[MS-TSTS-Diff]:

Terminal Services Terminal Server Runtime Interface
Protocol

Intellectual Property Rights Notice for Open Specifications Documentation

* Technical Documentation. Microsoft publishes Open Specifications documentation (“this
documentation”) for protocols, file formats, data portability, computer languages, and standards
support. Additionally, overview documents cover inter-protocol relationships and interactions.

* Copyrights. This documentation is covered by Microsoft copyrights. Regardless of any other
terms that are contained in the terms of use for the Microsoft website that hosts this
documentation, you can make copies of it in order to develop implementations of the technologies
that are described in this documentation and can distribute portions of it in your implementations
that use these technologies or in your documentation as necessary to properly document the
implementation. You can also distribute in your implementation, with or without modification, any
schemas, IDLs, or code samples that are included in the documentation. This permission also
applies to any documents that are referenced in the Open Specifications documentation.

* No Trade Secrets. Microsoft does not claim any trade secret rights in this documentation.

* Patents. Microsoft has patents that might cover your implementations of the technologies
described in the Open Specifications documentation. Neither this notice nor Microsoft's delivery of
this documentation grants any licenses under those patents or any other Microsoft patents.
However, a given Open Specifications document might be covered by the Microsoft Open
Specifications Promise or the Microsoft Community Promise. If you would prefer a written license,
or if the technologies described in this documentation are not covered by the Open Specifications
Promise or Community Promise, as applicable, patent licenses are available by contacting
iplg@microsoft.com.

* License Programs. To see all of the protocols in scope under a specific license program and the
associated patents, visit the Patent Map.

* Trademarks. The names of companies and products contained in this documentation might be
covered by trademarks or similar intellectual property rights. This notice does not grant any
licenses under those rights. For a list of Microsoft trademarks, visit
www.microsoft.com/trademarks.

* Fictitious Names. The example companies, organizations, products, domain names, email
addresses, logos, people, places, and events that are depicted in this documentation are fictitious.
No association with any real company, organization, product, domain name, email address, logo,
person, place, or event is intended or should be inferred.

Reservation of Rights. All other rights are reserved, and this notice does not grant any rights other
than as specifically described above, whether by implication, estoppel, or otherwise.

Tools. The Open Specifications documentation does not require the use of Microsoft programming
tools or programming environments in order for you to develop an implementation. If you have access
to Microsoft programming tools and environments, you are free to take advantage of them. Certain
Open Specifications documents are intended for use in conjunction with publicly available standards
specifications and network programming art and, as such, assume that the reader either is familiar
with the aforementioned material or has immediate access to it.

Support. For questions and support, please contact dochelp@microsoft.com.

1/253

[MS-TSTS-Diff] - v20210625

Terminal Services Terminal Server Runtime Interface Protocol
Copyright © 2021 Microsoft Corporation

Release: June 25, 2021

https://go.microsoft.com/fwlink/?LinkId=214445
https://go.microsoft.com/fwlink/?LinkId=214445
https://go.microsoft.com/fwlink/?LinkId=214448
mailto:iplg@microsoft.com
https://aka.ms/AA9ufj8
https://www.microsoft.com/trademarks
mailto:dochelp@microsoft.com

Revision Summary

Revision Revision
Date History Class Comments
7/20/2007 0.1 Major MCPP Milestone 5 Initial Availability
9/28/2007 0.2 Minor 'I:/Ieaegi;::znges to technical and editorial content based on
10/23/2007 | 0.3 Minor Made technical and editorial changes based on feedback.
11/30/2007 | 0.4 Minor Made technical and editorial changes based on feedback.
1/25/2008 1.0 Major Updated and revised the technical content.
3/14/2008 2.0 Major IDL files and data typing revised.
5/16/2008 2.0.1 Editorial Changed language and formatting in the technical content.
6/20/2008 3.0 Major Updated and revised the technical content.
7/25/2008 4.0 Major Updated and revised the technical content.
8/29/2008 5.0 Major Updated and revised the technical content.
10/24/2008 | 6.0 Major Updated and revised the technical content.
12/5/2008 7.0 Major Updated and revised the technical content.
1/16/2009 7.1 Minor Clarified the meaning of the technical content.
2/27/2009 8.0 Major Updated and revised the technical content.
4/10/2009 8.1 Minor Clarified the meaning of the technical content.
5/22/2009 8.1.1 Editorial Changed language and formatting in the technical content.
7/2/2009 9.0 Major Updated and revised the technical content.
8/14/2009 9.1 Minor Clarified the meaning of the technical content.
9/25/2009 9.2 Minor Clarified the meaning of the technical content.
11/6/2009 9.3 Minor Clarified the meaning of the technical content.
12/18/2009 | 9.4 Minor Clarified the meaning of the technical content.
1/29/2010 9.4.1 Editorial Changed language and formatting in the technical content.
3/12/2010 9.5 Minor Clarified the meaning of the technical content.
4/23/2010 10.0 Major Updated and revised the technical content.
6/4/2010 11.0 Major Updated and revised the technical content.
7/16/2010 12.0 Major Updated and revised the technical content.
8/27/2010 12.0 None L\lec)crf]::ie(l:r;?iirfgeltq};.e meaning, language, or formatting of the
10/8/2010 12.1 Minor Clarified the meaning of the technical content.
11/19/2010 | 13.0 Major Updated and revised the technical content.

2/253

[MS-TSTS-Diff] - v20210625

Terminal Services Terminal Server Runtime Interface Protocol
Copyright © 2021 Microsoft Corporation

Release: June 25, 2021

Revision Revision
Date History Class Comments
1/7/2011 14.0 Major Updated and revised the technical content.
2/11/2011 15.0 Major Updated and revised the technical content.
3/25/2011 16.0 Major Updated and revised the technical content.
5/6/2011 16.1 Minor Clarified the meaning of the technical content.
6/17/2011 16.2 Minor Clarified the meaning of the technical content.
9/23/2011 17.0 Major Updated and revised the technical content.
12/16/2011 | 18.0 Major Updated and revised the technical content.
3/30/2012 18.0 None It\lec:j:::ia::r;?(e:z:gem.e meaning, language, or formatting of the
7/12/2012 18.0 None Lvecé;:iacgfj(zzrfge:f meaning, language, or formatting of the
10/25/2012 | 18.0 None Itﬂezﬁgiacg?izrfgemfa meaning, language, or formatting of the
1/31/2013 18.0 None lt\leocr:::iacg?izrfge:\:? meaning, language, or formatting of the
8/8/2013 19.0 Major Updated and revised the technical content.
11/14/2013 | 20.0 Major Updated and revised the technical content.
2/13/2014 21.0 Major Updated and revised the technical content.
5/15/2014 21.0 None It\lec::;:;r;?izrfge::e meaning, language, or formatting of the
6/30/2015 22.0 Major Significantly changed the technical content.
10/16/2015 | 23.0 Major Significantly changed the technical content.
7/14/2016 24.0 Major Significantly changed the technical content.
6/1/2017 24.0 None It\lec::;::izzr;?(e:zrfgeg:e meaning, language, or formatting of the
9/15/2017 25.0 Major Significantly changed the technical content.
12/1/2017 25.0 None It\lec::;::izzr;?(e:zrfgeg:e meaning, language, or formatting of the
9/12/2018 26.0 Major Significantly changed the technical content.
4/7/2021 27.0 Major Significantly changed the technical content.
Major

3/ 253

[MS-TSTS-Diff] - v20210625

Terminal Services Terminal Server Runtime Interface Protocol
Copyright © 2021 Microsoft Corporation

Release: June 25, 2021

Table of Contents

B I 15 oo Y [F T ot o '] o 10
1.1] [0 11T T 10
1.2 2] =] =1 1T 12

1.2.1 NOIrMAtiVE RO EIENCES .ottt i i i e et esaa e raaeraraaanees 12

1.2.2 INfOrmMative REfEIENCES . vttt i i e e e re e raneraes 14
1.3 L0 1 7T YA T 14
1.4 Relationship to Other ProtoCols ... 15
1.5 Prerequisites/Preconditionscciiiiiiiii i e 15
1.6 Applicability Statemento 15
1.7 Versioning and Capability Negotiationccociiiiiiiiiiiii e 16
1.8 V=] e o] et =t =T £ 1] [11 e 13 16
1.9 Standards ASSIgNMIENES. vttt 16

7 =TT T« 17
2.1 L= 017510 17
2.2 (0] aln gle] g R B =)= IV o 1= PR 17

2.2.1 D atA TY P S ittt e 18
2.2.1.1 SESSION _HANDLE ...ttt it i i e i et e ea e e aa e rae e raa e s aneeaneeenees 18
2.2.1.2 ENUM _HAN D LLE .. ittt ittt it i it et atesa s eaa s esase s e saresassasssssnsrannnens 18
2.2.1.3 L L I I =112 18
2.2.1.4 I] RV =0 S Y 1N 5 18
2.2.1.5 WINSTATIONNAME . . it i e a et a e s s s s eaneeraaerans 18
2.2.1.6 0TI I 19
2.2.1.7 [T LY O AN 1 =S 19
2.2.1.8 WINSTATIONINFOC LASS ..ttt i i i i e a e aa et e rae e raaerareeanees 19
2.2.1.9 WINSTATIONS T ATECLASS .ttt i ittt a e sae st eaaeeraerans 21
B O T Y 5 T 0 22
2.2.1.11 SHAD OW CLASS ittt ittt ittt aa e rar e aa e e e e 22
2.2.1.12 RECONNECT T Y PE oottt ettt s et e s s s e sa s san s esneeranerans 23
2.2.1.13 CLIENT D AT ANAME ..ttt i et it aa et e et ane e enaseaneernneranerans 23
A T S N V) o} 1 Tor= Yo o 1 e 23
2.2.1.15 NOTIFY _HANDLE. ..\ttt i et ie e r et e e e s te e ana e eaeeaneernneranernns 24
2.2.1.16 BOUNDED_ULONG .iitiiiitiiiiiiite it iii it st it s sasstasesasesassesssssassesnsernnerans 25
2 s 2 U 1 1 V8 = I 25
2.2.1.18 SESSIONT Y PE. . ittt ittt ittt aa et e e e e aaeaaas 25
2.2.1.19 SHADOW_CONTROL_REQUEST .. iitiiitiiiitiieitiieei s e et eae e e aae e 25
2.2.1.20 SHADOW_PERMISSION_REQUEST ..ttt e sttt naeeaenaeeaeeaeas 26
2.2.1.21 SHADOW_REQUEST_RESPONSEcitiiiiiiiiiiiiii i se e see e nae e naa e e 26

2.2.2 1] o Tt o1 = 27
2.2.2.1 SESSION _FILTER Luiitiiitiiititii ittt it ettt rabesassesa s eastesaeesaserasesansanness 27
2.2.2.2 PROTOCOLSTATUS _INFO _TYPE ..ottt it sa e e e s e aaea s 27
2.2.2.3 QUERY _SESSION _DAT A _TYPE ..ttt e e e 27
2.2.2.4 PSES SIONENUM . .ttt it ettt s st rae e taaerab e sasseanseanseanneans 28

2.2.2.4.1 Y131 1 11 1 o 28
2.2.2.4.1.1 SESSIONENUM_LEVELL ..ttt it esire s e s s naeesiaenaas 28
2.2.2.4.1.2 SESSIONENUM_LEVELZ ...uiiiiiiiiiiii i i et iis e s snneennnenans 29
2.2.2.4.1.3 SESSIONENUM _LEVELS .iiiiiiiiiiiiiii i iit e iite i iiisenissessssnaeasanenans 29
2.2.2.5 PSESSIONENUM EX 1iiitiiiitiiiiiiit ittt i sttt saasssasesasesasesasesansesnsranneens 30
2.2.2.5.1 TSI (o] 1N] o T = < 30
2.2.2.6 o o S O] = AV I 31
2.2.2.6.1 ST = 1V I = o= 31
2.2.2.6.1.1 EXECENVDATA _LEVELL vttt ittt ee s e s eaaennas 32
2.2.2.6.1.2 EXECENVDATA _LEVELZ vttt it ie s rine e enaenaas 32
2.2.2.7 PEXECENY DA T A X ittt ittt ittt ettt et tastsastssasetaserasesassesssesnsraansens 33
2.2.2.7.1 ST = 1V I = 1 = | = 33

4 /253

[MS-TSTS-Diff] - v20210625

Terminal Services Terminal Server Runtime Interface Protocol
Copyright © 2021 Microsoft Corporation

Release: June 25, 2021

2.2.2.7.1.1 EXECENVDATAEX _LEVELL ..ottt i i et snaena e naennerneenens 33
2.2.2.8 PLSMSESSIONINFORMATION .. ittt ittt iitiiistiinteiaseiiserasesasssssesnsesnnnens 34
2.2.2.9 PLSMSESSIONINFORMATION _EX 1iutiitiitiiteiiieiieiineiseinieneresnssnssnsennernsenens 35
2.2.2.10 LSM_SESSIONINFO _EX uuiiiiiiitiiiiiiiiiiiiiiiisiiitiiissiiseiisesassesssssissssnssinnsinns 35
2.2.2.11 LSM_SESSIONINFO_EX _LEVELL ...iiiiiiiiiiiiiiiii it iie it iisesisssinsssnnssaneans 35
2.2.2.12 PLISTENERENUMttt it i it e e sa s aseateiaseneraesasaasaseaneraranens 36
2.2.2.12.1 [T T g =T o 1 TN 36
2.2.2.12.1.1 LISTENERENUM_LEVELL ...ttt i iene e siesnaennennennenaens 37
B G T 1O 1 11 1 37
2.2.2.14 TS_PROCESS_INFORMATION _NT4 .uiitiiiiriiitiieiisiisiireinrensinesnssissinennernrenens 38
2.2.2.15 TS_ALL _PROCESSES _INFO ..iiiitiiiiiiiiiiiiiiiiiiiitiiiseiiseiireiassessssissssnesinneinns 38
2.2.2.15.1 TS_SYS _PROCESS_INFORMATIONtiiitiiiiiiiiiiiieiiteiiseiisisanseinnsinneinns 38
2.2.2.15.1.1 TS_UNICODE_STRINGitiitiitiitiireitieriseiseinerresrissnseissieeernnns 40
2.2.2.16 TS_ALL _PROCESSES _INFO_INTB .iutiiitiiiiiiitiiintiiiseiiseiissisiseissssassssnnsinnsinns 40
2.2.2.16.1 TS_SYS_PROCESS_INFORMATION_NTBE ..eiueiriiriiniirerrieriniieeineinrenenas 40
2.2.2.16.1.1 NT6_TS_UNICODE_STRING ...ciiitiiiiiiiniiiiiiiiieiiieiiiseiisiiinreiassinneinns 42
2.2.2.16.2 SYSTEM_THREAD_INFORMATION ..itiitiiriiitiitiiteitiineieeeriesnseineinsenerns 42

B S Y A O I 1 =\ N 1 2 43

2.2.2.17 TS _COUNTER ittt ittt ettt et it s s s e ta e e s baesataastesnneranerans 43
2.2.2.17.1 TS_COUNTER_HEADER ...iiiiiiiiiiiiii it nisie i se e s nn s na e naaanenas 43
2.2.2.18 USERCONFIG. .. tiiitiiiitiiiti it ittt tat it s sat st s sassiaseraresassesssssastesnseranerans 45
2.2.2.18.1 CALLBACK CLASS ..ottt s et e s s e e aaeaarareas 48
2.2.2.18.2 APPLICATIONNAMEttt ittt et e e s s saa s e raaerans 48
2.2.2.19 WINSTATIONCLIENT tiitiitiiitiitiitiitiateii ettt tississassaseiatereiasssssissasessernenens 49
2.2.2.19.1 TS _TIME_ZONE_INFORMATION ... tiitiiiiiiiiiiitiitiitiiteirisiissnsenseiseeneras 52

2.2.2.19.1 SIS ST I = I 11 S 53

2.2.2.20 WINSTATIONINFORMATION ... 54

2.2.2.20.1 PROT O C LS T ATUS ittt it ettt i s s e saa e berabseaseesraansans 55
2.2.2.20.1.1 PROTOCOLSTATUSEX .iittiitiitiitiiiiieiiiiisiisiisiiseitesinssnsensssseanernans 55
2.2.2.20.1.2 PROTOCOLCOUNTERS ...iiitiiitiiiiiiiiiiii i i i esaessssassssnseranesans 56
2.2.2.20.1.2.1 TSHARE_COUNTERS ...ttt s r s na e e e e naens 57
2.2.2.20.1.3 CACHE _STATISTICS . i iiiitiitiiti ittt iiseisi ittt saseiseaseareraeans 57
2.2.2.20.1.3.1 RESERVED_CACHE ...ttt i i riie e siae st s s snennneans 57
2.2.2.20.1.3.1.1 THINWIRECACHEi ittt e aees 58
2.2.2.20.1.3.2 TSHARE _CACHE ..t aae e aas 58
2.2.2.21 PP ARAMS L. e a e eaaeare e 58
2.2.2.22 NETWORKCONFIG ..ttt ittt et e ia s et rs s taae s e sa s essassasteaneeranerans 58
2.2.2.23 ASYNC CONFIG . .ttt ittt ittt i ittt ittt rs e iaa e esabsessteastaaneeranerans 59
2.2.2.23.1 MOD EMN AME ..t et 59
2.2.2.23.2 FLOWCONTROLCONFIG ..iitiiitiiittiiiti it iististeiisesaseiassessssnssesssssnserans 59

2.2.2.23.2.1 FLOWGCONTROLCLASS ..ottt st a e iaesae e raens 60

2.2.2.23.2.2 RECEIVEFLOWCONTROLCLASS ..ttt it st i nnesnaenans 60

2.2.2.23.2.3 TRANSMITFLOWCONTROLCLASS ...ttt saeaneiaeas 61

2.2.2.23.3 CONNECTCONFILG .titiiittiitt ittt it iat st sisttseeiaserasesassessssnstesnsernnerans 61

2.2.2.23.3.1 ASYNCCONNECT CLASS ..ttt ittt areraaeraas 61

A By N 1N} ({1 V] i (S 61
2.2.2.24.1 NASTUSERNAME ... ittt ittt ia et beeaaeanraaneans 62
2.2.2.24.2 NASIPASSWORD ..ottt ie ittt aa e be it a e aaeaaeareas 62
2.2.2.24.3 NASISESIONNAME. ...ttt ittt st a e e ea s eaeeranerans 62
2.2.2.24.4 NASISPECIFICNAME ..ttt ittt tit ittt eanseasssanseanseranerans 62
2.2.2.24.5 NASIFILESERVERutiiitiiiiiiiiiiiitiiiti st iistiiteiasesasesassesssssssesnsernnerans 62

B A T © | =1\ 1 10 11V = 63

B A S T = T @@]\ i 1 63
2.2.2.26.1 (o 100] 1V 2 1N 63
2.2.2.26.2 PN AME . ittt i e e aaeaaas 64

B Ay A T 5 0 ©] 11 i X 64
2.2.2.27. 1 WDNAME . ittt i e e aaeaaas 65
By Ay I T B] 4 U 5 P 66

5 /253

[MS-TSTS-Diff] - v20210625

Terminal Services Terminal Server Runtime Interface Protocol
Copyright © 2021 Microsoft Corporation

Release: June 25, 2021

2.2.2.28 CDCONFIG 11ttt e es 66
2.2.2.28.1 CDCLASS ..ottt e e et 66
2.2.2.28.2 CDNAME. .. ittt 66

2.2.2.29 WINSTATIONCREATE . .. e ettt e e e e e e e e e e e e e e e nenens 67

2.2.2.30 WINSTATIONCONFIG2 . eueieieiiieieeae aenees 67
2.2.2.30.1 WINSTATIONCONFIG .. uiuiniiitieininiiiiiiir s s s ra e eaea 67

2.2.2.31 POLICY_TS_MACHINEttt e e e e e e e e e e e e eaea e nenees 68

2.2.2.32 WINSTATIONUSERTOKENcuiuiiiniiiniiiiiiiiiininreissssasass s e 74

2.2.2.33 WINSTATIONVIDEODATA ...ttt e e e e e e e e e e e e e e e e anenees 74

2.2.2.34 WINSTATIONLOADINDICATORDATA ... ittt 74
2.2.2.34.1 LOADFACTORTYPE .. uuiuiiee et aeae et e e e e e et e e e e e e e e e ee e nenenenenes 75

2.2.2.35 WINSTATIONSHADOW ... ettt ae et e e e e e e e e e e e e e e ee e e enenens 75
2.2.2.35.1 SHADOWSTATECLASS ...ttt 76

2.2.2.36 WINSTATIONPRODID ...cuuuininiiiiie e eeeeet e e eeeae e e e e e e aene e e eeaeae e enenens 76

2.2.2.37 WINSTATIONREMOTEADDRESS ...ttt 77

2.2.2.38 ExtendedClientCredentials........cocovuiiiiiiiiiiii e 77

2.2.2.39 TS _TRACE ...ttt 78

2.2.2.40 BEEPINPUT .ottt e e e s s s s e e e e 80

2.2.2.41 WINSTATIONCLIENTDATA .. ettt et e e e e e e e e e e e e e e aeaen e e nenees 80

2.2.2.42 SESSION_CHANGE.. ..ottt 81

2.2.2.43 RCM_REMOTEADDRESSttt e et e e e e rae e e e eeee e eenees 81

2.2.2.44 CLIENT_STACK _ADDRESS......iiiiiiiiiiiiiiiii e 82

2.2.2.45 VARDATA _WIRE. ...ttt e e e e e e e e e e e ene e e e e e e e enenees 82

2.2.2.46 PDPARAMSWIREciiiiitiiiiiiiiii e e e e e s s s s e e n e e 82

2.2.2.47 WINSTACONFIGWIRE .. cutiiiiiiiiiieneir s e e s aa s 82

2.2.2.48 TSVIP_SOCKADDR ...cuttitieitiiitaeae e e et e e e e e e e e e e e e s e e s e eeaenerernenees 83

2.2.2.49 TSVIPAAAIESS ..ttt st 84

2.2.2.50 TSVIPSESSION 1.itiiititiieiiati ettt aa 85

2.2.2.51 WINSTATIONVALIDATIONINFORMATION.....iuiuiiiniiieieiiiiinsniieenenasanaes 85

2.2.2.52 WINSTATIONPRODUCTINFO ...uiuiiiieieiaaneneneeeee e rereseeneneneaeaeeaenenernnnns 85

2.3 Directory Service Schema ElemMentscooiiiiiiiiiiii i e 86
2.3.1 (ST gl o= T =T = =T = PPN 87
2.3.2 B IS 2 0] =T o 1Y PP 87
2.3.3 Encoding PropValue Field in TSProperty Structure........cooiviiiiiiiiiiiiiiiiiieneeenn 92
2.3.4 LTS IS] o o 1= o Y/ 0 B PP 92

3 Protocol DetailS....cccriierimrriererimrarieme s ssasassas s s ssanasaasassanasnasansnnasnasassnnarnarannnn 94

3.1 Determining a Caller's Permissions and Access Rights........c.ccoviiiiiiiiiiiiiineen, 94
3.1.1 Determining a Caller's PermisSioNnSooiieiiieiiiiiii e 94
3.1.2 Determining Whether a Caller Is SYSTEM ...ouiiiiiiiiiiic e 94
3.1.3 Determining Whether a Caller Is an Administratorcoooviiiiiiiiiiiiic s 94
3.1.4 Determining Whether a Caller Is the Same User Who Logged onto the Session... 95

3.2 Local Session Manager Client Detailsooviiiiiiiiiii e 95
3.2.1 AbSEract Data Model.....ovieiiii e 95
3.2.2 LT 95
3.2.3 | g = = o T] o PP 95
3.2.4 Processing Events and Sequencing RUIESoviiiiiiiiiiiiiii e 95
3.2.5 LT L= =]) (= 95
3.2.6 (0 =T ol W Yo=Y I V=T o | = PP 95

3.3 Local Session Manager Server Detailsouviiiiiiiiii i 95
3.3.1 ADSEract Data Model.....ovieiiiii i 95

3.3.1.1 ADSEraCt Data TYPES . .uiieiiiit it 96

3.3.2 LT 21T T 98
3.3.3 |1 A =1 [4=] o o PP 98
3.3.4 Processing Events and Sequencing RUIESooiiiiiiiiiiiiiii e 98

3.3.4.1 TerervSession MEENOAS vt 98
3.3.4.1 RpcOpenSession (OpNUM 0) ..uueieiieiiiiiiie e r e e e e 99
3.3.4.1 RpcCloseSession (OPNUM 1) oot e e e e e 100

6/ 253

[MS-TSTS-Diff] - v20210625

Terminal Services Terminal Server Runtime Interface Protocol
Copyright © 2021 Microsoft Corporation

Release: June 25, 2021

3.3.4.1.3 RpcConnect (OPNUM 2) .iuiiiiiiii i ie e et a e e eaeaeans 100
3.3.4.1.4 RpcDisconnect (OPNUM 3) c.iuiiiiieieieitiire e e rera e e e sneereeeaeaaaaans 101
3.3.4.1.5 RpCLogoff (OPNUM 4) it e e e naans 102
3.3.4.1.6 RpcGetUserName (Opnum 5) ..o e 102
3.3.4.1.7 RpcGetTerminalName (OpNuUM 6) ...c.vvieiiiiiiiiiiiirie e e ea 102
3.34.1.8 RpcGetState (OPNUM 7) it e e e aaans 103
3.3.4.1.9 RpcIsSessionDesktopLocked (Opnum 8)....cevvvieiiiiiiiiiiiiiiiiiiiee e, 103
3.3.4.1.10 RpcShowMessageBox (OpnuUM 9) ...iuiiiiiiiiiiii i e aea e 104
3.3.4.1.11 RpcGetTimes (OpNUM 10) ..uiuiiiiiiiiiiiiiiriie i a e raeaens 105
3.3.4.1.12 RpcGetSessionCounters (OpnumM 11) .oiiiiiiiiiiiiiiiic e e 106
3.3.4.1.13 RpcGetSessionInformation (Opnum 12)coiviiiiiiiiiiiiiii e, 106
3.3.4.1.14 RpcGetLoggedOnCount (Opnum 15) ..o 107
3.3.4.1.15 RpcGetSessionType (OpNUM 16) ..uiiiiiiiiiiiiii i aea s 107
3.3.4.1.16 RpcGetSessionInformationEx (OpnuUM 17) ..cociuiiiniiiiiiiiiieie e eeeeeenenn 108
3.3.4.2 TermSrvNOtIfiCatioN. ..o 108
3.3.4.2.1 RpcWaitForSessionState (Opnum 0) ...ooviiieiiiiiiiniiiiii e e 109
3.3.4.2.2 RpcRegisterAsyncNotification (Opnum 1)coiiiiiiiiiiiiiiiiiiiieiciie e 110
3.3.4.2.3 RpcWaitAsyncNotification (Opnum 2) ..ciiiiiiiiiiiiiii e 110
3.3.4.2.4 RpcUnRegisterAsyncNotification (Opnum 3) ...coeieieiiiiiiiiiiiiiierneeeeeeens 111
3.3.4.3 TermSIrVENUMEratioN. . ..o e 111
3.3.4.3.1 RpcOpenENUM (OpNUM 0) c.iueieiieiiiiieie et e e e 112
3.3.4.3.2 RpcCloseENUM (OPNUM 1) ittt et e r e s e e e e aeaeaas 113
3.3.4.3.3 RpcFilterByState (OpnUM 2) ..o e 113
3.3.4.3.4 RpcFilterByCallersName (OpnumM 3) ..uiiiiiiiiii s sie e aaaas 114
3.3.4.3.5 RpcEnumAddFilter (OpnUM 4) .o e aae s 114
3.3.4.3.6 RpcGetEnumResult (OpnumM 5) ... e 114
3.3.4.3.7 RpcFilterBySessionType (OPNUM 6) ..viiviiiiieiiiiiiiiiieie s sesneaaaans 115
3.3.4.3.8 RpcGetSessionIds (OpNUM 8) ..uviuiieiiiiiiiiiei e 116
3.3.4.3.9 RpcGetEnumResultEX (OpNUM 9) ..ot ae s 116
3.3.4.3.10 RpcGetAllSessions (OpnuUM 10) ...ciuiiiiiiiiiiie i e e raeaens 117
3.3.4.3.11 RpcGetAllSessionsEX (OpnuUM 11)..iiiiiiiiiiiii i e 118
3.3.5 LI L 8 =2 = V2= 1P 119
3.3.6 (O a1 ol o Tor= 1 B =T o | 119
3.4 TermSrV Client Details ..ovui it e 119
3.4.1 Abstract Data Model 119
3.4.2 LI L. =21 119
3.4.3 | a1 T=] = [] o P 119
3.4.4 Processing Events and Sequencing RUlESccooiiiiiiiiiiii e 119
3.4.5 LI L =2 == 1 119
3.4.6 (O a1 ol o Tor= | I Y= o | P 119
3.5 TermSrV Server Details. ..o 119
3.5.1 Abstract Data Model... ... 119
3.5.1.1 ADSEract Data Ty PES cui ittt e 120
3.5.2 LT 1 P 121
3.5.3 | a1 T=] = [] o P 121
3.5.4 Message Processing Events and Sequencing Rulesc.coooviiiiiiiiiiiiniiiienens 121
3.5.4.1 2@ | o PP 121
3.54.1.1 RpcGetClientData (OpnuUM 0) ..oiuiiiiiiiiiiiiii i e aea e as 122
3.5.4.1.2 RpcGetConfigData (OpnuUmM 1) ..o e e e 123
3.5.4.1.3 RpcGetProtocolStatus (OPNUM 2) ...uieieiiiiiiiiiiie e e eeaaas 123
3.54.14 RpcGetLastInputTime (OpnUM 3) c.oeieiieiiiiiieie e e e 124
3.5.4.1.5 RpcGetRemoteAddress (OPNUM 4) ... e e 124
3.5.4.1.6 RpcGetAllListeners (OpnUM 8) ..cuveieiiiiiiiiiiiiiie e e eeaeaas 125
3.5.4.1.7 RpcGetSessionProtocolLastInputTime (Opnum 9) ...ocvvviiiiiiiiiiiiiieinenne, 125
3.5.4.1.8 RpcGetUserCertificates (Opnum 10)......iuiiiiiiiiiiiiiiiee e 126
3.5.4.1.9 RpcQuerySessionData (Opnum 11)...ceieiiiiiiiiiiiiiiiiei e e 127
3.5.4.2 O =] =T o 1= PN 128
3.5.4.2.1 RpcOpenListener (OpNUM 0) ...oueeeieieiiiieerre e e eeaeaas 128

7/ 253

[MS-TSTS-Diff] - v20210625

Terminal Services Terminal Server Runtime Interface Protocol
Copyright © 2021 Microsoft Corporation

Release: June 25, 2021

3.5.4.2.2 RpcCloseListener (OpNUM 1) .i.iiiiiiiiiiiiiiie i s s e e eeaeaaans 129
3.5.4.2.3 RpcStopListener (OPNUM 2) ... e e e aeaas 129
3.54.2.4 RpcStartListener (OPNUM 3) ciuiiiiiiiiiiiiri i s e e aeaaaaas 130
3.5.4.2.5 RpcIsListening (OPNUM 4) ..o e 130
3.5.5 LT = 2=] (=P 130
3.5.6 (O aT=T ol I Yot= Y I V=T o | = P 131
.6 Legacy Client Detailso.vvieiiiiiiiii e e 131
3.6.1 AbStract Data Model.....oviiiiii e 131
3.6.2 LT 1= 131
3.6.3 | T T= 1 4= o o) o I PP 131
3.6.4 Message Processing Events and Sequencing Rulescoooviiiiiiiiiiiniiiiinns 131
3.6.5 LT = 2=] (=P 131
3.6.6 (O aT=T ol I Yot= Y I V=T o | = P 131
.7 Legacy Server Details ... 131
3.7.1 AbStract Data Model.ooviiieiii e 131
3.7.1.1 ADSEract Data TYPeS ... 131
3.7.2 LI L0 2121 134
3.7.3 | [T= 1 4= u o o PP 134
3.7.4 Message Processing Events and Sequencing Rulesc.coooviiiiiiiiiiiiiiiienns 134
3.7.4.1 [T =Ty 7Y o PN 134
3.7.4.1.1 RpcWinStationOpenServer (Opnum 0) ...oveiiieiiiieiieiireer e eee 139
3.7.4.1.2 RpcWinStationCloseServer (Opnum 1) c.iviiiiiiiiiiiiiiiiiiri i e 140
3.7.4.1.3 RpcIcaServerPing (OPNUM 2) ..t ee e eas 140
3.7.4.1.4 RpcWinStationEnumerate (OpnuUM 3) . iiiiiiii i e 141
3.7.4.1.5 RpcWinStationRename (OpNUM 4) ...t ae s 142
3.7.4.1.6 RpcWinStationQueryInformation (OpnumM 5)covveiiiiiiiiiiiiiiieneeeeeens 143
3.7.4.1.7 RpcWinStationSetInformation (OpnumM 6)cicviiiiiiiiiiiiiiii e 147
3.7.4.1.8 RpcWinStationSendMessage (OpNUM 7) .o.ieiiieiiiieiiniiiirene e seea 149
3.7.4.1.9 RpcLogonIldFromWinStationName (Opnum 8)civiiiiiiiiiiiiiiiiiiienans 151
3.7.4.1.10 RpcWinStationNameFromLogonId (Opnum 9)cviiiiiiiiiiiiinniieinnnens 152
3.7.4.1.11 RpcWinStationConnect (OpnuUM 10) ...ciiiiiiiiiiiiiiiicii e aea e 152
3.7.4.1.12 RpcWinStationDisconnect (Opnum 13) .icciiiiiiiiiiiiiiiiiiiiii e ee 153
3.7.4.1.13 RpcWinStationReset (OpnuUM 14) ..o e 154
3.7.4.1.14 RpcWinStationShutdownSystem (Opnum 15)....c.cciiiiiiiiiiiiiiiiiiiiiiiens, 155
3.7.4.1.15 RpcWinStationWaitSystemEvent (Opnum 16)........ccvviiiiiiiiniiinnieinnnnns 156
3.7.4.1.16 RpcWinStationShadow (OpnumM 17) ..iiiiiiiiiiiiiiiicc e 158
3.7.4.1.17 RpcWinStationBreakPoint (Opnum 29)coceiiiiiiiiiiiii s 159
3.7.4.1.18 RpcWinStationReadRegistry (Opnum 30).....couviiiriiiiiiiiiiiiiiiieeeeraenns 160
3.7.4.1.19 OldRpcWinStationEnumerateProcesses (Opnum 34).....ccccvivviiiiiiinnnnnnn. 160
3.7.4.1.20 RpcWinStationEnumerateProcesses (Opnum 36)cocevviiiiiiiiniieinnnnns 161
3.7.4.1.21 RpcWinStationTerminateProcess (Opnum 37)...cccciiiiiiiiiiiiiiiiiiieniensn 162
3.7.4.1.22 RpcWinStationGetAllProcesses (Opnum 43)ooiiiiiiiiiiiiiiiiiieniienaeaens 163
3.7.4.1.23 RpcWinStationGetProcessSid (Opnum 44)cocoiiiiiiiiiiiiiiiic e 164
3.7.4.1.24 RpcWinStationGetTermSrvCountersValue (Opnum 45)cocevvieinnens 165
3.7.4.1.25 RpcWinStationRelnitializeSecurity (Opnum 46)cocviviiiiiiiiiiiieinanns 166
3.7.4.1.26 RpcWinStationGetLanAdapterName (Opnum 53) ...cccviiiiiiiiiiiiiiinniennn. 166
3.7.4.1.27 RpcWinStationUpdateSettings (Opnum 58)ccoviiiiiiiiiiiiiiiieens 167
3.7.4.1.28 RpcWinStationShadowStop (Opnum 59) ...cciiiiiiiiiiiiiiiiiiicce e 168
3.7.4.1.29 RpcWinStationCloseServerEx (Opnum 60)covvvieiiiiiiiiiiiiiieiienaenens 169
3.7.4.1.30 RpcWinStationIsHelpAssistantSession (Opnum 61)ccccvvivivinininnnnnnn. 170
3.7.4.1.31 RpcWinStationGetMachinePolicy (Opnum 62)ccvviiiiiiiiiiiiiiieieanns 171
3.7.4.1.32 RpcWinStationCheckLoopBack (Opnum 65)......cccciiiiiiiiiiiiiiiiiiieens 171
3.7.4.1.33 RpcConnectCallback (OpnumM 66)........cciiiiiiieieiiiiiiieiere e 172
3.7.4.1.34 RpcWinStationGetAllProcesses_NT6 (Opnum 70) ...ccovviriniiiiniiiinieinnnnns 173
3.7.4.1.35 RpcWinStationOpenSessionDirectory (Opnum 75) ...cccoiviiiiiiiiiiinnnnn. 174
3.7.5 LT =T 7=] (=P 175
3.7.6 (0 =T ol W Yo=Y I V=T o | PR 175
3.8 Virtual IP Client Detail .ooviueiriiiiie e 175
8/ 253

[MS-TSTS-Diff] - v20210625

Terminal Services Terminal Server Runtime Interface Protocol
Copyright © 2021 Microsoft Corporation

Release: June 25, 2021

3.8.1 Abstract Data Model......cciuiiiiii s 175
3.8.2 LI L. 1= 1= 175
3.8.3 | T E= 1 4= o o o I PP 175
3.8.4 Message Processing Events and Sequencing Rulescoooiiiiiiiiiiiiiiiiiienens 175
3.8.5 LT = 2=] (=P 176
3.8.6 (O aT=T ol I Yot= Y I V=T o | = P 176
3.9 Virtual IP Server Detail ..o e e e 176
3.9.1 AbStract Data Model.....oviiiiii e 176
3.9.1.1 ADSEract Data TYPES ... 176
3.9.2 LI 0.2 L2 176
3.9.3 | g 1= 2= [o P 176
3.9.4 Message Processing Events and Sequencing Rulescoooviiiiiiiiiiiiiiiiinenns 176
3.9.4.1 TSV I PPUDIIC .t e 176
3.9.4.1.1 RpcGetSessionIP (OpnuUM 0) ..iuveiiieiiiiiiie e s 177
3.9.5 LI L 8 L = V2= 1 177
3.9.6 (O a1l o Yo=Y =T o | P 177
3.10 SESSENV Det@ils cuviuieiiieiiiii i e 177
3.10.1 AbStract Data Model.....coviiiiiiiiiiie i 177
0 0 I o 1= o= P 177
3.10.3 INIEI@liZation cou e 177
3.10.4 Message Processing Events and Sequencing Rulesc.cociiiiiiiiiiiiiiiiiinens 178
3.10.4.1 SeSSENVPUDIICRPC . uiiiiiiii i 178
3.10.4.1.1 RpcShadow2 (OpnUM 0) ..ouieiieiiiiiiiiiiini e e e e e e raeaens 178
3.10.5 Tl EVENES it e 179
3.10.6 Other LoCal EVENTS...uiuiitiiiiiie i e s e s e e e e e e e e raanens 179
4 Protocol EXamples ...cuciieirimmerimrrimmssnsssisssssss s sasssansssas s s n s an s nnnnnannnnnnnnnnn 180
4.1 LSM Enumeration EXample ..o e 180
4.2 TermsService Listener EXample ... 182
4.3 TermSrvBIiNdSecUre EXample. oo e 184
4.4 LegaCY EXaAMIPIE et 187
4.5 Encoding/Decoding EXampPle. ... e 189
L = o 1 Y 2 191
5.1 Security Considerations for Implementerscoooiiiiiiiiiii 191
5.2 Index of SECUritY Parameters ... e e 191
6 Appendix A: FUll IDL....c.cciciisirmrrssesansmsassasanssassmssnsesassnsansmsassnsansasassnsansnsansnsannnss 192
6.1 Appendix A.1: tSpUbIPC.idl .o e 192
6.2 Appendix A.2: rcmMpPUblC.idl ... 198
6.3 Appendix A.3: 1€gacy.idl ... e 201
6.4 Appendix A.4: TSVIPRPC.IAl ..o e 207
6.5 Appendix A.5: WINSTA. Do 207
6.6 ApPPENdixX A.6: tSAEf N i e 222
6.7 Appendix A.7: allProC. .. e 224
6.8 Appendix A.8: SESSENVRPC.Idl....coiiiiiii e 227
7 (Updated Section) Appendix B: Product Behavior.........ccicvirisimrmsrassmssmssassasnass 229
8 Change TracKiNg...cuicueriererimserimrrinmessasa s s s s s s saasasansssansa s s sansasansnsansasansnsnnsnnnns 242
TN o e = G 243
9/ 253

[MS-TSTS-Diff] - v20210625

Terminal Services Terminal Server Runtime Interface Protocol
Copyright © 2021 Microsoft Corporation

Release: June 25, 2021

1 Introduction

This document specifies the Terminal Services Terminal Server Runtime Interface Protocol. The
Terminal Services Terminal Server Runtime Interface Protocol is an RPC-based protocol used for
remotely querying and configuring various aspects of a terminal server.

Sections 1.5, 1.8, 1.9, 2, and 3 of this specification are normative. All other sections and examples in
this specification are informative.

1.1 Glossary
This document uses the following terms:
administrator: A user who has complete and unrestricted access to the computer or domain.

application server mode: A mode in which Terminal Services require a client access license
(CAL) to allow remote access to sessions on a terminal server.

ASCII: The American Standard Code for Information Interchange (ASCII) is an 8-bit character-
encoding scheme based on the English alphabet. ASCII codes represent text in computers,
communications equipment, and other devices that work with text. ASCII refers to a single 8-bit
ASCII character or an array of 8-bit ASCII characters with the high bit of each character set to
zero.

Client Access License (CAL): A license that gives a user the right to access the services of a
server. To legally access the server software, a CAL can be required. A CAL is not a software
product.

directory service (DS): A service that stores and organizes information about a computer
network's users and network shares, and that allows network administrators to manage users'
access to the shares. See also Active Directory.

domain: A set of users and computers sharing a common namespace and management
infrastructure. At least one computer member of the set must act as a domain controller (DC)
and host a member list that identifies all members of the domain, as well as optionally hosting
the Active Directory service. The domain controller provides authentication of members, creating
a unit of trust for its members. Each domain has an identifier that is shared among its members.
For more information, see [MS-AUTHSOD] section 1.1.1.5 and [MS-ADTS].

endpoint: A network-specific address of a remote procedure call (RPC) server process for remote
procedure calls. The actual name and type of the endpoint depends on the RPC protocol
sequence that is being used. For example, for RPC over TCP (RPC Protocol Sequence
ncacn_ip_tcp), an endpoint might be TCP port 1025. For RPC over Server Message Block (RPC
Protocol Sequence ncacn_np), an endpoint might be the name of a named pipe. For more
information, see [C706].

GINA: The Graphical Identification and Authentication binary. The binary loaded by logon Service,
used by the Winlogon, to show the authentication user interface and to validate the user. The
default GINA (MSGINA) can be replaced by a custom GINA if an administrator wants to use its
own authentication UI/methods such as fingerprint, voice recognition, and so on. For more
information, see [MSDN-GINA].

globally unique identifier (GUID): A term used interchangeably with universally unique
identifier (UUID) in Microsoft protocol technical documents (TDs). Interchanging the usage of
these terms does not imply or require a specific algorithm or mechanism to generate the value.
Specifically, the use of this term does not imply or require that the algorithms described in
[RFC4122] or [C706] must be used for generating the GUID. See also universally unique
identifier (UUID).

10/ 253

[MS-TSTS-Diff] - v20210625

Terminal Services Terminal Server Runtime Interface Protocol
Copyright © 2021 Microsoft Corporation

Release: June 25, 2021

handle: Any token that can be used to identify and access an object such as a device, file, or a
window.

Input Method Editor (IME): An application that is used to enter characters in written Asian
languages by using a standard 101-key keyboard. An IME consists of both an engine that
converts keystrokes into phonetic and ideographic characters and a dictionary of commonly used
ideographic words.

Interface Definition Language (IDL): The International Standards Organization (ISO) standard
language for specifying the interface for remote procedure calls. For more information, see
[C706] section 4.

listener: A session running on a terminal server that listens for incoming connection requests.

Microsoft Interface Definition Language (MIDL): The Microsoft implementation and extension
of the OSF-DCE Interface Definition Language (IDL). MIDL can also mean the Interface
Definition Language (IDL) compiler provided by Microsoft. For more information, see [MS-RPCE].

named pipe: A named, one-way, or duplex pipe for communication between a pipe server and one
or more pipe clients.

opnum: An operation number or numeric identifier that is used to identify a specific remote
procedure call (RPC) method or a method in an interface. For more information, see [C706]
section 12.5.2.12 or [MS-RPCE].

Remote Desktop Protocol (RDP): A multi-channel protocol that allows a user to connect to a
computer running Microsoft Terminal Services (TS). RDP enables the exchange of client and
server settings and also enables negotiation of common settings to use for the duration of the
connection, so that input, graphics, and other data can be exchanged and processed between
client and server.

remote procedure call (RPC): A communication protocol used primarily between client and
server. The term has three definitions that are often used interchangeably: a runtime
environment providing for communication facilities between computers (the RPC runtime); a set
of request-and-response message exchanges between computers (the RPC exchange); and the
single message from an RPC exchange (the RPC message). For more information, see [C706].

RPC protocol sequence: A character string that represents a valid combination of a remote
procedure call (RPC) protocol, a network layer protocol, and a transport layer protocol, as
described in [C706] and [MS-RPCE].

RPC transport: The underlying network services used by the remote procedure call (RPC) runtime
for communications between network nodes. For more information, see [C706] section 2.

security identifier (SID): An identifier for security principals that is used to identify an account
or a group. Conceptually, the SID is composed of an account authority portion (typically a
domain) and a smaller integer representing an identity relative to the account authority, termed
the relative identifier (RID). The SID format is specified in [MS-DTYP] section 2.4.2; a string
representation of SIDs is specified in [MS-DTYP] section 2.4.2 and [MS-AZOD] section 1.1.1.2.

session: A collection of applications simultaneously running under the same Win32 subsystem.

shell: Part of the Windows user interface (UI) that organizes and controls user access to a wide
variety of objects necessary for running applications and managing the operating system. The
most numerous are the folders and files that reside on computer storage media. There are also
a number of virtual objects such as network printers and other computers. The shell organizes
these objects into a hierarchical namespace and provides an API to access them.

SYSTEM: An account that is used by the operating system. For more information about system
account access rights, see [MSDN-LocSysAcct].

11/ 253

[MS-TSTS-Diff] - v20210625

Terminal Services Terminal Server Runtime Interface Protocol
Copyright © 2021 Microsoft Corporation

Release: June 25, 2021

terminal server: A computer on which terminal services is running.

terminal services (TS): A service on a server computer that allows delivery of applications, or
the desktop itself, to various computing devices. When a user runs an application on a terminal
server, the application execution takes place on the server computer and only keyboard, mouse,
and display information is transmitted over the network. Each user sees only his or her
individual session, which is managed transparently by the server operating system and is
independent of any other client session.

Unicode: A character encoding standard developed by the Unicode Consortium that represents
almost all of the written languages of the world. The Unicode standard [UNICODE5.0.0/2007]
provides three forms (UTF-8, UTF-16, and UTF-32) and seven schemes (UTF-8, UTF-16, UTF-16
BE, UTF-16 LE, UTF-32, UTF-32 LE, and UTF-32 BE).

universally unique identifier (UUID): A 128-bit value. UUIDs can be used for multiple
purposes, from tagging objects with an extremely short lifetime, to reliably identifying very
persistent objects in cross-process communication such as client and server interfaces, manager
entry-point vectors, and RPC objects. UUIDs are highly likely to be unique. UUIDs are also
known as globally unique identifiers (GUIDs) and these terms are used interchangeably in the
Microsoft protocol technical documents (TDs). Interchanging the usage of these terms does not
imply or require a specific algorithm or mechanism to generate the UUID. Specifically, the use of
this term does not imply or require that the algorithms described in [RFC4122] or [C706] must
be used for generating the UUID.

well-known endpoint: A preassigned, network-specific, stable address for a particular
client/server instance. For more information, see [C706].

Windows Station (WinStation): Sessions running on the computer.
MAY, SHOULD, MUST, SHOULD NOT, MUST NOT: These terms (in all caps) are used as defined
in [RFC2119]. All statements of optional behavior use either MAY, SHOULD, or SHOULD NOT.
1.2 References

Links to a document in the Microsoft Open Specifications library point to the correct section in the
most recently published version of the referenced document. However, because individual documents
in the library are not updated at the same time, the section numbers in the documents may not
match. You can confirm the correct section numbering by checking the Errata.

1.2.1 Normative References

We conduct frequent surveys of the normative references to assure their continued availability. If you
have any issue with finding a normative reference, please contact dochelp@microsoft.com. We will
assist you in finding the relevant information.

[C706] The Open Group, "DCE 1.1: Remote Procedure Call", C706, August 1997,
https://publications.opengroup.org/c706

Note Registration is required to download the document.

[MS-ADA1] Microsoft Corporation, "Active Directory Schema Attributes A-L".
[MS-ADA2] Microsoft Corporation, "Active Directory Schema Attributes M".
[MS-ADA3] Microsoft Corporation, "Active Directory Schema Attributes N-Z".
[MS-ADSC] Microsoft Corporation, "Active Directory Schema Classes".

[MS-DTYP] Microsoft Corporation, "Windows Data Types".

12 /253

[MS-TSTS-Diff] - v20210625

Terminal Services Terminal Server Runtime Interface Protocol
Copyright © 2021 Microsoft Corporation

Release: June 25, 2021

[MS-ERREF] Microsoft Corporation, "Windows Error Codes".
[MS-RAI] Microsoft Corporation, "Remote Assistance Initiation Protocol".

[MS-RDPBCGR] Microsoft Corporation, "Remote Desktop Protocol: Basic Connectivity and Graphics
Remoting".

[MS-RDPERP] Microsoft Corporation, "Remote Desktop Protocol: Remote Programs Virtual Channel
Extension".

[MS-RPCE] Microsoft Corporation, "Remote Procedure Call Protocol Extensions".
[MS-RPCH] Microsoft Corporation, "Remote Procedure Call over HTTP Protocol".

[MSDN-ExitWindowsEx] Microsoft Corporation, "ExitWindowsEx function”,
http://msdn.microsoft.com/en-us/library/aa376868(VS.85).aspx

[MSDN-MSGBOX] Microsoft Corporation, "Message Box Function", http://msdn.microsoft.com/en-
us/library/ms645505.aspx

[MSDN-PROCRIGHTS] Microsoft Corporation, "Process Security and Access Rights",
http://msdn.microsoft.com/en-us/library/ms684880(VS.85).aspx

[MSDN-PRVLGECNSTS] Microsoft Corporation, "Privilege Constants", http://msdn.microsoft.com/en-
us/library/bb530716(v=VS.85).aspx

[MSDN-RCMWin32_TSRCS] Microsoft Corporation, "RemoteControl Method of the
Win32_TSRemoteControlSetting Class", http://msdn.microsoft.com/en-
us/library/aa383818(v=VS.85).aspx

[MSDN-RPCBIND] Microsoft Corporation, "Creating a Binding Handle", http://msdn.microsoft.com/en-
us/library/aa373609.aspx

[MSDN-TDIADDRESS] Microsoft Corporation, "TDI_ADDRESS_IP structure", docs.microsoft.com/en-
us/previous-versions/windows/hardware/network/ff565072(v=vs.85)"

[MSDN-TOKENRIGHTS] Microsoft Corporation, "Access Rights for Access-Token Objects",
http://msdn.microsoft.com/en-us/library/aa374905(VS.85).aspx

[MSFT-SDLBTS] Microsoft Corporation, "Session Directory and Load Balancing Using Terminal Server",
September 2002, http://download.microsoft.com/download/8/6/2/8624174c-8587-4a37-8722-
00139613a5bc/TS_Session_Directory.doc

[MSFT-WINMCE] Microsoft Corporation, "Getting started with Windows Media Center",
https://support.microsoft.com/en-us/help/14197/windows-media-center-getting-started

[RFC2119] Bradner, S., "Key words for use in RFCs to Indicate Requirement Levels", BCP 14, RFC
2119, March 1997, http://www.rfc-editor.org/rfc/rfc2119.txt

[WININTERNALS] Russinovich, M., and Solomon, D., "Microsoft Windows Internals, Fourth Edition",
Microsoft Press, 2005, ISBN: 0735619174.

[X509] ITU-T, "Information Technology - Open Systems Interconnection - The Directory: Public-Key
and Attribute Certificate Frameworks", Recommendation X.509, August 2005,
http://www.itu.int/rec/T-REC-X.509/en

13/ 253

[MS-TSTS-Diff] - v20210625

Terminal Services Terminal Server Runtime Interface Protocol
Copyright © 2021 Microsoft Corporation

Release: June 25, 2021

1.2.2 Informative References

[MSDN-DWM] Microsoft Corporation, "Desktop Window Manager", http://msdn.microsoft.com/en-
us/library/aa969540.aspx

[MSDN-MSGBeep] Microsoft Corporation, "MessageBeep function", http://msdn.microsoft.com/en-
us/library/ms680356(VS.85).aspx

[MSDN-ProductID] Microsoft Corporation, "ProductID property", http://msdn.microsoft.com/en-
us/library/aa370855(VS.85).aspx

[MSDN-SERIAL] Microsoft Corporation, "Serial Communications in Win32",
http://msdn.microsoft.com/en-us/library/ms810467.aspx

[MSDN-SOCKADDR_IN6] Microsoft Corporation, "SOCKADDR_ING6 structure",
https://docs.microsoft.com/en-us/windows/win32/api/ws2ipdef/ns-ws2ipdef-sockaddr_in6_lh

[MSDN-SOCKET] Microsoft Corporation, "socket function", http://msdn.microsoft.com/en-
us/library/ms740506.aspx

[MSDN-SYSTIME] Microsoft Corporation, "SYSTEMTIME structure", http://msdn.microsoft.com/en-
us/library/ms189104.aspx

[MSDN-Win32_TSAcct] Microsoft Corporation, "Win32_TSAccount class",
http://msdn.microsoft.com/en-us/library/aa383773(VS.85).aspx

[MSFT-IME] Microsoft Corporation, "Input method editors (IMEs)", http://windows.microsoft.com/en-
us/windows-8/input-method-editors

[MSFT-VS] Microsoft Corporation, "Microsoft Virtual Server", https://msdn.microsoft.com/en-
us/library/windows/desktop/cc997745(v=vs.85).aspx

[MSFT-W2KDDK] Microsoft Press, "Microsoft Windows 2000 Driver Development Reference Kit,
volumes 1-3", March 2000, ISBN: 0735609292.

Note The Windows 2000 DDK publication is cited as it was the last DDK (Driver Development Kit) that
was physically in print. All driver development documentation since then has been delivered in soft
format, and is available for download here: http://www.m...

[MSFT-WINSYSINTERNALS] Microsoft Corporation, "Windows Sysinternals",
http://technet.microsoft.com/en-us/sysinternals

[MSFT-WSTSL] Microsoft Corporation, "Overview of Remote Desktop Licensing"”,
http://technet.microsoft.com/en-us/library/cc725933.aspx
1.3 Overview

The Terminal Services Terminal Server Runtime Interface Protocol is a simple request-response RPC-
based protocol used for remotely querying and configuring various aspects of a terminal server. For
example, this protocol can be used to query the number of active sessions running on a terminal
server. For every method that the server receives, it executes the method and returns a completion.
The client simply returns the completion status to the caller.

The protocol consists of four major subcomponents:

= Local Session Manager (LSM): A system component that creates, destroys, and manages
sessions.

= TermService: A service running on the system that manages remote connection requests.

14 / 253

[MS-TSTS-Diff] - v20210625

Terminal Services Terminal Server Runtime Interface Protocol
Copyright © 2021 Microsoft Corporation

Release: June 25, 2021

= VM Host Agent: A service running on the system that monitors the states of the sessions within
virtual machines hosted on the server [MSFT-VS].<1>

= Virtual IP: A service running on the system that assigns IP addresses to sessions that are created
by using remote connection requests.

The protocol can be further divided into the following functional categories: <2>
Functional categories associated with the Local Session Manager (LSM) subcomponent:

= Local Session Manager (LSM) Session: These calls collect information, and control and
configure sessions running on the terminal server.

= Local Session Manager (LSM) Notification: These RPC calls are asynchronous and can be used
to receive event notifications from the LSM.

= Local Session Manager (LSM) Enumeration: These calls are used to enumerate information
related to sessions running on a terminal server.

Functional categories associated with the VM Host Agent subcomponent:

= VM Host Agent Session: These calls collect information as well as control and configure sessions
running on the virtual machines hosted on the server.

= VM Host Agent Notification: These RPC calls are asynchronous and can be used to receive
event notifications from VM Host Agent.

= VM Host Agent Enumeration: These calls are used to enumerate information related to sessions
running on the virtual machines hosted on the server.

Functional categories associated with the TermService subcomponent:

= TermService: These calls can be used to query and configure various aspects of the
TermServices running on the terminal server.

= TermService Listener: These calls are specific to the listener session running on the terminal
server and listening for incoming connection requests.

= Legacy: The legacy calls used by Terminal Services clients.

1.4 Relationship to Other Protocols

The Terminal Services Terminal Server Runtime Interface Protocol is dependent upon RPC for its
transport. This protocol uses RPC over named pipes as specified in section 2.1.

1.5 Prerequisites/Preconditions

The Terminal Services Terminal Server Runtime Interface Protocol is an RPC interface and as a result
has the prerequisites specified in [MS-RPCE] as being common to RPC interfaces.

It is assumed that a Terminal Services Terminal Server Runtime Interface Protocol client has obtained
the name of a terminal server that supports the Terminal Services Terminal Server Runtime Interface
Protocol before this protocol is invoked. The manner in which a client obtains the terminal server
name is implementation-specific.

1.6 Applicability Statement

The Terminal Services Terminal Server Runtime Interface Protocol is appropriate only for querying and
configuring a terminal server.

15/ 253

[MS-TSTS-Diff] - v20210625

Terminal Services Terminal Server Runtime Interface Protocol
Copyright © 2021 Microsoft Corporation

Release: June 25, 2021

1.7 Versioning and Capability Negotiation

None.

1.8 Vendor-Extensible Fields

The Terminal Services Terminal Server Runtime Interface Protocol uses Win32 error codes defined in
[MS-ERREF]. Vendors SHOULD reuse those values with their indicated meaning.<3> Choosing any
other value might cause a collision in the future.

1.9 Standards Assignments

In the following table, interfaces are based on binding and named pipes are based on the RPC

Programming Model Overview as specified in [C706] section 2.

Description

Interface UUID

Named pipe

LSM Session (tspubrpc.idl)<4>

{ 484809d6-4239-471b-b5bc-
61df8c23ac48 }

\PIPE\LSM_API_service
\PIPE\UNIFIED_API_service<5>

LSM Notification
(tspubrpc.idl)<6>

{ 11899a43-2b68-4a76-92e3-
a3d6ad8c26¢ce }

\PIPE\LSM_API_service
\PIPE\UNIFIED_API_service<7>

LSM Enumeration
(tspubrpc.idl)<8>

{ 88143fd0-c28d-4b2b-8fef-
8d882f6a9390 }

\PIPE\LSM_API_service
\PIPE\UNIFIED_API_service<9>

TermSrv (RCMPublic.idl)<10>

{ bde95fdf-eee0-45de-9e12-
e5a61cd0d4fe }

\PIPE\TermSrv_API_service

TermSrv Listener
(RCMPublic.idl)<11>

{ 497d95a6-2d27-4bf5-9bbd-
a6046957133c }

\PIPE\TermSrv_API_service

Legacy (Legacy.idl)

{ 5ca4a760-ebb1-11cf-8611-
00a0245420ed }

\PIPE\Ctx_WinStation_API_service

TSVIPPublic (TSVIPRpc.idl)

{53b46b02-c73b-4a3e-8dee-
b16b80672fc0}

\PIPE\TSVIP_Service

SessEnvPublicRpc
(SessEnvRpc.idl)

{1257B580-CE2F-4109-82D6-
A9459D0BF6BC}

\PIPE\SessEnvPublicRpc

[MS-TSTS-Diff] - v20210625

Terminal Services Terminal Server Runtime Interface Protocol
Copyright © 2021 Microsoft Corporation

Release: June 25, 2021

16 / 253

2 Messages

2.1 Transport

The Terminal Services Terminal Server Runtime Interface Protocol uses the RPC protocol sequences as
specified in [MS-RPCE] section 2.1.1 and [MS-RPCH] section 1.4.

The Terminal Services Terminal Server Runtime Interface Protocol uses the following static endpoints
in addition to well-known endpoints. These endpoints are ports for [MS-RPCH] section 1.5 and [MS-
RPCE] section 2.1 on the terminal server.

Port 3389: This endpoint is used by the terminal server to listen for incoming RPC method calls. The
authenticated RPC interface allows RPC to negotiate the use of authentication and the authentication
level on behalf of the Terminal Services client and target server.

Both types of endpoints (Static endpoints and well-known endpoints) MUST be supported. The
Terminal Services Terminal Server Runtime Interface Protocol MUST use the universally unique
identifier (UUID) as specified in section 1.9.

2.2 Common Data Types

In addition to RPC base types specified in [C706] and in [MS-RPCE], this document uses the following
definitions, as specified in [MS-DTYP]:

= BOOL

= BOOLEAN
= BYTE

= CHAR

= DWORD

= HANDLE
= HRESULT
* hyper

= LONG

= UCHAR

= UINT

= ULONG

= USHORT
= VOID

= WCHAR

The document also uses the following definitions:

= Some data structures described in this document, for example USERCONFIG and
WINSTATIONCLIENT, use ULONG members to store sets of BOOLEAN flags defined using C bit-
field syntax.

17/ 253

[MS-TSTS-Diff] - v20210625

Terminal Services Terminal Server Runtime Interface Protocol
Copyright © 2021 Microsoft Corporation

Release: June 25, 2021

= The variation in the use of data types is a result of the as-built interface.

The data types in the following sections are defined in the Microsoft Interface Definition Language
(MIDL) specification for this RPC interface, as specified in section 6.

2.2.1 Data Types

2.2.1.1 SESSION_HANDLE

This type is declared as follows:

typedef [context handle] void* SESSION HANDLE;

A handle to a session on the terminal server. It is returned by RpcOpenSession.

2.2.1.2 ENUM_HANDLE

This type is declared as follows:

typedef [context handle] void* ENUM HANDLE;

A handle representing the session enumeration object on the terminal server. It is returned by
RpcOpenEnum.

2.2.1.3 HLISTENER

This type is declared as follows:

typedef [context handle] void* HLISTENER;

A handle representing a listener running on the terminal server.

2.2.1.4 SERVER_HANDLE

This type is declared as follows:

typedef [context handle] void* SERVER HANDLE;

A handle returned by RpcWinStationOpenServer on the terminal server.

2.2.1.5 WINSTATIONNAME
An array of WCHAR (WINSTATIONNAME) characters that represent the name of a session.

This type is declared as follows:

typedef WCHAR WINSTATIONNAME [WINSTATIONNAME LENGTH + 1];

18/ 253

[MS-TSTS-Diff] - v20210625

Terminal Services Terminal Server Runtime Interface Protocol
Copyright © 2021 Microsoft Corporation

Release: June 25, 2021

2.2.1.6 DLLNAME

The DLLNAME type contains the name of a DLL.

typedef WCHAR DLLNAME [DLLNAME LENGTH + 1];

typedef WCHAR* PDLLNAME;

2.2.1.7 DEVICENAME

The DEVICENAME type contains the name of a device.

typedef WCHAR DEVICENAME [DEVICENAME LENGTH + 1];

typedef WCHAR* PDEVICENAME;

2.2.1.8 WINSTATIONINFOCLASS

The WINSTATIONINFOCLASS enumeration is used by RpcWinStationQueryInformation and

RpcWinStationSetInformation to indicate the class of data for which to either query or set on the

server. A brief description of each info class is appended to each enum value. See
RpcWinStationQueryInformation for information about classes of data that can be queried and
RpcWinStationSetInformation for classes of data that can be set.

The enum value WinStationUnused1 MAY be used.<12>

typedef enum WINSTATIONINFOCLASS

{

WinStationCreateData,
WinStationConfiguration,
WinStationPdParams,
WinStationWd,

WinStationPd,
WinStationPrinter,
WinStationClient,
WinStationModules,
WinStationInformation,
WinStationTrace,
WinStationBeep,
WinStationEncryptionOff,
WinStationEncryptionPerm,
WinStationNtSecurity,
WinStationUserToken,
WinStationUnusedl,
WinStationVideoData,
WinStationInitialProgram,
WinStationCd,
WinStationSystemTrace,
WinStationVirtualData,
WinStationClientData,
WinStationSecureDesktopEnter,
WinStationSecureDesktopExit,
WinStationLoadBalanceSessionTarget,
WinStationLoadIndicator,
WinStationShadowInfo,
WinStationDigProductId,
WinStationLockedState,
WinStationRemoteAddress,
WinStationIdleTime,
WinStationLastReconnectType,
WinStationDisallowAutoReconnect,
WinStationUnused2,
WinStationUnused3,
WinStationUnused4,

[MS-TSTS-Diff] - v20210625

Terminal Services Terminal Server Runtime Interface Protocol

Copyright © 2021 Microsoft Corporation
Release: June 25, 2021

19/ 253

WinStationUnused5,

WinStationReconnectedFromId,

WinStationEffectsPolicy,

WinStationType,

WinStationInformationEx

} WINSTATIONINFOCLASS;

WinStationCreateData: Query the data used to create an instance of WinStation.<13>
WinStationConfiguration: Query or set the WinStation parameters.
WinStationPdParams: Query or set the Protocol Drivers (PD) parameters.

WinStationWd: Query the Window Driver (WD) configuration. (Only one WD configuration can be
loaded.)

WinStationPd: Query the PD configuration. (Many PD configurations can be loaded).
WinStationPrinter: Query or set the Line Printer Terminal (LPT) mapping to printer queues.<14>
WinStationClient: Query information about the client.

WinStationModules: Query information about all client modules.

WinStationInformation: Query information about the WinStation.

WinStationTrace: Enable or disable WinStation tracing.<15>

WinStationBeep: Sound a beep in the WinStation.<16>

WinStationEncryptionOff: Turn off encryption.<17>

WinStationEncryptionPerm: Encryption is permanently on.<18>

WinStationNtSecurity: Select logon service<19> security desktop.<20>
WinStationUserToken: Query the primary access token of the logged-on user.
WinStationUnused1: Not used.

WinStationVideoData: Query the horizontal resolution, vertical resolution, and color depth.<21>

WinStationInitialProgram: Identify the initial program run by Terminal Services when the user logs
on.<22>

WinStationCd: Query the Client Device (CD) configuration. (Only one CD configuration can be
loaded.)<23>

WinStationSystemTrace: Enable or disable system tracing.<24>

WinStationVirtualData: Query the client virtual data.

WinStationClientData: Send data to a client.<25>

WinStationSecureDesktopEnter: Turn encryption on, if enabled.<26>
WinStationSecureDesktopExit: Turn encryption off, if enabled.<27>
WinStationLoadBalanceSessionTarget: Load balance information from a redirected client.<28>
WinStationLoadIndicator: Query load capacity information.

WinStationShadowlInfo: Query or set shadow state and parameters.<29>

20/ 253

[MS-TSTS-Diff] - v20210625

Terminal Services Terminal Server Runtime Interface Protocol
Copyright © 2021 Microsoft Corporation

Release: June 25, 2021

WinStationDigProductld: Get the WINSTATIONPRODID, as specified in section 2.2.2.36.<30>
WinStationLockedState: Used by the logon service<31> to notify applications and services.
WinStationRemoteAddress: Query the client IP address.

WinStationIdleTime: Query for the amount of time the WinStation is idle.<32>

WinStationLastReconnectType: Query if the last reconnect for this WinStation was manual or
auto-reconnect.<33>

WinStationDisallowAutoReconnect: Allow or disallow auto-reconnect for this WinStation.<34>
WinStationUnused2: Not used.
WinStationUnused3: Not used.
WinStationUnused4: Not used.
WinStationUnused5: Not used.

WinStationReconnectedFromlId: In the case of reconnected sessions, return the session ID of the
temporary session from which it was reconnected, or -1 if no temporary session was created.

WinStationEffectsPolicy: Return policies that differentiate among implementations.
WinStationType: Return the type of the session associated with this WinStation.<35>

WinStationInformationEx: Return the extended information about the WinStation.<36>

2.2.1.9 WINSTATIONSTATECLASS

The WINSTATIONSTATECLASS enumeration represents the current state of a session.

typedef enum WINSTATIONSTATECLASS
{
State Active = 0,
State Connected = 1,
State ConnectQuery = 2,
State Shadow = 3,
State Disconnected = 4,
State_Idle = 5,
State Listen = 6,
State Reset = 7,
State Down = 8,
State Init = 9
} WINSTATIONSTATECLASS;

State_Active: A user is logged on to a session and the client is connected.
State_Connected: A client is connected to a session but the user has not yet logged on.
State_ConnectQuery: A session is in the process of connecting to a client.
State_Shadow: A session is shadowing another session.

State_Disconnected: A user is logged on to the session but the client is currently disconnected from
the server.

State_1Idle: A session is waiting for a client to connect to the server.

State_Listen: A listener is waiting for connections from the Terminal Services client.

21/ 253

[MS-TSTS-Diff] - v20210625

Terminal Services Terminal Server Runtime Interface Protocol
Copyright © 2021 Microsoft Corporation

Release: June 25, 2021

State_Reset: A session is being reset. As a result, the user is logged off, the session is terminated,
and the client is disconnected.<37>

State_Down: A session is currently tearing down or is in the down state, indicating an error.

State_Init: A session is in the process of being initialized.

2.2.1.10 SDCLASS

The SDCLASS (stack driver class) enumeration is used to specify a type of binary or driver in the
union PDPARAMS and to indicate which structure in the union PDPARAMS applies to a given instance
of the PDPARAMS structure.

typedef enum _SDCLASS
{
SdNone = 0,
SdConsole,
SdNetwork,
SdAsync,
SdOemTransport
} SDCLASS;

SdNone: None.
SdConsole: Not used.
SdNetwork: Indicates the networking binaries.<38>

SdAsync: Indicates the async (modem) drivers.<39>

SdOemTransport: Indicates the user transport drivers.<40>

2.2.1.11 SHADOWCLASS

The SHADOWCLASS enumeration is used to indicate the shadow-related settings for a session
running on a terminal server.

typedef enum _SHADOWCLASS
{
Shadow Disable,
Shadow EnableInputNotify,
Shadow_EnableInputNoNotify,
Shadow_EnableNoInputNotify,
Shadow EnableNoInputNoNotify,
} SHADOWCLASS;

Shadow_Disable: Shadowing is disabled.

Shadow_EnableInputNotify: Permission is asked first from the session being shadowed. The
shadower is also permitted keyboard and mouse input.

Shadow_EnableInputNoNotify: Permission is not asked first from the session being shadowed. The
shadower is also permitted keyboard and mouse input.

Shadow_EnableNoInputNotify: Permission is asked first from the session being shadowed. The
shadower is not permitted keyboard and mouse input and MUST observe the shadowed session.

22 /253

[MS-TSTS-Diff] - v20210625

Terminal Services Terminal Server Runtime Interface Protocol
Copyright © 2021 Microsoft Corporation

Release: June 25, 2021

Shadow_EnableNoInputNoNotify: Permission is not asked first from the session being shadowed.
The shadower is not permitted keyboard and mouse input and MUST observe the shadowed
session.

2.2.1.12 RECONNECT_TYPE

The RECONNECT_TYPE enumeration specifies the reconnect type of the last session reconnect.

typedef enum RECONNECT TYPE

{
NeverReconnected = 0,
ManualReconnect = 1,
AutoReconnect = 2

} RECONNECT TYPE,
*PRECONNECT TYPE;

NeverReconnected: Session has never been reconnected to. This is the default type until the first
time the session has been reconnected to.

ManualReconnect: Session was disconnected from and was manually reconnected to by the user.

AutoReconnect: Session was disconnected from and was automatically reconnected to by the
Terminal Services client and the server negotiating the reconnect without input from the user.

2.2.1.13 CLIENTDATANAME
The CLIENTDATANAME type specifies the name of the client data being provided.

typedef CHAR CLIENTDATANAME [CLIENTDATANAME LENGTH + 1];
typedef CHAR * PCLIENTDATANAME;

The name has the following form:

name syntax: xxxyyyy<null>

The elements are as follows:
xxx: The OEM ID.
yyyy: Client data name.

<null>: Trailing null.

2.2.1.14 TNotificationId
Specifies the type of notification for which to wait from the terminal server.
It MUST be a bitwise OR of any of the values shown in the following table.

This type is declared as follows:

typedef ULONG TNotificationId;

23/ 253

[MS-TSTS-Diff] - v20210625

Terminal Services Terminal Server Runtime Interface Protocol
Copyright © 2021 Microsoft Corporation

Release: June 25, 2021

Value Meaning

WTS_NOTIFY_NONE No notification

0x0

WTS_NOTIFY_CREATE Session creation notification

0Ox1

WTS_NOTIFY_CONNECT Session connection notification
0x2

WTS_NOTIFY_DISCONNECT Session disconnection notification
0x4

WTS_NOTIFY_LOGON Session logon notification

0x8

WTS_NOTIFY_LOGOFF Session logoff notification

0x10

WTS_NOTIFY_SHADOW_START Session shadow start notification
0x20

WTS_NOTIFY_SHADOW_STOP Session shadow stop notification
0x40

WTS_NOTIFY_TERMINATE Session termination notification
0x80

WTS_NOTIFY_CONSOLE_CONNECT Console session connection notification
0x100

WTS_NOTIFY_CONSOLE_DISCONNECT | Console session disconnect notification
0x200

WTS_NOTIFY_LOCK Session lock notification

0x400

WTS_NOTIFY_UNLOCK Session unlock notification

0x800

WTS_NOTIFY_ALL All notifications

OXffffffff

2.2.1.15 NOTIFY_HANDLE
A handle to a notification object.
Used in asynchronous calls such as RpcRegisterAsyncNotification and RpcWaitAsyncNotification.

