocol Details
	3.1 Interfaces
	3.1.1 Enumeration Object Interfaces
	3.1.1.1 IEnumVdsObject Interface

	3.1.2 Callback Object Interfaces
	3.1.2.1 IVdsAdviseSink Interface

	3.1.3 Asynchronous Operation Object Interfaces
	3.1.3.1 IVdsAsync Interface

	3.1.4 Service Loader Interfaces
	3.1.4.1 IVdsServiceLoader Interface

	3.1.5 Service Object Interfaces
	3.1.5.1 IVdsService Interface
	3.1.5.2 IVdsServiceInitialization Interface
	3.1.5.3 IVdsServiceUninstallDisk Interface
	3.1.5.4 IVdsServiceHba Interface
	3.1.5.5 IVdsServiceIscsi Interface
	3.1.5.6 IVdsServiceSAN Interface
	3.1.5.7 IVdsServiceSw Interface

	3.1.6 HBA Port Object Interfaces
	3.1.6.1 IVdsHbaPort Interface

	3.1.7 Initiator Adapter Object Interfaces
	3.1.7.1 IVdsIscsiInitiatorAdapter Interface

	3.1.8 Initiator Portal Object Interfaces
	3.1.8.1 IVdsIscsiInitiatorPortal Interface

	3.1.9 Provider Object Interfaces
	3.1.9.1 IVdsProvider Interface
	3.1.9.2 IVdsSwProvider Interface
	3.1.9.3 IVdsHwProvider Interface
	3.1.9.4 IVdsVdProvider Interface

	3.1.10 Subsystem Object Interfaces
	3.1.10.1 IVdsSubSystemImportTarget Interface

	3.1.11 Pack Object Interfaces
	3.1.11.1 IVdsPack Interface
	3.1.11.2 IVdsPack2 Interface

	3.1.12 Disk Object Interfaces
	3.1.12.1 IVdsDisk Interface
	3.1.12.2 IVdsDisk2 Interface
	3.1.12.3 IVdsDisk3 Interface
	3.1.12.4 IVdsAdvancedDisk Interface
	3.1.12.5 IVdsAdvancedDisk2 Interface
	3.1.12.6 IVdsAdvancedDisk3 Interface
	3.1.12.7 IVdsCreatePartitionEx Interface
	3.1.12.8 IVdsDiskOnline Interface
	3.1.12.9 IVdsDiskPartitionMF Interface
	3.1.12.10 IVdsDiskPartitionMF2 Interface
	3.1.12.11 IVdsRemovable Interface

	3.1.13 Volume Object Interfaces
	3.1.13.1 IVdsVolume Interface
	3.1.13.2 IVdsVolume2 Interface
	3.1.13.3 IVdsVolumeMF Interface
	3.1.13.4 IVdsVolumeMF2 Interface
	3.1.13.5 IVdsVolumeMF3 Interface
	3.1.13.6 IVdsVolumeShrink Interface
	3.1.13.7 IVdsVolumeOnline Interface

	3.1.14 Volume Plex Object Interfaces
	3.1.14.1 IVdsVolumePlex Interface

	3.1.15 Virtual Disk Object Interfaces
	3.1.15.1 IVdsVDisk Interface
	3.1.15.2 IVdsOpenVDisk Interface

	3.2 Common Details
	3.2.1 Abstract Data Model
	3.2.1.1 Method Invocation
	3.2.1.1.1 Method Sequencing Requirements
	3.2.1.1.2 Storage Object Relationships

	3.2.1.2 Service and Providers
	3.2.1.3 Packs
	3.2.1.4 Disks
	3.2.1.5 Volumes
	3.2.1.6 Virtual Disks
	3.2.1.7 File Systems, Drive Letters, and Access Paths

	3.2.2 Timers
	3.2.3 Initialization
	3.2.4 Message Processing Events and Sequencing Rules
	3.2.5 Timer Events
	3.2.6 Other Local Events

