

1 / 241

[MS-SRVS-Diff] - v20240423
Server Service Remote Protocol
Copyright © 2024 Microsoft Corporation
Release: April 23, 2024

[MS-SRVS-Diff]:

Server Service Remote Protocol

Intellectual Property Rights Notice for Open Specifications Documentation

 Technical Documentation. Microsoft publishes Open Specifications documentation (“this
documentation”) for protocols, file formats, data portability, computer languages, and standards
support. Additionally, overview documents cover inter-protocol relationships and interactions.

 Copyrights. This documentation is covered by Microsoft copyrights. Regardless of any other
terms that are contained in the terms of use for the Microsoft website that hosts this
documentation, you can make copies of it in order to develop implementations of the technologies
that are described in this documentation and can distribute portions of it in your implementations

that use these technologies or in your documentation as necessary to properly document the
implementation. You can also distribute in your implementation, with or without modification, any
schemas, IDLs, or code samples that are included in the documentation. This permission also

applies to any documents that are referenced in the Open Specifications documentation.
 No Trade Secrets. Microsoft does not claim any trade secret rights in this documentation.
 Patents. Microsoft has patents that might cover your implementations of the technologies

described in the Open Specifications documentation. Neither this notice nor Microsoft's delivery of
this documentation grants any licenses under those patents or any other Microsoft patents.
However, a given Open Specifications document might be covered by the Microsoft Open
Specifications Promise or the Microsoft Community Promise. If you would prefer a written license,

or if the technologies described in this documentation are not covered by the Open Specifications
Promise or Community Promise, as applicable, patent licenses are available by contacting
iplg@microsoft.com.

 License Programs. To see all of the protocols in scope under a specific license program and the
associated patents, visit the Patent Map.

 Trademarks. The names of companies and products contained in this documentation might be

covered by trademarks or similar intellectual property rights. This notice does not grant any
licenses under those rights. For a list of Microsoft trademarks, visit
www.microsoft.com/trademarks.

 Fictitious Names. The example companies, organizations, products, domain names, email
addresses, logos, people, places, and events that are depicted in this documentation are fictitious.
No association with any real company, organization, product, domain name, email address, logo,
person, place, or event is intended or should be inferred.

Reservation of Rights. All other rights are reserved, and this notice does not grant any rights other
than as specifically described above, whether by implication, estoppel, or otherwise.

Tools. The Open Specifications documentation does not require the use of Microsoft programming
tools or programming environments in order for you to develop an implementation. If you have access
to Microsoft programming tools and environments, you are free to take advantage of them. Certain
Open Specifications documents are intended for use in conjunction with publicly available standards
specifications and network programming art and, as such, assume that the reader either is familiar

with the aforementioned material or has immediate access to it.

Support. For questions and support, please contact dochelp@microsoft.com.

https://go.microsoft.com/fwlink/?LinkId=214445
https://go.microsoft.com/fwlink/?LinkId=214445
https://go.microsoft.com/fwlink/?LinkId=214448
mailto:iplg@microsoft.com
https://aka.ms/AA9ufj8
https://www.microsoft.com/trademarks
mailto:dochelp@microsoft.com

2 / 241

[MS-SRVS-Diff] - v20240423
Server Service Remote Protocol
Copyright © 2024 Microsoft Corporation
Release: April 23, 2024

Revision Summary

Date
Revision
History

Revision
Class Comments

10/22/2006 0.01 New Version 0.01 release

1/19/2007 1.0 Major Version 1.0 release

3/2/2007 1.1 Minor Version 1.1 release

4/3/2007 1.2 Minor Version 1.2 release

5/11/2007 1.3 Minor Version 1.3 release

6/1/2007 1.3.1 Editorial Changed language and formatting in the technical content.

7/3/2007 2.0 Major Updated and revised the technical content.

7/20/2007 3.0 Major Updated and revised the technical content.

8/10/2007 4.0 Major Updated and revised the technical content.

9/28/2007 4.1 Minor Clarified the meaning of the technical content.

10/23/2007 4.2 Minor Clarified the meaning of the technical content.

11/30/2007 4.2.1 Editorial Changed language and formatting in the technical content.

1/25/2008 4.2.2 Editorial Changed language and formatting in the technical content.

3/14/2008 5.0 Major Updated and revised the technical content.

5/16/2008 6.0 Major Updated and revised the technical content.

6/20/2008 7.0 Major Updated and revised the technical content.

7/25/2008 7.1 Minor Clarified the meaning of the technical content.

8/29/2008 8.0 Major Updated and revised the technical content.

10/24/2008 8.1 Minor Clarified the meaning of the technical content.

12/5/2008 9.0 Major Updated and revised the technical content.

1/16/2009 9.1 Minor Clarified the meaning of the technical content.

2/27/2009 10.0 Major Updated and revised the technical content.

4/10/2009 11.0 Major Updated and revised the technical content.

5/22/2009 12.0 Major Updated and revised the technical content.

7/2/2009 12.1 Minor Clarified the meaning of the technical content.

8/14/2009 12.1.1 Editorial Changed language and formatting in the technical content.

9/25/2009 12.2 Minor Clarified the meaning of the technical content.

11/6/2009 13.0 Major Updated and revised the technical content.

12/18/2009 14.0 Major Updated and revised the technical content.

1/29/2010 15.0 Major Updated and revised the technical content.

3 / 241

[MS-SRVS-Diff] - v20240423
Server Service Remote Protocol
Copyright © 2024 Microsoft Corporation
Release: April 23, 2024

Date
Revision
History

Revision
Class Comments

3/12/2010 16.0 Major Updated and revised the technical content.

4/23/2010 17.0 Major Updated and revised the technical content.

6/4/2010 18.0 Major Updated and revised the technical content.

7/16/2010 19.0 Major Updated and revised the technical content.

8/27/2010 20.0 Major Updated and revised the technical content.

10/8/2010 21.0 Major Updated and revised the technical content.

11/19/2010 22.0 Major Updated and revised the technical content.

1/7/2011 23.0 Major Updated and revised the technical content.

2/11/2011 24.0 Major Updated and revised the technical content.

3/25/2011 25.0 Major Updated and revised the technical content.

5/6/2011 26.0 Major Updated and revised the technical content.

6/17/2011 26.1 Minor Clarified the meaning of the technical content.

9/23/2011 27.0 Major Updated and revised the technical content.

12/16/2011 28.0 Major Updated and revised the technical content.

3/30/2012 29.0 Major Updated and revised the technical content.

7/12/2012 29.0 None
No changes to the meaning, language, or formatting of the
technical content.

10/25/2012 30.0 Major Updated and revised the technical content.

1/31/2013 30.0 None
No changes to the meaning, language, or formatting of the
technical content.

8/8/2013 31.0 Major Updated and revised the technical content.

11/14/2013 32.0 Major Updated and revised the technical content.

2/13/2014 32.0 None
No changes to the meaning, language, or formatting of the
technical content.

5/15/2014 32.0 None
No changes to the meaning, language, or formatting of the
technical content.

6/30/2015 33.0 Major Significantly changed the technical content.

10/16/2015 33.0 None
No changes to the meaning, language, or formatting of the
technical content.

7/14/2016 33.0 None
No changes to the meaning, language, or formatting of the
technical content.

6/1/2017 33.0 None
No changes to the meaning, language, or formatting of the
technical content.

9/15/2017 34.0 Major Significantly changed the technical content.

9/12/2018 35.0 Major Significantly changed the technical content.

4 / 241

[MS-SRVS-Diff] - v20240423
Server Service Remote Protocol
Copyright © 2024 Microsoft Corporation
Release: April 23, 2024

Date
Revision
History

Revision
Class Comments

4/7/2021 36.0 Major Significantly changed the technical content.

6/25/2021 37.0 Major Significantly changed the technical content.

10/6/2021 38.0 Major Significantly changed the technical content.

4/23/2024 39.0 Major Significantly changed the technical content.

5 / 241

[MS-SRVS-Diff] - v20240423
Server Service Remote Protocol
Copyright © 2024 Microsoft Corporation
Release: April 23, 2024

Table of Contents

1 Introduction .. 10
1.1 Glossary ... 10
1.2 References .. 12

1.2.1 (Updated Section) Normative References ... 12
1.2.2 (Updated Section) Informative References ... 13

1.3 Overview .. 13
1.4 Relationship to Other Protocols .. 14
1.5 Prerequisites/Preconditions ... 14
1.6 Applicability Statement ... 14
1.7 Versioning and Capability Negotiation ... 14
1.8 Vendor-Extensible Fields ... 14
1.9 Standards Assignments ... 14

2 Messages ... 16
2.1 Transport .. 16
2.2 Common Data Types .. 16

2.2.1 Simple Data Types .. 16
2.2.1.1 SRVSVC_HANDLE .. 16
2.2.1.2 SHARE_DEL_HANDLE .. 16
2.2.1.3 PSHARE_DEL_HANDLE ... 17

2.2.2 Constants .. 17
2.2.2.1 Sessionclient Types ... 17
2.2.2.2 MAX_PREFERRED_LENGTH ... 17
2.2.2.3 Session User Flags .. 17
2.2.2.4 Share Types ... 17
2.2.2.5 Client-Side Caching (CSC) States .. 18
2.2.2.6 Platform IDs ... 19
2.2.2.7 Software Type Flags .. 19
2.2.2.8 Name Types ... 21
2.2.2.9 Path Types ... 22
2.2.2.10 Common Error Codes .. 24
2.2.2.11 SHARE_INFO Parameter Error Codes ... 25
2.2.2.12 SERVER_INFO Parameter Error Codes ... 26
2.2.2.13 DFS Entry Flags .. 30

2.2.3 Unions... 31
2.2.3.1 CONNECT_ENUM_UNION ... 31
2.2.3.2 FILE_ENUM_UNION ... 31
2.2.3.3 FILE_INFO ... 31
2.2.3.4 SESSION_ENUM_UNION .. 32
2.2.3.5 SHARE_ENUM_UNION ... 32
2.2.3.6 SHARE_INFO .. 33
2.2.3.7 SERVER_INFO .. 34
2.2.3.8 SERVER_XPORT_ENUM_UNION ... 38
2.2.3.9 TRANSPORT_INFO .. 39
2.2.3.10 SERVER_ALIAS_INFO .. 39

2.2.4 Structures ... 40
2.2.4.1 CONNECTION_INFO_0 ... 40
2.2.4.2 CONNECTION_INFO_1 ... 40
2.2.4.3 CONNECT_INFO_0_CONTAINER .. 40
2.2.4.4 CONNECT_INFO_1_CONTAINER .. 41
2.2.4.5 CONNECT_ENUM_STRUCT .. 41
2.2.4.6 FILE_INFO_2 .. 42
2.2.4.7 FILE_INFO_3 .. 42
2.2.4.8 FILE_INFO_2_CONTAINER ... 43
2.2.4.9 FILE_INFO_3_CONTAINER ... 43
2.2.4.10 FILE_ENUM_STRUCT ... 43

6 / 241

[MS-SRVS-Diff] - v20240423
Server Service Remote Protocol
Copyright © 2024 Microsoft Corporation
Release: April 23, 2024

2.2.4.11 SESSION_INFO_0 ... 44
2.2.4.12 SESSION_INFO_1 ... 44
2.2.4.13 SESSION_INFO_2 ... 45
2.2.4.14 SESSION_INFO_10 ... 45
2.2.4.15 SESSION_INFO_502 .. 46
2.2.4.16 SESSION_INFO_0_CONTAINER ... 46
2.2.4.17 SESSION_INFO_1_CONTAINER ... 47
2.2.4.18 SESSION_INFO_2_CONTAINER ... 47
2.2.4.19 SESSION_INFO_10_CONTAINER ... 47
2.2.4.20 SESSION_INFO_502_CONTAINER ... 48
2.2.4.21 SESSION_ENUM_STRUCT .. 48
2.2.4.22 SHARE_INFO_0 .. 48
2.2.4.23 SHARE_INFO_1 .. 49
2.2.4.24 SHARE_INFO_2 .. 49
2.2.4.25 SHARE_INFO_501 ... 49
2.2.4.26 SHARE_INFO_502_I .. 50
2.2.4.27 SHARE_INFO_503_I .. 51
2.2.4.28 SHARE_INFO_1004 ... 52
2.2.4.29 (Updated Section) SHARE_INFO_1005 ... 52
2.2.4.30 SHARE_INFO_1006 ... 53
2.2.4.31 SHARE_INFO_1501_I .. 53
2.2.4.32 SHARE_INFO_0_CONTAINER .. 53
2.2.4.33 SHARE_INFO_1_CONTAINER .. 54
2.2.4.34 SHARE_INFO_2_CONTAINER .. 54
2.2.4.35 SHARE_INFO_501_CONTAINER .. 54
2.2.4.36 SHARE_INFO_502_CONTAINER .. 54
2.2.4.37 SHARE_INFO_503_CONTAINER .. 55
2.2.4.38 SHARE_ENUM_STRUCT .. 55
2.2.4.39 STAT_SERVER_0 ... 56
2.2.4.40 SERVER_INFO_100 ... 57
2.2.4.41 SERVER_INFO_101 ... 57
2.2.4.42 SERVER_INFO_102 ... 57
2.2.4.43 SERVER_INFO_103 ... 58
2.2.4.44 SERVER_INFO_502 ... 60
2.2.4.45 SERVER_INFO_503 ... 60
2.2.4.46 SERVER_INFO_599 ... 61
2.2.4.47 SERVER_INFO_1005 ... 66
2.2.4.48 SERVER_INFO_1107 ... 66
2.2.4.49 SERVER_INFO_1010 ... 66
2.2.4.50 SERVER_INFO_1016 ... 66
2.2.4.51 SERVER_INFO_1017 ... 67
2.2.4.52 SERVER_INFO_1018 ... 67
2.2.4.53 SERVER_INFO_1501 ... 67
2.2.4.54 SERVER_INFO_1502 ... 67
2.2.4.55 SERVER_INFO_1503 ... 68
2.2.4.56 SERVER_INFO_1506 ... 68
2.2.4.57 SERVER_INFO_1510 ... 68
2.2.4.58 SERVER_INFO_1511 ... 68
2.2.4.59 SERVER_INFO_1512 ... 69
2.2.4.60 SERVER_INFO_1513 ... 69
2.2.4.61 SERVER_INFO_1514 ... 69
2.2.4.62 SERVER_INFO_1515 ... 69
2.2.4.63 SERVER_INFO_1516 ... 70
2.2.4.64 SERVER_INFO_1518 ... 70
2.2.4.65 SERVER_INFO_1523 ... 70
2.2.4.66 SERVER_INFO_1528 ... 70
2.2.4.67 SERVER_INFO_1529 ... 71
2.2.4.68 SERVER_INFO_1530 ... 71

7 / 241

[MS-SRVS-Diff] - v20240423
Server Service Remote Protocol
Copyright © 2024 Microsoft Corporation
Release: April 23, 2024

2.2.4.69 SERVER_INFO_1533 ... 71
2.2.4.70 SERVER_INFO_1534 ... 71
2.2.4.71 SERVER_INFO_1535 ... 72
2.2.4.72 SERVER_INFO_1536 ... 72
2.2.4.73 SERVER_INFO_1538 ... 72
2.2.4.74 SERVER_INFO_1539 ... 72
2.2.4.75 SERVER_INFO_1540 ... 73
2.2.4.76 SERVER_INFO_1541 ... 73
2.2.4.77 SERVER_INFO_1542 ... 73
2.2.4.78 SERVER_INFO_1543 ... 73
2.2.4.79 SERVER_INFO_1544 ... 74
2.2.4.80 SERVER_INFO_1545 ... 74
2.2.4.81 SERVER_INFO_1546 ... 74
2.2.4.82 SERVER_INFO_1547 ... 74
2.2.4.83 SERVER_INFO_1548 ... 75
2.2.4.84 SERVER_INFO_1549 ... 75
2.2.4.85 SERVER_INFO_1550 ... 75
2.2.4.86 SERVER_INFO_1552 ... 75
2.2.4.87 SERVER_INFO_1553 ... 76
2.2.4.88 SERVER_INFO_1554 ... 76
2.2.4.89 SERVER_INFO_1555 ... 76
2.2.4.90 SERVER_INFO_1556 ... 76
2.2.4.91 DISK_INFO .. 77
2.2.4.92 DISK_ENUM_CONTAINER ... 77
2.2.4.93 SERVER_TRANSPORT_INFO_0 .. 77
2.2.4.94 SERVER_TRANSPORT_INFO_1 .. 77
2.2.4.95 SERVER_TRANSPORT_INFO_2 .. 78
2.2.4.96 SERVER_TRANSPORT_INFO_3 .. 78
2.2.4.97 SERVER_XPORT_INFO_0_CONTAINER ... 79
2.2.4.98 SERVER_XPORT_INFO_1_CONTAINER ... 79
2.2.4.99 SERVER_XPORT_INFO_2_CONTAINER ... 80
2.2.4.100 SERVER_XPORT_INFO_3_CONTAINER ... 80
2.2.4.101 SERVER_XPORT_ENUM_STRUCT ... 80
2.2.4.102 SERVER_ALIAS_INFO_0 ... 81
2.2.4.103 SERVER_ALIAS_INFO_0_CONTAINER .. 81
2.2.4.104 SERVER_ALIAS_ENUM_STRUCT .. 82
2.2.4.105 TIME_OF_DAY_INFO ... 82
2.2.4.106 ADT_SECURITY_DESCRIPTOR... 83
2.2.4.107 NET_DFS_ENTRY_ID ... 83
2.2.4.108 NET_DFS_ENTRY_ID_CONTAINER ... 84
2.2.4.109 DFS_SITENAME_INFO ... 84
2.2.4.110 DFS_SITELIST_INFO ... 84

3 Protocol Details ... 85
3.1 Server Details .. 85

3.1.1 Abstract Data Model .. 85
3.1.1.1 Global.. 86
3.1.1.2 Per Transport ... 87
3.1.1.3 Per Alias .. 87
3.1.1.4 Server Properties Object (ServerConfiguration) .. 88
3.1.1.5 Per TreeConnect ... 88
3.1.1.6 Per Open ... 88
3.1.1.7 Per Share ... 88
3.1.1.8 Per Session .. 89
3.1.1.9 Algorithm for Determining Path Type ... 89

3.1.2 Timers .. 90
3.1.3 Initialization ... 91
3.1.4 Message Processing Events and Sequencing Rules .. 93

8 / 241

[MS-SRVS-Diff] - v20240423
Server Service Remote Protocol
Copyright © 2024 Microsoft Corporation
Release: April 23, 2024

3.1.4.1 NetrConnectionEnum (Opnum 8) .. 96
3.1.4.2 NetrFileEnum (Opnum 9) ... 99
3.1.4.3 NetrFileGetInfo (Opnum 10) .. 101
3.1.4.4 NetrFileClose (Opnum 11) ... 103
3.1.4.5 NetrSessionEnum (Opnum 12)... 104
3.1.4.6 NetrSessionDel (Opnum 13) .. 108
3.1.4.7 NetrShareAdd (Opnum 14) .. 109
3.1.4.8 NetrShareEnum (Opnum 15) ... 112
3.1.4.9 NetrShareEnumSticky (Opnum 36) .. 116
3.1.4.10 NetrShareGetInfo (Opnum 16) .. 117
3.1.4.11 NetrShareSetInfo (Opnum 17) ... 120
3.1.4.12 NetrShareDel (Opnum 18) .. 124
3.1.4.13 NetrShareDelSticky (Opnum 19) .. 126
3.1.4.14 NetrShareDelStart (Opnum 37) ... 126
3.1.4.15 NetrShareDelCommit (Opnum 38) .. 127
3.1.4.16 NetrShareCheck (Opnum 20)... 128
3.1.4.17 NetrServerGetInfo (Opnum 21) ... 129
3.1.4.18 NetrServerSetInfo (Opnum 22) .. 134
3.1.4.19 NetrServerDiskEnum (Opnum 23) .. 141
3.1.4.20 NetrServerStatisticsGet (Opnum 24) .. 142
3.1.4.21 NetrRemoteTOD (Opnum 28) .. 143
3.1.4.22 NetrServerTransportAdd (Opnum 25) ... 144
3.1.4.23 NetrServerTransportAddEx (Opnum 41) .. 145
3.1.4.24 NetrServerTransportEnum (Opnum 26) .. 147
3.1.4.25 NetrServerTransportDel (Opnum 27) .. 149
3.1.4.26 NetrServerTransportDelEx (Opnum 53) .. 149
3.1.4.27 NetrpGetFileSecurity (Opnum 39) .. 151
3.1.4.28 NetrpSetFileSecurity (Opnum 40) ... 152
3.1.4.29 NetprPathType (Opnum 30) .. 152
3.1.4.30 NetprPathCanonicalize (Opnum 31) .. 153
3.1.4.31 NetprPathCompare (Opnum 32) ... 155
3.1.4.32 NetprNameValidate (Opnum 33) .. 156
3.1.4.33 NetprNameCanonicalize (Opnum 34) .. 157
3.1.4.34 NetprNameCompare (Opnum 35) ... 159
3.1.4.35 NetrDfsGetVersion (Opnum 43) ... 160
3.1.4.36 NetrDfsCreateLocalPartition (Opnum 44) ... 161
3.1.4.37 NetrDfsDeleteLocalPartition (Opnum 45) ... 162
3.1.4.38 NetrDfsSetLocalVolumeState (Opnum 46) ... 163
3.1.4.39 NetrDfsCreateExitPoint (Opnum 48) ... 164
3.1.4.40 NetrDfsModifyPrefix (Opnum 50).. 165
3.1.4.41 NetrDfsDeleteExitPoint (Opnum 49) ... 166
3.1.4.42 NetrDfsFixLocalVolume (Opnum 51) ... 167
3.1.4.43 NetrDfsManagerReportSiteInfo (Opnum 52) .. 169
3.1.4.44 NetrServerAliasAdd (Opnum 54) .. 169
3.1.4.45 NetrServerAliasEnum (Opnum 55) ... 171
3.1.4.46 NetrServerAliasDel (Opnum 56) ... 173
3.1.4.47 NetrShareDelEx (Opnum 57) ... 174

3.1.5 Timer Events ... 175
3.1.6 Other Local Events ... 175

3.1.6.1 Server Looks Up Shares .. 175
3.1.6.2 Server Registers a New Session ... 176
3.1.6.3 Server Deregisters a Session ... 176
3.1.6.4 Server Registers a New Open .. 176
3.1.6.5 Server Deregisters an Open .. 176
3.1.6.6 Server Registers a New Treeconnect... 176
3.1.6.7 Server Deregisters a Treeconnect .. 176
3.1.6.8 Server Normalizes a ServerName ... 177
3.1.6.9 Local Application Enables Advertising a Service .. 177

9 / 241

[MS-SRVS-Diff] - v20240423
Server Service Remote Protocol
Copyright © 2024 Microsoft Corporation
Release: April 23, 2024

3.1.6.10 Local Application Disables Advertising a Service 178
3.1.6.11 Server Queries Existing Services .. 178
3.1.6.12 Server Service Terminates .. 178
3.1.6.13 Local Application Pauses or Resumes the CIFS Server 178
3.1.6.14 Server Notifies Completion of Initialization .. 178
3.1.6.15 Server Notifies Current Uses of a Share .. 178
3.1.6.16 Server Updates Connection Count on a Transport 178
3.1.6.17 Server Looks Up Null Session Pipes .. 178

3.2 Client Details .. 179
3.2.1 Abstract Data Model ... 179
3.2.2 Timers ... 179
3.2.3 Initialization .. 179
3.2.4 Message Processing Events and Sequencing Rules ... 179
3.2.5 Timer Events ... 179
3.2.6 Other Local Events ... 179

4 Protocol Examples ... 180
4.1 Example of ResumeHandle ... 180
4.2 Two-Phase Share Deletion .. 181
4.3 Adding a Scoped Share With an Alias to a Server .. 181

5 Security ... 184
5.1 Security Considerations for Implementers .. 184
5.2 Index of Security Parameters ... 184

6 (Updated Section) Appendix A: Full IDL .. 185

7 (Updated Section) Appendix B: Product Behavior .. 209

8 Change Tracking .. 227

9 Index ... 228

10 / 241

[MS-SRVS-Diff] - v20240423
Server Service Remote Protocol
Copyright © 2024 Microsoft Corporation
Release: April 23, 2024

1 Introduction

This document specifies the Server Service Remote Protocol. The Server Service Remote Protocol is a
remote procedure call (RPC)–based protocol that is used for remotely enabling file and printer sharing
and named pipe access to the server through the Server Message Block (SMB) Protocol, as specified in
[MS-SMB]. The protocol is also used for remote administration of servers that are running Windows.

Sections 1.5, 1.8, 1.9, 2, and 3 of this specification are normative. All other sections and examples in
this specification are informative.

1.1 Glossary

This document uses the following terms:

client: A computer on which the remote procedure call (RPC) client is executing.

connection: Firewall rules are specified to apply to connections. Every packet is associated with a

connection based on TCP, UDP, or IP endpoint parameters; see [IANAPORT].

connection blocks: A pre-allocated chunk of memory that is used to store a single connection
request.

Distributed File System (DFS): A file system that logically groups physical shared folders located
on different servers by transparently connecting them to one or more hierarchical namespaces.
DFS also provides fault-tolerance and load-sharing capabilities.

Distributed File System (DFS) link: A component in a DFS path that lies below the DFS root and

maps to one or more DFS link targets. Also interchangeably used to refer to a DFS path that
contains the DFS link.

Distributed File System (DFS) root: The starting point of the DFS namespace. The root is often
used to refer to the namespace as a whole. A DFS root maps to one or more root targets, each
of which corresponds to a share on a separate server. A DFS root has one of the following

formats "\\<ServerName>\<RootName>" or "\\<DomainName>\<RootName>". Where
<ServerName> is the name of the root target server hosting the DFS namespace;

<DomainName> is the name of the domain that hosts the DFS root; and <RootName> is the
name of the root of a domain-based DFS. The DFS root must reside on an NTFS volume.

Domain Name System (DNS): A hierarchical, distributed database that contains mappings of
domain names to various types of data, such as IP addresses. DNS enables the location of
computers and services by user-friendly names, and it also enables the discovery of other
information stored in the database.

endpoint: A network-specific address of a remote procedure call (RPC) server process for remote

procedure calls. The actual name and type of the endpoint depends on the RPC protocol
sequence that is being used. For example, for RPC over TCP (RPC Protocol Sequence
ncacn_ip_tcp), an endpoint might be TCP port 1025. For RPC over Server Message Block (RPC
Protocol Sequence ncacn_np), an endpoint might be the name of a named pipe. For more
information, see [C706].

globally unique identifier (GUID): A term used interchangeably with universally unique

identifier (UUID) in Microsoft protocol technical documents (TDs). Interchanging the usage of
these terms does not imply or require a specific algorithm or mechanism to generate the value.
Specifically, the use of this term does not imply or require that the algorithms described in
[RFC4122] or [C706] must be used for generating the GUID. See also universally unique
identifier (UUID).

11 / 241

[MS-SRVS-Diff] - v20240423
Server Service Remote Protocol
Copyright © 2024 Microsoft Corporation
Release: April 23, 2024

Interface Definition Language (IDL): The International Standards Organization (ISO) standard
language for specifying the interface for remote procedure calls. For more information, see

[C706] section 4.

Internet host name: The name of a host as defined in [RFC1123] section 2.1, with the extensions

described in [MS-HNDS].

mailslot: A mechanism for one-way interprocess communications (IPC). For more information, see
[MSLOT] and [MS-MAIL].

Microsoft Interface Definition Language (MIDL): The Microsoft implementation and extension
of the OSF-DCE Interface Definition Language (IDL). MIDL can also mean the Interface
Definition Language (IDL) compiler provided by Microsoft. For more information, see [MS-RPCE].

named pipe: A named, one-way, or duplex pipe for communication between a pipe server and one

or more pipe clients.

NetBIOS host name: The NetBIOS name of a host (as described in [RFC1001] section 14 and

[RFC1002] section 4), with the extensions described in [MS-NBTE].

Quality of Service (QoS): A set of technologies that do network traffic manipulation, such as
packet marking and reshaping.

remote procedure call (RPC): A communication protocol used primarily between client and

server. The term has three definitions that are often used interchangeably: a runtime
environment providing for communication facilities between computers (the RPC runtime); a set
of request-and-response message exchanges between computers (the RPC exchange); and the
single message from an RPC exchange (the RPC message). For more information, see [C706].

scoped share: A share that is only available to a client if accessed through a specific DNS or
NetBIOS name. Scoped shares can make a single server appear to be multiple, distinct servers
by providing access to a different set of shares based on the name the client uses to access the

server.

server: A computer on which the remote procedure call (RPC) server is executing.

Server Message Block (SMB): A protocol that is used to request file and print services from
server systems over a network. The SMB protocol extends the CIFS protocol with additional
security, file, and disk management support. For more information, see [CIFS] and [MS-SMB].

share: A resource offered by a Common Internet File System (CIFS) server for access by CIFS
clients over the network. A share typically represents a directory tree and its included files

(referred to commonly as a "disk share" or "file share") or a printer (a "print share"). If the
information about the share is saved in persistent store (for example, Windows registry) and
reloaded when a file server is restarted, then the share is referred to as a "sticky share". Some
share names are reserved for specific functions and are referred to as special shares: IPC$,
reserved for interprocess communication, ADMIN$, reserved for remote administration, and A$,
B$, C$ (and other local disk names followed by a dollar sign), assigned to local disk devices.

site: A group of related webpages that is hosted by a server on the World Wide Web or an intranet.

Each website has its own entry points, metadata, administration settings, and workflows. Also
referred to as web site.

standalone DFS implementation: A Distributed File System (DFS) namespace whose
configuration information is stored locally in the registry of the root server.

sticky share: A share that is available after a machine restarts.

universally unique identifier (UUID): A 128-bit value. UUIDs can be used for multiple

purposes, from tagging objects with an extremely short lifetime, to reliably identifying very

12 / 241

[MS-SRVS-Diff] - v20240423
Server Service Remote Protocol
Copyright © 2024 Microsoft Corporation
Release: April 23, 2024

persistent objects in cross-process communication such as client and server interfaces, manager
entry-point vectors, and RPC objects. UUIDs are highly likely to be unique. UUIDs are also

known as globally unique identifiers (GUIDs) and these terms are used interchangeably in the
Microsoft protocol technical documents (TDs). Interchanging the usage of these terms does not

imply or require a specific algorithm or mechanism to generate the UUID. Specifically, the use of
this term does not imply or require that the algorithms described in [RFC4122] or [C706] must
be used for generating the UUID.

work item: A buffer that receives a user request, which is held by the Server Message Block
(SMB) server while it is being processed.

MAY, SHOULD, MUST, SHOULD NOT, MUST NOT: These terms (in all caps) are used as defined
in [RFC2119]. All statements of optional behavior use either MAY, SHOULD, or SHOULD NOT.

1.2 References

Links to a document in the Microsoft Open Specifications library point to the correct section in the

most recently published version of the referenced document. However, because individual documents

in the library are not updated at the same time, the section numbers in the documents may not
match. You can confirm the correct section numbering by checking the Errata.

1.2.1 (Updated Section) Normative References

We conduct frequent surveys of the normative references to assure their continued availability. If you

have any issue with finding a normative reference, please contact dochelp@microsoft.com. We will
assist you in finding the relevant information.

[C706] The Open Group, "DCE 1.1: Remote Procedure Call", C706, August 1997,
https://publications.opengroup.org/c706

Note Registration is required to download the document.

[MS-BRWS] Microsoft Corporation, "Common Internet File System (CIFS) Browser Protocol".

[MS-CIFS] Microsoft Corporation, "Common Internet File System (CIFS) Protocol".

[MS-DFSC] Microsoft Corporation, "Distributed File System (DFS): Referral Protocol".

[MS-DFSNM] Microsoft Corporation, "Distributed File System (DFS): Namespace Management
Protocol".

[MS-DTYP] Microsoft Corporation, "Windows Data Types".

[MS-EERR] Microsoft Corporation, "ExtendedError Remote Data Structure".

[MS-ERREF] Microsoft Corporation, "Windows Error Codes".

[MS-NRPC] Microsoft Corporation, "Netlogon Remote Protocol".

[MS-RPCE] Microsoft Corporation, "Remote Procedure Call Protocol Extensions".

[MS-SMB2] Microsoft Corporation, "Server Message Block (SMB) Protocol Versions 2 and 3".

[MS-SMB] Microsoft Corporation, "Server Message Block (SMB) Protocol".

[RFC1001] Network Working Group, "Protocol Standard for a NetBIOS Service on a TCP/UDP
Transport: Concepts and Methods", RFC 1001, March 1987, httphttps://www.ietfrfc-
editor.org/rfcinfo/rfc1001.txt

13 / 241

[MS-SRVS-Diff] - v20240423
Server Service Remote Protocol
Copyright © 2024 Microsoft Corporation
Release: April 23, 2024

[RFC1002] Network Working Group, "Protocol Standard for a NetBIOS Service on a TCP/UDP
Transport: Detailed Specifications", STD 19, RFC 1002, March 1987, httphttps://www.rfc-

editor.org/rfcinfo/rfc1002.txt

[RFC1034] Mockapetris, P., "Domain Names - Concepts and Facilities", STD 13, RFC 1034, November
1987, httphttps://www.ietfrfc-edit.org/rfcinfo/rfc1034.txt

[RFC1035] Mockapetris, P., "Domain Names - Implementation and Specification", STD 13, RFC 1035,

November 1987, httphttps://www.ietfrfc-editor.org/rfcinfo/rfc1035.txt

[RFC2119] Bradner, S., "Key words for use in RFCs to Indicate Requirement Levels", BCP 14, RFC
2119, March 1997, httphttps://www.rfc-editor.org/rfcinfo/rfc2119.txt

1.2.2 (Updated Section) Informative References

[MSDFS] Microsoft Corporation, "How DFS Works", March 2003, http://technet.microsoft.com/en-
us/library/cc782417%28WS.10%29.aspx

[MSDN-CoCreateGuid] Microsoft Corporation, "CoCreateGuid function", http://msdn.microsoft.com/en-
us/library/ms688568.aspx

[NWLINK] Microsoft Corporation, "Description of Microsoft NWLINK IPX/SPX-Compatible Transport",
October 2006, http://support.microsoft.com/?kbid=203051

[OFFLINE] Microsoft Corporation, "Offline Files", January 2005,
http://technet2https://learn.microsoft.com/WindowsServer/en/Library/830323a2-23ca-4875-af3c-
06671d68ca9a1033.mspx-us/windows-server/storage/folder-redirection/folder-redirection-rup-
overview

[PIPE] Microsoft Corporation, "Named Pipes", http://msdn.microsoft.com/en-us/library/aa365590.aspx

1.3 Overview

The Server Service Remote Protocol is designed for remotely querying and configuring a Server
Message Block (SMB) server on a remote computer. By using this protocol, a client can query and
configure information on the server such as active connections, sessions, shares, files, and transport
protocols. Clients can also query and configure the server itself, for instance by setting the server's
type, changing the services that are running on the server, or getting a list of all servers of a specific
type in a domain.

A server can be configured to present different resources based on the name the client connects with,

allowing it to appear as multiple, distinct servers. This is achieved by scoping a share to a specific
name, and hosting all of the names on the same server.

The server can also configure one or more aliases, identifying that multiple distinct names present the
same resources. For example, the administrator could choose to expose the same shares for the name
"server" and "server.example.com" by creating an alias indicating that "server. example.com" is the
same as "server". The SMB client will connect using the name provided by the calling applications, and

is not aware whether the name is the server's default machine name, an additionally configured name,
or an alias. For more information, see the example in section 4.3.

This is an RPC-based protocol. The server does not maintain client state information. No sequence of
method calls is imposed on this protocol, with the exception of net share deletion, which requires a
two-phase commit, net file get information, and net file close.

14 / 241

[MS-SRVS-Diff] - v20240423
Server Service Remote Protocol
Copyright © 2024 Microsoft Corporation
Release: April 23, 2024

1.4 Relationship to Other Protocols

This protocol depends on RPC and SMB for its transport. This protocol uses RPC over named pipes, as
specified in section 2.1. Named pipes use the SMB protocols, as specified in [MS-CIFS], [MS-SMB],

and [MS-SMB2].

This protocol calls the Common Internet File System (CIFS) Protocol, the Server Message Block (SMB)
Protocol, or the SMB Version 2 Protocol for file server management.

CIFS, SMB, and SMB Version 2 call the Server Service Remote Protocol for synchronizing the
information on shares, sessions, treeconnects, file opens, and server configuration. The
synchronization mechanism is dependent upon CIFS, SMB, SMB2 servers, and the server service
starting up and terminating together, in order to share and maintain a consistent view of the common

data among all protocols at all times.

This protocol calls the DFS Namespace Management Protocol, as specified in [MS-DFSNM], to identify
a DFS share.

1.5 Prerequisites/Preconditions

The Server Service Remote Protocol is an RPC interface and, as a result, has the prerequisites that are
described in [MS-RPCE] section 1.5 as being common to RPC interfaces.

It is assumed that a Server Service Remote Protocol client has obtained the name of a remote
machine that supports the Server Service Remote Protocol before this protocol is invoked. This
specification does not describe how a client invokes this protocol.

1.6 Applicability Statement

The Server Service Remote Protocol is applicable to environments that require management and
monitoring of a file server. In particular, this protocol provides for the creation, deletion, and
management of file shares on the server and the monitoring and administering of users who access

that file server. Therefore, this protocol is applicable to environments that require those features.

The Server Service Remote Protocol is used for the management of file servers that use the SMB
Protocol, as specified in [MS-SMB].

1.7 Versioning and Capability Negotiation

None.

1.8 Vendor-Extensible Fields

This protocol does not define any vendor-extensible fields.

This protocol uses Win32 error codes. These values are taken from the Windows error number space

defined in [MS-EERR]. Vendors SHOULD reuse those values with their indicated meaning. Choosing

any other value runs the risk of a collision in the future.<1>

1.9 Standards Assignments

Parameter Value Reference

RPC Interface UUID 4b324fc8-1670-01d3-1278-5a47bf6ee188 Section 2.1

Pipe Name \PIPE\srvsvc Section 2.1

15 / 241

[MS-SRVS-Diff] - v20240423
Server Service Remote Protocol
Copyright © 2024 Microsoft Corporation
Release: April 23, 2024

16 / 241

[MS-SRVS-Diff] - v20240423
Server Service Remote Protocol
Copyright © 2024 Microsoft Corporation
Release: April 23, 2024

2 Messages

2.1 Transport

The RPC methods that the Server Service Remote Protocol exposes are available on one endpoint:

 srvsvc named pipe (RPC protseqs ncacn_np), as specified in [MS-RPCE] section 2.1.1.2.

The Server Service Remote Protocol endpoint is available only over named pipes. For more details

about named pipes, see [PIPE].

This protocol MUST use the UUID as specified in section 1.9. The RPC version number is 3.0.

This protocol allows any user to establish a connection to the RPC server. The protocol uses the
underlying RPC protocol to retrieve the identity of the caller that made the method call, as specified in
[MS-RPCE] section 3.3.3.4.3. The server SHOULD use this identity to perform method-specific access
checks as specified in section 3.1.4.<2>

2.2 Common Data Types

In addition to RPC base types defined in [C706] and [MS-RPCE], the data types that follow are defined
in the Microsoft Interface Definition Language (MIDL) specification for this RPC interface.

This protocol uses the following types, as specified in [MS-DTYP].

 Type Reference

DWORD [MS-DTYP] section 2.2.9

GUID [MS-DTYP] section 2.3.4

NET_API_STATUS [MS-DTYP] section 2.2.37

SECURITY_INFORMATION [MS-DTYP] section 2.4.7

WCHAR [MS-DTYP] section 2.2.60

2.2.1 Simple Data Types

2.2.1.1 SRVSVC_HANDLE

SRVSVC_HANDLE: A pointer to a null-terminated Unicode UTF-16 string that specifies the Internet
host name or NetBIOS host name of the remote server on which the method is to execute that is pre-

pended with "\\" (two literal backslash characters).

This type is declared as follows:

 typedef [handle, string] wchar_t* SRVSVC_HANDLE;

2.2.1.2 SHARE_DEL_HANDLE

SHARE_DEL_HANDLE: An RPC context handle, as specified in [C706] section 6, returned by the
NetrShareDelStart method, to be provided as a parameter to the NetrShareDelCommit method.

17 / 241

[MS-SRVS-Diff] - v20240423
Server Service Remote Protocol
Copyright © 2024 Microsoft Corporation
Release: April 23, 2024

This type is declared as follows:

 typedef [context_handle] void* SHARE_DEL_HANDLE;

2.2.1.3 PSHARE_DEL_HANDLE

PSHARE_DEL_HANDLE: A pointer to a SHARE_DEL_HANDLE (section 2.2.1.2) datatype.

This type is declared as follows:

 typedef SHARE_DEL_HANDLE* PSHARE_DEL_HANDLE;

2.2.2 Constants

2.2.2.1 Sessionclient Types

Sessionclient is a Unicode UTF-16 string value that is used to specify the type of client that established
the session.<3>

The client generates an implementation-defined string that describes the client operating system
version. The server SHOULD NOT enforce any limits on the Sessionclient string length.<4>

2.2.2.2 MAX_PREFERRED_LENGTH

The following table describes the MAX_PREFERRED_LENGTH constant.

Constant/value Description

MAX_PREFERRED_LENGTH

-1

A constant of type DWORD that is set to –1. This value is valid as an input
parameter to any method in section 3.1.4 that takes a PreferedMaximumLength
parameter. When specified as an input parameter, this value indicates that the
method MUST allocate as much space as the data requires.

2.2.2.3 Session User Flags

The following flags specify information that is related to how a user established a session.

Constant/value Description

SESS_GUEST

0x00000001

The user specified by the sesi*_username member established the session by using a
guest account.

SESS_NOENCRYPTION

0x00000002

The user specified by the sesi*_username member established the session without
using password encryption.

2.2.2.4 Share Types

The following values are used to specify the type of a shared resource.

18 / 241

[MS-SRVS-Diff] - v20240423
Server Service Remote Protocol
Copyright © 2024 Microsoft Corporation
Release: April 23, 2024

Constant/value Description

STYPE_DISKTREE

0x00000000

Disk drive

STYPE_PRINTQ

0x00000001

Print queue

STYPE_DEVICE

0x00000002

Communication device

STYPE_IPC

0x00000003

Interprocess communication (IPC)

STYPE_CLUSTER_FS

0x02000000

A cluster share

STYPE_CLUSTER_SOFS

0x04000000

A Scale-Out cluster share

STYPE_CLUSTER_DFS

0x08000000

A DFS share in a cluster

The following table of values can be OR'd with the values in the preceding table to further specify the
characteristics of a shared resource. It is possible to use both values in this OR operation.

Constant/value Description

STYPE_SPECIAL

0x80000000

Special share reserved for interprocess communication (IPC$) or remote administration
of the server (ADMIN$). Can also refer to administrative shares such as C$, D$, E$, and
so forth.

STYPE_TEMPORARY

0x40000000

A temporary share that is not persisted for creation each time the file server initializes.

2.2.2.5 Client-Side Caching (CSC) States

The following values are used to specify states that provide hints to clients about whether to cache
files by using client-side caching with the SMB Protocol, as specified in [MS-SMB].

Constant/value Description

CSC_CACHE_MANUAL_REINT

0x00

The client MUST allow only manual caching for the files open from this share.

CSC_CACHE_AUTO_REINT

0x10

The client MAY cache every file that it opens from this share.

CSC_CACHE_VDO

0x20

The client MAY cache every file that it opens from this share. Also, the client
MAY satisfy the file requests from its local cache.

CSC_CACHE_NONE

0x30

The client MUST NOT cache any files from this share.

19 / 241

[MS-SRVS-Diff] - v20240423
Server Service Remote Protocol
Copyright © 2024 Microsoft Corporation
Release: April 23, 2024

2.2.2.6 Platform IDs

The following values are returned by the server to indicate its platform version.<5><6>

Constant/value Description

PLATFORM_ID_DOS

300

Specified by a server running DOS.

PLATFORM_ID_OS2

400

Specified by a server running OS2.

PLATFORM_ID_NT

500

Specified by a server running Windows NT or a newer Windows operating system
version.

PLATFORM_ID_OSF

600

Specified by a server running OSF/1.

PLATFORM_ID_VMS

700

Specified by a server running VMS.

2.2.2.7 Software Type Flags

The SV_TYPE flags indicate the services that are available on the server.

Constant/value Description

SV_TYPE_WORKSTATION

0x00000001

A server running the WorkStation Service.

SV_TYPE_SERVER

0x00000002

A server running the Server Service.

SV_TYPE_SQLSERVER

0x00000004

A server running SQL Server.

SV_TYPE_DOMAIN_CTRL

0x00000008

A primary domain controller.

SV_TYPE_DOMAIN_BAKCTRL

0x00000010

A backup domain controller.

SV_TYPE_TIME_SOURCE

0x00000020

A server is available as a time source for network time synchronization.

SV_TYPE_AFP

0x00000040

An Apple File Protocol server.

SV_TYPE_NOVELL

0x00000080

A Novell server.

SV_TYPE_DOMAIN_MEMBER

0x00000100

A LAN Manager 2.x domain member.

SV_TYPE_PRINTQ_SERVER

0x00000200

A server sharing print queue.

20 / 241

[MS-SRVS-Diff] - v20240423
Server Service Remote Protocol
Copyright © 2024 Microsoft Corporation
Release: April 23, 2024

Constant/value Description

SV_TYPE_DIALIN_SERVER

0x00000400

A server running a dial-in service.

SV_TYPE_XENIX_SERVER

0x00000800

A Xenix server.

SV_TYPE_NT

0x00001000

Windows Server 2003 operating system, Windows XP operating system,
Windows 2000 operating system, or Windows NT operating system.

SV_TYPE_WFW

0x00002000

A server running Windows for Workgroups.

SV_TYPE_SERVER_MFPN

0x00004000

Microsoft File and Print for NetWare.

SV_TYPE_SERVER_NT

0x00008000

Windows Server 2003, Windows 2000 Server operating system, or a server

that is not a domain controller.

SV_TYPE_POTENTIAL_BROWSER

0x00010000

A server that can run the browser service.

SV_TYPE_BACKUP_BROWSER

0x00020000

A server running a browser service as backup.

SV_TYPE_MASTER_BROWSER

0x00040000

A server running the master browser service.

SV_TYPE_DOMAIN_MASTER

0x00080000

A server running the domain master browser.

SV_TYPE_WINDOWS

0x00400000

Windows Millennium Edition operating system, Windows 98 operating
system, or Windows 95 operating system.

SV_TYPE_DFS

0x00800000

A server running the DFS service.

SV_TYPE_CLUSTER_NT

0x01000000

Server clusters available in the domain.

SV_TYPE_TERMINALSERVER

0x02000000

Terminal Server.

SV_TYPE_CLUSTER_VS_NT

0x04000000

Cluster virtual servers available in the domain.

SV_TYPE_DCE

0x10000000

A server running IBM DSS (Directory and Security Services) or equivalent.

SV_TYPE_ALTERNATE_XPORT

0x20000000

Return list for alternate transport.

SV_TYPE_LOCAL_LIST_ONLY

0x40000000

Servers maintained by the browser.

SV_TYPE_DOMAIN_ENUM

0x80000000

Primary domain.

21 / 241

[MS-SRVS-Diff] - v20240423
Server Service Remote Protocol
Copyright © 2024 Microsoft Corporation
Release: April 23, 2024

Constant/value Description

SV_TYPE_ALL

0xFFFFFFFF

All servers.

2.2.2.8 Name Types

The following values specify types of names that are used with the NetprNameValidate,
NetprNameCanonicalize, and NetprNameCompare methods.

Constant/value Description

NAMETYPE_USER

1

User name

NAMETYPE_PASSWORD

2

User password

NAMETYPE_GROUP

3

Group name

NAMETYPE_COMPUTER

4

Computer name

NAMETYPE_EVENT

5

Event name

NAMETYPE_DOMAIN

6

NetBIOS name of a domain

NAMETYPE_SERVICE

7

Service name

NAMETYPE_NET

8

Net name

NAMETYPE_SHARE

9

Share name

NAMETYPE_MESSAGE

10

Message name

NAMETYPE_MESSAGEDEST

11

Message destination

NAMETYPE_SHAREPASSWORD

12

Share password

NAMETYPE_WORKGROUP

13

Workgroup name

More information for each NameType is listed following.

The set of default invalid characters includes "/\[]:|<>+=;,? as well as the control characters in the
range from 0x01 through 0x1F, inclusive.

22 / 241

[MS-SRVS-Diff] - v20240423
Server Service Remote Protocol
Copyright © 2024 Microsoft Corporation
Release: April 23, 2024

Constant
Min/max
length

Invalid
characters

Restricted to
dots and
spaces? Other requirements

NAMETYPE_USER 1/256 Default No

NAMETYPE_PASSWORD 0/256 0x00 Yes

NAMETYPE_GROUP 1/256 Default No

NAMETYPE_COMPUTER 1/260 Default and
*

no No leading or trailing blanks.

NAMETYPE_EVENT 1/16 Default No

NAMETYPE_DOMAIN 1/15 Default, *,
0x20

No

NAMETYPE_SERVICE 1/80 Default No

NAMETYPE_NET 1/260 Default No

NAMETYPE_SHARE 1/80 Default No

NAMETYPE_MESSAGE 1/15 Default No

NAMETYPE_MESSAGEDEST 1/260 Default No "*" is allowed only as the last
character, and names of the
maximum length must
contain a trailing "*".

NAMETYPE_SHAREPASSWORD 0/8 0x00 Yes

NAMETYPE_WORKGROUP 1/15 Default No

2.2.2.9 Path Types

The following values specify types of paths used with the NetprPathType, NetprPathCanonicalize, and
NetprPathCompare methods.

Constant/value Description

ITYPE_UNC_COMPNAME

4144

UNC ComputerName

ITYPE_UNC_WC

4145

UNC Wild Card ComputerName

ITYPE_UNC

4096

UNC Path; MUST NOT end with \

ITYPE_UNC_WC_PATH

4097

UNC Path and WC (? or *)

ITYPE_UNC_SYS_SEM

6400

UNC Semaphore

ITYPE_UNC_SYS_SHMEM

6656

UNC Shared Memory

23 / 241

[MS-SRVS-Diff] - v20240423
Server Service Remote Protocol
Copyright © 2024 Microsoft Corporation
Release: April 23, 2024

Constant/value Description

ITYPE_UNC_SYS_MSLOT

6144

UNC Mailslot

ITYPE_UNC_SYS_PIPE

6912

UNC Pipe

ITYPE_UNC_SYS_QUEUE

7680

UNC Queue

ITYPE_PATH_ABSND

8194

Absolute non dot path

ITYPE_PATH_ABSD

8198

Path beginning with \\. or <drive>:\

ITYPE_PATH_RELND

8192

Relative path non dot

ITYPE_PATH_RELD

8196

Relative path beginning with \\.

ITYPE_PATH_ABSND_WC

8195

ITYPE_PATH_ABSND and WC

ITYPE_PATH_ABSD_WC

8199

ITYPE_PATH_ABSD and WC(? or *)

ITYPE_PATH_RELND_WC

8193

ITYPE_PATH_RELND and WC

ITYPE_PATH_RELD_WC

8197

ITYPE_PATH_RELD and WC

ITYPE_PATH_SYS_SEM

10498

Local System Semaphore\path

ITYPE_PATH_SYS_SHMEM

10754

Local System Shared Memory\path

ITYPE_PATH_SYS_MSLOT

10242

Local System Mailslot\path

ITYPE_PATH_SYS_PIPE

11010

Local System Pipe\path

ITYPE_PATH_SYS_COMM

11266

Local System COMM\path

ITYPE_PATH_SYS_PRINT

11522

Local System PRINT\path

ITYPE_PATH_SYS_QUEUE

11778

Local System QUEUE\path

ITYPE_PATH_SYS_SEM_M

43266

Local System Semaphore

24 / 241

[MS-SRVS-Diff] - v20240423
Server Service Remote Protocol
Copyright © 2024 Microsoft Corporation
Release: April 23, 2024

Constant/value Description

ITYPE_PATH_SYS_SHMEM_M

43522

Local System Shared Memory

ITYPE_PATH_SYS_MSLOT_M

43010

Local System Mailslot

ITYPE_PATH_SYS_PIPE_M

43778

Local System Pipe

ITYPE_PATH_SYS_COMM_M

44034

Local System COMM

ITYPE_PATH_SYS_PRINT_M

44290

Local System PRINT

ITYPE_PATH_SYS_QUEUE_M

44546

Local System QUEUE

ITYPE_DEVICE_DISK

16384

<drive>:

ITYPE_DEVICE_LPT

16400

LPT[1-9][:] or \DEV\LPT[1-9]

ITYPE_DEVICE_COM

16416

COM[1-9][:] or \DEV\COM[1-9]

ITYPE_DEVICE_CON

16448

CON port

ITYPE_DEVICE_NUL

16464

NULL port

2.2.2.10 Common Error Codes

The following error codes are referenced in this specification.

Return value/code Description

0x00000005

ERROR_ACCESS_DENIED

The user does not have access to the requested information.

0x0000007C

ERROR_INVALID_LEVEL

The value that is specified for the level parameter is invalid.

0x00000057

ERROR_INVALID_PARAMETER

One or more of the specified parameters is invalid.

0x000000EA

ERROR_MORE_DATA

More entries are available. Specify a large enough buffer to receive all
entries.

0x00000000

ERROR_NOT_ENOUGH_MEMORY

Not enough storage is available to process this command.

25 / 241

[MS-SRVS-Diff] - v20240423
Server Service Remote Protocol
Copyright © 2024 Microsoft Corporation
Release: April 23, 2024

Return value/code Description

0x00000002

ERROR_FILE_NOT_FOUND

The system cannot find the file specified.

0x00000034

ERROR_DUP_NAME

A duplicate name exists on the network.

0x000004BC

ERROR_INVALID_DOMAINNAME

The format of the specified NetBIOS name of a domain is invalid.

0x00000032

ERROR_NOT_SUPPORTED

The server does not support branch cache.

0x00000424

ERROR_SERVICE_DOES_NOT_EXIST

The branch cache component does not exist as an installed service.

0x0000084B

NERR_BufTooSmall

The client request succeeded. More entries are available. The buffer

size that is specified by PreferedMaximumLength was too small to fit
even a single entry.

0x00000908

NERR_ClientNameNotFound

A session does not exist with the computer name.

0x0000092F

NERR_InvalidComputer

The computer name is not valid.

0x000008AD

NERR_UserNotFound

The user name could not be found.

0x00000846

NERR_DuplicateShare

The share name is already in use on this server.

0x00000845

NERR_RedirectedPath

The operation is not valid for a redirected resource. The specified
device name is assigned to a shared resource.

0x00000844

NERR_UnknownDevDir

The device or directory does not exist.

0x00000906

NERR_NetNameNotFound

The share name does not exist.

0x00000907

NERR_DeviceNotShared

The device is not shared.

0x00000846

NERR_DuplicateShare

The alias already exists.

2.2.2.11 SHARE_INFO Parameter Error Codes

When an invalid value is specified for a field of the SHARE_INFO structure, one of the following values
MUST be used to indicate which field contains an invalid value. In the following table, "*" is a wildcard
character.

26 / 241

[MS-SRVS-Diff] - v20240423
Server Service Remote Protocol
Copyright © 2024 Microsoft Corporation
Release: April 23, 2024

Return value/code Description

1

SHARE_NETNAME_PARMNUM

Indicates that a shi*_netname member caused the error.

3

SHARE_TYPE_PARMNUM

Indicates that a shi*_type member caused the error.

4

SHARE_REMARK_PARMNUM

Indicates that a shi*_remark member caused the error.

5

SHARE_PERMISSIONS_PARMNUM

Indicates that a shi*_permissions member caused the error.

6

SHARE_MAX_USES_PARMNUM

Indicates that a shi*_max_uses member caused the error.

7

SHARE_CURRENT_USES_PARMNUM

Indicates that a shi*_current_uses member caused the error.

8

SHARE_PATH_PARMNUM

Indicates that a shi*_path member caused the error.

9

SHARE_PASSWD_PARMNUM

Indicates that a shi*_passwd member caused the error.

501

SHARE_FILE_SD_PARMNUM

Indicates that a shi*_security_descriptor member caused the error.

2.2.2.12 SERVER_INFO Parameter Error Codes

When an invalid value is specified for a field of the SERVER_INFO structure, one of the following
values MUST be used to indicate which field contains an invalid value. In the following table, "*" is a
wildcard character.

Return value/code Description

101

SV_PLATFORM_ID_PARMNUM

Indicates that a sv*_platform_id member caused the error.

102

SV_NAME_PARMNUM

Indicates that a sv*_name member member caused the
error.

103

SV_VERSION_MAJOR_PARMNUM

Indicates that a sv*_version_major member caused the

error.

104

SV_VERSION_MINOR_PARMNUM

Indicates that a sv*_version_minor member caused the
error.

105

SV_TYPE_PARMNUM

Indicates that a sv*_type member caused the error.

5

SV_COMMENT_PARMNUM

Indicates that a sv*_comment member caused the error.

107 Indicates that a sv*_users member caused the error.

27 / 241

[MS-SRVS-Diff] - v20240423
Server Service Remote Protocol
Copyright © 2024 Microsoft Corporation
Release: April 23, 2024

Return value/code Description

SV_USERS_PARMNUM

10

SV_DISC_PARMNUM

Indicates that a sv*_disc member caused the error.

16

SV_HIDDEN_PARMNUM

Indicates that a sv*_hidden member caused the error.

17

SV_ANNOUNCE_PARMNUM

Indicates that a sv*_announce member caused the error.

18

SV_ANNDELTA_PARMNUM

Indicates that a sv*_anndelta member caused the error.

112

SV_USERPATH_PARMNUM

Indicates that a sv*_userpath member caused the error.

501

SV_SESSOPENS_PARMNUM

Indicates that a sv*_sessopens member caused the error.

502

SV_SESSVCS_PARMNUM

Indicates that a sv*_sessvcs member caused the error.

503

SV_OPENSEARCH_PARMNUM

Indicates that a sv*_opensearch member caused the error.

504

SV_SIZREQBUF_PARMNUM

Indicates that a sv*_sizreqbuf member caused the error.

505

SV_INITWORKITEMS_PARMNUM

Indicates that a sv*_initworkitems member caused the error.

506

SV_MAXWORKITEMS_PARMNUM

Indicates that a sv*_maxworkitems member caused the
error.

507

SV_RAWWORKITEMS_PARMNUM

Indicates that a sv*_rawworkitems member caused the
error.

508

SV_IRPSTACKSIZE_PARMNUM

Indicates that a sv*_irpstacksize member caused the error.

509

SV_MAXRAWBUFLEN_PARMNUM

Indicates that a sv*_maxrawbuflen member caused the
error.

510

SV_SESSUSERS_PARMNUM

Indicates that a sv*_sessusers member caused the error.

511

SV_SESSCONNS_PARMNUM

Indicates that a sv*_sessconns member caused the error.

512

SV_MAXNONPAGEDMEMORYUSAGE_PARMNUM

Indicates that a sv*_maxnonpagedmemoryusage member
caused the error.

513

SV_MAXPAGEDMEMORYUSAGE_PARMNUM

Indicates that a sv*_maxpagedmemoryusage member
caused the error.

28 / 241

[MS-SRVS-Diff] - v20240423
Server Service Remote Protocol
Copyright © 2024 Microsoft Corporation
Release: April 23, 2024

Return value/code Description

514

SV_ENABLESOFTCOMPAT_PARMNUM

Indicates that a sv*_enablesoftcompat member caused the
error.

515

SV_ENABLEFORCEDLOGOFF_PARMNUM

Indicates that a sv*_enableforcedlogoff member caused the
error.

516

SV_TIMESOURCE_PARMNUM

Indicates that a sv*_timesource member caused the error.

517

SV_ACCEPTDOWNLEVELAPIS_PARMNUM

Indicates that a sv*_acceptdownlevelapis member caused
the error.

518

SV_LMANNOUNCE_PARMNUM

Indicates that a sv*_lmannounce member caused the error.

519

SV_DOMAIN_PARMNUM

Indicates that a sv*_domain member caused the error.

520

SV_MAXCOPYREADLEN_PARMNUM

Indicates that a sv*_maxcopyreadlen member caused the
error.

521

SV_MAXCOPYWRITELEN_PARMNUM

Indicates that a sv*_maxcopywritelen member caused the
error.

522

SV_MINKEEPSEARCH_PARMNUM

Indicates that a sv*_minkeepsearch member caused the
error.

523

SV_MAXKEEPSEARCH_PARMNUM

Indicates that a sv*_maxkeepsearch member caused the
error.

524

SV_MINKEEPCOMPLSEARCH_PARMNUM

Indicates that a sv*_minkeepcomplsearch member caused
the error.

525

SV_MAXKEEPCOMPLSEARCH_PARMNUM

Indicates that a sv*_maxkeepcomplsearch member caused
the error.

526

SV_THREADCOUNTADD_PARMNUM

Indicates that a sv*_threadcountadd member caused the
error.

527

SV_NUMBLOCKTHREADS_PARMNUM

Indicates that a sv*_numblockthreads member caused the
error.

528

SV_SCAVTIMEOUT_PARMNUM

Indicates that a sv*_scavtimeout member caused the error.

529

SV_MINRCVQUEUE_PARMNUM

Indicates that a sv*_minrcvqueue member caused the error.

530

SV_MINFREEWORKITEMS_PARMNUM

Indicates that a sv*_minfreeworkitems member caused the
error.

531

SV_XACTMEMSIZE_PARMNUM

Indicates that a sv*_xactmemsize member caused the error.

532

SV_THREADPRIORITY_PARMNUM

Indicates that a sv*_threadpriority member caused the error.

29 / 241

[MS-SRVS-Diff] - v20240423
Server Service Remote Protocol
Copyright © 2024 Microsoft Corporation
Release: April 23, 2024

Return value/code Description

533

SV_MAXMPXCT_PARMNUM

Indicates that a sv*_maxmpxct member caused the error.

534

SV_OPLOCKBREAKWAIT_PARMNUM

Indicates that a sv*_oplockbreakwait member caused the
error.

535

SV_OPLOCKBREAKRESPONSEWAIT_PARMNUM

Indicates that a sv*_oplockbreakresponsewait member
caused the error.

536

SV_ENABLEOPLOCKS_PARMNUM

Indicates that a sv*_enableoplocks member caused the
error.

537

SV_ENABLEOPLOCKFORCECLOSE_PARMNUM

Indicates that a sv*_enableoplockforceclose member caused
the error.

538

SV_ENABLEFCBOPENS_PARMNUM

Indicates that a sv*_enablefcbopens member caused the

error.

539

SV_ENABLERAW_PARMNUM

Indicates that a sv*_enableraw member caused the error.

540

SV_ENABLESHAREDNETDRIVES_PARMNUM

Indicates that a sv*_enablesharednetdrives member caused
the error.

541

SV_MINFREECONNECTIONS_PARMNUM

Indicates that a sv*_minfreeconnections member caused the
error.

542

SV_MAXFREECONNECTIONS_PARMNUM

Indicates that a sv*_maxfreeconnections member caused the
error.

543

SV_INITSESSTABLE_PARMNUM

Indicates that a sv*_initsesstable member caused the error.

544

SV_INITCONNTABLE_PARMNUM

Indicates that a sv*_initconntable member caused the error.

545

SV_INITFILETABLE_PARMNUM

Indicates that a sv*_initfiletable member caused the error.

546

SV_INITSEARCHTABLE_PARMNUM

Indicates that a sv*_initsearchtable member caused the
error.

547

SV_ALERTSCHEDULE_PARMNUM

Indicates that a sv*_alertschedule member caused the error.

548

SV_ERRORTHRESHOLD_PARMNUM

Indicates that a sv*_errorthreshold member caused the
error.

549

SV_NETWORKERRORTHRESHOLD_PARMNUM

Indicates that a sv*_networkerrorthreshold member caused
the error.

550

SV_DISKSPACETHRESHOLD_PARMNUM

Indicates that a sv*_diskspacethreshold member caused the
error.

552

SV_MAXLINKDELAY_PARMNUM

Indicates that a sv*_maxlinkdelay member caused the error.

30 / 241

[MS-SRVS-Diff] - v20240423
Server Service Remote Protocol
Copyright © 2024 Microsoft Corporation
Release: April 23, 2024

Return value/code Description

553

SV_MINLINKTHROUGHPUT_PARMNUM

Indicates that a sv*_minlinkthroughput member caused the
error.

554

SV_LINKINFOVALIDTIME_PARMNUM

Indicates that a sv*_linkinfovalidtime member caused the
error.

555

SV_SCAVQOSINFOUPDATETIME_PARMNUM

Indicates that a sv*_scavqosinfoupdatetime member caused
the error.

556

SV_MAXWORKITEMIDLETIME_PARMNUM

Indicates that a sv*_maxworkitemidletime member caused
the error.

2.2.2.13 DFS Entry Flags

The following flags specify the details about a DFS entry that an SMB file server maintains. For more
details about DFS entries, see [MS-DFSC].

Constant/value Description

PKT_ENTRY_TYPE_CAIRO

0x0001

Entry refers to a particular machine.<7>

PKT_ENTRY_TYPE_MACHINE

0x0002

Entry is a machine volume.

PKT_ENTRY_TYPE_NONCAIRO

0x0004

Entry refers to a server running a pre-Windows NT version of
Windows.

PKT_ENTRY_TYPE_LEAFONLY

0x0008

Entry is a DFS link.

PKT_ENTRY_TYPE_OUTSIDE_MY_DOM

0x0010

Entry refers to volume in a foreign domain.

PKT_ENTRY_TYPE_INSITE_ONLY

0x0020

Only give Active Directory in-site referrals.

PKT_ENTRY_TYPE_REFERRAL_SVC

0x0080

Entry refers to a DFS root.

PKT_ENTRY_TYPE_PERMANENT

0x0100

Entry cannot be scavenged.

PKT_ENTRY_TYPE_LOCAL

0x0400

Entry refers to local volume.

PKT_ENTRY_TYPE_LOCAL_XPOINT

0x0800

Entry refers to an exit point.

PKT_ENTRY_TYPE_MACH_SHARE

0x1000

Entry refers to a private machine share.

PKT_ENTRY_TYPE_OFFLINE

0x2000

Entry refers to a volume that is offline.

31 / 241

[MS-SRVS-Diff] - v20240423
Server Service Remote Protocol
Copyright © 2024 Microsoft Corporation
Release: April 23, 2024

2.2.3 Unions

2.2.3.1 CONNECT_ENUM_UNION

The CONNECT_ENUM_UNION union contains information about a connection. It is used in the

definition of the CONNECTION_ENUM_STRUCT structure.

 typedef
 [switch_type(DWORD)]
 union _CONNECT_ENUM_UNION {
 [case(0)]
 CONNECT_INFO_0_CONTAINER* Level0;
 [case(1)]
 CONNECT_INFO_1_CONTAINER* Level1;
 } CONNECT_ENUM_UNION;

Level0: A pointer to a structure containing information about a connection, as specified in section
2.2.4.3.

Level1: A pointer to a structure containing information about a connection, as specified in section
2.2.4.4.

2.2.3.2 FILE_ENUM_UNION

The FILE_ENUM_UNION union contains information about files, devices, and pipes. It is used in the
definition of the FILE_ENUM_STRUCT structure.

 typedef
 [switch_type(DWORD)]
 union _FILE_ENUM_UNION {
 [case(2)]
 FILE_INFO_2_CONTAINER* Level2;
 [case(3)]
 FILE_INFO_3_CONTAINER* Level3;
 } FILE_ENUM_UNION;

Level2: A pointer to a structure containing information about a file, device or pipe, as specified in
section 2.2.4.8.

Level3: A pointer to a structure containing information about a file, device or pipe, as specified in
section 2.2.4.9.

2.2.3.3 FILE_INFO

The FILE_INFO union contains information about a file, device, or pipe. This union is used by the

NetrFileGetInfo method.

 typedef
 [switch_type(unsigned long)]
 union _FILE_INFO {
 [case(2)]
 LPFILE_INFO_2 FileInfo2;
 [case(3)]
 LPFILE_INFO_3 FileInfo3;
 } FILE_INFO,
 *PFILE_INFO,

32 / 241

[MS-SRVS-Diff] - v20240423
Server Service Remote Protocol
Copyright © 2024 Microsoft Corporation
Release: April 23, 2024

 *LPFILE_INFO;

FileInfo2: A pointer to a structure that contains information about a file, device, or pipe. For more
details, see FILE_INFO_2 (section 2.2.4.6).

FileInfo3: A pointer to a structure that contains information about a file, device, or pipe. For more
details, see FILE_INFO_3 (section 2.2.4.7).

2.2.3.4 SESSION_ENUM_UNION

The SESSION_ENUM_UNION union contains information about sessions. It is used in the definition of
the SESSION_ENUM_STRUCT structure.

 typedef
 [switch_type(DWORD)]
 union _SESSION_ENUM_UNION {
 [case(0)]
 SESSION_INFO_0_CONTAINER* Level0;
 [case(1)]
 SESSION_INFO_1_CONTAINER* Level1;
 [case(2)]
 SESSION_INFO_2_CONTAINER* Level2;
 [case(10)]
 SESSION_INFO_10_CONTAINER* Level10;
 [case(502)]
 SESSION_INFO_502_CONTAINER* Level502;
 } SESSION_ENUM_UNION;

Level0: A pointer to a structure that contains information about sessions, as specified in section
2.2.4.16.

Level1: A pointer to a structure that contains information about sessions, as specified in section

2.2.4.17.

Level2: A pointer to a structure that contains information about sessions, as specified in section
2.2.4.18.

Level10: A pointer to a structure that contains information about sessions, as specified in section
2.2.4.19.

Level502: A pointer to a structure that contains information about sessions, as specified in section
2.2.4.20.

2.2.3.5 SHARE_ENUM_UNION

The SHARE_ENUM_UNION union contains information about shares. It is used in the definition of the

SHARE_ENUM_STRUCT structure.

 typedef
 [switch_type(DWORD)]
 union _SHARE_ENUM_UNION {
 [case(0)]
 SHARE_INFO_0_CONTAINER* Level0;
 [case(1)]
 SHARE_INFO_1_CONTAINER* Level1;
 [case(2)]
 SHARE_INFO_2_CONTAINER* Level2;
 [case(501)]
 SHARE_INFO_501_CONTAINER* Level501;

33 / 241

[MS-SRVS-Diff] - v20240423
Server Service Remote Protocol
Copyright © 2024 Microsoft Corporation
Release: April 23, 2024

 [case(502)]
 SHARE_INFO_502_CONTAINER* Level502;
 [case(503)]
 SHARE_INFO_503_CONTAINER* Level503;
 } SHARE_ENUM_UNION;

Level0: A pointer to a structure that contains information about shares, as specified in section
2.2.4.32.

