[MS-TRP-Diff]:

Telephony Remote Protocol

Intellectual Property Rights Notice for Open Specifications Documentation

* Technical Documentation. Microsoft publishes Open Specifications documentation (“this
documentation”) for protocols, file formats, data portability, computer languages, and standards
support. Additionally, overview documents cover inter-protocol relationships and interactions.

* Copyrights. This documentation is covered by Microsoft copyrights. Regardless of any other
terms that are contained in the terms of use for the Microsoft website that hosts this
documentation, you can make copies of it in order to develop implementations of the technologies
that are described in this documentation and can distribute portions of it in your implementations
that use these technologies or in your documentation as necessary to properly document the
implementation. You can also distribute in your implementation, with or without modification, any
schemas, IDLs, or code samples that are included in the documentation. This permission also
applies to any documents that are referenced in the Open Specifications documentation.

* No Trade Secrets. Microsoft does not claim any trade secret rights in this documentation.

* Patents. Microsoft has patents that might cover your implementations of the technologies
described in the Open Specifications documentation. Neither this notice nor Microsoft's delivery of
this documentation grants any licenses under those patents or any other Microsoft patents.
However, a given Open Specifications document might be covered by the Microsoft Open
Specifications Promise or the Microsoft Community Promise. If you would prefer a written license,
or if the technologies described in this documentation are not covered by the Open Specifications
Promise or Community Promise, as applicable, patent licenses are available by contacting
iplg@microsoft.com.

* License Programs. To see all of the protocols in scope under a specific license program and the
associated patents, visit the Patent Map.

* Trademarks. The names of companies and products contained in this documentation might be
covered by trademarks or similar intellectual property rights. This notice does not grant any
licenses under those rights. For a list of Microsoft trademarks, visit
www.microsoft.com/trademarks.

* Fictitious Names. The example companies, organizations, products, domain names, email
addresses, logos, people, places, and events that are depicted in this documentation are fictitious.
No association with any real company, organization, product, domain name, email address, logo,
person, place, or event is intended or should be inferred.

Reservation of Rights. All other rights are reserved, and this notice does not grant any rights other
than as specifically described above, whether by implication, estoppel, or otherwise.

Tools. The Open Specifications documentation does not require the use of Microsoft programming
tools or programming environments in order for you to develop an implementation. If you have access
to Microsoft programming tools and environments, you are free to take advantage of them. Certain
Open Specifications documents are intended for use in conjunction with publicly available standards
specifications and network programming art and, as such, assume that the reader either is familiar
with the aforementioned material or has immediate access to it.

Support. For questions and support, please contact dochelp@microsoft.com.

1/610

[MS-TRP-Diff] - v20210625

Telephony Remote Protocol

Copyright © 2021 Microsoft Corporation
Release: June 25, 2021

https://go.microsoft.com/fwlink/?LinkId=214445
https://go.microsoft.com/fwlink/?LinkId=214445
https://go.microsoft.com/fwlink/?LinkId=214448
mailto:iplg@microsoft.com
https://aka.ms/AA9ufj8
https://www.microsoft.com/trademarks
mailto:dochelp@microsoft.com

Revision Summary

Revision Revision
Date History Class Comments
5/11/2007 0.1 New Version 0.1 release
8/10/2007 1.0 Major Updated and revised the technical content.
9/28/2007 1.0.1 Editorial Changed language and formatting in the technical content.
10/23/2007 | 1.0.2 Editorial Changed language and formatting in the technical content.
11/30/2007 | 2.0 Major Added four new sections.
1/25/2008 2.0.1 Editorial Changed language and formatting in the technical content.
3/14/2008 3.0 Major Updated and revised the technical content.
5/16/2008 3.0.1 Editorial Changed language and formatting in the technical content.
6/20/2008 4.0 Major Updated and revised the technical content.
7/25/2008 4.0.1 Editorial Changed language and formatting in the technical content.
8/29/2008 5.0 Major Updated and revised the technical content.
10/24/2008 | 6.0 Major Updated and revised the technical content.
12/5/2008 7.0 Major Updated and revised the technical content.
1/16/2009 8.0 Major Updated and revised the technical content.
2/27/2009 9.0 Major Updated and revised the technical content.
4/10/2009 10.0 Major Updated and revised the technical content.
5/22/2009 11.0 Major Updated and revised the technical content.
7/2/2009 11.1 Minor Clarified the meaning of the technical content.
8/14/2009 11.1.1 Editorial Changed language and formatting in the technical content.
9/25/2009 11.2 Minor Clarified the meaning of the technical content.
11/6/2009 12.0 Major Updated and revised the technical content.
12/18/2009 | 12.1 Minor Clarified the meaning of the technical content.
1/29/2010 12.2 Minor Clarified the meaning of the technical content.
3/12/2010 12.3 Minor Clarified the meaning of the technical content.
4/23/2010 12.3.1 Editorial Changed language and formatting in the technical content.
6/4/2010 12.4 Minor Clarified the meaning of the technical content.
7/16/2010 12.4 None L\lec::r(]::iacg?izr:?em.e meaning, language, or formatting of the
8/27/2010 12.4 None Fe%ﬁ:;g?iirfgem.e meaning, language, or formatting of the
10/8/2010 12.4 None No changes to the meaning, language, or formatting of the

[MS-TRP-Diff] - v20210625

Telephony Remote Protocol

Copyright © 2021 Microsoft Corporation
Release: June 25, 2021

2/610

Revision Revision

Date History Class Comments
technical content.

11/19/2010 | 12.4 None No ch_anges to the meaning, language, or formatting of the
technical content.
No changes to the meaning, language, or formatting of the

1/7/2011 12.4 None technical content.

2/11/2011 12.4 None No ch_anges to the meaning, language, or formatting of the
technical content.

3/25/2011 12.4 None No ch_anges to the meaning, language, or formatting of the
technical content.

5/6/2011 12.4 None No ch_anges to the meaning, language, or formatting of the
technical content.

6/17/2011 12.5 Minor Clarified the meaning of the technical content.

9/23/2011 12.5 None No ch_anges to the meaning, language, or formatting of the
technical content.

12/16/2011 | 13.0 Major Updated and revised the technical content.

3/30/2012 13.0 None No ch_anges to the meaning, language, or formatting of the
technical content.

7/12/2012 13.0 None No ch_anges to the meaning, language, or formatting of the
technical content.

10/25/2012 | 13.0 None No ch_anges to the meaning, language, or formatting of the
technical content.
No changes to the meaning, language, or formatting of the

1/31/2013 13.0 None technical content.

8/8/2013 14.0 Major Updated and revised the technical content.

11/14/2013 | 14.0 None No ch_anges to the meaning, language, or formatting of the
technical content.
No changes to the meaning, language, or formatting of the

2/13/2014 14.0 None technical content.

5/15/2014 14.0 None No chgnges to the meaning, language, or formatting of the
technical content.

6/30/2015 15.0 Major Significantly changed the technical content.
No changes to the meaning, language, or formatting of the

10/16/2015 | 15.0 None technical content.

7/14/2016 15.0 None No chfanges to the meaning, language, or formatting of the
technical content.

6/1/2017 15.0 None No chfanges to the meaning, language, or formatting of the
technical content.

9/15/2017 16.0 Major Significantly changed the technical content.

9/12/2018 17.0 Major Significantly changed the technical content.

3/610

[MS-TRP-Diff] - v20210625

Telephony Remote Protocol

Copyright © 2021 Microsoft Corporation
Release: June 25, 2021

Revision Revision
Date History Class Comments
4/7/2021 18.0 Major Significantly changed the technical content.
6/25/202110N19.0 Major] Significantly changed the technical content.

[MS-TRP-Diff] - v20210625
Telephony Remote Protocol

Copyright © 2021 Microsoft Corporation
Release: June 25, 2021

4/610

Table of Contents

B I 15 oo Y [F T ot o '] o 13
1.1] [0 11T T 13
1.2 2] =] 1 1T 15

1.2.1 NOrMAtivVe RefEIrENCES ..t e et eenens 15

1.2.2 INfOrmMative REfEIENCES . vttt i i e e e re e raneraes 15
1.3 L0 1 7T YA T 16
1.4 Relationship to Other ProtoCols ... 20
1.5 Prerequisites/Preconditionscciiiiiiiii i e 20
1.6 Applicability Statementoooiniii e 20
1.7 Versioning and Capability Negotiationcccciiiiiiiiiiiiii e 20
1.8 Vendor-EXEensible Fields ..o e e 21
1.9 Standards ASSIgNMIENES. vttt e 21

7 =TT T« 23
2.1 L= 017510 23
2.2 (0] aln gle g NI D=} = IV o 1= PP 23

2.2.1 D atA T Y P S 1ttt 23
2.2.1.1 [P 23
2.2.1.2 o 23
2.2.1.3 L Y o PN 24
2.2.1.4 HPHONE ..o e e ettt 24
2.2.1.5 L | o 0N A o 24
2.2.1.6 PCONTEXT _HANDLE _TYPE ...ttt e et e ae e 24
2.2.1.7 PCONTEXT _HANDLE _TYPE 2uiiiiiitiie i ettt et e e e e re s e eaaenaeaneanens 24
2.2.1.8 STRINGFORMAT _CoNStants cviiiiiiiiiiii e e 25
2.2.1.9 TUISPIDLL_OBJECT _CoNStants ..uviiiiiiiiiii it e i i e ria e anea s 25
2.2.1.10 HAGENTSESSION .. ittt s ettt e e e rneaneas 25
2.2.1.11 [TN] = 1 PN 25

2.2.2 L AN AT I i 1Y 2 26

2.2.3 [T A VTl T @00 =) 1=) (= 27
2.2.3.1 Line Device CoNStants ...uiiuiiiiiii i e e 27

2.2.3.1.1 LINEADDRCAPFLAGS. _ConStantS..iciiiiiiiiiiiiiiiiii i eaeeae s 27
2.2.3.1.2 LINEADDRESSMODE_CONSEANTS .oviiiiiiiiiiit i i i i eneeneeenaeanneas 29
2.2.3.1.3 LINEADDRESSSHARING_CoNStants.....ccvvvviiiiiiiieiiii it eaeeaeeaes 30
2.2.3.1.4 LINEADDRESSSTATE_ConstantsS...cciviiiiiiiiiiiiiic i 30
2.2.3.1.5 LINEADDRESSTYPE _CONStants ..uuiiiiiiiiiiiii i i i i i e e e e eineenneaas 31
2.2.3.1.6 LINEADDRFEATURE_ConstantS...ciciiiiiiiiiiiiiiii i 32
2.2.3.1.7 LINEAGENTFEATURE_CONSEANtS ..uviiiiiiiiiiii i ve vt et eneeneenaeeneeneeaes 33
2.2.3.1.8 LINEAGENTSESSIONSTATE_Constantscccviiiiiiiiiiii i e 34
2.2.3.1.9 LINEAGENTSESSIONSTATUS _CoNStantS....cvvvviiiiiiiiiiiiiiiieeieeneeeeenenes 34
2.2.3.1.10 LINEAGENTSTATE _CONStantS . cocuiiiiiiiii i i it enaee e 34
2.2.3.1.11 LINEAGENTSTATEEX _CONStants ..o.viiiiiiiiiiiiiiii it naeeae e 35
2.2.3.1.12 LINEAGENTSTATUS _CONStaNtS . uiiiiiiiiiiiiii it ii i i i e et eneeenaeanneaas 36
2.2.3.1.13 LINEAGENTSTATUSEX_CoNStants ...c.ciiiiiiiiiiiiii i neeae e 37
2.2.3.1.14 LINEANSWERMODE_CoNStants.....ccoiviiiiiiiiiiieiiie e ieenaenaenneeaes 37
2.2.3.1.15 LINEBEARERMODE _CoONStantS . ouuiiiiiiii it it riine e rieeerninneesrnnneens 37
2.2.3.1.16 LINEBUSYMODE_CONStaANtS. . utittitiiteiniitereritriteiaeanereeernerneennernraneraes 38
2.2.3.1.17 LINECALLCOMPLCOND _CONSEANtS..ttutiutiteiteieiiternrenererernesneennerneenernes 39
2.2.3.1.18 LINECALLCOMPLMODE_CoNStants ..vviviiiiiieiiiiie i iiiaeernnnneesrnnneens 39
2.2.3.1.19 LINECALLFEATURE _CONSEaNtS ..oviiiii it ee vt rneeneennerneenernes 39
2.2.3.1.20 LINECALLFEATUREZ _CONSTANES tuvviiiiiiiiiiiies it iiinnessinnarernnnneesrnnnness 42
2.2.3.1.21 LINECALLHUBTRACKING _CONStantS....cvviriieiiiiieiieieiierieeieeneennenneenernes 43
2.2.3.1.22 LINECALLINFOSTATE _CONStantS..uuviiiiii i it iiie e i e rninneesrnnaeens 43
2.2.3.1.23 LINECALLORIGIN _CONSEANtS ..viitiiniiiiiitiieeieeieeite i enererernsensenserneenernes 45
2.2.3.1.24 LINECALLPARAMFLAGS _CONStantS..cuiiuiireiieiiriieeitiiteiieeernerneennennranerns 46
5/610

[MS-TRP-Diff] - v20210625

Telephony Remote Protocol

Copyright © 2021 Microsoft Corporation
Release: June 25, 2021

2.2.3.1.25 LINECALLPARTYID_CoNStants .iovviiiiiiiiiiiiiiiiiei et ne e e neeneeaes 47
2.2.3.1.26 LINECALLPRIVILEGE _CoNStants......ciiiiiiiiiiiiiiii i i it i nescnaeaaes 48
2.2.3.1.27 LINECALLREASON _CONStaNTS ..iiviiniiiiiiiiiiiiiiieiee et vt s e sresaeennenneeneeaes 48
2.2.3.1.28 LINECALLSELECT _CONStaNtS uiiiiiiiiiiii i i i e i it n e e eia e e aaea e 49
2.2.3.1.29 LINECALLSTATE _CoNStants..cciiiiiiiiiii i i 50
2.2.3.1.30 LINECALLTREATMENT _CONStantS...ciiiiiiiiiiiiiiiiei i iieriesiesnnennenneaneenes 51
2.2.3.1.31 LINECONNECTEDMODE_CoNnstants....ciiiiiiiiiiiiiii i i rie e 52
2.2.3.1.32 LINEDEVCAPFLAGS _CONSEaNtsS ..vviviiiiiiiiiiiiiici st e e naee e 53
2.2.3.1.33 LINEDEVSTATE _Constants...ccciiiiiiiiiiii i i 55
2.2.3.1.34 LINEDEVSTATUSFLAGS_CoNStantsiciviiiiiiiiiiiiiiiie i sineiaennenneeaes 57
2.2.3.1.35 LINEDIALTONEMODE _CoNStantsS. . .cuiiiiiiiiii i i i i s nie e niaeaaaea s 57
2.2.3.1.36 LINEDIGITMODE _CONStantsS . .oiiiiiiiiiiiiii i i i n e e e e 58
2.2.3.1.37 LINEDISCONNECTMODE_CoNStants ..uivviiiiiiiiiiii i iirieiesneenaeneeneeaes 58
2.2.3.1.38 I\ = = S O o 1= = | = S 60
2.2.3.1.39 LINEFEATURE _CONSEaNTS cuitiitiiiiiii ittt e et vt s e e s aee e s e e enes 66
2.2.3.1.40 LINEFORWARDMODE_CONStantS...cuiiiiiiiiiiiii i i it nie e niaeaaaea e 67
2.2.3.1.41 LINEGATHERTERM_CONStanNts . cvviviiiiiiiiiiiici et e e e e e 68
2.2.3.1.42 LINEGENERATETERM_CoNStantS....ciiiiiiiiiiiiiiii it eae s 69
2.2.3.1.43 LINEMEDIACONTROL _CONStaNtS. . cviiiiiiiiiii i it vie e enie e eaneeaaeaas 69
2.2.3.1.44 LINEMEDIAMODE_CoNStants......ciiiiiiiiiiiiiiiiiiiii it na e 70
2.2.3.1.45 LINEOFFERINGMODE _CONStantS...cuviiiiiiiiii i i vie e iieenieeneeeiaeenneas 71
2.2.3.1.46 LINEOPENOPTION _CONStaNtS . .tiitiitiiniiteiitiiiiitiiiiaie et siesneenaenneanennes 72
2.2.3.1.47 LINEPARKMODE_Constants....ciiuiiiiiiiiii i i e eae e 72
2.2.3.1.48 LINEPROXYREQUEST _CoNnstantsS...ciuiiiiiiiiiiiiiiiiiiiiii i sne e e e 73
2.2.3.1.49 LINEPROXYSTATUS _CoNStaNtS .cuviuiiiiiiiiiiiiiiiiiiie i it siesnaenaenaeaneeaes 74
2.2.3.1.50 LINEQUEUESTATUS _CoNstants...ciiiiiiiiiii i i nie e e e eae e 74
2.2.3.1.51 LINEREMOVEFROMCONF_CoNstantsS.....c.cviiiiiiiieiiii i seene e 75
2.2.3.1.52 LINEROAMMODE _CONStaNtS . uiiiiiiiiiiti it it i iiae i e e ne e eaaeanneaas 75
2.2.3.1.53 LINESPECIALINFO _CoNStantS..iciiiiiiiiiiiiiiiiici it e e e ae s 75
2.2.3.1.54 LINETERMDEV _CONStaNntS ..oiiiiiii it et eaae e 76
2.2.3.1.55 LINETERMMODE_CoNStants .uouiiiiiiiiiiii it 76
2.2.3.1.56 LINETERMSHARING _CoNStants.....ccciiiiiiiiiiiiiiiiiiii i neeiaeaaenaeeaes 77
2.2.3.1.57 LINETONEMODE_CoNstants ...ciouviiiiiiiiii i e e 77
2.2.3.1.58 LINETRANSFERMODE_Constantscocviiiiiiiiiiiiiiic i e 78
2.2.3.2 Phone Device CoNStaNtS. ..ottt e i e a e et aaaeaanean 78
2.2.3.2.1 PHONEBUTTONFUNCTION_Constants.....ccoviviiiiiiiiiiiiiiiiicene e 78
2.2.3.2.2 PHONEBUTTONMODE_Constantscoviviiiiiiiiii e 81
2.2.3.2.3 PHONEBUTTONSTATE_Constants...ccoviiiiiiiiiiiiic i e 82
2.2.3.2.4 PHONEERR _CONStaNTS . uitiitiiiie ittt st e e ee it st e e e aaeeae e e eaes 82
2.2.3.2.5 PHONEFEATURE _CONSTANTS .. uiiiiiiiiiiii i i i vt e e enneenaeeas 85
2.2.3.2.6 PHONEHOOKSWITCHDEV _ConStantS....ciouiiiiiiiiiiiiii v neeneeaes 86
2.2.3.2.7 PHONEHOOKSWITCHMODE_CONStantS...cvviieiiiiiiiiie i i i e enaeannenes 87
2.2.3.2.8 PHONEINITIALIZEEXOPTION_Constantsccoovviiiiiiiiiiiiiiiiiiie e 87
2.2.3.2.9 PHONELAMPMODE_CONSTaNtS ..uviiiiiiii it it re e eiaeeanee e 87
2.2.3.2.10 PHONEPRIVILEGE_Constants ...c.ciiiiiiiiii i e 88
2.2.3.2.11 PHONESTATE _CONSEANTS ..iutiiiiiii ittt et e et r e e 88
2.2.3.2.12 PHONESTATUSFLAGS _CoNStantsS ..c.viiiiiiiiiiii i i i ecie e eiaeenaee e 90
2.2.4 Communication Packets Between Client and Serverccooiiiiiiiiiiiiiiiciiiecen, 91
2.2.4.1 REQUESE PACKELS ...viiiieiiiii i e 91
2.2.4.1.1 Create Session for LiNE DeVICE ..ot 91
2.2.4.1.1.1 Y=] 91
2.2.4.1.1.2 NegotiateAPIVErSiONiiiiii i e 93
2.2.4.1.1.3 GEtDEVECAPS 1ttt 95
2.24.1.1.4 GEtAAAIrESSCaPS .. ueieiiitii ittt 97
2.2.4.1.1.5 L 07T o 99
2.2.4.1.2 Terminate Session for LiNE DeVICE ...ivviiiiiiiiii i i i eeeeeeas 102
2.2.4.1.2.1 [0 o =] 102
2.2.4.1.2.2 1] 11000 1. o 103
6/610

[MS-TRP-Diff] - v20210625

Telephony Remote Protocol

Copyright © 2021 Microsoft Corporation
Release: June 25, 2021

2.2.4.1.3 Line DeViCe REQUESES ...viiiii ittt s e rneraneenes 105
2.2.4.1.3.1 ACCEPE e 105
2.2.4.1.3.2 PXo [o o] @lo] g1 =1 /=T ol PP 108
2.2.4.1.3.3 AGENESPECIFIC «uie e e 110
2.2.4.1.3.4 N 153 112
2.2.4.1.3.5 BliNATransfer. .. 115
2.2.4.1.3.6 DeallocateCall......ccooeiiriiei i 117
2.2.4.1.3.7 CompleteCall. ..o 119
2.2.4.1.3.8 (@0e] g aTo] 11l I =T g 1 T PP 121
2.2.4.1.3.9 ConditionalMediaDetectionvcvviiiiiiii i 124
2.2.4.1.3.10 CreateAgent......iiiiiii e 126
2.2.4.1.3.11 CreateAdgentSessSiONcciiuiiiiiiiiiiii e 128
2.2.4.1.3.12 DEVS PG C tutiitiiii it e e 131
2.2.4.1.3.13 DeVSpPeCifiCFEAtUIEuieiieieieie e 133
2.2.4.1.3.14 DIl ittt 135
2.2.4.1.3.15 DO tittitiiit ittt 137
B B TG T I S T oo 11V oo [140
2.2.4.1.3.17 GatherDigits. .uiviiiiriiiiiiii i 142
2.2.4.1.3.18 GenerateDigitscoiiiiiiiiiiii e 145
2.2.4.1.3.19 GeneraleToNe. i e 147
2.2.4.1.3.20 GetAddreSSID ...icviieiiiie it 150
2.2.4.1.3.21 GetAddressStatus ...icuiiiiiiiiiiiie i 152
2.2.4.1.3.22 GetAgentACtiVILYLISt ... 154
2.2.4.1.3.23 GetAGENtCaDS 1t ittt i 156
2.2.4.1.3.24 GetAgentGroupList......ccoiiiiii s 158
2.2.4.1.3.25 GEtAGENTINTO...cuiiieie it 161
2.2.4.1.3.26 GetAgentSesSioNIN O ...iiiii it i e 163
2.2.4.1.3.27 GetAgentSessioNList.....c.ccvviiiiiiiiii i 165
2.2.4.1.3.28 GetAgentStatus .c.oiiiiii i s 167
2.2.4.1.3.29 GetCallHUbTracking......cccoviiiiiiii e 169
2.2.4.1.3.30 GeLCAIIIDS t.viuiitiiiitiieitiiees it 171
2.2.4.1.3.31 GetCallINfo. uieieiiiiriie it e 173
2.2.4.1.3.32 GetCallStatus ...iiviie i i e 175
2.2.4.1.3.33 GetDEVCON I ttutiiitieitiiiatii i 177
2.2.4.1.3.34 GetGroUPLIStciiii e 179
2.2.4.1.3.35 GeEID 1uiitiiiiti i e 181
2.2.4.1.3.36 GetLineDevStatus ...ciiiiiii i 184
2.2.4.1.3.37 GetNeWCallS. ..o e 186
2.2.4.1.3.38 GetNUMAAAIreSSIDS . .cviiiiiiiiiiiee et e e e ae e nees 188
2.2.4.1.3.39 GetProXyStatus ...couiuiiiiiiiiiii i 190
2.2.4.1.3.40 GetQUEUEIN O ..ttt i e 192
2.2.4.1.3.41 GetQUEUELISE .. e 194
2.2.4.1.3.42 HOId ceieiieiiiiii e 196
2.2.4.1.3.43 MaKeCall.. oottt 198
2.2.4.1.3.44 MONItOrDIgitS...uiiiiii i 201
2.2.4.1.3.45 MONItOrMeAIa. . v ittt 203
2.2.4.1.3.46 MONITOITONES 1.viviitiieiie ittt s e e rae e e aaneaneansane e annaanannans 205
2.2.4.1.3.47 NegotiateEXtVersioncciiiiiiiiiii e 207
2.2.4.1.3.48 PalK cuiuiiiiiiiii e 209
2.2.4.1.3.49 PICKUPD ottt e 211
2.2.4.1.3.50 PrepareAddToCONferenCecoviiiiiiiiiiiee e e e e 214
2.2.4.1.3.51 REAINECE ..ttt 216
2.2.4.1.3.52 ReleaseUserUserInfoccuiviiiiiiiiiiiieii s re e e ees 218
2.2.4.1.3.53 RemMOVEFromMCONfEIrENCE . it e ea s 220
2.2.4.1.3.54 SeCUIECAll vttt 222
2.2.4.1.3.55 SeleCtEXTVaIrSiON (it e 224
2.2.4.1.3.56 SendUserUSErINfO . .iuiuiiiiii it et e e e e e 226
2.2.4.1.3.57 SetAgentACtiVILY ...cviiiiii 228

7/610

[MS-TRP-Diff] - v20210625
Telephony Remote Protocol

Copyright © 2021 Microsoft Corporation

Release: June 25, 2021

2.2.4.1.3.58 SetAGENtGIOUD . vttt it r e r e 230
2.2.4.1.3.59 SetAgentMeasurementPeriod..........coviiiiiiiiiiii e 233
2.2.4.1.3.60 SetAgentSessionStateccviiiiiiiiii 235
2.2.4.1.3.61 SetAgentState ... ccoiiiiiii 237
2.2.4.1.3.62 SetAgentStateEX.....ciciiiiiiiiiiiii 239
2.2.4.1.3.63 SetAPPSPECITIC 1iitiitiiiii i s 241
2.2.4.1.3.64 SetCallData....cciieiieiiiiie i e 243
2.2.4.1.3.65 SetCallHUDbTracKingcoieiiiiiiiiiiii e e e 245
2.2.4.1.3.66 SetCallParamsouuiieiie it 248
2.2.4.1.3.67 SetCallQualityOfServiCecciviiiiiiiiiii i e 250
2.2.4.1.3.67.1 FLOWSPEC ...ttt sttt vt e s e a e e e aaens 253
2.2.4.1.3.68 SetCallTreatment....coiiiiii i e e e 255
2.2.4.1.3.69 SetDefaultMediaDetectionccvviiiiiiiii e 257
2.2.4.1.3.70 SetDEVCONTIG «ueueeeininitie e e 259
2.2.4.1.3.71 SetLineDevStatuscoviiiiiiiiii 261
2.2.4.1.3.72 SetMediaControloiiie i e 263
2.2.4.1.3.73 SetMediaMOdecciuiiiiiiiii i 266
2.2.4.1.3.74 SetQueueMeasurementPeriodccviiiiiiiiiiiiiiiiiii e 268
2.2.4.1.3.75 SetStatuUSMESSAgESoviiiiiiiiiiiiiiiii e 270
2.2.4.1.3.76 SetTerminal ...couiiiiiiiiie i e 272
2.2.4.1.3.77 SetUPCONTEIENCE .. vivititiieieieaeae it e e e eeees 274
2.2.4.1.3.78 SetUPTrans er cuiiiii i e 277
2.2.4.1.3.79 SWaPHOIA .oriiii i 280
2.2.4.1.3.80 UnCompleteCall....ccoiiiiiiiiiiii e 282
2.2.4.1.3.81 UNHOIA c.viiiiiii i e 284
2.2.4.1.3.82 UNParK civiiiiiiiiiii i 287
2.2.4.1.4 Create Session for Phone DeViCecvvviiiiiiiiiiiiiii i 289
2.2.4.1.4.1 INItAlIZE cee i e 289
2.2.4.1.4.2 NegotiateAPIVErSIONcciiti i e e 291
2.2.4.1.4.3 Lo BTN = 1P 294
2.2.4.1.4.4 (@] o 7= o [PPSR 296
2.2.4.1.5 Terminate Session for Phone DevVviCeicvvviiiiiiiiiiiiiiiesene e 298
2.2.4.1.5.1 L1 o =] PP 298
2.2.4.1.5.2 SUED OWN e 300
2.2.4.1.6 Phone Device REQUESESuiiiiiiiiiii e 302
2.2.4.1.6.1 [T CLY A o =T | o 302
2.2.4.1.6.2 GetBULEONINTO Lot 305
2.2.4.1.6.3 (1< B T) = P 307
2.2.4.1.6.4 GEEDISPIAY 1ttt 309
2.2.4.1.6.5 1<) =1 1P 311
2.2.4.1.6.6 GetHOOKSWILCN 1. e e 313
2.2.4.1.6.7 GBI D Lttt e 315
2.2.4.1.6.8 LT o = oV o PP PTPRPP 317
2.2.4.1.6.9 GEERING ¢t e 319
2.2.4.1.6.10 GetStAtUS ittt 321
2.2.4.1.6.11 GetVOIUMIE .ttt e 324
2.2.4.1.6.12 NegotiateEXtVersioncoviiiiiiiii e 326
2.2.4.1.6.13 SeleCtEXEVEISION ..ttt 328
2.2.4.1.6.14 SetBULtONIN 0. . it 330
2.2.4.1.6.15 SetData ..iuiiriiiiiiiiiii e 332
2.2.4.1.6.16 SetDISPIAY tiviriitiiiiiii i e 334
2.2.4.1.6.17 SEEGaAIN 1ttt e 336
2.2.4.1.6.18 SetHOOKSWIECH .t e 338
2.2.4.1.6.19 S LamMIP ettt e 340
2.2.4.1.6.20 SEERING 1ttt 342
2.2.4.1.6.21 SetStatUSMESSAgESivviiiiiiiiiiiiir s 344
2.2.4.1.6.22 SetVOIUMIE 1.ttt e 346
2.2.4.1.7 MMC REQUESES L.uiiiiiiiiiii i et e 349
8/610

[MS-TRP-Diff] - v20210625
Telephony Remote Protocol

Copyright © 2021 Microsoft Corporation

Release: June 25, 2021

2.2.4.1.7.1 GetAvailableProViders.....ccvviiii e 349
2.2.4.1.7.2 GetDEVICEFIAGS ... eee e 350
2.2.4.1.7.3 GetLineINfO .uiviiiii 352
2.2.4.1.7.4 GetPhoNEINTO 1.t e 354
2.2.4.1.7.5 GetProVIAerLiSt ... 355
2.2.4.1.7.6 GEtSErVEIrCONT g 1ot 358
2.2.4.1.7.7 SEtLINEINTO 1ttt e 359
2.2.4.1.7.8 SetPhoNEINTO L.vti i e 361
2.2.4.1.7.9 (1= U] 1111 = o 1= P 363
2.2.4.1.7.10 TUISPIDLLCAIIDACKttt e 365
2.2.4.1.7.11 FreeDialogINStancCeccooviiiiiiiiiiiii 366
2.2.4.1.7.12 SetServerCoNfig «..o.ouie i 368
.2.4.1.8 (1= o L=t o ol 2= To LU= PP 370
2.2.4.1.8.1 GetASYNCEVENES ... 370
2.2.4.1.8.2 NegotiateAPIVersionFOrAlIDEVICESvvviiiiiiii i 372
2.2.4.1.8.3 RSPSetEventFilterMasks. .. .c.oviiiiiiiiiii 373
2.2.4.2 RESPONSE PACKELS ..ttt e e e 377
2.2.4.2.1 Completion Packetsciiiiiii i 377
2.2.4.2.1.1 LINE_ADDRESSSTATE ..titiiiiiiieie ittt e e e e eeenes 377
2.2.4.2.1.2 LINE_AGENTSESSIONSTATUS ..ottt 378
2.2.4.2.1.3 LINE_AGENTSPECIFIC . euuiuiicieieieieeeeeeee e eeeenenesnsneneneneneeenes 379
2.2.4.2.1.4 LINE_AGENTSTATUS ..ottt 380
2.2.4.2.1.5 LINE_AGENTSTATUSEX ..euiiieieieieeeeeeeeeeeeneneeesesnnneneneeeenes 381
2.2.4.2.1.6 LINE_APPNEWGCALL ..viviiicc e s 383
2.2.4.2.1.7 LINE_CALLINFO ...ttt e s s s s e e e e 384
2.2.4.2.1.8 LINE _CALLSTATE .o ettt e e v e e e e e e e e e e e e e e neeees 385
2.2.4.2.1.9 LINE_CLOSE. ...ttt et s e e 387
2.2.4.2.1.10 LINE _CREATE . iiititiii it v e e e e e e e e e e e e e e e e e eeees 388
2.2.4.2.1.11 LINE_CREATEDIALOGINSTANCEc.itiiiiiiiiiiininnn e 389
2.2.4.2.1.12 LINE_DEVSPECIFIC ... uititiieeieieie e reraeneneeeeeneaeserasneneneneneeenes 390
2.2.4.2.1.13 LINE_DEVSPECIFICFEATUREitiiiiiiiiiiiiiin e 391
2.2.4.2.1.14 LINE_GATHERDIGITS ...ttt s s 392
2.2.4.2.1.15 LINE_GENERATE ...ttt et e e e e e e an e e e eeees 394
2.2.4.2.1.16 LINE_GROUPSTATUS ...ttt e e e 395
2.2.4.2.1.17 LINE_LINEDEVSTATE. ...ttt eeee e eae e e ae e e e e eeenes 396
2.2.4.2.1.18 LINE_MONITORDIGITSuiiiiiiiiiieie i eeees 397
2.2.4.2.1.19 LINE_MONITORMEDIAttt enea e ae e e e eeenes 398
2.2.4.2.1.20 LINE_MONITORTONE.uiuiuiiieieie e eeeeeeeereees e e aene e eeeenes 399
2.2.4.2.1.21 LINE_PROXYREQUEST ...ttt s e e e 400
2.2.4.2.1.22 LINE_PROXYSTATUS ..ottt et e e e e ee e e e e eeenes 402
2.2.4.2.1.23 LINE_QUEUESTATUS ... ittt et s s e e e 403
2.2.4.2.1.24 LINE_REMOVE ...cuiiiiiiii i et e e e eees 404
2.2.4.2.1.25 LINE_REPLY L .iriiiiiiiiiiie e et s e e e e 405
2.2.4.2.1.26 PHONE_BUTTON ..ottt e s e ee e e eeeen e s e e s aenene e eeees 406
2.2.4.2.1.27 PHONE_CLOSE ..ottt e e e e et e e ae e e eeees 407
2.2.4.2.1.28 PHONE_CREATE ...ttt et eees 408
2.2.4.2.1.29 PHONE_DEVSPECIFIC......iuiuiiiieitieieiereeneeeaeeaeneaesesaennnaneneneneenes 409
2.2.4.2.1.30 PHONE_REMOVEttt s e e e e 410
2.2.4.2.1.31 PHONE_REPLY ..ututititititiieieiene sttt s e aee e s e s e es e s e e naneneeeees 411
2.2.4.2.1.32 PHONE _STATE e ettt et et e e e eeees 413
2.2.4.2.2 Special Case Line Device Completion Packets.........cocovviiiiiiiiiiiinnns 414
2.2.4.2.2.1 AGENESPECITIC et 414
2.2.4.2.2.2 ComMPIEtECall .. e 415
2.2.4.2.2.3 CompleteTransfer .o 416
2.2.4.2.2.4 CreateAgeNt .. 418
2.2.4.2.2.5 CreateAgeNntSESSION ..t 419
2.2.4.2.2.6 DAY o <Y | 1 ol 420
2.2.4.2.2.7 DevSpecifiCFeatureo.viiiii e 421
9/610

[MS-TRP-Diff] - v20210625

Telephony Remote Protocol

Copyright © 2021 Microsoft Corporation
Release: June 25, 2021

2.2.4.2.2.8 [0 1T | 422

2.2.4.2.2.9 GetAgentACtIVIEYLISt ...v i 424
2.2.4.2.2.10 GetAGENtCaPS «iiiriiiiii i i 425
2.2.4.2.2.11 GetAgentGroupLiSt.....ouiiiiiiiiii 426
2.2.4.2.2.12 GEtAGENTINTO. . cuee ittt 427
2.2.4.2.2.13 GetAgentSessioNIN O ...uiviii it i e 429
2.2.4.2.2.14 GetAgentSessioNList......cviiiiiiiiiiiii 430
2.2.4.2.2.15 GetAgentStatus .c.viiiiii i e 431
2.2.4.2.2.16 GetGroUPLISE ... vt 432
2.2.4.2.2.17 GetQUEUEIN O ..ttt i e 433
2.2.4.2.2.18 GetQUEUELISE ..oriii i e 435
2.2.4.2.2.19 MaKECaAIl....uiieei e 436
2.2.4.2.2.20 ParK e 437
2.2.4.2.2.21 PICKUD ce e e 438
2.2.4.2.2.22 PrepareAddTOoCONTErENCE . ittt e eaas 440
2.2.4.2.2.23 SetUPCONTEIENCE .. vivitiei et et e e eees 441
2.2.4.2.2.24 SetUPTrans er cuiiiii i s 443
2.2.4.2.2.25 UNPArK .iuiiii e 444
2.2.4.2.3 Special Case Phone Device Completion Packets..........ccoovieiiiiiiinnnens 445
2.2.4.2.3.1 DBV S PG I ittt 445
2.2.5 Data TemMPIatesS .o e 447
2.2.5.1 ASYNCEVENTMSG ..uiiiiiniiiiiiiiitis st a s e s st s s s s e e e 447
2.2.5.2 LI 1 37 1 C 448
2.2.6 Data SErUCTUIES .t et 449
2.2.6.1 AVAILABLEPROVIDERENTRY ..uvitiiiiiiiiiiiniieieia i s e s s s sneeees 449
2.2.6.2 AVAILABLEPROVIDERLIST ..euttititiieeeeeaeaeseeeseeneeeeaeenenesasasnsnenenenenenes 450
2.2.6.3 [Y 0 Y 451
2.2.6.4 DEVICEINFOLIST . .eutitititieeeeee e e e ee e aeeeeeea e e s e s as e nsnee e eanrereeernenenens 452
2.2.6.5 TAPISERVERCONFIG. . ..ttt a s s s e e e e 453
2.2.6.6 LINEADDRESSCAPS ...ttt et et e e e et e e e e e e e e e e e e nrnenenens 454
2.2.6.7 LINEADDRESSSTATUS ...ttt s s e e e e e 462
2.2.6.8 LINEAGENTSTATUS L.ttt s s e e e s 464
2.2.6.9 LINEAGENTACTIVITYENTRY ..eiiiiieieieiee e e e e s e e e e e ene e e neenenenens 465
2.2.6.10 LINEAGENTACTIVITYLIST . uiuiuiiiiirine et a e e as s s s r e e anaas 466
2.2.6.11 LINEAGENTGROUPLIST ...tititiiiteeaeaeeeeteteteneeeeneseseneeasneneeneeeeaennnnns 466
2.2.6.12 LINEAGENTGROUPENTRY ..euuiuiiiiiiiniie et re e e s s s s s s s e e e anans 467
2.2.6.13 LINEAGENT CAPS . ..ttt e e e et e e e e e e e e e e e e e e e nnnens 468
2.2.6.14 LINEAGENTSESSIONENTRYuiuiuiuieeieananeneneeeeereserarnsneneneneaeneaeaeananns 470
2.2.6.15 LINEAGENTSESSIONLIST . uuuuiiiiirineie st e et e e s s s s s s s e e e anaas 471
2.2.6.16 LINEAGENTSESSIONINFOuiuiiieieneieeneneneneeeenererenesesneneeeeeneaeannnns 471
2.2.6.17 LINECALLSTATUS ...ttt st e e e s s s e s e e e e anans 473
2.2.6.18 LINECALLHUBTRACKINGINFOiutuieeieititetaneeeeerereserneneneeeneneenennnens 475
2.2.6.19 LINECALLINFO ...cuiiititit i s e e et e e e s e s s s s s s s e e anans 475
2.2.6.20 LINECALLPARAMS ...ttt et et e e e et e e e e e e e e e e e e enennnens 484
2.2.6.21 LINECALLLIST .uiituiieie it et eteeete e e e s st e e e e e e e e s e s e r e s a e nene e e eeenennnnns 490
2.2.6.22 LINECALLTREATMENTENTRY ...uuiiiiiiini i e e e e e e e 491
2.2.6.23 LINEDEVCAPS . ..ottt ettt e e e e e e e aans 491
2.2.6.24 LINEDEVSTATUS ..ttt e et e e e s s s s s s e e e e 499
2.2.6.25 LINEAPPINFO ...uiuiiitititieitieeitaeeaeeaststatateneeeeaerenana s s snanesasasaeneanannnns 501
2.2.6.26 LINEDIALPARAMS . ..ottt e e e e e e e e e e anans 503
2.2.6.27 LINEGENERATETONE ...ttt et e etaeeee e e e s en e s s snenssasannenennnnnnns 503
2.2.6.28 LINEPROXYREQUEST ...ututititiiiiiieneaeeeetetsneneeeenesesasasasnanssnsnsneneanannnns 504
2.2.6.29 LINEQUEUEINFO ..ottt e et e e e e a e e e e e e e e anens 511
2.2.6.30 LINEFORWARDtuiititititititiai et e st s e e e e ee e e r e s e n e s e s e ssasaneneaeananns 513
2.2.6.31 LINEFORWARDLIST ...uttitititiiiie e e et e et e e e e e e e s e s e s e s a s e s e s e e e nennnans 514
2.2.6.32 LINEPROVIDERLIST . eututitititiiiiteneae et etstasaneeeeneseresasssnansnsasasneneanenanns 514
2.2.6.33 LINEPROVIDERENTRY ...ttt eete e e ee e e re e se s s saseseneaenenanans 515
2.2.6.34 LINEPROXYREQUESTLIST . uuuuiiiiie e e eteteteneeeea e resere s asasnsseneenenneans 516
10/ 610

[MS-TRP-Diff] - v20210625

Telephony Remote Protocol

Copyright © 2021 Microsoft Corporation
Release: June 25, 2021

2.2.6.35 LINEQUEUELIST ..uiuiitititisitiiiiii st a e e s s s s s e e e 516
2.2.6.36 LINEQUEUEENTRY ...uiititititiiiii et e e e e e e e e e e s e s a s s s s e e e e enanans 517
2.2.6.37 LINEMONITORTONE ...cutititininiiiiinins s sa e e s sasss s enasasans 518
2.2.6.38 LINEMEDIACONTROLDIGIT....uiuiuiuiueeeaeenananananeeeaerereearneneneneaeaeeaeaeananns 518
2.2.6.39 LINEMEDIACONTROLMEDIA.ttt ittt eeeee e e aaeaearneeeaeaeaeaeaeannns 519
2.2.6.40 LINEMEDIACONTROLTONEuiuiuiiiiinsisiiiiiisiseiene e s asss s e anaas 520
2.2.6.41 PHONEBUTTONINFO .. .ottt et et e e e e e e e e e e e e e e e e e ee e ennnnenns 520
2.2.6.42 PHONECAPS ..o 522
2.2.6.43 PHONEEXTENSIONID.ttt eeet e e e e eea e e e e e e aeae e e eeeaeananenns 528
2.2.6.44 LINEMEDIACONTROLCALLSTATE ...iuiiiiiiiiiiiiiii s eas 529
2.2.6.45 LINEEXTENSIONIDucuteieininiiieeae e e eteneneneeeeaerereeaensneneneeeeaeaeannns 529
2.2.6.46 VARSTRING. ...ttt ittt e e e e e e e e e a e r e e aen e eea e enaeanananns 530
2.2.6.47 LINEAGENTINFO ..ottt st a e e s s s e e 531
2.2.6.48 PHONESTATUS ..ttt ittt e e e e e e e e e e e e a e e e e e e e enennanns 532
2.2.6.49 LINETERMOCAPSttt st as 535
2.3 Directory Service Schema Elementscooviiiiiiiiiiiii 535
3 Protocol Detailsc.ciuiiiieieieiemrne s 537
3.1 TapPSIV SerVEr DELails .uiviiii i e e 537
3.1.1 Abstract Data Model.......ccoieiii s 537
3.1.2 01T 538
3.1.3 INitIAliZatioN .o e 538
3.1.4 Message Processing Events and Sequencing Rulesc.cvoiviiiiiiiiiiiiiiienens 538
3.1.4.1 ClientAttach (OpnuUM 0) ...ueniiiii e 539
3.1.4.2 ClientRequest (OPpNUM 1) i i e e ae s 540
3.1.4.3 ClientDetach (OPpNUM 2) it e e e ae s 565
3.1.5 TN EVENES . et e 565
3.1.6 Other LoCal EVENTS. ...t e e a e 566
3.2 TapsrVv Client Details. .. coviiii i 566
3.2.1 Abstract Data Model......ouiuiiiiiiiii 566
3.2.2 L0 566
3.2.3 INItIaliZation .. 566
3.2.4 Message Processing Events and Sequencing Rulescccvviiiiiiiiiiiiniiinenens 566
3.2.5 TN EVENTS et e 566
3.2.6 Other LoCal EVENTS. ... e e a e 566
3.3 Remotesp Server DetailSo 567
3.3.1 Abstract Data Model......ouiuieiiiii 567
3.3.2 L0 1 567
3.3.3 | T = 4= o o o I 567
3.3.4 Message Processing Events and Sequencing Rulesc.coooiiiiiiiiiiiiiiniiiieens 567
3.3.4.1 RemoteSPALtach (OpNUM 0)..c.uieiiie i e 568
3.3.4.2 RemoteSPEVENtProc (OpnUM 1) ..o e e 568
3.3.4.3 RemoteSPDetach (OPNUM 2) ...t e e 570
3.3.5 TIM e EVENES . ot 570
3.3.6 Other LOCal EVENES. . vttt e ae e e 570
3.4 Remotesp ClHent Detailscieiiieiii e e 570
3.4.1 Abstract Data Model......ouiuieiiiii 570
3.4.2 L0 1 570
3.4.3 INItIAliZatiON . 571
3.4.4 Message Processing Events and Sequencing Rulescocoviiiiiiiiiiiiiiiicienens 571
3.4.5 TIM e EVENES .ttt 571
3.4.6 (O aT=T ol I Tor= Y I V=T o | = 571
4 Protocol EXamples ..cccciieirimierimmersmmerssssissasnssessssssnasassssssnasassssssnnsassnsssnnsassnsnsnnsnnnns 572
4.1 Packet Exchanges to Establish the Session ..., 572
4.2 Packet Exchanges to Terminate the Sessionc.cooviiiiiiiiiiic e 573
4.3 Packet Exchanges to Make an Outgoing Callccooiiiiiiiiiiiii e, 574
4.4 Packet Exchanges to Answer an Incoming Callooviiiiiiiiiiiiii e 575
4.5 Packet Exchanges to Transfer a Connected callcccveieiiiiiiiiiiiiii e, 576
11 /610

[MS-TRP-Diff] - v20210625

Telephony Remote Protocol

Copyright © 2021 Microsoft Corporation
Release: June 25, 2021

4.6 Packet Exchanges to Forward Incoming Calls or Modify the Existing Forward State..577
4.7 Packet Exchange for Establishing a Management Sessioncccevviiiiiiiiiniininennn. 578
4.8 Packet Exchanges to Terminate the Management Sessioncccevviviiiiiiciiiiennnnn 579
4.9 Packet Exchange for Getting the Server Configurationccoovviiiiiiiiiiiiiiicee, 579
4.10 Packet Exchange for Setting the Server Configuration........c.cocooviiiiiiiiiicineenns 580
4.11 Packet Exchanges for ACD proxy requests and reSpONSES......ccvveiiriiriiniiieiieiierinnnss 580
4.12 Packet Exchanges to Create an Agent Session for an ACD Group.........ccceveieienenanens 581
L <Y oL 1 | o 1 583
5.1 Security Considerations for IMplementerscviiiiiiiii e 583
5.2 Index of SeCUritY Paramelers ..o e e 583

6 AppendiX A: FUll IDL.....ccioiirieriersasmsmsasssnsanssnssnssasssnsassanssnssnssnssasssnsansansansnnssnssnnnns 584
6.1 Appendix A.1: REMOESP.IDL ..cuiiiiiiiii i 584
6.2 Appendix A.2: TapSIV.IDL .o e 584

7 (Updated Section) Appendix B: Product Behavior........cccccvvirrrnnnmimsmsmsessesasasass 586
Change TraCKiNG .. iiciiiioriirsrsarsa s sra s s s s ssassassassasssassnssasssnsasssnssnssnssnnsannas 589

12 T 1 3 e 1= T 590

12 /610

[MS-TRP-Diff] - v20210625

Telephony Remote Protocol

Copyright © 2021 Microsoft Corporation
Release: June 25, 2021

1 Introduction

The Microsoft Telephony Application Programming Interface (TAPI) enables implementation of
communications applications ranging from voice mail to call centers with multiple agents and switches.
The Microsoft Telephony programming model abstracts communications control from device control,
freeing end-user applications and device manufacturers from the need to conform to the others'
requirements. Using this model, an end-user or server application does not require detailed
information about device control and the device does not need to be tailored to the application.
Applications and devices can undergo innovation and change independently. Possible TAPI applications
can include:

= Basic voice calls on the public switched telephone network (PSTN).

= Call center applications for tracking multiple agents.

= Private branch exchange (PBX) control.

= Interactive voice response (IVR) computing systems.

= Voice mail.

= Detailed phone device control.

Sections 1.5, 1.8, 1.9, 2, and 3 of this specification are normative. All other sections and examples in
this specification are informative.

1.1 Glossary

This document uses the following terms:

Active Directory Service Interfaces (ADSI): A directory service model and a set of Component
Object Model (COM) interfaces. ADSI enables Windows applications and Active Directory Domain
Services (AD DS) clients to gain access to several network directory services, including AD DS.

ASCII: The American Standard Code for Information Interchange (ASCII) is an 8-bit character-
encoding scheme based on the English alphabet. ASCII codes represent text in computers,
communications equipment, and other devices that work with text. ASCII refers to a single 8-bit
ASCII character or an array of 8-bit ASCII characters with the high bit of each character set to
zero.

authentication level: A humeric value indicating the level of authentication or message protection
that remote procedure call (RPC) will apply to a specific message exchange. For more
information, see [C706] section 13.1.2.1 and [MS-RPCE].

Authentication Service (AS): A service that issues ticket granting tickets (TGTs), which are used
for authenticating principals within the realm or domain served by the Authentication Service.

client: A computer on which the remote procedure call (RPC) client is executing.

double-byte character set (DBCS): A character set that can use more than one byte to
represent a single character. A DBCS includes some characters that consist of 1 byte and some
characters that consist of 2 bytes. Languages such as Chinese, Japanese, and Korean use DBCS.

dual-tone multi-frequency (DTMF): In telephony systems, a signaling system in which each
digit is associated with two specific frequencies. This system typically is associated with touch-
tone keypads for telephones.

endpoint: A network-specific address of a remote procedure call (RPC) server process for remote
procedure calls. The actual name and type of the endpoint depends on the RPC protocol

13/ 610

[MS-TRP-Diff] - v20210625

Telephony Remote Protocol

Copyright © 2021 Microsoft Corporation
Release: June 25, 2021

sequence that is being used. For example, for RPC over TCP (RPC Protocol Sequence
ncacn_ip_tcp), an endpoint might be TCP port 1025. For RPC over Server Message Block (RPC
Protocol Sequence ncacn_np), an endpoint might be the name of a named pipe. For more
information, see [C706].

globally unique identifier (GUID): A term used interchangeably with universally unique
identifier (UUID) in Microsoft protocol technical documents (TDs). Interchanging the usage of
these terms does not imply or require a specific algorithm or mechanism to generate the value.
Specifically, the use of this term does not imply or require that the algorithms described in
[RFC4122] or [C706] must be used for generating the GUID. See also universally unique
identifier (UUID).

H.323: H.323 is the International Telecommunication Union - Telecommunication (ITU-T) protocol
used for multimedia communications over packet-switched networks based on the Internet
Protocol (IP). The main usage of H.323 is for VoIP, Audio, and Video conferencing. For more
information see [H323].

Interface Definition Language (IDL): The International Standards Organization (ISO) standard
language for specifying the interface for remote procedure calls. For more information, see
[C706] section 4.

Microsoft Management Console (MMC): Provides a framework that consists of a graphical user
interface (GUI) and a programming platform in which snap-ins (collections of administrative
tools) can be created, opened, and saved. MMC is a multiple-document interface (MDI)
application.

multicast: The delivery of data from one source to multiple destinations over a network. Copies of
the data are made only when it needs to be transmitted on different branches containing the
destinations. A minimal spanning tree-based communication where the source sits at the root of
the tree, the destinations are on the other nodes, and packets travel down replicated only when
necessary.

Network Data Representation (NDR): A specification that defines a mapping from Interface
Definition Language (IDL) data types onto octet streams. NDR also refers to the runtime
environment that implements the mapping facilities (for example, data provided to NDR). For
more information, see [MS-RPCE] and [C706] section 14.

opnum: An operation number or numeric identifier that is used to identify a specific remote
procedure call (RPC) method or a method in an interface. For more information, see [C706]
section 12.5.2.12 or [MS-RPCE].

public switched telephone network (PSTN): Public switched telephone network is the voice-
oriented public switched telephone network. It is circuit-switched, as opposed to the packet-
switched networks.

registered proxy function handler: A server application can register and handle client functions
related to Monitoring and control of Automatic Call Distribution (ACD) agent status on stations.
The registration is specified using an option in Open (section 2.2.4.1.1.5). Such a server
application is called proxy function handler. TAPI conveys the client requests related to
monitoring and control of ACD agent status on stations to the proxy function handler.

remote procedure call (RPC): A communication protocol used primarily between client and
server. The term has three definitions that are often used interchangeably: a runtime
environment providing for communication facilities between computers (the RPC runtime); a set
of request-and-response message exchanges between computers (the RPC exchange); and the
single message from an RPC exchange (the RPC message). For more information, see [C706].

RPC protocol sequence: A character string that represents a valid combination of a remote
procedure call (RPC) protocol, a network layer protocol, and a transport layer protocol, as
described in [C706] and [MS-RPCE].

14 /610

[MS-TRP-Diff] - v20210625

Telephony Remote Protocol

Copyright © 2021 Microsoft Corporation
Release: June 25, 2021

server: A computer on which the remote procedure call (RPC) server is executing.
Unicode character: Unless otherwise specified, a 16-bit UTF-16 code unit.

universally unique identifier (UUID): A 128-bit value. UUIDs can be used for multiple
purposes, from tagging objects with an extremely short lifetime, to reliably identifying very
persistent objects in cross-process communication such as client and server interfaces, manager
entry-point vectors, and RPC objects. UUIDs are highly likely to be unique. UUIDs are also
known as globally unique identifiers (GUIDs) and these terms are used interchangeably in the
Microsoft protocol technical documents (TDs). Interchanging the usage of these terms does not
imply or require a specific algorithm or mechanism to generate the UUID. Specifically, the use of
this term does not imply or require that the algorithms described in [RFC4122] or [C706] must
be used for generating the UUID.

well-known endpoint: A preassigned, network-specific, stable address for a particular
client/server instance. For more information, see [C706].

MAY, SHOULD, MUST, SHOULD NOT, MUST NOT: These terms (in all caps) are used as defined
in [RFC2119]. All statements of optional behavior use either MAY, SHOULD, or SHOULD NOT.
1.2 References

Links to a document in the Microsoft Open Specifications library point to the correct section in the
most recently published version of the referenced document. However, because individual documents
in the library are not updated at the same time, the section numbers in the documents may not
match. You can confirm the correct section numbering by checking the Errata.

1.2.1 Normative References

We conduct frequent surveys of the normative references to assure their continued availability. If you
have any issue with finding a normative reference, please contact dochelp@microsoft.com. We will
assist you in finding the relevant information.

[C706] The Open Group, "DCE 1.1: Remote Procedure Call", C706, August 1997,
https://publications.opengroup.org/c706

Note Registration is required to download the document.

[MS-ADA3] Microsoft Corporation, "Active Directory Schema Attributes N-Z".
[MS-DTYP] Microsoft Corporation, "Windows Data Types".

[MS-ERREF] Microsoft Corporation, "Windows Error Codes".

[MS-RPCE] Microsoft Corporation, "Remote Procedure Call Protocol Extensions".

[RFC2119] Bradner, S., "Key words for use in RFCs to Indicate Requirement Levels", BCP 14, RFC
2119, March 1997, http://www.rfc-editor.org/rfc/rfc2119.txt

[RFC2205] Braden, R., Zhang, L., Berson, S., et al., "Resource ReSerVation Protocol (RSVP)", RFC
2205, September 1997, http://www.ietf.org/rfc/rfc2205.txt

1.2.2 Informative References

[MSDN-MSTelephonyOvw] Microsoft Corporation, "Microsoft Telephony Overview",
http://msdn.microsoft.com/en-us/library/ms733433.aspx

15/ 610

[MS-TRP-Diff] - v20210625

Telephony Remote Protocol

Copyright © 2021 Microsoft Corporation
Release: June 25, 2021

[MSDN-TAPI-SP] Microsoft Corporation, "TAPI Service Providers", http://msdn.microsoft.com/en-
us/library/ms725513(VS.85).aspx

[MSDN-TAPI2.2] Microsoft Corporation, "Telephony Application Programming Interface Version 2.2",
http://msdn.microsoft.com/en-us/library/ms737220(VS.85).aspx

[MSDN-TAPI3.1] Microsoft Corporation, "Telephony Application Programming Interface Version 3.1",
http://msdn.microsoft.com/en-us/library/ms734215(VS.85).aspx

1.3 Overview

The Telephony Remote Protocol enables a client to control telephony devices on the server through
TAPI, and manage or administer them. The server software can be modeled as:

= TAPI service, which is independent of device specifics and depends on device-specific software for
actual device control.

= Telephony service provider (TSP), which is device-specific software (including the device driver
software). For more information, see [MSDN-TAPI-SP].

The TAPI service and the TSP can communicate with each other according to a well-defined interface,
the Telephony Service Provider Interface (TSPI).

An Automatic Call Distribution (ACD) server is a combination of hardware and software that classifies,
queues, and distributes incoming calls to agents or outgoing calls to lines.

The Server ACD application is a TAPI proxy application, which runs on the same server as the TSP.
With a traditional ACD switch, the proxy application would interface to the switch's internal ACD and
expose its operation. A software-based or "virtual" ACD proxy application would be fully responsible
for the tracking of calls, queues, groups, and agents and would use the standard TAPI interfaces to
control the switching hardware. Agent client applications will typically run on the individual agent's
workstations and make use of the TAPI Remote Service Provider to communicate with the TAPISRV on
the server machine, and hence the proxy application.

The Agent object represents an agent that is capable of handling calls. This agent is usually a person
but can be an interactive voice response (IVR) or some other combination of software and hardware.
Agents are vital to a call center; they are responsible for receiving and processing incoming calls and
at times, for making outgoing calls to customers or prospects.

An Agent Handler represents software or hardware that is capable of passing calls to a group of
agents. Typically, this is a proprietary switch that connects outside lines to telephones at agent
stations.

An Agent Session represents an agent who has logged on and is qualified to handle calls for a
particular ACD Group. An agent session is a dynamically created object that relates an agent to an
ACD group for which the group will provide service, and also to the address where they will receive
calls (turret, station, phone, and so on). Applications can use the agent session object to track agent
activity in a particular ACD group.

An ACD group represents a class of calls that requires a particular type of handling. An ACD group
services one or more queues. As incoming calls are classified, they are passed to queues that are
associated with the relevant ACD group. A call coming off the queue is passed to an agent who has
created an agent session object, indicating the agent is able to handle calls from that ACD group.

The Queue object represents a point in the ACD system where calls are temporarily held pending
action. Access to a queue object allows an application to read a variety of standard statistics that
relate to queue usage; however, access does not give an application the ability to control calls on the
queue. Only applications that have access to the associated addresses and lines are able to control the
calls on the queue.

16 / 610

[MS-TRP-Diff] - v20210625

Telephony Remote Protocol

Copyright © 2021 Microsoft Corporation
Release: June 25, 2021

Monitoring and control of ACD agent status on stations is supported through these functions:
GetAgentCaps, GetAgentStatus, GetAgentGrouplList, GetAgentActivityList, SetAgentGroup,
SetAgentState, and SetAgentActivity.

Architecturally, ACD functionality is implemented in a server-based application. The client functions
mentioned above, rather than mapping to the telephony service provider, are conveyed to a server
application that has registered (using an option of Open) as a handler for such functions.

A line device represents a physical device such as a modem, voice board, fax board, or an Integrated
Services Digital Network (ISDN) card that is connected to a network. Line devices support
communications capabilities by allowing applications to send information to, or receive information
from, a network. A line device contains a set of one or more homogeneous channels that can be used
to establish calls. In Plain Old Telephone Service (POTS), exactly one channel exists on a line, and the
channel is used exclusively for voice. Other technologies, such as ISDN, can support more than one
channel on a single line.

An address represents a location on a network. The address itself is a string that identifies a location
on a network. In the case of a telephone network, the address is a telephone number. Each channel
can have its own address, which means a line could have as many addresses as it has channels. The
exact relationship between channels and addresses depends on the underlying TSP implementation.

A client can obtain the number of addresses that are present on a line by using the GetDevCaps
packet, which also provides information that is specific to the line device and common to all addresses
on that line. Different addresses have different features, capabilities, and states. The client can access
this information by sending the GetAddressCaps packet to the server.

A phone device represents characteristics of the phone device hardware rather than the connection to
the network itself. Thus, operations such as increasing or decreasing the volume of audio that is sent
or received, changing the ring mode, and so on are carried out by using phone device operations.

Many TAPI operations take a device ID or address ID parameter. The device ID can range from 0 to
one less than the total number of devices that are reported by the corresponding Initialize packet. The
address ID can range from 0 to one less than the number of addresses on that line device. The
number of addresses on a line is obtained by sending the GetDevCaps packet for that line device.

This protocol consists of two interfaces: the tapsrv interface and the remotesp interface.

The tapsrv interface allows the client to send RPC packets to the server, causing TAPI operations to be
executed on the server. The RPC packets in this specification are named for the specific TAPI operation
that will be executed and are specified in section 2.2.

TAPI operations can complete either synchronously or asynchronously.

= Synchronous completion occurs when the requested TAPI operation is completely executed before
the RPC function call returns to the client. This includes the case when the operation was not
executed and an error is synchronously returned to the client.

In Synchronous calls the client sends a TAPI32_MSG packet through the ClientRequest method
with appropriate parameters in the packet. Depending on the request, the server fills the required
values and sends back to client.

For example, the client sends the GetDevCaps packet through the ClientRequest method to get
the telephony capabilities of a specified line device. The GetDevCaps packet follows the structure
of a TAPI32_MSG. The server fills the Req_Func field and VarData field of TAPI32_MSG with the
result of the encapsulated telephony request and LINEDEVCAPS.

17 /610

[MS-TRP-Diff] - v20210625

Telephony Remote Protocol

Copyright © 2021 Microsoft Corporation
Release: June 25, 2021

Client Server

—_— i
QlentRequest(TAR32 Mgy é
- D

4’d_~__FF,,w=|32 MSG g

Figure 1: Synchronous Completion

= Asynchronous completion is when the RPC function call returns to the client while the request is
still being executed (for example, the RPC function call returns while the client is dialing a number
on a telephony device). A request ID is returned from the server when the asynchronous function
call returns to the client. When the TAPI operation completes later, the server informs the client of
completion along with the success or error status by using the same request ID to identify the
operation being completed.

In Asynchronous calls, the client sends a TAPI32_MSG packet through the ClientRequest method
with the appropriate parameters in the packet. The server sends the request ID in the response to
the ClientRequest method. On completion of the request the server sends back an
ASYNCEVENTMSG through the RemoteSPEventProc method with same request ID. The server also
calls the RemoteSPEventProc method with an ASYNCEVENTMSG to indicate any spontaneous event
that is related to the TAPI operations on the server.

