
1 / 218

[MS -TDS] - v20201001
Tabular Data Stream Protocol
Copyright © 2020 Microsoft Corporation
Release: October 1, 2020

[MS -TDS]:

Tabular Data Stream Protocol

Intellectual Property Rights Notice for Open Specifications Documentation

Á Technical Documentation. Microsoft publishes Open Specifications documentation (ñthis
documentationò) for protocols, file formats, data portability, computer languages, and standards
support. Additionally, overview documents cover inter -protocol relationships and interactions.

Á Copyrights . This documentation is covered by Microsoft copyrights. Regardless of any other
terms that are contained in the terms of use for the Microsoft website that hosts this
documentation, you can make copies of it in order to develop implementations of the technologies
that are described in this documentation and can distribute portions of it in your implementations
that use these technologies or in your documentation as necessary to properly document the

implementation. You can also distribute in your i mplementation, with or without modification, any
schemas, IDLs, or code samples that are included in the documentation. This permission also

applies to any documents that are referenced in the Open Specifications documentation.
Á No Trade Secrets . Microsoft does not claim any trade secret rights in this documentation.
Á Patents . Microsoft has patents that might cover your implementations of the technologies

described in the Open Specifications documentation. Neither this notice nor Microsoft's delivery of
thi s documentation grants any licenses under those patents or any other Microsoft patents.
However, a given Open Specifications document might be covered by the Microsoft Open
Specifications Promi se or the Microsoft Community Promise . If you would prefer a written license,

or if the technologies described in this documentation are not covered by the Open Specifications
Promise or Commun ity Promise, as applicable, patent licenses are available by contacting
iplg@microsoft.com .

Á License Programs . To see all of the protocols in scope under a specific license program and the
associated patents, visit the Patent Map .

Á Trademarks . The names of companies and products contained in this documentation might be

covered by trademarks or similar intellectual property rights. This noti ce does not grant any
licenses under those rights. For a list of Microsoft trademarks, visit
www.microsoft.com/trademarks .

Á Fictitious Names . The example companies, organizations, products, domain names, email
addresses, logos, people, places, and events that are depicted in this documentation are fictitious.
No association with any real company, organization, product, domain name, email address, logo,
person, place, or event is intended or should be infe rred.

Reservation of Rights . All other rights are reserved, and this notice does not grant any rights other
than as specifically described above, whether by implication, estoppel, or otherwise.

Tools . The Open Specifications documentation does not require the use of Microsoft programming
tools or programming environments in order for you to develop an implementation. If you have access
to Microsoft programming tools and environments, you are free to take advantage of them. Certain
Open Specifications docum ents are intended for use in conjunction with publicly available standards
specifications and network programming art and, as such, assume that the reader either is familiar

with the aforementioned material or has immediate access to it.

Support. For quest ions and support, please contact dochelp@microsoft.com .

https://go.microsoft.com/fwlink/?LinkId=214445
https://go.microsoft.com/fwlink/?LinkId=214445
https://go.microsoft.com/fwlink/?LinkId=214448
mailto:iplg@microsoft.com
https://msdn.microsoft.com/en-us/openspecifications/dn750984
https://www.microsoft.com/trademarks
mailto:dochelp@microsoft.com

2 / 218

[MS -TDS] - v20201001
Tabular Data Stream Protocol
Copyright © 2020 Microsoft Corporation
Release: October 1, 2020

Revision Summary

Date
Revision
History

Revision
Class Comments

3/14/2008 0.1 Major Initial Availability.

6/20/2008 0.1.1 Editorial Changed language and formatting in the technical content.

7/25/2008 0.1.2 Editorial Changed language and formatting in the technical content.

8/29/2008 0.1.3 Editorial Changed language and formatting in the technical content.

10/24/2008 0.1.4 Editorial Changed language and formatting in the technical content.

12/5/2008 0.2 Minor Clarified the meaning of the technical content.

1/16/2009 0.3 Minor Clarified the meaning of the technical content.

2/27/2009 0.4 Minor Clarified the meaning of the technical content.

4/10/2009 0.5 Minor Clarified the meaning of the technical content.

5/22/2009 0.5.1 Editorial Changed language and formatting in the technical content.

7/2/2009 1.0 Major Updated and revised the technical content.

8/14/2009 1.1 Minor Clarified the meaning of the technical content.

9/25/2009 2.0 Major Updated and revised the technical content.

11/6/2009 3.0 Major Updated and revised the technical content.

12/18/2009 4.0 Major Updated and revised the technical content.

1/29/2010 4.1 Minor Clarified the meaning of the technical content.

3/12/2010 5.0 Major Updated and revised the technical content.

4/23/2010 6.0 Major Updated and revised the technical content.

6/4/2010 7.0 Major Updated and revised the technical content.

7/16/2010 8.0 Major Updated and revised the technical content.

8/27/2010 8.0 None
No changes to the meaning, language, or formatting of the
technical content.

10/8/2010 9.0 Major Updated and revised the technical content.

11/19/2010 9.0 None
No changes to the meaning, language, or formatting of the
technical content.

1/7/2011 9.1 Minor Clarified the meaning of the technical content.

2/11/2011 9.2 Minor Clarified the meaning of the technical content.

3/25/2011 9.3 Minor Clarified the meaning of the technical content.

5/6/2011 9.4 Minor Clarified the meaning of the technical content.

6/17/2011 10.0 Major Updated and revised the technical content.

9/23/2011 11.0 Major Updated and revised the technical content.

3 / 218

[MS -TDS] - v20201001
Tabular Data Stream Protocol
Copyright © 2020 Microsoft Corporation
Release: October 1, 2020

Date
Revision
History

Revision
Class Comments

12/16/2011 12.0 Major Updated and revised the technical content.

3/30/2012 12.1 Minor Clarified the meaning of the technical content.

7/12/2012 12.2 Minor Clarified the meaning of the technical content.

10/25/2012 12.2 None
No changes to the meaning, language, or formatting of the
technical content.

1/31/2013 13.0 Major Updated and revised the technical content.

8/8/2013 14.0 Major Updated and revised the technical content.

11/14/2013 15.0 Major Updated and revised the technical content.

2/13/2014 16.0 Major Updated and revised the technical content.

5/15/2014 17.0 Major Updated and revised the technical content.

6/30/2015 18.0 Major Significantly changed the technical content.

10/16/2015 19.0 Major Significantly changed the technical content.

5/10/2016 19.0 None
No changes to the meaning, language, or formatting of the
technical content.

7/14/2016 19.0 None
No changes to the meaning, language, or formatting of the
technical content.

3/16/2017 20.0 Major Significantly changed the technical content.

6/1/2017 20.0 None
No changes to the meaning, language, or formatting of the
technical content.

8/16/2017 21.0 Major Significantly changed the technical content.

9/15/2017 22.0 Major Significantly changed the technical content.

12/1/2017 23.0 Major Significantly changed the technical content.

3/16/2018 24.0 Major Significantly changed the technical content.

9/12/2018 25.0 Major Significantly changed the technical content.

3/13/2019 26.0 Major Significantly changed the technical content.

10/16/2019 27.0 Major Significantly changed the technical content.

11/1/2019 28.0 Major Significantly changed the technical content.

6/15/2020 29.0 Major Significantly changed the technical content.

10/1/2020 30.0 Major Significantly changed the technical content.

4 / 218

[MS -TDS] - v20201001
Tabular Data Stream Protocol
Copyright © 2020 Microsoft Corporation
Release: October 1, 2020

Table of Contents

1 Introduction 8
1.1 Glossary 8
1.2 References 10

1.2.1 Normative References 10
1.2.2 Informative References 11

1.3 Overview 13
1.4 Relationship to Other Protocols 14
1.5 Prerequisites/Preconditions 15
1.6 Applicability Statement 15
1.7 Versioning and Capability Negotiation 15
1.8 Vendor -Exten sible Fields 16
1.9 Standards Assignments 16

2 Messages 17
2.1 Transport 17
2.2 Message Syntax 17

2.2.1 Client Messages 17
2.2.1.1 Pre-Login 18
2.2.1.2 Login 18
2.2.1.3 Federated Authentication Token 18
2.2.1.4 SQL Batch 18
2.2.1.5 Bulk Load 18
2.2.1.6 Remote Procedure Call 19
2.2.1.7 Attention 19
2.2.1.8 Transaction Manager Request 19

2.2.2 Server Messages 19
2.2.2.1 Pre-Login Response 20
2.2.2.2 Login Response 20
2.2.2.3 Federated Authentication Information 20
2.2.2.4 Row Data 20
2.2.2.5 Return Status 20
2.2.2.6 Return Parameters 20
2.2.2.7 Response Completion 21
2.2.2.8 Error and Info 21
2.2.2.9 Attention Acknowledgment 21

2.2.3 Packets 21
2.2.3.1 Packet Header 22

2.2.3.1.1 Type 22
2.2.3.1.2 Status 23
2.2.3.1.3 Length 24
2.2.3.1.4 SPID 24
2.2.3.1.5 PacketID 24
2.2.3.1.6 Window 24

2.2.3.2 Packet Data 24
2.2.4 Packet Data Token and Tokenless Data Streams 25

2.2.4.1 Tokenless Stream 26
2.2.4.2 Token Stream 26

2.2.4.2.1 Token Definition 26
2.2.4.2.1.1 Zero Length Token(xx01xxxx) 26
2.2.4.2.1.2 Fixed Length Token(xx11xxxx) 26
2.2.4.2.1.3 Variable Length Tokens(xx10xxxx) 27
2.2.4.2.1.4 Variable Count Tokens(xx00xxxx) 27

2.2.4.3 Done and Attention Tokens 27
2.2.5 Grammar Definition for Token Description 28

2.2.5.1 General Rules 28

5 / 218

[MS -TDS] - v20201001
Tabular Data Stream Protocol
Copyright © 2020 Microsoft Corporation
Release: October 1, 2020

2.2.5.1.1 Least Significant Bit Order 30
2.2.5.1.2 Collation Rule Definition 30

2.2.5.2 Data Stream Types 31
2.2.5.2.1 Unknown Length Data Streams 31
2.2.5.2.2 Variable -Length Data Streams 31
2.2.5.2.3 Data Typ e Dependent Data Streams 32

2.2.5.3 Packet Data Stream Headers - ALL_HEADERS Rule Definition 33
2.2.5.3.1 Query Notifications Header 34
2.2.5.3.2 Transaction Descriptor Header 34
2.2.5.3.3 Trace Activity Header 35

2.2.5.4 Data Type Definitions 35
2.2.5.4.1 Zero -Length Data Types 35
2.2.5.4.2 Fixed -Length Data Types 36
2.2.5.4.3 Variable -Length Data Types 36
2.2.5.4.4 Partially Length -Prefixed Data Types 39

2.2.5.5 Data Type Details 40
2.2.5.5.1 System Data Type Values 40

2.2.5.5.1.1 Integers 40
2.2.5.5.1.2 Timestamp 40
2.2.5.5.1.3 Character and Binary Strings 40
2.2.5.5.1.4 Fixed -Point Numbers 40
2.2.5.5.1.5 Floating -Point Numbers 40
2.2.5.5.1.6 Decimal/Numeric 41
2.2.5.5.1.7 GUID 41
2.2.5.5.1.8 Date/Times 41

2.2.5.5.2 Common Language Runtime (CLR) Instances 42
2.2.5.5.3 XML Values 42
2.2.5.5.4 SQL_VARIANT Values 43
2.2.5.5.5 Table Valued Parameter (TVP) Values 43

2.2.5.5.5.1 Metadata 44
2.2.5.5.5.2 Optional Metadata Tokens 46
2.2.5.5.5.3 TDS Type Restrictions 48

2.2.5.6 Type Info Rule Definition 49
2.2.5.7 Encryption Key Rule Definition 49
2.2.5.8 Data Packet Stream Tokens 50

2.2.6 Packet Header Message Type Stream Definition 51
2.2.6.1 Bulk Load BCP 51
2.2.6.2 Bulk Load Update Text/Write Text 52
2.2.6.3 Federated Authen tication Token 52
2.2.6.4 LOGIN7 53
2.2.6.5 PRELOGIN 66
2.2.6.6 RPC Request 71
2.2.6.7 SQLBatch 75
2.2.6 .8 SSPI Message 75
2.2.6.9 Transaction Manager Request 76

2.2.7 Packet Data Token Stream Definition 80
2.2.7.1 ALTMETADATA 80
2.2.7.2 ALTROW 82
2.2.7.3 COLINFO 83
2.2.7.4 COLMETADATA 84
2.2.7.5 DATACLASSIFICATION 87
2.2.7.6 DONE 90
2.2.7.7 DONEINPROC 91
2.2.7.8 DONEPROC 92
2.2.7.9 ENVCHANGE 93
2.2.7.10 ERROR 97
2.2.7.11 FEATUREEXTACK 100
2.2.7.12 FEDAUTHINFO 104

6 / 218

[MS -TDS] - v20201001
Tabular Data Stream Protocol
Copyright © 2020 Microsoft Corporation
Release: October 1, 2020

2.2.7.13 INFO 105
2.2.7.14 LOGINACK 106
2.2.7.15 NBCROW................................ 108
2.2.7.16 OFFSET 109
2.2.7.17 ORDER 110
2.2.7.18 RETURNSTATUS 111
2.2.7.19 RETURNVALUE 111
2.2.7.20 ROW 114
2.2.7.21 SESSIONSTATE 115
2.2.7.22 SSPI 116
2.2.7.23 TABNAME 117
2.2.7.24 TVP_ROW 118

3 Protocol Details 120
3.1 Common Details 120

3.1.1 Abstract Data Model 120
3.1 .2 Timers 120
3.1.3 Initialization 120
3.1.4 Higher -Layer Triggered Events 120
3.1.5 Message Processing Events and Sequencing Rules 120
3.1 .6 Timer Events 125
3.1.7 Other Local Events 125

3.2 Client Details 126
3.2.1 Abstract Data Model 126
3.2.2 Timers 127
3.2.3 Initialization 127
3.2.4 Higher -Layer Triggered Events 128
3.2.5 Message Processing Events and Sequencing Rules 129

3.2.5.1 Sent Initial PRELOGIN Packet State 129
3.2.5.2 Sent TLS/SSL Negotiation Packet State 130
3.2.5.3 Sent LOGIN7 Record with Complete Authentication Token State 131
3.2.5.4 Sent LOGIN7 Record with SPNEGO Packet State 131
3.2.5.5 Sent LOGIN7 Record with Federated Authentication Information Request State

 132
3.2.5.6 Logged In State 132
3.2.5.7 Sent Client Request State 132
3.2.5.8 Sent Attention State 132
3.2.5.9 Routing Completed State 133
3.2.5.10 Final State 133

3.2.6 Timer Events 133
3.2.7 Other Local Events 133

3.3 Server Details 133
3.3.1 Abstract Data Model 134
3.3.2 Timers 135
3.3.3 Initialization 135
3.3.4 Higher -Layer Triggered Events 135
3.3.5 Message Processing Events and Sequencing Rules 135

3.3.5.1 Initial State 135
3.3.5.2 TLS/SSL Negotiation State 136
3.3.5.3 Login Ready State 136
3.3.5.4 SPNEGO Negotiation State 138
3.3.5.5 Federated Authentication Ready State 138
3.3.5.6 Logg ed In State 139
3.3.5.7 Client Request Execution State 139
3.3.5.8 Routing Completed State 139
3.3.5.9 Final State 140

3.3.6 Timer Events 140
3.3.7 Othe r Local Events 140

7 / 218

[MS -TDS] - v20201001
Tabular Data Stream Protocol
Copyright © 2020 Microsoft Corporation
Release: October 1, 2020

4 Protocol Examples 141
4.1 Pre-Login Request 141
4.2 Login Request 142
4.3 Login Request with Federated Authentication 144
4.4 Login Response 151
4.5 Login Response with Federated Authentication Feature Extension Acknowledgement 155
4.6 SQL Batch Client Request 161
4.7 SQL Batch Server Respons e 162
4.8 RPC Client Request 163
4.9 RPC Server Response 165
4.10 Attention Request 166
4.11 SSPI Message 166
4.12 Bulk Load 167
4.13 Transaction Manager Request 168
4.14 TVP Insert Statement 169
4.15 SparseColumn Select Statement 172
4.16 FeatureExt with S ESSIONRECOVERY Feature Data 177
4.17 FeatureExtAck with SESSIONRECOVERY Feature Data 182
4.18 Table Response with SESSIONSTATE Token Data 188
4.19 Token Stream Communication 190

4.19.1 Sending a SQL Batch 190
4.19.2 Out -of -Band Attention Signal 190

4.20 FeatureExt with AZURESQLSUPPORT F eature Data 191
4.21 FeatureExtAck with AZURESQLSUPPORT Feature Data 194

5 Security 204
5.1 Security Considerations for Implementers 204
5.2 Index of Security Parameters 204

6 Appendix A: Product Behavior 206

7 Change Tracking 213

8 Index 214

8 / 218

[MS -TDS] - v20201001
Tabular Data Stream Protocol
Copyright © 2020 Microsoft Corporation
Release: October 1, 2020

1 Introduction

The Tabular Data Stream (TDS) protocol is an application layer request/response protocol that
facilitates interaction with a database server and provides for the following:

Á Authentication and channel encryption negotiation.

Á Specification of requests in SQL (including Bulk Insert).

Á Invocation of a stored procedure or user -defined function, also known as a remote procedure

call (RPC) .

Á The return of data.

Á Transaction manager requests.

Sections 1.5, 1.8, 1.9, 2, and 3 of this specification are normative. All other sections and examples in
this spec ification are informative.

1.1 Glossary

This document uses the following terms:

big - endian : Multiple -byte values that are byte -ordered with the most significant byte stored in the
memory location with the lowest address.

bulk insert : A method for efficiently populating the rows of a table from the client to the server.

common language runtime user - defined type (CLR UDT) : A data type that is created and
defined by the user on a database server that supports SQL by using a Microsoft .NET
Framework common language runtime assembly.

data classification : An information protection framework that includes sensitivity information
about the data that is being returned from a query. The sensitivity information includes labels

and information type s and their identifiers.

data stream : A stream of data that corresponds to specific Tabular Data Stream (TDS) semantics.

A single data stream can represent an entire TDS message or only a specific, well -defined
portion of a TDS message. A TDS data stream c an span multiple network data packets.

Distributed Transaction Coordinator (DTC) : A Windows service that coordinates transactions
across multiple resource managers, including databases. For more information, see [MSDN -
DTC] .

enclave : A protected region of memory that is used only on the server side. This region is within

the address space of SQL Server, and it acts as a trusted execution environment. Only code that
runs within the enclave can a ccess data within that enclave. Neither the data nor the code inside
the enclave can be viewed from the outside, even with a debugger.

enclave computations : Locally enabled cryptographic operations and other operations in

Transact -SQL queries on encrypted columns that are performed inside an enclave.

federated authentication : An authentication mechanism that allows a security token service
(STS) in one trust domain to delegate user authentication to an identity provider in another

trust domain, while genera ting a security token for the user, when there is a trust relationship
between the two domains.

final state : The application layer has finished the communication, and the lower - layer connection
should be disconnected.

https://go.microsoft.com/fwlink/?LinkId=89994
https://go.microsoft.com/fwlink/?LinkId=89994

9 / 218

[MS -TDS] - v20201001
Tabular Data Stream Protocol
Copyright © 2020 Microsoft Corporation
Release: October 1, 2020

Global Transactions : A feature that al lows users to execute transactions across multiple
databases that are hosted in a shared service, such as Microsoft Azure SQL Database.

initial state : A prerequisite for application - layer communication. A lower - layer channel that can
provide reliable commu nication must be established.

interface : A group of related function prototypes in a specific order, analogous to a C++ virtual
interface. Multiple objects, of different object class, may implement the same interface. A
derived interface may be created by adding methods after the end of an existing interface. In
the Distributed Component Object Model (DCOM), all interfaces initially derive from IUnknown.

little - endian : Multiple -byte values that are byte -ordered with the least significant byte stored in
the memory location with the lowest address.

Microsoft/Windows Data Access Components (MDAC/WDAC) : With Microsoft/Windows Data

Access Components (MDAC/WDAC), developers can connect to and use data from a wide variety
of relational and nonrelational data source s. You can connect to many different data sources
using Open Database Connectivity (ODBC), ActiveX Data Objects (ADO), or OLE DB. You can do

this through providers and drivers that are built and shipped by Microsoft, or that are developed
by various third parties. For more information, see [MSDN -MDAC] .

Multiple Active Result Sets (MARS) : A feature in Microsoft SQL Server that allows applications

to have more than one pending request per conne ction. For more information, see [MSDN -
MARS] .

nullable column : A database table column that is allowed to contain no value for a given row.

out - of - band : A type of event that happens outside o f the standard sequence of events. For
example, an out -of -band signal or message can be sent during an unexpected time and will not
cause any protocol parsing issues.

query notification : A feature in SQL Server that allows the client to register for notifi cation on

changes to a given query result. For more information, see [MSDN -QUERYNOTE].

remote procedure call (RPC) : A communication protocol used primarily between client and

server. The ter m has three definitions that are often used interchangeably: a runtime
environment providing for communication facilities between computers (the RPC runtime); a set
of request -and - response message exchanges between computers (the RPC exchange); and the
sin gle message from an RPC exchange (the RPC message). For more information, see [C706] .

result set : A list of records that results from running a stored procedure or query, or applying a

filter. The structure and content of the data in a result set varies according to the
implementation.

Security Support Provider Interface (SSPI) : An API that allows conn ected applications to call
one of several security providers to establish authenticated connections and to exchange data
securely over those connections. It is equivalent to Generic Security Services (GSS) -API, and
the two are on - the -wire compatible.

Sessi on Multiplex Protocol (SMP) : A multiplexing protocol that enables multiple logical client
connections to share a single transport connection to a server. Used by Multiple Active Result

Sets (MARS) . For more information, see [MC -SMP] .

Simple and Protected GSS - API Negotiation Mechanism (SPNEGO) : An authentication
mechanism that allows Gener ic Security Services (GSS) peers to determine whether their
credentials support a common set of GSS -API security mechanisms, to negotiate different
options within a given security mechanism or different options from several security

mechanisms, to select a service, and to establish a security context among themselves using
that service. SPNEGO is specified in [RFC4178] .

https://go.microsoft.com/fwlink/?LinkId=213737
https://go.microsoft.com/fwlink/?LinkId=98459
https://go.microsoft.com/fwlink/?LinkId=98459
https://go.microsoft.com/fwlink/?LinkId=119984
https://go.microsoft.com/fwlink/?LinkId=89824
%5bMC-SMP%5d.pdf#Section_04c8edde371d4af5bb33a39b3948f0af
https://go.microsoft.com/fwlink/?LinkId=90461

10 / 218

[MS -TDS] - v20201001
Tabular Data Stream Protocol
Copyright © 2020 Microsoft Corporation
Release: October 1, 2020

SQL batch : A set of SQL statements .

SQL Server Native Client (SNAC) : SNAC contains the SQL Server ODBC driver and the SQL

Server OLE DB provider in one native dynamic link library (DLL) supporting applicati ons using
native -code APIs (ODBC, OLE DB, and ADO) to Microsoft SQL Server. For more information, see

[MSDN -SNAC] .

SQL Server User Authentication (SQLAUTH) : An authentication mechanism that is used to
support user accounts on a database server that supports SQL. The username and password of
the user account are transmitted as part of the login message that the client sends to the
server.

SQL statement : A character string expression in a langu age that the server understands.

stored procedure : A precompiled collection of SQL statements and, optionally, control -of - flow

statements that are stored under a name and processed as a unit. They are stored in a SQL
database and can be run with one call f rom an application. Stored procedures return an integer
return code and can additionally return one or more result sets. Also referred to as sproc.

table response : A collection of data, all formatted in a specific manner, that is sent by the server
to the client for the purpose of communicating the result of a client request. The server returns
the result in a table response format for LOGIN7, SQL, and remote procedure call (RPC)

requests.

TDS session : A successfully established communication over a period of time between a client and
a server on which the Tabular Data Stream (TDS) protocol is used for message exchange.

transaction manager : The party that is responsible for managing and distributing the outcome of
atomic transactions. A transaction manager i s either a root transaction manager or a
subordinate transaction manager for a specified transaction.

Unicode : A character encoding standard developed by the Unicode Consortium that represents

almost all of the written languages of the world. The Unicode standard [UNICODE5.0.0/2007]
provides three forms (UTF -8, UTF -16, and UTF -32) and seven schemes (UTF -8, UTF -16, UTF -16
BE, UTF-16 LE, UTF-32, UTF -32 LE, and UTF -32 BE).

Virtual Interface Architecture (VIA) : A high -speed interconnect that requires special hardware
and drivers that are provided by third parties.

MAY, SHOULD, MUST, SHOULD NOT, MUST NOT: These terms (in all caps) are us ed as defined
in [RFC2119] . All statements of optional behavior use either MAY, SHOULD, or SHOULD NOT.

1.2 References

Links to a document in the Microsoft Open Specifications l ibrary point to the correct section in the
most recently published version of the referenced document. However, because individual documents

in the library are not updated at the same time, the section numbers in the documents may not
match. You can confir m the correct section numbering by checking the Errata .

1.2.1 Normative References

We conduct frequent surveys of the normative references to assure their continued availability. If you

have any issue with finding a normative reference, please contact dochelp@microsoft.com . We will
assist you in finding the relevant information.

[IANAPORT] IANA, "Service Name and Transport Protocol Port Number Registry",
http://www.iana.org/assignments/service -names -port -numbers/service -names -por t -numbers.xhtml

https://go.microsoft.com/fwlink/?LinkId=213738
https://go.microsoft.com/fwlink/?LinkId=154659
https://go.microsoft.com/fwlink/?LinkId=90317
https://go.microsoft.com/fwlink/?linkid=850906
mailto:dochelp@microsoft.com
https://go.microsoft.com/fwlink/?LinkId=89888

11 / 218

[MS -TDS] - v20201001
Tabular Data Stream Protocol
Copyright © 2020 Microsoft Corporation
Release: October 1, 2020

[IEEE754] IEEE, "IEEE Standard for Binary Floating -Point Arithmetic", IEEE 754 -1985, October 1985,
http://ieeexplore.ieee.org/servlet/opac?punumber=2355

[IETF -AuthEncr] McGrew , D., Foley, J., and Paterson, K., "Authenticated Encryption with AES -CBC and
HMAC-SHA", Network Working Group Internet -Draft, July 2014, http://tools.ietf.org/html/draft -
mcgrew -aead -aes-cbc-hmac -sha2 -05

[MS -BINXML] Microsoft Corporation, " SQL Server Binary XML Structure ".

[MS -LCID] Microsoft Corporation, " Windows Language Code Identifier (LCID) Reference ".

[RFC1122] Braden, R., Ed., "Requirements for Internet Hosts -- Communication Layers", STD 3, RFC

1122, October 1989, http://www.rfc -editor.org/rfc/rfc1122.txt

[RFC2119] Bradner, S., "Key words for use in RFCs to Indicate Requirement Levels", BCP 14, RFC
2119, March 1997, http://www.rfc -editor.org/rfc/rfc21 19.txt

[RFC2246] Dierks, T., and Allen, C., "The TLS Protocol Version 1.0", RFC 2246, January 1999,

http://www.rfc -editor.org/rfc/rfc2246.txt

[RFC4234] Crocker, D., Ed., and Overell, P., "Augmented BNF for Syntax Specifications: ABNF", RFC
4234, October 2005, http://www.rfc -editor.org/rfc/rfc4234.txt

[RFC6101] Freier, A., Karlton, P., and Kocher, P., "The Secure Sockets Layer (SSL) Protocol Version
3.0", RFC 6101, August 2011, http://www.rfc -editor.org/rfc/rfc6101.txt

[RFC6234] Eastlake III, D., and Hansen, T., "US Se cure Hash Algorithms (SHA and SHA -based HMAC
and HKDF)", RFC 6234, May 2011, http://www.rfc -editor.org/rfc/rfc6234.txt

[RFC793] Postel, J., Ed., "Transmission Control Protocol: DARPA Interne t Program Protocol
Specification", RFC 793, September 1981, http://www.rfc -editor.org/rfc/rfc793.txt

[UNICODE] The Unicode Consortium, "The Unicode Consortium Home Page", http://www.unicode.org/

[VIA2002] Cameron, D., and Regnier, G., "The Virtual Interface Architecture", Intel Press, 2002,
ISBN:0971288704.

1.2.2 Informative References

[MC -SMP] Microsoft Corporation, " Session Multiplex Protocol ".

[MS -NETOD] Microsoft Corporation, " Microsoft .NET Framework Protocols Overview ".

[MS -SSCLRT] Microsoft Corporation, " Microsoft SQL Server CLR Types Serialization Formats ".

[MSDN -Aut ocommit] Microsoft Corporation, "Autocommit Transactions",
https://docs.microsoft.com/en -us/previous -versions/sql/sql -server -2008 - r2/ms187878(v=sql.105)

[MSDN -BEGIN] Microsoft Corporation, " BEGIN TRANSACTION (Transact SQL)",

https://docs.microsoft.com/en -us/sql/t -sql/language -elements/begin - transaction - transact -sql

[MSDN -BOUND] Microsoft Corporation, "Using Bound Sessions", https://docs.microsoft.com/en -
us/previous -versions/sql/sql -server -2008 - r2/ms177480(v=sql.105)

[MSDN -BROWSE] Microsoft Corporation, "Browse Mode", in SQL Server 2000 Retired Technical
documentat ion, p. 12261, https://www.microsoft.com/en -us/download/confirmation.aspx?id=51958

[MSDN -Collation] Microsoft Corporation, "Collation and Unicode Support",
https://docs.microsoft.com/en -us/sql/relational -databases/collations/collation -and -unicode -support

https://go.microsoft.com/fwlink/?LinkId=89903
https://go.microsoft.com/fwlink/?LinkId=524322
https://go.microsoft.com/fwlink/?LinkId=524322
%5bMS-BINXML%5d.pdf#Section_11ab6e8d247244d1a9e6bddf000e12f6
%5bMS-LCID%5d.pdf#Section_70feba9f294e491eb6eb56532684c37f
https://go.microsoft.com/fwlink/?LinkId=112180
https://go.microsoft.com/fwlink/?LinkId=90317
https://go.microsoft.com/fwlink/?LinkId=90324
https://go.microsoft.com/fwlink/?LinkId=90462
https://go.microsoft.com/fwlink/?LinkId=509953
https://go.microsoft.com/fwlink/?LinkId=328921
https://go.microsoft.com/fwlink/?LinkId=150872
https://go.microsoft.com/fwlink/?LinkId=90550
%5bMC-SMP%5d.pdf#Section_04c8edde371d4af5bb33a39b3948f0af
%5bMS-NETOD%5d.pdf#Section_bcca8164da0843f2a983c34ed99171b0
%5bMS-SSCLRT%5d.pdf#Section_77460aa98c2f4449a65e1d649ebd77fa
https://go.microsoft.com/fwlink/?LinkId=145156
https://go.microsoft.com/fwlink/?LinkId=144544
https://go.microsoft.com/fwlink/?LinkId=144543
https://go.microsoft.com/fwlink/?LinkId=144543
https://go.microsoft.com/fwlink/?LinkId=140931
https://go.microsoft.com/fwlink/?LinkId=233327

12 / 218

[MS -TDS] - v20201001
Tabular Data Stream Protocol
Copyright © 2020 Microsoft Corporation
Release: October 1, 2020

[MSDN -ColSets] Microsoft Corporation, "Use Column Sets", ht tps://docs.microsoft.com/en -
us/sql/relational -databases/tables/use -column -sets

[MSDN -ColSortSty] Microsoft Corporation, "Windows Collation Sorting Styles",
https://docs.microsoft.com/en -us/p revious -versions/sql/sql -server -2008 - r2/ms143515(v=sql.105)

[MSDN -COMMIT] Microsoft Corporation, "COMMIT TRANSACTION (Transact -SQL)",
https://docs.microsoft.com/en -us/sql/t -sql/language -elem ents/commit - transaction - transact -sql

[MSDN -DTC] Microsoft Corporation, "Distributed Transaction Coordinator",
https://docs.microsoft.com/en -us/previous -versions/windows/desktop/ms684146(v=vs. 85)

[MSDN - INSERT] Microsoft Corporation, "INSERT (Transact -SQL)", https://docs.microsoft.com/en -
us/sql/t -sql/statements/insert - transact -sql

[MSDN - ITrans] Microsoft Corporation, "ITransactionExport::GetTransactionCookie",
https://docs.microsoft.com/en -us/previous -versions/windows/desktop/ms679869(v=vs.85)

[MSDN -MARS] Microsoft Co rporation, "Using Multiple Active Result Sets (MARS)",
https://docs.microsoft.com/en -us/sql/relational -databases/native -client/features/using -multiple -
active - result -sets -mars

[MSDN -MDAC] Wilk es, R., Bunch, A., and Dove, D., "Microsoft Data Access Components (MDAC)
Installation", May 2005, https://docs.microsoft.com/en -us/previous -versions/ms810805(v=msdn.10)

[MSDN -NamedPipes] Mi crosoft Corporation, "Creating a Valid Connection String Using Named Pipes",
https://docs.microsoft.com/en -us/previous -versions/sql/sql -server -2008 - r2/ms189307(v=sql.105)

[MSDN -NP] Microsoft Corporation, "Named Pipes", https://docs.microsoft.com/en -
us/windows/desktop/ipc/named -pipes

[MSDN -NTLM] Microsoft Corporation, "Microsoft NTLM", https://docs.microsoft.com/en -

us/windows/desktop/SecAuthN/microsoft -ntlm

[MSDN -QUERYNOTE] Microsoft Corporation, "Using Query Notifications",
https://docs.microsoft.com /en -us/previous -versions/sql/sql -server -2008 - r2/ms175110(v=sql.105)

[MSDN -SNAC] Microsoft Corporation, "Microsoft SQL Server Native Client and Microsoft SQL Server
2008 Native Client", https ://docs.microsoft.com/en -us/archive/blogs/sqlnativeclient/microsoft -sql -
server -native -client -and -microsoft -sql -server -2008 -native -client

[MSDN -SQLCollation] Microsoft Corporation, "Selecting a SQL Server Collation",
https://docs.microsoft.com/en -us/previous -versions/sql/sql -server -2008 - r2/ms144250(v=sql.105)

[MSDN -TDSENDPT] Microsoft Corporation, "Network Protocols and TDS Endpoints",
https://docs.microsoft.com/en -us/previous -versions/sql/sql -server -2008 - r2/ms191220(v=sql.105)

[MSDN -UPDATETEXT] Microsoft Corporation, "UPDATETEXT (Transact -SQL)",
https://docs.microsoft.com/en -us/sql/t -sql/queries/updatetext - transact -sql

[MSDN -WRITETEXT] Microsoft Corporation, "WRITETEXT (Transact -SQL)",

https://d ocs.microsoft.com/en -us/sql/t -sql/queries/writetext - transact -sql

[MSDOCS -DBMirror] Microsoft Corporation, "Database Mirroring in SQL Server",
https://docs.microsoft.com/en -us/dotnet/framewor k/data/adonet/sql/database -mirroring - in -sql -server

[RFC4120] Neuman, C., Yu, T., Hartman, S., and Raeburn, K., "The Kerberos Network Authentication
Service (V5)", RFC 4120, July 2005, https:/ /www.rfc -editor.org/rfc/rfc4120.txt

https://go.microsoft.com/fwlink/?LinkId=128616
https://go.microsoft.com/fwlink/?LinkId=128616
https://go.microsoft.com/fwlink/?LinkId=233328
https://go.microsoft.com/fwlink/?LinkId=144542
https://go.microsoft.com/fwlink/?LinkId=89994
https://go.microsoft.com/fwlink/?LinkId=154273
https://go.microsoft.com/fwlink/?LinkId=154273
https://go.microsoft.com/fwlink/?LinkId=146594
https://go.microsoft.com/fwlink/?LinkId=98459
https://go.microsoft.com/fwlink/?LinkId=98459
https://go.microsoft.com/fwlink/?LinkId=213737
https://go.microsoft.com/fwlink/?LinkId=127839
https://go.microsoft.com/fwlink/?LinkId=90247
https://go.microsoft.com/fwlink/?LinkId=90247
https://go.microsoft.com/fwlink/?LinkId=145227
https://go.microsoft.com/fwlink/?LinkId=145227
https://go.microsoft.com/fwlink/?LinkId=119984
https://go.microsoft.com/fwlink/?LinkId=213738
https://go.microsoft.com/fwlink/?LinkId=213738
https://go.microsoft.com/fwlink/?LinkId=119987
https://go.microsoft.com/fwlink/?linkid=865399
https://go.microsoft.com/fwlink/?LinkId=154272
https://go.microsoft.com/fwlink/?LinkId=154269
https://go.microsoft.com/fwlink/?linkid=874052
https://go.microsoft.com/fwlink/?LinkId=90458

13 / 218

[MS -TDS] - v20201001
Tabular Data Stream Protocol
Copyright © 2020 Microsoft Corporation
Release: October 1, 2020

[RFC4178] Zhu, L., Leach, P., Jaganathan, K., and Ingersoll, W., "The Simple and Protected Generic
Security Service Application Program Interface (GSS -API) Negotiation Mechanism", RFC 4178, October

2005, https://www.rfc -editor.org/rfc/rfc4178.txt

[SSPI] Microsoft Corporation, "SSPI", https://docs.microsoft.com/en -
us/windows/desktop/SecAuthN/ssp i

1.3 Overview

The Tabular Data Stream (TDS) Protocol is an application - level protocol used for the transfer of
requests and responses between clients and database server systems. In such systems, the client will
typically establish a long - lived connection with the serve r. Once the connection is established using a
transport - level protocol, TDS messages are used to communicate between the client and the server. A
database server can also act as the client if needed, in which case a separate TDS connection has to
be establ ished. Note that the TDS session is directly tied to the transport - level session, meaning that

a TDS session is established when the transport - level connection is established and the server
rece ives a request to establish a TDS connection. It persists until the transport - level connection is

terminated (for example, when a TCP socket is closed). In addition, TDS does not make any
assumption about the transport protocol used, but it does assume the transport protocol supports
reliable, in -order delivery of the data.

