

1 / 27

[MS-TVTT] — v20131025
 Telnet: VTNT Terminal Type Format Data Structure

 Copyright © 2013 Microsoft Corporation.

 Release: Friday, October 25, 2013

[MS-TVTT]:
Telnet:
VTNT Terminal Type Format Data Structure

Intellectual Property Rights Notice for Open Specifications Documentation

 Technical Documentation. Microsoft publishes Open Specifications documentation for
protocols, file formats, languages, standards as well as overviews of the interaction among each
of these technologies.

 Copyrights. This documentation is covered by Microsoft copyrights. Regardless of any other
terms that are contained in the terms of use for the Microsoft website that hosts this
documentation, you may make copies of it in order to develop implementations of the
technologies described in the Open Specifications and may distribute portions of it in your
implementations using these technologies or your documentation as necessary to properly
document the implementation. You may also distribute in your implementation, with or without

modification, any schema, IDL’s, or code samples that are included in the documentation. This
permission also applies to any documents that are referenced in the Open Specifications.

 No Trade Secrets. Microsoft does not claim any trade secret rights in this documentation.

 Patents. Microsoft has patents that may cover your implementations of the technologies
described in the Open Specifications. Neither this notice nor Microsoft's delivery of the
documentation grants any licenses under those or any other Microsoft patents. However, a given
Open Specification may be covered by Microsoft Open Specification Promise or the Community

Promise. If you would prefer a written license, or if the technologies described in the Open

Specifications are not covered by the Open Specifications Promise or Community Promise, as
applicable, patent licenses are available by contacting iplg@microsoft.com.

 Trademarks. The names of companies and products contained in this documentation may be
covered by trademarks or similar intellectual property rights. This notice does not grant any
licenses under those rights. For a list of Microsoft trademarks, visit
www.microsoft.com/trademarks.

 Fictitious Names. The example companies, organizations, products, domain names, email
addresses, logos, people, places, and events depicted in this documentation are fictitious. No
association with any real company, organization, product, domain name, email address, logo,
person, place, or event is intended or should be inferred.

Reservation of Rights. All other rights are reserved, and this notice does not grant any rights
other than specifically described above, whether by implication, estoppel, or otherwise.

Tools. The Open Specifications do not require the use of Microsoft programming tools or
programming environments in order for you to develop an implementation. If you have access to
Microsoft programming tools and environments you are free to take advantage of them. Certain
Open Specifications are intended for use in conjunction with publicly available standard
specifications and network programming art, and assumes that the reader either is familiar with the
aforementioned material or has immediate access to it.

http://go.microsoft.com/fwlink/?LinkId=214445
http://go.microsoft.com/fwlink/?LinkId=214448
http://go.microsoft.com/fwlink/?LinkId=214448
mailto:iplg@microsoft.com
http://www.microsoft.com/trademarks

2 / 27

[MS-TVTT] — v20131025
 Telnet: VTNT Terminal Type Format Data Structure

 Copyright © 2013 Microsoft Corporation.

 Release: Friday, October 25, 2013

Revision Summary

Date

Revision

History

Revision

Class Comments

05/11/2007 0.1 MCPP Milestone 4 Initial Availability

08/10/2007 0.2 Minor Updated XML tagging.

09/28/2007 0.2.1 Editorial Revised and edited the technical content.

10/23/2007 0.3 Minor Made minor updates to references.

11/30/2007 0.3.1 Editorial Revised and edited the technical content.

01/25/2008 0.3.2 Editorial Revised and edited the technical content.

03/14/2008 1.0 Major Updated and revised the technical content.

05/16/2008 1.0.1 Editorial Revised and edited the technical content.

06/20/2008 2.0 Major Updated and revised the technical content.

07/25/2008 2.1 Minor Updated the technical content.

08/29/2008 2.1.1 Editorial Revised and edited the technical content.

10/24/2008 2.1.2 Editorial Revised and edited the technical content.

12/05/2008 3.0 Major Updated and revised the technical content.

01/16/2009 3.0.1 Editorial Revised and edited the technical content.

02/27/2009 3.0.2 Editorial Revised and edited the technical content.

04/10/2009 3.0.3 Editorial Revised and edited the technical content.

05/22/2009 3.1 Minor Updated the technical content.

07/02/2009 3.1.1 Editorial Revised and edited the technical content.

08/14/2009 3.1.2 Editorial Revised and edited the technical content.

09/25/2009 3.1.3 Editorial Revised and edited the technical content.

11/06/2009 3.1.4 Editorial Revised and edited the technical content.

12/18/2009 3.1.5 Editorial Revised and edited the technical content.

01/29/2010 3.1.6 Editorial Revised and edited the technical content.

03/12/2010 3.1.7 Editorial Revised and edited the technical content.

04/23/2010 3.1.8 Editorial Revised and edited the technical content.

06/04/2010 3.1.9 Editorial Revised and edited the technical content.

3 / 27

[MS-TVTT] — v20131025
 Telnet: VTNT Terminal Type Format Data Structure

 Copyright © 2013 Microsoft Corporation.

 Release: Friday, October 25, 2013

Date

Revision

History

Revision

Class Comments

07/16/2010 3.1.9 No change No changes to the meaning, language, or formatting of

the technical content.

08/27/2010 3.1.9 No change No changes to the meaning, language, or formatting of

the technical content.

10/08/2010 3.1.9 No change No changes to the meaning, language, or formatting of

the technical content.

11/19/2010 3.1.9 No change No changes to the meaning, language, or formatting of

the technical content.

01/07/2011 3.1.9 No change No changes to the meaning, language, or formatting of

the technical content.

02/11/2011 3.1.9 No change No changes to the meaning, language, or formatting of

the technical content.

03/25/2011 3.1.9 No change No changes to the meaning, language, or formatting of

the technical content.

05/06/2011 3.1.9 No change No changes to the meaning, language, or formatting of

the technical content.

06/17/2011 3.2 Minor Clarified the meaning of the technical content.

09/23/2011 3.2 No change No changes to the meaning, language, or formatting of

the technical content.

12/16/2011 4.0 Major Significantly changed the technical content.

