[MS-UNMP]:
User Name Mapping Protocol

Intellectual Property Rights Notice for Open Specifications Documentation

A Technical Documentation. Microsoft publishes Open Specifications documentation for
protocols, file formats, languages, standards as well as overviews of the interaction among each
of these technologies.

A Copyrights. This documentation is covered by Microsoft copyrights. Regardles s of any other
terms that are contained in the terms of use for the Microsoft website that hosts this
documentation, you may make copies of it in order to develop implementations of the
technologies described in the Open Specifications and may distribute p ortions of it in your
implementations using these technologies or your documentation as necessary to properly
document the implementation. You may also distribute in your implementation, with or without
modi ficati on, any schema, | Dare ircludedin thedacurentagian.iipid es t hat
permission also applies to any documents that are referenced in the Open Specifications.

>

No Trade Secrets. Microsoft does not claim any trade secret rights in this documentation.

>

Patents. Microsoft has patents that may cover your implementations of the technologies

described in the Open Specifications. Neither this notice nor Microsoft's delivery of the

documentation grants any licenses under those or any other Microsoft patents. However, a given

Open Specification may be covered by Microsoft Open Specification Promise orthe Community

Promise . If you would prefer a written license, or if the te chnologies described in the Open
Specifications are not covered by the Open Specifications Promise or Community Promise, as
applicable, patent licenses are available by contacting iplg@microsoft.com

A Trademarks. The names of companies and products contained in this documentation may be
covered by trademarks or similar intellectual property rights. This notice does not grant any
licenses under those rights. For a list of Microsoft trademarks, visit
www.microsoft.com/trademarks

A Fictitious Names. The example companies, organizations, products, domain names, email
addresses, logos, people, places, and events depicted in this documentation are fictitious. No
associatio n with any real company, organization, product, domain name, email address, logo,
person, place, or event is intended or should be inferred.

Reservation of Rights. All other rights are reserved, and this notice does not grant any rights
other than specific ally described above, whether by implication, estoppel, or otherwise.

Tools. The Open Specifications do not require the use of Microsoft programming tools or

programming environments in order for you to develop an implementation. If you have access to

Micr osoft programming tools and environments you are free to take advantage of them. Certain

Open Specifications are intended for use in conjunction with publicly available standard

specifications and network programming art, and assumes that the reader either is familiar with the
aforementioned material or has immediate access to it.

1/78

[MS-UNMP] — v20131025
User Name Mapping Protocol

Copyright © 2013 Microsoft Corporation.

Release: Friday, October 25, 2013

http://go.microsoft.com/fwlink/?LinkId=214445
http://go.microsoft.com/fwlink/?LinkId=214448
http://go.microsoft.com/fwlink/?LinkId=214448
mailto:iplg@microsoft.com
http://www.microsoft.com/trademarks

Revision Summary

Revision Revision
Date History Class Comments
03/02/2007 1.0 Version 1.0 release
04/03/2007 11 Version 1.1 release
05/11/2007 12 Version 1.2 release
07/03/2007 2.0 Major Changed to unified format; updated technical content.
08/10/2007 201 Editorial Revised and edited the technical content.
09/28/2007 3.0 Major Added and deleted sections; revised technical content.
10/23/2007 3.01 Editorial Revised and edited the technical content.
01/25/2008 3.0.2 Editorial Revised and edited the technical content.
03/14/2008 3.03 Editorial Revised and edited the technical content.
06/20/2008 31 Minor Updated the technical content.
07/25/2008 311 Editorial Revised and edited the technical content.
08/29/2008 4.0 Major Updated and revised the technical content.
10/24/2008 5.0 Major Updated and revised the technical content.
12/05/2008 6.0 Major Updated and revised the technical content.
01/16/2009 6.0.1 Editorial Revised and edited the technical content.
02/27/2009 6.0.2 Editorial Revised and edited the technical content.
04/10/2009 6.0.3 Editorial Revised and edited the technical content.
05/22/2009 6.0.4 Editorial Revised and edited the technical content.
07/02/2009 6.0.5 Editorial Revised and edited the technical content.
08/14/2009 6.0.6 Editorial Revised and edited the technical content.
09/25/2009 6.1 Minor Updated the technical content.
11/06/2009 6.1.1 Editorial Revised and edited the technical content.
12/18/2009 6.1.2 Editorial Revised and edited the technical content.
01/29/2010 6.1.3 Editorial Revised and edited the technical content.
03/12/2010 6.1.4 Editorial Revised and edited the technical con tent.
04/23/2010 6.1.5 Editorial Revised and edited the technical content.

[MS-UNMP] — v20131025

User Name Mapping Protocol

Copyright © 2013 Microsoft Corporation.

Release: Friday, October 25, 2013

2/78

Revision Revision

Date History Class Comments

06/04/2010 6.1.6 Editorial Revised and edited the technical content.

07/16/2010 6.1.6 No change No changes to the meaning, language, or formatting of
the technical content.

08/27/2010 6.1.6 No change No changes to the meaning, language, or formatting of
the technical content.

10/08/2010 6.1.6 No change No changes to the meaning, language, or formatting of
the technical content.

11/19/2010 6.1.6 No change No changes to the meaning, language, or formatting of
the technical content.

01/07/2011 6.2 Minor Clarified the meaning of the technical content.

02/11/2011 6.2 No change No changes to the meaning, language, or formatting of
the technical content.

03/25 /2011 7.0 Major Significantly changed the technical content.

05/06/2011 7.0 No change No changes to the meaning, language, or formatting of
the technical content.

06/17/2011 7.1 Minor Clarified the meaning of the technical content.

09/23/2011 7.1 No change No changes to the meaning, language, or formatting of
the technical content.

12/16/2011 8.0 Major Significantly changed the technical content.

03/30/2012 8.0 No change No changes to the meaning, language, or formatting of
the technical content.

07/12/2012 9.0 Major Significantly changed the technical content.

10/25/2012 9.0 No change No changes to the meaning, language, or formatting of
the technical content.

01/31/2013 9.0 No change No changes to the meaning, language, or formatting of
the technical content.

08/08/2013 10.0 Major Significantly changed the technical content.

11/14/2013 10.0 No change No changes to the meaning, language, or formatting of

the technical content.

[MS-UNMP] — v20131025

User Name Mapping Protocol

Copyright © 2013 Microsoft Corporation.

Release: Friday, October 25, 2013

3/78

Contents

1 INtroduction....cicciciiiiiiiri s s s s n e A, 7
R R €110 1= Y- T oY/ PSP 7
1.2 REfEIENCES oot et e aaeaneeeeas 9

1.2.1 Normative REfErenCes ..iiiiiiiiiiiiis s e 9

1.2.2 Informative References 10
1.3 OVerviewcccovvcvevieeneennenn, 10
1.4 Relationship to Other ProtoCoIS .o vt eeeenieaee 11
1.5 PrerequisiteS/Preconditions ..o e e 12
1.6 Applicability Statement ..o iis e reeeea— e 12
1.7 Versioning and Capability Negotiation =~ ..o e e 12
1.8 Ven dor-Extensible FieldSccoiiiiiiiiiies s e 12
1.9 Standards ASSIGNMENTS oo e eeereeeae e 12

7 =TT T 1T 13
2.1 Transportcccoceeeiniieeennnnnn. 13
2.2 Message Syntax .13

2.2.1 User Name Mapping Protocol Message Headers —ccccciiiiiiiiiiiiies e 13
2.2.1.1 SUNRPC Request Header — .ciiiiiiiiiiiiiiiiiiiee e enee aeveeeens 13
2.2.1.2 SUNRPC Response Header ..o e e 13

2.2.2 Common User Name Mapping Protocol Data TYPeS =~ ccceviieviievieviienee e 13
2221 SIZES oo s e aaeeas 14
2.2.2.2 MapSvrMBCSNameString ..oococevvvvvieeiiieeeiieennes 14
2.2.2.3 MapSvrUnicode NameStringcccccoccevvieeeneeenne 14
2.2.2.4 MapSvrMBCSWindowsNameString 14
2.2.2.5 MapSvrUnicodeWindowsNameString 14
2.2.2.6 MapSVIMBCSMAaPSIING oo eveeeee e e 15
2.2.2.7 MapSvrunicode MapString ..cccccccviieiiieiiiiiiiees e eeaaeas 16
2.2.2.8 UNIX_ACCOUNE iiiiiiiiiiiiiicc e avreeessire e e e sien e e sinree s eeeeseeeesireeesaraees 16
2.2.2.9 UNIX_ACCOUNTW s e eeeee e 17
2.2.2.10 UNiIX_USEr_auth s e e e e e————— 18
2.2.2.11 unix_user_authw 18
2.2.2.12 windows_creds 19
2.2.2.13 windows_credsW 19
2.2.2.14 windows_account 19
2.2.2.15 windows_acCoUNtW i e arrrereeae e 20
2.2.2.16 UNIX_QUEN o e 20
2.2.2.17 unix_authW s e 20
2.2.2.18 UNIX_CIEAS coociiiiiiiiieiiiiriieiiies v e 21
2.2.2.19 UNIX_CredSW oo e aeeeseeeee e e e 21
2.2.2.20 dUMP_MAP_TEA cooevvieriieriie e siiens e eerree e 21
2.2.2.21 SeqUENCE_NUMDET i et e 22
2.2.2.22 mapping_reCord s e eereeeeserea e 22
2.2.2.23 SO o s e e 23
2.2.2.24 mapping_recordW s e e 23

2.2.3 Non -XDR-Compliant Data StrUCIUrES ..o e 24
2.2.3.1 MAPPING oot e e eareeeeaaae e e aaeee s . 24
2.2.3.2 MAPS oo et e eeeas 24
2.2.3.3 MApPINGW s e e 25
2.2.3.4 MAPSW s e eeeeee e e e e . 25

2.2.4 Standard Failure RESPONSES oot e e 26

4/ 78

[MS-UNMP] — v20131025
User Name Mapping Protocol

Copyright © 2013 Microsoft Corporation.

Release: Friday, October 25, 2013

2.2.5 User Name Mapping Protocol MeSSages .o et 26

2.25.1 MAPPROC_NULL (PROC 0) it e v 27
2.2.5.2 GETWINDOWSCREDSFROMUNIXUSERNAME_PROC (PROC 1) ...cccccviiviernenn 27
2.2.5.3 GETUNIXCREDSFROMNTUSERNAME_PROC (PROC 2) ...ccovvieveenieeieenee ... 28
2.2.5.4 AUTHUSINGUNIXCREDS_PROC (PROC 3) oo et 28
2.2.5.5 DUMPALLMAPS _PROC (PROC 4) .iioiiiiiiiiiiiiiieviieiee et siee e . 29
2.25.6 GETCURR ENTVERSIONTOKEN_PROC (PROC 5) ...cccocceiiiriiiiiiiiiiiieiee e 29
2.2.5.7 DUMPALLMAPSEX_PROC (PROC B) iccciiiiiiiiiiiiviieiis ettt 29
2.25.8 GETWINDOWSGROUPFROMUNIXGROUPNAME_PROC (PROC 7) ...cccvveerrieninne. 30
2.2.5.9 GETUNIXCREDSFROMNTGROUPNAME_PROC (PROC 8) .. 30
2.25.10 GETUNIXCREDSFROMNTUSERSID_PROC (PROC 9) ..occiiiiiiiiiiiiiiiiiiiene v 30
2.25.11 DUMPALLMAPSW_PROC (PROC 10) oot ettt 31
2.2.5.12 DUMPALLMAPSEXW_PROC (PROC 11) .ccoociiiiviieiieiiieiies e 31
2.25.13 GETWINDOWSUSERFROMUNIXUSERNAMEW_PROC (PROC 12) ccccccvvvennee. 32
2.2.5.14 GETUNIXCREDSFROMNTUSERNAMEW_PROC (PROC 13) ...cccocviiiiiiienieeneen 32
2.25.15 AUTHUSINGUNIXCREDSW_PROC (PROC 14) .o e 32
2251 6 GETWINDOWSGROUPFROMUNIXGROUPNAMEW_PROC (PROC 15) cccee.ee. 33
2.2.5.17 GETUNIXCREDSFROMNTGROUPNAMEW_PROC (PROC 16) cccocverierirerieninans 33
2.25.18 GETUNIXCREDSFROMNTUSERSIDW_PROC (PROC 17) .ccoiiiiiiiieieenieeiens .34
3 Protocol Details......ccciciariiiiiiiiimieirr s s DD
3.1 ClientDetailscccoooviiiiiiieennenns 35
3.1.1 Abstract Data Model 35
3. 1.2 TIMEIS it iee e areee e reeanees 36
3.1.3 INItIAlIZAON oo e e .. 36
3.1.4 Higher -Layer Triggered EVENLS ...occcoiiiiiiiiiiiiiiieies e eevieen 36
3.1.5 Message Processing Events and Sequencing Rules i e 36
3.1.5.1 Making the Initial Account Mapping Request to the Server .., 37
3.1.5.2 Processing the Accoun t Mapping Response from the Server 37
3.1.5.3 Making Further Account Mapping Requests to the Server 37
3.1.5.4 Polling for Cache CONSISIENCY oo e e 37
3.1.6 TIMEr EVENLS i iiiiiiiis s e . 38
3.1.7 LOCAl EVENES it et e .. 38
3.2 Server DetailS ooiiciiiis s e e 38
3.2.1 Abstract Data Model .ot e e 38
3.2.2 TIMEIS i eivieeiie et es areee s reeanaees 39
3.2.3 Initialization 39
3.2.4 Higher -Layer Triggered Events 39
3.2.5 Message Processing Events and Sequencing Rules s e 39
3.2.5.1 Processing for All ProcedureS .o e e 39
3.2.5.2 Processing of DUMPALLMAPSXXX_PROC Request and
GETCURRENTVERSIONTOKEN_PROC REQUESL ...ccocvvriiiriiiiiciiniinee e 39
3.2.5.2.1 Processing the Initial Account Mapping Request from the Client ~ 39
3.2.5.2.2 Processing Further Account Mapping Requests from the Client ... 40
3.2.5.2.3 Processing the Client Account Mapping Cache Refresh ... 40
3.2.6 TIMEr EVENLS i iciiiiiiiie s aeeeee e neeaa s . 40
3.2.7 Other Local EVENIS it ettt areeea e 40
4 Protocol EXamples.....cicicieimierrriaminininieissrsesasasasasssissasasasasasasasassssnsasasasasasasasasanns 41
4.1 GETWINDOWSCREDSFROMUNIXUSERNAME_PROC ... e 42
4.2 GETUNIXCREDSFROMNTUSERNAME_PROCccccciiiiiiiiiiiiiiiiies et 43
4.3 AUTHUSINGUNIXCREDS _PROC .t et vniivinne e aevvsienees 44
4.4 DUMPALLMAPS _PROCooiiiiiiiiiiiiieiiieiis ettt eneninenies erieesieessesnne e 45
5/78

[MS-UNMP] — v20131025
User Name Mapping Protocol

Copyright © 2013 Microsoft Corporation.

Release: Friday, October 25, 2013

4.5 GETCURRENTVERSIONTOKEN_PROCcoociiiiiiiiiiiiiiieiie e nneee e 47

4.6 DUMPALLMAPSEX_PROC ...coiiiiiiiiiiiiiriiieeiies et 48
4.7 GETWINDOWSGROUPFROMUNIXGROUPNAME_PR OC 50
4.8 GETUNIXCREDSFROMNTGROUPNAME_PROCcccciiiiiiiiiiiiciiiiies e 51
4.9 GETUNIXCREDSFROMNTUSERSID_PROC ..o e 52
4.10 DUMPALLMAPSW _PROC ..iiiiiiiiiiiiiiis ittt e einiinee e eeeeeaaanieeeeeae s 53
4.11 DUMPALLMAPSEXW_PROC ..ot ettt sniieens eeeesnieea s 56
4.12 GETWINDOWSUSERFROMUNIXUSERNAMEW_PROC ... e 58
4.13 GETUNIXCREDSFROMNTUSERNAMEW_PROC ..o e 59
4.14 AUTHUSINGUNIXCREDSW_PROC .iiiiiiiiiiiiiiiiiee ettt eeiiineeeeees eeeeeas 60
4.15 GETWINDOWSGROUPFROMUNIXGROUPNAMEW_PROC ..o e 61
4.16 GETUNIXCREDSFROMNTGROUPNAMEW_PROCcccoiiiiiiiiiiiieiiiies e 62
4.17 GETUNIXCREDSFROMNTUSERSIDW_PROC ..t et 63
L =V ol T o) 65
5.1 Security Considerations for Implementers s e 65
5.2 Index of Security Parameters s e e 65
6 Appendix A: Full SUNRPC IDLccciuiimrussmsasumssssmsasumsassssassnssssnsassnsassnsasansassnsassnsnnnnnas 66
7 Appendix B: Sample Code to Encode and Decode Non-XDR-Compliant Data
V2 L= 70
7.1 Header File CONtENE oot v eeereeeasaeeeneeeeaeeenaees 70
7.2 Encode/Decode Routines For Non -XDR Data Types Using XDR Primitives ~ccccccvene 71
8 Appendix C: Product Behaviorc.ccucrierrisiernmsassssessss s ssss s sasssassnsnssnsansnsansnsnnss 74
9 Change TracCKiNg i ioieramsemsersermasrasmssmssmssmssssesmssssssssmsssssmsssssssssssssssnsnssssssnsasssnsansnnnssn 76
0 1 o ' 1= G 77
6/78

[MS-UNMP] — v20131025
User Name Mapping Protocol

Copyright © 2013 Microsoft Corporation.

Release: Friday, October 25, 2013

1 Introduction

The Windows and UNIX operating systems use different mechanisms for user identification,
authentication, and resource access control. Users have separate accounts in the Windows portion

and the UNIX portion of any network. Because Windows and UNIX user identifications and use r
names are stored and used differently, there is no association between the two sets, even though

the same users exist on each network.

The User Name Mapping Protocol maps Windows domain user and group account names
(DOMAIN \NAME) to the POSIX user and group identifiers (UIDs and GIDs) utilized in
AUTH_UNIX authentication and vice versa. This enables the association of user names for users
who have different identities in Windows -based and UNIX -based domains. For example, this
protocol allows user and group accounts from multiple Windows domains to access resources on
Network File System (NFS) file servers by using UIDs and GIDs. The User Name Mapping

Protocol supports only retrieval of mappings; it does not include procedures for changing user
mappings.
Sections 1.8, 2, and 3 of this specification are normative and can contain the terms MAY, SHOULD,

MUST, MUST NOT, and SHOULD NOT as defined in RFC 2119. Sections 1.5 and 1.9 are also
normative but cannot contain those terms. All other sections and examples in this specification are
inf ormative.

1.1 Glossary

The following terms are defined in MS -GLOS]:

Active Directory

ASCII

domain

security identifier (SID)
Unicode

The following terms are specific to this document:

advanced map: Used to map accounts that have different names on the UNIX and Windows
systems. Advanced maps are also used to map users from different Windows domains,
and they can also explicitly map accounts that would generally be mapped by simple maps.

For more infor mation, see [NESAUTH] .

AUTH_NONE: A synonym for AUTH_NULL.

AUTH_NULL: A type of authentication available in SUNRPC (as specified in [RFC1057]). The
caller does not supply any authentication credentials (that is, anonymous); sometimes
referredtoas AUTH_NONE.

AUTH_SYS: A synonym for AUTH_UNIX.

AUTH_UNIX: A type of authentication available in SUNRPC (as specified in [RFC1057]). The
caller ofaremote procedure identifies itself using traditional UNIX user and group
identifiers (UIDs and GIDs); also referredtoas ~ AUTH_SYS.

code-point: A numerical integer value given to each chara cter in a character set.

7/78

[MS-UNMP] — v20131025
User Name Mapping Protocol

Copyright © 2013 Microsoft Corporation.

Release: Friday, October 25, 2013

%5bMS-GLOS%5d.pdf
%5bMS-GLOS%5d.pdf
http://go.microsoft.com/fwlink/?LinkId=90231
http://go.microsoft.com/fwlink/?LinkId=90265
http://go.microsoft.com/fwlink/?LinkId=90265

code page: An ordered set of characters of a given script in which a numeric index, or code-
point value, is associated with each character. In this document, this term is used in the
context of code pages defined by Windows and can also be called a "character set" or
"charset".

DUMPALLMAPSXXX_PROC: A reference to the following procedures: DUMPALLMAPS PROC
(section 2.2.5.5), DUMPALLMAPSEX_ PROC (section 2.2.5.7), DUMPALLMAPSW_PROC (section
2.2.5.11),and DUMPALLMAPSEXW_PROC (section 2.2.5.12).

group identifier (group ID or GID): A number that identifies a group of users to a UNIX
operati ng system. The scope of the number is at least machine -wide but can also be
coordinated across a group of machines by means of services, such as the Network
Information Service (NIS).

group map: An association between a Windows group account name, a UNIX group account
name, and a GID.

map: An association between a Windows -based network user or group name and a UNIX-based
network user or group name.

multibyte character set (MBCS): An alternative to Unicode for supporting charact er sets, like

Japanese and Chinese, that cannot be represented in a single byte. Under MBCS, characters
are encoded in either one or two bytes. In two -byte characters, the first byte, or "lead" byte,
signals that both it and the following byte are to be in terpreted as one character. The first

byte comes from a range of codes reserved for use as lead bytes. Which ranges of bytes can

be lead bytes depends on the code page in use. For example, Japanese code page 932 uses
the range "0x81" through "Ox9F" as lead bytes, but Korean code page 949 uses a different
range.

Network File System (NFS): A Network File System protocol, as specified in RFC1094] and
RFC1813] . This protocol is compatible with NFS version 3 (NFSv3). NFS version 4 (NFSv4)
obviates the need for this protocol by allowing Windows and UNIX domains to in teroperate
using Kerberos version 5, which allows them to share the same namespace.

OEMCP: The default OEM code page of the system. The OEM code page is used for conversions
of MS -DOS—based, text -mode applications.

portmapper service: A portmapper service isa SUNRPC service that provides discovery
services; clients of the portmapper service can use it to discover other SUNRPC services

running on the same computer. The information returned by the portmapper service is then
used by the client of the portmapper service to act as a client for the discovered SUNRPC
service. The portmapper service is definedin [RFC1057] Appendix A. The portmapper
service runs on a specific well -known port (Port 111 on TCP/UDP).

portmapper server: A server that is running the portmapper service.

POSIX: Portable Operating System Interface, as specified in IEEE1003.1] . POSIX is a set of
standard operating system interfaces based on UNIX. This term is used interchangeably with
UNIX in the rest of this document, as described in IEEE1003.1] .

primary map: When multiple Windows accounts are mapped to a sing le UNIX account, one of
these mappings can be designated as a "primary" mapping. For more information, see
NESAUTH] .

procedure: A SUNRPC procedure, as defined in RFC1057] .

8/78

[MS-UNMP] — v20131025
User Name Mapping Protocol

Copyright © 2013 Microsoft Corporation.

Release: Friday, October 25, 2013

%5bMS-GLOS%5d.pdf
http://go.microsoft.com/fwlink/?LinkId=90267
http://go.microsoft.com/fwlink/?LinkId=90294
%5bMS-GLOS%5d.pdf
http://go.microsoft.com/fwlink/?LinkId=90265
http://go.microsoft.com/fwlink/?LinkId=89897
http://go.microsoft.com/fwlink/?LinkId=89897
http://go.microsoft.com/fwlink/?LinkId=90231
http://go.microsoft.com/fwlink/?LinkId=90265

procedure number: A number that identifies the procedure to be called, as defined in

RFC1057] .

simple map: Maps between acco unts with the exact same name in UNIX as in Windows. For
more information, see NFSAUTH] .

SUNRPC: A remote procedure call (RPC) protocol from Sun Microsystems, as specified in
RFC1057] . SUNRPC forms the basis of the Network File System (NFS) Protocol. SUNRPC

has no relationship to Remote Procedure Call Protocol Extensions , as specified in [MS -RPCE].
user identifier (user ID or UID): A number that identifies a particular user to a UNIX
operating system. The scope of the number is at least machine -wide and can be coordinated

across a group of machines by means of services such as NIS.

