
1 / 148

[MS -TSCH] - v20171201
Task Scheduler Service Remoting Protocol
Copyright © 2017 Microsoft Corporation
Release: December 1, 2017

[MS -TSCH]:

Task Scheduler Service Remoting Protocol

Intellectual Property Rights Notice for Open Specifications Documentation

Á Technical Documentation. Microsoft publishes Open Specifications documentation (ñthis
documentationò) for protocols, file formats, data portability, computer languages, and standards
support. Additionally, overview documents cover inter -protocol relationships and interactions.

Á Copyrights . This documentation is covered by Microsoft copyrights. Regardless of any other
terms that are contained in the terms of use for the Microsoft website that hosts this
documentation, you can make copies of it in order to develop implementations of the technologies

that are described in this documentation and can distribute portions of it in your implementations
that use these technologies or in your documentation as necessary to properly document the

implementation. You can also distribute in your i mplementation, with or without modification, any
schemas, IDLs, or code samples that are included in the documentation. This permission also
applies to any documents that are referenced in the Open Specifications documentation.

Á No Trade Secrets . Microsoft does not claim any trade secret rights in this documentation.
Á Patents . Microsoft has patents that might cover your implementations of the technologies

described in the Open Specifications documentation. Neither this notice nor Microsoft's delivery of
thi s documentation grants any licenses under those patents or any other Microsoft patents.
However, a given Open Specifications document might be covered by the Microsoft Open
Specifications Promis e or the Microsoft Community Promise . If you would prefer a written license,
or if the technologies described in this documentation are not covered by the Open Specifications
Promise or Communit y Promise, as applicable, patent licenses are available by contacting
iplg@microsoft.com .

Á License Programs . To see all of the protocols in scope under a specific license program and the
associated patents, visit t he Patent Map .

Á Trademarks . The names of companies and products contained in this documentation might be
covered by trademarks or similar intellectual property rights. This notice does not grant any

licenses under those rights. For a list of Microsoft trademarks, visit
www.microsoft.com/trademarks .

Á Fictitious Names . The example companies, organizations, products, domain names, em ail
addresses, logos, people, places, and events that are depicted in this documentation are fictitious.
No association with any real company, organization, product, domain name, email address, logo,
person, place, or event is intended or should be inferre d.

Reservation of Rights . All other rights are reserved, and this notice does not grant any rights other
than as specifically described above, whether by implication, estoppel, or otherwise.

Tools . The Open Specifications documentation does not require th e use of Microsoft programming

tools or programming environments in order for you to develop an implementation. If you have access
to Microsoft programming tools and environments, you are free to take advantage of them. Certain
Open Specifications document s are intended for use in conjunction with publicly available standards
specifications and network programming art and, as such, assume that the reader either is familiar
with the aforementioned material or has immediate access to it.

Support. For question s and support, please contact dochelp@microsoft.com .

http://go.microsoft.com/fwlink/?LinkId=214445
http://go.microsoft.com/fwlink/?LinkId=214445
http://go.microsoft.com/fwlink/?LinkId=214448
mailto:iplg@microsoft.com
https://msdn.microsoft.com/en-us/openspecifications/dn750984
http://www.microsoft.com/trademarks
mailto:dochelp@microsoft.com

2 / 148

[MS -TSCH] - v20171201
Task Scheduler Service Remoting Protocol
Copyright © 2017 Microsoft Corporation
Release: December 1, 2017

Revision Summary

Date
Revision
History

Revision
Class Comments

3/2/2007 1.0 Major Updated and revised the technical content.

4/3/2007 1.1 Minor Clarified the meaning of the technical content.

5/11/2007 2.0 Major New format

6/1/2007 2.0.1 Editorial Changed language and formatting in the technical content.

7/3/2007 2.1 Minor Clarified the meaning of the technical content.

8/10/2007 3.0 Major Updated and revised the technical content.

9/28/2007 3.0.1 Editorial Changed language and formatting in the technical content.

10/23/2007 3.1 Minor Clarified the meaning of the technical content.

1/25/2008 3.1.1 Editorial Changed language and formatting in the technical content.

3/14/2008 4.0 Major Updated and revised the technical content.

6/20/2008 4.1 Minor Clarified the meaning of the technical content.

7/25/2008 5.0 Major Updated and revised the technical content.

8/29/2008 6.0 Major Updated and revised the technical content.

10/24/2008 6.0.1 Editorial Changed language and formatting in the technical content.

12/5/2008 7.0 Major Updated and revised the technical content.

1/16/2009 8.0 Major Updated and revised th e technical content.

2/27/2009 9.0 Major Updated and revised the technical content.

4/10/2009 10.0 Major Updated and revised the technical content.

5/22/2009 11.0 Major Updated and revised the technical content.

7/2/2009 11.0.1 Editorial Changed language and formatting in the technical content.

8/14/2009 12.0 Major Updated and revised the technical content.

9/25/2009 12.1 Minor Clarified the meaning of the technical content.

11/6/2009 12.1.1 Editorial Changed language and formatting in the technical content.

12/18/2009 13.0 Major Updated and revised the technical content.

1/29/2010 14.0 Major Updated and revised the technical content.

3/12/2010 15.0 Major Updated and revised the technical content.

4/23/2010 15.0.1 Editorial Changed language and formatting in the technical content.

6/4/2010 15.1 Minor Clarified the meaning of the technical content.

7/16/2010 16.0 Major Updated and revised the technical content.

8/27/2010 17.0 Major Updated and revised the technical content.

3 / 148

[MS -TSCH] - v20171201
Task Scheduler Service Remoting Protocol
Copyright © 2017 Microsoft Corporation
Release: December 1, 2017

Date
Revision
History

Revision
Class Comments

10/8/2010 17.0 None
No changes to the meaning, language, or formatting of the
technical content.

11/19/2010 17.0 None
No changes to the meaning, language, or formatting of the
technical content.

1/7/2011 17.0 None
No changes to the meaning, language, or formatting of the
technical content.

2/11/2011 18.0 Major Updated and revised the technical content.

3/25/2011 18.0 None
No changes to the meaning, language, or formatting of the
technical content.

5/6/2011 18.0 None
No changes to the meaning, language, or formatting of the

technical content.

6/17/2011 18.1 Minor Clarified the meaning of the technical content.

9/23/2011 18.1 None
No changes to the meaning, language, or formatting of the
technical content.

12/16/2011 19.0 Major Updated and revised the technical content.

3/30/2012 19.0 None
No changes to the meaning, language, or formatting of the
technical content.

7/12/2012 19.0 None
No changes to the meaning, language, or formatting of the
technical cont ent.

10/25/2012 20.0 Major Updated and revised the technical content.

1/31/2013 20.1 Minor Clarified the meaning of the technical content.

8/8/2013 21.0 Major Updated and revised the technical content.

11/14/2013 21.0 None
No changes to the meaning, language, or formatting of the
technical content.

2/13/2014 21.0 None
No changes to the meaning, language, or formatting of the
technical content.

5/15/2014 21.0 None
No changes to the meaning, language, or formatting of the
technical content.

6/30/2015 22.0 Major Significantly changed the technical content.

10/16/2015 22.0 None
No changes to the meaning, language, or formatting of the
technical content.

7/14/2016 23.0 Major Significantly changed the technical content.

6/1/2017 23.0 None
No changes to the meaning, language, or formatting of the
technical content.

9/15/2017 24.0 Major Significantly changed the technical content.

12/1/2017 24.0 None
No changes to the meaning, language, or formatting of the
technical content.

4 / 148

[MS -TSCH] - v20171201
Task Scheduler Service Remoting Protocol
Copyright © 2017 Microsoft Corporation
Release: December 1, 2017

Table of Contents

1 Introduction 9
1.1 Glossary 9
1.2 References 12

1.2.1 Normative References 12
1.2.2 Informative References 13

1.3 Overview 14
1.4 Relationship to Other Protocols 14
1.5 Prerequisites /Preconditions 14
1.6 Applicability Statement 15
1.7 Versioning and Capability Negotiation 15
1.8 Vendor -Extensible Fields 15
1.9 Standards Assignments 15

2 Messages 17
2.1 Transport 17
2.2 Message Syntax 17
2.3 Common Data Types 17

2.3.1 Constant Values 17
2.3.2 ATSVC_HANDLE 18
2.3.3 SASEC_HANDLE 18
2.3.4 AT_INFO 18
2.3.5 AT_ENUM_CONTAINER 20
2.3.6 AT_ENUM 21
2.3.7 Flags 21
2.3.8 TASK_USER_CRED 22
2.3.9 TASK_LOGON_TYPE 23
2.3.10 TASK_XML_ERROR_INFO 24
2.3.11 Path Names 24
2.3.12 TASK_NAMES 24
2.3.13 TASK_STATE 24
2.3.14 Error Codes 25

2.4 .JOB File Format 25
2.4.1 FIXDLEN_DATA 25
2.4.2 Variable -Length Data Section 28

2.4.2.1 Specially F ormatted Unicode Strings 28
2.4.2.2 Running Instance Count 29
2.4.2.3 Application Name 29
2.4.2.4 Parameters 29
2.4.2.5 Working Directory 29
2.4.2.6 Author 29
2.4.2.7 Comment 29
2.4.2.8 User Data Size/User Data 29
2.4.2.9 Reserved Data Size/Reserved Data 30
2.4.2.10 Trig ger Count 30
2.4.2.11 Triggers 30

2.4.2.11.1 Trigger Type 32
2.4.2.11.2 Day of the Month 33
2.4.2.11.3 Day of the Week 33
2.4.2.11.4 Month of the Year 34
2.4.2.11.5 DAILY Trigger 35
2.4.2.11.6 WEEKLY Trigger 35
2.4.2.11.7 MONTHLYDATE Trigger 36
2.4.2.11.8 MONTHLYDOW T rigger 36

2.4.2.12 Job Signature 37
2.5 XML Task Definition Format 38

5 / 148

[MS -TSCH] - v20171201
Task Scheduler Service Remoting Protocol
Copyright © 2017 Microsoft Corporation
Release: December 1, 2017

2.5.1 Common Data Types 39
2.5.1.1 Standard Data Types 39
2.5.1.2 versionType 39
2.5.1.3 nonEmptyString 39
2.5.1.4 pathType 39
2.5.1.5 guidType 40

2.5.2 RegistrationInfo Schema Part 40
2.5.3 Triggers Schema Part 41

2.5.3.1 Common Trigger Elements 41
2.5.3.2 BootTrigger 42
2.5.3.3 RegistrationTrigger 43
2.5.3.4 IdleTrigger 43
2.5.3.5 TimeTrigger 43
2.5.3.6 EventTrigger 44
2.5.3.7 LogonTrigger 45
2.5.3.8 SessionStateChangeTrigger 45
2.5.3.9 CalendarTrigger 46

2.5.4 Settings Schema Part 49
2.5.4.1 AllowStartOnDemand 50
2.5.4.2 RestartOnFailure 50
2.5.4.3 MultipleInstancesPolicy 50
2.5.4.4 DisallowStartIfOnBatteries 51
2.5.4.5 StopIfGoingOnBatteries 51
2.5.4.6 AllowHardTerminate 51
2.5.4.7 StartWhenAvailable 51
2.5.4.8 RunOnNetworkAvailable 51
2.5.4.9 NetworkSettings 51
2.5.4.10 WakeToRun 52
2.5.4.11 Enabled 52
2.5.4.12 Hidden 52
2.5.4.13 DeleteExpiredTaskAfter 52
2.5.4.14 IdleSettings 52
2.5.4.15 Maintenance Settings 53
2.5.4.16 ExecutionTimeLimit 54
2.5.4.17 Priority 54
2.5.4.18 RunOnlyIfIdle 54
2.5.4.19 UseUnifiedSchedulingEngine 54
2.5.4.20 DisallowStartOnRemoteAppSession 54
2.5.4.21 Volatile 54

2.5.5 Data Schema Part 54
2.5.6 Principal Schema Part 54
2.5.7 Action Schema Part 58

2.5.7.1 Exec Action 58
2.5.7.2 ComHandler Action 59
2.5.7.3 Email Action 59
2.5.7.4 ShowMessage Action 60

2.5.8 XML Tasks Localization 61
2.5.9 Task Fields Paramet erization 61

2.5.9.1 Parameterization Format 62
2.5.9.2 Parameter Names 62
2.5.9.3 Parameterizable Fields 62

3 Protocol Details 63
3.1 Client Role Details 63

3.1.1 Abstract Data Model 63
3.1.2 Timers 63
3.1.3 Initialization 63
3.1.4 Higher -Layer Triggered Events 63

6 / 148

[MS -TSCH] - v20171201
Task Scheduler Service Remoting Protocol
Copyright © 2017 Microsoft Corporation
Release: December 1, 2017

3.1.4.1 ATSvc Client Processing 63
3.1.4.1.1 Add Task 64
3.1.4.1.2 Delete Task 64
3.1.4.1.3 Retrieve Task Status 64
3.1.4.1.4 Enumerate Tasks 64

3.1.4.2 SASec Client Processing 65
3.1.4.2.1 Common Operations 65

3.1.4.2.1.1 Determining T ask Folder 65
3.1.4.2.1.2 Setting Account Information 65

3.1.4.2.2 Add Task 66
3.1.4.2.3 Delete Task 66
3.1.4.2.4 Modify Task 66
3. 1.4.2.5 Retrieve Task Status 66
3.1.4.2.6 Enumerate Tasks 67
3.1.4.2.7 ATSvc Account Information 67
3.1.4.2.8 Control Task Operation 67

3.1.4.2.8.1 Run 67
3.1.4.2.8.2 Stop 68
3.1.4.2.8.3 Stop Instance 68

3.1.4.3 ITaskSchedulerService Client Processing 68
3.1.4.3.1 Add Task 68
3.1.4. 3.2 Add Folder 69
3.1.4.3.3 Delete Task or Folder 69
3.1.4.3.4 Modify Task or Folder 69

3.1.4.3.4.1 Set the Security Descriptor of a Task 69
3. 1.4.3.4.2 Set the Security Descriptor of a Folder 69
3.1.4.3.4.3 Set the Enabled State of a Task 70
3.1.4.3.4.4 Modify a Task Definition 70

3.1.4.3.5 Retrieve Task and Task Status 70
3.1.4.3.5.1 Retrieve a Task 70
3.1.4.3.5.2 Retrieve a Ta sk's Security Descriptor 71
3.1.4.3.5.3 Retrieve a Running Task's Instance Information 71
3.1.4.3.5.4 Retrieve a Task's Scheduled Run Times 71
3.1.4.3.5.5 Retrieve a Task's Last Run Information 72
3.1.4.3.5.6 Retrieve a Task's Information 72
3.1.4.3.5. 7 Retrieve the Number of Times a Task Did Not Run 72
3.1.4.3.5.8 Retrieve the Highest Version of the Schema 73

3.1.4.3.6 Enumerate Tasks or Folders 73
3.1.4.3.6.1 Enumerate All Tasks in a Folder 73
3.1.4.3. 6.2 Enumerate All Subfolders in a Folder 73
3.1.4.3.6.3 Enumerate a Task's Running Instances 74

3.1.5 Message Processing Events and Sequencing Rules 74
3.1.6 Timer Events 74

3.2 Server Role Details 74
3.2.1 Abstract Data Model 74
3.2.2 Timers 75
3.2.3 Initialization 75
3.2.4 Higher -Layer Triggered Events 76

3.2.4.1 EventLog Events 76
3.2.4.2 Idle 76
3.2.4.3 Startup 76
3.2.4.4 Session Change 76
3.2.4.5 Sleep 76
3.2.4.6 Wake 77

3.2.5 Message Processing Events and Sequencing Rules 77
3.2.5.1 Common Operations 77

3.2.5.1.1 Task Registration Security Checks 77
3.2.5.1.2 Starting a Task 78

7 / 148

[MS -TSCH] - v20171201
Task Scheduler Service Remoting Protocol
Copyright © 2017 Microsoft Corporation
Release: December 1, 2017

3.2.5.1.3 Stopping a Task 78
3.2.5.2 ATSvc Message Processing Events and Sequencing Rules 79

3.2.5.2.1 NetrJobAdd (Opnum 0) 79
3.2.5.2.2 NetrJobDel (Opnum 1) 80
3.2.5.2.3 NetrJobEnum (Opnum 2) 81
3.2.5.2.4 NetrJobGetInfo (Opnum 3) 82

3.2.5.3 SASec Message Processing Events and Sequencing Rules 83
3.2.5.3.1 Receive File Add Notification 83
3.2.5.3.2 Receive File Delete Notification 86
3.2.5.3.3 Receive File Modification Notification 87
3.2.5.3.4 SASetAccountInformation (Opnum 0) 87
3.2.5.3.5 SASetNSAccountInformation (Opnum 1) 88
3.2.5.3.6 SAGetNSAccountInformation (Opnum 2) 89
3.2.5.3.7 SAGetAccountInformation (Opnum 3) 90

3.2.5.4 ITaskSchedulerService Message Processing Events and Sequencing Rules 91
3.2.5.4.1 SchRpcHighestVersion (Opnum 0) 92
3.2.5.4.2 SchRpcRegisterTask (Opnum 1) 93
3.2.5.4.3 SchRp cRetrieveTask (Opnum 2) 103
3.2.5.4.4 SchRpcCreateFolder (Opnum 3) 104
3.2.5.4.5 SchRpcSetSecurity (Opnum 4) 104
3.2.5.4.6 SchRpcGetSecurity (Opnum 5) 105
3.2.5.4.7 SchRp cEnumFolders (Opnum 6) 106
3.2.5.4.8 SchRpcEnumTasks (Opnum 7) 108
3.2.5.4.9 SchRpcEnumInstances (Opnum 8) 109
3.2.5.4.10 SchRpcGetInstanceInfo (Opnum 9) 110
3.2.5.4.11 SchRpcStopInstance (Opnum 10) 111
3.2.5.4.12 SchRpcStop (Opnum 11) 112
3.2.5.4.13 SchRpcRu n (Opnum 12) 112
3.2.5.4.14 SchRpcDelete (Opnum 13) 115
3.2.5.4.15 SchRpcRename (Opnum 14) 115
3.2.5.4.16 SchRpcSc heduledRuntimes (Opnum 15) 116
3.2.5.4.17 SchRpcGetLastRunInfo (Opnum 16) 117
3.2.5.4.18 SchRpcGetTaskInfo (Opnum 17) 118
3.2.5.4.19 SchRpcGetNumberOfMissedRuns (Opnum 18) 119
3.2.5.4.20 SchRpcEnableTask (Opnum 19) 120

3.2.6 Timer Eve nts 120
3.2.6.1 Global Timer 121
3.2.6.2 Delay Timer 121

3.3 RPC Runtime Check Notes 121

4 Protocol Examples 122
4.1 Packet Sequence for Task Creation 122

4.1.1 Packet Sequence for Task Creation Using SASec Interface 122
4.1.2 Packet Sequence for Task Creation Using ITaskScheduler Interface 122
4.1.3 Task XML Example 123

4.2 Examples of Operations Flow 124
4.2.1 SASec Operation Flow 124
4.2.2 ITaskSchedulerService Operation Flow 126

5 Security 128
5.1 Security Considerations for Implementers 128

6 Appendix A: Full IDL 129
6.1 Appendix A.1: ATSvc.idl 129
6.2 Appendix A.2: SaSecRpc.idl 130
6.3 Appendix A.3: SchRp c.idl 131

7 Appendix B: Product Behavior 135

8 Change Tracking 145

8 / 148

[MS -TSCH] - v20171201
Task Scheduler Service Remoting Protocol
Copyright © 2017 Microsoft Corporation
Release: December 1, 2017

9 Index 146

9 / 148

[MS -TSCH] - v20171201
Task Scheduler Service Remoting Protocol
Copyright © 2017 Microsoft Corporation
Release: December 1, 2017

1 Introduction

This specification describes how the Task Scheduler Remoting Protocol is used to register and
configure a task and to inquire about the status of running tasks on a remote machine.

Sections 1.5, 1.8, 1.9, 2, and 3 of this specification are normative. All other sections and examples in
this specification are informative.

1.1 Glossary

This document uses the following terms:

access control entry (ACE) : An entry in an access control list (ACL) that contains a set of user
rights and a security identifier (SID) that identifies a principal for whom the rights are

allowed, denied, or audited.

Active Directory : A general -purpose network directory service. Active Directory also refers to

the Windows implementation of a directory service. Active Directory stores information about
a variety of objects in the network. User a ccounts, computer accounts, groups, and all related
credential information used by the Windows implementation of Kerberos are stored in Active
Directory . Active Directory is either deployed as Active Directory Domain Services (AD DS) or
Active Directory Lightweight Directory Services (AD LDS). [MS -ADTS] describes both forms. For

more information, see [MS -AUTHSOD] section 1.1.1.5.2, Lightweight Directory Access Protocol
(LDAP) versions 2 and 3, Kerberos, and DNS .

authentication level : A numeric value indicating the level of authentication or message protection
that remote procedure call (RPC) will apply to a specific message exchange. For more
information, see [C706] section 13.1.2.1 and [MS -RPCE].

binding handle : A data structure that represents the logical connection between a client and a
server.

Component Object Model (COM) : An object -oriented programming model that defines how

objects interact within a single process or b etween processes. In COM , clients have access to an
object through interfaces implemented on the object. For more information, see [MS -DCOM] .

condition : A predicate (for example, the machine is idle) that must be satisfied for a task to run.
A tas k runs when any of its triggers and all of its conditions are met.

credential : Previously established, authentication data that is used by a security principal to

establish its own identity. Whe n used in reference to the Netlogon Protocol, it is the data that is
stored in the NETLOGON_CREDENTIAL structure.

domain : A set of users and computers sharing a common namespace and management
infrastructure. At least one computer member of the set must ac t as a domain controller (DC)
and host a member list that identifies all members of the domain, as well as optionally hosting
the Active Directory service. The domain controller provides authent ication of members,
creating a unit of trust for its members. Each domain has an identifier that is shared among its

members. For more information, see [MS -AUTHSOD] section 1.1.1.5 and [MS -ADTS].

Domain Name System (DNS) : A hierarchical, distributed databa se that contains mappings of
domain names to various types of data, such as IP addresses. DNS enables the location of
computers and services by user - friendly names, and it also enables the discovery of other
information stored in the database.

dynamic endp oint : A network -specific server address that is requested and assigned at run time.
For more information, see [C706].

%5bMS-ADTS%5d.pdf#Section_d243592709994c628c6d13ba31a52e1a
%5bMS-AUTHSOD%5d.pdf#Section_953d700a57cb4cf7b0c3a64f34581cc9
https://go.microsoft.com/fwlink/?LinkId=89824
%5bMS-RPCE%5d.pdf#Section_290c38b192fe422991e64fc376610c15
%5bMS-DCOM%5d.pdf#Section_4a893f3dbd2948cd9f43d9777a4415b0

10 / 148

[MS -TSCH] - v20171201
Task Scheduler Service Remoting Protocol
Copyright © 2017 Microsoft Corporation
Release: December 1, 2017

folder : A file system construct. File systems organize a volume's data by providing a hierarchy of
objects, which are referred to as folde rs or directories, that contain files and can also contain

other folders.

fully qualified domain name (FQDN) : An unambiguous domain name that gives an absolute

location in the Domain Name System's (DNS) hierarchy tree, as defined in [RFC1035] section
3.1 and [RFC2181] section 11.

globally unique iden tifier (GUID) : A term used interchangeably with universally unique
identifier (UUID) in Microsoft protocol technical documents (TDs). Interchanging the usage of
these terms does not imply or req uire a specific algorithm or mechanism to generate the value.
Specifically, the use of this term does not imply or require that the algorithms described in
[RFC4122] or [C706] must be used fo r generating the GUID . See also universally unique

identifier (UUID) .

handle : Any token that can be used to identify and access an o bject such as a device, file, or a
window.

hidden task : A task configuration stored on a disk, but not displayed in the graphical user
interface.

Interface Definition Language (IDL) : The Interna tional Standards Organization (ISO) standard

language for specifying the interface for remote procedure calls. For more information, see
[C706] section 4.

job : An object identifying an administrative action (for example, running a program) to be
performed on specified triggers and conditions (for example, every day at a specific time).
Synonym for Task.

local system : Specifies the secu rity context of the computer, used as a task principal (as
opposed to user context as principal).

logged - on user : A user interacting with the computer after having been authenticated on the
domain .

principal : An authenticated entity that initiates a message or channel in a distributed system.

process identifier (PID) : A nonzero integer used by some operating systems (for example,
Windows and UNIX) to uniquely identify a process. For more information, see [PROCESS] .

registration (task) : The process of configuring all the parameters required for a task to be ready
to start when the triggers and conditions are met.

remote procedure call (RPC) : A communication protocol used primarily between client and
server. The term has three definitions th at are often used interchangeably: a runtime
environment providing for communication facilities between computers (the RPC runtime); a set
of request -and - response message exchanges between computers (the RPC exchange); and the
single message from an RPC ex change (the RPC message). For more information, see [C706].

RPC dynamic endpoint : A network -specific server address that is requested and assigned at run

time, as described in [C706].

RPC protocol sequence : A character string that represents a valid combi nation of a remote
procedure call (RPC) protocol, a network layer protocol, and a transport layer protocol, as
described in [C706] and [MS -RPCE].

scheduled runtime : A time when a task with either a TimeTrigger or CalendarTrigger is
scheduled to run.

security descriptor : A data structure containing the security information associated with a

securable object. A security descriptor identifies an object's owner by its security identifier

https://go.microsoft.com/fwlink/?LinkId=90264
https://go.microsoft.com/fwlink/?LinkId=127732
https://go.microsoft.com/fwlink/?LinkId=90460
https://go.microsoft.com/fwlink/?LinkId=90251

11 / 148

[MS -TSCH] - v20171201
Task Scheduler Service Remoting Protocol
Copyright © 2017 Microsoft Corporation
Release: December 1, 2017

(SID) . If access control is configured for the object, its security descriptor contains a
discretionary access control list (DACL) with SIDs for the sec urity principals who are allowed

or denied access. Applications use this structure to set and query an object's security status.
The security descriptor is used to guard access to an object as w ell as to control which type of

auditing takes place when the object is accessed. The security descriptor format is specified in
[MS -DTYP] section 2.4.6; a string representation of security descriptors , called SDDL, is
specified in [MS -DTYP] section 2.5.1.

Security Descriptor Definition Language (SDDL) : The format used to specify a security
descriptor as a text string, specified in [MS -DTYP] section 2.5.1.

security identifier (SID) : An identifier for security principals that is used to identify an account
or a group. Conceptually, the SID is composed of an account authority portion (typically a

domain) and a smaller integer representing an identity relative to the account authority,
termed the relative identifier (RID). The SID format is specified in [M S-DTYP] section 2.4.2; a
string representation of SIDs is specified in [MS -DTYP] section 2.4.2 and [MS -AZOD] sectio n
1.1.1.2.

security principal : A unique entity that is identifiable through cryptographic means by at least
one key. It frequently corresponds to a human user, but also can be a service that offers a

resource to other security principals. Also referred to as principal.

security provider : A pluggable security module that is specified by the protocol layer above the
remote procedure call (RPC) layer, and will cause the RPC layer to use this module to secure
messages in a communication session with the server. The security provider is sometimes
referred to as an authentication service. For more information, see [C706] and [MS -RPCE].

Server Message Block (SMB) : A protocol that is used to request file and print services from
server systems over a network. The SMB protocol extends the CIFS protocol with additional

security, file, and disk management support. For more information, see [CIFS] and [MS -SMB] .

Service for User (S4U) : Extensions to the Kerberos protocol that allow a s ervice to obtain a
Kerberos service ticket for a user that has not authenticated to the Key Distribution Center
(KDC). S4U includes S4U2proxy and S4U2self.

Simple Mail Transfer Protocol (SMTP) : A member of the TCP/IP suite of protocols that is used
to transport Internet messages, as described in [RFC5321] .

task : An object identifying an administrative action (for example, running a program) to be

performed on specified triggers and conditions (for example, every day at a specific time).
Synonym for job .

task instance : An occurrence of a task execution according to the t ask configuration. Each
instance is assigned a GUID for monitoring and control purposes.

task name : The name of the task used to sto re the task in the task store .

task store : A persistent conceptual data structure on the server that stores task configuration.

terminal server : A computer on which terminal services is running.

trigger : A change of state (for example, reaching a specific time of day) that signals when a task
is to run. A task runs when any of its triggers and all of its conditions are satisfied.

Unicode : A character encoding standard developed by the Unicode Consortium that represents
almost all of the written languages of the world. The Unicode standard [UNICODE5.0.0/2007]
provides three forms (UTF -8, UTF -16, and UTF -32) and seven schemes (UTF -8, UTF -16, UTF -16
BE, UTF-16 LE, UTF -32, UTF -32 LE, and UTF -32 BE).

%5bMS-DTYP%5d.pdf#Section_cca2742956894a16b2b49325d93e4ba2
%5bMS-AZOD%5d.pdf#Section_5a0a0a3ec7a742e1b5f2cc8d8bd9739e
https://go.microsoft.com/fwlink/?LinkId=89836
%5bMS-SMB%5d.pdf#Section_f210069c70864dc2885e861d837df688
https://go.microsoft.com/fwlink/?LinkId=144740
https://go.microsoft.com/fwlink/?LinkId=154659

12 / 148

[MS -TSCH] - v20171201
Task Scheduler Service Remoting Protocol
Copyright © 2017 Microsoft Corporation
Release: December 1, 2017

Unicode string : A Unicode 8-bit string is an ordered sequence of 8 -bit units, a Unicode 16 -bit
string is an ordered sequence of 16 -bit code units, and a Unicode 32 -bit string is an ordered

sequence of 32 -bit code units. In some cases, it could be acceptable not to terminate with a
terminating null character. Unless otherwise specified, all Unicode strings follow the UTF -16LE

encoding scheme with no Byte Order Mark (BOM).

universally unique identifier (UUID) : A 128 -bit value. UUIDs can be used for multiple
purposes, from tagging objects with an extremely short lifetime, to reliably identifying very
persistent objects in cross -process communication such as client and server interfaces, manager
entry -point vectors, and RPC objects. UUIDs are highly likely to be unique. UUIDs are also
known as globally unique identifiers (GUIDs) and these terms are used interchangeably in
the Microsoft protocol tech nical documents (TDs). Interchanging the usage of these terms does

not imply or require a specific algorithm or mechanism to generate the UUID. Specifically, the
use of this term does not imply or require that the algorithms described in [RFC4122] or [C706]
must be used for generating the UUID.

well - known endpoint : A preassigned, network -specific, stable address for a particular
client/server instance. For more information, see [C706].

workstation : A terminal or desktop computer in a network that is used to run applications and is

connected to a server from which it obtains data shared with other computers.

XML : The Extensible Markup Language, as described in [XML1.0] .

XML Path Language (XPath) : A language used to create expressions that can address parts of
an XML document, manipulate strings, numbers, and Booleans, and can match a set of nodes in
the document, as specified in [XPATH]. XPath models an XML document as a tree of nodes of
differen t types, including element, attribute, and text. XPath expressions can identify the nodes
in an XML document based on their type, name, and values, as well as the relationship of a node

to other nodes in the document.

MAY, SHOULD, MUST, SHOULD NOT, MUST NO T: These terms (in all caps) are used as defined
in [RFC2119] . All statements of optional behavior use either MAY, SHOULD, or SHOULD NOT.

1.2 References

Links to a document in the Microsoft Open Specifications library point to the correct section in the
most recently published version of the referenced document. However, because individual documents
in the library are not updated at the same time, the section numbers in the docu ments may not
match. You can confirm the correct section numbering by checking the Errata .

1.2.1 Normative References

We conduct frequent s urveys of the normative references to assure their continued availability. If you
have any issue with finding a normative reference, please contact dochelp@microsoft.com . We will
assist you in finding the relevant information.

[C706] The Open Group, "DCE 1.1: Remote Procedure Call", C706, August 1997,
https://www2.opengroup.org/ogsys/catalog/c706

[ISO -8601] International Organization for Standardization, "Data Elements and Interchange Formats -
Information Interchange - Representation of Dates and Times", ISO/IEC 8601:2004, December 2004,
http: //www.iso.org/iso/en/CatalogueDetailPage.CatalogueDetail?CSNUMBER=40874&ICS1=1&ICS2=1
40&ICS3=30

Note There is a charge to download the specification.

[MS -CIFS] Microsoft Corporation, " Common Internet File System (CIFS) Protocol ".

https://go.microsoft.com/fwlink/?LinkId=90599
https://go.microsoft.com/fwlink/?LinkId=90317
https://go.microsoft.com/fwlink/?linkid=850906
mailto:dochelp@microsoft.com
https://go.microsoft.com/fwlink/?LinkId=89824
https://go.microsoft.com/fwlink/?LinkId=89920
https://go.microsoft.com/fwlink/?LinkId=89920
%5bMS-CIFS%5d.pdf#Section_d416ff7cc536406ea9514f04b2fd1d2b

13 / 148

[MS -TSCH] - v20171201
Task Scheduler Service Remoting Protocol
Copyright © 2017 Microsoft Corporation
Release: December 1, 2017

[MS -DCOM] Microsoft Corporation, " Distributed Component Object Model (DCOM) Remote Protocol ".

[MS -DTYP] Microsoft Corporation, " Windows Data Types ".

[MS -ERREF] Microsoft Corporation, " Windows Error Codes ".

[MS -EVEN6] Microsoft Corporation, " EventLog Remoting Protocol Version 6.0 ".

[MS -EVEN] Microsoft Corporation, " EventLog Remoting Protocol ".

[MS -RPCE] Microsoft Corporation, " Remote Procedure Call Protocol Extensions ".

[MS -RRP] Microsoft Corporation, " Windows Remote Registry Protocol ".

[MS -SFU] Microsoft Corporation, " Kerberos Protocol Extensions: Service for User and Constrained

Delegation Protocol ".

[MS -SMB] Microsoft Corporation, " Server Message Block (SMB) Protocol ".

[RFC1321] Rivest, R., "The MD5 Message -Digest Algorithm", RFC 1 321, April 1992,

http://www.ietf.org/rfc/rfc1321.txt

[RFC2119] Bradner, S., "Key words for use in RFCs to Indicate Requirement Levels", BCP 14, RFC
2119, March 1997, http://www.rfc -editor.org/rfc/rfc2119.txt

[RFC3066] Alvestrand, H., "Tags for the Identification of Languages", BCP 47, RFC 3066, January
2001, http://www.ietf.org/rfc/rfc3066.txt

[RFC788] Postel, J., "Simple Mail Transfer Protocol", STD 10, RFC 788, November 1981,

http://www.ietf.org/rfc/rfc788.txt

[UNICODE] The Unic ode Consortium, "The Unicode Consortium Home Page", http://www.unicode.org/

[W3C -XSD] World Wide Web Consortium, "XML Schema Part 2: Datatypes Second Edition", October

2004, http://www.w3.org/TR/2004/REC -xmlschema -2-20041028

1.2.2 Informative References

[MS -AUTHSOD] Microsoft Corporation, " Authentication Services Protocols Overview ".

[MS -WCCE] Microsoft Corporation, " Windows Client Certificate Enrollment Protocol ".

[M SDN-CREDMGMT] Microsoft Corporation, "Credentials Management",

http://msdn.microsoft.com/en -us/library/aa374789(VS.85).aspx

[MSDN -GINA] Microsoft Corporation, "Winlogon and GINA", http://msdn.microsoft.com/en -
us/library/aa380543.aspx

[MSDN -MIDL] Microsoft Corporation, "Microsoft Interface Definition Language (MIDL)",
http://msdn.microsoft.com/en -us/library/ms950375.aspx

[MSDN -NetAware] Microsoft Corporation, "Network Awareness on Windows Vista",
http://msdn.microsoft.com/en -us/library/ms697388.aspx

[M SDN-ODCN] Microsoft Corporation, "Obtaining Directory Change Notifications",
http://msdn.microsoft.com/en -us/library/aa365261.aspx

[MSDN -TaskSch] Microsoft Corporation, "Task Scheduler", http://msdn.microsoft.com/en -
us/library/aa383614.aspx

%5bMS-DCOM%5d.pdf#Section_4a893f3dbd2948cd9f43d9777a4415b0
%5bMS-DTYP%5d.pdf#Section_cca2742956894a16b2b49325d93e4ba2
%5bMS-ERREF%5d.pdf#Section_1bc92ddfb79e413cbbaa99a5281a6c90
%5bMS-EVEN6%5d.pdf#Section_18000371ae6d45f795f3249cbe2be39b
%5bMS-EVEN%5d.pdf#Section_55b13664f7394e4ebd8d04eeda59d09f
%5bMS-RPCE%5d.pdf#Section_290c38b192fe422991e64fc376610c15
%5bMS-RRP%5d.pdf#Section_0fa3191dbb79490a81bd54c2601b7a78
%5bMS-SFU%5d.pdf#Section_3bff58648135400ebdd933b552051d94
%5bMS-SFU%5d.pdf#Section_3bff58648135400ebdd933b552051d94
%5bMS-SMB%5d.pdf#Section_f210069c70864dc2885e861d837df688
https://go.microsoft.com/fwlink/?LinkId=90275
https://go.microsoft.com/fwlink/?LinkId=90317
https://go.microsoft.com/fwlink/?LinkId=90404
https://go.microsoft.com/fwlink/?LinkId=91145
https://go.microsoft.com/fwlink/?LinkId=90550
https://go.microsoft.com/fwlink/?LinkId=90563
%5bMS-AUTHSOD%5d.pdf#Section_953d700a57cb4cf7b0c3a64f34581cc9
%5bMS-WCCE%5d.pdf#Section_446a0fca7f274436965d191635518466
https://go.microsoft.com/fwlink/?LinkId=119256
https://go.microsoft.com/fwlink/?LinkId=100300
https://go.microsoft.com/fwlink/?LinkId=100300
https://go.microsoft.com/fwlink/?LinkId=90041
https://go.microsoft.com/fwlink/?LinkId=90051
https://go.microsoft.com/fwlink/?LinkId=90053
https://go.microsoft.com/fwlink/?LinkId=90142
https://go.microsoft.com/fwlink/?LinkId=90142

14 / 148

[MS -TSCH] - v20171201
Task Scheduler Service Remoting Protocol
Copyright © 2017 Microsoft Corporation
Release: December 1, 2017

[MSDN -WSI] Microsoft Corporation, "WTS_SESSION_INFO structure", http://msdn. microsoft.com/en -
us/library/aa383864.aspx

1.3 Overview

The Task Scheduler Remoting Protocol is used to register and configure tasks or to query the status of
running tasks on a remote server. The Task Scheduler Remoting Protocol primarily consists of three
separate remote procedure call (RPC) interfaces:

Á Net Schedule (ATSvc)

Á Task Scheduler Agent (SASec)

Á Windows Vista operating system Task Remote Protocol (ITaskSchedulerService)

All three interfaces use RPC as their transport to configure and manage tasks remotely.