For example, when the server offers an incoming call the client sends the Answer packet through
the ClientRequest method to server for answering the call. The Answer packet follows the
structure of the TAPI32_MSG. The server returns a positive number as the request ID for success.
On completion of the requested operation the server calls the RemoteSPEventProc method with a
LINE_REPLY packet which matches the request identifier previously returned for the Answer
packet. LINE_REPLY follows the ASYNCEVENTMSG.

18/ 610

[MS-TRP-Diff] - v20210625

Telephony Remote Protocol

Copyright © 2021 Microsoft Corporation
Release: June 25, 2021

Client Server

Make a :
——— i . :
Request G‘e"”%?queﬂ(TAPBQ MSG) : Initiate the requested
= ——
i operation asynchronously
i and return a positive

Reques(ld—"’—’_'/—ﬁ number as RequestiD
-— ;

£ ccess/f
t SDEveanroc(ASfNCEVBﬂMS-“’)"—'—'—"; :?fﬁf:treeg:g:ed operz:('iuors
. q— Remole :
¢ Indicate the spontaneous
(ASYNCBJBQTMQS)’-""‘? event that is related
i toTAP operationson the
server

4— RemoteSPEventProc

Figure 2: Asynchronous Completion

Section 2.2.4 specifies the packets that are sent as part of requests from client to server,
asynchronous event packets from server to client indicating the completion of the requested
operation or spontaneous event relating to TAPI operations on the server.

The remotesp interface, through the RemoteSPEventProc method, allows the server to notify the client
of events that affect TAPI operations on the server. In RPC terminology, the server is acting as an
"RPC client" on the remotesp interface because the server makes the RPC function call, and the client
is acting as an "RPC server" on the remotesp interface. Unless otherwise mentioned, the term "server"
is used to indicate a server in the TAPI sense in this specification. A server provides telephony devices
that the client can use.

The events that are notified on the remotesp interface can be the completion of an asynchronous TAPI
operation that is initiated earlier by the client or a spontaneous event that is related to TAPI
operations on the server (for example, an incoming call on a telephony device).

The client can specify that the server use a mailslot mechanism instead of the remotesp interface for
the server to notify the client of events. See the ClientAttach method for details. In this specification,
a client that specifies a mailslot mechanism is called a connection-less client and a client that uses the
remotesp interface is called a connection-oriented client.<1>

Connection-less clients use the Pull Model for getting events. In the pull model, the server informs the
client that events are available for retrieval by writing a DWORD value to the client's mailslot, and the
client retrieves events via the ClientRequest method.

Connection-oriented clients use the Push Model for getting events. In the push model, the server
connects to the client on the remotesp interface by using the RemoteSPAttach method and calls the
RemoteSPEventProc method on the client so that the client can process telephony events and
completion notifications from the server.

Clients that connect to the server for administration of the telephony devices cannot be interested in
events that occur on the telephony devices. These clients are called MMC clients in this specification
and need not provide a mailslot mechanism or remotesp interface for the server to notify the client.

For more information about possible packet sequences to complete TAPI operations, see section 4.

19/ 610

[MS-TRP-Diff] - v20210625

Telephony Remote Protocol

Copyright © 2021 Microsoft Corporation
Release: June 25, 2021

For more information, see [MSDN-MSTelephonyOvw].

1.4 Relationship to Other Protocols

The Telephony Remote Protocol requires the RPC protocol for communication from client to server and
for communication from server to a connection-oriented client. It also depends on mailslot-mechanism
support for communications from server to connection-less clients.

There are no protocols that depend on the Telephony Remote Protocol.

1.5 Prerequisites/Preconditions

RPC and/or mailslot communication are working between the client and server for this protocol to
function. Additionally, the client and server are configured to enable their roles as defined by this
protocol.

Client configuration:
= The client is configured with the name of the server to connect to.

= The client is configured to act as either a connection-oriented client or a connection-less
client.<2>

The client can detect Telephony Remote Protocol servers that are published in the domain by
searching Active Directory for serviceConnectionPoint objects with B1A37774-E3F7-488E-
ADBFD4DB8A4AB2ES as a keyword.

Server configuration: The server is configured by enabling the Telephony Remote Protocol server role.
The server can publish itself by creating a serviceConnectionPoint object in Active Directory with
B1A37774-E3F7-488E-ADBFD4DB8A4AB2ES as a keyword.

1.6 Applicability Statement

Mechanisms external to this protocol are used when a client makes or receives a phone call in order to
transmit or receive voice or data information on a telephony device that is connected to the server. To
receive or transmit information (for example, voice or data) over such a phone call, mechanisms
external to this protocol are used.

1.7 Versioning and Capability Negotiation

This specification covers versioning issues in the following areas.

Supported Transports:

= The Telephony Remote Protocol uses RPC over named pipes only on the tapsrv interface.
= The server uses a mailslot mechanism with connection-less clients.

= The server uses the RPC protocol and endpoint that is specified by connection-oriented clients.

Security and Authentication Methods: The Telephony Remote Protocol depends on the RPC protocol for
security and authentication. The client supports RPC_C_AUTHN_GSS_NEGOTIATE for the
authentication service on both the tapsrv and remotesp interfaces. The server can reject RPC
communications on the tapsrv interface if the authentication level is not set to
RPC_C_AUTHN_LEVEL_PKT_PRIVACY by the client. In this case, the protocol cannot be used by the
client to control telephony devices on the server. The client can reject RPC communications on the
remotesp interface if the authentication level is not set to RPC_C_AUTHN_LEVEL_PKT_PRIVACY by the

20/610

[MS-TRP-Diff] - v20210625

Telephony Remote Protocol

Copyright © 2021 Microsoft Corporation
Release: June 25, 2021

server. In this case, the protocol cannot be used by a connection-oriented client to control telephony
devices on the server.

Localization: The Telephony Remote Protocol does not contain locale-specific information.

Protocol Versions: The Telephony Remote Protocol has only one interface version. However, the
underlying TAPI operations supported by the protocol can correspond to any of the multiple versions
of TAPI. This difference is handled in the protocol by allowing additional values for the constants that
are passed in the RPC packets between the client and server. The use of these methods is specified in
section 3.1. The constants specified in section 2 include details on the TAPI versions for which they are
valid. The client and server determine the TAPI version as described in the following sections:

= Initialize RPC packets for line device requests.

= Initialize RPC packets for phone device requests.

= NegotiateAPIVersion RPC packets for line devices.

= NegotiateAPIVersion RPC packets for phone devices.

The client queries the line device capabilities by sending the line GetDevCaps packet.

The client determines the address capabilities by sending the GetAddressCaps packet to the server.
The client determines the phone device capabilities by sending the phone GetDevCaps packet.

TAPI versions are specified in terms of DWORDs, where the higher word represents the major version
and the lower word represents the minor version, shown as follows: <3>

= 0x00010004 = TAPI version 1.4
= 0x00020000 = TAPI version 2.0
= 0x00020001 = TAPI version 2.1
= 0x00020002 = TAPI version 2.2
For more information, see [MSDN-TAPI2.2].
= 0x00030000 = TAPI version 3.0
= (0x00030001 = TAPI version 3.1

For more information, see [MSDN-TAPI3.1].

1.8 Vendor-Extensible Fields

None

1.9 Standards Assignments

The Telephony Remote Protocol uses the following parameter assignments:

Parameter Value Reference
RPC UUID for tapsrv 2F5F6520-CA46-1067-B319-00DD010662DA [C706]
section A.2.5
RPC UUID for remotesp 2F5F6521-CA47-1068-B319-00DD010662DB [C706]
section A.2.5
21/610

[MS-TRP-Diff] - v20210625

Telephony Remote Protocol

Copyright © 2021 Microsoft Corporation
Release: June 25, 2021

Parameter Value Reference
Pipe Name for tapsrv interface \\<SERVER_NAME>\pipe\tapsrv Section 2.1
Mailslot endpoint for server to Specified by the client as part of ClientAttach interface call Section
indicate that client sends - for example, \\<CLIENT_NAME>\.\mailslot\tapi\tp1234 3.1.4.1
GetAsyncEvents packet to fetch
event data
RPC protocol and endpoint for Specified by the client as part of ClientAttach parameters — | Section
remotesp interface for example, ncacn_ip_tcp protocol with endpoint 251 3.1.4.1

22 /610

[MS-TRP-Diff] - v20210625

Telephony Remote Protocol

Copyright © 2021 Microsoft Corporation
Release: June 25, 2021

2 Messages

The following sections specify how Telephony Remote Protocol packets are transported and common
data types.

2.1 Transport
This protocol uses RPC over named pipes, as specified in [MS-RPCE], for the tapsrv interface.
This protocol uses RPC dynamic endpoints as specified in [C706] part 4.

The tapsrv interface uses an RPC well-known endpoint. This is a named pipe that MUST have the value
of the server machine name followed by \pipe\tapsrv.

The remotesp interface uses the RPC protocol sequence and endpoint as specified by the client when
the ClientAttach method is used.

The server MUST use the remotesp interface or mailslot mechanism as specified by the client when
the ClientAttach method is used.

This protocol MUST use the UUIDs as specified in section 1.9.

This protocol uses RPC_C_AUTHN_WINNT or RPC_C_AUTHN_GSS_NEGOTIATE for authentication.<4>
Depending on the operating system version and configuration, either the client or the server can
reject RPC calls that do not match the authentication level of RPC_C_AUTHN_LEVEL_PKT_PRIVACY.

2.2 Common Data Types

This protocol MUST indicate to the RPC runtime that it is to support both the NDR20 and NDR64
transfer syntaxes and provide a negotiation mechanism for determining which transfer syntax will be
used, as specified in [MS-RPCE] section 3.

In addition to RPC base types and definitions specified in [C706] and [MS-RPCE], additional data types
are defined in the following sections.

2.2.1 Data Types

The following sections specify the data types that are referenced in this specification.

2.2.1.1 HCALL

The HCALL data type stores a handle to the call that is used to refer to the call between the client and
server.

This type is declared as follows:

typedef DWORD HCALL;

2.2.1.2 HLINE

The HLINE data type stores a handle to the line that is used to refer to the line device between the
client and server.

This type is declared as follows:

23/610

[MS-TRP-Diff] - v20210625

Telephony Remote Protocol

Copyright © 2021 Microsoft Corporation
Release: June 25, 2021

typedef DWORD HLINE;

2.2.1.3 HLINEAPP

The HLINEAPP data type stores a handle to the line application. The server uses this handle to
identify the instance of the client that is using the line device abstraction.

This type is declared as follows:

typedef DWORD HLINEAPP;

2.2.1.4 HPHONE

The HPHONE data type stores a handle to the line that is used to refer to the line device between the
client and server.

This type is declared as follows:

typedef DWORD HPHONE;

2.2.1.5 HPHONEAPP

The HPHONEAPP data type stores a handle to the line application. The server uses this handle to
identify the instance of the client that is using the line device abstraction.

This type is declared as follows:

typedef DWORD HPHONEAPP;

2.2.1.6 PCONTEXT_HANDLE_TYPE

The PCONTEXT_HANDLE_TYPE data type stores a context handle that is used by methods in the
tapsrv interface. The context handle is a structure that is created by the server to represent a client
context. The client and server MUST pass it to RPC as a void pointer to the context handle data
structure.

This type is declared as follows:

typedef [context handle] void* PCONTEXT HANDLE TYPE;

2.2.1.7 PCONTEXT_HANDLE_TYPE2

The PCONTEXT_HANDLE_TYPE2 data type stores a context handle that is used by methods in the
remotesp interface.

This type is declared as follows:

typedef [context handle] void* PCONTEXT HANDLE TYPE2;

24 /610

[MS-TRP-Diff] - v20210625

Telephony Remote Protocol

Copyright © 2021 Microsoft Corporation
Release: June 25, 2021

2.2.1.8 STRINGFORMAT_Constants
The STRINGFORMAT_Constants describe different string formats.

Constant/value Description

STRINGFORMAT_ASCII Specifies the standard ASCII character format using one byte per character.
0x00000001

STRINGFORMAT_DBCS Specifies the standard DBCS character format using one or two bytes per character.
0x00000002

STRINGFORMAT_UNICODE | Specifies the standard Unicode character format using two bytes per character.
0x00000003

STRINGFORMAT_BINARY Specifies the string as an array of unsigned characters; could be used for numeric
0x00000004 values.

2.2.1.9 TUISPIDLL_OBIJECT_Constants

The TUISPIDLL_OBJECT_Constants describe different types of objects used while installing,
configuring, and removing TSPs.

Constant/value Description

TUISPIDLL_OBJECT_LINEID The concerned object is a line device identifier (dwDevicelID).
0x1

TUISPIDLL_OBJECT_PHONEID The concerned object is a phone device identifier (dwDevicelD).
0x2

TUISPIDLL_OBJECT_PROVIDERID The concerned object is a permanent provider identifier.

0x3

TUISPIDLL_OBJECT_DIALOGINSTANCE | The concerned object refers to an opaque dialog instance handle.
0x4

2.2.1.10 HAGENTSESSION
The HAGENTSESSION data type stores a handle to the agent session.

This type is declared as follows:

typedef DWORD HAGENTSESSION;

2.2.1.11 HAGENT
The HAGENT data type stores a handle to the agent.

This type is declared as follows:

25/610

[MS-TRP-Diff] - v20210625

Telephony Remote Protocol

Copyright © 2021 Microsoft Corporation
Release: June 25, 2021

typedef DWORD HAGENT;

2.2.2 HANDLE TABLE

The following table lists the handle types that are used in the Telephony Remote Protocol and specifies

how they are obtained and how they are released. All asynchronous events and completion packet

packets have one or more handle parameters that are relevant to the corresponding event. The table
lists only those packets with handle parameters that are new; that is, the handle was not provided to

the client earlier.

The server is responsible for maintaining data structures internally that enable it to obtain the
corresponding handle when an event or completion occurs and send the handle to the client.

Obtained by
Handle type Name of packet Field in packet | Released by
HLINEAPP Initialize hLineApp ShutDown
HLINE Open hLine Close/LINE_CLOSE
HPHONEAPP | Initialize hPhoneApp ShutDown
HPHONE Open hPhone Close/PHONE_CLOSE
HCALL LINE_APPNEWCALL Param2 DeallocateCall

Note This packet is sent only if the client has

negotiated a TAPI version of 2.0, 2.1, 2.2, 3.0, and 3.1.
HCALL LINE_CALLSTATE hCall DeallocateCall

Note Clients that have negotiated a TAPI version earlier

than 2.0, need to examine if this packet is an "old" call

(same handle as an already obtained valid call handle)

or a new call (different from all existing valid call

handles). For clients that negotiated a TAPI version of

2.0, 2.1, 2.2, 3.0, and 3.1, this will always be an "old"

call because the handle would have already been sent

through LINE_APPNEWCALL.
HCALL CompleteTransfer hConfCall DeallocateCall
HCALL Forward hConsultCall DeallocateCall
HCALL MakeCall hCall DeallocateCall
HCALL PickUp hCall DeallocateCall
HCALL PrepareAddToConference hConsultCall DeallocateCall
HCALL SetUpConference hConfCall DeallocateCall
HCALL SetUpConference hConsultCall DeallocateCall
HCALL SetUpTransfer hConsultCall DeallocateCall
HCALL UnPark hCall DeallocateCall
HCALL GetNewCalls pCallList of DeallocateCall

type
LINECALLLIST

[MS-TRP-Diff] - v20210625

Telephony Remote Protocol

Copyright © 2021 Microsoft Corporation
Release: June 25, 2021

26 /610

2.2.3 Device Constants

2.2.3.1 Line Device Constants

2.2.3.1.1 LINEADDRCAPFLAGS_Constants

The LINEADDRCAPFLAGS_Constants are bit-flag constants that are used in the dwAddrCapFlags
member of the LINEADDRESSCAPS packet to describe various Boolean address capabilities.

Constant/value

Description

LINEADDRCAPFLAGS_FWDNUMRINGS
0x00000001

Specifies whether the number of rings for a "no answer" call is
specified when forwarding calls to a "no answer." If TRUE, the valid
range must be provided in the dwMinFwdNumRings and
dwMaxFwdNumRings members of the LINEADDRESSCAPS packet.

LINEADDRCAPFLAGS_PICKUPGROUPID
0x00000002

Specifies whether a group identifier is required for call pickup.

LINEADDRCAPFLAGS_SECURE
0x00000004

Specifies whether calls on this address can be made secure at call-
setup time.

LINEADDRCAPFLAGS_BLOCKIDDEFAULT
0x00000008

Specifies whether, by default, the network sends or blocks caller ID
information when making a call on this address. If TRUE, identifier
information must be blocked by default; if FALSE, identifier
information must be transmitted by default.

LINEADDRCAPFLAGS_BLOCKIDOVERRIDE
0x00000010

Specifies whether the default setting for the sending or blocking of
caller ID information can be overridden per call. If TRUE, override
must be possible; if FALSE, override must not be possible.

LINEADDRCAPFLAGS_DIALED
0x00000020

Specifies whether a destination address can be dialed on this address
for making a call. TRUE if a destination address is to be dialed;
FALSE if the destination address is fixed.

LINEADDRCAPFLAGS_ORIGOFFHOOK
0x00000040

Specifies whether the originating party's phone can automatically be
taken off the hook when making calls.

LINEADDRCAPFLAGS_DESTOFFHOOK
0x00000080

Specifies whether the called party's phone can automatically be
forced off the hook when making calls.

LINEADDRCAPFLAGS_FWDCONSULT
0x00000100

Specifies whether call forwarding involves the establishment of a
consultation call.

LINEADDRCAPFLAGS_SETUPCONFNULL
0x00000200

Specifies whether setting up a conference call starts with an initial
call (FALSE) or with no initial call (TRUE).

LINEADDRCAPFLAGS_AUTORECONNECT
0x00000400

Specifies whether dropping a consultation call automatically
reconnects to the call on consultation hold. TRUE if reconnection
happens automatically; otherwise, FALSE.

LINEADDRCAPFLAGS_COMPLETIONID
0x00000800

Specifies whether the completion identifiers that are returned by the
CompleteCall packet are useful and unique. Must be TRUE if valid;
otherwise, FALSE.

LINEADDRCAPFLAGS_TRANSFERHELD
0x00001000

Specifies whether a handheld call can be transferred.

[MS-TRP-Diff] - v20210625

Telephony Remote Protocol

Copyright © 2021 Microsoft Corporation
Release: June 25, 2021

27/ 610

Constant/value

Description

LINEADDRCAPFLAGS_TRANSFERMAKE
0x00002000

Specifies whether an entirely new call can be established for use as a
consultation call on transfer.

LINEADDRCAPFLAGS_CONFERENCEHELD
0x00004000

Specifies whether a handheld call can be included in a conference
call.

LINEADDRCAPFLAGS_CONFERENCEMAKE
0x00008000

Specifies whether an entirely new call can be established for use as a
consultation call (to add) on conference.

LINEADDRCAPFLAGS_PARTIALDIAL
0x00010000

Specifies whether partial dialing is available.

LINEADDRCAPFLAGS_FWDSTATUSVALID
0x00020000

Specifies whether the forwarding status in the LINEADDRESSSTATUS
packet for this address is valid or is, at most, a best estimate in the
absence of accurate confirmation by the switch or network.

LINEADDRCAPFLAGS_FWDINTEXTADDR
0x00040000

Specifies whether internal and external calls can be forwarded to
different forwarding addresses. This flag is meaningful only if
forwarding of internal and external calls can be controlled separately.
This flag is TRUE if internal and external calls can be forwarded to
different destination addresses; otherwise, it must be FALSE.

LINEADDRCAPFLAGS_FWDBUSYNAADDR
0x00080000

Specifies whether call forwarding for "busy" and for "no answer" can
use different forwarding addresses. This flag is meaningful only if
forwarding for "busy" and for "no answer" can be controlled
separately. This flag is TRUE if forwarding for "busy" and for "no
answer" can use different destination addresses; otherwise, it must
be FALSE.

LINEADDRCAPFLAGS_ACCEPTTOALERT
0x00100000

TRUE if an offering call is or has to be accepted using the Accept
packet to start alerting the users at both ends of the call; otherwise,
it must be FALSE. This flag is typically used only with ISDN.

LINEADDRCAPFLAGS_CONFDROP
0x00200000

TRUE if the Drop packet on a conference call parent also has the side
effect of dropping (that is, disconnecting) the other parties who are
involved in the conference call; FALSE if dropping a conference call
still allows the other parties to talk among themselves.

LINEADDRCAPFLAGS_PICKUPCALLWAIT
0x00400000

TRUE if the PickUp packet can be used to pick up a call that is
detected by the user as a call-waiting call; otherwise, it must be
FALSE.

The following constants are present in TAPI versions 2.0, 2.1, 2.2, 3.0, and 3.1.

Constant/value

Description

0x00800000

LINEADDRCAPFLAGS_PREDICTIVEDIALER

This address has enhanced call progress monitoring capabilities that
can be applied to outgoing calls to determine call states such as
ringback, busy, specialinfo, and connected; or the media type of the
device that is answering the call. It can also have the ability to
automatically transfer outgoing calls to another address when a call
reaches any of a predefined set of states.

LINEADDRCAPFLAGS_QUEUE
0x01000000

This address must not be associated with a particular station or
physical device but must be a holding place where calls wait for
further processing. The calls placed in the queue can receive a
particular treatment. They can also be automatically transferred
when a particular resource becomes available (for example, if the
queue is an ACD queue and calls are waiting for an available agent).

[MS-TRP-Diff] - v20210625

Telephony Remote Protocol

Copyright © 2021 Microsoft Corporation
Release: June 25, 2021

28 /610

Constant/value Description

LINEADDRCAPFLAGS_ROUTEPOINT This address must not be associated with a particular station or
0x02000000 physical device but must be a holding place where calls wait for
routing (for example, the call can be routed based on the called
address and can redirect the call to another address). The call can
also be automatically transferred if a routing time out expires (the
switch usually assumes a default routing).

LINEADDRCAPFLAGS_HOLDMAKESNEW When a call on this address is placed on hold (using the Hold packet
0x04000000 or external action), a new call must be automatically created (most
likely in LINECALLSTATE_DIALTONE).

LINEADDRCAPFLAGS_NOINTERNALCALLS | The address must be associated with a direct calling office (CO) line
0x08000000 (trunk) and must not be used to make internal calls on a private
branch exchange (PBX). The application can use this indication to
assist the user in selecting the correct call appearance to use for
making a call. When this bit is off, it does not necessarily indicate
that the address can be used to make internal calls, because the
service provider might not be aware of the line type.

LINEADDRCAPFLAGS_NOEXTERNALCALLS | The address is associated with an internal line on a PBX that is
0x10000000 restricted in such a way that it cannot be used to place calls to an
address outside the switch (for example, it is an intercom). The
application can use this indication to assist the user in selecting the
correct call appearance to use for making a call. When this bit is off,
it does not necessarily indicate that the address can be used to make
external calls because the service provider might not be aware of the

line type.
LINEADDRCAPFLAGS_SETCALLINGID The application can choose to set the CallingPartyID member in
0x20000000 LINECALLPARAMS when calling MakeCall and other functions that

accept a LINECALLPARAMS packet. If the content of the identifier is
acceptable and a path is available, the service provider passes the
identifier along to the called party to indicate the identity of the
calling party.

The following constants are present in TAPI versions 2.2, 3.0, and 3.1.

Constant/value Description

LINEADDRCAPFLAGS_ACDGROUP | The address must support ACD groups in connection with call center
0x40000000 operations.

The following constants are present in TAPI versions 3.0 and 3.1.

Constant/value Description

LINEADDRCAPFLAGS_NOPSTNADDRESSTRANSLATION | This address does not support public switched telephone
0x80000000 network address translation.

2.2.3.1.2 LINEADDRESSMODE_ Constants

The LINEADDRESSMODE_ Constants are bit-flag constants that describe various ways to identify an
address on a line device.

29/610

[MS-TRP-Diff] - v20210625

Telephony Remote Protocol

Copyright © 2021 Microsoft Corporation
Release: June 25, 2021

Constant/value Description

LINEADDRESSMODE_ADDRESSID The address must be specified with a small integer in the range 0 to
0x00000001 dwNumAddresses minus one, where dwNumAddresses is the value in the
device capabilities of the line.

LINEADDRESSMODE_DIALABLEADDR | The address must be specified through its phone number.
0x00000002

This constant MUST be used to select an address line on which to originate a call. The usual model is
to select the address by means of its address identifier. Address identifiers are the mechanism used to
identify addresses throughout TAPI. However, in some environments, when making a call, it is often
more practical to identify an originating address of a call by phone number rather than by address
identifier.

One example is in the possible modeling of large numbers of stations (third party) on the switch by

means of one line device with many addresses. The line represents the set of all stations, and each
station is mapped to an address with its own primary phone number and address identifier.

2.2.3.1.3 LINEADDRESSSHARING_Constants

The LINEADDRESSSHARING_Constants are bit-flag constants that describe various ways that an
address can be shared between lines.

Constant/value Description

LINEADDRESSSHARING_PRIVATE The address must be private to the user's line; it must not be
0x00000001 assigned to any other station.
LINEADDRESSSHARING_BRIDGEDEXCL The address must be bridged to one or more other stations. The
0x00000002 first line to activate a call on the line will have exclusive access to

the address and calls that might exist on it. Other lines must not be
able to use the bridged address while it is in use.

LINEADDRESSSHARING_BRIDGEDNEW The address must be bridged with one or more other stations. The
0x00000004 first line to activate a call on the line must have exclusive access to
only the corresponding call. Other applications that use the address
must result in new and separate call appearances.

LINEADDRESSSHARING_BRIDGEDSHARED | The address is bridged with one or more other lines. All bridged

0x00000008 parties can share in calls on the address, which then functions as a
conference.

LINEADDRESSSHARING_MONITORED An address whose idle or busy status must be made available to this

0x00000010 line.

The way in which an address MUST be shared across lines can affect the behavior of that address.
LINE_CALLSTATE and LINE_ADDRESSSTATE packets are sent to the application in response to
activities by the bridging stations. It MUST be through these packets that an application can track the
status of the address.

2.2.3.1.4 LINEADDRESSSTATE_Constants

The LINEADDRESSSTATE_Constants are bit-flag constants that describe various address status items.

Constant/value Description
LINEADDRESSSTATE_OTHER Address-status items other than those that are listed below have changed.
0x00000001 The application must check the current address status to determine which

30/610

[MS-TRP-Diff] - v20210625

Telephony Remote Protocol

Copyright © 2021 Microsoft Corporation
Release: June 25, 2021

Constant/value

Description

items have changed.

LINEADDRESSSTATE_DEVSPECIFIC
0x00000002

The device-specific item of the address status has changed.

LINEADDRESSSTATE_INUSEZERO
0x00000004

The address has changed to idle (it is not in use by any stations).

LINEADDRESSSTATE_INUSEONE
0x00000008

The address has changed from idle or being in use by many bridged
stations to being in use by just one station.

LINEADDRESSSTATE_INUSEMANY
0x00000010

The monitored or bridged address has changed from being in use by one
station to being in use by more than one station.

LINEADDRESSSTATE_NUMCALLS
0x00000020

The number of calls on the address has changed. This change is the result
of events such as a new incoming call, an outgoing call on the address, or a
call changing its hold status. This flag covers changes in any of the
member's dwNumActiveCalls, dwNumOnHoldCalls, and
dwNumOnHoldPendingCalls in the LINEADDRESSSTATUS packet. The
application checks all three of these members when it receives a
LINE_ADDRESSSTATE (numcCalls) packet.

LINEADDRESSSTATE_FORWARD
0x00000040

The forwarding status of the address has changed, including possibly the
number of rings for determining a no-answer condition. The application is
to check the address status to determine details about the current
forwarding status of the address.

LINEADDRESSSTATE_TERMINALS
0x00000080

The terminal settings for the address must have changed.

The following constant is present in TAPI versions 1.4, 2.0, 2.1, 2.2, 3.0, and 3.1.

Constant/value

Description

LINEADDRESSSTATE_CAPSCHANGE
0x00000100

Indicates that, because of configuration changes made by the user or other
circumstances, one or more of the members in the LINEADDRESSCAPS
packet for the address have changed. The client is to use the
GetAddressCaps packet to read the updated packet. If a service provider
sends a LINE_ADDRESSSTATE packet that contains this value to TAPI, TAPI
will pass it to applications that have negotiated TAPI versions 1.4, 2.0, 2.1,
2.2, 3.0, and 3.1. Applications that negotiate a previous version will
receive LINE_LINEDEVSTATE packets that specify LINEDEVSTATE_REINIT,
which requires them to shut down and reinitialize their connection to TAPI
to obtain the updated information.

An application is notified about changes to these status items in the LINE_ADDRESSSTATE packet. The
device capabilities of the address indicate which address state changes can be reported for this

address.

2.2.3.1.5 LINEADDRESSTYPE_Constants

The LINEADDRESSTYPE_Constants are bit-flag constants that identify address format, such as a
standard phone number or an email address. Only applications that negotiate TAPI version 3.0 or 3.1

can use address types.

Constant/value

Description

LINEADDRESSTYPE_PHONENUMBER

The address type must be a standard phone number.

[MS-TRP-Diff] - v20210625
Telephony Remote Protocol

31/610

Copyright © 2021 Microsoft Corporation

Release: June 25, 2021

Constant/value Description

0x00000001

LINEADDRESSTYPE_SDP The address type must be Session Description Protocol (SDP) conference.
0x00000002

LINEADDRESSTYPE_EMAILNAME The address type must be an email name.

0x00000004

0x00000008

LINEADDRESSTYPE_DOMAINNAME The address type must be a domain name.

0x00000010

LINEADDRESSTYPE_IPADDRESS The address type must be an IP address.

2.2.3.1.6 LINEADDRFEATURE_Constants

The LINEADDRFEATURE_Constants are bit-flag constants that list the operations that can be invoked

on an address.

Note If none of the new, modified PickUp bits are set in the dwAddressFeatures member in the
LINEADDRESSSTATUS packet but the LINEADDRFEATURE_PICKUP bit is set, any of the pickup modes
can work; the service provider has simply not specified which modes.

Constant/value

Description

LINEADDRFEATURE_FORWARD
0x00000001

The address can be forwarded.

LINEADDRFEATURE_MAKECALL
0x00000002

An outgoing call can be placed in the address.

LINEADDRFEATURE_PICKUP
0x00000004

A call can be picked up at the address.

LINEADDRFEATURE_SETMEDIACONTROL
0x00000008

Media control can be set on this address.

LINEADDRFEATURE_SETTERMINAL
0x00000010

The terminal modes for this address can be set.

LINEADDRFEATURE_SETUPCONF
0x00000020

A conference call with a NULL initial call can be set up at this address.

LINEADDRFEATURE_UNCOMPLETECALL
0x00000040

Call completion requests can be canceled at this address.

LINEADDRFEATURE_UNPARK
0x00000080

Calls can be unparked using this address.

The following constants are present in TAPI versions 2.2, 3.0, and 3.1.

Constant/value Description

LINEADDRFEATURE_PICKUPHELD The PickUp packet (with a null destination address) can be used to pick

[MS-TRP-Diff] - v20210625

Telephony Remote Protocol

Copyright © 2021 Microsoft Corporation
Release: June 25, 2021

32/610

Constant/value

Description

0x00000100

up a call that is held on the address. This ability must normally be used
only in a bridged-exclusive arrangement.

LINEADDRFEATURE_PICKUPGROUP
0x00000200

The PickUp packet can be used to pick up a call in the group.

LINEADDRFEATURE_PICKUPDIRECT
0x00000400

The PickUp packet can be used to pick up a call on a specific address.

LINEADDRFEATURE_PICKUPWAITING
0x00000800

The PickUp packet (with a null destination address) can be used to pick
up a call-waiting call. It does not necessarily indicate that a waiting call is
actually present because it is often impossible for a telephony device to
automatically detect such a call. It must, however, indicate that the hook-
flash function (a button on a telephone that simulates a quick off-
hook/on-hook/off-hook cycle) will be invoked to attempt to switch to such
a call.

LINEADDRFEATURE_FORWARDFWD
0x00001000

The Forward packet can be used to forward calls on the address to other
numbers. LINEADDRFEATURE_FORWARD must also be set.

Note If any of the "FORWARD" bits are set in the dwAddressFeatures
member in LINEADDRESSSTATUS but the LINEADDRFEATURE_FORWARD
bit is set, any of the forward modes can work; the service provider has
simply not specified which ones.

LINEADDRFEATURE_FORWARDDND
0x00002000

The Forward packet (with an empty destination address) can be used to
turn on the Do Not Disturb feature on the address.
LINEADDRFEATURE_FORWARD must also be set.

This constant MUST be used both in LINEADDRESSCAPS (returned by the GetAddressCaps packet) and
in LINEADDRESSSTATUS (returned by the GetAddressStatus packet). LINEADDRESSCAPS reports the
availability of the address features by the service provider (mainly the switch) for a specified address.
The LINEADDRESSSTATUS packet reports, for a specified address, which address features can actually
be invoked while the address is in the current state.

2.2.3.1.7 LINEAGENTFEATURE_Constants

The LINEAGENTFEATURE_Constants are bit-flag constants that list features that are available for an

agent on an address.

The following constants are present in TAPI versions 2.0, 2.1, 2.2, 3.0, and 3.1.

Constant/value

Description

0x00000001

LINEAGENTFEATURE_SETAGENTGROUP

The SetAgentGroup packet can be invoked on this address.

0x00000002

LINEAGENTFEATURE_SETAGENTSTATE

The SetAgentState packet can be invoked on this address.

0x00000004

LINEAGENTFEATURE_SETAGENTACTIVITY The SetAgentActivity packet can be invoked on this address.

0x00000008

LINEAGENTFEATURE_AGENTSPECIFIC

The AgentSpecific packet can be invoked on this address.

0x00000010

LINEAGENTFEATURE_GETAGENTACTIVITYLIST | The GetAgentActivityList packet can be invoked on this address.

[MS-TRP-Diff] - v20210625
Telephony Remote Protocol

Copyright © 2021 Microsoft Corporation

Release: June 25, 2021

33/610

Constant/value

Description

LINEAGENTFEATURE_GETAGENTGROUP
0x00000020

The GetAgentGrouplList packet can be invoked on this address.

2.2.3.1.8 LINEAGENTSESSIONSTATE_Constants

The LINEAGENTSESSIONSTATE_Constants are bit-flag constants that specify various agent session

states.

The following constants are present in TAPI versions 2.2, 3.0, and 3.1.

Constant/value

Description

LINEAGENTSESSIONSTATE_NOTREADY
0x00000001

The agent must be logged in but occupied with a task other than
serving a call (such as on a break). No additional calls are routed to
the agent.

LINEAGENTSESSIONSTATE_READY
0x00000002

The agent must be ready to accept calls.

LINEAGENTSESSIONSTATE_BUSYONCALL
0x00000004

The agent must be busy handling a call.

LINEAGENTSESSIONSTATE_BUSYWRAPUP
0x00000008

The agent must be busy handling the wrap-up of a call.

LINEAGENTSESSIONSTATE_ENDED
0x00000010

The agent session must have ended.

LINEAGENTSESSIONSTATE_RELEASED
0x00000020

The agent session must have been released.

2.2.3.1.9 LINEAGENTSESSIONSTATUS_Constants

The LINEAGENTSESSIONSTATUS_Constants are bit-flag constants that specify various agent session

states.

The following constants are present in TAPI versions 2.2, 3.0, and 3.1.

Constant/value

Description

LINEAGENTSESSIONSTATUS_NEWSESSION
0x00000001

A new agent session must have been created.

LINEAGENTSESSIONSTATUS_STATE
0x00000002

The status of the current agent session.

LINEAGENTSESSIONSTATUS_UPDATEINFO
0x00000004

An update of the current agent session statistics.

2.2.3.1.10 LINEAGENTSTATE_Constants

[MS-TRP-Diff] - v20210625

Telephony Remote Protocol

Copyright © 2021 Microsoft Corporation
Release: June 25, 2021

34 /610

The LINEAGENTSTATE_Constants are
address.

bit-flag constants that describe the state of an agent on an

The following constants are present in TAPI versions 2.0, 2.1, 2.2, 3.0, and 3.1.

Constant/value

Description

LINEAGENTSTATE_LOGGEDOFF
0x00000001

No agent must be logged onto the address.

LINEAGENTSTATE_NOTREADY
0x00000002

The agent must be logged in but occupied with a task other than
serving a call (such as on a break). No additional calls are routed to
the agent.

LINEAGENTSTATE_READY
0x00000004

The agent is ready to accept calls.

LINEAGENTSTATE_BUSYACD
0x00000008

The agent must be busy handling a call that is routed from an ACD
queue.

LINEAGENTSTATE_BUSYINCOMING
0x00000010

The agent must be busy handling an incoming call that was not
transferred to the agent from an ACD queue to which the agent is
logged in.

LINEAGENTSTATE_BUSYOUTBOUND
0x00000020

The agent must be busy handling an outgoing call, such as one routed
from a predictive dialing queue.

LINEAGENTSTATE_BUSYOTHER
0x00000040

The agent must be busy handling another type of call, such as an
outgoing personal call that must not be transferred to the agent by a
predictive dialer. This value can also be used when the agent is known
to be busy on a call but the type of call is unknown.

LINEAGENTSTATE_WORKINGAFTERCALL
0x00000080

The agent must have completed the preceding call but must still be
occupied with work that is related to that call. The agent is not to
receive additional calls.

LINEAGENTSTATE_UNKNOWN
0x00000100

The agent state must be currently unknown but can become known
later. This state can be a transitional state when a line or address is
first opened.

LINEAGENTSTATE_UNAVAIL
0x00000200

The agent state must be unknown and must never become known. In
LINEAGENTSTATUS, this condition can also be represented by the
dwState member being set to 0.

2.2.3.1.11 LINEAGENTSTATEEX_Constants

The LINEAGENTSTATEEX_Constants are bit-flag constants that describe the state of an agent on an

address.

The following constants are present in TAPI versions 2.2, 3.0, and 3.1.

Constant/value

Description

LINEAGENTSTATEEX_NOTREADY
0x00000001

The agent must be logged in but occupied with a task other than serving
a call (such as on a break). No additional calls are routed to the agent.

LINEAGENTSTATEEX_READY
0x00000002

The agent must be ready to accept calls.

[MS-TRP-Diff] - v20210625

Telephony Remote Protocol

Copyright © 2021 Microsoft Corporation
Release: June 25, 2021

35/610

Constant/value

Description

LINEAGENTSTATEEX_BUSYACD
0x00000004

The agent must be busy handling a call that is routed from an ACD
queue.

LINEAGENTSTATEEX_BUSYINCOMING
0x00000008

The agent must be busy handling an incoming call that was not
transferred to the agent from an ACD queue to which the agent is logged
in.

LINEAGENTSTATEEX_BUSYOUTGOING
0x00000010

The agent must be busy handling an outgoing call, such as one that is
routed from a predictive dialing queue.

LINEAGENTSTATEEX_UNKNOWN
0x00000020

The agent state must be currently unknown but can become known
later. This can be a transitional state when a line or address is first
opened.

LINEAGENTSTATEEX_RELEASED
0x00000040

The agent must have been released, probably because the agent has
logged off.

2.2.3.1.12 LINEAGENTSTATUS_Constants

The LINEAGENTSTATUS_Constants are bit-flag constants that list the update status of the members of
the LINEAGENTSTATUS packet for an agent.

The following constants are present in TAPI versions 2.0, 2.1, 2.2, 3.0, and 3.1.

Constant/value

Description

LINEAGENTSTATUS_GROUP
0x00000001

The LINEAGENTSTATUS must have been updated.

LINEAGENTSTATUS_STATE
0x00000002

The dwState member in LINEAGENTSTATUS must have been updated.

LINEAGENTSTATUS_NEXTSTATE
0x00000004

The dwNextState member in LINEAGENTSTATUS must have been
updated.

LINEAGENTSTATUS_ACTIVITY
0x00000008

The dwActivityID, dwActivitySize, or dwActivityOffset member in
LINEAGENTSTATUS must have been updated.

LINEAGENTSTATUS_ACTIVITYLIST
0x00000010

The LINEAGENTACTIVITYLIST packet must have been updated. The
application can send the GetAgentActivityList packet to get the updated
list.

LINEAGENTSTATUS_GROUPLIST
0x00000020

The LINEAGENTGROUPLIST packet must have been updated. The
application can send the GetAgentGrouplList packet to get the updated
list.

LINEAGENTSTATUS_CAPSCHANGE
0x00000040

The capabilities in LINEAGENTCAPS must have been updated. The
application can send the GetAgentCaps packet to get the updated list.

LINEAGENTSTATUS_VALIDSTATES
0x00000080

The dwValidStates member in LINEAGENTSTATUS must have been
updated.

LINEAGENTSTATUS_VALIDNEXTSTATES
0x00000100

The dwValidNextStates member in LINEAGENTSTATUS must have been
updated.

[MS-TRP-Diff] - v20210625

Telephony Remote Protocol

Copyright © 2021 Microsoft Corporation
Release: June 25, 2021

36/610

2.2.3.1.13 LINEAGENTSTATUSEX_Constants
The LINEAGENTSTATUSEX_Constants are bit-flag constants that describe the status of an agent.

The following constants are present in TAPI versions 2.2, 3.0, and 3.1.

Constant/value Description

LINEAGENTSTATUSEX_NEWAGENT An agent must have been added.
0x00000001

LINEAGENTSTATUSEX_STATE The state of the current agent.
0x00000002

LINEAGENTSTATUSEX_UPDATEINFO | The agent status must have been updated.
0x00000004

2.2.3.1.14 LINEANSWERMODE_Constants

The LINEANSWERMODE_ Constants are bit-flag constants that describe how an existing active call on a
line device is affected by answering another offering call on the same line.

Constant/value Description

LINEANSWERMODE_NONE | Answering another call on the same line must have no effect on the existing active
0x00000001 call on the line.

LINEANSWERMODE_DROP | The currently active call must automatically be dropped.
0x00000002

LINEANSWERMODE_HOLD | The currently active call must automatically be placed on hold.
0x00000004

No extensibility. All 32 bits are reserved.

If a call comes in (is offered) at the time another call is already active, the new call MUST be
connected by invoking the Answer packet. The effect this has on the existing active call depends on
the device capabilities of the line. The first call can be unaffected, it can be dropped automatically, or
it can be placed on hold automatically.

2.2.3.1.15 LINEBEARERMODE_Constants

The LINEBEARERMODE_Constants are bit-flag constants that describe the different bearer modes of a
call. When a call is made, it can request a specific bearer mode. These modes are used to select a
certain quality of service for the requested connection from the underlying telephone network. Bearer
modes that are available on a particular line are a device capability of the line.

Constant/value Description
LINEBEARERMODE_VOICE A regular 3.1-kilohertz (kHz) analog voice-grade bearer service. Bit
0x00000001 integrity must not be assured. Voice-grade bearer service can support

fax and modem media types.

LINEBEARERMODE_SPEECH The LINEBEARERMODE_SPEECH corresponds to G.711 speech
0x00000002 transmission on the call. The network can use processing techniques
such as analog transmission, echo cancellation, and

37/610

[MS-TRP-Diff] - v20210625

Telephony Remote Protocol

Copyright © 2021 Microsoft Corporation
Release: June 25, 2021

Constant/value Description

compression/decompression. Bit integrity must not be assured.
Speech must not be intended to support fax and modem media types.

LINEBEARERMODE_MULTIUSE The multiuse mode that is defined by ISDN for the call.

0x00000004

LINEBEARERMODE_DATA This flag allows for the unrestricted data transfer on the call. The data
0x00000008 rate must be specified separately.
LINEBEARERMODE_ALTSPEECHDATA This flag allows for the alternate transfer of speech or unrestricted
0x00000010 data on the same ISDN call.

LINEBEARERMODE_NONCALLSIGNALING | This capability corresponds to a non-call-associated signaling
0x00000020 connection from the application to the service provider or switch
(treated as a media stream by TAPI).

The following constants are present in TAPI versions 1.4, 2.0, 2.1, 2.2, 3.0, and 3.1.

Constant/value Description

LINEBEARERMODE_PASSTHROUGH | When a call is active in LINEBEARERMODE_PASSTHROUGH mode, the
0x00000040 service provider gives direct access to the attached hardware for control by
the application. This mode must be used primarily by applications that want
temporary direct control over asynchronous modems, accessed through the
communications functions, for the purpose of configuring or using special
features that are not otherwise supported by the service provider.

The following constants are present in TAPI versions 2.0, 2.1, 2.2, 3.0, and 3.1.

Constant/value Description

LINEBEARERMODE_RESTRICTEDDATA | Bearer service for digital data in which only the low-order 7 bits of each
0x00000080 octet can contain user data (for example, for switched 56-kbps service).

The high-order 16 bits can be assigned for device-specific extensions. The low-order 16 bits are
reserved.

Note that bearer mode and media type are different notions. The bearer mode of a call MUST be an
indication of the quality of the telephone connection as provided primarily by the network. The media
type of a call MUST be an indication of the type of information stream that is exchanged over that call.
Group 3 fax or data modem are media types that use a call with a 3.1-kHz voice bearer mode.

2.2.3.1.16 LINEBUSYMODE_Constants

The LINEBUSYMODE_Constants are bit-flag constants that describe different busy signals that the
switch or network can generate. These busy signals typically indicate that a different resource MUST
be used to make a call, or that the current resource is busy.

Constant/value Description

LINEBUSYMODE_STATION The busy signal indicates that the station of the called party is busy. This condition

0x00000001 is usually signaled with the standard busy tone.
LINEBUSYMODE_TRUNK The busy signal indicates that a trunk or circuit is busy. This condition is usually
0x00000002 signaled with a fast busy tone.

38/610

[MS-TRP-Diff] - v20210625

Telephony Remote Protocol

Copyright © 2021 Microsoft Corporation
Release: June 25, 2021

Constant/value Description

0x00000004 later.

LINEBUSYMODE_UNKNOWN | The specific mode of the busy signal is currently unknown but can become known

0x00000008

LINEBUSYMODE_UNAVAIL The specific mode of the busy signal is unavailable and will not become known.

TAPI makes no assumption about the specific signaling mechanism (inband tones, out-of-band
packets, etc.) used to send busy signals.

2.2.3.1.17 LINECALLCOMPLCOND_Constants

The LINECALLCOMPLCOND_Constants are bit-flag constants that describe the conditions under which

a call can be completed.

Constant/value

Description

LINECALLCOMPLCOND_BUSY
0x00000001

Completion of the call can be completed under "busy" conditions.

LINECALLCOMPLCOND_NOANSWER
0x00000002

Completion of the call under "ringback," "no answer" conditions.

2.2.3.1.18 LINECALLCOMPLMODE_Constants

The LINECALLCOMPLMODE_Constants are bit-flag constants that describe different ways in which a

call can be completed.

Constant/value Description

0x00000001

LINECALLCOMPLMODE_CAMPON Queues the call until it can be completed.

LINECALLCOMPLMODE_CALLBACK | R
0x00000002

equests the called station to return the call when it returns to idle.

0x00000004

LINECALLCOMPLMODE_INTRUDE Adds the application to the existing call at the called station (barge in).

0x00000008 c

LINECALLCOMPLMODE_MESSAGE | Leaves a short, predefined packet for the called station (Leave Word

alling). The packet to be sent is specified separately.

2.2.3.1.19 LINECALLFEATURE_Constants

The LINECALLFEATURE_Constants are bit-flag constants that indicate operations that can be invoked

for a particular address or call.

Constant/value

Description

LINECALLFEATURE_ACCEPT
0x00000001

Accept the call (use the Accept packet).

[MS-TRP-Diff] - v20210625

Telephony Remote Protocol

Copyright © 2021 Microsoft Corporation
Release: June 25, 2021

39/610

Constant/value

Description

LINECALLFEATURE_ADDTOCONF
0x00000002

Add the call to the current conference (use the AddToConference
packet).

LINECALLFEATURE_ANSWER
0x00000004

Answer the call (use the Answer packet).

LINECALLFEATURE_BLINDTRANSFER
0x00000008

Perform a blind transfer on the call (use the BlindTransfer packet).

LINECALLFEATURE_COMPLETECALL
0x00000010

Complete the call (use the CompleteCall packet).

LINECALLFEATURE_COMPLETETRANSF
0x00000020

Complete the call transfer (use the CompleteTransfer packet).

LINECALLFEATURE_DIAL
0x00000040

Dial the destination number for the call (use the Dial packet).

LINECALLFEATURE_DROP
0x00000080

Drop the call (use the Drop packet).

LINECALLFEATURE_GATHERDIGITS
0x00000100

Gather digits from the call (use the GatherDigits packet).

LINECALLFEATURE_GENERATEDIGITS
0x00000200

Generate digits on the call (use the GenerateDigits packet).

LINECALLFEATURE_GENERATETONE
0x00000400

Generate tones on the call (use the GenerateTone packet).

LINECALLFEATURE_HOLD
0x00000800

Put the call on hold (use the Hold packet).

LINECALLFEATURE_MONITORDIGITS
0x00001000

Monitor digits on the call (use the MonitorDigits packet).

LINECALLFEATURE_MONITORMEDIA
0x00002000

Monitor the media of the call (use the MonitorMedia packet).

LINECALLFEATURE_MONITORTONES
0x00004000

Monitor tones on the call (use the MonitorTones packet).

LINECALLFEATURE_PARK
0x00008000

Park the call (use the Park packet).

LINECALLFEATURE_PREPAREADDCONF
0x00010000

Prepare the call for addition to a conference (use the
PrepareAddToConference packet).

LINECALLFEATURE_REDIRECT
0x00020000

Redirect the call to another destination (use the Redirect packet).

LINECALLFEATURE_REMOVEFROMCONF
0x00040000

Remove the call from the conference (use the RemoveFromConference
packet).

LINECALLFEATURE_SECURECALL
0x00080000

Secure the call (use the SecureCall packet).

[MS-TRP-Diff] - v20210625

Telephony Remote Protocol

Copyright © 2021 Microsoft Corporation
Release: June 25, 2021

40/ 610

Constant/value Description

LINECALLFEATURE_SENDUSERUSER Send user-user information (use the SendUserUserInfo packet).
0x00100000

LINECALLFEATURE_SETCALLPARAMS Set call parameters (use the SetCallParams packet).
0x00200000

LINECALLFEATURE_SETMEDIACONTROL | Set media controls (see the SetMediaControl packet).
0x00400000

LINECALLFEATURE_SETTERMINAL Set the terminal to be used with the call (use SetTerminal packet).
0x00800000

LINECALLFEATURE_SETUPCONF Set up a conference (use the SetUpConference packet).
0x01000000

LINECALLFEATURE_SETUPTRANSFER Set up a transfer (use the SetUpTransfer packet).

0x02000000

LINECALLFEATURE_SWAPHOLD Perform a swap hold operation (use the SwapHold packet).
0x04000000

LINECALLFEATURE_UNHOLD Take the call off hold (use the Unhold packet).

0x08000000

The following constants are present in TAPI versions 1.4, 2.0, 2.1, 2.2, 3.0, and 3.1:

Constant/value Description

LINECALLFEATURE_RELEASEUSERUSERINFO | Release current user-user information (use the
0x10000000 ReleaseUserUserInfo packet).

The following constants are present in TAPI versions 2.0, 2.1, 2.2, 3.0, and 3.1:

Constant/value Description

LINECALLFEATURE_SETTREATMENT | Set call treatment (use the SetCallTreatment packet).
0x20000000

LINECALLFEATURE_SETQOS Set Quality of Service (QoS) levels for the call (use the
0x40000000 SetCallQualityOfService packet).

LINECALLFEATURE_SETCALLDATA Set the call data packet (use the SetCallData packet).
0x80000000

These constants MUST be used both in LINEADDRESSCAPS (returned by the GetAddressCaps packet)
and in LINECALLSTATUS (returned by the GetCallStatus packet). The LINEADDRESSCAPS packet
reports the availability of the call features on the specified address. An application would use this
information when it initializes to determine what it can do when calls exist. For the specified call,
LINECALLSTATUS reports which call features can be invoked while the call is in the current call state.
The latter takes call privileges into account. An application would make this determination dynamically
after the call state changes.

The LINECALLFEATURE_RELEASEUSERUSERINFO value is new to TAPI 1.4. There are no backward
compatibility considerations. A service provider can elect to return this value in relevant members (in

41 /610

[MS-TRP-Diff] - v20210625

Telephony Remote Protocol

Copyright © 2021 Microsoft Corporation
Release: June 25, 2021

LINEADDRESSCAPS and LINECALLSTATUS) even when older TAPI versions have been negotiated on

the line device.

2.2.3.1.20 LINECALLFEATURE2_Constants

The LINECALLFEATURE2_Constants are bit-flag constants that list the supplemental features that are
available for conferencing, transferring, and parking calls.

The following constants are present in TAPI versions 2.0, 2.1, 2.2, 3.0, and 3.1:

Constant/value

Description

LINECALLFEATURE2_NOHOLDCONFERENCE
0x00000001

If this bit is on, a No Hold Conference can be created by using the
LINECALLPARAMFLAGS_NOHOLDCONFERENCE option with the
SetUpConference packet. The LINECALLFEATURE_SETUPCONF bit
will also be on in the dwCallFeatures member.

LINECALLFEATURE2_ONESTEPTRANSFER
0x00000002

If this bit is on, One Step Transfer can be created by using the
LINECALLPARAMFLAGS_ONESTEPTRANSFER option with the
SetUpTransfer packet. The LINECALLFEATURE_SETUPTRANSFER bit
will also be on in the dwCallFeatures member.

LINECALLFEATURE2_COMPLCAMPON
0x00000004

If this bit is on, the Camp On feature can be invoked by using the
LINECOMPLMODE_CAMPON option with the CompleteCall packet.
The LINECALLFEATURE_COMPLETECALL bit will also be on in the

dwCallFeatures member.

LINECALLFEATURE2_COMPLCALLBACK
0x00000008

If this bit is on, the Callback feature can be invoked by using the
LINECOMPLMODE_CALLBACK option with the CompleteCall packet.
The LINECALLFEATURE_COMPLETECALL bit will also be on in the
dwCallFeatures member.

LINECALLFEATURE2_COMPLINTRUDE
0x00000010

If this bit is on, the Intrude feature can be invoked by using the
LINECOMPLMODE_INTRUDE option with the CompleteCall packet.
The LINECALLFEATURE_COMPLETECALL bit will also be on in the
dwCallFeatures member.

LINECALLFEATURE2_COMPLMESSAGE
0x00000020

If this bit is on, the Leave Packet feature can be invoked by using
the LINECOMPLMODE_MESSAGE option with the CompleteCall
packet. The LINECALLFEATURE_COMPLETECALL bit will also be on
in the dwCallFeatures member.

LINECALLFEATURE2_TRANSFERNORM
0x00000040

If this bit is on, the CompleteTransfer packet can be used to resolve
the transfer as a normal transfer. The
LINECALLFEATURE_COMPLETETRANSF bit will also be on in the
dwcCallFeatures member.

LINECALLFEATURE2_TRANSFERCONF
0x00000080

If this bit is on, the CompleteTransfer packet can be used to resolve
the transfer as a three-way conference. The
LINECALLFEATURE_COMPLETETRANSF bit must also be on in the
dwCallFeatures member.

LINECALLFEATURE2_PARKDIRECT
0x00000100

If this bit is on, the Directed Park feature can be invoked by using
the LINEPARKMODE_DIRECTED option with the Park packet. The
LINECALLFEATURE_PARK bit must also be on in the dwCallFeatures
member.

LINECALLFEATURE2_PARKNONDIRECT
0x00000200

If this bit is on, the Non-Directed Park feature can be invoked by
using the LINEPARKMODE_NONDIRECTED option with the Park
packet. The LINECALLFEATURE_PARK bit must also be on in the
dwcCallFeatures member.

[MS-TRP-Diff] - v20210625

Telephony Remote Protocol

Copyright © 2021 Microsoft Corporation
Release: June 25, 2021

42 /610

Note If none of the "COMPL" bits is specified in the dwCallFeatures2 member in LINECALLSTATUS but
LINECALLFEATURE_COMPLETECALL is specified, it is possible that any of them will work, but the
service provider has not specified which.

Note If neither TRANSFERNORM nor TRANSFERCONF is specified in the dwCallFeatures2 member in
LINECALLSTATUS but LINECALLFEATURE_COMPLETETRANSEF is specified, it is possible that either will
work, but the service provider has not specified which.

Note If neither PARKDIRECT nor PARKNONDIRECT is specified in the dwCallFeatures2 member in
LINECALLSTATUS but LINECALLFEATURE_PARK is specified, it is possible that either will work, but the
service provider has not specified which.

2.2.3.1.21 LINECALLHUBTRACKING_Constants

The LINECALLHUBTRACKING_Constants are bit-flag constants that describe the type of call-hub
tracking that is provided.

The following constants are present in TAPI versions 3.0 and 3.1:

Constant/value Description

LINECALLHUBTRACKING_NONE No call-hub tracking must be provided.

0x00000000

LINECALLHUBTRACKING_PROVIDERLEVEL | Call hubs are tracked at the service provider level. Call-by-call
0x00000001 changes must be reported.
LINECALLHUBTRACKING_ALLCALLS Call-hub tracking is provided at the call level.

0x00000002

No extensibility. All 32 bits are reserved.

When changes occur in this packet, a LINE_CALLINFO packet is sent to the application. The
parameters to this packet are a handle to the call and an indication of the information item that has
changed. The LINECALLHUBTRACKINGINFO packet indicates which tracking type MUST be provided.

2.2.3.1.22 LINECALLINFOSTATE_Constants

The LINECALLINFOSTATE_Constants are bit-flag constants that describe various call information items
about which an application will be notified in the LINE_CALLINFO packet.

Constant/value Description

LINECALLINFOSTATE_OTHER Call information items other than those listed later in this topic have

0x00000001 changed. The application checks the current call information to
determine which items have changed.

LINECALLINFOSTATE_DEVSPECIFIC The device-specific field of the call-information record.

0x00000002

LINECALLINFOSTATE_BEARERMODE The bearer-mode field of the call-information record.

0x00000004

LINECALLINFOSTATE_RATE The rate field of the call-information record.

0x00000008

LINECALLINFOSTATE_MEDIAMODE The media type field of the call-information record.

0x00000010

43 /610

[MS-TRP-Diff] - v20210625

Telephony Remote Protocol

Copyright © 2021 Microsoft Corporation
Release: June 25, 2021

Constant/value

Description

LINECALLINFOSTATE_APPSPECIFIC
0x00000020

The application-specific field of the call-information record.

LINECALLINFOSTATE_CALLID
0x00000040

The call-ID field of the call-information record.

LINECALLINFOSTATE_RELATEDCALLID
0x00000080

The related call-ID field of the call-information record.

LINECALLINFOSTATE_ORIGIN
0x00000100

The origin field of the call-information record.

LINECALLINFOSTATE_REASON
0x00000200

The reason field of the call-information record.

LINECALLINFOSTATE_COMPLETIONID
0x00000400

The completion-identifier field of the call-information record.

LINECALLINFOSTATE_NUMOWNERINCR
0x00000800

The number of owner fields in the call-information record has been
increased.

LINECALLINFOSTATE_NUMOWNERDECR
0x00001000

The number of owner fields in the call-information record has been
decreased.

LINECALLINFOSTATE_NUMMONITORS
0x00002000

The number of monitors field in the call-information record has been
changed.

LINECALLINFOSTATE_TRUNK
0x00004000

The trunk field of the call-information record.

LINECALLINFOSTATE_CALLERID
0x00008000

One of the callerID-related fields of the call-information record.

LINECALLINFOSTATE_CALLEDID
0x00010000

One of the calledID-related fields of the call-information record.

LINECALLINFOSTATE_CONNECTEDID
0x00020000

One of the connectedID-related fields of the call-information record.

LINECALLINFOSTATE_REDIRECTIONID
0x00040000

The address identifier of the location to which a call has been
redirected.

LINECALLINFOSTATE_REDIRECTINGID
0x00080000

The address identifier of the location that redirected a call.

LINECALLINFOSTATE_DISPLAY
0x00100000

The display field of the call-information record.

LINECALLINFOSTATE_USERUSERINFO
0x00200000

The user-user information of the call-information record.

LINECALLINFOSTATE_HIGHLEVELCOMP
0x00400000

The high-level compatibility field of the call-information record.

LINECALLINFOSTATE_LOWLEVELCOMP
0x00800000

The low-level compatibility field of the call-information record.

[MS-TRP-Diff] - v20210625

Telephony Remote Protocol

Copyright © 2021 Microsoft Corporation
Release: June 25, 2021

44 /610

Constant/value

Description

LINECALLINFOSTATE_CHARGINGINFO
0x01000000

The charging information of the call-information record.

LINECALLINFOSTATE_TERMINAL
0x02000000

The terminal mode information of the call-information record.

LINECALLINFOSTATE_DIALPARAMS
0x04000000

The dial parameters of the call-information record.

LINECALLINFOSTATE_MONITORMODES
0x08000000

One or more of the digit, tone, or media monitoring fields in the call-
information record.

The following constants are present in TAPI versions 2.0, 2.1, 2.2, 3.0, and 3.1.

Constant/value Description

LINECALLINFOSTATE_TREATMENT | The CallTreatment member in LINECALLINFO has been updated. This can
0x10000000 occur in response to a SetCallTreatment packet, a call state change, a call
"vector" or other script that controls the call, or upon completion of playback
of a recorded packet (ordinarily, indicating a change to "silence" or "music").

LINECALLINFOSTATE_QOS One or more of the QoS members in LINECALLINFO must have been
0x20000000 updated.

0x40000000

LINECALLINFOSTATE_CALLDATA The CallData member in LINE_CALLINFO must have been updated.

No extensibility. All 32 bits are reserved.

When changes occur in a LINECALLINFO packet, a LINE_CALLINFO packet MUST be sent to the
application. The parameters to this packet are a handle to the call and an indication of the information
item that has changed. The LINEADDRESSCAPS packet also indicates which of these call information
elements MUST be valid for every call on the address.

2.2.3.1.23 LINECALLORIGIN_Constants

The LINECALLORIGIN_Constants are bit-flag constants that describe the origin of a call.

Constant/value Description

LINECALLORIGIN_OUTBOUND The call originated from this station as an outgoing call.

0x0000001

LINECALLORIGIN_INTERNAL The call originated as an incoming call at a station internal to the same
0x00000002 switching environment.

LINECALLORIGIN_EXTERNAL The call originated as an incoming call on an external line.
0x00000004

0x00000010

LINECALLORIGIN_UNKNOWN The call origin must be currently unknown but can become known later.

0x00000020

LINECALLORIGIN_UNAVAIL The call origin must be not available and will never become known for this call.

LINECALLORIGIN_CONFERENCE | The call handle must be for a conference call; that is, it is the connection of the

[MS-TRP-Diff] - v20210625

Telephony Remote Protocol

Copyright © 2021 Microsoft Corporation
Release: June 25, 2021

45 /610

Constant/value

Description

0x00000040

application to the conference bridge in the switch.

The following constants are present in TAPI versions 1.4, 2.0, 2.1, 2.2, 3.0, and 3.1:

Constant/value

Description

LINECALLORIGIN_INBOUND
0x00000080

The call originated as an incoming call, but the service provider is unable to
determine whether it came from another station on the same switch or from an
external line. The service provider can substitute LINECALLORIGIN_UNAVAIL.

No extensibility. All 32 bits are reserved.

The origin of a call MUST be stored in the dwOrigin member of the call's LINECALLINFO structure.

2.2.3.1.24

LINECALLPARAMFLAGS_Constants

The LINECALLPARAMFLAGS_Constants bit-flag constants describe various status flags about a call.

Constant/value

Description

LINECALLPARAMFLAGS_SECURE
0x00000001

The call is to be set up as secure.

LINECALLPARAMFLAGS_IDLE
0x00000002

The call is to be originated on an idle call appearance and not join a call
in progress. When using the MakeCall packet, if the
LINECALLPARAMFLAGS_IDLE value is not set and there is an existing
call on the line, the function breaks into the existing call if necessary to
make the new call. If there is no existing call, the function makes the
new call as specified.

LINECALLPARAMFLAGS_BLOCKID
0x00000004

The identity of the originator is to be concealed (block caller ID).