UNIX: A multiuser, multit asking operating system developed at Bell Laboratories in the 1970s.
In this document, the term " UNIX" is used to refer to any derivatives of this operating
system.

user map: An association between a Windows user account name, a UNIX user account name,
and a UID.

wide characters: Characters represented by a2 -byte value, encoded using Unicode UTF-16.
Windows Active Directory: See Active Directory.
Windows domain: See domain.

XDR: The data encoding standard used by SUNRPC for a selection of common data types such
as strings, integers, and arrays of integers, as specified in RFC4506] .

MAY, SHOULD, MUST, SHOULD NOT, MUST NOT: These terms (in all caps) are used as
described in [REC2119] . All statements of optional behavior use either MAY, SHOULD, or
SHOULD NOT.

1.2 References

References to Microsoft Open Specifications documentation do not include a publishing year because
links are to the latest version of the documents, which are updated frequently. References to other
documents include a publishing year when one is available

A reference marked "(Archived)" means that the reference document was either retired and is no
longer being maintained or was replaced with a new document that provides current implementation
details. We archive our documents online [Windows Protocol]

1.2.1 Normative References

We conduct frequent surveys of the normative references to assure their continued availability. If

you have any issue with finding a normative reference, please contact dochelp@microsoft.com . We
will assist you in finding the relevant information. Please check the archive site,
http://msdn2.microsoft.com/en -us/library/EABD6494 -06 AD-4aed -9823 -445E921C9624 , as an

additional source.

[[EEE1003.1] The Open Group, "IEEE Std 1003.1, 2004 Edition", 2004,
http://www.unix.org/version3/ieee_std.html

Note Registration is requiredt o view or download this specification.

9/78

[MS-UNMP] — v20131025
User Name Mapping Protocol

Copyright © 2013 Microsoft Corporation.

Release: Friday, October 25, 2013

http://go.microsoft.com/fwlink/?LinkId=90265
http://go.microsoft.com/fwlink/?LinkId=90231
http://go.microsoft.com/fwlink/?LinkId=90265
%5bMS-RPCE%5d.pdf
%5bMS-GLOS%5d.pdf
%5bMS-GLOS%5d.pdf
%5bMS-GLOS%5d.pdf
http://go.microsoft.com/fwlink/?LinkId=90478
http://go.microsoft.com/fwlink/?LinkId=90317
http://msdn.microsoft.com/en-us/library/jj633107.aspx
mailto:dochelp@microsoft.com
http://msdn2.microsoft.com/en-us/library/E4BD6494-06AD-4aed-9823-445E921C9624
http://go.microsoft.com/fwlink/?LinkId=89897

[MS -DTYP] Microsoft Corporation, " Windows Data Types ".

[RFC1057] Sun Microsystems, Inc., "RPC: Remote Procedure Call Protocol Specification Version 2",
RFC 1057, June 1998, http://www.ietf.org/rfc/rfc1057.txt

[RFC1094] Sun Microsystems, Inc., "NFS: Network File System Protocol Specification", RFC 1094,
March 1989, http: //www.ietf.org/rfc/rfc1094.txt

[RFC1813] Callaghan, B., Pawlowski, B., and Staubach, P., "NFS Version 3 Protocol Specification",
RFC 1813, June 1995, http://www.ietf.org/rfc/rfc1813.txt

[RFC1831] Srinivasan, R., "RPC: Remote Procedure Call Protocol Specification Version 2", RFC 1831,
August 1995, http://www.ietf.org/rfc/rfc1831.txt

[RFC2119] Bradner, S., "Key words for use in RFCs to Ind icate Requirement Levels", BCP 14, RFC
2119, March 1997, http://www.rfc _ -editor.org/rfc/rfc2119.txt

[RFC4506] Eisler, M., Ed., "XDR: External Data Representation Standard", STD 67, RFC 4506, May
2006, http://www.ietf.org/rfc/rfc4506.txt

1.2.2 Informative References

[MS -GLOS] Microsoft Corporation, " Windows Protocols Master Glossary "

[MS -RPCE] Microsoft Corporation,” Remote Procedure Call Protocol Extensions

[NFSAUTH] Russel, C., "NFS Authentication”,
http://www.microsoft.com/technet/interopmigration/unix/sfu/nfsauth.mspx

[NIS] Sun Microsystems, Inc., "System Administration Guide: Naming and Director y Services (DNS,
NIS, and LDAP)", http://docs.sun.com/app/docs/doc/816 -4556
If you have any trouble finding [NIS], please check here .

[WINNSP] Microsoft Corporation, "Namespace Planning for DNS", January 2005,
http://technet2.microsoft.com/WindowsServer/en/library/8ec96981 -6bla -48ec -bd3e -
d8d43bc 814311033.mspx

[WINUGA] Microsoft Corporation, "Creating User and Group Accounts”,
http://www.microsoft.com/technet/archive/winntas/deploy/confeat/05wntpca.mspx

1.3 Overview

The User Name Mapping Protocol maps Windows domain identities (user and group account names)

to UNIX user and UNIX group identities (user and group account names and their corresponding UID

and GID) and vice versa. Clients of the User Name Mapping Protocol use SUNRPC-formatted
messages to enumerate and/or translate user and group account information between a UNIX and a
Windows domain. The User Name Mapping Protocol exists to allow a one -to-one mapping of each
Windows group account name to a GID number and a one -to -one mapping of each Windows user
account name to a UID number.

The User Name Mapping Protocol is invoked by a client application when the application needs to

provid eausermapora group map between a UNIX user or group and the corresponding Windows
user or group. This need is application specific and is not specified by the User Name Mapping

Protocol. The UNIX or Windows user, or UNIX or Wind ows group, that needs to be mapped is
supplied to the User Name Mapping Protocol by the client application, and the mapped user/group is
returned to the client by the User Name Mapping Protocol server. For user mapping and group

10/ 78

[MS-UNMP] — v20131025
User Name Mapping Protocol

Copyright © 2013 Microsoft Corporation.

Release: Friday, October 25, 2013

%5bMS-DTYP%5d.pdf
http://go.microsoft.com/fwlink/?LinkId=90265
http://go.microsoft.com/fwlink/?LinkId=90267
http://go.microsoft.com/fwlink/?LinkId=90294
http://go.microsoft.com/fwlink/?LinkId=90295
http://go.microsoft.com/fwlink/?LinkId=90317
http://go.microsoft.com/fwlink/?LinkId=90478
%5bMS-GLOS%5d.pdf
%5bMS-RPCE%5d.pdf
http://go.microsoft.com/fwlink/?LinkId=90231
http://go.microsoft.com/fwlink/?LinkId=90234
http://msdn2.microsoft.com/en-us/library/E4BD6494-06AD-4aed-9823-445E921C9624
http://go.microsoft.com/fwlink/?LinkId=90567
http://go.microsoft.com/fwlink/?LinkId=90567
http://go.microsoft.com/fwlink/?LinkId=90568

mapping enumerations, the c lient application specifies the enumeration parameters, and the User
Name Mapping Protocol server returns the enumerated user mappings/group mappings to the client.

These mapping enumerations can be cached by the client application and kept up to date by

periodically polling the server to determine if the cached mappings are still valid. The User Name
Mapping Protocol does not provide authentication or authorization of the application - provided
user/group; to the client, it is a read -only account mapping ser vice.

An example of this authentication behavior is a user on a UNIX machine making a file access request

that contains AUTH_UNIX —formatted user credentials to an NFS server implemented on a computer
running Windows. The NFS server acts as a User Name Mapp ing Protocol client (or "user map") to
request the Windows domain user and group names (from the User Name Mapping Protocol server)

that match the AUTH_UNIX credentials supplied by the UNIX user. This action enables the NFS

server to authenticate the file access request.

This document specifies the SUNRPC -formatted messages that provide support for the following
operations:

A Mapping POSIX user and group names and/or UIDs/GIDs to Windows domain and account
names.

A Mapping Windows domain and account names to PO SIX user and group names, and UIDs and
GIDs.

A Allowing a User Name Mapping Protocol client to authenticate a POSIX user by providing a user
name and password.

A Enumerating all user mappings and group mappings between POSIX accounts and Windows
accounts known to the User Name Mapping Protocol server.

A Testing to see if any maps previously enumerated by a client have changed from the time of the
last check.

A Mapping a Windows domain security identifier (SID) to a POSIX user/group nam e and
UID/GID.

This document specifies versions 1 and 2 of the User Name Mapping Protocol. Version 1 is comprised
of a set of nine SUNRPC procedures; version 2 consists of a set of 18 SUNRPC procedures. For a list
of these procedures, see the table in sect jon 2.2.5 .

There are several differences between User Name Mapping Protocol version 1 and User Name

Mapping Protocol version 2. Version 2 added procedures 10 —17, which are the wide character
(Unicode) counterparts of procedures 1 —4 and 6 —9. Procedures 1 -4 and 6 —8 accept multibyte
character set (MBCS) character -encoded strings as input. Version 2 includes the additional

procedure 9 , which takes a Windows account SID and returns an MBCS character -encoded UNIX
account map that corresponds to the Windows account represented by that SID. The wide character
(Unicode) counterpart to procedure 9 is procedure 17.

1.4 Relationship to Other Protocols

The User Name Mapping Protocol relies on [REC1057] and [REC4506] for communicating with clients
by means of the SUNRPC message version 2 and XDR protocols as specified in those documents.

The User Name Mapping Protocol uses SUNRPC authentication level AUTH_NULL (as specifie din
RFC1057]). The User Name Mapping Protocol uses SUNRPC message version 2 implemented on top

of TCP and UDP. The User Name Mapping Protocol message formats are not sensitive to which

underlyi ng transports (TCP or UDP) are being used. <1>

11/ 78

[MS-UNMP] — v20131025
User Name Mapping Protocol

Copyright © 2013 Microsoft Corporation.

Release: Friday, October 25, 2013

%5bMS-GLOS%5d.pdf
%5bMS-GLOS%5d.pdf
http://go.microsoft.com/fwlink/?LinkId=90265
http://go.microsoft.com/fwlink/?LinkId=90478
http://go.microsoft.com/fwlink/?LinkId=90265

1.5 Prerequisites/Preconditions

It is required that the User Name Mapping Protocol server has been previously configured with all

the appropriate UNIX and Windows domain name and group mapping information, and that it has
registered with the portmapper service (as specified in [RFC1057] Appendix A) on the same
computer as the User Name Mapping Protocol server. Normal TCP/IP services sufficient to provide
TCP-base d or UDP -based communications must be available. <2>

1.6 Applicability Statement

The User Name Mapping Protocol is applicable in a heterogeneous network environment where users
have separate accounts in UNIX and Windows infrastructures. This protocol provides a means to
associate user and group accounts in two networks for users or groups that have different identities

in UNIX -based and Windows -based administrative domains. <3>

1.7 Versioning and Capability Negotiation
This document covers versioning issues in the following areas:

A Protocol Versions: The User Name Mapping Protocol supports versions 1 and 2. These dialects
are defined in section 2.2.

A Capability Negotiation: Version negotiation of the User Name Mapping Protocol is achieved

using the standard method for protocol negotiation for SUNRPC services as specified in

RFC1057] section 8. The User Name Mapping Protocol client requests a specific version of the

User Name Mapping Protocol from the portmapper service (as specified in RFC1057] Appendix
A). The portmapper service replies with the available versions registered by the User Name

Mapping Protocol server. Requests made to the User Name Mapping Protocol server for versions

other than those supported should be rejecte d with a SUNRPC PROG_MISMATCH message, as

specified in [RFC1057] .

1.8 Vendor-Extensible Fields

None.

1.9 Standards Assignments

Parameter Value Reference
MAPSVC_PROGRAM 351455 RFC1057] section 7.3

12/ 78

[MS-UNMP] — v20131025
User Name Mapping Protocol

Copyright © 2013 Microsoft Corporation.

Release: Friday, October 25, 2013

http://go.microsoft.com/fwlink/?LinkId=90265
http://go.microsoft.com/fwlink/?LinkId=90265
http://go.microsoft.com/fwlink/?LinkId=90265
http://go.microsoft.com/fwlink/?LinkId=90265
http://go.microsoft.com/fwlink/?LinkId=90265

2 Messages

2.1 Transport

The User Name Mapping Protocol is a SUNRPC protocol (as specified in RFC1057]) that runs on
TCP/IP using TCP and/or UDP transports, with a well -known program number of MAPSVC_PROGRAM
(351455). The User Name Mapping Protocol server registers an available TCP/UDP port with the

local portmapper service on startup using the MAPSVC_PROG RAM number for all combinations of

TCP, UDP, and protocol versions that the User Name Mapping Protocol server is capable of or

configured to accept. User Name Mapping Protocol clients query the SUNRPC portmapper server
for the TCP/UD P port number on which the User Name Mapping Protocol is registered and listening

for the requested version and transport combination.

Configuration of the portmapper service and port registration is specified in RFC1057] Appendix A.
The User Name Mapping Protocol does not define a configuration interface to the portmapper
service.

The User Name Mapping Protocol server provides a procedure -oriented interface to the User Name
Mapping Protocol clie nts. Clients identify the remote procedure by using a combination of a 32 - bit
program number, a 32 -bit version number, and a 32 -bit procedure number (as specified in
RFC10 57]). The service is stateless; every SUNRPC call is self -contained and does not depend on

the previous calls made or previous state of the service.

The User Name Mapping Protocol server accepts all SUNRPC packets with an authentication level of
AUTH_NULL, as specifiedin [REC1057] section 9.1. Therefore, no authentication information is
required by the client.

2.2 Message Syntax

The following structures are specified in XDR Data Definition Language syntax (as specified in
RFC4506] section 6) while procedures are defined in the SUNRPC language, as specified in

RFC1057] section 11.

2.2.1 User Name Mapping Protocol Message Headers

2.2.1.1 SUNRPC Request Header

The User Name Mapping Protocol uses standard SUNRPC version 2 msg_type CALL headers.
Requests are made with an authentication level of AUTH_NULL. This header format and its fields and
values are specified in RFC1057] section 8.

2.2.1.2 SUNRPC Response Header

The User Name Mapping Protocol uses standard SUNRPC version 2 msg_type REPLY headers. This
header format and its fields and values are specified in RFC1057] section 8.

2.2.2 Common User Name Mapping Protocol Data Types

In this section, the XDR Data Description Language (as specified in RFC4506]) is used to specify
the XDR format parameters and results of each of the SUNRPC service procedures that a User Name
Mapping Protocol server provides.

13/ 78

[MS-UNMP] — v20131025
User Name Mapping Protocol

Copyright © 2013 Microsoft Corporation.

Release: Friday, October 25, 2013

http://go.microsoft.com/fwlink/?LinkId=90265
http://go.microsoft.com/fwlink/?LinkId=90265
http://go.microsoft.com/fwlink/?LinkId=90265
http://go.microsoft.com/fwlink/?LinkId=90265
http://go.microsoft.com/fwlink/?LinkId=90478
http://go.microsoft.com/fwlink/?LinkId=90265
http://go.microsoft.com/fwlink/?LinkId=90265
http://go.microsoft.com/fwlink/?LinkId=90265
http://go.microsoft.com/fwlink/?LinkId=90478

2.2.2.1 Sizes

const MAXNAMELEN = 128;
const MAXNAMELENXx2 = 256;
const MAXLINELEN = 256;
const MAXLINELENXx2 =512;
const MAXGIDS = 32;

const MAXSIDLEN = 72;

(MAXGIDS is the maximum count of GIDs . This includes both the primary GID and any
supplementary GIDs.)

2.2.2.2 MapSvrMBCSNameString

typedef opague MapSvrMBCSNameString<MAXNAMELEN>;

An XDR variable -length opaque data field, as specified in RFC4506] section 4.10, whose maximum
length is specified in bytes. The length is equal to the number of MBCS bytes encoded in the system
OEM code page (OEMCP), including multibyte characters, as specified by the length field that

precedes th e byte stream. The value of the length field MUST NOT exceed the value MAXNAMELEN.
Minimum length is 0.

2.2.2.3 MapSvrUnicodeNameString

typedef opaque MapSvrUnicodeNameString<MAXNAMELENx2>;

An XDR variable -length opaque data field, as specified in RFC4506] section 4.10, whose maximum
length is specified in bytes. The maximum length is defined by the length field that precedes the
byte stream. The value of the length field MUST NOT exceed the value MAXNAMELENXx2. The
maximum length of the character string is equal to as many 2 -byte Unicode (UTF -16) characters as

can be stored in a MapSvrUnicodeNameString, with a maximum length equal to length. Minimum
length is 0.

2.2.2.4 MapSvrMBCSWindowsNameString

typedef opaque MapSvrMBCSWindowsNameString<MAXLINELEN>;

An XDR variable -length opaque data field, as specified in RFC4506] section 4.10, whose maximum
length is specified in bytes. The length is equal to the number of MBCS bytes encoded in the system
OEMCP, including multibyte characters, as specified by the length field that precedes the byte

stream. The value of the length field MUST NOT exceed the value MAXLINELEN. Minimum length is
0.

2.2.2.5 MapSvrUnicodeWindowsNameString

typedef opaque MapSvrUnicodeWindowsNameString<MAXLINELENx2>;

An XDR variable -length opaque data field, as specified in RFC4506] section 4.10, whose maximum
length is specified in bytes. The maximum length is defined by the length field that precedes the
byte stream. The value of the length field MUST NOT exceed the value MAXLINELENX2. The

maximum length of the character string is equal to as many 2 -byte Unicode (UTF -16) characters as

14/ 78
[MS-UNMP] — v20131025
User Name Mapping Protocol

Copyright © 2013 Microsoft Corporation.

Release: Friday, October 25, 2013

http://go.microsoft.com/fwlink/?LinkId=90478
http://go.microsoft.com/fwlink/?LinkId=90478
http://go.microsoft.com/fwlink/?LinkId=90478
http://go.microsoft.com/fwlink/?LinkId=90478

can be stored in a MapSvrUnicodeWindowsNameString, with a maximum length equal to length.
Minimum length is 0.

2.2.2.6 MapSvrMBCSMapString

typedef opaque MapSvrMBCSMapString<MAXLINELEN>;

An XDR variable -length opaque data field, as specified in RFC4506] section 4.10, whose maximum
length is specified in bytes. The length is equal to the number of MBCS bytes encoded in the system
OEMCP, including multibyte characters, as specified by the length field that precedes the byte

stream. The value of the length field MUST NOT exceed the value MAXLINELEN. Minimum length is
0.

This type is used to define a single account map as a colon -delimited string of MBCS characters. This
type is returned as an output from the map enumeration procedure. For more information, s ee
section 2.2.3.2 .

The format of MapSvrMBCSMapString is a sequence of colon -delimited fields. It has one of two
forms, depending on the context: user map or group map, as follows.

For user map, MapSvrMB ~ CSMapString has the following format.

MapType:WindowsAccountName:AuthType:UNIXDomain:UNIXServer:
UNIXAccountName:UNIXPassword:ID:GIDArray

For group map, MapSvrMBCSMapString has the following format.

MapType:WindowsAccountName:AuthType:UNIXDomain:UNIXServer
UNIXAccountName:GID

MapType: A single MBCS character that indicates the type of map from which the mapping was
derived. It MUST be one of the following characters.

Value Meaning

%1

The mapisa primary map.

The mapisan advanced map.

The mapisa simple map.

WindowsAccountName: A string of MBCS characters that contains the Windows account name. It
MUST be in DOMAIN \NAME format.

AuthType: A single MBCS character that indic ates which entity provided the map. AuthType MUST
be one of the values in the following table. If the value is AUTH_NIS, the source MUST be a NIS
service on the network. If the value is AUTH_FILE, the source SHOULD <4> be from the ser vice -
maintained database local to the User Name Mapping Protocol server.

Value Meaning

0 The map was obtained from a service -maintained database local to the User Name

15/ 78

[MS-UNMP] — v20131025
User Name Mapping Protocol

Copyright © 2013 Microsoft Corporation.

Release: Friday, October 25, 2013

http://go.microsoft.com/fwlink/?LinkId=90478

Value Meaning

(AUTH_FILE) Mapping Protocol server. The form of the database is implementation - specific.
T The map was obtained from a NIS service on the network. NIS is specified in NIS] .
(AUTH_NIS)

UNIXDomain: A string of MBCS characters that contains the string "PCNFS" if the map was

obtained from a service - maintained database, or the NIS server domain to which the account
belongs if the map was obtained from a NIS service. If AuthType is equal to AUTH_NIS, this field
MUST contain the NIS server domain the account is a member of.

UNIXServer: A string of MBCS characters that contains the string "PCNFS" i f the map was obtained
from a service -maintained database, or a string that represents the NIS server name to which the
account belongs if the map was obtained from a NIS server.

UNIXAccountName: A string of MBCS characters that represents the UNIX account name.

UNIXPassword: A sequence of bytes that represents the password for a user record as returned

by a call to the crypt() API that uses the user's cleartext password, as specified in IEEE1003 .1
System Interfaces Volume (XSH). This field is empty when the password is not available or does not

apply. The password record MUST NOT contain any MBCS colon characters.

ID: A string of MBCS characters that contains the ID for the UNIX account.
GID: A string of MBCS characters that contains the GID for the UNIX account.

GIDArray: A string of MBCS characters that contains the primary and supplementary GIDs for the
UNIX account, with each supplementary GID after the primary GID, and separated by additiona
colon characters.

2.2.2.7 MapSvrUnicodeMapString

typedef opaque MapSvrUnicodeMapString<MAXLINELENx2>;

An XDR variable -length opaque data field, as specified in RFC4506] _ section 4.10, whose maximum
length is specified in bytes. The maximum length is defined by the length field that precedes the
byte stream. The value of the length field MUST NOT exceed the value MAXLINELENX2. The

maximum length of the character string is equal to as many 2 -byte Unicode (UTF -16) characters as
can be stored in a MapSvrUnicodeMapString, with a maximum length equal to length. Minimum
length is 0.

This type is used to define a single account map in colon -delimited string format when returned as
an output from the map enumeration procedure. For more information, see section 2234 .

The format of a MapSvrUnicodeMapString field is a sequence of colon -delimited fields as specified in
section 2.2.2.6 , substituting Unicode characters for MBCS characters.

2.2.2.8 unix_account

This type is used to specify a UNIX account name in MBCS format, in addition to an ID used to
search for the corresponding Windows account information when mapping a UNIX account name to
a Windows account name. For more information, see sections 2.2.5.2 and 2.2.5.8 .

struct unix_account {

16 /78

[MS-UNMP] — v20131025
User Name Mapping Protocol

Copyright © 2013 Microsoft Corporation.

Release: Friday, October 25, 2013

http://go.microsoft.com/fwlink/?LinkId=90234
http://go.microsoft.com/fwlink/?LinkId=89897
http://go.microsoft.com/fwlink/?LinkId=90478

long SearchOption;

long Reserved;

long ID;

MapSvrMBCSNameString UnixAccountName;

h
SearchOption: An XDR -encoded, 32 -bit signed integer that defines the user search criteria to use
for the request. SearchOption MUST be one of the following values.

Value Meaning

0x00000001 If set, UnixAccountName is valid and MUST be used as the search criterion.

0x00000002 If set, ID is valid and MUST be used as the search criterion.

0x00000003 If set, UnixAccountName and ID are both valid and both MUST be used as the search

criteria.

Reserved: A 32 -bit signed integer that MUST be sent as 0x00000000 and MUST be ignored
receipt.

ID: An XDR -encoded, 32 -bit signed integer that contains the UNIX account ID to use as the
criterion. If SearchOption is not 0x00000002 or 0x00000003, this value MUST be ignored.

on

search

UnixAccountName: A MapSvrMBCSNameString (section 2.2.2.2) that contains the name of the

UNIX account to use as the search criterion. The length of the string MUST NOT exc

eed 128 bytes.

POSIX user and group account name constraints are specified in IEEE1003.1] .If SearchOption is

not 0x00000001 or 0x00000003, this value MUST be ignored.