This type is declared as follows:

typedef [context handle] void* NOTIFY HANDLE;

24 /253

[MS-TSTS-Diff] - v20210625

Terminal Services Terminal Server Runtime Interface Protocol
Copyright © 2021 Microsoft Corporation

Release: June 25, 2021

2.2.1.16 BOUNDED_ULONG
A bounded ULONG.

This type is declared as follows:

typedef [range (0, 0x8000)] ULONG BOUNDED ULONG;

2.2.1.17 UINT_PTR

An unsigned integer, whose length is dependent on processor word size.

#if defined(WING64)

typedef unsigned int64 UINT PTR;
#else

typedef unsigned int UINT_ PTR;
#endif

2.2.1.18 SESSIONTYPE

The SESSIONTYPE enumeration defines the type of the session.

typedef enum SessionType

{
SESSIONTYPE UNKNOWN = 0,
SESSIONTYPE SERVICES,
SESSIONTYPE LISTENER,
SESSIONTYPE REGULARDESKTOP,
SESSIONTYPE ALTERNATESHELL,
SESSIONTYPE REMOTEAPP,
SESSIONTYPE MEDIACENTEREXT

} SESSIONTYPE;

SESSIONTYPE_UNKNOWN: The type of the session cannot be determined.

SESSIONTYPE_SERVICES: The session is used only to run the operating system services, and that
no user can be logged on to the session.

SESSIONTYPE_LISTENER: The session is used only to run the Terminal Services listeners, and that
no user can be logged on to the session.

SESSIONTYPE_REGULARDESKTOP: The session is connected by using Terminal Services and is
running the standard shell.<41>

SESSIONTYPE_ALTERNATESHELL: The session is connected by using Terminal Services and is
running an alternate shell instead of the standard shell.

SESSIONTYPE_REMOTEAPP: The session is a RAIL (Remote Applications Integrated Locally)
session as defined in [MS-RDPERP].

SESSIONTYPE_MEDIACENTEREXT: The session was connected by using a media center extender
device. For more information about the media center, see [MSFT-WINMCE].

2.2.1.19 SHADOW_CONTROL_REQUEST

The SHADOW_CONTROL_REQUEST enumeration specifies if a shadow of user input control is being
requested.

25 /253

[MS-TSTS-Diff] - v20210625

Terminal Services Terminal Server Runtime Interface Protocol
Copyright © 2021 Microsoft Corporation

Release: June 25, 2021

typedef enum

{
SHADOW_CONTROL_REQUEST VIEW = 0,
SHADOW CONTROL REQUEST TAKECONTROL,
SHADOW CONTROL REQUEST Count

} SHADOW CONTROL REQUEST;

SHADOW_CONTROL_REQUEST_VIEW: The shadow request is for a view-only session. User input
is not being requested.

SHADOW_CONTROL_REQUEST_TAKECONTROL: User input control is being requested.

SHADOW_CONTROL_REQUEST_Count: Count of enum values.

2.2.1.20 SHADOW_PERMISSION_REQUEST

The SHADOW_PERMISSION_REQUEST enumeration specifies whether user permission is being
requested.

typedef enum

{
SHADOW_PERMISSION REQUEST SILENT = 0,
SHADOW PERMISSION REQUEST REQUESTPERMISSION,
SHADOW PERMISSION REQUEST Count

} SHADOW PERMISSION REQUEST;

SHADOW_PERMISSION_REQUEST_SILENT: Permission is not requested.

SHADOW_PERMISSION_REQUEST_REQUESTPERMISSION: User permission will be requested
before the shadow session begins.

SHADOW_PERMISSION_REQUEST_Count: Count of enum values.

2.2.1.21 SHADOW_REQUEST_RESPONSE

The SHADOW_REQUEST_RESPONSE enumeration defines the response to a shadow session
request.

typedef enum

{
SHADOW_REQUEST RESPONSE_ALLOW = 0,
SHADOW_REQUEST RESPONSE_DECLINE,
SHADOW_REQUEST RESPONSE POLICY PERMISSION REQUIRED,
SHADOW_REQUEST RESPONSE POLICY DISABLED,
SHADOW_REQUEST RESPONSE_POLICY VIEW_ ONLY,
SHADOW_REQUEST RESPONSE_POLICY VIEW ONLY PERMISSION REQUIRED,
SHADOW_REQUEST RESPONSE SESSION ALREADY CONTROLLED

} SHADOW REQUEST RESPONSE;

SHADOW_REQUEST_RESPONSE_ALLOW: The user has granted the request for permission to
shadow the session.

SHADOW_REQUEST_RESPONSE_DECLINE: The user has declined the request for permission to
shadow the session.

SHADOW_REQUEST_RESPONSE_POLICY_PERMISSION_REQUIRED: Permission was not
requested, but group policy specifies that permission is required.

26 /253

[MS-TSTS-Diff] - v20210625

Terminal Services Terminal Server Runtime Interface Protocol
Copyright © 2021 Microsoft Corporation

Release: June 25, 2021

SHADOW_REQUEST_RESPONSE_POLICY_DISABLED: Shadowing has been disabled by group
policy.

SHADOW_REQUEST_RESPONSE_POLICY_VIEW_ONLY: A request for control was made, but
group policy exclusively allows view-only shadowing.

SHADOW_REQUEST_RESPONSE_POLICY_VIEW_ONLY_PERMISSION_REQUIRED: A request
was made to take control without requesting permission, but group policy exclusively allows view-
only shadowing and also requires permission.

SHADOW_REQUEST_RESPONSE_SESSION_ALREADY_CONTROLLED: The session cannot be
shadowed because another shadow session is currently controlling the session.

2.2.2 Structures

2.2.2.1 SESSION_FILTER

The SESSION_FILTER enumeration specifies the types of filters to apply when retrieving the list of
session IDs running on a terminal server. There is only one type of filter exposed by RPC.

typedef enum SESSION FILTER
{

SF_SERVICES SESSION POPUP
} SESSION FILTER;

SF_SERVICES_SESSION_POPUP: Returns all sessions in a logged-on state.

2.2.2.2 PROTOCOLSTATUS_INFO_TYPE

The PROTOCOLSTATUS_INFO_TYPE enumeration specifies the protocol status information
requested for a particular session running on a terminal server.

typedef enum
{
PROTOCOLSTATUS INFO BASIC = O,
PROTOCOLSTATUS_INFO_ EXTENDED =
} PROTOCOLSTATUS_ INFO_TYPE;

1,

PROTOCOLSTATUS_INFO_BASIC: Returns basic information about the protocol status in a
PROTOCOLSTATUS structure.

PROTOCOLSTATUS_INFO_EXTENDED: Returns extended information about the protocol status.
Extended information is returned in a PROTOCOLSTATUSEX structure.

2.2.2.3 QUERY_SESSION_DATA_TYPE

The QUERY_SESSION_DATA_TYPE enumeration specifies the type of session information that can be
requested for a particular session running on a terminal server.

typedef enum
{
QUERY_ SESSION_DATA MODULE = 0,
QUERY_ SESSION_DATA WDCONFIG,
QUERY SESSION DATA VIRTUALDATA,
QUERY SESSION DATA LICENSE,
QUERY_ SESSION_DATA DEVICEID,
QUERY SESSION_DATA LICENSE_ VALIDATION

27/ 253

[MS-TSTS-Diff] - v20210625

Terminal Services Terminal Server Runtime Interface Protocol
Copyright © 2021 Microsoft Corporation

Release: June 25, 2021

} QUERY SESSION DATA TYPE;

QUERY_SESSION_DATA_MODULE: Retrieves data about protocol-specific binaries loaded for the
given Terminal Services session. The type of the data is PBYTE.

QUERY_SESSION_DATA_WDCONFIG: Retrieves protocol driver configuration data for the session.
The data returned is of type WDCONFIG.

QUERY_SESSION_DATA_VIRTUALDATA: Retrieves data about virtual channels for the given
Terminal Services session. The data returned is of type PBYTE.

QUERY_SESSION_DATA_LICENSE: Retrieves data about the licensing policies associated with a
given Terminal Services session.<42><43>

QUERY_SESSION_DATA_DEVICEID: Retrieves the device ID of the client connected to a given
Terminal Services session. The data returned is of type PBYTE.<44>

QUERY_SESSION_DATA_LICENSE_VALIDATION: Retrieves the data required to validate the
license associated with a given Terminal Services session. The data returned is of type
WINSTATIONVALIDATIONINFORMATION.<45>

2.2.2.4 PSESSIONENUM

PSESSIONENUM is a pointer to a structure containing information about the sessions running on the
terminal server. It is returned by RpcGetEnumResult.

typedef struct SESSIONENUM {
DWORD Level;
[switch is(Level)] SessionInfo Data;
} SESSIONENUM,
*PSESSIONENUM;

Level: The level of information contained in the Data member; the valid values are 1 and 2.

Data: Contains information at a specified level of detail about sessions running on a computer.

2.2.2.4.1 SessionInfo

The SessionInfo is a union of structures, each structure providing different levels of detail about
sessions running on a computer, as specified in sections 2.2.2.4.1.1 and 2.2.2.4.1.2 respectively.

typedef
[switch type (DWORD)]
union SessionInfo {
[case (1)]
SESSIONENUM_LEVEL1 SessionEnum_Levell;
[case(2)]
SESSIONENUM LEVEL2 SessionEnum Level2;
} SessionInfo,
*PSessionInfo;

SessionEnum_Levell: A SESSIONENUM_LEVEL1 structure containing a level of information about
sessions running on a computer.

SessionEnum_Level2: A SESSIONENUM_LEVEL?2 structure containing a level of information about
sessions running on a computer.

2.2.2.4.1.1 SESSIONENUM_LEVEL1

28 /253

[MS-TSTS-Diff] - v20210625

Terminal Services Terminal Server Runtime Interface Protocol
Copyright © 2021 Microsoft Corporation

Release: June 25, 2021

The SESSIONENUM_LEVEL1 structure contains basic information about sessions running on a
computer.

typedef struct SESSIONENUM LEVEL1l ({
LONG SessionId;
LONG State;
WCHAR Name [33];
} SESSIONENUM LEVELI,
*PSESSIONENUM LEVELI;

SessionlId: An identifier assigned by the operating system to the session contained in this structure.
State: The state of the session, as specified in section 3.3.4.1.8.

Name: A string that contains the name of the session assigned by Terminal Services followed by the
terminating NULL character.

2.2.2.4.1.2 SESSIONENUM_LEVEL2

The SESSIONENUM_LEVEL?2 structure contains information about sessions running on a computer that
is more detailed than the information contained in SESSIONENUM_LEVEL1.

typedef struct SESSIONENUM LEVELZ2 {
LONG SessionId;
LONG State;
WCHAR Name [33];
ULONG Source;
BOOL bFullDesktop;
GUID SessionType;
} SESSIONENUM LEVELZ,
*PSESSIONENUM LEVELZ2;

SessionlId: An identifier assigned by the operating system to the session contained in this structure.
State: The state of the session, as specified in section 3.3.4.1.8.

Name: A string that contains the name of the session followed by the terminating NULL character.
Source: The parameter is always set to zero.

bFullDesktop: The parameter is always set to TRUE.

SessionType: Describes the type of the session.<46>

2.2.2.4.1.3 SESSIONENUM_LEVEL3

The SESSIONENUM_LEVEL3 structure contains information about sessions running on a computer that
is more detailed than the information contained in SESSIONENUM_LEVEL1 and
SESSIONENUM_LEVEL?2.

typedef struct SESSIONENUM LEVEL3 {

LONG SessionId;

LONG State;

WCHAR Name [33];

ULONG Source;

BOOL bFullDesktop;

GUID SessionType;

ULONG ProtoDataSize;

[size is(ProtoDataSize)] UCHAR* pProtocolData;
} SESSIONENUM_LEVEL3,

29/ 253

[MS-TSTS-Diff] - v20210625

Terminal Services Terminal Server Runtime Interface Protocol
Copyright © 2021 Microsoft Corporation

Release: June 25, 2021

*PSESSIONENUM LEVEL3;

Sessionld: An identifier assigned by the operating system to the session contained in this structure.

State: The state of the session, as specified in section 3.3.4.1.8.

Name: A string that contains the name of the session followed by the terminating NULL character.

Source: The parameter is always set to zero.

bFullDesktop: The parameter is always set to TRUE.

SessionType: The parameter is always set to zero.

ProtoDataSize: Size of data, in bytes, contained in the pProtocolData member.

pProtocolData: Data about the protocol status between the terminal server client and server. This
data will be of type PROTOCOLSTATUSEX.

2.2.2.5 PSESSIONENUM_EX

The PSESSIONENUM_EX is a pointer to a structure containing information about the sessions running
on the terminal server. It is returned by RpcGetEnumResultEx.

typedef struct SESSIONENUM EX ({
DWORD Level;
[switch is(Level)] SessionInfo Ex Data;
} SESSIONENUM EX,
*PSESSIONENUM_EX;

Level: The level of information contained in Data; the valid values are 1, 2, and 3.

Value | Meaning

1 The union SessionInfo_Ex has the SessionEnum_Levell structure.
2 The union SessionInfo_Ex has the SessionEnum_Level2 structure.
3 The union SessionInfo_Ex has the SessionEnum_Level3 structure.

Data: Contains information at a specified level of detail about sessions running on a computer. This
parameter is of type SessionInfo_Ex. If Level is set to 1, the union SessionInfo_Ex has the
SessionEnum_Levell structure. If Level is set to 2, the union SessionInfo_Ex has the
SessionEnum_Level2 structure. If Level is set to 3, the union SessionInfo_Ex has the
SessionEnum_Level3 structure.

2.2.2.5.1 SessionInfo_Ex

The SessionInfo_Ex is a union of structures, each structure providing different levels of detail about
sessions running on a computer, as specified in sections 2.2.2.4.1.1, 2.2.2.4.1.2, and 2.2.2.4.1.3
respectively.

typedef
[switch type (DWORD)]
union SessionInfo Ex {
[case (1)]
SESSIONENUM_ LEVEL1 SessionEnum_Levell;
[case(2)]
SESSIONENUM LEVELZ2 SessionEnum Level2;

30/ 253

[MS-TSTS-Diff] - v20210625

Terminal Services Terminal Server Runtime Interface Protocol
Copyright © 2021 Microsoft Corporation

Release: June 25, 2021

[case(3)]
SESSIONENUM LEVEL3 SessionEnum Level3;
} SessionInfo Ex,
*PSessionInfo Ex;

SessionEnum_Levell: A SESSIONENUM_LEVEL1 structure containing a level of information about
sessions running on a computer.

SessionEnum_Level2: A SESSIONENUM_LEVEL?2 structure containing a level of information about
sessions running on a computer.

SessionEnum_Level3: A SESSIONENUM_LEVEL3 structure containing a level of information about
sessions running on a computer.

2.2.2.6 PEXECENVDATA

PEXECENVDATA is a pointer to a structure containing information about the sessions running on the
terminal server and the sessions running on virtual machines hosted on the server.<47> It is returned
by RpcGetAllSessions.

typedef struct EXECENVDATA {
DWORD Level;
[switch is(Level)] ExecEnvData Data;
} EXECENVDATA,
*PEXECENVDATA;

Level: The level of information contained in Data; the valid values are 1 and 2.

Value | Meaning

1 The union ExecEnvData has the EXECENVDATA_LEVEL1 structure.

2 The union ExecEnvData has the EXECENVDATA_LEVEL?2 structure.

Data: Contains information at a specified level of detail about sessions running on a computer. This is
of type ExecEnvData.

2.2.2.6.1 ExecEnvData

The ExecEnvData is a union of structures, each structure providing different levels of detail about
sessions running on a computer and sessions running on virtual machines hosted on the server,<48>
as specified in sections 2.2.2.6.1.1 and 2.2.2.6.1.2 respectively.

typedef
[switch type (DWORD)]
union _ExecEnvData {
[case (1)]
EXECENVDATAiLEVELl ExecEnvEnumiLevell;
[case(2)]
EXECENVDATA LEVEL2 ExecEnvEnum Level2;
} ExecEnvData,
*PExecEnvData;

ExecEnvEnum_Levell: An EXECENVDATA_LEVEL1 structure containing a level of information about
sessions running on a computer and virtual machines hosted on the computer.<49>

ExecEnvEnum_Level2: An EXECENVDATA_LEVEL?2 structure containing a level of information about
sessions running on a computer and virtual machines hosted on the computer.<50>

31/253

[MS-TSTS-Diff] - v20210625

Terminal Services Terminal Server Runtime Interface Protocol
Copyright © 2021 Microsoft Corporation

Release: June 25, 2021

2.2.2.6.1.1 EXECENVDATA_LEVEL1

The EXECENVDATA_LEVEL1 structure contains basic information about sessions running on a
computer.

typedef struct EXECENVDATA LEVEL1l ({
LONG ExecEnvId;
LONG State;
WCHAR SessionName[33];

} EXECENVDATAiLEVELl,
*PEXECENVDATAiLEVELl;

ExecEnvId: An identifier assigned to the session contained in this structure by the component that
aggregates the sessions on the server and sessions within virtual machines hosted on the
server.<51>

State: The state of the session, as specified in section 3.3.4.1.8.

SessionName: A string that contains the name of the session assigned by Terminal Services
followed by the terminating NULL character.

2.2.2.6.1.2 EXECENVDATA_LEVEL2

The EXECENVDATA_LEVEL?2 structure contains information about sessions running on a computer that
is more detailed than the information contained in EXECENVDATA_LEVEL1.

typedef struct _EXECENVDATA LEVEL2 {
LONG ExecEnvId;
LONG State;
WCHAR SessionName[33];
LONG AbsSessionId;
WCHAR HostName [33];
WCHAR UserName[33];
WCHAR DomainName [33];
WCHAR FarmName [33];

} EXECENVDATA_LEVEL2,
*PEXECENVDATA_LEVEL2;

ExecEnvId: An identifier assigned to the session contained in this structure by the component that
aggregates the sessions on the server and sessions within virtual machines hosted on the
server.<52>

State: The state of the session, as specified in section 3.3.4.1.8.

SessionName: A string that contains the name of the session followed by the terminating NULL
character.

AbsSessionId: An identifier assigned by the operating system running in the virtual machine to the
session contained in this structure. If the session contained in this structure is not running under
the virtual machine, the value of AbsSessionld is same as ExecEnvId.

HostName: A string that contains the name of the machine that hosts the session contained in this
structure followed by the terminating NULL character.

UserName: A string that contains the name of the user logged onto the session followed by the
terminating NULL character.

DomainName: A string that contains the domain of the user logged onto the session followed by the
terminating NULL character.

32 /253

[MS-TSTS-Diff] - v20210625

Terminal Services Terminal Server Runtime Interface Protocol
Copyright © 2021 Microsoft Corporation

Release: June 25, 2021

FarmName: A string that contains the farm name associated with the session followed by the
terminating NULL character.

2.2.2.7 PEXECENVDATAEX

PEXECENVDATAEX is a pointer to a structure containing information about the sessions running on
the terminal server and the sessions running on virtual machines hosted on the server.<53> It is
returned by RpcGetAllSessionsEx.

typedef struct EXECENVDATAEX {

DWORD Level;

[switch is(Level)] ExecEnvDataEx Data;
} EXECENVDATAEX,
*PEXECENVDATAEX;

Level: The level of information contained in the Data member; the only valid value is 1.

Value | Meaning

1 The union ExecEnvDataEx has the EXECENVDATAEX_LEVEL1 structure.

Data: Contains information at a specified level of detail about sessions running on a computer. This is
of type ExecEnvDataEx.

2.2.2.7.1 ExecEnvDataEx

ExecEnvDataEx is a union of structures that provides information about sessions running on a

computer and sessions running on virtual machines hosted on the server,<54> as specified in section
2.2.2.7.1.1.

typedef
[switch type (DWORD)]
union ExecEnvDataEx {
[case (1)]
EXECENVDATAEX LEVEL1 ExecEnvEnum_ Levell;
} ExecEnvDataEx,
*PExecEnvDataEx;

ExecEnvEnum_Levell: An EXECENVDATAEX_LEVEL1 structure that contains information about
sessions running on a computer and virtual machines hosted on the computer.<55>

2.2.2.7.1.1 EXECENVDATAEX_LEVEL1

The EXECENVDATAEX_LEVEL1 structure contains information about sessions running on a
computer.

typedef struct 7EXECENVDATAEX7LEVEL1 {
LONG ExecEnvId;
LONG State;
LONG AbsSessionId;
[string, max is (256
[string, max is (256
[string, max is (256
[string, max is (256
[string, max_is (256)
} EXECENVDATAEXiLEVELl,
*PEXECENVDATAEXiLEVELl;

)] LPWSTR pszSessionName;
)] LPWSTR pszHostName;
)] LPWSTR pszUserName;
)] LPWSTR pszDomainName;
] LPWSTR pszFarmName;

33/ 253
[MS-TSTS-Diff] - v20210625
Terminal Services Terminal Server Runtime Interface Protocol

Copyright © 2021 Microsoft Corporation
Release: June 25, 2021

ExecEnvId: An identifier assigned to the session contained in this structure by the component that
aggregates the sessions on the server and sessions within virtual machines hosted on the server.

State: The state of the session, as specified in section 3.3.4.1.8.

AbsSessionId: An identifier assigned by the operating system running in the virtual machine to the
session contained in this structure. If the session contained in this structure is not running under
the virtual machine, the value of AbsSessionld is the same as the value of the ExecEnvId

member.

pszSessionName: A string that contains the name of the session followed by the terminating NULL
character.

pszHostName: A string that contains the name of the machine that hosts the session contained in
this structure, followed by the terminating NULL character.

pszUserName: A string that contains the name of the user logged onto the session followed by the
terminating NULL character.

pszDomainName: A string that contains the domain of the user logged onto the session followed by
the terminating NULL character.

pszFarmName: A string that contains the farm name associated with the session followed by the
terminating NULL character.
2.2.2.8 PLSMSESSIONINFORMATION

PLSMSESSIONINFORMATION is a pointer to a LSMSESSIONINFORMATION structure containing
information about a session running on a terminal server.

typedef struct LSMSessionInformation {
[string] WCHAR* pszUserName;
[string] WCHAR* pszDomain;
[string] WCHAR* pszTerminalName;
LONG SessionState;
BOOL DesktopLocked;
hyper ConnectTime;
hyper DisconnectTime;
hyper LogonTime;
} LSMSESSIONINFORMATION,
*PLSMSESSIONINFORMATION;
pszUserName: The name of the user logged on to the session.
pszDomain: The domain to which the currently logged-on user belongs.
pszTerminalName: The name of the terminal associated with the specific session.
SessionState: The state of the session, as described in section 3.3.4.1.8.
DesktopLocked: Set to TRUE if the session is currently locked; FALSE otherwise.
ConnectTime: The time of the most recent connection to the session.
Time is measured as the number of 100-nanosecond intervals since January 1, 1601 (UTC).
DisconnectTime: The time of the most recent disconnection from the session.
Time is measured as the number of 100-nanosecond intervals since January 1, 1601 (UTC).

LogonTime: The time of the most recent logon to the session.

34 /253

[MS-TSTS-Diff] - v20210625

Terminal Services Terminal Server Runtime Interface Protocol
Copyright © 2021 Microsoft Corporation

Release: June 25, 2021

Time is measured as the number of 100-nanosecond intervals since January 1, 1601 (UTC).

2.2.2.9 PLSMSESSIONINFORMATION_EX

The PLSMSESSIONINFORMATION_EX is a pointer to a LSMSESSIONINFORMATION_EX structure
containing information about a session running on a terminal server and the level of detail of the
information provided.

typedef struct _LSMSESSIONINFORMATION EX ({
DWORD Level;
[switch is(Level)] LSM_SESSIONINFO EX Data;
} LSMSESSIONINFORMATION EX,
*PLSMSESSIONINFORMATION EX;

Level: The level of detail provided about the session. This field MUST be set to 1.
Data: Information about the session. This is of type LSM_SESSIONINFO_EX.

2.2.2.10 LSM_SESSIONINFO_EX

The LSM_SESSIONINFO_EX is a union of structures, each member containing a different level of
information about a terminal server session.

typedef
[switch type (DWORD)]
union LSM SESSIONINFO EX {
[case (1)]
LSM SESSIONINFO EX LEVELl LSM SessionInfo Levell;
} LSM_SESSIONINFO EX,
*PLSM_SESSIONINFO EX;

LSM_SessionInfo_Levell: The only supported member of the union. It contains session
information of level 1. It is of type LSM_SESSIONINFO_EX_LEVEL1.

2.2.2.11 LSM_SESSIONINFO_EX_LEVEL1

The LSM_SESSIONINFO_EX_LEVEL1 is a structure containing information about a session running on a
terminal server.

typedef struct LSM SESSIONINFO EX LEVELL {

LONG SessionState;

LONG SessionFlags;

WCHAR SessionName [33];

WCHAR DomainName[18];

WCHAR UserName[21];

hyper ConnectTime;

hyper DisconnectTime;

hyper LogonTime;

hyper LastInputTime;

ULONG ProtocolDataSize;

[size is(ProtocolDataSize)] PBYTE ProtocolData;
} LSM_SESSIONINFO EX LEVELI,
*PLSM_SESSIONINFO EX LEVELL;

SessionState: The state of the session, as described in section 3.3.4.1.8.

SessionFlags: The state of the session. The SessionFlags member MUST be one of the values
shown in the following table.

35/253

[MS-TSTS-Diff] - v20210625

Terminal Services Terminal Server Runtime Interface Protocol
Copyright © 2021 Microsoft Corporation
Release: June 25, 2021

Value Meaning

WTS_SESSIONSTATE_UNKNOWN | Unknown session state
OxFFFFFFFF

WTS_SESSIONSTATE_LOCK Session is locked
0x00000000

WTS_SESSIONSTATE_UNLOCK Session is unlocked
0x00000001

SessionName: The name of the terminal associated with the specific session.
DomainName: The domain to which the currently logged-on user belongs.
UserName: The name of the user logged on to the session.
ConnectTime: The time of the most recent connection to the session.

Time is measured as the number of 100-nanosecond intervals since January 1, 1601 (UTC).
DisconnectTime: The time of the most recent disconnection from the session.

Time is measured as the number of 100-nanosecond intervals since January 1, 1601 (UTC).
LogonTime: The time of the most recent logon to the session.

Time is measured as the number of 100-nanosecond intervals since January 1, 1601 (UTC).

LastInputTime: The time the session last received input. This is an indicator of how long a session
has been idle.

Time is measured as the number of 100-nanosecond intervals since January 1, 1601 (UTC).
ProtocolDataSize: Size of data, in bytes, contained in ProtocolData.
ProtocolData: Data about the protocol status between the terminal server client and server. This
data is of type PROTOCOLSTATUSEX.
2.2.2.12 PLISTENERENUM

PLISTENERENUM contains information about one terminal server listener and the level of detail of the
information provided.

typedef struct LISTENERENUM {
DWORD Level;
[switch is(Level)] ListenerInfo Data;
} LISTENERENUM,
*PLISTENERENUM;

Level: The level of detail provided about the listener. The only supported value is 1.

Data: Information about the listener. This is of the type ListenerInfo.

2.2.2.12.1 ListenerInfo

ListenerInfo is a union of structures, each member containing a different level of information about a
terminal server listener.

36 /253

[MS-TSTS-Diff] - v20210625

Terminal Services Terminal Server Runtime Interface Protocol
Copyright © 2021 Microsoft Corporation

Release: June 25, 2021

typedef
[switch type (DWORD)]
union ListenerInfo ({
[case(1)]
LISTENERENUM LEVELl ListenerEnum Levell;
[default]
} ListenerInfo,
*PListenerInfo;

ListenerEnum_Levell: The only supported member of the union. It contains listener information of
level 1. It is of the type LISTENERENUM_LEVELL1.

2.2.2.12.1.1 LISTENERENUM_LEVEL1

LISTENERENUM_LEVEL1 is a structure containing information of level 1 detail about a Terminal
Services listener.

typedef struct LISTENERENUM LEVEL1 ({
LONG Id;
BOOL bListening;
WCHAR Name [33];
} LISTENERENUM LEVELI,
*PLISTENERENUM LEVELIL;

Id: The identifier associated with the listener.
bListening: Set to TRUE if the listener is listening for incoming connections; FALSE otherwise.

Name: A string that contains the name of the listener followed by the terminating NULL character.

2.2.2.13 LOGONID

LOGONID is a macro defined to be the structure SESSIONID. This type represents information about
the session or WinStation identified by the identifier SessionId. For more information, see the macro
definition in section 6.5.

typedef struct SESSIONID ({
union {
ULONG SessionId;
ULONG LogonId;
} _SessionId LogonId union;
WINSTATIONNAME WinStationName;
WINSTATIONSTATECLASS State;
} SESSIONID,
*PSESSIONID;

SessionId: In a union with Logonld. It represents WinStation or session identifier numbered 0
through 65535 for Terminal Services sessions. A number of 65536 or greater indicates that the
WinStation is a listening WinStation.

LogonId: In a union with SessionId. It is used internally only, within Terminal Services code.

WinStationName: The name of the WinStation represented by this structure. See section 2.2.1.5 for
more information on the type WINSTATIONNAME.

State: The current state of the WinStation. See section 2.2.1.9 for more information on the type
WINSTATIONSTATECLASS.

37/ 253

[MS-TSTS-Diff] - v20210625

Terminal Services Terminal Server Runtime Interface Protocol
Copyright © 2021 Microsoft Corporation
Release: June 25, 2021

2.2.2.14 TS_PROCESS_INFORMATION_NT4
The TS_PROCESS_INFORMATION_NT4 structure is returned by RpcWinStationEnumerateProcesses.

typedef struct TS PROCESS INFORMATION NT4 {
ULONG MagicNumber;
ULONG LogonId;
PVOID ProcessSid;
ULONG Pad;
} TS PROCESS INFORMATION NT4,
*PTS PROCESS INFORMATION NT4;

MagicNumber: MUST be set to TS_PROCESS_INFO_MAGIC_NT4 (0x23495452).
Logonld: The session ID of the process.

ProcessSid: The security identifier (SID), as specified in [MS-DTYP] section 2.4.2, of the owner of
the process.

Pad: MUST be set to 0.

2.2.2.15 TS_ALL_PROCESSES_INFO

The TS_ALL_PROCESSES_INFO structure contains data on all the processes on the system
accessible to the user who issued the call.

typedef struct _TS_ALL_ PROCESSES_ INFO ({

PTS_SYS PROCESS INFORMATION pTsProcessInfo;

DWORD SizeOfSid;
#ifdef midl

[size is(Size0OfSid)] PBYTE pSid;
#else

PBYTE pSid;
#endif
} TS_ALL_ PROCESSES_INFO,

*PTS_ALL_ PROCESSES_INFO;

pTsProcessInfo: Pointer to the process information TS_SYS_PROCESS_INFORMATION.
SizeOfSid: Size of pSid, in bytes.

pSid: The security identifier (SID), as specified in [MS-DTYP], of the owner of the process.

2.2.2.15.1 TS_SYS_PROCESS_INFORMATION

The TS_SYS_PROCESS_INFORMATION structure contains information about a process running on a
system.

typedef struct TS SYS PROCESS INFORMATION {
ULONG NextEntryOffset;
ULONG NumberOfThreads;
LARGE INTEGER SpareLil;
LARGE INTEGER SpareLiZ2;
LARGE INTEGER SpareLi3;
LARGE INTEGER CreateTime;
LARGE_INTEGER UserTime;
LARGE_INTEGER KernelTime;
TS_UNICODE_STRING ImageName;
LONG BasePriority;
DWORD UniqueProcessId;

38/ 253

[MS-TSTS-Diff] - v20210625

Terminal Services Terminal Server Runtime Interface Protocol
Copyright © 2021 Microsoft Corporation
Release: June 25, 2021

DWORD InheritedFromUniqueProcessId;
ULONG HandleCount;
ULONG SessionId;
ULONG SpareUl3;
SIZE_T PeakVirtualSize;
SIZE T VirtualSize;
ULONG PageFaultCount;
ULONG PeakWorkingSetSize;
ULONG WorkingSetSize;
SIZE T QuotaPeakPagedPoolUsage;
SIZE T QuotaPagedPoolUsage;
SIZE T QuotaPeakNonPagedPoolUsage;
SIZE T QuotaNonPagedPoolUsage;
SIZE T PagefileUsage;
SIZE T PeakPagefileUsage;
SIZE_T PrivatePageCount;
} TS SYS PROCESS INFORMATION,

*PTS SYS PROCESS INFORMATION;
NextEntryOffset: Offset to the start of data for the next process.
NumberOfThreads: Number of threads in the process.
Sparelil: Reserved.

Spareli2: Reserved.
SparelLi3: Reserved.

CreateTime: Creation time of the process. Time is measured as the number of 100-nanosecond
intervals since January 1, 1601 (UTC).

UserTime: Amount of time in milliseconds the process has spent running in user mode.
KernelTime: Amount of time in milliseconds the process has spent running in kernel mode.
ImageName: String containing the process's image name.

BasePriority: Base priority of the process.

UniqueProcessId: Process's unique process ID.

InheritedFromUniqueProcessId: Parent process's unique process ID.

HandleCount: Current number of handles open in the process.

Sessionld: Session identifier of the process session.

SpareUI3: Reserved.

PeakVirtualSize: Peak size of virtual memory, in bytes, used by the process.
VirtualSize: Current size of virtual memory, in bytes, used by the process.
PageFaultCount: Number of page faults in the process.

PeakWorkingSetSize: Peak size of the working set in kilobytes of the process.
WorkingSetSize: Current size, in bytes, of the working set of the process.
QuotaPeakPagedPoolUsage: Peak quota charged to the process for paged pool usage.

QuotaPagedPoolUsage: Current quota charged to the process for paged pool usage.

39/ 253

[MS-TSTS-Diff] - v20210625

Terminal Services Terminal Server Runtime Interface Protocol
Copyright © 2021 Microsoft Corporation
Release: June 25, 2021

QuotaPeakNonPagedPoolUsage: Peak quota charged to the process for nonpaged pool usage.
QuotaNonPagedPoolUsage: Current quota charged to the process for nonpaged pool usage.
PagefileUsage: Amount of bytes of page file storage in use by the process.
PeakPagefileUsage: Peak amount of bytes of page file storage in use by the process.

PrivatePageCount: Current number of memory pages allocated by the process.

2.2.2.15.1.1 TS_UNICODE_STRING

The TS_UNICODE_STRING structure contains a Unicode string.

typedef struct TS UNICODE STRING {
USHORT Length;
USHORT MaximumLength;
#ifdef midl
[size is(MaximumLength),length is(Length)]PWSTR Buffer;
#else
PWSTR Buffer;
#endif
} TS_UNICODE_ STRING;

Length: The actual length of the string currently stored in the Buffer member, in bytes.
MaximumLength: The maximum length of the string that can be stored in Buffer, in bytes.

Buffer: A wide character string that MUST NOT be followed by the terminating NULL character.

2.2.2.16 TS_ALL_PROCESSES_INFO_NT6

The TS_ALL_PROCESSES_INFO_NT®6 structure contains data on all the processes on the system
that are accessible using the user's credentials.

typedef struct TS ALL PROCESSES INFO NT6 {
PTS SYS PROCESS INFORMATION NT6 pTsProcessInfo;
DWORD SizeOfSid;
#ifdef midl
[size is(Size0OfSid)] PBYTE psSid;
#else
PBYTE pSid;
#endif
} TS ALL PROCESSES INFO NT6, *PTS ALL PROCESSES INFO NT6;

pTsProcessInfo: Pointer to the process information.
SizeOfSid: Size, in bytes, of the security identifier (SID) structure pointed to by pSid.

pSid: Security identifier (SID), as specified in [MS-DTYP] section 2.4.2, of the process.

2.2.2.16.1 TS_SYS_PROCESS_INFORMATION_NT6

The TS_SYS_PROCESS_INFORMATION_NT®6 structure contains information about a process running on
a system.

typedef struct TS SYS PROCESS INFORMATION NT6 {
ULONG NextEntryOffset;

40/ 253

[MS-TSTS-Diff] - v20210625

Terminal Services Terminal Server Runtime Interface Protocol
Copyright © 2021 Microsoft Corporation
Release: June 25, 2021

ULONG NumberOfThreads;
LARGE INTEGER Sparelil;
LARGE _INTEGER SparelLi2;
LARGE_INTEGER SpareLi3;
LARGE INTEGER CreateTime;
LARGE INTEGER UserTime;
LARGE INTEGER KernelTime;
NT6_TS_UNICODE_STRING ImageName;
LONG BasePriority;
DWORD UniqueProcessId;
DWORD InheritedFromUniqueProcessId;
ULONG HandleCount;
ULONG SessionId;
ULONG SpareUl3;
SIZE T PeakVirtualSize;
SIZE_T VirtualSize;
ULONG PageFaultCount;
ULONG PeakWorkingSetSize;
ULONG WorkingSetSize;
SIZE T QuotaPeakPagedPoolUsage;
SIZE T QuotaPagedPoolUsage;
SIZE T QuotaPeakNonPagedPoolUsage;
SIZE T QuotaNonPagedPoolUsage;
SIZE T PagefileUsage;
SIZE T PeakPagefileUsage;
SIZE_T PrivatePageCount;

} TS_SYS PROCESS INFORMATION NT6,

*PTS_SYS PROCESS_INFORMATION NT6;

NextEntryOffset: Offset to the start of data for the next process.
NumberOfThreads: Number of threads in the process.
Sparelil: Reserved.

Spareli2: Reserved.

Spareli3: Reserved.

CreateTime: Creation time of the process. Time is measured as the number of 100-nanosecond
intervals since January 1, 1601 (UTC).

UserTime: Amount of time in milliseconds the process has spent running in user mode.
KernelTime: Amount of time in milliseconds the process has spent running in kernel mode.
ImageName: String containing the process's image name.

BasePriority: Base priority of the process, which is the starting priority for threads created within
the associated process.

UniqueProcessId: Process's unique process ID.
InheritedFromUniqueProcessId: Parent process's unique process ID.
HandleCount: Current number of handles open in the process.

Sessionld: Session identifier of the process session.

SpareUI3: Reserved.

PeakVirtualSize: Peak size, in bytes, of the virtual memory used by the process.

VirtualSize: Current size, in bytes, of virtual memory used by the process.

41 /253

[MS-TSTS-Diff] - v20210625

Terminal Services Terminal Server Runtime Interface Protocol
Copyright © 2021 Microsoft Corporation

Release: June 25, 2021

PageFaultCount: Number of page faults in the process.

PeakWorkingSetSize: Peak size, in kilobytes, of the working set of the process.
WorkingSetSize: Current size, in bytes, of the working set of the process.
QuotaPeakPagedPoolUsage: Peak quota charged to the process for paged pool usage.
QuotaPagedPoolUsage: Current quota charged to the process for paged pool usage.
QuotaPeakNonPagedPoolUsage: Peak quota charged to the process for nonpaged pool usage.
QuotaNonPagedPoolUsage: Current quota charged to the process for nonpaged pool usage.
PagefileUsage: Number of bytes of page file storage in use by the process.
PeakPagefileUsage: Peak number of bytes of page file storage in use by the process.

PrivatePageCount: Current number of memory pages allocated by the process.

2.2.2.16.1.1 NT6_TS_UNICODE_STRING

The NT6_TS_UNICODE_STRING structure contains a Unicode string.

typedef struct NT6 TS UNICODE STRING {
USHORT Length;
USHORT MaximumLength;
#ifdef midl
[size is(MaximumLength / 2),length is(Length / 2)]PWSTR Buffer;
#else
PWSTR Buffer;
#endif
} NT6_ TS UNICODE_STRING;

Length: The actual length of the string currently stored in Buffer, in bytes.
MaximumLength: The maximum length of the string that could be stored in Buffer, in bytes.

Buffer: A wide character string that MUST NOT be followed by the terminating NULL character.

2.2.2.16.2 SYSTEM_THREAD_INFORMATION

The SYSTEM_THREAD_INFORMATION structure contains information about a thread running on a
system.

typedef struct _SYSTEM_THREAD INFORMATION {
LARGE_INTEGER KernelTime;
LARGE_INTEGER UserTime;
LARGE INTEGER CreateTime;
ULONG WaitTime;
PVOID StartAddress;
CLIENT ID ClientId;
LONG Priority;
LONG BasePriority;
ULONG ContextSwitches;
ULONG ThreadState;
ULONG WaitReason;

} SYSTEM THREAD INFORMATION,
*PSYSTEM THREAD INFORMATION;

KernelTime: Number of 100-nanosecond intervals spent executing kernel code.

42 /253

[MS-TSTS-Diff] - v20210625

Terminal Services Terminal Server Runtime Interface Protocol
Copyright © 2021 Microsoft Corporation

Release: June 25, 2021

UserTime: Number of 100-nanosecond intervals spent executing user code.
CreateTime: System time when the thread was created.

WaitTime: Time spent in ready queue or waiting (depending on the thread state).
StartAddress: Start address of the thread.

ClientId: ID of the thread and the process owning the thread.

Priority: Dynamic thread priority.

BasePriority: Base thread priority.

ContextSwitches: Total context switches.

ThreadState: Current thread state.

WaitReason: The reason the thread is waiting.

2.2.2,16.2.1 CLIENT_ID

The CLIENT_ID structure contains identifiers of a process and a thread.

typedef struct CLIENT ID ({
HANDLE UniqueProcess;
HANDLE UniqueThread;

} CLIENT ID;

UniqueProcess: Unique process identifier.

UniqueThread: Unique thread identifier.

2.2.2.17 TS_COUNTER

A Terminal Services performance counter structure used to represent a single performance counter.

typedef struct TS COUNTER {
TS_COUNTER_HEADER counterHead;
DWORD dwValue;
LARGE INTEGER startTime;

} TS_COUNTER,

*PTS_ COUNTER;

counterHead: A header identifying the counter.

dwValue: The value of the counter. This indicates different things based on the counter.

startTime: Always set to zero because time stamps are not supported.

2.2.2.17.1 TS_COUNTER_HEADER

The TS_COUNTER_HEADER is the header of the Terminal Services performance counter structure
providing general information on the counter.

typedef struct TS COUNTER HEADER {
DWORD dwCounterID;
boolean bResult;

43/ 253

[MS-TSTS-Diff] - v20210625

Terminal Services Terminal Server Runtime Interface Protocol
Copyright © 2021 Microsoft Corporation

Release: June 25, 2021

} TS _COUNTER HEADER, *PTS COUNTER HEADER;

dwCounterID: The identifier of the counter. Set by the caller of
RpcWinStationGetTermSrvCountersValue to indicate the counter on which to retrieve data. This
will be set to zero by RpcWinStationGetTermSrvCountersValue if the dwCounterld isn't

recognized.

The following values for dwCounterld are supported.

Value

Meaning

TERMSRV_TOTAL_SESSIONS
0x01

Total number of sessions: Value will indicate the total
number of reconnections to the server since startup.

TERMSRV_DISC_SESSIONS
0x02

Number of disconnected sessions: Value will indicate
the total number of disconnections from the server since
startup.

TERMSRV_RECON_SESSIONS
0x03

Number of reconnected sessions: Value will indicate
the total number of all reconnected sessions that have
existed on the server since startup.

TERMSRV_CURRENT_ACTIVE_SESSIONS
0x04

Current number of active sessions: Value will indicate
the current number of active sessions on the server.

TERMSRV_CURRENT_DISC_SESSIONS
0x05

Current number of disconnected sessions: Value will
indicate the current number of disconnected sessions on
the server.

TERMSRV_PENDING_SESSIONS
0x06

Current number of pending sessions: Value will
indicate the current number of pending connections to
the server.<56>

TERMSRV_SUCC_TOTAL_LOGONS
0x07

Total number of successful logons: Value will indicate
the total number of successful logons on the server, both
locally and remotely.<57>

TERMSRV_SUCC_LOCAL_LOGONS
0x08

Total number of successful local logons: Value will
indicate the total number of successful local logons on
the server.<58>

TERMSRV_SUCC_REMOTE_LOGONS
0x09

Total number of successful remote logons: Value will
indicate the total number of successful remote logons on
the server.<59>

TERMSRV_SUCC_SESSIONO_LOGONS
0x0A

Total number of successful session 0 logons: Value
will indicate the total number of successful connects on
the server to session 0.<60>

TERMSRV_CURRENT_TERMINATING_SESSIONS
0x0B

Number of terminating sessions: Value will indicate
the current number of terminating sessions on the
server.<61>

TERMSRV_CURRENT_LOGGEDON_SESSIONS
0x0C

Number of logged on sessions: Value will indicate the
current number of logged-on sessions on the
server.<62>

bResult: Set to TRUE if counter information is returned. Set to FALSE if counter data isn't being
returned because the counter ID being requested was unrecognized.

[MS-TSTS-Diff] - v20210625

44 /253

Terminal Services Terminal Server Runtime Interface Protocol

Copyright © 2021 Microsoft Corporation
Release: June 25, 2021

2.2.2.18

USERCONFIG

For a specific terminal server session, the USERCONFIG structure indicates the user and session

configuration.

typedef struct USERCONFIG {

ULONG
ULONG
ULONG
ULONG
ULONG
ULONG
ULONG
ULONG
ULONG
ULONG
ULONG
ULONG
ULONG
ULONG
ULONG
ULONG
ULONG
ULONG
ULONG
ULONG
ULONG
ULONG
ULONG
ULONG
ULONG
ULONG
ULONG
ULONG
ULONG
ULONG
ULONG
ULONG
ULONG
ULONG
ULONG
ULONG
ULONG
ULONG
ULONG
ULONG
ULONG
ULONG
WCHAR
WCHAR
WCHAR
WCHAR
WCHAR
WCHAR

fInheritAutoLogon : 1;
fInheritResetBroken : 1;
fInheritReconnectSame : 1;
fInheritInitialProgram : 1;
fInheritCallback : 1;
fInheritCallbackNumber : 1;
fInheritShadow : 1;
fInheritMaxSessionTime : 1;
fInheritMaxDisconnectionTime : 1;
fInheritMaxIdleTime : 1;
fInheritAutoClient : 1;
fInheritSecurity : 1;
fPromptForPassword : 1;
fResetBroken : 1;
fReconnectSame : 1;
fLogonDisabled : 1;
fWallPaperDisabled : 1;
fAutoClientDrives : 1;
fAutoClientLpts : 1;
fForceClientLptDef : 1;
fRequireEncryption : 1;
fDisableEncryption : 1;
fUnusedl : 1;
fHomeDirectoryMapRoot : 1;
fUseDefaultGina : 1;
fCursorBlinkDisabled : 1;
fPublishedApp : 1;
fHideTitleBar : 1;
fMaximize : 1;
fDisableCpm :
fDisableCdm
fDisableCcm
fDisableLPT : 1;
fDisableClip : 1;
fDisableExe : 1;
fDisableCam : 1;
fDisableAutoReconnect : 1;
ColorDepth : 3;
fInheritColorDepth: 1;
fErrorInvalidProfile : 1;
fPasswordIsScPin: 1;
fDisablePNPRedir:1;
UserName [USERNAME LENGTH + 1];
Domain[DOMAIN LENGTH + 1];
Password[PASSWORD LENGTH + 1];
WorkDirectory[DIRECTORY LENGTH + 1];

’
’

’

N

InitialProgram[INITIALPROGRAM LENGTH + 1];

CallbackNumber [CALLBACK LENGTH + 1];

CALLBACKCLASS Callback;
SHADOWCLASS Shadow;

ULONG MaxConnectionTime;
ULONG MaxDisconnectionTime;
ULONG MaxIdleTime;

ULONG KeyboardLayout;

BYTE MinEncryptionLevel;

WCHAR NWLogonServer [NASIFILESERVER LENGTH + 1];

APPLICATIONNAME PublishedName;

WCHAR WFProfilePath| DIRECTORY LENGTH + 1 1;
WCHAR WFHomeDir [DIRECTORY LENGTH + 1 1;
WCHAR WFHomeDirDrivel[4 1;

[MS-TSTS-Diff]

-v20210625

Terminal Services Terminal Server Runtime Interface Protocol
Copyright © 2021 Microsoft Corporation
Release: June 25, 2021

45/ 253

} USERCONFIG, * PUSERCONFIG;

fInheritAutoLogon: The prompt for the password setting. TRUE indicates the use of client-specified
autologon settings, FALSE specifies the use of machine autologon settings.

fInheritResetBroken: Reset the session when the connection is broken. TRUE indicates the value to
use for fResetBroken from the user properties if the machine/user policy is not set, FALSE
otherwise.

fInheritReconnectSame: Reconnect from the same client setting. TRUE indicates the value to use
for fReconnectSame from the user properties if the machine/user policy is not set, FALSE
otherwise.

fInheritInitialProgram: The initial program setting. TRUE indicates the value to use for
InitialProgram from the user properties if the machine/user policy is not set, FALSE otherwise.

fInheritCallback: The callback setting. TRUE indicates the value to use for Callback from the user
properties if the machine/user policy is not set, FALSE otherwise.<63>

fInheritCallbackNumber: The callback number setting. TRUE indicates the value to use for
CallbackNumber from the user properties if the machine/user policy is not set, FALSE
otherwise.<64>

fInheritShadow: The shadow setting. TRUE indicates the value to use for Shadow from the user
properties if the machine/user policy is not set, FALSE otherwise.

fInheritMaxSessionTime: The maximum allowed session connection time setting. TRUE indicates
the value to use for MaxSessionTime from the user properties if the machine/user policy is not
set, FALSE otherwise.

fInheritMaxDisconnectionTime: The maximum allowed session disconnect time setting. TRUE
indicates the value to use for MaxDisconnectionTime from the user properties if the
machine/user policy is not set, FALSE otherwise.

fInheritMaxIdleTime: The maximum allowed session idle time. TRUE indicates the value to use for
MaxIdleTime from the user properties if the machine/user policy is not set, FALSE otherwise.

fInheritAutoClient: The auto client setting. TRUE indicates the value to use for fAutoClientDrivers
and fAutoClientLpts from the user properties if the machine/user policy is not set, FALSE
otherwise.

fInheritSecurity: Inherit security setting. TRUE indicates the use of security settings from the user
properties if the machine/user policy is not set, FALSE otherwise.

fPromptForPassword: Set to TRUE to ignore the credential sent from the client and always prompt
for a password, FALSE otherwise.

fResetBroken: Set to TRUE to log off the session when the idle timers for the session expire.
Otherwise, the session will be disconnected when the timer expires.

fReconnectSame: FALSE indicates that the user can reconnect from any client computer to a
disconnected session.

TRUE indicates that the user must reconnect to a disconnected session from the same client
computer that initially established the disconnected session. Logging on from a different client
computer will lead to a new terminal server session being created.

fLogonDisabled: TRUE indicates that a user cannot log on to a session remotely, FALSE
otherwise.<65>

46 / 253

[MS-TSTS-Diff] - v20210625

Terminal Services Terminal Server Runtime Interface Protocol
Copyright © 2021 Microsoft Corporation

Release: June 25, 2021

fWallPaperDisabled: TRUE indicates display of the desktop wallpaper in the session has been
disabled, FALSE otherwise.

fAutoClientDrives: TRUE specifies to automatically redirect local drives on the client so they are
accessible to the user in the remote terminal server session, FALSE otherwise.

fAutoClientLpts: TRUE specifies to automatically redirect printers on the client so they are
accessible to the user in the remote terminal server session, FALSE otherwise.

fForceClientLptDef: TRUE indicates to force the client's redirected printer to be the default printer
for the user, FALSE otherwise.

fRequireEncryption: TRUE indicates the connection must be encrypted, FALSE otherwise.
fDisableEncryption: TRUE indicates the connection does not need encryption, FALSE otherwise.
fUnused1: Not used.

fHomeDirectoryMapRoot: Not used.

fUseDefaultGina: TRUE indicates to override a third-party GINA so that only the default GINA is
used for the terminal server session, FALSE otherwise.<66>

fCursorBlinkDisabled: TRUE indicates disable the blinking of the mouse cursor, FALSE
otherwise.<67>

fPublishedApp: Not used.

fHideTitleBar: Not used.

fMaximize: Not used.

fDisableCpm: TRUE indicates disable client printer redirection, FALSE otherwise.
fDisableCdm: TRUE indicates disable client drive redirection, FALSE otherwise.
fDisableCcm: TRUE indicates disable client COM port redirection, FALSE otherwise.
fDisableLPT: TRUE indicates disable client printer (LPT) port redirection, FALSE otherwise.
fDisableClip: TRUE indicates disable client clipboard redirection, FALSE otherwise.
fDisableExe: TRUE indicates disable .exe file execution, FALSE otherwise.

fDisableCam: TRUE indicates disable client audio redirection, FALSE otherwise.

fDisableAutoReconnect: TRUE indicates disable auto-reconnect functionality, FALSE
otherwise.<68>

ColorDepth: The color depth of the session.<69>

fInheritColorDepth: Set to TRUE to inherit color depth from the user or client configuration, FALSE
otherwise.<70>

fErrorInvalidProfile: Set to TRUE if WFProfilePath, WFHomeDir, or WFHomeDirDrive is invalid (too
long), FALSE otherwise.<71>

fPasswordIsScPin: Set to TRUE if the password field contains a smart card PIN.<72>
fDisablePNPRedir: Set to TRUE if Plug and Play (PnP) redirection is disabled, FALSE otherwise.

UserName: The user name used in autologon scenarios.

47/ 253

[MS-TSTS-Diff] - v20210625

Terminal Services Terminal Server Runtime Interface Protocol
Copyright © 2021 Microsoft Corporation

Release: June 25, 2021

Domain: The domain name used in autologon scenarios.
Password: The password used in autologon scenarios.
WorkDirectory: The work directory for the initial program.
InitialProgram: The program to run instead of the default.<73>

CallbackNumber: The telephone number that will be returned by the Terminal Services server to the
client when the server is unable to complete the connection request from the client. The user on
the client side can use this number to call back for technical support.<74>

Callback: The callback class for callback operations.<75>
Shadow: The shadow setting of the session.

MaxConnectionTime: The maximum allowed session connection time setting of the session in
milliseconds. The session will disconnect/logoff once the limit is reached.

MaxDisconnectionTime: The maximum allowed session disconnect time of the session in
milliseconds. The session will logoff once the limit is reached.

MaxIdleTime: The maximum allowed session idle time setting of the session in milliseconds. The
session will disconnect/logoff once the limit is reached.

KeyboardLayout: The keyboard layout (HKL) of the session.

MinEncryptionLevel: The minimum allowed encryption level. Possible humeric values for this
parameter include 1 (Low), 2 (Client Compatible), 3 (High), and 4 (FIPS). Detailed description of
these encryption levels is included in [MS-RDPBCGR] sections 5.3.1 and 5.4.1.

NWLogonServer: The NetWare logon server name.<76>

PublishedName: Not used.

WFProfilePath: The terminal server profile path. Overrides the standard profile path.
WFHomeDir: The terminal server home directory path. Overrides the standard home directory.

WFHomeDirDrive: The terminal server home directory drive. Overrides the standard home
directory.

2.2.2,18.1 CALLBACKCLASS

The CALLBACKCLASS enumeration is used for callback options to indicate the type of callback.<77>

typedef enum CALLBACKCLASS
{

Callback Disable,
Callback_Roving,
Callback Fixed,
} CALLBACKCLASS;
Callback_Disable: Callback is disabled.
Callback_Roving: The callback humber is a roving number.

Callback_Fixed: The callback number is a fixed number.

2.2.2.18.2 APPLICATIONNAME

48 /253

[MS-TSTS-Diff] - v20210625

Terminal Services Terminal Server Runtime Interface Protocol
Copyright © 2021 Microsoft Corporation

Release: June 25, 2021

This data type represents an application name.

typedef WCHAR APPLICATIONNAME [MAX BR NAME];
typedef WCHAR* PAPPLICATIONNAME;

2.2.2.19 WINSTATIONCLIENT

The WINSTATIONCLIENT structure defines the client-requested configuration when connecting to a

session.

typedef struct WINSTATIONCLIENT ({

ULONG fTextOnly

:1;

ULONG fDisableCtrlAltDel :1;

ULONG fMouse

:1;

ULONG fDoubleClickDetect :1;
ULONG fINetClient :1;

ULONG fPromptForPassword :1;
ULONG fMaximizeShell :1;
ULONG fEnableWindowsKey :1;
ULONG fRemoteConsoleAudio :1;

ULONG fPasswordIsScPin :1
ULONG fNoAudioPlayback :1;
ULONG fUsingSavedCreds :1

’

’

ULONG fRestrictedLogon :1;

WCHAR ClientName[CLIENTNAMEiLENGTH + 1 1;

WCHAR Domain[DOMAINiLENGTH + 1 1;

WCHAR UserName [USERNAME LENGTH + 1];

WCHAR Password[PASSWORD LENGTH + 1];

WCHAR WorkDirectory[DIRECTORY LENGTH + 1];
WCHAR InitialProgram[INITIALPROGRAMﬁLENGTH + 1 1;
ULONG SerialNumber;

BYTE EncryptionLevel;

ULONG ClientAddressFamily;

WCHAR ClientAddreSS[CLIENTADDRESSiLENGTH + 1 1;

USHORT HRes;
USHORT VRes;

USHORT ColorDepth;

USHORT ProtocolType;

ULONG KeyboardLayout;
ULONG KeyboardType;

ULONG KeyboardSubType;
ULONG KeyboardFunctionKey;

WCHAR imeFileName [IMEFILENAME LENGTH + 1]
WCHAR ClientDirectory[DIRECTORY LENGTH + 1
WCHAR ClientLicense[CLIENTLICENSE LENGTH +
WCHAR ClientModem[CLIENTMODEM LENGTH + 1]

’

17
11;

’

ULONG ClientBuildNumber;
ULONG ClientHardwareId;
USHORT ClientProductId;
USHORT OutBufCountHost;
USHORT OutBufCountClient;
USHORT OutBuflength;
WCHAR AudioDriverName[9];
TS_TIME ZONE_ INFORMATION ClientTimeZone;
ULONG ClientSessionId;
WCHAR clientDiqProductId[CLIENTiPRODUCTilDiLENGTH];
ULONG PerformanceFlags;
ULONG ActiveInputLocale;
} WINSTATIONCLIENT,
*PWINSTATIONCLIENT;

fTextOnly: Text-only client session. This is always FALSE.

fDisableCtrlAltDel:

Set to TRUE to specify that CTRL+ALT+DEL is

disabled.

[MS-TSTS-Diff] - v20210625
Terminal Services Terminal Server Runtime Interface Protocol
Copyright © 2021 Microsoft Corporation

Release: June 25, 2021

49 /253

fMouse: TRUE indicates the mouse is connected to the client, FALSE otherwise.

fDoubleClickDetect: Double-click the detect flag. TRUE indicates detect double-click, FALSE
otherwise.

fINetClient: Always set to FALSE.

fPromptForPassword: TRUE indicates the user will always be prompted for a password, even if the
password is saved from previous connection; FALSE otherwise.

fMaximizeShell: TRUE indicates maximize the shell, FALSE otherwise.

fEnableWindowsKey: TRUE indicates that the Windows key (EO_5B) is enabled in the terminal
server session. FALSE indicates that it is disabled.

fRemoteConsoleAudio: Set to TRUE if audio for the console session is left remotely at the server,
FALSE otherwise.<78>

fPasswordIsScPin: Set to TRUE if the password field contains a smart card PIN, FALSE
otherwise.<79>

fNoAudioPlayback: Set to TRUE to disable audio playback, or FALSE to enable audio playback.<80>

fUsingSavedCreds: Set to TRUE if the terminal server connection was made using a credential
saved on the client computer, FALSE otherwise.

fRestrictedLogon: Set to TRUE if the client is running in Restricted Administration mode, FALSE
otherwise. In Restricted Administration mode, user credentials are not sent to the server, which
can protect the user if the server has been compromised.<81>

ClientName: The name of the client computer.

Domain: The user's domain name.

UserName: The user's user name.

Password: The user's password.

WorkDirectory: The work directory for the initial program.
InitialProgram: The program to run instead of the default.<82>
SerialNumber: The client computer's unique serial number.
EncryptionLevel: The encryption level.

ClientAddressFamily: The address family of the client's address.<83>

ClientAddress: The client's address. The format depends on the value of ClientAddressFamily.
See [MSDN-SOCKET] for more information.

HRes: The horizontal resolution, in pixels.
VRes: The vertical resolution, in pixels.
ColorDepth: The color depth. <84>
ProtocolType: The type of protocol.<85>
KeyboardLayout: The keyboard layout (HKL).

KeyboardType: The keyboard type.

50/ 253

[MS-TSTS-Diff] - v20210625

Terminal Services Terminal Server Runtime Interface Protocol
Copyright © 2021 Microsoft Corporation

Release: June 25, 2021

KeyboardSubType: The keyboard subtype.
KeyboardFunctionKey: The number of keyboard function keys.

imeFileName: The file name of the input method editor (IME), if any, used for the session. For
more information on IMEs, see [MSFT-IME].

ClientDirectory: The directory in which the client was installed.
ClientLicense: The client's license.<86>

ClientModem: The client's modem.<87>

ClientBuildNumber: The client's build number.

ClientHardwareld: The client-specific hardware identifier.
ClientProductId: The client-specific product identifier.
OutBufCountHost: The number of output buffers on the host computer.
OutBufCountClient: The number of output buffers on the client computer.
OutBufLength: The length of the output buffer, in bytes.
AudioDriverName: The audio driver's name.

ClientTimeZone: The client's time zone.<88>

ClientSessionId: The client's session ID.<89>

clientDigProductld: The client-specific product ID.<90>

PerformanceFlags: Protocol-specific performance flags.<91> It MUST be any bitwise OR
combination of the following except TS_PERF_DISABLE_NOTHING.

Value Meaning
TS_PERF_DISABLE_NOTHING Disable nothing.
0x00000000

TS_PERF_DISABLE_WALLPAPER Disable wallpaper.
0x00000001

TS_PERF_DISABLE_FULLWINDOWDRAG Disable full window drag animation.
0x00000002

TS_PERF_DISABLE_MENUANIMATIONS Disable menu animations.
0x00000004

TS_PERF_DISABLE_THEMING Disable themes.
0x00000008

TS_PERF_ENABLE_ENHANCED_GRAPHICS Enable enhanced graphics.
0x00000010

TS_PERF_DISABLE_CURSOR_SHADOW Disable cursor shadow.
0x00000020

TS_PERF_DISABLE_CURSORSETTINGS Disable cursor settings.
0x00000040

51 /253

[MS-TSTS-Diff] - v20210625

Terminal Services Terminal Server Runtime Interface Protocol
Copyright © 2021 Microsoft Corporation

Release: June 25, 2021

Value Meaning

TS_PERF_ENABLE_FONT_SMOOTHING Enable font smoothing.<92>
0x00000080

TS_PERF_ENABLE_DESKTOP_COMPOSITION Enable desktop composition.<93>
0x00000100

TS_PERF_DEFAULT_NONPERFCLIENT_SETTING | Reserved and used internally by the client.
0x40000000

TS_PERF_RESERVED1 Reserved and used internally by the client.
0x80000000

ActiveInputLocale: Client language locale HKL.<94>

For information about keyboard functions and handling, see [MSFT-W2KDDK].

2.2.2.19.1 TS_TIME_ZONE_INFORMATION

The TS_TIME_ZONE_INFORMATION structure contains client time zone information.

typedef struct TS TIME ZONE_INFORMATION {
LONG Bias;
WCHAR StandardName[32];
TS_SYSTEMTIME StandardDate;
LONG StandardBias;
WCHAR DaylightName[32];
TS _SYSTEMTIME DaylightDate;
LONG DaylightBias;
} TS TIME ZONE INFORMATION;

Bias: A 32-bit integer. Current bias for local time translation on the client, in minutes. The bias is the
difference, in minutes, between Coordinated Universal Time (UTC) and local time. All translations
between UTC and local time are based on the following formula:

UTC = local time + bias

StandardName: A description for standard time on the client. For example, this field could contain
the string "Pacific Standard Time" to indicate Pacific Standard Time. An array of 32 Unicode
characters.

StandardDate: A TS_SYSTEMTIME structure that contains the date and local time when the
transition from daylight saving time to standard time occurs on the client. If this field is specified,
the DaylightDate field is also specified.

StandardBias: A 32-bit integer that defines the bias value in number of minutes to be used during
local time translations that occur during standard time. This field SHOULD be ignored if a value is
not supplied in the StandardDate field. This value is added to the value of the Bias field to form
the bias used during standard time. In most time zones, the value of this field is 0.

DaylightName: An array of 32 Unicode characters that describes daylight time on the client. For
example, this field could contain "Pacific Daylight Time" to indicate Pacific Daylight Time.

DaylightDate: A TS_SYSTEMTIME that contains a date and local time when the transition from
standard time to daylight saving time occurs on the client. If this field is specified, the
StandardDate field is also specified.

52 /253

[MS-TSTS-Diff] - v20210625

Terminal Services Terminal Server Runtime Interface Protocol
Copyright © 2021 Microsoft Corporation

Release: June 25, 2021

DaylightBias: A 32-bit integer that defines the bias value to be used during local time translations

that occur during daylight saving time. This field SHOULD be ignored if a value for the

DaylightDate field is not supplied. This value is added to the value of the Bias field to form the

bias used during daylight saving time. In most time zones, the value of this field is 60.

2.2.2.19.1.1 TS_SYSTEMTIME

Information about a time zone. This structure is identical to the structure SYSTEMTIME. For more

information, see [MSDN-SYSTIME].

typedef struct TS SYSTEMTIME {

USHORT
USHORT
USHORT
USHORT
USHORT
USHORT
USHORT
USHORT

wYear;

wMonth;
wDayOfWeek;
wDay;

wHour;
wMinute;
wSecond;
wMilliseconds;

} TS SYSTEMTIME;

wYear: The year when transition from daylight saving time to standard time occurs (1601 to 30827).

wMonth: The month when transition from daylight saving time to standard time occurs.

This member can be one of the following values.

Value | Meaning
1 January

2 February
3 March

4 April

5 May

6 June

7 July

8 August

9 September
10 October
11 November
12 December

wDayOfWeek: The day of the week when the transition from daylight saving time to standard time

OocCcurs.

This member can be one of the following values.

Value

Meaning

0

Sunday

[MS-TSTS-Diff] - v20210625

Terminal Services Terminal Server Runtime Interface Protocol
Copyright © 2021 Microsoft Corporation

Release: June 25, 2021

53 /253

Value | Meaning

1 Monday

2 Tuesday

3 Wednesday
4 Thursday

5 Friday

6 Saturday

wDay: The occurrence of wDayOfWeek within the month when the transition from daylight saving
time to standard time takes place.

This member can be one of the following values.

Value | Meaning

1 First occurrence of wDayOfWeek

2 Second occurrence of wDayOfWeek
3 Third occurrence of wDayOfWeek

4 Fourth occurrence of wDayOfWeek
5 Last occurrence of wDayOfWeek

wHour: The hour when transition from daylight saving time to standard time occurs (0 to 23).
wMinute: The minute when transition from daylight saving time to standard time occurs (0 to 59).
wSecond: The second when transition from daylight saving time to standard time occurs (0 to 59).

wMilliseconds: The millisecond when transition from daylight saving time to standard time occurs
(0 to 999).

2.2.2.20 WINSTATIONINFORMATION

Provides the current values of various properties such as state, connect time, last input time, and so
on, for a session.

typedef struct WINSTATIONINFORMATION {
WINSTATIONSTATECLASS ConnectState;
WINSTATIONNAME WinStationName;
ULONG LogonId;
LARGE INTEGER ConnectTime;
LARGE INTEGER DisconnectTime;
LARGE INTEGER LastInputTime;
LARGE INTEGER LogonTime;
PROTOCOLSTATUS Status;
WCHAR Domain[DOMAIN LENGTH + 1];
WCHAR UserName [USERNAME LENGTH + 1];
LARGE INTEGER CurrentTime;
} WINSTATIONINFORMATION,
*PWINSTATIONINFORMATION;

ConnectState: The current connect state of the session.

54 /253

[MS-TSTS-Diff] - v20210625

Terminal Services Terminal Server Runtime Interface Protocol
Copyright © 2021 Microsoft Corporation

Release: June 25, 2021

WinStationName: The name of the session.
Logonld: The session identifier of the session.

ConnectTime: The time of the most recent connection to the session. This is a 64-bit value
representing the number of 100-nanosecond intervals since January 1, 1601 (UTC).

DisconnectTime: The time of the most recent disconnection from the session. This is a 64-bit value
representing the number of 100-nanosecond intervals since January 1, 1601 (UTC).

LastInputTime: The time the session last received input. This is an indicator of how long a session
has been idle. This is a 64-bit value representing the number of 100-nanosecond intervals since
January 1, 1601 (UTC).

LogonTime: The time of the logon to the session. This is a 64-bit value representing the number of
100-nanosecond intervals since January 1, 1601 (UTC).

Status: The status of the protocol, as specified in section 2.2.2.20.1.
Domain: The user's domain name.
UserName: The user's user name.

CurrentTime: The current time in the session. This is a 64-bit value representing the number of 100-
nanosecond intervals since January 1, 1601 (UTC).

2.2.2.20.1 PROTOCOLSTATUS

The status of the protocol used by the session.

typedef struct PROTOCOLSTATUS ({
PROTOCOLCOUNTERS Output;
PROTOCOLCOUNTERS Input;
CACHE_STATISTICS Cache;
ULONG AsyncSignal;
ULONG AsyncSignalMask;

} PROTOCOLSTATUS,
*PPROTOCOLSTATUS;

Output: A PROTOCOLCOUNTERS structure containing the output protocol counters.
Input: A PROTOCOLCOUNTERS structure containing the input protocol counters.

Cache: A CACHE_STATISTICS structure containing statistics for the cache.

AsyncSignal: Indicator of async signal, such as MS_CTS_ON, for async protocols. For more
information on asynchronous protocols, see [MSDN-SERIAL].

AsyncSignalMask: Mask of async signal events, such as EV_CTS, for async protocols. For more
information on asynchronous protocols, see [MSDN-SERIAL].

2.2.2.20.1.1 PROTOCOLSTATUSEX

The PROTOCOLSTATUSEX structure defines the extended status of the protocol used by the session.

typedef struct {

PROTOCOLSTATUS ProtocolStatus;

LARGE_INTEGER Counters[MAX COUNTER EXTENSIONS] ;
} PROTOCOLSTATUSEX,

*PPROTOCOLSTATUSEX;

55/253

[MS-TSTS-Diff] - v20210625

Terminal Services Terminal Server Runtime Interface Protocol
Copyright © 2021 Microsoft Corporation

Release: June 25, 2021

ProtocolStatus: The status of the protocol as described in section 2.2.2.20.1.

Counters: The value of the various counters associated with the protocol as specified in
PROTOCOLCOUNTERS.

2.2.2.20.1.2 PROTOCOLCOUNTERS

Protocol performance counters.

typedef struct PROTOCOLCOUNTERS {
ULONG WdBytes;
ULONG WdFrames;
ULONG WaitForOutBuf;
ULONG Frames;
ULONG Bytes;
ULONG CompressedBytes;
ULONG CompressFlushes;
ULONG Errors;
ULONG Timeouts;
ULONG AsyncFramingError;
ULONG AsyncOverrunError;
ULONG AsyncOverflowError;
ULONG AsyncParityError;
ULONG TdErrors;
USHORT ProtocolType;
USHORT Length;
union {
TSHARE_COUNTERS TShareCounters;
ULONG Reserved[100];
} Specific;
} PROTOCOLCOUNTERS,
*PPROTOCOLCOUNTERS;

WdBytes: WinStation driver number of bytes sent and received.

WdFrames: WinStation driver number of frames sent and received.

WaitForOutBuf: The number of times waited for an output buffer to become available.
Frames: Transport driver number of frames.

Bytes: Transport driver number of bytes.

CompressedBytes: Number of compressed bytes.

CompressFlushes: Number of compress flushes. A compress flush occurs when compression for a

packet fails and the original uncompressed packet replaces it.
Errors: Number of packets that were in error during the session.
Timeouts: Number of time-outs.
AsyncFramingError: Number of async framing errors.
AsyncOverrunError: Number of async overrun errors.
AsyncOverflowError: Number of async overflow errors.
AsyncParityError: Number of async parity errors.
TdErrors: Number of transport protocol errors.

ProtocolType: Protocol type.

[MS-TSTS-Diff] - v20210625

Terminal Services Terminal Server Runtime Interface Protocol
Copyright © 2021 Microsoft Corporation

Release: June 25, 2021

56 /253

Length: Length of data in the protocol-specific area. Can be up to 100 * sizeof(ULONG) in size.
Specific: Specifies which types of counters are to be queried. It can be one of the following:
TShareCounters: Protocol performance counters.

Reserved: Reserved for future use.

2.2.2.20.1.2.1 TSHARE_COUNTERS

TSHARE_COUNTERS is not used.

typedef struct TSHARE COUNTERS ({
ULONG Reserved;

} TSHARE_COUNTERS,

*PTSHARE _COUNTERS;

Reserved: This value is not used.

2.2.2.20.1.3 CACHE_STATISTICS

Cache statistics on the protocol.

typedef struct CACHE STATISTICS {
USHORT ProtocolType;
USHORT Length;
union {
RESERVED CACHE ReservedCacheStats;
TSHARE_CACHE TShareCacheStats;
ULONG Reserved[20];
} Specific;
} CACHE_STATISTICS,
*PCACHE_STATISTICS;

ProtocolType: Protocol type.

Length: Length of data in the protocol-specific area. Can be up to 20 * sizeof(ULONG) in size.
Specific: The union of the following members:

ReservedCacheStats: Not used.

TShareCacheStats: Protocol cache statistics.

Reserved: Reserved for future use.

2.2.2.20.1.3.1 RESERVED_CACHE

Cache statistics.<95>

typedef struct RESERVED CACHE {

THINWIRECACHE ThinWireCache [MAX THINWIRECACHE];
} RESERVED CACHE,

*PRESERVED_ CACHE;

ThinWireCache: The ThinWireCache structure used for the terminal server's display for
RESERVED_CACHE.

57/ 253

[MS-TSTS-Diff] - v20210625

Terminal Services Terminal Server Runtime Interface Protocol
Copyright © 2021 Microsoft Corporation

Release: June 25, 2021

2.2.2.20.1.3.1.1 THINWIRECACHE
The ThinWireCache structure used for the terminal server's display for RESERVED_CACHE.

typedef struct THINWIRECACHE ({
ULONG CacheReads;
ULONG CacheHits;

} THINWIRECACHE,
*PTHINWIRECACHE;

CacheReads: Number of cache reads.