03/30/2012 4.0 No change No changes to the meaning, language, or formatting of

the technical content.

07/12/2012 4.0 No change No changes to the meaning, language, or formatting of

the technical content.

10/25/2012 4.0 No change No changes to the meaning, language, or formatting of

the technical content.

01/31/2013 4.0 No change No changes to the meaning, language, or formatting of

the technical content.

08/08/2013 4.0 No change No changes to the meaning, language, or formatting of

the technical content.

11/14/2013 4.0 No change No changes to the meaning, language, or formatting of

the technical content.

4 / 27

[MS-TVTT] — v20131025
 Telnet: VTNT Terminal Type Format Data Structure

 Copyright © 2013 Microsoft Corporation.

 Release: Friday, October 25, 2013

Contents

1 Introduction ... 5
1.1 Glossary ... 5
1.2 References .. 6

1.2.1 Normative References ... 6
1.2.2 Informative References ... 6

1.3 Overview .. 6
1.4 Relationship to Protocols and Other Structures .. 7
1.5 Applicability Statement ... 7
1.6 Versioning and Localization ... 7
1.7 Vendor-Extensible Fields ... 7

2 Structures .. 8
2.1 VTNT_CHAR_INFO ... 8

2.1.1 VTNT_SINGLE_CHAR .. 11
2.2 INPUT_RECORD ... 12

2.2.1 Virtual Key Code Values .. 14

3 Structure Examples .. 22
3.1 INPUT_RECORD Structure Example .. 22
3.2 VTNT_CHAR_INFO Structure Example .. 22

4 Security Considerations .. 23

5 Appendix A: Product Behavior .. 24

6 Change Tracking... 25

7 Index ... 26

5 / 27

[MS-TVTT] — v20131025
 Telnet: VTNT Terminal Type Format Data Structure

 Copyright © 2013 Microsoft Corporation.

 Release: Friday, October 25, 2013

1 Introduction

This specification defines the structures for Telnet VTNT Terminal Type Format, and how the client
and server negotiate the use of this format.

Remote terminal applications such as Telnet extend the terminal on one computer to another
computer on the network. This enables users to work with terminal-based applications running on a
remote computer as if the user's local computer display and input device were connected to the
remote computer.

Remote terminal applications achieve this by exchanging screen display and input device data over

the network. Since there are different types of display and input devices, many varieties of terminal
application software use "terminal types" to ensure that both client and server are sending and
interpreting the data in the same way.

Sections 1.7 and 2 of this specification are normative and can contain the terms MAY, SHOULD,
MUST, MUST NOT, and SHOULD NOT as defined in RFC 2119. All other sections and examples in this

specification are informative.

1.1 Glossary

The following terms are defined in [MS-GLOS]:

input method editor (IME)

The following terms are specific to this document:

character set: A mapping of characters to their identifying code values. For more information,

see [MSDN-CS].

console: An interface that provides I/O to character-mode applications.

console screen buffer: A two-dimensional array of character and color data for output in a
console window. Each cell in the array holds a character and additional information about
how the character should be displayed. Not all of the contents of the console screen buffer
are displayed in the terminal. The region of the console screen buffer displayed in the
terminal is represented by the console window.

console window: Displays a portion of the active console screen buffer. Each screen buffer
maintains its own current window rectangle that specifies the coordinates of the upper-left
and lower-right character cells to be displayed in the console window.

double-byte character set: A character set in which characters that cannot be represented in
1 byte are represented in 2 bytes. For more information, see [MSDN-CS].

IS command: A Telnet terminal-type option command that is used to send the list of supported
terminal types. For more information, see [RFC1091].

scan code: A code generated by the key-board software to identify the key pressed in a unique
manner.

TELNET connection: A Transmission Control Protocol (TCP) connection used to transmit data
with interspersed TELNET control information. For further information, refer to [RFC854].

%5bMS-GLOS%5d.pdf
http://go.microsoft.com/fwlink/?LinkId=90692
http://go.microsoft.com/fwlink/?LinkId=90692
http://go.microsoft.com/fwlink/?LinkId=90913
http://go.microsoft.com/fwlink/?LinkId=90499

6 / 27

[MS-TVTT] — v20131025
 Telnet: VTNT Terminal Type Format Data Structure

 Copyright © 2013 Microsoft Corporation.

 Release: Friday, October 25, 2013

virtual key code: A device-independent code assigned to each keyboard key. This document
specifies virtual key codes only of the keyboard keys relevant to remote terminal applications.

Valid virtual key code values are specified in section 2.2.1

MAY, SHOULD, MUST, SHOULD NOT, MUST NOT: These terms (in all caps) are used as

described in [RFC2119]. All statements of optional behavior use either MAY, SHOULD, or
SHOULD NOT.

1.2 References

References to Microsoft Open Specifications documentation do not include a publishing year because
links are to the latest version of the documents, which are updated frequently. References to other
documents include a publishing year when one is available.

A reference marked "(Archived)" means that the reference document was either retired and is no
longer being maintained or was replaced with a new document that provides current implementation
details. We archive our documents online [Windows Protocol].

1.2.1 Normative References

We conduct frequent surveys of the normative references to assure their continued availability. If

you have any issue with finding a normative reference, please contact dochelp@microsoft.com. We
will assist you in finding the relevant information. Please check the archive site,
http://msdn2.microsoft.com/en-us/library/E4BD6494-06AD-4aed-9823-445E921C9624, as an
additional source.