LINECALLPARAMFLAGS_ORIGOFFHOOK
0x00000008

The phone of the originator is to be automatically taken off the hook.

LINECALLPARAMFLAGS_DESTOFFHOOK
0x00000010

The phone of the called party is to be automatically taken off the hook.

The following constants are present in TAPI versions 2.0, 2.1, 2.2, 3.0, and 3.1:

Constant/value

Description

0x00000020

LINECALLPARAMFLAGS_NOHOLDCONFERENCE

This bit must be used only in conjunction with SetUpConference
and PrepareAddToConference packet. The address to be
conferenced with the current call must be specified in the
TargetAddress member in LINECALLPARAMS. The consultation
call does not physically draw the dial tone from the switch but
will progress through various call establishment states (for
example, dialing or proceeding). When the consultation call
reaches the connected state, the conference is automatically
established: the original call, which had remained in the
connected state, enters the conferenced state; the consultation
call enters the conferenced state; the hConfCall enters the
connected state. If the consultation call fails (enters the
disconnected state followed by idle), the hConfCall also enters
the idle state, and the original call (which might have been an
existing conference, in the case of the PrepareAddToConference

[MS-TRP-Diff] - v20210625

Telephony Remote Protocol

Copyright © 2021 Microsoft Corporation
Release: June 25, 2021

46 /610

Constant/value

Description

packet) remains in the connected state. The original party (or
parties) never perceive the call as having gone on hold. This
feature is often used to add a supervisor to an ACD agent call
when necessary to monitor interactions with an irate caller.

0x00000040

LINECALLPARAMFLAGS_PREDICTIVEDIAL This bit must be used only when placing a call on an address

with predictive dialing capability
(LINEADDRCAPFLAGS_PREDICTIVEDIALER is on in the
dwAddrCapFlags member in LINEADDRESSCAPS). The bit must
be on to enable the enhanced call progress and/or media device
monitoring capabilities of the device. If this bit is not on, the call
will be placed without enhanced call progress or media type
monitoring, and no automatic transfer will be initiated based on
the call state.

0x00000080

LINECALLPARAMFLAGS_ONESTEPTRANSFER This bit must be used only in conjunction with the SetUpTransfer

packet. It combines the operation of the SetUpTransfer packet
followed by the Dial packet on the consultation call into a single
step. The address to be dialed must be specified in the
TargetAddress member in LINECALLPARAMS. The original call
must be placed in the onHoldPendingTransfer state, just as if the
SetUpTransfer packet were called normally, and the consultation
call must be established normally. The application must still call
the CompleteTransfer packet to effect the transfer. This feature
is often used when invoking a transfer from a server over a
third-party call control link because such links frequently do not
support the normal two-step process.

2.2.3.1.25 LINECALLPARTYID_Constants

The LINECALLPARTYID_Constants are bit-flag constants that describe the nature of the information
that is available about the parties that are involved in a call.

Constant/value

Description

LINECALLPARTYID_BLOCKED
0x00000001

The party identifier information must not be available because it has been
blocked by the remote party.

LINECALLPARTYID_OUTOFAREA
0x00000002

The caller ID information for the call must not be available because it is not
propagated all the way by the network.

LINECALLPARTYID_NAME
0x00000004

The party identifier information consists of the name of the party (for example,
from a directory kept inside the switch).

LINECALLPARTYID_ADDRESS
0x00000008

The party identifier information consists of the address of the party, in either
canonical address format or dialable address format.

LINECALLPARTYID_PARTIAL
0x00000010

The party identifier information must be valid but it is limited to partial
information only.

LINECALLPARTYID_UNKNOWN
0x00000020

The party identifier information must be currently unknown but can become
known later.

LINECALLPARTYID_UNAVAIL
0x00000040

The party identifier information must not be available and must not become
available later. Information can be unavailable for unspecified reasons. For
example, the information was not delivered by the network, it was ignored by
the service provider, and so forth.

[MS-TRP-Diff] - v20210625
Telephony Remote Protocol

47/ 610

Copyright © 2021 Microsoft Corporation

Release: June 25, 2021

No extensibility. All 32 bits are reserved.

For each of the possible parties involved in a call, the LINECALLPARTYID_Constants describe how the
party identifier information is formatted. This information is supplied in the LINECALLINFO data
structure.

2.2.3.1.26 LINECALLPRIVILEGE_Constants

The LINECALLPRIVILEGE_Constants are bit-flag constants that describe the kinds of access rights or
privileges that an application with a call handle can have to the corresponding call.

Constant/value Description

LINECALLPRIVILEGE_NONE The application has no privileges for the call. The application's handle is void

0x00000001 and must not be used.

LINECALLPRIVILEGE_MONITOR | The application has monitor privileges for the call. These privileges allow the

0x00000002 application to monitor state changes and query information and status about
the call.

LINECALLPRIVILEGE_OWNER The application has owner privileges for the call. These privileges allow the
0x00000004 application to manipulate the call in ways that affect the state of the call.

No extensibility. All 32 bits are reserved.

When a call handle is first provided to an application or whenever call privileges of that application are
modified, the LINE_CALLSTATE packet is sent to the application. When an application hands off a call,
and if the receiving application does not already have a handle with owner privileges, this packet
informs the application about its new privileges to the call.

2.2.3.1.27 LINECALLREASON_Constants

The LINECALLREASON_Constants are bit-flag constants that describe the reason for a call.

Constant/value Description

LINECALLREASON_DIRECT The call must be a direct incoming or outgoing call.

0x00000001

LINECALLREASON_FWDBUSY This call must be forwarded from another extension that was busy at the
0x00000002 time of the call.

LINECALLREASON_FWDNOANSWER The call must be forwarded from another extension that did not answer
0x00000004 the call after some number of rings.

LINECALLREASON_FWDUNCOND The call must be forwarded unconditionally from another number.
0x00000008

LINECALLREASON_PICKUP The call must be picked up from another extension.

0x00000010

LINECALLREASON_UNPARK The call must be retrieved as a parked call.

0x00000020

LINECALLREASON_REDIRECT The call must be redirected to this station.

0x00000040

LINECALLREASON_CALLCOMPLETION | The call must be the result of a call completion request.

48 /610

[MS-TRP-Diff] - v20210625

Telephony Remote Protocol

Copyright © 2021 Microsoft Corporation
Release: June 25, 2021

Constant/value

Description

0x00000080

LINECALLREASON_TRANSFER
0x00000100

The call must have been transferred from another number.

LINECALLREASON_REMINDER
0x00000200

The call must be a reminder (or "recall") that the user has a call parked
or on hold for (potentially) a long time.

LINECALLREASON_UNKNOWN
0x00000400

The reason for the call must be currently unknown but can become
known later.

LINECALLREASON_UNAVAIL
0x00000800

The reason for the call must be unavailable and will not become known
later.

LINECALLREASON_INTRUDE
0x00001000

The call intruded onto the line either by a call completion action that was
invoked by another station or by operator action. Depending on switch
implementation, the call can appear either in the connected state or
conferenced with an existing active call on the line.

The following constants are present in TAPI versions 1.4, 2.0, 2.1, 2.2, 3.0, and 3.1:

Constant/value

Description

LINECALLREASON_PARKED | The call must be parked on the address. Usually, it appears initially in the onHold
0x00002000 state.

The following constants are present in TAPI versions 2.0, 2.1, 2.2, 3.0, and 3.1:

Constant/value

Description

LINECALLREASON_CAMPEDON
0x00004000

The call must be camped on the address. Usually, it appears initially in the
onHold state and can be switched to using the SwapHold packet. If an
active call becomes idle, the camped-on call can change to the offering
state and the device starts ringing.

0x00008000

LINECALLREASON_ROUTEREQUEST

The call appears on the address because the switch needs routing
instructions from the application. The application examines the CalledID
member in LINECALLINFO and use the Redirect packet to provide a new
dialable address for the call. If the call is to be blocked instead, the
application can send the Drop packet. If the application fails to take action
within a switch-defined time-out period, a default action will be taken. The
service provider is to substitute LINECALLREASON_UNAVAIL.

No extensibility. All 32 bits are reserved.

The LINECALLREASON_Constants MUST be used in the dwReason member of the LINECALLINFO data

structure.

2.2.3.1.28

LINECALLSELECT_Constants

The LINECALLSELECT_Constants are bit-flag constants that describe which calls MUST be selected.

Constant/value

Description

LINECALLSELECT_LINE
0x00000001

Selects calls on the specified line device.

[MS-TRP-Diff] - v20210625
Telephony Remote Protocol

49 /610

Copyright © 2021 Microsoft Corporation

Release: June 25, 2021

Constant/value

Description

LINECALLSELECT_ADDRESS
0x00000002

Selects a call on the specified address.

LINECALLSELECT_CALL
0x00000004

call.

Selects related calls to the specified call. For example, the parties in a conference

The following constants are

present in TAPI versions 2.1, 2.2, 3.0, and 3.1.

Constant/value

Description

0x00000008

LINECALLSELECT_DEVICEID

Selects calls on the specified device identifier. Applications are to consider using
the LINECALLSELECT_LINE constant instead of this one.

The following constants are present in TAPI versions 3.0 and 3.1.

Constant/value

Description

LINECALLSELECT_CALLID
0x00000010

Selects related calls to the specified call identifier.

2.2.3.1.29

LINECALLSTATE_Constants

The LINECALLSTATE_Constants are bit-flag constants that describe the call states that a call can be in.

Constant/value

Description

LINECALLSTATE_IDLE
0x00000001

The call exists but has not been connected. No activity exists on the
call, which means that no call is currently active.

LINECALLSTATE_OFFERING
0x00000002

The call is being offered to the station, signaling the arrival of a new
call. The offering state is not the same as causing a phone or
computer to ring. In some environments, a call in the offering state
does not ring the user until the switch instructs the line to ring. An
example of this use might be where an incoming call appears on
several station sets but only the primary address rings. The
instruction to ring does not affect any call states.

LINECALLSTATE_ACCEPTED
0x00000004

The call was in the offering state and has been accepted. This
indicates to other (monitoring) applications that the current owner
application has claimed responsibility for answering the call. In ISDN,
the accepted state is entered when the called-party equipment sends
a packet to the switch indicating that it is willing to present the call
to the called person. This has the side effect of alerting (ringing) the
users at both ends of the call. An incoming call can always be
immediately answered without first being separately accepted.

LINECALLSTATE_DIALTONE
0x00000008

The call is receiving a dial tone from the switch, which means that
the switch is ready to receive a dialed number. See
LINEDIALTONEMODE_Constants for identifiers of special dial tones,
such as the stutter tone of normal voice mail.

LINECALLSTATE_DIALING
0x00000010

The originator must be dialing digits on the call. The dialed digits are
collected by the switch. Note that the GenerateDigits packet will not
place the line into the dialing state.

[MS-TRP-Diff] - v20210625
Telephony Remote Protocol

Copyright © 2021 Microsoft Corporation

Release: June 25, 2021

50/ 610

Constant/value

Description

LINECALLSTATE_RINGBACK
0x00000020

The station to be called has been reached, and the destination switch
is generating a ring tone back to the originator. A ringback means
that the destination address is being alerted to the call.

LINECALLSTATE_BUSY
0x00000040

The call must be receiving a busy tone. A busy tone indicates that
the call cannot be completed because either a circuit (trunk) or the
station of the remote party is in use. For more information, see
LINEBUSYMODE_Constants.

LINECALLSTATE_SPECIALINFO
0x00000080

The call must be receiving a special information signal, which
precedes a prerecorded announcement that indicates why a call
cannot be completed. For more information, see
LINESPECIALINFO_Constants.

LINECALLSTATE_CONNECTED
0x00000100

The call has been established and the connection must be made.
Information must be able to flow over the call between the
originating address and the destination address.

LINECALLSTATE_PROCEEDING
0x00000200

Dialing has completed, and the call must be proceeding through the
switch or telephone network. This action occurs after dialing is
complete and before the call reaches the dialed party, as indicated
by ringback tone, busy tone, or answer.

LINECALLSTATE_ONHOLD
0x00000400

The call must be on hold by the switch. This action frees the physical
line, which allows another call to use the line.

LINECALLSTATE_CONFERENCED
0x00000800

The call must be a member of a conference call and is logically in the
connected state.

LINECALLSTATE_ONHOLDPENDCONF
0x00001000

The call must be currently on hold while it is being added to a
conference.

LINECALLSTATE_ONHOLDPENDTRANSFER
0x00002000

The call must be currently on hold awaiting transfer to another
number.

LINECALLSTATE_DISCONNECTED
0x00004000

The remote party must have been disconnected from the call.

LINECALLSTATE_UNKNOWN
0x00008000

The call exists, but its state must be currently unknown. This state
can be the result of poor call progress detection by the service
provider. A call state packet with the call state set to unknown can
also be generated to inform TAPI about a new call at a time when the
actual call state of the call is not exactly known.

The high-order 8 bits can define a device-specific substate of any of the predefined states, provided
that one of the LINECALLSTATE bits defined above MUST also be set. The low-order 24 bits are

reserved for predefined states.

The LINECALLSTATE_Constants are used as parameters by the LINE_CALLSTATE packet that is sent to
the application. The packet carries the new call state to which the call transitioned. These constants
can also be used as members in the LINECALLSTATUS packet that is returned by the GetCallStatus

packet.

2.2.3.1.30

LINECALLTREATMENT_Constants

The LINECALLTREATMENT__Constants list treatments for calls that MUST be unanswered or on hold.
Except for basic parameter validation, call treatment MUST be a straight pass-through by TAPI to the

service provider.

[MS-TRP-Diff] - v20210625

Telephony Remote Protocol

Copyright © 2021 Microsoft Corporation
Release: June 25, 2021

51/610

The following constants are present in TAPI versions 2.0, 2.1, 2.2, 3.0, and 3.1.

Constant/value

Description

LINECALLTREATMENT_SILENCE
0x00000001

When the call is not actively connected to a device (offering or onHold), the
party must hear silence.

LINECALLTREATMENT_RINGBACK
0x00000002

When the call is not actively connected to a device (offering or onHold), the
party must hear a ringback tone.

LINECALLTREATMENT_BUSY
0x00000003

When the call is not actively connected to a device (offering or onHold), the
party must hear a busy signal.

LINECALLTREATMENT_MUSIC
0x00000004

When the call is not actively connected to a device (offering or onHold), the
party must hear music.

The value 0x00000000 MUST be reserved to indicate that the service provider does not support call
treatments. Values in the range 0x00000005 through 0x000000FF are reserved for future definition.
Values in the range 0x00000100 through OXFFFFFFFF are reserved for assignment by service providers
and can include identification of specific musical selections or recorded announcements.

2.2.3.1.31

LINECONNECTEDMODE_Constants

The LINECONNECTEDMODE_ Constants are bit-flag constants that describe different substates of a
connected call. A mode is available as a call status to the application after the call state transitions are
connected and within the LINE_CALLSTATE packet indicating the call is in
LINECALLSTATE_CONNECTED. These values are used when the call is on an address that is shared
(bridged) with other stations, primarily electronic key systems.

The following constants are present in TAPI versions 1.4, 2.0, 2.1, 2.2, 3.0, and 3.1.

Constant/value

Description

LINECONNECTEDMODE_ACTIVE
0x00000001

Indicates that the call must be connected at the current station (the current
station is a participant in the call). If the call state mode is 0, the application
assumes that the value is "active" (which would be the situation on a non-
bridged address). The mode can switch between ACTIVE and INACTIVE
during a call if the user joins and leaves the call through manual action. In
such a bridged situation, a Drop or Hold packet operation cannot actually
drop the call or place it on hold because the status of other stations on the
call can govern (for example, attempting to hold a call when other stations
are participating is not possible); instead, the call is changed to INACTIVE
mode if it remains CONNECTED at other stations.

LINECONNECTEDMODE_INACTIVE
0x00000002

Indicates that the call must be active at one or more other stations, but the
current station is not a participant in the call. If the call state mode is 0, the
application assumes that the value is active (which would be the situation on
a non-bridged address). A call in the INACTIVE state can be joined by using
the Answer packet. Many operations that are valid calls in the CONNECTED
state are impossible in the INACTIVE mode, such as monitoring for tones
and digits, because the station is not actually participating in the call;
monitoring is usually suspended (although not canceled) while the call is in
the INACTIVE mode.

The following constants are present in TAPI versions 2.0, 2.1, 2.2, 3.0, and 3.1.

Constant/value

Description

LINECONNECTEDMODE_ACTIVEHELD

Indicates that the station must be an active participant in the call, but
that the remote party has placed the call on hold (the other party

[MS-TRP-Diff] - v20210625
Telephony Remote Protocol

52 /610

Copyright © 2021 Microsoft Corporation

Release: June 25, 2021

Constant/value

Description

0x00000004

considers the call to be in the onHold state). Typically, such information
is available only when both endpoints of the call fall within the same
switching domain.

LINECONNECTEDMODE_INACTIVEHELD

0x00000008

Indicates that the station must not be an active participant in the call
and that the remote party has placed the call on hold.

LINECONNECTEDMODE_CONFIRMED
0x00000010

Indicates that the service provider received affirmative notification that
the call has entered the connected state (for example, through answer
supervision or similar mechanisms).

For backward compatibility, it is the responsibility of the service provider to examine the negotiated
TAPI version on the line and to not use those LINECONNECTEDMODE_Constants values that are not
supported on the negotiated version. Applications that are not cognizant of
LINECONNECTEDMODE_Constants will most likely assume that a call that is in
LINECALLSTATE_CONNECTED is in LINECONNECTEDMODE_ACTIVE.

The LINECONNECTEDMODE_ACTIVE and LINECONNECTEDMODE_INACTIVE values MUST be used
when the call is on an address that is shared with other stations (bridged; for more information, see
LINEADDRESSSHARING_Constants), primarily electronic key systems. If the connected call state
mode is "active," the call MUST be connected at the current station (the current station is a participant
in the call). If the call state mode is "inactive", the call MUST be active at one or more other stations,
but the current station MUST NOT be a participant in the call.

If the call state mode is 0, the application SHOULD assume that the value is "active" (which would be
the situation on a non-bridged address). The mode can switch between ACTIVE and INACTIVE during
a call if the user joins and leaves the call through manual action. In such a bridged situation, a Drop or
Hold packet operation can actually drop the call or place it on hold because the status of other stations
on the call can govern (for example, attempting to hold a call when other stations are participating is
not possible); instead, the call can be changed to INACTIVE mode if it remains CONNECTED at other

stations.

Many operations that MUST be valid in calls in the connected state are impossible in the INACTIVE
mode, such as monitoring for tones and digits, because the station MUST NOT be actually participating
in the call. Monitoring is usually suspended (although not canceled) while the call is in the INACTIVE

mode.

2.2.3.1.32

LINEDEVCAPFLAGS_Constants

The LINEDEVCAPFLAGS_Constants are bit-flag constants that are a collection of Booleans that
describe various line device capabilities.

Constant/value

Description

LINEDEVCAPFLAGS_CROSSADDRCONF
0x00000001

Specifies whether calls on different addresses on this line can be
conferenced.

LINEDEVCAPFLAGS_HIGHLEVCOMP
0x00000002

Specifies whether high-level compatibility information elements must be
supported on this line.

LINEDEVCAPFLAGS_LOWLEVCOMP
0x00000004

Specifies whether low-level compatibility information elements must be
supported on this line.

LINEDEVCAPFLAGS_MEDIACONTROL
0x00000008

Specifies whether media-control operations must be available for calls at
this line.

LINEDEVCAPFLAGS_MULTIPLEADDR

Specifies whether the MakeCall or Dial packet is able to deal with

[MS-TRP-Diff] - v20210625

Telephony Remote Protocol

Copyright © 2021 Microsoft Corporation
Release: June 25, 2021

53/610

Constant/value Description

0x00000010 multiple addresses at once (as for inverse multiplexing).
LINEDEVCAPFLAGS_CLOSEDROP Specifies what happens when an open line must be closed while the
0x00000020 application has active calls on the line. If TRUE, the service provider

drops (clears) all active calls on the line when the last application that
opened the line closes it with the Close packet. If FALSE, the service
provider does not drop active calls in such cases. Instead, the calls
remain active and under control of external devices. A service provider
typically sets this bit to FALSE if there is some other device that can
keep the call alive, for example, if an analog line has the computer and
phone both set to connect directly to them in a party-line configuration.
The off-the-hook phone will automatically keep the call active even after
the computer turns off.

LINEDEVCAPFLAGS_DIALBILLING This flag indicates whether the "$", "@", or "W" dialable string modifier
0x00000040 must be supported for a particular line device. It must be TRUE if the
modifier is supported; otherwise, FALSE. The "?" (prompts user to
continue dialing) must not be supported by a line device. This flag
allows an application to determine which modifiers would result in the
generation of a LINEERR. The application has the choice of pre-scanning
dialable strings for unsupported characters or passing the "raw" string
from the TranslateAddress packet directly to the provider as part of a
function, such as the MakeCall packet or the Dial packet, and letting the
function generate an error to tell the application which unsupported
modifier occurs first in the string.

LINEDEVCAPFLAGS_DIALQUIET This flag indicates whether the "$", "@", or "W" dialable string modifier
0x00000080 must be supported for a particular line device. It must be TRUE if the
modifier is supported; otherwise, FALSE. The "?" (which prompts the
user to continue dialing) must not be supported by a line device. This
flag indicates which modifiers would result in the generation of a
LINEERR error. Dialable strings can be pre-scanned for unsupported
characters or passing the "raw" string from the TranslateAddress packet
directly to the provider as part of a function, such as the MakeCall
packet or the Dial packet, and let the function generate an error to tell
the application which unsupported modifier occurs first in the string.

LINEDEVCAPFLAGS_DIALDIALTONE This flag indicates whether the "$", "@", or "W" dialable string modifier
0x00000100 must be supported for a particular line device. It must be TRUE if the
modifier is supported; otherwise, FALSE. The "?" (which prompts the
user to continue dialing) must not be supported by a line device. This
flag allows an application to determine which modifiers would result in
the generation of a LINEERR error. The application has the choice of
pre-scanning dialable strings for unsupported characters or passing the
"raw" string from the TranslateAddress packet directly to the provider
as part of a function, such as the MakeCall packet or the Dial packet,
and letting the function generate an error to tell the application which
unsupported modifier occurs first in the string.

The following constants are present in TAPI versions 3.0 and 3.1.

Constant/value Description
LINEDEVCAPFLAGS_CALLHUB Indicates whether call hubs must be supported on this line.
0x00000400

LINEDEVCAPFLAGS_CALLHUBTRACKING | Indicates whether call-hub tracking must be supported on this line.
0x00000800

LINEDEVCAPFLAGS_PRIVATEOBIJECTS Indicates whether provider-specific interfaces must have been
0x00001000 implemented.

54 /610

[MS-TRP-Diff] - v20210625

Telephony Remote Protocol

Copyright © 2021 Microsoft Corporation
Release: June 25, 2021

Constant/value

Description

LINEDEVCAPFLAGS_LOCAL
0x00002000

This flag indicates that the device can be used only locally and the
device will not be exposed through the Telephony Remote Protocol.

2.2.3.1.33

LINEDEVSTATE_Constants

The LINEDEVSTATE_Constants are bit-flag constants that describe various line status events.

Constant/value

Description

LINEDEVSTATE_OTHER
0x00000001

Device-status items other than those listed below must have changed. The
application checks the current device status to determine which items have
changed.

LINEDEVSTATE_RINGING
0x00000002

The switch tells the line to alert the user.

TAPI: Service providers notify applications on each ring cycle by
repeatedly sending LINE_LINEDEVSTATE packets that contain this
constant. For example, in the United States, service providers send a
packet with this constant every six seconds.

TSPI: On a POTS device, the service provider can send the packet
whenever the central office sends ring voltage. On digital devices such as
ISDN, the service provider might need to synthesize the repetition of the
packet if the switch generates only one ring request. Each repetition of the
packet shows the ring count increasing, so that the toll-save functions work
correctly.

LINEDEVSTATE_CONNECTED
0x00000004

The line was previously disconnected and is now connected to TAPI.

LINEDEVSTATE_DISCONNECTED
0x00000008

This line was previously connected and is now disconnected from TAPI.

LINEDEVSTATE_MSGWAITON
0x00000010

The packet-waiting indicator is turned on.

LINEDEVSTATE_MSGWAITOFF
0x00000020

The packet-waiting indicator is turned off.

LINEDEVSTATE_INSERVICE
0x00000040

The line must be connected to TAPI. This condition happens when TAPI is
first activated or when the line wire is physically plugged in and is in
service at the switch while TAPI is active.

LINEDEVSTATE_OUTOFSERVICE
0x00000080

The line must be out-of-service at the switch or physically disconnected.
TAPI is not to be used to operate on the line device.

LINEDEVSTATE_MAINTENANCE
0x00000100

Maintenance must be performed on the line at the switch. TAPI is not to be
used to operate on the line device.

LINEDEVSTATE_OPEN
0x00000200

The line must have been opened by another application.

LINEDEVSTATE_CLOSE
0x00000400

The line must have been closed by another application.

LINEDEVSTATE_NUMCALLS
0x00000800

The number of calls on the line device must have changed.

[MS-TRP-Diff] - v20210625
Telephony Remote Protocol

55/610

Copyright © 2021 Microsoft Corporation

Release: June 25, 2021

Constant/value

Description

LINEDEVSTATE_NUMCOMPLETIONS
0x00001000

The number of outstanding call completions on the line device must have
changed.

LINEDEVSTATE_TERMINALS
0x00002000

The terminal settings must have changed. This change in settings can
happen, for example, if multiple line devices share terminals among them
(for example, two lines sharing a phone terminal).

LINEDEVSTATE_ROAMMODE
0x00004000

The roam mode of the line device must have changed.

LINEDEVSTATE_BATTERY
0x00008000

The battery level must have changed significantly (cellular).

LINEDEVSTATE_SIGNAL
0x00010000

The signal level must have changed significantly (cellular).

LINEDEVSTATE_DEVSPECIFIC
0x00020000

The device-specific information about the line must have changed.

LINEDEVSTATE_REINIT
0x00040000

Items must have changed in the configuration of line devices. To become
aware of these changes (such as the appearance of new line devices), the
application reinitializes its use of TAPI.

LINEDEVSTATE_LOCK
0x00080000

The locked status of the line device changes. For more information, see
LINEDEVSTATUSFLAGS_LOCKED in LINEDEVSTATUSFLAGS_Constants.

The following constants are present in TAPI versions 1.4, 2.0, 2.1, 2.2, 3.0, and 3.1.

Constant/value

Description

LINEDEVSTATE_CAPSCHANGE
0x00100000

Indicates that, because of configuration changes made by the user or other
circumstances, one or more of the members in the LINEDEVCAPS packet for
the address must have changed. The application uses GetDevCaps packet to
read the updated packet. If a service provider sends a LINE_LINEDEVSTATE
packet containing this value to TAPI, TAPI must pass it along. If a previous
TAPI version has been negotiated, the endpoint must receive
LINE_LINEDEVSTATE packets specifying LINEDEVSTATE_REINIT, requiring a
shut down and re-initialization of the connection to TAPI to obtain the updated
information.

LINEDEVSTATE_CONFIGCHANGE
0x00200000

Indicates that configuration changes must have been made to one or more of
the media devices that are associated with the line device. The GetDevConfig
packet can be used to read the updated information. If a service provider
sends a LINE_LINEDEVSTATE packet that contains this value to TAPI, TAPI
must pass it along.

LINEDEVSTATE_COMPLCANCEL
0x00800000

Indicates that the call completion that is identified by the completion identifier
that is contained in the dwParam2 parameter of the LINE_LINEDEVSTATE
packet must have been externally canceled and is no longer considered valid.
(If that value were to be passed in a subsequent call to the UncompleteCall
packet, the function would fail with LINEERR_INVALCOMPLETIONID). If a
service provider sends a LINE_LINEDEVSTATE packet that contains this value
to TAPI, TAPI must pass it along.

LINEDEVSTATE_REMOVED
0x01000000

Indicates that the device must have been removed from the computer by the
service provider (most likely through user action, through a control panel, or
similar utility). A LINE_LINEDEVSTATE packet with this value will typically be
immediately followed by a LINE_CLOSE packet on the device. Subsequent
attempts to access the device prior to TAPI being reinitialized must result in a
LINEERR_NODEVICE error being returned to the application. If a service

[MS-TRP-Diff] - v20210625
Telephony Remote Protocol

56 /610

Copyright © 2021 Microsoft Corporation

Release: June 25, 2021

Constant/value

Description

provider sends a LINE_LINEDEVSTATE packet that contains this value to TAPI,
TAPI must pass it along.

2.2.3.1.34

LINEDEVSTATUSFLAGS_Constants

The LINEDEVSTATUSFLAGS_Constants are bit-flag constants that describe a collection of Boolean line

device status items.

Constant/value

Description

0x00000001

LINEDEVSTATUSFLAGS_CONNECTED

Specifies whether the line must be connected to TAPI. If TRUE, the line
must be connected and TAPI must be able to operate on the line device. If
FALSE, the line must be disconnected and the application must be unable
to control the line device through TAPI.

0x00000002

LINEDEVSTATUSFLAGS_MSGWAIT

Indicates whether the line must have a packet waiting. If TRUE, a packet
must be waiting; if FALSE, no packet must be waiting.

0x00000004

LINEDEVSTATUSFLAGS_INSERVICE

Indicates whether the line must be in service. If TRUE, the line must be in
service; if FALSE, the line must be out of service.

LINEDEVSTATUSFLAGS_LOCKED
0x00000008

Indicates whether the line is locked or unlocked. This bit is most often
used with line devices that are associated with cellular phones. Many
cellular phones have a security mechanism that requires the entry of a
password to enable the phone to place calls. This bit can be used to
indicate to applications that the phone must be locked and cannot be used
to place calls until the password is entered on the user interface of the
phone so that the application can present an appropriate alert to the user.

LINEDEVSTATUSFLAGS_Constants are used within the dwDevStatusFlags member of the

LINEDEVSTATUS packet.

2.2.3.1.35

LINEDIALTONEMODE_ Constants

The LINEDIALTONEMODE_Constants are bit-flag constants that describe different types of dial tones.
A special dial tone typically carries a special meaning (as with packet waiting).

Constant/value

Description

LINEDIALTONEMODE_NORMAL
0x00000001

This must be a normal dial tone, which typically must be a continuous tone.

LINEDIALTONEMODE_SPECIAL
0x00000002

This must be a special dial tone indicating that a certain condition (known by
the switch or network) must be currently in effect. Special dial tones typically
use an interrupted tone. As with a normal dial tone, this tone indicates that
the switch must be ready to receive the number to be dialed.

LINEDIALTONEMODE_INTERNAL
0x00000004

This must be an internal dial tone, as within a PBX.

LINEDIALTONEMODE_EXTERNAL
0x00000008

This must be an external (public network) dial tone.

LINEDIALTONEMODE_UNKNOWN
0x00000010

The dial tone mode must not be currently known but can become known later.

[MS-TRP-Diff] - v20210625
Telephony Remote Protocol

57/610

Copyright © 2021 Microsoft Corporation

Release: June 25, 2021

Constant/value Description

0x00000020

LINEDIALTONEMODE_UNAVAIL The dial tone mode must be unavailable and must not become known.

The LINEDIALTONEMODE_Constants MUST be used within the LINECALLSTATUS packet for a call in

the dial tone state.

2.2.3.1.36 LINEDIGITMODE_Constants

The LINEDIGITMODE_ Constants are bit-flag constants that describe different types of inband digit

generation.
Constant/value Description
LINEDIGITMODE_PULSE Uses rotary pulse sequences to signal digits. Valid digits are 0 through 9.
0x00000001
LINEDIGITMODE_DTMF Uses DTMF tones to signal digits. Valid digits are 0 through 9, *, #, A, B, C, and D.
0x00000002
LINEDIGITMODE_DTMFEND | Uses DTMF tones to signal digits and detect the down edges. Valid digits are 0
0x00000004 through 9, *, #,A,B,C, and D.

A digit mode can be specified when generating or detecting digits. Note that pulse digits MUST be
generated by making and breaking the local loop circuit. These pulses MUST be absorbed by the
switch. The remote end merely observes this as a series of inband audio clicks. Detecting digits sent
as pulses MUST also be able to detect sequences of 1 to 10 audible clicks.

2.2.3.1.37 LINEDISCONNECTMODE_Constants

The LINEDISCONNECTMODE_Constants are bit-flag constants that describe different reasons for a
remote disconnect request. A disconnect mode MUST be available as call status after the call state

transitions to a disconnected state.

Constant/value

Description

LINEDISCONNECTMODE_NORMAL
0x00000001

This must be a normal disconnect request by the remote party. The
call must be terminated normally.

LINEDISCONNECTMODE_UNKNOWN
0x00000002

The reason for the disconnect request must be unknown but can
become known later.

LINEDISCONNECTMODE_REJECT
0x00000004

The remote user must have rejected the call.

LINEDISCONNECTMODE_PICKUP
0x00000008

The call must be picked up from elsewhere.

LINEDISCONNECTMODE_FORWARDED
0x00000010

The call must be forwarded by the switch.

LINEDISCONNECTMODE_BUSY
0x00000020

The station of the remote user must be busy.

LINEDISCONNECTMODE_NOANSWER
0x00000040

The station of the remote user must answer.

[MS-TRP-Diff] - v20210625

Telephony Remote Protocol

Copyright © 2021 Microsoft Corporation
Release: June 25, 2021

58 /610

Constant/value

Description

LINEDISCONNECTMODE_BADADDRESS
0x00000080

The destination address must be invalid.

LINEDISCONNECTMODE_UNREACHABLE
0x00000100

The remote user must be reached.

LINEDISCONNECTMODE_CONGESTION
0x00000200

The network must be congested.

LINEDISCONNECTMODE_INCOMPATIBLE
0x00000400

The station equipment of the remote user must be incompatible with
the type of call that is requested.

LINEDISCONNECTMODE_UNAVAIL
0x00000800

The reason for the disconnect must be unavailable and will not
become known later.

The following constants must be present in TAPI versions 1.4, 2.0, 2.1, 2.2, 3.0, and 3.1.

Constant/value

Description

LINEDISCONNECTMODE_NODIALTONE
0x00001000

A dial tone was not detected within a service provider-defined time-out,
at a point during dialing when one was expected (such as at a "W" in
the dialable string). This can also occur without a service provider-
defined time-out period or without a value that is specified in the
dwWaitForDialTone member of the LINEDIALPARAMS structure.

The following constants are present in TAPI versions 2.0, 2.1, 2.2, 3.0, and 3.1.

Constant/value

Description

0x00002000

LINEDISCONNECTMODE_NUMBERCHANGED | The call could not be connected because the destination number

must have been changed; however, automatic redirection to the
new number must not be provided.

LINEDISCONNECTMODE_OUTOFORDER
0x00004000

The call must not be connected or was disconnected because the
destination device must be out of order (hardware failure).

LINEDISCONNECTMODE_TEMPFAILURE
0x00008000

The call must not be connected or must be disconnected because
of a temporary failure in the network; the call can be attempted
again later and must be expected to eventually complete.

LINEDISCONNECTMODE_TEMPFAILURE must be appropriate as a
delayed response. For example, a modem that is receiving a busy
signal (or its equivalent) too many times in a particular time
period, concludes that the number is not called again until a
defined time has elapsed and issues a "delayed" response.

LINEDISCONNECTMODE_QOSUNAVAIL
0x00010000

The call must not be connected or must be disconnected because
the minimum quality of service could not be obtained or sustained.
This differs from LINEDISCONNECTMODE_INCOMPATIBLE in that
the lack of resources can be a temporary condition at the
destination.

LINEDISCONNECTMODE_BLOCKED
0x00020000

The call must not be connected because calls from the origination
address are not being accepted at the destination address. This
differs from LINEDISCONNECTMODE_REJECT in that blocking is
implemented in the network (a passive reject) while a rejection
must be implemented in the destination equipment (an active
reject). The blocking can be due to a specific exclusion of the
origination address or because the destination accepts calls from

[MS-TRP-Diff] - v20210625

Telephony Remote Protocol

Copyright © 2021 Microsoft Corporation
Release: June 25, 2021

59/610

Constant/value

Description

only a selected set of origination addresses (a closed user group).

LINEDISCONNECTMODE_BLOCKED must be appropriate as a
blacklisted response. For example, a modem must have received
an answer, gone more than six seconds without detecting
ringback, failed to connect a defined number of times, determined
that the phone number must not be valid to call, and issued a
"blacklisted" response.

0x00040000

LINEDISCONNECTMODE_DONOTDISTURB

The call must not be connected because the destination has
invoked the Do Not Disturb feature.

0x00080000

LINEDISCONNECTMODE_CANCELLED

The call was canceled.

A remote disconnect request for a particular call results in the call state transitioning to the
disconnected state, and a LINE_CALLSTATE packet MUST be sent to the application. The
LINEDISCONNECTMODE_Constants information provides details about the remote disconnect request.
It MUST be available in the LINECALLSTATUS packet of the call when the call is in the disconnected
state. While a call is in this state, the application MUST still be allowed to query the information and
status of the call. For example, user-user information that is received as part of the remote disconnect
MUST be available then. A disconnected call can be cleared by dropping the call.

For backward compatibility, it is the responsibility of the service provider to examine the negotiated
TAPI version on the line and to not use this LINEDISCONNECTMODE_Constants value if it is not
supported on the negotiated version (LINEDISCONNECTMODE_NORMAL or _UNKNOWN could be used

instead).

2.2.3.1.38

LINEERR_Constants

The LINEERR_Constants list error codes that TAPI can return when invoking operations on lines,
addresses, or calls. For more information about how to determine which of these error codes a
particular function can return, see the individual function descriptions.

Constant/value

Description

LINEERR_ALLOCATED
0x80000001

The line cannot be opened because of a persistent condition, such as a
serial port that is opened exclusively by another process.

LINEERR_BADDEVICEID
0x80000002

The specified device identifier or line device identifier, such as in a
dwDevicelD parameter, is invalid or out of range.

LINEERR_BEARERMODEUNAVAIL
0x80000003

The bearer mode member in LINECALLPARAMS is invalid, the bearer
mode that is specified in LINECALLPARAMS is not available, or the call
bearer mode cannot be changed to the specified bearer mode.

LINEERR_CALLUNAVAIL
0x80000005

All call appearances on the specified address are currently in use.

LINEERR_COMPLETIONOVERRUN
0x80000006

The maximum number of outstanding call completions has been
exceeded.

LINEERR_CONFERENCEFULL
0x80000007

The maximum number of parties for a conference has been reached, or
the requested number of parties cannot be satisfied.

LINEERR_DIALBILLING
0x80000008

The dialable address parameter contains dialing control characters that
are not processed by the service provider.

[MS-TRP-Diff] - v20210625
Telephony Remote Protocol

Copyright © 2021 Microsoft Corporation

Release: June 25, 2021

60/610

Constant/value

Description

LINEERR_DIALDIALTONE
0x80000009

The dialable address parameter contains dialing control characters that
are not processed by the service provider.

LINEERR_DIALPROMPT
0x8000000A

The dialable address parameter contains dialing control characters that
are not processed by the service provider.

LINEERR_DIALQUIET
0x8000000B

The dialable address parameter contains dialing control characters that
are not processed by the service provider.

LINEERR_INCOMPATIBLEAPIVERSION
0x8000000C

The application requested a TAPI version or version range that is either
incompatible with, or cannot be supported by, the TAPI implementation
and the corresponding service provider.

LINEERR_INCOMPATIBLEEXTVERSION
0x8000000D

The application requested an extension version range that is either
invalid or cannot be supported by the corresponding service provider.

LINEERR_INIFILECORRUPT
0x8000000E

The Telephon.ini file cannot be read or understood properly by TAPI
because of internal inconsistencies or formatting problems. For example,
the [Locations], [Cards], or [Countries] section of the Telephon.ini file
can be corrupted or inconsistent.

LINEERR_INUSE
0x8000000F

The line device is in use and cannot currently be configured to allow a
party to be added, a call to be answered, a call to be placed, or a call to
be transferred.

LINEERR_INVALADDRESS
0x80000010

A specified address must be either invalid or not allowed. If invalid, the
address contains invalid characters or digits, or the destination address
contains dialing control characters (W, @, $, or?) that are not supported
by the service provider. If not allowed, the specified address is either
not assigned to the specified line or is not valid for address redirection.

LINEERR_INVALADDRESSID
0x80000011

The specified address identifier is either invalid or out of range.

LINEERR_INVALADDRESSMODE
0x80000012

The specified address mode must be invalid.

LINEERR_INVALADDRESSSTATE
0x80000013

The specified address state contains one or more bits that are not
LINEADDRESSSTATE_Constants.

LINEERR_INVALAPPHANDLE
0x80000014

The application handle (such as specified by a hLineApp parameter) or
the application registration handle is invalid.

LINEERR_INVALAPPNAME
0x80000015

The specified application name must be invalid. If an application name is
specified by the application, it is assumed that the string does not
contain any non-displayable characters and is zero-terminated.

LINEERR_INVALBEARERMODE
0x80000016

The specified bearer mode must be invalid.

LINEERR_INVALCALLCOMPLMODE
0x80000017

The specified completion must be invalid.

LINEERR_INVALCALLHANDLE
0x80000018

The specified call handle must be not valid. For example, the handle is
not NULL but does not belong to the particular line. In some cases, the
specified call device handle is invalid.

LINEERR_INVALCALLPARAMS
0x80000019

The specified call parameters must be invalid.

[MS-TRP-Diff] - v20210625

Telephony Remote Protocol

Copyright © 2021 Microsoft Corporation
Release: June 25, 2021

61/610

Constant/value

Description

LINEERR_INVALCALLPRIVILEGE
0x8000001A

The specified call privilege parameter must be invalid.

LINEERR_INVALCALLSELECT
0x8000001B

The specified select parameter must be invalid.

LINEERR_INVALCALLSTATE
0x8000001C

The current state of a call must not be in a valid state for the requested
operation.

LINEERR_INVALCALLSTATELIST
0x8000001D

The specified call state list must be invalid.

LINEERR_INVALCARD
0x8000001E

The permanent card identifier that is specified in dwCard could not be
found in any entry in the [Cards] section in the registry.

LINEERR_INVALCOMPLETIONID
0x8000001F

The completion identifier must be invalid.

LINEERR_INVALCONFCALLHANDLE
0x80000020

The specified call handle for the conference call must be invalid or is not
a handle for a conference call.

LINEERR_INVALCONSULTCALLHANDLE
0x80000021

The specified consultation call handle must be invalid.

LINEERR_INVALCOUNTRYCODE
0x80000022

The specified country code must be invalid.

LINEERR_INVALDEVICECLASS
0x80000023

The line device has no associated device for the indicated device class,
or the specified line must not support the indicated device class.

LINEERR_INVALDEVICEHANDLE
0x80000024

The line device handle must be invalid.

LINEERR_INVALDIALPARAMS
0x80000025

The dialing parameters must be invalid.

LINEERR_INVALDIGITLIST
0x80000026

The specified digit list must be invalid.

LINEERR_INVALDIGITMODE
0x80000027

The specified digit mode must be invalid.

LINEERR_INVALDIGITS
0x80000028

The specified termination digits must be invalid.

LINEERR_INVALEXTVERSION
0x80000029

The service provider extension version number must be invalid.

LINEERR_INVALGROUPID
0x8000002A

The specified group identifier must be invalid.

LINEERR_INVALLINEHANDLE
0x8000002B

The specified call, device, line device, or line handle must be invalid.

LINEERR_INVALLINESTATE
0x8000002C

The device configuration cannot be changed in the current line state.
The line can be in use by another application, or a dwLineStates
parameter contains one or more bits that are not

[MS-TRP-Diff] - v20210625

Telephony Remote Protocol

Copyright © 2021 Microsoft Corporation
Release: June 25, 2021

62/610

Constant/value

Description

LINEDEVSTATE_Constants. The LINEERR_INVALLINESTATE value can
also indicate that the device is disconnected or out of service. These
states are indicated by setting the bits that correspond to the
LINEDEVSTATUSFLAGS_CONNECTED and
LINEDEVSTATUSFLAGS_INSERVICE values to 0 in the dwDevStatusFlags
member of the LINEDEVSTATUS packet that is returned by the
GetLineDevStatus packet.

LINEERR_INVALLOCATION
0x8000002D

The permanent location identifier that is specified in dwLocation could
not be found in any entry in the [Locations] section in the registry.

LINEERR_INVALMEDIALIST
0x8000002E

The specified media list must be invalid.

LINEERR_INVALMEDIAMODE
0x8000002F

The list of media types (modes) to be monitored contains invalid
information, the specified media type parameter must be invalid, or the
service provider does not support the specified media type. The media
types that are supported on the line are listed in the dwMediaModes
member in the LINEDEVCAPS packet.

LINEERR_INVALMESSAGEID
0x80000030

The number that is specified in dwMessageID must be outside the range
that is specified by the dwNumCompletionMessages member in the
LINEADDRESSCAPS packet.

LINEERR_INVALPARAM
0x80000032

A parameter or packet that a parameter points to contains invalid
information; a country code is invalid; a window handle is invalid; or the
specified forward list parameter contains invalid information.

LINEERR_INVALPARKID
0x80000033

The park identifier must be invalid.

LINEERR_INVALPARKMODE
0x80000034

The specified park mode must be invalid.

LINEERR_INVALPOINTER
0x80000035

One or more of the specified pointer parameters (such as IpCallList,
IpdwAPIVersion, IpExtensionID, IpdwExtVersion, IphIcon, IpLineDevCaps,
and IpTonelList) are invalid, or a required pointer to an output parameter
is NULL.

LINEERR_INVALPRIVSELECT
0x80000036

An invalid flag or combination of flags was set for the dwPrivileges
parameter.

LINEERR_INVALRATE
0x80000037

The specified rate must be invalid.

LINEERR_INVALREQUESTMODE
0x80000038

The LINEREQUESTMODE indicator is invalid.

LINEERR_INVALTERMINALID
0x80000039

The specified terminal identifier must be invalid.

LINEERR_INVALTERMINALMODE
0x8000003A

The specified terminal modes parameter must be invalid.

LINEERR_INVALTIMEOUT
0x8000003B

Time-outs are not supported or a value falls outside the valid range that
is specified in LINEDEVCAPS.

LINEERR_INVALTONE
0x8000003C

The specified custom tone does not represent a valid tone or is made up
of too many frequencies; or the specified tone packet does not describe
a valid tone.

[MS-TRP-Diff] - v20210625
Telephony Remote Protocol

Copyright © 2021 Microsoft Corporation

Release: June 25, 2021

63/610

Constant/value

Description

LINEERR_INVALTONELIST
0x8000003D

The specified tone list is invalid.

LINEERR_INVALTONEMODE
0x8000003E

The specified tone mode parameter must be invalid.

LINEERR_INVALTRANSFERMODE
0x8000003F

The specified transfer mode parameter must be invalid.

LINEERR_LINEMAPPERFAILED
0x80000040

LINEMAPPER was the value that was passed in the dwDevicelD
parameter; however, no lines were found that match the requirements
that are specified in the IpCallParams parameter.

LINEERR_NOCONFERENCE
0x80000041

The specified call must not be a conference call handle or a participant
call.

LINEERR_NODEVICE
0x80000042

The specified device identifier, which was previously valid, is no longer
accepted because the associated device has been removed from the
computer since TAPI was last initialized. Alternately, the line device has
no associated device for the particular device class.

LINEERR_NODRIVER
0x80000043

The telephone service provider for the specified device found that one of
its components is missing or corrupt in a way that was not detected at
initialization time. The user is advised to use the Telephony Control
Panel to correct the problem.

LINEERR_NOMEM
0x80000044

Insufficient memory to perform the operation, or unable to lock
memory.

LINEERR_NOREQUEST
0x80000045

No request is currently pending for the indicated mode, or the
application is no longer the highest-priority application for the specified
request mode.

LINEERR_NOTOWNER
0x80000046

The application does not have owner privileges to the specified call.

LINEERR_NOTREGISTERED
0x80000047

The application is not registered as a request recipient for the indicated
request mode.

LINEERR_OPERATIONFAILED
0x80000048

The operation failed for an unspecified or unknown reason.

LINEERR_OPERATIONUNAVAIL
0x80000049

The operation is not available, such as for the particular device or
specified line.

LINEERR_RATEUNAVAIL
0x8000004A

The service provider currently does not have enough bandwidth
available for the specified rate.

LINEERR_RESOURCEUNAVAIL
0x8000004B

Insufficient resources to complete the operation. For example, a line
cannot be opened because a dynamic resource is over committed.

LINEERR_REQUESTOVERRUN
0x8000004C

More requests are pending than the device can handle.

LINEERR_STRUCTURETOOSMALL
0x8000004D

The dwTotalSize member of a packet does not specify enough memory
to contain the fixed portion of the specified packet.

LINEERR_TARGETNOTFOUND

A target for the call handoff was not found. This condition can occur if
the same line did not open with the LINECALLPRIVILEGE_OWNER bit in

[MS-TRP-Diff] - v20210625
Telephony Remote Protocol

Copyright © 2021 Microsoft Corporation

Release: June 25, 2021

64 /610

Constant/value

Description

0x8000004E

the dwPrivileges parameter of the Open packet. Or in the case of media-
mode handoff, the same line was not opened with the
LINECALLPRIVILEGE_OWNER bit in the dwPrivileges parameter of the
Open packet and with the media type specified in the dwMediaMode
parameter having been specified in the dwMediaModes parameter of the
Open packet.

LINEERR_TARGETSELF
0x8000004F

The application invoking this operation must be the target of the indirect
handoff. That is, TAPI has determined that the calling application is also
the highest-priority application for the specified media type.

LINEERR_UNINITIALIZED
0x80000050

The operation was invoked before any application sends the Initialize
packet.

LINEERR_USERUSERINFOTOOBIG
0x80000051

The string that contains user-user information exceeds the maximum
number of bytes that is specified in the dwUUIAcceptSize,
dwUUIAnswerSize, dwUUIDropSize, dwUUIMakeCallSize, or
dwUUISendUserUserInfoSize member of LINEDEVCAPS; or the string
that contains user-user information is too long.

LINEERR_REINIT
0x80000052

If TAPI re-initialization has been requested (for example, because of
adding or removing a telephony service provider), the Initialize packet
and the Open packet requests are rejected by using this error until the
last application shuts down its usage of the TAPI by using the Shutdown
packet; at which time, the new configuration becomes effective, and
applications are again permitted to send the Initialize packet.

LINEERR_ADDRESSBLOCKED
0x80000053

The address is blocked.

LINEERR_BILLINGREJECTED
0x80000054

The billing mode of the call was rejected.

LINEERR_INVALFEATURE
0x80000055

The application invoked a feature that is not available on this line.

LINEERR_NOMULTIPLEINSTANCE
0x80000056

A telephony service provider that does not support multiple instances is
listed more than once in the [Providers] section in the registry. The
application advises the user to use the Telephony Control Panel to
remove the duplicate driver.

The following constants are present in TAPI versions 2.0, 2.1, 2.2, 3.0, and 3.1.

Constant/value

Description

LINEERR_INVALAGENTID
0x80000057

An invalid agent identifier was used.

LINEERR_INVALAGENTGROUP
0x80000058

The application referenced an agent group that is not valid.

LINEERR_INVALPASSWORD
0x80000059

The application used an invalid password.

LINEERR_INVALAGENTSTATE
0x8000005A

The application referenced an agent state that is not valid.

LINEERR_INVALAGENTACTIVITY
0x8000005B

The specified agent activity is not valid.

[MS-TRP-Diff] - v20210625
Telephony Remote Protocol

65/610

Copyright © 2021 Microsoft Corporation

Release: June 25, 2021

Constant/value

Description

LINEERR_DIALVOICEDETECT
0x8000005C

Use of the dial modifier (:) is not supported.

The following constants are present in TAPI versions 2.2, 3.0, and 3.1.

Constant/value

Description

LINEERR_USERCANCELLED
0x8000005D

The user canceled the call.

0x8000005F

LINEERR_INVALAGENTSESSIONSTATE | The agent session state is invalid.

LINEERR_DISCONNECTED
0X80000060

The call has been disconnected.

LINEERR_SERVICE_not_RUNNING
0X80000061

The service must not be running.

The following constants are present in TAPI versions 3.0 and 3.1.

Constant/value Description

0x8000005E

LINEERR_INVALADDRESSTYPE | The application referenced an address type that must not be valid.

If an unknown error is returned,

such as an error that is defined by a device-specific extension, it

SHOULD be treated as a LINEERR_OPERATIONFAILED (for an unspecified reason).

2.2.3.1.39 LINEFEATURE_Constants

The LINEFEATURE_Constants are bit-flag constants that list the operations that can be invoked on a

line.

Constant/value

Description

LINEFEATURE_DEVSPECIFIC
0x00000001

Device-specific operations can be used on the line.

LINEFEATURE_DEVSPECIFICFEAT
0x00000002

Device-specific features can be used on the line.

LINEFEATURE_FORWARD
0x00000004

Forwarding of all addresses can be used on the line.

LINEFEATURE_MAKECALL
0x00000008

An outgoing call can be placed on this line using an unspecified address.

LINEFEATURE_SETMEDIACONTROL
0x00000010

Media control can be set on this line.

LINEFEATURE_SETTERMINAL
0x00000020

Terminal modes for this line can be set.
Note If neither of the new modified "FORWARD" bits is set in the

dwlLineFeatures member in LINEDEVSTATUS, but the
LINEFEATURE_FORWARD bit is set, any of the forward modes can work; the

[MS-TRP-Diff] - v20210625
Telephony Remote Protocol

66 /610

Copyright © 2021 Microsoft Corporation

Release: June 25, 2021

Constant/value Description

service provider has simply not specified which ones.

The following constants are present in TAPI versions 2.0, 2.1, 2.2, 3.0, and 3.1.

Constant/value Description

0x00000040

LINEFEATURE_SETDEVSTATUS | The SetLineDevStatus packet can be invoked on the line device.

LINEFEATURE_FORWARDFWD The Forward packet can be used to forward calls on all addresses on the line to
0x00000080 other numbers. LINEFEATURE_FORWARD will also be set.

LINEFEATURE_FORWARDDND The Forward packet (with an empty destination address) can be used to turn on
0x00000100 the Do Not Disturb feature on all addresses on the line.
LINEFEATURE_FORWARD will also be set.

The LINEFEATURE_Constants are used in LINEDEVSTATUS (returned by the GetLineDevStatus
packet). LINEDEVSTATUS reports, for a particular line, which line features can actually be invoked
while the line is in the current state. An application would make this determination dynamically after
line state changes, which are typically caused by address or call-related activities on the line.

2.2.3.1.40 LINEFORWARDMODE_Constants

The LINEFORWARDMODE_Constants are bit-flag constants that describe the conditions under which

calls to an address can be forwarded.

Constant/value

Description

LINEFORWARDMODE_UNCOND
0x00000001

Forward all calls unconditionally, regardless of their origin. Use this
value when unconditional forwarding for internal and external calls
cannot be controlled separately. Unconditional forwarding overrides
forwarding on "busy" or "no answer" conditions.

LINEFORWARDMODE_UNCONDINTERNAL
0x00000002

Forward all internal calls unconditionally. Use this value when
unconditional forwarding for internal and external calls can be
controlled separately.

LINEFORWARDMODE_UNCONDEXTERNAL
0x00000004

Forward all external calls unconditionally. Use this value when
unconditional forwarding for internal and external calls can be
controlled separately.

LINEFORWARDMODE_UNCONDSPECIFIC
0x00000008

Forward all calls unconditionally if they originated at a specified
address (selective call forwarding).

LINEFORWARDMODE_BUSY
0x00000010

Forward all calls on "busy", regardless of their origin. Use this value
when forwarding for internal and external calls on "busy" cannot be
controlled separately.

LINEFORWARDMODE_BUSYINTERNAL
0x00000020

Forward all internal calls on "busy". Use this value when forwarding
for internal and external calls on "busy" can be controlled separately.

LINEFORWARDMODE_BUSYEXTERNAL
0x00000040

Forward all external calls on "busy". Use this value when forwarding
for internal and external calls on "busy" can be controlled separately.

LINEFORWARDMODE_BUSYSPECIFIC
0x00000080

Forward on "busy" all calls that originated at a specified address
(selective call forwarding).

LINEFORWARDMODE_NOANSW

Forward all calls on "no answer", regardless of their origin. Use this

[MS-TRP-Diff] - v20210625

Telephony Remote Protocol

Copyright © 2021 Microsoft Corporation
Release: June 25, 2021

67/610

Constant/value

Description

0x00000100

value when call forwarding for internal and external calls on "no
answer" cannot be controlled separately.

LINEFORWARDMODE_NOANSWINTERNAL
0x00000200

Forward all internal calls on "no answer". Use this value when
forwarding for internal and external calls on "no answer" can be
controlled separately.

LINEFORWARDMODE_NOANSWEXTERNAL
0x00000400

Forward all external calls on "no answer". Use this value when
forwarding for internal and external calls on "no answer" can be
controlled separately.

LINEFORWARDMODE_NOANSWSPECIFIC
0x00000800

Forward on "no answer" all calls that originated at a specified
address (selective call forwarding).

LINEFORWARDMODE_BUSYNA
0x00001000

Forward all calls on "busy" or "no answer", regardless of their origin.
Use this value when forwarding for internal and external calls on
"busy" and on "no answer" cannot be controlled separately.

LINEFORWARDMODE_BUSYNAINTERNAL
0x00002000

Forward all internal calls on "busy" or "no answer". Use this value
when call forwarding on "busy" and on "no answer" cannot be
controlled separately for internal calls.

LINEFORWARDMODE_BUSYNAEXTERNAL
0x00004000

Forward all external calls on "busy" and "no answer". Use this value
when call forwarding on "busy" and on "no answer" cannot be
controlled separately for external calls.

LINEFORWARDMODE_BUSYNASPECIFIC
0x00008000

Forward on "busy" and "no answer" all calls that originated at a
specified address (selective call forwarding).

The following constants are present in TAPI versions 1.4, 2.0, 2.1, 2.2, 3.0, and 3.1.

Constant/value Description

LINEFORWARDMODE_UNKNOWN | Calls are forwarded, but the conditions under which forwarding will occur are
0x00010000 not now known. It is possible that the conditions can become known at a
future time.

LINEFORWARDMODE_UNAVAIL Calls are forwarded, but the conditions under which forwarding will occur are
0x00020000 not known and will never be known by the service provider.

The bit flags that are defined by LINEFORWARDMODE_Constants are not orthogonal. Unconditional

forwarding ignores any specific condition, such as "busy" or "no answer

. If unconditional forwarding is

not in effect, forwarding on "busy" and on "no answer" can be controlled separately or not separately.
If controlled separately, the LINEFORWARDMODE_BUSY and LINEFORWARDMODE_NOANSW flags can
be used separately. If not controlled separately, the flag LINEFORWARDMODE_BUSYNA MUST be
used. Similarly, if forwarding of internal and external calls can be controlled separately, the
LINEFORWARDMODE_INTERNAL and LINEFORWARDMODE_EXTERNAL flags can be used separately;

otherwise, the combination is used.

Address capabilities indicate which forwarding modes are available for each address that is assigned to
a line. An application can use the Forward packet to set forwarding conditions at the switch.

For backward compatibility, it is the responsibility of the service provider to examine the negotiated
TAPI version on the line and to not use these LINEFORWARDMODE_Constants values if the negotiated

version does not support them.

2.2.3.1.41 LINEGATHERTERM_Constants

[MS-TRP-Diff] - v20210625

Telephony Remote Protocol

Copyright © 2021 Microsoft Corporation
Release: June 25, 2021

68/610

The LINEGATHERTERM_Constants are bit-flag constants that describe the conditions under which
buffered digit gathering is terminated.

Constant/value

Description

LINEGATHERTERM_BUFFERFULL
0x00000001

The requested number of digits has been gathered. The buffer is full.

LINEGATHERTERM_TERMDIGIT
0x00000002

One of the termination digits matched a received digit. The matched
termination digit is the last digit in the buffer.

LINEGATHERTERM_FIRSTTIMEOUT
0x00000004

The first digit time-out expired. The buffer contains no digits.

LINEGATHERTERM_INTERTIMEOUT
0x00000008

The interdigit time-out expired. The buffer contains at least one digit.

LINEGATHERTERM_CANCEL
0x00000010

The request was canceled by this application, by another application, or
because the call was terminated.

2.2.3.1.42

LINEGENERATETERM_Constants

The LINEGENERATETERM_Constants are bit-flag constants that describe the conditions under which
digit or tone generation is terminated.

Constant/value

Description

LINEGENERATETERM_DONE
0x00000001

The requested number of digits or requested tones must have been generated
for the requested duration.

LINEGENERATETERM_CANCEL
0x00000002

The digit or tone generation request was canceled by this application, by another
application, or because the call was terminated. This value can also be returned
when digit or tone generation cannot be completed due to internal failure of the
service provider.

2.2.3.1.43

LINEMEDIACONTROL_Constants

The LINEMEDIACONTROL_Constants are bit-flag constants that describe a set of generic operations on
media streams. The interpretations are determined by the media stream. The line device MUST have
the media-control capability for any media-control operation to be effective.

Constant/value

Description

LINEMEDIACONTROL_NONE
0x00000001

No change is to be made to the media stream.

LINEMEDIACONTROL_START
0x00000002

Start the media stream.

LINEMEDIACONTROL_RESET
0x00000004

Reset the media stream. Equivalent to an end-of-input stream. All
buffers are released.

LINEMEDIACONTROL_PAUSE
0x00000008

Temporarily pause the media stream.
The speed of the media stream must be returned to normal.

[MS-TRP-Diff] - v20210625
Telephony Remote Protocol

Copyright © 2021 Microsoft Corporation

Release: June 25, 2021

69/610

Constant/value

Description

LINEMEDIACONTROL_RESUME
0x00000010

Resume a paused media stream.

LINEMEDIACONTROL_RATEUP
0x00000020

The speed of the media stream must be increased by some stream-
defined quantity.

LINEMEDIACONTROL_RATEDOWN
0x00000040

The speed of the media stream must be decreased by some stream-
defined quantity.

LINEMEDIACONTROL_RATENORMAL
0x00000080

The speed of the media stream must be returned to normal.

LINEMEDIACONTROL_VOLUMEUP
0x00000100

The amplitude of the media stream must be increased by some stream-
defined quantity.

LINEMEDIACONTROL_VOLUMEDOWN
0x00000200

The amplitude of the media stream must be decreased by some
stream-defined quantity.

0x00000400

LINEMEDIACONTROL_VOLUMENORMAL

The amplitude of the media stream must be returned to normal.

Media control is provided to improve performance of actions on media streams in response to

telephony-related events.

Media-control actions can be associated with the detection of digits, the detection of tones, the
transition into a call state, and the detection of a media type. Consult the device capabilities of a line
to determine whether media control is available on the line.

2.2.3.1.44

LINEMEDIAMODE_Constants

The LINEMEDIAMODE_ Constants are bit-flag constants that describe media types (or modes) of a

communications session or call.

Constant/value

Description

LINEMEDIAMODE_UNKNOWN
0x00000002

A media stream exists but its mode is not currently known and can
become known later. This condition would correspond to a call with an
unclassified media type. In typical analog telephony environments, the
media type of an incoming call can be unknown until after the call has
been answered and the media stream has been filtered to make a
determination.

If the unknown media-mode flag is set, other media flags can also be
set. This flag is used to signify that the media is unknown but that it is
likely to be one of the other selected media types.

LINEMEDIAMODE_INTERACTIVEVOICE
0x00000004

Voice energy was detected on the call, and the call is handled as an
interactive voice call with humans on both ends.

LINEMEDIAMODE_AUTOMATEDVOICE
0x00000008

Voice energy was detected on the call, and the voice is locally handled
by an automated application, such as with an answering machine
application. When a service provider cannot distinguish between
interactive and automated voice on an incoming call, it will report the
call as interactive voice.