TDS includes facilities for authentication and identification, channel encryption negotiation, issuing of
SQL batches , stored procedure calls, returning data, and transaction manager requests.

Returned data is self -describing and record -oriented. The data streams describe the names, types
and optional descriptions of the rows being returned. The following diagram depicts a (simplified)
typical flow of communication in the TDS Protocol.

Figure 1 : Communication flow in the TDS protocol

The following example is a high - level description of the messages exchanged between the client and
the server to execute a simple client request such as the execution of a SQL statement . It is

https://go.microsoft.com/fwlink/?LinkId=90461
https://go.microsoft.com/fwlink/?LinkId=90536
https://go.microsoft.com/fwlink/?LinkId=90536

14 / 218

[MS -TDS] - v20201001
Tabular Data Stream Protocol
Copyright © 2020 Microsoft Corporation
Release: October 1, 2020

assumed that the client and the server have already established a connection and authentication has
succeeded.

 Client:SQL statement

The server executes the SQL statement and then sends back t he results to the client. The data
columns being returned are first described by the server (represented as column metadata or
COLMETADATA) and then the rows follow. A completion message is sent after all the row data has
been transferred.

 Server:COLMETADA TAdata stream

 ROWdata stream

 .

 .

 ROWdata stream

 DONEdata stream

For more information about the correlation between data stream and TDS packet, see section
2.2.4 .<1>

Additional details about which SQL Server version corresponds to which TDS version number are
defined in LOGINACK (section 2.2.7.14).

1.4 Relationship to Other Protoco ls

The Tabular Data Stream (TDS) protocol depends upon a network transport connection being
established prior to a TDS conversation occurring (the choice of transport protocol is not important to
TDS). TDS depends on Transport Layer Security (TLS)/Secure Socket Layer (SSL) for network channel
encryption. Although the TDS protocol depends on TLS/SSL to encrypt data transmission, the
negotiation of the encryption setting between the client and server and the initial TLS /SSL handshake

are handled in the TDS layer.

If the Multiple Active Result Sets (MARS) feature [MSDN -MARS] is enabled, then the Session
Multiplex Protocol (SMP) [MC -SMP] is required.

This relationship is illustrated in the following figure.

Figure 2 : Protocol relationship

https://go.microsoft.com/fwlink/?LinkId=98459
%5bMC-SMP%5d.pdf#Section_04c8edde371d4af5bb33a39b3948f0af

15 / 218

[MS -TDS] - v20201001
Tabular Data Stream Protocol
Copyright © 2020 Microsoft Corporation
Release: October 1, 2020

1.5 Prerequisites/Preconditions

This protocol can be used after the client has discovered the server and established a network
transport connection for use wit h TDS.

No security association is assumed to have been established at the lower layer before TDS begins
functioning. For Security Support Provider Interface (SSPI) [SSPI] authentication to be used,
SSPI support needs to be available on both the client and server machines. For channel encryption to
be used, TLS/SSL support needs to be present on both client and server machines, and a certificate
suitable for encryption has to be deployed on the server machine. For federated authentication to
be used, a library that provides federated authentication support or an equivalent needs to be present
on the server, and the client needs to be able to generate a token for federated authentication.

1.6 Applicability Statement

The TDS protocol is appropriate for use to facilitate request/response communications between an
application and a database server in all scenarios where network or local connectivity is available.

1.7 Versioning and Capability Negotiation

This protocol includes versioning issues in the following areas .

Á Supported Transports: This protocol can be implemented on top of any network transport
protocol as discussed in section 2.1 .

Á Protocol Versions: The TDS protocol supports the TDS 7.0, TDS 7.1, TD S 7.2, TDS 7.3, and TDS
7.4 explicit dialects. The dialect version is negotiated as part of the LOGIN7 message data stream,
which is defined in section 2.2.6.4 .

Note After a protocol feature is i ntroduced, subsequent versions of the TDS protocol support that
feature until that feature is removed.

Á Security and Authentication Methods: The TDS protocol supports SQL Server User

Authenticati on (SQLAUTH) . The TDS protocol also supports SSPI authentication and indirectly

supports any authentication mechanism that SSPI supports. The use of SSPI in TDS is defined in
sections 2.2.6.4 and 3.2.5.1 . The TDS protocol also supports federated authentication . The use
of federated authentication in TDS is defined in sections 2.2.6.4 and 3.2.5 .

Á Localization: Localization -dependent protocol behavior is specified in sections 2.2.5.1.2 and
2.2.5.6 .

Á Capability Negot iation: This protocol does explicit capability negotiation as specified in this

section.

In general, the TDS protocol does not provide facilities for capability negotiation because the complete
set of supported features is fixed for each version of the pro tocol. Certain features such as
authentication type are not usually negotiated but rather are requested by the client. However, the
protocol supports negotiation for the following two features:

Á Channel encryption: The encryption behavior that is used for the TDS session is negotiated in
the initial messages exchanged by the client and the server.

Á Authentication mechanism for integrated authentication identities: The authentication
mechanism that is used for the TDS session is negotiated in the initial messages exchanged by the
client and the server.

For more details about encryption behavior and about how the client and server negotiate between
SSPI authentication and federated authentication, se e the PRELOGIN description in section 2.2.6.5 .

https://go.microsoft.com/fwlink/?LinkId=90536

16 / 218

[MS -TDS] - v20201001
Tabular Data Stream Protocol
Copyright © 2020 Microsoft Corporation
Release: October 1, 2020

Note that the cipher suite for TLS/SSL and the authentication mechanism for SSPI and federated
authentication are negotiated outside the influence of TDS in [RFC2246] and [RFC6101] .

1.8 Vendor -Extensible Fields

None.

1.9 Standards Assignments

 Parameter TCP port value Reference

Default SQL Server instance TCP port 1433 [IANAPORT]

https://go.microsoft.com/fwlink/?LinkId=90324
https://go.microsoft.com/fwlink/?LinkId=509953
https://go.microsoft.com/fwlink/?LinkId=89888

17 / 218

[MS -TDS] - v20201001
Tabular Data Stream Protocol
Copyright © 2020 Microsoft Corporation
Release: October 1, 2020

2 Messages

The formal syntax of all messages is provided in Augmented Backus -Naur Form (ABNF) [RFC4234] ,
with the addition of the following:

Á underscore ("_") ï a valid character within an identifier.

Á "%x00" ï a valid value.

Á "%b0" ï a valid value.

2.1 Transport

The TDS protocol does not prescribe a specific underlying transport protocol to use on the Internet or
on other networks. TDS only presumes a reliable tra nsport that guarantees in -sequence delivery of

data.

The chosen transport can be either stream -oriented or message -oriented. If a message -oriented
transport is used, any TDS packet sent from a TDS client to a TDS server MUST be contained within a
single tr ansport data unit. Any additional mapping of TDS data onto the transport data units of the
protocol in question is outside the scope of this specification.

The current version of the TDS protocol has implementations over the following transports: <2>

Á TCP [RFC793] .

Á A reliable transport over the Virtual Interface Architec ture (VIA) interface [VIA2002]. <3>

Á Named Pipes [MSDN -NP] .

Á Shared memory [MSDN -TDSENDPT] .

Á Optionally, the TDS protocol has implementations for the following two protocols on top of the
preceding transports:

Á Transport Layer Security (TLS) [RFC2246] /Secure Socket Layer (SSL), in case TLS/SSL
encryption is negotiated.

Á Session Multiplex Protocol (SMP) [MC -SMP] , in case the Multiple Active Result Sets
(MARS) feature [MSDN -MARS] is requested.

2.2 Message Syntax

Character data, such as SQL statements , within a TDS message is in Unicode , unless the character
data represents the data value of an ASCII data type, such as a non -Unicode data column. A character
count within TDS is a count of characters, rather than of bytes, except when that character count is
explicitly specified as a byte count.

2.2.1 Client Messages

Messages sent from the client to the server are as follows:

Á Pre-Login

Á Login

Á Federated Authentication Token

Á SQL Batch

https://go.microsoft.com/fwlink/?LinkId=90462
https://go.microsoft.com/fwlink/?LinkId=150872
https://go.microsoft.com/fwlink/?LinkId=90247
https://go.microsoft.com/fwlink/?linkid=865399
https://go.microsoft.com/fwlink/?LinkId=90324
%5bMC-SMP%5d.pdf#Section_04c8edde371d4af5bb33a39b3948f0af
https://go.microsoft.com/fwlink/?LinkId=98459

18 / 218

[MS -TDS] - v20201001
Tabular Data Stream Protocol
Copyright © 2020 Microsoft Corporation
Release: October 1, 2020

Á Bulk Load

Á Remote Procedure Call

Á Attention

Á Transaction Manager Request

These messages are briefly described in the sections that follow. Detailed descriptions of m essage
contents are in section 2.2.6 .

2.2.1.1 Pre -Login

Before a login occurs, a Pre -Login handshake occurs between client and serv er, setting up contexts
such as encryption and MARS -enabled. For more details, see section 2.2.6.5 .

2.2.1.2 Login

When the client makes the determination to establish a TDS protocol connection with the server side,

the client sends a Login message data stream to the server. The client can have more than one
connection to the server, but each connection is established separately in the same way. For more
details, see section 2.2.6.4 .

After the server receives the login record from the client and, if necessary, performs subsequent
authentication handshakes (such as when SSPI [SSPI] or federated authentication is used), the
server notifies the client that it has either accepted or rejected the connection request. For more
details, see section 3.3.5.1 .

2.2.1.3 Federated Authentication Token

When the client indicates in the Login record that federated authentication <4> is to be used but
that the intended client library needs additional information from the server to generate a federated

authentication token, if the ser ver supports federated authentication that uses that client library, the

server responds with a token that the client uses to perform federated authentication. The client then
generates and sends a tokenless Federated Authentication Token message that cont ains binary
authentication data that is generated by the federated authentication library. For more details, see
section 2.2.6.3 .

After the server receives the Federated Authentication Token messa ge from the client, the server
notifies the client that it has either accepted or rejected the connection request. For more details, see

section 3.3.5 .

2.2.1.4 SQL Batch

To send a SQL statement or a batch of SQL statements, the SQL batch , represented by a Unicode
string, is copied into the data section of a TDS packet and then sent to the database server that

supports SQL. A SQL batch can span more than one TDS packet. For more details, see section 2.2.6.7 .

2.2.1.5 Bulk Load

In a bulk insert /bulk load operation, a SQL statement consists of a Unicode string that is followed

by binary data. The client sends the INSERT BULK SQL statement and then sends a COLMETADATA
token that describes the raw data. Multiple rows of binary data are then sent to the server. The data is
not formatted in storage row format but in the format described by the COLMETADATA token. The
stream is the same as if the data were being selected from the server rather than being sent to the
server. For more details, see section 2.2.6.1 .

https://go.microsoft.com/fwlink/?LinkId=90536

19 / 218

[MS -TDS] - v20201001
Tabular Data Stream Protocol
Copyright © 2020 Microsoft Corporation
Release: October 1, 2020

A bulk load operation is also used for inserting data with a previously issued UPDATETEXT BULK or
WRITETEXT BULK SQL statement. For more details, see section 2.2.6.2 .

2.2.1.6 Remote Procedure Cal l

To execute a remote procedure call (RPC) on the server, the client sends an RPC message data
stream to the server. This is a binary stream that contains the RPC name or numeric identifier,
options, and parameters. RPCs MUST be in a separate TDS message and not intermixed with SQL
statements . There can be several RPCs in one message. For more details, see section 2.2.6.6 .

2.2.1.7 Attention

The client can interrupt and cancel the current request by sending an Attention message. This is also
known as out - of - band data, but any TDS packet that is currently being sent MUST be finished before
sending the Attention message. After the client sends an Attention message, the client MUST read

until it receives an Attention acknowledgment.

If a complete re quest has been sent to the server, sending a cancel requires sending an Attention
packet. An example of this behavior is if the client has already sent a request, which has the last
packet with EOM bit (0x01) set in status. The Attention packet is the only way to interrupt a
complete request that has already been sent to the server. For more information, see section 4.19.2 .

If a complete request has not been sent to the server, the client MUST send the next packet with both
ignore bit (0x02) and EOM bit (0x01) set in the status to cancel the request. An example of this

behavior is if one or more packets have been sent but the last packet with EOM bit (0x01) set in
status has not been sent. Setting the ignore and EOM bits terminates the current request, and the
server MUST ignore the current request. When the ignore and EOM bits are set, the server does not
send an attention ac knowledgment, but instead returns a table response with a single DONE token
that has a status of DONE_ERROR to indicate that the incoming request was ignored. For more details
about the packet h eader status code, see section 2.2.3.1.2 .

2.2.1.8 Transaction Manager Request

The client can request that the connection enlist in a transaction as described in [MSDN -DTC] .

2.2.2 Server Messages

Messages sent from the server to the client are the following:

Á Pre-Login Response

Á Login Response

Á Federated Authentication Information

Á Row Data

Á Return Status

Á Return Parameters

Á Response Completion

Á Error and Info

Á Attention Acknowledgement

https://go.microsoft.com/fwlink/?LinkId=89994

20 / 218

[MS -TDS] - v20201001
Tabular Data Stream Protocol
Copyright © 2020 Microsoft Corporation
Release: October 1, 2020

These messages are briefly described in the sections that follow. Detailed descriptions of message
contents are in section 2.2.6 and section 2.2.7 .

2.2.2.1 Pre -Login Response

The Pre -Login Response message is a tokenless packet data stream. The data stream consists of the
response to the information requested by the client's Pre -Login message. For more details, see section
2.2.6.5 .

2.2.2.2 Login Response

The Login Response message is a token stream that consists of information about the server's
characteristics, optional information and error mes sages, and finally, a completion message.

The LOGINACK token data stream includes information about the server interface and the ser ver's
product code and name. For more details, see section 2.2.7.14 .

If there are any messages in the login response, an ERROR or INFO token data stream is returned
from the server to the client. For more details, see sections 2.2.7.10 and 2.2.7.13.

The server can send, as part of the login response, one or more ENVCHANGE token data streams if
the login changed the environment and the associated notification flag was set. An example of an
environment change includes the current database context and language setting. Fo r more details, see
section 2.2.7.9.

A done packet MUST be present as the final part of the login response, and a DONE token data stream

is the last thing sent in response to a server login reques t. For more details, see section 2.2.7.6.

2.2.2.3 Federated Authentication Information

After the server receives a Login message that states that the client intends to use a federated

authentication tok en from a specific client library that needs additional information from the server
to generate that token, if the server supports federated authentication that uses that client library, the

server responds to the client with a message. This message contai ns a Federated Authentication
Information Token that provides the information necessary for the client to generate a federated
authentication token. If the server determines that no information is required for this particular client
library, the server doe s not send the information token. For more details, see section 2.2.7.12 .

2.2.2.4 Row Data

If the server request results in data bein g returned, the data will precede any other data streams
returned from the server except warnings. Row data MUST be preceded by a description of the column
names and data types. For more information about how the column names and data types are
described, see section 2.2.7.4 .

2.2.2.5 Return Status

When a stored procedure is executed by the server, the server MUST return a status value. This is a
4-byte integer and is sent via the RETURNSTATUS token. A stored procedure execution is requested

throug h either an RPC Batch or a SQL Batch message. For more information, see section 2.2.7.18.

2.2.2.6 Return Parameters

The response format for execution of a stored procedure is identical regardless of whether the
request was sent as SQL Batch or RPC B atch. It is always a tabular result - type message.

21 / 218

[MS -TDS] - v20201001
Tabular Data Stream Protocol
Copyright © 2020 Microsoft Corporation
Release: October 1, 2020

If the procedure explicitly sends any data, then the message starts with a single token stream of rows,
informational messages, and error messages. This data is sent in the usual way.

When the RPC is invoke d, some or all of its parameters are designated as output parameters. All
output parameters will have values returned from the server. For each output parameter, there is a

corresponding return value, sent via the RETURNVALUE token. The RETURNVALUE token data stream
is also used for sending back the value returned by a user -defined function (UDF), if it is called as an
RPC. For more details about the RETURNVALUE token, see section 2.2.7.19.

2.2.2.7 Respons e Completion

The client reads results in logical units and can tell when all results have been received by examining
the DONE token data stream .

When executing a batch of SQL statements , the server MUST return a DONE token data stream for
each set of results. All but the last DONE will have the DONE_MORE bit set in the Status field of the
DONE token data stream. Therefore, the client can always tell after reading a DONE whether or not
there are more results. For more details, see sectio n 2.2.7.6.

For stored procedures , completion of SQL statements in the stored procedure is indicated by a
DONEINPROC token data stream for each SQL statement and a DONEPROC token data stream for
each completed stored procedure. For more details about DONEINPROC and DONEPROC tokens, see
section 2.2.7.7 and 2.2.7.8, respectively.

2.2.2.8 Error and Info

Besides returning descriptions of Row data and the data itself, TDS provides a token data stream
type for the server to send error and informational messages to the client. These are the ERROR token
data stream and the INFO token data stream. For more details, see section 2.2.7.10 and section
2.2.7.13, respectively.

2.2.2.9 Attention Ac knowledgment

After a client has sent an interrupt signal to the server, the client MUST read returning data until the
interrupt has been acknowledged. At tention messages are acknowledged in the DONE token data
stream. For more details, see section 2.2.7.6.

2.2.3 Packets

A packet is the unit written or read at one time. A message can consist of one or more packets. A
packet always includes a packet header and is usually followed by packet data that contains the
message. Ea ch new message starts in a new packet.

In practice, both the client and server will try to read a packet full of data. They will pick out the

header to see how much more (or less) data there is in the communication.

At login time, clients MAY specify a req uested "packet" size as part of the LOGIN7 message stream.
This identifies the size used to break large messages into different "packets". Server acknowledgment

of changes in the negotiated packet size is transmitted back to the client via ENVCHANGE token
stream. The negotiated packet size is the maximum value that can be specified in the Length packet
header field described in section 2.2.3.1.3 .

Starting with TDS 7.3, the following behavior MUST also be enforced. For requests sent to the server
larger than the current negotiated "packet" size, the client MUST send all but the last packet with a
total number of bytes equal to the negotiated size. Only the last packet in the request can contain an
actual number of bytes smaller than the negotiated packet size. If any of the preceding packets are

22 / 218

[MS -TDS] - v20201001
Tabular Data Stream Protocol
Copyright © 2020 Microsoft Corporation
Release: October 1, 2020

sent with a length less than the negot iated packet size, the server SHOULD disconnect the client when
the next network payload arrives.

2.2.3.1 Packet Header

To implement messages on top of existing, arbitrary transport layers, a packet header is included as
part of the packet. The packet header precedes all data within the packet. It is always 8 bytes in
length. Most importantly, the packet header states the Type and Length of the entire packet.

The following is a detailed desc ription of each item within the packet header.

2.2.3.1.1 Type

Type defines the type of message. Type is a 1 -byte unsigned char. The following table describes the
types that are available.

Value Description Packet contains data?

1 SQL batch. Yes

2 Pre-TDS7 Login <5> Yes

3 RPC Yes

4 Tabular result Yes

5 Unused

6 Attention signal No

7 Bulk load data Yes

8 Federated Authentication Token Yes

9-13 Unused

14 Transaction manager request Yes

15 Unused

16 TDS7 Login <6> Yes

17 SSPI Yes

18 Pre-Login Yes

If an unknown Type is specified, the message receiver SHOULD disconnect the connection. If a v alid
Type is specified, but is unexpected (per section 3), the message receiver SHOULD disconnect the
connection. This applies to both the client and the server. For example, the server could disconnect
the connection if the server receives a message with Type equal 16 when the connection is already
logged in.

The following table highlights which messages, as described previously in sections 2.2.1 and 2.2.2 ,
correspond to which packet header t ype.

Message type
Client or server
message Packet header type

Pre-Login Client 2 or 18 depending on whether the client supports
TDS v7.0+

23 / 218

[MS -TDS] - v20201001
Tabular Data Stream Protocol
Copyright © 2020 Microsoft Corporation
Release: October 1, 2020

Message type
Client or server
message Packet header type

Login Client 16 + 17 (if Integrated authentication)

Federated Authentication Token Client 8

SQL Batch Client 1

Bulk Load Client 7

RPC Client 3

Attention Client 6

Transaction Manager Request Client 14

FeatureExtAck Server 4

Pre-Login Response Server 4

Login Response Server 4

Federated Authentication
Information

Server 4

Row Data Server 4

Return Status Server 4

Return Par ameters Server 4

Response Completion Server 4

Session State Server 4

Error and Info Server 4

Attention Acknowledgement Server 4

2.2.3.1.2 Status

Status is a bit field used to indicate the message state. Status is a 1 -byte unsigned char. The

following Status bit flags are defined.

Value Description

0x00 "Normal" message.

0x01 End of message (EOM). The packet is the last packet in the whole request.

0x02 (From client to server) Ignore this event (0x01 MUST also be set).

0x08 RESETCONNECTION

(Introduced in TDS 7.1)

(From client to server) Reset this connection before processing event. Only set for event types Batch,
RPC, or Transaction Manager request. If clients want to set this bit, it MUST be part of the first packet of
the message. This signals the server to clean up the environment state of the connection back to the
default environment setting, effectively simulating a logout and a subsequent login, and provides server
support for connection pooling. T his bit SHOULD be ignored if it is set in a packet that is not the first

24 / 218

[MS -TDS] - v20201001
Tabular Data Stream Protocol
Copyright © 2020 Microsoft Corporation
Release: October 1, 2020

Value Description

packet of the message.

This status bit MUST NOT be set in conjunction with the RESETCONNECTIONSKIPTRAN bit. Distributed
transactions and isolation levels will not be reset.

0x10 RESETCONNECTIONSKIPTRAN

(Introduced in TDS 7.3)

(From client to server) Reset the connection before processing event but do not modify the transaction
state (the state will remain the same before and after the reset). The transaction in the session can be a
local transaction that is started from the session or it can be a distributed transaction in which the
session is enlisted. This status bit MUST NOT be set in conjunction with the RESETCONNECTION bit.
Otherwise identical to RESETCONNECTION.

All other bits are not used and MUST be ignored.

2.2.3.1.3 Length

Length is the size of the packet including the 8 bytes in the packet header. It is the number of bytes
from the start of this header to the start of the next packet header. Length is a 2 -byte, unsigned
short int and is represented in network byte order (big - endian).

The Length value MUST be greater than or equal to 512 bytes and smaller than or equal to 32,767
bytes. The default value is 4,096 bytes.

Starting with TDS 7.3, the Length MUST be the negotiated packet size when sending a packet from
client to server, unless it is the last packet of a request (that is, the EOM bit in Status is ON) or the
client has not logged i n.

2.2.3.1.4 SPID

Spid is the process ID on the server, corresponding to the current connection. This information is sent
by the server to the client and is useful for identifying which thread on the server sent the TDS

packet. It i s provided for debugging purposes. The client MAY send the SPID value to the server. If the
client does not, then a value of 0x0000 SHOULD be sent to the server. This is a 2 -byte value and is
represented in network byte order (big - endian).

2.2.3.1.5 PacketID

PacketID is used for numbering message packets that contain data in addition to the packet header.

PacketID is a 1 -byte, unsigned char. Each time packet data is se nt, the value of PacketID is
incremented by 1, modulo 256. <7> This allows the receiver to track the sequence of TDS packets for
a given message. This value is currently ignored.

2.2.3.1.6 Window

This 1 byte is currently not used. This byte SHOULD be set to 0x00 and SHOULD be ignored by the
receiver.

2.2.3.2 Packet Data

Packet data for a given message follows the packet header (see Type in section 2.2.3.1.1 for
messages that contain packet data). As previously stated, a message can span more than one packet.
Because each new message MUST always begin w ithin a new packet, a message that spans more than

one packet only occurs if the data to be sent exceeds the maximum packet data size, which is
computed as (negotiated packet size - 8 bytes), where the 8 bytes represents the size of the packet
header.

25 / 218

[MS -TDS] - v20201001
Tabular Data Stream Protocol
Copyright © 2020 Microsoft Corporation
Release: October 1, 2020

If a stream spans more than one packet, then the EOM bit of the packet header Status code MUST be
set to 0 for every packet header. The EOM bit MUST be set to 1 in the last packet to signal that the

stream ends. In addition, the PacketID field of subsequent packets MUST be incremented as defined
in section 2.2.3.1.5 .

2.2.4 Packet Data Token and Tokenless Data Streams

The messages contained in pac ket data that pass between the client and the server can be one of two
types: a "token stream" or a "tokenless stream". A token stream consists of one or more "tokens"

each followed by some token -specific data. A "token" is a single byte identifier that is used to describe
the data that follows it and contains information such as token data type, token data length, and so
on. Tokenless streams are typically used for simple messages. Messages that might require a more
detailed description of the data within it are sent as a token stream. The following table highlights
which messages, as described previously in sections 2.2.1 and 2.2.2 , use t oken streams and which do
not.

 Message type Client or server message Token stream?

Pre-Login Client No

Login Client No

Federated Authentication Token Client No

SQL Command Client No

Bulk Load Client Yes

Remote Procedure Call (RPC) Client Yes

Attention Client No

Transaction Manager Request Client No

Pre-Login Response Server No

Federated Authentication Information Server Yes

FeatureExtAck Server Yes

Login Response Server Yes

Row Data Server Yes

Return Status Server Yes

Return Parameters Server Yes

Response Completion Server Yes

Session State Server Yes

Error and Info Server Yes

Attention Acknowledgement Server No

26 / 218

[MS -TDS] - v20201001
Tabular Data Stream Protocol
Copyright © 2020 Microsoft Corporation
Release: October 1, 2020

2.2.4.1 Tokenless Stream

As shown in the previous section, some messages do not use tokens to describe the data portion of
the data stream . In these cases, all the information required to describe the packet data is c ontained

in the packet header. This is referred to as a tokenless stream and is essentially just a collection of
packets and data.

2.2.4.2 Token Stream

More complex messages (for example, colmetadata, row data, and data type data) are constructed by

using tokens. As previously described, a token stream consists of a single byte identifier, followed by
token -specific data. The definitions of the different token streams can be found in section 2.2.7 .

2.2.4.2.1 Token Definition

There are four classes of token definitions:

Á Zero Length Token(xx01xxxx)

Á Fixed Length Token(xx11xxxx)

Á Variable Length Tokens(xx10xxxx)

Á Variable Count Tokens(xx00xxxx)

The following sections specify the bit pattern of each token class, various extensions to this bit pattern
for a given token class, and a description of its function(s).

2.2.4.2.1.1 Zero Length Token(xx01xxxx)

This class of token is not followed by a length specification. There is no data associated with the token.
A zero length token always has the f ollowing bit sequence:

0 1 2 3 4 5 6 7

0 or 1 0 or 1 0 1 0 or 1 0 or 1 0 or 1 0 or 1

A value of ñ0 or 1ò denotes a bit position that can contain the bit value ñ0ò or ñ1ò.

2.2.4.2.1.2 Fixed Length Token(xx11xxxx)

This class of token is followed by 1, 2, 4, or 8 bytes of data. No length specification follows this token
because the length of its associated data is encoded in the token itself. The different fixed data - length
token definitions take the form of one of the following bit sequences, depending on whether the token

is followed by 1, 2, 4, or 8 bytes of data. Also in the table, a value of ñ0 or 1ò denotes a bit position
that can contain the bit valu e ñ0ò or ñ1ò.

0 1 2 3 4 5 6 7 Description

0 or 1 0 or 1 1 1 0 0 0 or 1 0 or 1 Token is followed by 1 byte of data.

0 or 1 0 or 1 1 1 0 1 0 or 1 0 or 1 Token is followed by 2 bytes of data.

0 or 1 0 or 1 1 1 1 0 0 or 1 0 or 1 Token is followed by 4 bytes of data.

0 or 1 0 or 1 1 1 1 1 0 or 1 0 or 1 Token is followed by 8 bytes of data.

Fixed - length tokens are used by the following data types: bigint, int , smallint , tinyint, float, real,
money, smallmoney, datetime, smalldatetime, and bit . The type defin ition is always represented in

27 / 218

[MS -TDS] - v20201001
Tabular Data Stream Protocol
Copyright © 2020 Microsoft Corporation
Release: October 1, 2020

COLMETADATA and ALTMETADATA data streams as a single byte Type. Additional details are specified
in section 2.2.5.4.2 .

2.2.4.2.1.3 Variable Length Tokens(xx10xxxx)

Except as noted later in this section, this class of token definition is followed by a length specification.
The length, in bytes, of this length is included in the token itself as a Length value (see section
2.2.7.3).

The following are the two data types that are of variable length.

Á Real variable length data types like char and binary and nullable data types, which are either their
normal fixed length corresponding to their TYPE_INFO, or a special length if null.