2.2.2.9 unix_accountW

This type is used to specify a UNIX account name in Unicode format, in addition to an ID used to

search for the corresponding Windows account information when mapping a UNIX account nam

eto

a Windows account name. For more information, see sections 2.2.5.13 and 2.2.5.16 .

struct unix_accountW {
long SearchOption;
long Reserved;
long ID;
MapSvrUnicodeNameString UnixAccountName;

h
SearchOption: An XDR -encoded, 32 -bit signed integer that defines th e user search criteria to use
for the request. SearchOption MUST be one of the following values.

Value Meaning

0x00000001 If set, UnixAccountName is valid and MUST be used as the search criterion.

0x00000002 If set, ID is valid and MUST be used as the s earch criterion.

0x00000003 If set, UnixAccountName and ID are both valid and both MUST be used as the search

criteria.

[MS-UNMP] — v20131025
User Name Mapping Protocol

Copyright © 2013 Microsoft Corporation.

Release: Friday, October 25, 2013

17/ 78

http://go.microsoft.com/fwlink/?LinkId=89897

Reserved: A 32 -bit signed integer that MUST be sent as 0x00000000 and MUST be ignored on
receipt.

ID: An XDR -encoded, 32 -bit signed integer that contains the UNIX account ID to use as the search
criterion. If SearchOption is not 0x00000002 or 0x00000003, this value MUST be ignored.

UnixAccountName: A MapSvrUnicodeNameString (section 2.2.2.3) that contains the name of the

UNIX account to use as the search criterion. The length of the string MUST NOT exceed 256 bytes.
POSIX user and group account name constraints are specified in IEEE1003.1] .If SearchOption is

not 0x00000001 or 0x00000003, this value MUST be ignored.

2.2.2.10 unix_user_auth

This type is used to specify a UNIX account name (in MBCS format) and a password to retrieve the
set of UNIX account details that correspond to the account. For more information, see section
2254 .

struct unix_user_auth {
MapSvrMBCSNameString UnixUserAccountName;
MapSvrMBCSNameString UnixUserAccountPassword;

UnixUserAccountName: A MapSvrMBCSNameString (section 2.2.2.2) that contains the name of

the UNIX user account to use as the search criterion. The length of this string MU ST NOT exceed
128 bytes. POSIX user and group account name constraints are specified in IEEE1003.1] .
UnixUserAccountPassword: An XDR variable -length opaque data field, as defined in RFC4506

section 4.10, that contains the password of the UNIX user account to use as the search criterion.
The length of this field MUST NOT exceed 128 bytes. This string MUST be generated by a call to the
POSIX crypt() function, as described in section 3 of the System Interfaces Volume (XSH) of

IEEE1003.1] .

2.2.2.11 unix_user_authWw

This type is used to specify a UNIX account name (in Unicode format) and a password to retrieve
the set of UNIX account details that correspond to the account. For more information, see section
2.2.5.15 .

struct unix_user_authW {
MapSvrUnicodeNameString UnixUserAccountName;
MapSvrUnicodeNameString UnixUserAccountPassword;

UnixUserAccountName: A MapSvrUnicodeNameString (section 2.2.2.3) that contains the name of

the UNIX user to use as the search criterion. The length of the string MUST NOT exceed 256 bytes.
POSIX user and group account name constraints are specified in IEEE1003.1] .

UnixUserAccountPassword: A MapSvrUnicodeNameString (section 2.2.2.3) that contains the
password of the UNIX user account to use as the search criterion. The length of the string MUST
NOT exceed 256 bytes. This string MUST be generated by a call to the POSIX crypt() function, as
described in section 3 of the System Interfaces Volume (XSH) of IEEE1003.1] .

18/ 78

[MS-UNMP] — v20131025
User Name Mapping Protocol

Copyright © 2013 Microsoft Corporation.

Release: Friday, October 25, 2013

http://go.microsoft.com/fwlink/?LinkId=89897
http://go.microsoft.com/fwlink/?LinkId=89897
http://go.microsoft.com/fwlink/?LinkId=90478
http://go.microsoft.com/fwlink/?LinkId=89897
http://go.microsoft.com/fwlink/?LinkId=89897
http://go.microsoft.com/fwlink/?LinkId=89897

2.2.2.12 windows_creds

This type represents the Windows account name (in MBCS format) when used as an output
parameter from a search for the corresponding UNIX account name (in MBCS format) and/or UNIX
ID. For more information, see sections 2.25.2 and 2.25.8)

struct windows_creds {
long Status;
long Reserved;
MapSvrMBCSWindowsNameString WindowsAccountName;

Status: An XDR -encoded, Boolean return value. This MUST be either O or 1. A value of O indicates
success; a value of 1 indicates failure.

Reserved: A 32 -bit signed integer that MUST be 0x00000000 and MUST be ignored on receipt.

WindowsAccountName: A MapSvrMBCSWindowsNameString (section 2.2.2.4) that contains the

name of the mapped Windows user or group account that MU ST be in the form "DOMAIN \NAME".
The length of the string MUST NOT exceed 256 bytes. Windows user/group account name
constraints are specified in WINUGA] , and Windows domain naming conventions a re specified in

WINNSP] . If Status does not equal 0x00000000, this value MUST be ignored.

2.2.2.13 windows_credsW

This type represents the Windows account name (in Unicode format) when used as an output
parameter from a search for the corresponding UNIX account name (in Unicode format) and/or UNIX
ID. For more information, see sections 2.2.5.13 and 2.2.5.16 .

struct windows_credsW {
long Status;
long Reserved;
MapSvrUnicodeWindowsNameString WindowsAccountName;

Status: An XDR-encoded, Boolean return value. This MUST be either 0 or 1. A value of O indicates
success; a value of 1 indicates failure.

Reserved: A 32 -bit signed integer that MUST be 0x00000000 and MUST be ignored on receipt.

WindowsAccountName: A MapSvrUnicodeWindowsNameString (section 2.2.2.5) that contains the
name of the mapped Windows user or group accoun t that MUST be in the form "DOMAIN \NAME".
The length of the string MUST NOT exceed 512 bytes. Windows user account and group account

name constraints are specified in WINUGA] , and Windows domain naming conventions are specified
in [WINNSP] . If Status does not equal 0x00000000, this value MUST be ignored.

2.2.2.14 windows_account

This type is used to specify a Windows account name in MBCS format used to search for the
corresponding UNIX account information. For more information, see sections 2.253 and 2.259 .

struct windows_account {
MapSvrMBCSNameString WindowsAccountName;

19/ 78

[MS-UNMP] — v20131025
User Name Mapping Protocol

Copyright © 2013 Microsoft Corporation.

Release: Friday, October 25, 2013

http://go.microsoft.com/fwlink/?LinkId=90568
http://go.microsoft.com/fwlink/?LinkId=90567
http://go.microsoft.com/fwlink/?LinkId=90568
http://go.microsoft.com/fwlink/?LinkId=90567

WindowsAccountName: A MapSvrMBCSNameString (section 2.2.2.2) that MUST contain the name
of the Windows account in the "DOMAIN \NAME" format to use as the search criterion. Windows user
account and group account nam e constraints are specified in WINUGA] , and Windows domain
naming conventions are specified in WINNSP] . The length of the string MUS T NOT exceed 256
bytes.

2.2.2.15 windows_accountW

This type is used to specify a Windows account name in Unicode format used to search for the
corresponding UNIX account information. For more information, see sections 2.25.14 and 2.25.17 .

struct windows_accountW {
MapSvrUnicodeNameString WindowsAccountName;

h

WindowsAccountName: A MapSvrUnicodeNameString (sec tion 2.2.2.3) that contains the name of
the Windows user account to use as the search criterion. The account name MUST be in the form

"DOMAIN \NAME". W indows user account and group account name constraints are specified in

WINUGA] _, and Windows domain naming conventions are specified in WINNSP] . The length of the
string MUST NOT exceed 512 bytes.

2.2.2.16 unix_auth

This type is used to specify UNIX account details returned as a result of an authentication operation
on the server. For more information, see sections 2.25.4 and 2.2.5.15 .

struct unix_auth {
MapSvrMBCSNameString UnixAccountPassword;
long ID;
long GIDArray<MAXGIDS>;

UnixAccountPassword: A MapSvrMBCS NameString (section 2.2.2.2) that contains the password
of the mapped UNIX account. The length of the string MUST NOT exceed 128 bytes.

ID: An XDR -encoded, 32 -bit signed integer that contains the UNIX user ID for the
UnixAccountPassword that was looked up.

GIDArray: An array of XDR -encoded, 32 -bit signed integers that contains the group IDs for the
UnixAccountPassword that was looked up. The maximum siz e of this array is MAXGIDS.

2.2.2.17 unix_authwW

This type is used to specify UNIX account details returned as a result of an authentication operation
on the server. For more information, see sections 2.2.5.4 and 2.2.5.15 .

struct unix_authW {
MapSvrUnicodeNameString UnixAccountPassword;
long ID;
long GIDArray<MAXGIDS>;

20/ 78

[MS-UNMP] — v20131025
User Name Mapping Protocol

Copyright © 2013 Microsoft Corporation.

Release: Friday, October 25, 2013

http://go.microsoft.com/fwlink/?LinkId=90568
http://go.microsoft.com/fwlink/?LinkId=90567
http://go.microsoft.com/fwlink/?LinkId=90568
http://go.microsoft.com/fwlink/?LinkId=90567

UnixAccountPassword: A MapSvr UnicodeNameString (section 2.2.2.3) that contains the password
of the mapped UNIX account. The length of the string MUST NOT exceed 256 bytes.

ID: An XDR-encoded, 32 -bit signed integer that contains the UNIX user ID for the
UnixAccountPassword that was looked up.

GIDArray: An array of XDR -encoded, 32 -hit signed integers that contains the group IDs for the
UnixAccountPassword that was looked up. The maxi mum size of this array is MAXGIDS.

2.2.2.18 unix_creds

This type is used to specify UNIX account details returned as a result of a lookup operation on the
server. For more information, see sections 2253 ,2259 ,and 2.2.5.10 .

struct unix_creds {
MapSvrMBCSNameString UnixAccountName;
long ID;
long GIDArray<MAXGIDS>;

UnixAccountName: A MapSvrMBCSNameString (section 2.2.2.2) that contains the name of the
mapped UNIX account. The length of the string MUST NOT exceed 128 bytes.

ID: An XDR -encoded, 32 -bit signed integer that contains the UNIX user ID for UnixAccountName.

GIDArray: An array of XDR -encoded, 32 -bit signed integers that contains the group IDs for
UnixAccountName. The maximum si ze of this array is MAXGIDS.

2.2.2.19 unix_credsW

This type is used to specify UNIX account details returned as a result of a lookup operation on the
server. For more information, see sections 2.25.14 ,2.25.17 ,and 2.2.5.18 .

struct unix_credsW {
MapSvrUnicodeNameString UnixAccountName;
long ID;
long GIDArray<MAXGIDS>;

UnixAccountName: A MapSvrUnicodeNameString (section 2.2.2.3) that contains the name of the
mapped UNIX account. The length of the string MUST NOT exceed 256 bytes.

ID: An XDR -encoded, 32 -bit signed integer that contains the UNIX user ID for UnixAccountName.

GIDArray: An array of XDR -encoded, 32 -bit signed integers that contains the group IDs for
UnixAccountName. The ma ximum size of this array is MAXGIDS.

2.2.2.20 dump_map_req

This type is used to specify an input parameter to start or continue a map enumeration request to
the server. For more information, see sections 2255 ,2257 ,225.11 ,and 2.2.5.12 .

21/78

[MS-UNMP] — v20131025
User Name Mapping Protocol

Copyright © 2013 Microsoft Corporation.

Release: Friday, October 25, 2013

struct dump_map_req {
long PrincipalType;
long MapRecordin dex;

PrincipalType: An XDR -encoded, 32 -bit signed integer that defines the type of account mapping to
enumerate. PrincipalType MUST be one of the following values.

Value Meaning
0x00000000 Enumerate user account mappings.
0x00000001 Enumerate group a ccount mappings.

MapRecordIndex: An XDR -encoded, 32 -bit signed integer that is an index into the set of mapping
records. This MUST be set to 0 on the first call in an enumeration sequence, and to the sum of all

the records returned by all preceding replie s on subsequent calls in the enumeration sequence. For
more information on enumeration sequences, see sections 3.15 and 3.25 .

2.2.2.21 sequence_number

This type is used by the server to define a version for a set of account mappings at a given point in
time. This number is changed by the server whenever any changes are made to the set of account

mappings that it maintains (for more information, see section 2.2.5.6). Ifeither ofth e member
fields changes, the sequence_number as a whole MUST be considered as changed.

struct sequence_number {
long CurrentVersionTokenLowPart;
long CurrentVersionTokenHighPart;

CurrentVersionTokenLowPart: An XDR -encoded, 32 -bit signed integer that MUST be either
0x00000000 or a value returned by the server from a previous call to
GETCURRENTVERSIONTOKEN_PROC or DUMPALLMAPSXXX_PROC. For more information about
CurrentVersionTokenLowPart, see sections 3.1.5 and 3.2.5 .

CurrentVersionTokenHighPart: An XDR -encoded, 32 -bit signed integer that MUST be either
0x00000000 or av alue returned by the server from a previous call to
GETCURRENTVERSIONTOKEN_PROC or DUMPALLMAPSXXX_PROC. For more information about
CurrentVersionTokenHighPart, see sections 3.1.5 and 3.2.5 .

2.2.2.22 mapping_record

This type is used to define a single account map when returned as an output from the map
enumeration procedure. For more information, see section 2231 .

struct mapping_record {
MapSvrMBCSNameString WindowsAccountName;
MapSvrMBCSNameString UnixAccountName;
long ID;

22/78

[MS-UNMP] — v20131025
User Name Mapping Protocol

Copyright © 2013 Microsoft Corporation.

Release: Friday, October 25, 2013

WindowsAccountName: A MapSvrMBCSNameString (section 2.2.2.2) that contains the name of
the Windows user or group account in the enumeration. The length of the string MUST NOT exceed
128 bytes. The Windows account name MUST be in the "DOMAIN \NAME" format.

UnixAccountName: A MapSvrMBCSNameString that contains the name of the UNIX user or group
account in the enumeration. The length of the string MUST NOT exceed 128 bytes.

ID: An XDR -encoded, 32 -bit signed integer that contains th e UNIX user ID or group ID for
UnixAccountName as specified by PrincipalType in the request (section 2.25.5).

2.2.2.23 sid

This type is used to define a Windows account SID when used as input to look up the UNIX account
mapping details that correspond to the Windows account represented by this SID. For more
information, see sections 2.2.5.10 and 2.2.5.18 .

struct sid {
char SID<MAXSIDLEN>;
h
SID: An array of XDR -encoded unsigned bytes that is a stream representation of the Windo ws
account SID, as specified in MS -DTYP] section 2.4.2.2. The SubAuthority field of the SID ([MS-
DTYP] section 2.4.2.2) packet is a variable -length array of unsigned 32 -bit little-endian integers.

The sid structure is an opaque data type generated by the Windows security subsystem. It is not
converted to any byte -ordered network representation, and SHOULD NOT be interpreted by the User
Name Mapping Protocol client or server directly; instead, it SHOULD be supplied to the underlying
implementation -defined security subsystem. The maximum size of the SID array inthe sid
structure is MAXSIDLEN.

Note Because the SID is transmitted as a raw array of bytes, the client and s erver MUST have
identical native SID representations for user name mapping to succeed. See sections 4.9 and 4.17
for examples.

2.2.2.24 mapping_recordW

This type is used to define a single account map when returned as output from the map
enumeration procedure. For more information, see section 2.2.3.3 .

struct mapping_recordW {
MapSvrUnicodeNameString WindowsAccountName;
MapSvrUnicodeNameString UnixAccountName;
long ID;

WindowsAccountName: A MapSvrUnicodeNameString (section 2.2.2.3) that contains the name of
the Windows user or group account in the enumeration. The length of the string MUST NOT exceed
256 bytes. The account name MUST b e in the form "DOMAIN \NAME".

UnixAccountName: A MapSvrUnicodeNameString that contains the name of the UNIX user or
group account in the enumeration. The length of the string MUST NOT exceed 256 bytes.

ID: An XDR -encoded, 32 -bit signed integer that contains the UNIX user ID or group ID for
UnixAccountName, as specified by PrincipalType in the request (section 2.2.5.11).

23/78

[MS-UNMP] — v20131025
User Name Mapping Protocol

Copyright © 2013 Microsoft Corporation.

Release: Friday, October 25, 2013

%5bMS-DTYP%5d.pdf
%5bMS-DTYP%5d.pdf
%5bMS-DTYP%5d.pdf
%5bMS-GLOS%5d.pdf

2.2.3 Non-XDR-Compliant Data Structures

There are four data structures that cannot be defined using a pure XDR definition. Instead they are
defined in terms of lower -level XDR primitives. The difference is as follows. XDR defines fixed -size
arrays in terms of constants only. On the other hand, the User Name Mapping Protocol has four

structures that use a dynamic v alue for the array size, and the layout of the fields in the User Name

Mapping Protocol precludes the use of the XDR variable -sized array data type. For each of the four

data types that follow, the structures are described as their standard XDR types, foll owed by an XDR
vector that uses a dynamic size rather than a constant. This is very similar to the standard XDR

variable -sized array but with a separate size value rather than one built into the array type.

See section 7 for sample code that shows how to encode and decode each of the four data
structures.

2.2.3.1 mapping

This type is used to define a set of account maps when returned as output from the map
enumeration procedure. For more information, see section 2255 .

struct mapping {
sequence_number Token;
long MappingRecordCount;
long TotalMappingRecordCount;
mapping_record MapArray[MappingRecordCount];

Token: A seqguence_number (section 2.2.2.21) that represents the current version of the data set
maintained by the User Name Mapping Protocol server.

MappingRecordCount: An XDR -encoded, 32 -bit signed integer that indicates the number of
records that are returned in MapArray.

TotalMappingRecordCount: A 32 -bit signed integer value that indicates the total number of
mapping records of the specified PrincipalType (as specified in section 2.2.5.5) held by the server
that are available to be enumerated.

MapArray: An array of account mapping records that is returned as a part of the current
enumeration sequence, as specified in section 2.2.2.22 .

2.2.3.2 maps

This type is used to define a set of account maps in colon -delimited string format when returned as
output from the map enumeration procedure. For more information, see section 2257 .

struct maps {
sequence_number Token;
long MappingRecordCount;
long TotalMappingRecordCount;
MapSvrMBCSMapString MapArray[MappingRecordCount];

Token: A sequence of numbers that represent the version for the set of account maps returned in
the current enumeration.

24 /78

[MS-UNMP] — v20131025
User Name Mapping Protocol

Copyright © 2013 Microsoft Corporation.

Release: Friday, October 25, 2013

MappingRecordCount: An XDR -encoded, 32 -bit signed integer that indicates the maximum
number of records to be returned in the MapArray field.

TotalMappingRecordCount: A 32 -bit signed integer value that indicates the total number of
mapping records of the specified PrincipalType (as specified in section 2.2.5.7) held by the server
that are available to be enumerated.

MapArray: An array of account mapping records that is returned a s a part of the current
enumeration sequence (as specified in section 2.2.2.6).

2.2.3.3 mappingW

This type is used to define a set of account maps when returned as output from the map
enumeration procedure. For more information, see section 22511 .

struct mappingW {
sequence_number Token;
long MappingRecordCount;
long TotalMappingRecordCount;
mapping_recordW MapArray[MappingRecordCount];

Token: A sequence number that represents the version for the set of account mappings that are
returned in the cur rent enumeration.

MappingRecordCount: An XDR -encoded, 32 -bit signed integer that indicates the number of
records that are returned in the MapArray field.

TotalMappingRecordCount: A 32 -bit signed integer value that indicates the total number of
mapping rec ords of the specified PrincipalType (section 2.2.5.11) held by the server that are
available to be enumerated.

MapArray: An array of account mapping records that is returned as a part of the current
enu meration sequence. For more information, see section 2.2.2.24 .

2.2.3.4 mapsW

This type is used to define a set of account maps in colon -delimited string format when returned as
an output from the map enumeration procedure. For more information, see section 22512 .

struct mapsW {
sequence_number Token;
long MappingRecordCount;
long TotalMappingRecordCount;
MapSvrUnicodeMapString MapArray[MappingRecordCount];

Token: A sequence_number (se ction 2.2.2.21).

MappingRecordCount: An XDR -encoded, 32 -bit signed integer that indicates the maximum
number of records in MapArray.

TotalMappingRecordCount: A 32 -bit signed integer value that indicates the total number of
mapping records of the specified PrincipalType (section 2.2.5.12) held by the server that are
available to be enumerated.

25/78

[MS-UNMP] — v20131025
User Name Mapping Protocol

Copyright © 2013 Microsoft Corporation.

Release: Friday, October 25, 2013

MapArray: An array of MapSvrUnicodeMapString (section 2227).

2.2.4 Standard Failure Responses

SUNRPC defines a set of standard responses to requests that the User Name Mapping Protocol
server is unable to service. The following tables list the set of status codes that can be returned by
the User Name Mapping Protocol server.

If SUNRPC status is MSG_ACCEP TED.

Accept status

SUCCESS

PROG_UNAVAIL

PROG_MISMATCH

PROC_UNAVAIL

GARBAGE_ARGS

SYSTEM_ERR

If SUNRPC status is MSG_DENIED.

Reject status Reason rejected

RPC_MISMATCH

AUTH_ERROR AUTH_BADCRED

These status codes have the following meanings:

>

SUCCESS: RPC call executed successfully (RFEC1057]).

>

PROG_UNAVAIL: Wrong PROGRAM_NUMBER for the port (RFC1057]).

>

PROG_MISMATCH: Unsup ported protocol version number requested (RFC1057]).

>

PROC_UNAVAIL: Nonexistent procedure number requested (RFC1057]).

>

GARBAGE_ARGS: Supplied arguments illegal or otherwise not decodable (RFC1057]).

>

SYSTEM_ERR: Errors like memory allocation failure (RFC1831]).

>

RPC_MISMATCH: Invalid SUNRPC version number (RFEC1057]).

>

AUTH_ERROR: Remote cannot authenticate caller (RFEC1057]).

A AUTH_BADCRED: Bad credentials in RPC call ([REC1057]). <5>

2.2.5 User Name Mapping Protocol Messages

The User Name Mapping Protocol procedure messages are defined in the SUNRPC request and
response headers, as specified in RFC1057] section 8. The following table lists the procedure
messages in procedure number order.

26/ 78

[MS-UNMP] — v20131025
User Name Mapping Protocol

Copyright © 2013 Microsoft Corporation.

Release: Friday, October 25, 2013

http://go.microsoft.com/fwlink/?LinkId=90265
http://go.microsoft.com/fwlink/?LinkId=90265
http://go.microsoft.com/fwlink/?LinkId=90265
http://go.microsoft.com/fwlink/?LinkId=90265
http://go.microsoft.com/fwlink/?LinkId=90265
http://go.microsoft.com/fwlink/?LinkId=90295
http://go.microsoft.com/fwlink/?LinkId=90265
http://go.microsoft.com/fwlink/?LinkId=90265
http://go.microsoft.com/fwlink/?LinkId=90265
http://go.microsoft.com/fwlink/?LinkId=90265

Procedure name Procedure number Version
MAPPROC_NULL 0 1,2
GETWINDOWSCREDSFROMUNIXUSERNAME_PROC 1 1,2
GETUNIXCREDSFROMNTUSERNAME_PROC 2 1,2
AUTHUSINGUNIXCREDS_PROC 3 1,2
DUMPALLMAPS_PROC 4 1,2
GETCURRENTVERSIONTOKEN_PROC 5 1,2
DUMPALLMAPSEX_PROC 6 1,2
GETWINDOWSGROUPFROMUNIXGROUPNAME_PROC 7 1,2
GETUNIXCREDSFROMNTGROUPNAME_PROC 8 1,2
GETUNIXCREDSFROMNTUSERSID_PROC 9 2
DUMPALLMAPSW_PROC 10 2
DUMPALLMAPSEXW_PROC 11 2
GETWINDOWSUSERFROMUNIXUSERNAMEW_PROC 12 2
GETUNIXCREDSFROMNTUSERNAMEW_PROC 13 2
AUTHUSINGUNIXCREDSW_PROC 14 2
GETWINDOWSGROUPFROMUNIXGROUPNAMEW_PROC 15 2
GETUNIXCREDSFROMNTGROUPNAMEW_PROC 16 2
GETUNIXCREDSFROMNTUSERSIDW_PROC 17 2
2.2.5.1 MAPPROC_NULL (PROC 0)

A null procedure that is used for service discovery as specified in RFC1057] section A.2.
void
MAPPROC_NULL(
void
)

This procedure requires no arguments, and a successful reply MUST contain no data other than a

SUNRPC reply status of MSG_ACCEPTED, as specified in RFC1057] .

