[MS -TDS - Diff]:

Tabular Data Stream Protocol

Intellectual Property Rights Notice for Open Specifications Documentation

A Technical Documentation. Mi crosoft publishes Open Specifications doc
documentationo) for protocols, file formats, data portabil
support. Additionally, overview documents cover inter -protocol relationships and interactions.

A co pyrights . This documentation is covered by Microsoft copyrights. Regardless of any other
terms that are contained in the terms of use for the Microsoft website that hosts this
documentation, you can make copies of it in order to develop implementations of the technologies
that are described in this documentation and can distribute portions of it in your implementations
that use these technologies or in your documentation as necessary to properly document the
implementation. You can also distribute in your i mplementation, with or without modification, any
schemas, IDLs, or code samples that are included in the documentation. This permission also
applies to any documents that are referenced in the Open Specifications documentation.
No Trade Secrets . Microsoft does not claim any trade secret rights in this documentation.
Patents . Microsoft has patents that might cover your implementations of the technologies
described in the Open Specifications documentation. Neither this notice nor Microsoft's delivery of
thi s documentation grants any licenses under those patents or any other Microsoft patents.
However, a given Open Specifications document might be covered by the Microsoft Open
Specifications Promi__se or the Microsoft Community Promise . If you would prefer a written license,
or if the technologies described in this documentation are not covered by the Open Specifications
Promise or Commun ity Promise, as applicable, patent licenses are available by contacting
iplg@microsoft.com
License Programs . To see all of the protocols in scope under a specific license program and the
associated patents, visit the Patent Map .
Trademarks . The names of companies and products contained in this documentation might be
covered by trademarks or similar intellectual property rights. This noti ce does not grant any
licenses under those rights. For a list of Microsoft trademarks, visit
www.microsoft.com/trademarks
A Fictitious Names . The example companies, organizations, products, domain names, email
addresses, logos, people, places, and events that are depicted in this documentation are fictitious.
No association with any real company, organization, product, domain name, email address, logo,
person, place, or event is intended or should be infe rred.

> >

>

>

Reservation of Rights . All other rights are reserved, and this notice does not grant any rights other
than as specifically described above, whether by implication, estoppel, or otherwise.

Tools . The Open Specifications documentation does not require the use of Microsoft programming
tools or programming environments in order for you to develop an implementation. If you have access

to Microsoft programming tools and environments, you are free to take advantage of them. Certain

Open Specifications documents are int ended for use in conjunction with publicly available standards
specifications and network programming art and, as such, assume that the reader either is familiar

with the aforementioned material or has immediate access to it.

Support. For questions and sup port, please contact dochelp@microsoft.com

1/ 220

[MS -TDS-Diff] - v20201001

Tabular Data Stream Protocol
Copyright © 2020 Microsoft Corporation
Release: October 1, 2020

https://go.microsoft.com/fwlink/?LinkId=214445
https://go.microsoft.com/fwlink/?LinkId=214445
https://go.microsoft.com/fwlink/?LinkId=214448
mailto:iplg@microsoft.com
https://msdn.microsoft.com/en-us/openspecifications/dn750984
https://www.microsoft.com/trademarks
mailto:dochelp@microsoft.com

Revision Summary

Revision Revision
Date History Class Comments
3/14/2008 0.1 Major Initial Availability.
6/20/2008 0.1.1 Editorial Changed language and formatting in the technical content.
7/25/2008 0.1.2 Editorial Changed language and formatting in the technical content.
8/29/2008 0.1.3 Editorial Changed language and formatting in the technical content.
10/24/2008 0.14 Editorial Changed language and formatting in the technical content.
12/5/2008 0.2 Minor Clarified the meaning of the technical content.
1/16/2009 0.3 Minor Clarified the meaning of the technical content.
2/27/2009 0.4 Minor Clarified the meaning of the technical content.
4/10/2009 0.5 Minor Clarified the meaning of the technical content.
5/22/2009 0.5.1 Editorial Changed language and formatting in the technical content.
7/2/2009 1.0 Major Updated and revised the technical content.
8/14/2009 11 Minor Clarified the meaning of the technical content.
9/25/2009 2.0 Major Updated and revised the technical content.
11/6/2009 3.0 Major Updated and revised the technical content.
12/18/2009 4.0 Major Updated and revised the technical content.
1/29/2010 4.1 Minor Clarified the meaning of the technical content.
3/12/2010 5.0 Major Updated and revised the technical content.
4/23/2010 6.0 Major Updated and revised the technical content.
6/4/2010 7.0 Major Updated and revised the technical content.
7/16/2010 8.0 Major Updated and revised the technical content.
8/27/2010 8.0 None tl\(lac;hcr:iglgscsmttc;:tl-e meaning, language, or formatting of the
10/8/2010 9.0 Major Updated and revised the technical content.
11/19/2010 9.0 None tl\(lac;hcr:iglgscsmttc;:tl-e meaning, language, or formatting of the
1/7/2011 9.1 Minor Clarified the meaning of the technical content.
2/11/2011 9.2 Minor Clarified the meaning of the technical content.
3/25/2011 9.3 Minor Clarified the meaning of the technical content.
5/6/2011 9.4 Minor Clarified the meaning of the technical content.
6/17/2011 10.0 Major Updated and revised the technical content.
9/23/2011 11.0 Major Updated and revised the technical content.

[MS -TDS-Diff] - v20201001
Tabular Data Stream Protocol
Copyright © 2020 Microsoft Corporation

Release: October 1, 2020

2/ 220

Revision Revision
Date History Class Comments
12/16/2011 12.0 Major Updated and revised the technical content.
3/30/2012 121 Minor Clarified the meaning of the technical content.
7112/2012 12.2 Minor Clarified the meaning of the technical content.
10/25/2012 122 None tl\é?:r::r:iglggsnt%::.e meaning, language, or formatting of the
1/31/2013 13.0 Major Updated and revised the technical content.
8/8/2013 14.0 Major Updated and revised the technical content.
11/14/2013 15.0 Major Updated and revised the technical content.
2/13/2014 16.0 Major Updated and revised the technical content.
5/15/2014 17.0 Major Updated and revised the technical content.
6/30/2015 18.0 Major Significantly changed the technical content.
10/16/2015 19.0 Major Significantly changed the technical content.
5/10/2016 190 None tl\‘l;():hcnri]?;gfosnttce)rt]?e meaning, language, or formatting of the
7/14/2016 190 None tl\(l;éri:r:zéglgscs);?e:tl-ez meaning, language, or formatting of the
3/16/2017 20.0 Major Significantly changed the technical content.
6/1/2017 20.0 None tl\(l;éri:r:zéglgscs);?e:tl-ez meaning, language, or formatting of the
8/16/2017 21.0 Major Significantly changed the technical content.
9/15/2017 22.0 Major Significantly changed the technical content.
12/1/2017 23.0 Major Significantly changed the technical content.
3/16/2018 24.0 Major Significantly changed the technical content.
9/12/2018 25.0 Major Significantly changed the technical content.
3/13/2019 26.0 Major Significantly changed the technical content.
10/16/2019 27.0 Major Significantly changed the technical content.
11/1/2019 28.0 Major Significantly changed the technical content.
6/15/2020 29.0 Major Significantly changed the technical content.
Major |

[MS -TDS-Diff] - v20201001
Tabular Data Stream Protocol
Copyright © 2020 Microsoft Corporation

Release: October 1, 2020

3/ 220

Table of Contents

N 1011 o Yo L1 o 1 o PP PP 8
11 GlOSSAIY oiiiiiiiiiiiic s e s e 8
1.2 REFEIENCES i s e e 10

121 Normative ReferenCes ...t e e 10

1.2.2 Informative REfErenCeS oo e 11
13 OVEIVIEW coiiiiiiiii e eiies eeetiee e sree e e e sniees aveeeeaseeeeasee e e nneeeeas eeeeae 13
1.4 Relationship to Other Protocols ... e e 14
15 Prerequisites/Preconditions 15
1.6 Applicability Statement 15
1.7 Versioning and Capability Negotiation —cociiiiiiiiiiviiiis e .15
1.8 Vendor -Extensible FIeldS ... e e 16
1.9 Standards ASSIGNMENTS oo e aeerree e 16

2 MESSAGES ciiiiiiiiiiiiiiiiiiis e aeeeeea e ———————eaeaes eeeeeeeeeees 17
2.1 TrANSPOIT oo e aeeeearere e es eeees 17
2.2 MESSAQE SYNIAX eeiiiiiiiii it iriiieess e aeaeeee e e 17

221 ClIENt M ESSAQES ..oviciiiiiiiiiiiiiiiiiiieis ettt eeree e 17
2211 g (T I To [o PSRRI 18
2212 LOGIN oo et e .. 18
2213 Federated Authentication TOKEN — .ooiciiiiiiiiiiiiciiiiies e 18
2214 SQLBACh it e e 18
2215 2] 0T T o OSSR 18
2216 Remote Procedure Callcccccvviiiiiiiiiiiiis e eeereeees 19
2217 AUENTION i e ee e 19
2218 Transaction Manager REQUESE ..occovcciiiiiiiiiciiieiiis et .19

222 SEerver MESSAQES ..occvcviicciiiiiiiiieiiiies e eeeneee e 19
2221 Pre-Login RESPONSE ..coccvviiiiiiiiiieiiiies v eeeeeee e 20
2222 o T |1 T =TT o Yo TP 20
2223 Federated Authentication Information 20
2224 Row Dataccccevvvveeiniieeenns 20
2.2.25 Return Status cccceveeeiviiiiieeen. 20
2226 Return Parameters ... e 20
2227 Response Completion ..o e e 21
222.8 Error and INfO oot e e 21
2229 Attention Acknowledgment .. e e 21

2.2.3 Packetscccooviiiiiiiiie
2231 Packet Header

22311 TYPE e
22312
22313
22314
22315
22316
2232

224 Packet Data Token and Tokenless Data Streams = ..o e, 25
2241 ToKenless Stream ...ooociiiiiiiiiiiiiiis s e 26
2242 TOKEN SIrEAM o e eeeeaere e 26

22421 Token Definition ccoevvieiviieeen, 26
224211 Zero Length Token(xx01xxxx) 26
224212 Fixed Length Token(xx11xxxx) 26
224213 Variable Length TOKENS(XXLOXXXX) cocccveeviiiieiiiiieeiiieees eeeeerieeeens 27
224214 Variable Count TOKenS(XX00XXXX) coccevveeriieriie e eveeniee e 27
2243 Done and Attention TOKENS oo e v 27

225 Grammar Definition for Token Description i e 28
2251 General RUIESoooviiiiiiiicciiit e e 28

4/ 220

[MS -TDS-Diff] - v20201001

Tabular Data Stream Protocol
Copyright © 2020 Microsoft Corporation
Release: October 1, 2020

22511 Least Significant Bit Order ... e 30
22512 Collation Rule Definition ..o e . 30
2.25.2 Data Stream TYPES .oocvvveveeeiviiiiiiieeeeeene 31
22521 Unknown Length Data Streams 31
22522 Variable -Length Data Streams ... e 31
22523 (Updated Section) Data Type Dependent Data Streams ccccceeeennee. 32
2253 Packet Data Stream Headers - ALL_HEADERS Rule Definition ccoceeeee. 33
22531 Query Notifications Header —......cccccoviieiiiiiiiiiiis e 34
22532 Transaction Descriptor Header 34
2.25.3.3 Trace Activity Header —ccooeeeviieeeeen, 35
2254 Data Type DefinitionS .oooiiiiiiiiiieiies e e 35
22541 (Added Section) Zero -Length Data TYPES .coccovcvvvciciiiciieeiies v 35
22542 (Updated Section) Fixed -Length Data TYPES .ocovvvveeivcieeeiiiieeeiiee eevis 36
22543 (Updated Section) Variable -Length Data TYpesS ccccovevieiiieeiieene . 36
22544 (Updated Section) Partially Length -Prefixed Data Types ccoceeeevivnennn. 39
2255 Data Type DetailsS oot e e 40
22551 System Data Type ValueS ..o e .40
2.2551.1 INEOEIS i cicciiee eeevrrc s eeeee e e 40
225512 TIMESIAMP oo e e 40
225513 Character and Binary Strings .o e 40
225514 Fixed -Point NUMDEIS ..oooiiiiiiiiiiciiiies e .. 40
2.255.15 Floating -Point NUMDErS ..ooooiiiiiiiiiiiis e 40
225516 Decimal/NUMENC v ccciieiiee e ees s 40
225517 GUID .oiiiiiiiiiiiciiiiiiee et e 41
225518 Date/TIMES .oooiiiiiiieiiiiiririens et neenees enreeneanes 41
22552 Common Language Runtime (CLR) Instances ..o e 42
22553 XML VAIUES ..o e nieniees v 42
22554 SQL_VARIANT VAlUES ...ooiiiiiiiiiiiiiiiiiiies v neenes e 43
22555 Table Valued Parameter (TVP) Values ...occcviiiiiiiiiiiiiieiiee e 43
225551 Metadataccccevvviiiiiiiriis e e 43
225552 Optional Metadata TOKENS ..o e 46
225553 TDS Type RESIICUONS oot e esee e 48
2256 (Updated Section) = Type Info Rule Definition ...ccoviiiiiiiiiiiee e, 49
2257 Encryption Key Rule Definition ... e 49
22538 (Updated Section) Data Packet Stream TOKENS ..cvoiiieviiiiiiciieii v 50
2.2.6 Packet Header Message Type Stream Definition — ccciiiiiiiiiiiis e, 51
226.1 (Updated Section) Bulk Load BCPccccviiiiiiiiiiiiiis e 51
2.26.2 Bulk L oad Update Text/Write Text 52
2.2.6.3 Federated Authentication Token 52
2264 LOGINT it ettt nies eeree e e nne e 53
2.26.5 PRELOGIN .ooitiiiiiiviiicriiiies ettt aneesiee e sne e 66
2.2.6.6 RPC REQUEST ...oeiiiieiiiiiciiiiiiiiie ettt srine e niees areeessneeesnnnee e 71
2.2.6.7 SQLBALCH .ooviiiiiiiiiciiiiiiiiis e e 74
2.26.8 SSPIMESSAJE ..ooviirciiiiiiiiieiiiiiieiie e e 75
2.2.6.9 Tran saction Manager REQUESE ..o e .76
227 Packet Data Token Stream Definition — .oooiiiiiiiiiiiis e 79
2271 ALTMETADATA .ot et reseesiee e 79
2272 ALTROW oiiiiiiiiiiiiiiiiiiiie ettt et 82
2.2.7.3 COLINFO oottt eveeresie s eeveseesee e e nae e 83
2274 COLMETADATA .iiiieiieiirievieiiene e reniees areesieesne e 84
2275 (Updated Section) DATACLASSIFICATION .ooovvevevicceeeerereeeee evevereeienenans 87
2.2.7.6 DONE ..ottt eveesee s eeseeae e .. 89
2277 DONEINPRORC ...cciiiiiiiiiiiiiiieiies ettt sies teveseeseeseenneens 91
2.2.7.8 DONEPROQC ...oooviiiviiiiciieiieiies et nies evteesieesieenie e sneas 92
2279 ENVCHANGE ..ot et sienies treeseesee e 93
2.2.7.10 ERROR ..ot iiiiiis ettt eeee e .97
22711 FEATUREEXTACK ..ooiiiiiiiiiiiiiiiiieiies ettt nieenes eevresresiee e 99
22712 FEDAUTHINFO ..o vt eieiees areeenesee e 103
51/ 220

[MS -TDS-Diff] - v20201001
Tabular Data Stream Protocol

Copyright © 2020 Microsoft Corporation

Release: October 1, 2020

2.2.7.13 INFO oot s e ..105
22714 LOGINACK .ot et aeenieesseesree e 106
22715 NBCROW....coiiiiiiiiiciiiiiiins et aneesie e 107
2.2.7.16 OFFSET 109
22717 ORDER 109
2.2.7.18 RETURNSTATUS ..ot e vt 110
2.2.7.19 RETURNVALUE ... et areeeee e saee e 111
2.2.7.20 ROW e et e .. 113
22721 SESSIONSTATE ..o ettt eenaeenieaae e 114
22722 SSOPl it e e .. 116
2.2.7.23 TABNAME ...ttt ettt e 117
2.2.7.24 TVP_ROW ooiiiiiiiiiiiiiiiiiiens et nees e 117
3 Protocol Details oot e e . 119
3.1 Common Details cccoooiieiiiieee. 119
31.1 Abstract Data Model 119
3.1.2 1100 T=T £ U 119
313 INIGANZALON oo e e 119
3.14 Higher -Layer Triggered EVENIS .ooooiiiiiiiiiiiiiiiiviine e s ... 119
3.15 Message Processing Events and Sequencing Rules ... s 119
3.1.6 TIMEN EVENES oo et e 124
3.1.7 Other LO Cal EVENES ..oooiiiiiiiiciiiieiiiiieiis ettt viee e eniiee e aerveeesseneaeeens 124
3.2 Client DEAIIS ooceviiiiiiiiiiiiiiis et e .. 125
3.21 Abstract Data MOdel ..ot e arreee e 125
322 TIMEIS oo s e e 126
323 INILANZALON oo e e 126
3.24 Higher -Layer Triggered EVENIS oo et .. 127
3.25 Message Processing Events and Sequencing Rules ... e 128
3.251 Sent Initial PRELOGIN Packet State cccovvviiiiiiiiiiiie e 128
3.25.2 Sent TLS/SSL Negotiation Packet State .cooocevviiviiiiiiiviieiee e, 129
3.253 Sent LOGIN7 Record with Complete Authentication Token State ... 130
3254 Sent LOGIN7 Record with SPNEGO Packet State ..o e, 130
3.255 Sent LOGIN7 Record with Federated Authentication Information Request State
... 131
3.256 Logged IN StAte ..ot e eee e 131
3.257 Sent Client Request State oo e 131
3.258 Sent Attention State ccceiiieeens 131
3.25.9 Routing Completed State 132
3.2.5.10 FINAl StAte .o e e 132
3.2.6 TIMEN EVENIS oo ettt iee e aerveee s e e e 132
3.2.7 Other LOCal EVENS .ooviiiiiiiciiieiiiiieiie vt riee e ennee e eerveeesseaeae e 132
3.3 Server DetAIlS oo e .132
331 Abstract Data MOdel .o e arreee e 133
3.3.2 TIMEIS oo s e s 134
3.3.3 Initialization 134
3.34 Higher -Layer Triggered EVENIS oo et ... 134
3.35 (Updated Section) Message Processing Events and Sequencing Rules 134
3351 INItIAl STALE et e 134
3.35.2 TLS/SSL Negotiation State .. 135
3.353 Login Ready Statecccccovvvvrieenieenns 135
3.35. 4 SPNEGO Negotiation State ... 137
3.355 Federated Authentication Ready State ..ocoiiiiiiiie e 137
3.35.6 LOgged IN STAte .ooiciiiiiiviiiiiiriiiis e e 138
3.35.7 Client Request Execution State ... e 138
3.35.8 Routing Completed State ..o e e 138
3.35.9 FINal State ..o e 139
3.3.6 TIMEN EVENES iiiiiiiiiii it eeeviiieeesie e sieneeniee aevnieeessaeeeeannreeeannes 139
3.3.7 Other LOCal EVENS ..oooiiiiiiiiiiiiiiiiiiiiiis et e e arreeeesaaeea e 139
6 / 220

[MS -TDS-Diff] - v20201001

Tabular Data Stream Protocol
Copyright © 2020 Microsoft Corporation
Release: October 1, 2020

4 Protoc ol Examples

140

4.1 (Updated Section) Pre-Login REQUEST ..o e 140
4.2 (Updated Section) LOgin REQUESE ...ccooviiieiiiiiiciiiieiie v e 141
4.3 (Updated Section) Login Request with Federated Authentication —cccoocviveennen. 143
4.4 (Updated Section) LOQin RESPONSE ...ooiciviiiiiiiiiiciiiins eeeree e .. 150
45 (Updated Section) Login Response with Federated Authentication Feature Extension
ACKNOWIEAGEMENT oot e eereeee e 154
4.6 (Updated Section) SQL Batch Client ReqUESt ..ooiiiiiiiiiiiiiccciiiee e, 160
4.7 (Updated Section) = SQL Batch Server RESPONSE ..ooocveviiiiiiiiiciiieies e 161
4.8 (Updated Section) RPC Client REQUESE .vvviiviiiiiiiiieiiiiies e 162
4.9 (Updated Section) RPC Server RESPONSE cccviiiiiiiiiieiiieiiee e 164
4.10 (Updated Section) Attention REQUESE ..o e .165
411 (Updated Section) SSPIMESSAQE ...cccovvvieiiiiiieiiciiieiiie eeevvee e e 165
4.12 (Updated Section) BUIK LOBAccccoviiiiiiiiiiiiiis e e 166
413 (Updated Section) Transaction Manager REqQUESt ..ccccovciiecviiieciiiiieees eveeviee e 167
4.14 (Updated Section) TVP INsert StateMent ... e 168
4.15 (Updated Section) SparseColumn Select Statement cccvveviiiiiciiiiies e, 171
4.16 (Updated Section) FeatureExt with SESSIONRECOVERY Feature Data ccee.n. 176
4.17 (Updated Section) FeatureExtAck with SESSIONRECOVERY Feature Data 181
4.18 (Updated Section) = Table Response with SESSIONSTATE Token Data ~ccceeveenee. 187
4.19 Token Stream COMMUNICALION .o e aeeeaees 188
4.19.1 Sending @ SQL BAtCh .ooociiiiiiiciiiiies e e 188
4.19.2 Out-of-Band Attention Signal ..o e 189
4.20 (Updated Section) FeatureExt with AZURESQLSUPPORT Feature Data ccccenee. 189
4.21 (Updated Section) FeatureExtAck with AZURESQLSUPPORT Feature Data 193
B SECUMLY it e e eeeeeeaaee 202
5.1 Security Considerations for Implementers .. s 202
5.2 Index of Security Parameters ..o e e 202
6 (Updated Section) Appendix A: Product Behavior s e, 204
7 Change TraCkiNg oo e eeeae e . 211
8 INUEX oo e e e 212
71220

[MS -TDS-Diff] - v20201001
Tabular Data Stream Protocol
Copyright © 2020 Microsoft Corporation
Release: October 1, 2020

1 Introduction

The Tabular Data Stream (TDS) protocol is an application layer request/response protocol that
facilitates interaction with a database server and provides for the following:

A Authentication and channel encryption negotiation.

A Specification of requests in SQL (including Bulk Insert).

A Invocation of a stored procedure or user -defined function, also known as a remote procedure call
(RPC).

A The return of data.

A Transaction manager requests.

Sections 1.5, 1.8, 1.9, 2, and 3 of this specification are normative. All other sections and examples in
this specification are informative.

11 Glossary
This document uses the following terms:

big -endian : Multiple -byte values that are byte -ordered with the most significant byte stored in the
memory location with the lowest address.

bulk insert : A method for efficiently populating the rows of a table from the client to the server.

common language runtime user -defined type (CLR UDT) : A data type that is created and
defined by the user on a database server that supports SQL by using a Microsoft .NET
Framework common language runtime assembly.

data classification : An information protection framework that includes sensitivity information
about the data that is being returned from a query. The sensitivity information includes label s
and information types and their identifiers.

data stream : A stream of data that corresponds to specific Tabular Data Stream (TDS) semantics.
A single data stream can represent an entire TDS message or only a specific, well -defined
portion of a TDS messag e. A TDS data stream can span multiple network data packets.

Distributed Transaction Coordinator (DTC) : A Windows service that coordinates transactions
across multiple resource managers, including databases. For more information, see [MSDN -
DTC].

enclave : A protected region of memory that is used only on the server side. This region is within
the address space of SQL Server, and it acts as a trusted execution environment. Only code that
runs within the enclave can access data within that enclave. Neither the data nor the code inside
the enclave can be viewed from the outside, even with a debugger.

enclave computations : Locally enabled cryptographic operations and other operations in
Transact - SQL queries on encrypted columns that are performed inside an enclav e.

federated authentication : An authentication mechanism that allows a security token service
(STS) in one trust domain to delegate user authentication to an identity provider in another
trust domain, while generating a security token for the user, when th ere is a trust relationship
between the two domains.

final state : The application layer has finished the communication, and the lower -layer connection
should be disconnected.

8/ 220

[MS -TDS-Diff] - v20201001

Tabular Data Stream Protocol
Copyright © 2020 Microsoft Corporation
Release: October 1, 2020

Global Transactions : A feature that allows users to execute transactions across m ultiple
databases that are hosted in a shared service, such as Microsoft Azure SQL Database.

initial state : A prerequisite for application -layer communication. A lower -layer channel that can
provide reliable communication must be established.

interface : A group of related function prototypes in a specific order, analogous to a C++ virtual
interface. Multiple objects, of different object class, may implement the same interface. A
derived interface may be created by adding methods after the end of an existing interface. In
the Distributed Component Object Model (DCOM), all interfaces initially derive from lUnknown.

little -endian : Multiple -byte values that are byte -ordered with the least significant byte stored in
the memory location with the lowest address.

Mi crosoft/Windows Data Access Components (MDAC/WDAC) : With Microsoft/Windows Data
Access Components (MDAC/WDAC), developers can connect to and use data from a wide variety
of relational and nonrelational data sources. You can connect to many different data s ources
using Open Database Connectivity (ODBC), ActiveX Data Objects (ADO), or OLE DB. You can do
this through providers and drivers that are built and shipped by Microsoft, or that are developed
by various third parties. For more information, see [MSDN -MDAC].

Multiple Active Result Sets (MARS) : A feature in Microsoft SQL Server that allows applications
to have more than one pending request per connection. For more information, see [MSDN -
MARS].

nullable column : A database table column that is allowed to con tain no value for a given row.

out -of -band : A type of event that happens outside of the standard sequence of events. For
example, an out -of-band signal or message can be sent during an unexpected time and will not
cause any protocol parsing issues.

query n otification : A feature in SQL Server that allows the client to register for notification on
changes to a given query result. For more information, see [MSDN -QUERYNOTE].

remote procedure call (RPC) : A communication protocol used primarily between client and
server. The term has three definitions that are often used interchangeably: a runtime
environment providing for communication facilities between computers (the RPC runtime); a set
of request -and -response message exchanges between computers (the RPC exchange); and the
single message from an RPC exchange (the RPC message). For more information, see [C706].

result set : A list of records that results from running a stored procedure or query, or applying a
filter. The structure and content of the dat a in a result set varies according to the
implementation.

Security Support Provider Interface (SSPI) - An API that allows connected applications to call
one of several security providers to establish authenticated connections and to exchange data
securely o ver those connections. It is equivalent to Generic Security Services (GSS) -API, and

the two are on -the -wire compatible.

Session Multiplex Protocol (SMP) : A multiplexing protocol that enables multiple logical client
connections to share a single transport ¢ onnection to a server. Used by Multiple Active Result
Sets (MARS). For more information, see [MC -SMP].

Simple and Protected GSS - API Negotiation Mechanism (SPNEGO) : An authentication
mechanism that allows Generic Security Services (GSS) peers to determine w hether their
credentials support a common set of GSS - API security mechanisms, to negotiate different
options within a given security mechanism or different options from several security
mechanisms, to select a service, and to establish a security context a mong themselves using
that service. SPNEGO is specified in [RFC4178].

9/ 220

[MS -TDS-Diff] - v20201001

Tabular Data Stream Protocol
Copyright © 2020 Microsoft Corporation
Release: October 1, 2020

SQL batch : A set of SQL statements.

SQL Server Native Client (SNAC) : SNAC contains the SQL Server ODBC driver and the SQL
Server OLE DB provider in one native dynamic link library (DLL) supporting applications using
native -code APIs (ODBC, OLE DB, and ADO) to Microsoft SQL Server. For more information, see
[MSDN - SNAC].

SQL Server User Authentication (SQLAUTH) : An authentication mechanism that is used to
support user accounts on a database server that supports SQL. The username and password of
the user account are transmitted as part of the login message that the client sends to the
server.

SQL statement : A character string expression in a language that the server understands.

store d procedure : A precompiled collection of SQL statements and, optionally, control -of-flow
statements that are stored under a name and processed as a unit. They are stored in a SQL
database and can be run with one call from an application. Stored procedures return an integer

return code and can additionally return one or more result sets. Also referred to as sproc.

table response : A collection of data, all formatted in a specific manner, that is sent by the server

to the client for the purpose of communicatin g the result of a client request. The server returns
the result in a table response format for LOGIN7, SQL, and remote procedure call (RPC)
requests.

TDS session : A successfully established communication over a period of time between a client and
a server on which the Tabular Data Stream (TDS) protocol is used for message exchange.

transaction manager : The party that is responsible for managing and distributing the outcome of
atomic transactions. A transaction manager is either a root transaction manager or a
subordinate transaction manager for a specified transaction.

Unicode : A character encoding standard developed by the Unicode Consortium that represents
almost all of the written languages of the world. The Unicode standard [UNICODES5.0.0/2007]
providest hree forms (UTF -8, UTF-16, and UTF -32) and seven schemes (UTF -8, UTF-16, UTF -16
BE, UTF-16 LE, UTF -32, UTF -32 LE, and UTF -32 BE).

Virtual Interface Architecture (VIA) : A high -speed interconnect that requires special hardware
and drivers that are provided b y third parties.

MAY, SHOULD, MUST, SHOULD NOT, MUST NOT: These terms (in all caps) are used as defined
in [RFC2119]. All statements of optional behavior use either MAY, SHOULD, or SHOULD NOT.

1.2 References

Links to a document in the Micros oft Open Specifications library point to the correct section in the

most recently published version of the referenced document. However, because individual documents

in the library are not updated at the same time, the section numbers in the documents may not
match. You can confirm the correct section numbering by checking the Errata .

1.2.1 Normative References

We conduct frequent surveys of the normative references to assure their continued availability . Ifyou
have any issue with finding a normative reference, please contact dochelp@microsoft.com. We will
assist you in finding the relevant information.

[TANAPORT] IANA, "Service Name and Transport Protocol Port Number Registry",
http://www.iana.org/assi gnments/service -names -port -numbers/service -names -port -numbers.xhtml

10 / 220

[MS -TDS-Diff] - v20201001

Tabular Data Stream Protocol
Copyright © 2020 Microsoft Corporation
Release: October 1, 2020

[|[EEE754] IEEE, "IEEE Standard for Binary Floating -Point Arithmetic", IEEE 754 -1985, October 1985,
http://ieeexplore.ieee.org/servlet/opac?punumber=2355

[IETF - AuthEncr] McGrew, D., Foley, J., and Paterson, K., "Authenticated Encryption with AES -CBC and
HMAC- SHA", Network Working Group Internet -Draft, July 2014, http://tools.ietf.org/html/draft -
mcgrew -aead -aes-chc-hmac -sha2 -05

[MS - BINXML] Microsoft Corporation, "SQL Server Binary XML Structu re".
[MS - LCID] Microsoft Corporation, "Windows Language Code Identifier (LCID) Reference".

[RFC1122] Braden, R., Ed., "Requirements for Internet Hosts -- Communication Layers", STD 3, RFC
1122, October 1989, http://www.rfc -editor.org/rfc/rfc1122.txt

[RFC21 19] Bradner, S., "Key words for use in RFCs to Indicate Requirement Levels", BCP 14, RFC
2119, March 1997, http://www.rfc -editor.org/rfc/rfc2119.txt

[RFC2246] Dierks, T., and Allen, C., "The TLS Protocol Version 1.0", RFC 2246, January 1999,
http://www.rfc -editor.org/rfc/rfc2246.txt

[RFC4234] Crocker, D., Ed., and Overell, P., "Augmented BNF for Syntax Specifications: ABNF", RFC
4234, October 2005, http://www.rfc -editor.org/rfc/rfc4234.txt

[RFC6101] Freier, A., Karlton, P., and Kocher, P., "The Secure Socke ts Layer (SSL) Protocol Version
3.0", RFC 6101, August 2011, http://www.rfc -editor.org/rfc/rfc6101.txt

[RFC6234] Eastlake 1ll, D., and Hansen, T., "US Secure Hash Algorithms (SHA and SHA -based HMAC
and HKDF)", RFC 6234, May 2011, http://www.rfc -editor.org/ rfc/rfc6234.txt

[RFC793] Postel, J., Ed., "Transmission Control Protocol: DARPA Internet Program Protocol
Specification", RFC 793, September 1981, http://www.rfc -editor.org/rfc/rfc793.txt

[UNICODE] The Unicode Consortium, "The Unicode Consortium Home Page" , http://lwww.unicode.org/

[VIA2002] Cameron, D., and Regnier, G., "The Virtual Interface Architecture", Intel Press, 2002,
ISBN:0971288704.

1.2.2 Informative References

[MC -SMP] Microsoft Corporation, "Session Multiplex Protocol".

[MS -NETOD] Microsoft Corporation, "Microsoft .NET Framework Protocols Overview".

[MS - SSCLRT] Microsoft Corporation, "Microsoft SQL Server CLR Types Serialization Formats".

[MSDN - Autocommit] Microsoft Corporation, "Autocommit Transactions",
https://docs.microsoft.com/en -us/previous -versions/sql/sql -server -2008 -r2/ms187878(v=sql.105)

[MSDN -BEGIN] Microsoft Corporation, "BEGIN TRANSACTION (Transact SQL)",
https://docs.microsoft.com/en -us/sqlit -sqgl/language -elements/be gin-transaction -transact -sql

[MSDN - BOUND] Microsoft Corporation, "Using Bound Sessions", https://docs.microsoft.com/en -
us/previous -versions/sql/sql -server -2008 -r2/ms177480(v=sql.105)

[MSDN -BROWSE] Microsoft Corporation, "Browse Mode", in SQL Server 2000 Re tired Technical
documentation, p. 12261, https://www.microsoft.com/en -us/download/confirmation.aspx?id=51958

[MSDN - Collation] Microsoft Corporation, "Collation and Unicode Support",
https://docs.microsoft.com/en -us/sql/relational -databases/collations/colla tion -and -unicode -support

11 / 220

[MS -TDS-Diff] - v20201001

Tabular Data Stream Protocol
Copyright © 2020 Microsoft Corporation
Release: October 1, 2020

[MSDN - ColSets] Microsoft Corporation, "Use Column Sets", https://docs.microsoft.com/en -
us/sql/relational -databases/tables/fuse -column -sets

[MSDN - ColSortSty] Microsoft Corporation, "Windows Collation Sorting Styles",
https://docs.mic rosoft.com/en -us/previous -versions/sql/sql -server -2008 -r2/ms143515(v=sql.105)

[MSDN - COMMIT] Microsoft Corporation, "COMMIT TRANSACTION (Transact -SQL)",
https://docs.microsoft.com/en -us/sqlit -sqgl/language -elements/commit -transaction -transact -sql

[MSDN -DTC] Microsoft Corporation, "Distributed Transaction Coordinator",
https://docs.microsoft.com/en -us/previous -versions/windows/desktop/ms684146(v=vs.85)

[MSDN -INSERT] Microsoft Corporation, "INSERT (Transact -SQL)", https://docs.microsoft.com/en -
us/sql/t -sqgl/stat ements/insert -transact -sql

[MSDN -ITrans] Microsoft Corporation, "ITransactionExport::GetTransactionCookie",

https://docs.microsoft.com/en -us/previous -versions/windows/desktop/ms679869(v=vs.85)
[MSDN - MARS] Microsoft Corporation, "Using Multiple Active Resul t Sets (MARS)",
https://docs.microsoft.com/en -us/sqllrelational -databases/native -client/features/using -multiple -

active -result -sets -mars

[MSDN - MDAC] Wilkes, R., Bunch, A., and Dove, D., "Microsoft Data Access Components (MDAC)
Installation”, May 2005, https :/ldocs.microsoft.com/en -us/previous -versions/ms810805(v=msdn.10)

[MSDN - NamedPipes] Microsoft Corporation, "Creating a Valid Connection String Using Named Pipes",
https://docs.microsoft.com/en -us/previous -versions/sql/sql -server -2008 -r2/ms189307(v=sql.105)

[MSDN - NP] Microsoft Corporation, "Named Pipes", https://docs.microsoft.com/en -
us/windows/desktop/ipc/named -pipes

[MSDN -NTLM] Microsoft Corporation, "Microsoft NTLM", https://docs.microsoft.com/en -
us/windows/desktop/SecAuthN/microsoft -ntlm

[MSDN -QUERYNOTE] Microsoft Corporation, "Using Query Notifications",
https://docs.microsoft.com/en -us/previous -versions/sql/sql -server -2008 -r2/ms175110(v=sql.105)

[MSDN - SNAC] Microsoft Corporation, "Microsoft SQL Server Native Client and Microsoft SQL Server
2008 Native C lient", https://docs.microsoft.com/en -us/archive/blogs/sqlnativeclient/microsoft -sql-
server -native -client -and -microsoft -sql-server -2008 -native -client

[MSDN - SQLCollation] Microsoft Corporation, "Selecting a SQL Server Collation”,
https://docs.microsoft.com/ en-us/previous -versions/sql/sql -server -2008 -r2/ms144250(v=sql.105)

[MSDN - TDSENDPT] Microsoft Corporation, "Network Protocols and TDS Endpoints”,
https://docs.microsoft.com/en -us/previous -versions/sql/sql -server -2008 -r2/ms191220(v=sql.105)

[MSDN -UPDATETEXT] Microsoft Corporation, "UPDATETEXT (Transact -SQL)",

https://docs.microsoft.com/en -us/sql/it -sqgl/queries/updatetext -transact -sql
[MSDN -WRITETEXT] Microsoft Corporation, "WRITETEXT (Transact -SQL)",
https://docs.microsoft.com/en -us/sqlit -sql/queries/writetext -transact -sql

[MSDOCS - DBMirror] Microsoft Corporation, "Database Mirroring in SQL Server",

https://docs.microsoft.com/en - us/dotnet/framework/data/adonet/sgl/database -mirroring -in-sql-server
[RFC4120] Neuman, C., Yu, T., Hartman, S., and Raeburn, K., "The K erberos Network Authentication
Service (V5)", RFC 4120, July 2005, https://www.rfc -editor.org/rfc/rfc4120.txt

12 / 220

[MS -TDS-Diff] - v20201001

Tabular Data Stream Protocol
Copyright © 2020 Microsoft Corporation
Release: October 1, 2020

[RFC4178] Zhu, L., Leach, P., Jaganathan, K., and Ingersoll, W., "The Simple and Protected Generic
Security Service Application Program Interface (GSS - API) Negotiation Mechanism”, RFC 4178, October
2005, https://www.rfc -editor.org/rfc/rfc4178.txt

[SSPI] Microsoft Corporation, "SSPI", https://docs.microsoft.com/en -
us/windows/desktop/SecAuthN/sspi

1.3 Overview

The Tabular Data Stream (TDS) Protocol is an application -level protocol used for the transfer of
requests and responses between clients and database server systems. In such systems, the client will
typically establish along -lived connection with the server. Once the connection is established using a

transport -level protocol, TDS messages are used to communicate between the client and the server. A
database s erver can also act as the client if needed, in which case a separate TDS connection has to

be established. Note that the TDS session is directly tied to the transport -level session, meaning that
a TDS session is established when the transport -level connect ion is established and the server
receives a request to establish a TDS connection. It persists until the transport -level connection is
terminated (for example, when a TCP socket is closed). In addition, TDS does not make any

assumption about the transport protocol used, but it does assume the transport protocol supports

reliable, in -order delivery of the data.