Level1: A pointer to a structure that contains information about shares, as specified in section
2.2.4.33.

Level2: A pointer to a structure that contains information about shares, as specified in section
2.2.4.34.

Level501: A pointer to a structure that contains information about shares, as specified in section
2.2.4.35.

Level502: A pointer to a structure that contains information about shares, as specified in section
2.2.4.36.

Level503: A pointer to a structure that contains information about shares, as specified in section
2.2.4.37.

2.2.3.6 SHARE_INFO

The SHARE_INFO union contains information about a share.

 typedef
 [switch_type(unsigned long)]
 union _SHARE_INFO {
 [case(0)]
 LPSHARE_INFO_0 ShareInfo0;
 [case(1)]
 LPSHARE_INFO_1 ShareInfo1;
 [case(2)]
 LPSHARE_INFO_2 ShareInfo2;
 [case(502)]
 LPSHARE_INFO_502_I ShareInfo502;
 [case(1004)]
 LPSHARE_INFO_1004 ShareInfo1004;
 [case(1006)]
 LPSHARE_INFO_1006 ShareInfo1006;
 [case(1501)]
 LPSHARE_INFO_1501_I ShareInfo1501;
 [default] ;
 [case(1005)]
 LPSHARE_INFO_1005 ShareInfo1005;
 [case(501)]
 LPSHARE_INFO_501 ShareInfo501;
 [case(503)]
 LPSHARE_INFO_503_I ShareInfo503;
 } SHARE_INFO,
 *PSHARE_INFO,
 *LPSHARE_INFO;

ShareInfo0: A pointer to a structure that contains information about a share, as specified in section
2.2.4.22.

ShareInfo1: A pointer to a structure that contains information about a share, as specified in section
2.2.4.23.

34 / 241

[MS-SRVS-Diff] - v20240423
Server Service Remote Protocol
Copyright © 2024 Microsoft Corporation
Release: April 23, 2024

ShareInfo2: A pointer to a structure that contains information about a share, as specified in section
2.2.4.24.

ShareInfo502: A pointer to a structure that contains information about a share, as specified in
section 2.2.4.26.

ShareInfo1004: A pointer to a structure that contains information about a share, as specified in
section 2.2.4.28.

ShareInfo1006: A pointer to a structure that contains information about a share, as specified in
section 2.2.4.30.

ShareInfo1501: A pointer to a structure that contains information about a share, as specified in
section 2.2.4.31.

ShareInfo1005: A pointer to a structure that contains information about a share, as specified in

section 2.2.4.29.

ShareInfo501: A pointer to a structure that contains information about a share, as specified in
section 2.2.4.25.

ShareInfo503: A pointer to a structure that contains information about a share, as specified in
section 2.2.4.27.

2.2.3.7 SERVER_INFO

The SERVER_INFO union contains information about a server.

 typedef
 [switch_type(unsigned long)]
 union _SERVER_INFO {
 [case(100)]
 LPSERVER_INFO_100 ServerInfo100;
 [case(101)]
 LPSERVER_INFO_101 ServerInfo101;
 [case(102)]
 LPSERVER_INFO_102 ServerInfo102;
 [case(103)]
 LPSERVER_INFO_103 ServerInfo103;
 [case(502)]
 LPSERVER_INFO_502 ServerInfo502;
 [case(503)]
 LPSERVER_INFO_503 ServerInfo503;
 [case(599)]
 LPSERVER_INFO_599 ServerInfo599;
 [case(1005)]
 LPSERVER_INFO_1005 ServerInfo1005;
 [case(1107)]
 LPSERVER_INFO_1107 ServerInfo1107;
 [case(1010)]
 LPSERVER_INFO_1010 ServerInfo1010;
 [case(1016)]
 LPSERVER_INFO_1016 ServerInfo1016;
 [case(1017)]
 LPSERVER_INFO_1017 ServerInfo1017;
 [case(1018)]
 LPSERVER_INFO_1018 ServerInfo1018;
 [case(1501)]
 LPSERVER_INFO_1501 ServerInfo1501;
 [case(1502)]
 LPSERVER_INFO_1502 ServerInfo1502;
 [case(1503)]
 LPSERVER_INFO_1503 ServerInfo1503;
 [case(1506)]

35 / 241

[MS-SRVS-Diff] - v20240423
Server Service Remote Protocol
Copyright © 2024 Microsoft Corporation
Release: April 23, 2024

 LPSERVER_INFO_1506 ServerInfo1506;
 [case(1510)]
 LPSERVER_INFO_1510 ServerInfo1510;
 [case(1511)]
 LPSERVER_INFO_1511 ServerInfo1511;
 [case(1512)]
 LPSERVER_INFO_1512 ServerInfo1512;
 [case(1513)]
 LPSERVER_INFO_1513 ServerInfo1513;
 [case(1514)]
 LPSERVER_INFO_1514 ServerInfo1514;
 [case(1515)]
 LPSERVER_INFO_1515 ServerInfo1515;
 [case(1516)]
 LPSERVER_INFO_1516 ServerInfo1516;
 [case(1518)]
 LPSERVER_INFO_1518 ServerInfo1518;
 [case(1523)]
 LPSERVER_INFO_1523 ServerInfo1523;
 [case(1528)]
 LPSERVER_INFO_1528 ServerInfo1528;
 [case(1529)]
 LPSERVER_INFO_1529 ServerInfo1529;
 [case(1530)]
 LPSERVER_INFO_1530 ServerInfo1530;
 [case(1533)]
 LPSERVER_INFO_1533 ServerInfo1533;
 [case(1534)]
 LPSERVER_INFO_1534 ServerInfo1534;
 [case(1535)]
 LPSERVER_INFO_1535 ServerInfo1535;
 [case(1536)]
 LPSERVER_INFO_1536 ServerInfo1536;
 [case(1538)]
 LPSERVER_INFO_1538 ServerInfo1538;
 [case(1539)]
 LPSERVER_INFO_1539 ServerInfo1539;
 [case(1540)]
 LPSERVER_INFO_1540 ServerInfo1540;
 [case(1541)]
 LPSERVER_INFO_1541 ServerInfo1541;
 [case(1542)]
 LPSERVER_INFO_1542 ServerInfo1542;
 [case(1543)]
 LPSERVER_INFO_1543 ServerInfo1543;
 [case(1544)]
 LPSERVER_INFO_1544 ServerInfo1544;
 [case(1545)]
 LPSERVER_INFO_1545 ServerInfo1545;
 [case(1546)]
 LPSERVER_INFO_1546 ServerInfo1546;
 [case(1547)]
 LPSERVER_INFO_1547 ServerInfo1547;
 [case(1548)]
 LPSERVER_INFO_1548 ServerInfo1548;
 [case(1549)]
 LPSERVER_INFO_1549 ServerInfo1549;
 [case(1550)]
 LPSERVER_INFO_1550 ServerInfo1550;
 [case(1552)]
 LPSERVER_INFO_1552 ServerInfo1552;
 [case(1553)]
 LPSERVER_INFO_1553 ServerInfo1553;
 [case(1554)]
 LPSERVER_INFO_1554 ServerInfo1554;
 [case(1555)]
 LPSERVER_INFO_1555 ServerInfo1555;
 [case(1556)]
 LPSERVER_INFO_1556 ServerInfo1556;

36 / 241

[MS-SRVS-Diff] - v20240423
Server Service Remote Protocol
Copyright © 2024 Microsoft Corporation
Release: April 23, 2024

 } SERVER_INFO,
 *PSERVER_INFO,
 *LPSERVER_INFO;

ServerInfo100: A pointer to a structure that contains information about a server, as specified in
section 2.2.4.40.

ServerInfo101: A pointer to a structure that contains information about a server, as specified in
section 2.2.4.41.

ServerInfo102: A pointer to a structure that contains information about a server, as specified in
section 2.2.4.42.

ServerInfo103: A pointer to a structure that contains information about a server, as specified in

section 2.2.4.43.<8>

ServerInfo502: A pointer to a structure that contains information about a server, as specified in

section 2.2.4.44.

ServerInfo503: A pointer to a structure that contains information about a server, as specified in
section 2.2.4.45.

ServerInfo599: A pointer to a structure that contains information about a server, as specified in

section 2.2.4.46.

ServerInfo1005: A pointer to a structure that contains information about a server, as specified in
section 2.2.4.47.

ServerInfo1107: A pointer to a structure that contains information about a server, as specified in
section 2.2.4.48.

ServerInfo1010: A pointer to a structure that contains information about a server, as specified in
section 2.2.4.49.

ServerInfo1016: A pointer to a structure that contains information about a server, as specified in
section 2.2.4.50.

ServerInfo1017: A pointer to a structure that contains information about a server, as specified in
section 2.2.4.51.

ServerInfo1018: A pointer to a structure that contains information about a server, as specified in
section 2.2.4.52.

ServerInfo1501: A pointer to a structure that contains information about a server, as specified in

section 2.2.4.53.

ServerInfo1502: A pointer to a structure that contains information about a server, as specified in
section 2.2.4.54.

ServerInfo1503: A pointer to a structure that contains information about a server, as specified in

section 2.2.4.55.

ServerInfo1506: A pointer to a structure that contains information about a server, as specified in

section 2.2.4.56.

ServerInfo1510: A pointer to a structure that contains information about a server, as specified in
section 2.2.4.57.

ServerInfo1511: A pointer to a structure that contains information about a server, as specified in
section 2.2.4.58.

37 / 241

[MS-SRVS-Diff] - v20240423
Server Service Remote Protocol
Copyright © 2024 Microsoft Corporation
Release: April 23, 2024

ServerInfo1512: A pointer to a structure that contains information about a server, as specified in
section 2.2.4.59.

ServerInfo1513: A pointer to a structure that contains information about a server, as specified in
section 2.2.4.60.

ServerInfo1514: A pointer to a structure that contains information about a server, as specified in
section 2.2.4.61.

ServerInfo1515: A pointer to a structure that contains information about a server, as specified in
section 2.2.4.62

ServerInfo1516: A pointer to a structure that contains information about a server, as specified in
section 2.2.4.63.

ServerInfo1518: A pointer to a structure that contains information about a server, as specified in

section 2.2.4.64.

ServerInfo1523: A pointer to a structure that contains information about a server, as specified in
section 2.2.4.65.

ServerInfo1528: A pointer to a structure that contains information about a server, as specified in
section 2.2.4.66.

ServerInfo1529: A pointer to a structure that contains information about a server, as specified in

section 2.2.4.67.

ServerInfo1530: A pointer to a structure that contains information about a server, as specified in
section 2.2.4.68.

ServerInfo1533: A pointer to a structure that contains information about a server, as specified in
section 2.2.4.69.

ServerInfo1534: A pointer to a structure that contains information about a server, as specified in

section 2.2.4.70.

ServerInfo1535: A pointer to a structure that contains information about a server, as specified in
section 2.2.4.71.

ServerInfo1536: A pointer to a structure that contains information about a server, as specified in
section 2.2.4.72.

ServerInfo1538: A pointer to a structure that contains information about a server, as specified in
section 2.2.4.73.

ServerInfo1539: A pointer to a structure that contains information about a server, as specified in

section 2.2.4.74.

ServerInfo1540: A pointer to a structure that contains information about a server, as specified in
section 2.2.4.75.

ServerInfo1541: A pointer to a structure that contains information about a server, as specified in
section 2.2.4.76.

ServerInfo1542: A pointer to a structure that contains information about a server, as specified in

section 2.2.4.77.

ServerInfo1543: A pointer to a structure that contains information about a server, as specified in
section 2.2.4.78.

38 / 241

[MS-SRVS-Diff] - v20240423
Server Service Remote Protocol
Copyright © 2024 Microsoft Corporation
Release: April 23, 2024

ServerInfo1544: A pointer to a structure that contains information about a server, as specified in
section 2.2.4.79.

ServerInfo1545: A pointer to a structure that contains information about a server, as specified in
section 2.2.4.80.

ServerInfo1546: A pointer to a structure that contains information about a server, as specified in
section 2.2.4.81.

ServerInfo1547: A pointer to a structure that contains information about a server, as specified in
section 2.2.4.82.

ServerInfo1548: A pointer to a structure that contains information about a server, as specified in
section 2.2.4.83.

ServerInfo1549: A pointer to a structure that contains information about a server, as specified in

section 2.2.4.84.

ServerInfo1550: A pointer to a structure that contains information about a server, as specified in
section 2.2.4.85.

ServerInfo1552: A pointer to a structure that contains information about a server, as specified in
section 2.2.4.86.

ServerInfo1553: A pointer to a structure that contains information about a server, as specified in

section 2.2.4.87.

ServerInfo1554: A pointer to a structure that contains information about a server, as specified in
section 2.2.4.88.

ServerInfo1555: A pointer to a structure that contains information about a server, as specified in
section 2.2.4.89.

ServerInfo1556: A pointer to a structure that contains information about a server, as specified in

section 2.2.4.90.

2.2.3.8 SERVER_XPORT_ENUM_UNION

The SERVER_XPORT_ENUM_UNION union contains information about file server transports.

 typedef
 [switch_type(DWORD)]
 union _SERVER_XPORT_ENUM_UNION {
 [case(0)]
 PSERVER_XPORT_INFO_0_CONTAINER Level0;
 [case(1)]
 PSERVER_XPORT_INFO_1_CONTAINER Level1;
 [case(2)]
 PSERVER_XPORT_INFO_2_CONTAINER Level2;
 [case(3)]
 PSERVER_XPORT_INFO_3_CONTAINER Level3;
 } SERVER_XPORT_ENUM_UNION;

Level0: A pointer to a structure containing information about file server transports, as specified in
section 2.2.4.97.

Level1: A pointer to a structure containing information about file server transports, as specified in
section 2.2.4.98.

39 / 241

[MS-SRVS-Diff] - v20240423
Server Service Remote Protocol
Copyright © 2024 Microsoft Corporation
Release: April 23, 2024

Level2: A pointer to a structure containing information about file server transports, as specified in
section 2.2.4.99.

Level3: A pointer to a structure containing information about file server transports, as specified in
section 2.2.4.100.

2.2.3.9 TRANSPORT_INFO

The TRANSPORT_INFO union contains information about a transport over which a file server is
operational.

 typedef
 [switch_type(unsigned long)]
 union _TRANSPORT_INFO {
 [case(0)]
 SERVER_TRANSPORT_INFO_0 Transport0;
 [case(1)]
 SERVER_TRANSPORT_INFO_1 Transport1;
 [case(2)]
 SERVER_TRANSPORT_INFO_2 Transport2;
 [case(3)]
 SERVER_TRANSPORT_INFO_3 Transport3;
 } TRANSPORT_INFO,
 *PTRANSPORT_INFO,
 *LPTRANSPORT_INFO;

Transport0: A pointer to a structure containing information about a file server transport, as specified
in section 2.2.4.93.

Transport1: A pointer to a structure containing information about a file server transport, as specified
in section 2.2.4.94.

Transport2: A pointer to a structure containing information about a file server transport, as specified

in section 2.2.4.95.

Transport3: A pointer to a structure containing information about a file server transport, as specified
in section 2.2.4.96.

2.2.3.10 SERVER_ALIAS_INFO

The SERVER_ALIAS_INFO union contains information about an alias attached to a server name.

 typedef
 [switch_type(unsigned long)]
 union _SERVER_ALIAS_INFO {
 [case(0)]
 LPSERVER_ALIAS_INFO_0 ServerAliasInfo0;
 } SERVER_ALIAS_INFO,
 *PSERVER_ALIAS_INFO,
 *LPSERVER_ALIAS_INFO;

ServerAliasInfo0: A pointer to a structure containing information about an alias attached to a
server, as specified in section 2.2.4.102.

40 / 241

[MS-SRVS-Diff] - v20240423
Server Service Remote Protocol
Copyright © 2024 Microsoft Corporation
Release: April 23, 2024

2.2.4 Structures

2.2.4.1 CONNECTION_INFO_0

The CONNECTION_INFO_0 structure contains the identifier of a connection.

 typedef struct _CONNECTION_INFO_0 {
 DWORD coni0_id;
 } CONNECTION_INFO_0,
 *PCONNECTION_INFO_0,
 *LPCONNECTION_INFO_0;

coni0_id: Specifies a connection identifier. For more information, see Abstract Data
Model (section 3.1.1).

2.2.4.2 CONNECTION_INFO_1

The CONNECTION_INFO_1 structure contains the identifier of a connection, the number of open files,
the connection time, the number of users on the connection, and the type of connection.

 typedef struct _CONNECTION_INFO_1 {
 DWORD coni1_id;
 DWORD coni1_type;
 DWORD coni1_num_opens;
 DWORD coni1_num_users;
 DWORD coni1_time;
 [string] wchar_t* coni1_username;
 [string] wchar_t* coni1_netname;
 } CONNECTION_INFO_1,
 *PCONNECTION_INFO_1,
 *LPCONNECTION_INFO_1;

coni1_id: Specifies a connection identifier.

coni1_type: Specifies the type of connection made from the local device name to the shared
resource. It MUST be one of the values listed in section 2.2.2.4.

coni1_num_opens: Specifies the number of files that are currently opened by using the connection.

coni1_num_users: Specifies the number of users on the connection.

coni1_time: Specifies the number of seconds that the connection has been established.

coni1_username: A pointer to a null-terminated Unicode UTF-16 string that specifies the name of

the user that is associated with the connection.

coni1_netname: A pointer to a null-terminated Unicode UTF-16 Internet host name or NetBIOS host
name which is the computer name of the client. The value of this member depends on which name

was specified as the Qualifier parameter to the NetrConnectionEnum (section 3.1.4.1) method.
The name that is not specified in the Qualifier parameter to NetrConnectionEnum MUST be
returned in the coni1_netname field.

2.2.4.3 CONNECT_INFO_0_CONTAINER

The CONNECT_INFO_0_CONTAINER structure contains a value that indicates the number of entries
that the NetrConnectionEnum method returns and a pointer to the buffer that contains the entries.

41 / 241

[MS-SRVS-Diff] - v20240423
Server Service Remote Protocol
Copyright © 2024 Microsoft Corporation
Release: April 23, 2024

 typedef struct _CONNECT_INFO_0_CONTAINER {
 DWORD EntriesRead;
 [size_is(EntriesRead)] LPCONNECTION_INFO_0 Buffer;
 } CONNECT_INFO_0_CONTAINER,
 *PCONNECT_INFO_0_CONTAINER,
 *LPCONNECT_INFO_0_CONTAINER;

EntriesRead: The number of entries returned by the method.

Buffer: A pointer to the CONNECTION_INFO_0 entries returned by the method.

2.2.4.4 CONNECT_INFO_1_CONTAINER

The CONNECT_INFO_1_CONTAINER structure contains a value that indicates the number of entries
that the NetrConnectionEnum method returns and a pointer to the buffer that contains the entries.

 typedef struct _CONNECT_INFO_1_CONTAINER {
 DWORD EntriesRead;
 [size_is(EntriesRead)] LPCONNECTION_INFO_1 Buffer;
 } CONNECT_INFO_1_CONTAINER,
 *PCONNECT_INFO_1_CONTAINER,
 *LPCONNECT_INFO_1_CONTAINER;

EntriesRead: The number of entries returned by the method.

Buffer: A pointer to the CONNECTION_INFO_1 entries returned by the method.

2.2.4.5 CONNECT_ENUM_STRUCT

The CONNECT_ENUM_STRUCT structure specifies the information level that the client requests when

invoking the NetrConnectionEnum (section 3.1.4.1) method and encapsulates the

CONNECT_ENUM_UNION (section 2.2.3.1) union that receives the entries that are enumerated by the
server.

 typedef struct _CONNECT_ENUM_STRUCT {
 DWORD Level;
 [switch_is(Level)] CONNECT_ENUM_UNION ConnectInfo;
 } CONNECT_ENUM_STRUCT,
 *PCONNECT_ENUM_STRUCT,
 *LPCONNECT_ENUM_STRUCT;

Level: Specifies the information level of the data. This parameter MUST have one of the following
values.

Value Meaning

0 CONNECT_INFO_0_CONTAINER

1 CONNECT_INFO_1_CONTAINER

ConnectInfo: Contains either a CONNECT_INFO_0_CONTAINER structure or a
CONNECT_INFO_1_CONTAINER structure depending on the value of the Level parameter. The
enumerated elements are returned in this member.

42 / 241

[MS-SRVS-Diff] - v20240423
Server Service Remote Protocol
Copyright © 2024 Microsoft Corporation
Release: April 23, 2024

2.2.4.6 FILE_INFO_2

The FILE_INFO_2 structure contains the identifier for a file, device, or pipe.

 typedef struct _FILE_INFO_2 {
 DWORD fi2_id;
 } FILE_INFO_2,
 *PFILE_INFO_2,
 *LPFILE_INFO_2;

fi2_id: Specifies a DWORD value that contains the identifier that is assigned to the file, device, or
pipe when it was opened. See section 3.1.1 for details.

2.2.4.7 FILE_INFO_3

The FILE_INFO_3 structure contains the identifier and other pertinent information about files, devices,

and pipes.

 typedef struct _FILE_INFO_3 {
 DWORD fi3_id;
 DWORD fi3_permissions;
 DWORD fi3_num_locks;
 [string] wchar_t* fi3_pathname;
 [string] wchar_t* fi3_username;
 } FILE_INFO_3,
 *PFILE_INFO_3,
 *LPFILE_INFO_3;

fi3_id: Specifies a DWORD value that contains the identifier that is assigned to the file, device, or
pipe when it was opened. See section 3.1.1 for details.

fi3_permissions: Specifies a DWORD value that contains the access permissions that are associated

with the opening application. This member MUST be a combination of one or more of the following

values.

Value Meaning

PERM_FILE_READ

0x00000001

Permission to read a resource, and, by default, execute the resource.

PERM_FILE_WRITE

0x00000002

Permission to write to a resource.

PERM_FILE_CREATE

0x00000004

Permission to create a resource; data can be written when creating the resource.

ACCESS_EXEC

0x00000008

Permission to execute a resource.

ACCESS_DELETE

0x00000010

Permission to delete a resource.

ACCESS_ATRIB

0x00000020

Permission to modify the attributes of a resource.

ACCESS_PERM

0x00000040

Permission to modify the permissions assigned to a resource for a user or
application.

43 / 241

[MS-SRVS-Diff] - v20240423
Server Service Remote Protocol
Copyright © 2024 Microsoft Corporation
Release: April 23, 2024

fi3_num_locks: Specifies a DWORD value that contains the number of file locks on the file, device,
or pipe.

fi3_pathname: A pointer to a string that specifies the path of the opened file, device, or pipe.

fi3_username: A pointer to a string that specifies which user opened the file, device, or pipe.

2.2.4.8 FILE_INFO_2_CONTAINER

The FILE_INFO_2_CONTAINER structure contains a value that indicates the number of entries that the
NetrFileEnum method returns and a pointer to the buffer that contains the entries.

 typedef struct _FILE_INFO_2_CONTAINER {
 DWORD EntriesRead;
 [size_is(EntriesRead)] LPFILE_INFO_2 Buffer;
 } FILE_INFO_2_CONTAINER,
 *PFILE_INFO_2_CONTAINER,
 *LPFILE_INFO_2_CONTAINER;

EntriesRead: The number of entries returned by the method.

Buffer: A pointer to the FILE_INFO_2 entries returned by the method.

2.2.4.9 FILE_INFO_3_CONTAINER

The FILE_INFO_3_CONTAINER structure contains a value that indicates the number of entries that the
NetrFileEnum method returns and a pointer to the buffer that contains the entries.

 typedef struct _FILE_INFO_3_CONTAINER {
 DWORD EntriesRead;
 [size_is(EntriesRead)] LPFILE_INFO_3 Buffer;
 } FILE_INFO_3_CONTAINER,
 *PFILE_INFO_3_CONTAINER,
 *LPFILE_INFO_3_CONTAINER;

EntriesRead: The number of entries returned by the method.

Buffer: A pointer to the FILE_INFO_3 entries returned by the method.

2.2.4.10 FILE_ENUM_STRUCT

The FILE_ENUM_STRUCT structure specifies the information level that the client requests in the
NetrFileEnum method and encapsulates the FILE_ENUM_UNION union that receives the entries that
are enumerated by the server.

 typedef struct _FILE_ENUM_STRUCT {
 DWORD Level;
 [switch_is(Level)] FILE_ENUM_UNION FileInfo;
 } FILE_ENUM_STRUCT,
 *PFILE_ENUM_STRUCT,
 *LPFILE_ENUM_STRUCT;

Level: Specifies the information level of the data. This parameter MUST have one of the following

values.

44 / 241

[MS-SRVS-Diff] - v20240423
Server Service Remote Protocol
Copyright © 2024 Microsoft Corporation
Release: April 23, 2024

Value Meaning

2 FILE_INFO_2_CONTAINER

3 FILE_INFO_3_CONTAINER

FileInfo: Contains a file info container structure whose type is determined by the Level parameter as
shown in the preceding table. The enumerated elements are returned in this member.

2.2.4.11 SESSION_INFO_0

The SESSION_INFO_0 structure contains the name of the computer that established the session.

 typedef struct _SESSION_INFO_0 {
 [string] wchar_t* sesi0_cname;
 } SESSION_INFO_0,
 *PSESSION_INFO_0,
 *LPSESSION_INFO_0;

sesi0_cname: A pointer to a null-terminated Unicode UTF-16 Internet host name or NetBIOS host
name of the computer that established the session.

2.2.4.12 SESSION_INFO_1

The SESSION_INFO_1 structure contains information about the session, including the name of the
computer and user; open files, pipes, and devices that are on the computer; session active and idle
times; and how the user established the session.

 typedef struct _SESSION_INFO_1 {
 [string] wchar_t* sesi1_cname;
 [string] wchar_t* sesi1_username;
 DWORD sesi1_num_opens;
 DWORD sesi1_time;
 DWORD sesi1_idle_time;
 DWORD sesi1_user_flags;
 } SESSION_INFO_1,
 *PSESSION_INFO_1,
 *LPSESSION_INFO_1;

sesi1_cname: A pointer to a null-terminated Unicode UTF-16 Internet host name or NetBIOS host

name of the computer that established the session.

sesi1_username: A pointer to a null-terminated Unicode UTF-16 string that specifies the name of
the user who established the session.

sesi1_num_opens: Specifies a DWORD value that contains the number of files, devices, and pipes
that were opened during the session.

sesi1_time: Specifies a DWORD value that contains the number of seconds since the session was

created.

sesi1_idle_time: Specifies a DWORD value that contains the number of seconds the session has
been idle.

sesi1_user_flags: Specifies a DWORD value that specifies how the user established the session.
This member MUST be a combination of one or more of the values that are defined in 2.2.2.3.

45 / 241

[MS-SRVS-Diff] - v20240423
Server Service Remote Protocol
Copyright © 2024 Microsoft Corporation
Release: April 23, 2024

2.2.4.13 SESSION_INFO_2

The SESSION_INFO_2 structure contains information about the session, including the name of the
computer; name of the user; open files, pipes, and devices that are on the computer; session active

and idle times; how the user established the session; and the type of client that established the
session.

 typedef struct _SESSION_INFO_2 {
 [string] wchar_t* sesi2_cname;
 [string] wchar_t* sesi2_username;
 DWORD sesi2_num_opens;
 DWORD sesi2_time;
 DWORD sesi2_idle_time;
 DWORD sesi2_user_flags;
 [string] wchar_t* sesi2_cltype_name;
 } SESSION_INFO_2,
 *PSESSION_INFO_2,
 *LPSESSION_INFO_2;

sesi2_cname: A pointer to a null-terminated Unicode UTF-16 Internet host name or NetBIOS host
name of the computer that established the session.

sesi2_username: A pointer to a null-terminated Unicode UTF-16 string that specifies the name of
the user who established the session.

sesi2_num_opens: Specifies a DWORD value that contains the number of files, devices, and pipes
that were opened during the session.

sesi2_time: Specifies a DWORD value that contains the number of seconds the session has been
active.

sesi2_idle_time: Specifies a DWORD value that contains the number of seconds the session has
been idle.

sesi2_user_flags: Specifies a DWORD value that describes how the user established the session.
This member MUST be a combination of one or more of the values that are defined in section
2.2.2.3.

sesi2_cltype_name: A pointer to a null-terminated Unicode UTF-16 string that specifies the type of
client that established the session. The server simply stores this string, as specified in section
2.2.2.1, and its value does not modify the behavior of the protocol. <9>

2.2.4.14 SESSION_INFO_10

The SESSION_INFO_10 structure contains information about the session, including the name of the
computer, the name of the user, and the active and idle times for the session.

 typedef struct _SESSION_INFO_10 {
 [string] wchar_t* sesi10_cname;
 [string] wchar_t* sesi10_username;
 DWORD sesi10_time;
 DWORD sesi10_idle_time;
 } SESSION_INFO_10,
 *PSESSION_INFO_10,
 *LPSESSION_INFO_10;

sesi10_cname: A pointer to a null-terminated Unicode UTF-16 Internet host name or NetBIOS host
name of the computer that established the session.

46 / 241

[MS-SRVS-Diff] - v20240423
Server Service Remote Protocol
Copyright © 2024 Microsoft Corporation
Release: April 23, 2024

sesi10_username: A pointer to a null-terminated Unicode UTF-16 string specifying the name of the
user who established the session.

sesi10_time: Specifies the number of seconds the session has been active.

sesi10_idle_time: Specifies the number of seconds the session has been idle.

2.2.4.15 SESSION_INFO_502

The SESSION_INFO_502 structure contains information about the session, including the name of the
computer; the name of the user; open files, pipes, and devices that are on the computer; the client

type; session active and idle times; how the user established the session; and the name of the
transport that the client is using.

 typedef struct _SESSION_INFO_502 {
 [string] wchar_t* sesi502_cname;
 [string] wchar_t* sesi502_username;
 DWORD sesi502_num_opens;
 DWORD sesi502_time;
 DWORD sesi502_idle_time;
 DWORD sesi502_user_flags;
 [string] wchar_t* sesi502_cltype_name;
 [string] wchar_t* sesi502_transport;
 } SESSION_INFO_502,
 *PSESSION_INFO_502,
 *LPSESSION_INFO_502;

sesi502_cname: A pointer to a null-terminated Unicode UTF-16 Internet host name or NetBIOS host
name of the computer that established the session.

sesi502_username: A pointer to a null-terminated Unicode UTF-16 string that specifies the name of

the user who established the session.

sesi502_num_opens: Specifies the number of files, devices, and pipes that were opened during the

session.

sesi502_time: Specifies the number of seconds the session has been active.

sesi502_idle_time: Specifies the number of seconds the session has been idle.

sesi502_user_flags: Specifies a value that describes how the user established the session. This
member MUST be a combination of one or more of the values that are listed in section 2.2.2.3.

sesi502_cltype_name: A pointer to a null-terminated Unicode UTF-16 string that specifies the type
of client that established the session. The server simply stores this string, as specified in section
2.2.2.1, and its value does not modify the behavior of the protocol.<10>

sesi502_transport: Specifies the name of the transport that the client is using to communicate with
the server.

2.2.4.16 SESSION_INFO_0_CONTAINER

The SESSION_INFO_0_CONTAINER structure contains a value that indicates the number of entries
that the NetrSessionEnum method returns and a pointer to the buffer that contains the entries.

 typedef struct _SESSION_INFO_0_CONTAINER {
 DWORD EntriesRead;
 [size_is(EntriesRead)] LPSESSION_INFO_0 Buffer;
 } SESSION_INFO_0_CONTAINER,
 *PSESSION_INFO_0_CONTAINER,

47 / 241

[MS-SRVS-Diff] - v20240423
Server Service Remote Protocol
Copyright © 2024 Microsoft Corporation
Release: April 23, 2024

 *LPSESSION_INFO_0_CONTAINER;

EntriesRead: The number of entries returned by the method.

Buffer: A pointer to the SESSION_INFO_0 entries returned by the method.

2.2.4.17 SESSION_INFO_1_CONTAINER

The SESSION_INFO_1_CONTAINER structure contains a value that indicates the number of entries

that the NetrSessionEnum method returns and a pointer to the buffer that contains the entries.

 typedef struct _SESSION_INFO_1_CONTAINER {
 DWORD EntriesRead;
 [size_is(EntriesRead)] LPSESSION_INFO_1 Buffer;
 } SESSION_INFO_1_CONTAINER,
 *PSESSION_INFO_1_CONTAINER,
 *LPSESSION_INFO_1_CONTAINER;

EntriesRead: The number of entries returned by the method.

Buffer: A pointer to the SESSION_INFO_1 entries returned by the method.

2.2.4.18 SESSION_INFO_2_CONTAINER

The SESSION_INFO_2_CONTAINER structure contains a value that indicates the number of entries
that the NetrSessionEnum method returns and a pointer to the buffer that contains the entries.

 typedef struct _SESSION_INFO_2_CONTAINER {
 DWORD EntriesRead;
 [size_is(EntriesRead)] LPSESSION_INFO_2 Buffer;
 } SESSION_INFO_2_CONTAINER,
 *PSESSION_INFO_2_CONTAINER,
 *LPSESSION_INFO_2_CONTAINER;

EntriesRead: The number of entries returned by the method.

Buffer: A pointer to the SESSION_INFO_2 entries returned by the method.

2.2.4.19 SESSION_INFO_10_CONTAINER

The SESSION_INFO_10_CONTAINER structure contains a value that indicates the number of entries
that the NetrSessionEnum method returns and a pointer to the buffer that contains the entries.

 typedef struct _SESSION_INFO_10_CONTAINER {
 DWORD EntriesRead;
 [size_is(EntriesRead)] LPSESSION_INFO_10 Buffer;
 } SESSION_INFO_10_CONTAINER,
 *PSESSION_INFO_10_CONTAINER,
 *LPSESSION_INFO_10_CONTAINER;

EntriesRead: The number of entries returned by the method.

Buffer: A pointer to the SESSION_INFO_10 entries returned by the method.

48 / 241

[MS-SRVS-Diff] - v20240423
Server Service Remote Protocol
Copyright © 2024 Microsoft Corporation
Release: April 23, 2024

2.2.4.20 SESSION_INFO_502_CONTAINER

The SESSION_INFO_502_CONTAINER structure contains a value that indicates the number of entries
that the NetrSessionEnum method returns and a pointer to the buffer that contains the entries.

 typedef struct _SESSION_INFO_502_CONTAINER {
 DWORD EntriesRead;
 [size_is(EntriesRead)] LPSESSION_INFO_502 Buffer;
 } SESSION_INFO_502_CONTAINER,
 *PSESSION_INFO_502_CONTAINER,
 *LPSESSION_INFO_502_CONTAINER;

EntriesRead: The number of entries returned by the method.

Buffer: A pointer to the SESSION_INFO_502 entries returned by the method.

2.2.4.21 SESSION_ENUM_STRUCT

The SESSION_ENUM_STRUCT structure specifies the information level that the client requests in the
NetrSessionEnum method and encapsulates the SESSION_ENUM_UNION union that receives the
entries that are enumerated by the server.

 typedef struct _SESSION_ENUM_STRUCT {
 DWORD Level;
 [switch_is(Level)] SESSION_ENUM_UNION SessionInfo;
 } SESSION_ENUM_STRUCT,
 *PSESSION_ENUM_STRUCT,
 *LPSESSION_ENUM_STRUCT;

Level: Specifies the information level of the data. This parameter MUST have one of the following
values.

Value Meaning

0 SESSION_INFO_0_CONTAINER

1 SESSION_INFO_1_CONTAINER

2 SESSION_INFO_2_CONTAINER

10 SESSION_INFO_10_CONTAINER

502 SESSION_INFO_502_CONTAINER

SessionInfo: Contains a session info container whose type is specified by the Level parameter, as
shown in the preceding table. The enumerated session entries are returned in this member.

2.2.4.22 SHARE_INFO_0

The SHARE_INFO_0 structure contains the name of the shared resource. For a description of the fields
in this structure, see the description for the SHARE_INFO_502_I (section 2.2.4.26) structure
(shi0_xxx denotes the same information as shi502_xxx).

 typedef struct _SHARE_INFO_0 {
 [string] wchar_t* shi0_netname;
 } SHARE_INFO_0,
 *PSHARE_INFO_0,

49 / 241

[MS-SRVS-Diff] - v20240423
Server Service Remote Protocol
Copyright © 2024 Microsoft Corporation
Release: April 23, 2024

 *LPSHARE_INFO_0;

2.2.4.23 SHARE_INFO_1

The SHARE_INFO_1 structure contains information about the shared resource, including the name and
type of the resource and a comment associated with the resource. For a description of the fields in this
structure, see the description for the SHARE_INFO_502_I (section 2.2.4.26) structure (shi1_xxx

denotes the same information as shi502_xxx).

 typedef struct _SHARE_INFO_1 {
 [string] wchar_t* shi1_netname;
 DWORD shi1_type;
 [string] wchar_t* shi1_remark;
 } SHARE_INFO_1,
 *PSHARE_INFO_1,
 *LPSHARE_INFO_1;

2.2.4.24 SHARE_INFO_2

The SHARE_INFO_2 structure contains information about the shared resource, including the name,
type, and permissions of the resource, comments associated with the resource, the maximum number
of concurrent connections, the number of current connections, the local path for the resource, and a
password for the current connection. For a description of the fields in this structure, see the

description for the SHARE_INFO_502_I (section 2.2.4.26) structure (shi2_xxx denotes the same
information as shi502_xxx).

 typedef struct _SHARE_INFO_2 {
 [string] wchar_t* shi2_netname;
 DWORD shi2_type;
 [string] wchar_t* shi2_remark;
 DWORD shi2_permissions;
 DWORD shi2_max_uses;
 DWORD shi2_current_uses;
 [string] wchar_t* shi2_path;
 [string] wchar_t* shi2_passwd;
 } SHARE_INFO_2,
 *PSHARE_INFO_2,
 *LPSHARE_INFO_2;

2.2.4.25 SHARE_INFO_501

The SHARE_INFO_501 structure contains information about the shared resource, including the name
and type of the resource and a comment that is associated with the resource. For a description of the
fields in this structure, see the description for the SHARE_INFO_502_I (section 2.2.4.26) structure
(shi501_netname, shi501_type, and shi501_remark denote the same information as shi502_xxx in
section 2.2.4.26, and shi501_flags denotes the same information as shi1005_flags in section

2.2.4.29).

 typedef struct _SHARE_INFO_501 {
 [string] wchar_t* shi501_netname;
 DWORD shi501_type;
 [string] wchar_t* shi501_remark;
 DWORD shi501_flags;
 } SHARE_INFO_501,
 *PSHARE_INFO_501,
 *LPSHARE_INFO_501;

50 / 241

[MS-SRVS-Diff] - v20240423
Server Service Remote Protocol
Copyright © 2024 Microsoft Corporation
Release: April 23, 2024

2.2.4.26 SHARE_INFO_502_I

The SHARE_INFO_502_I structure contains information about the shared resource, including the name
of the resource, type, and permissions, the number of connections, and other pertinent information.

 typedef struct _SHARE_INFO_502_I {
 [string] WCHAR* shi502_netname;
 DWORD shi502_type;
 [string] WCHAR* shi502_remark;
 DWORD shi502_permissions;
 DWORD shi502_max_uses;
 DWORD shi502_current_uses;
 [string] WCHAR* shi502_path;
 [string] WCHAR* shi502_passwd;
 DWORD shi502_reserved;
 [size_is(shi502_reserved)] unsigned char* shi502_security_descriptor;
 } SHARE_INFO_502_I,
 *PSHARE_INFO_502_I,
 *LPSHARE_INFO_502_I;

shi502_netname: A pointer to a null-terminated Unicode UTF-16 string that specifies the name of a
shared resource. The server MUST ignore this member when processing the
NetrShareSetInfo (section 3.1.4.11) method.

shi502_type: Specifies a DWORD value that indicates the type of share. The server MUST ignore this
member when processing the NetrShareSetInfo method; otherwise, it MUST be one of the values

that are listed in section 2.2.2.4.

shi502_remark: A pointer to a null-terminated Unicode UTF-16 string that specifies an optional
comment about the shared resource.

shi502_permissions: This field is not used. The server MUST ignore the value of this parameter on
receipt.

shi502_max_uses: Specifies a DWORD value that indicates the maximum number of concurrent

connections that the shared resource can accommodate. If the value that is specified by
shi502_max_uses is 0xFFFFFFFF, the maximum number of connections MUST be unlimited.

shi502_current_uses: Specifies a DWORD value that indicates the number of current connections
to the resource. The server MUST ignore this member on receipt.

shi502_path: A pointer to a null-terminated Unicode UTF-16 string that contains the local path for
the shared resource. For disks, shi502_path is the path that is being shared. For print queues,
shi502_path is the name of the print queue that is being shared. For communication devices,

shi502_path is the name of the communication device that is being shared. For interprocess
communications (IPC), shi502_path is the name of the interprocess communication that is being
shared. The server MUST ignore this member when processing the NetrShareSetInfo method.

shi502_passwd: This field is not used. The client MUST send a NULL (zero-length) string and the
server MUST ignore the value of this parameter on receipt.

shi502_reserved: The length of the security descriptor that is being passed in the
shi502_security_descriptor member.

shi502_security_descriptor: Specifies the SECURITY_DESCRIPTOR, as described in [MS-DTYP]
section 2.4.6, that is associated with this share.

51 / 241

[MS-SRVS-Diff] - v20240423
Server Service Remote Protocol
Copyright © 2024 Microsoft Corporation
Release: April 23, 2024

2.2.4.27 SHARE_INFO_503_I

The SHARE_INFO_503_I structure contains information about the shared resource, including the name
of the resource, type, and permissions, the number of connections, and other pertinent information.

 typedef struct _SHARE_INFO_503_I {
 [string] WCHAR* shi503_netname;
 DWORD shi503_type;
 [string] WCHAR* shi503_remark;
 DWORD shi503_permissions;
 DWORD shi503_max_uses;
 DWORD shi503_current_uses;
 [string] WCHAR* shi503_path;
 [string] WCHAR* shi503_passwd;
 [string] WCHAR* shi503_servername;
 DWORD shi503_reserved;
 [size_is(shi503_reserved)] PUCHAR shi503_security_descriptor;
 } SHARE_INFO_503_I,
 *PSHARE_INFO_503_I,
 *LPSHARE_INFO_503_I;

shi503_netname: A pointer to a null-terminated Unicode UTF-16 string that specifies the name of a

shared resource. The server MUST ignore this member when processing the
NetrShareSetInfo (section 3.1.4.11) method.

shi503_type: Specifies a DWORD value that indicates the type of share. The server MUST ignore this
member when processing the NetrShareSetInfo method. Otherwise, it MUST be one of the values
listed in section 2.2.2.4.

shi503_remark: A pointer to a null-terminated Unicode UTF-16 string that specifies an optional
comment about the shared resource.

shi503_permissions: This field is not used. The server MUST ignore the value of this parameter on
receipt.

shi503_max_uses: Specifies a DWORD value that indicates the maximum number of concurrent
connections that the shared resource can accommodate. If the value is 0xFFFFFFFF, the maximum
number of connections MUST be unlimited.

shi503_current_uses: Specifies a DWORD value that indicates the number of current connections
to the resource. The server MUST ignore this member on receipt.

shi503_path: A pointer to a null-terminated Unicode UTF-16 string that contains the local path for
the shared resource. For disks, it is the path being shared. For print queues, it is the name of the
print queue being shared. The server MUST ignore this member when processing the
NetrShareSetInfo method.

shi503_passwd: This field is not used. The client MUST send a NULL (zero-length) string, and the
server MUST ignore the value of this parameter on receipt.

shi503_servername: A pointer to a string that specifies the DNS or NetBIOS name of the server on

which the shared resource resides. It SHOULD be either "*" or the string matching one of the
server names. Otherwise, the default server name will be used in <shi503_netname, default
server name> to locate a scoped share as specified in section 2.2.4.102. A value of "*" indicates
that there is no configured server name.

shi503_reserved: The length of the security descriptor passed in the shi503_security_descriptor
member.

shi503_security_descriptor: Specifies the SECURITY_DESCRIPTOR, as described in [MS-DTYP]
section 2.4.6, that is associated with this share.

52 / 241

[MS-SRVS-Diff] - v20240423
Server Service Remote Protocol
Copyright © 2024 Microsoft Corporation
Release: April 23, 2024

2.2.4.28 SHARE_INFO_1004

The SHARE_INFO_1004 structure contains a comment that is associated with the shared resource. For
a description of the fields in this structure, see the description for the

SHARE_INFO_502_I (section 2.2.4.26) structure (shi1004_xxx denotes the same information as
shi502_xxx).

 typedef struct _SHARE_INFO_1004 {
 [string] wchar_t* shi1004_remark;
 } SHARE_INFO_1004,
 *PSHARE_INFO_1004,
 *LPSHARE_INFO_1004;

2.2.4.29 (Updated Section) SHARE_INFO_1005

The SHARE_INFO_1005 structure contains information about the shared resource.

 typedef struct _SHARE_INFO_1005 {
 DWORD shi1005_flags;
 } SHARE_INFO_1005,
 *PSHARE_INFO_1005,
 *LPSHARE_INFO_1005;

shi1005_flags: Specifies a DWORD bitmask value that MUST contain zero or more of the following
values. The bit locations that are named CSC_MASK in the following table MUST contain a client-
side caching state value as given in section 2.2.2.5. The server MUST ignore SHI1005_FLAGS_DFS
and SHI1005_FLAGS_DFS_ROOT as it processes the NetrShareSetInfo method.

Value Meaning

SHI1005_FLAGS_DFS

0x00000001

The specified share is present in a DFS tree
structure.

SHI1005_FLAGS_DFS_ROOT

0x00000002

The specified share is present in a DFS tree
structure.

CSC_MASK

0x00000030

Provides a mask for one of the four possible client-
side caching (CSC) (section 2.2.2.5) states.

SHI1005_FLAGS_RESTRICT_EXCLUSIVE_OPENS

0x00000100

The specified share disallows exclusive file opens
that deny reads to an open file.

SHI1005_FLAGS_FORCE_SHARED_DELETE

0x00000200

The specified share disallows clients from opening
files on the share in an exclusive mode that
prevents the file from being deleted until the client
closes the file.

SHI1005_FLAGS_ALLOW_NAMESPACE_CACHING

0x00000400

Clients are allowed to cache the namespace of the
specified share.

SHI1005_FLAGS_ACCESS_BASED_DIRECTORY_ENUM

0x00000800

The server filters directory entries based on the
access permissions of the client.<11>

SHI1005_FLAGS_FORCE_LEVELII_OPLOCK

0x00001000

The server does not issue exclusive caching rights
on this share.<12>

SHI1005_FLAGS_ENABLE_HASH The share supports hash generation for branch
cache retrieval of data. It is only valid if the server

53 / 241

[MS-SRVS-Diff] - v20240423
Server Service Remote Protocol
Copyright © 2024 Microsoft Corporation
Release: April 23, 2024

Value Meaning

0x00002000 supports the branch cache capability and the
branch cache component is installed.<13>

SHI1005_FLAGS_ENABLE_CA

0x00004000

A highly available share.<14>

SHI1005_FLAGS_ENCRYPT_DATA

0x00008000

A share on which remote file access is
encrypted.<15>

SHI1005_FLAGS_COMPRESS_DATA

0x00100000

A share on which remote file access is requested to
be compressed..<16>

2.2.4.30 SHARE_INFO_1006

The SHARE_INFO_1006 structure specifies the maximum number of concurrent connections that the
shared resource can accommodate. For a description of the fields in this structure, see the description
for the SHARE_INFO_502_I (section 2.2.4.26) structure (shi1006_xxx denotes the same information
as shi502_xxx).

 typedef struct _SHARE_INFO_1006 {
 DWORD shi1006_max_uses;
 } SHARE_INFO_1006,
 *PSHARE_INFO_1006,
 *LPSHARE_INFO_1006;

2.2.4.31 SHARE_INFO_1501_I

The SHARE_INFO_1501_I structure contains a security descriptor in self-relative format and a DWORD

that contains its length.<17> For a description of the fields in this structure, see the description for
the SHARE_INFO_502_I (section 2.2.4.26) structure (shi1501_xxx denotes the same information as
shi502_xxx).

 typedef struct _SHARE_INFO_1501_I {
 DWORD shi1501_reserved;
 [size_is(shi1501_reserved)] unsigned char* shi1501_security_descriptor;
 } SHARE_INFO_1501_I,
 *PSHARE_INFO_1501_I,
 *LPSHARE_INFO_1501_I;

2.2.4.32 SHARE_INFO_0_CONTAINER

The SHARE_INFO_0_CONTAINER structure contains a value that indicates the number of entries that

the NetrShareEnum method returns and a pointer to the buffer that contains the entries.

 typedef struct _SHARE_INFO_0_CONTAINER {
 DWORD EntriesRead;
 [size_is(EntriesRead)] LPSHARE_INFO_0 Buffer;
 } SHARE_INFO_0_CONTAINER;

EntriesRead: The number of entries returned by the method.

Buffer: A pointer to the SHARE_INFO_0 entries returned by the method.

54 / 241

[MS-SRVS-Diff] - v20240423
Server Service Remote Protocol
Copyright © 2024 Microsoft Corporation
Release: April 23, 2024

2.2.4.33 SHARE_INFO_1_CONTAINER

The SHARE_INFO_1_CONTAINER structure contains a value that indicates the number of entries that
the NetrShareEnum method returns and a pointer to the buffer that contains the entries.

 typedef struct _SHARE_INFO_1_CONTAINER {
 DWORD EntriesRead;
 [size_is(EntriesRead)] LPSHARE_INFO_1 Buffer;
 } SHARE_INFO_1_CONTAINER;

EntriesRead: The number of entries returned by the method.

Buffer: A pointer to the SHARE_INFO_1 entries returned by the method.

2.2.4.34 SHARE_INFO_2_CONTAINER

The SHARE_INFO_2_CONTAINER structure contains a value that indicates the number of entries that
the NetrShareEnum method returns and a pointer to the buffer that contains the entries.

 typedef struct _SHARE_INFO_2_CONTAINER {
 DWORD EntriesRead;
 [size_is(EntriesRead)] LPSHARE_INFO_2 Buffer;
 } SHARE_INFO_2_CONTAINER,
 *PSHARE_INFO_2_CONTAINER,
 *LPSHARE_INFO_2_CONTAINER;

EntriesRead: The number of entries returned by the method.

Buffer: A pointer to the SHARE_INFO_2 entries returned by the method.

2.2.4.35 SHARE_INFO_501_CONTAINER

The SHARE_INFO_501_CONTAINER structure contains a value that indicates the number of entries
that the NetrShareEnum method returns and a pointer to the buffer that contains the entries.

 typedef struct _SHARE_INFO_501_CONTAINER {
 DWORD EntriesRead;
 [size_is(EntriesRead)] LPSHARE_INFO_501 Buffer;
 } SHARE_INFO_501_CONTAINER,
 *PSHARE_INFO_501_CONTAINER,
 *LPSHARE_INFO_501_CONTAINER;

EntriesRead: The number of entries returned by the method.

Buffer: A pointer to the SHARE_INFO_501 entries returned by the method.

2.2.4.36 SHARE_INFO_502_CONTAINER

The SHARE_INFO_502_CONTAINER structure contains a value that indicates the number of entries
that the NetrShareEnum method returns and a pointer to the buffer that contains the entries.

 typedef struct _SHARE_INFO_502_CONTAINER {
 DWORD EntriesRead;
 [size_is(EntriesRead)] LPSHARE_INFO_502_I Buffer;
 } SHARE_INFO_502_CONTAINER,
 *PSHARE_INFO_502_CONTAINER,

55 / 241

[MS-SRVS-Diff] - v20240423
Server Service Remote Protocol
Copyright © 2024 Microsoft Corporation
Release: April 23, 2024

 *LPSHARE_INFO_502_CONTAINER;

EntriesRead: The number of entries returned by the method.

Buffer: A pointer to the SHARE_INFO_502_I entries returned by the method.

2.2.4.37 SHARE_INFO_503_CONTAINER

The SHARE_INFO_503_CONTAINER structure contains a value that indicates the number of entries the

NetrShareEnum method returns and a pointer to the buffer that contains the entries.

 typedef struct _SHARE_INFO_503_CONTAINER {
 DWORD EntriesRead;
 [size_is(EntriesRead)] LPSHARE_INFO_503_I Buffer;
 } SHARE_INFO_503_CONTAINER,
 *PSHARE_INFO_503_CONTAINER,
 *LPSHARE_INFO_503_CONTAINER;

EntriesRead: The number of entries returned by the method.

Buffer: A pointer to the SHARE_INFO_503_I entries returned by the method.

2.2.4.38 SHARE_ENUM_STRUCT

The SHARE_ENUM_STRUCT structure specifies the information level that the client requests in the
NetrShareEnum method and encapsulates the SHARE_ENUM_UNION union that receives the entries
enumerated by the server.

 typedef struct _SHARE_ENUM_STRUCT {
 DWORD Level;
 [switch_is(Level)] SHARE_ENUM_UNION ShareInfo;
 } SHARE_ENUM_STRUCT,
 *PSHARE_ENUM_STRUCT,
 *LPSHARE_ENUM_STRUCT;

Level: Specifies the information level of the data. This parameter MUST have one of the following
values.

Value Meaning

0 SHARE_INFO_0_CONTAINER

1 SHARE_INFO_1_CONTAINER

2 SHARE_INFO_2_CONTAINER

501 SHARE_INFO_501_CONTAINER

502 SHARE_INFO_502_CONTAINER

503 SHARE_INFO_503_CONTAINER

ShareInfo: Contains a share information container whose type is specified by the Level parameter as
the preceding table shows. The enumerated share entries are returned in this member.

56 / 241

[MS-SRVS-Diff] - v20240423
Server Service Remote Protocol
Copyright © 2024 Microsoft Corporation
Release: April 23, 2024

2.2.4.39 STAT_SERVER_0

The STAT_SERVER_0 structure contains statistical information about the server.

 typedef struct _STAT_SERVER_0 {
 DWORD sts0_start;
 DWORD sts0_fopens;
 DWORD sts0_devopens;
 DWORD sts0_jobsqueued;
 DWORD sts0_sopens;
 DWORD sts0_stimedout;
 DWORD sts0_serrorout;
 DWORD sts0_pwerrors;
 DWORD sts0_permerrors;
 DWORD sts0_syserrors;
 DWORD sts0_bytessent_low;
 DWORD sts0_bytessent_high;
 DWORD sts0_bytesrcvd_low;
 DWORD sts0_bytesrcvd_high;
 DWORD sts0_avresponse;
 DWORD sts0_reqbufneed;
 DWORD sts0_bigbufneed;
 } STAT_SERVER_0,
 *PSTAT_SERVER_0,
 *LPSTAT_SERVER_0;

sts0_start: Specifies a DWORD value that indicates the time when statistics collection started (or

when the statistics were last cleared). The value MUST be stored as the number of seconds that
have elapsed since 00:00:00, January 1, 1970, Greenwich Mean Time (GMT). To calculate the
length of time that statistics have been collected, subtract the value of this member from the
present time.

sts0_fopens: Specifies a DWORD value that indicates the number of Opens that have been created
on a server. This MUST include the number of times named pipes are opened.

sts0_devopens: Specifies a DWORD value that indicates the number of times a server device has

been opened. This field MUST be set to 0.

sts0_jobsqueued: Specifies a DWORD value that indicates the number of server print jobs that are
spooled.

sts0_sopens: Specifies a DWORD value that indicates the number of sessions that have been
established to a server.

sts0_stimedout: Specifies a DWORD value that indicates the number of times a session is
disconnected.

sts0_serrorout: Specifies a DWORD value that indicates the number of times a session failed with
an error. This field MUST be set to 0.

sts0_pwerrors: Specifies a DWORD value that indicates the number of password violations that the

server has detected.

sts0_permerrors: Specifies a DWORD value that indicates the number of access permission errors
that have occurred on the server.

sts0_syserrors: Specifies a DWORD value that indicates the number of system errors that have
occurred on the server. This field MUST be set to 0.

sts0_bytessent_low: Specifies the low-order DWORD of the number of server bytes sent on the
network.

57 / 241

[MS-SRVS-Diff] - v20240423
Server Service Remote Protocol
Copyright © 2024 Microsoft Corporation
Release: April 23, 2024

sts0_bytessent_high: Specifies the high-order DWORD of the number of server bytes sent on the
network.

sts0_bytesrcvd_low: Specifies the low-order DWORD of the number of server bytes received from
the network.

sts0_bytesrcvd_high: Specifies the high-order DWORD of the number of server bytes received from
the network.

sts0_avresponse: Specifies a DWORD value that indicates the average server response time, in
milliseconds. This field MUST be set to 0.

sts0_reqbufneed: Specifies a DWORD value that indicates the number of times the server required
a request buffer but failed to allocate one. This field MUST be set to 0.

sts0_bigbufneed: Specifies a DWORD value that indicates the number of times the server required

a large buffer but failed to allocate one. This field MUST be set to 0.

2.2.4.40 SERVER_INFO_100

The SERVER_INFO_100 structure contains information about the specified server, including the name

and platform. It MUST be used only to query information about a server. For a description of the fields
in this structure, see the description for the SERVER_INFO_103 structure (sv100_xxx denotes the
same information as sv103_xxx).

 typedef struct _SERVER_INFO_100 {
 DWORD sv100_platform_id;
 [string] wchar_t* sv100_name;
 } SERVER_INFO_100,
 *PSERVER_INFO_100,
 *LPSERVER_INFO_100;

2.2.4.41 SERVER_INFO_101

The SERVER_INFO_101 structure contains information about the specified server, including name,
platform, type of server, and associated software. For a description about the fields in this structure,
see the description for the SERVER_INFO_103 structure (sv101_xxx denotes the same information as
sv103_xxx).

 typedef struct _SERVER_INFO_101 {
 DWORD sv101_platform_id;
 [string] wchar_t* sv101_name;
 DWORD sv101_version_major;
 DWORD sv101_version_minor;
 DWORD sv101_type;
 [string] wchar_t* sv101_comment;
 } SERVER_INFO_101,
 *PSERVER_INFO_101,
 *LPSERVER_INFO_101;

2.2.4.42 SERVER_INFO_102

The SERVER_INFO_102 structure contains information about the specified server, including the name,
platform, and type of server, attributes, and associated software. For information about the fields in
this structure, see the description for the SERVER_INFO_103 structure (sv102_xxx denotes the same

information as sv103_xxx).

 typedef struct _SERVER_INFO_102 {

58 / 241

[MS-SRVS-Diff] - v20240423
Server Service Remote Protocol
Copyright © 2024 Microsoft Corporation
Release: April 23, 2024

 DWORD sv102_platform_id;
 [string] wchar_t* sv102_name;
 DWORD sv102_version_major;
 DWORD sv102_version_minor;
 DWORD sv102_type;
 [string] wchar_t* sv102_comment;
 DWORD sv102_users;
 long sv102_disc;
 int sv102_hidden;
 DWORD sv102_announce;
 DWORD sv102_anndelta;
 DWORD sv102_licenses;
 [string] wchar_t* sv102_userpath;
 } SERVER_INFO_102,
 *PSERVER_INFO_102,
 *LPSERVER_INFO_102;

2.2.4.43 SERVER_INFO_103

The SERVER_INFO_103 structure contains information about CIFS and SMB Version 1.0 file servers,
including the name, platform, type of server, attributes, associated software, and capabilities.

 typedef struct _SERVER_INFO_103 {
 DWORD sv103_platform_id;
 [string] wchar_t* sv103_name;
 DWORD sv103_version_major;
 DWORD sv103_version_minor;
 DWORD sv103_type;
 [string] wchar_t* sv103_comment;
 DWORD sv103_users;
 LONG sv103_disc;
 BOOL sv103_hidden;
 DWORD sv103_announce;
 DWORD sv103_anndelta;
 DWORD sv103_licenses;
 [string] wchar_t* sv103_userpath;
 DWORD sv103_capabilities;
 } SERVER_INFO_103,
 *PSERVER_INFO_103,
 *LPSERVER_INFO_103;

sv103_platform_id: Specifies the information level to use for platform-specific information. This
member can be one of the values that are listed in PLATFORM IDs (section 2.2.2.6). The server
MUST ignore this field during a NetrServerSetInfo operation.

sv103_name: A pointer to a null-terminated Unicode UTF-16 Internet host name or NetBIOS host
name of a server.

The server MUST ignore this field during a NetrServerSetInfo operation.

sv103_version_major: Specifies the major release version number of the operating system. The

server MUST ignore this field during a NetrServerSetInfo operation. The server MUST set this field
to an implementation-specific major release version number that corresponds to the host
operating system on a NetrServerGetInfo operation.<18>

sv103_version_minor: Specifies the minor release version number of the operating system. The
server MUST ignore this field during a NetrServerSetInfo operation. The server MUST set this field
to an implementation-specific minor release version number that corresponds to the host

operating system on a NetrServerGetInfo operation.<19>

59 / 241

[MS-SRVS-Diff] - v20240423
Server Service Remote Protocol
Copyright © 2024 Microsoft Corporation
Release: April 23, 2024

sv103_type: Specifies the type of software the computer is running. This member MUST be a
combination of one or more of the values that are listed in section 2.2.2.7. The server MUST

ignore this field during a NetrServerSetInfo operation.

sv103_comment: An optional pointer to a null-terminated Unicode UTF-16 string that specifies a

comment that describes the server.

sv103_users: Specifies the number of users who can attempt to log on to the server. The range of
values MUST be from 0x00000001 to 0xFFFFFFFF, inclusive. The server enforces a ceiling, based
on the particular SKU that is running on the server, by taking a minimum of the specified value
and the ceiling.

sv103_disc: Specifies the automatic disconnect time, in minutes. A session MUST be disconnected if
it is idle longer than the period of time that the sv103_disc member specifies. If the value of

sv103_disc is SV_NODISC (0xFFFFFFFF), an automatic disconnect MUST NOT be enabled. The
range of values MUST be from 0x00000001 to 0xFFFFFFFF, inclusive.

sv103_hidden: A Boolean that specifies whether the server is hidden or visible to other computers

in the same network domain. It MUST be set to TRUE (1) to indicate that the server is hidden; or
it MUST be set to FALSE (0) to indicate that the server is visible. The default value is FALSE (0).

sv103_announce: Specifies the network announce rate, in seconds. This rate determines how often

the server is announced to other computers on the network for discovery by using the CIFS
Browser Protocol. For more information, see [MS-BRWS]. The range of values MUST be from 1 to
65535, inclusive.

sv103_anndelta: Specifies the delta value for the announce rate, in milliseconds. This value
specifies how much the announce rate can vary from the period of time that is specified in the
sv103_announce member. The delta value enables the server to set randomly varied announce
rates in the range sv103_announce to sv103_announce+sv103_anndelta, inclusive, to

prevent many servers from announcing at the same time. The range of values MUST be from 0 to
65535, inclusive.

sv103_licenses: Unused. The server MUST ignore this field during a NetrServerSetInfo operation.

The server MUST return 0 during a NetrServerGetInfo operation.

sv103_userpath: A pointer to a null-terminated Unicode UTF-16 string that specifies the path to the
user directories. Due to historical reasons, the default path is "c:\". The client can set this field to
any value. The server stores this string and returns it when queried. This field has no effect on the

server.

sv103_capabilities: Specifies the capabilities of the server. This MUST be a combination of zero or
more of the following flags. The server MUST ignore this field during a NetrServerSetInfo
operation. If the server does not support any of the following capabilities, it MUST set this field to
0x0000.

Value Meaning

SRV_SUPPORT_HASH_GENERATION

0x0001

Hash generation for branch cache functionality is supported by the
server.

SRV_HASH_GENERATION_ACTIVE

0x0002

The branch cache component is installed.<20>

60 / 241

[MS-SRVS-Diff] - v20240423
Server Service Remote Protocol
Copyright © 2024 Microsoft Corporation
Release: April 23, 2024

2.2.4.44 SERVER_INFO_502

The SERVER_INFO_502 structure contains information about a specified server. For a description of
the fields in this structure, see the description for the SERVER_INFO_599 structure (sv502_xxx

denotes the same information as sv599_xxx).

 typedef struct _SERVER_INFO_502 {
 DWORD sv502_sessopens;
 DWORD sv502_sessvcs;
 DWORD sv502_opensearch;
 DWORD sv502_sizreqbuf;
 DWORD sv502_initworkitems;
 DWORD sv502_maxworkitems;
 DWORD sv502_rawworkitems;
 DWORD sv502_irpstacksize;
 DWORD sv502_maxrawbuflen;
 DWORD sv502_sessusers;
 DWORD sv502_sessconns;
 DWORD sv502_maxpagedmemoryusage;
 DWORD sv502_maxnonpagedmemoryusage;
 int sv502_enablesoftcompat;
 int sv502_enableforcedlogoff;
 int sv502_timesource;
 int sv502_acceptdownlevelapis;
 int sv502_lmannounce;
 } SERVER_INFO_502,
 *PSERVER_INFO_502,
 *LPSERVER_INFO_502;

2.2.4.45 SERVER_INFO_503

The SERVER_INFO_503 structure contains information about a specified server. For a description of
the fields in this structure, see the description for the SERVER_INFO_599 structure (sv503_xxx
denotes the same information as sv599_xxx).

 typedef struct _SERVER_INFO_503 {
 DWORD sv503_sessopens;
 DWORD sv503_sessvcs;
 DWORD sv503_opensearch;
 DWORD sv503_sizreqbuf;
 DWORD sv503_initworkitems;
 DWORD sv503_maxworkitems;
 DWORD sv503_rawworkitems;
 DWORD sv503_irpstacksize;
 DWORD sv503_maxrawbuflen;
 DWORD sv503_sessusers;
 DWORD sv503_sessconns;
 DWORD sv503_maxpagedmemoryusage;
 DWORD sv503_maxnonpagedmemoryusage;
 int sv503_enablesoftcompat;
 int sv503_enableforcedlogoff;
 int sv503_timesource;
 int sv503_acceptdownlevelapis;
 int sv503_lmannounce;
 [string] wchar_t* sv503_domain;
 DWORD sv503_maxcopyreadlen;
 DWORD sv503_maxcopywritelen;
 DWORD sv503_minkeepsearch;
 DWORD sv503_maxkeepsearch;
 DWORD sv503_minkeepcomplsearch;
 DWORD sv503_maxkeepcomplsearch;
 DWORD sv503_threadcountadd;
 DWORD sv503_numblockthreads;
 DWORD sv503_scavtimeout;
 DWORD sv503_minrcvqueue;

61 / 241

[MS-SRVS-Diff] - v20240423
Server Service Remote Protocol
Copyright © 2024 Microsoft Corporation
Release: April 23, 2024

 DWORD sv503_minfreeworkitems;
 DWORD sv503_xactmemsize;
 DWORD sv503_threadpriority;
 DWORD sv503_maxmpxct;
 DWORD sv503_oplockbreakwait;
 DWORD sv503_oplockbreakresponsewait;
 int sv503_enableoplocks;
 int sv503_enableoplockforceclose;
 int sv503_enablefcbopens;
 int sv503_enableraw;
 int sv503_enablesharednetdrives;
 DWORD sv503_minfreeconnections;
 DWORD sv503_maxfreeconnections;
 } SERVER_INFO_503,
 *PSERVER_INFO_503,
 *LPSERVER_INFO_503;

2.2.4.46 SERVER_INFO_599

The SERVER_INFO_599 structure contains information about a specified server. The
SERVER_INFO_599 fields involve implementation-specific details of CIFS and SMB Version 1.0 file
servers. These fields can vary in how they apply to any given implementation. For more information,
see section 3.1.4.18.

 typedef struct _SERVER_INFO_599 {
 DWORD sv599_sessopens;
 DWORD sv599_sessvcs;
 DWORD sv599_opensearch;
 DWORD sv599_sizreqbuf;
 DWORD sv599_initworkitems;
 DWORD sv599_maxworkitems;
 DWORD sv599_rawworkitems;
 DWORD sv599_irpstacksize;
 DWORD sv599_maxrawbuflen;
 DWORD sv599_sessusers;
 DWORD sv599_sessconns;
 DWORD sv599_maxpagedmemoryusage;
 DWORD sv599_maxnonpagedmemoryusage;
 int sv599_enablesoftcompat;
 int sv599_enableforcedlogoff;
 int sv599_timesource;
 int sv599_acceptdownlevelapis;
 int sv599_lmannounce;
 [string] wchar_t* sv599_domain;
 DWORD sv599_maxcopyreadlen;
 DWORD sv599_maxcopywritelen;
 DWORD sv599_minkeepsearch;
 DWORD sv599_maxkeepsearch;
 DWORD sv599_minkeepcomplsearch;
 DWORD sv599_maxkeepcomplsearch;
 DWORD sv599_threadcountadd;
 DWORD sv599_numblockthreads;
 DWORD sv599_scavtimeout;
 DWORD sv599_minrcvqueue;
 DWORD sv599_minfreeworkitems;
 DWORD sv599_xactmemsize;
 DWORD sv599_threadpriority;
 DWORD sv599_maxmpxct;
 DWORD sv599_oplockbreakwait;
 DWORD sv599_oplockbreakresponsewait;
 int sv599_enableoplocks;
 int sv599_enableoplockforceclose;
 int sv599_enablefcbopens;
 int sv599_enableraw;
 int sv599_enablesharednetdrives;

62 / 241

[MS-SRVS-Diff] - v20240423
Server Service Remote Protocol
Copyright © 2024 Microsoft Corporation
Release: April 23, 2024

 DWORD sv599_minfreeconnections;
 DWORD sv599_maxfreeconnections;
 DWORD sv599_initsesstable;
 DWORD sv599_initconntable;
 DWORD sv599_initfiletable;
 DWORD sv599_initsearchtable;
 DWORD sv599_alertschedule;
 DWORD sv599_errorthreshold;
 DWORD sv599_networkerrorthreshold;
 DWORD sv599_diskspacethreshold;
 DWORD sv599_reserved;
 DWORD sv599_maxlinkdelay;
 DWORD sv599_minlinkthroughput;
 DWORD sv599_linkinfovalidtime;
 DWORD sv599_scavqosinfoupdatetime;
 DWORD sv599_maxworkitemidletime;
 } SERVER_INFO_599,
 *PSERVER_INFO_599,
 *LPSERVER_INFO_599;

sv599_sessopens: Specifies the number of files that can be open in one session. The range of
values MUST be from 1 to 16384, inclusive.<21>

sv599_sessvcs: Specifies the maximum number of sessions that are permitted per client. This value
MUST be set to one.

sv599_opensearch: Specifies the number of search operations that can be carried out

simultaneously. The range of values MUST be from 1 to 2,048, inclusive.

sv599_sizreqbuf: Specifies the size, in bytes, of each server buffer. This field MUST be ignored by
the server on receipt for set operations. The range of values MUST be 1,024 to 65,535,
inclusive.<22>

sv599_initworkitems: Specifies the initial number of receive buffers, or work items, that the server
uses. The range of values for get operations MUST be from 1 to 512, inclusive. This field MUST be

ignored by the server on receipt for set operations.

sv599_maxworkitems: Specifies the maximum number of receive buffers, or work items, that the
server can allocate. If this limit is reached, the transport MUST initiate flow control. The range of
values MUST be from 1 to 65,535, inclusive. The server enforces a ceiling based on the particular
SKU that is running on the server by taking a minimum specified value and the ceiling.

sv599_rawworkitems: Specifies the number of special work items the server uses for raw mode
I/O. A larger value for this member can increase performance, but it requires more memory. The

range of values for get operations MUST be from 1 to 512, inclusive. This field MUST be ignored by
the server on receipt for set operations.

sv599_irpstacksize: Specifies the number of stack locations that the server allocated in I/O request
packets (IRPs). This field MUST be ignored by the server on receipt for set operations. The range
of values MUST be 11 to 50, inclusive.<23>

sv599_maxrawbuflen: The server MUST validate the value on receipt. This value MUST be set to
65,535. Due to historical reasons, the server does not store this value.

sv599_sessusers: Specifies the maximum number of users who can be logged on to the server in a
single connection. The range of values MUST be from 1 to 2,048, inclusive.

sv599_sessconns: Specifies the maximum number of tree connections that can be made on the
server in a single session. The range of values MUST be from 1 to 2,048, inclusive.