The typical use of a null procedure is for the clients to discover whether the service is started and

available. This procedure has a procedure number equal to 0.

2.2.5.2 GETWINDOWSCREDSFROMUNIXUSERNAME_PROC (PROC 1)
A request to fetch the mapped Windows user account name for a specified UNIX user name and/or
UNIX user.
27/ 78

[MS-UNMP] — v20131025
User Name Mapping Protocol

Copyright © 2013 Microsoft Corporation.

Release: Friday, October 25, 2013

http://go.microsoft.com/fwlink/?LinkId=90265
http://go.microsoft.com/fwlink/?LinkId=90265

windows_creds
GETWINDOWSCREDSFROMUNIXUSERNAME_PROC(
unix_account UnixUser

);

UnixUser: The UNIX user to search for, using the account name and/or UID as the search criteria, as
specified by the value for SearchOption.

Return Value: A windows_creds _record that contains the mapped Windows user account details for
the specified UNIX user. Whenever the lookup request for a specified UNIX account succeeds or fails

to find a corresponding Windows account map, the User Name Mapping Protocol server MUST return

a SUNRPC status of MSG_ACCEPTED with an accept status of SUCCESS. The actual success or

failure of the request MUST be set in the Status member of the returned structure. Status isa
Boolean value, with 0 indicating a successful lookup request and 1 indicating a failed lookup request.

2.2.5.3 GETUNIXCREDSFROMNTUSERNAME_PROC (PROC 2)

A request to fetch the mapped UNIX user account details for a specified Windows user account
name.

unix_creds
GETUNIXCREDSFROMNTUSERNAME_PROC(
windows_account WindowsUserAccountName

)

WindowsUserAccountName: The Windows user to use for the account name as the search criterion.

Return Value: A unix_creds record containing the mapped UNIX user account details for the
specified Windows a ccount name. Whenever the lookup request for a specified Windows account
fails to find a corresponding UNIX account map, the User Name Mapping Protocol server MUST

return a SUNRPC status of MSG_ACCEPTED with an accept status of SUCCESS. It MUST also return
a zero -length string inthe UnixAccountName member of the returned structure.

2.2.5.4 AUTHUSINGUNIXCREDS_PROC (PROC 3)
A request to fetch the UNIX account details for a given UNIX user name and password.

This procedure is typically used by clients that are doing a simple authentication by providing a user
name and password. The password string is the string returned by a call to the crypt() API using the
user's cleartext password, as described in section 3 of the System Interfaces Volume (XSH) of

IEEE1003.1] .

unix_auth
AUTHUSINGUNIXCREDS_PROC(
unix_user_auth UnixUserAuth

);

UnixUserAuth: UNIX user name and password to use as the search criteria. <6>

Return Value: A unix_auth record that contains the mapped UNIX user account details for the
specified UNIX account. Whenever the lookup request for a specified UNIX account fail stofind a
corresponding UNIX account map, the User Name Mapping Protocol server MUST return a SUNRPC

28/ 78

[MS-UNMP] — v20131025
User Name Mapping Protocol

Copyright © 2013 Microsoft Corporation.

Release: Friday, October 25, 2013

http://go.microsoft.com/fwlink/?LinkId=89897

status of MSG_ACCEPTED with an accept status of SUCCESS. It MUST also return a zero -length
string in the UnixAccountPassword member of the returned struc ture.

2.2,5.5 DUMPALLMAPS_PROC (PROC 4)

A request to enumerate all account mappings held by the service.

mapping
DUMPALLMAPS_PROC(
dump_map_req EnumCursor

)

EnumCursor: A PrincipalType and index to start or continue an enumeration.

Return Value: A mapping type that describes an array of zero or more mapping_record types.
Whenever the enumeration request fails to find any records to either begin or continue the

enumeration, the User Name Mapping Protocol server MUST return a SUNRPC status of
MSG_ACCEPTED with an accept status of SUCCESS, and MUST return 0 in the

MappingRecordCount field. It MUST also return a zero -length set of mapping_record types in the
MapArray member of the returned structure . The User Name Mapping Protocol server MUST also
return current values for the server sequence_number _inthe Token field and the total mapping
record count for the specified enumeration in the TotalMappingRecordCount field of the returned
structure.

2.2.5.6 GETCURRENTVERSIONTOKEN_PROC (PROC 5)

A request for the current account -mapping sequence number for the set of mapping records held by
the server. This procedure is used by clients to check whether any map records changed since the
last enumeration by the client.

sequence_number
GETCURRENTVERSIONTOKEN_PROC(
sequence_number SequenceNumber

);

SequenceNumber: A data structure that contains two 32 -bit signed integers. SequenceNumber
MUST contain either 0x00000000 for each member field or a value returned by the server from a

previous call to GETCURRENTVERSIONTOKEN_PROC or DUMPALLMAPSXXX_PROC. For more
information, see sections 3.1.5 and 3.25.

Return Value: The User Name Mapping Protocol server MUST return a SUNRPC status of
MSG_ACCEPTED with an accept status of SUCCESS. It MUST also return a sequence_number
structure with the current sequence number value for the set of mapping records held by the server.

2.2.5.7 DUMPALLMAPSEX_PROC (PROC 6)

A request to enumerate all account mappings held by the service.

maps
DUMPALLMAPSEX_PROC(
dump_map_req EnumCursor

);

29/ 78

[MS-UNMP] — v20131025
User Name Mapping Protocol

Copyright © 2013 Microsoft Corporation.

Release: Friday, October 25, 2013

EnumCursor: A PrincipalType and index to start or continue an enumeration.

Return Value: A maps type record that describes an array of zero or more MapSvrMBCSMapsString
types. Whenever the enumeration request fails to find any records to either begin or continue the

enumeration, the User Name Mapping Protocol server MUST return a SUNRPC status of
MSG_ACCEPTED with an accept status of SUCCESS, and MUST return 0 in the

MappingRecordCount field. It MUST also return a zero -length set of MapSvrMBCSMa pString types

inthe MapArray member of the returned structure.

The User Name Mapping Protocol server MUST also return current values for the server
sequence_number _inthe Token field and the total mapp ing record count for the specified
enumeration inthe TotalMappingRecordCount field of the returned structure.

2.2.5.8 GETWINDOWSGROUPFROMUNIXGROUPNAME_PROC (PROC 7)

A request to fetch the Windows group account information that corresponds to a UNIX group name.

windows_creds
GETWINDOWSGROUPFROMUNIXGROUPNAME_PROC(
unix_account UnixGroupAccount

);

UnixGroupAccount: A UNIX group to search for, using the account name and/or GID as the search
criteria, as specified by the value for SearchOption.

Return Value: A windows_creds record that contains the mapped Windows group account details

for the specified UNIX group. Whenever the lookup request for a specified UNIX account succeeds or
fails to find a corresponding Windows account map, the User Name Mapping Protocol server MUST
return a SUNRPC status of MSG_ACCEPTED with an accept status of SUCCESS. The actual success

or failure of the request MUST be set in the Status member of the returned structure. Status isa
Boolean value, with 0 indicating a successful lookup request and 1 indicating a failed looku p request.

2.2.5.9 GETUNIXCREDSFROMNTGROUPNAME_PROC (PROC 8)

A request to fetch the UNIX group account information that corresponds to a Windows group name.

unix_creds
GETUNIXCREDSFROMNTGROUPNAME_PROC(
windows_account WindowsGroupAccountName

);

WindowsGroupAccountName: A Windows group to use for the account name as the search criteria.

Return Value: A unix_creds record that contains the mapped UNIX group account details for the
specified Window s account name. Whenever the lookup request for a specified Windows account
fails to find a corresponding UNIX account map, the User Name Mapping Protocol server MUST

return a SUNRPC status of MSG_ACCEPTED with an accept status of SUCCESS. It MUST also ret urn
a zero -length string in the UnixAccountName member of the returned structure.
2.2.5.10 GETUNIXCREDSFROMNTUSERSID_PROC (PROC 9)
A request for the UNIX account information that corresponds to the Windows account specified by
the SID.
30/ 78

[MS-UNMP] — v20131025
User Name Mapping Protocol

Copyright © 2013 Microsoft Corporation.

Release: Friday, October 25, 2013

unix_creds
GETUNIXCREDSFROMNTUSERSID_PROC(
sid SID

);

SID: A Windows SID to use as the search criteria.

Return Value: A unix_creds record that contains the mapped UNIX account details for the specified
Windows SID. Whenever the lookup request for a specified W indows SID fails to find a
corresponding UNIX account map, the User Name Mapping Protocol server MUST return a SUNRPC

status of MSG_ACCEPTED with an accept status of SUCCESS. It MUST also return a zero -length
string inthe UnixAccountName member of the ret urned structure.

2.2.5.11 DUMPALLMAPSW_PROC (PROC 10)

This procedure is the wide character counterpart of DUMPALLMAPS_PROC. The request and response
packets are identical to DUMPALLMAPS_PROC, except that the return value is a mappingW _ data type

instead of a mapping datat ype. For example, the = MapSvrMBCSNameString _ data type is replaced
with a MapSvrUnicodeNameString _ type in the byte stream.

mappingW
DUMPALLMAPSW_PROC(
dump_map_req EnumCursor

);

EnumCursor: A PrincipalType and index to start or continue an enumeration.

Return Value: A mappingW type that describes an array of zero or more mapping_recordW _ types.
Whenever the enumeration request fails to find any records to either begin or continue the

enumeration, the User Name Mapping Protocol server MUST return a SUNRPC status of

MSG_ACCEPTED with an accept status of SUCCESS, and MUST return O in the

MappingRecordCount field. It MUST also return a zero -length set of mapping_recordW types in

the MapArray member of the returned structure. The User Name Mapping Protocol server MUST

also return current values for the server sequence_number _inthe Token field, and the total

mapping record count for the specified enumeration in the TotalMappingRecordCount field of the
returned structure.

2.2.5.12 DUMPALLMAPSEXW_PROC (PROC 11)

This procedure is the wide character counterpart of DUMPALLMAPSEX_PROC. The request and
response packets are identical to DUMPALLMAPSEX_PROC, except that the MapSvrMBCSMapString
data type is replaced with a MapSvrUnicodeMapString _ type in the byte stream.

mapsW
DUMPALLMAPSEXW_PROC(
dump_map_req EnumCursor

);

EnumCursor: A PrincipalType and index to start or continue an enumeration.

Return Value: A mapsW type record that describes an array of zero or more
MapSvrUnicodeMapString types. Whenever the enumeration request fails to find any records to
either begin or continue the enumeration, the User Name Mapping Protocol server MUST return a

31/78

[MS-UNMP] — v20131025
User Name Mapping Protocol

Copyright © 2013 Microsoft Corporation.

Release: Friday, October 25, 2013

SUNRPC status of MSG_ACCEPTED with an accept status of SUCCESS, and MUST return O in the
MappingRecordCount field. It MUST a Iso return a zero -length set of MapSvrUnicodeMapString
typesinthe MapArray member of the returned structure. The User Name Mapping Protocol server

MUST also return current values for the server sequenc e_number inthe Token field, and the total
mapping record count for the specified enumeration in the TotalMappingRecordCount field of the
returned structure.

2.2.5.13 GETWINDOWSUSERFROMUNIXUSERNAMEW_PROC (PROC 12)

This procedure is the wide character counterpart to

GETWINDOWSCREDSFROMUNIXUSERNAME_PROC . The request and response packets are identical

to GETWINDOWSCREDSFROMUNIXUSERNAME_PROC, except that the MapSvrMBCSNameString _ data
type is replaced with a MapSvrUnicodeNameString type in the byte stream.

windows_credsW
GETWINDOWSUSERFROMUNIXUSERNAMEW_PROC(
unix_accountW UnixUser

);

UnixUser: A UNIX account to search for, using the account name and/or UID as the search criteria,
as specified by the val ue for SearchOption.

Return Value: A windows_credsW record that contains the mapped Windows user account details

for the specified UNIX user account. Whenever the lookup request for a specified UNIX acco unt
succeeds or fails to find a corresponding Windows account map, the User Name Mapping Protocol

server MUST return a SUNRPC status of MSG_ACCEPTED with an accept status of SUCCESS. The

actual success or failure of the request MUST be set in the Status me mber of the returned
structure. Status is a Boolean value, with 0 indicating a successful lookup request and 1 indicating a
failed lookup request.

2.2.5.14 GETUNIXCREDSFROMNTUSERNAMEW_PROC (PROC 13)

This procedure is the wide character counterpart to GETUNIXCREDSFROMNTUSERNAME_PROC. The
request and response packets are identical to GETUNIXCREDSFROMNTUSERNAME_PROC, except

that the MapSvrMBCSNameString _ data type is replaced with a MapSvrUnicodeNamesString __ type in
the byte stream.

unix_credsW
GETUNIXCREDSFROMNTUSERNAMEW_PROC(
windows_accountW WindowsUserAccountName

);

WindowsUserAccountName: A Windows account to use for the account name as the search criterion.

Return Value: A unix_credsW record that contains the mapped UNIX user account details for the
specified Windows account name. Whenever the lookup request for a specified Windows account

fails to find a corresponding UNIX acco unt map, the User Name Mapping Protocol server MUST
return a SUNRPC status of MSG_ACCEPTED with an accept status of SUCCESS. It MUST also return
a zero -length string in the UnixAccountName member of the returned structure.

2.2.5.15 AUTHUSINGUNIXCREDSW_PROC (PROC 14)

This procedure is the wide character counterpart to AUTHUSINGUNIXCREDS_PROC . The request and
response packets are identical to AUTHUSINGUNIXCREDS_PROC, except that the

32/78

[MS-UNMP] — v20131025
User Name Mapping Protocol

Copyright © 2013 Microsoft Corporation.

Release: Friday, October 25, 2013

MapSvrMBCSNameString data type is replaced with a MapSvrU nicodeNamesString type in the byte
stream.

unix_authw
AUTHUSINGUNIXCREDSW_PROC(
unix_user_authW UnixUserAuth

);

UnixUserAuth: A UNIX user name and password to use as the search criteria. <7>

Return Value: A unix_authW record that contains the mapped UNIX user account details for the
specified UNIX account. Whenever the lookup request for a specified UNIX account fails to find a
corresponding UNIX account map, the User Name Mapping Pro tocol server MUST return a SUNRPC
status of MSG_ACCEPTED with an accept status of SUCCESS. It MUST also return a zero -length
string in the UnixAccountPassword member of the returned structure.

2.2,5.16 GETWINDOWSGROUPFROMUNIXGROUPNAMEW_PROC (PROC 15)

This procedure is the wide character counterpart to

GETWINDOWSGROUPFROMUNIXGROUPNAME_ PROC . The request and response packets are identical
to GETWINDOWSGROUPFROMUNIXGROUPNAME_PROC, except that the MapSvrMBCSNamesString
data type is replaced with a MapSvrUnicodeNameString __ type in the byte stream.

windows_credsW
GETWINDOWSGROUPFROMUNIXGROUPNAMEW_PROC(
unix_accountW UnixGroupAccount

);

UnixGroupAccount: A UNIX group to search for, using the account name and/or GID as the search
criteria, as spe cified by the value for SearchOption.

Return Value: A windows_credsW record that contains the mapped Windows group account details

for the specified UNIX group. Whenever the lookup request for a specifie d UNIX account succeeds or
fails to find a corresponding Windows account map, the User Name Mapping Protocol server MUST

return a SUNRPC status of MSG_ACCEPTED with an accept status of SUCCESS. The actual success

or failure of the request MUST be set in th e Status member of the returned structure. Status isa
Boolean value, with 0 indicating a successful lookup request and 1 indicating a failed lookup request.

2.2.5.17 GETUNIXCREDSFROMNTGROUPNAMEW_PROC (PROC 16)

This procedure is the wide character counterpart to GETUNIXCREDSFROMNTGROUPNAME_PROC.
The request and response packets are identical to GETUNIXCREDSFROMNTGROUPNAME_PROC,

except thatthe MapSvrMBCSNameString _ data type is replaced with a MapSvrUnicodeNamesString
type in the byte stream.

unix_credsW
GETUNIXCREDSFROMNTGROUPNAMEW_PROC(
windows_accountW WindowsGroupAccountName

);

WindowsGroupAccountName: A Windows group to use as the account name in the search criteria.

33/78

[MS-UNMP] — v20131025
User Name Mapping Protocol

Copyright © 2013 Microsoft Corporation.

Release: Friday, October 25, 2013

Return Value: A unix_credsW _record that contains the mapped UNIX group account details for the
specified Windows account name. Whenever the lookup request for a specified Windows account

fails to find a corresponding UNIX acc ount map, the User Name Mapping Protocol server MUST
return a SUNRPC status of MSG_ACCEPTED with an accept status of SUCCESS. It MUST also return
a zero -length string in the UnixAccountName member of the returned structure.

2.2,5.18 GETUNIXCREDSFROMNTUSERSIDW_PROC (PROC 17)

This procedure is the wide character counterpart to GETUNIXCREDSFROMNTUSERSID_PROC . The
request and response packets are identical to GETUNIXCREDSFROMNTUSERSID_PROC, except that

the MapSvrMBCSNameString data type is replaced with a MapSvrUnicodeNameString type in the
byte stream.

unix_credswW
GETUNIXCREDSFROMNTUSERSIDW_PROC(
sid SID

);

SID: A Windows SID to use as the search criteria.

Return Value: A unix_credsW record that contains the mapped UNIX account details for the
specified Windows SID. Whenever the lookup request for a specified Windows SID fails to find a
corresponding UNIX account map, the User Name Mapping Protocol server MUST return a SUNRPC

status of MSG_ACCEPTED with a n accept status of SUCCESS. It MUST also return a zero -length
string inthe UnixAccountName member of the returned structure.

34/78

[MS-UNMP] — v20131025
User Name Mapping Protocol

Copyright © 2013 Microsoft Corporation.

Release: Friday, October 25, 2013

3 Protocol Details

With the exception of the DUMPALLMAPSXXX_PROC procedures, requests sent by the User Name
Mapping Protocol client generate a single response from the User Name Mapping Protocol server.
There is no predetermined sequencing.

The DUMPALLMAPSXXX_PROC procedures are used to enumerate some or all of the mapping

records held by the User Name Mapping Protocol server. All the DUMPALLMAPSXXX_PROC

procedures follow the same sequencing rules, as defined in the following sections. The se quence can
be restricted to a single request -response pair, or it can extend over many request -response pairs,
depending on the number of maps available on the User Name Mapping Protocol server and the

requirements of the User Name Mapping Protocol client.

Each enumeration sequence is independent of other individual requests or enumeration sequences
between the User Name Mapping Protocol client and server. Therefore, multiple enumerations (from
the same or different clients) for user map and group map can p roceed in parallel without any
interference.

3.1 Client Details

3.1.1 Abstract Data Model

This section describes a conceptual model of possible data organization that an implementation
maintains to participate in this protocol. The described organization is provided to facilitate the
explanation of how the protocol behaves. This document does n ot mandate that implementations
adhere to this model, as long as their external behavior is consistent with that described in this

document.

Clients of the User Name Mapping Protocol can maintain copies of user mappings (and group

mappings) enumerated from the server. Clients can use the DUMPALLMAPSXXX_PROC procedures to
enumerate all individual maps from the server. The server treats account mappings as an unordered

array of mapping records of total count equal to TotalMappingRecordCount, as explained in
sections 2.2.3.1 and 2.2.3.3 . The index of records begins at zero, and MappingRecordCount
indicates the number of map records returned by the server in the current RPC response packet.

Clients can cache CurrentVersionTokenHighPart and CurrentVersionTokenLowPart values
returned by the DUMPALLMAPSXXX_PROC response to implement cache consistency. Cache

consistency is implemented on clients by periodically p olling the server's
GETCURRENTVERSIONTOKEN_PROC procedure to know when to refresh their locally cached copies

of mappings.

As an alternative to the enumeration request (DUMPALLMAPSXXX_PROC), the clients can cache the
results of individual account lookup requests and use GETCURRENTVERSIONTOKEN_PROC to know
when to refresh their locally cached copies of mappings.

Clients of the User Name Mapping Protocol are at liberty to implement caching and persistence i n
any way they please. The User Name Mapping Protocol server functions as a read -only lookup
service of account mappings.

The following figure shows the data model for a client of the User Name Mapping Protocol.

35/78

[MS-UNMP] — v20131025
User Name Mapping Protocol

Copyright © 2013 Microsoft Corporation.

Release: Friday, October 25, 2013

MapCache

CurrentVersionToken MapRecord - MapRecord |

Figure 1: User Name Mapping Protocol data model: Client
There are three elements in the model: MapCache, MapRecord, and CurrentVersionToken.

MapCache: The MapCache element models the information that the client has collected from the

server by enumerating maps us ing the DUMPALLMAPSXXX_PROC. The MapCache element contains a
list (or array) of MapRecord elements, each of which describes the mapping between a Windows and

a UNIX account.

MapRecord: The MapRecord element models the information for a single Windows -to-UNIX user
account mapping or group account mapping. It contains the UNIX account name and UID, a GID,
and the supplementary GID details that correspond to a Windows account name and domain.

CurrentVersionToken: This element models the version of the cache as a whole. This element is
guaranteed by the server to be different for different versions of the MapCache. Clients can use this

element to implement cache consistency with respect to the server by periodically polling this token

by using the GETCURRENTVERS IONTOKEN_PROC procedure.

3.1.2 Timers

There are no timers in the User Name Mapping Protocol beyond those used by SUNRPC.

3.1.3 Initialization

None.

3.1.4 Higher-Layer Triggered Events

None.

3.1.5 Message Processing Events and Sequencing Rules

The User Name Mapping Protocol allows a User Name Mapping Protocol client to retrieve a complete

set of account mappings from the server and to maintain a copy of these mappings in a local cache.

The client uses a combination of the DUMPALLMAPSXXX_PROC and
GETCURRENTVERSIONTOKEN_PROC procedure calls to retrieve the accoun t mappings and to check
for updates to the account mappings in the server, respectively. The DUMPALLMAPSXXX_PROC

procedure that is chosen is determined by the type of information that the User Name Mapping

Protocol client chooses to cache.

36/78

[MS-UNMP] — v20131025
User Name Mapping Protocol

Copyright © 2013 Microsoft Corporation.

Release: Friday, October 25, 2013

All procedures o ther than DUMPALLMAPSXXX_PROC are self -contained in that they do not require
any other procedures to be sequenced in order to complete successfully. The User Name Mapping
Protocol client does not need to maintain any state to implement sequencing across pr ocedure calls.

For all procedures, the processing rules for a server -returned response packet are specified in
RFC1057] section 8. The client MUST interpret server procedure response status of
MSG_ACCEPTED or MSG_DENIED according to those rules.

3.1.5.1 Making the Initial Account Mapping Request to the Server

The sequence begins when a User Name Mapping Protocol client sends a DUMPALLMAPSXXX_PROC
procedure request to the server, with the MapRecordIndex field equal to O to indicate the start of
a new enumeration sequence and the PrincipalType field equal to the record type to be returned.

3.1.5.2 Processing the Account Mapping Response from the Server

If the DUMPALLMAPSXXX_PROC response from the server indicates success and the returned value

of MappingRecordCount is less than the returned value of TotalMappingRecordCount, the client
proceeds to section 3.1.5.3 ; the enumeration of account mappings returned from the server is

incomplete and there are more records to retrieve.