[RFC854] Postel, J., and Reynolds, J., "Telnet Protocol Specification", STD 8, RFC 854, May 1983,
http://www.ietf.org/rfc/rfc854.txt

[RFC1091] Network Working Group, VanBokkelen, J., "Telnet Terminal-Type Option", RFC 1091,

February 1989, http://www.ietf.org/rfc/rfc1091.txt

[RFC2119] Bradner, S., "Key words for use in RFCs to Indicate Requirement Levels", BCP 14, RFC

2119, March 1997, http://www.rfc-editor.org/rfc/rfc2119.txt

1.2.2 Informative References

[MSDN-CONSOLES] Microsoft Corporation, "Consoles", http://msdn.microsoft.com/en-
us/library/ms682055.aspx

[MSDN-CS] Microsoft Corporation, "Character Sets", http://msdn.microsoft.com/en-
us/library/dd317743.aspx

[MSDN-CSB] Microsoft Corporation, "Console Screen Buffers", http://msdn.microsoft.com/en-
us/library/ms682088.aspx

[MSDN-IME] Microsoft Corporation, "Input Method Editor", http://msdn.microsoft.com/en-
us/library/dd318661(v=VS.85).aspx

1.3 Overview

This specification defines the structures for Telnet VTNT Terminal Type Format, and how the client
and server negotiate the use of this format.

An implementation using Telnet VTNT Terminal Type Format is able to extend the terminal over the
network by doing the following:

http://go.microsoft.com/fwlink/?LinkId=90317
http://msdn.microsoft.com/en-us/library/jj633107.aspx
mailto:dochelp@microsoft.com
http://msdn2.microsoft.com/en-us/library/E4BD6494-06AD-4aed-9823-445E921C9624
http://go.microsoft.com/fwlink/?LinkId=90499
http://go.microsoft.com/fwlink/?LinkId=90913
http://go.microsoft.com/fwlink/?LinkId=90317
http://go.microsoft.com/fwlink/?LinkId=90690
http://go.microsoft.com/fwlink/?LinkId=90690
http://go.microsoft.com/fwlink/?LinkId=90692
http://go.microsoft.com/fwlink/?LinkId=90692
http://go.microsoft.com/fwlink/?LinkId=90693
http://go.microsoft.com/fwlink/?LinkId=90693
http://go.microsoft.com/fwlink/?LinkId=111896
http://go.microsoft.com/fwlink/?LinkId=111896

7 / 27

[MS-TVTT] — v20131025
 Telnet: VTNT Terminal Type Format Data Structure

 Copyright © 2013 Microsoft Corporation.

 Release: Friday, October 25, 2013

Sending the actual keyboard input from the local client to the remote server, using a structure

specified by the Telnet VTNT Terminal Type Format.

Sending the server's terminal display information (output) to the client, using a structure

specified by the Telnet VTNT Terminal Type Format, so that it can be displayed on the client's
terminal.

Unlike other terminal types, Telnet VTNT Terminal Type Format does not specify escape codes.
Instead, Telnet VTNT Terminal Type Format specifies structures passed between client and server in
each of the preceding scenarios.

To use the Telnet VTNT Terminal Type Format, both the Telnet client and the server must support
this format. [RFC1091] specifies how a Telnet server and client can negotiate for supported terminal

types. A Telnet server and client must use the string "VTNT" in the [RFC1091] IS command to
negotiate for Telnet VTNT Terminal Type Format.

1.4 Relationship to Protocols and Other Structures

The Telnet VTNT Terminal Type Format specifies structures that are independent of any other
structure and protocol. VTNT structure formats are transported as data in a TELNET connection. If

the negotiated term type is Telnet: VTNT Terminal Type Format in a Telnet session, both the server
and client will have to interpret the data in a TELNET connection as Telnet: VTNT Terminal Type
Format structures.

1.5 Applicability Statement

Telnet VTNT Terminal Type Format should be used only to transport display and input information of
terminal applications.

1.6 Versioning and Localization

Telnet VTNT Terminal Type Format does not carry any versioning information. Telnet VTNT Terminal
Type Format does not carry any localization information. Rather, all the character fields are 2 bytes

in size and can carry Unicode characters, thereby enabling localization.

1.7 Vendor-Extensible Fields

Telnet VTNT Terminal Type Format does not have any vendor-extensible fields.

http://go.microsoft.com/fwlink/?LinkId=90913
http://go.microsoft.com/fwlink/?LinkId=90913

8 / 27

[MS-TVTT] — v20131025
 Telnet: VTNT Terminal Type Format Data Structure

 Copyright © 2013 Microsoft Corporation.

 Release: Friday, October 25, 2013

2 Structures

Telnet VTNT Terminal Type Format specifies two structures:

VTNT_CHAR_INFO is used by the server to send console display information back to the client.

INPUT_RECORD is used by the client to send keyboard input to the server.

To specify how the data sent by server to client should be organized and interpreted, Telnet VTNT
Terminal Type Format assumes the availability of the following:

A console screen buffer abstract data type that is capable of holding multiple rows of character

data in the server.

A mechanism that populates the server's console screen buffer based on the actual output in the

server's terminal.

A console screen buffer abstract data type that is capable of holding multiple rows of character

data in the client.

A mechanism to synchronize the contents of the console screen buffer and the actual display in

the client's terminal.

The sequence of operations involved in sending the console display information from server to client
is as follows:

The server reads its console screen buffer, packs the following in a VTNT_CHAR_INFO structure,

and sends it to the client:

The coordinates of the region in the console screen buffer that have to be rewritten.

The characters to be displayed and their attributes.

The client rewrites its console screen buffer based on the data in the VTNT_CHAR_INFO structure

it received from the server.

The client synchronizes the contents of the console screen buffer and the actual display in the

terminal.

The preceding details are implementation-specific and are provided only as guidance. This protocol
does not prescribe or advocate any specific implementation technique. Telnet VTNT Terminal Type
Format does not specify how the abstract data types should be implemented. The console screen
buffers are local to the implementation and are not transported over the network. Implementations
can implement their own buffers or use any system-provided buffers that are available. The

mechanism to synchronize the contents of the console screen buffer and the actual display in the
console in the client is, again, an implementation choice. <1>

Unless otherwise specified, multibyte fields (that is, 16-bit, 32-bit, and 64-bit fields) in a Telnet
VTNT Terminal Type Format structure MUST be transmitted in little-endian byte order (least-
significant byte first).

2.1 VTNT_CHAR_INFO

VTNT_CHAR_INFO is a variable-length structure that the server uses to send characters that should
be repainted in the client console window.

9 / 27

[MS-TVTT] — v20131025
 Telnet: VTNT Terminal Type Format Data Structure

 Copyright © 2013 Microsoft Corporation.