63 / 241

[MS-SRVS-Diff] - v20240423
Server Service Remote Protocol
Copyright © 2024 Microsoft Corporation
Release: April 23, 2024

sv599_maxpagedmemoryusage: Specifies the maximum size of pageable memory, in bytes, that
the server can allocate at any one time. The range of values MUST be from 0x00400000 to

0xFFFFFFFF, inclusive.<24>

sv599_maxnonpagedmemoryusage: Specifies the maximum size of nonpaged memory in bytes

that the server can allocate at any one time. The range of values MUST be from 0x00400000 to
0xFFFFFFFF, inclusive.<25>

sv599_enablesoftcompat: A Boolean that specifies the SoftCompatibility capability of the server.
This field MUST be set to TRUE (1) to enable the SoftCompatibility feature, or it MUST be set to
FALSE (0) to disable the SoftCompatibility feature. The default value is TRUE (1). This setting
affects the open mode when the client does not have read/write permission to the file it is
accessing. If this feature is enabled, the server uses share access (parameter to CreateFile) equal

to FILE_SHARE_READ and does not mark the open as compatibility mode open; otherwise, share
access is set equal to 0, and the open is marked as compatibility mode open.

sv599_enableforcedlogoff: A Boolean that specifies whether or not the server forces a client to
disconnect, even if the client has open files, after the client's logon time has expired. This field

MUST be set to TRUE (1) for the server to force a client to disconnect under those circumstances,
or it MUST be set to FALSE (0) for the server not to force a client to disconnect under those

circumstances. The default value is TRUE (1).

sv599_timesource: A Boolean that specifies whether the server is a reliable time source.

sv599_acceptdownlevelapis: A Boolean that specifies whether the server accepts method calls
from previous-generation NTLM clients. This field MUST be set to TRUE (1) to enable the server to
accept method calls from previous-generation NTLM clients, or it MUST be set to FALSE (0) to
disable the server from accepting method calls from previous NTLM clients. The default value is
TRUE (1). This field MUST be ignored by the server on receipt.

sv599_lmannounce: A Boolean that specifies whether the server is visible to NTLM 2.x clients. The
default value is FALSE (0). If this feature is enabled, the server announces its presence through
LanMan or NetBIOS announcements.

sv599_domain: A pointer to a Unicode UTF character string that specifies the name of the server's
domain. This field cannot be modified by clients.

sv599_maxcopyreadlen: The server MUST validate this value on receipt. The range of values MUST
be from 0x00000000 to 0xFFFFFFFF, inclusive. Due to historical reasons, the server does not store

this value.

sv599_maxcopywritelen: The server MUST validate this value on receipt. The range of values
MUST be from 0x00000000 to 0xFFFFFFFF, inclusive. Due to historical reasons, the server does
not store this value.

sv599_minkeepsearch: The server MUST validate this value on receipt. The range of values MUST
be from 5 to 5,000, inclusive. Due to historical reasons, the server does not store this value.

sv599_maxkeepsearch: Specifies the length of time, in seconds, that the server retains information
about incomplete directory search operations. For more information about directory searches, see

[MS-CIFS] sections 2.2.6.2 and 2.2.6.3. The range of values MUST be from 10 to 10,000,
inclusive.

sv599_minkeepcomplsearch: The server MUST validate this value on receipt. The range of values
MUST be from 1 to 1,000, inclusive. Due to historical reasons, the server does not store this value.

sv599_maxkeepcomplsearch: The server MUST validate this value on receipt. The range of values

MUST be from 2 to 10,000, inclusive. Due to historical reasons, the server does not store this
value.

64 / 241

[MS-SRVS-Diff] - v20240423
Server Service Remote Protocol
Copyright © 2024 Microsoft Corporation
Release: April 23, 2024

sv599_threadcountadd: Unused. This field MUST be ignored on receipt.

sv599_numblockthreads: Unused. This field MUST be ignored on receipt.

sv599_scavtimeout: Specifies the period of time, in seconds, that an implementation-specific timer
on the server remains idle before waking up to service requests. This timer runs periodic

maintenance tasks that monitor time-out requests, log errors, update server statistics, and update
the connection Quality of Service (QoS) by querying the underlying transport. The range of values
MUST be from 1 to 300, inclusive.

sv599_minrcvqueue: Specifies the minimum number of free receive work items that the server
requires before it begins to allocate more. The server keeps a pool of free work items for each
worker queue. When a new request is posted to this queue, a work item is picked from the pool to
hold that request while it is being processed. The work item is returned to the pool after the

processing is done. If the number of free work items (that is, work items that are not being used
to process a request) for a queue falls below this setting, the server will request more work items
to be allocated for the queue. The range of values MUST be from 0 to 10, inclusive.

sv599_minfreeworkitems: Specifies the minimum number of available receive work items that the
server requires to begin processing a server message block. The range of values MUST be from 0
to 10, inclusive.

sv599_xactmemsize: Specifies the size, in bytes, of the shared memory region that is used to
process server methods. The range of values MUST be from 0x10000 (64 KB) to 0x1000000 (16
MB), inclusive. This field MUST be ignored by the server on receipt for set operations.

sv599_threadpriority: Specifies the priority of all server threads in relation to the base priority of
the process. The range of values MUST be from 0 to 15, inclusive. This field MUST be ignored by
the server on receipt for set operations.

sv599_maxmpxct: Specifies the maximum number of outstanding requests that any one client can

send to the server. The range of values MUST be from 1 to 65,535, inclusive.

sv599_oplockbreakwait: Specifies the period of time, in seconds, to wait before timing out an

opportunistic lock break request. For more information about opportunistic locks, see [MS-CIFS]
section 3.2.4.18. The range of values MUST be from 10 to 180, inclusive.

sv599_oplockbreakresponsewait: Specifies the period of time, in seconds, that the server waits
for a client to respond to an opportunistic lock break request from the server. For more
information about opportunistic locks, see [MS-CIFS] section 3.2.4.18. The range of values MUST

be from 10 to 180, inclusive.

sv599_enableoplocks: A Boolean that specifies whether the server allows clients to use
opportunistic locks on files. Opportunistic locks are a significant performance enhancement, but
they have the potential to cause lost cached data on some networks, particularly wide-area
networks. For more information about opportunistic locks, see [MS-CIFS] section 3.2.4.18. This
field MUST be set to TRUE (1) to enable clients to use opportunistic locks on files, or it MUST be

set to FALSE (0) to restrict clients from using opportunistic locks on files. The default value is
TRUE (1).

sv599_enableoplockforceclose: Unused. MUST be set to zero and ignored on receipt.

sv599_enablefcbopens: Specifies whether several MS-DOS File Control Blocks (FCBs) are placed in
a single location accessible to the server. If enabled, this option can save resources on the server.
This field MUST be set to TRUE (1) to place multiple MS-DOS FCBs in a single location accessible
to the server, and it MUST be set to FALSE (0) otherwise. The default value is TRUE (1).

sv599_enableraw: Specifies whether the server processes raw SMBs. If enabled, this allows more
data to transfer per transaction and improves performance. However, it is possible that processing
raw SMBs can impede performance on certain networks. This field MUST be set to TRUE (1) to

65 / 241

[MS-SRVS-Diff] - v20240423
Server Service Remote Protocol
Copyright © 2024 Microsoft Corporation
Release: April 23, 2024

indicate that the server processes raw SMBs, and it MUST be set to FALSE (0) to indicate that the
server does not process raw SMBs. The server MUST maintain the value of this member. The

default value is TRUE (1).

sv599_enablesharednetdrives: Specifies whether the server allows redirected server drives to be

shared. The default value is FALSE (0).

sv599_minfreeconnections: Specifies the minimum number of free connection blocks that are
maintained per endpoint. The server MUST set these aside to handle bursts of requests by clients
to connect to the server. The range of values MUST be from 2 to 1,024.<26>

sv599_maxfreeconnections: Specifies the maximum number of free connection blocks that are
maintained per endpoint. The server MUST set these aside to handle bursts of requests by clients
to connect to the server. The range of values MUST be from 2 to 16,384.<27>

sv599_initsesstable: Specifies the initial session table size for the server in terms of the number of
records (session structures used by the server internally to represent active sessions). The range
of values MUST be from 1 to 64, inclusive.

sv599_initconntable: Specifies the initial connection table size for the server in terms of the
number of records (connection structures used by the server internally to represent active
connections). The range of values MUST be from 1 to 128, inclusive.

sv599_initfiletable: Specifies the initial file table size for the server in terms of the number of
records (file structures used by the server internally to represent current open resources). The
range of values MUST be from 1 to 256, inclusive.

sv599_initsearchtable: Specifies the initial search table size for the server in terms of the number
of records (search structures used by the server internally to represent active searches). The
range of values MUST be from 1 to 2,048, inclusive.

sv599_alertschedule: Specifies the time, in minutes, between two invocations of an

implementation-specific algorithm on the server. This algorithm monitors server errors and disk
space limits, and it generates the implementation-specific failure events. The range of values

MUST be from 1 to 65,535, inclusive.

sv599_errorthreshold: Specifies the number of failed operations (non-network) that the server logs
before raising an administrative alert. The particular operations whose failure causes the count of
failed non-network operations to be incremented is implementation-dependent. The range of
values MUST be from 1 to 65,535, inclusive.

sv599_networkerrorthreshold: Specifies the minimum percentage of failed network operations
that the server records before raising an administrative alert. An alert MUST be raised when (the
number of failed network operations / the number of all attempted network operations) * 100 is
greater than or equal to this value. The range of values MUST be from 1 to 100, inclusive.

sv599_diskspacethreshold: Specifies the percent of free disk at which to raise an administrative
alert. The range of values MUST be from 0 to 99, inclusive.

sv599_reserved: Reserved. This field MUST be set to zero.

sv599_maxlinkdelay: Specifies the maximum link delay, in seconds, for the server. The server
enables raw I/O [MS-SMB] for a connection only if oplocks are enabled for this connection and the
link delay on the connection is less than or equal to this value. The range of values MUST be from
0x00000000 to 0x10000000, inclusive.

sv599_minlinkthroughput: Specifies the minimum link throughput, in bytes/second, for the server.
The server enables oplocks for a connection only if its current throughput is greater than or equal

to this value. The range of values MUST be from 0x00000000 to 0xFFFFFFFF, inclusive.

66 / 241

[MS-SRVS-Diff] - v20240423
Server Service Remote Protocol
Copyright © 2024 Microsoft Corporation
Release: April 23, 2024

sv599_linkinfovalidtime: Specifies the time interval, in seconds, during which the server can use
the computed link information before having to compute it again. The range of values MUST be

from 0x00000000 to 0x10000000, inclusive.

sv599_scavqosinfoupdatetime: Specifies the time interval for which an implementation-specific

timer on the server has to update QoS information. This time interval allows the client to have the
QoS information update done less frequently than the other tasks done by the timer. The range of
values MUST be from 0x00000000 to 0x10000000, inclusive.

sv599_maxworkitemidletime: Specifies the maximum work item idle time, in seconds. For
historical reasons, the server only stores this value, and it has no effect on server operation. The
range of values MUST be from 10 to 1,800, inclusive.

2.2.4.47 SERVER_INFO_1005

The SERVER_INFO_1005 structure contains information about a specified server.

 typedef struct _SERVER_INFO_1005 {
 [string] wchar_t* sv1005_comment;
 } SERVER_INFO_1005,
 *PSERVER_INFO_1005,
 *LPSERVER_INFO_1005;

sv1005_comment: This member is defined in the sv103_comment member in
SERVER_INFO_103 (section 2.2.4.43).

2.2.4.48 SERVER_INFO_1107

The SERVER_INFO_1107 structure contains information about a specified server.

 typedef struct _SERVER_INFO_1107 {
 DWORD sv1107_users;
 } SERVER_INFO_1107,
 *PSERVER_INFO_1107,
 *LPSERVER_INFO_1107;

sv1107_users: This member is defined in the sv103_users member in
SERVER_INFO_103 (section 2.2.4.43).

2.2.4.49 SERVER_INFO_1010

The SERVER_INFO_1010 structure contains information about a specified server.

 typedef struct _SERVER_INFO_1010 {
 long sv1010_disc;
 } SERVER_INFO_1010,
 *PSERVER_INFO_1010,
 *LPSERVER_INFO_1010;

sv1010_disc: This member is defined in the sv103_disc member in
SERVER_INFO_103 (section 2.2.4.43).

2.2.4.50 SERVER_INFO_1016

The SERVER_INFO_1016 structure contains information about a specified server.

67 / 241

[MS-SRVS-Diff] - v20240423
Server Service Remote Protocol
Copyright © 2024 Microsoft Corporation
Release: April 23, 2024

 typedef struct _SERVER_INFO_1016 {
 int sv1016_hidden;
 } SERVER_INFO_1016,
 *PSERVER_INFO_1016,
 *LPSERVER_INFO_1016;

sv1016_hidden: This member is defined in the sv103_hidden member in
SERVER_INFO_103 (section 2.2.4.43).

2.2.4.51 SERVER_INFO_1017

The SERVER_INFO_1017 structure contains information about a specified server.

 typedef struct _SERVER_INFO_1017 {
 DWORD sv1017_announce;
 } SERVER_INFO_1017,
 *PSERVER_INFO_1017,
 *LPSERVER_INFO_1017;

sv1017_announce: This member is defined in the sv103_announce member in
SERVER_INFO_103 (section 2.2.4.43).

2.2.4.52 SERVER_INFO_1018

The SERVER_INFO_1018 structure contains information about a specified server.

 typedef struct _SERVER_INFO_1018 {
 DWORD sv1018_anndelta;
 } SERVER_INFO_1018,
 *PSERVER_INFO_1018,
 *LPSERVER_INFO_1018;

sv1018_anndelta: This member is defined in the sv103_ anndelta member in
SERVER_INFO_103 (section 2.2.4.43).

2.2.4.53 SERVER_INFO_1501

The SERVER_INFO_1501 structure contains information about a specified server.

 typedef struct _SERVER_INFO_1501 {
 DWORD sv1501_sessopens;
 } SERVER_INFO_1501,
 *PSERVER_INFO_1501,
 *LPSERVER_INFO_1501;

sv1501_sessopens: This member is defined in the sv599_sessopens member in
SERVER_INFO_599 (section 2.2.4.46).

2.2.4.54 SERVER_INFO_1502

The SERVER_INFO_1502 structure contains information about a specified server.

 typedef struct _SERVER_INFO_1502 {
 DWORD sv1502_sessvcs;

68 / 241

[MS-SRVS-Diff] - v20240423
Server Service Remote Protocol
Copyright © 2024 Microsoft Corporation
Release: April 23, 2024

 } SERVER_INFO_1502,
 *PSERVER_INFO_1502,
 *LPSERVER_INFO_1502;

sv1502_sessvcs: This member is defined in the sv599_sessvcs member in
SERVER_INFO_599 (section 2.2.4.46).

2.2.4.55 SERVER_INFO_1503

The SERVER_INFO_1503 structure contains information about a specified server.

 typedef struct _SERVER_INFO_1503 {
 DWORD sv1503_opensearch;
 } SERVER_INFO_1503,
 *PSERVER_INFO_1503,
 *LPSERVER_INFO_1503;

sv1503_opensearch: This member is defined in the sv599_opensearch member in
SERVER_INFO_599 (section 2.2.4.46).

2.2.4.56 SERVER_INFO_1506

The SERVER_INFO_1506 structure contains information about a specified server.

 typedef struct _SERVER_INFO_1506 {
 DWORD sv1506_maxworkitems;
 } SERVER_INFO_1506,
 *PSERVER_INFO_1506,
 *LPSERVER_INFO_1506;

sv1506_maxworkitems: This member is defined in the sv599_maxworkitems member in
SERVER_INFO_599 (section 2.2.4.46).

2.2.4.57 SERVER_INFO_1510

The SERVER_INFO_1510 structure contains information about a specified server.

 typedef struct _SERVER_INFO_1510 {
 DWORD sv1510_sessusers;
 } SERVER_INFO_1510,
 *PSERVER_INFO_1510,
 *LPSERVER_INFO_1510;

sv1510_sessusers: This member is defined in the sv599_sessusers member in

SERVER_INFO_599 (section 2.2.4.46).

2.2.4.58 SERVER_INFO_1511

The SERVER_INFO_1511 structure contains information about a specified server.

 typedef struct _SERVER_INFO_1511 {
 DWORD sv1511_sessconns;
 } SERVER_INFO_1511,
 *PSERVER_INFO_1511,

69 / 241

[MS-SRVS-Diff] - v20240423
Server Service Remote Protocol
Copyright © 2024 Microsoft Corporation
Release: April 23, 2024

 *LPSERVER_INFO_1511;

sv1511_sessconns: This member is defined in the sv599_sessconns member in
SERVER_INFO_599 (section 2.2.4.46).

2.2.4.59 SERVER_INFO_1512

The SERVER_INFO_1512 structure contains information about a specified server.

 typedef struct _SERVER_INFO_1512 {
 DWORD sv1512_maxnonpagedmemoryusage;
 } SERVER_INFO_1512,
 *PSERVER_INFO_1512,
 *LPSERVER_INFO_1512;

sv1512_maxnonpagedmemoryusage: This member is defined in the
sv599_maxnonpagedmemoryusage member in SERVER_INFO_599 (section 2.2.4.46).

2.2.4.60 SERVER_INFO_1513

The SERVER_INFO_1513 structure contains information about a specified server.

 typedef struct _SERVER_INFO_1513 {
 DWORD sv1513_maxpagedmemoryusage;
 } SERVER_INFO_1513,
 *PSERVER_INFO_1513,
 *LPSERVER_INFO_1513;

sv1513_maxpagedmemoryusage: This member is defined in the
sv599_maxpagedmemoryusage member in SERVER_INFO_599 (section 2.2.4.46).

2.2.4.61 SERVER_INFO_1514

The SERVER_INFO_1514 structure contains information about a specified server.

 typedef struct _SERVER_INFO_1514 {
 int sv1514_enablesoftcompat;
 } SERVER_INFO_1514,
 *PSERVER_INFO_1514,
 *LPSERVER_INFO_1514;

sv1514_enablesoftcompat: This member is defined in the sv599_enablesoftcompat member in
SERVER_INFO_599 (section 2.2.4.46).

2.2.4.62 SERVER_INFO_1515

The SERVER_INFO_1515 structure contains information about a specified server.

 typedef struct _SERVER_INFO_1515 {
 int sv1515_enableforcedlogoff;
 } SERVER_INFO_1515,
 *PSERVER_INFO_1515,
 *LPSERVER_INFO_1515;

70 / 241

[MS-SRVS-Diff] - v20240423
Server Service Remote Protocol
Copyright © 2024 Microsoft Corporation
Release: April 23, 2024

sv1515_enableforcedlogoff: This member is defined in the sv599_enableforcedlogoff member
in SERVER_INFO_599 (section 2.2.4.46).

2.2.4.63 SERVER_INFO_1516

The SERVER_INFO_1516 structure contains information about a specified server.

 typedef struct _SERVER_INFO_1516 {
 int sv1516_timesource;
 } SERVER_INFO_1516,
 *PSERVER_INFO_1516,
 *LPSERVER_INFO_1516;

sv1516_timesource: This member is defined in the sv599_timesource member in
SERVER_INFO_599 (section 2.2.4.46).

2.2.4.64 SERVER_INFO_1518

The SERVER_INFO_1518 structure contains information about a specified server.

 typedef struct _SERVER_INFO_1518 {
 int sv1518_lmannounce;
 } SERVER_INFO_1518,
 *PSERVER_INFO_1518,
 *LPSERVER_INFO_1518;

sv1518_lmannounce: This member is defined in the sv599_lmannounce member in
SERVER_INFO_599 (section 2.2.4.46).

2.2.4.65 SERVER_INFO_1523

The SERVER_INFO_1523 structure contains information about a specified server.

 typedef struct _SERVER_INFO_1523 {
 DWORD sv1523_maxkeepsearch;
 } SERVER_INFO_1523,
 *PSERVER_INFO_1523,
 *LPSERVER_INFO_1523;

sv1523_maxkeepsearch: This member is defined in the sv599_maxkeepsearch member in
SERVER_INFO_599 (section 2.2.4.46).

2.2.4.66 SERVER_INFO_1528

The SERVER_INFO_1528 structure contains information about a specified server.

 typedef struct _SERVER_INFO_1528 {
 DWORD sv1528_scavtimeout;
 } SERVER_INFO_1528,
 *PSERVER_INFO_1528,
 *LPSERVER_INFO_1528;

sv1528_scavtimeout: This member is defined in the sv599_scavtimeout member in
SERVER_INFO_599 (section 2.2.4.46).

71 / 241

[MS-SRVS-Diff] - v20240423
Server Service Remote Protocol
Copyright © 2024 Microsoft Corporation
Release: April 23, 2024

2.2.4.67 SERVER_INFO_1529

The SERVER_INFO_1529 structure contains information about a specified server.

 typedef struct _SERVER_INFO_1529 {
 DWORD sv1529_minrcvqueue;
 } SERVER_INFO_1529,
 *PSERVER_INFO_1529,
 *LPSERVER_INFO_1529;

sv1529_minrcvqueue: This member is defined in the sv599_minrcvqueue member in
SERVER_INFO_599 (section 2.2.4.46).

2.2.4.68 SERVER_INFO_1530

The SERVER_INFO_1530 structure contains information about a specified server.

 typedef struct _SERVER_INFO_1530 {
 DWORD sv1530_minfreeworkitems;
 } SERVER_INFO_1530,
 *PSERVER_INFO_1530,
 *LPSERVER_INFO_1530;

sv1530_minfreeworkitems: This member is defined in the sv599_minfreeworkitems member in
SERVER_INFO_599 (section 2.2.4.46).

2.2.4.69 SERVER_INFO_1533

The SERVER_INFO_1533 structure contains information about a specified server.

 typedef struct _SERVER_INFO_1533 {
 DWORD sv1533_maxmpxct;
 } SERVER_INFO_1533,
 *PSERVER_INFO_1533,
 *LPSERVER_INFO_1533;

sv1533_maxmpxct: This member is defined in the sv599_maxmpxct member in

SERVER_INFO_599 (section 2.2.4.46).

2.2.4.70 SERVER_INFO_1534

The SERVER_INFO_1534 structure contains information about a specified server.

 typedef struct _SERVER_INFO_1534 {
 DWORD sv1534_oplockbreakwait;
 } SERVER_INFO_1534,
 *PSERVER_INFO_1534,
 *LPSERVER_INFO_1534;

sv1534_oplockbreakwait: This member is defined in the sv599_oplockbreakwait member in
SERVER_INFO_599 (section 2.2.4.46).

72 / 241

[MS-SRVS-Diff] - v20240423
Server Service Remote Protocol
Copyright © 2024 Microsoft Corporation
Release: April 23, 2024

2.2.4.71 SERVER_INFO_1535

The SERVER_INFO_1535 structure contains information about a specified server.

 typedef struct _SERVER_INFO_1535 {
 DWORD sv1535_oplockbreakresponsewait;
 } SERVER_INFO_1535,
 *PSERVER_INFO_1535,
 *LPSERVER_INFO_1535;

sv1535_oplockbreakresponsewait: This member is defined in the
sv599_oplockbreakresponsewait member in SERVER_INFO_599 (section 2.2.4.46).

2.2.4.72 SERVER_INFO_1536

The SERVER_INFO_1536 structure contains information about a specified server.

 typedef struct _SERVER_INFO_1536 {
 int sv1536_enableoplocks;
 } SERVER_INFO_1536,
 *PSERVER_INFO_1536,
 *LPSERVER_INFO_1536;

sv1536_enableoplocks: This member is defined in the sv599_enableoplocks member in
SERVER_INFO_599 (section 2.2.4.46).

2.2.4.73 SERVER_INFO_1538

The SERVER_INFO_1538 structure contains information about a specified server.

 typedef struct _SERVER_INFO_1538 {
 int sv1538_enablefcbopens;
 } SERVER_INFO_1538,
 *PSERVER_INFO_1538,
 *LPSERVER_INFO_1538;

sv1538_enablefcbopens: This member is defined in the sv599_enablefcbopens member in

SERVER_INFO_599 (section 2.2.4.46).

2.2.4.74 SERVER_INFO_1539

The SERVER_INFO_1539 structure contains information about a specified server.

 typedef struct _SERVER_INFO_1539 {
 int sv1539_enableraw;
 } SERVER_INFO_1539,
 *PSERVER_INFO_1539,
 *LPSERVER_INFO_1539;

sv1539_enableraw: This member is defined in the sv599_enableraw member in
SERVER_INFO_599 (section 2.2.4.46).

73 / 241

[MS-SRVS-Diff] - v20240423
Server Service Remote Protocol
Copyright © 2024 Microsoft Corporation
Release: April 23, 2024

2.2.4.75 SERVER_INFO_1540

The SERVER_INFO_1540 structure contains information about a specified server.

 typedef struct _SERVER_INFO_1540 {
 int sv1540_enablesharednetdrives;
 } SERVER_INFO_1540,
 *PSERVER_INFO_1540,
 *LPSERVER_INFO_1540;

sv1540_enablesharednetdrives: This member is defined in the sv599_enablesharednetdrives
member in SERVER_INFO_599 (section 2.2.4.46).

2.2.4.76 SERVER_INFO_1541

The SERVER_INFO_1541 structure contains information about a specified server.

 typedef struct _SERVER_INFO_1541 {
 int sv1541_minfreeconnections;
 } SERVER_INFO_1541,
 *PSERVER_INFO_1541,
 *LPSERVER_INFO_1541;

sv1541_minfreeconnections: This member is defined in the sv599_minfreeconnections
member in SERVER_INFO_599 (section 2.2.4.46).

2.2.4.77 SERVER_INFO_1542

The SERVER_INFO_1542 structure contains information about a specified server.

 typedef struct _SERVER_INFO_1542 {
 int sv1542_maxfreeconnections;
 } SERVER_INFO_1542,
 *PSERVER_INFO_1542,
 *LPSERVER_INFO_1542;

sv1542_maxfreeconnections: This member is defined in the sv599_maxfreeconnections

member in SERVER_INFO_599 (section 2.2.4.46).

2.2.4.78 SERVER_INFO_1543

The SERVER_INFO_1543 structure contains information about a specified server.

 typedef struct _SERVER_INFO_1543 {
 DWORD sv1543_initsesstable;
 } SERVER_INFO_1543,
 *PSERVER_INFO_1543,
 *LPSERVER_INFO_1543;

sv1543_initsesstable: This member is defined in the sv599_initsesstable member in
SERVER_INFO_599 (section 2.2.4.46).

74 / 241

[MS-SRVS-Diff] - v20240423
Server Service Remote Protocol
Copyright © 2024 Microsoft Corporation
Release: April 23, 2024

2.2.4.79 SERVER_INFO_1544

The SERVER_INFO_1544 structure contains information about a specified server.

 typedef struct _SERVER_INFO_1544 {
 DWORD sv1544_initconntable;
 } SERVER_INFO_1544,
 *PSERVER_INFO_1544,
 *LPSERVER_INFO_1544;

sv1544_initconntable: This member is defined in the sv599_initconntable member in
SERVER_INFO_599 (section 2.2.4.46).

2.2.4.80 SERVER_INFO_1545

The SERVER_INFO_1545 structure contains information about a specified server.

 typedef struct _SERVER_INFO_1545 {
 DWORD sv1545_initfiletable;
 } SERVER_INFO_1545,
 *PSERVER_INFO_1545,
 *LPSERVER_INFO_1545;

sv1545_initfiletable: This member is defined in the sv599_initfiletable member in
SERVER_INFO_599 (section 2.2.4.46).

2.2.4.81 SERVER_INFO_1546

The SERVER_INFO_1546 structure contains information about a specified server.

 typedef struct _SERVER_INFO_1546 {
 DWORD sv1546_initsearchtable;
 } SERVER_INFO_1546,
 *PSERVER_INFO_1546,
 *LPSERVER_INFO_1546;

sv1546_initsearchtable: This member is defined in the sv599_initsearchtable member in

SERVER_INFO_599 (section 2.2.4.46).

2.2.4.82 SERVER_INFO_1547

The SERVER_INFO_1547 structure contains information about a specified server.

 typedef struct _SERVER_INFO_1547 {
 DWORD sv1547_alertschedule;
 } SERVER_INFO_1547,
 *PSERVER_INFO_1547,
 *LPSERVER_INFO_1547;

sv1547_alertschedule: This member is defined in the sv599_alertschedule member in
SERVER_INFO_599 (section 2.2.4.46).

75 / 241

[MS-SRVS-Diff] - v20240423
Server Service Remote Protocol
Copyright © 2024 Microsoft Corporation
Release: April 23, 2024

2.2.4.83 SERVER_INFO_1548

The SERVER_INFO_1548 structure contains information about a specified server.

 typedef struct _SERVER_INFO_1548 {
 DWORD sv1548_errorthreshold;
 } SERVER_INFO_1548,
 *PSERVER_INFO_1548,
 *LPSERVER_INFO_1548;

sv1548_errorthreshold: This member is defined in the sv599_errorthreshold member in
SERVER_INFO_599 (section 2.2.4.46).

2.2.4.84 SERVER_INFO_1549

The SERVER_INFO_1549 structure contains information about a specified server.

 typedef struct _SERVER_INFO_1549 {
 DWORD sv1549_networkerrorthreshold;
 } SERVER_INFO_1549,
 *PSERVER_INFO_1549,
 *LPSERVER_INFO_1549;

sv1549_networkerrorthreshold: This member is defined in the sv599_networkerrorthreshold
member in SERVER_INFO_599 (section 2.2.4.46).

2.2.4.85 SERVER_INFO_1550

The SERVER_INFO_1550 structure contains information about a specified server.

 typedef struct _SERVER_INFO_1550 {
 DWORD sv1550_diskspacethreshold;
 } SERVER_INFO_1550,
 *PSERVER_INFO_1550,
 *LPSERVER_INFO_1550;

sv1550_diskspacethreshold: This member is defined in the sv599_diskspacethreshold member

in SERVER_INFO_599 (section 2.2.4.46).

2.2.4.86 SERVER_INFO_1552

The SERVER_INFO_1552 structure contains information about a specified server.

 typedef struct _SERVER_INFO_1552 {
 DWORD sv1552_maxlinkdelay;
 } SERVER_INFO_1552,
 *PSERVER_INFO_1552,
 *LPSERVER_INFO_1552;

sv1552_maxlinkdelay: This member is defined in the sv599_maxlinkdelay member in
SERVER_INFO_599 (section 2.2.4.46).

76 / 241

[MS-SRVS-Diff] - v20240423
Server Service Remote Protocol
Copyright © 2024 Microsoft Corporation
Release: April 23, 2024

2.2.4.87 SERVER_INFO_1553

The SERVER_INFO_1553 structure contains information about a specified server.

 typedef struct _SERVER_INFO_1553 {
 DWORD sv1553_minlinkthroughput;
 } SERVER_INFO_1553,
 *PSERVER_INFO_1553,
 *LPSERVER_INFO_1553;

sv1553_minlinkthroughput: This member is defined in the sv599_minlinkthroughput member
in SERVER_INFO_599 (section 2.2.4.46).

2.2.4.88 SERVER_INFO_1554

The SERVER_INFO_1554 structure contains information about a specified server.

 typedef struct _SERVER_INFO_1554 {
 DWORD sv1554_linkinfovalidtime;
 } SERVER_INFO_1554,
 *PSERVER_INFO_1554,
 *LPSERVER_INFO_1554;

sv1554_linkinfovalidtime: This member is defined in the sv599_linkinfovalidtime member in
SERVER_INFO_599 (section 2.2.4.46).

2.2.4.89 SERVER_INFO_1555

The SERVER_INFO_1555 structure contains information about a specified server.

 typedef struct _SERVER_INFO_1555 {
 DWORD sv1555_scavqosinfoupdatetime;
 } SERVER_INFO_1555,
 *PSERVER_INFO_1555,
 *LPSERVER_INFO_1555;

sv1555_scavqosinfoupdatetime: This member is defined in the sv599_scavqosinfoupdatetime

member in SERVER_INFO_599 (section 2.2.4.46).

2.2.4.90 SERVER_INFO_1556

The SERVER_INFO_1556 structure contains information about a specified server.

 typedef struct _SERVER_INFO_1556 {
 DWORD sv1556_maxworkitemidletime;
 } SERVER_INFO_1556,
 *PSERVER_INFO_1556,
 *LPSERVER_INFO_1556;

sv1556_maxworkitemidletime: This member is defined in the sv599_maxworkitemidletime
member in SERVER_INFO_599 (section 2.2.4.46).

77 / 241

[MS-SRVS-Diff] - v20240423
Server Service Remote Protocol
Copyright © 2024 Microsoft Corporation
Release: April 23, 2024

2.2.4.91 DISK_INFO

The DISK_INFO structure contains information (the drive letter) about the disk device on the server.

 typedef struct _DISK_INFO {
 [string] WCHAR Disk[3];
 } DISK_INFO,
 *PDISK_INFO,
 *LPDISK_INFO;

Disk: The drive identifier of the disk device. This MUST consist of two Unicode UTF-16 characters
followed by the null-terminating character (for example, "A:\0"). The first character in this string
MUST be a drive letter in the range "A" through "Z", inclusive. The second character MUST be the
":" character.

2.2.4.92 DISK_ENUM_CONTAINER

The DISK_ENUM_CONTAINER structure contains a value that indicates the number of entries that the
NetrServerDiskEnum method returns and a pointer to the buffer that contains the entries.

 typedef struct _DISK_ENUM_CONTAINER {
 DWORD EntriesRead;
 [size_is(EntriesRead), length_is(EntriesRead)]
 LPDISK_INFO Buffer;
 } DISK_ENUM_CONTAINER;

EntriesRead: The number of entries that the method returns.

Buffer: A pointer to the DISK_INFO entries that the method returns.

2.2.4.93 SERVER_TRANSPORT_INFO_0

The SERVER_TRANSPORT_INFO_0 structure contains information about the specified transport
protocol, including the name, address, and location on the network. The definitions of fields in this
structure are specified in section 2.2.4.96. Fields having names of the form svti0_xxx MUST be

defined as in the corresponding SERVER_TRANSPORT_INFO_3 fields with names of the form
svti3_xxx.

 typedef struct _SERVER_TRANSPORT_INFO_0 {
 DWORD svti0_numberofvcs;
 [string] wchar_t* svti0_transportname;
 [size_is(svti0_transportaddresslength)]
 unsigned char* svti0_transportaddress;
 DWORD svti0_transportaddresslength;
 [string] wchar_t* svti0_networkaddress;
 } SERVER_TRANSPORT_INFO_0,
 *PSERVER_TRANSPORT_INFO_0,
 *LPSERVER_TRANSPORT_INFO_0;

2.2.4.94 SERVER_TRANSPORT_INFO_1

The SERVER_TRANSPORT_INFO_1 structure contains information about the specified transport
protocol, including the name, address, and location on the network. The definitions of fields in this
structure are specified in section 2.2.4.96. Fields having names of the form svti1_xxx MUST be
defined as in the corresponding SERVER_TRANSPORT_INFO_3 fields with names of the form
svti3_xxx.

78 / 241

[MS-SRVS-Diff] - v20240423
Server Service Remote Protocol
Copyright © 2024 Microsoft Corporation
Release: April 23, 2024

 typedef struct _SERVER_TRANSPORT_INFO_1 {
 DWORD svti1_numberofvcs;
 [string] wchar_t* svti1_transportname;
 [size_is(svti1_transportaddresslength)]
 unsigned char* svti1_transportaddress;
 DWORD svti1_transportaddresslength;
 [string] wchar_t* svti1_networkaddress;
 [string] wchar_t* svti1_domain;
 } SERVER_TRANSPORT_INFO_1,
 *PSERVER_TRANSPORT_INFO_1,
 *LPSERVER_TRANSPORT_INFO_1;

2.2.4.95 SERVER_TRANSPORT_INFO_2

The SERVER_TRANSPORT_INFO_2 structure contains information about the specified transport
protocol, including the name and address. The definitions of fields in this structure are specified in

section 2.2.4.96. Fields having names of the form svti2_xxx MUST be defined as in the corresponding

SERVER_TRANSPORT_INFO_3 fields with names of the form svti3_xxx.

 typedef struct _SERVER_TRANSPORT_INFO_2 {
 DWORD svti2_numberofvcs;
 [string] wchar_t* svti2_transportname;
 [size_is(svti2_transportaddresslength)]
 unsigned char* svti2_transportaddress;
 DWORD svti2_transportaddresslength;
 [string] wchar_t* svti2_networkaddress;
 [string] wchar_t* svti2_domain;
 unsigned long svti2_flags;
 } SERVER_TRANSPORT_INFO_2,
 *PSERVER_TRANSPORT_INFO_2,
 *LPSERVER_TRANSPORT_INFO_2;

2.2.4.96 SERVER_TRANSPORT_INFO_3

The SERVER_TRANSPORT_INFO_3 structure contains information about the specified transport
protocol, including the name, address, and password (credentials).

 typedef struct _SERVER_TRANSPORT_INFO_3 {
 DWORD svti3_numberofvcs;
 [string] wchar_t* svti3_transportname;
 [size_is(svti3_transportaddresslength)]
 unsigned char* svti3_transportaddress;
 DWORD svti3_transportaddresslength;
 [string] wchar_t* svti3_networkaddress;
 [string] wchar_t* svti3_domain;
 unsigned long svti3_flags;
 DWORD svti3_passwordlength;
 unsigned char svti3_password[256];
 } SERVER_TRANSPORT_INFO_3,
 *PSERVER_TRANSPORT_INFO_3,
 *LPSERVER_TRANSPORT_INFO_3;

svti3_numberofvcs: Specifies a DWORD value that indicates the number of clients that are

connected to the server and that are using the transport protocol that is specified by the
svti3_transportname member.

svti3_transportname: A pointer to a null-terminated Unicode string that contains the
implementation-specific name of a device that implements support for the transport. This field is
provided by the transport driver and can depend on the physical network adapter over which the
transport runs.<28>

79 / 241

[MS-SRVS-Diff] - v20240423
Server Service Remote Protocol
Copyright © 2024 Microsoft Corporation
Release: April 23, 2024

svti3_transportaddress: A pointer to a variable that contains the transport address that the server
is using on the transport device that is specified by the svti3_transportname member. <29>

This member is usually the NetBIOS name that the server is using. In these instances, the name
MUST be 16 characters long, and the last character MUST be a blank character (0x20).

svti3_transportaddresslength: Specifies a DWORD value that contains the length, in bytes, of the
svti3_transportaddress member.<30>

svti3_networkaddress: A pointer to a null-terminated character string that contains the address
that the network adapter is using. The string is transport-specific. The server MUST ignore this
field on receipt.<31>

svti3_domain: A pointer to a null-terminated character string that contains the name of the domain
to which the server announces its presence.

svti3_flags: This member MUST be a combination of zero or more of the following values.

Value Meaning

SVTI2_REMAP_PIPE_NAMES

0x00000002

If this value is set for an endpoint, client requests that arrive over the
transport to open a named pipe MUST be rerouted (remapped) to the local
pipe name $$\ServerName\PipeName.

SVTI2_SCOPED_NAME

0x00000004

If this value is set for an endpoint, all shares attached to
svti3_transportname are scoped shares.

svti3_passwordlength: Specifies a DWORD value that indicates the number of valid bytes in the
svti3_password member.

svti3_password: Specifies the credentials to use for the new transport address. If the

svti3_passwordlength member is zero, the credentials for the server MUST be used.

2.2.4.97 SERVER_XPORT_INFO_0_CONTAINER

The SERVER_XPORT_INFO_0_CONTAINER structure contains a value that indicates the number of
entries that the NetrServerTransportEnum method returns and a pointer to the buffer that contains

the entries.

 typedef struct _SERVER_XPORT_INFO_0_CONTAINER {
 DWORD EntriesRead;
 [size_is(EntriesRead)] LPSERVER_TRANSPORT_INFO_0 Buffer;
 } SERVER_XPORT_INFO_0_CONTAINER,
 *PSERVER_XPORT_INFO_0_CONTAINER;

EntriesRead: The number of entries that the method returns.

Buffer: A pointer to the SERVER_TRANSPORT_INFO_0 entries that the method returns.

2.2.4.98 SERVER_XPORT_INFO_1_CONTAINER

The SERVER_XPORT_INFO_1_CONTAINER structure contains a value that indicates the number of
entries that the NetrServerTransportEnum method returns and a pointer to the buffer that contains

the entries.

 typedef struct _SERVER_XPORT_INFO_1_CONTAINER {
 DWORD EntriesRead;
 [size_is(EntriesRead)] LPSERVER_TRANSPORT_INFO_1 Buffer;

80 / 241

[MS-SRVS-Diff] - v20240423
Server Service Remote Protocol
Copyright © 2024 Microsoft Corporation
Release: April 23, 2024

 } SERVER_XPORT_INFO_1_CONTAINER,
 *PSERVER_XPORT_INFO_1_CONTAINER;

EntriesRead: The number of entries that the method returns.

Buffer: A pointer to the SERVER_TRANSPORT_INFO_1 entries that the method returns.

2.2.4.99 SERVER_XPORT_INFO_2_CONTAINER

The SERVER_XPORT_INFO_2_CONTAINER structure contains a value that indicates the number of
entries that the NetrServerTransportEnum method returns and a pointer to the buffer that contains
the entries.

 typedef struct _SERVER_XPORT_INFO_2_CONTAINER {
 DWORD EntriesRead;
 [size_is(EntriesRead)] LPSERVER_TRANSPORT_INFO_2 Buffer;
 } SERVER_XPORT_INFO_2_CONTAINER,
 *PSERVER_XPORT_INFO_2_CONTAINER;

EntriesRead: The number of entries that the method returns.

Buffer: A pointer to the SERVER_TRANSPORT_INFO_2 entries that the method returns.

2.2.4.100 SERVER_XPORT_INFO_3_CONTAINER

The SERVER_XPORT_INFO_3_CONTAINER structure contains a value that indicates the number of
entries that the NetrServerTransportEnum method returns and a pointer to the buffer that contains
the entries.

 typedef struct _SERVER_XPORT_INFO_3_CONTAINER {
 DWORD EntriesRead;
 [size_is(EntriesRead)] LPSERVER_TRANSPORT_INFO_3 Buffer;
 } SERVER_XPORT_INFO_3_CONTAINER,
 *PSERVER_XPORT_INFO_3_CONTAINER;

EntriesRead: The number of entries that the method returns.

Buffer: A pointer to the SERVER_TRANSPORT_INFO_3 entries that the method returns.

2.2.4.101 SERVER_XPORT_ENUM_STRUCT

The SERVER_XPORT_ENUM_STRUCT structure specifies the information level that the client requests
in the NetrServerTransportEnum method and encapsulates the SERVER_XPORT_ENUM_UNION union
that receives the entries that are enumerated by the server.

 typedef struct _SERVER_XPORT_ENUM_STRUCT {
 DWORD Level;
 [switch_is(Level)] SERVER_XPORT_ENUM_UNION XportInfo;
 } SERVER_XPORT_ENUM_STRUCT,
 *PSERVER_XPORT_ENUM_STRUCT,
 *LPSERVER_XPORT_ENUM_STRUCT;

Level: Specifies the information level of the data. This parameter MUST have one of the following

values.

81 / 241

[MS-SRVS-Diff] - v20240423
Server Service Remote Protocol
Copyright © 2024 Microsoft Corporation
Release: April 23, 2024

Value Meaning

0 SERVER_XPORT_INFO_0_CONTAINER

1 SERVER_XPORT_INFO_1_CONTAINER

2 SERVER_XPORT_INFO_2_CONTAINER

3 SERVER_XPORT_INFO_3_CONTAINER

XportInfo: Contains information about file server transports in the format that is determined by the
Level parameter, as shown in the preceding table. This member receives the enumerated
information.

2.2.4.102 SERVER_ALIAS_INFO_0

The SERVER_ALIAS_INFO_0 structure contains the information about alias, including alias name and

server target name.

 typedef struct _SERVER_ALIAS_INFO_0 {
 [string] LMSTR srvai0_alias;
 [string] LMSTR srvai0_target;
 BOOLEAN srvai0_default;
 ULONG srvai0_reserved;
 } SERVER_ALIAS_INFO_0,
 *PSERVER_ALIAS_INFO_0,
 *LPSERVER_ALIAS_INFO_0;

srvai0_alias: An empty string or a pointer to a null-terminated Unicode UTF-16 string that specifies

the name of a specified alias. It MUST be an empty string if srvai0_default is nonzero and MUST
be a non-empty string if srvai0_default is 0.

srvai0_target: A pointer to a null-terminated Unicode UTF-16 string. It specifies the server name

that alias is attached to. The server MUST ignore this member when processing the
NetrServerAliasDel method.

srvai0_default: A BOOLEAN value. If it is set to TRUE, srvai0_target MUST replace the default

server name that is used to locate a scoped share in
NetrShareAdd/NetrShareDel/NetrShareSetInfo. If a scoped share cannot be found through a tuple
of <share name, server name> due to a server name mismatch, the default server name is used
in <share name, default server name> to continue scoped share searching. The server MUST
ignore srvai0_default when processing the NetrServerAliasDel method.

srvai0_reserved: This field is not used. The server MUST ignore the value of this parameter on
receipt.

2.2.4.103 SERVER_ALIAS_INFO_0_CONTAINER

The SERVER_ALIAS_INFO_0_CONTAINER structure contains a value that indicates the number of
entries that the NetrServerAliasEnum method returns and a pointer to the buffer that contains the
entries.

 typedef struct _SERVER_ALIAS_INFO_0_CONTAINER {
 DWORD EntriesRead;
 [size_is(EntriesRead)] LPSERVER_ALIAS_INFO_0 Buffer;
 } SERVER_ALIAS_INFO_0_CONTAINER;

82 / 241

[MS-SRVS-Diff] - v20240423
Server Service Remote Protocol
Copyright © 2024 Microsoft Corporation
Release: April 23, 2024

EntriesRead: The number of entries that the method returns.

Buffer: A pointer to the SERVER_ALIAS_INFO_0 entries that the method returns.

2.2.4.104 SERVER_ALIAS_ENUM_STRUCT

The SERVER_ALIAS_ENUM_STRUCT structure specifies the information level that the client requests in
the NetrServerAliasEnum method and encapsulates the SERVER_ALIAS_ENUM_UNION union that
receives the entries that are enumerated by the server.

 typedef struct _SERVER_ALIAS_ENUM_STRUCT {
 DWORD Level;
 [switch_is(Level)] union _SERVER_ALIAS_ENUM_UNION {
 [case(0)]
 SERVER_ALIAS_INFO_0_CONTAINER* Level0;
 } ServerAliasInfo;
 } SERVER_ALIAS_ENUM_STRUCT,
 *PSERVER_ALIAS_ENUM_STRUCT,
 *LPSERVER_ALIAS_ENUM_STRUCT;

Level: Specifies the information level of the data. This parameter MUST have one of the following
values.

Value Meaning

0 SERVER_ALIAS_INFO_0_CONTAINER

ServerAliasInfo: Contains information about server aliases in the format that is determined by the
Level parameter, as shown in the preceding table. This member receives the enumerated

information.

2.2.4.105 TIME_OF_DAY_INFO

The TIME_OF_DAY_INFO structure contains information about the time of day from a remote server.

 typedef struct _TIME_OF_DAY_INFO {
 DWORD tod_elapsedt;
 DWORD tod_msecs;
 DWORD tod_hours;
 DWORD tod_mins;
 DWORD tod_secs;
 DWORD tod_hunds;
 long tod_timezone;
 DWORD tod_tinterval;
 DWORD tod_day;
 DWORD tod_month;
 DWORD tod_year;
 DWORD tod_weekday;
 } TIME_OF_DAY_INFO,
 *PTIME_OF_DAY_INFO,
 *LPTIME_OF_DAY_INFO;

tod_elapsedt: Specifies a DWORD value that contains the number of seconds since 00:00:00,
January 1, 1970, GMT.

tod_msecs: Specifies a DWORD value that contains the number of milliseconds from an arbitrary
starting point (system reset).

83 / 241

[MS-SRVS-Diff] - v20240423
Server Service Remote Protocol
Copyright © 2024 Microsoft Corporation
Release: April 23, 2024

tod_hours: Specifies a DWORD value that contains the current hour. This value MUST be in the
range 0 through 23, inclusive.

tod_mins: Specifies a DWORD value that contains the current minute. This value MUST be in the
range 0 through 59, inclusive.

tod_secs: Specifies a DWORD value that contains the current second. This value MUST be in the
range 0 through 59, inclusive.

tod_hunds: Specifies a DWORD value that contains the current hundredth second (0.01 second).
This value MUST be in the range 0 through 99, inclusive.

tod_timezone: Specifies the time zone of the server. This value MUST be calculated, in minutes,
from Greenwich Mean Time (GMT). For time zones that are west of Greenwich, the value MUST be
positive; for time zones that are east of Greenwich, the value MUST be negative. A value of –1

MUST indicate that the time zone is undefined.

tod_tinterval: Specifies a DWORD value that contains the time interval for each tick of the clock.

Each integral integer MUST represent one ten-thousandth second (0.0001 second).

tod_day: Specifies a DWORD value that contains the day of the month. This value MUST be in the
range 1 through 31, inclusive.

tod_month: Specifies a DWORD value that contains the month of the year. This value MUST be in

the range 1 through 12, inclusive.

tod_year: Specifies a DWORD value that contains the year.

tod_weekday: Specifies a DWORD value that contains the day of the week. This value MUST be in
the range 0 through 6, inclusive, where 0 is Sunday, 1 is Monday, and so on.

2.2.4.106 ADT_SECURITY_DESCRIPTOR

The ADT_SECURITY_DESCRIPTOR structure contains a security descriptor in self-relative format and a

value that includes the length of the buffer that contains the descriptor. For more information, see
[MS-DTYP] section 2.4.6.

 typedef struct _ADT_SECURITY_DESCRIPTOR {
 DWORD Length;
 [size_is(Length)] unsigned char* Buffer;
 } ADT_SECURITY_DESCRIPTOR,
 *PADT_SECURITY_DESCRIPTOR;

Length: The length of the Buffer member.

Buffer: A buffer for the security descriptor in self-relative form. For more information, see [MS-DTYP]
section 2.4.6.

2.2.4.107 NET_DFS_ENTRY_ID

The NET_DFS_ENTRY_ID structure specifies a DFS local partition.

 typedef struct _NET_DFS_ENTRY_ID {
 GUID Uid;
 [string] WCHAR* Prefix;
 } NET_DFS_ENTRY_ID,
 *LPNET_DFS_ENTRY_ID;

84 / 241

[MS-SRVS-Diff] - v20240423
Server Service Remote Protocol
Copyright © 2024 Microsoft Corporation
Release: April 23, 2024

Uid: Specifies the unique identifier for the partition.

Prefix: A pointer to a null-terminated Unicode UTF-16 string that contains the path prefix for the
partition.

2.2.4.108 NET_DFS_ENTRY_ID_CONTAINER

The NET_DFS_ENTRY_ID_CONTAINER structure contains a pointer to a buffer that contains
NET_DFS_ENTRY_ID entries and a value that indicates the count of entries in the buffer.

 typedef struct _NET_DFS_ENTRY_ID_CONTAINER {
 unsigned long Count;
 [size_is(Count)] LPNET_DFS_ENTRY_ID Buffer;
 } NET_DFS_ENTRY_ID_CONTAINER,
 *LPNET_DFS_ENTRY_ID_CONTAINER;

Count: The count of buffer array entries returned by the method.

Buffer: An array of NET_DFS_ENTRY_ID entries returned by the method.

2.2.4.109 DFS_SITENAME_INFO

The DFS_SITENAME_INFO structure specifies a site name.

 typedef struct _DFS_SITENAME_INFO {
 unsigned long SiteFlags;
 [string, unique] WCHAR* SiteName;
 } DFS_SITENAME_INFO,
 *PDFS_SITENAME_INFO,
 *LPDFS_SITENAME_INFO;

SiteFlags: This member MUST be a combination of zero or more of the following values.

Value Meaning

DFS_SITE_PRIMARY

 0x00000001

The site name was returned by the DsrGetSiteName method, as specified in [MS-
NRPC] section 3.5.4.3.6.

SiteName: A pointer to a null-terminated Unicode UTF-16 string that specifies a unique site name.

2.2.4.110 DFS_SITELIST_INFO

The DFS_SITELIST_INFO structure contains a value that indicates the count of entries and an array of
DFS_SITELIST_INFO entries that the NetrDfsManagerReportSiteInfo method returns.

 typedef struct _DFS_SITELIST_INFO {
 unsigned long cSites;
 [size_is(cSites)] DFS_SITENAME_INFO Site[];
 } DFS_SITELIST_INFO,
 *PDFS_SITELIST_INFO,
 *LPDFS_SITELIST_INFO;

cSites: A count of site array entries returned by the method.

Site: An array of DFS_SITENAME_INFO entries that the method returns.

85 / 241

[MS-SRVS-Diff] - v20240423
Server Service Remote Protocol
Copyright © 2024 Microsoft Corporation
Release: April 23, 2024

3 Protocol Details

 The methods in this RPC interface all return 0x00000000 to indicate success and a nonzero,
implementation-specific, error code to indicate failure. Unless otherwise specified, a server-side
implementation of this protocol can choose any nonzero Win32 error value to signify an error
condition, as specified in section 1.8. The client side of the Server Service Remote Protocol MUST NOT
interpret returned error codes. The client side of the Server Service Remote Protocol MUST simply
return error codes to the invoking application without taking any protocol action.

Note that the terms "client side" and "server side" refer to the initiating and receiving ends of the

protocol respectively rather than to client or server versions of an operating system. These methods
MUST all behave the same, regardless whether the server side of the protocol is running in a client or
server version of an operating system.

3.1 Server Details

The server responds to messages it receives from the client.

3.1.1 Abstract Data Model

This section describes a conceptual model of possible data organization that an implementation

maintains to participate in this protocol. The organization is provided to facilitate the explanation of
how the protocol behaves. This specification does not mandate that implementations adhere to this
model as long as their external behaviors are consistent with that described in this specification.

This data model requires elements to be synchronized with the Common Internet File System (CIFS)
Protocol, the Server Message Block (SMB) Protocol, or the Server Message Block (SMB) Version 2
Protocol servers. This data model also requires that these protocols maintain these elements
coherently with this data model at all times. An implementation that uses this data model has to

observe atomicity requirements in order that all these protocols always share and maintain an
identical view of the common data.

A server implementing this RPC interface contains several logical elements: an SMB file server, one or
more network protocol transports, and a list of shared resources that the server is making available.
There could also be virtual shares and services that provide SMB file server referrals for these virtual
shares.<32>

One or more network protocol transports SHOULD be configured by a server implementing this RPC
interface, to be associated with an SMB file server at its initialization.<33>A transport is a protocol
that logically lies below the file server and provides reliable delivery of file server messages. If a
transport is associated with a file server, it is said to be bound to or enabled for the server. The act of
associating a transport with the file server is referred to as binding. The binding between a file server
and a transport is represented by a "transport handle".

Transports can be dynamically bound (or enabled) and unbound (or disabled) from a file server. The

server opens a transport handle when a transport is bound and closes it upon unbind. A transport
MUST be bound to the file server for the server to receive messages through the transport. A
transport has an implementation-specific name; transport names are unique on a per-computer

basis.<34>

When a transport is bound to a file server, the server MUST perform the transport binding, as
specified in [MS-SMB] section 2.1, for the requested transport.

The file server can make available multiple sets of resources (that is, files, printers, pipes, disks, and

mailslots) for access by Common Internet File System (CIFS) clients over the network. Each set is
referred to as a share and is identified by a unique network name. Shares can be made dynamically
available, and the act of making a share available is referred to as adding a share. Shares can also be
made unavailable dynamically, which is referred to as removing a share. The server MUST keep a list

86 / 241

[MS-SRVS-Diff] - v20240423
Server Service Remote Protocol
Copyright © 2024 Microsoft Corporation
Release: April 23, 2024

of all active shares that are identified by a share identifier. If the share is marked as a sticky share,
the same information MUST be stored in persistent storage. The server MUST support two-phase

deletion of shares.<35>

The SMB server assigns all objects (active sessions, connections, opened resources, shares, and

transports) unique identifiers. Identifiers are integer values that allow the server to uniquely identify
the corresponding object. The server generates these identifiers when the corresponding object is
created. The client obtains these identifiers in response to one of its requests (for example, an SMB
client gets the session identifier in response to a Session Setup request) and then uses these
identifiers in future requests to refer to the corresponding object. To support enumerating these
objects, the server MUST store each of these objects in separate lists.

The server MUST keep track of several implementation-dependent statistics (as described by the

STAT_SERVER_0 (section 2.2.4.39) structure) about the server performance that clients can query by
calling the NetrServerStatisticsGet method.

If the server supports DFS, as specified in [MS-DFSC], it MUST provide a software component called a
DFS driver that processes all messages pertaining to DFS. These messages are specified in section

NetrDfsGetVersion (Opnum 43) (section 3.1.4.35) through section NetrDfsManagerReportSiteInfo
(Opnum 52) (section 3.1.4.43). The server MUST keep a list of the DFS shares and links and the

associated information about the shares and links.

3.1.1.1 Global

The server MUST implement the following:

AliasList: A list of aliases in the server. Each element in the list is an Alias as defined in section

3.1.1.3.

CifsInitialized: A Boolean that indicates whether the CIFS or SMB server, as specified in [MS-CIFS],
has completed its initialization. For more details, see section 3.1.6.14.

NullSessionPipeList: A list of named pipe names, without the "\pipe\" prefix, that an anonymous

user is allowed to open. This list is queried by the Server Message Block (SMB) and SMB Version 2
protocols.

DefaultServerName: A null-terminated Unicode UTF-16 string that is used as a default server name
to locate a scoped share.

FileList: A list of Opens. Each element in the list is an Open as defined in section 3.1.1.6. Entries are
inserted into the list as specified in section 3.1.6.4 and removed as specified in section 3.1.6.5.

GlobalServerAnnounce: A DWORD bitmask to indicate the services that are available on the server.
It MUST be a combination of one or more of the values that are listed in section 2.2.2.7.

PrinterShareCount: A numeric value that indicates the number of printer shares on the server.

ShareList: A list of shares. Each element in the list is a Share as defined in section 3.1.1.7. Entries
are inserted into the list as specified in section 3.1.4.7 and removed as specified in section

3.1.4.12 and section 3.1.4.15.

SessionList: A list of sessions. Each element in the list is a Session as defined in section 3.1.1.8.
Entries are inserted into the list as specified in section 3.1.6.2 and removed as specified in section
3.1.6.3.

Smb2Initialized: A Boolean that indicates whether the SMB2 server, as specified in [MS-SMB2], has

completed its initialization. For more details, see section 3.1.6.14.

StatisticsStartTime: A DWORD value indicating the time, in seconds, when the server statistics
collection started.

87 / 241

[MS-SRVS-Diff] - v20240423
Server Service Remote Protocol
Copyright © 2024 Microsoft Corporation
Release: April 23, 2024

TransportList: A list of transports. Each element in the list is a Transport ADM element as defined in
section 3.1.1.2.

TreeConnectList: A list of tree connects. Each element in the list is a TreeConnect element defined
in section 3.1.1.5. Entries are inserted into the list as specified in section 3.1.6.6 and removed as

specified in section 3.1.6.7.

3.1.1.2 Per Transport

This Transport element provides an abstraction of an underlying network transport protocol on which

it listens for connections from clients. The properties defined by this element MUST be persisted by the
server.

The Transport element contains the following properties:

Transport.Name: An implementation-specific name used to refer to the transport.

Transport.ServerName: A null-terminated Unicode UTF-16 string that is used to identify the server.

It could be the server NetBIOS host name, an IP address, Domain Name System (DNS), or a
caller-supplied svti*_transportaddress provided by NetrServerTransportAdd or

NetrServerTransportAddEx.

The following are the acceptable forms of Transport.ServerName:

 NetBIOS name:

 "EXAMPLE", see [RFC1001] and [RFC1002]

 IP address:

 XXX.XXX.XXX.XXX

 DNS:

 rs.internic.net, see [RFC1034] and [RFC1035]

Transport.ConnectionCount: The number of connections established using this transport.

Transport.Flags: A DWORD bitmask value containing zero or more of the values specified in section
2.2.4.96.

Transport.Domain: The name of the domain to which the server announces its presence.

3.1.1.3 Per Alias

The server provides an alias for the existing server name through which the shared resource can be
accessed.

Alias.target: The existing server name to which alias is attached. Alias.target must be a valid name
for the server that matches a Transport.ServerName in the TransportList.

Alias.alias: An alias name for Alias.target through which the shared resource can be accessed.
Alias.alias MUST be unique in the AliasList.

Alias.default: A Boolean value. If it is set to TRUE, DefaultServerName MUST be set to
Alias.target if DefaultServerName is not NULL.

88 / 241

[MS-SRVS-Diff] - v20240423
Server Service Remote Protocol
Copyright © 2024 Microsoft Corporation
Release: April 23, 2024

3.1.1.4 Server Properties Object (ServerConfiguration)

The ServerConfiguration object maintains the server configuration information for CIFS and SMB
Version 1.0 file servers. The properties defined by this object MUST be persisted by the server.

ServerConfiguration.ServerInfo103: All elements in this structure are as defined in section
2.2.4.43.

ServerConfiguration.ServerInfo599: All elements in this structure are as defined in section
2.2.4.46.

3.1.1.5 Per TreeConnect

GlobalTreeConnectId: A local, unique 32-bit identifier generated to identify a TreeConnect.

3.1.1.6 Per Open

GlobalFileId: A local, unique 32-bit identifier generated to identify an Open.

3.1.1.7 Per Share

The Share element maintains the following information for the shared resource (directory, named
pipe, or printer):

Share.ShareName: The name for the shared resource on this server.

Share.ServerName: The NetBIOS, fully qualified domain name (FQDN), or textual IPv4 or IPv6
address that the share is associated with. This value MUST be less than 256 characters in length.
If the share is associated with the default computer name of the machine, the ServerName
parameter MUST be set to "*". For more information, see sections 1.3, 3.1.6.8, and 4.3.

Share.IsPersistent: A BOOLEAN value indicating whether the share is a sticky share (persistent).

Share.IsMarkedForDeletion: A BOOLEAN value indicating whether the share has been marked for
deletion via the NetrShareDelStart (section 3.1.4.14) RPC method.

Share.IsPrinterShare: A BOOLEAN value indicating whether the share is a printer share.

Share.LocalPath: A path that describes the local resource that is being shared. This MUST be a store
that either provides named pipe functionality, or that offers storage and/or retrieval of files. In the
case of the latter, it can be a device that accepts a file and then processes it in some format, such
as a printer.

Share.FileSecurity: An authorization policy, such as an access control list, that describes what
actions users that connect to this share are allowed to perform on the shared resource.<36>

Share.CscFlags: The configured offline caching policy for this share. This value MUST be manual
caching, automatic caching of files, automatic caching of files and programs, or no offline caching.

For more information, see [MS-SMB2] section 2.2.10. For more information about offline caching,
see [OFFLINE].

Share.IsDfs: A BOOLEAN that, if set, indicates that this share is configured for DFS. For more

information, see [MSDFS].

Share.DoAccessBasedDirectoryEnumeration: A BOOLEAN that, if set, indicates that the results of
directory enumerations on this share MUST be trimmed to include only the files and directories
that the calling user has the right to access.

89 / 241

[MS-SRVS-Diff] - v20240423
Server Service Remote Protocol
Copyright © 2024 Microsoft Corporation
Release: April 23, 2024

Share.AllowNamespaceCaching: A BOOLEAN that, if set, indicates that clients are allowed to cache
directory enumeration results for better performance.

Share.ForceSharedDelete: A BOOLEAN that, if set, indicates that all opens on this share MUST
include FILE_SHARE_DELETE in the sharing access.

Share.RestrictExclusiveOpens: A BOOLEAN that, if set, indicates that users who request read-only
access to a file are not allowed to deny other readers.

Share.Type: The value indicates the type of share. It MUST be one of the values that are listed in
section 2.2.2.4.

Share.Remark: A pointer to a null-terminated Unicode UTF-16 string that specifies an optional
comment about the shared resource.

Share.MaxUses: The value indicates the maximum number of concurrent connections that the

shared resource can accommodate.

Share.CurrentUses: The value indicates the number of current trees connected to the shared
resource.

Share.ForceLevel2Oplock: A BOOLEAN that, if set, indicates that the server does not issue exclusive
caching rights on this share.

Share.HashEnabled: A BOOLEAN that, if set, indicates that the share supports hash generation for

branch cache retrieval of data.

3.1.1.8 Per Session

GlobalSessionId: A locally unique 32-bit identifier generated to identify a Session.

3.1.1.9 Algorithm for Determining Path Type

The input for this algorithm is:

 PathName: A null-terminated UTF-16 string that specifies the path name to check in a case-
insensitive manner.

The output for this algorithm is:

 Type: A path type value as specified in section 2.2.2.9 if the algorithm finds an appropriate path
type; otherwise ERROR_INVALID_NAME (0x0000007B).

The pseudo code for the algorithm is shown in the following example.

 // The following set of characters MUST be treated as invalid characters: <> " |
 If (PathName contains invalid character)
 Return ERROR_INVALID_NAME;
 If (PathName begins with ‘\’)
 If (PathName begins with "\\’’)
 If (PathName begins with "\\.’’)
 If (PathName begins with "\\.\’’)
 If (Remaining part of the PathName contains ‘*’ or ‘?’)
 Return Type= ITYPE_PATH_ABSD_WC;
 Else
 Return Type= ITYPE_PATH_ABSD;
 EndIf
 Else
 Return ERROR_INVALID_NAME;
 EndIf
 ElseIf ((PathName begins with "\\<computer-name>’’)

90 / 241

[MS-SRVS-Diff] - v20240423
Server Service Remote Protocol
Copyright © 2024 Microsoft Corporation
Release: April 23, 2024

 // <computer-name> is any string other than ".")
 If (PathName begins with "\\<computer-name>\’’)
 If (Remaining part of the PathName is not empty)
 If (Remaining part of the PathName contains ’*’ or ‘?’)
 Return Type= ITYPE_UNC_WC_PATH;
 Else
 Return Type= ITYPE_UNC;
 EndIf
 EndIf
 Else
 Return Type= ITYPE_UNC_COMPNAME;
 EndIf
 ElseIf ((PathName begins with "*’)
 If (PathName equals to "*’’)
 Return Type= ITYPE_UNC_WC;
 Else
 Return ERROR_INVALID_NAME;
 EndIf
 EndIf
 Else // PathName begins with only single slash "\"
 If (PathName begins with "\DEV’’)
 If (PathName equals "\DEV\LPT<n>’’ or "\DEV\LPT<n>:’’)
 // <n> is any number, Examples: "\DEV\LPT1", "\DEV\LPT4:"
 Return Type= ITYPE_DEVICE_LPT;
 ElseIf (PathName equals "\DEV\COM<n>’’ or "\DEV\COM<n>:’’)
 // <n> is any number, Examples: "\DEV\COM1", "\DEV\COM4:"
 Return Type= ITYPE_DEVICE_COM;
 Else
 Return ERROR_INVALID_NAME;
 EndIf
 ElseIf (PathName contains ’*’ or ‘?’)
 Return Type= ITYPE_PATH_ABSND_WC;
 Else
 Return Type= ITYPE_PATH_ABSND;
 EndIf
 EndIf
 ElseIf (PathName begins with [A-Z] followed by ‘:’)// Examples: "C:", "f:"
 If (PathName equals "<drive>:") // <drive> is any letter
 Return ITYPE_DEVICE_DISK
 Else // (PathName = "<drive>:\...")
 If (Remaining part of the PathName after "<drive>:"contains ’*’ or ‘?’)
 Return Type= ITYPE_PATH_ABSD_WC;
 Else
 Return Type= ITYPE_PATH_ABSD;
 EndIf
 EndIf
 ElseIf (PathName equals "LPT<n>" or "LPT<n>:") //Examples: "LPT1", "lpt4:"
 Return Type= ITYPE_DEVICE_LPT;
 ElseIf (PathName equals "COM<n>" or "COM<n>:") //Examples: "COM1", "com4:"
 Return Type= ITYPE_DEVICE_COM;
 Else // Relative Paths
 If (PathName contains ’*’ or ‘?’)
 Return Type= ITYPE_PATH_RELND_WC;
 Else
 Return Type= ITYPE_PATH_RELND;
 EndIf
 EndIf

3.1.2 Timers

None.