TDS includes facilities for authentication and identification, channel encryption negotiation, issuing of

SQL batches, stored procedure calls, retur ning data, and transaction manager requests. Returned data
is self -describing and record -oriented. The data streams describe the names, types and optional
descriptions of the rows being returned. The following diagram depicts a (simplified) typical flow of
communication in the TDS Protocol.

Client i
——Inl >
tial Connection Request -
.ction Response — |
g——— 1nital Connection
e
— A, -
Uthentication Request — -
Response —— |
_ Authentication
-
———Client Request —
S Re'~°”"‘f"3 ——
")
[
|
o
Disconnect

Figure 1:Communication flow in the TDS protocol

The following example is a high -level description of the messages exchanged between the client and
the server to execute a simple client request such as the execution of a SQL statement. It is assumed

13/ 220

[MS -TDS-Diff] - v20201001

Tabular Data Stream Protocol
Copyright © 2020 Microsoft Corporation
Release: October 1, 2020

that the client and the server have already established a connection and authentication has
succeeded.

Client:SQL statement

The server executes the SQL statement and then sends back the results to the client. The data
columns being returned are first described by the server (represented as column metadata or
COLMETADATA) and then the rows follow. A completion message is sent after all the row data has
been transferred.

Server:COLMETADATAdata stream
ROWdata stream

i?OWdata stream
DONEdata stream

For more information about the correlation between data stream a nd TDS packet, see section
2.2.4.<1>

Additional details about which SQL Server version corresponds to which TDS version number are
defined in LOGINACK (section 2.2.7.14).

1.4 Relationship to Other Protocols

The Tabular D ata Stream (TDS) protocol depends upon a network transport connection being

established prior to a TDS conversation occurring (the choice of transport protocol is not important to

TDS). TDS depends on Transport Layer Security (TLS)/Secure Socket Layer (SSL) for network channel
encryption. Although the TDS protocol depends on TLS/SSL to encrypt data transmission, the

negotiation of the encryption setting between the client and server and the initial TLS/SSL handshake

are handled in the TDS layer.

If the Mult iple Active Result Sets (MARS) feature [MSDN -MARS] is enabled, then the Session Multiplex
Protocol (SMP) [MC -SMP] is required.

This relationship is illustrated in the following figure.

|
SMP [
|
|

TLS/SSL

Network Transport
(e.q. TCP/IP)

Figure 2: Protocol relationship

14 | 220

[MS -TDS-Diff] - v20201001

Tabular Data Stream Protocol
Copyright © 2020 Microsoft Corporation
Release: October 1, 2020

1.5 Prerequisit es/Preconditions

This protocol can be used after the client has discovered the server and established a network
transport connection for use with TDS.

No security association is assumed to have been established a t the lower layer before TDS begins
functioning. For Security Support Provider Interface (SSPI) [SSPI] authentication to be used, SSPI
support needs to be available on both the client and server machines. For channel encryption to be

used, TLS/SSL support needs to be present on both client and server machines, and a certificate

suitable for encryption has to be deployed on the server machine. For federated authentication to be

used, a library that provides federated authentication support or an equivalent n eeds to be present on
the server, and the client needs to be able to generate a token for federated authentication.

1.6 Applicability Statement

The TDS protocol is appropriate for use to facilitate request/response communications between an
application and a database server in all scenarios where network or local connectivity is available.

1.7 Versioning and Capability Negotiation

This protocol includes versioning issues in the following areas.

A Supported Transports: This protocol can be implemented on top of any network transport
protocol as discussed in section 2.1.

A Protocol Versions: The TDS protocol supports the TDS 7.0, TDS 7.1, TDS 7.2, TDS 7.3, and TDS
7.4 explicit dialects . The dialect version is negotiated as part of the LOGIN7 message data stream,
which is defined in section 2.2.6.4.

Note After a protocol feature is introduced, subsequent versions of the TDS protocol support that
feature until that feature is removed.

A Security and Authentication Methods: The TDS protocol supports SQL Server User
Authentication (SQLAUTH). The TDS protocol also supports SSPI authentication and indirectly
supports any authentication mechanism that SSPI supports. The use of SSPI in TDS is def ined in
sections 2.2.6.4 and 3.2.5.1. The TDS protocol also supports federated authentication. The use of
federated authentication in TDS is defined in sections 2.2.6.4 and 3.2.5.

A Localization: Localization -dependent protocol behavior is specified in secti ons 2.2.5.1.2 and
2.25.6.

A Capability Negotiation: This protocol does explicit capability negotiation as specified in this
section.

In general, the TDS protocol does not provide facilities for capability negotiation because the complete

set of supported features is fixed for each version of the protocol. Certain features such as

authentication type are not usually negotiated but rather are requested by the client. However, the
protocol supports negotiation for the following two features:

A Channel encryption: The encryption behavior that is used for the TDS session is negotiated in
the initial messages exchanged by the client and the ser ver.
A Authentication mechanism for integrated authentication identities: The authentication

mechanism that is used for the TDS session is negotiated in the initial messages exchanged by the
client and the server.

For more details about encryption behavior a nd about how the client and server negotiate between
SSPI authentication and federated authentication, see the PRELOGIN description in section 2.2.6.5.

15 / 220

[MS -TDS-Diff] - v20201001

Tabular Data Stream Protocol
Copyright © 2020 Microsoft Corporation
Release: October 1, 2020

Note that the cipher suite for TLS/SSL and the authentication mechanism for SSPI and federated
authentic ation are negotiated outside the influence of TDS in [RFC2246] and [RFC6101].

1.8 Vendor -Extensible Fields

None.

1.9 Standards Assignments

Parameter

TCP port valu

€]

Reference

Default SQL Server instance TCP port

1433

[IANAPORT]

[MS -TDS-Diff] - v20201001

Tabular Data Stream Protocol
Copyright © 2020 Microsoft Corporation
Release: October 1, 2020

16 / 220

2 Messages

The formal syntax of all messages is provided in Augmented Backus -Naur Form (ABNF) [RFC4234],
with the addition of the following:

p>N

underscore (*_" T a valid character within an identifier.

p>N

"%x00" T avalid value.

p>N

"%b0" T avalid value.

2.1 Transport

The TDS protocol does not prescribe a specific underlying transport protocol to use on the Internet or
on other net works. TDS only presumes a reliable transport that guarantees in -sequence delivery of
data.

The chosen transport can be either stream -oriented or message -oriented. If a message -oriented
transport is used, any TDS packet sent from a TDS client to a TDS serv er MUST be contained within a
single transport data unit. Any additional mapping of TDS data onto the transport data units of the

protocol in question is outside the scope of this specification.

The current version of the TDS protocol has implementations o ver the following transports:<2>

A TCP[RFC793].

A Areliable transport over the Virtual Interface Architecture (VIA) interface [VIA2002].<3>

A Named Pipes [MSDN -NP].

A Shared memory [MSDN -TDSENDPT].

A Optionally, the TDS protocol has implementations for the followi ng two protocols on top of the

preceding transports:

A Transport Layer Security (TLS) [RFC2246]/Secure Socket Layer (SSL), in case TLS/SSL
encryption is negotiated.

A Session Multiplex Protocol (SMP) [MC -SMP], in case the Multiple Active Result Sets (MARS)
feature [MSDN -MARS] is requested.
2.2 Message Syntax

Character data, such as SQL statements, within a TDS message is in Unicode, unless the character

data represents the data value of an ASCII data type, such as anon -Unicode data column. A character
count within TDS is a count of characters, rather than of bytes, except when that character count is

explicitly specified as a byte count.

2.2.1 Client Messages

Messages sent from the client to the server are as follows:

A Pre-Login

A Login

A Federated Authentication Token

A SQL Batch

17 | 220

[MS -TDS-Diff] - v20201001

Tabular Data Stream Protocol
Copyright © 2020 Microsoft Corporation
Release: October 1, 2020

Bulk Load

Remote Procedure Call

> > >

Attention

A Transaction Manager Request

These messages are briefly described in the sections that follow. Detailed descriptions of message
contents are in section 2.2.6.

2.2.1.1 Pre-Login

Before a login occurs, a Pre -Login handshake occurs between client and server, setting up contexts
such as encryption and MARS -enabled. For more details, see section 2.2.6.5.

2.2.1.2 Login

When the client makes the determination to establish a TDS protocol connection with the server side,

the client sends a Login message data stream to the server. The client can have more than one
connection to the server, but each connection is established separately in the same way. For more
details, see section 2.2.6.4.

After the server receives the login record from the client and, if necessary, performs subsequent

authentication handshakes (such as when SSPI [SSPI] or federated authentication is used), the server
notifies the client that it has either accepted or rejected the connection request. For more details, see

section 3.3.5.1.

2.2.1.3 Federated Authentication Token

When the client indicates in the Login record that federated authentication<4> i s to be used but that
the intended client library needs additional information from the server to generate a federated

authentication token, if the server supports federated authentication that uses that client library, the

server responds with a token tha t the client uses to perform federated authentication. The client then
generates and sends a tokenless Federated Authentication Token message that contains binary

authentication data that is generated by the federated authentication library. For more detai Is, see
section 2.2.6.3.

After the server receives the Federated Authentication Token message from the client, the server
notifies the client that it has either accepted or rejected the connection request. For more details, see
section 3.3.5.

2214 SQL Batch

To send a SQL statement or a batch of SQL statements, the SQL batch, represented by a Unicode
string, is copied into the data section of a TDS packet and then sent to the database server that
supports SQL. A SQL batch can span more than one TDS packet. For more details, see section 2.2.6.7.

2215 Bulk Load

In a bulk insert/bulk load operation, a SQL statement consists of a Unicode string that is followed by

binary data. The client sends the INSERT BULK SQL statement and then sends a COLMETADATA
token that describes the raw data. Multiple rows of binary data are then sent to the server. The data is

not formatted in storage row format but in the format described by the COLMETADATA token. The

stream is the same as if the data were being selected from the server rather than being sen t to the
server. For more details, see section 2.2.6.1.

18 / 220

[MS -TDS-Diff] - v20201001

Tabular Data Stream Protocol
Copyright © 2020 Microsoft Corporation
Release: October 1, 2020

A bulk load operation is also used for inserting data with a previously issued UPDATETEXT BULK or
WRITETEXT BULK SQL statement. For more details, see section 2.2.6.2.

2.2.1.6 Remote Procedure Call

To execute a remote procedure call (RPC) on the server, the client sends an RPC message data stream
to the server. This is a binary stream th at contains the RPC name or numeric identifier, options, and
parameters. RPCs MUST be in a separate TDS message and not intermixed with SQL statements.

There can be several RPCs in one message. For more details, see section 2.2.6.6.

2.2.1.7 Attention

The client can interrupt and cancel the current request by sending an Attention message. This is also
known as out -of-band data, but any TDS packet that is ¢ urrently being sent MUST be finished before
sending the Attention message. After the client sends an Attention message, the client MUST read

until it receives an Attention acknowledgment.

If a complete request has been sent to the server, sending a cancel requires sending an Attention
packet. An example of this behavior is if the client has already sent a request, which has the last

packet with EOM bit (0x01) set in status. The Attention packet is the only way to interrupt a
complete request that has already been sent to the server. Fo r more information, see section 4.19.2.

If a complete request has not been sent to the server, the client MUST send the next packet with both

ignore bit (0x02) and EOM bit (Ox01) set in the status to cancel the request. An example of this

behavior is if on e or more packets have been sent but the last packet with EOM bit (Ox01) set in

status has not been sent. Setting the ignore and EOM bits terminates the current request, and the

server MUST ignore the current request. When the ignore and EOM bits are set, the server does not
send an attention acknowledgment, but instead returns a table response with a single DONE token

that has a status of DONE_ERROR to indicate that the incoming request was ignored. For more details

about the packet header status code, see section 2.2.3.1.2.

2.2.1.8 Transaction Manager Request

The client can request that the connection enlist in a transacti on as described in [MSDN -DTC].

2.2.2 Server Messages

Messages sent from the server to t he client are the following:

A Pre-Login Response

A Login Response

A Federated Authentication Information
A Row Data

A Return Status

A Return Parameters

A Response Completion

A Error and Info

A Attention Acknowledgement

19 / 220

[MS -TDS-Diff] - v20201001

Tabular Data Stream Protocol
Copyright © 2020 Microsoft Corporation
Release: October 1, 2020

These messages are briefly described in the sections t hat follow. Detailed descriptions of message
contents are in section 2.2.6 and section 2.2.7.

2221 Pre -Login Response

The Pre -Login Response message is a tokenless packet data stream. The data stream consists of the
response to the information requested by the client's Pre -Login message. For more details, see section
2.2.6.5.

2.2.2.2 Login Response

The Login Response message is a token stream that consists of information about the server's
characteristics, optional information and error messages, and finally, a completion message.

The LOGINACK token data stream includes information about the server i nterface and the server's
product code and name. For more details, see section 2.2.7.14.

If there are any messages in the login response, an ERROR or INFO token data stream is returned
from the server to the client. For more details, see sections 2.2.7.10 and 2.2.7.13.

The server can send, as part of the login response, one or more ENVCHANGE token data streams if

the login changed the environment and the associated notification flag was set. An example of an
environment change includes the current database context and language setting. For more details, see
section 2.2.7.9.

A done packet MUST be present as the final part of the login response, and a DONE token data stream
is the last thing sent in response to a server login request. For more details, see sec tion 2.2.7.6.

2.2.2.3 Federated Authentication Information

After the server receives a Login message that states that the client intends to use a federated
authentication token from a specific client library that needs additional information from the server to

gen erate that token, if the server supports federated authentication that uses that client library, the
server responds to the client with a message. This message contains a Federated Authentication
Information Token that provides the information necessary fo r the client to generate a federated
authentication token. If the server determines that no information is required for this particular client
library, the server does not send the information token. For more details, see section 2.2.7.12.

2.2.24 Row Data

If the server request results in data being returned, the data will precede any other data streams

returned from the server except warnings. Row data MUST be preceded by a description of the column
names and data types. For more information about how the column names and data types are

described, see section 2.2.7.4.

2.2.25 Return Status

When a stored procedure is executed by the server, the server MUST return a status value. This is a
4-byte integer and is sent via the RETURNSTATUS token. A stored procedure execution is requested
through either an RPC Batch or a SQL Batch message. For more information, see section 2.2.7.18.

2.2.2.6 Return Parameters

The response format for execution of a stored procedure is identical regardless of whether the request
was sent as SQL Batch or RPC Batch. It is always a tabular result -type message.

20 / 220

[MS -TDS-Diff] - v20201001

Tabular Data Stream Protocol
Copyright © 2020 Microsoft Corporation
Release: October 1, 2020

If the procedure explicitly sends any data, then the message starts with a single token stream of rows,
informational messages, and error messages. This data is sent in the usual way.

When the RPC is invok ed, some or all of its parameters are designated as output parameters. All

output parameters will have values returned from the server. For each output parameter, there is a

corresponding return value, sent via the RETURNVALUE token. The RETURNVALUE token data stream
is also used for sending back the value returned by a user -defined function (UDF), if it is called as an
RPC. For more details about the RETURNVALUE token, see section 2.2.7.19.

2.2.2.7 Response Completion

The client reads results in logical units and can tell when all results have been received by examining
the DONE token data stream.

When executing a batch of SQL statements, the server MUST return a DONE token data stream for
each set of results. All but the last DONE will have the DONE_MORE bit set in the Status field of the
DONE token data stream. Therefore, the client can always tell after reading a DONE whether or not

there are more results. For more detail s, see section 2.2.7.6.

For stored procedures, completion of SQL statements in the stored procedure is indicated by a

DONEINPROC token data stream for each SQL statement and a DONEPROC token data stream for

each completed stored procedure. For more details about DONEINPROC and DONEPROC tokens, see
section 2.2.7.7 and 2.2.7.8, respectively.

2.2.2.8 Error and Info

Besides returning descriptions of Row data and the data itself, TDS provides a token data stream type

for the server to send error and informational messages to the client. These are the ERROR token data
stream and the INFO token data strea m. For more details, see section 2.2.7.10 and section 2.2.7.13,
respectively.

2.2.2.9 Attention Acknowledgment

After a client has sent an interrupt signal to the server, the client MUST read returning data until the
interrupt has been acknowledged. Attention messages are acknowledged in the DONE token data
stream. For more details, see section 2.2.7.6.

2.2.3 Packets

A packet is the unit written or read at one time. A message can consist of one or more packets. A
packet always includes a packet header and is usually followed by packet data that contains the
message. Each new message starts in a new packet.

In practice, both the client and server will try to read a packet full of data. They will pick out the
header to see how much more (or less) data there is in the communication.

Atlogint ime, clients MAY specify a requested "packet" size as part of the LOGIN7 message stream.

This identifies the size used to break large messages into different "packets”. Server acknowledgment

of changes in the negotiated packet size is transmitted back to t he client via ENVCHANGE token

stream. The negotiated packet size is the maximum value that can be specified in the Length packet
header field described in section 2.2.3.1.3.

Starting with TDS 7.3, the following behavior MUST also be enforced. For requests sent to the server
larger than the current negotiated "packet” size, the client MUST send all but the last packet with a

total number of bytes equal to the negotiated size. Only the last packet in the request can contain an

actual number of bytes smaller t han the negotiated packet size. If any of the preceding packets are

21 / 220

[MS -TDS-Diff] - v20201001

Tabular Data Stream Protocol
Copyright © 2020 Microsoft Corporation
Release: October 1, 2020

sent with a length less than the negotiated packet size, the server SHOULD disconnect the client when
the next network payload arrives.

2.2.3.1 Packet Header

To implement messages on top of existing, arbitrary transport layers, a packet header is included as
part of the packet. The packet header precedes all data within the packet. It is always 8 bytes in
length. Most import antly, the packet header states the Type and Length of the entire packet.

The following is a detailed description of each item within the packet header.

22311 Type

Type defines the type of message. Type is al -byte unsigned char . The following table describes the
types that are available.

Value Description Packet contains data?
1 SQL batch. Yes

2 Pre-TDS7 Login<5> Yes

3 RPC Yes

4 Tabular result Yes

5 Unused

6 Attention signal No

7 Bulk load data Yes

8 Federated Authentication Token Yes

9-13 Unused

14 Transaction manager request Yes
15 Unused

16 TDS7 Login<6> Yes
17 SSPI Yes
18 Pre-Login Yes

If an unknown Type is specified, the message receiver SHOULD disconnect the connection. If a valid
Type is specified, but is unexpected (per section 3), the message receiver SHOULD disconnect the

connection. This applies to both the client and the server. For example, the s erver could disconnect
the connection if the server receives a message with Type equal 16 when the connection is already
logged in.

The following table highlights which messages, as described previously in sections 2.2.1 and 2.2.2,
correspond to which pac ket header type.

Client or server

Message type message Packet header type
Pre-Login Client 2 or 18 depending on whether the client supports
TDS v7.0+

22 | 220

[MS -TDS-Diff] - v20201001

Tabular Data Stream Protocol
Copyright © 2020 Microsoft Corporation
Release: October 1, 2020

Client or server
Message type message Packet header type
Login Client 16 + 17 (if Integrated authentication)
Federated Authentication Token Client 8
SQL Batch Client 1
Bulk Load Client 7
RPC Client 3
Attention Client 6
Transaction Manager Request Client 14
FeatureExtAck Server 4
Pre-Login Response Server 4
Login Response Server 4
Federated Authentication Server 4
Information
Row Data Server 4
Return Status Server 4
Return Parameters Server 4
Response Completion Server 4
Session State Server 4
Error and Info Server 4
Attention Acknowledgement Server 4

2.2.3.1.2 Status

Status is a bit field used to indicate the message state. Status is al -byte unsigned char. The

following Status bit flags are defined.

Value Description

0x00 "Normal" message.

0x01 End of message (EOM). The packet is the last packet in the whole request.
0x02 (From client to server) Ignore this event (0x01 MUST also be set).

0x08 RESETCONNECTION
(Introduced in TDS 7.1)

support for connection pooling. This bit SHOULD be ignored if it is set in a packet that is not the first

(From client to server) Reset this connection before processing event. Only set for event types Batch,

RPC, or Transaction Manag er request. If clients want to set this bit, it MUST be part of the first packet of

the message. This signals the server to clean up the environment state of the connection back to the

default environment setting, effectively simulating a logout and a subs equent login, and provides server

[MS -TDS-Diff] - v20201001

Tabular Data Stream Protocol
Copyright © 2020 Microsoft Corporation
Release: October 1, 2020

23/ 220

Value Description

packet of the message.

This status bit MUST NOT be set in conjunction with the RESETCONNECTIONSKIPTRAN bit. Distribu ted
transactions and isolation levels will not be reset.

0x10 RESETCONNECTIONSKIPTRAN
(Introduced in TDS 7.3)

(From client to server) Reset the connection before processing event but do not modify the transaction
state (the state will remain the same before and after the reset). The transaction in the session can be a
local transaction that is started from the ses sion or it can be a distributed transaction in which the
session is enlisted. This status bit MUST NOT be set in conjunction with the RESETCONNECTION bit.
Otherwise identical to RESETCONNECTION.

All other bits are not used and MUST be ignored.

22313 Length

Length is the size of the packet including the 8 bytes in the packet header. It is the number of bytes
from the start of this header to the start of the next packet header. Length is a2 -byte, unsigned
shortintand is repr esented in network byte order (big -endian).

The Length value MUST be greater than or equal to 512 bytes and smaller than or equal to 32,767
bytes. The default value is 4,096 bytes.

Starting with TDS 7.3, the Length MUST be the negotiated packet size when s ending a packet from
client to server, unless it is the last packet of a request (that is, the EOM bit in Status is ON) or the
client has not logged in.

22314 SPID

Spid is the process ID on the server, corresponding to the curre nt connection. This information is sent
by the server to the client and is useful for identifying which thread on the server sent the TDS

packet. It is provided for debugging purposes. The client MAY send the SPID value to the server. If the

client does no t, then a value of 0x0000 SHOULD be sent to the server. Thisis a 2 -byte value and is
represented in network byte order (big -endian).

22315 PacketiD

PacketID is used for numbering message packets that contain data in additio n to the packet header.
PacketiD isa 1 -byte, unsigned char. Each time packet data is sent, the value of PacketlD is
incremented by 1, modulo 256.<7> This allows the receiver to track the sequence of TDS packets for

a given message. This value is currently ignored.

2.2.3.1.6 Window

This 1 byte is currently not used. This byte SHOULD be set to 0x00 and SHOULD be ignored by the
receiver.

2.2.3.2 Packet Data

Packet data for a given message follows the packet header (see Type in section 2.2.3.1.1 for
messages that contain packet data). As previously stated, a message can span more than one packet.

Because each new message MUST always begin within a new packet, a message that spans more than
one packet only occurs if the data to be sent exceeds the maximum packet data size, which is

computed as (negotiated packet size - 8 bytes), where the 8 bytes represents the size of the packet
header.

24 | 220

[MS -TDS-Diff] - v20201001

Tabular Data Stream Protocol
Copyright © 2020 Microsoft Corporation
Release: October 1, 2020

If a stream spans moret han one packet, then the EOM bit of the packet header Status code MUST be

set to O for every packet header. The EOM bit MUST be set to 1 in the last packet to signal that the

stream ends. In addition, the PacketlD field of subsequent packets MUST be increm ented as defined
in section 2.2.3.1.5.

2.2.4 Packet Data Token and Tokenless Data Streams

The messages contained in packet data that pass between the client and the server can be one of two
types: a "token stream" or a "tokenless stream". A token stream consi sts of one or more "tokens"
each followed by some token -specific data. A "token" is a single byte identifier that is used to describe
the data that follows it and contains information such as token data type, token data length, and so

on. Tokenless streams are typically used for simple messages. Messages that might require a more
detailed description of the data within it are sent as a token stream. The following table highlights

which messages, as described previously in sections 2.2.1 and 2.2.2, use token streams and which do
not.
Message type Client or server message Token stream?
Pre-Login Client No
Login Client No
Federated Authentication Token Client No
SQL Command Client No
Bulk Load Client Yes
Remote Procedure Call (RPC) Client Yes
Attention Client No
Transaction Manager Request Client No
Pre-Login Response Server No
Federated Authentication Information Server Yes
FeatureExtAck Server Yes
Login Response Server Yes
Row Data Server Yes
Return Status Server Yes
Return Parameters Server Yes
Response Completion Server Yes
Session State Server Yes
Error and Info Server Yes
Attention Acknowledgement Server No
25/ 220

[MS -TDS-Diff] - v20201001

Tabular Data Stream Protocol
Copyright © 2020 Microsoft Corporation
Release: October 1, 2020

2.24.1 Tokenless Stream

As shown in the previous section, some messages do not use tokens to describe the data portion of

the data stream. In these cases, all the information required to describe the pac ket data is contained
in the packet header. This is referred to as a tokenless stream and is essentially just a collection of

packets and data.

2.2.4.2 Token Stream

More complex messages (for example, colmetadata, row data, and data type data) are constructed by
using tokens. As previously described, a token stream consists of a single byte identifier, followed by
token -specific data. The definitions of the dif ferent token streams can be found in section 2.2.7.

22421 Token Definition

There are four classes of token definitions:
A Zero Length Token(xx01xxxx)

A Fixed Length Token(xx11xxxx)

A Variable Length Tokens(xx10xxxx)

A Variable Count Tokens(xx00xxxx)

The following sections specify the bit pattern of each token class, various extensions to this bit pattern
for a given token class, and a description of its function(s).

224211 Zero Length Token(xx01xxxx)

This class of token is not followed by a length specification. There is no data associated with the token.
A zero length token always has the following bit sequence:

0 1 2 3|4 5 6 7

Oorl Oorl 0|1] O0orl Oorl Oorl Oorl

A value of A0 or 10 denotes a bit position that can contain

224212 Fixed Length Token(xx11xxxx)

This class of token is followed by 1, 2, 4, or 8 bytes of data. No length specification follows this token

because the length of its associated data is encoded in the token itself. The different fixed data -length

token definitions take the form of one of the following bit sequences, depending on whether the token

is foll owed by 1, 2, 4 or 8 bytes of dat a. Al so in the tabl
that can contain the bit valu e AO0OO or Alo.

0 1 2 13|4|5]|6 7 Description

Oorl Oorl 1 (10|00 |0orl Oorl Token is followed by 1 byte of data.

Oorl Oorl 1 (1|0 |1]|0orl Oorl Token is followed by 2 bytes of data.

Oorl Oorl 1 (1|10]|0orl Oorl Token is followed by 4 bytes of data.

Oorl Oorl 1 (1|1 (1]|0orl Oorl Token is followed by 8 bytes of data.

Fixed -length tokens are used by the following data types: bigint, int , smallint , tinyint, float, real,
money, smallmoney, datetime, smalldatetime, and bit. The type definition is always represented in

26 / 220

[MS -TDS-Diff] - v20201001

Tabular Data Stream Protocol
Copyright © 2020 Microsoft Corporation
Release: October 1, 2020

COLMETADATA and ALTMETADATA data streams as a single byte Type. Additional details are specified
in section 2.2.5.4.2.

224213 Variable Length Tokens(xx10xxxx)

Except as noted later in this section, this class of token definition is followed by a length specification.
The length, in bytes, of this length is included in the token itself as a Length value (see section
2.2.7.3).

The follow ing are the two data types that are of variable length.

A Real variable length data types like char and binary and nullable data types, which are either their
normal fixed length corresponding to their TYPE_INFO, or a special length if null.

Char and binary data types have values that are either null or 0 to 65534 (0x0000 to OxFFFE)
bytes in length. Null is represented by a length of 65535 (OxFFFF). A char or binary, which cannot

be null, can still have a length of zero (for example an empty value). A program that MUST pad a
value to a fixed length typically adds blanks to the end of a char and binary zeros to the end of a
binary.

A Text and image data types have values that are either null, or 0 to 2 gigabytes (0x00000000 to
Ox7FFFFFFF bytes) in length. Null is represented by a length of -1 (OXFFFFFFFF). No other length
specification is supported.

Other nullable data types have a length of 0 if they are null.

Note The DATACLASSIFICATION variable length token does not start with a length specification (se e
section 2.2.7.5).

224214 Variable Count Tokens(xx00xxxx)

This class of token definition is followed by a count of the number of fields that follow the token. Each

field length is dependent on the token type. The total length of the token can be determined only by

walking the fields. As shown in the following table, a variable count token always has its third and

fourth bits set to fA00, and ainingail pasdgionedenot@Da bibposititnthat n t he r e ma
can contain the bit value A00 or Al1l0.

0 1 2 3 4 5 6 7

Oorl Oorl 0 0 Oorl Oorl Oorl Oorl
Currently there are two variable count tokens. COLMETADATA and ALTMETADATA both use a 2 -byte
count.

2.2.4.3 Done and Attention Tokens

The DONE token marks the end of the response for each executed SQL statement. Based on the SQL
stateme nt and the context in which it is executed, the server MAY generate a DONEPROC or
DONEINPROC token instead.

The attention signal is sent by using the out -of - band write provided by the network library. An out -of-
band write is the ability to send the attent ion signal no matter if the sender is in the middle of sending

or processing a message or simply sitting idle. If that function is not supported, the client MUST

simply read and discard all of the data, except SESSIONSTATE data, from the server until the f inal
DONE token, which acknowledges that the attention signal is read.<8>

27 | 220

[MS -TDS-Diff] - v20201001

Tabular Data Stream Protocol
Copyright © 2020 Microsoft Corporation
Release: October 1, 2020

2.2.5 Grammar Definition for Token Description

The Tabular Data Stream consists of a variety of messages. Each message consists of a set of bytes
transmitted in a predefined order. This predefined order or grammar can be specified by using
Augmented Backus -Naur Form (ABNF) [RFC4234]. Details can be found in the following subsections.

2251 General Rules
Data structure encodings in TDS are defined in terms of the following fundamental definitions.

BIT : A single bit value of either O or 1.

BIT = %b0 / %b1l

BYTE : An unsigned single byte (8 -bit) value. The range is 0 to 255.

BYTE = 8BIT

BYTELEN : An unsigned single byte (8 - bit) value representing the length of the associated data. The
range is 0 to 255.

BYTELEN = BYTE

USHORT : An unsigned 2 -byte (16 -bit) value. The range is 0 to 65535.

USHORT = 2BYTE

LONG : Asigned 4 -byte (32 -bit) value. The range is -(2131) to (231) -1.

LONG =4BYTE

ULONG : An unsigned 4 -byte (32 -bit) value. The range is O to (2"32) -1.

ULONG =4BYTE

DWORD : An unsigned 4 -byte (32 -bit) value. The range when used as a numeric value is 0 to (2"32)
1.

DWORD = 32BIT

LONGLONG : Asigned 8 -byte (64 -bit) value. The range is -(2763) to (2763) -1.

LONGLONG = 8BYTE

ULONGLONG : Anunsigned 8 -byte (64 -bit) value. The range is 0 to (264) -1.

ULONGLONG =8BYTE

[MS -TDS-Diff] - v20201001

Tabular Data Stream Protocol
Copyright © 2020 Microsoft Corporation
Release: October 1, 2020

28 | 220

UCHAR : An unsigned single byte (8 -bit) value representing a character. The range is 0 to 255.

UCHAR =BYTE

USHORTLEN : Anunsigned 2 -byte (16 -bit) value representing the length of the associated data. The
range is 0 to 65535.

USHORTLEN = 2BYTE

USHORTCHARBINLEN : Anunsigned 2 -byte (16 -bit) value representing the length of the associated
character or binary data. The range is 0 to 8000.

USHORTCHARBINLEN = 2BYTE

LONGLEN : Asigned 4 -byte (32 -bit) value representing the length of the associated data. The range is
-(2731) to (2731) -1

LONGLEN =4BYTE

ULONGLEN : Anunsigned 4 -byte (32 -hit) value representing the length of the associated data. The
range is O to (2°32) -1.

ULONGLEN =4BYTE

ULONGLONGLEN :Anunsi gned 8 -byte (64 -bit) value representing the length of the associated data.
The range is 0 to (2764) -1.

ULONGLONGLEN = 8BYTE

PRECISION : An unsigned single byte (8 -bit) value representing the precision of a numeric number.

PRECISION = 8BIT

SCALE : Anunsigned single byte (8 -bit) value representing the scale of a numeric number.

SCALE = 8BIT

GEN_NULL : Asingle byte (8 -bit) value representing a NULL value.

GEN_NULL = %x00

CHARBIN_NULL :A2 -byte (16 -bit)or4 -byte (32 -bit) value representinga T -SQL NULL value for a
character or binary data type. Please refer to TYPE_VARBYTE (see section 2.2.5.2.3) for additional
details.

CHARBIN_NULL = (%XFF %xFF) / (%xFF %xFF %xFF %xFF)

29 / 220

[MS -TDS-Diff] - v20201001

Tabular Data Stream Protocol
Copyright © 2020 Microsoft Corporation
Release: October 1, 2020

FRESERVEDBIT : A FRESERVEDBIT is a BIT value used for padding that does not transmit
information. FRESERVEDBIT fields SHOULD be set to %b0 and MUST be ignored on receipt.

FRESERVEDBIT = %b0

FRESERVEDBYTE : A FRESERVEDBYTE is a BYTE value used for padding that does not transmit
information. FRESERVEDBYTE fields SHOULD be set to %x00 and MUST be ignored on receipt.

FRESERVEDBYTE = %x00

UNICODECHAR : A single Unicode character in UCS -2 encoding, as specified in Unicode [UNICODE].

UNICODECHAR = 2BYTE

Notes
A Allinteger types are represented in reverse byte order (little -endian) unless otherwise specified.
A FRESERVEDBIT and FRESERVEDBYTE are often used to pad unused parts of a byte or bytes. The

value of these reserved bits SHOULD be ignored. These elements are generally set to 0.

2.25.1.1 Least Significant Bit Order

Certain tokens will possess rules that comprise an array of independent bits. These are typically "flag"
rules in which each bit is a flag indicating that a specific feature or option is enabled/requested.
Normally, the bit array will be arranged in least significant bit order (or typical array index order)

meaning that the first listed flag is placed in the least significa nt bit position (identifying the least
significant bit as one would in an integer variable). For example, if Fn is the nth flag, then the
following rule definition:

FLAGRULE = FO F1 F2 F3 F4 F5 F6 F7

would be observed on the wire in the natural value order F7F6F5F4F3F2F1FO0.

If the rule contains 16 bits, then the order of the bits observed on the wire will follow the little -endian
byte ordering. For example, the following rule definition:

FLAGRULE = FO F1 F2 F3 F4 F5 F6 F7 F8 F9 F10 F11 F12 F13 F14 F15

will have the following order on the wire: F7F6F5F4F3F2F1F0 F15F14F13F12F11F10F9F8.

2.25.1.2 Collation Rule Definition

The collation rule is used to specify collation information for character data or metadata describing
character data.<9> This is typically specified as part of the LOGIN7 message or part of a column
definition in server results contain ing character data. For more information about column definition,
see COLMETADATA.

LCID = 20BIT
flgnoreCase = BIT
flgnoreAccent = BIT
flgnoreWidth = BIT

30 / 220

[MS -TDS-Diff] - v20201001

Tabular Data Stream Protocol
Copyright © 2020 Microsoft Corporation
Release: October 1, 2020

flgnoreKana = BIT

fBinary = BIT

fBinary2 = BIT

fUTF8 = BIT

ColFlags = flgnoreCase flgnoreAccent flgnoreKana
flgnoreWidth fBinary fBinary2 fUTF8
FRESERVEDBIT

Version = 4BIT

Sortld = BYTE

COLLATION =L CID ColFlags Version Sortld

A SQL collation is one of a predefined set of sort orders. The sort orders are identified with non -zero

Sortld values described by [MSDN -SQLCollation].

For a Sortld==0 collation, the LCID bits correspond to a Localeld as defined by the National Language
Support (NLS) functions. For more details, see [MS -LCID].

Notes

A ColFlags is represented in least significant bit order.

>

A COLLATION<10> value of 0x00 00 00 00 00 specifies a request for the use of raw collation.

2.2.5.2 Data Stream Types

22521 Unknown Length Data Streams

Unknown length data streams can be used by tokenless data streams. It is a stream of bytes. The
number of bytes within the data stream is d efined in the packet header as specified in section 2.2.3.1.

BYTESTREAM = *BYTE
UNICODESTREAM = *(2BYTE)

22522 Variable -Length Data Streams

Variable -length data streams consist of a stream of characters or a stream of bytes. The two types are
similar, in that they both have a length rule and a data rule.

Characters

Variable -length character streams are defined by a length field followed by the data itself. There are
two types of variable -length character streams, each dependent on the size of the length field (for
example, a BYTE or USHORT). If the length field is zero, then no data follows the length field.