The three interfaces represent a continuum of increasing functionality, with ATSvc providing

rudimentary functionality and ITaskSchedulerService providing the most functionality. Historically, the
ATSvc interface is the oldest. <1> The three interfaces are not independent ðthey operate on the task
store , shared persistent storage for tasks.

In the ATSvc interface (see section 3.2.5.2), a task can be anything that can be specified on a
command line for execution on the server. The client c an specify execution at a given time or repeated
execution on particular days of the week or month. In addition to creating tasks with
NetrJobAdd (section 3.2.5.2.1) , the interface includes method s for deleting tasks (section 3.2.5.2.2),
enumerating tasks (section 3.2.5.2.3), and querying the status of a task (section 3.2.5.2.4).

The SASec interface (section 3.2.5.3), only includes methods for manipulating account information,
because most SASec -created task configuration is stored in the file system using the .JOB file fo rmat

(section 2.4). Clients add, delete, enumerate, and query tasks using a remote file system protocol as
specified in section 3.2.5 . T he .JOB file format provides more features than the ATSvc interface for
specifying tasks. <2>

Clients use the Windows Remote Registry Protocol Specification, as specified in [MS -RRP], to discover
the path of the remote directory that stores the tasks as .JOB files (section 3.2.5.3). Clients use the
SASec interface methods to supply security credentials for the remote task execution.

In contrast, the ITaskSchedulerService interface (section 3.2.5.4) includes methods for creating,
deleting, enumerating, and querying tasks. The remote r egistry and file system protocols are not
used. The ITaskSchedulerService interface uses XML to specify task configuration (section 2. 5). The
XML schema provides more features than the .JOB File Format for specifying tasks.

1.4 Relationship to Other Protocols

The ATSvc , SASec, and ITaskSchedulerService interfaces in the Task Scheduler Remoting Protocol use
the RPC Protocol [C706] for transport as specified in section 2.1 . The SASec interface requires that
clients also use the Windows Remote Registry Protocol Specification [MS -RRP], which uses RPC, and a
remote file system protocol. Implementers can refer to section 5.1 of [MS -DCOM] for security

considerations.

No higher - layer protocols make use of the Task Scheduler Remoting Protocol.

1.5 Prerequisites/Preconditions

The Task Scheduler Remoting Protocol requires the following preconditions:

Á The server is prepared to receive remote procedure calls rpc_server_use_protseq and

rpc_server_register_if, as specified in [C706] section 3.

https://go.microsoft.com/fwlink/?LinkId=90170
https://go.microsoft.com/fwlink/?LinkId=90170
%5bMS-RRP%5d.pdf#Section_0fa3191dbb79490a81bd54c2601b7a78
https://go.microsoft.com/fwlink/?LinkId=89824
%5bMS-RRP%5d.pdf#Section_0fa3191dbb79490a81bd54c2601b7a78
%5bMS-DCOM%5d.pdf#Section_4a893f3dbd2948cd9f43d9777a4415b0
https://go.microsoft.com/fwlink/?LinkId=89824

15 / 148

[MS -TSCH] - v20171201
Task Scheduler Service Remoting Protocol
Copyright © 2017 Microsoft Corporation
Release: December 1, 2017

Á The server's remote file system implementation is required to support file change notifications
(section 3.2.5.3).

Á The clie nt and server are required to have security providers to support encrypted remote calls.

Á The client is required to possess credentials recognized by the server.

1.6 Applicability Statement

This protocol is applicable to scheduling tasks and querying their status on remote machi nes either in
domain or workstation configurations.

1.7 Versioning and Capability Negotiation

There are four versions of the Task Scheduler Remoting Protocol that correspond to the ATSvc , SASec,
and ITaskSchedulerService (for the last two) interfaces. The following table provides the task version
number, as specified in section 3.2.1 , for these interfaces:

Tasks created with ATSvc are v1.0, tasks created with SASec are v1.1, and tasks created with
ITaskSchedulerService are v1.2 or v1.3. ATSvc, SASec, and ITaskSchedulerService support managing
all five versions -- v1.0, v1.1, v1.2, v1.3, and v1.4.

Interface Task version

ATSvc v1.0

SASec v1.1

ITaskSchedulerService v1.2

ITaskSchedulerService v1.3

ITaskSchedulerService V1.4

There is no explicit version or capability negotiation in the Task Scheduler Remoting Protocol. Instead,
the availability of an RPC interface indicates support for that version of the protocol by the server.

Though versioning is mentioned in this specification as summarized here, it is not subject to
negotiation. The ITaskSchedulerService interface has a method
SchRpcHighestVersion (section 3.2.5.4.1) that returns the highest version in the format
0xMMMMmmmm, where 'M' stands for the major version hex digits and 'm' stands for the minor
version hex digits. The only version num bers currently supported are 0x00010002 and 0x00010003,
and no negotiation takes place. The .JOB file format contains a File Version field (see

FIXDLEN_DATA (section 2.4.1)), but this field is alw ays set to 0x0001, so it is not subject to
negotiation. The XML schema contains a Version element (see section 2.5.1), but this elemen t is for
the use of the task itself and not related to Task Scheduler Remoting Protocol versioning.

1.8 Vendor -Extensible Fields

This protocol uses HRESULT return codes, which are vendor -extensible. Vendors are free to choose
their own values for this field, as long as the C bit (0x20000000) is set, indicating it is a customer
code. For more information, see [MS -ERREF].<3>

1.9 Standards Assignments

The following is a table of well -known UUIDs used in the ATSvc , SASec, and ITaskSchedulerService
protocols.

%5bMS-ERREF%5d.pdf#Section_1bc92ddfb79e413cbbaa99a5281a6c90

16 / 148

[MS -TSCH] - v20171201
Task Scheduler Service Remoting Protocol
Copyright © 2017 Microsoft Corporation
Release: December 1, 2017

Name Value Purpose

GUID_ATSvc 1FF70682 -0A51 -30E8 -076D -
740BE8CEE98B

ATSvc UUID version 1.0

GUID_SASec 378E52B0 -C0A9 -11CF-822D -
00AA0051E40F

SASec UUID version 1.0

GUID_ITaskSchedulerService 86D35949 -83C9 -4044 -B424 -
DB363231FD0C

ITaskSchedulerService UUID version
1.0

The ATSvc and SASec interfaces use the ncacn_np RPC protocol sequence and the well - known
endpoint \ PIPE\ atsvc. The ITaskSchedulerService interface uses the ncacn_ip_tcp RPC protocol
sequence and RPC dynamic endpo ints .

17 / 148

[MS -TSCH] - v20171201
Task Scheduler Service Remoting Protocol
Copyright © 2017 Microsoft Corporation
Release: December 1, 2017

2 Messages

2.1 Transport

The Task Scheduler Remoting Protocol MUST use [MS -RPCE] as its transport protocol.

When using the ATSvc and SASec interfaces, the Task Scheduler Remoting Protocol client and server
MUST spec ify ncacn_np as the RPC protocol sequence ([MS -RPCE] section 2.1.1.2).

When using the ITaskSchedulerService interface, the Task Sched uler Remoting Protocol client and
server MUST specify ncacn_ip_tcp. The ATSvc and SASec interfaces use a well - known endpoint (see
section 1.9) whereas the ITaskSchedulerService interface uses a dynamic endpoint . The server
MUST specify the "Simple and Protected GSS -API Negotiation Mechanism" (0x9) as the RPC

authentication service ([MS -RPCE] section 2.2.1.1.7). The client SHOULD specify either "Simple and
Protected GSS -API Negotiation Mechanism" or "NTLM" (0xA) as the authentication service. <4>

The client SHOULD use an authentication level of Packet Privacy to connect to the server. If the

server does not support this authentication level , the client SHOULD fall back to Connection.
Authentication levels are specified in detail in [MS -RPCE] section 3.3.1.5.2.2.

The RPC server MUST require RPC_C_AUTHN_GSS_NEGOTIATE or RPC_C_AUTHN_WINNT
authorization. The RPC client MUST use an authentication level of

RPC_C_AUTHN_LEVEL_PKT_PRIVACY (value = 6), as specified in [MS -RPCE] section 2.2.1.1.8.

2.2 Message Syntax

This section uses both Interface D efinition Language (IDL) and bit -diagrams to specify syntax.
Types and structures defined in IDL syntax are marshaled as specified in [C706] section 14. All fields

in bit -diagrams are marshal ed using little -endian byte ordering unless otherwise stated. In both IDL
and bit -diagrams, all extra padding bytes MUST be zero unless otherwise stated and MUST be ignored
upon receipt.

Except where otherwise specified, the Task Scheduler Remoting Protoco l uses the UTF -16LE Unicode
encoding, as specified in [UNICODE] , for all string values, including all string constants appearing in
this specification.

2.3 Common Data Types

In addition t o the RPC data types specified in [MS -DTYP] Appendix A, the following sections use the
definitions of BYTE, DWORD, LPDWORD, LPCWSTR, FILETIME, SECURITY_DESCRIPTOR, and
SECURITY_INFORMATION as specified in [MS -DTYP].

The following additional data types are used in the IDL specification of the Task Scheduler R emoting
Protocol RPC interfaces.

2.3.1 Constant Values

The Task Scheduler Remoting Protocol uses the following constant value definitions for interface
method parameters.

Note All values are given in decimal notation, as per the IDL source code.

Constant/value Description

CNLEN

15

The CNLEN constant is set to a value of 15.

%5bMS-RPCE%5d.pdf#Section_290c38b192fe422991e64fc376610c15
https://go.microsoft.com/fwlink/?LinkId=89824
https://go.microsoft.com/fwlink/?LinkId=90550
%5bMS-DTYP%5d.pdf#Section_cca2742956894a16b2b49325d93e4ba2

18 / 148

[MS -TSCH] - v20171201
Task Scheduler Service Remoting Protocol
Copyright © 2017 Microsoft Corporation
Release: December 1, 2017

Constant/value Description

DNLEN

CNLEN

The DNLEN constant is set to the value of CNLEN; that is, DNLEN is set to 15.

UNLEN

256

The UNLEN constant is set to a value of 256.

MAX_BUFFER_SIZE

(DNLEN+UNLEN+1+1)

The value of MAX_BUFFER_SIZE calculates out to 273.

2.3.2 ATSVC_HANDLE

The ATSvc interface on a particular server is referred to by its handle , the ATSVC_HANDLE. For the

ATSvc interface, the handle is the NetBIOS name of the server providing the interface.

This type is declared as follows:

 typedef [handle] const wchar_t* ATSVC_HANDLE;

All the ATSvc methods, as specified in section 3.2.5.2, have an ATSVC_HANDLE as their first

parameter. This string is translated to an RPC binding handle by using RPC APIs.

2.3.3 SASEC_HANDLE

The SASec interface on a particular server is referred to by its handle , a SASEC_HANDLE. For the
SASec interface, the handle is the NetBI OS name of the server providing the interface.

All the SASec methods, as specified in section 3.2.5.3, have an SASEC_HANDLE as their first

parameter. This string is translated to an RPC binding handle using RPC APIs.

This type is declared as follows:

 typedef [handle] const wchar_t* SASEC_HANDLE;

2.3.4 AT_INFO

The client uses the AT_INFO structure to configure a task in the ATSvc NetrJobAdd (section 3.2.5.2.1)
method. The server returns the AT_INFO structure with info rmation about a task in the ATSvc
NetrJobGetInfo (section 3.2.5.2.4) method. The format of the AT_INFO structure is as follows.

 typedef struct _AT_INFO {

 DWORD_PTR JobTime;

 DWORD DaysOfMonth;

 unsigned char DaysOfWeek;

 unsigned char Flags;

 [string] wchar_t* Command;

 } AT_INFO,

 *PAT_INFO,

 *LPAT_INFO;

19 / 148

[MS -TSCH] - v20171201
Task Scheduler Service Remoting Protocol
Copyright © 2017 Microsoft Corporation
Release: December 1, 2017

JobTime: This field is the time of day the task is to run, expressed as milliseconds after midnight.
The value is in the range of 0 to 8639 9999 (24*60*60*1000 -1). JobTime is present on the wire

as a 32 -bit unsigned integer. <5>

DaysOfMonth: Contains individual bit flags that specify that the task is to run on that day of the

mont h. Bits that do not correspond to a real calendar day (for example, bit 2 in February, which
means the 30th) are ignored. See also the JOB_ADD_CURRENT_DATE flag below. The mapping of
bit to day of month is as follows.

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

x 3
1

3
0

2
9

2
8

2
7

2
6

2
5

2
4

2
3

2
2

2
1

2
0

1
9

1
8

1
7

1
6

1
5

1
4

1
3

1
2

1
1

1
0

9 8 7 6 5 4 3 2 1

1 - 31: Any bit set to 1 specifies that the task can be run on that day of the month. More than one
bit can be set to 1.

x: Unused. Can be set to zero when sent and ignored on receipt. <6>

Bit 0 is not used.

DaysOfWeek: Contains individual bit flags that specify the day of the week on which the task is to
run. The mapping of bit to day of week is as follows.

0

1

2

3

4

5

6

7

X S
U

S
A

F
R

T
H

W
E

T
U

M
O

Value Description

X

Unused. Can be set to zero when sent and ignored upon receipt. <7>

MO

Monday

If set to 1, specifies that the task can be run on Monday.

TU

Tuesday

If set to 1, specifies that the task can be run on Tuesday.

WE

Wednesday

If set to 1, specifies that the task can be run on Wednesday.

TH

Thursday

If set to 1, specifies that the task can be run on Thursday.

FR

Friday

If set to 1, specifies that the task can be run on Friday.

SA

Saturday

If set to 1, indicates that the task can be run on Saturday.

SU

Sund ay

If set to 1, indicates that the task can be run on Sunday.

20 / 148

[MS -TSCH] - v20171201
Task Scheduler Service Remoting Protocol
Copyright © 2017 Microsoft Corporation
Release: December 1, 2017

Flags: Contains individual bit flags set to zero or more of the following values.

0

1

2

3

4

5

6

7

X 0 0 N
I

A
C

R
T

E
R

R
P

Value Description

X

Unused. MUST be set to zero when sent and MUST be ignored on
receipt. <8>

RP

JOB_RUN_PERIODICALLY

If set to 1, specifies that the task has a repeating schedule. See Global
Timer (section 3.2.6.1) .

ER

JOB_EXEC_ERROR

If an error was encountered during the last time this task tried to execute a
program, this bit is set to 1.

RT

JOB_RUNS_TODAY

If set to 1, indicates that this task is to run today.

AC

JOB_ADD_CURRENT_DA TE

If set to 1, indicates that the bit corresponding to the current day (today) bit
is added to the DaysOfMonth bit mask.

NI

JOB_NONINTERACTIVE

If set to 1, specifies that this task is not to be interactive; that is, it will not
interact with the current logged -on user.

Command: This member is a Unicode string that contains the name of a command, batch program,
or binary file to execute; or the name of a document to be executed by its associa ted executable.

Note The DaysOfMonth and DayOfWeek bits can be used simultaneously. For example, setting
DaysOfMonth to the fifteenth of the month, DayOfWeek to Tuesday, and

JOB_RUN_PERIODICALLY to 1 will cause the job to run on the fifteenth of every month and on
Tuesday of every week.

2.3.5 AT_ENUM_CONTAINER

The ATSvc method NetrJobEnum uses the AT_ENUM_CONTAINER structure to return multiple
AT_ENUM structures. The format of the AT_ENUM_CONTAINER structure is as follows:

 typedef struct _AT_ENUM_CONTAINER {

 DWORD EntriesRead;

 [size_is(EntriesRead)] LPAT_ENUM Buffer;

 } AT_ENUM_CONTAINER,

 *PAT_ENUM_CONTAINER,

 *LPAT_ENUM_CONTAINER;

Entrie sRead: The number of entries in the Buffer array.

Buffer: Pointer to an array of AT_ENUM structures.

21 / 148

[MS -TSCH] - v20171201
Task Scheduler Service Remoting Protocol
Copyright © 2017 Microsoft Corporation
Release: December 1, 2017

2.3.6 AT_ENUM

The format of the AT_ENUM structure is almost identical to the AT_INFO structure with only the
addition of the JobId field:

 typedef struct _AT_ENUM {

 DWORD JobId;

 DWORD_PTR JobTime;

 DWORD DaysOfMonth;

 unsigned char DaysOfWeek;

 unsigned char Flags;

 wchar_t* Command;

 } AT_ ENUM,

 *PAT_ENUM,

 *LPAT_ENUM;

JobId: Identifier of the task . This is a 32 -bit integer that uniquely identifies the AT job in the s erver
system.

All other fields are interpreted according to the corresponding specification given in
AT_INFO (section 2.3.4) for all other fields.

2.3.7 Flags

Several of the following structures have a Flags field. The specific Flags bits are defined as follows.

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

Flags (16 bytes)

...

...

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

0 0 0 0 0 0 0 A
N

0 0 0 0 0 0 0 0 0 0 R
L

S
R

R
I

R
C

H R
D

K
B

S
B

K
I

S
I

0 D D
D

I

Value Description

I

TASK_FLAG_INTERACTIVE

If set to 1, specifies that the task can interact
with the logged -on user.

DD

TASK_FLAG_DELETE_WHEN_DONE

If set to 1, specifies that the task can be deleted
when there are no more scheduled run times.

D

TASK_FLAG_DISABLED

If set to 1, specifies that the task is disabled.

22 / 148

[MS -TSCH] - v20171201
Task Scheduler Service Remoting Protocol
Copyright © 2017 Microsoft Corporation
Release: December 1, 2017

Value Description

SI

TASK_FLAG_START_ONLY_IF_IDLE

If set to 1, specifies that the task begins only if
the computer is not in use at the scheduled tim e.

KI

TASK_FLAG_KILL_ON_IDLE_END

If set to 1, specifies that the task can be
terminated if the computer makes an idle to non -
idle transition while the task is running. The
computer makes an idle to non - idle transition
when user input is detected.

SB

TASK_FLAG_DONT_START_IF_ON_BATTERIES

If set to 1, specifies that the task cannot start if
its target computer is running on battery power.

KB

TASK_FLAG_KILL_IF_GOING_ON_BATTERIES

If set to 1, specifies that the task can end, and
the associated application quit if the task's target
computer switches to battery power.

RD

TASK_FLAG_RUN_ONLY_IF_DOCKED

Unused. MUST be set to zero when sent and
MUST be ignored on receipt.

H

TASK_FLAG_HIDDEN

If set to 1, specifies that the task is hidden.

RC

TASK_FLAG_RUN_IF_C ONNECTED_TO_INTERNET

Unused. MUST be set to zero when sent and
MUST be ignored on receipt.

RI

TASK_FLAG_RESTART_ON_IDLE_RESUME

If set to 1, specifies that the task can start again
if the computer makes a non - idle to idle
transition before all the task's triggers elapse.

SR

TASK_FLAG_SYSTEM_REQUIRED

If set to 1, specifies that the task can cause the
system to resume, or awaken if the system is
sleeping.

RL

TASK_FLAG_RUN_ONLY_IF_LOGGED_ON

If set to 1, specifies that the task can only run if
the user specified in the task is logged on
interactively.

AN

TASK_APPLICATION_NAME

If set to 1, specifies that the task has an
application name defined.

Flags (16 bytes) : Undefined bits. MUST be set to zero when sent and MUST be ignored on
receipt.

2.3.8 TASK_USER_CR ED

The TASK_USER_CRED structure contains user credentials and is passed to the server during task
re gistration , as specified in section 3.2.5.4.2 .

 typedef struct _TASK_USER_CRED {

 [string] const wchar_t* userId;

 [string] const wchar_t* password;

 DWORD flags;

 } TASK_USER_CRED;

23 / 148

[MS -TSCH] - v20171201
Task Scheduler Service Remoting Protocol
Copyright © 2017 Microsoft Corporation
Release: December 1, 2017

userId: Contains the user name identifying the account under which the task can execute. The user
name is a string recognized by Windows authentication, as specified in [MS -AUTHSOD] section

1.1.1.2. <9>

password: Contains the password associated with the user specified in the preceding userId field

above, rep resented as a string. For information about security considerations, see section 5.1 .

flags: The flags field contains individual bit flags that are structured as shown in the following table.
The client MUST set the undefined bits to 0. The undefined bits are ignored on receipt.

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

0 D

Value Description

D

credFlagDefault

If set to 1, the server can use these credentials if no other credentials are provided. If
set to 0, the server can use these credentials instead of the credentials specified in the
task configuration.

2.3.9 TASK_LOGON_TYPE

The TASK_LOGON_TYPE is a DWORD parameter to the SchRpcRegisterTask method. It specifies how a
user context is established for a tas k .

Value Meaning

0x00000000 TASK_LOGON_NONE: No logon type specified.

0x00000001 TASK_LOGON_PASSWORD: The task can be run as it would be run by the user, with the supplied
userid and password. The task can run non - interactively.

0x00000002 TASK_LOGON_S4U: When the task is started, the task can run as if by the user with Service for
User (S4U) , as specified in [MS -SFU] . The task can run non - interactively.

0x00000003 TASK_LOGON_INTERACTIVE_TOKEN: The task can be started in the user's interactive logon
session.

0x00000004 TASK_LOGON_GROUP: Same as TASK_LOGON_INTERACTIVE_TOKEN except that the task can run
for any member of the security group.

0x00000005 TASK_LOGON_SERVICE_ACCOUNT: The task can run in a machine context, that is, local system ,

local service, or network service. The task can run non - interactively.

0x00000006

TASK_LOGON_INTERACTIVE_TOKEN_OR_PASSWORD: If the user is logged on when the task is
started, the TASK_LOGON_INTERACTIVE_TOKEN logon type is used, otherwise the
TASK_LOGON_PASSWORD is used.

%5bMS-AUTHSOD%5d.pdf#Section_953d700a57cb4cf7b0c3a64f34581cc9
%5bMS-SFU%5d.pdf#Section_3bff58648135400ebdd933b552051d94

24 / 148

[MS -TSCH] - v20171201
Task Scheduler Service Remoting Protocol
Copyright © 2017 Microsoft Corporation
Release: December 1, 2017

2.3.10 TASK_XML_ERROR_INFO

The TASK_XML_ERROR_INFO structure is a return value from the SchRpcRegisterTask (Opnum 1)
method that contains additional information about an error in the XML task definition.

 typedef struct _TASK_XML_ERROR_INFO {

 DWORD line, column;

 [string] wchar_t* node;

 [string] wchar_t* value;

 } TASK_XML_ERROR_INFO,

 *PTASK_XML_ERROR_INFO;

line: Contains the line number where parsing failed. Carriage returns in the XML separate the string
into lines. The first line is "line one".

column: Contains the column where parsing failed. Indicates the character within the line, where the
first character is "colum n one".

node: Contains the attribute or element name that caused the error, or which is missing.

value: When this field is not empty, it contains the invalid value that caused the error.

2.3.11 Path Names

Many of the ITaskSchedulerService methods have a Unicode string path parameter. This parameter
specifies the location of the task in the XML task store , as specified in section 3.2.1 . Path names

start with a " \ " character followed by zero or mor e names, and separated by single " \ " characters. An
empty string is equivalent to " \ ".

Names do not:

Á Start with a space character.

Á Contain any of the following characters: ":", "/", or " \ "

Á Consist of the following string: ".."

2.3.12 TASK_NAMES

The enumeration methods SchRpcEnumFolders (Opnum 6) and SchRpcEnumTasks (Opnum 7) return
arrays of Unicode strings that contain the names of the enumerated objects. For readability in
specifying these methods, the TASK_NAMES type is defined as a pointer to a pointer to wide
characters.

This type is declared as follows:

 typedef [string] wchar_t** TASK_NAMES;

2.3.13 TASK_STATE

The SchRpcGetInstanceInfo and SchRpcGetTaskInfo methods return information about the current
state of the task in a DWORD return parameter. The state is encoded as follows.

Value Meaning

TASK_STATE_UNKNOWN Unable to determine the current state.

25 / 148

[MS -TSCH] - v20171201
Task Scheduler Service Remoting Protocol
Copyright © 2017 Microsoft Corporation
Release: December 1, 2017

Value Meaning

0x00000000

TASK_STATE_DISABLED

0x00000001

The task is disabled and will not run.

TASK_STATE_QUEUED

0x00000002

The task has been triggered but is not yet running.

TASK_STATE_READY

0x00000003

The task is ready to run but has not yet been triggered.

TASK_STATE_RUNNING

0x00000004

The task is running.

2.3.14 Error Codes

This specification uses the HRESULT and NET_API_STATUS types, as specified in [MS -DTYP] sections
2.2.18 and 2.2.37.

Unless specified explicitly, all failure values are treated as equivalent for protocol purposes and are

simply passed back to the invoking application. <10>

2.4 .JOB File Format

A .JOB file specifies task configuration. Clients that use the SASec interface create the .JOB file and

write it to the server by using a remote file system protocol, as specified in section 3.1.4.2.2 . Clients
read .JOB fil es from the server as specified in section 3.1.4.2.5 .

A .JOB file consists of two main sections, fixed - length (section 2.4.1) and variab le- length (section

2.4.2).

All fields in the .JOB file format MUST use little -endian byte ordering unless otherwise stated. All extra
padding bytes are a value of zero unless otherwise stated and all are ignored upon receipt.

2.4.1 FIXDLEN_DATA

The FIXDLEN_DATA structure is the fixed - length header in the .JOB description file. The
FIXDLEN_DATA structure is located at the beginning of the file. The format of the FIXDLEN_DATA
structure is as follows.

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

Product Version File Version

Job uuid (16 bytes)

...

...

%5bMS-DTYP%5d.pdf#Section_cca2742956894a16b2b49325d93e4ba2

26 / 148

[MS -TSCH] - v20171201
Task Scheduler Service Remoting Protocol
Copyright © 2017 Microsoft Corporation
Release: December 1, 2017

App Name Len Offset Trigger Offset

Error Retry Count Error Retry Interval

Idle Deadline Idle Wait

Priority

Maximum Run Time

Exit Code

Status

Flags

Year Month

Weekday Day

Hour Minute

Second MilliSeconds

Product Version (2 bytes): Contains the version of the product that generated this .JOB file. <11>

File Version (2 bytes): Version of the .JOB file format. The client sets this to 0x0001.

Job uuid (16 bytes): Contains a randomly generated UUID to identify this task unique to the server.

App Name Len Offset (2 bytes): Contains the offset in bytes within the .JOB file where the length
of the application name is located.

Trigger Offset (2 bytes): Contains the offset in bytes within the .JOB file where the task triggers
are located.

Error Retry Count (2 bytes): Contains the number of execute attempts that are attempted for the
task if the task fails to start.

Error Retry Interval (2 bytes): Contains the interval, in minutes, between successive retries.

Idle Deadline (2 bytes): Contains a maximum time in minutes to wait for the machine to become
idle for Idle Wait minutes.

Idle Wait (2 byte s): Contains a value in minutes. The machine remains idle for this many minutes

before it runs the task.

Priority (4 bytes): Contains ONE of the bit flags that control the priority at which the task will run.
All bits not defined in the following table are set to 0 and ignored upon receipt. The bit field is

structured as follows:

27 / 148

[MS -TSCH] - v20171201
Task Scheduler Service Remoting Protocol
Copyright © 2017 Microsoft Corporation
Release: December 1, 2017

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

0 R H I N 0 0 0 0 0

PRIORITY_CLASS

Value Description

N

NORMAL_PRIORITY_CLASS

If set to 1, the task has no special scheduling requirements.

I

IDLE_PRIORITY_CLASS

If set to 1, the task can run in a process whose threads run only when
the machine is idle, and are preempted by the threads of any process
running i n a higher priority class.

H

HIGH_PRIORITY_CLASS

If set to 1, the task performs time -critical tasks that can be executed
immediately for it to run correctly. The threads of a high -priority class
process preempt the threads of normal or idle priority class processes.

R

REALTIME_PRIORITY_CLASS

If set to 1, the task can run at the highest possible priority. The threads
of a real - time priority class process preempt the threads of all other
processes, including operating system processes performing important
tasks.

Maximum Run Time (4 bytes): Contains the number of milliseconds the server will wait for the task
to complete.

Exit Code (4 bytes): This contains the exit code of the executed task upon the completion of that

task. MUST be set to 0x00000000 when sen t and MUST be ignored on receipt.

Status (4 bytes): This contains the current status of the task. Is to be set to 0 and ignored upon
receipt. Possible values are specified in the following table:

Value Meaning

SCHED_S_TASK_READY

0x00041300

Task is not running but is scheduled to run at some time in the
future.

SCHED_S_TASK_RUNNING

0x00041301

Task is currently running.

SCHED_S_TASK_NOT_SCHEDULED

0x00041305

The task is not running and has no valid triggers. <12>

Flags (4 bytes): Task -specific flag bits that are as specified in section 2.3.7 .

The following eight fields all refer to the time this task most recently ran. When creatin g a job , the
field values are to be ignored upon receipt.

Value Meaning

Year

1601 ð 30827

The year (1601 ï30827), inclusive.

Month

1 ð 12

The month, January=1, February=2, é, December=12.

28 / 148

[MS -TSCH] - v20171201
Task Scheduler Service Remoting Protocol
Copyright © 2017 Microsoft Corporation
Release: December 1, 2017

Value Meaning

Weekday

0 ð 6

The day of the week, Sunday=0, Monday=1, é, Saturday=6.

Day

1 ð 31

The day of the month (1 ï31), inclusive.

Hour

0 ð 23

The hour of the day (0 ï23), inclusive.

Minute

0 ð 59

The minute of the hour (0 ï59), inclusive.

Second

0 ð 59

The seconds of the minute (0 ï59), inclusive.

Milliseconds

0 ð 999

Between 0 and 999, for values less than one second, inclusive.

2.4.2 Variable -Length Data Section

Immediately following the FIXDLEN_DATA structure is the Variable -Length Data Section. The variable -
length data section is composed of the following fields:

Á Running Instance Count

Á Application Name

Á Parameters

Á Working Directory

Á Author

Á Comment

Á User Data

Á Reserved Data

Á Tri ggers

Á Job Signature

This section also contains the specification for specially formatted Unicode strings in section 2.4.2.1 .

2.4.2.1 Specially Formatted Unicode Strings

Fields containing a specially formatted Unicode string contain either a 16 -bit nonzero character count
followed by a null - terminated Unicode string, or a 16 -bit zero with no following Unicode characters.
In the former case, the character count includes the terminating null character. In the latter case, the

string is said to be absent.

29 / 148

[MS -TSCH] - v20171201
Task Scheduler Service Remoting Protocol
Copyright © 2017 Microsoft Corporation
Release: December 1, 2017

2.4.2.2 Running Instance Count

The first field of the variable - length data section is the count of running instances of this task. This
field contains the number of instances of this task that are currently running. Running instances are

manipulated as 16 -bit unsigned integers. While creating a job , the field is to be ignored on receipt.

2.4.2.3 Application Name

The Application Name field follows the Running Instance Count field. The Application Name field and
the four following fields (Parameters , Workin g Directory , Author , and Comment) are specially

formatted Unicode strings , as specified in the following sections. The string in the A pplication Name
field is not absent. The content of this field is the same as the Command field specified in section
2.5.7.1 .<13>

2.4.2.4 Parameters

The Parameters field follows the Application Name field. The Parameters field contains a specially

formatted Unicode string , as specified in section 2.4.2.1 . The content of this field is the same as the
Arguments field, as specified in section 2.5.7.1 .

2.4.2.5 Working Directory

The Working Directory field follows the Parameters field. The Working Directory field contains a
specially formatted Unicode string , as specified in section 2.4.2.1 . The content of this field is the
same as the Working Directory field, as specified in s ection 2.5.7.1 .

2.4.2.6 Author

The Author field follows the Working Directory field. The Author field contains a specially formatt ed
Unicode string , as specified in section 2.4.2.1 . The content of this field is the same as the Author
field, as specified in section 2.5.2 .

2.4.2.7 Comment

The Comment field follows the Author field. The Comment field contains a specially formatted
Unicode string , as specified in section 2.4.2.1 . The content of this field is the same as the
Description field, as specified in section 2.5.2 .

2.4.2.8 User Data Size/User Data

The 16 -bit User Data Size field follows the Comment field. If User Data bytes are pre sent following
the User Data Size field, User Data Size contains the number of bytes of User Data. If User Data is
not present, User Data Size contains the value zero. There are no alignment requirements for User
Data. The contents of User Data are arbitra ry bits defined as user data using any implementation -

specific method.

0 1 2 3 4 5 6 7 8 9
1
0 1 2 3 4 5

User Data Size

Byte 1 Byte 2

Byte 3 Byte (Size)

30 / 148

[MS -TSCH] - v20171201
Task Scheduler Service Remoting Protocol
Copyright © 2017 Microsoft Corporation
Release: December 1, 2017

2.4.2.9 Reserved Data Size/Reserved Data

The 16 -bit Reserved Data Size field follows the User Data field. If Reserved Data bytes are present
following the Reserved Data Size field, Reserved Data Size SHOULD contain the value eight and an

8-byte TASKRESERVED1 structu re SHOULD follow Reserved Data Size <14> . If Reserved Data is not
present, Reserved Data Size contains the value zero.

0 1 2 3 4 5 6 7 8 9
1
0 1 2 3 4 5

Reserved Data Size

Byte 1 Byte 2

Byte 3 Byte 4

Byte 5 Byte 6

Byte 7 Byte 8

The TASKRESERVED1 structure has the following fields.

0 1 2 3 4 5 6 7 8 9
1
0 1 2 3 4 5 6 7 8 9

2
0 1 2 3 4 5 6 7 8 9

3
0 1

Start Error

Task Flags

The Start Error contains the HRESULT error from the most recent attempt to start the task. MUST be
set to zero when sent and MUST be ignored on receipt. <15>

The Task Flags are not used. MUST be set to zero when sent and MUST b e ignored on receipt.

2.4.2.10 Trigger Count

The 16 -bit Trigger Count field follows the Reserved Data field. The Trigger Count field contains the
size, in bytes, of the following array of triggers .

0

1

2

3

4

5

6

7

8

9

1
0

1

2

3

4

5

Trigger Count

2.4.2.11 Triggers

An array of zero or more triggers follows the Trigger Count field. All triggers share the same format.

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

Trigger Size Reserved1

31 / 148

[MS -TSCH] - v20171201
Task Scheduler Service Remoting Protocol
Copyright © 2017 Microsoft Corporation
Release: December 1, 2017

Begin Year Begin Month

Begin Day End Year

End Month End Day

Start Hour Start Minute

Minutes Duration

Minutes Interval

Flags

Trigger Type

TriggerSpecific0 TriggerSpecific1

TriggerSpecific2 Padding

Reserved2 Reserved3

Trigger Size (2 bytes): Set to 0x0030. When creating a job , the value SHOULD be ignored upon
receipt.

Reserved1 (2 bytes): This field is ignored when read in from the file and is set to 0.

Begin Year (2 bytes): This field contains the first date this trigger is to fire. Begin Year SHOULD be
in the range of 1601 to 30827. <16>

Begin Month (2 bytes): This field contains the first date this trigger is to fire. Begin Month
SHOULD be in the range of 1 to 12. <17>

Begin Day (2 bytes): This field contains the first date this trigger fires. Be gin Day SHOULD be in
the range of 1 to the number of days in the month specified by the Begin Month field. <18>

End Year (2 bytes): These fields are ignored if the TASK_TRIGGER_FLAG_HAS_END_ DATE bit is
not set in the Flags field. Otherwise, these fields are set to the last date this trigger fires. End
Year SHOULD be in the range of 1601 to 30827. <19>

End Month (2 bytes): These fields are ignored if the TASK_TRIGGER_FLAG_HAS_END_DATE bit is
not set in the Flags field. Otherwise, these fields are set to the last date this trigger is to fire. End
Month SHOULD be in the range of 1 to 12. <20>

End Day (2 bytes): These fields are ignored if the TASK_TRIGGER_FLAG_HAS_END_DATE bit is not

set in the Flags field. Otherwise, these fields are set to the last date this trigger is to fire. End
Day SHOULD be in the range of 1 to the number of days in the month specified by the End
Month field. <21>

Start Hour (2 bytes): This field is set to the hour of the day when this trigger fires. Start Hour is in
the range 0 to 23.

Start Minute (2 bytes): This field is set to the minute of the hour when this trigger is to fire. Start
Minute is in the range 0 to 59.

32 / 148

[MS -TSCH] - v20171201
Task Scheduler Service Remoting Protocol
Copyright © 2017 Microsoft Corporation
Release: December 1, 2017

Minutes Duration (4 bytes): This field contains a value in minutes, in the range 0x00000000 to
0xFFFFFFFF.<22>

For example, if Minutes Duration is 60, and Minutes Interval is 15, then if started at 1:00, the
task runs every 15 minutes for the next 60 minutes (five times: at 1:00, 1:15, 1:30, 1:45, and

2:00.)

Minutes Interval (4 bytes): This field contains a value in minutes, in the range 0x00000000 to
0xFFFFFFFF. Minutes In terval indicates the time period between repeated trigger firings. <23>

Flags (4 bytes): This field contains zero or more bit flags. All bits not defined in the following table
are to be set to zero and ignored upon receipt. The bit field is structured as follows:

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

0 D K E

Task Trigger Flags

Value Description

E

TASK_TRIGGER_FLAG_HAS_END_DATE

If set to 1, specifies that the task can stop at some
point in time.