CacheHits: Number of cache hits.

2.2.2.20.1.3.2 TSHARE_CACHE

TSHARE_CACHE is not used.

typedef struct TSHARE CACHE {
ULONG Reserved;

} TSHARE CACHE,

*PTSHARE CACHE;

Reserved: This value is not used.

2.2.2.21 PDPARAMS

The protocol driver parameters structure. The core Terminal Services binaries only read this data from
the system data store and pass it to callers of RpcWinStationQueryInformation and other places. The
core Terminal Services binaries do not process this data in any way before returning it to callers. The
actual use of this configuration data is in lower-level protocol drivers.

typedef struct PDPARAMS ({
SDCLASS SdClass;
union {
NETWORKCONFIG Network;
ASYNCCONFIG Async;
NASICONFIG Nasi;
OEMTDCONFIG OemTd;
bi
} PDPARAMS,
*PPDPARAMS;

SdClass: Stack driver class. Indicates which one of the union's structures is valid.
Network: Configuration of network drivers. Used if SdClass is SdNetwork.
Async: Configuration of async (modem) driver. Used if SdClass is SdAsync.<96>

Nasi: Reserved.

OemTd: Configuration of OEM transport driver. Used if SdClass is SdOemTransport.<97>

2.2.2.22 NETWORKCONFIG

The network protocol driver's configuration structure. The following block determines
NETWORKCONFIG.

58 /253

[MS-TSTS-Diff] - v20210625

Terminal Services Terminal Server Runtime Interface Protocol
Copyright © 2021 Microsoft Corporation

Release: June 25, 2021

typedef struct NETWORKCONFIG {
LONG LanAdapter;
DEVICENAME NetworkName;
ULONG Flags;

} NETWORKCONFIG,
*PNETWORKCONFIG;

LanAdapter: The LANA ID of the network adapter.

NetworkName: Not used.

Flags: Not used.

2.2.2,.23 ASYNCCONFIG

The asynchronous protocol driver's configuration structure.

typedef struct ASYNCCONFIG {
DEVICENAME DeviceName;
MODEMNAME ModemName ;
ULONG BaudRate;
ULONG Parity;
ULONG StopBits;
ULONG ByteSize;
ULONG fEnableDsrSensitivity :1;
ULONG fConnectionDriver :1;
FLOWCONTROLCONFIG FlowControl;
CONNECTCONFIG Connect;

} ASYNCCONFIG,

*PASYNCCONFIG;

DeviceName: The device's name.
ModemName: The modem's name.
BaudRate: The baud rate of the modem.
Parity: The parity setting.

StopBits: The number of stop bits.

ByteSize: The size of a byte.

fEnableDsrSensitivity: TRUE indicates enable Data Set Ready (DSR) sensitivity, FALSE otherwise.

fConnectionDriver: Set to TRUE if there is a connection driver, FALSE otherwise.

FlowControl: The flow control setting of the modem.

Connect: The connect configuration.

2.2.2.23.1 MODEMNAME

The name of a modem.

typedef WCHAR MODEMNAME [MODEMNAME LENGTH + 1];
typedef WCHAR* PMODEMNAME;

2.2.2.23.2 FLOWCONTROLCONFIG

[MS-TSTS-Diff] - v20210625

Terminal Services Terminal Server Runtime Interface Protocol
Copyright © 2021 Microsoft Corporation

Release: June 25, 2021

59/253

Flow control configuration of an async driver.

typedef struct FLOWCONTROLCONFIG {
ULONG fEnableSoftwareTx :1;
ULONG fEnableSoftwareRx :1;
ULONG fEnableDTR :1;
ULONG fEnableRTS :1;
CHAR XonChar;
CHAR XoffChar;
FLOWCONTROLCLASS Type;
RECEIVEFLOWCONTROLCLASS HardwareReceive;
TRANSMITFLOWCONTROLCLASS HardwareTransmit;
} FLOWCONTROLCONFIG,
*PFLOWCONTROLCONFIG;

fEnableSoftwareTx: TRUE indicates software transmit flow control, FALSE otherwise.
fEnableSoftwareRx: TRUE indicates software receive flow control, FALSE otherwise.
fEnableDTR: TRUE indicates Data Terminal Ready (DTR) enabled, FALSE otherwise.
fEnableRTS: TRUE indicates Request to Send (RTS) enabled, FALSE otherwise.
XonChar: Xon flow control character.

XoffChar: Xoff flow control character.

Type: The type of flow control in use.

HardwareReceive: Hardware receive flow control information.

HardwareTransmit: Hardware transmit flow control information.

2.2.2.23.2.1 FLOWCONTROLCLASS

The FLOWCONTROLCLASS enumeration specifies the type of flow control, if any, supported.

typedef enum FLOWCONTROLCLASS
{
FlowControl None,
FlowControl Hardware,
FlowControl Software
} FLOWCONTROLCLASS;

FlowControl_None: Flow control is not enabled.

FlowControl_Hardware: Hardware flow control is enabled.

FlowControl_Software: Software flow control is enabled.

2.2.2.23.2.2 RECEIVEFLOWCONTROLCLASS

The RECEIVEFLOWCONTROLCLASS enumeration specifies which, if any, means of receive flow
control are supported.

typedef enum _RECEIVEFLOWCONTROLCLASS
{
ReceiveFlowControl None,
ReceiveFlowControl RTS,
ReceiveFlowControl DTR,

60/ 253

[MS-TSTS-Diff] - v20210625

Terminal Services Terminal Server Runtime Interface Protocol
Copyright © 2021 Microsoft Corporation

Release: June 25, 2021

} RECEIVEFLOWCONTROLCLASS;

ReceiveFlowControl_None: No receive flow control currently.
ReceiveFlowControl_RTS: Receive flow control Request to Send (RTS).

ReceiveFlowControl_DTR: Receive flow control Data Terminal Ready (DTR).

2.2.2.23.2.3 TRANSMITFLOWCONTROLCLASS

The TRANSMITFLOWCONTROLCLASS enumeration specifies which, if any, means of transit flow
control is supported.

typedef enum TRANSMITFLOWCONTROLCLASS
{

TransmitFlowControl None,

TransmitFlowControl CTS,

TransmitFlowControl DSR,
} TRANSMITFLOWCONTROLCLASS;

TransmitFlowControl_None: No transmit flow control currently.

TransmitFlowControl_CTS: Transmit flow control Clear to Send (CTS).

TransmitFlowControl_DSR: Transmit flow control Data Set Ready (DSR).

2.2.2.23.3 CONNECTCONFIG

The CONNECTCONFIG structure specifies connectivity parameters.

typedef struct CONNECTCONFIG {
ASYNCCONNECTCLASS Type;
ULONG fEnableBreakDisconnect :1;
} CONNECTCONFIG,
*PCONNECTCONFIG;

Type: Type of asynchronous connection. This value is not used.

fEnableBreakDisconnect: If TRUE, enable break disconnect.

2.2.2.23.3.1 ASYNCCONNECTCLASS
The ASYNCCONNECTCLASS enumeration is not used.

typedef enum ASYNCCONNECTCLASS {
Connect CTS,

Connect_ DSR,

Connect_ RI,

Connect DCD,

Connect FirstChar,

Connect Perm,
} ASYNCCONNECTCLASS;

2.2.2.24 NASICONFIG

The NASICONFIG structure determines the data type of NASICONFIG.

61 /253

[MS-TSTS-Diff] - v20210625

Terminal Services Terminal Server Runtime Interface Protocol
Copyright © 2021 Microsoft Corporation

Release: June 25, 2021

typedef struct NASICONFIG {
NASISPECIFICNAME SpecificName;
NASIUSERNAME UserName;
NASIPASSWORD PassWord;
NASISESIONNAME SessionName;
NASIFILESERVER FileServer;

BOOLEAN GlobalSession;

} NASICONFIG, *PNASICONFIG;
SpecificName: The NASI-specific (Netware Asynchronous Services Interface) name.
UserName: The NASI user's user name.
PassWord: The NASI user's password.
SessionName: The NASI session name.
FileServer: The NASI file server name.

GlobalSession: Set to TRUE if the session is a global session.

2.2.2.24.1 NASIUSERNAME
The NASI user's user name.

This type is declared as follows:

typedef WCHAR NASIUSERNAME [NASIUSERNAME LENGTH + 1];

2.2.2.24.2 NASIPASSWORD
The NASI user's password.

This type is declared as follows:

typedef WCHAR NASIPASSWORD[NASIPASSWORD LENGTH + 1];

2.2.2.24.3 NASISESIONNAME
The NASI session name.

This type is declared as follows:

typedef WCHAR NASISESIONNAME [NASISESSIONNAME LENGTH + 1];

2.2.2.24.4 NASISPECIFICNAME
The NASI-specific name.

This type is declared as follows:

typedef WCHAR NASISPECIFICNAME [NASISPECIFICNAME LENGTH + 1];

2.2.2.24,.5 NASIFILESERVER

62 /253

[MS-TSTS-Diff] - v20210625

Terminal Services Terminal Server Runtime Interface Protocol
Copyright © 2021 Microsoft Corporation

Release: June 25, 2021

The NASI file server name.

This type is declared as follows:

typedef WCHAR NASIFILESERVER[NASIFILESERVER LENGTH + 1];

2.2.2.25 OEMTDCONFIG

The OEM transport driver configuration structure.

typedef struct OEMTDCONFIG {
LONG Adapter;
DEVICENAME DeviceName;
ULONG Flags;

} OEMTDCONFIG,

*POEMTDCONFIG;

Adapter: The ID of the adapter (OEM driver-specific).
DeviceName: The network name (OEM driver-specific).

Flags: Driver flags (OEM driver-specific).

2.2.2.26 PDCONFIG

The protocol driver configuration structure.

typedef struct PDCONFIG ({
PDCONFIG2 Create;
PDPARAMS Params;

} PDCONFIG,

*PPDCONFIG;

Create: The software configuration of the driver.

Params: The hardware configuration for the driver.

2.2.2.26.1 PDCONFIG2

The protocol driver's software configuration.

typedef struct PDCONFIG2 {
PDNAME PdName;
SDCLASS SdClass;
DLLNAME PdDLL;
ULONG PdFlag;
ULONG OutBufLength;
ULONG OutBufCount;
ULONG OutBufDelay;
ULONG InteractiveDelay;
ULONG PortNumber;
ULONG KeepAliveTimeout;
} PDCONFIG2,
*PPDCONFIG2;

PdName: The descriptive name of the protocol driver.

63/ 253

[MS-TSTS-Diff] - v20210625

Terminal Services Terminal Server Runtime Interface Protocol
Copyright © 2021 Microsoft Corporation
Release: June 25, 2021

SdClass: The type of driver.
PdDLL: The driver's image name.

PdFlag: Driver flags MUST be any bitwise OR combination of the following values:

Value Meaning

PD_UNUSED Unused.

0x00000001

PD_RELIABLE Error-free protocol.

0x00000002

PD_FRAME Frame-oriented protocol.
0x00000004

PD_CONNECTION Connection-oriented protocol.
0x00000008

PD_CONSOLE Directly connected console.
0x00000010

PD_LANA Network class uses LANAs (NetBIOS).
0x00000020

PD_TRANSPORT Transport driver (lowest level).
0x00000040

PD_SINGLE_INST Single instance only (async).
0x00000080

PD_NOLOW_WATERMARK | Low water mark to resume transmission.
0x00000100

OutBufLength: Optimal output buffers length, in bytes.
OutBufCount: Optimal number of output buffers.
OutBufDelay: Write delay, in milliseconds.
InteractiveDelay: Write delay during active input.
PortNumber: Network listen port number.

KeepAliveTimeout: Frequency to send keep-alives, in milliseconds.
2.2.2.26.2 PDNAME

The protocol driver name (PDNAME) data type.

typedef WCHAR PDNAME[PDNAME LENGTH + 1];
typedef WCHAR* PPDNAME;

2.2.2.27 WDCONFIG

The WinStation (session) driver configuration.<98>

64 /253

[MS-TSTS-Diff] - v20210625

Terminal Services Terminal Server Runtime Interface Protocol
Copyright © 2021 Microsoft Corporation

Release: June 25, 2021

typedef struct WDCONFIG {
WDNAME WdName;
DLLNAME WdDLL;
DLLNAME WsxDLL;
ULONG WdFlag;
ULONG WdInputBufferLength;
DLLNAME CfgDLL;
WDPREFIX WdPrefix;
} WDCONFIG,
*PWDCONFIG;

WdName: The descriptive name of the WinStation driver.

WdDLL: The driver's image name.

WsxDLL: Used by the Terminal Services service to communicate with the WinStation driver.<99>

WdFlag: Driver flags. It MUST be any bitwise OR combination of the following values.

Value Meaning

WDF_UNUSED Not used.

0x00000001

WDF_SHADOW_SOURCE Valid shadow source.

0x00000002

WDF_SHADOW_TARGET Valid shadow target.

0x00000004

WDF_OTHER Other protocol.

0x00000008

WDF_TSHARE Remote Protocol used by Terminal Services.
0x00000010

WDF_DYNAMIC_RECONNECT Session can resize display at reconnect.<100>
0x00000020

WDF_USER_VCIOCTL User mode applications can send virtual channel IOCTL.
0x00000040

WDF_SUBDESKTOP Sub-desktop session.<101>

0x00008000

WdInputBufferLength: Length, in bytes, of the input buffer used by the driver. Defaults to 2048.

CfgDLL: Configuration DLL used by Terminal Services administrative tools for configuring the
driver.<102>

WdPrefix: Used as the prefix of the WinStation name generated for the connected sessions with this

WinStation driver.<103>

2.2.2.27.1 WDNAME

The WDNAME data type.

typedef WCHAR WDNAME [WDNAME LENGTH + 1];

[MS-TSTS-Diff] - v20210625

Terminal Services Terminal Server Runtime Interface Protocol
Copyright © 2021 Microsoft Corporation

Release: June 25, 2021

65/ 253

typedef WCHAR* PWDNAME;

2.2.2.27.2 WDPREFIX

The WDPREFIX data type.

typedef WCHAR WDPREFIX[WDPREFIX LENGTH + 1];
typedef WCHAR* PWDPREFIX;

2.2.2.28 CDCONFIG

Connection driver configuration.<104> It is used for connecting via modem to a server.

typedef struct CDCONFIG {
CDCLASS CdClass;
CDNAME CdName;
DLLNAME CdDLL;
ULONG CdFlag;
} CDCONFIG,
*PCDCONFIG;
CdClass: Connection driver type.
CdName: Connection driver descriptive name.
CdDLL: Connection driver image name.

CdFlag: Connection driver flags. Connection driver specific.

2.2.2.28.1 CDCLASS

The CDCLASS enumeration specifies a type of connection driver.

typedef enum _CDCLASS
{

CdNone,
CdModem,
CdClass_Maximum,
} CDCLASS;
CdNone: No connection driver.
CdModem: Connection driver is a modem.

CdClass_Maximum: A given CdClass variable will always be less than this value.

2.2.2.28.2 CDNAME

The CDNAME type contains the connection driver name.

typedef WCHAR CDNAME [CDNAME LENGTH + 1];
typedef WCHAR* PCDNAME;

66 /253

[MS-TSTS-Diff] - v20210625

Terminal Services Terminal Server Runtime Interface Protocol
Copyright © 2021 Microsoft Corporation

Release: June 25, 2021

2.2.2.29 WINSTATIONCREATE

The WINSTATIONCREATE structure specifies a session to which the user can connect.

typedef struct _WINSTATIONCREATE {
ULONG fEnableWinStation :1;
ULONG MaxInstanceCount;
} WINSTATIONCREATE, * PWINSTATIONCREATE;
fEnableWinStation: TRUE if enabled.

MaxInstanceCount: Maximum number of instances that can connect to the WinStation.

2.2.2.30 WINSTATIONCONFIG2

The WINSTATIONCONFIG2 structure specifies configuration of a session that the user can connect
to.

typedef struct WINSTATIONCONFIG2 {
WINSTATIONCREATE Create;
PDCONFIG Pd[MAX PDCONFIG];
WDCONFIG Wd;
CDCONFIG Cd;
WINSTATIONCONFIG Config;
} WINSTATIONCONFIG2, * PWINSTATIONCONFIGZ2;

Create: General creation information.
Pd: An array of protocol data configuration structures for this WinStation.
Wd: The WinStation (session) driver for this WinStation configuration.

Cd: The connection driver for this WinStation configuration.

Config: The specific configuration values for the WinStation (session).

2.2.2.30.1 WINSTATIONCONFIG

WinStation configuration data. Included inside a WINSTATIONCONFIG2 structure.

typedef struct WINSTATIONCONFIG {
WCHAR Comment [WINSTATIONCOMMENT LENGTH + 1];
USERCONFIG User;
char OEMIA[4];
} WINSTATIONCONFIG,
*PWINSTATIONCONFIG;

Comment: The WinStation descriptive comment.

User: The user configuration data for the session (WinStation).

OEMId: Value identifying who implemented the TermService Listener that this session (WinStation)
belongs to. This can be any value defined by the implementer (OEM) of the listener.

67/ 253

[MS-TSTS-Diff] - v20210625

Terminal Services Terminal Server Runtime Interface Protocol
Copyright © 2021 Microsoft Corporation

Release: June 25, 2021

2.2.2.31 POLICY_TS_MACHINE

The POLICY_TS_MACHINE structure defines the machine policy of the server. Each item in the
policy has a flag to indicate if the policy is present and a value for the policy.<105>

typedef struct POLICY TS MACHINE ({
ULONG fPolicyDisableClip :1;
ULONG fPolicyDisableCam :1;
ULONG fPolicyDisableCcm :1;
ULONG fPolicyDisableLPT :1;
ULONG fPolicyDisableCpm :1;
ULONG fPolicyPromptForPassword :1;
ULONG fPolicyMaxInstanceCount :1;
ULONG fPolicyMinEncryptionLevel :1;
ULONG fPolicyFipsEnabled :1;
ULONG fPolicyDisableAutoReconnect :1;
ULONG fPolicyWFProfilePath :1;
ULONG fPolicyWFHomeDir :1;
ULONG fPolicyWFHomeDirDrive :1;
ULONG fPolicyDenyTSConnections :1;
ULONG fPolicyTempFoldersPerSession :1;
ULONG fPolicyDeleteTempFoldersOnExit :1;
ULONG fPolicyColorDepth :1;
ULONG fPolicySessionDirectoryActive :1;
ULONG fPolicySessionDirectoryLocation :1;
ULONG fPolicySessionDirectoryClusterName :1;
ULONG fPolicySessionDirectoryAdditionalParams :1;
ULONG fPolicySessionDirectoryExposeServerIP :1;
ULONG fPolicyPreventLicenseUpgrade :1;
ULONG fPolicySecurelLicensing :1;
ULONG fPolicyWritableTSCCPermissionsTAB :1;
ULONG fPolicyDisableCdm :1;
ULONG fPolicyForceClientLptDef :1;
ULONG fPolicyShadow :1;
ULONG fPolicyResetBroken :1;
ULONG fPolicyReconnectSame :1;
ULONG fPolicyMaxSessionTime :1;
ULONG fPolicyMaxDisconnectionTime :1;
ULONG fPolicyMaxIdleTime :1;
ULONG fPolicyInitialProgram :1;
ULONG fPolicySingleSessionPerUser :1;
ULONG fPolicyDisableWallpaper :1;
ULONG fPolicyKeepAlive :1;
ULONG fPolicyEnableTimeZoneRedirection :1;
ULONG fPolicyDisableForcibleLogoff :1;
ULONG fPolicyLicensingMode :1;
ULONG fPolicyExplicitLSDiscovery :1;
ULONG fPolicyDisableTerminalServerTooltip :1;
ULONG fDisableClip :1;
ULONG fDisableCam :1;
ULONG fDisableCcm :1;
ULONG fDisableLPT :1
ULONG fDisableCpm :1;
ULONG fPromptForPassword :1;
ULONG ColorDepth :3;
ULONG fDenyTSConnections :1;
ULONG fTempFoldersPerSession :1;
ULONG fDeleteTempFoldersOnExit :1;
ULONG fWritableTSCCPermissionsTAB :1;
ULONG fDisableCdm :1;
ULONG fForceClientLptDef :1;
ULONG fResetBroken :1;
ULONG fReconnectSame :1;
ULONG fSingleSessionPerUser :1;
ULONG fDisableWallpaper :1;
ULONG fKeepAliveEnable :1;
ULONG fPreventLicenseUpgrade :1;
ULONG fSecurelicensing :1;

’

68/ 253

[MS-TSTS-Diff] - v20210625

Terminal Services Terminal Server Runtime Interface Protocol
Copyright © 2021 Microsoft Corporation

Release: June 25, 2021

ULONG fEnableTimeZoneRedirection :1;

ULONG fDisableAutoReconnect :1;

ULONG fDisableForcibleLogoff :1;

ULONG fPolicyEncryptRPCTraffic :1;

ULONG fEncryptRPCTraffic :1;

ULONG fErrorInvalidProfile :1;

ULONG fPolicyFallbackPrintDriver :1;

ULONG FallbackPrintDriverType :3;

ULONG fDisableTerminalServerTooltip :1;

BYTE bSecurityLayer;

ULONG fPolicySecuritylLayer :1;

BYTE bUserAuthentication;

ULONG fPolicyUserAuthentication :1;

ULONG fPolicyTurnOffSingleAppMode :1;

ULONG fTurnOffSingleAppMode :1;

ULONG fDisablePNPPolicyIsEnfored :1;

ULONG fDisablePNPPolicyValue :1;

ULONG MaxInstanceCount;

ULONG LicensingMode;

BYTE MinEncryptionLevel;

WCHAR WFProfilePath[DIRECTORYiLENGTH + 171;

WCHAR WFHomeDir[DIRECTORY_LENGTH + 11,

WCHAR WFHomeDirDrivel[4 1;

ULONG SessionDirectoryActive;

WCHAR SessionDirectoryLocation[DIRECTORY LENGTH+1];

WCHAR SessionDirectoryClusterName [DIRECTORY LENGTH+1];

WCHAR SessionDirectoryAdditionalParams[DIRECTORY LENGTH+1];

ULONG SessionDirectoryExposeServerIP;

ULONG KeepAlivelInterval;

SHADOWCLASS Shadow;

ULONG MaxConnectionTime;

ULONG MaxDisconnectionTime;

ULONG MaxIdleTime;

WCHAR WorkDirectory[DIRECTORY LENGTH+1];

WCHAR InitialProgram[INITIALPROGRAM_LENGTH + 11

WCHAR LicenseServers[MAX LICENSE SERVER LENGTH + 1];
} POLICY TS MACHINE,

*PPOLICY TS MACHINE;

fPolicyDisableClip: TRUE indicates the policy for DisableClip is set; FALSE otherwise.
fPolicyDisableCam: TRUE indicates the policy for DisableCam is set; FALSE otherwise.
fPolicyDisableCcm: TRUE indicates the policy for DisableCcm is set; FALSE otherwise.
fPolicyDisableLPT: TRUE indicates the policy for DisableLPT is set; FALSE otherwise.

fPolicyDisableCpm: TRUE indicates the policy for DisableCpm is set; FALSE otherwise.

fPolicyPromptForPassword: TRUE indicates the policy for PromptForPassword is set; FALSE
otherwise.

fPolicyMaxInstanceCount: TRUE indicates the policy for MaxInstanceCount is set; FALSE
otherwise.

fPolicyMinEncryptionLevel: TRUE indicates the policy for MinEncryptionLevel is set; FALSE
otherwise.

fPolicyFipsEnabled: TRUE indicates the policy for Fips is enabled; FALSE otherwise.<106>

fPolicyDisableAutoReconnect: TRUE indicates the policy for DisableAutoReconnect is set; FALSE
otherwise.

fPolicyWFProfilePath: TRUE indicates the policy for WFProfilePath is set; FALSE otherwise.

69 /253

[MS-TSTS-Diff] - v20210625

Terminal Services Terminal Server Runtime Interface Protocol
Copyright © 2021 Microsoft Corporation

Release: June 25, 2021

fPolicyWFHomeDir: TRUE indicates the policy for WFHomeDir is set; FALSE otherwise.
fPolicyWFHomeDirDrive: TRUE indicates the policy for WFHomeDirDrive is set; FALSE otherwise.

fPolicyDenyTSConnections: TRUE indicates the policy for DenyTSConnections is set; FALSE
otherwise.

fPolicyTempFoldersPerSession: TRUE indicates the policy for TempFoldersPerSession is set; FALSE
otherwise.

fPolicyDeleteTempFoldersOnExit: TRUE indicates the policy for DeleteTempFoldersOnExit is set;
FALSE otherwise.

fPolicyColorDepth: TRUE indicates the policy for ColorDepth is set; FALSE otherwise.

fPolicySessionDirectoryActive: TRUE indicates the policy for SessionDirectoryActive is set; FALSE
otherwise.

fPolicySessionDirectoryLocation: TRUE indicates the policy for SessionDirectoryLocation is set;
FALSE otherwise.

fPolicySessionDirectoryClusterName: TRUE indicates the policy for SessionDirectoryClusterName
is set; FALSE otherwise.

fPolicySessionDirectoryAdditionalParams: TRUE indicates the policy for
SessionDirectoryAdditionalParams is set; FALSE otherwise.

fPolicySessionDirectoryExposeServerIP: TRUE indicates the policy for
SessionDirectoryExposeServerlIP is set; FALSE otherwise.

fPolicyPreventLicenseUpgrade: TRUE indicates the policy for PreventLicenseUpgrade is set; FALSE
otherwise.

fPolicySecureLicensing: TRUE indicates the policy for SecureLicensing is set; FALSE
otherwise.<107>

fPolicyWritableTSCCPermissionsTAB: TRUE indicates the policy for WritableTSCCPermissionsTAB
is set; FALSE otherwise.

fPolicyDisableCdm: TRUE indicates the policy for DisableCdm is set; FALSE otherwise.
fPolicyForceClientLptDef: TRUE indicates the policy for ForceClientLptDef is set; FALSE otherwise.
fPolicyShadow: TRUE indicates the policy for Shadow is set; FALSE otherwise.
fPolicyResetBroken: TRUE indicates the policy for ResetBroken is set; FALSE otherwise.
fPolicyReconnectSame: TRUE indicates the policy for ReconnectSame is set; FALSE otherwise.
fPolicyMaxSessionTime: TRUE indicates the policy for MaxSessionTime is set; FALSE otherwise.

fPolicyMaxDisconnectionTime: TRUE indicates the policy for MaxDisconnectionTime is set; FALSE
otherwise.

fPolicyMaxIdleTime: TRUE indicates the policy for MaxIdleTime is set; FALSE otherwise.
fPolicyInitialProgram: TRUE indicates the policy for InitialProgram is set; FALSE otherwise.

fPolicySingleSessionPerUser: TRUE indicates the policy for SingleSessionPerUser is set; FALSE
otherwise.

fPolicyDisableWallpaper: TRUE indicates the policy for DisableWallpaper is set; FALSE otherwise.

70/ 253

[MS-TSTS-Diff] - v20210625

Terminal Services Terminal Server Runtime Interface Protocol
Copyright © 2021 Microsoft Corporation

Release: June 25, 2021

fPolicyKeepAlive: TRUE indicates the policy for KeepAlive is set; FALSE otherwise.

fPolicyEnableTimeZoneRedirection: TRUE indicates the policy for EnableTimeZoneRedirection is
set; FALSE otherwise.<108>

fPolicyDisableForcibleLogoff: TRUE indicates the policy for DisableForcibleLogoff is set; FALSE
otherwise.<109>

fPolicyLicensingMode: TRUE indicates the policy for LicensingMode is set; FALSE otherwise.<110>

fPolicyExplicitLSDiscovery: TRUE indicates the policy for ExplicitLSDiscovery is set; FALSE
otherwise.<111>

fPolicyDisableTerminalServerTooltip: TRUE indicates the policy for DisableTerminalServerTooltip
is set; FALSE otherwise.<112>

fDisableClip: TRUE indicates disable client clipboard redirection; FALSE otherwise.
fDisableCam: TRUE indicates disable client audio redirection; FALSE otherwise.
fDisableCcm: TRUE indicates disable client COM port redirection; FALSE otherwise.
fDisableLPT: TRUE indicates disable client LPT port redirection; FALSE otherwise.
fDisableCpm: TRUE indicates disable client printer redirection; FALSE otherwise.

fPromptForPassword: Set to FALSE to log on user with previously provided credentials, or TRUE to
prompt the user for password.

ColorDepth: The color depth of the session.<113> The following supported values translate to the
number of colors supported:

= Oxl 256 (8 bpp)

= 0x2 32,768 (15 bpp)

= 0x3 65,536 (16 bpp)

= 0x4 16 million (24 bpp)

= 0x5 16 million with transparency (32 bpp)

fDenyTSConnections: If set to TRUE, Terminal Services is effectively disabled since remote
connections will be declined; FALSE otherwise.

fTempFoldersPerSession: Set to TRUE if there are temporary folders per session instead of one
common temp folder, FALSE otherwise.

fDeleteTempFoldersOnExit: If set to TRUE, delete temporary folders on session exit; FALSE
otherwise.

fWritableTSCCPermissionsTAB: If set to TRUE, an administrator can change the per-connection
security description, FALSE otherwise.

fDisableCdm: TRUE indicates disable client drive redirection; FALSE otherwise.

fForceClientLptDef: TRUE indicates force the client's redirected printer to be the default printer for
the user; FALSE otherwise.

fResetBroken: TRUE indicates reset the session if the connection is broken or if the connection or
idle timers expire; FALSE otherwise.

71/ 253

[MS-TSTS-Diff] - v20210625

Terminal Services Terminal Server Runtime Interface Protocol
Copyright © 2021 Microsoft Corporation

Release: June 25, 2021

fReconnectSame: Set to FALSE to indicate that the user can reconnect from any client computer to
a disconnected session. TRUE indicates that the user can reconnect to a disconnected session only
from the same client computer that initially established the disconnected session. Logging on from
a different client computer will lead to a new Terminal Services session being created.

fSingleSessionPerUser: TRUE indicates each user can have only a single session; FALSE otherwise.

fDisableWallpaper: TRUE indicates display of the desktop wallpaper in the session has been
disabled; FALSE otherwise.

fKeepAliveEnable: TRUE indicates KeepAlive is enabled; FALSE otherwise.

fPreventLicenseUpgrade: TRUE indicates licenses are prevented from being upgraded; FALSE
otherwise.

fSecurelLicensing: TRUE indicates secure licensing is enabled; FALSE otherwise.<114>

fEnableTimeZoneRedirection: TRUE indicates Client time zone redirection is enabled; FALSE
otherwise.<115>

fDisableAutoReconnect: TRUE indicates disable auto-reconnect functionality; FALSE otherwise.
fDisableForcibleLogoff: TRUE indicates disable forcible logoff; FALSE otherwise.<116>

fPolicyEncryptRPCTraffic: TRUE indicates policy for EncryptRpcTraffic is set; FALSE
otherwise.<117>

fEncryptRPCTraffic: TRUE indicates the policy for EncryptRpcTraffic is set; FALSE otherwise.

fErrorInvalidProfile: Set to TRUE if WFProfilePath, WFHomeDir, or WFHomeDirDrive is invalid (too
long), FALSE otherwise.<118>

fPolicyFallbackPrintDriver: TRUE indicates the policy for FallbackPrintDriver is set; FALSE
otherwise.<119>

FallbackPrintDriverType: The fallback printer driver type. Can be any of the following
values:<120>

« NO_FALLBACK_DRIVERS (0x0)
« FALLBACK_BESTGUESS (0x1)
« FALLBACK_PCL (0x2)

« FALLBACK_PS (0x3)

« FALLBACK_PCLANDPS (0x4)

fDisableTerminalServerTooltip: TRUE indicates disable terminal server tooltip; FALSE
otherwise.<121>

bSecurityLayer: If non-zero, indicates the SSL security layer in use.<122>
fPolicySecurityLayer: TRUE indicates the policy for SecuritylLayer is set; FALSE otherwise.<123>
bUserAuthentication: The user authentication level. It can be any of the following values:

= TS_USER_AUTHENTICATION_NONE

» TS_USER_AUTHENTICATION_VIA_HYBRID

= TS_USER_AUTHENTICATION_VIA_SSL

72 /253

[MS-TSTS-Diff] - v20210625

Terminal Services Terminal Server Runtime Interface Protocol
Copyright © 2021 Microsoft Corporation

Release: June 25, 2021

= TS_USER_AUTHENTICATION_DEFAULT (same as TS_USER_AUTHENTICATION_NONE)

fPolicyUserAuthentication: TRUE indicates the policy for UserAuthentication is set; FALSE
otherwise.<124>

fPolicyTurnOffSingleAppMode: TRUE indicates the policy for TurnOffSingleAppMode is set; FALSE
otherwise.<125>

fTurnOffSingleAppMode: TRUE specifies that the desktop is always displayed when a client
connects to a remote computer. FALSE specifies an initial program can be specified that runs on
the remote computer after the client connects to the remote computer.

fDisablePNPPolicylIsEnfored: TRUE indicates policy for PnP redirection is set, FALSE otherwise.
fDisablePNPPolicyValue: TRUE indicates disable PnP redirection, FALSE otherwise.
MaxInstanceCount: The maximum number of instances that can connect.

LicensingMode: The licensing mode of the server.

MinEncryptionLevel: The minimum allowed encryption level. Possible numeric values for this
parameter include 1 (Low), 2 (Client Compatible), 3 (High), and 4 (FIPS). Detailed description of
these encryption levels is included in [MS-RDPBCGR] sections 5.3.1 and 5.4.1.

WFProfilePath: The Terminal Services profile path. Overrides standard profile path.
WFHomeDir: The Terminal Services home directory path. Overrides standard home directory.
WFHomeDirDrive: The Terminal Services home directory drive. Overrides standard home directory.

SessionDirectoryActive: Set to TRUE if the machine is part of a Terminal Server Farm, FALSE
otherwise. For information about Terminal Server Farms, see [MSFT-SDLBTS].

SessionDirectoryLocation: The name of the Session Directory Server. For information about
Session Directory, see [MSFT-SDLBTS].

SessionDirectoryClusterName: The name of the Terminal Server Farm to which this machine
belongs. For information about Terminal Server Farms, see [MSFT-SDLBTS].

SessionDirectoryAdditionalParams: Additional parameters to pass to the session directory. This is
an opaque type.

SessionDirectoryExposeServerIP: If set to TRUE, expose the server's IP address to the client;
otherwise FALSE.

KeepAlivelInterval: Specifies the interval between keep-alives.
Shadow: Specifies whether shadowing of the session is allowed.

MaxConnectionTime: The maximum allowed session connection time setting of the session in
milliseconds.

MaxDisconnectionTime: The maximum allowed session disconnect time of the session in
milliseconds.

MaxIdleTime: The maximum allowed session idle time setting of the session in milliseconds.
WorkDirectory: The work directory for the initial program.

InitialProgram: The program to run instead of the default, if set.<126>

73/ 253

[MS-TSTS-Diff] - v20210625

Terminal Services Terminal Server Runtime Interface Protocol
Copyright © 2021 Microsoft Corporation

Release: June 25, 2021

LicenseServers: A hardcoded array of license servers that the server will use instead of using
license server discovery.

2.2.2.32 WINSTATIONUSERTOKEN

The WINSTATIONUSERTOKEN structure defines the user token for a session.

typedef struct _WINSTATIONUSERTOKEN {
HANDLE ProcessId;
HANDLE ThreadId;
HANDLE UserToken;

} WINSTATIONUSERTOKEN,
*PWINSTATIONUSERTOKEN;

Processld: Specifies the Process ID.
ThreadlId: Specifies the handle to the calling thread.

UserToken: Returns the user token that is currently logged on to the session.

2.2.2.33 WINSTATIONVIDEODATA

The WINSTATIONVIDEODATA structure defines the resolution and color depth of a session.

typedef struct WINSTATIONVIDEODATA ({
USHORT HResolution;
USHORT VResolution;
USHORT fColorDepth;

} WINSTATIONVIDEODATA,
*PWINSTATIONVIDEODATA;

HResolution: Specifies the horizontal resolution, in pixels.
VResolution: Specifies the vertical resolution, in pixels.

fColorDepth: Specifies the color depth. The supported values 1, 2, 4, 8, and 16 are translated,
respectively, as the following number of colors supported: 16 (4 bpp), 256 (8 bpp), 65,536 (16
bpp), 16 million (24 bpp), 32,768 (15 bpp).<127>

2.2.2.34 WINSTATIONLOADINDICATORDATA

The WINSTATIONLOADINDICATORDATA structure defines data used for the load balancing of a server.

typedef struct WINSTATIONLOADINDICATORDATA ({
ULONG RemainingSessionCapacity;
LOADFACTORTYPE LoadFactor;
ULONG TotalSessions;
ULONG DisconnectedSessions;
LARGE_INTEGER IdleCPU;
LARGE_INTEGER TotalCPU;
ULONG RawSessionCapacity;
ULONG reserved[9];

} WINSTATIONLOADINDICATORDATA,
*PWINSTATIONLOADINDICATORDATA;

RemainingSessionCapacity: The estimated number of additional sessions that can be supported
given the CPU constraint.

74 / 253

[MS-TSTS-Diff] - v20210625

Terminal Services Terminal Server Runtime Interface Protocol
Copyright © 2021 Microsoft Corporation

Release: June 25, 2021

LoadFactor: Indicates the most constrained current resource.
TotalSessions: The total number of sessions.
DisconnectedSessions: The number of disconnected sessions.
IdleCPU: This is always set to 0.

TotalCPU: This is always set to 0.

RawSessionCapacity: The raw number of sessions capacity.

reserved: Reserved.

2.2.2.34.1 LOADFACTORTYPE

The LOADFACTORTYPE enumeration specifies the most constrained resource affecting load balancing.

typedef enum LOADFACTORTYPE

{
ErrorConstraint,
PagedPoolConstraint,
NonPagedPoolConstraint,
AvailablePagesConstraint,
SystemPtesConstraint,
CPUConstraint

} LOADFACTORTYPE;

ErrorConstraint: An error occurred while obtaining constraint data.
PagedPoolConstraint: The amount of paged pool is the constraint.
NonPagedPoolConstraint: The amount of non-paged pool is the constraint.
AvailablePagesConstraint: The amount of available pages is the constraint.

SystemPtesConstraint: The number of system page table entries (PTEs) is the constraint.

CPUConstraint: CPU usage is the constraint.

2.2.2.35 WINSTATIONSHADOW

The WINSTATIONSHADOW structure is used for RpcWinStationQueryInformation and
RpcWinStationSetInformation operations.

typedef struct WINSTATIONSHADOW {
SHADOWSTATECLASS ShadowState;
SHADOWCLASS ShadowClass;
ULONG SessionId;
ULONG ProtocolType;

} WINSTATIONSHADOW,
*PWINSTATIONSHADOW;

ShadowState: Specifies the current state of shadowing.
ShadowClass: Specifies the type of shadowing.

SessionId: Specifies the session ID of the session.

ProtocolType: Specifies the type of protocol on the session. Can be one of the following values.

75/ 253

[MS-TSTS-Diff] - v20210625

Terminal Services Terminal Server Runtime Interface Protocol
Copyright © 2021 Microsoft Corporation

Release: June 25, 2021

Name Value

PROTOCOL_OTHERS 1

PROTOCOL_RDP 2

PROTOCOL_CONSOLE | 0<128>

2.2.2.35.1 SHADOWSTATECLASS

The SHADOWSTATECLASS enumeration specifies WinStation shadow states.

typedef enum SHADOWSTATECLASS
{

State NoShadow,

State_ Shadowing,

State Shadowed,
} SHADOWSTATECLASS;

State_NoShadow: No shadow operations are currently being performed on this session.

State_Shadowing: The session is shadowing a different session. The current session is referred to

as a shadow client.

State_Shadowed: The session is being shadowed by a different session. The current session is
referred to as a shadow target.

2.2.2.36 WINSTATIONPRODID

The WINSTATIONPRODID structure represents a product ID for the session.

typedef struct WINSTATIONPRODID ({
WCHAR DigProductId[CLIENTiPRODUCTilDiLENGTH];
WCHAR ClientDigProductId[CLIENTiPRODUCTilDiLENGTH];
WCHAR OuterMOStDigProductId[CLIENT_PRODUCT_ID_LENGTH];
ULONG curentSessionId;
ULONG ClientSessionId;
ULONG OuterMostSessionId;

} WINSTATIONPRODID,

*PWINSTATIONPRODID;

DigProductId: The product ID of the server. For information about the ProductID property, see
[MSDN-ProductID].<129>

ClientDigProductld: The product ID of the client.<130>
OuterMostDigProductId: Not used.

curentSessionld: The current session identifier.
ClientSessionId: The client's session identifier.

OuterMostSessionId: Not used.

76 /253

[MS-TSTS-Diff] - v20210625

Terminal Services Terminal Server Runtime Interface Protocol
Copyright © 2021 Microsoft Corporation

Release: June 25, 2021

2.2.2.37 WINSTATIONREMOTEADDRESS

The WINSTATIONREMOTEADDRESS structure specifies the client's remote address. Only TCP/IP
addresses are supported.<131>

typedef struct {
unsigned short sin family;
union {
struct {
USHORT sin port;
ULONG in_addr;
UCHAR sin_zero([8];
} ipvé;
struct {
USHORT sin6_port;
ULONG sin6 flowinfo;
USHORT sin6 addr[8];
ULONG sin6_scope id;
} ipvé;
bi
} WINSTATIONREMOTEADDRESS,
*PWINSTATIONREMOTEADDRESS;

sin_family: MUST be AF_INET to indicate that IPv4 is supported or AF_INET®6 to indicate that IPv6 is
supported. For more information on AF_INET and AF_INET6, see [MSDN-SOCKET].

ipv4: IPv4 address. For more information, see [MSDN-TDIADDRESS].
sin_port: Specifies a TCP or User Datagram Protocol (UDP) port number.
in_addr: Indicates the IP address.

sin_zero: An array filled with zeros.

ipv6: IPv6 address.

sin6_port: Specifies a TCP or UDP port number.

sin6_flowinfo: Ipv6 flow information.

sin6_addr: Indicates the IP address.

sin6_scope_id: Set of interfaces for a scope. For more information, see [MSDN-SOCKADDR_ING6].

2.2.2.38 ExtendedClientCredentials

The ExtendedClientCredentials structure holds longer user name, password, and domain fields.<132>

typedef struct _ExtendedClientCredentials ({
WCHAR UserName [EXTENDED USERNAME LEN + 1];
WCHAR Password[EXTENDED PASSWORD LEN + 1];
WCHAR Domain[EXTENDED_DOMAIN_LEN + 1];

} ExtendedClientCredentials,
*pExtendedClientCredentials;

UserName: Specifies the user's username.
Password: Specifies the user's password.

Domain: Specifies the user's domain name.

77/ 253

[MS-TSTS-Diff] - v20210625

Terminal Services Terminal Server Runtime Interface Protocol
Copyright © 2021 Microsoft Corporation

Release: June 25, 2021

2.2.2.39 TS_TRACE

The TS_TRACE structure specifies fields used for configuring tracing operations in TS binaries if they
are checked.

typedef struct TS TRACE ({
WCHAR TraceFile[256];
BOOLEAN fDebugger;
BOOLEAN fTimestamp;
ULONG TraceClass;
ULONG TraceEnable;
WCHAR TraceOption[64];

} TS TRACE,

*PTS TRACE;

TraceFile: Specifies the file name, if any, to which to write debug information.
fDebugger: Specifies whether debugger is attached.

fTimestamp: Specifies whether to append time stamp to the traces logged.

TraceClass: Classes of tracing to log. They enable tracing for the various terminal server
binaries/functionalities. It MUST be a bitwise OR combination of one or more of the following
values.

Value Meaning

TC_ICASRV Enable tracing for the Terminal Services Service.<133>
0x00000001

TC_ICAAPI Enable tracing for the DLL providing the API for Terminal Services to communicate with the
0x00000002 WinStation Driver.<134>

TC_ICADD Enable tracing for the Terminal Services Device Driver.<135>
0x00000004

TC_WD Enable tracing for the WinStation Driver.<136>

0x00000008

TC_CD Enable tracing for the Connection Driver.<137>

0x00000010

TC_PD Enable tracing for the Protocol Driver.<138>

0x00000020

TC_TD Enable tracing for the Transport Driver.<139>

0x00000040

TC_RELIABLE | Not used.
0x00000100

TC_FRAME Enable tracing for the Frame Protocol Driver.<140>
0x00000200

TC_COMP Enable tracing for the Compression library.<141>
0x00000400

TC_CRYPT Enable tracing for the Encryption binary.<142>
0x00000800

78/ 253

[MS-TSTS-Diff] - v20210625

Terminal Services Terminal Server Runtime Interface Protocol
Copyright © 2021 Microsoft Corporation

Release: June 25, 2021

Value Meaning

TC_TW Not used.

0x10000000

TC_DISPLAY Enable tracing for the Display Driver.<143>
0x10000000

TC_WFSHELL | Not used.

0x20000000

TC_WX Enable tracing for the WinStation Extension.<144>
0x40000000

TC_LOAD Enable tracing for the Load balancing binary.<145>
0x80000000

TC_ALL Everything.

OXfFffff

following values.

Value Meaning
TT_API1 API level 1.
0x00000001

TT_API2 API level 2.
0x00000002

TT_API3 API level 3.
0x00000004

TT_API4 API level 4.
0x00000008

TT_OUT1 Output level 1.
0x00000010

TT_OUT2 Output level 2.
0x00000020

TT_OUT3 Output level 3.
0x00000040

TT_OUT4 Output level 4.
0x00000080

TT_IN1 Input level 1.
0x00000100

TT_IN2 Input level 2.
0x00000200

TT_IN3 Input level 3.
0x00000400

TraceEnable: Type of tracing calls log. It MUST be a bitwise OR combination of one or more of the

79/ 253

[MS-TSTS-Diff] - v20210625

Terminal Services Terminal Server Runtime Interface Protocol
Copyright © 2021 Microsoft Corporation

Release: June 25, 2021

Value Meaning

TT_IN4 Input level 4.
0x00000800

TT_ORAW Raw output data.
0x00001000

TT_IRAW Raw input data.
0x00002000

TT_OCOOK Cooked output data.
0x00004000

TT_ICOOK Cooked input data.

0x00008000

TT_SEM Semaphores.
0x00010000

TT_NONE Only view errors.
0x10000000

TT_ERROR Error condition.
OXffffffff

TraceOption: Trace option string. This SHOULD be in the format "<filename>(start-end)", where
<filename> is the name of the file that requires trace to be collected and (start-end) is the
starting and ending line numbers during which trace is to be collected. This is an optional
parameter and can be an empty string meaning collect trace for all files belonging to TraceClass
and all lines in those files.

2.2.2.40 BEEPINPUT

The BEEPINPUT structure performs a beep in the session.

typedef struct BEEPINPUT ({
ULONG uType;

} BEEPINPUT,

*PBEEPINPUT;

uType: If the session ID is 0, this can be any of the values that can be passed to the standard
MessageBeep function ([MSDN-MSGBeep]). If the session ID is not 0, a frequency and duration is
chosen by the server to send as a beep to the session.

2.2.2.41 WINSTATIONCLIENTDATA

The WINSTATIONCLIENTDATA structure is a ClientData structure used to send data through
RpcWinStationSetInformation to the client.

typedef struct WINSTATIONCLIENTDATA {
CLIENTDATANAME DataName;
BOOLEAN fUnicodeData;

} WINSTATIONCLIENTDATA,
*PWINSTATIONCLIENTDATA;

80/ 253

[MS-TSTS-Diff] - v20210625

Terminal Services Terminal Server Runtime Interface Protocol
Copyright © 2021 Microsoft Corporation

Release: June 25, 2021

DataName: Identifies the type of data sent in this WINSTATIONCLIENTDATA structure. The definition
is dependent on the caller and on the client receiving it. This MUST be a data name following a
format similar to that of the CLIENTDATANAME data type.

fUnicodeData: TRUE indicates data is in Unicode format; FALSE otherwise.

2.2.2.42 SESSION_CHANGE

The SESSION_CHANGE structure contains the ID of a session running on a terminal server and a
mask of the notifications that were received for that session.

typedef struct SESSION CHANGE {
LONG SessionId;
TNotificationId NotificationId;
} SESSION_CHANGE,
*PSESSION_CHANGE;

Sessionld: Identifies the session for which notification was received.

NotificationId: Mask of the notifications that were received for this session.

2.2.2.43 RCM_REMOTEADDRESS

The RCM_REMOTEADDRESS structure defines a remote address.

typedef struct {
USHORT sin family;
union switch (USHORT sin family) {
case 2: struct {
USHORT sin port;
ULONG in_addr;
UCHAR sin zero([8];
} ipv4;
case 23: struct {
USHORT sin6_port;
ULONG sin6_ flowinfo;
USHORT sin6_addr[8];
ULONG sin6_scope_id;
} ipvé;
}i
} RCM_ REMOTEADDRESS, *PRCM REMOTEADDRESS;

sin_family: Specifies the type of IP address. Valid values are 2 for IPv4 addresses, and 23 for IPv6
addresses.

ipv4: IPv4 address. For more information, see [MSDN-TDIADDRESS].
sin_port: Specifies a TCP or UDP port humber.

in_addr: Indicates the IP address.

sin_zero: An array filled with zeros.

ipv6: IPv6 address.

sin6_port: Specifies a TCP or UDP port number.

sin6_flowinfo: IPv6 flow information.

81 /253

[MS-TSTS-Diff] - v20210625

Terminal Services Terminal Server Runtime Interface Protocol
Copyright © 2021 Microsoft Corporation

Release: June 25, 2021

sin6_addr: Indicates the IP address.

sin6_scope_id: Set of interfaces for a scope. For more information about these interfaces, see
[MSDN-SOCKADDR_ING6].

2.2.2.44 CLIENT_STACK_ADDRESS
The CLIENT_STACK_ADDRESS structure represents the client network address.<146>

typedef struct _CLIENT_ STACK ADDRESS {
BYTE Address[STACK ADDRESS LENGTH];

} CLIENT STACK ADDRESS,
*PCLIENT STACK ADDRESS;

Address: The first two bytes represent the address family to which the client network address
belongs. For more information, see [MSDN-SOCKET]. The remaining bytes represent the client
network address in a TDI_ADDRESS_IP structure. For more information, see [MSDN-
TDIADDRESS].

2.2.2.45 VARDATA_WIRE

The VARDATA_WIRE structure defines the size and offset of the variable-length data succeeding it.
This structure is used before variable-length data fields that are returned by using specific
WinStationInformationClass classes (see section 3.7.4.1.6).

typedef struct _VARDATA WIRE ({
USHORT Size;
USHORT Offset;

} VARDATA WIRE,

*PVARDATA WIRE;

Size: Size of the variable length data, in bytes, succeeding this structure.

Offset: Offset, in bytes, of the succeeding variable-length structure in the whole data BLOB.

2.2.2.46 PDPARAMSWIRE

The PDPARAMSWIRE structure precedes a PDPARAMS structure and defines the size and offset of the
PDPARAMS structures in the complete data BLOB.

typedef struct PDPARAMSWIRE ({
SDCLASS SdClass;
VARDATA WIRE SdClassSpecific;
} PDPARAMSWIRE,
*PPDPARAMSWIRE;

SdClass: Value of SDCLASS that the succeeding PDPARAMS structure corresponds to.

SdClassSpecific: VARDATA_WIRE structure defining the size and offset of the variable-length
PDPARAMS data succeeding it.

2.2.2.47 WINSTACONFIGWIRE

The WINSTACONFIGWIRE structure precedes a variable-length user configuration data BLOB and
defines the size and offset of the user configuration data.

82 /253

[MS-TSTS-Diff] - v20210625

Terminal Services Terminal Server Runtime Interface Protocol
Copyright © 2021 Microsoft Corporation

Release: June 25, 2021

typedef struct WINSTACONFIGWIRE {
WCHAR Comment [61];
char OEMIA[4];
VARDATA WIRE UserConfig;
VARDATA WIRE NewFields;
} WINSTACONFIGWIRE,
*PWINSTACONFIGWIRE;

Comment: The WinStation descriptive comment.

OEMId: Value identifying the OEM implementor of the TermService Listener to which this session
(WinStation) belongs. This can be any value defined by the implementer (OEM) of the listener.

UserConfig: VARDATA_WIRE structure defining the size and offset of the variable-length user
configuration data succeeding it.

NewFields: VARDATA_WIRE structure defining the size and offset of the variable-length new data
succeeding it. This field is not used and is a placeholder for any new data, if and when added.

2.2.2.48 TSVIP_SOCKADDR
The TSVIP_SOCKADDR structure defines a socket address.

typedef struct TSVIP SOCKADDR ({
#ifdef midl
union switch (unsigned short sin family) u
{
case 2: // AF_INET
struct {
USHORT sin port;
ULONG in addr;
UCHAR sin zero[8];
} ipvé4;
case 23: // AF_INET6
struct {
USHORT sin6 port;

ULONG sin6_flowinfo;
USHORT sin6_addr([8];
ULONG sin6_scope id;

} ipv6;
}i

#else

USHORT sin family;

union

{

struct {

USHORT sin port;
ULONG in_addr;
UCHAR sin_zero([8];

} ipvé4;

struct {
USHORT sin6 port;
ULONG sin6_flowinfo;
USHORT sin6_addr([8];
ULONG sin6_scope_id;

}ipv6;
}ous
#endif

} TSVIP_SOCKADDR,

*PTSVIP_SOCKADDR;

ipv4: IPv4 address. For more information, see [MSDN-TDIADDRESS].

83/ 253

[MS-TSTS-Diff] - v20210625

Terminal Services Terminal Server Runtime Interface Protocol
Copyright © 2021 Microsoft Corporation

Release: June 25, 2021

sin_port: Specifies a TCP or UDP port number.
in_addr: Indicates the IP address.

sin_zero: An array filled with zeros.

ipv6: IPv6 flow information.

sin6_port: Specifies a TCP or UDP port number.
sin6_flowinfo: IPv6 flow information.
sin6_addr: Indicates the IP address.

sin6_scope_id: Set of interfaces for a scope. For more information, see [MSDN-SOCKADDR_IN6].

2.2.2.49 TSVIPAddress

The TSVIPAddress structure defines a session's IP address.

typedef struct TSVIPAddress {

DWORD dwVersion; //Structure version
TSVIP SOCKADDR IPAddress; //IPv4 is in network byte order.
ULONG PrefixOrSubnetMask; //IPv4 is a mask in network byte order,
#ifdef midl //IPv6 is prefix length.
[range (0, TSVIP_MAX ADAPTER ADDRESS_LENGTH)]
UINT PhysicalAddressLength;

[length is(PhysicalAddressLength)]
BYTE PhysicalAddress[TSVIP MAX ADAPTER ADDRESS LENGTH];

#else

UINT PhysicalAddressLength;

BYTE PhysicalAddreSS[TSVIP_MAX_ADAPTER_ADDRESS_LENGTH];
#endif

ULONG LeaseExpires;

ULONG T1;

ULONG T2;
} TSVIPAddress,

*PTSVIPAddress;

dwVersion: Specifies the current TSVIPAddress structure version. This field MUST be set to 0x01,
the only supported version.

IPAddress: Specifies the IP address.

PrefixOrSubnetMask: Subnet mask of the IP address.

PhysicalAddressLength: Number of bytes in the PhysicalAddress.
Where TSVIP_MAX_ADAPTER_ADDRESS_LENGTH is defined as

#define TSVIP_MAX ADAPTER_ ADDRESS LENGTH 16

PhysicalAddress: The MAC address used to acquire the IP address.
LeaseExpires: The lease expiration time for the IP address.
T1: The time at which a request to renew the IP address will be made.

T2: Not used.

84 /253

[MS-TSTS-Diff] - v20210625

Terminal Services Terminal Server Runtime Interface Protocol
Copyright © 2021 Microsoft Corporation

Release: June 25, 2021

2.2.2.50 TSVIPSession

The TSVIPSession structure defines a session with its IP address information.

typedef struct TSVIPSession {
DWORD dwVersion;
DWORD SessionId;
TSVIPAddress SessionIP;

} TSVIPSession,
*PTSVIPSession;

dwVersion: Specifies the version of the structure. This field MUST be set to 0x01, the only supported
version.

Sessionld: Specifies the ID of the session.

SessionIP: Specifies the IP address for the session. This is of type TSVIPAddress.

2.2.2.51 WINSTATIONVALIDATIONINFORMATION

The WINSTATIONVALIDATIONINFORMATION structure contains information that is required to identify
and validate a per-device terminal server (TS) client access license (CAL) associated with the session.

A TS CAL is a license that is issued to a user or device to allow remote access to sessions on a
terminal server. A per-device TS CAL is a license that is issued to a specific client device. For more
information, see [MSFT-WSTSL].

typedef struct WINSTATIONVALIDATIONINFORMATION {
WINSTATIONPRODUCTINFO ProductInfo;
BYTE License[VALIDATIONINFORMATION_LICENSE_LENGTH];
ULONG LicenselLength;
BYTE HardwareID[VALIDATIONINFORMATION HARDWAREID LENGTH];
ULONG HardwareIDLength;

} WINSTATIONVALIDATIONINEFORMATION,
*PWINSTATIONVALIDATIONINFORMATION;

ProductInfo: Specifies information that identifies the type of license.
License: The per-device license BLOB associated with the session.
LicenseLength: The length, in bytes, of License.

HardwareID: An identifier that uniquely identifies the client device.

HardwareIDLength: The length, in bytes, of HardwareID.

2.2.2,52 WINSTATIONPRODUCTINFO
The WINSTATIONPRODUCTINFO structure defines the type of license.

typedef struct WINSTATIONPRODUCTINFO {
WCHAR CompanyName [PRODUCTINFO COMPANYNAME LENGTH];
WCHAR ProductID[PRODUCTINFO PRODUCTID LENGTH];

} WINSTATIONPRODUCTINFO,

*PWINSTATIONPRODUCTINFO;

CompanyName: The name associated with the license. All licenses are associated with "Microsoft
Corporation".

85 /253

[MS-TSTS-Diff] - v20210625

Terminal Services Terminal Server Runtime Interface Protocol
Copyright © 2021 Microsoft Corporation

Release: June 25, 2021

ProductID: An ID identifying the type of license. The product ID for per-device licenses is "A02".

2.3 Directory Service Schema Elements

The Terminal Services Terminal Server Runtime Interface accesses the following directory service
attributes in the user class listed in the following table.

For the syntactic specifications of the following attributes, see Active Directory Domain Services (AD
DS) ([MS-ADA1], [MS-ADA2], [MS-ADA3], and [MS-ADSC]).

Directory service
attributes

Description

msTSAllowLogon

Not used by Terminal Services.

msTSBrokenConnectionAction

Not used by Terminal Services.

msTSConnectClientDrives

Not used by Terminal Services.

msTSConnectPrinterDrives

Not used by Terminal Services.

msTSDefaultToMainPrinter

Not used by Terminal Services.

msTSHomeDirectory

Not used by Terminal Services; CtxWFHomeDir defined in section 2.3.2 is used
instead.

msTSHomeDrive

Not used by Terminal Services; CtxWFHomeDirDrive defined in section 2.3.2 is
used instead.

msTSInitialProgram

Not used by Terminal Services; CtxInitialProgram defined in section 2.3.2 is used
instead.

msTSMaxConnectionTime

Not used by Terminal Services; CtxMaxConnectionTime defined in section 2.3.2
is used instead.

msTSMaxDisconnectionTime

Not used by Terminal Services; CtxMaxDisconnectionTime defined in section
2.3.2 is used instead.

msTSMaxIdleTime

Not used by Terminal Services; CtxMaxIdleTime defined in section 2.3.2 is used
instead.

msTSProfilePath

Not used by Terminal Services; CtxWFProfilePath defined in section 2.3.2 is used
instead.

msTSReconnectionAction

Not used by Terminal Services.

msTSRemoteControl

Not used by Terminal Services; CtxShadow defined in section 2.3.2 is used
instead.

msTSWorkDirectory

Not used by Terminal Services; CtxWorkDirectory defined in section 2.3.2 is used
instead.

userParameters This attribute contains a binary BLOB composed of various fields of the
USERCONFIG structure returned by RpcGetConfigData. For the binary BLOB
structure, see UserParameters (section 2.3.1).

msTSProperty01 This attribute contains multi-strings that represent the personal desktop

assigned to the user. For the structure of this attribute, see msTSProperty01
(section 2.3.4).

Note Any of the previously defined properties can be set for either a user or a machine. Machine
properties MAY override user properties and hence the value returned by the RPC calls as previously
defined will depend on whether machine properties are set in addition to the user properties.

[MS-TSTS-Diff] - v20210625

86 /253

Terminal Services Terminal Server Runtime Interface Protocol
Copyright © 2021 Microsoft Corporation

Release: June 25, 2021

2.3.1 userParameters

The userParameters attribute is used by Terminal Services to store the configuration data associated
with the user connected to a session running on a terminal server. This configuration data is returned
in @ USERCONFIG structure by the RpcGetConfigData method. Terminal Services does not use UTF-8
or UTF-16 encoding to store the configuration data in the userParameters attribute. Terminal
Services stores the user configuration data in the userParameters attribute in the following format:

-
N
w

1{2(3|4|5(6|7|8[(9|0|1|2|3|4|5(6|7|8[9(0|1(2(3|4|5(6|7|8|9|0]|1

ReservedData (96 bytes)

Signature TSPropertyCount

TSPropertyArray (variable)

ReservedData (96 bytes): A 96-byte array of reserved data.<147>

Signature (2 bytes): A 2-byte Unicode character. This field is used by Terminal Services to assert
the validity of the TSPropertyCount and TSPropertyArray fields. Terminal Services compares
the data contained in this field with Unicode character "P". If this field contains the aforementioned
character, then the information inside the TSPropertyArray and TSPropertyCount fields is
considered valid. If it contains a different value, then all information inside the TSPropertyCount
and TSPropertyArray fields is considered invalid.

TSPropertyCount (2 bytes): A 2-byte unsigned integer indicating the number of elements in
TSPropertyArray.

TSPropertyArray (variable): A variable-length array of TSProperty structures. The number of
elements in this array is specified by the field TSPropertyCount.

2.3.2 TSProperty

Following is the format of each TSProperty structure:

0({1(2|3|4|5|6|7|8|9(0(1(2[3|4|5|/6|7|8|9|0|1|2|3|4|5|6[7(8]|9|0]|1

NamelLength ValuelLength

Type PropName (variable)

PropValue (variable)

87/ 253

[MS-TSTS-Diff] - v20210625

Terminal Services Terminal Server Runtime Interface Protocol
Copyright © 2021 Microsoft Corporation

Release: June 25, 2021

NameLength (2 bytes): A 2-byte unsigned integer indicating the length of the PropName field in

bytes.

ValueLength (2 bytes): A 2-byte unsigned integer indicating the length of the PropValue field in

bytes.

Type (2 bytes): A 2-byte unsigned integer indicating the type of the PropValue field. It can have the

following values:

Value Meaning

PROP_TYPE_ITEM | Indicates that the property contains one item.
0x01

PropName (variable): A Unicode string whose length is indicated by the NameLength field. The

string indicates the name of the property.

PropValue (variable): An encoded binary BLOB of length indicated by the ValueLength field. This
field either contains a 32-bit unsigned integer or an array of ASCII characters. See Encoding and

decoding PropValue field for encoding and decoding this BLOB.

The following table describes various PropName fields and associated PropValue fields used by

Terminal Services.

[MS-TSTS-Diff] - v20210625

Terminal Services Terminal Server Runtime Interface Protocol
Copyright © 2021 Microsoft Corporation

Release: June 25, 2021

[MS-TSTS] RPC call
PropValue that can be used to

PropName type Description query this value

CtxCfgPresent 32-bit It indicates presence of valid TSProperty None.
unsigned structures in TSPropertyArray. If the
integer TSPropertyArray does not contain a

TSProperty structure containing this
PropName and PropValue, Terminal
Services ignore the remaining contents of
TSPropertyArray. The PropValue field can
only contain value OxBOOB1E55.

CtxCfgFlags1 32-bit Each bit in the PropValue maps to a RpcGetConfigData.
unsigned Boolean field of the USERCONFIG
integer structure returned by the

RpcGetConfigData method. For details
about each bit, see the table of
CtxCfgFlags1 values in this section.

CtxCallBack 32-bit The callback class for callback operations. | Returned by
unsigned RpcGetConfigData
integer method in Callback

field of USERCONFIG
structure.

CtxKeyboardLayout 32-bit The keyboard layout (HKL) of the user Returned by the
unsigned session. RpcGetConfigData
integer method in the

KeyboardLayout field
of the USERCONFIG
structure.

CtxMinEncryptionLevel 8-bit The minimum allowed encryption level of Returned by the
integer the user session. RpcGetConfigData

method in the
MinEncryptionLevel
field of the

88 /253

[MS-TSTS] RPC call

remains active on the terminal server.

PropValue that can be used to

PropName type Description query this value

USERCONFIG
structure.

CtxNWLogonServer 32-bit The NetWare logon server name. Returned by the
unsigned RpcGetConfigData
integer method in the

NWLogonServer field
of the USERCONFIG
structure.

CtxWFHomeDir Variable- This attribute specifies the home directory | Returned by the
length for the user. Each user on a terminal RpcGetConfigData
ASCII server has a unique home directory. This method in the
character ensures that application information is WFHomeDir field of
array stored separately for each user in a multi- | the USERCONFIG

user environment. To set a home structure.
directory on the local computer, the

implementer specifies a local path; for

example, C:\Path. To set a home

directory in a network environment, the

implementer MUST first set the

CtxWFHomeDirDrive property, and then

set this property to a Universal Naming

Convention (UNC) path.

CtxWFHomeDirDrive Variable- This attribute specifies a home drive for Returned by the
length the user. In a network environment, this RpcGetConfigData
ASCII property is a string containing a drive method in the
character specification (a drive letter followed by a WFHomeDirDrive field
array colon) to which the UNC path specified in of the USERCONFIG

the TerminalServicesCtxWFHomeDir structure.
property is mapped. To set a home

directory in a network environment, the

implementer MUST first set this property,

and then set the CtxWFHomeDir property.

CtxInitialProgram Variable- This attribute specifies the path and file Returned by the
length name of the application that the user RpcGetConfigData
ASCII requires to start automatically when the method in the
character user logs on to the terminal server. To set | InitialProgram field of
array an initial application to start when the the USERCONFIG

user logs on, the implementer MUST first structure.
set this property, and then set the

CtxWorkDirectory property. If the

implementer sets only the

CtxInitialProgram property, the

application starts in the user's session in

the default user directory.

CtxMaxConnectionTime 32-bit This attribute specifies the maximum Returned by the
unsigned duration (in minutes) of the Terminal RpcGetConfigData
integer Services session. After the specified method in the

number of minutes has elapsed, the MaxConnectionTime

session can be disconnected or field of the

terminated. USERCONFIG
structure.

CtxMaxDisconnectionTime | 32-bit This attribute specifies the maximum Returned by the
unsigned amount of time (in minutes) that a RpcGetConfigData
integer disconnected Terminal Services session method in the

MaxDisconnectionTime

[MS-TSTS-Diff] - v20210625

Terminal Services Terminal Server Runtime Interface Protocol
Copyright © 2021 Microsoft Corporation

Release: June 25, 2021

89 /253

[MS-TSTS] RPC call

PropValue that can be used to
PropName type Description query this value
After the specified number of minutes has | field of the
elapsed, the session is terminated. USERCONFIG
structure.
CtxMaxlIdleTime 32-bit This attribute specifies the maximum Returned by the
unsigned amount of time (in minutes) that the RpcGetConfigData
integer Terminal Services session can remain method in the
idle. After the specified number of MaxIdleTime field of
minutes has elapsed, the session can be the USERCONFIG
disconnected or terminated. structure.
CtxWFProfilePath Variable- This attribute specifies a roaming or Returned by the
length mandatory profile path to use when the RpcGetConfigData
ASCII user logs on to the terminal server. The method in the
character profile path is in the following network WFProfilePath field of
array path format: \\servername\profiles folder | the USERCONFIG
name\username. structure.
CtxShadow 32-bit This attribute specifies whether to allow Returned by the
unsigned remote observation or remote control of RpcGetConfigData
integer the user's Terminal Services session. The method in the Shadow
values are as follows: field of the
0. Disable USERCONFIG
1. EnableInputNotify structure.
2. EnableInputNoNotify
3. EnableNoInputNotify
4. EnableNoInputNoNotify
For a description of these values, see
[MSDN-RCMWin32_TSRCS].
CtxWorkDirectory Variable- This attribute specifies the working Returned by the
length directory path for the user. To set an RpcGetConfigData
ASCII initial application to start when the user method in the
character logs on to the terminal server, the WorkDirectory field of
array implementer MUST first set the the USERCONFIG
CtxInitialProgram property, and then set structure.
this property.
CtxCallbackNumber Variable- This attribute specifies the call back Returned by the
length number provided to the user on the client | RpcGetConfigData
ASCII side for technical support. method in the
character CallbackNumber field
array of the USERCONFIG

structure.

The following table provides the details of each bit in the PropValue associated with the PropName

'CtxCfgFlags1'.

Bit mask in CtxCfgFlags1 PropValue

[MS-TSTS] RPC call that can be used to query this value

0x10000000

Returned by the RpcGetConfigData method in
fInheritInitialProgram field of the USERCONFIG structure.

0x08000000

F1IMSK_INHERITCALLBACK

Returned by the RpcGetConfigData method in the
fInheritCallback field of the USERCONFIG structure.

F1IMSK_INHERITCALLBACKNUMBER

Returned by the RpcGetConfigData method in the

[MS-TSTS-Diff] - v20210625

Terminal Services Terminal Server Runtime Interface Protocol
Copyright © 2021 Microsoft Corporation

Release: June 25, 2021

90/ 253

Bit mask in CtxCfgFlags1 PropValue

[MS-TSTS] RPC call that can be used to query this value

0x04000000

fInheritCallbackNumber field of the USERCONFIG structure.

F1IMSK_INHERITSHADOW
0x02000000

Returned by the RpcGetConfigData method in the fInheritShadow
field of the USERCONFIG structure.

FIMSK_INHERITMAXSESSIONTIME
0x01000000

Returned by the RpcGetConfigData method in the
fInheritMaxSessionTime field of the USERCONFIG structure.

FIMSK_INHERITMAXDISCONNECTIONTIME
0x00800000

Returned by the RpcGetConfigData method in the
fInheritMaxDisconnectionTime field the USERCONFIG structure.

F1IMSK_INHERITMAXIDLETIME
0x00400000

Returned by the RpcGetConfigData method in the
fInheritMaxIdleTime field of the USERCONFIG structure.

FIMSK_INHERITAUTOCLIENT
0x00200000

Returned by the RpcGetConfigData method in the
fInheritAutoClient field of the USERCONFIG structure.

F1IMSK_INHERITSECURITY
0x00100000

Returned by the RpcGetConfigData method in the
fInheritSecurity field of the USERCONFIG structure.

F1IMSK_PROMPTFORPASSWORD
0x00080000

Returned by the RpcGetConfigData method in the
fPromptForPassword field of the USERCONFIG structure.

F1IMSK_RESETBROKEN
0x00040000

Returned by the RpcGetConfigData method in the fResetBroken
field of the USERCONFIG structure.

F1IMSK_RECONNECTSAME
0x00020000

Returned by the RpcGetConfigData method in the
fReconnectSame field of the USERCONFIG structure.

F1IMSK_LOGONDISABLED
0x00010000

Returned by the RpcGetConfigData method in the fLogonDisabled
field of the USERCONFIG structure.

F1IMSK_AUTOCLIENTDRIVES
0x00008000

Returned by the RpcGetConfigData method in the
fAutoClientDrives field of the USERCONFIG structure.

F1IMSK_AUTOCLIENTLPTS
0x00004000

Returned by the RpcGetConfigData method in the fAutoClientLpts
field of the USERCONFIG structure.

F1MSK_FORCECLIENTLPTDEF
0x00002000

Returned by the RpcGetConfigData method in the
fForceClientLptDef field of the USERCONFIG structure.

F1MSK_DISABLEENCRYPTION
0x00001000

Returned by the RpcGetConfigData method in the
fDisableEncryption field of the USERCONFIG structure.

F1IMSK_HOMEDIRECTORYMAPROOT
0x00000800

Returned by the RpcGetConfigData method in the
fHomeDirectoryMapRoot field of the USERCONFIG structure.

F1MSK_USEDEFAULTGINA
0x00000400

Returned by the RpcGetConfigData method in the
fUseDefaultGina field of the USERCONFIG structure.

F1MSK_DISABLECPM
0x00000200

Returned by the RpcGetConfigData method in the fDisableCpm
field of the USERCONFIG structure.

F1MSK_DISABLECDM
0x00000100

Returned by the RpcGetConfigData method in the fDisableCdm
field of the USERCONFIG structure.

F1MSK_DISABLECCM

Returned by the RpcGetConfigData method in the fDisableCcm

[MS-TSTS-Diff] - v20210625

91/ 253

Terminal Services Terminal Server Runtime Interface Protocol

Copyright © 2021 Microsoft Corporation
Release: June 25, 2021

Bit mask in CtxCfgFlags1 PropValue

[MS-TSTS] RPC call that can be used to query this value

0x00000080

field of the USERCONFIG structure.

F1MSK_DISABLELPT
0x00000040

Returned by the RpcGetConfigData method in the fDisableLPT
field of the USERCONFIG structure.

F1IMSK_DISABLECLIP
0x00000020

Returned by the RpcGetConfigData method in the fDisableClip
field of the USERCONFIG structure.

F1IMSK_DISABLEEXE
0x00000010

Returned by the RpcGetConfigData method in the fDisableExe
field of the USERCONFIG structure.

F1MSK_WALLPAPERDISABLED
0x00000008

Returned by the RpcGetConfigData method in the
fWallPaperDisabled field of the USERCONFIG structure.

F1IMSK_DISABLECAM
0x00000004

Returned by the RpcGetConfigData method in the fDisableCam
field of the USERCONFIG structure.

