[MS-UCODEREF-Diff]:

Windows Protocols Unicode Reference

Intellectual Property Rights Notice for Open Specifications Documentation

* Technical Documentation. Microsoft publishes Open Specifications documentation (“this
documentation”) for protocols, file formats, data portability, computer languages, and standards
support. Additionally, overview documents cover inter-protocol relationships and interactions.

* Copyrights. This documentation is covered by Microsoft copyrights. Regardless of any other
terms that are contained in the terms of use for the Microsoft website that hosts this
documentation, you can make copies of it in order to develop implementations of the technologies
that are described in this documentation and can distribute portions of it in your implementations
that use these technologies or in your documentation as necessary to properly document the
implementation. You can also distribute in your implementation, with or without modification, any
schemas, IDLs, or code samples that are included in the documentation. This permission also
applies to any documents that are referenced in the Open Specifications documentation.

* No Trade Secrets. Microsoft does not claim any trade secret rights in this documentation.

* Patents. Microsoft has patents that might cover your implementations of the technologies
described in the Open Specifications documentation. Neither this notice nor Microsoft's delivery of
this documentation grants any licenses under those patents or any other Microsoft patents.
However, a given Open Specifications document might be covered by the Microsoft Open
Specifications Promise or the Microsoft Community Promise. If you would prefer a written license,
or if the technologies described in this documentation are not covered by the Open Specifications
Promise or Community Promise, as applicable, patent licenses are available by contacting
iplg@microsoft.com.

* License Programs. To see all of the protocols in scope under a specific license program and the
associated patents, visit the Patent Map.

* Trademarks. The names of companies and products contained in this documentation might be
covered by trademarks or similar intellectual property rights. This notice does not grant any
licenses under those rights. For a list of Microsoft trademarks, visit
-www.microsoft.com/trademarks.

* Fictitious Names. The example companies, organizations, products, domain names, email
addresses, logos, people, places, and events that are depicted in this documentation are fictitious.
No association with any real company, organization, product, domain name, email address, logo,
person, place, or event is intended or should be inferred.

Reservation of Rights. All other rights are reserved, and this notice does not grant any rights other
than as specifically described above, whether by implication, estoppel, or otherwise.

Tools. The Open Specifications documentation does not require the use of Microsoft programming
tools or programming environments in order for you to develop an implementation. If you have access
to Microsoft programming tools and environments, you are free to take advantage of them. Certain
Open Specifications documents are intended for use in conjunction with publicly available standards
specifications and network programming art and, as such, assume that the reader either is familiar
with the aforementioned material or has immediate access to it.

Support. For guestions and support, please contact dochelp@microsoft.com.

1/81

[MS-UCODEREF-DIff] - v20170601
Windows Protocols Unicode Reference
Copyright © 2017 Microsoft Corporation
Release: June 1, 2017

http://go.microsoft.com/fwlink/?LinkId=214445
http://go.microsoft.com/fwlink/?LinkId=214445
http://go.microsoft.com/fwlink/?LinkId=214448
mailto:iplg@microsoft.com
https://msdn.microsoft.com/en-us/openspecifications/dn750984

Revision Summary

Revision Revision
Date History Class Comments
2/14/2008 2.0.1 Editorial Changed language and formatting in the technical content.
3/14/2008 2.0.2 Editorial Changed language and formatting in the technical content.
5/16/2008 2.0.3 Editorial Changed language and formatting in the technical content.
6/20/2008 3.0 Major Updated and revised the technical content.
7/25/2008 3.0.1 Editorial Changed language and formatting in the technical content.
8/29/2008 3.0.2 Editorial Changed language and formatting in the technical content.
10/24/2008 | 3.0.3 Editorial Changed language and formatting in the technical content.
12/5/2008 3.1 Minor Clarified the meaning of the technical content.
1/16/2009 3.1.1 Editorial Changed language and formatting in the technical content.
2/27/2009 3.1.2 Editorial Changed language and formatting in the technical content.
4/10/2009 3.1.3 Editorial Changed language and formatting in the technical content.
5/22/2009 3.1.4 Editorial Changed language and formatting in the technical content.
7/2/2009 4.0 Major Updated and revised the technical content.
8/14/2009 4.0.1 Editorial Changed language and formatting in the technical content.
9/25/2009 4.1 Minor Clarified the meaning of the technical content.
11/6/2009 5.0 Major Updated and revised the technical content.
12/18/2009 | 6.0 Major Updated and revised the technical content.
1/29/2010 7.0 Major Updated and revised the technical content.
3/12/2010 7.0.1 Editorial Changed language and formatting in the technical content.
4/23/2010 7.0.2 Editorial Changed language and formatting in the technical content.
6/4/2010 7.0.3 Editorial Changed language and formatting in the technical content.
7/16/2010 2.0.3 None It\leocr(]::ii];r;?iz:ge:f meaning, language, or formatting of the
8/27/2010 2.0.3 None L\lec;"(::;g?iz:toemfa meaning, language, or formatting of the
10/8/2010 2.0.3 None Lﬂe%;:;g?izstoemé meaning, language, or formatting of the
11/19/2010 | 7.0.3 None Fe%ﬁ:;g?iiﬁgem.e meaning, language, or formatting of the
1/7/2011 2.0.3 None Fe%ﬁ:;g?iiﬁgem.e meaning, language, or formatting of the
2/11/2011 2.0.3 None Fe%ﬁ:;g?iiﬁgem.e meaning, language, or formatting of the

2/81

[MS-UCODEREF-DIff] - v20170601
Windows Protocols Unicode Reference
Copyright © 2017 Microsoft Corporation
Release: June 1, 2017

Revision Revision

Date History Class Comments

3/25/2011 2.0.3 None No ch_anges to the meaning, language, or formatting of the
technical content.
No changes to the meaning, language, or formatting of the

5/6/2011 7.0.3 None technical content.

6/17/2011 7.1 Minor Clarified the meaning of the technical content.

9/23/2011 71 None No ch_anges to the meaning, language, or formatting of the
technical content.

12/16/2011 | 8.0 Major Updated and revised the technical content.

3/30/2012 9.0 Major Updated and revised the technical content.

7/12/2012 9.0 None No ch_anges to the meaning, language, or formatting of the
technical content.

10/25/2012 | 9.0 None No ch_anges to the meaning, language, or formatting of the
technical content.

1/31/2013 9.0 None No ch_anges to the meaning, language, or formatting of the
technical content.

8/8/2013 9.1 Minor Clarified the meaning of the technical content.

11/14/2013 | 9.1 None No ch_anges to the meaning, language, or formatting of the
technical content.

2/13/2014 10.0 Major Updated and revised the technical content.

5/15/2014 10.0 None No ch_anges to the meaning, language, or formatting of the
technical content.

6/30/2015 11.0 Major Significantly changed the technical content.

10/16/2015 | 11.0 None No chgnges to the meaning, language, or formatting of the
technical content.

7/14/2016 11.1 Minor Clarified the meaning of the technical content.

6/1/2017 11.1 None No ch_anqes to the meaning, language, or formatting of the
technical content.

3/81

[MS-UCODEREF-DIff] - v20170601
Windows Protocols Unicode Reference
Copyright © 2017 Microsoft Corporation
Release: June 1, 2017

Table of Contents

B TN 141 oo e 1T ot e T 6
1.1] (01T 6
1.2 R EIENCES ottt 7

1.2.1 NOrmative REFEIENCES ...t e e eeens 7
1.2.2 Informative ReferenCes . ..vviviiiiiii 8
1.3 L@ L YT 8
1.4 Applicability Statemento 8
1.5 Standards ASSIGNMENES. .. ittt e 8

7 1 =TT T« = 9
2.1 LI =1 1.7 oo] o o PP 9
2.2 NS T LIV o = G 9

2.2.1 Supported Codepage iNn WiNAOWSiiuiiiiiiiii i i re e et aneaaernens 9
2.2.2 Supported Codepage Data Files......c.coviiiiiiiiiii e 16
2.2.2.1 Codepage Data File FOrmatcoiuiiiiiiiii e 16
2.2.2.1.1 WECTABLE ..ot 17
2.2.2.1.2 MBTABLE 18
2.2.2.1.3 DBCSRANGE ...ttt e 18

3 Protocol Details....cccuviimimirmirsmiarir s s r 20

3.1 ClIENt DELAIIS ettt 20
3.1.1 Abstract Data Model......ouiuieiiii 20
3.1.2 L0 L 20
3.1.3 INItIAliZation .. 20
3.1.4 Higher-Layer Triggered EVENES ..o e 20
3.1.5 Message Processing Events and Sequencing Rulescccocviiiiiiiiiiiiiinneenen 20

3.1.5.1 Mapping Between UTF-16 Strings and Legacy Codepages........c.cvvvvevnennnnnnn. 20
3.1.5.1.1 Mapping Between UTF-16 Strings and Legacy Codepages Using CodePage
Data File .. 20
3.1.5.1.1.1 Pseudocode for Accessing a Record in the Codepage Data File......... 20
3.1.5.1.1.2 Pseudocode for Mapping a UTF-16 String to a Codepage String 21
3.1.5.1.1.3 Pseudocode for Mapping a Codepage String to a UTF-16 String 23
3.1.5.1.2 Mapping Between UTF-16 Strings and ISO 2022-Based Codepages........ 26
3.1.5.1.3 Mapping between UTF-16 Strings and GB 18030 Codepage................... 26
3.1.5.1.4 Mapping Between UTF-16 Strings and ISCII Codepage..........covvvvvnennnne. 26
3.1.5.1.5 Mapping Between UTF-16 Strings and UTF-7......cccocviiiiiiiiiiiiiiienee e 26
3.1.5.1.6 Mapping Between UTF-16 Strings and UTF-8.........ccoiiiiiiiiiiiiiieneen, 26
3.1.5.2 Comparing UTF-16 Strings by Using Sort Keys.....c.coviviiiiiiiiiiiiiiiiiienee e 26
3.1.5.2.1 Pseudocode for Comparing UTF-16 Stringsccccvvviiiiiiiiiniiiiiiieneeenes 26
3.1.5.2.2 COMIPArES O K BY uiiitii i i e 27
3.1.5.2.3 Accessing the Windows Sorting Weight Table ..., 28
3.1.5.2.3.1 Windows Sorting Weight Table ..o 28
3.1.5.2.4 GetWindowsSortKey PSeudoCodeoiiiiiiiiiiiiiiicic i 29
3.1.5.2.5 TestHungarianCharacterSEqUENCESciviiiiiiiiiiiii e 39
3.1.5.2.6 (C1=1u@le] g1 o r=TetuTo] o 1 1Y/ o =T PP 40
3.1.5.2.7 CorrectUnicodeWeight ..o e 41
3.1.5.2.8 MakeUnicodeWeight.o 41
3.1.5.2.9 GetCharacterWeightsoviriiii e 42
3.1.5.2.10 GetExpansionWeightscooiiiiiiiiiii e 43
3.1.5.2.11 GetExpandedCharacterscovuiiiiiiiiire e e 44
3.1.5.2.12 SortkeyContractionHandlerccooiiiiiiiii 44
3.1.5.2.13 Check3ByteWeightLocCale........ccouiniiiii e 48
3.1.5.2.14 SpecialCaseHandlercoiuiiiiiiiii e 49
3.1.5.2.15 GetPositionSpecialWeight ..o 52
3.1.5.2.16 MapOIldHanNgUISOIKEYcciuiiiiiiiiiii e e 53
4 /81

[MS-UCODEREF-DIff] - v20170601
Windows Protocols Unicode Reference
Copyright © 2017 Microsoft Corporation
Release: June 1, 2017

3.1.5.2.17 GetJamoComPOSItiON ..iiuiiiie i e e 53
3.1.5.2.18 GetJamoStateData.......cooviiiiiiiii e 54
3.1.5.2.19 FINANeWJamoState ...o.ve i 54
3.1.5.2.20 UpdateJamoSOrtINfOcoceieie e e e e 55
3.1.5.2.21 S =] o 0 T 1 55
3.1.5.2.22 ISCOMbBININGJaMO cuiiiiie i e e 56
3.1.5.2.23 ISJamoOLeadingouieiiiiiiiiiii e 56
3.1.5.2.24 ISJaMOVOWEL. ..uiiiiiie i e 56
3.1.5.2.25 ISJamoOTrailing ..couieiiiiiii e 57
3.1.5.2.26 InitKOreanSCriptMap ..oioiiiiii it e e e 57
3.1.5.3 Mapping UTF-16 Strings to Upper Caseicvveiiiiiiiiiiniiinene e sene e 58
3.1.5.3.1 L0180 01T o =TT N 58
3.1.5.3.2 8] 0Y 1] g @r=F1=1 1 =T o] 0] [o [0S S 58
3.1.5.4 Unicode International Domain NamesSccviiiiiiiieiiiie e neennenneanens 59
3.1.5.4.1 | o a1 e 2= o] | PP 59
3.1.5.4.2 o [1 1 18 1 | ol Yo =P 61
3.1.5.4.3 IdNTONaMEPrepPUNICOAE . .viiiiii it eaeaas 62
3.1.5.4.4 PUNYCOAEENCOAE ...t e e e s 62
3.1.5.4.5 PUNYCOAEDECOAE ... uiiiiiei e et 63
3.1.5.4.6 IDNA2008+UTS46 NormalizeForIdnaccovveiiiiiiiiiiiieii i 64
3.1.5.4.7 IDNA2003 NormalizeForIdna....coovve i e s ne e neenne e nnens 65
3.1.5.5 Comparing UTF-16 Strings Ordinally......ccooiiiiiiiiii e 66
3.1.5.5.1 CompareStringOrdinal Algorithmcoviiiiii e 66
3.1.6 LI L L= == PP 67
3.1.7 Other LOCal EVENES .. viiitiieii i e et e e a e aane e 67
4 Protocol EXamples ..ccicriiriererimrusiesassmsassmssssasassns s sasss s nsnsassnsansasasansansnsasansansnsannnsas 68
L <Y oL 1 o 3 69
5.1 Security Considerations for IMplementerscvviiiiiiiii e 69
5.2 Index of SecuUrity Parameters ..o e 69
6 Appendix A: Product BehaVvior ...cuicivermsmmsmmsemiassesmsssasssssasssassassasssnsasssnsanssnssnssnssnnsa 70
7 Change TracKiNg..icioiiverammrsmmaranserssmarsnsessassssssesssssssssasssssssssassassssasassnssssasassnssssnsansns 77
2 N o e = TG 79
5/81

[MS-UCODEREF-DIff] - v20170601
Windows Protocols Unicode Reference
Copyright © 2017 Microsoft Corporation

Release: June 1, 2017

1 Introduction

This document is a companion reference to the protocol specifications. It describes how Unicode
strings are compared in Windows protocols and how Windows supports Unicode conversion to earlier
codepages. For example:

UTF-16 string comparison: Provides linguistic-specific comparisons between two Unicode strings
and provides the comparison result based on the language and region for a specific user.

Mapping of UTF-16 strings to earlier ANSI codepages: Converts Unicode strings to strings in the
earlier codepages that are used in older versions of Windows and the applications that are written
for these earlier codepages.

1.1 Glossary

This document uses the following terms:

code page: An ordered set of characters of a specific script in which a humerical index (code-point
value) is associated with each character. Code pages are a means of providing support for
character sets and keyboard layouts used in different countries. Devices such as the display and
keyboard can be configured to use a specific code page and to switch from one code page (such
as the United States) to another (such as Portugal) at the user's request.

double-byte character set (DBCS): A character set-{1) that can use more than one byte to
represent a single character. A DBCS includes some characters that consist of 1 byte and some
characters that consist of 2 bytes. Languages such as Chinese, Japanese, and Korean use DBCS.

IDNA2003: The IDNA2003 specification is defined by a cluster of IETF RFCs: IDNA [RFC3490],
Nameprep [RFC3491], Punycode [RFC3492], and Stringprep [RFC3454].

IDNA2008: The IDNA2008 specification is defined by a cluster of IETF RFCs: Internationalized
Domain Names for Applications (IDNA): Definitions and Document Framework [RFC5890],
Internationalized Domain Names in Applications (IDNA) Protocol [RFC5891], The Unicode Code
Points and Internationalized Domain Names for Applications (IDNA) [RFC5892], and Right-to-
Left Scripts for Internationalized Domain Names for Applications (IDNA) [RFC5893]. There is
also an informative document: Internationalized Domain Names for Applications (IDNA):
Background, Explanation, and Rationale [RFC5894].

IDNA2008+UTS46: The IDNA2008+UTS46 citation refers to operations that comply with both the
and the Unicode IDNA Compatibility Processing [TR46] specifications.

single-byte character set (SBCS): A character encoding in which each character is represented
by one byte. Single-byte character sets are limited to 256 characters.

sort key: Numerical representations of a sort element based on locale-specific sorting rules. A sort
key consists of several weighted components that represent a character's script, diacritics, case,
and additional treatment based on locale.

Unicode: A character encoding standard developed by the Unicode Consortium that represents
almost all of the written languages of the world. The Unicode standard [UNICODE5.0.0/2007]
provides three forms (UTF-8, UTF-16, and UTF-32) and seven schemes (UTF-8, UTF-16, UTF-16
BE, UTF-16 LE, UTF-32, UTF-32 LE, and UTF-32 BE).

UTF-16: A standard for encoding Unicode characters, defined in the Unicode standard, in which the
most commonly used characters are defined as double-byte characters. Unless specified
otherwise, this term refers to the UTF-16 encoding form specified in [UNICODE5.0.0/2007]
section 3.9.

6/ 81

[MS-UCODEREF-DIff] - v20170601
Windows Protocols Unicode Reference
Copyright © 2017 Microsoft Corporation
Release: June 1, 2017

MAY, SHOULD, MUST, SHOULD NOT, MUST NOT: These terms (in all caps) are used as defined
in [RFC2119]. All statements of optional behavior use either MAY, SHOULD, or SHOULD NOT.

1.2 References

Links to a document in the Microsoft Open Specifications library point to the correct section in the
most recently published version of the referenced document. However, because individual documents
in the library are not updated at the same time, the section numbers in the documents may not
match. You can confirm the correct section numbering by checking the Errata.

1.2.1 Normative References

We conduct frequent surveys of the normative references to assure their continued availability. If you
have any issue with finding a normative reference, please contact dochelp@microsoft.com. We will
assist you in finding the relevant information.

[CODEPAGEFILES] Microsoft Corporation, "Windows Supported Code Page Data Files.zip", 2009,
http://www.microsoft.com/downloads/details.aspx?FamilyID=5fdc09fb-afec-4c2a-9394-
6d046841eaceldisplaylang=en

[ECMA-035] ECMA International, "Character Code Structure and Extension Techniques", 6th edition,
ECMA-035, December 1994, http://www.ecma-international.org/publications/standards/Ecma-
035.htm

[GB18030] Chinese IT Standardization Technical Committee, "Chinese National Standard GB 18030-
2005: Information technology - Chinese coded character set", Published in print by the China
Standard Press, http://infostore.saiglobal.com/store/Details.aspx?ProductID=800171

[ISCII] Bureau of Indian Standards, "Indian Script Code for Information Exchange - ISCII",
http://www.bis.org.in/dir/sales.htm

[MSDN-SWT] Microsoft Corporation, "Sorting Weight Tables", http://www.microsoft.com/en-
us/download/details.aspx?id=10921

[MSDN-UCMT/Win8] Microsoft Corporation, "Windows 8 Upper Case Mapping Table",
http://www.microsoft.com/download/en/details.aspx?displaylang=en&id=10921

[RFC2119] Bradner, S., "Key words for use in RFCs to Indicate Requirement Levels", BCP 14, RFC
2119, March 1997, http://www.rfc-editor.org/rfc/rfc2119.txt

[RFC2152] Goldsmith, D., and David, M., "UTF-7 A Mail-Safe Transformation Format of Unicode", RFC
2152, May 1997, http://www.ietf.org/rfc/rfc2152.txt

[TR46] Davis, M., and Suignard, M., “Unicode IDNA Compatibility Processing”, Unicode Technical
Standard #46, September 2012, "", http://www.unicode.org/reports/tr46/

[UNICODE-BESTFIT] The Unicode Consortium, "WindowsBestFit", 2006,
http://www.unicode.org/Public/MAPPINGS/VENDORS/MICSFT/WindowsBestFit/

[UNICODE-COLLATION] The Unicode Consortium, "Unicode Technical Standard #10 Unicode Collation
Algorithm", March 2008, http://www.unicode.org/reports/tri0/

[UNICODE-README] The Unicode Consortium, "Readme.txt", 2006,
http://unicode.org/Public/MAPPINGS/VENDORS/MICSFT/WindowsBestFit/readme.txt

[UNICODES5.0.0/CH3] The Unicode Consortium, "Unicode Encoding Forms", 2006,
http://www.unicode.org/versions/Unicode5.0.0/ch03.pdf#G7404

7/ 81

[MS-UCODEREF-DIff] - v20170601
Windows Protocols Unicode Reference
Copyright © 2017 Microsoft Corporation
Release: June 1, 2017

[UNICODE] The Unicode Consortium, "The Unicode Consortium Home Page", 2866;
http://www.unicode.org/

1.2.2 Informative References

None.

1.3 Overview

This document describes the following protocols when dealing with Unicode strings on the Windows
platform:

UTF-16 string comparison: This string comparison is used to provide a linguistic-specific
comparison between two Unicode strings. This scenario provides a string comparison result based
on the expectations of users from different languages and different regions.

The mapping of UTF-16 strings to earlier codepages: This scenario is used to convert between
Unicode strings and strings in the earlier codepage, which are used by older versions of Windows
and applications written for these earlier codepages.

1.4 Applicability Statement

This reference document is applicable as follows:

To perform UTF-16 character comparisons in the same manner as Windows. This document only
specifies a subset of Windows behaviors that are used by other protocols. It does not document
those Windows behaviors that are not used by other protocols.

To provide the capability to map between UTF-16 strings and earlier codepages in the same
manner as Windows.

1.5 Standards Assighments

The following standards assignments are used by the Windows Protocols Unicode Reference.

Parameter Value Reference

Codepage Data File (section 2.2.2) | Various | [UNICODE-BESTFIT]

8/81

[MS-UCODEREF-DIff] - v20170601
Windows Protocols Unicode Reference
Copyright © 2017 Microsoft Corporation
Release: June 1, 2017

2 Messages

The following sections specify how Windows Protocols Unicode Reference messages are transported
and Windows Protocols Unicode Reference message syntax.

2.1 Transport

2.2 Message Syntax

2.2.1 Supported Codepage in Windows

Windows assigns an integer, called code page ID, to every supported codepage.

Based on the usage, the codepage supported in Windows can be categorized in the following:
= ANSI codepage

Windows codepages are also sometimes referred to as active codepages or system active
codepages. Windows always has one currently active Windows codepage. All ANSI Windows
functions use the currently active codepage.

The usual ANSI codepage ID for US English is codepage 1252.

Windows codepage 1252, the codepage commonly used for English and other Western European
languages, was based on an American National Standards Institute (ANSI) draft. That draft
eventually became ISO 8859-1, but Windows codepage 1252 was implemented before the
standard became final, and is not exactly the same as ISO 8859-1.

= OEM codepage
= Extended codepage

These codepages cannot be used as ANSI codepages, or OEM codepages. Windows can support
conversions between Unicode and these codepages. These codepages are generally used for
information exchange purpose with international/national standard or legacy systems. Examples
are UTF-8, UTF-7, EBCDIC, and Macintosh codepages.

The following table shows all the supported codepages by Windows. The Codepage ID lists the integer
number assigned to a codepage. ANSI/OEM codepages are in bold face. The Codepage Description
column describes the codepage. The Codepage notes column lists the category of a codepage and the
relevant protocol section in this document to find protocol information.