Otherwise, the enumeration returned is complet e if the response indicates success. The client MAY
send another DUMPALLMAPSXXX_PROC request to the server if the response indicates failure.

3.1.5.3 Making Further Account Mapping Requests to the Server

The User Name Mapping Protocol client continues to make further DUMPALLMAPSXXX_PROC

requests, each time increasing the value of MapRecordIndex to the total number of map records
returned by the server so far for this enumeration. For example, if the first reply returned 15

records, and the second reply returned 12 records, the third request in the sequence sets the
MapRecordIndex to 27 (15 + 12). The User Name Mapping Pro tocol client continues to make
requests until there are no more account mappings to retrieve from the server. This is indicated by

a DUMPALLMAPSXXX_PROC reply that contains zero records (MappingRecordCount is 0), or if the
next DUMPALLMAPSXXX_PROC request would set MapRecordIndex to
TotalMappingRecordCount. TotalMappingRecordCount is returned in the server
DUMPALLMAPSXXX_PROC response.

If at any point the values of CurrentVersionTokenHighPart, CurrentVersionTokenLowPart, or
TotalMappingRecordCount returned by the server in the DUMPALLMAPSXXX_PROC response

change from the initial values returned when MapRecordIndex was set to 0 in the
DUMPALLMAPSXXX_PROC request, the current enumeration MUST be abandoned and restarted with

a new DUMPALLMAPSXXX_PROC request (MapRecordIndex equal to 0).

3.1.5.4 Polling for Cache Consistency

The User Name Mapping Protocol client uses GETCURRENTVERSIONTOKEN_PROC to periodically
check the server for cache consistency. Whenever any of the user or group account mappings on the
server change, the tokens returned in the response to GETCURRENTVERSIONTOKEN_PROC are
different, at which point the client MUST discard its ¢ ached copy of all the mappings in their entirety
and enumerate the new set of mappings from the server.

If CurrentVersionTokenHighPart and CurrentVersionTokenLowPart in the

GETCURRENTVERSIONTOKEN_PROC reply are the same as those from the previous enumerati on,

there have been no changes to any map records, and any cache of map records being maintained by

the User Name Mapping Protocol client is still valid. If either CurrentVersionTokenHighPart or
37/78

[MS-UNMP] — v20131025
User Name Mapping Protocol

Copyright © 2013 Microsoft Corporation.

Release: Friday, October 25, 2013

http://go.microsoft.com/fwlink/?LinkId=90265

CurrentVersionTokenLowPart in the GETCURRENTVERSIONTOKEN_PROC reply differs from those
returned by the previous enumeration, the mapping records have been updated, and the User Name

Mapping Protocol client MUST consider the local cached copies of the mapping records as out of date

and MUST repeat the enumeration to get the updated set of mapping records.

3.1.6 Timer Events

None.

3.1.7 Local Events

None.
3.2 Server Details

3.2.1 Abstract Data Model

This section describes a conceptual model of possible data organization that an implementation
maintains to participate in this protocol. The described organization is provided to facilitate the
explanation of how the protocol behaves. This document does n ot mandate that implementations
adhere to this model, as long as their external behavior is consistent with that described in this

document.

The User Name Mapping Protocol server maintains a database of account mappings and provides
procedures for enumerat ion of these account mappings. The server maintains a unique 64 - bit
sequence number that is initialized at server startup and changed whenever the database of maps is
updated.

The User Name Mapping Protocol server returns the 64 - bit sequence number to the clients to allow
them to implement a polling -based cache consistency scheme that times out locally cached copies of
account mappings on the client.

The following figure shows the data model for the User Name Mapping Protocol server.

MapDatabase

CurrentVersionToken MapRecord - MapRecord - ..

Figure 2: User Name Mapping Protocol data model: Server
There are three elements in the model: MapDatabase, MapRecord, and CurrentVersionToken.

MapDatabase: The MapDatabase element models a nonvolatile store of mapping information
between Win dows and UNIX accounts. This element contains a set of MapRecord elements and a
CurrentVersionToken element.

38/78

[MS-UNMP] — v20131025
User Name Mapping Protocol

Copyright © 2013 Microsoft Corporation.

Release: Friday, October 25, 2013

MapRecord: The MapRecord element models the information for a single Windows -to - UNIX user
account mapping or group account mapping. It contains the UNIX account name and UID, a GID,
and the supplementary GID details that correspond to a Windows account name and domain.

CurrentVersionToken: This element models the version of the MapDatabase as a whole. This
element MUST be guaranteed by the server to be unique following each update to the MapDatabase.

3.2.2 Timers

None.

3.2.3 Initialization

None.

3.2.4 Higher-Layer Triggered Events

None.
3.2.5 Message Processing Events and Sequencing Rules

3.2.5.1 Processing for All Procedures

The User Name Mapping Protocol server performs a simple lookup or enumeration service on behalf
of clients. As described in section 3.2.1 , the server maintains a set of current mappings that it
traverses to answer queries by clients. For each lookup procedure from the client, the User Name
Mapping Protocol server queries the persistent data store of account mappings and returns details of
the located map, if found.

The SUNRPC response packet generated by the User Name Mapping Protocol server adheres to the

rules indicated in [RFC1057] section 8. Whenever awell -formed SUNRPC reques tis received, the
body of the response packet MUST have a status of MSG_ACCEPTED to indicate a successful receipt

of the packet. <8>

The server MUST return an error of SUNRPC PROG_MISMATCH whenever the client requests a
program versi on other than 1 or 2.

In all cases where the server fails to decode the lookup or enumeration procedure request
arguments, it MUST return a response error value of GARBAGE_ARGS.

In all cases where the lookup or enumeration request succeeds, the server MUST return a SUCCESS
status in the reply body and encode the procedure -specific return values according to the XDR rules

defined in [RFC4506] .

3.2.5.2 Processing of DUMPALLMAPSXXX_PROC Request and
GETCURRENTVERSIONTOKEN_PROC Request

3.2.5.2.1 Processing the Initial Account Mapping Request from the Client

The User Name Mapping Protocol server replies to the DUMPALLMAPSXXX_PROC request with a two -
part version token (CurrentVersionTokenHighPart and CurrentVersionTokenLowPart), a

count of the number of maps in the reply (MappingRecordCount), the total number of maps

available on the server (TotalMappingRecordCount), and a listof MappingRecordCount
mapping records that begin at the MapRecordIndex index equal to 0. The number o f account
mapping records returned by the server to the client is implementation specific. <9> <10>

39/78

[MS-UNMP] — v20131025
User Name Mapping Protocol

Copyright © 2013 Microsoft Corporation.

Release: Friday, October 25, 2013

http://go.microsoft.com/fwlink/?LinkId=90265
http://go.microsoft.com/fwlink/?LinkId=90478

3.2.5.2.2 Processing Further Account Mapping Requests from the Client

The User Name Mapping Protocol server replies to the DUMPALLMAPSXXX_PROC request with the

next set of mapping records, starting with the map record at the MapRecordIndex index

requested. If the MapRecordIndex requested is out of bounds of the TotalMappingRecordCount
number of account mappings stored on the server, MappingRecordCount MUST be returned with a
value of 0, and no records are returned. The number of account map ping records returned by the

server to the client is implementation specific. For example, the server might limit the number of

mappings returned to the amount of data that can fit in a single SUNRPC packet of a chosen

maximum size. <11> <12> <13>

3.2.5.2.3 Processing the Client Account Mapping Cache Refresh

The User Name Mapping Protocol server replies with CurrentVersionTokenHighPart and
CurrentVersionTokenLowPart inthe GETCURRENTVERSIONTOKEN_PROC reply set to an
implementation - specific value. If the account mappings have been changed since a client's previous
GETCURRENTVERSIONTOKEN_PROC or DUMPALLMAPSXXX_PROC enumeration request, the values
returned to the client MUST be different from the values returned for the previous request to
GETCURRENTVERSIONTOKEN_PROC or DUMPALLMAPSXXX_PROC. (The method used to track
changes in account mappings is implementation specific.) If the account mappings have not

changed, the values retu rned to the client MUST be the values returned for the previous request to
GETCURRENTVERSIONTOKEN_PROC or DUMPALLMAPSXXX_PROC. <14>

3.2.6 Timer Events

None.

3.2.7 Other Local Events

None.

40/ 78

[MS-UNMP] — v20131025
User Name Mapping Protocol

Copyright © 2013 Microsoft Corporation.

Release: Friday, October 25, 2013

4 Protocol Examples

Several examples of network traffic for common User Name Mapping Protocol SUNRPC procedures
are outlined in the following sections, giving an indication of normal traffic flow. The example
network traffic is illustrated with the aid of the following sample user and group mapping database

at the server. In this example, a sample User N ame Mapping Protocol SUNRPC service has been
configured on the server to map users in the Windows domain "nfs -dom -1" to POSIX user and group
identifiers.

Advanced User Mappings

Windows user POSIX user UID GID
nfs -dom -1\ administrator Root 0 0
nfs-dom -1\ul ul 401 401
nfs-dom -1\u2 u2 402 401
nfs-dom -1\u3 u3 403 402

Advanced Group Mappings

Windows group POSIX group GID
nfs -dom -1\Domain Admins bin 1
nfs-dom -1\gl gl 401
nfs-dom -1\ g2 g3 402

Simple User Mappings

Windows user POSIX user UID GID
nfs -dom -1\spec spec 500 500
nfs-dom -1\u4 ud 404 402
nfs-dom -1\u5 u5 405 401
nfs-dom -1\u6 u6é 406 402

Simple Group Mappings

Windows group POSIX group GID
nfs -dom -1\ specgroup specgroup 500
nfs-dom -1\ g4 g4 404

41/78

[MS-UNMP] — v20131025
User Name Mapping Protocol

Copyright © 2013 Microsoft Corporation.

Release: Friday, October 25, 2013

4.1 GETWINDOWSCREDSFROMUNIXUSERNAME_PROC

The client sends a SUNRPC packet to the User Name Mapping Protocol service requesting the
Windows account mapping for POSIX user "root". The client asks for a match on the POSIX
username alone inthe SearchOption of the procedure.

Frame:
+ Ethernet: Etype = Internet IP (IPv4)
+ Ipv4: Next Protocol = UDP, Packet ID = 33455, Total IP Length = 88
+ Udp: SrcPort = 965, DstPort = UNM(819), Length = 68
- Rpc: Call, Program = mapsvc, Procedure =
GETWINDOWSCREDSFREMUSERNAME_PROC
TransactionID: 1221413202 (0x48CD4952)
MessageType: Call
- ServiceCall:
RPCVersionNumber: 2 (0x2)
ProgramNumber: mapsvc, 351455(0x00055CDF)
ProgramVersion: 2 (0x2)
ProcedureNumber: GETWINDOWSCREDSFROMUNINSERNAME_PROC
- Credential: No Identity Authentication
Flavor: No Identity Authentication
AuthDatalength: 0 (0x0)
- Verification:
Flavor: No Identity Authentication
AuthDatalength: 0 (0x0)
- Unm: GETWINDOWSCREDSFRIMXUSERNAME_PROC Call
- UnixUser:
SearchOption: UnixAccountName is valid (Ox1)
Reserved: MUST be sent as 0x00000000
ID: 0
- UnixAccountName: Ox1
- UNMName: root
Length: 4
Data: root

The User Name Mapping Protocol service on the server responds with a SUNRPC response packet
with the advanced map for POSIX user "root" to Windows user "nfs -dom -1\ administrator",
illustrated as follows.

Frame:
+ Ethernet: Etype = Internet IP (IPv4)
+ 1 pv4: Next Protocol = UDP, Packet ID = 62340, Total IP Length = 88
+ Udp: SrcPort = UNM(819), DstPort = 965, Length = 68
- Rpc: Reply, Status = Message accepted, Detail = Call succeeded
TransactionID: 1221413202 (0x48CD4952)
MessageType: Reply
- ServiceReply:
ReplyStatus: Message accepted
- MessageAccepted:
- Verification:
Flavor: No Identity Authentication
AuthDatalength: 0 (0x0)
AcceptState: Call succeeded
- Unm: GETWINDOWSCREDSFROMUNIXUSERNAME_FRDIy
- WindowsCreds:
Status: 0

42/ 78

[MS-UNMP] — v20131025
User Name Mapping Protocol

Copyright © 2013 Microsoft Corporation.

Release: Friday, October 25, 2013

Reserved: MUST be sent as 0x00000000
- WindowsAccountName: 0x1
- UNMWindowsName: nfs - dom 1\ administrator
Length: 23
Data: nfs - dom- 1\ administrator
Padding: Binary Large Object (1 Bytes)

4.2 GETUNIXCREDSFROMNTUSERNAME_PROC

The client sends a SUNRPC packet to the User Name Mapping Protocol service that requests the
POSIX account mapping for the Windows user "nfs -dom -1\ administrator".

Frame:
+ Ethernet: Etype = Internet IP (IPv4)
+ Ipv4: Next Protocol = UDP, Packet ID = 40198, Total IP Length = 96
+ Udp: SrcPort = 965, DstPort = UNM(819), Length = 76
- Rpc: Call, Program = mapsvc, Procedure =
GETUNIXCREDSFROMNTUSERNAME_PROC
TransactionID: 1305299282 (0x4DCD4952)
MessageTy pe: Call
- ServiceCall:
RPCVersionNumber: 2 (0x2)
ProgramNumber: mapsvc, 351455(0x00055CDF)
ProgramVersion: 2 (0x2)
ProcedureNumber: GETUNIXCREDSFROMNTUSERNAME_PROC
- Credential: No Identity Authentication

Flavor: No Identity Authentication
AuthDatalength: 0 (0x0)
- Verification:

Flavor: No Identity Authentication
AuthDatalength: 0 (0x0)
- Unm: GETUNIXCREDSFROMNTUSERNAME_PROC Call
- WindowsUserAccountName:
- WindowsAccountName: 0x1
- UNMName: nfs - dom- 1\ administrator

Length: 23
Data: nfs - dom- 1\ administrator
Padding: Binary Large Object (1 Bytes)

The User Name Mapping Protocol service on the server responds with a SUNRPC response packet
with the advan ced map for Windows user "nfs -dom - 1\administrator" to POSIX user "root" with UID

0 and GID 0, illustrated as follows.

Frame:
+ Ethernet: Etype = Internet IP (IPv4)
+ Ipv4: Next Protocol = UDP, Packet ID = 20813, Total IP Length = 76
+ Udp: SrcPort = UNM(819), DstPort = 965, Length = 56
- Rpc: Reply, Status = Message accepted, Detail = Call succeeded
TransactionID: 1305299282 (0x4DCD4952)
MessageType: Reply
- ServiceReply:
ReplyStatus: Message accepted
- MessageAcc epted:
- Verification:
Flavor: No Identity Authentication

43/ 78

[MS-UNMP] — v20131025
User Name Mapping Protocol

Copyright © 2013 Microsoft Corporation.

Release: Friday, October 25, 2013

AuthDatalength: 0 (0x0)
AcceptState: Call succeeded
- Unm: GETUNIXCREDSFROMNTUSERNAME_PROC Reply
- UnixCreds:
- UnixAccountName: 0x1
- UNMName: root
Length: 4
Data: root
ID: 0
GidCount: 2
- GID:
GID: 1
GID: 1

4.3 AUTHUSINGUNIXCREDS_PROC

The client sends a SUNRPC packet to the User Name Mapping Protocol service requesting the POSIX
account details for the POSIX user "root" with an empty password.

Frame:
+ Ethernet: Etype = Internet IP (IPv4)
+ Ipv4: Next Protocol = UDP, Packet ID = 41135, Total IP Length = 80
+ Udp: SrcPort = 965, DstPort = UNM(819), Length = 60
- Rpc: Call, Program = mapsvc, Procedure = AUTHUSINGUNIXCREDS_PROC
TransactionID: 1322076498 (Ox4ECD4952)
MessageType: Call
- ServiceCall:
RPCVersionNumber: 2 (0x2)
ProgramNumber: mapsvc, 351455(0x00055CDF)
ProgramVersion: 2 (0x2)
ProcedureNumber: AUTHUSINGUNIXCREDS_PROC
- Credential: No Identity Authentication
Flavor: No Identity Authentic ation
AuthDatalength: 0 (0x0)
- Verification:
Flavor: No Identity Authentication
AuthDatalength: 0 (0x0)
- Unm: AUTHUSINGUNIXCREDS_PROC Call
- UnixUserAuth:
- UnixUserAccountName: 0x1
- UNMName: root
Length: 4
Data: root
- UnixUserAccountPassword: Ox1
- UNMName:
Length: O
Data:

The User Name Mapping Protocol service on the server responds with a SUNRPC response packet
with the mapped POSIX account details for the user "root", illustrated as follows.

Frame:
+ Ethernet: Etype = Internet IP (IPv4)
+ Ipv4: Next Protocol = UDP, Packet ID = 25985, Total IP Length = 76
+ Udp: SrcPort = UNM(819), DstPort = 965, Length = 56

44 /78

[MS-UNMP] — v20131025
User Name Mapping Protocol

Copyright © 2013 Microsoft Corporation.

Release: Friday, October 25, 2013

- Rpc: Reply, S tatus = Message accepted, Detail = Call succeeded
TransactionID: 1322076498 (0x4ECD4952)
MessageType: Reply

- ServiceReply:
ReplyStatus: Message accepted
- MessageAccepted:
- Verification:
Flavor: No Identity Authenti cation
AuthDatalength: 0 (0x0)
AcceptState: Call succeeded
- Unm: AUTHUSINGUNIXCREDS_PROC Reply
- UnixCreds:
- UnixUserAccountPassword: Ox1
- UNMName: x
Length: 1
Data: x
Padding: Binary Large Object (3 Bytes)
ID: 0
GidCount: 2
- GID:
GID: 1
GID: 1

4.4 DUMPALLMAPS_PROC

The client sends a SUNRPC packet to the User Name Mapping Protocol service that requests an
enumeration of all user maps (PrincipalType=0) starting at index zero (MapRecordIndex=0).

Frame:
+ Ethernet: Etype = Internet IP (IPv4)
+ Ipv4: Next Protocol = UDP, Packet ID = 57181, Total IP Length = 76
+ Udp: SrcPort = 965, DstPort = UNM(819), Length = 56
- Rpc: Call, Program = mapsvc, Procedure = DUMPALLMAPS_PROC
TransactionID: 1238190418 (0x49CD4952)
MessageType: Call
- Serv iceCall:
RPCVersionNumber: 2 (0x2)
ProgramNumber: mapsvc, 351455(0x00055CDF)
ProgramVersion: 2 (0x2)
ProcedureNumber: DUMPALLMAPS_PROC
- Credential: No Identity Authentication
Flavor: No Identity Authentication
AuthDatalength: 0 (0x0)
- Verification:
Flavor: No Identity Authentication
AuthDatalength: 0 (0x0)
- Unm: DUMPALLMAPS_PROC Call
- EnumCursor:
PrincipalType: Enumerate user account mappings (0)
MapRecordIindex: 0

The User Name Mapping Protocol service on the server responds with a listing of advanced and

simple user mappings in the database. The response packet includes a sequence number that

indicates the version for the current set of account mappings, a record count that indicates the
number of mappings returned as a part of the current packet payload, the total number of maps in

the database of the requested types, and finally, the individual maps themselves.

45/ 78

[MS-UNMP] — v20131025
User Name Mapping Protocol

Copyright © 2013 Microsoft Corporation.

Release: Friday, October 25, 2013

Frame:
+ Ethernet: Etype = Internet IP (IPv4)
+ Ipv4: Next Protocol = UDP, Packet ID = 45847, Total IP Length = 308
+ Udp: SrcPort = UNM(819), DstPort = 965, Length = 288
- Rpc: Reply, Status = Message accepted, Detail = Call succeeded
TransactionID: 1238190418 (0x49CD4952)
MessageType: Reply
- ServiceReply:
ReplyStatus: Message accepted
- MessageAccepted:
- Verification:
Flavor: No Identity Authentication
AuthDatalength: 0 (0x0)
AcceptState: Call succeeded
- Unm: DUMPALLMAPS_PROC Reply
- Mappi ng:
- Token:
CurrentVersionTokenLowPart: 19924186
CurrentVersionTokenHighPart: 0
MappingRecordCount: 8
TotalMappingRecordCount: 8
- Map:
- WindowsAccountName: Ox1
- UNMName: nfs - dom 1\ administrator
Length: 23
Data: nfs - dom- 1\ administrator
Padding: Binary Large Object (1 Bytes)
- UnixAccountName: 0x1
- UNMName: root
Length: 4
Data: root
ID: 0
- Map:
- WindowsAccountName: Ox1
- UNMName: NFS DOM1\ ul
Length: 12
Data: NFS - DOM1\ ul
- UnixAccountName: 0x1
- UNMName: ul
Length: 2
Data: ul
Padding: Binary Large Object (2 Bytes)
ID: 401
- Map:
- WindowsAccountName: 0x1
- UNMName: NFS DOM1\ u2
Length: 12
Data: NFS - DOM1\ u2
- UnixAccountName: 0x1
- UNMName: u2
Length: 2
Data: u2
Padding: Binary Large Object (2 Bytes)
ID: 402
- Map:
- WindowsAccountName: 0x1
- UNMName: NFS DOM1\ u3
Length: 12

[MS-UNMP] — v20131025
User Name Mapping Protocol

Copyright © 2013 Microsoft Corporation.

Release: Friday, October 25, 2013

46/ 78

Data: NFS - DOM1\ u3
- UnixAccountName: 0x1
- UNMName: u3
Length: 2
Data: u3
Padding: Binary Large Object (2 Bytes)
ID: 403
- Map:
- WindowsAccountName: Ox1
- UNMName: NFS DOM1\ spec
Length: 14
Data: NFS - DOM1\ spec
Padding: Binary Large Object (2 Bytes)
- UnixAccountName: 0x1
- UNMName: spec
Length: 4
Data: spec
ID: 500
- Map:
- WindowsAccountName: 0x1
- UNMName: NFS DOM1\ u4
Length: 12
Data: NFS - DOM1\ u4
- UnixAccountName: 0x1
- UNMName: u4
Length: 2
Data: u4
Padding: Binary Large Object (2 Bytes)
ID: 404
- Map:
- WindowsAccountName: 0x1
- UNMName: NFS- DOM1\ u5
Length: 12
Data: NFS - DOM1\ u5
- UnixAccountName: 0x1
- UNMName: u5
Length: 2
Data: ub
Padding: Binary Large Object (2 Bytes)
ID: 405
- Map:
- WindowsAccountName: 0x1
- UNMName: NFS DOM1\ u6
Length: 12
Data: NFS - DOM1\ u6
- UnixAccountName: 0x1
- UNMName: u6
Length: 2
Data: ué
Padding: Binary Large Object (2 Bytes)
ID: 406

4.5 GETCURRENTVERSIONTOKEN_PROC

The client sends a SUNRPC packet to the User Name Mapping Protocol service that requests the
current account mapping sequence number for the set of mapping records held by the server.

47/ 78

[MS-UNMP] — v20131025
User Name Mapping Protocol

Copyright © 2013 Microsoft Corporation.

Release: Friday, October 25, 2013

Frame:
+ Ethernet: Etype = Internet IP (IPv4)
+ Ipv4: Next Protocol = UDP, Packet ID = 47908, Total IP Length = 76
+ Udp: SrcPort = 965, DstPort = UNM(819), Length = 56
- Rpc: Call, Program = mapsvc, Procedure = GETCURRENTVERSIONTOKEN_PROC
TransactionID: 1422 739794 (0x54CD4952)
MessageType: Call
- ServiceCall:
RPCVersionNumber: 2 (0x2)
ProgramNumber: mapsvc, 351455(0x00055CDF)
ProgramVersion: 2 (0x2)
ProcedureNumber: GETCURRENTVERSIONTOKEN_PROC
- Credential: No Identity Authe ntication
Flavor: No Identity Authentication
AuthDatalength: 0 (0x0)
- Verification:
Flavor: No Identity Authentication
AuthDatalength: 0 (0x0)
- Unm: GETCURRENTVERSIONTOKEN_PROC Call
- SequenceNumber:
CurrentV ersionTokenLowPart: 11337900
CurrentVersionTokenHighPart: 0

The User Name Mapping Protocol service on the server responds with a SUNRPC response packet
with the current sequence number value for the set of mapping records held by it, illustrated as
follows.