91 / 241

[MS-SRVS-Diff] - v20240423
Server Service Remote Protocol
Copyright © 2024 Microsoft Corporation
Release: April 23, 2024

3.1.3 Initialization

The server MUST initialize GlobalServerAnnounce to SV_TYPE_SERVER. The server SHOULD
combine any architecture-specific flags defined in section 2.2.2.7 to the GlobalServerAnnounce

value using the bitwise OR operation.<37>

The server MUST initialize PrinterShareCount to 0.

The server MUST initialize NullSessionPipeList with implementation-specific defaults or with values
from the persistent store.<38>

Guest account support is optional and can be disabled.

The server MUST set CifsInitialized to FALSE.

The server MUST set Smb2Initialized to FALSE.

The server MUST wait until CifsInitialized and Smb2Initialized are set to TRUE.<39>

The server MUST initialize ServerConfiguration.ServerInfo103 as follows:

 sv103_name MUST be set to the NetBIOS host name of the server.

 sv103_type MUST be set to GlobalServerAnnounce.

 sv103_capabilities MUST be set as follows.

 If the server does not support SMB2 or does not support Content Information Retrieval

requests as specified in [MS-SMB2] section 3.3.5.15.7, sv103_capabilities MUST be set to 0.

 If the server supports Content Information Retrieval requests but the local component that
generates hashes locally is not installed, sv103_capabilities MUST be set to
SRV_SUPPORT_HASH_GENERATION.

 If the server supports Content Information Retrieval requests and the local component that

generates hashes is installed, sv103_capabilities MUST be set to
(SRV_SUPPORT_HASH_GENERATION | SRV_HASH_GENERATION_ACTIVE).

 sv103_platform_id, sv103_version_major, sv103_version_minor, sv103_comment, sv103_users,
sv103_disc, sv103_hidden, sv103_announce, and sv103_anndelta are initialized with
implementation-specific defaults or with values from the persistent configuration store.<40>

The server MUST initialize ServerConfiguration.ServerInfo599 with implementation-specific defaults or
with values from the persistent store.<41>

The server MUST initialize DefaultServerName to NULL.

The server MUST initialize TransportList to an empty list.

The server MUST then read each Transport stored in the persistent store and construct a
SERVER_TRANSPORT_INFO_3 structure (specified in section 2.2.4.96) as follows:

 svti3_numberofvcs MUST be set to zero.

 svti3_transportname MUST be set to Transport.Name.

 svti3_transportaddress MUST be set to Transport.ServerName.

 svti3_transportaddresslength MUST be set to the length of Transport.ServerName.

 svti3_networkaddress MUST be set to NULL.

92 / 241

[MS-SRVS-Diff] - v20240423
Server Service Remote Protocol
Copyright © 2024 Microsoft Corporation
Release: April 23, 2024

 svti3_domain MUST be set to Transport.Domain.

 svti3_flags MUST be set to Transport.Flags.

The server MUST then invoke the NetrServerTransportAddEx method specified in section 3.1.4.23,
passing SERVER_TRANSPORT_INFO_3 as the Buffer parameter and 3 as the Level parameter.

The server MUST initialize TreeConnectList to an empty list.

The server MUST initialize FileList to an empty list.

The server MUST initialize SessionList to an empty list.

The server MUST initialize AliasList to an empty list. The server MUST then add aliases stored in the
persistent configuration store by invoking the NetrServerAliasAdd method specified in section 3.1.4.44
and passing the InfoStruct and Level parameters stored in the persistent configuration store.

The server MUST initialize ShareList to an empty list.

The server MUST then read each Share stored in the persistent store and construct a
SHARE_INFO_503_I structure (specified in section 2.2.4.27) as follows:

 share.shi503_netname MUST be set to Share.ShareName.

 share.shi503_type MUST be set to Share.Type.

 share.shi503_remark MUST be set to Share.Remark.

 share.shi503_permissions MUST be set to 0.

 share.shi503_max_uses MUST be set to Share.MaxUses.

 share.shi503_current_uses MUST be set to 0.

 share.shi503_path MUST be set to Share.LocalPath.

 share.shi503_passwd MUST be set to NULL.

 share.shi503_security_descriptor MUST be set to Share.FileSecurity.

 share.shi503_servername MUST be set to Share.ServerName.

The server MUST then add shares by invoking the NetrShareAdd method specified in section 3.1.4.7

and passing the SHARE_INFO_503_I as InfoStruct and 503 as Level parameters.

The server MUST then construct a SHARE_INFO_1005 structure (specified in section 2.2.4.29) as
follows:

 shi1005_flags MUST be set to the result of bitwise AND of CSC_MASK and Share.CscFlags.

 SHI1005_FLAGS_DFS and SHI1005_FLAGS_DFS_ROOT bits in shi1005_flags MUST be set if
Share.IsDfs is TRUE.

 SHI1005_FLAGS_ACCESS_BASED_DIRECTORY_ENUM bit in shi1005_flags MUST be set if

Share.DoAccessBasedDirectoryEnumeration is TRUE.

 SHI1005_FLAGS_ALLOW_NAMESPACE_CACHING bit in shi1005_flags MUST be set if
Share.AllowNamespaceCaching is TRUE.

 SHI1005_FLAGS_FORCE_SHARED_DELETE bit in shi1005_flags MUST be set if
Share.ForceSharedDelete is TRUE.

93 / 241

[MS-SRVS-Diff] - v20240423
Server Service Remote Protocol
Copyright © 2024 Microsoft Corporation
Release: April 23, 2024

 SHI1005_FLAGS_RESTRICT_EXCLUSIVE_OPENS bit in shi1005_flags MUST be set if
Share.RestrictExclusiveOpens is TRUE.

 SHI1005_FLAGS_ENABLE_HASH bit in shi1005_flags MUST be set if Share.HashEnabled is
TRUE.

 SHI1005_FLAGS_FORCE_LEVELII_OPLOCK bit in shi1005_flags MUST be set if
Share.ForceLevel2Oplock is TRUE.

The server MUST then update shares by invoking the NetrShareSetInfo method specified in section
3.1.4.11 and passing the SHARE_INFO_1005 as InfoStruct and 1005 as Level parameters.

The server MUST construct SERVER_INFO_103 and SERVER_INFO_599 structures from
ServerConfiguration.ServerInfo103 and ServerConfiguration.ServerInfo599 respectively.

The server MUST update the SMB server configuration as specified in [MS-CIFS] section 3.3.4.22 by

providing SERVER_INFO_103 and SERVER_INFO_599 structures as input parameters.

The server MUST enable the SMB server as specified in [MS-CIFS] section 3.3.4.18 and MUST set
CifsEnabled to TRUE.

The server MUST enable the SMB2 server as specified in [MS-SMB2] section 3.3.4.22 and MUST set
Smb2Enabled to TRUE.

The server MUST initialize StatisticsStartTime to the number of seconds that have elapsed since

00:00:00, January 1, 1970, Greenwich Mean Time (GMT).

3.1.4 Message Processing Events and Sequencing Rules

Methods in RPC Opnum Order

Method Description

Opnum0NotUsedOnWire Returns ERROR_NOT_SUPPORTED. Unused.

Opnum: 0

Opnum1NotUsedOnWire Returns ERROR_NOT_SUPPORTED. Unused.

Opnum: 1

Opnum2NotUsedOnWire Returns ERROR_NOT_SUPPORTED. Unused.

Opnum: 2

Opnum3NotUsedOnWire Returns ERROR_NOT_SUPPORTED. Unused.

Opnum: 3

Opnum4NotUsedOnWire Returns ERROR_NOT_SUPPORTED. Unused.

Opnum: 4

Opnum5NotUsedOnWire Returns ERROR_NOT_SUPPORTED. Unused.

Opnum: 5

Opnum6NotUsedOnWire Returns ERROR_NOT_SUPPORTED. Unused.

Opnum: 6

Opnum7NotUsedOnWire Returns ERROR_NOT_SUPPORTED. Unused.

Opnum: 7

NetrConnectionEnum Lists all connections made to a shared resource on the server or all
connections established from a particular computer.

94 / 241

[MS-SRVS-Diff] - v20240423
Server Service Remote Protocol
Copyright © 2024 Microsoft Corporation
Release: April 23, 2024

Method Description

Opnum: 8

NetrFileEnum Returns information about some or all open files on a server, depending on
the parameters that are specified.

Opnum: 9

NetrFileGetInfo Retrieves information about a particular opening of a server resource.

Opnum: 10

NetrFileClose Forces an open resource instance (for example, file, device, or named pipe)
on the server to close.

Opnum: 11

NetrSessionEnum Provides information about sessions that are established on a server.

Opnum: 12

NetrSessionDel Ends a network session between a server and a client.

Opnum: 13

NetrShareAdd Shares a server resource.

Opnum: 14

NetrShareEnum Retrieves information about each shared resource on a server.

Opnum: 15

NetrShareGetInfo Retrieves information about a particular shared resource on the server.

Opnum: 16

NetrShareSetInfo Sets the parameters of a shared resource.

Opnum: 17

NetrShareDel Deletes a share name from a server’s list of shared resources, which
disconnects all connections to the shared resource.

Opnum: 18

NetrShareDelSticky Deletes a sticky share name from a server’s list of shared resources, which
disconnects all connections to the shared resource.

Opnum: 19

NetrShareCheck Checks whether a server is sharing a device.

Opnum: 20

NetrServerGetInfo Retrieves current configuration information for the specified server.

Opnum: 21

NetrServerSetInfo Sets a server’s operating parameters.

Opnum: 22

NetrServerDiskEnum Retrieves a list of disk drives on a server.

Opnum: 23

NetrServerStatisticsGet Retrieves operating statistics for a service.

Opnum: 24

NetrServerTransportAdd Binds the server to the transport protocol.

Opnum: 25

NetrServerTransportEnum Supplies information about transport protocols that the server manages.

95 / 241

[MS-SRVS-Diff] - v20240423
Server Service Remote Protocol
Copyright © 2024 Microsoft Corporation
Release: April 23, 2024

Method Description

Opnum: 26

NetrServerTransportDel Unbinds (disconnects) the transport protocol from the server.

Opnum: 27

NetrRemoteTOD Returns the time of day information from a specified server.

Opnum: 28

Opnum29NotUsedOnWire Only used locally, never remotely.

Opnum: 29

NetprPathType Checks a path name to determine its type.

Opnum: 30

NetprPathCanonicalize Converts a path name to an implementation-specific canonical format.

Opnum: 31

NetprPathCompare Performs an implementation-specific comparison of two paths.

Opnum: 32

NetprNameValidate Performs implementation-specific checks to ensure that the specified name is
a valid name for the specified type.

Opnum: 33

NetprNameCanonicalize Converts a name to an implementation-specific canonical format for the
specified type.

Opnum: 34

NetprNameCompare Performs an implementation-specific comparison of two names of a specific
name type.

Opnum: 35

NetrShareEnumSticky Retrieves information about each sticky shared resource on a server.

Opnum: 36

NetrShareDelStart Performs the initial phase of a two-phase share delete.

Opnum: 37

NetrShareDelCommit Performs the final phase of a two-phase share delete.

Opnum: 38

NetrpGetFileSecurity Returns a copy of the security descriptor protecting a file or directory.

Opnum: 39

NetrpSetFileSecurity Sets the security of a file or directory.

Opnum: 40

NetrServerTransportAddEx Binds the specified server to the transport protocol. This extended method
allows the caller to specify information levels 1, 2, and 3 beyond what the
NetrServerTransportAdd (section 3.1.4.22) method allows.

Opnum: 41

Opnum42NotUsedOnWire Only used locally, never remotely.

Opnum: 42

NetrDfsGetVersion Checks whether the server is a DFS server, and if so, returns an
implementation-specific DFS version.

Opnum: 43

96 / 241

[MS-SRVS-Diff] - v20240423
Server Service Remote Protocol
Copyright © 2024 Microsoft Corporation
Release: April 23, 2024

Method Description

NetrDfsCreateLocalPartition Marks a share as being a DFS share.

Opnum: 44

NetrDfsDeleteLocalPartition Deletes a DFS share (prefix) on the server.

Opnum: 45

NetrDfsSetLocalVolumeState Sets a local DFS share online or offline.

Opnum: 46

Opnum47NotUsedOnWire Unsupported and not defined. Unused.

Opnum: 47

NetrDfsCreateExitPoint Creates a DFS link on the server.

Opnum: 48

NetrDfsDeleteExitPoint Deletes a DFS link on the server.

Opnum: 49

NetrDfsModifyPrefix Changes the path that corresponds to a DFS link on the server.

Opnum: 50

NetrDfsFixLocalVolume Adds knowledge of a new DFS share on the server.

Opnum: 51

NetrDfsManagerReportSiteInfo Gets Active Directory site information.

Opnum: 52

NetrServerTransportDelEx Unbinds (disconnects) the transport protocol from the server.

Opnum: 53

NetrServerAliasAdd Attaches an alias name to an existing server name.

Opnum: 54

NetrServerAliasEnum Retrieves alias information for a server.

Opnum: 55

NetrServerAliasDel Deletes an alias name from a server alias list.

Opnum: 56

NetrShareDelEx Deletes a share name from a server's list of shared resources.

Opnum: 57

An implementation MAY<42> choose to support the methods whose names begin with NetrDfs.

The methods MUST NOT throw an exception.

The server SHOULD enforce security measures to ensure that the caller has the required permissions

to execute each method.<43>

3.1.4.1 NetrConnectionEnum (Opnum 8)

The NetrConnectionEnum method lists all the treeconnects made to a shared resource on the server
or all treeconnects established from a particular computer.

 NET_API_STATUS NetrConnectionEnum(
 [in, string, unique] SRVSVC_HANDLE ServerName,

97 / 241

[MS-SRVS-Diff] - v20240423
Server Service Remote Protocol
Copyright © 2024 Microsoft Corporation
Release: April 23, 2024

 [in, string, unique] WCHAR* Qualifier,
 [in, out] LPCONNECT_ENUM_STRUCT InfoStruct,
 [in] DWORD PreferedMaximumLength,
 [out] DWORD* TotalEntries,
 [in, out, unique] DWORD* ResumeHandle
);

ServerName: An SRVSVC_HANDLE (section 2.2.1.1) pointer that identifies the server. The client
MUST map this structure to an RPC binding handle (see [C706] sections 4.3.5 and 5.1.5.2). The
server MUST ignore this parameter.

Qualifier: A pointer to a null-terminated UTF-16 string that specifies a share name or computer name
for the connections of interest to the client.

InfoStruct: A pointer to a structure, in the format of a CONNECT_ENUM_STRUCT (section 2.2.4.5).
The CONNECT_ENUM_STRUCT structure has a Level member that specifies the type of structure
to return. The Level member MUST be one of the values specified in section 2.2.4.5.

PreferedMaximumLength: Specifies the preferred maximum length, in bytes, of the returned data.
If the value that is specified is MAX_PREFERRED_LENGTH (section 2.2.2.2), the method MUST

attempt to return all entries.

TotalEntries: The total number of entries that could have been enumerated if the buffer had been big
enough to hold all the entries.

ResumeHandle: A pointer to a value that contains a handle that is used to continue an existing
TreeConnect search. The handle MUST be zero on the first call and left unchanged for subsequent
calls. If ResumeHandle is NULL, a resume handle MUST NOT be stored. If this parameter is not

NULL and the method returns ERROR_MORE_DATA, this parameter receives an implementation-
specific nonzero value that can be passed in subsequent calls to this method to continue with the
enumeration.

If this parameter is NULL or points to 0x00000000, the enumeration starts from the beginning of

the TreeConnectList.

Return Values: The method returns 0x00000000 (NERR_Success) to indicate success; otherwise, it
returns a nonzero error code. The method can take any specific error code value, as specified in

[MS-ERREF] section 2.2.

In response to a NetrConnectionEnum request, the server MUST enumerate the tree connection
entries in TreeConnectList based on the value of the ResumeHandle parameter. For each entry,
the server MUST query treeconnect properties by invoking underlying server events as specified
in [MS-CIFS] section 3.3.4.15 and [MS-SMB2] section 3.3.4.19, providing
TreeConnect.GlobalTreeConnectId as the input parameter. When the server receives STATUS
SUCCESS for a treeConnect.GlobalTreeConnectId from either a CIFS or SMB2 server, the

server MUST consider the received CONNECTION_INFO_1 structure as valid, and it MUST continue
to query all other treeconnects that are established on the server.

The server MUST filter the results of the queries based on the Qualifier input parameter:

The Qualifier parameter specifies a share name or computer name for treeconnects of interest to the
client. If the Qualifier begins with "\\", it is considered a computer name. Otherwise, it is considered a
share name. Share names MUST NOT begin with "\\".

If the Qualifier is the name of a share on the server, the server MUST return all treeconnects made
to that share by returning only the entries where treeconnect. coni1_netname matches with the
Qualifier.

98 / 241

[MS-SRVS-Diff] - v20240423
Server Service Remote Protocol
Copyright © 2024 Microsoft Corporation
Release: April 23, 2024

If the Qualifier is a computer name, the server MUST return all treeconnects made from the specified
computer to the server by returning only the entries where ServerName matches with the Qualifier.

If the Qualifier parameter is a NULL (zero-length) string, or if the length of the Qualifier parameter
(including the terminating null character) is greater than 1,024, the server MUST fail the call with

ERROR_INVALID_PARAMETER.

The Qualifier parameter plays no role in determining the value of ResumeHandle. The server uses the
ResumeHandle parameter to start the enumeration (as described in the processing rules that follow
for the ResumeHandle parameter), and then applies the Qualifier parameter, if specified, to restrict
the returned results to only those items that pass the qualifier test (as described previously in this
topic for Qualifier) for share name or computer name.

The InfoStruct parameter has a Level member. The valid values of Level are 0 and 1. If the Level

member is not equal to one of the valid values, the server MUST fail the call with
ERROR_INVALID_LEVEL.

If the Level member is 0, the server MUST return the information about treeconnects by filling the

CONNECT_INFO_0_CONTAINER structure in the ConnectInfo field of the InfoStruct parameter as
follows. The CONNECT_INFO_0_CONTAINER structure contains an array of CONNECTION_INFO_0
structures.

 coni0_id MUST be set to treeconnect.GlobalTreeConnectId.

If the Level member is 1, the server MUST return the treeconnects by filling the
CONNECT_INFO_1_CONTAINER structure in the ConnectInfo field of the InfoStruct parameter. The
CONNECT_INFO_1_CONTAINER structure contains an array of CONNECTION_INFO_1 structures.

The PreferedMaximumLength parameter specifies the maximum number of bytes that the server can
return for the ConnectInfo buffer. If PreferedMaximumLength is insufficient to hold all the entries, the
server MUST return the maximum number of entries that will fit in the ConnectInfo buffer and return

ERROR_MORE_DATA. If this parameter is equal to MAX_PREFERRED_LENGTH, the server MUST return
all the requested data.

If the server returns NERR_Success or ERROR_MORE_DATA, it MUST set the TotalEntries parameter to
equal the total number of entries passing the qualifier filter that could have been enumerated from the
current resume position.

If PreferedMaximumLength is insufficient to hold all the entries and if the client has specified a
ResumeHandle parameter, the server MUST set ResumeHandle to some implementation-specific value

that allows the server to continue with this enumeration in the TreeConnectList on a subsequent call
to this method with the same value for the ResumeHandle parameter.

The following rules specify processing of the ResumeHandle parameter:

 If the ResumeHandle parameter is either NULL or points to 0x00000000, the enumeration MUST
start from the beginning of the TreeConnectList.

 If the ResumeHandle parameter points to a nonzero value, the server MUST validate the

ResumeHandle.

 If the value of ResumeHandle is less than the size of the TreeConnectList, the server MUST
continue enumeration based on the value of ResumeHandle. The value of ResumeHandle
specifies the index value in the TreeConnectList after which enumeration is to begin.

 If the value of ResumeHandle is greater than or equal to the size of the TreeConnectList, the
server MUST return NERR_Success and zero entries. fail the call with
ERROR_INVALID_PARAMETER.

99 / 241

[MS-SRVS-Diff] - v20240423
Server Service Remote Protocol
Copyright © 2024 Microsoft Corporation
Release: April 23, 2024

 If the client specified a ResumeHandle and if the server returns ERROR_MORE_DATA
(0x000000EA), the server MUST set ResumeHandle to the index value of the last enumerated

treeconnect in the TreeConnectList.

Because the ResumeHandle specifies the index into the TreeConnectList, and the TreeConnectList

can be modified between multiple requests, the results of a query spanning multiple requests using
the ResumeHandle can be unreliable, resulting in either duplicate or missed active treeconnects.

The server SHOULD<44> enforce security measures to verify that the caller has the required
permissions to execute this routine. If the caller does not have the required credentials, the server
SHOULD<45> fail the call.

3.1.4.2 NetrFileEnum (Opnum 9)

The NetrFileEnum method MUST return information about some or all open files on a server,
depending on the parameters specified, or return an error code.

 NET_API_STATUS NetrFileEnum(
 [in, string, unique] SRVSVC_HANDLE ServerName,
 [in, string, unique] WCHAR* BasePath,
 [in, string, unique] WCHAR* UserName,
 [in, out] PFILE_ENUM_STRUCT InfoStruct,
 [in] DWORD PreferedMaximumLength,
 [out] DWORD* TotalEntries,
 [in, out, unique] DWORD* ResumeHandle
);

ServerName: An SRVSVC_HANDLE (section 2.2.1.1) pointer that identifies the server. The client
MUST map this structure to an RPC binding handle (see [C706] sections 4.3.5 and 5.1.5.2). The
server MUST ignore this parameter.

BasePath: A pointer to a null-terminated UTF-16 string that specifies a path component.

UserName: A pointer to a null-terminated UTF-16 string that specifies the name of a user.

InfoStruct: A pointer to a structure, in the format of a FILE_ENUM_STRUCT. The
FILE_ENUM_STRUCT structure has a Level field that specifies the type of structure to return. The
Level member MUST be one of the values specified in section 2.2.4.10.

PreferedMaximumLength: Specifies the preferred maximum length, in bytes, of returned data. If
the value that is specified is MAX_PREFERRED_LENGTH, the method MUST attempt to return all
entries.

TotalEntries: The total number of entries that could have been enumerated if the buffer had been big
enough to hold all the entries.

ResumeHandle: A pointer to a value that contains a handle that is used to continue an Open
connection search. The handle MUST be zero on the first call and left unchanged for subsequent
calls. If ResumeHandle is NULL, a resume handle MUST NOT be stored. If this parameter is not

NULL and the method returns ERROR_MORE_DATA, this parameter receives an implementation-
specific nonzero value that can be passed in subsequent calls to this method to continue with the

enumeration.

If this parameter is NULL or points to 0x00000000, the enumeration starts from the beginning of
the list of the currently active connections.

Return Values: The method returns 0x00000000 (NERR_Success) to indicate success; otherwise, it
returns a nonzero error code. The method can take any specific error code value, as specified in
[MS-ERREF] section 2.2. The most common error codes are listed in the following table.

100 / 241

[MS-SRVS-Diff] - v20240423
Server Service Remote Protocol
Copyright © 2024 Microsoft Corporation
Release: April 23, 2024

Return value/code Description

0x00000000

NERR_Success

The client request succeeded.

0x00000005

ERROR_ACCESS_DENIED

Access is denied.

0x0000007C

ERROR_INVALID_LEVEL

The system call level is not correct.

0x000000EA

ERROR_MORE_DATA

The client request succeeded. More entries are available. Not all entries
could be returned in the buffer size that is specified by
PreferedMaximumLength.

0x00000008

ERROR_NOT_ENOUGH_MEMORY

Not enough storage is available to process this command.

0x0000084B

NERR_BufTooSmall

The client request succeeded. More entries are available. The buffer size
that is specified by PreferedMaximumLength was too small to fit even a
single entry.

In response to a NetrFileEnum message, the server MUST enumerate Open entries in FileList based
on the value of the ResumeHandle parameter. For each entry, the server MUST query open properties
by invoking the underlying server events as specified in [MS-CIFS] section 3.3.4.16 and [MS-SMB2]
section 3.3.4.20, providing Open.GlobalFileId as the input parameter. When the server receives
STATUS_SUCCESS for an Open.GlobalFileId from either a CIFS or SMB2 server, the server MUST

consider the received FILE_INFO_3 structure as valid, and the server MUST continue to query all other
open entries on the server. The server MUST then return the information about some or all valid open
entries on a server, depending on the qualifier parameters that are specified.

The BasePath parameter specifies a qualifier for the returned information. If this parameter is not
NULL, the server MUST return only those FILE_INFO_3 structures received from CIFS and SMB2

servers, where the field fi3_path_name contains BasePath as the prefix. (A prefix is the path
component up to a backslash.) If the BasePath parameter is not NULL and if the length of the

BasePath string, including the terminating null character, is greater than 1,024, the server MUST fail
the call with ERROR_INVALID_PARAMETER.

The UserName parameter MUST specify the name of a user. If this parameter is specified, the server
MUST return only those FILE_INFO_3 structures received from CIFS and SMB2 servers where the field
fi3_username matches UserName. If the UserName parameter is not NULL and if the length of the
UserName string, including the terminating null character, is greater than 1,024, the server MUST fail

the call with ERROR_INVALID_PARAMETER.

The BasePath and UserName parameters have no role in determining the value of ResumeHandle. The
server uses the ResumeHandle parameter to start the enumeration (as described in the rules that
follow for processing the ResumeHandle parameter), and then applies these qualifier parameters, if
specified, to restrict the returned results to only those items that pass the qualifier test (as described
previously in this topic for BasePath and UserName) for returned information.

The InfoStruct parameter has a Level member. The valid values of Level are 2 and 3. If the Level

member is not equal to one of the valid values, the server MUST fail the call with
ERROR_INVALID_LEVEL.

The server MUST fill the return structures as follows.

If the Level member is 2, the server MUST return the information about Opens by filling the
FILE_INFO_2_CONTAINER structure in the FileInfo field of the InfoStruct parameter as follows. The
FILE_INFO_2_CONTAINER structure contains an array of FILE_INFO_2 structures.

101 / 241

[MS-SRVS-Diff] - v20240423
Server Service Remote Protocol
Copyright © 2024 Microsoft Corporation
Release: April 23, 2024

 fi2_id MUST be set to open.fi3_id.

If the Level member is 3, the server MUST return Opens directly by filling the
FILE_INFO_3_CONTAINER structure in the FileInfo field of the InfoStruct parameter. The
FILE_INFO_3_CONTAINER structure contains an array of FILE_INFO_3 structures.

The PreferedMaximumLength parameter specifies the maximum number of bytes that the server can
return for the FileInfo buffer.

If PreferedMaximumLength is insufficient to hold all the entries, the server MUST return the maximum
number of entries that will fit in the FileInfo buffer and return ERROR_MORE_DATA. If this parameter
is equal to MAX_PREFERRED_LENGTH, the server MUST return all the requested data.

If the server returns NERR_Success or ERROR_MORE_DATA, it MUST set the TotalEntries parameter
equal to the total number of entries passing the qualifier filter (BasePath or UserName) that could

have been enumerated from the current resume position.

If the PreferedMaximumLength is insufficient to hold all the entries and if the client has specified a

ResumeHandle, the server MUST set ResumeHandle to some implementation-specific value that allows
the server to continue with this enumeration on a subsequent call to this method with the same value
for ResumeHandle.

The following rules specify processing of the ResumeHandle parameter:

 If the ResumeHandle parameter is either NULL or points to 0x00000000, the enumeration MUST
start from the beginning of the FileList.

 If the ResumeHandle parameter points to a nonzero value, the server MUST validate the
ResumeHandle.

 If the value of ResumeHandle is less than the size of the FileList, the server MUST continue
enumeration based on the value of ResumeHandle. The value of ResumeHandle specifies the
index into the FileList after which enumeration is to begin.

 If the value of ResumeHandle is greater than or equal to the size of the FileList, the server
MUST return NERR_Success and zero entries.

 If the client specified a ResumeHandle and if the server returns ERROR_MORE_DATA
(0x000000EA), the server MUST set the ResumeHandle to the index of the last enumerated file
open in the FileList.

Because the ResumeHandle specifies the index into the FileList, and the FileList can be modified
between multiple requests, the results of a query spanning multiple requests using the ResumeHandle

can be unreliable, offering either duplicate or missed open files.

The server SHOULD<46> enforce security measures to verify that the caller has the required
permissions to execute this routine. If the caller does not have the required credentials, the server
SHOULD<47> fail the call.

3.1.4.3 NetrFileGetInfo (Opnum 10)

The NetrFileGetInfo method MUST retrieve information about a particular open server resource or
return an error code.

 NET_API_STATUS NetrFileGetInfo(
 [in, string, unique] SRVSVC_HANDLE ServerName,
 [in] DWORD FileId,
 [in] DWORD Level,
 [out, switch_is(Level)] LPFILE_INFO InfoStruct

102 / 241

[MS-SRVS-Diff] - v20240423
Server Service Remote Protocol
Copyright © 2024 Microsoft Corporation
Release: April 23, 2024

);

ServerName: An SRVSVC_HANDLE (section 2.2.1.1) pointer that identifies the server. The client
MUST map this structure to an RPC binding handle (see [C706] sections 4.3.5 and 5.1.5.2). The
server MUST ignore this parameter.

FileId: Specifies the file identifier of the open resource to return information for. The value of this
parameter MUST have been returned in a previous NetrFileEnum method call.

NOTE: The FileId parameter returned in a previous NetrFileEnum call is not guaranteed to be
valid. Therefore, the NetrFileGetInfo method is not guaranteed to succeed based on the validity of

the FileId parameter.

Level: Specifies the information level of the data. This parameter MUST have one of the following
values.

Value Meaning

2 FILE_INFO_2

3 FILE_INFO_3

InfoStruct: This parameter is of type LPFILE_INFO, which is defined in section 2.2.3.3. Its contents
are determined by the value of the Level member, as shown in the previous parameter table.

Return Values: The method returns 0x00000000 (NERR_Success) to indicate success; otherwise, it
returns a nonzero error code. The method can take any specific error code value, as specified in
[MS-ERREF] section 2.2. The most common error codes are listed in the following table.

Return value/code Description

0x00000000

NERR_Success

The client request succeeded.

0x00000005

ERROR_ACCESS_DENIED

Access is denied.

0x00000002

ERROR_FILE_NOT_FOUND

The system cannot find the file specified.

0x0000007C

ERROR_INVALID_LEVEL

The system call level is not correct.

0x00000008

ERROR_NOT_ENOUGH_MEMORY

Not enough storage is available to process this command.

0x0000084B

NERR_BufTooSmall

The supplied buffer is too small.

In response to a NetrFileGetInfo message, the server MUST query open properties by invoking
underlying server events as specified in [MS-CIFS] section 3.3.4.16 and [MS-SMB2] section 3.3.4.20,
providing FileId as the input parameter. When the server receives a non-NULL FILE_INFO_3 structure
from either a CIFS or SMB2 server, the server MUST return information about a particular opening of a
server resource (file, device, or named pipe). Otherwise, the server MUST fail the call with an

ERROR_FILE_NOT_FOUND error code.

103 / 241

[MS-SRVS-Diff] - v20240423
Server Service Remote Protocol
Copyright © 2024 Microsoft Corporation
Release: April 23, 2024

The FileId parameter specifies the file identifier of the open resource in FileList to return information
for. The value of this parameter MUST have been returned in a previous NetrFileEnum message

response by the server.

The Level parameter can be either 2 or 3. If the value of the Level parameter is anything else, the

server MUST fail the call with ERROR_INVALID_LEVEL. The value of the Level parameter determines
the format of the InfoStruct parameter.

The server MUST retrieve the open in FILE_INFO_3 structure from CIFS and SMB2 servers and fill the
return structures as follows.

If the value of the Level parameter is 2, the server MUST return information about the open whose
file identifier is FileId by filling the FILE_INFO_2 structure in the FileInfo2 field of the InfoStruct
parameter as follows:

 fi2_id MUST be set to open.fi3_id.

If the value of the Level parameter is 3, the server MUST return the open directly whose fi3_id is

equal to FileId.

The server SHOULD<48> enforce security measures to verify that the caller has the required
permissions to execute this routine. If the caller does not have the required credentials, the server
SHOULD<49> fail the call.

3.1.4.4 NetrFileClose (Opnum 11)

The server receives the NetrFileClose method in an RPC_REQUEST packet. In response, the server
MUST force an open resource instance (for example, file, device, or named pipe) on the server to
close. This message can be used when an error prevents closure by any other means.

 NET_API_STATUS NetrFileClose(
 [in, string, unique] SRVSVC_HANDLE ServerName,
 [in] DWORD FileId
);

ServerName: An SRVSVC_HANDLE (section 2.2.1.1) pointer that identifies the server. The client
MUST map this structure to an RPC binding handle (see [C706] sections 4.3.5 and 5.1.5.2). The
server MUST ignore this parameter.

FileId: Specifies the file identifier of the open file, device, or pipe to close.

Note The FileId parameter that is returned in a previous NetrFileEnum method call is not
guaranteed to be valid. Therefore, the NetrFileClose method is not guaranteed to succeed based

on the validity of the FileId parameter.

Return Values: The method returns 0x00000000 (NERR_Success) to indicate success; otherwise, it
returns a nonzero error code. The method can take any specific error code value, as specified in
[MS-ERREF] section 2.2. The most common error codes are listed in the following table.

Return value/code Description

0x00000000

NERR_Success

The client request succeeded.

0x00000005

ERROR_ACCESS_DENIED

Access is denied.

0x0000090A There is no open file with the specified identification number.

104 / 241

[MS-SRVS-Diff] - v20240423
Server Service Remote Protocol
Copyright © 2024 Microsoft Corporation
Release: April 23, 2024

Return value/code Description

NERR_FileIdNotFound

This message can be used when an error prevents closure by any other means.

The FileId parameter specifies the file identifier of the Open in FileList to close. The value of the
FileId parameter MUST correspond to a FileId that is returned in a previous NetrFileEnum message
response by the server. The server MUST look up Open in the FileList where FileId matches
Open.GlobalFileId. If no match is found, the server MUST return NERR_FileIdNotFound. If a match is

found, the server MUST close the Open by invoking an underlying server event as specified in [MS-
CIFS] section 3.3.4.13 or [MS-SMB2] section 3.3.4.17, providing FileId as the input parameter.

If either CIFS or SMB2 servers return STATUS_SUCCESS, the server MUST return NERR_Success.
Otherwise, the server MUST fail the call with a NERR_FileIdNotFound error code.

The server SHOULD<50> enforce security measures to verify that the caller has the required
permissions to execute this routine. If the caller does not have the required credentials, the server

SHOULD<51> fail the call.

3.1.4.5 NetrSessionEnum (Opnum 12)

The NetrSessionEnum method MUST return information about sessions that are established on a
server or return an error code.

 NET_API_STATUS NetrSessionEnum(
 [in, string, unique] SRVSVC_HANDLE ServerName,
 [in, string, unique] WCHAR* ClientName,
 [in, string, unique] WCHAR* UserName,
 [in, out] PSESSION_ENUM_STRUCT InfoStruct,
 [in] DWORD PreferedMaximumLength,
 [out] DWORD* TotalEntries,
 [in, out, unique] DWORD* ResumeHandle
);

ServerName: An SRVSVC_HANDLE (section 2.2.1.1) pointer that identifies the server. The client
MUST map this structure to an RPC binding handle (see [C706] sections 4.3.5 and 5.1.5.2). The

server MUST ignore this parameter.

ClientName: A pointer to a null-terminated UTF-16 string that specifies the name of the computer
session for which information is to be returned. This string MUST be one of the following: a NULL
(zero-length) string; or a string that MUST begin with \\.

UserName: A pointer to a null-terminated UTF-16 string that specifies the user name for which
information is to be returned.

InfoStruct: A pointer to a structure, in the format of a SESSION_ENUM_STRUCT. The

SESSION_ENUM_STRUCT structure has a Level member that specifies the type of structure to
return. The Level member MUST be one of the values specified in section 2.2.4.21.

PreferedMaximumLength: Specifies the preferred maximum length, in bytes, of the returned data.
If the value that is specified is MAX_PREFERRED_LENGTH, the method MUST attempt to return all
entries.

TotalEntries: The total number of entries that could have been enumerated if the buffer had been big

enough to hold all the entries.

ResumeHandle: A pointer to a value that contains a handle that is used to continue an existing
session search in SessionList, as specified in section 3.1.1.1. The handle MUST be zero on the

105 / 241

[MS-SRVS-Diff] - v20240423
Server Service Remote Protocol
Copyright © 2024 Microsoft Corporation
Release: April 23, 2024

first call and remain unchanged for subsequent calls. If the ResumeHandle parameter is NULL, no
resume handle MUST be stored. If this parameter is not NULL and the method returns

ERROR_MORE_DATA, this parameter receives an implementation-specific nonzero value that can
be passed in subsequent calls to this method to continue with the enumeration.

If this parameter is NULL or points to 0x00000000, the enumeration starts from the beginning of
the SessionList.

Return Values: The method returns 0x00000000 (NERR_Success) to indicate success; otherwise, it
returns a nonzero error code. The method can take any specific error code value, as specified in
[MS-ERREF] section 2.2. The most common error codes are listed in the following table.

Return value/code Description

0x00000000

NERR_Success

The client request succeeded.

0x00000005

ERROR_ACCESS_DENIED

Access is denied.

0x0000007C

ERROR_INVALID_LEVEL

The system call level is not correct.

0x00000057

ERROR_INVALID_PARAMETER

The parameter is incorrect.

0x000000EA

ERROR_MORE_DATA

The client request succeeded. More entries are available. Not all entries
could be returned in the buffer size that is specified by

PreferedMaximumLength.

0x00000008

ERROR_NOT_ENOUGH_MEMORY

Not enough storage is available to process this command.

0x00000908

NERR_ClientNameNotFound

A session does not exist with the computer name.

0x0000092F

NERR_InvalidComputer

The computer name is not valid.

0x000008AD

NERR_UserNotFound

The user name could not be found.

In response to the NetrSessionEnum message, the server MUST enumerate the Session entries in
SessionList based on the value of the ResumeHandle parameter. For each entry, the server MUST

query session properties by invoking the underlying server events as specified in [MS-CIFS] section
3.3.4.14 and [MS-SMB2] section 3.3.4.18, providing Session.GlobalSessionId as the input parameter.
When the server receives a STATUS SUCCESS for a Session.GlobalSessionId from either a CIFS or
SMB2 server, the server MUST consider the received SESSION_INFO_502 structure as valid, and it
MUST continue to query all other sessions that are established on the server. The server MUST then

return information about some or all valid sessions that are established on the server, depending on
the qualifier parameters that are specified.

The ClientName parameter specifies a qualifier for the returned information. If a ClientName is
specified (that is, it is not a NULL (zero-length) string), the sesi502_cname field returned in the
SESSION_INFO_502 structure MUST match the ClientName for the session to be returned.

If a ClientName is specified, it MUST start with "\\"; otherwise, the server MUST fail the call with a
NERR_InvalidComputer error code. If a ClientName is specified and it contains more than 1,024

106 / 241

[MS-SRVS-Diff] - v20240423
Server Service Remote Protocol
Copyright © 2024 Microsoft Corporation
Release: April 23, 2024

characters, including the terminating null character, the server MUST fail the call with an
ERROR_INVALID_PARAMETER error code.

The UserName parameter specifies a qualifier for the returned information. If a UserName is specified
(that is, not a NULL (zero-length) string), the sesi502_username field returned in the

SESSION_INFO_502 structure MUST match the UserName parameter for the session to be returned. If
a UserName parameter is specified and the length of the UserName string, including the terminating
null character, is greater than 1,024 characters, the server MUST fail the call with an
ERROR_INVALID_PARAMETER error code.

The server MUST return only those sessions that match all specified qualifiers. If no entries that match
the qualifiers (ClientName/UserName) are found when a qualifier is specified, the server MUST fail the
call with either an NERR_UserNotFound or NERR_ClientNameNotFound error code.

The ClientName and UserName parameters have no role in determining the value of ResumeHandle.
The server uses the ResumeHandle parameter to start the enumeration (as described in the
processing rules that follow for the ResumeHandle parameter), and then applies these qualifier
parameters, if specified, to restrict the returned results to only those items that pass the qualifier test

(as described previously in this topic for ResumeHandle).

The InfoStruct parameter has a Level member whose valid values are 0, 1, 2, 10, and 502. If the

Level member is not equal to one of the valid values, the server MUST fail the call with an
ERROR_INVALID_LEVEL error code.

The server MUST fill the return structures as follows.

If the Level member is 0, the server MUST return the information about sessions by filling the
SESSION_INFO_0_CONTAINER structure in the SessionInfo field of the InfoStruct parameter as
follows. The SESSION_INFO_0_CONTAINER structure contains an array of SESSION_INFO_0
structures.

 sesi0_cname MUST be set to session.sesi502_cname.

If the Level member is 1, the server MUST return the information about sessions by filling the

SESSION_INFO_1_CONTAINER structure in the SessionInfo field of the InfoStruct parameter as in
the following. The SESSION_INFO_1_CONTAINER structure contains an array of SESSION_INFO_1
structures.

 sesi1_cname MUST be set to session.sesi502_cname.

 sesi1_username MUST be set to session.sesi502_username.

 sesi1_num_opens MUST be set to session.sesi502_num_opens.

If the Level member is 2, the server MUST return the information about sessions by filling the
SESSION_INFO_2_CONTAINER structure in the SessionInfo field of the InfoStruct parameter as in
the following. The SESSION_INFO_2_CONTAINER structure contains an array of SESSION_INFO_2
structures.

 sesi2_cname MUST be set to session.sesi502_cname.

 sesi2_username MUST be set to session.sesi502_username.

 sesi2_num_opens MUST be set to session.sesi502_num_opens.

 sesi2_idle_time MUST be set to session.sesi502_idletime.

 sesi2_time MUST be set to session.sesi502_time.

 sesi2_user_flags MUST be set to session.sesi502_user_flags.

107 / 241

[MS-SRVS-Diff] - v20240423
Server Service Remote Protocol
Copyright © 2024 Microsoft Corporation
Release: April 23, 2024

 sesi2_cltype_name MUST be set to session.sesi502_cltype_name.

If the Level member is 10, the server MUST return the information about sessions by filling the
SESSION_INFO_10_CONTAINER structure in the SessionInfo field of the InfoStruct parameter as in
the following. The SESSION_INFO_10_CONTAINER structure contains an array of SESSION_INFO_10

structures.

 sesi10_cname MUST be set to session.sesi502_cname.

 sesi10_username MUST be set to session.sesi502_username.

 sesi10_idle_time MUST be set to session.sesi502_idletime.

 sesi10_time MUST be set to session.sesi502_time.

If the Level member is 502, the server MUST return the sessions in the SESSION_INFO_502 structure
by filling the SESSION_INFO_502_CONTAINER structure in the SessionInfo field of the InfoStruct

parameter. The SESSION_INFO_502_CONTAINER structure contains an array of SESSION_INFO_502

structures.

The PreferedMaximumLength parameter specifies the maximum number of bytes that the server can
return for the SessionInfo buffer. If PreferedMaximumLength is insufficient to hold all the entries, the
server MUST return the maximum number of entries that will fit in the SessionInfo buffer and return
ERROR_MORE_DATA. If this parameter is equal to MAX_PREFERRED_LENGTH, the server MUST return

all the requested data.

If the server returns NERR_Success or ERROR_MORE_DATA, it MUST set the TotalEntries parameter to
equal the total number of entries that exceed the qualifier filter (ClientName or UserName as
previously described) and that could have been enumerated from the current resume position.

If the PreferedMaximumLength is insufficient to hold all the entries and if the client has specified a
ResumeHandle, the server MUST set ResumeHandle to some implementation-specific value that allows
the server to continue with this enumeration on a subsequent call to this method with the same value

for ResumeHandle.

The following rules specify processing of the ResumeHandle parameter:

 If the ResumeHandle parameter is either NULL or points to 0x00000000, the enumeration MUST
start from the beginning of the SessionList.

 If the ResumeHandle parameter points to a nonzero value, the server must validate the
ResumeHandle.

 If the value of ResumeHandle is less than the size of the SessionList, the server MUST

continue enumeration based on the value of ResumeHandle. The value of ResumeHandle
specifies the index into the SessionList after which enumeration is to begin.

 If the value of ResumeHandle is greater than or equal to the size of the SessionList, the
server MUST return NERR_Success and zero entries.

 If the client specified a ResumeHandle and the server returns ERROR_MORE_DATA (0x000000EA),
the server MUST set ResumeHandle to the index value of the last enumerated session in the

SessionList.

Because the ResumeHandle specifies the index into the list and the list of active sessions can be
modified between multiple requests, the results of a query spanning multiple requests using the
ResumeHandle can be unreliable, offering either duplicate or inactive sessions.

The server SHOULD<52> enforce the security measures to verify that the caller has the required
permissions to execute this routine. If the caller does not have the required credentials, the server
SHOULD<53> fail the call.

108 / 241

[MS-SRVS-Diff] - v20240423
Server Service Remote Protocol
Copyright © 2024 Microsoft Corporation
Release: April 23, 2024

3.1.4.6 NetrSessionDel (Opnum 13)

The NetrSessionDel method MUST end one or more network sessions between a server and a client.

 NET_API_STATUS NetrSessionDel(
 [in, string, unique] SRVSVC_HANDLE ServerName,
 [in, string, unique] WCHAR* ClientName,
 [in, string, unique] WCHAR* UserName
);

ServerName: An SRVSVC_HANDLE (section 2.2.1.1) pointer that identifies the server. The client
MUST map this structure to an RPC binding handle (see [C706] sections 4.3.5 and 5.1.5.2). The
server MUST ignore this parameter.

ClientName: A pointer to a null-terminated UTF-16 string that specifies the computer name of the

client whose sessions are to be disconnected. This string MUST be one of the following: a NULL
(zero-length) string; or a string that MUST begin with \\.

UserName: A pointer to a null-terminated UTF-16 string that specifies the user name whose sessions
are to be terminated.

Return Values: This method returns 0x00000000 (NERR_Success) to indicate success; otherwise, it
returns a nonzero error code. This method can take any specific error code value, as specified in

[MS-ERREF] section 2.2. The most common error codes are listed in the following table.

Return value/code Description

0x00000000

NERR_Success

The client request succeeded.

0x00000005

ERROR_ACCESS_DENIED

Access is denied.

0x00000057

ERROR_INVALID_PARAMETER

The parameter is incorrect.

0x00000008

ERROR_NOT_ENOUGH_MEMORY

Not enough storage is available to process this command.

0x00000908

NERR_ClientNameNotFound

A session does not exist with the computer name.

In response to a NetrSessionDel message, the server ends network sessions between the server and a
workstation.

The server SHOULD<54> enforce security measures to verify that the caller has the required

permissions to execute this routine. If the caller does not have the required credentials, the server
SHOULD<55> fail the call.

The ClientName parameter specifies the computer name of the client to disconnect. If a ClientName is
specified, it MUST start with "\\"; otherwise, the server MUST fail the call with an
NERR_ClientNameNotFound error code. If a ClientName is specified and it contains more than 1,024
characters, including the terminating null character, the server MUST fail the call with an
ERROR_INVALID_PARAMETER error code.

The UserName parameter specifies the name of the user whose session is to be terminated. If a
UserName is specified and the length of the UserName string, including the terminating null character,
is greater than 1,024, the server MUST fail the call with an ERROR_INVALID_PARAMETER error code.

109 / 241

[MS-SRVS-Diff] - v20240423
Server Service Remote Protocol
Copyright © 2024 Microsoft Corporation
Release: April 23, 2024

If both ClientName and UserName are unspecified (a NULL (zero-length) string), the server MUST fail
the call with a NERR_ClientNameNotFound or an ERROR_INVALID_PARAMETER error code.

The server MUST enumerate all Session entries in SessionList. For each entry, the server MUST
query session properties by invoking the underlying server events as specified in [MS-CIFS] section

3.3.4.14 and [MS-SMB2] section 3.3.4.18, providing Session.GlobalSessionId as the input parameter.
If the server receives a STATUS_SUCCESS for a Session.GlobalSessionId from either a CIFS or an
SMB2 server, and the received SESSION_INFO_502.sesi502_cname matches the ClientName (if it is
specified) and SESSION_INFO_502.sesi502_username matches the UserName (if it is specified),
the server MUST close the session by invoking the underlying server event as specified in [MS-CIFS]
section 3.3.4.8 or [MS-SMB2] section 3.3.4.12, providing Session.GlobalSessionId as input parameter.
The server MUST continue to query all other sessions and close all the matching sessions.

If no matching session is found with the ClientName and UserName, the server MUST fail the call with
error code NERR_ClientNameNotFound.

3.1.4.7 NetrShareAdd (Opnum 14)

The NetrShareAdd method shares a server resource.

 NET_API_STATUS NetrShareAdd(
 [in, string, unique] SRVSVC_HANDLE ServerName,
 [in] DWORD Level,
 [in, switch_is(Level)] LPSHARE_INFO InfoStruct,
 [in, out, unique] DWORD* ParmErr
);

ServerName: An SRVSVC_HANDLE (section 2.2.1.1) pointer that identifies the server. The client
MUST map this structure to an RPC binding handle (see [C706] sections 4.3.5 and 5.1.5.2). The
server MUST ignore this parameter.

Level: Specifies the information level of the data. This parameter MUST be one of the following

values.

Value Meaning

2 The buffer is of type SHARE_INFO_2.

502 The buffer is of type SHARE_INFO_502_I.

503 The buffer is of type SHARE_INFO_503_I.

InfoStruct: A pointer to the SHARE_INFO union. The contents of the InfoStruct parameter depend on
the value of the Level parameter. The client MUST set the STYPE_CLUSTER_FS,
STYPE_CLUSTER_SOFS, and STYPE_CLUSTER_DFS bits in the shi*_type field of the SHARE_INFO

union to zero; the server MUST ignore them on receipt.

ParmErr: A pointer to a value that receives the index of the first member of the share information

structure that caused an ERROR_INVALID_PARAMETER error code, if it occurs.

Return Values: The method returns 0x00000000 (NERR_Success) to indicate success; otherwise, it
returns a nonzero error code. The method can take any specific error code value, as specified in
[MS-ERREF] section 2.2. The most common error codes are listed in the following table.

Return value/code Description

0x00000000

NERR_Success

The client request succeeded.

110 / 241

[MS-SRVS-Diff] - v20240423
Server Service Remote Protocol
Copyright © 2024 Microsoft Corporation
Release: April 23, 2024

Return value/code Description

0x00000005

ERROR_ACCESS_DENIED

Access is denied.

0x0000007C

ERROR_INVALID_LEVEL

The system call level is not correct.

0x0000007B

ERROR_INVALID_NAME

The file name, directory name, or volume label syntax is incorrect.

0x00000057

ERROR_INVALID_PARAMETER

The client request failed because the specified parameter is invalid. For
details, see the description that follows for the ParmErr parameter.

0x00000008

ERROR_NOT_ENOUGH_MEMORY

Not enough storage is available to process this command.

0x00000846

NERR_DuplicateShare

The share name is already in use on this server.

0x00000844

NERR_UnknownDevDir

The device or directory does not exist.

In response to a NetrShareAdd message, the server MUST share a server resource or return an error
code. A shared resource is a local resource on a server (for example, a disk directory, print device, or
named pipe) that can be accessed by users and applications on the network.

The Level parameter determines the type of structure that the client has used to specify information
about the new share. The value of the Level parameter MUST be 2, 502, or 503. If the Level
parameter is not one of the valid values, the server MUST fail the call with an ERROR_INVALID_LEVEL
error code.

If the Level parameter is 2, InfoStruct contains a SHARE_INFO_2 structure.

If the Level parameter is 502, InfoStruct contains a SHARE_INFO_502_I structure.

If the Level parameter is 503, InfoStruct contains a SHARE_INFO_503_I structure.

The name of the share to be added is specified in the shi*_netname member of the SHARE_INFO
structure. If the specified share name is an empty string, or is a nonempty string of length greater
than 80 characters, the server MUST fail the call with an ERROR_INVALID_PARAMETER error code. If
the specified share name is "pipe" or "mailslot", the server MUST fail the call with an
ERROR_ACCESS_DENIED error code.

If Level is 2 or 502, the server MUST look up the Share in ShareList, where Share.ShareName

matches shi*_netname and Share.ServerName matches "*".

If Level is 503, the server MUST look up the Share in ShareList, where Share.ShareName matches
shi503_netname and Share.ServerName matches shi503_servername.

If a matching Share is found, the server MUST fail the call with NERR_DuplicateShare.

The server MUST validate all information that is provided in the SHARE_INFO (section 2.2.3.6)
structure, and if any SHARE_INFO structure member is found to be invalid, the server MUST fail the
call with an ERROR_INVALID_PARAMETER error code.

The server performs the following validation on the structure:

 shi*_netname must not be a NULL (zero-length) string, and its length must not be greater than 80
characters.

111 / 241

[MS-SRVS-Diff] - v20240423
Server Service Remote Protocol
Copyright © 2024 Microsoft Corporation
Release: April 23, 2024

 If Level=502 and a security descriptor is provided, it must be a valid security descriptor.

 If shi*_netname specifies an IPC$ or the ADMIN$ share, shi*_path must be NULL; otherwise,
shi*_path must be a nonempty string that specifies a valid share path (must not have "." and ".."
appear as directory names).

 If shi*_netname specifies an NT path (begins with "\\?\"), shi*_type must not have a
STYPE_DISKTREE flag.

 If shi*_remark is specified, its length must not be greater than 48.

 If shi*_ type specifies a STYPE_DISKTREE flag and shi*_netname is not an ADMIN$ share,
shi*_path must specify an absolute directory path. If the server does not support shared net
drivers (determined by the SERVER_INFO field sv*_enablesharednetdrives), the path must not be
on a network drive.

 If a disk share is being added, the directory to be shared must exist and the caller must have
access to it.

If the ParmErr parameter is not NULL and the server finds a member of the SHARE_INFO structure to
be invalid, the server MUST set ParmErr to a value that denotes the index of the member that was
found to have an invalid value and fail the call with an ERROR_INVALID_PARAMETER (0x00000057)
error code. The mapping between the values to set and the corresponding member is listed in section

2.2.2.11.

If the ParmErr parameter is NERR_Success, the server MUST create a Share and insert it into
ShareList with the following fields set:

 If the STYPE_TEMPORARY field is set in shi*_type, Share.IsPersistent MUST be set to FALSE.
Otherwise, Share.IsPersistent MUST be set to TRUE.

 Share.IsMarkedForDeletion MUST be set to FALSE.

 Share.IsPrinterShare MUST be set to TRUE if shi*_ type specifies STYPE_PRINTQ flag.

 Share.ShareName MUST be set to shi*_netname.

 Share.ServerName MUST be set to shi503_servername if it is specified and if Level is equal to
503; otherwise it MUST be set to "*".

 Share.LocalPath MUST be set to shi*_path.

 Share.FileSecurity MUST be set to shi*_security_descriptor if it is specified and if Level is equal
to 502 or 503; otherwise it MUST be set to NULL.

 Share.CscFlags MUST be set to 0.

 Share.IsDfs MUST be set to FALSE.

 Share.DoAccessBasedDirectoryEnumeration MUST be set to FALSE.

 Share.AllowNamespaceCaching MUST be set to FALSE.

 Share.ForceSharedDelete MUST be set to FALSE.

 Share.RestrictExclusiveOpens MUST be set to FALSE.

 Share.Type MUST be set to shi*_type.

 Share.Remark MUST be set to shi*_remark.

112 / 241

[MS-SRVS-Diff] - v20240423
Server Service Remote Protocol
Copyright © 2024 Microsoft Corporation
Release: April 23, 2024

 Share.MaxUses MUST be set to 0xFFFF if shi*_max_uses is not specified; otherwise it MUST be
set to shi*_max_uses.

 Share.CurrentUses MUST be set to 0.

 Share.ForceLevel2Oplock MUST be set to FALSE.

If shi*_ type specifies STYPE_PRINTQ flag, PrinterShareCount MUST be increased by 1, and the
server MUST invoke the events as specified in section 3.1.6.9, providing SV_TYPE_PRINTQ_SERVER as
the input parameter.

The server MUST construct a share in SHARE_INFO_503_I structure as the input parameter to register
the share by invoking underlying server event as specified in [MS-CIFS] section 3.3.4.9 and [MS-
SMB2] section 3.3.4.13, providing share as the input parameter. The fields in share MUST be set as
follows:

 share.shi503_netname MUST be set to Share.ShareName.

 share.shi503_type MUST be set to Share.Type.

 share.shi503_remark MUST be set to Share.Remark.

 share.shi503_permissions MUST be set to 0.

 share.shi503_max_uses MUST be set to Share.MaxUses.

 share.shi503_current_uses MUST be set to 0.

 share.shi503_path MUST be set to Share.LocalPath.

 share.shi503_passwd MUST be set to NULL.

 share.shi503_security_descriptor MUST be set to Share.FileSecurity.

 share.shi503_servername MUST be set to Share.ServerName.

If either the CIFS or the SMB2 server returns an error:

 The server MUST remove the Share from ShareList and free the share object.

 The server MUST invoke the underlying server events as specified in [MS-CIFS] section 3.3.4.11

and [MS-SMB2] section 3.3.4.15, providing tuple <Share.ServerName, Share.ShareName> as
input parameters.

 If the error returned by the CIFS or the SMB2 server is STATUS_INVALID_PARAMETER, then the
server MUST fail the call with ERROR_INVALID_DATA (0x0000000D). Otherwise, the server MUST
fail the call with NERR_DuplicateShare.

If Share.IsPersistent is TRUE, the server MUST persist the Share to a persistent configuration store.
If a share with the same ShareName already exists in the store, the preexisting entry MUST be

overwritten with this entry.

The server SHOULD<56> enforce the security measures to verify that the caller has the required
permissions to execute this call. If the caller does not have the required credentials, the server
SHOULD<57> fail the call.

3.1.4.8 NetrShareEnum (Opnum 15)

The NetrShareEnum method retrieves information about each shared resource on a server.

 NET_API_STATUS NetrShareEnum(

113 / 241

[MS-SRVS-Diff] - v20240423
Server Service Remote Protocol
Copyright © 2024 Microsoft Corporation
Release: April 23, 2024

 [in, string, unique] SRVSVC_HANDLE ServerName,
 [in, out] LPSHARE_ENUM_STRUCT InfoStruct,
 [in] DWORD PreferedMaximumLength,
 [out] DWORD* TotalEntries,
 [in, out, unique] DWORD* ResumeHandle
);

ServerName: An SRVSVC_HANDLE (section 2.2.1.1) pointer that identifies the server. The client
MUST map this structure to an RPC binding handle (see [C706] sections 4.3.5 and 5.1.5.2). If this
parameter is NULL, the local computer is used.

InfoStruct: A pointer to a structure, in the format of a SHARE_ENUM_STRUCT (section 2.2.4.38), as
specified in section 2.2.4.38. The SHARE_ENUM_STRUCT structure has a Level member that
specifies the type of structure to return in the ShareInfo member. The Level member MUST be
one of the values specified in section 2.2.4.38.

PreferedMaximumLength: Specifies the preferred maximum length, in bytes, of the returned data.

If the specified value is MAX_PREFERRED_LENGTH, the method MUST attempt to return all
entries.

TotalEntries: The total number of entries that could have been enumerated if the buffer had been big
enough to hold all the entries.

ResumeHandle: A pointer to a value that contains a handle, which is used to continue an existing
share search in ShareList. The handle MUST be zero on the first call and remain unchanged for
subsequent calls. If the ResumeHandle parameter is NULL, no resume handle MUST be stored. If
this parameter is not NULL and the method returns ERROR_MORE_DATA, this parameter receives

a nonzero value that can be passed in subsequent calls to this method to continue with the
enumeration in ShareList.

If this parameter is NULL or points to 0x00000000, the enumeration starts from the beginning of
the ShareList.

Return Values: The method returns 0x00000000 (NERR_Success) to indicate success; otherwise, it
returns a nonzero error code. The method can take any specific error code value, as specified in
[MS-ERREF] section 2.2. The most common error codes are listed in the following table.

Return value/code Description

0x00000000

NERR_Success

The client request succeeded.

0x000000EA

ERROR_MORE_DATA

The client request succeeded. More entries are available. Not all entries could be
returned in the buffer size that is specified by PreferedMaximumLength.

0x0000007C

ERROR_INVALID_LEVEL

The system call level is not correct.

If ServerName does not match any Transport.ServerName in TransportList with the
SVTI2_SCOPED_NAME bit set in Transport.Flags, the server MUST reset ServerName as "*".

The server MUST remove any preceding "\\" from the ServerName parameter and normalize the
ServerName parameter as specified in section 3.1.6.8, passing in the updated ServerName parameter
as the ServerName, and an empty string as the ShareName.

In response to a NetrShareEnum request, the server MUST enumerate the Share entries in ShareList
based on the value of the ResumeHandle parameter and query share properties by invoking the
underlying server events as specified in [MS-CIFS] section 3.3.4.12 or [MS-SMB] section 3.3.4.7, and
[MS-SMB2] section 3.3.4.16, providing the tuple <normalized server name, Share.ShareName> as the

114 / 241

[MS-SRVS-Diff] - v20240423
Server Service Remote Protocol
Copyright © 2024 Microsoft Corporation
Release: April 23, 2024

input parameter. When the server receives STATUS_SUCCESS for a share, it MUST consider the
received SHARE_INFO_503_I and SHARE_INFO_1005 structures as valid. The server MUST return

information about each shared resource on a server.

The InfoStruct parameter has a Level member. The valid values of Level are 0, 1, 2, 501, 502, and

503. If the Level member is not equal to one of the valid values, the server MUST fail the call with an
ERROR_INVALID_LEVEL error code.

The server MUST use the shares in valid SHARE_INFO_503_I and SHARE_INFO_1005 structures
returned from either CIFS or SMB2 server and fill the return structures as follows. For each share, the
server MUST discard the structures received from other file server except the value of
share.shi503_current_uses.

If the Level member is 503, the server MUST return all shares in SHARE_INFO_503_I structures.

Otherwise, the server MUST return the shares in which share.shi503_servername matches
ServerName.

If the Level member is 0, the server MUST return the information about share resources by filling the

SHARE_INFO_0_CONTAINER structure in the ShareInfo member of the InfoStruct parameter. The
SHARE_INFO_0_CONTAINER structure contains an array of SHARE_INFO_0 structures.

 shi0_netname MUST be set to share.shi503_netname.

If the Level member is 1, the server MUST return the information about share resources by filling the
SHARE_INFO_1_CONTAINER structure in the ShareInfo member of the InfoStruct parameter. The
SHARE_INFO_1_CONTAINER structure contains an array of SHARE_INFO_1 structures.

 shi1_netname MUST be set to share.shi503_netname.

 shi1_type MUST be set to share.shi503_type.

 shi1_remark MUST be set to share.shi503_remark.

If the Level member is 2, the server MUST return the information about share resources by filling the

SHARE_INFO_2_CONTAINER structure in the ShareInfo member of the InfoStruct parameter. The
SHARE_INFO_2_CONTAINER structure contains an array of SHARE_INFO_2 structures.

 shi2_netname MUST be set to share.shi503_netname.

 shi2_type MUST be set to share.shi503_type.

 shi2_remark MUST be set to share.shi503_remark.

 shi2_permissions MUST be set to share.shi503_permissions.

 shi2_max_uses MUST be set to share.shi503_max_uses.

 shi2_current_uses MUST be set to the sum of share.shi503_current_uses values retrieved
from both CIFS and SMB2 servers.

 shi2_path MUST be set to share.shi503_path.

 shi2_passwd MUST be set to share.shi503_passwd.

If the Level member is 501, the server MUST return the information about share resources by filling
the SHARE_INFO_501_CONTAINER structure in the ShareInfo member of the InfoStruct parameter.

The SHARE_INFO_501_CONTAINER structure contains an array of SHARE_INFO_501 structures.

 shi501_netname MUST be set to share.shi503_netname.

 shi501_type MUST be set to share.shi503_type.

115 / 241

[MS-SRVS-Diff] - v20240423
Server Service Remote Protocol
Copyright © 2024 Microsoft Corporation
Release: April 23, 2024

 shi501_remark MUST be set to share.shi503_remark.

 shi501_flags MUST be set to share.ShareFlags.

If the Level member is 502, the server MUST return the information about Share resources by filling
the SHARE_INFO_502_CONTAINER structure in the ShareInfo member of the InfoStruct parameter.

The SHARE_INFO_502_CONTAINER structure contains an array of SHARE_INFO_502_I structures.

 shi502_netname MUST be set to share.shi503_netname.

 shi502_type MUST be set to share.shi503_type.

 shi502_remark MUST be set to share.shi503_remark.

 shi502_permissions MUST be set to share.shi503_permissions.

 shi502_max_uses MUST be set to share.shi503_max_uses.

 shi502_current_uses MUST be set to the sum of share.shi503_current_uses values retrieved

from both CIFS and SMB2 servers.

 shi502_path MUST be set to share.shi503_path.

 shi502_passwd MUST be set to share.shi503_passwd.

 shi502_security_descriptor MUST be set to share.shi503_security_descriptor.

If the Level member is 503, the server MUST return the information about share resources in the
SHARE_INFO_503_I structure by filling the SHARE_INFO_503_CONTAINER structure in the ShareInfo

member of the InfoStruct parameter, except that shi503_current_uses MUST be set to the sum of
share.shi503_current_uses values retrieved from both CIFS and SMB2 server. The
SHARE_INFO_503_CONTAINER structure contains an array of SHARE_INFO_503_I structures.

The server MUST set the STYPE_CLUSTER_FS, STYPE_CLUSTER_SOFS, and STYPE_CLUSTER_DFS bits
in the shi*_type field to zero; the client MUST ignore them on receipt.

The PreferedMaximumLength parameter specifies the maximum number of bytes that the server can
return for the ShareInfo buffer. If PreferedMaximumLength is insufficient to hold all the entries, the

server MUST return the maximum number of entries that will fit in the ShareInfo buffer and return
ERROR_MORE_DATA. If this parameter is equal to MAX_PREFERRED_LENGTH (section 2.2.2.2), the
server MUST return all the requested data.

If the server returns NERR_Success or ERROR_MORE_DATA, it MUST set the TotalEntries parameter to
equal the total number of entries that could have been enumerated from the current resume position.

If PreferedMaximumLength is insufficient to hold all the entries and if the client has specified a
ResumeHandle, the server MUST set ResumeHandle to some implementation-specific value that allows

the server to continue with this enumeration on a subsequent call to this method with the same value
for ResumeHandle.

The server MUST maintain the share list in the order in which shares are inserted into ShareList.

The following rules specify processing of the ResumeHandle parameter:

 If the ResumeHandle parameter is either NULL or points to 0x00000000, the enumeration MUST
start from the beginning of the ShareList.

 If the ResumeHandle parameter points to a nonzero value, the server MUST validate the
ResumeHandle.

116 / 241

[MS-SRVS-Diff] - v20240423
Server Service Remote Protocol
Copyright © 2024 Microsoft Corporation
Release: April 23, 2024

 If the value of the ResumeHandle is less than the size of the ShareList, the server MUST
continue enumeration based on the value of ResumeHandle. The value of ResumeHandle

specifies the index into the ShareList after which enumeration is to begin.

 If the value of the ResumeHandle is greater than or equal to the size of the ShareList, the

server MUST return NERR_Success and zero entries.

 If the client specified a ResumeHandle and if the server returns ERROR_MORE_DATA
(0x000000EA), the server MUST set ResumeHandle to the index of the last enumerated share in
the ShareList.

Because the ResumeHandle specifies the index into the ShareList, and the ShareList can be
modified between multiple requests, the results of a query spanning multiple requests using the
ResumeHandle can be unreliable, offering either duplicate or unavailable shares.

The server SHOULD<58> enforce security measures to verify that the caller has the required
permissions to execute this routine. If the caller does not have the required credentials, the server
SHOULD<59> fail the call.

3.1.4.9 NetrShareEnumSticky (Opnum 36)

The NetrShareEnumSticky method retrieves information about each sticky shared resource whose
IsPersistent setting is set in a ShareList.

 NET_API_STATUS NetrShareEnumSticky(
 [in, string, unique] SRVSVC_HANDLE ServerName,
 [in, out] LPSHARE_ENUM_STRUCT InfoStruct,
 [in] DWORD PreferedMaximumLength,
 [out] DWORD* TotalEntries,
 [in, out, unique] DWORD* ResumeHandle
);

ServerName: An SRVSVC_HANDLE (section 2.2.1.1) pointer that identifies the server. The client

MUST map this structure to an RPC binding handle (see [C706] sections 4.3.5 and 5.1.5.2). If this
parameter is NULL, the local computer is used.

InfoStruct: A pointer to a structure, in the format of a SHARE_ENUM_STRUCT (section 2.2.4.38). The
SHARE_ENUM_STRUCT structure has a Level member that specifies the type of structure to
return in the ShareInfo member. The Level member MUST be set to one of the values specified

in section 2.2.4.38 (excluding SHARE_INFO_501_CONTAINER).

PreferedMaximumLength: Specifies the preferred maximum length, in bytes, of the returned data.
If the specified value is MAX_PREFERRED_LENGTH, the method MUST attempt to return all
entries.

TotalEntries: The total number of entries that could have been enumerated if the buffer had been big
enough to hold all the entries.

ResumeHandle: A pointer to a value that contains a handle, which is used to continue an existing

connection search. The handle MUST be zero on the first call and remain unchanged for
subsequent calls. If the ResumeHandle parameter is NULL, a resume handle MUST NOT be stored.
If this parameter is not NULL and the method returns ERROR_MORE_DATA, this parameter
receives an implementation-specific nonzero value that can be passed in subsequent calls to this
method to continue with the enumeration.

If this parameter is NULL or points to 0x00000000, the enumeration starts from the beginning of

the list of the currently active connections.

117 / 241

[MS-SRVS-Diff] - v20240423
Server Service Remote Protocol
Copyright © 2024 Microsoft Corporation
Release: April 23, 2024

Return Values: The method returns 0x00000000 (NERR_Success) to indicate success; otherwise, it
returns a nonzero error code. The method can take any specific error code value, as specified in

[MS-ERREF] section 2.2. The most common error codes are listed in the following table.