K

TASK_TRIGGER_FLAG_KILL_AT_DURATION_END

If set to 1, specifies that the task can be stopped at
the end of the repetition period.

D

TASK_TRIGGER_FLAG_DISABLED

If set to 1, specifies that the trigger is disabled.

Trigger Type (4 bytes): Trigger type, as specified in section 2.4.2.11.1 .

TriggerSpecific0 (2 bytes): This field is set to values specific to each trigger type.

TriggerSpecific1 (2 bytes): This field is set to values specific to each trigger type.

TriggerSpecific2 (2 bytes): This field is set to values specific to each trigger type.

Padding (2 bytes): MUST be set to zero when sent and MUST be ignored on receipt.

Reserved2 (2 bytes): MUST be set to zero when sent and MUST be ignored on receipt.

Reserved3 (2 bytes): MUST be set to zero when sent and MUST be ignored on receipt.

2.4.2.11.1 Trigger Type

The Trigge r type specifies how the trigger -specific fields are interpreted and contains one of the
following values.

Name Value Trigger -Specific Fields

ONCE 0x00000000 Not used

DAILY 0x00000001 Section 2.4.2.11.5

WEEKLY 0x00000002 Section 2.4.2.11.6

MONTHLYDATE 0x00000003 Section 2.4.2.11.7

33 / 148

[MS -TSCH] - v20171201
Task Scheduler Service Remoting Protocol
Copyright © 2017 Microsoft Corporation
Release: December 1, 2017

Name Value Trigger -Specific Fields

MONTHLYDOW 0x00000004 Section 2.4.2.11.8

EVENT_ON_IDLE 0x00000005 Not used

EVENT_AT_SYSTEMSTART 0x00000006 Not used

EVENT_AT_LOGON 0x00000007 Not used

When the tr igger type is ONCE, EVENT_ON_IDLE, EVENT_AT_SYSTEMSTART, or EVENT_AT_LOGON,
the trigger -specific fields are set to 0.

The different trigger types use some shared bit fields, as indicated in the following sections.

2.4.2.11.2 Day of the Month

The Day of the Month field is specified as follows.

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

X A B C D E F G H I J K L M N O P Q R S T U V 9 8 7 6 5 4 3 2 1

X (1 bit): Unused. MUST be set to zero when sent and MUST be ignored on receipt.

1 - 31: Any bit set to 1 specifies that the task can run on that day of the month. More than one bit MAY
be set to 1.

2.4.2.11.3 Day of the Week

The Day of the Week field is specified as follows.

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

Day of the Week

0

1

2

3

4

5

6

7

8

9

1
0

1

2

3

4

5

0 0 0 0 0 0 0 0 0 S

A

F

R

T

H

W

E

T

U

M

O

S

U

Day of the Week Flags

Value Description

SU

Sunday

If set to 1, specifies that the task can run on Sunday.

MO

Monday

If set to 1, specifies that the task can run on Monday.

TU If set to 1, specifies that the task can run on Tuesday.

34 / 148

[MS -TSCH] - v20171201
Task Scheduler Service Remoting Protocol
Copyright © 2017 Microsoft Corporation
Release: December 1, 2017

Value Description

Tuesday

WE

Wednesday

If set to 1, specifies that the task can run on Wednesday.

TH

Thursday

If set to 1, specifies that the task can run on Thursday.

FR

Friday

If set to 1, specifies that the task can run on Friday.

SA

Saturday

If set to 1, specifies that the task can run on Saturday.

Day of the Week (2 bytes): Undefined bits are set to 0 when sent and ignored upon receipt.

2.4.2.11.4 Month of the Year

The Month of the Year field is specified as follows.

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

Month of the Year

0

1

2

3

4

5

6

7

8

9

1
0

1

2

3

4

5

0 0 0 0 D
E

N
O

O
C

S
E

A
U

J
L

J
U

M
A

A
P

M
R

F
E

J
A

Value Description

JA

January

If set to 1, specifies that the task can run in January.

FE

February

If set to 1, specifies that the task can run in February.

MR

March

If set to 1, specifies that the task can run in March.

AP

April

If set to 1, specifies that the task can run in April.

MA

May

If set to 1, specifies that the task can run in May.

JU

June

If set to 1, specifies that the task can run in June.

JL If set to 1, spe cifies that the task can run in July.

35 / 148

[MS -TSCH] - v20171201
Task Scheduler Service Remoting Protocol
Copyright © 2017 Microsoft Corporation
Release: December 1, 2017

Value Description

July

AU

August

If set to 1, specifies that the task can run in August.

SE

September

If set to 1, specifies that the task can run in September.

OC

October

If set to 1, specifies that the task can run in October.

NO

November

If set to 1, specifies that the task can run in November.

DE

December

If set to 1, specifies that the task can run in December.

Month of the Year (2 bytes): Undefined bits MUST be set to zero when sent and MUST be ignored
on receipt.

2.4.2.11.5 DAILY Trigg er

When trigger type is DAILY, the five fields are interpreted as follows:

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

Trigger Type

Days Interval Unused

... Padding

Trigger Type (4 bytes): Trigger frequency type. This field is set to 0x00000001 for the DAILY trigger
type.

Name Value

DailyTrigger 0x00000001

Days Interval (2 bytes): This field contains the number of 24 -hour periods between trigger firings.

Unused (4 bytes): MUST be set to zero when sent and MUST be ignored on receipt.

Padding (2 bytes): MUST be set to zero when sent and MUST be ignored on receipt.

2.4.2.11.6 WEEKLY Trigger

When the trigger type is WEEKLY, the five fields are interpreted as follows:

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

Trigger Type

36 / 148

[MS -TSCH] - v20171201
Task Scheduler Service Remoting Protocol
Copyright © 2017 Microsoft Corporation
Release: December 1, 2017

Weeks Interval DaysOfTheWeek

Unused Padding

Trigger Type (4 bytes): Trigger frequency type. Set to 0x00000002 for the WEEKLY trigger type.

Weeks Interval (2 bytes): Contains the number of weeks between trigger firings.

DaysOfTheWeek (2 bytes): Contains the bit flags that specify on which days of the week the trigger

fires, which are interpreted as specified in section 2.4.2.11.3 .

Unused (2 bytes): MUST be set to zero when sent and MUST be ignored on receipt.

Padding (2 bytes): MUST be set to zero when sent and MUST be ignored on receipt.

2.4.2.11.7 MONTHLYDATE Trigger

When trigger type is MONTHLYDATE, the five fields are interpreted as follows:

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

Trigger Type

Days

Months Padding

Trigger Type (4 bytes): Trigger frequency type. Set to 0x00000003 for the MONTHLYDATE trigger
type.

Days (4 bytes): Bit flags that specify on which days of the month the trigger fires, which are
interpreted as specified in section 2.4.2.11.2 .

Months (2 bytes): Bit flags that specify on which mo nths of the year the trigger fires, which are
interpreted as specified in section 2.4.2.11.4 .

Padding (2 bytes): MUST be set to zero when sent and MUST be ignored on receipt.

2.4.2.11.8 MONTHLYDOW Trigger

When trigger type is MONTHLYDOW (monthly day of week), the five fields are interpreted as follows.

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

Trigger Type

WhichWeek DaysOfTheWeek

Months Padding

Reserved2 Reserved3

37 / 148

[MS -TSCH] - v20171201
Task Scheduler Service Remoting Protocol
Copyright © 2017 Microsoft Corporation
Release: December 1, 2017

Trigger Type (4 bytes): Trigger frequency type. Set to 0x00000004 for the MONTHLYDOW trigger
type.

WhichWeek (2 bytes): Set to one of the following values.

Name Value

FIRST_WEEK 0x0001

SECOND_WEEK 0x0002

THIRD_WEEK 0x0003

FOURTH_WEEK 0x0004

LAST_WEEK 0x0005

DaysOfTheWeek (2 bytes): Bit flags that specify on which days of the week the trigger fires, which
are interpreted as specified in section 2.4.2.11.3 .

Months (2 bytes): Bit flags that specify on which months of the year the trigger fires, which are
interpreted as specified in section 2.4.2.11.4 .

Padding (2 bytes): MUST be set to zero when sent and MUST be ignored on receipt.

Reserved2 (2 bytes): MUST be set to zero when sent and MUST be ignored on receipt.

Reserved3 (2 bytes): MUST be set to zero when sent and MUST be ignore d on receipt.

2.4.2.12 Job Signature

A 32 -bit JOB_SIGNATURE_HEADER and 64 -byte signature (see the following) MAY follow the array of

triggers .

The following fields Byte1 through Byte64 contain the 64 -byte signature.

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

SignatureVersion MinClientVersion

Byte1 Byte2 Byte3 Byte4

...

Byte61 Byte62 Byte63 Byte64

SignatureVersion (2 bytes): Set to 1.

MinClientVersion (2 bytes): Set to 1.

If the .JOB file does not contain a complete JOB_SIGNATURE_HEADER and signature, or if the
SignatureVersion and MinClientVersion fields do not contain the value 1, the recipient ignores the

signature.

The signature is calculated as follows:

38 / 148

[MS -TSCH] - v20171201
Task Scheduler Service Remoting Protocol
Copyright © 2017 Microsoft Corporation
Release: December 1, 2017

Á The Security Identifier (SID) of the file owner, the uuidJob field of the FIXDLEN_DATA
structure, and the null - terminated string value from Application Name in the variable - length data

section is bytewise concatenated in a buffer.

Á A 16 -byte MD5 [RFC1321] hash of the buffer is calculated.

Á A private key is obtained from the system to be used for the digital signature. <24>

Á The hash is signed using MD5, and the signed hash is placed in the 64 bytes after the
JOB_SIGNATURE_HEADER.

2.5 XML Task De finition Format

The ITaskSchedulerService interface uses XML to define tasks . Tasks are XML documents that MUST
adhere to the schema specified in this section.

The server MUST validate an XML task definition's conformance to this schema and retur n an error if
invalid, as specified in section 3.2.5.4.2 .

The task schema contains the following six top - level parts. The "Actions" part MUST be present.

Note The task schema is defined by
xmlns= "http://schemas.microsoft.com/windows/2004/02/mit/task

 <! -- Task -- >

 <xs:complexType name="taskType">

 <xs:all>

 <xs:element name="RegistrationInfo" type="registrationInfoType" minOccurs="0"/>

 <xs:element name="Triggers" type="triggersType" minOccurs ="0"/>

 <xs:element name="Settings" type="settingsType" minOccurs="0"/>

 <xs:element name="Data" type="dataType" minOccurs="0"/>

 <xs:element name="Principals" type="principalsType" minOccurs="0"/>

 <xs:element name="Actions" type="actionsType"/>

 </xs:all>

 <xs:attribute name="version" type="versionType" use="optional"/>

 </xs:complexType>

RegistrationInfo: If present, this part MUST specify the task location, security settings, description,
and vers ion of the task. See section 2.5.2 .

Triggers: If present, this part MUST specify the triggers (changes of state or time) that cause th e
task to be started. See section 2.5.3 .

Settings: If present, this part MUST specify additional settings and/or constraints imposed on the

task once a trigger is met. See section 2.5.4 .

Data: If present, this part MUST specify a container for arbitrary data required by the tasks. See
section 2.5.5 .

Principals: If present, this part MUST specify the context identity in which the task is to be started.
See section 2.5.6 .

Actions: This part MUST be present and MUST specify the action to be performed once t he task is
started. See section 2.5.7 .

Version: If present, this attribute MUST specify the lowest version of the Task Scheduler Remoting
Protocol that will be compatible with this task. Its value MUST be one of the following: "1.0",
"1.1", "1.2", "1.3", or "1.4", corresponding to ATSvc , SASec, and ITaskSchedulerService (for the
last three), respectively (see section 1.7).

https://go.microsoft.com/fwlink/?LinkId=90275

39 / 148

[MS -TSCH] - v20171201
Task Scheduler Service Remoting Protocol
Copyright © 2017 Microsoft Corporation
Release: December 1, 2017

2.5.1 Common Data Types

This section specifies common data types used in the XML task definition schema.

2.5.1.1 Standard Data Types

The XML task definition schema uses several standard XML types:

xs:boolean: A Boolean value, as specified in [W3C -XSD] section 3.2.2.

xs:byte: A signed 8 -bit integer, as specified in [W3C -XSD] section 3.3.19.

xs:unsignedByte: An unsigned 8 -bit integer, as specified i n [W3C -XSD] section 3.3.24.

xs:unsignedInt: An unsigned 32 -bit integer, as specified in [W3C -XSD] section 3.3.22.

xs:dateTime: A date and time value, as specified in [ISO -8601] section 5.3.3.

xs:duration: A time duration value, as specified in [ISO -8601] section 5.3.3.

xs:string: A string, as specified in [W3C -XSD] section 3.2.1.

xs:ID: A string name, as specified in [W3C -XSD] section 3.3.8.

xs:IDREF: A string name, as specified in [W3C -XSD] s ection 3.3.10.

xs:anyURI: A path, as specified in [W3C -XSD] section 3.2.17.

2.5.1.2 versionType

The versionType specifies a string representing a version number. The version number has one of the
following formats: "X.Y", "X.Y.Z", or "X.Y.Z.W", where X, Y, Z, and W contain one or more decimal

digits.

 <xs:simpleType name="versionType">

 <xs:restriction base="xs:string">

 <xs:pattern value=" \ d+(\ . \ d+){1,3}"/>

 </xs:restriction>

 </xs:simpleType>

2.5.1.3 nonEmptyString

The nonEmpty String type specifies a string that contains at least one character.

 <xs:simpleType name="nonEmptyString">

 <xs:restriction base="xs:string">

 <xs:minLength value="1"/>

 </xs:restriction>

 </xs:simpleType>

2.5.1.4 pathType

The pathType type specifies a string that contains between 1 and 260 characters.

 <xs:simpleType name="pathType">

 <xs:restriction base="nonEmptyString">

 <xs:maxLength value="260"/>

 </xs:restriction>

https://go.microsoft.com/fwlink/?LinkId=90563
https://go.microsoft.com/fwlink/?LinkId=89920

40 / 148

[MS -TSCH] - v20171201
Task Scheduler Service Remoting Protocol
Copyright © 2017 Microsoft Corporation
Release: December 1, 2017

 </xs:simpleType>

2.5.1.5 guidType

The guidType type specifies a string that contains the representation of a GUID , as defined in [MS -
DTYP] section 2.3.4.

 <xs:sim pleType name= "guidType ">

 <xs:restriction base= "xs:string ">

 <xs:pattern value= " \ {([0 - 9a- fA - F]){8}(\ - [0 - 9a- fA - F]{4}){3} \ - [0 - 9a- fA - F]{12} \ } "/>

 <! -- GUID should be in a form:{xxxxxxxx - xxxx - xxxx - xxxx - xxxxxxxxxxxx}where x is a

hexadecimal digit. -- >

 </xs:restriction>

 </xs:simpleType>

2.5.2 RegistrationInfo Schema Part

If present, this schema part specifies the location and security settings for the task r egistration and
additional descriptive fields as specified in this section.

 <! -- RegistrationInfo -- >

 <xs:complexType name="registrationInfoType">

 <xs:all>

 <xs:element name="URI" type="xs:anyURI" minOccurs="0"/>

 <xs:element name="SecurityDescript or" type="xs:string"

 minOccurs="0"/>

 <xs:element name="Source" type="xs:string" minOccurs="0"/>

 <xs:element name="Date" type="xs:dateTime" minOccurs="0"/>

 <xs:element name="Author" type="xs:string" minOccurs="0"/>

 <xs:element name="Version" type="xs:string" minOccurs="0"/>

 <xs:element name="Description" type="xs:string" minOccurs="0"/>

 <xs:element name="Documentation" type="xs:string" minOccurs="0"/>

 </xs:all>

 </xs:complexType>

URI: If present, this field s pecifies the path in the task store for this task (see sections 2.3.11 and
2.5.1.1).

Security Descriptor: If present, this field specifies the task security descriptor in Security
Descriptor Definition Language (SDDL) format.

Source: If present, this field specifies a user -designated field used by the task author, defined in the
following "Author" field, to arbitrarily categorize tasks (example: Accounting, MyTasks).

Date: If present, this field contains a time/date value whose format is as specified in section 2.5.1.1.
The value specifies the creation or modification date. If this field is not present, the time/date
value used is set to the current time/date of when the tas k is registered.

Author: If present, this field specifies a name identifying the person or entity that created the task.

Version: If present, this field specifies the version level of the task. This is a free text element
controlled by and for the exclusiv e use of the task owner and not related to Task Scheduler
Remoting Protocol versions.

Description: If present, this field specifies a user - friendly description of the task. For example: "This

task defragments the computer's hard disk drives" .

%5bMS-DTYP%5d.pdf#Section_cca2742956894a16b2b49325d93e4ba2
%5bMS-DTYP%5d.pdf#Section_cca2742956894a16b2b49325d93e4ba2

41 / 148

[MS -TSCH] - v20171201
Task Scheduler Service Remoting Protocol
Copyright © 2017 Microsoft Corporation
Release: December 1, 2017

Documentatio n: If present, this field specifies the uniform resource identifier (URI) of external
documentation related to the task.

2.5.3 Triggers Schema Part

If present, the Triggers schema part specifies the state change or time occurrence and frequency that
the task will be started within the predefined time boundaries. The triggers control when the task is
to be started based on time, events, or built - in system changes. If the part contains multiple triggers,
the task can be started on the first occurring trigger.

 <! -- Triggers -- >

 <xs:group name="triggerGroup">

 <xs:choice>

 <xs:element name="BootTrigger" type="bootTriggerType"

 minOccurs="0"/>

 <xs:element name="RegistrationTr igger"

 type="registrationTriggerType" minOccurs="0"/>

 <xs:element name="IdleTrigger" type="idleTriggerType"

 minOccurs="0"/>

 <xs:element name="TimeTrigger" type="timeTriggerType"

 minOccurs="0"/>

 <xs:element name="EventTrigger" type="eventTriggerType"

 minOccurs="0"/>

 <xs:element name="LogonTrigger" type="logonTriggerType"

 minOccurs="0"/>

 <xs:element name="SessionStateChangeTrigger"

 type="sessionStateChangeTriggerType" minOccurs="0"/>

 <xs:element name="CalendarTrigger" type="calendarTriggerType"

 minOccurs="0"/>

 </xs:choice>

 </xs:group>

2.5.3.1 Common Trigger Elements

This section specifies the elements that are common to all triggers . For the clarity of the document,

these will be specified once in this section, but each and every trigger specified in the following
sections contains these common elements. The following sections specify only added ele ments beyond

the ones specified in this section.

 <! -- Base type for all triggers -- >

 <xs:complexType name="triggerBaseType" abstract="true">

 <xs:sequence>

 <xs:element name="Enabled" type="xs:boolean" default="true"

 minOccurs="0"/>

 <xs:element name="StartBoundary" type="xs:dateTime"

 minOccurs="0"/>

 <xs:element name="EndBoundary"

 type="xs:dateTime" minOccurs="0"/>

 <xs:element name="Repetition" type="repetitionType"

 minOccurs="0"/>

 <xs:element name="Execut ionTimeLimit" type="xs:duration"

 minOccurs="0"/>

 </xs:sequence>

 <xs:attribute name="id" type="xs:ID" use="optional"/>

 </xs:complexType>

 <! -- Repetition -- >

 <xs:complexType name="repetitionType">

 <xs:all>

 <xs:element name="Interval">

 <xs:simpleType>

 <xs:restriction base= "xs:duration">

 <xs:minInclusive value="PT1M"/>

 <xs:maxInclusive value="P31D"/>

42 / 148

[MS -TSCH] - v20171201
Task Scheduler Service Remoting Protocol
Copyright © 2017 Microsoft Corporation
Release: December 1, 2017

 </xs:restriction>

 </xs:simpleType>

 </xs:element>

 <xs:element name= "Duration" minOccurs= " 0">

 <xs:simpleType>

 <xs:restriction base= "xs:duration">

 <xs:minInclusive value= "PT1M "/>

 </xs:restriction>

 </xs:simpleType>

 </xs:element>

 <xs:element name= "StopAtDurationEnd" type= "xs:boolean"

 default= "false " minOccurs= "0"/>

 </xs:all>

 </xs:complexType>

Id attribute: If present, this field specifies an identifier for the specific trigger type Id, allowing direct
reference.

StartBoundary: If present, this field contains a time/date value of the start time/date of a task. The

format is as specified in section 2.5.1.1 . This field is present for Time and Calendar triggers.

EndBoundary: If present, this field contains a time/date value of the end time/date of a task. The
format is as specified in section 2.5.1.1.

Enabled: If present, this field contains a Boolean value. If the field is not present or the value is
TRUE, the trigger is enabled and the task can start when this trigger occurs. If FALS E, the trigger
is disabled and the trigger can be ignored when determining whether to run the task.

ExecutionTimeLimit: If present, this field contains a time duration that is a limit of the task's
execution time. The format MUST be as specified in section 2.5.1.1.

Repetition: If present, the Repetition field contains 1 to 3 of the following subfields, including at
least the Interval subfield.

Interval: This subfield is present and contains a duration of time in the range from 1 minute to 31

days, inclusive. The format is as specified in section 2.5.1.1. If the task starts at the time

specified by the trigger, it can restart at the intervals specified by this field, calculated from
the trigger start time.

Duration: If present, the Duration subfield contains a duration no shorter than 1 minute. The
format is as specified in section 2.5.1.1 . The server can stop restarting the task after this
much time has elapsed from the task's trigger time. If not present, the Duration value of 1
day can be used for the task.

StopAtDurationEnd: If present, this subfield contains a Boolean value. If the fie ld has the value

TRUE, any running task instance can stop at the end of the Duration . If the field has the
value FALSE, task instances can continue running after the end of the Duration .

2.5.3.2 BootTri gger

If present, the BootTrigger specifies that the task can start at operating system start -up, after the
ATSvc server initializes.

 <! -- BootTrigger -- >

 <xs:complexType name="b ootTriggerType">

 <xs:complexContent>

 <xs:extension base="triggerBaseType">

 <xs:sequence>

 <xs:element name="Delay" type="xs:duration" default="PT0M"

 minOccurs="0"/>

 </xs:sequence>

43 / 148

[MS -TSCH] - v20171201
Task Scheduler Service Remoting Protocol
Copyright © 2017 Microsoft Corporation
Release: December 1, 2017

 </xs:extension>

 </xs:complexContent >

 </xs:complexType>

Delay: If present, this field contains a user -specified delay value as specified for "duration" in section
2.5.1.1 . The task startup can be delayed after boot (ATSvc start -up) by the delay value.

2.5.3.3 RegistrationTrigger

If present, the RegistrationTrigger specifies that the task can start after registration.

 <! -- RegistrationTrigger -- >

 <xs:complexType name="registrationTriggerType">

 <xs:complexContent>

 <xs:extension base="triggerBaseType">

 <xs:sequence>

 <xs:element name="Delay" type="xs:duration" default="PT0M"

 minOccurs="0"/>

 </xs:sequence>

 </xs:extension>

 </xs:complexContent>

 </xs:complexType>

Delay: If present, this field contains a user -specified delay value. The task can have a delayed start

after task registration until the time interval specified by the delay value has elapsed.

2.5.3.4 IdleTrigger

If present, the IdleTrigger specifies that the task can start when the machine becomes idle, as
specified in section 3.2.4.2 .

 <! -- IdleTrigger -- >

 <xs:complexType na me="idleTriggerType">

 <xs:complexContent>

 <xs:extension base= "triggerBaseType "/>

 </xs:complexContent>

 </xs:complexType>

2.5.3.5 TimeTrigger

If present, the TimeTrigger specifies that the task can start at the specified StartBoundary ti me.

 <! -- TimeTrigger -- >

 <xs:complexType name="timeTriggerType">

 <xs:complexContent>

 <xs:extension base="triggerBaseType">

 <xs:sequence>

 <xs:element name="RandomDelay" type="xs:duration"

 default="PT0M" minOccurs="0"/>

 </x s:sequence>

 </xs:extension>

 </xs:complexContent>

 </xs:complexType>

RandomDelay: If present, this field contains a user - specified maximum delay value as specified for
"time duration" in section 2.5.1.1 .

44 / 148

[MS -TSCH] - v20171201
Task Scheduler Service Remoting Protocol
Copyright © 2017 Microsoft Corporation
Release: December 1, 2017

2.5.3.6 EventTrigger

If present, the EventTrigger specifies that the task can start upon occurrence of an event matching an
event subscription query, as specified in [MS -EVEN6] section 2.2.16, or on the occurrence of a number

of events of the same type (same EventId) in a given period of time.

 <! -- EventTrigger -- >

 <xs:complexType name="eventTriggerType">

 <xs:complexContent>

 <xs:extension base="triggerBaseType">

 <xs:sequence>

 <xs:element name="Subscription" type="nonEmptyString"/>

 <xs:element name="Delay" type="xs:duration" default="PT0M"

 minOccurs="0"/>

 <xs:element name="PeriodOfOccurrenc e" type="xs:duration"

 default="PT0M" minOccurs="0"/>

 <xs:element name="NumberOfOccurrences" default="1"

 minOccurs="0">

 <xs:simpleType>

 <xs:restriction base="xs:unsignedByte">

 <xs:minInclusive value="1"/>

 <xs:maxInclusive value="32"/>

 </xs:restriction>

 </xs:simpleType>

 </xs:element>

 <xs:element name="MatchingElement" type="nonEmptyString"

 minOccurs="0"/>

 <xs:element name="ValueQueries" type="namedValues"

 minOccurs="0"/>

 </xs:sequence>

 </xs:extension>

 </xs:complexContent>

 </xs:complexType>

 <xs:complexType name="namedValues">

 <xs:sequence>

 <xs:element name="Value" type="namedValue" maxOc curs="32"/>

 </xs:sequence>

 </xs:complexType>

 <xs:complexType name="namedValue">

 <xs:simpleContent>

 <xs:extension base="nonEmptyString">

 <xs:attribute name="name" type="nonEmptyString" use="required"/>

 </xs:extension>

 </xs:simpleContent>

 </xs:complexType>

Subscription: This field is not optional and contains an XPATH XML query for an event ([MS -EVEN6]
section 2.2.16).

Delay: If present, this field contains a user -specified delay value as specified for "time duration" in
section 2.5.1.1 . The task can have a delayed start after event occurrenc e; the time duration of the

delayed start is equal to the delay value.

NumberOfOccurrences: If present, this field contains an integer value between 1 and 32, inclusive.

The trigger can fire aft er NumberOfOccurrences occurrences of the MatchingElement query
(subject to the PeriodOfOccurrence field; see the following field).

PeriodOfOccurrence: If present, this field contains a time period as specified in section 2.5.1.1,
which is greater than or equal to 1 minute. If present, this field indicates the occurrences of the

MatchingElement query that occurred prior to the last PeriodOfOccurrence time period that
are not counted.

MatchingElement: If present, this field specifies an XML field name. For more information, see [MS -
EVEN6] section 3.1.4.31.

%5bMS-EVEN6%5d.pdf#Section_18000371ae6d45f795f3249cbe2be39b

45 / 148

[MS -TSCH] - v20171201
Task Scheduler Service Remoting Protocol
Copyright © 2017 Microsoft Corporation
Release: December 1, 2017

ValueQueries: If present, this field specifies a set of XML elements. The set has between 1 and 32
members, inclusive. When an event matches the subscription and fires the trigger, elemen t values

from the event for task action parameterization (section 2.5.9) can be retrieved.

2.5.3.7 LogonTrigger

If present, the LogonTrigger specifies that the task can start at user l ogon.

 <! -- LogonTrigger -- >

 <xs:complexType name="logonTriggerType">

 <xs:complexContent>

 <xs:extension base="triggerBaseType">

 <xs:sequence>

 <xs:element name="UserId" type="nonEmptyString"

 minOccurs="0"/>

 <xs:element na me="Delay" type="xs:duration" default="PT0M"

 minOccurs="0"/>

 </xs:sequence>

 </xs:extension>

 </xs:complexContent>

 </xs:complexType>

UserId: If present, this field contains an account name in a format supported by the operating
system. Only one UserId is to be specified in the LogonTrigger.

Delay: If present, this field contains a user -specified delay value as specified for "time duration" in
section 2.5.1.1 . The task can have a delayed start after Logon; the time duration of the delayed

start is equal to the delay value.

2.5.3.8 SessionStateChangeTrigger

If pre sent, this trigger specifies that the task can start when one of the following system changes
occurs. <25>

 <! -- SessionStateChang eTrigger -- >

 <xs:simpleType name="sessionStateChangeType">

 <xs:restriction base="xs:string">

 <xs:enumeration value="ConsoleConnect"/>

 <xs:enumeration value="ConsoleDisconnect"/>

 <xs:enumeration value="RemoteConnect"/>

 <xs:enumeration valu e="RemoteDisconnect"/>

 <xs:enumeration value="SessionLock"/>

 <xs:enumeration value="SessionUnlock"/>

 </xs:restriction>

 </xs:simpleType>

 <xs:complexType name="sessionStateChangeTriggerType">

 <xs:complexContent>

 <xs:extension base="triggerBaseType">

 <xs:sequence>

 <xs:element name="UserId" type="nonEmptyString"

 minOccurs="0"/>

 <xs:element name="Delay" type="xs:duration" default="PT0M"

 minOccurs="0"/>

 <xs:element name=" StateChange"

 type="sessionStateChangeType"/>

 </xs:sequence>

 </xs:extension>

 </xs:complexContent>

 </xs:complexType>

46 / 148

[MS -TSCH] - v20171201
Task Scheduler Service Remoting Protocol
Copyright © 2017 Microsoft Corporation
Release: December 1, 2017

UserId: If present, this field MUST contain an account name. The server fires the trigger when that
user has a session change as specified by the StateChange field. The task starts in the context

(identity) specified by the Principal part as specified in section 2.5.6 . Only one UserId is to be
specified in the SessionStateChangeTrigger.

Delay: If present, this field MUST contain a user -specified delay value as specified for "time duration"
in section 2.5.1.1 . The task can have a delayed start until after the trigger has fired for the
session state change. The time duration of the delayed start is equal to the delay value.

StateChange: This field is present and specifies one of the following strings.

String Behavior

ConsoleConn ect Specifies that the task is started when a user connects to a new session from a
local computer while keeping an old session active. <26>

ConsoleDisconnect Specifies that the task is star ted when a user disconnects from a new session on a
local computer, and the new session was established while keeping an old session
active.

RemoteConnect Specifies that the task is started when a user connects to a remote session.

RemoteDisconnect Specifies that the task is started when a user disconnects from a remote session.

SessionLock Specifies that the task is started when user locks the workstation .

SessionUnlock Specifies that t he task is started when user unlocks the workstation.

2.5.3.9 CalendarTrigger

If present, the CalendarTrigger specifies that the task can start on the specified days.

 <! -- CalendarTrigger -- >

 <xs:complexType name="calendarTriggerType">

 <xs:complexContent>

 <xs:extension base="triggerBaseType">

 <xs:sequence>

 <xs:element name="RandomDelay" type="xs:duration"

 default="PT0M" minOccurs="0"/>

 <xs:choice>

 <xs:element name="ScheduleByDay"

 type="dailyScheduleType"/>

 <xs:element name="ScheduleByWeek"

 type="weeklyScheduleType"/>

 <xs:element name="ScheduleByMonth"

 type="monthlyScheduleType"/>

 <xs:element name="ScheduleByMonthDayOfWeek"

 type="monthlyDayOfWeekScheduleType"/>

 </xs:choice>

 </xs:sequence>

 </xs:extension>

 </xs:complexContent>

 </xs:complexType>

 <! -- DailySchedule -- >

 <xs:complexType name="dailyScheduleT ype">

 <xs:all>

 <xs:element name="DaysInterval" minOccurs="0">

 <xs:simpleType>

 <xs:restriction base="xs:unsignedInt">

 <xs:minInclusive value="1"/>

 <xs:maxInclusive value="365"/>

 </xs:restriction>

47 / 148

[MS -TSCH] - v20171201
Task Scheduler Service Remoting Protocol
Copyright © 2017 Microsoft Corporation
Release: December 1, 2017

 </xs:si mpleType>

 </xs:element>

 </xs:all>

 </xs:complexType>

 <! -- WeeklySchedule -- >

 <xs:complexType name="weeklyScheduleType">

 <xs:all>

 <xs:element name="WeeksInterval" minOccurs="0">

 <xs:simpleType>

 <xs:restriction base="xs:unsignedByte">

 <xs:minInclusive value="1"/>

 <xs:maxInclusive value="52"/>

 </xs:restriction>

 </xs:simpleType>

 </xs:element>

 <xs:element name="DaysOfWeek" type="daysOfWeekType"

 minOccurs="0"/>

 </xs:all>

 </xs:complexType>

 <! -- MonthlySchedule -- >

 <xs:complexType name="monthlyScheduleType">

 <xs:all>

 <xs:element name="DaysOfMonth" type="daysOfMonthType"

 minOccurs="0"/>

 <xs:element name="Months" type="monthsType" minOccurs="0"/>

 </xs:all>

 </xs:complexType>

 <! - - MonthlyDayOfWeekSchedule -- >

 <xs:complexType name="monthlyDayOfWeekScheduleType">

 <xs:all>

 <xs:element name="Weeks" type="weeksType" minOccurs="0"/>

 <xs:element name="DaysOfWeek" type="daysOfWeekType"/>

 <xs:element name="Months" type="month sType" minOccurs="0"/>

 </xs:all>

 </xs:complexType>

 <! -- DaysOfWeek -- >

 <xs:complexType name="daysOfWeekType">

 <xs:all>

 <xs:element name="Monday" fixed="" minOccurs="0"/>

 <xs:element name="Tuesday" fixed="" minOccurs="0"/>

 <xs:element name="Wednesday" fixed="" minOccurs="0"/>

 <xs:element name="Thursday" fixed="" minOccurs="0"/>

 <xs:element name="Friday" fixed="" minOccurs="0"/>

 <xs:element name="Saturday" fixed="" minOccurs="0"/>

 <xs:element name="Sunday" fixe d="" minOccurs="0"/>

 </xs:all>

 </xs:complexType>

 <! -- Months -- >

 <xs:complexType name="monthsType">

 <xs:all>

 <xs:element name="January" fixed="" minOccurs="0"/>

 <xs:element name="February" fixed="" minOccurs="0"/>

 <xs:element name="March" f ixed="" minOccurs="0"/>

 <xs:element name="April" fixed="" minOccurs="0"/>

 <xs:element name="May" fixed="" minOccurs="0"/>

 <xs:element name="June" fixed="" minOccurs="0"/>

 <xs:element name="July" fixed="" minOccurs="0"/>

 <xs:element name ="August" fixed="" minOccurs="0"/>

 <xs:element name="September" fixed="" minOccurs="0"/>

 <xs:element name="October" fixed="" minOccurs="0"/>

 <xs:element name="November" fixed="" minOccurs="0"/>

 <xs:element name="December" fixed="" minOccurs ="0"/>

 </xs:all>

 </xs:complexType>

 <! -- DaysOfMonth -- >

 <xs:complexType name="daysOfMonthType">

 <xs:sequence>

 <xs:element name="Day" type="dayOfMonthType" minOccurs="0"

 maxOccurs="32"/>

48 / 148

[MS -TSCH] - v20171201
Task Scheduler Service Remoting Protocol
Copyright © 2017 Microsoft Corporation
Release: December 1, 2017

 </xs:sequence>

 </xs:complexType>

 <xs:simpleType name="dayOfMonthType">

 <xs:restriction base="xs:string">

 <xs:pattern value="[1 - 9]|[1 - 2][0 - 9]|3[0 - 1]|Last"/>

 </xs:restriction>

 </xs:simpleType>

 <! -- Weeks -- >

 <xs:complexType name="weeksType">

 <xs:sequence>

 <xs:element name="Week" type="weekTy pe" minOccurs="0"

 maxOccurs="5"/>

 </xs:sequence>

 </xs:complexType>

 <xs:simpleType name="weekType">

 <xs:restriction base="xs:string">

 <xs:pattern value="[1 - 4]|Last"/>

 </xs:restriction>

 </xs:simpleType>

The CalendarTrigger field has exactly on e of the following subfields: ScheduleByDay ,
ScheduleByWeek , ScheduleByMonth , or ScheduleByMonthDayOfWeek .

ScheduleByDay: If present, this field specifies that the task can run every day or every X number of
days as specified by the DaysInterval subfield.

DaysInterval : If present, this field contains a value between 1 and 365, inclusive. The task runs

every DaysInterval days (for example, a DaysInterval value of 2 means every other day).

ScheduleByWeek: If present, this field specifies that the task can run every week or every X number
of weeks as specified by the WeeksInterval subfield, on specific days of the week as specified by
the DaysOfWeek subfield.

WeeksInterval : If present, this field contains a value between 1 and 52, inclusive. The task runs
every WeeksInterval weeks (for example, a WeeksInterval value of 2 means every other

week).

DaysOfWeek : If present, this field contains zero or more of the following seven subfields:
Sunday , Monday , Tuesday , Wednesday , Thursday , Friday , Saturday . The task runs on
the specified days of the week.

ScheduleByMonth: If present, this field specifies that the task can run on the days specified by the
DaysOfMonth subfield, on specific months as specified by the Months subfield.

DaysOfMonth : If present, this field contains zero or more Day subfields, where each Day

subfield contains a value between 1 and 31 inclusive, or the value "Last". The task runs on the
specified days of the month for each Day subfield containing a value between 1 and 31
inclusive. The task also runs on the last day of the month if any Day subfield contains the
value "Last".

Months : If present, this field contains zero or more of the following twelve subfields: January ,
Februar y , March , April , May , June , July , August , September , October , November ,

December . The task runs on the specified months.

ScheduleByMonthDayOfWeek: If present, this field specifies that the task can run on the weeks
specified by the Weeks subfield, on speci fic days of the week as specified by the DaysOfWeek
subfield, on specific months as specified by the Months subfield.