Codepage

ID Codepage descriptions Codepage notes

37 IBM EBCDIC US-Canada Extended codepage; for processing rules, see
section 3.1.5.1.1.

437 OEM United States OEM codepage; for processing rules, see section
3.1.5.1.1.

500 IBM EBCDIC International Extended codepage; for processing rules, see
section 3.1.5.1.1.

708 Arabic (ASMO 708) Extended codepage; for processing rules, see
section 3.1.5.1.1.

720 Arabic (Transparent ASMO); Arabic (DOS) Extended codepage; for processing rules, see

9/ 81

[MS-UCODEREF-DIff] - v20170601
Windows Protocols Unicode Reference
Copyright © 2017 Microsoft Corporation
Release: June 1, 2017

Codepage
ID

Codepage descriptions

Codepage notes

section 3.1.5.1.1.

737 OEM Greek (formerly 437G); Greek (DOS) OEM codepage; for processing rules, see section
3.1.5.1.1.
775 OEM Baltic; Baltic (DOS) OEM codepage; for processing rules, see section
3.1.5.1.1.
850 OEM Multilingual Latin 1; Western European | OEM codepage; for processing rules, see section
(DOS) 3.1.5.1.1.
852 OEM Latin 2; Central European (DOS) OEM codepage; for processing rules, see section
3.1.5.1.1.
855 OEM Cyrillic (primarily Russian) OEM codepage; for processing rules, see section
3.1.5.1.1.
857 OEM Turkish; Turkish (DOS) OEM codepage; for processing rules, see section
3.1.5.1.1.
858 OEM Multilingual Latin 1 + Euro symbol OEM codepage; for processing rules, see section
3.1.5.1.1.
860 OEM Portuguese; Portuguese (DOS) OEM codepage; for processing rules, see section
3.1.5.1.1.
861 OEM Icelandic; Icelandic (DOS) OEM codepage; for processing rules, see section
3.1.5.1.1.
862 OEM Hebrew; Hebrew (DOS) OEM codepage; for processing rules, see section
3.1.5.1.1.
863 OEM French Canadian; French Canadian OEM codepage; for processing rules, see section
(DOs) 3.1.5.1.1.
864 OEM Arabic; Arabic (864) OEM codepage; for processing rules, see section
3.1.5.1.1.
865 OEM Nordic; Nordic (DOS) OEM codepage; for processing rules, see section
3.1.5.1.1.
866 OEM Russian; Cyrillic (DOS) OEM codepage; for processing rules, see section
3.1.5.1.1.
869 OEM Modern Greek; Greek, Modern (DOS) OEM codepage; for processing rules, see section
3.1.5.1.1.
870 IBM EBCDIC Multilingual/ROECE (Latin 2); Extended codepage; for processing rules, see
IBM EBCDIC Multilingual Latin 2 section 3.1.5.1.1.
874 ANSI/OEM Thai (same as 28605, ISO 8859- | ANSI codepage; for processing rules, see section
15); Thai (Windows) 3.1.5.1.1.
875 IBM EBCDIC Greek Modern Extended codepage; for processing rules, see
section 3.1.5.1.1.
932 ANSI/OEM Japanese; Japanese (Shift-]JIS) ANSI/OEM codepage; for processing rules, see
section 3.1.5.1.1.
936 ANSI/OEM Simplified Chinese (PRC, ANSI/OEM codepage; for processing rules, see

Singapore); Chinese Simplified (GB2312)

section 3.1.5.1.1.

[MS-UCODEREF-DIff] - v20170601
Windows Protocols Unicode Reference
Copyright © 2017 Microsoft Corporation
Release: June 1, 2017

10/ 81

Codepage
ID

Codepage descriptions

Codepage notes

949 ANSI/OEM Korean (Unified Hangul Code) ANSI/OEM codepage; for processing rules, see
section 3.1.5.1.1.
950 ANSI/OEM Traditional Chinese (Taiwan; ANSI/OEM codepage; for processing rules, see
Hong Kong SAR, PRC); Chinese Traditional section 3.1.5.1.1.
(Big5)
1026 IBM EBCDIC Turkish (Latin 5) Extended codepage; for processing rules, see
section 3.1.5.1.1.
1047 IBM EBCDIC Latin 1/Open System Extended codepage; for processing rules, see
section 3.1.5.1.1.
1140 IBM EBCDIC US-Canada (037 + Euro Extended codepage; for processing rules, see
symbol); IBM EBCDIC (US-Canada-Euro) section 3.1.5.1.1.
1141 IBM EBCDIC Germany (20273 + Euro Extended codepage; for processing rules, see
symbol); IBM EBCDIC (Germany-Euro) section 3.1.5.1.1.
1142 IBM EBCDIC Denmark-Norway (20277 + Extended codepage; for processing rules, see
Euro symbol); IBM EBCDIC (Denmark- section 3.1.5.1.1.
Norway-Euro)
1143 IBM EBCDIC Finland-Sweden (20278 + Extended codepage; for processing rules, see
Euro symbol); IBM EBCDIC (Finland- section 3.1.5.1.1.
Sweden-Euro)
1144 IBM EBCDIC Italy (20280 + Euro symbol); Extended codepage; for processing rules, see
IBM EBCDIC (Italy-Euro) section 3.1.5.1.1.
1145 IBM EBCDIC Latin America-Spain (20284 + Extended codepage; for processing rules, see
Euro symbol); IBM EBCDIC (Spain-Euro) section 3.1.5.1.1.
1146 IBM EBCDIC United Kingdom (20285 + Extended codepage; for processing rules, see
Euro symbol); IBM EBCDIC (UK-Euro) section 3.1.5.1.1.
1147 IBM EBCDIC France (20297 + Euro Extended codepage; for processing rules, see
symbol); IBM EBCDIC (France-Euro) section 3.1.5.1.1.
1148 IBM EBCDIC International (500 + Euro Extended codepage; for processing rules, see
symbol); IBM EBCDIC (International-Euro) section 3.1.5.1.1.
1149 IBM EBCDIC Icelandic (20871 + Euro Extended codepage; for processing rules, see
symbol); IBM EBCDIC (Icelandic-Euro) section 3.1.5.1.1.
1200 Unicode UTF-16, little-endian byte order Not used in Windows.
(BMP of ISO 10646); available only to
managed applications
1201 Unicode UTF-16, big-endian byte order; Not used in Windows.
available only to managed applications
1250 ANSI Central European; Central European ANSI codepage; for processing rules, see section
(Windows) 3.1.5.1.1.
1251 ANSI Cyrillic; Cyrillic (Windows) ANSI codepage; for processing rules, see section
3.1.5.1.1.
1252 ANSI Latin 1; Western European (Windows) | ANSI codepage; for processing rules, see section
3.1.5.1.1.
1253 ANSI Greek; Greek (Windows) ANSI codepage; for processing rules, see section

[MS-UCODEREF-DIff] - v20170601
Windows Protocols Unicode Reference
Copyright © 2017 Microsoft Corporation
Release: June 1, 2017

11/81

Codepage
ID

Codepage descriptions

Codepage notes

section 3.1.5.1.1.

3.1.5.1.1.
1254 ANSI Turkish; Turkish (Windows) ANSI codepage; for processing rules, see section
3.1.5.1.1.
1255 ANSI Hebrew; Hebrew (Windows) ANSI codepage; for processing rules, see section
3.1.5.1.1.
1256 ANSI Arabic; Arabic (Windows) ANSI codepage; for processing rules, see section
3.1.5.1.1.
1257 ANSI Baltic; Baltic (Windows) ANSI codepage; for processing rules, see section
3.1.5.1.1.
1258 ANSI/OEM Vietnamese; Vietnamese ANSI codepage; for processing rules, see section
(Windows) 3.1.5.1.1.
1361 Korean (Johab) Extended codepage; for processing rules, see
section 3.1.5.1.1.
10000 MAC Roman; Western European (Mac) Extended codepage; for processing rules, see
section 3.1.5.1.1.
10001 Japanese (Mac) Extended codepage; for processing rules, see
section 3.1.5.1.1.
10002 MAC Traditional Chinese (Big5); Chinese Extended codepage; for processing rules, see
Traditional (Mac) section 3.1.5.1.1.
10003 Korean (Mac) Extended codepage; for processing rules, see
section 3.1.5.1.1.
10004 Arabic (Mac) Extended codepage; for processing rules, see
section 3.1.5.1.1.
10005 Hebrew (Mac) Extended codepage; for processing rules, see
section 3.1.5.1.1.
10006 Greek (Mac) Extended codepage; for processing rules, see
section 3.1.5.1.1.
10007 Cyrillic (Mac) Extended codepage; for processing rules, see
section 3.1.5.1.1.
10008 MAC Simplified Chinese (GB 2312); Chinese | Extended codepage; for processing rules, see
Simplified (Mac) section 3.1.5.1.1.
10010 Romanian (Mac) Extended codepage; for processing rules, see
section 3.1.5.1.1.
10017 Ukrainian (Mac) Extended codepage; for processing rules, see
section 3.1.5.1.1.
10021 Thai (Mac) Extended codepage; for processing rules, see
section 3.1.5.1.1.
10029 MAC Latin 2; Central European (Mac) Extended codepage; for processing rules, see
section 3.1.5.1.1.
10079 Icelandic (Mac) Extended codepage; for processing rules, see

[MS-UCODEREF-DIff] - v20170601
Windows Protocols Unicode Reference
Copyright © 2017 Microsoft Corporation
Release: June 1, 2017

12 /81

Codepage
ID

Codepage descriptions

Codepage notes

10081 Turkish (Mac) Extended codepage; for processing rules, see
section 3.1.5.1.1.
10082 Croatian (Mac) Extended codepage; for processing rules, see
section 3.1.5.1.1.
12000 Unicode UTF-32, little-endian byte order; Not used in Windows.
available only to managed applications
12001 Unicode UTF-32, big-endian byte order; Not used in Windows.
available only to managed applications
20000 CNS Taiwan; Chinese Traditional (CNS) Extended codepage; for processing rules, see
section 3.1.5.1.1.
20001 TCA Taiwan Extended codepage; for processing rules, see
section 3.1.5.1.1.
20002 Eten Taiwan; Chinese Traditional (Eten) Extended codepage; for processing rules, see
section 3.1.5.1.1.
20003 IBM5550 Taiwan Extended codepage; for processing rules, see
section 3.1.5.1.1.
20004 TeleText Taiwan Extended codepage; for processing rules, see
section 3.1.5.1.1.
20005 Wang Taiwan Extended codepage; for processing rules, see
section 3.1.5.1.1.
20105 IAS5 (IRV International Alphabet No. 5, 7- Extended codepage; for processing rules, see
bit); Western European (IA5) section 3.1.5.1.1.
20106 IA5 German (7-bit) Extended codepage; for processing rules, see
section 3.1.5.1.1.
20107 IA5 Swedish (7-bit) Extended codepage; for processing rules, see
section 3.1.5.1.1.
20108 IA5 Norwegian (7-bit) Extended codepage; for processing rules, see
section 3.1.5.1.1.
20127 US-ASCII (7-bit) Extended codepage; for processing rules, see
section 3.1.5.1.1.
20261 T.61 Extended codepage; for processing rules, see
section 3.1.5.1.1.
20269 ISO 6937 Non-Spacing Accent Extended codepage; for processing rules, see
section 3.1.5.1.1.
20273 IBM EBCDIC Germany Extended codepage; for processing rules, see
section 3.1.5.1.1.
20277 IBM EBCDIC Denmark-Norway Extended codepage; for processing rules, see
section 3.1.5.1.1.
20278 IBM EBCDIC Finland-Sweden Extended codepage; for processing rules, see
section 3.1.5.1.1.
20280 IBM EBCDIC Italy Extended codepage; for processing rules, see

section 3.1.5.1.1.

[MS-UCODEREF-DIff] - v20170601
Windows Protocols Unicode Reference
Copyright © 2017 Microsoft Corporation
Release: June 1, 2017

13 /81

Codepage
ID

Codepage descriptions

Codepage notes

20284 IBM EBCDIC Latin America-Spain Extended codepage; for processing rules, see
section 3.1.5.1.1.

20285 IBM EBCDIC United Kingdom Extended codepage; for processing rules, see
section 3.1.5.1.1.

20290 IBM EBCDIC Japanese Katakana Extended Extended codepage; for processing rules, see
section 3.1.5.1.1.

20297 IBM EBCDIC France Extended codepage; for processing rules, see
section 3.1.5.1.1.

20420 IBM EBCDIC Arabic Extended codepage; for processing rules, see
section 3.1.5.1.1.

20423 IBM EBCDIC Greek Extended codepage; for processing rules, see
section 3.1.5.1.1.

20424 IBM EBCDIC Hebrew Extended codepage; for processing rules, see
section 3.1.5.1.1.

20833 IBM EBCDIC Korean Extended Extended codepage; for processing rules, see
section 3.1.5.1.1.

20838 IBM EBCDIC Thai Extended codepage; for processing rules, see
section 3.1.5.1.1.

20866 Russian (KOI8-R); Cyrillic (KOI8-R) Extended codepage; for processing rules, see
section 3.1.5.1.1.

20871 IBM EBCDIC Icelandic Extended codepage; for processing rules, see
section 3.1.5.1.1.

20880 IBM EBCDIC Cyrillic Russian Extended codepage; for processing rules, see
section 3.1.5.1.1.

20905 IBM EBCDIC Turkish Extended codepage; for processing rules, see
section 3.1.5.1.1.

20924 IBM EBCDIC Latin 1/Open System (1047 + Extended codepage; for processing rules, see

Euro symbol) section 3.1.5.1.1.

20932 Japanese (JIS 0208-1990 and 0121-1990) Extended codepage; for processing rules, see
section 3.1.5.1.1.

20936 Simplified Chinese (GB2312); Chinese Extended codepage; for processing rules, see

Simplified (GB2312-80) section 3.1.5.1.1.

20949 Korean Wansung Extended codepage; for processing rules, see
section 3.1.5.1.1.

21025 IBM EBCDIC Cyrillic Serbian-Bulgarian Extended codepage; for processing rules, see
section 3.1.5.1.1.

21027 Ext Alpha Lowercase Extended codepage; for processing rules, see
section 3.1.5.1.1. NOTE: Although this codepage is
supported, it has no known use.

21866 Ukrainian (KOI8-U); Cyrillic (KOI8-U) Extended codepage; for processing rules, see
section 3.1.5.1.1.

28591 ISO 8859-1 Latin 1; Western European Extended codepage; for processing rules, see

[MS-UCODEREF-DIff] - v20170601
Windows Protocols Unicode Reference
Copyright © 2017 Microsoft Corporation
Release: June 1, 2017

14 / 81

Codepage
ID

Codepage descriptions

Codepage notes

Chinese Simplified (GB18030)

(IS0O) section 3.1.5.1.1.
28592 ISO 8859-2 Central European; Central Extended codepage; for processing rules, see
European (ISO) section 3.1.5.1.1.
28593 I1SO 8859-3 Latin 3 Extended codepage; for processing rules, see
section 3.1.5.1.1.
28594 ISO 8859-4 Baltic Extended codepage; for processing rules, see
section 3.1.5.1.1.
28595 ISO 8859-5 Cyrillic Extended codepage; for processing rules, see
section 3.1.5.1.1.
28596 ISO 8859-6 Arabic Extended codepage; for processing rules, see
section 3.1.5.1.1.
28597 ISO 8859-7 Greek Extended codepage; for processing rules, see
section 3.1.5.1.1.
28598 ISO 8859-8 Hebrew; Hebrew (ISO-Visual) Extended codepage; for processing rules, see
section 3.1.5.1.1.
28599 I1SO 8859-9 Turkish Extended codepage; for processing rules, see
section 3.1.5.1.1.
28603 ISO 8859-13 Estonian Extended codepage; for processing rules, see
section 3.1.5.1.1.
28605 ISO 8859-15 Latin 9 Extended codepage; for processing rules, see
section 3.1.5.1.1.
38598 ISO 8859-8 Hebrew; Hebrew (ISO-Logical) Extended codepage; for processing rules, see
section 3.1.5.1.1. Use [CODEPAGEFILES] 28598.txt.
50220 ISO 2022 Japanese with no halfwidth Extended codepage; for processing rules, see
Katakana; Japanese (JIS) section 3.1.5.1.1.
50221 ISO 2022 Japanese with halfwidth Extended codepage; for processing rules, see
Katakana; Japanese (JIS-Allow 1 byte section 3.1.5.1.2.
Kana)
50222 ISO 2022 Japanese JIS X 0201-1989; Extended codepage; for processing rules, see
Japanese (JIS-Allow 1 byte Kana - SO/SI) section 3.1.5.1.2.
50225 ISO 2022 Korean Extended codepage; for processing rules, see
section 3.1.5.1.2.
50227 IS0 2022 Simplified Chinese; Chinese Extended codepage; for processing rules, see
Simplified (ISO 2022) section 3.1.5.1.2.
50229 ISO 2022 Traditional Chinese Extended codepage; for processing rules, see
section 3.1.5.1.2.
51949 EUC Korean Extended codepage; for processing rules, see
section 3.1.5.1.2. Use [CODEPAGEFILES] 20949.txt.
52936 HZ-GB2312 Simplified Chinese; Chinese Extended codepage; for processing rules, see
Simplified (HZ) section 3.1.5.1.2.
54936 GB18030 Simplified Chinese (4 byte); Extended codepage; for processing rules, see

section 3.1.5.1.3.

[MS-UCODEREF-DIff] - v20170601
Windows Protocols Unicode Reference
Copyright © 2017 Microsoft Corporation
Release: June 1, 2017

15/81

Codepage
ID

Codepage descriptions

Codepage notes

section 3.1.5.1.6.

57002 ISCII Devanagari Extended codepage; for processing rules, see
section 3.1.5.1.4.

57003 ISCII Bengali Extended codepage; for processing rules, see
section 3.1.5.1.4.

57004 ISCII Tamil Extended codepage; for processing rules, see
section 3.1.5.1.4.

57005 ISCII Telugu Extended codepage; for processing rules, see
section 3.1.5.1.4.

57006 ISCII Assamese Extended codepage; for processing rules, see
section 3.1.5.1.4.

57007 ISCII Odia (was Oriya) Extended codepage; for processing rules, see
section 3.1.5.1.4.

57008 ISCII Kannada Extended codepage; for processing rules, see
section 3.1.5.1.4.

57009 ISCII Malayalam Extended codepage; for processing rules, see
section 3.1.5.1.4.

57010 ISCII Gujarati Extended codepage; for processing rules, see
section 3.1.5.1.4.

57011 ISCII Punjabi Extended codepage; for processing rules, see
section 3.1.5.1.4.

65000 Unicode (UTF-7) Extended codepage; for processing rules, see
section 3.1.5.1.5.

65001 Unicode (UTF-8) Extended codepage; for processing rules, see

2.2.2 Supported Codepage Data Files

The mapping of UTF-16 strings to codepages relies on codepage data files to provide conversion data.
These codepage data files map Unicode characters to characters in a single-byte character set (SBCS)

or double-byte character set (DBCS).

The data files of supported system codepages are published as specified in [CODEPAGEFILES],

[UNICODE], and [UNICODE-BESTFIT]. The location identification uses a simple file-naming

convention, which is bestfitxxxx.txt, where xxxx is the codepage number. For example, bestfit950.txt
contains the data for codepage 950, and bestfit1252.txt contains the data for codepage 1252.

The pseudocode assumes all these codepage files are available.

2.2.2.1 Codepage Data File Format

The Readme.txt (as specified in [UNICODE-README]) provides details about the codepages files and
the file format. This section specifies information about the pseudocode of mapping UTF-16 strings to
earlier codepages by taking the content from the Readme.txt.

[MS-UCODEREF-DIff] - v20170601
Windows Protocols Unicode Reference
Copyright © 2017 Microsoft Corporation
Release: June 1, 2017

16 / 81

Each file has sections of keyword tags and records. Any text after ";" is ignored as blank lines. Fields
are delimited by one or more space or tab characters. Each section begins with one of the following
tags:

= CODEPAGE ([UNICODE-README])

= CPINFO ([UNICODE-README])

= MBTABLE (section 2.2.2.1.2)

= WCTABLE (section 2.2.2.1.1)

= DBCSRANGE (section 2.2.2.1.3) (DBCS codepages only)
= DBCSTABLE (section 2.2.2.1.3) (DBCS codepages only)

2.2.2.1.1 WCTABLE

The WCTABLE tag marks the start of the mapping from Unicode UTF-16 to MultiByte bytes. It has one
field.

Field 1: The number of records of Unicode to byte mappings. Note that this field is often more than
the number of roundtrip mappings that are supported by the codepage due to Windows best-fit
behavior.

An example of the WCTABLE tag is:

WCTABLE 698

The Unicode UTF-16 mapping records follow the WCTABLE section. These mapping records are in two
forms: single-byte or double-byte codepages. Both forms have two fields.

Field 1: The Unicode UTF-16 code point for the character being converted.
Field 2: The single byte that this UTF-16 code point maps to. This can be a best-fit mapping.

The following example shows Unicode to byte-mapping records for SBCSs.

0x0000 0x00; Null
0x0001 0x01; Start Of Heading

0x0061 Ox61l; Latin Small Letter A
0x0062 0x62; Latin Small Letter B
0x0063 0x63; Latin Small Letter C
0x221le 0x38; Infinity << Best Fit Mapping
Oxffd4l O0x61l; Fullwidth Latin Small Letter A << Best Fit Mapping

0xff42 0x62; Fullwidth Latin Small Letter B << Best Fit Mapping
0xff43 0x63; Fullwidth Latin Small Letter C << Best Fit Mapping

Field 1: The Unicode UTF-16 code point for the character being converted.

Field 2: The byte or bytes that this code point maps to as a 16-bit value. The high byte is the lead
byte, and the low byte is the trail byte. If the high byte is 0, this is a single-byte code point with the
value of the low byte and no lead byte is emitted.

The following example shows Unicode to byte-mapping records for DBCSs.

17/ 81

[MS-UCODEREF-DIff] - v20170601
Windows Protocols Unicode Reference
Copyright © 2017 Microsoft Corporation
Release: June 1, 2017

0x0000
0x0001
0x0061
0x0062
0x0063

0x221e
Oxff4l
O0xff42
O0xff43

0x0000; Null
0x0001;

0x0061; a
0x0062; Db
0x0063; c

0x8187; Infinity
0x8281; Fullwidt

0x8282; Fullwidt
0x8283; Fullwidt

2.2.2.1.2 MBTABLE

Start Of Heading

h a
h b
h ¢

The MBTABLE tag marks the start of the mapping from single-byte bytes to Unicode UTF-16. It has

one field.

Field 1: The number of records of single-byte to Unicode mappings.

An example of the MBTABLE tag is:

MBTABLE 196

The Unicode UTF-16 mapping records follow the MBTABLE section. These mapping records have two

fields.

Field 1: The single byte character of the codepage.
Field 2: The Unicode UTF-16 code point that the codepage character maps to.

The following example shows mapping records for codepage 932.

0x00
0x01
0x02
0x03
0x04
0x05
0x06
0x07
0x08

Oxal
Oxaz
0xa3
Oxad
0xab
0xa6
0xa’7
0xa8
0xa9
Oxaa
Oxab
Oxac

0x0000;
0x0001;
0x0002;
0x0003;
0x0004;
0x0005;
0x0006;
0x0007;
0x0008;

Oxff6l;
0xff62;
0xff63;
O0xffoe4d;
0xf£f65;
0xff66;
0xff67;
Oxffe8;
0xf£f69;
Oxfféa;
0xff6b;
0xfféc;

Null

Start Of H
Start Of T
End Of Tex

End Of Transmission

Enquiry
Acknowledg
Bell
Backspace

Halfwidth
Halfwidth
Halfwidth
Halfwidth
Halfwidth
Halfwidth
Halfwidth
Halfwidth
Halfwidth
Halfwidth
Halfwidth
Halfwidth

2.2.2.1.3 DBCSRANGE

eading
ext
t

e

Ideographic Period
Opening Corner Bracket
Closing Corner Bracket
Ideographic Comma
Middle Dot

Katakana
Katakana
Katakana
Katakana
Katakana
Katakana
Katakana
Katakana

Wo

Small
Small
Small
Small
Small
Small

< OoOmMaH

[MS-UCODEREF-DIff] - v20170601
Windows Protocols Unicode Reference
Copyright © 2017 Microsoft Corporation
Release: June 1, 2017

18/ 81

The DBCSRANGE tag marks the start of the mapping from double-byte bytes to Unicode UTF-16. It
has one field.