B_VARCHAR = BYTELEN *CHAR
US_VARCHAR = USHORTLEN *CHAR
Note that the lengths of B_VARCHAR and US_VARCHAR are given in Unicode characters.

Generic Bytes

Similar to the variable -length character stream, variable -length byte streams are defined by a length
field followed by the data itself. There are three types of variable -length byte streams, each
dependent on the size of the length field (for example, a BYTE, USHORT, or LONG). If the value of the
length field is zero, then no data follows the length field.

B_VARBYTE = BYTELEN *BYTE

31/ 220

[MS -TDS-Diff] - v20201001

Tabular Data Stream Protocol
Copyright © 2020 Microsoft Corporation
Release: October 1, 2020

US_VARBYTE = USHORTLEN *BYTE
L_VARBYTE = LONGLEN *BYTE

2.25.2.3 (Updated Section) Data Type Dependent Data Streams

Some messages contain variable data types. The actual type of a given variable data type is
dependent on the type of the data being sent within the message as defined in the TYPE_INFO rule.

For example, the RPCRequest message contains the TYPE_INFO and TYPE_VARBYTE rules. These two
rules contain data of a type that is dependent on the actual type used in the value of the
FIXEDLENTYPE or VARLENTYPE rules of the TYPE_INFO rule.

Data type -dependent data streams occur in three forms: integers, fixed and variable bytes, and
partially length - prefixed bytes.

Integers

Datat ype -dependent integers can be either a BYTELEN, USHORTCHARBINLEN, or LONGLEN in length.

This length is dependent on the TYPE_INFO associated with the message. If the data type (for

example, FIXEDLENTYPE or VARLENTYPE rule of the TYPE_INFO rule) is of type SSVARIANTTYPE,
TEXTTYPE, NTEXTTYPE, or IMAGETYPE, the integer length is LONGLEN. If the data type is

BIGCHARTYPE, BIGVARCHARTYPE, NCHARTYPE, NVARCHARTYPE, BIGBINARYTYPE, or
BIGVARBINARYTYPE, the integer length is USHORTCHARBINLEN. For all other data types, the integer
length is BYTELEN.

TYPE_VARLEN = BYTELEN
/
USHORTCHARBINLEN
/
LONGLEN

Fixed and Variable Bytes

The data type to be used in a data type -dependent byte st ream is defined by the TYPE_INFO rule
associated with the message.

For variable -length types, with the exception of PLP (see Partially Length - prefixed Bytes below), the
TYPE_VARLEN value defines the length of the data to follow. As described above, the TYP E_INFO rule
defines the type of TYPE_VARLEN (for example BYTELEN, USHORTCHARBINLEN, or LONGLEN).

For fixed -length types, the TYPE_VARLEN rule is not present. In these cases, the number of bytes to

be read is determined by the TYPE_INFO rule. For example, i f"INT2TYPE" is specified as the value for
the FIXEDLENTYPE rule of the TYPE_INFO rule, 2 bytes are read because "INT2TYPE" is always 2 bytes

in length. For more details, see Data Types Definitions.

The data following this can be a stream of bytes or a NUL L value. The 2 -byte CHARBIN_NULL rule is
used for BIGCHARTYPE, BIGVARCHARTYPE, NCHARTYPE, NVARCHARTYPE, BIGBINARYTYPE, and
BIGVARBINARYTYPE types, and the 4 -byte CHARBIN_NULL rule is used for TEXTTYPE, NTEXTTYPE,
and IMAGETYPE. The GEN_NULL rule applies to all other types aside from PLP:

TYPE_VARBYTE = GEN_NULL / CHARBIN_NULL / PLP_BODY
I ([TYPE_VARLEN] *BYTE)

Partially Length - prefixed Bytes

Unlike fixed or variable byte stream formats, Partially length -prefixed bytes (PARTLENTYPE),
introduce din TDS 7.2, do not require the full data length to be specified before the actual data is
streamed out. Thus, it is ideal for those applications where the data length is not known upfront (that

32/ 220

[MS -TDS-Diff] - v20201001

Tabular Data Stream Protocol
Copyright © 2020 Microsoft Corporation
Release: October 1, 2020

is, xml serialization). A value sent as PLP can be either NU LL, a length followed by chunks (as defined
by PLP_CHUNK), or an unknown length token followed by chunks, which MUST end with a
PLP_TERMINATOR. The rule below describes the stream format (for example, the format of a singleton

PLP value):

PLP_BODY= PLP_ NULL
/
((ULONGLONGLEN / UNKNOWN_PLP_LEN)
*PLP_CHUNK PLP_TERMINATOR)

PLP_NULL = %xFFFFFFFFFFFFFFFF

UNKNOWN_PLP_LEN = %xFFFFFFFFFFFFFFFE

PLP_CHUNK = ULONGLEN 1*BYTE

PLP_TERMINATOR = 9%x00000000

Notes
A TYPE_INFO rule specifies a Partially Length

A Inthe UNKNOWN_PLP_LEN case, the data is represented as a series of zero or more chunks, each
consisting of the leng th field followed by length bytes of data (see the PLP_CHUNK rule). The data
is terminated by PLP_TERMINATOR (which is essentially a zero -length chunk).

A Inthe actual data length case, the ULONGLONGLEN specifies the length of the data and is followed
by an y number of PLP_CHUNKSs containing the data. The length of the data specified by
ULONGLONGLEN is used as a hint for the receiver. The receiver SHOULD validate that the length
value specified by ULONGLONGLEN matches the actual data length.

2.25.3 Packet Data Stream Headers - ALL_HEADERS Rule Definition

Message streams can be preceded by a variable number of headers as specified by the ALL_HEADERS
rule. The ALL_HEADERS rule, the Query Notifications header, and the Transaction Descriptor header
were introduced in TDS 7.2. The Trace Activity header was introduced in TDS 7.4.

The list of headers that are applicable to the different types of messages are described in the following
table.

Stream headers MUST be present only in the first packet of requests that span more than one packet.

The ALL_HEADERS rule applies only to the three client request types defined in the table below and

MUST NOT be included for other request types. For the appli cable request types, each header MUST
appear at most once in the stream or packet's ALL_HEADERS field.

-prefixed Data type (PARTLENTYPE, see 2.2.5.4.).

Header Value SQLBatch RPCRequest TransactionManagerRequest
Query Notifications 0x00 01 Optional Optional Disallowed
Transaction Descriptor 0x00 02 Required Required Required
Trace Activity 0x00 03 Optional Optional Optional
Stream - Specific Rules:
TotalLength = DWORD ;including itself

HeaderLength = DWORD ;including itself
HeaderType = USHORT;
HeaderData = *BYTE

33/ 220

[MS -TDS-Diff] - v20201001

Tabular Data Stream Protocol
Copyright © 2020 Microsoft Corporation
Release: October 1, 2020

Header = HeaderLength HeaderType HeaderData

Stream Definition:

ALL_HEADERS = TotalLength 1*Header
Parameter Description
TotalLength Total length of ALL_HEADERS stream.

HeaderLength Total length of an individual header.

HeaderType The type of header, as defined by the value field in the preceding table.
HeaderData The data stream for the header. See header definitions in the following subsections.
Header A structure containing a single header.

2.25.3.1 Quer y Notifications Header

This packet data stream header allows the client to spe cify that a notification is to be supplied on the
results of the request. The contents of the header specify the information necessary for delivery of the
notification. For more information about query notifications<11> functionality for a database server

that supports SQL, see [MSDN -QUERYNOTE].

Stream Specific Rules:

Notifyld = USHORT UNICODESTREAM ; user specified value

; when subscribing to

; query notificatio ns
SSBDeployment = USHORT UNICODESTREAM
NotifyTimeout = ULONG ; duration in which the query

; notification subscription

; is valid

The USHORT field defined within the Notifyld and SSBDeployment rules specifies the length, in bytes,
of the actual data value, defined by the UNICODESTREAM, that follows it.<12> The time unit of
NotifyTi meout is milliseconds.

Stream Definition:

HeaderData = Notifyld
SSBDeployment
[Notify Timeout]

2.2.5.3.2 Transaction Descriptor Header

This packet data stream contains information regarding transaction descriptor and number of
outstanding requests as they apply to Multiple Active Result Sets (MARS) [MSDN -MARS].

The TransactionDescriptor MUST be 0, and Ou tstandingRequestCount MUST be 1 if the connection is
operating in AutoCommit mode. For more information about autocommit transactions, see [MSDN
Autocommit].

[MS -TDS-Diff] - v20201001

Tabular Data Stream Protocol
Copyright © 2020 Microsoft Corporation
Release: October 1, 2020

34 | 220

Stream - Specific Rules:

OutstandingRequestCount = DWORD ; number of requests currently active on
; the connection
TransactionDescriptor = ULONGLONG ; for each connection, a number that uniquely
; identifies the transaction with which the
; request is associated; initially generated
; by the server when a new transaction is
; created and returned to the client as part
;0 fthe ENVCHANGE token stream

For more information about processing the Transaction Descriptor header, see section 2.2.6.9.

Stream Definition:

HeaderData = TransactionDescriptor
OutstandingRequestCount

2.25.3.3 Trace Activity Header

This packet data stream contains a client trace activity ID intended to be used by the server for
debugging purposes, to allow correlating the server's processing of the request with the client request.

A client MUST NOT send a Trace Activity header when the n egotiated TDS major version is less than
7.4. If the negotiated TDS major version is less than TDS 7.4 and the server receives a Trace Activity
header token, the server MUST reject the request with a TDS protocol error.

Stream - Specific Rules:

GUID_Activity ID = 16BYTE ; client application activity id
; used for debugging purposes
ActivitySequence = ULONG ; client application activity sequence
; used for debugging purposes
Activityld = GUID_ActivitylD
ActivitySequence

Stream Definition:

HeaderData = Activityld

2.25.4 Data Type Definitions

The subsections within this section describe the different sets of data types and how they are
categorized. Specifically, data values are interpreted and represented in association with their data
type. Details about each data type categorization are described in the following sections.

22541 (Added Section) Zero - Length Data Types

NULLTYPE = Ox1F ; Null

[MS -TDS-Diff] - v20201001

Tabular Data Stream Protocol
Copyright © 2020 Microsoft Corporation
Release: October 1, 2020

35/ 220

22542 (Updated Section) Fixed -Leng th Data Types

The f ixed -length data types include the following types.

NLU P A N

INTATYPE = %x30 ; Tinylnt
BITTYPE = %x32 ; Bit
INT2TYPE = %x34 ; Smallint
INTATYPE = %x38 ;Int
DATETIMATYPE = %x3 A ; SmallDateTime
FLTATYPE = %x3B ; Real
MONEYTYPE = %x3C ; Money
DATETIMETYPE = %x3D ; DateTime
FLT8TYPE = %Xx3E ; Float
MONEYATYPE = %x7A ; SmallMoney
INT8TYPE = %x7F ; Bigint
DECIMALTYPE = %x37 ; Decimal (legacy support
NUMERICTYPE = %x3F ; Numeric (legacy support
™= NTaTYPE
/
BITTYPE
/
INT2TYPE
/
INTATYPE

{DATETIM4TYPE
{:LT4TYPE

1VION EYTYPE
{DATETIMETYPE
{:LTSTYPE

{VION EY4TYPE
{NTB TYPE

Non -nullable values are returned using these fixed Sl s] (N IR oL R T e re-is-ho-tate-asseciateewith——
m the fixed -length data types, the length of data is predefined by the

type. There is no TYPE_VARLEN field in the TYP E_INFO rule for these types. In the TYPE_VARBYTE rule
for these types, the TYPE_VARLEN field is BYTELEN, and the value is 1 for INTATYPE/BITTYPE, 2 for
INT2TYPE, 4 for INTATYPE/DATETIMATYPE/FLT4TYPE/MONEY4TYPE, and 8 for
MONEYTYPE/DATETIMETYPE/FLT8TYPE/INT 8TYPE. The value represents the number of bytes of data to
be followed. The SQL data types of the corresponding fixed -length data types are in the comment part
of each data type.

22543 (Updated Section) Variable -Length Data Types

The data type token values defined in thi s section have a length value associated with the data type
because the data values corresponding to these data types are represented by a variable number of
bytes.

GUIDTYPE
INTNTYPE

%x24 ; Uniqueldentifier
%x26 ; (see below
0% D

BITNTYPE = %X68 ; (see below)
DECIMALNTYPE = %X6A ; Decimal

36 / 220

[MS -TDS-Diff] - v20201001

Tabular Data Stream Protocol
Copyright © 2020 Microsoft Corporation
Release: October 1, 2020

NUMERICNTYPE = %x6C ; Numeric
FLTNTYPE = %Xx6D ; (see below)
MONEYNTYPE = %X6E ; (see below)
DATETIMNTYPE = %X6F ; (see below)

DATENTYPE = %x28 ; (introduced in TDS 7.3)
TIMENTYPE = 9%x29 ; (introduced in TDS 7.3)
DATETIME2NTYPE = %x2 A ; (introduced in TDS 7.3)
DATETIMEOFFSETNTYPE = %x2B ; (introduced in TDS 7.3)
CHARTYPE = %x2F ; Char (legacy support)
VARCHARTYPE = %x27 ; VarChar (legacy support)
BINARYTYPE = %x2D ; Binary (legacy support)
VARBNARYTYPE = %x25 ; VarBinary (legacy support)

BIGVARBINARYTYPE = %XxA5 ; VarBinary
BIGVARCHARTYPE = %xA7 ; VarChar
BIGBINARYTYPE %XxAD ; Binary
BIGCHARTYPE %XxAF ; Char

NVARCHARTYPE = %XxE7 ; NVarChar
NCHARTYPE = %XxEF ; NChar
XMLTYPE %xF1 ; XML (introduced in TDS 7.2)

UDTTYPE %xFO0 ; CLR UDT (introduced in TDS 7.2)
TEXTTYPE = %x23 ; Text

IMAGETYPE = %x22 ; Image

NTEXTTYPE = %x63 ; NText

SSVARIANTTYPE = %x62 ; Sql_Variant (introduced in TDS 7.2)
BYTELEN_TYPE = GUIDTYPE

{NTNTYPE

{DECIMALTYPE

1\IUMERICTYPE

{BITNTYPE

{DECIMALNTYPE

1\IUMERICNTYPE

{:LTNTYPE

1VIONEYNTYPE

{DATETIMNTYPE

{DATENTYPE

{I'IMENTYPE

{DATETIMEZNTYPE

{DATETIMEOFFSETNTYPE

/CHARTYPE

(/ARCHARTYPE

{3INARYTYPE

(/ARBINARYTYPE ; the length value associated
; with these data types is
; specified within a BYTE

non -NULL instances.

37/ 220

[MS -TDS-Diff] - v20201001

Tabular Data Stream Protocol
Copyright © 2020 Microsoft Corporation
Release: October 1, 2020

For MONEYNTYPE, the only valid lengths are 0x04 and 0x08, which map to smallmoney and money
SQL data types respectively.

For DATETIMNTYPE, the only valid lengths are 0x04 and 0x08, which map to small datetime and
datetime SQL data types respectively.

For INTNTYPE, the only valid lengths are 0x01, 0x02, 0x04, and 0x08, which map to tinyint, smallint,
int, and bigint SQL data types respectively.

For FLTNTYPE, the only valid lengths are 0x04 and 0x08, whi chmapto 7 -digit precision float and 15 -
digit precision float SQL data types respectively.

For GUIDTYPE, the only valid lengths are 0x10 for non -null instances and 0x00 for NULL instances.

For BITNTYPE, the only valid lengths are 0x01 for non -null instanc es and 0x00 for NULL instances.

For DATENTYPE, the only valid lengths are 0x03 for non -NULL instances and 0x00 for NULL instances.

For TIMENTYPE, the only valid lengths (along with the associated scale value) are:

SCALE 1 2 3 4 5 6 7

LENGTH | 0x03 0x03 0x04 0x04 0x05 0x05 0x05

For DATETIME2NTYPE, the only valid lengths (along with the associated scale value) are:

SCALE 1 2 3 4 5 6 7

LENGTH | Ox06 | Ox06 | Ox07 | Ox07 | Ox08 | Ox08 | 0x08

For DATETIMEOFFSETNTYPE, the only valid lengths (along with the associated scale value) are:

SCALE 1 2 3 4 5 6 7

LENGTH | Ox08 | O0x08 | Ox09 | Ox09 | OxOA | OxOA | OxOA

Exceptions are thrown when invalid lengths are presented to the server during BulkLoadBCP and RPC
requests.

USHORTLEN_TYPE = BIGVARBINARYTYPE

/

BIGVARCHARTYPE

/

BIGBINARYTYPE

/

BIGCHARTYPE

/

NVARCHARTYPE

/

NCHARTYPE ; the length value associated with
; these data types is specified
; within a USHORT

LONGLEN_TYPE = IMAGETYPE
1\ITEXTTYPE
/SSVARIANTTYPE
Q'EXTTYPE

38 / 220

[MS -TDS-Diff] - v20201001

Tabular Data Stream Protocol
Copyright © 2020 Microsoft Corporation
Release: October 1, 2020

/

XMLTYPE ; the length value associated with
; these data types is specified
; within a LONG

Notes

A MaxLength foran S SVARIANTTYPE is 8009 (8000 for strings). For more details, see section
22554,

A XMLTYPE is only a valid LONGLEN_TYPE for BulkLoadBCP.

MaxLength for an SSVARIANTTYPE is 8009 (string of 8000 bytes).

VARLENTYPE = BYTELEN_TYPE
/
USHORTLEN_TYPE
/
LONGLEN_TYPE

Nullable values are returned by using the INTNTYPE, BITNTYPE, FLTNTYPE, GUIDTYPE, MONEYNTYPE,
and DATETIMNTYPE tokens which will use the length byte to specify th e length of the value or
GEN_NULL as appropriate.

There are two types of variable -length data types. These are real variable -length data types, like char
and binary, and nullable data types, which have either a normal fixed length that corresponds to their
type or to a special length if null.

Char and binary data types have values that either are null or are 0 to 65534 (0x0000 to OxFFFE)

bytes of data. Null is represented by a length of 65535 (OXFFFF). A non -nullable char or binary can
still have alength o f zero (for example, an empty value). A program that MUST pad a value to a fixed
length typically adds blanks to the end of a char and adds binary zeros to the end of a binary.

Text and image data types have values that either are null or are 0 to 2 gigaby tes (0x00000000 to
Ox7FFFFFFF bytes) of data. Null is represented by a length of -1 (OXFFFFFFFF). No other length
specification is supported.

Other nullable data types have a length of O when they are null.

22544 (Updated Section) Partially Length - Prefixed Data Types

The data value corresponding to the set of data types defined in this section follows the rule defined in
the partially length - prefixed stream definition (section 2.2.5.2.3).

PARTLENTYPE = XMLTYPE
{BIGVARCHARTYPE
{BIGVARBINARYTYPE
/NVARCHARTYPE
/UDTTYPE

BIGVARCHARTYPE, BIGVARBINARYTYPE, and NVARCHARTYPE ca n represent two types each:

A The regular type with a known maximum size range sl mmadefined b

39 / 220

[MS -TDS-Diff] - v20201001

Tabular Data Stream Protocol
Copyright © 2020 Microsoft Corporation
Release: October 1, 2020

A Atype with unlimited max size, known as varchar(max), varbinary(max) and nvarchar(max),
which has a max size of OxFFFF, defined by PARTLENTYPE. This class of types was introduced in
TDS 7.2.

2255 Data Type Details

The subsections within this section specify the formats in which values of system data types are
serialized in TDS.

22551 System Data Type Values

The subsections within this section specify the formats in which values of various common system
data types are serialized in TDS.

225511 Integers

All integer types are represented in reverse byte order (little -endian) unless otherwise specified. Each
integer takes a whole number of bytes as follows:

bit: 1 byte
tinyint: 1 byte
smallint: 2 bytes
int: 4 bytes

bigint: 8 bytes

225512 Timestamp

timestamp/rowversion is represented as an 8 -byte binary sequence with no particular
interpretation.

225513 Character and Binary Strings

See Variable -Length Data Types (section 2.2.5.4.3) and Partially Length - Prefixed Data
Types (section 2.2.5.4.4).

225514 Fixed -Point Numbers

smallmoney is represented as a4 -byte signed integer. The TDS value is the smallmoney value
multiplied by 10 4.

money is represented as an 8 -byte signed integer. The TDS value is the money value multiplied by
104. The 8 -byte signed integer itself is represented in the fo llowing sequence:

A One 4 -byte integer that represents the more significant half.

A One 4 -byte integer that represents the less significant half.

225515 Floating -Point Numbers

float (n) follows the 32 -bit [I[EEE754] binary specification when n <=24 and the 64 -bit [IEE E754]
binary specification when 25 <= n <=53.

2.255.1.6 Decimal/Numeric

40 / 220

[MS -TDS-Diff] - v20201001

Tabular Data Stream Protocol
Copyright © 2020 Microsoft Corporation
Release: October 1, 2020

Decimal or Numeric is defined as decimal (p, s)or numeric (p, s), where p isthe precisionand sis
the scale. The value is represented in the following sequence:

A One 1 -byte unsigned integer that represents the sign of the decimal value as follows:
A 0 means negative.
A 1 means nonnegative.

A One4-,8-,12 -, or 16 -byte signed integer that represents the d ecimal value multiplied by 10 s. The
maximum size of this integer is determined based on p as follows:

A 4pytesifl<= p<=09.

A 8hbytesif10<= p <=109.
A 12bytesif20<= p <=28.
A 16 bytesif29<= p <=38.

The actual size of this integer could be less than the maximum size, depending on the value. In all
cases, the integer part MUST be 4, 8, 12, or 16 bytes.

225517 GUID

uniqueidentifier is represented as a 16 -byte binary sequence with no specific interpretation.
225518 Date/Times

smalldatetime is represented in the f ollowing sequence:

A One 2 -byte unsigned integer that represents the number of days since January 1, 1900.
A One 2 -byte unsigned integer that represents the number of minutes elapsed since 12 AM that day.
datetime is represented in the following sequence:

A One 4-byte signed integer that represents the number of days since January 1, 1900. Negative
numbers are allowed to represent dates since January 1, 1753.

A One 4 -byte unsigned integer that represents the number of one three -hundredths of a second
(300 counts pe r second) elapsed since 12 AM that day.

date is represented asone 3 -byte unsigned integer that represents the number of days since January
1, year 1.

time (n) is represented as one unsigned integer that represents the number of 10 " second increments
since 12 AM within a day. The length, in bytes, of that integer depends on the scale n as follows:

A 3bytesif0<= n<=2
A A4bytesif3<= n<=4
A S5bytesif5<= n<=7.
datetime2 (n) is represented as a concatenation of time (n) followed by date as specified above.

datetimeoffset (n) is represented as a concatenation of datetime2 (n) followed by one 2 -byte signed
integer that represents the time zone offset as the number of minutes from UTC. The time zone offset
MUST be between -840 and 840.

41 | 220

[MS -TDS-Diff] - v20201001

Tabular Data Stream Protocol
Copyright © 2020 Microsoft Corporation
Release: October 1, 2020

22552 Common Language Runtime (CLR) Instances

The following data type definition stream is used for UDT_INFO in TYPE_INFO. This data type was
introduced in TDS 7.2.

DB_NAME = B_VARCHAR ; database name of the UDT
SCHEMA_NAME = B_VARCHAR ; schema name o f the UDT
TYPE_NAME = B_VARCHAR ; type name of the UDT
MAX_BYTE_SIZE = USHORT ; max length in bytes
ASSEMBLY_QUALIFIED_NAME = US_VARCHAR ; name of the CLR assembly
UDT_METADATA = ASSEMBLY_QUALIFIED_NAME
UDT_INFO_IN_COLMETADATA = MAX_BYTE_SIZE

DB_NAME

SCHEMA_NAME

TYPE_NAME

UDT_METADATA

UDT_INFO_IN_RPC = DB_NAME ; database name of the ubT
SCHEMA_NAME ; schema name of the UDT
TYPE_NAME ; type name of the UDT

UDT_INFO = UDT_INFO_IN_COLMETADATA :when sent as part of COLMETADATA
/
UDT_INFO_IN_RPC ;when sent as part of RPC call

MAX_BYTE_SIZE is only sent from the server to the client in COLMETADATA and is an unsigned short
with a value within the range 1 to 8000 or OxXFFFF. The value OXFFFF signifies the maximum LOB siz
indicating a UDT with a maximum size greater than 8000 bytes (also referred to as a Large UDT;
introduced in TDS 7.3). MAX_BYTE_SIZE is not sent to the server as part of RPC calls.

Note UserType in the COLMETADATA stream, defined in section 2.2.7.4, is either 0x0000 or
0x00000000 for UDTs, depending on the TDS version that is used. The actual data value format
associated with a UDT data type definition stream is specified in [MS -SSCLRT].

22553 XML Values

This section defines the XML data type definition stream, which was introduced in TDS 7.2.

SCHEMA_PRESENBYTE;

DbName = B_VARCHAR
OWNING_SCHEMA = B_VARCHAR
XML_SCHEMA_COLLECTION = US_VARCHAR

XML_INFO = SCHEMA_PRESENT

[DbName OWNING_SCHEMA
XML_SCHEMA_COLLECTION]

SCHEMA_PRESENT specifies "0x01" if the type has an associated schema collection and DbName,
OWNING_SCHEMA and XML_SCHEMA_COLLECTION MUST be included in the stream, or '0x00'
otherwise.

DbName specifies the name of the database where the schema collection i s defined.
OWNING_SCHEMA specifies the name of the relational schema containing the schema collection.

XML_SCHEMA_COLLECTION specifies the name of the XML schema collection to which the type is
bound.

[MS -TDS-Diff] - v20201001

Tabular Data Stream Protocol
Copyright © 2020 Microsoft Corporation
Release: October 1, 2020

42 | 220

Note The actual data value format that is associated with an XML data type definition stream uses
the binary XML structure format, as specified in [MS -BINXML].<14>

22554 SQL_VARIANT Values

The SSVARIANTTYPE is a special data type that acts as a place holder for other data types. When a
SSVARIANTTYPE is filled with a data value, it takes on properties of the base data type that represents

the data value. To support this dynamic change, for those that are not NULL (GEN_NULL) the

SSVARIANTTYPE instance has an SSVARIANT_INSTANCE internal structure according to the following
definition.

VARIANT_BASETYPE = BYTE ; data type definition
VARIANT_PROPBYTES = BYTE ; see below
VARIANT_PROPERTIES = *BYTE ; see below
VARIANT_DATAVAL = 1*BYTE ; actual data value

SSVARIANT_INSTANCE = VARIANT_BASETYPE
VARIANT_PROPBYTES
VARIANT_PROPERTIES
VARIANT_DATAVAL

VARIANT_BASETYPE is the TDS token of the base type.

VARIANT_BASETYPE VARIANT_PROP BYTES VARIANT_PROPERTIES

GUIDTYPE, BITTYPE, INT1ITYPE, INT2TYPE, 0 <not specified>
INTATYPE, INT8TYPE, DATETIMETYPE,
DATETIMATYPE, FLTATYPE, FLT8TYPE, MONEYTYPE,
MONEY4TYPE, DATENTYPE

TIMENTYPE, DATETIME2NTYPE, 1 1 byte specifying scale

DATETIMEOFFSETNTYPE

BIGVARBINARYTYPE, BIGBINARYTYPE 2 2 bytes specifying max length

NUMERICNTYPE, DECIMALNTYPE 2 1 byte for precision followed by
1 byte for scale

BIGVARCHARTYPE, BIGCHARTYPE, NVARCHARTYPE, 7 5-byte COLLATION, followed

NCHARTYPE by a 2 -byte max length

Note Data types cannot be NULL when inside a sql_variant. If the value is NULL, the sql_variant itself
has to be NULL, but it is not allowed to specify a non -null sgl_variant instance and have a NULL value
wrapped inside it. A raw collation S HOULD NOT be specified within a sql_variant.<15>

22555 Table Valued Parameter (TVP) Values

Table Valued Parameters (or User Defined Table Type, as this type is known on the server)

encapsulate an entire table of data with 1 to 1024 columns and an arbitrary number of rows. At the
present time, TVPs are permitted to be used only as input parameters and do not appear as output

parameters or in result set columns.

TVPs MUST be sent only by a TDS client that reports itself as a TDS major version 7.3 or later. If a
client reporting itself as older than TDS 7.3 attempts to send a TVP, the server MUST reject the
request with a TDS protocol error.

2.2555.1 Metadata

TVPTYPE = %xF3

43 | 220

[MS -TDS-Diff] - v20201001

Tabular Data Stream Protocol
Copyright © 2020 Microsoft Corporation
Release: October 1, 2020

TVP_TYPE_INFO = TVPTYPE
TVP_TYPENAME
TVP_COLMETADATA
[TVP_ORDER_UNIQUE]
[TVP_COLUMN_ORDERING]
TVP_END_TOKEN
*TVP_ROW
TVP_END_TOKEN

Parameter

Description

TVPTYPE

%xF3

TVP_TYPENAME

Type name of the TVP

TVP_COLMETADATA

Column -specific metadata

[TVP_ORDER_UNIQUE]

Optional metadata token

[TVP_COLUMN_ORDERING]

Optional metadata token

TVP_END_TOKEN

End optional metadata

*TVP_ROW 0..N TVP_ROW tokens
TVP_END_TOKEN End of rows
TVP_TYPENAME definition
DbName = B_VARCHAR ; Database where TVP type resides

OwningSchema = B_VARCHAR ; Schema where TVP type resides

TypeName =

B_VARCHAR ; TVP type name

TVP_TYPENAME = DbName
OwningSchema
TypeName

TVP_COLMETADATA definition

fNullable = BIT ; Column is nullable - %x01
fCaseSen = BIT ; Column is case - sensitive - %x02
usUpdateable = 2BIT ;2 - bit value, one of:
; 0 = ReadOnly - %x00
; 1 = ReadWrite - %x04
; 2 = Unknown - %x08
fl dentity = BIT ; Column is identity column - %x10
fComputed = BIT ; Column is computed - %x20
usReservedODBC = 2BIT ; Reserved bits for ODBC - %x40+80
fFixedLenCLRType = BIT ; Fixed length CLR t ype - %x100
fDefault = BIT ; Column is default value - %x200
usReserved = 6BIT ; Six leftover reserved bits
Flags = fNullable
fCaseSen
usUpdateable
fldentity
fComputed
usReservedODBC
fFixedLenCLRType
fDefault
usReserved
Count = USHORT ; Column count up to 1024 max
ColName B_VARCHAR ; Name of column

UserType

ULONG

; UserType of column

[MS -TDS-Diff] - v20201001
Tabular Data Stream Protocol

Copyright © 2020 Microsoft Corporation

Release: October 1, 2020

44 | 220

TvpColumnMetaData = UserType

Flags
TYPE_INFO
ColName ; Column metadata instance
TVP_NULL_TOKEN = %XFFFF
TVP_COLMETADATA = TVP_NULL_TOKEN / (Count (<Count> TvpColumnMetaData))
DbName, OwningSchema, and TypeName are limite d to 128 Unicode characters max identifier length.
DbName is required to be zero -length, only OwningSchema and TypeName can be specified. DbName,

OwningSchema, and TypeName are all optional fields and might ALL contain zero length strings. Client
SHOULD f ollow these two rules:

A

If the TVP is a parameter to a stored procedure or function where parameter metadata is available
on the server side, the client can send all zero -length strings for TVP_TYPENAME.

If the TVP is a parameter to an ad -hoc SQL statement, parameter metadata information is not
available on a stored procedure or function on the server. In this case, the client is responsible to
send sufficient type information with the TVP to allow the server to resolve the TVP type from
sys.types. Failuret o send needed type information in this case will result in complete failure of
RPC call prior to execution.

Only one new flag, fDefault, is added here from existing COLMETADATA. ColName MUST be a zero
length string in the TVP.

Additional details about inpu t TVPs and usage of flags

A For an input TVP, if the fDefault flag is set on a column, then the client MUST NOT emit the
corresponding TvpColumnData data for the associated column when sending each TVP_ROW.

A For an input TVP, the fCaseSen, usUpdateable, and f FixedLenCLRType flags are ignored.

A usUpdateable is ignored by server on input, it is "calculated” metadata.

A The fFixedLenCLRType flag is not used by the server.

A Output TVPs are not currently supported.

TVP Flags Usage Chart

Flag Input behavior
fNullable Allowed
fCaseSen Ignored
usUpdateable Ignored
fldentity Allowed
fComputed Allowed

usReservedODBC Ignored

fFixedLenCLRType Ignored

fDefault Allowed (if set, data not sent in TvpColumnData)

usReserved Ignored

[MS -TDS-Diff] - v20201001

Tabular Data Stream Protocol
Copyright © 2020 Microsoft Corporation
Release: October 1, 2020

45 | 220

2.2555.2 Optional Metadata Tokens

TVP_ORDER_UNIQUE definition

TVP_ORDER_UNIQUE_TOKEN = 9%x10

Count = USHORT ; Count of ColNums to follow
ColNum = USHORT ;A single - column ordinal
fOrderAsc = BIT ;Column - ordered ascending T %x01
fOrderDesc = BIT ;Column - ordered descending T %x02
fUnique = BIT ; Column isin unigue set T %x04
Reservedl = 5Bl T ; Five reserved bits
OrderUniqueFlags = fOrderAsc

fOrderDesc

fUnique

Reservedl
TVP_ORDER_UNIQUE = TVP_ORDER_UNIQUE_TOKEN

(Count (<Count> (ColNum OrderUniqueFlags)))

TVP_ORDER_UNIQUE is similar to the ORDER token that is currently used in TDS responses from the
server.

TVP_ORDER_UNIQUE is optional.

ColNum ordinals are 1..N, where 1 is the first ¢ olumn in TVP_COLMETADATA. That is, ordinals start
with 1.

Each TVP_ORDER_UNIQUE token can describe a set of columns for ordering and/or a set of columns
for uniqueness.

The first column ordinal with an ordering bit set is the primary sort column, the secon d column ordinal
with an ordering bit set is the secondary sort column, and so on.

The client can send 0 or 1 TVP_ORDER_UNIQUE tokens in a single TVP.

The TVP_ORDER_UNIQUE token MUST always be sent after TVP_COLMETADATA and before the first
TVP_ROW token.

When a TVP is sent to the server, each ColNum ordinal inside a TVP_ORDER_UNIQUE token MUST
refer to a client generated column. Ordinals that refer to columns with fDefault set will be rejected by
the server.

OrderUniqueFlags Possible Combinations And Meani ng
fOrderAsc fOrderDesc fUnique Meaning
FALSE FALSE FALSE Invalid flag state, rejected by server
FALSE FALSE TRUE Column is in unigue set
FALSE TRUE FALSE Column is ordered descending
FALSE TRUE TRUE Column is ordered descending and in unique set
TRUE FALSE FALSE Column is ordered ascending
TRUE FALSE TRUE Column is ordered ascending and in unique set
TRUE TRUE FALSE Invalid flag state, rejected by server

46 | 220

[MS -TDS-Diff] - v20201001

Tabular Data Stream Protocol
Copyright © 2020 Microsoft Corporation
Release: October 1, 2020

fOrderAsc fOrderDesc fUnique Meaning

TRUE TRUE TRUE Invalid flag state, rejected by server

TVP_COLUMN_ORDERING

TVP_COLUMN_ORDERING is an optional TVP metadata token that is used to allow the TDS client to
send a different ordering of the columns in a TVP from the default ordering.

ColINum ordinals are 1..N, where 1 is first column in the TVP (ord inals start with 1, in other words).
These are the same ordinals used with the TDS ORDER token, for example, to refer to column ordinal
as the columns appear in left to right order.

TVP_COLUMN_ORDERING_TOKEN = %x11

Count = USHORT; Count of ColNums to follow
ColNum = USHORT ; A single - column ordinal
TVP_COLUMN_ORDERING = TVP_COLUMN_ORDERING_TOKEN

(Count (<Count> ColNum))

The client can send 0 or 1 TVP_COLUMN_ORDERING tokens in a single TVP.

The TVP_COLUMN_ORDERING token MUST always be sent after TVP_COLMETADATA and before the
first TVP_ROW token.

Additional details a bout TVP_COLUMN_ORDERING

TVP_COLUMN_ORDERING is used to re -order the columns in a TVP. For example, say, a TVP is defined
as the following:

TVP_COLUMN_ORDERING = create type myTvpe as table (f1 int / f2 varchar (max) / f3 datetime)

Then, the TDS client mig ht want to send the f2 field last inside the TVP as an optimization (streaming
the large value last). So the client can send TVP_COLUMN_ORDERING with order 1,3,2 to indicate that
inside the TVP_ROW section the column f1 is sent first, f3 is sent second, an d f2 is sent third.

In this case, the TVP_COLUMN_ORDERING token on the wire for this example would be:

11 ; TVP_COLUMN_ORDERING_TOKEN

03 00 ; Count - Number of ColNums to follow.

01 00 ; ColNum - TVP column ordinal 1 is sent first in TVP_COLMETADATA.

03 00 ; ColNum - TVP column ordinal 3 is sent second in TVP_COLMETADATA.
02 00 ; ColNum - TVP column ordinal 2 is sent third in TVP_COLMETADATA.

Duplicate ColNum values are considered an error condition. The ordinal values of the columns in the
actual TVP t ype are ordered starting with 1 for the first column and adding one for each column from
left to right. The client MUST send one ColNum for each column described in the TVP_COLMETADATA
(so Count MUST match number of columns in TVP_COLMETADATA).

TVP_ROW def inition

TVP_ROW_TOKEN = 9%x01 ; Arow as defined by TVP_COLMETADATA follows
TvpColumnData = TYPE_VARBYTE ; Actual value must match metadata for the column
AllColumnData = *TvpColumnData ; Chunks of data, one per non - default column de fined
; in TVP_COLMETADATA
TVP_ROW = TVP_ROW_TOKEN
AllColumnData
TVP_END_TOKEN = %x00 ; Terminator tag for TVP type, meaning

47 | 220

[MS -TDS-Diff] - v20201001

Tabular Data Stream Protocol
Copyright © 2020 Microsoft Corporation
Release: October 1, 2020

; nomore TVP_ROWSs to follow and end of
; successful transmission of a single TVP
TvpColumnData is repeated once for each non -default column of data defined in TVP_COLMETADATA.