Weeks : If present, this field contains zero or more Week subfields, where each Week subfield
contains one of the following five values: 1, 2, 3, 4, or Last. The task runs on the specified
weeks of the month.

49 / 148

[MS -TSCH] - v20171201
Task Scheduler Service Remoting Protocol
Copyright © 2017 Microsoft Corporation
Release: December 1, 2017

DaysOfWeek : If present, this field contains zero or more of the following seven subfields:
Sunday , Monday , Tuesday , Wednesday , Thursday , Friday , Saturday . The task runs on

the specified days of the week.

Months : If present, this field contains zero or more of the following twelve subfields: January ,

February , March , April , May , June , July , August , September , October , November ,
December . The task runs on the specified months.

RandomDelay: If present, this field contains a user - specified maximum delay value as specified for
"time duration" in section 2.5.1.1 . The random delay value MUST be chosen from the interval from
zero to RandomDelay , inclusive. The task runs after the random delay interval has passed.

2.5.4 Settings Schema Part

If present, the Settings Schema Part specifies how to run the actions and additional conditions . The
task can run only if the following machine conditions match the following settings when the trigger
occurs: running on battery, DisallowStartIfOnBatteries ; n etwork available,
RunOnNetworkAvailable ; and idle, RunOnlyIfIdle .

 <! -- Settings -- >

 <xs:complexType name="settingsType">

 <xs:all>

 <xs:element name="AllowStartOnDemand" type="xs:boolean"

 default="true" minOccurs="0"/>

 <xs:element name="Restar tOnFailure" type="restartType"

 minOccurs="0"/>

 <xs:element name="MultipleInstancesPolicy"

 type="multipleInstancesPolicyType" default="IgnoreNew"

 minOccurs="0"/>

 <xs:element name="DisallowStartIfOnBatteries" type="xs:boolean"

 def ault="true" minOccurs="0"/>

 <xs:element name="StopIfGoingOnBatteries" type="xs:boolean"

 default="true" minOccurs="0"/>

 <xs:element name="AllowHardTerminate" type="xs:boolean"

 default="true" minOccurs="0"/>

 <xs:element name="StartWhenA vailable" type="xs:boolean"

 default="false" minOccurs="0"/>

 <xs:element name="NetworkProfileName" type="xs:string"

 minOccurs="0"/>

 <xs:element name="RunOnlyIfNetworkAvailable" type="xs:boolean"

 default="false" minOccurs="0"/>

 <xs:element name="WakeToRun" type="xs:boolean" default="false"

 minOccurs="0"/>

 <xs:element name="Enabled" type="xs:boolean" default="true"

 minOccurs="0"/>

 <xs:element name="Hidden" type="xs:boolean" default="false"

 minOccurs="0"/>

 <xs:element name="DeleteExpiredTaskAfter" type="xs:duration"

 default="PT0S" minOccurs="0"/>

 <xs:element name="IdleSettings" type="idleSettingsType"

 minOccurs="0"/>

 <xs:element name="NetworkSettings" type="networkSettingsType"

 minOcc urs="0"/>

 <xs:element name="ExecutionTimeLimit" type="xs:duration"

 minOccurs="0"/>

 <xs:element name="Priority" type="priorityType" default="7"

 minOccurs="0"/>

 <xs:element name="RunOnlyIfIdle" type="xs:boolean"

 default="false" minOccurs="0"/>

 </xs:all>

 </xs:complexType>

The following two settings are supported only in the v1.3 schema.

50 / 148

[MS -TSCH] - v20171201
Task Scheduler Service Remoting Protocol
Copyright © 2017 Microsoft Corporation
Release: December 1, 2017

 <xs:element name="UseUnifiedSchedulingEngine" type="xs:boolean" default="false"

minOccurs="0" />

 <xs:element name="D isallowStartOnRemoteAppSession" type="xs:boolean" default="false"

minOccurs="0" />

The following settings are supported only in the v1.4 schema.

 <xs:element name="MaintenanceSettings" type="maintenanceSettingsType"

 minOccurs="0"/>

 <xs:element name="Volatile" type="xs:boolean" default="false" minOccurs="0"/>

2.5.4.1 AllowStartOnDemand

If present and set to TRUE, the AllowStartOnDemand field specifies that the task is started when
invoked by the user (see section 3.2.5.4.13). Otherwise, the task does not run when invoked by the

user, but only when the appropriate trigger occurs.

2.5.4.2 RestartOnFailure

If the task fails to run because one of the start conditions is not met (see Settings Schema
Part (section 2.5.4)) or because of a failure to start an action, the operation is attempted again. The
operation attempt will continue for the number of times specified by the Count subfield and with an
interval between retries specified by the Interval subfield.

 <! -- RestartOnFailure -- >

 <xs:complexType name="restartType">

 <xs:all>

 <xs:element name="Interval">

 <xs:simpleType>

 <xs:restriction base= "xs:duration ">

 <xs:minInclusive value="PT1M"/>

 <xs:maxInclusive value="P31D"/>

 </xs:restriction>

 </xs:simpleType>

 </xs:element>

 <xs:element name="Count">

 <xs:simpleType>

 <xs:restriction base="xs:unsignedByte">

 <xs:minInclusive value="1"/>

 </xs:restriction>

 </xs:simpleType>

 </xs:element>

 </xs:all>

 </xs:complexType>

Interval: This field is not optional and contains a time duration (see section 2.5.1.1). The duration
falls in the range of 1 minute to 31 days, inclusive.

Count: This field is present and contains an integ er in the range 1 to 255, inclusive.

2.5.4.3 MultipleInstancesPolicy

If present, the MultipleInstancesPolicy field contains one of the following values: Parallel, Queue,
IgnoreNew, or StopExisting.

 <! -- MultipleInstancesPolicy -- >

51 / 148

[MS -TSCH] - v20171201
Task Scheduler Service Remoting Protocol
Copyright © 2017 Microsoft Corporation
Release: December 1, 2017

 <xs:simpleType name="multipleInstancesPolicyType">

 <xs:restriction base="xs:string">

 <xs:enumeration value="Parallel"/>

 <xs:enumeration value="Queue"/>

 <xs:enumeration value="IgnoreNew"/>

 <xs:enumeration value="StopExisting"/>

 </ xs:restriction>

 </xs:simpleType>

Parallel: Specifies that multiple instances of the task can start in parallel for each occurring trigger .

Queue: Specifies that execution instances related to th is trigger can start serially, on the completion
of the previous instance.

IgnoreNew: Specifies that all additional triggers can be ignored during the execution of an instance.

StopExisting: Specifies that the running instance can be stopped and a new inst ance can be started
on any additional trigger occurrence.

2.5.4.4 DisallowStartIfOnBatteries

The task will not start if the computer is running on batteries, unless this field is present and set to
FALSE.

2.5.4.5 StopIfGoingOnBatteries

The task can be stopped if the computer switches to battery or Uninterrupted Power Supply (UPS)
power, unless this field is present and set to FALSE.

2.5.4.6 AllowHardTerminate

The task can be forcibly stopped if it exceeds its absolute execution time limit, unless this field is

present and is set to FALSE.

2.5.4.7 StartWhenAvailable

If present and set to TRUE, this field specifies that the task can start when the computer becomes

available if a scheduled run time was missed. This field applies only to time -based tasks with an end
boundary or time -based tasks that are set to repeat infinitely.

2.5.4.8 RunOnNetworkAvailable

If present and set to TRUE, this field specifies th at the task can start only if a network connection is

available.

2.5.4.9 NetworkSettings

The NetworkSettings field can be ignored unless the RunOnNetworkAvailable field (section

2.5 .4.8) is present and set to TRUE. <27>

If present and either the Name or Id subfields are present, this field specifies a network. The task can
only start if a network connection to the specified network is available.

 <! -- NetworkSettings -- >

 <xs:complexType name="networkSettingsType">

 <xs:all>

52 / 148

[MS -TSCH] - v20171201
Task Scheduler Service Remoting Protocol
Copyright © 2017 Microsoft Corporation
Release: December 1, 2017

 <xs:element name="Name" type="nonEmptyString" minOccurs="0"/>

 <xs:element name="Id" type="guidType" minOccurs="0"/>

 </xs:all>

 </xs:complexType>

Name: If present, this field contains a string name of a network. Only name formats supported by the
oper ating system can be used.

Id: If present, this field contains a GUID (section 2.5.1.5) specifying a network.

2.5.4.10 WakeToRun

If present and set to TRUE, this field specifies that the task can be run by awakening the computer
from power -suspended mode (standby or hibernate).

2.5.4.11 Enabled

If present and set to FALSE, this field specifies that the task never runs.

2.5.4.12 Hidde n

If present and set to TRUE, this field specifies that the task does not appear in an administrative
console or graphic user interface.

2.5.4.13 DeleteExpiredTaskAfter

If present, this field contains a time duration in t he format specified in section 2.5.1.1 . The task can
be deleted (after this delay) when it has no future scheduled run times.

2.5.4.14 IdleSettings

If present, the IdleSettings field sp ecifies that the task can run only when the machine has been idle
for the value of the Duration subfield.

 <! -- IdleSettings -- >

 <xs:complexType name="idleSettingsType">

 <xs:all>

 <xs:element name= "Duration " default= "PT10M " minOccurs= "0 ">

 <xs:simpleType>

 <xs:restriction base= "xs:duration ">

 <xs:minInclusive value= "PT1M "/>

 </xs:restriction>

 </xs:simpleType>

 </xs:element>

 <xs:element name= "WaitTimeout " default= "PT1H "

 minOccurs= "0 ">

 <xs:simpleType>

 <xs:restriction base= "xs:duration ">

 <xs:minInclusive value= "PT1M "/>

 </xs:restriction>

 </xs:simpleType>

 </xs:element>

 <xs:element name= "StopO nIdleEnd " type= "xs:boolean "

 default= "true " minOccurs= "0 "/>

 <xs:element name="RestartOnIdle" type="xs:boolean"

 default="false" minOccurs="0"/>

 </xs:all>

 </xs:complexType>

53 / 148

[MS -TSCH] - v20171201
Task Scheduler Service Remoting Protocol
Copyright © 2017 Microsoft Corporation
Release: December 1, 2017

Duration: If present, this subfield contains a time dura tion of at least 1 minute (between 1 minute
and 31 days, inclusive). The format is as specified in section 2.5.1.1 . The task can have a delayed

start until the specified Duration has elapsed from the time that the machine became idle. For
example, if a task with idle duration of 15 minutes is triggered at a time when the machine was

already idle for 10 minutes, the task is to start after 5 more minutes. <28>

WaitTimeout: If present, this subfield contains a time duration of at least 1 minute (between 1
minute and 31 days, inclusive). The format MUST be as specified in sectio n 2.5.1.1. The task, if
triggered, will wait for the computer to become Idle for at most WaitTimeout minutes. <29>

StopOnIdleEnd: If present and set to TRUE, this subfield specifies that the task stops when the idle
condition ceases to be true. If not present, or if present and set to FALSE, the task continues
when the idle condition ceases to be true. <30>

RestartOnIdle: If present and set to TRUE, this subfield specifies that the task restarts when the
machine returns to idle state. If present and set to FALSE, the task continues running when the
server returns to idl e state. <31>

2.5.4.15 Maintenance Settings

If present, the MaintenanceSettings field specifies that the task will run during the machine
maintenance periods with a given p eriodicity.

 <! -- MaintenanceSettings -- >

 <xs:complexType name="maintenanceSettingsType">

 <xs:all>

 <xs:element name="Period" minOccurs="1" maxOccurs="1">

 <xs:simpleType>

 <xs:restriction base="xs:duration">

 <xs:minInclusive value="P1D"/>

 </xs:restriction>

 </xs:simpleType>

 </xs:element>

 <xs:element name="Deadline" minOccurs="0" maxOccurs="1">

 <xs:simpleType>

 <xs:restriction base="xs:duration">

 <xs:minInclusive value="P1D"/>

 </xs:restriction>

 </xs:simpleType>

 </xs:element>

 <xs: element name="Exclusive" type="xs:boolean" minOccurs="0" />

 </xs:all>

 </xs:complexType>

Period: A time duration of at least 1 day. The format is as specified in section 2.5.1.1 . The ta sk is to

start during regular machine maintenance periods only if the previous task run finished before the
end of the Period time following regular activation time. For example, if the task has the Period
set to P1W (one week), it is to start on the regul ar maintenance period at least on the eighth day
after its previous run.

Deadline: If present, this subfield contains a time duration of at least 1 day. The Deadline time is

always be greater than the Period time. The format MUST be as specified in section 2.5.1.1. If the
task missed its Period requirement (for example, because the machine was off during the regular

maintenance time), it can run when the machine is idle in addition to regular time.

Exclusive: If present and set to TRUE, this subfield specif ies that the task can be started
independently of other tasks that have specified MaintenanceSettings .

54 / 148

[MS -TSCH] - v20171201
Task Scheduler Service Remoting Protocol
Copyright © 2017 Microsoft Corporation
Release: December 1, 2017

2.5.4.16 ExecutionTimeLimit

If present, this field contains a time duration. The task can gracefully stop when this limit is reached.
The format is specified in section 2.5.1.1 . Additionally, the task can be forcibly stopped in accordance

with the AllowHardTerminate setting if its execution runtime exceeds this maximum time allowe d.

2.5.4.17 Priority

If present, this field contains a value between 1 and 10, inclusive.

 <! -- Lower number means higher priority. -- >

 <xs:simpleType name="priorityType">

 <xs:restriction base="xs:byte">

 <xs:minInclusive value="1" fixed="tru e"/>

 <xs:maxInclusive value="10" fixed="true"/>

 </xs:restriction>

 </xs:simpleType>

2.5.4.18 RunOnlyIfIdle

If present and set to TRUE, this field specifies that the task can only start if the machine is idle
according to the IdleSettings field defined in section 2.5.4.14 .

2.5.4.19 UseUnifiedSchedulingEngine

 If present and set to TRUE, the UseUnifiedSchedulingEngine field specifies that the generic task
scheduling engine provided by the underlying operating system is used to manage the task.

2.5.4.20 DisallowStartOnRemoteAppSession

The task cannot start if the current session is a "Remot e App Session", and if the
DisallowStartOnRemoteAppSession field is present and set to TRUE.

2.5.4.21 Volatile

If present and set to TRUE, the Volatile setting specifies that the task will be automatically disabled

at the next OS startup.

2.5.5 Da ta Schema Part

If present, this field contains a fragment of XML .

 <! -- Data -- >

 <xs:complexType name="dataType">

 <xs:sequence>

 <xs:any/>

 </xs:sequence>

 </xs:c omplexType>

2.5.6 Principal Schema Part

If present, this field specifies the identity used as security principal for the task's execution context.
For information about th e elements in the Action group, see section 2.5.7 .

 <! -- Principal -- >

55 / 148

[MS -TSCH] - v20171201
Task Scheduler Service Remoting Protocol
Copyright © 2017 Microsoft Corporation
Release: December 1, 2017

 <xs:complexType name="principalType">

 <xs:all>

 <xs:element name="UserId" type="nonEmptyString" minOccurs="0"/>

 <xs:element name= "LogonType " type= "logonType "

 minOccurs= "0 "/>

 <xs:element name="GroupId" type="nonEmptyString" minOccurs="0"/>

 <xs:element name="DisplayName" type="xs:string" minOccurs="0"/>

 <xs:element name="RunLevel" type=" runLevelType" minOccurs="0"/>

 <! -- begin v1.3 only -- >

 <xs:element name="ProcessTokenSidType" type="processTokenSidType" minOccurs="0"

maxOccurs="1"/>

 <xs:element name="RequiredPrivileges" type="requiredPrivilegesType" minOccurs="0" />

 <! -- end v1.3 only -- >

 </xs:all>

 <xs:attribute name="id" type="xs:ID" use="optional"/>

 </xs:complexType>

 <xs:simpleType name="logonType">

 <xs:restriction base="xs:string">

 <xs:enumeration value="S4U"/>

 <xs:enumeration value="Password"/>

 <xs:enumeration value="InteractiveToken"/>

 <xs:enumeration value="InteractiveTokenOrPassword"/>

 <! -- for backward compatibility -- >

 </xs:restriction>

 </xs:simpleType>

 <xs:simpleType name="runLevelType">

 <xs:restriction base="xs:string">

 <xs:enumeration value="LeastPrivilege"/>

 <xs:enumeration value="HighestAvailable"/>

 <! -- begin v1.3 only -- >

 <xs:simpleType name="processTokenSidType">

 <xs:restriction base="xs:string">

 <xs:enumeration value="None" />

 <xs:enume ration value="Unrestricted" />

 </xs:restriction>

 </xs:simpleType>

 <xs:complexType name="requiredPrivilegesType">

 <xs:sequence>

 <xs:element name="Privilege" type="privilegeType" minOccurs="1" maxOccurs="64"/>

 </xs:sequence>

 </xs:complexType>

 <xs:simpleType name="privilegeType">

 <xs:restriction base="xs:string">

 <xs:enumeration value="SeCreateTokenPrivilege" />

 <xs:enumeration value="SeAssignPrimaryTokenPrivilege" />

 <xs:enumeration value="SeLockMemoryPriv ilege" />

 <xs:enumeration value="SeIncreaseQuotaPrivilege" />

 <xs:enumeration value="SeUnsolicitedInputPrivilege" />

 <xs:enumeration value="SeMachineAccountPrivilege" />

 <xs:enumeration value="SeTcbPrivilege" />

 <xs:enumeratio n value="SeSecurityPrivilege" />

 <xs:enumeration value="SeTakeOwnershipPrivilege" />

 <xs:enumeration value="SeLoadDriverPrivilege" />

 <xs:enumeration value="SeSystemProfilePrivilege" />

 <xs:enumeration value="SeSystemtimePrivilege" />

 <xs:enumeration value="SeProfileSingleProcessPrivilege" />

 <xs:enumeration value="SeIncreaseBasePriorityPrivilege" />

 <xs:enumeration value="SeCreatePagefilePrivilege" />

 <xs:enumeration value="SeCreatePermanentPrivilege" />

 <xs:enumeration value="SeBackupPrivilege" />

 <xs:enumeration value="SeRestorePrivilege" />

 <xs:enumeration value="SeShutdownPrivilege" />

 <xs:enumeration value="SeDebugPrivilege" />

 <xs:enumeration value="SeAuditPrivilege" />

 <xs:enumeration value="SeSystemEnvironmentPrivilege" />

 <xs:enumeration value="SeChangeNotifyPrivilege" />

 <xs:enumeration value="SeRemoteShutdownPrivilege" />

 <xs:enumeration value="SeUndockPrivilege" />

56 / 148

[MS -TSCH] - v20171201
Task Scheduler Service Remoting Protocol
Copyright © 2017 Microsoft Corporation
Release: December 1, 2017

 <xs:enumeration value="SeSyncAgentPrivilege" />

 <xs:enumeration value="SeEnableDelegationPrivilege" />

 <xs:enumeration value="SeManageVolumePrivilege" />

 <xs:enumeration value="SeImpersonatePrivilege" />

 <xs:enumeration value="SeCrea teGlobalPrivilege" />

 <xs:enumeration value="SeTrustedCredManAccessPrivilege" />

 <xs:enumeration value="SeRelabelPrivilege" />

 <xs:enumeration value="SeIncreaseWorkingSetPrivilege" />

 <xs:enumeration value="SeTimeZonePrivilege" />

 <xs:enumeration value="SeCreateSymbolicLinkPrivilege" />

 </xs:restriction>

 </xs:simpleType>

 <! -- end v1.3 only -- >

 </xs:restriction>

 </xs:simpleType>

UserId: If present, this field contains the principal for running the task. It contains the account
name specified in one of the following forms:

Á NetBIOS or fully qualified domain name (FQDN) domain \ username

Á UPN username@domai n

Á ". \ username" which specifies a user on the local machine.

Á "LOCAL SYSTEM", "NETWORK SERVICE", or "LOCAL SERVICE", in which case the task will run
under one of those computer - reserved accounts.

Á The SID string for the user's account, as defined in [MS -DTYP] section 2.4.2.1.

LogonType: If present, this field contains one of the following strings:

Á S4U: Specifies that the task can run non - interactively. The password is not saved.

Á Password: Specifies that the task can run non - interactively.

Á InteractiveToken: Specifies that the task can run interactively using the credentials of the

currently logged - on user .

Á InteractiveTokenOrPassword: Specifies that the task can run interactively if the user is logged -
on and non - interactively if the user is logged -off.

GroupId: If present, this field contains a security group id, either local or centrally specified in Active
Directory . The task can be triggered for each user in the specified security group.

Note The multiple instance policy can affect the actual start of the task. See

MultipleInstancesPolicy (section 2.5.4.3) .

DisplayName: If present, this field contains a friendly (descriptive) name of the principal. This field is
present to provide a short, human - readable description of the principal identity.

RunLevel: If present, this field contains one of the following strings:

Á LeastPrivilege: Specifies that the task can run with least privileges al lowed for the user.

Á HighestAvailable: Specifies that the task can run with highest privileges allowed for the user.

ProcessTokenSidType: If present, the ProcessTokenSidType field contains one of the following

strings:

Á None : Specifies that the task runs in a process that does not contain a process token SID.

%5bMS-DTYP%5d.pdf#Section_cca2742956894a16b2b49325d93e4ba2

57 / 148

[MS -TSCH] - v20171201
Task Scheduler Service Remoting Protocol
Copyright © 2017 Microsoft Corporation
Release: December 1, 2017

Á Unrestricted : Specifies that the task runs in a process that has an unrestricted process token
SID.

If the ProcessTokenSidType field is present, validation occurs ensuring that UserId contains the
name o r the corresponding SID string for one of those computer - reserved accounts: "NETWORK

SERVICE" or "LOCAL SERVICE".

RequiredPrivileges: If present, the RequiredPrivileges field contains at least one and a maximum
of 64 <Privilege> elements with the followin g strings.

These values represent the set of privileges needed to run the task.

Á "SeCreateTokenPrivilege"

Á "SeAssignPrimaryTokenPrivilege"

Á "SeLockMemoryPrivilege"

Á "SeIncreaseQuotaPrivilege"

Á "SeUnsolicitedInputPrivilege"

Á "SeMachineAccountPrivilege"

Á "SeTcbPriv ilege"

Á "SeSecurityPrivilege"

Á "SeTakeOwnershipPrivilege"

Á "SeLoadDriverPrivilege"

Á "SeSystemProfilePrivilege"

Á "SeSystemtimePrivilege"

Á "SeProfileSingleProcessPrivilege"

Á "SeIncreaseBasePriorityPrivilege"

Á "SeCreatePagefilePrivilege"

Á "SeCreatePermanentPrivilege"

Á "SeBackupPrivilege"

Á "SeRestorePrivilege"

Á "SeShutdownPrivilege"

Á "SeDebugPrivilege"

Á "SeAuditPrivilege"

Á "SeSystemEnvironmentPrivilege"

Á "SeChangeNotifyPrivilege"

Á "SeRemoteShutdownPrivilege"

Á "SeUndockPrivilege"

Á "SeSyncAgentPrivilege"

58 / 148

[MS -TSCH] - v20171201
Task Scheduler Service Remoting Protocol
Copyright © 2017 Microsoft Corporation
Release: December 1, 2017

Á "SeEnableDelegationPrivileg e"

Á "SeManageVolumePrivilege"

Á "SeImpersonatePrivilege"

Á "SeCreateGlobalPrivilege"

Á "SeTrustedCredManAccessPrivilege"

Á "SeRelabelPrivilege"

Á "SeIncreaseWorkingSetPrivilege"

Á "SeTimeZonePrivilege"

Á "SeCreateSymbolicLinkPrivilege"

If the RequiredPrivileges field is present, the task runs in a process that has a token with a

superset of privileges as the one specified in the task definition.

Id attribute: If present, this field contains a user -selected identifier as specified in section 2.2 ,
allowing the credential to be referenced elsewhere in the task body. This ID is unique in the
context of the task.

2.5.7 Action Schema Part

The Action Schema Part is not optional and contain s at least one action to be executed once the task's
triggers and conditions cause the task to run.

 <! -- Actions -- >

 <xs:complexType name="actionsType">

 <xs:sequence>

 <xs:group ref="actionGroup" maxOccurs="32"/>

 </xs:sequence>

 <xs:attribute name="Context" type="xs:IDREF" use="optional"/>

 </xs:complexType>

 <xs:group name="actionGroup">

 <xs:choice>

 <xs:element name="Exec" type="execType"/>

 <xs:element name="ComHandler" type="comHandlerType"/>

 <xs:element name="SendEmail" type="sendEmailType"/>

 <xs:element name="ShowMessage" type="showMessageType"/>

 </xs:choice>

 </xs:group>

 <! -- Base type for actions. -- >

 <xs:complexType name="actionBaseType" abstract="true">

 <xs:attribute name="id" type="xs:ID" use="optional"/>

 </xs:complexType>

2.5.7.1 Exec Action

If present, this field contains a command - line action.

 <! -- Exec -- >

 <xs:comp lexType name="execType">

 <xs:complexContent>

 <xs:extension base= "actionBaseType ">

 <xs:all>

 <xs:element name="Command" type="pathType"/>

 <xs:element name="Arguments" type="xs:string"

 minOccurs="0"/>

59 / 148

[MS -TSCH] - v20171201
Task Scheduler Service Remoting Protocol
Copyright © 2017 Microsoft Corporation
Release: December 1, 2017

 <xs:element name="WorkingDirectory" type="pathType"

 minOccurs="0"/>

 </xs:all>

 </xs:extension>

 </xs:complexContent>

 </xs:complexType>

Command: This field is not optional and contains either a path of an executable or a document with
an associated program. If the path does not begin with " \ ", it is relative to the working directory.

Arguments: If present, this field contains an arguments string.

WorkingDirectory: If present, this field contains a path of a folder . WorkingDirectory can contain
a drive specifier.

2.5.7.2 ComHandler Action

If present, this field specifies a custom handler. <32> <33>

 <! -- ComHandler -- >

 <xs:complexType name="comHandlerType">

 <xs:complexContent>

 <xs:extension base= "actionBaseType ">

 <xs:all>

 <xs:element name="Cl assId" type="guidType"/>

 <xs:element name="Data" type="dataType" minOccurs="0"/>

 </xs:all>

 </xs:extension>

 </xs:complexContent>

 </xs:complexType>

ClassId: This field is not optional and contains a GUID of the custom handler's COM class (see

section 2.5.1.5).

Data: If present, this field contains a fragment of XML .

2.5.7.3 Email Action

If present, <34> this field contains the specification of an email action.

 <! -- SendEmail -- >

 <xs:complexType name="sendEmailType">

 <xs:complexContent>

 <xs:extension base="actionBaseType">

 <xs:all>

 <xs:element name="Server" type="nonEmptyString"/>

 <xs:element name="Subject" type="xs:string" minOccurs="0"/>

 <xs:element name="To" type="xs:string" minOccurs="0"/>

 <xs:element name="Cc" type="xs:string" minOccurs="0"/>

 <xs:element name="Bcc" type="xs:string" minOccurs="0"/>

 <xs:element name="ReplyTo" type="xs:string" minOccur s="0"/>

 <xs:element name="From" type="xs:string" minOccurs="0"/>

 <xs:element name="HeaderFields" type="headerFieldsType"

 minOccurs="0"/>

 <xs:element name="Body" type="xs:string" minOccurs="0"/>

 <xs:element name="Attachments" type="attachmentsType"

 minOccurs="0"/>

 </xs:all>

 </xs:extension>

 </xs:complexContent>

 </xs:complexType>

60 / 148

[MS -TSCH] - v20171201
Task Scheduler Service Remoting Protocol
Copyright © 2017 Microsoft Corporation
Release: December 1, 2017

 <xs:complexType name="headerFieldsType">

 <xs:sequence>

 <xs:element name="Hea derField" type="headerFieldType"

 minOccurs="0" maxOccurs="32"/>

 </xs:sequence>

 </xs:complexType>

 <xs:complexType name="headerFieldType">

 <xs:all>

 <xs:element name="Name" type="nonEmptyString"/>

 <xs:element name="Value" type="xs:str ing"/>

 </xs:all>

 </xs:complexType>

 <xs:complexType name="attachmentsType">

 <xs:sequence>

 <xs:element name="File" type="nonEmptyString" minOccurs="0"

 maxOccurs="8"/>

 </xs:sequence>

 </xs:complexType>

Server: This field is present and contains the email server Domain Name System (DNS) name.

Subject: If this field is present, it contains the Subject of the email message.

To: If this field is present, it contains the email addresses. The addresses are fully qualified, and
multiple addresses are semicolon -delimited.

CC: If this field is present, it contains the carbon copy email addresses. The addresses are fully
qualified, and multiple addresses are sem icolon -delimited.

BCC: If this field is present, it contains the blind carbon copy email addresses. The addresses are fully
qualified, and multiple addresses are semicolon -delimited.

Note At least one of To , CC, or BCC are required for a fully - formed emai l.

ReplyTo: If this field is present, it contains the reply email address.

From: This field is not optional. It contains the from email address.

HeaderFields: If present, this field contains strings to be included in the email header as Name and
Value subf ields. The field contains between 0 and 32 (inclusive) header strings.

Body: If this field is present, it contains the email body text.

Attachment: If present, this field contains between 0 and 8 (inclusive) Name subfields, specifying a

file or list of fil es to be attached to the email. Each subfield can contain a fully qualified path name
for absolute location. If a path name is unqualified, the working directory can be assumed.

2.5.7.4 ShowMessage Action

If present, <35> the ShowMessageAction field specifies that a message box can be displayed on each
session where this user is logged on to the local machine.

 <! -- ShowMessage -- >

 <xs:complexType name="showMessageType">

 <xs:complexContent>

 <xs:extension base= "actionBaseType ">

 <xs:all>

 <xs:element name="Title" type="nonEmptyString"/>

 <xs:element name="Body" type="nonEmptyString"/>

 </xs:all>

 </xs:extension>

 </xs:complexContent>

61 / 148

[MS -TSCH] - v20171201
Task Scheduler Service Remoting Protocol
Copyright © 2017 Microsoft Corporation
Release: December 1, 2017

 </xs:complexType>

Title: If present, this field contains a nonempty string for the caption of the message box.

Body: This field is not optional and contains a nonempty string for the contents of the message box.

2.5.8 XML Tasks Localization

Some of the fields in the task XML definition MAY be localized. To treat a field as localizable, the

application specifies the field in the following form:

$(@dllname.dll, - resId), where dllname.dll is the name of a library containing the localized string and
resId are the resource ID in t he library containing the string.

Example:

 <Description>$(@%SystemRoot% \ system32 \ MyRes.dll, - 101)</Description>

The following fields MAY be localized:

Á RegistrationInfo elements (see section 2.5.1):

 <xs:element name="Source" type="xs:string" minOccurs="0"/>

 <xs:element name="Author" type="xs:string" minOccurs="0"/>

 <xs:element name="Description" type="xs:string" minOccurs="0"/>

 <xs:element name="Documentation" type="xs:string" minOccurs="0"/>

Á Principal element (see section 2.5.6):

 <xs:element name="DisplayName" type="xs:string" minOccurs="0"/>

Á Email action elements (see section 2.5.7.3):

 <xs:element name="Subject" type="xs:string" minOccurs="0"/>

 <xs:element name="Body" type="xs:string" minOccurs="0"/>

Á ShowMessage action elements (see section 2.5.7.4):

 <xs:element name="Title" type="nonEmptyString"/>

 <xs:element name="Body" type="nonEmptyString"/>

2.5.9 Task Fields Parameterization

Some of the fields in the XML task definition MAY be parameterized, allowing their values to be
substituted with referenced parameter values at task runtime. The server performs parameter
substitution if a parameterized field is specified in the format specified in section 2.5.9.1 . The potential
parameter names are specified in section 2.5.9.2 . The XML task definition fields that are
parameterize d are specified in section 2.5.9.3 .

62 / 148

[MS -TSCH] - v20171201
Task Scheduler Service Remoting Protocol
Copyright © 2017 Microsoft Corporation
Release: December 1, 2017

2.5.9.1 Parameterization Format

To enable parameter substitution, a parameterizable field has a value in the form of a dollar sign "$"
and a parameter name enclosed in parentheses. For example, "$(paramName)". If a parameterizable

field is to contain the dollar sign, it is escaped with a dollar sign. For example:

Á The string "$$text" is replaced with "$text".

Á The string "$(paramName)" is replaced with "paramValue".

2.5.9.2 Parameter Names

The server MUST support the following parameter names in parameterizable fields:

Á Any event property specified in the ValueQuery field (see section 2.5.3.6).

Á The names Arg0, Arg1, é, Arg31, with corresponding values that were passed to SchRpcRun
(section 3.2.5.4.13).

If a parameterizab le field contains a parameter name that has no corresponding value, then the server
MUST NOT replace the parameterizable field. For example, if the parameterizable field contains

"$(Arg0)" and the task is started in a context other than SchRpcRun, the para meterizable field is not
replaced.

2.5.9.3 Parameterizable Fields

The server MUST support parameter substitution in the following fields in the Action Schema Part :

 <! -- Exec -- >

 <xs:element name="Arguments" type="xs:string" minOccurs="0"/>

 <xs:element name="WorkingDirectory" type="pathType" minOccurs="0"/>

 <! -- ComHandler -- >

 <xs:element name="Data" type="dataType" minOccurs="0 "/>

 <! -- SendEmail -- >

 <xs:element name="Server" type="nonEmptyString"/>

 <xs:element name="Subject" type="xs:string" minOccurs="0"/>

 <xs:element name="To" type="xs:string" minOccurs="0"/>

 <xs:element name="Cc" type="xs:string" minOccurs="0" />

 <xs:element name="Bcc" type="xs:string" minOccurs="0"/>

 <xs:element name="ReplyTo" type="xs:string" minOccurs="0"/>

 <xs:element name="From" type="xs:string" minOccurs="0"/>

 <xs:element name="Body" type="xs:string" minOccurs="0"/>

 <! -- ShowMessage -- >

 <xs:element name="Title" type="nonEmptyString"/>

 <xs:element name="Body" type="nonEmptyString"/>

63 / 148

[MS -TSCH] - v20171201
Task Scheduler Service Remoting Protocol
Copyright © 2017 Microsoft Corporation
Release: December 1, 2017

3 Protocol Details

3.1 Client Role Details

The Task Scheduler Remoting Protocol consists of three interfaces: <36>

Á Net Schedule (ATSvc)

Á Task Scheduler Agent (SASec)

Á Vista Task Remote Protocol (ITaskSchedulerService)

All three interfaces can be used to configure and manage tasks remotely. The three interfaces
represent a continuum of increasing functionality, with ATSvc providing rudimentary functionality and
ITaskSchedulerService providing the most functionality. Clients are advised to use the lowest -

functionality interface that meets their application require ments, but clients MAY try to bind to
ITaskSchedulerService and then fall back to SASec and then ATSvc if the newer interfaces are not

supported.

The protocol's client role consists of using these interfaces to make calls on the server to implement
applica tion or user requests. The client does not maintain any protocol state.

The client side of this protocol is a pass - through. That is, no timers or other state is required on the
client side of this protocol. Calls made by the higher - layer protocol or applic ation are passed directly to

the transport, and the results returned by the transport are passed back directly to the higher - layer
protocol or application.

3.1.1 Abstract Data Model

None.

3.1.2 Timers

None.

3.1.3 Initialization

The client MUST establish a binding to the server as specified in [MS -RPCE] section 3.2.2.

3.1.4 Higher -Layer Triggered Events

Applications and use rs use the Task Scheduler Remoting Protocol to implement the following
conceptual operations: Add Task, Delete Task, Modify Task, Retrieve Task Status, and Enumerate
Tasks. The following subsections specify how the client uses the ATSvc , SASec, and
ITaskSchedulerService interfaces to accomplish these operations.

3.1.4.1 ATSvc Client Proce ssing

This subsection specifies how the client uses the ATSvc interface to implement the following
conceptual operations: Add Task, Delete Task, Retrieve Task Status , and Enumerate Tasks.

Note that the SASec interface includes two methods (SASetNSAccountInformation and
SAGetNSAccountInformation) that clients of the ATSvc interface use to set or get account information

that applies to ATSvc tasks . For mo re information, see section 3.2.5.2.

%5bMS-RPCE%5d.pdf#Section_290c38b192fe422991e64fc376610c15

64 / 148

[MS -TSCH] - v20171201
Task Scheduler Service Remoting Protocol
Copyright © 2017 Microsoft Corporation
Release: December 1, 2017

The ATSvc methods take as their first parameter an ATSVC_HANDLE , which is a Unicode string
specif ying the server. The client MUST map this string to an RPC binding handle for the remote

server, which it obtained during initializa tion, as specified in section 3.1.3 . For more details, see
[C706] sections 4.3.5 and 5.1.5.2. This first parameter is not mentioned further in the following

subsections.

3.1.4.1.1 Add Task

First, the client MUST construct an AT_INFO structure (section 2.3.4) to specify the t ask :

Á The JobTime , DaysOfMonth , and DaysOfWeek fields MUST specify the time and day (or days)
at which the task will run.

Á The Flags field MUST be set to zero, except for the following bit flags:

Á JOB_RUN_PERIODICALLY to specify that the server MUST run the task on a repeating
schedule.

Á JOB_ADD_CURRENT_DATE to specify that the server MUST set the current day in the
DaysOfMonth field.

Á JOB_NONINTERACTIVE to specify that this task is not interactive.

Á The Command field MUST contain a Unicode string specifying the name of the batch file or

binary program to execute.

Next, the client MUST invoke the NetrJobAdd method with the following parameters :

Á A pointer to the AT_INFO structure in the pAtInfo parameter.

Á A pointer to a DWORD to receive the task ID in the pJobId parameter.

Note The server MUST allocate task IDs sequentially. See section 3.2.5.2.1.