	3.3 Client Details
	3.3.1 Abstract Data Model
	3.3.1.1 Notification Callback Objects

	3.3.2 Timers
	3.3.3 Initialization
	3.3.4 Message Processing Events and Sequencing Rules
	3.3.4.1 Processing Server Replies to Method Calls
	3.3.4.2 Processing Notifications Sent from the Server to the Client
	3.3.4.3 IVdsAdviseSink Methods
	3.3.4.3.1 IVdsAdviseSink::OnNotify (Opnum 3)

	3.3.5 Timer Events
	3.3.6 Other Local Events

	3.4 Server Details
	3.4.1 Abstract Data Model
	3.4.1.1 Service Object
	3.4.1.2 Storage Management Objects
	3.4.1.3 Enumeration of Objects
	3.4.1.4 Notification Callback Objects
	3.4.1.5 Asynchronous Tasks

	3.4.2 Timers
	3.4.3 Initialization
	3.4.3.1 Storage Management Objects
	3.4.3.2 Notification Callback Objects

	3.4.4 Higher-Layer Triggered Events
	3.4.5 Message Processing Events and Sequencing Rules
	3.4.5.1 Sequencing Rules
	3.4.5.1.1 Adding Pack Objects for Dynamic Providers
	3.4.5.1.2 Removing Pack Objects for Dynamic Providers
	3.4.5.1.3 Adding Disk Objects
	3.4.5.1.4 Removing Disk Objects
	3.4.5.1.5 Adding Volume Objects
	3.4.5.1.6 Removing Volume Objects
	3.4.5.1.7 Adding Virtual Disk Objects
	3.4.5.1.8 Removing Virtual Disk Objects
	3.4.5.1.9 Handling Asynchronous Tasks

	3.4.5.2 Message Processing Details
	3.4.5.2.1 IEnumVdsObject Methods
	3.4.5.2.1.1 IEnumVdsObject::Next (Opnum 3)
	3.4.5.2.1.2 IEnumVdsObject::Skip (Opnum 4)
	3.4.5.2.1.3 IEnumVdsObject::Reset (Opnum 5)
	3.4.5.2.1.4 IEnumVdsObject::Clone (Opnum 6)

	3.4.5.2.2 IVdsAsync Methods
	3.4.5.2.2.1 IVdsAsync::Cancel (Opnum 3)
	3.4.5.2.2.2 IVdsAsync::Wait (Opnum 4)
	3.4.5.2.2.3 IVdsAsync::QueryStatus (Opnum 5)

	3.4.5.2.3 IVdsServiceLoader Methods
	3.4.5.2.3.1 IVdsServiceLoader::LoadService (Opnum 3)

	3.4.5.2.4 IVdsService Methods
	3.4.5.2.4.1 IVdsService::IsServiceReady (Opnum 3)
	3.4.5.2.4.2 IVdsService::WaitForServiceReady (Opnum 4)
	3.4.5.2.4.3 IVdsService::GetProperties (Opnum 5)
	3.4.5.2.4.4 IVdsService::QueryProviders (Opnum 6)
	3.4.5.2.4.5 IVdsService::QueryUnallocatedDisks (Opnum 8)
	3.4.5.2.4.6 IVdsService::GetObject (Opnum 9)
	3.4.5.2.4.7 IVdsService::QueryDriveLetters (Opnum 10)
	3.4.5.2.4.8 IVdsService::QueryFileSystemTypes (Opnum 11)
	3.4.5.2.4.9 IVdsService::Reenumerate (Opnum 12)
	3.4.5.2.4.10 IVdsService::Refresh (Opnum 13)
	3.4.5.2.4.11 IVdsService::CleanupObsoleteMountPoints (Opnum 14)
	3.4.5.2.4.12 IVdsService::Advise (Opnum 15)
	3.4.5.2.4.13 IVdsService::Unadvise (Opnum 16)
	3.4.5.2.4.14 IVdsService::Reboot (Opnum 17)
	3.4.5.2.4.15 IVdsService::SetFlags (Opnum 18)
	3.4.5.2.4.16 IVdsService::ClearFlags (Opnum 19)