Return
value/code Description

0x00000000

NERR_Success

The client request succeeded.

0x000000EA

ERROR_MORE_DATA

The client request succeeded. More entries are available. Not all entries could be
returned in the buffer size that is specified by PreferedMaximumLength.

0x0000084B

NERR_BufTooSmall

The client request succeeded. More entries are available. The buffer size that is
specified by PreferedMaximumLength was too small to fit even a single entry.

In response to a NetrShareEnumSticky message, the server MUST enumerate all the sticky shares in

the ShareList whose IsPersistent setting is set, or return an error code. If the server is restarted,
any shares that are created before the restart that are not sticky MUST be forgotten. Information

about sticky shares MUST be stored in a persistent store,<60> and the shares MUST be restored (that
is, re-created on the server) after the server is restarted.

The NetrShareEnumSticky method MUST NOT support Level 501 and MUST enumerate only sticky
shares. Other than this difference, the server MUST process this message in exactly the same manner
as the NetrShareEnum message.

3.1.4.10 NetrShareGetInfo (Opnum 16)

The NetrShareGetInfo method retrieves information about a particular shared resource on the server
from the ShareList.

 NET_API_STATUS NetrShareGetInfo(
 [in, string, unique] SRVSVC_HANDLE ServerName,
 [in, string] WCHAR* NetName,
 [in] DWORD Level,
 [out, switch_is(Level)] LPSHARE_INFO InfoStruct
);

ServerName: An SRVSVC_HANDLE (section 2.2.1.1) pointer that identifies the server. The client

MUST map this structure to an RPC binding handle ([C706] sections 4.3.5 and 5.1.5.2). If this
parameter is NULL, the local computer is used.

NetName: A pointer to a null-terminated UTF-16 string that specifies the name of the share to return
information for.

Level: Specifies the information level of the data. This parameter MUST be one of the following
values.

Value Meaning

0 LPSHARE_INFO_0

1 LPSHARE_INFO_1

2 LPSHARE_INFO_2

501 LPSHARE_INFO_501

118 / 241

[MS-SRVS-Diff] - v20240423
Server Service Remote Protocol
Copyright © 2024 Microsoft Corporation
Release: April 23, 2024

Value Meaning

502 LPSHARE_INFO_502_I

503 LPSHARE_INFO_503_I

1005 LPSHARE_INFO_1005

InfoStruct: This parameter is of type LPSHARE_INFO union, as specified in section 2.2.3.6. Its
contents are determined by the value of the Level parameter, as shown in the preceding table.

Return Values: The method returns 0x00000000 (NERR_Success) to indicate success; otherwise, it
returns a nonzero error code. The method can take any specific error code value, as specified in
[MS-ERREF] section 2.2. The most common error codes are listed in the following table.

Return value/code Description

0x00000000

NERR_Success

The client request succeeded.

0x00000005

ERROR_ACCESS_DENIED

Access is denied.

0x0000007C

ERROR_INVALID_LEVEL

The system call level is not correct.

0x00000057

ERROR_INVALID_PARAMETER

The client request failed because the specified parameter is invalid.

0x00000008

ERROR_NOT_ENOUGH_MEMORY

Not enough storage is available to process this command.

0x0000084B

NERR_BufTooSmall

The supplied buffer is too small.

0x00000906

NERR_NetNameNotFound

The share name does not exist.

If ServerName does not match any Transport.ServerName in TransportList with the

SVTI2_SCOPED_NAME bit set in Transport.Flags, the server MUST reset ServerName as "*".

The server MUST remove any preceding "\\" from the parameter ServerName and normalize the
ServerName parameter as specified in section 3.1.6.8, passing in the updated ServerName parameter
as the ServerName, and an empty string as the ShareName.

The NetName parameter specifies the name of the share for which to return information. This MUST
be a nonempty null-terminated UTF-16 string; otherwise, the server MUST fail the call with an

ERROR_INVALID_PARAMETER error code.

The value of the Level parameter can be 0, 1, 2, 501, 502, 503, or 1005. If the value of the Level
parameter is anything else, the server MUST fail the call with an ERROR_INVALID_LEVEL error code.
The value of the Level parameter determines the format of the InfoStruct parameter.

The server MUST locate a Share from ShareList, where NetName matches Share.ShareName and
the normalized ServerName matches Share.ServerName. If no share is found, the server MUST fail
the call with NERR_NetNameNotFound error code. If a matching Share is found, the server MUST

query share properties by invoking the underlying server events as specified in [MS-CIFS] section
3.3.4.12 or [MS-SMB] section 3.3.4.7, and [MS-SMB2] section 3.3.4.16, providing the tuple
<normalized server name, NetName> as the input parameter. When the server receives

119 / 241

[MS-SRVS-Diff] - v20240423
Server Service Remote Protocol
Copyright © 2024 Microsoft Corporation
Release: April 23, 2024

STATUS_SUCCESS for a share, it MUST consider the received SHARE_INFO_503_I and
SHARE_INFO_1005 structures as valid. The server MUST return information about the shared resource

on the server.

The server MUST use the share in valid SHARE_INFO_503_I and SHARE_INFO_1005 structures from

either CIFS or SMB2 servers and fill the return structures as follows. The server MUST discard the
structures received from other file server except the value of share.shi503_current_uses.

If the value of the Level parameter is 0, the server MUST return information about the share by filling
the SHARE_INFO_0 structure in the ShareInfo0 member of the InfoStruct parameter.

 shi0_netname MUST be set to share.shi503_netname.

If the value of the Level parameter is 1, the server MUST return information about the share by filling
the SHARE_INFO_1 structure in the ShareInfo1 member of the InfoStruct parameter.

 shi1_netname MUST be set to share.shi503_netname.

 shi1_type MUST be set to share.shi503_type.

 shi1_remark MUST be set to share.shi503_remark.

If the value of the Level parameter is 2, the server MUST return information about the share by filling
the SHARE_INFO_2 structure in the ShareInfo2 member of the InfoStruct parameter.

 shi2_netname MUST be set to share.shi503_netname.

 shi2_type MUST be set to share.shi503_type.

 shi2_remark MUST be set to share.shi503_remark.

 shi2_permissions MUST be set to share.shi503_permissions.

 shi2_max_uses MUST be set to share.shi503_max_uses.

 shi2_current_uses MUST be set to the sum of share.shi503_current_uses values retrieved
from both CIFS and SMB2 servers.

 shi2_path MUST be set to share.shi503_path.

 shi2_passwd MUST be set to share.shi503_passwd.

If the value of the Level parameter is 501, the server MUST return information about the share by
filling the SHARE_INFO_501 structure in the ShareInfo501 member of the InfoStruct parameter.

 shi501_netname MUST be set to share.shi503_netname.

 shi501_type MUST be set to share.shi503_type.

 shi501_remark MUST be set to share.shi503_remark.

 shi501_flags MUST be set to share.ShareFlags.

If the value of the Level parameter is 502, the server MUST return information about the share by
filling the SHARE_INFO_502_I structure in the ShareInfo502 member of the InfoStruct parameter.

 shi502_netname MUST be set to share.shi503_netname.

 shi502_type MUST be set to share.shi503_type.

 shi502_remark MUST be set to share.shi503_remark.

120 / 241

[MS-SRVS-Diff] - v20240423
Server Service Remote Protocol
Copyright © 2024 Microsoft Corporation
Release: April 23, 2024

 shi502_permissions MUST be set to share.shi503_permissions.

 shi502_max_uses MUST be set to share.shi503_max_uses.

 shi502_current_uses MUST be set to the sum of share.shi503_current_uses values retrieved
from both CIFS and SMB2 servers.

 shi502_path MUST be set to share.shi503_path.

 shi502_passwd MUST be set to share.shi503_passwd.

 shi502_security_descriptor MUST be set to share.shi503_security_descriptor.

If the value of the Level parameter is 503, the server MUST return information about the share in the
SHARE_INFO_503_I structure by filling the SHARE_INFO_503_I structure in the ShareInfo503
member of the InfoStruct parameter, except that shi503_current_uses MUST be set to the sum of
share.shi503_current_uses values retrieved from both CIFS and SMB2 servers.

The server MUST set the STYPE_CLUSTER_FS, STYPE_CLUSTER_SOFS, and STYPE_CLUSTER_DFS bits
of the shi*_type field to zero; the client MUST ignore them on receipt.

If the value of the Level parameter is 1005, the server MUST return information about the share in
the SHARE_INFO_1005 structure directly by filling the SHARE_INFO_1005 structure in the
ShareInfo1005 member of the InfoStruct parameter.

If both the SMB server and the SMB2 server return an error, the server MUST fail the call with

NERR_NetNameNotFound error code.

The server SHOULD<61> enforce security measures to verify that the caller has the required
permissions to execute this routine. If the caller does not have the required credentials, the server
SHOULD<62> fail the call.

3.1.4.11 NetrShareSetInfo (Opnum 17)

The NetrShareSetInfo method sets the parameters of a shared resource in a ShareList.

 NET_API_STATUS NetrShareSetInfo(
 [in, string, unique] SRVSVC_HANDLE ServerName,
 [in, string] WCHAR* NetName,
 [in] DWORD Level,
 [in, switch_is(Level)] LPSHARE_INFO ShareInfo,
 [in, out, unique] DWORD* ParmErr
);

ServerName: An SRVSVC_HANDLE (section 2.2.1.1) pointer that identifies the server. The client
MUST map this structure to an RPC binding handle ([C706] sections 4.3.5 and 5.1.5.2). If this
parameter is NULL, the local computer is used.

NetName: A pointer to a null-terminated UTF-16 string that specifies the name of the share to set

information for.

Level: Specifies the information level of the data. This parameter MUST be one of the following
values.

Value Meaning

1 LPSHARE_INFO_1

2 LPSHARE_INFO_2

121 / 241

[MS-SRVS-Diff] - v20240423
Server Service Remote Protocol
Copyright © 2024 Microsoft Corporation
Release: April 23, 2024

Value Meaning

502 SHARE_INFO_502_I

503 SHARE_INFO_503_I

1004 LPSHARE_INFO_1004

1005 LPSHARE_INFO_1005

1006 LPSHARE_INFO_1006

1501 LPSHARE_INFO_1501_I

ShareInfo: This parameter is of type LPSHARE_INFO union, as specified in section 2.2.3.6. Its
contents are determined by the value of the Level parameter, as shown in the preceding table.
This parameter MUST NOT contain a null value. If the Level parameter is equal to 1, 2, 502, or
503, the client MUST set the STYPE_CLUSTER_FS, STYPE_CLUSTER_SOFS, and

STYPE_CLUSTER_DFS bits in the shi*_type field of the SHARE_INFO union to zero; the server
MUST ignore them on receipt.

ParmErr: A pointer to a value that receives the index of the first member of the share information
structure that caused the ERROR_INVALID_PARAMETER error, if it occurs.

Return Values: The method returns 0x00000000 (NERR_Success) to indicate success; otherwise, it
returns a nonzero error code. The method can take any specific error code value, as specified in
[MS-ERREF] section 2.2. The most common error codes are listed in the following table.

Return value/code Description

0x00000000

NERR_Success

The client request succeeded.

0x00000005

ERROR_ACCESS_DENIED

Access is denied.

0x00000057

ERROR_INVALID_PARAMETER

The client request failed because the specified parameter is invalid.
For details, see the description that follows for the ParmErr
parameter.

0x00000008

ERROR_NOT_ENOUGH_MEMORY

Not enough storage is available to process this command.

0x00000906

NERR_NetNameNotFound

The share name does not exist.

0x00000032

ERROR_NOT_SUPPORTED

The server does not support branch cache. <63>

0x00000424

ERROR_SERVICE_DOES_NOT_EXIST

The branch cache component does not exist as an installed service.
<64>

0x0000007C

ERROR_INVALID_LEVEL

The system call level is not correct.

In response to a NetrShareSetInfo message, the server MUST set the parameters of a shared resource
or return an error code.

122 / 241

[MS-SRVS-Diff] - v20240423
Server Service Remote Protocol
Copyright © 2024 Microsoft Corporation
Release: April 23, 2024

The NetName parameter specifies the name of the share for which to set information in ShareList.
The NetName MUST be a nonempty, null-terminated UTF-16 string; otherwise, the server MUST fail

the call with an ERROR_INVALID_PARAMETER error code.

The value of the Level parameter can be 1, 2, 502, 503, 1004, 1005, 1006, or 1501. If the value of

the Level parameter is anything else, the server MUST fail the call with an ERROR_INVALID_LEVEL
error code. The value of the Level parameter determines the format of the InfoStruct parameter.

If ServerName does not match any Transport.ServerName in TransportList with the
SVTI2_SCOPED_NAME bit set in Transport.Flags, the server MUST reset ServerName as "*".

The server MUST remove any preceding \\ from the ServerName parameter and normalize the
ServerName parameter as specified in section 3.1.6.8, passing in the updated ServerName parameter
as the ServerName, and an empty string as the ShareName.

The server MUST validate all information that is provided in the SHARE_INFO structure. If a member
of the SHARE_INFO structure is found to be invalid, the server MUST fail the call with an
ERROR_INVALID_PARAMETER error code. The server does the following validation on the

SHARE_INFO structure:

 If shi*_type has the flag STYPE_SPECIAL, a security descriptor MUST NOT be specified in
shi502_security_descriptor (Level = 502).

 If shi*_remark is specified, its length MUST NOT be greater than 48.

 If Level=502 and a security descriptor is provided, it MUST be a valid security descriptor.

If the ParmErr parameter is not NULL and the server finds a member of the SHARE_INFO structure
to be invalid, the server MUST set ParmErr to a value that denotes the index of the member that was
found to have an invalid value and fail the call with ERROR_INVALID_PARAMETER (0x00000057). The
mapping between the values to set and the corresponding member MUST be as specified in section
2.2.2.11.

The server MUST locate a Share from ShareList, where NetName matches Share.ShareName and

ServerName matches Share.ServerName. If no share is found, the server MUST fail the call with a
NERR_NetNameNotFound error code.

If a matching share is found, the server MUST construct a SHARE_INFO_503_I structure and a
SHARE_INFO_1005 structure from the share, as specified in section 3.1.3.

The server MUST update the members of SHARE_INFO_503_I and SHARE_INFO_1005 structures
based on the Level parameter, as follows:

If the Level parameter is equal to 1, all the settings that are defined by the SHARE_INFO_1 structure
as settable (that is, they are not defined as ignored on receipt or ignored for the NetrShareSetInfo
method) MUST be updated. The share properties MUST be updated as follows:

 SHARE_INFO_503_I.shi503_remark MUST be set to shi1_remark.

If the Level parameter is equal to 2, all the settings that are defined by the SHARE_INFO_2 structure

as settable (that is, they are not defined as ignored on receipt or ignored for the NetrShareSetInfo

method) MUST be updated. The share properties MUST be updated as follows:

 SHARE_INFO_503_I.shi503_remark MUST be set to shi2_remark.

 SHARE_INFO_503_I.shi503_max_uses MUST be set to shi2_max_uses.

If the Level parameter is equal to 502, all the settings that are defined by the SHARE_INFO_502_I
structure as settable (that is, they are not defined as ignored on receipt or ignored for the
NetrShareSetInfo method) MUST be updated. The share properties MUST be updated as follows:

123 / 241

[MS-SRVS-Diff] - v20240423
Server Service Remote Protocol
Copyright © 2024 Microsoft Corporation
Release: April 23, 2024

 SHARE_INFO_503_I.shi503_remark MUST be set to shi502_remark.

 SHARE_INFO_503_I.shi503_max_uses MUST be set to shi502_max_uses.

 SHARE_INFO_503_I.shi503_security_descriptor MUST be set to
shi502_security_descriptor.

If the Level parameter is equal to 503, all the settings that are defined by the SHARE_INFO_503_I
structure as settable (that is, they are not defined as ignored on receipt or ignored for the
NetrShareSetInfo method) MUST be updated. The share properties MUST be updated as follows:

 SHARE_INFO_503_I.shi503_remark MUST be set to shi503_remark.

 SHARE_INFO_503_I.shi503_max_uses MUST be set to shi503_max_uses.

 SHARE_INFO_503_I.shi503_security_descriptor MUST be set to
shi503_security_descriptor.

If the Level parameter is equal to 1004, all the settings that are defined by the SHARE_INFO_1004
structure as settable (that is, they are not defined as ignored on receipt or ignored for the
NetrShareSetInfo method) MUST be updated.

 SHARE_INFO_503_I.shi503_remark MUST be set to shi1004_remark.

If the Level parameter is equal to 1005, all the settings that are defined by the SHARE_INFO_1005
structure as settable (that is, they are not defined as ignored on receipt or ignored for the

NetrShareSetInfo method) MUST be updated. Only disk shares can be affected by this Level. The
share MUST be updated as follows:<65>

 SHARE_INFO_1005.shi1005_flags MUST be set to shi1005_flags.

If the Level parameter is equal to 1006, all the settings that are defined by the SHARE_INFO_1006
structure as settable (that is, they are not defined as ignored on receipt or ignored for the
NetrShareSetInfo method) MUST be updated. The share properties are updated as follows:

 SHARE_INFO_503_I.shi503_max_uses MUST be set to shi1006_max_uses.

If the Level parameter is equal to 1501, all the settings that are defined by the SHARE_INFO_1501_I
structure as settable (that is, they are not defined as ignored on receipt or ignored for the
NetrShareSetInfo method) MUST be updated. The share properties MUST be updated as follows:

 SHARE_INFO_503_I.shi503_security_descriptor MUST be set to
shi1501_security_descriptor.

The server MUST invoke the underlying server events as specified in [MS-CIFS] section 3.3.4.10 or
[MS-SMB] section 3.3.4.6 and [MS-SMB2] section 3.3.4.14, providing the updated

SHARE_INFO_503_I structure and the updated SHARE_INFO_1005 structure as input
parameters.

If both the SMB and SMB2 servers return an error, the server MUST fail the call with
ERROR_INVALID_DATA.

If only one of the SMB and SMB2 servers returns STATUS_SUCCESS:

 The server MUST construct a new SHARE_INFO_503_I structure and a new

SHARE_INFO_1005 structure from the Share, as specified in section 3.1.3.

 The server MUST revert the updates made to the share on the server that returned
STATUS_SUCCESS by invoking the underlying server event (as specified in [MS-CIFS] section
3.3.4.10, [MS-SMB] section 3.3.4.6, or [MS-SMB2] section 3.3.4.14), providing the
SHARE_INFO_503_I structure and the SHARE_INFO_1005 structure as input parameters.

124 / 241

[MS-SRVS-Diff] - v20240423
Server Service Remote Protocol
Copyright © 2024 Microsoft Corporation
Release: April 23, 2024

 The server MUST return ERROR_INVALID_DATA to the caller.

If both the SMB and the SMB2 servers return STATUS_SUCCESS, the server MUST update the Share
as follows and return NERR_Success to the caller:

 If the Level parameter is equal to 1, 2, 502, 503, or 1004, Share.Remark MUST be set to

shi*_remark.

 If the Level parameter is equal to 2, 502, 503, or 1006, Share.MaxUses MUST be set to
shi*_max_uses.

 If the Level parameter is equal to 502, 503, or 1501, Share.FileSecurity MUST be set to
shi*_security_descriptor if Level is equal to 502 or 503; otherwise, it MUST be set to NULL.

 If the Level parameter is equal to 1005:

 Share.CscFlags MUST be set to the value of shi1005_flags masked by CSC_MASK as

specified in section 2.2.4.29.

 Share.IsDfs MUST be set to TRUE if shi1005_flags contains SHI1005_FLAGS_DFS or
SHI1005_FLAGS_DFS_ROOT as specified in section 2.2.4.29; otherwise, it MUST be set to
FALSE.

 Share.DoAccessBasedDirectoryEnumeration MUST be set to TRUE if shi1005_flags
contains SHI1005_FLAGS_ACCESS_BASED_DIRECTORY_ENUM bit as specified in section

2.2.4.29; otherwise it MUST be set to FALSE.

 Share.AllowNamespaceCaching MUST be set to True if shi1005_flags contains
SHI1005_FLAGS_ALLOW_NAMESPACE_CACHING bit as specified in section 2.2.4.29;
otherwise, it MUST be set to FALSE.

 Share.ForceSharedDelete MUST be set to TRUE if shi1005_flags contains
SHI1005_FLAGS_FORCE_SHARED_DELETE bit as specified in section 2.2.4.29; otherwise, it
MUST be set to FALSE.

 Share.RestrictExclusiveOpens MUST be set to TRUE if shi1005_flags contains
SHI1005_FLAGS_RESTRICT_EXCLUSIVE_OPENS bit as specified in section 2.2.4.29;
otherwise, it MUST be set to FALSE.

 Share.HashEnabled MUST be set to TRUE if shi1005_flags contains
SHI1005_FLAGS_ENABLE_HASH bit as specified in section 2.2.4.29; otherwise it MUST be set
to FALSE.

 Share.ForceLevel2Oplock MUST be set to TRUE if shi1005_flags contains

SHI1005_FLAGS_FORCE_LEVELII_OPLOCK bit as specified in section 2.2.4.29; otherwise, it
MUST be set to FALSE.

The server SHOULD<66> enforce security measures to verify that the caller has the required
permissions to execute this routine. If the caller does not have the required credentials, the server
SHOULD<67> fail the call.

3.1.4.12 NetrShareDel (Opnum 18)

The NetrShareDel method deletes a share name from the ShareList, which disconnects all
connections to the shared resource. If the share is sticky, all information about the share is also
deleted from permanent storage.<68>

 NET_API_STATUS NetrShareDel(
 [in, string, unique] SRVSVC_HANDLE ServerName,
 [in, string] WCHAR* NetName,

125 / 241

[MS-SRVS-Diff] - v20240423
Server Service Remote Protocol
Copyright © 2024 Microsoft Corporation
Release: April 23, 2024

 [in] DWORD Reserved
);

ServerName: An SRVSVC_HANDLE (section 2.2.1.1) pointer that identifies the server. The client
MUST map this structure to an RPC binding handle ([C706] sections 4.3.5 and 5.1.5.2). If this
parameter is NULL, the local computer is used.

NetName: A pointer to a null-terminated UTF-16 string that specifies the name of the share to delete.

Reserved: The server MUST ignore this parameter.<69>

Return Values: The method returns 0x00000000 (NERR_Success) to indicate success; otherwise, it
returns a nonzero error code. The method can take any specific error code value, as specified in
[MS-ERREF] section 2.2. The most common error codes are listed in the following table.

Return value/code Description

0x00000000

NERR_Success

The client request succeeded.

0x00000005

ERROR_ACCESS_DENIED

Access is denied.

0x00000057

ERROR_INVALID_PARAMETER

The client request failed because the specified parameter is invalid.

0x00000008

ERROR_NOT_ENOUGH_MEMORY

Not enough storage is available to process this command.

0x00000906

NERR_NetNameNotFound

The share name does not exist.

If ServerName does not match any Transport.ServerName in TransportList with the
SVTI2_SCOPED_NAME bit set in Transport.Flags, the server MUST reset ServerName as "*".

The server MUST remove any preceding "\\" from the ServerName parameter and normalize the
ServerName parameter as specified in section 3.1.6.8, passing in the updated ServerName parameter
as the ServerName, and an empty string as the ShareName.

The server MUST look up the ShareList and locate a Share where NetName matches

Share.ShareName and ServerName matches Share.ServerName. If no match is found, the server
MUST fail the call with a NERR_NetNameNotFound error code. If a matching share is found, the server
MUST remove the share from ShareList and free the share object.

If the Share is found and Share.IsPrinterShare is TRUE, PrinterShareCount MUST be decreased by
1. If PrinterShareCount becomes 0, the server MUST invoke the events as specified in section
3.1.6.10, providing SV_TYPE_PRINTQ_SERVER as input parameter.

The server MUST delete the Share by invoking underlying server event as specified in [MS-CIFS]

section 3.3.4.11 and [MS-SMB2] section 3.3.4.15, providing tuple <ServerName, NetName> as input
parameters. If either CIFS or SMB2 servers return STATUS_SUCCESS, the server MUST return
NERR_Success. Otherwise, the server MUST fail the call with an implementation-dependent error.

The server SHOULD<70> enforce security measures to verify that the caller has the required
permissions to execute this routine. If the caller does not have the required credentials, the server
SHOULD<71> fail the call.

126 / 241

[MS-SRVS-Diff] - v20240423
Server Service Remote Protocol
Copyright © 2024 Microsoft Corporation
Release: April 23, 2024

3.1.4.13 NetrShareDelSticky (Opnum 19)

The NetrShareDelSticky method marks the share as nonpersistent by clearing the IsPersistent
member of a Share in the ShareList.

 NET_API_STATUS NetrShareDelSticky(
 [in, string, unique] SRVSVC_HANDLE ServerName,
 [in, string] WCHAR* NetName,
 [in] DWORD Reserved
);

ServerName: An SRVSVC_HANDLE (section 2.2.1.1) pointer that identifies the server. The client
MUST map this structure to an RPC binding handle ([C706] sections 4.3.5 and 5.1.5.2). If this
parameter is NULL, the local computer is used.

NetName: A pointer to a null-terminated UTF-16 string that specifies the name of the share to delete.

Reserved: The server MUST ignore this parameter.<72>

Return Values: The method returns 0x00000000 (NERR_Success) to indicate success; otherwise, it
returns a nonzero error code. The method can take any specific error code value, as specified in
[MS-ERREF] section 2.2.

The primary use of this method is to delete a sticky share whose root directory has been deleted (thus

preventing actual re-creation of the share) but whose entry still exists in permanent storage.<73>
This method can also be used to remove the persistence of a share without deleting the current
incarnation of the share.

If ServerName does not match any Transport.ServerName in TransportList with the
SVTI2_SCOPED_NAME bit set in Transport.Flags, the server MUST reset ServerName as "*".

The server MUST remove any preceding "\\" from the ServerName parameter and normalize the
ServerName parameter as specified in section 3.1.6.8, passing in the updated ServerName parameter

as the ServerName, and an empty string as the ShareName.

The NetName parameter specifies the name of the share to delete. This MUST be a nonempty, null-
terminated UTF-16 string; otherwise, the server MUST fail the call with an
ERROR_INVALID_PARAMETER error code.

The server MUST search through ShareList and locate a Share where Share.ShareName matches
NetName, Share.ServerName matches ServerName, and Share.IsPersistent is TRUE. If a match
is not found, the server MUST fail the call with an NERR_NetNameNotFound error code.

If a match is found, the server MUST make the share nonpersistent by setting Share.IsPersistent to
FALSE and the server MUST delete the share entry from permanent storage.

The server SHOULD<74> enforce security measures to verify that the caller has the required
permissions to execute this routine. If the caller does not have the required credentials, the server
SHOULD<75> fail the call.

3.1.4.14 NetrShareDelStart (Opnum 37)

The NetrShareDelStart method performs the initial phase of a two-phase share delete.

 NET_API_STATUS NetrShareDelStart(
 [in, string, unique] SRVSVC_HANDLE ServerName,
 [in, string] WCHAR* NetName,
 [in] DWORD Reserved,
 [out] PSHARE_DEL_HANDLE ContextHandle

127 / 241

[MS-SRVS-Diff] - v20240423
Server Service Remote Protocol
Copyright © 2024 Microsoft Corporation
Release: April 23, 2024

);

ServerName: An SRVSVC_HANDLE (section 2.2.1.1) pointer that identifies the server. The client
MUST map this structure to an RPC binding handle (see [C706] sections 4.3.5 and 5.1.5.2). If this
parameter is NULL, the local computer is used.

NetName: A pointer to a null-terminated UTF-16 string that specifies the name of the share to delete.

Reserved: Reserved; SHOULD be set to zero when sent and MUST be ignored on receipt.

ContextHandle: A handle for the second phase of the two-phase share delete, in the form of a
PSHARE_DEL_HANDLE (section 2.2.1.3) data type.

Return Values: The method returns 0x00000000 (NERR_Success) to indicate success; otherwise, it
returns a nonzero error code. The method can take any specific error code value, as specified in
[MS-ERREF] section 2.2.

In response to a NetrShareDelStart request, the server MUST mark a share for deletion and return to
the client an RPC context handle that the client can use to actually perform the deletion by calling the
NetrShareDelCommit method.

This two-phase deletion MUST be used to delete IPC$, which is the share that is used for named pipes.

Deleting IPC$ results in the closing of the pipe on which the RPC is being executed. Thus, the client
never receives the response to the RPC. The two-phase delete offers a positive response in phase 1
and then an expected error in phase 2.

If ServerName does not match any Transport.ServerName in TransportList with the
SVTI2_SCOPED_NAME bit set in Transport.Flags, the server MUST reset ServerName as "*".

The server MUST remove any preceding "\\" from the ServerName parameter and normalize the

ServerName parameter as specified in section 3.1.6.8, passing in the updated ServerName parameter
as the ServerName, and an empty string as the ShareName.

The server MUST search through ShareList and locate a Share where Share.ShareName matches
NetName and Share.ServerName matches ServerName. If a match is not found, the server MUST
fail the call with an NERR_NetNameNotFound error code.

If a match is found, the server MUST mark the share for deletion by setting the
IsMarkedForDeletion member of the Share element in ShareList. The share MUST remain available

until the client calls the NetrShareDelCommit method.

The server MUST return a handle to the share being deleted in the ContextHandle parameter. The
client is expected to use the handle to actually delete the share by calling the NetrShareDelCommit
method.

The server SHOULD<76> enforce security measures to verify that the caller has the required
permissions to execute this routine. If the caller does not have the required credentials, the server
SHOULD<77> fail the call.

3.1.4.15 NetrShareDelCommit (Opnum 38)

The NetrShareDelCommit method performs the final phase of a two-phase share delete.

 NET_API_STATUS NetrShareDelCommit(
 [in, out] PSHARE_DEL_HANDLE ContextHandle
);

128 / 241

[MS-SRVS-Diff] - v20240423
Server Service Remote Protocol
Copyright © 2024 Microsoft Corporation
Release: April 23, 2024

ContextHandle: A handle returned by the first phase of a two-phase share delete.

Return Values: The method returns 0x00000000 (NERR_Success) to indicate success. Otherwise, the
method returns a nonzero error code unless the share being deleted is IPC$. If the share being
deleted is IPC$, the return value is not meaningful. The method can take any specific error code

value, as specified in [MS-ERREF] section 2.2.

The NetrShareDelCommit message is the continuation of the NetrShareDelStart message and MUST
cause the share to be actually deleted, which disconnects all connections to the share, or MUST return
an error code.

This method can be used to delete the IPC$ share as well as other shares. When the share is not
IPC$, only a return value of 0 indicates success.

This two-phase deletion MUST be used to delete IPC$, which is the share that is used for named pipes.

Deleting IPC$ results in the closing of the pipe on which the RPC is being executed. Thus, the client
never receives the response to the RPC. The two-phase delete offers a positive response in phase 1
and then an expected error in phase 2.

ContextHandle MUST reference the share to be deleted in the NetrShareDelStart method. If a share
is not found, the server MUST fail the call with an ERROR_INVALID_PARAMETER error code.

If a share is found, but the IsMarkedForDeletion member of the Share is not set, the server MUST

fail the call with an ERROR_INVALID_PARAMETER error code.

Otherwise, the server MUST delete the share by invoking the underlying server event, as specified in
[MS-CIFS] section 3.3.4.11and [MS-SMB2] section 3.3.4.15, providing tuple <ServerName,
NetName> as input parameters.

The server does not enforce any security measures when processing this call.

3.1.4.16 NetrShareCheck (Opnum 20)

The NetrShareCheck method checks whether a server is sharing a device.

 NET_API_STATUS NetrShareCheck(
 [in, string, unique] SRVSVC_HANDLE ServerName,
 [in, string] WCHAR* Device,
 [out] DWORD* Type
);

ServerName: An SRVSVC_HANDLE (section 2.2.1.1) pointer that identifies the server. The client
MUST map this structure to an RPC binding handle (see [C706] sections 4.3.5 and 5.1.5.2). The
server MUST ignore this parameter.

Device: A pointer to a null-terminated UTF-16 string that specifies the name of the device to check for
shared access.

Type: A pointer to a DWORD that receives the type of the shared device. This parameter is set only if

the method returns successfully. On success, the server MUST set this parameter as specified in
section 2.2.2.4, except that STYPE_SPECIAL is not returned.

Return Values: The method returns 0x00000000 (NERR_Success) to indicate success; otherwise, it
returns a nonzero error code. The method can take any specific error code value, as specified in
[MS-ERREF] section 2.2. The most common error codes are listed in the following table.

Return value/code Description

0x00000000 The client request succeeded.

129 / 241

[MS-SRVS-Diff] - v20240423
Server Service Remote Protocol
Copyright © 2024 Microsoft Corporation
Release: April 23, 2024

Return value/code Description

NERR_Success

0x00000008

ERROR_NOT_ENOUGH_MEMORY

Not enough storage is available to process this command.

0x00000907

NERR_DeviceNotShared

The device is not shared.

In response to a NetrShareCheck request, the server MUST scan through the ShareList. For each
share, if Share.LocalPath, as specified in [MS-SMB2] section 3.3.1.6 or [MS-CIFS] section 3.3.1.2,
points to the device or volume specified by the caller, the server MUST return the type of the
matching device in the Type parameter. The type can be one of the values that are listed in Share
Types (section 2.2.2.4). In response to a NetrShareCheck message, the server MUST check whether it
is sharing a device and return a response to the client.

The Device parameter specifies the name of the shared device to check for. The server MUST
enumerate the active shared devices, and if it finds a match to the Device parameter, the server
MUST return the type of the matching device in the Type parameter. The type can be one of the
values that are listed in Share Types. The server MUST set the STYPE_CLUSTER_FS,
STYPE_CLUSTER_SOFS, and STYPE_CLUSTER_DFS bits of the Type parameter to zero; the client
MUST ignore them on receipt.

If no match is found, the server MUST fail the call by using an NERR_DeviceNotShared error code.

The server does not enforce any security measures when it processes this call.

3.1.4.17 NetrServerGetInfo (Opnum 21)

The NetrServerGetInfo method retrieves current configuration information for CIFS and SMB Version
1.0 servers.

 NET_API_STATUS NetrServerGetInfo(
 [in, string, unique] SRVSVC_HANDLE ServerName,
 [in] DWORD Level,
 [out, switch_is(Level)] LPSERVER_INFO InfoStruct
);

ServerName: An SRVSVC_HANDLE (section 2.2.1.1) pointer that identifies the server. The client
MUST map this structure to an RPC binding handle (see [C706] sections 4.3.5 and 5.1.5.2).

Level: Specifies the information level of the data. The value of the Level parameter determines the
contents of the InfoStruct parameter. This parameter MUST be one of the following values.

Value Meaning

100 LPSERVER_INFO_100

101 LPSERVER_INFO_101

102 LPSERVER_INFO_102

103 LPSERVER_INFO_103

502 LPSERVER_INFO_502

503 LPSERVER_INFO_503

130 / 241

[MS-SRVS-Diff] - v20240423
Server Service Remote Protocol
Copyright © 2024 Microsoft Corporation
Release: April 23, 2024

InfoStruct: This is a structure of type LPSERVER_INFO, as specified in section 2.2.3.7. The content of
the InfoStruct parameter is determined by the Level parameter, as the preceding table shows.

Return Values: The method returns 0x00000000 (NERR_Success) to indicate success; otherwise, it
returns a nonzero error code. The method can take any specific error code value, as specified in

[MS-ERREF] section 2.2. The most common error codes are listed in the following table.

Return value/code Description

0x00000000

NERR_Success

The client request succeeded.

0x00000005

ERROR_ACCESS_DENIED

Access is denied.

0x0000007C

ERROR_INVALID_LEVEL

The system call level is not correct.

0x00000057

ERROR_INVALID_PARAMETER

The client request failed because the specified parameter is invalid.

0x00000008

ERROR_NOT_ENOUGH_MEMORY

Not enough storage is available to process this command.

In response to the NetrServerGetInfo request, the server MUST return configuration information from
the ServerConfiguration object based on the value of the Level parameter.

The value of the Level parameter can be 100, 101, 102, 502, or 503. If the Level parameter has any

other value, the server MUST fail the call with an ERROR_INVALID_LEVEL error code.<78>

The value of the Level parameter determines the format of the InfoStruct parameter.

If the value of the Level parameter is 100, the server MUST return its information by filling the

SERVER_INFO_100 structure in the ServerInfo100 member of the InfoStruct parameter.

 sv100_platform_id MUST be set to ServerConfiguration.ServerInfo103.sv103_platform_id.

 If the ServerName parameter is NULL, sv100_name MUST be set to

ServerConfiguration.ServerInfo103.sv103_name. Otherwise, sv100_name MUST be set to
the value of ServerName.

If the value of the Level parameter is 101, the server MUST return its information by filling the
SERVER_INFO_101 structure in the ServerInfo101 member of the InfoStruct parameter.

 sv101_platform_id MUST be set to ServerConfiguration.ServerInfo103.sv103_platform_id.

 If the ServerName parameter is NULL, sv101_name MUST be set to
ServerConfiguration.ServerInfo103.sv103_name. Otherwise, sv101_name MUST be set to the

value of ServerName.

 sv101_sv101_version_major MUST be set to
ServerConfiguration.ServerInfo103.sv103_version_major.

 sv101_version_minor MUST be set to
ServerConfiguration.ServerInfo103.sv103_version_minor.

 sv101_type MUST be set to GlobalServerAnnounce.

 sv101_comment MUST be set to ServerConfiguration.ServerInfo103.sv103_comment.

131 / 241

[MS-SRVS-Diff] - v20240423
Server Service Remote Protocol
Copyright © 2024 Microsoft Corporation
Release: April 23, 2024

If the value of the Level parameter is 102, the server MUST return its information by filling the
SERVER_INFO_102 structure in the ServerInfo102 member of the InfoStruct parameter.

 sv102_platform_id MUST be set to
ServerConfiguration.ServerInfo103.sv103_platform_id.

 If the ServerName parameter is NULL, sv102_name MUST be set to
ServerConfiguration.ServerInfo103.sv103_name. Otherwise, sv102_name MUST be set to
the value of ServerName.

 sv102_ version_major MUST be set to
ServerConfiguration.ServerInfo103.sv103_version_major.

 sv102_version_minor MUST be set to
ServerConfiguration.ServerInfo103.sv103_version_minor.

 sv102_type MUST be set to GlobalServerAnnounce.

 sv102_comment MUST be set to ServerConfiguration.ServerInfo103.sv103_comment.

 sv102_users MUST be set to ServerConfiguration.ServerInfo103.sv103_users.

 sv102_disc MUST be set to ServerConfiguration.ServerInfo103.sv103_disc.

 sv102_hidden MUST be set to ServerConfiguration.ServerInfo103.sv103_hidden.

 sv102_anndelta MUST be set to ServerConfiguration.ServerInfo103.sv103_anndelta.

 sv102_licenses MUST be set to 0.

If the value of the Level parameter is 103, the server MUST return server information in
ServerConfiguration.ServerInfo103 directly by filling the SERVER_INFO_103 structure in the
ServerInfo103 member of the InfoStruct parameter and setting sv103_type to
GlobalServerAnnounce.<79>

If the value of the Level parameter is 502, the server MUST return its information by filling the
SERVER_INFO_502 structure in the ServerInfo502 member of the InfoStruct parameter.

 sv502_sessopens MUST be set to ServerConfiguration.ServerInfo599.sv599_sessopens.

 sv502_sessvcs MUST be set to ServerConfiguration.ServerInfo599.sv599_sessvcs.

 sv502_opensearch MUST be set to
ServerConfiguration.ServerInfo599.sv599_opensearch.

 sv502_sizreqbuf MUST be set to ServerConfiguration.ServerInfo599.sv599_sizreqbuf.

 sv502_initworkitems MUST be set to
ServerConfiguration.ServerInfo599.sv599_initworkitems.

 sv502_maxworkitems MUST be set to

ServerConfiguration.ServerInfo599.sv599_maxworkitems.

 sv502_rawworkitems MUST be set to ServerConfiguration.ServerInfo599.sv599_rawworkitems.

 sv502_irpstacksize MUST be set to
ServerConfiguration.ServerInfo599.sv599_irpstacksize.

 sv502_maxrawbuflen MUST be set to ServerConfiguration.ServerInfo599.sv599_maxrawbuflen.

 sv502_sessusers MUST be set to ServerConfiguration.ServerInfo599.sv599_sessusers.

132 / 241

[MS-SRVS-Diff] - v20240423
Server Service Remote Protocol
Copyright © 2024 Microsoft Corporation
Release: April 23, 2024

 sv502_sessconns MUST be set to ServerConfiguration.ServerInfo599.sv599_sessconns.

 sv502_maxpagedmemoryusage MUST be set to
ServerConfiguration.ServerInfo599.sv599_maxpagedmemoryusage.

 sv502_maxnonpagedmemoryusage MUST be set to

ServerConfiguration.ServerInfo599.sv599_maxnonpagedmemoryusage.

 sv502_enablesoftcompat MUST be set to
ServerConfiguration.ServerInfo599.sv599_enablesoftcompat.

 sv502_enableforcedlogoff MUST be set to
ServerConfiguration.ServerInfo599.sv599_enableforcedlogoff.

 sv502_timesource MUST be set to ServerConfiguration.ServerInfo599.sv599_timesource.

 sv502_acceptdownlevelapis MUST be set to

ServerConfiguration.ServerInfo599.sv599_acceptdownlevelapis.

 sv502_lmannounce MUST be set to ServerConfiguration.ServerInfo599.sv599_
lmannounce.

If the value of the Level parameter is 503, the server MUST return its information by filling the
SERVER_INFO_503 structure in the ServerInfo503 member of the InfoStruct parameter.

 sv503_sessopens MUST be set to ServerConfiguration.ServerInfo599.sv599_sessopens.

 sv503_sessvcs MUST be set to ServerConfiguration.ServerInfo599.sv599_sessvcs.

 sv503_opensearch MUST be set to
ServerConfiguration.ServerInfo599.sv599_opensearch.

 sv503_sizreqbuf MUST be set to ServerConfiguration.ServerInfo599.sv599_sizreqbuf.

 sv503_initworkitems MUST be set to

ServerConfiguration.ServerInfo599.sv599_initworkitems.

 sv503_maxworkitems MUST be set to

ServerConfiguration.ServerInfo599.sv599_maxworkitems.

 sv503_rawworkitems MUST be set to
ServerConfiguration.ServerInfo599.sv599_rawworkitems.

 sv503_irpstacksize MUST be set to
ServerConfiguration.ServerInfo599.sv599_irpstacksize.

 sv503_maxrawbuflen MUST be set to
ServerConfiguration.ServerInfo599.sv599_maxrawbuflen.

 sv503_sessusers MUST be set to ServerConfiguration.ServerInfo599.sv599_sessusers.

 sv503_sessconns MUST be set to ServerConfiguration.ServerInfo599.sv599_sessconns.

 sv503_maxpagedmemoryusage MUST be set to
ServerConfiguration.ServerInfo599.sv599_maxpagedmemoryusage.

 sv503_maxnonpagedmemoryusage MUST be set to
ServerConfiguration.ServerInfo599.sv599_maxnonpagedmemoryusage.

 sv503_enablesoftcompat MUST be set to
ServerConfiguration.ServerInfo599.sv599_enablesoftcompat.

133 / 241

[MS-SRVS-Diff] - v20240423
Server Service Remote Protocol
Copyright © 2024 Microsoft Corporation
Release: April 23, 2024

 sv503_enableforcedlogoff MUST be set to
ServerConfiguration.ServerInfo599.sv599_enableforcedlogoff.

 sv503_timesource MUST be set to ServerConfiguration.ServerInfo599.sv599_timesource.

 sv503_acceptdownlevelapis MUST be set to

ServerConfiguration.ServerInfo599.sv599_acceptdownlevelapis.

 sv503_lmannounce MUST be set to
ServerConfiguration.ServerInfo599.sv599_lmannounce.

 sv503_domain MUST be set to ServerConfiguration.ServerInfo599.sv599_domain.

 sv503_maxcopyreadlen MUST be set to
ServerConfiguration.ServerInfo599.sv599_maxcopyreadlen.

 sv503_maxcopywritelen MUST be set to

ServerConfiguration.ServerInfo599.sv599_maxcopywritelen.

 sv503_minkeepsearch MUST be set to
ServerConfiguration.ServerInfo599.sv599_minkeepsearch.

 sv503_maxkeepsearch MUST be set to
ServerConfiguration.ServerInfo599.sv599_maxkeepsearch.

 sv503_minkeepcomplsearch MUST be set to

ServerConfiguration.ServerInfo599.sv599_minkeepcomplsearch.

 sv503_maxkeepcomplsearch MUST be set to
ServerConfiguration.ServerInfo599.sv599_maxkeepcomplsearch.

 sv503_threadcountadd MUST be set to
ServerConfiguration.ServerInfo599.sv599_threadcountadd.

 sv503_numblockthreads MUST be set to

ServerConfiguration.ServerInfo599.sv599_numblockthreads.

 sv503_scavtimeout MUST be set to
ServerConfiguration.ServerInfo599.sv599_scavtimeout.

 sv503_minrcvqueue MUST be set to
ServerConfiguration.ServerInfo599.sv599_minrcvqueue.

 sv503_minfreeworkitems MUST be set to
ServerConfiguration.ServerInfo599.sv599_minfreeworkitems.

 sv503_xactmemsize MUST be set to

ServerConfiguration.ServerInfo599.sv599_xactmemsize.

 sv503_threadpriority MUST be set to
ServerConfiguration.ServerInfo599.sv599_threadpriority.

 sv503_maxmpxct MUST be set to ServerConfiguration.ServerInfo599.sv599_maxmpxct.

 sv503_oplockbreakwait MUST be set to
ServerConfiguration.ServerInfo599.sv599_oplockbreakwait.

 sv503_oplockbreakresponsewait MUST be set to
ServerConfiguration.ServerInfo599.sv599_oplockbreakresponsewait.

134 / 241

[MS-SRVS-Diff] - v20240423
Server Service Remote Protocol
Copyright © 2024 Microsoft Corporation
Release: April 23, 2024

 sv503_enableoplocks MUST be set to
ServerConfiguration.ServerInfo599.sv599_enableoplocks.

 sv503_enableoplockforceclose MUST be set to
ServerConfiguration.ServerInfo599.sv599_enableoplockforceclose.

 sv503_enablefcbopens MUST be set to
ServerConfiguration.ServerInfo599.sv599_enablefcbopens.

 sv503_enableraw MUST be set to ServerConfiguration.ServerInfo599.sv599_enableraw.

 sv503_enablesharednetdrives MUST be set to
ServerConfiguration.ServerInfo599.sv599_enablesharednetdrives.

 sv503_minfreeconnections MUST be set to
ServerConfiguration.ServerInfo599.sv599_minfreeconnections.

 sv503_maxfreeconnections MUST be set to

ServerConfiguration.ServerInfo599.sv599_maxfreeconnections.

The server SHOULD<80> enforce security measures to verify that the caller has the required
permissions to execute this routine. If the caller does not have the required credentials, the server
SHOULD<81> fail the call.

The ServerName parameter MUST be either NULL or a null-terminated string, as described in section

2.2.1.1. If it is non-NULL, the length of the string MUST be less than 1,024 or the server MUST fail the
call with ERROR_INVALID_PARAMETER.

3.1.4.18 NetrServerSetInfo (Opnum 22)

The NetrServerSetInfo method sets server operating parameters for CIFS and SMB Version 1.0 file

servers; it can set them individually or collectively. The information is stored in a way that allows it to
remain in effect after the system is reinitialized.<82>

 NET_API_STATUS NetrServerSetInfo(
 [in, string, unique] SRVSVC_HANDLE ServerName,
 [in] DWORD Level,
 [in, switch_is(Level)] LPSERVER_INFO ServerInfo,
 [in, out, unique] DWORD* ParmErr
);

ServerName: An SRVSVC_HANDLE (section 2.2.1.1) pointer that identifies the server. The client
MUST map this structure to an RPC binding handle (see [C706] sections 4.3.5 and 5.1.5.2). The
server MUST ignore this parameter.

Level: Specifies the information level of the data. The value of the Level parameter determines the

contents of the ServerInfo parameter. This parameter MUST be one of the values in the following
table. The NetrServerSetInfo method does not support a Level value of 103. If a Level value of
103 is specified, the server MUST return ERROR_INVALID_LEVEL.

Value Meaning

101 LPSERVER_INFO_101

102 LPSERVER_INFO_102

502 LPSERVER_INFO_502

503 LPSERVER_INFO_503

135 / 241

[MS-SRVS-Diff] - v20240423
Server Service Remote Protocol
Copyright © 2024 Microsoft Corporation
Release: April 23, 2024

Value Meaning

599 LPSERVER_INFO_599

1005 LPSERVER_INFO_1005

1107 LPSERVER_INFO_1107

1010 LPSERVER_INFO_1010

1016 LPSERVER_INFO_1016

1017 LPSERVER_INFO_1017

1018 LPSERVER_INFO_1018

1501 LPSERVER_INFO_1501

1502 LPSERVER_INFO_1502

1503 LPSERVER_INFO_1503

1506 LPSERVER_INFO_1506

1510 LPSERVER_INFO_1510

1511 LPSERVER_INFO_1511

1512 LPSERVER_INFO_1512

1513 LPSERVER_INFO_1513

1514 LPSERVER_INFO_1514

1515 LPSERVER_INFO_1515

1516 LPSERVER_INFO_1516

1518 LPSERVER_INFO_1518

1523 LPSERVER_INFO_1523

1528 LPSERVER_INFO_1528

1529 LPSERVER_INFO_1529

1530 LPSERVER_INFO_1530

1533 LPSERVER_INFO_1533

1534 LPSERVER_INFO_1534

1535 LPSERVER_INFO_1535

1536 LPSERVER_INFO_1536

1538 LPSERVER_INFO_1538

1539 LPSERVER_INFO_1539

1540 LPSERVER_INFO_1540

1541 LPSERVER_INFO_1541

1542 LPSERVER_INFO_1542

136 / 241

[MS-SRVS-Diff] - v20240423
Server Service Remote Protocol
Copyright © 2024 Microsoft Corporation
Release: April 23, 2024

Value Meaning

1543 LPSERVER_INFO_1543

1544 LPSERVER_INFO_1544

1545 LPSERVER_INFO_1545

1546 LPSERVER_INFO_1546

1547 LPSERVER_INFO_1547

1548 LPSERVER_INFO_1548

1549 LPSERVER_INFO_1549

1550 LPSERVER_INFO_1550

1552 LPSERVER_INFO_1552

1553 LPSERVER_INFO_1553

1554 LPSERVER_INFO_1554

1555 LPSERVER_INFO_1555

1556 LPSERVER_INFO_1556

ServerInfo: This is a structure of type LPSERVER_INFO, as specified in section 2.2.3.7. The content
of the ServerInfo parameter is determined by the Level parameter, as the preceding table shows.

ParmErr: A pointer to a value that receives the index of the first member of the server information

structure that caused an ERROR_INVALID_PARAMETER error code, if it occurs.

Return Values: The method returns 0x00000000 (NERR_Success) to indicate success; otherwise, it
returns a nonzero error code. The method can take any specific error code value, as specified in

[MS-ERREF] section 2.2. The most common error codes are listed in the following table.

Return value/code Description

0x00000000

NERR_Success

The client request succeeded.

0x00000005

ERROR_ACCESS_DENIED

Access is denied.

0x0000007C

ERROR_INVALID_LEVEL

The system call level is not correct.

0x00000057

ERROR_INVALID_PARAMETER

The client request failed because the specified parameter is invalid. For
details see the description that follows for the ParmErr parameter.

0x00000008

ERROR_NOT_ENOUGH_MEMORY

Not enough storage is available to process this command.

In response to a NetrServerSetInfo request, the server MUST update the ServerConfiguration object
based on the caller-supplied values and the Level. The server can set its operating parameters
individually or collectively. The information is stored in a way that allows it to remain in effect after
the system is reinitialized.

137 / 241

[MS-SRVS-Diff] - v20240423
Server Service Remote Protocol
Copyright © 2024 Microsoft Corporation
Release: April 23, 2024

The value of the Level parameter can be 101, 102, 502, 503, 599, 1005, 1107, 1010, 1016, 1017,
1018, 1501, 1502, 1503, 1506, 1510, 1511, 1512, 1513, 1514, 1515, 1516, 1518, 1523, 1528, 1529,

1530, 1533, 1534, 1535, 1536, 1538, 1539, 1540, 1541, 1542, 1543, 1544, 1545, 1546, 1547, 1548,
1549, 1550, 1552, 1553, 1554, 1555, and 1556.

As previously stated, a Level value of 103 is not supported by the NetrServerSetInfo method. If the
Level parameter has any other value, the server MUST fail the call with an ERROR_INVALID_LEVEL
error code.

After receiving the NetrServerSetInfo method, the server MUST update the server setting that
corresponds to the ServerInfo parameter. The format for the ServerInfo parameter is as specified in
SERVER_INFO (section 2.2.3.7).

If the Level parameter is equal to 101, the server MUST update all the settings in

ServerConfiguration.ServerInfo103 that are defined by the SERVER_INFO_101 structure as
settable (that is, they are not defined as ignored on receipt or ignored for the NetrServerSetInfo
method).

If the Level parameter is equal to 102, the server MUST update all the settings in
ServerConfiguration.ServerInfo103 that are defined by the SERVER_INFO_102 structure as
settable (that is, they are not defined as ignored on receipt or ignored for the NetrServerSetInfo

method).

If the Level parameter is equal to 502, the server MUST update all the settings in
ServerConfiguration.ServerInfo599 that are defined by the SERVER_INFO_502 structure as
settable (that is, they are not defined as ignored on receipt or ignored for the NetrServerSetInfo
method).

If the Level parameter is equal to 503, the server MUST update all the settings in
ServerConfiguration.ServerInfo599 that are defined by the SERVER_INFO_503 structure as

settable (that is, they are not defined as ignored on receipt or ignored for the NetrServerSetInfo
method).

If the Level parameter is equal to 599, the server MUST update all the settings in

ServerConfiguration.ServerInfo599 that are defined by the SERVER_INFO_599 structure as
settable (that is, they are not defined as ignored on receipt or ignored for the NetrServerSetInfo
method).

If the Level parameter is equal to 1005, the server MUST update all the settings in

ServerConfiguration that are defined by the SERVER_INFO_1005 structure as settable (that is, they
are not defined as ignored on receipt or ignored for the NetrServerSetInfo method).

If the Level parameter is equal to 1107, the server MUST update all the settings in
ServerConfiguration.ServerInfo103 that are defined by the SERVER_INFO_1107 structure as
settable (that is, they are not defined as ignored on receipt or ignored for the NetrServerSetInfo
method).

If the Level parameter is equal to 1016, the server MUST update all the settings in
ServerConfiguration.ServerInfo103 that are defined by the SERVER_INFO_1016 structure as
settable (that is, they are not defined as ignored on receipt or ignored for the NetrServerSetInfo

method).

If the Level parameter is equal to 1017, the server MUST update all the settings in
ServerConfiguration.ServerInfo103 that are defined by the SERVER_INFO_1017 structure as
settable (that is, they are not defined as ignored on receipt or ignored for the NetrServerSetInfo

method).

If the Level parameter is equal to 1018, the server MUST update all the settings in
ServerConfiguration.ServerInfo103 that are defined by the SERVER_INFO_1018 structure as

138 / 241

[MS-SRVS-Diff] - v20240423
Server Service Remote Protocol
Copyright © 2024 Microsoft Corporation
Release: April 23, 2024

settable (that is, they are not defined as ignored on receipt or ignored for the NetrServerSetInfo
method).

If the Level parameter is equal to 1501, the server MUST update all the settings in
ServerConfiguration.ServerInfo599 that are defined by the SERVER_INFO_1501 structure as

settable (that is, they are not defined as ignored on receipt or ignored for the NetrServerSetInfo
method).

If the Level parameter is equal to 1502, the server MUST update all the settings in
ServerConfiguration.ServerInfo599 that are defined by the SERVER_INFO_1502 structure as
settable (that is, they are not defined as ignored on receipt or ignored for the NetrServerSetInfo
method).

If the Level parameter is equal to 1503, the server MUST update all the settings in

ServerConfiguration.ServerInfo599 that are defined by the SERVER_INFO_1503 structure as
settable (that is, they are not defined as ignored on receipt or ignored for the NetrServerSetInfo
method).

If the Level parameter is equal to 1506, the server MUST update all the settings in
ServerConfiguration.ServerInfo599 that are defined by the SERVER_INFO_1506 structure as
settable (that is, they are not defined as ignored on receipt or ignored for the NetrServerSetInfo

method).

If the Level parameter is equal to 1510, the server MUST update all the settings in
ServerConfiguration.ServerInfo599 that are defined by the SERVER_INFO_1510 structure as
settable (that is, they are not defined as ignored on receipt or ignored for the NetrServerSetInfo
method).

If the Level parameter is equal to 1511, the server MUST update all the settings in
ServerConfiguration.ServerInfo599 that are defined by the SERVER_INFO_1511 structure as

settable (that is, they are not defined as ignored on receipt or ignored for the NetrServerSetInfo
method).

If the Level parameter is equal to 1512, the server MUST update all the settings in

ServerConfiguration.ServerInfo599 that are defined by the SERVER_INFO_1512 structure as
settable (that is, they are not defined as ignored on receipt or ignored for the NetrServerSetInfo
method).

If the Level parameter is equal to 1513, the server MUST update all the settings in

ServerConfiguration.ServerInfo599 that are defined by the SERVER_INFO_1513 structure as settable
(that is, they are not defined as ignored on receipt or ignored for the NetrServerSetInfo method).

If the Level parameter is equal to 1514, the server MUST update all the settings in
ServerConfiguration.ServerInfo599 that are defined by the SERVER_INFO_1514 structure as
settable (that is, they are not defined as ignored on receipt or ignored for the NetrServerSetInfo
method).

If the Level parameter is equal to 1515, the server MUST update all the settings in
ServerConfiguration.ServerInfo599 that are defined by the SERVER_INFO_1515 structure as
settable (that is, they are not defined as ignored on receipt or ignored for the NetrServerSetInfo

method).

If the Level parameter is equal to 1516, the server MUST update all the settings in
ServerConfiguration.ServerInfo599 that are defined by the SERVER_INFO_1516 structure as
settable (that is, they are not defined as ignored on receipt or ignored for the NetrServerSetInfo

method).

If the Level parameter is equal to 1518, the server MUST update all the settings in
ServerConfiguration.ServerInfo599 that are defined by the SERVER_INFO_1518 structure as

139 / 241

[MS-SRVS-Diff] - v20240423
Server Service Remote Protocol
Copyright © 2024 Microsoft Corporation
Release: April 23, 2024

settable (that is, they are not defined as ignored on receipt or ignored for the NetrServerSetInfo
method).

If the Level parameter is equal to 1523, the server MUST update all the settings in
ServerConfiguration.ServerInfo599 that are defined by the SERVER_INFO_1523 structure as

settable (that is, they are not defined as ignored on receipt or ignored for the NetrServerSetInfo
method).

If the Level parameter is equal to 1528, the server MUST update all the settings in
ServerConfiguration.ServerInfo599 that are defined by the SERVER_INFO_1528 structure as
settable (that is, they are not defined as ignored on receipt or ignored for the NetrServerSetInfo
method).

If the Level parameter is equal to 1529, the server MUST update all the settings in

ServerConfiguration.ServerInfo599 that are defined by the SERVER_INFO_1529 structure as
settable (that is, they are not defined as ignored on receipt or ignored for the NetrServerSetInfo
method).

If the Level parameter is equal to 1530, the server MUST update all the settings in
ServerConfiguration.ServerInfo599 that are defined by the SERVER_INFO_1530 structure as
settable (that is, they are not defined as ignored on receipt or ignored for the NetrServerSetInfo

method).

If the Level parameter is equal to 1533, the server MUST update all the settings in
ServerConfiguration.ServerInfo599 that are defined by the SERVER_INFO_1533 structure as
settable (that is, they are not defined as ignored on receipt or ignored for the NetrServerSetInfo
method).

If the Level parameter is equal to 1534, the server MUST update all the settings in
ServerConfiguration.ServerInfo599 that are defined by the SERVER_INFO_1534 structure as

settable (that is, they are not defined as ignored on receipt or ignored for the NetrServerSetInfo
method).

If the Level parameter is equal to 1535, the server MUST update all the settings in

ServerConfiguration.ServerInfo599 that are defined by the SERVER_INFO_1535 structure as
settable (that is, they are not defined as ignored on receipt or ignored for the NetrServerSetInfo
method).

If the Level parameter is equal to 1536, the server MUST update all the settings in

ServerConfiguration.ServerInfo599 that are defined by the SERVER_INFO_1536 structure as
settable (that is, they are not defined as ignored on receipt or ignored for the NetrServerSetInfo
method).

If the Level parameter is equal to 1538, the server MUST update all the settings in
ServerConfiguration.ServerInfo599 that are defined by the SERVER_INFO_1538 structure as
settable (that is, they are not defined as ignored on receipt or ignored for the NetrServerSetInfo

method).

If the Level parameter is equal to 1539, the server MUST update all the settings in
ServerConfiguration.ServerInfo599 that are defined by the SERVER_INFO_1539 structure as

settable (that is, they are not defined as ignored on receipt or ignored for the NetrServerSetInfo
method).

If the Level parameter is equal to 1540, the server MUST update all the settings in
ServerConfiguration.ServerInfo599 that are defined by the SERVER_INFO_1540 structure as

settable (that is, they are not defined as ignored on receipt or ignored for the NetrServerSetInfo
method).

If the Level parameter is equal to 1541, the server MUST update all the settings in
ServerConfiguration.ServerInfo599 that are defined by the SERVER_INFO_1541 structure as

140 / 241

[MS-SRVS-Diff] - v20240423
Server Service Remote Protocol
Copyright © 2024 Microsoft Corporation
Release: April 23, 2024

settable (that is, they are not defined as ignored on receipt or ignored for the NetrServerSetInfo
method).

If the Level parameter is equal to 1542, the server MUST update all the settings in
ServerConfiguration.ServerInfo599 that are defined by the SERVER_INFO_1542 structure as

settable (that is, they are not defined as ignored on receipt or ignored for the NetrServerSetInfo
method).

If the Level parameter is equal to 1543, the server MUST update all the settings in
ServerConfiguration.ServerInfo599 that are defined by the SERVER_INFO_1543 structure as
settable (that is, they are not defined as ignored on receipt or ignored for the NetrServerSetInfo
method).

If the Level parameter is equal to 1544, the server MUST update all the settings in

ServerConfiguration.ServerInfo599 that are defined by the SERVER_INFO_1544 structure as
settable (that is, they are not defined as ignored on receipt or ignored for the NetrServerSetInfo
method).

If the Level parameter is equal to 1545, the server MUST update all the settings in
ServerConfiguration.ServerInfo599 that are defined by the SERVER_INFO_1545 structure as
settable (that is, they are not defined as ignored on receipt or ignored for the NetrServerSetInfo

method).

If the Level parameter is equal to 1546, the server MUST update all the settings in
ServerConfiguration.ServerInfo599 that are defined by the SERVER_INFO_1546 structure as
settable (that is, they are not defined as ignored on receipt or ignored for the NetrServerSetInfo
method).

If the Level parameter is equal to 1547, the server MUST update all the settings in
ServerConfiguration.ServerInfo599 that are defined by the SERVER_INFO_1547 structure as

settable (that is, they are not defined as ignored on receipt or ignored for the NetrServerSetInfo
method).

If the Level parameter is equal to 1548, the server MUST update all the settings in

ServerConfiguration.ServerInfo599 that are defined by the SERVER_INFO_1548 structure as
settable (that is, they are not defined as ignored on receipt or ignored for the NetrServerSetInfo
method).

If the Level parameter is equal to 1549, the server MUST update all the settings in

ServerConfiguration.ServerInfo599 that are defined by the SERVER_INFO_1549 structure as
settable (that is, they are not defined as ignored on receipt or ignored for the NetrServerSetInfo
method).

If the Level parameter is equal to 1550, the server MUST update all the settings in
ServerConfiguration.ServerInfo599 that are defined by the SERVER_INFO_1550 structure as
settable (that is, they are not defined as ignored on receipt or ignored for the NetrServerSetInfo

method).

If the Level parameter is equal to 1552, the server MUST update all the settings in
ServerConfiguration.ServerInfo599 that are defined by the SERVER_INFO_1552 structure as

settable (that is, they are not defined as ignored on receipt or ignored for the NetrServerSetInfo
method).

If the Level parameter is equal to 1553, the server MUST update all the settings in
ServerConfiguration.ServerInfo599 that are defined by the SERVER_INFO_1553 structure as

settable (that is, they are not defined as ignored on receipt or ignored for the NetrServerSetInfo
method).

If the Level parameter is equal to 1554, the server MUST update all the settings in
ServerConfiguration.ServerInfo599 that are defined by the SERVER_INFO_1554 structure as

141 / 241

[MS-SRVS-Diff] - v20240423
Server Service Remote Protocol
Copyright © 2024 Microsoft Corporation
Release: April 23, 2024

settable (that is, they are not defined as ignored on receipt or ignored for the NetrServerSetInfo
method).

If the Level parameter is equal to 1555, the server MUST update all the settings in
ServerConfiguration.ServerInfo599 that are defined by the SERVER_INFO_1555 structure as

settable (that is, they are not defined as ignored on receipt or ignored for the NetrServerSetInfo
method).

If the Level parameter is equal to 1556, the server MUST update all the settings in
ServerConfiguration.ServerInfo599 that are defined by the SERVER_INFO_1556 structure as
settable (that is, they are not defined as ignored on receipt or ignored for the NetrServerSetInfo
method).

The server MUST validate each member of the structure that is passed in the ServerInfo parameter.

The validation involves making sure each member of the structure in the ServerInfo parameter has a
valid value as specified in the definition of the corresponding SERVER_INFO structure. If any member
of the structure is not valid and the ParmErr parameter is not NULL, the server MUST set ParmErr to a
value based on the first member of the structure that is not valid and fail the call with an

ERROR_INVALID_PARAMETER (0x00000057) error code. The mapping between the values to set and
the corresponding member is listed in section 2.2.2.12.<83>

The server MUST construct SERVER_INFO_103 and SERVER_INFO_599 structures from
ServerConfiguration.ServerInfo103 and ServerConfiguration.ServerInfo599 respectively.

The server MUST update server configuration by invoking the underlying server event as specified in
[MS-CIFS] section 3.3.4.22, providing SERVER_INFO_103 and SERVER_INFO_599 structures as input
parameters.

The server MUST update browser configuration by invoking the underlying server event specified in
[MS-BRWS] section 3.2.4.1, providing the SERVER_INFO_103 structure as input parameter.

The server MUST persist the values in ServerConfiguration.ServerInfo103 and
ServerConfiguration.ServerInfo599 in a persistent configuration store.

The server SHOULD<84> enforce security measures to verify that the caller has the required
permissions to execute this routine. If the caller does not have the required credentials, the server
SHOULD<85> fail the call.

3.1.4.19 NetrServerDiskEnum (Opnum 23)

The NetrServerDiskEnum method retrieves a list of disk drives on a server. The method returns an
array of three-character strings (a drive letter, a colon, and a terminating null character).

 NET_API_STATUS NetrServerDiskEnum(
 [in, string, unique] SRVSVC_HANDLE ServerName,
 [in] DWORD Level,
 [in, out] DISK_ENUM_CONTAINER* DiskInfoStruct,
 [in] DWORD PreferedMaximumLength,
 [out] DWORD* TotalEntries,
 [in, out, unique] DWORD* ResumeHandle
);

ServerName: An SRVSVC_HANDLE (section 2.2.1.1) pointer that identifies the server. The client

MUST map this structure to an RPC binding handle (see [C706] sections 4.3.5 and 5.1.5.2). The
server MUST ignore this parameter.

Level: Specifies the information level of the data. It MUST be the following value.

142 / 241

[MS-SRVS-Diff] - v20240423
Server Service Remote Protocol
Copyright © 2024 Microsoft Corporation
Release: April 23, 2024

Value Meaning

0 The buffer is of type DISK_INFO.

DiskInfoStruct: A pointer to a structure of type DISK_ENUM_CONTAINER, as specified in section
2.2.4.92. Although this parameter is defined as an [in, out] parameter, it is used only as an [out]
parameter. The server MUST ignore any values that are passed in this parameter.

PreferedMaximumLength: The server MUST ignore this parameter.

TotalEntries: The number of entries being returned in the Buffer member of the DiskInfoStruct

parameter. This MUST be in the range 0–26.

ResumeHandle: The server MUST ignore this parameter.

Return Values: The method returns 0x00000000 (NERR_Success) to indicate success; otherwise, it
returns a nonzero error code. The method can take any specific error code value, as specified in
[MS-ERREF] section 2.2. The most common error codes are listed in the following table.

Return value/code Description

0x00000000

NERR_Success

The client request succeeded.

0x0000007C

ERROR_INVALID_LEVEL

The system call level is not correct.

0x00000008

ERROR_NOT_ENOUGH_MEMORY

Not enough storage is available to process this command.

0x00000005

ERROR_ACCESS_DENIED

The caller does not have the permissions to perform the operation.

The server MUST ignore the PreferedMaximumLength parameter.

The server MUST ignore the ResumeHandle parameter.

Upon successful processing of the request, the server MUST set the TotalEntries parameter equal to
the number of disk drive entries that the server enumerated in the Buffer member of DiskInfoStruct
and the EntriesRead member of DiskInfoStruct MUST be set to 1 plus the value set for TotalEntries.

Upon successful processing of the request, the server MUST return the enumerated disk drives in the
Buffer member of DiskInfoStruct in the format of the DISK_INFO structure. The server MUST
allocate the memory required to return all enumerated disk drives in the Buffer member of the

InfoStruct parameter. In cases where the RPC allocated a buffer because the client specified a non-
NULL value for the Buffer parameter, the server MUST free the buffer that is allocated by the RPC.

The server SHOULD<86> enforce security measures to verify that the caller has the required
permissions to execute this routine. If the caller does not have the required credentials, the server

SHOULD<87> fail the call.

3.1.4.20 NetrServerStatisticsGet (Opnum 24)

The NetrServerStatisticsGet method retrieves the operating statistics for a service.