 Release: Friday, October 25, 2013

VTNT_CHAR_INFO encapsulates console window coordinate information and the specific characters
and their attributes to be displayed. The coordinates are expressed in terms of coordinates in a grid

based on character cells. The upper-left corner of the grid has coordinates (0, 0).

0

1

2

3

4

5

6

7

8

9

1

0

1

2

3

4

5

6

7

8

9

2

0

1

2

3

4

5

6

7

8

9

3

0

1

Dwsize

DwcursorPosition

WAttributes SrWindow

...

... dwMaximum

... coCursorPos_x

coCursorPos_y coDest

... coSizeOfData_x

coSizeOfData_y srDestRegion_Left

srDestRegion_Top srDestRegion_Right

srDestRegion_Bottom Vtnt_char_array (variable)

...

Dwsize (4 bytes): Dwsize is a 4-byte unsigned integer field that is not used. The server

SHOULD fill this field with zeros. The client MUST ignore this field.

DwcursorPosition (4 bytes): DwcursorPosition is a 4-byte unsigned integer field that is not
used. The server SHOULD fill this field with zeros. The client MUST ignore this field.

WAttributes (2 bytes): A 2-byte unsigned integer field that specifies whether the console
window coordinates specified by the srDestRegion_left, srDestRegion_top,
srDestRegion_right, and srDestRegion_bottom fields are relative or absolute. This field
MUST contain one of the following values:

Value Meaning

ABSOLUTE_COORDS

0x0000

Specifies that srDestRegion_left, srDestRegion_top,

srDestRegion_right, and srDestRegion_bottom fields identify the

region in the server's console window. The server sends the characters and

character attributes that are displayed in this region in the Char and

Char_Attributes fields of this structure. A client implementation, while

calculating the region to be repainted in the client's console screen buffer,

should take in to account the offset of the client's console window within the

10 / 27

[MS-TVTT] — v20131025
 Telnet: VTNT Terminal Type Format Data Structure

 Copyright © 2013 Microsoft Corporation.

 Release: Friday, October 25, 2013

Value Meaning

client's console screen buffer.

RELATIVE_COORDS

0x0001

An implementation MUST use RELATIVE_COORDS to specify that the data

SHOULD be appended to the current contents of the client's console

window. In case the wAttributes is set to RELATIVE_COORDS, the client

MUST not use the srDestRegion_left, srDestRegion_top,

srDestRegion_right and srDestRegion_bottom values, even if the

server has filled them with any value. Instead, a client implementation

should calculate the console screen buffer coordinates based on the

coSizeOfData_x and coSizeOfData_y fields. A client implementation,

when writing the received data to the console screen buffer, should take

care of buffer scrolling if the buffer overflows.

SrWindow (8 bytes): An 8-byte field that is not used. The server SHOULD fill this field with
zeros. The client MUST ignore this field.

dwMaximum (4 bytes): A 4-byte unsigned integer field that is not used. The server SHOULD
fill this field with zeros. The client MUST ignore this field.

coCursorPos_x (2 bytes): A 2-byte unsigned integer field that specifies the x-coordinate of

the cursor's current position in the server's console window. The x-coordinate MUST be a
value between 0 and the right-most character position, inclusive, expressed as an offset from
the left-most column position that a character can occupy.

coCursorPos_y (2 bytes): A 2-byte unsigned integer field that specifies the y-coordinate of
the cursor's current position in the console window. The y-coordinate MUST be a value
between 0 and the bottom-most character position, inclusive, expressed as an offset from the
top-most row position that a character can occupy.

coDest (4 bytes): A 4-byte-long field that is not used. The server SHOULD fill this field with
zeros. The client MUST ignore this field.

coSizeOfData_x (2 bytes): A 2-byte unsigned integer field that specifies the number of
character cell columns that the client MUST paint. This MUST be a value between 0 and the
right-most character position, inclusive.

coSizeOfData_y (2 bytes): A 2-byte unsigned integer field that specifies the number of

character cell rows that the client MUST paint. This MUST be a value between 0 and the
bottom-most character position, inclusive.

srDestRegion_Left (2 bytes): A 2-byte unsigned integer field that specifies the x-coordinate
of the upper-left corner of a rectangle in the server's console window. This MUST be a value
between 0 and the right-most character position, inclusive, expressed as an offset from the
left-most column that a character can occupy in the client's console window.

srDestRegion_Top (2 bytes): A 2-byte unsigned integer field that specifies the y-coordinate

of the upper-left corner of a rectangle in the server's console window. This MUST be a value
between 0 and the bottom-most character position, inclusive, expressed as an offset from the

top-most row that a character can occupy in the client's console window.

srDestRegion_Right (2 bytes): A 2-byte unsigned integer field that specifies the x-coordinate
of the lower-right corner of a rectangle in the server's console window. This MUST be a value
between 0 and the right-most character position, inclusive, expressed as an offset from the
left-most column that a character can occupy.

11 / 27

[MS-TVTT] — v20131025
 Telnet: VTNT Terminal Type Format Data Structure

 Copyright © 2013 Microsoft Corporation.

 Release: Friday, October 25, 2013

srDestRegion_Bottom (2 bytes): A 2-byte unsigned integer field that specifies the y-
coordinate of the lower-right corner of a rectangle in the server's console window. This MUST

be a value between 0 and the bottom-most character position, inclusive, expressed as an
offset from the top-most row that a character can occupy.

Vtnt_char_array (variable): Vtnt_char_array is a set of one or more VTNT_SINGLE_CHAR
structures, that contains the input characters sent to the client.

The number of VTNT_SINGLE_CHAR structures in this array MUST be equal to the product of
the coSizeOfData_x and coSizeOfData_y fields.

Characters MUST be arranged in the Vtnt_char_array array in row-major order. That is, the
first VTNT_SINGLE_CHAR structure fills the first character position of the first row of the
region identified for repainting, the second structures fill the second character position in the

first row, and so on. Once all the character positions in the first row are filled, the next
VTNT_SINGLE_CHAR structure contains the character at the first character position of the
second row. This follows until all the character positions identified by the coordinates are
filled. There MUST be no padding bytes before or after a VTNT_SINGLE_CHAR structure in the

VTNT_CHAR_INFO structure.