2.3.3 Encoding PropValue Field in TSProperty Structure

To create the encoded binary BLOB for the PropValue field, for each byte of the input create its

ASCII-encoded hexadecimal representation and place this representation in 2 consecutive bytes of the
output buffer, the most significant hexadecimal digit first followed by the least significant hexadecimal
digit. For example, if the input byte contains the ASCII representation of character 'A’', the resulting
output will be a sequence of two ASCII characters: character '4' followed by character '1' because the
hexadecimal representation of a byte that contains the ASCII character 'A' is 41. Hence, the output
buffer corresponding to the input buffer byte containing character 'A’ will be a sequence of 2 bytes
whose hexadecimal representations are 34 and 31. As another example, the input buffer containing
the ASCII string "ABCDE\0" would be encoded into the ASCII string "414243444500" (without the
terminating 0), which is the same as a sequence of 12 bytes whose hexadecimal representations are
34, 31, 34, 32, 34, 33, 34, 34, 34, 35, 30, and 30.

See Encoding/Decoding Example (section 4.5) for an example of code that demonstrates encoding and
decoding of the PropValue field.
2.3.4 msTSProperty0O1

The personal desktop information stored in the msTSProperty0O1 attribute consists of multiple strings.
Each string has the format <Property name>=<Value>. The following property names are stored in
this multi-string attribute:

» machine=<FQDN of the machine>
» vmname=<FQDN of the machine>
= vmtype=2

= plugin=vmresource

The machine and the vmname properties are the FQDN of the machine that is assigned to the user as
a personal desktop. The vmtype property describes the desktop type, which can have one of the
following values:

= MYDESKTOP_PHYSICAL (0): Reserved for future use.

92 /253

[MS-TSTS-Diff] - v20210625

Terminal Services Terminal Server Runtime Interface Protocol
Copyright © 2021 Microsoft Corporation

Release: June 25, 2021

= MYDESKTOP_FARM (1): This desktop type means virtual machine belongs to a collection of virtual
machines, where a single virtual machine can be assign to the user.

= MYDESKTOP_NONFARM (2): Reserved for future use.

The plugin property describes the plugin used by the connection broker to process the connection
request. The only supported value is "vmresource".

For example, if machine LaBigMac.PulpFiction.com is assigned to user VincentVega, the
msTSProperty01 attribute of this user object will have the following strings:

= machine=LaBigMac.PulpFiction.com
= vmname=LaBigMac.PulpFiction.com
= vmtye=2

= plugin=vmresource

93/ 253

[MS-TSTS-Diff] - v20210625

Terminal Services Terminal Server Runtime Interface Protocol
Copyright © 2021 Microsoft Corporation

Release: June 25, 2021

3 Protocol Details

The methods comprising this RPC interface all return a value greater than or equal to 0 on success
and a nonzero, implementation-specific error code on failure. If the return type of the function is
HRESULT as specified in section 2.2, a negative number will be treated as failure. If the return type of
the function is Boolean as specified in section 2.2, a nonzero value will be treated as success. Unless
otherwise specified in the following sections, a server-side implementation of this protocol can choose
any nonzero Win32 error value to signify an error condition, as specified in section 1.8.

The client side of the Terminal Services Terminal Server Runtime Interface Protocol MUST return error
codes to the caller without modification. The client side of the Terminal Services Terminal Server
Runtime Interface Protocol MUST simply return error codes to the invoking application without taking
any protocol action.

Note that the terms "client side" and "server side" refer to the initiating and receiving ends of the
protocol, respectively, rather than to client or server versions of an operating system. These methods
MUST all behave the same way regardless of whether the "server side" of the protocol is running in a
client or server version of an operating system.

3.1 Determining a Caller's Permissions and Access Rights

To determine access rights, the caller's token is retrieved from the RPC transport, as described for
RpcImpersonationAccessToken in [MS-RPCE] section 3.3.3.4.3. It MAY use the security identifier
(SID) that represents the user account in the caller's token. For more information about tokens, see
[MS-DTYP] section 2.5.2. For more information about SIDs, see [MS-DTYP] section 2.4.2.

3.1.1 Determining a Caller's Permissions

During processing of methods that implement access checks, this protocol performs access security
verification on the caller's identity by using the algorithm specified by the Access Check Algorithm
Pseudo code ([MS-DTYP] section 2.5.3.2). The input parameters of that algorithm are mapped as
follows:

= SecurityDescriptor: This MUST be the SECURITY_DESCRIPTOR of the session.<148> For
more information about SECURITY_DESCRIPTOR, see [MS-DTYP] section 2.4.6.

= Token / Authorization Context: This MUST be the caller's token.

= Access Request mask: This is specified by each method's processing logic and MUST be one or
more of the WinStationOpen access values specified in section 6.5.

= Object Tree: This parameter MUST be NULL.

* PrincipalSelfSubst SID: This parameter MUST be NULL.

3.1.2 Determining Whether a Caller Is SYSTEM

During processing of methods that implement access checks of whether the caller is SYSTEM, this
protocol performs access security verification on the caller's identity by checking whether the SID of
the SYSTEM is the same as the SID that represents the user account in the caller's token.

3.1.3 Determining Whether a Caller Is an Administrator

During processing of methods that implement access checks of whether the caller is an administrator,
this protocol performs access security verification on the caller's identity by using the support function
SidInToken ([MS-DTYP] section 2.5.3.1.1). The input parameters of that algorithm are mapped as
follows:

94 /253

[MS-TSTS-Diff] - v20210625

Terminal Services Terminal Server Runtime Interface Protocol
Copyright © 2021 Microsoft Corporation

Release: June 25, 2021

= Token: MUST be the caller's token.
= SidToTest: MUST be the SID of administrators.

= PrincipalSelfSubstitute: MUST be NULL.

3.1.4 Determining Whether a Caller Is the Same User Who Logged onto the Session

During processing of methods that implement access checks of whether the caller is the same user
who logged onto the session, this protocol performs access security verification on the caller's identity
by checking whether the SID of the user logged onto the session is the same as the SID that
represents the user account in the caller's token.

3.2 Local Session Manager Client Details

3.2.1 Abstract Data Model

None.

3.2.2 Timers

No protocol timers are required beyond those used internally by RPC to implement resiliency to
network outages, as specified in [MS-RPCE].

3.2.3 Initialization

The client MUST create an RPC connection to the terminal server by using the details specified in
section 2.1.

3.2.4 Processing Events and Sequencing Rules

When a method completes, the values returned by RPC MUST be returned unmodified to the upper
layer.

3.2.5 Timer Events

No protocol timer events are required on the client except those that are required in the underlying
RPC transport.

3.2.6 Other Local Events

None.
3.3 Local Session Manager Server Details

3.3.1 Abstract Data Model

This section describes a conceptual model of possible data organization that an implementation
maintains to participate in this protocol. The described organization is provided to facilitate the
explanation of how the protocol behaves. This document does not mandate that implementations
adhere to this model as long as their external behavior is consistent with that described in this
document.

95/ 253

[MS-TSTS-Diff] - v20210625

Terminal Services Terminal Server Runtime Interface Protocol
Copyright © 2021 Microsoft Corporation

Release: June 25, 2021

3.3.1.1 Abstract Data Types

TS_COUNTER: A Terminal Services performance counter structure used to represent a single

performance counter. It is described in section 2.2.2.17. An array of these structures is returned

by the RpcGetSessionCounters method.

dwCounterID: Identifier of a performance counter. It is used with RpcGetSessionCounters and MUST

be set to one of the values described in section 2.2.2.17.1.

SessionHandle: Handle to a session. It is defined in section 2.2.1.1. The following list shows how

SessionHandle is used with various methods.

= RpcOpenSession as the phSession parameter.

= RpcCloseSession as the phSession parameter.

= RpcConnect as the hSession parameter.

= RpcDisconnect as the hSession parameter.

= Rpclogoff as the hSession parameter.

= RpcGetUserName as the hSession parameter.

= RpcGetTerminalName as the hSession parameter.
= RpcGetState as the hSession parameter.

= RpclsSessionDesktoplLocked as the hSession parameter.
= RpcShowMessageBox as the hSession parameter.

= RpcGetTimes as the hSession parameter.

ExecutionEnvironmentData: A structure containing information about the sessions running on the
terminal server and the sessions running on virtual machines hosted on the server. It is used with

RpcGetAllSessions and returned as the ppSessionData parameter.

SessionState: Current state of a session. It MUST be set to one of the values of the

WINSTATIONSTATECLASS enumeration as defined in section 2.2.1.9. The following list shows

how SessionState is used with various methods.
= RpcGetState as the p/State parameter.

= RpcGetSessionIlnformationEx as the SessionState member of the
LSM_SESSIONINFO_EX_LEVEL1 structure.

= RpcWaitForSessionState as the State parameter.
= RpcFilterByState as the State parameter.

= RpcGetEnumResultEx as the State member of the SESSIONENUM_LEVEL1,
SESSIONENUM_LEVEL2, and SESSIONENUM_LEVEL3 structures.

= RpcGetAllSessions as the State member of the EXECENVDATA_LEVEL1 and
EXECENVDATA_LEVEL2 structures.

hEnum: Handle to the session enumeration object. This is of type ENUM_HANDLE. It is used with

TermSrvEnumeration methods.

hNotify: Handle to the notification object. It is of type NOTIFY_HANDLE. It is used with
TermSrvNotification methods.

[MS-TSTS-Diff] - v20210625

Terminal Services Terminal Server Runtime Interface Protocol
Copyright © 2021 Microsoft Corporation

Release: June 25, 2021

96 / 253

UserSessions: The number of sessions which are of SESSIONTYPE_REGULARDESKTOP, or
SESSIONTYPE_ALTERNATESHELL, or SESSIONTYPE_REMOTEAPP as defined in
SESSIONTYPE (section 2.2.1.18). It is used with the RpcGetLoggedOnCount method and is
returned as the pUserSessions parameter.

DeviceSessions: The number of sessions connected using media center extender device only. These
sessions are of SESSIONTYPE_MEDIACENTEREXT as defined in SESSIONTYPE (section 2.2.1.18).
It is used with the RpcGetLoggedOnCount method and is returned as the pDeviceSessions
parameter. For more information on media center, see [MSFT-WINMCE].

PSESSIONENUM: Pointer to a structure containing information about the sessions running on the
terminal server. This structure is described in detail in section 2.2.2.4. It is used with the
RpcGetEnumResult method and returned as the ppSessionEnumResult parameter.

SessionInfo: Union of structures, each structure providing different levels of detail about sessions
running on a computer. This union is described in detail in section 2.2.2.4.1. It is used with the
RpcGetEnumResult method and returned as the Data field of the ppSessionEnumResult
parameter.

SessionInfo_Ex: Union of structures, each structure providing different levels of detail about
sessions running on a computer. This union is described in detail in section 2.2.2.5.1. It is used
with the RpcGetEnumResultEx method and returned as the Data field of the ppSessionEnumResult
parameter.

PSESSIONENUM_EX: Pointer to a structure containing information about the sessions running on the
terminal server. This structure is described in detail in section 2.2.2.5. It is used with the
RpcGetEnumResultEx method and returned as the ppSessionEnumResult parameter.

SESSIONTYPE: Represents the type of the session as described in section 2.2.1.18. It is used with
the RpcGetSessionType method and returned as the pSessionType parameter.

ConnectTime: Represents the most recent time of a connection to the session. It is used with the
RpcGetTimes method and returned as the pConnectTime parameter.

DisconnectTime: Represents the most recent time of a disconnection from the session. It is used
with the RpcGetTimes method and returned as the pDisconnectTime parameter.

LogonTime: Represents the most recent time of a logon to the session. It is used with the
RpcGetTimes method and returned as the pLogonTime parameter.

PLSMSESSIONINFORMATION: Pointer to a structure containing information about a session running
on the terminal server. This structure is described in detail in section 2.2.2.8. It is used with the
RpcGetSessionInformation method and returned as the pSessionInfo parameter.

PLSMSESSIONINFORMATION_EX: Pointer to a structure containing information about a session
running on the terminal server. This structure is described in detail in section 2.2.2.9. It is used
with the RpcGetSessionInformationEx method and returned as the LSMSessionInfoExPtr
parameter.

PEXECENVDATA: Pointer to a structure containing information about the sessions running on the
terminal server and the sessions running on virtual machines hosted on the server. This structure
is described in detail in section 2.2.2.6. It is returned by the RpcGetAllSessions method.

EXECENVDATA_LEVEL1: Structure that contains basic information about sessions running on a
computer. This structure is described in detail in section 2.2.2.6.1.1. It is used with the
RpcGetAllSessions method.

EXECENVDATA_LEVEL2: Structure that contains information about sessions running on a computer
that is more detailed than the information contained in EXECENVDATA_LEVELL1. This structure is
described in detail in section 2.2.2.6.1.2. It is used with the RpcGetAllSessions method.

97/ 253

[MS-TSTS-Diff] - v20210625

Terminal Services Terminal Server Runtime Interface Protocol
Copyright © 2021 Microsoft Corporation

Release: June 25, 2021

SESSION_FILTER: Represents the type of filter to apply when retrieving the list of session IDs
running on a terminal server. It is described in section 2.2.2.1. It is used with the
RpcGetSessionlds method as the Filter parameter.

SESSION_CHANGE: Structure containing the ID of a session running on a terminal server and a
mask of the notifications that were received for that session. This structure is described in detail in
section 2.2.2.42. It is used with the RpcWaitAsyncNotification method.

PEXECENVDATAEX: Pointer to a structure containing information about the sessions running on the
terminal server and the sessions running on virtual machines hosted on the server. This structure
is described in detail in section 2.2.2.7. It is returned by the RpcGetAllSessionsEx method.

EXECENVDATAEX_LEVEL1: Structure that contains basic information about sessions running on a
computer. This structure is described in detail in section 2.2.2.7.1.1. It is used with the
RpcGetAllSessionsEx method.

3.3.2 Timers

None.

3.3.3 Initialization

Parameters necessary to initialize the RPC protocol are specified in section 2.1.

3.3.4 Processing Events and Sequencing Rules

This protocol asks the RPC runtime to perform a strict Network Data Representation (NDR) data
consistency check at target level 6.0 for all methods unless otherwise specified, as defined in [MS-
RPCE] section 1.3.

When a method completes, the values returned by RPC MUST be returned unmodified to the upper
layer. The methods MAY throw exceptions and the Terminal Services client MUST handle these
exceptions by returning the unmodified exception code to the upper layer.

3.3.4.1 TermSrvSession Methods

TermSrvSession provides methods that manage, and provide information about, a session on a given
terminal server. The version for this interface is 1.0.

For information about endpoints, UUID values, and versions, see sections 2.1 and 1.9.

Methods in RPC Opnum Order

Method Description
RpcOpenSession Returns a handle to a specified session on the terminal server.
Opnum: 0
RpcCloseSession Closes the connection to the specified session on the terminal server.
Opnum: 1
RpcConnect Reconnects a session handle returned by RpcOpenSession to another specified
session on the terminal server.
Opnum: 2
RpcDisconnect Disconnects the specified session on the terminal server.
Opnum: 3

98/ 253

[MS-TSTS-Diff] - v20210625

Terminal Services Terminal Server Runtime Interface Protocol
Copyright © 2021 Microsoft Corporation

Release: June 25, 2021

Method

Description

RpcLogoff Logs off the specified session on the terminal server.
Opnum: 4
RpcGetUserName Gets the username and domain name of the user logged on to the specified

session on the terminal server.
Opnum: 5

RpcGetTerminalName

Gets the name of the terminal associated with the specified session on the
terminal server.

Opnum: 6

RpcGetState

Gets the state of the specified session on the terminal server.
Opnum: 7

RpcIsSessionDesktoplLocked

Checks whether the specified session on the terminal server is locked.
Opnum: 8

RpcShowMessageBox Displays a message box, with a specified message and title, in the target user
session running on the terminal server.
Opnum: 9

RpcGetTimes Gets the connected, disconnected, and logged on time for the specified session on

the terminal server.
Opnum: 10

RpcGetSessionCounters

Returns the various performance counters associated with the terminal server.
Opnum: 11

RpcGetSessionInformation

Retrieves information about a specified session running on a terminal server.
Opnum: 12

Opnum13NotUsedOnWire

Not implemented.
Opnum: 13

Opnum14NotUsedOnWire

Not implemented.
Opnum: 14

RpcGetLoggedOnCount

Gets the number of user-connected and device-connected sessions.
Opnum: 15

RpcGetSessionType

Gets the type of the specified session on a terminal server.
Opnum: 16

RpcGetSessionInformationEx

Retrieves extended information about a specified session running on a terminal
server.

Opnum: 17

Opnum18NotUsedOnWire

Not implemented.
Opnum: 18

Opnum19NotUsedOnWire

Not implemented.
Opnum: 19

3.3.4.1.1 RpcOpenSession (Opnum 0)

[MS-TSTS-Diff] - v20210625

99/ 253

Terminal Services Terminal Server Runtime Interface Protocol
Copyright © 2021 Microsoft Corporation

Release: June 25, 2021

The RpcOpenSession method returns a handle to a specified session on the terminal server. No
special permissions are required to call this method.

HRESULT RpcOpenSession (

[in] handle t hBinding,

[in] LONG SessionId,

[out] SESSION HANDLE* phSession
)i

hBinding: The RPC binding handle. For more information, see [MSDN-RPCBIND].

Sessionld: The identifier of the session to open. This session MUST be present on the terminal
server, or this call will fail. This MUST NOT be the session ID of any of the listener sessions.

phSession: A handle to the session. This is of type SESSION_HANDLE.

Return Values: The method MUST return S_OK (0x00000000) on success; otherwise, it MUST return
an implementation-specific negative value.

Return value/code | Description

0x00000000 Successful completion.
S_OK

3.3.4.1.2 RpcCloseSession (Opnum 1)

The RpcCloseSession method closes the connection to the specified session on the terminal server.
This method MUST be called after RpcOpenSession. The call to this method MUST be serialized if there
are multiple threads running otherwise the behavior of this function is unknown. No special
permissions are required to call this method.

HRESULT RpcCloseSession (
[in, out] SESSION HANDLE* phSession
)7

phSession: Pointer to a handle to the session to close. The pointer is returned by RpcOpenSession.
This is of type SESSION_HANDLE. The handle is set to NULL when the call returns.

Return Values: The method MUST return S_OK (0x00000000) on success; otherwise, it MUST return
an implementation-specific negative value.

Return value/code | Description

0x00000000 Successful completion.
S_OK

3.3.4.1.3 RpcConnect (Opnum 2)

The RpcConnect method reconnects a session handle returned by RpcOpenSession to another
specified session on the terminal server. This method MUST be called after RpcOpenSession. If the
method succeeds, the state of the session is State_Active as defined in the
WINSTATIONSTATECLASS enumeration (section 2.2.1.9).

100/ 253

[MS-TSTS-Diff] - v20210625

Terminal Services Terminal Server Runtime Interface Protocol
Copyright © 2021 Microsoft Corporation

Release: June 25, 2021

The caller MUST have WINSTATION_CONNECT permission to connect the current session and the
caller MUST have WINSTATION_DISCONNECT permission to disconnect the target session. For each
aforementioned required permission, the method checks whether the caller has the permission
(section 3.1.1) by setting the Access Request mask to the specific permission, and fails if the caller
does not have the permission.

HRESULT RpcConnect (
[in] SESSION HANDLE hSession,
[in] LONG TargetSessionId,
[in, string] WCHAR* szPassword
)i

hSession: The handle to a session returned by RpcOpenSession. This is of type SESSION_HANDLE.

TargetSessionId: The identifier of the session on the terminal server to which to reconnect the
session handle. This session MUST be present on the terminal server or this call will fail.

szPassword: The password of the user connected to the current session. This is an optional field. If
not specified, the terminal server will impersonate the current user, making the call and checking
whether it has permission to disconnect the current session.

Return Values: The method MUST return S_OK (0x00000000) on success; otherwise, it MUST return
an implementation-specific negative value.

Return value/code | Description

0x00000000 Successful completion.
S_OK

3.3.4.1.4 RpcDisconnect (Opnum 3)

The RpcDisconnect method disconnects the specified session on the terminal server. This method
MUST be called after RpcOpenSession. If the method succeeds, the state of the session is
State_Disconnected as defined in the WINSTATIONSTATECLASS enumeration (section 2.2.1.9).

The caller MUST have WINSTATION_DISCONNECT permission to disconnect the session. The method
checks whether the caller has WINSTATION_DISCONNECT permission (section 3.1.1) by setting it as
the Access Request mask, and fails if the caller does not have the permission.

HRESULT RpcDisconnect (
[in] SESSION_HANDLE hSession
)i

hSession: The handle to the session returned by RpcOpenSession. This is of type SESSION_HANDLE.

Return Values: The method MUST return S_OK (0x00000000) on success; otherwise, it MUST return
an implementation-specific negative value.

Return value/code | Description

0x00000000 Successful completion.
S_OK

101/ 253

[MS-TSTS-Diff] - v20210625

Terminal Services Terminal Server Runtime Interface Protocol
Copyright © 2021 Microsoft Corporation

Release: June 25, 2021

3.3.4.1.5 RpcLogoff (Opnum 4)

The RpcLogoff method logs off the specified session on the terminal server. This method MUST be
called after RpcOpenSession. The caller MUST have WINSTATION_LOGOFF permission to log off the
session. The method checks whether the caller has WINSTATION_LOGOFF permission (section 3.1.1)
by setting it as the Access Request mask, and fails if the caller does not have the permission.

HRESULT RpcLogoff (
[in] SESSION HANDLE hSession
)i

hSession: The handle to the session returned by RpcOpenSession. This is of type SESSION_HANDLE.

Return Values: The method MUST return S_OK (0x00000000) on success; otherwise, it MUST return
an implementation-specific negative value.

Return value/code | Description

0x00000000 Successful completion.
S_OK

3.3.4.1.6 RpcGetUserName (Opnum 5)

The RpcGetUserName method gets the username and domain name of the user logged on to the
specified session on the terminal server. This method MUST be called after RpcOpenSession. The caller
MUST have WINSTATION_QUERY permission for the session. The method checks whether the caller
has WINSTATION_QUERY permission (section 3.1.1) by setting it as the Access Request mask, and
fails if the caller does not have the permission.

HRESULT RpcGetUserName (
[in] SESSION_HANDLE hSession,
[out, string] WCHAR** pszUserName,
[out, string] WCHAR** pszDomain

)i

hSession: The handle to the session returned by RpcOpenSession. This is of type SESSION_HANDLE.

pszUserName: The name of the user who is logged on to the specific session.

pszDomain: The domain to which the currently logged-on user belongs. If the terminal server is not
joined to a domain, pszDomain will be the name of the terminal server computer.

Return Values: The method MUST return S_OK (0x00000000) on success; otherwise, it MUST return
an implementation-specific negative value.

Return value/code | Description

0x00000000 Successful completion.
S_OK

3.3.4.1.7 RpcGetTerminalName (Opnum 6)

102 / 253

[MS-TSTS-Diff] - v20210625

Terminal Services Terminal Server Runtime Interface Protocol
Copyright © 2021 Microsoft Corporation

Release: June 25, 2021

The RpcGetTerminalName method gets the name of the terminal associated with the specified session
on the terminal server. This method MUST be called after RpcOpenSession. The caller MUST have
WINSTATION_QUERY permission for the session. The method checks whether the caller has
WINSTATION_QUERY permission (section 3.1.1) by setting it as the Access Request mask, and fails if
the caller does not have the permission.

HRESULT RpcGetTerminalName (

[in] SESSION HANDLE hSession,

[out, string] WCHAR** pszTerminalName
)

hSession: The handle to the session returned by RpcOpenSession. This is of type SESSION_HANDLE.

pszTerminalName: The name of the terminal associated with the specific session.

Return Values: The method MUST return S_OK (0x00000000) on success; otherwise, it MUST return
an implementation-specific negative value.

Return value/code | Description

0x00000000 Successful completion.
S_OK

3.3.4.1.8 RpcGetState (Opnum 7)

The RpcGetState method gets the state of the specified session on the terminal server. This method
MUST be called after RpcOpenSession. The caller MUST have WINSTATION_QUERY permission for the
session. The method checks whether the caller has WINSTATION_QUERY permission (section 3.1.1)
by setting it as the Access Request mask, and fails if the caller does not have the permission.

HRESULT RpcGetState (
[in] SESSION_HANDLE hSession,
[out] LONG* plState

)7

hSession: The handle to the session returned by RpcOpenSession. This is of type SESSION_HANDLE.

plState: The current state of the session as defined in WINSTATIONSTATECLASS (section 2.2.1.9).

Return Values: The method MUST return S_OK (0x00000000) on success; otherwise, it MUST return
an implementation-specific negative value.

Return value/code | Description

0x00000000 Successful completion.
S_OK

3.3.4.1.9 RpclIsSessionDesktopLocked (Opnum 8)

The RpclsSessionDesktopLocked method checks whether the specified session on the terminal server
is in a locked state. This method MUST be called after RpcOpenSession. The caller MUST have
WINSTATION_QUERY permission for the session. The method checks whether the caller has

103/ 253

[MS-TSTS-Diff] - v20210625

Terminal Services Terminal Server Runtime Interface Protocol
Copyright © 2021 Microsoft Corporation

Release: June 25, 2021

WINSTATION_QUERY permission (section 3.1.1) by setting it as the Access Request mask, and fails if
the caller does not have the permission.

HRESULT RpcIsSessionDesktopLocked (
[in] SESSION HANDLE hSession
)i

hSession: The handle to the session returned by RpcOpenSession. This is of type SESSION_HANDLE.

Return Values: The method MUST return S_OK (0x00000000) if the session is locked; otherwise, it
MUST return an implementation-specific negative value.

Return value/code | Description

0x00000000 Successful completion.
S_OK

3.3.4.1.10 RpcShowMessageBox (Opnum 9)

The RpcShowMessageBox method displays a message box, with specified message and title, in the
target user session running on the terminal server. This method MUST be called after
RpcOpenSession. The caller MUST have WINSTATION_MSG permission for the session. The method
checks whether the caller has WINSTATION_MSG permission (section 3.1.1) by setting it as the
Access Request mask, and fails if the caller does not have the permission.

HRESULT RpcShowMessageBox (

[in] SESSION HANDLE hSession,
in, string] WCHAR* szTitle,
in, string] WCHAR* szMessage,
in] ULONG ulStyle,
in] ULONG ulTimeout,
out] ULONG* pulResponse,
in] BOOL bDoNotWait

hSession: The handle to the session returned by RpcOpenSession. This is of type SESSION_HANDLE.
szTitle: The title to assign to the message box.
szMessage: The message to display inside the message box.

ulStyle: Specifies the contents and behavior of the message box. This parameter can be a
combination of flags specified for the uType parameter of the MessageBox function as defined in
[MSDN-MSGBOX].

ulTimeout: The time in seconds for which to display the message box. This time-out value is
managed by another system component which dismisses the message box if no user input is
entered during this interval.

pulResponse: Pointer to a variable that receives the user's response, which can be one of the
following values. The values defined in [MSDN-MSGBOX].

Value Meaning

IDABORT The Abort button was selected.

104 / 253

[MS-TSTS-Diff] - v20210625

Terminal Services Terminal Server Runtime Interface Protocol
Copyright © 2021 Microsoft Corporation

Release: June 25, 2021

Value Meaning
3

IDCANCEL The Cancel button was selected.
2

IDIGNORE The Ignore button was selected.

5
IDNO The No button was selected.
7
IDOK The OK button was selected.
1

IDRETRY The Retry button was selected.
4

IDYES The Yes button was selected.
6

IDASYNC The bDoNotWait parameter was TRUE, so the function returned without waiting for a
32001 response.

IDTIMEOUT | The bDoNotWait parameter was FALSE and the time-out interval elapsed.
32000

bDoNotWait: Set to FALSE to wait for the message box to time-out or close, TRUE otherwise.

Return Values: The method MUST return S_OK (0x00000000) on success; otherwise, it MUST return
an implementation-specific negative value.

Return value/code | Description

0x00000000 Successful completion.
S_OK

3.3.4.1.11 RpcGetTimes (Opnum 10)

The RpcGetTimes method gets the connected, disconnected, and logged-on time for the specified
session on the terminal server. This method MUST be called after RpcOpenSession. The caller MUST
have WINSTATION_QUERY permission for the session. The method checks whether the caller has
WINSTATION_QUERY permission (section 3.1.1) by setting it as the Access Request mask, and fails if
the caller does not have the permission.

HRESULT RpcGetTimes (
[in] SESSION HANDLE hSession,
[out] hyper* pConnectTime,
[out] hyper* pDisconnectTime,
[out] hyper* pLogonTime

)7

hSession: Handle to the session returned by RpcOpenSession. This is of type SESSION_HANDLE.

pConnectTime: The most recent time of a connection to the session.

105/ 253

[MS-TSTS-Diff] - v20210625

Terminal Services Terminal Server Runtime Interface Protocol
Copyright © 2021 Microsoft Corporation

Release: June 25, 2021

Time is measured as the number of 100-nanosecond intervals since January 1, 1601 (UTC).
pDisconnectTime: The most recent time of a disconnection from the session.

Time is measured as the number of 100-nanosecond intervals since January 1, 1601 (UTC).
pLogonTime: The most recent time of a logon to the session.

Time is measured as the number of 100-nanosecond intervals since January 1, 1601 (UTC).

Return Values: The method MUST return S_OK (0x00000000) on success; otherwise, it MUST return
an implementation-specific negative value.

Return value/code | Description

0x00000000 Successful completion.
S_OK

3.3.4.1.12 RpcGetSessionCounters (Opnum 11)

The RpcGetSessionCounters method returns the various performance counters associated with the
terminal server. No special permissions are required to call this method.

HRESULT RpcGetSessionCounters (
[in] handle t hBinding,
[in, out, size is(uEntries)] PTS COUNTER pCounter,
[in] ULONG uEntries

)i

hBinding: The RPC binding handle. For more information, see [MSDN-RPCBIND].

pCounter: An array of TS_COUNTER structures. The caller MUST set the dwCounterld field in the
TS_COUNTER structures for each entry in the array to indicate the counter whose current value to
retrieve. On return, the method MUST set the value for that performance counter. If the
performance counter ID is not recognized or is not supported, the method will set the bResult
field to 0.

uEntries: The number of performance counters to query. Indicates the size of the array pointed to by
the pCounter parameter.

Return Values: The method MUST return S_OK (0x00000000) on success; otherwise, it MUST return
an implementation-specific negative value.

Return value/code | Description

0x00000000 Successful completion.
S_OK

3.3.4.1.13 RpcGetSessionInformation (Opnum 12)

The RpcGetSessionInformation method retrieves information about a specified session running on a
terminal server. The caller MUST have WINSTATION_QUERY permission for the session. The method
checks whether the caller has WINSTATION_QUERY permission (section 3.1.1) by setting it as the
Access Request mask, and fails if the caller does not have the permission.

106 / 253

[MS-TSTS-Diff] - v20210625

Terminal Services Terminal Server Runtime Interface Protocol
Copyright © 2021 Microsoft Corporation

Release: June 25, 2021

HRESULT RpcGetSessionInformation (

[in] handle_ t hBinding,

[in] LONG SessionId,

[ref, out] PLSMSESSIONINFORMATION pSessionInfo
)

hBinding: The RPC binding handle. For more information, see [MSDN-RPCBIND].
Sessionld: The identifier of the session whose information is to be retrieved.

pSessionInfo: A PLSMSESSIONINFORMATION element containing information about the session.

Return Values: The method MUST return S_OK (0x00000000) on success; otherwise, it MUST return
an implementation-specific negative value.

Return value/code | Description

0x00000000 Successful completion.
S_OK

3.3.4.1.14 RpcGetLoggedOnCount (Opnum 15)

The RpcGetLoggedOnCount method gets the number of user-connected and device-connected
sessions. No special permissions are required to call this method.

HRESULT RpcGetLoggedOnCount (
[in] handle t hBinding,
[out] ULONG* pUserSessions,
[out] ULONG* pDeviceSessions

)i

hBinding: The RPC binding handle. For more information, see [MSDN-RPCBIND].

pUserSessions: The number of sessions that are of SESSIONTYPE_REGULARDESKTOP, or
SESSIONTYPE_ALTERNATESHELL, or SESSIONTYPE_REMOTEAPP as defined in
SESSIONTYPE (section 2.2.1.18).

pDeviceSessions: The number of sessions connected using media center extender device only. These
sessions are of SESSIONTYPE_MEDIACENTEREXT as defined in SESSIONTYPE (section 2.2.1.18).
For more information on media center, see [MSFT-WINMCE].

Return Values: The method MUST return S_OK (0x00000000) on success; otherwise, it MUST return
an implementation-specific negative value.

Return value/code | Description

0x00000000 Successful completion.
S_OK

3.3.4.1.15 RpcGetSessionType (Opnum 16)

The RpcGetSessionType method gets the type associated with the specified session. No special
permissions are required to call this method.<149>

107 / 253

[MS-TSTS-Diff] - v20210625

Terminal Services Terminal Server Runtime Interface Protocol
Copyright © 2021 Microsoft Corporation

Release: June 25, 2021

HRESULT RpcGetSessionType (
[in] handle_ t hBinding,
[in] LONG* SessionId,
[out] ULONG* pSessionType

)

hBinding: The RPC binding handle. For more information, see [MSDN-RPCBIND].
SessionlId: The identifier of the session whose type is being retrieved.

pSessionType: The type of the session as defined in SESSIONTYPE (section 2.2.1.18).

Return Values: The method MUST return S_OK (0x00000000) on success; otherwise, it MUST return
an implementation-specific negative value.

Return value/code | Description

0x00000000 Successful completion.
S_OK

3.3.4.1.16 RpcGetSessionInformationEx (Opnum 17)

The RpcGetSessionInformationEx method retrieves extended information about a specified session
running on a terminal server.<150> The caller MUST have WINSTATION_QUERY permission for the
session. The method checks whether the caller has WINSTATION_QUERY permission (section 3.1.1)
by setting it as the Access Request mask, and fails if the caller does not have the permission.

HRESULT RpcGetSessionInformationEx (
[in] handle t hBinding,
[in] LONG SessionId,
[in] DWORD Level,
[ref, out] PLSMSESSIONINFORMATION EX LSMSessionInfoExPtr
)i

hBinding: The RPC binding handle. For more information, see [MSDN-RPCBIND].

Level: The level of the information to be retrieved. This MUST be 1.

LSMSessionInfoExPtr: A PLSMSESSIONINFORMATION_EX element containing information about the
session.

Return Values: The method MUST return S_OK (0x00000000) on success; otherwise, it MUST return
an implementation-specific negative value.

Return value/code | Description

0x00000000 Successful completion.
S_OK

3.3.4.2 TermSrvNotification

The TermSrvNotification, or LSM Notification interface, provides methods that manage asynchronous
operations. Methods that initiate asynchronous operations return a pointer to an LSM Notification

108 / 253

[MS-TSTS-Diff] - v20210625

Terminal Services Terminal Server Runtime Interface Protocol
Copyright © 2021 Microsoft Corporation

Release: June 25, 2021

(TermSrvNotification) interface, allowing the caller to optionally cancel, or wait for, the status of the
asynchronous operation. The version for this interface is 1.0.

For information about endpoints, UUID values, and versions, see sections 2.1 and 1.9.

Methods in RPC Opnum Order

Method Description

RpcWaitForSessionState Blocks until the state of the specified session running on a terminal server
changes to the desired state.

Opnum: 0

RpcRegisterAsyncNotification Registers for an event or events happening on a terminal server.
Opnum: 1

RpcWaitAsyncNotification Starts the wait for the specified notification to be signaled by the terminal
server.

Opnum: 2

RpcUnRegisterAsyncNotification | Cancels the asynchronous operation of waiting for notification from the terminal
server.

Opnum: 3

3.3.4.2.1 RpcWaitForSessionState (Opnum 0)

The RpcWaitForSessionState method blocks until the state of the specified session running on a

terminal server changes to the desired state. The caller MUST have WINSTATION_QUERY permission
for the session. The method checks whether the caller has WINSTATION_QUERY permission (section
3.1.1) by setting it as the Access Request mask, and fails if the caller does not have the permission.

HRESULT RpcWaitForSessionState (
[in] handle t hBinding,
] LONG SessionlId,
n] LONG State,
] ULONG Timeout

hBinding: The RPC binding handle. For more information, see [MSDN-RPCBIND].

SessionId: The ID of the session for which to await state change. This MUST NOT be the session ID
of any of the listener sessions.

State: The desired state of the session, as specified in WINSTATIONSTATECLASS (section 2.2.1.9)
with the exception of State_Idle and State_Listen, for which to wait. The call will return when the
session changes to this state.

Timeout: Maximum time, in milliseconds, to wait for the call to return.

Return Values: The method MUST return S_OK (0x00000000) on success; otherwise, it MUST return
an implementation-specific negative value.

Return value/code | Description

0x00000000 Successful completion.
S_OK

109/ 253

[MS-TSTS-Diff] - v20210625

Terminal Services Terminal Server Runtime Interface Protocol
Copyright © 2021 Microsoft Corporation

Release: June 25, 2021

3.3.4.2.2 RpcRegisterAsyncNotification (Opnum 1)

The RpcRegisterAsyncNotification method registers for an event or events happening on a terminal
server. The caller MUST call RpcWaitAsyncNotification after calling RpcRegisterAsyncNotification to
wait for the notification. No special permissions are required to call this method.

HRESULT RpcRegisterAsyncNotification (
[in] handle t hBinding,
[in] LONG SessionId,
[in] TNotificationId Mask,
[out] NOTIFY HANDLE* phNotify
)

hBinding: The RPC binding handle. For more information, see [MSDN-RPCBIND].

Sessionld: The ID of the session for which to wait for notification. If the value is -1, the call will
register for notification for all sessions running on the terminal server. This MUST NOT be the
session ID of any of the listener sessions.

Mask: Specifies the type of notification to wait for. This is of the type TNotificationId.
phNotify: Handle to the notification object. For more information, see NOTIFY_HANDLE.

Return Values: The method MUST return S_OK (0x00000000) on success; otherwise, it MUST return
an implementation-specific negative value.

Return value/code | Description

0x00000000 Successful completion.
S_OK

3.3.4.2.3 RpcWaitAsyncNotification (Opnum 2)

The RpcWaitAsyncNotification method starts the wait for the specified terminal server notification. The
notification object specified in RpcRegisterAsyncNotification is called by RPC when a notification
occurs. This is asynchronous notification and RpcWaitAsyncNotification starts the wait for notification
and returns. Specify the notification object using RpcRegisterAsyncNotification and then start the
notification wait process using RpcWaitAsyncNotification. No special permissions are required to call
this method.

HRESULT RpcWaitAsyncNotification (
[in] NOTIFY HANDLE hNotify,
[out, size is(, *pEntries)] PSESSION_ CHANGE* SessionChange,
[out] ULONG* pEntries

)i

hNotify: The notification handle returned by RpcRegisterAsyncNotification.

SessionChange: An array of type SESSION_CHANGE containing information about all the sessions
and the notifications received for that session.

pEntries: The number of entries returned in the SessionChange array.

110/ 253

[MS-TSTS-Diff] - v20210625

Terminal Services Terminal Server Runtime Interface Protocol
Copyright © 2021 Microsoft Corporation

Release: June 25, 2021

Return Values: The method MUST return S_OK (0x00000000) on success; otherwise, it MUST return
an implementation-specific negative value.

Return value/code | Description

0x00000000 Successful completion.
S_OK

3.3.4.2.4 RpcUnRegisterAsyncNotification (Opnum 3)

The RpcUnRegisterAsyncNotification method cancels the asynchronous operation of waiting for
notification from the terminal server. This MUST be called after RpcRegisterAsyncNotification. The call
to this method MUST be serialized if there are multiple threads running otherwise the behavior of this
function is unknown. No special permissions are required to call this method.

HRESULT RpcUnRegisterAsyncNotification(
[in, out] NOTIFY HANDLE* phNotify
)7

phNotify: The notification handle returned by RpcRegisterAsyncNotification. This is of type
NOTIFY_HANDLE.

Return Values: The method MUST return S_OK (0x00000000) on success; otherwise, it MUST return
an implementation-specific negative value.

Return value/code | Description

0x00000000 Successful completion.
S_OK

3.3.4.3 TermSrvEnumeration

The TermSrvEnumeration provides methods for enumerating sessions and session information. The
version for this interface is 1.0.

For information about endpoints, UUID values, and versions, see sections 2.1 and 1.9.

Methods in RPC Opnum Order

Method Description

RpcOpenEnum Returns a handle of type ENUM_HANDLE, which can be used to query information
about the sessions currently running on a terminal server.
Opnum: 0

RpcCloseEnum Closes the enumeration object returned by RpcOpenEnum. This method MUST be
called after RpcOpenEnum.
Opnum: 1

RpcFilterByState Based on the state of the sessions, adds a filter to the session enumeration result

running on a terminal server.
Opnum: 2

111/ 253

[MS-TSTS-Diff] - v20210625

Terminal Services Terminal Server Runtime Interface Protocol
Copyright © 2021 Microsoft Corporation

Release: June 25, 2021

Method Description

RpcFilterByCallersName | Based on the caller name, adds a filter to the session enumeration result running on a
terminal server.

Opnum: 3

RpcEnumAddFilter Adds another filter to the current enumeration.
Opnum: 4

RpcGetEnumResult Returns a structure of the type PSESSIONENUM containing the list of sessions
currently running on the terminal server after applying the specified filter.
Opnum: 5

RpcFilterBySessionType | Based on the type of the session, adds a filter to the session enumeration result
running on a terminal server.

Opnum: 6

Opnum7NotUsedOnWire | Not implemented.

Opnum: 7

RpcGetSessionlds Returns a list of the IDs associated with the sessions running on a terminal server that
satisfies the specified filter.
Opnum: 8

RpcGetEnumResultEx Returns a structure of PSESSIONENUM_EX containing the list of sessions currently
running on the terminal server after applying the specified filter.
Opnum: 9

RpcGetAllSessions Returns a structure of PEXECENVDATA containing the list of sessions currently running

on the terminal server and the sessions currently running on the virtual machines
hosted by the server.

Opnum: 10

RpcGetAllSessionsEx Returns a structure of PEXECENVDATAEX containing the list of sessions currently
running on the terminal server and the sessions currently running on the virtual
machines hosted by the server.

Opnum: 11

3.3.4.3.1 RpcOpenEnum (Opnum 0)

The RpcOpenEnum method returns a handle of the type ENUM_HANDLE, which can be used to query
information about the sessions that are currently running on a terminal server. No special permissions
are required to call this method. However, only sessions to which the caller has WINSTATION_QUERY
permission are enumerated.

HRESULT RpcOpenEnum (
[in] handle t hBinding,
[out] ENUM_HANDLE* phEnum
)7

hBinding: The RPC binding handle. For more information, see [MSDN-RPCBIND].

phEnum: The handle to the session enumeration object. This is of type ENUM_HANDLE.

Return Values: The method MUST return S_OK (0x00000000) on success; otherwise, it MUST return
an implementation-specific negative value.

112 / 253

[MS-TSTS-Diff] - v20210625

Terminal Services Terminal Server Runtime Interface Protocol
Copyright © 2021 Microsoft Corporation

Release: June 25, 2021

Return value/code | Description

0x00000000 Successful completion.
S_OK

3.3.4.3.2 RpcCloseEnum (Opnum 1)

The RpcCloseEnum method closes the enumeration object returned by RpcOpenEnum. This method
MUST be called after RpcOpenEnum. No special permissions are required to call this method.

HRESULT RpcCloseEnum (
[in, out] ENUM HANDLE* phEnum
)

phEnum: The handle to the session enumeration object. This is of type ENUM_HANDLE.

Return Values: The method MUST return S_OK (0x00000000) on success; otherwise, it MUST return
an implementation-specific negative value.

Return value/code | Description

0x00000000 Successful completion.
S_OK

3.3.4.3.3 RpcFilterByState (Opnum 2)

The RpcFilterByState method adds a filter to the session enumeration result, running on a terminal
server, based on the state of the sessions. This method MUST be called after RpcOpenEnum and
before RpcGetEnumResult or RpcGetEnumResultEx. No special permissions are required to call this
method.

HRESULT RpcFilterByState(
[in] ENUM_HANDLE hEnum,
[in] LONG State,

[in] BOOL bInvert

)i

hEnum: The handle to the session enumeration object. This is of type ENUM_HANDLE.

State: The session state, as specified in section 3.3.4.1.8, to be used to filter out the enumeration
result. Only the sessions with the specified state will be returned.

bInvert: Set to TRUE to imply that the result of the comparison during enumeration will be inverted,
FALSE otherwise.

Return Values: The method MUST return S_OK (0x00000000) on success; otherwise, it MUST return
an implementation-specific negative value.

Return value/code | Description

0x00000000 Successful completion.
S_OK

113/ 253

[MS-TSTS-Diff] - v20210625

Terminal Services Terminal Server Runtime Interface Protocol
Copyright © 2021 Microsoft Corporation

Release: June 25, 2021

3.3.4.3.4 RpcFilterByCallersName (Opnum 3)

The RpcFilterByCallersName method adds a filter to the session enumeration result, running on a
terminal server, based on the caller name. The enumeration will return only sessions belonging to the
user making this call. This method MUST be called after RpcOpenEnum and before RpcGetEnumResult
or RpcGetEnumResultEx. No special permissions are required to call this method.

HRESULT RpcFilterByCallersName (
[in] ENUM HANDLE hEnum
)i

hEnum: The handle to the session enumeration object. This is of type ENUM_HANDLE.

Return Values: The method MUST return S_OK (0x00000000) on success; otherwise, it MUST return
an implementation-specific negative value.

Return value/code | Description

0x00000000 Successful completion.
S_OK

3.3.4.3.5 RpcEnumAddFilter (Opnum 4)

The RpcEnumAddFilter method adds another filter to the current enumeration. This method MUST be
called after RpcOpenEnum and before RpcGetEnumResult or RpcGetEnumResultEx. No special
permissions are required to call this method.

HRESULT RpcEnumAddFilter (
[in] ENUM HANDLE hEnum,
[in] ENUM HANDLE hSubEnum

):

hEnum: The handle to the session enumeration object. This is of type ENUM_HANDLE.

hSubEnum: The handle to another enumeration whose filter will be applied to the current
enumeration. The other enumeration MUST be created using RpcOpenEnum and any combination
of RpcFilterByState, RpcFilterByCallersName, and RpcFilterBySessionType.

Return Values: The method MUST return S_OK (0x00000000) on success; otherwise, it MUST return
an implementation-specific negative value.

Return value/code | Description

0x00000000 Successful completion.
S_OK

3.3.4.3.6 RpcGetEnumResult (Opnum 5)

The RpcGetEnumResult method returns a pointer of the type PSESSIONENUM which points to the list
of sessions currently running on the terminal server after applying the specified filter. This method

114 / 253

[MS-TSTS-Diff] - v20210625

Terminal Services Terminal Server Runtime Interface Protocol
Copyright © 2021 Microsoft Corporation

Release: June 25, 2021

MUST be called after RpcOpenEnum. No special permissions are required to call this method. However,
only sessions for which the caller has WINSTATION_QUERY permission are enumerated. The method
checks whether the caller has WINSTATION_QUERY permission (section 3.1.1) by setting it as the
Access Request mask, and skips the sessions for which the caller does not have the permission.

HRESULT RpcGetEnumResult (
[in] ENUM_HANDLE hEnum,
[out, size is(,*pEntries)] PSESSIONENUM* ppSessionEnumResult,
[in] DWORD Level,
[out] ULONG* pEntries
)

hEnum: The handle to the session enumeration object. This is of type ENUM_HANDLE.

ppSessionEnumResult: A pointer of the type PSESSIONENUM which points to the list of sessions
currently running on the terminal server.

Level: The level of information requested. This field MUST be set to the supported values of 1 or 2. If
the server does not support the level requested, it will set the level to the maximum supported
level and return information accordingly.<151>

pEntries: The number of sessions currently running on the terminal server and returned in the
ppSessionEnumResult structure.

Return Values: The method MUST return S_OK (0x00000000) on success; otherwise, it MUST return
an implementation-specific negative value.

Return value/code | Description

0x00000000 Successful completion.
S_OK

3.3.4.3.7 RpcFilterBySessionType (Opnum 6)

The RpcFilterBySessionType method adds a filter to the session enumeration result, running on a
terminal server, based on the type of the session. This method MUST be called after RpcOpenEnum
and before RpcGetEnumResult or RpcGetEnumResultEx. No special permissions are required to call
this method.

HRESULT RpcFilterBySessionType (
[in] ENUM HANDLE hEnum,
[in] GUID* pSessionType

)7

hEnum: The handle to the session enumeration object. This is of type ENUM_HANDLE.

pSessionType: The session GUID to be used to filter out the enumeration result. Only the session
with the specified GUID will be returned.

Return Values: The method MUST return S_OK (0x00000000) on success; otherwise, it MUST return
an implementation-specific negative value.

Return value/code | Description

0x00000000 Successful completion.

115/ 253

[MS-TSTS-Diff] - v20210625

Terminal Services Terminal Server Runtime Interface Protocol
Copyright © 2021 Microsoft Corporation

Release: June 25, 2021

Return value/code | Description

S_OK

3.3.4.3.8 RpcGetSessionlds (Opnum 8)

The RpcGetSessionlds method returns a list of the IDs associated with the sessions running on a
terminal server that satisfy the specified filter. No special permissions are required to call this method.
However, only sessions for which the caller has WINSTATION_QUERY permission are enumerated. The
method checks whether the caller has WINSTATION_QUERY permission (section 3.1.1) by setting it as
the Access Request mask, and skips sessions for which the caller does not have the permission.

HRESULT RpcGetSessionIds (
[in] handle t hBinding,
[in] SESSION FILTER Filter,
[in, range (0, OxFFFF)] ULONG MaxEntries,
[out, size is(,*pcSessionIds)] LONG** pSessionIds,
[out] ULONG* pcSessionIds

hBinding: The RPC binding handle. For more information, see [MSDN-RPCBIND].

Filter: The filter to apply to the sessions running on the terminal server. This is of type
SESSION_FILTER.

MaxEntries: The maximum number of session IDs to return. This value MUST be less than or equal
to the number of entries in the pSessionIds array.

pSessionIds: An array to contain the list of session IDs running on the terminal server and filtered
as specified by Filter.

pcSessionlIds: The number of session IDs returned.

Return Values: The method MUST return S_OK (0x00000000) on success; otherwise, it MUST return
an implementation-specific negative value.

Return value/code | Description

0x00000000 Successful completion.
S_OK

3.3.4.3.9 RpcGetEnumResultEx (Opnum 9)

The RpcGetEnumResultEx method returns a pointer of the type PSESSIONENUM_EX, which points to
the list of sessions currently running on the terminal server after applying the specified filter. This
method MUST be called after RpcOpenEnum. No special permissions are required to call this method.
However, only sessions for which the caller has WINSTATION_QUERY permission are enumerated. The
method checks whether the caller has WINSTATION_QUERY permission (section 3.1.1) by setting it as
the Access Request mask, and skips the sessions for which the caller does not have the permission.

HRESULT RpcGetEnumResultEx (
[in] ENUM HANDLE hEnum,
[out, size is(,*pEntries)] PSESSIONENUM EX* ppSessionEnumResult,
[in] DWORD Level,

116 / 253

[MS-TSTS-Diff] - v20210625

Terminal Services Terminal Server Runtime Interface Protocol
Copyright © 2021 Microsoft Corporation

Release: June 25, 2021

[out] ULONG* pEntries
)i

hEnum: The handle to the session enumeration object. This is of type ENUM_HANDLE.

ppSessionEnumResult: A pointer of the type PSESSIONENUM_EX which points to the list of sessions
currently running on the terminal server.

Level: The level of information requested. This field MUST be set to the supported values of 1, 2, or 3.
If the server does not support the level requested, it will set the level to the maximum supported
level and return information accordingly.<152>

Value | Meaning

1 The union SessionInfo_Ex will have the SessionEnum_Levell structure.
2 The union SessionInfo_Ex will have the SessionEnum_Level2 structure.
3 The union SessionInfo_Ex will have the SessionEnum_Level3 structure.

pEntries: The number of sessions currently running on the terminal server and returned in the
ppSessionEnumResult structure.

Return Values: The method MUST return S_OK (0x00000000) on success; otherwise, it MUST return
an implementation-specific negative value.

Return value/code | Description

0x00000000 Successful completion.
S_OK

3.3.4.3.10 RpcGetAllSessions (Opnum 10)

The RpcGetAllSessions method returns a pointer of type PEXECENVDATA, which points to the list of
sessions currently running on the terminal server and the sessions running on various virtual
machines hosted by the server. No special permissions are required to call this method. However, only
sessions for which the caller has WINSTATION_QUERY permission are enumerated. The method
checks whether the caller has WINSTATION_QUERY permission (section 3.1.1) by setting it as the
Access Request mask, and skips the sessions for which the caller does not have the permission.<153>

HRESULT RpcGetAllSessions (
[in] handle t hBinding,
[in, out] ULONG* pLevel,
[out, size_is(,*pcEntries)] PEXECENVDATA* ppSessionData,
[out] ULONG* pcEntries
)i

hBinding: The RPC binding handle. For more information, see [MSDN-RPCBIND].
pLevel: The level of information requested. This field MUST be set to the supported values of 1 or 2.

If the server does not support the level requested, it will set the level to the maximum supported
level and return an implementation-specific nonzero value.

117/ 253

[MS-TSTS-Diff] - v20210625

Terminal Services Terminal Server Runtime Interface Protocol
Copyright © 2021 Microsoft Corporation

Release: June 25, 2021

Value | Meaning

1 The union ExecEnvData will have the EXECENVDATA_LEVEL1 structure.

2 The union ExecEnvData will have the EXECENVDATA_LEVEL2 structure.

ppSessionData: A pointer of type PEXECENVDATA (section 2.2.2.6), which points to the list of
sessions currently running on the terminal server and the session running on virtual machines
hosted by the server.<154>

pcEntries: The number of sessions currently running on the terminal server and returned in the
ppSessionData structure.

Return Values: The method MUST return S_OK (0x00000000) on success; otherwise, it MUST return
an implementation-specific negative value.

Return value/code | Description

0x00000000 Successful completion.
S_OK

3.3.4.3.11 RpcGetAllSessionsEx (Opnum 11)

The RpcGetAllSessionsEx method returns a pointer of type PEXECENVDATAEX, which points to the
list of sessions currently running on the terminal server and the sessions running on various virtual
machines hosted by the server. No special permissions are required to call this method. However, only
sessions for which the caller has WINSTATION_QUERY permission are enumerated. The method
checks whether the caller has WINSTATION_QUERY permission (section 3.1.1) by setting it as the
Access Request mask, and skips the sessions for which the caller does not have the permission.<155>

HRESULT RpcGetAllSessionsEx (
[in] handle t hBinding,
[in] ULONG Level,
[out, size is(,*pcEntries)] PEXECENVDATAEX* ppSessionData,
[out] ULONG* pcEntries
)i

hBinding: The RPC binding handle. For more information, see [MSDN-RPCBIND].
Level: The level of information requested. This field MUST be set to 1. If the server does not support

the level requested, it will set the level to the maximum supported level and return an
implementation-specific nonzero value.

Value | Meaning

1 The union ExecEnvDataEx has the EXECENVDATAEX_LEVEL1 structure.

ppSessionData: A pointer of type PEXECENVDATAEX (section 2.2.2.7), which points to the list of
sessions currently running on the terminal server and the sessions running on virtual machines
hosted by the server.

pcEntries: The number of sessions currently running on the terminal server and returned in the
ppSessionData structure.

Return Values: The method MUST return S_OK (0x00000000) on success; otherwise, it MUST return
an implementation-specific negative value.

118/ 253

[MS-TSTS-Diff] - v20210625

Terminal Services Terminal Server Runtime Interface Protocol
Copyright © 2021 Microsoft Corporation

Release: June 25, 2021

Return value/code | Description

0x00000000 Successful completion.
S_OK

3.3.5 Timer Events

No protocol timer events are required on the client except the timers that are required in the
underlying RPC transport.

3.3.6 Other Local Events

No local events are used on the server except the events maintained in the underlying RPC transport.
3.4 TermSrv Client Details

3.4.1 Abstract Data Model

None.

3.4.2 Timers

No protocol timers are required except those used internally by RPC to implement resiliency to
network outages, as specified in [MS-RPCE] section 3.3.3.2.1.

3.4.3 Initialization

The client MUST create an RPC connection to the terminal server using the details specified in section
2.1.

3.4.4 Processing Events and Sequencing Rules

When a method completes, the values returned by RPC MUST be returned unmodified to the upper
layer.

3.4.5 Timer Events

None.

3.4.6 Other Local Events

None.
3.5 TermSrv Server Details

3.5.1 Abstract Data Model

This section describes a conceptual model of possible data organization that an implementation
maintains to participate in this protocol. The described organization is provided to facilitate the
explanation of how the protocol behaves. This document does not mandate that implementations

119/ 253

[MS-TSTS-Diff] - v20210625

Terminal Services Terminal Server Runtime Interface Protocol
Copyright © 2021 Microsoft Corporation

Release: June 25, 2021

adhere to this model as long as their external behavior is consistent with that described in this
document.

3.5.1.1 Abstract Data Types

PROTOCOLSTATUS_INFO_TYPE: Specifies the protocol status information requested for a particular
session running on a terminal server. It is defined in section 2.2.2.2. The following list shows how
PROTOCOLSTATUS_INFO_TYPE is used with various methods.

= RpcGetProtocolStatus: as the InfoType parameter.
= RpcGetSessionProtocolLastInputTime: as the InfoType parameter.

QUERY_SESSION_DATA_TYPE: The type of data to retrieve about the session. It is used with
RpcQuerySessionData and MUST be set to one of the values described in section 2.2.2.3.

WINSTATIONCLIENT: Structure that defines the client-requested configuration when connecting to
a session. This structure is described in detail in section 2.2.2.19. It is used with the
RpcGetClientData method.

PLISTENERENUM: Structure that contains information about a terminal server listener. This
structure is described in detail in section 2.2.2.12. It is used with RpcGetAllListeners and returned
as the pplListeners parameter.

WINSTATIONCONFIG: Structure that contains WinStation configuration data. This structure is
described in detail in section 2.2.2.30.1. It is used with the RpcGetConfigData method.

PROTOCOLSTATUS: The status of the protocol used by the session. It is defined in section
2.2.2.20.1. It is used with the RpcGetProtocolStatus and RpcGetSessionProtocolLastInputTime
methods.

PROTOCOLSTATUSEX: Structure defines the extended status of the protocol used by the session.
This structure is described in detail in section 2.2.2.20.1.1. It is used with the
RpcGetProtocolStatus and RpcGetSessionProtocolLastInputTime methods.

WDCONFIG: Structure containing the WinStation (session) driver configuration. This structure is
described in detail in section 2.2.2.27. It is used with the RpcQuerySessionData method.

WINSTATIONCONFIG2: Structure that contains WinStation configuration data. This structure is
described in detail in section 2.2.2.30. It is used with the RpcGetConfigData method.

CACHE_STATISTICS: Structure that represents cache statistics on the protocol. This structure is
described in detail in section 2.2.2.20.1.3. It is used with the RpcGetProtocolStatus method.

PROTOCOLCOUNTERS: Structure that represents the status of the protocol used by the system. This
structure is described in detail in section 2.2.2.20.1.2. It is used with the RpcGetProtocolStatus
method.

WINSTATIONVALIDATIONINFORMATION: Structure that contains information that is required to
identify and validate a per-device terminal server (TS) client access license (CAL) associated with
the session. This structure is described in detail in section 2.2.2.51. It is used with the
RpcQuerySessionData method.

RCM_REMOTEADDRESS: Structure that defines a remote address. This structure is described in
detail in section 2.2.2.43. It is used with the RpcGetRemoteAddress method.

120/ 253

[MS-TSTS-Diff] - v20210625

Terminal Services Terminal Server Runtime Interface Protocol
Copyright © 2021 Microsoft Corporation

Release: June 25, 2021

3.5.2 Timers

MaxConnectionTime: The maximum allowed connection time setting of the session, in milliseconds.
The session will disconnect/log off when the limit is reached.

MaxDisconnectionTime: The maximum allowed disconnect time of the session, in milliseconds. The
session will disconnect/log off when the limit is reached.

MaxIdleTime: The maximum allowed idle time setting of the session, in milliseconds. The session will
disconnect/log off when the limit is reached.

3.5.3 Initialization

The parameters necessary to initialize the RPC protocol are specified in section 2.1.

3.5.4 Message Processing Events and Sequencing Rules

This protocol asks the RPC runtime to perform a strict NDR data consistency check at target level 6.0
for all methods unless otherwise specified, as defined in [MS-RPCE] section 1.3.

When a method completes, the values returned by RPC MUST be returned unmodified to the upper
layer. The methods MAY throw an exception and the Terminal Services client MUST handle these
exceptions by returning the unmodified exception code to the upper layer.

3.5.4.1 RCMPublic

The RCMPublic interface methods provide data about clients and sessions, and enable shadowing
sessions. The version for this interface is 1.0.

For information about endpoints, UUID values, and versions, see sections 2.1 and 1.9.

Methods in RPC Opnum Order

Method Description

RpcGetClientData Returns information about the client that is connected to a particular
session running on a terminal server.
Opnum: 0

RpcGetConfigData Returns the configuration data that is associated with the user connected
to a particular session running on a terminal server.
Opnum: 1

RpcGetProtocolStatus Retrieves information about the status of the protocol that is used to
connect to a particular session running on a terminal server.
Opnum: 2

RpcGetLastInputTime Returns the time the last user input was received for the specified session
running on a terminal server by the associated protocol.
Opnum: 3

RpcGetRemoteAddress Retrieves the IP address of the client machine that is connected to the
session on the terminal server.
Opnum: 4

Opnum5NotUsedOnWire Not implemented.
Opnum: 5

121/ 253

[MS-TSTS-Diff] - v20210625

Terminal Services Terminal Server Runtime Interface Protocol
Copyright © 2021 Microsoft Corporation

Release: June 25, 2021

Method Description

Opnum6NotUsedOnWire Not implemented.
Opnum: 6

Opnum7NotUsedOnWire Not implemented.
Opnum: 7

RpcGetAllListeners Returns a list of all Terminal Services listeners running on a terminal
server.

Opnum: 8

RpcGetSessionProtocolLastInputTime | Returns the protocol status and time the last input was received by the
protocol associated with a specific session running on a terminal server.

Opnum: 9

RpcGetUserCertificates Returns the client X509 certificate used to connect to a session running on
a terminal server.

Opnum: 10

RpcQuerySessionData Returns information about a particular session running on a terminal
server.

Opnum: 11

3.5.4.1.1 RpcGetClientData (Opnum 0)

The RpcGetClientData method returns information about the client that is connected to a particular
session running on a terminal server. The caller must have WINSTATION_QUERY permission. The
method checks whether the caller has WINSTATION_QUERY permission (section 3.1.1) by setting it as
the Access Request mask, and fails if the caller does not have the permission.

HRESULT RpcGetClientData (
[in] handle t hBinding,
[in] ULONG SessionlId,
[out, size is(,*pOutBuffBytelen)]
unsigned char** ppBuff,
[out] ULONG* pOutBuffByteLen
)i

hBinding: The RPC binding handle. For more information, see [MSDN-RPCBIND].

Sessionld: The ID of the session from which client data is to be retrieved.

ppBuff: The buffer that contains the client data. This data is of type PWINSTATIONCLIENT, specified
in section 2.2.2.19. The buffer is allocated by RpcGetClientData.

pOutBuffByteLen: The number of bytes of client data that is returned.

Return Values: The method MUST return S_OK (0x00000000) on success; otherwise, it MUST return
an implementation-specific negative value.

Return value/code | Description

0x00000000 Successful completion.
S_OK

122 / 253

[MS-TSTS-Diff] - v20210625

Terminal Services Terminal Server Runtime Interface Protocol
Copyright © 2021 Microsoft Corporation

Release: June 25, 2021

3.5.4.1.2 RpcGetConfigData (Opnum 1)

The RpcGetConfigData method returns the configuration data associated with the user connected to a
particular session running on a terminal server. The caller MUST have WINSTATION_QUERY
permission. The method checks whether the caller has WINSTATION_QUERY permission (section
3.1.1) by setting it as the Access Request mask, and fails if the caller does not have the
permission.<156>

HRESULT RpcGetConfigData (
[in] handle t hBinding,
[in] ULONG SessionId,
[out, size is(,*pOutBuffBytelen)]
unsigned char** ppBuff,
[out] ULONG* pOutBuffByteLen
)

hBinding: The RPC binding handle. For more information, see [MSDN-RPCBIND].

SessionlId: The ID of the session for which the client configuration data is to be retrieved.

ppBuff: The buffer that will contain the client configuration data. This will be allocated by
RpcGetConfigData. This data is of type PWINSTATIONCONFIG.

pOutBuffByteLen: The number of bytes of client configuration data that is returned.

Return Values: The method MUST return S_OK (0x00000000) on success; otherwise, it MUST return
an implementation-specific negative value.

Return value/code | Description

0x00000000 Successful completion.
S_OK

3.5.4.1.3 RpcGetProtocolStatus (Opnum 2)

The RpcGetProtocolStatus method retrieves information about the status of the protocol used to
connect to a particular session running on a terminal server. The caller MUST have
WINSTATION_QUERY permission for the session. The method checks whether the caller has
WINSTATION_QUERY permission (section 3.1.1) by setting it as the Access Request mask, and fails if
the caller does not have the permission.

HRESULT RpcGetProtocolStatus (
[in] handle_t hBinding,
[in] ULONG SessionId,
[in] PROTOCOLSTATUS INFO TYPE InfoType,
[out, size is(, *pcbProtoStatus)]
unsigned char** ppProtoStatus,
[out] ULONG* pcbProtoStatus
)7

hBinding: The RPC binding handle. For more information, see [MSDN-RPCBIND].

SessionId: The ID of the session for which protocol status is to be retrieved.

123/ 253

[MS-TSTS-Diff] - v20210625

Terminal Services Terminal Server Runtime Interface Protocol
Copyright © 2021 Microsoft Corporation

Release: June 25, 2021

InfoType: Specifies what type of information to gather. This is of the type
PROTOCOLSTATUS_INFO_TYPE.

ppProtoStatus: The buffer that will contain protocol status data. This data is of the type
PROTOCOLSTATUS.

pcbProtoStatus: The number of bytes of protocol data that is returned.

Return Values: The method MUST return S_OK (0x00000000) on success; otherwise, it MUST return
an implementation-specific negative value.

Return value/code | Description

0x00000000 Successful completion
S_OK

3.5.4.1.4 RpcGetLastInputTime (Opnum 3)

The RpcGetLastInputTime method returns the time the last user input was received by the associated
protocol for the specified sessions running on a terminal server. The caller MUST have
WINSTATION_QUERY permission for the session. The method checks whether the caller has
WINSTATION_QUERY permission (section 3.1.1) by setting it as the Access Request mask, and fails if
the caller does not have the permission.

HRESULT RpcGetLastInputTime (
[in] handle t hBinding,
[in] ULONG SessionId,
[out] hyper* pLastInputTime
)i

hBinding: The RPC binding handle. For more information, see [MSDN-RPCBIND].

Sessionld: The ID of the session for which the last user input time is to be retrieved.

pLastInputTime: The time when the last user input was received by the server. This is a 64-bit
value representing the number of 100-nanosecond intervals since January 1, 1601 (UTC).

Return Values: The method MUST return S_OK (0x00000000) on success; otherwise, it MUST return
an implementation-specific negative value.

Return value/code | Description

0x00000000 Successful completion
S_OK

3.5.4.1.5 RpcGetRemoteAddress (Opnum 4)

The RpcGetRemoteAddress method retrieves the IP address of the client computer connected to the
session on the terminal server. The caller MUST have WINSTATION_QUERY permission for the session.
The method checks whether the caller has WINSTATION_QUERY permission (section 3.1.1) by setting
it as the Access Request mask, and fails if the caller does not have the permission.

HRESULT RpcGetRemoteAddress (
[in] handle t hBinding,

124 / 253

[MS-TSTS-Diff] - v20210625

Terminal Services Terminal Server Runtime Interface Protocol
Copyright © 2021 Microsoft Corporation

Release: June 25, 2021

[in] ULONG SessionId,
[out] PRCM _REMOTEADDRESS pRemoteAddress
)i
hBinding: The RPC binding handle. For more information, see [MSDN-RPCBIND].

Sessionld: The ID of the session for which client data is to be retrieved.

pRemoteAddress: The address of the client computer that is connected to the session. This is of the
type PRCM_REMOTEADDRESS.

Return Values: The method MUST return S_OK (0x00000000) on success; otherwise, it MUST return
an implementation-specific negative value.

Return value/code | Description

0x00000000 Successful completion.
S_OK

3.5.4.1.6 RpcGetAllListeners (Opnum 8)

The RpcGetAllListeners method returns a list of all Terminal Services listeners running on a terminal
server. No special permissions are required to call this method. However, only listeners for which the
caller has WINSTATION_QUERY permission are enumerated.

HRESULT RpcGetAllListeners (
[in] handle t hBinding,
[out, size is(, *pNumListeners)]
PLISTENERENUM* ppListeners,
[in] DWORD Level,
[out] ULONG* pNumListeners
)i

hBinding: The RPC binding handle. For more information, see [MSDN-RPCBIND].

ppListeners: The list of Terminal Services listeners running on the terminal server. This is an array
of type PLISTENERENUM.

Level: The level of information that is requested for the listeners. The only supported value is 1.
pNumlListeners: The number of listeners returned.

Return Values: The method MUST return S_OK (0x00000000) on success; otherwise, it MUST return
an implementation-specific negative value.

Return value/code | Description

0x00000000 Successful completion.
S_OK

3.5.4.1.7 RpcGetSessionProtocolLastInputTime (Opnum 9)

The RpcGetSessionProtocolLastInputTime method returns the protocol status and the time the last
input was received by the protocol associated with a specific session running on a terminal server. The

125/ 253

[MS-TSTS-Diff] - v20210625

Terminal Services Terminal Server Runtime Interface Protocol
Copyright © 2021 Microsoft Corporation

Release: June 25, 2021

caller MUST have WINSTATION_QUERY permission for the session. The method checks whether the
caller has WINSTATION_QUERY permission (section 3.1.1) by setting it as the Access Request mask,
and fails if the caller does not have the permission.

HRESULT RpcGetSessionProtocolLastInputTime (
[in] handle t hBinding,

in] ULONG SessionId,

in] PROTOCOLSTATUS INFO_TYPE InfoType,
out, size is(, *pcbProtoStatus)]
unsigned char** ppProtoStatus,

[out] ULONG* pcbProtoStatus,

[out] hyper* pLastInputTime

[
[
[

hBinding: The RPC binding handle. For more information, see [MSDN-RPCBIND].
Sessionld: The ID of the session from which information is to be retrieved.

InfoType: Specifies what type of information to gather. This is of type
PROTOCOLSTATUS_INFO_TYPE.

ppProtoStatus: The buffer that contains protocol status data. This data is of type
PROTOCOLSTATUS, specified in section 2.2.2.20.1.

pcbProtoStatus: The number of bytes of protocol data returned.
pLastInputTime: The time the last input was received by the server.
Time is measured as the number of 100-nanosecond intervals since January 1, 1601 (UTC).

Return Values: The method MUST return S_OK (0x00000000) on success; otherwise, it MUST return
an implementation-specific negative value.

Return value/code | Description

0x00000000 Successful completion
S_OK

3.5.4.1.8 RpcGetUserCertificates (Opnum 10)

The RpcGetUserCertificates method returns a client X509 certificate if the client used the certificate to
connect to a session running on a terminal server. For more information, see [X509]. The caller MUST
have WINSTATION_QUERY permission for the session. The method checks whether the caller has
WINSTATION_QUERY permission (section 3.1.1) by setting it as the Access Request mask, and fails if
the caller does not have the permission.

HRESULT RpcGetUserCertificates(
[in] handle t hBinding,
in] ULONG SessionId,
out] ULONG* pcCerts,
out, size is(, *pcbCerts)] byte** ppbCerts,

[
[
[
[out] ULONG* pcbCerts

hBinding: The RPC binding handle. For more information, see [MSDN-RPCBIND].

Sessionld: The ID of the session for which the certificate is to be retrieved.

126 / 253

[MS-TSTS-Diff] - v20210625

Terminal Services Terminal Server Runtime Interface Protocol
Copyright © 2021 Microsoft Corporation

Release: June 25, 2021

pcCerts: The number of client certificates returned.
ppbCerts: Certificate data.
pcbCerts: The size, in bytes, of ppbCerts.

Return Values: The method MUST return S_OK (0x00000000) on success; otherwise, it MUST return
an implementation-specific negative value.

Return value/code | Description

0x00000000 Successful completion.
S_OK

3.5.4.1.9 RpcQuerySessionData (Opnum 11)

The RpcQuerySessionData method returns information about a particular session running on a
terminal server. The caller MUST have WINSTATION_QUERY permission to the session being queried.
The method checks whether the caller has WINSTATION_QUERY permission (section 3.1.1) by setting
it as the Access Request mask, and fails if the caller does not have the permission.

HRESULT RpcQuerySessionData (

[in] handle t hBinding,

[in] ULONG SessionId,

[in] QUERY SESSION DATA TYPE type,

[in, unique, size is(cbInputData)]
byte* pbInputData,

[in, range (0, 8192)] DWORD cbInputData,

[out, ref, size is(cbSessionData), length is(*pcbReturnLength)]
byte* pbSessionData,

[in, range (0, 8192)] ULONG cbSessionData,

[out, ref] ULONG* pcbReturnLength,

[out, ref] ULONG* pcbRequireBufferSize

hBinding: The RPC binding handle. For more information, see [MSDN-RPCBIND].
SessionId: The ID of the session for which data is to be retrieved.
type: The type of data to retrieve about the session. This is of type QUERY_SESSION_DATA_TYPE.

pbInputData: Input data. This is a string specifying the name of the virtual channel and is required
only when querying virtual channel information.

cbInputData: The size, in bytes, of input data.

pbSessionData: The output data containing the requested information. The data returned is of type
WDCONFIG if the type specified is QUERY_SESSION_DATA_WDCONFIG. It is of type
WINSTATIONVALIDATIONINFORMATION if the type specified is
QUERY_SESSION_DATA_LICENSE_VALIDATION. For other types, it is protocol-specific.

cbSessionData: The size, in bytes, of pbSessionData.
pcbReturnLength: The length of the returned data, in bytes.

pcbRequireBufferSize: The buffer size, in bytes, required by the returned data.