 NET_API_STATUS NetrServerStatisticsGet(
 [in, string, unique] SRVSVC_HANDLE ServerName,
 [in, string, unique] WCHAR* Service,
 [in] DWORD Level,

143 / 241

[MS-SRVS-Diff] - v20240423
Server Service Remote Protocol
Copyright © 2024 Microsoft Corporation
Release: April 23, 2024

 [in] DWORD Options,
 [out] LPSTAT_SERVER_0* InfoStruct
);

ServerName: An SRVSVC_HANDLE (section 2.2.1.1) pointer that identifies the server. The client
MUST map this structure to an RPC binding handle (see [C706] sections 4.3.5 and 5.1.5.2). The
server MUST ignore this parameter.

Service: A pointer to a null-terminated UTF-16 string. This parameter MUST be ignored on receipt.

Level: Specifies the information level of the data. This MUST be set to 0.

Options: Reserved; MUST be 0.

InfoStruct: A pointer to the buffer that receives the data, as specified in section 2.2.4.39. This

pointer is in the format of STAT_SERVER_0.

Return Values: The method returns 0x00000000 (NERR_Success) to indicate success; otherwise, it
returns a nonzero error code. The method can take any specific error code value, as specified in
[MS-ERREF] section 2.2.

In response to the NetrServerStatisticsGet message, the server MUST return the operating statistics
for the service or return an error code.

The server MUST ignore the Service parameter on receipt.

If the Level parameter is not equal to 0, the server MUST fail the call with an ERROR_INVALID_LEVEL
error code.

If the Options parameter is not equal to 0, the server MUST fail the call with an
ERROR_INVALID_PARAMETER error code.

The server MUST query the statistics by invoking the underlying server events as specified in [MS-

CIFS] section 3.3.4.23 and [MS-SMB2] section 3.3.4.24. The server MUST aggregate all the values in

the structures received from both CIFS and SMB2 servers into a new STAT_SERVER_0 structure. In
addition to these values, sts0_start MUST be set to StatisticsStartTime. The server MUST return the
statistics in the STAT_SERVER_0 structure in the InfoStruct parameter.

The server SHOULD<88> enforce security measures to verify that the caller has the required
permissions to execute this routine. If the caller does not have the required credentials, the server
SHOULD<89> fail the call.

3.1.4.21 NetrRemoteTOD (Opnum 28)

The NetrRemoteTOD method returns the time of day information on a server.

 NET_API_STATUS NetrRemoteTOD(
 [in, string, unique] SRVSVC_HANDLE ServerName,
 [out] LPTIME_OF_DAY_INFO* BufferPtr
);

ServerName: An SRVSVC_HANDLE (section 2.2.1.1) pointer that identifies the server. The client
MUST map this structure to an RPC binding handle (see [C706] sections 4.3.5 and 5.1.5.2). The

server MUST ignore this parameter.

BufferPtr: A pointer to a structure of type TIME_OF_DAY_INFO where the information is returned.

144 / 241

[MS-SRVS-Diff] - v20240423
Server Service Remote Protocol
Copyright © 2024 Microsoft Corporation
Release: April 23, 2024

Return Values: The method returns 0x00000000 (NERR_Success) to indicate success; otherwise, it
returns a nonzero error code. The method can take any specific error code value, as specified in

[MS-ERREF] section 2.2.

In response to a NetrRemoteTOD message, the server MUST return the time of day information or

return an error code.

The server MUST return the time of day information on the server in the BufferPtr parameter in the
format of the LPTIME_OF_DAY_INFO structure, as specified in section 2.2.4.105.

The server SHOULD<90> enforce security measures to verify that the caller has the required
permissions to execute this routine. If the caller does not have the required credentials, the server
SHOULD<91> fail the call.

3.1.4.22 NetrServerTransportAdd (Opnum 25)

The NetrServerTransportAdd method binds the server to the transport protocol.

 NET_API_STATUS NetrServerTransportAdd(
 [in, string, unique] SRVSVC_HANDLE ServerName,
 [in] DWORD Level,
 [in] LPSERVER_TRANSPORT_INFO_0 Buffer
);

ServerName: An SRVSVC_HANDLE (section 2.2.1.1) pointer that identifies the server. The client
MUST map this structure to an RPC binding handle (see [C706] sections 4.3.5 and 5.1.5.2). The
server MUST ignore this parameter.

Level: Specifies the information level of the data. This parameter MUST be zero.

Buffer: A pointer to the SERVER_TRANSPORT_INFO_0 structure that describes the data.

Return Values: The method returns 0x00000000 (NERR_Success) to indicate success; otherwise, it

returns a nonzero error code. The method can take any specific error code value, as specified in
[MS-ERREF] section 2.2. The most common error codes are listed in the following table.

Return value/code Description

0x00000000

NERR_Success

The client request succeeded.

0x00000005

ERROR_ACCESS_DENIED

Access is denied.

0x00000034

ERROR_DUP_NAME

A duplicate name exists on the network.

0x0000007C

ERROR_INVALID_LEVEL

The system call level is not correct.

0x00000057

ERROR_INVALID_PARAMETER

The parameter is incorrect.

0x00000008

ERROR_NOT_ENOUGH_MEMORY

Not enough storage is available to process this command.

The NetrServerTransportAdd message MUST be processed in the same way as the
NetrServerTransportAddEx message, except that it MUST allow only level 0 (that is,

145 / 241

[MS-SRVS-Diff] - v20240423
Server Service Remote Protocol
Copyright © 2024 Microsoft Corporation
Release: April 23, 2024

SERVER_TRANSPORT_INFO_0). The NetrServerTransportAddEx message is specified in section
3.1.4.23.

The server MAY<92> enforce security measures to verify that the caller has the required permissions
to execute this call. If the server enforces these security measures and the caller does not have the

required credentials, the server SHOULD<93> fail the call.

3.1.4.23 NetrServerTransportAddEx (Opnum 41)

The NetrServerTransportAddEx method binds the specified server to the transport protocol. This

extended method allows the caller to specify information levels 1, 2, and 3 beyond what the
NetrServerTransportAdd method allows.

 NET_API_STATUS NetrServerTransportAddEx(
 [in, string, unique] SRVSVC_HANDLE ServerName,
 [in] DWORD Level,
 [in, switch_is(Level)] LPTRANSPORT_INFO Buffer
);

ServerName: An SRVSVC_HANDLE (section 2.2.1.1) pointer that identifies the server. The client

MUST map this structure to an RPC binding handle (see [C706] sections 4.3.5 and 5.1.5.2). The
server MUST ignore this parameter.

Level: Specifies the information level of the data. This parameter MUST be the following value.

Value Meaning

0 The buffer is of type SERVER_TRANSPORT_INFO_0.

1 The buffer is of type SERVER_TRANSPORT_INFO_1.

2 The buffer is of type SERVER_TRANSPORT_INFO_2.

3 The buffer is of type SERVER_TRANSPORT_INFO_3.

Buffer: A pointer to the TRANSPORT_INFO union that describes the data. The type of data depends
on the value of the Level parameter, as the preceding table shows.

Return Values: The method returns 0x00000000 (NERR_Success) to indicate success; otherwise, it
returns a nonzero error code. The method can take any specific error code value, as specified in

[MS-ERREF] section 2.2. The most common error codes are listed in the following table.

Return value/code Description

0x00000000

NERR_Success

The client request succeeded.

0x00000005

ERROR_ACCESS_DENIED

Access is denied.

0x00000034

ERROR_DUP_NAME

A duplicate name exists on the network.

0x0000007C

ERROR_INVALID_LEVEL

The system call level is not correct.

0x00000057

ERROR_INVALID_PARAMETER

The parameter is incorrect.

146 / 241

[MS-SRVS-Diff] - v20240423
Server Service Remote Protocol
Copyright © 2024 Microsoft Corporation
Release: April 23, 2024

Return value/code Description

0x00000008

ERROR_NOT_ENOUGH_MEMORY

Not enough storage is available to process this command.

The server SHOULD<94> enforce security measures to verify that the caller has the required
permissions to execute this call. If the caller does not have the required credentials, the server
SHOULD<95> fail the call.

The Level parameter determines the type of structure that the client has used to specify information
about the new transport. The value MUST be 0, 1, 2, or 3. If the Level parameter is not equal to one

of the valid values, the server MUST fail the call with an ERROR_INVALID_LEVEL error code.

If the Level parameter is 0, the Buffer parameter points to a SERVER_TRANSPORT_INFO_0 structure.

If the Level parameter is 1, the Buffer parameter points to a SERVER_TRANSPORT_INFO_1 structure.

If the Level parameter is 2, the Buffer parameter points to a SERVER_TRANSPORT_INFO_2 structure.

If the Level parameter is 3, the Buffer parameter points to a SERVER_TRANSPORT_INFO_3 structure.

The server MUST validate all information that is provided in the SERVER_TRANSPORT_INFO structure

and MUST fail the call with ERROR_INVALID_PARAMETER if any of these checks fail:

 Both svti*_transportname and svti*_transportaddress MUST NOT be NULL;
svti*_transportaddresslength MUST NOT be zero.

 If svti*_domain is not NULL, its length MUST NOT be greater than 15.

 The svti*_flags can be any combination of the following flags as defined in section 2.2.4.96: 0,
SVTI2_REMAP_PIPE_NAMES, and SVTI2_SCOPED_NAME.

The server MUST invoke the events specified in [MS-CIFS] section 3.3.4.17 and [MS-SMB2] section

3.3.4.21, passing the following as the parameters: svti*_transportname, svti*_transportaddress, and

a transport enable flag set to TRUE.

If both the CIFS and SMB2 servers return ERROR_NOT_SUPPORTED, the server MUST return
ERROR_NOT_SUPPORTED (0x00000032) to the caller. If both the CIFS and SMB2 servers return an
error other than ERROR_NOT_SUPPORTED, the server must fail the call with an implementation-
dependent error.

If either the CIFS or SMB2 server returns STATUS_SUCCESS, the server MUST create a new Transport

and add it to the TransportList. The Transport MUST be initialized as follows:

 Transport.Name MUST be set to the caller-supplied svti*_transportname. For acceptable forms
of svti*_transportname, see section 2.2.4.96.

 Transport.ServerName MUST be set to the caller-supplied svti*_transportaddress. For
acceptable forms of svti*_transportaddress, see section 2.2.4.96.

 Transport.Domain MUST be set to svti*_domain.

 Transport.Flags MUST be set to svti*_flags.

 Transport.ConnectionCount MUST be set to zero.

 The Transport MUST be persisted in an implementation-specific store.

The server MUST then return NERR_Success to the caller.

147 / 241

[MS-SRVS-Diff] - v20240423
Server Service Remote Protocol
Copyright © 2024 Microsoft Corporation
Release: April 23, 2024

3.1.4.24 NetrServerTransportEnum (Opnum 26)

The NetrServerTransportEnum method enumerates the information about transport protocols that the
server manages in TransportList.

 NET_API_STATUS NetrServerTransportEnum(
 [in, string, unique] SRVSVC_HANDLE ServerName,
 [in, out] LPSERVER_XPORT_ENUM_STRUCT InfoStruct,
 [in] DWORD PreferedMaximumLength,
 [out] DWORD* TotalEntries,
 [in, out, unique] DWORD* ResumeHandle
);

ServerName: An SRVSVC_HANDLE (section 2.2.1.1) pointer that identifies the server. The client
MUST map this structure to an RPC binding handle (see [C706] sections 4.3.5 and 5.1.5.2). The

server MUST ignore this parameter.

InfoStruct: A pointer to a structure, in the format of a SERVER_XPORT_ENUM_STRUCT structure that
receives the data. The SERVER_XPORT_ENUM_STRUCT structure has a Level member that
specifies the type of the structure to return in the XportInfo member. The Level member MUST
be set to one of the values in section 2.2.4.101 (excluding SERVER_XPORT_INFO_3_CONTAINER).

PreferedMaximumLength: Specifies the preferred maximum length, in bytes, of returned data. If
the value that is specified is MAX_PREFERRED_LENGTH (section 2.2.2.2), the method MUST

attempt to return all entries.

TotalEntries: The total number of entries that can be enumerated if the buffer is large enough to
hold all the entries.

ResumeHandle: A pointer to a value that contains a handle that is used to continue an existing
connection search. The handle MUST be zero on the first call and remain unchanged for
subsequent calls. If the ResumeHandle parameter is NULL, no resume handle MUST be stored. If
this parameter is not NULL and the method returns ERROR_MORE_DATA, this parameter receives

an implementation-specific nonzero value that can be passed in subsequent calls to this method to
continue with the enumeration.

If this parameter is NULL or points to 0x00000000, the enumeration starts from the beginning of
the list of the currently active connections.

Return Values: The method returns 0x00000000 (NERR_Success) to indicate success; otherwise, it
returns a nonzero error code. The method can take any specific error code value, as specified in

[MS-ERREF] section 2.2. The most common error codes are listed in the following table.

Return value/code Description

0x00000000

NERR_Success

The client request succeeded.

0x0000007C

ERROR_INVALID_LEVEL

The system call level is not correct.

0x000000EA

ERROR_MORE_DATA

The client request succeeded. More entries are available. Not all entries
could be returned in the buffer size that is specified by
PreferedMaximumLength.

0x00000008

ERROR_NOT_ENOUGH_MEMORY

Not enough storage is available to process this command.

148 / 241

[MS-SRVS-Diff] - v20240423
Server Service Remote Protocol
Copyright © 2024 Microsoft Corporation
Release: April 23, 2024

Return value/code Description

0x0000084B

NERR_BufTooSmall

The client request succeeded. More entries are available. The buffer
size that is specified by PreferedMaximumLength was too small to fit
even a single entry.

In response to the NetrServerTransportEnum request, the server MUST enumerate the Transports
from the TransportList or return an error code.

The InfoStruct parameter has a Level member. The value of Level MUST be 0, 1, or 2. If the Level
member is not equal to one of the valid values, the server MUST fail the call with an

ERROR_INVALID_LEVEL error code.

If the value of the Level member is 0, the server MUST return the information about the transport
protocols that it is managing by filling the SERVER_XPORT_INFO_0_CONTAINER structure in the
XportInfo member of the InfoStruct parameter.

If the Level member is 1, the server MUST return the information about the transport protocols that it

is managing by filling the SERVER_XPORT_INFO_1_CONTAINER structure in the XportInfo member
of the InfoStruct parameter.

The PreferedMaximumLength parameter specifies the maximum number of bytes that the server can
return for the XportInfo buffer.

If the PreferedMaximumLength is insufficient to hold all the entries, the server MUST return the
maximum number of entries that can fit in the XportInfo buffer and return ERROR_MORE_DATA. If
this parameter is equal to MAX_PREFERRED_LENGTH, the server MUST return all the requested data.

If the server returns NERR_Success or ERROR_MORE_DATA, it MUST set the TotalEntries parameter
equal to the total number of entries that could have been enumerated from the current resume

position.

If the PreferedMaximumLength is insufficient to hold all the entries and if the client has specified a
ResumeHandle parameter, the server MUST set ResumeHandle to some implementation-specific value

that allows the server to continue with this enumeration on a subsequent call to this method with the
same value for ResumeHandle.

The following rules specify processing of the ResumeHandle parameter:

 If the ResumeHandle parameter is either NULL or points to 0x00000000, the enumeration MUST
start from the beginning of the TransportList.

 If the ResumeHandle parameter points to a nonzero value, the server MUST continue enumeration
based on the value of ResumeHandle. The value of ResumeHandle specifies the index into the
TransportList after which the enumeration is to begin.

 If the client specified a ResumeHandle and if the server returns ERROR_MORE_DATA
(0x000000EA), the server MUST set ResumeHandle to the index of the last enumerated transport

in the TransportList.

Because the ResumeHandle parameter specifies an offset into the list, and the list of all available
transports can be modified between multiple requests, the results of a query spanning multiple
requests using ResumeHandle can be unreliable, offering either duplicate or unavailable transports.

The server SHOULD<96> enforce security measures to verify that the caller has the required
permissions to execute this call. If the caller does not have the required credentials, the server
SHOULD<97> fail the call.

149 / 241

[MS-SRVS-Diff] - v20240423
Server Service Remote Protocol
Copyright © 2024 Microsoft Corporation
Release: April 23, 2024

3.1.4.25 NetrServerTransportDel (Opnum 27)

The NetrServerTransportDel method unbinds (or disconnects) the transport protocol from the server.
If this method succeeds, the server can no longer communicate with clients by using the specified

transport protocol (such as TCP or XNS).

 NET_API_STATUS NetrServerTransportDel(
 [in, string, unique] SRVSVC_HANDLE ServerName,
 [in] DWORD Level,
 [in] LPSERVER_TRANSPORT_INFO_0 Buffer
);

ServerName: An SRVSVC_HANDLE (section 2.2.1.1) pointer that identifies the server. The client
MUST map this structure to an RPC binding handle (see [C706] sections 4.3.5 and 5.1.5.2). The

server MUST ignore this parameter.

Level: Specifies the information level of the data. This SHOULD be zero and MUST be ignored on

receipt.

Value Meaning

0 The buffer is of type SERVER_TRANSPORT_INFO_0.

Buffer: A pointer to the SERVER_TRANSPORT_INFO_0 structure that contains information about the
transport.

Return Values: The method returns 0x00000000 (NERR_Success) to indicate success; otherwise, it
returns a nonzero error code. The method can take any specific error code value, as specified in

[MS-ERREF] section 2.2. The most common error codes are listed in the following table.

Return value/code Description

0x00000000

NERR_Success

The client request succeeded.

0x00000005

ERROR_ACCESS_DENIED

Access is denied.

0x00000057

ERROR_INVALID_PARAMETER

The parameter is incorrect.

0x00000008

ERROR_NOT_ENOUGH_MEMORY

Not enough storage is available to process this command.

The NetrServerTransportDel message MUST be processed in the same way as the
NetrServerTransportDelEx message, except that it MUST allow only level 0 (that is,
SERVER_TRANSPORT_INFO_0). The processing for this message is specified in section 3.1.4.26.

The server MAY<98> enforce security measures to verify that the caller has the required permissions
to execute this call. If the server enforces these security measures and the caller does not have the
required credentials, the server SHOULD<99> fail the call.

3.1.4.26 NetrServerTransportDelEx (Opnum 53)

The server receives the NetrServerTransportDelEx method in an RPC_REQUEST packet. In response,
the server unbinds (or disconnects) the transport protocol from the server. If this method succeeds,

the server can no longer communicate with clients by using the specified transport protocol (such as

150 / 241

[MS-SRVS-Diff] - v20240423
Server Service Remote Protocol
Copyright © 2024 Microsoft Corporation
Release: April 23, 2024

TCP or XNS). This extended method allows level 1 beyond what the NetrServerTransportDel method
allows.

 NET_API_STATUS NetrServerTransportDelEx(
 [in, string, unique] SRVSVC_HANDLE ServerName,
 [in] DWORD Level,
 [in, switch_is(Level)] LPTRANSPORT_INFO Buffer
);

ServerName: An SRVSVC_HANDLE (section 2.2.1.1) pointer that identifies the server. The client
MUST map this structure to an RPC binding handle (see [C706] sections 4.3.5 and 5.1.5.2). The
server MUST ignore this parameter.

Level: Specifies the information level of the data. It MUST be one of the following values.

Value Meaning

0 The buffer is of type SERVER_XPORT_INFO_0_CONTAINER.

1 The buffer is of type SERVER_XPORT_INFO_1_CONTAINER.

Buffer: A pointer to the TRANSPORT_INFO union that contains information about the transport. The
value of the Level parameter determines the type of the contents of the Buffer parameter, as the
preceding table shows.

Return Values: The method returns 0x00000000 (NERR_Success) to indicate success; otherwise, it
returns a nonzero error code. The method can take any specific error code value, as specified in
[MS-ERREF] section 2.2.<100>

The Level parameter determines the type of structure the client has used to specify information about
the new transport. Valid values are 0 and 1. If the Level parameter is not equal to one of the valid
values, the server MUST fail the call with an ERROR_INVALID_LEVEL error code.

If the Level parameter is 0, the Buffer parameter points to a SERVER_TRANSPORT_INFO_0 structure.
If the Level parameter is 1, the Buffer parameter points to a SERVER_TRANSPORT_INFO_1 structure.

The server MUST validate all information that is provided in the SERVER_TRANSPORT_INFO structure

in an implementation-specific manner, and, if any member of the structure is found to be invalid, the
server MUST fail the call with an ERROR_INVALID_PARAMETER error code.

The server MUST look up the Transport in the TransportList, where Transport.Name matches the
caller-supplied svti*_transportname and Transport.ServerName matches the caller-supplied svti*_
transportaddress. If a match is not found, the server MUST return NERR_NetNameNotFound to the
caller.

If a match is found, the server MUST invoke the events described in [MS-CIFS] section 3.3.4.17 and

[MS-SMB2] section 3.3.4.21, passing Transport.ServerName, Transport.Name, and a transport enable
flag set to FALSE as the parameters. This means that the SMB file server can no longer initiate
communications with clients by using the specified transport protocol (such as SMB2 over Direct

TCP).<101>

If both the CIFS and SMB2 servers return ERROR_NOT_SUPPORTED, the server MUST return
ERROR_NOT_SUPPORTED (0x00000032) to the caller. If both the CIFS and SMB2 servers return an
error other than ERROR_NOT_SUPPORTED, the server must fail the call with an implementation-

dependent error.

If either the CIFS or SMB2 server returns STATUS_SUCCESS, the server MUST remove Transport
from TransportList and from the persistent store, free the transport object and return
NERR_Success.

151 / 241

[MS-SRVS-Diff] - v20240423
Server Service Remote Protocol
Copyright © 2024 Microsoft Corporation
Release: April 23, 2024

The server SHOULD<102> enforce security measures to verify that the caller has the required
permissions to execute this call. If the caller does not have the required credentials, the server

SHOULD<103> fail the call.

3.1.4.27 NetrpGetFileSecurity (Opnum 39)

The NetrpGetFileSecurity method returns to the caller a copy of the security descriptor that protects a
file or directory.

 DWORD NetrpGetFileSecurity(
 [in, string, unique] SRVSVC_HANDLE ServerName,
 [in, string, unique] WCHAR* ShareName,
 [in, string] WCHAR* lpFileName,
 [in] SECURITY_INFORMATION RequestedInformation,
 [out] PADT_SECURITY_DESCRIPTOR* SecurityDescriptor
);

ServerName: An SRVSVC_HANDLE (section 2.2.1.1) pointer that identifies the server. The client
MUST map this structure to an RPC binding handle (see [C706] sections 4.3.5 and 5.1.5.2). The
server MUST ignore this parameter.

ShareName: A pointer to a null-terminated UTF-16 string that specifies the share name on which the

file is found.

lpFileName: A pointer to a null-terminated UTF-16 string that specifies the name of the file or
directory whose security is being retrieved. The name MUST specify the full path to the file from
the ShareName parameter.

RequestedInformation: The type of security information being requested, as specified in [MS-DTYP]
section 2.4.7.

SecurityDescriptor: A pointer to a PADT_SECURITY_DESCRIPTOR structure, where the desired
information is returned.

Return Values: The method returns 0x00000000 (NERR_Success) to indicate success; otherwise, it
returns a nonzero error code. The method can take any specific error code value, as specified in
[MS-ERREF] section 2.2.

In response to a NetrpGetFileSecurity message, the server MUST return to the caller a copy of the
security descriptor that protects a file or directory, or return an error code. The security descriptor is

always returned in the self-relative format.

The ShareName parameter specifies a local share name on the server. The server MUST locate a
Share from ShareList, where ShareName matches Share.ShareName. If no share is found, the
server MUST fail the call with NERR_NetNameNotFound. The server MUST then combine
Share.LocalPath with the lpFileName parameter in order to create a fully qualified path name that is
local to the server. If the file does not exist, the server SHOULD<104> fail the call with
ERROR_FILE_NOT_FOUND. The server MUST then obtain the security descriptor with the information

that the client requires, as specified in the RequestedInformation parameter, for the local file that the

path name obtained specifies, and return it to the client in the out parameter SecurityDescriptor. The
security descriptor itself is stored in the Buffer member of the SecurityDescriptor parameter; the
length of the security descriptor is stored in the Length member.

The server SHOULD<105> enforce security measures to verify that the caller has the required
permissions to execute this call. If the caller does not have the required credentials, the server

SHOULD<106> fail the call.

152 / 241

[MS-SRVS-Diff] - v20240423
Server Service Remote Protocol
Copyright © 2024 Microsoft Corporation
Release: April 23, 2024

3.1.4.28 NetrpSetFileSecurity (Opnum 40)

The NetrpSetFileSecurity method sets the security of a file or directory.

 DWORD NetrpSetFileSecurity(
 [in, string, unique] SRVSVC_HANDLE ServerName,
 [in, string, unique] WCHAR* ShareName,
 [in, string] WCHAR* lpFileName,
 [in] SECURITY_INFORMATION SecurityInformation,
 [in] PADT_SECURITY_DESCRIPTOR SecurityDescriptor
);

ServerName: An SRVSVC_HANDLE (section 2.2.1.1) pointer that identifies the server. The client
MUST map this structure to an RPC binding handle (see [C706] sections 4.3.5 and 5.1.5.2). The
server MUST ignore this parameter.

ShareName: A pointer to a null-terminated UTF-16 string that specifies the share name on which the

file is found.

lpFileName: A pointer to a null-terminated UTF-16 string that specifies the name of the file or
directory whose security is being set.

SecurityInformation: The type of security information being set, as specified in [MS-DTYP] section
2.4.7.

SecurityDescriptor: A pointer to a PADT_SECURITY_DESCRIPTOR structure, which provides the

security descriptor to set.

Return Values: The method returns 0x00000000 (NERR_Success) to indicate success; otherwise, it
returns a nonzero error code. The method can take any specific error code value, as specified in
[MS-ERREF] section 2.2.

In response to a NetrpSetFileSecurity message, the server MUST set the security descriptor of the
specified file or directory on the server or return an error code.

The ShareName parameter specifies a local share name on the server. The server MUST locate a

Share from ShareList, where ShareName matches Share.ShareName. If no share is found, the
server MUST fail the call with NERR_NetNameNotFound. The server MUST then combine
Share.LocalPath with the lpFileName parameter to create a fully qualified path name that is local to
the server. If the file does not exist, the server MUST fail the call with ERROR_FILE_NOT_FOUND.

The SecurityDescriptor parameter has a Buffer member that contains a security descriptor in self-
relative format and a Length member that specifies the length, in bytes, of the Buffer member. The

server MUST apply the descriptor in the Buffer member to the local file, whose PathName was
computed as previously specified, by combining the local path that corresponds to the ShareName
parameter and the lpFileName parameter.

The server SHOULD<107> enforce security measures to verify that the caller has the required
permissions to execute this call. If the caller does not have the required credentials, the server

SHOULD<108> fail the call.

3.1.4.29 NetprPathType (Opnum 30)

The NetprPathType method checks a path name to determine its type.

 NET_API_STATUS NetprPathType(
 [in, string, unique] SRVSVC_HANDLE ServerName,
 [in, string] WCHAR* PathName,
 [out] DWORD* PathType,

153 / 241

[MS-SRVS-Diff] - v20240423
Server Service Remote Protocol
Copyright © 2024 Microsoft Corporation
Release: April 23, 2024

 [in] DWORD Flags
);

ServerName: An SRVSVC_HANDLE (section 2.2.1.1) pointer that identifies the server. The client
MUST map this structure to an RPC binding handle (see [C706] sections 4.3.5 and 5.1.5.2). The
server MUST ignore this parameter.

PathName: A pointer to a null-terminated UTF-16 string that specifies the path name to check.

PathType: A path type is returned. It MUST be one of the values that are defined in section 2.2.2.9.

Flags: A bitmask that MUST contain the bitwise OR of zero or more of the following values specifying
controlling flags.

Value Meaning

0x00000001 If set, the method uses old-style path rules (128-byte paths, 8.3 components) when
validating the path. This flag is set on MS-DOS and OS/2 1.1 systems.

Return Values: The method returns 0x00000000 (NERR_Success) to indicate success; otherwise, it
returns a nonzero error code. The method can take any specific error code value, as specified in
[MS-ERREF] section 2.2.

In response to a NetprPathType message, the server MUST parse the specified path, determining if it

is a valid path and determining its path type, or return an error code. Path type values are defined in
section 2.2.2.9.

The PathName parameter specifies the path name whose type needs to be determined.

If the PathName parameter is an empty string or has a length greater than 260, the server MUST fail
the call with ERROR_INVALID_NAME. If the Flag parameter has a value other than 0 or 1, the server
MUST fail the call with ERROR_INVALID_PARAMETER.

If the Flag parameter is 0x1, the server MUST use old (MS-DOS) style path name rules that state that

a path name can be 128 bytes long and that the file portion of the path has an 8-bit name and a 3-bit
extension. If the value of the Flag parameter is 0x0, the server MUST use the long path name rules as
specified in [MS-CIFS] section 2.2.1.1.1.

The server MUST obtain the path type value for the PathName by using the algorithm as specified in
section 3.1.1.9. If the algorithm yields ERROR_INVALID_NAME, the server MUST fail the call with the
same error code. Otherwise, the server MUST copy the path type value resulting from the algorithm

into PathType and return NERR_Success.

The server MAY<109> enforce security measures to verify that the caller has the required permissions
to execute this call. If the server enforces these security measures and the caller does not have the
required credentials, the server SHOULD<110> fail the call.

3.1.4.30 NetprPathCanonicalize (Opnum 31)

The NetprPathCanonicalize method converts a path name to the canonical format.

 NET_API_STATUS NetprPathCanonicalize(
 [in, string, unique] SRVSVC_HANDLE ServerName,
 [in, string] WCHAR* PathName,
 [out, size_is(OutbufLen)] unsigned char* Outbuf,
 [in, range(0,64000)] DWORD OutbufLen,
 [in, string] WCHAR* Prefix,
 [in, out] DWORD* PathType,
 [in] DWORD Flags

154 / 241

[MS-SRVS-Diff] - v20240423
Server Service Remote Protocol
Copyright © 2024 Microsoft Corporation
Release: April 23, 2024

);

ServerName: An SRVSVC_HANDLE (section 2.2.1.1) pointer that identifies the server. The client
MUST map this structure to an RPC binding handle (see [C706] sections 4.3.5 and 5.1.5.2). The
server MUST ignore this parameter.

PathName: A pointer to a null-terminated UTF-16 string that specifies the path name to canonicalize.

Outbuf: A pointer to the output buffer where the canonicalized path name is returned.

OutbufLen: The length, in bytes, of the output buffer, Outbuf. The value of this field MUST be within
the range 0–64,000, inclusive.

Prefix: A pointer to a null-terminated UTF-16 string that specifies an optional prefix to use when
canonicalizing a relative path name.

PathType: A place to store the path type. This parameter MUST be set by the client either to zero or

to one of the values defined in section 2.2.2.9. After successful completion of the request, the
server MUST set PathType to one of the values defined in section 2.2.2.9.

Flags: Reserved, MUST be zero.

Return Values: The method returns 0x00000000 (NERR_Success) to indicate success; otherwise, it

returns a nonzero error code. The method can take any specific error code value, as specified in
[MS-ERREF] section 2.2.

If the Flags parameter is not equal to zero, the server SHOULD fail the call with an implementation-
specific error code.<111>

In response to a NetprPathCanonicalize message, the server MUST compute the canonical version of
the specified path name or return an error code.

The PathName parameter specifies the path name that needs to be canonicalized.

The PathType parameter, if nonzero, MUST specify the path type of the path that is specified by the
PathName parameter by a previous successful call to the NetprPathType method. Even if it is set to
the correct nonzero value by the client, the server can change it because the canonicalized version of
a name can be of a different type than the original version. If PathType is zero, the server MUST
validate and get the type of PathName (as specified in section 3.1.4.29) first. If this fails, the server
MUST fail the call with an ERROR_INVALID_NAME error code.

The Prefix parameter, if it is a nonempty string, specifies a path component that MUST be prefixed to
PathName to get the full path to canonicalize. The server MUST treat Prefix as a PathName: it MUST
validate and get the type of Prefix in the same way as it does the PathName. If this fails, the server
MUST fail the call with an ERROR_INVALID_NAME error code. The optional Prefix parameter is a
convenience that this method provides to clients. The client is free to construct the complete
PathName and pass NULL for the Prefix. For example, this parameter can be used when canonicalizing
path names for a list of files in a directory. In such a scenario, the value for Prefix is the absolute path

for the directory, and the value for PathName specifies the relative path for a file.

The OutBufLen parameter specifies the length of the output buffer OutBuf that is provided by the
client. If the length of the canonicalized path name is greater than OutBufLen, the server MUST fail
the call with an NERR_BufTooSmall error code.

The server MUST construct the path to canonicalize by appending the PathName to the Prefix. If the
Prefix parameter does not end with one, the server SHOULD insert an implementation-specific path

separator between the Prefix and PathName.<112> The server MUST then canonicalize the resultant
path. The canonicalization process is implementation-dependent.<113>

155 / 241

[MS-SRVS-Diff] - v20240423
Server Service Remote Protocol
Copyright © 2024 Microsoft Corporation
Release: April 23, 2024

After the canonicalization is successfully finished, the server MUST determine the path type of the
canonicalized path name, as specified in NetprPathType (section 3.1.4.29), and store the result in the

PathType parameter. Valid return codes for the PathType parameter are as specified in Path
Types (section 2.2.2.9). If this fails, the server MUST fail the call with an ERROR_INVALID_NAME error

code.

The server MAY<114> enforce security measures to verify that the caller has the required permissions
to execute this call. If the server enforces these security measures and the caller does not have the
required credentials, the server SHOULD<115> fail the call.

3.1.4.31 NetprPathCompare (Opnum 32)

The NetprPathCompare method performs comparison of two paths.

 long NetprPathCompare(
 [in, string, unique] SRVSVC_HANDLE ServerName,
 [in, string] WCHAR* PathName1,
 [in, string] WCHAR* PathName2,
 [in] DWORD PathType,
 [in] DWORD Flags
);

ServerName: An SRVSVC_HANDLE (section 2.2.1.1) pointer that identifies the server. The client
MUST map this structure to an RPC binding handle (see [C706] sections 4.3.5 and 5.1.5.2). The
server MUST ignore this parameter.

PathName1: A pointer to a null-terminated UTF-16 string that contains the first PathName to
compare.

PathName2: A pointer to a null-terminated UTF-16 string that contains the second PathName to

compare.

PathType: The type of PathName, as specified in section 2.2.2.9.

Flags: A bitmask that MUST contain the bitwise OR of zero or more of the following values that
specify controlling flags.

Value Meaning

0x00000001 SHOULD be set if both of the paths have already been canonicalized.

Return Values: Upon successful processing, the server MUST return 0 if both paths are the same, –1
if the first is less than the second, and 1 otherwise. If the method fails, it can return any specific
error code value as specified in [MS-ERREF] section 2.2.

In response to a NetprPathCompare message, the server MUST compare the two paths that are

specified as parameters to see if they match and return this result or return an error code. If the
supplied names are not canonicalized, the server MUST do the canonicalization of the path names

before a comparison can occur. This does not modify the input path names. The clients SHOULD call
this method with canonicalized path names only, because the canonicalization operation can be
expensive. If uncanonicalized path names are passed in, the caller SHOULD be aware that a nonzero
result could be due to an error that occurred during canonicalization.

The PathName1 and PathName2 parameters specify the two path names to be compared.

The Flags parameter MUST be either 0 or 1. If the Flags parameter has any other value, the server
MUST fail the call with ERROR_INVALID_PARAMETER. If the Flags parameter is 1, it implies that the
specified path names are already canonicalized and the server MUST not try to canonicalize them.

156 / 241

[MS-SRVS-Diff] - v20240423
Server Service Remote Protocol
Copyright © 2024 Microsoft Corporation
Release: April 23, 2024

Any combination of Name1 (canonicalized or not), Name2 (canonicalized or not), and Flags (0 or 1) is
valid.

If Flags is set to 0, the server MUST first attempt to canonicalize both Name1 and Name2 (and MUST
respond with an error if canonicalization fails) before comparing the names.

If Flags is set to 1, the server MUST compare the names without first attempting canonicalization.
Using Flags=1 could optimize performance because it eliminates the need for the server to repeatedly
canonicalize a path name if it is being compared multiple times. If the Flags parameter does not have
a valid value, the server MUST fail the call with an ERROR_INVALID_PARAMETER error code.

If the Flags parameter is 1, the PathType parameter MUST specify the path type for the two path
names. Valid values for the PathType parameter are as specified in section 2.2.2.9. If the PathType
parameter does not have a valid value, the server MAY<116> fail the call.

If the Flags parameter is 0, the server MUST canonicalize the specified path names and obtain their
PathTypes first, as specified in section 3.1.4.30. If this fails, the server MUST fail the call with
ERROR_INVALID_NAME. If the PathTypes for the two path names thus obtained are different, the

server MUST return 1.

The server then compares the canonicalized path names by using an implementation-specific<117>
comparison and MUST return 0 to the caller if the paths match, –1 if PathName1 is less than

PathName2, and 1 if PathName1 is greater than PathName2.

The server MAY<118> enforce security measures to verify that the caller has the required permissions
to execute this call. If the server enforces these security measures and the caller does not have the
required credentials, the server SHOULD<119> fail the call.

3.1.4.32 NetprNameValidate (Opnum 33)

The NetprNameValidate method performs checks to ensure that the specified name is a valid name for
the specified type.

 NET_API_STATUS NetprNameValidate(
 [in, string, unique] SRVSVC_HANDLE ServerName,
 [in, string] WCHAR* Name,
 [in] DWORD NameType,
 [in] DWORD Flags
);

ServerName: An SRVSVC_HANDLE (section 2.2.1.1) pointer that identifies the server. The client
MUST map this structure to an RPC binding handle (see [C706] sections 4.3.5 and 5.1.5.2). The
server MUST ignore this parameter.

Name: A pointer to a null-terminated UTF-16 string that specifies the name to check.

NameType: The type of Name. It MUST be one of the values defined in section 2.2.2.8.

Flags: Reserved, MUST be zero.

Return Values: The method returns 0x00000000 (NERR_Success) to indicate success; otherwise, it
returns a nonzero error code. The method can take any specific error code value, as specified in
[MS-ERREF] section 2.2.

If the Flags parameter is not equal to zero, the server SHOULD fail the call with an implementation-
specific error code.<120>

In response to a NetprNameValidate message, the server MUST validate the value of the Name
parameter to ensure that it contains only the characters that are allowed for the specified NameType

157 / 241

[MS-SRVS-Diff] - v20240423
Server Service Remote Protocol
Copyright © 2024 Microsoft Corporation
Release: April 23, 2024

and that the length of the Name parameter is no greater than the maximum allowed length for its
NameType (as specified in section 2.2.2.8).

The NameType parameter determines what validation is done on the name that is specified by the
Name parameter. Valid values for the NameType parameter are as specified in section 2.2.2.8. If the

NameType parameter does not have a valid value, the server MUST fail the call with an
ERROR_INVALID_PARAMETER error code.

The value of NameType identifies the minimum and maximum lengths for a particular NameType and
the characters that are permitted in a name for that NameType. The server MUST validate the
specified name by being sure that its length is within the minimum and maximum lengths for its type
and that there are no characters in its name that are invalid for its type. If any of these checks fail,
the server MUST fail the call with an ERROR_INVALID_NAME error code.

The server MAY<121> enforce security measures to verify that the caller has the required permissions
to execute this call. If the server enforces these security measures and the caller does not have the
required credentials, the server SHOULD<122> fail the call.

3.1.4.33 NetprNameCanonicalize (Opnum 34)

The NetprNameCanonicalize method converts a name to the canonical format for the specified type.

 NET_API_STATUS NetprNameCanonicalize(
 [in, string, unique] SRVSVC_HANDLE ServerName,
 [in, string] WCHAR* Name,
 [out, size_is(OutbufLen)] WCHAR* Outbuf,
 [in, range(0,64000)] DWORD OutbufLen,
 [in] DWORD NameType,
 [in] DWORD Flags
);

ServerName: An SRVSVC_HANDLE (section 2.2.1.1) pointer that identifies the server. The client
MUST map this structure to an RPC binding handle (see [C706] sections 4.3.5 and 5.1.5.2). The

server MUST ignore this parameter.

Name: A pointer to a null-terminated UTF-16 string specifying the name to canonicalize.

Outbuf: A pointer to a null-terminated UTF-16 string that is the buffer where the canonicalized name
is returned.

OutbufLen: The length of output buffer Outbuf. The value of this field MUST be within the range 0
through 64,000, inclusive.

NameType: The type of Name, as specified in section 2.2.2.8.

Flags: A bitmask that MUST contain the bitwise OR of zero or more of the following values that

specify controlling flags.

Value Meaning

0x80000000 LM2.x compatible name canonicalization.

0x00000001 If set, the method requires the length of the output buffer to be sufficient to hold any name
of the specified type. Otherwise, the buffer length only needs to be large enough to hold the
canonicalized version of the input name that is specified in this invocation of the method.

Return Values: The method returns 0x00000000 (NERR_Success) to indicate success; otherwise, it
returns a nonzero error code. The method can take any specific error code value, as specified in
[MS-ERREF] section 2.2.

158 / 241

[MS-SRVS-Diff] - v20240423
Server Service Remote Protocol
Copyright © 2024 Microsoft Corporation
Release: April 23, 2024

In response to a NetprNameCanonicalize message, the server MUST convert the value of the Name
parameter to one of the canonical forms that are defined in section 2.2.2.8.

The NameType parameter determines what needs to be done on the name that is specified by the
Name parameter to convert it to a canonical format. Valid values for the NameType parameter are as

specified in Name Types (section 2.2.2.8). If the NameType parameter does not have a valid value,
the server MUST fail the call with an ERROR_INVALID_PARAMETER error code.

The Flags parameter is a bitmask that specifies certain controlling flags that affect how the server
processes this message. The valid bits are 0x80000000 and 0x1. If any other bit is set, the server
MUST fail the call with an ERROR_INVALID_PARAMETER error code.

If (Flags & 0x80000000) is true, it implies that the server MUST perform an NTLM version 2.x–
compatible canonicalization. As the following table specifies, some NameTypes have different rules

about how to define a canonical name for those types on NTLM version 2.x.

The server MUST validate the Name (as specified by the NetprNameValidate method) to ensure that it
is a valid name of type NameType. If validation fails, the server MUST fail the call with

ERROR_INVALID_NAME.

The server MUST use the NameType parameter to determine the maximum length of any name for
that type (as specified in the following table). If (Flags & 0x1) is true and the length of the output

buffer specified by the OutBufLen parameter is not greater than or equal to the maximum length of
any name for that type, the server MUST fail the call with an NERR_BufTooSmall error code.

The canonicalization process then truncates the Name so that the length is no greater than the
maximum length for that type, converting the name to uppercase if needed. The following table
specifies the maximum length for each NameType and whether the server converts names to
uppercase. The second column in the table specifies the behavior when (Flags & 0x80000000) is true,
and the third column specifies the behavior when it is false.

NameType
Max name length for NTLM 2.x mode
/ Uppercase

Max name length otherwise /
Uppercase

NAMETYPE_USER

1

20/YES 256/NO

NAMETYPE_PASSWORD

2

14/NO 256/NO

NAMETYPE_GROUP

3

20/YES 256/NO

NAMETYPE_COMPUTER

4

15/YES 259/NO

NAMETYPE_EVENT

5

16/YES 16/YES

NAMETYPE_DOMAIN

6

15/YES 15/NO

NAMETYPE_SERVICE

7

15/YES 80/NO

NAMETYPE_NET

8

259/YES 259/YES

NAMETYPE_SHARE 12/YES 80/NO

159 / 241

[MS-SRVS-Diff] - v20240423
Server Service Remote Protocol
Copyright © 2024 Microsoft Corporation
Release: April 23, 2024

NameType
Max name length for NTLM 2.x mode
/ Uppercase

Max name length otherwise /
Uppercase

9

NAMETYPE_MESSAGE

10

259/YES 259/YES

NAMETYPE_MESSAGEDEST

11

259/YES 259/YES

NAMETYPE_SHAREPASSWORD

12

8/NO 8/NO

NAMETYPE_WORKGROUP

13

15/YES 15/NO

The server MAY<123> enforce security measures to verify that the caller has the required permissions

to execute this call. If the server enforces these security measures and the caller does not have the
required credentials, the server SHOULD<124> fail the call.

3.1.4.34 NetprNameCompare (Opnum 35)

The NetprNameCompare method does comparison of two names of a specific name type.

 long NetprNameCompare(
 [in, string, unique] SRVSVC_HANDLE ServerName,
 [in, string] WCHAR* Name1,
 [in, string] WCHAR* Name2,
 [in] DWORD NameType,
 [in] DWORD Flags
);

ServerName: An SRVSVC_HANDLE (section 2.2.1.1) pointer that identifies the server. The client
MUST map this structure to an RPC binding handle (see [C706] sections 4.3.5 and 5.1.5.2). The

server MUST ignore this parameter.

Name1: A pointer to a null-terminated UTF-16 string that contains the first name to compare.

Name2: A pointer to a null-terminated UTF-16 string that contains the second name to compare.

NameType: The type of names, as specified in section 2.2.2.8.

Flags: A bitmask that MUST contain the bitwise OR of zero or more of the following values, which
specify controlling flags.

Value Meaning

0x80000000 Enable LM2.x compatibility.

0x00000001 SHOULD be set if both names have already been canonicalized (by using
NetprNameCanonicalize).

Return Values: MUST return 0 if both paths are the same. Other values indicate that either the paths
are different or an error occurred when the client request was processed.

In response to a NetprNameCompare message, the server MUST compare the two names that are
specified as parameters to ensure that they contain only the characters that are allowed for the
specified NameType and that the length is no greater than the maximum allowed length for its

160 / 241

[MS-SRVS-Diff] - v20240423
Server Service Remote Protocol
Copyright © 2024 Microsoft Corporation
Release: April 23, 2024

NameType (as specified in section 2.2.2.8). If the supplied names are not canonicalized, the server
MUST do the canonicalization of the names.

The Name1 parameter and Name2 parameter specify the two names to be compared.

The Flags parameter is a bitmask that specifies certain controlling flags that affect how the server

processes this message. The valid bits are 0x80000000 and 0x1. If any other bit is set, the server
MUST fail the call with an ERROR_INVALID_PARAMETER error code.

If (Flags & 0x80000000) is true, it implies that the server MUST enable NTLM version 2.x
compatibility. This implies that the rules that are used for comparison and canonicalization (if needed)
MUST be those that are defined for NTLM version 2.x. For details about the effect on canonicalization,
see NetprNameCanonicalize (Opnum 34) (section 3.1.4.33). With respect to comparison, if (Flags &
0x80000000) is true and the NameType being compared is NAMETYPE_PASSWORD,

NAMETYPE_SHAREPASSWORD, NAMETYPE_MESSAGE, or NAMETYPE_MESSAGEDEST, the server MUST
perform a case-sensitive comparison. Otherwise, the server MUST perform a case-insensitive
comparison.

If (Flags & 0x1) is true, the names that are specified by Name1 and Name2 are already canonicalized,
and the NameType parameter MUST specify the name type for the two names. Valid values for the
NameType parameter are listed in Name Types (section 2.2.2.8). If the NameType parameter does not

have a valid value, the server MUST fail the call with an ERROR_INVALID_PARAMETER error code.

If (Flags & 0x1) is not true, the server MUST canonicalize the specified names and obtain their name
types, as specified in NetprNameCanonicalize (section 3.1.4.33). If this fails, the server MUST fail the
call with an ERROR_INVALID_PARAMETER error code.

The server MUST compare the canonicalized version of the names, if the names were not already
canonicalized; otherwise, it MUST compare the original names and MUST return 0 if both names are
the same, –1 if Name1 is less than Name2, and 1 if Name1 is greater than Name2. The comparison is

implementation-specific.<125>

The server MAY<126> enforce security measures to verify that the caller has the required permissions
to execute this call. If the caller does not have the required credentials, the server SHOULD<127> fail

the call.

3.1.4.35 NetrDfsGetVersion (Opnum 43)

The NetrDfsGetVersion method checks whether the server is a DFS server and if so, returns the DFS
version. An implementation MAY<128> choose to support this method.

 NET_API_STATUS NetrDfsGetVersion(
 [in, string, unique] SRVSVC_HANDLE ServerName,
 [out] DWORD* Version
);

ServerName: An SRVSVC_HANDLE (section 2.2.1.1) pointer that identifies the server. The client
MUST map this structure to an RPC binding handle (see [C706] sections 4.3.5 and 5.1.5.2). The

server MUST ignore this parameter.

Version: A pointer to a DWORD where the server returns the DFS version.

Return Values: The method returns 0x00000000 (NERR_Success) to indicate success; otherwise, it
returns a nonzero error code. The method can take any specific error code value, as specified in
[MS-ERREF] section 2.2.

In response to a NetrDfsGetVersion message, the server SHOULD<129> choose to perform no
processing and return an implementation-specific error code when this method is called. If the server

supports DFS, the server MAY return the DFS version number that is in use on the server.

161 / 241

[MS-SRVS-Diff] - v20240423
Server Service Remote Protocol
Copyright © 2024 Microsoft Corporation
Release: April 23, 2024

The Version parameter is a pointer to a DWORD. If the server supports DFS, the server MUST set this
parameter to an implementation-specific<130> DFS version number that the server supports.

The server MAY<131> enforce security measures to verify that the server enforces these security
measures and that the caller has the required permissions to execute this call. If the caller does not

have the required credentials, the server SHOULD<132> fail the call.

3.1.4.36 NetrDfsCreateLocalPartition (Opnum 44)

The NetrDfsCreateLocalPartition method marks a share as being a DFS share. In addition, if the

RelationInfo parameter is non-NULL, it creates DFS links, as specified in [MS-DFSC], for each of the
entries in the RelationInfo parameter. An implementation MAY<133> choose to support this method.

 NET_API_STATUS NetrDfsCreateLocalPartition(
 [in, string, unique] SRVSVC_HANDLE ServerName,
 [in, string] WCHAR* ShareName,
 [in] GUID* EntryUid,
 [in, string] WCHAR* EntryPrefix,
 [in, string] WCHAR* ShortName,
 [in] LPNET_DFS_ENTRY_ID_CONTAINER RelationInfo,
 [in] int Force
);

ServerName: An SRVSVC_HANDLE (section 2.2.1.1) pointer that identifies the server. The client

MUST map this structure to an RPC binding handle (see [C706] sections 4.3.5 and 5.1.5.2). The
server MUST ignore this parameter.

ShareName: A pointer to a null-terminated UTF-16 string that specifies the name of a local disk share
on the server to add to DFS.

EntryUid: A pointer to a GUID type that specifies the GUID for this DFS share. The GUID for this
share MUST NOT match a GUID for an existing local partition.<134>

EntryPrefix: A pointer to a null-terminated UTF-16 string that specifies the path of the DFS share.

ShortName: A pointer to a null-terminated UTF-16 string that specifies the short-name version (8.3
format) of the EntryPrefix parameter.

RelationInfo: A pointer to a NET_DFS_ENTRY_ID_CONTAINER structure. Specifies the DFS child links
that are under the DFS share that is specified by the EntryPrefix parameter.

Force: The Force parameter is ignored and MUST be set to zero.

Return Values: The method returns 0x00000000 (NERR_Success) to indicate success; otherwise, it

returns a nonzero error code. The method can take any specific error code value, as specified in
[MS-ERREF] section 2.2.

In response to a NetrDfsCreateLocalPartition message, the server SHOULD<135> choose to perform
no processing and return an implementation-specific error code when this method is called. If the

server supports DFS, the server MAY mark an existing SMB file share as a DFS share that enables it to
be accessed by using DFS, as specified in [MS-DFSC].

The ShareName parameter MUST specify the name of an existing SMB file share of type

STYPE_DISKTREE (for more information, see Share Types (section 2.2.2.4)), or the server MUST fail
the call with an ERROR_BAD_NET_NAME error code if the share is not present. If the share is present,
but not of type STYPE_DISKTREE, it MUST fail with an ERROR_BAD_DEV_TYPE error code.

The EntryUid parameter specifies the GUID that the server MUST assign to the new DFS share.

162 / 241

[MS-SRVS-Diff] - v20240423
Server Service Remote Protocol
Copyright © 2024 Microsoft Corporation
Release: April 23, 2024

This parameter MUST NOT be NULL, or the server MUST fail the call with an
ERROR_INVALID_PARAMETER error code. If the EntryUid parameter matches a GUID for an existing

local partition, the server MUST fail the call with an ERROR_INVALID_PARAMETER error code.

The EntryPrefix parameter specifies the path of the DFS share. This string MUST be in one of the

following two forms:

 The first form is \Dfsname\sharename, where Dfsname is the name of the storage server that
hosts the root of a standalone DFS implementation; and sharename is the name of a shared folder
that is published on the DFS host server.

 The second form is \DomainName\DomDfsname, where DomainName is the name of the domain
that hosts the DFS root; and DomDfsname is the name of the root of a domain-based DFS
implementation that is published in the directory service of the domain.

The RelationInfo parameter specifies the DFS child links to create under the share that is specified by
EntryPrefix. It has a member count that specifies the number of child links and a Buffer member that
is an array of the Count structure of type NET_DFS_ENTRY_ID. A DFS child link MUST be created for

each entry in the Buffer. The RelationInfo parameter MUST not be NULL, or the server MUST fail the
call with an ERROR_INVALID_PARAMETER error code.

The ShortName parameter specifies a share name (in the 8.3 format) that is specified by EntryPrefix

and MUST be interpreted by the server in an implementation-specific manner.<136>

The Force parameter is ignored and MUST be zero.

The server MAY<137> enforce security measures to verify that the caller has the required permissions
to execute this call. If the server enforces these security measures and the caller does not have the
required credentials, the server SHOULD<138> fail the call.

3.1.4.37 NetrDfsDeleteLocalPartition (Opnum 45)

The NetrDfsDeleteLocalPartition method deletes a DFS share (Prefix) on the server. An implementation

MAY<139> choose to support this method.

 NET_API_STATUS NetrDfsDeleteLocalPartition(
 [in, string, unique] SRVSVC_HANDLE ServerName,
 [in] GUID* Uid,
 [in, string] WCHAR* Prefix
);

ServerName: An SRVSVC_HANDLE (section 2.2.1.1) pointer that identifies the server. The client
MUST map this structure to an RPC binding handle (see [C706] sections 4.3.5 and 5.1.5.2). The
server MUST ignore this parameter.

Uid: Specifies the GUID of the DFS share to delete. This GUID MUST be obtained by using the
NetrDfsGetInfo (Opnum 4) method, which is specified in [MS-DFSNM] section 3.1.4.1.6.

Prefix: A pointer to a null-terminated UTF-16 string that contains the path to the DFS share.

Return Values: The method returns 0x00000000 (NERR_Success) to indicate success; otherwise, it
returns a nonzero error code. The method can take any specific error code value, as specified in
[MS-ERREF] section 2.2.

In response to a NetrDfsDeleteLocalPartition message, the server SHOULD<140> choose to perform
no processing and return an implementation-specific error code when this method is called. If the
server supports DFS, the server MAY delete a DFS share.

163 / 241

[MS-SRVS-Diff] - v20240423
Server Service Remote Protocol
Copyright © 2024 Microsoft Corporation
Release: April 23, 2024

The Prefix parameter specifies the path of the DFS share to delete. This string MUST be in one of the
following two forms:

 The first form is \Dfsname\sharename, where Dfsname is the name of the storage server that
hosts the root of a standalone DFS implementation; and sharename is the name of a shared folder

that is published on the DFS host server.

 The second form is \DomainName\DomDfsname, where DomainName is the name of the domain
that hosts the DFS root; and DomDfsname is the root name of a domain-based DFS
implementation that is published in the directory service of the domain.

If the server cannot find a DFS share whose GUID matches the Uid parameter and whose path
matches the Prefix parameter, it MUST fail the call with an implementation-specific error code. If a
matching share is found, the server deletes the share and returns 0.

The server MAY<141> enforce security measures to verify that the caller has the required permissions
to execute this call. If the server enforces these security measures and the caller does not have the
required credentials, the server SHOULD<142> fail the call.

3.1.4.38 NetrDfsSetLocalVolumeState (Opnum 46)

The NetrDfsSetLocalVolumeState method sets a local DFS share online or offline. An implementation
MAY<143> choose to support this method.

 NET_API_STATUS NetrDfsSetLocalVolumeState(
 [in, string, unique] SRVSVC_HANDLE ServerName,
 [in] GUID* Uid,
 [in, string] WCHAR* Prefix,
 [in] unsigned long State
);

ServerName: An SRVSVC_HANDLE (section 2.2.1.1) pointer that identifies the server. The client
MUST map this structure to an RPC binding handle (see [C706] sections 4.3.5 and 5.1.5.2). The

server MUST ignore this parameter.

Uid: Specifies the GUID of the DFS share. This GUID MUST be obtained by using the NetrDfsGetInfo
(Opnum 4) method, as specified in [MS-DFSNM] section 3.1.4.1.6.

Prefix: A pointer to a null-terminated UTF-16 string that specifies the path to the DFS share.

State: A DWORD that specifies the new state for the DFS share. To set the share to offline, the State
parameter MUST be (0x80). The State parameter MUST be set to any other value to take the
share online.

Return Values: The method returns 0x00000000 (NERR_Success) to indicate success; otherwise, it

returns a nonzero error code. The method can take any specific error code value, as specified in
[MS-ERREF] section 2.2.

In response to a NetrDfsSetLocalVolumeState message, the server SHOULD<144> choose to perform

no processing and return an implementation-specific error code when this method is called. If the
server supports DFS, the server MAY set the state of a local DFS share to online or offline. Marking a
share state offline makes the share inaccessible over DFS.

The Uid parameter specifies the GUID of the share whose state needs to be set.

The Prefix parameter specifies the path of the DFS share whose state needs to be set. This parameter
MUST refer to a local DFS share. If the server does not find a DFS share whose path starts with the
value of the Prefix parameter and whose GUID matches the value of the Uid parameter, the server
MUST fail the call and return an implementation-specific error code.

164 / 241

[MS-SRVS-Diff] - v20240423
Server Service Remote Protocol
Copyright © 2024 Microsoft Corporation
Release: April 23, 2024

The State parameter specifies whether the share state MUST be set to online or offline. If the value of
State is 0x80, the share state MUST be set to offline. For any other value, the share state MUST be set

to online.

The server MAY<145> enforce security measures to verify that the caller has the required permissions

to execute this call. If the server enforces these security measures and the caller does not have the
required credentials, the server SHOULD<146> fail the call.

3.1.4.39 NetrDfsCreateExitPoint (Opnum 48)

The NetrDfsCreateExitPoint method creates a DFS link on the server. An implementation MAY<147>
choose to support this method.

 NET_API_STATUS NetrDfsCreateExitPoint(
 [in, string, unique] SRVSVC_HANDLE ServerName,
 [in] GUID* Uid,
 [in, string] WCHAR* Prefix,
 [in] unsigned long Type,
 [in, range(0,32)] DWORD ShortPrefixLen,
 [out, size_is(ShortPrefixLen)] WCHAR* ShortPrefix
);

ServerName: An SRVSVC_HANDLE (section 2.2.1.1) pointer that identifies the server. The client
MUST map this structure to an RPC binding handle (see [C706] sections 4.3.5 and 5.1.5.2). The
server MUST ignore this parameter.

Uid: Specifies the GUID for the DFS link. This GUID MUST be obtained by using the NetrDfsGetInfo

(Opnum 4) method, which is specified in [MS-DFSNM] section 3.1.4.1.6.

Prefix: A pointer to a null-terminated UTF-16 string that specifies the path of the DFS link.

Type: This parameter MUST be one of the values that are specified in section 2.2.2.13.

ShortPrefixLen: Specifies the size of the buffer passed in the ShortPrefix. The value of this field
MUST be within the range 0 through 32, inclusive.

ShortPrefix: A pointer to a null-terminated UTF-16 string that is the buffer where the name of the
DFS namespace root or link is returned.<148>

Return Values: The method returns 0x00000000 (NERR_Success) to indicate success; otherwise, it
returns a nonzero error code. The method can take any specific error code value, as specified in
[MS-ERREF] section 2.2.

In response to a NetrDfsCreateExitPoint message, the server SHOULD<149> choose to perform no
processing and return an implementation-specific error code when this method is called. If the server
supports DFS, the server MAY create a DFS link, as specified in [MS-DFSC].

The Uid parameter specifies the GUID to be assigned to the new link.

The Prefix parameter specifies the path of the DFS link. The string MUST be in one of two forms:

 The first form is \Dfsname\sharename\path_to_link, where Dfsname is the name of the storage
server that hosts the root of a standalone DFS implementation; sharename is the name of a
shared folder that is published on the DFS host server; and path_to_link specifies the path on the
physical network share.

 The second form is \DomainName\DomDfsname\path_to_link, where DomainName is the name of

the domain that hosts the DFS root; DomDfsname is the root name of a domain-based DFS
implementation that is published in the directory service of the domain; and path_to_link specifies
the path on the physical network share.

165 / 241

[MS-SRVS-Diff] - v20240423
Server Service Remote Protocol
Copyright © 2024 Microsoft Corporation
Release: April 23, 2024

The Type parameter specifies the type of the new link and MUST be one of the values listed in section
2.2.2.13. If the value of this parameter is PKT_ENTRY_TYPE_MACHINE, the server MUST fail the call

and return an implementation-specific error code.

The ShortPrefixLen parameter specifies the length of the ShortPrefix parameter that specifies a short

name for the new link in the 8.3 format.

The server MAY<150> enforce security measures to verify that the caller has the required permissions
to execute this call. If the server enforces these security measures and the caller does not have the
required credentials, the server SHOULD<151> fail the call.

3.1.4.40 NetrDfsModifyPrefix (Opnum 50)

The NetrDfsModifyPrefix method changes the path that corresponds to a DFS link on the server. An
implementation MAY<152> choose to support this method.

 NET_API_STATUS NetrDfsModifyPrefix(
 [in, string, unique] SRVSVC_HANDLE ServerName,
 [in] GUID* Uid,
 [in, string] WCHAR* Prefix
);

ServerName: An SRVSVC_HANDLE (section 2.2.1.1) pointer that identifies the server. The client
MUST map this structure to an RPC binding handle (see [C706] sections 4.3.5 and 5.1.5.2). The
server MUST ignore this parameter.

Uid: Specifies the GUID that corresponds to the DFS link that needs to be changed. This GUID MUST
be obtained by using the NetrDfsGetInfo (Opnum 4) method, specified in [MS-DFSNM] section
3.1.4.1.6.

Prefix: A pointer to a null-terminated UTF-16 string that specifies the path of the updated DFS link.

Return Values: The method returns 0x00000000 (NERR_Success) to indicate success; otherwise, it

returns a nonzero error code. The method can take any specific error code value, as specified in
[MS-ERREF] section 2.2.

In response to a NetrDfsModifyPrefix message, the server SHOULD<153> choose to perform no
processing and return an implementation-specific error code when this method is called. If the server

supports DFS, the server MAY update the path for a DFS link. This message is typically used by
domain controllers (DCs) to fix a bad prefix match.

The Uid parameter specifies the GUID that corresponds to the DFS link that needs to be changed.

The Prefix parameter specifies the path of the updated DFS link. The string MUST be in one of two
forms:

 The first form is \Dfsname\sharename\path_to_link, where Dfsname is the name of the storage
server that hosts the root of a standalone DFS implementation; sharename is the name of a

shared folder that is published on the DFS host server; and path_to_link specifies the path on the

physical network share.

 The second form is \DomainName\DomDfsname\path_to_link, where DomainName is the name of
the domain that hosts the DFS root; DomDfsname is the name of the root of a domain-based DFS
implementation that is published in the directory service of the domain; and path_to_link specifies
the path on the physical network share.

The server MAY<154> enforce security measures to verify that the caller has the required permissions

to execute this call. If the server enforces these security measures and the caller does not have the
required credentials, the server SHOULD<155> fail the call.

166 / 241

[MS-SRVS-Diff] - v20240423
Server Service Remote Protocol
Copyright © 2024 Microsoft Corporation
Release: April 23, 2024

3.1.4.41 NetrDfsDeleteExitPoint (Opnum 49)

The NetrDfsDeleteExitPoint method deletes a DFS link on the server. An implementation MAY<156>
choose to support this method.

 NET_API_STATUS NetrDfsDeleteExitPoint(
 [in, string, unique] SRVSVC_HANDLE ServerName,
 [in] GUID* Uid,
 [in, string] WCHAR* Prefix,
 [in] unsigned long Type
);

ServerName: An SRVSVC_HANDLE (section 2.2.1.1) point that identifies the server. The client MUST
map this structure to an RPC binding handle (see [C706] sections 4.3.5 and 5.1.5.2). The server
MUST ignore this parameter.

Uid: Specifies the GUID that corresponds to the DFS link that is specified by the Prefix parameter.

This GUID MUST be obtained by using the NetrDfsGetInfo (Opnum 4) method, specified in [MS-
DFSNM] section 3.1.4.1.6.

Prefix: A pointer to a null-terminated UTF-16 string that specifies the path of the DFS link.

Type: This parameter MUST be one of the values listed in section 2.2.2.13.

Return Values: The method returns 0x00000000 (NERR_Success) to indicate success; otherwise, it
returns a nonzero error code. The method can take any specific error code value, as specified in
[MS-ERREF] section 2.2.

In response to a NetrDfsDeleteExitPoint message, the server SHOULD<157> choose to perform no

processing and return an implementation-specific error code when this method is called. If the server
supports DFS, the server MAY delete a DFS link, as specified in [MS-DFSC].

The Uid parameter specifies the GUID of the link to delete.

The Prefix parameter specifies the path of the DFS link. The string MUST be in one of two forms:

 The first form is \Dfsname\sharename\path_to_link, where Dfsname is the name of the storage
server that hosts the root of a standalone DFS implementation; sharename is the name of a
shared folder that is published on the DFS host server; and path_to_link specifies the path on the

physical network share.

 The second form is \DomainName\DomDfsname\path_to_link, where DomainName is the name of
the domain that hosts the DFS root; DomDfsname is the root name of a domain-based DFS
implementation that is published in the directory service of the domain; and path_to_link specifies
the path on the physical network share.

The Type parameter specifies the type of the link to delete and MUST be one of the values listed in
section 2.2.2.13. If the value of this parameter is PKT_ENTRY_TYPE_MACHINE, the server MUST fail

the call and return an implementation-specific error code.

If a link whose GUID, path, and type match the specified parameters is present, the server MUST
delete it; otherwise, it MUST fail the call with an implementation-specific error code.

The server MAY<158> enforce security measures to verify that the caller has the required permissions
to execute this call. If the server enforces these security measures and the caller does not have the
required credentials, the server SHOULD<159> fail the call.

167 / 241

[MS-SRVS-Diff] - v20240423
Server Service Remote Protocol
Copyright © 2024 Microsoft Corporation
Release: April 23, 2024

3.1.4.42 NetrDfsFixLocalVolume (Opnum 51)

The NetrDfsFixLocalVolume method provides knowledge of a new DFS share on the server. An
implementation MAY<160> choose to support this method.

 NET_API_STATUS NetrDfsFixLocalVolume(
 [in, string, unique] SRVSVC_HANDLE ServerName,
 [in, string] WCHAR* VolumeName,
 [in] unsigned long EntryType,
 [in] unsigned long ServiceType,
 [in, string] WCHAR* StgId,
 [in] GUID* EntryUid,
 [in, string] WCHAR* EntryPrefix,
 [in] LPNET_DFS_ENTRY_ID_CONTAINER RelationInfo,
 [in] unsigned long CreateDisposition
);

ServerName: An SRVSVC_HANDLE (section 2.2.1.1) pointer that identifies the server. The client

MUST map this structure to an RPC binding handle (see [C706] sections 4.3.5 and 5.1.5.2). The

server MUST ignore this parameter.

VolumeName: A pointer to a null-terminated UTF-16 string that specifies the target for the DFS root
share. This target MUST be local to the server; for example, \??\C:\DfsShare.<161> This target
SHOULD NOT contain a directory that is in DFS, and it SHOULD NOT be a child of a DFS share. If
the specified volume name is not valid, the server SHOULD fail the call by using an
implementation-specific error code.

EntryType: This parameter MUST be one of the values listed in section 2.2.2.13. If the specified entry
type is not valid, the server SHOULD fail the call with an implementation-specific error code.

ServiceType: This parameter MUST be a combination of one or more of the following values. If the
specified service type is not valid, the server SHOULD fail the call with an implementation-specific
error code.

Value Meaning

DFS_SERVICE_TYPE_MASTER

0x00000001

Master service

DFS_SERVICE_TYPE_READONLY

0x00000002

Read-only service

DFS_SERVICE_TYPE_LOCAL

0x00000004

Local service

DFS_SERVICE_TYPE_REFERRAL

0x00000008

Referral service

DFS_SERVICE_TYPE_ACTIVE

0x000000010

Active service

DFS_SERVICE_TYPE_DOWN_LEVEL

0x000000020

Down-level service

DFS_SERVICE_TYPE_COSTLIER

0x000000040

Costlier service than previous

DFS_SERVICE_TYPE_OFFLINE

0x000000080

Service is offline

168 / 241

[MS-SRVS-Diff] - v20240423
Server Service Remote Protocol
Copyright © 2024 Microsoft Corporation
Release: April 23, 2024

StgId: A pointer to a variable that specifies an ID for the local storage. The server MUST ignore the
value that is passed in for the StgId parameter.

EntryUid: Specifies the GUID that corresponds to the DFS share. This GUID MUST be obtained by
using the NetrDfsGetInfo (Opnum 4) method, which is specified in [MS-DFSNM] section 3.1.4.1.6.

EntryPrefix: A pointer to a null-terminated UTF-16 string that specifies the path of the DFS share to
be updated.

RelationInfo: A pointer to a NET_DFS_ENTRY_ID_CONTAINER structure as specified in section
2.2.4.108. Specifies the DFS child links under the DFS share as specified by the EntryPrefix
parameter.

CreateDisposition: Specifies what to do, depending on whether the share already exists. This field
MUST be set to one of the following values.

Value Meaning

FILE_SUPERSEDE

0x00000000

If the share already exists, replace it with the specified share. If it does not exist,
create the specified share.

FILE_OPEN

0x00000001

If the share already exists, fail the request and do not create or open the specified
share. If it does not exist, create the specified share.

FILE_CREATE

0x00000002

If the file already exists, open it instead of creating a new share. If it does not exist, fail
the request and do not create a new share.

Return Values: The method returns 0x00000000 (NERR_Success) to indicate success; otherwise, it
returns a nonzero error code. The method can take any specific error code value, as specified in

[MS-ERREF] section 2.2.