Field 1: The number of records of lead byte ranges.

An example of the DBCSRANGE tag is:

DBCSRANGE 2

The Lead Byte Range records follow the DBCSRANGE section. These mapping records have two fields.
Field 1: The start of lead byte range.
Field 2: The end of lead byte range.

The following example shows one of the Lead Byte Range records for codepage 932. In this codepage,
it has one range of lead byte, starting from 0x81 (decimal 129) to 0x9f (decimal 159). So there are 31
lead bytes in this example (159 - 129 + 1). Each lead byte will have a corresponding DBCSRANGE.

0x81 0x9f; Lead Byte Range

A group of DBCSTABLE sections follows the lead-byte range record. Each lead byte will have a
corresponding DBCSTABLE section. In each DBCSTABLE section, it has one field.

Field 1: This field is the number of trail byte mappings for the lead byte.

The lead byte of the first DBCSTABLE is the first lead byte of the previous Lead Byte Range record.
Each subsequent DBCSTABLE is for the next consecutive lead byte value.

The following example shows the first DBCSTABLE for codepage 932. This is for lead byte 0x81.

DBCSTABLE 147; LeadByte = 0x81

The DBCSTABLE record describes the mappings available for a particular lead byte. The comment is
ignored but descriptive.

Field 1: This field is the trail byte to map from.
Field 2: This field is the Unicode UTF-16 code point that this lead byte/trail byte combination map to.

The following example shows DBCSTABLE records for codepage 932 for lead byte 0x81.

0x40 0x3000; Ideographic Space
0x41 0x3001; Ideographic Comma

19/ 81

[MS-UCODEREF-DIff] - v20170601
Windows Protocols Unicode Reference
Copyright © 2017 Microsoft Corporation
Release: June 1, 2017

3 Protocol Details

The following sections specify details of the Windows Protocols Unicode Reference, including abstract
data models and message processing rules.

3.1 Client Details

3.1.1 Abstract Data Model

This section describes a conceptual model of possible data organization that an implementation
maintains to participate in this protocol. The described organization is provided to facilitate the
explanation of how the protocol behaves. This document does not mandate that implementations
adhere to this model as long as their external behavior is consistent with what is described in this
document.

No abstract data model is needed.

3.1.2 Timers

None.

3.1.3 Initialization

None.

3.1.4 Higher-Layer Triggered Events

None.
3.1.5 Message Processing Events and Sequencing Rules

3.1.5.1 Mapping Between UTF-16 Strings and Legacy Codepages

3.1.5.1.1 Mapping Between UTF-16 Strings and Legacy Codepages Using CodePage
Data File

This process maps between a Unicode string that is encoded in UTF-16 and a string in a specified
codepage by using a codepage data file specified in 2.2.2.1.

3.1.5.1.1.1 Pseudocode for Accessing a Record in the Codepage Data File

This section contains the pseudocode that is used to read information from the codepage file. The
following example is taken from codepage data file 950.txt.

OPEN SECTION indicates that queries for records in a specific section are made. To open the following
section with the WCTABLE label, the following syntax is used. The OPEN SECTION is accessible by
using the WideCharMapping name.

OPEN SECTION WideCharMapping
where section name is WCTABLE from bestfit950.txt

20/ 81

[MS-UCODEREF-DIff] - v20170601
Windows Protocols Unicode Reference
Copyright © 2017 Microsoft Corporation
Release: June 1, 2017

SELECT RECORD assigns a line from the data file to be referenced by the assigned variable name. For
example, the following code selects a record from the WideCharMapping section, and the record is
accessible by using the MappingData name.

SET UnicodeChar to 0x4e00
SELECT RECORD MappingData from WideCharMapping
where field 1 matches UnicodeChar

The following example selects the line.

0x4e00 0xa440

Values from selected records are referenced by field number. The following example selects the
individual data fields from the selected row.

SET MultiByteResult to MappingData.Field?2

In this example, the value of MultiByteResult is the hexadecimal value 0xa440.

CODEPAGE 950 ; Chinese (Taiwan, Hong Kong SAR) - ANSI, OEM
CPINFO 2 0x3f 0x003f ; DBCS CP, Default Char = Question Mark

WCTABLE 20321
0x0000 0x0000; Null

0x0001 0x0001; Start Of Heading
0x0002 0x0002; Start Of Text
0x0003 0x0003; End Of Text

0x0004 0x0004; End Of Transmission

0x0005 0x0005; Enquiry

0x4e00 0xad40
Ox4e01 Oxad42
0x4e03 0xad43
0x4e07 0xc94

3.1.5.1.1.2 Pseudocode for Mapping a UTF-16 String to a Codepage String

COMMENT This algorithm maps a Unicode string encoded in UTF-16 to a
string in the specified ANSI codepage. The supported ANSI codepages
are limited to those that can be set as system codepage.

It requires the following externally specified values:
1) CodePage: An integer value to represent an ANSI codepage value.

If CodePage value is CP_ACP (0), use the system default ANSI codepage from
the 0S.

If CodePage value is CP _OEMCP (1), use the sysstem default OEM codepage from
the OS.

2) UnicodeString: A string encoded in UTF-16. Every Unicode code point
is an unsigned 16-bit ("WORD") wvalue. A surrogate pair is not
supported in this algorithm.

3) UnicodeStringLength: The string length in 16-bit ("WORD") unit for
UnicodeString. When UnicodeStringLength is 0, the length is

21/ 81

[MS-UCODEREF-DIff] - v20170601
Windows Protocols Unicode Reference
Copyright © 2017 Microsoft Corporation
Release: June 1, 2017

decided by counting from the beginning of the string to a NULL
character (Unicode value U+0000), including the null character.

4) MultiByteString: A string encoded in ANSI codepage. Every
character can be an 8-bit (byte) unsigned value or two 8-bit
unsigned values.

5) MultiByteStringLength: The length in bytes, including
the byte for NULL terminator. When MultiByteStringLength is 0,
the MultiByteString value will not be used in this algorithm.
Instead, the length of the result string in ANSI codepage will be
returned.

6) lpDefaultChar
Optional. Point to the byte to use if a character cannot be represented in
the specified codepage. The application sets this parameter to NULL if
the function is to use a system default value. The common default value is
0x3f, which is the ASCII value for the question mark.

PROCEDURE WideCharToMultiByteFromCodepageDataFile

IF CodePage is CP_ACP THEN
COMMENT Windows operating system keeps a systemwide value of
default ANSI system codepage. It is used to provide a default
COMMENT system codepage to be used by legacy ANSI application.

SET CodePage to the default ANSI system codepage from the Windows
operating system.
ELSE IF CodePage is CP_OEMCP THEN
COMMENT Windows keeps a systemwide value of
default OEM system codepage. It is used to provide a default
COMMENT system codepage to be used by legacy console application.

SET CodePage to the default OEM system codepage from Windows.
ENDIF

IF UnicodeStringLength is 0 THEN
COMPUTE UnicodeStringLength as the string length in 16-bit units
of UnicodeString as a NULL-terminated string, including
NULL terminator.
ENDIF

IF MultiByteStringLength is 0 THEN
SET IsCountingOnly to True
ELSE
SET IsCountingOnly to False
ENDIF

SET ResultMultiByteLength to 0O
SET CodePageFileName to the concatenation of strings "Bestfit",
CodePage as a string, and ".txt"

IF lpDefaultChar is null THEN
COMMENT No default char is specified by the caller. Read the default
COMMENT char from CPINFO in the data file

OPEN SECTION CharacterInfo where section name is CPINFO
from file with the name of CodePageFileName
SET lpDefaultChar to CharacterInfo.Field3

ENDIF

OPEN SECTION WideCharMapping where section name is WCTABLE from file
with the name of CodePageFileName

FOR each Unicode codepoint UnicodeChar in UnicodeString
SELECT MappingData from WideCharMapping

22 /81

[MS-UCODEREF-DIff] - v20170601
Windows Protocols Unicode Reference
Copyright © 2017 Microsoft Corporation
Release: June 1, 2017

where field 1 matches UnicodeChar
IF MappingData is null THEN
COMMENT There is no mapping for this Unicode character, use
COMMENT the default character
IF IsCountingOnly is False THEN
SET MultiByteString[ResultMultiBytelLength]
to lpDefaultChar
ENDIF
INCREMENT ResultMultiBytelLength
CONTINUE FOR loop
ENDIF

SET MultiByteResult to MappingData.Field2

IF MultiByteResult is less than 256 THEN
COMMENT This is a single byte result
IF IsCountingOnly is True THEN
INCREMENT ResultMultiBytelLength
ELSE
SET MultiByteString[ResultMultiBytelLength]
to MultiByteResult
INCREMENT ResultMultiBytelLength
ENDIF
ELSE
COMMENT This is a double byte result
IF IsCountingOnly is True THEN
COMPUTE ResultMultiByteLength as
ResultMultiByteLength added by 2
ELSE
SET MultiByteString[ResultMultiBytelLength] to
MultiByteResult divided by 256
INCREMENT ResultMultiBytelLength
SET MultiByteString[ResultMultiBytelLength] to
the remainder of MultiByteResult divided by 256
INCREMENT ResultMultiBytelLength
ENDIF
ENDIF
END FOR

RETURN ResultMultiBytelLength as a 32-bit unsigned integer

3.1.5.1.1.3 Pseudocode for Mapping a Codepage String to a UTF-16 String

COMMENT This algorithm maps a Unicode string encoded in the specified codepage to UTF-16.
It requires the following externally specified values:
1) CodePage: An integer value to represent an ANSI codepage value.

If CodePage value is CP_ACP (0), use the system default ANSI codepage from
the OS.

If CodePage value is CP_OEMCP (1), use the system default OEM codepage from
the 0S.2) MultiByteString: A string encoded in ANSI codepage. Every
character can be an 8-bit (byte) unsigned value or two 8-bit

unsigned values.

3) MultiByteStringLength: The length in bytes, including
the byte for terminating null character. When MultiByteStringLength is 0,
the length is decided by counting from the beginning of the string to a
null character (0x00), including the null character.

4) UnicodeString: A string encoded in UTF-16. Every Unicode code point
is an unsigned 16-bit ("WORD") wvalue. Surrogate pair is not
supported in this algorithm.

5) UnicodeStringLength: The string length in 16-bit ("WORD") unit for
UnicodeString. When UnicodeStringLength is O,

23/81

[MS-UCODEREF-DIff] - v20170601
Windows Protocols Unicode Reference
Copyright © 2017 Microsoft Corporation
Release: June 1, 2017

the UnicodeString value will not be used in this algorithm.
Instead, the length of the result string in UTF-16 will be
returned.

PROCEDURE MultiByteToWideCharFromCodepageDataFile

IF CodePage is CP_ACP THEN
COMMENT Windows keeps a systemwide value of
default ANSI system codepage. It is used to provide a default
COMMENT system codepage to be used by legacy ANSI application.

SET CodePage to the default ANSI system codepage from Windows.

ELSE IF CodePage is CP_OEMCP THEN
COMMENT Windows keeps a systemwide value of
default OEM system codepage. It is used to provide a default
COMMENT system codepage to be used by legacy console application.

SET CodePage to the default OEM system codepage from Windows.

ENDIF

IF MultiByteStringLength is 0 THEN
COMPUTE UnicodeStringLength as the string length in 8-bit units
of MultiByteString as a null-terminated string, including
terminating null character.
ENDIF

IF UnicodeStringLength is 0 THEN
SET IsCountingOnly to True
ELSE
SET IsCountingOnly to False
ENDIF

SET CodePageFileName to the concatenation of
CodePage as a string, and ".txt"

OPEN SECTION CodePageInfo where section name is CPINFO from file
with the name of CodePageFileName

COMMENT Read the codepage type.

COMMENT The wvalue for Single Byte Code Page (SBCS) is 1

COMMENT The wvalue for Double Byte Code Page (DBCS) is 2

SET CodePageType to CodePagelInfo.Fieldl
SET DefaultUnicodeChar to CodePageInfo.Field3

OPEN SECTION SingleByteMapping where section name is MBTABLE from file
with the name of CodePageFileName

SET MultiByteIndex = 0
WHILE MultiBytelIndex <= to MultiByteStringLength - 1
SET MultiByteChar = MultiByteString[MultiByteIndex]
IF CodePageType is 1 THEN
COMMENT SBCS codepage
COMMENT Select a record which contains the mapping data
SELECT MappingData from SingleByteMapping
where field 1 matches MultiByteChar
IF MappingData is null THEN
COMMENT There is no mapping for this single-byte character, use
COMMENT the default character
IF IsCountingOnly is False THEN
SET MultiByteString[ResultUnicodeLength]
to DefaultUnicodeChar
ENDIF
INCREMENT ResultMultiBytelLength
INCREMENT MultiByteIndex
CONTINUE WHILE loop
ENDIF

24 /81

[MS-UCODEREF-DIff] - v20170601
Windows Protocols Unicode Reference
Copyright © 2017 Microsoft Corporation
Release: June 1, 2017

IF IsCountOnly is False THEN
SET UnicodeString[ResultUnicodeLength]
to MappingData.Field2
ENDIF
INCREMENT ResultUnicodeLength
ELSE
COMMENT DBCS codepage
COMMENT First, try if this is a single-byte mapping
SELECT MappingData from SingleByteMapping
where field 1 matches MultiByteChar
IF MappingData is not null THEN
COMMENT This byte is a single-byte character
IF IsCountOnly is False THEN
SET UnicodeString[ResultUnicodeLength]
to MappingData.Field2
ENDIF
INCREMENT ResultUnicodeLength
ELSE
COMMENT Not a single-byte character
COMMENT Check if this is a valid lead byte for double byte mapping
OPEN SECTION DBCSRanges
where section name is DBCSRANGE from file
with the name of CodePageFileName

COMMENT Read the count of DBCS Range count
SET DBCSRangeCount to DBCSRanges.Fieldl

SET ValidDBCS to False
COMMENT Enumerate through every DBCSRange record to see if
COMMENT the MultiByteChar is a leading byte

FOR Counter i1 = 1 to DBCSRangeCount

COMMENT Select the current record

SELECT DBCSRangeRecord from DBCSRanges

SET LeadByteStart to DBCSRangeRecord.Fieldl

SET LeadByteEnd to DBCSRangeRecord.Field2

IF MultiByteChar is larger or equal to LeadByteStart AND

MultiByteChar is less or equal to LeadByteEnd THEN

COMMENT This is a valid lead byte
COMMENT Now check if there is a following valid trailing byte
SET LeadByteTableCount = MultiByteChar - LeadByteStart

COMMENT Select the current DBCSTABLE section
OPEN SECTION DBCSTableSection from DBCSRanges
where section name is DBCSTABLE
COMMMENT Advance to the right DBCSTABLE section
FOR LeadByteIndex = 0 to LeadByteTableCount
ADVANCE SECTION DBCSTableSection
NEXTFOR
COMMENT Check if the trailing byte is wvalid
IF MultiByteIndex + 1 is less than MultiByteStringLength THEN
SET TrailByteChar to MultiByteString[MultiBytelIndex + 1]
SELECT MappingData FROM DBCSTABLE
Where field 1 matches TrailgByteChar
IF MappingData is not null THEN
COMMENT Valid trailing byte
SET ValidDBCS to True
IF IsCountingOnly is FALSE THEN
SET UnicodeString[ResultUnicodeLength] to MappingData.Field2
ENDIF
INCREMENT ResultUnicodeLength
COMMENT Increment the MultiByteIndex.
COMMENT Note that the MultiByteIndex will
COMMENT be incremented again for the WHILE loop
INCREMENT MultiByteIndex
EXIT FOR loop
ENDIF
ENDIF
ENDIF
COMMENT No valid lead byte is found. Advance to next record

25/ 81

[MS-UCODEREF-DIff] - v20170601
Windows Protocols Unicode Reference
Copyright © 2017 Microsoft Corporation
Release: June 1, 2017

ADVANCE DBCSRangeRecord
NEXTFOR
IF ValidDBCS is FALSE THEN
COMMENT There is no valid leading byte/trailing byte sequence
If IsCountingOnly is FALSE THEN
SET UnicodeString[ResultUnicodeLength] to DefaultUnicodeChar
ENDIF
INCREMENT MultiByteIndex
INCREMENT ResultUnicodeLength
ENDIF
ENDIF
ENDIF
INCREMENT MultiByteIndex
ENDWHILE

RETURN ResultMultiBytelLength as a 32-bit unsigned integer

3.1.5.1.2 Mapping Between UTF-16 Strings and ISO 2022-Based Codepages

[ECMA-035] defines the standard that is fully identical with International Standard ISO/IEC
2022:1994. EUC (Extended Unix Code) is based on I1S0O-2022 standard.

For more information, see [ECMA-035].

3.1.5.1.3 Mapping between UTF-16 Strings and GB 18030 Codepage
Windows implements GB-18030 based on [GB18030].

For more information, please see [GB18030].

3.1.5.1.4 Mapping Between UTF-16 Strings and ISCII Codepage
Windows implements ISCII-based codepage based on [ISCII].

For more information, see [ISCII].

3.1.5.1.5 Mapping Between UTF-16 Strings and UTF-7

Windows implements UTF-7 codepage based on [RFC2152].

For more information, see [RFC2152].

3.1.5.1.6 Mapping Between UTF-16 Strings and UTF-8

Windows implements UTF-8 codepage based on [UNICODE5.0.0/CH3].

For more information, see [UNICODE5.0.0/CH3].

3.1.5.2 Comparing UTF-16 Strings by Using Sort Keys

To compare strings, a sort key is required for each string. A binary comparison of the sort keys can
then be used to arrange the strings in any order.

3.1.5.2.1 Pseudocode for Comparing UTF-16 Strings

This algorithm compares two UTF-16 strings by using linguistically appropriate rules.

This algorithm compares two Unicode strings using linguistic
appropriate rules. It requires the following externally specified

26 / 81

[MS-UCODEREF-DIff] - v20170601
Windows Protocols Unicode Reference
Copyright © 2017 Microsoft Corporation
Release: June 1, 2017

values:

1) StringA: A string encoded in UTF-16
2) StringB: A string encoded in UTF-16

CALL GetWindowsSortKey
WITH StringA
RETURNING SortKeyA

CALL GetWindowsSortKey
WITH StringB
RETURNING SortKeyB

CALL CompareSortKeys
WITH SortKeyA, SortKeyB
RETURNING Result

IF Result is "SortKeyA is equal to SortKeyB" THEN
StringA is considered equal to StringB

ELSE IF Result is "SortKeyA is less than SortKeyB" THEN
StringA is sorted prior to StringB

ELSE
StringA is sorted after StringB

ENDIF

3.1.5.2.2 CompareSortKey

This algorithm generates sort keys for two strings and uses the sort keys to provide a linguistically
appropriate string comparison.

COMMENT CompareSortKeys
COMMENT On Entry: SortKeyA - An array of bytes returned from

COMMENT GetWindowsSortKey

COMMENT SortKeyB - An array of bytes returned from
COMMENT GetWindowsSortKey

COMMENT

COMMENT On Exit: Result - A value indicating if SortKeyA
COMMENT is less than, equal to, or greater
COMMENT than SortKeyB

PROCEDURE CompareSortKeys

SET index to O
WHILE index is less than Length (SortKeyA) and
index is also less than Length (SortKeyB)

IF SortKeyA[index] is less than SortKeyB[index] THEN
SET Result to "SortKeyA is less than SortKeyB"
RETURN

ENDIF

IF SortKeyA[index] is greater than SortKeyB[index] THEN
SET Result to "SortKeyA is greater than SortKeyB"
RETURN

ENDIF

INCREMENT index
ENDWHILE

IF Length (SortKeyA) is equal to Length(SortKeyB) THEN
SET Result to "SortKeyA is equal to SortKeyB"

ELSE IF Length(SortKeyA) is less than Length (SortKeyB) THEN
SET Result to "SortKeyA is less than SortKeyB"

ELSE
assert Length (SortKeyA) needs to be greater than Length (SortKeyB)
SET Result to "SortKeyA is greater than SortKeyB"

ENDIF

RETURN

27/ 81

[MS-UCODEREF-DIff] - v20170601
Windows Protocols Unicode Reference
Copyright © 2017 Microsoft Corporation
Release: June 1, 2017

Any sorting mechanism can be used to arrange these strings by comparing their sort keys.

3.1.5.2.3 Accessing the Windows Sorting Weight Table

Windows gets its sorting data from a data table (see section 3.1.5.2.3.1). Code points are labeled by
using UTF-16 values. The file is arranged in sections of tab-delimited field records. Optional comments
begin with a semicolon. Each section contains a label and can have a subsection label.<1>

Note that labels are any field that does not begin with a numerical (OXNNNN) value. Blank lines and
characters that follow a ";" are ignored.

This document uses the following notation to specify the processing of the file.

OPEN indicates that queries are made for records in a specific section. To open the preceding section
with the SORTKEY label and DEFAULT sublabel, the following syntax is used. The OPEN SECTION is
accessible by using the DefaultTable name.

OPEN SECTION DefaultTable where name is
SORTKEY\DEFAULT from unisort.txt

SELECT assigns a line from the data file to be referenced by the assigned variable name. To select the
highlighted row preceding, this document uses this notation. The selected row is accessible by using
the name CharacterRow.

SET UnicodeChar to 0x0041
SELECT RECORD CharacterRow FROM DefaultTable
WHERE field 1 matches UnicodeChar

Values from selected records are referenced by field number. The following pseudo code selects the
individual data fields from the selected row.

SET CharacterWeight.ScriptMember to CharacterRow.Field?2
SET CharacterWeight.PrimaryWeight to CharacterRow.Field3
SET CharacterWeight.DiacriticWeight to CharacterRow.Field4
SET CharacterWeight.CaseWeight to CharacterRow.Field5

To select the record for characters 0x0043 and 0x0068 with LCID 0x0405, the following notation is
used.<2>

SET Characterl to 0x0043
SET Character2 to 0x0068
SET SortLocale to 0x0405

OPEN SECTION ContractionTable where name is
SORTTABLES\COMPRESSION\LCID[SortLocale] \TWO from unisort.txt

SELECT RECORD ContractionRow FROM ContractionTable WHERE field 1
matches Characterl and field 2 matches Character2

SET CharacterWeight.ScriptMember to ContractionRow.Field3

SET CharacterWeight.PrimaryWeight to ContractionRow.Field4

SET CharacterWeight.DiacriticWeight to ContractionRow.Field5

SET CharacterWeight.CaseWeight to ContractionRow.Field6

3.1.5.2.3.1 Windows Sorting Weight Table

28/ 81

[MS-UCODEREF-DIff] - v20170601
Windows Protocols Unicode Reference
Copyright © 2017 Microsoft Corporation
Release: June 1, 2017

This section contains a link to detailed character weight specifications that permit consistent sorting
and comparison of Unicode strings. The data is not used by itself but is used as one of the inputs to

the comparison algorithm. The layout and format of data in this file is also specified in [MSDN-

SWT].<3>

3.1.5.2.4 GetWindowsSortKey Pseudocode

This algorithm specifies the generation of sort keys for a specific UTF-16 string.