LINEMEDIAMODE_DATAMODEM
0x00000010

A data modem session on the call. Current modem protocols require the
called station to initiate the handshake. For an incoming data modem
call, the application can typically make no positive detection. How the
service provider makes this determination is its choice. For example, a

[MS-TRP-Diff] - v20210625

Telephony Remote Protocol

Copyright © 2021 Microsoft Corporation
Release: June 25, 2021

70/ 610

Constant/value Description
period of silence just after answering an incoming call can be used as a
heuristic to decide that this call might be a data modem call.
LINEMEDIAMODE_G3FAX A group 3 fax is being sent or received over the call.
0x00000020
LINEMEDIAMODE_TDD A Telephony Devices for the Deaf (TDD) session on the call.
0x00000040
LINEMEDIAMODE_G4FAX A group 4 fax is being sent or received over the call.
0x00000080
LINEMEDIAMODE_DIGITALDATA A digital data stream of unspecified format.
0x00000100
LINEMEDIAMODE_TELETEX A teletex session on the call. Teletex is one of the telematic services.
0x00000200
LINEMEDIAMODE_VIDEOTEX A videotex session on the call. Videotex is one the telematic services.
0x00000400
LINEMEDIAMODE_TELEX A telex session on the call. Telex is one of the telematic services.
0x00000800
LINEMEDIAMODE_MIXED A mixed session on the call. Mixed is one of the ISDN telematic services.
0x00001000
LINEMEDIAMODE_ADSI An ADSI session on the call. ADSI enhances voice calls with
0x00002000 alphanumeric information that is downloaded to the phone and with the
use of soft buttons on the phone.

The following constants are present in TAPI versions 1.4, 2.0, 2.1, 2.2, 3.0, and 3.1.

Constant/value Description

LINEMEDIAMODE_VOICEVIEW | The media type of the call must be VoiceView.
0x00004000

The following constants are present in TAPI versions 2.1, 2.2, 3.0, and 3.1.

Constant/value Description

LINEMEDIAMODE_VIDEO | The media type of the call must be video.
0x00008000

Note that bearer mode and media type are different notions. The bearer mode of a call is an indication
of the quality of the telephone connection, as provided primarily by the network. The media type of a
call is an indication of the type of information stream that is exchanged over that call. Group 3 fax or
data modem are media types that use a call with a 3.1-kHz voice bearer mode.

For backward compatibility, it is the responsibility of the service provider to examine the negotiated
TAPI version on the line and to not use this LINEMEDIAMODE_Constants value if it is not supported on
the negotiated version.

2.2.3.1.45 LINEOFFERINGMODE_Constants

71/610

[MS-TRP-Diff] - v20210625

Telephony Remote Protocol

Copyright © 2021 Microsoft Corporation
Release: June 25, 2021

The LINEOFFERINGMODE_Constants are bit-flag constants that describe different substates of an
offering call. A mode is available as call status after the call state transitions to offering, and within the
LINE_CALLSTATE packet, indicating that the call is in LINECALLSTATE_OFFERING, as specified in
section 2.2.3.1.29. These values are used when the call is on an address that is shared (bridged) with
other stations, primarily electronic key systems.

The following constants are present in TAPI versions 1.4, 2.0, 2.1, 2.2, 3.0, and 3.1.

Constant/value Description

LINEOFFERINGMODE_ACTIVE Indicates that the call is alerting at the current station (will be accompanied by
0x00000001 LINEDEVSTATE_RINGING packets), and if any application is set to
automatically answer, it can do so. If the call state mode is zero, the
application assumes that the value is active (which would be the situation on a
non-bridged address).

LINEOFFERINGMODE_INACTIVE | Indicates that the call is being offered at more than one station; however, the
0x00000002 current station is not alerting (for example, it can be an attendant station
where the offering status is advisory, such as blinking a light). It is preferable
that software at the station that is set for automatic answering not answer the
call because answering is to be the prerogative of the primary (alerting)
station; however, the Answer packet can be used to connect the call.

For backward compatibility, it is the responsibility of the service provider to examine the negotiated
TAPI version on the line and not to use these LINEOFFERINGMODE_ Constants values if they are not
supported on the negotiated version.

The LINEOFFERINGMODE_ACTIVE and LINEOFFERINGMODE_INACTIVE values are used when the call
is on an address that is shared with other stations, primarily electronic key systems. (For more
information about bridged addressing, see LINEADDRESSSHARING_Constants.) If the offering call
state mode is "active", the call is alerting at the current station (it will be accompanied by
LINEDEVSTATE_RINGING packets), and if any application is set up to automatically answer, it can do
so. If the call state mode is "inactive", the call is being offered at more than one station; however, the
current station is not alerting (for example, it can be an attendant station where the offering status is
advisory, such as blinking a light).

Software at the station that is set for automatic answering SHOULD preferably not answer the call
because this SHOULD be the prerogative of the primary (alerting) station; however, the Answer
packet can be used to connect the call. If the call state mode is 0, the application SHOULD assume
that the value is active (which would be the situation on a non-bridged address).

2.2.3.1.46 LINEOPENOPTION_Constants

The LINEOPENOPTION_Constants list the available options for opening a line.

Constant/value Description

LINEOPENOPTION_SINGLEADDRESS | The application must be informed of new calls that are created on the line
0x80000000 device only if those calls appear on the address that is specified in the
dwAddressID member in the LINECALLPARAMS packet that is pointed to
by the IpCallParams parameter.

LINEOPENOPTION_PROXY The application is willing to handle requests from other applications that
0x40000000 have the line open.

2.2.3.1.47 LINEPARKMODE_Constants

The LINEPARKMODE_Constants are bit-flag constants that describe different ways of parking calls.

72 /610

[MS-TRP-Diff] - v20210625

Telephony Remote Protocol

Copyright © 2021 Microsoft Corporation
Release: June 25, 2021

Constant/value Description

LINEPARKMODE_DIRECTED Specifies directed call park. The address where the call is to be parked must be
0x00000001 supplied to the switch.

LINEPARKMODE_NONDIRECTED | Specifies a non-directed call park. The address where the call is parked is
0x00000002 selected by a switch and provided by the switch to the application.

The LINEPARKMODE_Constants are used when parking a call. To find out which park mode is
available, consult the address device capabilities of a line.

2.2.3.1.48 LINEPROXYREQUEST_Constants

The LINEPROXYREQUEST_Constants are used in two contexts. First, to indicate which functions the
application is willing to handle. The constants can be used in an array of DWORD values in the
LINECALLPARAMS structure that is passed in with the Open packet when the
LINEOPENOPTION_PROXY option is specified. Second, to indicate the type of request that is to be
processed and the format of the data in the packet. The constants are used in the
LINE_PROXYREQUEST that is passed to the handler application by a LINE_PROXYREQUEST packet.

Constant/value

Description

LINEPROXYREQUEST_SETAGENTGROUP
0x00000001

Associated with the SetAgentGroup packet.

LINEPROXYREQUEST_SETAGENTSTATE
0x00000002

Associated with the SetAgentState packet.

LINEPROXYREQUEST_SETAGENTACTIVITY
0x00000003

Associated with the SetAgentActivity packet.

LINEPROXYREQUEST_GETAGENTCAPS
0x00000004

Associated with the GetAgentCaps packet.

LINEPROXYREQUEST_GETAGENTSTATUS
0x00000005

Associated with the GetAgentStatus packet.

LINEPROXYREQUEST_AGENTSPECIFIC
0x00000006

Associated with the AgentSpecific packet.

LINEPROXYREQUEST_GETAGENTACTIVITYLIST
0x00000007

Associated with the GetAgentActivityList packet.

LINEPROXYREQUEST_GETAGENTGROUPLIST
0x00000008

Associated with the GetAgentGroupList packet.

The following constants are present in TAPI versions 2.2, 3.0, and 3.1:

Constant/value

Description

LINEPROXYREQUEST_CREATEAGENT
0x00000009

Associated with the CreateAgent packet.

0x0000000A

LINEPROXYREQUEST_SETAGENTMEASUREMENTPERIOD | Associated with the SetAgentMeasurementPeriod

packet.

LINEPROXYREQUEST_GETAGENTINFO

Associated with the GetAgentInfo packet.

[MS-TRP-Diff] - v20210625

Telephony Remote Protocol

Copyright © 2021 Microsoft Corporation
Release: June 25, 2021

73/ 610

Constant/value

Description

0x0000000B

LINEPROXYREQUEST_CREATEAGENTSESSION
0x0000000C

Associated with the CreateAgentSession packet.

LINEPROXYREQUEST_GETAGENTSESSIONLIST
0x0000000D

Associated with the GetAgentSessionList packet.

LINEPROXYREQUEST_SETAGENTSESSIONSTATE
0x0000000E

Associated with the SetAgentSessionState packet.

LINEPROXYREQUEST_GETAGENTSESSIONINFO
0x0000000F

Associated with the GetAgentSessionInfo packet.

LINEPROXYREQUEST_GETQUEUELIST
0x00000010

Associated with the GetQueuelList packet.

LINEPROXYREQUEST_SETQUEUEMEASUREMENTPERIOD
0x00000011

Associated with the SetQueueMeasurementPeriod
packet.

LINEPROXYREQUEST_GETQUEUEINFO
0x00000012

Associated with the GetQueuelnfo packet.

LINEPROXYREQUEST_GETGROUPLIST
0x00000013

Associated with the GetGroupList packet.

LINEPROXYREQUEST_SETAGENTSTATEEX
0x00000014

Associated with the SetAgentStateEx packet.

2.2.3.1.49

LINEPROXYSTATUS_Constants

The LINEPROXYSTATUS_Constants are bit-flag constants that indicate the status of the proxy on a line

that is currently open.

See LINEPROXYREQUEST_Constants for a list and description of all possible proxy request values.

Constant/value Description

LINEPROXYSTATUS_OPEN
0x00000001

A new proxy connection has been opened.

LINEPROXYSTATUS_CLOSE
0x00000002

A proxy connection has closed.

LINEPROXYSTATUS_ALLOPENFORACD
0x00000004

The line now has proxies that are open for all the proxy request types
that are required for ACD operations by TAPI versions 3.0 and 3.1.

2.2.3.1.50

LINEQUEUESTATUS_Constants

The LINEQUEUESTATUS_Constants are bit-flag constants that indicate the change in status of an ACD

queue on an agent handler.

[MS-TRP-Diff] - v20210625

Telephony Remote Protocol

Copyright © 2021 Microsoft Corporation
Release: June 25, 2021

74 /610

Constant/value Description

LINEQUEUESTATUS_UPDATEINFO Update of information about the ACD queue on an agent handler.
0x00000001

LINEQUEUESTATUS_NEWQUEUE A queue has been added to those that are available.
0x00000002

LINEQUEUESTATUS_QUEUEREMOVED | The queue has been removed from those that are available.
0x00000004

2.2.3.1.51 LINEREMOVEFROMCONF_Constants

The LINEREMOVEFROMCONF_Constants are scalar constants that describe how parties that participate
in a conference call can be removed from a conference call.

Constant/value Description

LINEREMOVEFROMCONF_NONE | Parties cannot be removed from the conference call.
0x00000001

LINEREMOVEFROMCONF_LAST | Only the most recently added party can be removed from the conference call.
0x00000002

LINEREMOVEFROMCONF_ANY Any participating party can be removed from the conference call.
0x00000003

2.2.3.1.52 LINEROAMMODE_Constants

The LINEROAMMODE_Constants are bit-flag constants that describe the roaming status of a line
device.

Constant/value Description

LINEROAMMODE_UNKNOWN | The roam mode is currently unknown but can become known later.
0x00000001

LINEROAMMODE_UNAVAIL The roam mode is unavailable and will not be known.
0x00000002

LINEROAMMODE_HOME The line is connected to the home network node.
0x00000004

LINEROAMMODE_ROAMA The line is connected to the Roam-A carrier and calls are charged accordingly.
0x00000008

LINEROAMMODE_ROAMB The line is connected to the Roam-B carrier and calls are charged accordingly.
0x00000010

2.2.3.1.53 LINESPECIALINFO_Constants

75/ 610

[MS-TRP-Diff] - v20210625

Telephony Remote Protocol

Copyright © 2021 Microsoft Corporation
Release: June 25, 2021

The LINESPECIALINFO_Constants are bit-flag constants that describes special information signals that
the network can use to report various reporting and network observation operations. They are
specially coded tone sequences that are transmitted at the beginning of network advisory recorded

announcements.

Constant/value

Description

LINESPECIALINFO_NOCIRCUIT
0x00000001

This special information tone precedes a "no circuit" or emergency
announcement (trunk blockage category).

LINESPECIALINFO_CUSTIRREG
0x00000002

This special information tone precedes a vacant number; Application
Information Service (AIS); Centrex number change and nonworking station;
access code not dialed or dialed in error; or manual intercept operator packet
(customer irregularity category). LINESPECIALINFO_CUSTIRREG is also
reported when the billing information is rejected and when the dialed address is
blocked at the switch.

LINESPECIALINFO_REORDER
0x00000004

This special information tone precedes a reorder announcement (equipment
irregularity category). LINESPECIALINFO_REORDER is also reported when the
telephone is kept off the hook for too long.

LINESPECIALINFO_UNKNOWN
0x00000008

Specifics about the special information tone are currently unknown but can
become known later.

LINESPECIALINFO_UNAVAIL
0x00000010

Specifics about the special information tone are unavailable and will not become
known.

The high-order 16 bits can be assigned for device-specific extensions. The low-order 16 bits are

reserved.

Special information tones are defined for advisory packets and are not typically used for billing or

supervisory purpose.

2.2.3.1.54

LINETERMDEV_Constants

The LINETERMDEV_Constants are bit-flag constants that describe different types of terminal devices.

Constant/value

Description

LINETERMDEV_PHONE
0x00000001

The terminal must be a phone set.

LINETERMDEV_HEADSET
0x00000002

The terminal must be a headset.

LINETERMDEV_SPEAKER
0x00000004

The terminal must be an external speaker and microphone.

These constants are used to characterize the terminal device of a line and to help an application to
determine the nature of a terminal device.

2.2.3.1.55

LINETERMMODE_Constants

The LINETERMMODE_Constants are bit-flag constants that describe different types of events on a
phone line that can be routed to a terminal device.

[MS-TRP-Diff] - v20210625
Telephony Remote Protocol

76 /610

Copyright © 2021 Microsoft Corporation

Release: June 25, 2021

Constant/value Description

LINETERMMODE_BUTTONS These are button-press events that are sent from the terminal to the line.
0x00000001

LINETERMMODE_LAMPS These are lamp events that are sent from the line to the terminal.
0x00000002

LINETERMMODE_DISPLAY This is display information that is sent from the line to the terminal.
0x00000004

LINETERMMODE_RINGER This is ringer-control information that is sent from the switch to the
0x00000008 terminal.

LINETERMMODE_HOOKSWITCH These are hookswitch events that are sent from the terminal to the line.
0x00000010

LINETERMMODE_MEDIATOLINE This is the unidirectional media stream from the terminal to the line that is

0x00000020 associated with a call on the line. Use this value when the routing of both
unidirectional channels of a call's media stream can be controlled
independently.

LINETERMMODE_MEDIAFROMLINE | This is the unidirectional media stream from the line to the terminal that is

0x00000040 associated with a call on the line. Use this value when the routing of both
unidirectional channels of a call's media stream can be controlled
independently.

LINETERMMODE_MEDIABIDIRECT | This is the bidirectional media stream that is associated with a call on the
0x00000080 line and the terminal. Use this value when the routing of both unidirectional
channels of a call's media stream cannot be controlled independently.

These constants describe the classes of control and information streams that can be routed directly
between a line device and a terminal device (such as a phone set).

2.2.3.1.56 LINETERMSHARING_Constants

The LINETERMSHARING_Constants are bit-flag constants that describe different ways in which a
terminal can be shared between line devices, addresses, or calls.

Constant/value Description
LINETERMSHARING_PRIVATE The terminal device is private to a single line device.
0x00000001

LINETERMSHARING_SHAREDEXCL | The terminal device can be used by multiple lines. The last line device to do
0x00000002 a SetTerminal packet to the terminal for a particular terminal mode will
have exclusive connection to the terminal for that mode.

LINETERMSHARING_SHAREDCONF | The terminal device can be used by multiple lines. The SetTerminal packet
0x00000004 requests of the various terminals end up being merged or conferenced at
the terminal.

These constants describe the classes of control and information streams that can be routed directly
between a line device and a terminal device (such as a phone set).

2.2.3.1.57 LINETONEMODE_Constants

The LINETONEMODE_Constants are bit-flag constants that describe different selections that are used
when generating line tones.

77 /610

[MS-TRP-Diff] - v20210625

Telephony Remote Protocol

Copyright © 2021 Microsoft Corporation
Release: June 25, 2021

Constant/value Description

LINETONEMODE_CUSTOM The tone is a custom tone that is defined by its component frequencies, of type
0x00000001 LINEGENERATETONE.

LINETONEMODE_RINGBACK | The tone is a ringback tone. The exact definition is service-provider defined.
0x00000002

LINETONEMODE_BUSY The tone is a busy tone. The exact definition is service-provider defined.
0x00000004

LINETONEMODE_BEEP The tone is a beep, such as the beep that is used to announce the beginning of a
0x00000008 recording. The exact definition is service-provider defined.

LINETONEMODE_BILLING The tone is a billing information tone, such as a credit card prompt tone. The exact
0x00000010 definition is service-provider defined.

The high-order 16 bits can be assigned for device-specific extensions. The low-order 16 bits are
reserved.

These constants are used to define tones to be generated inband over a call to the remote party. Note
that tone detection of non-custom tones does not use these constants.

2.2.3.1.58 LINETRANSFERMODE_Constants

The LINETRANSFERMODE_Constants describe different ways of resolving call transfer requests.

Constant/value Description

LINETRANSFERMODE_TRANSFER The transfer must be resolved by transferring the initial call to the
0x00000001 consultation call. Both calls will become idle to the application.

LINETRANSFERMODE_CONFERENCE | The transfer must be resolved by establishing a three-way conference
0x00000002 between the application, the party connected to the initial call, and the
party connected to the consultation call. A conference call is created when
this option is selected.

2.2.3.2 Phone Device Constants

The constants in the following sections specify bitmasks for phone device requests.

2.2.3.2.1 PHONEBUTTONFUNCTION_Constants

The PHONEBUTTONFUNCTION_Constants are scalar constants that describe the functions that are
commonly assigned to buttons on telephone sets.

Constant/value Description

PHONEBUTTONFUNCTION_UNKNOWN A "dummy" function assignment that indicates that the exact
0x00000000 function of the button is unknown or has not been assigned.

PHONEBUTTONFUNCTION_CONFERENCE Initiates a conference call or adds a call to a conference call.

0x00000001

PHONEBUTTONFUNCTION_TRANSFER Initiates a call transfer or completes the transfer of a call.

78/ 610

[MS-TRP-Diff] - v20210625

Telephony Remote Protocol

Copyright © 2021 Microsoft Corporation
Release: June 25, 2021

Constant/value

Description

0x00000002

PHONEBUTTONFUNCTION_DROP
0x00000003

Drops the active call.

PHONEBUTTONFUNCTION_HOLD
0x00000004

Places the active call on hold.

PHONEBUTTONFUNCTION_RECALL
0x00000005

Unholds a call.

PHONEBUTTONFUNCTION_DISCONNECT
0x00000006

Disconnects a call, such as after initiating a transfer.

PHONEBUTTONFUNCTION_CONNECT
0x00000007

Reconnects a call that is on consultation hold.

PHONEBUTTONFUNCTION_MSGWAITON
0x00000008

Turns on a packet-waiting lamp.

PHONEBUTTONFUNCTION_MSGWAITOFF
0x00000009

Turns off a packet-waiting lamp.

PHONEBUTTONFUNCTION_SELECTRING
0x0000000A

Allows the user to select the ring pattern of the phone.

PHONEBUTTONFUNCTION_ABBREVDIAL
0x0000000B

Indicates the number to be dialed by using a short, abbreviated
number that consists of one digit or a few digits.

PHONEBUTTONFUNCTION_FORWARD
0x0000000C

Initiates or changes call forwarding to this phone.

PHONEBUTTONFUNCTION_PICKUP
0x0000000D

Picks up a call ringing on another phone.

PHONEBUTTONFUNCTION_RINGAGAIN
0x0000000E

Initiates a request to be notified if a call cannot be completed
normally because of a busy signal or no answer.

PHONEBUTTONFUNCTION_PARK
0x0000000F

Parks the active call on another phone, placing it on hold there.

PHONEBUTTONFUNCTION_REJECT
0x00000010

Rejects an incoming call before the call is answered.

PHONEBUTTONFUNCTION_REDIRECT
0x00000011

Redirects an incoming call to another extension before the call is
answered.

PHONEBUTTONFUNCTION_MUTE
0x00000012

Mutes the microphone device on a phone.

PHONEBUTTONFUNCTION_VOLUMEUP
0x00000013

Increases the volume of audio through the handset speaker or
speaker phone of the phone.

PHONEBUTTONFUNCTION_VOLUMEDOWN
0x00000014

Decreases the volume of audio through the handset speaker or
speaker phone of the phone.

PHONEBUTTONFUNCTION_SPEAKERON

Turns on the external speaker of the phone.

[MS-TRP-Diff] - v20210625

Telephony Remote Protocol

Copyright © 2021 Microsoft Corporation
Release: June 25, 2021

79/ 610

Constant/value

Description

0x00000015

PHONEBUTTONFUNCTION_SPEAKEROFF
0x00000016

Turns off the external speaker of the phone.

PHONEBUTTONFUNCTION_FLASH
0x00000017

Generates the equivalent of an on-the-hook/off-the-hook sequence.
A flash typically indicates that any digits that are typed next are to
be understood as commands to the switch. On many switches,
places an active call on consultation hold.

PHONEBUTTONFUNCTION_DATAON
0x00000018

Indicates that the next call is a data call.

PHONEBUTTONFUNCTION_DATAOFF
0x00000019

Indicates that the next call is not a data call.

PHONEBUTTONFUNCTION_DONOTDISTURB
0x0000001A

Places the phone in "do not disturb" mode; incoming calls receive a
busy signal or are forwarded to an operator or voice mail system.

PHONEBUTTONFUNCTION_INTERCOM
0x0000001B

Connects to the intercom to broadcast a page.

PHONEBUTTONFUNCTION_BRIDGEDAPP
0x0000001C

Selects a particular appearance of a bridged address.

PHONEBUTTONFUNCTION_BUSY
0x0000001D

Makes the phone appear busy to incoming calls.

PHONEBUTTONFUNCTION_CALLAPP
0x0000001E

Selects a particular call appearance.

PHONEBUTTONFUNCTION_DATETIME
0x0000001F

Causes the phone to display the current date and time; this
information is sent by the switch.

PHONEBUTTONFUNCTION_DIRECTORY
0x00000020

Calls up directory service from the switch.

PHONEBUTTONFUNCTION_COVER
0x00000021

Forwards all calls that are destined for this phone to another phone
that is used for coverage.

PHONEBUTTONFUNCTION_CALLID
0x00000022

Requests the display of caller ID on the phone display.

PHONEBUTTONFUNCTION_LASTNUM
0x00000023

Redials the last number that was dialed.

PHONEBUTTONFUNCTION_NIGHTSRV
0x00000024

Places the phone in the mode it is configured for during night
hours.

PHONEBUTTONFUNCTION_SENDCALLS
0x00000025

Sends all calls to another phone that is used for coverage (same as
PHONEBUTTONFUNCTION_COVER).

PHONEBUTTONFUNCTION_MSGINDICATOR
0x00000026

Controls the packet-indicator lamp.

PHONEBUTTONFUNCTION_REPDIAL
0x00000027

Provides repertory dialing of the number to be dialed as a
shorthand following the pressing of this button.

[MS-TRP-Diff] - v20210625

Telephony Remote Protocol

Copyright © 2021 Microsoft Corporation
Release: June 25, 2021

80/610

Constant/value Description

PHONEBUTTONFUNCTION_SETREPDIAL Programs the shorthand-to-phone number mappings that are
0x00000028 accessible by means of repertory dialing (the REPDIAL button).

PHONEBUTTONFUNCTION_SYSTEMSPEED Provides the number to be dialed as a shorthand following the
0x00000029 pressing of this button. The mappings for telephony system speed
dialing are configured inside the switch.

PHONEBUTTONFUNCTION_STATIONSPEED Provides the number to be dialed as a shorthand following the
0x0000002A pressing of this button. The mappings for station speed dialing are
specific to this station (phone).

PHONEBUTTONFUNCTION_CAMPON Camps-on an extension that returns a busy indication. When the
0x0000002B remote station returns to idle, the phone is rung with a distinctive
pattern. Picking up the local phone reinitiates the call.

PHONEBUTTONFUNCTION_SAVEREPEAT When pressed while a call or call attempt is active, remembers that
0x0000002C call's number or command. When pressed while no call is active
(such as during dial tone), it repeats the most saved command.
PHONEBUTTONFUNCTION_QUEUECALL Queues a call to an outside number after it encounters a trunk-
0x0000002D busy indication. When a trunk becomes available later, the phone

rings with a distinctive pattern. Picking up the local phone
reinitiates the call.

PHONEBUTTONFUNCTION_NONE A "dummy" function assignment that indicates that the button does
0x0000002E not have a function.

The following constants are present in TAPI version 3.1.

Constant/value Description

PHONEBUTTONFUNCTION_SEND | Sends a request for a communications session.
0x0000002F

Values in the range 0x80000000 to OXFFFFFFFF can be assigned for device-specific extensions. Values
in the range 0x00000000 to Ox7FFFFFFF are reserved.

The PHONEBUTTONFUNCTION_Constants have values that are commonly found on current telephone
sets. TAPI does not define the semantics of the button functions; it only provides access to the
corresponding function. The behavior that is associated with each of the preceding function values is
generic and can vary based on the telephony environment.

2.2.3.2.2 PHONEBUTTONMODE_ Constants

The PHONEBUTTONMODE_Constants are bit-flag constants that describe the button classes.

Constant/value Description

PHONEBUTTONMODE_DUMMY This value is used to describe a button/lamp position that has no corresponding

0x00000001 button but has onIy a Iamp.
PHONEBUTTONMODE_CALL The button must be assigned to a call appearance.
0x00000002

PHONEBUTTONMODE_FEATURE | The button must be assigned to requesting features from the switch, such as
0x00000004 hold, conference, and transfer.

81 /610

[MS-TRP-Diff] - v20210625

Telephony Remote Protocol

Copyright © 2021 Microsoft Corporation
Release: June 25, 2021

Constant/value Description

PHONEBUTTONMODE_KEYPAD The button must be one of the twelve keypad buttons, that is, "0" through "9",
0x00000008 R, or M

PHONEBUTTONMODE_LOCAL The button must be a local function button, such as mute or volume control.
0x00000010

PHONEBUTTONMODE_DISPLAY | The button must be a "soft" button that is associated with the phone display. A
0x00000020 phone set can have zero or more display buttons.

This enumeration type is used in the PHONECAPS data packet to describe the meaning that is
associated with the buttons of the phone.

2.2.3.2.3 PHONEBUTTONSTATE_Constants

The PHONEBUTTONSTATE_Constants are bit-flag constants that describe the button positions.

Constant/value Description
PHONEBUTTONSTATE_UP The button is in the "up" state.
0x00000001

PHONEBUTTONSTATE_DOWN | The button is in the "down" state (pressed down).
0x00000002

The following constants are present in TAPI versions 1.4, 2.0, 2.1, 2.2, 3.0, and 3.1.

Constant/value Description

PHONEBUTTONSTATE_UNKNOWN | Indicates that the up or down state of the button is not known at this time,
0x00000004 but can become known at a future time.

PHONEBUTTONSTATE_UNAVAIL Indicates that the up or down state of the button is not known to the service
0x00000008 provider, and will not become known at a future time.

For backward compatibility, it is the responsibility of the service provider to examine the negotiated
TAPI version on the phone and not to use those PHONEBUTTONSTATE_Constants values that the
negotiated version does not support.

2.2.3.2.4 PHONEERR_Constants

The PHONEERR_Constants list the error codes that the implementation can return when invoking
operations on phone devices. Consult the individual function descriptions to determine which of these
error codes each function can return.

Constant/value Description
PHONEERR_ALLOCATED The specified resource is already allocated.
0x90000001
PHONEERR_BADDEVICEID The specified device identifier is invalid or is out of range.
0x90000002
PHONEERR_INCOMPATIBLEAPIVERSION | The application requested a TAPI version or version range that cannot
0x90000003 be supported by the TAPI implementation or the corresponding service
provider.
82 /610

[MS-TRP-Diff] - v20210625

Telephony Remote Protocol

Copyright © 2021 Microsoft Corporation
Release: June 25, 2021

Constant/value

Description

0x90000004

PHONEERR_INCOMPATIBLEEXTVERSION

The application requested an extension version or version range that
cannot be supported by the service provider.

PHONEERR_INIFILECORRUPT
0x90000005

Because of internal inconsistencies or formatting problems in the
Telephon.ini file, the file cannot be read and understood correctly by
TAPI.

PHONEERR_INUSE
0x90000006

The device is currently in use. The device cannot be configured.

PHONEERR_INVALAPPHANDLE
0x90000007

The application has a specified usage handle or registration handle
that is invalid.

PHONEERR_INVALAPPNAME
0x90000008

The specified application name is invalid. If an application name is
specified by the application, it is assumed that the string does not
contain any non-displayable characters and is NULL-terminated.

PHONEERR_INVALBUTTONLAMPID
0x90000009

The specified button/lamp identifier is out of range or is invalid.

PHONEERR_INVALBUTTONMODE
0x9000000A

The button mode parameter is invalid.

PHONEERR_INVALBUTTONSTATE
0x9000000B

The button states parameter is invalid.

PHONEERR_INVALDATAID
0x9000000C

The specified data identifier is invalid.

PHONEERR_INVALDEVICECLASS
0x9000000D

The specified phone does not support the indicated device class.

PHONEERR_INVALEXTVERSION
0x9000000E

The service provider extension version number is invalid.

PHONEERR_INVALHOOKSWITCHDEV
0x9000000F

The hookswitch device parameter is invalid.

PHONEERR_INVALHOOKSWITCHMODE
0x90000010

The hookswitch mode parameter is invalid.

PHONEERR_INVALLAMPMODE
0x90000011

The specified lamp mode parameter is invalid.

PHONEERR_INVALPARAM
0x90000012

A parameter, such as a row or column value or a window handle, is
invalid or out of range.

PHONEERR_INVALPHONEHANDLE
0x90000013

The specified device handle is invalid.

PHONEERR_INVALPHONESTATE
0x90000014

The phone device is not in a valid state for the requested operation.

PHONEERR_INVALPOINTER
0x90000015

One or more of the specified pointer parameters are invalid.

PHONEERR_INVALPRIVILEGE

The dwPrivilege parameter is invalid.

[MS-TRP-Diff] - v20210625

Telephony Remote Protocol

Copyright © 2021 Microsoft Corporation
Release: June 25, 2021

83 /610

Constant/value

Description

0x90000016

PHONEERR_INVALRINGMODE
0x90000017

The ring mode parameter is invalid.

PHONEERR_NODEVICE
0x90000018

The specified device identifier, which was previously valid, is no longer
accepted because the associated device has been removed from the
computer since TAPI was last initialized or is corrupt in a way that was
not detected at initialization.

PHONEERR_NODRIVER
0x90000019

The telephone service provider for the specified device found that one
of its components is missing or corrupt in a way that was not detected
at initialization time. The user is advised to use the Telephony Control
Panel to correct the problem.

PHONEERR_NOMEM
0x9000001A

Insufficient memory to complete the requested operation, or unable to
allocate or lock memory.

PHONEERR_notOWNER
0x9000001B

The application does not have owner privileges to the specified phone
device.

PHONEERR_OPERATIONFAILED
0x9000001C

The operation failed for an unspecified reason.

PHONEERR_OPERATIONUNAVAIL
0x9000001D

The operation is not available.

PHONEERR_RESOURCEUNAVAIL
0x9000001F

The operation cannot be completed because resources are
overcommitted.

PHONEERR_REQUESTOVERRUN
0x90000020

The maximum number of outstanding phone requests has been
exceeded.

PHONEERR_STRUCTURETOOSMALL
0x90000021

The specified phone caps structure is too small.

PHONEERR_UNINITIALIZED
0x90000022

The operation was invoked before any application sends the Initialize
packet.

PHONEERR_REINIT
0x90000023

If TAPI re-initialization has been requested, for example as a result of
adding or removing a telephony service provider, Initialize or Open
requests are rejected by using this error until the last application shuts
down its usage of TAPI (using Shutdown). Then the new configuration
becomes effective and applications are again permitted to send the
Initialize packet.

PHONEERR_DISCONNECTED
0x90000024

The call was disconnected.

PHONEERR_SERVICE_not_RUNNING
0x90000025

The service is not running.

The values 0xC0000000 through OxFFFFFFFF are available for device-specific extensions; the values
0x80000000 through OxBFFFFFFF are reserved; and 0x00000000 through Ox7FFFFFFF are used as
request identifiers.

If an application gets an error return that it does not specifically handle (such as an error that is
defined by a device-specific extension), it SHOULD treat the error as a PHONEERR_OPERATIONFAILED
(for an unspecified reason).

84 /610

[MS-TRP-Diff] - v20210625

Telephony Remote Protocol

Copyright © 2021 Microsoft Corporation
Release: June 25, 2021

2.2.3.2.5 PHONEFEATURE_Constants

The PHONEFEATURE_Constants list the operations that can be invoked on a phone using TAPI. Each of
the PHONEFEATURE_ values (except PHONEFEATURE_GENERICPHONE) corresponds to a TAPI function

that has an identical or similar name.

The following constants are present in TAPI versions 2.0, 2.1, 2.2, 3.0, and 3.1.

Constant/value

Description

PHONEFEATURE_GETBUTTONINFO
0x00000001

The GetButtonInfo packet.

PHONEFEATURE_GETDATA
0x00000002

The GetData packet.

PHONEFEATURE_GETDISPLAY
0x00000004

The GetDisplay packet.

PHONEFEATURE_GETGAINHANDSET
0x00000008

The GetGain packet PHONEHOOKSWITCHDEV_HANDSET.

PHONEFEATURE_GETGAINSPEAKER
0x00000010

The GetGain packet PHONEHOOKSWITCHDEV_SPEAKER.

PHONEFEATURE_GETGAINHEADSET
0x00000020

The GetGain packet PHONEHOOKSWITCHDEV_HEADSET.

0x00000040

PHONEFEATURE_GETHOOKSWITCHHANDSET

The GetHookSwitch packet PHONEHOOKSWITCHDEV_HANDSET.

PHONEFEATURE_GETHOOKSWITCHSPEAKER
0x00000080

The GetHookSwitch packet PHONEHOOKSWITCHDEV_SPEAKER.

0x00000100

PHONEFEATURE_GETHOOKSWITCHHEADSET

The GetHookSwitch packet PHONEHOOKSWITCHDEV_HEADSET.

PHONEFEATURE_GETLAMP
0x00000200

The GetLamp packet.

PHONEFEATURE_GETRING
0x00000400

The GetRing packet.

PHONEFEATURE_GETVOLUMEHANDSET
0x00000800

The GetVolume packet PHONEHOOKSWITCHDEV_HANDSET.

PHONEFEATURE_GETVOLUMESPEAKER
0x00001000

The GetVolume packet PHONEHOOKSWITCHDEV_SPEAKER.

PHONEFEATURE_GETVOLUMEHEADSET
0x00002000

The GetVolume packet PHONEHOOKSWITCHDEV_HEADSET.

PHONEFEATURE_SETBUTTONINFO
0x00004000

The SetButtonInfo packet.

PHONEFEATURE_SETDATA
0x00008000

The SetData packet.

PHONEFEATURE_SETDISPLAY

The SetDisplay packet.

[MS-TRP-Diff] - v20210625

Telephony Remote Protocol

Copyright © 2021 Microsoft Corporation
Release: June 25, 2021

85/610

Constant/value

Description

0x00010000

PHONEFEATURE_SETGAINHANDSET
0x00020000

The SetGain packet PHONEHOOKSWITCHDEV_HANDSET.

PHONEFEATURE_SETGAINSPEAKER
0x00040000

The SetGain packet PHONEHOOKSWITCHDEV_SPEAKER.

PHONEFEATURE_SETGAINHEADSET
0x00080000

The SetGain packet PHONEHOOKSWITCHDEV_HEADSET.

0x00100000

PHONEFEATURE_SETHOOKSWITCHHANDSET | The SetHookSwitch packet PHONEHOOKSWITCHDEV_HANDSET.

0x00200000

PHONEFEATURE_SETHOOKSWITCHSPEAKER | The SetHookSwitch packet PHONEHOOKSWITCHDEV_SPEAKER.

0x00400000

PHONEFEATURE_SETHOOKSWITCHHEADSET | The SetHookSwitch packet PHONEHOOKSWITCHDEV_HEADSET.

PHONEFEATURE_SETLAMP
0x00800000

The SetLamp packet.

PHONEFEATURE_SETRING
0x01000000

The SetRing packet.

0x02000000

PHONEFEATURE_SETVOLUMEHANDSET The SetVolume packet PHONEHOOKSWITCHDEV_HANDSET.

PHONEFEATURE_SETVOLUMESPEAKER
0x04000000

The SetVolume packet PHONEHOOKSWITCHDEV_SPEAKER.

PHONEFEATURE_SETVOLUMEHEADSET
0x08000000

The SetVolume packet PHONEHOOKSWITCHDEV_HEADSET.

The following constants are present

in TAPI versions 3.1 and later.

Constant/value Description

0x10000000

PHONEFEATURE_GENERICPHONE | must be used only with applications that use TAPI 3.1.

2.2.3.2.6 PHONEHOOKSWITCHDEV_Constants

The PHONEHOOKSWITCHDEV_Constants are bit-flag constants that describe various audio I/0O
devices, each with its own hookswitch that is controllable from the computer.

Constant/value

Description

PHONEHOOKSWITCHDEV_HANDSET
0x00000001

A standard earpiece and mouthpiece phone.

PHONEHOOKSWITCHDEV_SPEAKER
0x00000002

A built-in loudspeaker and microphone. This can also be an externally
connected adjunct speaker to the telephone set.

[MS-TRP-Diff] - v20210625

Telephony Remote Protocol

Copyright © 2021 Microsoft Corporation
Release: June 25, 2021

86 /610

Constant/value Description

PHONEHOOKSWITCHDEV_HEADSET | A headset that is connected to the phone set.
0x00000004

These constants are used in the PHONECAPS packet to indicate the hookswitch device capabilities of a
phone device. The PHONESTATUS packet reports the state of the phone's hookswitch devices. The
packets SetHookSwitch and GetHookSwitch MUST use it as a parameter to select the I/0 device of the
phone.

2.2.3.2.7 PHONEHOOKSWITCHMODE_Constants

The PHONEHOOKSWITCHMODE_Constants are bit-flag constants that describe the microphone and
speaker components of a hookswitch device.

Constant/value Description

PHONEHOOKSWITCHMODE_ONHOOK The device's microphone and speaker are both on the hook.
0x00000001

PHONEHOOKSWITCHMODE_MIC The device's microphone is active; the speaker is mute.
0x00000002

PHONEHOOKSWITCHMODE_SPEAKER The device's speaker is active; the microphone is mute.
0x00000004

PHONEHOOKSWITCHMODE_MICSPEAKER | The device's microphone and speaker are both active.
0x00000008

PHONEHOOKSWITCHMODE_UNKNOWN The device's hookswitch mode is currently unknown.
0x00000010

These constants are used to provide an individual level of control over the microphone and speaker
components of a phone device.

2.2.3.2.8 PHONEINITIALIZEEXOPTION_Constants

The PHONEINITIALIZEEXOPTION_Constants specify which event notification mechanism to use when
initializing a session.

The following constants are present in TAPI versions 2.0, 2.1, 2.2, 3.0, and 3.1.

Constant/value Description

PHONEINITIALIZEEXOPTION_USEHIDDENWINDOW The application wants to use the Hidden Window event

0x00000001 notification mechanism.
PHONEINITIALIZEEXOPTION_USEEVENT The application wants to use the Event Handle event
0x00000002 notification mechanism.

PHONEINITIALIZEEXOPTION_USECOMPLETIONPORT | The application wants to use the Completion Port event
0x00000003 notification mechanism.

2.2.3.2.9 PHONELAMPMODE_Constants

87 /610

[MS-TRP-Diff] - v20210625

Telephony Remote Protocol

Copyright © 2021 Microsoft Corporation
Release: June 25, 2021

The PHONELAMPMODE_Constants are bit-flag constants that describe various ways in which the lamp
of the phone can be lit.

Constant/value Description
PHONELAMPMODE_DUMMY This value must be used to describe a button/lamp position that has no
0x00000001 corresponding lamp.
PHONELAMPMODE_OFF The lamp is off.

0x00000002

PHONELAMPMODE_STEADY The lamp is continuously lit.
0x00000004

PHONELAMPMODE_WINK The normal rate of on and off.
0x00000008

PHONELAMPMODE_FLASH The slow rate of on and off.
0x00000010

PHONELAMPMODE_FLUTTER The fast rate of on and off.
0x00000020

PHONELAMPMODE_BROKENFLUTTER | The superposition of flash and flutter.
0x00000040

PHONELAMPMODE_UNKNOWN The lamp mode is currently unknown.
0x00000080

The high-order 16 bits can be assigned for device-specific extensions. The low-order 16 bits are
reserved.

Although the exact on and off cadences can differ for phones that are from different vendors, the
mapping of actual lamp lighting patterns for most phones onto the previously listed values SHOULD be
straightforward.

2.2.3.2.10 PHONEPRIVILEGE_Constants

The PHONEPRIVILEGE_Constants are bit-flag constants that describe the various ways in which a
phone device can be opened.

Constant/value Description

PHONEPRIVILEGE_MONITOR | An application that opens a phone device when the monitor privilege is informed
0x00000001 about events and state changes occurring on the phone. The application cannot
invoke any operations on the phone device that would change its state; so only
status operations can be invoked. Multiple applications can monitor a phone
device at any time.

PHONEPRIVILEGE_OWNER An application that opens a phone device when the owner privilege is allowed to
0x00000002 change the state of the lamps, ringer, display, hookswitch, and data blocks of the
phone. Opening a phone device in owner mode also provides monitoring of the
phone device. Only one application is allowed to be the owner of a phone device at
any time.

2.2.3.2.11 PHONESTATE_Constants

88/610

[MS-TRP-Diff] - v20210625

Telephony Remote Protocol

Copyright © 2021 Microsoft Corporation
Release: June 25, 2021

The PHONESTATE_Constants are bit-flag constants that describe various status items for a phone

device.

Constant/value

Description

PHONESTATE_OTHER
0x00000001

The phone-status items, other than those listed below, have changed.
The application checks the current phone status to determine which
items have changed.

PHONESTATE_CONNECTED
0x00000002

The connection between the phone device and TAPI was just made. This
happens when TAPI is first invoked or when the wire that connects the
phone to the computer is plugged in with TAPI active.

PHONESTATE_DISCONNECTED
0x00000004

The connection between the phone device and TAPI was just broken.
This happens when the wire that connects the phone set to the PC is
unplugged while TAPI is active.

PHONESTATE_OWNER
0x00000008

The number of owners for the phone device.

PHONESTATE_MONITORS
0x00000010

The number of monitors for the phone device.

PHONESTATE_DISPLAY
0x00000020

The display of the phone has changed.

PHONESTATE_LAMP
0x00000040

A lamp of the phone has changed.

PHONESTATE_RINGMODE
0x00000080

The ring mode of the phone has changed.

PHONESTATE_RINGVOLUME
0x00000100

The ring volume of the phone has changed.

PHONESTATE_HANDSETHOOKSWITCH
0x00000200

The handset hookswitch state has changed.

PHONESTATE_HANDSETVOLUME
0x00000400

The speaker volume setting of the handset has changed.

PHONESTATE_HANDSETGAIN
0x00000800

The microphone gain setting of the handset has changed.

PHONESTATE_SPEAKERHOOKSWITCH
0x00001000

The hookswitch state of the speaker phone has changed.

PHONESTATE_SPEAKERVOLUME
0x00002000

The speaker volume setting of the speaker phone has changed.

PHONESTATE_SPEAKERGAIN
0x00004000

The microphone gain setting state of the speaker phone has changed.

PHONESTATE_HEADSETHOOKSWITCH
0x00008000

The hookswitch state of the headset has changed.

PHONESTATE_HEADSETVOLUME
0x00010000

The speaker volume setting of the headset has changed.

PHONESTATE_HEADSETGAIN

The microphone gain setting of the headset has changed.

[MS-TRP-Diff] - v20210625

Telephony Remote Protocol

Copyright © 2021 Microsoft Corporation
Release: June 25, 2021

89/610

Constant/value

Description

0x00020000

PHONESTATE_SUSPEND
0x00040000

The application's use of the phone is temporarily suspended.

PHONESTATE_RESUME
0x00080000

The application's use of the phone device is resumed after having been
suspended for some time.

PHONESTATE_DEVSPECIFIC
0x00100000

The device-specific information of the phone has changed.

PHONESTATE_REINIT
0x00200000

Items have changed in the configuration of phone devices. To become
aware of these changes (as for the appearance of new phone devices),
the application reinitializes its use of TAPI.

The following constants are present in TAPI versions 1.4, 2.0, 2.1, 2.2, 3.0, and 3.1.

Constant/value

Description

PHONESTATE_CAPSCHANGE
0x00400000

Indicates that, because of configuration changes made by the user or other
circumstances, one or more of the members in the PHONECAPS packet have
changed. The application uses GetDevCaps to read the updated packet. If a
service provider sends a PHONE_STATE packet that contains this value to TAPI,
TAPI will pass it on to applications that have negotiated TAPI version 1.4, 2.0, 2.1,
2.2, 3.0, or 3.1; applications negotiating a previous TAPI version will receive
PHONE_STATE packets specifying PHONESTATE_REINIT, requiring them to shut
down and reinitialize their connection to TAPI to obtain the updated information.

PHONESTATE_REMOVED
0x00800000

Indicates that the device is being removed from the computer by the service
provider (most likely through user action or through a control panel or similar
tool). A PHONE_STATE packet with this value is usually immediately followed by a
PHONE_CLOSE packet on the device. Subsequent attempts to access the device
prior to TAPI being reinitialized results in PHONEERR_NODEVICE being returned to
the application. If a service provider sends a PHONE_STATE packet that contains
this value to TAPI, TAPI will pass it on to applications that have negotiated TAPI
version 1.4, 2.0, 2.1, 2.2, 3.0, or 3.1. Applications that negotiate a previous TAPI
version do not receive any notification.

2.2.3.2.12 PHONESTATUSFLAGS_Constants

The PHONESTATUSFLAGS_Constants are bit-flag constants that describe a variety of phone device

status information.

Constant/value

Description

0x00000001

PHONESTATUSFLAGS_CONNECTED | Specifies whether the phone is currently connected to TAPI. TRUE if

connected, otherwise FALSE.

0x00000002

PHONESTATUSFLAGS_SUSPENDED | Specifies whether manipulation of the phone device by TAPI is suspended.

TRUE if suspended, otherwise FALSE. An application's use of a phone device
can be temporarily suspended when the switch wants to manipulate the
phone in a way that cannot tolerate interference from the application.

[MS-TRP-Diff] - v20210625
Telephony Remote Protocol

90/ 610

Copyright © 2021 Microsoft Corporation

Release: June 25, 2021

2.2.4 Communication Packets Between Client and Server

2.2.4.1 Request Packets

The pBuffer parameter in the method ClientRequest is used to submit requests to the server. Each
packet follows the structure of TAPI32_MSG packet. The packet field Req_Func represents the
identifier of the function that is invoked on the remote server.

2.2.4.1.1 Create Session for Line Device

The following sections describe the packets that clients use while they create the session for line
device usage.

2.2.4.1.1.1 Initialize

The Initialize packet is transmitted from a TAPI client to a TAPI server in a remote procedure call.
Sending this packet initializes application use of TAPI for subsequent use of the line abstraction. It
registers the specified notification mechanism of the application and returns the number of line
devices that are available to the application. A line device is any device that provides an
implementation for the line-prefixed functions in TAPI.

0[{1(2|3|4|5|6|7|8|9(0(1(2[3|4|5|/6|7|8|9|0|1|2|3|4|5|6(|7(8]9|0]|1

Reqg_Func

Reserved1

hLineApp

hInstance

InitContext

dwFriendlyNameOffset

dwNumDevs

dwModuleNameOffset

dwAPIVersion

Reserved2

Reserved3

Reserved4

Reserved5

Reserved6

91 /610

[MS-TRP-Diff] - v20210625

Telephony Remote Protocol

Copyright © 2021 Microsoft Corporation
Release: June 25, 2021

Reserved?7

VarData (variable)

Req_Func (4 bytes): An unsigned 32-bit integer. The identifier of the function that is invoked on the
remote server. This value MUST be set to 47.

Return Values

On completion of ClientRequest, this field contains the result of the encapsulated telephony
request. A value of zero indicates success, and a LINEERR_Constants value indicates failure. The
remote server MUST complete this call synchronously.

Zero indicates success. A negative error number indicates that an error occurred. The following
table shows the return values for this function.

Value Meaning
LINEERR_INVALAPPNAME An invalid application name.
0x80000015

LINEERR_OPERATIONFAILED | The operation failed.
0x80000048

LINEERR_INIFILECORRUPT The INI file is corrupted.
0x8000000E

LINEERR_INVALPOINTER An invalid pointer.
0x80000035

LINEERR_REINIT The application attempted to initialize TAPI twice.
0x80000052

LINEERR_NOMEM No memory available.
0x80000044

LINEERR_INVALPARAM An invalid parameter.
0x80000032

Reservedl (4 bytes): An unsigned 32-bit integer. MUST be set to zero when sent and MUST be
ignored on receipt.

hLineApp (4 bytes): An HLINEAPP. Upon successful completion of the request, this field contains the
client's usage handle for TAPI line requests.

hInstance (4 bytes): An unsigned 32-bit integer. This field is an instance handle of the client
application. The application can pass NULL for this parameter, in which case, TAPI uses the
module handle of the root executable of the process (for purposes of identifying call handoff
targets and media mode priorities).

InitContext (4 bytes): An unsigned 32-bit integer. This field is an opaque value that the server uses
for ASYNCEVENTMSG.InitContext for all line packets that are intended for this client within the
scope of the hLineApp.

92 /610

[MS-TRP-Diff] - v20210625

Telephony Remote Protocol

Copyright © 2021 Microsoft Corporation
Release: June 25, 2021

dwFriendlyNameOffset (4 bytes): An unsigned
the beginning of the variable data area to a NU

32-bit integer. This field is the offset, in bytes, from
LL-terminated Unicode string that contains the

display name of the client. For remote clients, this MUST be the remote computer name.

dwNumbDevs (4 bytes): An unsigned 32-bit integ

er. Upon successful completion of the request, this

field MUST contain the number of line devices that are available to the client.

dwModuleNameOffset (4 bytes): An unsigned 32-bit integer. This field is the offset, in bytes, from
the beginning of the variable data area to a null-terminated Unicode string that contains the
display name of the client. For remote clients, this MUST be the remote computer name.

dwAPIVersion (4 bytes): An unsigned 32-bit integer. This field is the highest TAPI version that is

supported by the client.

Reserved2 (4 bytes): An unsigned 32-bit integer
ignored on receipt. It can be any value.

Reserved3 (4 bytes): An unsigned 32-bit integer
ignored on receipt. It can be any value.

Reserved4 (4 bytes): An unsigned 32-bit integer
ignored on receipt. It can be any value.

Reserved5 (4 bytes): An unsigned 32-bit integer
ignored on receipt. It can be any value.

Reserved6 (4 bytes): An unsigned 32-bit integer
ignored on receipt. It can be any value.

Reserved? (4 bytes): An unsigned 32-bit integer
ignored on receipt. It can be any value.

VarData (variable): Contains the null-terminated
dwFriendlyNameOffset and dwModuleNam

The contents of this field MUST be DWORD-alig

2.2.4.1.1.2 NegotiateAPIVersion

. This field is used for padding and MUST be

. This field is used for padding and MUST be

. This field is used for padding and MUST be

. This field is used for padding and MUST be

. This field is used for padding and MUST be

. This field is used for padding and MUST be

Unicode strings that are indicated by the

eOffset fields.

ned, as specified in [MS-DTYP] section 2.2.9.

The NegotiateAPIVersion packet is transmitted from a TAPI client to a TAPI server in a remote
procedure call. Sending this packet allows an application to negotiate a TAPI version to use.

e

4156

N
w

7

Req_Func

Reserved

1

hLineApp

dwDevicelD

dwVersion

dwVersionCurrent

[MS-TRP-Diff] - v20210625

Telephony Remote Protocol

Copyright © 2021 Microsoft Corporation
Release: June 25, 2021

93/ 610

dwNegotiatedVersion

ExtensionID

dwsSize

Reserved2

Reserved3

Reserved4

Reserved5

Reserved6

Reserved7

VarData (16 bytes)

Req_Func (4 bytes): An unsigned 32-bit integer. The identifier of the function that is invoked on the
remote server. This value MUST be set to 52.

Return Values

On completion of ClientRequest, this field contains the result of the encapsulated telephony
request. A value of 0 indicates success, and a LINEERR_Constants value indicates failure. The
remote server MUST complete this call synchronously.

MUST return zero if the function succeeds or an error number if an error occurs. Common return
values are as follows:

Name Value

LINEERR_INCOMPATIBLEAPIVERSION | 0x8000000C
LINEERR_OPERATIONUNAVAIL 0x80000049
LINEERR_NODRIVER 0x80000043
LINEERR_OPERATIONFAILED 0x80000048
LINEERR_NOMEM 0x80000044
LINEERR_RESOURCEUNAVAIL 0x8000004B

Reservedl (4 bytes): An unsigned 32-bit integer. MUST be set to zero when sent and MUST be
ignored on receipt.

hLineApp (4 bytes): An HLINEAPP. A handle to the client application's registration with TAPI. This
field MUST have been obtained by sending the Initialize packet.

94 /610

[MS-TRP-Diff] - v20210625

Telephony Remote Protocol

Copyright © 2021 Microsoft Corporation
Release: June 25, 2021

dwDevicelD (4 bytes): An unsigned 32-bit integer. Identifies the line device for which the interface
version negotiation is to be performed. A valid value of dwDevicelD is in the range 0 to
dwNumbDevs - 1. The client obtains dwNumDevs by sending a Initialize packet to the remote
server.

dwVersion (4 bytes): An unsigned 32-bit integer. The earliest TAPI version with which the
application is compliant.

dwVersionCurrent (4 bytes): An unsigned 32-bit integer. The latest TAPI version with which the
application is compliant.

dwNegotiatedVersion (4 bytes): An unsigned 32-bit integer. Set to TAPI_NO_DATA (OxFFFFFFFF).
Upon successful completion of the request, this field will contain the TAPI version number that was
negotiated.

ExtensionID (4 bytes): An unsigned 32-bit integer. Set to TAPI_NO_DATA (OxFFFFFFFF). Upon
successful completion of the request, this field MUST contain the offset, in bytes, in the VarData
field of a LINEEXTENSIONID packet that indicates the identifier of the provider-specific extensions.

dwSize (4 bytes): An unsigned 32-bit integer. The size, in bytes, of the packet that is indicated in
the ExtensionlID field.

Reserved2 (4 bytes): An unsigned 32-bit integer. This field is used for padding and MUST be
ignored on receipt. It can be any value.

Reserved3 (4 bytes): An unsigned 32-bit integer. This field is used for padding and MUST be
ignored on receipt. It can be any value.

Reserved4 (4 bytes): An unsigned 32-bit integer. This field is used for padding and MUST be
ignored on receipt. It can be any value.

Reserved5 (4 bytes): An unsigned 32-bit integer. This field is used for padding and MUST be
ignored on receipt. It can be any value.

Reserved6 (4 bytes): An unsigned 32-bit integer. This field is used for padding and MUST be
ignored on receipt. It can be any value.

Reserved7 (4 bytes): An unsigned 32-bit integer. This field is used for padding and MUST be
ignored on receipt. It can be any value.

VarData (16 bytes): Present on successful completion of the request. Contains a LINEEXTENSIONID
packet.

The contents of this field are DWORD aligned.

2.2.4.1.1.3 GetDevCaps

The GetDevCaps packet is transmitted from a TAPI client to a TAPI server in a remote procedure call.
Sending this packet queries a specified line device to determine its telephony capabilities. The
returned information is valid for all addresses on the line device.

—
N
w

0(1|2|3(4|5|6|7|8|9|0|1|2|3(4|5|6|7|8|9(0(1|2|3(4|5|6[|7|8|9|0(1

Req_Func

Reserved1

hLineApp

95/ 610

[MS-TRP-Diff] - v20210625

Telephony Remote Protocol

Copyright © 2021 Microsoft Corporation
Release: June 25, 2021

dwDevicelD

dwTSPIVersion

dwExtVersion

IpLineDevCaps

Reserved2

Reserved3

Reserved4

Reserved5

Reserved6

Reserved7

Reserved8

Reserved9

VarData (variable)

Req_Func (4 bytes): An unsigned 32-bit integer. The identifier of the function that is invoked on the
remote server. This value MUST be set to 34.

Return Values

On completion of ClientRequest, this field contains the result of the encapsulated telephony
request. A value of 0 indicates success, and a LINEERR_Constants value indicates failure. The
remote server MUST complete this call synchronously.

MUST return zero if the function succeeds or an error number if an error occurs. Common return
values are as follows:

Name Value

LINEERR_INCOMPATIBLEAPIVERSION | 0x8000000C

LINEERR_INCOMPATIBLEEXTVERSION | 0x8000000D

LINEERR_NODRIVER 0x80000043
LINEERR_NOMEM 0x80000044
LINEERR_OPERATIONFAILED 0x80000048
LINEERR_OPERATIONUNAVAIL 0x80000049

96 /610

[MS-TRP-Diff] - v20210625

Telephony Remote Protocol

Copyright © 2021 Microsoft Corporation
Release: June 25, 2021

Name Value

LINEERR_RESOURCEUNAVAIL 0x8000004B

Reservedl1 (4 bytes): An unsigned 32-bit integer. MUST be set to zero when sent and MUST be

ignored on receipt.

hLineApp (4 bytes): An HLINEAPP. A handle to the client application's registration with TAPI. This
field MUST have been obtained by sending the Initialize packet.

dwDevicelD (4 bytes): An unsigned 32-bit integer. The line device to be queried. A valid value of
dwDevicelD is in the range 0 to dwNumDevs - 1. The client obtains dwNumDevs by sending a

Initialize packet to the remote server.

dwTSPIVersion (4 bytes): An unsigned 32-bit integer. The negotiated TSPI version humber. This
value has already been negotiated for this device through the NegotiateAPIVersion packet.

dwExtVersion (4 bytes): An unsigned 32-bit integer. The negotiated extension version humber. This
value has already been negotiated for this device through the NegotiateExtVersion packet. This
parameter is not validated by TAPI when this function is called.

IpLineDevCaps (4 bytes): An unsigned 32-bit integer. The size, in bytes, of a LINEDEVCAPS data
packet that is filled with line device capabilities information upon successful completion of the

request.

On successful completion, this field contains the offset, in bytes, of the data packet in the

VarData field.

Reserved2 (4 bytes): An unsigned 32-bit integer.

ignored on receipt. It can be any value.

Reserved3 (4 bytes): An unsigned 32-bit integer.

ignored on receipt. It can be any value.

Reserved4 (4 bytes): An unsigned 32-bit integer.

ignored on receipt. It can be any value.

Reserved5 (4 bytes): An unsigned 32-bit integer.

ignored on receipt. It can be any value.

Reserved6 (4 bytes): An unsigned 32-bit integer.

ignored on receipt. It can be any value.

Reserved? (4 bytes): An unsigned 32-bit integer.

ignored on receipt. It can be any value.

Reserved8 (4 bytes): An unsigned 32-bit integer.

ignored on receipt. It can be any value.

Reserved9 (4 bytes): An unsigned 32-bit integer.

ignored on receipt. It can be any value.

This field is used for padding and MUST be

This field is used for padding and MUST be

This field is used for padding and MUST be

This field is used for padding and MUST be

This field is used for padding and MUST be

This field is used for padding and MUST be

This field is used for padding and MUST be

This field is used for padding and MUST be

VarData (variable): MUST be present on successful completion of the request. MUST contain a

LINEDEVCAPS data structure.

The contents of this field MUST be DWORD-aligned, as specified in [MS-DTYP] section 2.2.9.

2.2.4.1.1.4 GetAddressCaps

[MS-TRP-Diff] - v20210625

Telephony Remote Protocol

Copyright © 2021 Microsoft Corporation
Release: June 25, 2021

97/ 610

The GetAddressCaps packet is transmitted from a TAPI client to a TAPI server in a remote procedure
call. Sending this packet queries the specified address on the specified line device to determine its
telephony capabilities.

0(1(2|3|4|5|6|7|8|9(0(1|2[3|4|5|/6|7|8|9|0|1|2|3|4|5(6[7(8]9|0]|1

Reqg_Func

Reserved1

hLineApp

dwDevicelD

dwAddressID

dwTSPIVersion

dwExtVersion

IpAddressCaps

Reserved2

Reserved3

Reserved4

Reserved5

Reserved6

Reserved?7

Reserved8

VarData (variable)

Req_Func (4 bytes): An unsigned 32-bit integer. The identifier of the function that is invoked on the
remote server. This value MUST be set to 21.

Return Values

On completion of ClientRequest, this field contains the result of the encapsulated telephony
request. A value of 0 indicates success, and a LINEERR_Constants value indicates failure. The
remote server MUST complete this call synchronously.

MUST return zero, if the function succeeds; or an error number, if an error occurs.

98/ 610

[MS-TRP-Diff] - v20210625

Telephony Remote Protocol

Copyright © 2021 Microsoft Corporation
Release: June 25, 2021

Reservedl1 (4 bytes): An unsigned 32-bit integer. MUST be set to zero when sent and MUST be
ignored on receipt.

hLineApp (4 bytes): An HLINEAPP. A handle to the application's registration with TAPI. This field
MUST have been obtained by sending the Initialize packet.

dwDevicelID (4 bytes): An unsigned 32-bit integer. The line device that contains the address to be
queried. A valid value of dwDevicelD is in the range 0 to dwNumDevs - 1. The client obtains
dwNumbDevs by sending a Initialize packet to the remote server.

dwAddressID (4 bytes): An unsigned 32-bit integer. The address on the specified line device whose
capabilities are to be queried. An address identifier is permanently associated with an address; the
identifier remains constant across operating system upgrades. valid value of dwAddressID is in the
range 0 to dwNumAddresses — 1. The client obtains dwNumAddresses from the LIVEDEVCAPS
obtained by sending a GetDevCaps packet to the remote server. This parameter is not validated
by TAPI when this function is called.

dwTSPIVersion (4 bytes): An unsigned 32-bit integer. The version number of the TSPI to be used.
The high-order word contains the major version number; the low-order word contains the minor
version number. This number is obtained by NegotiateAPIVersion.

dwExtVersion (4 bytes): An unsigned 32-bit integer. The version number of the service provider-
specific extensions to be used. This number is zero if no device-specific extensions are to be used.
Otherwise, the high-order word contains the major version number; the low-order word contains
the minor version number. This value is obtained for this device by sending the
NegotiateExtVersion packet. This parameter is not validated by TAPI when this function is called.

IpAddressCaps (4 bytes): An unsigned 32-bit integer. The size, in bytes, of a LINEADDRESSCAPS
packet that is filled with address capabilities information upon successful completion of the
request. On successful completion, this field contains the offset, in bytes, of the packet in the
VarData field.

Reserved2 (4 bytes): An unsigned 32-bit integer. This field is used for padding and MUST be
ignored on receipt. It can be any value.

Reserved3 (4 bytes): An unsigned 32-bit integer. This field is used for padding and MUST be
ignored on receipt. It can be any value.

Reserved4 (4 bytes): An unsigned 32-bit integer. This field is used for padding and MUST be
ignored on receipt. It can be any value.

Reserved5 (4 bytes): An unsigned 32-bit integer. This field is used for padding and MUST be
ignored on receipt. It can be any value.

Reserved6 (4 bytes): An unsigned 32-bit integer. This field is used for padding and MUST be
ignored on receipt. It can be any value.