Char and binary data types have values that are either null or 0 to 65534 (0x0000 to 0xFFFE)

bytes in length. Null is represented by a length of 65535 (0xFFFF). A char or binary, which cannot
be null, can still have a length of zero (for e xample an empty value). A program that MUST pad a
value to a fixed length typically adds blanks to the end of a char and binary zeros to the end of a

binary.

Á Text and image data types have values that are either null, or 0 to 2 gigabytes (0x00000000 to
0x7 FFFFFFF bytes) in length. Null is represented by a length of -1 (0xFFFFFFFF). No other length

specification is supported.

Other nullable data types have a length of 0 if they are null.

Note The DATACLASSIFICATION variable length token does not start with a length specification (see
section 2.2.7.5).

2.2.4.2.1.4 Variable Count Tokens(xx00xxxx)

This class of token definition is followed by a count of the number of fields that follow the token. Each

field length is dependent on the token type. The total length of the token can be determined only by
walking the fields. As shown in the following table, a variable count token always has its third and

fourth bits set to ñ0ò, and a value of ñ0 or 1ò in the remaining bit positions denotes a bit position that
can contain the bit value ñ0ò or ñ1ò.

0 1 2 3 4 5 6 7

0 or 1 0 or 1 0 0 0 or 1 0 or 1 0 or 1 0 or 1

Currently there are two variable count tokens. COLMETADATA and ALTMETADATA both use a 2 -byte
count.

2.2.4.3 Done and Attention Tokens

The DONE token marks the end of the response for each executed SQL statement . Based on the SQL
statement and the context in which it is executed, the server MAY generate a DONEPROC or
DONEINPROC token instead.

The attention signal is sent by using the out - of - band write provided by the network library . An out -

of -band write is the ability to send the attention signal no matter if the sender is in the middle of
sending or processing a message or simply sitting idle. If that function is not supported, the client
MUST simply read and discard all of the dat a, except SESSIONSTATE data, from the server until the
final DONE token, which acknowledges that the attention signal is read. <8>

28 / 218

[MS -TDS] - v20201001
Tabular Data Stream Protocol
Copyright © 2020 Microsoft Corporation
Release: October 1, 2020

2.2.5 Grammar Definition for Token Description

The Tabular Data Stream consists of a variety of messages. Each message consists of a set of bytes
transmitted in a predefined order. This predefined order or grammar can be specified by using

Augmented Backus -Naur Form (ABNF) [RFC4234] . Details can be found in the following subsections.

2.2.5.1 General Rules

Data structure encodings in TDS are defined in terms of the following fundamental definitions.

BIT : A single b it value of either 0 or 1.

 BIT = %b0 / %b1

BYTE : An unsigned single byte (8 -bit) value. The range is 0 to 255.

 BYTE = 8BIT

BYTELEN : An unsigned single byte (8 -bit) value representing the length of the associated data. The
range is 0 to 255.

 BYTELEN = BYTE

USHORT : An unsigned 2 -byte (16 -bit) value. The range is 0 to 65535.

 USHORT = 2BYTE

LONG : A signed 4 -byte (32 -bit) value. The range is - (2^31) to (2^31) -1.

 LONG = 4BYTE

ULONG : An unsigned 4 -byte (32 -bit) value. The range is 0 to (2^32) -1.

 ULONG = 4BYTE

DWORD : An unsigned 4 -byte (32 -bit) value. The range when used as a numeric value is 0 to (2^32) -
1.

 DWORD = 32BIT

LONGLONG : A signed 8 -byte (64 -bit) value. The range is - (2^63) to (2^63) -1.

 LONGLONG = 8BYTE

ULONGLONG : An unsigned 8 -byte (64 -bit) value. The range is 0 to (2^64) -1.

 ULONGLONG = 8BYTE

https://go.microsoft.com/fwlink/?LinkId=90462

29 / 218

[MS -TDS] - v20201001
Tabular Data Stream Protocol
Copyright © 2020 Microsoft Corporation
Release: October 1, 2020

UCHAR : An unsigned single byte (8 -bit) value representing a character. The range is 0 to 255.

 UCHAR = BYTE

USHORTLEN : An unsigned 2 -byte (16 -bit) value representing the length of the associated data. The
range is 0 to 65535.

 USHORTLEN = 2BYTE

USHORTCHARBINLEN : An unsigned 2 -byte (16 -bit) value representing the length of the associated

character or binary data. The range is 0 to 8000.

 USHORTCHARBINLEN = 2BYTE

LONGLEN : A signed 4 -byte (32 -bit) value representing the length of the associated data. The range is
- (2^31) to (2^31) -1.

 LONGLEN = 4BYTE

ULONGLEN : An unsigned 4 -byte (32 -bit) value representing the length of the associated data. The
range is 0 to (2^32) -1.

 ULONGLEN = 4BYTE

ULONGLONGLEN : An unsigned 8 -byte (64 -bit) value representing the length of the associated data.
The range is 0 to (2^64) -1.

 ULONGLONGLEN = 8BYTE

PRECISION : An unsigned single byte (8 -bit) value representing the precision of a numeric number.

 PRECISION = 8BIT

SCALE : An unsigned single byte (8 -bit) value representing the scale of a numeric number.

 SCALE = 8BIT

GEN_NULL : A single byte (8 -bit) value representing a NULL value.

 GEN_NULL = %x00

CHARBIN_NULL : A 2 -byte (16 -bit) or 4 -byte (32 -bit) value representing a T -SQL NULL value for a
character or binary data type. Please refer to TYPE_VARBYTE (see section 2.2.5.2.3) for additional
details.

 CHARBIN_NULL = (%xFF %xFF) / (%xFF %xFF %xFF %xFF)

30 / 218

[MS -TDS] - v20201001
Tabular Data Stream Protocol
Copyright © 2020 Microsoft Corporation
Release: October 1, 2020

FRESERVEDBIT : A FRESERVEDBIT is a BIT value used f or padding that does not transmit
information. FRESERVEDBIT fields SHOULD be set to %b0 and MUST be ignored on receipt.

 FRESERVEDBIT = %b0

FRESERVEDBYTE : A FRESERVEDBYTE is a BYTE value used for padding that does not transmit
information. FRESERVEDBYTE fields SHOULD be set to %x00 and MUST be ignored on receipt.

 FRESERVEDBYTE = %x00

UNICODECHAR : A single Unicode character in UCS -2 encoding, as specified in Unicode [UNICODE] .

 UNICODECHAR = 2BYTE

Notes

Á All integer types are represented in reverse byte order (little - endian) unless otherwise specified.

Á FRESERVEDBIT and FRESERVEDBYTE are often used to pad unused parts of a byte or bytes. The
value of these reserved bits SHOULD be ignored. These elements are generally set to 0.

2.2.5.1.1 Least Significant Bit Order

Certain tokens will possess rules that comprise a n array of independent bits. These are typically "flag"
rules in which each bit is a flag indicating that a specific feature or option is enabled/requested.
Normally, the bit array will be arranged in least significant bit order (or typical array index ord er)

meaning that the first listed flag is placed in the least significant bit position (identifying the least
significant bit as one would in an integer variable). For example, if Fn is the nth flag, then the
following rule definition:

 FLAGRULE = F0 F1 F2 F3 F4 F5 F6 F7

would be observed on the wire in the natural value order F7F6F5F4F3F2F1F0.

If the rule contains 16 bits, then the order of the bits observed on the wire will follow the little -
endian byte ordering. For example, the following rule definition:

 FLAGRULE = F0 F1 F2 F3 F4 F5 F6 F7 F8 F9 F10 F11 F12 F13 F14 F15

will have the following order on the wire: F7F6F5F4F3F2F1F0 F15F14F13F12F11F10F9F8.

2.2.5.1.2 Collation Rule Definition

The collation rule is used to specify collation information for character data or metadata d escribing
character data. <9> This is typically specified as part of the LOGIN7 message or part of a column
definition in server resu lts containing character data. For more information about column definition,
see COLMETADATA.

 LCID = 20BIT

 fIgnoreCase = BIT

 fIgnoreAccent = BIT

 fIgnoreWidth = BIT

https://go.microsoft.com/fwlink/?LinkId=90550

31 / 218

[MS -TDS] - v20201001
Tabular Data Stream Protocol
Copyright © 2020 Microsoft Corporation
Release: October 1, 2020

 fIgnoreKana = BIT

 fBinary = BIT

 fBinary2 = BIT

 fUTF8 = BIT

 ColFlags = fIgnoreCase fIgnoreAccent fIgnoreKana

 fIgnoreWidth fBinary fBinary2 fUTF8

 FRESERVEDBIT

 Version = 4BIT

 SortId = BYTE

 COLLATION = LCID ColFlags Version SortId

A SQL collation is one of a predefined set of sort orders. The sort orders are identified with non -zero
SortId values described by [MSDN -SQLCollation] .

For a SortId==0 collation, the LCID bits correspond to a LocaleId as defined by the National Language
Support (NLS) functions. For more details, see [MS -LCID] .

Notes

Á ColFlags is represented in least significant bit order .

Á A COLLATION <10> valu e of 0x00 00 00 00 00 specifies a request for the use of raw collation.

2.2.5.2 Data Stream Types

2.2.5.2.1 Unknown Length Data Streams

Unknown length dat a streams can be used by tokenless data streams. It is a stream of bytes. The
number of bytes within the data stream is defined in the packet header as specified in section 2.2.3.1 .

 BYTESTREAM = *BYTE

 UNICODESTREAM = *(2BYTE)

2.2.5.2.2 Variable -Length Data Streams

Variable - length data streams consist of a stream of characters or a stream of bytes. The two types are
similar, in that they both have a length rule and a data rule .

Characters

Variable - length character streams are defined by a length field followed by the data itself. There are
two types of variable - length character streams, each dependent on the size of the length field (for
example, a BYTE or USHORT). If the lengt h field is zero, then no data follows the length field.

 B_VARCHAR = BYTELEN *CHAR

 US_VARCHAR = USHORTLEN *CHAR

Note that the lengths of B_VARCHAR and US_VARCHAR are given in Uni code characters.

Generic Bytes

Similar to the variable - length character stream, variable - length byte streams are defined by a length
field followed by the data itself. There are three types of variable - length byte streams, each
dependent on the size of the length field (for example, a BYTE, USHORT, or LONG). If the value of the
length field is zero, then no data follows the length field.

https://go.microsoft.com/fwlink/?LinkId=119987
%5bMS-LCID%5d.pdf#Section_70feba9f294e491eb6eb56532684c37f

32 / 218

[MS -TDS] - v20201001
Tabular Data Stream Protocol
Copyright © 2020 Microsoft Corporation
Release: October 1, 2020

 B_VARBYTE = BYTELEN *BYTE

 US_VARBYTE = USHORTLEN *BYTE

 L_VARBYTE = LONGLEN *BYTE

2.2.5.2.3 Data Type Dependent Data Streams

Some messages contain variable data types. The actual type of a given variable data type is
dependent on the type of the data being sent within the message as defined in the TYPE_INFO rule.

For example, the RPCRequest message c ontains the TYPE_INFO and TYPE_VARBYTE rules. These two
rules contain data of a type that is dependent on the actual type used in the value of the
FIXEDLENTYPE or VARLENTYPE rules of the TYPE_INFO rule.

Data type -dependent data streams occur in three forms : integers, fixed and variable bytes, and
partially length -prefixed bytes.

Integers

Data type -dependent integers can be either a BYTELEN, USHORTCHARBINLEN, or LONGLEN in length.
This length is dependent on the TYPE_INFO associated with the message. If the data type (for
example, FIXEDLENTYPE or VARLENTYPE rule of the TYPE_INFO rule) is of type SSVARIANTTYPE,
TEXTTYPE, NTEXTTYPE, or IMAGETYPE, the integer length is LONGLEN. If the data type is

BIGCHARTYPE, BIGVARCHARTYPE, NCHARTYPE, NVARCHARTYPE, BIGBINARYTY PE, or
BIGVARBINARYTYPE, the integer length is USHORTCHARBINLEN. For all other data types, the integer
length is BYTELEN.

 TYPE_VARLEN = BYTELEN

 /

 USHORTCHARBINLEN

 /

 LONGLEN

Fixed and Variable Bytes

The data type to be used in a data type -dependent byte stream is defined by the TYPE_INFO rule
associated with the message.

For variable - length types, with the exception of PLP (see Partially Length -prefixed Bytes below), t he
TYPE_VARLEN value defines the length of the data to follow. As described above, the TYPE_INFO rule
defines the type of TYPE_VARLEN (for example BYTELEN, USHORTCHARBINLEN, or LONGLEN).

For fixed - length types, the TYPE_VARLEN rule is not present. In these cases, the number of bytes to
be read is determined by the TYPE_INFO rule. For example, if "INT2TYPE" is specified as the value for
the FIXEDLENTYPE rule of the TYPE_INFO rule, 2 bytes are read because "INT2TYPE" is always 2 bytes
in length. For more deta ils, see Data Types Definitions .

The data following this can be a stream of bytes or a NULL value. The 2 -byte CHARBIN_NULL rule is
used for BIGCHARTYPE, BIGVARCHARTYPE, NCHARTYPE, NVARCHARTYPE, BIGBINARYTYPE, and
BIGVARBINARYTYPE types, and the 4 -byte CHARBIN_NULL rule is used for TEXTTYPE, NTEXTTYPE,

and IMAGETYPE. The GEN_NULL rule applies to all other types aside from PLP:

 TYPE_VARBYTE = GEN_NULL / CHARBIN_NULL / PLP_BODY

 / ([TY PE_VARLEN] *BYTE)

Partially Length - prefixed Bytes

33 / 218

[MS -TDS] - v20201001
Tabular Data Stream Protocol
Copyright © 2020 Microsoft Corporation
Release: October 1, 2020

Unlike fixed or variable byte stream formats, Partially length -prefixed bytes (PARTLENTYPE),
introduced in TDS 7.2, do not require the full data length to be specified before the actual data is

streamed out . Thus, it is ideal for those applications where the data length is not known upfront (that
is, xml serialization). A value sent as PLP can be either NULL, a length followed by chunks (as defined

by PLP_CHUNK), or an unknown length token followed by chunks , which MUST end with a
PLP_TERMINATOR. The rule below describes the stream format (for example, the format of a singleton
PLP value):

 PLP_BODY= PLP_NULL

 /

 ((ULONGLONGLEN / UNKNOWN_PLP_LEN)

 *PLP_CHUNK PLP_TERMINATOR)

 PLP_NULL = %xFFFFFFFFFFFFFFFF

 UNKNOWN_PLP_LEN = %xFFFFFFFFFFFFFFFE

 PLP_CHUNK = ULONGLEN 1*BYTE

 PLP_TERMINATOR = %x00000000

Notes

Á TYPE_INFO rule specifies a Partially Length -prefixed Data type (PARTLENTYPE, see 2.2.5.4.4).

Á In the UNKNOWN_PLP_LEN case, the data is represented as a series of zero or more chunks, each
consistin g of the length field followed by length bytes of data (see the PLP_CHUNK rule). The data
is terminated by PLP_TERMINATOR (which is essentially a zero - length chunk).

Á In the actual data length case, the ULONGLONGLEN specifies the length of the data and is f ollowed
by any number of PLP_CHUNKs containing the data. The length of the data specified by
ULONGLONGLEN is used as a hint for the receiver. The receiver SHOULD validate that the length
value specified by ULONGLONGLEN matches the actual data length.

2.2.5.3 Packe t Data Stream Headers - ALL_HEADERS Rule Definition

Message streams can be preceded by a variable number of headers as specified by the ALL_HEADERS
rule. The ALL_HEADERS rule, the Query Notifications header , and the Transaction Descriptor header

were introduced in TDS 7.2. The Trace Activity header was introduced in TDS 7.4.

The list of headers that are applicable to the different types of messages are described in the following
table.

Stream headers MUST be present only in the first packet of requests tha t span more than one packet.
The ALL_HEADERS rule applies only to the three client request types defined in the table below and
MUST NOT be included for other request types. For the applicable request types, each header MUST
appear at most once in the stre am or packet's ALL_HEADERS field.

Header Value SQLBatch RPCRequest TransactionManagerRequest

Query Notifications 0x00 01 Optional Optional Disallowed

Transaction Descriptor 0x00 02 Required Required Required

Trace Activity 0x00 03 Optional Optional Optional

Stream - Specific Rules:

 TotalLength = DWORD ;including itself

34 / 218

[MS -TDS] - v20201001
Tabular Data Stream Protocol
Copyright © 2020 Microsoft Corporation
Release: October 1, 2020

 HeaderLength = DWORD ;including itself

 HeaderType = USHORT;

 HeaderData = *BYTE

 Header = HeaderLength HeaderType HeaderData

Stream Definition:

 ALL_HEADERS = TotalLength 1*Header

Parameter Description

TotalLength Total length of ALL_HEADERS stream.

HeaderLength Total length of an individual header.

HeaderType The type of header, as defined by the value field in the pr eceding table.

HeaderData The data stream for the header. See header definitions in the following subsections.

Header A structure containing a single header.

2.2.5.3.1 Query Notifications Header

This packet data stream header allows the client to specify that a notification is to be supplied on the

results of the request. The contents of the header specify the information necessar y for delivery of the
notification. For more information about query notifications <11> functionality for a database server
that supports SQL, see [MSDN -QUERYNOTE].

Stream Specific Rules:

 NotifyId = USHORT UNICODESTREAM ; user specified value

 ; when subscribing to

 ; query notifications

 SSBDeployment = USHORT UNICODESTREAM

 NotifyTimeout = ULONG ; duration in which the query

 ; notification subscription

 ; is valid

The USHORT field defined within the NotifyId and SSBDeployment rules specifies the length, in bytes,
of the actual data value, defined by the UNICODESTREAM, that follows it. <12> The time unit of
NotifyTimeout is milliseconds.

Stream Definition:

 HeaderData = NotifyId

 SSBDeployment

 [NotifyTimeout]

2.2.5.3.2 Transaction Descriptor Header

This packet data stream contains information regarding transaction descriptor and number of
outstanding requests as they apply to Multiple Active Result Sets (MARS) [MSDN -MARS] .

https://go.microsoft.com/fwlink/?LinkId=119984
https://go.microsoft.com/fwlink/?LinkId=98459

35 / 218

[MS -TDS] - v20201001
Tabular Data Stream Protocol
Copyright © 2020 Microsoft Corporation
Release: October 1, 2020

The TransactionDescriptor MUST be 0, and OutstandingRequestCount MUST be 1 if the connection is
operating in AutoC ommit mode. For more information about autocommit transactions, see [MSDN -

Autocommit] .

Stream - Specific Rules:

 OutstandingRequestCount = DWORD ; number of requests currently active on

 ; the connection

 TransactionDescriptor = ULONGLONG ; for each connection, a number that uniquely

 ; identifies the transaction with which the

 ; request is associated; initially generated

 ; by the server when a new transaction is

 ; created and returned to the client as part

 ; of th e ENVCHANGE token stream

For more information about processing the Transaction Descriptor header, see section 2.2.6.9 .

Stream Definition:

 HeaderData = TransactionDescriptor

 OutstandingRequestCount

2.2.5.3.3 Trace Activity Header

This packet data stream contains a client trace activity ID intended to be used by the server for

debugging purposes, to allow correlating the server's processing of the request with the client request.

A client MUST NOT send a Trace Activity header when the negotiated TDS major version is less than
7.4. If the negotiated TDS major version is less than TDS 7.4 and the server receives a Trace Activity
header token, the server MUST reject the request with a TDS protocol error.

Stream - Specific Rules:

 GUID_ActivityID = 16BYTE ; client application activity id

 ; used for debugging purposes

 ActivitySequence = ULONG ; client application activity sequence

 ; used for debugging purposes

 ActivityId = GUID_ActivityID

 ActivitySequence

Stream Definition:

 HeaderData = ActivityId

2.2.5.4 Data Type Definitions

The subsectio ns within this section describe the different sets of data types and how they are

categorized. Specifically, data values are interpreted and represented in association with their data
type. Details about each data type categorization are described in the f ollowing sections.

2.2.5.4.1 Zero -Length Data Types

The zero - length data types include the following type.

 NULLTYPE = 0x1F ; Null

https://go.microsoft.com/fwlink/?LinkId=145156
https://go.microsoft.com/fwlink/?LinkId=145156

36 / 218

[MS -TDS] - v20201001
Tabular Data Stream Protocol
Copyright © 2020 Microsoft Corporation
Release: October 1, 2020

There is no data associated with NULLTYPE. <13> For more details, see section 2.2.4.2.1.1 .

2.2.5.4.2 Fixed -Length Data Types

The fixed - length data types include the following types.

 INT1TYPE = %x30 ; TinyInt

 BITTYPE = %x32 ; Bit

 INT2TYPE = %x34 ; SmallInt

 INT4TYPE = %x38 ; Int

 DATETIM4TYPE = %x3A ; SmallDateTime

 FLT4TYPE = %x3B ; Real

 MONEYTYPE = %x3C ; Money

 DATETIMETYPE = %x3D ; DateTime

 FLT8TYPE = %x3E ; Float

 MONEY4TYPE = %x7A ; SmallMoney

 INT8TYPE = %x7F ; BigInt

 DECIMALTYPE = %x37 ; Decimal (legacy support)

 NUMERICTYPE = %x3F ; Numeric (legacy support)

 FIXEDLENTYPE = INT1TYPE

 /

 BITTYPE

 /

 INT2TYPE

 /

 INT4TYPE

 /

 DATETIM4TYPE

 /

 FLT4TYPE

 /

 MONEYTYPE

 /

 DATETIMETYPE

 /

 FLT8TYPE

 /

 MONEY4TYPE

 /

 INT8TYPE

Non -nul lable values are returned using these fixed - length data types. For the fixed - length data types,
the length of data is predefined by the type. There is no TYPE_VARLEN field in the TYPE_INFO rule for
these types. In the TYPE_VARBYTE rule for these types, the TYPE_VARLEN field is BYTELEN, and the
value is 1 for INT1TYPE/BITTYPE, 2 for INT2TYPE, 4 for
INT4TYPE/DATETIM4TYPE/FLT4TYPE/MONEY4TYPE, and 8 for

MONEYTYPE/DATETIMETYPE/FLT8TYPE/INT8TYPE. The value represents the number of bytes of data to
be followed. Th e SQL data types of the corresponding fixed - length data types are in the comment part
of each data type.

2.2.5.4.3 Variable -Length Data Types

The data type token values defined in this section have a length value associated with the data type
because the data values correspo nding to these data types are represented by a variable number of

bytes.

 GUIDTYPE = %x24 ; UniqueIdentifier

 INTNTYPE = %x26 ; (see below)

 BITNTYPE = %x68 ; (see below)

 DECIMALNTYPE = %x6A ; Decimal

 NUMERICNTYPE = %x6C ; Numeric

 FLTNTYPE = %x6D ; (see below)

37 / 218

[MS -TDS] - v20201001
Tabular Data Stream Protocol
Copyright © 2020 Microsoft Corporation
Release: October 1, 2020

 MONEYNTYPE = %x6E ; (see below)

 DATETIMNTYPE = %x6F ; (see below)

 DATENTYPE = %x28 ; (introduced in TDS 7.3)

 TIMENTYPE = %x29 ; (i ntroduced in TDS 7.3)

 DATETIME2NTYPE = %x2A ; (introduced in TDS 7.3)

 DATETIMEOFFSETNTYPE = %x2B ; (introduced in TDS 7.3)

 CHARTYPE = %x2F ; Char (legacy support)

 VARCHARTYPE = %x27 ; VarChar (legacy support)

 BINARYTYPE = %x2D ; Binary (legacy support)

 VARBINARYTYPE = %x25 ; VarBinary (legacy support)

 BIGVARBINARYTYPE = %xA5 ; VarBinary

 BIGVARCHARTYPE = %xA7 ; VarChar

 BIGBINARYTYPE = %xAD ; Binary

 BIGCHARTYPE = %xAF ; Char

 NVARCHARTYPE = %xE7 ; NVarChar

 NCHARTYPE = %xEF ; NChar

 XMLTYPE = %xF1 ; XML (introduced in TDS 7.2)

 UDTTYPE = %xF0 ; CLR UDT (introduced in TDS 7.2)

 TEXTTYPE = %x23 ; Text

 IMAGETYPE = %x22 ; Image

 NTEXTTYPE = %x63 ; NText

 SSVARIANTTYPE = %x62 ; Sql_Variant (introduced in TDS 7.2)

 BYTELEN_TYPE = GUIDTYPE

 /

 INTNTYPE

 /

 DECIMALTYPE

 /

 NUMERICTYPE

 /

 BITNTYPE

 /

 DECIMALNTYPE

 /

 NUMERICNTYPE

 /

 FLTNTYPE

 /

 MONEYNTYPE

 /

 DATETIMNTYPE

 /

 DATENTYPE

 /

 TIMENTYPE

 /

 DATETIME2NTYPE

 /

 DATETIMEOFFSETNTYPE

 /

 CHARTYPE

 /

 VARCHARTYPE

 /

 BINARYTYPE

 /

 VARBINARYTYPE ; the length value associated

 ; with these data types is

 ; specified within a BYTE

For DECIMALNTYPE and NUMERICNTYPE, the only valid lengths are 0x05, 0x09, 0x0D, and 0x11 for
non -NULL instances.

38 / 218

[MS -TDS] - v20201001
Tabular Data Stream Protocol
Copyright © 2020 Microsoft Corporation
Release: October 1, 2020

For MONEYNTYPE, th e only valid lengths are 0x04 and 0x08, which map to smallmoney and money
SQL data types respectively.

For DATETIMNTYPE, the only valid lengths are 0x04 and 0x08, which map to smalldatetime and
datetime SQL data types respectively.

For INTNTYPE, the only v alid lengths are 0x01, 0x02, 0x04, and 0x08, which map to tinyint, smallint,
int, and bigint SQL data types respectively.

For FLTNTYPE, the only valid lengths are 0x04 and 0x08, which map to 7 -digit precision float and 15 -
digit precision float SQL data typ es respectively.

For GUIDTYPE, the only valid lengths are 0x10 for non -null instances and 0x00 for NULL instances.

For BITNTYPE, the only valid lengths are 0x01 for non -null instances and 0x00 for NULL instances.

For DATENTYPE, the only valid lengths are 0x03 for non -NULL instances and 0x00 for NULL instances.

For TIMENTYPE, the only valid lengths (along with the associated scale value) are:

SCALE 1 2 3 4 5 6 7

LENGTH 0x03 0x03 0x04 0x04 0x05 0x05 0x05

For DATETIME2NTYPE, the only valid lengths (along with the associated scale value) are:

SCALE 1 2 3 4 5 6 7

LENGTH 0x06 0x06 0x07 0x07 0x08 0x08 0x08

For DATETIMEOFFSETNTYPE, the only valid lengths (along with the associated scale value) are:

SCALE 1 2 3 4 5 6 7

LENGTH 0x08 0x08 0x09 0x09 0x0A 0x0A 0x0A

Exceptions are thrown when invalid lengths are presented to the server during BulkLoadBCP and RPC
requests.

For all variable length data types, the value is 0x00 for NULL instances.

 USHORTLEN_TYPE = BIGVARBINARYTYPE

 /

 BIGVARCHARTYPE

 /

 BIGBINARYTYPE

 /

 BIGCHARTYPE

 /

 NVARCHARTYPE

 /

 NCHARTYPE ; the length value associated with

 ; these data types is specified

 ; within a USHORT

 LONGLEN_TYPE = IMAGETYPE

 /

 NTEXTTYPE

 /

 SSVARIANTTYPE

 /

 TEXTTYPE

39 / 218

[MS -TDS] - v20201001
Tabular Data Stream Protocol
Copyright © 2020 Microsoft Corporation
Release: October 1, 2020

 /

 XMLTYPE ; the length value associated with

 ; these data types is specified

 ; within a LONG

Notes

Á MaxLength for an SSVARIANTTYPE is 8009 (8000 for strings). For more details, see section
2.2.5.5.4 .

Á XMLTYPE is only a valid LONGLEN_TYPE for B ulkLoadBCP.

MaxLength for an SSVARIANTTYPE is 8009 (string of 8000 bytes).

 VARLENTYPE = BYTELEN_TYPE

 /

 USHORTLEN_TYPE

 /

 LONGLEN_TYPE

Nullable values are returned b y using the INTNTYPE, BITNTYPE, FLTNTYPE, GUIDTYPE, MONEYNTYPE,

and DATETIMNTYPE tokens which will use the length byte to specify the length of the value or
GEN_NULL as appropriate.

There are two types of variable - length data types. These are real variable - length data types, like char
and binary, and nullable data types, which have either a normal fixed length that corresponds to their
type or to a special length if null.

Char and binary data types have values that either are null or are 0 to 65534 (0x0000 to 0xFFFE)
bytes of data. Null is represented by a length of 65535 (0xFFFF). A non -nullable char or binary can

still have a length of zero (for example, an empty value). A program that MUST pad a value to a fixed
length typically adds blanks to the end of a char and adds binary zeros to the end of a binary.

Text and image data types have values that either are null or are 0 to 2 gigabytes (0x00000000 to
0x7FFFFFFF bytes) of data. Null is represented by a length of -1 (0xFFFFFFFF). No other length
specificat ion is supported.

Other nullable data types have a length of 0 when they are null.

2.2.5.4.4 Partially Length -Prefixed Data Types

The data value corresponding to the set of data types defined in this section follows the rule defined in
the partia lly length -prefixed stream definition (section 2.2.5.2.3).

 PARTLENTYPE = XMLTYPE

 /

 BIGVARCHARTYPE

 /

 BIGVARBINARYTYPE

 /

 NVARCHARTYPE

 /

 UDTTYPE

BIGVARCHARTYPE, BIGVARBINARYTYPE, and NVARCHARTYPE can represent two types each:

40 / 218

[MS -TDS] - v20201001
Tabular Data Stream Protocol
Copyright © 2020 Microsoft Corporation
Release: October 1, 2020

Á The regular type with a known maximum size range defined by USHORTLEN_TYPE. For
BIGVARCHARTYPE and BIGVARBINARYTYPE, the range is 0 to 8000. For NVARCHARTYPE, the

range is 0 to 4000.

Á A type with unlimited max size, known as varchar(max), varbinary(max) and nvarchar(max),

which ha s a max size of 0xFFFF, defined by PARTLENTYPE. This class of types was introduced in
TDS 7.2.

2.2.5.5 Data Type Details

The subsections within this section specify the formats in which values of system data types are
serialized in TDS.

2.2.5.5.1 System Data Type Values

The subsections within this section specify the formats in which values of various common system
data types are serialized in TDS.

2.2.5.5.1.1 Integers

All integer types are represented in reverse byte order (little - endian) unless otherwise specified.
Each integer takes a whole number of bytes as follows:

bit: 1 byte

tinyint: 1 byte

smallint: 2 bytes

int: 4 bytes

bigint: 8 bytes

2.2.5.5.1.2 Timestamp

timestamp/rowversion is represented as an 8 -byte binary sequence with no particular
interpretation.

2.2.5.5.1.3 Character and Binary Strings

See Variable -Length Data Types (section 2.2.5.4.3) and Partially Length -Prefixed Data
Types (section 2.2.5.4.4) .

2.2.5.5.1.4 Fixed -Point Numbers

smallmoney is represented as a 4 -byte signed integer. The TDS value is the smallmoney value
multiplied by 10 4.

money is represented as an 8 -byte signed integer. The TDS value is the money value multiplie d by

10 4. The 8 -byte signed integer itself is represented in the following sequence:

Á One 4 -byte integer that represents the more significant half.

Á One 4 -byte integer that represents the less significant half.

2.2.5.5.1.5 Floating -Point Numbers

float (n) follows the 32 -bit [IEEE754] binary specification when n <= 24 and the 64 -bit [IEEE754]
binary specification when 25 <= n <= 53.

https://go.microsoft.com/fwlink/?LinkId=89903

41 / 218

[MS -TDS] - v20201001
Tabular Data Stream Protocol
Copyright © 2020 Microsoft Corporation
Release: October 1, 2020

2.2.5.5.1.6 Decimal/Numeric

Decimal or Numeric is defined as decimal (p, s) or numeric (p, s), where p is the precision and s is
the scale. The value is represented in the following sequence:

Á One 1 -byte unsigned integer that represents the sign of the decimal value as follows:

Á 0 means negative.

Á 1 means nonnegative.

Á One 4 - , 8 - , 1 2- , or 16 -byte signed integer that represents the decimal value multiplied by 10 s. The
maximum size of this integer is determined based on p as follows:

Á 4 bytes if 1 <= p <= 9.

Á 8 bytes if 10 <= p <= 19.

Á 12 bytes if 20 <= p <= 28.

Á 16 bytes if 29 <= p <= 38.

The actual size of this integer could be less than the maximum size, depending on the value. In all
cases, the integer part MUST be 4, 8, 12, or 16 bytes.

2.2.5.5.1.7 GUID

uniqueidentifier is represented as a 16 -byte binary sequence with no specific interpretation.

2.2.5.5.1.8 Date/Times

smalldatetime is represented in the following sequence:

Á One 2 -byte unsigned integer that represents the number of days since January 1, 1900.

Á One 2 -byte unsigned integer that represents the number of minutes elapsed since 12 AM that day.

datetime is represented in the following sequence:

Á One 4 -byte signed integer that represents the number of days since January 1, 1900. Negative
numbers are allowed to represent dates since January 1, 1753.

Á One 4 -byte unsigned integer that represents the number of one three -hundredths of a second
(300 counts per second) elapsed since 12 AM that day.

date is represented as one 3 -byte unsigned integer that represents the number of days since January
1, year 1.

time (n) is represented as one unsigned integer that repres ents the number of 10 -n second increments

since 12 AM within a day. The length, in bytes, of that integer depends on the scale n as follows:

Á 3 bytes if 0 <= n < = 2.