STRUCTURE CharacterWeightType

(

)

ScriptMember: 8 bit integer
PrimaryWeight: 8 bit integer
DiacriticWeight: 8 bit integer
CaseWeight: 8 bit integer

STRUCTURE UnicodeWeightType

(

)

ScriptMember: 8 bit integer
PrimaryWeight: 8 bit integer
ThirdByteWeight: 8 bit integer

STRUCTURE SpecialWeightType

(

)

Position: 16 bit integer
ScriptMember: 8 bit integer
PrimaryWeight: 8 bit integer

STRUCTURE ExtraWeightType

(

SET
SET
SET

SET
SET

SET

//

//

//

SET
SET
SET
SET
SET
SET
SET

SET
SET
SET
SET
SET
SET

SET

SET
SET

W6 :
W7:

constant
constant
constant

constant
constant

global KoreanScriptMap to InitKoreanScriptMap

8 bit integer
8 bit integer

LCID KOREAN to 0x0412

LCID KOREAN UNICODE SORT to 0x010412

LCID HUNGARIAN to 0x040e

SORTKEY SEPARATOR to 0x01
SORTKEY TERMINATOR to 0x00

Script Member Values.

constant
constant
constant
constant
constant
constant
constant

constant
constant
constant
constant
constant
constant

constant

constant
constant

UNSORTABLE to 0
NONSPACE MARK to 1
EXPANSION to 2
EASTASIA SPECIAL to 3
JAMO SPECIAL to 4
EXTENSION A to 5
PUNCTUATION to 6
SYMBOL 1 to 7
SYMBOL 2 to 8
SYMBOL_3 to 9
SYMBOL_4 to 10
SYMBOL 5 to 11
SYMBOL 6 to 12
DIGIT to 13
LATIN to 14
KANA to 34

[MS-UCODEREF-DIff] - v20170601
Windows Protocols Unicode Reference
Copyright © 2017 Microsoft Corporation
Release: June 1, 2017

29/ 81

SET

constant IDEOGRAPH to 128

IF Windows version is Windows Vista, Windows Server 2008, Windows 7, or
Windows Server 2008 R2 THEN

SET

ELSE
SET
ENDI

ENDI
SET
SET

SET
SET

//
//
//
//
//
//
//
//
//
//

ELSE

SET
//ch
SET
ENDI

constant MAX SPECIAL CASE to SYMBOL 6

constant MAX SPECIAL CASE to SYMBOL 5

F

COMMENT Set the constant for fhe first script member of the Unicode
COMMENT Private Use Area (PUA) range

SET constant PUA3BYTESTART to OxA9

COMMENT Set the constant for the last script member of the Unicode
COMMENT Private Use Area (PUA) range

SET constant PUA3BYTEEND to OxAF

COMMENT Set the constant for the first script member of CJK
COMMENT (Chinese/Japanese/Korean) 3 byte weight range

SET constant CJK3BYTESTART to 0xCO

COMMMENT Set the constant for the last script member of CJK
COMMENT (Chinese/Japanese/Korean) 3 byte weight range

SET constant CJK3BYTEEND to OxEF

F

constant FIRST SCRIPT to LATIN

constant MAX SCRIPTS to 256

Values for CJK Unified Ideographs Extension A range.

0x3400 thru Ox4dbf
constant SCRIPT MEMBER EXT A to 254 // SM for Extension A

constant PRIMARY WEIGHT EXT A to 255 // AW for Extension A

Lowest weight wvalues.
Used to remove trailing DW and CW values.
Also used to keep illegal values out of sort keys.

constant MIN DW to 2
constant MIN DW to 2

Bit mask values.

Case Weight (CW) - 8 bits:
bit 0 => width
bit 1,2 => small kana, sei-on
bit 3,4 => upper/lower case
bit 5 => kana
bit 6,7 => contraction

SET constant CONTRACTION 8 MASK to 0xc0
SET constant CONTRACTION 7 MASK to 0xcO
SET constant CONTRACTION 6 MASK to 0xcO
SET constant CONTRACTION 5 MASK to 0x80
SET constant CONTRACTION 4 MASK to 0x80
SET constant CONTRACTION_ 3 MASK to 0x40
SET constant CONTRACTION 2 MASK to 0x40

SET constant CONTRACTION MASK to 0xcO

COMMENT Otherwise, only 2-character or 3-character contractions are supported.

constant CONTRACTION 3 MASK to OxcO // Bit-mask to check 2 character contraction or 3

aracter contraction

constant CONTRACTION 2 MASK to 0x80 // Bit-mask to check 2 character contraction

F

[MS-UCODEREF-Diff] - v20170601

Windows

Protocols Unicode Reference

Copyright © 2017 Microsoft Corporation
Release: June 1, 2017

30/ 81

SET
SET
SET

//
//
//
//
//

SET
SET

SET

//
//
//
SET
SET
SET

//
//

SET
SET
SET

//
//
//
//
//
//
SET
SET
SET
SET

SET
SET

SET

//
//
//
//
SET
//
//
//

constant CASE UPPER MASK to Oxe7 // zero out case bits
constant CASE KANA MASK to Oxdf // zero out kana bit
constant CASE WIDTH MASK to Oxfe // zero out width bit

Masks to isolate the various bits in the case weight.

NOTE: Bit 2 needs to always equal 1 to avoid getting
a byte value of either 0 or 1.

constant CASE_EXTRA WEIGHT MASK to Oxc4
constant ISOLATE_ KANA to

(~CASE_KANA_MASK) | CASE_EXTRA WEIGHT_MASK
constant ISOLATE WIDTH to

(~CASE WIDTH MASK) | CASE EXTRA WEIGHT MASK

Values for East Asia special case primary weights.
constant PW_REPEAT to 0

constant PW_CHO_ON to 1

constant MAX SPECIAL PW to PW_CHO_ ON

Values for weight 5 - East Asia Extra Weights.
constant WT FIVE KANA to 3

constant WT FIVE REPEAT to
constant WT _FIVE CHO ON to 5

i

PW Mask for Cho-On:
Leaves bit 7 on in PW, so it becomes Repeat
if it follows Kana N.

constant CHO ON PW MASK to 0x87

Special weight values

constant MAP INVALID WEIGHT to Oxff

Some Significant Values for Korean Jamo.

The L, V & T syllables in the 0x1100 Unicode range
can be composed to characters in the 0Oxac00 range.
See The Unicode Standard for details.

constant NLS CHAR FIRST JAMO to 0x1100 // Begin Jamo range
constant NLS CHAR LAST JAMO to 0x11f9 // End Jamo range
constant NLS CHAR FIRST VOWEL JAMO to 0x1160 // First Vowel Jamo
constant

NLS CHAR FIRST TRAILING JAMO to 0x1la8 // First Trailing Jamo
constant

NLS JAMO VOWEL COUNT to 21 // Number of vowel Jamo (V)
constant
NLS JAMO TRAILING COUNT to 28 // Number of trailing Jamo (L)
constant
NLS HANGUL FIRST COMPOSED to 0xac00 // Begin composed range

Values for Unicode Weight extra weights (e.g. Jamo (old Hangul)).

The following uses SM for extra UW weights.

constant ScriptMember Extra UnicodeWeight to 255
Leading Weight / Vowel Weight / Trailing Weight
according to the current Jamo class.

[MS-UCODEREF-DIff] - v20170601
Windows Protocols Unicode Reference
Copyright © 2017 Microsoft Corporation
Release: June 1, 2017

31/81

STRUCTURE JamoSortInfoType
(

// true for an old Hangul sequence
OldHangulFlag : Boolean

// true if U+1160 (Hangul Jungseong Filler) used
FillerUsed : Boolean

// index to the prior modern Hangul syllable (L)
LeadingIndex : 8 bit integer

// index to the prior modern Hangul syllable (V)
VowelIndex : 8 bit integer

// index to the prior modern Hangul syllable (T)
TrailingIndex : 8 bit integer

// Weight to offset from other old hangul (L)
LeadingWeight : 8 bit integer

// Weight to offset from other old hangul (V)
VowelWeight : 8 bit integer

// Weight to offset from other old hangul (T)
TrailingWeight : 8 bit integer
)

// This is the raw data record type from the data table
STRUCTURE JamoStateDataType
(

// true for an old Hangul sequence

OldHangulFlag : Boolean

// index to the prior modern Hangul syllable (L)
LeadingIndex : 8 bit integer

// index to the prior modern Hangul syllable (V)
VowelIndex : 8 bit integer

// index to the prior modern Hangul syllable (T)
TrailingIndex : 8 bit integer

// weight to distinguish from old Hangul
ExtraWeight : 8 bit integer

// number of additional records in this state
TransitionCount : 8 bit integer

// Current record in unisort.txt Jamo table:
JamoRecord : data record

// SORTTABLES\JAMOSORT\ [Character] section

)
COMMENT GetWindowsSortKey

COMMENT

COMMENT On Entry: SourceString - Unicode String to compute a
COMMENT sort key for

COMMENT SortLocale - Locale to determine correct
COMMENT linguistic sort

COMMENT Flags - Bit Flag to control behavior
COMMENT of sort key generation.
COMMENT

COMMENT NORM_IGNORENONSPACE Ignore diacritic weight

COMMENT NORM IGNORECASE: Ignore case weight

COMMENT NORM IGNOREKANATYPE: Ignore Japanese Katakana/Hiraga
COMMENT difference

COMMENT NORM_ IGNOREWIDTH: Ignore Chinese/Japanese/Korean
COMMENT half-width and full-width difference.
COMMENT

COMMENT On Exit: SortKey - Byte array containing the

32/81

[MS-UCODEREF-DIff] - v20170601
Windows Protocols Unicode Reference
Copyright © 2017 Microsoft Corporation
Release: June 1, 2017

COMMENT computed sort key.
COMMENT

PROCEDURE GetWindowsSortKey (IN SourceString : Unicode String,
IN SortLocale : LCID,
IN Flags : 32 bit integer,
OUT SortKey : BYTE String)

COMMENT Compute flags for sort conditions
COMMENT Based on the case/kana/width flags,
COMMENT turn off bits in case mask when comparing case weight.

SET CaseMask to Oxff

If (NORM IGNORECASE bit is on in Flags) THEN
SET CaseMask to CaseMask LOGICAL AND with CASE_ UPPER MASK
ENDIF

If (NORM IGNOREKANATYPE bit is on in Flags) THEN
SET CaseMask to CaseMask LOGICAL AND with CASE_KANA MASK
ENDIF

If (NORM IGNOREWIDTH bit is on in Flags) THEN
SET CaseMask to CaseMask LOGICAL AND with CASE WIDTH MASK
ENDIF

COMMENT Windows 7 and Windows Server 2008 R2 use 3-byte (instead of 2-byte) sequence for
COMMENT Unicode Weights
COMMENT for Private Use Area (PUA) and some Chinese/Japanese/Korean (CJK) script members.

COMMENT Does this sort have a 3-byte Unicode Weight (CJK sorts)?
IF Windows version is Windows 7 and Windows Server 2008 R2 THEN
COMMENT Check if the locale can have 3-byte Unicode weight
SET Is3ByteWeightLocale to CALL Check3ByteWeightLocale (SortLocale)
ENDIF

IF Windows version is Windows Vista, Windows Server 2008, Windows 7, or Windows Server 2008
R2 THEN
COMMENT For Windows Vista, Windows Server 2008, Windows 7, and Windows Server 2008 R2,
COMMENT the algorithm
COMMENT does not remap the script for Korean locale
SET IsKoreanLocale to false
ELSE

IF SortLocale is LCID KOREAN or
SortLocale is LCID KOREAN UNICODE SORT THEN
SET IsKoreanLocale to true
IF KoreanScriptMap is null THEN
CALL InitKoreanScriptMap
ELSE
SET IsKoreanLocale to false
ENDIF
ENDIF

//

// Allocate buffer to hold different levels of sort key weights.
// UnicodeWeights/ExtraWeights/SpecialWeights will be eventually
// to be collected together, in that order, into the returned

// Sortkey byte string.

//

// Maximum expansion size is 3 times the input size

//
// Unicode Weight => 4 word (16 bit) length
// (extension A and Jamo need extra words)

SET UnicodeWeights to new empty string of UnicodeWeightType

SET DiacriticWeights to new empty string of BYTE

33/81

[MS-UCODEREF-DIff] - v20170601
Windows Protocols Unicode Reference
Copyright © 2017 Microsoft Corporation
Release: June 1, 2017

SET CaseWeights to new empty string of BYTE

// Extra Weight=>4 byte length (4 weights, 1 byte each) FE Special
SET ExtraWeights to new empty string of ExtraWeightType

// Special Weight => dword length (2 words each of 16 bits)
SET SpecialWeights to new empty string of SpecialWeightType

//
// Go through the string, code point by code point,
// testing for contractions and Hungarian special character sequence

//

// loop presumes 0 based index for source string
FOR SourcelIndex is 0 to Length(SourceString) -1
//
// Get weights
// CharacterWeight will contain all of the weight information
// for the character tested.
//

SET CharacterWeight to CALL GetCharacterWeights
WITH (SortLocale, SourceString[SourcelIndex])

SET ScriptMember to CharacterWeight.ScriptMember

// Special case weights have script members less than
// MAX_SPECIAL_CASE (11)
IF ScriptMember is greater than MAX SPECIAL CASE THEN

// No special case on character, but has to check for
// contraction characters and Hungarian special character sequence
// characters.

SET HasHungarianSpecialCharacterSequence to CALL
TestHungarianCharacterSequences
WITH (SortLocale, SourceString, Sourcelndex)

SET Result to CALL GetContractionType WITH (CharacterWeight)
CASE Result OF

"3-character Contraction":
COMMENT This is only possible for Windows versions that are Windows NT 4.0
COMMENT through Windows Server 2003
Set ContractionFound to CALL SortkeyContractionHandler
WITH (SortLocale, SourceString, Sourcelndex,
HasHungarianSpecialCharacterSequence, 3,
UnicodeWeights, DiacriticWieghts, CaseWeights)
IF ContractionFound is true THEN
COMMENT Break out of the case statement
BREAK
ENDIF
IF ContractionFound is true THEN
COMMENT Break out of the case statement
BREAK
ENDIF
COMMENT If no contraction is found, fall through into the additional cases.
FALLTHROUGH

"2-character Contraction":

COMMENT This is only possible for Windows versions that are Windows NT 4.0

COMMENT through Windows Server 2003

Set ContractionFound to CALL SortkeyContractionHandler

WITH (SortLocale, SourceString, Sourcelndex,
HasHungarianSpecialCharacterSequence, 2,
UnicodeWeights, DiacriticWieghts, CaseWeights)

IF ContractionFound is true THEN

34 /81

[MS-UCODEREF-DIff] - v20170601
Windows Protocols Unicode Reference
Copyright © 2017 Microsoft Corporation
Release: June 1, 2017

COMMENT Break out of the case statement

BREAK
ENDIF
COMMENT If no contraction is found, fall through into the OTHER case.
COMMENT Since "3-character contraction" or "2-character contraction" are the
COMMENT only two possible values for
COMMENT Windows NT 4.0 through Windows Server 2003, all calls to
COMMENT SortkeyContractionHandler will return false.
COMMENT So, the fallthrough will go directly to the OTHERS section
FALLTHROUGH

"6-character contraction, 7-character contraction, or 8-character contraction":
Set ContractionFound to CALL SortkeyContractionHandler
WITH (SortLocale, SourceString, Sourcelndex,
HasHungarianSpecialCharacterSequence, 8,
UnicodeWeights, DiacriticWieghts, CaseWeights)
IF ContractionFound is true THEN
COMMENT Break out of the case statement
BREAK
ELSE
Set ContractionFound to CALL SortkeyContractionHandler
WITH (SortLocale, SourceString, Sourcelndex,
HasHungarianSpecialCharacterSequence, 7,
UnicodeWeights, DiacriticWieghts, CaseWeights)
ENDIF
IF ContractionFound is true THEN
COMMENT Break out of the case statement
BREAK
ELSE
Set ContractionFound to CALL SortkeyContractionHandler
WITH (SortLocale, SourceString, Sourcelndex,
HasHungarianSpecialCharacterSequence, 6,
UnicodeWeights, DiacriticWieghts, CaseWeights)
ENDIF
IF ContractionFound is true THEN
COMMENT Break out of the case statement
BREAK
ENDIF
COMMENT If no contraction is found, fall through into additional cases.
FALLTHROUGH

"4-character contraction or 5-character contraction":
Set ContractionFound to CALL SortkeyContractionHandler
WITH (SortLocale, SourceString, Sourcelndex,
HasHungarianSpecialCharacterSequence, 5,
UnicodeWeights, DiacriticWieghts, CaseWeights)
IF ContractionFound is true THEN
COMMENT Break out of the case statement
BREAK
ELSE
Set ContractionFound to CALL SortkeyContractionHandler
WITH (SortLocale, SourceString, Sourcelndex,
HasHungarianSpecialCharacterSequence, 4,
UnicodeWeights, DiacriticWieghts, CaseWeights)
ENDIF
IF ContractionFound is true THEN
COMMENT Break out of the case statement
BREAK
ENDIF
COMMENT If no contraction is found, fall through into additional cases.
FALLTHROUGH

"2-character contraction or 3-character contraction":
Set ContractionFound to CALL SortkeyContractionHandler
WITH (SortLocale, SourceString, Sourcelndex,
HasHungarianSpecialCharacterSequence, 3,
UnicodeWeights, DiacriticWieghts, CaseWeights)
IF ContractionFound is true THEN
COMMENT Break out of the case statement
BREAK

35/81

[MS-UCODEREF-DIff] - v20170601
Windows Protocols Unicode Reference
Copyright © 2017 Microsoft Corporation
Release: June 1, 2017

ELSE

END
IF

END

COMMENT If no contraction is found,

FAL

OTHERS

Set ContractionFound to CALL SortkeyContractionHandler
WITH (SortLocale, SourceString, Sourcelndex,

HasHungarianSpecialCharacterSequence, 2,
UnicodeWeights, DiacriticWieghts, CaseWeights)

IF

ContractionFound is true THEN

COMMENT Break out of the case statement

BREAK

IF

LTHROUGH

fall through into additional cases.

IF Windows version is greater than Windows Server 2008 R2 or Windows 7 THEN

ELSE

ENDI
ENDCASE
ELSE

COMMENT In Windows Server 2008 R2 or Windows 7, Private Use Area

COMMENT points

(PUA)

code

COMMENT and some CJK (Chinese/Japanese/Korean) sorts might need 3 byte

COMMENT weights

COMMENT Store normal Unicode weight first. Note that there is no

COMMENT adjustment of Korean weight anymore.
SET UnicodeWeight to
CorrectUnicodeWeight (CharacterWeight, FALSE)

COMMENT Assume 3-byte Unicode Weight is not used first. The alogorithm will

COMMENT check this later.
SET UnicodeWeight.ThirdByteWeight to 0

IF (ScriptMember is equal to or greater than PUA3BYTESTART)
AND
(ScriptMember is less than or equal to PUA3BYTEEND) THEN
SET IsScriptMemberPUA3BYTEWeight to true
ELSE
SET IsScriptMemberPUA3ByteWeight to false
ENDIF

IF (ScriptMember is equal to or greater than CJK3BYTESTART) AND

(ScriptMember is less than or equal to CJK3BYTEEND) THEN
SET IsScriptMemberCJK3ByteWeight to true

ELSE

SET IsScriptMemberCJK3ByteWeight to false

ENDIF

IF (IsScriptMemberPUA3ByteWeight is true) OR
(Is3ByteWeightLocale AND
IsScriptMemberCJK3ByteWeight is true) THEN

COMMENT PUA code points and some CJK sorts need 3 byte weights
SET UnicodeWeight.ThirdByteWeight to CharacterWeight.DiacriticWeight

ELSE

COMMENT Normal Diacritic Weight

APPEND CharacterWeight.DiacriticWeight to DiacriticWeights as a BYTE

ENDIF
APPEND UnicodeWeight to UnicodeWeights

SET CaseWeight to GetCaseWeight (CharacterWeight)
APPEND CharacterWeight.CaseWeight to CaseWeights as a BYTE

SET UnicodeWeight to

CorrectUnicodeWeight (CharacterWeight, IsKoreanLocale)
APPEND UnicodeWeight to UnicodeWeights
APPEND CharacterWeight.DiacriticWeight to DiacriticWeights

as a BYTE

SET CaseWeight to GetCaseWeight (CharacterWeight)
APPEND CharacterWeight.CaseWeight to CaseWeights as a BYTE
F

[MS-UCODEREF-DIff] - v20170601
Windows Protocols Unicode Reference
Copyright © 2017 Microsoft Corporation

Release: June 1, 2017

36 /81

CALL SpecialCaseHandler WITH (SourceString, Sourcelndex,
UnicodeWeights, ExtraWeights, SpecialWeights,
SortLocale, IsKoreanLocale)

ENDIF
ENDFOR
//
// Store the Unicode Weights in the destination buffer.
//
FOR each UnicodeWeight in UnicodeWeights
//
// Copy Unicode weight to destination buffer.
//

APPEND UnicodeWeight.ScriptMember to SortKey as a BYTE
APPEND UnicodeWeight.PrimaryWeight to SortKey as a BYTE
IF Windows version is greater than Windows Server 2008 R2 or Windows 7 THEN
IF UnicodeWeight.ThirdByteWeight is not 0 THEN
COMMENT When 3-byte Unicode Weight is used, append the additional BYTE into
COMMENT SortKey
APPEND UnicodeWeight.ThirdByteWeight to SortKey as a BYTE

ENDIF

ENDIF
ENDFOR
//
// Copy Separator to destination buffer.
//
APPEND SORTKEY SEPARATOR to SortKey as a BYTE
//
// Store Diacritic Weights in the destination buffer.
//

IF (NORM IGNORENONSPACE bit is not turned on in Flags) THEN
IF (IsReverseDW is TRUE) THEN

//

// Reverse diacritics:

// - remove diacritics from left to right.
// - store diacritics from right to left.
//

FOR each DiacriticWeight in
DiacriticWeights in the "first in first out" order
IF DiacriticWeight <= MIN DW THEN
REMOVE DiacriticWeight from DiacriticWeights
ELSE
BREAK from the current FOR loop
ENDIF
ENDFOR

FOR each DiacriticWeight in
DiacriticWeights in the "last in first out" order
//
// Copy Unicode weight to destination buffer.
//
APPEND DiacriticWeight to SortKey as a BYTE
ENDFOR
ELSE
//
// Regular diacritics:
// - remove diacritics from right to left.
// - store diacritics from left to right.
FOR each DiacriticWeight in
DiacriticWeights in the "last in first out" order
IF DiacriticWeight <= MIN_DW THEN
REMOVE DiacriticWeight from DiacriticWeights
ELSE
BREAK from the current FOR loop
ENDIF
ENDFOR

37/81

[MS-UCODEREF-DIff] - v20170601
Windows Protocols Unicode Reference
Copyright © 2017 Microsoft Corporation
Release: June 1, 2017

FOR each DiacriticWeight in
DiacriticWeights in the order of "first in first out"

//
// Copy Unicode weight to destination buffer.
//
APPEND DiacriticWeight to SortKey as a BYTE
ENDFOR
ENDIF

ENDIF

//

// Copy Separator to destination buffer.

//

APPEND SORTKEY_ SEPARATOR to SortKey as a BYTE

//

// Store case Weights

//

// - Eliminate minimum CW.

// - Copy case weights to destination buffer.

//

IF (NORM IGNORECASE bit is not turned on in Flags
OR NORM IGNOREWIDTH bit is not turned on in Flags) THEN
FOR each CaseWeight in CaseWeights
in the "last in first out" order
IF CaseWeight <= MIN CW THEN
REMOVE CaseWeight from CaseWeights
ELSE
BREAK from the current FOR loop
ENDIF
ENDFOR

FOR each CaseWeight in CaseWeights

//
// Copy Unicode weight to destination buffer.
//
APPEND CaseWeight to SortKey as a BYTE
ENDFOR
ENDIF
//
// Copy Separator to destination buffer.
//

APPEND SORTKEY SEPARATOR to SortKey as a BYTE

//
// Store the Extra Weights in the destination buffer for
// EAST ASIA Special.