In response to a NetrDfsFixLocalVolume message, the server SHOULD<162> choose to perform no
processing and return an implementation-specific error code when this method is called. If the server

supports DFS, the server MAY add the link name that corresponds to a specified Uid. This message
typically is sent by a domain controller when it discovers that the server is completely unaware of a
new DFS volume.

The VolumeName parameter specifies the target for the DFS root share. This target MUST be local to

the server and is in the form of a Windows NT operating system path name, for example,
\??\C:\DfsShare.<163> This target SHOULD NOT contain a directory that is in DFS, and it SHOULD
NOT be a child of a DFS share.

The EntryType parameter specifies the type of the link and MUST be one of the values listed in section
2.2.2.13.

The ServiceType parameter specifies the service type of the client.

The StgId parameter specifies an implementation-specific ID for the local storage.

The EntryUid parameter specifies the GUID for the new link.

The Prefix parameter specifies the path of the updated DFS link. The string MUST be in one of two
forms:

 The first form is \Dfsname\sharename\path_to_link, where Dfsname is the name of the storage
server that hosts the root of a standalone DFS implementation; sharename is the name of a
shared folder that is published on the DFS host server; and path_to_link specifies the path on the

physical network share.

169 / 241

[MS-SRVS-Diff] - v20240423
Server Service Remote Protocol
Copyright © 2024 Microsoft Corporation
Release: April 23, 2024

 The second form is \DomainName\DomDfsname\path_to_link, where DomainName is the name of
the domain that hosts the DFS root; DomDfsname is the name of the root of a domain-based DFS

implementation that is published in the directory service of the domain; and path_to_link specifies
the path on the physical network share.

The RelationInfo parameter specifies the DFS child links under the DFS share that is specified by
EntryPrefix. If this parameter is NULL or if its Count member is nonzero and its Buffer member is
NULL, the server fails the call by using an ERROR_INVALID_PARAMETER error code.

The CreateDisposition parameter specifies what MUST happen if a share with the path EntryPrefix
already exists.

The server MAY<164> enforce security measures to verify that the caller has the required permissions
to execute this call. If the server enforces these security measures and the caller does not have the

required credentials, the server SHOULD<165> fail the call.

3.1.4.43 NetrDfsManagerReportSiteInfo (Opnum 52)

The NetrDfsManagerReportSiteInfo method obtains a list of names that SHOULD<166> correspond to

the Active Directory sites covered by the specified server. An implementation MAY<167> choose to
support this method.

 NET_API_STATUS NetrDfsManagerReportSiteInfo(
 [in, string, unique] SRVSVC_HANDLE ServerName,
 [in, out, unique] LPDFS_SITELIST_INFO* ppSiteInfo
);

ServerName: An SRVSVC_HANDLE (section 2.2.1.1) pointer that identifies the server. The client
MUST map this structure to an RPC binding handle (see [C706] sections 4.3.5 and 5.1.5.2).

ppSiteInfo: A pointer to an LPDFS_SITELIST_INFO structure, which in turn points to the location of a
DFS_SITELIST_INFO structure in which the information is returned.

Return Values: The method returns 0x00000000 (NERR_Success) to indicate success; otherwise, it
returns a nonzero error code. The method can take any specific error code value, as specified in
[MS-ERREF] section 2.2.

The ppSiteInfo parameter is a pointer to a LPDFS_SITELIST_INFO member, which in turn points to the
location of a DFS_SITELIST_INFO structure in which the information is returned. That structure has a
cSites member that the server SHOULD set to the number of sites returned. The information about
the sites themselves MUST be returned in the Site member, which is an array of

DFS_SITENAME_INFO structures. The sites the server returns are implementation-specific.<168>

The server MAY<169> enforce security measures to verify that the caller has the required permissions
to execute this call. If the server enforces these security measures and the caller does not have the
required credentials, the server SHOULD<170> fail the call.

3.1.4.44 NetrServerAliasAdd (Opnum 54)

The NetrServerAliasAdd method attaches an alias name to an existing server name and inserts Alias
objects into AliasList, through which the shared resource can be accessed either with server name or
alias name. An alias is used to identify which resources are visible to an SMB client based on the
server name presented in each tree connect request.

 NET_API_STATUS NetrServerAliasAdd(
 [in, string, unique] SRVSVC_HANDLE ServerName,
 [in] DWORD Level,

170 / 241

[MS-SRVS-Diff] - v20240423
Server Service Remote Protocol
Copyright © 2024 Microsoft Corporation
Release: April 23, 2024

 [in, switch_is(Level)] LPSERVER_ALIAS_INFO InfoStruct

);

ServerName: An SRVSVC_HANDLE (section 2.2.1.1) that identifies the server. The client MUST map
this structure to an RPC binding handle (see [C706] sections 4.3.5 and 5.1.5.2). The server MUST
ignore this parameter.

Level: Specifies the information level of the data. It MUST be one of the following values.

Value Meaning

0 The buffer is of type SERVER_ALIAS_INFO_0_CONTAINER.

InfoStruct: A pointer to the SERVER_ALIAS_INFO union that contains information about the alias.
The value of the Level parameter determines the type of the contents of the InfoStruct parameter,

as the preceding table shows.

Return Values: The method returns 0x00000000 (NERR_Success) to indicate success; otherwise, it
returns a nonzero error code. The method can take any specific error code value, as specified in
[MS-ERREF] section 2.2. The most common error codes are listed in the following table.

Return value/code Description

0x00000000

NERR_Success

The client request succeeded.

0x00000005

ERROR_ACCESS_DENIED

Access is denied.

0x00000057

ERROR_INVALID_PARAMETER

The client request failed because the specified parameter is invalid.

0x00000008

ERROR_NOT_ENOUGH_MEMORY

Not enough storage is available to process this command.

0x00000846

NERR_DuplicateShare

The alias already exists.

0x0000007C

ERROR_INVALID_LEVEL

The system call level is not correct.

In response to a NetrServerAliasAdd message, the server MUST add an alias to attach the existing
server name and insert it into AliasList upon successful return, or return an error code for a failure
case. Multiple alias names can be attached to the same server name.

The server name to be attached to the alias is specified in the srvai*_target member of the

SERVER_ALIAS_INFO structure. If the specified target name is an empty string or does not match any

Transport.ServerName in the TransportList, the server SHOULD fail the call with an
ERROR_INVALID_PARAMETER error code.

The Level parameter determines the type of structure that the client has used to specify information
about the new alias. The value of the Level parameter MUST be 0. If the Level parameter is not equal
to 0, the server MUST fail the call and return an ERROR_INVALID_LEVEL error code.

The name of the alias to be added is specified in the srvai*_alias member of the
SERVER_ALIAS_INFO structure. srvai*_alias MUST be a nonempty null-terminated UTF-16 string if

171 / 241

[MS-SRVS-Diff] - v20240423
Server Service Remote Protocol
Copyright © 2024 Microsoft Corporation
Release: April 23, 2024

srvai*_default is 0 or an empty string if srvai*_default is nonzero; otherwise, the server MUST fail
the call with an ERROR_INVALID_PARAMETER error code. If srvai*_alias is a nonempty string and it

matches an existing Alias.alias in the AliasList, the server MUST fail the call with an
ERROR_INVALID_PARAMETER error code. If srvai*_alias is an empty string and srvai*_default is

set, the server MUST fail the call with an implementation-specific error code if DefaultServerName is
not NULL. Otherwise, DefaultServerName MUST be set to srvai*_target as specified in section
3.1.1.1.

The server MAY<171> enforce security measures to verify that the caller has the required permissions
to execute this call. If the server enforces these security measures and the caller does not have the
required credentials, the server SHOULD<172> fail the call.

The server MUST persist the InfoStruct and Level parameters to a persistent configuration store. If an

alias with the same srvai0_alias and srvai0_target already exists in the store, the preexisting entry
MUST be overwritten with this entry.

3.1.4.45 NetrServerAliasEnum (Opnum 55)

The NetrServerAliasEnum method retrieves alias information for a server based on specified alias
name or server name.

 NET_API_STATUS NetrServerAliasEnum(
 [in, string, unique] SRVSVC_HANDLE ServerName,
 [in, out] LPSERVER_ALIAS_ENUM_STRUCT InfoStruct,
 [in] DWORD PreferedMaximumLength,
 [out] LPDWORD TotalEntries,
 [in, out, unique] LPDWORD ResumeHandle
);

ServerName: An SRVSVC_HANDLE (section 2.2.1.1) pointer that identifies the server. The client
MUST map this structure to an RPC binding handle (see [C706] sections 4.3.5 and 5.1.5.2). The
server MUST ignore this parameter.

InfoStruct: A pointer to a structure, in the format of a SERVER_ALIAS_ENUM_STRUCT, as specified
in section 2.2.4.104. The SERVER_ALIAS_ENUM_STRUCT structure has a Level member that
specifies the type of structure to return in the ServerAliasInfo member. The Level member
MUST be one of the values specified in section 2.2.4.104.

PreferedMaximumLength: Specifies the preferred maximum length, in bytes, of the returned data.
If the specified value is MAX_PREFERRED_LENGTH, the method MUST attempt to return all
entries.

TotalEntries: The total number of entries that could have been enumerated if the buffer had been big
enough to hold all the entries.

ResumeHandle: A pointer to a value that contains a handle, which is used to continue an existing
alias search in AliasList. The handle MUST be zero on the first call and remain unchanged for

subsequent calls. If the ResumeHandle parameter is NULL, no resume handle MUST be stored. If

this parameter is not NULL and the method returns ERROR_MORE_DATA, this parameter receives
an implementation-specific nonzero value that can be passed in subsequent calls to this method to
continue with the enumeration.

If this parameter is NULL or points to 0x00000000, the enumeration starts from the beginning of
the AliasList.

Return Values: The method returns 0x00000000 (NERR_Success) to indicate success; otherwise, it
returns a nonzero error code. The method can take any specific error code value, as specified in
[MS-ERREF] section 2.2. The most common error codes are listed in the following table.

172 / 241

[MS-SRVS-Diff] - v20240423
Server Service Remote Protocol
Copyright © 2024 Microsoft Corporation
Release: April 23, 2024

Return value/code Description

0x00000000

NERR_Success

The client request succeeded.

0x00000005

ERROR_ACCESS_DENIED

Access is denied.

0x00000057

ERROR_INVALID_PARAMETER

The client request failed because the specified parameter is invalid.

0x00000008

ERROR_NOT_ENOUGH_MEMORY

Not enough storage is available to process this command.

0x0000084B

NERR_BufTooSmall

The allocated buffer is too small to hold single entry.

0x0000007C

ERROR_INVALID_LEVEL

The system call level is not correct.

0x000000EA

ERROR_MORE_DATA

The client request succeeded. More entries are available. Not all entries
could be returned in the buffer size that is specified by
PreferedMaximumLength.

In response to a NetrServerAliasEnum message, the server MUST return information about each alias
resource on a server, or return an error code.

The InfoStruct parameter has a Level member. The valid values of Level are 0. If the Level member

is not equal to 0, the server MUST fail the call with an ERROR_INVALID_LEVEL error code.

If the Level member is 0, the server MUST return the information about aliases by filling the
SERVER_ALIAS_INFO_0_CONTAINER structure in the ServerAliasInfo member of the InfoStruct
parameter. The SERVER_ALIAS_INFO_0_CONTAINER structure contains an array of

SERVER_ALIAS_INFO_0 structures.

The PreferedMaximumLength parameter specifies the maximum number of bytes that the server can

return for the ServerAliasInfo buffer. If PreferedMaximumLength is insufficient to hold all the
entries, the server MUST return the maximum number of entries as will fit in the ServerAliasInfo
buffer and return ERROR_MORE_DATA. If this parameter is equal to MAX_PREFERRED_LENGTH, the
server MUST return all the requested data.

If the server returns NERR_Success or ERROR_MORE_DATA, it MUST set the TotalEntries parameter to
equal the total number of entries that could have been enumerated from the current resume position.

If PreferedMaximumLength is insufficient to hold all the entries and if the client has specified a

ResumeHandle, the server MUST set ResumeHandle to some implementation-specific value that allows
the server to continue with this enumeration on a subsequent call to this method with the same value
for ResumeHandle.

The server MUST maintain AliasList.

The following rules specify processing of the ResumeHandle parameter:

 If the ResumeHandle parameter is either NULL or points to 0x00000000, the enumeration MUST
start from the beginning of the list of the AliasList.

 If the ResumeHandle parameter points to a nonzero value, the server MUST continue enumeration
based on the value of ResumeHandle. The value of ResumeHandle specifies the index into the
AliasList after which the enumeration is to begin.

173 / 241

[MS-SRVS-Diff] - v20240423
Server Service Remote Protocol
Copyright © 2024 Microsoft Corporation
Release: April 23, 2024

 If the client specified a ResumeHandle and if the server returns ERROR_MORE_DATA
(0x000000EA), the server MUST set ResumeHandle to the index of the last enumerated alias in

the AliasList.

Because the ResumeHandle specifies an offset into the list, and the list of aliases can be modified

between multiple requests, the results of a query spanning multiple requests using the ResumeHandle
can be unreliable, offering either duplicate or missed aliases.

The server SHOULD<173> enforce security measures to verify that the caller has the required
permissions to execute this routine. If the caller does not have the required credentials, the server
SHOULD<174> fail the call.

3.1.4.46 NetrServerAliasDel (Opnum 56)

The NetrServerAliasDel method deletes an alias name from a server alias list based on specified alias
name.

 NET_API_STATUS NetrServerAliasDel(
 [in, string, unique] SRVSVC_HANDLE ServerName,
 [in] DWORD Level,
 [in, switch_is(Level)] LPSERVER_ALIAS_INFO InfoStruct
);

ServerName: An SRVSVC_HANDLE (section 2.2.1.1) pointer that identifies the server. The client
MUST map this structure to an RPC binding handle ([C706] sections 4.3.5 and 5.1.5.2). If this
parameter is NULL, the local computer is used.

Level: Specifies the information level of the data. It MUST be one of the following values.

Value Meaning

0 The buffer is of type SERVER_ALIAS_INFO_0_CONTAINER.

InfoStruct: A pointer to the SERVER_ALIAS_INFO union that contains information about the alias.
The value of the Level parameter determines the type of the contents of the InfoStruct parameter,

as the preceding table shows.

Return Values: The method returns 0x00000000 (NERR_Success) to indicate success; otherwise, it
returns a nonzero error code. The method can take any specific error code value, as specified in
[MS-ERREF] section 2.2. The most common error codes are listed in the following table.

Return value/code Description

0x00000000

NERR_Success

The client request succeeded.

0x00000005

ERROR_ACCESS_DENIED

Access is denied.

0x00000057

ERROR_INVALID_PARAMETER

The client request failed because the specified parameter is invalid.

0x00000008

ERROR_NOT_ENOUGH_MEMORY

Not enough storage is available to process this command.

0x00000906

NERR_NetNameNotFound

The alias does not exist.

174 / 241

[MS-SRVS-Diff] - v20240423
Server Service Remote Protocol
Copyright © 2024 Microsoft Corporation
Release: April 23, 2024

Return value/code Description

0x0000007C

ERROR_INVALID_LEVEL

The system call level is not correct.

In response to a NetrServerAliasDel message, the server MUST delete the alias name from the
AliasList based on specified alias name, or MUST return an error code.

The srvai*_alias parameter specifies the name of the alias to be deleted. This MUST be a nonempty
null-terminated UTF-16 string if srvai*_default is 0 or empty string if srvai*_default is nonzero;
otherwise, the server MUST fail the call with an ERROR_INVALID_PARAMETER error code.

If no alias matching srvai*_alias exists, the server fails the call with a NERR_NetNameNotFound error
code.

srvai*_target MUST be ignored by the server.

The server SHOULD<175> enforce security measures to verify that the caller has the required
permissions to execute this routine. If the caller does not have the required credentials, the server
SHOULD<176> fail the call.

The server MUST delete configuration data for this alias from the persistent configuration store.

3.1.4.47 NetrShareDelEx (Opnum 57)

The NetrShareDelEx method deletes a share from the ShareList, which disconnects all connections to
the shared resource. If the share is sticky, all information about the share is also deleted from

permanent storage.<177>

 NET_API_STATUS NetrShareDelEx(
 [in, string, unique] SRVSVC_HANDLE ServerName,
 [in] DWORD Level,
 [in, switch_is(Level)] LPSHARE_INFO ShareInfo
);

ServerName: An SRVSVC_HANDLE pointer that identifies the server. The client MUST map this

structure to an RPC binding handle ([C706] sections 4.3.5 and 5.1.5.2). The server MUST ignore
this parameter.

Level: Specifies the information level of the data. This parameter MUST be one of the following
values.

Value Meaning

503 LPSHARE_INFO_503_I

ShareInfo: This parameter is of type LPSHARE_INFO union, as specified in section 2.2.3.6. Its
contents are determined by the value of the Level parameter, as shown in the preceding table.
This parameter MUST NOT contain a null value.

Return Values: The method returns 0x00000000 (NERR_Success) to indicate success; otherwise, it

returns a nonzero error code. The method can take any specific error code value, as specified in
[MS-ERREF] section 2.2. The most common error codes are listed in the following table.

175 / 241

[MS-SRVS-Diff] - v20240423
Server Service Remote Protocol
Copyright © 2024 Microsoft Corporation
Release: April 23, 2024

Return value/code Description

0x00000000

NERR_Success

The client request succeeded.

0x00000005

ERROR_ACCESS_DENIED

Access is denied.

0x00000057

ERROR_INVALID_PARAMETER

The client request failed because the specified parameter is invalid.

0x00000008

ERROR_NOT_ENOUGH_MEMORY

Not enough storage is available to process this command.

0x00000906

NERR_NetNameNotFound

The share name does not exist.

0x0000007C

ERROR_INVALID_LEVEL

The system call level is not correct.

The ShareInfo.shi503_netname parameter specifies the name of the share to delete from the
ShareList. This MUST be a nonempty null-terminated UTF-16 string; otherwise, the server MUST fail
the call with an ERROR_INVALID_PARAMETER error code.

The server MUST provide tuple <ShareInfo.shi503_servername, ShareInfo.shi503_netname> to look
up the Share as specified in section 3.1.6.1. If no match is found, the server MUST fail the call with a

NERR_NetNameNotFound (0x00000906) error code. If the Share is found and Share.IsPrinterShare
is TRUE, PrinterShareCount MUST be decreased by 1. If PrinterShareCount becomes 0, the server
MUST invoke an event as specified in section 3.1.6.10, providing SV_TYPE_PRINTQ_SERVER as the
input parameter. The server MUST remove the share entry from ShareList.

In response to a NetrShareDelEx message, the server MUST delete the Share by invoking the
underlying server event as specified in [MS-CIFS] section 3.3.4.11 and [MS-SMB2] section 3.3.4.15,

providing the tuple <ShareInfo.shi503_servername, ShareInfo.shi503_netname> as input

parameters. If the event fails, the server MUST return an error code.

The server SHOULD<178> enforce security measures to verify that the caller has the required
permissions to execute this routine. If the caller does not have the required credentials, the server
SHOULD<179> fail the call.

3.1.5 Timer Events

No protocol timer events are required on the client beyond the timers that are required in the
underlying RPC transport.

3.1.6 Other Local Events

None.

3.1.6.1 Server Looks Up Shares

The server MUST provide the tuple <ServerName, ShareName> to look up shares in ShareList, as

specified in section 3.1.1.1.

ShareName: The name of a shared resource. This MUST not be an empty string.

176 / 241

[MS-SRVS-Diff] - v20240423
Server Service Remote Protocol
Copyright © 2024 Microsoft Corporation
Release: April 23, 2024

ServerName: The name of a local server to which the shared resource attaches. This could be an
empty string.

To look up the share(s) in ShareList, the following algorithm MUST be used.

 FOREACH Share in ShareList
 IF Share.Name is equal to ShareName
 IF Share.ServerName is equal to ServerName
 RETURN Share
 ENDIF
 ENDIF
 ENDFOR
 RETURN NULL

3.1.6.2 Server Registers a New Session

The CIFS or SMB2 server requesting registration of a Session provides no parameters. The server
MUST insert a new Session into SessionList, and MUST assign Session.GlobalSessionId the value that
uniquely identifies the entry in the list. This value MUST be returned to the caller.

3.1.6.3 Server Deregisters a Session

The CIFS or SMB2 server MUST provide the SessionId of the Session that is being deregistered.

The server MUST look up the Session in SessionList where Session.GlobalSessionId is equal to the
SessionId provided by the caller, and remove it from SessionList.

3.1.6.4 Server Registers a New Open

The CIFS or SMB2 server requesting registration of an Open provides no parameters. The server MUST
insert a new Open into FileList, and MUST assign Open.GlobalFileId a value that uniquely identifies

the entry in the list. This value MUST be returned to the caller.

3.1.6.5 Server Deregisters an Open

The CIFS or SMB2 server MUST provide the FileId of the Open that is being deregistered.

The server MUST look up the Open in FileList, where Open.GlobalFileId is equal to the FileId provided
by the caller, and remove it from FileList.

3.1.6.6 Server Registers a New Treeconnect

The CIFS or SMB2 server requesting registration of a TreeConnect MUST provide the tuple
<ServerName, ShareName>. The server MUST insert a new TreeConnect into TreeConnectList
and MUST assign TreeConnect.GlobalTreeConnectId the value that uniquely identifies the entry in
the list. This value MUST be returned to the caller. The server MUST look up the Share in the

ShareList, where ShareName matches Share.ShareName, and MUST increase
Share.CurrentUses by 1.

3.1.6.7 Server Deregisters a Treeconnect

The CIFS or SMB2 server MUST provide the tuple <ServerName, ShareName> and the
TreeconnectId of the TreeConnect that is being deregistered.

177 / 241

[MS-SRVS-Diff] - v20240423
Server Service Remote Protocol
Copyright © 2024 Microsoft Corporation
Release: April 23, 2024

The server MUST look up the TreeConnect in TreeConnectList, where
TreeConnect.GlobalTreeConnectId is equal to the TreeconnectId provided by the caller, and MUST

remove it from TreeConnectList. The server MUST look up the Share in the ShareList, where
ShareName matches Share.ShareName, and MUST decrease Share.CurrentUses by 1.

3.1.6.8 Server Normalizes a ServerName

The server MUST provide the tuple <ServerName, ShareName> as input parameters.

ShareName: The name of a shared resource.

ServerName: The name of a local server that the client is connecting to. This name MUST be less
than 256 characters in length, and it MUST be a NetBIOS name, a fully qualified domain name
(FQDN), a textual IPv4 or IPv6 address, or an empty string.

If ServerName is a nonempty string and it does not match any Transport.ServerName in
TransportList and Alias.alias in AliasList, the server MUST set it as DefaultServerName. If

ServerName is an empty string, the server MUST set it as "*" to indicate that the local server name
used.

If ShareName is empty, the server MUST determine the normalized ServerName to be returned using
the following algorithm:

 FOREACH Transport in TransportList
 IF ServerName is equal to Transport.ServerName
 RETURN ServerName
 ENDIF
 ENDFOR
 FOREACH Alias in AliasList
 IF ServerName is equal to Alias.alias
 RETURN Alias.target
 ENDIF
 ENDFOR
 RETURN DefaultServerName

If ShareName is not empty, to determine the normalized ServerName to be returned, the server MUST
look up the share in ShareList, using the following algorithm:

 FOREACH Share in ShareList
 IF ShareName is equal to Share.Name
 IF Share.ServerName is equal to ServerName
 RETURN Share.ServerName
 ELSE
 FOREACH Alias in AliasList
 IF ServerName is equal to Alias.alias
 RETURN Alias.target
 ENDIF
 ENDFOR
 ENDIF
 ENDIF
 ENDFOR
 RETURN empty string

3.1.6.9 Local Application Enables Advertising a Service

The caller MUST provide the service type flags, as specified in section 2.2.2.7, that it is enabling. The
server MUST set these flag to TRUE in GlobalServerAnnounce.

178 / 241

[MS-SRVS-Diff] - v20240423
Server Service Remote Protocol
Copyright © 2024 Microsoft Corporation
Release: April 23, 2024

3.1.6.10 Local Application Disables Advertising a Service

The caller MUST provide the service type flags, as specified in section 2.2.2.7, that it is disabling. The
server MUST set these flag to FALSE in GlobalServerAnnounce.

3.1.6.11 Server Queries Existing Services

The server MUST return GlobalServerAnnounce to the caller to indicate the available services
running on the server.

3.1.6.12 Server Service Terminates

When the server service terminates, the server MUST disable the SMB server as specified in [MS-
CIFS] section 3.3.4.19, and MUST disable the SMB2 server as specified in [MS-SMB2] section
3.3.4.23.

The server MUST remove all elements from AliasList, ShareList, and TransportList.

The server MUST free AliasList, FileList, ShareList, SessionList, TransportList, and
TreeConnectList.

3.1.6.13 Local Application Pauses or Resumes the CIFS Server

The server SHOULD <180> enforce security measures to verify that the caller has the required
permissions to execute this routine. If the caller does not have the required credentials, the server
SHOULD <181> fail the call. If the call is for the service to be paused, the server service MUST pause
the CIFS server as specified in [MS-CIFS] section 3.3.4.20. If the call is for the service to be resumed,
the server service MUST resume normal operation of the CIFS server as specified in [MS-CIFS] section
3.3.4.21.

3.1.6.14 Server Notifies Completion of Initialization

The CIFS, SMB, or SMB2 server that calls this event provides a string that indicates the name of the
protocol. If the protocol name is "CIFS", indicating notification from a CIFS or SMB server, the server
MUST set CifsInitialized to TRUE. If the protocol name is "SMB2", the server MUST set

Smb2Initialized to TRUE.

3.1.6.15 Server Notifies Current Uses of a Share

The CIFS or SMB2 server MUST provide the tuple <ServerName, ShareName>. The server MUST
look up the Share in the ShareList, where ShareName matches Share.ShareName, and MUST

return Share.CurrentUses.

3.1.6.16 Server Updates Connection Count on a Transport

The CIFS or SMB2 server MUST provide the tuple <TransportName,ConnectionFlag>. The server MUST

look up the Transport in the TransportList, where TransportName matches Transport.Name. If
ConnectionFlag is TRUE, the server MUST increase Transport.ConnectionCount by 1. If
ConnectionFlag is FALSE, the server MUST decrease Transport.ConnectionCount by 1.

3.1.6.17 Server Looks Up Null Session Pipes

The CIFS or SMB2 server MUST provide the pipe name, without the "\pipe\" prefix. The server MUST
look up the pipe name in NullSessionPipeList. If a matching name is found in NullSessionPipeList,
the server MUST return TRUE; otherwise, it MUST return FALSE.

179 / 241

[MS-SRVS-Diff] - v20240423
Server Service Remote Protocol
Copyright © 2024 Microsoft Corporation
Release: April 23, 2024

3.2 Client Details

3.2.1 Abstract Data Model

No abstract data model is used.

3.2.2 Timers

No protocol timers are required beyond those internal ones that are used in RPC to implement
resiliency to network outages. For more information, see [MS-RPCE].

3.2.3 Initialization

The client MUST create an RPC connection to the remote computer, as specified in section 2.1.

3.2.4 Message Processing Events and Sequencing Rules

Upon the completion of the RPC method, the client MUST return the result unmodified to the higher
layer. This is a stateless protocol with the exception of the NetrShareDelCommit method.

No sequence of method calls is imposed on this protocol, with the following exceptions:

1. NetrShareDelCommit method: The first phase MUST be completed (by the NetrShareDelStart
method) before the second phase is attempted.

2. NetrFileGetInfo method: The NetrFileEnum method MUST be called to obtain the FileId before the
NetrFileGetInfo method is called.

3. NetrFileClose method: NetrFileEnum MUST be called to obtain the FileId before the NetrFileClose

method is called.

When a method is completed, the values that the RPC returns MUST be returned unmodified to the

upper layer.

The client MUST ignore errors returned from the RPC server and notify the application invoker about
the error that was received in the higher layer. Otherwise, no special message processing is required
on the client beyond the processing that is required in the underlying RPC protocol.

3.2.5 Timer Events

None.

3.2.6 Other Local Events

None.

180 / 241

[MS-SRVS-Diff] - v20240423
Server Service Remote Protocol
Copyright © 2024 Microsoft Corporation
Release: April 23, 2024

4 Protocol Examples

For most methods, the Server Service Remote Protocol is a simple request-response protocol. For
every method that the server receives, except the NetrShareDelStart method and the
NetrShareDelCommit method, the server executes the method and returns a completion. The client
simply returns the completion status to the caller.

For example, the client calls the NetrShareAdd method, and the server executes the method and
returns NERR_Success, as shown in the following figure.

Figure 1: A simple request-response example

4.1 Example of ResumeHandle

The client calls the NetrFileEnum method to enumerate all open files on a server named "wingtiptoys".

There are five open files on the server "wingtiptoys".

The client calls the NetrFileEnum method with the ServerName parameter equal to "wingtiptoys", and
the Level field of the FILE_ENUM_STRUCT structure that is passed in the InfoStruct parameter is set to

0x00000003. The client also sets the PreferedMaximumLength parameter to 0x00000100 and passes
a non-NULL pointer in the TotalEntries parameter and the ResumeHandle parameter.

If, for example, only the information for the first two open files fits into 0x00000100 bytes, when the
server receives this method, it executes the method locally and returns ERROR_MORE_DATA. The
server returns the information for the first two open files in the InfoStruct parameter. It also sets the
value of TotalEntries to 0x00000005 and the value of ResumeHandle to 0x00000120. The value of
ResumeHandle is implementation-specific.

To continue enumerating the open files, the client calls the NetrFileEnum method with ServerName
equal to "wingtiptoys", and the Level field of the FILE_ENUM_STRUCT structure that is passed in the

InfoStruct parameter is set to 0x00000003. The client also sets the PreferedMaximumLength
parameter to MAX_PREFERRED_LENGTH and passes a non-NULL pointer as TotalEntries. The client
also passes the unchanged value of ResumeHandle (0x000000120).

On receiving this method, the server executes the method locally to continue enumeration based on a
ResumeHandle value of 0x00000120 and returns ERROR_SUCCESS. The server returns the names of

the next three open files in the InfoStruct parameter. It also sets the value of TotalEntries to
0x00000003. The value of ResumeHandle is irrelevant.

181 / 241

[MS-SRVS-Diff] - v20240423
Server Service Remote Protocol
Copyright © 2024 Microsoft Corporation
Release: April 23, 2024

4.2 Two-Phase Share Deletion

The following figure shows the protocol message sequence for a two-phase share deletion.

Figure 2: Two-phase share deletion

If the IPC$ share is being deleted, a two-phase delete has to be performed because this action deletes
the means of communication between the client and the server. The following is the sequence of
messages for a two-phase share delete:

1. The client sends the NetrShareDelStart method to the server.

2. The server processes the first phase of the delete and returns the status NERR_Success.

3. The client sends the NetrShareDelCommit method to the server.

4. The server processes the second phase of the delete. Because the communication channel
between the client and the server is deleted, the client does not receive a status that indicates the
successful completion of the NetrShareDelCommit method.

4.3 Adding a Scoped Share With an Alias to a Server

The following figure shows the protocol message sequence for an administrator remotely configuring a
server to support an additional server name, and configuring an alias for that new name.

182 / 241

[MS-SRVS-Diff] - v20240423
Server Service Remote Protocol
Copyright © 2024 Microsoft Corporation
Release: April 23, 2024

Figure 3: Message sequence for adding a scoped share with an alias to a server

1. The client calls NetrServerTransportAddEx (Opnum 41) to bind the server to the transport protocol
with svti3_transport_address set to "server", and SVTI2_SCOPED_NAME set to TRUE.

2. The server processes the transport add and returns the status NERR_Success.

3. The client calls NetrShareAdd (Opnum 14) to add a share on the server. Along with other share
parameters, the shi303_servername field is set to "server".

4. The server processes the share add and returns the status NERR_Success.

5. The client calls NetrServerAliasAdd (Opnum 54) to add an alias, with srvai0_alias set to
"server.example.com", srvai0_target set to "server", and srvai0_default set to FALSE.

6. The server processes the alias add, and returns the status NERR_Success.

On completion of these steps, a client connecting to the server and attempting to enumerate shares
on this server and passing in "server" or "server.example.com" for the ServerName parameter for
NetrShareEnum, would find only those shares that were added as specified in step 3 above. Clients
connecting and attempting to enumerate shares on this server and passing in any other name for the

183 / 241

[MS-SRVS-Diff] - v20240423
Server Service Remote Protocol
Copyright © 2024 Microsoft Corporation
Release: April 23, 2024

ServerName parameter for NetrShareEnum would not see the shares added as specified in step 3
above. (Note that the administrator is responsible for configuring the network such that the names

"server" and "server.example.com" correctly resolve to the server above. This is not handled by
NetrServerTransportAddEx (Opnum 41).)

184 / 241

[MS-SRVS-Diff] - v20240423
Server Service Remote Protocol
Copyright © 2024 Microsoft Corporation
Release: April 23, 2024

5 Security

5.1 Security Considerations for Implementers

This protocol allows any user to connect to the server; therefore, any security weakness in the server
implementation could be exploitable. It is important that the server implementation enforce security
on each method.

5.2 Index of Security Parameters

This protocol allows any user to establish a connection to the RPC server as specified in section 2.1.

185 / 241

[MS-SRVS-Diff] - v20240423
Server Service Remote Protocol
Copyright © 2024 Microsoft Corporation
Release: April 23, 2024

6 (Updated Section) Appendix A: Full IDL

For ease of implementation, the full IDL is provided, where "ms-dtyp.idl" is the IDL as specified in
[MS-DTYP] Appendix A.

 import "ms-dtyp.idl";

 [
 uuid(4B324FC8-1670-01D3-1278-5A47BF6EE188),
 version(3.0),
 ms_union,
 pointer_default(unique)
]
 interface srvsvc
 {
 typedef [handle, string] wchar_t * SRVSVC_HANDLE;

 typedef struct _CONNECTION_INFO_0
 {
 DWORD coni0_id;
 } CONNECTION_INFO_0,
 *PCONNECTION_INFO_0,
 *LPCONNECTION_INFO_0;

 typedef struct _CONNECT_INFO_0_CONTAINER
 {
 DWORD EntriesRead;
 [size_is(EntriesRead)] LPCONNECTION_INFO_0 Buffer;
 } CONNECT_INFO_0_CONTAINER,
 *PCONNECT_INFO_0_CONTAINER,
 *LPCONNECT_INFO_0_CONTAINER;

 typedef struct _CONNECTION_INFO_1
 {
 DWORD coni1_id;
 DWORD coni1_type;
 DWORD coni1_num_opens;
 DWORD coni1_num_users;
 DWORD coni1_time;
 [string] wchar_t * coni1_username;
 [string] wchar_t * coni1_netname;
 } CONNECTION_INFO_1,
 *PCONNECTION_INFO_1,
 *LPCONNECTION_INFO_1;

 typedef struct _CONNECT_INFO_1_CONTAINER
 {
 DWORD EntriesRead;
 [size_is(EntriesRead)] LPCONNECTION_INFO_1 Buffer;
 } CONNECT_INFO_1_CONTAINER,
 *PCONNECT_INFO_1_CONTAINER,
 *LPCONNECT_INFO_1_CONTAINER;

 typedef [switch_type(DWORD)] union _CONNECT_ENUM_UNION {
 [case(0)]
 CONNECT_INFO_0_CONTAINER* Level0;
 [case(1)]
 CONNECT_INFO_1_CONTAINER* Level1;
 } CONNECT_ENUM_UNION;

 typedef struct _CONNECT_ENUM_STRUCT {
 DWORD Level;
 [switch_is(Level)] CONNECT_ENUM_UNION ConnectInfo;
 } CONNECT_ENUM_STRUCT,
 *PCONNECT_ENUM_STRUCT,
 *LPCONNECT_ENUM_STRUCT;

 typedef struct _FILE_INFO_2

186 / 241

[MS-SRVS-Diff] - v20240423
Server Service Remote Protocol
Copyright © 2024 Microsoft Corporation
Release: April 23, 2024

 {
 DWORD fi2_id;
 } FILE_INFO_2, *PFILE_INFO_2, *LPFILE_INFO_2;

 typedef struct _FILE_INFO_2_CONTAINER
 {
 DWORD EntriesRead;
 [size_is(EntriesRead)] LPFILE_INFO_2 Buffer;
 } FILE_INFO_2_CONTAINER,
 *PFILE_INFO_2_CONTAINER,
 *LPFILE_INFO_2_CONTAINER;

 typedef struct _FILE_INFO_3 {
 DWORD fi3_id;
 DWORD fi3_permissions;
 DWORD fi3_num_locks;
 [string] wchar_t * fi3_pathname;
 [string] wchar_t * fi3_username;
 } FILE_INFO_3,
 *PFILE_INFO_3,
 *LPFILE_INFO_3;

 typedef struct _FILE_INFO_3_CONTAINER
 {
 DWORD EntriesRead;
 [size_is(EntriesRead)] LPFILE_INFO_3 Buffer;
 } FILE_INFO_3_CONTAINER,
 *PFILE_INFO_3_CONTAINER,
 *LPFILE_INFO_3_CONTAINER;

 typedef [switch_type(DWORD)] union _FILE_ENUM_UNION {
 [case(2)]
 FILE_INFO_2_CONTAINER* Level2;
 [case(3)]
 FILE_INFO_3_CONTAINER* Level3;
 } FILE_ENUM_UNION;

 typedef struct _FILE_ENUM_STRUCT {
 DWORD Level;
 [switch_is(Level)] FILE_ENUM_UNION FileInfo;
 } FILE_ENUM_STRUCT,
 *PFILE_ENUM_STRUCT,
 *LPFILE_ENUM_STRUCT;

 typedef [switch_type(unsigned long)] union _FILE_INFO
 {
 [case(2)]
 LPFILE_INFO_2 FileInfo2;
 [case(3)]
 LPFILE_INFO_3 FileInfo3;
 } FILE_INFO,
 *PFILE_INFO,
 *LPFILE_INFO;

 typedef struct _SESSION_INFO_0
 {
 [string] wchar_t * sesi0_cname;
 } SESSION_INFO_0,
 *PSESSION_INFO_0,
 *LPSESSION_INFO_0;

 typedef struct _SESSION_INFO_0_CONTAINER
 {
 DWORD EntriesRead;
 [size_is(EntriesRead)] LPSESSION_INFO_0 Buffer;
 } SESSION_INFO_0_CONTAINER,
 *PSESSION_INFO_0_CONTAINER,
 *LPSESSION_INFO_0_CONTAINER;

187 / 241

[MS-SRVS-Diff] - v20240423
Server Service Remote Protocol
Copyright © 2024 Microsoft Corporation
Release: April 23, 2024

 typedef struct _SESSION_INFO_1
 {
 [string] wchar_t * sesi1_cname;
 [string] wchar_t * sesi1_username;
 DWORD sesi1_num_opens;
 DWORD sesi1_time;
 DWORD sesi1_idle_time;
 DWORD sesi1_user_flags;
 } SESSION_INFO_1,
 *PSESSION_INFO_1,
 *LPSESSION_INFO_1;

 typedef struct _SESSION_INFO_1_CONTAINER
 {
 DWORD EntriesRead;
 [size_is(EntriesRead)] LPSESSION_INFO_1 Buffer;
 } SESSION_INFO_1_CONTAINER,
 *PSESSION_INFO_1_CONTAINER,
 *LPSESSION_INFO_1_CONTAINER;

 typedef struct _SESSION_INFO_2
 {
 [string] wchar_t * sesi2_cname;
 [string] wchar_t * sesi2_username;
 DWORD sesi2_num_opens;
 DWORD sesi2_time;
 DWORD sesi2_idle_time;
 DWORD sesi2_user_flags;
 [string] wchar_t * sesi2_cltype_name;
 } SESSION_INFO_2,
 *PSESSION_INFO_2,
 *LPSESSION_INFO_2;

 typedef struct _SESSION_INFO_2_CONTAINER
 {
 DWORD EntriesRead;
 [size_is(EntriesRead)] LPSESSION_INFO_2 Buffer;
 } SESSION_INFO_2_CONTAINER,
 *PSESSION_INFO_2_CONTAINER,
 *LPSESSION_INFO_2_CONTAINER;

 typedef struct _SESSION_INFO_10
 {
 [string] wchar_t * sesi10_cname;
 [string] wchar_t * sesi10_username;
 DWORD sesi10_time;
 DWORD sesi10_idle_time;
 } SESSION_INFO_10,
 *PSESSION_INFO_10,
 *LPSESSION_INFO_10;

 typedef struct _SESSION_INFO_10_CONTAINER
 {
 DWORD EntriesRead;
 [size_is(EntriesRead)] LPSESSION_INFO_10 Buffer;
 } SESSION_INFO_10_CONTAINER,
 *PSESSION_INFO_10_CONTAINER,
 *LPSESSION_INFO_10_CONTAINER;

 typedef struct _SESSION_INFO_502
 {
 [string] wchar_t * sesi502_cname;
 [string] wchar_t * sesi502_username;
 DWORD sesi502_num_opens;
 DWORD sesi502_time;
 DWORD sesi502_idle_time;
 DWORD sesi502_user_flags;
 [string] wchar_t * sesi502_cltype_name;
 [string] wchar_t * sesi502_transport;

188 / 241

[MS-SRVS-Diff] - v20240423
Server Service Remote Protocol
Copyright © 2024 Microsoft Corporation
Release: April 23, 2024

 } SESSION_INFO_502,
 *PSESSION_INFO_502,
 *LPSESSION_INFO_502;

 typedef struct _SESSION_INFO_502_CONTAINER
 {
 DWORD EntriesRead;
 [size_is(EntriesRead)] LPSESSION_INFO_502 Buffer;
 } SESSION_INFO_502_CONTAINER,
 *PSESSION_INFO_502_CONTAINER,
 *LPSESSION_INFO_502_CONTAINER;

 typedef [switch_type(DWORD)] union _SESSION_ENUM_UNION {
 [case(0)]
 SESSION_INFO_0_CONTAINER* Level0;
 [case(1)]
 SESSION_INFO_1_CONTAINER* Level1;
 [case(2)]
 SESSION_INFO_2_CONTAINER* Level2;
 [case(10)]
 SESSION_INFO_10_CONTAINER* Level10;
 [case(502)]
 SESSION_INFO_502_CONTAINER* Level502;
 } SESSION_ENUM_UNION;

 typedef struct _SESSION_ENUM_STRUCT {
 DWORD Level;
 [switch_is(Level)] SESSION_ENUM_UNION SessionInfo;
 } SESSION_ENUM_STRUCT,
 *PSESSION_ENUM_STRUCT,
 *LPSESSION_ENUM_STRUCT;

 typedef struct _SHARE_INFO_502_I
 {
 [string] WCHAR * shi502_netname;
 DWORD shi502_type;
 [string] WCHAR * shi502_remark;
 DWORD shi502_permissions;
 DWORD shi502_max_uses;
 DWORD shi502_current_uses;
 [string] WCHAR * shi502_path;
 [string] WCHAR * shi502_passwd;
 DWORD shi502_reserved;
 [size_is(shi502_reserved)] unsigned char
 * shi502_security_descriptor;
 } SHARE_INFO_502_I,
 *PSHARE_INFO_502_I,
 *LPSHARE_INFO_502_I;

 typedef struct _SHARE_INFO_503_I
 {
 [string] WCHAR * shi503_netname;
 DWORD shi503_type;
 [string] WCHAR * shi503_remark;
 DWORD shi503_permissions;
 DWORD shi503_max_uses;
 DWORD shi503_current_uses;
 [string] WCHAR * shi503_path;
 [string] WCHAR * shi503_passwd;
 [string] WCHAR * shi503_servername;
 DWORD shi503_reserved;
 [size_is(shi503_reserved)] PUCHAR shi503_security_descriptor;
 } SHARE_INFO_503_I,
 *PSHARE_INFO_503_I,
 *LPSHARE_INFO_503_I;

 typedef struct _SHARE_INFO_503_CONTAINER
 { DWORD EntriesRead;
 [size_is(EntriesRead)] LPSHARE_INFO_503_I Buffer;

189 / 241

[MS-SRVS-Diff] - v20240423
Server Service Remote Protocol
Copyright © 2024 Microsoft Corporation
Release: April 23, 2024

 } SHARE_INFO_503_CONTAINER,
 *PSHARE_INFO_503_CONTAINER,
 *LPSHARE_INFO_503_CONTAINER;

 typedef struct _SHARE_INFO_1501_I
 {
 DWORD shi1501_reserved;
 [size_is(shi1501_reserved)] unsigned char
 * shi1501_security_descriptor;
 } SHARE_INFO_1501_I,
 *PSHARE_INFO_1501_I,
 *LPSHARE_INFO_1501_I;

 typedef struct _SHARE_INFO_0
 {
 [string] wchar_t * shi0_netname;
 } SHARE_INFO_0,
 *PSHARE_INFO_0,
 *LPSHARE_INFO_0;

 typedef struct _SHARE_INFO_0_CONTAINER
 {
 DWORD EntriesRead;
 [size_is(EntriesRead)] LPSHARE_INFO_0 Buffer;
 } SHARE_INFO_0_CONTAINER;

 typedef struct _SHARE_INFO_1
 {
 [string] wchar_t * shi1_netname;
 DWORD shi1_type;
 [string] wchar_t * shi1_remark;
 } SHARE_INFO_1,
 *PSHARE_INFO_1,
 *LPSHARE_INFO_1;

 typedef struct _SHARE_INFO_1_CONTAINER
 {
 DWORD EntriesRead;
 [size_is(EntriesRead)] LPSHARE_INFO_1 Buffer;
 } SHARE_INFO_1_CONTAINER;

 typedef struct _SHARE_INFO_2
 {
 [string] wchar_t * shi2_netname;
 DWORD shi2_type;
 [string] wchar_t * shi2_remark;
 DWORD shi2_permissions;
 DWORD shi2_max_uses;
 DWORD shi2_current_uses;
 [string] wchar_t * shi2_path;
 [string] wchar_t * shi2_passwd;
 } SHARE_INFO_2,
 *PSHARE_INFO_2,
 *LPSHARE_INFO_2;

 typedef struct _SHARE_INFO_2_CONTAINER
 {
 DWORD EntriesRead;
 [size_is(EntriesRead)] LPSHARE_INFO_2 Buffer;
 } SHARE_INFO_2_CONTAINER,
 *PSHARE_INFO_2_CONTAINER,
 *LPSHARE_INFO_2_CONTAINER;

 typedef struct _SHARE_INFO_501
 {
 [string] wchar_t * shi501_netname;
 DWORD shi501_type;
 [string] wchar_t * shi501_remark;
 DWORD shi501_flags;

190 / 241

[MS-SRVS-Diff] - v20240423
Server Service Remote Protocol
Copyright © 2024 Microsoft Corporation
Release: April 23, 2024

 } SHARE_INFO_501,
 *PSHARE_INFO_501,
 *LPSHARE_INFO_501;

 typedef struct _SHARE_INFO_501_CONTAINER
 {
 DWORD EntriesRead;
 [size_is(EntriesRead)] LPSHARE_INFO_501 Buffer;
 } SHARE_INFO_501_CONTAINER, *PSHARE_INFO_501_CONTAINER,
 *LPSHARE_INFO_501_CONTAINER;

 typedef struct _SHARE_INFO_502_CONTAINER
 {
 DWORD EntriesRead;
 [size_is(EntriesRead)] LPSHARE_INFO_502_I Buffer;
 } SHARE_INFO_502_CONTAINER,
 *PSHARE_INFO_502_CONTAINER,
 *LPSHARE_INFO_502_CONTAINER;

 typedef [switch_type(DWORD)] union _SHARE_ENUM_UNION {
 [case(0)]
 SHARE_INFO_0_CONTAINER* Level0;
 [case(1)]
 SHARE_INFO_1_CONTAINER* Level1;
 [case(2)]
 SHARE_INFO_2_CONTAINER* Level2;
 [case(501)]
 SHARE_INFO_501_CONTAINER* Level501;
 [case(502)]
 SHARE_INFO_502_CONTAINER* Level502;
 [case(503)]
 SHARE_INFO_503_CONTAINER* Level503;
 } SHARE_ENUM_UNION;

 typedef struct _SHARE_ENUM_STRUCT
 {
 DWORD Level;
 [switch_is(Level)] SHARE_ENUM_UNION ShareInfo;
 } SHARE_ENUM_STRUCT,
 *PSHARE_ENUM_STRUCT,
 *LPSHARE_ENUM_STRUCT;

 typedef struct _SHARE_INFO_1004
 {
 [string] wchar_t * shi1004_remark;
 } SHARE_INFO_1004,
 *PSHARE_INFO_1004,
 *LPSHARE_INFO_1004;

 typedef struct _SHARE_INFO_1006
 {
 DWORD shi1006_max_uses;
 } SHARE_INFO_1006,
 *PSHARE_INFO_1006,
 *LPSHARE_INFO_1006;

 typedef struct _SHARE_INFO_1005
 {
 DWORD shi1005_flags;
 } SHARE_INFO_1005,
 *PSHARE_INFO_1005,
 *LPSHARE_INFO_1005;

 //JMP: order differs in documentation
 typedef [switch_type(unsigned long)] union _SHARE_INFO
 // for Get & Set info
 {
 [case(0)]
 LPSHARE_INFO_0 ShareInfo0;

191 / 241

[MS-SRVS-Diff] - v20240423
Server Service Remote Protocol
Copyright © 2024 Microsoft Corporation
Release: April 23, 2024

 [case(1)]
 LPSHARE_INFO_1 ShareInfo1;
 [case(2)]
 LPSHARE_INFO_2 ShareInfo2;
 [case(502)]
 LPSHARE_INFO_502_I ShareInfo502;
 [case(1004)]
 LPSHARE_INFO_1004 ShareInfo1004;
 [case(1006)]
 LPSHARE_INFO_1006 ShareInfo1006;
 [case(1501)]
 LPSHARE_INFO_1501_I ShareInfo1501;
 [default]
 ;
 [case(1005)]
 LPSHARE_INFO_1005 ShareInfo1005;
 [case(501)]
 LPSHARE_INFO_501 ShareInfo501;
 [case(503)]
 LPSHARE_INFO_503_I ShareInfo503;
 } SHARE_INFO,
 *PSHARE_INFO,
 *LPSHARE_INFO;

 typedef struct _SERVER_INFO_100
 {
 DWORD sv100_platform_id;
 [string] wchar_t* sv100_name;
 } SERVER_INFO_100,
 *PSERVER_INFO_100,
 *LPSERVER_INFO_100;

 typedef struct _SERVER_INFO_101
 {
 DWORD sv101_platform_id;
 [string] wchar_t* sv101_name;
 DWORD sv101_version_major;
 DWORD sv101_version_minor;
 DWORD sv101_type;
 [string] wchar_t* sv101_comment;
 } SERVER_INFO_101,
 *PSERVER_INFO_101,
 *LPSERVER_INFO_101;

 typedef struct _SERVER_INFO_102
 {
 DWORD sv102_platform_id;
 [string] wchar_t * sv102_name;
 DWORD sv102_version_major;
 DWORD sv102_version_minor;
 DWORD sv102_type;
 [string] wchar_t * sv102_comment;
 DWORD sv102_users;
 long sv102_disc;
 int sv102_hidden;
 DWORD sv102_announce;
 DWORD sv102_anndelta;
 DWORD sv102_licenses;
 [string] wchar_t * sv102_userpath;
 } SERVER_INFO_102,
 *PSERVER_INFO_102,
 *LPSERVER_INFO_102;

 typedef struct _SERVER_INFO_103
 {
 DWORD sv103_platform_id;
 [string] wchar_t* sv103_name;

192 / 241

[MS-SRVS-Diff] - v20240423
Server Service Remote Protocol
Copyright © 2024 Microsoft Corporation
Release: April 23, 2024

 DWORD sv103_version_major;
 DWORD sv103_version_minor;
 DWORD sv103_type;
 [string] wchar_t* sv103_comment;
 DWORD sv103_users;
 LONG sv103_disc;
 BOOL sv103_hidden;
 DWORD sv103_announce;
 DWORD sv103_anndelta;
 DWORD sv103_licenses;
 [string] wchar_t* sv103_userpath;
 DWORD sv103_capabilities;
 } SERVER_INFO_103,
 *PSERVER_INFO_103,
 *LPSERVER_INFO_103;

 typedef struct _SERVER_INFO_502
 {
 DWORD sv502_sessopens;
 DWORD sv502_sessvcs;
 DWORD sv502_opensearch;
 DWORD sv502_sizreqbuf;
 DWORD sv502_initworkitems;
 DWORD sv502_maxworkitems;
 DWORD sv502_rawworkitems;
 DWORD sv502_irpstacksize;
 DWORD sv502_maxrawbuflen;
 DWORD sv502_sessusers;
 DWORD sv502_sessconns;
 DWORD sv502_maxpagedmemoryusage;
 DWORD sv502_maxnonpagedmemoryusage;
 int sv502_enablesoftcompat;
 int sv502_enableforcedlogoff;
 int sv502_timesource;
 int sv502_acceptdownlevelapis;
 int sv502_lmannounce;
 } SERVER_INFO_502,
 *PSERVER_INFO_502,
 *LPSERVER_INFO_502;

 typedef struct _SERVER_INFO_503
 {
 DWORD sv503_sessopens;
 DWORD sv503_sessvcs;
 DWORD sv503_opensearch;
 DWORD sv503_sizreqbuf;
 DWORD sv503_initworkitems;
 DWORD sv503_maxworkitems;
 DWORD sv503_rawworkitems;
 DWORD sv503_irpstacksize;
 DWORD sv503_maxrawbuflen;
 DWORD sv503_sessusers;
 DWORD sv503_sessconns;
 DWORD sv503_maxpagedmemoryusage;
 DWORD sv503_maxnonpagedmemoryusage;
 int sv503_enablesoftcompat;
 int sv503_enableforcedlogoff;
 int sv503_timesource;
 int sv503_acceptdownlevelapis;
 int sv503_lmannounce;
 [string] wchar_t * sv503_domain;
 DWORD sv503_maxcopyreadlen;
 DWORD sv503_maxcopywritelen;
 DWORD sv503_minkeepsearch;
 DWORD sv503_maxkeepsearch;
 DWORD sv503_minkeepcomplsearch;
 DWORD sv503_maxkeepcomplsearch;
 DWORD sv503_threadcountadd;
 DWORD sv503_numblockthreads;

193 / 241

[MS-SRVS-Diff] - v20240423
Server Service Remote Protocol
Copyright © 2024 Microsoft Corporation
Release: April 23, 2024

 DWORD sv503_scavtimeout;
 DWORD sv503_minrcvqueue;
 DWORD sv503_minfreeworkitems;
 DWORD sv503_xactmemsize;
 DWORD sv503_threadpriority;
 DWORD sv503_maxmpxct;
 DWORD sv503_oplockbreakwait;
 DWORD sv503_oplockbreakresponsewait;
 int sv503_enableoplocks;
 int sv503_enableoplockforceclose;
 int sv503_enablefcbopens;
 int sv503_enableraw;
 int sv503_enablesharednetdrives;
 DWORD sv503_minfreeconnections;
 DWORD sv503_maxfreeconnections;
 } SERVER_INFO_503,
 *PSERVER_INFO_503,
 *LPSERVER_INFO_503;

 typedef struct _SERVER_INFO_599
 {
 DWORD sv599_sessopens;
 DWORD sv599_sessvcs;
 DWORD sv599_opensearch;
 DWORD sv599_sizreqbuf;
 DWORD sv599_initworkitems;
 DWORD sv599_maxworkitems;
 DWORD sv599_rawworkitems;
 DWORD sv599_irpstacksize;
 DWORD sv599_maxrawbuflen;
 DWORD sv599_sessusers;
 DWORD sv599_sessconns;
 DWORD sv599_maxpagedmemoryusage;
 DWORD sv599_maxnonpagedmemoryusage;
 int sv599_enablesoftcompat;
 int sv599_enableforcedlogoff;
 int sv599_timesource;
 int sv599_acceptdownlevelapis;
 int sv599_lmannounce;
 [string] wchar_t * sv599_domain;
 DWORD sv599_maxcopyreadlen;
 DWORD sv599_maxcopywritelen;
 DWORD sv599_minkeepsearch;
 DWORD sv599_maxkeepsearch;
 DWORD sv599_minkeepcomplsearch;
 DWORD sv599_maxkeepcomplsearch;
 DWORD sv599_threadcountadd;
 DWORD sv599_numblockthreads;
 DWORD sv599_scavtimeout;
 DWORD sv599_minrcvqueue;
 DWORD sv599_minfreeworkitems;
 DWORD sv599_xactmemsize;
 DWORD sv599_threadpriority;
 DWORD sv599_maxmpxct;
 DWORD sv599_oplockbreakwait;
 DWORD sv599_oplockbreakresponsewait;
 int sv599_enableoplocks;
 int sv599_enableoplockforceclose;
 int sv599_enablefcbopens;
 int sv599_enableraw;
 int sv599_enablesharednetdrives;
 DWORD sv599_minfreeconnections;
 DWORD sv599_maxfreeconnections;
 DWORD sv599_initsesstable;
 DWORD sv599_initconntable;
 DWORD sv599_initfiletable;
 DWORD sv599_initsearchtable;
 DWORD sv599_alertschedule;
 DWORD sv599_errorthreshold;

194 / 241

[MS-SRVS-Diff] - v20240423
Server Service Remote Protocol
Copyright © 2024 Microsoft Corporation
Release: April 23, 2024

 DWORD sv599_networkerrorthreshold;
 DWORD sv599_diskspacethreshold;
 DWORD sv599_reserved;
 DWORD sv599_maxlinkdelay;
 DWORD sv599_minlinkthroughput;
 DWORD sv599_linkinfovalidtime;
 DWORD sv599_scavqosinfoupdatetime;
 DWORD sv599_maxworkitemidletime;
 } SERVER_INFO_599,
 *PSERVER_INFO_599,
 *LPSERVER_INFO_599;

 typedef struct _SERVER_INFO_1005
 {
 [string] wchar_t * sv1005_comment;
 } SERVER_INFO_1005,
 *PSERVER_INFO_1005,
 *LPSERVER_INFO_1005;

 typedef struct _SERVER_INFO_1107
 {
 DWORD sv1107_users;
 } SERVER_INFO_1107,
 *PSERVER_INFO_1107,
 *LPSERVER_INFO_1107;

 typedef struct _SERVER_INFO_1010
 {
 long sv1010_disc;
 } SERVER_INFO_1010,
 *PSERVER_INFO_1010,
 *LPSERVER_INFO_1010;

 typedef struct _SERVER_INFO_1016
 {
 int sv1016_hidden;
 } SERVER_INFO_1016,
 *PSERVER_INFO_1016,
 *LPSERVER_INFO_1016;

 typedef struct _SERVER_INFO_1017
 {
 DWORD sv1017_announce;
 } SERVER_INFO_1017,
 *PSERVER_INFO_1017,
 *LPSERVER_INFO_1017;

 typedef struct _SERVER_INFO_1018
 {
 DWORD sv1018_anndelta;
 } SERVER_INFO_1018,
 *PSERVER_INFO_1018,
 *LPSERVER_INFO_1018;

 typedef struct _SERVER_INFO_1501
 {
 DWORD sv1501_sessopens;
 } SERVER_INFO_1501,
 *PSERVER_INFO_1501,
 *LPSERVER_INFO_1501;

 typedef struct _SERVER_INFO_1502
 {
 DWORD sv1502_sessvcs;
 } SERVER_INFO_1502,
 *PSERVER_INFO_1502,
 *LPSERVER_INFO_1502;

 typedef struct _SERVER_INFO_1503

195 / 241

[MS-SRVS-Diff] - v20240423
Server Service Remote Protocol
Copyright © 2024 Microsoft Corporation
Release: April 23, 2024

 {
 DWORD sv1503_opensearch;
 } SERVER_INFO_1503, *PSERVER_INFO_1503, *LPSERVER_INFO_1503;

 typedef struct _SERVER_INFO_1506
 {
 DWORD sv1506_maxworkitems;
 } SERVER_INFO_1506, *PSERVER_INFO_1506, *LPSERVER_INFO_1506;

 typedef struct _SERVER_INFO_1510
 {
 DWORD sv1510_sessusers;
 } SERVER_INFO_1510, *PSERVER_INFO_1510, *LPSERVER_INFO_1510;

 typedef struct _SERVER_INFO_1511
 {
 DWORD sv1511_sessconns;
 } SERVER_INFO_1511, *PSERVER_INFO_1511, *LPSERVER_INFO_1511;

 typedef struct _SERVER_INFO_1512
 {
 DWORD sv1512_maxnonpagedmemoryusage;
 } SERVER_INFO_1512, *PSERVER_INFO_1512, *LPSERVER_INFO_1512;

 typedef struct _SERVER_INFO_1513
 {
 DWORD sv1513_maxpagedmemoryusage;
 } SERVER_INFO_1513, *PSERVER_INFO_1513, *LPSERVER_INFO_1513;

 typedef struct _SERVER_INFO_1514
 {
 int sv1514_enablesoftcompat;
 } SERVER_INFO_1514, *PSERVER_INFO_1514, *LPSERVER_INFO_1514;

 typedef struct _SERVER_INFO_1515
 {
 int sv1515_enableforcedlogoff;
 } SERVER_INFO_1515, *PSERVER_INFO_1515, *LPSERVER_INFO_1515;

 typedef struct _SERVER_INFO_1516
 {
 int sv1516_timesource;
 } SERVER_INFO_1516, *PSERVER_INFO_1516, *LPSERVER_INFO_1516;

 typedef struct _SERVER_INFO_1518
 {
 int sv1518_lmannounce;
 } SERVER_INFO_1518, *PSERVER_INFO_1518, *LPSERVER_INFO_1518;

 typedef struct _SERVER_INFO_1523
 {
 DWORD sv1523_maxkeepsearch;
 } SERVER_INFO_1523, *PSERVER_INFO_1523, *LPSERVER_INFO_1523;

 typedef struct _SERVER_INFO_1528
 {
 DWORD sv1528_scavtimeout;
 } SERVER_INFO_1528, *PSERVER_INFO_1528, *LPSERVER_INFO_1528;

 typedef struct _SERVER_INFO_1529
 {
 DWORD sv1529_minrcvqueue;
 } SERVER_INFO_1529, *PSERVER_INFO_1529, *LPSERVER_INFO_1529;

 typedef struct _SERVER_INFO_1530
 {
 DWORD sv1530_minfreeworkitems;
 } SERVER_INFO_1530, *PSERVER_INFO_1530, *LPSERVER_INFO_1530;

196 / 241

[MS-SRVS-Diff] - v20240423
Server Service Remote Protocol
Copyright © 2024 Microsoft Corporation
Release: April 23, 2024

 typedef struct _SERVER_INFO_1533
 {
 DWORD sv1533_maxmpxct;
 } SERVER_INFO_1533, *PSERVER_INFO_1533, *LPSERVER_INFO_1533;

 typedef struct _SERVER_INFO_1534
 {
 DWORD sv1534_oplockbreakwait;
 } SERVER_INFO_1534, *PSERVER_INFO_1534, *LPSERVER_INFO_1534;

 typedef struct _SERVER_INFO_1535
 {
 DWORD sv1535_oplockbreakresponsewait;
 } SERVER_INFO_1535, *PSERVER_INFO_1535, *LPSERVER_INFO_1535;

 typedef struct _SERVER_INFO_1536
 {
 int sv1536_enableoplocks;
 } SERVER_INFO_1536, *PSERVER_INFO_1536, *LPSERVER_INFO_1536;

 typedef struct _SERVER_INFO_1538
 {
 int sv1538_enablefcbopens;
 } SERVER_INFO_1538, *PSERVER_INFO_1538, *LPSERVER_INFO_1538;

 typedef struct _SERVER_INFO_1539
 {
 int sv1539_enableraw;
 } SERVER_INFO_1539, *PSERVER_INFO_1539, *LPSERVER_INFO_1539;

 typedef struct _SERVER_INFO_1540
 {
 int sv1540_enablesharednetdrives;
 } SERVER_INFO_1540, *PSERVER_INFO_1540, *LPSERVER_INFO_1540;

 typedef struct _SERVER_INFO_1541
 {
 int sv1541_minfreeconnections;
 } SERVER_INFO_1541, *PSERVER_INFO_1541, *LPSERVER_INFO_1541;

 typedef struct _SERVER_INFO_1542
 {
 int sv1542_maxfreeconnections;
 } SERVER_INFO_1542, *PSERVER_INFO_1542, *LPSERVER_INFO_1542;

 typedef struct _SERVER_INFO_1543
 {
 DWORD sv1543_initsesstable;
 } SERVER_INFO_1543, *PSERVER_INFO_1543, *LPSERVER_INFO_1543;

 typedef struct _SERVER_INFO_1544
 {
 DWORD sv1544_initconntable;
 } SERVER_INFO_1544, *PSERVER_INFO_1544, *LPSERVER_INFO_1544;

 typedef struct _SERVER_INFO_1545
 {
 DWORD sv1545_initfiletable;
 } SERVER_INFO_1545, *PSERVER_INFO_1545, *LPSERVER_INFO_1545;

 typedef struct _SERVER_INFO_1546
 {
 DWORD sv1546_initsearchtable;
 } SERVER_INFO_1546, *PSERVER_INFO_1546, *LPSERVER_INFO_1546;

 typedef struct _SERVER_INFO_1547
 {
 DWORD sv1547_alertschedule;
 } SERVER_INFO_1547, *PSERVER_INFO_1547, *LPSERVER_INFO_1547;

197 / 241

[MS-SRVS-Diff] - v20240423
Server Service Remote Protocol
Copyright © 2024 Microsoft Corporation
Release: April 23, 2024

 typedef struct _SERVER_INFO_1548
 {
 DWORD sv1548_errorthreshold;
 } SERVER_INFO_1548, *PSERVER_INFO_1548, *LPSERVER_INFO_1548;

 typedef struct _SERVER_INFO_1549
 {
 DWORD sv1549_networkerrorthreshold;
 } SERVER_INFO_1549, *PSERVER_INFO_1549, *LPSERVER_INFO_1549;

 typedef struct _SERVER_INFO_1550
 {
 DWORD sv1550_diskspacethreshold;
 } SERVER_INFO_1550, *PSERVER_INFO_1550, *LPSERVER_INFO_1550;

 typedef struct _SERVER_INFO_1552
 {
 DWORD sv1552_maxlinkdelay;
 } SERVER_INFO_1552, *PSERVER_INFO_1552, *LPSERVER_INFO_1552;

 typedef struct _SERVER_INFO_1553
 {
 DWORD sv1553_minlinkthroughput;
 } SERVER_INFO_1553, *PSERVER_INFO_1553, *LPSERVER_INFO_1553;

 typedef struct _SERVER_INFO_1554
 {
 DWORD sv1554_linkinfovalidtime;
 } SERVER_INFO_1554, *PSERVER_INFO_1554, *LPSERVER_INFO_1554;

 typedef struct _SERVER_INFO_1555
 {
 DWORD sv1555_scavqosinfoupdatetime;
 } SERVER_INFO_1555, *PSERVER_INFO_1555, *LPSERVER_INFO_1555;

 typedef struct _SERVER_INFO_1556
 {
 DWORD sv1556_maxworkitemidletime;
 } SERVER_INFO_1556, *PSERVER_INFO_1556, *LPSERVER_INFO_1556;

 typedef [switch_type(unsigned long)] union _SERVER_INFO
 {
 [case(100)]
 LPSERVER_INFO_100 ServerInfo100;
 [case(101)]
 LPSERVER_INFO_101 ServerInfo101;
 [case(102)]
 LPSERVER_INFO_102 ServerInfo102;
 [case(103)]
 LPSERVER_INFO_103 ServerInfo103;
 [case(502)]
 LPSERVER_INFO_502 ServerInfo502;
 [case(503)]
 LPSERVER_INFO_503 ServerInfo503;
 [case(599)]
 LPSERVER_INFO_599 ServerInfo599;
 [case(1005)]
 LPSERVER_INFO_1005 ServerInfo1005;
 [case(1107)]
 LPSERVER_INFO_1107 ServerInfo1107;
 [case(1010)]
 LPSERVER_INFO_1010 ServerInfo1010;
 [case(1016)]
 LPSERVER_INFO_1016 ServerInfo1016;
 [case(1017)]
 LPSERVER_INFO_1017 ServerInfo1017;
 [case(1018)]
 LPSERVER_INFO_1018 ServerInfo1018;

198 / 241

[MS-SRVS-Diff] - v20240423
Server Service Remote Protocol
Copyright © 2024 Microsoft Corporation
Release: April 23, 2024

 [case(1501)]
 LPSERVER_INFO_1501 ServerInfo1501;
 [case(1502)]
 LPSERVER_INFO_1502 ServerInfo1502;
 [case(1503)]
 LPSERVER_INFO_1503 ServerInfo1503;
 [case(1506)]
 LPSERVER_INFO_1506 ServerInfo1506;
 [case(1510)]
 LPSERVER_INFO_1510 ServerInfo1510;
 [case(1511)]
 LPSERVER_INFO_1511 ServerInfo1511;
 [case(1512)]
 LPSERVER_INFO_1512 ServerInfo1512;
 [case(1513)]
 LPSERVER_INFO_1513 ServerInfo1513;
 [case(1514)]
 LPSERVER_INFO_1514 ServerInfo1514;
 [case(1515)]
 LPSERVER_INFO_1515 ServerInfo1515;
 [case(1516)]
 LPSERVER_INFO_1516 ServerInfo1516;
 [case(1518)]
 LPSERVER_INFO_1518 ServerInfo1518;
 [case(1523)]
 LPSERVER_INFO_1523 ServerInfo1523;
 [case(1528)]
 LPSERVER_INFO_1528 ServerInfo1528;
 [case(1529)]
 LPSERVER_INFO_1529 ServerInfo1529;
 [case(1530)]
 LPSERVER_INFO_1530 ServerInfo1530;
 [case(1533)]
 LPSERVER_INFO_1533 ServerInfo1533;
 [case(1534)]
 LPSERVER_INFO_1534 ServerInfo1534;
 [case(1535)]
 LPSERVER_INFO_1535 ServerInfo1535;
 [case(1536)]
 LPSERVER_INFO_1536 ServerInfo1536;
 [case(1538)]
 LPSERVER_INFO_1538 ServerInfo1538;
 [case(1539)]
 LPSERVER_INFO_1539 ServerInfo1539;
 [case(1540)]
 LPSERVER_INFO_1540 ServerInfo1540;
 [case(1541)]
 LPSERVER_INFO_1541 ServerInfo1541;
 [case(1542)]
 LPSERVER_INFO_1542 ServerInfo1542;
 [case(1543)]
 LPSERVER_INFO_1543 ServerInfo1543;
 [case(1544)]
 LPSERVER_INFO_1544 ServerInfo1544;
 [case(1545)]
 LPSERVER_INFO_1545 ServerInfo1545;
 [case(1546)]
 LPSERVER_INFO_1546 ServerInfo1546;
 [case(1547)]
 LPSERVER_INFO_1547 ServerInfo1547;
 [case(1548)]
 LPSERVER_INFO_1548 ServerInfo1548;
 [case(1549)]
 LPSERVER_INFO_1549 ServerInfo1549;
 [case(1550)]
 LPSERVER_INFO_1550 ServerInfo1550;
 [case(1552)]
 LPSERVER_INFO_1552 ServerInfo1552;
 [case(1553)]