3.1.4.1.2 Delete Task

To delete a task, the client MUST first know the task's ID, obtained when adding the task (see section
3.1.4.1.1) or enumerating tasks (see section 3.1.4.1.4). Then the client MUST invoke the NetrJobDel
method with the desired task ID in the MinJobId and MaxJobId parameters. To delete all tasks with
IDs in a numeric range (note th at the server MUST allocate task IDs sequentially; see section
3.2.5.2.1), the client MUST invoke the NetrJobDel method specifying in the MinJobId parameter the
lowest desired task ID and in the MaxJobId parameter the highest desired task ID.

3.1.4.1.3 Retrieve Task Status

To retrieve task status, the client MUST first know the task's ID, obtained when adding the task, as
specified in section 3.1.4.1.1 , or enumerating tasks, as specified in section 3.1.4.1.4 . Then the client
MUST invoke the section 3.2.5.2.4 method specifying the required task ID and a double pointer to an
AT_INFO structure. The double pointer to an AT_INFO receives a pointer to an AT_INFO structu re
upon return. The client MUST free the allocated memory for the AT_INFO structure, as specified in

[C706] section 5.1.1.1.

3.1.4.1.4 Enumerate Tasks

To enumerate tasks , the client MUST invoke the NetrJobEnum method repeatedly.

First, the client MUST invoke NetrJobEnum with the following parameter values:

https://go.microsoft.com/fwlink/?LinkId=89824
https://go.microsoft.com/fwlink/?LinkId=89824

65 / 148

[MS -TSCH] - v20171201
Task Scheduler Service Remoting Protocol
Copyright © 2017 Microsoft Corporation
Release: December 1, 2017

Á A pointer to an AT_ENUM_CONTAINER to receive the results of the enumeration (the client
SHOULD initialize the AT_ENUM_CONTAINER) with a zero EntriesRead field and a NULL Buffer

field).

Á The preferred maximum size in bytes of the returned AT_ENUM array (a value of 0xFFFFFFFF

indicates no preference) in the PreferedMaximumLength parameter.

Á A pointer to a DWORD to receive the remaining number of entries in the pTotalEntries parameter.

Á A pointer to a DWORD to receive the resume handle in the pResumeHandle parameter.

Á The client MUST initialize the pResumeHandle DWORD to 0.

If the NetrJobEnum method retur ns ERROR_MORE_DATA [MS -ERREF], the client can continue to
invoke NetrJobEnum until a call to NetrJobEnum returns ERROR_SUCCESS [MS -ERREF]. In subsequent
calls to NetrJobEnum, t he client MUST pass the parameter values as previously specified, except the

client MUST initialize the pResumeHandle DWORD to the value returned via the pResumeHandle
parameter of the previous NetrJobEnum call.

Finally, the client MUST free the memory allo cated for the AT_ENUM array returned from each
NetrJobEnum call, as specified in [C706] section 5.1.1.1.

3.1.4.2 SASec Client Processing

This subsection specifies how t he client uses the SASec interface to implement the following
conceptual operations: Add Task, Delete Task, Modify Task, Retrieve Task Status, and Enumerate
Tasks. It also specifies how the client uses the SASec interface to get or set account information for
ATSvc tasks.

The SASec interface only includes methods for getting and setting account information associated with

tasks. Clients us ing the SASec interface MAY use a remote file system protocol and the Windows
Remote Registry Protocol, as specified in [MS -RRP], to accomplish most operations. <37>

The SASec methods take as their first parameter an SASEC_HANDLE , which is a Unicode string

specifying the server. The client MUST map this string to an RPC binding handle for the remote
server, which it obtai ned during initialization, as specified in section 3.1.3 . RPC functionality used here
is as specified in [C706] sections 4.3.5 and 5.1.5.2. This first parameter is not mentioned further in

this section's subsections.

3.1.4.2.1 Common Operations

SASec client processing makes use of several common operations, which are specified once in this
section to avoid duplication in the following subsections.

3.1.4.2.1.1 Determining Task Folder

To determine the task folder on the server, the client MUST use the remote registry protocol as
specified in [MS -RRP] section 3.1.5, by retrieving the TasksFolder location from a location agreed
up on between the client and the server. <38>

3.1.4.2.1.2 Setting Account Information

To set account information associated with a task, the client MUST invoke the
SASetAccountInformation method with the following parameter values:

Á The task name in the pwszJobName parameter,

Á The name of the account (user principal name (UPN) format) und er which the task is to run in the
pwszAccountName parameter.

%5bMS-ERREF%5d.pdf#Section_1bc92ddfb79e413cbbaa99a5281a6c90
https://go.microsoft.com/fwlink/?LinkId=89824
%5bMS-RRP%5d.pdf#Section_0fa3191dbb79490a81bd54c2601b7a78
https://go.microsoft.com/fwlink/?LinkId=89824
%5bMS-RRP%5d.pdf#Section_0fa3191dbb79490a81bd54c2601b7a78

66 / 148

[MS -TSCH] - v20171201
Task Scheduler Service Remoting Protocol
Copyright © 2017 Microsoft Corporation
Release: December 1, 2017

Á The password for the account in the pwszPassword parameter.

Á A DWORD flags value in the dwJobFlags parameter.

The DWORD flags value MUST be 0, except the client can set the
TASK_FLAG_RUN_ONLY_ IF_LOGGED_ON flag to 1 to indicate that the task MUST only run if the user

specified in the pwszAccountName parameter is logged on . In this case, pwszPasswordParameter
SHOULD be NULL. The client can pass an empty string for the pwszAccountName parameter and NULL
for the pwszPassword parameter to specify that the task MUST run under the local system context.

3.1.4.2.2 Add Task

First, the client MUST construct a .JOB file as specified in section 2.4 to define the task. The .JOB file
MUST contain a non -empty Application Name (section 2.4.2.3) .

Next, the client MUST determine the task folder on the server (see section 3.1.4.2.1.1).

Next , the client MUST choose a name for the task. This task name MUST be a file name with the

".JOB" extension.

Next, the client MUST create a file in the task folder on the server, using the task n ame as the name
of the file, and write the .JOB file constructed previously to the file on the server. <39>

Finally, the client MUST set account information for the task (see section 3.1.4.2.1.2).

3.1.4.2.3 Delete Task

First, the client MUST know the task's name. The client could have created the name when adding the
task (see section 3.1.4.2.2) or obtained the name by enumerating tasks (see section 3.1.4.2.6), or by
other out -of -band means.

Next, the client MUST determine the task folder on the server (see section 3.1.4.2.1.1).

Finally, the client MUST delete a file in the task folder on the server, using the task name as the

name of the file. <40>

3.1.4.2.4 Modify Task

First, the client MUST know the task's name. The client could have created the name when adding the
task (section 3.1.4.2.2) or obtained the name by enumerating tasks (section 3.1.4.2.6), or by other
out -of -band means.

Next, the client MUST determine the task folder on the server (section 3.1.4.2.1.1).

Next, the client MUST read the .JOB file from the task folder on the server, and MUST use the task
name as the name of the file.

Next, the client MU ST modify the .JOB file as requested by the application.

Next, the client MUST write the .JOB file to the task folder on the server, using the task name as the

name of the file. <41>

Finally, the client SHOULD set account information for the task (section 3.1.4.2.1.2).

3.1.4.2.5 Retrieve Task Status

First, the client MUST know the task's name. The client either created the name when adding the task
(section 3.1.4.2.2), obtained the name by enumerating tasks (section 3.1.4.2.6), or obtained the
name by other out -of -band means.

67 / 148

[MS -TSCH] - v20171201
Task Scheduler Service Remoting Protocol
Copyright © 2017 Microsoft Corporation
Release: December 1, 2017

Next, the client MUST determine the task folder on the server (see section 3.1.4.2.1.1).

Next, the cl ient MUST read the .JOB file from the task folder on the server, using the task name as

the name of the file. If the file is not a valid .JOB file (section 2.4), the client MUST return an error to
the application. Otherwise, the client MUST extract the desired status information from the .JOB

file. <42>

Finally, if the appl ication requests the account name associated with the task, the client MUST allocate
an array of WCHAR's to receive the account name (the array SHOULD be initialized to contain all
zeroes) and then MUST invoke the SAGetAccountInformation method with the following parameter
values: the task name in the pwszJobName parameter, the size of the array in WCHAR's in the
ccBufferSize parameter, and a pointer to the array in the wszBuffer parameter.

3.1.4.2.6 Enumerate Tasks

The client MUST first determine the task folder on the server, as specified in section 3.1.4.2.1.1 .

Next, the client MUST enumerate all files that have a .JOB extension in the task folder on the server.

The client MUST read each such file to determine whether it is valid, as specified in section 2.4 . The
client MUST ignore invalid files and return to the application the nam es of valid .JOB files. <43>

3.1.4.2.7 ATSvc Account Information

The SASec interface has the methods SASetNSAccountInformation and SAGetNSAccountInformation ,
which manipulate the account information that is associated with ATSvc tasks. This account
information, as specified in section 3.2.5.3.5, MUST apply to all ATSvc tasks, including tasks that the
client adds (as specified in section 3.1.4.1.1) after callin g SASetNSAccountInformation.

To change the account information that is associated with all ATSvc tasks, the client MUST invoke the
SASetNSAccountInformation method with the following parameter values:

Á The account name in the pwsAccount parameter.

Á The passw ord in the pwszPassword parameter.

To retrieve the account name that is associated with all ATSvc tasks, the client MUST allocate an array
of WCHAR's to receive the account name (the array SHOULD be initialized to contain all zeroes).

 Next, the client MUS T invoke the SAGetNSAccountInformation method with the following parameter
values:

Á The size of the array in WCHAR's in the ccBufferSize parameter.

Á A pointer to the array in the wszBuffer parameter.

3.1.4.2.8 Control Task Operation

3.1.4.2.8.1 Run

To run a task, the client MUST first know the path of the task. The path of a task is determined when

the client creates the task or queries the server (section 3.1.4.3.6).

The client MUST then invoke the SchRpcRun method with the following parameters:

Á The path of the existing task in the path parameter .

Á The number of string arguments in the cArgs parameter.

Á An array of strings in the pArgs parameter.

68 / 148

[MS -TSCH] - v20171201
Task Scheduler Service Remoting Protocol
Copyright © 2017 Microsoft Corporation
Release: December 1, 2017

Á The required flags in the flags parameter (section 3.2.5.4.13).

Á The requested terminal server session (or 0xFFFFFFFF to specify any session) in the sessionId

parameter.

Á The user name to run as (or NULL to run as the client calling the method) in the userId parameter.

Á A pointer to a buffer to receive the running instance identifier in the pGuid parameter.

3.1.4.2.8.2 Stop

To stop one or more instances of a task, the client MUST first know the path of the task. The path of
the task is determined when the client creates the task or queries the server (section 3.1.4.3 .6).

The client MUST then invoke the SchRpcStop method with the following parameters:

Á The path of the existing task in the path parameter.

Á Zero in the flags parameter.

3.1.4.2.8.3 Stop Instance

To stop a run ning instance of a task, the client MUST know the identifier of the particular running
instance. The identifier of a particular running instance is obtained when running the task explicitly
(section 3.1.4.2.8.1) or when enumerating running instances (section 3.1.4.3.6.3).

Then the client MUST invoke the SchRpcStopInstance method with the following parameters:

Á The identifier of the running instance in the guid parameter.

Á Zero in the flags parameter.

3.1.4.3 ITaskSchedulerService Client Processing

This subsection specifies how the client uses t he ITaskSchedulerService interface to implement the
following conceptual operations: Add Task, Delete Task, Retrieve Task Status, and Enumerate Tasks.

The ITaskSchedulerService methods MUST take as their first parameter an RPC binding handle for
the remote server, which they MUST have obtained during initia lization, as specified in section 3.1.3 .
This first parameter is not present in the IDL in section 3.2.5.4 because it is an "explicit handle" as
specified in [C706] section 4.3.5. This first parameter is not mentioned further in the following
sections.

3.1.4.3.1 Add Task

First, the client MUST construct an XML task definition (section 2.4.2.11) that MUST specify the
features of the task. The task description has several optional elements, but it MUST have an Action s
node specifying the actions the task will execute.

Next, the client MUST invoke the SchRpcRegisterTask method with the following parameters:

Á The required location of the task (or NULL) in the path parameter.

Á The task definition in the xmlTaskDefinition parameter.

Á A level consisting of at least TASK_CREATE in the flags parameter.

Á The required security description (or NULL) in the sddl parameter.

Á The required method of logging on in the logonType parameter, as specified in section 2.3.9 .

https://go.microsoft.com/fwlink/?LinkId=89824

69 / 148

[MS -TSCH] - v20171201
Task Scheduler Service Remoting Protocol
Copyright © 2017 Microsoft Corporation
Release: December 1, 2017

Á The number of credentials in the cCreds parameter.

Á The credentials in the pCreds parameter.

Á The location of a buffer to receive the actual path (or NULL) in the pActualPath parameter.

Á The location of a buffer to receive the ErrorInfo (or NULL) in the pErrorInfo parameter.

3.1.4.3.2 Add Folder

To add a folder , the client MUST know the path of the new folder on the server.

The client MUST invoke SchRpcCreateFolder with the following para meters:

Á The desired path of the new folder in the path parameter.

Á The desired Security descriptor (or NULL) in the sddl parameter.

Á Zero in the flags parameter.

3.1.4.3.3 Delete Task or Folder

To delete a task or folder, the client MUST first know the path of the task or folder. The path of the
task or folder is determined when the client creates the task or folder or queries the server, as
specified in section 3.1.4.3.6 .

Next, the client MUST invoke SchRpcDelete with the following parameter values:

Á The path of the existing task or folder in the path parameter.

Á Zero in the flags parameter.

3.1.4.3.4 Modify Task or Folder

3.1.4.3.4.1 Set the Security Descriptor of a Task

To set the security descriptor of a task, the client MUST first know the path of the task. The path of

the task is determined when th e client creates the task or queries the server, as specified in section
3.1.4.3.6 . Sometimes it is beneficial for the client to avoid adding its identity to the security
descriptor. In order for the client to avoid adding its identity to the security descriptor, the client MUST
set the TASK_DONT_ADD_PRINCIPAL_ACE bit in the flags parameter.

The client MUST invoke SchRpcSetSecurity with th e following parameters:

Á The path of the existing task in the path parameter.

Á SCH_FLAG_TASK (and TASK_DONT_ADD_PRINCIPAL_ACE, if required) in the flags parameter.

3.1.4.3.4.2 Set the Security Descriptor of a Folder

To set the security descriptor of a folder, the client MUST first know the path of the folder. The path
of the folder is determined when the client creates the folder or queries the server, as specified in
section 3.1.4.3.6 .

The client MUST then invoke the SchRpcSetSecurity method with the following parameter values:

Á The path of the existing task or folder in the path parameter.

Á SCH_FLAG_FOLDER in the flags parameter.

70 / 148

[MS -TSCH] - v20171201
Task Scheduler Service Remoting Protocol
Copyright © 2017 Microsoft Corporation
Release: December 1, 2017

3.1.4.3.4.3 Set the Enabled State of a Task

To set the enabled state of a task , the client MUST first know the path of the task. The pat h of the
task is determined when the client creates the task or queries the server, as specified in section

3.1.4.3.6 .

The client MUST then invoke the SchRpcEnableTask method with the following parameter values:

Á The path of the existing task in the path parameter.

Á Zero (meaning not enabled) or 1 (meaning enabled) in the enabled parameter.

3.1.4.3.4.4 Modify a Task Definition

To modify a task definition, the client MUST first know the path of the task. The path of the task is

determined when the client creates the task or queries the server, as specified in section 3.1 .4.3.6 .

Next, the client MUST invoke SchRpcRetrieveTask with the following parameters:

Á The path of the existing task in the path parameter.

Á An array of strings specifying the required localizati on languages, as specified in [RFC3066] , in
priority order in the languagesBuffer .

Á A pointer to an unsigned long containing the number of strings in the array in the

pulNumLanguages parameter .

Á The location of a buffer to receive the localized task definition in the xmlTaskDefinition parameter.

After retrieving the task definition, the client MUST modify the task definition as required and MUST
invoke SchRpcRegisterTask with the following parameters:

Á The path of the existing task in the path parameter.

Á The modified task definition in the xmlTaskDefinition parameter.

Á The required flag bits (including TASK_UPDATE) in the flags parameter.

Á The required security description (or NULL) in the sddl parameter.

Á The required method of logging on in the logonType parameter, as specified in section 2.3.9 .

Á The number of credentials in the cCreds parameter.

Á The credentials in the pCreds parameter.

Á The location of a buffer to receive the actual path (if required) in the pActualPath parameter.

Á The location of a buffer to re ceive the ErrorInfo (if required) in the pErrorInfo parameter.

Finally, the client MUST deallocate the actual path and ErrorInfo, as specified in [C706] section

5.1.1.1.

3.1.4.3.5 Retrieve Task and Tas k Status

3.1.4.3.5.1 Retrieve a Task

To retrieve a task's definition, the client MUST first know the path of the task. The path of the task is
determined when the client creates the task or queries the server, as specified in section 3.1.4.3.6 .

Then the client MUST invoke the SchRpcRetrieveTask method with the following parameters:

https://go.microsoft.com/fwlink/?LinkId=90404
https://go.microsoft.com/fwlink/?LinkId=89824

71 / 148

[MS -TSCH] - v20171201
Task Scheduler Service Remoting Protocol
Copyright © 2017 Microsoft Corporation
Release: December 1, 2017

Á The path of the existing task in the path parameter.

Á An array of stri ngs specifying the required localization languages, as specified in [RFC3066] , which

MUST be in priority order in languagesBuffer .

Á A pointer to an unsigned long containing the number of strin gs in the array in the

pulNumLanguages parameter.

Á The location of a buffer to receive the localized task definition in the xmlTaskDefinition parameter.

The client MUST deallocate the xmlTaskDefinition after successful execution, as specified in [C706]
section 5.1.1.1.

3.1.4.3.5.2 Retrieve a Task's Security Descriptor

To retrieve a task's security descriptor , the client MUST first know the path of the task. The path of

the task is determined when the client creates the task or queries the server (section 3.1.4.3.6).

Next, the client MUST invoke the SchRpcGetSecurity method with the following parameters:

Á The path of the existing task in the path parameter.

Á The type of security information desired in the securityInformation parameter. For more
information on the SECURITY_ INFORMATION structure, see [MS -DTYP] section 2.4.7.

Á The location of a buffer to receive the security information in the sddl parameter.

The client MUST deallocate the xmlTaskDef inition after successful execution of the method, as
specified in [C706] section 5.1.1.1.

3.1.4.3.5.3 Retrieve a Running Task's Instance Information

To retrieve a running task's Instance Information the client MUST know the identifier of the particular
running instance. The identifier of the particular running instance is obtained when running the task
explicitly (section 3.1.4.2.8.1) and when en umerating running instances (section 3.1.4.3.6.3).

Next, the client MUST invoke the SchRpcGetInstanceInfo method with the following par ameters:

Á The identifier of the running instance in the guid parameter.

Á The location of a buffer to receive the path (or NULL) in the pPath parameter.

Á The location of a buffer to receive the TASK_STATE (or NULL) in the pState parameter.

Á The location of a bu ffer to receive the name of the current action (or NULL) in the pCurrentAction
parameter.

Á Zero in the pInfo parameter.

Á Zero in the pcGroupInstances parameter.

Á Zero in the pGroupInstances parameter.

Á The location of a buffer to receive the Process ID of the process executing the task (or NULL) in
the pEnginePid parameter.

The client MUST deallocate the pPath and pCurrentAction after successful execution of the method, as
specified in section 5.1.1.1 of [C706] .

3.1.4.3.5.4 Retrieve a Task's Scheduled Run Times

https://go.microsoft.com/fwlink/?LinkId=90404
https://go.microsoft.com/fwlink/?LinkId=89824
%5bMS-DTYP%5d.pdf#Section_cca2742956894a16b2b49325d93e4ba2
https://go.microsoft.com/fwlink/?LinkId=89824
https://go.microsoft.com/fwlink/?LinkId=89824

72 / 148

[MS -TSCH] - v20171201
Task Scheduler Service Remoting Protocol
Copyright © 2017 Microsoft Corporation
Release: December 1, 2017

To retrieve a task's scheduled run times, the client MUST first know the path of the task. The path of
the task is determined when the client creates the task or queries the server (section 3.1.4.3.6).

Then the client MUST invoke the SchRpcScheduledRuntimes method with the following parameters:

Á The path of the existing task in the pat h parameter.

Á The start of the time window (or 0 to indicate the beginning of time) in the start parameter.

Á The end of the time window (or 0 to indicate the end of time) in the end parameter.

Á Zero in the flags parameter.

Á The number of run times requested in the cRequested parameter.

Á The location of a DWORD to receive actual number of run times in the pcRuntimes parameter.

Á The location of a buffer to receive the array of run times in the pRuntimes parameter.

The client MUS T deallocate the pRuntimes parameter after successful execution of the method, as

specified in section 5.1.1.1 of [C706] .

3.1.4.3.5.5 Retrieve a Task's Last Run Information

To retrieve a task's last run information, the client MUST first know the path of the task. The path of
the task is determined when the client creates the task or queries the server (section 3.1.4.3.6).

The client MUST then i nvoke the SchRpcGetLastRunInfo method with the following parameters:

Á The path of the existing task in the path parameter.

Á The location of a SYSTEMTIME structure to receive the last run time in the pLastRuntime
parameter.

Á The location of a DWORD to receive the last return code in the pLastReturnCode parameter.

3.1.4.3.5.6 Retrieve a Task's Information

To retrieve a task's information, the client MUST first know the path of the task. The path of the task

is determined when the client creates the task or queries the server (section 3.1.4.3.6).

The client MUST then invoke the SchRpcGetTaskInfo with the following parameters:

Á The path of the existing task in the path parameter.

Á SCH_FLAG_STATE in the flags parameter to retrieve the state (or 0 if the state is not required).

Á The location of a BOOL to recei ve the task's enabled state in the pEnabled parameter.

Á The location of a DWORD to receive the task state (or 0) in the pState parameter.

3.1.4.3.5.7 Retrieve the Number of Times a Task Did Not Run

To retrieve the number of times a task did not run, the client MUST fir st know the path of the task.
The path of the task is determined when the client creates the task or queries the server (section
3.1.4.3.6).

The client MUST then invoke the SchRpcGetNumberOfMissedRuns method with the following
parameters:

Á The path of the existing task in the path parameter.

https://go.microsoft.com/fwlink/?LinkId=89824

73 / 148

[MS -TSCH] - v20171201
Task Scheduler Service Remoting Protocol
Copyright © 2017 Microsoft Corporation
Release: December 1, 2017

Á The location of a DWORD to receive the number of times the task did not run in the
pNumberOfMissedR uns parameter.

3.1.4.3.5.8 Retrieve the Highest Version of the Schema

To retrieve the highest version of the schema supported by the server, the client MUST invoke the
SchRpcHighestVersion method passing the location of a DWORD to receive the version number in the
pVersion parameter.

3.1.4.3.6 Enumerate Tasks or Folders

3.1.4.3.6.1 Enumerate All Tasks in a Folder

To enumerate all tasks in a folder, the client MUST invoke the SchRpcEnumTasks method with the
following parameters:

Á The path of the existing folder in the path parameter.

Á TASK_ENUM_HIDDEN in the flags parameter to include hidden tasks in the enumeration (or 0 to
skip them).

Á The location of the starting index of the enumeration in the pStartIndex parameter, the number of
task names to be returned in the cRequested parameter.

Á A pointer to a DWORD to receive the number of names returned in the pcNames parameter.

Á A pointer to a buffer to receive the array of names in the pNames parameter.

The client MUST deallocate the pNames after su ccessful execution of the method as specified in
[C706] section 5.1.1.1.

If the SchRpcEnumTasks method returns S_FALSE, the client MUST continue to invoke
SchRpcEnumTasks until a call to SchR pcEnumTasks returns S_OK. In subsequent calls to

SchRpcEnumTasks, the client MUST pass the parameter values as specified earlier, except the client

MUST NOT modify the pStartIndex parameter because the previous call to SchRpcEnumTasks returned
the index of the next task to be enumerated.

3.1.4.3.6.2 Enumerate All Subfolders in a Folder

To enumerate all subfolders in a folder, the client MUST invoke the SchRpcEnumFolders method with
the following parameters:

Á The path of the folder in the path parameter.

Á Zero in the flags parameter.

Á The location of the starting index of the enumeration in the pStartIndex parameter.

Á The number of names to be returned in the cRequested parameter.

Á A pointer to a DWORD to receive the number of names returned in the pcNames parameter.

Á A pointer to a buffer to receive the array of names in the pNames parameter.

The client MUST deallocate the pNames after successful execution of the method, as specified in

[C706] section 5.1.1.1.

If the SchRpcEnumFolders method returns S_FALSE, the client MUST continue to invoke
SchRpcEnumFolders until a call to SchRpcEnumFolders returns S_OK. In subsequent calls to
SchRpcEnumFolders, the c lient MUST pass the parameter values as specified earlier, except the client

https://go.microsoft.com/fwlink/?LinkId=89824
https://go.microsoft.com/fwlink/?LinkId=89824

74 / 148

[MS -TSCH] - v20171201
Task Scheduler Service Remoting Protocol
Copyright © 2017 Microsoft Corporation
Release: December 1, 2017

MUST NOT modify the pStartIndex parameter because the previous call to SchRpcEnumFolders
returned the index of the next folder to be enumerated.

3.1.4.3.6.3 Enumerate a Task's Running Instanc es

To enumerate a task's running instances the client MUST first know the task's path. The task's path is
obtained when adding the task (section 3.1.4.3.1) and when enumerating tasks (section 3.1.4.3.6).

The client MUST then invoke the SchRpcEnumInstances method with the following parameters:

Á The path of the existing task in the path parameter.

Á TASK_ENUM_HIDDEN in the flags parameter to include hidden tasks in the enumeration or 0 to
skip them.

Á A pointer to a DWORD to receive the number of instance identifiers in the pcGuids parameter.

Á A pointer to a buffer to receive the array of instance identifiers in the pGuids parameter.

The client MUST deallocate the pNames after successful execution of the method, as specified in
[C706] section 5.1.1.1.

3.1.5 Message Processing Events and Sequencing Rules

None.

3.1.6 Timer Events

None.

3.2 Server Role Details

As specified in this section, the Task Scheduler Remoting Protocol server SHOULD implement the

ATSvc , SASec, and ITaskSchedulerService interfaces. At least one of the interfaces MUST be

implemented. The server MAY implement any combination that includeds at least one of the
interfaces. <44>

3.2.1 Abstract Data Model

Thi s section describes a conceptual model of possible data organization that an implementation

maintains to participate in this protocol. The described organization is provided to facilitate the
explanation of how the protocol behaves. This specification does not mandate that implementations
adhere to this model as long as their external behavior is consistent with that described in this
specification.

The primary conceptual data structure maintained by the server is a task store . The task store
MUST be persistent. It MUST consist of three logical stores having the following characteristics:

Á ITaskSchedulerService serve rs MUST support an XML task store, which is a hierarchical store that

holds XML task definitions (section 2.4.2.11). The server MUST s upport security descriptors on
folders in the XML task store.

Á SASec servers MUST support a .JOB task store, which is a single file fol der holding .JOB files
(section 2.4) that MUST be accessible via a remote file -system protocol. In addition to the file
folder, the .JOB task store MUST contain a Boolean value per task, which dif ferentiates between
valid and invalid tasks.

https://go.microsoft.com/fwlink/?LinkId=89824

75 / 148

[MS -TSCH] - v20171201
Task Scheduler Service Remoting Protocol
Copyright © 2017 Microsoft Corporation
Release: December 1, 2017

Á ATSvc servers MUST support an AT task store, which is a list of AT_ENUM task information
st ructures (section 2.3.6).

A Task Scheduler Remoting Protocol server that implements more than one of these interfaces MAY
consolidate the task store data structures, to the extent that the individual interfaces' semantics (as

specified later in this sectio n) are preserved. In particular, tasks created or modified using the ATSvc
interface MUST be visible (that is, enumerable and controllable) using the ITaskSchedulerService,
SASec, and ATSvc interfaces.

Tasks created or modified using the SASec interface MU ST be visible using the ITaskSchedulerService
and SASec interfaces. Servers that implement both the ATSvc and SASec interfaces MUST make the
ATSvc tasks visible in the SASec interface using SASec task names derived from the ATSvc task ID
as follows: "at%d.job" where the "%d" is replaced by the base -10 string representation of the task

ID. <45>

Server implementations of the SASec int erface MUST store the path name of the file -system location
of the .JOB task store in a registry [MS -RRP], in a location agreed between the client and the
server. <46>

Server implementations of the SASec interface MUST maintain a conceptual data structure known as
the account name store. The account name store MUST be capable of mapping task names (.JOB file

names) t o account names. If the server implements both the ITaskSchedulerService and SASec
interfaces, then the server MUST consolidate the account name store and the XML task store, as
follows: the account name associated with an SASec task (supplied by the clien t in the
pwszAccountName parameter of the SASetAccountInformation method) MUST be visible in the UserId
element of the corresponding XML task definition (section 2.5.6) if it is not the empty string, and
"LocalSystem" MUST be visible in the UserId element (section 2.5.6) if the account name is the
empty string.

Server implementations of the SASec interface MUST maintain a conceptual data structure known as
the ATSvc account name. The ATSvc account name MUST store a single string, which is the account
name associated with all ATSvc tasks (supplied by the client in the pwszAccountName parameter of
the SASetNSAccountInformation method). The initial value of the ATSvc account name MUST be
"LocalSystem".

Server implementations of the ITaskSchedulerService and SASec interfaces MUST maintain a
conceptual data structure known as the credential store. The credential store maps account names to

passwords. If the server implements both the ITaskSchedulerService and SASec interfaces, the
interface implementations MUST share a single credential store.

Server implementations of the ITaskSchedulerService and SASec interfaces MUST maintain a
conceptual data structure known as the running task list. An entry in the running task list MUST
contain an instance ID, the location of the task in the task store, suf ficient information to allow the
task to be stopped (including a process ID or PID), a state (section 2.3.13), a delay time, and an

action Unicode string . The action string SHOULD only be valid when the state is
TASK_STATE_RUNNING. The delay time MAY only be valid when the state is TASK_STATE_QUEUED.

3.2.2 Timers

The server MUST maintain a global timer that MUST fire when the next task is scheduled to run.

The server MUST maintain a delay timer that MUST fire when the next entry in the running task list is
scheduled to transition from TASK_ST ATE_QUEUED to TASK_STATE_RUNNING.

3.2.3 Initialization

The Task Scheduler Remoting Protocol server MUST initialize by registering its RPC inte rfaces (see
rpc_server_use_protseq and rpc_server_register_if in [C706] section 3).

%5bMS-RRP%5d.pdf#Section_0fa3191dbb79490a81bd54c2601b7a78
https://go.microsoft.com/fwlink/?LinkId=89824

76 / 148

[MS -TSCH] - v20171201
Task Scheduler Service Remoting Protocol
Copyright © 2017 Microsoft Corporation
Release: December 1, 2017

3.2.4 Higher -Layer Triggered Events

This section specifies the Task Scheduler Remoting Protocol server operation in response to system
state changes.

3.2.4.1 EventLog Events

If the server implements the ITaskSchedulerService interface and has a task registered with an Event
trigger (EventTrigger (sec tion 2.5.3.6)), the server MUST subscribe to events (section 3.2.5.4.2) as
specified in [MS -EVEN6] section 3.1.1.9.

Upon receiving an EventLog ([MS -EVEN]) notification, the server MUST traverse the task store and
start all valid, enabled tasks (section 3.2.5.1.2) that have a satisfied XPATH query.

3.2.4.2 Idle

If the server implements the ITaskSchedulerService interface or the SASec interface, the server MUST

detect when the machine enters an i dle state. <47>

Upon detecting an idle state, the server MUST traverse the task store and MUST start all valid,
enabled tasks (se ction 3.2.5.1.2) that have idle triggers .

Upon detecting the end of an idle state, the server MUST traverse the running task list and stop any
tasks (section 3.2.5.1.3) that are configured to stop when idle state ends.

3.2.4.3 Startup

If the server implements the ITaskSchedulerService interface or the SASec interface, after server
initialization (section 3.2.3) the server MUST traverse the task store and MUST start all valid, enabled
tasks (section 3.2.5.1.2) that are configured to run at system startup.

Next, if the server implements the ITaskSchedulerService interface, the server MUST traverse the task
store and MUST start all valid, enabled tasks that were scheduled to be started during the time period

when the service was inactive and that have the Sta rtWhenAvailable field set to TRUE in their XML
task definition.

3.2.4.4 Session Change

If the server implements the ITas kSchedulerService or SASec interface, it MUST detect logon session
change. If the server implements the ITaskSchedulerService interface, it MUST detect desktop
connection session change, session l ock session change, and session unlock session change. For more
information about session changes, please see [MSDN -GINA] .

Upon detecting session change, the server MUST traverse the task store and MUST start tasks with
the following attributes:

Á All valid, enabled tasks (section 3.2.5.1.2) that are configured to start for the corresponding user.

All valid, enabled tasks that are configured to start for any groups of which the user is a member.

All valid, enabled tasks that are configured to start for all users.

3.2.4.5 Sleep

If the server implements the ITaskSchedulerService interface, it MUST detect when the server is about
to enter sleep mode. If the task store contains a task that is configured wi th the WakeToRun field

%5bMS-EVEN6%5d.pdf#Section_18000371ae6d45f795f3249cbe2be39b
%5bMS-EVEN%5d.pdf#Section_55b13664f7394e4ebd8d04eeda59d09f
https://go.microsoft.com/fwlink/?LinkId=100300

77 / 148

[MS -TSCH] - v20171201
Task Scheduler Service Remoting Protocol
Copyright © 2017 Microsoft Corporation
Release: December 1, 2017

set to TRUE in its XML task definition, the server MUST arrange to exit sleep mode in time to run the
task.

3.2.4.6 Wake

If the server implements the ITaskSchedulerService interface, then the interface implementation
MUST perform the following steps:

Á Detect that the server has exited sleep mode.

Traverse the task store .

Find all valid, enabled tasks that were scheduled to be started during the time period while the
server was in sleep mode.

Start all such tasks that have the StartWhenAvailable field set to TRUE in their XML task
definition.

3.2.5 Message Processing Events and Sequencing Rules

This section uses both IDL and bit -diagrams to specify syntax. Types and structures defined in IDL
syntax are marshaled as specified in [C706] section 14. All fields in bit -diagrams are marshaled using
little -endian byte ordering unless otherwise stated. In both IDL and bit -diagrams, all extra padding
bytes MUST be zero unless otherwise stated and MUST be ignored upon receipt.

Except where otherwise specified, the Task Scheduler Remoting Protocol uses the UTF -16LE Unicode
encoding [UNICODE] for all string values, including all string constants appearing in this specification.

This section specifies how the server processes Net Schedule (ATSvc) , Task Scheduler Agent (SASec) ,
and Task Remote Protocol (ITaskSchedulerService) interface method calls.

Most methods have many possible error returns. In case s where more than one error applies, the
server processing order specified here is not meant to constrain an implementation's choice of error
code.

3.2.5.1 Common Operations

This section specifies common server operations.

3.2.5.1.1 Task Registration Security Checks

When adding a task to the task store , the server SHOULD check the following security permissions

using any implementation -specific method <48> and MUST retur n ERROR_ACCESS_DENIED if the task
is not allowed: <49>

 Noninteractive tasks Interactive tasks

Scheduling

user

Task running in

the context of:

Credentials stored
centrally with Service For

User

Credentials

stored locally

Running as

logged -on user

Admin Self No password required Password required No password
required

Admin Other user Password required Password required No password
required

Admin Group Not allowed Not allowed No password
required

https://go.microsoft.com/fwlink/?LinkId=89824
https://go.microsoft.com/fwlink/?LinkId=90550

78 / 148

[MS -TSCH] - v20171201
Task Scheduler Service Remoting Protocol
Copyright © 2017 Microsoft Corporation
Release: December 1, 2017

 Noninteractive tasks Interactive tasks

Admin System No password required No password
required

No password
required

Non -Admin Self No password required Password required No password
required

Non -Admin Other user Password required Password required Password required

Non -Admin Group Not allowed Not allowed Not allowed

Non -Admin System Not allowed Not allowed Not allowed

When adding a task to the task store with a logon or session change trigger , the server SHOULD
check the following matrix and MUST return E_ACCESSDENIED <50> if the task is not allowed:

 What is specified in the Trigger?

Who is the task registering
entity?

Same as registering
entity

Differe nt from registering
entity Nothing

Admin Allowed Allowed Allowed

Non -admin Allowed Not allowed Not
allowed

3.2.5.1.2 Starting a Task

First, the server MUST obtain the account name associated with the task as follows. For ATSvc tasks,
the server MUST use the ATSvc account name. For SASec tasks, the server MUST obtain the account
name f rom the account name store. For ITaskSchedulerService tasks, the server MUST obtain the

account name from the UserId element of the XM L task definition (section 2.5.6) if it is not the
empty string, and use "LocalSystem" if it is not present or the empty string.

Next, the server MUST check the credential store for a mapping from the account name to a

password. If a mapping is found, the server MUST use the password from the mapping to run the
task. Otherwise, if the TASK_FLAG_RUN_ONLY_IF_LOGGED_ON flag is set in the task definition and
the account name is logged on , the server MUST run the task using the logged -on account.
Otherwise, the server MUST NOT run the task.

If the task is configured to run in system contexts (LocalSystem, NetworkService, LocalService), the
ser ver MUST run the task noninteractively and ignore any task configuration (section 2.5.6) to the
contrary.

To run the task, the server MUST generate an instance ID and create an entry in the running task list
that contains the instance ID, the location of t he task in the task store , and sufficient information to
stop the task. If the task's trigger has a delay (section 2.5.3), the entry state MUST be set to

TASK_STATE_QUEUED, the entry delay MUST be initialized to the task's trigger delay, and the delay
timer MUST be reset. Otherwise, the entry state MUST be set t o TASK_STATE_RUNNING, the entry
action MUST be set to the action to be executed (section 2.5.7), and the last runtime associated with

the task in the task store MUST be set to the current time.