	3.4.5.2.5 IVdsServiceInitialization Methods
	3.4.5.2.5.1 IVdsServiceInitialization::Initialize (Opnum 3)

	3.4.5.2.6 IVdsServiceUninstallDisk Methods
	3.4.5.2.6.1 IVdsServiceUninstallDisk::GetDiskIdFromLunInfo (Opnum 3)
	3.4.5.2.6.2 IVdsServiceUninstallDisk::UninstallDisks (Opnum 4)

	3.4.5.2.7 IVdsServiceHba Methods
	3.4.5.2.7.1 IVdsServiceHba::QueryHbaPorts (Opnum 3)

	3.4.5.2.8 IVdsServiceIscsi Methods
	3.4.5.2.8.1 IVdsServiceIscsi::GetInitiatorName (Opnum 3)
	3.4.5.2.8.2 IVdsServiceIscsi::QueryInitiatorAdapters (Opnum 4)
	3.4.5.2.8.3 IVdsServiceIscsi::SetInitiatorSharedSecret (Opnum 8)

	3.4.5.2.9 IVdsServiceSAN Methods
	3.4.5.2.9.1 IVdsServiceSAN::GetSANPolicy (Opnum 3)
	3.4.5.2.9.2 IVdsServiceSAN::SetSANPolicy (Opnum 4)

	3.4.5.2.10 IVdsServiceSw Methods
	3.4.5.2.10.1 IVdsServiceSw::GetDiskObject (Opnum 3)

	3.4.5.2.11 IVdsHbaPort Methods
	3.4.5.2.11.1 IVdsHbaPort::GetProperties (Opnum 3)
	3.4.5.2.11.2 IVdsHbaPort::SetAllPathStatuses (Opnum 4)

	3.4.5.2.12 IVdsIscsiInitiatorAdapter Methods
	3.4.5.2.12.1 IVdsIscsiInitiatorAdapter::GetProperties (Opnum 3)
	3.4.5.2.12.2 IVdsIscsiInitiatorAdapter::QueryInitiatorPortals (Opnum 4)

	3.4.5.2.13 IVdsIscsiInitiatorPortal Methods
	3.4.5.2.13.1 IVdsIscsiInitiatorPortal::GetProperties (Opnum 3)
	3.4.5.2.13.2 IVdsIscsiInitiatorPortal::GetInitiatorAdapter (Opnum 4)

	3.4.5.2.14 IVdsProvider Methods
	3.4.5.2.14.1 IVdsProvider::GetProperties (Opnum 3)

	3.4.5.2.15 IVdsSwProvider Methods
	3.4.5.2.15.1 IVdsSwProvider::QueryPacks (Opnum 3)
	3.4.5.2.15.2 IVdsSwProvider::CreatePack (Opnum 4)

	3.4.5.2.16 IVdsHwProvider Methods
	3.4.5.2.16.1 IVdsHwProvider::QuerySubSystems (Opnum 3)

	3.4.5.2.17 IVdsVdProvider Methods
	3.4.5.2.17.1 IVdsVdProvider::QueryVDisks (Opnum 3)
	3.4.5.2.17.2 IVdsVdProvider::CreateVDisk (Opnum 4)
	3.4.5.2.17.3 IVdsVdProvider::AddVDisk (Opnum 5)
	3.4.5.2.17.4 IVdsVdProvider::GetDiskFromVDisk (Opnum 6)
	3.4.5.2.17.5 IVdsVdProvider::GetVDiskFromDisk (Opnum 7)

	3.4.5.2.18 IVdsSubSystemImportTarget Methods
	3.4.5.2.18.1 IVdsSubSystemImportTarget::GetImportTarget (Opnum 3)
	3.4.5.2.18.2 IVdsSubSystemImportTarget::SetImportTarget (Opnum 4)