Frame:
+ Ethernet: Etype = Internet IP (IPv4)
+ Ipv4: Next Protocol = UDP, Packet ID = 38726, Total IP Length = 60
+ Udp: SrcPort = UNM(819), DstPort = 965, Length = 40
- Rpc: Reply, Status = Message accepted, Detail = Call succeeded
TransactionID: 1422739794 (0x54CD4952)
MessageType: Reply
- ServiceReply:
ReplyStatus: Message accepted
- MessageAccepted:
- Verification:
Flavor: No Identity Authentication
AuthDatalength: 0 (0x0)
AcceptState: Call succeeded
- Unm: GETCURRENTVERSIONTOKEN_PROC Reply
- SequenceNumber:
CurrentVersionTokenLowPart: 19924186
CurrentVersionTokenHighPart: 0

4.6 DUMPALLMAPSEX_PROC

The client sends a SUNRPC packet to the User Name Mapping Protocol service requesting an
enumeration of all user maps (PrincipalType=0) starting at index zero (MapRecordIndex=0).

Frame:
+ Ethernet: Etype = Internet IP (IPv4)
+ Ipv4: Next Protocol = UDP, Packet ID = 48740, Total IP Length = 76
+ Udp: SrcPort = 965, DstPort = UNM(819), Length = 56

48/ 78

[MS-UNMP] — v20131025
User Name Mapping Protocol

Copyright © 2013 Microsoft Corporation.

Release: Friday, October 25, 2013

- Rpc: Call, Program = mapsvc, Procedure = DUMPALLMAPSEX_PROC
TransactionID: 1439517010 (0x55CD4952)
MessageType: Call

- ServiceCall:
RPCVersionNumber: 2 (0x2)
ProgramNumber: mapsvc, 351455(0x00055CDF)
ProgramVersion: 2 (0x2)
ProcedureNumber: DUMPALLMAPSEX_PROC
- Credential: No Identity Authentication
Flavor: No Identity Authentication
AuthDatalLength: 0 (0x0)
- Verification:
Flavor: No Identity Authentication
AuthDatalength: 0 (0x0)
- Unm: DUMPALLMAPSEX_PROC Call
- EnumCursor:
PrincipalType: Enumerate user account mappings
MapRecordIindex: 0

The Use r Name Mapping Protocol service on the server responds with a listing of advanced and

simple user mappings in the database. The response packet includes a sequence number that

indicates the version for the current set of account mappings, a record count th at indicates the
number of mappings returned as a part of the current packet payload, the total number of maps in

the database of the requested types, and finally, the individual maps themselves.

Frame:
+ Ethernet: Etype = Internet IP (IPv4)
+ Ipv4: Ne xt Protocol = UDP, Packet ID = 42795, Total IP Length = 464
+ Udp: SrcPort = UNM(819), DstPort = 965, Length = 444
- Rpc: Reply, Status = Message accepted, Detail = Call succeeded
TransactionID: 1439517010 (0x55CD4952)
MessageType: Reply
- ServiceReply:
ReplyStatus: Message accepted
- MessageAccepted:
- Verification:
Flavor: No Identity Authentication
AuthDatalength: 0 (0x0)
AcceptState: Call succeeded
- Unm: DUMPALLMAPSEX_PROC Reply
- Maps: Count=8
- Token:
CurrentVersionTokenLowPart: 19924186
CurrentVersionTokenHighPart: 0
MappingRecordCount: 8
TotalMappingRecordCount: 8
- Map: 0x1
- UNMMapsString: *:nfs - dom 1\ administrator:0:PCNFS:PCNFS:
root:x:0:1:1
Length: 52
Data: *:nfs - dom- 1\ administrator:0:PCNFS:PCNFS:root:x:0:1:1
- Map: 0x1
- UNMMapsString: *:NFS - DOM1\ ul:0:PCNFS:PCNFS:ul:x:401:401
Length: 41
Data: :NFS - DOM1\ ul:0:PCNFS:PCNFS: ul:x:401:401
Padding: Binary Large Object (3 Bytes)

49/ 78

[MS-UNMP] — v20131025
User Name Mapping Protocol

Copyright © 2013 Microsoft Corporation.

Release: Friday, October 25, 2013

- Map: 0x1
- UNMMapString: *:NFS - DOM1\ u2:0:PCNFS:PCNFS:u2:x:402:401
Length: 41
Data: *:NFS - DOM1\ u2:0:PCNFS:PCNFS:u2:x:402:401
Padding: Binary Large Object (3 Bytes)
- Map: 0x1
- UNMMapsString: *:NFS - DOM1\ u3:0:PCNFS:PCNFS:u3:x:403:402
Length: 41
Data: :NFS - DOM1\ u3:0:PCNFS:PCNFS:u3:x:403:402
Padding: Binary Large Object (3 Bytes)
- Map: 0x1
- UNMMapsString: - :NFS- DOM1\ spec:0:PCNFS:PCNFS:spec:x:500:500
Length: 45
Data: -:NFS-DOM1\ spec:0:PCNFS:PCNFS:spec:x:500:500
Padding: Binary Large Object (3 Bytes)
- Map: 0x1
- UNMMapsString: - :NFS- DOM1\ u4:0:PCNFS:PCNFS:u4:x:404:402
Length: 41
Data: -:NFS- DOM1\ u4:0:PCNFS:PCNFS:u4:x:404:402
Padding: Binary Large Object (3 Bytes)
- Map: 0x1
- UNMMapsString: - :NFS- DOM1\ u5:0:PCNFS:PCNFS:u5:x:405:401
Length: 41
Data: -:NFS-DOMI1\ u5:0:PCNFS:PCNFS:u5:x:405:401
Padding: Binary Large Object (3 Bytes)
- Map: 0x1
- UNMMapsString: - :NFS- DOM1\ u6:0:PCNFS:PCNFS:u6:x:406:402
Length: 41
Data: -:NFS-DOM1\ u6:0:PCNFS: PCNFS:u6:x:406:402
Padding: Binary Large Object (3 Bytes)

4.7 GETWINDOWSGROUPFROMUNIXGROUPNAME_PROC

The client sends a SUNRPC packet to the User Name Mapping Protocol service requesting the
Windows group mapping for POSIX group "bin".

Frame:
+ Ethernet: Etype = Internet IP (IPv4)
+ Ipv4: Next Protocol = UDP, Packet ID = 53170, Total IP Length = 88
+ Udp: SrcPort = 965, DstPort = UNM(819), Length = 68
- Rpc: Call, Program = mapsvc, Procedure =
GETNTCREDSFROMUNIXGROUPNAME_PROC
TransactionID: 1473071442 (0x57CD4952)
MessageT ype: Call
- ServiceCall:
RPCVersionNumber: 2 (0x2)
ProgramNumber: mapsvc, 351455(0x00055CDF)
ProgramVersion: 2 (0x2)
ProcedureNumber: GETNTCREDSFROMUNIXGROUPNAME_PROC
- Credential: No Identity Authentication
Flavor: N o Identity Authentication
AuthDatalength: 0 (0x0)
- Verification:
Flavor: No Identity Authentication
AuthDatalength: 0 (0x0)
- Unm: GETNTCREDSFROMUNIXGROUPNAME_PROC Call
- UnixGroupAccount:

50/ 78

[MS-UNMP] — v20131025
User Name Mapping Protocol

Copyright © 2013 Microsoft Corporation.

Release: Friday, October 25, 2013

SearchOption: UnixAccountNam e and ID are both valid
Reserved: MUST be sent as 0x00000000
ID: 1
- UnixAccountName: 0x1
- UNMName: bin
Length: 3
Data: bin
Padding: Binary Large Object (1 Bytes)

The User Name Mapping Protocol service on the server responds with a SUNRPC response packet
with the group map for POSIX group "bin" to Windows group "nfs -dom -1\Domain Admins",
illustrated as follows.

Frame:
+ Ethernet: Etype = Internet IP (IPv4)
+ Ipv 4: Next Protocol = UDP, Packet ID = 49784, Total IP Length = 88
+ Udp: SrcPort = UNM(819), DstPort = 965, Length = 68
- Rpc: Reply, Status = Message accepted, Detail = Call succeeded
TransactionID: 1473071442 (0x57CD4952)
MessageType: Reply
- ServiceReply:
ReplyStatus: Message accepted
- MessageAccepted:
- Verification:
Flavor: No Identity Authentication
AuthDatalength: 0 (0x0)
AcceptState: Call succeeded
- Unm: GETNTCREDSFROMUNIXGROUPNAME_PROC Reply
- WindowsCreds:
Status: 0
Reserved: MUST be sent as 0x00000000
- WindowsAccountName: Ox1
- UNMWindowsName: NFS- DOM1\ Domain Admins
Length: 23
Data: NFS - DOM1\ Domain Admins
Padding: Binary Large Object (1 Bytes)

4.8 GETUNIXCREDSFROMNTGROUPNAME_PROC

The client sends a SUNRPC packet to the User Name Mapping Protocol service requesting the POSIX
group mapping for the Windows group "nfs -dom -1\g1".

Frame:
+ Ethernet: Etype = Internet IP (IPv4)
+ Ipv4: Next Protocol = UDP, Packet ID = 54821, Total IP Length = 84
+ Udp: SrcPort = 965, DstPort = UNM(819), Length = 64
- Rpc: Call, Program = mapsvc, Procedure =
GETUNIXCREDSFROMNTGROUPNAME_PROC
TransactionlD: 1489848658 (0x58CD4952)
MessageT ype: Call
- ServiceCall:
RPCVersionNumber: 2 (0x2)
ProgramNumber: mapsvc, 351455(0x00055CDF)
ProgramVersion: 2 (0x2)
ProcedureNumber: GETUNIXCREDSFROMNTGROUPNAME_PROC

51/78

[MS-UNMP] — v20131025
User Name Mapping Protocol

Copyright © 2013 Microsoft Corporation.

Release: Friday, October 25, 2013

- Credential: No Identity Authentication
Flavor: N o Identity Authentication
AuthDatalength: 0 (0x0)

- Verification:

Flavor: No Identity Authentication
AuthDatalength: 0 (0x0)
- Unm: GETUNIXCREDSFROMNTGROUPNAME_PROC Call
- WindowsGroupAccountName:
- WindowsAccountName: 0 x1
- UNMName: nfs - dom- 1\ g1
Length: 12
Data: nfs -dom- 1\ gl

The User Name Mapping Protocol service on the server responds with a SUNRPC response packet
with the group map for Windows group "nfs -dom -1\gl" to the POSIX group "g1", illu strated as
follows.

Frame:
+ Ethernet: Etype = Internet IP (IPv4)
+ Ipv4: Next Protocol = UDP, Packet ID = 50256, Total IP Length = 68
+ Udp: SrcPort = UNM(819), DstPort = 965, Length = 48
- Rpc: Reply, Status = Message accepted, Detail = Call succeeded
TransactionID: 1489848658 (0x58CD4952)
MessageType: Reply
- ServiceReply:
ReplyStatus: Message accepted
- MessageAccepted:
- Verification:
Flavor: No Id entity Authentication
AuthDatalength: 0 (0x0)
AcceptState: Call succeeded
- Unm: GETUNIXCREDSFROMNTGROUPNAME_PROC Reply
- UnixCreds:
- UnixAccountName: 0x1
- UNMName: g1
Length: 2
Data: g1
Padding: Binary Large Object (2 Bytes)
ID: 401
GidCount: 0

4.9 GETUNIXCREDSFROMNTUSERSID_PROC

The client sends a SUNRPC packet to the User Name Mapping Protocol service requesting the POSIX

credentials for the Windows user SID "S-1-5-21-3994172400 -2625080034 -4079281819 -500"that
represents Windows user account "nfs -dom -1\ administrator".
Frame:

+ Ethernet: Etype = Internet IP (IPv4)
+ Ipv4: Next Protocol = UDP, Packet ID = 51864, Total IP Length = 100
+ Udp: SrcPort = 1013, D stPort = UNM(819), Length = 80
- Rpc: Call, Program = mapsvc, Procedure =
GETUNIXCREDSFROMNTUSERSID_PROC
TransactionID: 1238234037 (0x49CDF3B5)
MessageType: Call

52/78

[MS-UNMP] — v20131025
User Name Mapping Protocol

Copyright © 2013 Microsoft Corporation.

Release: Friday, October 25, 2013

- ServiceCall:
RPCVersionNumber: 2 (0x2)
ProgramNumber: mapsvc, 35145 5(0x00055CDF)
ProgramVersion: 2 (0x2)
ProcedureNumber: GETUNIXCREDSFROMNTUSERSID_PROC
- Credential: No Identity Authentication
Flavor: No Identity Authentication
AuthDatalength: 0 (0x0)
- Verification:
Flavor: N o Identity Authentication
AuthDatalLength: 0 (0x0)
- Unm: GETUNIXCREDSFROMNTUSERSID_PROC Call
- Sid:
Sidlength: 28
SID: 01 05 00 00 00 00 00 05 15 00 00 00 FO 3B 12 EE
E2 8A 77 9C 9B E6 24 F3 F4 01 00 00

The User Name Mappi ng Protocol service on the server responds with a SUNRPC response packet
with the POSIX credentials for the mapped UNIX account that corresponds to Windows user "nfs -
dom -1\ Administrator" as POSIX user "root", illustrated as follows.

Frame:
+ Ethernet: Etype = Internet IP (IPv4)
+ Ipv4: Next Protocol = UDP, Packet ID = 14698, Total IP Length = 76
+ Udp: SrcPort = UNM(819), DstPort = 1013, Length = 56
- Rpc: Reply, Status = Message accepted, Detail = Call succeeded
TransactionlD: 123823403 7 (0x49CDF3B5)
MessageType: Reply
- ServiceReply:
ReplyStatus: Message accepted
- MessageAccepted:
- Verification:
Flavor: No Identity Authentication
AuthDatalength: 0 (0x0)
AcceptState: Call succeeded
- Unm: GETUNIXCREDSFROMNTUSERSID_PROC Reply
- UnixCreds:
- UnixAccountName: 0x1
- UNMName: root
Length: 4
Data: root
ID: 0
GidCount: 2
- GID:
GID: 1
GID: 1

4.10 DUMPALLMAPSW_PROC

The client sends a SUNRPC packet to the User Name Mapping Protocol service requesting an
enumeration of all user maps (PrincipalType=0) starting at index zero (MapRecordIndex=0).

Frame:
+ Ethernet: Etype = Internet IP (IPv4)
+ Ipv4: Next Protocol = UDP, Packet ID = 59252, Total IP Length = 76

53/78

[MS-UNMP] — v20131025
User Name Mapping Protocol

Copyright © 2013 Microsoft Corporation.

Release: Friday, October 25, 2013

+ Udp: SrcPort = 965, DstPort = UNM(819), Length = 56
- Rpc: Call, Program = mapsvc, Procedure = DUMPALLMAPSW_PROC
TransactionID: 1590511954 (OxX5ECD4952)
MessageType: Call
- ServiceCall:
RPCVersionNumber: 2 (0x2)
ProgramNumber: mapsvc, 351455(0x00055CDF)
ProgramVersion: 2 (0x2)
ProcedureNumber: DUMPALLMAPSW_PROC
- Credential: No Identity Authentication
Flavor: No Identity Authentication
AuthDatalength: 0 (0x0)
- Verification:
Flavor: No Identity Authentication
AuthDatalength: 0 (0x0)
- Unm: DUMPALLMAPSW_PROC Call
- EnumCursor:
PrincipalType: Enumerate user account mappings
MapRecordIindex: 0

The User N ame Mapping Protocol service on the server responds with a listing of advanced and

simple user mappings in the database. The response packet includes a sequence number that

indicates the version for the current set of account mappings, a record count that indicates the
number of mappings returned as a part of the current packet payload, the total number of maps in

the database of the requested types, and finally, the individual maps themselves.

Frame:
+ Ethernet: Etype = Internet IP (IPv4)
+ Ipv4: Next Protocol = UDP, Packet ID = 55477, Total IP Length = 424
+ Udp: SrcPort = UNM(819), DstPort = 965, Length = 404
- Rpc: Reply, Status = Message accepted, Detail = Call succeeded
TransactionID: 1590511954 (OX5ECD4952)
MessageType: Reply
- ServiceReply:
ReplyStatus: Message accepted
- MessageAccepted:
- Verification:
Flavor: No Identity Authentication
AuthDatalength: 0 (0x0)
AcceptState: Call succeeded
- Unm: DUMPALLMAPSW_PROC Reply
- MappingW:
- Token:
CurrentVersionTokenLowPart: 19924186
CurrentVersionTokenHighPart: 0
MappingRecordCount: 8
TotalMappingRecordCount: 8
- Map:
- WindowsAccountName: Ox1
- UNMNameW: nfs- dom 1\ administrator
Length: 46
Data: nfs - dom- 1\ administrator
Padding: Binary Large Object (2 Bytes)
- UnixAccountName: 0x1
- UNMNameW: root
Length: 8

[MS-UNMP] — v20131025
User Name Mapping Protocol

Copyright © 2013 Microsoft Corporation.

Release: Friday, October 25, 2013

54/78

Data: root
ID: 0
- Map:
- WindowsAccountName: 0x1
- UNMNameW: NFSDOM1\ ul
Length: 24
Data: NFS - DOM1\ ul
- UnixAccountName: Ox1
- UNMNameW: ul
Length: 4
Data: ul
ID: 401
- Map:
- WindowsAccountName: 0x1
- UNMNameW: NFSDOM1\ u2
Length: 24
Data: NFS - DOM1\ u2
- UnixAccountName: 0x1
- UNMNameW: u2
Length: 4
Data: u2
ID: 402
- Map:
- WindowsAccountName: Ox1
- UNMNameW: NFSDOM1\ u3
Length: 24
Data: NFS - DOM1\ u3
- UnixAccountName: 0x1
- UNMNameW: u3
Length: 4
Data: u3
ID: 403
- Map:
- WindowsAccountName: 0x1
- UNMNameW: NFSDOM1\ spec
Length: 28
Data: NFS - DOM1\ spec
- UnixAccountName: 0Ox1
- UNMNameW: spec
Length: 8
Data: spec
ID: 500
- Map:
- WindowsAccountName: 0x1
- UNMNameW: NFSDOM1\ u4
Length: 24
Data: NFS - DOM1\ u4
- UnixAccountName: 0Ox1
- UNMNameW: u4
Length: 4
Data: u4
ID: 404
- Map:
- WindowsAccountName: 0x1
- UNMBEmeW: NFS- DOM1\ u5
Length: 24
Data: NFS - DOM1\ u5
- UnixAccountName: Ox1
- UNMNameW: u5

55/78

[MS-UNMP] — v20131025
User Name Mapping Protocol

Copyright © 2013 Microsoft Corporation.

Release: Friday, October 25, 2013

Length: 4
Data: ub
ID: 405
- Map:
- WindowsAccountName: 0x1
- UNMNameW: NFSDOM1\ u6
Length: 24
Data: NFS - DOM1\ u6
- UnixAccountName: Ox1
- UNMNameW: u6
Length: 4
Data: ué
ID: 406

4.11 DUMPALLMAPSEXW_PROC

The client sends a SUNRPC packet to the User Name Mapping Protocol service requesting an
enumeration of all user maps (PrincipalType=0) starting at index zero (MapRecordIndex=0).

Frame:
+ Ethernet: Etype = Internet IP (IPv4)
+ Ipv4: Next Protocol = UDP, Packet ID = 60653, Total IP Length = 76
+ Udp: SrcPort = 965, DstPort = UNM(819), Length = 56
- Rpc: Call, Program = mapsvc, Procedure = DUMPALLMAPSEXW_PROC
TransactionID: 1607289170 (OxX5FCD4952)
MessageType: Call
- ServiceCall:
RPCVersionNumber: 2 (0x2)
ProgramNumber: mapsvc, 351455(0x00055CDF)
ProgramVersion: 2 (0x2)
ProcedureNumber: DUMPALLMAPSEXW_PROC
- Credential: No Identity Authentication
Flavor: No Identity Authentication
AuthDatalength: 0 (0x0)
- Verification:
Flavor: No Identity Authentication
AuthDatalength: 0 (0x0)
- Unm: DUMPALLMAPSEXW_PROC Call
- EnumCursor:
PrincipalType: Enumerate user account mappings
MapRecordIindex: 0

The User Name Mapping Protocol service on the server responds with a listing of advanced and

simple user mappings in the database. The response packet includes a sequence number that

indicates the version for the current set of account mappings, a record count that indicates the
number of mappings returned as a part of the current packet payload, the total number of maps in

the database of the requested types, and finally, the individual maps themselves.

Frame:
+ Ethernet: Etype = Internet IP (IPv4)
+ lpv4: Next Protocol = UDP, Packet ID = 56145, Total IP Length = 800
+ Udp: SrcPort = UNM(819), DstPort = 965, Length = 780
- Rpc: Reply, Status = Message accepted, Detail = Call succeeded
TransactionlD: 1607289170 (0Ox5FCD4952)

56/ 78

[MS-UNMP] — v20131025
User Name Mapping Protocol

Copyright © 2013 Microsoft Corporation.

Release: Friday, October 25, 2013

MessageType: Reply
- ServiceReply:
ReplyStatus: Message accepted
- MessageAccepted:
- Verification:
Flavor: No Identity Authentication
AuthDatalength: 0 (0x0)
AcceptState: Call succeeded
- Unm: DUMPALLMAPSEXW_PROC Reply
- MgsWw:
- Token:
CurrentVersionTokenLowPart: 19924186
CurrentVersionTokenHighPart: 0
MappingRecordCount: 8
TotalMappingRecordCount: 8
- Map: 0x1
- UNMMapStringW: *:nfs - dom 1\ administrator:0:PCNFS:PCNFS:
root:x:0:1:1
Length: 104
Data: *:nfs - dom- 1\ administrator:0:PCNFS:PCNFS:root:x:0:1:1
- Map: 0x1
- UNMMapStringW: *:NFS - DOM1\ ul:0:PCNFS:PCNFS:ul:x:401:401
Length: 82
Data: :NFS - DOM1\ ul:0:PCNFS:PCNF S:ul:x:401:401
Padding: Binary Large Object (2 Bytes)
- Map: 0x1
- UNMMapStringW: *:NFS - DOM1\ u2:0:PCNFS:PCNFS:u2:x:402:401
Length: 82
Data: *:NFS - DOM1\ u2:0:PCNFS:PCNFS:u2:x:402:401
Padding: Binary Large Object (2 Bytes)
- Map: 0x1
- UNMMapStringW: *:NFS - DOM1\ u3:0:PCNFS:PCNFS:u3:x:403:402
Length: 82
Data: *:NFS - DOM1\ u3:0:PCNFS:PCNFS:u3:x:403:402
Padding: Binary Large Object (2 Bytes)
- Map: 0x1

- UNMMapStringW: - :NFS- DOM1\ spec:0:PCNFS:PCNFS:spec:x:500:500

Length: 90
Data: -:NFS-DOM1\ spec:0:PCNFS:PCNFS:spec:x:500:500
Padding: Binary Large Object (2 Bytes)
- Map: 0x1
- UNMMapStringW: - :NFS- DOM1\ u4:0:PCNFS:PCNFS:u4:x:404:402
Length: 82
Data: -:NFS-DOMI1\ u4:0:PCNFS:PCNFS:u4:x:404:402
Padding: Binary Large Object (2 Bytes)
- Map: 0x1
- UNMMapStringW: - :NFS- DOM1\ u5:0:PCNFS:PCNFS:u5:x:405:401
Length: 82
Data: -:NFS-DOMZ1\ u5:0:PCNFS:PCNFS:u5:x:405:401
Padding: Binary Large Object (2 Bytes)
- Map: 0x1
- UNMMapsStringW: - :NFS- DOM1\ u6:0:PCNFS:PCNFS:u6:x:406:402
Length: 82
Data: -:NFS-DOM1\ u6:0:P CNFS:PCNFS:u6:x:406:402
Padding: Binary Large Object (2 Bytes)

[MS-UNMP] — v20131025
User Name Mapping Protocol

Copyright © 2013 Microsoft Corporation.