Each row will contain one data "cell" per column specified in T VP_COLMETADATA. On input, columns
with the fDefault flag set in TVP_COLMETADATA will be skipped to avoid sending redundant data.

Column data is ordered in same order as the order of items defined in TVP_COLMETADATA unless a
TVP_COLUMN_ORDERING token has be en sent to indicate a change in the ordering of the row values.

225553 TDS Type Restrictions

Within a TVP, the following legacy TDS types are not supported:

TDS type Replacement type
Binary BigBinary
VarBinary BigVarBinary
Char BigChar
VarChar BigVarChar
Bit BitN

Intl IntN

Int2 IntN

Int4 IntN

Int8 IntN

Float4 FloatN

Float8 FloatN
Money MoneyN
Decimal DecimalN
Numeric NumericN
DateTime DatetimeN
DateTime4 DatetimeN
Money4 MoneyN

Additional types not allowed in TVP:

A Null type (NULLTYPE:="0x1f") is not allowed in a TVP.
A TVP type is not allowed in a TVP (no nesting of TVP in a TVP).
A TDS types are not to be confused with data types for a database se rver that supports SQL.

48 | 220

[MS -TDS-Diff] - v20201001

Tabular Data Stream Protocol
Copyright © 2020 Microsoft Corporation
Release: October 1, 2020

2256 (Updated Section) Type Info Rule Definition

The TYPE_INFO rule applies to several messages used to describe column information. For columns of
fixed data length, the type is all that is required to determine the data length. For columns of a

variable -length type, TYPE_VARLEN defines the length of the data contained within the column, with
the following exceptions introduced in TDS 7.3:

DATE MUST NOT have a TYPE_VARLEN. The value is either 3 bytes or 0 bytes (null).

MUST NOT have a TYPE VARLEN The lengths are determined by the SCALE as indicated in section

2.2543.

SCALE iwnhout PRECISION) MUST occur if the type is N
DATETIMEZ2NTY PE Hl§ DA—'FEJZI-MEGFI‘—SE:FDATETIMEOFFSETNTYPE (|ntroduced in TDS 7.3). PRECISION

MUST be less than or equal to decimal 38 and SCALE MUS T be less than or equal to the precision
value.

COLLATION occurs only if the type is BIGCHARTYPE, BIGVARCHARTYPE, TEXTTYPE, NTEXTTYPE,
NCHARTYPE, or NVARCHARTYPE.

UDT_INFO always occurs if the type is UDTTYPE.
XML_INFO always occurs if the type is XMLTYPE.

USHORTMAXLEN does not occur if PARTLENTYPE is XMLTYPE or UDTTYPE.

USHORTMAXLEN = %xFFFF

TYPE_INFO = FIXEDLENTYPE
/
(VARLENTYPE TYPE_VARLEN [COLLATION])
/

(VARLENTYPE TYPE_VARLEN [PRECISION SCALE])
/

(VARLENTYPE SCALE) ; (introduced in TDS 7.3)

/

VARLENTYPE ; (introduced in TDS 7.3)
/

(PARTLENTYPE

[USHORTMAXLEN]

[COLLATION]

[XML_INFO]

[UDT_INFO])

2.25.7 Encryption Key Rule Definition

The EK_INFO rule applies to messages that have encrypted values and describes the encryption key
information. The encryption key information includes the various encryption key values that are

obtained by securing an encryption key by using different master keys. This rule applies only if the

column encryption f eature is negotiated by the client and the server and is turned ON.

Count = BYTE
EncryptedKey = US_VARBYTE
KeyStoreName = B_VARCHAR

49 | 220

[MS -TDS-Diff] - v20201001

Tabular Data Stream Protocol
Copyright © 2020 Microsoft Corporation
Release: October 1, 2020

KeyPath = US_VARCHAR
AsymmetricAlgo = B_VARCHAR
EncryptionKeyValue = EncryptedKey
KeyStoreName
KeyPath
AsymmetricAlgo
Databaseld = ULONG
Cekld = ULONG
CekVersion = ULONG
CekMDVersion = ULONGLONG
EK_INFO = Databaseld
Cekld
CekVersion
CekMDVersion
Count
*Encry ptionKeyValue
Parameter Description
Count The count of EncryptionKeyValue elements that are present in the message.
EncryptedKey The ciphertext containing the encryption key that is secured with the master.
KeyStoreName The key store name component of the location where the master key is saved.
KeyPath The key path component of the location where the master key is saved.
AsymmetricAlgo The name of the algorithm that is used for encrypting the encryption key.
EncryptionKeyValue The metada ta and encrypted value that describe an encryption key. This is enough
information to allow retrieval of plaintext encryption keys.
Databaseld A 4 -byte integer value that represents the database ID where the column encryption key is
stored.
Cekld An identifier for the column encryption key.
CekVersion The key version of the column encryption key.
CekMDVersion The metadata version for the column encryption key.
2.25.8 (Updated Section) Data Packet Stream Tokens

The tokens defined as follows are used as part of the token
each token is used inside the data stream are in section 2.2.6.

ALTMETADATA_TOKEN = %x88
ALTROW_TOKEN = %xD3
COLMETADATA_TOKEN = %x81
COLINFO_TOKEN = %xA5

DATACLASSIFICATION_TOKEN = %xA3 : (introduced in TDS 7.4)

DONE_TOKEN = %XxFD
DONEPROC_TOKEN = %xFE
DONEINPROC_TOKEN = %xFF

-based data stre am. Details about how

[MS -TDS-Diff] - v20201001

Tabular Data Stream Protocol
Copyright © 2020 Microsoft Corporation
Release: October 1, 2020

50 / 220

ENVCHANGE_TOKEN = 9%XxE3

ERROR_TOKEN = %xAA

FEATUREEXTACK_TOKEN = %XxAE ; (introduced in TDS 7.4)
FEDAUTHINFO_TOKEN = %XEE ; (introduced in TDS 7.4)
INFO_TOKEN = %xAB

LOGINACK_TOKEN = %xAD

NBCROW_TOKEN = %xD2 ; (introduced in TDS 7.3)
OFFSET_TOKEN = %Xx78

ORDR_TOKEN = %xA9

RETURNSTATUS_TOKEN = %x79
RETURNVALUE_TOKEN = %XxAC

ROW_TOKEN = %xD1

SESSIONSTATE_TOKEN = %XE4 ; (introduced in TDS 7.4)
SSPI_TOKEN = %XxED

TABNAME_TOKEN = Y%oxA4

2.2.6 Packet Header Message Type Stream Definition

2.2.6.1 (Updated Section) Bulk Load BCP

Stream Name:

BulkLoadBCP

Stream Function:

Describes the format of bulk -loaded data through the "INSERT BULK" T-SQL statement. The format

is a COLMETADATA token describing the data bein g sent, followed by multiple ROW tokens, ending
with a DONE token. The stream is equivalent to that produced by the server if it were sending the
same rowset on output.

Stream Comments:
A Packet header type is 0x07.

A This message sent to the server contains b ulk data to be inserted. The client MUST have
previously notified the server where this data is to be inserted. For more information about the
INSERT BULK syntax, see [MSDN -INSERT].

A A sample BulkLoadBCP message is in section 4.12.

Stream - Specific Rules:

BulkLoad_METADATA = COLMETADATA EFelds

BulkLoad ROW = R_’OW [TOKEN

BukLoad DONE = DONE MEeYes
Submessage Definition:

BulkLoadBCP = BulkLoad_METADATA

*BulkLoad_ROW
BulkLoad_DONE

Note that for INSERT BULK operations, XMLTYPE is to be sent as NVARCHAR(N) or NVARCHAR(MAX)
data type. An error is produced if XMLTYPE is specified.

[MS -TDS-Diff] - v20201001

Tabular Data Stream Protocol
Copyright © 2020 Microsoft Corporation
Release: October 1, 2020

51 / 220

INSERT BULK operations for data type UDTTYPE is not supported. Use VA RBINARYTYPE to insert
instances of User Defined Types.

INSERT BULK operations do not support type specifications of DECIMALTYPE and NUMERICTYPE. To
insert these data types, use v =@ AVENIREES and NUMERICNTYPE.

2.2.6.2 Bulk Load Update Text/Write Text

Stream Name:

BulkLoadUTWT

Stream Function:

Describes the format of bulk -loaded dat a with UpdateText or WriteText. The format is the length of
the data followed by the data itself.

Stream Comments:
A Packet header type 0x07.

A This message sent to the server contains bulk data to be inserted. The client MUST have
previously issued a "UPDATET EXT BULK" or "WRITETEXT BULK" T-SQL statement to the
server. For information about the UPDATETEXT BULK and WRITETEXT BULK syntax, see [MSDN
UPDATETEXT] and [MSDN -WRITETEXT], respectively.

A The server returns a RETURNVALUE token containing the new timestamp for this column.

Stream - Specific Rules:

BulkData = L_VARBYTE

Sub Message Definition:

BulkLoadUTWT = BulkData

Stream Parameter Details

Parameter Description

BulkData Contains the BulkData length and BulkData data within the L_VARBYTE.

2.2.6.3 Federated Authentication Token

Stream Name:

FEDAUTH

Stream Function:

An authentication token for federated authentication.<16>

[MS -TDS-Diff] - v20201001

Tabular Data Stream Protocol
Copyright © 2020 Microsoft Corporation
Release: October 1, 2020

52 / 220

Stream Comments:

A Packet header type 0x08.
is supported by the server, and any other information, as laid out in the rules for the particular
bFedAuthLibrary that is indicated in the FEDAUTH FeatureExt in the Login message.

A The server MUST respond with a Login Response message or an error.

Stream - Specific Rules:

DatalLen = DWORD
FedAuthToken =L_VARBYTE
Nonce =32BYTE

Stream Definition:

Stream is defined based on the bFedAuthLibrary that is used in Login message FEDAUTH FeatureExt.
This message MUST not be sent for any values of bFedAuthLibrary that are not listed in this section.

When bFedAuthLibrary is Active Directory Authentication Library (ADAL) [that is, 0x02]:

A This stream contains the clientds f ededbyatledlibrarythdtent i cati on

FEDAUTH = DatalLen
FedAuthToken
[Nonce]
Stream Parameter Details
Parameter Description
DatalLen The total length of the data in the Federated Authentication Token message that follows this
field. DatalLen does not include the size that is used for the DataLen field itself.

FedAuthToken Contains the federated authentication token data that is generated by the federated

authentication library. The federated authentication library that is used to generate the token

MUST be the samelibrary t hat i s specified as bFedAuthLibrary
FeatureExt message.

Nonce The nonce, if provided by the server during the pre -login exchange, that is echoed back to the
server by the client. If the server provided a nonce in the pre -login exchange, the client MUST
echo the nonce back to the server in this field. If the server did not provide a nonce to the client

in the pre -login exchange, this field MUST NOT be included in the stream.

2264 LOGIN7

Stream Name:

LOGIN7

Stream Function:

Defines the authentication rules for use between client and server.

53 / 220

[MS -TDS-Diff] - v20201001

Tabular Data Stream Protocol
Copyright © 2020 Microsoft Corporation
Release: October 1, 2020

Stream Comments:

A

p>N

p>N

Packet header type 0x10.
The length of a LOGIN7 stream MUST NOT be longer than 128K -1(byte) bytes.
The OffsetLength and Data rules define the variable -length portions of this data stream. The

OffsetLength rule lists the offset from the start of the structure, and the length for each
parameter. If the parameter is not used, the parameter length field MUST be 0. The data itself (for
example, the Data rule) follows these parameters.

The first parameter of the OffsetLength rule (ibHostName) indicates the start of the variable
length portion of thisda ta stream. As such it MUST NOT be 0. This is required for forward
compatibility (for example, later versions of TDS, with additional parameters, can be successfully
skipped by down -level servers).

A sample LOGIN7 message is in section 4.2.

Stream -Specific Rules:

Length = DWORD
TDSVersion = DWORD
PacketSize = DWORD
ClientProgVer = DWORD
ClientPID = DWORD
ConnectionID = DWORD
fByteorder = BIT
fChar = BIT
fFloat = 2BIT
fDumpLoad = BIT
fUseDB = BIT
fDatabase = BIT
fSetLang = BIT
OptionFlagsl = fByteorder
fChar
fFloat
fDumpLoad
fUseDB
fDatabase
fSetLang
fLanguage = BIT
fODBC = BIT
fTranBoundary = BIT ; (removed in TDS 7.2)
fCacheConnect = BIT ; (removed in TDS 7.2)
fUserType = 3BIT
fIntSecurity = BIT
OptionFlags2 = fLanguage
fODBC
(fTransBoundary / FRESERVEDBIT)
(fCacheConnect / FRESERVEDBIT)
fUserType
fIntSecurity
fSQLType = 4BIT
fOLEDB = BIT ; (introduced in TDS 7.2)
fReadOnlyIntent = BIT ; (introduced in TDS 7.4)
TypeFlags = fSQLType
(FRESERVEDBIT / fOLEDB)

(FRESERVEDBIT / fReadOnlyintent)
2FRESERVEDBIT

[MS -TDS-Diff] - v20201001

Tabular Data Stream Protocol
Copyright © 2020 Microsoft Corporation
Release: October 1, 2020

54 | 220

fChangePassword

fUserlnstance

fSendYukonBinaryXML = BIT
fUnknownCollationHandling = BIT
fExtension

OptionFlags3

= BIT ; (introduced in TDS 7.2)
= BIT ; (introduced in TDS 7.2)
; (introduced in TDS 7.2)
; (introduced in TDS 7.3)
= BIT ; (introduced in TDS 7.4)

= (FRESERVEDBIT / fChangePassword)
(FRESERVEDBIT / fSendYukonBinaryXML)
(FRESERVEDBIT / fUserlnstance)

(FRESERVEDBIT / fUnknownCollationHandlin 9)
(FRESERVEDBIT / fExtension)
3FRESERVEDBIT

ClientTimeZone = LONG;

ClientLCID = LCID
ColFlags
Version

ibHostName = USHORT

cchHostName = USHORT

ibUserName = USHORT

cchUserName = USHORT

ibPassword = USHORT

cchPassword = USHORT

ibAppName = USHORT

cchA ppName = USHORT

ibServerName = USHORT

cchServerName = USHORT

ibUnused = USHORT

cbUnused = USHORT

ibExtension = USHORT ; (introduced in TDS 7.4)

cbExtension = USHORT ; (introduced in TDS 7.4)

ibCltIntName = USHORT

cchCltintName = USHORT

ibLanguage = USHORT

cchLanguage = USHORT

ibDatabase = USHORT

cchDat abase = USHORT

ClientID = 6BYTE

ibSSPI = USHORT

chSSPI = USHORT

ibAtchDBFile = USHORT

cchAtchDBFile = USHORT

ibChangePassword = USHORT i (introduced in TDS 7.2)

cchChangePassword = USHORT ; (introduced in TDS 7.2)

cbSSPILong = DWORD ; (introduced in TDS 7.2)

OffsetLength = ibHostName
cchHostName
ibUserName
cchUserName
ibPassword
cchPassword
ibAppName
cchAppName
ibServerName
cchServerName

(ibUnused / ibExtension)
(cchUnused / cbExtension)
ibCltin ~ tName
cchCltintName
ibLanguage
cchLanguage
ibDatabase
cchDatabase

ClientID

ibSSPI

cbSSPI

ibAtchDBFile
cchAtchDBFile

[MS -TDS-Diff] - v20201001

Tabular Data Stream Protocol
Copyright © 2020 Microsoft Corporation
Release: October 1, 2020

55 / 220

ibChangePassword
cchChangePassword
cbSSPILong

Note The ClientLCID value is no longer used to set language parameters and is ignored.

All variable -length fields in the login record are optional. This means that the length of the field can be

specified as 0. If the length is specified as 0, then the offset MUST be ignored. The only exception is

ibHostName, which MUST always point to the beginning of the variable -length data in the login record
even in the case where no variable -length data is included.
Data = *BYTE
Featureld = BYTE ; (introduced in TDS 7.4)
FeatureDatalen = DWORD ; (introduced in TDS 7.4)
FeatureData = *BYTE ; (introduced in TDS 7.4)
TERMINATOR = %xFF ; signal of end of feature option
FeatureOpt = (Featureld
FeatureDatalLen
FeatureData)
/
TERMINATOR
FeatureExt = 1*FeatureOpt ; (introduced in TDS 7.4)

Stream Definition:

LOGIN7 = Length
TDSVersion
PacketSize
ClientProgVer
ClientPID
ConnectionlD
OptionFlagsl
OptionFlags2
TypeFlags
(FRESERVEDBYTE / OptionFlags3)
ClientTimeZone

ClientLCID
OffsetLength
Data
[FeatureExt]
Stream Parameter Details

Parameter Description

Length The total length of the LOGIN7 structure.

TDSVersion The highest TDS version being used by the client (for example, 0x00000071 for TDS 7.1). If

the TDSVersion value sent by the client is greater than the value that the server recognize
the server MUST use the highest TDS version that it can use. This provides a mechanism for

MUST use the TDS version sent by the client.<17>

For information about what the server sends to the client, see the LOGINACK token.

clients to discover the server TDS by sending a standard LOGIN7 message. If the TDSVersion
value sent by the client is lower than the highest TDS version the serv er recognizes, the server

PacketSize The packet size being requested by the client.

[MS -TDS-Diff] - v20201001

Tabular Data Stream Protocol
Copyright © 2020 Microsoft Corporation
Release: October 1, 2020

56 / 220

Parameter

Description

ClientProgVer

The version of the interface library (for example, ODBC or OLEDB) being used by the client.

ClientPID

The process ID of the client application.

ConnectionID

The connection ID of the primary Server. Used when connecting to an "Always Up" backup
server.

OptionFlags1 A Represe nted in least significant bit order.

A fByteOrder: The byte order used by client for numeric and datetime data types.
A 0=ORDER_X86
A 1=ORDER_68000<18>

A fChar: The character set used on the client.
A 0=CHARSET_ASCII
A 1=CHARSET_EBCDIC

A fFloat: The type of floating point representation used by the client.<19>
A 0=FLOAT_IEEE_754
A 1=FLOAT_VAX
A 2=ND5000

A fDumpLoad: Set is dump/load or BCP capabilities are needed by the client.
A 0=DUMPLOAD_ON
A 1=DUMPLOAD_OFF

A fUseDB: Set if the client requires warning messages on execution of the USE SQL
statement. If this flag is not set, the server MUST NOT inform the client when the database
changes, and therefore the client will be unaware of any accompanying collation changes.
A 0=USE_DB_OFF
A 1=USE_DB_ON

A fDatabase : Set if the change to initial database needs to succeed if the connection is to
succeed.
A 0=INIT_DB_WARN
A 1=INIT_DB_FATAL

A fSetLang: Set if the client requires warning messages on execution of a language change
statement.
A 0=SET_LANG_OFF
A 1=SET_LANG_ON

OptionFlags2

A Represented in least significant bit order.

A fLanguage: Set if the change to initial language needs to succeed if the connect is to
succeed.

[MS -TDS-Diff] - v20201001

Tabular Data Stream Protocol
Copyright © 2020 Microsoft Corporation
Release: October 1, 2020

57 / 220

Parameter Description

A 0=INIT_LANG_WARN
A 1=INIT_LANG_FATAL
A fODBC: Set if the client is the ODBC driver. This causes the s erver to set ANSI_DEFAULTS
to ON, CURSOR_CLOSE_ON_COMMIT and IMPLICIT_TRANSACTIONS to OFF, TEXTSIZE to
0x7FFFFFFF (2GB) (TDS 7.2 and earlier), TEXTSIZE to infinite (introduced in TDS 7.3), and
ROWCOUNT to infinite.<20>
A 0= ODBC_OFF
A 1=0DBC_ON
A fTransBoundary
A fCacheConnect
A fUserType: The type of user connecting to the server.
A 0=USER_NORMAL & regular logins
A 1=USER_SERVER 38 reserved
A 2=USER_REMUSER & Distributed Query login
A 3=USER_SQLREPL 8 replication login
A fIntSecurity: The type of security requir ed by the client.

A 0=INTEGRATED_SECURTY_OFF

A 1=INTEGRATED_SECURITY_ON

TypeFlags .
yp g A Represented in least significant bit order.
A fSQLType: The type of SQL the client sends to the server.
A 0=SQL_DFLT
A 1=SQL_TSQL
A fOLEDB: Set if the client is the OLEDB driver . This causes the server to set
ANSI_DEFAULTS to ON, CURSOR_CLOSE_ON_COMMIT and IMPLICIT_TRANSACTIONS to
OFF, TEXTSIZE to OX7FFFFFFF (2GB) (TDS 7.2 and earlier), TEXTSIZE to infinite
(introduced in TDS 7.3), and ROWCOUNT to infinite.<21>
A 0=OLEDB_OFF
A 1= OLEDB_ON
A fReadOnlylntent: This bit was introduced in TDS 7.4; however, TDS 7.1, 7.2, and 7.3
clients can also use this bit in LOGIN7 to specify that the application intent of the
connection isread -only. The server SHOULD ignore this bit if the highest TD S version
supported by the server is lower than TDS 7.4.
OptionFlags3

A Represented in least significant bit order.
A fChangePassword: Specifies whether the login request SHOULD change password.

A 0= No change request. ibChangePassword MUST be 0.

58 / 220

[MS -TDS-Diff] - v20201001

Tabular Data Stream Protocol
Copyright © 2020 Microsoft Corporation
Release: October 1, 2020

Parameter Description

A 1= Request to change login's password.
A fSendYukonBinaryXML: 1 if XML data type instances are returned as binary XML.<22>
A fUserInstance: 1 if client is requesting separate process to be spawned as user instance.

A fUnknownCollationHandling: This bit is used by t he server to determine if a client is able to
properly handle collations introduced after TDS 7.2. TDS 7.2 and earlier clients are
encouraged to use this login packet bit. Servers MUST ignore this bit when it is sent by
TDS 7.3 or 7.4 clients. See [MSDN -SQLCollation] and [MS -LCID] for the complete list of
collations for a database server that supports SQL and LCIDs.

A 0= The server MUST restrict the collations sent to a specific set of collations. It MAY
disconnect or send an error if some other value is out side the specific collation set.
The client MUST properly support all collations within the collation set.

A 1= The server MAY send any collation that fits in the storage space. The client MUST
be able to both properly support collations and gracefully fail for those it does not
support.

A fExtension: Specifies whether ibExtension/cbExtension fields are used.

A 0= ibExtension/cbExtension fields are not used. The fields are treated the same as
ibUnused/cchUnused.

A 1 = ibExtension/cbExtension fields are used.

ClientTimeZone This field is not used and can be set to zero.
ClientLCID The language code identifier (LCID) value for the client collation. If ClientLCID is specified, the
specified collation is set as the session collation. Note that the total ClientLCID is 4 bytes,

which implies that there is no support for SQL Sort orders.

OffsetLength The variable portion of this message. A stream of bytes in the order shown, indicates the offset
(from the start of the message) and length of various paramete rs:

ibHostname & cchHostName: The client machine name.
ibUserName & cchUserName: The client user ID.

ibPassword & cchPassword: The password supplied by the client.
ibAppName & cchAppName: The client application name.
ibServerName & cchServerName: The serve r name.

ibUnused & cbUnused: These parameters were reserved until TDS 7.4.

> > > > > > >

ibExtension & cbExtension: This points to an extension block. Introduced in TDS 7.4 when
fExtension is 1. The content pointed by ibExtension is defined as follows:

ibFeatureExtLong = DWORD
Extension = ibFeatureExtLong

ibFeatureExtLong provides the offset (from the start of the message) of FeatureExt block.
ibFeatureExtLong MUST be 0 if FeatureExt block does not exist.

Extension block can be extended in future. The clie nt MUST NOT send more data than
needed. The server SHOULD ignore any appended data that is unknown to the server.

A ibCltintName & cchCltintName: The interface library name (ODBC or OLEDB).

59 / 220

[MS -TDS-Diff] - v20201001

Tabular Data Stream Protocol
Copyright © 2020 Microsoft Corporation
Release: October 1, 2020

Parameter Description
A ibLanguage & cchLanguage: The initial language (overrides the user | D's default
language).

A ibDatabase & cchDatabase: The initial database (overrides the user ID's default database).

A ClientID: The unique client ID (created by using the NIC address). ClientID is the MAC
address of the physical network layer. It is used to identify the client that is connecting to
the server. This value is mainly informational, and no processing steps on the server side
use it.

A ibSSPI & cbSSPI: SSPI data.

If cbSSPI < USHORT_MAX, then this length MUST be used for SSPI and cbSSPILong
MUST be ignored.

If cbSSPI == USHORT_MAX, then cbSSPILong MUST be checked.

If cbSSPILong > 0, then that value MUST be used. | f cbSSPILong ==0, then chSSPI
(USHORT_MAX) MUST be used.

A ibAtchDBFile & cchAtchDBFile: The file name for a database that is to be attached during
the connection process.

A ibChangePassword & cchChangePassword: New password for the specified login.
Introduced in TDS 7.2.

A cbSSPILong: Used for large SSPI data when cbSSPI==USHORT_MAX.
Introduced in TDS 7.2.

Data The actual variable -length data portion referred to by OffsetLength.
Featureld The unique identifier number of a feature. The available features are d escribed in the following
table.
Introduced in TDS 7.4.
FeatureDatalen The length, in bytes, of FeatureData for the corresponding Featureld.
Introduced in TDS 7.4.
FeatureData Data of the feature. Each feature defines its own data format.
The data for existing features are defined in the following table.
Introduced in TDS 7.4.
FeatureExt The data block that can be used to inform and/or negotiate features between client and server.

It contains data for one or more optional features. Each feature is assi gned an identifier,

foll owed by data | ength and data. The data for ea
logic. If the server does not support the specific feature, it MUST skip the feature data and

jump to next feature. If needed, each feature SHOU LD have its own logic to detect whether the

server accepts the feature option.

Optionally, a feature can use a FEATUREEXTACK token to acknowledge the feature along with
LOGINACK. The detailed acknowledge data SHOULD be defined by the feature itself.

Introd uced in TDS 7.4.

The following table defines the options that are available in FeatureExt.

Featureld FeatureData Description

%0x01 Session Recovery feature. This feature is used to recover the session state of a
(SESSIONRECOVERY) previous connection. Content is defined as follows:

(introduced in TDS 7.4) Length = DWORD

60 / 220

[MS -TDS-Diff] - v20201001

Tabular Data Stream Protocol
Copyright © 2020 Microsoft Corporation
Release: October 1, 2020

Featureld

FeatureData Description

RecoveryDatabase = B_VARCHAR
RecoveryCollation = BYTELEN [COLLATION]
RecoveryLanguage = B_VARCHAR
SessionRecoveryData = Length
RecoveryDatabase
RecoveryCollation
RecoveryLanguage

SessionStateDataSet

InitSessionRecoveryData = SessionRecoveryData
SessionRecoveryDataToB e = SessionRecoveryData

FeatureData = [InitSessionRecoveryData
SessionRecoveryDataToBe]

The Length field is the length, in bytes, of SessionRecoveryData excluding the
Length field itself. SessionStateDataSet is described in section 2.2.7.21. The
len gth of SessionStateDataSet can be derived from the Length field and the
length of RecoveryDatabase, RecoveryCollation, and RecoveryLanguage. The
maximum length for RecoveryDatabase and RecoveryLanguage is 128 Unicode
characters.

There are two sets of Sessi onRecoveryData. The data for the first set,
InitSessionRecoveryData, SHOULD come from the initial login response data of
the initial connection to be recovered, specifically, the
Database/Collation/Language ENVCHANGE data and SessionStateDataSet in
Feature ExtAck.

Data for the second set, SessionRecoveryDataToBe, SHOULD come from the
latest ENVCHANGE for Database/Collation/Language from the connection to be
recovered and the latest data for each Stateld in SessionStateData from the
connection to be recovered . If login succeeded on this recovery connection, the
session state of the connection MUST be set to SessionRecoveryDataToBe. To
save space, if data for

RecoveryDatabase/RecoveryCollation/RecoveryLanguage in
SessionRecoveryDataToBe is the same as data in | nitSessionRecoveryData, the
length value of each field SHOULD be 0. If data for any session Stateld is
unchanged from InitSessionRecoveryData, the corresponding Stateld data
SHOULD be skipped in SessionRecoveryDataToBe.

When this feature option is received and the server supports connection
recovery, a FEATUREEXTACK token that contains data for SESSIONRECOVERY
feature MUST be returned along with LOGINACK in the login response to

indicate that the server supports the feature. If SESSIONRECOVERY is not
acknow ledged in the login response, the server does not support the feature

and the client MUST disable the feature for this connection.

The client can request this feature option with zero FeatureDatalLen. This is
used during login for the initial connection to indicate that the client prefers
this feature.

When the client sends this feature option with non -zero FeatureDatalen during
login, the option data SHOULD come from a previous connection. The TDS

version in the login request MUST be the same as the TDS ver sion negotiated
for the connection to be recovered. The server MUST return the same TDS

version in the login response, and if not, the client MUST disconnect the

connection and raise an error to the upper layer.

If a login record with non -zero FeatureDataL en of this feature is received and
the server supports this feature, the server MUST:

A Force TDS version negotiation to use the TDS version requested by the
client, and fail the login if the requested TDS version is not known to the
server, for example,a T DS version that is later than the highest one

[MS -TDS-Diff] - v20201001

Tabular Data Stream Protocol
Copyright © 2020 Microsoft Corporation
Release: October 1, 2020

61 / 220

Featureld

FeatureData Description

currently on the server.

A Validate the content in SessionRecoveryData, and fail the login if any data
is invalid or any unknown session state exists.

After the feature is negotiated to be enabled, the server SHOULD send session
state updates to the client via a SESSIONSTATE token during the lifetime of

the connection. The client MUST track the initial session state data and the

latest session state data . Session state data is updated via a SESSIONSTATE
token incrementally.

When a client requests RESETCONNECTION/RESETCONNECTIONSKIPTRAN and
the server acknowledges the request, both client and server MUST update the
baseline of the session state data to be the same as the initial state as defined
by InitSessionRecoveryData, and any further state update SHOULD be on top

of the initial state.

Session state data can be used to recover a dead connection as defined by
SessionRecoveryData. The client SHOULD try to recover a dead connection if
the latest fRecovery bit is TRUE for all Stateld that were received from the

server. The client MUST NOT try to recover a dead connection if the any latest
fRecovery bit is FALSE.

%0x02
(FEDAUTH)<23>
(introduced in TDS 7.4)

The presence of the FEDAUTH FeatureExt indicates that the client is
authenticating by federated authentication. If the FEDAUTH Featureld is
present, the value of fIntSecurity MUST be 0. The format of the data is as
described below based on the bFedAuthLibra ry that is used.

bFedAuthLibrary = Ox7F is a reserved value.
When the bFedAuthLibrary is Live ID Compact Token, the format is as follows:

bFedAuthLibrary =7BIT

fFedAuthEcho =BIT
Options = bFedAuthLibrary
fFedA uthEcho
FedAuthToken =L_VARBYTE
Nonce =32BYTE
ChannelBindingToken = BYTESTREAM
Signature =32BYTE
SignedData = Nonce
[ChannelBindingToken]
Signature
FeatureData = Options
FedAuthToken
SignedData
bFedAuthLibrary: 7 bits, collectively treated as a 7 -bit unsigned integer,
indicating the library that is used by the client for federated authentication.

0x00 = Live ID Compact Token. The format of the Live ID Compact Token and
the way in which the Live ID Compact Token is obtained are out of the scope
of this document.

fFedAuthEcho: The intention of this flag is for the client to echo the ¢
FEDAUTHREQUIRED prelogin option, so that the server can validate that the

response was not tampered with. The client MUST assign this flag to 1 if and

only if the serverds PRELOGI N response co
with a B_ FEDAUTHREQUIRED value of 0x01.

FedAuthToken: The binary authentication token generated by the specified
federated authentication library. The length of FedAuthToken MUST NOT be 0.

Nonce: The nonce provided by the server during the pre -login exchange,

[MS -TDS-Diff] - v20201001

Tabular Data Stream Protocol
Copyright © 2020 Microsoft Corporation
Release: October 1, 2020

62 / 220

Featureld

FeatureData Description

echoe d back to the server by the client.

ChannelBindingToken: This optional field MAY be omitted, but if encryption is

being used for the lifetime of the TDS connection and the client is able to

generate a channel binding token, the field SHOULD be included in the
payload. When present, ChannelBindingToken contains the channel binding

token associated with the underlying SSL stream.

Signature: The HMAC -SHA-256 [RFC6234] hash of the server - specified nonce
and, if it is present in the FeatureData, the ChannelBindi ngToken, is generated
by using the session key retrieved from the federated authentication context

as the shared secret.

The length of the ChannelBindingToken field is not explicitly conveyed in the

protocol but can be determined by comparing the FeatureDa taLen against the
length of the remainder of the feature data, which is explicitly transmitted in

the protocol.

When bFedAuthLibrary is Security Token, the format is as follows:

bFedAuthLibrary = 7BIT

fFedAuthEcho =BIT
Options = bFe dAuthLibrary
fFedAuthEcho
FedAuthToken =L_VARBYTE
Nonce =32BYTE
OtherData = Nonce
FeatureData = Options
FedAuthToken
[OtherData]
bFedAuthLibrary: 7 bits, collectively treated as a 7 - bit unsigned integer,
indicating the library that is used by the client for federated authentication.
0x01 = Security Token. The format of the token and the way in which this

token is obtained are out of the scope of this document.

f FedAut hEcho: The intention of this flag
FEDAUTHREQUIRED prelogin option, so that the server can validate that the

response was not tampered with. The cli ent MUST assign this flag to 1 if and

only if the serverds PRELOGIN response co
with a B_ FEDAUTHREQUIRED value of 0x01.

FedAuthToken: The binary authentication token generated by the specified

federated authentication librar y. The length of FedAuthToken MUST NOT be 0.

Nonce: The nonce provided by the server during the Prelogin exchange and
echoed back to the server by the client. This field MUST be present if the

serverd6s PRELOGI N message incl udedisfield NONC
MUST NOT be present.

When bFedAuthLibrary is Active Directory Authentication Library (ADAL) [that
is, 0x02], the format is as follows:

bFedAuthLibrary = 7BIT

fFedAuthEcho =BIT
Workflow =BYTE
Options = bFedAuthLi brary
fFedAuthEcho
Workflow
bFedAuthLibrary: 7 bits, collectively treated as a 7 -bit unsigned integer that

indicates the library that is used by the client for federated authentication.
0x02 = ADAL. After the cli ent establishes the intent to use ADAL, for which

[MS -TDS-Diff] - v20201001

Tabular Data Stream Protocol
Copyright © 2020 Microsoft Corporation
Release: October 1, 2020

63 / 220

Featureld

FeatureData Description

additional information is required by the client to generate a token, the server
MUST respond with the Federated Authentication Information token to the
client with "FedAuthinfolDs: STSURL, SPN".

fFedAuthEcho: The intention of this flag is
FEDAUTHREQUIRED pre -login option so that the server can validate that the
response was not tampered with. The client MUST assign this flag to 1 if and

only if the server s cdtRiisla BEDPAWNHREQUIRED option
with a B_FEDAUTHREQUIRED value of 0x01.

Workflow: Indicates the ADAL (that is, 0x02) workflow that is being used.

0x01 = Username/password. A username and password are passed to ADAL to

retrieve a token.
0x02 = Integra ted. A Windows identity is passed to ADAL to retrieve a token.

All other values of bFedAuthLibrary are reserved.

f

%0x04
(COLUMNENCRYPTION)
(introduced in TDS 7.4)

The presence of the COLUMNENCRYPTION FeatureExt indicates that the client

SHOULD<24> be capable of performing cryptographic operations on data. The

feature data are described as follows:
COLUMNENCRYPTION_VERSION =BYTE

FeatureData = COLUMNENCRYPTION_VERSION

COLUMNENCRYPTION_VERSION: This field describest he cryptographic
protocol version that the client understands. The values of this field are as
follows:

A 1= The client supports column encryption without enclave computations.

A 2= The client SHOULD<25> support column encryption when encrypted
data require enclave computations.

%0x05
(GLOBALTRANSACTIONS)<26>
(introduced in TDS 7.4)

The presence of the GLOBALTRANSACTIONS FeatureExt indicates that the
client is capable of performing Global Transactions. The feature data is
described as follows:

FeatureData = NO DATA

NO DATA: No feature data is sent with the GLOBALTRANSACTIONS FeatureExt.

%0x08
(AZURESQLSUPPORT)
(introduced in TDS 7.4)

The presence of the AZURESQLSUPPORT FeatureExt indicates whether the

client MAY<27> support failover partner login with read -only intent in Azure
SQL Database. For information about failover partner, see [MSDOCS -
DBMirror].

The feature data is described as follows:

FeatureData =BYTE

BYTE: The Bit O flag specifies whether failover partner
intent is supported. The values of this BYTE are as follows:

login with read -only

A 0= The server does not support the AZURESQLSUPPORT feature
extension.

A 1= The server supports the AZURESQLSUPPORT feature extension.

%0x09

The DATACLASSIFICATION FeatureExt SHOULD<28> indicate that the client is
capable of accepting data classification information about a query result set.

[MS -TDS-Diff] - v20201001
Tabular Data Stream Protocol

Copyright © 2020 Microsoft Corporation

Release: October 1, 2020

64 / 220

Featureld

FeatureData Description

(DATACLASSIFICATION)
(introduced in TDS 7.4)

The feature data is described as follows:

DATACLASSIFICATION_VERSION =BYTE

FeatureData = DATACLASSIFICATION_VERSION

VersionSpecificData

DATACLASSIFICATION_VERSION: This field specifies the maximum version
number of the DATACLASSIFICATION token that the client can support. This
value MUST be one of the following:

A 1= The server does not send sensitivity -rank data as part of the
DATACLASSIFICATION token.