Reserved? (4 bytes): An unsigned 32-bit integer. This field is used for padding and MUST be
ignored on receipt. It can be any value.

Reserved8 (4 bytes): An unsigned 32-bit integer. This field is used for padding and MUST be
ignored on receipt. It can be any value.

VarData (variable): Present on successful completion of the request. Contains a LINEADDRESSCAPS
packet.

The contents of this field MUST be DWORD-aligned, as specified in [MS-DTYP] section 2.2.9.

2.2.4.1.1.5 Open

99/ 610

[MS-TRP-Diff] - v20210625

Telephony Remote Protocol

Copyright © 2021 Microsoft Corporation
Release: June 25, 2021

The Open packet is transmitted from a TAPI client to a TAPI server in a remote procedure call.
Sending this packet opens the line device that is specified by its device identifier and returns a line
handle for the corresponding opened line device. This line handle is used in subsequent operations on
the line device.

=
N
w

0(1|/2|3(4|5|6|7|8|9|0(1|2|3(4|5|6|7|8|9(0(1|2|3(4|5|6[|7|8|9|0(1

Reqg_Func

Reserved1

hLineApp

dwDevicelD

hLine

dwNegotiatedVersion

dwExtVersion

OpenContext

dwPrivileges

dwMediaModes

pCallParams

dwAsciiCallParamsCodePage

pGetCallParams

hRemoteline

Reserved2

VarData (variable)

Req_Func (4 bytes): An unsigned 32-bit integer. The identifier of the function that will be invoked
on the remote server. This value MUST be set to 54.

Return Values

On completion of ClientRequest, this field will contain the result of the encapsulated telephony
request. A value of 0 indicates success, and a LINEERR_Constants value indicates failure. The
remote server MUST complete this call synchronously.

MUST return zero if the function succeeds or an error number if an error occurs. Common return
values are as follows:

100/ 610

[MS-TRP-Diff] - v20210625

Telephony Remote Protocol

Copyright © 2021 Microsoft Corporation
Release: June 25, 2021

Name Value

LINEERR_ALLOCATED 0x80000001

LINEERR_OPERATIONUNAVAIL | 0x80000049

LINEERR_NODRIVER 0x80000043

LINEERR_OPERATIONFAILED 0x80000048

LINEERR_NOMEM 0x80000044

LINEERR_RESOURCEUNAVAIL | 0x8000004B

Reservedl (4 bytes): An unsigned 32-bit integer. MUST be set to zero when sent and MUST be
ignored on receipt.

hLineApp (4 bytes): An HLINEAPP. A handle to the client application's registration with TAPI. This
field MUST have been obtained by sending the Initialize packet.

dwDevicelD (4 bytes): An unsigned 32-bit integer. Identifies the line device to be opened. A valid
value of dwDevicelD is in the range 0 to dwNumDevs - 1. The client obtains dwNumDevs by
sending a Initialize packet to the remote server.

hLine (4 bytes): An HLINE. Set to TAPI_NO_DATA (OxFFFFFFFF). Upon successful completion of the
request, this field MUST contain the handle representing the opened line device.

dwNegotiatedVersion (4 bytes): An unsigned 32-bit integer. The version that is negotiated via the
NegotiateAPIVersion request.

dwExtVersion (4 bytes): An unsigned 32-bit integer. The extension version humber under which the
application and the service provider agree to operate. This number is obtained with
NegotiateExtVersion.

OpenContext (4 bytes): An unsigned 32-bit integer. The Callback instance, set to 0.

dwPrivileges (4 bytes): An unsigned 32-bit integer. The privilege that the application requests when
notified of a call.

dwMediaModes (4 bytes): An unsigned 32-bit integer. The media type or modes of interest to the
application.

pCallParams (4 bytes): The offset, in bytes, from the beginning of the variable data area to the
LINECALLPARAMS packet. This field is set to TAPI_NO_DATA (OxFFFFFFFF) if no LINECALLPARAMS
packet is specified.

dwAsciiCallParamsCodePage (4 bytes): An unsigned 32-bit integer. The code page of the
pCallParams field, set to TAPI_NO_DATA (OxFFFFFFFF).

pGetCallParams (4 bytes): An unsigned 32-bit integer. The value of this field is ignored by the
server. On successful completion, this field is set to TAPI_NO_DATA (OxFFFFFFFF).

hRemotelLine (4 bytes): An unsigned 32-bit integer. If this field is nonzero, the server MUST use
this value for ASYNCEVENTMSG.hDevice for all unsolicited events and completion notifications sent
to the client, instead of the returned hLine value.

Similar handle-swapping semantics can exist between the TAPI service and telephony service
providers.

Reserved2 (4 bytes): An unsigned 32-bit integer. This field is used for padding and MUST be
ignored on receipt. It can be any value.

101/ 610

[MS-TRP-Diff] - v20210625

Telephony Remote Protocol

Copyright © 2021 Microsoft Corporation
Release: June 25, 2021

VarData (variable): This field MUST contain the LINECALLPARAMS packet that is indicated by the
pCallParams field.

The contents of this field MUST be DWORD-aligned, as specified in [MS-DTYP] section 2.2.9.
2.2.4.1.2 Terminate Session for Line Device
The following sections describe the buffers that clients use to terminate the session.

2.2.4.1.2.1 Close

The Close packet is transmitted from a TAPI client to a TAPI server in a remote procedure call.
Sending this packet closes the specified open line device after completing or aborting all outstanding
calls and asynchronous operations on the device.

-
N
w

0(1(2|3|4|5|6|7|8|9(0(1(2[3|4|5|/6|7|8|9|0|1|2|3|4|5(6[7(8]9|0]|1

Reqg_Func

Reserved1

hLine

Reserved2

Reserved3

Reserved4

Reserved5

Reserved6

Reserved7

Reserved8

Reserved9

Reserved10

Reserved11

Reserved12

Reserved13

Req_Func (4 bytes): An unsigned 32-bit integer. The identifier of the function that will be invoked
on the remote server. This value MUST be set to 9.

Return Values

102 / 610

[MS-TRP-Diff] - v20210625

Telephony Remote Protocol

Copyright © 2021 Microsoft Corporation
Release: June 25, 2021

On completion of ClientRequest, this field contains the result of the encapsulated telephony
request. A value of 0 indicates success, and a LINEERR_Constants value indicates failure. The

remote server MUST complete this call synchro

nously.

MUST return zero if the function succeeds or an error number if an error occurs. Common return

values are as follows:

Name Value

LINEERR_NOMEM 0x80000044
LINEERR_OPERATIONFAILED 0x80000048
LINEERR_OPERATIONUNAVAIL | 0x80000049
LINEERR_RESOURCEUNAVAIL | 0x8000004B

Reservedl1 (4 bytes): An unsigned 32-bit integer
ignored on receipt.

. MUST be set to zero when sent and MUST be

hLine (4 bytes): An HLINE. A handle to the line to close. This field MUST have been obtained by

sending the Open packet.

Reserved?2 (4 bytes): An unsigned 32-bit integer
ignored on receipt. It can be any value.

Reserved3 (4 bytes): An unsigned 32-bit integer
ignored on receipt. It can be any value.

Reserved4 (4 bytes): An unsigned 32-bit integer
ignored on receipt. It can be any value.

Reserved5 (4 bytes): An unsigned 32-bit integer
ignored on receipt. It can be any value.

Reserved6 (4 bytes): An unsigned 32-bit integer
ignored on receipt. It can be any value.

Reserved? (4 bytes): An unsigned 32-bit integer
ignored on receipt. It can be any value.

Reserved8 (4 bytes): An unsigned 32-bit integer
ignored on receipt. It can be any value.

Reserved9 (4 bytes): An unsigned 32-bit integer
ignored on receipt. It can be any value.

. This field is used for padding and MUST be

. This field is used for padding and MUST be

. This field is used for padding and MUST be

. This field is used for padding and MUST be

. This field is used for padding and MUST be

. This field is used for padding and MUST be

. This field is used for padding and MUST be

. This field is used for padding and MUST be

Reserved10 (4 bytes): An unsigned 32-bit integer. This field is used for padding and MUST be

ignored on receipt. It can be any value.

Reservedl1 (4 bytes): An unsigned 32-bit integer. This field is used for padding and MUST be

ignored on receipt. It can be any value.

Reservedl12 (4 bytes): An unsigned 32-bit integer. This field is used for padding and MUST be

ignored on receipt. It can be any value.

Reserved13 (4 bytes): An unsigned 32-bit integer. This field is used for padding and MUST be

ignored on receipt. It can be any value.

2.2.4.1.2.2 ShutDown

[MS-TRP-Diff] - v20210625

Telephony Remote Protocol

Copyright © 2021 Microsoft Corporation
Release: June 25, 2021

103/ 610

The Shutdown packet is transmitted from a TAPI client to a TAPI server in a remote procedure call.
Sending this packet MUST shut down the application's usage of the line abstraction of the TAPI.

=
N
w

0(1|/2|3(4|5|6|7|8|9|0(1|2|3(4|5|6|7|8|9(0(1|2|3(4|5|6[7|8|9|0/(1

Reqg_Func

Reservedl

hLineApp

Reserved2

Reserved3

Reserved4

Reserved5

Reserved6

Reserved7

Reserved8

Reserved9

Reserved10

Reserved11

Reserved12

Reservedl13

Req_Func (4 bytes): An unsigned 32-bit integer. The identifier of the function that will be invoked
on the remote server. This value MUST be set to 86.

Return Values

On completion of ClientRequest, this field MUST contain the result of the encapsulated telephony
request. A value of 0 indicates success, and a LINEERR_Constants value indicates failure. The
remote server MUST complete this call synchronously.

Returns zero if the request succeeds or a negative error number if an error occurs. Common
return values are:

Name Value

LINEERR_INVALAPPHANDLE 0x80000014

LINEERR_RESOURCEUNAVAIL | 0x8000004B

104 / 610

[MS-TRP-Diff] - v20210625

Telephony Remote Protocol

Copyright © 2021 Microsoft Corporation
Release: June 25, 2021

Name Value

LINEERR_NOMEM 0x80000044

LINEERR_UNINITIALIZED 0x80000050

Reservedl (4 bytes): An unsigned 32-bit integer. MUST be set to zero when sent and MUST be
ignored on receipt.

hLineApp (4 bytes): An HLINEAPP. The usage handle of the application for the line. This field MUST
have been obtained by sending the Initialize packet.

Reserved2 (4 bytes): An unsigned 32-bit integer. This field is used for padding and MUST be
ignored on receipt. It can be any value.

Reserved3 (4 bytes): An unsigned 32-bit integer. This field is used for padding and MUST be
ignored on receipt. It can be any value.

Reserved4 (4 bytes): An unsigned 32-bit integer. This field is used for padding and MUST be
ignored on receipt. It can be any value.

Reserved5 (4 bytes): An unsigned 32-bit integer. This field is used for padding and MUST be
ignored on receipt. It can be any value.

Reserved6 (4 bytes): An unsigned 32-bit integer. This field is used for padding and MUST be
ignored on receipt. It can be any value.

Reserved? (4 bytes): An unsigned 32-bit integer. This field is used for padding and MUST be
ignored on receipt. It can be any value.

Reserved8 (4 bytes): An unsigned 32-bit integer. This field is used for padding and MUST be
ignored on receipt. It can be any value.

Reserved9 (4 bytes): An unsigned 32-bit integer. This field is used for padding and MUST be
ignored on receipt. It can be any value.

Reserved10 (4 bytes): An unsigned 32-bit integer. This field is used for padding and MUST be
ignored on receipt. It can be any value.

Reservedl1 (4 bytes): An unsigned 32-bit integer. This field is used for padding and MUST be
ignored on receipt. It can be any value.

Reservedl12 (4 bytes): An unsigned 32-bit integer. This field is used for padding and MUST be
ignored on receipt. It can be any value.

Reserved13 (4 bytes): An unsigned 32-bit integer. This field is used for padding and MUST be
ignored on receipt. It can be any value.

2.2.4.1.3 Line Device Requests

The packets in the following sections, from the Accept (section 2.2.4.1.3.1) packet through the
UnPark (section 2.2.4.1.3.82) packet, describe line device requests that are sent from the TAPI client
to the TAPI server on the tapsrv interface by using the ClientRequest remote procedure call.

2.2.4.1.3.1 Accept

The Accept packet is transmitted from a TAPI client to a TAPI server in a remote procedure call.
Sending this packet accepts the specified offered call. Optionally, it can send the specified user-user
information to the calling party.

105/ 610

[MS-TRP-Diff] - v20210625

Telephony Remote Protocol

Copyright © 2021 Microsoft Corporation
Release: June 25, 2021

0(1(2|3|4|5|6|7|8|9|(0(1(2[3|4|5|/6|7|8|9|0|1|2|3|4|5(6[7(8]9|0]|1

Reqg_Func

Reserved1

dwRequestID

hCall

IpsUserUserlInfo

dwSize

Reserved2

Reserved3

Reserved4

Reserved5

Reserved6

Reserved?7

Reserved8

Reserved9

Reserved10

VarData (variable)

Req_Func (4 bytes): An unsigned 32-bit integer. The identifier of the function that will be invoked
on the remote server. This value MUST be set to 4.

Return Values

On completion of ClientRequest, this field contains the result of the encapsulated telephony
request. A nonzero request ID value indicates that the request is in progress and will complete
asynchronously and a LINEERR_Constants value indicates synchronous failure.

Returns a positive request identifier if the function will be completed asynchronously or a negative
error number if an error occurs. The dwParam2 parameter of the corresponding LINE_REPLY
packet is zero if the function succeeds; or it is a negative error number if an error occurs. If the
client specified a nonzero value in the dwRequestID field of the packet, the same MUST be used as
the value for the returned positive request identifier. Common return values are as follows:

106 / 610

[MS-TRP-Diff] - v20210625

Telephony Remote Protocol

Copyright © 2021 Microsoft Corporation
Release: June 25, 2021

Name Value

LINEERR_INVALCALLHANDLE 0x80000018
LINEERR_OPERATIONFAILED 0x80000048
LINEERR_INVALCALLSTATE 0x8000001C
LINEERR_RESOURCEUNAVAIL 0x8000004B
LINEERR_NOMEM 0x80000044
LINEERR_USERUSERINFOTOOBIG | 0x80000051
LINEERR_OPERATIONUNAVAIL 0x80000049

Reservedl (4 bytes): An unsigned 32-bit integer.

ignored on receipt.

MUST be set to zero when sent and MUST be

dwRequestID (4 bytes): The identifier of an asynchronous request.

Value Meaning

0x00000000 The server MUST generate a unique positive request ID to return as the
Ack_ReturnValue.

0x00000001 — The server MUST use this value instead of generating a unique positive request

Ox7FFFFFFF ID.

hCall (4 bytes): The handle to the call to be accepted. The application MUST be an owner of the call.
The call state of hCall must be offering. The client can obtain a valid hCall from the
LINE_CALLSTATE packet sent by the remote server.

IpsUserUserInfo (4 bytes): The offset, in bytes, in the VarData field of the user-user information to
send to the remote party as part of the call accept. When this field is set to -1 (OXFFFFFFFF), no

user-user information is to be sent.

dwSize (4 bytes): The size, in bytes, of the user-user information in IpsUserUserInfo (including the
null terminator). If IpsUserUserInfo is -1 (OxFFFFFFFF), no user-user information is sent to the

calling party and dwSize is ignored.

Reserved2 (4 bytes): An unsigned 32-bit integer.

ignored on receipt. It can be any value.

Reserved3 (4 bytes): An unsigned 32-bit integer.

ignored on receipt. It can be any value.

Reserved4 (4 bytes): An unsigned 32-bit integer.

ignored on receipt. It can be any value.

Reserved5 (4 bytes): An unsigned 32-bit integer.

ignored on receipt. It can be any value.

Reserved6 (4 bytes): An unsigned 32-bit integer.

ignored on receipt. It can be any value.

Reserved? (4 bytes): An unsigned 32-bit integer.

ignored on receipt. It can be any value.

Reserved8 (4 bytes): An unsigned 32-bit integer.

ignored on receipt. It can be any value.

This field is used for padding and MUST be

This field is used for padding and MUST be

This field is used for padding and MUST be

This field is used for padding and MUST be

This field is used for padding and MUST be

This field is used for padding and MUST be

This field is used for padding and MUST be

[MS-TRP-Diff] - v20210625

Telephony Remote Protocol

Copyright © 2021 Microsoft Corporation
Release: June 25, 2021

107/ 610

Reserved9 (4 bytes): An unsigned 32-bit integer. This field is used for padding and MUST be
ignored on receipt. It can be any value.

Reservedl10 (4 bytes): An unsigned 32-bit integer. This field is used for padding and MUST be
ignored on receipt. It can be any value.

VarData (variable): Contains the user information that is indicated in the IpsUserUserInfo field. The
user information can be an ASCII or Unicode string and this data is opaque to the protocol.

The contents of this field MUST be DWORD-aligned, as specified in [MS-DTYP] section 2.2.9.

2.2.4.1.3.2 AddToConference

The AddToConference packet is transmitted from a TAPI client to a TAPI server in a remote procedure
call. Sending this packet adds the call that is specified by hConsultCall to the conference call that is
specified by hConfCall.

0[{1(2|3|4|5|6|7|8|9(0(1(2[3|4|5|/6|7|8|9|0|1|2|3|4|5|6(|7(8]9|0]|1

Reqg_Func

Reserved1

dwRequestID

hConfCall

hConsultCall

Reserved2

Reserved3

Reserved4

Reserved5

Reserved6

Reserved?7

Reserved8

Reserved9

Reserved10

Reservedil

Req_Func (4 bytes): An unsigned 32-bit integer. The identifier of the function that will be invoked
on the remote server. This value MUST be set to 5.

Return Values

108 /610

[MS-TRP-Diff] - v20210625

Telephony Remote Protocol

Copyright © 2021 Microsoft Corporation
Release: June 25, 2021

On completion of ClientRequest, this field contains the result of the encapsulated telephony
request. A nonzero request ID value indicates that the request is in progress and will complete
asynchronously, and a LINEERR_Constants value indicates synchronous failure.

Returns a positive request identifier if the function will be completed asynchronously or a negative
error number if an error occurs. The dwParam2 parameter of the corresponding LINE_REPLY
packet is zero if the function succeeds, or it is a negative error number if an error occurs. If the
client specified a nonzero value in the dwRequestID field of the packet, the same value MUST be
used as the value for the returned positive request identifier. Common return values are as
follows:

Name Value

LINEERR_INVALCALLHANDLE 0x80000018

LINEERR_OPERATIONUNAVAIL | 0x80000049

LINEERR_INVALCALLSTATE 0x8000001C

LINEERR_OPERATIONFAILED 0x80000048

LINEERR_CONFERENCEFULL 0x80000007

LINEERR_RESOURCEUNAVAIL | 0x8000004B

LINEERR_NOMEM 0x80000044

Reservedl (4 bytes): An unsigned 32-bit integer. MUST be set to zero when sent and MUST be
ignored on receipt.

dwRequestID (4 bytes): An unsigned 32-bit integer. The identifier of the asynchronous request.

hConfCall (4 bytes): An HCALL. The handle to the conference call obtained by sending the
SetUpConference packet. The application MUST be an owner of this call. Any monitoring (media,
tones, digits) on a conference call applies only to the hConfCall and not to the individual
participating calls. The call state of hConfCall MUST be onHoldPendingConference or onHold.

hConsultCall (4 bytes): An HCALL. The handle to the call to be added to the conference call. One
way of obtaining a valid hConsultCall is by sending the MakeCall packet. The application MUST be
an owner of this call. This call cannot be either a parent of another conference or a participant in
any conference. Depending on the device capabilities that are indicated in LINEADDRESSCAPS, the
hConsultCall parameter might not necessarily have been established by using the
SetUpConference or PrepareAddToConference packet. The call state of hConsultCall can be
connected, onHold, proceeding, or ringback.

Reserved?2 (4 bytes): An unsigned 32-bit integer. This field is used for padding and MUST be
ignored on receipt. It can be any value.

Reserved3 (4 bytes): An unsigned 32-bit integer. This field is used for padding and MUST be
ignored on receipt. It can be any value.

Reserved4 (4 bytes): An unsigned 32-bit integer. This field is used for padding and MUST be
ignored on receipt. It can be any value.

Reserved5 (4 bytes): An unsigned 32-bit integer. This field is used for padding and MUST be
ignored on receipt. It can be any value.

Reserved6 (4 bytes): An unsigned 32-bit integer. This field is used for padding and MUST be
ignored on receipt. It can be any value.

109/ 610

[MS-TRP-Diff] - v20210625

Telephony Remote Protocol

Copyright © 2021 Microsoft Corporation
Release: June 25, 2021

Reserved? (4 bytes): An unsigned 32-bit integer. This field is used for padding and MUST be
ignored on receipt. It can be any value.

Reserved8 (4 bytes): An unsigned 32-bit integer. This field is used for padding and MUST be
ignored on receipt. It can be any value.

Reserved9 (4 bytes): An unsigned 32-bit integer. This field is used for padding and MUST be
ignored on receipt. It can be any value.

Reserved10 (4 bytes): An unsigned 32-bit integer. This field is used for padding and MUST be
ignored on receipt. It can be any value.

Reserved11 (4 bytes): An unsigned 32-bit integer. This field is used for padding and MUST be
ignored on receipt. It can be any value.

2.2.4.1.3.3 AgentSpecific

The AgentSpecific packet is transmitted from a TAPI client to a TAPI server in a remote procedure call.
Sending this packet allows the application to access proprietary handler-specific functions of the agent
handler that is associated with the address.

The meaning of the extensions are specific to the agent handler. Each set of agent-related extensions
is identified by a universally unique 128-bit extension ID that MUST be obtained, along with the
specification for the extension, from the promulgator of that extension (usually the author of the
agent handler software on the telephony server).

The list of extensions that are supported by the agent handler is obtained from the LINEAGENTCAPS
packet that is returned by the GetAgentCaps packet.

—
N
w

0(1|/2|3(4|5|6(7|8|9|0(1|2|3(4|5|6|7|8|9(0(1|2|3(4|5|6[|7|8|9|0/(1

Reqg_Func

Reserved1

dwRequestID

IpContext

hLine

dwAddressID

dwAgentExtensionIDIndex

IpParamsContext

IpParams

dwsSize

Reserved2

Reserved3

110/ 610

[MS-TRP-Diff] - v20210625

Telephony Remote Protocol

Copyright © 2021 Microsoft Corporation
Release: June 25, 2021

Reserved4

Reserved5

Reserved6

VarData (variable)

Req_Func (4 bytes): An unsigned 32-bit integer. The identifier of the function that will be invoked
on the remote server. This value MUST be set to 6.

Return Values

On completion of ClientRequest, this field contains the result of the encapsulated telephony
request. A nonzero request ID value indicates that the request is in progress and will complete
asynchronously, and a LINEERR_Constants value indicates synchronous failure.

Returns a positive request identifier if the function will be completed asynchronously or a negative
error number if an error occurs. If the client specified a nonzero value in the dwRequestID field of
the packet, the same MUST be used as the value for the returned positive request identifier.

Common return values are as follows:

Name Value

LINEERR_INVALADDRESSID 0x80000011
LINEERR_INVALAGENTID 0x80000057
LINEERR_INVALLINEHANDLE 0x8000002B
LINEERR_INVALPARAM 0x80000032
LINEERR_INVALPOINTER 0x80000035
LINEERR_NOMEM 0x80000044
LINEERR_OPERATIONFAILED 0x80000048
LINEERR_OPERATIONUNAVAIL 0x80000049
LINEERR_RESOURCEUNAVAIL 0x8000004B
LINEERR_STRUCTURETOOSMALL | 0x8000004D
LINEERR_UNINITIALIZED 0x80000050

Additional return values are specific to the agent handler.

Reservedl (4 bytes): An unsigned 32-bit integer. MUST be set to zero when sent and MUST be
ignored on receipt.

dwRequestID (4 bytes): An unsigned 32-bit integer. The identifier of the asynchronous request.

111 /610

[MS-TRP-Diff] - v20210625

Telephony Remote Protocol

Copyright © 2021 Microsoft Corporation
Release: June 25, 2021

Value Meaning

0x00000000 The server MUST generate a unique positive request ID to return as the
Ack_ReturnValue.

0x00000001 — The server MUST use this value instead of generating a unique positive

Ox7FFFFFFF request ID.

IpContext (4 bytes): An unsigned 32-bit integer. The opaque, client-specified value that is used by
the client upon request completion; MUST be returned by the server in the request completion
packet.

hLine (4 bytes): An HLINE. The handle to the open line device. This field MUST have been obtained
by sending the Open packet.

dwAddressID (4 bytes): An unsigned 32-bit integer. The address on the open line device. An
address identifier is permanently associated with an address; the identifier remains constant
across operating system upgrades. A valid value of dwAddressID is in the range 0 to
dwNumAddresses -1. The client obtains dwNumAddresses from the LINEDEVCAPS obtained by
sending a GetDevCaps packet to the remote server.

dwAgentExtensionIDIndex (4 bytes): An unsigned 32-bit integer. The position in the
ExtensionIDList packet in LINEAGENTCAPS of the agent handler extension being invoked. A valid
value of dwAgentExtensionIDIndex is in the range 0 to dwNumAgentExtensionIDs - 1. The client
obtains dwNumAgentExtensionIDs from the LINEAGENTCAPS obtained by sending a GetAgentCaps
packet to the remote server.

IpParamsContext (4 bytes): An unsigned 32-bit integer. The opaque, client-specified value that is
used by the client upon request completion; MUST be returned by the server in the request
completion packet.

IpParams (4 bytes): An unsigned 32-bit integer. The offset, in bytes, in the VarData field of a
parameter block. The format of this parameter block is device specific and its contents are passed
by TAPI to and from the agent handler application on the telephony server. This parameter block
MUST specify the function to invoke and include sufficient room for data to be returned.

dwsSize (4 bytes): An unsigned 32-bit integer. The size, in bytes, of the parameter block that is
indicated in the IpParams field.

Reserved?2 (4 bytes): An unsigned 32-bit integer. This field is used for padding and MUST be
ignored on receipt. It can be any value.

Reserved3 (4 bytes): An unsigned 32-bit integer. This field is used for padding and MUST be
ignored on receipt. It can be any value.

Reserved4 (4 bytes): An unsigned 32-bit integer. This field is used for padding and MUST be
ignored on receipt. It can be any value.

Reserved5 (4 bytes): An unsigned 32-bit integer. This field is used for padding and MUST be
ignored on receipt. It can be any value.

Reserved6 (4 bytes): An unsigned 32-bit integer. This field is used for padding and MUST be
ignored on receipt. It can be any value.

VarData (variable): Contains a parameter block that corresponds to the proprietary handler-specific
functions of the agent handler. This data is opaque to the protocol.

The contents of this field MUST be DWORD-aligned, as specified in [MS-DTYP] section 2.2.9.

2.2.4.1.3.4 Answer

112 /610

[MS-TRP-Diff] - v20210625

Telephony Remote Protocol

Copyright © 2021 Microsoft Corporation
Release: June 25, 2021

The Answer packet is transmitted from a TAPI client to a TAPI server in a remote procedure call.
Sending this packet answers the specified offering call.

=
N
w

0(1|/2|3(4|5|6|7|8|9|0(1|2|3(4|5|6|7|8|9(0(1|2|3(4|5|6[7|8|9|0/(1

Reqg_Func

Reservedl

dwRequestID

hCall

IpsUserUserInfo

dwsSize

Reserved2

Reserved3

Reserved4

Reserved5

Reserved6

Reserved7

Reserved8

Reserved9

Reserved10

VarData (variable)

Req_Func (4 bytes): An unsigned 32-bit integer. The identifier of the function that will be invoked
on the remote server. This value MUST be set to 7.

Return Values

On completion of ClientRequest, this field MUST contain the result of the encapsulated telephony
request. A nonzero request ID value indicates that the request is in progress and will complete
asynchronously, and a LINEERR_Constants value indicates synchronous failure.

Returns a positive request identifier if the function will be completed asynchronously or a negative
error number if an error occurs. The dwParam2 parameter of the corresponding LINE_REPLY
packet is zero if the function succeeds, or it is a negative error number if an error occurs. If the

113 /610

[MS-TRP-Diff] - v20210625

Telephony Remote Protocol

Copyright © 2021 Microsoft Corporation
Release: June 25, 2021

client specified a nonzero value in the dwRequestID field of the packet, the same value MUST be
used for the returned positive request identifier.

The following table shows the return values for this function.

Value Meaning
LINEERR_INVALCALLHANDLE The handle to the call is invalid.
0x80000018

LINEERR_OPERATIONUNAVAIL The operation is unavailable.
0x80000049

LINEERR_INVALCALLSTATE The call state is invalid.
0x8000001C

LINEERR_OPERATIONFAILED The operation failed.
0x80000048

LINEERR_INUSE The line is in use.

0x8000000F

LINEERR_RESOURCEUNAVAIL The resources are unavailable.
0x8000004B

LINEERR_NOMEM Not enough memory is available.
0x80000044

LINEERR_USERUSERINFOTOOBIG | The user-user information is too big.
0x80000051

Reservedl (4 bytes): An unsigned 32-bit integer. MUST be set to zero when sent and MUST be
ignored on receipt.

dwRequestID (4 bytes): An unsigned 32-bit integer. The identifier of the asynchronous request.

Value Meaning

0x00000000 The server MUST generate a unique positive request ID to return as the
Ack_ReturnValue.

0x00000001 — The server MUST use this value instead of generating a unique positive request

Ox7FFFFFFF ID.

hCall (4 bytes): An HCALL. A handle to the call to be answered. The application MUST be an owner of
this call. The call state of hCall must be offering or accepted. One way in which the client can
obtain a valid hCall is from the LINE_CALLSTATE packet sent by the remote server.

IpsUserUserInfo (4 bytes): An unsigned 32-bit integer. The offset, in bytes, in the VarData field of
user-user information to send to the remote party at the time the call is answered. When this field
is set to -1 (OXFFFFFFFF), no user-user information is to be sent.

dwsSize (4 bytes): An unsigned 32-bit integer. The size, in bytes, of the user-user information in
IpsUserUserInfo (including the null terminator). If IpsUserUserInfo is -1 (OXFFFFFFFF), no user-
user information MUST be sent to the calling party and dwSize MUST be ignored.

Reserved?2 (4 bytes): An unsigned 32-bit integer. This field is used for padding and MUST be
ignored on receipt. It can be any value.

114 /610

[MS-TRP-Diff] - v20210625

Telephony Remote Protocol

Copyright © 2021 Microsoft Corporation
Release: June 25, 2021

Reserved3 (4 bytes): An unsigned 32-bit integer.
ignored on receipt. It can be any value.

Reserved4 (4 bytes): An unsigned 32-bit integer.
ignored on receipt. It can be any value.

Reserved5 (4 bytes): An unsigned 32-bit integer.
ignored on receipt. It can be any value.

Reserved6 (4 bytes): An unsigned 32-bit integer.
ignored on receipt. It can be any value.

Reserved?7 (4 bytes): An unsigned 32-bit integer.
ignored on receipt. It can be any value.

Reserved8 (4 bytes): An unsigned 32-bit integer.
ignored on receipt. It can be any value.

Reserved9 (4 bytes): An unsigned 32-bit integer.
ignored on receipt. It can be any value.

This field is used for padding and MUST be

This field is used for padding and MUST be

This field is used for padding and MUST be

This field is used for padding and MUST be

This field is used for padding and MUST be

This field is used for padding and MUST be

This field is used for padding and MUST be

Reserved10 (4 bytes): An unsigned 32-bit integer. This field is used for padding and MUST be

ignored on receipt. It can be any value.

VarData (variable): Contains the user information that is indicated in the IpsUserUserInfo field. The
user information can be an ASCII or Unicode string, and this data is opaque to the protocol.

The contents of this field MUST be DWORD-aligned, as specified in [MS-DTYP] section 2.2.9.

2.2.4.1.3.5 BlindTransfer

The BlindTransfer packet is transmitted from a TAPI

client to a TAPI server in a remote procedure call.

Sending this packet performs a blind or single-step transfer of the specified call to the specified

destination address.

e

4156

7

N
w

Reqg_Func

Reserved1

dwRequestID

hCall

IpszDestAddress

dwCountryCode

Reserved2

Reserved3

Reserved4

[MS-TRP-Diff] - v20210625

Telephony Remote Protocol

Copyright © 2021 Microsoft Corporation
Release: June 25, 2021

115/ 610

Reserved5

Reserved6

Reserved7

Reserved8

Reserved9

Reserved10

VarData (variable)

Req_Func (4 bytes): An unsigned 32-bit integer. The identifier of the function that will be invoked
on the remote server. This value MUST be set to 8.

Return Values

On completion of ClientRequest, this field contains the result of the encapsulated telephony
request. A nonzero request ID value indicates that the request is in progress and will complete
asynchronously. A LINEERR_Constants value indicates synchronous failure.

Returns a positive request identifier if the function will be completed asynchronously or a negative
error number if an error occurs. The dwParam2 parameter of the corresponding LINE_REPLY
packet is zero if the function succeeds, or it is a negative error number if an error occurs. If the
client specified a nonzero value in the dwRequestID field of the packet, the same value MUST be
used for the returned positive request identifier.

The following table shows the return values for this function.

Value Meaning

LINEERR_INVALCALLHANDLE The handle to the call is invalid.

0x80000018

LINEERR_NOMEM Not enough memory is available.
0x80000044

LINEERR_INVALCALLSTATE The call state is invalid.
0x8000001C

LINEERR_OPERATIONFAILED The operation failed.
0x80000048

LINEERR_ADDRESSBLOCKED The address is blocked.
0x80000053

LINEERR_RESOURCEUNAVAIL The resource is unavailable.
0x8000004B

LINEERR_INVALCOUNTRYCODE | The country/region code is invalid.
0x80000022

116 / 610

[MS-TRP-Diff] - v20210625

Telephony Remote Protocol

Copyright © 2021 Microsoft Corporation
Release: June 25, 2021

Reservedl1 (4 bytes): An unsigned 32-bit integer. MUST be set to zero when sent and MUST be
ignored on receipt.

dwRequestID (4 bytes): An unsigned 32-bit integer. The identifier of the asynchronous request.

hCall (4 bytes): An HCALL. The handle to the call to be transferred. One way in which the client can
obtain a valid hCall is from the LINE_CALLSTATE packet sent by the remote server. The
application MUST be an owner of this call. The call state of hCall must be connected. For hCall to
be in connected state, the client needs to send an Answer packet to the remote server.

IpszDestAddress (4 bytes): An unsigned 32-bit integer. The offset, in bytes, in the VarData field of
a null-terminated Unicode string that identifies where to transfer the call.

dwCountryCode (4 bytes): An unsigned 32-bit integer. The country code of the destination. The
implementation SHOULD use this field to select the call progress protocols for the destination
address. If a value of 0 is specified, the service provider SHOULD use a default. TAPI does not
validate dwCountryCode when this function is called.

Reserved?2 (4 bytes): An unsigned 32-bit integer. This field is used for padding and MUST be
ignored on receipt. It can be any value.

Reserved3 (4 bytes): An unsigned 32-bit integer. This field is used for padding and MUST be
ignored on receipt. It can be any value.

Reserved4 (4 bytes): An unsigned 32-bit integer. This field is used for padding and MUST be
ignored on receipt. It can be any value.

Reserved5 (4 bytes): An unsigned 32-bit integer. This field is used for padding and MUST be
ignored on receipt. It can be any value.

Reserved6 (4 bytes): An unsigned 32-bit integer. This field is used for padding and MUST be
ignored on receipt. It can be any value.

Reserved? (4 bytes): An unsigned 32-bit integer. This field is used for padding and MUST be
ignored on receipt. It can be any value.

Reserved8 (4 bytes): An unsigned 32-bit integer. This field is used for padding and MUST be
ignored on receipt. It can be any value.

Reserved9 (4 bytes): An unsigned 32-bit integer. This field is used for padding and MUST be
ignored on receipt. It can be any value.

Reserved10 (4 bytes): An unsigned 32-bit integer. This field is used for padding and MUST be
ignored on receipt. It can be any value.

VarData (variable): Contains a null-terminated Unicode string that is indicated in the
IpszDestAddress field.

The contents of this field MUST be DWORD-aligned, as specified in [MS-DTYP] section 2.2.9.

2.2.4.1.3.6 DeallocateCall

The DeallocateCall packet is transmitted from a TAPI client to a TAPI server in a remote procedure
call. Sending this packet MUST deallocate the call after completing or aborting all outstanding
asynchronous operations on the call.

—
N
w

117/ 610

[MS-TRP-Diff] - v20210625

Telephony Remote Protocol

Copyright © 2021 Microsoft Corporation
Release: June 25, 2021

Reserved1

hCall

Reserved2

Reserved3

Reserved4

Reserved5

Reserved6

Reserved7

Reserved8

Reserved9

Reserved10

Reserved11

Reserved12

Reservedl13

Req_Func (4 bytes): An unsigned 32-bit integer. The identifier of the function that will be invoked

on the remote server. This value MUST be set to 12.

Return Values

On completion of ClientRequest, this field contains the result of the encapsulated telephony
request. A value of 0 indicates success, and a LINEERR_Constants value indicates failure. The

remote server MUST complete this call synchronously.

MUST return zero if the function succeeds or an error number if an error occurs. Common return

values are as follows:

Name Value

LINEERR_NOMEM 0x80000044
LINEERR_OPERATIONFAILED 0x80000048
LINEERR_OPERATIONUNAVAIL | 0x80000049
LINEERR_RESOURCEUNAVAIL 0x8000004B

Reservedl (4 bytes): An unsigned 32-bit integer. MUST be set to zero when sent and MUST be

ignored on receipt.

[MS-TRP-Diff] - v20210625
Telephony Remote Protocol

Copyright © 2021 Microsoft Corporation

Release: June 25, 2021

118 /610

hCall (4 bytes): An HCALL. The call handle to be deallocated. One way of obtaining a valid hCall is by
sending the MakeCall packet. An application with monitoring privileges for a call can always
deallocate its handle for that call. An application with owner privilege for a call can deallocate its
handle unless it is the only owner of the call and the call is not in the idle state. The call handle is

no longer valid after it has been deallocated.

Reserved2 (4 bytes): An unsigned 32-bit integer.
ignored on receipt. It can be any value.

Reserved3 (4 bytes): An unsigned 32-bit integer.
ignored on receipt. It can be any value.

Reserved4 (4 bytes): An unsigned 32-bit integer.
ignored on receipt. It can be any value.

Reserved5 (4 bytes): An unsigned 32-bit integer.
ignored on receipt. It can be any value.

Reserved6 (4 bytes): An unsigned 32-bit integer.
ignored on receipt. It can be any value.

Reserved?7 (4 bytes): An unsigned 32-bit integer.
ignored on receipt. It can be any value.

Reserved8 (4 bytes): An unsigned 32-bit integer.
ignored on receipt. It can be any value.

Reserved9 (4 bytes): An unsigned 32-bit integer.
ignored on receipt. It can be any value.

This field is used for padding and MUST be

This field is used for padding and MUST be

This field is used for padding and MUST be

This field is used for padding and MUST be

This field is used for padding and MUST be

This field is used for padding and MUST be

This field is used for padding and MUST be

This field is used for padding and MUST be

Reserved10 (4 bytes): An unsigned 32-bit integer. This field is used for padding and MUST be

ignored on receipt. It can be any value.

Reservedl1 (4 bytes): An unsigned 32-bit integer. This field is used for padding and MUST be

ignored on receipt. It can be any value.

Reservedl12 (4 bytes): An unsigned 32-bit integer. This field is used for padding and MUST be

ignored on receipt. It can be any value.

Reserved13 (4 bytes): An unsigned 32-bit integer. This field is used for padding and MUST be

ignored on receipt. It can be any value.

2.2.4.1.3.7 CompleteCall

The CompleteCall packet is transmitted from a TAPI
Sending this packet specifies how a call that cannot

client to a TAPI server in a remote procedure call.
be connected in the usual manner is to be

completed instead. The network or switch cannot be able to complete a call because network
resources are busy or the remote station is busy or does not answer.

0123456789(1)123456789312345678981
Req_Func
Reservedl
dwRequestID

[MS-TRP-Diff] - v20210625

Telephony Remote Protocol

Copyright © 2021 Microsoft Corporation
Release: June 25, 2021

119 /610

IpContext

hCall

IpdwCompletionIDContext

dwCompletionMode

dwMessagelD

Reserved2

Reserved3

Reserved4

Reserved5

Reserved6

Reserved7

Reserved8

Req_Func (4 bytes): An unsigned 32-bit integer. The identifier of the function that will be invoked
on the remote server. This value MUST be set to 10.

Return Values

On completion of ClientRequest, this field contains the result of the encapsulated telephony
request. A nonzero request ID value indicates that the request is in progress and will complete

asynchronously and a LINEERR_Constants value indicates synchronous failure.

Returns a positive request identifier if the function will be completed asynchronously or a negative
error number if an error occurs. The dwParam2 parameter of the corresponding LINE_REPLY
packet is zero if the function succeeds, or it is a negative error number if an error occurs. If the
client specified a nonzero value in the dwRequestID field of the packet, the same value MUST be

used for the returned positive request identifier. Common return values are as follows:

Name Value

LINEERR_INVALCALLHANDLE 0x80000018
LINEERR_NOMEM 0x80000044
LINEERR_INVALCALLSTATE 0x8000001C
LINEERR_OPERATIONUNAVAIL 0x80000049
LINEERR_INVALCALLCOMPLMODE | 0x80000017
LINEERR_OPERATIONFAILED 0x80000048
LINEERR_INVALPOINTER 0x80000035

[MS-TRP-Diff] - v20210625

Telephony Remote Protocol

Copyright © 2021 Microsoft Corporation
Release: June 25, 2021

120/ 610

Name Value

LINEERR_RESOURCEUNAVAIL 0x8000004B

LINEERR_COMPLETIONOVERRUN 0x80000006

LINEERR_INVALMESSAGEID 0x80000030

Reservedl (4 bytes): An unsigned 32-bit integer. MUST be set to zero when sent and MUST be
ignored on receipt.

dwRequestID (4 bytes): An unsigned 32-bit integer. The identifier of the asynchronous request.

IpContext (4 bytes): An unsigned 32-bit integer. The opaque, client-specified value that is used by
the client upon request completion; MUST be returned by the server in the request completion
packet.

hCall (4 bytes): An HCALL. The handle to the call whose completion is requested. One way of
obtaining a valid hCall is by sending the MakeCall packet. The application MUST be an owner of
the call. The call state of hCall must be busy, ringback.

IpdwCompletionIDContext (4 bytes): An unsigned 32-bit integer. The opaque, client-specified
value that is used by the client upon request completion; MUST be returned by the server in the
request completion packet.

dwCompletionMode (4 bytes): An unsigned 32-bit integer. The way in which the call is to be
completed. This parameter MUST use one of the LINECALLCOMPLMODE_ Constants.

dwMessagelD (4 bytes): An unsigned 32-bit integer. The packet that is to be sent when completing
the call using LINECALLCOMPLMODE_MESSAGE. This identifier selects the packet from a small
number of predefined packets. This parameter is not validated by TAPI when this function is
called.

Reserved2 (4 bytes): An unsigned 32-bit integer. This field is used for padding and MUST be
ignored on receipt. It can be any value.

Reserved3 (4 bytes): An unsigned 32-bit integer. This field is used for padding and MUST be
ignored on receipt. It can be any value.

Reserved4 (4 bytes): An unsigned 32-bit integer. This field is used for padding and MUST be
ignored on receipt. It can be any value.

Reserved5 (4 bytes): An unsigned 32-bit integer. This field is used for padding and MUST be
ignored on receipt. It can be any value.

Reserved6 (4 bytes): An unsigned 32-bit integer. This field is used for padding and MUST be
ignored on receipt. It can be any value.

Reserved7 (4 bytes): An unsigned 32-bit integer. This field is used for padding and MUST be
ignored on receipt. It can be any value.

Reserved8 (4 bytes): An unsigned 32-bit integer. This field is used for padding and MUST be
ignored on receipt. It can be any value.

2.2.4.1.3.8 CompleteTransfer

The CompleteTransfer packet is transmitted from a TAPI client to a TAPI server in a remote procedure
call. Sending this packet completes the transfer of the specified call to the party that is connected in
the consultation call. If dwTransferMode is LINETRANSFERMODE_CONFERENCE, the original call

121 /610

[MS-TRP-Diff] - v20210625

Telephony Remote Protocol

Copyright © 2021 Microsoft Corporation
Release: June 25, 2021

handle is changed to a conference call. Otherwise, the service provider SHOULD send call state
packets to change the calls to idle.

=
N
w

0(1|/2|3(4|5|6|7|8|9|0(1|2|3(4|5|6|7|8|9(0(1|2|3(4|5|6[7|8|9|0/(1

Reqg_Func

Reservedl

dwRequestID

IpContext

hCall

hConsultCall

IpConfCallContext

dwTransferMode

Reserved2

Reserved3

Reserved4

Reserved5

Reserved6

Reserved7

Reserved8

Req_Func (4 bytes): An unsigned 32-bit integer. The identifier of the function that will be invoked
on the remote server. This value MUST be set to 11.

Return Values

On completion of ClientRequest, this field MUST contain the result of the encapsulated telephony
request. A nonzero request ID value indicates that the request is in progress and will complete
asynchronously and a LINEERR_Constants value indicates synchronous failure.

Returns a positive request identifier if the function will be completed asynchronously or a negative
error number if an error occurs. The dwParam2 parameter of the corresponding LINE_REPLY
packet is zero if the function succeeds, or it is a negative error number if an error occurs. If the
client specified a nonzero value in the dwRequestID field of the packet, the same value MUST be
used for the returned positive request identifier. Common return values are as follows:

122 /610

[MS-TRP-Diff] - v20210625

Telephony Remote Protocol

Copyright © 2021 Microsoft Corporation
Release: June 25, 2021

Name Value

LINEERR_INVALCALLHANDLE 0x80000018

LINEERR_OPERATIONUNAVAIL | 0x80000049

LINEERR_INVALCALLSTATE 0x8000001C

LINEERR_OPERATIONFAILED 0x80000048

LINEERR_NOMEM 0x80000044

LINEERR_RESOURCEUNAVAIL | 0x8000004B

Reservedl (4 bytes): An unsigned 32-bit integer. MUST be set to zero when sent and MUST be
ignored on receipt.

dwRequestID (4 bytes): An unsigned 32-bit integer. The identifier of the asynchronous request.

IpContext (4 bytes): An unsigned 32-bit integer. The opaque, client-specified value that is used by
the client upon request completion; MUST be returned by the server in the request completion
packet.

hCall (4 bytes): An HCALL. The handle to the call to be transferred. One way in which the client can
obtain a valid hCall is from the LINE_CALLSTATE packet sent by the remote server. The
application MUST be an owner of this call. The call state of hCall must be onHold or
onHoldPendingTransfer. For hCall to be in onHoldPendingTransfer state, the client needs to send
SetUpTransfer packet to the remote server. For hCall to be in onHold state, the client needs to
send Hold packet to the remote server.

hConsultCall (4 bytes): An HCALL. The handle to the call that represents a connection with the
destination of the transfer. One way in which the client can obtain a valid hCall is from the
LINE_CALLSTATE packet sent by the remote server. The application MUST be an owner of this call.
The call state of hConsultCall MUST be connected, ringback, busy, or proceeding.

IpConfCallContext (4 bytes): An unsigned 32-bit integer. The opaque, client-specified value that is
used by the client upon request completion; MUST be returned by the server in the request
completion packet.

dwTransferMode (4 bytes): An unsigned 32-bit integer. Specifies how the initiated transfer request
is to be resolved. This parameter MUST use one of the LINETRANSFERMODE_Constants.

Reserved2 (4 bytes): An unsigned 32-bit integer. This field is used for padding and MUST be
ignored on receipt. It can be any value.

Reserved3 (4 bytes): An unsigned 32-bit integer. This field is used for padding and MUST be
ignored on receipt. It can be any value.

Reserved4 (4 bytes): An unsigned 32-bit integer. This field is used for padding and MUST be
ignored on receipt. It can be any value.

Reserved5 (4 bytes): An unsigned 32-bit integer. This field is used for padding and MUST be
ignored on receipt. It can be any value.

Reserved6 (4 bytes): An unsigned 32-bit integer. This field is used for padding and MUST be
ignored on receipt. It can be any value.

Reserved? (4 bytes): An unsigned 32-bit integer. This field is used for padding and MUST be
ignored on receipt. It can be any value.

123 /610

[MS-TRP-Diff] - v20210625

Telephony Remote Protocol

Copyright © 2021 Microsoft Corporation
Release: June 25, 2021

Reserved8 (4 bytes): An unsigned 32-bit integer. This field is used for padding and MUST be
ignored on receipt. It can be any value.

2.2.4.1.3.9 ConditionalMediaDetection

The ConditionalMediaDetection packet is transmitted from a TAPI client to a TAPI server in a remote
procedure call. The function is invoked by TAPI whenever a client application uses LINEMAPPER as the
dwDevicelD in an Open packet call to request that lines be scanned to find one that supports the
desired media types and call parameters.

TAPI scans based on the union of the desired media type and the other media types currently being
monitored on the line to give the service provider the opportunity to indicate if it cannot
simultaneously monitor for all the requested media types. If the service provider can monitor for the
indicated set of media types and support the capabilities that are indicated in IpCallParams, it replies
with a success indication. It leaves the active media monitoring modes for the line unchanged.

0(1|2|3(4|5|6(7|8|9|0(1|2|3(4|5|6[|7|8|9(0(1|2|3(4|5|6[7|8|9|0(1

Req_Func

Reserved1

hLine

dwMediaModes

IpCallParams

dwAsciiCallParamsCodePage

Reserved2

Reserved3

Reserved4

Reserved5

Reserved6

Reserved7

Reserved8

Reserved9

Reserved10

VarData (variable)

124 / 610

[MS-TRP-Diff] - v20210625

Telephony Remote Protocol

Copyright © 2021 Microsoft Corporation
Release: June 25, 2021

Req_Func (4 bytes): An unsigned 32-bit integer. The identifier of the function that will be invoked
on the remote server. This value MUST be set to 127.

Return Values

On completion of ClientRequest, this field MUST contain the result of the encapsulated telephony
request. A value of 0 indicates success, and a LINEERR_Constants value indicates failure. The
remote server MUST complete this call synchronously.

MUST return zero if the function succeeds or an error number if an error occurs. Common return
values are as follows:

Name Value

LINEERR_INVALLINEHANDLE 0x8000002B

LINEERR_OPERATIONFAILED 0x80000048

LINEERR_NODRIVER 0x80000043

LINEERR_RESOURCEUNAVAIL | 0x8000004B

LINEERR_NOMEM 0x80000044

LINEERR_INVALMEDIAMODE 0x8000002F

LINEERR_OPERATIONUNAVAIL | 0x80000049

Reservedl (4 bytes): An unsigned 32-bit integer. MUST be set to zero when sent and MUST be
ignored on receipt.

hLine (4 bytes): An HLINE. The handle to the line on which media monitoring and parameter
capabilities are to be set. This field MUST have been obtained by sending the Open packet.

dwMediaModes (4 bytes): An unsigned 32-bit integer. The media types currently of interest to the
calling application. This parameter MUST use one or more of the LINEMEDIAMODE_Constants.

IpCallParams (4 bytes): An unsigned 32-bit integer. The offset in the VarData field of a
LINECALLPARAMS packet.

= dwBearerMode

= dwMinRate

= dwMaxRate

= dwMediaMode

= dwCallParamFlags
= dwAddressMode

If dwAddressMode is LINEADDRESSMODE_ADDRESSID, any address on the line is acceptable. If
dwAddressMode is LINEADDRESSMODE_DIALABLEADDR, indicating that a specific originating
address (phone number) is searched for, or if it is a provider-specific extension, then
dwOrigAddressSize/Offset and the portion of the variable part they refer to are also relevant. If
dwAddressMode is a provider-specific extension, additional information can be contained in the
dwDeviceSpecific variably sized field. All other fields are irrelevant to the function.

dwAsciiCallParamsCodePage (4 bytes): An unsigned 32-bit integer. This MUST be set to
TAPI_NO_DATA (OXFFFFFFFF).

125/ 610

[MS-TRP-Diff] - v20210625

Telephony Remote Protocol

Copyright © 2021 Microsoft Corporation
Release: June 25, 2021

Reserved2 (4 bytes): An unsigned 32-bit integer.
ignored on receipt. It can be any value.

Reserved3 (4 bytes): An unsigned 32-bit integer.
ignored on receipt. It can be any value.

Reserved4 (4 bytes): An unsigned 32-bit integer.
ignored on receipt. It can be any value.

Reserved5 (4 bytes): An unsigned 32-bit integer.
ignored on receipt. It can be any value.

Reserved6 (4 bytes): An unsigned 32-bit integer.
ignored on receipt. It can be any value.

Reserved? (4 bytes): An unsigned 32-bit integer.
ignored on receipt. It can be any value.

Reserved8 (4 bytes): An unsigned 32-bit integer.
ignored on receipt. It can be any value.

Reserved9 (4 bytes): An unsigned 32-bit integer.
ignored on receipt. It can be any value.

This field is used for padding and MUST be

This field is used for padding and MUST be

This field is used for padding and MUST be

This field is used for padding and MUST be

This field is used for padding and MUST be

This field is used for padding and MUST be

This field is used for padding and MUST be

This field is used for padding and MUST be

Reserved10 (4 bytes): An unsigned 32-bit integer. This field is used for padding and MUST be

ignored on receipt. It can be any value.

VarData (variable): Contains a LINECALLPARAMS

packet.

The contents of this field MUST be DWORD-aligned, as specified in [MS-DTYP] section 2.2.9.

2.2.4.1.3.10 CreateAgent

The CreateAgent packet is transmitted from a TAPI client to a TAPI server in a remote procedure call.
Sending this packet creates a new agent object. It generates a LINE_ PROXYREQUEST packet to be
sent to a registered proxy function handler, referencing a LINEPROXYREQUEST packet of type

LINEPROXYREQUEST_CREATEAGENT.

4156

7

w

Req_Func

Reserved1

dwRequestID

IpContext

hLine

IpszAgentID

IpszAgentPIN

IphAgentContext

[MS-TRP-Diff] - v20210625

Telephony Remote Protocol

Copyright © 2021 Microsoft Corporation
Release: June 25, 2021

126 / 610

Reserved2

Reserved3

Reserved4

Reserved5

Reserved6

Reserved7

Reserved8

VarData (variable)

Req_Func (4 bytes): An unsigned 32-bit integer. The identifier of the function that will be invoked
on the remote server. This value MUST be set to 146.

Return Values

On completion of ClientRequest, this field contains the result of the encapsulated telephony
request. A nonzero request ID value indicates that the request is in progress and will complete
asynchronously and a LINEERR_Constants value indicates synchronous failure.

MUST return a request identifier if the asynchronous operation starts; otherwise, the function
MUST return one of the following error values:

Name

Value

LINEERR_INVALLINEHANDLE 0x8000002B

LINEERR_INVALPARAM

0x80000032

LINEERR_NOMEM

0x80000044

LINEERR_OPERATIONFAILED 0x80000048

LINEERR_OPERATIONUNAVAIL | 0x80000049

LINEERR_RESOURCEUNAVAIL | 0x8000004B

LINEERR_UNINITIALIZED

0x80000050

Reservedl (4 bytes): An unsigned 32-bit integer. MUST be set to zero when sent and MUST be

ignored on receipt.

dwRequestID (4 bytes): An unsigned 32-bit integer. The identifier of the asynchronous request.

Value

Meaning

0x00000000

The server MUST generate a unique positive request ID to return as the
Ack_ReturnValue.

[MS-TRP-Diff] - v20210625
Telephony Remote Protocol

127 /610

Copyright © 2021 Microsoft Corporation

Release: June 25, 2021

Value Meaning

0x00000001 — The server MUST use this value instead of generating a unique positive request
O0x7FFFFFFF ID.

IpContext (4 bytes): An unsigned 32-bit integer. The opaque, client-specified value that is used by
the client upon request completion; MUST be returned by the server in the request completion
packet.

hLine (4 bytes): An HLINE. The handle to the line device. This field MUST have been obtained by
sending the Open packet.

IpszAgentID (4 bytes): An unsigned 32-bit integer. The offset, in bytes, of a null-terminated
Unicode string that contains the agent identifier in the VarData field. This field is set to
TAPI_NO_DATA (OxFFFFFFFF) if no agent identifier was specified.

IpszAgentPIN (4 bytes): An unsigned 32-bit integer. The offset, in bytes, of a null-terminated
Unicode string that contains the agent PIN or password in the VarData field. This field is set to
TAPI_NO_DATA (OxFFFFFFFF) if no agent PIN was specified.

IphAgentContext (4 bytes): An unsigned 32-bit integer. The opaque, client-specified value that is
used by the client upon request completion; MUST be returned by the server in the request
completion packet.

Reserved2 (4 bytes): An unsigned 32-bit integer. This field is used for padding and MUST be
ignored on receipt. It can be any value.

Reserved3 (4 bytes): An unsigned 32-bit integer. This field is used for padding and MUST be
ignored on receipt. It can be any value.

Reserved4 (4 bytes): An unsigned 32-bit integer. This field is used for padding and MUST be
ignored on receipt. It can be any value.

Reserved5 (4 bytes): An unsigned 32-bit integer. This field is used for padding and MUST be
ignored on receipt. It can be any value.

Reserved6 (4 bytes): An unsigned 32-bit integer. This field is used for padding and MUST be
ignored on receipt. It can be any value.

Reserved? (4 bytes): An unsigned 32-bit integer. This field is used for padding and MUST be
ignored on receipt. It can be any value.

Reserved8 (4 bytes): An unsigned 32-bit integer. This field is used for padding and MUST be
ignored on receipt. It can be any value.

VarData (variable): Contains the null-terminated Unicode strings that are indicated in the
IpszAgentID and IpszAgentPIN fields.

The contents of this field MUST be DWORD-aligned, as specified in [MS-DTYP] section 2.2.9.

2.2.4.1.3.11 CreateAgentSession

The CreateAgentSession packet is transmitted from a TAPI client to a TAPI server in a remote
procedure call. Sending this packet creates a new AgentSession object. It generates a
LINE_PROXYREQUEST packet to be sent to a registered proxy function handler, referencing a
LINEPROXYREQUEST packet of type LINEPROXYREQUEST_CREATEAGENTSESSION.

128 /610

[MS-TRP-Diff] - v20210625

Telephony Remote Protocol

Copyright © 2021 Microsoft Corporation
Release: June 25, 2021

0(1{2|3|4|5|/6|7|8|9|0(1|2{3[4|5|6|7|8|9|0|1|2|3|4(5|6|7

Reqg_Func

Reserved1

dwRequestID

IpContext

hLine

hAgent

IpszAgentPIN

dwWorkingAddressID

IpGroupID

dwSize

IphAgentSessionContext

Reserved2

Reserved3

Reserved4

Reserved5

VarData (variable)

Req_Func (4 bytes): An unsigned 32-bit integer. The identifier of the function that will be invoked

on the remote server. This value MUST be set to 147.

Return Values

On completion of ClientRequest, this field contains the result of the encapsulated telephony
request. A nonzero request ID value indicates that the request is in progress and will complete
asynchronously, and a LINEERR_Constants value indicates synchronous failure.

Returns a request identifier if the asynchronous operation starts; otherwise, the function MUST

return one of the following error values:

Name Value

LINEERR_INVALLINEHANDLE 0x8000002B

[MS-TRP-Diff] - v20210625

Telephony Remote Protocol

Copyright © 2021 Microsoft Corporation
Release: June 25, 2021

129 /610

Name Value

LINEERR_INVALPARAM 0x80000032

LINEERR_NOMEM 0x80000044

LINEERR_OPERATIONFAILED 0x80000048

LINEERR_OPERATIONUNAVAIL | 0x80000049

LINEERR_RESOURCEUNAVAIL | 0x8000004B

LINEERR_UNINITIALIZED 0x80000050

Reservedl (4 bytes): An unsigned 32-bit integer. MUST be set to zero when sent and MUST be
ignored on receipt.

dwRequestID (4 bytes): An unsigned 32-bit integer. The identifier of the asynchronous request.

Value Meaning

0x00000000 The server MUST generate a unique positive request ID to return as the
Ack_ReturnValue.

0x00000001 — The server MUST use this value instead of generating a unique positive request

Ox7FFFFFFF ID.

IpContext (4 bytes): An unsigned 32-bit integer. The opaque, client-specified value that is used by
the client upon request completion; MUST be returned by the server in the request completion
packet.

hLine (4 bytes): An HLINE. The handle to the line device. This field MUST have been obtained by
sending the Open packet.

hAgent (4 bytes): An unsigned 32-bit integer. The identifier of the agent for whom the session is to
be created. This field MUST have been obtained by sending the CreateAgent packet.

IpszAgentPIN (4 bytes): An unsigned 32-bit integer. The offset in the VarData field that contains a
null-terminated Unicode string that contains the agent PIN or password. This field is set to
TAPI_NO_DATA (OxFFFFFFFF) if no PIN was supplied.

dwWorkingAddressID (4 bytes): An unsigned 32-bit integer. The identifier of the address on which
the agent receives calls for this session.

IpGroupID (4 bytes): An unsigned 32-bit integer. The offset, in bytes, in the VarData field and
GUID, as specified in [MS-DTYP] section 2.3.4.2, that identifies the group for which the session is
being created.

dwsSize (4 bytes): An unsigned 32-bit integer. The size, in bytes, of the GUID that is indicated in the
IpGrouplID field.

IphAgentSessionContext (4 bytes): An unsigned 32-bit integer. The handle to the created agent
session that is returned by the ACD proxy. It is the responsibility of the agent handler proxy
application to generate and maintain uniqueness of these identifiers.

Reserved2 (4 bytes): An unsigned 32-bit integer. This field is used for padding and MUST be
ignored on receipt. It can be any value.

Reserved3 (4 bytes): An unsigned 32-bit integer. This field is used for padding and MUST be
ignored on receipt. It can be any value.

130/ 610

[MS-TRP-Diff] - v20210625

Telephony Remote Protocol

Copyright © 2021 Microsoft Corporation
Release: June 25, 2021

Reserved4 (4 bytes): An unsigned 32-bit integer. This field is used for padding and MUST be
ignored on receipt. It can be any value.

Reserved5 (4 bytes): An unsigned 32-bit integer. This field is used for padding and MUST be
ignored on receipt. It can be any value.

VarData (variable): Contains a null-terminated Unicode string that is indicated in the IpszAgentPIN
field and a GUID that is indicated in the |pGrouplD field.

The contents of this field MUST be DWORD-aligned, as specified in [MS-DTYP] section 2.2.9.

2.2.4.1.3.12 DevSpecific

The DevSpecific packet is transmitted from a TAPI client to a TAPI server in a remote procedure call.
The function is used as a general extension mechanism to enable service providers to provide access
to features that are not described in other operations. The meanings of the extensions are device-
specific, and to take advantage of these extensions, the application MUST be fully aware of them.

0(1|2|3(4|5|6(7|8|9|0(1|2|3(4|5|6[|7|8|9(0(1|2|3(4|5|6[7|8|9|0(1

Reqg_Func

Reserved1

dwRequestID

IpContext

hLine

dwAddressID

hCall

IpParamsContext

IpParams

dwsSize

Reserved2

Reserved3

Reserved4

Reserved5

Reserved6

VarData (variable)

131/ 610

[MS-TRP-Diff] - v20210625

Telephony Remote Protocol

Copyright © 2021 Microsoft Corporation
Release: June 25, 2021

Req_Func (4 bytes): An unsigned 32-bit integer. The identifier of the function that will be invoked
on the remote server. This value MUST be set to 13.

Return Values

On completion of ClientRequest, this field contains the result of the encapsulated telephony
request. A nonzero request ID value indicates that the request is in progress and will complete
asynchronously and a LINEERR_Constants value indicates synchronous failure.