127 / 253

[MS-TSTS-Diff] - v20210625

Terminal Services Terminal Server Runtime Interface Protocol
Copyright © 2021 Microsoft Corporation

Release: June 25, 2021

Return Values: The method MUST return S_OK (0x00000000) on success; otherwise, it MUST return
an implementation-specific negative value.

Return value/code | Description

0x00000000 Successful completion
S_OK

3.5.4.2 RCMListener

The RCMListener interface provides methods that open, close, start, and stop a listener. The version
for this interface is 1.0.

For information about endpoints, UUID values, and versions, see sections 2.1 and 1.9.

Methods in RPC Opnum Order

Method Description

RpcOpenListener | Returns a handle to the specified Terminal Services listener running on a terminal server.
Opnum: 0

RpcCloseListener | Closes the handle for a Terminal Services listener running on a terminal server.
Opnum: 1

RpcStopListener Stops the specified Terminal Services listener running on a terminal server.
Opnum: 2

RpcStartListener Starts the specified Terminal Services listener on a terminal server.
Opnum: 3

RpclsListening Checks if the specified Terminal Services listener is running on a terminal server.
Opnum: 4

3.5.4.2.1 RpcOpenListener (Opnum 0)

The RpcOpenListener method returns a handle to the specified Terminal Services listener running on
a terminal server. No special permissions are required to call this method.

HRESULT RpcOpenListener (
[in] handle t hBinding,
[in, string] WCHAR* szListenerName,
[out] HLISTENER* phListener

)i

hBinding: The RPC binding handle. For more information, see [MSDN-RPCBIND].
szListenerName: The name of the listener for which to retrieve a handle.

phListener: Pointer to a handle to the listener. The handle is of type HLISTENER.

Return Values: The method MUST return S_OK (0x00000000) on success; otherwise, it MUST return
an implementation-specific negative value.

128 /253

[MS-TSTS-Diff] - v20210625

Terminal Services Terminal Server Runtime Interface Protocol
Copyright © 2021 Microsoft Corporation

Release: June 25, 2021

Return value/code | Description

0x00000000 Successful completion.
S_OK

3.5.4.2.2 RpcCloselistener (Opnum 1)

The RpcCloseListener method closes the handle for a Terminal Services listener running on a terminal
server. This MUST be called after RpcOpenListener. The call to this method MUST be serialized if there
are multiple threads running otherwise the behavior of this function is unknown. No special
permissions are required to call this method.

HRESULT RpcCloselListener (
[in, out] HLISTENER* phListener
)

phListener: Pointer to a handle to the listener as returned by RpcOpenListener. The handle is of type
HLISTENER. The handle is set to NULL when the call returns.

Return Values: The method MUST return S_OK (0x00000000) on success; otherwise, it MUST return
an implementation-specific negative value.<157>

Return value/code | Description

0x00000000 Successful completion.
S_OK

3.5.4.2.3 RpcStopListener (Opnum 2)

The RpcStopListener method stops the specified Terminal Services listener running on a terminal
server. This MUST be called after RpcOpenListener. The caller MUST have WINSTATION_RESET
permission to the listener. The method checks whether the caller has WINSTATION_RESET permission
(section 3.1.1) by setting it as the Access Request mask, and fails if the caller does not have the
permission.

HRESULT RpcStopListener (
[in] HLISTENER hListener
)7

hListener: The handle to the listener. This is of type HLISTENER.

Return Values: The method MUST return S_OK (0x00000000) on success; otherwise, it MUST return
an implementation-specific negative value.

Return value/code | Description

0x00000000 Successful completion.
S_OK

129/ 253

[MS-TSTS-Diff] - v20210625

Terminal Services Terminal Server Runtime Interface Protocol
Copyright © 2021 Microsoft Corporation

Release: June 25, 2021

3.5.4.2.4 RpcStartListener (Opnum 3)

The RpcStartListener method starts the specified Terminal Services listener on a terminal server. This
MUST be called after RpcOpenListener. The caller MUST have WINSTATION_RESET and
WINSTATION_QUERY permissions to the listener. The method checks whether the caller has
WINSTATION_RESET and WINSTATION_QUERY permission (section 3.1.1) by setting it as the Access
Request mask, and fails if the caller does not have the permissions.

HRESULT RpcStartListener (
[in] HLISTENER hListener
)

hListener: The handle to the listener. This is of type HLISTENER.

Return Values: The method MUST return S_OK (0x00000000) on success; otherwise, it MUST return
an implementation-specific negative value.

Return value/code | Description

0x00000000 Successful completion.
S_OK

3.5.4.2.5 RpcIslListening (Opnum 4)

The RpclsListening method checks whether the specified Terminal Services listener is running on a
terminal server. This MUST be called after RpcOpenListener. The caller MUST have
WINSTATION_QUERY permission to the listener. The method checks whether the caller has
WINSTATION_QUERY permission (section 3.1.1) by setting it as the Access Request mask, and fails if
the caller does not have the permission.

HRESULT RpcIsListening(
[in] HLISTENER hListener,
[out] BOOL* pbIsListening

)i

hListener: The handle to the listener. This is of type HLISTENER.

pbIsListening: Set to TRUE if the listener is listening for a connection, FALSE otherwise.

Return Values: The method MUST return S_OK (0x00000000) on success; otherwise, it MUST return
an implementation-specific negative value.

Return value/code | Description

0x00000000 Successful completion.
S_OK

3.5.5 Timer Events

None.

130/ 253

[MS-TSTS-Diff] - v20210625

Terminal Services Terminal Server Runtime Interface Protocol
Copyright © 2021 Microsoft Corporation

Release: June 25, 2021

3.5.6 Other Local Events

None.
3.6 Legacy Client Details

3.6.1 Abstract Data Model

None.

3.6.2 Timers

No protocol timers are required beyond those used internally by RPC to implement resiliency to
network outages, as specified in [MS-RPCE].

3.6.3 Initialization

The client MUST create an RPC connection to the terminal server, using the details specified in section
2.1.

3.6.4 Message Processing Events and Sequencing Rules

When a method completes, the values returned by RPC MUST be returned unmodified to the upper
layer.

3.6.5 Timer Events

There are no timer events.

3.6.6 Other Local Events

None.
3.7 Legacy Server Details

3.7.1 Abstract Data Model

This section describes a conceptual model of possible data organization that an implementation
maintains to participate in this protocol. The described organization is provided to facilitate the
explanation of how the protocol behaves. This document does not mandate that implementations
adhere to this model as long as their external behavior is consistent with that described in this
document.

3.7.1.1 Abstract Data Types

dwCounterID: Identifier of a performance counter. It is used with
RpcWinStationGetTermSrvCountersValue and MUST be set to one of the values described in
section 2.2.2.17.1.

hServer: Handle to the server object. This is of type SERVER_HANDLE. This handle is returned by the
RpcWinStationOpenServer method and is used as an input parameter with all other LegacyApi
methods.

131/ 253

[MS-TSTS-Diff] - v20210625

Terminal Services Terminal Server Runtime Interface Protocol
Copyright © 2021 Microsoft Corporation

Release: June 25, 2021

PDCONFIG2: Structure that contains the protocol driver's software configuration. This structure is
described in detail in section 2.2.2.26.1. It is returned by the RpcWinStationQueryInformation
method as part of transport protocol driver configuration data.

WinStationInformation: Provides the current values of various properties for a session such as
state, connect time, last input time, and so on. It is used with RpcWinStationQueryInformation
and is returned as the pWinStationInformation parameter when "WinStationInformation" is passed
as the WinStationInformationClass parameter.

WINSTATIONPRODID: Structure that represents a product ID for the session. This structure is
described in detail in section 2.2.2.36. It is used with RpcWinStationQueryInformation and is
returned as the pWinStationInformation parameter when "WinStationDigProductld" is passed as
the WinStationInformationClass parameter.

WINSTATIONUSERTOKEN: Structure that defines the user token for a session. This structure is
described in detail in section 2.2.2.32. It is used with RpcWinStationQueryInformation and is
returned as the pWinStationInformation parameter when "WinStationUserToken" is passed as the
WinStationInformationClass parameter.

POLICY_TS_MACHINE: Structure that defines the machine policy of the server. This structure is
described in detail in section 2.2.2.31. It is used with the RpcWinStationGetMachinePolicy method
and is returned as the pPolicy parameter.

WINSTATIONINFOCLASS: Enumeration that specifies the class of data to retrieve. It is defined in
section 2.2.1.8. The following list shows how WINSTATIONINFOCLASS is used with various
methods.

= RpcWinStationQueryInformation: as the WinStationInformationClass parameter.
= RpcWinStationSetInformation: as the WinStationInformationClass parameter.

USERCONFIG: Structure that contains user and session configuration information. This structure is
described in detail in section 2.2.2.18. It is used with the RpcWinStationQueryInformation and
RpcWinStationSetInformation methods.

WINSTATIONCLIENT: Structure that defines the client-requested configuration when connecting to
a session. This structure is described in detail in section 2.2.2.19. It is used with the
RpcWinStationQueryInformation method.

LOGONID: Structure that represents information about the session or WinStation. This structure is
described in detail in section 2.2.2.13. It is used with the RpcWinStationEnumerate method and is
returned as the pLogonild parameter.

TS_PROCESS_INFORMATION_NT4: Structure that represents information about a process running
in a session. This structure is described in detail in section 2.2.2.14. It is used with the
RpcWinStationEnumerateProcesses method and is returned inside the pProcessBuffer parameter.

TS_ALL_PROCESS_INFO: Structure that contains data about all the processes running on the
system that are accessible to a user. This structure is described in detail in section 2.2.2.15. It is
used with the RpcWinStationGetAllProcesses method and is returned as the ppTsAllProcessesinfo
parameter.

TS_SYS_PROCESS_INFORMATION: Structure that contains information about a process running in
a session. This structure is described in detail in section 2.2.2.15.1. It is used with the
RpcWinStationEnumerateProcesses method and is returned inside the pProcessBuffer parameter.

TS_PROCESS_INFORMATION_NTG6: Structure that represents information about a process running
in a session. This structure is described in detail in section 2.2.2.16. It is used with the
RpcWinStationGetAllProcesses_ NT6 method and is returned inside the ppTsAllProcessesInfo
parameter.

132 /253

[MS-TSTS-Diff] - v20210625

Terminal Services Terminal Server Runtime Interface Protocol
Copyright © 2021 Microsoft Corporation

Release: June 25, 2021

PDPARAMS: Structure containing the protocol driver parameters. This structure is described in detail
in section 2.2.2.21. It is used with the RpcWinStationQueryInformation and
RpcWinStationSetInformation methods.

PDPARAMSWIRE: Structure precedes a PDPARAMS structure and defines the size and offset of the
PDPARAMS structures in the complete data BLOB. This structure is described in detail in section
2.2.2.46. It is used with the RpcWinStationQueryInformation and RpcWinStationSetInformation
methods.

PdName: String containing the transport protocol type. This MUST be any of the following strings:
"tcp", "netbios", "ipx", or "spx". It is used with the RpcWinStationGetLanAdapterName method as
the pPdName parameter.

WDCONFIG: Structure containing the WinStation (session) driver configuration. This structure is
described in detail in section 2.2.2.27. It is used with the RpcWinStationQueryInformation method.

CDCONFIG: Structure that represents connection driver configuration. This structure is described in
detail in section 2.2.2.28. It is used with RpcWinStationQueryInformation and is returned as the
pWinStationInformation parameter when "WinStationCd" is passed as the
WinStationInformationClass parameter.

WINSTATIONCREATE: Structure that represents a session to which the user can connect. This
structure is described in detail in section 2.2.2.29. It is used with RpcWinStationQueryInformation
and is returned as the pWinStationInformation parameter when "WinStationCreateData" is passed
as the WinStationInformationClass parameter.

WINSTATIONVIDEODATA: Structure that represents the resolution and color depth of a session.
This structure is described in detail in section 2.2.2.33. It is used with
RpcWinStationQueryInformation and is returned as the pWinStationInformation parameter when
"WinStationVideoData" is passed as the WinStationInformationClass parameter.

WINSTATIONLOADINDICATORDATA: Structure that represents the data used for the load
balancing of a server. This structure is described in detail in section 2.2.2.34. It is used with
RpcWinStationQueryInformation and is returned as the pWinStationInformation parameter when
"WinStationLoadIndicator" is passed as the WinStationInformationClass parameter.

WINSTATIONSHADOW: Structure that represents the current shadow state of a session. This
structure is described in detail in section 2.2.2.35. The following list shows how
WINSTATIONSHADOW is used with various methods.

= RpcWinStationQueryInformation: as the pWinStationInformation parameter when
"WinStationShadowInfo" is passed as the WinStationInformationClass parameter.

= RpcWinStationSetInformation: as the pWinStationInformation parameter when
"WinStationShadowlInfo" is passed as the WinStationInformationClass parameter.

DEVICENAME: Represents the name of a device. It is described in detail in section 2.2.1.7 and is
used with RpcWinStationGetLanAdapterName.

WINSTATIONNAME: Represents the name of a session. It is described in detail in section 2.2.1.5
and is used with RpcLogonIdFromWinStationName.

WINSTATIONREMOTEADDRESS: Structure that contains the client's remote address. This structure
is described in detail in section 2.2.2.37. It is returned by the RpcWinStationQueryInformation
method.

IdleTime: Represents the idle time for the session, in seconds. It is of type ULONG. It is used with
RpcWinStationQueryInformation and is returned as the pWinStationInformation parameter when
"WinStationldleTime" is passed as the WinStationInformationClass parameter.

133/ 253

[MS-TSTS-Diff] - v20210625

Terminal Services Terminal Server Runtime Interface Protocol
Copyright © 2021 Microsoft Corporation

Release: June 25, 2021

LastReconnectType: Represents the last reconnect type for the session. It is of type ULONG. Itis
used with RpcWinStationQueryInformation and is returned as the pWinStationInformation
parameter when "WinStationReconnectType" is passed as the WinStationInformationClass
parameter.

WinStationVirtualData: Represents client virtual data. It is of type BYTE. It is used with
RpcWinStationQueryInformation and is returned as the pWinStationInformation parameter when
"WinStationVirtualData" is passed as the WinStationInformationClass parameter.

WINSTATIONCLIENTDATA: Structure used to send data to the client. It is described in 2.2.2.41. It
is used with RpcWinStationSetInformation and is returned as the pWinStationInformation
parameter when "WinStationClientData" is passed as the WinStationInformationClass parameter.

TS_TRACE: Structure that specifies fields used for configuring tracing operations in TS binaries if they
are checked. This structure is described in detail in section 2.2.2.39. It is used with the
RpcWinStationSetInformation method.

WINSTACONFIGWIRE: Structure precedes a variable length user configuration data BLOB and
defines the size and offset of the user configuration data. This structure is described in detail in
section 2.2.2.47. It is used with the RpcWinStationQueryInformation and
RpcWinStationSetInformation methods.

3.7.2 Timers

Send Message Timeout: The time, in seconds, that the RpcWinStationSendMessage method waits
for the user's response to the message box displayed by that method. For more information, see
description of the Timeout parameter to the RpcWinStationSendMessage method.

3.7.3 Initialization

Parameters necessary to initialize the RPC protocol are specified in section 2.1.

3.7.4 Message Processing Events and Sequencing Rules

This protocol asks the RPC runtime to perform a strict NDR data-consistency check at target level 6.0
for all methods, unless otherwise specified, as defined in [MS-RPCE] section 1.3.

When a method completes, the values returned by RPC MUST be returned unmodified to the upper
layer. The methods MAY throw an exception and the Terminal Services client MUST handle these
exceptions by returning the unmodified exception code to the upper layer.

Legacy server methods are part of the LegacyApi interface.

3.7.4.1 LegacyApi

The LegacyApi provides legacy methods that manipulate a terminal client. The version for this
interface is 1.0.

For endpoints, UUID values, and versions, see sections 2.1 and 1.9.

Methods in RPC Opnum Order

Method Description

RpcWinStationOpenServer Returns a server handle that can be used in other WinStation API
methods for querying information on the WinStation (sessions) on the
server.

134 / 253

[MS-TSTS-Diff] - v20210625

Terminal Services Terminal Server Runtime Interface Protocol
Copyright © 2021 Microsoft Corporation

Release: June 25, 2021

Method

Description

Opnum: 0

RpcWinStationCloseServer

Closes the server handle for WinStation APIs.
Opnum: 1

RpcIcaServerPing

Verifies that the server is alive.
Opnum: 2

RpcWinStationEnumerate

Retrieves a list of LOGONID structures for sessions on a terminal
server.

Opnum: 3

RpcWinStationRename

Enables the caller to change the name of the session.
Opnum: 4

RpcWinStationQueryInformation

Retrieves various types of configuration information on a session.
Opnum: 5

RpcWinStationSetInformation

Sets various types of configuration information for a session.
Opnum: 6

RpcWinStationSendMessage

Displays a message box on a given terminal server session and,
optionally, waits for a reply.

Opnum: 7

RpcLogonIdFromWinStationName

Given a session name, returns the session's session ID.
Opnum: 8

RpcWinStationNameFromLogonId

Retrieves the Windows Station (WinStation) name for a specific
session.

Opnum: 9

RpcWinStationConnect

Connects a user's terminal server client from a given terminal server
session to a different terminal server session.

Opnum: 10

Opnum11NotUsedOnWire

Reserved for local use.
Opnum: 11

Opnum12NotUsedOnWire

Reserved for local use.
Opnum: 12

RpcWinStationDisconnect

On the server, disconnects the terminal server client from a session.
Opnum: 13

RpcWinStationReset

Resets a session.
Opnum: 14

RpcWinStationShutdownSystem

Shuts down the system and, optionally, logs off all sessions. May also
reboot the system.

Opnum: 15

RpcWinStationWaitSystemEvent

Waits synchronously for a system event from an RPC API request on
behalf of the caller.

Opnum: 16

RpcWinStationShadow

Starts a shadow operation (remote control) of another terminal server
session.

[MS-TSTS-Diff] - v20210625

135/ 253

Terminal Services Terminal Server Runtime Interface Protocol

Copyright © 2021 Microsoft Corporation

Release: June 25, 2021

Method

Description

Opnum: 17

Opnum18NotUsedOnWire

Reserved for local use.
Opnum: 18

Opnum19NotUsedOnWire

Reserved for local use.
Opnum: 19

Opnum20NotUsedOnWire

Reserved for local use.
Opnum: 20

Opnum21NotUsedOnWire

Reserved for local use.
Opnum: 21

Opnum22NotUsedOnWire

Reserved for local use.
Opnum: 22

Opnum23NotUsedOnWire

Reserved for local use.
Not implemented.
Opnum: 23

Opnum24NotUsedOnWire

Reserved for local use.
Opnum: 24

Opnum25NotUsedOnWire

Reserved for local use.
Opnum: 25

Opnum26NotUsedOnWire

Reserved for local use.
Opnum: 26

Opnum27NotUsedOnWire

Reserved for local use.
Opnum: 27

Opnum28NotUsedOnWire

Reserved for local use.
Opnum: 28

RpcWinStationBreakPoint

Breaks into the debugger in either the session process of a specific
session or in the terminal server service process.

Opnum: 29

RpcWinStationReadRegistry

Tells the server to reread from the registry the configuration data for
all the WinStations.

Opnum: 30

Opnum31NotUsedOnWire

Reserved for local use.
Opnum: 31

Opnum32NotUsedOnWire

Reserved for local use.
Opnum: 32

Opnum33NotUsedOnWire

Reserved for local use.
Opnum: 33

OldRpcWinStationEnumerateProcesses

This function in turn calls the RpcWinStationEnumerateProcesses
function.

Opnum: 34

[MS-TSTS-Diff] - v20210625

136 / 253

Terminal Services Terminal Server Runtime Interface Protocol

Copyright © 2021 Microsoft Corporation

Release: June 25, 2021

Method

Description

Opnum35NotUsedOnWire

Reserved for local use.
Opnum: 35

RpcWinStationEnumerateProcesses

Returns the process information for an NT4 terminal server.
Supported only for backward compatibility with that platform.

Opnum: 36

RpcWinStationTerminateProcess

Terminates the specified process.
Opnum: 37

Opnum38NotUsedOnWire

Reserved for local use.
Opnum: 38

Opnum39NotUsedOnWire

Reserved for local use.
Opnum: 39

Opnum40NotUsedOnWire

Not implemented.
Opnum: 40

Opnum41NotUsedOnWire

Not implemented.
Opnum: 41

Opnum42NotUsedOnWire

Reserved for local use.
Opnum: 42

RpcWinStationGetAllProcesses

Retrieves a list of the processes on a remote server on which the
caller has permission to receive information.

Opnum: 43

RpcWinStationGetProcessSid

Retrieves the process SID for a given process ID and process start
time combination.

Opnum: 44

RpcWinStationGetTermSrvCountersValue

Retrieves the current value of requested terminal server performance
counters.

Opnum: 45

RpcWinStationRelnitializeSecurity

Reinitializes security for all non-console WinStation remote connection
protocols specified in the registry.

Opnum: 46

Opnum47NotUsedOnWire

Reserved for local use.
Opnum: 47

Opnum48NotUsedOnWire

Reserved for local use.
Opnum: 48

Opnum49NotUsedOnWire

Reserved for local use.
Opnum: 49

Opnum50NotUsedOnWire

Reserved for local use.
Opnum: 50

Opnum51NotUsedOnWire

Reserved for local use.
Opnum: 51

Opnum52NotUsedOnWire

Not implemented.

[MS-TSTS-Diff] - v20210625

137/ 253

Terminal Services Terminal Server Runtime Interface Protocol

Copyright © 2021 Microsoft Corporation

Release: June 25, 2021

Method

Description

Opnum: 52

RpcWinStationGetLanAdapterName

Returns the LAN adapter GUID as a string.
Opnum: 53

Opnum54NotUsedOnWire

Reserved for local use.
Opnum: 54

Opnum55NotUsedOnWire

Reserved for local use.
Opnum: 55

Opnum56NotUsedOnWire

Reserved for local use.
Opnum: 56

Opnum57NotUsedOnWire

Reserved for local use.
Opnum: 57

RpcWinStationUpdateSettings

Rereads settings for all WinStations.
Opnum: 58

RpcWinStationShadowStop

Stops all shadow operations on the specified session.
Opnum: 59

RpcWinStationCloseServerEx

Closes the server handle for WinStation APIs.
Opnum: 60

RpcWinStationIsHelpAssistantSession

Determines whether a session is created by a HelpAssistant account
(used for Remote Assistance).

Opnum: 61

RpcWinStationGetMachinePolicy

Returns a copy of the terminal server machine policy to the caller.
Opnum: 62

Opnum63NotUsedOnWire

Reserved for local use.
Opnum: 63

Opnum64NotUsedOnWire

Reserved for local use.
Opnum: 64

RpcWinStationCheckLoopBack

Checks if there is a loopback when a client tries to connect.
Opnum: 65

RpcConnectCallback

Initiates a connection back to the Remote Assistance (RA) client.
Opnum: 66

Opnum67NotUsedOnWire

Reserved for local use.
Opnum: 67

Opnum68NotUsedOnWire

Reserved for local use.
Opnum: 68

Opnum69NotUsedOnWire

Reserved for local use.
Opnum: 69

RpcWinStationGetAllProcesses_NT6

Retrieves the processes running a remote server on which the caller
has access to retrieve information.

Opnum: 70

[MS-TSTS-Diff] - v20210625

138/ 253

Terminal Services Terminal Server Runtime Interface Protocol

Copyright © 2021 Microsoft Corporation

Release: June 25, 2021

Method Description

Opnum71NotUsedOnWire Reserved for local use.
Opnum: 71

Opnum72NotUsedOnWire Reserved for local use.
Opnum: 72

Opnum73NotUsedOnWire Reserved for local use.
Opnum: 73

Opnum74NotUsedOnWire Reserved for local use.
Opnum: 74

RpcWinStationOpenSessionDirectory Pings the Session Directory to see if it can accept RPC calls.
Opnum: 75

In the preceding table, the phrase "Reserved for local use" means that the client MUST NOT send the
opnum, and the server behavior is undefined, because it does not affect interoperability.<158>

3.7.4.1.1 RpcWinStationOpenServer (Opnum 0)

The RpcWinStationOpenServer method returns a server handle that can be used in other WinStation
API methods for querying information about the WinStation (sessions) on the server. No special
permissions are required to call this method.

BOOLEAN RpcWinStationOpenServer (
[in] handle t hBinding,
[out] DWORD* pResult,
[out] SERVER HANDLE* phServer
)i

hBinding: The RPC binding handle.

pResult: Failure error code if the call to RpcWinStationOpenServer failed. If the call was successful,
this parameter is STATUS_SUCCESS (0x00000000) (as specified in [MS-ERREF]).

Value Meaning
STATUS_SUCCESS Successful call.
0x00000000

STATUS_CANCELLED The server is shutting down.
0xC0000120

STATUS_NO_MEMORY | Not enough memory to complete the operation.
0xC0000017

phServer: Handle to the server object. This is of type SERVER_HANDLE. This handle is used by other
RpcWinStation methods.

Return Values: Returns TRUE if the call succeeded, or FALSE if the call failed. On failure, pResult
indicates the failure status code.

Return value/code | Description

0x01 Successful completion.

139/ 253

[MS-TSTS-Diff] - v20210625

Terminal Services Terminal Server Runtime Interface Protocol
Copyright © 2021 Microsoft Corporation

Release: June 25, 2021

Return value/code | Description
TRUE

0x00 Method call failed.
FALSE

3.7.4.1.2 RpcWinStationCloseServer (Opnum 1)

The RpcWinStationCloseServer method closes the server handle for WinStation APIs. No special
permissions are required to call this method.

BOOLEAN RpcWinStationCloseServer (
[in] SERVER HANDLE hServer,
[out] DWORD* pResult

)

hServer: Handle to the server object. This is of type SERVER_HANDLE. The hServer MUST be
returned from a previous call to RpcWinStationOpenServer.

pResult: If the call was successful, this parameter is STATUS_SUCCESS (0x00000000), as specified in
[MS-ERREF]; otherwise, it MUST be an implementation-specific negative value.

Return Values: Returns TRUE if the call succeeded, or FALSE if the call failed. On failure, pResult
indicates the failure status code.

Return value/code | Description

0x01 Successful completion.
TRUE

0x00 Method call failed.
FALSE

3.7.4.1.3 RpclIcaServerPing (Opnum 2)

The RpclcaServerPing method is called to verify that the server is alive. No special permissions are
required to call this method.<159>

BOOLEAN RpcIcaServerPing (
[in] SERVER HANDLE hServer,
[out] DWORD* pResult

)i

hServer: Handle to the server object. This is of type SERVER_HANDLE. The hServer argument MUST
be obtained from a previous call to RpcWinStationOpenServer.

pResult: If the call was successful, this parameter is STATUS_SUCCESS (0x00000000), as specified in
[MS-ERREF]; otherwise it MUST be an implementation-specific negative value.

Return Values: Returns TRUE if the call succeeded and the server is alive, or FALSE if the method
failed. On failure, pResult indicates the failure status code.

140 / 253

[MS-TSTS-Diff] - v20210625

Terminal Services Terminal Server Runtime Interface Protocol
Copyright © 2021 Microsoft Corporation

Release: June 25, 2021

Return value/code | Description

0x01 Successful completion.
TRUE

0x00 Method call failed.
FALSE

3.7.4.1.4 RpcWinStationEnumerate (Opnum 3)

The RpcWinStationEnumerate method retrieves a list of LOGONID structures for sessions on a terminal
server. No special permissions are required to call this method. However, only sessions to which the
caller has WINSTATION_QUERY permission are enumerated. The method checks whether the caller
has WINSTATION_QUERY permission (section 3.1.1) by setting it as the Access Request mask, and
fails if the caller does not have the permission.

BOOLEAN RpcWinStationEnumerate (
[in] SERVER HANDLE hServer,
[out] DWORD* pResult,
[in, out] PULONG pEntries,
[in, out, unique, size is(*pByteCount)]
PCHAR pLogonlId,
[in, out] PULONG pByteCount,
[in, out] PULONG pIndex

hServer: Handle to the server object. This is of type SERVER_HANDLE. The hServer argument MUST
be obtained from a previous call to RpcWinStationOpenServer.

pResult: If the call was successful, this parameter will be STATUS_SUCCESS (0x00000000), as
specified in [MS-ERREF]; otherwise, it MUST be an implementation-specific negative value.

pEntries: Pointer to the number of entries to return to the caller. On return from this method, this is
the number of logon IDs actually returned in this call to RpcWinStationEnumerate.

pLogonlId: Buffer where the logon IDs are stored when the method returns. This will be an array of
LOGONID structures. Caller MUST cast this to PCHAR before calling this method.

pByteCount: Size of the buffer, in bytes, to which pLogonId points.

pIndex: Last index of the logon ID lookup from this call, passed to the server the next time this
method is called. Initial value of this passed by the caller MUST be 0.

Return Values: Returns TRUE if the call succeeded, or FALSE if the lookup failed. On failure, pResult
indicates the failure status code. If all of the logon IDs have already been retrieved from the
server, TRUE will be returned, and pResult will be STATUS_NO_MORE_ENTRIES (as specified in
[MS-ERREF]), indicating to the call that all logon IDs have been retrieved.

Return value/code | Description

0x01 Successful completion.
TRUE

0x00 Method call failed.
FALSE

141 / 253

[MS-TSTS-Diff] - v20210625

Terminal Services Terminal Server Runtime Interface Protocol
Copyright © 2021 Microsoft Corporation

Release: June 25, 2021

3.7.4.1.5 RpcWinStationRename (Opnum 4)

The RpcWinStationRename method enables the caller to change the name of the session. The caller
MUST have DELETE permission, as specified in [MS-DTYP] section 2.4.3, on the session that is
identified by the old name.<160>

BOOLEAN RpcWinStationRename (
[in] SERVER HANDLE hServer,
[out] DWORD* pResult,
[in, size is(NameOldSize)] PWCHAR pWinStationNameOld,
[in, range (0, 256)] DWORD NameOldSize,
[in, size is(NameNewSize)] PWCHAR pWinStationNameNew,
[in, range (0, 256)] DWORD NameNewSize

)i

hServer: Handle to the server object. This is of type SERVER_HANDLE. The hServer MUST be
obtained from a previous call to RpcWinStationOpenServer.

pResult: The failure error code if the call to RpcWinStationRename fails. If the call is successful, this
parameter MUST be STATUS_SUCCESS (0x00000000), as specified in [MS-ERREF].

Value Meaning

STATUS_SUCCESS The call is successful.

0x00000000

STATUS_ACCESS_DENIED The caller does not have DELETE permission.
0xC0000022

STATUS_CTX_WINSTATION_NAME_INVALID The sizes are 0, one or the other of the pointers is NULL,
0xCO0A0001 or a pointer is invalid.
STATUS_CTX_WINSTATION_NOT_FOUND No session exists with the name given in

0xCO0A0015 pWinStationNameOld.

STATUS_CTX_WINSTATION_NAME_COLLISION A session already exists with the name given in
0xCO00A0016 pWinStationNameNew.

pWinStationNameOld: The pointer to a string that is the old name of the session being renamed.

NameOldSize: The length of the string in characters pointed to by pWinStationNameOld including
the terminating NULL character.

pWinStationNameNew: The pointer to a string that is the new name of the session being renamed.

NameNewsSize: The length of the string in characters pointed to by pWinStationNameNew including
the terminating NULL character. Name MUST be shorter than or equal to
WINSTATIONNAME_LENGTH.

Return Values: Returns TRUE if the call succeeded, or FALSE if the method failed. On failure,
pResult indicates the failure status code.

Return value/code | Description

0x01 Successful completion.
TRUE

142 / 253

[MS-TSTS-Diff] - v20210625

Terminal Services Terminal Server Runtime Interface Protocol
Copyright © 2021 Microsoft Corporation

Release: June 25, 2021

Return value/code | Description

0x00 Method call failed.
FALSE

3.7.4.1.6 RpcWinStationQueryInformation (Opnum 5)

The RpcWinStationQueryInformation method retrieves various types of configuration information on a
session. The caller MUST have the WINSTATION_QUERY permission right as well as specific
permission rights for some operations as indicated in the following sections. The method checks
whether the caller has WINSTATION_QUERY permission and the specific permission required for some
operations (section 3.1.1) by setting it as the Access Request mask, and fails if the caller does not
have the permission.<161>

BOOLEAN RpcWinStationQueryInformation (
[in] SERVER HANDLE hServer,
[out] DWORD* pResult,
[in] DWORD LogonId,
[in] DWORD WinStationInformationClass,
[in, out, unique, size is(WinStationInformationLength)]
PCHAR pWinStationInformation,
[in, range (0, 0x8000)] DWORD WinStationInformationLength,
[out] DWORD* pReturnLength
)i

hServer: Handle to the server object. This is of type SERVER_HANDLE. hServer MUST be obtained
from a previous call to RpcWinStationOpenServer.

pResult: Failure error code if the call to RpcWinStationQueryInformation failed. If the call was
successful, this parameter MUST be STATUS_SUCCESS (0x00000000).

Value Meaning
STATUS_SUCCESS Successful completion.
0x00000000

STATUS_INVALID_INFO_CLASS | The class is not recognized.
0xC0000003

STATUS_BUFFER_TOO_SMALL WinStationInformationLength is too small.
0xC0000023

STATUS_ACCESS_DENIED The caller does not have permission for the operation.
0xC0000022

LogonId: The session ID of the session for which to retrieve information.

WinStationInformationClass: The class of data to retrieve. These values come from the enum type
WINSTATIONINFOCLASS.

The following classes are supported.

Value Meaning
WinStationCreateData Retrieves general information on the type of terminal server session
0 (protocol) to which the session belongs.

143 / 253

[MS-TSTS-Diff] - v20210625

Terminal Services Terminal Server Runtime Interface Protocol
Copyright © 2021 Microsoft Corporation

Release: June 25, 2021

Value

Meaning

The pWinStationInformation argument points to a
WINSTATIONCREATE structure, and WinStationInformationLength
MUST be sizeof(WINSTATIONCREATE).<162>

WinStationConfiguration
1

Retrieves general configuration data on the terminal server session.

The pWinStationInformation argument points to a
WINSTACONFIGWIRE structure followed by a USERCONFIG
structure. The WinStationInformationLength MUST be
sizeof(WINSTACONFIGWIRE) + sizeof(USERCONFIG). The Size field
in the USERCONFIG structure inside WINSTACONFIGWIRE MUST be
set to sizeof(USERCONFIG) and the Offset set to
sizeof(WINSTACONFIGWIRE). The Size field in the NewFields
structure inside WINSTACONFIGWIRE MUST be set to 0, and the
offset MUST be set to sizeof(WINSTACONFIGWIRE) +
sizeof(USERCONFIG).

WinStationPdParams
2

Retrieves transport protocol driver parameters.<163> The structure
coming into the function indicates via SDClass the specific protocol
driver on which to receive parameter information. The result will be
returned in the union in the structure.

The pWinStationInformation argument points to a PDPARAMSWIRE
structure followed by a PDPARAMS structure. The
WinStationInformationLength MUST be sizeof(PDPARAMSWIRE)
+ sizeof(PDPARAMS). The Size field in SdClassSpecific field inside
PDPARAMSWIRE MUST be set to sizeof(PDPARAMS) and the offset
MUST be set to sizeof(PDPARAMSWIRE).

WinStationwd
3

Retrieves WinStation protocol driver configuration data for the
session.<164>

The pWinStationInformation argument points to a VARDATA_WIRE
structure followed by a WDCONFIG structure. The
WinStationInformationLength MUST be sizeof(VARDATA_WIRE)
+ sizeof(WDCONFIG). The Size field in the VARDATA_WIRE
structure MUST be set to sizeof(WDCONFIG) and the Offset set to
sizeof(VARDATA_WIRE).

WinStationPd
4

Retrieves transport protocol driver configuration data for the
session.<165>

The pWinStationInformation argument points to a VARDATA_WIRE,
followed by a PDPARAMSWIRE structure, followed by a PDCONFIG2
structure and finally ending with a PDPARAMS structure. The
WinStationInformationLength MUST be sizeof(VARDATA_WIRE)
+ sizeof(PDPARAMSWIRE) + size of(PDCONFIG2) +
sizeof(PDPARAMS). The Size field in the VARDATA_WIRE structure
MUST be set to sizeof(PDCONFIG2) and the Offset set to
sizeof(VARDATA_WIRE) + sizeof(PDPARAMSWIRE). The Size field in
SdClassSpecific field inside PDPARAMSWIRE MUST be set to
sizeof(PDPARAMS) - sizeof(SDCLASS), and the offset MUST be set
to Offset + Size of the VARDATA_WIRE structure.

WinStationPrinter
5

Not supported.

WinStationClient
6

Retrieves data on the terminal server client of the session.

The pWinStationInformation argument points to a VARDATA_WIRE
structure followed by a WINSTATIONCLIENT structure. The
WinStationInformationLength MUST be sizeof(VARDATA_WIRE) +
sizeof(WINSTATIONCLIENT). The Size field in the VARDATA_WIRE
structure MUST be set to sizeof(WINSTATIONCLIENT) and the
Offset set to sizeof(VARDATA_WIRE).

[MS-TSTS-Diff] - v20210625

144 / 253

Terminal Services Terminal Server Runtime Interface Protocol

Copyright © 2021 Microsoft Corporation
Release: June 25, 2021

Value

Meaning

WinStationModules
7

Internal get function to retrieve data on protocol-specific binaries
loaded for the given terminal server session. The structure pointed
to by pWinStationInformation and the size of the buffer is Terminal
Service protocol-specific.

WinStationInformation
8

Retrieves information on the session, including connect state,
session's name, connect time, disconnect time, time last input was
received from the client, logon time, user's username and domain,
and the current time.

pWinStationInformation points to a VARDATA_WIRE structure
followed by a WINSTATIONINFORMATION structure. The
WinStationInformationLength MUST be sizeof(VARDATA_WIRE) +
sizeof(WINSTATIONINFORMATION). The Size field in the
VARDATA_WIRE structure MUST be set to
sizeof(WINSTATIONINFORMATION) and the Offset set to
sizeof(VARDATA_WIRE).

WinStationUserToken
14

Retrieves the user's token in the session. Caller requires
WINSTATION_ALL_ACCESS permission.

The pWinStationInformation argument points to a
WINSTATIONUSERTOKEN structure, and
WinStationInformationLength MUST be
sizeof(WINSTATIONUSERTOKEN).

WinStationVideoData
16

Retrieves resolution and color depth of the session.

The pWinStationInformation argument points to a
WINSTATIONVIDEODATA structure, and
WinStationInformationLength MUST be
sizeof(WINSTATIONVIDEODATA).

WinStationCd
18

Retrieves connection driver configuration data.

The pWinStationInformation points to a CDCONFIG structure, and
WinStationInformationLength MUST be sizeof(CDCONFIG).

WinStationVirtualData
20

Query client virtual data.

The pWinStationInformation argument MUST point to 8 bytes and
WinStationInformationLength MUST be 8.

WinStationLoadBalanceSessionTarget
24

Retrieves the target session ID for a client redirected from another
server in a load balancing cluster.

The pWinStationInformation points to a ULONG, and
WinStationInformationLength MUST be sizeof(ULONG). If there is
no redirection, -1 is returned in pWinStationInformation.<166>

WinStationLoadIndicator
25

Retrieves an indicator of the load on the server.

The pWinStationInformation argument points to a
WINSTATIONLOADINDICATORDATA structure.
WinStationInformationLength MUST be
sizeof(WINSTATIONLOADINDICATORDATA).

WinStationShadowInfo
26

Retrieves the current shadow state of a session.

The pWinStationInformation argument points to a
WINSTATIONSHADOW structure. WinStationInformationLength
MUST be sizeof(WINSTATIONSHADOW).<167>

WinStationDigProductld
27

Retrieves the client product ID and current product ID of the
session.

The pWinStationInformation argument points to a
WINSTATIONPRODID structure. WinStationInformationLength MUST
be sizeof(WINSTATIONPRODID).<168>

145/ 253

[MS-TSTS-Diff] - v20210625

Terminal Services Terminal Server Runtime Interface Protocol
Copyright © 2021 Microsoft Corporation

Release: June 25, 2021

Value

Meaning

WinStationLockedState
28

Retrieves the current locked state of the session, TRUE or FALSE.

The pWinStationInformation argument points to a BOOL variable.
WinStationInformationLength MUST be sizeof(BOOL).

WinStationRemoteAddress
29

Retrieves the remote IP address of the terminal server client in the
session.

The pWinStationInformation argument points to a
WINSTATIONREMOTEADDRESS structure.
WinStationInformationLength MUST be
sizeof(WINSTATIONREMOTEADDRESS).

WinStationIdleTime
30

Retrieves the idle time for the session, in seconds.
The pWinStationInformation argument points to a ULONG variable.
WinStationInformationLength MUST be sizeof(ULONG).<169>

WinStationLastReconnectType
31

Retrieves the last reconnect type for the session. The value placed
in pWinStationInformation will come from the enum
RECONNECT_TYPE.

The pWinStationInformation argument points to a ULONG variable.
WinStationInformationLength MUST be sizeof(ULONG).<170>

WinStationDisallowAutoReconnect
32

Retrieves the allow (1) or disallow (0) state for auto-reconnect, 1 or
0.

The pWinStationInformation argument points to a BOOLEAN
variable.

WinStationInformationLength MUST be sizeof(BOOLEAN).

WinStationReconnectedFromId
37

In case of reconnected sessions, this will return the session ID of
the temporary session from which it was reconnected, or -1 if no
temporary session was created.

The WinStationInformationLength argument points to a ULONG
variable.

WinStationInformationLength MUST be sizeof(ULONG).

WinStationEffectsPolicy
38

Return policies that differentiate among implementations.
The pWinStationInformation argument points to a ULONG variable.
WinStationInformationLength MUST be sizeof(ULONG).

WinStationType
39

Returns the type associated with this WinStation.
The pWinStationInformation argument points to a ULONG variable.
WinStationInformationLength MUST be sizeof(ULONG).

WinStationInformationEx
40

Retrieves extended information on the session, including connect
state, flags, session's name, connect time, disconnect time, time
last input was received from the client, logon time, user's username
and domain, and the current time.

pWinStationInformation points to a VARDATA_WIRE structure
followed by a WINSTATIONINFORMATIONEX structure.

The WinStationInformationLength MUST be sizeof(VARDATA_WIRE)
+ sizeof(WINSTATIONINFORMATIONEX). The Size field in the
VARDATA_WIRE structure MUST be set to
sizeof(WINSTATIONINFORMATIONEX) and the Offset set to
sizeof(VARDATA_WIRE).

pWinStationInformation: Pointer to buffer allocated by the caller in which to retrieve the data. The
data type or structure that pWinStationInformation points to is determined by the value of

146 / 253

[MS-TSTS-Diff] - v20210625

Terminal Services Terminal Server Runtime Interface Protocol
Copyright © 2021 Microsoft Corporation

Release: June 25, 2021

WinStationInformationClass. See previous sections for what pWinStationInformation SHOULD
point to for each class.

WinStationInformationLength: Size of the data pointed to by pWinStationInformation, in bytes.

pReturnLength: Pointer to a variable to receive the size, in bytes, of the data retrieved. If
WinStationInformationLength is too small, pReturnLength indicates the correct number of bytes
for the caller to allocate.

Return Values: Returns TRUE if the call succeeded, or FALSE if the method failed. On failure,
pResult indicates the failure status code.

Return value/code | Description

0x01 Successful completion.
TRUE

0x00 Method call failed.
FALSE

3.7.4.1.7 RpcWinStationSetInformation (Opnum 6)

The RpcWinStationSetInformation method sets various types of configuration information for a
session. The caller MUST have the WINSTATION_SET permission. Some operations MUST have more
specific permissions as indicated in more detail in the sections that follow. The method checks whether
the caller has WINSTATION_SET permission and the specific permission for the configuration
information (section 3.1.1) by setting it as the Access Request mask, and fails if the caller does not
have the permissions.<171>

BOOLEAN RpcWinStationSetInformation (

[in] SERVER HANDLE hServer,

[out] DWORD* pResult,

[in] DWORD LogonId,

[in] DWORD WinStationInformationClass,

[in, out, unique, size is(WinStationInformationLength)]
PCHAR pWinStationInformation,
[in, range (0, 0x8000)] DWORD WinStationInformationLength

hServer: Handle to the server object. This is of type SERVER_HANDLE. hServer MUST be obtained
from a previous call to RpcWinStationOpenServer.

pResult: Failure error code if the call to RpcWinStationSetInformation failed. If the call was
successful, this parameter MUST be STATUS_SUCCESS (0x00000000).

Value Meaning
STATUS_SUCCESS Successful completion.
0x00000000

STATUS_INVALID_INFO_CLASS | The class is not recognized.
0xC0000003

STATUS_ACCESS_DENIED The caller does not have permission for the operation.
0xC0000022

147 / 253

[MS-TSTS-Diff] - v20210625

Terminal Services Terminal Server Runtime Interface Protocol
Copyright © 2021 Microsoft Corporation

Release: June 25, 2021

Logonld: The ID of the session for which to set information.

WinStationInformationClass: The class of data to set. These values come from the enum type
WINSTATIONINFOCLASS. See the following sections for the supported classes.

Value

Meaning

WinStationConfiguration
1

Merges configuration data into the terminal server session's data.

The pWinStationInformation argument points to a
WINSTACONFIGWIRE structure followed by a USERCONFIG structure.
The WinStationInformationLength MUST be
sizeof(WINSTACONFIGWIRE) + sizeof(USERCONFIG). The Size field in
the USERCONFIG structure inside WINSTACONFIGWIRE MUST be set to
sizeof(USERCONFIG) and the Offset set to
sizeof(WINSTACONFIGWIRE). The Size field in the NewFields
structure inside WINSTACONFIGWIRE MUST be set to 0, and the offset
MUST be set to sizeof(WINSTACONFIGWIRE) + sizeof(USERCONFIG).

WinStationPdParams
2

Sets transport protocol driver parameters. The structure coming into
the function indicates via SDClass the specific protocol driver for which
to set the parameter information.

The pWinStationInformation argument points to a PDPARAMSWIRE
structure followed by a PDPARAMS structure. The
WinStationInformationLength MUST be sizeof(PDPARAMSWIRE) +
sizeof(PDPARAMS). The Size field in SdClassSpecific field inside
PDPARAMSWIRE MUST be set to sizeof(PDPARAMS) and the offset
MUST be set to sizeof(PDPARAMSWIRE).

WinStationTrace
9

Enables tracing on the lower-level terminal server drivers for this
session. This MUST be called by a process running as SYSTEM or as an
administrator. The method performs access checks as defined in
sections 3.1.2 and 3.1.3. The method fails if both checks fail.

The pWinStationInformation argument points to a TS_TRACE structure,
and WinStationInformationLength MUST be sizeof(TS_TRACE).

WinStationBeep
10

Sends a beep to the session.

The pWinStationInformation argument points to a BEEPINPUT
structure, and WinStationInformationLength MUST be
sizeof(BEEPINPUT).

WinStationEncryptionOff
11

Turns encryption off.<172>

WinStationEncryptionPerm
12

Turns encryption permanently on.<173>

WinStationNtSecurity
13

Sends logon service in the session a CTRL+ALT+DEL message.<174>

The pWinStationInformation argument and
WinStationInformationLength are not used for this class. Set them to
dummy valid data, however, as there always has to be something in
these parameters.

WinStationInitialProgram
17

Not used.

WinStationSystemTrace
19

Enables global tracing on the lower-level terminal server drivers for this
session. This MUST be called by a process running as SYSTEM or as an
administrator. The method performs access checks as defined in
sections 3.1.2 and 3.1.3. The method fails if both checks fail.

The pWinStationInformation argument points to a TS_TRACE structure,
and WinStationInformationLength MUST be sizeof(TS_TRACE).

[MS-TSTS-Diff] - v20210625

148 / 253

Terminal Services Terminal Server Runtime Interface Protocol

Copyright © 2021 Microsoft Corporation
Release: June 25, 2021

Value

Meaning

WinStationClientData
21

Sends data to the terminal server client.

WinStationInformationLength represents the complete length of all
items to send and MUST be at least sizeof(VARDATA_WIRE) +
sizeof(WINSTATIONCLIENTDATA). Otherwise,
STATUS_INFO_LENGTH_MISMATCH (as specified in [MS-ERREF]) is
returned in pResult. If the data is larger than this but still less than
what is expected, STATUS_INVALID_USER_BUFFER (as specified in
[MS-ERREF]) is returned in pResult.

The pWinStationInformation points to a VARDATA_WIRE structure
followed by the WINSTATIONCLIENTDATA structure itself. The Size
field in the VARDATA_WIRE structure MUST be set to

sizeof (WINSTATIONCLIENTDATA) and the Offset set to
sizeof(VARDATA_WIRE).

26

WinStationSecureDesktopEnter Not used.
22
WinStationSecureDesktopExit Not used.
23
WinStationShadowInfo Not used.

WinStationLockedState
28

Notifies processes of the new locked state of the session. TRUE or
FALSE. The pWinStationInformation argument points to a BOOL
variable. WinStationInformationLength MUST be sizeof (BOOL).

WinStationDisallowAutoReconnect
32

Allows or disallows auto-reconnect behavior for this session, TRUE or
FALSE. This MUST be called by a process running as SYSTEM.

The pWinStationInformation argument points to a BOOL variable.
WinStationInformationLength MUST be sizeof (BOOL).

pWinStationInformation: Pointer to buffer allocated by the caller in which the data for the operation
is located. The data type or structure to which pWinStationInformation points is determined by the

value of WinStationInformationClass.

WinStationInformationLength: Size of the data pointed to by pWinStationinformation, in bytes.

Return Values: Returns TRUE if the

call succeeded, or FALSE if the method failed. On failure,

pResult indicates the failure status code.

Return value/code | Description

0x01 Successful completion.
TRUE

0x00 Method call failed.
FALSE

3.7.4.1.8 RpcWinStationSendMessage (Opnum 7)

The RpcWinStationSendMessage method displays a message box on a given terminal server session

and, optionally, waits for a reply. The

caller MUST have WINSTATION_MSG permission for this method

to succeed. The method checks whether the caller has WINSTATION_MSG permission (section 3.1.1)
by setting it as the Access Request mask, and fails if the caller does not have the permission.<175>

[MS-TSTS-Diff] - v20210625

149 / 253

Terminal Services Terminal Server Runtime Interface Protocol

Copyright © 2021 Microsoft Corporation
Release: June 25, 2021

BOOLEAN RpcWinStationSendMessage (
[in] SERVER HANDLE hServer,
out] DWORD* pResult,
in] DWORD LogonId,
in, size is(TitleLength)] PWCHAR pTitle,

in, range (0, 1024)] DWORD TitleLength,
in, size is(MessageLength)] PWCHAR pMessage,
in, range (0, 1024)] DWORD MessageLength,

in] DWORD Style,

in] DWORD Timeout,
out] DWORD* pResponse,
in] BOOLEAN DoNotWait

hServer: Handle to the server object. This is of type SERVER_HANDLE. The hServer argument MUST
be obtained from a previous call to RpcWinStationOpenServer.

pResult: Failure error code if the call to RpcWinStationSendMessage failed. If the call was successful,
this parameter MUST be STATUS_SUCCESS (0x00000000).

Value Meaning
STATUS_SUCCESS The call succeeded.
0x00000000

STATUS_ACCESS_DENIED | The caller does not have WINSTATION_MSG permission.
0xC0000022

LogonId: The session ID of the session on which to display the message box.

pTitle: Pointer to the title for the message box to display.

TitleLength: The length, in bytes, of the title to display.

pMessage: Pointer to the message to display.

MessagelLength: The length, in bytes, of the message to display in the specified session.

Style: Can be any value that the standard MessageBox() method's Style parameter takes. For more
information, see [MSDN-MSGBOX].

Timeout: The response time-out, in seconds. If the message box is not responded to in Timeout
seconds, a response code of IDTIMEOUT MUST be returned in pResponse to indicate that the
message box timed out. This time-out value is managed by another system component which
dismisses the message box if no user input is entered during this interval.

pResponse: The return code from the MessageBox method. This value will be a standard
MessageBox return value. For more information, see [MSDN-MSGBOX].

DoNotWait: If set to TRUE, do not wait for the response to the message. On return, if no errors
occur in queuing the message, the pResponse parameter will be set to IDASYNC.

If FALSE, wait for a response.

Return Values: Returns TRUE if the call succeeded, or FALSE if the method failed. On failure,
pResult indicates the failure status code.

Return value/code | Description

0x01 Successful completion.

150/ 253

[MS-TSTS-Diff] - v20210625

Terminal Services Terminal Server Runtime Interface Protocol
Copyright © 2021 Microsoft Corporation

Release: June 25, 2021

Return value/code | Description
TRUE

0x00 Method call failed.
FALSE

3.7.4.1.9 RpcLogonIldFromWinStationName (Opnum 8)

The RpcLogonldFromWinStationName method returns a session's session ID given its session name.
The caller MUST have WINSTATION_QUERY permission. The method checks whether the caller has
WINSTATION_QUERY permission (section 3.1.1) by setting it as the Access Request mask, and fails if
the caller does not have the permission.<176>

BOOLEAN RpcLogonIdFromWinStationName (

[in] SERVER HANDLE

[
[
[
[

hServer: The Handle to the server object. This is of type SERVER_HANDLE. hServer MUST be

hServer,

out] DWORD* pResult,

in, size is(NameSize)] PWCHAR pWinStationName,
in, range (0, 256)] DWORD NameSize,

out] DWORD* pLogonId

obtained from a previous call to RpcWinStationOpenServer.

pResult: The failure error code if the call to RpcLogonIldFromWinStationName fails. If the call is
successful, this parameter MUST be STATUS_SUCCESS (0x00000000).

Value

Meaning

STATUS_SUCCESS
0x00000000

The call is successful.

0xC0000022

STATUS_ACCESS_DENIED | The caller does not have permission for the operation.

pWinStationName: The pointer to a buffer holding the session name.

NameSize: The length of the string in characters pointed to by pWinStationName including the

terminating NULL character. MUST be less than or equal to WINSTATIONNAME_LENGTH.

pLogonId: The matching session ID for the session specified by pWinStationName.

Return Values: Returns TRUE if the call succeeded, or FALSE if the method failed. On failure,
pResult indicates the failure status code.

Return value/code | Description

0x01 Successful completion.
TRUE

0x00 Method call failed.
FALSE

[MS-TSTS-Diff] - v20210625

Terminal Services Terminal Server Runtime Interface Protocol
Copyright © 2021 Microsoft Corporation

Release: June 25, 2021

151/ 253

3.7.4.1.10 RpcWinStationNameFromLogonld (Opnum 9)

The RpcWinStationNameFromLogonId method retrieves the Windows Station (WinStation) name for a
specific session. The caller MUST have WINSTATION_QUERY permission. The method checks whether
the caller has WINSTATION_QUERY permission (section 3.1.1) by setting it as the Access Request
mask, and fails if the caller does not have the permission.<177>

BOOLEAN RpcWinStationNameFromLogonId (
[in] SERVER HANDLE hServer,
out] DWORD* pResult,
in] DWORD LoginId,
in, out, size is(NameSize)] PWCHAR pWinStationName,

[
[
[
[in, range (0, 256)] DWORD NameSize

hServer: Handle to the server object. This is of type SERVER_HANDLE. The hServer MUST be
obtained from a previous call to RpcWinStationOpenServer.

pResult: Failure error code if the call to RpcWinStationNameFromLogonld failed. If the call was
successful, this parameter MUST be STATUS_SUCCESS (0x00000000).

Value Meaning

STATUS_SUCCESS The call succeeded.

0x00000000

STATUS_INVALID_PARAMETER | NameSize value is less than WINSTATIONNAME_LENGTH + 1.
0xC000000D

0x80071B6E The session does not exist or the caller does not have

WINSTATION_QUERY permission.

LoginId: The ID of the session for which to retrieve the WinStation name.

pWinStationName: Pointer to a buffer holding the session name. The length of the buffer MUST be
equal to or greater than (WINSTATIONNAME_LENGTH + 1).

NameSize: The size, in bytes, of the buffer where the WinStation name will be stored.

Return Values: Returns TRUE if the call succeeded, or FALSE if the method failed. On failure,
pResult indicates the failure status code.

Return value/code | Description

0x01 Successful completion.
TRUE

0x00 Method call failed.
FALSE

3.7.4.1.11 RpcWinStationConnect (Opnum 10)

The RpcWinStationConnect method connects a user's terminal server client from a given terminal
server session to a different terminal server session. If there is a user connected to the client session,
it will be disconnected at the end of this call. If the method succeeds, the state of the session is
State_Active as defined in the WINSTATIONSTATECLASS enumeration (section 2.2.1.9).

152 / 253

[MS-TSTS-Diff] - v20210625

Terminal Services Terminal Server Runtime Interface Protocol
Copyright © 2021 Microsoft Corporation

Release: June 25, 2021

The client indicated by ConnectLogonId MUST have WINSTATION_DISCONNECT permission. Similarly,
TargetLogonId MUST have WINSTATION_CONNECT and WINSTATION_DISCONNECT permissions. For
each of the aforementioned permissions, the method checks whether the caller has the permission
(section 3.1.1) by setting the Access Request mask to the specific permission, and fails if the caller
does not have the permission.<178>

BOOLEAN RpcWinStationConnect (
[in] SERVER HANDLE hServer,
[out] DWORD* pResult,
[in] DWORD ClientLogonId,
[in] DWORD ConnectLogonId,
[in] DWORD TargetLogonId,
[in, size is(PasswordSize)] PWCHAR pPassword,
[in, range (0, 1024)] DWORD PasswordSize,
[in] BOOLEAN Wait

hServer: Handle to the server object. This is of type SERVER_HANDLE. The hServer argument MUST
be obtained from a previous call to RpcWinStationOpenServer.

pResult: If the call was successful, this parameter MUST be STATUS_SUCCESS (0x00000000);
otherwise, it MUST be an implementation-specific negative value.

ClientLogonld: The session ID of the caller of this method.

ConnectLogonld: The ID of the session from which the connection is being made. This MUST be the
same as ClientLogonId and MUST be an existing session ID. The user MUST be logged on. To
indicate the current session, this MUST be LOGONID_CURRENT.

TargetLogonId: The session ID of the session to which the connection is being made. Cannot be the
same as ConnectLogonId and MUST be an existing session ID.

pPassword: The password of TargetLogonlId's session. The password MUST be valid. The password
MAY be NULL if the same user is making the call as the user logged on to TargetLogonId's session.

PasswordSize: The length of the string pPassword in characters including the terminating NULL
character.

Wait: TRUE indicates to wait for the connection to complete, FALSE otherwise.<179>

Return Values: Returns TRUE if the call succeeded, or FALSE if the method failed. On failure,
pResult indicates the failure status code.

Return value/code | Description

0x01 Successful completion.
TRUE

0x00 Method call failed.
FALSE

3.7.4.1.12 RpcWinStationDisconnect (Opnum 13)

The RpcWinStationDisconnect method disconnects, on the server, the terminal server client from a
session. If the method succeeds, the state of the session is State_Disconnected as defined in the
WINSTATIONSTATECLASS enumeration (section 2.2.1.9).

153/ 253

[MS-TSTS-Diff] - v20210625

Terminal Services Terminal Server Runtime Interface Protocol
Copyright © 2021 Microsoft Corporation

Release: June 25, 2021

The caller of this method MUST have WINSTATION_DISCONNECT permission on the session to
disconnect. The method checks whether the caller has WINSTATION_DISCONNECT permission
(section 3.1.1) by setting it as the Access Request mask, and fails if the caller does not have the
permission.<180>

BOOLEAN RpcWinStationDisconnect (
[in] SERVER HANDLE hServer,
[out] DWORD* pResult,
[in] DWORD LogonId,
[in] BOOLEAN bWait
)

hServer: Handle to the server object. This is of type SERVER_HANDLE. hServer MUST be obtained
from a previous call to RpcWinStationOpenServer.

pResult: Failure error code if the call to RpcWinStationDisconnect failed. If the call was successful,
this parameter MUST be STATUS_SUCCESS (0x00000000).

Value Meaning
STATUS_SUCCESS The call succeeded.
0x00000000

STATUS_ACCESS_DENIED | The caller does not have permission to disconnect the session.
0xC0000022

LogonId: The ID of the session to disconnect. Can be LOGONID_CURRENT to indicate the current
session.

bWait: TRUE to wait for the disconnect to complete before returning, FALSE otherwise.<181>

Return Values: Returns TRUE if the call succeeded, or FALSE if the method failed. On failure,
pResult indicates the failure status code.

Return value/code | Description

0x01 Successful completion.
TRUE

0x00 Method call failed.
FALSE

3.7.4.1.13 RpcWinStationReset (Opnum 14)

The RpcWinStationReset method resets a session. Resetting a session will lead to the user being
logged off and his or her terminal server client being disconnected. The caller MUST have
WINSTATION_RESET permissions. The method checks whether the caller has WINSTATION_RESET
permission (section 3.1.1) by setting it as the Access Request mask, and fails if the caller does not
have the permission.<182>

BOOLEAN RpcWinStationReset (
[in] SERVER HANDLE hServer,

[out] DWORD* pResult,

[in] DWORD LogonId,

[in] BOOLEAN bWait

154 / 253

[MS-TSTS-Diff] - v20210625

Terminal Services Terminal Server Runtime Interface Protocol
Copyright © 2021 Microsoft Corporation

Release: June 25, 2021

hServer: Handle to the server object. This is of type SERVER_HANDLE. hServer MUST be obtained
from a previous call to RpcWinStationOpenServer.

pResult: Failure error code if the call to RpcWinStationReset failed. If the call was successful, this
parameter MUST be STATUS_SUCCESS (0x00000000).

Value Meaning
STATUS_SUCCESS The call succeeded.
0x00000000

STATUS_ACCESS_DENIED | The caller does not have WINSTATION_RESET permission.
0xC0000022

Logonld: The ID of the session to reset.
bWait: TRUE to wait for the disconnect to complete before returning, FALSE otherwise.

Return Values: Returns TRUE if the call succeeded, or FALSE if the method failed. On failure,
pResult indicates the failure status code.

Return value/code | Description

0x01 Successful completion.
TRUE

0x00 Method call failed.
FALSE

3.7.4.1.14 RpcWinStationShutdownSystem (Opnum 15)

The RpcWinStationShutdownSystem method shuts down the system and optionally logs off all
sessions and/or reboots the system. The caller requires SeShutdownPrivilege (see [MSDN-
PRVLGECNSTS]) when performing the shutdown locally and SeRemoteShutdownPrivilege (see [MSDN-
PRVLGECNSTS]) when performing the shutdown remotely. The caller calls ExitWindowsEx (see
[MSDN-ExitWindowsEx]) to perform the actual shutdown once all checks have been completed.

BOOLEAN RpcWinStationShutdownSystem (
[in] SERVER HANDLE hServer,
[out] DWORD* pResult,
[in] DWORD ClientLogonId,
[in] DWORD ShutdownFlags
)i

hServer: Handle to the server object. This is of type SERVER_HANDLE. The hServer MUST be
obtained from a previous call to RpcWinStationOpenServer.

pResult: Failure error code if the call to RpcWinStationShutdownSystem failed. If the call was
successful, this parameter MUST be STATUS_SUCCESS (0x00000000).

Value Meaning

STATUS_SUCCESS The call succeeded.

155/ 253

[MS-TSTS-Diff] - v20210625

Terminal Services Terminal Server Runtime Interface Protocol
Copyright © 2021 Microsoft Corporation

Release: June 25, 2021

Value

Meaning

0x00000000

STATUS_ACCESS_DENIED
0xC0000022

The caller does not have permission to shut down the system.

ClientLogonld: The session requesting to shut down the system. Ignored when the RPC call is

remote.

ShutdownFlags: Shutdown flags. It MUST be any bitwise OR combination of the following flags.

Value Meaning
WSD_LOGOFF Forces sessions to logoff.
0x00000001

0x00000002

WSD_SHUTDOWN | Shuts down the system.

0x00000004

WSD_REBOOT Reboots after shutdown.

0x00000008

WSD_POWEROFF Powers off after shutdown.

Return Values: Returns TRUE if the call succeeded, or FALSE if the method failed. On failure,
pResult indicates the failure status code.

Return value/code | Description

0x01 Successful completion.
TRUE

0x00 Method call failed.
FALSE

3.7.4.1.15 RpcWinStationWaitSystemEvent (Opnum 16)

The RpcWinStationWaitSystemEvent method waits synchronously for a system event from an RPC API
request on behalf of the caller. There is no time-out on the wait. Only one event wait at a time can be
posted per server handle. If an event wait is already outstanding and the new request is not a cancel,

the new request will fail. The caller is not required to have any specific permission to call

RpcWinStationWaitSystemEvent. The first time this is called, the server will create an event block for
the handle specified by hServer. This event block will be cleared if RpcWinStationWaitSystemEvent is
called with EventMask equal to WEVENT_NONE or if RpcWinStationCloseServer or
RpcWinStationCloseServerEx are closed for the handle hServer.

BOOLEAN RpcWinStationWaitSystemEvent (
[in] SERVER HANDLE hServer,

out] DWORD* pResult,

out] DWORD* pEventFlags

[
[in] DWORD EventMask,
[

)

[MS-TSTS-Diff] - v20210625

Terminal Services Terminal Server Runtime Interface Protocol
Copyright © 2021 Microsoft Corporation

Release: June 25, 2021

156 / 253

hServer: Handle to the server object. This is of type SERVER_HANDLE. hServer MUST be obtained

from a previous call to RpcWinStationOpenServer.

pResult: If the call was successful, this parameter MUST be STATUS_SUCCESS (0x00000000);

otherwise, it MUST be an implementation-specific negative value.

EventMask: The mask of events for which to wait. It MUST be any bitwise OR combination of the

following except for WEVENT_NONE.

Value

Meaning

WEVENT_NONE
0x00000000

The client requests to clear its event wait block. This MUST be called when
completing waiting for the event. When RpcWinStationCloseServer is called for
hServer, this method and mask value is called on the client's behalf.

WEVENT_CREATE
0x00000001

Wait for a new session to be created.

WEVENT_DELETE
0x00000002

Wait for an existing session to be deleted.

WEVENT_RENAME
0x00000004

Wait for a session to be renamed.

WEVENT_CONNECT
0x00000008

The session connected to a client.

WEVENT_DISCONNECT
0x00000010

A client disconnected from the session.

WEVENT_LOGON
0x00000020

A user logged on to the session.

WEVENT_LOGOFF
0x00000040

A user logged off from the session.

WEVENT_STATECHANGE
0x00000080

The session state changed.

WEVENT_LICENSE
0x00000100

The license state changed.<183>

WEVENT_ALL
Ox7fffffff

Wait for all event types.

WEVENT_FLUSH
0x80000000

Release all waiting clients.

pEventFlags: Pointer to a variable to receive a bitmask that is a subset of EventMask indicating

which events actually occurred during this wait operation.

Return Values: Returns TRUE if the call succeeded, or FALSE if the method failed. On failure,

pResult indicates the failure status code.

Return value/code

Description

0x01
TRUE

Successful completion.

157/ 253

[MS-TSTS-Diff] - v20210625

Terminal Services Terminal Server Runtime Interface Protocol
Copyright © 2021 Microsoft Corporation

Release: June 25, 2021

Return value/code | Description

0x00 Method call failed.
FALSE

3.7.4.1.16 RpcWinStationShadow (Opnum 17)

The RpcWinStationShadow method starts a shadow (remote control) operation of another terminal
server session. If the method succeeds, the state of the session that started the shadow operation is
State_Shadow and the state of the session being shadowed is State_Active as defined in the
WINSTATIONSTATECLASS enumeration (section 2.2.1.9).

The caller MUST have WINSTATION_SHADOW permission. The other session can be local or on a
terminal server. The method MUST be called from inside a remote terminal server session. The session
to shadow MUST be in the active state with a user logged on. The method checks whether the caller
has WINSTATION_SHADOW permission (section 3.1.1) by setting it as the Access Request mask, and
fails if the caller does not have the permission.<184>

BOOLEAN RpcWinStationShadow (

[in] SERVER HANDLE hServer,

[out] DWORD* pResult,

[in] DWORD LogonId,

[in, unique, size is(NameSize)]
PWCHAR pTargetServerName,
in, range (0, 1024)] DWORD NameSize,
in] DWORD TargetLogonId,
in] BYTE HotKeyVk,
in

[
[
[
[in] USHORT HotkeyModifiers

hServer: Handle to the server object. This is of type SERVER_HANDLE. The hServer argument value
MUST be obtained from a previous call to RpcWinStationOpenServer.

pResult: If the call was successful, this parameter MUST be STATUS_SUCCESS (0x00000000);
otherwise, it MUST be an implementation-specific negative value.

LogonId: The ID of the session to shadow from.

pTargetServerName: The shadow target server name. Set pTargetServerName to NULL to indicate
the current server.

NameSize: The size of the string pTargetServerName, in bytes. MAY be 0 if pTargetServerName is
NULL.

TargetLogonId: The shadow target session ID.

HotKeyVk: The virtual key code of the key to press to stop shadowing. This key is used in
combination with the HotkeyModifiers parameter.

HotkeyModifiers: The virtual modifier that signifies the modifier key, such as shift or control, to
press to stop shadowing. The modifier key is used in combination with the key signified by the
HotKeyVk parameter. This parameter MAY be any combination of KBDSHIFT, KBDCTRL, and
KBDALT to indicate the SHIFT key, the CTRL key, and the ALT key, respectively.

Return Values: Returns TRUE if the call succeeded, or FALSE if the method failed. On failure, pResult
indicates the failure status code.

158/ 253

[MS-TSTS-Diff] - v20210625

Terminal Services Terminal Server Runtime Interface Protocol
Copyright © 2021 Microsoft Corporation

Release: June 25, 2021

Return value/code | Description

0x01 Successful completion.
TRUE

0x00 Method call failed.
FALSE

3.7.4.1.17 RpcWinStationBreakPoint (Opnum 29)

The RpcWinStationBreakPoint method breaks into the debugger in either the session process of a
specific session or in the terminal server service process. When this method is called, the server
impersonates the caller and then tries to enable SeShutdownPrivilege (see [MSDN-PRVLGECNSTS]). If
the attempt to enable this privilege fails, the RpcWinStationBreakPoint call fails.<185>

BOOLEAN RpcWinStationBreakPoint (
[in] SERVER HANDLE hServer,
[out] DWORD* pResult,
[in] DWORD LogonId,

[in] BOOLEAN KernelFlag

)i
hServer: Handle to the server object. This is of type SERVER_HANDLE. The hServer argument MUST
be obtained from a previous call to RpcWinStationOpenServer.

pResult: Failure error code if the call to RpcWinStationBreakPoint failed. If the call was successful,
this parameter MUST be STATUS_SUCCESS (0x00000000).

Value Meaning
STATUS_SUCCESS The call succeeded.
0x00000000

STATUS_ACCESS_DENIED | The SeShutdownPrivilege (see [MSDN-PRVLGECNSTS]) privilege cannot be
0xC0000022 enabled.

LogonId: The ID of the session to break into the debugger. If this parameter is -2, the terminal
server service MUST break into the debugger instead.<186>

KernelFlag: Set to TRUE to indicate that the server will break into the debugger in a particular
session in kernel mode. If LogonId is -2, the server MUST break into the debugger in user mode.

Return Values: Returns TRUE if the call succeeded, or FALSE if the method failed. On failure,
pResult indicates the failure status code.

Return value/code | Description

0x01 Successful completion.
TRUE

0x00 Method call failed.
FALSE

159/ 253

[MS-TSTS-Diff] - v20210625

Terminal Services Terminal Server Runtime Interface Protocol
Copyright © 2021 Microsoft Corporation

Release: June 25, 2021

3.7.4.1.18 RpcWinStationReadRegistry (Opnum 30)

The RpcWinStationReadRegistry method tells the terminal server to reread, from the registry, the
configuration data for all the WinStations, and to update the memory locations where this data was
stored with the values read from the registry.<187> The caller of this RPC method MUST be running
either as SYSTEM or as an Administrator.<188>

BOOLEAN RpcWinStationReadRegistry (
[in] SERVER HANDLE hServer,
[out] DWORD* pResult

)i

hServer: Handle to the server object. This is of type SERVER_HANDLE. hServer MUST be obtained
from a previous call to RpcWinStationOpenServer.

pResult: If the call was successful, this parameter MUST be STATUS_SUCCESS (0x00000000), as
specified in [MS-ERREF]; otherwise, it MUST be an implementation-specific negative value.

Return Values: Returns TRUE if the call succeeded, or FALSE if the method failed. On failure,
pResult indicates the failure status code.

Return value/code | Description

0x01 Successful completion.
TRUE

0x00 Method call failed.
FALSE

3.7.4.1.19 OldRpcWinStationEnumerateProcesses (Opnum 34)

The OldRpcWinStationEnumerateProcesses method calls the RpcWinStationEnumerateProcesses
method and returns whatever is returned by that method. It has the same parameters as the
RpcWinStationEnumerateProcesses method. No special permissions are required to call this
method.<189>

BOOLEAN OldRpcWinStationEnumerateProcesses (
[in] SERVER HANDLE hServer,
[out] DWORD* pResult,
[out, size_ is(ByteCount)] PBYTE pProcessBuffer,
[in, range (0, 0x8000)] DWORD ByteCount
)i

hServer: Handle to the server object. This is of type SERVER_HANDLE. hServer MUST be obtained
from a previous call to RpcWinStationOpenServer.

pResult: Failure error code if the call to RpcWinStationEnumerateProcesses failed. If the call was
successful, this parameter MUST be STATUS_SUCCESS (0x00000000), as specified in [MS-
ERREF].

Value Meaning
STATUS_SUCCESS The call succeeded.
0x00000000

160/ 253

[MS-TSTS-Diff] - v20210625

Terminal Services Terminal Server Runtime Interface Protocol
Copyright © 2021 Microsoft Corporation

Release: June 25, 2021

Value Meaning

STATUS_INFO_LENGTH_MISMATCH | ByteCount is too small to receive the data.
0xC0000004

pProcessBuffer: Pointer to a buffer receiving the list of processes.
In pProcessBuffer for each process, the server will return the following in the buffer, in this order:
1. A TS_PROCESS_INFORMATION_NT4 structure.

2. A number of SYSTEM_THREAD_INFORMATION (see [WININTERNALS] or [MSFT-
WINSYSINTERNALS]) structures equal to the maximum number of threads in the process.