Release: Friday, October 25, 2013

57/78

4.12 GETWINDOWSUSERFROMUNIXUSERNAMEW_PROC

The client sends a SUNRPC packet to the User Name Mapping Protocol service requesting the
Windows user mapping for POSIX user "root".

Frame:
+ Ethernet: Etype = Internet IP (IPv4)
+ Ipv4: Next Protocol = UDP, Packet ID = 61716, Total IP Length = 92
+ Udp: SrcPort = 965, DstPort = UNM(819), Length = 72
- Rpc: Call, Program = mapsvc, Procedure =
GETNTCREDSFROMUNIXUSERNAMEW_PROC
TransactionID: 1624066386 (0x60CD4952)
MessageT ype: Call
- ServiceCall:
RPCVersionNumber: 2 (0x2)
ProgramNumber: mapsvc, 351455(0x00055CDF)
ProgramVersion: 2 (0x2)
ProcedureNumber: GETNTCREDSFROMUNIXUSERNAMEW_PROC
- Credential: No Identity Authentication
Flavor: N o Identity Authentication
AuthDatalength: 0 (0x0)
- Verification:
Flavor: No Identity Authentication
AuthDatalength: 0 (0x0)
- Unm: GETNTCREDSFROMUNIXUSERNAMEW_PROC Call
- UnixUserW:
SearchOption: UnixAccountName and | D are both valid
Reserved: MUST be sent as 0x00000000
ID: 0
- UnixAccountName: Ox1
- UNMNameW: root
Length: 8
Data: root

The User Name Mapping Protocol service on the server responds with a SUNRPC response packet
with the user map for POSIX user "root" to Windows user "nfs -dom -1\ Administrator", illustrated as
follows.

Frame:
+ Ethernet: Etype = Internet IP (IPv4)
+ lpv4: Next Protocol = UDP, Packet ID = 60521, Total IP Length = 112
+ Udp: SrcPort = UNM(819), DstPort = 965, Length = 92
- Rpc: Reply, Status = Message accepted, Detail = Call succeeded
TransactionID: 1624066386 (0x60CD4952)
MessageType: Reply
- Serv iceReply:
ReplyStatus: Message accepted
- MessageAccepted:
- Verification:
Flavor: No Identity Authentication
AuthDatalength: 0 (0x0)
AcceptState: Call succeeded
- Unm: GETNTCREDSFROMUNIXUSERNAMEW_PROC Reply
- WindowsCredsW:
Status: 0
Reserved: MUST be sent as 0x00000000

58/ 78

[MS-UNMP] — v20131025
User Name Mapping Protocol

Copyright © 2013 Microsoft Corporation.

Release: Friday, October 25, 2013

- WindowsAccountName: Ox1
- UNMWindowsNameW: nfs - dom 1\ administrator
Length: 46
Data: nfs - dom- 1\ administrator
Padding: Binary Large Object (2 Bytes)

4.13 GETUNIXCREDSFROMNTUSERNAMEW_PROC

The client sends a SUNRPC packet to the User Name Mapping Protocol service requesting the POSIX
user mapping for the Windows user "nfs -dom -1\ Administrator".

Frame:
+ Ethernet: Etype = Internet IP (IPv4)
+ Ipv4: Next Protocol = UDP, Packet ID = 62611, Total IP Length = 120
+ Udp: SrcPort = 965, DstPort = UNM(819), Length = 100
- Rpc: Call, Program = mapsvc, Procedure =
GETUNIXCREDSFROMNTUSERNAMEW_PROC
TransactionID: 1640843602 (0x61CD4952)
MessageType: Call
- ServiceCall:
RPCVersionNumber: 2 (0x2)
ProgramNumber: mapsvc, 351455(0x00055CDF)
ProgramVersion: 2 (0x2)
ProcedureNumber: GETUNIXCREDSFROMNTUSERNAMEW_PROC
- Credential: No Identity Authentication
Flavor: No Identity Authentication
AuthDatalength: 0 (0x0)
- Verification:
Flavor: No Identity Authentication
AuthDatalength: 0 (0x0)
- Unm: GETUNIXCREDSFROMNTUSERNAMEW_PROC Call
- WindowsUserAccountNameW:
- WindowsAccountName: 0x1
- UNMNameW: nfs- dom 1\ administrator
Length: 46
Data: nfs - dom- 1\ administrator
Padding: Binary Large Object (2 Bytes)

The User Name Mapping Protocol service on the server responds with a SUNRPC response packet
with th e user map for Windows user "nfs -dom -1\ Administrator” to the POSIX user "root", illustrated
as follows.

Frame:
+ Ethernet: Etype = Internet IP (IPv4)
+ Ipv4: Next Protocol = UDP, Packet ID = 63086, Total IP Length = 80
+ Udp: SrcPort = UNM(819), DstPort = 965, Length = 60
- Rpc: Reply, Status = Message accepted, Detail = Call succeeded
TransactionID: 1640843602 (0x61CD4952)
MessageType: Reply
- ServiceReply:
ReplyStatus: Message accepted
- MessageAcc epted:
- Verification:
Flavor: No Identity Authentication
AuthDatalength: 0 (0x0)

59/78

[MS-UNMP] — v20131025
User Name Mapping Protocol

Copyright © 2013 Microsoft Corporation.

Release: Friday, October 25, 2013

AcceptState: Call succeeded
- Unm: GETUNIXCREDSFROMNTUSERNAMEW_PROC Reply
- UnixCredsW:
- UnixAccountName: 0x1
- UNMNameW: root
Length: 8
Data: root
ID: 0
GidCount: 2
- GID:
GID: 1
GID: 1

4.14 AUTHUSINGUNIXCREDSW_PROC

The client sends a SUNRPC packet to the User Name Mapping Protocol service requesting the POSIX
account details for the POSIX user "root" with an empty password.

Frame:
+ Ethernet: Etype = Internet IP (IPv4)
+ Ipv4: Next Protocol = UDP, Packet ID = 64478, Total IP Length = 84
+ Udp: SrcPort = 965, DstPort = UNM(819), Length = 64
- Rpc: Call, Program = mapsvc, Procedure = AUTHUSINGUNIXCREDSW_PROC
TransactionID: 1724729682 (0x66CD4952)
MessageType: Call
- ServiceCall:
RPCVersionNumber: 2 (0x2)
ProgramNumber: mapsvc, 351455(0x00055CDF)
ProgramVersion: 2 (0x2)
ProcedureNumber: AUTHUSINGUNIXCREDSW_PROC
- Credential: No Identity Authentication
Flavor: No Identity Authent ication
AuthDatalength: 0 (0x0)
- Verification:
Flavor: No Identity Authentication
AuthDatalength: 0 (0x0)
- Unm: AUTHUSINGUNIXCREDSW_PROC Call
- UnixUserAuthWw:
- UnixUserAccountName: 0x1
- UNMNameW: root
Length: 8
Data: root
- UnixUserAccountPassword: Ox1
- UNMNameW:
Length: O
Data:

The User Name Mapping Protocol service on the server responds with a SUNRPC response packet
with the mapped POSIX account details for the user "root", illustrated as follows.

Frame:
+ Ethernet: Etype = Internet IP (IPv4)
+ Ipv4: Next Protocol = UDP, Packet ID = 5741, Total IP Length = 76
+ Udp: SrcPort = UNM(819), DstPort = 965, Length = 56
- Rpc: Reply, St atus = Message accepted, Detail = Call succeeded

60/ 78

[MS-UNMP] — v20131025
User Name Mapping Protocol

Copyright © 2013 Microsoft Corporation.

Release: Friday, October 25, 2013

TransactionID: 1724729682 (0x66CD4952)
MessageType: Reply
- ServiceReply:
ReplyStatus: Message accepted
- MessageAccepted:
- Verification:
Flavor: No Identity Authentic ation
AuthDatalength: 0 (0x0)
AcceptState: Call succeeded
- Unm: AUTHUSINGUNIXCREDSW_PROC Reply
- UnixCredsW:
- UnixAccountPassword: Ox1
- UNMNameW: x
Length: 2
Data: x
Padding: Binary Large Object (2 Bytes)
ID: 0
GidCount: 2
- GID:
GID: 1
GID: 1

4.15 GETWINDOWSGROUPFROMUNIXGROUPNAMEW_PROC

The client sends a SUNRPC packet to the User Name Mapping Protocol service requesting the
Windows group mapping for POSIX group "g1".

Frame:
+ Ethernet: Etype = Internet IP (IPv4)
+ Ipv4: Next Protocol = UDP, Packet ID = 65220, Total IP Length = 88
+ Udp: SrcPort = 965, DstPort = UNM(819), Length = 68
- Rpc: Call, Program = mapsvc, Procedure =
GETNTCREDSFROMUNIXGROUPNAMEW_PROC
TransactionlD: 1741506898 (0x67CD4952)
Message Type: Call
- ServiceCall:
RPCVersionNumber: 2 (0x2)
ProgramNumber: mapsvc, 351455(0x00055CDF)
ProgramVersion: 2 (0x2)
ProcedureNumber: GETNTCREDSFROMUNIXGROUPNAMEW_PROC
- Credential: No Identity Authentication
Flavor: No Identity Authentication
AuthDatalength: 0 (0x0)
- Verification:
Flavor: No Identity Authentication
AuthDatalength: 0 (0x0)
- Unm: GETNTCREDSFROMUNIXGROUPNAMEW_PROC Call

- UnixGroupAccountW:
SearchOption: UnixAccoun tName and ID are both valid
Reserved: MUST be sent as 0x00000000
ID: 401

- UnixAccountName: Ox1
- UNMNameW: g1
Length: 4
Data: g1

61/78

[MS-UNMP] — v20131025
User Name Mapping Protocol

Copyright © 2013 Microsoft Corporation.

Release: Friday, October 25, 2013

The User Name Mapping Protocol service on the server responds with a SUNRPC response packet
with the group map for POSIX group "bin" to Windows group "nfs -dom -1\Domain Admins",
illustrated as follows.

Frame:
+ Ethernet: Etype = Internet IP (IPv4)
+ Ipv 4: Next Protocol = UDP, Packet ID = 8813, Total IP Length = 88
+ Udp: SrcPort = UNM(819), DstPort = 965, Length = 68
- Rpc: Reply, Status = Message accepted, Detail = Call succeeded
TransactionID: 1741506898 (0x67CD4952)
MessageType: Reply
- Serv iceReply:
ReplyStatus: Message accepted
- MessageAccepted:
- Verification:
Flavor: No Identity Authentication
AuthDatalLength: 0 (0x0)
AcceptState: Call succeeded
- Unm: GETNTCREDSFROMUNIXGROUPNAMEW_PROC Reply
- WindowsCredsW:
Status: 0
Reserved: MUST be sent as 0x00000000
- WindowsAccountName: Ox1
- UNMWindowsNameW: NFSDOM1\ g1
Length: 24
Data: NFS - DOM1\ g1

4.16 GETUNIXCREDSFROMNTGROUPNAMEW_PROC

The client sends a SUNRPC packet to the User Name Mapping Protocol service requesting the POSIX
group mapping for the Windows group "nfs -dom -1\ Domain Admins".

Frame:
+ Ethernet: Etype = Internet IP (IPv4)
+ Ipv4: Next Protocol = UDP, Packet ID = 2126, Total IP Length = 120
+ Udp: SrcPort = 965, DstPort = UNM(819), Length = 100
- Rpc: Call, Program = mapsvc, Procedure =
GETUNIXCREDSFROMNTGROUPNAMEW_PROC
TransactionID: 1758284114 (0x68CD4952)
MessageType: Call
- ServiceCall:
RPCVersionNumber: 2 (0x2)
ProgramNumber: mapsvc, 351455(0x00055CDF)
ProgramVersion: 2 (0x2)
ProcedureNumber: GETUNIXCREDSFROMNTGROUPNAMEW_PROC
- Credential: No Identity Authentication
Flavor : No Identity Authentication
AuthDatalength: 0 (0x0)
- Verification:
Flavor: No Identity Authentication
AuthDatalength: 0 (0x0)
- Unm: GETUNIXCREDSFROMNTGROUPNAMEW_PROC Call
- WindowsGroupAccountNameW:
- WindowsAccountNa me: Ox1
- UNMNameW: nfs- dom 1\ Domain Admins
Length: 46

62/78

[MS-UNMP] — v20131025
User Name Mapping Protocol

Copyright © 2013 Microsoft Corporation.

Release: Friday, October 25, 2013

Data: nfs - dom 1\ Domain Admins
Padding: Binary Large Object (2 Bytes)

The User Name Mapping Protocol service on the server responds with a SUNRPC response packet
with the group map for Windows group "nfs -dom -1\ Domain Adminis" to the POSIX group "bin",
illustrated as follows.

Frame:
+ Ethernet: Etype = Internet IP (IPv4)
+ Ipv4: Next Protocol = UDP, Packet ID = 14900, Total IP Length = 72
+ Udp: SrcPort = UNM(819), DstPort = 965, Length = 52
- Rpc: Reply, Status = Message accepted, Detail = Call succeeded
TransactionID: 1758284114 (0x68CD4952)
MessageType: Reply
- ServiceReply:
ReplyStatus: Message accepted
- MessageAcc epted:
- Verification:
Flavor: No Identity Authentication
AuthDatalength: 0 (0x0)
AcceptState: Call succeeded
- Unm: GETUNIXCREDSFROMNTGROUPNAMEW_PROC Reply
- UnixCredsW:
- UnixAccountName: Ox1
- UNMNameW: n
Length: 6
Data: bin
Padding: Binary Large Object (2 Bytes)
ID: 1
GidCount: 0

4.17 GETUNIXCREDSFROMNTUSERSIDW_PROC

The client sends a SUNRPC packet to the User Name Mapping Protocol service requesting the POSIX

credentials for the Windows user SID "S-1-5-21-3994172400 -2625080034 -4079281819 -500"
representing Windows user account "nfs -dom -1\ administrator".
Frame:

+ Ethernet: Etype = Internet IP (IPv4)
+ Ipv4: Next Protocol = UDP, Packet ID = 50594, Total IP Length = 100
+ Udp: SrcPort = 1013, DstP ort = UNM(819), Length = 80
- Rpc: Call, Program = mapsvc, Procedure =
GETUNIXCREDSFROMNTUSERSIDW_PROC
TransactionID: 1221456821 (0x48CDF3B5)
MessageType: Call
- ServiceCall:
RPCVersionNumber: 2 (0x2)
ProgramNumber: mapsvc, 351455(0x00055CDF)
ProgramVersion: 2 (0x2)
ProcedureNumber: GETUNIXCREDSFROMNTUSERSIDW_PROC
- Credential: No Identity Authentication
Flavor: No Identity Authentication
AuthDatalength: 0 (0x0)
- Verification:
Flavor: No Identity Authentication

63/78

[MS-UNMP] — v20131025
User Name Mapping Protocol

Copyright © 2013 Microsoft Corporation.

Release: Friday, October 25, 2013

AuthDatalength: 0 (0x0)
- Unm: GETUNIXCREDSFROMNTGROUPNAMEW_PROC Call

- WindowsUserAccountNameW:

- WindowsAccountName: 0x1
- UNMNameWw:
Length: 28

Data: 01 05 00 00 00 00 00 05 15 00 00 00 F 03B 12 EE
E2 8A 77 9C 9B E6 24 F3 F4 01 00 00

The User Name Mapping Protocol service on the server responds with a SUNRPC response packet
with the POSIX credentials for the mapped UNIX account corresponding to Windows user "nfs
1\ Admin istrator" as POSIX user "root", illustrated as follows.

Frame:
+ Ethernet: Etype = Internet IP (IPv4)
+ Ipv4: Next Protocol = UDP, Packet ID = 13116, Total IP Length = 80
+ Udp: SrcPort = UNM(819), DstPort = 1013, Length = 60
- Rpc: Reply, Status = Message accepted, Detail = Call succeeded
TransactionID: 1221456821 (Ox48CDF3B5)
MessageType: Reply
- ServiceReply:
ReplyStatus: Message accepted
- MessageAccepted:
- Verification:
Flavor: No Id entity Authentication
AuthDatalength: 0 (0x0)
AcceptState: Call succeeded
- Unm: GETUNIXCREDSFROMNTGROUPNAMEW_PROC Reply
- UnixCredsW:
- UnixAccountName: Ox1
- UNMNameW: root
Length: 8
Data: root
ID: 0
GidCount: 2
- GID:
GID: 1
GID: 1

-dom -

[MS-UNMP] — v20131025
User Name Mapping Protocol

Copyright © 2013 Microsoft Corporation.

Release: Friday, October 25, 2013

64/ 78

5 Security

The User Name Mapping Protocol accepts requests with SUNRPC authentication level AUTH_NULL.

5.1 Security Considerations for Implementers

None.

5.2 Index of Security Parameters

None.

65/ 78

[MS-UNMP] — v20131025
User Name Mapping Protocol

Copyright © 2013 Microsoft Corporation.

Release: Friday, October 25, 2013

6 Appendix A: Full SunRPC IDL

This IDL section excludes the following procedures, which need to be coded separately because the
IDL is unable to describe the returned data types. Sample code for the required structure definitions
and encode/decode routines can be found in section 7.

Version 1

A DUMPALLMAPS_PROC (procedure 4)

A DUMPALLMAPSEX_PROC (procedure 6)
Version 2

DUMPALLMAPS_PROC (procedure 4)

> >

DUMPALLMAPSEX_PROC (procedure 6)

>

DUMPALLMAPSW_PROC (procedure 10)

>

DUMPALLMAPSEXW_PROC (pro cedure 11)

const MAXNAMELEN = 128;
const MAXNAMELENx2 = 256;
const MAXLINELEN = 256;
const MAXLINELENx2 = 512;
const MAXGIDS = 32;

const MAXSIDLEN = 72;

typedef opaque MapSvrMBCSNameString<MAXNAMELEN>;

typedef opaque MapSvrUnicodeNameString<MAXNAMELENx2>;
typedef opaque MapSvrMBCSWindowsNameString<MAXLINELEN>;
typedef opaque MapSvrUnicodeWindowsNameString<MAXLINELENx2>;
typedef opaque MapSvrMBCSMapString<MAXLINELEN>;

typedef opaque MapSvrUnicodeMapString<MAXLINELENx2>;

struct unix_account {

long Searc hOption;

long Reserved;

long ID;

MapSvrMBCSNameString UnixAccountName;
5

struct unix_accountW {
long SearchOption;
long Reserved;
long ID;
MapSvrUnicodeNameString UnixAccountName;

h

struct unix_user_auth {
MapSvrMBCSNameString UnixUserAccountName;
MapSvrMBCSNameString UnixUserAccountPassword,;

5

struct unix_user_authW {
MapSvrUnicodeNameString UnixUserAccountName;
MapSvrUnicodeNameString UnixUserAccountPassword,;

[MS-UNMP] — v20131025
User Name Mapping Protocol

Copyright © 2013 Microsoft Corporation.

Release: Friday, October 25, 2013

66/ 78

3

struct windows_creds {

long Status;

long Reserved;

MapSvrMBCSWindowsNameString WindowsAccountName;
I3

struct windows_credsW {
long Status;
long Reserved;
MapSvrUnicodeWindowsNameString WindowsAccountName;

3

struct windows_account {
MapSvrMBCSNameString WindowsAccountName;

h

struct windows_accountW {
MapSvrUnicodeNameString WindowsAccountName;

h

struct unix_auth {
MapSvrMBCSNameString UnixAccountPassword;
long ID;
long GIDArray<MAXGIDS>;

I3

struct unix_authW {
MapSvrUnicodeNameString UnixAccountPassword;
long ID;
long GIDArray<MAXGIDS>;

h

struct unix_creds {
MapSvrMBCSNameString UnixAccountName;
long ID;
long GIDArray<MAXGIDS>;

h

struct unix_credsW {
MapSvrUnicodeNameString UnixAccountName;
long ID;
long GIDArray<MAXGIDS>;

h

struct dump_map_req {
long PrincipalType;
long MapRecordindex;

h

struct sequence_number {
long CurrentVersionTokenLowPart;
long CurrentVersionTokenH ighPart;

3

struct mapping_record {
MapSvrMBCSNameString WindowsAccountName;
MapSvrMBCSNameString UnixAccountName;

67/78

[MS-UNMP] — v20131025
User Name Mapping Protocol

Copyright © 2013 Microsoft Corporation.

Release: Friday, October 25, 2013

long ID;

h
struct sid {

char SID<MAXSIDLEN>;
h

struct mapping_recordW {
MapSvrUnicodeNameString WindowsAccountName;
MapSvrUnicodeNameString UnixAccountName;
long ID;

I3

program MAPPROG {
version MAPVERS_V1 {
void
MAPPROC_NULL(void) = 0;

windows_creds
GETWINDOWSCREDSFROMUNIXUSERNAME_PROC(unix_account)= 1;

unix_creds
GETUNIXCREDSFROMNTUSERNAME_PROC(windows_account) = 2;

unix_auth
AUTHUSINGUNIXCREDS_PROC(unix_user_auth) = 3;

sequence_number
GETCURRENTVERSIONTOKEN_PROC(sequence_number) =5;

windows_cr eds
GETWINDOWSGROUPFROMUNIXGROUPNAME_PROC(unix_account)= 7;

unix_creds
GETUNIXCREDSFROMNTGROUPNAME_PROC(windows_account) = 8;
=1
} = 351455;

program MAPPROG {
version MAPVERS_V2 {

void
MAPPROC_NULL(void) = 0;

windows_creds
GETWINDOWSCREDSFROMUNIXUSERNAME_PROC(unix_account)=1;

unix_creds
GETUNIXCREDSFROMNTUSERNAME_PROC(windows_account) = 2;

unix_auth
AUTHUSINGUNIXCREDS_PROC(umi user_auth) = 3;

sequence_number
GETCURRENTVERSIONTOKEN_PROC(sequence_number) =5;

windows_creds
GETWINDOWSGROUPFROMUNIXGROUPNAME_PROC(unix_account)= 7;

68/ 78

[MS-UNMP] — v20131025
User Name Mapping Protocol

Copyright © 2013 Microsoft Corporation.

Release: Friday, October 25, 2013

unix_creds
GETUNIXCREDSFROMNTGROUPNAME_PROC¢uisdaccount) = 8;

unix_creds
GETUNIXCREDSFROMNTUSERSID_PROC(sid) = 9;

windows_credsW
GETWINDOWSUSERFROMUNIXUSERNAMEW_PROC(unix_accountW)=12;

unix_credswW
GETUNIXCREDSFROMNTUSERNAMEW_PROC(windows_accountW)= 13;

unix_authw
AUTHUSINGUNIXCREDSW_PROC(unix_user_authW) = 14;

windows_credsW
GETWINDOWSGROUPFROMUNIXGROUPNAMEW_PROC(unix_accountW)= 15;

unix_credsW
GETUNIXCREDSFROMNTGROUPNAMEW_PROC(windows_accountW) = 16;

unix_credswW
GETUNIXCREDSFROMNTUSERSIDW_PROC(sid) = 17;
=2
} = 351455;

69/ 78

[MS-UNMP] — v20131025
User Name Mapping Protocol

Copyright © 2013 Microsoft Corporation.

Release: Friday, October 25, 2013

7 Appendix B: Sample Code to Encode and Decode Non-XDR-
Compliant Data Types

The sample code in the following sections must be interpreted as being written in the C
programming language.