Returns a positive request identifier if the function will be completed asynchronously or a negative
error number if an error occurs. The dwParam?2 parameter of the corresponding LINE_REPLY
packet is zero if the function succeeds, or it is a negative error number if an error occurs. If the
client specified a nonzero value in the dwRequestID field of the packet, the same value MUST be
used for the returned positive request identifier. Common return values are as follows:

Name Value

LINEERR_INVALLINEHANDLE 0x8000002B

LINEERR_OPERATIONUNAVAIL | 0x80000049

LINEERR_INVALADDRESSID 0x80000011

LINEERR_OPERATIONFAILED 0x80000048

LINEERR_NOMEM 0x80000044

LINEERR_RESOURCEUNAVAIL | 0x8000004B

Reservedl (4 bytes): An unsigned 32-bit integer. MUST be set to zero when sent and MUST be
ignored on receipt.

dwRequestID (4 bytes): An unsigned 32-bit integer. The identifier of the asynchronous request.

IpContext (4 bytes): An unsigned 32-bit integer. The opaque, client-specified value that is used by
the client upon request completion; MUST be returned by the server in the request completion
packet.

hLine (4 bytes): An HLINE. The handle to a line device. This field MUST have been obtained by
sending the Open packet. This parameter is required.

dwAddressID (4 bytes): An unsigned 32-bit integer. The address on the specified line to be
operated on. An address identifier is permanently associated with an address; the identifier MUST
remain constant across operating system upgrades. A valid value of dwAddressID is in the range 0
to dwNumAddresses —-1. The client obtains dwNumAddresses from the LINEDEVCAPSobtained by
sending a GetDevCapspacket to the remote server.

hCall (4 bytes): An HCALL. The handle to a call. This parameter is optional, but if it is specified, the
call it represents MUST belong to the hLine line device. One way of obtaining a valid hCall is by
sending the MakeCall packet. The call state of hCall is device specific.

IpParamsContext (4 bytes): An unsigned 32-bit integer. The opaque, client-specified value that is
used by the client upon request completion; MUST be returned by the server in the request
completion packet.

132 /610

[MS-TRP-Diff] - v20210625

Telephony Remote Protocol

Copyright © 2021 Microsoft Corporation
Release: June 25, 2021

IpParams (4 bytes): An unsigned 32-bit integer. The offset, in bytes, in the VarData field of a
parameter block. The format of this parameter block is device-specific and its contents are passed
by TAPI, to or from the TSP.

dwsSize (4 bytes): An unsigned 32-bit integer. The size, in bytes, of the parameter block that is
indicated in the IpParams field.

Reserved2 (4 bytes): An unsigned 32-bit integer. This field is used for padding and MUST be
ignored on receipt. It can be any value.

Reserved3 (4 bytes): An unsigned 32-bit integer. This field is used for padding and MUST be
ignored on receipt. It can be any value.

Reserved4 (4 bytes): An unsigned 32-bit integer. This field is used for padding and MUST be
ignored on receipt. It can be any value.

Reserved5 (4 bytes): An unsigned 32-bit integer. This field is used for padding and MUST be
ignored on receipt. It can be any value.

Reserved6 (4 bytes): An unsigned 32-bit integer. This field is used for padding and MUST be
ignored on receipt. It can be any value.

VarData (variable): Contains a parameter block that is indicated in the IpParams field. The format of
this parameter block is device-specific and its contents are passed by TAPI, to or from the TSP.

The contents of this field MUST be DWORD-aligned, as specified in [MS-DTYP] section 2.2.9.

2.2.4.1.3.13 DevSpecificFeature

The DevSpecificFeature packet is transmitted from a TAPI client to a TAPI server in a remote
procedure call. The function is used as an extension mechanism to enable service providers to provide
access to features that are not described in other operations. The meanings of these extensions are
device-specific, and taking advantage of these extensions requires TAPI or its client application to be
fully aware of them.

0[{1(2|3|4|5|6|7|8|9(0(1|2[3|4|5|/6|7|8|9|0|1|2|3|4|5(6[7(8]|9|0]1

Reqg_Func

Reserved1

dwRequestID

IpContext

hLine

dwFeature

IpParamsContext

IpParams

dwSize

133/ 610

[MS-TRP-Diff] - v20210625

Telephony Remote Protocol

Copyright © 2021 Microsoft Corporation
Release: June 25, 2021

Reserved2

Reserved3

Reserved4

Reserved5

Reserved6

Reserved7

VarData (variable)

Req_Func (4 bytes): The identifier of the function that will be invoked on the remote server. This
value MUST be set to 14.

Return Values

On completion of ClientRequest, this field contains the result of the encapsulated telephony
request. A nonzero request ID value indicates that the request is in progress and will complete
asynchronously, and a LINEERR_Constants value indicates synchronous failure.

Returns a positive request identifier if the function will be completed asynchronously or a negative
error number if an error occurs. The dwParam2 parameter of the corresponding LINE_REPLY
packet is zero if the function succeeds, or it is a negative error number if an error occurs. If the
client specified a nonzero value in the dwRequestID field of the packet, the same MUST be used as
the value for the returned positive request identifier. Common return values are as follows:

Name Value

LINEERR_INVALFEATURE 0x80000055

LINEERR_OPERATIONUNAVAIL | 0x80000049

LINEERR_INVALLINEHANDLE 0x8000002B

LINEERR_OPERATIONFAILED 0x80000048

LINEERR_NOMEM 0x80000044

LINEERR_RESOURCEUNAVAIL | 0x8000004B

Reservedl (4 bytes): An unsigned 32-bit integer. MUST be set to zero when sent and MUST be
ignored on receipt.

dwRequestID (4 bytes): An unsigned 32-bit integer. The identifier of the asynchronous request.

IpContext (4 bytes): An unsigned 32-bit integer. The opaque, client-specified value that is used by
the client upon request completion; MUST be returned by the server in the request completion
packet.

hLine (4 bytes): An HLINE. The handle to the line device. This field MUST have been obtained by
sending the Open packet.

134 /610

[MS-TRP-Diff] - v20210625

Telephony Remote Protocol

Copyright © 2021 Microsoft Corporation
Release: June 25, 2021

dwFeature (4 bytes): An unsigned 32-bit integer. The feature to invoke on the line device. This
parameter MUST use PHONEBUTTONFUNCTION_Constants.

IpParamsContext (4 bytes): An unsigned 32-bit integer. The opaque, client-specified value that is
used by the client upon request completion; MUST be returned by the server in the request
completion packet.

IpParams (4 bytes): An unsigned 32-bit integer. The offset, in bytes, in the VarData field of a
feature-dependent parameter block. The format of this parameter block is device-specific and its
contents are passed by TAPI, to or from the TSP.

dwsSize (4 bytes): An unsigned 32-bit integer. The size, in bytes, of the parameter block that is
indicated in the IpParams field.

Reserved2 (4 bytes): An unsigned 32-bit integer. This field is used for padding and MUST be
ignored on receipt. It can be any value.

Reserved3 (4 bytes): An unsigned 32-bit integer. This field is used for padding and MUST be
ignored on receipt. It can be any value.

Reserved4 (4 bytes): An unsigned 32-bit integer. This field is used for padding and MUST be
ignored on receipt. It can be any value.

Reserved5 (4 bytes): An unsigned 32-bit integer. This field is used for padding and MUST be
ignored on receipt. It can be any value.

Reserved6 (4 bytes): An unsigned 32-bit integer. This field is used for padding and MUST be
ignored on receipt. It can be any value.

Reserved? (4 bytes): An unsigned 32-bit integer. This field is used for padding and MUST be
ignored on receipt. It can be any value.

VarData (variable): Contains a feature-dependent parameter block that is indicated in the IpParams
field. The format of this parameter block is device-specific and its contents are passed by TAPI, to
or from the TSP.

The contents of this field MUST be DWORD-aligned, as specified in [MS-DTYP] section 2.2.9.

2.2.4.1.3.14 Dial

The Dial packet is transmitted from a TAPI client to a TAPI server in a remote procedure call. Sending
this packet dials the specified dialable number on the specified call.

—
N
w

0[{1(2|3|4|5|6|7|8|9(0(1|2[3|4|5|/6|7|8|9|0|1|2|3|4|5|6[7(8]9|0]|1

Reqg_Func

Reserved1

dwRequestID

hCall

IpszDestAddress

dwCountryCode

135/ 610

[MS-TRP-Diff] - v20210625

Telephony Remote Protocol

Copyright © 2021 Microsoft Corporation
Release: June 25, 2021

Reserved2

Reserved3

Reserved4

Reserved5

Reserved6

Reserved7

Reserved8

Reserved9

Reserved10

VarData (variable)

Req_Func (4 bytes): An unsigned 32-bit integer. The identifier of the function that will be invoked
on the remote server. This value MUST be set to 15.

Return Values

On completion of ClientRequest, this field contains the result of the encapsulated telephony
request. A nonzero request ID value indicates that the request is in progress and will complete
asynchronously, and a LINEERR_Constants value indicates synchronous failure.

Returns a positive request identifier if the function will be completed asynchronously or a negative
error number if an error occurs. The dwParam2 parameter of the corresponding LINE_REPLY
packet is zero if the function succeeds, or it is a negative error number if an error occurs. If the
client specified a nonzero value in the dwRequestID field of the packet, the same value MUST be
used for the returned positive request identifier. Common return values are as follows:

Name Value

LINEERR_INVALCALLHANDLE 0x80000018

LINEERR_OPERATIONFAILED 0x80000048

LINEERR_INVALADDRESS 0x80000010

LINEERR_RESOURCEUNAVAIL 0x8000004B

LINEERR_INVALCOUNTRYCODE | 0x80000022

LINEERR_DIALBILLING 0x80000008
LINEERR_INVALCALLSTATE 0x8000001C
LINEERR_DIALQUIET 0x8000000B

LINEERR_ADDRESSBLOCKED 0x80000053

136 / 610

[MS-TRP-Diff] - v20210625

Telephony Remote Protocol

Copyright © 2021 Microsoft Corporation
Release: June 25, 2021

Name Value

LINEERR_DIALDIALTONE 0x80000009
LINEERR_NOMEM 0x80000044
LINEERR_DIALPROMPT 0x8000000A

LINEERR_OPERATIONUNAVAIL | 0x80000049

Reservedl1 (4 bytes): An unsigned 32-bit integer. MUST be set to zero when sent and MUST be
ignored on receipt.

dwRequestID (4 bytes): An unsigned 32-bit integer. The identifier of the asynchronous request.

hCall (4 bytes): An HCALL. The handle to the call on which a nhumber is to be dialed. One way of
obtaining a valid hCall is by sending the MakeCall packet. The application MUST be an owner of
the call. The call state of hCall can be any state except idle and disconnected.

IpszDestAddress (4 bytes): An unsigned 32-bit integer. The offset, in bytes, in the VarData field of
a null-terminated Unicode string that specifies the destination to dial by using the standard
dialable number format.

dwCountryCode (4 bytes): An unsigned 32-bit integer. The country code of the destination. The
implementation uses this field to select the call-progress protocols for the destination address. If a
value of 0 is specified, a default call-progress protocol that is defined by the service provider is
used. TAPI does not validate this parameter when this function is called.

Reserved2 (4 bytes): An unsigned 32-bit integer. This field is used for padding and MUST be
ignored on receipt. It can be any value.

Reserved3 (4 bytes): An unsigned 32-bit integer. This field is used for padding and MUST be
ignored on receipt. It can be any value.

Reserved4 (4 bytes): An unsigned 32-bit integer. This field is used for padding and MUST be
ignored on receipt. It can be any value.

Reserved5 (4 bytes): An unsigned 32-bit integer. This field is used for padding and MUST be
ignored on receipt. It can be any value.

Reserved6 (4 bytes): An unsigned 32-bit integer. This field is used for padding and MUST be
ignored on receipt. It can be any value.

Reserved? (4 bytes): An unsigned 32-bit integer. This field is used for padding and MUST be
ignored on receipt. It can be any value.

Reserved8 (4 bytes): An unsigned 32-bit integer. This field is used for padding and MUST be
ignored on receipt. It can be any value.

Reserved9 (4 bytes): An unsigned 32-bit integer. This field is used for padding and MUST be
ignored on receipt. It can be any value.

Reserved10 (4 bytes): An unsigned 32-bit integer. This field is used for padding and MUST be
ignored on receipt. It can be any value.

VarData (variable): Contains a null-terminated Unicode string that is indicated in the
IpszDestAddress field.

The contents of this field MUST be DWORD-aligned, as specified in [MS-DTYP] section 2.2.9.

2.2.4.1.3.15 Drop

137/ 610

[MS-TRP-Diff] - v20210625

Telephony Remote Protocol

Copyright © 2021 Microsoft Corporation
Release: June 25, 2021

The Drop packet is transmitted from a TAPI client to a TAPI server in a remote procedure call. Sending
this packet drops or disconnects the specified call. User-user information can optionally be transmitted
as part of the call disconnect. This function can be called by the application at any time.

0(1(2|3|4|5|6|7|8|9(0(1|2[3|4|5|/6|7|8|9|0|1|2|3|4|5(6[7(8]9|0]|1

Reqg_Func

Reserved1

dwRequestID

hCall

IpsUserUserlInfo

dwSize

Reserved2

Reserved3

Reserved4

Reserved5

Reserved6

Reserved?7

Reserved8

Reserved9

Reserved10

VarData (variable)

Req_Func (4 bytes): An unsigned 32-bit integer. The identifier of the function that will be invoked
on the remote server. This value MUST be set to 16.

Return Values

On completion of ClientRequest, this field contains the result of the encapsulated telephony
request. A nonzero request ID value indicates that the request is in progress and will complete
asynchronously, and a LINEERR_Constants value indicates synchronous failure.

Returns a positive request identifier if the function will be completed asynchronously or a negative
error number if an error occurs. The dwParam?2 parameter of the corresponding LINE_REPLY
packet is zero if the function succeeds, or it is a negative error number if an error occurs. If the

138 /610

[MS-TRP-Diff] - v20210625

Telephony Remote Protocol

Copyright © 2021 Microsoft Corporation
Release: June 25, 2021

client specified a nonzero value in the dwRequestID field of the packet, the same value MUST be
used for the returned positive request identifier. Common return values are as follows:

Name Value

LINEERR_INVALCALLHANDLE 0x80000018
LINEERR_OPERATIONFAILED 0x80000048
LINEERR_INVALCALLSTATE 0x8000001C
LINEERR_RESOURCEUNAVAIL 0x8000004B
LINEERR_NOMEM 0x80000044
LINEERR_USERUSERINFOTOOBIG | 0x80000051
LINEERR_OPERATIONUNAVAIL 0x80000049

Reservedl (4 bytes): An unsigned 32-bit integer. MUST be set to zero when sent and MUST be
ignored on receipt.

dwRequestID (4 bytes): An unsigned 32-bit integer. The identifier of the asynchronous request.

hCall (4 bytes): An HCALL. The handle to the call to be dropped. One way of obtaining a valid hCall
is by sending the MakeCall packet. The application MUST be an owner of the call. The call state of
hCall can be any state except idle.

IpsUserUserInfo (4 bytes): An unsigned 32-bit integer. The offset, in bytes, in the VarData field of
user-user information, to send to the remote party as part of the call disconnect. When this field is
set to -1 (OxFFFFFFFF), no user-user information is sent.

dwSize (4 bytes): An unsigned 32-bit integer. The size, in bytes, of the user-user information in
IpsUserUserInfo. If IpsUserUserlInfo is -1 (OXFFFFFFFF), no user-user information MUST be sent
and dwSize MUST be ignored.

Reserved?2 (4 bytes): An unsigned 32-bit integer. This field is used for padding and MUST be
ignored on receipt. It can be any value.

Reserved3 (4 bytes): An unsigned 32-bit integer. This field is used for padding and MUST be
ignored on receipt. It can be any value.

Reserved4 (4 bytes): An unsigned 32-bit integer. This field is used for padding and MUST be
ignored on receipt. It can be any value.

Reserved5 (4 bytes): An unsigned 32-bit integer. This field is used for padding and MUST be
ignored on receipt. It can be any value.

Reserved6 (4 bytes): An unsigned 32-bit integer. This field is used for padding and MUST be
ignored on receipt. It can be any value.

Reserved7 (4 bytes): An unsigned 32-bit integer. This field is used for padding and MUST be
ignored on receipt. It can be any value.

Reserved8 (4 bytes): An unsigned 32-bit integer. This field is used for padding and MUST be
ignored on receipt. It can be any value.

Reserved9 (4 bytes): An unsigned 32-bit integer. This field is used for padding and MUST be
ignored on receipt. It can be any value.

139/ 610

[MS-TRP-Diff] - v20210625

Telephony Remote Protocol

Copyright © 2021 Microsoft Corporation
Release: June 25, 2021

Reserved10 (4 bytes): An unsigned 32-bit integer. This field is used for padding and MUST be
ignored on receipt. It can be any value.

VarData (variable): Contains the user information that is indicated in the IpsUserUserInfo field. The
user information can be an ASCII or Unicode string, and this data is opaque to the protocol.

The contents of this field MUST be DWORD-aligned, as specified in [MS-DTYP] section 2.2.9.

2.2.4.1.3.16 Forward

The Forward packet is transmitted from a TAPI client to a TAPI server in a remote procedure call.
Sending this packet forwards calls that are destined for the specified address on the specified line,
according to the specified forwarding instructions.

When an originating address (dwAddressID) is forwarded, the specified incoming calls for that address
are deflected to the other number by the switch. This function provides a combination of forward and
do-not-disturb features. This function can also cancel specific forwarding that is currently in effect.

0(1|2|3(4|5|6(7|8|9|0(1|2|3(4|5|6[|7|8|9(0(1|2|3(4|5|6[7|8|9|0(1

Reqg_Func

Reserved1

dwRequestID

IpContext

hLine

bAllAddresses

dwAddressID

IpForwardList

dwNumRingsNoAnswer

IphConsultCallContext

IpCallParams

dwAsciiCallParamsCodePage

Reserved2

Reserved3

Reserved4

VarData (variable)

140/ 610

[MS-TRP-Diff] - v20210625

Telephony Remote Protocol

Copyright © 2021 Microsoft Corporation
Release: June 25, 2021

Req_Func (4 bytes): An unsigned 32-bit integer. The identifier of the function that will be invoked
on the remote server. This value MUST be set to 17.

Return Values

On completion of ClientRequest, this field contains the result of the encapsulated telephony
request. A nonzero request ID value indicates that the request is in progress and will complete
asynchronously. A LINEERR_Constants value indicates synchronous failure.

Returns a positive request identifier if the function will be completed asynchronously or a negative
error number if an error occurs. The dwParam2 parameter of the corresponding LINE_REPLY
packet is zero if the function succeeds, or it is a negative error number if an error occurs. If the
client specified a nonzero value in the dwRequestID field of the packet, the same value MUST be
used for the returned positive request identifier. Common return values are as follows:

Name Value

LINEERR_INVALLINEHANDLE 0x8000002B
LINEERR_NOMEM 0x80000044
LINEERR_INVALADDRESS 0x80000010
LINEERR_OPERATIONUNAVAIL 0x80000049
LINEERR_INVALADDRESSID 0x80000011
LINEERR_OPERATIONFAILED 0x80000048
LINEERR_INVALCOUNTRYCODE 0x80000022
LINEERR_RESOURCEUNAVAIL 0x8000004B
LINEERR_INVALPARAM 0x80000032
LINEERR_STRUCTURETOOSMALL | 0x8000004D

Reservedl (4 bytes): An unsigned 32-bit integer. MUST be set to zero when sent and MUST be
ignored on receipt.

dwRequestID (4 bytes): An unsigned 32-bit integer. The identifier of the asynchronous request.

IpContext (4 bytes): An unsigned 32-bit integer. The opaque, client-specified value that is used by
the client upon request completion; MUST be returned by the server in the request completion
packet.

hLine (4 bytes): An HLINE. The handle to the line to be forwarded. This field MUST have been
obtained by sending the Openpacket.

bAllAddresses (4 bytes): An unsigned 32-bit integer. Specifies whether all originating addresses on
the line, or just the one that is specified, is forwarded. If TRUE, all addresses on the line are
forwarded and dwAddressID is ignored; if FALSE, only the address that is specified as
dwAddressID is forwarded. This parameter is not validated by TAPI when this function is called.

dwAddressID (4 bytes): An unsigned 32-bit integer. The address on the specified line whose
incoming calls are to be forwarded. This parameter is ignored if bAllAddresses is TRUE. This
parameter is not validated by TAPI when this function is called. An address identifier is
permanently associated with an address; the identifier remains constant across operating system

141 /610

[MS-TRP-Diff] - v20210625

Telephony Remote Protocol

Copyright © 2021 Microsoft Corporation
Release: June 25, 2021

upgrades. A valid value of dwAddressID is in the range 0 to dwNumAddresses —-1. The client
obtains dwNumAddresses from the LINEDEVCAPS obtained by sending a GetDevCaps packet to
the remote server.

IpForwardList (4 bytes): An unsigned 32-bit integer. The offset, in bytes, in the VarData field of a
variable-size LINEFORWARDLIST packet that describes the specific forwarding instructions.

dwNumRingsNoAnswer (4 bytes): An unsigned 32-bit integer. Specifies the humber of rings before
an incoming call is considered a "no answer." If dwNumRingsNoAnswer is out of range, the actual
value is set to the nearest value in the allowable range. This parameter is not validated by TAPI
when this function is called.

IphConsultCallContext (4 bytes): An unsigned 32-bit integer. The opaque, client-specified value
that is used by the client upon request completion; MUST be returned by the server in the request
completion packet.

IpCallParams (4 bytes): An unsigned 32-bit integer. The offset, in bytes, in the VarData field of a
LINECALLPARAMS packet that contains the specified call parameters.

dwAsciiCallParamsCodePage (4 bytes): An unsigned 32-bit integer. The code page of the
IpCallParams field.

Reserved2 (4 bytes): An unsigned 32-bit integer. This field is used for padding and MUST be
ignored on receipt. It can be any value.

Reserved3 (4 bytes): An unsigned 32-bit integer. This field is used for padding and MUST be
ignored on receipt. It can be any value.

Reserved4 (4 bytes): An unsigned 32-bit integer. This field is used for padding and MUST be
ignored on receipt. It can be any value.

VarData (variable): Contains the LINEFORWARDLIST and LINECALLPARAMS packets that are
indicated in the fields IpForwardList and IpCallParams.

The contents of this field MUST be DWORD-aligned, as specified in [MS-DTYP] section 2.2.9.

2.2.4.1.3.17 GatherDigits

The GatherDigits packet is transmitted from a TAPI client to a TAPI server in a remote procedure call.
Sending this packet initiates the buffered gathering of digits on the specified call. TAPI specifies a
packet in which to place the digits and the maximum number of digits to be collected.

-
N
w

0(1|/2|3(4|5|6(7|8|9|0(1|2|3(4|5|6|7|8|9(0(1|2|3(4|5|6[|7|8|9|0(1

Req_Func

Reserved1

IpContext

hCall

dwEndtoEndID

dwDigitModes

142 / 610

[MS-TRP-Diff] - v20210625

Telephony Remote Protocol

Copyright © 2021 Microsoft Corporation
Release: June 25, 2021

IpsDigitsContext

dwNumDigits

IpszTerminationDigits

dwrFirstDigitTimeout

dwInterDigitTimeout

Reserved2

Reserved3

Reserved4

Reserved5

Reserved6

VarData (variable)

Req_Func (4 bytes): An unsigned 32-bit integer. The identifier of the function that will be invoked
on the remote server. This value MUST be set to 18.

Return Values

On completion of ClientRequest, this field contains the result of the encapsulated telephony
request. A value of 0 indicates success, and a LINEERR_Constants value indicates failure. The

remote server MUST complete this call synchronously.

MUST return zero if the function succeeds or an error number if an error occurs. Common return

values are as follows:

Name Value

LINEERR_INVALCALLHANDLE 0x80000018
LINEERR_RESOURCEUNAVAIL | 0x8000004B
LINEERR_INVALCALLSTATE 0x8000001C
LINEERR_NOMEM 0x80000044
LINEERR_INVALTIMEOUT 0x8000003B
LINEERR_OPERATIONUNAVAIL | 0x80000049
LINEERR_INVALDIGITMODE 0x80000027
LINEERR_OPERATIONFAILED 0x80000048
LINEERR_INVALDIGITS 0x80000028

[MS-TRP-Diff] - v20210625
Telephony Remote Protocol

Copyright © 2021 Microsoft Corporation

Release: June 25, 2021

143 / 610

Name Value

LINEERR_INVALPARAM 0x80000032

Reservedl1 (4 bytes): An unsigned 32-bit integer. MUST be set to zero when sent and MUST be
ignored on receipt.

IpContext (4 bytes): An unsigned 32-bit integer. The opaque, client-specified value that is used by
the client upon request completion; MUST be returned by the server in the request completion
packet.

hCall (4 bytes): An HCALL. The handle to the call on which digits are to be gathered. One way of
obtaining a valid hCall is by sending the MakeCall packet. The application MUST be an owner of
the call. The call state of hCall can be any state.

dwEndtoEndID (4 bytes): An unsigned 32-bit integer. A unique, uninterpreted identifier of the
request for its entire lifetime, that is, until the matching LINE_GATHERDIGITS packet is sent. The
service provider MUST include this identifier as one of the parameters in the packet.

dwDigitModes (4 bytes): An unsigned 32-bit integer. The digit modes that are to be monitored. This
parameter MUST use one or more of the following LINEDIGITMODE_ Constants:

LINEDIGITMODE_PULSE

Detect digits as audible clicks that are the result of the use of rotary pulse sequences. Valid digits
for pulse mode are "0" through "9".

LINEDIGITMODE_DTMF

Detect digits as DTMF tones. Valid digits for DTMF mode are "0" through "9", "A", "B", "C", "D",
|I*||, ll#ll.

IpsDigitsContext (4 bytes): An unsigned 32-bit integer. Set to 0 if digit gathering is to be canceled;
otherwise, digit gathering is initiated.

dwNumDigits (4 bytes): An unsigned 32-bit integer. The number of digits to be collected before a
LINE_GATHERDIGITS packet is sent to TAPI. This function MUST return a LINEERR_INVALPARAM if
dwNumDigits is zero.

IpszTerminationDigits (4 bytes): An unsigned 32-bit integer. The offset, in bytes, in the varData
field of a null-terminated Unicode string of termination digits as text characters, or if none are
supplied, the value TAPI_NO_DATA (OxFFFFFFFF).

dwFirstDigitTimeout (4 bytes): An unsigned 32-bit integer. The time duration, in milliseconds, in
which the first digit is expected. If the first digit is not received in this time frame, digit collection
is terminated and a LINE_GATHERDIGITS packet is sent to TAPI. A single null character is written
to the packet, indicating no digits were received and the first digit time-out terminated digit
gathering. The line device capabilities of the call specify the valid range for this parameter or
indicate that time-outs are not supported. This parameter is not validated by TAPI when this
function is called.

dwInterDigitTimeout (4 bytes): An unsigned 32-bit integer. The maximum time duration, in
milliseconds, between consecutive digits. If no digit is received in this time frame, digit collection
is terminated and a LINE_GATHERDIGITS packet is sent to TAPI. A single null character is written
to the packet, indicating that an interdigit time-out terminated digit gathering. The LINEDEVCAPS
packet MUST specify the valid range for this parameter or indicate that time-outs are not
supported. This parameter is not validated by TAPI when this function is called.

Reserved2 (4 bytes): An unsigned 32-bit integer. This field is used for padding and MUST be
ignored on receipt. It can be any value.

144 / 610

[MS-TRP-Diff] - v20210625

Telephony Remote Protocol

Copyright © 2021 Microsoft Corporation
Release: June 25, 2021

Reserved3 (4 bytes): An unsigned 32-bit integer

ignored on receipt. It can be any value.

Reserved4 (4 bytes): An unsigned 32-bit integer

ignored on receipt. It can be any value.

Reserved5 (4 bytes): An unsigned 32-bit integer

ignored on receipt. It can be any value.

Reserved6 (4 bytes): An unsigned 32-bit integer

ignored on receipt. It can be any value.

VarData (variable): Present if the IpszTerminationDigits field is not set to TAPI_NO_DATA

. This field is used for padding and MUST be

. This field is used for padding and MUST be

. This field is used for padding and MUST be

. This field is used for padding and MUST be

(OXFFFFFFFF). Contains a null-terminated Unicode string as specified by IpszTerminationDigits.

The contents of this field MUST be DWORD-aligned, as specified in [MS-DTYP] section 2.2.9.

2.2.4.1.3.18 GenerateDigits

The GenerateDigits packet is transmitted from a TAPI client to a TAPI server in a remote procedure

call. Sending this packet initiates the generation of the specified digits on the specified call as inband
tones by using the specified signaling mode. Invoking this function while digit or tone generation is in
progress aborts the current digit or tone generation. Passing a NULL value for IpszDigits generates no

new digits.

0(1(2|3|4|5|6|7|8(9(0(1(2|3|4

5

6

7

w

Reqg_Func

Reserved1

hCall

dwDigitMode

IpszDigits

dwDuration

dwENndToEndID

Reserved2

Reserved3

Reserved4

Reserved5

Reserved6

Reserved7

[MS-TRP-Diff] - v20210625

Telephony Remote Protocol

Copyright © 2021 Microsoft Corporation
Release: June 25, 2021

145/ 610

Reserved8

Reserved9

VarData (variable)

Req_Func (4 bytes): The identifier of the function that will be invoked on the remote server. This
value MUST be set to 19.

Note At any time, only one inband generation request (tone generation or digit generation) can
be in progress per call.

Return Values

On completion of ClientRequest, this field contains the result of the encapsulated telephony
request. A value of 0 indicates success and a LINEERR_Constants value indicates failure. The
remote server MUST complete this call synchronously.

MUST return zero if the function succeeds or an error number if an error occurs. Common return
values are as follows:

Name Value

LINEERR_INVALCALLHANDLE 0x80000018

LINEERR_NOMEM 0x80000044

LINEERR_INVALCALLSTATE 0x8000001C

LINEERR_OPERATIONUNAVAIL | 0x80000049

LINEERR_INVALDIGITMODE 0x80000027

LINEERR_OPERATIONFAILED 0x80000048

LINEERR_RESOURCEUNAVAIL | 0x8000004B

Reservedl (4 bytes): An unsigned 32-bit integer. MUST be set to zero when sent and MUST be
ignored on receipt.

hCall (4 bytes): An HCALL. The handle to the call. One way of obtaining a valid hCall is by sending
the MakeCall packet. The application MUST be an owner of the call. The call state of hCall can be
any state. TAPI does not impose any call state requirements; however, some Tapi Service
Providers can require that the hCall be is the LINECALLSTATE_CONNECTED state.

dwDigitMode (4 bytes): An unsigned 32-bit integer. The format to be used for signaling these
digits. This parameter MUST use one of the LINEDIGITMODE_ Constants.

IpszDigits (4 bytes): An unsigned 32-bit integer. The offset, in bytes, in the VarData field of a null-
terminated Unicode character packet that contains the digits to generate.

dwDuration (4 bytes): An unsigned 32-bit integer. Specifies both the duration, in milliseconds, of
DTMF digits and pulse and DTMF interdigit spacing. A value of 0 uses a default value. The
dwDuration parameter MUST be within the range that is specified by MinDialParams to
MaxDialParams in LINEDEVCAPS. If out of range, the actual value is set by the service provider to

146 / 610

[MS-TRP-Diff] - v20210625

Telephony Remote Protocol

Copyright © 2021 Microsoft Corporation
Release: June 25, 2021

the nearest value in the range. This parameter is not validated by TAPI when this function is
called.

dwEndToEndID (4 bytes): An unsigned 32-bit integer. This unique request identifier MUST be
stored by the server and passed back as dwParam?2 of the corresponding LINE_ GENERATE packet
to the client when the digit generation is completed.

Reserved2 (4 bytes): An unsigned 32-bit integer. This field is used for padding and MUST be
ignored on receipt. It can be any value.

Reserved3 (4 bytes): An unsigned 32-bit integer. This field is used for padding and MUST be
ignored on receipt. It can be any value.

Reserved4 (4 bytes): An unsigned 32-bit integer. This field is used for padding and MUST be
ignored on receipt. It can be any value.

Reserved5 (4 bytes): An unsigned 32-bit integer. This field is used for padding and MUST be
ignored on receipt. It can be any value.

Reserved6 (4 bytes): An unsigned 32-bit integer. This field is used for padding and MUST be
ignored on receipt. It can be any value.

Reserved? (4 bytes): An unsigned 32-bit integer. This field is used for padding and MUST be
ignored on receipt. It can be any value.

Reserved8 (4 bytes): An unsigned 32-bit integer. This field is used for padding and MUST be
ignored on receipt. It can be any value.

Reserved9 (4 bytes): An unsigned 32-bit integer. This field is used for padding and MUST be
ignored on receipt. It can be any value.

VarData (variable): Contains a null-terminated Unicode character packet that is indicated in the
IpszDigits field.

The contents of this field MUST be DWORD-aligned, as specified in [MS-DTYP] section 2.2.9.

2.2.4.1.3.19 GenerateTone

The GenerateTone packet is transmitted from a TAPI client to a TAPI server in a remote procedure
call. Sending this packet generates the specified tone inband over the specified call. Invoking this
function with a zero for dwToneMode aborts any tone generation that is currently in progress on the
specified call. Sending a GenerateTone or GenerateDigits packet while tone generation is in progress
aborts the current tone generation or digit generation in progress and initiates the generation of the
newly specified tone or digits.

—
N
w

0(1|/2|3(4|5|6|(7|8|9|0(1|2|3(4|5|6|7|8|9(0(1|2|3(4|5|6[|7|8|9|0(1

Req_Func

Reserved1

hCall

dwToneMode

dwDuration

147 / 610

[MS-TRP-Diff] - v20210625

Telephony Remote Protocol

Copyright © 2021 Microsoft Corporation
Release: June 25, 2021

dwNumTones

IpTones

dwsSize

dwENndToEndID

Reserved2

Reserved3

Reserved4

Reserved5

Reserved6

Reserved7

VarData (variable)

Req_Func (4 bytes): An unsigned 32-bit integer. The identifier of the function that will be invoked

on the remote server. This value MUST be set to 20.

Return Values

On completion of ClientRequest, this field contains the result of the encapsulated telephony
request. A value of 0 indicates success, and a LINEERR_Constants value indicates failure. The

remote server MUST complete this call synchronously.

MUST return zero if the function succeeds or an error number if an error occurs. Common return

values are as follows:

Name Value

LINEERR_INVALCALLHANDLE 0x80000018
LINEERR_NOMEM 0x80000044
LINEERR_INVALCALLSTATE 0x8000001C
LINEERR_OPERATIONUNAVAIL | 0x80000049
LINEERR_INVALTONEMODE 0x8000003E
LINEERR_OPERATIONFAILED 0x80000048
LINEERR_INVALTONE 0x8000003C
LINEERR_RESOURCEUNAVAIL | 0x8000004B

[MS-TRP-Diff] - v20210625
Telephony Remote Protocol

Copyright © 2021 Microsoft Corporation

Release: June 25, 2021

148 / 610

Reservedl1 (4 bytes): An unsigned 32-bit integer. MUST be set to zero when sent and MUST be
ignored on receipt.

hCall (4 bytes): An HCALL. The handle to the call on which a tone is to be generated. One way of
obtaining a valid hCall is by sending the MakeCall packet. The application MUST be an owner of
the call. The call state of hCall can be any state.

dwToneMode (4 bytes): An unsigned 32-bit integer. Defines the tone to be generated. Tones can be
either standard or custom. A custom tone is composed of a set of arbitrary frequencies. A small
number of standard tones are predefined. The duration of the tone MUST be specified by
dwDuration for both standard and custom tones. If dwToneMode is set to zero, any digit or tone
generation in progress is canceled. This parameter MUST use one of the
LINETONEMODE_ Constants.

dwDuration (4 bytes): An unsigned 32-bit integer. The duration, in milliseconds, during which the
tone is sustained. A value of 0 for dwDuration uses a default duration for the specified tone.
Default values are:

= CUSTOM: infinite

= RINGBACK: infinite

= BUSY: infinite

= BEEP: infinite

= BILLING: fixed (single cycle)

This parameter is not validated by TAPI when this function is called.

dwNumTones (4 bytes): An unsigned 32-bit integer. The number of entries in the IpTones array.
This parameter is ignored if dwToneMode is not equal to LINETONEMODE_CUSTOM.

IpTones (4 bytes): An unsigned 32-bit integer. If dwToneMode is set to LINETONEMODE_CUSTOM,
this field contains the offset, in bytes, of a LINEGENERATETONE packet in the VarData field.
Otherwise, this field is set to the value TAPI_NO_DATA (OxFFFFFFFF).

dwSize (4 bytes): An unsigned 32-bit integer. If dwToneMode is set to LINETONEMODE_CUSTOM,
this field is set to the value of (dwWNumTones * sizeof (LINEGENERATETONE)). Otherwise, this field
is set to zero.

dwEndToEndID (4 bytes): An unsigned 32-bit integer. A unique, uninterpreted identifier of the
request for its entire lifetime, that is, until the matching LINE_GENERATE packet is sent. The
service provider MUST include this identifier as one of the parameters in the packet.

Reserved2 (4 bytes): An unsigned 32-bit integer. This field is used for padding and MUST be
ignored on receipt. It can be any value.

Reserved3 (4 bytes): An unsigned 32-bit integer. This field is used for padding and MUST be
ignored on receipt. It can be any value.

Reserved4 (4 bytes): An unsigned 32-bit integer. This field is used for padding and MUST be
ignored on receipt. It can be any value.

Reserved5 (4 bytes): An unsigned 32-bit integer. This field is used for padding and MUST be
ignored on receipt. It can be any value.

Reserved6 (4 bytes): An unsigned 32-bit integer. This field is used for padding and MUST be
ignored on receipt. It can be any value.

149 / 610

[MS-TRP-Diff] - v20210625

Telephony Remote Protocol

Copyright © 2021 Microsoft Corporation
Release: June 25, 2021

Reserved? (4 bytes): An unsigned 32-bit integer. This field is used for padding and MUST be
ignored on receipt. It can be any value.

VarData (variable): Contains a number of LINEGENERATETONE packets that are equal to the value
of the dwNumTones field.

The contents of this field MUST be DWORD-aligned, as specified in [MS-DTYP] section 2.2.9.

2.2.4.1.3.20 GetAddressID

The GetAddressID packet is transmitted from a TAPI client to a TAPI server in a remote procedure call.
Sending this packet returns the address identifier that is associated with address, in a different format
on the specified line.

0(1(2|3|4|5|6|7|8|9(0(1|2[3|4|5|/6|7|8|9|0|1|2|3|4|5(6[7(8]9|0]|1

Reqg_Func

Reserved1

hLine

IpdwAddressID

dwAddressMode

IpsAddress

dwSize

Reserved2

Reserved3

Reserved4

Reserved5

Reserved6

Reserved?

Reserved8

Reserved9

VarData (variable)

Req_Func (4 bytes): An unsigned 32-bit integer. The identifier of the function that will be invoked
on the remote server. This value MUST be set to 22.

150/ 610

[MS-TRP-Diff] - v20210625

Telephony Remote Protocol

Copyright © 2021 Microsoft Corporation
Release: June 25, 2021

Return Values

On completion of ClientRequest, this field contains the result of the encapsulated telephony
request. A value of 0 indicates success, and a LINEERR_Constants value indicates failure. The

remote server MUST complete this call synchro

nously.

MUST return zero if the function succeeds or an error number if an error occurs. Common return

values are as follows:

Name Value

LINEERR_INVALLINEHANDLE 0x8000002B
LINEERR_OPERATIONUNAVAIL | 0x80000049
LINEERR_INVALADDRESS 0x80000010
LINEERR_OPERATIONFAILED 0x80000048
LINEERR_NOMEM 0x80000044
LINEERR_RESOURCEUNAVAIL 0x8000004B

Reservedl (4 bytes): An unsigned 32-bit integer
ignored on receipt.

. MUST be set to zero when sent and MUST be

hLine (4 bytes): An HLINE. The handle to the line whose address is to be retrieved. This field MUST
have been obtained by sending the Open packet.

IpdwAddressID (4 bytes): An unsigned 32-bit integer. Set to TAPI_NO_DATA (OxFFFFFFFF). Upon
successful completion of the request, this field contains the address identifier.

dwAddressMode (4 bytes): An unsigned 32-bit integer. The address mode of the address that is
contained in IpsAddress. LINEADDRESSMODE_DIALABLEADDR MUST be specified for the

dwAddressMode parameter.

IpsAddress (4 bytes): An unsigned 32-bit integer. The offset, in bytes, in the VarData field of a
packet that holds the address that is assigned to the specified line device. The format of the
address is determined by the dwAddressMode parameter.

dwsSize (4 bytes): An unsigned 32-bit integer. The size of the address that is contained in
IpsAddress. The size of the string MUST include the null terminator.

Reserved?2 (4 bytes): An unsigned 32-bit integer
ignored on receipt. It can be any value.

Reserved3 (4 bytes): An unsigned 32-bit integer
ignored on receipt. It can be any value.

Reserved4 (4 bytes): An unsigned 32-bit integer
ignored on receipt. It can be any value.

Reserved5 (4 bytes): An unsigned 32-bit integer
ignored on receipt. It can be any value.

Reserved6 (4 bytes): An unsigned 32-bit integer
ignored on receipt. It can be any value.

Reserved7 (4 bytes): An unsigned 32-bit integer
ignored on receipt. It can be any value.

. This field is used for padding and MUST be

. This field is used for padding and MUST be

. This field is used for padding and MUST be

. This field is used for padding and MUST be

. This field is used for padding and MUST be

. This field is used for padding and MUST be

[MS-TRP-Diff] - v20210625

Telephony Remote Protocol

Copyright © 2021 Microsoft Corporation
Release: June 25, 2021

151 /610

Reserved8 (4 bytes): An unsigned 32-bit integer. This field is used for padding and MUST be

ignored on receipt. It can be any value.

Reserved9 (4 bytes): An unsigned 32-bit integer. This field is used for padding and MUST be

ignored on receipt. It can be any value.

VarData (variable): Present on successful completion of the request. Contains a packet that holds
the address that is assigned to the specified line device, as indicated in the IpsAddress field.

The contents of this field MUST be DWORD-aligned, as specified in [MS-DTYP] section 2.2.9.

2.2.4.1.3.21 GetAddressStatus

The GetAddressStatus packet is transmitted from a TAPI client to a TAPI server in a remote procedure

call. Sending this packet queries the specified address for its current status.

=

0(1(2|3|4|5|6|7|8(9|0(1(2|3|4

5

6

7

Reqg_Func

Reserved1

hLine

dwAddressID

IpAddressStatus

Reserved2

Reserved3

Reserved4

Reserved5

Reserved6

Reserved7

Reserved8

Reserved9

Reserved10

Reserved11

VarData (64 bytes, optional)

[MS-TRP-Diff] - v20210625

Telephony Remote Protocol

Copyright © 2021 Microsoft Corporation
Release: June 25, 2021

152 /610

Req_Func (4 bytes): An unsigned 32-bit integer. The identifier of the function that will be invoked
on the remote server. This value MUST be set to 23.

Return Values

On completion of ClientRequest, this field will contain the result of the encapsulated telephony
request. A value of 0 indicates success and a LINEERR_Constants value indicates failure. The
remote server MUST complete this call synchronously.

MUST return zero if the function succeeds or an error number if an error occurs. Common return
values are as follows:

Name Value

LINEERR_INVALLINEHANDLE 0x8000002B

LINEERR_OPERATIONUNAVAIL | 0x80000049

LINEERR_INVALADDRESSID 0x80000011

LINEERR_OPERATIONFAILED 0x80000048

LINEERR_NOMEM 0x80000044

LINEERR_RESOURCEUNAVAIL | 0x8000004B

Reservedl (4 bytes): An unsigned 32-bit integer. MUST be set to zero when sent and MUST be
ignored on receipt.

hLine (4 bytes): An HLINE. The handle to the opened line device that contains the address to query.
This field MUST have been obtained by sending the Open packet.

dwAddressID (4 bytes): An unsigned 32-bit integer. An address on the particular open line device.
This is the address to be queried. An address identifier is permanently associated with an address;
the identifier remains constant across operating system upgrades. A valid value of dwAddressID is
in the range 0 to dwNumAddresses -1. The client obtains dwNumAddresses from the
LINEDEVCAPS obtained by sending a GetDevCaps packet to the remote server. This parameter is
not validated by TAPI when this function is called.

IpAddressStatus (4 bytes): An unsigned 32-bit integer. The size of a LINEADDRESSSTATUS packet
that, upon successful completion of the request, contains the current status of an address. Upon
successful completion, this field contains the offset, in bytes, of the packet in the VarData field.

Reserved2 (4 bytes): An unsigned 32-bit integer. This field is used for padding and MUST be
ignored on receipt. It can be any value.

Reserved3 (4 bytes): An unsigned 32-bit integer. This field is used for padding and MUST be
ignored on receipt. It can be any value.

Reserved4 (4 bytes): An unsigned 32-bit integer. This field is used for padding and MUST be
ignored on receipt. It can be any value.

Reserved5 (4 bytes): An unsigned 32-bit integer. This field is used for padding and MUST be
ignored on receipt. It can be any value.

Reserved6 (4 bytes): An unsigned 32-bit integer. This field is used for padding and MUST be
ignored on receipt. It can be any value.

153/ 610

[MS-TRP-Diff] - v20210625

Telephony Remote Protocol

Copyright © 2021 Microsoft Corporation
Release: June 25, 2021

Reserved? (4 bytes): An unsigned 32-bit integer. This field is used for padding and MUST be
ignored on receipt. It can be any value.

Reserved8 (4 bytes): An unsigned 32-bit integer. This field is used for padding and MUST be
ignored on receipt. It can be any value.

Reserved9 (4 bytes): An unsigned 32-bit integer. This field is used for padding and MUST be
ignored on receipt. It can be any value.

Reserved10 (4 bytes): An unsigned 32-bit integer. This field is used for padding and MUST be
ignored on receipt. It can be any value.

Reserved11 (4 bytes): An unsigned 32-bit integer. This field is used for padding and MUST be
ignored on receipt. It can be any value.

VarData (64 bytes): This field is only present on successful completion of the request. Contains a
LINEADDRESSSTATUS packet.

The contents of this field MUST be DWORD-aligned, as specified in [MS-DTYP] section 2.2.9.

2.2.4.1.3.22 GetAgentActivityList

The GetAgentActivityList packet is transmitted from a TAPI client to a TAPI server in a remote
procedure call. Sending this packet obtains the identities of activities that the application can select by
using the SetAgentActivity packet to indicate what function the agent is actually performing at the
moment.

—
N
w

0(1|/2|3(4|5|6(7|8|9|0|1|2|3(4|5|6|7|8|9(0(1|2|3(4|5|6[7|8|9|0(1

Reqg_Func

Reserved1

dwRequestID

IpContext

hLine

dwAddressID

IpAgentActivityListContext

IpAgentActivityList

Reserved2

Reserved3

Reserved4

Reserved5

154 / 610

[MS-TRP-Diff] - v20210625

Telephony Remote Protocol

Copyright © 2021 Microsoft Corporation
Release: June 25, 2021

Reserved6

Reserved7

Reserved8

Req_Func (4 bytes): An unsigned 32-bit integer. The identifier of the function that will be invoked
on the remote server. This value MUST be set to 24.

Return Values

On completion of ClientRequest, this field will contain the result of the encapsulated telephony
request. A nonzero request ID value indicates that the request is in progress and will complete
asynchronously and a LINEERR_Constants value indicates synchronous failure.

MUST return a positive request identifier if the asynchronous operation starts; otherwise, this
function MUST return one of these negative error values:

Name Value

LINEERR_INVALADDRESSID 0x80000011
LINEERR_OPERATIONFAILED 0x80000048
LINEERR_INVALAGENTID 0x80000057

LINEERR_OPERATIONUNAVAIL 0x80000049

LINEERR_INVALLINEHANDLE 0x8000002B

LINEERR_RESOURCEUNAVAIL 0x8000004B

LINEERR_INVALPOINTER 0x80000035

LINEERR_STRUCTURETOOSMALL | 0x8000004D

LINEERR_NOMEM 0x80000044

LINEERR_UNINITIALIZED 0x80000050

Reservedl (4 bytes): An unsigned 32-bit integer. MUST be set to zero when sent and MUST be
ignored on receipt.

dwRequestID (4 bytes): An unsigned 32-bit integer. The identifier of the asynchronous request.

Value Meaning

0x00000000 The server MUST generate a unique positive request ID to return as the
Ack_ReturnValue.

0x00000001 — The server MUST use this value instead of generating a unique positive request

OX7FFFFFFF ID.

IpContext (4 bytes): An unsigned 32-bit integer. The opaque, client-specified value that is used by
the client upon request completion; MUST be returned by the server in the request completion
packet.

hLine (4 bytes): An HLINE. The handle to the open line device. This field MUST have been obtained
by sending the Open packet.

155/ 610

[MS-TRP-Diff] - v20210625

Telephony Remote Protocol

Copyright © 2021 Microsoft Corporation
Release: June 25, 2021

dwAddressID (4 bytes): An unsigned 32-bit integer. The address on the open line device whose
agent status is to be queried. An address identifier is permanently associated with an address; the
identifier remains constant across operating system upgrades. A valid value of dwAddressID is in
the range 0 to dwNumAddresses - 1. The client obtains dwNumAddresses from the LINEDEVCAPS
obtained by sending a GetDevCaps packet to the remote server.

IpAgentActivityListContext (4 bytes): An unsigned 32-bit integer. The opaque, client-specified
value that is used by the client upon request completion; MUST be returned by the server in the
request completion packet.

IpAgentActivityList (4 bytes): An unsigned 32-bit integer. The maximum size, in bytes, of the
agent activity list data that the client will accept on successful completion of this request.

Reserved2 (4 bytes): An unsigned 32-bit integer. This field is used for padding and MUST be
ignored on receipt. It can be any value.

Reserved3 (4 bytes): An unsigned 32-bit integer. This field is used for padding and MUST be
ignored on receipt. It can be any value.

Reserved4 (4 bytes): An unsigned 32-bit integer. This field is used for padding and MUST be
ignored on receipt. It can be any value.

Reserved5 (4 bytes): An unsigned 32-bit integer. This field is used for padding and MUST be
ignored on receipt. It can be any value.

Reserved6 (4 bytes): An unsigned 32-bit integer. This field is used for padding and MUST be
ignored on receipt. It can be any value.

Reserved?7 (4 bytes): An unsigned 32-bit integer. This field is used for padding and MUST be
ignored on receipt. It can be any value.

Reserved8 (4 bytes): An unsigned 32-bit integer. This field is used for padding and MUST be
ignored on receipt. It can be any value.

2.2.4.1.3.23 GetAgentCaps

The GetAgentCaps packet is transmitted from a TAPI client to a TAPI server in a remote procedure
call. Sending this packet obtains the agent-related capabilities that are supported on the specified line
device. If a specific agent is named, the capabilities include a listing of ACD groups into which the
agent is permitted to log in.

—
N
w

0[{1(2|3|4|5|6|7|8|9(0(1|2[3|4|5|/6|7|8|9|0|1|2|3|4|5|6[7(8]9|0]|1

Reqg_Func

Reserved1

dwRequestID

IpContext

hLineApp

dwDevicelD

dwAddressID

156 / 610

[MS-TRP-Diff] - v20210625

Telephony Remote Protocol

Copyright © 2021 Microsoft Corporation
Release: June 25, 2021

dwAppAPIVersion

IpAgentCapsContext

IpAgentCapsSize

Reserved2

Reserved3

Reserved4

Reserved5

Reserved6

Req_Func (4 bytes): An unsigned 32-bit integer. The identifier of the function that will be invoked

on the remote server. This value MUST be set to 25.

Return Values

On completion of ClientRequest, this field contains the result of the encapsulated telephony
request. A nonzero request ID value indicates that the request is in progress and will complete

asynchronously and a LINEERR_Constants value indicates synchronous failure.

MUST return a positive request identifier if the asynchronous operation starts; otherwise, this

function MUST return one of these negative error values:

Name Value

LINEERR_BADDEVICEID 0x80000002
LINEERR_INCOMPATIBLEAPIVERSION | 0x8000000C
LINEERR_INVALADDRESSID 0x80000011
LINEERR_INVALAPPHANDLE 0x80000014
LINEERR_INVALPOINTER 0x80000035
LINEERR_NODEVICE 0x80000042
LINEERR_NODRIVER 0x80000043
LINEERR_NOMEM 0x80000044
LINEERR_OPERATIONFAILED 0x80000048
LINEERR_OPERATIONUNAVAIL 0x80000049
LINEERR_RESOURCEUNAVAIL 0x8000004B
LINEERR_STRUCTURETOOSMALL 0x8000004D
LINEERR_UNINITIALIZED 0x80000050

Reservedl (4 bytes): An unsigned 32-bit integer. MUST be set to zero when sent and MUST be

ignored on receipt.

[MS-TRP-Diff] - v20210625

Telephony Remote Protocol

Copyright © 2021 Microsoft Corporation
Release: June 25, 2021

157 /610

dwRequestID (4 bytes): An unsigned 32-bit integer. The identifier of the asynchronous request.

Value Meaning

0x00000000 The server MUST generate a unique positive request ID to return as the
Ack_ReturnValue.

0x00000001 — The server MUST use this value instead of generating a unique positive request ID.

O0x7FFFFFFF

IpContext (4 bytes): An unsigned 32-bit integer. The opaque, client-specified value that is used by
the client upon request completion; MUST be returned by the server in the request completion
packet.

hLineApp (4 bytes): An HLINEAPP. The handle to the registration of the application with TAPI. This
field MUST have been obtained by sending the Initialize packet.

dwDevicelID (4 bytes): An unsigned 32-bit integer. The line device that contains the address to be
queried.

dwAddressID (4 bytes): An unsigned 32-bit integer. The address on the specified line device whose
capabilities are to be queried. An address identifier is permanently associated with an address; the
identifier remains constant across operating system upgrades. A valid value of dwAddressID is in
the range 0 to dwNumAddresses - 1. The client obtains dwNumAddresses from the LINEDEVCAPS
obtained by sending a GetDevCaps packet to the remote server.

dwAppAPIVersion (4 bytes): An unsigned 32-bit integer. The highest TAPI version that is
supported by the application. This SHOULD not be the value that is negotiated by using
NegotiateAPIVersion on the device being queried.

IpAgentCapsContext (4 bytes): An unsigned 32-bit integer. The opaque, client-specified value that
is used by the client upon request completion; MUST be returned by the server in the request
completion packet.

IpAgentCapsSize (4 bytes): An unsigned 32-bit integer. The maximum size, in bytes, of agent
capabilities data that the client accepts on successful completion of this request.

Reserved?2 (4 bytes): An unsigned 32-bit integer. This field is used for padding and MUST be
ignored on receipt. It can be any value.

Reserved3 (4 bytes): An unsigned 32-bit integer. This field is used for padding and MUST be
ignored on receipt. It can be any value.

Reserved4 (4 bytes): An unsigned 32-bit integer. This field is used for padding and MUST be
ignored on receipt. It can be any value.

Reserved5 (4 bytes): An unsigned 32-bit integer. This field is used for padding and MUST be
ignored on receipt. It can be any value.

Reserved6 (4 bytes): An unsigned 32-bit integer. This field is used for padding and MUST be
ignored on receipt. It can be any value.

2.2.4.1.3.24 GetAgentGrouplList

The GetAgentGrouplList packet is transmitted from a TAPI client to a TAPI server in a remote
procedure call. Sending this packet obtains the identities of agent groups (a combination of queue,
supervisor, skill level, and so on) into which the agent that is currently logged on to the workstation is
permitted to log on to the automatic call distributor.

158 /610

[MS-TRP-Diff] - v20210625

Telephony Remote Protocol

Copyright © 2021 Microsoft Corporation
Release: June 25, 2021

2|3|4|5|6|7|8]|9

Reqg_Func

Reserved1

dwRequestID

IpContext

hLine

dwAddressID

IpAgentGroupListContext

IpAgentGrouplListSize

Reserved2

Reserved3

Reserved4

Reserved5

Reserved6

Reserved?

Reserved8

Req_Func (4 bytes): An unsigned 32-bit integer. The identifier of the function that will be invoked
on the remote server. This value MUST be set to 26.

Return Values

On completion of ClientRequest, this field contains the result of the encapsulated telephony
request. A nonzero request ID value indicates that the request is in progress and will complete

asynchronously and a LINEERR_Constants value indicates synchronous failure.

MUST return a positive request identifier if the asynchronous operation starts; otherwise, this

function MUST return one of these negative error values:

Name Value

LINEERR_INVALADDRESSID 0x80000011
LINEERR_INVALAGENTID 0x80000057
LINEERR_INVALLINEHANDLE 0x8000002B
LINEERR_INVALPOINTER 0x80000035

[MS-TRP-Diff] - v20210625

Telephony Remote Protocol

Copyright © 2021 Microsoft Corporation
Release: June 25, 2021

159 /610

Name Value

LINEERR_NOMEM 0x80000044

LINEERR_OPERATIONFAILED 0x80000048

LINEERR_OPERATIONUNAVAIL 0x80000049

LINEERR_RESOURCEUNAVAIL 0x8000004B

LINEERR_STRUCTURETOOSMALL | 0x8000004D

LINEERR_UNINITIALIZED 0x80000050

Reservedl (4 bytes): An unsigned 32-bit integer. MUST be set to zero when sent and MUST be
ignored on receipt.

dwRequestID (4 bytes): An unsigned 32-bit integer. The identifier of the asynchronous request.

Value Meaning

0x00000000 The server MUST generate a unique positive request ID to return as the
Ack_ReturnValue.

0x00000001 — The server MUST use this value instead of generating a unique positive request

Ox7FFFFFFF ID.

IpContext (4 bytes): An unsigned 32-bit integer. The opaque, client-specified value that is used by
the client upon request completion; MUST be returned by the server in the request completion
packet.

hLine (4 bytes): An HLINE. The handle to the open line device. This field MUST have been obtained
by sending the Open packet.

dwAddressID (4 bytes): An unsigned 32-bit integer. The address on the open line device whose
agent status is to be queried. A valid value of dwAddressID is in the range 0 to dwNumAddresses
-1. The client obtains dwNumAddresses from the LINEDEVCAPS obtained by sending a
GetDevCaps packet to the remote server.

IpAgentGroupListContext (4 bytes): An unsigned 32-bit integer. The opaque, client-specified value
that is used by the client upon request completion; MUST be returned by the server in the request
completion packet.

IpAgentGrouplistSize (4 bytes): An unsigned 32-bit integer. The maximum size, in bytes, of the
agent group list data that the client will accept on successful completion of this request.

Reserved?2 (4 bytes): An unsigned 32-bit integer. This field is used for padding and MUST be
ignored on receipt. It can be any value.

Reserved3 (4 bytes): An unsigned 32-bit integer. This field is used for padding and MUST be
ignored on receipt. It can be any value.

Reserved4 (4 bytes): An unsigned 32-bit integer. This field is used for padding and MUST be
ignored on receipt. It can be any value.

Reserved5 (4 bytes): An unsigned 32-bit integer. This field is used for padding and MUST be
ignored on receipt. It can be any value.

Reserved6 (4 bytes): An unsigned 32-bit integer. This field is used for padding and MUST be
ignored on receipt. It can be any value.

160/ 610

[MS-TRP-Diff] - v20210625

Telephony Remote Protocol

Copyright © 2021 Microsoft Corporation
Release: June 25, 2021

Reserved? (4 bytes): An unsigned 32-bit integer. This field is used for padding and MUST be

ignored on receipt. It can be any value.

Reserved8 (4 bytes): An unsigned 32-bit integer. This field is used for padding and MUST be

ignored on receipt. It can be any value.

2.2.4.1.3.25 GetAgentlInfo

The GetAgentInfo packet is transmitted from a TAPI client to a TAPI server in a remote procedure call.

Sending this packet returns a packet that holds the ACD information that is associated with a

particular agent handle. It generates a LINE_PROXYREQUEST packet to be sent to a registered proxy

function handler, referencing a LINEPROXYREQUEST packet of type

LINEPROXYREQUEST_GETAGENTINFO.

=

0(1(2|3|4|5|6|7|8(9(0(1(2|3|4

5

6

7

Reqg_Func

Reserved1

dwRequestID

IpContext

hLine

hAgent

IpAgentInfoContext

IpAgentInfo

Reserved2

Reserved3

Reserved4

Reserved5

Reserved6

Reserved7

Reserved8

Req_Func (4 bytes): An unsigned 32-bit integer. The identifier of the function that will be invoked

on the remote server. This value MUST be set to 148.

Return Values

[MS-TRP-Diff] - v20210625

Telephony Remote Protocol

Copyright © 2021 Microsoft Corporation
Release: June 25, 2021

161 /610

On completion of ClientRequest, this field contains the result of the encapsulated telephony
request. A nonzero request ID value indicates that the request is in progress and will complete
asynchronously, and a LINEERR_Constants value indicates synchronous failure.

MUST return a request identifier if the asynchronous operation starts; otherwise, the function
MUST return one of the following error values:

Name Value

LINEERR_INVALLINEHANDLE 0x8000002B

LINEERR_INVALPARAM 0x80000032

LINEERR_NOMEM 0x80000044

LINEERR_OPERATIONFAILED 0x80000048

LINEERR_OPERATIONUNAVAIL | 0x80000049

LINEERR_RESOURCEUNAVAIL | 0x8000004B

LINEERR_UNINITIALIZED 0x80000050

Reservedl (4 bytes): An unsigned 32-bit integer. MUST be set to zero when sent and MUST be
ignored on receipt.

dwRequestID (4 bytes): An unsigned 32-bit integer. The identifier of the asynchronous request.

IpContext (4 bytes): An unsigned 32-bit integer. The opaque, client-specified value that is used by
the client upon request completion; MUST be returned by the server in the request completion
packet.

hLine (4 bytes): An HLINE. The handle to the open line device. This field MUST have been obtained
by sending the Open packet.

hAgent (4 bytes): An unsigned 32-bit integer. The identifier of the agent whose information is to be
retrieved. This field MUST have been obtained by sending the CreateAgent packet.

IpAgentInfoContext (4 bytes): An unsigned 32-bit integer. The opaque, client-specified value that
is used by the client upon request completion; MUST be returned by the server in the request
completion packet.

IpAgentInfo (4 bytes): An unsigned 32-bit integer. The maximum size, in bytes, of the agent
information data that the client will accept on successful completion of this request.

Reserved2 (4 bytes): An unsigned 32-bit integer. This field is used for padding and MUST be
ignored on receipt. It can be any value.

Reserved3 (4 bytes): An unsigned 32-bit integer. This field is used for padding and MUST be
ignored on receipt. It can be any value.

Reserved4 (4 bytes): An unsigned 32-bit integer. This field is used for padding and MUST be
ignored on receipt. It can be any value.

Reserved5 (4 bytes): An unsigned 32-bit integer. This field is used for padding and MUST be
ignored on receipt. It can be any value.

Reserved6 (4 bytes): An unsigned 32-bit integer. This field is used for padding and MUST be
ignored on receipt. It can be any value.

162 / 610

[MS-TRP-Diff] - v20210625

Telephony Remote Protocol

Copyright © 2021 Microsoft Corporation
Release: June 25, 2021

Reserved? (4 bytes): An unsigned 32-bit integer. This field is used for padding and MUST be

ignored on receipt. It can be an

y value.

Reserved8 (4 bytes): An unsigned 32-bit integer. This field is used for padding and MUST be

ignored on receipt. It can be an

y value.

2.2.4.1.3.26 GetAgentSessionInfo

The GetAgentSessionInfo packet is transmitted from a TAPI client to a TAPI server in a remote
procedure call. Sending this packet returns a packet that holds the ACD information that is associated
with a particular agent session handle. It generates a LINE_ PROXYREQUEST packet to be sent to a

registered proxy function handler, referencing a LINEPROXYREQUEST packet of type
LINEPROXYREQUEST_GETAGENTSESSIONINFO.