2.1.1 VTNT_SINGLE_CHAR

The VTNT_SINGLE_CHAR structure contains a pair of fields that represents a character sent to the
console window, and that character's attributes.

0

1

2

3

4

5

6

7

8

9

1

0

1

2

3

4

5

6

7

8

9

2

0

1

2

3

4

5

6

7

8

9

3

0

1

Char Char_Attributes

Char (2 bytes): A 2-byte character field that specifies the character to be held in one character

cell location of the console screen buffer. Char is the first of the <Char,Char_attributes> pair

that can be repeated any number of times within the VTNT_CHAR_INFO structure. Telnet
VTNT Terminal Type Format does not specify the character set to be used. Rather, client and
server implementations should be configured to use a compatible character set, such as
Unicode UTF-16.<2> If the character set used is a single-byte character set such as ASCII,
then the first byte of Char MUST contain the character value, and the second byte MUST be

zero.

Char_Attributes (2 bytes): A 2-byte unsigned integer field that specifies an additional
attribute of the character specified in the Char field immediately preceding this field.
Char_attributes is the second of the <Char,Char_attributes> pair that can be repeated any
number of times.

This field MUST be zero, or the result of a bitwise OR of one or more of the following values.

The values that start with COMMON MAY be used only if the character set used is a double-

byte character set; those values MUST NOT be used for non-double-byte character sets.

Value Meaning

FOREGROUND_BLUE

0x0001

Text color contains blue

12 / 27

[MS-TVTT] — v20131025
 Telnet: VTNT Terminal Type Format Data Structure

 Copyright © 2013 Microsoft Corporation.

 Release: Friday, October 25, 2013

Value Meaning

FOREGROUND_GREEN

0x0002

Text color contains green

FOREGROUND_RED

0x0004

Text color contains red

FOREGROUND_INTENSITY

0x0008

Text color is intensified

BACKGROUND_BLUE

0x0010

Background color contains blue

BACKGROUND_GREEN

0x0020

Background color contains green

BACKGROUND_RED

0x0040

Background color contains red

BACKGROUND_INTENSITY

0x0080

Background color is intensified

COMMON_LVB_LEADING_BYTE

0x0100

Leading byte

COMMON_LVB_TRAILING_BYTE

0x0200

Trailing byte

COMMON_LVB_GRID_HORIZONTAL

0x0400

Top horizontal

COMMON_LVB_GRID_LVERTICAL

0x0800

Left vertical

COMMON_LVB_GRID_RVERTICAL

0x1000

Right vertical

COMMON_LVB_REVERSE_VIDEO

0x4000

Reverse foreground and background attribute

COMMON_LVB_UNDERSCORE

0x8000

Underscore

2.2 INPUT_RECORD

The INPUT_RECORD structure is used by a client to send keyboard input information to the server.

0

1

2

3

4

5

6

7

8

9

1

0

1

2

3

4

5

6

7

8

9

2

0

1

2

3

4

5

6

7

8

9

3

0

1

Eventtype Padding

bkeyDown Padding2

wRepeatCount wVirtualKeyCode

13 / 27

[MS-TVTT] — v20131025
 Telnet: VTNT Terminal Type Format Data Structure

 Copyright © 2013 Microsoft Corporation.

 Release: Friday, October 25, 2013

wVirtualScanCode uChar

dwControlKeyState

Eventtype (2 bytes): A 2-byte unsigned integer field, used to indicate the type of the device
input data that is carried in the INPUT_RECORD structure. The value of this field MUST be
0x0001, which indicates that the INPUT_RECORD structure carries data generated by a

keyboard input device.

Padding (2 bytes): This field can contain any value and MUST be ignored by the receiver.

bkeyDown (1 byte): An 8-bit unsigned integer field that indicates whether the particular
keyboard key is pressed or released. This field MUST contain one of the following values:

Value Meaning

0x01 Key is pressed.

0x00 Key is not pressed.

Padding2 (3 bytes): This field can contain any value and MUST be ignored by the receiver.

wRepeatCount (2 bytes): A 2-byte unsigned integer field that indicates the number of times
the key is held down.

wVirtualKeyCode (2 bytes): A 2-byte unsigned integer field that carries the virtual key code

of the key pressed. Telnet VTNT Terminal Type Format does not specify how to generate or
process virtual key codes. The virtual key code is generated by the software that interfaces
with the keyboard.

The implementer of a TELNET server that uses the Telnet VTNT Terminal Type Format decides
how to use the value carried by this field. This field MAY be ignored if the server does not

require the virtual key code to correctly identify the keyboard key sent by the client.

A client MUST set this field to the virtual key code value that is compatible with the server. If
the server does not process this field, the client MUST set it to zero. Telnet VTNT Terminal
Type Format does not offer a way for the client to determine if a server expects the client to
set this field to zero or to a virtual key code. Rather, the server and client implementations
should be preconfigured to ensure interoperability. Valid virtual key code values are specified
in section 2.2.1.<3>

wVirtualScanCode (2 bytes): A 2-byte unsigned integer field that carries the Scan code of

the key pressed. Telnet VTNT Terminal Type Format does not specify how to generate or
process Scan codes. Scan code is generated by the software that interfaces with the
keyboard.

It is a server implementation's choice to decide how to use the value carried by this field. A
server implementation can also ignore this field if the console input interface does not require

Scan code to correctly identify the Keyboard key sent by the client.

A client MUST set this field to the Scan code value that is compatible with the server. If the

Server does not process this field, the client MUST set it to zero. Telnet VTNT Terminal Type
Format does not offer a way for the client to determine if a server expects the Client to set

14 / 27

[MS-TVTT] — v20131025
 Telnet: VTNT Terminal Type Format Data Structure

 Copyright © 2013 Microsoft Corporation.