A 2= The server sends sensitivity -rank data as part of the
DATACLASSIFICATION token.

VersionSpecificData: This field specifies the version -specific data that is
required for the DATACLASSIFICATION feature extension request. The values
of this field are as follows.

When the value of the DATACLASSIFICATION_VERSION field is 1 or 2, there is
no version -specific data.

%0x0A
(UTF8_SUPPORT)
(introduced in TDS 7.4)

The presence of the UTF8_SUPPORT FeaturekE

ability to send and receive UTF -8 encoded data SHOULD<29> be supported.
The feature data is described as follows:

FeatureData =BYTE

BYTE: The Bit O flag specifies whether the client supports UTF -8 data. The

values of this BYTE are as follows:
A 0= The client does not support UTF -8 encoded data.

A 1=The client supports UTF -8 encoded data.

Failure of the client to receive an ac knowledgement of UTF -8 feature extension

support from the server indicates that the server cannot send or receive UTF -8
encoded data.
%0x0B The presence of the AZURESQLDNSCACHING FeatureExt indicates whethe r the
(AZURESQLDNSCACHING)<30> cl i e_nt h‘a_s F_he _abl | |_t_ y t 0 store the mappi
introduced i application domain, identified by its fully qualified domain name (FQDN), and
(introduced in TDS 7.4) the equivalent I P address in the clientés
The feature data is described as follows:
FeatureData = NO DATA
NO DATA: No feature data is sent with the AZURESQLDNSCACHING
FeatureExt. The presence of this FeatureExt token indicates to the server that
the client can support the feature.
%XFF This option signals the end of the FeatureExt feature and MUST be the
(TERMINATOR) featureds |l ast option.
Login Data Validation Rules
cchHostName MUST specify at most 128 Unicode characters.
65 / 220

[MS -TDS-Diff] - v20201001

Tabular Data Stream Protocol
Copyright © 2020 Microsoft Corporation
Release: October 1, 2020

cchUserName MUST specify at most 128 Unicode characters.
cchPassword MUST specify at most 128 Unicode characters.
cchAppName MUST specify at most 128 Unicode characters.
cchServerName MUST specify at most 128 Unicode characters.
cbExtension MUST NOT exceed 255 bytes.

cchCltintName MUST specify at most 128 Unicode characters.
cchLanguage MUST specify at most 128 Unicode characters.
cchDatabase MUST specify at most 128 Unicode characters.
cchAtchDBFile MUST specify at most 260 Unicode characters.
cchChangePassword MUST specify at most 128 Unicode characters.

The value at ibUserName 9 if spe cified 8 is semantically enclosed in brackets ([]) and MUST conform to
the rules for valid delimited object identifiers. Login MUST fail otherwise.

The value at ibDatabase & if specified & is semantically enclosed in brackets ([]) and MUST conform to
the rules f or valid delimited object identifiers. Login MUST fail otherwise.

Before submitting a password from the client to the server, for every byte in the password buffer

starting with the position pointed to by ibPassword or ibChangePassword, the client SHOULD f irst swap
the four high bits with the four low bits and then do a bit - XOR with OxA5 (10100101). After reading a
submitted password, for every byte in the password buffer starting with the position pointed to by

ibPassword or ibChangePassword, the server SH OULD first do a bit -XOR with 0xA5 (10100101) and

then swap the four high bits with the four low bits.

2265 PRELOGIN

Stream Name:

PRELOGIN

Stream Function:

A message sent by the client to set up context for login. The server responds to a client PRELOGIN
message with a message of packet header type 0x04 and the packet data containing a PRELOGIN
structure.

This message streamis also used to wrap SSL handshake payload, if encryption is needed. In this
scenario, where PRELOGIN message is transporting the SSL handshake payload, the packet data is
simply the raw bytes of the SSL handshake payload.

Stream Comments:
A Packet header type 0x12.
A A sample PRELOGIN message is in section 4.1.

Stream - Specific Rules:

UL_VERSION = ULONG ; version of the sender

66 / 220

[MS -TDS-Diff] - v20201001

Tabular Data Stream Protocol
Copyright © 2020 Microsoft Corporation
Release: October 1, 2020

US_SUBBUILD = USHORT ; sub - build number of the sender

B_FENCRYPTION = BYTE

B_INSTVALIDITY = *BYTE %x00 ; name of the instance
; of the database server that supports SQL
; or just %x00

UL_THREADID = ULONG ; client application thread id

; used for debugging purposes
B_MARS = BYTE ; sender requests MARS support
GUID_CONNID = 16BYTE ; client application trace id

; us ed for debugging purposes

; introduced in TDS 7.4
GUID_ActivitylD = 16BYTE ; client application activity id

; used for debugging purposes

; introduced in TDS 7.4
ActivitySequence = ULONG ; client application activity sequence

; used for debugging purposes

; introduced in TDS 7.4
ACTIVITYID = GUID_ActivitylD ; client application activity id token

ActivitySequence ; used for debugging purposes

; introduced in TDS 7.4
B_FEDAUTHREQUIRED = BYTE ; authentication library requirement of the sender

; when using Integrated Authentication identity

; introduced in TDS 7.4

NONCE = 32BYTE ; nonce to be encrypted by using session key from

; federated authentication handshake
TERMINATOR = %xFF ; signals end of PRELOGIN message
PL_OPTION_DATA = *BYTE ; actual data for the option
PL_OFFSET = USHORT ; big endian
PL_OPTION_LENGTH = USHORT ; big endian
PL_OPTION_TOKEN = BYTE ; token value representing the option

PRELOGIN_OPTION = (PL_OPTION_TOKEN
PL_OFFSET
PL_OPTION_LENGTH)
/

TERMINATOR
SSL_PAYLOAD = *BYTE ; SSL hand shake raw payload
Stream Definition:
PRELOGIN = (*PRELOGIN_OPTION

*PL_OPTION_DATA)
/
SSL_PAYLOAD

PL_OPTION_TOKEN is described in the following table.

PL_OPTION_TOKEN Value Description

VERSION 0x00 PL_OPTION_DATA = UL_VERSION

US_SUBBUILD

and build number (2 bytes). It is represented in network byte order (big
endian).

On x86 platforms, UL_VERSION is prepared as follows:

US_BUILD = SwapBytes (VER_SQL_BUILD);

UL_VERSION is composed of major version (1 byte), minor version (1 byte),

[MS -TDS-Diff] - v20201001

Tabular Data Stream Protocol
Copyright © 2020 Microsoft Corporation
Release: October 1, 2020

67 / 220

PL_OPTION_TOKEN Value Description

UL_VERSION = ((US_BUILD <16>) / (VER_SQL_MINOR <8>) / (
VER_SQL_MAJOR))

SwapBytes is used to swap bytes. For example, SwapBytes(0x106A)=

0X6A10.
ENCRYPTION 001 | b OPTION_DATA = B_FENCRYPTION
INSTOPT 0x02 PL_OPTION_DATA = B_INSTVALIDITY
THREADID 0x03 | b OPTION_DATA = UL THREADID
This value SHOULD be empty when being sent from the server to the client.
MARS 0x04 PL_OPTION_DATA = B_MARS
A 0x00 = Off
A 0x01=0n
TRACEID 0x05

PL_OPTION_DATA = GUID_CONNID ACTIVITYID

Introduced in TDS 7.4.

FEDAUTHREQUIRED<31>
(V] QU 3 0x06 PL_OPTION_DATA = B_FEDAUTHREQUIRED

Introduced in TDS 7.4.

NONCEOPT 0x07 PL_OPTION_DATA = NONCE

The client MUST send this option if it expects to be able to use federated
authentication with Live ID Compact Token to authenticate to the server on
this connection.

If the server understands the NONCEOPT option and the client sends the
option, the server MUST respond with its own NONCEOPT.

TERMINATOR OxFF Termination token.

Notes

A PL_OPTION_TOKEN VERSION is a required token, and it MUST be the first token sent as part of
PRELOGIN. If this is not the case, the connection is closed by the server.

A TERMINATOR is a required token, and it MUST be the last token of PRELOGIN_OPTION.
TERMINATOR does not include length and bits specifying offset.

68 / 220

[MS -TDS-Diff] - v20201001

Tabular Data Stream Protocol
Copyright © 2020 Microsoft Corporation
Release: October 1, 2020

A If encryption is agreed upon during pre

immediately after the PRELOGIN packet. Then login proceeds. For more i

3.35.1.

-login, SSL negotiation between client and server happens
nformation, see section

A A PRELOGIN message wrapping the SSL_PAYLOAD will occur only after the initial PRELOGIN

message containing the PRELOGIN_OPTION and PL_OPTION_DATA information.

Encryption

During the Pre -Login handshake, the client and the ser

The encryption option values are as follows.

ver negotiate the wire encryption to be used.

(ENCRYPT_ON)
or

0x83
(ENCRYPT_REQ)

requested.

Setting Value Description

ENCRYPT_OFF 0x00 Encryption is available but off.

ENCRYPT_ON 0x01 Encryption is available and on.

ENCRYPT_NOT_SUP 0x02 Encryption is not available.

ENCRYPT_REQ 0x03 Encryption is required.

ENCRYPT_CLIENT_CERT | 0X80 Certificate -based authentication is requested by the client. The
(ENCRYPT_OFF) client certificate = SHOULD<32> be used to authenticate the user in
or place of username and password only in specific extensibility
OX81 scenarios where a loopback connection from an external script is

The client sends the server the value ENCRYPT_OFF, ENCRYPT_NOT_SUP, or
-based authentication by sending the value ENCRYPT_CLIENT_CERT with
ENCRYPT_OFF, ENCRYPT_ON, or ENCRYPT_REQ. The connection is terminated if the client sends

can also request certificate

ENCRYPT_CLIENT_CERT with ENCRYPT_NOT_SUP.

ENCRYPT_ON. The client

Depe nding upon whether the server has encryption available and enabled, the server responds with
an ENCRYPTION value in the response according to the following table.

Value sent by client

Value returned by
server when server is
set to ENCRYPT_OFF

Value returned by
server when server is
set to ENCRYPT_ON

Value returned by
server when server is
set to
ENCRYPT_NOT_SUP

ENCRYPT_OFF

ENCRYPT_OFF

ENCRYPT_REQ

ENCRYPT_NOT_SUP

ENCRYPT_ON

ENCRYPT_ON

ENCRYPT_ON

ENCRYPT_NOT_SUP
(connection terminated)

ENCRYPT_NOT_SUP

ENCRYPT_NOT_SUP

ENCRYPT_REQ
(connection terminated)

ENCRYPT_NOT_SUP

ENCRYPT_REQ

ENCRYPT_ON

ENCRYPT_ON

ENCRYPT_NOT_SUP
(connection terminated)

ENCRYPT_CLIENT_CERT |
ENCRYPT_OFF

ENCRYPT_OFF

ENCRYPT_REQ

ENCRYPT_NOT_SUP
(connection terminated)

ENCRYPT_CLIENT_CERT |
ENCRYPT_ON

ENCRYPT_ON

ENCRYPT_ON

ENCRYPT_NOT_SUP
(connection terminated)

[MS -TDS-Diff] - v20201001
Tabular Data Stream Protocol

Copyright © 2020 Microsoft Corporation

Release: October 1, 2020

69 / 220

Value sent by client

Value returned by
server when server is
setto ENCRYPT_OFF

Value returned by
server when server is
set to ENCRYPT_ON

Value returned by
server when server is
set to
ENCRYPT_NOT_SUP

ENCRYPT_CLIENT_CERT |
ENCRYPT_NOT_SUP

ENCRYPT_REQ
(connection terminated)

ENCRYPT_REQ
(connection terminated)

ENCRYPT_REQ (connection
terminated)

ENCRYPT_CLIENT_CERT |
ENCRYPT_REQ

ENCRYPT_ON

ENCRYPT_ON

ENCRYPT_NOT_SUP
(connection terminated)

Assuming that the client is capable of encryption, the server requires the client to behave in the

following manner.

Client

Value returned
from server is
ENCRY PT_OFF

Value returned
from server is
ENCRYPT_ON

Value returned
from server is
ENCRYPT_REQ

Value returned from
server is
ENCRYPT_NOT_SUP

ENCRYPT_OFF

Encrypt login packet
only

Encrypt entire
connection

Encrypt entire
connection

No encryption

ENCRYPT_ON

Error (connection
terminated)

Encrypt entire
connection

Encrypt entire
connection

Error (connection
terminated)

If client and server negotiate to enable encryption or if the client has requested certificate -based
authentication, an SSL handshak e takes place immediately after the initial PRELOGIN/table response
message exchange. If ENCRYPT_CLIENT_CERT is specified, the certificate is exchanged in this

handshake. The SSL payloads MUST be transported as data in TDS packets with the message type set

to Ox12 in the packet header. For example:

0x 12 01 00 4e 00 00 00 00// Packet Header
0x 16 03 01 00 &// SSL payload

This applies to SSL traffic. The client sends the SSL handshake payloads as data in a PRELOGIN
message. For TDS versions earlier than TDS 7.2, the server SHOULD send the SSL handshake
payloads as data in a table response message (0x04). For TDS 7.2, 7.3, and 7.4, the server SHOULD
send the SSL handshake payloads as data in a PRELOGIN message. Upon successful completion of the
SSL handshake, the client will proceed to send the LOGIN7 stream to the server to initiate
authentication.

Instance Name

If available, the client SHOULD send the server the name of the instance to which it is connecting as a
NULL-terminated multi -byte character set (MBCS) string in the INSTOPT option. If the string is empty

or is case -insensitively equal, by using the server's locale for comparison to either the server's

instance name or "MSSQLServer", the server SHOULD<33> return an INSTOPT containing a byte with

th e value 0 to indicate that the client's INSTOPT matches the server's instance. Otherwise, the server

SHOULD return an INSTOPT containing a byte with the value of 1. The client SHOULD use the

INSTOPT value from the server's PRELOGIN response for verificatio n purposes and SHOULD terminate
the connection if the INSTOPT option has the value 1.

Authentication Requirement

When the client wants to use either SSPI or federated authentication to determine the authentication
mechanism but does not necessarily have a requirement as to which library to use, the client can use
the FEDAUTHREQUIRED option to negotiate whether the server has a requirement for a given
authentication mechanism. If the client's PRELOGIN request message contains the

FEDAUTHREQUIRED option, the client MUST specify 0x01 as the B_FEDAUTHREQUIRED value. If the

70 / 220

[MS -TDS-Diff] - v20201001

Tabular Data Stream Protocol
Copyright © 2020 Microsoft Corporation
Release: October 1, 2020

server supports the FEDAUTHREQUIRED option, the server MUST respond with a FEDAUTHREQUIRED
option that has either 0x00 or 0x01 as the B_FEDAUTHREQUIRED value. For the choice between SSPI

and f ederated authentication, a value of 0x00 indicates that the server does not require federated
authentication as the authentication mechanism, and a value of 0x01 indicates that the server

requires federated authentication as the authentication mechanism. H owever, this mechanism is used
only for capability negotiation when choosing between SSPI and federated authentication and does not
necessarily bind the actual authentication mechanism that is used.

226.6 RPC Request

Stream Name:

RPCRequest

Stream Function:

Request to execute an RPC.

Stream Comments:

A

A

A

Packet header type 0x03.

To execute an RPC on the server, the client sends an RPCRequest data stream to the server. This
is a binary stream that contains the RPC Name (or ProclD), Options, and Parameters. Each RPC
MUST be contained within a separate message and not mixed with other SQL statements.

A sample RPCRequest message is in section 4.8.

Stream - Specific Rules:

ProcID = USHORT
ProcIDSwitch = %XxFF %xFF
ProcName = US_VARCHAR
NamelLenProclID = ProcName
/
(ProcIDSwitch ProcID)
fWithRecomp = BIT
fNoMeta Data = BIT
fReuseMetaData = BIT
OptionFlags = fwithRecomp
fNoMetaData
fReuseMetaData
13FRESERVEDBIT
fByRefValue = BIT
fDefaultvValue = BIT
fEncrypted = BIT
StatusFlags = fByRefValue

fDefaultValue
1FRESERVEDBIT
fEncrypted
4FRESERVEDBIT

ParamMetaData = B_VARCHAR

StatusFlags

(TYPE_INFO / TVP_TYPE_INFO) ; (TVP_TYPE_INFO introduced in TDS 7.3)
ParamLenData = TYPE_VARBYTE
EncryptionAlgo = BYTE ; (introduced in TDS 7.4)

AlgoName = B_VARCHA R ; (introduced in TDS 7.4)

71/ 220

[MS -TDS-Diff] - v20201001

Tabular Data Stream Protocol
Copyright © 2020 Microsoft Corporation
Release: October 1, 2020

EncryptionType = BYTE ; (introduced in TDS 7.4)

NormVersion = BYTE ; (introduced in TDS 7.4)
Databaseld = ULONG ; (introduced in TDS 7.4)
Cekld = ULONG ; (introduced in TDS 7.4)
CekVersion = ULONG ; (introduced in TDS 7.4)
CekMDVersion = ULONGLONG ; (introduced in TDS 7.4)
ParamCipherinfo = TYPE_INFO

EncryptionAlgo

[AlgoName]

EncryptionType

Databaseld

Cekld

CekVersion

CekMDVersion

NormVersion
ParameterData = ParamMetaData

ParamLenData

[ParamCipherinfo]

EnclavePackage = L_VARBYTE ; (introduced in TDS 7.4)
BatchFlag = %x80 / %xFF ; (changed to %xFF in TDS 7.2)
NoExecFlag = %XxFE ; (introduced in TDS 7.2)
RPCReqgBatch = NameLenProcID
OptionFlags
*EnclavePackage
*ParameterData
The length for the instance value of UDTs is speci fied as a ULONGLONG. Also, ParameterData is

repeated once for each parameter in the request.
A StatusFlags of fDefaultValue bit MUST be zero for TVP_TYPE_INFO.
fByRefValue MUST be zero for TVP_TYPE_INFO.

Stream Definition:

RPCRequest = ALL_HEADERS
RPCReqBatch
*((BatchFlag / NoExecFlag) RPCReqBatch)
[BatchFlag / NoExecFlag]

Note that RpcRegBatch is repeated once for each RPC in the batch.

Stream Parameter Details:

Parameter Description

ProclD The number identifying the special stored procedure to be executed. The valid numbers with
associated special stored procedure are as follows:

A Sp_Cursor=1

A Sp_CursorOpen = 2

[MS -TDS-Diff] - v20201001

Tabular Data Stream Protocol
Copyright © 2020 Microsoft Corporation
Release: October 1, 2020

72 | 220

Parameter Description
A Sp_CursorPrepare = 3
A Sp_CursorExecute = 4
A Sp_CursorPrepExec = 5
A Sp_CursorUnprepare = 6
A Sp_CursorFetch = 7
A Sp_CursorOption = 8
A Sp_CursorClose = 9
A Sp_ExecuteSql = 10
A Sp_Prepare =11
A Sp_Execute = 12
A Sp_PrepExec =13
A Sp_PrepExecRpc = 14
A Sp_Unprepare = 15

ProcIDSwitch

ProcIDSwitch can occur as part of NameLenProclID (see below).

ProcName

The procedure name length (within US_VARCHAR), which MUST be no more than 1046 bytes.

NameLenProclD

If the first USHORT contains OxFFFF the following USHORT contains the PROCID. Otherwise,
NameLenProcID contain s the parameter name length and parameter name.

OptionFlags Bit flags in least significant bit order:
A fwithRecomp: 1 if RPC is sent with the "with recompile" option.
A fNoMetaData: The server sends NoMetaData only if fNoMetadata is set to 1 in the request
(see COLMETADATA, section 2.2.7.4).<34>
A fReuseMetaData: 1 if the metadata has not changed from the previous call and the server
SHOULD reuse its cached metadata (the metadata MUST still be sent).
StatusFlags Bit flags in least significant bit order:
A fByRefValue: 1 if the parameter is passed by reference (OUTPUT parameter) or O if
parameter is passed by value.
A fDefaultValue: 1 if the parameter being passed is to be the default value.
A fEncrypted: 1 if the parameter that is being passed is encrypted. Thi s flag is valid only
when the column encryption feature is negotiated by client and server and is turned on.
ParameterData The parameter name length and parameter name (within B_VARCHAR), the TYPE_INFO of the
RPC data, and the type -dependent data for the RPC (within TYPE_VARBYTE).
EncryptionAlgo This byte describes the encryption algorithm that is used. For a custom encryption algorithm,

the EncryptionAlgo value MUST be set to 0 and the actual encryption algorithm MUST be
inferred from the AlgoName. For a Il other values, AlgoName MUST NOT be sent.

If the value is set to 1, the encryption algorithm that is used is

AEAD_AES_256_CBC_HMAC_SHA512, as described in [IETF - AuthEncr] section 5.4.

[MS -TDS-Diff] - v20201001

Tabular Data Stream Protocol
Copyright © 2020 Microsoft Corporation
Release: October 1, 2020

73/ 220

Parameter Description

AlgoName Algorithm name literal that is used for encrypting the plain text value. This is an optional field
and MUST be sent when EncryptionAlgo = 0. For all other values of EncryptionAlgo, this field
MUST NOT be sent.

EncryptionType This byte describes the flavor of encryption algorithm that is used. The values of this fie Id are
as follows:
1 = deterministic encryption.
2 = randomized encryption.

NormVersion Reserved for future use. The value MUST be set to 1.

Databaseld A 4 -byte integer value that represents the database ID where the column encryption key is
stored.

Cekld An identifier for the column encryption key.

CekVersion The key version of the column encryption key.

CekMDVersion The metadata version for the column encryption key.

ParamCipherinfo

The description of the parameter encryption
encrypted. It defines the original TYPE_INFO of the data that is encrypted, the encryption
algorithm that is used, the normalization version, the id of the database containing the column
encryption key used f or encryption, the id of the column encryption key, the version of the
column encryption key, and the version of the column encryption key metadata. These fields
MUST be sent only when fEncrypted is set to 1.

information when the parameter is transparently

EnclavePackage

An encrypted byte package that SHOULD<35> be generated by the client. This package
contains information that is required by the server -side enclave to perform computations
encrypted columns. The package has an internal structure that is irrelevant to the TDS

protocol between clienta nd server. The server forwards the byte array to the enclave without
interpreting it, and the enclave decodes the byte array.

Introduced in TDS 7.4.

on

BatchFlag

Distinguishes the start of the next RPC from another parameter within the current RPC. If the
version of TDS in use supports these flags, either the BatchFlag element or the NoExecFlag
element MUST be present when another RPC request is in the current batch. BatchFlag
SHOULD NOT be sent after the last RPCReqgBatch. If BatchFlag is received after the |
RPCReqBatch is received, the server MUST ignore it.

ast

NoExecFlag

Indicates that the preceding RPC will not be executed. If this separator is found, the previous
RPC will not be executed. Instead, an error message will be returned, followed by the
DONEPROC marking that the RPC in the batch has finished, and then execution proceeds to
the next RPC in the batch. The tabular data set returned will be very similar to what happens
if the RPC does not exist 8 never execute the RPC, just return an error mess
DONEPROC, and then execute the next RPC.

age, followed by

2.2.6.7

Stream Name:

SQLBatch

Stream Function:

SQLBatch

Describes the f ormat of the SQL Batch message.

[MS -TDS-Diff] - v20201001

Tabular Data Stream Protocol
Copyright © 2020 Microsoft Corporation
Release: October 1, 2020

74 | 220

Stream Comments:
A Packet header type 0x01.
A A sample SQLBatch message is in section 4.6.

Stream - Specific Rules:

SQLText = UNICODESTREAM

Stream Definition:

SQLBatch = ALL_HEADERS
*Encla vePackage ; (described in section 2.2.6.6)
SQLText

The Unicode stream contains the text of the batch. The following is an example of a valid value for
SQLText.

Select author_id from Authors

2.2.6.8 SSPI Message

Stream Name:

SSPI

Stream Function:

A request to supply data for Security Support Provider Interface (SSPI) security. Note that SSPI uses
the Simple and Protected GSS - API Negotiation Mechanism (SPNEGO) [RFC4178] negotiation.

Stream Comments:

A Packet header type Ox11.

A The initial SSPI data block (the initial SPNEGO security token) is sent from the client to the server
in the LOGIN7 message. The se rver MUST respond with an SSPI token that is the SPNEGO security
token response from the server. The client MUST respond with another SSPI message, after calling
the SPNEGO interface with the server's response.

A This continues until completion or an error.

A The server completes the SSPI validation and returns the last SPNEGO security token as an SSPI

token within a LOGINACK token.
A A sample SSPI message is in section 4.11.

Stream - Specific Rules:

SSPIData = BYTESTREAM

Stream Definition:

75/ 220

[MS -TDS-Diff] - v20201001

Tabular Data Stream Protocol
Copyright © 2020 Microsoft Corporation
Release: October 1, 2020

SSPI = SSPIData

Stream Parameter Details

Parameter Description

SSPIData The SSPIData length and SSPIData data using US_VARCHAR format.

2.2.6.9 Transaction Manager Request

Stream Name:

TransMgrReq

Stream Function:

Query and control operations pertaining to the lifecycle and state of local and distributed transaction
objects. Note that distributed transaction operations are coordinated through a Distributed Transaction
Coordinator (DTC) implemented to the DTC Interface Specification. For more information abo ut DTC,
see [MSDN -DTC].

Stream Comments:
A Packet header type OxOE.
A A sample Transaction Manager Request message is given in section 4.13.

Stream - Specific Rules:

RequestType = USHORT

Stream Definition:

TransMgrReq = ALL_Headers
RequestType
[RequestPayload]

RequestPayload details are as specified in the following table.

Stream Parameter Details

Parameter Description

RequestType The types of transaction manager operations that are requested by the client are specified as
follows. If an unknown Type is specified, the message receiver SHOULD disconnect the
connection.

A 0=TM_GET_DTC_ADDRESS. Returns DTC network address as a result set with a single -
column, single -row binary value.

A 1=TM_PROPAGATE_XAC T. Imports DTC transaction into the server and returns a local
transaction descriptor as a varbinary result set.

76 / 220

[MS -TDS-Diff] - v20201001

Tabular Data Stream Protocol
Copyright © 2020 Microsoft Corporation
Release: October 1, 2020

Parameter Description

A 5=TM_BEGIN_XACT. Begins a transaction and returns the descriptor in an ENVCHANGE
type 8.

A 6=TM_PROMOTE_XACT. Converts an active local transa ction into a distributed transaction
and returns an opaque buffer in an ENVCHANGE type 15.

A 7=TM_COMMIT_XACT. Commits a transaction. Depending on the payload of the request,
it can additionally request that another local transaction be started.

A 8=TM_ROL LBACK_XACT. Rolls back a transaction. Depending on the payload of the
request, it can indicate that after the rollback, a local transaction is to be started.

A 9=TM_SAVE_XACT. Sets a savepoint within the active transaction. This request MUST
specify a none mpty name for the savepoint.

Request types 5 through 9 were introduced in TDS 7.2.

RequestPayload)
A For RequestType TM_GET_DTC_ADDRESS: The RequestPayload SHOULD be a zero -length

US_VARBYTE.

RequestPayload = US_VARBYTE

A For RequestType TM_PROPAGATE_XACT: Data contains an opaque buffer used by the
server to enlist in a DTC transaction (for more information, see [MSDN -1Trans]).

RequestPayload = US_VARBYTE

A For RequestType TM_BEGIN_XACT:

ISOLATION_LEVEL = BYTE
BEGIN_XACT_NAME = B_VARBYTE

RequestPayload = ISOLATION_LEVEL
BEGIN_XACT_NAME

This request begins a new transaction, or increments trancount if already in a transaction.
If BEGIN_XACT_NAME is nonempty, a transaction is started with the specified name. See
the definition for isolation level at the end of this table.

A For RequestType TM_PROMOTE_XACT i No payload.

This message promotes the transaction of the current request (specified in the Transaction
Descriptor header). The current transaction MUST be part of t he specified header.

Note that TM_PROMOTE_XACT is supported only for transactions initiated via
TM_BEGIN_XACT, or via piggy back operation on TM_COMMIT/TM_ROLLBACK. An error is
returned if TM_PROMOTE_XACT is invoked for a TSQL initiated transaction.

A For Re questType TM_COMMIT_XACT:

fBeginXact = BIT

XACT_FLAGS = fBeginXact
7FRESERVEDBIT

ISOLATION_LEVEL = BYTE

XACT_NAME = B_VARBYTE

77 1 220

[MS -TDS-Diff] - v20201001

Tabular Data Stream Protocol
Copyright © 2020 Microsoft Corporation
Release: October 1, 2020

Parameter

Description

BEGIN_XACT_NAME = B_VARBYTE

RequestPayload = XACT_NAME
XACT_FLAGS
[ISOLATION_LEVEL
BEGIN_XACT_NAME]

Without additional flags specified, this command is semantically equivalent to issuing a
TSQL COMMIT statement.

The flags in XACT_FLAGS are represen ted in least significant bit order.

If fBeginXact is 1, then a new local transaction is started after the commit operation is
done.

If fBeginXact is 1, then ISOLATION_LEVEL can specify the isolation level to use to start the
new transaction, according to t he definition at the end of this table. If fBeginXact is 0, then
ISOLATION_LEVEL SHOULD NOT be present.

Specifying ISOLATION_LEVEL allows the isolation level to remain in effect for the session,
once the transaction ends.

If fBeginXact is 0, BEGIN_XACT_NAM E SHOULD NOT be present. If fBeginXact is 1,
BEGIN_XACT_NAME can be nonempty.

If fBeginXact is 1, a new transaction MUST be started. If BEGIN_XACT_NAME is nonempty,
the new transaction MUST be given the specified hame.

See the definition for isolation leve | at the end of this table.

A For RequestType TM_ROLLBACK_XACT:

fBeginXact = BIT

XACT_FLAGS = fBeginXact
7FRESERVEDBIT

ISOLATION_LEVEL = BYTE

XACT_NAME = B_VARBYTE
BEGIN_XACT_NAME = B_VARBYTE

RequestPay load = XACT_NAME
XACT_FLAGS
[ISOLATION_LEVEL
BEGIN_XACT_NAME]

The flags in XACT_FLAGS are represented in least significant bit order.

If XACT_NAME is nonempty, this request rolls back the named transaction. This implies
that if XACT_NAME specifies a savepoint name, the rollback only goes back until the
specified savepoint.

Without additional flags specified, this command is semantically equivalent to issuing a
TSQL ROLLBACK statement un der the current transaction.

If fBeginXact is 1, then a new local transaction is started after the commit operation is
done.

If fBeginXact is 1, then ISOLATION_LEVEL can specify the isolation level to use to start the
new transaction, according to the defi nition at the end of this table. If fBeginXact is 0, then

78 | 220

[MS -TDS-Diff] - v20201001

Tabular Data Stream Protocol
Copyright © 2020 Microsoft Corporation
Release: October 1, 2020

Parameter Description

ISOLATION_LEVEL SHOULD NOT be present.

once the transaction ends.

BEGIN_XACT_NAME can be nonempty.

If fBeginXact is 1, and the ROLLBACK only ro

A For RequestType TM_SAVE_XACT:

XACT_SAVEPOINT_NAME = B_VARBYTE

If fBeginXact is 0, BEGIN_XACT_NAME SHOUL

Specifying ISOLATION_LEVEL allows the isolation level to remain in effect for the session,

D NOT be present. If fBeginXact is 1,

If fBeginXact is 1, a new transaction MUST be started. If BEGIN_XACT_NAME is nonempty,
the new transaction MUST be given the specified name.

lled back to a savepoint, the Begin_Xact
operation is ignored and trancount remains unchanged.

See the definition for isolation level at the end of this table.

RequestPayload = XACT_SA VEPOINT_NAME

A nonempty name MUST be specified as part of this request. Otherwise, an error is raised.

ISOLATION_LEVEL MUST have one of the following values.

Value Description

0x00 No isolation level change requested. Use current.

0x01 Read Uncommitted.

0x02 Read Committed.

0x03 Repeatable Read.

0x04 Serializable.

0x05 Snapshot.

2.2.7 Packet Data Token Stream Definition

This section describes the various token s supported in a token
in section 2.2.4.2. The corresponding message types that use token
identified in the table in section 2.2.4.

2271 ALTMETADATA

Token Stream Name:

ALTMETADATA

Token Stream Function:

-based packet data stream, as described
-based packet data streams are

[MS -TDS-Diff] - v20201001

Tabular Data Stream Protocol
Copyright © 2020 Microsoft Corporation
Release: October 1, 2020

79 / 220

Describes the data type, length, and name of column data that result from a SQL statement that
generates totals.

Token Stream Comments:
The token value is 0x88.

This token is used to tell the client the data type and length of the column data. It describes the
format of the data found in an ALTROW data stream. ALTMETADATA and the corresponding ALTROW
MUST be in the same result set.

All ALTMETADATA data streams are grouped.

A preceding COLMETADATA MUST exist before an ALTMETADATA token. There might be COLINFO and
TABNAME streams between COLMETADATA and ALTMETADATA.

Note ALTMETADAT A was deprecated in TDS 7.4.

Token Stream - Specific Rules:

TokenType = BYTE
Count = USHORT
Id = USHORT
ByCols = UCHAR
Op = BYTE
Operand = USHORT
UserType = USHORT/ULONG; (changed to ULONG in TDS 7.2)
fNullable = BIT
fCaseSen = BIT
usUpdateable = 2BIT ; 0 = ReadOnly
; 1 = Read/Write
; 2 = Unused
fldentity = BIT
fComputed = BIT ; (introduced in TDS 7.2)
usReservedODBC = 2BIT
fFixedLenCLRType = BIT ; (introduced in TDS 7.2)
usReserved = 7BIT
Flags = fNullable
fCaseSen
usUpdateable
fldentity
(FRESERVEDBIT / fComputed)
usReservedODBC
(FRESERVEDBIT / fFixedLenCLRType)
usReserved
NumParts = BYTE ; (introduced in TDS 7.2)
PartName = US_VARCHAR ; (introduced in TDS 7.2)
TableName = US_VARCHAR ; (removed in TDS 7.2)
/
(NumParts
1*PartName) ; (introduced in TDS 7.2)
ColName = B_VARCHAR
ColNum = USHORT
ComputeData = Op
Operand
UserType
Flags
TYPE_INFO

[TableName]

80 / 220

[MS -TDS-Diff] - v20201001

Tabular Data Stream Protocol
Copyright © 2020 Microsoft Corporation
Release: October 1, 2020

ColName

The TableName field is specified only if a text, ntext, or image column is included in the result set.

Token Stream Definition

ALTMETADATA = TokenType

Count

Id

ByCols

*(<ByCols> ColNum)
1*ComputeData

Token Stream Parameter Details:

Parameter

Description

TokenType

ALTMETADATA_TOKEN<36>

Count

The count of columns (number of aggregate operators) in the token stream.

Id

The Id of the SQL statement to which the total column formats apply. Each ALTMETADATA token
MUST have its own unique Id in the same result set. This Id lets the client correctly interpret later
ALTROW data streams.

ByCols

The number of grouping columns in the SQL statement that generates totals. For example, the SQL
clause compute count(sales) by year, month, division, department has four gr ouping columns.

Op

The type of aggregate operator.

AOPSTDEV =%x30 ; Standard deviation (STDEV)

AOPSTDEVP =%x31 ; Standard deviation of the population (STDEVP)
AOPVAR =%x32 ; Variance (VAR)

AOPVARP =%x33 ; Variance of population (VARP)
AOPCNT =%x4B ; Count of rows (COUNT)

AOPSUM =%x4D ; Sum of the values in the rows (SUM)

AOPAVG =%x4F ; Average of the values in the rows (AVG)
AOPMIN =%x51 ; Minimum value of the rows (MIN)

AOPMAX =%x52 ; Maximum value of the rows (MAX)

Operand

The column number, starting from 1, in the result set that is the operand to the aggregate
operator.

UserType

The user type ID of the data type of the column. Depending on the TDS version that is u sed, valid
values are 0x0000 or 0x00000000, with the exceptions of data type TIMESTAMP (0x0050 or
0x00000050) and alias types (greater than OxO0FF or 0XO00000FF).

Flags

These bit flags are described in least significant bit order. With the exception of fN ullable , all of
these bit flags SHOULD be set to zero. For a description of each bit flag, see section 2.2.7.4:

A fNullable is a bit flag, 1 if the column is nullable.
fCaseSen
usUpdateable

fldentity

> > > >

fComputed

81 / 220

[MS -TDS-Diff] - v20201001

Tabular Data Stream Protocol
Copyright © 2020 Microsoft Corporation
Release: October 1, 2020

Parameter Description

A usReservedODBC

A fFixedLenCLRType

TableName See section 2.2.7.4 for a description of TableName. This field SHOULD never be sent because SQL
statements that generate totals exclude NTEXT/TEXT/IMAGE.

ColName The column name. Contains the column name length and column name.
ColNum USHORT sp ecifying the column number as it appears in the COMPUTE clause. ColNum appears
ByCols times.

2272 ALTROW

Token Stream Name:

ALTROW

Token Stream Function:

Used to send a complete row of total data, where the data format is provided by the ALTMETADATA
token.

Token Stream Comments:
A The token value is 0xD3.

A The ALTROW token is similar to the ROW_TOKEN, but also contains an Id field. This Id matches an
Id given in ALTMETADATA (one Id for each SQL statement). This provides the mechanism for
matching row data with correct SQL statements. ALTROW and the corresponding ALTMETADATA
MUST be in the same result set.

A Note ALTROW was deprecated in TDS 7.4.

Token Stream - Specific Rules:

TokenType = BYTE
Id = USHORT
Data = TYPE_VARBYTE
ComputeData = Data

Token Stream Definition:

ALTMETADATA = TokenType
Id
1*ComputeData

The ComputeData element is repeated Count times, where Count is specified in
ALTMETADATA_TOKEN.

Token Stream Parameter Details:

82 / 220

[MS -TDS-Diff] - v20201001

Tabular Data Stream Protocol
Copyright © 2020 Microsoft Corporation
Release: October 1, 2020

Parameter Description

TokenType ALTROW_TOKEN<37>

Id The Id of the SQL statement that generates totals to which the total column formats apply. This Id
lets the client correctly interpret later ALTROW data streams.