Á 4 bytes if 3 <= n < = 4.

Á 5 bytes if 5 <= n < = 7.

datetime2 (n) is represented as a concatenation of time (n) followed by date as specified above.

42 / 218

[MS -TDS] - v20201001
Tabular Data Stream Protocol
Copyright © 2020 Microsoft Corporation
Release: October 1, 2020

datetimeoffset (n) is represented as a concatenation of datetime2 (n) followed by one 2 -byte signed
integer that represents the time zone offset as the number of minutes from UTC. The time zone offset

MUST be between -840 and 840.

2.2.5.5.2 Common Language Runtime (CLR) Instances

The following data type definition stream is used for UDT_INFO in TYPE_INFO. This data type was
introduced in TDS 7.2.

 DB_NAME = B_VARCHAR ; database name o f the UDT

 SCHEMA_NAME = B_VARCHAR ; schema name of the UDT

 TYPE_NAME = B_VARCHAR ; type name of the UDT

 MAX_BYTE_SIZE = USHORT ; max length in bytes

 ASSEMBLY_QUALIFIED_NAME = US_VARCHAR ; name of the CLR a ssembly

 UDT_METADATA = ASSEMBLY_QUALIFIED_NAME

 UDT_INFO_IN_COLMETADATA = MAX_BYTE_SIZE

 DB_NAME

 SCHEMA_NAME

 TYPE_NAME

 UDT_METADATA

 UDT_INFO_IN_RPC = DB_NAME ; database name of the UDT

 SCHEMA_NAME ; schema name of the UDT

 TYPE_NAME ; type name of the UDT

 UDT_INFO = UDT_INFO_IN_COLMETADATA ;when sent as part of COLMETADATA

 /

 UDT_INFO_IN_RPC ;when sent as part of RPC call

MAX_BYTE_SIZE is only sent from the server to the client in COLMETADATA and is an unsigned short

with a value within the range 1 to 8000 or 0xFFFF. The value 0xFFFF signifies the maximum LOB size
indicating a UDT with a maximum size greater than 8000 bytes (also referred to as a Large UDT;
introduced in TDS 7.3). MAX_BYTE_SIZE is not sent to the server as part of RPC calls.

Note UserT ype in the COLMETADATA stream, defined in section 2.2.7.4 , is either 0x0000 or
0x00000000 for UDTs, depending on the TDS version that is used. The actual data value format
associated with a UDT da ta type definition stream is specified in [MS -SSCLRT] .

2.2.5.5.3 XML Values

This section defines the XML data type definition stream, which was introduced in TDS 7.2.

 SCHEMA_PRESENT= BYTE;

 DbName = B_VARCHAR

 OWNING_SCHEMA = B_VARCHAR

 XML_SCHEMA_COLLECTION = US_VARCHAR

 XML_INFO = SCHEMA_PRESENT

 [DbName OWNING_SCHEMA

 XML_SCHEMA_COLLECTION]

SCHEMA_PRESENT specifies "0x01" if the type has an associated schema collection and DbName,
OWNING_SCHEMA and XML_SCHEMA_COLLECTION MUST be included in the stream, or '0x00'
otherwise.

DbName specifies the name of the database where the schem a collection is defined.

OWNING_SCHEMA specifies the name of the relational schema containing the schema collection.

%5bMS-SSCLRT%5d.pdf#Section_77460aa98c2f4449a65e1d649ebd77fa

43 / 218

[MS -TDS] - v20201001
Tabular Data Stream Protocol
Copyright © 2020 Microsoft Corporation
Release: October 1, 2020

XML_SCHEMA_COLLECTION specifies the name of the XML schema collection to which the type is
bound.

Note The actual data value format that i s associated with an XML data type definition stream uses
the binary XML structure format, as specified in [MS -BINXML] .<14>

2.2.5.5.4 SQL_VARIANT Values

The SSVARIANTTYPE is a special data type that acts as a place holder for other data types. When a
SSVARIANTTYPE is filled with a data value, it takes on properties of the base data type that represents
the data value. To support this dynamic change, for those that are not NULL (GEN_NULL) the
SSVARIANTTYPE instance has an SSVARIANT_INSTANCE internal structure according to the following
definition.

 VARIANT_BASETYPE = BYTE ; data type definition

 VARIANT_PROPBYTES = BYTE ; see below

 VARIANT_PROPERTIES = *BYTE ; see below

 VARIANT_DATAVAL = 1*BYTE ; actual data value

 SSVARIANT_INSTANCE = VARIANT_BASETYPE

 VARIANT_PROPBYTES

 VARIANT_PROPERTIES

 VARIANT_DATAVAL

VARIANT_ BASETYPE is the TDS token of the base type.

VARIANT_BASETYPE

VARIANT_PROPBYTES VARIANT_PROPERTIES

GUIDTYPE, BITTYPE, INT1TYPE, INT2TYPE,
INT4TYPE, INT8TYPE, DATETIMETYPE,
DATETIM4TYPE, FLT4TYPE, FLT8TYPE, MONEYTYPE,
MONEY4TYPE, DATENTYPE

0 <not specified>

TIMENTYPE, DATETIME2NTYPE,
DATETIMEOFFSETNTYPE

1 1 byte specifying scale

BIGVARBINARYTYPE, BIGBINARYTYPE 2 2 bytes specifying max length

NUMERICNTYPE, DECIMALNTYPE 2 1 byte for precision followed by
1 byte for scale

BIGVARCHARTYPE, BIGCHARTYPE, NVARCHARTYPE,
NCHARTYPE

7 5-byte COLLATION, followed
by a 2 -byte max length

Note Data types cannot be NULL when inside a sql_variant. If the value is NULL, the sql_variant itself
has to be NULL, but it is not allowed to specify a non -null sq l_variant instance and have a NULL value
wrapped inside it. A raw collation SHOULD NOT be specified within a sql_variant. <15>

2.2.5.5.5 Table Valued Parameter (TVP) Values

Table Valued Parameters (or User Defined Table Type, as this type is known on the server)
encapsulate an entire table of data with 1 to 1024 columns and an arbitrary number of rows. At the
present time, TVPs are permitted to be used only as input parameters and do not appear as output
parameters or in result set columns.

TVPs MUST be sent only by a TDS client that reports itself as a TDS major version 7.3 or later. If a
client reporting itself as older than TDS 7.3 attempts to send a TV P, the server MUST reject the

request with a TDS protocol error.

%5bMS-BINXML%5d.pdf#Section_11ab6e8d247244d1a9e6bddf000e12f6

44 / 218

[MS -TDS] - v20201001
Tabular Data Stream Protocol
Copyright © 2020 Microsoft Corporation
Release: October 1, 2020

2.2.5.5.5.1 Metadata

 TVPTYPE = %xF3

 TVP_TYPE_INFO = TVPTYPE

 TVP_TYPENAME

 TVP_COLMETADATA

 [TVP_ORDER_UNIQUE]

 [TVP_COLUMN_ORDERING]

 TVP_END_TOKEN

 *TVP_ROW

 TVP_END_TOKEN

Parameter Description

TVPTYPE %xF3

TVP_TYPENAME Type name of the TVP

TVP_COLMETADATA Column -specific metadata

[TVP_ORDER_UNIQUE] Optional metadata token

[TVP_COLUMN_ORDERING] Optional metadata token

TVP_END_TOKEN End optional metadata

*TVP_ROW 0..N TVP_ROW tokens

TVP_END_TOKEN End of rows

TVP_TYPENAME definition

 DbName = B_VARCHAR ; Database where TVP type resides

 OwningSchema = B_VARCHAR ; Schema where TVP type resides

 TypeName = B_VARCHAR ; TVP type name

 TVP_TYPENAME = DbName

 OwningSchema

 TypeName

TVP_COL METADATA definition

 fNullable = BIT ; Column is nullable - %x01

 fCaseSen = BIT ; Column is case - sensitive - %x02

 usUpdateable = 2BIT ; 2 - bit value, one of:

 ; 0 = ReadO nly - %x00

 ; 1 = ReadWrite - %x04

 ; 2 = Unknown - %x08

 fIdentity = BIT ; Column is identity column - %x10

 fComputed = BIT ; Column is computed - %x20

 usReservedODBC = 2BIT ; Reserved bits for ODBC - %x40+80

 fFixedLenCLRType = BIT ; Fixed length CLR type - %x100

 fDefault = BIT ; Column is default value - %x200

 usReserved = 6BIT ; Six leftover reserved bits

 Flags = fNullable

 fCaseSen

 usUpdateable

 fIdentity

 fComputed

 usReservedODBC

 fFixedLenCLRType

 fDefault

 usReserved

45 / 218

[MS -TDS] - v20201001
Tabular Data Stream Protocol
Copyright © 2020 Microsoft Corporation
Release: October 1, 2020

 Count = USHORT ; Column count up to 1024 max

 ColName = B_VARCHAR ; Name of column

 UserType = ULONG ; Use rType of column

 TvpColumnMetaData = UserType

 Flags

 TYPE_INFO

 ColName ; Column metadata instance

 TVP_NULL_TOKEN = %xFFFF

 TVP_COLMETADATA = TVP_NULL_TOKEN / (Count (<Count> TvpColumnMetaData))

DbName, OwningSchema, and TypeName are limited to 128 Unicode characters max identifier
length.

DbName is required to be zero - length, only OwningSchema and TypeName can be specified. DbName,
OwningSchema, and TypeName are all optional fields and might ALL contain zero length strings. Client
SHOULD follow these two rules:

Á If the TVP is a parameter to a stored procedure or function where parameter metadata is
available on the server side, the client can send all zero - length strings for TVP_TYPENAME.

Á If the TVP is a parameter to an ad -hoc SQL statement , parameter metadata information is not
available on a stored procedure or function on the server. In this case, the client is responsible to

send sufficient type information with the TVP to allow the server to resolve the TVP type from
sys.ty pes. Failure to send needed type information in this case will result in complete failure of
RPC call prior to execution.

Only one new flag, fDefault, is added here from existing COLMETADATA. ColName MUST be a zero -
length string in the TVP.

Additional deta ils about input TVPs and usage of flags

Á For an input TVP, if the fDefault flag is set on a column, then the client MUST NOT emit the

corresponding TvpColumnData data for the associated column when sending each TVP_ROW.

Á For an input TVP, the fCaseSen, usUpd ateable, and fFixedLenCLRType flags are ignored.

Á usUpdateable is ignored by server on input, it is "calculated" metadata.

Á The fFixedLenCLRType flag is not used by the server.

Á Output TVPs are not currently supported.

TVP Flags Usage Chart

Flag Input behavi or

fNullable Allowed

fCaseSen Ignored

usUpdateable Ignored

fIdentity Allowed

fComputed Allowed

usReservedODBC Ignored

46 / 218

[MS -TDS] - v20201001
Tabular Data Stream Protocol
Copyright © 2020 Microsoft Corporation
Release: October 1, 2020

Flag Input behavi or

fFixedLenCLRType Ignored

fDefault Allowed (if set, data not sent in TvpColumnData)

usReserved Ignored

2.2.5.5.5.2 Optional Metadata Tokens

TVP_ORDER_UNIQUE definition

 TVP_ORDER_UNIQUE_TOKEN = %x10

 Count = USHORT ; Count of ColNums to follow

 ColNum = USHORT ; A single - column ordinal

 fOrderAsc = BIT ; Column - ordered ascending ï %x01

 fOrderDesc = BIT ; Column - ordered descending ï %x02

 fUnique = BIT ; Column is in unique set ï %x04

 Reserved1 = 5BIT ; Five res erved bits

 OrderUniqueFlags = fOrderAsc

 fOrderDesc

 fUnique

 Reserved1

 TVP_ORDER_UNIQUE = TVP_ORDER_UNIQUE_TOKEN

 (Count (<Count> (C olNum OrderUniqueFlags)))

TVP_ORDER_UNIQUE is similar to the ORDER token that is currently used in TDS responses from the
server.

TVP_ORDER_UNIQUE is optional.

ColNum ordinals are 1..N, where 1 is the first column in TVP_COLMETADATA. That is, ordinals start

with 1.

Each TVP_ORDER_UNIQUE token can describe a set of columns for ordering and/or a set of columns
for uniqueness.

The first column ordinal with an ordering bit set is the primary sort column, the second column ordinal
with an ordering bit set is the secondary sort column, and so on.

The client can send 0 or 1 TVP_ORDER_UNIQUE tokens in a single TVP.

The TVP_ORDER_UNIQUE token MUST always be sent after TVP_COLMETADATA and before the first

TVP_ROW token.

When a TVP is sent to the server, each ColNu m ordinal inside a TVP_ORDER_UNIQUE token MUST
refer to a client generated column. Ordinals that refer to columns with fDefault set will be rejected by

the server.

OrderUniqueFlags Possible Combinations And Meaning

fOrderAsc fOrderDesc fUnique Meaning

FALSE FALSE FALSE Invalid flag state, rejected by server

FALSE FALSE TRUE Column is in unique set

47 / 218

[MS -TDS] - v20201001
Tabular Data Stream Protocol
Copyright © 2020 Microsoft Corporation
Release: October 1, 2020

fOrderAsc fOrderDesc fUnique Meaning

FALSE TRUE FALSE Column is ordered descending

FALSE TRUE TRUE Column is ordered descending and in unique set

TRUE FALSE FALSE Column is ordered ascending

TRUE FALSE TRUE Column is ordered ascending and in unique set

TRUE TRUE FALSE Invalid flag state, rejected by server

TRUE TRUE TRUE Invalid flag state, rejected by server

TVP_COLUMN_ORDERING

TVP_COLUMN_ORDERING is an optional TVP metadata token that is used to allow the TDS client to
send a different ordering of the columns in a TVP from the default ordering.

ColNum ordinals are 1..N, where 1 is first column in the TVP (ordinals start with 1, in other words).
These are the same ordinals used with the TD S ORDER token, for example, to refer to column ordinal
as the columns appear in left to right order.

 TVP_COLUMN_ORDERING_TOKEN = %x11

 Count = USHORT ; Count of ColNums to follow

 ColNum = USHORT ; A single - column ordinal

 TVP_COLUMN_ORDERING = TVP_COLUMN_ORDERING_TOKEN

 (Count (<Count> ColNum))

The client can send 0 or 1 TVP_COLUMN_ORDERING tokens in a single TVP.

The TVP_COLUMN_ORDERING token MUST always be sent after TVP_COLMETADATA and before the
first TVP_ROW token.

Additional details about TVP_COLUMN_ORDERING

TVP_COLUMN_ORDERING is used to re -order the columns in a TVP. For example, say, a TVP is defined
as the following:

 TVP_COLUMN_ORDERING = create type myTvpe as table (f1 int / f2 varchar (max) / f3 datetime)

Then, the TDS client might want to send the f2 field last inside the TVP as an optimization (streaming
the large value last). So the client can send TVP_COLUMN_ORDERING with order 1,3,2 to indicate that
insid e the TVP_ROW section the column f1 is sent first, f3 is sent second, and f2 is sent third.

In this case, the TVP_COLUMN_ORDERING token on the wire for this example would be:

 11 ; TVP_COLUMN_ORDERING_TOKEN

 03 00 ; Count - Number of ColNums to follow.

 01 00 ; ColNum - TVP column ordinal 1 is sent first in TVP_COLMETADATA.

 03 00 ; ColNum - TVP column ordinal 3 is sent second in TVP_COLMETADATA.

 02 00 ; ColNum - TVP column ordinal 2 is sent third in TVP_COLMETADATA.

Duplicate ColNum values are considered a n error condition. The ordinal values of the columns in the
actual TVP type are ordered starting with 1 for the first column and adding one for each column from

left to right. The client MUST send one ColNum for each column described in the TVP_COLMETADATA
(so Count MUST match number of columns in TVP_COLMETADATA).

48 / 218

[MS -TDS] - v20201001
Tabular Data Stream Protocol
Copyright © 2020 Microsoft Corporation
Release: October 1, 2020

TVP_ROW definition

 TVP_ROW_TOKEN = %x01 ; A row as defined by TVP_COLMETADATA follows

 TvpColumnData = TYPE_VARBYTE ; Actual value must match metadata for the column

 AllColumnD ata = *TvpColumnData ; Chunks of data, one per non - default column defined

 ; in TVP_COLMETADATA

 TVP_ROW = TVP_ROW_TOKEN

 AllColumnData

 TVP_END_TOKEN = %x00 ; Terminator tag for TVP type, meaning

 ; no more TVP_ROWs to follow and end of

 ; successful transmission of a single TVP

TvpColumnData is repeated once for each non -default column of data defined in TVP_COLM ETADATA.

Each row will contain one data "cell" per column specified in TVP_COLMETADATA. On input, columns
with the fDefault flag set in TVP_COLMETADATA will be skipped to avoid sending redundant data.

Column data is ordered in same order as the order of it ems defined in TVP_COLMETADATA unless a

TVP_COLUMN_ORDERING token has been sent to indicate a change in the ordering of the row values.

2.2.5.5.5.3 TDS Type Restrictions

Within a TVP, the follow ing legacy TDS types are not supported:

TDS type Replacement type

Binary BigBinary

VarBinary BigVarBinary

Char BigChar

VarChar BigVarChar

Bit BitN

Int1 IntN

Int2 IntN

Int4 IntN

Int8 IntN

Float4 FloatN

Float8 FloatN

Money MoneyN

Decimal DecimalN

Numeric NumericN

DateTime DatetimeN

DateTime4 DatetimeN

Money4 MoneyN

Additional types not allowed in TVP:

49 / 218

[MS -TDS] - v20201001
Tabular Data Stream Protocol
Copyright © 2020 Microsoft Corporation
Release: October 1, 2020

Á Null type (NULLTYPE:='0x1f') is not allowed in a TVP.

Á TVP type is not allowed in a TVP (no nesting of TVP in a TVP).

Á TDS types are not to be confused with data types for a database server that supports SQL.

2.2.5.6 Type Info Rule Definition

The TYPE_INFO rule applies to several messages used to describe column information. For columns of
fixed data length, the type is all that is required to determine the data length. For colu mns of a
variable - length type, TYPE_VARLEN defines the length of the data contained within the column, with

the following exceptions introduced in TDS 7.3:

DATE MUST NOT have a TYPE_VARLEN. The value is either 3 bytes or 0 bytes (null).

TIMENTYPE, DATETIME 2NTYPE, and DATETIMEOFFSETNTYPE MUST NOT have a TYPE_VARLEN. The
lengths are determined by the SCALE as indicated in section 2.2.5.4.3 .

PRECISION and SCALE MUST occur if the type is NUMERICTYPE, N UMERICNTYPE, DECIMALTYPE, or
DECIMALNTYPE.

SCALE (without PRECISION) MUST occur if the type is TIMENTYPE, DATETIME2NTYPE, or

DATETIMEOFFSETNTYPE (introduced in TDS 7.3). PRECISION MUST be less than or equal to decimal
38 and SCALE MUST be less than or equa l to the precision value.

COLLATION occurs only if the type is BIGCHARTYPE, BIGVARCHARTYPE, TEXTTYPE, NTEXTTYPE,
NCHARTYPE, or NVARCHARTYPE.

UDT_INFO always occurs if the type is UDTTYPE.

XML_INFO always occurs if the type is XMLTYPE.

USHORTMAXLEN does not occur if PARTLENTYPE is XMLTYPE or UDTTYPE.

 USHORTMAXLEN = %xFFFF

 TYPE_INFO = FIXEDLENTYPE

 /

 (VARLENTYPE TYPE_VARLEN [COLLATION])

 /

 (VARLENTYPE TYPE_VARLEN [PRECISION SCALE])

 /

 (VARLENTYPE SCALE) ; (introduced in TDS 7.3)

 /

 VARLENTYPE ; (introduced in TDS 7.3)

 /

 (PARTLENTYPE

 [USHORTMAXLEN]

 [COLLATION]

 [XML_INFO]

 [UDT_INFO])

2.2.5.7 Encryption Key Rule Definition

The EK_INFO rule applies to messages that have encrypted values and describes the encryption key
information. The encryption key information includes the various encryption key values that are
obtained by securing an encryption key by using different maste r keys. This rule applies only if the

column encryption feature is negotiated by the client and the server and is turned ON.

 Count = BYTE

50 / 218

[MS -TDS] - v20201001
Tabular Data Stream Protocol
Copyright © 2020 Microsoft Corporation
Release: October 1, 2020

 EncryptedKey = US_VARBYTE

 KeyStoreName = B_VARCHAR

 KeyPath = US_VARCHAR

 AsymmetricAlgo = B_VARCHAR

 EncryptionKeyValue = EncryptedKey

 KeyStoreName

 KeyPath

 AsymmetricAlgo

 DatabaseId = ULONG

 CekId = ULONG

 CekVersion = ULONG

 CekMDVersion = ULONGLONG

 EK_INFO = DatabaseId

 CekId

 CekVersion

 CekMDVersion

 Count

 *EncryptionKeyValue

Parameter Description

Count The count of EncryptionKeyValue elements that are present in the message.

EncryptedKey The ciphertext containing the encryption key that is secure d with the master.

KeyStoreName The key store name component of the location where the master key is saved.

KeyPath The key path component of the location where the master key is saved.

AsymmetricAlgo The name of the algorithm that is used for encrypting the encryption key.

EncryptionKeyValue The metadata and encrypted value that describe an encryption key. This is enough

information to allow retrieval of plaintext encryption keys.

DatabaseId A 4 -byte integer value that represents the database ID where the column encryption key is
stored.

CekId An identifier for the column encryption key.

CekVersion The key version of the column encryption key.

CekMDVersion The metadata version for the column encryption key.

2.2.5.8 Data Packet Stream Tokens

The tokens defined as follows are used as part of the token -based data stream. Details about how
each token is used inside the data stream are in section 2.2.6 .

 ALTMETADATA_TOKEN = %x88

 ALTROW_TOKEN = %xD3

51 / 218

[MS -TDS] - v20201001
Tabular Data Stream Protocol
Copyright © 2020 Microsoft Corporation
Release: October 1, 2020

 COLMETADATA_TOKEN = %x81

 COLINFO_TOKEN = %xA5

 DATACLASSIFICATION_TOKEN = %xA3 ; (introduced in TDS 7.4)

 DONE_TOKEN = %xFD

 DONEPROC_TOKEN = %xFE

 DONEINPROC_TOKEN = %xFF

 ENVCHANGE_TOKEN = %xE3

 ERROR_TOKEN = %xAA

 FEATUREEXTACK_TOKEN = %xAE ; (introduced in TDS 7.4)

 FEDAUTHINFO_TOKEN = %xEE ; (introduced in TDS 7.4)

 INFO_TOKEN = %xAB

 LOGINACK_TOKEN = %xAD

 NBCROW_TOKEN = %xD2 ; (introduced in TDS 7.3)

 OFFSET_TOKEN = %x78

 ORDER_TOKEN = %xA9

 RETURNSTATUS_TOKEN = %x79

 RETURNVALUE_TOKEN = %xAC

 ROW_TOKEN = %xD1

 SESSIONSTATE_TOKEN = %xE4 ; (introduced in TDS 7.4)

 SSPI_TOKEN = %xED

 TABNAME_TOKEN = %xA4

 TVP_ROW_TOKEN = %x01

2.2.6 Packet Header Message Type Stream Definition

2.2.6.1 Bulk Load BCP

Stream Name:

 BulkLoadBCP

Stream Function:

Describes the format of bulk - loaded data th rough the "INSERT BULK" T-SQL statement. The format

is a COLMETADATA token describing the data being sent, followed by multiple ROW tokens, ending
with a DONE token. The stream is equivalent to that produced by the server if it were sending the
same rowset on output.

Stream Comments:

Á Packet header type is 0x07.

Á This message sent to the server contains bulk data to be inserted. The client MUST have

previously notified the server where this data is to be inserted. For more information about the
INSERT BULK syntax, see [MSDN - INSERT] .

Á A sample BulkLoadBCP message is in section 4.12 .

Stream - Specific Rules:

 BulkLoad_METADATA = COLMETADATA

 BulkLoad_ROW = ROW

 BulkLoad_DONE = DONE

Submessage Definition:

 BulkLoadBCP = BulkLoad_METADATA

 *BulkLoad_ROW

https://go.microsoft.com/fwlink/?LinkId=154273

52 / 218

[MS -TDS] - v20201001
Tabular Data Stream Protocol
Copyright © 2020 Microsoft Corporation
Release: October 1, 2020

 BulkLoad_DONE

Note that for INSERT BULK operations, XMLTYPE is to be sent as NVARCHAR(N) or NVARCHAR(MAX)
data type. An erro r is produced if XMLTYPE is specified.

INSERT BULK operations for data type UDTTYPE is not supported. Use VARBINARYTYPE to insert
instances of User Defined Types.

INSERT BULK operations do not support type specifications of DECIMALTYPE and NUMERICTYPE. To
insert these data types, use DECIMALNTYPE and NUMERICNTYPE.

2.2.6.2 Bulk Load Update Text/Write Text

Stream Name:

 BulkLoadUTWT

Stream Function:

Describes the format of bulk - loaded data with UpdateText or WriteText. The format is the length of
the data followed by the data itself.

Stream Comments:

Á Packet header type 0x07.

Á This message sen t to the server contains bulk data to be inserted. The client MUST have

previously issued a "UPDATETEXT BULK" or "WRITETEXT BULK" T-SQL statement to the
server. For information about the UPDATETEXT BULK and WRITETEXT BULK syntax, see [MSDN -
UPDATETEXT] and [MSDN -WRITETEXT] , respectively.

Á The server returns a RETURNVALUE token containing the new timestamp for this column.

Stream - Specific Rules:

 BulkData = L_VARBYTE

Sub Message Definition:

 BulkLoadUTWT = BulkData

Stream Parameter Details

Parameter Description

BulkData Contains the BulkData length and BulkData data within the L_VARBYTE.

2.2.6.3 Federated Authentication Token

Stream Name:

https://go.microsoft.com/fwlink/?LinkId=154272
https://go.microsoft.com/fwlink/?LinkId=154272
https://go.microsoft.com/fwlink/?LinkId=154269

53 / 218

[MS -TDS] - v20201001
Tabular Data Stream Protocol
Copyright © 2020 Microsoft Corporation
Release: October 1, 2020

 FEDAUTH

Stream Function:

An authentication token for federated authentication .<16>

Stream Comments:

Á Packet header type 0x08.

Á This stream contains the clientôs federated authentication token, generated by a client library that
is supported by the server, and any other information, as laid out in the rules for the particular
bFedAuthLibra ry that is indicated in the FEDAUTH FeatureExt in the Login message.

Á The server MUST respond with a Login Response message or an error.

Stream - Specific Rules:

 DataLen = DWORD

 FedAuthToken = L_VARBYTE

 Nonce = 32BYTE

Stream Definition:

Stream is defined based on the bFedAuthLibrary that is used in Login message FEDAUTH FeatureExt.
This message MUST not be sent for any values of bFedAuthLibrary that are not listed in this section.

When bFedAuthLibrary is Active Directory Auth entication Library (ADAL) [that is, 0x02]:

 FEDAUTH = DataLen

 FedAuthToken

 [Nonce]

Stream Parameter Details

Parameter Description

DataLen The total length of the data in the Feder ated Authentication Token message that follows this
field. DataLen does not include the size that is used for the DataLen field itself.

FedAuthToken Contains the federated authentication token data that is generated by the federated
authentication library. The federated authentication library that is used to generate the token
MUST be the same library that is specified as bFedAuthLibrary in the clientôs Login FEDAUTH
FeatureExt message.

Nonce The nonce, if provided by the server during the pre - logi n exchange, that is echoed back to the
server by the client. If the server provided a nonce in the pre - login exchange, the client MUST
echo the nonce back to the server in this field. If the server did not provide a nonce to the client
in the pre - login exc hange, this field MUST NOT be included in the stream.

2.2.6.4 LOGIN7

Stream Name:

54 / 218

[MS -TDS] - v20201001
Tabular Data Stream Protocol
Copyright © 2020 Microsoft Corporation
Release: October 1, 2020

 LOGIN7

Stream Function:

Defines the authentication rules for use between client and server.

Stream Comments:

Á Packet header type 0x10.

Á The length of a LOGIN7 stream MUST NOT be longer than 128K -1(byte) bytes.

Á The OffsetLength and Data rules define the variable - length portions of this data stream. The
Offset Length rule lists the offset from the start of the structure, and the length for each

parameter. If the parameter is not used, the parameter length field MUST be 0. The data itself (for
example, the Data rule) follows these parameters.

Á The first parameter of the OffsetLength rule (ibHostName) indicates the start of the variable

length portion of this data stream. As such it MUST NOT be 0. This is required for forward
compatibility (for example, later versions of TDS, with additional parameters, can be succe ssfully
skipped by down - level servers).

Á A sample LOGIN7 message is in section 4.2 .

Stream - Specific Rules:

 Length = DWORD

 TDSVersion = DWORD

 PacketSize = DWORD

 ClientProgVer = DWORD

 ClientPID = DWORD

 ConnectionID = DWORD

 fByteorder = BIT

 fChar = BIT

 fFloat = 2BIT

 fDumpLoad = BIT

 fUseDB = BIT

 fDatabase = BIT

 fSetLang = BIT

 OptionFlags1 = fByteorder

 fChar

 fFloat

 fDumpLoad

 fUseDB

 fDatabase

 fSetLang

 fLanguage = BIT

 fODBC = BIT

 fTranBoundary = BIT ; (removed in TDS 7.2)

 fCacheConnect = BIT ; (removed in TDS 7.2)

 fUserType = 3BIT

 fIntSecurity = BIT

 OptionFlags2 = fLanguage

 fODBC

 (fTransBoundary / FRESERVEDBIT)

 (fCacheConnect / FRESERVEDBIT)

 fUserType

 fIntSecurity

 fSQLType = 4BIT

55 / 218

[MS -TDS] - v20201001
Tabular Data Stream Protocol
Copyright © 2020 Microsoft Corporation
Release: October 1, 2020

 fOLEDB = BIT ; (introduced in TDS 7.2)

 fReadOnlyI ntent = BIT ; (introduced in TDS 7.4)

 TypeFlags = fSQLType

 (FRESERVEDBIT / fOLEDB)

 (FRESERVEDBIT / fReadOnlyIntent)

 2FRESERVEDBIT

 fChangePassword = BIT ; (introduced in TDS 7.2)

 fUserInstance = BIT ; (introduced in TDS 7.2)

 fSendYukonBinaryXML = BIT ; (introduced in TDS 7.2)

 fUnknownCollationHandling = BIT ; (introduced in TDS 7.3)

 fExtension = BIT ; (introduced in TDS 7.4)

 OptionFlags3 = (FRESERVEDBIT / fChangePassword)

 (FRESERVEDBIT / fSendYukonBinaryXML)

 (F RESERVEDBIT / fUserInstance)

 (FRESERVEDBIT / fUnknownCollationHandling)

 (FRESERVEDBIT / fExtension)

 3FRESERVEDBIT

 ClientTimeZone = LONG;

 ClientLCID = LCID

 ColFlags

 Version

 ibHostName = USHORT

 cchHostName = USHORT

 ibUserName = USHORT

 cchUserName = USHORT

 ibPassword = USHORT

 cchPassword = USHORT

 ibAppName = USHORT

 cchAppName = USHORT

 ibServerName = USHORT

 cchServerName = USHORT

 ibUnused = USHORT

 cbUnused = USHORT

 ibExtension = USHORT ; (introduced in TDS 7.4)

 cbExtension = USHORT ; (introduced in TDS 7.4)

 ibCltIntName = USHORT

 cchCltIntName = USHORT

 ibLanguage = USH ORT

 cchLanguage = USHORT

 ibDatabase = USHORT

 cchDatabase = USHORT

 ClientID = 6BYTE

 ibSSPI = USHORT

 cbSSPI = USHORT

 ibAtchDBFile = USHORT

 cchAtchDBFile = USHORT

 ibChangePassword = USHORT ; (introduced in TDS 7.2)

 cchChangePassword = USHORT ; (introduced in TDS 7.2)

 cbSSPILong = DWORD ; (introduced in TDS 7.2)

 OffsetLength = ibHostName

 cchHostName

 ibUserName

 cchUserName

 ibPassword

 cchPassword

 ibAppName

 cchAppName

 ibServerName

 cchServerName

 (ibUnused / ibExtension)

 (cchUnused / cbExtensi on)

 ibCltIntName

 cchCltIntName

56 / 218

[MS -TDS] - v20201001
Tabular Data Stream Protocol
Copyright © 2020 Microsoft Corporation
Release: October 1, 2020

 ibLanguage

 cchLanguage

 ibDatabase

 cchDatabase

 ClientID

 ibSSPI

 cbSSPI

 ibAtchDBFile

 cchAtchDBFile

 ibChangePassword

 cchChangePassword

 cbSSPILong

Note The ClientLCID value is no longer used to set language parameters and is ignored.

All variable - length fields in the login record are optional. This means that the length of the field can be

specified as 0. If the length is specified as 0, then the offset MUST be ignored. The only exception is
ibHostName, which MUST always point to the beginning of the variable - length data in the login record
even in the case where n o variable - length data is included.