 Release: Friday, October 25, 2013

this field to zero or Scan Code. Rather, the server and client implementations should be
preconfigured to ensure interoperability.<4>

uChar (2 bytes): A 2-byte unsigned integer field that carries the character to which the key
pressed corresponds. If there is no character associated with the key typed, then this field

MUST be filled with zeros. Telnet VTNT Terminal Type Format does not specify what character
set is to be used. Rather, the client and server implementations should be configured to use a
compatible character set.<5>

dwControlKeyState (4 bytes): A 4-byte unsigned integer field that indicates the state of the
control keys in the keyboard. It can be one or more of the following values. This field MUST
contain zero, or the result of a bitwise OR of one or more of the following values:

Value Meaning

0x00000080 The CAPS LOCK light is on.

0x00000100 The key is enhanced.

0x00000002 The left ALT key is pressed.

0x00000008 The left CTRL key is pressed.

0x00000020 The NUM LOCK light is on.

0x00000001 The right ALT key is pressed.

0x00000004 The right CTRL key is pressed.

0x00000040 The SCROLL LOCK light is on.

0x00000010 The SHIFT key is pressed.

0x00010000 Input method editor (IME) full shape mode. Valid only when IME is used to

input.

0x00020000 IME KATAKANA mode. Valid only when IME is used to input.

0x00040000 IME HIRAGANA mode. Valid only when IME is used to input.

0x00400000 IME ROMAN mode. Valid only when IME is used to input.

0x00800000 IME input on. Valid only when IME is used to input.

2.2.1 Virtual Key Code Values

Name/Value Description

VK_LBUTTON

0x0001

Left mouse button

VK_RBUTTON

0x0002

Right mouse button

VK_CANCEL

0x0003

CTRL+BREAK processing

%5bMS-GLOS%5d.pdf

15 / 27

[MS-TVTT] — v20131025
 Telnet: VTNT Terminal Type Format Data Structure

 Copyright © 2013 Microsoft Corporation.

 Release: Friday, October 25, 2013

Name/Value Description

VK_BACK

0x0008

BACKSPACE key

VK_TAB

0x0009

TAB key

VK_CLEAR

0x000C

CLEAR key

VK_RETURN

0x0D

ENTER key

VK_SHIFT

0x10

SHIFT key

VK_CONTROL

0x11

CTRL key

VK_MENU

0x12

ALT key

VK_PAUSE

0x0013

PAUSE key

VK_CAPITAL

0x0014

CAPS LOCK key

VK_ESCAPE

0x001B

ESC key

VK_SPACE

0x0020

SPACEBAR

VK_PRIOR

0x0021

PAGE UP key

VK_NEXT

0x0022

PAGE DOWN key

VK_END

0x0023

END key

VK_HOME

0x0024

HOME key

VK_LEFT

0x0025

LEFT ARROW key

VK_UP

0x0026

UP ARROW key

VK_RIGHT RIGHT ARROW key

16 / 27

[MS-TVTT] — v20131025
 Telnet: VTNT Terminal Type Format Data Structure

 Copyright © 2013 Microsoft Corporation.

 Release: Friday, October 25, 2013

Name/Value Description

0x0027

VK_DOWN

0x0028

DOWN ARROW key

VK_SELECT

0x0029

SELECT key

VK_PRINT

0x002A

PRINT key

VK_EXECUTE

0x002B

EXECUTE key

VK_SNAPSHOT

0x002C

PRINT SCREEN key

VK_INSERT

0x002D

INS key

VK_DELETE

0x002E

DEL key

VK_HELP

0x002F

HELP key

VK_0

0x0030

0 key

VK_1

0x0031

1 key

VK_2

0x0032

2 key

VK_3

0x0033

3 key

VK_4

0x0034

4 key

VK_5

0x0035

5 key

VK_6

0x0036

6 key

VK_7

0x0037

7 key

VK_8

0x0038

8 key

17 / 27

[MS-TVTT] — v20131025
 Telnet: VTNT Terminal Type Format Data Structure

 Copyright © 2013 Microsoft Corporation.

 Release: Friday, October 25, 2013

Name/Value Description

VK_9

0x0039

9 key

VK_A

0x0041

A key

VK_B

0x0042

B key

VK_C

0x0043

C key

VK_D

0x0044

D key

VK_E

0x0045

E key

VK_F

0x0046

F key

VK_G

0x0047

G key

VK_H

0x0048

H key

VK_I

0x0049

I key

VK_J

0x004A

J key

VK_K

0x004B

K key

VK_L

0x004C

L key

VK_M

0x004D

M key

VK_N

0x004E

N key

VK_O

0x004F

O key

VK_P

0x0050

P key

VK_Q Q key

18 / 27

[MS-TVTT] — v20131025
 Telnet: VTNT Terminal Type Format Data Structure

 Copyright © 2013 Microsoft Corporation.

 Release: Friday, October 25, 2013

Name/Value Description

0x0051

VK_R

0x0052

R key

VK_S

0x0053

S key

VK_T

0x0054

T key

VK_U

0x0055

U key

VK_V

0x0056

V key

VK_W

0x0057

W key

VK_X

0x0058

X key

VK_Y

0x0059

Y key

VK_Z

0x005A

Z key

VK_LWIN

0x005B

Left Windows key (Microsoft Natural Keyboard)

VK_RWIN

0x005C

Right Windows key (Microsoft Natural Keyboard)

VK_APPS

0x005D

Applications key (Microsoft Natural Keyboard)

VK_SLEEP

0x005F

Computer Sleep key

VK_NUMPAD0

0x0060

Numeric keypad 0 key

VK_NUMPAD1

0x0061

Numeric keypad 1 key

VK_NUMPAD2

0x0062

Numeric keypad 2 key

VK_NUMPAD3

0x0063

Numeric keypad 3 key

19 / 27

[MS-TVTT] — v20131025
 Telnet: VTNT Terminal Type Format Data Structure

 Copyright © 2013 Microsoft Corporation.