Data The actual data for the column. The TYPE_INFO information describing the data type of t his data is
given in the preceding COLMETADATA_TOKEN, ALTMETDATA_TOKEN, or OFFSET_TOKEN.

2273 COLINFO

To ken Stream Name:

COLINFO

Token Stream Function:

Describes the column information in browse mode [MSDN -BROWSE], sp_cursoropen, and
sp_cursorfetch.

Token Stream Comments
A The token value is OxAS5.
A The TABNAME token contains the actual table name associated with COLINFO.

Token Stream Specific Rules:

TokenType = BYTE

Length = USHORT

ColNum = BYTE

TableNum = BYTE

Status = BYTE

ColName = B_VARCHAR

ColProperty = ColNum
TableNum
Status
[ColName]

The Colinfo element is repeated for each column in the result set.

Token Stream Definition:

COLINFO = TokenType
Length
1*CpLProperty

Token Stream Parameter Details:

83/ 220

[MS -TDS-Diff] - v20201001

Tabular Data Stream Protocol
Copyright © 2020 Microsoft Corporation
Release: October 1, 2020

Parameter

Description

TokenType COLINFO_TOKEN

Length The actual data length, in bytes, of the ColProperty stream. The length does not include token type
and length field.

ColNum The column number in the result set.

TableNum The number of the base table that the column was derived from. The value is 0 if the value of
Status is EXPRESSION.

Status 0x4: EXPRESSION (the column was the result of an expression).
0x8: KEY (the column is part of a key for the associated table).
0x10: HIDDEN (the column was not requested, but was added because it was part of a key for the
associated table).
0x20: DIFFERENT_NAME (the column name is different than the requested column name in the
case of a column alia s).

ColName The base column name. This only occurs if DIFFERENT_NAME is set in Status.

2

2.74 COLMETADATA

Token Stream Name:

COLMETADATA

Token Stream Function:

Describes the result set for interpretation of following ROW data streams.

Token Stream Comments:

A
A

A

Token Stream

The token value is 0x81.

This token is used to tell the client the data type and length of the column data. It describes the
format of the data found in a ROW data stream.

All COLMETADATA data streams are grouped together.

- Specific Rules:

TokenType = BYTE
Count = USHORT
UserType = USHORT/ULONG; (Changed to ULONG in TDS 7.2)
fNullable = BIT
fCaseSen = BIT
usUpdateable = 2BIT ; 0 = ReadOnly
; 1 = Read/Write
; 2 = Unused
fldentity = BIT
fComputed = BIT ; (introduced in TDS 7.2)
usReservedODBC = 2BIT ; (only exists in TDS 7.3.A and below)
fSparseColumnSet = BIT ; (introduced in TDS 7.3.B)
fEncryp ted = BIT ; (introduced in TDS 7.4)
usReserved3 = BIT ; (introduced in TDS 7.4)

[MS -TDS-Diff] - v20201001

Tabular Data Stream Protocol
Copyright © 2020 Microsoft Corporation
Release: October 1, 2020

84 | 220

fFixedLenCLRType = BIT ; (introduced in TDS 7.2)

usReserved = 4BIT
fHidden = BIT ; (introduced in TDS 7.2)
f Key = BIT ; (introduced in TDS 7.2)
fNullableUnknown = BIT ; (introduced in TDS 7.2)
Flags = fNullable
fCaseSen
usUpdateable
fldentity
(FRESERVEDBIT / fComputed)
usReservedODBC
(FRESERVEDBIT / frixedLenCLRType)
(usReserved /(FRESERVEDBIT fSparseColumnSet fEncrypted usReserved3))
; (introduced in TDS 7.4)
(FRESERVEDBIT / fHidden)
(FRESERVEDBIT / fKey)
(FRESERVEDBIT / fNullableUnknown)
NumParts = BYTE ; (introduced in TDS 7.2)
PartName = US_VARCHAR ; (introduced in TDS 7.2)
TableName = NumParts
1*PartName
ColName = B_VARCHAR
BaseTypelnfo = TYPE_INFO ; (BaseTypelnfo introduced in TDS 7.4)
EncryptionAlgo = BYTE ; (EncryptionAlgo introduced in TDS 7.4)
AlgoName = B_VARCHAR ; (introduced in TDS 7.4)
EncryptionAlgoType = BYTE ; (introduced in TDS 7.4)
NormVersion = BYTE ; (introduced in TDS 7.4)
Ordinal = USHORT ; (introduced in TDS 7.4)
CryptoMetaData = Ordinal ; (CryptoMetaData introduced in TDS 7.4)
UserType
BaseTypelnfo
EncryptionAlgo
[AlgoName]
EncryptionAlgoType
NormVersion
EkValueCount = USHORT ; (introduced in TDS 7.4)
CekTable = EkValueCount ; (introduced in TDS 7.4)
*EK_INFO ; (introduced in TDS 7.4)
ColumnData = UserType
Flags
TYPE_INFO
[TableName]
[CryptoMetaData]
ColName
NoMetaData = %xFF %xFF
The TableName element is specified only if a text, ntext, or image column is included in the result
set.
Token Stream Definition:
COLMETADATA = TokenType
85 / 220

[MS -TDS-Diff] - v20201001

Tabular Data Stream Protocol
Copyright © 2020 Microsoft Corporation
Release: October 1, 2020

Count
[CekTable]
NoMetaData / (1*ColumnData)

Token Stream Parameter Details:

Parameter Description
TokenType COLMETADATA_TOKEN
Count The count of columns (number of aggregate operators) in the token stream. In the event
that the client requested no metadata to be returned (see section 2.2.6.6 for information
about the OptionFlags parameter in the RPCRequest token), the value of Count will be
OxFFFF. This has the same effect on Count as a zero value (for example, no ColumnData is
sent).
UserType The user type ID of the data type of the column. Depending on the TDS version that is
used, valid values are 0x0000 or 0x00000000, with the exceptions of data type
TIMESTAMP (0x0050 or 0x00000050) and alias types (greater tha n OXOOFF or
0x000000FF).
Flags The size of the Flags parameter is always fixed at 16 bits regardless of the TDS version.
Each of the 16 bits of the Flags parameter is interpreted based on the TDS version
negotiated during login. Bit flags, in least significant bit order:
A fNullable is a bit flag. Its value is 1 if the column is nullable.
A fCaseSenis a bit flag. Set to 1 for string columns with binary collation and always for
the XML data type. Set to O otherwise.
A usUpdateableisa 2 -bitfield. Itsval ueis 0 if columnisread -only, 1 if column is
read/write and 2 if updateable is unknown.
A fldentity is a bit flag. Its value is 1 if the column is an identity column.
A fComputed is a bit flag. Its value is 1 if the column is a COMPUTED column.
A usReservedODB Cis a 2 -bit field that is used by ODS gateways supporting the ODBC
ODS gateway driver.
A fFixedLenCLRType is a bit flag. Its value is 1 if the column is a fixed -length common
language runtime user -defined type (CLR UDT).
A fSparseColumnSet, introduced in TDS version 7.3.B, is a bit flag. Its value is 1 if the
column is the special XML column for the sparse column set. For information about
using column sets, see [MSDN -ColSets].
A fEncrypted is a bit flag. Its value is 1 if the column is encrypted transparently a nd has
to be decrypted to view the plaintext value. This flag is valid when the column
encryption feature is negotiated between client and server and is turned on.
A fHidden is a bit flag. Its value is 1 if the column is part of a hidden primary key created
tosupporta T -SQL SELECT statement containing FOR BROWSE.<38>
A fKey is a bit flag. Its value is 1 if the column is part of a primary key for the row and
the T -SQL SELECT statement contains FOR BROWSE.
A fNullableUnknown is a bit flag. Its value is 1 if it is unknown whether the column might
be nullable.
TableName The fully qualified base table name for this column. It contains the table name length and

table name. This exists only for text, ntext, and image columns. It specifies how many
parts will be return ed and then repeats PartName once for each NumParts.

86 / 220

[MS -TDS-Diff] - v20201001
Tabular Data Stream Protocol
Copyright © 2020 Microsoft Corporation

Release: October 1, 2020

Parameter Description

ColName The column name. It contains the column name length and column name.
BaseTypelnfo The TYPEINFO for the plaintext data.
EkValueCount The size of CekTable. It represents the number of entries in CekTable.
CekTable A table of various encryption keys that are used to secure the plaintext data. It contains
one row for each encryption key. Each row can have multiple encryption key values, and
each value represents the cipher text of the sa me encryption key that is secured by using a

different master key. The size of this table is determined by EkValueCount. This table MUST
be sent when COLUMNENCRYPTION is negotiated by client and server and is turned on.

EncryptionAlgo A byte that describe s the encryption algorithm that is used.

If EncryptionAlgo is set to 1, the algorithm that is used is
AEAD_AES_256_CBC_HMAC_SHA512, as described in [IETF - AuthEncr] section 5.4. Other
values are reserved for future use.

AlgoName Reserved for future use.
EncryptionAlgoType A field that describes the encryption algorithm type. Available values are defined as
follows:

1 = Deterministic encryption.
2 = Randomized encryption.

NormVersion The normalization version to which plaintext data MUST be normalized. Ver sion humbering
starts at Ox01.

Ordinal Where the encryption key information is located in CekTable. Ordinal starts at 0.

CryptoMetaData This describes the encryption metadata for a column. It contains the ordinal, the UserType,
the TYPE_INFO (BaseTypelnfo) for the plaintext value, the encryption algorithm that is
used, the algorithm name literal, the encryption algorithm type, and the normalization
version.

NoMetaData This notifies client that no metadata will follow the COLMETADATA token. When
fNoMetadata is set to 1, client notifies server that it has already cached the metadata from
a previous RPC Request (section 2.2.6.6), and server sends no metadata.<39>

2275 (Updated Section) DATACLASSIFICATION

Token Stream Name:

DATACLASSIFICATION

Token Stream Function:

Introduced in TDS 7.4, the DATACLASSIFICATION token SHOULD<40> describe the data classification
of the query result set.

Token Stream Comments:
A The token value is OxA3.

A This token m sent by the server m if the client sends a DATACLASSIFICATION FeatureExt
in the Login message and the server responds with a DATACLASSIFICATION FeatureExtAck. Wher

87 / 220

[MS -TDS-Diff] - v20201001

Tabular Data Stream Protocol
Copyright © 2020 Microsoft Corporation
Release: October 1, 2020

Token Stream - Specific Rules:

TokenType

SensitivityLabelCount
SensitivityLabelNam
SensitivityLabelld
InformationTypeCount
InformationTypeName
InformationTypeld
SensitivityLabellndex
InformationTypelndex

NumSensitivityProperties

NumResultSetColumns
SensitivityRank
SensitivityLabel
SensitivityLabels
InformationType

InformationTypes

SensitivityProperty

ColumnSensitivityMetadata

BYTE

= USHORT
= B_VARCHAR

= B_VARCHAR

= USHORT
= B_VARCHAR
= B_VARCHAR
= USHORT
= USHORT
= USHORT
= USHORT

= LONG

SensitivityLabelName
SensitivityLabelld

= SensitivityLabelCount

[SensitivityLabelCount] *SensitivityLabel

= InformationTypeName

InformationTypeld

= InformationTypeCount
[InformationTypeCount] *InformationType

= SensitivityLabellndex

InformationTypelndex
[SensitivityRank]

= NumSensitivityProperties
[NumSensitivityProperties] *SensitivityProperty

DataClassificationPerColumnData = NumResultSetColumns

Token Stream Definition:

[NumResultSetColumns] *ColumnSensitivityMetadata

DATACLASSIFICATION = TokenType

SensitivityLabels
InformationTypes

[SensitivityR ank]
DataClassificationPerColumnData

Token Stream Parameter Details:

Parameter

Description

TokenType

DATACLASSIFICATION_TOKEN

SensitivityLabelCount

The count of sensitivity labels for this result set. The value can be 0 or greater.

SensitivityLabelName

The name for a sensitivity label. It contains the sensitivity label name length and
sensitivity label name. It is intended to be human readable.

SensitivityLabelld

The identifier for a sensitivity label. It contains the sensitivity label identifier length
and sensitivity label identifier. It is intended for linking the sensitivity label to an
information protection system.

[MS -TDS-Diff] - v20201001
Tabular Data Stream Protocol

88 / 220

Copyright © 2020 Microsoft Corporation

Release: October 1, 2020

Parameter Description

InformationTypeCount The count of information types for this result set. The value can be 0 or grea ter.

InformationTypeName The name for an information type. It contains the information type name length and
information type name. It is intended to be human readable.

InformationTypeld The identifier for an information type. It contains the information type identifier length
and information type identifier. It is intended for linking the information type to an
information protection system.

SensitivityLabellndex The index into the SensitivityLabels array that indicates which SensitivityLabel is
associat ed with SensitivityProperty. A value of USHORT_MAX (OxFFFF) indicates that
there is no sensitivity label for SensitivityProperty.

InformationTypelndex The index into the InformationTypes array that indicates which InformationType is
associated with Sensit ivityProperty. A value of USHORT_MAX (0xFFFF) indicates that
there is no information type for SensitivityProperty.

NumResultSetColumns Depending on its configuration, the server can send additional information about the
data classification for each column . The values of this field are as follows:

A 0= Additional information is not sent.

A The number of columns in the result set. This number MUST be the same number
provided by the Count parameter in the COLMETADATA token.

NumSensitivityProperties The number of sensitivity properties that are associated with a column. The value can
be 0 or greater.

SensitivityRank A relative ranking of the sensitivity of a query or of a column that is part of per -
column data. Available valu es are defined as follows:

sensitivity ranking is sent by the server only if both of the following are true:

A -1=Not defined
A 0=None

A 10=Low

A 20 =Medium

A 30=High

A 40 = Critical

A

A

The client sends a DATACLASSIFICATION feature extension in a Login messag ein
which DATACLASSIFICATION_VERSION is set to 2.

A The server responds with a DATACLASSIFICATION feature extension
acknowledgement in which DATACLASSIFICATION_VERSION is set to 2.

2276 DONE

Token Stream Name:

DONE

89 / 220

[MS -TDS-Diff] - v20201001

Tabular Data Stream Protocol
Copyright © 2020 Microsoft Corporation
Release: October 1, 2020

Token Stream Function:

Indicates the completion status of a SQL statement.
Token Stream Comments

A The token value is OXFD.

A This token is used to indicate the completion of a SQL statement. As multiple SQL statements can
be sent to the server in a single SQL batch, multiple DONE tokens can be generated. In this case,
all but the final DONE token will have a Status value with DO NE_MORE bit set (details follow).

A A DONE token is returned for each SQL statement in the SQL batch except variable declarations.

A For execution of SQL statements within stored procedures, DONEPROC and DONEINPROC tokens
are used in place of DONE tokens.

Tok en Stream - Specific Rules:

TokenType = BYTE
Status = USHORT
CurCmd = USHORT

DoneRowCount = LONG /ULONGLONG; (Changed to ULONGLONG in TDS 7.2)

The type of the DoneRowCount element depends on the version of TDS.

Token Stream Definition:

DONE = TokenType
Status
CurCmd
DoneRowCount

Token Stream Parameter Details:

Parameter Description
TokenType DONE_TOKEN
Status The Status field MUST bea bitwise 'OR' of the following:

A 0x00: DONE_FINAL. This DONE is the final DONE in the request.

A 0x1: DONE_MORE. This DONE message is not the final DONE message in the response.
Subsequent data streams to follow.

A 0x2: DONE_ERROR. An error occurred on the curre nt SQL statement. A preceding ERROR
token SHOULD be sent when this bit is set.

A 0x4: DONE_INXACT. A transaction is in progress.<41>

A 0x10: DONE_COUNT. The DoneRowCount value is valid. This is used to distinguish between
a valid value of 0 for DoneRowCount or just an initialized variable.

A 0x20: DONE_ATTN. The DONE message is a server acknowledgement of a client
ATTENTION message.

A 0x100: DONE_SRVERROR. Used in place of DONE_ERROR when an error occurred on the
current SQL statement, which is severe enough to req uire the result set, if any, to be
discarded.

90 / 220

[MS -TDS-Diff] - v20201001

Tabular Data Stream Protocol
Copyright © 2020 Microsoft Corporation
Release: October 1, 2020

Parameter Description

CurCmd The token of the current SQL statement. The token value is provided and controlled by the
application layer, which utilizes TDS. The TDS layer does not evaluate the value.

DoneRowCount The count of rows that were affected by the SQL statement. The value of DoneRowCount is
valid if the value of Status includes DONE_COUNT.<42>

2.2.7.7 DONEINPROC

Token Stream Name:

DONEINPROC

Token Stream Function:
Indicates the completion status of a SQL statement within a stored procedure.
Token Stream Comments

The token value is OxFF.

A
A A DONEINPROC token is sent for each executed SQL statement within a stored procedure.
A

A DONEINPROC token MUST be followed by another DONEPROC token or a DONEINPROC token.

Token Stream - Specific Rules:

TokenType = BYTE
Status = USHORT
CurCmd = USH ORT

DoneRowCount = LONG /ULONGLONG; (Changed to ULONGLONG in TDS 7.2)

The type of the DoneRowCount element depends on the version of TDS.

Token Stream Definition:

DONEINPROC = TokenType
Status
CurCmd
DoneRowCount

Token Stream Parameter Details:

Parameter Description
TokenType DONEINPROC_TOKEN
Status The Status field MUST be a bitwise 'OR' of the following:

A 0x1: DONE_MORE. This DONEINPROC message is not the final
DONE/DONEPROC/DONEINPROC message in the response; more data streams are to
follow.

A 0x2: DONE_ERROR. An error occurred on the current SQL statement or execution of a

[MS -TDS-Diff] - v20201001

Tabular Data Stream Protocol
Copyright © 2020 Microsoft Corporation
Release: October 1, 2020

91 / 220

Parameter Description

stored procedure was interrupted. A preceding ERROR token SHOULD be sent whe n this bit
is set.

A 0x4: DONE_INXACT. A transaction is in progress.<43>

A 0x10: DONE_COUNT. The DoneRowCount value is valid. This is used to distinguish between
a valid value of 0 for DoneRowCount or just an initialized variable.

A 0x100: DONE_SRVERROR. Used in place of DONE_ERROR when an error occurred on the
current SQL statement that is severe enough to require the result set, if any, to be
discarded.

CurCmd The token of the current SQL statement. The token value is provided and controlled by the
application layer, which utilizes TDS. The TDS layer does not evaluate the value.

DoneRowCount The count of rows that were affected by the SQL statement. The value of DoneRowCount is
valid if the value of Status includes DONE_COUNT.

2278 DONEPROC

Token Stream Name:

DONEPROC

Token Stream Function:

Indicates the completion status of a stored procedure. T his is also generated for stored procedures
executed through SQL statements.

Token Stream Comments:
A The token value is OXFE.

A A DONEPROC token is sent when all the SQL statements within a stored procedure have been
executed.

>

A DONEPROC token can be followe d by another DONEPROC token or a DONEINPROC only if the
DONE_MORE bit is set in the Status value.

A There is a separate DONEPROC token sent for each stored procedure called.

Token Stream - Specific Rules:

TokenType = BYTE
Status = USHORT
CurCmd = USHORT

DoneRowCount = LONG /ULONGLONG; (Changed to ULONGLONG in TDS 7.2)

The type of the DoneRowCount element depends on the version of TDS.

Token Stream Definition:

DONEPROC = TokenType
Status

92 / 220

[MS -TDS-Diff] - v20201001

Tabular Data Stream Protocol
Copyright © 2020 Microsoft Corporation
Release: October 1, 2020

CurCmd
DoneRowCount

Token Stream Parameter Details:

Parameter Description
TokenType DONEPROC_TOKEN
Status The Status field MUST be a bitwise 'OR' of the following:

A 0x00: DONE_FINAL. This DONEPROC is the final DONEPROC in the request.

A 0x1: DONE_MORE. This DONEPROC message is not the final DONEPROC message in the
response; more data streams are to follow.

A 0x2: DONE_ERROR. An error occurred on the current stored procedure. A preceding ERROR
token SHOULD be sent when this bit is set.

A 0Ox4: DONE_INXACT. A transaction is in progress.<44>

A 0x10: DONE_COUNT. The DoneRowCount value is valid. This is used to distinguish between
a valid value of 0 for DoneRowCount or just an initialized variable.

A 0x80: DONE_RPCINBATCH. This DONEPROC message is associated with an RPC within a
set of batched RPCs. This flag is not set on the last RPC in the RPC batch.

A 0x100: DONE_SRVERROR. Used in place of DONE_ERROR when an error occurred on the
current s tored procedure, which is severe enough to require the result set, if any, to be

discarded.
CurCmd The token of the SQL statement for executing stored procedures. The token value is provided
and controlled by the application layer, which utilizes TDS. The TDS layer does not evaluate the
value.

DoneRowCount The count of rows that were affected by the command. The value of DoneRowCount is valid if
the value of Status includes DONE_COUNT.

2279 ENVCHANGE

Token Stream Name:

ENVCHANGE

Token Stream Function:

A notification of an environment change (for example, database, language, and so on).
Token Stream Comments:

A The token value is OxE3.

A Includes old and new environment values.

A Type 4 (Packet size) is sent in response to a LOGIN7 message. The server MAY send a value
different from the packet size requested by the client. That value MUST be greater than or equal
to 512 and smaller than or equal to 32767. Both the client and the server MUST start using this
value for packet size with the message following the login response message.

93 / 220

[MS -TDS-Diff] - v20201001

Tabular Data Stream Protocol
Copyright © 2020 Microsoft Corporation
Release: October 1, 2020

A Type 13 (Database Mirroring) is sent in response to a LOGIN7 message whenever connection is
requested to a database that it is being served as primary in real -time log shipping. The
ENVCHANGE stream reflects the name of the partner node of the database that is being log
shipped.

A Type 15 (Promote Transaction) is sent in resp onse to transaction manager requests with requests
of type 6 (TM_PROMOTE_XACT).

A Type 16 (Transaction Manager Address) is sent in response to transaction manager requests with
requests of type 0 (TM_GET_DTC_ADDRESS).

A Type 20 (Routing) is sent in response to a LOGIN7 message when the server wants to route the
client to an alternate server. The ENVCHANGE stream returns routing information for the alternate
server. If the server decides to send the Routing ENVCHANGE token, the Routing ENVCHANGE
token MUST be se nt after the LOGINACK token in the login response.

Token Stream - Specific Rules:

TokenType = BYTE
Length = USHORT

Type = BYTE
EnvwalueData = Type

NewValue
[OldValue]

Token Stream Definition:

ENVCHANGE = TokenType
Length
EnvValueData

Token Stream Parameter Details

Parameter Description

TokenType ENVCHANGE_TOKEN

Length The total length of the ENVCHANGE data stream (EnvValueData).

Type The type of environment change:
Note Types 8 to 19 were introduced in TDS 7.2. Type 20 was introduced in TDS 7.4.

1: Database

2: Language

3: Character set

4: Packet size

: Unicode data sortinglo cal id

6: Unicode data sorting comparison flags

7: SQL Collation

> > > > > > > >
(€3]

8: Begin Transaction (described in [MSDN -BEGIN])

94 | 220

[MS -TDS-Diff] - v20201001

Tabular Data Stream Protocol
Copyright © 2020 Microsoft Corporation
Release: October 1, 2020

Parameter Description

> > > > > > > > > > >

10:

11:

12:

13:

15:

16:

17:

18:

19:

20:

9: Commit Transaction (described in [MSDN -COMMIT))

Rollback Transaction

Enlist DTC Transaction

Defect Transaction

Real Time Log Shipping

Promote Transaction

Transaction Manager Address<45>

Transaction ended

RESETCONNECTION/RESETCONNECTIONSKIPTRAN Completion Acknowledgement
Sends back name of user instance started per login request

Sends routing info rmation to client

Type Old Value New Value

1: Database OLDVALUE = NEWVALUE = B_VARCHAR
B_VARCHAR

2: Language OLDVALUE = NEWVALUE = B_VARCHAR
B_VARCHAR

3: Character Set OLDVALUE = NEWVALUE = B_VARCHAR
B_VARCHAR

4: Packet Size OLDVALUE = NEWVALUE = B_VARCHAR
B_VARCHAR

5: Unicode data sorting local OLDVALUE = NEWVALUE = B_VARCHAR

id %x00

6: Unicode data sorting OLDVALUE = NEWVALUE = B_VARCHAR

comparison flags %x00

7: SQL Collation OLDVALUE = NEWVALUE = B_VARBYTE
B_VARBYTE

8: Begin Transaction OLDVALUE = NEWVALUE = B_VARBYTE
%x00

9: Commit Transaction OLDVALUE = NEWVALUE = %0x00
B_VARBYTE

10: Rollback Transaction OLDVALUE = NEWVALUE = %x00
B_VARBYTE

11: Enlist DTC Transaction OLDVALUE = NEWVALUE = %x00
B_VARBYTE

12: Defect Transaction OLDVALUE = NEWVALUE = B_VARBYTE
%x00

[MS -TDS-Diff] - v20201001
Tabular Data Stream Protocol

Copyright © 2020 Microsoft Corporation

Release: October 1, 2020

95 / 220

Type Old Value New Value
13: Database Mirroring OLDVALUE = PARTNER_NODE = B_VARCHAR
Partner %x00 NEWVALUE = PARTNER_NODE
15: Promote Transaction OLDVALUE = DTC_TOKEN = L_VARBYTE;
%x00 NEWVALUE = DTC_TOKEN
16: Transaction Manager OLDVALUE = XACT_MANAGER_ADDRESS = B_VARBYTE
Address (not used) %x00 NEWVALUE = XACT_MANAGER_ADDRESS
17: Transaction Ended OLDVALUE = NEWVALUE = %x00
B_VARBYTE
18: Reset Completion OLDVALUE = NEWVALUE = %x00
Acknowledgement %x00
19: Sends back info of user OLDVALUE = NEWVALUE = B_VARCHAR
instance for logins (login7) %x00
requesting so.
20: Routing OLDVALUE = Protocol = BYTE
%x00 %x00 ProtocolProperty = USHORT
AlternateServer = US_VARCHAR
Protocol MUST be 0, specifying TCP -IP pro tocol.
ProtocolProperty represents the TCP -1P port when Protocol is
0. A ProtocolProperty value of zero is not allowed when
Protocol is TCP -IP.
RoutingDataValue = Protocol
ProtocolProperty
AlternateServer
RoutingDataValueLength = USHORT
RoutingDataValueLen gth is the total length, in bytes, of the
following fields: Protocol, ProtocolProperty, and
AlternateServer.
RoutingData = RoutingDataValueLength
[RoutingDataValue]
NEWVALUE = RoutingData
Notes

A For types 1, 2, 3, 4, 5, 6, 13, and 19, the payload is a

the number of bytes.

Unicode string; the LENGTH always reflects

A ENVCHANGE types 3, 5, and 6 are only sent back to clients running TDS 7.0 or earlier.

A For Types 8, 9, 10, 11, and 12, the ENVCHANGE event is returned only if the transaction lifetime
is contro lled by the user, for example, explicit transaction commands, including transactions
started by SET IMPLICIT_TRANSACTIONS ON.
A For transactions started/committed under auto commit, no stream is generated.
A For operations that change only the value of @ @tranc ount, no ENVCHANGE stream is generated.
A The payload of NEWVALUE for ENVCHANGE types 8, 11, and 17 and the payload of OLDVALUE for

ENVCHANGE types 9, 10, and 12 is a ULONGLONG.

A ENVCHANGE type 11 is sent by the server to confirm that it has joined a distribu
requested through a TM_PROPAGATE_XACT request from the client.

ted transaction as

96 / 220

[MS -TDS-Diff] - v20201001

Tabular Data Stream Protocol
Copyright © 2020 Microsoft Corporation
Release: October 1, 2020

A ENVCHANGE type 12 is only sent when a batch defects from either a DTC or bound session
transaction.

A LENGTH for ENVCHANGE type 15 is sent as 0x01 indicating only the length of the type token.

Client drivers are responsible for reading the additional payload if type is 15.

A ENVCHANGE type 17 is sent when a batch is used that specified a descriptor for a transaction that
has ended. This is only sent in the bound session case. For information about using bound
sessions, see [MSDN -BOUND].

A ENVCHANGE type 18 always produces empty (0x00) old and new values. It simply acknowledges
completion of execution of a RESETCONNECTION/RESETCONNECTIONSKIPTRAN request.

A ENVCHANGE type 19 is sent afte r LOGIN and after
/RESETCONNECTION/RESETCONNECTIONSKIPTRAN when a client has requested use of user
instances. It is sent prior to the LOGINACK token.

A ENVCHANGE type 20 can be sent back to a client running TDS 7.4 or later regardless of whether
the fReadOnl ylIntent bit is set in the preceding LOGIN7 record. If a client is running TDS 7.1 to
7.3, type 20 can be sent only if the fReadOnlyIntent bit is set in the preceding LOGIN7 record.

2.2.7.10 ERROR

Token Stream Name:

ERROR

Token Stream Function:

Used to send an error message to the client.
Token Stream Comments:

A The token value is OXAA.

Token Stream - Specific Rules:

TokenType = BYTE

Length = USHORT

Number = LONG

State = BYTE

Class = BYTE

MsgText = US_VARCHAR

ServerName = B_VARCHAR

ProcName = B_VARCHAR

LineNumber = USHORT /LONG; (Changed to LONG in TDS 7.2)

The type of the LineNumber element depends on the version of TDS.

Token Stream Definition:

ERROR = TokenType
Length
Number
State
Class
MsgText
ServerName
ProcName

[MS -TDS-Diff] - v20201001

Tabular Data Stream Protocol
Copyright © 2020 Microsoft Corporation
Release: October 1, 2020

97 | 220

LineNumber

Token Stream Parameter Details

Parameter Description

TokenType ERROR_TOKEN

Length The total length of the ERROR data stream, in bytes.

Number The error number.<46>

State The error state, used as a modifier to the error number.

Class The class (severity) of the error. A class of less than 10 indicates an informati onal message.
MsgText The message text length and message text using US_VARCHAR format.

ServerName The server name length and server name using B_VARCHAR format.

ProcName

The stored procedure name length and the stored procedure name using B_VARCHAR format.

LineNumber The line number in the SQL batch or stored procedure that caused the error. Line numbers begin

at 1. If the line number is not applicable to the message, the value of LineNumber is 0.

Class

level Description

0-9 Informa tional messages that return status information or report errors that are not severe.<47>

10 Informational messages that return status information or report errors that are not severe.<48>

11-16 Errors that can be corrected by the user.

11 The given object or entity does not exist.

12 A special severity for SQL statements that do not use locking because of special options. In some cases,
read operations performed by these SQL statements could result in inconsistent data, because locks are
not taken to guarantee consistency.

13 Transaction deadlock errors.

14 Security -related errors, such as permission denied.

15 Syntax errors in the SQL statement.

16 General errors that can be corrected by the user.

17-19 Software errors that cannot be corrected by the user. These errors require system administrator action.
17 The SQL statement caused the database server to run out of resources (such as memory, locks, or disk
space for the database) or to exceed some limit set by the system administrato r.

18 There is a problem in the Database Engine software, but the SQL statement completes execution, and
the connection to the instance of the Database Engine is maintained. System administrator action is
required.

19 A non -configurable Database Engine | imit has been exceeded and the current SQL batch has been
terminated. Error messages with a severity level of 19 or higher stop the execution of the current SQL
batch. Severity level 19 errors are rare and can be corrected only by the system administrator. Error

98 / 220

[MS -TDS-Diff] - v20201001

Tabular Data Stream Protocol
Copyright © 2020 Microsoft Corporation
Release: October 1, 2020

Class
level Description

messages with a severity level from 19 through 25 are written to the error log.

20-25 System problems have occurred. These are fatal errors, which means the Database Engine task that

was executing a SQL batch is no longer running. The task records information about what occurred and
then terminates. In most cases, the application connection to the instance of the Database Engine can

also terminate. If this happens, depending on the problem, the application might not be able to

reconnect.

Error messa ges in this range can affect all of the processes accessing data in the same database and
might indicate that a database or object is damaged. Error messages with a severity level from 19
through 25 are written to the error log.

20 Indicates that a SQL st atement has encountered a problem. Because the problem has affected only the
current task, it is unlikely that the database itself has been damaged.

21 Indicates that a problem has been encountered that affects all tasks in the current database, but it is
unlikely that the database itself has been damaged.

22 Indicates that the table or index specified in the message has been damaged by a software or hardware
problem.

Severity level 22 errors occur rarely. If one occurs, run DBCC CHECKDB to determine whether other

objects in the database are also damaged. The problem might be in the buffer cache only and not on

the disk itself. If so, restarting the instance of the Data base Engine corrects the problem. To continue
working, reconnect to the instance of the Database Engine; otherwise, use DBCC to repair the problem.

In some cases, restoration of the database might be required.

If restarting the instance of the Database Eng ine does not correct the problem, then the problem is on
the disk. Sometimes destroying the object specified in the error message can solve the problem. For
example, if the message reports that the instance of the Database Engine has found a row with a

length of 0 inanon -clustered index, delete the index and rebuild it.

23 Indicates that the integrity of the entire database is in question because of a hardware or software
problem.
Severity level 23 errors occur rarely. If one occurs, run DBCC CHECKDB to determine the extent of the

damage. The problem might be in the cache only and not on the disk itself. If so, restarting the

instance of the Database Engine corrects the problem. To continue working, reconnect to the instance

of the Database Engine; other wise, use DBCC to repair the problem. In some cases, restoration of the
database might be required.

24 Indicates a media failure. The system administrator might have to restore the database or resolve a
hardware issue.

If an error is produced within a re sult set, the ERROR token is sent before the DONE token for the SQL
statement, and such DONE token is sent with the error bit set.

22711 FEATUREEXTACK

Token Stream Name:

FEATUREEXTACK

Token Stream Function:

Introduced in TDS 7.4, FEATUREEXTACK is used to send an optional acknowledge message to the
client for features that are defined in Featur eExt. The token stream is sent only along with the
LOGINACK in a Login Response message.

Token Stream Comments:

99 / 220

[MS -TDS-Diff] - v20201001

Tabular Data Stream Protocol
Copyright © 2020 Microsoft Corporation
Release: October 1, 2020

A The token value is OXAE.

Token Stream - Specific Rules:

TokenType = BYTE

Featureld = BYTE

FeatureAckDataLen = DWORD

FeatureAckData = *BYTE

TERMINATOR = %xFF ; signal of end of feature ack data

FeatureAckOpt = (Featureld
FeatureAckDatalLen
FeatureAckData)
/
TERMINATOR

Token Stream Definition:
FEATUREEXTACK = TokenType
1*FeatureAckOpt

Token Stream Parameter Details

Parameter Description

TokenType

FEATUREEXTACK_TOKEN

Featureld

The unique identifier number of a feature. Each feature MUST use the same ID number
here as in FeatureExt. If the client did not send a request for a specific feature but the
Featureld is returned, the client MUST consider it as a TDS Protocol er
terminate the connection.

ror and MUST

Each feature defines its own logic if it wants to use FeatureAckOpt to send information back
to the client during the login response. The features available to use by a Featureld are
defined in the following table.

FeatureAckDatalen

The length of FeatureAckData, in bytes.

FeatureAckData

The acknowledge data of a specific feature. Each feature SHOULD define its own data
format in the FEATUREEXTACK token if it is selected to acknowledge the feature.

The following tabl

e describes the FeatureExtAck feature option and description.

(SESSIONRECOVERY)
(introduced in TDS 7.4)

Featureld FeatureExtData Description
%0x00 Reserved.
%0x01 Session Recovery feature. Content is defined as follows:

SessionStateDataSet
InitSessionStateData

InitSessionStateData =
FeatureAckData =

SessionStateDataSet is described in section 2.2.7.21. The length of
SessionStateDataSet is specified by the corresponding FeatureAckDatalen.

On a recovery connec tion, the client sends a login request with
SessionRecoveryDataToBe. The server MUST set the session state as requested
by the client. If the server cannot do so, the server MUST fail the login request
and terminate the connection.

[MS -TDS-Diff] - v20201001

Tabular Data Stream Protocol
Copyright © 2020 Microsoft Corporation
Release: October 1, 2020

100 / 220

Featureld

FeatureExtData Description

(COLUMNENCRYPTION)
(introduced in TDS 7.4)

%0x02 Whe never a login response stream is sent for a TDS connection whose login
(FEDAUTH)<49> request includes a FEDAUTH FeatureExt, the server login response message
stream MUST include a FEATUREEXTACK token, and the FEATUREEXTACK token
stream MUST include the FEDAUTH Featureld . The format is described below
based on the bFedAuthLibrary that is used in FEDAUTH FeatureExt.
When the bFedAuthLibrary is Live ID Compact Token, the format is as follows:
Nonce =32BYTE
Signature =32BYTE
FeatureAckData =N once
Signature
Nonce: The client -specified nonce in PRELOGIN.
Signature: The HMAC -SHA-256 [RFC6234] of the client - specified nonce, using
the session key retrieved from the federated authentication context as the
shared secret.
When th e bFedAuthLibrary is Security Token, the format is as follows:
Nonce =32BYTE
FeatureAckData =[Nonce]
Nonce: The client -specified nonce in PRELOGIN. This field MUST be present if
the clientds PRELOGI N me s sfield ©therwise, this ficld d a
MUST NOT be present.
%0x04 The presence of the COLUMNENCRYPTION FeatureExt SHOULD<50> indicate

that the client is capable of performing cryptographic operations on data. The
feature d ata is described as follows:

Length =BYTE
COLUMNENCRYPTION_VERSION =BYTE

FeatureData = COLUMNENCRYPTION_VERSION
[Length EnclaveType]

COLUMNENCRYPTION_VERSION: This field defin es the cryptographic protocol
version that the client understands. The values of this field are as follows:

A 1 =The client supports column encryption without enclave computations.

A 2 =The client SHOULD<51> support column encryption when encrypted
data requ ire enclave computations.