=

2(3|4

5

6

7

Reqg_Func

Reserved1

dwRequestID

IpContext

hLine

hAgentSession

IpAgentSessionInfoContext

IpAgentSessionInfo

Reserved2

Reserved3

Reserved4

Reserved5

Reserved6

Reserved7

Reserved8

Req_Func (4 bytes): An unsigned 32-bit integer. The identifier of the function that will be invoked

on the remote server. This value MUST be set to 149.

Return Values

[MS-TRP-Diff] - v20210625

Telephony Remote Protocol

Copyright © 2021 Microsoft Corporation
Release: June 25, 2021

163/ 610

On completion of ClientRequest, this field contains the result of the encapsulated telephony
request. A nonzero request ID value indicates that the request is in progress and will complete
asynchronously and a LINEERR_Constants value indicates synchronous failure.

Returns a request identifier if the asynchronous operation starts; otherwise, the function MUST
return one of the following error values:

Name Value

LINEERR_INVALLINEHANDLE 0x8000002B

LINEERR_INVALPARAM 0x80000032

LINEERR_NOMEM 0x80000044

LINEERR_OPERATIONFAILED 0x80000048

LINEERR_OPERATIONUNAVAIL | 0x80000049

LINEERR_RESOURCEUNAVAIL | 0x8000004B

LINEERR_UNINITIALIZED 0x80000050

Reservedl (4 bytes): An unsigned 32-bit integer. MUST be set to zero when sent and MUST be
ignored on receipt.

dwRequestID (4 bytes): An unsigned 32-bit integer. The identifier of the asynchronous request.

Value Meaning

0x00000000 The server MUST generate a unique positive request ID to return as the
Ack_ReturnValue.

0x00000001 — The server MUST use this value instead of generating a unique positive request

Ox7FFFFFFF ID.

IpContext (4 bytes): An unsigned 32-bit integer. The opaque, client-specified value that is used by
the client upon request completion; MUST be returned by the server in the request completion
packet.

hLine (4 bytes): An HLINE. The handle to the line device. This field MUST have been obtained by
sending the Open packet.

hAgentSession (4 bytes): An unsigned 32-bit integer. The identifier of the agent session whose
information is to be retrieved. This field MUST have been obtained by sending the
CreateAgentSession packet.

IpAgentSessionInfoContext (4 bytes): An unsigned 32-bit integer. The opaque, client-specified
value that is used by the client upon request completion; MUST be returned by the server in the
request completion packet.

IpAgentSessionInfo (4 bytes): An unsigned 32-bit integer. The maximum size, in bytes, of the
agent session information data that the client will accept on successful completion of this request.

Reserved2 (4 bytes): An unsigned 32-bit integer. This field is used for padding and MUST be
ignored on receipt. It can be any value.

Reserved3 (4 bytes): An unsigned 32-bit integer. This field is used for padding and MUST be
ignored on receipt. It can be any value.

164 / 610

[MS-TRP-Diff] - v20210625

Telephony Remote Protocol

Copyright © 2021 Microsoft Corporation
Release: June 25, 2021

Reserved4 (4 bytes): An unsigned 32-bit integer. This field is used for padding and MUST be

ignored on receipt. It can be any value.

Reserved5 (4 bytes): An unsigned 32-bit integer. This field is used for padding and MUST be

ignored on receipt. It can be any value.

Reserved6 (4 bytes): An unsigned 32-bit integer. This field is used for padding and MUST be

ignored on receipt. It can be any value.

Reserved? (4 bytes): An unsigned 32-bit integer. This field is used for padding and MUST be

ignored on receipt. It can be any value.

Reserved8 (4 bytes): An unsigned 32-bit integer. This field is used for padding and MUST be

ignored on receipt. It can be any value.

2.2.4.1.3.27 GetAgentSessionlList

The GetAgentSessionList packet is transmitted from a TAPI client to a TAPI server in a remote

procedure call. Sending this packet returns a list of agent sessions that are created for the specified
agent. It generates a LINE_PROXYREQUEST packet to be sent to a registered proxy function handler,
referencing a LINEPROXYREQUEST packet of type LINEPROXYREQUEST_GETAGENTSESSIONLIST.

-
N

0({1|2|3(4|5|/6|7|8|9|0(1|2|3[4|5|6|7|8|9]|0

w

Reqg_Func

Reserved1

dwRequestID

IpContext

hLine

hAgent

IpAgentSessionListContext

IpAgentSessionList

Reserved2

Reserved3

Reserved4

Reserved5

Reserved6

Reserved7

[MS-TRP-Diff] - v20210625

Telephony Remote Protocol

Copyright © 2021 Microsoft Corporation
Release: June 25, 2021

165/ 610

Reserved8

Req_Func (4 bytes): An unsigned 32-bit integer. The identifier of the function that will be invoked
on the remote server. This value MUST be set to 150.

Return Values

On completion of ClientRequest, this field contains the result of the encapsulated telephony
request. A nonzero request ID value indicates that the request is in progress and will complete
asynchronously, and a LINEERR_Constants value indicates synchronous failure.

Returns a request identifier if the asynchronous operation starts; otherwise, the function MUST
return one of the following error values:

Name Value

LINEERR_INVALLINEHANDLE 0x8000002B

LINEERR_INVALPARAM 0x80000032

LINEERR_NOMEM 0x80000044

LINEERR_OPERATIONFAILED 0x80000048

LINEERR_OPERATIONUNAVAIL | 0x80000049

LINEERR_RESOURCEUNAVAIL | 0x8000004B

LINEERR_UNINITIALIZED 0x80000050

Reservedl (4 bytes): An unsigned 32-bit integer. MUST be set to zero when sent and MUST be
ignored on receipt.

dwRequestID (4 bytes): An unsigned 32-bit integer. The identifier of the asynchronous request.

Value Meaning

0x00000000 The server MUST generate a unique positive request ID to return as the
Ack_ReturnValue.

0x00000001 — The server MUST use this value instead of generating a unique positive

Ox7FFFFFFF request ID.

IpContext (4 bytes): An unsigned 32-bit integer. The opaque, client-specified value that is used by
the client upon request completion; MUST be returned by the server in the request completion
packet.

hLine (4 bytes): An HLINE. The handle to the open line device. This field MUST have been obtained
by sending the Open packet.

hAgent (4 bytes): An unsigned 32-bit integer. The identifier of the agent whose information is to be
retrieved. This field MUST have been obtained by sending the CreateAgent packet.

IpAgentSessionListContext (4 bytes): An unsigned 32-bit integer. The opaque, client-specified
value that is used by the client upon request completion; MUST be returned by the server in the
request completion packet.

IpAgentSessionList (4 bytes): An unsigned 32-bit integer. The maximum size, in bytes, of the
agent session list data that the client will accept on successful completion of this request.

166 / 610

[MS-TRP-Diff] - v20210625

Telephony Remote Protocol

Copyright © 2021 Microsoft Corporation
Release: June 25, 2021

Reserved2 (4 bytes): An unsigned 32-bit integer.
ignored on receipt. It can be any value.

Reserved3 (4 bytes): An unsigned 32-bit integer.
ignored on receipt. It can be any value.

Reserved4 (4 bytes): An unsigned 32-bit integer.
ignored on receipt. It can be any value.

Reserved5 (4 bytes): An unsigned 32-bit integer.
ignored on receipt. It can be any value.

Reserved6 (4 bytes): An unsigned 32-bit integer.
ignored on receipt. It can be any value.

Reserved? (4 bytes): An unsigned 32-bit integer.
ignored on receipt. It can be any value.

Reserved8 (4 bytes): An unsigned 32-bit integer.
ignored on receipt. It can be any value.

2.2.4.1.3.28 GetAgentStatus

This field is

This field is

This field is

This field is

This field is

This field is

This field is

used for padding and MUST be

used for padding and MUST be

used for padding and MUST be

used for padding and MUST be

used for padding and MUST be

used for padding and MUST be

used for padding and MUST be

The GetAgentStatus packet is transmitted from a TAPI client to a TAPI server in a remote procedure
call. Sending this packet obtains the agent-related status on the specified address.

e

0(1|2|3(4|5|/6(7(8|9|0(1|2|3|4|5|6|7(8|9|0]|1

Reqg_Func

Reserved1

dwRequestID

IpContext

hLine

dwAddressID

IpAgentStatusContext

IpAgentStatusSize

Reserved2

Reserved3

Reserved4

Reserved5

Reserved6

[MS-TRP-Diff] - v20210625

Telephony Remote Protocol

Copyright © 2021 Microsoft Corporation
Release: June 25, 2021

167/ 610

Reserved?7

Reserved8

Req_Func (4 bytes): An unsigned 32-bit integer. The identifier of the function that will be invoked
on the remote server. This value MUST be set to 27.

Return Values

On completion of ClientRequest, this field contains the result of the encapsulated telephony
request. A nonzero request ID value indicates that the request is in progress and will complete
asynchronously, and a LINEERR_Constants value indicates synchronous failure.

MUST return a positive request identifier if the asynchronous operation starts; otherwise, MUST
return one of these negative error values:

Name Value

LINEERR_INVALADDRESSID 0x80000011
LINEERR_INVALLINEHANDLE 0x8000002B
LINEERR_INVALPOINTER 0x80000035
LINEERR_NOMEM 0x80000044
LINEERR_OPERATIONFAILED 0x80000048

LINEERR_OPERATIONUNAVAIL 0x80000049

LINEERR_RESOURCEUNAVAIL 0x8000004B

LINEERR_STRUCTURETOOSMALL | 0x8000004D

LINEERR_UNINITIALIZED 0x80000050

Reservedl (4 bytes): An unsigned 32-bit integer. MUST be set to zero when sent and MUST be
ignored on receipt.

dwRequestID (4 bytes): An unsigned 32-bit integer. The identifier of the asynchronous request.

Value Meaning

0x00000000 The server MUST generate a unique positive request ID to return as the
Ack_ReturnValue.

0x00000001 — The server MUST use this value instead of generating a unique positive

Ox7FFFFFFF request ID.

IpContext (4 bytes): An unsigned 32-bit integer. The opaque, client-specified value that is used by
the client upon request completion; MUST be returned by the server in the request completion
packet.

hLine (4 bytes): An HLINE. The handle to the open line device. This field MUST have been obtained
by sending the Open packet.

dwAddressID (4 bytes): An unsigned 32-bit integer. The address on the open line device whose
agent status is to be queried. An address identifier is permanently associated with an address; the
identifier remains constant across operating system upgrades. A valid value of dwAddressID is in

168 /610

[MS-TRP-Diff] - v20210625

Telephony Remote Protocol

Copyright © 2021 Microsoft Corporation
Release: June 25, 2021

the range 0 to dwNumAddresses -1. The client

obtains dwNumAddresses from the LINEDEVCAPS

obtained by sending a GetDevCaps packet to the remote server.

IpAgentStatusContext (4 bytes): An unsigned 32-bit integer. The opaque, client-specified value
that is used by the client upon request completion; MUST be returned by the server in the request

completion packet.

IpAgentStatusSize (4 bytes): An unsigned 32-bit integer. The maximum size, in bytes, of the agent
status data that the client accepts on successful completion of this request.

Reserved2 (4 bytes): An unsigned 32-bit integer.

ignored on receipt. It can be any value.

Reserved3 (4 bytes): An unsigned 32-bit integer.

ignored on receipt. It can be any value.

Reserved4 (4 bytes): An unsigned 32-bit integer.

ignored on receipt. It can be any value.

Reserved5 (4 bytes): An unsigned 32-bit integer.

ignored on receipt. It can be any value.

Reserved6 (4 bytes): An unsigned 32-bit integer.

ignored on receipt. It can be any value.

Reserved7 (4 bytes): An unsigned 32-bit integer.

ignored on receipt. It can be any value.

Reserved8 (4 bytes): An unsigned 32-bit integer.

ignored on receipt. It can be any value.

2.2.4.1.3.29 GetCallHubTracking

The GetCallHubTracking packet is transmitted from

This field is used for padding and MUST be

This field is used for padding and MUST be

This field is used for padding and MUST be

This field is used for padding and MUST be

This field is used for padding and MUST be

This field is used for padding and MUST be

This field is used for padding and MUST be

a TAPI client to a TAPI server in a remote

procedure call. Sending this packet returns the current state of call-hub tracking for the service
provider. This function requires TAPI 3.0 or 3.1 version negotiation.

0123456789(1)123456789312345678981
Reqg_Func
Reservedl
hLine

IpTrackingInfo

Reserved2

Reserved3

Reserved4

Reserved5

[MS-TRP-Diff] - v20210625

Telephony Remote Protocol

Copyright © 2021 Microsoft Corporation
Release: June 25, 2021

169/ 610

Reserved6

Reserved7

Reserved8

Reserved9

Reserved10

Reserved11

Reserved12

VarData (20 bytes, optional)

Req_Func (4 bytes): An unsigned 32-bit integer. The identifier of the function that will be invoked
on the remote server. This value MUST be set to 140.

Return Values

On completion of ClientRequest, this field contains the result of the encapsulated telephony
request. A value of 0 indicates success, and a LINEERR_Constants value indicates failure. The
remote server MUST complete this call synchronously.

MUST return zero if the function succeeds or an error number if an error occurs. Common return
values are as follows:

Name Value

LINEERR_INVALCALLHANDLE 0x80000018

LINEERR_NOMEM 0x80000044

LINEERR_OPERATIONFAILED 0x80000048

LINEERR_OPERATIONUNAVAIL | 0x80000049

LINEERR_RESOURCEUNAVAIL | 0x8000004B

Reservedl (4 bytes): An unsigned 32-bit integer. MUST be set to zero when sent and MUST be
ignored on receipt.

hLine (4 bytes): An HLINE. The handle to the open line device. This field MUST have been obtained
by sending the Open packet.

IpTrackingInfo (4 bytes): An unsigned 32-bit integer. The size, in bytes, of a
LINECALLHUBTRACKINGINFO packet that is filled with call-related information upon successful
completion of the request.

On successful completion, this field contains the offset, in bytes, of the packet in the VarData field.

170/ 610

[MS-TRP-Diff] - v20210625

Telephony Remote Protocol

Copyright © 2021 Microsoft Corporation
Release: June 25, 2021

Reserved2 (4 bytes): An unsigned 32-bit integer.

ignored on receipt. It can be any value.

Reserved3 (4 bytes): An unsigned 32-bit integer.

ignored on receipt. It can be any value.

Reserved4 (4 bytes): An unsigned 32-bit integer.

ignored on receipt. It can be any value.

Reserved5 (4 bytes): An unsigned 32-bit integer.

ignored on receipt. It can be any value.

Reserved6 (4 bytes): An unsigned 32-bit integer.

ignored on receipt. It can be any value.

Reserved? (4 bytes): An unsigned 32-bit integer.

ignored on receipt. It can be any value.

Reserved8 (4 bytes): An unsigned 32-bit integer.

ignored on receipt. It can be any value.

Reserved9 (4 bytes): An unsigned 32-bit integer.

ignored on receipt. It can be any value.

This field is used for padding and MUST be

This field is used for padding and MUST be

This field is used for padding and MUST be

This field is used for padding and MUST be

This field is used for padding and MUST be

This field is used for padding and MUST be

This field is used for padding and MUST be

This field is used for padding and MUST be

Reserved10 (4 bytes): An unsigned 32-bit integer. This field is used for padding and MUST be

ignored on receipt. It can be any value.

Reservedl1 (4 bytes): An unsigned 32-bit integer. This field is used for padding and MUST be

ignored on receipt. It can be any value.

Reserved12 (4 bytes): An unsigned 32-bit integer. This field is used for padding and MUST be

ignored on receipt. It can be any value.

VarData (20 bytes): Present on successful completion of the request. Contains a

LINECALLHUBTRACKINGINFO packet.

The contents of this field MUST be DWORD-aligned,

2.2.4.1.3.30 GetCallIDs

as specified in [MS-DTYP] section 2.2.9.

The GetCallIDs packet is transmitted from a TAPI client to a TAPI server in a remote procedure call.
Sending this packet returns the call identifiers for the service provider. This function requires TAPI 3.0

or 3.1 version negotiation.

e

4156

7

Req_Func

Reserved1

hCall

IpdwAddressID

IpdwCallID

IpdwRelatedCallID

[MS-TRP-Diff] - v20210625

Telephony Remote Protocol

Copyright © 2021 Microsoft Corporation
Release: June 25, 2021

171/ 610

Reserved2

Reserved3

Reserved4

Reserved5

Reserved6

Reserved7

Reserved8

Reserved9

Reserved10

Req_Func (4 bytes): The identifier of the function that will be invoked on the remote server. This
value MUST be set to 141.

Return Values

On completion of ClientRequest, this field contains the result of the encapsulated telephony
request. A value of 0 indicates success, and a LINEERR_Constants value indicates failure. The
remote server MUST complete this call synchronously.

MUST return zero if the function succeeds, or an error number if an error occurs. Common return
values are as follows:

Name Value

LINEERR_INVALCALLHANDLE 0x80000018

LINEERR_NOMEM 0x80000044

LINEERR_OPERATIONFAILED 0x80000048

LINEERR_OPERATIONUNAVAIL | 0x80000049

LINEERR_RESOURCEUNAVAIL | 0x8000004B

Reservedl (4 bytes): An unsigned 32-bit integer. MUST be set to zero when sent and MUST be
ignored on receipt.

hCall (4 bytes): An HCALL. The handle to the call whose identifier is needed. One way of obtaining a
valid hCall is by sending the MakeCall packet.

IpdwAddressID (4 bytes): An unsigned 32-bit integer. Set to TAPI_NO_DATA (OxFFFFFFFF). Upon
successful completion of the request, this field contains the address identifier of the call.

IpdwCallID (4 bytes): An unsigned 32-bit integer. Set to TAPI_NO_DATA (OxFFFFFFFF). Upon
successful completion of the request, this field contains the call identifier.

IpdwRelatedCallID (4 bytes): An unsigned 32-bit integer. Set to TAPI_NO_DATA (OxFFFFFFFF).
Upon successful completion of the request, this field contains the identifier of a related call.

172 /610

[MS-TRP-Diff] - v20210625

Telephony Remote Protocol

Copyright © 2021 Microsoft Corporation
Release: June 25, 2021

Reserved2 (4 bytes): An unsigned 32-bit integer.

ignored on receipt. It can be any value.

Reserved3 (4 bytes): An unsigned 32-bit integer.

ignored on receipt. It can be any value.

Reserved4 (4 bytes): An unsigned 32-bit integer.

ignored on receipt. It can be any value.

Reserved5 (4 bytes): An unsigned 32-bit integer.

ignored on receipt. It can be any value.

Reserved6 (4 bytes): An unsigned 32-bit integer.

ignored on receipt. It can be any value.

Reserved? (4 bytes): An unsigned 32-bit integer.

ignored on receipt. It can be any value.

Reserved8 (4 bytes): An unsigned 32-bit integer.

ignored on receipt. It can be any value.

Reserved9 (4 bytes): An unsigned 32-bit integer.

ignored on receipt. It can be any value.

This field is used for padding and MUST be

This field is used for padding and MUST be

This field is used for padding and MUST be

This field is used for padding and MUST be

This field is used for padding and MUST be

This field is used for padding and MUST be

This field is used for padding and MUST be

This field is used for padding and MUST be

Reserved10 (4 bytes): An unsigned 32-bit integer. This field is used for padding and MUST be

ignored on receipt. It can be any value.

2.2.4.1.3.31 GetCallInfo

The GetCallInfo packet is transmitted from a TAPI client to a TAPI server in a remote procedure call.
Sending this packet returns detailed information about the specified call.

=

415|6

N
w

7

Reqg_Func

Reserved1

hCall

IpCallIlnfo

Reserved2

Reserved3

Reserved4

Reserved5

Reserved6

Reserved?7

[MS-TRP-Diff] - v20210625

Telephony Remote Protocol

Copyright © 2021 Microsoft Corporation
Release: June 25, 2021

173 /610

Reserved8

Reserved9

Reserved10

Reserved11

Reserved12

VarData (variable)

Req_Func (4 bytes): An unsigned 32-bit integer. The identifier of the function that will be invoked
on the remote server. This value MUST be set to 30.

Return Values

On completion of ClientRequest, this field contains the result of the encapsulated telephony
request. A value of 0 indicates success, and a LINEERR_Constants value indicates failure. The
remote server MUST complete this call synchronously.

MUST return zero if the function succeeds or an error number if an error occurs. Common return
values are as follows:

Name Value

LINEERR_INVALCALLHANDLE 0x80000018

LINEERR_OPERATIONFAILED 0x80000048

LINEERR_NOMEM 0x80000044

LINEERR_RESOURCEUNAVAIL | 0x8000004B

LINEERR_OPERATIONUNAVAIL | 0x80000049

Reservedl (4 bytes): An unsigned 32-bit integer. MUST be set to zero when sent and MUST be
ignored on receipt.

hCall (4 bytes): An HCALL. The handle to the call whose call information is to be retrieved. The call
state of hCall can be any state. One way of obtaining a valid hCall is by sending the MakeCall
packet.

IpCallInfo (4 bytes): An unsigned 32-bit integer. The size, in bytes, of a LINECALLINFO packet that
is filled with call-related information upon successful completion of the request.

On successful completion, this field contains the offset, in bytes, of the packet in the VarData field.

Reserved?2 (4 bytes): An unsigned 32-bit integer. This field is used for padding and MUST be
ignored on receipt. It can be any value.

Reserved3 (4 bytes): An unsigned 32-bit integer. This field is used for padding and MUST be
ignored on receipt. It can be any value.

174 / 610

[MS-TRP-Diff] - v20210625

Telephony Remote Protocol

Copyright © 2021 Microsoft Corporation
Release: June 25, 2021

Reserved4 (4 bytes): An unsigned 32-bit integer. This field is used for padding and MUST be
ignored on receipt. It can be any value.

Reserved5 (4 bytes): An unsigned 32-bit integer. This field is used for padding and MUST be
ignored on receipt. It can be any value.

Reserved6 (4 bytes): An unsigned 32-bit integer. This field is used for padding and MUST be
ignored on receipt. It can be any value.

Reserved? (4 bytes): An unsigned 32-bit integer. This field is used for padding and MUST be
ignored on receipt. It can be any value.

Reserved8 (4 bytes): An unsigned 32-bit integer. This field is used for padding and MUST be
ignored on receipt. It can be any value.

Reserved9 (4 bytes): An unsigned 32-bit integer. This field is used for padding and MUST be
ignored on receipt. It can be any value.

Reserved10 (4 bytes): An unsigned 32-bit integer. This field is used for padding and MUST be
ignored on receipt. It can be any value.

Reserved11 (4 bytes): An unsigned 32-bit integer. This field is used for padding and MUST be
ignored on receipt. It can be any value.

Reservedl12 (4 bytes): An unsigned 32-bit integer. This field is used for padding and MUST be
ignored on receipt. It can be any value.

VarData (variable): Present on successful completion of the request. Contains a LINECALLINFO
packet.

The contents of this field MUST be DWORD-aligned, as specified in [MS-DTYP] section 2.2.9.

2.2.4.1.3.32 GetCallStatus

The GetCallStatus packet is transmitted from a TAPI client to a TAPI server in a remote procedure call.
Sending this packet returns the current status of the specified call.

0[{1(2|3|4|5|6|7|8|9(0(1|2[3|4|5|/6|7|8|9|0|1|2|3|4|5(6[7(8]|9|0]1

Reqg_Func

Reserved1

hCall

IpCallStatus

Reserved2

Reserved3

Reserved4

Reserved5

175/ 610

[MS-TRP-Diff] - v20210625

Telephony Remote Protocol

Copyright © 2021 Microsoft Corporation
Release: June 25, 2021

Reserved6

Reserved7

Reserved8

Reserved9

Reserved10

Reserved11

Reserved12

VarData (variable)

Req_Func (4 bytes): An unsigned 32-bit integer. The identifier of the function that will be invoked
on the remote server. This value MUST be set to 31.

Return Values

On completion of ClientRequest, this field contains the result of the encapsulated telephony
request. A value of 0 indicates success, and a LINEERR_Constants value indicates failure. The
remote server MUST complete this call synchronously.

MUST return zero if the function succeeds or an error number if an error occurs. Common return
values are as follows:

Name Value

LINEERR_INVALCALLHANDLE 0x80000018

LINEERR_OPERATIONFAILED 0x80000048

LINEERR_NOMEM 0x80000044

LINEERR_RESOURCEUNAVAIL | 0x8000004B

LINEERR_OPERATIONUNAVAIL | 0x80000049

Reservedl (4 bytes): An unsigned 32-bit integer. MUST be set to zero when sent and MUST be
ignored on receipt.

hCall (4 bytes): An HCALL. The handle to the call to query for its status. The call state of hCall can
be any state. One way of obtaining a valid hCall is by sending the MakeCall packet.

IpCallStatus (4 bytes): An unsigned 32-bit integer. The size, in bytes, of a LINECALLSTATUS packet
that is filled with call status information upon successful completion of the request.

On successful completion, this field contains the offset, in bytes, of the packet in the VarData field.

Reserved?2 (4 bytes): An unsigned 32-bit integer. This field is used for padding and MUST be
ignored on receipt. It can be any value.

176 / 610

[MS-TRP-Diff] - v20210625

Telephony Remote Protocol

Copyright © 2021 Microsoft Corporation
Release: June 25, 2021

Reserved3 (4 bytes): An unsigned 32-bit integer. This field is used for padding and MUST be
ignored on receipt. It can be any value.

Reserved4 (4 bytes): An unsigned 32-bit integer. This field is used for padding and MUST be
ignored on receipt. It can be any value.

Reserved5 (4 bytes): An unsigned 32-bit integer. This field is used for padding and MUST be
ignored on receipt. It can be any value.

Reserved6 (4 bytes): An unsigned 32-bit integer. This field is used for padding and MUST be
ignored on receipt. It can be any value.

Reserved?7 (4 bytes): An unsigned 32-bit integer. This field is used for padding and MUST be
ignored on receipt. It can be any value.

Reserved8 (4 bytes): An unsigned 32-bit integer. This field is used for padding and MUST be
ignored on receipt. It can be any value.

Reserved9 (4 bytes): An unsigned 32-bit integer. This field is used for padding and MUST be
ignored on receipt. It can be any value.

Reserved10 (4 bytes): An unsigned 32-bit integer. This field is used for padding and MUST be
ignored on receipt. It can be any value.

Reservedl1 (4 bytes): An unsigned 32-bit integer. This field is used for padding and MUST be
ignored on receipt. It can be any value.

Reservedl12 (4 bytes): An unsigned 32-bit integer. This field is used for padding and MUST be
ignored on receipt. It can be any value.

VarData (variable): Present on successful completion of the request. Contains a LINECALLSTATUS
packet.

The contents of this field MUST be DWORD-aligned, as specified in [MS-DTYP] section 2.2.9.

2.2.4.1.3.33 GetDevConfig

The GetDevConfig packet is transmitted from a TAPI client to a TAPI server in a remote procedure call.
Sending this packet MUST return a packet object, the contents of which are specific to the line (service
provider) and device class, giving the current configuration of a device that is associated one-to-one
with the line device.

-
N
w

0(1|/2|3(4|5|6|(7|8|9|0(1|2|3(4|5|6|7|8|9(0(1|2|3(4|5|6[|7|8|9|0(1

Req_Func

Reserved1

dwDevicelD

IpDeviceConfig

IpszDeviceClass

Reserved2

177/ 610

[MS-TRP-Diff] - v20210625

Telephony Remote Protocol

Copyright © 2021 Microsoft Corporation
Release: June 25, 2021

Reserved3

Reserved4

Reserved5

Reserved6

Reserved7

Reserved8

Reserved9

Reserved10

Reserved11

VarData (variable)

Req_Func (4 bytes): An unsigned 32-bit integer. The identifier of the function that will be invoked
on the remote server. This value MUST be set to 35.

Return Values

On completion of ClientRequest, this field contains the result of the encapsulated telephony
request. A value of 0 indicates success, and a LINEERR_Constants value indicates failure. The
remote server MUST complete this call synchronously.

MUST return zero if the function succeeds or an error number if an error occurs. Common return
values are as follows:

Name Value

LINEERR_INVALDEVICECLASS 0x80000023

LINEERR_NOMEM 0x80000044

LINEERR_INVALPOINTER 0x80000035

LINEERR_OPERATIONUNAVAIL 0x80000049

LINEERR_STRUCTURETOOSMALL | 0x8000004D

LINEERR_OPERATIONFAILED 0x80000048
LINEERR_NODRIVER 0x80000043
LINEERR_RESOURCEUNAVAIL 0x8000004B

Reservedl (4 bytes): An unsigned 32-bit integer. MUST be set to zero when sent and MUST be
ignored on receipt.

178 /610

[MS-TRP-Diff] - v20210625

Telephony Remote Protocol

Copyright © 2021 Microsoft Corporation
Release: June 25, 2021

dwDevicelD (4 bytes): An unsigned 32-bit integer. The line device for which the data is retrieved.
This field MUST have been obtained by sending the Initialize packet.

IpDeviceConfig (4 bytes): An unsigned 32-bit integer. The size, in bytes, of a VARSTRING packet
that contains the device configuration packet of the associated device upon successful completion
of the request.

On successful completion, this field contains the offset, in bytes, of the packet in the VarData field.

IpszDeviceClass (4 bytes): An unsigned 32-bit integer. The offset, in bytes, in the VarData field of a
null-terminated Unicode string that specifies the device class of the device whose configuration is
requested.

Reserved2 (4 bytes): An unsigned 32-bit integer. This field is used for padding and MUST be
ignored on receipt. It can be any value.

Reserved3 (4 bytes): An unsigned 32-bit integer. This field is used for padding and MUST be
ignored on receipt. It can be any value.

Reserved4 (4 bytes): An unsigned 32-bit integer. This field is used for padding and MUST be
ignored on receipt. It can be any value.

Reserved5 (4 bytes): An unsigned 32-bit integer. This field is used for padding and MUST be
ignored on receipt. It can be any value.

Reserved6 (4 bytes): An unsigned 32-bit integer. This field is used for padding and MUST be
ignored on receipt. It can be any value.

Reserved7 (4 bytes): An unsigned 32-bit integer. This field is used for padding and MUST be
ignored on receipt. It can be any value.

Reserved8 (4 bytes): An unsigned 32-bit integer. This field is used for padding and MUST be
ignored on receipt. It can be any value.

Reserved9 (4 bytes): An unsigned 32-bit integer. This field is used for padding and MUST be
ignored on receipt. It can be any value.

Reserved10 (4 bytes): An unsigned 32-bit integer. This field is used for padding and MUST be
ignored on receipt. It can be any value.

Reservedl11 (4 bytes): An unsigned 32-bit integer. This field is used for padding and MUST be
ignored on receipt. It can be any value.

VarData (variable): Contains a null-terminated Unicode string that is indicated by the
IpszDeviceClass field in the original request. On successful completion of the request, this field
contains only a VARSTRING packet that is indicated by the IpDeviceConfig field.

The contents of this field MUST be DWORD-aligned, as specified in [MS-DTYP] section 2.2.9.

2.2.4.1.3.34 GetGrouplList

The GetGrouplList packet is transmitted from a TAPI client to a TAPI server in a remote procedure call.
Sending this packet returns a list of ACD groups that are available on the ACD system. It generates a
LINE_PROXYREQUEST packet to be sent to a registered proxy function handler, referencing a
LINEPROXYREQUEST packet of type LINEPROXYREQUEST_GETGROUPLIST.

—
N
w

179/ 610

[MS-TRP-Diff] - v20210625

Telephony Remote Protocol

Copyright © 2021 Microsoft Corporation
Release: June 25, 2021

Reserved1

dwRequestID

IpContext

hLine

IpGroupListContext

IpAgentGrouplListSize

Reserved2

Reserved3

Reserved4

Reserved5

Reserved6

Reserved7

Reserved8

Reserved9

Req_Func (4 bytes): An unsigned 32-bit integer. The identifier of the function that will be invoked

on the remote server. This value MUST be set to 152.

Return Values

On completion of ClientRequest, this field contains the result of the encapsulated telephony
request. A nonzero request ID value indicates that the request is in progress and will complete

asynchronously and a LINEERR_Constants value indicates synchronous failure.

MUST return a request identifier if the asynchronous operation starts; otherwise, the function
MUST return one of the following error values:

Name Value

LINEERR_INVALLINEHANDLE 0x8000002B
LINEERR_INVALPARAM 0x80000032
LINEERR_NOMEM 0x80000044
LINEERR_OPERATIONFAILED 0x80000048
LINEERR_OPERATIONUNAVAIL | 0x80000049
LINEERR_RESOURCEUNAVAIL | 0x8000004B

[MS-TRP-Diff] - v20210625
Telephony Remote Protocol

Copyright © 2021 Microsoft Corporation

Release: June 25, 2021

180/ 610

Name Value

LINEERR_UNINITIALIZED 0x80000050

Reservedl1 (4 bytes): An unsigned 32-bit integer. MUST be set to zero when sent and MUST be
ignored on receipt.

dwRequestID (4 bytes): An unsigned 32-bit integer. The identifier of the asynchronous request.

Value Meaning

0x00000000 The server MUST generate a unique positive request ID to return as the
Ack_ReturnValue.

0x00000001 — The server MUST use this value instead of generating a unique positive

Ox7FFFFFFF request ID.

IpContext (4 bytes): An unsigned 32-bit integer. The opaque, client-specified value that is used by
the client upon request completion; MUST be returned by the server in the request completion
packet.

hLine (4 bytes): An HLINE. The handle to the open line device. This field MUST have been obtained
by sending the Open packet.

IpGroupListContext (4 bytes): An unsigned 32-bit integer. The opaque, client-specified value that is
used by the client upon request completion; MUST be returned by the server in the request
completion packet.

IpAgentGrouplListSize (4 bytes): An unsigned 32-bit integer. The maximum size, in bytes, of the
agent group list data that the client accepts on successful completion of this request.

Reserved2 (4 bytes): An unsigned 32-bit integer. This field is used for padding and MUST be
ignored on receipt. It can be any value.

Reserved3 (4 bytes): An unsigned 32-bit integer. This field is used for padding and MUST be
ignored on receipt. It can be any value.

Reserved4 (4 bytes): An unsigned 32-bit integer. This field is used for padding and MUST be
ignored on receipt. It can be any value.

Reserved5 (4 bytes): An unsigned 32-bit integer. This field is used for padding and MUST be
ignored on receipt. It can be any value.

Reserved6 (4 bytes): An unsigned 32-bit integer. This field is used for padding and MUST be
ignored on receipt. It can be any value.

Reserved7 (4 bytes): An unsigned 32-bit integer. This field is used for padding and MUST be
ignored on receipt. It can be any value.

Reserved8 (4 bytes): An unsigned 32-bit integer. This field is used for padding and MUST be
ignored on receipt. It can be any value.

Reserved9 (4 bytes): An unsigned 32-bit integer. This field is used for padding and MUST be
ignored on receipt. It can be any value.

2.2.4.1.3.35 GetID

The GetID packet is transmitted from a TAPI client to a TAPI server in a remote procedure call.
Sending this packet returns a device identifier for the specified device class that is associated with the
selected line, address, or call.

181 /610

[MS-TRP-Diff] - v20210625

Telephony Remote Protocol

Copyright © 2021 Microsoft Corporation
Release: June 25, 2021

2|3|4|5|6|7|8]|9

Reqg_Func

Reserved1

hLine

dwAddressID

hCall

dwSelect

IpDeviceID

IpszDeviceClass

Reserved2

Reserved3

Reserved4

Reserved5

Reserved6

Reserved?

Reserved8

VarData (variable)

Req_Func (4 bytes): An unsigned 32-bit integer. The identifier of the function that will be invoked
on the remote server. This value MUST be set to 37.

Return Values

On completion of ClientRequest, this field contains the result of the encapsulated telephony
request. A value of 0 indicates success, and a LINEERR_Constants value indicates failure. The
remote server MUST complete this call synchronously.

MUST return zero if the function succeeds or an error number if an error occurs. Common return

values are as follows:

Name

Value

LINEERR_INVALLINEHANDLE

0x8000002B

[MS-TRP-Diff] - v20210625
Telephony Remote Protocol

Copyright © 2021 Microsoft Corporation

Release: June 25, 2021

182 /610

Name Value

LINEERR_NOMEM 0x80000044

LINEERR_INVALADDRESSID 0x80000011

LINEERR_OPERATIONUNAVAIL | 0x80000049

LINEERR_INVALCALLHANDLE 0x80000018

LINEERR_OPERATIONFAILED 0x80000048

LINEERR_NODEVICE 0x80000042

LINEERR_RESOURCEUNAVAIL | 0x8000004B

Reservedl1 (4 bytes): An unsigned 32-bit integer. MUST be set to zero when sent and MUST be
ignored on receipt.

hLine (4 bytes): An HLINE. The handle to an open line device. This field MUST have been obtained
by sending the Open packet.

dwAddressID (4 bytes): An unsigned 32-bit integer. An address on the specified open line device.
An address identifier is permanently associated with an address; the identifier remains constant
across operating system upgrades. A valid value of dwAddressID is in the range 0 to
dwNumAddresses - 1. The client obtains dwNumAddresses from the LINEDEVCAPS obtained by
sending a GetDevCaps packet to the remote server. TAPI does not validate this parameter when
this function is called.

hCall (4 bytes): An HCALL. The handle to a call. One way of obtaining a valid hCall is by sending the
MakeCall packet.

dwSelect (4 bytes): An unsigned 32-bit integer. Specifies whether the device identifier that is
requested is associated with the line, address, or a single call. The dwSelect parameter MUST have
only one of the LINECALLSELECT_Constants.

IpDevicelD (4 bytes): An unsigned 32-bit integer. The size, in bytes, of a VARSTRING packet that
contains the device identifier upon successful completion of the request.

On successful completion, this field contains the offset, in bytes, of the packet in the VarData field.

IpszDeviceClass (4 bytes): An unsigned 32-bit integer. The offset, in bytes, in the VarData field of a
null-terminated string that specifies the device class of the device whose identifier is requested.

Reserved?2 (4 bytes): An unsigned 32-bit integer. This field is used for padding and MUST be
ignored on receipt. It can be any value.

Reserved3 (4 bytes): An unsigned 32-bit integer. This field is used for padding and MUST be
ignored on receipt. It can be any value.

Reserved4 (4 bytes): An unsigned 32-bit integer. This field is used for padding and MUST be
ignored on receipt. It can be any value.

Reserved5 (4 bytes): An unsigned 32-bit integer. This field is used for padding and MUST be
ignored on receipt. It can be any value.

Reserved6 (4 bytes): An unsigned 32-bit integer. This field is used for padding and MUST be
ignored on receipt. It can be any value.

Reserved? (4 bytes): An unsigned 32-bit integer. This field is used for padding and MUST be
ignored on receipt. It can be any value.

183/ 610

[MS-TRP-Diff] - v20210625

Telephony Remote Protocol

Copyright © 2021 Microsoft Corporation
Release: June 25, 2021

Reserved8 (4 bytes): An unsigned 32-bit integer. This field is used for padding and MUST be
ignored on receipt. It can be any value.

VarData (variable): Contains a null-terminated Unicode string that is indicated by the
IpszDeviceClass field in the original request. On successful completion of the request, this field
contains only a VARSTRING packet that is indicated by the IpDeviceConfig field.

The contents of this field MUST be DWORD-aligned, as specified in [MS-DTYP] section 2.2.9.

2.2.4.1.3.36 GetLineDevStatus

The GetLineDevStatus packet is transmitted from a TAPI client to a TAPI server in a remote procedure
call. Sending this packet queries the specified open line device for its current status. The information
that is returned is global to all addresses on the line.

=
N
w

0(1|/2|3(4|5|6|7|8|9|0(1|2|3(4|5|6(7|8|9(0(1|2|3(4|5|6|7|8|9|0(1

Reqg_Func

Reserved1

hLine

IpLineDevStatus

Reserved2

Reserved3

Reserved4

Reserved5

Reserved6

Reserved?7

Reserved8

Reserved9

Reserved10

Reservedil

Reserved12

VarData (variable)

184 / 610

[MS-TRP-Diff] - v20210625

Telephony Remote Protocol

Copyright © 2021 Microsoft Corporation
Release: June 25, 2021

Req_Func (4 bytes): The identifier of the function that will be invoked on the remote server. This
value MUST be set to 38.

Return Values

On completion of ClientRequest, this field contains the result of the encapsulated telephony
request. A value of 0 indicates success, and a LINEERR_Constants value indicates failure. The
remote server MUST complete this call synchronously.

MUST return zero if the function succeeds or an error number if an error occurs. Common return
values are as follows:

Name Value

LINEERR_INVALLINEHANDLE 0x8000002B

LINEERR_OPERATIONFAILED 0x80000048

LINEERR_NOMEM 0x80000044

LINEERR_RESOURCEUNAVAIL | 0x8000004B

LINEERR_OPERATIONUNAVAIL | 0x80000049

Reservedl (4 bytes): An unsigned 32-bit integer. MUST be set to zero when sent and MUST be
ignored on receipt.

hLine (4 bytes): An HLINE. The handle to the open line to be queried. This field MUST have been
obtained by sending the Open packet.

IpLineDevStatus (4 bytes): An unsigned 32-bit integer. The size, in bytes, of a LINEDEVSTATUS
packet that is filled with the device status of the line, upon successful completion of the request.

On successful completion, this field contains the offset, in bytes, of the packet in the VarData field.

Reserved?2 (4 bytes): An unsigned 32-bit integer. This field is used for padding and MUST be
ignored on receipt. It can be any value.

Reserved3 (4 bytes): An unsigned 32-bit integer. This field is used for padding and MUST be
ignored on receipt. It can be any value.

Reserved4 (4 bytes): An unsigned 32-bit integer. This field is used for padding and MUST be
ignored on receipt. It can be any value.

Reserved5 (4 bytes): An unsigned 32-bit integer. This field is used for padding and MUST be
ignored on receipt. It can be any value.

Reserved6 (4 bytes): An unsigned 32-bit integer. This field is used for padding and MUST be
ignored on receipt. It can be any value.

Reserved7 (4 bytes): An unsigned 32-bit integer. This field is used for padding and MUST be
ignored on receipt. It can be any value.

Reserved8 (4 bytes): An unsigned 32-bit integer. This field is used for padding and MUST be
ignored on receipt. It can be any value.

Reserved9 (4 bytes): An unsigned 32-bit integer. This field is used for padding and MUST be
ignored on receipt. It can be any value.

Reserved10 (4 bytes): An unsigned 32-bit integer. This field is used for padding and MUST be
ignored on receipt. It can be any value.

185/ 610

[MS-TRP-Diff] - v20210625

Telephony Remote Protocol

Copyright © 2021 Microsoft Corporation
Release: June 25, 2021

Reserved11 (4 bytes): An unsigned 32-bit integer. This field is used for padding and MUST be
ignored on receipt. It can be any value.

Reserved12 (4 bytes): An unsigned 32-bit integer. This field is used for padding and MUST be
ignored on receipt. It can be any value.

VarData (variable): Present on successful completion of the request. Contains a LINEDEVSTATUS
packet.

The contents of this field MUST be DWORD-aligned, as specified in [MS-DTYP] section 2.2.9.

2.2.4.1.3.37 GetNewCalls

The GetNewCalls packet is transmitted from a TAPI client to a TAPI server in a remote procedure call.
Sending this packet returns call handles to calls on a specified line or address for which the application
currently does not have handles. The client is granted owner privilege to these calls.

0[{1(2|3|4|5|6|7|8|9(0(1(2[3|4|5|/6|7|8|9|0|1|2|3|4|5|6(|7(8]9|0]|1

Reqg_Func

Reserved1

hLine

dwAddressID

dwSelect

pCallList

Reserved2

Reserved3

Reserved4

Reserved5

Reserved6

Reserved?7

Reserved8

Reserved9

Reserved10

VarData (variable)

186 /610

[MS-TRP-Diff] - v20210625

Telephony Remote Protocol

Copyright © 2021 Microsoft Corporation
Release: June 25, 2021

Req_Func (4 bytes): An unsigned 32-bit integer. The identifier of the function that will be invoked
on the remote server. This value MUST be set to 39.

Return Values

On completion of ClientRequest, this field contains the result of the encapsulated telephony
request. A value of 0 indicates success, and a LINEERR_Constants value indicates failure. The
remote server MUST complete this call synchronously.

MUST return zero if the request succeeds or a negative error number if an error occurs. Common
return values are:

Name Value

LINEERR_INVALADDRESSID 0x80000011
LINEERR_OPERATIONFAILED 0x80000048
LINEERR_INVALCALLSELECT 0x8000001B
LINEERR_RESOURCEUNAVAIL 0x8000004B
LINEERR_INVALLINEHANDLE 0x8000002B

LINEERR_STRUCTURETOOSMALL | 0x8000004D

LINEERR_INVALPOINTER 0x80000035
LINEERR_UNINITIALIZED 0x80000050
LINEERR_NOMEM 0x80000044

Reservedl (4 bytes): An unsigned 32-bit integer. MUST be set to zero when sent and MUST be
ignored on receipt.

hLine (4 bytes): An HLINE. The handle to an open line device. This field MUST have been obtained
by sending the Openpacket.

dwAddressID (4 bytes): An unsigned 32-bit integer. The address on the specified open line device.
An address identifier is permanently associated with an address; the identifier remains constant
across operating system upgrades. A valid value of dwAddressID is in the range 0 to
dwNumAddresses -1. The client obtains dwNumAddresses from the LINEDEVCAPS obtained by
sending a GetDevCaps packet to the remote server.

dwsSelect (4 bytes): An unsigned 32-bit integer. The selection of calls that are requested. This
parameter MUST be either LINECALLSELECT_ADDRESS or LINECALLSELECT_LINE.

pCaliList (4 bytes): An unsigned 32-bit integer. The size, in bytes, of a LINECALLLIST packet that
contains a list of handles to calls on the specified line or address for which the client currently does
not have handles, upon successful completion of the request.

On successful completion, this field MUST contain the offset, in bytes, of the packet in the VarData
field.

Reserved2 (4 bytes): An unsigned 32-bit integer. This field is used for padding and MUST be
ignored on receipt. It can be any value.

Reserved3 (4 bytes): An unsigned 32-bit integer. This field is used for padding and MUST be
ignored on receipt. It can be any value.

Reserved4 (4 bytes): An unsigned 32-bit integer. This field is used for padding and MUST be
ignored on receipt. It can be any value.

187/ 610

[MS-TRP-Diff] - v20210625

Telephony Remote Protocol

Copyright © 2021 Microsoft Corporation
Release: June 25, 2021

Reserved5 (4 bytes): An unsigned 32-bit integer. This field is used for padding and MUST be

ignored on receipt. It can be any value.

Reserved6 (4 bytes): An unsigned 32-bit integer. This field is used for padding and MUST be

ignored on receipt. It can be any value.

Reserved?7 (4 bytes): An unsigned 32-bit integer. This field is used for padding and MUST be

ignored on receipt. It can be any value.

Reserved8 (4 bytes): An unsigned 32-bit integer. This field is used for padding and MUST be

ignored on receipt. It can be any value.

Reserved9 (4 bytes): An unsigned 32-bit integer. This field is used for padding and MUST be

ignored on receipt. It can be any value.

Reserved10 (4 bytes): An unsigned 32-bit integer. This field is used for padding and MUST be

ignored on receipt. It can be any value.

VarData (variable): This field is present only on successful completion of the request and contains a

LINECALLLIST packet.

The contents of this field MUST be DWORD-aligned, as specified in [MS-DTYP] section 2.2.9.

2.2.4.1.3.38 GetNumAddressIDs

The GetNumAddressIDs packet is transmitted from a TAPI client to a TAPI server in a remote

procedure call. Sending this packet retrieves the number of address identifiers that are supported on

the indicated line.

=

0(1|2|3(4|5|6(7|8|9|0(1|2|3|4|5|6|7|8]|9

N

w

Reqg_Func

Reserved1

hLine

IpdwNumAddressIDs

Reserved2

Reserved3

Reserved4

Reserved5

Reserved6

Reserved7

Reserved8

Reserved9

[MS-TRP-Diff] - v20210625

Telephony Remote Protocol

Copyright © 2021 Microsoft Corporation
Release: June 25, 2021

188 /610

Reserved10

Reserved11

Reserved12

Req_Func (4 bytes): An unsigned 32-bit integer.

The identifier of the function that will be invoked

on the remote server. This value MUST be set to 40.

Return Values

On completion of ClientRequest, this field contains the result of the encapsulated telephony
request. A value of 0 indicates success, and a LINEERR_Constants value indicates failure. The

remote server MUST complete this call synchro

nously.

MUST return zero if the function succeeds or an error number if an error occurs. Common return

values are as follows:

Name Value

LINEERR_NOMEM 0x80000044
LINEERR_OPERATIONFAILED 0x80000048
LINEERR_OPERATIONUNAVAIL | 0x80000049
LINEERR_RESOURCEUNAVAIL 0x8000004B

Reservedl (4 bytes): An unsigned 32-bit integer
ignored on receipt.

. MUST be set to zero when sent and MUST be

hLine (4 bytes): An HLINE. The handle to the line for which the number of address identifiers is to be
retrieved. This field MUST have been obtained by sending the Open packet.

IpdwNumAddressIDs (4 bytes): An unsigned 32-bit integer. Set to TAPI_NO_DATA (OxFFFFFFFF).
Upon successful completion of the request, this field contains the number of address identifiers

supported on the indicated line.

Reserved2 (4 bytes): An unsigned 32-bit integer
ignored on receipt. It can be any value.

Reserved3 (4 bytes): An unsigned 32-bit integer.

ignored on receipt. It can be any value.

Reserved4 (4 bytes): An unsigned 32-bit integer.

ignored on receipt. It can be any value.

Reserved5 (4 bytes): An unsigned 32-bit integer.

ignored on receipt. It can be any value.

Reserved6 (4 bytes): An unsigned 32-bit integer.

ignored on receipt. It can be any value.

Reserved? (4 bytes): An unsigned 32-bit integer.

ignored on receipt. It can be any value.

Reserved8 (4 bytes): An unsigned 32-bit integer.

ignored on receipt. It can be any value.

. This field is used for padding and MUST be

This field is used for padding and MUST be

This field is used for padding and MUST be

This field is used for padding and MUST be

This field is used for padding and MUST be

This field is used for padding and MUST be

This field is used for padding and MUST be

[MS-TRP-Diff] - v20210625

Telephony Remote Protocol

Copyright © 2021 Microsoft Corporation
Release: June 25, 2021

189 /610

Reserved9 (4 bytes): An unsigned 32-bit integer. This field is used for padding and MUST be
ignored on receipt. It can be any value.

Reservedl10 (4 bytes): An unsigned 32-bit integer. This field is used for padding and MUST be
ignored on receipt. It can be any value.

Reserved11 (4 bytes): An unsigned 32-bit integer. This field is used for padding and MUST be
ignored on receipt. It can be any value.

Reserved12 (4 bytes): An unsigned 32-bit integer. This field is used for padding and MUST be
ignored on receipt. It can be any value.

2.2.4.1.3.39 GetProxyStatus

The GetProxyStatus packet is transmitted from a TAPI client to a TAPI server in a remote procedure
call. Sending this packet returns a list of proxy request types that are currently being serviced for the
specified device.

0(1|2|3(4|5|6(7|8|9|0(1|2|3(4|5|6[|7|8|9(0(1|2|3(4|5|6[7|8|9|0(1

Reqg_Func

Reserved1

hLineApp

dwDevicelD

dwAppAPIVersion

IpLineProxyRequestList

Reserved2

Reserved3

Reserved4

Reserved5

Reserved6

Reserved7

Reserved8

Reserved9

Reserved10

VarData (variable)

190/ 610

[MS-TRP-Diff] - v20210625

Telephony Remote Protocol

Copyright © 2021 Microsoft Corporation
Release: June 25, 2021

Req_Func (4 bytes): An unsigned 32-bit integer. The identifier of the function that will be invoked
on the remote server. This value MUST be set to 158.

Return Values

On completion of ClientRequest, this field contains the result of the encapsulated telephony
request. A value of 0 indicates success, and a LINEERR_Constants value indicates failure. The
remote server MUST complete this call synchronously.

MUST return zero if the request succeeds; otherwise, the function MUST return one of the
following negative error values:

Name Value

LINEERR_BADDEVICEID 0x80000002

LINEERR_INCOMPATIBLEAPIVERSION | 0x8000000C

LINEERR_INVALPARAM 0x80000032
LINEERR_NOMEM 0x80000044
LINEERR_OPERATIONFAILED 0x80000048
LINEERR_OPERATIONUNAVAIL 0x80000049
LINEERR_RESOURCEUNAVAIL 0x8000004B
LINEERR_UNINITIALIZED 0x80000050

Reservedl (4 bytes): An unsigned 32-bit integer. MUST be set to zero when sent and MUST be
ignored on receipt.

hLineApp (4 bytes): An HLINEAPP. The handle to the application registration with TAPIL. This field
MUST have been obtained by sending the Initialize packet.

dwDevicelD (4 bytes): An unsigned 32-bit integer. The line device to query. A valid value of
dwDevicelD is in the range 0 to dwNumbDevs -1. The client obtains dwNumDevs by sending a
Initialize packet to the remote server.

dwAppAPIVersion (4 bytes): An unsigned 32-bit integer. The version humber of TAPI to be used.
This value is obtained by sending the NegotiateAPIVersion packet.

IpLineProxyRequestList (4 bytes): An unsigned 32-bit integer. The size, in bytes, of a
LINEPROXYREQUESTLIST packet that contains a list of the currently supported proxy requests,
upon successful completion of the request.

On successful completion, this field contains the offset, in bytes, of the packet in the VarData field.

Reserved?2 (4 bytes): An unsigned 32-bit integer. This field is used for padding and MUST be
ignored on receipt. It can be any value.

Reserved3 (4 bytes): An unsigned 32-bit integer. This field is used for padding and MUST be
ignored on receipt. It can be any value.

Reserved4 (4 bytes): An unsigned 32-bit integer. This field is used for padding and MUST be
ignored on receipt. It can be any value.

191 /610

[MS-TRP-Diff] - v20210625

Telephony Remote Protocol

Copyright © 2021 Microsoft Corporation
Release: June 25, 2021

Reserved5 (4 bytes): An unsigned 32-bit integer

ignored on receipt. It can be any value.

Reserved6 (4 bytes): An unsigned 32-bit integer

ignored on receipt. It can be any value.

Reserved? (4 bytes): An unsigned 32-bit integer

ignored on receipt. It can be any value.

Reserved8 (4 bytes): An unsigned 32-bit integer

ignored on receipt. It can be any value.

Reserved9 (4 bytes): An unsigned 32-bit integer

ignored on receipt. It can be any value.

. This field is used for padding and MUST be

. This field is used for padding and MUST be

. This field is used for padding and MUST be

. This field is used for padding and MUST be

. This field is used for padding and MUST be

Reserved10 (4 bytes): An unsigned 32-bit integer. This field is used for padding and MUST be

ignored on receipt. It can be any value.

VarData (variable): Contains a LINEPROXYREQUESTLIST packet.

The contents of this field MUST be DWORD-aligned, as specified in [MS-DTYP] section 2.2.9.

2.2.4.1.3.40 GetQueuelnfo

The GetQueuelnfo packet is transmitted from a TAPI client to a TAPI server in a remote procedure
call. Sending this packet returns a packet that holds the ACD information that is associated with a
particular queue. It generates a LINE_PROXYREQUEST packet to be sent to a registered proxy function
handler, referencing a LINEPROXYREQUEST packet of type LINEPROXYREQUEST_GETQUEUEINFO.

=

0({1|2|3(4|5|/6|7|8|9|0(1|2|3|4

5

6

7

N

w

Reqg_Func

Reserved1

dwRequestID

IpContext

hLine

dwQueuelD

IpQueuelnfoContext

IpQueuelnfo

Reserved2

Reserved3

Reserved4

Reserved5

[MS-TRP-Diff] - v20210625

Telephony Remote Protocol

Copyright © 2021 Microsoft Corporation
Release: June 25, 2021

192 /610

Reserved6

Reserved7

Reserved8

Req_Func (4 bytes): An unsigned 32-bit integer. The identifier of the function that will be invoked
on the remote server. This value MUST be set to 151.

Return Values

On completion of ClientRequest, this field contains the result of the encapsulated telephony
request. A nonzero request ID value indicates that the request is in progress and will complete
asynchronously, and a LINEERR_Constants value indicates synchronous failure.

MUST return a request identifier if the asynchronous operation starts; otherwise, the function
MUST return one of the following error values:

Name

Value

LINEERR_INVALLINEHANDLE 0x8000002B

LINEERR_INVALPARAM

0x80000032

LINEERR_NOMEM

0x80000044

LINEERR_OPERATIONFAILED 0x80000048

LINEERR_OPERATIONUNAVAIL | 0x80000049

LINEERR_RESOURCEUNAVAIL | 0x8000004B

LINEERR_UNINITIALIZED

0x80000050

Reservedl (4 bytes): An unsigned 32-bit integer. MUST be set to zero when sent and MUST be

ignored on receipt.

dwRequestID (4 bytes): An unsigned 32-bit integer. The identifier of the asynchronous request.

Value Meaning

0x00000000 The server MUST generate a unique positive request ID to return as the
Ack_ReturnValue.

0x00000001 — The server MUST use this value instead of generating a unique positive request

Ox7FFFFFFF ID.

IpContext (4 bytes): An unsigned 32-bit integer. The opaque, client-specified value that is used by
the client upon request completion; MUST be returned by the server in the request completion

packet.

hLine (4 bytes): An HLINE. The handle to the open line device. This field MUST have been obtained
by sending the Open packet.

dwQueuelD (4 bytes): An unsigned 32-bit integer. The identifier of the queue whose information is
retrieved. This field MUST have been obtained from LINEQUEUEENTRY in LINEQUEUELIST. The
LINEQUEUELIST MUST have been obtained by sending GetQueuelist packet.

[MS-TRP-Diff] - v20210625
Telephony Remote Protocol

193/ 610

Copyright © 2021 Microsoft Corporation

Release: June 25, 2021

IpQueuelInfoContext (4 bytes): An unsigned 32-bit integer. The opaque, client-specified value that
is used by the client upon request completion; MUST be returned by the server in the request
completion packet.

IpQueuelnfo (4 bytes): An unsigned 32-bit integer. The maximum size, in bytes, of the queue
information data that the client will accept on successful completion of this request.

Reserved2 (4 bytes): An unsigned 32-bit integer. This field is used for padding and MUST be
ignored on receipt. It can be any value.

Reserved3 (4 bytes): An unsigned 32-bit integer. This field is used for padding and MUST be
ignored on receipt. It can be any value.

Reserved4 (4 bytes): An unsigned 32-bit integer. This field is used for padding and MUST be
ignored on receipt. It can be any value.

Reserved5 (4 bytes): An unsigned 32-bit integer. This field is used for padding and MUST be
ignored on receipt. It can be any value.

Reserved6 (4 bytes): An unsigned 32-bit integer. This field is used for padding and MUST be
ignored on receipt. It can be any value.

Reserved? (4 bytes): An unsigned 32-bit integer. This field is used for padding and MUST be
ignored on receipt. It can be any value.

Reserved8 (4 bytes): An unsigned 32-bit integer. This field is used for padding and MUST be
ignored on receipt. It can be any value.

2.2.4.1.3.41 GetQueuelist

The GetQueuelist packet is transmitted from a TAPI client to a TAPI server in a remote procedure call.
Sending this packet returns a list of queues that are associated with a particular ACD group. It
generates a LINE_PROXYREQUEST packet to be sent to a registered proxy function handler,
referencing a LINEPROXYREQUEST packet of type LINEPROXYREQUEST_GETQUEUELIST.

0[{1(2|3|4|5|6|7|8|9(0(1|2[3|4|5|/6|7|8|9|0|1|2|3|4|5(6[7(8]|9|0]1

Reqg_Func

Reserved1

dwRequestID

IpContext

hLine

pGroupID

cbGUID

IpQueueListContext

IpQueuelList

194 / 610

[MS-TRP-Diff] - v20210625

Telephony Remote Protocol

Copyright © 2021 Microsoft Corporation
Release: June 25, 2021

Reserved2

Reserved3

Reserved4

Reserved5

Reserved6

Reserved7

VarData (16 bytes)

Req_Func (4 bytes): An unsigned 32-bit integer. The identifier of the function that will be invoked
on the remote server. This value MUST be set to 153.

Return Values

On completion of ClientRequest, this field contains the result of the encapsulated telephony
request. A nonzero request ID value indicates that the request is in progress and will complete
asynchronously, and a LINEERR_Constants value indicates synchronous failure.

MUST return a request identifier if the asynchronous operation starts; otherwise, the function
MUST return one of the following error values:

Name

Value

LINEERR_INVALLINEHANDLE 0x8000002B

LINEERR_INVALPARAM

0x80000032

LINEERR_NOMEM

0x80000044

LINEERR_OPERATIONFAILED 0x80000048

LINEERR_OPERATIONUNAVAIL | 0x80000049

LINEERR_RESOURCEUNAVAIL | 0x8000004B

LINEERR_UNINITIALIZED

0x80000050

Reservedl (4 bytes): An unsigned 32-bit integer. MUST be set to zero when sent and MUST be

ignored on receipt.

dwRequestID (4 bytes): An unsigned 32-bit integer. The identifier of the asynchronous request.

Value

Meaning

0x00000000

The server MUST generate a unique positive request ID to return as the
Ack_ReturnValue.

[MS-TRP-Diff] - v20210625
Telephony Remote Protocol

195/ 610

Copyright © 2021 Microsoft Corporation

Release: June 25, 2021

Value Meaning

0x00000001 — The server MUST use this value instead of generating a unique positive request
O0x7FFFFFFF ID.

IpContext (4 bytes): An unsigned 32-bit integer. The opaque, client-specified value that is used by
the client upon request completion; MUST be returned by the server in the request completion
packet.

hLine (4 bytes): An HLINE. The handle to the open line device. This field MUST have been obtained
by sending the Open packet.

pGroupID (4 bytes): An unsigned 32-bit integer. The offset, in bytes, in the VarData field of a GUID
that identifies the group for which the list of queues is requested. The GUID of the group is
obtained by sending a GetAgentGrouplList packet to the remote server.

cbGUID (4 bytes): An unsigned 32-bit integer. The size, in bytes, of the packet that is indicated in
the pGrouplD field, set to "sizeof (GUID)".

IpQueuelListContext (4 bytes): An unsigned 32-bit integer. The opaque, client-specified value that
is used by the client upon request completion; MUST be returned by the server in the request
completion packet.

IpQueuelist (4 bytes): An unsigned 32-bit integer. The maximum size, in bytes, of the queue list
data that the client will accept on successful completion of this request.

Reserved2 (4 bytes): An unsigned 32-bit integer. This field is used for padding and MUST be
ignored on receipt. It can be any value.

Reserved3 (4 bytes): An unsigned 32-bit integer. This field is used for padding and MUST be
ignored on receipt. It can be any value.

Reserved4 (4 bytes): An unsigned 32-bit integer. This field is used for padding and MUST be
ignored on receipt. It can be any value.

Reserved5 (4 bytes): An unsigned 32-bit integer. This field is used for padding and MUST be
ignored on receipt. It can be any value.

Reserved6 (4 bytes): An unsigned 32-bit integer. This field is used for padding and MUST be
ignored on receipt. It can be any value.

Reserved7 (4 bytes): An unsigned 32-bit integer. This field is used for padding and MUST be
ignored on receipt. It can be any value.

VarData (16 bytes): Contains the GUID that is indicated by the pGrouplID field.
The contents of this field MUST be DWORD-aligned, as specified in [MS-DTYP] section 2.2.9.

2.2.4.1.3.42 Hold

The Hold packet is transmitted from a TAPI client to a TAPI server in a remote procedure call. Sending
this packet places the specified call on hold.

—
N
w

0(1|2|3(4|5|6|7|8|9|0|1|2|3(4|5|6|7|8|9(0(1|2|3(4|5|6[|7|8|9|0(1

Req_Func

Reserved1

196 / 610

[MS-TRP-Diff] - v20210625

Telephony Remote Protocol

Copyright © 2021 Microsoft Corporation
Release: June 25, 2021

dwRequestID

hCall

Reserved2

Reserved3

Reserved4

Reserved5

Reserved6

Reserved7

Reserved8

Reserved9

Reserved10

Reserved11

Reserved12

Req_Func (4 bytes): An unsigned 32-bit integer. The identifier of the function that will be invoked

on the remote server. This value MUST be set to 46.