 Data = *BYTE

 FeatureId = BYTE ; (introduced in TDS 7.4)

 FeatureDataLen = DWORD ; (introduced in TDS 7.4)

 FeatureData = *BYTE ; (introduced in TDS 7.4)

 TERMINATOR = %xFF ; signal of end of feature option

 FeatureOpt = (FeatureId

 FeatureDataLen

 FeatureData)

 /

 TERMINATOR

 FeatureExt = 1*FeatureOpt ; (introduced in TDS 7.4)

Stream Definition:

 LOGIN7 = Length

 TDSVersion

 PacketSize

 ClientProgVer

 ClientPID

 ConnectionID

 OptionFlags1

 OptionFlags2

 TypeFlags

 (FRESERVEDBYTE / OptionFlags3)

 ClientTimeZone

 ClientLCID

 OffsetLength

 Data

 [FeatureExt]

Stream Parameter Details

Parameter Description

Length The total length of the LOGIN7 structure.

TDSVersion The highest TDS version being used by the client (for example, 0x00000071 for TDS 7.1). If

57 / 218

[MS -TDS] - v20201001
Tabular Data Stream Protocol
Copyright © 2020 Microsoft Corporation
Release: October 1, 2020

Parameter Description

the TDSVersion value sent by the client is greater than the value that the server recognizes,
the server MUST use the highest TDS version that it can use. This provides a mechanism for
clients to discover the server TDS by sending a standard LOGIN7 message. If the TDSVersion
value sent by the client is lower t han the highest TDS version the server recognizes, the server
MUST use the TDS version sent by the client. <17>

For information about what the server sends to the client, see the LOGINACK token.

PacketSize The packet size being requested by the client.

ClientProgVer The version of the interface library (for example, ODBC or OLEDB) being used by the client.

ClientPID The process ID of the client application.

ConnectionID The connection ID of the primary Server. Used when connecting to an "Always Up" backup
server.

OptionFlags1
Á Represented in least significant bit order .

Á fByteOrder: The byte order used by client for numeric and datetime data types.

Á 0 = ORDER_X86

Á 1 = ORDER_68000 <18>

Á fChar: The character set used on the client.

Á 0 = CHARSET_ASCII

Á 1 = CHARSET_EBCDIC

Á fFloat: The type of floating point representation used by the client. <19>

Á 0 = FLOAT_IEEE_754

Á 1 = FLOAT_VAX

Á 2 = ND5000

Á fDumpLoad: Set is dump/load or BCP capabilities are needed by the client.

Á 0 = DUMPLOAD_ON

Á 1 = DUMPLOAD_OFF

Á fUseDB: Set if the client requires warning messages on execution of the USE SQL
statement. If this flag is not set, the server MUST NOT inform the client when the database
changes, and therefore the client will be unaware of any accompanying collation changes.

Á 0 = USE_DB_OFF

Á 1 = USE_DB_ON

Á fDatabase: Set if the change to initial database needs to succeed if the connection is to
succeed.

Á 0 = INIT_DB_WARN

Á 1 = INIT_DB_FATAL

Á fSetLang: Set if the client requires warning messages on execution of a language change
statement.

58 / 218

[MS -TDS] - v20201001
Tabular Data Stream Protocol
Copyright © 2020 Microsoft Corporation
Release: October 1, 2020

Parameter Description

Á 0 = SET_LANG_OFF

Á 1 = SET_LANG_ON

OptionFlags2
Á Represented in least significant bit order.

Á fLanguage: Set if the cha nge to initial language needs to succeed if the connect is to
succeed.

Á 0 = INIT_LANG_WARN

Á 1 = INIT_LANG_FATAL

Á fODBC: Set if the client is the ODBC driver. This causes the server to set ANSI_DEFAULTS
to ON, CURSOR_CLOSE_ON_COMMIT and IMPLICIT_TRANSACTIONS to OFF, TEXTSIZE to
0x7FFFFFFF (2GB) (TDS 7.2 and earlier), TEXTSIZE to infinite (introduced in TDS 7.3), and
ROWCOUNT to infinite. <20>

Á 0 = ODBC_OFF

Á 1 = ODBC_ON

Á fTransBoundary

Á fCacheConnect

Á fUserType: The type of user connecting to the server.

Á 0 = USER_NORMAL ðregular logins

Á 1 = USER_SERVER ðreserved

Á 2 = USER_REMUSER ðDistributed Query login

Á 3 = USER_SQLREPL ðreplication login

Á fIntSecurity: The type of security required by the client.

Á 0 = INTEGRA TED_SECURTY_OFF

Á 1 = INTEGRATED_SECURITY_ON

TypeFlags
Á Represented in least significant bit order.

Á fSQLType: The type of SQL the client sends to the server.

Á 0 = SQL_DFLT

Á 1 = SQL_TSQL

Á fOLEDB: Set if the client is the OLEDB driver. This causes the server to s et
ANSI_DEFAULTS to ON, CURSOR_CLOSE_ON_COMMIT and IMPLICIT_TRANSACTIONS to
OFF, TEXTSIZE to 0x7FFFFFFF (2GB) (TDS 7.2 and earlier), TEXTSIZE to infinite
(introduced in TDS 7.3), and ROWCOUNT to infinite. <21>

Á 0 = OLEDB_OFF

Á 1 = OLEDB_ON

Á fReadOnlyIntent: This bit was introduced in TDS 7.4; however, TDS 7.1, 7.2, and 7.3
clients can also use this bit in LOGIN7 to specify that the application intent of the
connection is read -only. The server SHOULD ignore this bit if the highest TDS version

59 / 218

[MS -TDS] - v20201001
Tabular Data Stream Protocol
Copyright © 2020 Microsoft Corporation
Release: October 1, 2020

Parameter Description

supported by the server is lower than TDS 7.4.

OptionFlags3
Á Represented in least significant bit order.

Á fChangePassword: Specifies whether the login request SHOULD change password.

Á 0 = No change request. i bChangePassword MUST be 0.

Á 1 = Request to change login's password.

Á fSendYukonBinaryXML: 1 if XML data type instances are returned as binary XML. <22>

Á fUserInstance: 1 if client is requesting separate process to be spawned as user instance.

Á fUnknownCollationHandling: This bit is used by the server to determine if a client is able to
properly handle collations introduced after TDS 7.2. TDS 7.2 and earlier clients are
encouraged to use this login packet bit. Servers MUST ignore this bit when it is sent by
TDS 7.3 or 7.4 clients. See [MSDN -SQLCollation] and [MS -LCID] for the complete list of
collations for a database server that supports SQL and LCIDs.

Á 0 = The server MUST restrict the collations sent to a specific set of collations. It MAY
disconnect or send an error if some other value is outside the speci fic collation set.
The client MUST properly support all collations within the collation set.

Á 1 = The server MAY send any collation that fits in the storage space. The client MUST
be able to both properly support collations and gracefully fail for those it does not
support.

Á fExtension: Specifies whether ibExtension/cbExtension fields are used.

Á 0 = ibExtension/cbExtension fields are not used. The fields are treated the same as
ibUnused/cchUnused.

Á 1 = ibExtension/cbExtension fields are used.

ClientTimeZone This field is not used and can be set to zero.

ClientLCID The language code identifier (LCID) value for the client collation. If ClientLCID is specified, the
specified collation is set as the session collation. Note that the total ClientLCID is 4 bytes,
which implies that there is no support for SQL Sort orders.

OffsetLength The variable portion of this message. A stream of bytes in the order shown, indicates the offset
(from the start of the message) and length of various parameters:

Á ibHostname & cchHos tName: The client machine name.

Á ibUserName & cchUserName: The client user ID.

Á ibPassword & cchPassword: The password supplied by the client.

Á ibAppName & cchAppName: The client application name.

Á ibServerName & cchServerName: The server name.

Á ibUnused & cbUn used: These parameters were reserved until TDS 7.4.

Á ibExtension & cbExtension: This points to an extension block. Introduced in TDS 7.4 when
fExtension is 1. The content pointed by ibExtension is defined as follows:

 ibFeatureExtLong = DWORD

https://go.microsoft.com/fwlink/?LinkId=119987
%5bMS-LCID%5d.pdf#Section_70feba9f294e491eb6eb56532684c37f

60 / 218

[MS -TDS] - v20201001
Tabular Data Stream Protocol
Copyright © 2020 Microsoft Corporation
Release: October 1, 2020

Parameter Description

 Extension = ibFeatureExtLong

ibFeatureExtLong provides the offset (from the start of the message) of FeatureExt block.
ibFeatureExtLong MUST be 0 if FeatureExt block does not exist.

Extension block can be extended in future. The client MUST NOT send more d ata than
needed. The server SHOULD ignore any appended data that is unknown to the server.

Á ibCltIntName & cchCltIntName: The interface library name (ODBC or OLEDB).

Á ibLanguage & cchLanguage: The initial language (overrides the user ID's default
language).

Á ibDatabase & cchDatabase: The initial database (overrides the user ID's default database).

Á ClientID: The unique client ID (created by using the NIC address). ClientID is the MAC
address of the physical network layer. It is used to identify the client that is connecting to
the server. This value is mainly informational, and no processing steps on the server side
use it.

Á ibSSPI & cbSSPI: SSPI data.

If cbSSPI < USHORT_MAX, then this length MUST be used for SSPI and cbSSPILong
MUST be ignored.

If cbSSPI == USHO RT_MAX, then cbSSPILong MUST be checked.

If cbSSPILong > 0, then that value MUST be used. If cbSSPILong ==0, then cbSSPI
(USHORT_MAX) MUST be used.

Á ibAtchDBFile & cchAtchDBFile: The file name for a database that is to be attached during
the connection proc ess.

Á ibChangePassword & cchChangePassword: New password for the specified login.
Introduced in TDS 7.2.

Á cbSSPILong: Used for large SSPI data when cbSSPI==USHORT_MAX.
Introduced in TDS 7.2.

Data The actual variable - length data portion referred to by Offse tLength.

FeatureId The unique identifier number of a feature. The available features are described in the following
table.

Introduced in TDS 7.4.

FeatureDataLen The length, in bytes, of FeatureData for the corresponding FeatureId.

Introduced in TDS 7.4.

FeatureData Data of the feature. Each feature defines its own data format.

The data for existing features are defined in the following table.

Introduced in TDS 7.4.

FeatureExt The data block that can be used to inform and/or negotiate features between client and server.
It contains data for one or more optional features. Each feature is assigned an identifier,
followed by data length and data. The data for each feature is defined by the featureôs own
logic. If the server does not support the specific fe ature, it MUST skip the feature data and
jump to next feature. If needed, each feature SHOULD have its own logic to detect whether the
server accepts the feature option.

Optionally, a feature can use a FEATUREEXTACK token to acknowledge the feature along with
LOGINACK. The detailed acknowledge data SHOULD be defined by the feature itself.

61 / 218

[MS -TDS] - v20201001
Tabular Data Stream Protocol
Copyright © 2020 Microsoft Corporation
Release: October 1, 2020

Parameter Description

Introduced in TDS 7.4.

The following table defines the options that are available in FeatureExt.

FeatureId Fea tureData Description

%0x01

(SESSIONRECOVERY)

(introduced in TDS 7.4)

Session Recovery feature. This feature is used to recover the session state of a
previous connection. Content is defined as follows:

 Length = DWORD

 RecoveryDatabase = B_VARCHAR

 RecoveryCollation = BYTELEN [COLLATION]

 RecoveryLanguage = B_VARCHAR

 SessionRecoveryData = Length

 RecoveryDatabase

 RecoveryCollation

 RecoveryLanguage

 SessionStateDataSet

 InitSessionRecoveryData = SessionRecoveryData

 SessionRecoveryDataToBe = SessionRecoveryData

 FeatureData = [InitSessionRecoveryData

SessionRecoveryDataToBe]

The Length field is the length, in bytes, of SessionRecoveryData excluding the
Length field itself. SessionStateDataSet is described in section 2.2.7.21 . The
length of SessionStateDataSet can be derived from the Length field and the
length of RecoveryDatabase, RecoveryCollation, and RecoveryLanguage. The
maximum length for RecoveryDatabase and RecoveryLanguage is 128
Unicode characters.

There are two se ts of SessionRecoveryData. The data for the first set,
InitSessionRecoveryData, SHOULD come from the initial login response data of
the initial connection to be recovered, specifically, the
Database/Collation/Language ENVCHANGE data and SessionStateDataSet in
FeatureExtAck.

Data for the second set, SessionRecoveryDataToBe, SHOULD come from the
latest ENVCHANGE for Database/Collation/Language from the connection to be
recovered and the latest data for each StateId in SessionStateData from the
connection to b e recovered. If login succeeded on this recovery connection, the
session state of the connection MUST be set to SessionRecoveryDataToBe. To
save space, if data for
RecoveryDatabase/RecoveryCollation/RecoveryLanguage in
SessionRecoveryDataToBe is the same a s data in InitSessionRecoveryData, the
length value of each field SHOULD be 0. If data for any session StateId is
unchanged from InitSessionRecoveryData, the corresponding StateId data
SHOULD be skipped in SessionRecoveryDataToBe.

When this feature option is received and the server supports connection
recovery, a FEATUREEXTACK token that contains data for SESSIONRECOVERY
feature MUST be returned along with LOGINACK in the login response to
indicate that the server supports the feature. If SESSIONRECOVERY is not
acknowledged in the login response, the server does not support the feature
and the client MUST disable the feature for this connection.

The client can request this feature option with zero FeatureDataLen. This is
used during login for the initial con nection to indicate that the client prefers
this feature.

When the client sends this feature option with non -zero FeatureDataLen during
login, the option data SHOULD come from a previous connection. The TDS

62 / 218

[MS -TDS] - v20201001
Tabular Data Stream Protocol
Copyright © 2020 Microsoft Corporation
Release: October 1, 2020

FeatureId Fea tureData Description

version in the login request MUST be the same as the TDS version negotiated
for the connection to be recovered. The server MUST return the same TDS
version in the login response, and if not, the client MUST disconnect the
connection and raise an error to the upper layer.

If a login record with non -zero F eatureDataLen of this feature is received and
the server supports this feature, the server MUST:

Á Force TDS version negotiation to use the TDS version requested by the
client, and fail the login if the requested TDS version is not known to the
server, for e xample, a TDS version that is later than the highest one
currently on the server.

Á Validate the content in SessionRecoveryData, and fail the login if any data
is invalid or any unknown session state exists.

After the feature is negotiated to be enabled, the server SHOULD send session
state updates to the client via a SESSIONSTATE token during the lifetime of
the connection. The client MUST track the initial session state data and the
latest session state data. Session state data is updated via a SESSIONSTATE
token incrementally.

When a client requests RESETCONNECTION/RESETCONNECTIONSKIPTRAN and
the server acknowledges the request, both client and server MUST update the
baseline of the session state data to be the same as the initial state as defined
by InitSe ssionRecoveryData, and any further state update SHOULD be on top
of the initial state.

Session state data can be used to recover a dead connection as defined by
SessionRecoveryData. The client SHOULD try to recover a dead connection if
the latest fRecovery bit is TRUE for all StateId that were received from the
server. The client MUST NOT try to recover a dead connection if the any latest
fRecovery bit is FALSE.

%0x02

(FEDAUTH) <23>

(introduc ed in TDS 7.4)

The presence of the FEDAUTH FeatureExt indicates that the client is
authenticating by federated authentication . If the FEDAUTH FeatureId is
present, the value of fIntSecurity MUST be 0. The format of the data is as
described below based on the bFedAuthLibrary that is used.

bFedAuthLibrary = 0x7F is a reserved value.

When the bFedAuthLibrary is Live ID Compact Token, the format is as follows:

 bFedAuthLibrary = 7BIT

 fFedAuthEcho = BIT

 Options = bFedAuthLibrary

 fFedAuthEcho

 FedAuthToken = L_VARBYTE

 Nonce = 32BYTE

 ChannelBindingToken = BYTESTREAM

 Signature = 32BYTE

 SignedData = Nonce

 [ChannelBindingToken]

 Signature

 FeatureData = Options

 FedAuthToken

 SignedData

bFedAuthLibrary: 7 bits, collectively treated as a 7 -bit unsigned integer,
indicating the library that is used by the client for federated authentication.

0x00 = Live ID Compact Token. The format of the Live ID Compact Token and
the way in which the Live ID Compact Token is obtained are out of the scope

63 / 21 8

[MS -TDS] - v20201001
Tabular Data Stream Protocol
Copyright © 2020 Microsoft Corporation
Release: October 1, 2020

FeatureId Fea tureData Description

of this document.

fFedAuth Echo: The intention of this flag is for the client to echo the serverôs
FEDAUTHREQUIRED prelogin option, so that the server can validate that the
response was not tampered with. The client MUST assign this flag to 1 if and
only if the serverôs PRELOGIN response contained a FEDAUTHREQUIRED option
with a B_FEDAUTHREQUIRED value of 0x01.

FedAuthToken: The binary authentication token generated by the specified
federated authentication library. The length of FedAuthToken MUST NOT be 0.

Nonce: The nonce provided by the server during the pre - login exchange,
echoed back to the server by the client.

ChannelBindingToken: This optional field MAY be omitted, but if encryption is
being used for the lifetime of the TDS connection and the client is able to
generate a chann el binding token, the field SHOULD be included in the
payload. When present, ChannelBindingToken contains the channel binding
token associated with the underlying SSL stream.

Signature: The HMAC -SHA-256 [RFC6234] hash of the server -specified nonce
and, if it is present in the FeatureData, the ChannelBindingToken, is generated
by using the session key retrieved from the federated authentication context
as the shared secret.

The length of the C hannelBindingToken field is not explicitly conveyed in the
protocol but can be determined by comparing the FeatureDataLen against the
length of the remainder of the feature data, which is explicitly transmitted in
the protocol.

When bFedAuthLibrary is Secu rity Token, the format is as follows:

 bFedAuthLibrary = 7BIT

 fFedAuthEcho = BIT

 Options = bFedAuthLibrary

 fFedAuthEcho

 FedAuthToken = L_VARBYTE

 Nonce = 32BYTE

 OtherData = Nonce

 FeatureData = Options

 FedAuthToken

 [OtherData]

bFedAuthLibrary: 7 bits, collectively treated as a 7 -bit unsigned integer,
indicating the library that is used by the client for federated authentication.

0x01 = Security Token. The format of the token and the way in which this
token is obtained are out of the scope of this document.

fFedAuthEcho: The intention of this flag is for the client to echo the serverôs
FEDAUTHREQUIRED prelogin option, so that the s erver can validate that the
response was not tampered with. The client MUST assign this flag to 1 if and
only if the serverôs PRELOGIN response contained a FEDAUTHREQUIRED option
with a B_FEDAUTHREQUIRED value of 0x01.

FedAuthToken: The binary authenticati on token generated by the specified
federated authentication library. The length of FedAuthToken MUST NOT be 0.

Nonce: The nonce provided by the server during the Prelogin exchange and
echoed back to the server by the client. This field MUST be present if the
serverôs PRELOGIN message included a NONCE field. Otherwise, this field
MUST NOT be present.

When bFedAuthLibrary is Active Directory Authentication Library (ADAL) [that
is, 0x02], the format is as follows:

 bFedAuthLibrary = 7BIT

https://go.microsoft.com/fwlink/?LinkId=328921

64 / 218

[MS -TDS] - v20201001
Tabular Data Stream Protocol
Copyright © 2020 Microsoft Corporation
Release: October 1, 2020

FeatureId Fea tureData Description

 fFedAuthEcho = BIT

 Workflow = BYTE

 Options = bFedAuthLibrary

 fFedAuthEcho

 Workflow

bFedAuthLibrary: 7 bits, collectively treated as a 7 -bit unsigned integer that
indicates the library that is used by the client for federated authentication.

0x02 = ADAL. After the client establishes the intent to use ADAL, for which
additional information is required by the client to generate a token, the server
MUST respond with the Federated Authentication Information token to the
client with "FedAuthInfoIDs: STSURL, SPN".

fFedAuthEcho: The intention of this flag is for the client to echo the serverôs
FEDAUTHREQUIRED pre - login option so that the server can validate that the
response was not tampered with. The client MU ST assign this flag to 1 if and
only if the serverôs PRELOGIN Response contains a FEDAUTHREQUIRED option
with a B_FEDAUTHREQUIRED value of 0x01.

Workflow: Indicates the ADAL (that is, 0x02) workflow that is being used.

0x01 = Username/password. A username and password are passed to ADAL to
retrieve a token.

0x02 = Integrated. A Windows identity is passed to ADAL to retrieve a token.

All other values of bFedAuthLibrary are reserved.

%0x04

(COLUMNENCRYPTION)

(introduced in TDS 7.4)

The presence of the COLUMNENCRYPTION FeatureExt indicates that the client
SHOULD<24> be capable of performing cryptographic operations on data. The
feature data are described as follows:

 COLUMNENCRYPTION_VERSION = BYTE

 FeatureData = COLUMNENCRYPTION_VERSION

COLUMNENCRYPTION_VERSION: This field describes the cryptographic
protocol version that the client understands. The values of this field are as
follows:

Á 1 = The client supports column e ncryption without enclave
computations .

Á 2 = The client SHOULD <25> support column encryption when encrypted
data require enclave computations.

%0x05

(GLOBALTRANSACTIONS) <26>

(introduced in TDS 7.4)

The presence of the GLOBALTRANSACTIONS FeatureExt indicates that the
client is capable of performing Global Transactions . The feature data is
described as follows:

 FeatureData = NO DATA

NO DATA: No feature data is sent with the GLOBALTRANSACTIONS FeatureExt.

%0x08

(AZURESQLSUPPORT)

(introduced in TDS 7.4)

The presence of the AZURESQLSUPPORT FeatureExt indicates whether the
client MAY <27> support failover partner login with read -only intent in Azure
SQL Database. For information ab out failover partner, see [MSDOCS -
DBMirror] .

The feature data is described as follows:

 FeatureData = BYTE

https://go.microsoft.com/fwlink/?linkid=874052
https://go.microsoft.com/fwlink/?linkid=874052

65 / 218

[MS -TDS] - v20201001
Tabular Data Stream Protocol
Copyright © 2020 Microsoft Corporation
Release: October 1, 2020

FeatureId Fea tureData Description

BYTE: The Bit 0 flag specifies whether failover partner login with read -only
intent is supported. The values of this BYTE are as follows:

Á 0 = The server does not support the AZURESQLSUPPORT feature
extension.

Á 1 = The server supports the AZURESQLSUPPORT feature extension.

%0x09

(DATACLASSIFICATION)

(introduced in TDS 7.4)

The DATACLASSIFICATION FeatureExt SHOULD <28> indicate that the client is
capable of accepting data classification informati on about a query result
set . The feature data is described as follows:

 DATACLASSIFICATION_VERSION = BYTE

 FeatureData = DATACLASSIFICATION_VERSION

 VersionSpecificData

DATACLASSIFICATION_VERSION: This field specifies the maximum version
number of the DATACLASSIFICATION token that the client can support. This
value MUST be one of the following:

Á 1 = The server does not send sensitivity - rank data a s part of the
DATACLASSIFICATION token.

Á 2 = The server sends sensitivity - rank data as part of the
DATACLASSIFICATION token.

VersionSpecificData: This field specifies the version -specific data that is
required for the DATACLASSIFICATION feature extension re quest. The values
of this field are as follows.

When the value of the DATACLASSIFICATION_VERSION field is 1 or 2, there is
no version -specific data.

%0x0A

(UTF8_SUPPORT)

(introduced in TDS 7.4)

The presence of the UTF8_SUPPORT FeatureExt indicates whether the clientôs
ability to send and receive UTF -8 encoded data SHOULD <29> be supported.
The feature data is described as follows:

 FeatureData = BYTE

BYTE: The Bit 0 flag sp ecifies whether the client supports UTF -8 data. The
values of this BYTE are as follows:

Á 0 = The client does not support UTF -8 encoded data.

Á 1 = The client supports UTF -8 encoded data.

Failure of the client to receive an acknowledgement of UTF -8 feature ext ension
support from the server indicates that the server cannot send or receive UTF -8

encoded data.

%0x0B

(AZURESQLDNSCACHING) <30>

(introduced in TDS 7.4)

The presence of the AZURESQLDNSCAC HING FeatureExt indicates whether the
client has the ability to store the mapping between the TDS server endpointôs
application domain, identified by its fully qualified domain name (FQDN), and
the equivalent IP address in the clientôs application cache.

The feature data is described as follows:

 FeatureData = NO DATA

NO DATA: No feature data is sent with the AZURESQLDNSCACHING

66 / 218

[MS -TDS] - v20201001
Tabular Data Stream Protocol
Copyright © 2020 Microsoft Corporation
Release: October 1, 2020

FeatureId Fea tureData Description

FeatureExt. The presence of this FeatureExt token indicates to the server that
the client can support the feature.

%xFF

(TERMINATOR)

This option signals the end of the FeatureExt feature and MUST be the
featureôs last option.

Login Data Validation Rules

cchHostName MUST specify at most 128 Unicode characters.

cchUserName MUST specify at most 128 Unicode characters.

cchPassword MUST specify at most 128 Unicode characters.

cchAppName MUST specify at most 128 Unicode characters.

cchServerName MUST specify at most 128 Unicode characters.

cbExtension MUST NOT exceed 255 bytes.

cchCltIntName MUST specify at most 128 Unicode characters.

cchLanguage MUST specify at most 128 Unicode characters.

cchDatabase MUST specify at most 128 Unicode characters.

cchAtchDBFile MUST specify at most 260 Unicode characters.

cchChangePassword MUST specify at most 128 Unicode characters.

The value at ibUserName ðif specified ðis semantically enclosed in brackets ([]) and MUST conform to
the rules for valid delimited object identifiers. Login MUST fail otherwise.

The value at ibDatabase ðif specified ðis semantically enclosed in brackets ([]) and MUST conform to

the rules for valid delimited object identifiers. Login MUST fail otherwise.

Before submitting a password from the client to the server, for every byte in the password buffer
starting with the position pointed to by ibPassword or ibChan gePassword, the client SHOULD first swap
the four high bits with the four low bits and then do a bit -XOR with 0xA5 (10100101). After reading a
submitted password, for every byte in the password buffer starting with the position pointed to by
ibPassword or ibChangePassword, the server SHOULD first do a bit -XOR with 0xA5 (10100101) and
then swap the four high bits with the four low bits.

2.2.6.5 PRELOGIN

Stream Name:

 PRELOGIN

Stream Function:

A message sent by the client to set up context for login. The server responds to a client PRELOGIN
message with a message of packet header type 0x04 and the packet data containing a PRELOGIN
struc ture.

67 / 218

[MS -TDS] - v20201001
Tabular Data Stream Protocol
Copyright © 2020 Microsoft Corporation
Release: October 1, 2020

This message stream is also used to wrap SSL handshake payload, if encryption is needed. In this
scenario, where PRELOGIN message is transporting the SSL handshake payload, the packet data is

simply the raw bytes of the SSL handshake payload.

Stream Comments:

Á Packet header type 0x12.

Á A sample PRELOGIN message is in section 4.1 .

Stream - Specific Rules:

 UL_VERSION = ULONG ; version of the sender

 US_SUBBUILD = USHORT ; sub - build number of the sender

 B_FENCRYPTION = BYTE

 B_INSTVALIDITY = *BYTE %x00 ; name of the instance

 ; of the database server that supports SQL

 ; or just %x00

 UL_THREADID = ULONG ; client application thread id

 ; used for debugging purposes

 B_MARS = BYTE ; sender requests MARS support

 GUID_CONNID = 16B YTE ; client application trace id

 ; used for debugging purposes

 ; introduced in TDS 7.4

 GUID_ActivityID = 16BYTE ; client application activity id

 ; used for debugging purposes

 ; introduced in TDS 7.4

 ActivitySequence = ULONG ; client application activity sequence

 ; used for debugging purposes

 ; introduced in TDS 7.4

 ACTIVITYID = GUID_ActivityID ; client application activity id token

 ActivitySequence ; used for debugging purposes

 ; introduced in TDS 7.4

 B_FEDAUTHREQUIRED = BYTE ; authentication library requirement of the sender

 ; when using Integrated Authentication identity

 ; introduced in TDS 7.4

 NONCE = 32BYTE ; nonce to be encrypted by using session key from

 ; federated authentication handshake

 TERMINATOR = %xFF ; signals end of PRELOGIN message

 PL_OPTION_DATA = *BYTE ; actual data for the option

 PL_OFFSET = USHORT ; big endian

 PL_OPTION_LENGTH = USHORT ; big endian

 PL_OPTION_TOKEN = BYTE ; token value representing the option

 PRELOGIN_OPTION = (PL_OPTION_TOKEN

 PL_OFFSET

 PL_OPTION_LENGTH)

 /

 TERMINATOR

 SSL_PAYLOAD = *BYTE ; SSL handshake raw payload

Stream Definition:

 PRELOGIN = (*PRELOGIN_OPTION

 *PL_OPTION_DATA)

 /

 SSL_PAYLOAD

68 / 218

[MS -TDS] - v20201001
Tabular Data Stream Protocol
Copyright © 2020 Microsoft Corporation
Release: October 1, 2020

PL_OPTION_TOKEN is described in the following table.

PL_OPTION_TOKEN Value Description

VERSION 0x00
PL_OPTION_DATA = UL_VERSION

 US_SUBBUILD

UL_VERSION is composed of major version (1 byte), minor version (1 byte),
and build number (2 bytes). It is represented in network byte order (big -
endian).

On x86 platforms, UL_VERSION is prepared as follows:

US_BUILD = SwapBytes (VER_SQL_BUILD);

UL_VERSION = ((US_BUILD <16>) / (VER_SQL_MINOR <8>) / (

VER_SQL_MAJOR))

SwapBytes is used to swap bytes. For example, SwapBytes(0x106A)=
0x6A10.

ENCRYPTION 0x01
PL_OPTION_DATA = B_FENCRYPTION

INSTOPT 0x02
PL_OPTION_DATA = B_INSTVALIDITY

THREADID 0x03
PL_OPTION_DATA = UL_THREADID

This value SHOULD be empty when being sent from the server to the client.

MARS 0x04
PL_OPTION_DATA = B_MARS

Á 0x00 = Off

Á 0x01 = On

TRACEID 0x05
PL_OPTION_DATA = GUID_CONNID ACTIVITYID

Introduced in TDS 7.4.

FEDAUTHREQUIRED<31> 0x06
PL_OPTION_DATA = B_FEDAUTHREQUIRED

Introduced in TDS 7.4.

NONCEOPT 0x07
PL_OPTION_DATA = NONCE

The client MUST send this option if it expects to be able to use federated
authentication with Live ID Compact Token to authenticate to the server on
this connection.

If the ser ver understands the NONCEOPT option and the client sends the

69 / 218

[MS -TDS] - v20201001
Tabular Data Stream Protocol
Copyright © 2020 Microsoft Corporation
Release: October 1, 2020

PL_OPTION_TOKEN Value Description

option, the server MUST respond with its own NONCEOPT.

TERMINATOR 0xFF Termination token.

Notes

Á PL_OPTION_TOKEN VERSION is a required token, and it MUST be the first token sent as part of

PRELOGIN. If this is not the case, the connection is closed by the server.

Á TERMINATOR is a required token, and it MUST be the last token of PRELOGIN_OPTION.
TERMINATOR does not include length and bits specifying offset.

Á If encryption is agreed upon during pre - login, SSL negotiation between client and server happens
immediately after the PRELOGIN packet. Then login proceeds. For more information, see section
3.3.5.1 .

Á A PRELOGIN message wrapping the SSL_PAYLOAD will occur only after the initial PRELOGIN

message containing the PRELOGIN_OPTION and PL_OPTION_DATA information.

Encryption

During the Pre -Login handshake, the client and the server negotiate the wire encryption to be used.
The encryption opti on values are as follows.

Setting Value Description

ENCRYPT_OFF 0x00 Encryption is available but off.

ENCRYPT_ON 0x01 Encryption is available and on.

ENCRYPT_NOT_SUP 0x02 Encryption is not available.

ENCRYPT_REQ 0x03 Encryption is required.

ENCRYPT_CLIENT_CERT 0X80
(ENCRYPT_OFF)

or

0X81
(ENCRYPT_ON)

or

0x83
(ENCRYPT_REQ)

Certificate -based authentication is requested by the client. The
client certificate SHOULD <32> be used to authenticate the user in
place of username and password only in specific extensibility
scenarios where a loopback connection from an external script is
requested.

The client sends the server the value ENCRYPT_OFF, ENCRYPT_NOT_SUP, or ENCRYPT_O N. The client
can also request certificate -based authentication by sending the value ENCRYPT_CLIENT_CERT with
ENCRYPT_OFF, ENCRYPT_ON, or ENCRYPT_REQ. The connection is terminated if the client sends
ENCRYPT_CLIENT_CERT with ENCRYPT_NOT_SUP.

Depending upon whether the server has encryption available and enabled, the server responds with
an ENCRYPTION value in the response according to the following table.