EnclaveType: This field is a string that SHOULD<52> be populated by the

server and used by the client to identify the type of enclave that the server is

configured to use. During login for the initial connection, the client can re quest
COLUMNENCRYPTION with Length as 1 and COLUMNENCRYPTION_VERSION as
either 1 or 2. When the client requests COLUMNENCRYPTION_VERSION as 2,

the server MUST return COLUMNENCRYPTION_VERSION as 2 together with the

value of EnclaveType |, if the server contai ns an enclave that is configured for

use. If EnclaveType is notreturned and the column encryption version is

returned as 2, the client driver MUST raise an error.

%0x05
(GLOBALTRANSACTIONS)<53>

Whenever a login response stream is sent for a TDS connection whose login
request includes a GLOBALTRANSACTIONS FeatureExt token, the server login
response message stream can optionally include a FEATUREEXTACK token by
including the GLOBALTRANSACTIONS Featureld in the FEATUREEXTACK token

[MS -TDS-Diff] - v20201001

Tabular Data Stream Protocol
Copyright © 2020 Microsoft Corporation
Release: October 1, 2020

101 / 220

Featureld

FeatureExtData Description

stream. The corres ponding FeatureAckData MUST then include a flag that
indicates whether the server supports Global Transactions. The FeatureAckData
format is as follows:

IsEnabled =BYTE

FeatureAckData = IsEnabled

IsEnabled: Specifies whether the server sup ports Global Transactions. The
values of this field are as follows:

A 0= The server does not support Global Transactions.

A 1= The server supports Global Transactions.

%0x08
(AZURESQLSUPPORT)
(introduced in TDS 7.4)

The presence of the AZURESQLSUPPORT Featu reExt indicates whether failover
partner login with read -only intent to Azure SQL Database MAY<54> be
supported. For information about failover partner, see [MSDOCS -DBMirror].

Whenever a login response stream is sent for a TDS connection whose login
reques t includes an AZURESQLSUPPORT FeatureExt token, the server login
response message stream can optionally include a FEATUREEXTACK token by
setting the corresponding feature switch in Azure SQL Database. If it is
included, the FEATUREEXTACK token stream MUST include the
AZURESQLSUPPORT Featureld.

FeatureAckData =BYTE

BYTE: The Bit O flag specifies whether failover partner login with read -only
intent is supported. The values of this BYTE are as follows:

A 0 =The server does not support the AZURESQLSUPPORT feature
extension.

A 1= The server supports the AZURESQLSUPPORT feature extension.

%0x09
(DATACLASSIFICATION)
(introduced in TDS 7.4)

Whenever a login response stream is sent for a TDS connection whose login

request includesa DATACLASSIFICATION FeatureExt token, the server login
response message stream SHOULD<55> be capable of optionally containing a
FEATUREEXTACK token by including the DATACLASSIFICATION Featureld in the
FEATUREEXTACK token stream. The corresponding FeatureAck Data MUST then
include the following information that indicates whether the server supports

data classification and to what extent. The FeatureAckData format is as follows:

DATACLASSIFICATION_VERSION = BYTE

IsEnabled =BYTE
VersionSpecifi cData = *2147483647BYTE ; The actual length
; of data is
; FeatureAckDatalen -2
FeatureAckData = DATACLASSIFICATION_VERSION
IsEnabled
VersionSpecificData

DATACLASSIFICATION_VERSION: This field specifies the version number of the
data classification information that is to be used for this connection. This value
MUST be 1 or 2, as specified for DATACLASSIFICATION _VERSION in section
2.2.6.4.

IsEnabled: This field specifies whether the server supports data classification.

[MS -TDS-Diff] - v20201001

Tabular Data Stream Protocol
Copyright © 2020 Microsoft Corporation
Release: October 1, 2020

102 / 220

Featureld

FeatureExtData Description

The values of this field are as follows:
A 0= The server does not support data classification.
A 1= The server supports data classification.

VersionSpecificData: This field specifies which version of data classification
information is returned. The values of this field are as follows:

When the value of the DATACLASSIFICATION_VERSION field is 1 or 2, the
response in the feature e xtension acknowledgement contains no version -
specific data.

%0x0A
(UTF8_SUPPORT)
(introduced in TDS 7.4)

The presence of the UTF8_SUPPORT FeatureExtAck token in the response
message stream indicates whether the ser-v
8 e ncoded data SHOULD<56> be supported.

Whenever a login response stream is sent for a TDS connection whose login

request includes a UTF8_SUPPORT FeatureExt token, the server login response

message stream can optionally include a FEATUREEXTACK token. If that token

is included, the FEATUREEXTACK token MUST include the UTF8_SUPPORT

Featureld and the appropriate feature acknowledgement data. The

FeatureAckData format is as follows:

FeatureAckData =BYTE

BYTE: The Bit 0 value specifies whether the server can receive and send UTF -8
encoded data. The values of this BYTE are as follows:

A 0 =The server does not support the UFT8_SUPPORT feature extension.

A 1 =The server supports the UTF8_SUPPORT feature extension.

%0x0B
(AZURESQLDNSCACHING)
(introduced in TDS 7.4)

Whenever a login response stream is sent for a TDS connection that has a login
request that includes an AZURESQLDNSCACHING FeatureExt token, the server
login response message can optionally include this FeatureExtAck token. The
contents of the token are as follows:

IsSupported =BYTE
FeatureAckData = IsSupported

IsSupported: The Bit 0 specifies whether the server supports client DNS
caching. The values of this BIT are as follows:

A 0= The server does not support client DNS caching.
A 1= The server supports client DNS caching.
A server response with IsSupported set to 1 indicates to the client that it is safe

to cache the entry. When the server responds with IsSupported set to 0, the
client SHOULD NOT<57> cache the entry.

%XFF
(TERMINATOR)

This option signals the end of the FeatureExtAck feature and MUST be the
feature's last option.

22712 FEDAUTHINFO

Token Stream Name:

[MS -TDS-Diff] - v20201001

Tabular Data Stream Protocol
Copyright © 2020 Microsoft Corporation
Release: October 1, 2020

103 / 220

FEDAUTHINFO

Token Stream Function:

Introduced in TDS 7.4, federated authentication information is returned to the client to be used for
generating a Federated Authentication Token during the login process. This token MUST be the only

token in a Federated Authentication Information message and MUST NOT be included in any other
message type.<58>

Token St ream Comments:
A The token value is OXEE.

Token Stream - Specific Rules:

TokenType = BYTE

TokenLength = DWORD ; (introduced in TDS 7.4)
CountOfinfolDs = DWORD ; (introduced in TDS 7.4)
FedAut hinfolD = BYTE

; (introduced in TDS 7.4)

FedAuthinfoDatalen DWORD ; (introduced in TDS 7.4)

FedAuthinfoDataOffset DWORD ; (introduced in TDS 7.4)
FedAuthinfoData = VARBYTES ; (introduced in TDS 7.4)
FedAuthinfoOpt = (FedAuthinfolD ; (introduced in TDS 7.4)

FedAuthinfoDatalLen
FedAuthinfoDataOffset)

Token Stream Definition:

FEDAUTHINFO = Toke nType ; (introduced in TDS 7.4)

TokenLength
CountOfinfolDs
1*FedAuthinfoOpt
FedAuthinfoData

Token Stream Parameter Details

Parameter Description
TokenType FEDAUTHINFO_TOKEN
TokenLength

The length of the whole Federated Authentication Information token, not including the
size occupied by TokenLength itself. The minimum value for this field is sizeof(DWORD)

because the field CountOfinfolDs MUST be present even if no federated authentication
information is sent as part of the token.

CountOfinfolDs The number of federated authentication information options that are sent in the token.

If no FedAuthinfoOpt is sent in the token, this field MUST be present and set to 0.

FedAuthinfolD The unique identifier number for the type of information.

FedAuthinfoDatalLen The length of FedAuthinfoData, in bytes.

FedAuthinfoDataOffset The offset at which the federated authentication information data for FedAuthInfolD is
present, measured from the address of CountOfinfolDs.

104 / 220
[MS - TDS-Diff] - v20201001

Tabular Data Stream Protocol
Copyright © 2020 Microsoft Corporation
Release: October 1, 2020

Parameter Description

FedAuthinfoData The actual information data as binary, with the length in bytes equal to
FedAuthinfoDataLen.

The following table describes the FedA

uthinfo feature option and description.

FedAuthinfolD FedAuthinfoData Description

%0x00 Reserved.

%0x01 A Unicode string that represents the token endpoint URL from which to acquire a Federated

(STSURL) Authentication Token.

%0x02 A Unicode string that represents the Service Principal Name (SPN) to use for acquiring a
Federated Authentication Token. SPN is a string that represents the resource in a directory.

(SPN)

22713 INFO

Token Stream Name:

INFO

Token Stream Function:

Used to send an information message to the client.

Token Stream Comments

A The token value is OxAB.

Token Stream

- Specific Rules:

TokenType = BYTE

Length = USHORT

Number = LONG

State = BYTE

Class = BYTE

MsgText = US_VARCHAR

ServerName = B_VARCHAR

ProcName = B_VARCHAR

LineNumber = USHORT/ LONG,; (Changed to LONG in TDS 7.2)

The type of the LineNumber element depends on the version of TDS.

Token Stream Definition:

INFO

= TokenType
Length
Number
State
Class
MsgText
ServerName
ProcName

[MS -TDS-Diff] - v20201001
Tabular Data Stream Protocol

Copyright © 2020 Microsoft Corporation

Release: October 1, 2020

105 / 220

LineNumber

Token Stream Parameter Details

Parameter Description

TokenType INFO_TOKEN

Length The total length of the INFO data stream, in bytes.

Number The info number.<59>

State The error state, used as a modifier to the info Number.

Class The class (severity) of the error. A class of less than 10 indicates an informational message.
MsgText The message text length and m essage text using US_VARCHAR format.

ServerName The server name length and server name using B_VARCHAR format.

ProcName The stored procedure name length and stored procedure name using B_VARCHAR format.

LineNumber The line number in the SQL batch or sto red procedure that caused the error. Line numbers begin
at 1; therefore, if the line number is not applicable to the message as determined by the upper
layer, the value of LineNumber will be 0.

22714 LOGINACK

Token Stream Name:

LOGINACK

Token Stream Function:
Used to send a response to a login request (LO GIN7) to the client.
Token Stream Comments

A The token value is OxAD.

A Ifa LOGINACK is not received by the client as part of the login procedure, the login to the server
is unsuccessful.

Token Stream - Specific Rules:

TokenType = BYTE

Length = USHORT
Interface = BYTE
TDSVersion = DWORD
ProgName = B_VARCHAR
MajorVer = BYTE

MinorVer = BYTE
BuildNumHi = BYTE
BuildNumLow = BYTE
ProgVersion = MajorVer

106 / 220

[MS -TDS-Diff] - v20201001

Tabular Data Stream Protocol
Copyright © 2020 Microsoft Corporation
Release: October 1, 2020

MinorVer
BuildNumHi
BuildNumLow

Token Stream Definition:

LOGINACK = TokenType
Length
Interface
TDSVersion
ProgName
ProgVersion

Token Stream Parameter Details

Parameter Description
TokenType LOGINACK_TOKEN
Length The total length, in bytes, of the following fields: Interface, TDSVersion, Progname, and

ProgVersion.

Interface The type of interface with which the server will accept client requests:

0: SQL_DFLT (server confirms that whatever is sent by the client is acceptable. If the client
requested SQL_DFLT, SQL_TSQL will be used).

1: SQL_TSQL (TSQLis accepted).

TDSVersion The TDS version being used by the server.<60>

ProgName The name of the server.

MajorVer The major version number (0 -255).

MinorVer The minor version number (0 -255).

BuildNumHi The high byte of the build number (0 -255).

BuildNumL ow | The low byte of the build number (0 -255).
2.2.7.15 NBCROW

Token Stream Name:

NBCROW

Token Stream Function:

NBCROW, introduced in TDS 7.3.B, is used to send a row as defined by the COLMETADATA token to

the client with null bitmap compression. Null bitmap compression is implemented by using a single bit
to specify whether the column is null or not null and also by removing all null column values from the

row. Removing the null column values (which can be up to 8 bytes per null instance) from the row

provide s the compression. The null bitmap contains one bit for each column defined in COLMETADATA.

In the null bitmap, a bit value of 1 means that the column is null and therefore not present in the row,

and a bit value of 0 means that the column is not null and is present in the row. The null bitmap is
always rounded up to the nearest multiple of 8 bits, so there might be 1 to 7 leftover reserved bits at

the end of the null bitmap in the last byte of the null bitmap. NBCROW is only used by TDS result set

107 / 220

[MS -TDS-Diff] - v20201001

Tabular Data Stream Protocol
Copyright © 2020 Microsoft Corporation
Release: October 1, 2020

streams from server to client. NBCROW MUST NOT be used in BulkLoadBCP streams. NBCROW MUST
NOT be used in TVP row streams.

Token Stream Comments
A The token value is 0xD2/210.

Token Stream - Specific Rules:

TokenType = BYTE

TextPointer = B_VARBYTE

Ti mestamp = 8BYTE

Data = TYPE_VARBYTE

NullBitmap = <NullBitmapByteCount> BYTE ; see note on NullBitmapByteCount

ColumnData = [TextPointer Timestamp] Data
AllColumnData = *ColumnData

ColumnData is repeated once for each non -null column of data.
NullBitmapBitCount is equal to the number of columns in COLMETADATA.

NullBitmapByteCount is equal to the smallest number of bytes needed to hold 'NullBitmapBitCount'
bits.

The server can decide to send either a NBCROW tok en or a ROW token. For example, the server might
choose to send a ROW token if there is no byte savings if the result set has no nullable columns, or if

a particular row in a result set has no null values. This implies that NBCROW and ROW tokens can be

int ermixed in the same result set.

When determining whether or not a specific column is null, consider all the columns from left to right
ordered using a zero -based index from 0 to 65534 as they occur in the ColumnData section of the
COLMETADATA token. The nu Il bitmap indicates that a column is null using a zero bit at the following
byte and bit layout:

07 06 0504 0302 01 00 15 14 1312111009082322212019181716

Hence the first byte will contain flags for columns 0 through 7, with the least significant (or rightmost)

bit within the byte indicating the zeroth column and the most significant (or leftmost) bit within the

byte indicating the seventh column. For example, column index 8 would be in the second byte as the

least significant bit. If the null bitmap bit is set, the column is null and no null token value for the

column will follow in the row. If the null bitmap bit is clear, the column is not null and the value for the
column follows in the row.

Token Stream Definition:

NBCROW = TokenType
NullBitmap
AllIColumnData

Token Stream Parameter Details

Parameter Descripti on

TokenType NBCROW_TOKEN (0xD2)

108 / 220

[MS -TDS-Diff] - v20201001

Tabular Data Stream Protocol
Copyright © 2020 Microsoft Corporation
Release: October 1, 2020

Parameter Descripti on

TextPointer The length of the text pointer and the text pointer for Data.

Timestamp The timestamp of a text/image column.
Data The actual data for the column. The TYPE_INFO information describing the data type of this data is
given in the preceding COLMETADATA_TOKEN.
2.2.7.16 OFFSET
Token Stream Name:
OFFSET
Token Stream Function:
Used to inform the client where in the client's SQL text buffer a particular keyword occurs.
Token Stream Comments:
A The token value is 0x78.
A The token was removed in TDS 7.2.
Token Stream - Specific Rules:
TokenType = BYTE
Identifier = USHORT
OffSetLen = USHORT
Token Stream Definition:
OFFSET = TokenType ; (removed in TDS 7.2)
Identifier
OffSetLen
Token Stream Parameter Details
Parameter Description
TokenType OFFSET_TOKEN
Identifier The keyword to which OffSetLen refers.
OffsetLen The offset in the SQL text buffer received by the server of the identifier. The SQL text buffer begins
with an OffSetLen value of 0 (MOD 64 kilo bytes if value of OffSet is larger than 64 kilobytes).
22717 ORDER
Token Stream Name:
109 / 220

[MS -TDS-Diff] - v20201001

Tabular Data Stream Protocol
Copyright © 2020 Microsoft Corporation
Release: October 1, 2020

ORDER

Token Stream Function:

Used to inform the client by which columns the data is ordered.

Token Stream Comments

A The token value is OxA9.

A This token is sent only in the event that an ORDER BY clause is executed.

Token Stream - Specific Rules:

TokenType = BYTE
Length = USHORT
ColNum = *USHORT

The ColNum element is repeated once for each column within the ORDER BY clause.

Token Stream Definition:

ORDER = TokenType
Length
ColNum

Token Stream Parameter Details

Parameter Description

TokenType ORDER_TOKEN

Length The total length of the ORDER data stream.
ColNum The column number in the result set.
2.2.7.18 RETURNSTATUS

Token Stream Name:

RETURNSTATUS

Token Stream Function:

Used to send the status value of an RPC to the client. The server also uses this token to send the
result status value ofa T -SQL EXEC query.

Token Stream Comments:
A The token value is 0x79.
A This token MUST be returned to the client when an RPC is executed by the server.

Token Stream - Sp ecific Rules:

110 / 220

[MS -TDS-Diff] - v20201001

Tabular Data Stream Protocol
Copyright © 2020 Microsoft Corporation
Release: October 1, 2020

TokenType = BYTE
Value = LONG

Token Stream Definition:

RETURNSTATUS = TokenType
Value

Token Stream Parameter Details

Parameter Description

TokenType RETURNSTATUS_TOKEN

Value The return status value determined by the remote procedure. Return status MUST NOT be NULL.

2.2.7.19 RETURNVALUE

Token Stream Name:

RETURNVALUE

Token Stream Function:

Used to send the return value of an RPC to the client. When an RPC is executed, the associated

parameters might be defined as input or output (or "return") parameters. This token is used to send a

description of the return parameter to the client. This token is also used to describe the value returned
by a UDF when executed as an RPC.

Token Stream Comments:
A The token value is OXAC.

A Multiple return values can exist per RPC. There is a separate RETURNVALUE token sent for each
parameter returned.

>

Large Object output parameters are reordered to appear at the end of the stream. First the group
of small parameters is sent, followed by the group of large output parameters. There is no
reorder ing within the groups.

A A UDF cannot have return parameters. As such, if a UDF is executed as an RPC there is exactly
one RETURNVALUE token sent to the client.

Token Stream - Specific Rules:

TokenType = BYTE

ParamName = B_VARCHAR

ParamOrdinal = USHORT

Status = BYTE

UserType = USHORT/ULONG; (Changed to ULONG in TDS 7.2)
fNullable = BIT

fCaseSen = BIT

usUpdateable = 2BIT ; 0 = ReadOnly

111 / 220

[MS -TDS-Diff] - v20201001

Tabular Data Stream Protocol
Copyright © 2020 Microsoft Corporation
Release: October 1, 2020

; 1 = Read/Write

; 2 = Unused
fldentity = BIT
fComputed = BIT ; (introduced in TDS 7.2)
usReservedODBC = 2BIT
fFixedLenCLRType = BIT ; (introduced in TDS 7.2)
usReser ved = 7BIT
usReserved2 = 2BIT
fEncrypted = BIT ; (introduced in TDS 7.4)
usReserved3 = 4BIT
Flags = fNullable
fCaseSen
usUpdateable
fldentity
(FRESERVEDBIT / fComputed)
usReservedODBC
(FRESERVEDBIT / frixedLenCLRType)
(usReserved [/ (usReserved?2 f Encrypted usReserved3))
; (introduced in TDS 7.4)
Typelnfo = TYPE_INFO
Value = TYPE_VARBYTE
BaseTypelnfo = TYPE_INFO ; (BaseTypelnfo introduced in TDS 7.4)
EncryptionAlgo = BYTE ; (EncryptionAlgo introduced in TDS 7.4)
AlgoName = B_VARCHAR ; (introduced in TDS 7.4)
EncryptionAlgoType = BYTE ; (introduced in TDS 7.4)
NormVersion = BYTE ; (introduced in TDS 7.4)

CryptoMetaD ata

= UserType ;(CryptoMetaData introduced in TDS 7.4)
BaseTypelnfo
EncryptionAlgo
[AlgoName]
EncryptionAlgoType
NormVersion

Toke n Stream Definition:

RETURNVALUE

= TokenType
ParamOrdinal
ParamName
Status
UserType
Flags
Typelnfo
CryptoMetadata
Value

Token Stream Parameter Details:

Parameter

Description

TokenType

RETURNVALUE_TOKEN

ParamOrdinal

Indicates the ordinal position of the output parameter in the original RPC call. Large Object

output parameters are reordered to appear at the end of the stream. First the group of
small parameters is sent, followed by the group of large output parameters. There is no
reordering within the groups.

[MS -TDS-Diff] - v20201001
Tabular Data Stream Protocol
Copyright © 2020 Microsoft Corporation

Release: October 1, 2020

112 / 220

Parameter Description

ParamName The para meter name length and parameter name (within B_VARCHAR).

Status 0x01: If ReturnValue corresponds to OUTPUT parameter of a stored procedure invocation.
0x02: If ReturnValue corresponds to return value of User Defined Function.

UserType The user type ID of the data type of the column. Depending on the TDS version that is
used, valid values are 0x0000 or 0x00000000, with the exceptions of data type
TIMESTAMP (0x0050 or 0x00000050) and alias types (greater than 0xO0FF or
0Xx000000FF).

Flags These bit flags ar e described in least significant bit order. All of these bit flags SHOULD be
set to zero. For a description of each bit flag, see section 2.2.7.4.

fNullable
fCaseSen
usUpdateable
fldentity
fComputed
usReservedODBC

fFixedLengthCLRType

> > > > > P> > D>

fEncrypted

Typelnfo The TYPE_INFO for the message.

BaseTypelnfo TYPE_INFO for the unencrypted type.

EncryptionAlgo A byte that describes the encryption algorithm that is used. AlgoName is populated with

the name of the custom encryption algorithm. For all Encryptio nAlgo values other than 0,
AlgoName MUST NOT be sent. If EncryptionAlgo is set to 1, the algorithm that is used is
AEAD_AES_256_CBC_HMAC_SHA512, as described in [IETF - AuthEncr] section 5.4.

AlgoName Algorithm name literal that is used to encrypt the plain text value.
EncryptionAlgoType A field that describes the encryption algorithm type. Available values are defined as
follows:

1 = Deterministic encryption.
2 = Randomized encryption.

NormVersion The normalization version to which plaintext data MUST be n ormalized. Version numbering
starts at Ox01.

CryptoMetaData This describes the encryption metadata for a column. It contains the UserType, the
TYPE_INFO (BaseTypelnfo) for the plaintext value, the encryption algorithm that is used,
the algorithm name lite ral, the encryption algorithm type, and the normalization version.

Value The type -dependent data for the parameter (within TYPE_VARBYTE).

2.2.7.20 ROW

Token Stream Name:

113 / 220

[MS -TDS-Diff] - v20201001

Tabular Data Stream Protocol
Copyright © 2020 Microsoft Corporation
Release: October 1, 2020

ROW

Token Stream Function:

Used to send a complete row, as defined by the COLMETADATA token, to the client.

Token Stream Comments:
A The token value is 0xD1.

Token Stream - Specific Rules:

TokenType = BYTE

TextPointer = B_VARBYTE

Timestamp = 8BYTE

Data = TYPE_VARBYTE

ColumnData = [TextPointer Timestamp]
Data

AllColumnData = *ColumnData

The ColumnData element is repeated once for each column of data.

TextPointer and Timestamp MUST NOT be specified if the instance of type text/ntext/image is a NULL

instance (GEN_NULL).

Token Stream Definition:

ROW = TokenType
AllColumnData

Token Stream Parameter Details:

Parameter Description

TokenType ROW_TOKEN

TextPointer

The length of the text pointer and the text pointer for data.

Timestam p The timestamp of a text/image column. This is not present if the value of data is CHARBIN_NULL
or GEN_NULL.
Data The actual data for the column. The TYPE_INFO information describing the data type of this data is
given in the preceding COLMETADATA_TOKEN, ALTMETDATA_TOKEN or OFFSET_TOKEN.
22721 SESSIONSTATE

Token Stream Name:

SESSIONSTATE

[MS -TDS-Diff] - v20201001

Tabular Data Stream Protocol
Copyright © 2020 Microsoft Corporation
Release: October 1, 2020

114 | 220

Token Stream Function:

Used to send session state data to the client. The data format defined here can also be used to send
session state data for session recovery during login and login response.

Token Stream Comments:
A The token valueis OxE4.

A This token stream MUST NOT be sent if the SESSIONRECOVERY feature is not negotiated on the
connection.

A When this token stream is sent, the next token MUST be DONE or DONEPROC with DONE_FINAL.

A If the SESSIONRECOVERY feature is negotiated on the connec tion, the server SHOULD send this

token to the client to inform any session state update.

Token Stream - Specific Rules:

fRecoverable = BIT
TokenType = BYTE
Length = DWORD
SegNo = DWORD
Status = fRecoverable 7TFRESERVEDBIT
Stateld = BYTE
StateLen = BYTE ;0 - %XFE
/
(%xFF DWORD) ; %xFF - %XFFFF
SessionStateData = Stateld
StateLen
StateValue
SessionStateDataSet = 1*SessionStateData
Tok en Stream Definition:
SESSIONSTATE = TokenType
Length
SegNo
Status

SessionStateDataSet

Token Stream Parameter Details

Parameter De scription

TokenType SESSIONSTATE_TOKEN

Length The length, in bytes, of the token stream (excluding TokenType and Length).

SegNo The sequence number of the SESSIONSTATE token in the connection. This number, which starts at

during the course of a connection. The SeqNo applies to all Statelds in the token. If the SeqNo for
any Stateld reaches %xFFFFFFFF, both client and server MUST consider that the

token with fRecoverable set to FALSE to disable SESSIONRECOVERY for this session. The client

the connection once it receives any SeqNo of %xFFFFFFFF because ResetConn could reset a

0 and increases by one each time, can be used to track the order of SESSIONSTATE tokens sent

SESSIONRECOVERY feature is permanently disabled on the connection. The server SHOULD send a

SHOULD NOT set either ResetConn bit (RESETCONNECTION or RESETCONNECTIONSKIPTRAN) on

[MS -TDS-Diff] - v20201001

Tabular Data Stream Protocol
Copyright © 2020 Microsoft Corporation
Release: October 1, 2020

115 / 220

Parameter De scription

connection back to an initial recoverable state and SESSIONRECOVERY needs to be permanently
disabled on the connection in this case. If the server does receive ResetCon n after SegNo reaches
%xFFFFFFFF, it SHOULD reuse this same SegNo to disable SESSIONRECOVERY.

The client SHOULD track SeqNo for each Stateld and keep the latest data for session recovery.

Status Status of the session Stateld in this token.
fRecoverable: TRUE means all session Statelds in this token are recoverable.

The client SHOULD track Status for each Stateld and keep the latest data for session recovery. A
client MUST NOT try to recover a dead connection unless fRecoverable is TRUE for all session
Statelds received from server.

Stateld The identification number of the session state. %xFF is reserved.
StateLen The length, in bytes, of the corresponding StateValue. If the length is 254 bytes or smaller, one
BYTE is used to represent the field. If the | ength is 255 bytes or larger, %xFF followed by a DWORD

is used to represent the field. If this field is 0, client SHOULD skip sending SessionStateData for the
Stateld during session recovery.

StateValue The value of the session state. This can be any arbi trary data as long as the server understands it.

2.2.7.22 SSPI

Token Stream Name:

SSPI

Token Stream Function:

The SSPI token returned during the login process.
Token Stream Comments:

A The token value is OXED.

Token Stream - Specific Rules:

BYTE
US_VARBYTE

TokenType
SSPIBuffer

Token Stream Definition:

SSPI = TokenType
SSPIBuffer

Token Stream Parameter Details:

Parameter Description

TokenType SSPI_TOKEN

SSPIBuffer The length of the SSPIBuffer and the SSPI buffer using B_VARBYTE format.

116 / 220

[MS -TDS-Diff] - v20201001

Tabular Data Stream Protocol
Copyright © 2020 Microsoft Corporation
Release: October 1, 2020

2.2.7.23 TABNAME

Token Stream Name:

TABNAME

Token Stream Function:

Used to send the table name to the client only w hen in browser mode or from sp_cursoropen.
Token Stream Comments:

A The token value is OxA4.

Token Stream - Specific Rules:

TokenType = BYTE
Length = USHORT
NumParts = BYTE ; (introduced in TDS 7.1 Revision 1)
PartName = US_VARCHAR ; (introduced in TDS 7.1 Revision 1)
TableName = US_VARCHAR ; (removed in TDS 7.1 Revision 1)

/

(NumParts

1*PartName) ; (introduced in TDS 7.1 Revision 1)
AllTableNames = TableName

The TableName element is repeated once for each table name in the query.

Token Stream Definition:

TABNAME = TokenType
Length
AllTableNames

Token Stream Parameter Details

Parameter Description

TokenType TABNAME_TOKEN

Length The actual data length, in bytes, of the TABNAME token stream. The length does not include token
type and length field.
TableName The name of the base table referenced in the query statement.
2.2.7.24 TVP_ROW

Token Stream Name:

117 | 220

[MS -TDS-Diff] - v20201001

Tabular Data Stream Protocol
Copyright © 2020 Microsoft Corporation
Release: October 1, 2020

TVP_ROW

Token Stream Function:

Used to send a complete table valued parameter (TVP) r ow, as defined by the TVP_COLMETADATA
token from client to server.

Token Stream Comments:
A The token value is 0x01/1.

Token Stream - Specific Rules:

TokenType = BYTE
TvpColumnData = TYPE_VARBYTE
AlliColumnData = *TvpColumnData

TvpColumnDat a is repeated once for each column of data with a few exceptions. For details about
when certain TvpColumnData items are required to be omitted, see the Flags description of the
TVP_COLMETADATA definition (see section 2.2.5.5.5.1).

Note that unlike the ROW token, TVP_ROW does not use TextPointer + TimeStamp prefix with TEXT,
NTEXT and IMAGE types.

Token Stream Definition:

TVP_ROW = TokenType
AllColumnData

Token Stream Parameter Details:

Parameter Description

TokenType TVP_ROW_TOKEN

TvpColumnData The actual data for the TVP column. The TYPE_INFO information describing the data type of
this data is given in the preceding TVP_COLMETADATA token.

118 / 220

[MS -TDS-Diff] - v20201001

Tabular Data Stream Protocol
Copyright © 2020 Microsoft Corporation
Release: October 1, 2020

3 Protocol Details

This section describes the important elements of the client software and the server software necessary
to support the TDS protocol.

3.1 Common Details

As described in section 1.3, TDS is an application -level prot ocol that is used for the transfer of
requests and responses between clients and database server systems. The protocol defines a limited

set of messages through which the client can make a request to the server. The TDS server is

message -oriented. Once a ¢ onnection has been established between the client and server, a complete
message is sent from client to server. Following this, a complete response is sent from server to client

(with the possible exception of when the client aborts the request), and the s erver then waits for the
next request. Other than this Post -Login state, the other states defined by the TDS protocol are (i)

pre -authentication (Pre -Login), (ii) authentication (Login), and (iii) when the client sends an attention
message (Attention). The se will be expanded upon in subsequent sections.

3.1.1 Abstract Data Model

See sections 3.2.1 and 3.3.1 for the abstract data model of the client and server, respectively.

3.1.2 Timers

See section 3.2.2 fora description of the client timer used and section 3.3.2 for a description of the
server timer used.

3.1.3 Initialization

None.

3.1.4 Higher -Layer Trigger ed Events

For information about higher -layer triggered events, see section 3.2.4 for a TDS client and section
3.3.4 for a TDS server.

3.1.5 Message Processing Events and Sequencing Rules

The following series of sequence diagrams illustrate the messag es that can be exchanged between
client and server. See sections 3.2.5 and 3.3.5 for specific client and server details regarding message
processing events and sequencing rules.

119 / 220

[MS -TDS-Diff] - v20201001

Tabular Data Stream Protocol
Copyright © 2020 Microsoft Corporation
Release: October 1, 2020

Client

Server

Pre-login state

Create transport connection request from cllent—b-i

“«¢———— Create transport connection response to client

“—— Client sends initial PRELOGIN to server —#»

PRELOGIN

‘| TABLE RESPONSE |¢————

Server sends PRELOGIN
response to client

TLS PRELOGIN Exchange 1 ————#»

PRELOGIN

«—{ PRELOGIN |@&——

TLS PRELOGIN
Exchange 1 Response

TLS PRELOGIN Exchange 2 ————»

PRELOGIN

4—{ PRELOGIN |

TLS PRELOGIN
Exchange 2 Response

Login state

Client sends TDS login request

to server with SPNEGO Exchange 1 ’

LOGIN7

- SSPI @——— SPNEGO Exchange 1 Response

SPNEGO Exchange 2 —————

SSPI

-

(LOGINACK)

LOGIN RESPONSE Server sends successful
TDS login response

Post-Login Success State

Disconnected state (server tears down connection
to client if any of the above steps fail)

Figure 3:Pre -loginto post -login sequence

[MS -TDS-Diff] - v20201001

Tabular Data Stream Protocol
Copyright © 2020 Microsoft Corporation
Release: October 1, 2020

120 / 220

Client

Pre-Login state

Step 1 — Create transport connection request from client

Step 2 - Create transport connection response to client

Step 3 - Client sends initial PRELOGIN to server > PRELOGIN

| TABLE RESPONSE =« Step 4 — Server sends PRELOGIN response to client

Step 5 - TLS PRELOGIN Exchange 1 > PRELOGIN

PRELOGIN < Step 6 ~ TLS PRELOGIN Exchange 1 Response

Step 7 — TLS PRELOGIN Exchange 2 > PRELOGIN \

PRELOGIN < Step 8 - TLS PRELOGIN Exchange 2 Response

Login state

Step 9 — Client sends TDS login request to server with ‘
Federated Authentication Feature Extension thathas » TDS LOGINT

T

bFedAuthLlibrary that requires further information

FEDAUTHINFO |« Step 10 - FEDAUTH Info Response

Step 11 ~ FEDAUTH Token » FEDAUTH TOKEN

LO(;‘;{ggii%?(t;lSE « Step 12 - Server sends successful TDS login response

Post-Login Success State

Disconnected state
(server tears down connection to client if any of the above steps fail)

Figure 4:Pre -loginto post -login sequence with federated authentication that uses a client
library that requires additional information from a server to generate a federated

authentication token

Server

[MS -TDS-Diff] - v20201001

Tabular Data Stream Protocol
Copyright © 2020 Microsoft Corporation
Release: October 1, 2020

121 / 220

Client Server

—_— Pcat-Lngin Success state (server is now ready to accept command from i:lient}—

Client sends S0QL

command to server — S0L COMMAND —

TAELE Server sends table
< RESPONSE response to client with success

— Post-Login Success state (server is now ready to accept command from clignt j=—

Client sends SQL

command to server —| SOL COMMAND i

Client sends
i attention to server to ——f=| ATTENTION —_—
cancel command

Server sends table
| response to client with
attention acknowledgement

. TABLE
RESPONSE

— Post-Login Success state (server is now ready to accept command from client j—

Client sends RPC REMOTE
command to server > FROCEDLURE CALL >

- TABLE . Server sends table
RESPOMNSE response to client with success

— Post-Login Success state (server is now ready to accept command from client j=—

Client sends RPC REMOTE
command to server - PROCEDURE CALL »

Client sends
agttention to server ——— ATTENTION —
to cancel command

- TABLE Server sends table
RESPONSE [®—— response to client with = ———
attention acknowledgement

—Fost-Login Success state (server is now ready to accept command from client}—

Figure 5:SQL command and RPC sequence

122 / 220

[MS -TDS-Diff] - v20201001

Tabular Data Stream Protocol
Copyright © 2020 Microsoft Corporation
Release: October 1, 2020

Client

—FPpst-Login Success State (server is now ready to accept command from client)

Client sends transaction
manager command to server

Server

. Transaction

Manager Request

-

-f}— TAELE RESPONSE |-t

Server sends table
response to client with success

—Post-Login Success State (server is now ready to accept command from client)

Client sends transaction
Manager request to server

Client sends attention
to server to cancel command -

Transaction
e

Manager Request

-

ATTEMTION

@—| TABLE RESPONSE |«g— Server table response to client

with attention acknowledgement

—FPost-Login Success State (server is now ready to accept command from client]_

Figure 6: Transaction manager request sequence

[MS -TDS-Diff] - v20201001

Tabular Data Stream Protocol
Copyright © 2020 Microsoft Corporation
Release: October 1, 2020

123 / 220

Client Server

1 ¥
— Post-Login Success state (server is now ready to accept command from client j=—

Client sends =gl command
— to server with —| SOL COMMAMD —
INZERT BULK command

- TABLE " Server sends rable
RESPONSE response to client
Client sends SQL SOL COMMAND with
Command with binary ——gm BINARY DATA (Bull L g
data to server Load Data)
TABLE Server sends table

* RESPONSE [response to client
— Post-Login Success state (server is now ready to accept command from client}—

Client sends sql command

— to server with —| SOL COMMAMND —f
INSERT BULK command
TABLE Server sends table
% RESPONSE [ecponse to client
Client sends sql S0OL COMMAMD with
—— command with binary data —| BINARY DATA L g
to server (Bulk Load Data)

Client sends
attention to server to — ATTENTIOMN -
cancel command

TABLE Server sends table response to
—— RESPONSE [#— client with —_—
attention acknowledgement

—Fost-Login Success state (server is now ready to accept command from clignt je——

Figure 7: Bulk insert sequence

3.1.6 Timer Events

See sections 3.2.6 and 3.3.6 for the timer events of the client and server, respectively.

3.1.7 Other Local Events

A TDS session is tied to the underlying established network protocol session. As such, loss or
termination of a network connection is equivalent to immediate termination of a TDS session.

See sections 3.2.7 and 3.3.7 for the other local even ts of the client and server, respectively.

[MS -TDS-Diff] - v20201001

Tabular Data Stream Protocol
Copyright © 2020 Microsoft Corporation
Release: October 1, 2020

124 | 220

3.2 Client Details

The following state machine diagram describes TDS on the client side.