3. ATS_SYS_PROCESS_INFORMATION structure for the process.

Only up to SIZEOF TS4_SYSTEM_THREAD_INFORMATION of the SYSTEM_THREAD_INFORMATION
structure (as specified in (see [WININTERNALS] or [MSFT-WINSYSINTERNALS]) is copied into the
buffer and only up to SIZEOF TS4_SYSTEM_PROCESS_INFORMATION of the
TS_SYS_PROCESS_INFORMATION_NT4 structure is copied into the buffer.

ByteCount: The size, in bytes, of the pProcessBuffer parameter. If ByteCount is too small to receive
the data, the method returns an error code (STATUS_INFO_LENGTH_MISMATCH, as specified in
[MS-ERREF]) in the pResult parameter. Note that during failure no indication is given to the caller
specifying the correct size if pProcessBuffer is too small.

Return Values: Returns TRUE if the call succeeded, or FALSE if the method failed. On failure,
pResult indicates the failure status code.

Return value/code | Description

0x01 Successful completion.
TRUE

0x00 Method call failed.
FALSE

3.7.4.1.20 RpcWinStationEnumerateProcesses (Opnum 36)

The RpcWinStationEnumerateProcesses method retrieves the processes running on a remote server on
which the caller has WINSTATION_QUERY permission to retrieve information. The method checks
whether the caller has WINSTATION_QUERY permission (section 3.1.1) by setting it as the Access
Request mask, and fails if the caller does not have the permission.<190>

BOOLEAN RpcWinStationEnumerateProcesses (
[in] SERVER HANDLE hServer,
[out] DWORD* pResult,
[out, size is(ByteCount)] PBYTE pProcessBuffer,
[in, range (0, 0x8000)] DWORD ByteCount
)i

hServer: Handle to the server object. This is of type SERVER_HANDLE. hServer MUST be obtained
from a previous call to RpcWinStationOpenServer.

161/ 253

[MS-TSTS-Diff] - v20210625

Terminal Services Terminal Server Runtime Interface Protocol
Copyright © 2021 Microsoft Corporation

Release: June 25, 2021

pResult: Failure error code if the call to RpcWinStationEnumerateProcesses failed. If the call was
successful, this parameter MUST be STATUS_SUCCESS (0x00000000), as specified in [MS-

ERREF].
Value Meaning
STATUS_SUCCESS The call succeeded.
0x00000000

0xC0000004

STATUS_INFO_LENGTH_MISMATCH | ByteCount is too small to receive the data.

pProcessBuffer: Pointer to a buffer receiving the list of processes.

In pProcessBuffer for each process, the server will return the following in the buffer, in this order:

1. A TS_PROCESS_INFORMATION_NT4 structure.

2. A number of SYSTEM_THREAD_INFORMATION (see [WININTERNALS] or [MSFT-

WINSYSINTERNALS]) structures equal to the maximum number of threads in the process.

3. ATS_SYS_PROCESS_INFORMATION structure for the process.

Only up to SIZEOF TS4_SYSTEM_THREAD_INFORMATION of the SYSTEM_THREAD_INFORMATION
structure (as specified in [WININTERNALS] or [MSFT-WINSYSINTERNALS]) is copied into the

buffer and only up to SIZEOF TS4_SYSTEM_PROCESS_INFORMATION of the
TS_SYS_PROCESS_INFORMATION_NT4 structure is copied into the buffer.

ByteCount: The size, in bytes, of the pProcessBuffer parameter. If ByteCount is too small to receive
the data, the method returns an error code (STATUS_INFO_LENGTH_MISMATCH, as specified in
[MS-ERREF]) in the pResult parameter. Note that during failure no indication is given to the caller

specifying the correct size if pProcessBuffer is too small.

Return Values: Returns TRUE if the call succeeded, or FALSE if the method failed. On failure,

pResult indicates the failure status code.

Return value/code | Description

0x01 Successful completion.
TRUE

0x00 Method call failed.
FALSE

3.7.4.1.21 RpcWinStationTerminateProcess (Opnum 37)

The RpcWinStationTerminateProcess method terminates the specified process. An attempt is made to
enable the SE_DEBUG_PRIVILEGE privilege to kill processes not owned by the current user, including
processes running in other terminal server sessions. Caller MUST have terminate permission to

terminate the process.

BOOLEAN RpcWinStationTerminateProcess (
[in] SERVER HANDLE hServer,

out] DWORD* pResult,

in] DWORD ProcessId,

in

[
[
[in] DWORD ExitCode

[MS-TSTS-Diff] - v20210625

Terminal Services Terminal Server Runtime Interface Protocol
Copyright © 2021 Microsoft Corporation

Release: June 25, 2021

162 / 253

hServer: Handle to the server object. This is of type SERVER_HANDLE. hServer MUST be obtained
from a previous call to RpcWinStationOpenServer.

pResult: Failure error code if the call to RpcWinStationTerminateProcess failed. If the call was
successful, this parameter MUST be STATUS_SUCCESS (0x00000000), as specified in [MS-
ERREF].

Value Meaning
STATUS_SUCCESS The call succeeded.
0x00000000

STATUS_ACCESS_DENIED | The caller does not have permission to terminate the process.
0xC0000022

ProcesslId: The ID of the process to terminate.

ExitCode: The exit code to be used by the process and threads that are terminated as a result of this
call.

Return Values: Returns TRUE if the call succeeded, and FALSE if the method failed. On failure,
pResult indicates the failure status code.

Return value/code | Description

0x01 Successful completion.
TRUE

0x00 Method call failed.
FALSE

3.7.4.1.22 RpcWinStationGetAllProcesses (Opnum 43)

The RpcWinStationGetAllProcesses method retrieves the list of processes running on the server
machine. Only the processes from the sessions on which the user has WINSTATION_QUERY
permission will be retrieved. The method checks whether the caller has WINSTATION_QUERY
permission (section 3.1.1) by setting it as the Access Request mask, and fails if the caller does not
have the permission.

BOOLEAN RpcWinStationGetAllProcesses (

[in] SERVER HANDLE hServer,

[out] DWORD* pResult,

[in] ULONG Level,

[in, out] BOUNDED ULONG* pNumberOfProcesses,

[out, size is(, *pNumberOfProcesses)]

PTS_ALL PROCESSES INFO* ppTsAllProcessesInfo

)i

hServer: Handle to the server object. This is of type SERVER_HANDLE. The hServer argument MUST
be obtained from a previous call to RpcWinStationOpenServer.

pResult: Failure error code if the call to RpcWinStationGetAllProcesses failed. If the call was
successful, this parameter MUST be STATUS_SUCCESS (0x00000000).

163/ 253

[MS-TSTS-Diff] - v20210625

Terminal Services Terminal Server Runtime Interface Protocol
Copyright © 2021 Microsoft Corporation

Release: June 25, 2021

Value Meaning

STATUS_SUCCESS The call was successful.
0x00000000

STATUS_ACCESS_DENIED | The caller does not have permission.
0xC0000022

Level: MUST be 0. Any other value will lead to FALSE being returned by the method.

pNumberOfProcesses: The number of processes requested by the caller. On return, this indicates
the number of processes actually stored in the ppTsAllProcessesInfo parameter.

ppTsAllProcessesInfo: Pointer to an array of processes allocated and returned by the method.
*ppTsAllProcessesInfo is allocated by the method to be an array of TS_ALL_PROCESSES_INFO
structures. The array returned by the method MUST be freed by the caller.

Return Values: Returns TRUE if the call succeeded, and FALSE if the lookup failed. On failure,
pResult indicates the failure status code.

Return value/code | Description

0x01 Successful completion.
TRUE

0x00 Method call failed.
FALSE

3.7.4.1.23 RpcWinStationGetProcessSid (Opnum 44)

The RpcWinStationGetProcessSid method retrieves the process security identifier (SID), as specified in
[MS-DTYP] section 2.4.2, for a given process ID and process start time combination.<191>The caller
MUST have the PROCESS_QUERY_INFORMATION access right to the process being queried and the
TOKEN_QUERY access right to the access token associated with the process. For more information on
the process access rights, see [MSDN-PROCRIGHTS]. For more information on access rights for access
tokens, see [MSDN-TOKENRIGHTS].

BOOLEAN RpcWinStationGetProcessSid (
[in] SERVER HANDLE hServer,
in] DWORD dwUniqueProcessId,
in] LARGE INTEGER ProcessStartTime,
out] LONG* pResult,
in, out, unique, size is(dwSidSize)]
PBYTE pProcessUserSid,
[in, range (0, 1024)] DWORD dwSidSize,
[in, out] DWORD* pdwSizeNeeded

[
[
[
[

hServer: Handle to the server object. This is of type SERVER_HANDLE. The hServer argument MUST
be obtained from a previous call to RpcWinStationOpenServer.

dwUniqueProcessId: The process ID to retrieve the SID.

ProcessStartTime: The start time of the process indicated by dwUniqueProcessId. This is a 64-bit
value representing the number of 100-nanosecond intervals since January 1, 1601 (UTC).
ProcessStartTime combined with dwUniqueProcessld is used to identify a process.

164 / 253

[MS-TSTS-Diff] - v20210625

Terminal Services Terminal Server Runtime Interface Protocol
Copyright © 2021 Microsoft Corporation

Release: June 25, 2021

pResult: Failure error code if the call to RpcWinStationGetProcessSid failed. If the call was
successful, this parameter MUST be STATUS_SUCCESS (0x00000000).

Value Meaning

STATUS_SUCCESS The call succeeded.

0x00000000

0x8007007A The size of pProcessUserSid buffer is too small.<192>

STATUS_BUFFER_TOO_SMALL | The size of pProcessUserSid buffer is too small.<193>

0xC0000023
0x80070005 The caller does not have necessary permissions.<194>
STATUS_ACCESS_DENIED The caller does not have necessary permissions.<195>
0xC0000022

pProcessUserSid: The buffer into which the method MUST copy the SID of the process. MUST be
NULL if dwSidSize is zero, in which case the correct size will be returned in pdwSizeNeeded.

dwsSidSize: The size of the buffer, in bytes, pointed to by pProcessUserSid. If the buffer is too
small, STATUS_BUFFER_TOO_SMALL<196> or 0x8007007A<197> is returned in pResult.

pdwSizeNeeded: Indicates the length of the SID. If STATUS_BUFFER_TOO_SMALL<198> or
0x8007007A<199> is returned in pResult, this indicates to the caller the correct size to allocate
to a buffer prior to calling the method again.

Return Values: Returns TRUE if the call succeeded, and FALSE if the method failed. On failure,
pResult indicates the failure status code.

Return value/code | Description

0x01 Successful completion.
TRUE

0x00 Method call failed.
FALSE

3.7.4.1.24 RpcWinStationGetTermSrvCountersValue (Opnum 45)

The RpcWinStationGetTermSrvCountersValue method retrieves the current value of requested
terminal server performance counters. The caller is not required to have any specific permission to call
this method.

BOOLEAN RpcWinStationGetTermSrvCountersValue (

[in] SERVER HANDLE hServer,

[out] DWORD* pResult,

[in, range (0, 0x1000)] DWORD dwEntries,

[in, out, size is(dwEntries)] PTS_COUNTER pCounter
)7

hServer: Handle to the server object. This is of type SERVER_HANDLE. The hServer argument MUST
be obtained from a previous call to RpcWinStationOpenServer.

165/ 253

[MS-TSTS-Diff] - v20210625

Terminal Services Terminal Server Runtime Interface Protocol
Copyright © 2021 Microsoft Corporation

Release: June 25, 2021

pResult: If the call was successful, this parameter MUST be STATUS_SUCCESS (0x00000000);
otherwise it MUST be an implementation-specific negative value.

dwEntries: The number of performance counters to query. Indicates the size of the array pointed to
by pCounter.

pCounter: An array of TS_COUNTER structures. The caller MUST set the dwCounterId in the
TS_COUNTER structures for each entry in the array to indicate the counter whose current value to
retrieve. On return, the method MUST set the value for that performance counter. If the
performance counter ID is not recognized or is not supported, it will set the bResult to 0.

Return Values: Returns TRUE if the call succeeded, and FALSE if the method failed. On failure,
pResult indicates the failure status code. Individual entries in the array pCounter will indicate
whether or not the counter data for that counter could be retrieved.

Return value/code | Description

0x01 Successful completion.
TRUE

0x00 Method call failed.
FALSE

3.7.4.1.25 RpcWinStationRelnitializeSecurity (Opnum 46)

The RpcWinStationRelnitializeSecurity method reinitializes security for all non-console WinStations
(remote connection protocols). <200> Existing sessions will not be affected, but future sessions will
have the new security descriptor read from the registry applied to them. This method MUST be called
by processes running as SYSTEM or as an Administrator.<201>

BOOLEAN RpcWinStationReInitializeSecurity (
[in] SERVER HANDLE hServer,
[out] DWORD* pResult

)7

hServer: Handle to the server object. This is of type SERVER_HANDLE. The hServer argument MUST
be obtained from a previous call to RpcWinStationOpenServer.

pResult: If the call was successful, this parameter MUST be STATUS_SUCCESS (0x00000000);
otherwise, it MUST be an implementation-specific negative value.

Return Values: Returns TRUE if the call succeeded, and FALSE if the method failed. On failure,
pResult indicates the failure status code.

Return value/code | Description

0x01 Successful completion.
TRUE

0x00 Method call failed.
FALSE

3.7.4.1.26 RpcWinStationGetLanAdapterName (Opnum 53)

166 / 253

[MS-TSTS-Diff] - v20210625

Terminal Services Terminal Server Runtime Interface Protocol
Copyright © 2021 Microsoft Corporation

Release: June 25, 2021

The RpcWinStationGetLanAdapterName method returns the name of the LAN adapter with a specific
LAN adapter number (lana) and transport type, if it is configured to be used for a Terminal Services
protocol connection. No special permissions are required to call this method.<202><203>

BOOLEAN RpcWinStationGetLanAdapterName (
[in] SERVER HANDLE hServer,

out] DWORD* pResult,

in, range (0, 0x1000)] DWORD PdNameSize,

in, size is(PdNameSize)] PWCHAR pPdName,

in, range (0, 1024)] ULONG LanAdapter,

out] ULONG* pLength,

[
[
[
[
[
[out, size is(,*pLength)] PWCHAR* ppLanAdapter

hServer: Handle to the server object. This is of type SERVER_HANDLE. The hServer argument MUST
be obtained from a previous call to RpcWinStationOpenServer.

pResult: If the call was successful, this parameter MUST be STATUS_SUCCESS (0x00000000);
otherwise, it MUST be an implementation-specific negative value.

PdNameSize: The size, in bytes, of pPdName including the terminating NULL character.

pPdName: The transport protocol type on which to retrieve information. This MUST be any of the
following strings: tcp, netbios, ipx, spx.

LanAdapter: The number of the LAN adapter to retrieve information (also known as lana). If this is
set to "0", it will always return a LAN adapter name to indicate all LAN adapters configured with
the protocol, irrespective of the transport protocol type specified in pPdName.

pLength: The pointer to a ULONG containing the length of the string ppLanAdapter, in characters
including the terminating NULL character. If LanAdapter is 0, this value MUST be
DEVICENAME_LENGTH+1.

ppLanAdapter: The pointer to a string allocated by this method for retrieving the LAN adapter's
name. This memory MUST be freed by the caller.

Return Values: Returns TRUE if the call is successful, and FALSE if the method fails. On failure,
pResult indicates the failure status code.

Return value/code | Description

0x01 Successful completion.
TRUE

0x00 Method call failed.
FALSE

3.7.4.1.27 RpcWinStationUpdateSettings (Opnum 58)

The RpcWinStationUpdateSettings method rereads settings for all WinStations. The caller MUST have
WINSTATION_QUERY permission. The method checks whether the caller has WINSTATION_QUERY
permission (section 3.1.1) by setting it as the Access Request mask, and fails if the caller does not
have the permission.<204>

BOOLEAN RpcWinStationUpdateSettings (
[in] SERVER HANDLE hServer,
[out] DWORD* pResult,

167/ 253

[MS-TSTS-Diff] - v20210625

Terminal Services Terminal Server Runtime Interface Protocol
Copyright © 2021 Microsoft Corporation

Release: June 25, 2021

[in] DWORD SettingsClass,
[in] DWORD SettingsParameters
)i

hServer: A handle to the server object of type SERVER_HANDLE. The hServer argument MUST be
obtained from a previous call to RpcWinStationOpenServer.

pResult: Failure error code if the call to RpcWinStationUpdateSettings failed. If the call was
successful, this parameter MUST be STATUS_SUCCESS (0x00000000).

Value Meaning

STATUS_SUCCESS The call was successful.

0x00000000

STATUS_ACCESS_DENIED The caller does not have permission to read the settings.
0xC0000022

STATUS_INVALID_PARAMETER | Unrecognized SettingsClass.

0xC000000D

SettingsClass: The class for which to update settings.

Value Meaning

WINSTACFG_SESSDIR | Contacts Session Directory to reread the WinStation settings.<205>
0x00000001

WINSTACFG_LEGACY Rereads settings from the local registry for the configured winstations. This does
0x00000000 the same thing as RpcWinStationReadRegistry.

SettingsParameters: MUST be 0.

Return Values: Returns TRUE if the call succeeded, and FALSE if the method failed. On failure,
pResult indicates the failure status code.

Return value/code | Description

0x01 Successful completion.
TRUE

0x00 Method call failed.
FALSE

3.7.4.1.28 RpcWinStationShadowStop (Opnum 59)

The RpcWinStationShadowStop method stops all shadow operations on the specified session, including
whether the session is acting as a shadow client (a session that is shadowing another session) or as a
shadow target (a session being shadowed by another session). If the method succeeds, both the state
of the session that started the shadow operation and the state of the session being shadowed are
State_Active as defined in the WINSTATIONSTATECLASS enumeration (section 2.2.1.9).

Caller MUST have WINSTATION_DISCONNECT and WINSTATION_RESET permissions. For each
aforementioned required permission, the method checks whether the caller has the permission

168/ 253

[MS-TSTS-Diff] - v20210625

Terminal Services Terminal Server Runtime Interface Protocol
Copyright © 2021 Microsoft Corporation

Release: June 25, 2021

(section 3.1.1) by setting the Access Request mask to the specific permission, and fails if the caller
does not have the permission.<206>

BOOLEAN RpcWinStationShadowStop (
[in] SERVER HANDLE hServer,
[out] DWORD* pResult,

[in] DWORD LogonId,
[in] BOOLEAN bWait
)i

hServer: Handle to the server object. This is of type SERVER_HANDLE. The hServer argument MUST
be obtained from a previous call to RpcWinStationOpenServer.

pResult: Failure error code if the call to RpcWinStationShadowStop failed. If the call was successful,
this parameter MUST be STATUS_SUCCESS (0x00000000).

Value Meaning

STATUS_SUCCESS The call was successful.

0x00000000

STATUS_CTX_WINSTATION_NOT_FOUND | Indicates the session does not exist.

0xCO0A0015

STATUS_CTX_SHADOW_NOT_RUNNING Indicates the session is either not active or not being
0xC0O0A0036 shadowed.

STATUS_ACCESS_DENIED Indicates the caller does not have permission to end
0xC0000022 shadowing on the session.

LogonId: The ID of the session on which to stop shadowing operations.
bWait: TRUE indicates wait for reset to complete, FALSE otherwise.

Return Values: Returns TRUE if the call succeeded, and FALSE if the method failed. On failure,
pResult indicates the failure status code.

Return value/code | Description

0x01 Successful completion.
TRUE

0x00 Method call failed.
FALSE

3.7.4.1.29 RpcWinStationCloseServerEx (Opnum 60)

The RpcWinStationCloseServerEx method closes the server handle for WinStation APIs. The call to this
method MUST be serialized if there are multiple threads running; otherwise, the behavior of this
function is unknown. No special permissions are required to call this method.

BOOLEAN RpcWinStationCloseServerEx (
[in, out] SERVER HANDLE* phServer,
[out] DWORD* pResult

)i

169/ 253

[MS-TSTS-Diff] - v20210625

Terminal Services Terminal Server Runtime Interface Protocol
Copyright © 2021 Microsoft Corporation

Release: June 25, 2021

phServer: Pointer to a variable that is a handle to the server. The variable is of type
SERVER_HANDLE. The handle MUST be returned from a previous call to
RpcWinStationOpenServer. On return from this method, *phServer is set to NULL.

pResult: If the call was successful, this parameter MUST be STATUS_SUCCESS (0x00000000);
otherwise, it MUST be an implementation-specific negative value.

Return Values: Returns TRUE if the call succeeded, and FALSE if the call failed. On failure, pResult
indicates the failure status code.

Return value/code | Description

0x01 Successful completion.
TRUE

0x00 Method call failed.
FALSE

3.7.4.1.30 RpcWinStationIsHelpAssistantSession (Opnum 61)

The RpcWinStationIsHelpAssistantSession method determines if a session is created by the built-in
HelpAssistant user account.<207> The caller is not required to have any specific permission to call
this method.

BOOLEAN RpcWinStationIsHelpAssistantSession (
[in] SERVER HANDLE hServer,
[out] DWORD* pResult,
[in] ULONG SessionId

)i

hServer: Handle to the server object. This is of type SERVER_HANDLE. The hServer argument MUST
be obtained from a previous call to RpcWinStationOpenServer.

pResult: Failure error code if the call to RpcWinStationIsHelpAssistantSession failed. If no error was
encountered while executing the call, this parameter MUST be STATUS_SUCCESS (0x00000000).

Value Meaning

STATUS_SUCCESS The call was executed successfully.
0x00000000

STATUS_UNSUCCESSFUL Execution of the call failed.
0xC0000001

STATUS_CTX_WINSTATION_NOT_FOUND | The SessionId does not exist.

0xC00A0015
STATUS_WRONG_PASSWORD This is a Help Assistant session but the help assistance ticket
0xCO00006A associated with the session is no longer valid.

Sessionld: The ID of the session to check.

Return Values: Returns TRUE if the session is running as HelpAssistant, and FALSE if this is not a
HelpAssistant session or if an error was encountered during the test. On failure, pResult indicates
the failure status code.

170/ 253

[MS-TSTS-Diff] - v20210625

Terminal Services Terminal Server Runtime Interface Protocol
Copyright © 2021 Microsoft Corporation

Release: June 25, 2021

Return value/code | Description

0x01 Successful completion.
TRUE

0x00 Method call failed.
FALSE

3.7.4.1.31 RpcWinStationGetMachinePolicy (Opnum 62)

The RpcWinStationGetMachinePolicy method returns a copy of the terminal server machine policy to
the caller.<208> The caller is not required to have any specific permission to call this method.

BOOLEAN RpcWinStationGetMachinePolicy (
[in] SERVER HANDLE hServer,
[in, out, size is(bufferSize)] PBYTE pPolicy,
[in, range (0, 0x8000)] ULONG bufferSize

)i

hServer: Handle to the server object. This is of type SERVER_HANDLE. The hServer argument MUST
be obtained from a previous call to RpcWinStationOpenServer.

pPolicy: Pointer to a buffer to receive the machine policy. This buffer MUST be of type
POLICY_TS_MACHINE.

bufferSize: Size of the buffer, in bytes, pointed to by pPolicy. This size MUST NOT be less than
sizeof(POLICY_TS_MACHINE).

Return Values: Returns TRUE if the call succeeded, and FALSE if the method failed.

Return value/code | Description

0x01 Successful completion.
TRUE

0x00 Method call failed.
FALSE

3.7.4.1.32 RpcWinStationCheckLoopBack (Opnum 65)

The RpcWinStationCheckLoopBack method checks if there is a loopback when a client tries to connect.
Loopback refers to opening a terminal server session on the local machine.<209> The caller is not
required to have any specific permission to call this method.

BOOLEAN RpcWinStationCheckLoopBack (
[in] SERVER HANDLE hServer,
[out] DWORD* pResult,
[in] DWORD ClientLogonId,
[in] DWORD TargetLogonlId,
[in, size is(NameSize)] PWCHAR pTargetServerName,
[in, range (0, 1024)] DWORD NameSize

171/ 253

[MS-TSTS-Diff] - v20210625

Terminal Services Terminal Server Runtime Interface Protocol
Copyright © 2021 Microsoft Corporation

Release: June 25, 2021

hServer: Handle to the server object. This is of type SERVER_HANDLE. The hServer argument MUST
be obtained from a previous call to RpcWinStationOpenServer.

pResult: Failure error code if the call to RpcWinStationCheckLoopBack failed. If the call was
successful, this parameter MUST be STATUS_SUCCESS (0x00000000).

Value Meaning

STATUS_SUCCESS The call was successful.

0x00000000

STATUS_ACCESS_DENIED A loopback was detected.

0xC0000022

STATUS_CTX_WINSTATION_ACCESS_DENIED | The server is in the process of shutting down and cannot
0xCOOAQ02B complete the request.

ClientLogonId: The ID of the session from which the terminal server client was started.
TargetLogonId: The session ID to which the client is trying to connect.

pTargetServerName: The name of the target server to which the client is connecting. The string
MUST contain the terminating NULL character.

NameSize: The length of the pTargetServerName string in characters including the terminating NULL
character.

Return Values: Returns FALSE if there is no loopback, and TRUE if a loopback was detected. This
method returns TRUE also in the case when an error was encountered during the loopback test. In
this case, the pResult value contains the relevant error code.

Return value/code | Description

0x01 A loopback was detected or the method call failed.
TRUE

0x00 A loopback was not detected.

FALSE

3.7.4.1.33 RpcConnectCallback (Opnum 66)

The RpcConnectCallback method initiates a TCP connection to the specified IP address and waits for
the party on the other end of the connection to start the Remote Desktop Protocol (RDP) connection
sequence. More information on Remote Desktop Protocol can be found in [MS-RDPBCGR]. This method
MUST be called by processes running as SYSTEM. Note that this function assumes that the address
being passed in is an IPv4 address. IPv6 addresses are not supported.<210>

BOOLEAN RpcConnectCallback (
[in] SERVER HANDLE hServer,
[out] DWORD* pResult,
[in] DWORD TimeOut,
[in] ULONG AddressType,
[in, size is(AddressSize)] PBYTE pAddress,
[in, range (0, 0x1000)] ULONG AddressSize

172 / 253

[MS-TSTS-Diff] - v20210625

Terminal Services Terminal Server Runtime Interface Protocol
Copyright © 2021 Microsoft Corporation

Release: June 25, 2021

hServer: Handle to the server object. This is of type SERVER_HANDLE. The hServer argument MUST
be obtained from a previous call to RpcWinStationOpenServer.

pResult: Failure error code if the call to RpcConnectCallback failed. If the call was successful, this
parameter MUST be STATUS_SUCCESS (0x00000000).

Value Meaning

STATUS_SUCCESS The call was successful.

0x00000000

STATUS_NOT_SUPPORTED AddressType is not TDI_ADDRESS_TYPE_IP. This is a standard
0xC00000BB representation of a type for an IP address. For more information, see

[MSDN-TDIADDRESS].

STATUS_INVALID_PARAMETER | AddressSize is not TDI_ADDRESS_LENGTH_IP. For more information,

0xC000000D see [MSDN-TDIADDRESS].
STATUS_ACCESS_DENIED The caller is not SYSTEM.
0xC0000022

TimeOut: Not used.
AddressType: MUST be TDI_ADDRESS_TYPE_IP. For more information, see [MSDN-TDIADDRESS].

pAddress: Pointer to the address itself. MUST be TDI_ADDRESS_IP. This is a standard
representation for an IP address. For more information, see [MSDN-TDIADDRESS].

AddressSize: MUST be TDI_ADDRESS_LENGTH_IP. This is a standard representation for the length
of an IP address. For more information, see [MSDN-TDIADDRESS].

Return Values: Returns TRUE if the call succeeded, and FALSE if the method failed. On failure,
pResult indicates the failure status code.

Return value/code | Description

0x01 Successful completion.
TRUE

0x00 Method call failed.
FALSE

3.7.4.1.34 RpcWinStationGetAllProcesses_NT6 (Opnum 70)

The RpcWinStationGetAllProcesses_NT6 method retrieves the processes running a remote server
machine. Only the processes from the sessions on which the caller has WINSTATION_QUERY
permission will be retrieved. The method checks whether the caller has WINSTATION_QUERY
permission (section 3.1.1) by setting it as the Access Request mask, and fails if the caller does not
have the permission.

BOOLEAN RpcWinStationGetAllProcesses NT6 (
[in] SERVER HANDLE hServer,
out] DWORD* pResult,
in] ULONG Level,
in, out] BOUNDED ULONG* pNumberOfProcesses,
out, size is(, *pNumberOfProcesses)]
PTS ALL PROCESSES INFO NT6* ppTsAllProcessesInfo

[
[
[
[

173/ 253

[MS-TSTS-Diff] - v20210625

Terminal Services Terminal Server Runtime Interface Protocol
Copyright © 2021 Microsoft Corporation

Release: June 25, 2021

hServer: Handle to the server object. This is of type SERVER_HANDLE. The hServer argument MUST
be obtained from a previous call to RpcWinStationOpenServer.

pResult: Failure error code if the call to RpcWinStationGetAllProcesses_NT6 failed. If the call was
successful, this parameter MUST be STATUS_SUCCESS (0x00000000).

Value Meaning
STATUS_SUCCESS The call was successful.
0x00000000

STATUS_ACCESS_DENIED | The caller does not have permission for the operation.
0xC0000022

Level: MUST be GAP_LEVEL_BASIC (0). Any other value will lead to the method returning FALSE.

pNumberOfProcesses: The number of processes requested by the caller. On return, this indicates
the number of processes actually stored in the ppTsAllProcessesInfo parameter.

ppTsAllProcessesInfo: Pointer to an array of processes allocated and returned by the method.
*ppTsAllProcessesInfo is allocated by the method to be an array of
TS_ALL_PROCESSES_INFO_NT®6 structures. The array returned by the method MUST be freed by
the caller.

Return Values: Returns TRUE if the call succeeded, and FALSE if the lookup failed. On failure,
pResult indicates the failure status code.

Return value/code | Description

0x01 Successful completion.
TRUE

0x00 Method call failed.
FALSE

3.7.4.1.35 RpcWinStationOpenSessionDirectory (Opnum 75)

The RpcWinStationOpenSessionDirectory method pings the Session Directory to see if it can accept
RPC calls. The caller MUST be either SYSTEM or an administrator. The method performs access checks
as defined in sections 3.1.2 and 3.1.3. The method fails if both checks fail. For more information about
the Session Directory, see [MSFT-SDLBTS].<211>

BOOLEAN RpcWinStationOpenSessionDirectory (
[in] SERVER HANDLE hServer,
[out] DWORD* pResult,
[in, string, max is(64)] PWCHAR pszServerName

)i
hServer: Handle to the server object. This is of type SERVER_HANDLE. The hServer argument MUST
be obtained from a previous call to RpcWinStationOpenServer.

pResult: Failure error code if the call to RpcWinStationOpenSessionDirectory failed. If the call was
successful, this parameter MUST be STATUS_SUCCESS (0x00000000).

174 / 253

[MS-TSTS-Diff] - v20210625

Terminal Services Terminal Server Runtime Interface Protocol
Copyright © 2021 Microsoft Corporation

Release: June 25, 2021

Value Meaning

STATUS_SUCCESS The call was successful.
0x00000000

STATUS_UNSUCCESSFUL | The server is not in application server mode on an advanced servers Stock
0xC0000001 Keeping Unit (SKU).

STATUS_ACCESS_DENIED | The caller is not SYSTEM nor an administrator.
0xC0000022

pszServerName: The name of the server hosting session directory to which to attempt connection.

Return Values: Returns TRUE if the call succeeded, and FALSE if the method failed. On failure,
pResult indicates the failure status code.

Return value/code | Description

0x01 Successful completion.
TRUE

0x00 Method call failed.
FALSE

3.7.5 Timer Events

None.

3.7.6 Other Local Events

None.
3.8 Virtual IP Client Detail

3.8.1 Abstract Data Model

None.

3.8.2 Timers

No protocol timers are required beyond those used internally by RPC to implement resiliency to
network outages, as specified in [MS-RPCE].

3.8.3 Initialization

The client MUST create an RPC connection to the terminal server by using the details specified in
section 2.1.

3.8.4 Message Processing Events and Sequencing Rules

When a method completes, the values returned by the RPC MUST be returned unmodified to the upper
layer.

175/ 253

[MS-TSTS-Diff] - v20210625

Terminal Services Terminal Server Runtime Interface Protocol
Copyright © 2021 Microsoft Corporation

Release: June 25, 2021

3.8.5 Timer Events

None.

3.8.6 Other Local Events

None.
3.9 Virtual IP Server Detail

3.9.1 Abstract Data Model

This section describes a conceptual model of possible data organization that an implementation
maintains to participate in this protocol. The described organization is provided to facilitate the
explanation of how the protocol behaves. This document does not mandate that implementations
adhere to this model as long as their external behavior is consistent with that described in this
document.

3.9.1.1 Abstract Data Types

TSVIPSession: Structure containing the IP address assigned to the session. It is described in section
2.2.2.50 and is used with RpcGetSessionIP.

3.9.2 Timers

None.

3.9.3 Initialization

Parameters necessary to initialize the RPC protocol are specified in section 2.1.

3.9.4 Message Processing Events and Sequencing Rules

This protocol asks the RPC runtime to perform a strict Network Data Representation (NDR) data
consistency check at target level 6.0 for all methods unless otherwise specified, as defined in [MS-
RPCE] section 1.3.

When a method completes, the values returned by RPC MUST be returned unmodified to the upper
layer. The methods MAY throw an exception and the Terminal Services client MUST handle these
exceptions by returning the unmodified exception code to the upper layer.

3.9.4.1 TSVIPPublic
The TSVIPPublic provides methods to retrieve IP assigned to the session.
For information about endpoints, UUID values, and versions, see sections 2.1 and 1.9.

Methods in RPC Opnum Order

Method Description

RpcGetSessionIP | Returns IP address assigned to the session.
Opnum: 0

176 / 253

[MS-TSTS-Diff] - v20210625

Terminal Services Terminal Server Runtime Interface Protocol
Copyright © 2021 Microsoft Corporation

Release: June 25, 2021

3.9.4.1.1 RpcGetSessionIP (Opnum 0)

The RpcGetSessionIP method retrieves the IP address assigned to the session. This MUST be called
by an administrator or the same user who logged onto the session.<212> The method performs
access checks as defined in section 3.1.3 and 3.1.4. The method fails if both checks fail.

HRESULT RpcGetSessionIP (
[in] handle t hBinding,

in] USHORT Family,

in] DWORD SessionId,

[
[
[ref, out] TSVIPSession* ppVIPSession

)
hBinding: The RPC binding handle. For more information, see [MSDN-RPCBIND].

Family: MUST be AF_INET.

Sessionld: The identifier of the session to open. This session MUST be present on the terminal
server. This MUST NOT be the session ID of any of the listener sessions.

ppVIPSession: The session structure containing the IP address assigned to the session. This is of
type TSVIPSession.

Return Values: The method MUST return S_OK (0x00000000) on success; otherwise, it MUST return
an implementation-specific negative value.

Return value/code | Description

0x00000000 Successful completion.
S_OK

3.9.5 Timer Events

None.

3.9.6 Other Local Events

None.

3.10 SessEnv Details

3.10.1 Abstract Data Model

None.

3.10.2Timers

None.

3.10.3 Initialization

Parameters necessary to initialize the RPC protocol are specified in section 2.1.

177/ 253

[MS-TSTS-Diff] - v20210625

Terminal Services Terminal Server Runtime Interface Protocol
Copyright © 2021 Microsoft Corporation

Release: June 25, 2021

3.10.4 Message Processing Events and Sequencing Rules

This protocol asks the RPC runtime to perform a strict NDR data consistency check at target level 6.0
for all methods unless otherwise specified, as defined in [MS-RPCE] section 1.3.

When a method completes, the values returned by RPC MUST be returned unmodified to the upper
layer. The methods MAY throw an exception, and the Terminal Services client MUST handle these
exceptions by returning the unmodified exception code to the upper layer.

3.10.4.1 SessEnvPublicRpc
The SessEnvPublicRpc interface provides methods to call into the SessionEnv service remotely.
For information about endpoints, UUID values, and versions, see sections 2.1 and 1.9.

Methods in RPC Opnum Order

Method Description

RpcShadow2 | Creates a Windows Desktop Sharing API invitation in the specified target session.
Opnum: 0

3.10.4.1.1 RpcShadow2 (Opnum 0)

The RpcShadow?2 method will create a shadow session using the Windows Desktop Sharing API in
the target session and return an invitation to that session.

The caller MUST have WINSTATION_SHADOW permission. The other session can be local or on a
terminal server. The session to be shadowed MUST be in the active state with a user logged on. The
method checks whether the caller has WINSTATION_SHADOW permission (section 3.1.1) and fails if
the caller does not have the permission.

HRESULT RpcShadow? (
[in] handle t hBinding,
[in] ULONG TargetSessionId,
[in] SHADOW_CONTROL_ REQUEST eRequestControl,
[in] SHADOW_ PERMISSION REQUEST eRequestPermission,
[out] SHADOW REQUEST RESPONSE* pePermission,
[out, string, size_ is(cchInvitation)]
LPWSTR pszInvitation,
[in, range(1,8192)] ULONG cchInvitation

hBinding: The RPC binding handle. For more information, see [MSDN-RPCBIND].
TargetSessionId: The ID of the session to be shadowed.
eRequestControl: Specifies a request for either a Ul interaction or a view-only session.

eRequestPermission: Specifies whether to request permission before the shadow session is started.
The call is synchronous, so if permission is requested, the call will wait until the user responds to
the request.

pePermission: User response to permission request. If the response is anything other than
SHADOW_REQUEST_RESPONSE_ALLOW, the shadow session has been denied.

178 /253

[MS-TSTS-Diff] - v20210625

Terminal Services Terminal Server Runtime Interface Protocol
Copyright © 2021 Microsoft Corporation

Release: June 25, 2021

pszInvitation: The output data containing the invitation string for the shadow session. The data
returned is a Unicode string in the XML format specified in [MS-RAI] section 2.2.2 that can be
used to connect to a session running in the target session (specified by TargetSessionld). The
caller must allocate a buffer to hold this data and specify the size of the buffer in cchInvitation.

cchlnvitation: The size, in WCHARs (16-bit Unicode), of pszInvitation.

Return Values: The method MUST return S_OK (0x00000000) on success; otherwise, it MUST return
an implementation-specific negative value.

Return value/code | Description

0x00000000 Successful completion.
S_OK

3.10.5 Timer Events

None.

3.10.6 Other Local Events

None.

179/ 253

[MS-TSTS-Diff] - v20210625

Terminal Services Terminal Server Runtime Interface Protocol
Copyright © 2021 Microsoft Corporation

Release: June 25, 2021

4 Protocol Examples

4.1 LSM Enumeration Example

The following example shows how to enumerate sessions on a terminal server. This example uses

TermSrvBindSecure from section 4.3.

1. Get the LSM Binding.

HANDLE GetLSMBinding (LPWSTR pszServerName)
{

HANDLE hLSMBinding = NULL;

RPC_STATUS rpcStatus = RPC_S OK;

//ASSERT (NULL != pszServerName) ;
rpcStatus = TermSrvBindSecure (
gpszPublicUuid,
gpszRemoteProtocolSequence,
pszServerName,
TSRPC_ REMOTE ENDPOINT,
gpszOptions,
&hLSMBinding
)i
if (rpcStatus != RPC_S OK || hLSMBinding == NULL)

{
wprintf (L"ERR: TermSrvBindSecure failed: %d\n",
rpcStatus);
SetlLastError (rpcStatus);
}

return hLSMBinding;
}

2. Enumerate the sessions.

RpcTryExcept
{
hr = RpcOpenEnum(hLSMBind, &hEnum);
if (hr == S _OK)
{
hr = RpcGetEnumResult (hEnum, &pAllSessions,
CURRENT_ ENUM LEVEL, &Entries);
if (hr == S_OK)
{
for (ULONG i=0;i<Entries;i++)
{
wprintf (L"%$-10d %-20s %-40s\n",
pAllSessions[i].Data.SessionEnum Level3.Sessionld,
WinstationStateClassNames[pAllSessions[i].Data.
SessionEnum Level3.State],
pAllSessions[i].Data.SessionEnum Level3.Name);

if (NULL != pAllSessions[i].Data.SessionEnum Level3.
pProtocolData)
{
MIDL user free(pAllSessions[i].Data.
SessionEnum Level3.pProtocolData);

rvl = TRUE;

[MS-TSTS-Diff] - v20210625

Terminal Services Terminal Server Runtime Interface Protocol
Copyright © 2021 Microsoft Corporation

Release: June 25, 2021

180/ 253

else

{
wprintf (L"ERR: RpcGetEnumResult failed %d\n",hr);
}

if (pAllSessions)
{

MIDL user_ free (pAllSessions);
}

}

else
{

wprintf (L"ERR: RpcOpenEnum failed %d\n",hr);
}
}
RpcExcept (I_RpcExceptionFilter (RpcExceptionCode()))
{ wprintf (L"ERR: RPC Exception %d\n",RpcExceptionCode ());
}

RpcEndExcept

3. Close the handles.

if (hEnum)
RpcCloseEnum (&hEnum) ;

if (hLSMBind)
RpcBindingFree (&hLSMBind) ;

The following diagram illustrates the message sequence for enumerating the sessions.

181/ 253

[MS-TSTS-Diff] - v20210625

Terminal Services Terminal Server Runtime Interface Protocol
Copyright © 2021 Microsoft Corporation

Release: June 25, 2021

Client Server

©

@) «— Come?

b
Call RocOpentnyumy)

I

._______—’—'_'———-:

‘_,_’-—————*—‘”Comp\ete RpcOpenEnuml) 5

H

__Ca”RpcGetEnlUlllReSult()'- TS B

O,

e s e e i
plete RpcGexEnumResuh()

«— Com

e ——————
Call Rch!oseEnum[) e

Figure 1: LSM session enumeration sequence

The sequence of messages for enumerating sessions on the server is as follows:

1.

After an RPC binding has been established to the server, the client requests a session enumeration
handle to be opened by the server by calling the RpcOpenEnum method.

The server, in response, opens a handle of the type ENUM_HANDLE and returns to the client.

The client then calls the RpcGetEnumResult method by passing this handle, along with an
uninitialized buffer, to get the list of sessions.

The server, on receiving the request, allocates memory for the buffer and fills it with an array of
SESSIONENUM structures containing session information, one for each session on the server. It
also returns the number of sessions on the server.

The client, on receiving the data, calls the RpcCloseEnum method to inform the server to close the
enumeration handle.

The server, on receiving the RpcCloseEnum call, closes the enumeration handle.

The client frees the array of SESSIONENUM structures it received before exiting.

4.2 TermService Listener Example

The following example retrieves the listeners that run on the terminal server. This example uses
TermSrvBindSecure from section 4.3.

1.

Get the RCM binding.

HANDLE GetRCMBinding (LPWSTR pszServerName)

{
RPC_STATUS rpcStatus = RPC_S_OK;

182 / 253

[MS-TSTS-Diff] - v20210625

Terminal Services Terminal Server Runtime Interface Protocol
Copyright © 2021 Microsoft Corporation

Release: June 25, 2021

HANDLE hRCMBinding = NULL;

rpcStatus = TermSrvBindSecure (
gpszPublicUuid,
gpszRemoteProtocolSequence,
pszServerName,
TSRCMRPC_REMOTE ENDPOINT,
gpszOptions,
&hRCMBinding
)i

if (rpcStatus != RPC_S OK || hRCMBinding == NULL)

{
wprintf (L"ERR: TermSrvBindSecure failed: %d\n", rpcStatus);
SetLastError (rpcStatus);

}

return hRCMBinding
}

2. Get the list of listeners.

hRCMBind = GetRCMBinding (pszServerName) ;
if (hRCMBind)
{
RpcTryExcept
{
hr = RpcGetAllListeners(hRCMBind, &pListeners,
CURRENT LST ENUM LEVEL, &NumListeners);
if (hr == S_OK)
{
for (ULONG i=0;i<Entries;i++)
{
wprintf (L"%$-10d %$-20s %-40s\n",
pListeners[i].Data.ListenerEnum Levell.Id,
WinstationStateClassNames[pListeners[i].Data.ListenerEnum Levell.bListening ? State Listen
State_Down],
plListeners[i].Data.ListenerEnum Levell.Name) ;
}
rv2 = TRUE;

}
else
{
wprintf (L"ERR: RpcGetAllListeners failed %d\n",hr);
}

if (pListeners)
{
MIDL user free(pListeners);

}
}

RpcExcept (I_RpcExceptionFilter (RpcExceptionCode()))
{

hr = HRESULT FROM WIN32 (RpcExceptionCode());
wprintf (L"ERR: RpcGetAllListeners threw an exception: 0x%x\n",
hr);
}
RpcEndExcept

RpcBindingFree (&hRCMBind) ;

183/ 253

[MS-TSTS-Diff] - v20210625

Terminal Services Terminal Server Runtime Interface Protocol
Copyright © 2021 Microsoft Corporation

Release: June 25, 2021

3. Close the handle.

if (hRCMBind)
RpcBindingFree (§hRCMBind) ;

4.3 TermSrvBindSecure Example

The following example creates an RPC binding to an endpoint that uses authentication, authorization,
and security quality-of-service information.

RPC_STATUS

TermSrvBindSecure (
LPCWSTR pszUuid,
LPCWSTR pszProtocolSequence,
LPCWSTR pszNetworkAddress,
LPCWSTR pszEndPoint,
LPCWSTR pszOptions,
RPC_BINDING_ HANDLE *pHandle
)

RPC_STATUS Status;
RPC_SECURITY_ QOS qgos;
LPWSTR wszServerSPN = NULL;

*pHandle = NULL;

Status = TermSrvBind (
pszUuid,
pszProtocolSequence,
pszNetworkAddress,
pszEndPoint,
pszOptions,
pHandle) ;

if(status != RPC S OK)

wprintf (L"Error %d in TermSrvBind", Status);
goto TS_EXIT POINT;

gos.Capabilities = RPC_C_QOS_CAPABILITIES MUTUAL_AUTH;
gos.IdentityTracking = RPC_C QOS IDENTITY DYNAMIC;
gos.ImpersonationType = RPC C IMP LEVEL IMPERSONATE;
gos.Version = RPC_C SECURITY QOS VERSION;

if (PrepareServerSPN(pszNetworkAddress, &wszServerSPN))

Status = RpcBindingSetAuthInfoEx (
*pHandle,
wszServerSPN,
RPC_C AUTHN LEVEL PKT PRIVACY,
RPC_C AUTHN GSS NEGOTIATE,
NULL,
RPC_C_AUTHZ NAME,
&gqos) ;

LocalFree (wszServerSPN) ;

}

else

{

184 / 253

[MS-TSTS-Diff] - v20210625

Terminal Services Terminal Server Runtime Interface Protocol
Copyright © 2021 Microsoft Corporation
Release: June 25, 2021

Status = RpcBindingSetAuthInfoEx (
*pHandle,
(LPWSTR) pszNetworkAddress,
RPC_C AUTHN LEVEL PKT PRIVACY,
RPC_C AUTHN GSS NEGOTIATE,
NULL,
RPC_C_AUTHZ NAME,
&qos) ;

}

if (RPC_S OK != Status)

{
wprintf (L"Error %d in RpcBindingSetAuthInfoEx", Status);

goto TS EXIT POINT;
}

TS EXIT POINT:

if (RPC_S OK != Status &&
NULL != *pHandle)

{
RpcBindingFree (pHandle);

}

return Status;

Generate a standard RPC binding from the protocol sequence, security options, and UUID, for

example.

RPC_STATUS
TermSrvBind (
IN LPCWSTR pszUuid,
IN LPCWSTR pszProtocolSequence,
IN LPCWSTR pszNetworkAddress,
IN LPCWSTR pszEndPoint,
IN LPCWSTR pszOptions,
OUT RPC_BINDING HANDLE *pHandle
)

RPC_STATUS Status;
LPWSTR pszString = NULL;

/*
* Compose the binding string using the helper routine
* and our protocol sequence, security options, UUID, and so on.
*/
Status = RpcStringBindingCompose (
(LPWSTR) pszUuid,
(LPWSTR) pszProtocolSequence,
(LPWSTR) pszNetworkAddress,
(LPWSTR) pszEndPoint,
(LPWSTR) pszOptions,
&pszString
)7

if(status != RPC S OK)

{
wprintf (L"Error %d in RpcStringBindingCompose", Status);
goto TS_EXIT POINT;

}

/*

* Now generate the RPC binding from the canonical RPC

[MS-TSTS-Diff] - v20210625

Terminal Services Terminal Server Runtime Interface Protocol
Copyright © 2021 Microsoft Corporation

Release: June 25, 2021

185/ 253

* binding string.

*/
Status = RpcBindingFromStringBinding(
pszString,
pHandle
)i
if (Status != RPC_S OK)

{
wprintf (L"Error %d in RpcBindingFromStringBinding", Status);
goto TS_EXIT POINT;

}

TS EXIT POINT:

if (NULL != pszString)

{
/%
* Free the memory returned from RpcStringBindingCompose ()
*/

RpcStringFree (&pszString);
}

return(Status);

Recreate a valid SPN for Windows Vista operating system from an existing SPN.

BOOL

PrepareServerSPN (
IN LPCWSTR pszNetworkAddress,
~_deref out opt LPWSTR *ppwszServerSPN
)

// Windows Server 2008 RPC does not accept "net use" credential anymore.
// <Domain>\<Machine> is not a valid SPN, a valid SPN is host/<Machine Name>

LPWSTR pszTemplate = L"host/%s";
*ppwszServerSPN = NULL;
HRESULT hr = S_OK;

UINT stringLength = wcslen (pszTemplate)+twcslen (pszNetworkAddress) +1;

*ppwszServerSPN = (LPWSTR)LocalAlloc (LPTR, stringLength * sizeof (WCHAR));
if (*ppwszServerSPN)
{
hr = StringCchPrintf (*ppwszServerSPN, stringLength, pszTemplate,
pszNetworkAddress) ;
ASSERT (SUCCEEDED(hr));
}

if (FAILED (hr))
{
if (NULL != *ppwszServerSPN)
{
LocalFree(*ppwszServerSPN);
*ppwszServerSPN = NULL;

}

return SUCCEEDED (hr) ;

186 / 253

[MS-TSTS-Diff] - v20210625

Terminal Services Terminal Server Runtime Interface Protocol
Copyright © 2021 Microsoft Corporation

Release: June 25, 2021

4.4 Legacy Example

The following example shows how to enumerate sessions that use the legacy RPC methods.

1. Get the binding.

Result = TermSrvBindSecure (
pszUuid,
pszRemoteProtocolSequence,
pServerName,
pszRemoteEndPoint,
pszOptions,

&RpcTSHandle
)i
//

// Get a context handle from the server so it can

// manage the connections state
//
RpcTryExcept {

rc = RpcWinStationOpenServer (RpcTSHandle, &Result,

}

RpcExcept (I_RpcExceptionFilter (RpcExceptionCode()))

Result RpcExceptionCode () ;
rc = FALSE;

wprintf (L"ERR: RPC Exception %d\n",Result);

}
RpcEndExcept

2. Enumerate the sessions.

RpcTryExcept {

rc = RpcWinStationEnumerate (
hServer,
&Result,
&LogonIdCount,
(PCHAR) pLogonId,
&Length,
&Index
)i
Result = RtlINtStatusToDosError(Result);
if (Result == ERROR NO MORE_ITEMS) {
Result = ERROR_SUCCESS;
break;

}

if (rc == TRUE)
{

wprintf (L"SessionID State Name\n") ;

for (ULONG i=0;i<LogonIdCount;i++)
{
wprintf (L"%$-10d %$-20s %-40s\n",
pLogonId[i].SessionId,

WinstationStateClassNames [pLogonId[i].Statel],

pLogonId[i] .WinStationName) ;

}
}

RpcExcept (I_RpcExceptionFilter (RpcExceptionCode ()))

Result = RpcExceptionCode () ;

wprintf (L"ERR: RPC Exception %d\n",Result);
}
RpcEndExcept

{

&ContextHandle);

[MS-TSTS-Diff] - v20210625

Terminal Services Terminal Server Runtime Interface Protocol
Copyright © 2021 Microsoft Corporation

Release: June 25, 2021

187/ 253

3. Close the binding handles.

RpcTryExcept {

bSuccess = RpcWinStationCloseServerEx (pHandle, pdwResult);
if(!'bSuccess) *pdwResult = RtlNtStatusToDosError (*pdwResult);

}
RpcExcept (I_RpcExceptionFilter (RpcExceptionCode())) {

*pdwResult = RpcExceptionCode () ;
bSuccess = FALSE;

}
RpcEndExcept

The following diagram illustrates the message sequence for enumerating the sessions.

Client Server

®

e e)
Call RchmSmtiOnOpenServerl)
—

©

@
®

A e Sy Ca“ Rpc UV”)Sta“o‘ IC’OSGSe(ver EXO T —— "‘"”

®

’——’-’_——‘
te RpcwInStanonCloseServerExl)

@ ———— Comple

Figure 2: Legacy session enumeration sequence
The sequence of messages for enumerating sessions on the server is as follows:

1. After an RPC binding has been established to the server, the client requests a handle to the server
to be opened by calling the RpcWinStationOpenServer method.

2. The server in response will open up a handle and return to the client.

3. The client then calls the RpcWinStationEnumerate method by passing this handle along with an
uninitialized buffer to get the list of sessions.

188/ 253

[MS-TSTS-Diff] - v20210625

Terminal Services Terminal Server Runtime Interface Protocol
Copyright © 2021 Microsoft Corporation

Release: June 25, 2021

4. The server on receiving the request will allocate memory for the buffer and fill it with an array of
LOGONID structures containing session information, one for each session on the server. It will also
return the number of sessions on the server.

5. The client, on receiving the data, calls the RpcWinStationCloseServerEx method to inform the
server to close the server handle.

6. The server on receiving the RpcWinStationCloseServerEx call will close the server handle.

7. The client frees the array of SESSIONENUM structures it received before exiting.

4.5 Encoding/Decoding Example

The following is the example of encoding and decoding the PropValue field in the TSProperty structure.

#include <stdio.h>
#include <tchar.h>
#include <Windows.h>

DWORD
EncodePropValue
(
__in BYTE* pbSource,
__in DWORD dwSourceLength,
~_deref out bcount (*pdwDestLength) BYTE** ppbDest,
out DWORD* pdwDestLength

)i

DWORD
DecodePropValue
(
__in BYTE* pbSource,
__in DWORD dwSourceLength,
~_deref out bcount (*pdwDestLength) BYTE** ppbDest,
DWORD *pdwDestLength
)i

int tmain()

char* pPropValue = "ABCDE";

char* pEncoded = NULL;
DWORD cbEncoded = 0;
char* pDecoded = NULL;
DWORD cbDecoded = O;

//

// Encoding a property value to be compatible with TSProperty structure.

//

EncodePropValue (PBYTE (pPropValue), (strlen(pPropValue)+l), (PBYTE*)&pEncoded, &cbEncoded

//
// Decoding the encoded string.

//
DecodePropValue (PBYTE (pEncoded), cbEncoded, (PBYTE*) &pDecoded, &cbDecoded);
printf ("Decoded: %s\n", pDecoded) ;

delete[] PBYTE (pEncoded) ;
delete[] PBYTE (pDecoded) ;

return 0;

}

DWORD

189/ 253

[MS-TSTS-Diff] - v20210625

Terminal Services Terminal Server Runtime Interface Protocol
Copyright © 2021 Microsoft Corporation

Release: June 25, 2021

EncodePropValue
(
__in BYTE* pbSource,
~_in DWORD dwSourceLength,
~_deref out bcount (*pdwDestLength) BYTE** ppbDest,
__out DWORD* pdwDestLength

*ppbDest = new BYTE[(dwSourceLength*2)+1];
for (DWORD i=0; i<dwSourcelLength; i++)
{
sprintf ((char*) ((*ppbDest)+(i*2)), "%02x", pbSourcel[il]);

}

*pdwDestLength = dwSourcelLength*2;

return 0;
}
#define MAPHEXTODIGIT(x) (x >= '0' && x <= '9' ? (x-'0") : \
x >= '"A' && x <= '"F' ? (x-'A'+10) \
x >= 'a' §& x <= 'f' ? (x-'a'+10) : 0)
DWORD
DecodePropValue

(
__in BYTE* pbSource,
~_in DWORD dwSourceLength,
~_deref out bcount (*pdwDestLength) BYTE** ppbDest,
DWORD *pdwDestLength

*pdwDestLength = dwSourcelength/2;
(*ppbDest) = new BYTE[*pdwDestLength];

for (DWORD i=0; i< (*pdwDestLength); i++)
{
(*ppbDest) [1] = MAPHEXTODIGIT (pbSource[2*i]) * 16 +
MAPHEXTODIGIT (pbSource[2*i+1]);

return 0;

190/ 253

[MS-TSTS-Diff] - v20210625

Terminal Services Terminal Server Runtime Interface Protocol
Copyright © 2021 Microsoft Corporation

Release: June 25, 2021

5 Security

5.1 Security Considerations for Implementers

The Terminal Services Terminal Server Runtime Interface Protocol allows any user to connect to the
server, as specified in section 2.1. Therefore, any security bug in the server implementation could be
exploitable. The server implementation enforces security on each method.

5.2 Index of Security Parameters

The only security parameter is Authentication Protocol, section 2.1.

191 / 253

[MS-TSTS-Diff] - v20210625

Terminal Services Terminal Server Runtime Interface Protocol
Copyright © 2021 Microsoft Corporation

Release: June 25, 2021

6 Appendix A: Full IDL

For ease of implementation, the full IDL and headers are provided in the following sections, where
"ms-dtyp.idl" is the IDL as described in [MS-DTYP] Appendix A.

When compiling these IDLs with the MIDL compiler, "MIDL_PASS" has to be defined. This can be done
by using the midl command line with the /D switch. For example, "midl /D MIDL_PASS legacy.idl".

6.1 Appendix A.1: tspubrpc.idl

For ease of implementation, the full IDL is provided, where "ms-dtyp.idl" is the IDL as described in

import "ms-dtyp.idl";

#include "ms-tsts tsdef.h"
#include "ms-tsts_allproc.h"

[

[MS-DTYP] Appendix A and "tsdef.h" is as specified in section 6.5.

uuid (484809d6-4239-471b-b5bc-61df8c23ac48),

version(1.0),
pointer default (unique)

1
//

// Public rpc interface to the session object

//

interface TermSrvSession

{

cpp_quote ("#define WTS_SESSIONSTATE_ UNKNOWN OxXFFFFFFFF")
cpp_quote ("#define WTS_SESSIONSTATE_LOCK 0x00000000™)
cpp_quote ("#define WTS SESSIONSTATE UNLOCK 0x00000001™)

typedef [context handle] void *SESSION HANDLE;

typedef struct _LSMSessionInformation {
[string] WCHAR* pszUserName;

[string] WCHAR* pszDomain;

[string] WCHAR* pszTerminalName;

LONG SessionState;
BOOL DesktopLocked;
hyper ConnectTime;
hyper DisconnectTime;
hyper LogonTime;

} LSMSESSIONINFORMATION,
*PLSMSESSIONINFORMATION;

typedef struct LSM SESSIONINFO EX LEVEL1 ({

LONG SessionState;
LONG SessionFlags;
WCHAR SessionName [33];
WCHAR DomainName [18];
WCHAR UserName [21];
hyper ConnectTime;
hyper DisconnectTime;
hyper LogonTime;

hyper LastInputTime;
ULONG ProtocolDataSize;

[size is(ProtocolDataSize)]

} LSM SESSIONINFO EX LEVELIL,

PBYTE ProtocolData;

*PLSM_SESSIONINFO EX LEVELI;

typedef [switch type (DWORD)]
[case(1)]

union LSM SESSIONINFO EX ({

[MS-TSTS-Diff] - v20210625
Terminal Services Terminal Server Runtime Interface Protocol
Copyright © 2021 Microsoft Corporation
Release: June 25, 2021

192 / 253

LSM_SESSIONINFO_EX LEVEL1 LSM SessionInfo_Levell;
} LSM_SESSIONINFO_EX,
*PLSM_SESSIONINFO_EX;

typedef struct ~ LSMSESSIONINFORMATION EX {
DWORD Level;
[switch is(Level)] LSM SESSIONINFO EX Data;
} LSMSESSIONINFORMATION EX,
*PLSMSESSIONINFORMATION EX;

//
// Per Session specific call
HRESULT RpcOpenSession (

7

[in] handle t hBinding,

[in] LONG SessionlId,
[out] SESSION HANDLE *phSession
)

HRESULT RpcCloseSession (
[in,out] SESSION HANDLE *phSession
)

HRESULT RpcConnect (

’

[in] SESSION HANDLE hSession,

[in] LONG TargetSessionId,
[in,string] WCHAR *szPassword

)

HRESULT RpcDisconnect (
[in] SESSION HANDLE hSession
)i

HRESULT RpcLogoff (
[in] SESSION HANDLE hSession
)i

HRESULT RpcGetUserName (

[in] SESSION HANDLE hSession,

[out, string] WCHAR **pszUserName,
g P

[out, string] WCHAR **pszDomain
g P

)

’

HRESULT RpcGetTerminalName (
[in] SESSION HANDLE hSession,
[out, string] WCHAR **pszTerminalName

)i

HRESULT RpcGetState (
[in] SESSION HANDLE hSession,
[out] LONG *plState
)7

HRESULT RpcIsSessionDesktopLocked (
[in] SESSION_HANDLE hSession
)7

HRESULT RpcShowMessageBox (

[in] SESSION_HANDLE hSession,
[in, string] WCHAR *szTitle,
[in, string] WCHAR *szMessage,
[in] ULONG ulStyle,

[in] ULONG ulTimeout,
[out] ULONG *pulResponse,
[in] BOOL bDoNotWait

)

HRESULT RpcGetTimes (

[in] SESSION HANDLE hSession,
[out] hyper *pConnectTime,
[out] hyper *pDisconnectTime,

[MS-TSTS-Diff] - v20210625

Terminal Services Terminal Server Runtime Interface Protocol
Copyright © 2021 Microsoft Corporation

Release: June 25, 2021

193/ 253

[out] hyper *pLogonTime
)

HRESULT RpcGetSessionCounters (

[in] handle t hBinding,
in,out, size is(uEntries)] PTS_COUNTER pCounter,

[
[in] ULONG uEntries
) .

7

HRESULT RpcGetSessionInformation (

[in] handle t hBinding,

[in] LONG SessionlId,
[ref, out] PLSMSESSIONINFORMATION pSessionInfo
)

’

VOID Opnuml3NotUsedOnWire () ;
VOID Opnuml4NotUsedOnWire () ;

HRESULT RpcGetLoggedOnCount (
[in] handle t hBinding,
[out] ULONG *pUserSessions,
[out] ULONG *pDeviceSessions
)

’

HRESULT RpcGetSessionType (

7

[in] handle t hBinding,
[in] LONG *SessionId,
[out] ULONG *pSessionType
)

HRESULT RpcGetSessionInformationEx (

VOID Opnuml8NotUsedOnWire () ;
VOID Opnuml9NotUsedOnWire () ;

//
// notifications

//

uuid(11899a43-2b68-4a76-92e3-a3d6ad8c26ce),
version(1.0),
pointer default (unique)

]

interface TermSrvNotification

{
HRESULT RpcWaitForSessionState (

[in] handle t hBinding,
[in] LONG SessionlId,
[in] LONG State,
[in] ULONG Timeout

)

typedef [context handle] void *NOTIFY HANDLE;

HRESULT RpcRegisterAsyncNotification(

[in] handle t hBinding,
[in] LONG SessionlId,
[in] TNotificationId Mask,
[out] NOTIFY_ HANDLE *phNotify
)

HRESULT RpcWaitAsyncNotification(

[in] handle t hBinding,

[in] LONG SessionId,

[in] DWORD Level,

[ref, out] PLSMSESSIONINFORMATION EX LSMSessionInfoExPtr
)

[MS-TSTS-Diff] - v20210625

Terminal Services Terminal Server Runtime Interface Protocol
Copyright © 2021 Microsoft Corporation

Release: June 25, 2021

194 / 253

[in] NOTIFY HANDLE hNotify,

[out, size is(, *pEntries)]
PSESSION_ CHANGE *SessionChange,
[out] ULONG *pEntries

)

HRESULT RpcUnRegisterAsyncNotification (

[in, out] NOTIFYiHANDLE *phNotify
)

}

//

// enumerations

//

uuid(88143fd0-c28d-4b2b-8fef-8d882£6a9390),
version(1.0),
pointer default (unique)

1

interface TermSrvEnumeration

{
typedef [context handle] void *ENUM HANDLE;

#define ENUM_ LEVELIL 1
#define ENUM LEVEL2 2
#define ENUM LEVEL3 3
#define CURRENT_ENUM LEVEL 2

typedef struct SESSIONENUM LEVEL1 ({
LONG SessionId;
LONG State;
WCHAR Name [33];
} SESSIONENUM LEVELI,
*PSESSIONENUM LEVELI;

typedef struct SESSIONENUM LEVELZ {
LONG SessionId;
LONG State;
WCHAR Name [33];
ULONG Source;
BOOL bFullDesktop;
GUID SessionType;
} SESSIONENUM LEVELZ,
*PSESSIONENUM LEVELZ2;

typedef struct SESSIONENUM LEVEL3 {
LONG SessionId;
LONG State;
WCHAR Name[33];
ULONG Source;
BOOL bFullDesktop;
GUID SessionType;
ULONG ProtoDataSize;
[size is(ProtoDataSize)]UCHAR * pProtocolData;
} SESSIONENUM_LEVEL3,
*PSESSIONENUMﬁLEVELB;

typedef [switch type (DWORD)] union _SessionInfo {
[case (1)]
SESSIONENUM LEVEL1 SessionEnum Levell;

[case(2)]
SESSIONENUM LEVEL2 SessionEnum Level2;

} SessionInfo,
*PSessionInfo;

typedef struct SESSIONENUM {

DWORD Level;

[switch is(Level)] SessionInfo Data;
} SESSIONENUM,

*PSESSIONENUM;

[MS-TSTS-Diff] - v20210625

Terminal Services Terminal Server Runtime Interface Protocol
Copyright © 2021 Microsoft Corporation

Release: June 25, 2021

195/ 253

typedef [switch type (DWORD)]

[case (1)]
SESSIONENUM LEVELL
[case(2)]
SESSIONENUM LEVELZ2
[case (3)]
SESSIONENUM LEVEL3
} SessionInfo_ Ex,
*PSessionInfo Ex;

typedef struct

DWORD

[switch is(Level)]
} SESSIONENUM EX,
*PSESSIONENUM EX;

union

_SessionInfo Ex {

SessionEnum Levell;

SessionEnum Level2;

SessionEnum Level3;

~ SESSIONENUM EX {
Level;
SessionInfo_ Ex

#define UNIFIED ENUM LEVELI
#define UNIFIED ENUM LEVEL2

#define CURRENT UNIFIED ENUM LEVEL

typedef struct

LONG
LONG
WCHAR

*PEXECENVDATA LEVELIL;

typedef struct

LONG
LONG
WCHAR
LONG
WCHAR
WCHAR
WCHAR
WCHAR

*PEXECENVDATA LEVELZ;

typedef [switch type (DWORD)]

[case (1)]

EXECENVDATA LEVEL1

[case (2)]

EXECENVDATA LEVEL2

_EXECENVDATA LEVEL1 ({

ExecEnvId;

State;

SessionName [33];
} EXECENVDATA LEVELI,

State;

_ EXECENVDATA LEVEL2 {
ExecEnvId;

SessionName [33];
AbsSessionId;
HostName [33];
UserName [33];
DomainName [33];
FarmName [33] ;

} EXECENVDATAfLEVEL2,

} ExecEnvData,
*PExecEnvData;

typedef struct

DWORD

[switch is(Level)]
} EXECENVDATA,
*PEXECENVDATA;

typedef struct

LONG
LONG
LONG
[string,
[string,
[string,
[string,
[string,
X

ExecEnvData

Data;

N

union _ExecEnvData {

ExecEnvEnum Levell;

ExecEnvEnum Level2;

_EXECENVDATA {

_EXECENVDATAEX LEVEL1

ExecEnvId;

State;

AbsSessionId;
max is(256)] LPWSTR
max 1s(256)] LPWSTR
max 1s(256)] LPWSTR
max is(256)] LPWSTR
max is(256)] LPWSTR

} EXECENVDATAEX LEVELIL,
*PEXECENVDATAEX LEVELL;

typedef [switch type (DWORD)]

[case (1)]

EXECENVDATAEX LEVELL

} ExecEnvDat

akEx,

Level;
Data;

pszSessionName;
pszHostName;
pszUserName;
pszDomainName;
pszFarmName;

union ExecEnvDataEx {

ExecEnvEnum Levell;

[MS-TSTS-Diff] - v20210625
Terminal Services Terminal Server Runtime Interface Protocol

Copyright © 2021 Microsoft Corporation

Release: June 25, 2021

196 / 253

*PExecEnvDataEx;

typedef struct EXECENVDATAEX {

DWORD Level;
[switch is(Level)] ExecEnvDataEx Data;
} EXECENVDATAEX,
*PEXECENVDATAEX;
HRESULT RpcOpenEnum (
[in] handle t hBinding,
[out] ENUM_HANDLE *phEnum
)i
HRESULT RpcCloseEnum (
[in, out] ENUM_HANDLE *phEnum
)i
HRESULT RpcFilterByState (
[in] ENUM_HANDLE hEnum,
[in] LONG State,
[in] BOOL bInvert
)i
HRESULT RpcFilterByCallersName (
[in] ENUM_HANDLE hEnum
)i
HRESULT RpcEnumAddFilter (
[in] ENUM_HANDLE hEnum,
[in] ENUM_ HANDLE hSubEnum
)i
HRESULT RpcGetEnumResult (
[in] ENUM_HANDLE hEnum,
[out, size is(,*pEntries)]
PSESSIONENUM *ppSessionEnumResult,
[in] DWORD Level,
[out] ULONG *pEntries
)i
HRESULT RpcFilterBySessionType (
[in] ENUM HANDLE hEnum,
[in] GUID* pSessionType
)i
VOID Opnum7NotUsedOnWire (void) ;
HRESULT RpcGetSessionIds (
[in] handle t hBinding,
[in] SESSION_FILTER Filter,
[in, range(0, OxFFFF)]
ULONG MaxEntries,

[out, size is(,*pcSessionIds)]

LONG**
[out] ULONG*
)i

HRESULT RpcGetEnumResultEx (
[in] ENUM_HANDLE
[out, size is(,*pEntries)]

PSESSIONENUM EX

[in] DWORD
[out] ULONG
)i

HRESULT RpcGetAllSessions (
[in] handle t
[in, out] ULONG
[out, size is(,*pcEntries)]

pSessionIds,
pcSessionlIds

hEnum,

*ppSessionEnumResult,
Level,
*pEntries

hBinding,
*pLlevel,

PEXECENVDATA *ppSessionData,

[MS-TSTS-Diff] - v20210625

Terminal Services Terminal Server Runtime Interface Protocol

Copyright © 2021 Microsoft Corporation
Release: June 25, 2021

197/ 253

[out] ULONG *pcEntries
)i

HRESULT RpcGetAllSessionsEx (
[in] handle t hBinding,
[in] ULONG Level,
[out, size is(, *pcEntries)]
PEXECENVDATAEX *ppSessionData,
[out] ULONG *pcEntries
)i

6.2 Appendix A.2: rcmpublic.idi

For ease of implementation, the full IDL is provided, where "ms-dtyp.idl" is the IDL as described in
[MS-DTYP] Appendix A.

import "ms-dtyp.idl";

//
// public access (local & remote)

//

uuid (bde95fdf-eee0-45de-9el2-e5a6lcd0d4fe),
version(1.0),
pointer default (unique)
1
interface RCMPublic
{
static const WCHAR TSRCMRPC_REMOTE_ENDPOINT[] = L"\\pipe\\TermSrv_API service";

typedef struct {
USHORT sin family;
union switch (USHORT sin family) {

case 2:
struct {
USHORT sin_port;
ULONG in_addr;
UCHAR sin zero[8];
} ipv4;
case 23:
struct {
USHORT sin6_port;
ULONG sin6_flowinfo;
USHORT sin6_addr[8];
ULONG sin6_scope id;
} ipv6;

bi
} RCM_REMOTEADDRESS, *PRCM REMOTEADDRESS;
typedef WCHAR LISTENER NAME[32];

#define LST_ENUM LEVEL1 1
#define CURRENT_LST ENUM LEVEL 1

typedef struct 7LISTENERENUM7LEVEL1 {
LONG Id;
BOOL bListening;
WCHAR Name [33];
} LISTENERENUMﬁLEVELl, *PLISTENERENUMﬁLEVELl;

typedef [switch type (DWORD)] union ListenerInfo ({
[case (1)]
LISTENERENUM LEVEL1l ListenerEnum Levell;
[default]

198 / 253

[MS-TSTS-Diff] - v20210625

Terminal Services Terminal Server Runtime Interface Protocol
Copyright © 2021 Microsoft Corporation

Release: June 25, 2021

’

} ListenerInfo, *PListenerInfo;

typedef struct LISTENERENUM {

DWORD Level;

[switch is(Level)] ListenerInfo Data;
} LISTENERENUM, *PLISTENERENUM;

HRESULT RpcGetClientData (
[in] handle t hBinding,
[in] ULONG SessionlId,
[out, size is(,*pOutBuffBytelLen)]
unsigned char **ppBuff,
[out] ULONG *pOutBuffBytelen
)i

HRESULT RpcGetConfigData (
[in] handle t hBinding,
[in] ULONG SessionlId,
[out, size is(,*pOutBuffBytelLen)]
unsigned char **ppBuff,
[out] ULONG *pOutBuffBytelen
)i
typedef enum {
PROTOCOLSTATUS INFO BASIC = 0,
PROTOCOLSTATUS INFO EXTENDED = 1,
} PROTOCOLSTATUS_INFO_ TYPE;

HRESULT RpcGetProtocolStatus (

[in] handle t hBinding,
[in] ULONG SessionId,
[in] PROTOCOLSTATUS INFO TYPE InfoType,