When the task finishes executing, the task stops as specified in section 3.2.5.1.3 .

3.2.5.1.3 Stopping a Task

79 / 148

[MS -TSCH] - v20171201
Task Scheduler Service Remoting Protocol
Copyright © 2017 Microsoft Corporation
Release: December 1, 2017

The server MUST delete the entry from the running task list. The server MUST update the task status
and the exit code in the task store .

3.2.5.2 ATSvc Message Processing Events and Sequencing Rules

The ATSvc RPC interface provides methods t o control scheduled tasks. All the ATSvc methods MUST
have administrator privileges, as specified in section 3.2.5 and its subsections.

If the server implements the ATSvc interface, it MUST implem ent the methods as specified in the
following table.

Methods in RPC Opnum Order

Method Description

NetrJobAdd The NetrJobAdd method adds a single AT task to the server's task store .

Opnum: 0

NetrJobDel The NetrJobDel method deletes a specified range of tasks from the task store.

Opnum: 1

NetrJobEnum The NetrJobEnum method returns an enumeration of all AT tasks on the specified server.

Opnum: 2

NetrJobGetInfo The NetrJobGetInfo method returns information for a specified ATSvc task.

Opnum: 3

3.2.5.2.1 NetrJobAdd (Opnum 0)

The NetrJobAdd method MUST add a single AT task to the server's task store .

 NET_API_STATUS NetrJobAdd(

 [in, string, unique] ATSVC_HANDLE ServerName,

 [in] LPAT_INFO pAtInfo,

 [out] LPDWORD pJobId

);

ServerName: Pointer to a Unicode string that MUST specify the serve r. The client MUST map this
string to an RPC binding handle . The server MUST ignore this parameter. For more information,
see [C706] sections 4.3.5 and 5.1.5.2.

pAtInfo: Pointer to an AT_INFO structure (section 2.3.4) that MUST contain the task configuration.

pJ obId: MUST return a pointer to the task identifier when the NetrJobAdd method is successful.

Return Values: For more information on return codes, see section 2.3.14 or Win32 Error Codes in

[MS -ERREF] section 2.1.

In response to this request, the server MUST:

Á Return ERROR_ACCESS_DENIED if the caller does not have administrative privileges on the
server.

Á Return ERROR_INVA LID_PARAMETER if the Command field of the AT_INFO structure is not as

specified in section 2.3.4.

https://go.microsoft.com/fwlink/?LinkId=89824
%5bMS-ERREF%5d.pdf#Section_1bc92ddfb79e413cbbaa99a5281a6c90

80 / 148

[MS -TSCH] - v20171201
Task Scheduler Service Remoting Protocol
Copyright © 2017 Microsoft Corporation
Release: December 1, 2017

Á Return ERROR_INVALID_PARAMETER if the JobTime field of the AT_INFO structure is not as
specified in section 2.3.4.

Á Return ERROR_INVALID_PARAMETER if the DaysO fMonth field of the AT_INFO structure is not as
specified in section 2.3.4.

Á Return ERROR_INVALID_PARAMETER if the DaysOfWeek field of the AT_INFO structure is not as
specified in section 2.3.4.

Á Determine the next available sequence number (JobId) for the new task ð this value MUST be
returned in the buffer pointed to by the pJobId parameter.

Á Update AT_INFO Flags: If the AC bit is set to 1 by the client, specifies that the server MUST set
the bit in DaysOfMonth corresponding to the current day of t he month. The server MUST set AC
to 0 on return.

Á Store the task in the AT task store.

Á Update the global timer if this task will run earlier than the current timer value.

Á MUST return ERROR_SUCCESS if the call was successful.

If any errors are raised during the processing, they are returned. For more information on return
codes, see section 2.3.14 and Win32 Error Codes in [MS -ERREF] section 2.1.

3.2.5.2.2 NetrJobDel (Opnum 1)

The NetrJobDel method MUST delete a specified range of tasks from the task store . The method is
capable of deleting all AT tasks or just a subset of the tasks, as determined by the values of the
MinJobId and MaxJobId parameters.

 NET_API_STATUS NetrJobDel(

 [in, string, unique] ATSVC_HANDLE ServerName,

 [in] DWORD MinJobId,

 [in] DWORD MaxJobId

);

ServerName: Pointer to a Unicode string that MUST specify the server. The client MUST map this
string to an RPC binding handle. The server MUST ignore this parameter. For more information,
see [C706] sections 4.3.5 and 5.1.5.2.

MinJobId: MUST specify the low end of the range of tasks to be deleted. This parameter MUST NOT
be greater than MaxJobId .

MaxJobId: MUST specify the high end of the range of tasks to be deleted. This parameter MUST NOT

be smaller than MinJobId .

Return Values: For more information on return codes, see section 2.3.14 , or Win32 Error Codes in
[MS -ERREF] section 2.1.

To delete all tasks, specify MinJobId as 0 and MaxJobId as 0xFFFFFFFF.

In response to this request, the server MUST:

Á Return ERROR_ACCESS_DENIED if the caller does not have administrative privileges on the

server.

Á Traverse the AT task store and delete each task whose ID is in the range specified by MinJobId
through MaxJobId inclusively.

https://go.microsoft.com/fwlink/?LinkId=89824
%5bMS-ERREF%5d.pdf#Section_1bc92ddfb79e413cbbaa99a5281a6c90

81 / 148

[MS -TSCH] - v20171201
Task Scheduler Service Remoting Protocol
Copyright © 2017 Microsoft Corporation
Release: December 1, 2017

Á Return ERROR_SUCCESS if the call was successful.

Á Return an error if MinJobId is greater than MaxJobId.

Á Return an error if MaxJobId is smaller than MinJobId.

Á Return an error APE_AT_ID_NOT_FOUND (0x00000EDE) if no ID was valid in the specified range.

If any errors are raised during the processing, they are returned. For more information about return
codes, see section 2.3.14 and Win32 Error Codes in [MS -ERREF] section 2.1.

3.2.5.2.3 NetrJobEnum (Opnum 2)

The NetrJobEnum method MUST return an enumeration of all AT tasks on the specified server.

 NET_API_STATUS NetrJobEnum(

 [in, string, unique] ATSVC_HANDLE ServerName,

 [in, out] LPAT_ENUM_CONTAINER pEnumContainer,

 [in] DWORD PreferedMaximumLength,

 [out] LPDWORD pTotalEntries,

 [in, out, unique] LPDWORD pResumeHandle

);

ServerName: Pointer to a Unicode string that MUST specify the server. The client MUST map this
string to an RPC binding handle. The server MUST ignore this parameter. For more information,
see [C706] sections 4.3.5 and 5.1.5.2.

pEnumContainer: Pointer to an AT_ENUM_CONTAINER (section 2.3.5) structure that MUST contain

a count of the number of ent ries returned and a buffer that contains the entries. The client MUST
send a pointer to this structure to the server with the Buffer field set to NULL; upon return the
Buffer field MUST contain a pointer to an array of AT_ENUM structures.

PreferedMaximumLength: MUST contain the preferred maximum length, in bytes, of data to be
returned. A value of 0xFFFFFFFF MUST indicate no preferred maximum length.

pTotalEntries: Pointer to a value that MUST rece ive the total number of tasks in the list, beyond the
position specified by pResumeHandle .

pResumeHandle: MUST be a pointer to an index into the list of tasks. This value indicates the index
number at which the enumeration MUST start.

Return Values: For more information on return codes, see section 2.3.14 , or Win32 Error Codes in
[MS -ERREF] section 2.1.

In response to this request the server MUST:

Á Check the Buffer field in pEnumContainer . If it is not set to NULL, set pTotalEntries to 0 and

return ERROR_INVALID_PARAMETER.

Á Verify that pResumeHandle contains a 0 -based index number within the valid range of tas ks in the

list, and if not, set pTotalEntries to 0 and return ERROR_SUCCESS.

Á Return ERROR_ACCESS_DENIED if the caller does not have administrative privileges on the
server.

Á Enumerate tasks in the AT task store , starting the enumeration at the ordinal position given by
the DWORD value pointed to by the pResumeHandle parameter.

Á Calculate the size of the AT_ENUM array buffer as follows. If PreferedMaximumLength is
0xFFFFFFFF, choose a size equal to ((sizeof(AT_ENUM)+132) * number of tasks). If

https://go.microsoft.com/fwlink/?LinkId=89824
%5bMS-ERREF%5d.pdf#Section_1bc92ddfb79e413cbbaa99a5281a6c90

82 / 148

[MS -TSCH] - v20171201
Task Scheduler Service Remoting Protocol
Copyright © 2017 Microsoft Corporation
Release: December 1, 2017

PreferedMaximumLength is not 0xFFFFFFFF, choose a size equal to the highest even number
smaller or equal to PreferedMaximumLength . In both cases, make sure that the size is not greater

than 65536 and not smalle r than (sizeof(AT_ENUM)+520) .

Á Allocate a buffer of this size and return the address of the buffer in the Buffer field of the
AT_ENUM_CONTAINER structure pointed to by the pEnumContainer parameter.

Á Initialize the buffer to hold an array of AT_ENUM structure s, with field values copied from as many
enumerated tasks as fit, and initialize the EntriesRead field of the AT_ENUM_CONTAINER
structure to the number of entries that fit in the buffer.

Á Return the number of tasks enumerated in the pTotalEntries parameter, beyond the position
specified by pResumeHandle .

Á Return the status code ERROR_SUCCESS if all the enumerated tasks fit in the buffer and set
pResumeHandle to 0; otherwise, return ERROR_MORE_DATA and increment the value pointed to

by the pResumeHandle param eter by the value of the EntriesRead field.

Á MUST return ERROR_SUCCESS if the call was successful.

If any errors are raised during the processing, they are returned. For more information about return
codes, see section 2.3.14 and Win32 Error Codes in [MS -ERREF] section 2.1.

3.2.5.2.4 NetrJobGetInfo (Opnum 3)

The NetrJobGetInfo method MUST return information for a specified ATSvc task. The task identifier

MUST be used to locate the task configuration.

 NET_API_STATUS NetrJobGetInfo(

 [in, string, unique] ATSVC_HANDLE ServerName,

 [in] DWORD JobId,

 [out] LPAT_INFO* ppAtInfo

);

ServerName: Pointer to a Unicode string that MUST specify the server. The client MUST map this

string to an RPC binding handle . The server MUST ignore this parameter. For more information,
see [C706] sections 4.3.5 and 5.1.5.2.

JobId: MUST contain a task identifier.

ppAtInfo: MUST be a pointer to an AT_INFO structure as specified in section 2.3.4.

Return Values: For more information on return codes, see section 2.3.14 , or Win32 Error Codes in
[MS -ERREF] section 2.1.

In response to this request the server MUST:

Á Return ERROR_ACCESS_DENIED if the caller does not have administrative privileges on the
server.

Á Retrieve from the AT task store the AT_ENUM structure of the task specified by the JobId
parameter.

Á Allocate an AT_INFO structure, copy the corresponding fields from the AT_ENUM structure, and
return the AT_INFO structure's address in the ppAtInfo parameter.

Á MUST return ERROR_SUCCESS if the call was successful.

Á Return ERROR_FILE_NOT_FOUND if the specified task cannot be found.

https://go.microsoft.com/fwlink/?LinkId=89824
%5bMS-ERREF%5d.pdf#Section_1bc92ddfb79e413cbbaa99a5281a6c90

83 / 148

[MS -TSCH] - v20171201
Task Scheduler Service Remoting Protocol
Copyright © 2017 Microsoft Corporation
Release: December 1, 2017

If any errors are raised during the processing, they are returned. For more information on return
codes, see section 2.3.14 and Win32 Error Codes in [MS -ERREF] section 2.1.

3.2.5.3 SASec Message Processing Events and Sequencing Rules

The SASec RPC interface is used to securely set or get account information associated with tasks.
When using the SASec interface, operations such as creating, deleting, and enumerating tasks are
performed using a remote file system protocol, as specified in section 3.1.4.2 .

If the server implements the SASec interface, it MUST implement the methods as specified in the

following table. Because clients of the SASec interface use a remote file system protocol to read,
write, and enumerate files in the .JOB task store on the server, the server MUST also support a
notification mechanism that initiates server -side processing when the client makes changes to the
.JOB task store. <51>

Methods in RPC Opnum Order

Method Description

SASetAccountInformation The SASetAccountInformation method sets the credentials under which the task
MUST run.

Opnum: 0

SASetNSAccountInformation The SASetNSAccountInformation method configures the credentials under which
all ATSvc tasks run.

Opnum: 1

SAGetNSAccountInformation The SAGetNSAccountInformation method returns the ATSvc account name.

Opnum: 2

SAGetAccountInformation The SAGetAccountInformation method retrieves the account name for a specified
task.

Opnum: 3

3.2.5.3.1 Receive File Add Notification

Upon receipt of a file change notification indica ting that a file has been added to the .JOB task store ,
the server MUST examine the file to determine whether it is a valid .JOB file (see section 2.4). The
following actions MUST be performed:

Á If the file is syntactically valid:

Á Add an entry to the account name store that maps from the task name to the account name

that created the file.

Á If this task is to run earlier than the current v alue of the global timer, reset the global timer.

Á The server MUST reject the .JOB file if it cannot be parsed, including if the file is too short
(shorter than the fixed - length data portion) and if the file is too long (there is extra data left
over after successfully parsing the task definition - see section 2.4).

Á If the client sets the TASK_FLAG_INTERACTIVE bit (Section 2.3.7) to 1 in the .JOB file,
then the server MUST run the task interactively.

Á If the client sets the TASK_FLAG_DELETE_WHEN_DONE bit (Section 2.3.7) to 1 in the .JOB
file, then the server MUST delete the task when there are no more scheduled runtimes.

84 / 148

[MS -TSCH] - v20171201
Task Scheduler Service Remoting Protocol
Copyright © 2017 Microsoft Corporation
Release: December 1, 2017

Á If the client sets the TASK_FLAG_DISABLED bit (Section 2.3.7) to 1 i n the .JOB file, then
the server MUST disable the task.

Á If the client sets the TASK_FLAG_START_ONLY_IF_IDLE bit (Section 2.3.7) to 1 in the
.JOB file, then the server MUST not start the task if the computer is in use.

Á If the client sets the TASK_FLAG_KILL_ ON_IDLE_END bit (Section 2.3.7) to 1 in the .JOB
file, then the server MUST stop the task if the computer is not idle anymore.

Á If the client sets the TASK_FLAG_DONT_START_IF_ON_BATTERIES bit (Section 2.3.7) to
1 in the .JOB file, then the server MUST not a llow the task to run if the computer is on battery.

Á If the client sets the TASK_FLAG_HIDDEN bit (Section 2.3.7) to 1 in the .JOB file, then the
server MUST mark the task as hidden.

Á If the client sets the TASK_FLAG_RESTART_ON_IDLE_RESUME bit (Section 2.3.7) to 1 in

the .JOB file, then the server MUST restart the task if the computer is idle again.

Á If the client sets the TASK_FLAG_SYSTEM_REQUIRED bit (Section 2.3.7) to 1 in the .JOB

file, then the server MUST awaken the system if the system is sleeping.

Á If t he client sets the TASK_FLAG_RUN_ONLY_IF_LOGGED_ON bit (Section 2.3.7) to 1 in
the .JOB file, then the server MUST run the task only if the user specified in the task is logged
on interactively.

Á The server must not wait longer than the Idle Deadline for th e machine to become idle for
Idle Wait minutes.

Á If IDLE_PRIORITY_CLASS (section 2.4) is set to 1, the server MUST run the task in a
process whose threads run only when the machineis idle, and are preempted by the threads of
any process running in a higher priority class.

Á If HIGH_PRIORITY_CLASS (section 2.4) is set to 1, the task performs time -critical tasks
that MUST be executed immediately for it to run correctly. The threads of a high -priority class

process preempt the threads of normal or idle priority c lass processes.

Á If REALTIME_PRIORITY_CLASS (section 2.4) is set to 1, the task MUST run at the highest
possible priority. The threads of a real - time priority class process preempt the threads of all
other processes, including operating system processes per forming important tasks.

Á Exit Code (section 2.4): The server MUST set this to the exit code of the task's last run.

Á The server MUST set the following fields (section 2.4) to reflect the time this task was started:

Value Meaning

Year

1601 ï 30827

The year (1601 ï30827), inclusive.

Month

1 ï 12

The month, January=1, February=2, é, December=12.

Weekday

0 ï 6

The day of the week, Sunday=0, Monday=1, é, Saturday=6.

Day1 ï 31 The day of the month (1 ï31), inclusive.

Hour

0 ï 23

The hour of the day (0 ï23), inclusive.

85 / 148

[MS -TSCH] - v20171201
Task Scheduler Service Remoting Protocol
Copyright © 2017 Microsoft Corporation
Release: December 1, 2017

Value Meaning

Minute

0 ï 59

The minute of the hour (0 ï59), inclusive.

Second

0 ï 59

The seconds of the minute (0 ï59), inclusive.

Milliseconds

0 ï 999

Between 0 and 999, for values less than one second, inclusive.

Á The server MUST set the Running Instance Count field (section 2.4) to the number of
instances of this task that are currently running.

Á Begin Year , Begin Month , and Begin Day MUST be set to the first date this trigger is to
fire.

Á Minutes Duration (section 2.4): If nonzero, indicates that the trig ger is fired repeatedly (as

specified by the Minutes Interval field) until Minutes Duration (section 2.4) has elapsed.

Á Task Trigger Flags (section 2.4):

Value Description

E

TASK_TRIGGER_FLAG_HAS_END_DATE

If set to 1, specifies that the task MUST stop at
some point in time.

K

TASK_TRIGGER_FLAG_KILL_AT_DURATION_END

If set to 1, specifies that the task MUST be
stopped at the end of the repetition period.

D

TASK_TRIGGER_FLAG_DISABLED

If set to 1, specifies that the trigger is disabled
and MUST NOT fire.

Á Day of the Month (section 2.4): 1 ï31: Any bit set to 1 specifies that the task MUST be run

on that day of the month.

Á Day of the Week Flags (section 2.4):

Value Description

SU

Sunday

If set to 1, specifies that the task MUST run on Sunday.

MO

Monday

If set to 1, specifies that the task MUST run on Monday.

TU

Tuesday

If set to 1, specifies that the task MUST run on Tuesday.

WE

Wednesday

If set to 1, specifies that the task MUST run on Wednesday.

TH

Thursday

If set to 1, specifies that the task MUST run on Thursday.

FR

Friday

If set to 1, specifies that the task MUST run on Friday.

86 / 148

[MS -TSCH] - v20171201
Task Scheduler Service Remoting Protocol
Copyright © 2017 Microsoft Corporation
Release: December 1, 2017

Value Description

SA

Saturday

If set to 1, specifies that the task MUST run on Saturday.

Á Month of the Year (section 2.4):

Value Description

JA

January

If set to 1, specifies that the task MUST run in January.

FE

February

If set to 1, specifies that the task MUST run in February.

MR

March

If set to 1, specifies that the task MUST run in March.

AP

April

If set to 1, specifies that the task MUST run in April.

MA

May

If set to 1, specifies that the task MUST run in May.

JU

June

If set to 1, specifies that the task MUST run in June.

JL

July

If set to 1, specifies that the task MUST run in July.

AU

August

If set to 1, specifies that the task MUST run in August.

SE

September

If set to 1, specifies that the task MUST run in September.

OC

October

If set to 1, specifies that the task MUST run in October.

NO

November

If set to 1, specifies that the task MUST run in November.

DE

December

If set to 1, specifies that the task MUST run in Decem ber.

Á TASKRESERVED1 Start Error (section 2.4): The server MUST set the Start Error to the
error from the last attempt to start the task.

Á Otherwise, set the Boolean value TASK_FLAG_DISABLED bit (Section 2.3.7) associated with the

task to FALSE.

3.2.5.3.2 Receive File Delete Notification

Upon receipt of a file change notification indicating that a file has been deleted from the .JOB task
store , the server MUST:

Á Remove the corresponding entry in t he account name store, if present.

87 / 148

[MS -TSCH] - v20171201
Task Scheduler Service Remoting Protocol
Copyright © 2017 Microsoft Corporation
Release: December 1, 2017

Á Remove all entries in the credential store that have no entries in the account name store
referencing them.

Á Reset the global timer to the time at which the first valid task in the task store is to run.

3.2.5.3.3 Receive File Modification Notification

Upon receipt of a file change notification indicating that a file has been modified in the .JOB task
store , the server MUST:

Á Remove the old task, as specif ied in section 3.2.5.3.2 (note that this requires only the task's
name, not the old task file contents).

Á Add the new task, as specified in section 3.2.5.3.1 .

3.2.5.3.4 SASetAccountInformation (Opnum 0)

The SASetAccountInformation method MUST set the credentials under which the task MUST run.

 HRESULT SASetAccountInformation(

 [in, string, unique] SASEC_HANDLE Handle,

 [in, string] const wchar_t* pwszJobName,

 [in, string] const wchar_t* pwszAccount,

 [in, string, unique] const wchar_t* pwszPassword,

 [in] DWORD dwJobFlags

);

Handle: Pointer to a Unicode string that MUST specify the server. The client MUST map this string
to an RPC binding handle . The server MUST ignore this parameter. For more information, see
[C706] sections 4.3.5 and 5.1.5.2.

pwszJobName: Pointer to a string that MUST specify a task name , such as "MyJob.job".

pwszAccount: Pointer to a string that MUST specify the account name. This string MAY be expressed

either as a UPN in the form user@domain or as a Security Account Manager (SAM) name in the
form domain \ account.

pwszPassword: Pointer to a string that MUST specify the password for the account. See section 5.1 .

dwJobFlags: The dwJobFlags field MUST contain indi vidual bit flags that MUST have one or more of
the following values:

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 R
L

0 0 0 0 0 0 0 0 0 0 0 0 0

Value Description

RL

TASK_FLAG_RUN_ONLY_IF_LOGGED_ON

When set, the task MUST run only if the user specified is
logged on interactively.

Undefined bits MUST be set to 0 when sent and ignored upon receipt.

https://go.microsoft.com/fwlink/?LinkId=89824

88 / 148

[MS -TSCH] - v20171201
Task Scheduler Service Remoting Protocol
Copyright © 2017 Microsoft Corporation
Release: December 1, 2017

Return Values: For more information about return codes, see section 2.3.14 or Win32 Error Codes in
[MS -ERREF] section 2.1. <52>

Upon receipt of the SASetAccountInformation call, the server MUST:

Á Return E_ACCESSDENIED if the caller does not have write access to the folder that represents the

.JOB task store .

Á Return E_INVALIDARG if the pwszAccount parameter is NULL.

Note When the server is passing NULL as a value for this parameter, behavior can change based
on the RPC Runtime Check. See RPC Runtime Check Notes (section 3.3).

Á Return the value 0x80070002, the HRESULT form of the Win32 error ERROR_FILE_NOT_FOUND, if
the pwszJobName parameter is not a file name that is present in the .JOB task store.

Á Return E_ACCESSDENIED if the caller does not have write access to the file in the .JOB task store.

Á Return E_ACCESSDENIED if the caller does not have administrative privileges on the server.

Á Return the value 0x8007000D, which is the HRESULT form of the Win32 error
ERROR_INVALID_DATA, if the .JOB file is not syn tactically valid (see .JOB File
Format (section 2.4)). <53> <54>

Á I f the pwszAccount parameter is not an empty string and pwszPassword is not NULL:

Á Return E_ACCESSDENIED if the pwszPassword parameter is not valid for pwszAccount .<55>

Á Update the account name store by adding a mapping from pwszJobName to pwszAccount .

Á Update the credential store by adding a mapping from pwszAccount to pwszPassword if a
mapping for pwszAccount is not already present.

Á If the pwszAccount parameter is not an empty string and pwszPa ssword is NULL:

Á Return SCHED_E_UNSUPPORTED_ACCOUNT_OPTION if the

TASK_FLAG_RUN_ONLY_IF_LOGGED_ON bit in dwJobFlags is not set. <56>

Á Update the account name store by adding a mapping from pwsz JobName to pwszAccount .

Á Finally, if the pwszAccount parameter is the empty string:

Á Return E_ACCESSDENIED if the caller does not have administrative privileges on the
server. <57>

Á If pwszPassword is not NULL, return E_ACCESSDENIED. <58>

Á If pwszPassword is NULL, update the account name store by adding a mapping from
pwszJobName to "LocalSystem" and return S_OK.

Á Return SCHE D_E_INVALIDVALUE if the MinutesInterval field is set to a value larger than the

MinutesDuration field. <59>

Á Return SCHED_E_UNEXPECTEDNODE if Trigger type is not as specified in 2.4.2.11.1. <60>

Á Return S_OK on success.

If any errors are raised during the processing, they are returned. For more information about
return cod es, see section 2.3.14 and Win32 Error Codes in [MS -ERREF] section 2.1.

3.2.5.3.5 SASetNSAccountInformation (Opnum 1)

%5bMS-ERREF%5d.pdf#Section_1bc92ddfb79e413cbbaa99a5281a6c90

89 / 148

[MS -TSCH] - v20171201
Task Scheduler Service Remoting Protocol
Copyright © 2017 Microsoft Corporation
Release: December 1, 2017

The SASetNSAccountInformation method MUST configure the credentials under which all ATSvc tasks
run.

 HRESULT SASetNSAccountInformation(

 [in, string, unique] SASEC_HANDLE Handle,

 [in, string, unique] const wchar_t* pwszAccount,

 [in, stri ng, unique] const wchar_t* pwszPassword

);

Handle: Pointer to a Unicode string that MUST specify the server. The client MUST map this string
to an RPC binding handle. The server MUST ignore this parameter. For more details, see [C706]
sections 4.3.5 and 5.1.5.2.

pwszAccount: MUST be a pointer to a string that specifies the account name.

pwszPassword: MUST be a pointer to a string that specifies the password for the named account.
See section 5.1 for security considerations.

Upon receipt of the SASetNSAccountInfo rmation call, the server MUST:

Á Return E_ACCESSDENIED if the caller does not have administrative privileges on the server.

Á If the pwszAccount parameter is NULL, store "LocalSystem" in the ATSvc account name conceptual
data structure and return S_OK. <61>

Á Return the value 0x8007000D, which is the HRESULT form of the Win32 error

ERROR_INVALID_DATA, if the pwszPassword parameter is longer than 127 characters.

Á Return the value 0x8007000D, which is the HRESULT form of the Win32 error
ERROR_INVALID_DATA, if the pwszPassword parameter is NULL. <62>

Á Return E_ACCESSDENIED if the pwszPassword parameter is not valid for pwszAccount .<63>

Á Store the pwszAccount string in the ATSvc account name and add an entry to the credential store

mapping from pwszAccount to pwszPassword .

If any errors are raised during the processing, they are returned. For more information about return

codes, see section 2.3.14 and Win32 Error Codes in [MS -ERREF] section 2. 1.

3.2.5.3.6 SAGetNSAccountInformation (Opnum 2)

The SAGetNSAccountInformation method MUST return the ATSvc account name.

 HRESULT SAGetNSAccountInformation(

 [in, string, unique] SASEC_HANDLE Handle,

 [in, range(0,MAX_BUFFER_SIZE)] DWORD ccBufferSize,

 [in, out, size_is(ccBufferSize)]

 wchar_t wszBuffer[]

);

Handle: Pointer to a Unicode strin g that MUST specify the server. The client MUST map this string
to an RPC Binding handle . The server MUST ignore this parameter. For more details, see [C706]

sections 4.3.5 and 5.1.5.2.

ccBufferSize: MUST contain the number of characters in the array supplied by the client and f illed by
the server. This value MUST be the size of the wszBuffer parameter. MAX_BUFFER_SIZE is equal
to 273. For more information on MAX_BUFFER_SIZE, see the SaSec interface IDL (section 6.2).

https://go.microsoft.com/fwlink/?LinkId=89824
%5bMS-ERREF%5d.pdf#Section_1bc92ddfb79e413cbbaa99a5281a6c90
https://go.microsoft.com/fwlink/?LinkId=89824

90 / 148

[MS -TSCH] - v20171201
Task Scheduler Service Remoting Protocol
Copyright © 2017 Microsoft Corporation
Release: December 1, 2017

wszBuffer: Upon input, MUST be an empty array of size equal to the ccBufferSize parameter. The
client SHOULD initialize the array to contain zeroes. Upon return, the array MUST contain the

ATSvc acc ount name.

Return Values: For more information about return codes, see section 2.3.14 , or Win32 Error Codes in

[MS -ERREF] section 2.

Upon receipt of the SAGetNSAccountInformation call, the server MUST:

Á Return E_INVALIDARG if the wszBuffer parameter is NULL.

Note When passing NULL as a value for this parameter, behavior can change based upon the RPC
Runtime Check. See RPC Runtime Check Notes (section 3.3).

Á Return E_ACCESSDENIED if the caller does not have administrative privileges on the server.

Á If the ATSvc account name is "LocalSystem", set wszBuffer to be th e empty string and return

S_FALSE.

Á Return the value 0x0000007A, which is the HRESULT form of the Win32 error
ERROR_INSUFFICIENT_BUFFER, if the ATSvc account name (including the terminating zero
character) is larger than ccBufferSize .

Á Copy the null - terminat ed ATSvc account name to wszBuffer and return S_OK.

If any errors are raised during the processing, they are returned. For more information about return

codes, see section 2.3.14 and Win32 Error Codes in [MS -ERREF] section 2.1.

3.2.5.3.7 SAGetAccountInformation (Opn um 3)

The SAGetAccountInformation method MUST retrieve the account name for a specified task.

 HRESULT SAGetAccountInformation(

 [in, string, unique] SASEC_HANDLE Handle,

 [in, string] const wchar_t* pwszJobName,

 [i n, range(0,MAX_BUFFER_SIZE)] DWORD ccBufferSize,

 [in, out, size_is(ccBufferSize)]

 wchar_t wszBuffer[]

);

Handle: Pointer to a Unicode string that MUST specify the server. The client MUST map this string
to an RPC binding handle. The server MUST ignore this parameter. For more details, see [C706]
sections 4.3.5 and 5.1.5.2.

pwszJobName: MUST be a pointer to a string that specifies a task name, such as "MyJob.job".

ccBufferSize: MUST contain the number of characters in the array supplied by the client and filled by

the s erver. This value MUST be the size of the wszBuffer parameter. MAX_BUFFER_SIZE is equal
to 273. For more information on MAX_BUFFER_SIZE, see the SaSec interface IDL (section 6.2).

wszBuffer: Upon input, MUST be an empty array of size equal to the ccBufferSize parameter. The
client SHOULD initialize the array to contain zeroes. Upon return, the array MUST contain the
name of the account to be used as the context the task runs under.

Return Values: For more information on return codes, see section 2.3.14 , or Win32 Error Codes in
[MS -ERREF] section 2.1.

Upon receipt of the SAGetAccountInformation call, the server MUST:

Á Return E_ACCESSDENIED if the caller does not have read access to the .JOB task store .

%5bMS-ERREF%5d.pdf#Section_1bc92ddfb79e413cbbaa99a5281a6c90
https://go.microsoft.com/fwlink/?LinkId=89824
%5bMS-ERREF%5d.pdf#Section_1bc92ddfb79e413cbbaa99a5281a6c90

91 / 148

[MS -TSCH] - v20171201
Task Scheduler Service Remoting Protocol
Copyright © 2017 Microsoft Corporation
Release: December 1, 2017

Á Return SCHED_E_CANNOT_OPEN_TASK if the pwszJobName parameter is not a file name present
in the .JOB task store.

Á Return E_ACCESSDENIED if the caller does not have read access to the task file.

Á Return SCHED_E_ACCOUNT_INFORMATION_NOT_SET if there is n o mapping in the account name

store for the task name; otherwise, get the account name from the mapping.

Á Return E_INVALIDARG if the wszBuffer parameter is NULL.

Note When passing NULL as a value for this parameter, behavior can change based on the RPC
Runtime Check. See RPC Runtime Check Notes (section 3.3).

Á If the account name is "LocalSystem", set wszBuffer to be the empty string and return S_OK.

Á Return the value 0x8007007A, which is the HRESULT form of the Win32 error
ERROR_INSUFFICIENT_BUFFER, if the account name (including the terminating zero character) is

larger than ccBufferSize .

Á Copy the null - terminated account name to wszBuffer and return S_OK.

If any errors are raised during the processi ng, they are returned. For more information about return
codes, see section 2.3.14 and Win32 Error Codes in [MS -ERREF] section 2.1.

3.2.5.4 ITaskSchedulerService Message Processing Events and Sequencing Rules

The ITaskSchedulerService RPC interface provides methods to control scheduled tasks using XML task
definitions. <64>

If th e server implements the ITaskSchedulerService interface, it MUST implement the methods as
specified in the following table.

Methods in RPC Opnum Order

Method Description

SchRpcHighestVersion The SchRpcHighestVersion method returns the highest version of the Task
Scheduler Remoting Protocol supported by the server.

Opnum: 0

SchRpcRegisterTask The SchRpcRegisterTask method registers a task with the server.

Opnum: 1

SchRpcRetrieveTask The SchRpcRetrieveTask method returns a task definition.

Opnum: 2

SchRpcCreateFolder The SchRpcCreateFolder method creates a new folder.

Opnum: 3

SchRpcSetSecurity The SchRpcSetSecurity method sets a security descriptor on a task or
folder.

Opnum: 4

SchRpcGetSecurity The SchRpcGetSecurity method gets the security descriptor associated with a
task or folder.

Opnum: 5

SchRpcEnumFolders The SchRpcEnumFolders method retrieves a list of folders on the server.

Opnum: 6

92 / 148

[MS -TSCH] - v20171201
Task Scheduler Service Remoting Protocol
Copyright © 2017 Microsoft Corporation
Release: December 1, 2017

Method Description

SchRpcEnumTasks The SchRpcEnumTasks me thod returns the list of tasks in a specific folder.

Opnum: 7

SchRpcEnumInstances The SchRpcEnumInstances method returns a list of instances of a specified
task that are currently running.

Opnum: 8

SchRpcGetInstanceInfo The SchRpcGetInstanceInfo method gets information about an instance of a
running task.

Opnum: 9

SchRpcStopIns tance The SchRpcStopInstance method stops a specified instance of a task.

Opnum: 10

SchRpcStop The SchRpcStop method stops all currently running instances of a task
specified by a path.

Opnum: 11

SchRpcRun The SchRpcRun method runs a task specified by a path.

Opnum: 12

SchRpcDelete The SchRpcDelete method deletes a task or fold er in the task store .

Opnum: 13

SchRpcRename The SchRpcRename method is unused.

Opnum: 14

SchRpcScheduledRuntimes The SchRpcScheduledRuntimes method returns scheduled run times.

Opnum: 15

SchRpcGetLastRunInfo The SchRpcGetLastR unInfo method returns information about the task's last
run.

Opnum: 16

SchRpcGetTaskInfo The SchRpcGetTaskInfo method returns information about a specified task.

Opnum: 17

SchRpcGetNumberOfMissedRuns The SchRpcGetNumberOfMissedRuns method returns the number of times a
task was scheduled to run but did not due to the server being unavailable (for
example, powered off).

Opnum: 18

SchRpcEnableTask The SchRpcEnableTask method enables or disables a task.

Opnum: 19

3.2.5.4.1 SchRpcHighestVersion (Opnum 0)

The SchRpcHighestVersion method M UST return the highest version of the Task Scheduler Remoting
Protocol that is supported by the server. <65>

 HRESULT SchRpcHighestVersion(

 [out] DWORD* pVersion

);

93 / 148

[MS -TSCH] - v20171201
Task Scheduler Service Remoting Protocol
Copyright © 2017 Microsoft Corporation
Release: December 1, 2017

pVersion: The server MUST return the highest version of the Task Scheduler Remoting Protocol that
is supported by the server. This version MUST be in the format 0xMMMMmmmm, where 'M' stands

for the major version hex digits and 'm' stands for the minor version hex digits. pVersion SHOULD
be set to 0x00010002 or 0x00010003.

Value Meaning

0x00010002 Version 1.2 of the protocol is in use.

0x00010003 Version 1.3 of the protocol is in use.

0x00010004 Version 1.4 of the protocol is in use.

Return Values: For more information on return codes, see section 2.3.14 , or Win32 Error Codes in
[MS -ERREF] section 2.1.

Upon receipt of the SchRpcHighestVersion call, the server MUST return the highest version of the Task

Scheduler Remoting Protocol that is supported by the server in the pVersion parameter.

3.2.5.4.2 SchRpcRegisterTask (Opnum 1)

The S chRpcRegisterTask method MUST register a task with the server.

 HRESULT SchRpcRegisterTask(

 [in, string, unique] const wchar_t* path,

 [in, string] const wchar_t* xml,

 [in] DWORD flags,

 [in, string, unique] const wchar_t* sddl,

 [in] DWORD logonType,

 [in] DWORD cCreds,

 [in, size_is(cCreds), unique] const TASK_USER_CRED* pCreds,

 [out, string] wchar_t** pActualPath,

 [out] PTASK_XML_ERROR_INFO* pErrorInfo

);

path: MUST contain the full path associated (or to be associated) with a task as specified in section
2.3.11 . A NULL path indicates that the server SHOULD either take the path from the task
definition or generate a path itself.

xml: MUST contain the task definition in XML format as specified in section 2.5 .

flags: The flags field MUST contain individual bit flags that MUST have one or more of the fol lowing
values.

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

0 I
R

D
A

D
I

U
P

C
R

V
O

Value Description

VO

TASK_VALIDATE_ONLY

If set to 1, the server MUST only validate the task
definition and not actually register the task.

CR If set to 1, the server MUST register the task if the task

%5bMS-ERREF%5d.pdf#Section_1bc92ddfb79e413cbbaa99a5281a6c90

94 / 148

[MS -TSCH] - v20171201
Task Scheduler Service Remoting Protocol
Copyright © 2017 Microsoft Corporation
Release: December 1, 2017

Value Description

TASK_CREATE does not already exist.

UP

TASK_UPDATE

If set to 1, the server MUST update the task if the task
already exists.