	3.4.5.2.19 IVdsPack Methods
	3.4.5.2.19.1 IVdsPack::GetProperties (Opnum 3)
	3.4.5.2.19.2 IVdsPack::GetProvider (Opnum 4)
	3.4.5.2.19.3 IVdsPack::QueryVolumes (Opnum 5)
	3.4.5.2.19.4 IVdsPack::QueryDisks (Opnum 6)
	3.4.5.2.19.5 IVdsPack::CreateVolume (Opnum 7)
	3.4.5.2.19.6 IVdsPack::AddDisk (Opnum 8)
	3.4.5.2.19.7 IVdsPack::MigrateDisks (Opnum 9)
	3.4.5.2.19.8 IVdsPack::RemoveMissingDisk (Opnum 11)
	3.4.5.2.19.9 IVdsPack::Recover (Opnum 12)

	3.4.5.2.20 IVdsPack2 Methods
	3.4.5.2.20.1 IVdsPack2::CreateVolume2 (Opnum 3)

	3.4.5.2.21 IVdsDisk Methods
	3.4.5.2.21.1 IVdsDisk::GetProperties (Opnum 3)
	3.4.5.2.21.2 IVdsDisk::GetPack (Opnum 4)
	3.4.5.2.21.3 IVdsDisk::GetIdentificationData (Opnum 5)
	3.4.5.2.21.4 IVdsDisk::QueryExtents (Opnum 6)
	3.4.5.2.21.5 IVdsDisk::ConvertStyle (Opnum 7)
	3.4.5.2.21.6 IVdsDisk::SetFlags (Opnum 8)
	3.4.5.2.21.7 IVdsDisk::ClearFlags (Opnum 9)

	3.4.5.2.22 IVdsDisk2 Methods
	3.4.5.2.22.1 IVdsDisk2::SetSANMode (Opnum 3)

	3.4.5.2.23 IVdsDisk3 Methods
	3.4.5.2.23.1 IVdsDisk3::GetProperties2 (Opnum 3)
	3.4.5.2.23.2 IVdsDisk3::QueryFreeExtents (Opnum 6)

	3.4.5.2.24 IVdsAdvancedDisk Methods
	3.4.5.2.24.1 IVdsAdvancedDisk::GetPartitionProperties (Opnum 3)
	3.4.5.2.24.2 IVdsAdvancedDisk::QueryPartitions (Opnum 4)
	3.4.5.2.24.3 IVdsAdvancedDisk::CreatePartition (Opnum 5)
	3.4.5.2.24.4 IVdsAdvancedDisk::DeletePartition (Opnum 6)
	3.4.5.2.24.5 IVdsAdvancedDisk::ChangeAttributes (Opnum 7)
	3.4.5.2.24.6 IVdsAdvancedDisk::AssignDriveLetter (Opnum 8)
	3.4.5.2.24.7 IVdsAdvancedDisk::DeleteDriveLetter (Opnum 9)
	3.4.5.2.24.8 IVdsAdvancedDisk::GetDriveLetter (Opnum 10)
	3.4.5.2.24.9 IVdsAdvancedDisk::FormatPartition (Opnum 11)
	3.4.5.2.24.10 IVdsAdvancedDisk::Clean (Opnum 12)

	3.4.5.2.25 IVdsAdvancedDisk2 Methods
	3.4.5.2.25.1 IVdsAdvancedDisk2::ChangePartitionType (Opnum 3)

	3.4.5.2.26 IVdsAdvancedDisk3 Methods
	3.4.5.2.26.1 IVdsAdvancedDisk3::GetProperties (Opnum 3)
	3.4.5.2.26.2 IVdsAdvancedDisk3::GetUniqueId (Opnum 4)