//

// - Eliminate unnecessary XW.

// - Copy extra weights to destination buffer.
//

IF Length (ExtraWeights) is greater than 0 THEN
IF (NORM_IGNORENONSPACE bit is turned on in Flag) THEN
APPEND Oxff to SortKey as a BYTE
APPEND 0x02 to SortKey as a BYTE
ENDIF

// Append W6 group to SortKey
// Trim unused values from the end of the string
SET EndExtraWeight to Length (ExtraWeights) - 1

WHILE EndExtraWeight greater than 0 and
ExtraWeightSeparator [EndExtraWeight] .W6 == Oxed
DECREMENT EndExtraWeight
ENDWHILE

SET ExtraWeightIndex to O
WHILE ExtraWeightIndex is less than or equal to EndExtraWeight
APPEND ExtraWeightSeparator[ExtraWeightIndex].W6

38/81

[MS-UCODEREF-DIff] - v20170601
Windows Protocols Unicode Reference
Copyright © 2017 Microsoft Corporation
Release: June 1, 2017

to SortKey as a BYTE
INCREMENT ExtraWeightIndex
ENDWHILE

// Append W6 separator
APPEND 0xff to SortKey as a BYTE

// Append W7 group to SortKey
// Trim unused values from the end of the string
SET EndExtraWeight to Length (ExtraWeights) - 1
WHILE EndExtraWeight greater than 0 and
ExtraWeightSeparator [EndExtraWeight] .W7 == Oxe4
DECREMENT EndExtraWeight
ENDWHILE

SET ExtraWeightIndex to O

WHILE ExtraWeightIndex is less than or equal to EndExtraWeight
APPEND ExtraWeightSeparator [ExtraWeightIndex].W7 to SortKey
INCREMENT ExtraWeightIndex

ENDWHILE

// Append W7 separator
APPEND 0xff to SortKey as a BYTE

ENDIF

//
//
//

Copy Separator to destination buffer.

APPEND SORTKEY SEPARATOR to SortKey as a BYTE

//
//
//
//
//

Store the Special Weights in the destination buffer.

- Copy special weights to destination buffer.

FOR each SpecialWeight in SpecialWeights

// High byte (most significant)

SET Bytel to SpecialWeight.Position >> 8

// Low byte (least significant)

SET Byte2 to SpecialWeight.Position & Oxff
APPEND Bytel to SortKey as a BYTE

APPEND Byte2 to SortKey as a BYTE

APPEND SpecialWeight.Script to SortKey as a BYTE
APPEND SpecialWeight.Weight to SortKey as a BYTE

ENDFOR
//
// Copy terminator to destination buffer.

//

APPEND SORTKEY TERMINATOR to SortKey

RETURN SortKey

3.1.5.2.5 TestHungarianCharacterSequences

This algorithm checks if the specified UTF-16 string has a Hungarian special-character sequence for

the specified locale in the specific string index.

Hungarian contains special character sequences in which the first character of the string designates a
string that is equivalent to the last three characters of the string. For example, the string "ddzs" is
actually treated as the string "dzsdzs" for the purposes of generating the sort key. This function
checks to see if the specified locale is Hungarian, and it also checks to see if the next two characters
starting in the specified index are the same. If so, this indicates that it is a likely Hungarian special-

character sequence.

COMMENT TestHungarianCharacterSequences

[MS-UCODEREF-DIff] - v20170601
Windows Protocols Unicode Reference
Copyright © 2017 Microsoft Corporation
Release: June 1, 2017

COMMENT

COMMENT On Entry: SortLocale - Locale to use for linguistic data
COMMENT SourceString - Unicode String to look for Hungarian
COMMENT special character sequence in
COMMENT SourceIndex - Index of character in string to
COMMENT look for start of

COMMENT Hungarian special character sequence
COMMENT

COMMENT On Exit: Result - Set to true if a Hungarian special
COMMENT character sequence

COMMENT was found

COMMENT

PROCEDURE TestHungarianCharacterSequences (IN SortLocale : LCID,
IN SourceString : Unicode String,
IN Sourcelndex : 32 bit integer,
OUT Result : Boolean)

// Hungarian special character sequence only happen to Hungarian
// Note that this can be found in unisort.txt in the
// SORTTABLES\DOUBLECOMPRESSION section, however since
// there's only 1 locale just hard code it here.
IF SortLocale not equal to LCID HUNGARIAN) THEN
SET Result to false
RETURN
ENDIF

// first test to make sure more data is available
IF SourcelIndex + 1 is greater than or equal to
Length (SourceString) THEN
SET Result to false
RETURN
ENDIF

// CMP_MASKOFF CW (e7) 1is not necessary

// since it was already masked off

SET FirstWeight to CALL GetCharacterWeights WITH
(SortLocale, SourceString[SourcelIndex])

SET SecondWeight to CALL GetCharacterWeights WITH

(SortLocale, SourceString[SourceIndex + 1])

IF FirstWeight is equal to SecondWeight THEN

SET Result to true
ELSE

SET Result to false
ENDIF

RETURN

3.1.5.2.6 GetContractionType

This algorithm specifies the checking of the type of contraction based on the character weight.
Contraction is defined by [UNICODE-COLLATION] section 3.2.

For instance, "lI" acts as a single unit in Spanish so that it comes between | and m. This is a two-
character contraction. Similarly, "dzs" acts as a single unit in Hungarian, so it is a three-character

contraction.

These functions specify if the weights will not be at the beginning of a contraction, the beginning of a
two-character contraction, or the beginning of a three-character contraction.

COMMENT GetContractionType
COMMENT

COMMENT On Entry: CharacterWeight - Weights structure to test for

COMMENT
COMMENT

a contraction

[MS-UCODEREF-DIff] - v20170601
Windows Protocols Unicode Reference
Copyright © 2017 Microsoft Corporation
Release: June 1, 2017

40/ 81

COMMENT On Exit: Result - Type of contraction found:

COMMENT "No contraction"

COMMENT "3-character contraction"

COMMENT "2-character contraction"

COMMENT The following results are only possible for

COMMENT Windows Vista, Windows Server 2008, Windows 7, and
COMMENT Windows Server 2008 R2

COMMENT "6-character contraction, 7-character contraction or
COMMENT 8-character contraction”

COMMENT "4-character contraction or 5-character contraction"
COMMENT "2-character contraction or 3-character contraction"

PROCEDURE GetContractionType (IN CharacterWeight : CharacterWeightType,
OUT Result)
IF Windows version is Windows NT 4.0 to Windows 2003 THEN
CASE CharacterWeight.CaseWeight & CONTRACTION_ 3 MASK OF

CONTRACTION 3 MASK : SET Result = "3-character contraction"
CONTRACTION 2 MASK : SET Result = "2-character contraction"
OTHERS : SET Result = "No contraction"

ENDCASE

ELSE
COMMENT Windows Vista, Windows Server 2008, Windows 7, and Windows Server 2008 R2
CASE CharacterWeight.CaseWeight & CONTRACTION MASK OF

CONTRACTION 6 MASK : SET Result = "6-character contraction, 7-
character contraction or 8-character contraction”
CONTRACTION 4 MASK : SET Result = "4-character contraction or 5-
character contraction"
CONTRACTION_ 2 MASK : SET Result = "2-character contraction or 3-
character contraction”
OTHERS : SET Result = "No contraction"
ENDCASE
ENDIF
RETURN

3.1.5.2.7 CorrectUnicodeWeight

This algorithm specifies the processing of the corrected Unicode weight for the specific character
weight, and whether the locale is a Korean locale.

COMMENT CorrectUnicodeWeight

COMMENT

COMMENT On Entry: CharacterWeight - Weights structure to get Unicode
COMMENT weight of

COMMENT IsKoreanLocale - True if this locale needs
COMMENT adjustment for

COMMENT Korean mapped scripts behavior.
COMMENT

COMMENT On Exit: UnicodeWeight - Corrected Unicode Weight

COMMENT

PROCEDURE

CorrectUnicodeWeight (IN CharacterWeight : CharacterWeightType,
IN IsKoreanLocale : boolean,
OUT UnicodeWeight : UnicodeWeightType)

SET UnicodeWeight to CALL MakeUnicodeWeight WITH
(CharacterWeight.ScriptMember, CharacterWeight.PrimaryWeight,
IsKoreanLocale)

RETURN UnicodeWeight

3.1.5.2.8 MakeUnicodeWeight

41 /81

[MS-UCODEREF-DIff] - v20170601
Windows Protocols Unicode Reference
Copyright © 2017 Microsoft Corporation
Release: June 1, 2017

This algorithm specifies the generation of the Unicode weight based on the script member, the primary
weight, and whether the locale is a Korean locale.

COMMENT MakeUnicodeWeight

COMMENT

COMMENT On Entry: ScriptMember - Script member to use for
COMMENT Unicode weight

COMMENT PrimaryWeight - Primary weight to use for
COMMENT Unicode weight

COMMENT IsKoreanLocale - True if this locale needs
COMMENT adjustment for Korean mapped
COMMENT scripts behavior.

COMMENT

COMMENT On Exit: UnicodeWeight - Corrected Unicode Weight
COMMENT

PROCEDURE MakeUnicodeWeight (IN ScriptMember : 8 bit byte,
IN PrimaryWeight : 8 bit byte,
IN IsKoreanLocale : boolean,
OUT UnicodeWeight : UnicodeWeightType)

IF IsKoreanLocale is true THEN
SET UnicodeWeight.ScriptMember to
KoreanScriptMap[ScriptMember]
ELSE
SET UnicodeWeight.ScriptMember to ScriptMember
ENDIF

SET UnicodeWeight.PrimaryWeight to PrimaryWeight
RETURN UnicodeWeight

3.1.5.2.9 GetCharacterWeights

This algorithm specifies the retrieval of the character weight based on the specified locale and the
specified UTF-16 code point.

COMMENT GetCharacterWeights

COMMENT

COMMENT On Entry: SortLocale - Locale to use for linguistic
COMMENT data

COMMENT SourceCharacter - Unicode Character to return
COMMENT weight for

COMMENT

COMMENT On Exit: Result - A structure containing the
COMMENT weights for this character
COMMENT

PROCEDURE GetCharacterWeights (IN SortLocale : LCID,
IN SourceCharacter : Unicode Character,
OUT Result : CharacterWeightType)

// Search for the character in the exception table

OPEN SECTION ExceptionTable where name is
SORTTABLES\EXCEPTION\LCID[SortLocale] from unisort.txt

SELECT RECORD CharacterRow FROM ExceptionTable WHERE field 1
matches SourceCharacter

IF CharacterRow is null THEN
// Not found, search for the character in the default table
OPEN SECTION DefaultTable where name is
SORTKEY\DEFAULT from unisort.txt
SELECT RECORDCharacterRow from DefaultTable where field 1
matches SourceCharacter

IF CharacterRow is null THEN
// Not found in default table either, check expansions

42 /81

[MS-UCODEREF-DIff] - v20170601
Windows Protocols Unicode Reference
Copyright © 2017 Microsoft Corporation
Release: June 1, 2017

SET Expansion to GetExpandedCharacters (SourceCharacter)

IF Expansion is not null THEN
// Has an expansion, set appropriate weights
SET Result.ScriptMember to EXPANSION

ELSE
// No expansion, set appropriate weights
SET Result.ScriptMember to UNSORTABLE
ENDIF

SET Result.PrimaryWeight to 0
SET Result.DiacriticWeight to O
SET Result.CaseWeight to 0

RETURN Result
ENDIF
ENDIF

SET Result.ScriptMember to CharacterRow.Field?2
SET Result.PrimaryWeight to CharacterRow.Field3
SET Result.DiacriticWeight to CharacterRow.Field4
SET Result.CaseWeight to CharacterRow.Field5

RETURN Result

3.1.5.2.10 GetExpansionWeights

This algorithm specifies the generation of a character weight for the specified character that has the

expansion behavior, as defined in [UNICODE-COLLATION] section 3.2.

COMMENT GetExpansionWeights

COMMENT

COMMENT On Entry: SourceCharacter - Character to look up

COMMENT expansions for

COMMENT SortLocale - Locale to get sort weights for
COMMENT

COMMENT On Exit: Weights - String of 2 or 3 weights for
COMMENT this character

COMMENT

PROCEDURE GetExpansionWeights (IN SourceCharacter : Unicode Character,

IN SortLocale : LCID,

OUT Weights : CharacterWeightType String)

SET Weights to new empty string of CharacterWeightType
SET ExpandedCharacters to CALL GetExpandedCharacters WITH
(SourceCharacter)

// Append first weight

SET Weight to CALL GetCharacterWeights WITH
(SortLocale, ExpandedCharacters[0])

APPEND Weight to Weights

// Get second weight, it might expand again
SET Weight to CALL GetCharacterWeights WITH
(SortLocale, ExpandedCharacters[1l])

IF Weight.ScriptMember is EXPANSION THEN
// second weight expands again, get new expansion
// note that this can only happen once, as it does
// with the U=fb03 (ffi ligature)

SET ExpandedCharacters to CALL
GetExpandedCharacters (ExpandedCharacters([1])

// Append second expansion's first weight
SET Weight to CALL GetCharacterWeights WITH

[MS-UCODEREF-DIff] - v20170601
Windows Protocols Unicode Reference
Copyright © 2017 Microsoft Corporation
Release: June 1, 2017

43 /81

(SortLocale, ExpandedCharacters[0])
APPEND Weight to Weights

// Get second weight for second expansion, it will not expand again
SET Weight to CALL GetCharacterWeights WITH
(SortLocale, ExpandedCharacters[l])
ENDIF

// Finish appending second weight to weights string
APPEND Weight to Weights

RETURN Result

3.1.5.2.11 GetExpandedCharacters

This algorithm specifies the generation of the array of expanded characters, if the specified character
can be expanded.

COMMENT GetExpandedCharacters

COMMENT

COMMENT On Entry: SourceCharacter - Character to look for in
COMMENT expansion table

COMMENT

COMMENT On Exit: Result - Array of two unicode characters
COMMENT for the expansion or null if no
COMMENT expansion found

COMMENT

COMMENT NOTE: Look for default table characters first, some entries
COMMENT in the expansion table are only used in exception tables
COMMENT for some locales (ie: 0x00c4 A)

PROCEDURE

GetExpandedCharacters (IN SourceCharacter : Unicode Character,
OUT Result : Unicode Character[2])

// Search for the expansion in the expansion table
OPEN SECTION ExpansionTable where name is
SORTTABLES\EXPANSION from unisort.txt

SELECT RECORD ExpansionRow FROM ExceptionTable WHERE field 1
matches SourceCharacter

IF ExpansionRow is null THEN
SET Result to null
RETURN Result

ENDIF

SET Result[0] to ExpansionRow.Field2
SET Result[l] to ExpansionRow.Field3

RETURN Result

3.1.5.2.12 SortkeyContractionHandler

This algorithm checks if the next few characters in the specified string and index have an 8-character,
7-character, 6-character, 5-character, 4-character, 3-character, or 2-character contraction sequence.
If true, these characters are given just one character weight. This algorithm also handles the Hangiran
special character sequence.

COMMENT SortkeyContractionHandler

COMMENT
COMMENT On Entry: SourceString - Source Unicode String
COMMENT SourceIndex - Current index within source string

44 /81

[MS-UCODEREF-DIff] - v20170601
Windows Protocols Unicode Reference
Copyright © 2017 Microsoft Corporation
Release: June 1, 2017

COMMENT HasHungarianSpecialCharacterSequence: Is the character that the current

COMMENT index points to

COMMENT the starting of the Hungarian special character sequence
COMMENT ContractionType: The contraction type, from 2-character to 8-character
COMMENT contraction, to be checked against

COMMENT UnicodeWeights - String of UnicodeWeightType to

COMMENT append additional weight(s) to

COMMENT DiacriticWeights - String of Diacritic Weight to

COMMENT append extra weight(s) to if

COMMENT needed

COMMENT CaseWeights - String of Case Weight to

COMMENT append special weight (s) to

COMMENT if needed

COMMENT

COMMENT On Exit: Result: a string to indicate the type of contraction from the specified
COMMENT string

COMMENT UnicodeWeights - The UnicodeWeight of the

COMMENT processed character(s) is

COMMENT appended to this string.

COMMENT DiacriticWeights - The Diacritic weight, if any, of
COMMENT the processed character(s) is

COMMENT appended to this string.

COMMENT CaseWeights - The Case Weight, if any,

COMMENT of the processed character (s)

COMMENT is appended to this string.

COMMENT

PROCEDUE SortkeyContractionHandler (IN SortLocale: LCID,
IN SourceString: Unicode String,
IN Sourcelndex: 32-bit integer,
IN HasHungarianSpecialCharacterSequence: boolean
IN ContractionType: integer number from 2 to 8
INOUT UnicodeWeights: string of UnicodeWeightType
INOUT DiacriticWeights: string of BYTE
INOUT CaseWeights: string of BYTE)

Result: CharacterWeightType

IF HasHungarianSpecialCharacterSequence is true THEN
COMMENT The beginning of Hungarian special character sequence,
COMMENT advance one character before starting to check for contraciton sequence
SET Sourcelndex to SourcelIndex + 1

ENDIF

IF Sourcelndex + ContractionType is greater than or equal to SourceString.Length THEN
SET Result to null
RETURN false

ENDIF

COMMENT Search for the character in the character contraction table
COMMENT Search for contraction section based on ContractionType

CASE ContractionType
"8":
OPEN SECTION ContractionTable where name is
SORTTABLES\COMPRESSION\LCID[SortLocale] \EIGHT from unisort.txt
"7":
OPEN SECTION ContractionTable where name is
SORTTABLES\COMPRESSION\LCID[SortLocale] \SEVEN from unisort.txt
ll6ll:
OPEN SECTION ContractionTable where name 1is
SORTTABLES\COMPRESSION\LCID[SortLocale]\SIX from unisort.txt
ngn .
OPEN SECTION ContractionTable where name is
SORTTABLES\COMPRESSION\LCID[SortLocale] \FIVE from unisort.txt
"4":
OPEN SECTION ContractionTable where name is
SORTTABLES\COMPRESSION\LCID[SortLocale] \FOUR from unisort.txt
"3":
OPEN SECTION ContractionTable where name is
SORTTABLES\COMPRESSION\LCID[SortLocale] \THREE from unisort.txt

45/ 81

[MS-UCODEREF-DIff] - v20170601
Windows Protocols Unicode Reference
Copyright © 2017 Microsoft Corporation
Release: June 1, 2017

"2":
OPEN SECTION ContractionTable where name is
SORTTABLES\COMPRESSION\LCID[SortLocale] \TWO from unisort.txt

ENDCASE

COMMENT Contraction table might not be found if locale doesn't have them
IF ContractionTable is null THEN

SET Result to null

RETURN false
ENDIF

CASE ContractionType
"8":
SELECT RECORD ContractionRow FROM ContractionTable
WHERE field 1 matches SourceString[SourceIndex] and

WHERE field 2 matches SourceString[SourceIndex + 1] and
WHERE field 3 matches SourceString[SourceIndex + 2] and
WHERE field 4 matches SourceString[SourceIndex + 3] and
WHERE field 5 matches SourceString[SourceIndex + 4] and
WHERE field 6 matches SourceString[SourceIndex + 5] and
WHERE field 7 matches SourceString[SourceIndex + 6] and
WHERE field 8 matches SourceString[SourceIndex + 7]

COMMENT If this sequence isn't a contraction then one will not be found
IF ContractionRow is null THEN
SET Result to null
RETURN false
ENDIF

COMMENT Found a contraction, get its weights
SET Result.ScriptMember to ContractionRow.Field9
SET Result.PrimaryWeight to ContractionRow.FieldlO

SET Result.DiacriticWeight to ContractionRow.Fieldll
SET Result.CaseWeight to ContractionRow.Fieldl2
VAL

SELECT RECORD ContractionRow FROM ContractionTable
WHERE field 1 matches SourceString[SourceIndex] and
WHERE field matches SourceString[Sourcelndex 1
WHERE field matches SourceString[Sourcelndex
WHERE field matches SourceString[SourceIndex

2 and
3
4
WHERE field 5 matches SourceString[SourceIndex
6
7

]

] and

] and

] and
WHERE field matches SourceString[Sourcelndex] and
]

WHERE field matches SourceString[Sourcelndex

+ o+ o+ o+ o+ o+
o U b W N

COMMENT If this sequence isn't a contraction then one will not be found
IF ContractionRow is null THEN

SET Result to null

RETURN false
ENDIF

COMMENT Found a contraction, get its weights
SET Result.ScriptMember to ContractionRow.Field8
SET Result.PrimaryWeight to ContractionRow.Field9

SET Result.DiacriticWeight to ContractionRow.FieldlO
SET Result.CaseWeight to ContractionRow.Fieldll

"6":
SELECT RECORD ContractionRow FROM ContractionTable
WHERE field 1 matches SourceString[SourceIndex] and

WHERE field 2 matches SourceString[SourceIndex + 1] and
WHERE field 3 matches SourceString[SourceIndex + 2] and
WHERE field 4 matches SourceString[SourceIndex + 3] and
WHERE field 5 matches SourceString[SourceIndex + 4] and
WHERE field 6 matches SourceString[SourceIndex + 5]

COMMENT If this sequence isn't a contraction then one will not be found

46 / 81

[MS-UCODEREF-DIff] - v20170601
Windows Protocols Unicode Reference
Copyright © 2017 Microsoft Corporation
Release: June 1, 2017

IF ContractionRow is null THEN
SET Result to null
RETURN false

ENDIF

COMMENT Found a contraction, get its weights
SET Result.ScriptMember to ContractionRow.Field7
SET Result.PrimaryWeight to ContractionRow.Field8

SET Result.DiacriticWeight to ContractionRow.Field9
SET Result.CaseWeight to ContractionRow.FieldlO

ngm.

SELECT RECORD ContractionRow FROM ContractionTable

WHERE
WHERE
WHERE
WHERE
WHERE

field 1
field 2
field 3
field 4
field 5

matches
matches
matches
matches
matches

SourceString[Sourcelndex]
SourceString[SourcelIndex
SourceString[SourcelIndex
SourceString[SourcelIndex
SourceString[SourcelIndex

COMMENT If this sequence isn't a contraction then
IF ContractionRow is null THEN
SET Result to null
RETURN false

ENDIF

COMMENT Found a contraction, get its weights
SET Result.ScriptMember to ContractionRow.Field6
SET Result.PrimaryWeight to ContractionRow.Field?7

and
+ 1]
+ 2]
+ 3]
+ 4]

one will not be found

SET Result.DiacriticWeight to ContractionRow.Field8
SET Result.CaseWeight to ContractionRow.Field9

wgn.

SELECT RECORD ContractionRow FROM ContractionTable

WHERE
WHERE
WHERE
WHERE

COMMENT If this sequence isn't a contraction then one will not be found

field 1
field 2
field 3
field 4

matches
matches
matches
matches

SourceString[SourcelIndex]
SourceString[Sourcelndex
SourceString[SourcelIndex
SourceString[SourceIndex

IF ContractionRow is null THEN
SET Result to null
RETURN false

ENDIF

COMMENT Found a contraction, get its weights
SET Result.ScriptMember to ContractionRow.Fieldb
SET Result.PrimaryWeight to ContractionRow.Field6

and
+ 1]
+ 2]
+ 3]

SET Result.DiacriticWeight to ContractionRow.Field7
SET Result.CaseWeight to ContractionRow.Field8

n3m.