[out, size is(,*pcbProtoStatus)]
unsigned char **ppProtoStatus,

[out] ULONG *pcbProtoStatus

)i

HRESULT RpcGetLastInputTime (

[in] handle t hBinding,

[in] ULONG SessionId,

[out] hyper *pLastInputTime
)

’

HRESULT RpcGetRemoteAddress (

’

[in] handle t hBinding,

[in] ULONG SessionId,

[out] PRCM_REMOTEADDRESS pRemoteAddress
)

VOID OpnumbSNotUsedOnWire () ;
VOID Opnum6NotUsedOnWire () ;
VOID Opnum7NotUsedOnWire () ;

HRESULT RpcGetAllListeners (

’

[in] handle t hBinding,

[out, size is(,*pNumListeners)] PLISTENERENUM *ppListeners,
[in] DWORD Level,

[out] ULONG *pNumListeners

)

HRESULT RpcGetSessionProtocolLastInputTime (

[in] handle t hBinding,
[in] ULONG SessionlId,
[in] PROTOCOLSTATUS_INFO_TYPE InfoType,
[out, size is(,*pcbProtoStatus)]

unsigned char **ppProtoStatus,
[out] ULONG *pcbProtoStatus,
[out] hyper *pLastInputTime

[MS-TSTS-Diff] - v20210625

Terminal Services Terminal Server Runtime Interface Protocol
Copyright © 2021 Microsoft Corporation

Release: June 25, 2021

199 / 253

//
//
//

]

)

HRESULT RpcGetUserCertificates(

[in] handle t hBinding,
n] ULONG SessionId,
out] ULONG* pcCerts,

out] ULONG* pcbCerts

7

typedef enum {
QUERY SESSION DATA MODULE

QUERY SESSION DATA WDCONFIG,

[1
[
[out, size is(, *pcbCerts)]
[
)

byte** ppbCerts,

0,

QUERY_ SESSION_DATA VIRTUALDATA,

QUERY_ SESSION_DATA LICENSE,

QUERY SESSION DATA DEVICEID,

QUERY SESSION DATA LICENSE

} QUERY SESSION DATA TYPE;

HRESULT RpcQuerySessionData (
[in] handle t
n] ULONG

VALIDATION

hBinding,
SessionlId,

n] QUERY SESSION DATA TYPE type,

in, unique, size is(cbInputData)]

in, range (0, 8192)] DWORD cbInputData,
byte pbSessionData,

in, range (0, 8192)] ULONG cbSessionData,

out, ref] ULONG *pcbReturnlLength,

out, ref] ULONG

’

Describe a listener

[i
[i
[
[
[out, ref, size is(cbSessionData),
*
[
[
[
)i

uuid(497d95a6-2d27-4bf5-9bbd-a6046957133¢c),

version(1.0),
pointer default (unique)

interface RCMListener

{

typedef [context handle] void *HLISTENER;

HRESULT RpcOpenListener (

[in] handle t
in, string] WCHAR

[
[out] HLISTENER
)i

’

HRESULT RpcCloseListener (
[in, out] HLISTENER
)i

HRESULT RpcStopListener (
[in] HLISTENER

)i

HRESULT RpcStartListener (
[in] HLISTENER

)i

HRESULT RpcIsListening(
[in] HLISTENER
[out] BOOL
)7

hBinding,
*szListenerName,
*phListener

*phListener

hListener

hListener

hlListener,
*pbIsListening

byte* pbInputData,

length is (*pcbReturnLength)]

*pcbRequireBufferSize

[MS-TSTS-Diff] - v20210625
Terminal Services Terminal Server Runtime Interface Protocol
Copyright © 2021 Microsoft Corporation
Release: June 25, 2021

200/ 253

6.3 Appendix A.3: legacy.idl

For ease of implementation, the full IDL is provided, where "ms-dtyp.idl" is the IDL as described in

[MS-DTYP] Appendix A and "allproc.h" is as specified in section 6.7.

import "ms-dtyp.idl";
#include "ms-tsts_allproc.h"

typedef UINT * UINT PTR;

static const WCHAR TSRPC LEGACY REMOTE ENDPOINT[]

L"\\pipe\\Ctx WinStation API service";
typedef [context handle] void *SERVER HANDLE;

[

uuid(5ca4a760-ebbl-11cf-8611-00a0245420ed),

version(1.0),

pointer default (unique)
1
interface IcaApi

{

typedef [range (0, 0x8000)] ULONG BOUNDED ULONG;

BOOLEAN RpcWinStationOpenServer (
[in] handle t hBinding,
[out] DWORD *pResult,
[out] SERVER HANDLE *phServer
)

’

BOOLEAN RpcWinStationCloseServer (
[in] SERVER HANDLE hServer,
[out] DWORD *pResult
)7

BOOLEAN RpcIcaServerPing (

[in] SERVER HANDLE hServer,
[out] DWORD *pResult
)

’

BOOLEAN RpcWinStationEnumerate (

[in] SERVER HANDLE hServer,

[out] DWORD *pResult,

[in,out] PULONG pEntries,

[in,out,unique, size is (*pByteCount)]
PCHAR pLogonId,

[in,out] PULONG pByteCount,

[in,out] PULONG pIndex

)i

BOOLEAN RpcWinStationRename (
[in] SERVER_HANDLE hServer,
[out] DWORD *pResult,
[in,size is(NameOldSize)]

PWCHAR pWinStationNameOld,

[in, range (0, 256)]
DWORD NameOldSize,
[in,size is(NameNewSize)]

PWCHAR pWinStationNameNew,

[in, range (0, 256)]
DWORD NameNewSize
)i

[MS-TSTS-Diff] - v20210625

Terminal Services Terminal Server Runtime Interface Protocol

Copyright © 2021 Microsoft Corporation
Release: June 25, 2021

201 / 253

BOOLEAN RpcWinStationQueryInformation (

[in] SERVER_HANDLE hServer,
[out] DWORD *pResult,
[in] DWORD LogonId,
[in] DWORD WinStationInformationClass,
[in,out,unique,size is(WinStationInformationLength)]
PCHAR pWinStationInformation,
[in, range(0, 0x8000)]
DWORD WinStationInformationLength,
[out] DWORD *pReturnLength

)i

BOOLEAN RpcWinStationSetInformation (

[in] SERVER HANDLE hServer,

[out] DWORD *pResult,

[in] DWORD LogonId,

[in] DWORD WinStationInformationClass,

[in,out,unique,size is(WinStationInformationLength)]
PCHAR pWinStationInformation,

[in, range(0, 0x8000)]
DWORD WinStationInformationLength

)i

BOOLEAN RpcWinStationSendMessage (

[in] SERVER HANDLE hServer,
out] DWORD *pResult,
n] DWORD LogonlId,

in,size is(TitleLength)] PWCHAR pTitle,

[
[i
[
[in, range(0, 1024)]

DWORD TitleLength,
[in,size is (MessageLength)]

PWCHAR pMessage,
[in, range(0, 1024)]

DWORD MessagelLength,
[in] DWORD Style,
[in] DWORD Timeout,
[out] DWORD *pResponse,
[in] BOOLEAN DoNotWait
)

BOOLEAN RpcLogonIdFromWinStationName (

[in] SERVER_HANDLE hServer,
[out] DWORD *pResult,
[in,size is (NameSize)]
~ PWCHAR pWinStationName,
[in, range(0, 256)]
DWORD NameSize,
[out] DWORD *pLogonId

)i

BOOLEAN RpcWinStationNameFromLogonId (

[in] SERVER HANDLE hServer,
[out] DWORD *pResult,
[in] DWORD LoginId,
[in,out,size_is(NameSize)]

PWCHAR pWinStationName,
[in, range(0, 256)]

DWORD NameSize

)i

BOOLEAN RpcWinStationConnect (

[in] SERVER_HANDLE hServer,
[out] DWORD *pResult,
[in] DWORD ClientLogonId,
[in] DWORD ConnectLogonId,
[in] DWORD TargetLogonld,
[in,size is(PasswordSize)] PWCHAR pPassword,
[in, ranqe(O, 1024)]

DWORD PasswordSize,
[in] BOOLEAN Wait

[MS-TSTS-Diff] - v20210625

Terminal Services Terminal Server Runtime Interface Protocol
Copyright © 2021 Microsoft Corporation

Release: June 25, 2021

202 / 253

)i
void OpnumllNotUsedOnWire (void) ;
void Opnuml2NotUsedOnWire (void) ;

BOOLEAN RpcWinStationDisconnect (

[in] SERVER HANDLE hServer,
[out] DWORD *pResult,
[in] DWORD LogonlId,
[in] BOOLEAN bWait

)

BOOLEAN RpcWinStationReset (

[in] SERVER HANDLE hServer,
[out] DWORD *pResult,
[in] DWORD LogonId,
[in] BOOLEAN bWait

)

BOOLEAN RpcWinStationShutdownSystem (

[in] SERVER HANDLE hServer,

[out] DWORD *pResult,

[in] DWORD ClientLogonlId,
[in] DWORD ShutdownFlags
)

BOOLEAN RpcWinStationWaitSystemEvent (

[in] SERVER HANDLE hServer,
[out] DWORD *pResult,
[in] DWORD EventMask,
[out] DWORD *pEventFlags
)

BOOLEAN RpcWinStationShadow (

[in] SERVER HANDLE hServer,

[out] DWORD *pResult,

[in] DWORD LogonlId,
[in,unique,size is (NameSize)] PWCHAR pTargetServerName,
[in, range(0, 1024)] DWORD NameSize,
[in] DWORD TargetLogonId,

[in] BYTE HotKeyVk,

[in] USHORT HotkeyModifiers

)

void Opnuml8NotUsedOnWire (void) ;
void Opnuml9NotUsedOnWire (void) ;
void Opnum20NotUsedOnWire (void) ;
void Opnum2lNotUsedOnWire (void) ;
void Opnum22NotUsedOnWire (void) ;
void Opnum23NotUsedOnWire (void) ;
void Opnum24NotUsedOnWire (void) ;
void Opnum25NotUsedOnWire (void) ;
void Opnum26NotUsedOnWire (void) ;
void Opnum27NotUsedOnWire (void) ;
void Opnum28NotUsedOnWire (void) ;
BOOLEAN RpcWinStationBreakPoint (

[in] SERVER HANDLE hServer,
[out] DWORD *pResult,

[MS-TSTS-Diff] - v20210625

Terminal Services Terminal Server Runtime Interface Protocol
Copyright © 2021 Microsoft Corporation

Release: June 25, 2021

203 / 253

[in] DWORD LogonId,
[in] BOOLEAN KernelFlag

BOOLEAN RpcWinStationReadRegistry (

[in] SERVER HANDLE hServer,
[out] DWORD *pResult
)

void Opnum31NotUsedOnWire (void) ;
void Opnum32NotUsedOnWire (void) ;
void Opnum33NotUsedOnWire (void) ;

BOOLEAN OldRpcWinStationEnumerateProcesses (

[in] SERVER HANDLE hServer,
[out] DWORD *pResult,
[out,size is(ByteCount)]

PBYTE pProcessBuffer,
[in, range(0, 0x8000)]

DWORD ByteCount

)i
void Opnum35NotUsedOnWire (void) ;

BOOLEAN RpcWinStationEnumerateProcesses (

[in] SERVER HANDLE hServer,
[out] DWORD *pResult,
[out,size is (ByteCount)]

PBYTE pProcessBuffer,
[in, range(0, 0x8000)]

DWORD ByteCount

)

BOOLEAN RpcWinStationTerminateProcess (

[in] SERVER _HANDLE hServer,
[out] DWORD *pResult,
[in] DWORD ProcessId,
[in] DWORD ExitCode

)

void Opnum38NotUsedOnWire (void) ;
void Opnum39NotUsedOnWire (void) ;
void Opnum40NotUsedOnWire (void) ;
void Opnum4lNotUsedOnWire (void) ;
void Opnumé42NotUsedOnWire (void) ;

BOOLEAN RpcWinStationGetAllProcesses (

[in] SERVER_HANDLE hServer,

[out] DWORD *pResult,

[in] ULONG Level,

[in, out] BOUNDED_ULONG *pNumberOfProcesses,
[

out, size_ is(, *pNumberOfProcesses)]
PTS_ALL PROCESSES_INFO *ppTsAllProcessesInfo
)i

BOOLEAN RpcWinStationGetProcessSid(

[in] SERVER_HANDLE hServer,
[in] DWORD dwUniqueProcessId,
[in] LARGE INTEGER ProcessStartTime,
[out] LONG *pResult,
[in,out,unique, size is(dwSidSize)]

PBYTE pProcessUserSid,
[in, range(0, 1024)]

DWORD dwSidSize,

[MS-TSTS-Diff] - v20210625

Terminal Services Terminal Server Runtime Interface Protocol
Copyright © 2021 Microsoft Corporation

Release: June 25, 2021

204 / 253

[in, out] DWORD *pdwSizeNeeded
)i

BOOLEAN RpcWinStationGetTermSrvCountersValue (

[in] SERVER HANDLE hServer,
[out] DWORD *pResult,
[in, range(0, 0x1000)]

DWORD dwEntries,

[in,out, size is(dwEntries)]
PTS_COUNTER pCounter
)i
BOOLEAN RpcWinStationReInitializeSecurity(

[in] SERVER HANDLE hServer,
[out] DWORD *pResult
)

void Opnum47NotUsedOnWire (void) ;
void Opnum48NotUsedOnWire (void) ;
void Opnum49NotUsedOnWire (void) ;
void Opnum50NotUsedOnWire (void) ;
void Opnum51NotUsedOnWire (void) ;
void Opnum52NotUsedOnWire (void) ;

BOOLEAN RpcWinStationGetLanAdapterName (

[in] SERVER HANDLE hServer,
[out] DWORD *pResult,
[in, range(0, 0x1000)]

DWORD PdNameSize,

[in,size is (PdNameSize)] PWCHAR pPdName,
[in, range(0, 1024)]

ULONG LanAdapter,
[out] ULONG *pLength,
[out, size is(, *pLength)]

PWCHAR *ppLlanAdapter

):
void Opnumb54NotUsedOnWire (void) ;
void Opnum55NotUsedOnWire (void) ;
void Opnumb56NotUsedOnWire (void) ;
void Opnumb57NotUsedOnWire (void) ;

BOOLEAN RpcWinStationUpdateSettings (

[in] SERVER HANDLE hServer,

[out] DWORD *pResult,

[in] DWORD SettingsClass,

[in] DWORD SettingsParameters
)

BOOLEAN RpcWinStationShadowStop (

[in] SERVER_HANDLE hServer,

[out] DWORD *pResult,
[in] DWORD LogonId,

[in] BOOLEAN bWait

)

BOOLEAN RpcWinStationCloseServerEx (
[in, out] SERVER_HANDLE *phServer,
[out] DWORD *pResult
)i

BOOLEAN RpcWinStationIsHelpAssistantSession (

[MS-TSTS-Diff] - v20210625

Terminal Services Terminal Server Runtime Interface Protocol
Copyright © 2021 Microsoft Corporation

Release: June 25, 2021

205/ 253

[in] SERVER HANDLE hServer,
[out] DWORD* pResult,
[in] ULONG SessionId
)

BOOLEAN RpcWinStationGetMachinePolicy (
[in] SERVER HANDLE hServer,
[in,out,size is(bufferSize)]

PBYTE pPolicy,
[in, range(0, 0x8000)]

ULONG bufferSize
)

void Opnum63NotUsedOnWire (void) ;
void Opnum64NotUsedOnWire (void) ;

BOOLEAN RpcWinStationCheckLoopBack (

[in] SERVER HANDLE hServer,
[out] DWORD *pResult,
[in] DWORD ClientLogonId,
[in] DWORD TargetLogonlId,
[in,size is (NameSize)]

PWCHAR pTargetServerName,
[in, range(0, 1024)]

DWORD NameSize

)i

BOOLEAN RpcConnectCallback (

[in] SERVER HANDLE hServer,
out] DWORD *pResult,
in] DWORD TimeOut,
in] ULONG AddressType,

in,size is(AddressSize)] PBYTE pAddress,
in, range(0, 0x1000)]
ULONG AddressSize

[
[
[
[
[

)7
void Opnum67NotUsedOnWire (void) ;
void Opnum68NotUsedOnWire (void) ;
void Opnum69NotUsedOnWire (void) ;

BOOLEAN RpcWinStationGetAllProcesses NT6 (

[in] SERVER_HANDLE hServer,
out] DWORD *pResult,
in] ULONG Level,

[
[
[
[

out, size_ is(, *pNumberOfProcesses)]

PTS_ALL PROCESSES INFO NT6 *ppTsAllProcessesInfo

)
void Opnum71NotUsedOnWire (void) ;
void Opnum72NotUsedOnWire (void) ;
void Opnum73NotUsedOnWire (void) ;
void Opnum74NotUsedOnWire (void) ;

BOOLEAN RpcWinStationOpenSessionDirectory (

[in] SERVER_HANDLE hServer,
[out] DWORD *pResult,
[in, string, max is(64)]

PWCHAR pszServerName

)i

in, out] BOUNDED ULONG *pNumberOfProcesses,

[MS-TSTS-Diff] - v20210625

Terminal Services Terminal Server Runtime Interface Protocol

Copyright © 2021 Microsoft Corporation
Release: June 25, 2021

206 / 253

6.4 Appendix A.4: TSVIPRpc.idl

import "ms-dtyp.idl";

#include "ms-tsts_allproc.h"

]

uuid(53b46b02-c73b-4a3e-8dee-bl6b80672£c0),

version(1.0),
pointer default (unique)

interface TSVIPPublic

HRESULT RpcGetSessionIP (
[in] handle t

[in] USHORT

[in] DWORD

[ref, out] TSVIPSession

)i

6.5 Appendix A.5: winsta.h

For ease of implementation, the full header is provided.

import "ms-dtyp.idl";

//

[MS-TSTS] specific defines

#define WDPREFIX LENGTH
#define STACK ADDRESS_LENGTH
#define MAX BR_NAME

#define DIRECTORY_ LENGTH
#define INITIALPROGRAM LENGTH
#define USERNAME LENGTH
#define DOMAIN_ LENGTH

#define PASSWORD_LENGTH
#define NASISPECIFICNAME LENGTH
#define NASIUSERNAME LENGTH
#define NASIPASSWORD LENGTH
#define NASISESSIONNAME LENGTH
#define NASIFILESERVER LENGTH

#define CLIENTDATANAME LENGTH
#define CLIENTNAME LENGTH
#define CLIENTADDRESS LENGTH
#define IMEFILENAME LENGTH
#define DIRECTORY_ LENGTH

#define CLIENTLICENSE LENGTH
#define CLIENTMODEM LENGTH
#define CLIENT PRODUCT ID LENGTH
#define MAX COUNTER_ EXTENSIONS
#define WINSTATIONNAME LENGTH

typedef enum SDCLASS {

SdNone = 0,
SdConsole,
SdNetwork,
SdAsync,
SdOemTransport

hBinding,
Family,
SessionId,
*ppVIPSession

12

128

65

256
256

20
17
14
14
47
24
16
47

20
30
32

256

32
40
32

32

[MS-TSTS-Diff] - v20210625

Terminal Services Terminal Server Runtime Interface Protocol

Copyright © 2021 Microsoft Corporation
Release: June 25, 2021

207 / 253

} SDCLASS;

typedef enum FL

OWCONTROLCLASS {

FlowControl None,

FlowControl Hardware,

FlowControl Software
} FLOWCONTROLCLASS;

typedef enum WI
State Active
State_Connec
State Connec
State Shadow
State Discon
State Idle =
State Listen
State Reset
State_Down =
State Init =

} WINSTATIONSTAT

typedef WCHAR
typedef WCHAR
typedef WCHAR
typedef WCHAR

typedef WCHAR

typedef CHAR CLIENTDATANAME[CLIENTDATANAME LENGTH + 1];

typedef CHAR * P

typedef WCHAR WINSTATIONNAME [WINSTATIONNAME LENGTH + 1];

typedef struct

USHORT wYear
USHORT wMont
USHORT wDayO
USHORT wDay;
USHORT wHour
USHORT wMinu
USHORT wSeco
USHORT wMill
} TS_SYSTEMTIME;

typedef struct

LONG Bias;
WCHAR Standa

NSTATIONSTATECLASS {
= O,
ted =1
tQuery
= 3,
nected
5,

= 6,
=1,

8,

9
ECLASS;

-~
N
~

Il
N
<

NASISPECIFICNAME [NASISPECIFICNAME LENGTH + 1];

NASTIUSERNAME [NASIUSERNAME LENGTH + 1];

NASIPASSWORD[NASIPASSWORD LENGTH + 1];

NASISESIONNAME [NASISESSIONNAME LENGTH + 1];

NASIFILESERVER[NASIFILESERVER LENGTH + 1];

CLIENTDATANAME;

TS SYSTEMTIME ({
h;
fiWeek;

7

te;

nd;
iseconds;

TS TIME ZONE INFORMATION {

rdName [32];

TS_SYSTEMTIME StandardDate;

LONG Standar
WCHAR Daylig

dBias;
htName [32];

TS_SYSTEMTIME DaylightDate;

LONG Dayligh
} TS _TIME ZONE I

#ifdef WING4
typedef unsigned
#else

typedef ULONG UL
#endif

typedef ULONG
typedef enum {

SF_SERVICES
} SESSION FILTER

tBias;
NFORMATION;

_ int64 ULONG_PTR;

ONG_PTR;

PTR SIZE T;

SESSION POPUP

’

[MS-TSTS-Diff] - v2021
Terminal Services Term

0625
inal Server Runtime Interface Protocol

Copyright © 2021 Microsoft Corporation

Release: June 25, 2021

208 / 253

#define PROTOCOL_CONSOLE 0
#define PROTOCOL_ICA 1
#define PROTOCOL_TSHARE 2
#define PROTOCOL_RDP 2
#define PDNAME LENGTH 32
#define WDNAME_LENGTH 32
#define CDNAME_LENGTH 32
#define DEVICENAME LENGTH 128
#define MODEMNAME LENGTH DEVICENAME LENGTH
#define CALLBACK_LENGTH 50
#define DLLNAME_LENGTH 32

#define WINSTATIONCOMMENT LENGTH 60
#define MAX LICENSE SERVER LENGTH 1024

#define LOGONID CURRENT ((ULONG) -1)
#define MAX PDCONFIG 10
#define TERMSRV TOTAL SESSIONS 1
#define TERMSRV DISC SESSIONS 2
#define TERMSRV RECON SESSIONS 3

#define TERMSRV CURRENT ACTIVE SESSIONS 4
#define TERMSRV_ CURRENT DISC SESSIONS 5
#define TERMSRV_PENDING_ SESSIONS 6
#define TERMSRV_SUCC_TOTAL LOGONS 7
#define TERMSRV_SUCC_LOCAL_ LOGONS 8
#define TERMSRV SUCC REMOTE LOGONS 9
#define TERMSRV_SUCC_SESSIONO_LOGONS 10
#define TERMSRV_CURRENT TERMINATING SESSIONS 11
#define TERMSRV_CURRENT_ LOGGEDON_SESSIONS 12

#define NO FALLBACK DRIVERS 0x0
#define FALLBACK_BESTGUESS 0x1

#define FALLBACK_PCL 0x2
#define FALLBACK PS 0x3
#define FALLBACK PCLANDPS 0x4

/*********************************

* WinStationOpen access values
*********************************/

#define WINSTATION QUERY 0x00000001 /* WinStationQueryInformation ()
#define WINSTATION SET 0x00000002 /* WinStationSetInformation ()
#define WINSTATION RESET 0x00000004 /* WinStationReset ()

#define WINSTATION VIRTUAL 0x00000008 /* read/write direct data
#define WINSTATION SHADOW 0x00000010 /* WinStationShadow ()

#define WINSTATION LOGON 0x00000020 /* logon to WinStation

#define WINSTATION LOGOFF 0x00000040 /* WinStationLogoff ()

#define WINSTATION MSG 0x00000080 /* WinStationMsg ()

#define WINSTATION CONNECT 0x00000100 /* WinStationConnect ()

#define WINSTATION DISCONNECT 0x00000200 /* WinStationDisconnect ()

#define WINSTATION_ GUEST ACCESS (WINSTATION_LOGON)

#define WINSTATION_ CURRENT GUEST_ ACCESS (WINSTATION_VIRTUAL I\
WINSTATIONiLOGOFF)

#define WINSTATION USER ACCESS (WINSTATION GUEST ACCESS | \
WINSTATION QUERY | \
WINSTATION CONNECT)

#define WINSTATION CURRENT USER ACCESS (WINSTATION SET | \
WINSTATION RESET | \
WINSTATION VIRTUAL | \
WINSTATION LOGOFF | \
WINSTATION DISCONNECT)

#define WINSTATION ALL ACCESS (STANDARD RIGHTS REQUIRED | \

WINSTATION QUERY |
WINSTATION SET |
WINSTATION RESET |
WINSTATION VIRTUAL |
WINSTATION SHADOW |
WINSTATION_ LOGON |
WINSTATION MSG |
WINSTATION CONNECT |
WINSTATION DISCONNECT)

PP A

*/
*/
*/
*/
*/
*/
*/
*/
*/
*/

[MS-TSTS-Diff] - v20210625

Terminal Services Terminal Server Runtime Interface Protocol
Copyright © 2021 Microsoft Corporation

Release: June 25, 2021

209 / 253

typedef WCHAR PDNAME[PDNAME LENGTH + 1];
typedef WCHAR * PPDNAME;

typedef WCHAR WDNAME[WDNAME LENGTH + 1 1;
typedef WCHAR * PWDNAME;

typedef WCHAR CDNAME[CDNAME LENGTH + 1];
typedef WCHAR * PCDNAME;

typedef WCHAR DEVICENAME [DEVICENAME LENGTH + 1];
typedef WCHAR * PDEVICENAME;

typedef WCHAR MODEMNAME [MODEMNAME LENGTH + 1];
typedef WCHAR * PMODEMNAME;

typedef WCHAR DLLNAME[DLLNAME LENGTH + 1];
typedef WCHAR * PDLLNAME;
typedef CHAR DLLNAMEA[DLLNAME LENGTH + 1];

typedef WCHAR WDPREFIX[WDPREFIX LENGTH + 1];
typedef WCHAR * PWDPREFIX;

/*
* Stack address structure
*/

typedef struct CLIENT STACK ADDRESS {

BYTE Address[STACK ADDRESS LENGTH]; // bytes 0,1 family,

} CLIENT STACK ADDRESS, *PCLIENT_ STACK ADDRESS;

typedef struct TS TRACE {
WCHAR TraceFile[256];
BOOLEAN fDebugger;
BOOLEAN fTimestamp;
ULONG TraceClass;
ULONG TraceEnable;
WCHAR TraceOption[64];

} TS_TRACE, * PTS_TRACE;

#define EXTENDED USERNAME LEN 255
#define EXTENDED PASSWORD LEN 255
#define EXTENDED DOMAIN LEN 255

typedef struct ExtendedClientCredentials {

WCHAR UserName [EXTENDED USERNAME LEN + 1];

WCHAR Password[EXTENDED PASSWORD LEN + 1];

WCHAR Domain [EXTENDED DOMAIN LEN + 1] ;
}ExtendedClientCredentials, *pExtendedClientCredentials;

/*********************************

* User Configuration structures
*********************************/

typedef WCHAR APPLICATIONNAME[MAX BR NAME];
typedef WCHAR *PAPPLICATIONNAME;

/*

2-n address

[MS-TSTS-Diff] - v20210625

Terminal Services Terminal Server Runtime Interface Protocol
Copyright © 2021 Microsoft Corporation

Release: June 25, 2021

210/ 253

Shadow options

*/

typedef enum SHADOWCLASS {
Shadow Disable,
Shadow EnableInputNotify,
Shadow EnableInputNoNotify,
Shadow EnableNoInputNotify,
Shadow EnableNoInputNoNotify,
} SHADOWCLASS;

/*

* Callback options

*/

typedef enum CALLBACKCLASS {
Callback_Disable,
Callback Roving,
Callback Fixed,

} CALLBACKCLASS;

typedef struct POLICY TS MACHINE

{
ULONG
ULONG
ULONG
ULONG
ULONG
ULONG
ULONG
ULONG
ULONG
ULONG
ULONG
ULONG
ULONG
ULONG
ULONG
ULONG
ULONG
ULONG
ULONG
ULONG
ULONG
ULONG
ULONG
ULONG
ULONG
ULONG
ULONG
ULONG
ULONG
ULONG
ULONG
ULONG
ULONG
ULONG
ULONG
ULONG
ULONG
ULONG
ULONG
ULONG
ULONG
ULONG
ULONG
ULONG
ULONG
ULONG
ULONG

fPolicyDisableClip : 1 ;
fPolicyDisableCam 15
fPolicyDisableCcm : 1 ;
fPolicyDisableLPT 1
fPolicyDisableCpm : 1;
fPolicyPromptForPassword : 1 ;
fPolicyMaxInstanceCount : 1;
fPolicyMinEncryptionLevel : 1 ;
fPolicyFipsEnabled : 1;
fPolicyDisableAutoReconnect : 1;
fPolicyWFProfilePath: 1 ;
fPolicyWFHomeDir: 1 ;
fPolicyWFHomeDirDrive: 1 ;

’

fPolicyDenyTSConnections : 1;
fPolicyTempFoldersPerSession : 1;
fPolicyDeleteTempFoldersOnExit: 1;
fPolicyColorDepth : 1;
fPolicySessionDirectoryActive : 1;
fPolicySessionDirectoryLocation : 1;
fPolicySessionDirectoryClusterName : 1;
fPolicySessionDirectoryAdditionalParams : 1;
fPolicySessionDirectoryExposeServerIP : 1;
fPolicyPreventLicenseUpgrade : 1;
fPolicySecurelicensing : 1;

fPolicyWritableTSCCPermissionsTAB : 1;
fPolicyDisableCdm : 1;
fPolicyForceClientLptDef : 1;
fPolicyShadow : 1 ;

fPolicyResetBroken : 1 ;
fPolicyReconnectSame : 1 ;
fPolicyMaxSessionTime : 1 ;
fPolicyMaxDisconnectionTime:1;
fPolicyMaxIdleTime : 1 ;
fPolicyInitialProgram : 1 ;

fPolicySingleSessionPerUser : 1;
fPolicyDisableWallpaper : 1;
fPolicyKeepAlive : 1;

fPolicyEnableTimeZoneRedirection : 1;
fPolicyDisableForcibleLogoff : 1;
fPolicyLicensingMode : 1;
fPolicyExplicitLSDiscovery: 1;
fPolicyDisableTerminalServerTooltip:1;
fDisableClip : 1 ;

fDisableCam :

fDisableCcm :
fDisablelPT
fDisableCpm

~

B e e
~

[MS-TSTS-Diff] - v20210625

Terminal Services Terminal Server Runtime Interface Protocol
Copyright © 2021 Microsoft Corporation

Release: June 25, 2021

211 /253

ULONG fPromptForPassword : 1 ;

ULONG ColorDepth : 3;

ULONG fDenyTSConnections HE

ULONG fTempFoldersPerSession : 1;

ULONG fDeleteTempFoldersOnExit: 1;

ULONG fWritableTSCCPermissionsTAB : 1;

ULONG fDisableCdm : 1;

ULONG fForceClientLptDef : 1;

ULONG fResetBroken : 1 ;

ULONG fReconnectSame : 1 ;

ULONG fSingleSessionPerUser:1;

ULONG fDisableWallpaper : 1;

ULONG fKeepAliveEnable : 1;

ULONG fPreventLicenseUpgrade:1;

ULONG fSecurelicensing:1;

ULONG fEnableTimeZoneRedirection : 1;

ULONG fDisableAutoReconnect : 1;

ULONG fDisableForcibleLogoff : 1;

ULONG fPolicyEncryptRPCTraffic : 1;

ULONG fEncryptRPCTraffic : 1;

ULONG fErrorInvalidProfile : 1;

ULONG fPolicyFallbackPrintDriver : 1;

ULONG FallbackPrintDriverType : 3;

ULONG fDisableTerminalServerTooltip : 1;
BYTE bSecurityLayer;

ULONG fPolicySecuritylayer : 1;

BYTE bUserAuthentication;

ULONG fPolicyUserAuthentication : 1;

ULONG fPolicyTurnOffSingleAppMode : 1;

ULONG fTurnOffSingleAppMode : 1;

ULONG fDisablePNPPolicyIsEnfored:1;

ULONG fDisablePNPPolicyValue:1;

ULONG MaxInstanceCount;

ULONG LicensingMode;

BYTE MinEncryptionLevel;

WCHAR WEProfilePath|[DIRECTORY LENGTH + 1];
WCHAR WFHomeDir [DIRECTORY LENGTH + 1];
WCHAR WFHomeDirDrivel[4];

ULONG SessionDirectoryActive;

WCHAR SessionDirectoryLocation[DIRECTORY LENGTH+1];
WCHAR SessionDirectoryClusterName [DIRECTORY LENGTH+1];
WCHAR SessionDirectoryAdditionalParams [DIRECTORY LENGTH+1];
ULONG SessionDirectoryExposeServerIP;

ULONG KeepAliveInterval;

SHADOWCLASS Shadow;

ULONG MaxConnectionTime;

ULONG MaxDisconnectionTime;

ULONG MaxIdleTime;

WCHAR WorkDirectory[DIRECTORY LENGTH + 1];
WCHAR InitialProgram| INITIALPROGRAM LENGTH + 1];
WCHAR LicenseServers[MAX LICENSE SERVER LENGTH + 1];

} POLICY TS MACHINE, *PPOLICY TS MACHINE;

/*

* User Configuration data

*/

typedef struct USERCONFIG {

/* 1if
ULONG
ULONG
ULONG
ULONG
ULONG
ULONG
ULONG
ULONG
ULONG
ULONG
ULONG

flag is set inherit parameter from user or client configuration */
fInheritAutoLogon : 1;
fInheritResetBroken : 1;
fInheritReconnectSame : 1;
fInheritInitialProgram : 1;
fInheritCallback : 1;
fInheritCallbackNumber : 1;
fInheritShadow : 1;
fInheritMaxSessionTime : 1;
fInheritMaxDisconnectionTime : 1;
fInheritMaxIdleTime : 1;
fInheritAutoClient : 1;

[MS-TSTS-Diff] - v20210625

Terminal Services Terminal Server Runtime Interface Protocol
Copyright © 2021 Microsoft Corporation

Release: June 25, 2021

212 / 253

ULONG
ULONG
ULONG
ULONG
ULONG
ULONG
ULONG
ULONG
ULONG
ULONG
ULONG
ULONG
ULONG
ULONG
ULONG
ULONG
ULONG
ULONG
ULONG
ULONG
ULONG
ULONG
ULONG
ULONG
ULONG
ULONG
ULONG
ULONG
ULONG
ULONG
ULONG
WCHAR

fInheritSecurity : 1;
fPromptForPassword : 1;
fResetBroken : 1;
fReconnectSame : 1;
fLogonDisabled : 1;
fWallPaperDisabled : 1;
fAutoClientDrives : 1;
fAutoClientLpts : 1;
fForceClientLptDef : 1;
fRequireEncryption : 1;
fDisableEncryption : 1;
fUnusedl : 1;
fHomeDirectoryMapRoot
fUseDefaultGina : 1;
fCursorBlinkDisabled
fPublishedApp : 1;
fHideTitleBar : 1;
fMaximize : 1;
fDisableCpm 1
fDisableCdm 1
fDisableCcm : 1;
fDisablelLPT 1;
fDisableClip : 1;
fDisableExe : 1;
fDisableCam : 1;
fDisableAutoReconnect
ColorDepth : 3;
fInheritColorDepth: 1;
fErrorInvalidProfile
fPasswordIsScPin: 1;
fDisablePNPRedir:1;

CALLBACKCLASS Callback;
SHADOWCLASS Shadow;
ULONG MaxConnectionTime;

ULONG MaxDisconnectionTime;

ULONG MaxIdleTime;
ULONG KeyboardLayout;
BYTE MinEncryptionLevel;

WCHAR NWLogonServer [NASIFILESERVER LENGTH + 1];
APPLICATIONNAME PublishedName;

WCHAR WFProfilePath[DIRECTORY LENGTH + 1];
WCHAR WFHomeDir [DIRECTORY LENGTH + 1];

WCHAR WFHomeDirDrive[4

} USERCONFIG, * PUSERCONFIG;

/******************

* PD structures
******************/

typedef struct PDCONFIG2{

PDNAME PdName;

SDCLASS SdClass;
DLLNAME PdDLL;

ULONG PdFlag;

ULONG OutBufLength;
ULONG OutBufCount;
ULONG OutBufDelay;
ULONG InteractiveDelay;
ULONG PortNumber;

ULONG KeepAliveTimeout;

} PDCONFIG2, * PPDCONFIG2;

/*

*

PdFlag defines

1;

1;

1;

1;

UserName [USERNAME LENGTH + 1];

WCHAR Domain [DOMAIN LENGTH + 1];

WCHAR Password[PASSWORD LENGTH + 1];

WCHAR WorkDirectory[DIRECTORY LENGTH + 1];
WCHAR InitialProgram]| INITIALPROGRAM LENGTH + 11
WCHAR CallbackNumber[CALLBACK LENGTH + 1];

[MS-TSTS-Diff] - v20210625
Terminal Services Terminal Server Runtime Interface Protocol
Copyright © 2021 Microsoft Corporation

Release: June 25, 2021

213/ 253

*/

#define PD_UNUSED 0x00000001
#define PD RELIABLE 0x00000002
#define PD_FRAME 0x00000004
#define PD_CONNECTION 0x00000008
#define PD_CONSOLE 0x00000010
#define PD_LANA 0x00000020

#define PD TRANSPORT 0x00000040
#define PD SINGLE INST 0x00000080
#define PD NOLOW WATERMARK 0x00000100

typedef enum RECEIVEFLOWCONTROLCLASS {

ReceiveFlowControl None,

ReceiveFlowControl RTS,

ReceiveFlowControl DTR,
} RECEIVEFLOWCONTROLCLASS;

typedef enum TRANSMITFLOWCONTROLCLASS {

TransmitFlowControl None,

TransmitFlowControl CTS,

TransmitFlowControl DSR,
} TRANSMITFLOWCONTROLCLASS;

typedef struct FLOWCONTROLCONFIG {
ULONG fEnableSoftwareTx: 1;
ULONG fEnableSoftwareRx: 1;
ULONG fEnableDTR: 1;
ULONG fEnableRTS: 1;
CHAR XonChar;
CHAR XoffChar;
FLOWCONTROLCLASS Type;

RECEIVEFLOWCONTROLCLASS HardwareReceive;
TRANSMITFLOWCONTROLCLASS HardwareTransmit;
} FLOWCONTROLCONFIG, * PFLOWCONTROLCONFIG;

typedef enum ASYNCCONNECTCLASS {
Connect CTS,
Connect DSR,
Connect_ RI,
Connect_DCD,
Connect FirstChar,
Connect Perm,
} ASYNCCONNECTCLASS;

typedef struct CONNECTCONFIG {
ASYNCCONNECTCLASS Type;
ULONG fEnableBreakDisconnect: 1;
} CONNECTCONFIG, * PCONNECTCONFIG;

typedef struct ASYNCCONFIG {
DEVICENAME DeviceName;
MODEMNAME ModemName ;
ULONG BaudRate;
ULONG Parity;
ULONG StopBits;
ULONG ByteSize;
ULONG fEnableDsrSensitivity: 1;
ULONG fConnectionDriver: 1;
FLOWCONTROLCONFIG FlowControl;
CONNECTCONFIG Connect;

} ASYNCCONFIG, * PASYNCCONFIG;

typedef struct NETWORKCONFIG {
LONG LanAdapter;
DEVICENAME NetworkName;

[MS-TSTS-Diff] - v20210625

Terminal Services Terminal Server Runtime Interface Protocol

Copyright © 2021 Microsoft Corporation
Release: June 25, 2021

214 / 253

ULONG Flags;

} NETWORKCONFIG, * PNETWORKCONFIG;

X
typedef struct NASICONFIG {

NASISPECIFICNAME SpecificName;

NASIUSERNAME UserName;

NASIPASSWORD PassWord;

NASISESIONNAME SessionName;

NASIFILESERVER FileServer;

BOOLEAN GlobalSession;

} NASICONFIG, * PNASICONFIG;

typedef struct OEMTDCONFIG {
LONG Adapter;
DEVICENAME DeviceName;
ULONG Flags;

} OEMTDCONFIG, * POEMTDCONFIG;

typedef struct PDPARAMS ({
SDCLASS SdClass;
union {
NETWORKCONFIG Network;
ASYNCCONFIG Async;
NASICONFIG Nasi;
OEMTDCONFIG OemTd;
bi
} PDPARAMS, * PPDPARAMS;

typedef struct PDCONFIG ({
PDCONFIG2 Create;
PDPARAMS Params;

} PDCONFIG, * PPDCONFIG;

/***********************

* Wd structures
***********************/

typedef struct WDCONFIG {
WDNAME WdName;
DLLNAME WdDLL;
DLLNAME WsxDLL;
ULONG WdFlag;
ULONG WdInputBufferLength;
DLLNAME CfgDLL;
WDPREFIX WdPrefix;
} WDCONFIG, * PWDCONFIG;

/*
* WdFlag defines
*/

#define WDF_UNUSED

#define WDF_SHADOW_SOURCE
#define WDF_SHADOW_TARGET
#define WDF_OTHER

#define WDF_TSHARE

#define WDF DYNAMIC RECONNECT
#define WDF_USER_VCIOCTL
#define WDF_SUBDESKTOP

/***~k*************************

0x00000001
0x00000002
0x00000004
0x00000008
0x00000010
0x00000020
0x00000040
0x00008000

Kok Kk ok koK kKK

* Connection Driver structures (CD)

[MS-TSTS-Diff] - v20210625

Terminal Services Terminal Server Runtime Interface Protocol

Copyright © 2021 Microsoft Corporation
Release: June 25, 2021

215/ 253

**************************************/

/*
* connection driver classes
*/
typedef enum CDCLASS {
CdNone,
CdModem,
CdClass_Maximum,
} CDCLASS;
/* __ */

typedef struct CDCONFIG {
CDCLASS CdClass;
CDNAME CdName;
DLLNAME CdDLL;
ULONG CdFlag;

} CDCONFIG, * PCDCONFIG;

/*****************************

* Window Station structures
*****************************/

typedef struct WINSTATIONCREATE ({
ULONG fEnableWinStation : 1;
ULONG MaxInstanceCount;

} WINSTATIONCREATE, * PWINSTATIONCREATE;

typedef struct WINSTATIONCONFIG ({
WCHAR Comment[WINSTATIONCOMMENT LENGTH + 1];
USERCONFIG User;
char OEMIA[4];

} WINSTATIONCONFIG, * PWINSTATIONCONFIG;

typedef enum _SessionType {
SESSTIONTYPE UNKNOWN = O,
SESSIONTYPE SERVICES,
SESSIONTYPE LISTENER,
SESSIONTYPE REGULARDESKTOP,
SESSIONTYPE ALTERNATESHELL,
SESSIONTYPE REMOTEAPP,
SESSIONTYPE MEDIACENTEREXT

} SESSIONTYPE;

#define EXECSRVPIPENAMELEN 48

typedef enum _WINSTATIONINFOCLASS {
WinStationCreateData,
WinStationConfiguration,
WinStationPdParams,
WinStationWd,
WinStationPd,
WinStationPrinter,
WinStationClient,
WinStationModules,
WinStationInformation,
WinStationTrace,
WinStationBeep,
WinStationEncryptionOff,
WinStationEncryptionPerm,
WinStationNtSecurity,
WinStationUserToken,

216 / 253

[MS-TSTS-Diff] - v20210625

Terminal Services Terminal Server Runtime Interface Protocol
Copyright © 2021 Microsoft Corporation

Release: June 25, 2021

WinStationUnusedl,
WinStationVideoData,
WinStationInitialProgram,
WinStationCd,
WinStationSystemTrace,
WinStationVirtualData,
WinStationClientData,
WinStationSecureDesktopEnter,
WinStationSecureDesktopExit,
WinStationLoadBalanceSessionTarget,
WinStationLoadIndicator,
WinStationShadowInfo,
WinStationDigProductId,
WinStationLockedState,
WinStationRemoteAddress,
WinStationIdleTime,
WinStationLastReconnectType,
WinStationDisallowAutoReconnect,
WinStationUnused?2,
WinStationUnused3,
WinStationUnused4,
WinStationUnused5,
WinStationReconnectedFromId,
WinStationEffectsPolicy,
WinStationType,
WinStationInformationEx

} WINSTATIONINFOCLASS;

typedef struct WINSTATIONCLIENTDATA {

CLIENTDATANAME DataName;

BOOLEAN fUnicodeData;

/* BYTE Data[l]; Variable length data follows */
} WINSTATIONCLIENTDATA, * PWINSTATIONCLIENTDATA;

typedef struct WINSTATIONUSERTOKEN {
HANDLE ProcessId;
HANDLE ThreadId;
HANDLE UserToken;
} WINSTATIONUSERTOKEN, * PWINSTATIONUSERTOKEN;

typedef struct _WINSTATIONVIDEODATA {
USHORT HResolution;
USHORT VResolution;
USHORT fColorDepth;
} WINSTATIONVIDEODATA, *PWINSTATIONVIDEODATA;

typedef struct WINSTATIONCONFIG2 {
WINSTATIONCREATE Create;
PDCONFIG Pd[MAX PDCONFIG];
WDCONFIG Wd;
CDCONFIG Cd;
WINSTATIONCONFIG Config;
} WINSTATIONCONFIG2, * PWINSTATIONCONFIGZ2;

/*
* WinStation client data structure

*/

typedef struct WINSTATIONCLIENT ({
ULONG fTextOnly: 1;
ULONG fDisableCtrlAltDel: 1;
ULONG fMouse: 1;

[MS-TSTS-Diff] - v20210625

Terminal Services Terminal Server Runtime Interface Protocol
Copyright © 2021 Microsoft Corporation

Release: June 25, 2021

217/ 253

ULONG fDoubleClickDetect: 1;
ULONG fINetClient: 1;
ULONG fPromptForPassword : 1;
ULONG fMaximizeShell: 1;
ULONG fEnableWindowsKey: 1;
ULONG fRemoteConsoleAudio: 1;
ULONG fPasswordIsScPin: 1;
ULONG fNoAudioPlayback: 1;
ULONG fUsingSavedCreds: 1;
ULONG fRestrictedLogon: 1;
WCHAR ClientName[CLIENTNAME LENGTH + 1 1;
WCHAR Domain[DOMAIN LENGTH + 1];
WCHAR UserName [USERNAME LENGTH + 1];
WCHAR Password[PASSWORD LENGTH + 1];
WCHAR WorkDirectory[DIRECTORY LENGTH + 1];
WCHAR InitialProgram[INITIALPROGRAM LENGTH + 1];
ULONG SerialNumber;
BYTE EncryptionLevel;
ULONG ClientAddressFamily;
WCHAR ClientAddress[CLIENTADDRESS LENGTH + 1];
USHORT HRes;
USHORT VRes;
USHORT ColorDepth;
USHORT ProtocolType;
ULONG KeyboardLayout;
ULONG KeyboardType;
ULONG KeyboardSubType;
ULONG KeyboardFunctionKey;
WCHAR imeFileName[IMEFILENAME LENGTH + 1]
WCHAR ClientDirectory[DIRECTORY LENGTH + 1
WCHAR ClientLicense[CLIENTLICENSE LENGTH +
WCHAR ClientModem [CLIENTMODEM LENGTH + 1]
ULONG ClientBuildNumber;
ULONG ClientHardwareId;
USHORT ClientProductId;
USHORT OutBufCountHost;
USHORT OutBufCountClient;
USHORT OutBuflength;
WCHAR AudioDriverName[9];
TS _TIME ZONE INFORMATION ClientTimeZone;
ULONG ClientSessionId;
WCHAR clientDigProductId[CLIENT_PRODUCT_ID_LENGTH];
ULONG PerformanceFlags;
ULONG ActiveInputLocale;
} WINSTATIONCLIENT, * PWINSTATIONCLIENT;

7

17
1 1;

/*
* T.Share specific protocol performance counters

*/

typedef struct _TSHARE_COUNTERS {
ULONG Reserved;
} TSHARE COUNTERS, * PTSHARE COUNTERS;

/*
* WinStation protocol performance counters

*/

typedef struct PROTOCOLCOUNTERS {
ULONG WdBytes;
ULONG WdFrames;
ULONG WaitForOutBuf;
ULONG Frames;
ULONG Bytes;
ULONG CompressedBytes;
ULONG CompressFlushes;
ULONG Errors;
ULONG Timeouts;
ULONG AsyncFramingError;
ULONG AsyncOverrunError;

218 / 253

[MS-TSTS-Diff] - v20210625

Terminal Services Terminal Server Runtime Interface Protocol
Copyright © 2021 Microsoft Corporation

Release: June 25, 2021

ULONG AsyncOverflowError;
ULONG AsyncParityError;
ULONG TdErrors;

USHORT ProtocolType;
USHORT Length;

union {
TSHARE COUNTERS TShareCounters;
ULONG Reserved[100];
} Specific;

} PROTOCOLCOUNTERS, * PPROTOCOLCOUNTERS;

/*
* ThinWire cache statistics
*/

typedef struct THINWIRECACHE {
ULONG CacheReads;
ULONG CacheHits;
} THINWIRECACHE, * PTHINWIRECACHE;
#define MAX THINWIRECACHE 4

typedef struct RESERVED CACHE ({
THINWIRECACHE ThinWireCache[MAX THINWIRECACHE];
} RESERVED CACHE, * PRESERVED CACHE;

/*
* T.Share specific cache statistics

*/

typedef struct TSHARE CACHE {
ULONG Reserved;
} TSHARE CACHE, * PTSHARE CACHE;

/*
* WinStation cache statistics

*/

typedef struct CACHE STATISTICS {
USHORT ProtocolType;
USHORT Length;
union {
RESERVED CACHE ReservedCacheStats;
TSHARE CACHE TShareCacheStats;
ULONG Reserved[20];
} Specific;
} CACHE_STATISTICS, * PCACHE STATISTICS;

/*
* WinStation protocol status

*/

typedef struct PROTOCOLSTATUS {
PROTOCOLCOUNTERS Output;
PROTOCOLCOUNTERS Input;
CACHE_STATISTICS Cache;
ULONG AsyncSignal;
ULONG AsyncSignalMask;

} PROTOCOLSTATUS, * PPROTOCOLSTATUS;

#ifdef cplusplus
typedef struct PROTOCOLSTATUSEX : PROTOCOLSTATUS {
#else
typedef struct PROTOCOLSTATUSEX {

PROTOCOLSTATUS ;
#endif

LARGE_INTEGER Counters[MAX_COUNTER_EXTENSIONS];
} PROTOCOLSTATUSEX, *PPROTOCOLSTATUSEX;

/*

219 / 253

[MS-TSTS-Diff] - v20210625

Terminal Services Terminal Server Runtime Interface Protocol
Copyright © 2021 Microsoft Corporation

Release: June 25, 2021

WinStation query information

*/

typedef struct WINSTATIONINFORMATION {
WINSTATIONSTATECLASS ConnectState;
WINSTATIONNAME WinStationName;
ULONG LogonId;
LARGE_INTEGER ConnectTime;
LARGE_INTEGER DisconnectTime;
LARGE INTEGER LastInputTime;
LARGE INTEGER LogonTime;
PROTOCOLSTATUS Status;
WCHAR Domain[DOMAIN LENGTH + 1];
WCHAR UserName [USERNAME LENGTH + 1];
LARGE INTEGER CurrentTime;

} WINSTATIONINFORMATION, * PWINSTATIONINFORMATION;

/%
* Load balancing data types
*/

typedef enum LOADFACTORTYPE ({
ErrorConstraint,
PagedPoolConstraint,
NonPagedPoolConstraint,
AvailablePagesConstraint,
SystemPtesConstraint,
CPUConstraint

} LOADFACTORTYPE;

typedef struct _WINSTATIONLOADINDICATORDATA {
ULONG RemainingSessionCapacity;
LOADFACTORTYPE LoadFactor;
ULONG TotalSessions;
ULONG DisconnectedSessions;
LARGE INTEGER Id1eCPU;
LARGE INTEGER TotalCPU;
ULONG RawSessionCapacity;
ULONG reserved[9];
} WINSTATIONLOADINDICATORDATA, * PWINSTATIONLOADINDICATORDATA;

/*
* WinStation shadow states

*/

typedef enum SHADOWSTATECLASS {
State NoShadow,
State Shadowing,
State Shadowed,

} SHADOWSTATECLASS;

/*

* Shadow query/set information

*/

typedef struct WINSTATIONSHADOW {
SHADOWSTATECLASS ShadowState;
SHADOWCLASS ShadowClass;
ULONG SessionId;
ULONG ProtocolType;

} WINSTATIONSHADOW, * PWINSTATIONSHADOW;

typedef struct WINSTATIONPRODID ({
WCHAR DiqProductId[CLIENTiPRODUCTiIDiLENGTH];
WCHAR ClientDiqProductId[CLIENTiPRODUCTilDiLENGTH 1;
WCHAR OuterMOStDigProductId[CLIENT_PRODUCT_ID_LENGTH 1;
ULONG curentSessionId;
ULONG ClientSessionId;
ULONG OuterMostSessionId;

}JWINSTATIONPRODID, *PWINSTATIONPRODID;

[MS-TSTS-Diff] - v20210625

Terminal Services Terminal Server Runtime Interface Protocol
Copyright © 2021 Microsoft Corporation

Release: June 25, 2021

220/ 253

typedef

struct {

unsigned short sin family;
union {

bi

} WINSTATIONREMOTEADDRESS,

#define

struct {
USHORT sin_port;
ULONG in_addr;
UCHAR sin zero[8];

} ipvd;

struct {
USHORT sin6_port;
ULONG sin6_flowinfo;
USHORT sin6 addr[8];
ULONG sin6_scope id;

} ipvé;

*PWINSTATIONREMOTEADDRESS;

#define DEFAULT_POLICY_ID 1

#define PERSEAT POLICY ID 2

#define INTCONN POLICY ID 3

#define PERUSER_POLICY_ ID 4

#define POLICY NOT_CONFIGURED 5

#define MAXIMUM POLICY_ ID 6

/* __ */

typedef struct BEEPINPUT ({

ULONG uType;

} BEEPINPUT, * PBEEPINPUT;

/**********************

* NWLogon Structure

**********************/

#define IDTIMEOUT 32000

#define IDASYNC 32001

#define WSD_ LOGOFF 0x00000001

#define WSD_SHUTDOWN 0x00000002

#define WSD_REBOOT 0x00000004

#define WSD POWEROFF 0x00000008

#define WSD FASTREBOOT 0x00000010

#define WTS_CONSOLE_CONNECT 0x1

#define WTS_CONSOLE_DISCONNECT 0x2

#define WIS REMOTE CONNECT 0x3

#define WTS_REMOTE_DISCONNECT 0x4

#define WTS_SESSION_LOGON 0x5

#define WTS_SESSION_LOGOFF 0x6

#define WIS SESSION LOCK 0x7

#define WIS SESSION UNLOCK 0x8

#define WTS_SESSION REMOTE CONTROL 0x9

#define CREATE MASK(bit) (1 << (__bit -1))

#define WIS CONSOLE CONNECT MASK CREATE MASK (

#define WTS_CONSOLE DISCONNECT MASK CREATE_MASK (

#define WTS_REMOTE_CONNECT_ MASK CREATE_MASK (

#define WIS REMOTE DISCONNECT MASK CREATE MASK (

#define WTS_SESSION_LOGON_MASK CREATE MASK (

#define WTS_SESSION_LOGOFF_MASK CREATE MASK (

#define WTS_SESSION_LOCK_MASK CREATE MASK (

#define WTS_SESSION_UNLOCK_MASK CREATE MASK (
(

#define

typedef

WTS_SESSION REMOTE CONTROL MASK
WTS_ALL NOTIFICATION MASK

struct _SESSIONID ({

union {

ULONG SessionId;
ULONG LogonId;

CREATE_MASK
OxXFFFFFFFF

WTS_CONSOLE CONNECT)
WTS_CONSOLE DISCONNECT)

WTS REMOTE CONNECT)
WTS_REMOTE DISCONNECT)

WTS SESSION LOGON)
WTS_SESSION LOGOFF)
WTS_SESSION LOCK)

WTS SESSION UNLOCK)
WTS_SESSION REMOTE CONTROL)

[MS-TSTS-Diff] - v20210625
Terminal Services Terminal Server Runtime Interface Protocol
Copyright © 2021 Microsoft Corporation
Release: June 25, 2021

221/ 253

} _SessionId LogonId union;
WINSTATIONNAME WinStationName;
WINSTATIONSTATECLASS State;

} SESSIONID, *PSESSIONID;

#define LOGINID SESSIONID
#define PLOGINID PSESSIONID

#define TS USER AUTHENTICATION NONE 0
#define TS USER AUTHENTICATION VIA HYBRID 1
#define TS USER AUTHENTICATION VIA SSL 2
#define TS USER AUTHENTICATION DEFAULT TS USER AUTHENTICATION NONE

typedef struct _VARDATA WIRE {
USHORT Size;
USHORT Offset;

} VARDATA WIRE, *PVARDATA WIRE;

typedef struct PDPARAMSWIRE {
SDCLASS SdClass;
VARDATA WIRE SdClassSpecific;
} PDPARAMSWIRE, *PPDPARAMSWIRE;

typedef struct WINSTACONFIGWIRE ({
WCHAR Comment [61];
char OEMIA[4];
VARDATA WIRE UserConfig;
VARDATA WIRE NewFields;
} WINSTACONFIGWIRE, *PWINSTACONFIGWIRE;

#define PRODUCTINFO COMPANYNAME LENGTH 256
#define PRODUCTINFO PRODUCTID LENGTH 4

typedef struct WINSTATIONPRODUCTINFO {
WCHAR CompanyName [PRODUCTINFO COMPANYNAME LENGTH];
WCHAR ProductID[PRODUCTINFO PRODUCTID LENGTH] ;

} WINSTATIONPRODUCTINFO, *PWINSTATIONPRODUCTINFO;

#define VALIDATIONINFORMATION LICENSE LENGTH 16384
#define VALIDATIONINFORMATION HARDWAREID LENGTH 20

typedef struct WINSTATIONVALIDATIONINFORMATION {

WINSTATIONPRODUCTINFO ProductInfo;

BYTE License[VALIDATIONINFORMATION_LICENSE_LENGTH];

ULONG Licenselength;

BYTE HardwareID[VALIDATIONINFORMATION HARDWAREID LENGTH];
ULONG HardwareIDLength;

} WINSTATIONVALIDATIONINFORMATION, *PWINSTATIONVALIDATIONINFORMATION;

6.6 Appendix A.6: tsdef.h

For ease of implementation, the full header file is provided.

#ifdef cplusplus
extern "C" {
#endif

typedef ULONG TNotificationId;

#define WTS NOTIFY NONE (0x0)
#define WTS NOTIFY CREATE (0x1)
#define WTS NOTIFY CONNECT (0x2)
#define WTS NOTIFY DISCONNECT (0x4)

[MS-TSTS-Diff] - v20210625

Terminal Services Terminal Server Runtime Interface Protocol
Copyright © 2021 Microsoft Corporation

Release: June 25, 2021

222 / 253

#define WTS NOTIFY LOGON (0x8)

#define WTS NOTIFY LOGOFF (0x10)

#define WTS NOTIFY SHADOW START (0x20)
#define WTS NOTIFY SHADOW STOP (0x40)

#define WTS NOTIFY TERMINATE (0x80)

#define WTS NOTIFY CONSOLE CONNECT (0x100)
#define WTS NOTIFY CONSOLE DISCONNECT (0x200)
#define WTS NOTIFY LOCK (0x400)

#define WTS NOTIFY UNLOCK (0x800)

#define WTS NOTIFY ALL (Oxffffffff)

typedef enum WINSTATIONUPDATECFGCLASS {
WINSTACFG LEGACY,
WINSTACFG_SESSDIR

} WINSTATIONUPDATECEFGCLASS;

typedef struct SESSION CHANGE
{
LONG SessionId;
TNotificationId NotificationId;
} SESSION CHANGE;

typedef struct SESSION CHANGE *PSESSION_ CHANGE;

#ifndef TS TIME ZONE INFORMATION
#define TS TIME ZONE INFORMATION
typedef struct TS SYSTEMTIME ({
USHORT wYear;
USHORT wMonth;
USHORT wDayOfWeek;
USHORT wDay;
USHORT wHour;
USHORT wMinute;
USHORT wSecond;
USHORT wMilliseconds;
} TS_SYSTEMTIME;

typedef struct TS TIME ZONE INFORMATION {
LONG Bias;
WCHAR StandardName[32];
TS_SYSTEMTIME StandardDate;
LONG StandardBias;
WCHAR DaylightName[32];
TS SYSTEMTIME DaylightDate;
LONG DaylightBias;

} TS_TIME ZONE_ INFORMATION;

#endif // TS TIME ZONE_INFORMATION

typedef enum SESSION_FILTER ({
SF_SERVICES_SESSION_POPUP

} SESSION_ FILTER;

typedef struct CLIENT_ ID {
HANDLE UniqueProcess;
HANDLE UniqueThread;

} CLIENT ID;

typedef struct _SYSTEM_THREAD INFORMATION {
LARGE INTEGER KernelTime;
LARGE_INTEGER UserTime;

LARGE_INTEGER CreateTime;

223/ 253

[MS-TSTS-Diff] - v20210625

Terminal Services Terminal Server Runtime Interface Protocol
Copyright © 2021 Microsoft Corporation

Release: June 25, 2021

ULONG WaitTime;

PVOID StartAddress;
CLIENT ID ClientId;
LONG Priority;

LONG BasePriority;
ULONG ContextSwitches;
ULONG ThreadState;
ULONG WaitReason;

} SYSTEM THREAD INFORMATION, *PSYSTEM THREAD INFORMATION;

#ifdef cplusplus
}
#endif

6.7 Appendix A.7: allproc.h

For ease of implementation, the full header file is provided.

#ifndef TS ALLPROC ALREADY SET
#define TS ALLPROC ALREADY SET

#ifdef midl

cpp_quote ("#define TS_PROCESS_ INFO MAGIC_NT4 0x23495452")
#else

#define TS PROCESS INFO MAGIC NT4 0x23495452

#endif

typedef struct TS PROCESS INFORMATION NT4 ({
ULONG MagicNumber;
ULONG LogonId;
PVOID ProcessSid;
ULONG Pad;
} TS_PROCESS INFORMATION NT4, * PTS PROCESS INFORMATION NT4;

// sizes of TS4.0 structures (size has changed in Windows 2000)
#ifdef midl

cpp_quote ("#define SIZEOF TS4 SYSTEM THREAD INFORMATION 64")
cpp_quote("#define SIZEOF TS4 SYSTEM PROCESS INFORMATION 136")
#else

#define SIZEOF TS4 SYSTEM THREAD INFORMATION 64
#define SIZEOF TS4 SYSTEM PROCESS INFORMATION 136
#endif

#ifdef midl

cpp_quote ("#define GAP_LEVEL BASIC 0")
#else

#define GAP_LEVEL BASIC 0

#endif

typedef struct TS UNICODE_ STRING {
USHORT Length;
USHORT MaximumLength;

224 / 253

[MS-TSTS-Diff] - v20210625

Terminal Services Terminal Server Runtime Interface Protocol
Copyright © 2021 Microsoft Corporation

Release: June 25, 2021

#ifdef midl
[size is(MaximumLength),length is(Length)]PWSTR Buffer;
#else
PWSTR Buffer;
#endif
} TS_UNICODE STRING;

typedef struct TS SYS PROCESS INFORMATION {

ULONG NextEntryOffset;

ULONG NumberOfThreads;

LARGE INTEGER SpareLil;

LARGE INTEGER SpareLiZ2;

LARGE _INTEGER SparelLi3;

LARGE INTEGER CreateTime;

LARGE INTEGER UserTime;

LARGE INTEGER KernelTime;

TS_UNICODE STRING ImageName;

LONG BasePriority; // KPRIORITY in ntexapi.
DWORD UniqueProcessId; // HANDLE in ntexapi.h
DWORD InheritedFromUniqueProcessId; // HANDLE in ntexapi.h

ULONG HandleCount;
ULONG SessionId;
ULONG SpareUl3;
SIZE T PeakVirtualSize;
SIZE T VirtualSize;
ULONG PageFaultCount;
ULONG PeakWorkingSetSize;
ULONG WorkingSetSize;
SIZE T QuotaPeakPagedPoolUsage;
SIZE T QuotaPagedPoolUsage;
SIZE T QuotaPeakNonPagedPoolUsage;
SIZE T QuotaNonPagedPoolUsage;
SIZE T PagefileUsage;
SIZE T PeakPagefileUsage;
SIZE T PrivatePageCount;
}
TS SYS PROCESS INFORMATION, *PTS SYS PROCESS INFORMATION;

typedef struct TS ALL PROCESSES INFO {
PTS_SYS_ PROCESS_ INFORMATION pTsProcessInfo;

DWORD SizeOfSid;
#ifdef midl

[size is(Size0OfSid)] PBYTE pSid;
#else

PBYTE pSid;
#endif

}
TS ALL PROCESSES INFO, *PTS ALL PROCESSES INFO;

//

// The following structures are defined for taking care of interface

// change in Whistler.

typedef struct NT6 TS UNICODE STRING {
USHORT Length;
USHORT MaximumLength;

#ifdef midl

[size is(MaximumLength / 2),length is(Length / 2)]PWSTR Buffer;

#else

PWSTR Buffer;
#endif
} NT6 TS UNICODE STRING;

typedef struct _TS_SYS PROCESS_ INFORMATION NT6 {
ULONG NextEntryOffset;
ULONG NumberOfThreads;

[MS-TSTS-Diff] - v20210625

Terminal Services Terminal Server Runtime Interface Protocol
Copyright © 2021 Microsoft Corporation

Release: June 25, 2021

225/ 253

LARGE INTEGER SpareLil;
LARGE_INTEGER SparelLiZ2;
LARGE_INTEGER SpareLi3;
LARGE_INTEGER CreateTime;
LARGE INTEGER UserTime;
LARGE INTEGER KernelTime;

NT6_TS UNICODE STRING ImageName;

LONG BasePriority;
DWORD UniqueProcessId;

// KPRIORITY in ntexapi.

// HANDLE in ntexapi.h

DWORD InheritedFromUniqueProcessId; // HANDLE in ntexapi.h

ULONG HandleCount;

ULONG SessionId;

ULONG SpareUl3;

SIZE T PeakVirtualSize;

SIZE T VirtualSize;

ULONG PageFaultCount;

ULONG PeakWorkingSetSize;

ULONG WorkingSetSize;

SIZE T QuotaPeakPagedPoolUsage;
SIZE T QuotaPagedPoolUsage;

SIZE T QuotaPeakNonPagedPoolUsage;

SIZE T QuotaNonPagedPoolUsage;
SIZE T PagefileUsage;
SIZE T PeakPagefileUsage;
SIZE_T PrivatePageCount;

}

TS SYS PROCESS INFORMATION NT6, *PTS SYS PROCESS INFORMATION NT6;

typedef struct _TS ALL PROCESSES INFO_NT6 {
PTS SYS PROCESS INFORMATION NT6 pTsProcessInfo;

DWORD
#ifdef midl
[size is(Size0OfSid)] PBYTE
#else
PBYTE
#endif
}

SizeOfSid;
pSid;

pSid;

TS ALL PROCESSES INFO NT6, *PTS ALL PROCESSES INFO NT6;

//
//

// TermSrv Counter Header

//

typedef struct TS _COUNTER HEADER {
DWORD dwCounterID;
boolean bResult;

// identifies counter
// result of operation performed on

} TS COUNTER HEADER, *PTS COUNTER HEADER;

typedef struct TS COUNTER {
TS_COUNTER_HEADER counterHead;
DWORD dwValue;
LARGE INTEGER startTime;

} TS_COUNTER, *PTS_COUNTER;

#endif // TS ALLPROC ALREADY SET

// returned value
// start time for counter

#define TSVIP MAX ADAPTER ADDRESS LENGTH 16

typedef struct TSVIP_SOCKADDR ({
#ifdef midl

union switch (unsigned short sin family) u

{
case 2:
struct {
USHORT sin_port;
ULONG in_addr;
UCHAR sin zero([8];
} ipvé4;
case 23:

// AF INET

// AF INET6

counter

[MS-TSTS-Diff] - v20210625

Terminal Services Terminal Server Runtime Interface Protocol

Copyright © 2021 Microsoft Corporation
Release: June 25, 2021

226 / 253

struct {

USHORT sin6 port;
ULONG sin6_ flowinfo;
USHORT sin6 addr[8];
ULONG sin6 scope id;
} ipvé;
i
#else
USHORT sin_ family;
union
{
struct {
USHORT sin port;
ULONG in_addr;
UCHAR sin zero([8];
} ipvé4;
struct {
USHORT sin6 port;
ULONG sin6_ flowinfo;
USHORT sin6 addr[8];
ULONG sin6 scope id;
} ipve;
boug
#endif

} TSVIP SOCKADDR,

*PTSVIP SOCKADDR;

typedef struct TSVIPAddress {
DWORD dwVersion; //Structure version
TSVIP_SOCKADDR IPAddress; //IPv4 is in network byte order.
ULONG PrefixOrSubnetMask; //IPv4 is a mask in network byte order,
#ifdef midl //IPv6 is prefix length.
[range (0, TSVIP_MAX ADAPTER ADDRESS LENGTH)]
UINT PhysicalAddressLength;

[length is(PhysicalAddressLength)]

BYTE PhysicalAddreSS[TSVIP_MAX_ADAPTER_ADDRESS_LENGTH];

#else

UINT PhysicalAddressLength;

BYTE PhysicalAddreSS[TSVIP_MAX_ADAPTER_ADDRESS_LENGTH];
#endif

ULONG LeaseExpires;

ULONG T1;

ULONG T2;
} TSVIPAddress,

*PTSVIPAddress;
typedef struct TSVIPSession ({

DWORD dwVersion; //Structure version

DWORD SessionId; //Session ID

TSVIPAddress SessionIP; //IPAddress assign to session
} TSVIPSession,

*PTSVIPSession;
/ /NBD end

6.8 Appendix A.8: SessEnvRpc.idl

//

// Interface for accessing SessionEnv functionality.

// Public interface

//

import "ms-dtyp.idl";

typedef
{

enum

SHADOW_ CONTROL_REQUEST VIEW = 0,

227/ 253

[MS-TSTS-Diff] - v20210625

Terminal Services Terminal Server Runtime Interface Protocol
Copyright © 2021 Microsoft Corporation

Release: June 25, 2021

SHADOW CONTROL_REQUEST TAKECONTROL,
SHADOW CONTROL REQUEST Count
} SHADOW CONTROL REQUEST;

typedef

{

enum

SHADOW_PERMISSION REQUEST SILENT = 0,
SHADOW PERMISSION REQUEST REQUESTPERMISSION,
SHADOW PERMISSION REQUEST Count

} SHADOW PERMISSION REQUEST;

typedef

{

enum

SHADOW REQUEST RESPONSE ALLOW = O,
SHADOW REQUEST RESPONSE DECLINE,
SHADOW REQUEST RESPONSE POLICY PERMISSION REQUIRED,
SHADOW REQUEST RESPONSE POLICY DISABLED,
SHADOW REQUEST RESPONSE POLICY VIEW ONLY,
SHADOW REQUEST RESPONSE POLICY VIEW ONLY PERMISSION REQUIRED,
SHADOW REQUEST RESPONSE SESSION ALREADY CONTROLLED
} SHADOW REQUEST RESPONSE;

uuid (1257B580-CE2F-4109-82D6-A9459D0BF6RBC) ,
version(1.0),
pointer default (unique)

]

interface SessEnvPublicRpc

{

cpp_quote("#ifndef SESSENVPUBLICRPC ENDPOINT DEF")
cpp_quote ("#define _SESSENVPUBLICRPC_ENDPOINT_DEF")
cpp_quote("static LPCWSTR SESSENVPUBLICRPC ENDPOINT = L\"\\\\pipe\\\\SessEnvPublicRpc\";

"

cpp_quote("static LPCWSTR SESSENVPUBLICRPC PROTOCOL SEQUENCE = L\"ncacn np\"; ")
cpp_quote ("#endif // ! SESSENVPUBLICRPC_ ENDPOINT_ DEF")

//
//
//
//
//
//
//
//
//
//
//
//
//

Purpose:
Create shadow invitation

Parameters:

IN hBinding

IN TargetSessionId - session ID.

IN eRequestControl -request control or view only

IN eRequestPermission -request permission or silent

OUT pePermission -shadow request or permission request response
OUT pszInvitation -collab API invitation string

IN cchInvitation - size of pszInvitation in WCHARs

HRESULT RpcShadow2 (

[in] handle_t hBinding,

[in] ULONG TargetSessionId,

[in] SHADOW_ CONTROL REQUEST eRequestControl,

[in] SHADOW_ PERMISSION REQUEST eRequestPermission,

[out] SHADOW REQUEST RESPONSE * pePermission,

[out, string, size is(cchInvitation)] LPWSTR pszInvitation,
[

)

in, range(l, 8192)] ULONG cchInvitation

’

228 / 253

[MS-TSTS-Diff] - v20210625

Terminal Services Terminal Server Runtime Interface Protocol
Copyright © 2021 Microsoft Corporation

Release: June 25, 2021

7 (Updated Section) Appendix B: Product Behavior

The information in this specification is applicable to the following Microsoft products or supplemental
software. References to product versions include updates to those products.

= Windows NT operating system

= Windows 2000 operating system

= Windows XP operating system

= Windows Server 2003 operating system

= Windows Vista operating system

= Windows Server 2008 operating system

= Windows 7 operating system

= Windows Server 2008 R2 operating system
= Windows 8 operating system

= Windows Server 2012 operating system

= Windows 8.1 operating system

= Windows Server 2012 R2 operating system
= Windows 10 operating system

= Windows Server 2016 operating system

= Windows Server operating system

= Windows Server 2019 operating system

= Windows Server 2022 operating system

= Windows 11 operating system

Exceptions, if any, are noted in this section. If an update version, service pack or Knowledge Base
(KB) number appears with a product name, the behavior changed in that update. The new behavior
also applies to subsequent updates unless otherwise specified. If a product edition appears with the
product version, behavior is different in that product edition.