 Release: Friday, October 25, 2013

Name/Value Description

VK_NUMPAD4

0x0064

Numeric keypad 4 key

VK_NUMPAD5

0x0065

Numeric keypad 5 key

VK_NUMPAD6

0x0066

Numeric keypad 6 key

VK_NUMPAD7

0x0067

Numeric keypad 7 key

VK_NUMPAD8

0x0068

Numeric keypad 8 key

VK_NUMPAD9

0x0069

Numeric keypad 9 key

VK_MULTIPLY

0x006A

Multiply key

VK_ADD

0x006B

Add key

VK_SEPARATOR

0x006C

Separator key

VK_SUBTRACT

0x006D

Subtract key

VK_DECIMAL

0x006E

Decimal key

VK_DIVIDE

0x006F

Divide key

VK_F1

0x0070

F1 key

VK_F2

0x0071

F2 key

VK_F3

0x0072

F3 key

VK_F4

0x0073

F4 key

VK_F5

0x0074

F5 key

VK_F6 F6 key

20 / 27

[MS-TVTT] — v20131025
 Telnet: VTNT Terminal Type Format Data Structure

 Copyright © 2013 Microsoft Corporation.

 Release: Friday, October 25, 2013

Name/Value Description

0x0075

VK_F7

0x0076

F7 key

VK_F8

0x0077

F8 key

VK_F9

0x0078

F9 key

VK_F10

0x0079

F10 key

VK_F11

0x007A

F11 key

VK_F12

0x007B

F12 key

VK_F13

0x007C

F13 key

VK_F14

0x007D

F14 key

VK_F15

0x007E

F15 key

VK_F16

0x007F

F16 key

VK_F17

0x0080

F17 key

VK_F18

0x0081

F18 key

VK_F19

0x0082

F19 key

VK_F20

0x0083

F20 key

VK_F21

0x0084

F21 key

VK_F22

0x0085

F22 key

VK_F23

0x0086

F23 key

21 / 27

[MS-TVTT] — v20131025
 Telnet: VTNT Terminal Type Format Data Structure

 Copyright © 2013 Microsoft Corporation.

 Release: Friday, October 25, 2013

Name/Value Description

VK_F24

0x0087H

F24 key

VK_NUMLOCK

0x0090

NUM LOCK key

VK_SCROLL

0x0091

SCROLL LOCK key

VK_LSHIFT

0x00A0

Left SHIFT key

VK_RSHIFT

0x00A1

Right SHIFT key

VK_LCONTROL

0x00A2

Left CTRL key

VK_RCONTROL

0x00A3

Right CTRL key

VK_LMENU

0x00A4

Left MENU key

VK_RMENU

0x00A5

Right MENU key

22 / 27

[MS-TVTT] — v20131025
 Telnet: VTNT Terminal Type Format Data Structure

 Copyright © 2013 Microsoft Corporation.

 Release: Friday, October 25, 2013

3 Structure Examples

This section contains examples of the structures defined by the Telnet VTNT Terminal Type Format.

3.1 INPUT_RECORD Structure Example

The following is an example of a populated INPUT_RECORD structure.

EventType = 0x0001

bKeyDown = 0x01

wRepeatCount = 0x0001

wVirtualKeyCode = 0x0044

wVirtualScanCode = 0x0020

uChar = 0x0064

dwControlKeyState = 0x0020

The INPUT_RECORD structure tells the server that 0x0064 is the input character, and NUM LOCK

was on when the character was entered. The value 0x01 in bKeyDown indicates that the key was
pressed; 0x0001 in wRepeatCount indicates that the key was pressed once.

3.2 VTNT_CHAR_INFO Structure Example

The following is an example of a populated VTNT_CHAR_INFO structure. The following structure
instructs the client to redraw a row of 80-character cells, which is located on the second row of the

display. The upper-left corner is (1,0) and lower-right corner is (1,79).

dwSize = 0x00000000

dwCursorPosition = 0x00000000

wAttributes = 0x0000

srWindow = 0x0000000000000000

dwMaximum = 0x00000000

coCursorPos_x = 0x0012

coCursorPos_y = 0x0001

coDest = 0x00000000

coSizeOfData_x = 0x0050

coSizeOfData_y = 0x0001

srDestRegion_Left = 0x0000

srDestRegion_Top = 0x0001

srDestRegion_Right = 0x004F

srDestRegion_Bottom = 0x0001

Vtnt_char_array

 char = 0x0046

 char_attributes = 0x0007

This example shows only one Vtnt_char_array for the sake of conciseness. It can be inferred

based on coSizeOfData_x and coSizeOfData_y fields that a total of 80 Vtnt_char_array
structures are sent by the server.

23 / 27

[MS-TVTT] — v20131025
 Telnet: VTNT Terminal Type Format Data Structure

 Copyright © 2013 Microsoft Corporation.

 Release: Friday, October 25, 2013

4 Security Considerations

There are no security considerations associated with Telnet VTNT Terminal Type Format.

24 / 27

[MS-TVTT] — v20131025
 Telnet: VTNT Terminal Type Format Data Structure

 Copyright © 2013 Microsoft Corporation.

 Release: Friday, October 25, 2013

5 Appendix A: Product Behavior

The information in this specification is applicable to the following Microsoft products or supplemental
software. References to product versions include released service packs:

Windows 2000 operating system

Windows XP operating system

Windows Server 2003 operating system

Windows Vista operating system

Windows Server 2008 operating system

Windows 7 operating system

Windows Server 2008 R2 operating system

Windows 8 operating system

Windows Server 2012 operating system

Windows 8.1 operating system

Windows Server 2012 R2 operating system

Exceptions, if any, are noted below. If a service pack or Quick Fix Engineering (QFE) number
appears with the product version, behavior changed in that service pack or QFE. The new behavior

also applies to subsequent service packs of the product unless otherwise specified. If a product
edition appears with the product version, behavior is different in that product edition.

Unless otherwise specified, any statement of optional behavior in this specification that is prescribed
using the terms SHOULD or SHOULD NOT implies product behavior in accordance with the SHOULD

or SHOULD NOT prescription. Unless otherwise specified, the term MAY implies that the product
does not follow the prescription.

<1> Section 2: When implementing Telnet VTNT Terminal Type Format on Windows, implementers

can take advantage of Windows Console APIs such as ReadConsoleOutput () API and
WriteConsoleOutput() to read and write to the console screen buffer. For more information, see
[MSDN-CONSOLES]. Windows also has an implementation of the console screen buffer (see [MSDN-
CSB]).