7.1 Header File Content

struct mapping {
sequence_number Token;
uint MappingRecordCount;
uint TotalMappingRecordCount;
mapping_record *MapArray;
h
typedef struct mapping mapping;

struct maps {
sequence_number Token;
uint MappingRecordCount;
uint TotalMappingRecordCount;
MapSvrMBCSMapString *MapArray;
h

typedef struct maps maps;

struct mappingW {
sequence_number Token;
uint MappingRecordCount;
uint TotalMappingRecordCount;
mapping _recordW *MapArray;
h
typedef struct mappingW mappingW;

struct mapsW {
sequence_number Token;
uint MappingRecordCount;
uint TotalMappingRecordCount;
MapSvrUnicodeMapString *MapArray;
h
typedef struct mapsW mapsW;

#define DUMPALLMAPS_PROC 4
extern mapping * dumpallmaps_proc_1(dump_map_req *, CLIENT *);
extern mapping * dumpallmaps_proc_1_svc(dump_map_req *,

struct svc_req *);

#define DUMPALLMAPSEX_PROC 6
extern maps * dum pallmapsex_proc_1(dump_map_req *, CLIENT *);
extern maps * dumpallmapsex_proc_1_svc(dump_map_req *,

struct svc_req *);

#define DUMPALLMAPS_PROC 4
extern mapping * dumpallmaps_proc_2(dump_map_req *, CLIENT *);
exte rn mapping * dumpallmaps_proc_2_svc(dump_map_req *,

70/ 78

[MS-UNMP] — v20131025
User Name Mapping Protocol

Copyright © 2013 Microsoft Corporation.

Release: Friday, October 25, 2013

struct svc_req *);

#define DUMPALLMAPSEX_PROC 6

extern maps * dumpallmapsex_proc_2(dump_map_req *, CLIENT *);

extern maps * dumpallmapsex_proc_2_svc(dump_map_r eq*,
struct svc_req *);

#define DUMPALLMAPSW_PROC 10
extern mappingW * dumpallmapsw_proc_2(dump_map_req *, CLIENT *);
extern mappingW * dumpallmapsw_proc_2_svc(dump_map_req *,

struct svc_req *);

#define DUMPALLMAPSEXW_PROC 11
extern mapsW * dumpallmapsexw_proc_2(dump_map_req *, CLIENT *);
extern mapsW * dumpallmapsexw_proc_2_svc(dump_map_req *,

struct svc_req *);

extern bool_t xdr_mapping(XDR *, mapping*);
extern bool_t xdr_maps(XDR *, maps*);

extern bool_t xdr_mappingW(XDR *, mappingW?);
extern bool_t xdr_mapsW(XDR *, mapsW*);

7.2 Encode/Decode Routines For Non-XDR Data Types Using XDR Primitives

bool_t
xdr_mapping(register XDR *xdrs, mapping *objp)
{
if (!xdr_sequence_number(xdrs, &objp - >Token))
return (FALSE);
if (Ixdr_u_int(xdrs, &objp - >MappingRecordCount))
return (FALSE);
if (Ixdr_u_int(xdrs, &objp - >TotalMappingRecordCount))

return (FALSE);

objp - >MapArray = (mapping_record *) malloc (
objp - >MappingRecordCount * sizeof (mapping_record));

if (‘objp - >MapArray)
return (FALSE);

if (Ixdr_vector(xdrs,
(char *)objp - >MapArray,
objp - >MappingRecordCount,
sizeof (mapping_record),
(xdrproc_t) xdr_mapping_record))
retur n (TRUE);

}
bool_t
xdr_maps(register XDR *xdrs, maps *objp)
{
if (Ixdr_sequence_number(xdrs, &objp - >Token))
return (FALSE);
if (Ixdr_u_int(xdrs, &objp - >MappingRecordCount))
return (FALSE);
if (Ixdr_u_int(xdrs, &objp - >TotalMappingRecordCount))

71/ 78

[MS-UNMP] — v20131025
User Name Mapping Protocol

Copyright © 2013 Microsoft Corporation.

Release: Friday, October 25, 2013

return (FALSE);

objp - >MapArray = (MapSvrMBCSMapString *) malloc (
objp - >MappingRecordCount * sizeof (MapSvrMBCSMapString));

if (lobjp - >MapArray)
return (FALSE);

if (Ix dr_vector(xdrs,
(char *)objp - >MapArray,
objp - >MappingRecordCount,
sizeof (MapSvrMBCSMapsString),
(xdrproc_t) xdr_MapSvrMBCSMapString))
return (FALSE);

return (TRUE) ;

bool_t
xdr_mappingW(register XDR *xdrs, mappingW *objp)

if (!xdr_sequence_number(xdrs, &objp - >Token))
return (FALSE);

if (Ixdr_u_int(xdrs, &objp - >MappingRecordCount))
return (FALSE);

if (Ixdr_u_int(xdrs, &objp - >TotalMappingRecordCount))

return (FALSE);

objp - >MapArray = (mapping_recordW *) malloc (
objp - >MappingRecordCount * sizeof (mapping_recordW));

if (lobjp - >MapArray)
return (FALSE);

if (Ixdr_vector(xdrs,
(char *)objp - >MapArray,
objp - >MappingRecordCount,
sizeof (mapping_recordW),
(xdrproc_t) xdr_mapping_recordW))
return (FALSE);

return (TRUE);

}
bool_t
xdr_mapsW(register XDR *xdrs, mapsW *objp)
{
if (Ixdr_sequence_number(xdrs, &objp - >Token))
return (FALSE);
if (Ixdr_u_int(xdrs, &objp - >MappingRecordCount))
return (FALSE);
if (Ixdr_u_int(xdrs, &objp - >TotalMappingRecordCount))

return (FALSE);

objp - >MapArray = (MapSvrUnicodeMapString *) malloc (
objp - >MappingRecordCount * sizeof (MapSvrUnicodeMapString));

72/ 78

[MS-UNMP] — v20131025
User Name Mapping Protocol

Copyright © 2013 Microsoft Corporation.

Release: Friday, October 25, 2013

if (lobjp - >MapArray)
return (FALSE);

if (Ixdr_vector(xdrs,
(char*) objp - >MapArray,
objp - >MappingRecordCount,
sizeof (MapSvrUnicodeMapString),
(xdrproc_t) xdr_MapSvrUnicodeMapString))
return (FALSE);

return (TRUE);

73/ 78

[MS-UNMP] — v20131025
User Name Mapping Protocol

Copyright © 2013 Microsoft Corporation.

Release: Friday, October 25, 2013

8 Appendix C: Product Behavior

The information in this specification is applicable to the following Microsoft products or supplemental
software. References to product versions include released service packs:

p=S

Windows Server 2003 R2 operating system

>

Windows Vista operating system

>

Windows Server 2008 operating system

>

Windows 7 operating system

Windows Server 2008 R2 operating system

> >

Windows 8 operating system

A Windows Server 2012 operating system

A Windows 8.1 operating system

A Windows Server 2012 R2 opera ting system

Exceptions, if any, are noted below. If a service pack or Quick Fix Engineering (QFE) number

appears with the product version, behavior changed in that service pack or QFE. The new behavior
also applies to subsequent service packs of the produc t unless otherwise specified. If a product
edition appears with the product version, behavior is different in that product edition.

Unless otherwise specified, any statement of optional behavior in this specification that is prescribed
using the terms SHOU LD or SHOULD NOT implies product behavior in accordance with the SHOULD
or SHOULD NOT prescription. Unless otherwise specified, the term MAY implies that the product

does not follow the prescription.

<1> Section 1.4: The Windows impl ementation of the User Name Mapping Protocol server is used
by the "Client for NFS", "Server for NFS", and "Remote Shell Service" components of the "Services
for UNIX" product suite and Windows Server 2003 R2.

<2> Section 1.5: [NFSAUTH] describes how the Windows implementation of the User Name
Mapping Protocol is configured with appropriate Windows and UNIX account mappings.

<3> Section 1.6: Windows Se rver 2003 R2 is the only version of Windows with an implementation
of the User Name Mapping Protocol server.

<4> Section 2.2.2.6: Due to an error in the Windows Server 2003 R2 implementation of the User

Name Mapping Protocol server, for maps obtained from an NIS service, the value of the AuthType
field can unpredictably be set to '0' (AUTH_FILE) rather than the expected value of '1' (AUTH_NIS).

The other fields in the map are valid.

Note Windows Server 2003 R2 is the only version of Windows with an implementation of the User
Name Mapping Protocol server.

<5> Section 2.2.4: Although the only authentication mechanism defined by the User Name Mapping
Protocol is AUTH_NULL (as specified in RFC1057] section 9.1), the Windows implementation of the
User Name Mapping Protocol server returns a SUNRPC status of MSG_DENIED with a reject status of

74/ 78

[MS-UNMP] — v20131025
User Name Mapping Protocol

Copyright © 2013 Microsoft Corporation.

Release: Friday, October 25, 2013

http://go.microsoft.com/fwlink/?LinkId=90265

AUTH_ERROR, and an authentication status of AUTH_BADCRED, whenever the client IP address
does not match the list of trusted client addresses as configured by the administrator.

<6> Section 2.2.5.4: The Windows implementation of the User Name Mapping Protocol server uses
only the UNIX user name ass earch criteria; the password given as input is ignored.

<7> Section 2.2.5.15: The Windows implementation of the User Name Mapping Protocol server uses
only the UNIX user name as search criteria; the password given as input is ignored

<8> Section 3.2.5.1: The Windows implementation of the User Name Mapping Protocol server
returns a SUNRPC status of MSG_DENIED with a reject status of AUTH_ERROR and a authentication
status of AUTH_BADCRED, whenever the client IP a ddress does not match the list of trusted client
addresses, as configured by the administrator. This Windows -specific behavior is documented in

NFSAUTH] .

<9> Section 3.2.5.2.1: The Windows implementation of the User Name Mapping Protocol server
returns a maximum of 200 mapping records in a SUNRPC packet response.

<10> Section 3.2.5.2.1: The Windows implementation of the User Name Mapping Protocol initializes
CurrentVersionTokenHighPart and CurrentVersionTokenLowPart to a locally unique identifier
as returned by the Win32 API AllocateLocallyUniqueld() on startup.

<11> Section 3.2.5.2.2: The Windows implementation of the User Name Mapping Protocol server

limits the number of mapping records returned by both DUMPALLMAPS_PROC and

DUMPALLMAPSW_PROC in a single SUNRPC packet response to a value set by the registry DWORD

value HKLM\System\CurrentControlSet\Services\MapSvc\CurrentVersion\WriteBlock. The
default value for this limit is 200. Any changes to this value require a restart of the Windows

implementation of the User Name Mapping Protocol server in order to become effective.

<12> Section 3.2.5.2. 2. The Windows implementation of the User Name Mapping Protocol server
limits the size of a single SUNRPC response that uses the UDP transport to 8,800 bytes. There is no

such limit when using the TCP transport. For the DUMPALLMAPSXXXX_PROC procedures, if the
number of records to be returned in a single SUNRPC UDP response message cannot be contained in

a message of this size, then the Windows implementation of the User Name Mapping Protocol server

replies with a SUNRPC message status of MSG_ACCEPTED, with the ACCEPT status set to
SYSTEM_ERR.
<13> Section 3.2.5.2.2: The Windows implementation of the User Name Mapping Protocol server

ignores the value of MapRecordIndex in the DUMPALLMAPSEX_PROC and DUMPALLMAPSEXW_PROC
request, and the r esponse always contains the maps enumerated from index 0. In the response, the
TotalMappingRecordCount value is set to the sum of the total number of map records held by the

server and the value of ~ MapRecordIndex in the request.

<14> Section 3.2.5.2.3: The Windows implementation of the User Name Mapping Protocol server

changes the 64 -bit integer sequence number to a random value every time the account mapping

database is updated. This value is unique only within the lifetime of the cu rrent server process —its
uniqueness can only be guaranteed within the span of a single server process. The server returns

this sequence number to the client as CurrentVersionTokenHighPart and
CurrentVersionTokenLowPart in the GETCURRENTVERSIONTOKEN_PROC response and the
DUMPALLMAPSXXX_PROC response.

75/ 78

[MS-UNMP] — v20131025
User Name Mapping Protocol

Copyright © 2013 Microsoft Corporation.

Release: Friday, October 25, 2013

http://go.microsoft.com/fwlink/?LinkId=90231

9 Change Tracking

No table of changes is available. The document is either new or has had no changes since its last
release.

76 /78

[MS-UNMP] — v20131025
User Name Mapping Protocol

Copyright © 2013 Microsoft Corporation.

Release: Friday, October 25, 2013

10 Index
A

Abstract data model

client 35

server 38
Applicability 12
AUTHUSINGUNIXCREDS PROC 44
AUTHUSINGUNIXCREDS PROC (PROC3) 28
AUTHUSINGUNIXCREDSW_PROC 60
AUTHUSINGUNIXCREDSW_PROC (PROC 14) 32

C

Capability negotiation 12

Change tracking _ 76

Client
abstract data model 35
higher -layer triggered events 36
initialization 36
local even ts 38
message processing 36
sequencing rules 36
timer events 38
timers 36

Common User Name Mapping Protocol Data Types
13

D

Data model - abstract

client 35

server 38
dump_map req 21
DUMPALLMAPS PROC 45
DUMPALLMAPS_PROC (PROC 4) 29
DUMPALLMAPSEX_PROC 48
DUMPALLMAPSEX_PROC (PROC 6) 29
DUMPALLMAPSEXW_PROC 56
DUMPALLMAPSEXW_PROC (PROC 11) 31
DUMPALLMAPSW_PROC 53
DUMPALLMAPSW_PROC (PROC 10) 31
DUMPALLMAPSXXX_ PROC request 39

F

Fields - vendor -extensible 12
Full SUnRPC IDL 66

G

GETCURRENTVERSIONTOKEN_PROC 47
GETCURRENTVERSIONTOKEN_PROC (PROC 5) 29
GETCURRENTVERSIONTOKEN_PROC request 39
GETUNIXCREDSFROMNTGROUPNAME_PROC 51
GETUNIXCREDSFROMNTGROUPNAME_PROC (PROC

8) 30
GETUNIXCREDSFROMNTGROUPNAMEW_PROC 62

GETUNIXCREDSFROMNTGROUPNAMEW_ PROC
(PROC 16) 33

GETUNIXCREDSFROMNTUSERNAME _PROC 43

GETUNIXCRED SFROMNTUSERNAME_PROC (PROC
2)s 28

GETUNIXCREDSFROMNTUSERNAMEW_PROC 59

GETUNIXCREDSFROMNTUSERNAMEW_PROC (PROC
13) 32

GETUNIXCREDSFROMNTUSERSID_PROC 52

GETUNIXCREDSFROMNTUSERSID PROC (PROC 9)
30

GETUNIXCREDSFROMNTUSERSIDW_PROC 63

GETUNIXCREDSFROMNTUSERSIDW_PROC (PROC
17) 34

GETWINDOWSCREDSFROMUNIXUSERNAME_PROC
42

GETWINDOWSCREDSFROMUNIXUSERNAME_PROC
(PROC 1) 27

GETWINDOWSGROUPFROMUNIXGROUPNAME_PROC
50

GETWINDOWSGROUPFROMUNIXGROUPNAME _PROC
(PROC7) 30

GETWINDOWSGROU PFROMUNIXGROUPNAMEW_PR
ocC 61

GETWINDOWSGROUPFROMUNIXGROUPNAMEW_PR
OC (PROC 15) 33

GETWINDOWSUSERFROMUNIXUSERNAMEW_PROC
58

GETWINDOWSUSERFROMUNIXUSERNAMEW_PROC
(PROC 12) 32

Glossary 7

H

Higher -layer triggered events
client 36
server 39

I

IDL 66
Implementer - security considerations 65
Index of security parameters 65
Informative references 10
Initialization

client 36

server 39
Introduction 7

L

Local events
client 38
server 40

mapping 24
mapping_record 22
mapping_recordW 23

mappingW 25

[MS-UNMP] — v20131025
User Name Mapping Protocol

Copyright © 2013 Microsoft Corporation.

Release: Friday, October 25, 2013

77/ 78

MAPPROC_NULL (PROC 0) 27
maps 24
MapSvrMBCSMapString 15
MapSvrMBCSNameString 14
MapSvrMBCSWindowsNameString 14
MapSvrUnicodeMapString 16
MapSvrUnicodeNameString 14
MapSvrUnicodeWindowsNameString 14
mapsW_ 25
Message processing

client 36

server 39
Messages

syntax 13

transport 13

Normative references 9

o

Overview (synopsis) 10

P

Parameters - security index 65
Polling for cache consistency 37
Preconditions 12

Prerequisites 12

Processing for all procedures 39
Product behavior 74

R
References
informative 10
normative 9
Relationship to other protocols 11
Request from the server - _processing account

mapping response 37
Request to the server

further account mapping 37

initial account mapping 37

S

Security

implementer considerations 65

overview 65

parameter index 65
sequence_number 22
Sequencing rules

client 36
server 39
Server

abstract data model 38

higher -layer triggered events 39
initialization 39

local events 40

message processing 39
sequencing rules 39

timer events 40

timers 39
sid 23
Sizes 14
Standard failure responses 26
Standards assignments 12
SunRPC IDL 66
SUNRPC Request header 13
SUNRPC Response header 13
Syntax - message 13

T

Timer events
client 38
server 40
Timers
client 36
server 39
Tracking changes 76
Transport - message 13
Triggered events - higher -layer
client 36
server 39

U

unix_account 16

unix_accountw 17

unix_auth 20

unix_authw 20

unix_creds 21

unix_credswW 21

unix_user_auth 18

unix_user_authW 18

User Name Mapping Protocol Messages

\"

Vendor -extensible fields 12
Versioning 12

w

windows_account 19
windows_accountW 20
windows_creds 19
windows_credsW 19

26

[MS-UNMP] — v20131025
User Name Mapping Protocol

Copyright © 2013 Microsoft Corporation.

Release: Friday, October 25, 2013

78/ 78

	Contents
	1 Introduction
	1.1 Glossary
	1.2 References
	1.2.1 Normative References
	1.2.2 Informative References

	1.3 Overview
	1.4 Relationship to Other Protocols
	1.5 Prerequisites/Preconditions
	1.6 Applicability Statement
	1.7 Versioning and Capability Negotiation
	1.8 Vendor-Extensible Fields
	1.9 Standards Assignments

	2 Messages
	2.1 Transport
	2.2 Message Syntax
	2.2.1 User Name Mapping Protocol Message Headers
	2.2.1.1 SUNRPC Request Header
	2.2.1.2 SUNRPC Response Header

	2.2.2 Common User Name Mapping Protocol Data Types
	2.2.2.1 Sizes
	2.2.2.2 MapSvrMBCSNameString
	2.2.2.3 MapSvrUnicodeNameString
	2.2.2.4 MapSvrMBCSWindowsNameString
	2.2.2.5 MapSvrUnicodeWindowsNameString
	2.2.2.6 MapSvrMBCSMapString
	2.2.2.7 MapSvrUnicodeMapString
	2.2.2.8 unix_account
	2.2.2.9 unix_accountW
	2.2.2.10 unix_user_auth
	2.2.2.11 unix_user_authW
	2.2.2.12 windows_creds
	2.2.2.13 windows_credsW
	2.2.2.14 windows_account
	2.2.2.15 windows_accountW
	2.2.2.16 unix_auth
	2.2.2.17 unix_authW
	2.2.2.18 unix_creds
	2.2.2.19 unix_credsW
	2.2.2.20 dump_map_req
	2.2.2.21 sequence_number
	2.2.2.22 mapping_record
	2.2.2.23 sid
	2.2.2.24 mapping_recordW

	2.2.3 Non-XDR-Compliant Data Structures
	2.2.3.1 mapping
	2.2.3.2 maps
	2.2.3.3 mappingW
	2.2.3.4 mapsW

	2.2.4 Standard Failure Responses
	2.2.5 User Name Mapping Protocol Messages
	2.2.5.1 MAPPROC_NULL (PROC 0)
	2.2.5.2 GETWINDOWSCREDSFROMUNIXUSERNAME_PROC (PROC 1)
	2.2.5.3 GETUNIXCREDSFROMNTUSERNAME_PROC (PROC 2)
	2.2.5.4 AUTHUSINGUNIXCREDS_PROC (PROC 3)
	2.2.5.5 DUMPALLMAPS_PROC (PROC 4)
	2.2.5.6 GETCURRENTVERSIONTOKEN_PROC (PROC 5)
	2.2.5.7 DUMPALLMAPSEX_PROC (PROC 6)
	2.2.5.8 GETWINDOWSGROUPFROMUNIXGROUPNAME_PROC (PROC 7)
	2.2.5.9 GETUNIXCREDSFROMNTGROUPNAME_PROC (PROC 8)
	2.2.5.10 GETUNIXCREDSFROMNTUSERSID_PROC (PROC 9)
	2.2.5.11 DUMPALLMAPSW_PROC (PROC 10)
	2.2.5.12 DUMPALLMAPSEXW_PROC (PROC 11)
	2.2.5.13 GETWINDOWSUSERFROMUNIXUSERNAMEW_PROC (PROC 12)
	2.2.5.14 GETUNIXCREDSFROMNTUSERNAMEW_PROC (PROC 13)
	2.2.5.15 AUTHUSINGUNIXCREDSW_PROC (PROC 14)
	2.2.5.16 GETWINDOWSGROUPFROMUNIXGROUPNAMEW_PROC (PROC 15)
	2.2.5.17 GETUNIXCREDSFROMNTGROUPNAMEW_PROC (PROC 16)
	2.2.5.18 GETUNIXCREDSFROMNTUSERSIDW_PROC (PROC 17)

	3 Protocol Details
	3.1 Client Details
	3.1.1 Abstract Data Model
	3.1.2 Timers
	3.1.3 Initialization
	3.1.4 Higher-Layer Triggered Events
	3.1.5 Message Processing Events and Sequencing Rules
	3.1.5.1 Making the Initial Account Mapping Request to the Server
	3.1.5.2 Processing the Account Mapping Response from the Server
	3.1.5.3 Making Further Account Mapping Requests to the Server
	3.1.5.4 Polling for Cache Consistency

	3.1.6 Timer Events
	3.1.7 Local Events

	3.2 Server Details
	3.2.1 Abstract Data Model
	3.2.2 Timers
	3.2.3 Initialization
	3.2.4 Higher-Layer Triggered Events
	3.2.5 Message Processing Events and Sequencing Rules
	3.2.5.1 Processing for All Procedures
	3.2.5.2 Processing of DUMPALLMAPSXXX_PROC Request and GETCURRENTVERSIONTOKEN_PROC Request
	3.2.5.2.1 Processing the Initial Account Mapping Request from the Client
	3.2.5.2.2 Processing Further Account Mapping Requests from the Client
	3.2.5.2.3 Processing the Client Account Mapping Cache Refresh

	3.2.6 Timer Events
	3.2.7 Other Local Events

	4 Protocol Examples
	4.1 GETWINDOWSCREDSFROMUNIXUSERNAME_PROC
	4.2 GETUNIXCREDSFROMNTUSERNAME_PROC
	4.3 AUTHUSINGUNIXCREDS_PROC
	4.4 DUMPALLMAPS_PROC
	4.5 GETCURRENTVERSIONTOKEN_PROC
	4.6 DUMPALLMAPSEX_PROC
	4.7 GETWINDOWSGROUPFROMUNIXGROUPNAME_PROC
	4.8 GETUNIXCREDSFROMNTGROUPNAME_PROC
	4.9 GETUNIXCREDSFROMNTUSERSID_PROC
	4.10 DUMPALLMAPSW_PROC
	4.11 DUMPALLMAPSEXW_PROC
	4.12 GETWINDOWSUSERFROMUNIXUSERNAMEW_PROC
	4.13 GETUNIXCREDSFROMNTUSERNAMEW_PROC
	4.14 AUTHUSINGUNIXCREDSW_PROC
	4.15 GETWINDOWSGROUPFROMUNIXGROUPNAMEW_PROC
	4.16 GETUNIXCREDSFROMNTGROUPNAMEW_PROC
	4.17 GETUNIXCREDSFROMNTUSERSIDW_PROC

	5 Security
	5.1 Security Considerations for Implementers
	5.2 Index of Security Parameters

	6 Appendix A: Full SunRPC IDL
	7 Appendix B: Sample Code to Encode and Decode Non-XDR-Compliant Data Types
	7.1 Header File Content
	7.2 Encode/Decode Routines For Non-XDR Data Types Using XDR Primitives

	8 Appendix C: Product Behavior
	9 Change Tracking
	10 Index