SELECT RECORD ContractionRow FROM ContractionTable
WHERE field 1 matches SourceString[SourceIndex]
WHERE field 2 matches SourceString[SourceIndex + 1]
WHERE field 3 matches SourceString[SourceIndex + 2]

COMMENT If this sequence isn't a contraction then one will not be found

IF ContractionRow is null THEN
SET Result to null
RETURN false

ENDIF

COMMENT Found a contraction, get its weights
SET Result.ScriptMember to ContractionRow.Field4
SET Result.PrimaryWeight to ContractionRow.Fieldb

SET Result.DiacriticWeight to ContractionRow.Field6

and

and
and
and

and
and

and

[MS-UCODEREF-DIff] - v20170601
Windows Protocols Unicode Reference
Copyright © 2017 Microsoft Corporation

Release: June 1, 2017

47/ 81

SET Result.CaseWeight to ContractionRow.Field7

nomn.

SELECT RECORD ContractionRow FROM ContractionTable
WHERE field 1 matches SourceString[SourceIndex] and
WHERE field 2 matches SourceString[SourceIndex + 1]

COMMENT If this sequence isn't a contraction then one will not be found
IF ContractionRow is null THEN

SET Result to null

RETURN false

ENDIF

COMMENT Found a contraction, get its weights
SET Result.ScriptMe

SET Result.

SET Result.Diacriti
SET Result.CaseWeig

ENDCASE

SET UnicodeWeight to
CorrectUnicodeWeight (Result, IsKoreanLocale)

APPEND UnicodeWeight to UnicodeWeights

APPEND Result.DiacriticWeight to DiacriticWeights as a BYTE

APPEND Result.CaseWeight to CaseWeights as a BYTE

mber to ContractionRow.Field3

PrimaryWeight to ContractionRow.Field4

cWeight to ContractionRow.Field5
ht to ContractionRow.Fieldé6

COMMENT Advance the source index
SET SourcelIndex to SourceIndex + ContractionType

RETURN true

3.1.5.2.13 Check3ByteWeightLocale

This algorithm checks if the specified locale is a CJK (Chinese/Japanese/Korean) sorting locale that
uses third byte in Unicode weight.

COMMENT Check3ByteWeightLocale

COMMENT

COMMENT On Entry: SortLoc

COMMENT

COMMENT On Exit:

COMMENT
COMMENT

Result:

ale - Locale to use for linguistic sorting data

Set to true if the specified locale is a CJK

(Chinese/Japanese/Korean) locale that uses third byte in Unicode weight

SET Result to false

CASE SortLocale

"0x0404":
"0x0804":
"0x0c04":
"0x1004":
"0x1404":

"0x20804":
"0x21004":
"0x21404":
"0x30404":
"0x40411":

//
//
//
//
//
//
//
//
//
//

Taiwan (S

China (Pr
Hong Kong
Singapore
Macau (pr
China (St
Singapore
Macau (St

Taiwan (B
Japanese

SET Result to true

ENDCASE

RETURN Result

troke Count)

onunciation)
(Stroke Count)
(pronunciation)

onunciation)

roke Count)
(Stroke Count)

roke Count)

opomofo)

(Radical / Stroke)

[MS-UCODEREF-DIff] - v20170601
Windows Protocols Unicode Reference

Copyright © 2017 Microsoft Corporation
Release: June 1, 2017

48/ 81

3.1.5.2.14 SpecialCaseHandler

This algorithm specifies the special processing that is required based on a different script member

type.

COMMENT SpecialCaseHandler

COMMENT

COMMENT On Entry: SourceString - Source Unicode String

COMMENT SourceIndex - Current Index within source
COMMENT string

COMMENT UnicodeWeights - String of UnicodeWeightType to
COMMENT append additional weight(s) to
COMMENT ExtraWeights - String of ExtraWeightType to
COMMENT append extra weight(s) to if
COMMENT needed

COMMENT SpecialWeights - String of SpecialWeightType to
COMMENT append special weight (s) to
COMMENT if needed

COMMENT SortLocale - Locale to use for linguistic
COMMENT sorting data

COMMENT IsKoreanLocale - True if this locale needs
COMMENT Korean special casing of the
COMMENT ScriptMember value

COMMENT On Exit: SourceIndex - Index of last character
COMMENT processed, caller will need to
COMMENT loop increment to continue
COMMENT Korean Jamo cases can increment
COMMENT this beyond its input value
COMMENT UnicodeWeights - The UnicodeWeight of the
COMMENT processed character(s) is
COMMENT appended to this string.
COMMENT ExtraWeights - The ExtraWeight, if any, of
COMMENT the processed character(s) is
COMMENT appended to this string.
COMMENT SpecialWeights - The Special Weight, if any,
COMMENT of the processed character (s)
COMMENT is appended to this string.
COMMENT

PROCEDURE SpecialCaseHandler (IN SourceString : Unicode String
INOUT SourceIndex : 32 bit integer

INOUT UnicodeWeights : UnicodeWeightType String,

INOUT ExtraWeights : ExtraWeightType String,

INOUT SpecialWeights : SpecialWeightType String,

IN SortLocale : LCID,

IN IsKoreanLocale : boolean)

// Get the weight for the current character
SET CharacterWeights to CALL GetCharacterWeights WITH
(SortLocale, SourceString[SourceIndex])
CASE CharacterWeight.ScriptMember OF
UNSORTABLE
// Character is unsortable, so skip it
RETURN
NONSPACE_MARK
// Character is a nonspace mark, so only store the
// diacritic weight.
If (Length(DiacriticWeights) is greater than 0) THEN
SET last DiacriticWeight in DiacriticWeights to
DiacriticWeight + CharacterWeights.DiacrticWeight
ELSE
APPEND CharacterWeights.DiacriticWeight to DiacriticWeights as a BYTE
ENDIF
RETURN
EXPANSION

[MS-UCODEREF-DIff] - v20170601
Windows Protocols Unicode Reference
Copyright © 2017 Microsoft Corporation
Release: June 1, 2017

49/ 81

// Expansion character, each character has 2 weights, store
// each weight separately
SET Weights to CALL GetExpansionWeights WITH
(SourceString[SourceIndex], SortLocale)
// Store the appropriate weights, 2 or 3
FOR each Weight in Weights
// Store the weight of the first character of the
// expansion
SET UnicodeWeight to CALL CorrectUnicodeWeight WITH
(Weights, IsKoreanLocale)
APPEND UnicodeWeight to UnicodeWeights
APPEND Weights.DiacriticWeight to DiacriticWeights as a BYTE
APPEND Weights.CaseWeight to CaseWeights as a BYTE
ENDFOR
RETURN
PUNCTUATION
SET Position to Length (UnicodeWeights) as 16 bit integer
APPEND Position into SpecialWeights as 16 bit integer
SET SpecialWeight to CALL MakeUnicodeWeight WITH
(CharacterWeight.ScriptMember,
CharacterWeight.PrimaryWeight, False)
APPEND SpecialWeight to SpecialWeights as 16 bit integer
RETURN
SYMBOL 1 :
SYMBOL 2 :
SYMBOL_3
SYMBOL_4
SYMBOL 5 :
SYMBOL 6 :
// Character is a symbol, store Unicode Weights
SET UnicodeWeight to CALL CorrectUnicodeWeight WITH
(Weights[0], IsKoreanLocale)
APPEND UnicodeWeight to UnicodeWeights
APPEND CharacterWeights.DiacriticWeight to DiacriticWeights as a BYTE
APPEND CharacterWeights.CaseWeight to CaseWeights as a BYTE
RETURN
EASTASTIA SPECIAL
// Get the primary and case weight of the current code point
SET PrimaryWeight to UnicodeWeight.PrimaryWeight
SET ExtraWeight to UnicodeWeight.CaseWeight
// Mask off the bits that are not required
SET ExtraWeight to (ExtraWeight & CaseMask) |
CASE_EXTRA WEIGHT MASK
// Special case Repeat and Cho-On
// PrimaryWeight = 0 => Repeat
// PrimaryWeight = 1 => Cho-On
// PrimaryWeight = 2+ => Kana
IF PrimaryWeight is less than or equal to MAX SPECIAL PW THEN
// 1If the script member of the previous character is
// invalid, then give the special character
// invalid weight (highest possible weight) so that it
// will sort AFTER everything else.
SET PreviousIndex to SourcelIndex - 1
SET UnicodeWeight.ScriptMember to MAP_INVALID WEIGHT
SET UnicodeWeight.PrimaryWeight to MAP_ INVALID WEIGHT
WHILE PreviousIndex is greater than or equal to 0O
SET PreviousWeight to CALL GetCharacterWeights WITH
(SortLocale, SourceString[PreviousIndex])
IF PreviousWeight.ScriptMember is less than
EASTASIA SPECIAL THEN
IF PreviousWeight.ScriptMember is not equal to
EXPANSION THEN
// UNSORTABLE or NONSPACE MARK
// Ignore these to get the
// previous ScriptMember/PrimaryWeight
DECREMENT PreviousIndex
CONTINUE WHILE PreviousIndex
ENDIF
ELSE IF PreviousWeight.ScriptMember is equal to
EASTASIA SPECIAL THEN

50/ 81

[MS-UCODEREF-DIff] - v20170601
Windows Protocols Unicode Reference
Copyright © 2017 Microsoft Corporation
Release: June 1, 2017

IF PreviousWeight.PrimaryWeight is less than or equal to
MAX SPECIAL PW THEN
// Handle case where two special chars follow
// each other. Keep going back in the string
DECREMENT PreviousIndex
CONTINUE WHILE PreviousIndex
ENDIF
SET UnicodeWeight to
CALL MakeUnicodeWeight WITH (KANA,
PreviousWeight.PrimaryWeight, IsKoreanLocale)
// Only build weights W6 & W7 if the previous
// character is KANA.
// ignores W4 & W5
// Always:
// W6 = previous CW & ISOLATE_KANA
SET PreviousExtraWeight to PreviousWeight.CaseWeight
// Mask off the bits that aren't required
SET PreviousExtraWeight to CASE EXTRA WEIGHT MASK |
(PreviousExtraWeight & CaseMask)
// Ignore kana and width
// so these are merely CASE EXTRA WEIGHT MASK
SET ExtraWeight.W6 to CASE EXTRA WEIGHT MASK
SET ExtraWeight.W7 to CASE_EXTRA WEIGHT MASK
// Repeat is already done, which is:
// UW = previous UW (set above)
// W5 ignored
// W1 = previous CW & ISOLATE WIDTH (done above)
IF PrimaryWeight is not equal to PW_REPEAT THEN
// Cho-On:
// UW = previous UW & CHO ON UW MASK
// W5 = ignored
// W7 = current CW & ISOLATE WIDTH (done above)
SET UnicodeWeight.PrimaryWeight to
UnicodeWeight.PrimaryWeight & CHO_ON_PW_MASK
ENDIF
// BAppend the calculated ExtraWeight
// APPEND ExtraWeight to ExtraWeights
ELSE
// The previous weight is not EASTASIA SPECIAL, so just
// store the previous weight
SET UnicodeWeight to CorrectUnicodeWeight
(PreviousWeight, IsKoreanLocale)
// RAppend the weight that was found
APPEND UnicodeWeight to UnicodeWeights

ENDIF

ENDWHILE

ELSE
// Kana
// ScriptMember = KANA
// PrimaryWeight = current PrimaryWeight
// W4 = current CaseWeight & ISOLATE SMALL
// W5 = WT_FIVE KANA
// W6 = current CaseWeight & ISOLATE KANA
// W7 = current CaseWeight & ISOLATE WIDTH

SET UnicodeWeight to CALL MakeUnicodeWeight WITH (KANA,
CharacterWeight.PrimaryWeight, IsKoreanLocale)

APPEND UnicodeWeight to UnicodeWeights
SET TempExtraWeight.W4 to ExtraWeight & ISOLATE SMALL
SET TempExtraWeight.W5 to WT FIVE KANA
SET TempExtraWeight.W6 to ExtraWeight & ISOLATE KANA
SET TempExtraWeight.W7 to ExtraWeight & ISOLATE WIDTH
APPEND TempExtraWeight to ExtraWeights

ENDIF

APPEND CharacterWeight.DiacriticWeight to DiacriticWeights as a BYTE

APPEND MIN CW to CaseWeights as a BYTE

RETURN

JAMO SPECIAL
// See if it's a leading Jamo
IF (CALL IsJamoLeading(SourceString[SourcelIndex])) is true

51 /81

[MS-UCODEREF-DIff] - v20170601
Windows Protocols Unicode Reference
Copyright © 2017 Microsoft Corporation
Release: June 1, 2017

THEN
// If the characters beginning at SourceIndex are a valid
// old Hangul composition, create the SortKey
// according to the old Hangul rule
SET OldHangulCount to
CALL MapOldHangulSortKey WITH (SourceString,
SourceIndex, SortLocale, UnicodeWeights, IsKoreanLocale)
IF OldHangulCount is greater than 0 THEN
// Decrement OldHangulCount because the caller's loop
// will increment the SourcelIndex as well
DECREMENT OldHangulCount
SET SourcelIndex to SourcelIndex + OldHangulCount
RETURN
ENDIF
ENDIF
// Otherwise, fall back to the normal behavior
// No special case on the character, so store the Jamo's
// weights.
// Store the real script member in the diacritic weight
// in the tables since both the diacritic weight and the
// case weight are not used in Korean
// For example, from unisort.txt:
// 0x1101 4 84 83 2 ; Choseong Ssangkiyeok
// Field 2 has a value of 4 to trigger the code case for JAMO SPECIAL.
// Field 3 (84) is the real primary weight for this Jamo.
// Field 4 (83) is the real script member for this Jamo.
SET UnicodeWeight to CALL MakeUnicodeWeight WITH
(CharacterWeight.DiacriticWeight,
CharacterWeight.PrimaryWeight, IsKoreanLocale)
APPEND UnicodeWeight to UnicodeWeights
APPEND MIN DW to DiacriticWeights as a BYTE
APPEND MIN CW to DiacriticWeights as a BYTE
RETURN
EXTENSION A
// Extension A gives us two weights
// UnicodeWeight = SM _EXT A, AW EXT A, AW, DW
// First Weight
SET UnicodeWeight to CALL MakeUnicodeWeight WITH
(SCRIPT MEMBER EXT A, PRIMARY WEIGHT EXT A,
IsKoreanLocale)
APPEND UnicodeWeight to UnicodeWeights
// Since the script member is our flag for this EXTENSION A special
// case, the real weights are in fields 2 & 3.
// Example:
// From unisort.txt:
// 0x3400 5 16 2 2 ; 1t CJK Unified Ideographs Extension A
// Field 2 is the script member.
// Field 3 is the primary weight.
// Second Weight
SET UnicodeWeight to CALL MakeUnicodeWeight WITH
(CharacterWeight.PrimaryWeight,
CharacterWeight.DiacriticWeight, false)
APPEND UnicodeWeight to UnicodeWeights
APPEND MIN DW to DiacriticWeights as a BYTE
APPEND MIN CW to DiacriticWeights as a BYTE
RETURN
ENDCASE

3.1.5.2.15 GetPositionSpecialWeight

This algorithm specifies the retrieval of special weight based on the source index.

COMMENT GetPositionSpecialWeight

COMMENT

COMMENT On Entry: Position - Position to calculate weight for
COMMENT

COMMENT On Exit: Weight - Resulting weight

52 /81

[MS-UCODEREF-DIff] - v20170601
Windows Protocols Unicode Reference
Copyright © 2017 Microsoft Corporation
Release: June 1, 2017

COMMENT

PROCEDURE GetPositionSpecialWeight (IN Position : 32 bit integer,
OUT Weight : 16 bit integer)

// Add some bits (0x8003) to adjust the weight and because

// some bits are expected. Since setting 0x3 is required, rotate the source
// index 2 bits so as to not lose the precision.

// Note that if SourcelIndex is larger than Ox1FFF, then some bits

// will be lost on the conversion to 16 bits. Presumably if a string

// is over 8191 characters long, they will differ well before this

// point, so the lost information is irrelevant.

SET Weight to (SourcelIndex << 2) | 0x8003
RETURN Weight

3.1.5.2.16 MapOIldHangulSortKey

This algorithm specifies the generation of Unicode weight based on the strings at the specified index
that have a special Old Hangul sequence.<4>

3.1.5.2.17 GetJamoComposition

This algorithm specifies the strings at the specified index that form a valid Old Hangul character that is
composed of a Jamo character sequence.<5>

COMMENT GetJamoComposition

COMMENT

COMMENT On Entry: SourceString - Unicode String to test

COMMENT CurrentIndex - Index of leading Jamo to start from
COMMENT JamoClass - Class of Jamo to look for
COMMENT JamoSortInfo - Information about the current
COMMENT sequence

COMMENT On Exit: JamoSortInfo - Updated with information about
COMMENT the new sequence

COMMENT SourceIndex - Updated to next character if
COMMENT Jamo is found

COMMENT NewJamoClass - New class to look for next
COMMENT

COMMENT NOTE: This function assumes the character at SourceString
COMMENT [SourcelIndex] is a leading Jamo.

COMMENT Ie: IsJamo () returned true

COMMENT

PROCEDURE GetJamoComposition (IN SourceString : Unicode String,
INOUT CurrentIndex : 32 bit integer,
IN JamoClass : enumeration,
INOUT JamoSortInfo : JamoSortInfoType,
OUT NewJamoClass : enumeration)

SET CurrentCharacter to SourceString[CurrentIndex]

// Get the Jamo information for the current character
SET JamoStateData to CALL GetJamoStateData WITH (CurrentCharacter)
SET JamoSortInfo to CALL UpdateJamoSortInfo

WITH (JamoClass, JamoStateData, JamoSortInfo)

// Move on to the next character
INCREMENT CurrentIndex

WHILE CurrentIndex is less than Length (SourceString)
SET CurrentCharacter to SourceString[CurrentIndex]

IF CALL IsJamo WITH (CurrentCharacter) is not true THEN
// The current character is not a Jamo,

53 /81

[MS-UCODEREF-DIff] - v20170601
Windows Protocols Unicode Reference
Copyright © 2017 Microsoft Corporation
Release: June 1, 2017

// Done checking for a Jamo composition
SET NewJamoClass to "Invalid Jamo Sequence"
RETURN

ENDIF

IF CurrentCharacter is equal to 0x1160 THEN
SET JamoSortInfo.FillerUsed to true
ENDIF

// Get the Jamo class of it

IF CALL IsJamolLeading WITH (CurrentCharacter) is true THEN
SET NewJamoClass to "Leading Jamo Class"

ELSE IF CALL IsJamoTrailing WITH (CurrentCharacter) is true THEN
SET NewJamoClass to "Trailing Jamo Class"

ELSE
SET NewJamoClass to "Vowel Jamo Class"

ENDIF

IF JamoClass is not equal to NewJamoClass THEN
RETURN NewJamoClass
ENDIF

// Push the current Jamo (SourceString[CurrentIndex])
// into the state machine to check if it is a valid
// old Hangul composition. During the check also

// update the sortkey result in:

JamoSortInfo

// Find the new record
SET JamoStateData to CALL FindNewJamoState
WITH (CurrentCharacter, JamoStateData)

// A valid old Hangul composition was not found for the current
// character so return the current Jamo class
// (JamoClass and NewJamoClass are identical)
IF JamoStateData is null THEN
RETURN NewJamoClass
ENDIF

// A match has been found, so update our info.
SET JamoSortInfo to CALL UpdateJamoSortInfo
WITH (JamoClass, JamoStateData, JamoSortInfo)
// Still in a valid old Hangul composition.
//Go check the next character.
INCREMENT CurrentIndex
ENDWHILE CurrentIndex

SET NewJamoClass to "Invalid Jamo Sequence"
RETURN NewJamoClass

3.1.5.2.18 GetJamoStateData

This algorithm specifies the retrieval of state machine information to check if the specified Jamo
sequence forms a valid Old Hangul character.<6>

3.1.5.2.19 FindNewJamoState

This algorithm specifies retrieval of a new state from the state machine for Jamo processing.<7>

COMMENT FindNewJamoState

COMMENT

COMMENT On Entry: JamoCharacter - Unicode Character to get Jamo
COMMENT information for

COMMENT JamoStateData - Current Jamo state information

54 /81

[MS-UCODEREF-DIff] - v20170601
Windows Protocols Unicode Reference
Copyright © 2017 Microsoft Corporation
Release: June 1, 2017

COMMENT
COMMENT On Ex
COMMENT
COMMENT
COMMENT
COMMENT

it: JamoStateData

data file, null if

appropriate state record is

not found.

PROCEDURE FindNewJamoState (IN JamoCharacter

// The current JamoStateData.DataRecord points to the base record.
// There are JamoStateData.TransitionCount following records that can
// match the input JamoCharacter,

INOUT JamoStateData

SET DataRecord to JamoStateData.DataRecord

WHILE JamoStateData.TransitionCount is greater than 0
// advance to the next record in the data and test if
// it is the correct record for JamoCharacter
ADVANCE DataRecord to next record in data table

IF DataRecord.Fieldl is equal to JamoCharacter THEN

// Found a record, get its info and return it
information from that record.

// Now gather the

SET
SET
SET
SET
SET
SET

JamoStateData.

JamoStateData

JamoStateData.
JamoStateData.
JamoStateData.
JamoStateData.

OldHangulFlag to
.LeadingIndex to
VowelIndex to
TrailingIndex to
ExtraWeight to

TransitionCount to

// Remember the record
SET JamoStateData.DataRecord to JamoRecord

ENDWHILE

// record not

found, return

SET JamoStateData to null

RETURN JamoSta

teData

RETURN JamoStateData

null

3.1.5.2.20 UpdatelJamoSortInfo

JamoRecord.
JamoRecord.
JamoRecord.
JamoRecord.
JamoRecord.
JamoRecord.

- New Jamo state record from the

an

Unicode Character,
JamoStateDataType)

the search is for the first one

Field2
Field3
Field4
Field5
Fieldé6
Field7

This algorithm specifies the update of Jamo sorting information based on the current state of the state
machine for Jamo processing.<8>

3.1.5.2.21 IsJamo

This algorithm specifies the check for a valid Jamo character.<9>

COMMENT IsJamo
COMMENT
COMMENT On En
COMMENT
COMMENT On Ex
COMMENT
COMMENT

PROCEDURE IsJamoLeading (IN SourceCharacter

IF (SourceCharacter is greater than or equal to NLS CHAR FIRST JAMO)

and

try: SourceCharacter - Unicode Character to test

it: Result

ouT

- true if SourceCharacter is in

the Jamo

Result: boolean)

range

Unicode Character,

(SourceCharacter is less than or equal to NLS CHAR LAST JAMO)
SET Result to true

ELSE

SET Result to false

ENDIF

[MS-UCODEREF-Diff]

Windows Protocols Unicode Reference

-v20170601

Copyright © 2017 Microsoft Corporation
Release: June 1, 2017

55 /81

RETURN Result

3.1.5.2.22 IsCombiningJamo

This algorithm specifies the check for a valid Jamo character.<10>

COMMENT IsCombiningJamo

COMMENT

COMMENT On Entry: SourceCharacter - Unicode Character to test
COMMENT

COMMENT On Exit: Result - true if SourceCharacter is in
COMMENT the Jamo range

COMMENT

PROCEDURE IsJamoLeading (IN SourceCharacter : Unicode Character,
OUT Result: boolean)

IF ((SourceCharacter is greater than or equal to NLS CHAR FIRST JAMO)

and
(SourceCharacter is less than or equal to NLS CHAR LAST JAMO))
Or
((SourceCharacter is greater than or equal to NLS CHAR FIRST EXT A LEADING JAMO)
and
(SourceCharacter is less than or equal to NLS CHAR LAST EXT A LEADING JAMO))
Or
((SourceCharacter is greater than or equal to NLS CHAR FIRST EXT B VOWEL_JAMO)
and
(SourceCharacter is less than or equal to NLS CHAR LAST EXT B VOWEL JAMO))
Or
((SourceCharacter is greater than or equal to NLS CHAR FIRST EXT B TRAILING_ JAMO)
and
(SourceCharacter is less than or equal to NLS CHAR LAST EXT B TRAILING_ JAMO)) THEN
SET Result to true
ELSE
SET Result to false
ENDIF

RETURN Result

3.1.5.2.23 IsJamolLeading

This algorithm checks if the specified Jamo character is a leading Jamo.<11>

3.1.5.2.24 IsJamoVowel

This algorithm checks whether the specified Jamo character is a vowel Jamo.<12>

COMMENT IsJamoVowel

COMMENT

COMMENT On Entry: SourceCharacter - Unicode Character to test
COMMENT

COMMENT On Exit: Result - true if this is a vowel Jamo
COMMENT

PROCEDURE IsJamoTrailing (IN SourceCharacter : Unicode Character,
OUT Result: boolean)

IF ((SourceCharacter is greater than or equal to NLS CHAR FIRST VOWEL JAMO)
and
(SourceCharacter is less than or equal to NLS CHAR LAST VOWEL JAMO))
Or

56 /81

[MS-UCODEREF-DIff] - v20170601
Windows Protocols Unicode Reference
Copyright © 2017 Microsoft Corporation
Release: June 1, 2017

((SourceCharacter is greater than or equal to NLS CHAR FIRST EXT B VOWEL_JAMO)
and
(SourceCharacter is less than or equal to NLS CHAR LAST LEADING EXT B VOWEL_ JAMO))
SET Result to true
ELSE
SET Result to false
ENDIF

RETURN Result

3.1.5.2.25 IsJamoTrailing

This algorithm checks if the specified Jamo character is a trailing Jamo.<13>

COMMENT IsJamoTrailing

COMMENT

COMMENT On Entry: SourceCharacter - Unicode Character to test
COMMENT

COMMENT On Exit: Result - true if this is a trailing Jamo
COMMENT

COMMENT NOTE: Only call this if the character is known to be a Jamo
COMMENT syllable. This function only helps distinguish between
COMMENT the different types of Jamo, so only call it if

COMMENT IsJamo () has returned true.