	3.4.5.2.27 IVdsCreatePartitionEx Methods
	3.4.5.2.27.1 IVdsCreatePartitionEx::CreatePartitionEx (Opnum 3)

	3.4.5.2.28 IVdsDiskOnline Methods
	3.4.5.2.28.1 IVdsDiskOnline::Online (Opnum 3)
	3.4.5.2.28.2 IVdsDiskOnline::Offline (Opnum 4)

	3.4.5.2.29 IVdsDiskPartitionMF Methods
	3.4.5.2.29.1 IVdsDiskPartitionMF::GetPartitionFileSystemProperties (Opnum 3)
	3.4.5.2.29.2 IVdsDiskPartitionMF::GetPartitionFileSystemTypeName (Opnum 4)
	3.4.5.2.29.3 IVdsDiskPartitionMF::QueryPartitionFileSystemFormatSupport (Opnum 5)
	3.4.5.2.29.4 IVdsDiskPartitionMF::FormatPartitionEx (Opnum 6)

	3.4.5.2.30 IVdsDiskPartitionMF2 Methods
	3.4.5.2.30.1 IVdsDiskPartitionMF2::FormatPartitionEx2 (Opnum 3)

	3.4.5.2.31 IVdsRemovable Methods
	3.4.5.2.31.1 IVdsRemovable::QueryMedia (Opnum 3)
	3.4.5.2.31.2 IVdsRemovable::Eject (Opnum 4)

	3.4.5.2.32 IVdsVolume Methods
	3.4.5.2.32.1 IVdsVolume::GetProperties (Opnum 3)
	3.4.5.2.32.2 IVdsVolume::GetPack (Opnum 4)
	3.4.5.2.32.3 IVdsVolume::QueryPlexes (Opnum 5)
	3.4.5.2.32.4 IVdsVolume::Extend (Opnum 6)
	3.4.5.2.32.5 IVdsVolume::Shrink (Opnum 7)
	3.4.5.2.32.6 IVdsVolume::AddPlex (Opnum 8)
	3.4.5.2.32.7 IVdsVolume::BreakPlex (Opnum 9)
	3.4.5.2.32.8 IVdsVolume::RemovePlex (Opnum 10)
	3.4.5.2.32.9 IVdsVolume::Delete (Opnum 11)
	3.4.5.2.32.10 IVdsVolume::SetFlags (Opnum 12)
	3.4.5.2.32.11 IVdsVolume::ClearFlags (Opnum 13)

	3.4.5.2.33 IVdsVolume2 Methods
	3.4.5.2.33.1 IVdsVolume2::GetProperties2 (Opnum 3)

	3.4.5.2.34 IVdsVolumeMF Methods
	3.4.5.2.34.1 IVdsVolumeMF::GetFileSystemProperties (Opnum 3)
	3.4.5.2.34.2 IVdsVolumeMF::Format (Opnum 4)
	3.4.5.2.34.3 IVdsVolumeMF::AddAccessPath (Opnum 5)
	3.4.5.2.34.4 IVdsVolumeMF::QueryAccessPaths (Opnum 6)
	3.4.5.2.34.5 IVdsVolumeMF::QueryReparsePoints (Opnum 7)
	3.4.5.2.34.6 IVdsVolumeMF::DeleteAccessPath (Opnum 8)
	3.4.5.2.34.7 IVdsVolumeMF::Mount (Opnum 9)
	3.4.5.2.34.8 IVdsVolumeMF::Dismount (Opnum 10)
	3.4.5.2.34.9 IVdsVolumeMF::SetFileSystemFlags (Opnum 11)
	3.4.5.2.34.10 IVdsVolumeMF::ClearFileSystemFlags (Opnum 12)

	3.4.5.2.35 IVdsVolumeMF2 Methods
	3.4.5.2.35.1 IVdsVolumeMF2::GetFileSystemTypeName (Opnum 3)
	3.4.5.2.35.2 IVdsVolumeMF2::QueryFileSystemFormatSupport (Opnum 4)
	3.4.5.2.35.3 IVdsVolumeMF2::FormatEx (Opnum 5)