<2> Section 2.1.1: Windows Telnet Server fills the Char field with Unicode UTF-16 characters.

<3> Section 2.2: Windows Telnet server expects a client to fill this field with virtual key codes that

are compatible with the keyboard installed on the server. Virtual key codes for each of the keyboard
keys are specified in section 2.2.1. Implementations of Telnet VTNT Terminal Type Format on
Windows can use the Windows ReadConsoleInput() API, which returns a structure compatible with
the INPUT_RECORD structure, with all fields including wVirtualKeyCode filled in.

<4> Section 2.2: Windows Telnet server expects a client to fill this field with the scan code. An
implementation on Windows can use the ReadConsoleInput() API, which returns a structure
compatible with the INPUT_RECORD structure, with all fields including wVirtualScanCode filled

with the scan code of the key pressed.

<5> Section 2.2: Windows Telnet client uses Unicode characters to fill this field.

http://go.microsoft.com/fwlink/?LinkId=90690
http://go.microsoft.com/fwlink/?LinkId=90693
http://go.microsoft.com/fwlink/?LinkId=90693

25 / 27

[MS-TVTT] — v20131025
 Telnet: VTNT Terminal Type Format Data Structure

 Copyright © 2013 Microsoft Corporation.

 Release: Friday, October 25, 2013

6 Change Tracking

No table of changes is available. The document is either new or has had no changes since its last
release.

26 / 27

[MS-TVTT] — v20131025
 Telnet: VTNT Terminal Type Format Data Structure

 Copyright © 2013 Microsoft Corporation.

 Release: Friday, October 25, 2013

7 Index

A

Applicability 7

C

Change tracking 25

E

Examples
INPUT_RECORD structure example 22
overview 22
VTNT_CHAR_INFO structure example 22

F

Fields - vendor-extensible 7

G

Glossary 5

I

Informative references 6
INPUT_RECORD packet 12
INPUT_RECORD structure example 22
Introduction 5

L

Localization 7

N

Normative references 6

P

Product behavior 24

R

References
informative 6
normative 6

Relationship to other protocols 7

S

Security 23
Structures 8

T

Tracking changes 25

V

Vendor-extensible fields 7
Versioning 7
VK_0 14
VK_1 14
VK_2 14
VK_3 14
VK_4 14
VK_5 14
VK_6 14
VK_7 14
VK_8 14
VK_9 14
VK_A 14
VK_ADD 14
VK_APPS 14
VK_B 14
VK_BACK 14
VK_C 14
VK_CANCEL 14
VK_CAPITAL 14
VK_CLEAR 14
VK_CONTROL 14
VK_D 14
VK_DECIMAL 14
VK_DELETE 14
VK_DIVIDE 14
VK_DOWN 14
VK_E 14
VK_END 14
VK_ESCAPE 14
VK_EXECUTE 14
VK_F 14
VK_F1 14
VK_F10 14
VK_F11 14
VK_F12 14
VK_F13 14
VK_F14 14
VK_F15 14
VK_F16 14
VK_F17 14
VK_F18 14
VK_F19 14
VK_F2 14

VK_F20 14
VK_F21 14
VK_F22 14
VK_F23 14
VK_F24 14
VK_F3 14
VK_F4 14
VK_F5 14
VK_F6 14
VK_F7 14
VK_F8 14
VK_F9 14
VK_G 14
VK_H 14
VK_HELP 14

27 / 27

[MS-TVTT] — v20131025
 Telnet: VTNT Terminal Type Format Data Structure

 Copyright © 2013 Microsoft Corporation.

 Release: Friday, October 25, 2013

VK_HOME 14
VK_I 14
VK_INSERT 14
VK_J 14
VK_K 14
VK_L 14
VK_LBUTTON 14
VK_LCONTROL 14
VK_LEFT 14
VK_LMENU 14
VK_LSHIFT 14
VK_LWIN 14
VK_M 14
VK_MENU 14
VK_MULTIPLY 14
VK_N 14
VK_NEXT 14
VK_NUMLOCK 14
VK_NUMPAD0 14
VK_NUMPAD1 14
VK_NUMPAD2 14
VK_NUMPAD3 14
VK_NUMPAD4 14

VK_NUMPAD5 14
VK_NUMPAD6 14
VK_NUMPAD7 14
VK_NUMPAD8 14
VK_NUMPAD9 14
VK_O 14
VK_P 14
VK_PAUSE 14
VK_PRINT 14
VK_PRIOR 14
VK_Q 14
VK_R 14
VK_RBUTTON 14
VK_RCONTROL 14
VK_RETURN 14
VK_RIGHT 14
VK_RMENU 14
VK_RSHIFT 14
VK_RWIN 14
VK_S 14
VK_SCROLL 14
VK_SELECT 14
VK_SEPARATOR 14
VK_SHIFT 14
VK_SLEEP 14
VK_SNAPSHOT 14
VK_SPACE 14
VK_SUBTRACT 14
VK_T 14
VK_TAB 14
VK_U 14
VK_UP 14
VK_V 14
VK_W 14
VK_X 14
VK_Y 14
VK_Z 14
VTNT_CHAR_INFO packet 8

VTNT_CHAR_INFO structure example 22
VTNT_SINGLE_CHAR packet 11

	Contents
	1 Introduction
	1.1 Glossary
	1.2 References
	1.2.1 Normative References
	1.2.2 Informative References

	1.3 Overview
	1.4 Relationship to Protocols and Other Structures
	1.5 Applicability Statement
	1.6 Versioning and Localization
	1.7 Vendor-Extensible Fields

	2 Structures
	2.1 VTNT_CHAR_INFO
	2.1.1 VTNT_SINGLE_CHAR

	2.2 INPUT_RECORD
	2.2.1 Virtual Key Code Values

	3 Structure Examples
	3.1 INPUT_RECORD Structure Example
	3.2 VTNT_CHAR_INFO Structure Example

	4 Security Considerations
	5 Appendix A: Product Behavior
	6 Change Tracking
	7 Index