Value sent by client

Value returned by
server when server is
set to ENCRYPT_OFF

Value returned by
serve r when server is
set to ENCRYPT_ON

Value returned by
server when server is
set to
ENCRYPT_NOT_SUP

ENCRYPT_OFF ENCRYPT_OFF ENCRYPT_REQ ENCRYPT_NOT_SUP

70 / 218

[MS -TDS] - v20201001
Tabular Data Stream Protocol
Copyright © 2020 Microsoft Corporation
Release: October 1, 2020

Value sent by client

Value returned by
server when server is
set to ENCRYPT_OFF

Value returned by
serve r when server is
set to ENCRYPT_ON

Value returned by
server when server is
set to
ENCRYPT_NOT_SUP

ENCRYPT_ON ENCRYPT_ON ENCRYPT_ON ENCRYPT_NOT_SUP
(connection terminated)

ENCRYPT_NOT_SUP ENCRYPT_NOT_SUP ENCRYPT_REQ
(connection terminated)

ENCRYPT_NOT_SUP

ENCRYPT_REQ ENCRYPT_ON ENCRYPT_ON ENCRYPT_NOT_SUP
(connection terminated)

ENCRYPT_CLIENT_CERT |
ENCRYPT_OFF

ENCRYPT_OFF ENCRYPT_REQ ENCRYPT_NOT_SUP
(connection terminated)

ENCRYPT_CLIENT_CERT |
ENCRYPT_ON

ENCRYPT_ON ENCRYPT_ON ENCRYPT_NOT_SUP
(connection terminated)

ENCRYPT_CLIENT_CERT |
ENCRYPT_NOT_SUP

ENCRYPT_REQ
(connection terminated)

ENCRYPT_REQ
(connection terminated)

ENCRYPT_REQ (connection
terminated)

ENCRYPT_CLIENT_CERT |
ENCRYPT_REQ

ENCRYPT_ON ENCRYPT_ON ENCRYPT_NOT_SUP
(connection terminated)

Assuming that the client is capable of encryption, the server requires the client to behave in the
following manner.

Client

Value returned
from server is
ENCRY PT_OFF

Value returned
from server is
ENCRYPT_ON

Value returned
from server is
ENCRYPT_REQ

Value returned from
server is
ENCRYPT_NOT_SUP

ENCRYPT_OFF Encrypt login packet
only

Encrypt entire
connection

Encrypt entire
connection

No encryption

ENCRYPT_ON Error (connection
terminated)

Encrypt entire
connection

Encrypt entire
connection

Error (connection
terminated)

If client and server negotiate to enable encryption or if the client has requested certificate -based
authentication, an SSL handshake takes pla ce immediately after the initial PRELOGIN/table response
message exchange. If ENCRYPT_CLIENT_CERT is specified, the certificate is exchanged in this
handshake. The SSL payloads MUST be transported as data in TDS packets with the message type set
to 0x12 in the packet header. For example:

 0x 12 01 00 4e 00 00 00 00// Packet Header

 0x 16 03 01 00 &// SSL payload

This applies to SSL traffic. The client sends the SSL handshake payloads as data in a PRELOGIN
message. For TDS versions earlier than TDS 7.2, the se rver SHOULD send the SSL handshake

payloads as data in a table response message (0x04). For TDS 7.2, 7.3, and 7.4, the server SHOULD
send the SSL handshake payloads as data in a PRELOGIN message . Upon successful completion of the
SSL handshake, the client will proceed to send the LOGIN7 stream to the server to initiate
authentication.

Instance Name

If available, the client SHOULD send the server the name of the instance to which it is connecting as a
NULL- terminated multi -byte character set (MBCS) string in the INSTOPT option. If the string is empty
or is case - insensitively equal, by using the server's locale for comparison to either the server's

71 / 218

[MS -TDS] - v20201001
Tabular Data Stream Protocol
Copyright © 2020 Microsoft Corporation
Release: October 1, 2020

instance name or "MSSQLServer", the server SHOULD <33> return an INSTOPT containing a byte with
the value 0 to indicate that the client's INSTOPT matches the server's instance. Otherwise, the server

SHOULD return an INSTOPT containing a byte with the value of 1. The client SHOULD use the
INSTOPT value from the server's PRELOGIN response for verification purposes and SHOULD terminate

the connection if the INSTOPT option has the value 1.

Authentication Requirement

When the client wants to use ei ther SSPI or federated authentication to determine the authentication
mechanism but does not necessarily have a requirement as to which library to use, the client can use
the FEDAUTHREQUIRED option to negotiate whether the server has a requirement for a gi ven
authentication mechanism. If the client's PRELOGIN request message contains the
FEDAUTHREQUIRED option, the client MUST specify 0x01 as the B_FEDAUTHREQUIRED value. If the

server supports the FEDAUTHREQUIRED option, the server MUST respond with a FEDAU THREQUIRED
option that has either 0x00 or 0x01 as the B_FEDAUTHREQUIRED value. For the choice between SSPI
and federated authentication, a value of 0x00 indicates that the server does not require federated
authentication as the authentication mechanism, an d a value of 0x01 indicates that the server
requires federated authentication as the authentication mechanism. However, this mechanism is used

only for capability negotiation when choosing between SSPI and federated authentication and does not

necessarily bind the actual authentication mechanism that is used.

2.2.6.6 RPC Request

Stream Name:

 RPCRequest

Stream Function:

Request to execute an RPC.

Stream Comments:

Á Packet header type 0x03.

Á To execute an RPC on the server, the client sends an RPCRequest data stream to the server. This
is a binary stream that contains the RPC Name (or ProcID), Options, and Parameters. Each RPC
MUST b e contained within a separate message and not mixed with other SQL statements .

Á A sample RPCRequest message is in section 4.8 .

Stream - Specific Rules:

 ProcID = USHORT

 ProcIDSwitch = %xFF %xFF

 ProcName = US_VARCHAR

 NameLenProcID = ProcName

 /

 (ProcIDSwitch ProcID)

 fWithRecomp = BIT

 fNoMetaData = BIT

 fReuseMetaData = BIT

 OptionFlags = fWithRecomp

 fNoMetaData

 fReuseMetaData

 13FRESERVEDBIT

 fByRefValue = BIT

72 / 218

[MS -TDS] - v20201001
Tabular Data Stream Protocol
Copyright © 2020 Microsoft Corporation
Release: October 1, 2020

 fDefaultValue = BIT

 fEncrypted = BIT

 StatusFlags = fByRefValue

 fDefaultValue

 1FRESERVEDBIT

 fEncrypted

 4FRESERVEDBIT

 ParamMetaData = B_VARCHAR

 StatusFlags

 (TYPE_INFO / TVP_TYPE_INFO) ; (TVP_TYPE_INFO introduced in TDS 7.3)

 ParamLenData = TYPE_VARBYTE

 EncryptionAlgo = BYTE ; (introduced in TDS 7.4)

 AlgoName = B_VARCHAR ; (introduced in TDS 7 .4)

 EncryptionType = BYTE ; (introduced in TDS 7.4)

 NormVersion = BYTE ; (introduced in TDS 7.4)

 DatabaseId = ULONG ; (introduced in TDS 7.4)

 CekId = ULONG ; (introdu ced in TDS 7.4)

 CekVersion = ULONG ; (introduced in TDS 7.4)

 CekMDVersion = ULONGLONG ; (introduced in TDS 7.4)

 ParamCipherInfo = TYPE_INFO

 EncryptionAlgo

 [AlgoName]

 EncryptionType

 DatabaseId

 CekId

 CekVersion

 CekMDVersion

 NormVersion

 ParameterData = ParamMetaData

 ParamLenData

 [ParamCipherInfo]

 EnclavePackage = L_VARBYTE ; (introduced in TDS 7.4)

 BatchFlag = %x80 / %xFF ; (changed to %xFF in TDS 7.2)

 NoExecFlag = %xFE ; (i ntroduced in TDS 7.2)

 RPCReqBatch = NameLenProcID

 OptionFlags

 *EnclavePackage

 *ParameterData

The length for the instance value of UDTs is specified as a ULONGLONG. Also, ParameterData i s
repeated once for each parameter in the request.

A StatusFlags of fDefaultValue bit MUST be zero for TVP_TYPE_INFO.

fByRefValue MUST be zero for TVP_TYPE_INFO.

Stream Definition:

 RPCRequest = ALL_HEADERS

 RPCReqBatch

 *((BatchFlag / NoExecFlag) RPCReqBatch)

73 / 218

[MS -TDS] - v20201001
Tabular Data Stream Protocol
Copyright © 2020 Microsoft Corporation
Release: October 1, 2020

 [BatchFlag / NoExecFlag]

Note that RpcReqBatch is repeated once for each RPC in the batch.

Stream Parameter Details:

Parameter Description

ProcID The number identifying the special stored procedure to be executed. The valid numbers with
associated special stored procedure are as follows:

Á Sp_Cursor = 1

Á Sp_CursorOpen = 2

Á Sp_CursorPrepare = 3

Á Sp_CursorExecute = 4

Á Sp_CursorPrepExec = 5

Á Sp_CursorUnprepare = 6

Á Sp_CursorFetch = 7

Á Sp_CursorOption = 8

Á Sp_CursorClose = 9

Á Sp_ExecuteSql = 10

Á Sp_Prepare = 11

Á Sp_Execute = 12

Á Sp_PrepExec = 13

Á Sp_PrepExecRpc = 14

Á Sp_Unprepare = 15

ProcIDSwitch ProcIDSwitch can occur as part of NameLenProcID (see below).

ProcName The procedure name length (within US_VARCHAR), which MUST be no more than 1046 bytes.

NameLenProcID If the first USHORT contains 0xFFFF the following USHORT contains the PROCID. Otherw ise,
NameLenProcID contains the parameter name length and parameter name.

OptionFlags Bit flags in least significant bit order :

Á fWithRecomp: 1 if RPC is sent with the "with recompile" option.

Á fNo MetaData: The server sends NoMetaData only if fNoMetadata is set to 1 in the request
(see COLMETADATA, section 2.2.7.4). <34>

Á fReus eMetaData: 1 if the metadata has not changed from the previous call and the server
SHOULD reuse its cached metadata (the metadata MUST still be sent).

StatusFlags Bit flags in least significant bit order:

Á fByRefValue: 1 if the parameter is passed by reference (OUTPUT parameter) or 0 if
parameter is passed by value.

74 / 218

[MS -TDS] - v20201001
Tabular Data Stream Protocol
Copyright © 2020 Microsoft Corporation
Release: October 1, 2020

Parameter Description

Á fDefaultValue: 1 if the parameter being passed is to be the default value.

Á fEncrypted: 1 if the parameter that is being passed is encrypted. This flag is valid only
when the column encrypti on feature is negotiated by client and server and is turned on.

ParameterData The parameter name length and parameter name (within B_VARCHAR), the TYPE_INFO of the
RPC data, and the type -dependent data for the RPC (within TYPE_VARBYTE).

EncryptionAlgo This byte describes the encryption algorithm that is used. For a custom encryption algorithm,
the EncryptionAlgo value MUST be set to 0 and the actual encryption algorithm MUST be
inferred from the AlgoName. For all other values, AlgoName MUST NOT be sent.

If the value is set to 1, the encryption algorithm that is used is
AEAD_AES_256_CBC_HMAC_SHA512, as described in [IETF -AuthEncr] section 5.4.

AlgoName Algorithm name literal that is used f or encrypting the plaintext value. This is an optional field
and MUST be sent when EncryptionAlgo = 0. For all other values of EncryptionAlgo, this field
MUST NOT be sent.

EncryptionType This byte describes the flavor of encryption algorithm that is used. The values of this field are
as follows:

1 = deterministic encryption.

2 = randomized encryption.

NormVersion Reserved for future use. The value MUST be set to 1.

DatabaseId A 4 -byte integer value that represents the database ID where the column encrypt ion key is
stored.

CekId An identifier for the column encryption key.

CekVersion The key version of the column encryption key.

CekMDVersion The metadata version for the column encryption key.

ParamCipherInfo The description of the parameter encryption information when the parameter is transparently
encrypted. It defines the original TYPE_INFO of the data that is encrypted, the encryption
algorithm that is used, the normalization version, the id of the database containing the column

encryption key used f or encryption, the id of the column encryption key, the version of the
column encryption key, and the version of the column encryption key metadata. These fields
MUST be sent only when fEncrypted is set to 1.

EnclavePackage An encrypted byte package that SHOULD<35> be generated by the client. This package
contains information that is required by the server -side enclave to perform computations on
encrypted columns. The package has an internal structure that is irrelevant to the TDS
protocol between client and server. The server forwards the byte array to the enclave without
interpreting it, and the enclave decodes the byte array.

In troduced in TDS 7.4.

BatchFlag Distinguishes the start of the next RPC from another parameter within the current RPC. If the
version of TDS in use supports these flags, either the BatchFlag element or the NoExecFlag
element MUST be present when another RP C request is in the current batch. BatchFlag
SHOULD NOT be sent after the last RPCReqBatch. If BatchFlag is received after the last
RPCReqBatch is received, the server MUST ignore it.

NoExecFlag Indicates that the preceding RPC will not be executed. If th is separator is found, the previous
RPC will not be executed. Instead, an error message will be returned, followed by the
DONEPROC marking that the RPC in the batch has finished, and then execution proceeds to
the next RPC in the batch. The tabular data se t returned will be very similar to what happens
if the RPC does not exist ðnever execute the RPC, just return an error message, followed by
DONEPROC, and then execute the next RPC.

https://go.microsoft.com/fwlink/?LinkId=524322

75 / 218

[MS -TDS] - v20201001
Tabular Data Stream Protocol
Copyright © 2020 Microsoft Corporation
Release: October 1, 2020

2.2.6.7 SQLBatch

Stream Name:

 SQLBatch

Stream Function:

Describes the format of the SQL Batch message.

Stream Comments:

Á Packet header type 0x01.

Á A sample SQLBatch message is in section 4.6 .

Stream - Specific Rules:

 SQLText = UNICODESTREAM

Stream Definition:

 SQLBatch = ALL_HEADERS

 *EnclavePackage ; (described in section 2.2.6.6)

 SQLText

The Unicode stream contains the text of the batch. The following is an example of a valid value for
SQLText.

 Select author_id from Authors

2.2.6.8 SSPI Message

Stream Name:

 SSPI

Stream Function:

A request to supply data for Security Sup port Provider Interface (SSPI) security. Note that SSPI
uses the Simple and Protected GSS - API Negotiation Mechanism (SPNEGO) [RFC4178]
negotiation.

Stream Comments:

Á Packet header type 0x11.

Á The initial SSPI data block (the initial SPNEGO security token) is sent from the client to the server
in the LOGIN7 message. The server MUST respond with an SSPI token that is the SPNEGO security
token response from the server. The client MUST respond with another SSPI message, after calling
the SPNEGO interface with the server's response.

https://go.microsoft.com/fwlink/?LinkId=90461

76 / 218

[MS -TDS] - v20201001
Tabular Data Stream Protocol
Copyright © 2020 Microsoft Corporation
Release: October 1, 2020

Á This continues until completion or an error.

Á The server completes the SSPI validation and returns the last SPNEGO security token as an SSPI

token within a LOGINACK token.

Á A sample SSPI message is in section 4.11 .

Stream - Specific Rules:

 SSPIDat a = BYTESTREAM

Stream Definition:

 SSPI = SSPIData

Stream Parameter Details

 Parameter Description

SSPIData The SSPIData length and SSPIData data using US_VARCHAR format.

2.2.6.9 Transaction Manager Request

Stream Name:

 TransMgrReq

Stream Function:

Query and control operations pertaining to the lifecycle and state of local and distributed transaction
objects. Note that distributed transaction operations are coordinated through a Distributed
Transaction Coordinator (DTC) implemente d to the DTC Interface Specification. For more
information about DTC, see [MSDN -DTC] .

Stream Comments:

Á Packet header type 0x0E.

Á A sample Transaction Manager Request message is given in sectio n 4.13 .

Stream - Specific Rules:

 RequestType = USHORT

Stream Definition:

 TransMgrReq = ALL_Headers

 RequestType

 [RequestPayload]

RequestPayload details are as specified in the following table.

https://go.microsoft.com/fwlink/?LinkId=89994

77 / 218

[MS -TDS] - v20201001
Tabular Data Stream Protocol
Copyright © 2020 Microsoft Corporation
Release: October 1, 2020

Stream Parameter Details

 Parameter Description

RequestType The types of transaction manager operations that are requested by the client are specified as
follows. If an unknown Type is specified, the message receiver SHOULD disconnect the
connection.

Á 0 = TM_GET_DTC_ADDRESS. Returns DTC network address as a result set with a single -
column, single - row binary value.

Á 1 = TM_PROPAGATE_XACT. Imports DTC transaction into the server and returns a local
transaction descriptor as a varbinary result set.

Á 5 = TM_BEGIN_XACT. Begins a transaction and returns the descriptor in an ENVCHANGE
type 8.

Á 6 = TM_PROMOTE_XACT. Converts an active local transaction into a distributed transaction
and returns an opaque buffer in an ENVCHANGE type 15.

Á 7 = TM_COMMIT_XACT. Commits a transaction. Depending on the payload of the request,
it can additionally request t hat another local transaction be started.

Á 8 = TM_ROLLBACK_XACT. Rolls back a transaction. Depending on the payload of the
request, it can indicate that after the rollback, a local transaction is to be started.

Á 9 = TM_SAVE_XACT. Sets a savepoint within the active transaction. This request MUST
specify a nonempty name for the savepoint.

Request types 5 through 9 were introduced in TDS 7.2.

RequestPayload
Á For RequestType TM_GET_DTC_ADDRESS: The RequestPayload SHOULD be a zero - length

US_VARBYTE.

 RequestPayload = US_VARBYTE

Á For RequestType TM_PROPAGATE_XACT: Data contains an opaque buffer used by the
server to enlist in a DTC transaction (for more information, see [MSDN -ITrans]).

 RequestPayloa d = US_VARBYTE

Á For RequestType TM_BEGIN_XACT:

 ISOLATION_LEVEL = BYTE

 BEGIN_XACT_NAME = B_VARBYTE

 RequestPayload = ISOLATION_LEVEL

 BEGIN_XACT_NAME

This request begins a new transaction, or increments trancount if already in a transaction.
If BEGIN_XACT_NAME is nonempty, a transaction is started with the specified name. See
the definition for isolation level at the end of this table.

Á For RequestType TM_PROMOTE_XACT ï No payload.

This message promotes the transaction of the current request (specified in the Transaction
Descriptor header). The current transaction MUST be part of the specified header.

Note that TM_PROMOTE_XACT is supported only for transactions initiated via
TM_BEGIN_XACT, or via piggy back operation on TM_COM MIT/TM_ROLLBACK. An error is

https://go.microsoft.com/fwlink/?LinkId=146594

78 / 218

[MS -TDS] - v20201001
Tabular Data Stream Protocol
Copyright © 2020 Microsoft Corporation
Release: October 1, 2020

 Parameter Description

returned if TM_PROMOTE_XACT is invoked for a TSQL initiated transaction.

Á For RequestType TM_COMMIT_XACT:

 fBeginXact = BIT

 XACT_FLAGS = fBeginXact

 7FRESERVEDBIT

 ISOLATION_LEVEL = BYTE

 XACT_NAME = B_VARBYTE

 BEGIN_XACT_NAME = B_VARBYTE

 RequestPayload = XACT_NAME

 XACT_FLAGS

 [ISOLATION_LEVEL

 BEGIN_XACT_NAME]

Without additional flags specified, this command is se mantically equivalent to issuing a
TSQL COMMIT statement.

The flags in XACT_FLAGS are represented in least significant bit order .

If fBeginXact is 1, then a new local transaction is started after the commit operation is
done.

If fBeginXact is 1, then ISOLATION_LEVEL can specify the isolation level to use to start the
new transaction, according to the definition at the end of this table. If fBeginXact is 0, then
ISOLATION_LEVEL SHOULD NOT be present .

Specifying ISOLATION_LEVEL allows the isolation level to remain in effect for the session,
once the transaction ends.

If fBeginXact is 0, BEGIN_XACT_NAME SHOULD NOT be present. If fBeginXact is 1,
BEGIN_XACT_NAME can be nonempty.

If fBeginXact is 1, a ne w transaction MUST be started. If BEGIN_XACT_NAME is nonempty,
the new transaction MUST be given the specified name.

See the definition for isolation level at the end of this table.

Á For RequestType TM_ROLLBACK_XACT:

 fBeginXact = BIT

 XACT_FLAGS = fBeginXact

 7FRESERVEDBIT

 ISOLATION_LEVEL = BYTE

 XACT_NAME = B_VARBYTE

 BEGIN_XACT_NAME = B_VARBYTE

 RequestPayload = XACT_NAME

 XACT_FLAGS

 [ISOLATION_LEVEL

 BEGIN_XACT_NAME]

The flags in XACT_FLAGS are represented in least significant bit order.

If XACT_NAME is nonempty, this request rolls back the named transaction. This implies

79 / 218

[MS -TDS] - v20201001
Tabular Data Stream Protocol
Copyright © 2020 Microsoft Corporation
Release: October 1, 2020

 Parameter Description

that if XACT_NAME specifies a savepoint name, the rollback o nly goes back until the
specified savepoint.

Without additional flags specified, this command is semantically equivalent to issuing a
TSQL ROLLBACK statement under the current transaction.

If fBeginXact is 1, then a new local transaction is started after t he commit operation is
done.

If fBeginXact is 1, then ISOLATION_LEVEL can specify the isolation level to use to start the
new transaction, according to the definition at the end of this table. If fBeginXact is 0, then
ISOLATION_LEVEL SHOULD NOT be present.

Specifying ISOLATION_LEVEL allows the isolation level to remain in effect for the session,
once the transaction ends.

If fBeginXact is 0, BEGIN_XACT_NAME SHOULD NOT be present. If fBeginXact is 1,
BEGIN_XACT_NAME can be nonempty.

If fBeginXact is 1, a new transaction MUST be started. If BEGIN_XACT_NAME is nonempty,
the new transaction MUST be given the specified name.

If fBeginXact is 1, and the ROLLBACK only rolled back to a savepoint, the Begin_Xact
operation is ignored and trancount remains unchanged.

See the definition for isolation level at the end of this table.

Á For RequestType TM_SAVE_XACT:

 XACT_SAVEPOINT_NAME = B_VARBYTE

 RequestPayload = XACT_SAVEPOINT_NAME

A nonempty name MUST be specified as part of this request. Otherwise, an error is raised.

ISOLATION_LEVEL MUST have one of the following values.

Value Description

0x00 No isolation level change requested. Use current.

0x01 Read Uncommitted.

0x02 Read Committed.

0x03 Repeatable Read.

0x04 Serializable.

0x05 Snapshot.

2.2.7 Packet Data Token Stream Definition

This section describes the various tokens supported in a token -based packet data stream, as described

in section 2.2.4.2 . The corresponding message types that use token -based packet data streams are
identified in the table in section 2.2.4 .

80 / 218

[MS -TDS] - v20201001
Tabular Data Stream Protocol
Copyright © 2020 Microsoft Corporation
Release: October 1, 2020

2.2.7.1 ALTMETADATA

Token Stream Name:

 ALTMETADATA

Token Stream Function:

Describes the data type, length, and name of column data that result from a SQL statement that
generates totals.

Token Stream Comments:

The token value is 0x88.

This token is used to tell the client the data type and length of the column data. It describes the
format of the data found in an ALTROW data stream . ALTMETADATA and the corresponding ALTROW

MUST be in the same result set .

All ALTMETADATA da ta streams are grouped.

A preceding COLMETADATA MUST exist before an ALTMETADATA token. There might be COLINFO and
TABNAME streams between COLMETADATA and ALTMETADATA.

Note ALTMETADATA was deprecated in TDS 7.4.

Token Stream - Specific Rules:

 TokenType = BYTE

 Count = USHORT

 Id = USHORT

 ByCols = UCHAR

 Op = BYTE

 Operand = USHORT

 UserType = USHORT/ULONG; (changed to ULONG in TDS 7.2)

 fNullable = BIT

 fCaseSen = BIT

 usUpdateable = 2BIT ; 0 = ReadOnly

 ; 1 = Read/Write

 ; 2 = Unused

 fIdentity = BIT

 fComputed = BIT ; (introduced in TDS 7.2)

 usReservedODBC = 2BIT

 fFixedLenCLRType = BIT ; (introduced in TDS 7.2)

 usReserved = 7BIT

 Flags = fNullable

 fCaseSen

 usUpdateable

 fIdentity

 (FRESERVEDBIT / fComputed)

 usReservedODBC

 (FRESERVEDBIT / fFixedLenCLRType)

 usReserved

 NumParts = BYTE ; (introduced in TDS 7.2)

 PartName = US_VARCHAR ; (introduced in TDS 7.2)

 TableName = US_VARCHAR ; (removed in TDS 7.2)

 /

81 / 218

[MS -TDS] - v20201001
Tabular Data Stream Protocol
Copyright © 2020 Microsoft Corporation
Release: October 1, 2020

 (NumParts

 1*PartName) ; (introduced in TDS 7.2)

 ColName = B_VARCHAR

 ColNum = USHORT

 ComputeData = Op

 Operand

 UserType

 Flags

 TYPE_INFO

 [TableName]

 ColName

The TableName field is specified only if a text, ntext, or image column is included in the result set.

Token Stream Definition:

 ALTMETADATA = TokenType

 Count

 Id

 ByCols

 *(<ByCols> ColNum)

 1*ComputeData

Token Stream Parameter Details:

Parameter Description

TokenType ALTMETADATA_TOKEN <36>

Count The count of columns (number of aggregate op erators) in the token stream.

Id The Id of the SQL statement to which the total column formats apply. Each ALTMETADATA token
MUST have its own unique Id in the same result set. This Id lets the client correctly interpret later
ALTROW data streams.

ByCols The number of grouping columns in the SQL statement that generates totals. For example, the SQL
clause compute count(sales) by year, month, division, department has four grouping columns.

Op The type of aggregate operator.

 AOPSTDEV = %x30 ; Standa rd deviation (STDEV)

 AOPSTDEVP = %x31 ; Standard deviation of the population (STDEVP)

 AOPVAR = %x32 ; Variance (VAR)

 AOPVARP = %x33 ; Variance of population (VARP)

 AOPCNT = %x4B ; Count of rows (COUNT)

 AOPSUM = %x4D ; Sum of the values in the rows (SUM)

 AOPAVG = %x4F ; Average of the values in the rows (AVG)

 AOPMIN = %x51 ; Minimum value of the rows (MIN)

 AOPMAX = %x52 ; Maximum value of the rows (MAX)

Operand The column number, starting f rom 1, in the result set that is the operand to the aggregate
operator.

UserType The user type ID of the data type of the column. Depending on the TDS version that is used, valid
values are 0x0000 or 0x00000000, with the exceptions of data type TIMESTAMP (0x0050 or
0x00000050) and alias types (greater than 0x00FF or 0x000000FF).

Flags These bit flags are described in least significant bit order . With the exception of fNullable , all of
these bit f lags SHOULD be set to zero. For a description of each bit flag, see section 2.2.7.4 :

82 / 218

[MS -TDS] - v20201001
Tabular Data Stream Protocol
Copyright © 2020 Microsoft Corporation
Release: October 1, 2020

Parameter Description

Á fNullable is a bit flag, 1 if the column is nullable.

Á fCaseSen

Á usUpdateable

Á fIdentity

Á fComputed

Á usReservedODBC

Á fFixedLenCLRType

TableName See section 2.2.7.4 for a description of TableName. This field SHOULD never be sent because SQL
statements that generate totals exclude NTEXT/TEXT/IMAGE.

ColName The column name. Contains the column name length and column name.

ColNum USHORT specifying the column number as it appears in the COMPUTE clause. ColNum appears
ByCols times.

2.2.7.2 ALTROW

Token Stream Name:

 ALTROW

Token Stream Function:

Used to send a complete row of total data, where the data format is provided by the ALTMETADATA
token.

Token Stream Comments:

Á The token value is 0xD3.

Á The ALTROW token is similar to the ROW_TOKEN, but also contains an Id field. This Id matches an
Id given in ALTMETADATA (one Id for each SQL statement). This provides the mechanism for

matching row data with correct SQL statements. ALTROW and the corresponding ALTMETADATA
MUST be in the same result set .

Á Note ALTROW was deprecated in TDS 7.4.

Token Stream - Specific Rules:

 TokenType = BYTE

 Id = USHORT

 Data = TYPE_VARBYTE

 ComputeData = Data

Token Stream Definition:

83 / 218

[MS -TDS] - v20201001
Tabular Data Stream Protocol
Copyright © 2020 Microsoft Corporation
Release: October 1, 2020

 ALTMETADATA = TokenType

 Id

 1*ComputeData

The ComputeData element is repeated Count times, where Count is specified in
ALTMETADATA_TOKEN.

Token Stream Parameter Details:

Parameter Description

TokenType ALTROW_TOKEN <37>

Id The Id of the SQL statement that generates totals to which the total column formats apply. This Id
lets the client correctly interpret later ALTROW data streams .

Data The actual data for the column. The TYP E_INFO information describing the data type of this data is
given in the preceding COLMETADATA_TOKEN, ALTMETDATA_TOKEN, or OFFSET_TOKEN.

2.2.7.3 COLINFO

Token Stream Name:

 COLINFO

Token Stream Function:

Describes the column information in browse mode [MSDN -BROWSE] , sp_cursoropen, and
sp_cursorf etch.

Token Stream Comments

Á The token value is 0xA5.

Á The TABNAME token contains the actual table name associated with COLINFO.

Token Stream Specific Rules:

 TokenType = BYTE

 Length = USHORT

 ColNum = BYTE

 TableNum = BYTE

 Status = BYTE

 ColName = B_VARCHAR

 ColProperty = ColNum

 TableNum

 Status

 [ColName]

The ColInfo element is repeated for each column in the result set .

Token Stream Definition:

https://go.microsoft.com/fwlink/?LinkId=140931

84 / 218

[MS -TDS] - v20201001
Tabular Data Stream Protocol
Copyright © 2020 Microsoft Corporation
Release: October 1, 2020

 COLINFO = TokenType

 Length

 1*CpLProperty

Token Stream Parameter Details:

Parameter Description

TokenType COLINFO_TOKEN

Length The actual data length, in bytes, of the ColProperty stream. The length does not include token type
and length field.

ColNum The column number in the result set.

TableNum The number of the base table that the column was derived from. The value is 0 if the value of
Status is EXPRESSION.

Status 0x4: EXPRESSION (the column was the result of an expression).

0x8: KEY (the column is part of a key for the associated table).

0x10 : HIDDEN (the column was not requested, but was added because it was part of a key for the
associated table).

0x20: DIFFERENT_NAME (the column name is different than the requested column name in the
case of a column alias).

ColName The base column name. T his only occurs if DIFFERENT_NAME is set in Status.

2.2.7.4 COLMETADATA

Token Stream Name:

 COLMETADATA

Token Stream Function:

Describes the result set for interpretation of following ROW data streams .

Token Stream Comments:

Á The token value is 0x81.

Á This token is used to tell the client the data type and length of the column data. It describes the
format of the data found in a ROW data stream.

Á All COLMETADATA data streams are grouped together.

Token Stream - Specific Rules:

 TokenType = BYTE

 Count = USHORT

 UserType = USHORT/ULONG; (Changed to ULONG in TDS 7.2)

 fNullable = BIT

 fCaseSen = BIT

85 / 218

[MS -TDS] - v20201001
Tabular Data Stream Protocol
Copyright © 2020 Microsoft Corporation
Release: October 1, 2020

 usUpdateable = 2BIT ; 0 = ReadOnly

 ; 1 = Read/Write

 ; 2 = Unused

 fIdentity = BIT

 fComputed = BIT ; (introduced in TDS 7.2)

 usReservedODBC = 2BIT ; (only exists in TDS 7.3.A and below)

 fSparseColumnSet = BIT ; (introduced in TDS 7.3.B)

 fEncrypted = BIT ; (introduced in TDS 7.4)

 usReserved3 = BIT ; (introduced in TDS 7.4)

 fFixedLenCLRType = BIT ; (introduced in TDS 7.2)

 usReserved = 4BIT

 fHidden = BIT ; (introduced in TDS 7.2)

 fKey = BIT ; (introduced in TDS 7.2)

 fNullableUnknown = BIT ; (introduced in TDS 7.2)

 Flags = fNullable

 fCaseSen

 usUpdateable

 fIdentity

 (FRESERVEDBIT / fComputed)

 usReservedODBC

 (FRESERVEDBIT / fFixedLenCLRType)

 (usReserved / (FRESERVEDBIT fSparseColumnSet fEncrypted usReserved3))

 ; (introduced in TDS 7.4)

 (FRESERVEDBIT / fHidden)

 (FRESERVEDBIT / fKey)

 (FRESERVEDBIT / fNullableUnknown)

 NumParts = BYTE ; (introduced in TDS 7.2)

 PartName = US_VARCHAR ; (introduced in TDS 7.2)

 TableName = NumParts

 1*PartName

 ColName = B_VARCHAR

 BaseTypeInfo = TYPE_INFO ; (BaseTypeInfo introduced in TDS 7.4)

 EncryptionAlgo = BYTE ; (EncryptionAlgo introduced in TDS 7.4)

 AlgoName = B_VARCHAR ; (introduced in TDS 7.4)

 EncryptionAlgoType = BYTE ; (introduced in TDS 7.4)

 NormVersion = BYTE ; (introduced in TDS 7.4)

 Ordinal = USHORT ; (introduced in TDS 7.4)

 CryptoMetaData = Ordinal ; (CryptoMetaData introduced in TDS 7.4)

 UserType

 BaseTypeInfo

 Encryption Algo

 [AlgoName]

 EncryptionAlgoType

 NormVersion

 EkValueCount = USHORT ; (introduced in TDS 7.4)

 CekTable = EkValueCount ; (introduced in TDS 7.4)

 *EK_INFO ; (introduced in TDS 7.4)

 ColumnData = UserType

 Flags

 TYPE_INFO

 [TableName]

 [CryptoMetaData]

 ColName

86 / 218

[MS -TDS] - v20201001
Tabular Data Stream Protocol
Copyright © 2020 Microsoft Corporation
Release: October 1, 2020

 NoMetaData = %xFF %xFF

The TableName element is specified only if a text, ntext, or image column is included in the result
set.