	3.4.5.2.36 IVdsVolumeMF3 Methods
	3.4.5.2.36.1 IVdsVolumeMF3::QueryVolumeGuidPathnames (Opnum 3)
	3.4.5.2.36.2 IVdsVolumeMF3::FormatEx2 (Opnum 4)
	3.4.5.2.36.3 IVdsVolumeMF3::OfflineVolume (Opnum 5)

	3.4.5.2.37 IVdsVolumeShrink Methods
	3.4.5.2.37.1 IVdsVolumeShrink::QueryMaxReclaimableBytes (Opnum 3)
	3.4.5.2.37.2 IVdsVolumeShrink::Shrink (Opnum 4)

	3.4.5.2.38 IVdsVolumeOnline Methods
	3.4.5.2.38.1 IVdsVolumeOnline::Online (Opnum 3)

	3.4.5.2.39 IVdsVolumePlex Methods
	3.4.5.2.39.1 IVdsVolumePlex::GetProperties (Opnum 3)
	3.4.5.2.39.2 IVdsVolumePlex::GetVolume (Opnum 4)
	3.4.5.2.39.3 IVdsVolumePlex::QueryExtents (Opnum 5)
	3.4.5.2.39.4 IVdsVolumePlex::Repair (Opnum 6)

	3.4.5.2.40 IVdsVDisk Methods
	3.4.5.2.40.1 IVdsVDisk::Open (Opnum 3)
	3.4.5.2.40.2 IVdsVDisk::GetProperties (Opnum 4)
	3.4.5.2.40.3 IVdsVDisk::GetHostVolume (Opnum 5)
	3.4.5.2.40.4 IVdsVDisk::GetDeviceName (Opnum 6)

	3.4.5.2.41 IVdsOpenVDisk Methods
	3.4.5.2.41.1 IVdsOpenVDisk::Attach (Opnum 3)
	3.4.5.2.41.2 IVdsOpenVDisk::Detach (Opnum 4)
	3.4.5.2.41.3 IVdsOpenVDisk::DetachAndDelete (Opnum 5)
	3.4.5.2.41.4 IVdsOpenVDisk::Compact (Opnum 6)
	3.4.5.2.41.5 IVdsOpenVDisk::Merge (Opnum 7)
	3.4.5.2.41.6 IVdsOpenVDisk::Expand (Opnum 8)

	3.4.6 Timer Events
	3.4.7 Other Local Events
	3.4.7.1 Disk Pack Arrival (Dynamic Disks)
	3.4.7.2 Disk Pack Removal (Dynamic Disks)
	3.4.7.3 Pack Modification
	3.4.7.4 Disk Arrival
	3.4.7.5 Disk Removal
	3.4.7.6 Disk Modification
	3.4.7.7 Volume Arrival
	3.4.7.8 Volume Removal
	3.4.7.9 Volume Modification
	3.4.7.10 File System Modification
	3.4.7.11 Mount Point Change
	3.4.7.12 Drive Letter Assignment
	3.4.7.13 Drive Letter Removal
	3.4.7.14 Media Arrival
	3.4.7.15 Media Removal

	4 Protocol Examples
	4.1 VDS Sessions
	4.1.1 Starting Sessions
	4.1.2 Ending Sessions

	4.2 VDS Client Notifications
	4.2.1 Registering for Notifications
	4.2.2 Receiving Notifications
	4.2.3 Unregistering for Notifications

	4.3 Querying Enumerations of VDS Objects
	4.4 Retrieving the Properties and IDs of VDS Objects
	4.5 Performing Asynchronous Tasks
	4.6 Sample IVdsAdviseSink::OnNotify Implementation

	5 Security
	5.1 Security Considerations for Implementers
	5.2 Index of Security Parameters

	6 Appendix A: Full IDL
	7 Appendix B: Product Behavior
	8 Change Tracking
	9 Index