COMMENT

PROCEDURE IsJamoTrailing (IN SourceCharacter : Unicode Character,
OUT Result: boolean)

IF SourceCharacter is greater than
or equal to NLS CHAR FIRST VOWEL JAMO THEN
SET Result to true
ELSE
SET Result to false
ENDIF

RETURN Result

3.1.5.2.26 InitKoreanScriptMap

This algorithm specifies the initialization of a data structure that is required for the special processing
of Korean script members.

COMMENT InitKoreanScriptMap

COMMENT

COMMENT On Entry: global KoreanScriptMap - presumed to be null
COMMENT

COMMENT On Exit: global KoreanScriptMap - initialized to map
COMMENT scripts to Korean
COMMENT

COMMENT This procedure initializes the Korean, causing ideographic
COMMENT scripts to sort prior to other scripts for the Korean.
COMMENT

PROCEDURE InitKoreanScriptMap
SET KoreanScriptMap to new array of 256 null bytes
// Initialize the "scripts" prior to first script (Latin, script 14)
FOR counter is 0 to FIRST_SCRIPT - 1
SET KoreanScriptMap[counter] to counter

ENDFOR counter

// For Korean the Ideographs sort to the first script,
// so start with that index

57/81

[MS-UCODEREF-DIff] - v20170601
Windows Protocols Unicode Reference
Copyright © 2017 Microsoft Corporation
Release: June 1, 2017

SET NewScript to FIRST SCRIPT
// Test 1f the IDEOGRAPH script is part of a multiple weights script

// For convenience hard code the information from the

// unisort.txt section SORTTABLES\MULTIPLEWEIGHTS

// IDEOGRAPHS are 128 through 241,

// map them to FIRST SCRIPT through 127

FOR counter is IDEOGRAPH to 241
SET KoreanScriptMap|[counter] to NewScript
INCREMENT NewScript

ENDFOR

// Now set the remaining unset scripts the next NewScript value
FOR counter is 0 to MAX SCRIPTS - 1
// If the value has not been set yet, set it to the next value
IF KoreanScriptMap[counter] is null THEN
SET KoreanScriptMap|[counter] to NewScript
INCREMENT NewScript
ENDIF
ENDFOR

3.1.5.3 Mapping UTF-16 Strings to Upper Case

To map a UTF-16 string to upper case, each UTF-16 code point is looked for in an upper casing table
[MSDN-UCMT/Win8]. If an entry is found, the input code point is changed to the output code point.

3.1.5.3.1 ToUpperCase

This algorithm converts a UTF-16 string to its upper case form.

COMMENT ToUpperCase
COMMENT On Entry: inputString - A string encoded in UTF-16

COMMENT
COMMENT On Exit: Result - A string encoded in UTF-16 with
COMMENT the output in Upper Case form.

PROCEDURE ToUpperCase
SET Result to empty string

SET index to O

WHILE index is less than Length (inputString)
SET upperCase to UpperCaseMapping (inputString[index])
APPEND upperCase to Result

INCREMENT index

ENDWHILE

RETURN

3.1.5.3.2 UpperCaseMapping

This algorithm converts a UTF-16 code point to its upper case form using the UpperCaseTable in
[MSDN-UCMT/Win8].

COMMENT UpperCaseMapping

COMMENT On Entry: SourceCharacter — A UTF-16 code point
COMMENT

COMMENT On Exit: Result - Upper case UTF-16 code point

PROCEDURE UpperCaseMapping

58 /81

[MS-UCODEREF-DIff] - v20170601
Windows Protocols Unicode Reference
Copyright © 2017 Microsoft Corporation
Release: June 1, 2017

SELECT RECORD caseMapping FROM UpperCaseTable WHERE field 1
matches SourceCharacter

IF EXISTS caseMapping
SET Result TO caseMapping field 2

ELSE
SET Result TO SourceCharacter

ENDIF

RETURN

3.1.5.4 Unicode International Domain Names

International Domain Name support is provided by IdnToNameprepUnicode, IdnToAscii, and
IdnToUnicode. The algorithms follow either the IDNA2003 or IDNA2008+UTS46 standards depending
on the specific implementation environment.<14>

3.1.5.4.1 IdnToAscii

COMMENT IdnToAscii
COMMENT On Entry: SourceString - Unicode String to get Punycode

COMMENT representation of.

COMMENT Flags - Bit flags to control behavior

COMMENT of IDN validation

COMMENT

COMMENT IDN ALLOW UNASSIGNED: During validation, allow unicode

COMMENT code points that are not assigned.
COMMENT IDN USE STD3 ASCII RULES: Enforce validation of the STD3

COMMENT characters.

COMMENT IDN EMAIL ADDRESS: Allow punycode encoding of the local part
COMMENT of an email address to tunnel EAI

COMMENT addresses through non-Unicode slots.
COMMENT

COMMENT On Exit: Punycode - String containing the Punycode ASCII range
COMMENT form of the input

PROCEDURE IdnToAscii (IN SourceString : Unicode String,
IN Flags: 32 bit integer,
OUT PunycodeString : Unicode String)

COMMENT Split input string into email local part and domain parts
COMMENT as appropriate
IF (IDN EMAILADDRESS bit is on in Flags) THEN
IF (SourceString CONTAINS "@") THEN
SET arrayParts = SourceString.Split("@")
SET emaillocalString to arrayParts[0]
SET domainString to arrayParts[l]
ELSE
SET emaillLocalString to SourceString
SET domainString to ""
ENDIF
ELSE
SET domainString to SourceString
SET emaillocalString to ""
ENDIF

SET OutputString TO ""

IF (emaillocalString IS NOT EMPTY) THEN
COMMENT email local part cannot contain null character
IF (emailLocalString CONTAINS character U+0000) THEN
RETURN ERROR
ENDIF

COMMENT email local part is normalized per Normalization Form C (NEC)
COMMENT Defined in Unicode Technical Report #15 (UTR#15)
COMMENT http://www.unicode.org/reports/trl5/trl5-18.html

59 /81

[MS-UCODEREF-DIff] - v20170601
Windows Protocols Unicode Reference
Copyright © 2017 Microsoft Corporation
Release: June 1, 2017

ApplyUTR15NormalizationFormC (emailLocalString)

IF (emailLocalString CONTAINS character U+0080 through character U+10FFFF) THEN
encodedString = PunycodeEncode (emaillocalString)

PREPEND "x1--" TO encodedString
ELSE

SET encodedString TO emaillocalString
ENDIF

COMMENT email local part cannot be > 255 characters even converted
IF (LENGTH of encodedString IS GREATER THAN 255) THEN

RETURN ERROR
ENDIF

SET OutputString TO encodedString

COMMENT Will need an @ if there is a domain part too
IF (domainString IS NOT EMPTY) THEN
APPEND "@" TO domainString
ENDIF
ELSE
COMMENT Cannot have empty local part in email mode
IF (IDN_EMAIL ADDRESS bit is on in Flags) THEN
RETURN ERROR
ENDIF
ENDIF

IF (domainString IS NOT EMPTY) THEN
(domainString is not empty)) THEN

COMMENT See if STD3 rules need tested

COMMENT Test for invalid characters in domain name

IF ((IDNiUSEisTD37ASCII7RULES bit is on in Flags) AND
((domainString CONTAINS characters U+0000 through ',') OR
(domainString CONTAINS character '/') OR

(domainString CONTAINS characters ':' through 'Q@') OR

(domainString CONTAINS characters '[' through ''') OR

(domainString CONTAINS characters '{' through U+007F))) THEN
RETURN ERROR

ENDIF

COMMENT Each Label of the domain name is processed independently
DEFINE domainString AS Array OF String
IF (domainString CONTAINS ".") THEN
SET domainLabels TO domainString.Split(".")
ELSE
SET domainLabels[0] TO domainString
ENDIF

SET encodedDomain TO ""
FOREACH label IN domainLabels DO

SET encodedString TO ""
IF (label CONTAINS characters U+0080 THROUGH U+10FFFF) THEN
IF Windows version is Windows Vista, Windows Server 2008, Windows 7, or
Windows Server 2008 R2 THEN
SET normalizedLabel TO NormalizeForIdna2003 (label, flags)
ELSE
SET normalizedLabel TO NormalizeForIdna2008 (label, flags)

ENDIF

SET encodedString TO PunycodeEncode (normalizedLabel)
PREPEND "xn--" TO encodedString

ELSE
COMMENT ASCII range only, does not need encoding
SET encodedString TO label

ENDIF

60/ 81

[MS-UCODEREF-DIff] - v20170601
Windows Protocols Unicode Reference
Copyright © 2017 Microsoft Corporation
Release: June 1, 2017

COMMENT domain labels cannot be empty or > 63 characters even converted
IF ((LENGTH OF encodedString IS EMPTY) OR

(LENGTH OF encodedString IS GREATER THAN 63)) THEN

RETURN ERROR
ENDIF

COMMENT See if STD3 rules need tested
IF (IDN USE STD3 ASCII RULES bit is on in Flags)
COMMENT domain labels cannot be empty
IF (label IS EMPTY) THEN
RETURN ERROR
ENDIF

COMMENT leading and trailing - are illegal in domain labels

IF (label BEGINS WITH "-" OR
label END WITH "-") THEN
RETURN ERROR
ENDIF
ENDIF

COMMENT Need to retain separators between domain labels

IF (label IS NOT LAST VALUE IN domainLabels) THEN
APPEND "." to encodedDomain

ENDIF

ENDFOREACH

COMMENT encoded domains cannot be > 255 characters.

IF (LENGTH OF encodedDomain IS GREATER THAN 255)) THEN
RETURN ERROR

ENDIF

APPEND encodedDomain to OutputString
ENDIF

RETURN OutputString

3.1.5.4.2 IdnToUnicode

COMMENT IdnToUnicode
COMMENT On Entry: SourceString - Idn String to get Unicode

COMMENT representation of.

COMMENT Flags - Bit flags to control behavior

COMMENT of IDN validation

COMMENT

COMMENT IDN_ALLOW_UNASSIGNED: During validation, allow unicode

COMMENT code points that are not assigned.
COMMENT IDN USE STD3 ASCII RULES: Enforce validation of the STD3

COMMENT characters.

COMMENT IDN_RAW PUNYCODE: Only decode the punycode, no additional
COMMENT validation.

COMMENT IDN EMAIL ADDRESS: Allow punycode encoding of the local part
COMMENT of an email address to tunnel EAI

COMMENT addresses through non-Unicode slots.
COMMENT

COMMENT On Exit: UnicodeString - String containing the Unicode form of the
COMMENT input string.

PROCEDURE IdnToUnicode (IN SourceString : Punycode String,
IN Flags: 32 bit integer,
OUT UnicodeString : Unicode String)
UnicodeString = PunycodeDecode (SourceString)

COMMENT IDN RAW PUNYCODE stops here
IF (IDN_RAW PUNYCODE bit is on in Flags) THEN
return UnicodeString
ENDIF
COMMENT Otherwise verify that the result round trips

61/81

[MS-UCODEREF-DIff] - v20170601
Windows Protocols Unicode Reference
Copyright © 2017 Microsoft Corporation
Release: June 1, 2017

RoundTripPunycodeString = IdnToAscii (UnicodeString, Flags)

IF (RoundTripPunycodeString IS NOT EQUAL TO UnicodeString)
return ERROR

ENDIF

return UnicodeString

3.1.5.4.3 IdnToNameprepUnicode

This function merely returns the output of what IdnToUnicode(IdnToAscii(InputString)) would return.

COMMENT IdnToNameprepUnicode
COMMENT On Entry: SourceString — Unicode String to get nameprep form of

COMMENT Flags - Bit flags to control behavior

COMMENT of IDN validation

COMMENT

COMMENT IDN ALLOW UNASSIGNED: During validation, allow unicode

COMMENT code points that are not assigned.
COMMENT IDN USE STD3 ASCII RULES: Enforce validation of the STD3

COMMENT characters.

COMMENT IDN EMAIL ADDRESS: Allow punycode encoding of the local part
COMMENT of an email address to tunnel EAI

COMMENT addresses through non-Unicode slots.
COMMENT

COMMENT On Exit: NameprepString -String containing the nameprep form of the
COMMENT input string.

PROCEDURE IdnToNameprepUnicode (IN SourceString : Punycode String,
IN Flags: 32 bit integer,
OUT UnicodeString : Unicode String)
SET AsciiString TO IdnToAscii (SourceString, Flags)
SET NameprepString TO IdnToUnicode (AsciiString, Flags)

return NameprepString

3.1.5.4.4 PunycodeEncode

PunycodeEncode encodes an input ASCII/Unicode string. If the input contains non-ASCII parts, then
punycoded strings are output, prefixed with the xn-- or xlI-- labels.

PROCEDURE PunycodeEncode (IN UnicodeString : Unicode String,
IN Flags: 32 bit integer,
OUT PunycodeString : Unicode String)

COMMENT Split input string into email local part and domain parts
IF (IDN EMAILADDRESS bit is on in Flags) THEN
IF (UnicodeString CONTAINS "@") THEN
SET arrayParts = UnicodeString.Split("@")
SET emaillocalString TO arrayParts[0]
SET domainString TO arrayParts[1l]
ELSE
SET emaillLocalString TO UnicodeString
SET domainString TO ""
ENDIF
ELSE
SET domainString TO PunycodeString
SET emaillLocalString TO ""
ENDIF

SET PunycodeString TO ""
IF (emaillLocalString IS NOT "") THEN

IF (emaillocalString CONTAINS U+0080 THROUGH U+10FFFF) THEN
SET PunycodeString TO "xl1--"

62 /81

[MS-UCODEREF-DIff] - v20170601
Windows Protocols Unicode Reference
Copyright © 2017 Microsoft Corporation
Release: June 1, 2017

COMMENT punycode encode is described in RFC 3492
COMMENT http://tools.ietf.org/html/rfc3492

SET encodedString TO punycode encode (emaillocalString)
APPEND encodedString to PunycodeString
ELSE
COMMENT Local part of email was not encoded
SET PunycodeString TO emailLocalString

ENDIF
ENDIF
IF (domainString IS NOT "") THEN
IF emaillocalString IS NOT "'") THEN
APPEND "@" TO PunycodeString
ENDIF

COMMENT Each Label of the domain name is parsed independently
DEFINE domainString AS Array OF String
IF (domainString CONTAINS ".") THEN
SET domainLabels TO domainString.Split(".")
ELSE
SET domainLabels[0] TO domainString
ENDIF

FOREACH label IN domainLabels DO
IF (label CONTAINS U+0080 THROUGH U+10FFFF) THEN
COMMENT punycode encode is described in RFC 3492
COMMENT http://tools.ietf.org/html/rfc3492

SET encodedLabel TO punycode encode (label)

PREPEND "xn--" TO encodedLabel
ELSE

SET encodedLabel TO label
ENDIF

APPEND encodedLabel TO PunycodeString

COMMENT Need to retain separators between domain labels
IF (label IS NOT LAST VALUE IN domainLabels) THEN
APPEND "." TO PunycodeString
ENDIF
ENDFOREACH
ENDIF

return PunycodeString

3.1.5.4.5 PunycodeDecode

PunycodeDecode decodes an input all-ASCII string. If the input contains the xn-- or xI-- prefix the
decoding algorithm is applied.

PROCEDURE PunycodeDecode (IN PunycodeString : Unicode String,
IN Flags: 32 bit integer,
OUT UnicodeString : Unicode String)

COMMENT Non-ASCII data is unexpected

IF (PunycodeString CONTAINS U+0080 through U+10FFFF) THEN
Return ERROR

ENDIF

COMMENT Split input string into email local part and domain parts
IF (IDN EMAILADDRESS bit is on in Flags) THEN
IF (SourceString CONTAINS "@") THEN
SET arrayParts = PunycodeString.Split ("@Q")
SET emaillocalString TO arrayParts[0]

63/ 81

[MS-UCODEREF-DIff] - v20170601
Windows Protocols Unicode Reference
Copyright © 2017 Microsoft Corporation
Release: June 1, 2017

SET domainString TO arrayParts[1l]
ELSE

SET emaillocalString TO PunycodeString
SET domainString to ""
ENDIF
ELSE

SET domainString TO PunycodeString

SET emaillocalString TO ""

ENDIF

SET UnicodeString TO ""

IF (emaillocalString IS NOT "") THEN
IF (emailLocalString BEGINS WITH "x1-") THEN
TRIM "x1--" FROM BEGINNING OF emailLocalString

COMMENT punycode decode is described in RFC 3492
COMMENT http://tools.ietf.org/html/rfc3492

UnicodeString = punycode decode (emailLocalString)
ELSE

COMMENT Local part of email was not encoded

UnicodeString = emaillocalString

ENDIF
ENDIF
IF (domainString IS NOT "'") THEN
IF emaillocalString IS NOT "'") THEN
APPEND "@" TO UnicodeString
ENDIF

COMMENT Each Label of the domain name is parsed independently
DEFINE domainString as Array of String
IF (domainString CONTAINS ".") THEN
SET domainLabels TO domainString.Split(".")
ELSE
SET domainLabels[0] TO domainString
ENDIF

FOREACH label IN domainLabels DO
IF (label BEGINS WITH "xn--") THEN
TRIM "xn--" FROM BEGINNING OF label

COMMENT punycode decode is described in RFC 3492
COMMENT http://tools.ietf.org/html/rfc3492

SET decodedLabel TO punycode decode (label)
ELSE

SET decodedLabel TO label
ENDIF

APPEND decodedLabel TO UnicodeString

COMMENT Need to retain separators between domain labels
IF (label IS NOT LAST VALUE IN domainLabels) THEN
APPEND "." to UnicodeString
ENDIF
ENDFOREACH
ENDIF

return UnicodeString

3.1.5.4.6 IDNA2008+UTS46 NormalizeForIdna

NormalizeForldna prepares the input string for encoding, using the mapping/normalization rules
provided by IDNA2008+UTS46 (IDNA2008 with [TR46] applied).<15>

64 /81

[MS-UCODEREF-DIff] - v20170601
Windows Protocols Unicode Reference
Copyright © 2017 Microsoft Corporation
Release: June 1, 2017

COMMENT
COMMENT
COMMENT
COMMENT
COMMENT
COMMENT
COMMENT
COMMENT
COMMENT
COMMENT

NormalizeForIdnaz2008
On Entry: SourceString - Unicode String to prepare for IDNA
Flags - Bit flags to control behavior
of IDN validation

IDN ALLOW UNASSIGNED: During validation, allow unicode
code points that are not assigned.

On Exit: Punycode - String containing the Punycode ASCII range
form of the input

PROCEDURE NormalizeForIdna2008 (IN SourceString : Unicode String,

COMMENT
COMMENT
COMMENT
COMMENT
COMMENT
COMMENT
COMMENT
COMMENT
COMMENT

IN Flags: 32 bit integer,
OUT OutputString : Unicode String)
Mapping is done per the tables published by Unicode by following
RFC5892 as modified by UTS#46 section 2 "Unicode IDNA Compatibility Processing”
Appendix A of RFC5892 is NOT applied.
Effectively this mapping is merely applying the latest IdnaMappingTable.txt
mappings, including the "deviation" mappings from http://www.unicode.org/Public/idna/

Apply UTS#46 Section 4 steps 1 & 2 to the string with the "Transitional Processing"
option for the four "deviation" characters. Steps 3 and 4 are done by the caller.
http://www.unicode.org/reports/trd6/#Processing

OPEN mapping FILE "http://www.unicode.org/Public/idna/6.3.0/IdnaMappingTable.txt"
SET OutputString TO ""

FOREACH

character IN SourceString

FIND RECORD data IN mapping WHERE LINE CONTAINS character

IF (data IS EMPTY) THEN
IF (IDN_ALLOW UNASSIGNED bit IS NOT ON in Flags) THEN
RETURN ERROR
ELSE
APPEND character TO OutputString
ENDIF
ELSE
SWITCH (data FIELD statusValue)
CASE "valid"
CASE "disallowed STD3 valid"
BREAK
CASE "ignored"
SET character TO ""
BREAK
CASE "mapped"
CASE "disallowed STD3_valid"
CASE "deviation"
SET character TO data FIELD mappingValue
BREAK
ENDSWITCH
APPEND character TO OuptutString
ENDIF
ENDFOREACH

RETURN OutputString

3.1.5.4.7 IDNA2003 NormalizeForIdna

NormalizeForldna prepares the input string for encoding, using the mapping/normalization rules
provided by IDNA2003.<16>

COMMENT
COMMENT
COMMENT
COMMENT
COMMENT
COMMENT
COMMENT
COMMENT
COMMENT

NormalizeForIdna2003
On Entry: SourceString - Unicode String to prepare for IDNA
Flags - Bit flags to control behavior
of IDN validation

IDN_ALLOW UNASSIGNED: During validation, allow unicode
code points that are not assigned.

On Exit: Punycode - String containing the Punycode ASCII range

65/ 81

[MS-UCODEREF-DIff] - v20170601
Windows Protocols Unicode Reference
Copyright © 2017 Microsoft Corporation
Release: June 1, 2017

COMMENT form of the input

PROCEDURE NormalizeForIdna2003 (IN SourceString : Unicode String,
IN Flags: 32 bit integer,
OUT OutputString : Unicode String)

COMMENT Behavior is identical to the results of RFC 3491 (http://tools.ietf.org/html/rfc3491
)

COMMENT Make sure to allow unassigned code points if IDN ALLOW UNASSIGNED bit is set in Flags
SET OutputString TO ApplyRfc3491 (SourceString, Flags)

RETURN OutputString

3.1.5.5 Comparing UTF-16 Strings Ordinally
To do a case-sensitive ordinal comparison of strings, a binary comparison of the UTF-16 code points of

the strings is done. To do a case-insensitive ordinal string comparison, ToUpperCase (section
3.1.5.3.1) is done on each string before doing the ordinal comparison.

3.1.5.5.1 CompareStringOrdinal Algorithm

This algorithm compares two UTF-16 strings by doing an ordinal (binary) comparison. Optionally, the
caller can request that the comparison be done on the uppercase form of the string.