Initial
State

Sent Initial Server responds with TLS/SSL packet is structurally

PRELOGIN Packet PRELOGIN response Invalid and server disconnects
TLS/SSL with no response or
PRELOGIN packet is ncryption Connection Timer times out
structurally invalid,; No TLS/SSL — Is used
server resets 0 encryption, Sent TLS/SSL TLS/SSL
connection or federated authentication S
Connection Tifier with client library No TLS/SSL Negotiation Packet negotiation is
times out needing additional encryption; not completed
information is used SPNEGO
authentication Server responds Routing e
is used with TLS/SSL Completed
Final nt LOGIN7 Record with - "fg;g;";:"
State Federated I_\uthentlcanon i Server responds
Information Request Server with routing
responds response
with invalid
Server responds with A A__FEDAUTHINFO
login failed response; —— or any other
or if LOGIN7 packet Server responds with LS/SSL token
is structurally invalid, ; S negotiation
valid FEDAUTHINFO; ‘ Server responds with
server disconnects) is completed;
client generates and something other than
with no response or sends Federited federated 2
Connection Times authentication a routing response
= Authentication ; : and client disconnects
times out Tok with client library
ORER Jessagn needing additional ¥
BIRSIAS h TLS/SSL negotiatien Is
n
Sent LOGIN7 Record completed and standard
with Complete authentication is used
Authentication Token
‘— TLS/SSL negotiation Is completed
and SPNEGO authentication is used
J

/Sent LOGIN7 Record with
SPNEGO Packet

Server responds with Server responds with SPNEGO
login success response T negotiation response

Server responds
with routing
No routing response
Transport layer indicates (narmal login)
4— connection error

4—— Upper layer
requests disconnect

Server disconnects

Routng) "o ent closes.
Sompleted transport connection

to disconnect

Logged In

Server disconnects with
no response or Cancel
Upper layer sends Timer times out

Server responds CIent Request ypper ayer sends Gent Attention
to Client Request Cancel Request

Sent Client Request

Client Request
imer times out

Server disconnects

with no response

Figure 8: TDS client state machine

3.2.1 Abstract Data Model

This section describes a conceptual model of data organization that an implementation maintains to
participate in this protocol. The described organization is provided to facilitate the explanation of how

125 / 220

[MS -TDS-Diff] - v20201001

Tabular Data Stream Protocol
Copyright © 2020 Microsoft Corporation
Release: October 1, 2020

the protocol behaves. This document does not mandate that implementations adhere to this model as
long as their external behavior is consistent with that described in this document.

A TDS client SHOULD maintain the following states:

A Sent Initial PRELOGIN Packet State

A Sent TLS/SSL Negotiation Packet State

A Sent LOGIN7 Record with Complete Authentication Token State
A Sent LOGIN7 Record with SPNEGO Packet State

A Sent LOGIN7 Record with Federated Authentication Information Request State
A Logged In State

A Sent Client Request State

A Sent Attention State

A Routing Completed State

A Final State

3.22 Timers

A TDS client SHOULD implement the following three timers:

A Connection Timer. Controls the maximum time spent during the establishment of a TDS
connection. The default value SHOULD be 15 seconds. The implementation SHOULD allow the
upper layer to specify a nondefault value, including an infinite value (for example, no timeout).

A Client Request Timer. Controls the maximum time spent waiting for a query response from the

server for a client request sent after the connection has been established. The default value is

implementation -dependent. The implementation SHOULD allow the upper layer to specify a non -
default value, including an infinite value (for example, no timeout).<61>

A Cancel Timer. Controls the maximum time spent waiting for a query cancellation
acknowledgement after an Attention request is sent to the server . The default value is
implementation -dependent. The implementation SHOULD allow the upper layer to specify a
nondefault value, including an infinite value (for example, no timeout).<62>

For all three timers, a client can implement a minimum timeout value that is as short as required. If a
TDS client implementation implements any of the timers, it MUST implement their behavior according
to this specification.

A TDS client SHOULD request the transport to detect and indicate a broken connection if the transpo rt
provides such mechanism. If the transport used is TCP, it SHOULD use the TCP Keep -Alives [RFC1122]
in order to detect a nonresponding server in case infinite connection timeout or infinite client request

timeout is used. The default values of the TCP Ke ep-Alive values set by a TDS client are 30 seconds of

no activity until the first keep -alive packet is sent and 1 second between when successive keep -alive
packets are sent if no acknowledgement is received. The implementation SHOULD allow the upper

layer to specify other TCP keep -alive values.

3.2.3 Initialization

None.

126 / 220

[MS -TDS-Diff] - v20201001

Tabular Data Stream Protocol
Copyright © 2020 Microsoft Corporation
Release: October 1, 2020

3.2.4 Higher -Layer Triggered Events

A TDS client MUST support the following events from the upper layer:

A Connection Open Request to establish a new TDS connection to a TDS server.

A Client Request to send a query to a TDS server on an already established TDS co nnection. The
Client Request is a request for one of four types of queries to be sent: SQL Command, Bulk Load,
Transaction Manager Request, or an RPC.

In addition, it SHOULD support the following event from the upper layer:

A Cancel Request to cancel aclie nt request while waiting for a server response. For example, this
enables the upper layer to cancel a long -running client request if the user/upper layer is no longer
seeking the result, thus freeing up thus client and server resources. If a client impleme ntation of
the TDS protocol supports the Cancel Request event, it MUST handle it as described in this
specification.

The processing and actions triggered by these events is described in the remaining parts of this
section.

When a TDS client receives a Connection Open Request from the upper layer in the "Initial" state of a
TDS connection, it performs the following actions:

A If the TDS client implements the Connection Timer, it MUST start the Connection Timer if the
connection timeout value is not infinite.

A Ifthereis upper -layer request MARS support, it MUST set the B_MARS byte in the PRELOGIN
message to 0x01.

A It MUST send a PRELOGIN message to the server by using the underlying transport protocol.
A If the transport does not report an error, it MUST enter the "Sent Initial PRELOGIN Packet" state.

When a TDS client receives a Connection Open Request from the upper layer in any state other than
the Initial state of a TDS connection, it MUST indicate an error to the upper layer.

When a TDS clientr eceives a Client Request from the upper layer in the "Logged In" state, it MUST
perform the following actions:

A If the TDS client implements the Query Timer, it MUST start the Client Request Timer if the client
request timeout value is not infinite.

A If MARS is enabled, the client MUST keep track whether there is an outstanding active request. If
this is the case, then the client MUST initiate a new SMP session, or else an existing SMP session
MAY be used.

A Send either SQL Command, Bulk Load, Transaction Manag er Request, or a RPC message to the
server. The message and its content MUST match the requested message from the Client Request.
If MARS is enabled, the TDS message MUST be passed through to the SMP layer.

A If the transport does not report an error, then e nter the "Sent Client Request" state.

When a TDS client supporting the Cancel Request receives a Cancel Request from the upper layer in
the "Sent Client Request” state, it MUST perform the following actions:

A If the TDS client implements the Cancel Timer, i t MUST start the Cancel Timer if the Attention
request timeout value is not infinite.

127 | 220

[MS -TDS-Diff] - v20201001

Tabular Data Stream Protocol
Copyright © 2020 Microsoft Corporation
Release: October 1, 2020

A Send an Attention message to the server. This indicates to the server that the client intends to
abort the currently executing request. If MARS is enabled, the Attention message MUST be passed
through to the SMP layer.

A Enter the "Sent Attention" state.

3.2.5 Message Processing Events and Sequencing Rules

The processing of messages received from a TDS server depends on the message type and the current
state of the TDS client. The rest of this section describes the processing and actions to take on them.
The message type is determined from the TDS pack et type and the token stream inside the TDS
packet payload, as described in section 2.2.3.

Whenever the TDS client enters either the "Logged In" state or the "Final State" state, it MUST stop
the Connection Timer (if implemented and running), the Client Request Timer (if implemented and
running), and the Cancel Timer (if implemented and running).

Whenever a TDS client receives a structurally invalid TDS message, it MUST close the underlying
transport connection, indicate an error to the upper layer , and enter the "Final State" state.

When a TDS client receives a table response (TDS packet type %x04) from the server, it MUST
behave as follows, according to the state of the TDS client.

3.25.1 Sent Initial PRELOGIN Packet State

If the response contains a structurally valid PRELOGIN response indicating a success, the TDS client
MUST take action according to the Encryption option and Authentication scheme:

A The Encryption option MUST be handled as described in section 2.2.6.5 in the PRELOGIN message
description.

A If encryption was negotiated, the TDS client MUST initiate a TLS/SSL handshake, send to the
server a TLS/SSL message obtained from the TLS/SSL layer encapsulated in TDS packet(s) of type
PRELOGIN (0x12) , and enter the "Sent TLS/SSL negotiation packet" state.

A If encryption was not negotiated and the upper layer did not request full encryption, the TDS
client MUST send to the server a Login message that contains the authentication scheme that is
specified by the user and MUST enter one of the following three states, depending on the message
sent:

A "Sent LOGIN7 record with Complete Authentication Token" state, if a login message that
contains either of the following was sent.

A Standard authentication.

A FEDAUTH FeatureExt that indicates a client library that does not need any additional
information from the server for authentication.

A "Sent LOGIN7Y record with SPNEGO packet” state, if a Login message with SPNEGO
authentication was sent.

A "SentLOGIN7 record with Federated Authentication Information Request"” state, if a Login
message with FEDAUTH FeatureExt that indicates a client library that needs additional
information from the server for authentication was sent.

The TDS specification does n ot prescribe the authentication protocol if SSPI [SSPI] authentication
is used. The current implementation of SSPI supports NTLM [MSDN -NTLM] and Kerberos
[RFC4120].

128 / 220

[MS -TDS-Diff] - v20201001

Tabular Data Stream Protocol
Copyright © 2020 Microsoft Corporation
Release: October 1, 2020

A If encryption was not negotiated and the upper layer requested full encryption, then the TD S client
MUST close the underlying transport connection, indicate an error to the upper layer, and enter
the "Final State" state.
A If the response received from the server does not contain a structurally valid PRELOGIN response
or it contains a structurall y valid PRELOGIN response indicating an error, the TDS client MUST
close the underlying transport connection, indicate an error to the upper layer, and enter the
"Final State" state.
A 1 NONCEOPT is specified in both the client PRELOGIN message and the ser ver PRELOGIN
message, the TDS client MUST maintain a state variable that includes the value of the NONCE that
is sent to the server and a state variable that includes the value of the NONCE that is contained in
the serverds response.
3.25.2 Sent TLS/SSL Negotiati on Packet State
If the response contains a structurally valid TLS/SSL response message (TDS packet Type 0x12), the
TDS client MUST pass the TLS/SSL message contained in it to the TLS/SSL layer and MUST proceed as
follows:
A Ifthe TLS/SSL layer indicates that further handshake is needed, the TDS client MUST send to the
server the TLS/SSL message obtained from the TLS/SSL layer encapsulated in TDS packet(s) of
Type PRELOGIN (0x12).
A Ifthe TLS /SSL layer indicates successful completion of the TLS/SSL handshake, the TDS client
MUST send a Login message to the server that contains the authentication scheme that is
specified by the user. The TDS client then enters one of the following three states, depending on
the message sent:
A "Sent LOGIN7 record with Complete Authentication Token" state, if a Login message that
contains either of the following was sent:
A Standard authentication.
A FEDAUTH Featureld that indicates a client library that does not need any additional
information from the server for authentication.
A The "Sent LOGIN7 record with SPNEGO packet" state, if a Login message with SPNEGO
authentication was sent.
A "Sent LOGIN7 record with Federated Authentication Information Request" state, if a Lo gin
message with FEDAUTH FeatureExt that indicates a client library that needs additional
information from server for authentication was sent.
The TDS specification does not prescribe the authentication protocol if SSPI [SSPI] authentication
or federated a uthentication is used. The current implementation of SSPI supports NTLM [MSDN -
NTLM] and Kerberos [RFC4120].
A Iflogin -only encryption was negotiated as described in section 2.2 in the PRELOGIN message
description, then the first TDS packet of the Login mess age MUST be encrypted using TLS/SSL and
encapsulated in a TLS/SSL message. All other TDS packets sent or received MUST be in plaintext.
A If full encryption was negotiated as described in section 2.2 in the PRELOGIN message description,
then all subsequent T DS packets sent or received from this point on MUST be encrypted using
TLS/SSL and encapsulated in a TLS/SSL message.
A Ifthe TLS/SSL layer indicates an error, the TDS client MUST close the underlying transport

connection, indicate an error to the upper lay er, and enter the "Final State" state.

129 / 220

[MS -TDS-Diff] - v20201001

Tabular Data Stream Protocol
Copyright © 2020 Microsoft Corporation
Release: October 1, 2020

If the response received from the server does not contain a structurally valid TLS/SSL response or it
contains a structurally valid response indicating an error, the TDS client MUST close the underlying
transport con nection, indicate an error to the upper layer, and enter the "Final State" state.

3.2.5.3 Sent LOGIN7 Record with Complete Authentication Token State

If the response received from the server contains a structurally valid Login response that indicates a

successful login, and if the client used federated authentication to authenticate to the server, the

client MUST read the Login response stream to find the FEAT UREEXTACK token and find the FEDAUTH
Featureld. If the FEDAUTH Featureld is not present, the TDS client MUST close the underlying

transport connection, indicate an error to the upper layer, and enter the "Final State" state. If the

FEDAUTH Featureld is pre sent, the client's action is based on the bFedAuthLibrary as follows:

A When the bFedAuthLibrary is Live ID Compact Token, the client MUST use the session key from its
federated authentication token to compute the HMAC -SHA-256 [RFC6234] of the NONCE field in
the FEDAUTH Feature Extension Acknowledgement, and the client MUST verify that the nonce
matches the nonce sent by the client in its PRELOGIN request. If the signature field does not
match the computed HMAC - SHA-256 or if the nonce does not match t he nonce sent by the client
in its PRELOGIN request, the TDS client MUST close the underlying transport connection, indicate
an error to the upper layer, and enter the "Final State" state.

A When the bFedAuthLibrary is Security Token or Active Directory Auth entication Library (ADAL)
[that is, Ox02] and any of the following statements is true, the TDS client MUST close the

underlying transport connection, indicate an error to the upper layer, and enter the "Final State"

state:

A The client had sent a nonce in th e PRELOGIN message and either the NONCE field in FEDAUTH
Feature Extension Acknowledgement is not present or the NONCE field does not match the
nonce sent by the client in its PRELOGIN request.

A The client had not sent a nonce in its PRELOGIN request, and t here is a NONCE field present in
the FEDAUTH Feature Extension Acknowledgement.

If the response received from the server contains a structurally valid Login response indicating a
successful login and no Routing response is detected, the TDS client MUST ind icate successful Login
completion to the upper layer and enter the "Logged In" state.

If the response received from the server contains a structurally valid Login response indicating a
successful login and also contains a routing response (a Routing ENVCHA NGE token) after the
LOGINACK token, the TDS client MUST enter the "Routing Completed" state.

If the response received from the server does not contain a structurally valid Login response or it
contains a structurally valid Login response indicating login failure, the TDS client MUST close the
underlying transport connection, indicate an error to the upper layer, and enter the "Final State" state.

3.25.4 Sent LOGIN7 Record with SPNEGO Packet State

If the response received from the server contains a structurally valid Login response indicating a
successful login and no Routing response is detected, the TDS client MUST indicate successful Login
completion to the upper layer and enter the "Logged In" state.

If the response received from the server contains a structurally valid Login response indicating a
successful login and also contains a routing response (a Routing ENVCHANGE token) after the
LOGINACK token, the TDS cl ient MUST enter the "Routing Completed" state.

If the response received from the server contains a structurally valid SSPI response message, the TDS
client MUST send to the server a SSPI message (TDS packet type %x11) containing the data obtained
from the applicable SSPI layer. The TDS client SHOULD wait for the response and reenter this state
when the response is received.

130 / 220

[MS -TDS-Diff] - v20201001

Tabular Data Stream Protocol
Copyright © 2020 Microsoft Corporation
Release: October 1, 2020

If the response received from the server does not contain a structurally valid Login response or SSPI
response, or if it contains a str ucturally valid Login response indicating login failure, the TDS client
MUST close the underlying transport connection, indicate an error to the upper layer, and enter the
"Final State" state.

3.255 Sent LOGIN7 Record with Federated Authentication Information Re quest
State

If the response received from the server contains a structurally valid Login Response message that
contains a Routing ENVCHANGE token in the response after the LOGINACK token, the TDS client MUST
enter the "Routing Completed" state.

If the resp onse received from the server contains a structurally valid Login Response message that

contains a FEDAUTHINFO token, the TDS client MUST generate a Federated Authentication message,

send that Federated Authentication message to the server, and enter the " Sent LOGIN7 record with
Complete Authentication Token" state.

If the response received from the server does not contain a structurally valid Login Response message

that contains a routing response or a structurally valid FEDAUTHINFO token, the TDS client M UST
close the underlying transport connection, indicate an error to the upper layer, and enter the "Final

State" state.

3.25.6 Logged In State

The TDS client waits for notification from the upper layer. If the upper layer requests a query to be

sent to the server, the TDS client MUST send the appropriat e request to the server and enter the
"Sent Client Request" state. If MARS is enabled, the TDS client MUST send the appropriate request to
the SMP layer. If the upper layer requests a termination of the connection, the TDS client MUST
disconnect from the s erver and enter the "Final State" state. If the TDS client detects a connection
error from the transport layer, the TDS client MUST disconnect from the server and enter the "Final
State" state.

3.2.5.7 Sent Client Request State

If the response received fr om the server contains a structurally valid response, the TDS client MUST
indicate the result of the request to the upper layer and enter the "Logged In" state.

The client has the ability to return data/control to the upper layers while remaining in the "S ent Client
Request" state while the complete response has not been received or processed.

If the TDS client supports Cancel Request and the upper layer requests a Cancel Request to be sent to
the server, the TDS client will send an Attention message to the server, start the Cancel Timer, and
enter the "Sent Attention" state.

If the response received from the server does not contain a structurally valid response, the TDS client
MUST close the underlying transport connection, indicate an error to the upper la yer, and enter the
"Final State" state.

3.25.8 Sent Attention State

If the response is structurally valid and it does not acknowledge the Attention as described in section
2.2.1.7, then the TDS client MUST discard any data contained in the response and remain in the "Sent
Attent ion" state.

If the response is structurally valid and it acknowledges the Attention as described in section 2.2.1.7,
then the TDS client MUST discard any data contained in the response, indicate the completion of the
query to the upper layer together with the cause of the Attention (either an upper -layer cancellation

131 / 220

[MS -TDS-Diff] - v20201001

Tabular Data Stream Protocol
Copyright © 2020 Microsoft Corporation
Release: October 1, 2020

as described in section 3.2.4 or query timeout as described in section 3.2.2), and enter the "Logged
In" state.

If the response received from the server is not structurally valid, then the TD S client MUST close the
underlying transport connection, indicate an error to the upper layer, and enter the "Final State" state.

3.25.9 Routing Completed State

The TDS client MUST:

A Read the rest of the login response from the server, processing the remaining tokens until the
final DONE token is read, as it does with a normal login response.

A Discard all information read from the original login response except for the routing information
supplied in the Routing ENVCHANGE token.

A Anyinformationinthe o riginal login response (for example, the language, collation, packet
size, or database mirroring partner) will not apply to the subsequent connection established to
the alternate server specified in the Routing ENVCHANGE token.

A Close the original connectio n, and enter the "Final State" state. The original connection cannot be
used for any other purpose after the Routing ENVCHANGE token is read and the response is
drained.

3.25.10 Final State

The connection is disconnected. All resources for this connection will be recycled by the TDS server.

3.2.6 Timer Events

If a TDS client implements the Connection Timer and the timer times out, then the TDS client MUST
close the underlying connection, indicate the error to the upper layer, and enter the "Final State"
state.

If a TDS client implements the Client Request Timer and the timer times out, then the TDS client
MUST send an Attention message to the server and enter the "Sent Attention" state.

If a TDS client implements the Cancel Timer and the timer times out, then the TDS client M UST close
the underlying connection, indicate the error to the upper layer, and enter the "Final State" state.

3.2.7 Other Local Events

Whenever an indication of a con nection error is received from the underlying transport, the TDS client
MUST close the transport connection, indicate an error to the upper layer, stop any timers if running,

and enter the "Final State" state. If TCP is used as the underlying transport, ex amples of events that
can trigger such action 8 dependent on the actual TCP implementation 0 might be media sense loss, a
TCP connection going down in the middle of communication, or a TCP keep -alive failure.

3.3 Server Detalls

The followi ng state machine diagram describes TDS on the server side.

132 / 220

[MS -TDS-Diff] - v20201001

Tabular Data Stream Protocol
Copyright © 2020 Microsoft Corporation
Release: October 1, 2020

Initial State PRELOGIN packet is structurally
invalid and server closes
First message is a underlying connection
structurally valid PRELOGIN

Encryption Is negotiated ON Final
Valid TLS/SSL packet is Received non-TLS packet or State §
recelved, but TLS/SSL ! TLS/SSL Neootiallon)— negotiation failed; server ()
negaotiation is net completed disconnects with no response

Recelved last TLS/SSL packet
from client and TLS/SSL

negotiation succeer'™ | ,qin of received LOGIN7 with
complete authentication token fails and
erver responds with login failed message—

Encryption is
L negotiated OFF,

{ Login Ready

I T Received LOGINT packet is ——»
FedAuth FeatureExt is Received LOGIN7 with structurally invalid and server
requested; client library needs SPNEGO security token disconnects with no response

information from server

|
Federated
Authentication Ready

ederated Authentication Token exchange falls——ppf

SPNEGO fails and server g
disconnects with no response

SPNEGO

Federated Va:::c se:,,‘eg:;o jegetiation Recelved a not structurally valid —#»
Authentication security token; SPNEGO SPNEGO security token message and
Token exchange negotiation succeeds server disconnects with no response
succeeds not completed
Hecaives Server rejects login and returns
LOGIN? with login falled message to client
:?,;?,‘;I::Ieca[mn Server rejects federated—————p|
token; login Selvgr accepts authentication login
succeeds SPNEGO login

Server accepts federated
authentication login

Server chooses to route and
sends routing response to client

Server does not route
(normal login path)

Logged In

Received Client Received Attention
Request from dlent from cllent and
Acknowledgement

sent to client

Server disconnects with no
response or client closes
ransport connection to diSCONNEeCtm—

Routing Completed

Upper Iayler finishes
Client Request and
sends response to cllent;
returns to the server response

Cllent Request
Execution

Figure 9: TDS server state machine

3.3.1 Abstract Data Model

This sec tion describes a conceptual model of data organization that an implementation maintains to
participate in this protocol. The organization is provided to explain how the protocol behaves. This
document does not mandate that implementations adhere to this mo del as long as their external
behavior is consistent with what is described in this document.

The server SHOULD maintain the following states:

133 / 220

[MS -TDS-Diff] - v20201001

Tabular Data Stream Protocol
Copyright © 2020 Microsoft Corporation
Release: October 1, 2020

Initial State

> >

TLS/SSL Negotiation State

p>N

Login Ready State

SPNEGO Negotiation State

Federated Authentication Read vy State
Logged In State

Client Request Execution State

Routing Completed State

> > > > > >

Final State

3.3.2 Timers

The TDS protocol does not regulate any timer on a data stream. The TDS server MAY implement a
timer on any message found in section 2.

3.3.3 Initialization

The server MUST establish a listening endpoint based on one of the transport protocols described in
section 2.1. The server can establish additional list ening endpoints.

When a client makes a connection request, the transport layer listening endpoint will initialize all
resources required for this connection. The server will be ready to receive a Pre -Login message.

3.3.4 Higher -Layer Triggered Events

A higher layer can choose to terminate a TDS connection at any time. In the current TDS
implementation, the upper layer can kill a connection. When this happens, the server MUST terminate
the connection and recycle all resources for this connection. No response will be sent to the client.

3.35 (Updated Section) Message Processing Events and Sequencing Rules

The processing of messages received from a TDS client depends on the message type and the current

state of the TDS server. The rest of this section descri bes the processing and actions to take on them.
The message type is determined from the TDS packet type and the token stream inside the TDS

packet payload, as described in section 2.2.

The corresponding action will be taken when the server in the follow ing states.

3.3.5.1 Initial State

The TDS server receivest he first packet from the client. The packet SHOULD be a PRELOGIN packet to

set up context for login. A Pre -Login message is indicated by the PRELOGIN (0x12) message type

described in section 2. The TDS server SHOULD close the underlying transport connectio n, indicate an
error to the upper layer, and enter the "Final State" state, if the first packet is not a structurally

correct PRELOGIN packet or if the PRELOGIN packet does not contain the client version as the first

option token. Otherwise, the TDS server MUST do one of the following:

A Return to the client a PRELOGIN structure wrapped in a table response (0x04) packet and enter
"TLS/SSL Negotiation" state if encryption is negotiated.

134 | 220

[MS -TDS-Diff] - v20201001

Tabular Data Stream Protocol
Copyright © 2020 Microsoft Corporation
Release: October 1, 2020

A Return to the client a PRELOGIN structure wrapped in a table response (0 x04) packet and enter
unencrypted "Login Ready" state if encryption is not negotiated.

If a FEDAUTHREQUIRED option is contained in the PRELOGIN structure sent by the server to the

client, the TDS server MUST maintain the value of the FEDAUTHREQUIRED option in a state variable to
validate the LOGIN7 message with FEDAUTH Featureld when the message arrives, as described in

section 3.3.5.3.

If no FEDAUTHREQUIRED option is contained in the PRELOGIN structure sent by the server to the

client, orifthe value of B _FEDAUTHREQUIRED = 0, the TDS client can treat both events as equivalent
and MUST remember the event in a state variable. Either state will be treated the same when the

state variables are examined in the "Login Ready" state (see section 3.3.5.3 for furthe r details).

If NONCEOPT is specified in both the client PRELOGIN message and the server PRELOGIN message,
the TDS server MUST maintain a state variable that includes the values of both the NONCE it sent to
the client and the NONCE the client sent to it dur ing the PRELOGIN exchange.

3.3.5.2 TLS/SSL Negotiation State

If the next packet from the TDS client is not a TLS/SSL negotiation packet or the packet is not

structurally correct, the TDS server SHOULD close the underlying transport connection, indicate an

error to the upper layer, and enter the "Final State" state. A TLS/SSL negotiation packet is a

PRELOGIN (0x12) packet header encapsulated with TLS/SSL payload. The TDS server MUST exchange
TLS/SSL negotiation packet with the client and reenter this state until the TLS/SSL negotiation is
successfully completed. In this case, TDS server enters the "Login Ready" state.

3.3.5.3 Login Ready State

If the TDS server receives a valid LOGIN7 message with the FEDAUTH Featureld from the client, the
server MUST validate that one of the following is true:

A The TDS serverdés PRELOGIN structure contained a FEDAUTHREQ
or the TDS serverb6és PRELOGIN structure did not contain a F
value of fFredAuthEchois 0.

A The TDS serverds PRELOGI N structure contained a FEDAUTHREQ
and the value of fFredAuthEcho is 1.

If the TDS server receives a valid LOGIN7 message with the FEDAUTH Featureld from the client but

neither of the above stateme nts is true, the server MUST send an ERROR packet, described in section

2, to the client. The TDS server MUST then close the underlying transport connection, indicate an error

to the upper layer, and enter the "Final State" state. Otherwise, the TDS server MUST process the
FedAuthToken embedded in the packet in a way appropriate for the value of bFedAuthLibrary.

When the bFedAuthLibrary is a Live ID Compact token, the TDS Server MUST respond as follows:

A I'f no NONCEOPT was s pe cPRELOSIN message, theeTDS deliver MUWSTF send a
"Login failed" ERROR token to the client, the server MUST close the connection, and the server
MUST enter the "Final State" state.

A If a NONCEOPT was specified in the client's PRELOGIN message, the federated auth entication
library layer responds with one of two results, and the TDS server continues processing according
to the response as follows:

A Success:

A The TDS server MUST use the session key from the federated authentication token to
compute the HMAC -SHA-256 [R FC6234] of the data sent by the client. If the Signature
field does not match the computed HMAC -SHA-256, or if the nonce does not match the

135 / 220

[MS -TDS-Diff] - v20201001

Tabular Data Stream Protocol
Copyright © 2020 Microsoft Corporation
Release: October 1, 2020

nonce sent by the server in its PRELOGIN response, then the TDS server MUST send a
“Login failed" ERROR token to the client, the TDS server MUST close the connection, and
the TDS server MUST enter the "Final State" state.

A If a ChannelBindingToken is present, the server MUST compare the ChannelBindingToken
against the channel binding token calculated from the underlying TLS/SSL channel. If the
two values do not match, then the TDS server MUST send a "Login failed" ERROR token to

the client, the TDS server MUST close the connection, and the TDS server MUST enter the

"Final State" state.

A If both the channel binding token an d the nonce match the expected values, the server
MUST send the security token to the upper layer (typically an application that provides
database management functions) for authorization. If the upper layer approves the
security token, the TDS server MUST send a LOGINACK message that includes a
FEATUREEXTACK token with the FEDAUTH Featureld and immediately enter the "Logged
In" state or enter the "Routing Completed"” state if the server decides to route. If the
upper layer rejects the security token, the TDS server MUST send a "Login failed" ERROR
token to the client, the TDS server MUST close the connection, and the TDS server MUST
enter the "Final State" state.

A Error: The server then MUST close the underlying transport connection, indicate an error to
the u pper layer, and enter the "Final State" state.

When the bFedAuthLibrary is Security Token, the TDS server MUST respond as follows:

A I'f the serverds PRELOGIN response contained a NONCEOPT, t
whether the client's LOGIN7 packe t has the same nonce echoed back as part of FEDAUTH Feature
SignedData. If the NONCE field is not present or if the nonce does not match, the TDS server
MUST send a "Login failed" ERROR token to the client, the TDS server MUST close the connection,
and the TDS server MUST enter the "Final State" state.

there is NO NONCE as part LOGIN7 FEDAUTH Feature SignedData. If a NONCE field is present, the
TDS server MUST send a "Login failed" ERROR token back to the client, the TDS server MUST close
the connection and the TDS server MUST enter the "Final State" state.

A Success:

A The server MUST send the security token to the upper layer (typically an application that
provides da tabase management functions) for authorization. If the upper layer approves
the security token, the TDS server MUST send a LOGINACK message that includes a
FEATUREEXTACK token with the FEDAUTH Featureld and immediately enter the "Logged
In" state or enter the "Routing Completed" state if the server decides to route. If the
upper layer rejects the security token, the TDS server MUST send a "Login failed" ERROR
token to the client, the TDS server MUST close the connection, and the TDS server MUST
enter the "F inal State" state.

A Error: The server then MUST close the underlying transport connection, indicate an error to
the upper layer, and enter the "Final State" state.

When bFedAuthLibrary is Active Directory Authentication Library (ADAL) [that is, 0x02], the T DS
server MUST validate that no other data was sent as part of the feature extension, that is, that

FeatureExt is structurally valid for this library type. Then the TDS server MUST send a FEDAUTHINFO

token with data for FedAuthinfolDs of STSURL and SPN and enter the "Federated Authentication
Ready" state. This FEDAUTHINFO Token message SHOULD be used by the client to generate a
federated authentication token.

If the TDS server receives a valid LOGIN7 packet with standard login, the TDS server MUST respond
to the TDS client with a LOGINACK (0xAD) described in section 2 indicating login succeed. The TDS

136 / 220

[MS -TDS-Diff] - v20201001

Tabular Data Stream Protocol
Copyright © 2020 Microsoft Corporation
Release: October 1, 2020

A I'f the serverdés PRELOGI N response did not contain a NONCEO

server MUST enter the "Logged in" state or enter the "Routing Completed" state if the server decides
to route.

If the TDS server receives a LOGIN7 packet with SSPI Negotiation packet, the TDS server MUST enter
the "SPNEGO Negotiation" state.

If the TDS server receives a LOGIN7 packet with standard login packet, but the login is invalid, the

TDS server MUST send an ERROR packet, described in section 2, to the cli ent. The TDS server MUST
close the underlying transport connection, indicate an error to the upper layer, and enter the "Final

State" state.

If the packet received is not a structurally valid LOGIN7 packet, the TDS server will not send any
response to the client. The TDS server MUST close the underlying transport connection, indicate an
error to the upper layer, and enter the "Final State" state.

3.3.54 SPNEGO Negotiation State

This state is used to negotiate the security scheme between the client and server. The TDS server
processes the packet received according to the following rules.

A If the packet received is a structurally valid SPNEGO [RFC4178] negotiation packet, the TDS
server delegates processing of the security token embedded in the packet to the SPNEG O layer.
The SPNEGO layer responds with one of three results, and the TDS server continues processing
according to the response as follows:

A Complete: The TDS server then sends the security token to the upper layer (typically an
application that provides da tabase management functions) for authorization. If the upper layer
approves the security token, the TDS server returns the security token to the client within a
LOGINACK message and immediately enters the "Logged In" state or enters the "Routing
Completed" state if the server decides to route. If the upper layer rejects the security token,

then a "Login failed" ERROR token is sent back to the client, the TDS server closes the
connection, and the TDS server enters the "Final State" state.

A Continue: The TDS s erver sends a SPNEGO [RFC4178] negotiation response to the client,
embedding the new security token returned by SPNEGO as part of the Continue response. The
server then waits for a message from the client and re -renters the SPNEGO negotiation state
when su ch a packet is received.

A Error: The server then MUST close the underlying transport connection, indicate an error to
the upper layer, and enter the "Final State" state.

A If the packet received is not a structurally valid SPNEGO [RFC4178] negotiation packet, the TDS
server will send no response to the client. The TDS server MUST close the underlying transport
connection, indicate an error to the upper layer, and enter the "Final State" state.

3.3.5.5 Federated Authentication Ready State

This state is used to process the federated authentication token that is obtained from the client. The
TDS server processes the packet that is received according to the following rules:

A If the packet that is received is a structurally valid Federated Authentication T oken message, the
TDS server MUST delegate processing of the security token embedded in the packet to the
federated authentication layer, using the library that is indicated by the state variable that
maintains the value of the bFedAuthLibrary field of the |l ogin packetdés FEDAUTH
federated authentication layer responds with one of two results, and the TDS server continues
processing according to the response as follows:

A SUCCESS: The TDS Server MUST send the Federated Authentication Token to t he upper layer
(typically, an application that provides database management functions) for authorization. If

137 / 220

[MS -TDS-Diff] - v20201001

Tabular Data Stream Protocol
Copyright © 2020 Microsoft Corporation
Release: October 1, 2020

Feature

the upper layer approves the token, the TDS server MUST send a LoginACK message that

includes a FEATUREEXTACK token that contains FEDAUTH Featureld and immediately enter
the "Logged In" state or enter the "Routing Completed" state if the server decides to route. If

the upper layer rejects the token, then a "Login Failed" ERROR token MUST be sent back to

the client, the TDS server MUST close the conne ction, and the TDS server MUST enter the
"Final State" state.

A ERROR: The server MUST close the underlying transport connection, indicate an error to the
upper layer, and enter the "Final State" state.

A If the packet that is received is not a structurally va lid Federated Authentication Token message,
the TDS server SHOULD send no response to the client. The TDS server MUST close the underlying
transport connection, indicate an error to the upper layer, and enter the "Final State" state.

3.35.6 Logged In State

Ifa TDS of type 1, 3, 7, or 14 (see section 2.2.3.1.1) arrives, then the TDS server begins processing

by raising an event to the upper layer containing the data of the client request and entering the Client

Request Execution state. If any other TDS types arrive, then the server MUST enter th e Final State
state. The TDS server MUST continue to listen for messages from the client while awaiting notification

of client request completion from the upper layer.

3.3.5.7 Client Request Execution State

The TDS server MUST con tinue to listen for messages from the client while awaiting notification of
client request for completion from the upper layer. The TDS server MUST also do one of the following:

>

If the upper layer notifies TDS that the client request has finished successfu Ily, the TDS server
MUST send the results in the formats described in section 2 to the TDS client and enter the
"Logged In" state.

A If the upper layer notifies TDS that an error has been encountered during client request, the TDS
server MUST send an error message (described in section 2) to the TDS client and enter the
"Logged In" state.

A If an attention packet (described in section 2) is received during the execution of the current client
request, it MUST deliver a cancel indication to the upper layer. If an attention packet (described in
section 2) is received after the execution of the current client request, it SHOULD NOT deliver a
cancel indication to the upper layer because there is no existing execution to cancel. The TDS
server MUST send an attention acknowledgment to the TDS client and enter the "Logged In" state.

A If another client request packet is received during the execution of the current client request, the
TDS server SHOULD queue the new client request, and continue processing the client requ est
already in progress according to the preceding rules. When this operation is complete, the TDS
server re -enters the "Client Request Execution” state and processes the newly arrived message.

A If MARS is enabled, all TDS server responses to client request messages MUST be passed through
to the SMP layer.

A If any other message type arrives, the server MUST close the connection and enter the "Final
State" state.
3.3.5.8 Routing Completed State

The TDS server SHOULD wait for connection closure initiated by the client and enter the "Final State"
state. If any request is received from the client in this state, the server SHOULD close the connection
with no response and enter the "Final State" state.

138 / 220

[MS -TDS-Diff] - v20201001

Tabular Data Stream Protocol
Copyright © 2020 Microsoft Corporation
Release: October 1, 2020

3.3.5.9 Final State

The connection is disconnected. All resources for this connection will be recycled by the TDS server.

3.3.6 Timer Events

None.

3.3.7 Other Local Events

When there is a failure in under -layers, the server SHOULD terminate the TDS session without sending
any response to the client. The under -layer failure could be triggered by network failure. It can also be
triggered by the termination action from the client, which could be communicated to the server stack

by under -layers.

139 / 220

[MS -TDS-Diff] - v20201001

Tabular Data Stream Protocol
Copyright © 2020 Microsoft Corporation
Release: October 1, 2020