DI

TASK_DISABLE

If set to 1, the server MUST disable the task.

DA

TASK_DONT_ADD_PRINCIPAL_ACE

If set to 1, the server MUST NOT add an 'Allow' access
control entry (ACE) for the task principal to the task's
security descriptor .

IR

TASK_IGNORE_REGISTRATION_TRIGGERS

If set to 1, the server MUST NOT start the task after
registering it, even if i t has registration triggers.

Undefined bits. MUST be set to zero when sent and MUST be ignored on receipt. <66>

sddl: MUST be a security descriptor in SDDL format as specified in [MS -DTYP] . A NULL value MUST
specify that the task inherits its security descriptor from its folder, when creating a new task, or
that the task's security descriptor does not change when updating an existing task.

logonType: MUST contain a TASK_LOGON_TYPE value (section 2.3.9). The server MUST reject invalid
values. The specified logonType SHOULD correspond to the type of principal used in the xml task
definition , or supplied in pCreds .

cCreds: MUST contain the number of credentials passed in pCreds parameter. Client MUST set to 0

or 1, and the server MUST return an error if not 0 or 1.

pCreds: MUST be an array of credentials for the task with cCreds entries. pCreds MUST be NULL if
cCreds is 0. See section 2.3.8 for details of the TASK_USER_CRED structure.

pActualPath: If this parameter is non -NULL, the server MUST return the task's actual path.

pErrorInfo: If this parameter is non -NULL and the XML task definition is invalid, the server MUST
return additional error information.

Return Values: For more information on return codes, see section 2.3.14 , or Win32 Error Codes in
section 2 of [MS -ERREF].

Upon receipt of the SchRpcRegisterTask call, the server MUST:

Á Return E_INVALIDARG (0x80070057) if any of the parameters contain invalid values.

Á Return E_ACCESSDENIED if the caller does not have read access to the path in the XML task
store or if the path does not exist.

Á Parse the task definition contained in the xml parameter (section 2.4.2.11).

Á If any errors are found and the pErrorInfo parameter is non -NULL, MUST return extended

error information in a TASK_XML_ERROR_INFO structure (section 2.4) in the pErrorInfo
parameter.

Á Finally, the server MUST return one of the following error codes (section 2.3.14):

Á SCHED_E_UNEXPECTEDNODE

Á SCHED_E_NAMESPACE

Á SCHED_E_INVALIDVALUE

%5bMS-DTYP%5d.pdf#Section_cca2742956894a16b2b49325d93e4ba2
%5bMS-ERREF%5d.pdf#Section_1bc92ddfb79e413cbbaa99a5281a6c90

95 / 148

[MS -TSCH] - v20171201
Task Scheduler Service Remoting Protocol
Copyright © 2017 Microsoft Corporation
Release: December 1, 2017

Á SCHED_E_MISSINGNODE

Á SCHED_E_TOO_MANY_NODES

Á SCHED_E_MALFORMEDXML

Á If the TASK_V ALIDATE_ONLY flag is set in the flags parameter, return S_OK.

Á Take one of the following actions, depending upon the supplied task xml :

Á Registration (section 2.5.2):

Á Version: The server MUST return an error if the task definition uses a feature that is not
compatible with the version (see section 3.2.5.4.2).

Á URI: If not specified, the server saves the task in the task store's root folder.

Á Security Descriptor: If presen t apply security description to the task, otherwise secure the
task as follows: Task creator/owner has full control on the task configuration and

Administrators have read and delete permissions.

Á Triggers (section 2.5.3):

Á For each trigger, independently of its type (section 2.5.3.1), apply:

Á StartBoundary: If present, the server MUST NOT start the task before this time/date
value.

Á EndBoundar y: If present, the server MUST NOT start the task after this time/date

value.

Á Enabled: If the field is not present or the value is TRUE, the trigger is enabled and the
server MUST start the task when this trigger occurs. If FALSE, the trigger is disabled
and the server MUST ignore the trigger when determining whether to run the task.

Á ExecutionTimeLimit: If specified, the server MUST limit the task's execution time ð

when triggered by this particular trigger ðto the specified duration. If not present, the
server MUST limit the task's execution time to 72 hours for this particular trigger.

Á Interval: If specified, the server MUST start the task at the time specified by the
trigger, and then restart the task at the intervals specified by this field, calculated
from the trigger start time.

Á Duration: If not present, the server MUST use the value of 1 day for Duration.

Á StopAtDurationEnd: If the field has the value TRUE, the server MUST stop all running
task instances at the end of the Duration.

Á BootTrigger (sectio n 2.5.3.2): If present, the BootTrigger specifies that the server MUST

start the task at operating system startup, after the ATSvc server initializes.

Á BootTrigger's Delay: If specified, the server MUST delay starting the task after boot

(ATSvc start -up) by the delay value. If not present, the server MUST NOT delay
starting the task.

Á RegistrationTrigger (section 2.5.3.3): If present, the Re gistrationTrigger specifies that the
server MUST start the task immediately when it is registered on the system.

Á RegistrationTrigger's Delay: If present, server MUST delay starting the task after task
registration by the delay value. If not present, the server MUST NOT delay starting
the task.

96 / 148

[MS -TSCH] - v20171201
Task Scheduler Service Remoting Protocol
Copyright © 2017 Microsoft Corporation
Release: December 1, 2017

Á IdleTrigger (section 2.5.3.4): If specified, the server MUST start the task when the
machine be comes idle, as specified in section 3.2.4.2 .

Á TimeTrigger (section 2.5.3.5): If present, the TimeTrigger specifies that the server MUST
start the task at the specified StartBoundary time.

Á TimeTrigger's RandomDelay: The server MUST choose a delay value randomly and
delay starting the task after the time trigger fires by the random delay value. The
random delay value MUST be chosen from the i nterval from zero to RandomDelay,
inclusive. If not present, the server MUST NOT delay starting the task.

Á EventTrigger (section 2.5.3.6): If present, the EventTrigger specifies that the server MUS T
start the task upon occurrence of an event matching an event subscription query, as
specified in [MS -EVEN6] section 2.2.14, or on the occurrence of a number of events of the

same type (same EventId) in a given period of time. The server MUST accept queries for
multiple event types, up to and including an entire event channel ([MS -EVEN6] section
3.1.1.4).

Á EventTrigger's NumberOfIOccurences: If EventTrigger is present but if the
NumberOfOccurences field is not present, the server MUST fire the trigger after the
first occurrence.

Á EventTrigger's Delay: If specified, the server MUST delay starting the task after event
occurrence by the delay value. If not present, the server MUST NO T delay starting the
task.

Á NumberOfOccurrences: If specified, the server MUST fire the trigger after
NumberOfOccurrences occurrences of the MatchingElement query (subject to the
PeriodOfOccurrence field; see the following field). If this field is not prese nt, the server
MUST fire the trigger after the first occurrence.

Á PeriodOfOccurences: If specified, the server MUST NOT count occurrences of the
MatchingElement query that occurred prior to the last PeriodOfOccurrence time period.

Á MatchingElement: If presen t, the server MUST count occurrences of events that match

the Subscription query and contain this field name. For more information, see [MS -
EVEN6] section 3.1.4.31.

Á ValueQueries: If present, when an event matches the subscription and fires the
trigger, the server MUST retrieve the element values from the event for task action

parameterization as specified in section 2.5.9 . If not present, the server MUST NOT
perform parameterization for this task t rigger.

Á LogonTrigger (section 2.5.3.7): If present, the LogonTrigger specifies that the server
MUST start the task at user logon.

Á LogonTrigger's UserId filed: If LogonTrigger is present and UserId is not present then
server MUST start the task for any user at logon.

Á LogonTrigger's Delay: If present, the server MUST delay starting the task after Logon
by the delay value. If not present, the server MUST NOT delay starting the task.

Á SessionStateChange Trigger (section 2.5.3.8): If present, this trigger specifies that the
server MUST start the task when one of the following system changes occurs:
ConsoleConnect, ConsoleDisconnect, RemoteConnect, RemoteDisconnect, SessionLock,
SessionUnlock. <67>

Á SessionStateChangeTrigger's UserId: If UserId is not present then server MUST start

the task for any user at session change event.

%5bMS-EVEN6%5d.pdf#Section_18000371ae6d45f795f3249cbe2be39b

97 / 148

[MS -TSCH] - v20171201
Task Scheduler Service Remoting Protocol
Copyright © 2017 Microsoft Corporation
Release: December 1, 2017

Á SessionS tateChangeTrigger's Delay: The server MUST delay starting the task after the
SessionStateChangeTrigger by the delay value. If not present, the server MUST NOT

delay starting the task. <68>

Á CalendarTrigger (section 2.5.3.9): If present, the CalendarTrigger specifies that the server

MUST start the task on the specified days.

Á ScheduleByDay: If specified, server MUST run the task every da y or every X number
of days as specified by the DaysInterval subfield.

Á CalendarTrigger's ScheduleByDay DaysInterval: If CalendarTrigger ScheduleByDay
is specified but DaysInterval is not present, the server MUST run the task every
day.

Á ScheduleByWeek: If p resent, this field specifies that the server MUST run the task

every week or every X number of weeks as specified by the WeeksInterval subfield,
or on specific days of the week as specified by the DaysOfWeek subfield.

Á CalendarTrigger's ScheduleByWeek WeeksInterval: If CalendarTrigger

ScheduleByWeek is specified but WeeksInterval is not present, the server MUST
run the task every week.

Á CalendarTrigger's ScheduleByWeek DaysOfWeek: If CalendarTrigger

ScheduleByWeek is specified but the DaysOfWeek field is not present or none of
the seven subfields are present, the server MUST return SCHED_E_MISSINGNODE
(0x80041319).

Á ScheduleByMonth: If present, this field specifies that the server MUST run the task on
the days specified by the DaysOfMonth subfield, on spec ific months as specified by the
Months subfield.

Á CalendarTrigger's ScheduleByMonth DaysOfMonth: If CalendarTrigger

ScheduleByMonth is specified but the DaysOfMonth field is not present, or no Day
subfields are present, the server MUST return SCHED_E_MISSIN GNODE
(0x80041319).

Á CalendarTrigger's ScheduleByMonth Months: If CalendarTrigger ScheduleByMonth
is specified but the Months field is not present, the server MUST run the task every
month. If CalendarTrigger ScheduleByMonth is specified and the Months fie ld is
present but none of the twelve subfields are present, the server MUST return

SCHED_E_MISSINGNODE (0x80041319).

Á ScheduleByMonthDayOfWeek: If present, this field specifies that the server MUST run
the task on the weeks specified by the Weeks subfield, on specific days of the week as
specified by the DaysOfWeek subfield, on specific months as specified by the Months
subfield.

Á CalendarTrigger's ScheduleByMonthDayOfWeek Weeks: If CalendarTrigger

ScheduleByMonthDayOfWeek is specified but the Weeks field is not present or no
Week subfields are present, the server MUST return SCHED_E_MISSINGNODE

(0x80041319).

Á CalendarTrigger's ScheduleByMonthDayOfWeek DaysOfWeek: If the
CalendarTrigger ScheduleByMonthDayOfWeek is specified but the DaysOfWeek
field is not prese nt or none of the seven subfields are present, the server MUST
return SCHED_E_MISSINGNODE (0x80041319).

Á CalendarTrigger's ScheduleByMonthDayOfWeek Months: If the CalendarTrigger
ScheduleByMonthDayOfWeek is specified but the Months field is not present, the
server MUST run the task every month. If CalendarTrigger

98 / 148

[MS -TSCH] - v20171201
Task Scheduler Service Remoting Protocol
Copyright © 2017 Microsoft Corporation
Release: December 1, 2017

ScheduleByMonthDayOfWeek is specified and the Months field is present but none
of the twelve subfields are present, the server MUST return

SCHED_E_MISSINGNODE (0x80041319).

Á Settings (section 2.5.4): The server MUST check machine conditions (running on batteries,

network available, idle) according to the settings (DisallowStartIfOnBatteries,
RunOnNetworkAvailable, RunOnlyIfIdle) once the tri gger occurs to determine if the task is to
be started. The task will run only if the conditions at the time the trigger fires match the
settings defined.

Á MultipleInstancesPolicy conditions:

Á Parallel: Specifies that the server MUST start multiple instances of the task in parallel
for each occurring trigger.

Á Queue: If present, specifies that execution instances related to this trigger MUST start
serially, on the completion of the previous instance.

Á IgnoreNew: If present, specifies that the server MUST ignore all additional triggers

occurring during the execution of an instance.

Á StopExisting: If present, specifies that the server MUST stop the running instance and
start a new instance on any additional trigger occurrence. If not present, the server

MUST use the value IgnoreNew for MultipleInstancesPolicy.

Á DisallowStartIfOnBatteries: The server MUST NOT start the task if the computer is running
on batteries, unless this field is present and set to FALSE.

Á StopIfGoingOnBatteries: The server MUST stop the task if th e computer switches to
battery or Uninterrupted Power Supply (UPS) power, unless this field is present and set to
FALSE.

Á AllowHardTerminate: The server MUST forcibly stop the task if it exceeds its absolute

execution time limit, unless this field is prese nt and set to FALSE.

Á StartWhenAvailable: If present and set to TRUE, this field specifies that the server MUST
start the task when the computer becomes available if a scheduled run time was missed.

Á RunOnNetworkAvailable: If present and set to TRUE, this fi eld specifies that the server
MUST start the task only if a network connection is available.

Á NetworkSettings: If present, the server MUST ignore the NetworkSettings field unless the
RunOnNetworkAvailable field (section 2.5.4.8) is present and set to TRUE. <69>

Á NetworkSetting's Name or Id: The server MUST start the task only if a network
connection to the specified network is available .

Á WakeToRun: If present and set to TRUE, this field specifies that the server MUST wake
from power -suspended mode (standby or hibernate) to run the task.

Á Enabled: If present and set to FALSE, this field specifies that the server MUST NOT run the

task.Hidde n: If present and set to TRUE, this field specifies that the server SHOULD NOT

show the task in an administrative console or graphic user interface.

Á DeleteExpiredTaskAfter: The server MUST delete the task (after this delay) when it has no
future scheduled run times.

Á IdleSettings: If present, this field specifies that the server MUST run the task only when
the machine has been idle for the value of the Duration subfield. The server MUST ignore
the IdleSettings field, unless the RunOnlyIfIdle field, which MUS T be specified as in section
2.5.4.18 , is present and has the value TRUE.

99 / 148

[MS -TSCH] - v20171201
Task Scheduler Service Remoting Protocol
Copyright © 2017 Microsoft Corporation
Release: December 1, 2017

Á IdleSettings Duration: The server MUST delay starting the task until the specified
Duration has elapsed from the time that the machine became idle.

Á MaintenanceSettings: If present, this field specifies that the server MUST run the task
during the regular maintenance periods with the periodicity defined by the Period field.

The server MUST reject tasks with the MaintenanceSettings field unless the
UseUnifiedSchedulingEngine field (as specified in section 2.5.4.19) is present and has the
value TRUE.

Á MaintenanceSettings Period: The server MUST run the task during the regular machine
maintenance p eriods only if the task previously run finished running before the
beginning of the preceding Period time ago.

Á MaintenanceSettings Deadline: If present, and the Period time was missed, the server

MUST run the task during machine idle.

Á MaintenanceSettings E xclusive: If present and set to TRUE, the server MUST run the
task independently of other tasks that specify MaintenanceSettings.

Á ExecutionTimeLimit: The server MUST attempt to gracefully stop the task after its
execution runtime exceeds this maximum time allowed. The server MUST forcibly stop the
task in accordance with the AllowHardTerminate setting if its execution runtime exceeds

this maximum time allowed.

Á Priority: If not present, the server MUST use the value 7 for Priority.

Á RunOnlyIfIdle: If present and set to TRUE, this field specifies that the server MUST start
the task only if the machine is idle according to the IdleSettings field defined in section
2.5.4.14 .

Á Principal (section 2.5.6): specifies the security context of the user on whose behalf the task
will run. One of UserId or GroupId is mandatory.

Á UserId: The server MUST use the account name as the principal for running the tas k.

Á GroupId: the server MUST run the task for each and every user in the security group who
is logged on at the time.

Á LogonType of S4U: the server MUST run the task non - interactively. The server MUST NOT
save a password. At task runtime, the server MUST ret rieve a restricted token from Active
Directory based on the account name.

Á LogonType of Password: the server MUST run the task non - interactively. The server MUST

use the password specified in the TASK_USER_CRED (section 2.3.8) structure for running
the task .

Á LogonType of InteractiveToken: the server MUST run the task interactively in the currently
logged -on user credentials. The server MUST NOT save a password and SHOULD NOT
require a password.

Á LogonType of InteractiveTokenOrPassword: the server MUST run the task interactively if

the user is logged on and non - interactively if the user is logged off.

Á LogonType: if not present, the server MUST use the value InteractiveToken for LogonType.

Á RunLevel's LeastPrivilege: the server MUST run the task with least privi leges allowed for
the user.

Á RunLevel's HighestAvailable: the server MUST run the task with highest privileges allowed
for the user.

100 / 148

[MS -TSCH] - v20171201
Task Scheduler Service Remoting Protocol
Copyright © 2017 Microsoft Corporation
Release: December 1, 2017

Á RunLevel: if not present, the server MUST use the value LeastPrivilege.

Á Actions (section 2.5.7): The server MUST support up to 32 actions. The server MUST execute

multiple actions sequentially, in the order specified in the Actions field.

Á Exec Action's Arguments: If specified, the serve r MUST pass the arguments to the

Command executable. If not present, the server MUST NOT pass arguments to the
Command executable.

Á Exec Action's WorkingDirectory: The server MUST start the executable with its working
directory set to the specified folder. If not present, the server MUST start the executable in
the task store folder.

Á ComHandler Action's ClassId: If specified, the server MUST map the GUID value to the
custom handler's COM class.

Á ComHandler Action's Data: If specified, the server SHOULD NOT pa rse the XML fragment.
The server MUST pass the XML fragment to the custom handler.

Á Email Action: If present, this field MUST contain the specification of an email action and
the server MUST send email through a Simple Mail Transfer Protocol (SMTP) server.
See [RFC788] .

Á Email Action's Subject: If present, the server MUST send the email with the specified

Subject.

Á Email Action's To: I f present, the server MUST send the email to the specified
addresses.

Á Email Action's CC: If present, the server MUST send the email to all addresses
specified.

Á Email Action's BCC: If present, the server MUST send the email to all specified
addresses and MU ST do so using a blind copy action.

Á Email Action's ReplyTo: If present, the server MUST send the email with the specified
ReplyTo address.

Á Email Action's From: If Email Action is specified, then this field MUST be present and
the server MUST send the email with the specified From address.

Á Email Action's Body: If present, the server MUST send the email with the specified
email body text.

Á ShowMessage Action: If present, specifies that the server MUST display a message box on

each session where this user is lo gged on the local machine.

Á ShowMessage Action's Title: If specified, the server MUST use the string for the
caption of the message box.

Á ShowMessage Action's Body: If specified, the server MUST use the string for the

contents of the message box.

Á Determine t he logon type to be used depending upon logonType supplied:

Á If TASK_LOGON_NONE is specified, the server MUST determine the logon type from XML, or
by using the TASK_LOGON_INTERACTIVE_TOKEN if not specified in XML.

Á If TASK_LOGON_PASSWORD is specified, the s erver MUST run the task with the user's logon
and password supplied. The server MUST run the task non - interactively.

https://go.microsoft.com/fwlink/?LinkId=91145

101 / 148

[MS -TSCH] - v20171201
Task Scheduler Service Remoting Protocol
Copyright © 2017 Microsoft Corporation
Release: December 1, 2017

Á If TASK_LOGON_S4U is specified, the server MUST run the task with user's Service for User
(S4U), as specified in [MS -SFU] . The server MUST run the task non - interactively.

Á If TASK_LOGON_INTERACTIVE_TOKEN is specified, the server MUST run the task in the user's
interactive logon session. The server MUST run the task i nteractively.

Á If TASK_LOGON_GROUP is specified, then the server MUST run the task in the user's
interactive logon session for any member of the security group. The server MUST run the task
interactively.

Á If TASK_LOGON_SERVICE_ACCOUNT is specified, then the server MUST run the task as local
system, local service or network service. The server MUST run the task noninteractively.

Á If TASK_LOGON_INTERACTIVE_TOKEN_OR_PASSWORD is specified, then the server MUST run
in the user's interactive logon session. If the u ser is not logged on then the server MUST run

the task using the user's logon and password noninteractively.

Á Determine the principal to be used:

Á A user ID specified in the pCreds parameter MUST be used if present.

Á A user ID specified in the UserID element of the xmlTaskDefinition (section 2.5.6) MUST be
used if present.

Á A group ID is specified in the GroupID element of the xmlTaskDefinition (section 2.5.6) MUST

be used if present.

Á If both UserID and GroupID are present then server MUST return
SCHED_E_UNEXPECTEDNODE, with the "node" field of the ErrorInfo structure specifying the
"GroupId" as unexpected node.

Á If none of the above is present, the user ID of the caller MUST be used.

Á Update the principal node of the XML task definition (section 2.5.6) to reflect the principal just
determined and the logonType parameter.

Á The server MUST return an error if any of the undefined bits in the FLAGS field of the pCreds
parameter are not set to 0.

Á pCreds parameter Flags field's D credFlagDefault bit: If set to 1, the server MUST use these
credentials only if no other credentials are provided. If set to 0, the server MUST use these
credentials instead of the credentials specified in the task configuration.

Á Return ERROR_LOGON_FAILURE if the call was made using an unknown user name or bad
password.

Á Return E_ACCESSDENIED if the caller does not have administrative privileges on the server and
the task has one of the following triggers:

Á Boot trigger (section 2.5.3.2).

Á Logon trigger for "everyone" or any user other than the ca ller (section 2.5.3.7).

Á Session state change trigger for "everyone" or any user other than the caller (section
2.5.3.8).

Á Return E_ACCESSDENIED if the task priority is 1 and the caller does not have administrative
privileges on the server.

Á Perform security validation as specified in section 3.2.5.1.1 .

%5bMS-SFU%5d.pdf#Section_3bff58648135400ebdd933b552051d94

102 / 148

[MS -TSCH] - v20171201
Task Scheduler Service Remoting Protocol
Copyright © 2017 Microsoft Corporation
Release: December 1, 2017

Á Return E_ACCESSDENIED if a password is required (section 3.2.5.1.1) but the password pr ovided
in the pCreds parameter is not valid for the principal chosen.

Á Determine the correct path.

Á MUST use the path parameter if non -NULL.

Á Otherwise, if present, MUST use the URI element of the RegistrationInfo node of the task
definition (section 2.5.1).

Á Otherwise, MUST generate a UUID and MUST use the string representation of it surrounded
by '{' and '}' characters, as specified in [C706] section A.3.

Á If the path determined does not exist in the XML task store and the TASK_UPDATE flag is specified
instead of the TASK_CREATE flag in the flags parameter, and the flags parame ter is not 0: the
server MUST return the value 0x80070002, the HRESULT form of the Win32 error

ERROR_FILE_NOT_FOUND.

Á If the following three conditions are all true:

Á The path determined does not exist in the XML task store.

Á One of the following flags has be en specified instead of TASK_CREATE in the flags parameter:
TASK_DISABLE, TASK_DONT_ADD_PRINCIPAL_ACE, or
TASK_IGNORE_REGISTRATION_TRIGGERS.

Á The flags parameter is not 0.

The server MUST return the value 0x80070057 (the HRESULT form of the Win32 error
E_IN VALIDARG).

Á If the path determined does exist in the XML task store and the TASK_CREATE flag is specified
instead of the TASK_UPDATE flag in the flags parameter: the server MUST return the value
0x800700B7, the HRESULT form of the Win32 error ERROR_ALREADY_ EXISTS.

Á If the path determined does exist in the XML task store, and TASK_DISABLE,

TASK_DONT_ADD_PRINCIPAL_ACE, or TASK_IGNORE_REGISTRATION_TRIGGERS has been
specified instead of the TASK_UPDATE flag in the flags parameter: the server MUST return the
value 0x80070057 (the HRESULT form of the Win32 error E_INVALIDARG).

Á Create subfolders in the task store for the path determined using the security descriptor specified
in the sddl parameter (section 3.2.5.4.4).

Á Save the task in the XML task store at the path determined. The server MUST use the security
descriptor specified in the sddl parameter, and unless the TASK_DONT_ADD_PRINCIPAL_ACE bit is

specified in the flags parameter also give the principal File Read ("FR") access to the task (as
specified in [MS -DTYP] section 2.5.1.1).

Á If the XML task definition has the Version attribute (section 2.5) with a value of "1.1" or "1.0", the
server MUST also save the task in the .JOB task store or the AT task sto re, respectively.

Á If a password is required, the server MUST update its credential store with the principal chosen
and the password provided in the pCreds parameter.

Á The server MUST update its EventLog subscriptions (section 3.2.4.1) to match the event triggers
(section 2.5.3.6) currently in the XML task store, as specified in [MS -EVEN6] section 2.2.13.

Á If this task is to run earlier than the current value of the global timer, reset the global time r.

https://go.microsoft.com/fwlink/?LinkId=89824

103 / 148

[MS -TSCH] - v20171201
Task Scheduler Service Remoting Protocol
Copyright © 2017 Microsoft Corporation
Release: December 1, 2017

Á If the task has a registration trigger (section 2.5.3.3) and the
TASK_IGNORE_REGISTRATION_TRIGGERS bit in the flags parameter is not set, start the task

(section 3.2.5.1.2).

Á If the pActualPath parameter is non -NULL, return the path determined in the pActualPath

parameter.

Á Return S_OK.

If any errors are raised during the processing they are returned. For more information on return
codes, see section 2.3.14 and Win32 Error Codes in [MS -ERREF] sect ion 2.1.

3.2.5.4.3 SchRpcRetrieveTask (Opnum 2)

The SchRpcRetrieveTask method MUST return a task definition.

 HRESULT SchRpcRetrieveTask(

 [in, string] const wchar_t* path,

 [in, string] const wchar_t* lpcwszLanguagesBuffer,

 [in] unsigned long* pulNumLanguages,

 [out, string] wchar_t** pXml

);

path: MUST contain the full path associated with an existing task as specified in section 2.3.11 .

lpcwszLanguagesBuffer: If non -NULL, this parameter MUST contain a list of language names
separated by the ' \ ' character. The language names MUST be taken from the "String name"
column of the table.

pulNumLanguages: The client SHOULD specify the number of language names in languagesBuffer .

The server MUST ignore this parameter.

pXml: MUST contain the task definition in XML format, localized using the language names contained
in the languagesBuffer parameter. For more information about XML localization, see section 2.5.8 .

Return Values: For more information on return codes, see section 2.3.14 , or Win32 Error Codes in
[MS -ERREF] section 2.1.

Upon receipt of the SchRpcRetrieveTask call, the server MUST:

Á Return E_INVALIDARG if the path parameter is the root.

Á Return 0x 80070003, the HRESULT value of the Win32 error ERROR_PATH_NOT_FOUND, if the
path does not exist in XML task store.

Á Return the HRESULT value of the Win32 error ERROR_FILE_NOT_FOUND if the task does not exist
in XML task store.

Á Return E_ACCESSDENIED if the c aller does not have read access to the path in the XML task
store .

Á Return 0x8007007B, the HRESULT value of the Win32 error ERROR_INVALID_NAME, if the

specified path is not in the format specifie d in section 2.3.11.

Á Retrieve the task definition from the path in the XML task store. If the languagesBuffer parameter
is non -NULL, the server MUST replace localizable strings in the task definition according to the
language names contained in the languag esBuffer parameter, as specified in section 2.5.8.
Multiple languages are used in order of preference. If no language can localize the string, the
server default is used.

%5bMS-ERREF%5d.pdf#Section_1bc92ddfb79e413cbbaa99a5281a6c90

104 / 148

[MS -TSCH] - v20171201
Task Scheduler Service Remoting Protocol
Copyright © 2017 Microsoft Corporation
Release: December 1, 2017

Á Return the task definition in the xmlTaskDefinition parameter and return S_OK.

If any errors are raised during the processing they are returned. For more information on return

codes, see section 2.3.14 and Win32 Error Codes in [MS -ERREF] section 2.1.

3.2.5.4.4 SchRpcCreateFolder (Opnum 3)

The SchRpcCreateFolder method creates a new folder.

 HRESULT SchRpcCreateFolder(

 [in, string] const wchar_t* path,

 [in, string, unique] const wchar_t* sddl,

 [in] DWORD flags

);

path: MUST contain the full path to be associated with a folder (section 2.3.11).

sddl: If non -NULL, MUST be a security descriptor in SDDL format as specified in [MS -DTYP] .

flags: Unused, MUST be 0.

Return Values: For more information on return codes, see section 2.3.14 , or Win32 Error Codes in
[MS -ERREF] section 2.1.

Upon recei pt of the SchRpcCreateFolder call, the server MUST:

Á Return E_INVALIDARG if the path parameter is the root or if the flags parameter is nonzero.

Á Return E_ACCESSDENIED if the caller does not have access to create subfolders in the deepest
existing folder spe cified in the path parameter. <70>

Á Create deeper subfolders in the task store for the path using the security descriptor specifie d in
the sddl parameter [MS -DTYP]. If the sddl parameter is NULL, use the security descriptor of the
deepest existing folder in the path parameter.

Á Return S_OK.

If any errors are raised during the processing they are returned. For more information on retur n

codes, see section 2.3.14 and Win32 Error Codes in [MS -ERREF] section 2.1.

3.2.5.4.5 SchRpcSetSecurity (Opnum 4)

The SchRpcSetSecurity method MUST set a security descript or on a task or folder.

 HRESULT SchRpcSetSecurity(

 [in, string] const wchar_t* path,

 [in, string] const wchar_t* sddl,

 [in] DWORD flags

);

path: MUST contain the full path associated with a task or folder in the format specified in section
2.3.11).

sddl: MUST be a security descriptor in SDDL format as specified in [MS -DTYP] .

flags: The flags field MUST contain individual bit flags that MUST have one or more of the following
values:

%5bMS-DTYP%5d.pdf#Section_cca2742956894a16b2b49325d93e4ba2
%5bMS-ERREF%5d.pdf#Section_1bc92ddfb79e413cbbaa99a5281a6c90
%5bMS-DTYP%5d.pdf#Section_cca2742956894a16b2b49325d93e4ba2

105 / 148

[MS -TSCH] - v20171201
Task Scheduler Service Remoting Protocol
Copyright © 2017 Microsoft Corporation
Release: December 1, 2017

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

0 F
T

F
F

0 D
A

0 0 0 0

Value Description

DA

TASK_DONT_ADD_PRINCIPAL_ACE

If set to 1, the server MUST NOT add the 'Allow' ACE for the task
principal to the security descriptor.

FF

SCH_FLAG_FOLDER

If set to 1, the server MUST apply the security descriptor to
folders.

FT

SCH_FLAG_TASK

If set to 1, the server MUST apply the security d escriptor to tasks.

Return Values: For more information on return codes, see section 2.3.14 , or Win32 Error Codes in
[MS -ERREF] section 2.1.

Upon receipt of the SchRpcSetSecurity call, the server MUST:

Á Return E_INVALIDARG if any bits other than SCH_FLAG_TASK, SCH_FLAG_FOLDER, or
TASK_DONT_ADD_PRINCIPAL_ACE are set in the flags parameter.

Á Return 0x8007007B, the HRESULT form of the Win32 error ERROR_INVALID_NAME , if the

specified path is not in the format specified in section 2.3.11.

Á Return the value 0x80070003, the HRESULT form of the Win32 error ERROR_PATH_NOT_FOUND,
if the specified path does not exist on the server in the XML task store .

Á Return the value 0x80070003, the HRESULT form of the Win32 error ERROR_PATH_NOT _FOUND,
if the task specified in path does not exist on the server in the XML task store.

Á Return E_ACCESSDENIED if caller does not have write access to the task or folder specified in the
path parameter.

Á Return E_INVALIDARG if the SDDL parameter is null.

Note When passing NULL as a value for parameters, behavior can change based on the RPC
Runtime Check. See RPC Runtime Check Notes (section 3.3) .

Á Set the security descriptor of the task or folder s pecified in the path parameter in the task store
according to the sddl parameter.

Á Return S_OK.

3.2.5.4.6 SchRpcGetSecurity (Opnum 5)

The SchRpcGetSecurity method MUST get the security descriptor associated with a task or folder.

 HRESULT SchRpcGetSecurity(

 [in, string] const wchar_t* path,

 [in] DWORD securityInformation,

 [out, string] wchar_t** sddl

%5bMS-ERREF%5d.pdf#Section_1bc92ddfb79e413cbbaa99a5281a6c90

106 / 148

[MS -TSCH] - v20171201
Task Scheduler Service Remoting Protocol
Copyright © 2017 Microsoft Corporation
Release: December 1, 2017

);

path: MUST be the full path associated with a task or folder in the format specified in section 2.3.11).

securityInformation: MUST contain security information in the format of a SECURITY_INFORMATION
structu re. The SECURITY_INFORMATION structure is defined in [MS -DTYP] section 2.4.7.

sddl: MUST point to a buffer that will receive security information in string format. The string fo rmat
is specified in [MS -DTYP] section 2.5.1.

Return Values: For more information on return codes, see section 2.3.14 , or Win32 Error Codes in
[MS -ERREF] section 2.1.

Upon receipt of the SchRpcGetSecurity call that requires the server to return the security descriptor of
the requested object, the server MUST:

Á Return E_INVALIDARG if the sddl parameter is NULL.

Note When passing NULL as a value for parameters, behavior can change based on the RPC
Runtime Check. See RPC Runtime Check Notes (section 3.3) .

Á Return 0x8007007B, the HRESULT form of the Win32 error ERROR_INVALID_NAME if the
specified path is not in the format specified in section 2.3.11.

Á Return the value 0x80070003, the HRESULT form of the Win32 error ERROR_PATH_NOT_FOUND if
the specified path does not exist on the server in the XML task store .

Á Return the HRESULT form of the Win32 error ERROR_FILE_NOT_FOUND if the task does not exist
on the server in the XML task store.

Á Return E _ACCESSDENIED if the caller does not have permission to read the task or the security
descriptor.

Á Retrieve the security information specified in the securityInformation parameter from the path in

the task store. For more information on the SECURITY_INFORMA TION structure, see [MS -DTYP]
section 2.4.7.

Á Encode security information in sddl and return the string in the sddl parameter to the caller.

Á Return S_OK .

If any errors are raised during the proce ssing, they are returned. For more information about return
codes, see section 2.3.14 and Win32 Error Codes in [MS -ERREF] section 2.1.

3.2.5.4.7 SchRpcEnumFolders (Opnum 6)

The SchRpcEnumFolders method MUST retrieve a list of folders on the server.

The server MUST return S_FALSE if there are more folders to enumerate.

Note that if the client requests items 1 -10 and then 11 -20, the second call MAY return duplicate
entries if the folder list has changed in between calls.

 HRESULT SchRpcEnumFolders(

 [in, string] const wchar_t* path,

 [in] DWORD flags,

 [in, out] DWORD* pStartIndex,

 [in] DWORD cRequested,

 [out] DWORD* pcNames,

%5bMS-DTYP%5d.pdf#Section_cca2742956894a16b2b49325d93e4ba2
%5bMS-ERREF%5d.pdf#Section_1bc92ddfb79e413cbbaa99a5281a6c90

107 / 148

[MS -TSCH] - v20171201
Task Scheduler Service Remoting Protocol
Copyright © 2017 Microsoft Corporation
Release: December 1, 2017

 [out, string, size_is(, *pcNames)]

 TASK_NAMES* pNames

);

path: MUST contain the full path associated with a folder using the format specified in section 2.3.11 .

flags: All bits except TASK_ENUM_HIDDEN MUST be set to zero and the server MUST return an
error if undefined bits are set to 1. This field has one or more of the following values:

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

0 H

Where the bits are defined as:

Value Description

H

TASK_ENUM_HIDDEN

If set to 1, the server MUST include hidden tasks in the enumeration,
otherwise the server MUST exclude hidden tasks from the enumeration.

pStartIndex: MUST contain the index at which to start enumeration. If the server returns S_FALSE,
the server MUST update startIndex to contain the index at which the enumeration MUST resume.

cRequested: MUST contain the number of entries requested. The server MUST NOT return more than
cRequested entries.

pcNames: MUST contain a count of enumerated subfolder names contained in pNames .

pNames: Buffer MUST contain returned folder names.

Return Values: For more information on return codes, see section 2.3.14 , or Win32 Error Codes in

[MS -ERREF] section 2.1.

Upon receipt of the SchRpcEnumFolders call, the server MUST:

Á Return E_INVALIDARG i f the out parameters are NULL or if any bit other than
TASK_ENUM_HIDDEN is set in the flags parameter.

Note When passing NULL as a value for parameters, behavior can change based on the RPC
Runtime Check. See RPC Runtime Check Notes (section 3.3).

Á Return the value 0x80070003, the HRESULT version of the Win32 error
ERROR_PATH_NOT_FOUND, if the path parameter does not name a folder in the XML task store ,
or if the caller does not have either read or write access to that folder.

Á Enumerate the subfolders in that folder, starting the enum eration at the ordinal position given by
the DWORD value pointed to by the pStartIndex parameter. The server MUST NOT enumerate

more than cRequested subfolders. The server MUST enumerate as many subfolders as are
available, up to a total of cRequested subf olders. The server MUST skip subfolders that the caller
does not have read or write access to. <71>

Á Return an array of pointers to the enumerated null - terminated subfolder names in the pNames
parameter.

Á Return the number of enumerated subfolder names in the pcNames parameter.

%5bMS-ERREF%5d.pdf#Section_1bc92ddfb79e413cbbaa99a5281a6c90

108 / 148

[MS -TSCH] - v20171201
Task Scheduler Service Remoting Protocol
Copyright © 2017 Microsoft Corporation
Release: December 1, 2017

Á Increment the value pointed to by the pStartIndex parameter by the number of enumerated
subfolder names.

Á Return S_OK if there are no more names to enumerate, else return S_FALSE.