COMMENT CompareStringOrdinal

COMMENT On Entry: StringA - A UTF-16 string to be compared
COMMENT On Entry: StringB — Second UTF-16 string to compare
COMMENT On Entry: IgnoreCaseFlag - TRUE to ignore case when comparing
COMMENT

COMMENT On Exit: Result - A value indicating if StringA is less than,
COMMENT equal to, or greater than StringB

PROCEDURE CompareStringOrdinal

IF IgnoreCaseFlag is TRUE THEN
SET StringA TO ToUpperCase (StringA)
SET StringB TO ToUpperCase (StringB)
ENDIF

SET index TO O

WHILE index is less than Length(StringA) and
index is also less than Length (StringB)

IF StringA[index] is less than StringB[index] THEN
SET Result TO "StringA is less than StringB"
RETURN
ENDIF
IF StringA[index] is greater than StringB[index] THEN
SET Result TO "StringA is greater than StringB"
RETURN
ENDIF
INCREMENT index
ENDWHILE

IF Length(StringA) is equal to Length(StringB) THEN
SET Result TO "StringA is equal to StringB"
ELSE IF Length(StringA) is less than Length(StringB) THEN
SET Result TO "StringA is less than StringB"
ELSE
Assert Length(StringA) has to be greater than Length(StringB)
SET Result TO "StringA is greater than StringB"
ENDIF
RETURN

66 /81

[MS-UCODEREF-DIff] - v20170601
Windows Protocols Unicode Reference
Copyright © 2017 Microsoft Corporation
Release: June 1, 2017

3.1.6 Timer Events

None.

3.1.7 Other Local Events

None.

67/81

[MS-UCODEREF-DIff] - v20170601
Windows Protocols Unicode Reference
Copyright © 2017 Microsoft Corporation
Release: June 1, 2017

4 Protocol Examples

None.

68/ 81

[MS-UCODEREF-DIff] - v20170601
Windows Protocols Unicode Reference
Copyright © 2017 Microsoft Corporation
Release: June 1, 2017

5 Security

The following sections specify security considerations for implementers of the Windows Protocols
Unicode Reference.

5.1 Security Considerations for Implementers

None.

5.2 Index of Security Parameters

None.

69 /81

[MS-UCODEREF-DIff] - v20170601
Windows Protocols Unicode Reference
Copyright © 2017 Microsoft Corporation
Release: June 1, 2017

6 Appendix A: Product Behavior

The information in this specification is applicable to the following Microsoft products or supplemental
software. References to product versions include released service packs.

The terms "earlier" and "later", when used with a product version, refer to either all preceding
versions or all subsequent versions, respectively. The term "through" refers to the inclusive range of
versions. Applicable Microsoft products are listed chronologically in this section.

Windows Client

= Windows NT operating system

= Windows XP operating system

= Windows Vista operating system

= Windows 7 operating system

= Windows 8 operating system

= Windows 8.1 operating system

= Windows 10 operating system

Windows Server

= Windows 2000 operating system

= WindewsXP-operatingsystem

= Windows Server 2003 operating system
Y i :

= Windows Server 2008 operating system

= \Windows7-operating-system

= Windows Server 2008 R2 operating system
= Windows-8-operating-system

= Windows Server 2012 operating system

= Windows-8-1-operating-system

= Windows Server 2012 R2 operating system
= Windows10-operating-system

= Windows Server 2016 operating system

Exceptions, if any, are noted below. If a service pack or Quick Fix Engineering (QFE) number appears
with the product version, behavior changed in that service pack or QFE. The new behavior also applies
to subsequent service packs of the product unless otherwise specified. If a product edition appears
with the product version, behavior is different in that product edition.

Unless otherwise specified, any statement of optional behavior in this specification that is prescribed
using the terms "SHOULD" or "SHOULD NOT" implies product behavior in accordance with the

70/ 81

[MS-UCODEREF-DIff] - v20170601
Windows Protocols Unicode Reference
Copyright © 2017 Microsoft Corporation
Release: June 1, 2017

SHOULD or SHOULD NOT prescription. Unless otherwise specified, the term "MAY" implies that the

product does not follow the prescription.

<1> Section 3.1.5.2.3: Only Windows 8NT, Windows 2000, Windows XP, Windows Server 20+22003,

Windows 8-1Vista, Windows Server 286+2R22008, Windows 187, and Windows Server 261+6-de

Ae£2008 R2 use record count for DEFAULT.

<2> Section 3.1.5.2.3: An LCID is used in Windows NT, Windows 2000, Windows XP, Windows Server

2003, Windows Vista, Windows Server 2008, Windows 7, and Windows Server 2008 R2.

<3> Section 3.1.5.2.3.1: The files in the download map to specific Windows versions as follows:

Version

File Name

Windows NT 4.0 operating system, Windows 2000,
Windows XP, and Windows Server 2003

Windows NT 4.0 through Windows Server 2003
Sorting Weight Table.txt

Windows Vista

Windows Vista Sorting Weight Table.txt

Windows Server 2008

Windows Server 2008 Sorting Weight Table.txt

Windows 7 and Windows Server 2008 R2

Windows 7 and Windows Server 2008 R2 Sorting
Weight Table.txt

Windows 8, Windows 8.1, Windows Server 2012, and
Windows Server 2012 R2

Windows 8 and Windows Server 2012 Sorting Weight
Table.txt
Windows 8 Upper Case Mapping Table.txt

Windows 10 and Windows Server 2016

Windows 10 Sorting Weight Table.txt

<4> Section 3.1.5.2.16: The following MapOldHangulSortKey algorithm is only used in Windows NT,
Windows 2000, Windows XP, Windows Server 2003, Windows Vista, Windows Server 2008, Windows

7, and Windows Server 2008 R2.

COMMENT MapOldHangulSortKey

COMMENT

COMMENT On Entry: SourceString - Unicode String to test
COMMENT SourceIndex - Index of leading Jamo to start
COMMENT from

COMMENT SortLocale - Locale to use for linguistic
COMMENT sort data

COMMENT UnicodeWeights - String to store any Unicode
COMMENT weight found

COMMENT for this character (s)

COMMENT

COMMENT On Exit: CharactersRead - Number of old Hangul found
COMMENT UnicodeWeights - Any Unicode weights found are
COMMENT appended

COMMENT

PROCEDURE MapOldHangulSortKey (IN SourceString :
32 bit integer,

IN Sourcelndex :
IN SortLocale : LCID,
IN OUTUnicodeWeights
IN IsKoreanLocale :

OUT CharactersRead :

SET CurrentIndex to Sourcelndex
SET JamoSortInfo to empty JamoSortInfoType

Unicode String,

: String of UnicodeWeightType,
Boolean,
32 bit integer)

// Get any 0ld Hangul Leading Jamo composition for our Leading Jamo
SET JamoClass to CALL GetJamoComposition WITH (SourceString,

[MS-UCODEREF-DIff] - v20170601
Windows Protocols Unicode Reference
Copyright © 2017 Microsoft Corporation
Release: June 1, 2017

71/81

SourceIndex, "Leading Jamo Class", JamoSortInfo)

IF JamoClass is equal to "Vowel Jamo Class" THEN
// A Vowel Jamo, try to find an
// 0ld Hangul Vowel Jamo composition.

SET JamoClass to CALL GetJamoComposition WITH (SourceString,
SourcelIndex, "Vowel Jamo Class", JamoSortInfo)

ENDIF

IF JamoClass is equal to "Trailing Jamo Class" THEN
// A Trailing Jamo, try to find an
// 0l1ld Hangul Trailing Jamo composition.

SET JamoClass CALL GetJamoComposition WITH (SourceString,
SourceIndex, "Trailing Jamo Class", JamoSortInfo)

ENDIF

// A valid leading and vowel sequence and this is
// old Hangul...
IF JamoSortInfo.0ldHangulFlag is true THEN

// Compute the modern hangul syllable prior to this composition

// Users formula from Unicode 3.0 Section 3.11 p54
// "Hangul Syllable Composition"

// This converts a U+ll.. sequence to a U+AC00 character

SET ModernHangul to (JamoSortInfo.LeadingIndex *

NLS JAMO VOWELCOUNT + JamoSortInfo.VowelIndex) *
NLS JAMO TRAILING COUNT + JamoSortInfo.TrailingIndex +

NLS HANGUL FIRST SYLLABLE

IF JamoSortInfo.FillerUsed is true THEN

// 1f the filler is used, sort before the modern Hangul,

// instead of after
DECREMENT ModernHangul

// If falling off the modern Hangul syllable block...
IF ModernHangul is less than NLS HANGUL FIRST SYLLABLE THEN

// Sort after the previous character
// (Circled Hangul Kiyeok A)
SET ModernHangul to 0x326e
ENDIF

// Shift the leading weight past any old Hangul

// that sorts after this modern Hangul
SET JamoSortInfo.LeadingWeight to
JamoSortInfo.LeadingWeight + 0x80
ENDIF

// Store the weights

SET CharacterWeight to CALL GetCharacterWeights WITH

SET UnicodeWeight to CALL CorrectUnicodeWeight
WITH (CharacterWeight, IsKoreanLocale)
APPEND UnicodeWeight to UnicodeWeights

// Add additional weights

SET UnicodeWeight to CALL MakeUnicodeWeight WITH
(ScriptMember Extra UnicodeWeight,
JamoSortInfo.LeadingWeight, false)

APPEND UnicodeWeight to UnicodeWeights

SET UnicodeWeight to CALL MakeUnicodeWeight WITH
(ScriptMember Extra UnicodeWeight,
JamoSortInfo.VowelWeight, false)

APPEND UnicodeWeight to UnicodeWeights

SET UnicodeWeight to CALL MakeUnicodeWeight WITH
(ScriptMember Extra UnicodeWeight,
JamoSortInfo.TrailingWeight, false)

APPEND UnicodeWeight to UnicodeWeights

(ModernHangul)

[MS-UCODEREF-DIff] - v20170601
Windows Protocols Unicode Reference
Copyright © 2017 Microsoft Corporation
Release: June 1, 2017

72 /81

// Return the characters consumed
SET CharactersRead to CurrentIndex - SourcelIndex
RETURN CharactersRead

ENDIF

// Otherwise it isn't a valid old Hangul composition
// and don't do anything with it

SET CharactersRead to 0O
RETURN CharactersRead

<5> Section 3.1.5.2.17: The GetJamoComposition algorithm is only used in Windows NT, Windows
2000, Windows XP, Windows Server 2003, Windows Vista, Windows Server 2008, Windows 7, and
Windows Server 2008 R2.

<6> Section 3.1.5.2.18: The following GetJamoStateData algorithm is only used in Windows NT,
Windows 2000, Windows XP, Windows Server 2003, Windows Vista, Windows Server 2008, Windows
7, and Windows Server 2008 R2.

COMMENT
COMMENT
COMMENT
COMMENT
COMMENT
COMMENT
COMMENT
COMMENT
COMMENT
COMMENT
COMMENT
COMMENT
COMMENT
COMMENT
COMMENT
COMMENT
COMMENT
COMMENT
COMMENT

GetJamoStateData
On Entry:
On Exit: JamoStateData -

Character - Unicode Character to get Jamo
information for

the data file

Jamo state information from

Jamo State information looks like this in the database:

SORTTABL

ES

JAMOSORT395

0x11724
0x1172
0x1161
0x1175
0x1169

0x00
0x01
0x01
0x01

0x00
0x00
0x00
0x00

PROCEDURE GetJamoStateData (

// Get the Jamo section for
// If Character was 0x1172,
// 0x11724

// 0x1172 0x00
// 0x1161 0x01
// 0x1175 0x01
// 0x1169 0x01
// | | |
// Field 1 2 3

0x00
0x00
0x00
0x00

4

0x11
0x00
0x11
0x11

OPEN SECTION JamoSection

where name is SORTTABLES\JAMOSORT\ [Character]

// Now open the first record
SELECT RECORD JamoRecord FROM JamoSection WHERE

// Now gather the
SET JamoStateData.
SET JamoStateData.
SET JamoStateData.
SET JamoStateData.
SET JamoStateData.
SET JamoStateData.

0x11 0x00 0x380x03; U+1172
0x00 0x00 0x000x01; U+1172,1161

0x11 Oxlb 0x3a0x00;

0x11 Oxlb 0x3f0x00; U+1172,1169

IN Character

this character.

Unicode Character,
OUT JamoStateData

U+1172,1161,1175

JamoStateDateType)

this would access the following section:

0x00 0x38 0x03
0x00 0x00 0x01
Ox1b 0x3a 0x00
0x1lb 0x3f 0x00
| |
6 7

’

U+1172
U+1172,1161
U+1172,1161,1175
U+1172,1169

|

Comment

information from that record.

OldHangulFlag to JamoRecord.Field?2
LeadingIndex to JamoRecord.Field3
to JamoRecord.Field4
TrailingIndex to JamoRecord.Field5
ExtraWeight to JamoRecord.Fieldé6

Vowel

TransitionCount to

Index

JamoRecord.Field7

record 0
record 1
record 2
record 3

from unisort.txt

record index is 0

[MS-UCODEREF-DIff] - v20170601

Windows Protocols Unicode Reference
Copyright © 2017 Microsoft Corporation
Release: June 1, 2017

73/ 81

// Remember the record
SET JamoStateData.DataRecord to JamoRecord

RETURN JamoStateData

<7> Section 3.1.5.2.19: The FindNewJamoState algorithm is only used in Windows NT, Windows
2000, Windows XP, Windows Server 2003, Windows Vista, Windows Server 2008, Windows 7, and
Windows Server 2008 R2.

<8> Section 3.1.5.2.20: The following UpdateJamoSortInfo algorithm is only used in Windows NT,

Windows 2000, Windows XP, Windows Server 2003, Windows Vista, Windows Server 2008, Windows
7, and Windows Server 2008 R2.

COMMENT UpdateJamoSortInfo

COMMENT

COMMENT On Entry: JamoClass - The current Jamo Class

COMMENT JamoStateData - Information about the new
COMMENT character state

COMMENT JamoSortInfo - Information about the character
COMMENT state

COMMENT

COMMENT On Exit: JamoSortInfo - Updated with information about
COMMENT the new state based on JamoClass
COMMENT and JamoSortData

COMMENT

PROCEDURE UpdateJamoSortInfo (IN JamoClass : enumeration,
IN JamoStateData : JamoStateDataType,
INOUT JamoSortInfo : JamoSortInfoType)

// Record if this is a Jamo unique to old Hangul
SET JamoSortInfo.OldHangulFlag to
JamoSortInfo.0OldHangulFlag | JamoStateData.OldHangulFlag

// Update the indices if the new ones are higher than the current
// ones.
IF JamoStateData.LeadingIndex

is greater than JamoSortInfo.LeadingIndex THEN

SET JamoSortInfo.LeadingIndex to JamoStateData.LeadingIndex;
ENDIF

IF JamoStateData.VowelIndex

is greater than JamoSortInfo.VowelIndex THEN

SET JamoSortInfo.VowelIndex to JamoStateData.VowelIndex;
ENDIF

IF JamoStateData.TrailingIndex

is greater than JamoSortInfo.TrailingIndex THEN

SET JamoSortInfo.TrailingIndex to JamoStateData.TrailingIndex;
ENDIF

// Update the extra weights according to the current Jamo class.
CASE JamoClass OF
"Leading Jamo Class":
IF JamoStateData.ExtraWeight
is greater than JamoSortInfo.LeadingWeight THEN
SET JamoSortInfo.LeadingWeight to JamoStateData.ExtraWeight
ENDIF

"Vowel Jamo Class":
IF JamoStateData.ExtraWeight
is greater than JamoSortInfo.VowelWeight THEN
SET JamoSortInfo.VowelWeight to JamoStateData.ExtraWeight
ENDIF

"Trailing Jamo Class":
IF JamoStateData.ExtraWeight

74 / 81

[MS-UCODEREF-DIff] - v20170601
Windows Protocols Unicode Reference
Copyright © 2017 Microsoft Corporation
Release: June 1, 2017

is greater than JamoSortInfo.TrailingWeight THEN
SET JamoSortInfo.TrailingWeight to JamoStateData.ExtraWeight
ENDIF
ENDCASE

RETURN JamoSortInfo

<9> Section 3.1.5.2.21: The IsJamo algorithm is only used in Windows NT, Windows 2000, Windows
XP, Windows Server 2003, Windows Vista, Windows Server 2008, Windows 7, and Windows Server
2008 R2.

<10> Section 3.1.5.2.22: The IsCombiningJamo algorithm is entynot used in Windows 8NT, Windows
2000, Windows XP, Windows Server 264+22003, Windows 8-1Vista, Windows Server 261+2-R22008,
Windows 187, and Windows Server 26+62008 R2.

<11> Section 3.1.5.2.23: The following IsJamolLeading algorithm is only used in Windows NT,
Windows 2000, Windows XP, Windows Server 2003, Windows Vista, Windows Server 2008, Windows
7, and Windows Server 2008 R2.

COMMENT IsJamoLeading

COMMENT

COMMENT On Entry: SourceCharacter - Unicode Character to test
COMMENT

COMMENT On Exit: Result - true if SourceCharacter is a
COMMENT leading Jamo

COMMENT

COMMENT NOTE: Only call this if the character is known to be a Jamo
COMMENT syllable. This function only helps distinguish between
COMMENT the different types of Jamo, so only call it if
COMMENT IsJamo () has returned true.

COMMENT

PROCEDURE IsJamoLeading (IN SourceCharacter : Unicode Character,
OUT Result: boolean)

IF SourceCharacter is less than NLS CHAR FIRST VOWEL JAMO THEN
SET Result to true

ELSE
SET Result to false

ENDIF

RETURN Result

<12> Section 3.1.5.2.24: The IsJamoVowel algorithm is enlynot applicable to Windows 8NT, Windows
2000, Windows XP, Windows Server 26422003, Windows 8-tVista, Windows Server 2642-R22008,
Windows 487, and Windows Server 26+62008 R2.

<13> Section 3.1.5.2.25: The following IsJamoTrailing algorithm is only used in Windows NT,
Windows 2000, Windows XP, Windows Server 2003, Windows Vista, Windows Server 2008, Windows
7, and Windows Server 2008 R2.

COMMENT IsJamoTrailing

COMMENT

COMMENT On Entry: SourceCharacter - Unicode Character to test
COMMENT

COMMENT On Exit: Result - true if this is a trailing Jamo
COMMENT

COMMENT NOTE: Only call this if the character is known to be a Jamo
COMMENT syllable. This function only helps distinguish between
COMMENT the different types of Jamo, so only call it if

COMMENT IsJamo () has returned true.

COMMENT

75/ 81

[MS-UCODEREF-DIff] - v20170601
Windows Protocols Unicode Reference
Copyright © 2017 Microsoft Corporation
Release: June 1, 2017

PROCEDURE IsJamoTrailing (IN SourceCharacter : Unicode Character,
OUT Result: boolean)

IF SourceCharacter is greater than
or equal to NLS CHAR FIRST VOWEL JAMO THEN
SET Result to true
ELSE
SET Result to false
ENDIF

RETURN Result

<14> Section 3.1.5.4: The IdnToNameprepUnicode, IdnToAscii, and IdnToUnicode algorithms are not
applicable to Windows NT, Windows 2000, Windows XP, or Windows Server 2003. These algorithms
follow the IDNA2003 standards for Windows Vista, Windows Server 2008, Windows 7, and Windows

Server 2008 R2 operating system-fellewIDNA2863-

<15> Section 3.1.5.4.6: This version is not used in Windows 8NT, Windows 2000, Windows XP,
Windows Server 28+22003, Windows 8-+Vista, Windows Server 2642-R22008, Windows +87, and
Windows Server 26+62008 R2.

<16> Section 3.1.5.4.7: This version is used in Windows Vista, Windows Server 2008, Windows 7,
and Windows Server 2008 R2

76 / 81

[MS-UCODEREF-DIff] - v20170601
Windows Protocols Unicode Reference
Copyright © 2017 Microsoft Corporation
Release: June 1, 2017

7 Change Tracking

Fhis—section-identifies-No table of changes that-were-made-to-thisis available. The document is either

new or has had no changes since theits last release.-Changes-are-classifiedasNew,Major;Miner;

77/ 81

[MS-UCODEREF-DIff] - v20170601
Windows Protocols Unicode Reference
Copyright © 2017 Microsoft Corporation
Release: June 1, 2017

[MS-UCODEREF-DIff] - v20170601
Windows Protocols Unicode Reference
Copyright © 2017 Microsoft Corporation
Release: June 1, 2017

78/ 81

8 Index
A

Abstract data model - client 20
Applicability 8

C

Change tracking 77
Client
data model 20
higher-layer triggered events 20
initialization 20
local events 67
timer events 67
timers 20
Codepage
supported data files
format 16
overview 16
supported in Windows 9

D

Data model - client 20
DBCSRANGE 18

E

Examples - overview 68

G

Glossary 6

H

Higher-layer triggered events - client 20
I

Implementer - security considerations 69
Index of security parameters 69
Informative references 8

Initialization - client 20

Introduction 6

L
Local events - client 67
M

Mapping between UTF-16 strings and legacy codepages
GB 18031 codepage 26
ISCII codepage 26
ISO 2022-based codepages 26
using codepage data file 20
UTF-7 codepage 26
UTF-8 codepage 26
MBTABLE 18

79/ 81

[MS-UCODEREF-DIff] - v20170601
Windows Protocols Unicode Reference
Copyright © 2017 Microsoft Corporation
Release: June 1, 2017

Messages
overview 9
supported codepage data files 16
supported codepage in Windows 9
transport 9

N
Normative references 7
(o]

Overview 8
Overview (synopsis) 8

P

Parameter index - security 69
Parameters - security index 69
Product behavior 70
Protocol Details
overview 20
Pseudocode
accessing record in codepage data file 20
legacy codepage - mapping codepage string to UTF-16 string 23
legacy codepage - mapping UTF-16 string to codepage string 21

R

References
informative 8
normative 7

S

Security
implementer considerations 69
overview 69
parameter index 69
Sorting weight table 28
Standards assignments 8

T

Timer events - client 67

Timers - client 20

Tracking changes 77

Transport 9

Triggered events - higher-layer - client 20

U

Unicode International Domain Names 59
UTF-16 string
accessing Windows sorting weight table 28
Check3ByteWeightLocale 48
CompareSortKey 27
converting to upper case using UpperCaseTable 58
converting with ToUpperCase 58
CorrectUnicodeWeight 41
FindNewJamoState 54
GetCharacterWeights 42
GetContractionType 40
GetExpandedCharacters 44

80/ 81

[MS-UCODEREF-DIff] - v20170601
Windows Protocols Unicode Reference
Copyright © 2017 Microsoft Corporation
Release: June 1, 2017

GetExpansionWeights 43

GetlJamoComposition 53

GetlJamoStateData 54

GetPositionSpecialWeight 52

GetWindowsSortKey pseudocode 29

InitKoreanScriptMap 57

IsCombininglamo 56

IsJamo 55

IsJamoleading 56

IsJamoTrailing 57

IsJamoVowel 56

MakeUnicodeWeight 41

MapOIldHangulSortKey 53

mapping between legacy codepages and
mapping between UTF-16 strings and GB 18031 codepage 26
mapping between UTF-16 strings and ISCII codepage 26
mapping between UTF-16 strings and ISO 2022-based codepages 26
mapping between UTF-16 strings and UTF-7 codepage 26
mapping between UTF-16 strings and UTF-8 codepage 26
using codepage data file 20

mapping to upper case 58

pseudocode for accessing record in codepage data file 20

pseudocode for comparing 26

pseudocode for mapping legacy codepage to 23

pseudocode for mapping to legacy codepage 21

sort keys for comparing 26

SortkeyContractionHandler 44

SpecialCaseHandler 49

TestHungarianCharacterSequences 39

UpdateJamoSortInfo 55

w

WCTABLE 17
Windows sorting weight table 28

81/81

[MS-UCODEREF-DIff] - v20170601
Windows Protocols Unicode Reference
Copyright © 2017 Microsoft Corporation
Release: June 1, 2017