Token Stream Definition:

 COLMETADATA = TokenType

 Count

 [CekTable]

 NoMetaData / (1*ColumnData)

Token Stream Parameter Details:

Parameter Description

TokenType COLMETADATA_TOKEN

Count The count of columns (number of aggregate operators) in the token stream. In the event
that the client requested no metadata to be returned (see section 2.2.6.6 for information
about the OptionFlags parameter in the RPCRequest token), the value of Count will be
0xFFFF. This has the same effect on Count as a zer o value (for example, no ColumnData is
sent).

UserType The user type ID of the data type of the column. Depending on the TDS version that is
used, valid values are 0x0000 or 0x00000000, with the exceptions of data type
TIMESTAMP (0x0050 or 0x00000050) and alias types (greater than 0x00FF or
0x000000FF).

Flags The size of the Flags parameter is always fixed at 16 bits regardless of the TDS version.
Each of the 16 bits of the Flags parameter is interpreted based on the TDS version
negotiated during login. B it flags, in least significant bit order :

Á fNullable is a bit flag. Its value is 1 if the column is nullable.

Á fCaseSen is a bit flag. Set to 1 for string columns with binary collation and always for
the XML data type. Set to 0 otherwise.

Á usUpdateable is a 2 -bit field. Its value is 0 if column is read -only, 1 if column is
read/write and 2 if updateable is unknown.

Á fIdentity is a bit flag. Its value is 1 if the column is an identity column.

Á fCompute d is a bit flag. Its value is 1 if the column is a COMPUTED column.

Á usReservedODBC is a 2 -bit field that is used by ODS gateways supporting the ODBC
ODS gateway driver.

Á fFixedLenCLRType is a bit flag. Its value is 1 if the column is a fixed - length common
language runtime user - defined type (CLR UDT) .

Á fSparseColumnSet, introduced in TDS version 7.3.B, is a bit flag. Its value is 1 if the
column is the special XML column for the sparse column set. F or information about
using column sets, see [MSDN -ColSets] .

Á fEncrypted is a bit flag. Its value is 1 if the column is encrypted transparently and has
to be decrypted to view the plaintext va lue. This flag is valid when the column
encryption feature is negotiated between client and server and is turned on.

Á fHidden is a bit flag. Its value is 1 if the column is part of a hidden primary key created
to support a T -SQL SELECT statement containing FOR BROWSE.<38>

https://go.microsoft.com/fwlink/?LinkId=128616

87 / 218

[MS -TDS] - v20201001
Tabular Data Stream Protocol
Copyright © 2020 Microsoft Corporation
Release: October 1, 2020

Parameter Description

Á fKey is a bit flag. Its value is 1 if the column is part of a primary key for the row and
the T -SQL SELECT statement contains FOR BROWSE.

Á fNullableUnknown is a bit flag. Its value is 1 if it is unknown whether the column might
be nullable.

TableName The fully qualified base table name for this column. It contains the table name length and
table name. This exists only for text, ntext, and image columns. It specifies how many
parts will be returned and then repeats PartName once for each NumParts.

ColName The column name. It contains the column name length and column name.

BaseTypeInfo The TYPEINFO for the plaintext data.

EkValueCount The size of CekTable. It represents the number of entries in CekTable.

CekTable A table of various encryption keys that are used to secure the plaintext data. It contains

one row for each encryption key. Each row can have multiple encryption key values, and
each value represents the cipher text of the same encryption key that is secured by using a
different master key. The size of this table is determined by EkValueCount. This table MUST
be sent when COLUMNENCRYPTION is negotiated by client and server and is turned on.

EncryptionAlgo A byte tha t describes the encryption algorithm that is used.

If EncryptionAlgo is set to 1, the algorithm that is used is
AEAD_AES_256_CBC_HMAC_SHA512, as described in [IETF -AuthEncr] section 5.4. Oth er
values are reserved for future use.

AlgoName Reserved for future use.

EncryptionAlgoType A field that describes the encryption algorithm type. Available values are defined as
follows:

1 = Deterministic encryption.

2 = Randomized encryption.

NormVersi on The normalization version to which plaintext data MUST be normalized. Version numbering
starts at 0x01.

Ordinal Where the encryption key information is located in CekTable. Ordinal starts at 0.

CryptoMetaData This describes the encryption metadata for a column. It contains the ordinal, the UserType,
the TYPE_INFO (BaseTypeInfo) for the plaintext value, the encryption algorithm that is
used, the algorithm name literal, the encryption algorithm type, and the normalization
version.

NoMetaData This notifi es client that no metadata will follow the COLMETADATA token. When
fNoMetadata is set to 1, client notifies server that it has already cached the metadata from
a previous RPC Request (section 2.2.6.6), and server sends no metadata. <39>

2.2.7.5 DATACLASSIFICATION

Token Stream Name:

 DATACLASSIFICATION

Token Stream Function:

https://go.microsoft.com/fwlink/?LinkId=524322

88 / 218

[MS -TDS] - v20201001
Tabular Data Stream Protocol
Copyright © 2020 Microsoft Corporation
Release: October 1, 2020

Introduced in TDS 7.4, the DATACLASSIFICATION token SHOULD <4 0> describe the data
classification of the query result set .

Token Stream Comments:

Á The token value is 0xA3.

Á This token is sent by the server only if the client sends a DATACLASSIFICATION FeatureExt in the
Login message and the server responds with a DATACLASSIFICATION FeatureExtAck. Additionally,
for this token to be sent, the query result set MUST contain output columns whose result s are
based on sources that are classified.

Token Stream - Specific Rules:

 TokenType = BYTE

 SensitivityLabelCount = USHORT

 SensitivityLabelName = B_VARCHAR

 SensitivityLabelId = B_VARCHAR

 InformationTypeCount = USHORT

 InformationTypeName = B_VARCHAR

 InformationTypeId = B_VARCHAR

 SensitivityLabelIndex = USHORT

 InformationTypeIndex = USHORT

 NumSensitivityProperties = USHORT

 NumResultSetColumns = USHORT

 SensitivityRank = LONG

 SensitivityLabel = SensitivityLabelName

 SensitivityLabelId

 SensitivityLabels = Sen sitivityLabelCount

 [SensitivityLabelCount] *SensitivityLabel

 InformationType = InformationTypeName

 InformationTypeId

 InformationTypes = Informa tionTypeCount

 [InformationTypeCount] *InformationType

 SensitivityProperty = SensitivityLabelIndex

 InformationTypeIndex

 [Sensitivi tyRank]

 ColumnSensitivityMetadata = NumSensitivityProperties

 [NumSensitivityProperties] *SensitivityProperty

 DataClassificationPerColumnData = NumResultSetColumns

 [NumResultSetColumns] *ColumnSensitivityMetadata

Token Stream Definition:

 DATACLASSIFICATION = TokenType

 SensitivityLabels

 InformationTypes

 [SensitivityRank]

 DataClassificationPerColumnData

Token Stream Parameter Details:

89 / 218

[MS -TDS] - v20201001
Tabular Data Stream Protocol
Copyright © 2020 Microsoft Corporation
Release: October 1, 2020

Parameter Description

TokenType DATACLASSIFICATION_TOKEN

SensitivityLabelCount The count of sensitivity labels for this result set. The value can be 0 or greater.

Sens itivityLabelName The name for a sensitivity label. It contains the sensitivity label name length and
sensitivity label name. It is intended to be human readable.

SensitivityLabelId The identifier for a sensitivity label. It contains the sensitivity label identifier length
and sensitivity label identifier. It is intended for linking the sensitivity label to an
information protection system.

InformationTypeCount The count of information types for this result set. The value can be 0 or greater.

InformationT ypeName The name for an information type. It contains the information type name length and
information type name. It is intended to be human readable.

InformationTypeId The identifier for an information type. It contains the information type identifier le ngth
and information type identifier. It is intended for linking the information type to an
information protection system.

SensitivityLabelIndex The index into the SensitivityLabels array that indicates which SensitivityLabel is
associated with SensitivityProperty. A value of USHORT_MAX (0xFFFF) indicates that
there is no sensitivity label for SensitivityProperty.

InformationTypeIndex The index into the InformationTypes array that indicates which InformationType is
associated with SensitivityPro perty. A value of USHORT_MAX (0xFFFF) indicates that
there is no information type for SensitivityProperty.

NumResultSetColumns Depending on its configuration, the server can send additional information about the
data classification for each column. The va lues of this field are as follows:

Á 0 = Additional information is not sent.

Á The number of columns in the result set. This number MUST be the same number
provided by the Count parameter in the COLMETADATA token.

NumSensitivityProperties The number of sensitivity properties that are associated with a column. The value can
be 0 or greater.

SensitivityRank A relative ranking of the sensitivity of a query or of a column that is part of per -
column data. Available values are defined as follows:

Á -1 = Not def ined

Á 0 = None

Á 10 = Low

Á 20 = Medium

Á 30 = High

Á 40 = Critical

A sensitivity ranking is sent by the server only if both of the following are true:

Á The client sends a DATACLASSIFICATION feature extension in a Login message in
which DATACLASSIFICATION_VERSION i s set to 2.

Á The server responds with a DATACLASSIFICATION feature extension
acknowledgement in which DATACLASSIFICATION_VERSION is set to 2.

90 / 218

[MS -TDS] - v20201001
Tabular Data Stream Protocol
Copyright © 2020 Microsoft Corporation
Release: October 1, 2020

2.2.7.6 DONE

Token Stream Name:

 DONE

Token Stream Function:

Indicates the completion status of a SQL statement .

Token Stream Comments

Á The token value is 0xFD.

Á This token is used to indicate the completion of a SQL statement. As multiple SQL statements can

be sent to the server in a single SQL batch, multiple DONE tokens can be generated. In this case,
all but the final DONE token will have a Status value with DO NE_MORE bit set (details follow).

Á A DONE token is returned for each SQL statement in the SQL batch except variable declarations.

Á For execution of SQL statements within stored procedures , DONEPROC and DONEINPROC
tokens are used in place of DONE tokens.

Token Stream - Specific Rules:

 TokenType = BYTE

 Status = USHORT

 CurCmd = USHORT

 DoneRowCount = LONG / ULONGLONG; (Changed to ULONGLONG in TDS 7.2)

The type of the DoneRowCount element depends on the version of TDS.

Token Stream Definition:

 DONE = TokenType

 Status

 CurCmd

 DoneRowCount

Token Stream Parameter Details:

Parameter Description

TokenType DONE_TOKEN

Status The Status field MUST be a bitwise 'OR' of the following:

Á 0x00: DONE_FINAL. This DONE is the final DONE in the request.

Á 0x1: DONE_MORE. This DONE message is not the final DONE message in the response.
Subsequent data streams to follow.

Á 0x2: DONE_ERROR. An error occurred on the current SQL statement. A preceding ERROR
token SHOULD be sent when this bit is set.

91 / 218

[MS -TDS] - v20201001
Tabular Data Stream Protocol
Copyright © 2020 Microsoft Corporation
Release: October 1, 2020

Parameter Description

Á 0x4: DONE_INXACT. A transaction is in progress. <41>

Á 0x10: DONE_COUNT. The DoneRowCount value is valid. This is used to distinguish between
a valid value of 0 for DoneRowCount or just an initialized variable.

Á 0x20: DONE_ATTN. The DONE message is a server acknowledgement of a client
ATTENTION mess age.

Á 0x100: DONE_SRVERROR. Used in place of DONE_ERROR when an error occurred on the
current SQL statement, which is severe enough to require the result set , if any, to be
discarded.

CurCmd The token of the current SQL statement. The token value is provided and controlled by the
application layer, which utilizes TDS. The TDS layer does not evaluate the value.

DoneRowCount The count of rows that were affected by the SQL statement. The value of D oneRowCount is

valid if the value of Status includes DONE_COUNT. <42>

2.2.7.7 DONEINPROC

Token Stream Name:

 DONEINPROC

Token Stream Function:

Indicates the completion status of a SQL statement within a stored procedure .

Token Stream Comments

Á The token value is 0xFF.

Á A DONEINPROC token is sent for each executed SQL statement within a stored procedure.

Á A DONEINPROC token MUST be followed by anothe r DONEPROC token or a DONEINPROC token.

Token Stream - Specific Rules:

 TokenType = BYTE

 Status = USHORT

 CurCmd = USHORT

 DoneRowCount = LONG / ULONGLONG; (Changed to ULONGLONG in TDS 7.2)

The type of the DoneRowCount element depends on the version of TDS.

Token Stream Definition:

 DONEINPROC = TokenType

 Status

 CurCmd

 DoneRowCount

Token Stream Parameter Details:

92 / 218

[MS -TDS] - v20201001
Tabular Data Stream Protocol
Copyright © 2020 Microsoft Corporation
Release: October 1, 2020

 Parameter Description

TokenType DONEINPROC_TOKEN

Status The Status field MUST be a bitwise 'OR' of the following:

Á 0x1: DONE_MORE. This DONEINPROC message is not the final
DONE/DONEPROC/DONEINPROC message in the response; more data streams are to
follow.

Á 0x2: DONE_ERROR. An error occurred on the current SQL statement or execution of a
stored procedure was interrupted. A preceding ERROR token SHOULD be sent when this bit
is set.

Á 0x4: DONE_INXACT. A transaction is in progress. <43>

Á 0x10: DONE_COUNT. The DoneRowCount value is valid. This is used to distinguish between
a valid value of 0 for DoneRowCount or just an initialized variable.

Á 0x100: DONE_SRVERROR. Used in place of DONE_ERROR when an err or occurred on the
current SQL statement that is severe enough to require the result set , if any, to be
discarded.

CurCmd The token of the current SQL statement. The token value is provided and controlled by the
application layer, which utilizes TDS. The TDS layer does not evaluate the value.

DoneRowCount The count of rows that were affected by the SQL statement. The value of DoneRowCount is
valid if the value of Status includes DONE_COUNT.

2.2.7.8 DONEPROC

Token Stream Name:

 DONEPROC

Token Stream Function:

Indicates the completion status of a stored procedure . This is also generated for stored procedures
executed through SQL statements .

Token Stream Comments:

Á The token value is 0xFE.

Á A DONEPROC token is sent when all the SQL statements within a stored procedure have been

executed.

Á A DONEPROC token can be followed by another DONEPROC token or a DONEINPROC only if the

DONE_MORE bit is set in the Status value.

Á There is a separate DONEPROC token sent for each stored procedure called.

Token Stream - Specific Rules:

 TokenType = BYTE

 Status = USHORT

 CurCmd = USHORT

93 / 218

[MS -TDS] - v20201001
Tabular Data Stream Protocol
Copyright © 2020 Microsoft Corporation
Release: October 1, 2020

 DoneRowCount = LONG / ULONGLONG; (Changed to ULONGLONG in TDS 7 .2)

The type of the DoneRowCount element depends on the version of TDS.

Token Stream Definition:

 DONEPROC = TokenType

 Status

 CurCmd

 DoneRowCount

Token Stream Parameter Details:

 Par ameter Description

TokenType DONEPROC_TOKEN

Status The Status field MUST be a bitwise 'OR' of the following:

Á 0x00: DONE_FINAL. This DONEPROC is the final DONEPROC in the request.

Á 0x1: DONE_MORE. This DONEPROC message is not the final DONEPROC message in the
response; more data streams are to follow.

Á 0x2: DONE_ERROR. An error occurred on the current stored procedure. A preceding ERROR
token SHOULD be sent when this bit is set.

Á 0x4: DONE_INXACT. A transaction is in progress. <44>

Á 0x10: DONE_COUNT. The DoneRowCount value is valid. This is used to distinguish between
a valid value of 0 for DoneRowCount or just an initialized variable.

Á 0x80: DONE_RPCINBATCH. This DONEPROC message is associated with an RPC within a
set of batched RPCs. This flag is not set on the last RPC in the RPC batch.

Á 0x100: DONE_SRVERROR. Used in place of DONE_ERROR when an error occurred on the
current stored procedure, which is severe enough to require the result set , if any, to be
discarded.

CurCmd The token of the SQL statement for executing stored procedures. The token value is provided
and controlled by the application layer, which utilizes TDS. The TDS lay er does not evaluate the
value.

DoneRowCount The count of rows that were affected by the command. The value of DoneRowCount is valid if
the value of Status includes DONE_COUNT.

2.2.7.9 ENVCHANGE

Token Stream Name:

 ENVCHANGE

Token Stream Function:

A notification of an environment change (for example, database, language, and so on).

94 / 218

[MS -TDS] - v20201001
Tabular Data Stream Protocol
Copyright © 2020 Microsoft Corporation
Release: October 1, 2020

Token Stream Comments:

Á The token value is 0xE3.

Á Includes old and new environment values.

Á Type 4 (Packet size) is sent in response to a LOGIN7 message. The server MAY send a value

different from the packet size requested by the client. That value MUST be greater than or equal
to 512 and smaller than or equal to 32767. Both the client and the server MUST start using this
value for packet size with the message following the login response message.

Á Type 13 (Database Mirroring) is sent in response to a LOGIN7 message whenever connection is
requested to a database that it is being served as primary in real - time log shipping. The
ENVCHANGE stream reflects the name of the partner node of the database that is being log
shipped.

Á Type 15 (Promote Transaction) is sent in response to transaction manager requests with
requests of type 6 (TM_PROMOTE_XACT).

Á Type 16 (Transaction Manager Address) is sent in response to transaction manager requests with
requests of type 0 (TM_GET_DTC_ADDRESS).

Á Type 20 (Routing) is sent in response to a LOGIN7 message when the server wants to route the
client to an alternate server. The ENVCHANGE stream returns routing information for the alternate

server. If the server decides to se nd the Routing ENVCHANGE token, the Routing ENVCHANGE
token MUST be sent after the LOGINACK token in the login response.

Token Stream - Specific Rules:

 TokenType = BYTE

 Length = USHORT

 Type = BYTE

 EnvValueData = Ty pe

 NewValue

 [OldValue]

Token Stream Definition:

 ENVCHANGE = TokenType

 Length

 EnvValueData

Token Stream Parameter Details

Parameter Description

TokenType ENVCHANGE_TOKEN

Length The total length of the ENVCHANGE data stream (EnvValueData).

Type The type of environment change:

Note Types 8 to 19 were introduced in TDS 7.2. Type 20 was introduced in TDS 7.4.

Á 1: Database

Á 2: Language

95 / 218

[MS -TDS] - v20201001
Tabular Data Stream Protocol
Copyright © 2020 Microsoft Corporation
Release: October 1, 2020

Parameter Description

Á 3: Character set

Á 4: Pack et size

Á 5: Unicode data sorting local id

Á 6: Unicode data sorting comparison flags

Á 7: SQL Collation

Á 8: Begin Transaction (described in [MSDN -BEGIN])

Á 9: Commit Transaction (described in [MSDN -COMMIT])

Á 10: Rollback Transaction

Á 11: Enlist DTC Transaction

Á 12: Defect Transaction

Á 13: Real Time Log Shipping

Á 15: Promote Transaction

Á 16: Transaction Manager Address <45>

Á 17: Transaction ended

Á 18: RESETCONNECTION/RESETCONNECTIONSKIPTRAN Completion Acknowledgement

Á 19: Sends back name of user instance started per login request

Á 20: Sends routing information to client

Type Old Value New Value

1: Database OLDVALUE =
B_VARCHAR

NEWVALUE = B_VARCHAR

2: Language OLDVALUE =
B_VARCHAR

NEWVALUE = B_VARCHAR

3: Character Set OLDVALUE =
B_VARCHAR

NEWVALUE = B_VARCHAR

4: Packet Size OLDVALUE =
B_VARCHAR

NEWVALUE = B_VARCHAR

5: Unicode data sorting local

id

OLDVALUE =

%x00

NEWVALUE = B_VARCHAR

6: Unicode data sorting
comparison flags

OLDVALUE =
%x00

NEWVALUE = B_VARCHAR

7: SQL Collation OLDVALUE =
B_VARBYTE

NEWVALUE = B_VARBYTE

8: Begin Transaction OLDVALUE =
%x00

NEWVALUE = B_VARBYTE

https://go.microsoft.com/fwlink/?LinkId=144544
https://go.microsoft.com/fwlink/?LinkId=144542

96 / 218

[MS -TDS] - v20201001
Tabular Data Stream Protocol
Copyright © 2020 Microsoft Corporation
Release: October 1, 2020

Type Old Value New Value

9: Commit Transaction OLDVALUE =
B_VARBYTE

NEWVALUE = %0x00

10: Rollback Transaction OLDVALUE =
B_VARBYTE

NEWVALUE = %x00

11: Enlist DTC Transaction OLDVALUE =
B_VARBYTE

NEWVALUE = %x00

12: Defect Transaction OLDVALUE =
%x00

NEWVALUE = B_VARBYTE

13: Database Mirroring
Partner

OLDVALUE =
%x00

PARTNER_NODE = B_VARCHAR

NEWVALUE = PARTNER_NODE

15: Promote Transaction OLDVALUE =

%x00

DTC_TOKEN = L_VARBYTE;

NEWVALUE = DTC_TOKEN

16: Transaction Manager
Address (not used)

OLDVALUE =
%x00

XACT_MANAGER_ADDRESS = B_VARBYTE

NEWVALUE = XACT_MANAGER_ADDRESS

17: Transaction Ended OLDVALUE =
B_VARBYTE

NEWVALUE = %x00

18: Reset Completion
Acknowledgement

OLDVALUE =
%x00

NEWVALUE = %x00

19: Sends back info of user
instance for logins (login7)
requesting so.

OLDVALUE =
%x00

NEWVALUE = B_VARCHAR

20: Routing OLDVALUE =
%x00 %x00

Protocol = BYTE

ProtocolProperty = USHORT

AlternateServer = US_VARCHAR

Protocol MUST be 0, specifying TCP -IP protocol.
ProtocolProperty represents the TCP - IP port when Protocol is

0. A ProtocolProperty value of zero is not allowed when
Protocol is TCP -IP.

RoutingDataValue = Protocol

ProtocolProperty

AlternateServer

RoutingDataValueLength = USHORT

RoutingDataValue Length is the total length, in bytes, of the
following fields: Protocol, ProtocolProperty, and
AlternateServer.

RoutingData = RoutingDataValueLength

[RoutingDataValue]

NEWVALUE = RoutingData

Notes

Á For types 1, 2, 3, 4, 5, 6, 13, and 19, the payload is a U nicode string; the LENGTH always reflects
the number of bytes.

Á ENVCHANGE types 3, 5, and 6 are only sent back to clients running TDS 7.0 or earlier.

97 / 218

[MS -TDS] - v20201001
Tabular Data Stream Protocol
Copyright © 2020 Microsoft Corporation
Release: October 1, 2020

Á For Types 8, 9, 10, 11, and 12, the ENVCHANGE event is returned only if the transaction lifetime
is control led by the user, for example, explicit transaction commands, including transactions

started by SET IMPLICIT_TRANSACTIONS ON.

Á For transactions started/committed under auto commit, no stream is generated.

Á For operations that change only the value of @@trancount, no ENVCHANGE stream is generated.

Á The payload of NEWVALUE for ENVCHANGE types 8, 11, and 17 and the payload of OLDVALUE for
ENVCHANGE types 9, 10, and 12 is a ULONGLONG.

Á ENVCHANGE type 11 is sent by the server to confirm that it has joined a d istributed transaction as
requested through a TM_PROPAGATE_XACT request from the client.

Á ENVCHANGE type 12 is only sent when a batch defects from either a DTC or bound session
transaction.

Á LENGTH for ENVCHANGE type 15 is sent as 0x01 indicating only the le ngth of the type token.
Client drivers are responsible for reading the additional payload if type is 15.

Á ENVCHANGE type 17 is sent when a batch is used that specified a descriptor for a transaction that
has ended. This is only sent in the bound session cas e. For information about using bound
sessions, see [MSDN -BOUND] .

Á ENVCHANGE type 18 always produces empty (0x00) old and new values. It simply acknowledges

completion of execution of a RESETCONNECTION/RESETCONNECTIONSKIPTRAN request.

Á ENVCHANGE type 19 is sent after LOGIN and after
/RESETCONNECTION/RESETCONNECTIONSKIPTRAN when a client has requested use of user
instances. It is sent prior to the LOGINACK token.

Á ENVCHANGE type 20 can be se nt back to a client running TDS 7.4 or later regardless of whether
the fReadOnlyIntent bit is set in the preceding LOGIN7 record. If a client is running TDS 7.1 to
7.3, type 20 can be sent only if the fReadOnlyIntent bit is set in the preceding LOGIN7 reco rd.

2.2.7.10 ERROR

Token Stream Name:

 ERROR

Token Stream Function:

Used to send an error message to the client.

Toke n Stream Comments:

Á The token value is 0xAA.

Token Stream - Specific Rules:

 TokenType = BYTE

 Length = USHORT

 Number = LONG

 State = BYTE

 Class = BYTE

 MsgText = US_VARCHAR

 ServerName = B_VARCHAR

 ProcName = B_VARCHAR

https://go.microsoft.com/fwlink/?LinkId=144543

98 / 218

[MS -TDS] - v20201001
Tabular Data Stream Protocol
Copyright © 2020 Microsoft Corporation
Release: October 1, 2020

 LineNumber = USHORT / LONG; (Changed to LONG in TDS 7.2)

The type of the LineNumber element depends on the version of TDS.

Token Stream Definition:

 ERROR = TokenType

 Length

 Number

 State

 Class

 MsgText

 ServerName

 ProcName

 LineNumber

Token Stream Parameter Details

Parameter Description

TokenType ERROR_TOKEN

Length The total length of the ERROR data stream, in bytes.

Number The error number. <46>

State The error state, used as a modifier to the error number.

Class The class (severity) of the error. A class of less than 10 indicates an informational message.

MsgText The message text length and message text using US_VARCHAR format.

ServerName The serve r name length and server name using B_VARCHAR format.

ProcName The stored procedure name length and the stored procedure name using B_VARCHAR format.

LineNumber The line number in the SQL batc h or stored procedure that caused the error. Line numbers begin
at 1. If the line number is not applicable to the message, the value of LineNumber is 0.

 Class
level Description

0-9 Informational messages that return status information or report errors that are not severe. <47>

10 Informational messages that return status information or report errors that are not severe. <48>

11 -16 Errors that can be corrected by the user.

11 The given object or entity does not exist.

12 A special severity for SQL statements that do not use locking because of special optio ns. In some
cases, read operations performed by these SQL statements could result in inconsistent data, because
locks are not taken to guarantee consistency.

13 Transaction deadlock errors.

14 Security -related errors, such as permission denied.

99 / 218

[MS -TDS] - v20201001
Tabular Data Stream Protocol
Copyright © 2020 Microsoft Corporation
Release: October 1, 2020

 Class
level Description

15 Syntax errors in the SQL statement.

16 General errors that can be corrected by the user.

17 -19 Software errors that cannot be corrected by the user. These errors require system administrator action.

17 The SQL statement caused the database server to run out of resources (such as memory, locks, or disk
space for the database) or to exceed some limit set by the system administrator.

18 There is a problem in the Database Engine software, but the SQL statement completes execution, and
the connection to the instance of the Database Engine is maintained. System administrator action is
required.

19 A non -configurable Database Engine limit has been exceeded and the current SQL batch has been
terminated. Error messages with a severity level of 19 or higher stop the execution of the current SQL

batch. Severity level 19 errors are rare and can be corrected only by the system administrator. Error
messages with a severity level from 19 through 25 are written to the error log.

20 -25 System problems have occurred. These are fatal errors, which means the Database Engine task that
was executing a SQL batch is no longer running. The task records information about what occurred and
then terminates. In most cases, the application connection to the instance of the Databas e Engine can
also terminate. If this happens, depending on the problem, the application might not be able to
reconnect.

Error messages in this range can affect all of the processes accessing data in the same database and
might indicate that a database or o bject is damaged. Error messages with a severity level from 19
through 25 are written to the error log.

20 Indicates that a SQL statement has encountered a problem. Because the problem has affected only the
current task, it is unlikely that the database i tself has been damaged.

21 Indicates that a problem has been encountered that affects all tasks in the current database, but it is
unlikely that the database itself has been damaged.

22 Indicates that the table or index specified in the message has been damaged by a software or hardware
problem.

Severity level 22 errors occur rarely. If one occurs, run DBCC CHECKDB to determine whether other
objects in the database are also damaged. The problem might be in the buffer cache only and not on
the disk itself. If so, restarting the instance of the Database Engine corrects the problem. To continue
working, reconnect to the instance of the Database Engine; otherwise, use DBCC to repair the problem.
In some cases, restoration of the database might be required.

If restarting the instance of the Database Engine does not correct the problem, then the problem is on
the disk. Sometimes destroying the object specified in the error message can solve the problem. For
example, if the message reports that the instance of the Database Engine has found a row with a
length of 0 in a non -clustered index, delete the index and rebuild it.

23 Indicates that the integrity of the entire database is in question because of a hardware or software
problem.

Severity level 23 errors occur rarely. If one occurs, run DBCC CHECKDB to determine the extent of the
damage. The problem might be in the cache only and not on the disk itself. If so, restarting the
instance of the Database Engine corrects the problem. To continue working, reconnect to the instance
of the Database Engine; otherwise, use DBCC to repair the problem. In some cases, restoration of the
database might be required.

24 Indicates a media failure. The system administrator might have to restore the database or resolve a
hardware issue.

If an error is produced within a result set , the ERROR token is sent before the DONE token for the
SQL statement, and such DONE token is sent with the error bit set.

100 / 218

[MS -TDS] - v20201001
Tabular Data Stream Protocol
Copyright © 2020 Microsoft Corporation
Release: October 1, 2020

2.2.7.11 FEATUREEXTACK

Token Stream Name:

 FEATUREEXTACK

Token Stream Function:

Introduced in TDS 7.4, FEATUREEXTACK is used to send an optional acknowledge message to the
client for features that are defined in FeatureExt. The token stream is sent only along with the
LOGINACK in a Login Response message.

Token Stream Comments:

Á The token value is 0xAE.

Toke n Stream - Specific Rules:

 TokenType = BYTE

 FeatureId = BYTE

 FeatureAckDataLen = DWORD

 FeatureAckData = *BYTE

 TERMINATOR = %xFF ; signal of end of feature ack data

 FeatureAckOpt = (FeatureI d

 FeatureAckDataLen

 FeatureAckData)

 /

 TERMINATOR

Token Stream Definition:

 FEATUREEXTACK = TokenType

 1*FeatureAckOpt

Token Stream P arameter Details

Parameter Description

TokenType FEATUREEXTACK_TOKEN

FeatureId The unique identifier number of a feature. Each feature MUST use the same ID number
here as in FeatureExt. If the client did not send a request for a specific feature but the
FeatureId is returned, the client MUST consider it as a TDS Protocol error and MUST
terminate the connection.

Each feature defines its own logic if it wants to use FeatureAckOpt to send information back
to the client during the login response. The features available to use by a FeatureId are
defined in the following table.

FeatureAckDataLen The length of FeatureAckData, in bytes.

FeatureAckData The acknowledge data of a specific feature. Each feature SHOULD define its own data
format in the FEATUREEXTACK token if it is selected to acknowledge the feature.

The following table describes the FeatureExtAck feature option and description.

101 / 218

[MS -TDS] - v20201001
Tabular Data Stream Protocol
Copyright © 2020 Microsoft Corporation
Release: October 1, 2020

FeatureId FeatureExtData Description

%0x00 Reserved.

%0x01

(SESSIONRECOVERY)

(introduced in TDS 7.4)

Session Recovery feature. Content is defined as follows:

 InitSessionStateData = SessionStateDataSet

 FeatureAckData = InitSessionStateData

SessionStateDataSet is described in section 2.2.7.21 . The len gth of
SessionStateDataSet is specified by the corresponding FeatureAckDataLen.

On a recovery connection, the client sends a login request with
SessionRecoveryDataToBe. The server MUST set the session state as requested
by the client. If the server cannot do so, the server MUST fail the login request
and terminate the connection.

%0x02

(FEDAUTH) <49>

Whenever a login response stream is sent for a TDS connection whose login

request includes a FEDAUTH FeatureExt, the server login response message
stream MUST include a FEATUREEXTACK token, and the FEATUREEXTACK token
stream MUST include the FEDAUTH FeatureId. The format is described below
based on the bFedAuthLibrary that is used in FEDAUTH Featu reExt.

When the bFedAuthLibrary is Live ID Compact Token, the format is as follows:

 Nonce = 32BYTE

 Signature = 32BYTE

 FeatureAckData = Nonce

 Signature

Nonce: The client -specified nonce in PRELOGIN.

Signature: The HMAC -SHA-256 [RFC6234] of the client -specified nonce, using
the session key retrieved from the federated authenti cation context as the
shared secret.

When the bFedAuthLibrary is Security Token, the format is as follows:

 Nonce = 32BYTE

 FeatureAckData = [Nonce]

Nonce: The client -specified nonce in PRELOGIN. This field MUST be present if
the clientôs PRELOGIN message included a NONCE field. Otherwise, this field
MUST NOT be present.

%0x04

(COLUMNENCRYPTION)

(introduced in TDS 7.4)

The presence of the COLUMNENCRYPTION FeatureExt SHOULD < 50> indicate
that the client is capable of performing cryptographic operations on data. The
feature data is described as follows:

 Length = BYTE

 COLUMNENCRYPTION_VERSION = BYTE

 FeatureData = COLUMNENCRYPTION_VE RSION

 [Length EnclaveType]

COLUMNENCRYPTION_VERSION: This field defines the cryptographic protocol
version that the client understands. The values of this field are as follows:

Á 1 = The client supports column encryption without enclave
computations .