If any errors are raised during the processing they are returned. For more information on return

codes, see section 2.3.14 and Win32 Error Codes in [MS -ERREF] section 2.1.

3.2.5.4.8 SchRpcEnumTasks (Opnum 7)

The SchRpcEnumTasks method MUST return the list of tasks in a specific folder.

MUST returns S_FALSE if there are more tasks to enumerate.

Note that if client requests items 1 -10 and then 11 -20, the second call can return duplicate entries if
the task list has changed in betw een calls.

 HRESULT SchRpcEnumTasks(

 [in, string] const wchar_t* path,

 [in] DWORD flags,

 [in, out] DWORD* startIndex,

 [in] DWORD cRequested,

 [out] DWORD* pcNames,

 [out, string, size_is(, *pcNames)]

 TASK_NAMES* pNames

);

path: MUST contain the full path associated with a folder as specified in section 2.3.11 .

flags: The flags parameter MUST contain individual bit flags that MUST have one or more of the

following values:

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

0 H

Value Description

H

TASK_ENUM_HIDDEN

If set to 1, the server MUST include hidden tasks in the enumeration,
otherwise the server MUST exclude hidden tasks from the enumeration.

startIndex: MUST contain the index at which to start enumeration. If the server returns S_FALSE,
the server MUST update startIndex to contain the index at which the enumeration MUST resume.

cReque sted: MUST contain the number of entries requested. The server MUST NOT return more than

cRequested entries.

pcNames: The server MUST set pcNames to equal the number of enumerated tasks returned in the
pNames parameter.

pNames: Buffer that MUST contain returned task names .

Return Values: For more information on return codes, see section 2.3.14 , or Win32 Error Codes in
[MS -ERREF] section 2.1.

%5bMS-ERREF%5d.pdf#Section_1bc92ddfb79e413cbbaa99a5281a6c90

109 / 148

[MS -TSCH] - v20171201
Task Scheduler Service Remoting Protocol
Copyright © 2017 Microsoft Corporation
Release: December 1, 2017

Upon receipt of the SchRpcEnumTasks call, the server MUST:

Á Return E_INVALIDARG if the out parameters are NULL or if any bit other than

TASK_ENU M_HIDDEN is set in the flags parameter.

Note When passing NULL as a value for parameters, behavior can change based upon the RPC

Runtime Check. See RPC Runtime Check Notes (section 3.3).

Á Return t he value 0x8007007B, the HRESULT form of the Win32 error ERROR_INVALID_NAME ,
if the specified path is not in the format specified in section 2.3.11.

Á Return the value 0x80070003, the HRESULT form of the Win32 error ERROR_PATH_NOT_FOUND,
if the specified path does not exist on the server in the XML task store .

Á Return the HRESULT version of the Win32 error ERROR_FILE_NOT_FOUND if the path parameter
does not name a folder in the XML task store, or if the caller does not have either read or write

access to that folder.

Á Enumerate the tasks in that folder, starting the enumeration at the ordinal position given by the

DWORD value pointed to by the pStartIndex parameter. The server MUST NOT enumerate more
than cRequested tasks. The server MUST enumerate as many tasks as are available, up to a total
of cRequested tasks. The server MUST skip tasks that the caller does not have read or write
access to. The server MUST skip tasks that are hidden (section 2.5.4.12) unless the

TASK_ENUM_HIDDEN bit is set in the flags parameter. <72>

Á Return an array of pointers to the enumerated null - terminated task names in the pNames
parameter.

Á Return the number of enumerated task names in the pcNames parameter.

Á Increment the value pointed to by the pStartIndex parameter by the number of enumer ated task
names.

Á Return S_OK if there are no more names to enumerate, else return S_FALSE.

3.2.5.4.9 SchRpcEnumInstances (Opnum 8)

The SchRpcEnumInstances method MUST return a task's list of instances that are currently running.

 HRESULT SchRpcEnumInstances(

 [in, string, unique] const wchar_t* path,

 [in] DWORD flags,

 [out] DWORD* pcGuids,

 [out, size_is(, *pcGuids)] GUID** pGuids

);

path: MUST contain the full path to a task in the format specified in section 2.3.11 . If NULL is
specified, all instances for all tasks MUST be returned.

flags: The flags field MUST contain individual bit flags that MUST have one or more of the following

values:

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

0 H

110 / 148

[MS -TSCH] - v20171201
Task Scheduler Service Remoting Protocol
Copyright © 2017 Microsoft Corporation
Release: December 1, 2017

Value Description

H

TASK_ENUM_HIDDEN

If set to 1, hidden tasks MUST be included in the result set.

The client MUST set undefined bits to 0. The server MUST return an error if any of the undefined
bits are not set to 0.

pcGuids: MUST contain the number of instances.

pGuids: MUST be an array of GUIDs .

Return Values: For more information on return codes, see section 2.3.14 , or Win32 Error Codes in

[MS -ERREF] section 2.1.

Upon receipt of the SchRpcEnumInstances call, the server MUST:

Á Return E_INVALIDARG if any bit other than TASK_ENUM_HIDDEN is set in the flags parameter.

Á Return 0x8007007B, the HRESULT form of the Win32 err or ERROR_INVALID_NAME if the
specified path is not in the format specified in section 2.3.11.

Á Return 0x80070002, the HRESULT form of the Win32 error ERROR_FILE_NOT_FOUND if the task

specified in the path parameter does not exist on the server or the file s pecified by the path
parameter does not exist in the XML task store .<73>

Á Enumerate all of the running task instances in the running task list conceptual data structure. If
the path parameter is not NULL, the server MUST skip all entries in the running task lis t whose
locations do not match the path parameter. The server MUST skip all entries for tasks to which the
caller does not have read access. Unless the TASK_ENUM_HIDDEN bit is set in the flags
parameter, the server MUST skip all entries for hidden tasks (s ection 2.5.4.12).

Á Return an array of task instance IDs from the enumerated running task instances in the pGuids
parameter.

Á Return the number of task instance IDs in the pcGuids parameter.

Á Return S_OK.

3.2.5.4.10 SchRpcGetInstanceInfo (Opnum 9)

The SchRpcGetInstanceInfo method MUST get information about an instance of a running task.

 HRESULT SchRpcGetInstanceInfo(

 [in] GUID guid,

 [out, string] wchar_t** pPath,

 [out] DWORD* pState,

 [out, string] wchar_t** pCurrentAction,

 [out, string] wchar_t** pInfo,

 [out] DWORD* pcGroupInstances,

 [out, size_is(, *pcGroupInstances)]

 GUID** pGroupInstances,

 [out] DWORD* pEnginePID

);

guid: MUST contain the GUID of the running task instance .

pPath: MUST be the lo cation where a string containing the task's path is to be returned in the format
specified in section 2.3.11 . If NULL, specifies that the path is not requested.

%5bMS-ERREF%5d.pdf#Section_1bc92ddfb79e413cbbaa99a5281a6c90

111 / 148

[MS -TSCH] - v20171201
Task Scheduler Service Remoting Protocol
Copyright © 2017 Microsoft Corporation
Release: December 1, 2017

pState: Location where the state of the instance (section 2.3.13) is to be returned. If NULL, specifies
that the state is not requested.

pCurrentAction: MUST be the location where the name (id) of the action the task is currently
executing is to be returned. If NULL, specifies that the current action is not requested.

pInfo: Unused. If non -NULL, the server MUST set the string to NULL.

pcGroupInstances: Unused.

pGroupInstances: Unused. If non -NULL, the server MUST set the GUID to NULL.

pEnginePID: MUST be the location where the Process ID of the process executing the task is to be
returned. If NULL, specifies that the Process ID is not requested.

Return Values: For more information on return codes, see section 2.3.14 , or Win32 Error Codes in
[MS -ERREF] section 2.1.

Upon receipt of the SchRpcGetInstanceInfo, the server MUST:

Á Return SCHED_E_TA SK_NOT_RUNNING if there is no entry in the running task list with an
instance ID matching the guid parameter.

Á Return E_ACCESSDENIED if the caller does not have read access to the task.

Á Return the path of the task instance in the pPath parameter.

Á Return the state of the task instance in the pState parameter.

Á If the state is TASK_STATE_RUNNING, return the action of the task instance in the pCurrentAction
parameter. Otherwise, return NULL in the pCurrentAction parameter.

Á Return NULL in the location pointed to by the pInfo parameter, if pInfo is non -NULL.

Á Return 0x00000000 in the location pointed to by the pcGroupInstances parameter, if
pcGroupInstances is non -NULL.

Á Return NULL in the location pointed to by the pGroupInstan ces parameter, if pGroupInstances is
non -NULL.

Á Return the PID of the task instance in the location pointed to by the pEnginePID parameter, if
pEnginePID is non -NULL.

Á Return S_OK.

3.2.5.4.11 SchRpcStopInsta nce (Opnum 10)

The SchRpcStopInstance method MUST stop a specified instance of a task.

 HRESULT SchRpcStopInstance(

 [in] GUID guid,

 [in] DWORD flags

);

guid: MUST contain the task instance GUID .

flags: Unused. The client MUST send 0 and the server MUST return an error if nonzero.

Return Values: For more info rmation on return codes, see section 2.3.14 , or Win32 Error Codes in
[MS -ERREF] section 2.1.

%5bMS-ERREF%5d.pdf#Section_1bc92ddfb79e413cbbaa99a5281a6c90
%5bMS-ERREF%5d.pdf#Section_1bc92ddfb79e413cbbaa99a5281a6c90

112 / 148

[MS -TSCH] - v20171201
Task Scheduler Service Remoting Protocol
Copyright © 2017 Microsoft Corporation
Release: December 1, 2017

Upon receipt of the Sch RpcStopInstance call, the server MUST:

Á Return E_INVALIDARG if the flags parameter is non -zero.

Á Return SCHED_E_TASK_NOT_RUNNING if there is no entry in the running task list with an
instance ID matching the guid parameter.

Á Return E_ACCESSDENIED if the calle r does not have execute access to the task.

Á Stop the instance of the running task (section 3.2.5.1.3).

Á Return S_OK.

3.2.5.4.12 SchRpcStop (Opnum 11)

The SchRpcStop MUST stop all curr ently running instances of a task specified by a path.

 HRESULT SchRpcStop(

 [in, string, unique] const wchar_t* path,

 [in] DWORD flags

);

path: MUST contain the full path to a task using the format specified in section 2.3.11 .

flags: Unused. The client MUST set 0, and the server MUST return an error if nonzero.

Return Values: For more information on return codes, see section 2.3.14 , or Win32 Error Codes in
[MS -ERREF] section 2.1.

Upon receipt of the SchRpcStop call, the server MUST:

Á Return E_INVALIDARG if the flags parameter is nonzero or the path parame ter is NULL.

Á Return 0x8007007B, the HRESULT form of the Win32 error ERROR_INVALID_NAME , if the path

specified in the path parameter is not in the format specified in section 2.3.11.

Á Return the value 0x80070002, the HRESULT form of the Win32 error ERROR_FILE_NOT_FOUND if
the task specified in the path parameter does not exist in the Task Schedule store on the server or
the file specified by the path parameter does not exist in the XML task store .<74>

Á Examine the running task list for all entries whose path matches the path parameter, and s top
them (section 3.2.5.1.3) if the caller has execute access to the task.

Á Not stop the task and return S_OK when the task is a hidden task. <75>

Á Return S_FALSE if no running task instances were stopped, otherwise S_OK.

If any errors are raised during the processing, they are returned. For more information about return
codes, see section 2.3.14 and Win32 Error Codes in [MS -ERREF] sec tion 2.1.

3.2.5.4.13 SchRpcRun (Opnum 12)

The SchRpcRun method MUST run a task specified by a path.

 HRESULT SchRpcRun(

 [in, string] const wchar_t* path,

 [in] DWORD cArgs,

 [in, string, size_is(cArgs), unique]

 const wchar_t** pArgs,

 [in] DWORD flags,

%5bMS-ERREF%5d.pdf#Section_1bc92ddfb79e413cbbaa99a5281a6c90

113 / 148

[MS -TSCH] - v20171201
Task Scheduler Service Remoting Protocol
Copyright © 2017 Microsoft Corporation
Release: December 1, 2017

 [in] DWORD sessionId,

 [in, unique, string] const wchar_t* user,

 [out] GUID* pGuid

);

path: MUST be the full path to a task using the format specified in section 2.3.11 .

cA rgs: MUST be the number of strings supplied in pArgs .

pArgs: MUST be an array of strings of size cArgs . This parameter MUST supply string values for

parameter substitution, as specified in section 2.5.9 .

flags: The flags field MUST contain individual bit flags that MUST have one or more of the following
values.

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

0 U
S

S
I

I
C

A
S

Flags

Value Description

AS

TASK_RUN_AS_SELF

If set to 1, the server MUST run the task in the context of the
caller.

IC

TASK_RUN_IGNORE_CONSTRAINTS

If set to 1, the server MUST ignore the conditions in the task
definition.

SI

TASK_RUN_USE_SESSION_ID

If set to 1, the server MUST run the task in the login session
specified by the sessionId parameter.

US

TASK_RUN_USER_SID

If set to 1, the userId parameter MUST contain a SID string.

Undefined bits MUST be set to 0 when sent and the server MUST return an error if undefined bits
are set to 1.

sessionId: MUST specify a terminal server session in which to run the task. The serv er MUST ignore
this parameter unless the TASK_RUN_USE_SESSION_ID bit in the flags parameter is set. For

more information on terminal server sessions, see [MSDN -WSI] .

user: If non -NULL, MUST specify the user context under which to run the task. If the
TASK_RUN_USER_SID bit in the flags parameter is set, userID MUST contain a SID string.
Otherwise, userID MUST contain an account name. If the TASK_RUN_AS_SELF bit in the flag

parameter is set, the server MUST ignore the userId parameter.

pGuid: MUST contain a GUID for the task instance created as result of t his call.

Return Values: For more information on return codes, see section 2.3.14 , or Win32 Error Codes in
[MS -ERREF] section 2.1.

Upon receipt of the SchRpcRun call, the server MUST:

https://go.microsoft.com/fwlink/?LinkId=90170
%5bMS-ERREF%5d.pdf#Section_1bc92ddfb79e413cbbaa99a5281a6c90

114 / 148

[MS -TSCH] - v20171201
Task Scheduler Service Remoting Protocol
Copyright © 2017 Microsoft Corporation
Release: December 1, 2017

Á Return E_INVALIDARG if any bits other than TASK_RUN_AS_SELF,
TASK_RUN_IGNORE_CONSTRAINTS, TASK_RUN_USE_SESSION_ID, or TASK_RUN_USER_SID are

set in the flags parameter.

Á Return E_ACCESSDENIE D if the caller does not have read or execute access to the path in the

XML task store .

Á Return 0x8007007B, the HRESULT form of the W in32 error ERROR_INVALID_NAME , if the
specified path is not in the format specified in section 2.3.11.

Á Return the value 0x80070003, the HRESULT form of the Win32 error ERROR_PATH_NOT_FOUND,
if the specified path does not exist on the server in the XML task store.

Á Return the HRESULT form of the Win32 error ERROR_FILE_NOT_FOUND if the specified file does
not exist on the server in the XML task store.

Á Return SCHED_E_START_ON_DEMAND if the task's definition does not specify
AllowStartOnDemand (section 2.5.4.1).

Á Return SCHED_E_TASK_DISABLED if the value of the enabled/disabled Boolean associated with
the task in the task store is disabled.

Á Return S_OK but not start the task if the task's conditions (Disa llowStartIfOnBatteries,
RunOnNetworkAvailable, RunOnlyIfIdle; see section 2.5.4) do not allow the task to be started,

unless the TASK_RUN_IGNORE_CONSTRAINTS bit is set in the flags parameter.

Á Return E_INVALIDARG if the caller does not have administrative privileges on the server and the
caller is not the task's registered user unless the TASK_RUN_AS_SELF bit is set in the flags
parameter.

Á Return E_INVALIDARG if the TASK_RUN_USE_SESSION_ID bit i s set in the flags parameter and
the caller does not have administrative privileges on the server and the user specified in the
userId parameter is not the user running in the logon session identified by the sessionId

parameter.

Á Return E_INVALIDARG if both the TASK_RUN_USE_SESSION_ID and TASK_RUN_AS_SELF bits are
set in the flags parameter and the caller does not have administrative privileges on the server and
the caller is not the user running in the logon session identified by the sessionId parameter.

Á Return RPC_E_INVALID_PARAMETER if pArgs is not of the size specified by cArgs .

Á Select the user to be used to run the task:

Á If a user is specified in the userId parameter, use that.

Á Otherwise, if the TASK_RUN_AS_SELF bit is set in the flags parameter, use the caller's
identity.

Á Otherwise, if the TASK_RUN_USE_SESSION_ID bit is set in the flags parameter, use the user
in the logon session identified by the sessionId parameter.

Á Otherwise, use the user in the task's XML definition.

Á Parameterize the task definition by modifying specific fields in the task XML definition using the

cArgs and pArgs parameters, as specified in section 2.5.9.

Á Start the task using the selected user (section 3.2.5.1.2).

Á Return S_FALSE upon failure.

Á Return S_OK upon success.

115 / 148

[MS -TSCH] - v20171201
Task Scheduler Service Remoting Protocol
Copyright © 2017 Microsoft Corporation
Release: December 1, 2017

S_OK is also returned when the Task Scheduler service attempted to run the task, but the task did
not run due to one of the constraints in the task definition and the

TASK_RUN_IGN ORE_CONSTRAINTS bit was not set to ignore those conditions. Constraints in
the task definition include DisallowStartIfOnBatteries, RunOnNetworkAvailable, and RunOnlyIfIdle.

S_OK is also returned if another instance of the task is already running, and a new instance was
not started due to the IgnoreNew condition being set in the multiple instance policy specified in
section 2.5.4.3 .

If any errors are raised during the processing, they are returned. For more information about return
codes, see section 2.3.14 and Win32 Error Codes in [MS -ERREF] section 2.1.

3.2.5.4.14 SchRpcDelete (Opnum 13)

The SchRpcDelete method MUST delete a task or folder in the task store .

 HRESULT SchRpcDelete(

 [in, string] const wchar_t* path,

 [in] DWORD flags

);

path: MUST be the full path to the task or folder to delete using the format specified in section 2.3.11 .

flags: Unused. The client MUST set to zero and the server MUST return an error if nonzero.

Return Values: For more information on return codes, see section 2.3.14 , or Win32 Error Codes in
[MS -ERREF] section 2.1.

Upon receipt of the SchRpcDelete call, the server MUST:

Á Return E_INVALIDARG if the path parame ter is NULL or if the root or the flags parameter is
nonzero. <76>

Á Return the value 0x8007007B, the HRESULT form of the Win32 error ERROR_INVALID_NAME, if

the specified path is not in the for mat specified in section 2.3.11.

Á Return the value 0x80070003, the HRESULT form of the Win32 error ERROR_PATH_NOT_FOUND,
if the specified path does not exist on the server in the XML task store.

Á Return the HRESULT form of the Win32 error ERROR_FILE_NOT_FOUND if the task specified in the
path parameter does not exist on the server or the file specified by the path parameter does not
exist in the XML task store. <77> <78>

Á Return E_ACCESSDENIED if the caller does not have delete access to the path in the XML task
store. <79>

Á Delete the task from the XML task store.

Á Return S_OK.

3.2.5.4.15 SchRpcRename (Opnum 14)

The SchRpcRename method renames a folder or task.

 HRESULT SchRpcRename(

 [in, string] const wchar_t* path,

 [in, string] const wchar_t* newName,

 [in] DWORD flags

);

%5bMS-ERREF%5d.pdf#Section_1bc92ddfb79e413cbbaa99a5281a6c90

116 / 148

[MS -TSCH] - v20171201
Task Scheduler Service Remoting Protocol
Copyright © 2017 Microsoft Corporation
Release: December 1, 2017

path: MUST be the full path to the task or to a folder to rename. The path MUST be in the format
specified in section 2.3.11 .

newName: The new name of the task.

flags: Reserved. The client MUST set this parameter to zero.

Return Values: For more information on return codes, see section 2.3.14 , or Win32 Error Codes in
[MS -ERREF] section 2.1.

Upon receipt of the SchRpcRename call the server MUST return E_NOTIMPL.

3.2.5.4.16 SchRpcScheduledRuntimes (Opnum 15)

The SchRpcScheduledRuntimes method MUST return scheduled run times.

 HRESULT SchRpcScheduledRuntimes(

 [in, string] const wchar_t* path,

 [in, unique] PSYSTEMTIME start,

 [in, unique] PSYSTEMTIME end,

 [in] DWORD flags,

 [in] DWORD cRequested,

 [out] DWORD* pcRuntimes,

 [out, size_is(, *p cRuntimes)] PSYSTEMTIME* pRuntimes

);

path: MUST contain the full path to a task using the format specified in section 2.3.11 .

start: If non -NULL, MUST specify the start of a time interval. If NUL L, the server MUST calculate
scheduled runtimes from the start of time, where the start of time is the smallest time value

that the specific operating system implements.

end: If non -NULL, MUST s pecify the end of a time interval. If NULL, the server MUST calculate
scheduled runtimes to the end of time, where the end of time is the largest time value that the

specific operating system implements.

flags: Unused. The client MUST specify 0, and the se rver MUST return an error if nonzero.

cRequested: MUST contain the number of scheduled runtimes requested.

pcRuntimes: MUST contain the number of runtimes actually returned. The server MUST NOT return
more than cRequested runtimes.

pRuntimes: MUST be a pointer to an array of scheduled runtimes. The server MUST return the first
pcRuntimes runtimes in the specified time interval.

Return Values: For more information on return codes, see section 2.3.14 , or Win32 Error Codes in
[MS -ERREF] section 2.1.

Upon receipt of the SchRpcScheduledRuntimes call that requires the server to return the state of the

scheduled instances of a task, the server MUST:

Á Return E_INVALIDARG if any of the following are true:

Á The path parameter is NULL.

Á The flags parameter is nonzero.

Á The pcRuntimes parameter is NULL.

Á The pRuntimes parameter is NULL.

%5bMS-ERREF%5d.pdf#Section_1bc92ddfb79e413cbbaa99a5281a6c90
%5bMS-ERREF%5d.pdf#Section_1bc92ddfb79e413cbbaa99a5281a6c90

117 / 148

[MS -TSCH] - v20171201
Task Scheduler Service Remoting Protocol
Copyright © 2017 Microsoft Corporation
Release: December 1, 2017

Note When passing NULL as a value for parameters, behavior can change based upon the RPC
Runtime Check, as specified in RPC Runtime Check Notes (section 3.3) .

Á Retur n the value 0x8007007B, the HRESULT form of the Win32 error ERROR_INVALID_NAME ,
if the specified path is not in the format specified in section 2.3.11.

Á Return the value 0x80070003, the HRESULT form of the Win32 error ERROR_PATH_NOT_FOUND,
if the specified path does not exist on the server in the XML task store .

Á Return the HRESULT form of the Win32 error ERROR_FILE_NOT_FOUND, if the spe cified task does
not exist on the server in the XML task store.

Á Return E_ACCESSDENIED if the caller does not have read access to the task.

Á Retrieve the task definition from the XML task store and compute all the scheduled runtimes
between start and end par ameters, up to the number cRequested . If the start parameter is NULL,

the computation MUST start at the beginning of time. If the end parameter is NULL, the
computation MUST continue to the end of time.

Á The server MUST NOT compute more than cRequested sche duled runtimes and MUST compute as
many scheduled runtimes as are available, up to a total of cRequested scheduled runtimes. <80>

Á The server MUST return the computed runtimes in the pRuntimes parameter.

Á The server MUST return the number of computed runtimes in the pcRuntimes parameter.

Á Depending upon the situation, the server MUST return:

Á S_OK if there were scheduled runs in the given time window and all were returned.

Á S_FALSE if there were sc heduled runs in the given time window but some were not returned.

Á SCHED_S_TASK_NO_MORE_RUNS if no runs are scheduled in given time window.

Á SCHED_S_TASK_NOT_SCHEDULED if the task has no time -based triggers.

3.2.5.4.17 SchRpcGetLastRunInfo (Opnum 16)

The SchRpcGetLastRunInfo method MUST return information about the task's last run.

 HRESULT SchRpcGetLastRunInfo(

 [in, string] const wchar_t* path,

 [out] PSYSTEMTIME pLastRuntime,

 [out] DWORD* pLastReturnCode

);

path: MUST contain the full path to a task using the format specified in section 2.3.11 .

pLastRuntime: The server MUST return an error if this parameter is NULL. The server MUST return

the time when the task last started running, or zero if the task has never started.

pLastReturnCode: The server MUST return an error if this parameter is NULL. The server MUST
return the exit code from the task's last execution, or zero if the task has never finished
execu tion.

Return Values: For more information about return codes, see section 2.3.14 , or Win32 Error Codes in
[MS -ERREF] section 2.1.

Upon receipt of the SchRpcGetLastRunInfo call that requires the server to return the info of the last
instance of a task, the server MUST:

%5bMS-ERREF%5d.pdf#Section_1bc92ddfb79e413cbbaa99a5281a6c90

118 / 148

[MS -TSCH] - v20171201
Task Scheduler Service Remoting Protocol
Copyright © 2017 Microsoft Corporation
Release: December 1, 2017

Á Return E_INVALIDARG if any of the following statements are true:

Á The path parameter is NULL.

The pLastR untime parameter is NULL.

The pLastReturnCode parameter is NULL.

Note When passing NULL as a value for parameters, behavior can change based on the RPC
Runtime Check. See RPC Runtime Check Notes (section 3.3).

Á Return the value 0x8007007B, the HRESULT form of the Win32 error ERROR_INVALID_NAME, if
the specified path is not in the format specified in section 2.3.11.

Á Return the value 0x80070003, the HRESULT form of the Win32 error ERROR_PATH_NOT_FOUN D,
if the specified path does not exist on the server in the XML task store .

Á Return the HRESULT form of the Win32 error ERROR_FILE_N OT_FOUND if the specified task does

not exist on the server in the XML task store.

Á Return E_ACCESSDENIED if the caller does not have read access to the task.

Á Retrieve the last runtime and exit code associated with the task in the task store, and:

Á Return t he last runtime in the pLastRuntime parameter.

Á Return the exit code in the pLastReturnCode parameter.

Á Return S_OK.

3.2.5.4.18 SchRpcGetTaskInfo (Opnum 17)

The SchRpcGetTaskInfo method MUST return information about a specified task.

 HRESULT SchRpcGetTaskInfo(

 [in, string] const wchar_t* path,

 [in] DWORD flags,

 [out] DWORD* pEnabled,

 [out] DWORD* pState

);

path: MUST contain the full path to a task using the format specified in section 2.3.11 .

flags: The flags field MUST contain individual bit flags that MUST have one or more of the following
values

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

0 0 0 F
S

0

Value Description

FS

SCH_FLAG_STATE

If set to 1, the server MUST retrieve the TASK_STATE.

119 / 148

[MS -TSCH] - v20171201
Task Scheduler Service Remoting Protocol
Copyright © 2017 Microsoft Corporation
Release: December 1, 2017

Undefined bits. MUST be set to zero when sent and MUST be ignored on receipt.

pEnabled: MUST be a pointer to a Boolean that indicates whether the task is currently enabled.

pState: If non -NULL and the SCH_FLAG_STATE bit in the flags parameter is set, the server MUST
return the current state of the task in the format specified in section 2.3.13 . Otherwise, the server

MUST ignore this parameter.

Return Values: For more information about return codes, see section 2.3.14 , or Win32 Error Codes in
[MS -ERREF] section 2.1.

Upon receipt of the SchRpcGetTaskInfo call, the server MUST:

Á Return E_INVALIDARG if the path parameter is NULL or is the root.

Á Return 0x8007007B, the HRE SULT form of the Win32 error ERROR_INVALID_NAME , if the
specified path is not in the format specified in section 2.3.11.

Á Return the value 0x80070003, the HRESULT form of the Win32 error ERROR_PATH_NOT_FOUND,

if the specified path does not exist on the serv er in the XML task store .

Á Return the HRESULT form of the Win32 error ERROR_FILE_NOT_FOUND if the specified task does
not exist on th e server in the XML task store.

Á Return E_ACCESSDENIED if the caller does not have read access to the task.

If the pEnabled parameter is non -NULL, the server MUST set the corresponding memory location to

the value of the enabled/disabled flag in the task st ore.

Á If the pState parameter is non -NULL and the SCH_FLAG_STATE bit is set in the flags parameter,
return a state value (section 2.3.13) specified as follows:

Á If the task has any entries in the running task list in the TASK_STATE_RUNNING state, return
TASK_STATE_RUNNING.

Á Otherwise, if the task has any entries in the running task list in the TASK_STATE_QUEUED
state, return TASK_STATE_QUEUED.

Á Otherwise, if the task is enabled in the task store, return TASK_STATE_READY.

Á Otherwise, return TASK_STATE_DISABLED.

Á Return S_OK.

3.2.5.4.19 SchRpcGetNumberOfMissedRuns (Opnum 18)

The SchRpcGetNumberOfMissedRuns MUST return the number of times a task was scheduled to run
but did not due to the server being unavailable (for example, powered o ff).

 HRESULT SchRpcGetNumberOfMissedRuns(

 [in, string] const wchar_t* path,

 [out] DWORD* pNumberOfMissedRuns

);

path: MUST contain the full path to a task, in the format specified in section 2.3.11 .

pNumberOfMissedRuns: MUST be the address of a DWORD that receives the number of times a
task was scheduled to run but did not.

%5bMS-ERREF%5d.pdf#Section_1bc92ddfb79e413cbbaa99a5281a6c90

120 / 148

[MS -TSCH] - v20171201
Task Scheduler Service Remoting Protocol
Copyright © 2017 Microsoft Corporation
Release: December 1, 2017

Return Values: For more information about return codes, see section 2.3.14 , or Win32 Error Codes in
[MS -ERREF] section 2.1.

Upon receipt of the SchRpcGetNumberOfMissedRuns call, the server MUST:

Á Return the number of runs missed since the last successful run. If the task has not yet run in the

pNumberOfMissedRuns parameter and if the parameter is non -NULL, the server MUST return the
number of runs missed since registration instead.

Á Return S_OK when :

Á The path is not present.

Á The path is not in the specified format.

Á Return S_OK. <81>

3.2.5.4.20 SchRpcEnableTask (Opnum 19)

The SchRpcEnableTask method MUST enable or disable a task.

 HRESULT SchRpcEnableTask(

 [in, string] const wchar_t* path,

 [in] DWORD enabled

);

path: MUST contain the full path to the task, in the format specified in section 2.3.11 .

enabled: If TRUE, the server MUST enable the task. Otherwise, the server MUST disable the task.

Return Values: For more information about return codes, see [M S-ERREF] section 2.

Upon receipt of the SchRpcEnableTask call, the server MUST:

Á Return E_INVALIDARG if the path parameter is NULL or is the root.

Á Return the value 0x8007007B, the HRESULT form of the Win32 error ERROR_INVALID_NAME ,
if the specified path is not in the format specified in section 2.3.11.

Á Return the value 0x80070003, the HRESULT form of the Win32 error ERROR_PATH_NOT_FOUND,
if the specified path does not exist on the server in the XM L task store .

Á Return the HRESULT form of the Win32 error ERROR_FILE_NOT_FOUND if the specified task does

not exist on the server in the XML task store.

Á Return E_ACCESSDENIED if the caller does n ot have write access to the task.

Á Save the value of the enabled parameter in the enabled/disabled Boolean value associated with
the task in the task store.

Á Return S_OK.

3.2.6 Timer Events

As specified in section 3.2.2 , the server MUST maintain a global timer and a delay timer.

%5bMS-ERREF%5d.pdf#Section_1bc92ddfb79e413cbbaa99a5281a6c90
%5bMS-ERREF%5d.pdf#Section_1bc92ddfb79e413cbbaa99a5281a6c90

121 / 148

[MS -TSCH] - v20171201
Task Scheduler Service Remoting Protocol
Copyright © 2017 Microsoft Corporation
Release: December 1, 2017

3.2.6.1 Global Timer

When the global timer fires, the server MUST traverse the task store and MUST start (see section
3.2.5.1.2) all valid, enabled tasks that are scheduled to run at or before the current time.

When starting a t ask from the AT task store, the server MUST clear the corresponding bits in the
DaysOfMonth and DaysOfWeek fields, unless the JOB_RUN_PERIODICALLY bit is set in the flags field.

Finally, the server MUST reset the global timer to when the next task is sched uled to run.

3.2.6.2 Delay Timer

When the delay timer fires, the server MUST traverse the running task list and MUST transition from
TASK_STATE_QUEUED to TASK_STATE_RUNNING all entries that have reached their scheduled delay
time.

Finally, the server MUST reset the delay timer to when the next entry in the running task list is
scheduled to transition from TASK_STATE_QUEUED to TASK_STATE_RUNNING.

3.3 RPC Runtime Check Notes

The behavior of the client when methods are executed ca n be affected by the RPC protocol runtime
checks and MIDL compiler options used when generating stubs. For example, this often concerns error
codes when passing the NULL value in parameters with the [string] IDL attribute. In these cases,

the IDL method do es not return the expected error code. Instead, an RPC exception is raised.

For more information about generating RPC stubs from IDL definitions, see the topic "Using the MIDL

Compiler" in [M SDN-MIDL] .

https://go.microsoft.com/fwlink/?LinkId=90041

12 2 / 148

[MS -TSCH] - v20171201
Task Scheduler Service Remoting Protocol
Copyright © 2017 Microsoft Corporation
Release: December 1, 2017

4 Protocol Examples

The following sections provide several examples that illustrate the most complex Task Scheduler
Remoting Protocol operation: task creation by the Scheduling Agent.

4.1 Packet Sequence for Task Creation

This section illustrates the Task Scheduler Remoting Protocol operation by depicting the sequence of
packets that are sent during the creation of a task , using both the SASec and ITaskSchedulerService
interfaces.

4.1.1 Packet Sequence for Task Creation Using SASec Interface

The following illustration depicts the sequence of packets for creating a task by using the SASec
interface.

Figure 1 : Example of task creation with SASec protocol

The client binds to the server, as specified in section 3.1.3 . Next, the client requests the location of
the tasks folder on the server where the task configuration file is stored, as specified in sec tion
3.1.4.2.1.1 . Then the client transfers the .JOB configuration file followed by a client message setting

the task account information as specified in section 3.2.5.3.4 . For more information, see 2.4 .

4.1.2 Packet Sequence for Task Creation Using ITaskScheduler Interface

The following illustration depicts the sequence of packets for creating a task using the
ITaskSchedulerServic e interface.

123 / 148

[MS -TSCH] - v20171201
Task Scheduler Service Remoting Protocol
Copyright © 2017 Microsoft Corporation
Release: December 1, 2017

Figure 2 : Example of task creation with ITaskSchedulerService protocol

The client binds to the server, as specified in section 3.1.3 . Next, the client inqui res about the highest
task version supported by the server to which a ITaskScheduler compliant server will reply with the
version information specified in section 1.7 . Then the client sends the XML configuration and the
credentials for running the task, as specified in section 3.1.4.3.1 .

4.1.3 Task XML Example

The following is an example of a task configuration XML . The XML in this example defines a task that

starts Notepad when a user logs on. The task has a single execution action (starting Notepad), a
single logon trigger that starts the task when a user logs on, and several other task settings that
affect how the task is handled by the Task Scheduler Remoting Protocol. The <Principal> is set to the

built - in Administrators group, indicatin g that the task runs for any user who is part of this group.

 <?xml version="1.0" ?>

 <! --

 This sample schedules a task to start notepad.exe

 when a user logs on.

 -- >

 <Task xmlns="http://schemas.microsoft.com/windows/2004/02/mit/task">

 <RegistrationInfo >

 <Date>2005 - 10- 11T13:21:17 - 08:00</Date>

 <Author>AuthorName</Author>

 <Version>1.0.0</Version>

 <Description>

 Starts Notepad when a specified user logs on.

 </Description>

 </RegistrationInfo>

 <Trigge rs>

 <LogonTrigger>

 <StartBoundary>2005 - 10- 11T13:21:17 - 08:00</StartBoundary>

 <EndBoundary>2006 - 01- 01T00:00:00 - 08:00</EndBoundary>

 <Enabled>true</Enabled>

 </LogonTrigger>

 </Triggers>

 <Principals>

 <Principal>

124 / 148

[MS -TSCH] - v20171201
Task Scheduler Service Remoting Protocol
Copyright © 2017 Microsoft Corporation
Release: December 1, 2017

 <GroupId>Builtin \ Administrators</GroupId>

 </Principal>

 </Principals>

 <Settings>

 <Enabled>true</Enabled>

 <AllowStartOnDemand>true</AllowStartOnDemand>

 <AllowHardTerminate>true</AllowHardT erminate>

 </Settings>

 <Actions>

 <Exec>

 <Command>notepad.exe</Command>

 </Exec>

 </Actions>

 </Task>

4.2 Examples of Operations Flow

This section provides a conceptual protocol operation flow for the SASec and ITaskSchedulerService

interfaces.

4.2.1 SASec Operation Flow

The following figure provides a conceptual service operation flow with respect to SASec interface.

125 / 148

[MS -TSCH] - v20171201
Task Scheduler Service Remoting Protocol
Copyright © 2017 Microsoft Corporation
Release: December 1, 2017

Figure 3 : SASec operation flow

Server_Bind: Client binds to the server, as specified in section 3.1.3 .

Task_Folder_Located: Client makes a Remote Registry call to request the location of the task folder
on the server, as specified in section 3.1.4.2.1.1 .

Task_File_Remoted_To_Server: Client writes the .JOB file (using a remote file -system protocol) to
the task folder location received in the previous step, as specified in section 3.1.4.2.2 .

Task_Acount_Info_Set: Client uses RPC to supply the credentials for the task, by invoking
SASetAccountInformation as specified in section 3.1.4.2.1.2 .

Server_Bind_Failed: Server returns error or no reply.

Task_Folder_Location_Failed: Server returns an error indicating one of the regist ry keys not found.