Unless otherwise specified, any statement of optional behavior in this specification that is prescribed
using the terms "SHOULD" or "SHOULD NOT" implies product behavior in accordance with the
SHOULD or SHOULD NOT prescription. Unless otherwise specified, the term "MAY" implies that the
product does not follow the prescription.

<1> Section 1.3: Virtual machines that are running Windows NT and Windows 2000 operating
systems are not supported and are not visible to VM Host Agent callers.

<2> Section 1.3: LSM Session, LSM Notification, LSM Enumeration, TermService, and TermService
Listener are not available in Windows NT, Windows 2000, Windows XP, and Windows Server 2003.

Legacy is available in Windows (except Windows NT). VM Host Agent Session, VM Host Agent
Notification, and VM Host Agent Enumeration are available in Windows Server 2008 R2 operating
system.

229 / 253

[MS-TSTS-Diff] - v20210625

Terminal Services Terminal Server Runtime Interface Protocol
Copyright © 2021 Microsoft Corporation

Release: June 25, 2021

<3> Section 1.8: Windows uses only the values specified in [MS-ERREF].

<4> Section 1.9: Does not exist in Windows NT, Windows 2000, Windows XP, and Windows Server
2003.

<5> Section 1.9: Supported in Windows 7, Windows 8, Windows 8.1, and Windows 10.

<6> Section 1.9: Does not exist in Windows NT, Windows 2000, Windows XP, and Windows Server
2003.

<7> Section 1.9: Supported in Windows 7, Windows 8, Windows 8.1, and Windows 10.

<8> Section 1.9: Does not exist in Windows NT, Windows 2000, Windows XP, and Windows Server
2003.

<9> Section 1.9: Supported in Windows 7, Windows 8, Windows 8.1, and Windows 10.

<10> Section 1.9: Does not exist in Windows NT, Windows 2000, Windows XP, and Windows Server
2003.

<11> Section 1.9: Does not exist in Windows NT, Windows 2000, Windows XP, and Windows Server
2003.

<12> Section 2.2.1.8: Not supported on Windows NT, Windows 2000, Windows XP, and Windows
Server 2003. In Windows Vista, Windows Server 2008, Windows 7, Windows Server 2008 R2,
Windows 8, Windows Server 2012, Windows 8.1, and Windows Server 2012 R2,
WinStationConnectState is not defined; instead, the following two enum values are used:

Value Description

WinStationReconnectedFromlId | In case of reconnected sessions, this will return the session ID of the temp
session from which it was reconnected, or -1 if there is no temp session.

WinStationEffectsPolicy SKU-Differentiation policy for the DWM-over-Terminal Services.

<13> Section 2.2.1.8: WinStationCreateData is not supported on Windows NT and Windows 2000.
<14> Section 2.2.1.8: WinStationPrinter is not supported on Windows NT and Windows 2000.

<15> Section 2.2.1.8: WinStationTrace is not supported on Windows NT and Windows 2000.

<16> Section 2.2.1.8: WinStationBeep not supported on Windows NT and Windows 2000.

<17> Section 2.2.1.8: WinStationEncryptionOff is not supported on Windows NT and Windows 2000.

<18> Section 2.2.1.8: WinStationEncryptionPerm is not supported on Windows NT and Windows
2000.

<19> Section 2.2.1.8: Used by Winlogon.

<20> Section 2.2.1.8: WinStationNtSecurity is supported only on Windows NT, Windows 2000,
Windows XP, and Windows Server 2003.

<21> Section 2.2.1.8: WinStationVideoData is supported only on Windows NT, Windows 2000,
Windows XP, and Windows Server 2003.

<22> Section 2.2.1.8: WinStationInitialProgram is supported only on Windows NT, Windows 2000,
Windows XP, and Windows Server 2003.

230/ 253

[MS-TSTS-Diff] - v20210625

Terminal Services Terminal Server Runtime Interface Protocol
Copyright © 2021 Microsoft Corporation

Release: June 25, 2021

<23> Section 2.2.1.8: WinStationCd is supported only on Windows NT, Windows 2000, Windows XP,
and Windows Server 2003.

<24> Section 2.2.1.8: WinStationSystemTrace is supported only on Windows NT, Windows 2000,
Windows XP, and Windows Server 2003.

<25> Section 2.2.1.8: WinStationClientData is supported only on Windows NT, Windows 2000,
Windows XP, and Windows Server 2003.

s pansi=lenfelpiavan it WinStationSecureDesktopEnter is supported only on Windows NT, Windows
2000, Windows XP, and Windows Server 2003.

<27> Section 2.2.1.8: WinStationSecureDesktopEXxit is supported only on Windows NT, Windows
2000, Windows XP, and Windows Server 2003.

<28> Section 2.2.1.8: WinStationLoadBalanceSessionTarget is supported only on Windows NT,
Windows 2000, Windows XP, and Windows Server 2003.

<29> Section 2.2.1.8: WinStationShadowInfo is supported only on Windows NT, Windows 2000,
Windows XP, and Windows Server 2003.

<30> Section 2.2.1.8: WinStationDigProductld is supported only on Windows NT, Windows 2000,
Windows XP, and Windows Server 2003.

<31> Section 2.2.1.8: Used by Winlogon.

<32> Section 2.2.1.8: WinStationldleTime is supported only on Windows NT, Windows 2000, Windows
XP, and Windows Server 2003.

<33> Section 2.2.1.8: WinStationLastReconnectType is supported only on Windows NT, Windows
2000, Windows XP, and Windows Server 2003.

<34> Section 2.2.1.8: WinStationDisallowAutoReconnect is supported only on Windows NT, Windows
2000, Windows XP, and Windows Server 2003.

<35> Section 2.2.1.8: WinStationType is not supported on Windows NT, Windows 2000, Windows XP,
Windows Server 2003, Windows Vista, or Windows Server 2008. For Terminal Services, the supported
session types are:

Value Meaning
TERMINAL_TYPE_SERVICE The GUID for the server session.
88f5767d-d13f-404d-a348-

8b8e030294a9

TERMINAL_TYPE_REGULAR_DESKTOP The GUID for the regular Terminal Services session.

0f0a4bf8-8362-435d-938c-
222a518a8b78

TERMINAL_TYPE_RDP_REMOTEAP The GUID for the Terminal Services Remote Applications session.

eddcc3ce-6e7e-4f4b-8439-
3d9ad4c9440f

TERMINAL_TYPE_MCE The GUID for the Windows Media Center Edition session. For more
8dc86f1d-9969-4379-91¢c1- information, see [MSFT'WINMCE]

06feldc60575

231/ 253

[MS-TSTS-Diff] - v20210625

Terminal Services Terminal Server Runtime Interface Protocol
Copyright © 2021 Microsoft Corporation

Release: June 25, 2021

<36> Section 2.2.1.8: WinStationInformationEx is not supported on Windows NT, Windows 2000,
Windows XP, Windows Server 2003, Windows Vista, or Windows Server 2008.

<37> Section 2.2.1.9: State_Reset is not supported on Windows NT or Windows 2000.

<38> Section 2.2.1.10: For Terminal Services, the binaries indicated are tdnetb.dll, tdspx.dll, tdftp.dll
tdipx.dll.

<39> Section 2.2.1.10: For Terminal Services, the binary indicated is tdasync.dll.
<40> Section 2.2.1.10: Not used by Terminal Services.

<41> Section 2.2.1.18: In Windows the default or standard shell is explorer.exe. It is specified in
‘*HKLM\SOFTWARE\Microsoft\Windows NT\CurrentVersion\Winlogon\Shell.

<42> Section 2.2.2.3: For Windows this will be ULONG with 1 indicating Desktop Window Manager
(DWM) is enabled in the Terminal Services session, disabled otherwise. For more information about
DWM, see [MSDN-DWM].

<43> Section 2.2.2.3: QUERY_SESSION_DATA_LICENSE is not supported on Windows NT, Windows
2000, or Windows Server 2003.

<44> Section 2.2.2.3: QUERY_SESSION_DATA_DEVICEID is not supported on Windows NT, Windows
2000, or Windows Server 2003.

<45> Section 2.2.2.3: QUERY_SESSION_DATA_LICENSE_VALIDATION is not supported on Windows
NT, Windows 2000, Windows XP, Windows Server 2003, Windows Vista, or Windows Server 2008.

<46> Section 2.2.2.4.1.2: SessionType is not supported on Windows NT, Windows 2000, Windows XP,
or Windows Server 2003. For Terminal Services, the supported session types are as follows.

Value Meaning

TERMINAL_TYPE_SERVICE GUID for Service session.

88f5767d-d13f-404d-a348-

8b8e030294a9

TERMINAL_TYPE_REGULAR_DESKTOP GUID for regular Terminal Services session.
0f0a4bf8-8362-435d-938c-

222a518a8b78

TERMINAL_TYPE_RDP_REMOTEAP GUID for Terminal Services Remote Applications session.
eddcc3ce-6e7e-4f4b-8439-

3d9ad4c9440f

TERMINAL_TYPE_MCE GUID for Windows Media Center Edition session. For more
8dc86f1d-9969-4379-91c1- information, see [MSFT-WINMCE]

06fel1dc60575

<47> Section 2.2.2.6: PEXECENVDATA is not supported on Windows NT, Windows 2000, Windows XP,
Windows Server 2003, Windows Vista, or Windows Server 2008.

<48> Section 2.2.2.6.1: ExecEnvData is not supported on Windows NT, Windows 2000, Windows XP,
Windows Server 2003, Windows Vista, or Windows Server 2008.

<49> Section 2.2.2.6.1: ExecEnvEnum_Levell is not supported on Windows NT, Windows 2000,
Windows XP, Windows Server 2003, Windows Vista, or Windows Server 2008.

232 / 253

[MS-TSTS-Diff] - v20210625

Terminal Services Terminal Server Runtime Interface Protocol
Copyright © 2021 Microsoft Corporation

Release: June 25, 2021

<50> Section 2.2.2.6.1: ExecEnvEnum_Level2 is not supported on Windows NT, Windows 2000,
Windows XP, Windows Server 2003, Windows Vista, or Windows Server 2008.

<51> Section 2.2.2.6.1.1: ExecEnvld is not supported on Windows NT, Windows 2000, Windows XP,
Windows Server 2003, Windows Vista, or Windows Server 2008.

<52> Section 2.2.2.6.1.2: ExecEnvld is not supported on Windows NT, Windows 2000, Windows XP,
Windows Server 2003, Windows Vista, or Windows Server 2008.

<53> Section 2.2.2.7: PEXECENVDATAEX is not supported on Windows NT, Windows 2000, Windows
XP, Windows Server 2003, Windows Vista, Windows Server 2008, Windows Server 2008 R2, or
Windows 7.

<54> Section 2.2.2.7.1: ExecEnvDataEx is not supported on Windows NT, Windows 2000, Windows
XP, Windows Server 2003, Windows Vista, Windows Server 2008, Windows Server 2008 R2, or
Windows 7.

<55> Section 2.2.2.7.1: ExecEnvEnum_Levell is not supported on Windows NT, Windows 2000,
Windows XP, Windows Server 2003, Windows Vista, Windows Server 2008, Windows Server 2008 R2,
or Windows 7.

<56> Section 2.2.2.17.1: TERMSRV_PENDING_SESSIONS is not supported on Windows NT, Windows
2000, Windows XP, or Windows Server 2003.

<57> Section 2.2.2.17.1: TERMSRV_SUCC_TOTAL_LOGONS is not supported in Windows NT,
Windows 2000, or Windows XP.

<58> Section 2.2.2.17.1: TERMSRV_SUCC_LOCAL_LOGONS is not supported in Windows NT,
Windows 2000, or Windows XP.

<59> Section 2.2.2.17.1: TERMSRV_SUCC_REMOTE_LOGONS is not supported in Windows NT,
Windows 2000, or Windows XP.

<60> Section 2.2.2.17.1: TERMSRV_SUCC_SESSIONO_LOGONS is not supported in Windows NT,
Windows 2000, or Windows XP.

<61> Section 2.2.2.17.1: TERMSRV_CURRENT_TERMINATING_SESSIONS is not supported in
Windows NT, Windows 2000, Windows XP, or Windows Server 2003.

<62> Section 2.2.2.17.1: TERMSRV_CURRENT_LOGGEDON_SESSIONS is not supported in Windows
NT, Windows 2000, Windows XP, or Windows Server 2003.

<63> Section 2.2.2.18: Not used by Terminal Services.
<64> Section 2.2.2.18: Not used by Terminal Services.

<65> Section 2.2.2.18: fLogonDisabled is only supported on Windows NT, Windows 2000, Windows
XP, and Windows Server 2003.

<66> Section 2.2.2.18: fUseDefaultGina is supported only on Windows NT, Windows 2000, Windows
XP, and Windows Server 2003.

<67> Section 2.2.2.18: fCursorBlinkDisabled is not supported on Windows NT or Windows 2000.
<68> Section 2.2.2.18: fDisableAutoReconnect is not supported on Windows NT or Windows 2000.
<69> Section 2.2.2.18: ColorDepth is not supported on Windows NT and Windows 2000.

The supported values 1, 2, 3, 4, and 5 are translated, respectively, as the following number of colors
supported: 256 (8 bpp), 32,768 (15 bpp), 65,536 (16 bpp), 16 million (24 bpp), and 16 million with

233/ 253

[MS-TSTS-Diff] - v20210625

Terminal Services Terminal Server Runtime Interface Protocol
Copyright © 2021 Microsoft Corporation

Release: June 25, 2021

transparency (32 bpp). A ColorDepth value of 5 indicates 32-bit color; this is not supported on
Windows NT, Windows 2000, Windows XP, and Windows Server 2003.

<70> Section 2.2.2.18: fInheritColorDepth is not supported on Windows NT or Windows 2000.

<71> Section 2.2.2.18: fErrorInvalidProfile is not supported on Windows NT, Windows 2000, or
Windows XP.

<72> Section 2.2.2.18: fPasswordIsScPin is not supported on Windows NT, Windows 2000, or
Windows XP.

<73> Section 2.2.2.18: In Windows, the default program is explorer.exe.
<74> Section 2.2.2.18: Not used by Terminal Services.
<75> Section 2.2.2.18: Not used by Terminal Services.

<76> Section 2.2.2.18: The NWLogonServer value is not used by Terminal Services, although it can
be set and retrieved as a part of user and session configuration data.

<77> Section 2.2.2.18.1: Callback is not used by Terminal Services, although callback information
can be set and retrieved as a part of user and session configuration data.

<78> Section 2.2.2.19: fRemoteConsoleAudio is not supported on Windows NT or Windows 2000.

<79> Section 2.2.2.19: fPasswordIsScPin is not supported on Windows NT, Windows 2000, or
Windows XP.

<80> Section 2.2.2.19: fNoAudioPlayback is not supported on Windows NT, Windows 2000, Windows
XP, or Windows Server 2003.

<81> Section 2.2.2.19: fRestrictedLogon is not supported in Windows XP, Windows Server 2003,
Windows Vista, Windows Server 2008, Windows 7, Windows Server 2008 R2, Windows 8, or Windows
Server 2012.

<82> Section 2.2.2.19: In Windows, the default program is explorer.exe.

<83> Section 2.2.2.19: IPv6 is not supported in Windows NT, Windows 2000, Windows XP, or
Windows Server 2003.

<84> Section 2.2.2.19: ColorDepth is not supported on Windows NT and Windows 2000.

The supported values 1, 2, 4, 8, 16, and 32 are translated, respectively, as the following number of
colors supported: 16 (4 bpp), 256 (8 bpp), 65,536 (16 bpp), 16 million (24 bpp), 32,768 (15 bpp),
and 16 million with transparency (32 bpp). A ColorDepth value of 32 indicates 32-bit color; this is not
supported on Windows NT, Windows 2000, Windows XP, and Windows Server 2003.

ProtocolType is not supported on Windows NT or Windows 2000.
<86> Section 2.2.2.19: Not used by Terminal Services.

<87> Section 2.2.2.19 A LI |\ ot used by Terminal Services.

<88> Section 2.2.2.19: ClientTimeZone is not supported on Windows NT or Windows 2000.
<89> Section 2.2.2.19: ClientSessionld is not supported on Windows NT or Windows 2000.
<90> Section 2.2.2.19: clientDigProductId is not supported on Windows NT or Windows 2000.

If the terminal server client is either RDP 5.0, 5.1, or 6.0 and is running on Windows XP or Windows
Server 2003, this field contains the client machine's product ID from registry
HKLM\Software\microsoft\windows\currentversion\productID. If RDP 6.0 terminal server client is

234 / 253

[MS-TSTS-Diff] - v20210625

Terminal Services Terminal Server Runtime Interface Protocol
Copyright © 2021 Microsoft Corporation

Release: June 25, 2021

running on a Windows Vista-based machine, it contains a unique instance ID of LSM process which is
InstancelD in the TS registry.

<91> Section 2.2.2.19:

PerformanceFlags is not supported on Windows NT or Windows 2000.

<92> Section 2.2.2.19: TS_PERF_ENABLE_FONT_SMOOTHING is not supported on Windows NT,
Windows 2000, Windows XP, or Windows Server 2003.

<93> Section 2.2.2.19: TS_PERF_ENABLE_DESKTOP_COMPOSITION is not supported on Windows NT,
Windows 2000, Windows XP, or Windows Server 2003.

<94> Section 2.2.2.19: ActivelnputLocale is not supported on Windows NT, Windows 2000, or

Windows XP.

<95> Section 2.2.2.20.1.3.1: Not used by Terminal Services.

<96> Section 2.2.2.21:
<97> Section 2.2.2.21:
<98> Section 2.2.2.27:
<99> Section 2.2.2.27:

<100> Section 2.2.2.27
2000.

<101> Section 2.2.2.27:
<102> Section 2.2.2.27:
<103> Section 2.2.2.27:
<104> Section 2.2.2.28:

<105> Section 2.2.2.31
Windows Server 2003.

<106> Section 2.2.2.31:

2003.

<107> Section 2.2.2.31:

Server 2003.
<108> Section 2.2.2.31

Not used by Terminal Services.
Not used by Terminal Services.
For the Microsoft RDP implementation, this driver is rdpwd.sys.

For the Microsoft RDP implementation, this binary is rdpwsx.dll.

: WDF_DYNAMIC_RECONNECT is not supported on Windows NT or Windows

WDF_SUBDESKTOP not supported on Windows NT or Windows 2000.
For the Microsoft RDP implementation, this binary is rdpcfgex.dll.
For the Microsoft RDP implementation, this string is "RDP".

Not supported on Windows NT or Windows 2000.

: The POLICY_TS_MACHINE structure is supported only on Windows XP and

fPolicyFipsEnabled is supported only on Windows XP and Windows Server

fPolicySecurelLicensing is supported only on Windows XP and Windows

: fPolicyEnableTimeZoneRedirection is not supported on Windows NT,

Windows 2000, or Windows XP.

<109> Section 2.2.2.31
2000, or Windows XP.

<110> Section 2.2.2.31
Windows XP.

<111> Section 2.2.2.31
or Windows XP.

: fPolicyDisableForcibleLogoff is not supported on Windows NT, Windows

: fPolicyLicensingMode is not supported on Windows NT, Windows 2000, or

: fPolicyExplicitLSDiscovery is not supported on Windows NT, Windows 2000,

o b P ST=Tel (o) n AP AP INeR Y fPolicyDisableTerminalServerTooltip is not supported on Windows NT,
Windows 2000, or Windows XP.

<113> Section 2.2.2.31

: ColorDepth is not supported on Windows NT or Windows 2000.

235/ 253

[MS-TSTS-Diff] - v20210625

Terminal Services Terminal

Server Runtime Interface Protocol

Copyright © 2021 Microsoft Corporation

Release: June 25, 2021

<114> Section 2.2.2.31:

Windows XP.

<115> Section 2.2.2.31:

2000, or Windows XP.

<116> Section 2.2.2.31:

2003.

<117> Section 2.2.2.31:

Windows XP.

<118> Section 2.2.2.31:

Windows XP.

<119> Section 2.2.2.31:

or Windows XP.

<120> Section 2.2.2.31:

Windows XP.

<121> Section 2.2.2.31:

2000, or Windows XP.

<122> Section 2.2.2.31:

XP.

<123> Section 2.2.2.31:

Windows XP.

<124> Section 2.2.2.31:

or Windows XP.

<125> Section 2.2.2.31:

2000, or Windows XP.

<126> Section 2.2.2.31:
<127> Section 2.2.2.33:

fSecurelLicensing is not supported on Windows NT, Windows 2000, or

fEnableTimeZoneRedirection is not supported on Windows NT, Windows

fDisableForcibleLogoff is supported only on Windows XP and Windows Server

fPolicyEncryptRPCTraffic is not supported on Windows NT, Windows 2000, or

fErrorInvalidProfile is not supported on Windows NT, Windows 2000, or

fPolicyFallbackPrintDriver is not supported on Windows NT, Windows 2000,

FallbackPrintDriverType is not supported on Windows NT, Windows 2000, or

fDisableTerminalServerTooltip is not supported on Windows NT, Windows

bSecurityLayer is not supported on Windows NT, Windows 2000, or Windows

fPolicySecuritylLayer is not supported on Windows NT, Windows 2000, or

fPolicyUserAuthentication is not supported on Windows NT, Windows 2000,

fPolicy TurnOffSingleAppMode is not supported on Windows NT, Windows

In Windows the default program is explorer.exe.

The value 32 in fColorDepth indicates 32-bit color; this is not supported on

Windows NT, Windows 2000, Windows XP, and Windows Server 2003.

<128> Section 2.2.2.35: PROTOCOL_CONSOLE is not supported in Windows NT or Windows 2000.

<129> Section 2.2.2.36: DigProductld is not supported on Windows NT or Windows 2000. On
Windows XP and Windows Server 2003, this field contains the machine's product ID from the registry
key HKLM\Software\microsoft\windows\currentversion\productID.

<130> Section 2.2.2.36: ClientDigProductld is not supported on Windows NT or Windows 2000. If the
terminal server client is RDP 5.0, 5.1, or 6.0 and is running on Windows XP or Windows Server 2003,
this field contains the client machine's product ID from the registry key
HKLM\Software\microsoft\windows\currentversion\productID. If an RDP 6.0 terminal server client is
running on a Windows Vista-based machine, this field contains a unique instance ID of an LSM
process, which is InstancelD in the TS registry.

<131> Section 2.2.2.37: IPv6 format addresses are not supported in Windows NT, Windows 2000,
Windows XP, or Windows Server 2003.

<132> Section 2.2.2.38: Not used by Terminal Services.

<133> Section 2.2.2.39: For Terminal Services, this is icaapi.dll.

[MS-TSTS-Diff] - v20210625

236 / 253

Terminal Services Terminal Server Runtime Interface Protocol
Copyright © 2021 Microsoft Corporation

Release: June 25, 2021

<134> Section 2.2.2.39:
<135> Section 2.2.2.39:
<136> Section 2.2.2.39:
<137> Section 2.2.2.39:
<138> Section 2.2.2.39:
<139> Section 2.2.2.39:
<140> Section 2.2.2.39:
<141> Section 2.2.2.39:
<142> Section 2.2.2.39:

<143> Section 2.2.2.39:

For Terminal Services, this is icaapi.dll.

For Terminal Services, this is termdd.sys.

For Terminal Services, this binary is rdpwd.sys.
Not used by Terminal Services.

For Terminal Services, this binary is rdpwd.sys.
For Terminal Services, this binary is tdtcp.sys.
Not used by Terminal Services.

Not used by Terminal Services.

Not used by Terminal Services.

For Terminal Services, this binary is rdpcfgex.dil.

<144> Section 2.2.2.39: For Terminal Services, this binary is rdpwsx.dll.

<145> Section 2.2.2.39:

<146> Section 2.2.2.44 VTN EELWYR \ot used by Terminal Services.

<147> Section 2.3.1: This field is not used by Terminal Services.

Not used by Terminal Services.

<148> Section 3.1.1: For Terminal Services, the SECURITY_DESCRIPTOR for the console session is
taken from the registry value HKLM\CurrentControlSet\Control\Terminal
Server\WinStations\ConsoleSecurity. For remote sessions, it is taken from the registry value
HKLM\CurrentControlSet\Control\Terminal Server\WinStations\ListenerName\Security, where
ListenerName is the name of the listener through which the session was started when the connection
request was received. If HKLM\CurrentControlSet\Control\Terminal
Server\WinStations\ListenerName\Security does not exist or is empty, then it is taken from the
registry value HKLM\CurrentControlSet\Control\Terminal Server\WinStations\DefaultSecurity.

<149> Section 3.3.4.1.15: Not supported on Windows NT, Windows 2000, Windows XP, Windows
Server 2003, Windows Vista, or Windows Server 2008.

<150> Section 3.3.4.1.16: Not supported on Windows NT, Windows 2000, Windows XP, Windows
Server 2003, Windows Vista, or Windows Server 2008.

<151> Section 3.3.4.3.6: Level is not supported on Windows NT, Windows 2000, Windows XP, or
Windows Server 2003. The maximum value of Level supported is 2.

<152> Section 3.3.4.3.9: Level is not supported on Windows NT, Windows 2000, Windows XP,
Windows Server 2003, or Windows Vista. The maximum supported value of Level is 2.

<153> Section 3.3.4.3.10: Not supported on Windows NT, Windows 2000, Windows XP, Windows
Server 2003, Windows Vista, or Windows Server 2008.

<154> Section 3.3.4.3.10: Not supported on Windows NT, Windows 2000, Windows XP, Windows
Server 2003, Windows Vista, or Windows Server 2008.

<155> Section 3.3.4.3.11: Not supported on Windows NT, Windows 2000, Windows XP, Windows
Server 2003, Windows Vista, Windows Server 2008, Windows Server 2008 R2, or Windows 7.

<156> Section 3.5.4.1.2: For information about setting permissions in Windows, see [MSDN-
Win32_TSAcct].

237/ 253

[MS-TSTS-Diff] - v20210625

Terminal Services Terminal Server Runtime Interface Protocol
Copyright © 2021 Microsoft Corporation

Release: June 25, 2021

<157> Section 3.5.4.2.2: The method returns an error code, E_NOTIMPL (80004001), which is not
supported on Windows NT, Windows 2000, Windows XP, and Windows Server 2003.

<158> Section 3.7.4.1: Opnums reserved for local use apply to Windows as follows.

Opnum | Description

11 - 12 | Only used locally by Windows, never remotely.

18 - 28 | Only used locally by Windows, never remotely.

30 - 33 | Only used locally by Windows, never remotely.

35 Only used locally by Windows, never remotely.

38 - 39 | Only used locally by Windows, never remotely.

47 - 51 | Only used locally by Windows, never remotely.

54 - 57 | Only used locally by Windows, never remotely.

63 - 64 | Only used locally by Windows, never remotely.

67 - 69 | Only used locally by Windows, never remotely.

71 -74 | Only used locally by Windows, never remotely.

Opnums not implemented apply to Windows as follows.

Opnum | Description

29 Exception is raised with error ERROR_INVALID_FUNCTION

40 - 42 Exception is raised with error ERROR_INVALID_FUNCTION

52 Exception is raised with error RPC_S_CANNOT_SUPPORT

All of these opnums return error code E_NOTIMPL (0x80004001); this is not supported on Windows
NT, Windows 2000, Windows XP, and Windows Server 2003.

<159> Section 3.7.4.1.3: RpclcaServerPing is supported only on Windows NT, Windows 2000,
Windows XP, and Windows Server 2003.

<160> Section 3.7.4.1.5: RpcWinStationRename is supported on Windows NT, Windows 2000,
Windows XP, and Windows Server 2003. For information about setting permissions on Windows, see
[MSDN-Win32_TSAcct].

<161> Section 3.7.4.1.6: For information about setting permissions in Windows, see [MSDN-
Win32_TSAcct].

<162> Section 3.7.4.1.6 N LA AWM This information class is not supported on
Windows NT and Windows 2000.

<163> Section 3.7.4.1.6: The driver is tdtcp.sys for Terminal Services.

<164> Section 3.7.4.1.c N L W The driver is rdpwd.sys for Terminal Services.
<165> Section 3.7.4.1.6: The driver is tdtcp.sys for Terminal Services.

<166> Section 3.7.4.1.6: This information class is not supported on Windows NT and Windows 2000.

<167> Section 3.7.4.1.6: This information class is not supported on Windows NT and Windows 2000.

238/ 253

[MS-TSTS-Diff] - v20210625

Terminal Services Terminal Server Runtime Interface Protocol
Copyright © 2021 Microsoft Corporation

Release: June 25, 2021

<168> Section 3.7.4.1.6: This information class is not supported on Windows NT and Windows 2000.
<169> Section 3.7.4.1.6: This information class is not supported on Windows NT or Windows 2000.
<170> Section 3.7.4.1.6: This information class is supported only on Windows Server 2003.

<171> Section 3.7.4.1.7: This call is supported only on Windows NT 4.0 operating system, Windows
2000, Windows XP, and Windows Server 2003.

For information about setting permissions in Windows, see [MSDN-Win32_TSAcct].

<172> Section 3.7.4.1.7: Ignored by the Microsoft terminal server drivers in Windows NT 4.0,
Windows 2000, Windows XP, and Windows Server 2003.

<173> Section 3.7.4.1.7: Ignored by the Microsoft terminal server drivers in Windows NT 4.0,
Windows 2000, Windows XP, and Windows Server 2003.

<174> Section 3.7.4.1.7: Used by Winlogon.

<175> Section 3.7.4.1.8: For information about setting permissions in Windows, see [MSDN-
Win32_TSAcct].

<176> Section 3.7.4.1.9: For information about setting permissions in Windows, see [MSDN-
Win32_TSAcct].

<177> Section 3.7.4.1.10: For information about setting permissions in Windows, see [MSDN-
Win32_TSAcct].

<178> Section 3.7.4.1.11: For information about setting permissions in Windows, see [MSDN-
Win32_TSAcct].

<179> Section 3.7.4.1.11: This parameter is supported only on Windows NT, Windows 2000,
Windows XP, and Windows Server 2003.

<180> Section 3.7.4.1.12: For information about setting permissions in Windows, see [MSDN-
Win32_TSAcct].

<181> Section 3.7.4.1.12: This parameter is supported only on Windows NT, Windows 2000,
Windows XP, and Windows Server 2003.

<182> Section 3.7.4.1.13: In the case of resetting a listener, all sessions started by Terminal Services
based on connection requests received through that listener will be disconnected; this is not supported
on Windows NT, Windows 2000, Windows XP, and Windows Server 2003.

For information about setting permissions in Windows, see [MSDN-Win32_TSAcct].
<183> Section 3.7.4.1.15: Not used by Terminal Services.

<184> Section 3.7.4.1.16: This call is supported only on Windows NT, Windows 2000, Windows XP,
and Windows Server 2003.

<185> Section 3.7.4.1.17: This call is supported only on Windows NT and Windows 2000.
In Windows the session manager is csrss.exe.

<186> Section 3.7.4.1.17: On Windows 2000, the method ignores any value for LogonId other than -
2 and will not allow the debugger to be broken into in kernel mode or in a particular session's
CSrss.exe process.

<187> Section 3.7.4.1.18: The registry reread is
HKEY_LOCAL_MACHINE\SYSTEM\CurrentControlSet\Control\Terminal Server\WinStations for each
subkey under WinStation.

239/ 253

[MS-TSTS-Diff] - v20210625

Terminal Services Terminal Server Runtime Interface Protocol
Copyright © 2021 Microsoft Corporation

Release: June 25, 2021

<188> Section 3.7.4.1.18: This method is supported only on Windows NT, Windows 2000, Windows
XP, and Windows Server 2003.

<189> Section 3.7.4.1.19: The OldRpcWinStationEnumerateProcesses method returns the process
information for a terminal server and is supported only on Windows NT Server 4.0 operating system
terminal server for backward compatibility.

<190> Section 3.7.4.1.20: The RpcWinStationEnumerateProcesses method returns the process
information for a terminal server and is supported only on Windows NT Server 4.0 terminal server for
backwards compatibility.

<191> Section 3.7.4.1.23: RpcWinStationGetProcessSid is not supported in Windows NT.

<192> Section 3.7.4.1.23: This value is not returned in Windows NT, Windows 2000, Windows XP, or
Windows Server 2003.

<193> Section 3.7.4.1.23: This value is returned only in Windows NT, Windows 2000, Windows XP,
and Windows Server 2003.

<194> Section 3.7.4.1.23: This value is not returned in Windows NT, Windows 2000, Windows XP, or
Windows Server 2003.

<195> Section 3.7.4.1.23: This value is returned only in Windows NT, Windows 2000, Windows XP,
and Windows Server 2003.

<196> Section 3.7.4.1.23: This value is returned only in Windows NT, Windows 2000, Windows XP,
and Windows Server 2003.

<197> Section 3.7.4.1.23: This value is not returned in Windows NT, Windows 2000, Windows XP, or
Windows Server 2003.

<198> Section 3.7.4.1.23: This value is returned only in Windows NT, Windows 2000, Windows XP,
and Windows Server 2003.

<199> Section 3.7.4.1.23: This value is not returned in Windows NT, Windows 2000, Windows XP, or
Windows Server 2003.

<200> Section 3.7.4.1.25: Done for all WinStations specified in the registry under
HKLM\System\CurrentControlSet\Terminal Server\WinStations.

<201> Section 3.7.4.1.25: This call is supported on Windows 2000, Windows XP, and Windows Server
2003.

The GUIDs for the network adapters implementing terminal server are
found as subkeys under the registry key HKLM\System\CurrentControlSet\Control\Terminal
Server\lanatable, where each key is the adapter's GUID, and the DWORD value Lanald under that key
is the lana that is matched to the parameter LanAdapter.

<203> Section 3.7.4.1.26: This call is supported only on Windows 2000, Windows XP, and Windows
Server 2003.

<204> Section 3.7.4.1.27: RpcWinStationUpdateSettings is supported only in Windows XP and
Windows Server 2003.

In Windows XP, a class of WINSTACFG_SESSDIR will do nothing and always returns success.

<205> Section 3.7.4.1.27: If running in Remote Desktop mode (Windows XP) or in Remote Admin
mode, this does nothing.

<206> Section 3.7.4.1.28: RpcWinStationShadowStop is supported only in Windows XP and Windows
Server 2003.

240/ 253

[MS-TSTS-Diff] - v20210625

Terminal Services Terminal Server Runtime Interface Protocol
Copyright © 2021 Microsoft Corporation

Release: June 25, 2021

<207> Section 3.7.4.1.30: RpcWinStationIsHelpAssistantSession is supported only in Windows XP and
Windows Server 2003.

<208> Section 3.7.4.1.31: RpcWinStationGetMachinePolicy is supported only on Windows XP and
Windows Server 2003.

<209> Section 3.7.4.1.32: RpcWinStationCheckLoopBack is supported only on Windows XP and
Windows Server 2003.

<210> Section 3.7.4.1.33: RpcConnectCallback is supported only in Windows XP and Windows Server
2003.

<211> Section 3.7.4.1.35: Supported on Windows Server 2003 only, and only on advanced servers
running in application server mode.

<212> Section 3.9.4.1.1: This call is not supported on Windows NT, Windows 2000, Windows XP,
Windows Server 2003, Windows Vista, or Windows Server 2008.

241/ 253

[MS-TSTS-Diff] - v20210625

Terminal Services Terminal Server Runtime Interface Protocol
Copyright © 2021 Microsoft Corporation

Release: June 25, 2021

8 Change Tracking

This section identifies changes that were made to this document since the last release. Changes are
classified as Major, Minor, or None.

The revision class Major means that the technical content in the document was significantly revised.
Major changes affect protocol interoperability or implementation. Examples of major changes are:

= A document revision that incorporates changes to interoperability requirements.
= A document revision that captures changes to protocol functionality.

The revision class Minor means that the meaning of the technical content was clarified. Minor changes
do not affect protocol interoperability or implementation. Examples of minor changes are updates to
clarify ambiguity at the sentence, paragraph, or table level.

The revision class None means that no new technical changes were introduced. Minor editorial and
formatting changes may have been made, but the relevant technical content is identical to the last
released version.

The changes made to this document are listed in the following table. For more information, please
contact dochelp@microsoft.com.

Section Description Revision class

7 Appendix B: Product Behavior | Updated for this version of Windows Client. | Major

242 / 253

[MS-TSTS-Diff] - v20210625

Terminal Services Terminal Server Runtime Interface Protocol
Copyright © 2021 Microsoft Corporation

Release: June 25, 2021

9 Index
A

Abstract data model
client (section 3.2.1 95, section 3.4.1 119, section 3.6.1 131)
legacy 131
local session manager 95
TermSrv 119
virtual IP 175
server (section 3.3.1 95, section 3.5.1 119, section 3.7.1 131)
legacy 131
local session manager 95
TermSrv 119
virtual IP 176
Access rights - caller - overview 94
Applicability 15
appsrv\tsvip\rpc\tsviprpc.idl 207
ASYNCCONFIG structure 59
ASYNCCONNECTCLASS enumeration 61

B
BEEPINPUT structure 80
(o

CACHE_STATISTICS structure 57
CALLBACKCLASS enumeration 48
Caller permissions and access rights - overview 94
Capability negotiation 16
CDCLASS enumeration 66
CDCONFIG structure 66
Change tracking 242
Client
abstract data model (section 3.2.1 95, section 3.4.1 119, section 3.6.1 131)
initialization (section 3.2.3 95, section 3.4.3 119, section 3.6.3 131)
legacy
abstract data model 131
initialization 131
local events 131
message processing 131
sequencing rules 131
timer events 131
timers 131
local events (section 3.2.6 95, section 3.4.6 119, section 3.6.6 131)
local session manager
abstract data model 95
initialization 95
local events 95
message processing 95
sequencing rules 95
timer events 95
timers 95
message processing 131
sequencing rules 131
TermSrv
abstract data model 119
initialization 119
local events 119
message processing 119
sequencing rules 119
timer events 119

243/ 253

[MS-TSTS-Diff] - v20210625

Terminal Services Terminal Server Runtime Interface Protocol
Copyright © 2021 Microsoft Corporation

Release: June 25, 2021

timers 119

timer events (section 3.2.5 95, section 3.4.5 119, section 3.6.5 131)

timers (section 3.2.2 95, section 3.4.2 119, section 3.6.2 131)
virtual IP
abstract data model 175
initialization 175
local events 176
message processing 175
sequencing rules 175
timer events 176
timers 175
CLIENT_ID structure 43
CLIENT_STACK_ADDRESS structure 82
Common data types 17
CONNECTCONFIG structure 61

D

Data model - abstract
client (section 3.2.1 95, section 3.4.1 119, section 3.6.1 131)
legacy 131
local session manager 95
TermSrv 119
virtual IP 175
server (section 3.3.1 95, section 3.5.1 119, section 3.7.1 131)
legacy 131
local session manager 95
TermSrv 119
virtual IP 176
Data types
common - overview 17
structures 27
Decoding/encoding example 189
Determining caller permissions and access rights - overview 94
Directory service schema elements 86

Elements - directory service schema 86
Encoding/decoding example 189
Encoding/decoding example example 189
Events
local

legacy client 131

legacy server 175

LSM client 95

LSM server 119

TermSrv client 119

TermSrv server 131

virtual IP client 176

virtual IP server 177

local - client (section 3.2.6 95, section 3.4.6 119, section 3.6.6 131)
local - server (section 3.3.6 119, section 3.5.6 131, section 3.7.6 175)

timer
legacy client 131
legacy server 175
LSM client 95
LSM server 119
TermSrv client 119
TermSrv server 130
virtual IP client 176
virtual IP server 177

timer - client (section 3.2.5 95, section 3.4.5 119, section 3.6.5 131)
timer - server (section 3.3.5 119, section 3.5.5 130, section 3.7.5 175)

Examples

[MS-TSTS-Diff] - v20210625

Terminal Services Terminal Server Runtime Interface Protocol
Copyright © 2021 Microsoft Corporation

Release: June 25, 2021

244 / 253

ecoding/decoding 189

encoding/decoding example 189

legacy 187

legacy example 187

LSM enumeration 180

Ism enumeration example 180

TermService listener 182

termservice listener example 182

TermSrvBindSecure 184

termsrvbindsecure example 184
EXECENVDATA structure 31
EXECENVDATA_LEVEL1 structure 32
EXECENVDATA_LEVEL2 structure 32
EXECENVDATAEX structure 33
EXECENVDATAEX_LEVEL1 structure 33
ExtendedClientCredentials structure 77

F

Fields - vendor-extensible 16
FLOWCONTROLCLASS enumeration 60
FLOWCONTROLCONFIG structure 59
Full IDL 192

G
Glossary 10
I

IDL 192
Implementation - overview 94
Implementer - security considerations 191
Index of security parameters 191
Informative references 14
Initialization
client (section 3.2.3 95, section 3.4.3 119, section 3.6.3 131)
legacy 131
local session manager 95
TermSrv 119
virtual IP 175
server (section 3.3.3 98, section 3.5.3 121, section 3.7.3 134)
legacy 134
local session manager 98
TermSrv 121
virtual IP 176
Introduction 10

L

Legacy client
abstract data model 131
initialization 131
local events 131
message processing 131
sequencing rules 131
timer events 131
timers 131
Legacy example 187
Legacy example example 187
Legacy server
abstract data model 131
initialization 134
local events 175
message processing 134

[MS-TSTS-Diff] - v20210625

Terminal Services Terminal Server Runtime Interface Protocol
Copyright © 2021 Microsoft Corporation

Release: June 25, 2021

245/ 253

sequencing rules 134

timer events 175

timers 134
LegacyApi method 134
LISTENERENUM structure 36
LISTENERENUM_LEVEL1 structure 37
LOADFACTORTYPE enumeration 75
Local events

client (section 3.2.6 95, section 3.4.6 119, section 3.6.6 131)

legacy 131

local session manager 95
TermSrv 119

virtual IP 176

server (section 3.3.6 119, section 3.5.6 131, section 3.7.6 175)

legacy 175
local session manager 119
TermSrv 131
virtual IP 177
LSM client
abstract data model 95
initialization 95
local events 95
message processing 95
sequencing rules 95
timer events 95
timers 95
LSM enumeration example 180
Lsm enumeration example example 180
LSM server
abstract data model 95
initialization 98
local events 119
message processing 98
sequencing rules 98
timer events 119
timers 98
LSM_SESSIONINFO_EX_LEVEL1 structure 35
LSMSESSIONINFORMATION structure 34
LSMSESSIONINFORMATION_EX structure 35

M

Message processing
client 131
legacy 131
local session manager 95
TermSrv 119
virtual IP 175
server (section 3.5.4 121, section 3.7.4 134)
legacy 134
local session manager 98
TermSrv 121
virtual IP 176
Messages
common data types 17
transport 17
Methods
LegacyApi 134
RCMListener 128
RCMPublic 121
msTSProperty01 attribute 92

NASICONFIG structure 61

[MS-TSTS-Diff] - v20210625

Terminal Services Terminal Server Runtime Interface Protocol

Copyright © 2021 Microsoft Corporation
Release: June 25, 2021

246 / 253

NETWORKCONFIG structure 58
Normative references 12
NT6_TS_UNICODE_STRING structure 42

o

OEMTDCONFIG structure 63
OldRpcWinStationEnumerateProcesses method 160
Overview (synopsis) 14

P

Parameter index - security 191
Parameters - security index 191
PASYNCCONFIG 59
PBEEPINPUT 80
PCACHE_STATISTICS 57
PCDCONFIG 66
PCLIENT_STACK_ADDRESS 82
PCONNECTCONFIG 61
PDCONFIG structure 63
PDCONFIG2 structure 63
PDPARAMS structure 58
PDPARAMSWIRE structure 82
Permissions - caller - overview 94
PEXECENVDATA 31
PEXECENVDATA_LEVEL1 32
PEXECENVDATA_LEVEL2 32
PEXECENVDATAEX 33
PEXECENVDATAEX_LEVEL1 33
pExtendedClientCredentials 77
PFLOWCONTROLCONFIG 59
PLISTENERENUM 36
PLISTENERENUM_LEVEL1 37
PLSM_SESSIONINFO_EX_LEVEL1 35
PLSMSESSIONINFORMATION 34
PLSMSESSIONINFORMATION_EX 35
PNASICONFIG 61
PNETWORKCONFIG 58
POEMTDCONFIG 63
POLICY_TS_MACHINE structure 68
PPDCONFIG 63
PPDCONFIG2 63
PPDPARAMS 58
PPDPARAMSWIRE 82
PPOLICY_TS_MACHINE 68
PPROTOCOLCOUNTERS 56
PPROTOCOLSTATUS 55
PPROTOCOLSTATUSEX 55
PRCM_REMOTEADDRESS 81
Preconditions 15
Prerequisites 15
PRESERVED_CACHE 57
Product behavior 229
PropValue field - encoding in TSProperty structure 92
Protocol Details

overview 94
PROTOCOLCOUNTERS structure 56
PROTOCOLSTATUS structure 55
PROTOCOLSTATUS_INFO_TYPE enumeration 27
PROTOCOLSTATUSEX structure 55
PSESSION_CHANGE 81
PSESSIONENUM 28
PSESSIONENUM_EX 30
PSESSIONENUM_LEVEL1 28

247/ 253

[MS-TSTS-Diff] - v20210625

Terminal Services Terminal Server Runtime Interface Protocol
Copyright © 2021 Microsoft Corporation

Release: June 25, 2021

PSESSIONENUM_LEVEL2 29
PSESSIONENUM_LEVEL3 29
PSESSIONID 37
PSYSTEM_THREAD_INFORMATION 42
PTHINWIRECACHE 58

PTS_ALL PROCESSES_INFO 38
PTS_ALL_PROCESSES_INFO_NT6 40
PTS_COUNTER 43
PTS_COUNTER_HEADER 43
PTS_PROCESS_INFORMATION_NT4 38
PTS_SYS_PROCESS_INFORMATION 38
PTS_SYS_PROCESS_INFORMATION_NT®6 40
PTS_TRACE 78

PTSHARE_CACHE 58
PTSHARE_COUNTERS 57
PTSVIP_SOCKADDR 83
PTSVIPAddress 84

PTSVIPSession 85

PUSERCONFIG 45

PVARDATA_WIRE 82

PWDCONFIG 64
PWINSTACONFIGWIRE 82
PWINSTATIONCLIENT 49
PWINSTATIONCLIENTDATA 80
PWINSTATIONCONFIG 67
PWINSTATIONCONFIG2 67
PWINSTATIONCREATE 67
PWINSTATIONINFORMATION 54
PWINSTATIONLOADINDICATORDATA 74
PWINSTATIONPRODID 76
PWINSTATIONPRODUCTINFO 85
PWINSTATIONREMOTEADDRESS 77
PWINSTATIONSHADOW 75
PWINSTATIONUSERTOKEN 74
PWINSTATIONVALIDATIONINFORMATION 85
PWINSTATIONVIDEODATA 74

Q

QUERY_SESSION_DATA_TYPE enumeration 27
R

RCM_REMOTEADDRESS structure 81
RCMListener method 128
RCMPublic method 121
RECEIVEFLOWCONTROLCLASS enumeration 60
RECONNECT_TYPE enumeration 23
References 12

informative 14

normative 12
Relationship to other protocols 15
RESERVED_CACHE structure 57
RpcCloseEnum method 113
RpcCloseListener method 129
RpcCloseSession method 100
RpcConnect method 100
RpcConnectCallback method 172
RpcDisconnect method 101
RpcEnumAddFilter method 114
RpcFilterByCallersName method 114
RpcFilterBySessionType method 115
RpcFilterByState method 113
RpcGetAllListeners method 125
RpcGetAllSessions method 117

[MS-TSTS-Diff] - v20210625

Terminal Services Terminal Server Runtime Interface Protocol

Copyright © 2021 Microsoft Corporation
Release: June 25, 2021

248 / 253

RpcGetAllSessionsEx method 118
RpcGetClientData method 122
RpcGetConfigData method 123
RpcGetEnumResult method 114
RpcGetEnumResultEx method 116
RpcGetLastInputTime method 124
RpcGetLoggedOnCount method 107
RpcGetProtocolStatus method 123
RpcGetRemoteAddress method 124
RpcGetSessionCounters method 106
RpcGetSessionlds method 116
RpcGetSessionInformation method 106
RpcGetSessionInformationEx method 108
RpcGetSessionIP method 177
RpcGetSessionProtocolLastInputTime method 125
RpcGetSessionType method 107

RpcGetState method 103

RpcGetTerminalName method 102
RpcGetTimes method 105
RpcGetUserCertificates method 126
RpcGetUserName method 102
RpclcaServerPing method 140

RpclsListening method 130
RpclsSessionDesktopLocked method 103
RpcLogoff method 102
RpcLogonIdFromWinStationName method 151
RpcOpenEnum method 112

RpcOpenListener method 128

RpcOpenSession method 99
RpcQuerySessionData method 127
RpcRegisterAsyncNotification method 110
RpcShadow2 method 178

RpcShowMessageBox method 104
RpcStartListener method 130

RpcStopListener method 129
RpcUnRegisterAsyncNotification method 111
RpcWaitAsyncNotification method 110
RpcWaitForSessionState method 109
RpcWinStationBreakPoint method 159
RpcWinStationCheckLoopBack method 171
RpcWinStationCloseServer method 140
RpcWinStationCloseServerEx method 169
RpcWinStationConnect method 152
RpcWinStationDisconnect method 153
RpcWinStationEnumerate method 141
RpcWinStationEnumerateProcesses method 161
RpcWinStationGetAllProcesses method 163
RpcWinStationGetAllProcesses_NT6 method 173
RpcWinStationGetLanAdapterName method 166
RpcWinStationGetMachinePolicy method 171
RpcWinStationGetProcessSid method 164
RpcWinStationGetTermSrvCountersValue method 165
RpcWinStationIsHelpAssistantSession method 170
RpcWinStationNameFromLogonId method 152
RpcWinStationOpenServer method 139
RpcWinStationOpenSessionDirectory method 174
RpcWinStationQueryInformation method 143
RpcWinStationReadRegistry method 160
RpcWinStationRelnitializeSecurity method 166
RpcWinStationRename method 142
RpcWinStationReset method 154
RpcWinStationSendMessage method 149
RpcWinStationSetInformation method 147
RpcWinStationShadow method 158
RpcWinStationShadowStop method 168

249 / 253

[MS-TSTS-Diff] - v20210625

Terminal Services Terminal Server Runtime Interface Protocol
Copyright © 2021 Microsoft Corporation

Release: June 25, 2021

RpcWinStationShutdownSystem method 155
RpcWinStationTerminateProcess method 162
RpcWinStationUpdateSettings method 167

RpcWinStationWaitSystemEvent method 156

S

Schema elements - directory service 86
SDCLASS enumeration 22
Security
implementer considerations 191
parameter index 191
Sequencing rules
client 131
legacy 131
local session manager 95
TermSrv 119
virtual IP 175
server (section 3.5.4 121, section 3.7.4 134)
legacy 134
local session manager 98
TermSrv 121
virtual IP 176
Server
abstract data model (section 3.3.1 95, section 3.5.1 119, section 3.7.1 131)
initialization (section 3.3.3 98, section 3.5.3 121, section 3.7.3 134)
legacy
abstract data model 131
initialization 134
local events 175
message processing 134
sequencing rules 134
timer events 175
timers 134
LegacyApi method 134
local events (section 3.3.6 119, section 3.5.6 131, section 3.7.6 175)
local session manager
abstract data model 95
initialization 98
local events 119
message processing 98
sequencing rules 98
timer events 119
timers 98
message processing (section 3.5.4 121, section 3.7.4 134)
RCMListener method 128
RCMPublic method 121
sequencing rules (section 3.5.4 121, section 3.7.4 134)
TermSrv
abstract data model 119
initialization 121
local events 131
message processing 121
sequencing rules 121
timer events 130
timers 121
timer events (section 3.3.5 119, section 3.5.5 130, section 3.7.5 175)
timers (section 3.3.2 98, section 3.5.2 121, section 3.7.2 134)
virtual IP
abstract data model 176
initialization 176
local events 177
message processing 176
sequencing rules 176
timer events 177

250/ 253

[MS-TSTS-Diff] - v20210625

Terminal Services Terminal Server Runtime Interface Protocol
Copyright © 2021 Microsoft Corporation

Release: June 25, 2021

timers 176

SESSION_CHANGE structure 81
SESSION_FILTER enumeration 27
SESSIONENUM structure 28
SESSIONENUM_EX structure 30
SESSIONENUM_LEVEL1 structure 28
SESSIONENUM_LEVEL2 structure 29
SESSIONENUM_LEVEL3 structure 29

SESSIONID structure 37

SESSIONTYPE enumeration 25
SHADOW_CONTROL_REQUEST enumeration 25
SHADOW_PERMISSION_REQUEST enumeration 26
SHADOW_REQUEST_RESPONSE enumeration 26
SHADOWCLASS enumeration 22
SHADOWSTATECLASS enumeration 76

Standards assignments 16

Structures 27

SYSTEM_THREAD_INFORMATION structure 42

T

TermService listener example 182
Termservice listener example example 182

TermSrv client

abstract data model 119

initialization 119
local events 119

message processing 119

sequencing rules 119
timer events 119
timers 119

TermSrv server

abstract data model 119

initialization 121
local events 131

message processing 121

sequencing rules 121
timer events 130
timers 121

TermSrvBindSecure example 184
Termsrvbindsecure example example 184
THINWIRECACHE structure 58

Timer events

client (section 3.2.5 95, section 3.4.5 119, section 3.6.5 131)

legacy 131

local session manager 95

TermSrv 119
virtual IP 176

server (section 3.3.5 119, section 3.5.5 130, section 3.7.5 175)

legacy 175

local session manager 119

TermSrv 130
virtual IP 177
Timers

client (section 3.2.2 95, section 3.4.2 119, section 3.6.2 131)

legacy 131

local session manager 95

TermSrv 119
virtual IP 175

server (section 3.3.2 98, section 3.5.2 121, section 3.7.2 134)

legacy 134

local session manager 98

TermSrv 121
virtual IP 176
Tracking changes 242

[MS-TSTS-Diff] - v20210625
Terminal Services Terminal Server Runtime Interface Protocol
Copyright © 2021 Microsoft Corporation

Release: June 25, 2021

251 /253

TRANSMITFLOWCONTROLCLASS enumeration 61
Transport 17

TS_ALL_PROCESSES_INFO structure 38
TS_ALL_PROCESSES_INFO_NT®6 structure 40
TS_COUNTER structure 43
TS_COUNTER_HEADER structure 43
TS_PROCESS_INFORMATION_NT4 structure 38
TS_SYS_PROCESS_INFORMATION structure 38
TS_SYS_PROCESS_INFORMATION_NT®6 structure 40
TS_SYSTEMTIME structure 53
TS_TIME_ZONE_INFORMATION structure 52
TS_TRACE structure 78

TS_UNICODE_STRING structure 40
TSHARE_CACHE structure 58
TSHARE_COUNTERS structure 57

TSProperty packet 87

TSVIP_SOCKADDR structure 83

TSVIPAddress structure 84

TSVIPSession structure 85

U

USERCONFIG structure 45
UserParameters packet 87

\'}

VARDATA_WIRE structure 82
Vendor-extensible fields 16
Versioning 16
Virtual IP client
abstract data model 175
initialization 175
local events 176
message processing 175
sequencing rules 175
timer events 176
timers 175
Virtual IP server
abstract data model 176
initialization 176
local events 177
message processing 176
sequencing rules 176
timer events 177
timers 176

w

WDCONFIG structure 64
WINSTACONFIGWIRE structure 82
WINSTATIONCLIENT structure 49
WINSTATIONCLIENTDATA structure 80
WINSTATIONCONFIG structure 67
WINSTATIONCONFIG2 structure 67
WINSTATIONCREATE structure 67
WINSTATIONINFOCLASS enumeration 19
WINSTATIONINFORMATION structure 54
WINSTATIONLOADINDICATORDATA structure 74
WINSTATIONPRODID structure 76
WINSTATIONPRODUCTINFO structure 85
WINSTATIONREMOTEADDRESS structure 77
WINSTATIONSHADOW structure 75
WINSTATIONSTATECLASS enumeration 21
WINSTATIONUSERTOKEN structure 74

[MS-TSTS-Diff] - v20210625

Terminal Services Terminal Server Runtime Interface Protocol

Copyright © 2021 Microsoft Corporation
Release: June 25, 2021

252 /253

WINSTATIONVALIDATIONINFORMATION structure 85
WINSTATIONVIDEODATA structure 74

253 /253

[MS-TSTS-Diff] - v20210625

Terminal Services Terminal Server Runtime Interface Protocol
Copyright © 2021 Microsoft Corporation

Release: June 25, 2021

	1 Introduction
	1.1 Glossary
	1.2 References
	1.2.1 Normative References
	1.2.2 Informative References

	1.3 Overview
	1.4 Relationship to Other Protocols
	1.5 Prerequisites/Preconditions
	1.6 Applicability Statement
	1.7 Versioning and Capability Negotiation
	1.8 Vendor-Extensible Fields
	1.9 Standards Assignments

	2 Messages
	2.1 Transport
	2.2 Common Data Types
	2.2.1 Data Types
	2.2.1.1 SESSION_HANDLE
	2.2.1.2 ENUM_HANDLE
	2.2.1.3 HLISTENER
	2.2.1.4 SERVER_HANDLE
	2.2.1.5 WINSTATIONNAME
	2.2.1.6 DLLNAME
	2.2.1.7 DEVICENAME
	2.2.1.8 WINSTATIONINFOCLASS
	2.2.1.9 WINSTATIONSTATECLASS
	2.2.1.10 SDCLASS
	2.2.1.11 SHADOWCLASS
	2.2.1.12 RECONNECT_TYPE
	2.2.1.13 CLIENTDATANAME
	2.2.1.14 TNotificationId
	2.2.1.15 NOTIFY_HANDLE
	2.2.1.16 BOUNDED_ULONG
	2.2.1.17 UINT_PTR
	2.2.1.18 SESSIONTYPE
	2.2.1.19 SHADOW_CONTROL_REQUEST
	2.2.1.20 SHADOW_PERMISSION_REQUEST
	2.2.1.21 SHADOW_REQUEST_RESPONSE

	2.2.2 Structures
	2.2.2.1 SESSION_FILTER
	2.2.2.2 PROTOCOLSTATUS_INFO_TYPE
	2.2.2.3 QUERY_SESSION_DATA_TYPE
	2.2.2.4 PSESSIONENUM
	2.2.2.4.1 SessionInfo
	2.2.2.4.1.1 SESSIONENUM_LEVEL1
	2.2.2.4.1.2 SESSIONENUM_LEVEL2
	2.2.2.4.1.3 SESSIONENUM_LEVEL3

	2.2.2.5 PSESSIONENUM_EX
	2.2.2.5.1 SessionInfo_Ex

	2.2.2.6 PEXECENVDATA
	2.2.2.6.1 ExecEnvData
	2.2.2.6.1.1 EXECENVDATA_LEVEL1
	2.2.2.6.1.2 EXECENVDATA_LEVEL2

	2.2.2.7 PEXECENVDATAEX
	2.2.2.7.1 ExecEnvDataEx
	2.2.2.7.1.1 EXECENVDATAEX_LEVEL1

	2.2.2.8 PLSMSESSIONINFORMATION
	2.2.2.9 PLSMSESSIONINFORMATION_EX
	2.2.2.10 LSM_SESSIONINFO_EX
	2.2.2.11 LSM_SESSIONINFO_EX_LEVEL1
	2.2.2.12 PLISTENERENUM
	2.2.2.12.1 ListenerInfo
	2.2.2.12.1.1 LISTENERENUM_LEVEL1

	2.2.2.13 LOGONID
	2.2.2.14 TS_PROCESS_INFORMATION_NT4
	2.2.2.15 TS_ALL_PROCESSES_INFO
	2.2.2.15.1 TS_SYS_PROCESS_INFORMATION
	2.2.2.15.1.1 TS_UNICODE_STRING

	2.2.2.16 TS_ALL_PROCESSES_INFO_NT6
	2.2.2.16.1 TS_SYS_PROCESS_INFORMATION_NT6
	2.2.2.16.1.1 NT6_TS_UNICODE_STRING

	2.2.2.16.2 SYSTEM_THREAD_INFORMATION
	2.2.2.16.2.1 CLIENT_ID

	2.2.2.17 TS_COUNTER
	2.2.2.17.1 TS_COUNTER_HEADER

	2.2.2.18 USERCONFIG
	2.2.2.18.1 CALLBACKCLASS
	2.2.2.18.2 APPLICATIONNAME

	2.2.2.19 WINSTATIONCLIENT
	2.2.2.19.1 TS_TIME_ZONE_INFORMATION
	2.2.2.19.1.1 TS_SYSTEMTIME

	2.2.2.20 WINSTATIONINFORMATION
	2.2.2.20.1 PROTOCOLSTATUS
	2.2.2.20.1.1 PROTOCOLSTATUSEX
	2.2.2.20.1.2 PROTOCOLCOUNTERS
	2.2.2.20.1.2.1 TSHARE_COUNTERS

	2.2.2.20.1.3 CACHE_STATISTICS
	2.2.2.20.1.3.1 RESERVED_CACHE
	2.2.2.20.1.3.1.1 THINWIRECACHE

	2.2.2.20.1.3.2 TSHARE_CACHE

	2.2.2.21 PDPARAMS
	2.2.2.22 NETWORKCONFIG
	2.2.2.23 ASYNCCONFIG
	2.2.2.23.1 MODEMNAME
	2.2.2.23.2 FLOWCONTROLCONFIG
	2.2.2.23.2.1 FLOWCONTROLCLASS
	2.2.2.23.2.2 RECEIVEFLOWCONTROLCLASS
	2.2.2.23.2.3 TRANSMITFLOWCONTROLCLASS

	2.2.2.23.3 CONNECTCONFIG
	2.2.2.23.3.1 ASYNCCONNECTCLASS

	2.2.2.24 NASICONFIG
	2.2.2.24.1 NASIUSERNAME
	2.2.2.24.2 NASIPASSWORD
	2.2.2.24.3 NASISESIONNAME
	2.2.2.24.4 NASISPECIFICNAME
	2.2.2.24.5 NASIFILESERVER

	2.2.2.25 OEMTDCONFIG
	2.2.2.26 PDCONFIG
	2.2.2.26.1 PDCONFIG2
	2.2.2.26.2 PDNAME

	2.2.2.27 WDCONFIG
	2.2.2.27.1 WDNAME
	2.2.2.27.2 WDPREFIX

	2.2.2.28 CDCONFIG
	2.2.2.28.1 CDCLASS
	2.2.2.28.2 CDNAME

	2.2.2.29 WINSTATIONCREATE
	2.2.2.30 WINSTATIONCONFIG2
	2.2.2.30.1 WINSTATIONCONFIG

	2.2.2.31 POLICY_TS_MACHINE
	2.2.2.32 WINSTATIONUSERTOKEN
	2.2.2.33 WINSTATIONVIDEODATA
	2.2.2.34 WINSTATIONLOADINDICATORDATA
	2.2.2.34.1 LOADFACTORTYPE

	2.2.2.35 WINSTATIONSHADOW
	2.2.2.35.1 SHADOWSTATECLASS

	2.2.2.36 WINSTATIONPRODID
	2.2.2.37 WINSTATIONREMOTEADDRESS
	2.2.2.38 ExtendedClientCredentials
	2.2.2.39 TS_TRACE
	2.2.2.40 BEEPINPUT
	2.2.2.41 WINSTATIONCLIENTDATA
	2.2.2.42 SESSION_CHANGE
	2.2.2.43 RCM_REMOTEADDRESS
	2.2.2.44 CLIENT_STACK_ADDRESS
	2.2.2.45 VARDATA_WIRE
	2.2.2.46 PDPARAMSWIRE
	2.2.2.47 WINSTACONFIGWIRE
	2.2.2.48 TSVIP_SOCKADDR
	2.2.2.49 TSVIPAddress
	2.2.2.50 TSVIPSession
	2.2.2.51 WINSTATIONVALIDATIONINFORMATION
	2.2.2.52 WINSTATIONPRODUCTINFO

	2.3 Directory Service Schema Elements
	2.3.1 userParameters
	2.3.2 TSProperty
	2.3.3 Encoding PropValue Field in TSProperty Structure
	2.3.4 msTSProperty01

	3 Protocol Details
	3.1 Determining a Caller's Permissions and Access Rights
	3.1.1 Determining a Caller's Permissions
	3.1.2 Determining Whether a Caller Is SYSTEM
	3.1.3 Determining Whether a Caller Is an Administrator
	3.1.4 Determining Whether a Caller Is the Same User Who Logged onto the Session

	3.2 Local Session Manager Client Details
	3.2.1 Abstract Data Model
	3.2.2 Timers
	3.2.3 Initialization
	3.2.4 Processing Events and Sequencing Rules
	3.2.5 Timer Events
	3.2.6 Other Local Events

	3.3 Local Session Manager Server Details
	3.3.1 Abstract Data Model
	3.3.1.1 Abstract Data Types

	3.3.2 Timers
	3.3.3 Initialization
	3.3.4 Processing Events and Sequencing Rules
	3.3.4.1 TermSrvSession Methods
	3.3.4.1.1 RpcOpenSession (Opnum 0)
	3.3.4.1.2 RpcCloseSession (Opnum 1)
	3.3.4.1.3 RpcConnect (Opnum 2)
	3.3.4.1.4 RpcDisconnect (Opnum 3)
	3.3.4.1.5 RpcLogoff (Opnum 4)
	3.3.4.1.6 RpcGetUserName (Opnum 5)
	3.3.4.1.7 RpcGetTerminalName (Opnum 6)
	3.3.4.1.8 RpcGetState (Opnum 7)
	3.3.4.1.9 RpcIsSessionDesktopLocked (Opnum 8)
	3.3.4.1.10 RpcShowMessageBox (Opnum 9)
	3.3.4.1.11 RpcGetTimes (Opnum 10)
	3.3.4.1.12 RpcGetSessionCounters (Opnum 11)
	3.3.4.1.13 RpcGetSessionInformation (Opnum 12)
	3.3.4.1.14 RpcGetLoggedOnCount (Opnum 15)
	3.3.4.1.15 RpcGetSessionType (Opnum 16)
	3.3.4.1.16 RpcGetSessionInformationEx (Opnum 17)

	3.3.4.2 TermSrvNotification
	3.3.4.2.1 RpcWaitForSessionState (Opnum 0)
	3.3.4.2.2 RpcRegisterAsyncNotification (Opnum 1)
	3.3.4.2.3 RpcWaitAsyncNotification (Opnum 2)
	3.3.4.2.4 RpcUnRegisterAsyncNotification (Opnum 3)

	3.3.4.3 TermSrvEnumeration
	3.3.4.3.1 RpcOpenEnum (Opnum 0)
	3.3.4.3.2 RpcCloseEnum (Opnum 1)
	3.3.4.3.3 RpcFilterByState (Opnum 2)
	3.3.4.3.4 RpcFilterByCallersName (Opnum 3)
	3.3.4.3.5 RpcEnumAddFilter (Opnum 4)
	3.3.4.3.6 RpcGetEnumResult (Opnum 5)
	3.3.4.3.7 RpcFilterBySessionType (Opnum 6)
	3.3.4.3.8 RpcGetSessionIds (Opnum 8)
	3.3.4.3.9 RpcGetEnumResultEx (Opnum 9)
	3.3.4.3.10 RpcGetAllSessions (Opnum 10)
	3.3.4.3.11 RpcGetAllSessionsEx (Opnum 11)

	3.3.5 Timer Events
	3.3.6 Other Local Events

	3.4 TermSrv Client Details
	3.4.1 Abstract Data Model
	3.4.2 Timers
	3.4.3 Initialization
	3.4.4 Processing Events and Sequencing Rules
	3.4.5 Timer Events
	3.4.6 Other Local Events

	3.5 TermSrv Server Details
	3.5.1 Abstract Data Model
	3.5.1.1 Abstract Data Types

	3.5.2 Timers
	3.5.3 Initialization
	3.5.4 Message Processing Events and Sequencing Rules
	3.5.4.1 RCMPublic
	3.5.4.1.1 RpcGetClientData (Opnum 0)
	3.5.4.1.2 RpcGetConfigData (Opnum 1)
	3.5.4.1.3 RpcGetProtocolStatus (Opnum 2)
	3.5.4.1.4 RpcGetLastInputTime (Opnum 3)
	3.5.4.1.5 RpcGetRemoteAddress (Opnum 4)
	3.5.4.1.6 RpcGetAllListeners (Opnum 8)
	3.5.4.1.7 RpcGetSessionProtocolLastInputTime (Opnum 9)
	3.5.4.1.8 RpcGetUserCertificates (Opnum 10)
	3.5.4.1.9 RpcQuerySessionData (Opnum 11)

	3.5.4.2 RCMListener
	3.5.4.2.1 RpcOpenListener (Opnum 0)
	3.5.4.2.2 RpcCloseListener (Opnum 1)
	3.5.4.2.3 RpcStopListener (Opnum 2)
	3.5.4.2.4 RpcStartListener (Opnum 3)
	3.5.4.2.5 RpcIsListening (Opnum 4)

	3.5.5 Timer Events
	3.5.6 Other Local Events

	3.6 Legacy Client Details
	3.6.1 Abstract Data Model
	3.6.2 Timers
	3.6.3 Initialization
	3.6.4 Message Processing Events and Sequencing Rules
	3.6.5 Timer Events
	3.6.6 Other Local Events

	3.7 Legacy Server Details
	3.7.1 Abstract Data Model
	3.7.1.1 Abstract Data Types

	3.7.2 Timers
	3.7.3 Initialization
	3.7.4 Message Processing Events and Sequencing Rules
	3.7.4.1 LegacyApi
	3.7.4.1.1 RpcWinStationOpenServer (Opnum 0)
	3.7.4.1.2 RpcWinStationCloseServer (Opnum 1)
	3.7.4.1.3 RpcIcaServerPing (Opnum 2)
	3.7.4.1.4 RpcWinStationEnumerate (Opnum 3)
	3.7.4.1.5 RpcWinStationRename (Opnum 4)
	3.7.4.1.6 RpcWinStationQueryInformation (Opnum 5)
	3.7.4.1.7 RpcWinStationSetInformation (Opnum 6)
	3.7.4.1.8 RpcWinStationSendMessage (Opnum 7)
	3.7.4.1.9 RpcLogonIdFromWinStationName (Opnum 8)
	3.7.4.1.10 RpcWinStationNameFromLogonId (Opnum 9)
	3.7.4.1.11 RpcWinStationConnect (Opnum 10)
	3.7.4.1.12 RpcWinStationDisconnect (Opnum 13)
	3.7.4.1.13 RpcWinStationReset (Opnum 14)
	3.7.4.1.14 RpcWinStationShutdownSystem (Opnum 15)
	3.7.4.1.15 RpcWinStationWaitSystemEvent (Opnum 16)
	3.7.4.1.16 RpcWinStationShadow (Opnum 17)
	3.7.4.1.17 RpcWinStationBreakPoint (Opnum 29)
	3.7.4.1.18 RpcWinStationReadRegistry (Opnum 30)
	3.7.4.1.19 OldRpcWinStationEnumerateProcesses (Opnum 34)
	3.7.4.1.20 RpcWinStationEnumerateProcesses (Opnum 36)
	3.7.4.1.21 RpcWinStationTerminateProcess (Opnum 37)
	3.7.4.1.22 RpcWinStationGetAllProcesses (Opnum 43)
	3.7.4.1.23 RpcWinStationGetProcessSid (Opnum 44)
	3.7.4.1.24 RpcWinStationGetTermSrvCountersValue (Opnum 45)
	3.7.4.1.25 RpcWinStationReInitializeSecurity (Opnum 46)
	3.7.4.1.26 RpcWinStationGetLanAdapterName (Opnum 53)
	3.7.4.1.27 RpcWinStationUpdateSettings (Opnum 58)
	3.7.4.1.28 RpcWinStationShadowStop (Opnum 59)
	3.7.4.1.29 RpcWinStationCloseServerEx (Opnum 60)
	3.7.4.1.30 RpcWinStationIsHelpAssistantSession (Opnum 61)
	3.7.4.1.31 RpcWinStationGetMachinePolicy (Opnum 62)
	3.7.4.1.32 RpcWinStationCheckLoopBack (Opnum 65)
	3.7.4.1.33 RpcConnectCallback (Opnum 66)
	3.7.4.1.34 RpcWinStationGetAllProcesses_NT6 (Opnum 70)
	3.7.4.1.35 RpcWinStationOpenSessionDirectory (Opnum 75)

	3.7.5 Timer Events
	3.7.6 Other Local Events

	3.8 Virtual IP Client Detail
	3.8.1 Abstract Data Model
	3.8.2 Timers
	3.8.3 Initialization
	3.8.4 Message Processing Events and Sequencing Rules
	3.8.5 Timer Events
	3.8.6 Other Local Events

	3.9 Virtual IP Server Detail
	3.9.1 Abstract Data Model
	3.9.1.1 Abstract Data Types

	3.9.2 Timers
	3.9.3 Initialization
	3.9.4 Message Processing Events and Sequencing Rules
	3.9.4.1 TSVIPPublic
	3.9.4.1.1 RpcGetSessionIP (Opnum 0)

	3.9.5 Timer Events
	3.9.6 Other Local Events

	3.10 SessEnv Details
	3.10.1 Abstract Data Model
	3.10.2 Timers
	3.10.3 Initialization
	3.10.4 Message Processing Events and Sequencing Rules
	3.10.4.1 SessEnvPublicRpc
	3.10.4.1.1 RpcShadow2 (Opnum 0)

	3.10.5 Timer Events
	3.10.6 Other Local Events

	4 Protocol Examples
	4.1 LSM Enumeration Example
	4.2 TermService Listener Example
	4.3 TermSrvBindSecure Example
	4.4 Legacy Example
	4.5 Encoding/Decoding Example

	5 Security
	5.1 Security Considerations for Implementers
	5.2 Index of Security Parameters

	6 Appendix A: Full IDL
	6.1 Appendix A.1: tspubrpc.idl
	6.2 Appendix A.2: rcmpublic.idl
	6.3 Appendix A.3: legacy.idl
	6.4 Appendix A.4: TSVIPRpc.idl
	6.5 Appendix A.5: winsta.h
	6.6 Appendix A.6: tsdef.h
	6.7 Appendix A.7: allproc.h
	6.8 Appendix A.8: SessEnvRpc.idl

	7 (Updated Section) Appendix B: Product Behavior
	8 Change Tracking
	9 Index