Á 2 = The client SHOULD <51> support column encryption when encrypted

https://go.microsoft.com/fwlink/?LinkId=328921

102 / 218

[MS -TDS] - v20201001
Tabular Data Stream Protocol
Copyright © 2020 Microsoft Corporation
Release: October 1, 2020

FeatureId FeatureExtData Description

data require enclave computations.

EnclaveType: This field is a string that SHOULD <52> be populated by the
server and used by the client to identify the type of enclave that the server is
configured to use. During login for the initial connection, the client can request
COLUMNENCRYPTION with Length as 1 and COLUMNENCRYPTION_VERSION as
either 1 or 2. When the client reque sts COLUMNENCRYPTION_VERSION as 2,
the server MUST return COLUMNENCRYPTION_VERSION as 2 together with the
value of EnclaveType , if the server contains an enclave that is configured for
use. If EnclaveType is not returned and the column encryption version i s
returned as 2, the client driver MUST raise an error.

%0x05

(GLOBALTRANSACTIONS) <53>

Whenever a login response stream is sent for a TDS connection whose login
request includes a GLOBALTRA NSACTIONS FeatureExt token, the server login
response message stream can optionally include a FEATUREEXTACK token by
including the GLOBALTRANSACTIONS FeatureId in the FEATUREEXTACK token
stream. The corresponding FeatureAckData MUST then include a flag tha t
indicates whether the server supports Global Transactions . The
FeatureAckData format is as follows:

 IsEnabled = BYTE

 FeatureAckData = IsEnabled

IsEnabled: Specifies whether the server supports Global Transactions. The
values of this field are as follows:

Á 0 = The server does not support Global Transactions.

Á 1 = The server supports Global Transactions.

%0x08

(AZURESQLSUPPORT)

(introduced in TDS 7.4)

The presence of the AZURESQLSU PPORT FeatureExt indicates whether failover
partner login with read -only intent to Azure SQL Database MAY <54> be
supported. For information about failover partner, see [MSDOCS -DBMirror] .

Whenever a login response stream is sent for a TDS connection whose login
request includes an AZURESQLSUPPORT FeatureExt token, the server login
response message stream can optionally include a FEATUREEXTACK token by
setting the corresponding feature switch in Azure SQL Database. If it is
included, the FEATUREEXTACK token stream MUST include the
AZURESQLSUPPORT FeatureId.

 FeatureAckData = BYTE

BYTE: The Bit 0 flag specifies whether failover partner login with read -only
intent is supported. The values of this BYTE are as follows:

Á 0 = The server does not support the AZURESQLSUPPORT feature
extension.

Á 1 = The server supports the AZURESQLSUPPORT feature extension.

%0x0 9

(DATACLASSIFICATION)

(introduced in TDS 7.4)

Whenever a login response stream is sent for a TDS connection whose login
request includes a DATACLASSIFICATION FeatureExt token, the server login

response message stream SHOULD <55> be capable of optionally containing a
FEATUREEXTACK token by including the DATACLASSIFICATION FeatureId in the
FEATUREEXTACK token stream. The corresponding FeatureAckData MUST then
include the following information t hat indicates whether the server supports
data classification and to what extent. The FeatureAckData format is as
follows:

https://go.microsoft.com/fwlink/?linkid=874052

103 / 218

[MS -TDS] - v20201001
Tabular Data Stream Protocol
Copyright © 2020 Microsoft Corporation
Release: October 1, 2020

FeatureId FeatureExtData Description

 DATACLASSIFICATION_VERSION = BYTE

 IsEnabled = BYTE

 VersionSpecificData = *2147483647BYTE ; The actual length

 ; of data is

 ; FeatureAckDataLen - 2

 FeatureAckData = DATACLASSIFICATION_VERSION

 IsEnabled

 VersionSpecificData

DATACLASSIFICATION_VERSION: This field specifies the version number of the
data classification information that is to be used for this connection. This value
MUST be 1 or 2, as specified for DATACL ASSIFICATION_VERSION in section
2.2.6.4 .

IsEnabled: This field specifies whether the server supports data classification.
The values of this field are as follows:

Á 0 = The server does not support d ata classification.

Á 1 = The server supports data classification.

VersionSpecificData: This field specifies which version of data classification
information is returned. The values of this field are as follows:

When the value of the DATACLASSIFICATION_VERSION field is 1 or 2, the
response in the feature extension acknowledgement contains no version -
specific data.

%0x0A

(UTF8_SUPPORT)

(introduced in TDS 7.4)

The presence of the UTF8_SUPPORT FeatureExtAck token in the response
message stream indicates whether the serverôs ability to receive and send UTF-
8 encoded data SHOULD <56> be supported.

Whenever a login response stream is sent for a TDS connection whose login
reques t includes a UTF8_SUPPORT FeatureExt token, the server login response
message stream can optionally include a FEATUREEXTACK token. If that token
is included, the FEATUREEXTACK token MUST include the UTF8_SUPPORT
FeatureId and the appropriate feature acknow ledgement data. The
FeatureAckData format is as follows:

 FeatureAckData = BYTE

BYTE: The Bit 0 value specifies whether the server can receive and send UTF -8
encoded data. The values of this BYTE are as follows:

Á 0 = The server does not support t he UFT8_SUPPORT feature extension.

Á 1 = The server supports the UTF8_SUPPORT feature extension.

%0x0B

(AZURESQLDNSCACHING)

(introduced in TDS 7.4)

Whenever a login response stream is sent for a TDS connection that has a login
request that includes an AZURESQLDNSCACHING FeatureExt token, the server
login response message can optionally include this FeatureExtAck token. The
contents of the token are as follows:

 IsSupported = BYTE

 FeatureAckData = IsSupported

IsSupported: The Bi t 0 specifies whether the server supports client DNS
caching. The values of this BIT are as follows:

Á 0 = The server does not support client DNS caching.

104 / 218

[MS -TDS] - v20201001
Tabular Data Stream Protocol
Copyright © 2020 Microsoft Corporation
Release: October 1, 2020

FeatureId FeatureExtData Description

Á 1 = The server supports client DNS caching.

A server response with IsSupported set to 1 indicates to the client that it is safe
to cache the entry. When the server responds with IsSupported set to 0, the
client SHOULD NOT <57> cache the entry.

%xFF

(TERMINATOR)

This option signals the end o f the FeatureExtAck feature and MUST be the
feature's last option.

2.2.7.12 FEDAUTHINFO

Token Stream Name:

 FEDAUTHINFO

Token Stream Function:

Introduced in TDS 7.4, federated authentication information is returned to the client to be used for
generating a Federated Authentication Token during the login process. This token MUST be the only
token in a Federated Authentication Information message and MUST NOT be included in any other
message type. <58>

Token Stream Comments:

Á The token value is 0xEE.

Token Stream - Specific Rules:

 TokenType = BYTE

 TokenLength = DWORD ; (introduced in TDS 7.4)

 CountOfInfoIDs = DWORD ; (introduced in TDS 7.4)

 FedAuthInfoID = BYTE ; (introduced in TDS 7.4)

 FedAuthInfoDataLen = DWORD ; (introduced in TDS 7.4)

 FedAuthInfoDataOffset = DWORD ; (introduced in TDS 7.4)

 FedAuthInfoData = VARBYTES ; (introduced in TDS 7.4)

 FedAuthInfoOpt = (FedAuthInfoID ; (introduced in TDS 7.4)

 FedAuthInfoDataLen

 FedAuthInfoDataOffset)

Token Stream Definition:

 FEDAUTHINFO = TokenType ; (introduced in TDS 7.4)

 TokenLength

 CountOfInfoIDs

 1*FedAuthInfoOpt

 FedAuthInfoData

Token Stream Parameter Details

105 / 218

[MS -TDS] - v20201001
Tabular Data Stream Protocol
Copyright © 2020 Microsoft Corporation
Release: October 1, 2020

Parameter Description

TokenType FEDAUTHINFO_TOKEN

TokenLength The length of the whole Federated Authentication Information token, not including the
size occupied by TokenLength itself. The minimum value for this field is sizeof(DWORD)
because the field CountOfInfoIDs MUST be present even if no federated authentication
information is sent as part of the token.

CountOfInfoIDs The number of federated authentication information options that are sent in the token.
If no FedAuthInfoOpt is sent in the token, this field MUST be present and set to 0.

FedAuthInfoID The unique identifier number for the type of information.

FedAuthInfoDataLen The length of FedAuthInfoData, in bytes.

FedAuthInfoDa taOffset The offset at which the federated authentication information data for FedAuthInfoID is
present, measured from the address of CountOfInfoIDs.

FedAuthInfoData The actual information data as binary, with the length in bytes equal to
FedAuthInfoDataL en.

The following table describes the FedAuthInfo feature option and description.

FedAuthInfoID FedAuthInfoData Description

%0x00 Reserved.

%0x01

(STSURL)

A Unicode string that represents the token endpoint URL from which to acquire a Federated
Authentication Token.

%0x02

(SPN)

A Unicode string that represents the Service Principal Name (SPN) to use for acquiring a
Federated Authentication Token. SPN is a string tha t represents the resource in a directory.

2.2.7.13 INFO

Token Stream Name:

 INFO

Token Stream Function:

Used to send an information message to the client.

Token Stream Comments

Á The token value is 0xAB.

Token Stream - Specific Rules:

 TokenType = BYTE

 Length = USHORT

 Number = LONG

 State = BYTE

 Class = BYTE

 MsgText = US_VARCHAR

 ServerName = B_VARCHAR

 ProcName = B_VARCHAR

106 / 218

[MS -TDS] - v20201001
Tabular Data Stream Protocol
Copyright © 2020 Microsoft Corporation
Release: October 1, 2020

 LineNumber = USHORT / LONG; (Changed to LONG in TDS 7.2)

The type of the LineNumber element depends on the version of TDS.

Token Stream Definition:

 INFO = TokenType

 Length

 Number

 State

 Class

 MsgText

 ServerName

 ProcName

 LineNumber

Tok en Stream Parameter Details

Parameter Description

TokenType INFO_TOKEN

Length The total length of the INFO data stream, in bytes.

Number The info number. <59>

State The error state, used as a modifier to the info Number.

Class The class (severity) of the error. A class of less than 10 indicates an informational message.

MsgText The message text length and message text using US_VARCHAR format.

ServerName The server name length and server name using B_VARCHAR format.

ProcName The stored procedure name length and stored procedure name using B_VARCHAR format.

LineNumber The line number in the SQL batch or stored procedure that caused the error. Line numbers begin
at 1; therefore, if the line number is not applicable to the message as determined by the upper
layer, the value of LineNumber will be 0.

2.2.7.14 LOGINACK

Token Stream Name:

 LOGINACK

Token Stream Function:

Used to send a response to a login request (LOGIN7) to the client.

Token Stream Comments

Á The token value is 0xAD .

107 / 218

[MS -TDS] - v20201001
Tabular Data Stream Protocol
Copyright © 2020 Microsoft Corporation
Release: October 1, 2020

Á If a LOGINACK is not received by the client as part of the login procedure, the login to the server
is unsuccessful.

Token Stream - Specific Rules:

 TokenType = BYTE

 Length = USHORT

 Interface = BYTE

 TDSVersion = DWORD

 ProgName = B_VARCHAR

 MajorVer = BYTE

 MinorVer = BYTE

 BuildNumHi = BYTE

 BuildNumLow = BYTE

 ProgVersion = MajorVer

 MinorVer

 BuildNumHi

 BuildNumLow

Token Stream Definition:

 LOGINACK = TokenType

 Length

 Interface

 TDSVersion

 ProgName

 ProgVersion

Token Stream Parameter Details

Parameter Description

TokenType LOGINACK_TOKEN

Length The total length, in bytes, of the following fields: Interface, TDSVersion, Progname, and
ProgVersion.

Interface The type of interface with which the server will accept client requests:

0: SQL_DFLT (server confirms that whatever is sent by the client is acceptable. If the client
requested SQL_DFLT, SQL_TSQL will be used).

1: SQL_TSQL (TSQL is accepted).

TDSVersion The TDS version being used by the server. <60>

ProgName The name of the server.

MajorVer The major version number (0 -255).

MinorVer The minor version number (0 -255).

BuildNumHi The high byte of the build number (0 -255).

BuildNumLow The low byte of the build number (0 -255).

108 / 218

[MS -TDS] - v20201001
Tabular Data Stream Protocol
Copyright © 2020 Microsoft Corporation
Release: October 1, 2020

2.2.7.15 NBCROW

Token Stream Name:

 NBCROW

Token Stream Function:

NBCROW, introduced in TDS 7.3.B, is used to send a row as defined by the COLMETADATA token to
the client with null bitmap compression. Null bitmap compression is implemented by using a single bit
to specify whether the column is null or not null and also by removing all null column values from the

row. Removing the null column values (which can be up to 8 bytes per null instance) from the row
provide s the compression. The null bitmap contains one bit for each column defined in COLMETADATA.
In the null bitmap, a bit value of 1 means that the column is null and therefore not present in the row,
and a bit value of 0 means that the column is not null and is present in the row. The null bitmap is
always rounded up to the nearest multiple of 8 bits, so there might be 1 to 7 leftover reserved bits at
the end of the null bitmap in the last byte of the null bitmap. NBCROW is only used by TDS result set

streams from server to client. NBCROW MUST NOT be used in BulkLoadBCP streams. NBCROW MUST

NOT be used in TVP row streams.

Token Stream Comments

Á The token value is 0xD2/210.

Token Stream - Specific Rules :

 TokenType = BYTE

 TextPointer = B_VARBYTE

 Timestamp = 8BYTE

 Data = TYPE_VARBYTE

 NullBitmap = <NullBitmapByteCount> BYTE ; see note on NullBitmapByteCount

 ColumnData = [TextPointer Timestamp] Dat a

 AllColumnData = *ColumnData

ColumnData is repeated once for each non -null column of data.

NullBitmapBitCount is equal to the number of columns in COLMETADATA.

NullBitmapByteCount is equal to the smallest number of bytes needed to hold 'NullBitmapBit Count'
bits.

The server can decide to send either a NBCROW token or a ROW token. For example, the server might

choose to send a ROW token if there is no byte savings if the result set has no nullable columns , or
if a particular row in a result set has no null values. This implies that NBCROW and ROW tokens can be
intermixed in the same result set.

When determining whether or not a specific column is null, consider all the columns from left to right
ordered using a zero -based index from 0 to 65534 as they occur in the ColumnData section of the
COLMETADATA token. The null bitmap indicates that a column is null using a zero bit at the following

byte and bit layout:

 Byte 1 Byte 2 Byte 3

 ----------------------- ----------------------- -----------------------

 07 06 05 04 03 02 01 00 15 14 13 12 11 10 09 08 23 22 21 20 19 18 17 16

Hence the first byte will contain flags for columns 0 through 7, with the least signific ant (or rightmost)
bit within the byte indicating the zeroth column and the most significant (or leftmost) bit within the

109 / 218

[MS -TDS] - v20201001
Tabular Data Stream Protocol
Copyright © 2020 Microsoft Corporation
Release: October 1, 2020

byte indicating the seventh column. For example, column index 8 would be in the second byte as the
least significant bit. If the null bitmap bit is set, the column is null and no null token value for the

column will follow in the row. If the null bitmap bit is clear, the column is not null and the value for the
column follows in the row.

Token Stream Definition:

 NBCROW = Tok enType

 NullBitmap

 AllColumnData

Token Stream Parameter Details

Parameter Description

TokenType NBCROW_TOKEN (0xD2)

TextPointer The length of the text pointer and the text pointer for Data.

Timestamp The timestamp of a text/image column.

Data The actual data for the column. The TYPE_INFO information describing the data type of this data is
given in the preceding COLMETADATA_TOKEN.

2.2.7.16 OFFSET

Token Stream Name:

 OFFSET

Token Stream Function:

Used to inform the client where in the client's SQL text buffer a particular keyword occurs.

To ken Stream Comments:

Á The token value is 0x78.

Á The token was removed in TDS 7.2.

Token Stream - Specific Rules:

 TokenType = BYTE

 Identifier = USHORT

 OffSetLen = USHORT

Token Stream Definition:

 OFFSET = TokenType ; (removed in TDS 7.2)

 Identifier

 OffSetLen

Token Stream Parameter Details

110 / 218

[MS -TDS] - v20201001
Tabular Data Stream Protocol
Copyright © 2020 Microsoft Corporation
Release: October 1, 2020

Parameter Description

TokenType OFFSET_TOKEN

Identifier The keyword to which OffSetLen refers.

OffsetLen The offset in the SQL text buffer received by the server of the identifier. The SQL text buffer begins
with an OffSetLen value of 0 (MOD 64 kilobytes if value of OffSet is larger than 64 kilobytes).

2.2.7.17 ORDER

Token Stream Name:

 ORDER

Token Stream Function:

Used to inform the client by which columns the data is ordered.

Token Stream Comments

Á The token value is 0xA9.

Á This token is sent only in the event that an ORDER BY clause is executed.

Token Stream - Specific Rules:

 TokenType = BYTE

 Length = USHORT

 ColNum = *USHORT

The ColNum element is repeated once for each column within the ORDER BY clause.

Token Stream Definition:

 ORDER = TokenType

 Length

 ColNum

Token Stream Parameter Details

 Parameter Description

TokenType ORDER_TOKEN

Length The total length of the ORDER data stream.

ColNum The column number in the result set .

111 / 218

[MS -TDS] - v20201001
Tabular Data Stream Protocol
Copyright © 2020 Microsoft Corporation
Release: October 1, 2020

2.2.7.18 RETURNSTATUS

Token Stream Name:

 RETURNSTATUS

Token Stream Function:

Used to send the status value of an RPC to the client. The server also uses this token to send the
result status value of a T -SQL EXEC query.

Token Stream Comments:

Á The token value is 0x79.

Á This token MUST be returned to the client when an RPC is executed by the server.

Token Stream - Specific Rules:

 TokenType = BYTE

 Value = LONG

Token Stream Defi nition:

 RETURNSTATUS = TokenType

 Value

Token Stream Parameter Details

 Parameter Description

TokenType RETURNSTATUS_TOKEN

Value The return status value determined by the remote procedure. Return status MUST NOT be NULL.

2.2.7.19 RETURNVALUE

Token Stream Name:

 RETURNVALUE

Token Stream Function:

Used to send the return value of an RPC to the client. When an RPC is executed, the associated
parameters might be defined as input or output (or "return") parameters. This token is used to send a
description of the return parameter to the client. This token is also used to desc ribe the value returned

by a UDF when executed as an RPC.

Token Stream Comments:

Á The token value is 0xAC.

112 / 218

[MS -TDS] - v20201001
Tabular Data Stream Protocol
Copyright © 2020 Microsoft Corporation
Release: October 1, 2020

Á Multiple return values can exist per RPC. There is a separate RETURNVALUE token sent for each
parameter returned.

Á Large Object output parameters are reordered to appear at the end of the stream. First the group
of small parameters is sent, followed by the group of large output parameters. There is no

reordering within the groups.

Á A UDF cannot have return parameters. As such, if a UDF is executed as an RPC there is exactly
one RETURNVALUE token sent to the client.

Token Stream - Specific Rules:

 TokenType = BYTE

 ParamName = B_VARCHAR

 ParamOrdinal = USHORT

 Status = BYTE

 UserType = USHORT/ULONG; (Changed to ULONG in TDS 7.2)

 fNullable = BIT

 fCaseSen = BIT

 usUpdateable = 2BIT ; 0 = ReadOnly

 ; 1 = Read/Write

 ; 2 = Unused

 fIdentity = BIT

 fComputed = BIT ; (introduced in TDS 7.2)

 usReservedODBC = 2BIT

 fFixedLenCLRType = BIT ; (introduced in TDS 7.2)

 usReserved = 7BIT

 usReserved2 = 2BIT

 fEncrypted = BIT ; (introduced in TDS 7.4)

 usReserved3 = 4BIT

 Flags = fNullable

 fCaseSen

 usUpdateable

 fIdentity

 (FRESERVEDBIT / fComputed)

 usReservedODBC

 (FRESERVEDBIT / fFixedLenCLRType)

 (usReserved / (usReserved2 fEncrypted usReserved3))

 ; (introduced in TDS 7.4)

 TypeInfo = TYPE _INFO

 Value = TYPE_VARBYTE

 BaseTypeInfo = TYPE_INFO ; (BaseTypeInfo introduced in TDS 7.4)

 EncryptionAlgo = BYTE ; (EncryptionAlgo introduced in TDS 7.4)

 AlgoName = B_VARCHAR ; (introduced in TDS 7. 4)

 EncryptionAlgoType = BYTE ; (introduced in TDS 7.4)

 NormVersion = BYTE ; (introduced in TDS 7.4)

 CryptoMetaData = UserType ; (CryptoMetaData introduced in TDS 7.4)

 BaseTypeInfo

 EncryptionAlgo

 [AlgoName]

 EncryptionAlgoType

 NormVersion

Token Stream Definition:

113 / 218

[MS -TDS] - v20201001
Tabular Data Stream Protocol
Copyright © 2020 Microsoft Corporation
Release: October 1, 2020

 RETURNVALUE = TokenType

 ParamOrdinal

 ParamName

 Status

 UserType

 Flags

 TypeInfo

 CryptoMetadata

 Value

Token Stream Parameter Details:

Parameter Desc ription

TokenType RETURNVALUE_TOKEN

ParamOrdinal Indicates the ordinal position of the output parameter in the original RPC call. Large Object
output parameters are reordered to appear at the end of the stream. First the group of
small parameters is sen t, followed by the group of large output parameters. There is no
reordering within the groups.

ParamName The parameter name length and parameter name (within B_VARCHAR).

Status 0x01: If ReturnValue corresponds to OUTPUT parameter of a stored procedure
invocation.

0x02: If ReturnValue corresponds to return value of User Defined Function.

UserType The user type ID of the data type of the column. Depending on the TDS version that is
used, valid values are 0x0000 or 0x00000000, with the exceptions of data type
TIMESTAMP (0x0050 or 0x00000050) and alias types (greater than 0x00FF or
0x000000FF).

Flags These bit flags are described in least significant bit order . All of these bit flags SHOULD be
set to zero. For a description of each bit flag, see section 2.2.7.4 .

Á fNullable

Á fCaseSen

Á usUpdateable

Á fIdentity

Á fComputed

Á usReservedODBC

Á fFixedLengthCLRType

Á fEncrypted

TypeInfo The TYPE_INFO for the message.

BaseTypeInfo TYPE_INFO for the unencrypted type.

EncryptionAlgo A byte that describes the encryption algorithm that is used. AlgoName is populated with
the name of the custom encryption algorithm. For all EncryptionAlgo values other than 0,
AlgoName MUST NOT be sent. If EncryptionAlgo is set to 1, the algorithm that is used is
AEAD_AES_256_CBC_HMAC_SHA512, as described in [IETF -AuthEncr] section 5.4.

AlgoName Algorithm name literal that is used to encrypt the plaintext value.

EncryptionAlgoType A field that describes the encryption algorithm type. Available values are defined as

https://go.microsoft.com/fwlink/?LinkId=524322

114 / 218

[MS -TDS] - v20201001
Tabular Data Stream Protocol
Copyright © 2020 Microsoft Corporation
Release: October 1, 2020

Parameter Desc ription

follows:

1 = Deterministic encryption.

2 = Randomized encryption.

NormVersion The normalization version to which plaintext data MUST be normalized. Version numbering
starts at 0 x01.

CryptoMetaData This describes the encryption metadata for a column. It contains the UserType, the
TYPE_INFO (BaseTypeInfo) for the plaintext value, the encryption algorithm that is used,
the algorithm name literal, the encryption algorithm type, and the normalization version.

Value The type -dependent data for the parameter (within TYPE_VARBYTE).

2.2.7.20 ROW

Token Stream Name:

 ROW

Token Stream Function:

Used to send a complete row, as defined by the COLMETADATA token, to the client.

Token Stream Comments:

Á The token value is 0xD1.

Token Stream - Speci fic Rules:

 TokenType = BYTE

 TextPointer = B_VARBYTE

 Timestamp = 8BYTE

 Data = TYPE_VARBYTE

 ColumnData = [TextPointer Timestamp]

 Data

 AllColumnData = *ColumnData

The ColumnData elem ent is repeated once for each column of data.

TextPointer and Timestamp MUST NOT be specified if the instance of type text/ntext/image is a NULL
instance (GEN_NULL).

Token Stream Definition:

 ROW = TokenType

 AllColumnData

Token Stream Parameter Details:

115 / 218

[MS -TDS] - v20201001
Tabular Data Stream Protocol
Copyright © 2020 Microsoft Corporation
Release: October 1, 2020

Parameter Description

TokenType ROW_TOKEN

TextPointer The length of the text pointer and the text pointer for data.

Timestamp The timestamp of a text/image column. This is not present if the value of data is CHARBIN_NULL
or GEN_NULL.

Data The actual data for the column. The TYPE_INFO information describing the data type of this data is
given in the preceding COLMETADATA_TOKEN, ALTMETDATA_TOKEN or OFFSET_TOKEN.

2.2.7.21 SESSIONSTATE

Token Stream Name:

 SESSIONSTATE

Token Stream Function:

Used to send session state d ata to the client. The data format defined here can also be used to send
session state data for session recovery during login and login response.

Token Stream Comments:

Á The token value is 0xE4.

Á This token stream MUST NOT be sent if the SESSIONRECOVERY fea ture is not negotiated on the
connection.

Á When this token stream is sent, the next token MUST be DONE or DONEPROC with DONE_FINAL.

Á If th e SESSIONRECOVERY feature is negotiated on the connection, the server SHOULD send this
token to the client to inform any session state update.

Token Stream - Specific Rules:

 fRecoverable = BIT

 TokenType = BYTE

 Length = DWORD

 SeqNo = DWORD

 Status = fRecoverable 7FRESERVEDBIT

 StateId = BYTE

 StateLen = BYTE ; 0 - %xFE

 /

 (%xFF DWORD) ; %xFF - %xFFFF

 SessionStateData = StateId

 StateLen

 StateValue

 SessionStateDataSet = 1*SessionStateData

Token Stream Definition:

116 / 218

[MS -TDS] - v20201001
Tabular Data Stream Protocol
Copyright © 2020 Microsoft Corporation
Release: October 1, 2020

 SESSIONSTATE = TokenType

 Length

 SeqNo

 Status

 SessionStateDataSet

Token Stream Parameter Details

Parameter Description

TokenType SESSIONSTATE_TOKEN

Length The length, in bytes, of the token stream (excluding TokenType and Length).

SeqNo The sequence number of the SESSIONSTATE token in the connection. This number, which starts at
0 and increases by one each time, can be used to track the order of SESSIONSTATE tokens sent
during the course of a connection. The SeqNo applies to all StateIds in the token. If the SeqNo for
any StateId reaches %xFFFFFFFF, both client and server MUST consider that the
SESSIONRECOVERY feature is permanently disabled on the connection. The server SHOULD send a
token with fRecoverable set to FALSE to disable SESSIONRECOVERY for this session. The client
SHOULD NOT set either ResetConn bit (RESETCONNECTION or RESETCONNECTIONSKIPTRAN) on
the connection once it receives any SeqNo of %xFFFFFFFF because ResetConn could reset a
connection back to an initial recoverable state and SESSIONRECOVERY needs to be permanently
disabled on the connection in this case. If the server does receive ResetCon n after SeqNo reaches
%xFFFFFFFF, it SHOULD reuse this same SeqNo to disable SESSIONRECOVERY.

The client SHOULD track SeqNo for each StateId and keep the latest data for session recovery.

Status Status of the session StateId in this token.

fRecoverable: TRUE means all session StateIds in this token are recoverable.

The client SHOULD track Status for each StateId and keep the latest data for session recovery. A
client MUST NOT try to recover a dead connection unless fRecoverable is TRUE for all session
Sta teIds received from server.

StateId The identification number of the session state. %xFF is reserved.

StateLen The length, in bytes, of the corresponding StateValue. If the length is 254 bytes or smaller, one
BYTE is used to represent the field. If the l ength is 255 bytes or larger, %xFF followed by a DWORD

is used to represent the field. If this field is 0, client SHOULD skip sending SessionStateData for the
StateId during session recovery.

StateValue The value of the session state. This can be any arbi trary data as long as the server understands it.

2.2.7.22 SSPI

Token Stream Name:

 SSPI

Token Stream Function:

The S SPI token returned during the login process.

Token Stream Comments:

Á The token value is 0xED.

Token Stream - Specific Rules:

117 / 218

[MS -TDS] - v20201001
Tabular Data Stream Protocol
Copyright © 2020 Microsoft Corporation
Release: October 1, 2020

 TokenType = BYTE

 SSPIBuffer = US_VARBYTE

Token Stream Definition:

 SSPI = TokenType

 SSPIBuffer

Token Stream Parameter Details:

 Parameter Description

TokenType SSPI_TOKEN

SSPIBuffer The length of the SSPIBuffer and the SSPI buffer using B_VARBYTE format.

2.2.7.23 TABNAME

Token Stream Name:

 TABNAME

Token Stream Function:

Used to send the table name to the client only when in browser mode or from sp_cursoropen.

Token Stream Comments:

Á The token value is 0xA4.

Token Stream - Specific Rules:

 TokenType = BYTE

 Length = USHORT

 NumParts = BYTE ; (introduced in TDS 7.1 Revision 1)

 PartName = US_VARCHAR ; (in troduced in TDS 7.1 Revision 1)

 TableName = US_VARCHAR ; (removed in TDS 7.1 Revision 1)

 /

 (NumParts

 1*PartName) ; (introduced in TDS 7.1 Revision 1)

 AllTableNames = TableName

The TableName element is repeated once for each table name in the query.

Token Stream Definition:

 TABNAME = TokenType

 Length

 AllTableNames

118 / 218

[MS -TDS] - v20201001
Tabular Data Stream Protocol
Copyright © 2020 Microsoft Corporation
Release: October 1, 2020

Token Stream Parameter Details

Parameter Description

TokenType TABNAME_TOKEN

Length The actual data length, in bytes, of the TABNAME token stream. The length does not include token
type and length field.

TableName The name of the base table referenced in the query statement.

2.2.7.24 TVP_ROW

Token Stream Name:

 TVP_ROW

Token Stream Function:

Used to send a complete table valued parameter (TVP) row, as defined by the TVP_COLMETADATA

token from client to server.

Token Stream Comments:

Á The token value is 0x01/1.

Token Stream - Specific Rules:

 TokenType = BYTE

 TvpColumnData = TYPE_VARBYTE

 AllColumnData = *TvpColumnData

TvpColumnData is repeated once for each column of data with a few exceptions. For details about
when certain TvpColumnData items are required to be omitted, see the Flags description of the
TVP_COLMETADATA d efinition (see section 2.2.5.5.5.1).

Note that unlike the ROW token, TVP_ROW does not use TextPointer + TimeStamp prefix with TEXT,
NTEXT and IMAGE types.

Token Stream Definition:

 TVP_ROW = TokenType

 AllColumnData

Token Stream Parameter Details:

Parameter Description

TokenType TVP_ROW_TOKEN

TvpColumnData The actual data for the TVP column. The TYPE_INFO information describing the data type of
this data is given in the preceding TVP_COLMETADATA token.

119 / 218

[MS -TDS] - v20201001
Tabular Data Stream Protocol
Copyright © 2020 Microsoft Corporation
Release: October 1, 2020

120 / 218

[MS -TDS] - v20201001
Tabular Data Stream Protocol
Copyright © 2020 Microsoft Corporation
Release: October 1, 2020

3 Protocol Details

This section describes the important elements of the client software and the server software necessary
to support the TDS protocol.

3.1 Common Details

As described in section 1.3 , TDS is an application - level protocol that is used for the transfer of
requests and responses between clients and database ser ver systems. The protocol defines a limited
set of messages through which the client can make a request to the server. The TDS server is
message -oriented. Once a connection has been established between the client and server, a complete
message is sent from client to server. Following this, a complete response is sent from server to client

(with the possible exception of when the client aborts the request), and the server then waits for the
next request. Other than this Post -Login state, the other states def ined by the TDS protocol are (i)
pre -authentication (Pre -Login), (ii) authentication (Login), and (iii) when the client sends an attention
message (Attention). These will be expanded upon in subsequent sections.

3.1.1 Abstract Data Model

See sections 3.2.1 and 3.3.1 for the abstract data model of the client and server, respectively.

3.1.2 Timers

See section 3.2.2 for a description of the client timer used and section 3.3.2 for a description of the

server timer used.

3.1.3 Initialization

None.

3.1.4 Higher -Layer Triggered Events

For information about higher - layer triggered events, see section 3.2.4 for a TDS client and section
3.3.4 for a TDS server.

3.1.5 Message Processing Events and Sequencing Rules

The following series of sequence diagrams illustrate the messages that can be exchanged between
client and server. See sections 3.2.5 and 3.3.5 for specific client and server det ails regarding message
processing events and sequencing rules.

121 / 218

[MS -TDS] - v20201001
Tabular Data Stream Protocol
Copyright © 2020 Microsoft Corporation
Release: October 1, 2020

Figure 3 : Pre - login to post - login sequence

122 / 218

[MS -TDS] - v20201001
Tabular Data Stream Protocol
Copyright © 2020 Microsoft Corporation
Release: October 1, 2020

Figure 4 : Pre - login to post - login sequence with federated authentication that uses a client
libr ary that requires additional information from a server to generate a federated
authentication token