Return Values

On completion of ClientRequest, this field contains the result of the encapsulated telephony
request. A nonzero request ID value indicates that the request is in progress and will complete

asynchronously, and a LINEERR_Constants value indicates synchronous failure.

Returns a positive request identifier if the function will be completed asynchronously or a negative
error number if an error occurs. The dwParam2 parameter of the corresponding LINE_REPLY
packet is zero if the function succeeds, or it is a negative error number if an error occurs. If the
client specified a nonzero value in the dwRequestID field of the packet, the same value MUST be

used for the returned positive request identifier. Common return values are as follows:

Name Value

LINEERR_INVALCALLHANDLE 0x80000018
LINEERR_OPERATIONUNAVAIL | 0x80000049
LINEERR_INVALCALLSTATE 0x8000001C
LINEERR_OPERATIONFAILED 0x80000048
LINEERR_NOMEM 0x80000044
LINEERR_RESOURCEUNAVAIL 0x8000004B

[MS-TRP-Diff] - v20210625
Telephony Remote Protocol

Copyright © 2021 Microsoft Corporation

Release: June 25, 2021

197 /610

Reservedl1 (4 bytes): An unsigned 32-bit integer. MUST be set to zero when sent and MUST be
ignored on receipt.

dwRequestID (4 bytes): An unsigned 32-bit integer. The identifier of the asynchronous request.

hCall (4 bytes): An HCALL. The handle to the call to be placed on hold. One way of obtaining a valid
hCall is by sending the MakeCall packet. Also a valid hCall can be obtained from LINE_CALLSTATE
packet sent by the remote server. The application MUST be an owner of the call. The call state of
hCall must be connected. One way to have hCall in connected state is by sending Answer packet.

Reserved?2 (4 bytes): An unsigned 32-bit integer. This field is used for padding and MUST be
ignored on receipt. It can be any value.

Reserved3 (4 bytes): An unsigned 32-bit integer. This field is used for padding and MUST be
ignored on receipt. It can be any value.

Reserved4 (4 bytes): An unsigned 32-bit integer. This field is used for padding and MUST be
ignored on receipt. It can be any value.

Reserved5 (4 bytes): An unsigned 32-bit integer. This field is used for padding and MUST be
ignored on receipt. It can be any value.

Reserved6 (4 bytes): An unsigned 32-bit integer. This field is used for padding and MUST be
ignored on receipt. It can be any value.

Reserved? (4 bytes): An unsigned 32-bit integer. This field is used for padding and MUST be
ignored on receipt. It can be any value.

Reserved8 (4 bytes): An unsigned 32-bit integer. This field is used for padding and MUST be
ignored on receipt. It can be any value.

Reserved9 (4 bytes): An unsigned 32-bit integer. This field is used for padding and MUST be
ignored on receipt. It can be any value.

Reserved10 (4 bytes): An unsigned 32-bit integer. This field is used for padding and MUST be
ignored on receipt. It can be any value.

Reservedl11 (4 bytes): An unsigned 32-bit integer. This field is used for padding and MUST be
ignored on receipt. It can be any value.

Reservedl12 (4 bytes): An unsigned 32-bit integer. This field is used for padding and MUST be
ignored on receipt. It can be any value.

2.2.4.1.3.43 MakeCall

The MakeCall packet is transmitted from a TAPI client to a TAPI server in a remote procedure call.
Sending this packet places a call on the specified line to the specified destination address. Optionally,
call parameters can be specified if anything but default call setup parameters are requested.

-
N
w

0(1|2|3(4|5|6|7|8|9|0|1|2|3(4|5|6|7|8|9(0(1|2|3(4|5|6|7|8|9|0(1

Req_Func

Reserved1

dwRequestID

198 /610

[MS-TRP-Diff] - v20210625

Telephony Remote Protocol

Copyright © 2021 Microsoft Corporation
Release: June 25, 2021

IpContext

hLine

IphCallContext

IpszDestAddress

dwCountryCode

IpCallParams

dwcCallParamsCodePage

Reserved2

Reserved3

Reserved4

Reserved5

Reserved6

VarData (variable)

Req_Func (4 bytes): An unsigned 32-bit integer. The identifier of the function that will be invoked
on the remote server. This value MUST be set to 48.

Return Values

On completion of ClientRequest, this field contains the result of the encapsulated telephony
request. A nonzero request ID value indicates that the request is in progress and will complete
asynchronously, and a LINEERR_Constants value indicates synchronous failure.

Returns a positive request identifier if the function will be completed asynchronously or a negative
error number if an error occurs. The dwParam2 parameter of the corresponding LINE_REPLY
packet is zero if the function succeeds, or it is a negative error number if an error occurs. If the
client specified a nonzero value in the dwRequestID field of the packet, the same value MUST be
used for the returned positive request identifier. Common return values are as follows:

Name Value
LINEERR_ADDRESSBLOCKED 0x80000053
LINEERR_INVALLINESTATE 0x8000002C

LINEERR_BEARERMODEUNAVAIL 0x80000003

LINEERR_INVALRATE 0x80000037

LINEERR_CALLUNAVAIL 0x80000005

199 /610

[MS-TRP-Diff] - v20210625

Telephony Remote Protocol

Copyright © 2021 Microsoft Corporation
Release: June 25, 2021

Name Value

LINEERR_INVALLINEHANDLE 0x8000002B
LINEERR_DIALBILLING 0x80000008
LINEERR_INVALADDRESS 0x80000010
LINEERR_DIALQUIET 0x8000000B
LINEERR_INVALADDRESSID 0x80000011
LINEERR_DIALDIALTONE 0x80000009
LINEERR_INVALCALLPARAMS 0x80000019
LINEERR_DIALPROMPT 0x8000000A
LINEERR_NOMEM 0x80000044
LINEERR_INUSE 0x8000000F

LINEERR_OPERATIONUNAVAIL 0x80000049

LINEERR_INVALADDRESSMODE 0x80000012

LINEERR_OPERATIONFAILED 0x80000048
LINEERR_INVALBEARERMODE 0x80000016
LINEERR_RESOURCEUNAVAIL 0x8000004B

LINEERR_INVALCOUNTRYCODE 0x80000022

LINEERR_RATEUNAVAIL 0x8000004A

LINEERR_INVALMEDIAMODE 0x8000002F

LINEERR_USERUSERINFOTOOBIG | 0x80000051

Reservedl (4 bytes): An unsigned 32-bit integer. MUST be set to zero when sent and MUST be
ignored on receipt.

dwRequestID (4 bytes): An unsigned 32-bit integer. The identifier of the asynchronous request.

IpContext (4 bytes): An unsigned 32-bit integer. The opaque, client-specified value that is used by
the client upon request completion; MUST be returned by the server in the request completion
packet.

hLine (4 bytes): An HLINE. The handle to the open line on which the new call is to originate. This
field MUST have been obtained by sending the Open packet.

IphCallContext (4 bytes): An unsigned 32-bit integer. The opaque, client-specified value that is
used by the client upon request completion; MUST be returned by the server in the request
completion packet.

IpszDestAddress (4 bytes): An unsigned 32-bit integer. The offset, in bytes, in the VarData field of
a null-terminated Unicode string that specifies the destination address. If this field is -1
(OXFFFFFFFF), no destination address is sent.

dwCountryCode (4 bytes): An unsigned 32-bit integer. The country code of the called party. f a
value of 0 is specified, an implementation specific default MUST be used.

200/ 610

[MS-TRP-Diff] - v20210625

Telephony Remote Protocol

Copyright © 2021 Microsoft Corporation
Release: June 25, 2021

IpCallParams (4 bytes): An unsigned 32-bit integer. The offset, in bytes, in the VarData field of a
LINECALLPARAMS packet that contains call parameters. If this field is -1 (OXFFFFFFFF), no call
parameters are sent.

dwCallParamsCodePage (4 bytes): An unsigned 32-bit integer. This MUST be set to
TAPI_NO_DATA (OxFFFFFFFF).

Reserved2 (4 bytes): An unsigned 32-bit integer. This field is used for padding and MUST be
ignored on receipt. It can be any value.

Reserved3 (4 bytes): An unsigned 32-bit integer. This field is used for padding and MUST be
ignored on receipt. It can be any value.

Reserved4 (4 bytes): An unsigned 32-bit integer. This field is used for padding and MUST be
ignored on receipt. It can be any value.

Reserved5 (4 bytes): An unsigned 32-bit integer. This field is used for padding and MUST be
ignored on receipt. It can be any value.

Reserved6 (4 bytes): An unsigned 32-bit integer. This field is used for padding and MUST be
ignored on receipt. It can be any value.

VarData (variable): Contains a null-terminated Unicode string that is indicated by the
IpszDestAddress field and a LINECALLPARAMS packet that is indicated by the IpCallParams field.

The contents of this field MUST be DWORD-aligned, as specified in [MS-DTYP] section 2.2.9.

2.2.4.1.3.44 MonitorDigits

The MonitorDigits packet is transmitted from a TAPI client to a TAPI server in a remote procedure call.
Sending this packet enables or disables the unbuffered detection of digits that are received on the call.
Each time a digit of the specified digit modes is detected, a LINE_MONITORDIGITS packet is sent to
the application by TAPI, indicating which digit is detected.

—
N
w

0[{1(2|3|4|5|6|7|8|9(0(1|2[3|4|5|/6|7|8|9|0|1|2|3|4|5(6[7(8]9|0]|1

Req_Func

Reserved1

hCall

dwDigitModes

Reserved2

Reserved3

Reserved4

Reserved5

Reserved6

Reserved7

201 /610

[MS-TRP-Diff] - v20210625

Telephony Remote Protocol

Copyright © 2021 Microsoft Corporation
Release: June 25, 2021

Reserved8

Reserved9

Reserved10

Reserved11

Reserved12

Req_Func (4 bytes): An unsigned 32-bit integer. The identifier of the function that will be invoked
on the remote server. This value MUST be set to 49.

Return Values

On completion of ClientRequest, this field contains the result of the encapsulated telephony
request. A value of 0 indicates success, and a LINEERR_Constants value indicates failure. The
remote server MUST complete this call synchronously.

MUST return zero if the function succeeds or an error number if an error occurs. Common return
values are as follows:

Name Value

LINEERR_INVALCALLHANDLE 0x80000018

LINEERR_OPERATIONUNAVAIL | 0x80000049

LINEERR_INVALCALLSTATE 0x8000001C

LINEERR_OPERATIONFAILED 0x80000048

LINEERR_INVALDIGITMODE 0x80000027

LINEERR_RESOURCEUNAVAIL | 0x8000004B

LINEERR_NOMEM 0x80000044

Reservedl (4 bytes): An unsigned 32-bit integer. MUST be set to zero when sent and MUST be
ignored on receipt.

hCall (4 bytes): An HCALL. The handle to the call on which digits are to be detected. The call state of
hCall can be any state except idle or disconnected. One way of obtaining a valid hCall is by
sending the MakeCall packet. Also a valid hCall can be obtained from LINE_CALLSTATE packet
sent by the remote server.

dwDigitModes (4 bytes): An unsigned 32-bit integer. The digit modes that are to be monitored. A
dwDigitModes parameter with a value of 0 cancels digit monitoring. The dwDigitModes parameter
MUST have one of the LINEDIGITMODE_Constants.

Reserved2 (4 bytes): An unsigned 32-bit integer. This field is used for padding and MUST be
ignored on receipt. It can be any value.

Reserved3 (4 bytes): An unsigned 32-bit integer. This field is used for padding and MUST be
ignored on receipt. It can be any value.

Reserved4 (4 bytes): An unsigned 32-bit integer. This field is used for padding and MUST be
ignored on receipt. It can be any value.

202 / 610

[MS-TRP-Diff] - v20210625

Telephony Remote Protocol

Copyright © 2021 Microsoft Corporation
Release: June 25, 2021

Reserved5 (4 bytes): An unsigned 32-bit integer. This field is used for padding and MUST be
ignored on receipt. It can be any value.

Reserved6 (4 bytes): An unsigned 32-bit integer. This field is used for padding and MUST be
ignored on receipt. It can be any value.

Reserved?7 (4 bytes): An unsigned 32-bit integer. This field is used for padding and MUST be
ignored on receipt. It can be any value.

Reserved8 (4 bytes): An unsigned 32-bit integer. This field is used for padding and MUST be
ignored on receipt. It can be any value.

Reserved9 (4 bytes): An unsigned 32-bit integer. This field is used for padding and MUST be
ignored on receipt. It can be any value.

Reserved10 (4 bytes): An unsigned 32-bit integer. This field is used for padding and MUST be
ignored on receipt. It can be any value.

Reservedl1l1 (4 bytes): An unsigned 32-bit integer. This field is used for padding and MUST be
ignored on receipt. It can be any value.

Reserved12 (4 bytes): An unsigned 32-bit integer. This field is used for padding and MUST be
ignored on receipt. It can be any value.

2.2.4.1.3.45 MonitorMedia

The MonitorMedia packet is transmitted from a TAPI client to a TAPI server in a remote procedure call.
Sending this packet enables or disables the detection of media types on the specified call. When a
media type is detected, a LINE_ MONITORMEDIA packet is sent to TAPI.

—
N
w

0[{1(2|3|4|5|6|7|8|9|0(1(2[3|4|5|/6|7|8|9|0|1|2|3|4|5|6[7(8]9|0]|1

Reqg_Func

Reserved1

hCall

dwMediaModes

Reserved2

Reserved3

Reserved4

Reserved5

Reserved6

Reserved?7

Reserved8

203 /610

[MS-TRP-Diff] - v20210625

Telephony Remote Protocol

Copyright © 2021 Microsoft Corporation
Release: June 25, 2021

Reserved9

Reserved10

Reserved11

Reserved12

Req_Func (4 bytes): An unsigned 32-bit integer. The identifier of the function that will be invoked
on the remote server. This value MUST be set to 50.

Return Values

On completion of ClientRequest, this field contains the result of the encapsulated telephony
request. A value of 0 indicates success, and a LINEERR_Constants value indicates failure. The
remote server MUST complete this call synchronously.

MUST return zero if the function succeeds or an error number if an error occurs. Common return

values are as follows:

Name Value

LINEERR_INVALCALLHANDLE 0x80000018
LINEERR_OPERATIONUNAVAIL | 0x80000049
LINEERR_INVALCALLSTATE 0x8000001C
LINEERR_OPERATIONFAILED 0x80000048
LINEERR_INVALMEDIAMODE 0x8000002F
LINEERR_RESOURCEUNAVAIL | 0x8000004B
LINEERR_NOMEM 0x80000044

Reservedl (4 bytes): An unsigned 32-bit integer. MUST be set to zero when sent and MUST be

ignored on receipt.

hCall (4 bytes): An HCALL. The handle to the call. The call state of hCall can be any state except
idle. One way of obtaining a valid hCall is by sending the MakeCall packet. Also a valid hCall can
be obtained from LINE_CALLSTATE packet sent by the remote server.

dwMediaModes (4 bytes): An unsigned 32-bit integer. The media types to be monitored. The
dwMediaModes parameter MUST be a bitwise combination of LINEMEDIAMODE_Constants. A value
of 0 cancels all media type monitoring.

Reserved?2 (4 bytes): An unsigned 32-bit integer

ignored on receipt. It can be any value.

Reserved3 (4 bytes): An unsigned 32-bit integer

ignored on receipt. It can be any value.

Reserved4 (4 bytes): An unsigned 32-bit integer

ignored on receipt. It can be any value.

Reserved5 (4 bytes): An unsigned 32-bit integer

ignored on receipt. It can be any value.

. This field is used for padding and MUST be

. This field is used for padding and MUST be

. This field is used for padding and MUST be

. This field is used for padding and MUST be

[MS-TRP-Diff] - v20210625
Telephony Remote Protocol

Copyright © 2021 Microsoft Corporation

Release: June 25, 2021

204 / 610

Reserved6 (4 bytes): An unsigned 32-bit integer. This field is used for padding and MUST be
ignored on receipt. It can be any value.

Reserved?7 (4 bytes): An unsigned 32-bit integer. This field is used for padding and MUST be
ignored on receipt. It can be any value.

Reserved8 (4 bytes): An unsigned 32-bit integer. This field is used for padding and MUST be
ignored on receipt. It can be any value.

Reserved9 (4 bytes): An unsigned 32-bit integer. This field is used for padding and MUST be
ignored on receipt. It can be any value.

Reserved10 (4 bytes): An unsigned 32-bit integer. This field is used for padding and MUST be
ignored on receipt. It can be any value.

Reservedl11 (4 bytes): An unsigned 32-bit integer. This field is used for padding and MUST be
ignored on receipt. It can be any value.

Reservedl12 (4 bytes): An unsigned 32-bit integer. This field is used for padding and MUST be
ignored on receipt. It can be any value.

2.2.4.1.3.46 MonitorTones

The MonitorTones packet is transmitted from a TAPI client to a TAPI server in a remote procedure call.
Sending this packet enables and disables the detection of inband tones on the call. Each time a
specified tone is detected, a packet is sent to the client application through TAPI.

—
N
w

0(1|/2|3(4|5|6(7|8|9|0|1|2|3(4|5|6|7|8|9(0(1|2|3(4|5|6[7|8|9|0(1

Reqg_Func

Reserved1

hCall

IpToneList

dwNumeEntries

dwTonelListID

Reserved2

Reserved3

Reserved4

Reserved5

Reserved6

Reserved7

205 /610

[MS-TRP-Diff] - v20210625

Telephony Remote Protocol

Copyright © 2021 Microsoft Corporation
Release: June 25, 2021

Reserved8

Reserved9

Reserved10

VarData (20 bytes)

Req_Func (4 bytes): An unsigned 32-bit integer. The identifier of the function that will be invoked
on the remote server. This value MUST be set to 51.

Return Values

On completion of ClientRequest, this field contains the result of the encapsulated telephony
request. A value of 0 indicates success, and a LINEERR_Constants value indicates failure. The
remote server MUST complete this call synchronously.

MUST return zero if the function succeeds or an error number if an error occurs. Common return
values are as follows:

Name Value

LINEERR_INVALCALLHANDLE 0x80000018

LINEERR_OPERATIONUNAVAIL | 0x80000049

LINEERR_INVALCALLSTATE 0x8000001C

LINEERR_OPERATIONFAILED 0x80000048

LINEERR_INVALTONE 0x8000003C

LINEERR_RESOURCEUNAVAIL | 0x8000004B

LINEERR_NOMEM 0x80000044

LINEERR_INVALPOINTER 0x80000035

Reservedl (4 bytes): An unsigned 32-bit integer. MUST be set to zero when sent and MUST be
ignored on receipt.

hCall (4 bytes): An HCALL. The handle to the call on whose voice channel tones are to be monitored.
The call state of hCall can be any state except idle. One way of obtaining a valid hCall is by
sending the MakeCall packet. Also a valid hCall can be obtained from LINE_CALLSTATE packet
sent by the remote server.

IpTonelList (4 bytes): An unsigned 32-bit integer. The offset, in bytes, in the VarData field. Contains
a list of tones to be monitored of type LINEMONITORTONE.

dwNumEntries (4 bytes): An unsigned 32-bit integer. This value is equal to the number of entries in
IpToneList multiplied by size of LINEMONITORTONE. The dwNumEntries parameter is ignored if
IpTonelList is -1(0xFFFFFFFF). TAPI does not validate this parameter when this function is called.

dwToneListID (4 bytes): An unsigned 32-bit integer. The unique identifier for this tone list.

206 / 610

[MS-TRP-Diff] - v20210625

Telephony Remote Protocol

Copyright © 2021 Microsoft Corporation
Release: June 25, 2021

Reserved2 (4 bytes): An unsigned 32-bit integer.

ignored on receipt. It can be any value.

Reserved3 (4 bytes): An unsigned 32-bit integer.

ignored on receipt. It can be any value.

Reserved4 (4 bytes): An unsigned 32-bit integer.

ignored on receipt. It can be any value.

Reserved5 (4 bytes): An unsigned 32-bit integer.

ignored on receipt. It can be any value.

Reserved6 (4 bytes): An unsigned 32-bit integer.

ignored on receipt. It can be any value.

Reserved? (4 bytes): An unsigned 32-bit integer.

ignored on receipt. It can be any value.

Reserved8 (4 bytes): An unsigned 32-bit integer.

ignored on receipt. It can be any value.

Reserved9 (4 bytes): An unsigned 32-bit integer.

ignored on receipt. It can be any value.

This field is used for padding and MUST be

This field is used for padding and MUST be

This field is used for padding and MUST be

This field is used for padding and MUST be

This field is used for padding and MUST be

This field is used for padding and MUST be

This field is used for padding and MUST be

This field is used for padding and MUST be

Reserved10 (4 bytes): An unsigned 32-bit integer. This field is used for padding and MUST be

ignored on receipt. It can be any value.

VarData (20 bytes): Contains a LINEMONITORTONE packet.

The contents of this field MUST be DWORD-aligned, as specified in [MS-DTYP] section 2.2.9.

2.2.4.1.3.47 NegotiateExtVersion

The NegotiateExtVersion packet is transmitted from a TAPI client to a TAPI server in a remote
procedure call. Sending this packet MUST return the highest extension version number that the
service provider can operate under for this device and for the range of possible extension versions.

415|6

7

Reqg_Func

Reserved1

hLineApp

dwDevicelD

dwTSPIVersion

dwlLowVersion

dwHighVersion

IpdwExtVersion

[MS-TRP-Diff] - v20210625

Telephony Remote Protocol

Copyright © 2021 Microsoft Corporation
Release: June 25, 2021

207/ 610

Reserved2

Reserved3

Reserved4

Reserved5

Reserved6

Reserved7

Reserved8

Req_Func (4 bytes): An unsigned 32-bit integer. The identifier of the function that will be invoked
on the remote server. This value MUST be set to 53.

Return Values

On completion of ClientRequest, this field contains the result of the encapsulated telephony
request. A value of 0 indicates success, and a LINEERR_Constants value indicates failure. The
remote server MUST complete this call synchronously.

MUST return zero if the function succeeds or an error number if an error occurs. Common return
values are as follows:

Name Value

LINEERR_INCOMPATIBLEAPIVERSION | 0x8000000C

LINEERR_OPERATIONUNAVAIL 0x80000049

LINEERR_INCOMPATIBLEEXTVERSION | 0x8000000D

LINEERR_OPERATIONFAILED 0x80000048
LINEERR_NODRIVER 0x80000043
LINEERR_RESOURCEUNAVAIL 0x8000004B
LINEERR_NOMEM 0x80000044

Reservedl (4 bytes): An unsigned 32-bit integer. MUST be set to zero when sent and MUST be
ignored on receipt.

hLineApp (4 bytes): An HLINEAPP. The handle to the client application's registration with TAPI. This
field MUST have been obtained by sending the Initialize packet.

dwDevicelID (4 bytes): An unsigned 32-bit integer. Identifies the line device for which interface
version negotiation is performed. A valid value of dwDevicelD is in the range 0 to dwNumDevs -1.
The client obtains dwNumDevs by sending a Initialize packet to the remote server.

dwTSPIVersion (4 bytes): An unsigned 32-bit integer. The TAPI version nhumber that was
negotiated for the specified line device using NegotiateAPIVersion.

dwLowVersion (4 bytes): An unsigned 32-bit integer. The lowest extension version number under
which TAPI or its client application can operate. The most-significant WORD is the major version

208 /610

[MS-TRP-Diff] - v20210625

Telephony Remote Protocol

Copyright © 2021 Microsoft Corporation
Release: June 25, 2021

number and the least-significant WORD is the minor version number. TAPI does not validate this
parameter when this function is called.

dwHighVersion (4 bytes): An unsigned 32-bit integer. The highest extension version nhumber under
which TAPI or its client application can operate. The most-significant WORD is the major version
number and the least-significant WORD is the minor version number. TAPI does not validate this
parameter when this function is called.

IpdwExtVersion (4 bytes): An unsigned 32-bit integer. Set to TAPI_NO_DATA (OXFFFFFFFF). Upon
successful completion, this field contains the negotiated extension version number.

Reserved2 (4 bytes): An unsigned 32-bit integer. This field is used for padding and MUST be
ignored on receipt. It can be any value.

Reserved3 (4 bytes): An unsigned 32-bit integer. This field is used for padding and MUST be
ignored on receipt. It can be any value.

Reserved4 (4 bytes): An unsigned 32-bit integer. This field is used for padding and MUST be
ignored on receipt. It can be any value.

Reserved5 (4 bytes): An unsigned 32-bit integer. This field is used for padding and MUST be
ignored on receipt. It can be any value.

Reserved6 (4 bytes): An unsigned 32-bit integer. This field is used for padding and MUST be
ignored on receipt. It can be any value.

Reserved7 (4 bytes): An unsigned 32-bit integer. This field is used for padding and MUST be
ignored on receipt. It can be any value.

Reserved8 (4 bytes): An unsigned 32-bit integer. This field is used for padding and MUST be
ignored on receipt. It can be any value.

2.2.4.1.3.48 Park

The Park packet is transmitted from a TAPI client to a TAPI server in a remote procedure call. Sending
this packet parks the specified call according to the specified park mode.

-
N
w

0[{1(2|3|4|5|6|7|8|9(0(1|2[3|4|5|/6|7|8|9|0|1|2|3|4|5|6[7(8]9|0]|1

Reqg_Func

Reserved1

dwRequestID

IpContext

hCall

dwParkMode

IpszDirAddress

IpNonDirAddressContext

209 /610

[MS-TRP-Diff] - v20210625

Telephony Remote Protocol

Copyright © 2021 Microsoft Corporation
Release: June 25, 2021

IpNonDirAddress

Reserved2

Reserved3

Reserved4

Reserved5

Reserved6

Reserved7

VarData (variable)

Req_Func (4 bytes): An unsigned 32-bit integer. The identifier of the function that will be invoked

on the remote server. This value MUST be set to 55.

Return Values

On completion of ClientRequest, this field contains the result of the encapsulated telephony
request. A nonzero request ID value indicates that the request is in progress and will complete

asynchronously, and a LINEERR_Constants value indicates synchronous failure.

Returns a positive request identifier if the function will be completed asynchronously or a negative
error number if an error occurs. The dwParam2 parameter of the corresponding LINE_REPLY
packet is zero if the function succeeds, or it is a negative error number if an error occurs. If the
client specified a nonzero value in the dwRequestID field of the packet, the same value MUST be

used for the returned positive request identifier. Common return values are as follows:

Name Value

LINEERR_INVALCALLHANDLE 0x80000018
LINEERR_NOMEM 0x80000044
LINEERR_INVALPARKMODE 0x80000034
LINEERR_OPERATIONUNAVAIL 0x80000049
LINEERR_INVALCALLSTATE 0x8000001C
LINEERR_OPERATIONFAILED 0x80000048
LINEERR_INVALADDRESS 0x80000010
LINEERR_RESOURCEUNAVAIL 0x8000004B
LINEERR_STRUCTURETOOSMALL | 0x8000004D

Reservedl (4 bytes): An unsigned 32-bit integer. MUST be set to zero when sent and MUST be

ignored on receipt.

dwRequestID (4 bytes): An unsigned 32-bit integer. The identifier of the asynchronous request.

[MS-TRP-Diff] - v20210625

Telephony Remote Protocol

Copyright © 2021 Microsoft Corporation
Release: June 25, 2021

210/ 610

IpContext (4 bytes): An unsigned 32-bit integer. The opaque, client-specified value that is used by
the client upon request completion; MUST be returned by the server in the request completion
packet.

hCall (4 bytes): An HCALL. The handle to the call to be parked. One way of obtaining a valid hCall is
by sending the MakeCall packet. The application MUST be an owner of the call. The call state of
hCall must be connected. One way to have hCall in connected state is by sending Answer packet.

dwParkMode (4 bytes): An unsigned 32-bit integer. The park mode with which the call is to be
parked; MUST be one of the LINEPARKMODE_ Constants.

IpszDirAddress (4 bytes): An unsigned 32-bit integer. The offset, in bytes, in the VarData field of a
null-terminated Unicode string that indicates the address where the call is parked when using
directed park.

IpNonDirAddressContext (4 bytes): An unsigned 32-bit integer. The opaque, client-specified value
that is used by the client upon request completion; MUST be returned by the server in the request
completion packet.

IpNonDirAddress (4 bytes): An unsigned 32-bit integer. The size, in bytes, of a VARSTRING packet
in the VarData field that will contain the address where a non-directed call has been parked upon
successful completion of the request.

Reserved2 (4 bytes): An unsigned 32-bit integer. This field is used for padding and MUST be
ignored on receipt. It can be any value.

Reserved3 (4 bytes): An unsigned 32-bit integer. This field is used for padding and MUST be
ignored on receipt. It can be any value.

Reserved4 (4 bytes): An unsigned 32-bit integer. This field is used for padding and MUST be
ignored on receipt. It can be any value.

Reserved5 (4 bytes): An unsigned 32-bit integer. This field is used for padding and MUST be
ignored on receipt. It can be any value.

Reserved6 (4 bytes): An unsigned 32-bit integer. This field is used for padding and MUST be
ignored on receipt. It can be any value.

Reserved? (4 bytes): An unsigned 32-bit integer. This field is used for padding and MUST be
ignored on receipt. It can be any value.

VarData (variable): Contains the null-terminated Unicode string that is indicated by the
IpszDirAddress field or a VARSTRING packet that is indicated by the IpszNonDirAddress field.

The contents of this field MUST be DWORD-aligned, as specified in [MS-DTYP] section 2.2.9.

2.2.4.1.3.49 PickUp

The PickUp packet is transmitted from a TAPI client to a TAPI server in a remote procedure call.
Sending this packet picks up a call alert at the specified destination address and returns a call handle
for the picked-up call. If invoked with NULL for the IpszDestAddress parameter, a group pickup is
performed. If required by the device capabilities, IpszGroupID specifies the group identifier to which
the alerting station belongs.

—
N
w

211 /610

[MS-TRP-Diff] - v20210625

Telephony Remote Protocol

Copyright © 2021 Microsoft Corporation
Release: June 25, 2021

Reserved1

dwRequestID

IpContext

hLine

dwAddressID

IphCallContext

IpszDestAddress

IpszGroupID

Reserved2

Reserved3

Reserved4

Reserved5

Reserved6

Reserved7

VarData (variable)

Req_Func (4 bytes): An unsigned 32-bit integer. The identifier of the function that will be invoked

on the remote server. This value MUST be set to 56.

Return Values

On completion of ClientRequest, this field contains the result of the encapsulated telephony
request. A nonzero request ID value indicates that the request is in progress and will complete

asynchronously, and a LINEERR_Constants value indicates synchronous failure.

Returns a positive request identifier if the function will be completed asynchronously or a negative
error number if an error occurs. The dwParam2 parameter of the corresponding LINE_REPLY
packet is zero if the function succeeds, or it is a negative error number if an error occurs. If the
client specified a nonzero value in the dwRequestID field of the packet, the same value MUST be

used for the returned positive request identifier. Common return values are as follows:

Name Value
LINEERR_INVALLINEHANDLE 0x8000002B
LINEERR_NOMEM 0x80000044

[MS-TRP-Diff] - v20210625
Telephony Remote Protocol

Copyright © 2021 Microsoft Corporation

Release: June 25, 2021

212 /610

Name Value

LINEERR_INVALADDRESSID 0x80000011
LINEERR_OPERATIONUNAVAIL | 0x80000049
LINEERR_INVALADDRESS 0x80000010
LINEERR_OPERATIONFAILED 0x80000048
LINEERR_INVALGROUPID 0x8000002A
LINEERR_RESOURCEUNAVAIL 0x8000004B

Reservedl (4 bytes): An unsigned 32-bit integer
ignored on receipt.

dwRequestID (4 bytes): An unsigned 32-bit inte

IpContext (4 bytes): An unsigned 32-bit integer.

. MUST be set to zero when sent and MUST be

ger. The identifier of the asynchronous request.

The opaque, client-specified value that is used by

the client upon request completion; MUST be returned by the server in the request completion

packet.

hLine (4 bytes): An HLINE. The handle to the line on which a call is to be picked up. This field MUST
have been obtained by sending the Open packet.

dwAddressID (4 bytes): An unsigned 32-bit inte

ger. The address on hLine at which the pickup is to

be originated. An address identifier is permanently associated with an address; the identifier
remains constant across operating system upgrades. A valid value of dwAddressID is in the range

0 to dwNumAddresses - 1. The client obtains d

wNumAddresses from the LINEDEVCAPS obtained

by sending a GetDevCaps packet to the remote server.

IphCallContext (4 bytes): An unsigned 32-bit int

eger. The opaque, client-specified value that is

used by the client upon request completion; MUST be returned by the server in the request

completion packet.

IpszDestAddress (4 bytes): An unsigned 32-bit i

nteger. The offset, in bytes, in the VarData field of

a null-terminated Unicode string that contains the address whose call is to be picked up.

IpszGroupID (4 bytes): An unsigned 32-bit integ

er. The offset, in bytes, in the VarData field of a

null-terminated Unicode string that contains the group identifier to which the alerting station

belongs.

Reserved?2 (4 bytes): An unsigned 32-bit integer
ignored on receipt. It can be any value.

Reserved3 (4 bytes): An unsigned 32-bit integer
ignored on receipt. It can be any value.

Reserved4 (4 bytes): An unsigned 32-bit integer
ignored on receipt. It can be any value.

Reserved5 (4 bytes): An unsigned 32-bit integer
ignored on receipt. It can be any value.

Reserved6 (4 bytes): An unsigned 32-bit integer
ignored on receipt. It can be any value.

Reserved7 (4 bytes): An unsigned 32-bit integer
ignored on receipt. It can be any value.

. This field is used for padding and MUST be

. This field is used for padding and MUST be

. This field is used for padding and MUST be

. This field is used for padding and MUST be

. This field is used for padding and MUST be

. This field is used for padding and MUST be

[MS-TRP-Diff] - v20210625

Telephony Remote Protocol

Copyright © 2021 Microsoft Corporation
Release: June 25, 2021

213/ 610

VarData (variable): Contains two null-terminated Unicode strings that are indicated by the
IpszDestAddress and IpszGrouplD fields.

The contents of this field MUST be DWORD-aligned, as specified in [MS-DTYP] section 2.2.9.

2.2.4.1.3.50 PrepareAddToConference

The PrepareAddToConference packet is transmitted from a TAPI client to a TAPI server in a remote
procedure call. Sending this packet prepares an existing conference call for the addition of another
party. It creates a new, temporary consultation call. The new consultation call can be subsequently
added to the conference call.

-
N
w

0(1(2|3|4|5|6|7|8|9(0(1(2[3|4|5|/6|7|8|9|0|1|2|3|4|5(6[7(8]9|0]|1

Reqg_Func

Reserved1

dwRequestID

IpContext

hConfCall

IphConsultCallContext

IpCallParams

dwAsciiCallParamsCodePage

Reserved2

Reserved3

Reserved4

Reserved5

Reserved6

Reserved?

Reserved8

VarData (variable)

Req_Func (4 bytes): An unsigned 32-bit integer. The identifier of the function that will be invoked
on the remote server. This value MUST be set to 57.

Return Values

214 /610

[MS-TRP-Diff] - v20210625

Telephony Remote Protocol

Copyright © 2021 Microsoft Corporation
Release: June 25, 2021

On completion of ClientRequest, this field contains the result of the encapsulated telephony
request. A nonzero request ID value indicates that the request is in progress and will complete
asynchronously, and a LINEERR_Constants value indicates synchronous failure.

Returns a positive request identifier if the function will be completed asynchronously or a negative
error number if an error occurs. The dwParam?2 parameter of the corresponding LINE_REPLY
packet is zero if the function succeeds, or it is a negative error number if an error occurs. If the
client specified a nonzero value in the dwRequestID field of the packet, the same value MUST be
used for the returned positive request identifier. Common return values are as follows:

Name Value

LINEERR_BEARERMODEUNAVAIL 0x80000003
LINEERR_INVALLINESTATE 0x8000002C
LINEERR_CALLUNAVAIL 0x80000005
LINEERR_INVALMEDIAMODE 0x8000002F
LINEERR_CONFERENCEFULL 0x80000007
LINEERR_INVALRATE 0x80000037
LINEERR_INUSE 0x8000000F
LINEERR_NOMEM 0x80000044
LINEERR_INVALADDRESSMODE 0x80000012
LINEERR_OPERATIONUNAVAIL 0x80000049
LINEERR_INVALBEARERMODE 0x80000016
LINEERR_OPERATIONFAILED 0x80000048
LINEERR_INVALCALLPARAMS 0x80000019
LINEERR_RATEUNAVAIL 0x8000004A
LINEERR_INVALCALLSTATE 0x8000001C
LINEERR_RESOURCEUNAVAIL 0x8000004B
LINEERR_INVALCONFCALLHANDLE | 0x80000020
LINEERR_USERUSERINFOTOOBIG 0x80000051

Reservedl (4 bytes): An unsigned 32-bit integer. MUST be set to zero when sent and MUST be
ignored on receipt.

dwRequestID (4 bytes): An unsigned 32-bit integer. The identifier of the asynchronous request.

IpContext (4 bytes): An unsigned 32-bit integer. The opaque, client-specified value that is used by
the client upon request completion; MUST be returned by the server in the request completion
packet.

hConfCall (4 bytes): An HCALL. The handle to a conference call. This field MUST have been obtained
by sending the SetUpConference packet. The application MUST be an owner of this call. The call
state of hConfCall MUST be connected.

215/ 610

[MS-TRP-Diff] - v20210625

Telephony Remote Protocol

Copyright © 2021 Microsoft Corporation
Release: June 25, 2021

IphConsultCallContext (4 bytes): An unsigned 32-bit integer. The opaque, client-specified value
that is used by the client upon request completion; MUST be returned by the server in the request
completion packet.

IpCallParams (4 bytes): An unsigned 32-bit integer. The offset, in bytes, in the VarData field of a
LINECALLPARAMS packet that contains call parameters to use when establishing the consultation
call. If this field is -1 (OXFFFFFFFF), no call parameters are sent.

dwAsciiCallParamsCodePage (4 bytes): An unsigned 32-bit integer. This MUST be set to
TAPI_NO_DATA (OxFFFFFFFF).

Reserved2 (4 bytes): An unsigned 32-bit integer. This field is used for padding and MUST be
ignored on receipt. It can be any value.

Reserved3 (4 bytes): An unsigned 32-bit integer. This field is used for padding and MUST be
ignored on receipt. It can be any value.

Reserved4 (4 bytes): An unsigned 32-bit integer. This field is used for padding and MUST be
ignored on receipt. It can be any value.

Reserved5 (4 bytes): An unsigned 32-bit integer. This field is used for padding and MUST be
ignored on receipt. It can be any value.

Reserved6 (4 bytes): An unsigned 32-bit integer. This field is used for padding and MUST be
ignored on receipt. It can be any value.

Reserved7 (4 bytes): An unsigned 32-bit integer. This field is used for padding and MUST be
ignored on receipt. It can be any value.

Reserved8 (4 bytes): An unsigned 32-bit integer. This field is used for padding and MUST be
ignored on receipt. It can be any value.

VarData (variable): Contains a LINECALLPARAMS packet.

The contents of this field MUST be DWORD-aligned, as specified in [MS-DTYP] section 2.2.9.

2.2.4.1.3.51 Redirect

The Redirect packet is transmitted from a TAPI client to a TAPI server in a remote procedure call.
Sending this packet redirects the specified offering call to the specified destination address.

0[{1(2|3|4|5|6|7|8|9(0(1|2[3|4|5|/6|7|8|9|0|1|2|3|4|5|6[7(8]9|0]|1

Reqg_Func

Reserved1

dwRequestID

hCall

IpszDestAddress

dwCountryCode

Reserved2

216 /610

[MS-TRP-Diff] - v20210625

Telephony Remote Protocol

Copyright © 2021 Microsoft Corporation
Release: June 25, 2021

Reserved3

Reserved4

Reserved5

Reserved6

Reserved7

Reserved8

Reserved9

Reserved10

VarData (variable)

Req_Func (4 bytes): An unsigned 32-bit integer. The identifier of the function that will be invoked

on the remote server. This value MUST be set to 60.

Return Values

On completion of ClientRequest, this field contains the result of the encapsulated telephony
request. A nonzero request ID value indicates that the request is in progress and will complete

asynchronously, and a LINEERR_Constants value indicates synchronous failure.

Returns a positive request identifier if the function will be completed asynchronously or a negative
error number if an error occurs. The dwParam2 parameter of the corresponding LINE_REPLY
packet is zero if the function succeeds, or it is a negative error number if an error occurs. If the
client specified a nonzero value in the dwRequestID field of the packet, the same value MUST be

used for the returned positive request identifier. Common return values are as follows:

Name Value

LINEERR_INVALCALLHANDLE 0x80000018
LINEERR_NOMEM 0x80000044
LINEERR_INVALCALLSTATE 0x8000001C
LINEERR_OPERATIONUNAVAIL | 0x80000049
LINEERR_INVALCOUNTRYCODE | 0x80000022
LINEERR_OPERATIONFAILED 0x80000048
LINEERR_INVALADDRESS 0x80000010
LINEERR_RESOURCEUNAVAIL 0x8000004B

Reservedl (4 bytes): An unsigned 32-bit integer. MUST be set to zero when sent and MUST be

ignored on receipt.

[MS-TRP-Diff] - v20210625

Telephony Remote Protocol

Copyright © 2021 Microsoft Corporation
Release: June 25, 2021

217/ 610

dwRequestID (4 bytes): An unsigned 32-bit integer. The identifier of the asynchronous request.

hCall (4 bytes): An HCALL. The handle to the call to be redirected. The client can obtain a valid hCall
from the LINE_CALLSTATE packet sent by the remote server. The application MUST be an owner
of the call. The call state of hCall must be offering. The client must have sent MakeCall packet to
have hCall in offering state.

IpszDestAddress (4 bytes): An unsigned 32-bit integer. The offset, in bytes, in the VarData field of
a null-terminated Unicode string that specifies the destination address.

dwCountryCode (4 bytes): An unsigned 32-bit integer. The country code of the party to which the
call is redirected. If a value of 0 is specified, a default is used by the implementation. This
parameter is not validated by TAPI when this function is called.

Reserved?2 (4 bytes): An unsigned 32-bit integer. This field is used for padding and MUST be
ignored on receipt. It can be any value.

Reserved3 (4 bytes): An unsigned 32-bit integer. This field is used for padding and MUST be
ignored on receipt. It can be any value.

Reserved4 (4 bytes): An unsigned 32-bit integer. This field is used for padding and MUST be
ignored on receipt. It can be any value.

Reserved5 (4 bytes): An unsigned 32-bit integer. This field is used for padding and MUST be
ignored on receipt. It can be any value.

Reserved6 (4 bytes): An unsigned 32-bit integer. This field is used for padding and MUST be
ignored on receipt. It can be any value.

Reserved? (4 bytes): An unsigned 32-bit integer. This field is used for padding and MUST be
ignored on receipt. It can be any value.

Reserved8 (4 bytes): An unsigned 32-bit integer. This field is used for padding and MUST be
ignored on receipt. It can be any value.

Reserved9 (4 bytes): An unsigned 32-bit integer. This field is used for padding and MUST be
ignored on receipt. It can be any value.

Reserved10 (4 bytes): An unsigned 32-bit integer. This field is used for padding and MUST be
ignored on receipt. It can be any value.

VarData (variable): MUST contain the null-terminated Unicode strings that are indicated by the
IpszDestAddress.

The contents of this field MUST be DWORD-aligned, as specified in [MS-DTYP] section 2.2.9.

2.2.4.1.3.52 ReleaseUserUserInfo

The ReleaseUserUserInfo packet is transmitted from a TAPI client to a TAPI server in a remote
procedure call. Sending this packet informs the service provider that the user-user information that is
contained in the LINECALLINFO packet has been processed and that subsequently received user-user
information can now be written into that packet. The service provider sends a LINE_CALLINFO packet
to indicate LINECALLINFOSTATE_USERUSERINFO when new information is available.

—
N
w

218/ 610

[MS-TRP-Diff] - v20210625

Telephony Remote Protocol

Copyright © 2021 Microsoft Corporation
Release: June 25, 2021

Reserved1

dwRequestID

hCall

Reserved2

Reserved3

Reserved4

Reserved5

Reserved6

Reserved7

Reserved8

Reserved9

Reserved10

Reserved11

Reserved12

Req_Func (4 bytes): An unsigned 32-bit integer. The identifier of the function that will be invoked
on the remote server. This value MUST be set to 62.

Return Values

On completion of ClientRequest, this field contains the result of the encapsulated telephony
request. A nonzero request ID value indicates that the request is in progress and will complete
asynchronously, and a LINEERR_Constants value indicates synchronous failure.

Returns a positive request identifier if the function will be completed asynchronously or a negative
error number if an error occurs. The dwParam2 parameter of the corresponding LINE_REPLY
packet is zero if the function succeeds, or it is a negative error number if an error occurs. If the
client specified a nonzero value in the dwRequestID field of the packet, the same value MUST be
used for the returned positive request identifier. Common return values are as follows:

Name Value

LINEERR_INVALCALLHANDLE | 0x80000018

LINEERR_OPERATIONFAILED | 0x80000048

LINEERR_NOMEM 0x80000044

LINEERR_RESOURCEUNAVAIL | 0x8000004B

219/ 610

[MS-TRP-Diff] - v20210625

Telephony Remote Protocol

Copyright © 2021 Microsoft Corporation
Release: June 25, 2021

Reservedl1 (4 bytes): An unsigned 32-bit integer. MUST be set to zero when sent and MUST be
ignored on receipt.

dwRequestID (4 bytes): An unsigned 32-bit integer. The identifier of the asynchronous request.

hCall (4 bytes): An HCALL. The handle to the call for which user-user information is to be released.
One way of obtaining a valid hCall is by sending the MakeCall packet. Also a valid hCall can be
obtained from LINE_CALLSTATE packet sent by the remote server. The application MUST be an
owner of the call. The call state of hCall can be any state.

Reserved?2 (4 bytes): An unsigned 32-bit integer. This field is used for padding and MUST be
ignored on receipt. It can be any value.

Reserved3 (4 bytes): An unsigned 32-bit integer. This field is used for padding and MUST be
ignored on receipt. It can be any value.

Reserved4 (4 bytes): An unsigned 32-bit integer. This field is used for padding and MUST be
ignored on receipt. It can be any value.

Reserved5 (4 bytes): An unsigned 32-bit integer. This field is used for padding and MUST be
ignored on receipt. It can be any value.

Reserved6 (4 bytes): An unsigned 32-bit integer. This field is used for padding and MUST be
ignored on receipt. It can be any value.

Reserved? (4 bytes): An unsigned 32-bit integer. This field is used for padding and MUST be
ignored on receipt. It can be any value.

Reserved8 (4 bytes): An unsigned 32-bit integer. This field is used for padding and MUST be
ignored on receipt. It can be any value.

Reserved9 (4 bytes): An unsigned 32-bit integer. This field is used for padding and MUST be
ignored on receipt. It can be any value.

Reserved10 (4 bytes): An unsigned 32-bit integer. This field is used for padding and MUST be
ignored on receipt. It can be any value.

Reservedl11 (4 bytes): An unsigned 32-bit integer. This field is used for padding and MUST be
ignored on receipt. It can be any value.

Reservedl12 (4 bytes): An unsigned 32-bit integer. This field is used for padding and MUST be
ignored on receipt. It can be any value.

2.2.4.1.3.53 RemoveFromConference

The RemoveFromConference packet is transmitted from a TAPI client to a TAPI server in a remote
procedure call. Sending this packet removes the specified call from the conference call to which it
currently belongs. The remaining calls in the conference call are unaffected.

-
N
w

0(1|2|3(4|5|6|7|8|9|0|1|2|3(4|5|6|7|8|9(0(1|2|3(4|5|6|7|8|9|0(1

Req_Func

Reserved1

dwRequestID

220/ 610

[MS-TRP-Diff] - v20210625

Telephony Remote Protocol

Copyright © 2021 Microsoft Corporation
Release: June 25, 2021

hCall

Reserved2

Reserved3

Reserved4

Reserved5

Reserved6

Reserved7

Reserved8

Reserved9

Reserved10

Reserved11

Reserved12

Req_Func (4 bytes): An unsigned 32-bit integer. Identifier of the function that will be invoked on
the remote server. This value MUST be set to 63.

Return Values

On completion of ClientRequest, this field will contain the result of the encapsulated telephony
request. A nonzero request ID value indicates that the request is in progress and will complete
asynchronously, and a LINEERR_Constants value indicates synchronous failure.

Returns a positive request identifier if the function will be completed asynchronously or a negative
error number if an error occurs. The dwParam2 parameter of the corresponding LINE_REPLY
packet is zero if the function succeeds, or it is a negative error number if an error occurs. If the
client specified a nonzero value in the dwRequestID field of the packet, the same MUST be used as
the value for the returned positive request identifier. Common return values are as follows:

Name Value

LINEERR_INVALCALLHANDLE 0x80000018

LINEERR_OPERATIONUNAVAIL | 0x80000049

LINEERR_INVALCALLSTATE 0x8000001C

LINEERR_OPERATIONFAILED 0x80000048

LINEERR_NOMEM 0x80000044

LINEERR_RESOURCEUNAVAIL | 0x8000004B

Reservedl (4 bytes): An unsigned 32-bit integer. MUST be set to zero when sent and MUST be
ignored on receipt.

221 /610

[MS-TRP-Diff] - v20210625

Telephony Remote Protocol

Copyright © 2021 Microsoft Corporation
Release: June 25, 2021

dwRequestID (4 bytes): An unsigned 32-bit integer. The identifier of the asynchronous request.

hCall (4 bytes): A HCALL. Handle to the call to be removed from the conference. The application
MUST be an owner of this call. The call state of hCall must be conferenced. The client must have
sent the AddToConference packet to have hCall in the conference state.

Reserved?2 (4 bytes): An unsigned 32-bit integer. This field is used for padding and MUST be
ignored on receipt. It can be any value.

Reserved3 (4 bytes): An unsigned 32-bit integer. This field is used for padding and MUST be
ignored on receipt. It can be any value.

Reserved4 (4 bytes): An unsigned 32-bit integer. This field is used for padding and MUST be
ignored on receipt. It can be any value.

Reserved5 (4 bytes): An unsigned 32-bit integer. This field is used for padding and MUST be
ignored on receipt. It can be any value.

Reserved6 (4 bytes): An unsigned 32-bit integer. This field is used for padding and MUST be
ignored on receipt. It can be any value.

Reserved?7 (4 bytes): An unsigned 32-bit integer. This field is used for padding and MUST be
ignored on receipt. It can be any value.

Reserved8 (4 bytes): An unsigned 32-bit integer. This field is used for padding and MUST be
ignored on receipt. It can be any value.

Reserved9 (4 bytes): An unsigned 32-bit integer. This field is used for padding and MUST be
ignored on receipt. It can be any value.

Reserved10 (4 bytes): An unsigned 32-bit integer. This field is used for padding and MUST be
ignored on receipt. It can be any value.

Reservedl1 (4 bytes): An unsigned 32-bit integer. This field is used for padding and MUST be
ignored on receipt. It can be any value.

Reservedl12 (4 bytes): An unsigned 32-bit integer. This field is used for padding and MUST be
ignored on receipt. It can be any value.

2.2.4.1.3.54 SecurecCall

The SecureCall packet is transmitted from a TAPI client to a TAPI server in a remote procedure call.
Sending this packet secures the call from any interruptions or interference that can affect the media
stream of the call.

0[{1(2|3|4|5|6|7|8|9(0(1|2[3|4|5|/6|7|8|9|0|1|2|3|4|5(6[7(8]9|0]1

Req_Func

Reserved1

dwRequestID

hCall

Reserved2

222 / 610

[MS-TRP-Diff] - v20210625

Telephony Remote Protocol

Copyright © 2021 Microsoft Corporation
Release: June 25, 2021

Reserved3

Reserved4

Reserved5

Reserved6

Reserved7

Reserved8

Reserved9

Reserved10

Reserved11

Reserved12

Req_Func (4 bytes): An unsigned 32-bit integer. The identifier of the function that will be invoked
on the remote server. This value MUST be set to 64.

Return Values

On completion of ClientRequest, this field contains the result of the encapsulated telephony
request. A nonzero request ID value indicates that the request is in progress and will complete
asynchronously, and a LINEERR_Constants value indicates synchronous failure.

Returns a positive request identifier if the function will be completed asynchronously or a negative
error number if an error occurs. The dwParam2 parameter of the corresponding LINE_REPLY
packet is zero if the function succeeds, or it is a negative error number if an error occurs. If the
client specified a nonzero value in the dwRequestID field of the packet, the same value MUST be
used for the returned positive request identifier. Common return values are as follows:

Name Value

LINEERR_INVALCALLHANDLE 0x80000018

LINEERR_OPERATIONUNAVAIL | 0x80000049

LINEERR_INVALCALLSTATE 0x8000001C

LINEERR_OPERATIONFAILED 0x80000048

LINEERR_NOMEM 0x80000044

LINEERR_RESOURCEUNAVAIL | 0x8000004B

Reservedl (4 bytes): An unsigned 32-bit integer. MUST be set to zero when sent and MUST be
ignored on receipt.

dwRequestID (4 bytes): An unsigned 32-bit integer. The identifier of the asynchronous request.

223/ 610

[MS-TRP-Diff] - v20210625

Telephony Remote Protocol

Copyright © 2021 Microsoft Corporation
Release: June 25, 2021

hCall (4 bytes): An HCALL. The handle to the call to be secured. One way of obtaining a valid hCall is
by sending the MakeCall packet. The application MUST be an owner of the call. The call state of
hCall can be any state.

Reserved2 (4 bytes): An unsigned 32-bit integer. This field is used for padding and MUST be
ignored on receipt. It can be any value.

Reserved3 (4 bytes): An unsigned 32-bit integer. This field is used for padding and MUST be
ignored on receipt. It can be any value.

Reserved4 (4 bytes): An unsigned 32-bit integer. This field is used for padding and MUST be
ignored on receipt. It can be any value.

Reserved5 (4 bytes): An unsigned 32-bit integer. This field is used for padding and MUST be
ignored on receipt. It can be any value.

Reserved6 (4 bytes): An unsigned 32-bit integer. This field is used for padding and MUST be
ignored on receipt. It can be any value.

Reserved7 (4 bytes): An unsigned 32-bit integer. This field is used for padding and MUST be
ignored on receipt. It can be any value.

Reserved8 (4 bytes): An unsigned 32-bit integer. This field is used for padding and MUST be
ignored on receipt. It can be any value.

Reserved9 (4 bytes): An unsigned 32-bit integer. This field is used for padding and MUST be
ignored on receipt. It can be any value.

Reserved10 (4 bytes): An unsigned 32-bit integer. This field is used for padding and MUST be
ignored on receipt. It can be any value.

Reservedl1 (4 bytes): An unsigned 32-bit integer. This field is used for padding and MUST be
ignored on receipt. It can be any value.

Reservedl12 (4 bytes): An unsigned 32-bit integer. This field is used for padding and MUST be
ignored on receipt. It can be any value.

2.2.4.1.3.55 SelectExtVersion

The SelectExtVersion packet is transmitted from a TAPI client to a TAPI server in a remote procedure
call. Sending this packet selects the indicated extension version for the indicated line device.
Subsequent requests operate according to that extension version.

—
N
w

0[{1(2|3|4|5|6|7|8|9(0(1|2[3|4|5|/6|7|8|9|0|1|2|3|4|5|6[7(8]9|0]|1

Reqg_Func

Reserved1

hLine

dwExtVersion

Reserved2

Reserved3

224 / 610

[MS-TRP-Diff] - v20210625

Telephony Remote Protocol

Copyright © 2021 Microsoft Corporation
Release: June 25, 2021

Reserved4

Reserved5

Reserved6

Reserved7

Reserved8

Reserved9

Reserved10

Reserved11

Reserved12

Req_Func (4 bytes): The identifier of the function that will be invoked on the remote server. This
value MUST be set to 128.

Return Values

On completion of ClientRequest, this field contains the result of the encapsulated telephony
request. A value of 0 indicates success, and a LINEERR_Constants value indicates failure. The
remote server MUST complete this call synchronously.

MUST return zero if the function succeeds or an error number if an error occurs. Common return
values are as follows:

Name Value

LINEERR_INCOMPATIBLEEXTVERSION | 0x8000000D

LINEERR_OPERATIONFAILED 0x80000048
LINEERR_NOMEM 0x80000044
LINEERR_RESOURCEUNAVAIL 0x8000004B
LINEERR_OPERATIONUNAVAIL 0x80000049

Reservedl (4 bytes): An unsigned 32-bit integer. MUST be set to zero when sent and MUST be
ignored on receipt.

hLine (4 bytes): An HLINE. The handle to the line where an extension version is to be selected. This
field MUST have been obtained by sending the Open packet.

dwExtVersion (4 bytes): An unsigned 32-bit integer. The extension version to be selected. This
version number has been negotiated by using the NegotiateExtVersion packet. The most-
significant WORD is the major version number and the least-significant WORD is the minor version
number. Calling this function with a dwExtVersion of zero cancels the current selection.

Reserved2 (4 bytes): An unsigned 32-bit integer. This field is used for padding and MUST be
ignored on receipt. It can be any value.

225/ 610

[MS-TRP-Diff] - v20210625

Telephony Remote Protocol

Copyright © 2021 Microsoft Corporation
Release: June 25, 2021

Reserved3 (4 bytes): An unsigned 32-bit integer.
ignored on receipt. It can be any value.

Reserved4 (4 bytes): An unsigned 32-bit integer.
ignored on receipt. It can be any value.

Reserved5 (4 bytes): An unsigned 32-bit integer.
ignored on receipt. It can be any value.

Reserved6 (4 bytes): An unsigned 32-bit integer.
ignored on receipt. It can be any value.

Reserved?7 (4 bytes): An unsigned 32-bit integer.
ignored on receipt. It can be any value.

Reserved8 (4 bytes): An unsigned 32-bit integer.
ignored on receipt. It can be any value.

Reserved9 (4 bytes): An unsigned 32-bit integer.
ignored on receipt. It can be any value.

This field is used for padding and MUST be

This field is used for padding and MUST be

This field is used for padding and MUST be

This field is used for padding and MUST be

This field is used for padding and MUST be

This field is used for padding and MUST be

This field is used for padding and MUST be

Reserved10 (4 bytes): An unsigned 32-bit integer. This field is used for padding and MUST be

ignored on receipt. It can be any value.

Reservedl1 (4 bytes): An unsigned 32-bit integer. This field is used for padding and MUST be

ignored on receipt. It can be any value.

Reservedl12 (4 bytes): An unsigned 32-bit integer. This field is used for padding and MUST be

ignored on receipt. It can be any value.

2.2.4.1.3.56 SendUserUserInfo

The SendUserUserInfo packet is transmitted from a TAPI client to a TAPI server in a remote procedure
call. Sending this packet sends user-user information to the remote party on the specified call.

e

4156

7

N
w

Reqg_Func

Reserved1

dwRequestID

hCall

IpsUserUserInfo

dwSize

Reserved2

Reserved3

Reserved4

[MS-TRP-Diff] - v20210625

Telephony Remote Protocol

Copyright © 2021 Microsoft Corporation
Release: June 25, 2021

226 / 610

Reserved5

Reserved6

Reserved7

Reserved8

Reserved9

Reserved10

VarData (variable)

Req_Func (4 bytes): An unsigned 32-bit integer. The identifier of the function that will be invoked
on the remote server. This value MUST be set to 65.

Return Values

On completion of ClientRequest, this field contains the result of the encapsulated telephony
request. A nonzero request ID value indicates that the request is in progress and will complete
asynchronously, and a LINEERR_Constants value indicates synchronous failure.

Returns a positive request identifier if the function will be completed asynchronously or a negative
error number if an error occurs. The dwParam?2 parameter of the corresponding LINE_REPLY
packet is zero if the function succeeds, or it is a negative error number if an error occurs. If the
client specified a nonzero value in the dwRequestID field of the packet, the same value MUST be
used for the returned positive request identifier. Common return values are as follows:

Name Value

LINEERR_INVALCALLHANDLE 0x80000018
LINEERR_OPERATIONFAILED 0x80000048
LINEERR_INVALCALLSTATE 0x8000001C
LINEERR_RESOURCEUNAVAIL 0x8000004B
LINEERR_NOMEM 0x80000044
LINEERR_USERUSERINFOTOOBIG | 0x80000051
LINEERR_OPERATIONUNAVAIL 0x80000049

Reservedl (4 bytes): An unsigned 32-bit integer. MUST be set to zero when sent and MUST be
ignored on receipt.

dwRequestID (4 bytes): An unsigned 32-bit integer. The identifier of the asynchronous request.

hCall (4 bytes): An HCALL. The handle to the call on which to send user-user information. One way
of obtaining a valid hCall is by sending the MakeCall packet. The application MUST be an owner of
the call. The call state of hCall must be connected, offering, accepted, or ringback.

227/ 610

[MS-TRP-Diff] - v20210625

Telephony Remote Protocol

Copyright © 2021 Microsoft Corporation
Release: June 25, 2021

IpsUserUserInfo (4 bytes): An unsigned 32-bit integer. The offset, in bytes, in the VarData field of
user-user information to send to the remote party. When this field is set to -1 (OxFFFFFFFF), no
user-user information is to be sent.

dwsSize (4 bytes): An unsigned 32-bit integer. The size, in bytes, including the null terminator, of the
user-user information in IpsUserUserInfo. If IpsUserUserInfo is -1 (OxFFFFFFFF), no user-user
information MUST be sent and dwSize MUST be ignored.

Reserved2 (4 bytes): An unsigned 32-bit integer. This field is used for padding and MUST be
ignored on receipt. It can be any value.

Reserved3 (4 bytes): An unsigned 32-bit integer. This field is used for padding and MUST be
ignored on receipt. It can be any value.

Reserved4 (4 bytes): An unsigned 32-bit integer. This field is used for padding and MUST be
ignored on receipt. It can be any value.

Reserved5 (4 bytes): An unsigned 32-bit integer. This field is used for padding and MUST be
ignored on receipt. It can be any value.

Reserved6 (4 bytes): An unsigned 32-bit integer. This field is used for padding and MUST be
ignored on receipt. It can be any value.

Reserved7 (4 bytes): An unsigned 32-bit integer. This field is used for padding and MUST be
ignored on receipt. It can be any value.

Reserved8 (4 bytes): An unsigned 32-bit integer. This field is used for padding and MUST be
ignored on receipt. It can be any value.

Reserved9 (4 bytes): An unsigned 32-bit integer. This field is used for padding and MUST be
ignored on receipt. It can be any value.

Reserved10 (4 bytes): An unsigned 32-bit integer. This field is used for padding and MUST be
ignored on receipt. It can be any value.

VarData (variable): Contains the user information that is indicated in the IpsUserUserInfo field. The
user information can be an ASCII or Unicode string, and this data is opaque to the protocol.

The contents of this field MUST be DWORD-aligned, as specified in [MS-DTYP] section 2.2.9.

2.2.4.1.3.57 SetAgentActivity

The SetAgentActivity packet is transmitted from a TAPI client to a TAPI server in a remote procedure
call. Sending this packet sets the agent activity code that is associated with a particular address.

0[{1(2|3|4|5|6|7|8|9(0(1|2[3|4|5|/6|7|8|9|0|1|2|3|4|5(6[7(8]9|0]1

Req_Func

Reserved1

dwRequestID

hLine

dwAddressID

228 /610

[MS-TRP-Diff] - v20210625

Telephony Remote Protocol

Copyright © 2021 Microsoft Corporation
Release: June 25, 2021

dwActivityID

Reserved2

Reserved3

Reserved4

Reserved5

Reserved6

Reserved7

Reserved8

Reserved9

Reserved10

Req_Func (4 bytes): An unsigned 32-bit integer. The identifier of the function that will be invoked

on the remote server. This value MUST be set to 66.

Return Values

On completion of ClientRequest, this field contains the result of the encapsulated telephony
request. A nonzero request ID value i