199 / 241

[MS-SRVS-Diff] - v20240423
Server Service Remote Protocol
Copyright © 2024 Microsoft Corporation
Release: April 23, 2024

 LPSERVER_INFO_1553 ServerInfo1553;
 [case(1554)]
 LPSERVER_INFO_1554 ServerInfo1554;
 [case(1555)]
 LPSERVER_INFO_1555 ServerInfo1555;
 [case(1556)]
 LPSERVER_INFO_1556 ServerInfo1556;
 } SERVER_INFO, *PSERVER_INFO, *LPSERVER_INFO;

 typedef struct _DISK_INFO
 {
 [string] WCHAR Disk[3];
 } DISK_INFO, *PDISK_INFO, *LPDISK_INFO;

 typedef struct _DISK_ENUM_CONTAINER
 {
 DWORD EntriesRead;
 [size_is(EntriesRead), length_is(EntriesRead)] LPDISK_INFO
 Buffer;
 } DISK_ENUM_CONTAINER;

 typedef struct _SERVER_TRANSPORT_INFO_0
 {
 DWORD svti0_numberofvcs;
 [string] wchar_t * svti0_transportname;
 [size_is(svti0_transportaddresslength)] unsigned char
 * svti0_transportaddress;
 DWORD svti0_transportaddresslength;
 [string] wchar_t * svti0_networkaddress;
 } SERVER_TRANSPORT_INFO_0, *PSERVER_TRANSPORT_INFO_0,
 *LPSERVER_TRANSPORT_INFO_0;

 typedef struct _SERVER_XPORT_INFO_0_CONTAINER
 {
 DWORD EntriesRead;
 [size_is(EntriesRead)] LPSERVER_TRANSPORT_INFO_0 Buffer;
 } SERVER_XPORT_INFO_0_CONTAINER, *PSERVER_XPORT_INFO_0_CONTAINER;

 typedef struct _SERVER_TRANSPORT_INFO_1
 {
 DWORD svti1_numberofvcs;
 [string] wchar_t * svti1_transportname;
 [size_is(svti1_transportaddresslength)] unsigned char
 * svti1_transportaddress;
 DWORD svti1_transportaddresslength;
 [string] wchar_t * svti1_networkaddress;
 [string] wchar_t * svti1_domain;
 } SERVER_TRANSPORT_INFO_1, *PSERVER_TRANSPORT_INFO_1,
 *LPSERVER_TRANSPORT_INFO_1;

 typedef struct _SERVER_XPORT_INFO_1_CONTAINER
 {
 DWORD EntriesRead;
 [size_is(EntriesRead)] LPSERVER_TRANSPORT_INFO_1 Buffer;
 } SERVER_XPORT_INFO_1_CONTAINER, *PSERVER_XPORT_INFO_1_CONTAINER;

 typedef struct _SERVER_TRANSPORT_INFO_2
 {
 DWORD svti2_numberofvcs;
 [string] wchar_t * svti2_transportname;
 [size_is(svti2_transportaddresslength)] unsigned char
 * svti2_transportaddress;
 DWORD svti2_transportaddresslength;
 [string] wchar_t * svti2_networkaddress;
 [string] wchar_t * svti2_domain;
 unsigned long svti2_flags;
 } SERVER_TRANSPORT_INFO_2, *PSERVER_TRANSPORT_INFO_2,
 *LPSERVER_TRANSPORT_INFO_2;

200 / 241

[MS-SRVS-Diff] - v20240423
Server Service Remote Protocol
Copyright © 2024 Microsoft Corporation
Release: April 23, 2024

 typedef struct _SERVER_XPORT_INFO_2_CONTAINER
 {
 DWORD EntriesRead;
 [size_is(EntriesRead)] LPSERVER_TRANSPORT_INFO_2 Buffer;
 } SERVER_XPORT_INFO_2_CONTAINER, *PSERVER_XPORT_INFO_2_CONTAINER;

 typedef struct _SERVER_TRANSPORT_INFO_3
 {
 DWORD svti3_numberofvcs;
 [string] wchar_t * svti3_transportname;
 [size_is(svti3_transportaddresslength)] unsigned char
 * svti3_transportaddress;
 DWORD svti3_transportaddresslength;
 [string] wchar_t * svti3_networkaddress;
 [string] wchar_t * svti3_domain;
 unsigned long svti3_flags;
 DWORD svti3_passwordlength;
 unsigned char svti3_password[256];
 } SERVER_TRANSPORT_INFO_3, *PSERVER_TRANSPORT_INFO_3,
 *LPSERVER_TRANSPORT_INFO_3;

 typedef struct _SERVER_XPORT_INFO_3_CONTAINER
 {
 DWORD EntriesRead;
 [size_is(EntriesRead)] LPSERVER_TRANSPORT_INFO_3 Buffer;
 } SERVER_XPORT_INFO_3_CONTAINER, *PSERVER_XPORT_INFO_3_CONTAINER;

 typedef [switch_type(unsigned long)] union _TRANSPORT_INFO
 {
 [case(0)]
 SERVER_TRANSPORT_INFO_0 Transport0;
 [case(1)]
 SERVER_TRANSPORT_INFO_1 Transport1;
 [case(2)]
 SERVER_TRANSPORT_INFO_2 Transport2;
 [case(3)]
 SERVER_TRANSPORT_INFO_3 Transport3;
 } TRANSPORT_INFO, *PTRANSPORT_INFO, *LPTRANSPORT_INFO;

 typedef [switch_type(DWORD)] union _SERVER_XPORT_ENUM_UNION {
 [case(0)]
 PSERVER_XPORT_INFO_0_CONTAINER Level0;
 [case(1)]
 PSERVER_XPORT_INFO_1_CONTAINER Level1;
 [case(2)]
 PSERVER_XPORT_INFO_2_CONTAINER Level2;
 [case(3)]
 PSERVER_XPORT_INFO_3_CONTAINER Level3;
 } SERVER_XPORT_ENUM_UNION;

 typedef struct _SERVER_XPORT_ENUM_STRUCT
 {
 DWORD Level;
 [switch_is(Level)] SERVER_XPORT_ENUM_UNION XportInfo;

 } SERVER_XPORT_ENUM_STRUCT, *PSERVER_XPORT_ENUM_STRUCT,
 *LPSERVER_XPORT_ENUM_STRUCT;

 typedef [context_handle] void *SHARE_DEL_HANDLE;
 typedef SHARE_DEL_HANDLE *PSHARE_DEL_HANDLE;

 typedef struct _ADT_SECURITY_DESCRIPTOR
 {
 DWORD Length;
 [size_is(Length)] unsigned char * Buffer;
 } ADT_SECURITY_DESCRIPTOR, *PADT_SECURITY_DESCRIPTOR;

 typedef struct _STAT_SERVER_0
 {

201 / 241

[MS-SRVS-Diff] - v20240423
Server Service Remote Protocol
Copyright © 2024 Microsoft Corporation
Release: April 23, 2024

 DWORD sts0_start;
 DWORD sts0_fopens;
 DWORD sts0_devopens;
 DWORD sts0_jobsqueued;
 DWORD sts0_sopens;
 DWORD sts0_stimedout;
 DWORD sts0_serrorout;
 DWORD sts0_pwerrors;
 DWORD sts0_permerrors;
 DWORD sts0_syserrors;
 DWORD sts0_bytessent_low;
 DWORD sts0_bytessent_high;
 DWORD sts0_bytesrcvd_low;
 DWORD sts0_bytesrcvd_high;
 DWORD sts0_avresponse;
 DWORD sts0_reqbufneed;
 DWORD sts0_bigbufneed;
 } STAT_SERVER_0, *PSTAT_SERVER_0, *LPSTAT_SERVER_0;

 typedef struct _TIME_OF_DAY_INFO
 {
 DWORD tod_elapsedt;
 DWORD tod_msecs;
 DWORD tod_hours;
 DWORD tod_mins;
 DWORD tod_secs;
 DWORD tod_hunds;
 long tod_timezone;
 DWORD tod_tinterval;
 DWORD tod_day;
 DWORD tod_month;
 DWORD tod_year;
 DWORD tod_weekday;
 } TIME_OF_DAY_INFO, *PTIME_OF_DAY_INFO, *LPTIME_OF_DAY_INFO;

 typedef struct _NET_DFS_ENTRY_ID
 {
 GUID Uid;
 [string] WCHAR * Prefix;
 } NET_DFS_ENTRY_ID, *LPNET_DFS_ENTRY_ID;

 typedef struct _NET_DFS_ENTRY_ID_CONTAINER
 {
 unsigned long Count;
 [size_is(Count)] LPNET_DFS_ENTRY_ID Buffer;
 } NET_DFS_ENTRY_ID_CONTAINER, *LPNET_DFS_ENTRY_ID_CONTAINER;

 typedef struct _DFS_SITENAME_INFO
 {
 unsigned long SiteFlags;
 [string,unique] WCHAR * SiteName;
 } DFS_SITENAME_INFO, *PDFS_SITENAME_INFO, *LPDFS_SITENAME_INFO;

 typedef struct _DFS_SITELIST_INFO
 {
 unsigned long cSites;
 [size_is(cSites)] DFS_SITENAME_INFO Site[];
 } DFS_SITELIST_INFO, *PDFS_SITELIST_INFO, *LPDFS_SITELIST_INFO;

 typedef struct _SERVER_ALIAS_INFO_0 {
 [string] LMSTR srvai0_alias;
 [string] LMSTR srvai0_target;
 BOOLEAN srvai0_default;
 ULONG srvai0_reserved;
 }SERVER_ALIAS_INFO_0, *PSERVER_ALIAS_INFO_0, *LPSERVER_ALIAS_INFO_0;

 typedef struct _SERVER_ALIAS_INFO_0_CONTAINER {
 DWORD EntriesRead;
 [size_is(EntriesRead)] LPSERVER_ALIAS_INFO_0 Buffer;

202 / 241

[MS-SRVS-Diff] - v20240423
Server Service Remote Protocol
Copyright © 2024 Microsoft Corporation
Release: April 23, 2024

 } SERVER_ALIAS_INFO_0_CONTAINER;

 typedef struct _SERVER_ALIAS_ENUM_STRUCT {
 DWORD Level;
 [switch_is(Level)] union _SERVER_ALIAS_ENUM_UNION {
 [case(0)]
 SERVER_ALIAS_INFO_0_CONTAINER *Level0;
 } ServerAliasInfo;
 }SERVER_ALIAS_ENUM_STRUCT, *PSERVER_ALIAS_ENUM_STRUCT,
 *LPSERVER_ALIAS_ENUM_STRUCT;

 typedef [switch_type(unsigned long)] union _SERVER_ALIAS_INFO
 { // for Get & Set Info
 [case(0)]
 LPSERVER_ALIAS_INFO_0 ServerAliasInfo0;
 } SERVER_ALIAS_INFO, *PSERVER_ALIAS_INFO, *LPSERVER_ALIAS_INFO;

 // This method not used on the wire
 void Opnum0NotUsedOnWire(void);

 // This method not used on the wire
 void Opnum1NotUsedOnWire(void);

 // This method not used on the wire
 void Opnum2NotUsedOnWire(void);

 // This method not used on the wire
 void Opnum3NotUsedOnWire(void);

 // This method not used on the wire
 void Opnum4NotUsedOnWire(void);

 // This method not used on the wire
 void Opnum5NotUsedOnWire(void);

 // This method not used on the wire
 void Opnum6NotUsedOnWire(void);

 // This method not used on the wire
 void Opnum7NotUsedOnWire(void);

 NET_API_STATUS
 NetrConnectionEnum (
 [in,string,unique] SRVSVC_HANDLE ServerName,
 [in,string,unique] WCHAR * Qualifier,
 [in,out] LPCONNECT_ENUM_STRUCT InfoStruct,
 [in] DWORD PreferedMaximumLength,
 [out] DWORD * TotalEntries,
 [in,out,unique] DWORD * ResumeHandle
);

 NET_API_STATUS
 NetrFileEnum (
 [in,string,unique] SRVSVC_HANDLE ServerName,
 [in,string,unique] WCHAR * BasePath,
 [in,string,unique] WCHAR * UserName,
 [in,out] PFILE_ENUM_STRUCT InfoStruct,
 [in] DWORD PreferedMaximumLength,
 [out] DWORD * TotalEntries,
 [in,out,unique] DWORD * ResumeHandle
);

 NET_API_STATUS
 NetrFileGetInfo (
 [in,string,unique] SRVSVC_HANDLE ServerName,
 [in] DWORD FileId,
 [in] DWORD Level,
 [out, switch_is(Level)] LPFILE_INFO InfoStruct
);

203 / 241

[MS-SRVS-Diff] - v20240423
Server Service Remote Protocol
Copyright © 2024 Microsoft Corporation
Release: April 23, 2024

 NET_API_STATUS
 NetrFileClose (
 [in,string,unique] SRVSVC_HANDLE ServerName,
 [in] DWORD FileId
);

 NET_API_STATUS
 NetrSessionEnum (
 [in,string,unique] SRVSVC_HANDLE ServerName,
 [in,string,unique] WCHAR * ClientName,
 [in,string,unique] WCHAR * UserName,
 [in,out] PSESSION_ENUM_STRUCT InfoStruct,
 [in] DWORD PreferedMaximumLength,
 [out] DWORD * TotalEntries,
 [in,out,unique] DWORD * ResumeHandle
);

 NET_API_STATUS
 NetrSessionDel (
 [in,string,unique] SRVSVC_HANDLE ServerName,
 [in,string,unique] WCHAR * ClientName,
 [in,string,unique] WCHAR * UserName
);

 NET_API_STATUS
 NetrShareAdd (
 [in,string,unique] SRVSVC_HANDLE ServerName,
 [in] DWORD Level,
 [in, switch_is(Level)] LPSHARE_INFO InfoStruct,
 [in,out,unique] DWORD * ParmErr
);

 NET_API_STATUS
 NetrShareEnum (
 [in,string,unique] SRVSVC_HANDLE ServerName,
 [in,out] LPSHARE_ENUM_STRUCT InfoStruct,
 [in] DWORD PreferedMaximumLength,
 [out] DWORD * TotalEntries,
 [in,out,unique] DWORD * ResumeHandle
);

 NET_API_STATUS
 NetrShareGetInfo (
 [in,string,unique] SRVSVC_HANDLE ServerName,
 [in,string] WCHAR * NetName,
 [in] DWORD Level,
 [out, switch_is(Level)] LPSHARE_INFO InfoStruct
);

 NET_API_STATUS
 NetrShareSetInfo (
 [in,string,unique] SRVSVC_HANDLE ServerName,
 [in,string] WCHAR * NetName,
 [in] DWORD Level,
 [in, switch_is(Level)] LPSHARE_INFO ShareInfo,
 [in,out,unique] DWORD * ParmErr
);

 NET_API_STATUS
 NetrShareDel (
 [in,string,unique] SRVSVC_HANDLE ServerName,
 [in,string] WCHAR * NetName,
 [in] DWORD Reserved
);

 NET_API_STATUS
 NetrShareDelSticky (
 [in,string,unique] SRVSVC_HANDLE ServerName,

204 / 241

[MS-SRVS-Diff] - v20240423
Server Service Remote Protocol
Copyright © 2024 Microsoft Corporation
Release: April 23, 2024

 [in,string] WCHAR * NetName,
 [in] DWORD Reserved
);

 NET_API_STATUS
 NetrShareCheck (
 [in,string,unique] SRVSVC_HANDLE ServerName,
 [in,string] WCHAR * Device,
 [out] DWORD * Type
);

 NET_API_STATUS
 NetrServerGetInfo (
 [in,string,unique] SRVSVC_HANDLE ServerName,
 [in] DWORD Level,
 [out, switch_is(Level)] LPSERVER_INFO InfoStruct
);

 NET_API_STATUS
 NetrServerSetInfo (
 [in,string,unique] SRVSVC_HANDLE ServerName,
 [in] DWORD Level,
 [in, switch_is(Level)] LPSERVER_INFO ServerInfo,
 [in,out,unique] DWORD * ParmErr
);

 NET_API_STATUS
 NetrServerDiskEnum (
 [in,string,unique] SRVSVC_HANDLE ServerName,
 [in] DWORD Level,
 [in,out] DISK_ENUM_CONTAINER *DiskInfoStruct,
 [in] DWORD PreferedMaximumLength,
 [out] DWORD * TotalEntries,
 [in,out,unique] DWORD * ResumeHandle
);

 NET_API_STATUS
 NetrServerStatisticsGet (
 [in,string,unique] SRVSVC_HANDLE ServerName,
 [in,string,unique] WCHAR * Service,
 [in] DWORD Level,
 [in] DWORD Options,
 [out] LPSTAT_SERVER_0 *InfoStruct
);

 NET_API_STATUS
 NetrServerTransportAdd (
 [in,string,unique] SRVSVC_HANDLE ServerName,
 [in] DWORD Level,
 [in] LPSERVER_TRANSPORT_INFO_0 Buffer
);

 NET_API_STATUS
 NetrServerTransportEnum (
 [in,string,unique] SRVSVC_HANDLE ServerName,
 [in,out] LPSERVER_XPORT_ENUM_STRUCT InfoStruct,
 [in] DWORD PreferedMaximumLength,
 [out] DWORD * TotalEntries,
 [in,out,unique] DWORD * ResumeHandle
);

 NET_API_STATUS
 NetrServerTransportDel (
 [in,string,unique] SRVSVC_HANDLE ServerName,
 [in] DWORD Level,
 [in] LPSERVER_TRANSPORT_INFO_0 Buffer
);

 NET_API_STATUS

205 / 241

[MS-SRVS-Diff] - v20240423
Server Service Remote Protocol
Copyright © 2024 Microsoft Corporation
Release: April 23, 2024

 NetrRemoteTOD (
 [in,string,unique] SRVSVC_HANDLE ServerName,
 [out] LPTIME_OF_DAY_INFO *BufferPtr
);

 // This method not used on the wire
 void Opnum29NotUsedOnWire(void);

 NET_API_STATUS
 NetprPathType(
 [in,string,unique] SRVSVC_HANDLE ServerName,
 [in,string] WCHAR * PathName,
 [out] DWORD * PathType,
 [in] DWORD Flags
);

 NET_API_STATUS
 NetprPathCanonicalize(
 [in,string,unique] SRVSVC_HANDLE ServerName,
 [in,string] WCHAR * PathName,
 [out,size_is(OutbufLen)] unsigned char * Outbuf,
 [in,range(0, 64000)] DWORD OutbufLen,
 [in,string] WCHAR * Prefix,
 [in,out] DWORD * PathType,
 [in] DWORD Flags
);

 long
 NetprPathCompare(
 [in,string,unique] SRVSVC_HANDLE ServerName,
 [in,string] WCHAR * PathName1,
 [in,string] WCHAR * PathName2,
 [in] DWORD PathType,
 [in] DWORD Flags
);

 NET_API_STATUS
 NetprNameValidate(
 [in,string,unique] SRVSVC_HANDLE ServerName,
 [in,string] WCHAR * Name,
 [in] DWORD NameType,
 [in] DWORD Flags
);

 NET_API_STATUS
 NetprNameCanonicalize(
 [in,string,unique] SRVSVC_HANDLE ServerName,
 [in,string] WCHAR * Name,
 [out, size_is(OutbufLen)] WCHAR * Outbuf,
 [in,range(0, 64000)] DWORD OutbufLen,
 [in] DWORD NameType,
 [in] DWORD Flags
);

 long
 NetprNameCompare(
 [in,string,unique] SRVSVC_HANDLE ServerName,
 [in,string] WCHAR * Name1,
 [in,string] WCHAR * Name2,
 [in] DWORD NameType,
 [in] DWORD Flags
);

 NET_API_STATUS
 NetrShareEnumSticky (
 [in,string,unique] SRVSVC_HANDLE ServerName,
 [in,out] LPSHARE_ENUM_STRUCT InfoStruct,
 [in] DWORD PreferedMaximumLength,
 [out] DWORD * TotalEntries,

206 / 241

[MS-SRVS-Diff] - v20240423
Server Service Remote Protocol
Copyright © 2024 Microsoft Corporation
Release: April 23, 2024

 [in,out,unique] DWORD * ResumeHandle
);

 NET_API_STATUS
 NetrShareDelStart (
 [in,string,unique] SRVSVC_HANDLE ServerName,
 [in,string] WCHAR * NetName,
 [in] DWORD Reserved,
 [out] PSHARE_DEL_HANDLE ContextHandle
);

 NET_API_STATUS
 NetrShareDelCommit (
 [in, out] PSHARE_DEL_HANDLE ContextHandle
);

 DWORD
 NetrpGetFileSecurity (
 [in,string,unique] SRVSVC_HANDLE ServerName,
 [in,string,unique] WCHAR * ShareName,
 [in,string] WCHAR * lpFileName,
 [in] SECURITY_INFORMATION RequestedInformation,
 [out] PADT_SECURITY_DESCRIPTOR *SecurityDescriptor
);

 DWORD
 NetrpSetFileSecurity (
 [in,string,unique] SRVSVC_HANDLE ServerName,
 [in,string,unique] WCHAR * ShareName,
 [in,string] WCHAR * lpFileName,
 [in] SECURITY_INFORMATION SecurityInformation,
 [in] PADT_SECURITY_DESCRIPTOR SecurityDescriptor
);

 NET_API_STATUS
 NetrServerTransportAddEx (
 [in,string,unique] SRVSVC_HANDLE ServerName,
 [in] DWORD Level,
 [in, switch_is(Level)] LPTRANSPORT_INFO Buffer
);

 // This method not used on the wire
 void Opnum42NotUsedOnWire(void);

 NET_API_STATUS
 NetrDfsGetVersion(
 [in,string,unique] SRVSVC_HANDLE ServerName,
 [out] DWORD * Version
);

 NET_API_STATUS
 NetrDfsCreateLocalPartition (
 [in,string,unique] SRVSVC_HANDLE ServerName,
 [in,string] WCHAR * ShareName,
 [in] GUID * EntryUid,
 [in,string] WCHAR * EntryPrefix,
 [in,string] WCHAR * ShortName,
 [in] LPNET_DFS_ENTRY_ID_CONTAINER RelationInfo,
 [in] int Force
);

 NET_API_STATUS
 NetrDfsDeleteLocalPartition (
 [in,string,unique] SRVSVC_HANDLE ServerName,
 [in] GUID * Uid,
 [in,string] WCHAR * Prefix
);

 NET_API_STATUS

207 / 241

[MS-SRVS-Diff] - v20240423
Server Service Remote Protocol
Copyright © 2024 Microsoft Corporation
Release: April 23, 2024

 NetrDfsSetLocalVolumeState (
 [in,string,unique] SRVSVC_HANDLE ServerName,
 [in] GUID * Uid,
 [in,string] WCHAR * Prefix,
 [in] unsigned long State
);

 // This method not used on the wire
 void Opnum47NotUsedOnWire(void);

 NET_API_STATUS
 NetrDfsCreateExitPoint (
 [in,string,unique] SRVSVC_HANDLE ServerName,
 [in] GUID * Uid,
 [in,string] WCHAR * Prefix,
 [in] unsigned long Type,
 [in, range(0,32)] DWORD ShortPrefixLen,
 [out, size_is(ShortPrefixLen)] WCHAR * ShortPrefix
);

 NET_API_STATUS
 NetrDfsDeleteExitPoint (
 [in,string,unique] SRVSVC_HANDLE ServerName,
 [in] GUID * Uid,
 [in,string] WCHAR * Prefix,
 [in] unsigned long Type
);

 NET_API_STATUS
 NetrDfsModifyPrefix (
 [in,string,unique] SRVSVC_HANDLE ServerName,
 [in] GUID * Uid,
 [in,string] WCHAR * Prefix
);

 NET_API_STATUS
 NetrDfsFixLocalVolume (
 [in,string,unique] SRVSVC_HANDLE ServerName,
 [in,string] WCHAR * VolumeName,
 [in] unsigned long EntryType,
 [in] unsigned long ServiceType,
 [in,string] WCHAR * StgId,
 [in] GUID * EntryUid,
 [in,string] WCHAR * EntryPrefix,
 [in] LPNET_DFS_ENTRY_ID_CONTAINER RelationInfo,
 [in] unsigned long CreateDisposition
);

 NET_API_STATUS
 NetrDfsManagerReportSiteInfo (
 [in,string,unique] SRVSVC_HANDLE ServerName,
 [in,out,unique] LPDFS_SITELIST_INFO *ppSiteInfo
);

 NET_API_STATUS
 NetrServerTransportDelEx (
 [in,string,unique] SRVSVC_HANDLE ServerName,
 [in] DWORD Level,
 [in, switch_is(Level)] LPTRANSPORT_INFO Buffer
);

 NET_API_STATUS
 NetrServerAliasAdd (
 [in,string,unique] SRVSVC_HANDLE ServerName,
 [in] DWORD Level,
 [in, switch_is(Level)] LPSERVER_ALIAS_INFO InfoStruct
);

 NET_API_STATUS

208 / 241

[MS-SRVS-Diff] - v20240423
Server Service Remote Protocol
Copyright © 2024 Microsoft Corporation
Release: April 23, 2024

 NetrServerAliasEnum (
 [in,string,unique] SRVSVC_HANDLE ServerName,
 [in,out] LPSERVER_ALIAS_ENUM_STRUCT InfoStruct,
 [in] DWORD PreferedMaximumLength,
 [out] LPDWORD TotalEntries,
 [in,out,unique] LPDWORD ResumeHandle
);

 NET_API_STATUS
 NetrServerAliasDel (
 [in,string,unique] SRVSVC_HANDLE ServerName,
 [in] DWORD Level,
 [in, switch_is(Level)] LPSERVER_ALIAS_INFO InfoStruct
);

 NET_API_STATUS
 NetrShareDelEx (
 [in,string,unique] SRVSVC_HANDLE ServerName,
 [in] DWORD Level,
 [in,switch_is(Level)] LPSHARE_INFO ShareInfo
);
 }

209 / 241

[MS-SRVS-Diff] - v20240423
Server Service Remote Protocol
Copyright © 2024 Microsoft Corporation
Release: April 23, 2024

7 (Updated Section) Appendix B: Product Behavior

The information in this specification is applicable to the following Microsoft products or supplemental
software. References to product versions include updates to those products.

 Windows NT operating system

 Windows 2000 operating system

 Windows XP operating system

 Windows Server 2003 operating system

 Windows Vista operating system

 Windows Server 2008 operating system

 Windows 7 operating system

 Windows Server 2008 R2 operating system

 Windows 8 operating system

 Windows Server 2012 operating system

 Windows 8.1 operating system

 Windows Server 2012 R2 operating system

 Windows 10 operating system

 Windows Server 2016 operating system

 Windows Server operating system

 Windows Server 2019 operating system

 Windows Server 2022 operating system

 Windows 11 operating system

 Windows Server 2025 operating system

Exceptions, if any, are noted in this section. If an update version, service pack or Knowledge Base
(KB) number appears with a product name, the behavior changed in that update. The new behavior
also applies to subsequent updates unless otherwise specified. If a product edition appears with the
product version, behavior is different in that product edition.

Unless otherwise specified, any statement of optional behavior in this specification that is prescribed
using the terms "SHOULD" or "SHOULD NOT" implies product behavior in accordance with the

SHOULD or SHOULD NOT prescription. Unless otherwise specified, the term "MAY" implies that the

product does not follow the prescription.

<1> Section 1.8: Windows uses only the values in [MS-EERR].

<2> Section 2.1: Windows uses the identity of the caller to perform method-specific access checks.

<3> Section 2.2.2.1: Windows-based SMB clients set this field based on the version and service pack
level of the Windows operating system. Windows Vista operating system and later,
windows_server_2008 operating system and later, set this field to an empty string. The following table

specifies the Sessionclient string and corresponding Windows operating system version.

210 / 241

[MS-SRVS-Diff] - v20240423
Server Service Remote Protocol
Copyright © 2024 Microsoft Corporation
Release: April 23, 2024

Sessionclient String Windows Operating System Version

"Administration Tools Pack" Windows Server 2003 operating system with Service Pack 1 (SP1)

"Windows 2002 Service Pack
2"

Windows XP operating system Service Pack 2 (SP2)

"Windows 5.0" Windows 2000

"Windows NT 1381" Windows NT 4.0 operating system

"Windows 4.0" Windows 98 operating system and Windows 98 operating system Second
Edition

"DOS LM 1.0" LAN Manager for MS-DOS 1.0 clients

"DOS LM 2.0" LAN Manager for MS-DOS 2.0 clients

"OS/2 LM 1.0" LAN Manager for MS-OS/2 1.0 clients

"OS/2 LM 2.0" LAN Manager for MS-OS/2 2.0 clients

<4> Section 2.2.2.1: Windows-based servers currently do not enforce any limits on the
Sessionclient string size and will accept any string containing 0 or more characters. The existing
Windows clients limit the size to less than 256 bytes.

<5> Section 2.2.2.6: Use PLATFORM_ID_NT for Windows NT Server operating system operating

system and later, Windows 2000 operating system and later.

:<6> Section 2.2.2.6: Windows clients treat any PlatformID values not specified in the table as
unknown platforms.

<7> Section 2.2.2.13: Entry refers to a Windows NT, Windows 2000, or Windows XP server.

<8> Section 2.2.3.7: The ServerInfo103 parameter and SERVER_INFO_103 structure are applicable
to Windows Server 2008 R2 operating system operating system and later.

<9> Section 2.2.4.13: Windows-based SMB clients set this field based on the version and service pack

level of the Windows operating system. Windows Vista operating system and later, Windows Server
2008 operating system and later, set this field to an empty string. The following table specifies the
Sessionclient string and corresponding Windows version.

Sessionclient String Windows Operating System Version

"Administration Tools Pack" Windows Server 2003 with SP1

"Windows 2002 Service Pack 2" Windows XP SP2

"Windows 5.0" Windows 2000

"Windows NT 1381" Windows NT 4.0

"Windows 4.0" Windows 98 and Windows 98 Second Edition

"DOS LM 1.0" LAN Manager for MS-DOS 1.0 clients

"DOS LM 2.0" LAN Manager for MS-DOS 2.0 clients

"OS/2 LM 1.0" LAN Manager for MS-OS/2 1.0 clients

211 / 241

[MS-SRVS-Diff] - v20240423
Server Service Remote Protocol
Copyright © 2024 Microsoft Corporation
Release: April 23, 2024

Sessionclient String Windows Operating System Version

"OS/2 LM 2.0" LAN Manager for MS-OS/2 2.0 clients

<10> Section 2.2.4.15: Windows-based SMB clients set this field based on the version and service
pack level of the Windows operating system. Windows Vista operating system and later, Windows
Server 2008 operating system and later set this field to an empty string. The following table specifies
the Sessionclient string and corresponding Windows operating system version.

Sessionclient String Windows Operating System Version

"Administration Tools Pack" Windows Server 2003 with SP1

"Windows 2002 Service Pack 2" Windows XP SP2

"Windows 5.0" Windows 2000

"Windows NT 1381" Windows NT 4.0

"Windows 4.0" Windows 98 and Windows 98 Second Edition

"DOS LM 1.0" LAN Manager for MS-DOS 1.0 clients

"DOS LM 2.0" LAN Manager for MS-DOS 2.0 clients

"OS/2 LM 1.0" LAN Manager for MS-OS/2 1.0 clients

"OS/2 LM 2.0" LAN Manager for MS-OS/2 2.0 clients

<11> Section 2.2.4.29: SHI1005_FLAGS_ACCESS_BASED_DIRECTORY_ENUM is supported only on

servers running Windows Server 2003 with SP1, Windows Server 2008 operating system and later,
Windows 7 operating system and later.

<12> Section 2.2.4.29: SHI1005_FLAGS_FORCE_LEVELII_OPLOCK is supported on Windows Server
2008 R2 operating system and later.

<13> Section 2.2.4.29: SHI1005_FLAGS_ENABLE_HASH is supported on Windows Server 2008 R2
operating system and later.

<14> Section 2.2.4.29: SHI1005_FLAGS_ENABLE_CA is supported on Windows Server 2012 operating
system and later.

<15> Section 2.2.4.29: SHI1005_FLAGS_ENCRYPT_DATA is supported on Windows 8 operating
system and later, Windows Server 2012 operating system and later.

<16> Section 2.2.4.29: SHI1005_FLAGS_COMPRESS_DATA is supported on Windows 10 v21H1
operating system and later and Windows Server 2022 and later.

<17> Section 2.2.4.31: SHARE_INFO_1501_I is supported after Windows 2000.

<18> Section 2.2.4.43: The following values are returned by Windows-based servers for different
versions of the Windows operating system.

Operating system Major version

Windows NT 4.0 4

212 / 241

[MS-SRVS-Diff] - v20240423
Server Service Remote Protocol
Copyright © 2024 Microsoft Corporation
Release: April 23, 2024

Operating system Major version

Windows 2000 5

Windows XP 5

Windows Server 2003 5

Windows Vista 6

Windows Server 2008 6

Windows 7 6

Windows Server 2008 R2 6

Windows 8 6

Windows Server 2012 6

Windows 8.1 6

Windows Server 2012 R2 6

Windows 10 10

Windows Server 2016 10

Windows Server operating system 10

Windows Server 2019 10

Windows 10 v2004 operating system 10

Windows Server 2022 10

Windows 11 10

<18Windows Server 2025 10

<19> Section 2.2.4.43: The following values are returned by Windows-based servers for different
versions of the Windows operating system.

Operating system Minor version

Windows NT 4.0 0

Windows 2000 0

Windows XP 1

Windows Server 2003 2

Windows Vista 0

Windows Server 2008 0

Windows 7 1

213 / 241

[MS-SRVS-Diff] - v20240423
Server Service Remote Protocol
Copyright © 2024 Microsoft Corporation
Release: April 23, 2024

Operating system Minor version

Windows Server 2008 R2 1

Windows 8 2

Windows Server 2012 2

Windows 8.1 3

Windows Server 2012 R2 3

Windows 10 0

Windows Server 2016 0

Windows Server operating system 0

Windows Server 2019 0

Windows 10 v2004 0

Windows Server 2022 0

Windows 11 0

<19Windows Server 2025 0

<20> Section 2.2.4.43: SRV_HASH_GENERATION_ACTIVE is enabled only if
SRV_SUPPORT_HASH_GENERATION is enabled.

<20> Section 2.2.4.46: The allowed range of values on Windows NT 4.0 is 1 to 2,048, inclusive.

<21> Section 2.2.4.46: The allowed range of values for get operations on Windows NT 4.0 and
Windows 2000 is 5121 to 65,5352,048, inclusive.

<22> Section 2.2.4.46: The allowed range of values for get operations on Windows NT 4.0 and
Windows 2000 is 512 to 65,535, inclusive.

<23> Section 2.2.4.46: The allowed range of values for get operations on Windows NT 4.0 is 1 to 20,
inclusive.

<23> Section 2.2.4.46: The allowed range of values in Windows is from 0x00100000 to 0xFFFFFFFF,
inclusive.

<24> Section 2.2.4.46: The allowed range of values in Windows is from 0x00100000 to 0xFFFFFFFF,
inclusive.

<25> Section 2.2.4.46: The allowed range of values forin Windows NT 4.0, Windows 2000, and
Windows XP is 2from 0x00100000 to 320xFFFFFFFF, inclusive.

<26> Section 2.2.4.46: The allowed range of values for Windows NT 4.0, Windows 2000, and
Windows XP is 2 to 32, inclusive.

<27> Section 2.2.4.46: The allowed range of values for Windows NT 4.0, Windows 2000, and
Windows XP is 2 to 100, inclusive.

214 / 241

[MS-SRVS-Diff] - v20240423
Server Service Remote Protocol
Copyright © 2024 Microsoft Corporation
Release: April 23, 2024

<28> Section 2.2.4.96: Following are examples of values that this field can have for Microsoft-
supported protocols:

 NETBT (NetBIOS over TCP/IP)

On Windows 2000 operating system and later, Windows Server 2003 operating system and

later, the format is as follows, where the value between braces is the GUID of the underlying
physical interface that is generated by the operating system at installation time:
\Device\NetBT_Tcpip_{2C9725F4-151A-11D3-AEEC-C3B211BD350B}

On Windows NT 4.0, the format is as follows, where DC21X41 is the name for the adapter
chosen by the manufacturer: \Device\NetBT_DC21X41

 Direct hosting of SMB over TCP/IP (NetBIOS-less SMB)

This protocol is available only on Windows 2000 operating system and later, Windows Server

2003 operating system and later. The format is: \Device\NetbiosSmb

 Nwlnk (the Microsoft version of the Novell IPX/SPX Protocol [NWLINK])

This protocol is not installed by default. It provides the following two transports:
\Device\NwlnkIpx and \Device\NwlnkNb

 NetBEUI

This protocol is supported only on Windows 2000 and Windows NT 4.0. The value between

braces is the GUID of the underlying physical port generated by the operating system at
installation time. The NdisWanNbfOut/NdisWanNbfIn devices correspond to bindings between
the NetBEUI transport and NDISWAN driver. The format options are:

\Device\Nbf_{868B258E-252B-4F65-A383-18803360701F}

\Device\Nbf_NdisWanNbfOut{77C17309-B558-4096-8A2B-2D1E9E4FC932}

\Device\Nbf_NdisWanNbfIn{331BB986-F9B0-406C-9FA2-36425F52CC05}

<29> Section 2.2.4.96: This member is usually the NetBIOS name that the server is using, or it can

represent an SMB/IPX name.

<30> Section 2.2.4.96<29> Section 2.2.4.96:: The server normalizes this to 16 characters by
truncating the given length to this value if it is larger, or padding the transport address buffer with the
blank character (0x20) until the length is 16.

<31> Section 2.2.4.96: Following are examples of values this field can have for Microsoft-supported
protocols:

 NETBT (NetBIOS over TCP/IP)

The MAC address of the n/w device, for example: 00065b5da43f

 NetBIOS over SMB

000000000000

 Nwlnk (the Microsoft version of the Novell IPX/SPX Protocol [NWLINK])

The MAC address of the n/w device, for example: 00065b5da43f

 NetBEUI

The MAC address of the n/w device for the non-NdisWan devices, for example: 00065b5da43f

215 / 241

[MS-SRVS-Diff] - v20240423
Server Service Remote Protocol
Copyright © 2024 Microsoft Corporation
Release: April 23, 2024

For the NdisWan devices, this pointer is an index into internal connection tables of the driver. The first
two characters are generated randomly by using the current system tick count and the next two by

using the current system time at installation. The last eight characters are always 20524153 and
stand for the string "RAS" including the leading blank. For example: d2e820524153.

<32> Section 3.1.1: In Windows, virtual shares are implemented in DFS, which is a referral service to
SMB shares, as specified in [MS-DFSC]. The DFS abstract model is specified in [MS-DFSC]. DFS is a
special type of share that is relevant to the Windows client.

<33> Section 3.1.1: By default, Windows-based SMB and SMB2 servers are configured to listen on
both Direct TCP as specified in [MS-SMB] sections 1.9 and 2.1, and NetBIOS over TCP as specified in
[MS-CIFS] section 2.1.1.2. Windows-based CIFS servers are configured to listen on additional
NetBIOS-based transports as specified in [MS-CIFS] section 2.1, when the appropriate link layers are

available. These settings can also be obtained via policy or DHCP configuration.

<34> Section 3.1.1<33> Section 3.1.1:: Windows-specific transport names are as specified in the
product behavior note for svti3_transportname in section 2.2.4.96.

<35> Section 3.1.1: Windows stores the list of all active shares that are identified by a share
identifier in the registry, at the path
HKEY_LOCAL_MACHINE|SYSTEM\CurrentControlSet\Services\lanmanserver.

<36> Section 3.1.1.7: This method is only supported in Windows 2000 and Windows XP. Otherwise, it
returns an implementation-specific error code.

<37> Section 3.1.3: Windows-based servers set this flag to SV_TYPE_NT.

<38> Section 3.1.3: Windows stores these named pipes in the registry at the path
"\HKEY_LOCAL_MACHINE\SYSTEM\CurrentControlSet\Services\LanmanServer\Parameters\NullSession
Pipes".

The following table lists the named pipe names that an anonymous user is allowed to open. The

default behavior of Windows in allowing anonymous access to certain pipes has become more
restrictive over time.

Operating system Pipes

Windows NT 4.0 comnap, comnode, sql\query, spoolss, epmapper, locator,
lsarpc, samr, netlogon, wkssvc, srvsvc, and browser

Windows 2000 comnap, comnode, sql\query, spoolss, epmapper, locator,
trkwks, trksvr, lsarpc, samr, netlogon, wkssvc, srvsvc, and
browser

Windows XP comnap, comnode, sql\query, spoolss, browser

Windows Server 2003 comnap, comnode, sql\query, spoolss, netlogon, lsarpc,
samr, browser

Windows Vista, Windows Server 2008 browser

Windows Server 2008 R2 operating system
and later, Windows 7 operating system and
later

No pipes are allowing anonymous access

<39> Section 3.1.3: In Windows, the dependency chain for a service group ensures that the server
service starts before the SMB and SMB2 services.

<40> Section 3.1.3: By default, Windows sets the values as follows:

216 / 241

[MS-SRVS-Diff] - v20240423
Server Service Remote Protocol
Copyright © 2024 Microsoft Corporation
Release: April 23, 2024

 sv103_version_major is set to 3.

 sv103_version_minor is set to 10.

 sv103_comment is set to empty string.

 sv103_users is set to 0xFFFFFFFF.

 sv103_disc is set to 15.

 sv103_hidden is set to FALSE.

 sv103_announce is set to 240.

 sv103_anndelta is set to 3000.

<41> Section 3.1.3: By default, Windows sets the values as follows:

 sv599_sessopens is set to 2048.

 sv599_sessvcs is set to 1.

 sv599_opensearch is set to 2048.

 sv599_sizreqbuf is set to 4356.

 sv103_disc is set to 15.

 sv599_initworkitems is set to 4.

 sv599_maxworkitems is set to 16.

 sv599_rawworkitems is set to 4.

 sv599_irpstacksize is set to 11.

 sv599_maxrawbuflen is set to 65535.

 sv599_sessusers is set to 2048.

 sv599_sessconns is set to 2048.

 sv599_maxpagedmemoryusage is set to 0xFFFFFFFF.

 sv599_maxnonpagedmemoryusage is set to 0xFFFFFFFF.

 sv599_enablesoftcompat is set to TRUE.

 sv599_enableforcedlogoff is set to TRUE.

 sv599_timesource is set to FALSE.

 sv599_acceptdownlevelapis is set to TRUE.

 sv599_lmannounce is set to FALSE.

 sv599_domain is set to "DOMAIN".

 sv599_maxcopyreadlen is set to 8192.

 sv599_maxcopywritelen is set to 0.

 sv599_minkeepsearch is set to 480.

217 / 241

[MS-SRVS-Diff] - v20240423
Server Service Remote Protocol
Copyright © 2024 Microsoft Corporation
Release: April 23, 2024

 sv599_maxkeepsearch is set to 3600.

 sv599_minkeepcomplsearch is set to 240.

 sv599_maxkeepcomplsearch is set to 600.

 sv599_threadcountadd is set to 2.

 sv599_numblockthreads is set to 2.

 sv599_scavtimeout is set to 30.

 sv599_minrcvqueue is set to 2.

 sv599_minfreeworkitems is set to 2.

 sv599_xactmemsize is set to 0x100000.

 sv599_threadpriority is set to 1.

 sv599_maxmpxct is set to 50.

 sv599_oplockbreakwait is set to 35.

 sv599_oplockbreakresponsewait is set to 35.

 sv599_enableoplocks is set to TRUE.

 sv599_enableoplockforceclose is set to FALSE.

 sv599_enablefcbopens is set to TRUE.

 sv599_enableraw is set to TRUE.

 sv599_enablesharednetdrives is set to FALSE.

 sv599_minfreeconnections is set to 2.

 sv599_maxfreeconnections is set to 2.

 sv599_initsesstable is set to 4.

 sv599_initconntable is set to 8.

 sv599_initfiletable is set to 16.

 sv599_initsearchtable is set to 8.

 sv599_alertschedule is set to 5.

 sv599_errorthreshold is set to 10.

 sv599_networkerrorthreshold is set to 5.

 sv599_diskspacethreshold is set to 10.

 sv599_maxlinkdelay is set to 60.

 sv599_minlinkthroughput is set to 0.

 sv599_linkinfovalidtime is set to 60.

 sv599_scavqosinfoupdatetime is set to 300.

218 / 241

[MS-SRVS-Diff] - v20240423
Server Service Remote Protocol
Copyright © 2024 Microsoft Corporation
Release: April 23, 2024

 sv599_maxworkitemidletime is set to 30.

<42> Section 3.1.4: In Windows Server 2003 operating system and later, messages that are
discussed in section NetrDfsGetVersion (Opnum 43) (section 3.1.4.35) through section
NetrDfsManagerReportSiteInfo (Opnum 52) (section 3.1.4.43) (that is, all messages whose names

begin with NetrDfs) have been deprecated. Calling them on Windows Server 2003 operating system
and later returns an implementation-specific error code.

<43> Section 3.1.4: Windows implementation uses the RPC protocol to retrieve the identity of the
caller specified in [MS-RPCE] section 3.3.3.4.3. The server uses the underlying Windows security
subsystem to determine the permissions for the caller. If the caller does not have the required
permissions to execute a specific method, the method call fails with an implementation-specific error
code.

<44> Section 3.1.4.1: The Windows implementation checks to see whether the caller is a member of
the Administrator, Server or Print Operator, or Power User local group.

<45> Section 3.1.4.1: If the caller is not a member of the Administrator, Server or Print Operator, or

Power User local group, Windows-based servers fail the call with the error code
ERROR_ACCESS_DENIED.

<46> Section 3.1.4.2: The Windows implementation checks to see whether the caller is a member of

the Administrator or Server Operator local group.

<47> Section 3.1.4.2: If the caller is not a member of the Administrator or Server Operator local
group, Windows-based servers fail the call with the error code ERROR_ACCESS_DENIED.

<48> Section 3.1.4.3: The Windows implementation checks to see whether the caller is a member of
the Administrator or Server Operator local group.

<49> Section 3.1.4.3: If the caller is not a member of the Administrator or Server Operator local
group, Windows-based servers fail the call with the error code ERROR_ACCESS_DENIED.

<50> Section 3.1.4.4: The Windows implementation checks to see whether the caller is a member of

the Administrator or Server Operator local group.

<51> Section 3.1.4.4: If the caller is not a member of the Administrator or Server Operator local
group, Windows-based servers fail the call with the error code ERROR_ACCESS_DENIED.

<52> Section 3.1.4.5: The Windows implementation checks to see whether the caller is a member of
the Administrator or Server Operator local group.

<53> Section 3.1.4.5: If the caller is not a member of the Administrator or Server Operator local

group, Windows-based servers fail the call with the error code ERROR_ACCESS_DENIED.

<54> Section 3.1.4.6: The Windows implementation checks to see whether the caller is a member of
the Administrators or Server Operators local group.

<55> Section 3.1.4.6: If the caller is not a member of the Administrators or Server Operators local
group, Windows-based servers fail the call with the error code ERROR_ACCESS_DENIED.

<56> Section 3.1.4.7: If the requested share is a file share, the Windows implementation checks

whether the caller is a member of the Administrators, System Operators, or Power Users local group.
If the requested share is a printer share, the Windows implementation checks whether the caller is a
member of the Print Operators group.

<57> Section 3.1.4.7: Only members of the Administrators, System Operators, or Power Users local
group can add file shares with a call to the NetrShareAdd method. A member of the Print Operators
group can add printer shares. If this condition is not met, Windows-based servers fail the call with the
error code ERROR_ACCESS_DENIED.

219 / 241

[MS-SRVS-Diff] - v20240423
Server Service Remote Protocol
Copyright © 2024 Microsoft Corporation
Release: April 23, 2024

<58> Section 3.1.4.8: The Windows implementation checks to see whether the caller is a member of
the Administrator or Server Operator local group.

<59> Section 3.1.4.8: If the caller is not a member of the Administrator or Server Operator local
group, Windows-based servers fail the call with the error code ERROR_ACCESS_DENIED.

<60> Section 3.1.4.9<59> Section 3.1.4.9:: The server stores information about sticky shares in the
Windows registry.

<61> Section 3.1.4.10: If the requested level is 2, 502, or 503, the Windows implementation checks
to see whether the caller is in the Administrators, Server or Print Operators, or Power Users local
group. No special group membership is required for other levels.

<62> Section 3.1.4.10<61> Section 3.1.4.10:: Only members of the Administrators, Server or Print
Operators, or Power Users local group can successfully execute the NetrShareGetInfo message at

levels 2, 502, or 503. No special group membership is required for the other levels. If this condition is
not met, Windows-based servers fail the call with the error code ERROR_ACCESS_DENIED.

<63> Section 3.1.4.11: If the value of Level is 1005, the shi1005_flags parameter contains
SHI1005_FLAGS_ENABLE_HASH, and the server does not support branch cache, the server fails the
call with the error code ERROR _NOT_SUPPORTED. This error is supported in Windows Server 2008 R2
operating system and later.

<64> Section 3.1.4.11: If the value of Level is 1005, the shi1005_flags parameter contains
SHI1005_FLAGS_ENABLE_HASH, and the server does not install the branch cache component, the
server fails the call with the error code ERROR_SERVICE_DOES_NOT_EXIST. This error is supported in
Windows Server 2008 R2
operating system and later.

<65> Section 3.1.4.11: If Level=1005 and shi*_type do not have the flag STYPE_DISKTREE, the
server fails the call by using an implementation-specific error code.

<66> Section 3.1.4.11: Windows checks whether the caller is a member of the Administrators or
Server Operators local group.

<67> Section 3.1.4.11: If the caller is not a member of the Administrators or Server Operators local
group, Windows-based servers fail the call with the error code ERROR_ACCESS_DENIED.

<68> Section 3.1.4.12: Windows uses the registry as permanent storage.

<69> Section 3.1.4.12: Windows-based clients set this field to an arbitrary value. The actual value
does not affect server behavior because the server is required to ignore this field.

<70> Section 3.1.4.12: If the specified share is a file share, the Windows implementation checks to
see whether the caller is a member of the Administrators, Server Operators, or Power Users local
group. If the specified share is a printer share, the Windows implementation checks to see whether
the caller is a member of the Print Operator group.

<71> Section 3.1.4.12: Only members of the Administrators, Server Operators, or Power Users local
group can successfully delete file shares by using a NetrShareDel message call. The Print Operator can

delete printer shares. If the caller does not meet these requirements, Windows-based servers fail the
call with the error code ERROR_ACCESS_DENIED.

<72> Section 3.1.4.13: Windows-based clients set this field to an arbitrary value. The actual value
does not affect server behavior because the server is required to ignore this field.

<73> Section 3.1.4.13: Windows uses the registry as the permanent storage.

<74> Section 3.1.4.13: If the specified share is a file share, the Windows implementation checks to
see whether the caller is a member of the Administrators, Server Operators, or Power Users local

220 / 241

[MS-SRVS-Diff] - v20240423
Server Service Remote Protocol
Copyright © 2024 Microsoft Corporation
Release: April 23, 2024

group. If the specified share is a printer share, the Windows implementation checks to see whether
the caller is a member of the Print Operator group.

<75> Section 3.1.4.13: Only members of the Administrators, Server Operators, or Power Users local
group can successfully delete file shares with a NetrShareDelSticky message call. The Print Operator

can delete printer shares. If the caller does not meet these requirements, Windows-based servers fail
the call with the error code ERROR_ACCESS_DENIED.

<76> Section 3.1.4.14: If the specified share is a file share, the Windows implementation checks to
see whether the caller is a member of the Administrators, Server Operators, or Power Users local
group. If the share that is specified is a printer share, the Windows implementation checks to see
whether the caller is a member of the Print Operator group.

<77> Section 3.1.4.14: Only members of the Administrators, Server Operators, or Power Users local

group can successfully delete file shares with a NetrShareDelStart message call. The Print Operator
can delete printer shares. If the caller does not meet these requirements, Windows-based servers fail
the call with the error code ERROR_ACCESS_DENIED.

<78> Section 3.1.4.17: The value 103 is supported in Windows Server 2008 R2 operating system and
later.

<79> Section 3.1.4.17: The SERVER_INFO_103 structure is supported in Windows Server 2008 R2

operating system and later.

<80> Section 3.1.4.17: If the level is 503, the Windows implementation checks whether the caller is a
member of the Administrators or Server Operators local group. If the level is 102 or 502, the Windows
implementation checks whether the caller is a member of one of the groups previously mentioned or is
a member of the Power Users local group.

<81> Section 3.1.4.17: If the caller is not a member of the Administrators or Server Operators local
group and the level is 503, the server fails the calls with an implementation-specific error code. If the

caller is not a member of one of the groups previously mentioned, the caller is not a member of the
Power Users local group, and the level is 102 or 502, Windows-based servers fail the call with the
error code ERROR_ACCESS_DENIED.

<82> Section 3.1.4.18: This information is stored in the Windows registry.

<83> Section 3.1.4.18: If any member of the structure ServerInfo is found invalid, the server fails
the call with an implementation-specific error code.

<84> Section 3.1.4.18: The Windows implementation checks whether the client is a member of the

Administrators or Server Operators local group.

<85> Section 3.1.4.18: If the client is not a member of the Administrators or Server Operators local
group, Windows-based servers fail the call with the error code ERROR_ACCESS_DENIED.

<86> Section 3.1.4.19: The Windows implementation checks to see whether the client is a member of
the Administrators or Server Operators local group.

<87> Section 3.1.4.19: If the client is not a member of the Administrators or Server Operators local

group, Windows-based servers fail the call with the error code ERROR_ACCESS_DENIED.

<88> Section 3.1.4.20: The Windows implementation checks to see whether the client is a member of
the Administrators or Server Operators local group.

<89> Section 3.1.4.20: If the client is not a member of the Administrators or Server Operators local
group, Windows-based servers fail the call with the error code ERROR_ACCESS_DENIED.

<89> Section 3.1.4.21: No special group membership is required to successfully execute this
message.

221 / 241

[MS-SRVS-Diff] - v20240423
Server Service Remote Protocol
Copyright © 2024 Microsoft Corporation
Release: April 23, 2024

<90> Section 3.1.4.21: No special group membership is required to successfully execute this
message.

<91> Section 3.1.4.21: No special group membership is required to successfully execute this
message.

<92> Section 3.1.4.22: The Windows implementation checks to see if the client is a member of the
Administrators or Server Operators local group.

<93> Section 3.1.4.22: If the client is not a member of the Administrators or Server Operators local
group, Windows-based servers fail the call with the error code ERROR_ACCESS_DENIED.

<94> Section 3.1.4.23<93> Section 3.1.4.23:: The Windows implementation checks to see whether
the client is a member of the Administrators or Server Operators local group.

<95> Section 3.1.4.23: If the client is not a member of the Administrators or Server Operators local

group, Windows-based servers fail the call with the error code ERROR_ACCESS_DENIED.

<96> Section 3.1.4.24: The Windows implementation checks to see whether the caller is a member of
the Administrators, Server Operators, or Power Users local group.

<97> Section 3.1.4.24: If the caller is not a member of the Administrators, Server Operators, or
Power Users local group, Windows-based servers fail the call with the error code
ERROR_ACCESS_DENIED.

<98> Section 3.1.4.25: The Windows implementation checks to see if the client is a member of the
Administrators or Server Operators local group.

<99> Section 3.1.4.25: If the client is not a member of the Administrators or Server Operators local
group, Windows-based servers fail the call with the error code ERROR_ACCESS_DENIED.

<100> Section 3.1.4.26: Windows Vista operating system and later, Windows Server 2008 operating
system and later return 0x00000000 even when the transport that is being deleted does not exist or
has already been deleted.

<101> Section 3.1.4.26: The method NetrServerTransportDelEx is defined only on Windows XP
operating system and later, Windows Vista operating system and later.

<102> Section 3.1.4.26: The Windows implementation checks to see whether the client is a member
of the Administrators or Server Operators local group.

<103> Section 3.1.4.26: If the client is not a member of the Administrators or Server Operators local
group, Windows-based servers fail the call with the error code ERROR_ACCESS_DENIED.

<104> Section 3.1.4.27: Windows-based servers fail the call with an ERROR_INVALID_PARAMETER if

the file does not exist.

<105> Section 3.1.4.27: In order to read the owner, group, or discretionary access control list (DACL)
[MS-DTYP] from the security descriptor for the specified file or directory or the DACL for the file or
directory, the caller has to have READ_CONTROL access, or the caller has to be the owner of the file

or directory. In order to read the system access control list (SACL) [MS-DTYP] of a file or directory,
the SE_SECURITY_NAME privilege [MS-DTYP] has to be enabled for the calling process.

<106> Section 3.1.4.27: If the caller does not meet the security measures that are specified for the
Windows implementation, Windows-based servers fail the call with the error code
ERROR_ACCESS_DENIED.

<107> Section 3.1.4.28: This message executes successfully only if the following conditions are met:

 If the owner of the object is being set, the client has to either have WRITE_OWNER permission or
be the owner of the object.

222 / 241

[MS-SRVS-Diff] - v20240423
Server Service Remote Protocol
Copyright © 2024 Microsoft Corporation
Release: April 23, 2024

 If the DACL of the object is being set, the client has to either have WRITE_DAC permission or be
the owner of the object.

 If the SACL of the object is being set, the SE_SECURITY_NAME privilege has to be enabled for the
client.

<108> Section 3.1.4.28: If the server does not meet the security measures that are specified for the
Windows implementation, Windows-based servers fail the call with the error code
ERROR_ACCESS_DENIED.

<109> Section 3.1.4.29: No security restrictions are imposed by Windows implementations on the
caller.

<110> Section 3.1.4.29: No security restrictions are imposed by Windows implementations on the
caller.

<111> Section 3.1.4.30: Windows-based servers fail the call with an ERROR_INVALID_PARAMETER
error code if the value of Flags is other than 0x00000000, 0x00000001, 0x80000000, or 0x80000001.

<112> Section 3.1.4.30: Windows uses "\" as the path separator.

<113> Section 3.1.4.30: Windows uses "\" as the path separator. The Windows implementation does
the following during canonicalization:

 All macros in the input file name (\., .\, \.., ..\) are removed and replaced by path components.

 Any required translations are performed on the path specification:

 UNIX-style "/" converted to DOS-style "\"

 Specific transliteration

Note The input case is NOT converted. The underlying file system can be case insensitive. The
path is passed through, with the case exactly as presented by the caller.

 Device names (that is, namespace controlled by the server) are canonicalized by converting device
names to uppercase and removing trailing colons in all but disk devices.

<113> Section 3.1.4.30: No security restrictions are imposed by Windows-based server
implementations on the caller.

<114> Section 3.1.4.30: No security restrictions are imposed by Windows-based server
implementations on the caller.

<115<115> Section 3.1.4.30: No security restrictions are imposed by Windows-based server
implementations on the caller.

<116> Section 3.1.4.31: If the Flags parameter is 1, the server ignores the PathType parameter.

<117> Section 3.1.4.31: The server does a standard C string comparison on the canonicalized path
names and returns the result.

<117> Section 3.1.4.31: No security restrictions are imposed by Windows-based server
implementations on the caller.

<118> Section 3.1.4.31: No security restrictions are imposed by Windows-based server
implementations on the caller.

<119<119> Section 3.1.4.31: No security restrictions are imposed by Windows-based server
implementations on the caller.

223 / 241

[MS-SRVS-Diff] - v20240423
Server Service Remote Protocol
Copyright © 2024 Microsoft Corporation
Release: April 23, 2024

<120> Section 3.1.4.32: Windows-based servers fail the call with ERROR_INVALID_PARAMETER if the
value of Flags is other than 0x00000000 and 0x80000000.

<121> Section 3.1.4.32: No security restrictions are imposed by Windows-based server
implementations on the caller.

<122> Section 3.1.4.32: No security restrictions are imposed by Windows implementations on the
caller.

<123> Section 3.1.4.33: No security restrictions are imposed by Windows-based server
implementations on the caller.

<124> Section 3.1.4.33: No security restrictions are imposed by Windows-based server
implementations on the caller.

<125> Section 3.1.4.34: The server does a string comparison and returns the results for all

NameTypes except NAMETYPE_COMPUTER, NAMETYPE_WORKGROUP, and NAMETYPE_DOMAIN. For
these, the server first converts the names to the corresponding OEM character set for the local

environment and then does a string comparison on the resultant strings.

<126> Section 3.1.4.34: No security restrictions are imposed by Windows-based server
implementations on the caller.

<127> Section 3.1.4.34: No security restrictions are imposed by Windows-based server

implementations on the caller.

<128> Section 3.1.4.35: This method is only supported in Windows 2000 and Windows XP.
Otherwise, it returns an implementation-specific error code.

<129> Section 3.1.4.35: This method is supported only in Windows 2000 and Windows XP.
Otherwise, it returns an ERROR_FILE_NOT_FOUND error code.

<130> Section 3.1.4.35: The server always sets the Version parameter to zero.

<130> Section 3.1.4.35: No security restrictions are imposed by Windows-based server

implementations on the caller.

<131> Section 3.1.4.35: No security restrictions are imposed by Windows-based server
implementations on the caller.

<132> Section 3.1.4.35: No security restrictions are imposed by Windows-based server
implementations on the caller.

<133> Section 3.1.4.36: This method is only supported in Windows 2000 and Windows XP.
Otherwise, it returns an implementation-specific error code.

<134> Section 3.1.4.36: Windows implementations use the CoCreateGuid() API to create a unique
GUID. For more information about the CoCreateGuid() API, see [MSDN-CoCreateGuid].

<135> Section 3.1.4.36<134> Section 3.1.4.36:: This method is only supported in Windows 2000
and Windows XP. Otherwise, it returns an implementation-specific error code.

<136> Section 3.1.4.36: Both ShortName and EntryPrefix are used to match a DFS path. If the latter
does not match but the first matches, the server tries to use that.

<136> Section 3.1.4.36: No security restrictions are imposed by Windows-based server
implementations on the caller.

<137> Section 3.1.4.36: No security restrictions are imposed by Windows-based server
implementations on the caller.

224 / 241

[MS-SRVS-Diff] - v20240423
Server Service Remote Protocol
Copyright © 2024 Microsoft Corporation
Release: April 23, 2024

<138> Section 3.1.4.37: This method is only supported in36: No security restrictions are imposed by
Windows 2000 and Windows XP. Otherwise, it returns an implementation-specific error code-based

server implementations on the caller.

<139> Section 3.1.4.37: This method is only supported in Windows 2000 and Windows XP.

Otherwise, it returns an implementation-specific error code.

<140> Section 3.1.4.37: No security restrictions are imposed by Windows-based server
implementations on the callerThis method is only supported in Windows 2000 and Windows XP.
Otherwise, it returns an implementation-specific error code.

<141> Section 3.1.4.37: No security restrictions are imposed by Windows-based server
implementations on the caller.

<142> Section 3.1.4.38: This method is only supported in37: No security restrictions are imposed by

Windows 2000 and Windows XP. Otherwise, it returns an implementation-specific error code-based
server implementations on the caller.

<143> Section 3.1.4.38: This method is only supported in Windows 2000 and Windows XP.
Otherwise, it returns an implementation-specific error code.

<144> Section 3.1.4.38: No security restrictions are imposed by Windows-based server
implementations on the callerThis method is only supported in Windows 2000 and Windows XP.

Otherwise, it returns an implementation-specific error code.

<145> Section 3.1.4.38: No security restrictions are imposed by Windows-based server
implementations on the caller.

<146<146> Section 3.1.4.38: No security restrictions are imposed by Windows-based server
implementations on the caller.

<147> Section 3.1.4.39: This method is only supported in Windows 2000 and Windows XP.
Otherwise, it returns an implementation-specific error code.

<148> Section 3.1.4.39: The ShortPrefix parameter is only supported in Windows 2000 and Windows
XP. When supported, ShortPrefix has one leading backslash instead of the usual two, and is without a
terminating null character. If the ShortPrefix size is greater than the size specified in ShortPrefixLen, it
returns a NULL (zero-length) string and does not fail. Otherwise, it returns ERROR_NOT_SUPPORTED.

<149> Section 3.1.4.39: This method is supported only in Windows 2000 and Windows XP.
Otherwise, it returns an implementation-specific error code.

<150> Section 3.1.4.39: No security restrictions are imposed by Windows-based server

implementations on the caller.

<151> Section 3.1.4.39: No security restrictions are imposed by Windows-based server
implementations on the caller.

<152> Section 3.1.4.40: This method is only supported in Windows 2000 and Windows XP.
Otherwise, it returns an implementation-specific error code.

<153> Section 3.1.4.40: This method is supported only in Windows 2000 and Windows XP.

Otherwise, it returns an implementation-specific error code.

<154> Section 3.1.4.40: No security restrictions are imposed by Windows-based server
implementations on the caller.

<155> Section 3.1.4.40: No security restrictions are imposed by Windows-based server
implementations on the caller.

225 / 241

[MS-SRVS-Diff] - v20240423
Server Service Remote Protocol
Copyright © 2024 Microsoft Corporation
Release: April 23, 2024

<155> Section 3.1.4.41: This method is only supported in Windows 2000 and Windows XP.
Otherwise, it returns an implementation-specific error code.

<156> Section 3.1.4.41: This method is only supported in Windows 2000 and Windows XP.
Otherwise, it returns an implementation-specific error code.

<157<157> Section 3.1.4.41: This method is only supported in Windows 2000 and Windows XP.
Otherwise, it returns an implementation-specific error code.

<158> Section 3.1.4.41: No security restrictions are imposed by Windows-based server
implementations on the caller.

<159> Section 3.1.4.41: No security restrictions are imposed by Windows-based server
implementations on the caller.

<160> Section 3.1.4.42: This method is only supported in Windows 2000 and Windows XP.

Otherwise, it returns an implementation-specific error code.

<161> Section 3.1.4.42: The target is specified in the form of a Windows NT path name. Windows
subsystem DLLs add the prefix "\??" to names that are passed by Windows applications that reference
objects in \DosDevices. "\DosDevices" represents a symbolic link to a directory in the object manager
namespace that stores MS-DOS device names as \DosDevices\DosDeviceName. An example of a
device with an MS-DOS device name is the serial port, COM1. It has the MS-DOS device name

\DosDevices\COM1. Likewise, the C: drive has the name \DosDevices\C:.

<162> Section 3.1.4.42: This method is supported only in Windows 2000 and Windows XP.
Otherwise, it returns an implementation-specific error code.

<163> Section 3.1.4.42: Windows subsystem DLLs add the prefix "\??" to names that are passed by
Windows applications that reference objects in \DosDevices. "\DosDevices" represents a symbolic link
to a directory in the object manager namespace that stores MS-DOS device names.

<164> Section 3.1.4.42: No security restrictions are imposed by Windows-based server

implementations on the caller.

:<165> Section 3.1.4.42: No security restrictions are imposed by Windows-based server
implementations on the caller.

<166> Section 3.1.4.43: Windows allows the server administrator to configure a static list of site
names to be returned by this method. If the Active Directory administrator changes site names and
the server administrator does not update the static list, or the server administrator makes an error,
this method will return names that are not current Active Directory site names.

<167> Section 3.1.4.43: This method is only supported in Windows 2000 and Windows XP.
Otherwise, it returns an implementation-specific error code.

<168> Section 3.1.4.43: Windows implementations first seek within the registry subkey
SYSTEM\CurrentControlSet\Services\DfsDriver\CoveredSites for a value that matches the
ServerName parameter. If that value is present and a REG_MULTI_SZ value, its contents form the list
returned by the method. Otherwise, the list is formed in the next two steps.

First, the implementation makes a call to the local Netlogon Remote Protocol server using the
DsrGetSiteName method, as specified in [MS-NRPC] section 3.5.4.3.6. In this call, a NULL
ComputerName argument is provided. If successful and a site name is returned, this name forms part
of the response. This site name will be marked with the DFS_SITE_PRIMARY flag, as specified in
section 2.2.4.109 of this document.

Second, the implementation seeks the registry value
SYSTEM\CurrentControlSet\Services\DfsDriver\CoveredSites\CoveredSites . If that value is

present and a REG_MULTI_SZ value, its contents form the rest of the list returned by the method.

226 / 241

[MS-SRVS-Diff] - v20240423
Server Service Remote Protocol
Copyright © 2024 Microsoft Corporation
Release: April 23, 2024

:<169> Section 3.1.4.43: No security restrictions are imposed by Windows-based server
implementations on the caller.

<170> Section 3.1.4.43: No security restrictions are imposed by Windows-based server
implementations on the caller.

<171> Section 3.1.4.44: The Windows implementation checks to see if the client is a member of the
Administrators or Server Operators local group.

:<172> Section 3.1.4.44: If the client is not a member of the Administrators or Server Operators local
group, Windows-based servers fail the call with the error code ERROR_ACCESS_DENIED.

<173> Section 3.1.4.45: The Windows implementation checks to see if the caller is a member of the
Administrator or Server Operator local group.

<174> Section 3.1.4.45: If the caller is not a member of the Administrator or Server Operator local

group, Windows-based servers fail the call with the error code ERROR_ACCESS_DENIED.

<175> Section 3.1.4.46: If the specified share is a file share, the Windows implementation checks to
see whether the caller is a member of the Administrators, Server Operators, or Power Users local
group. If the specified share is a printer share, the Windows implementation checks to see whether
the caller is a member of the Print Operator group.

<176> Section 3.1.4.46: Only members of the Administrators, Server Operators, or Power Users local

group can successfully delete file shares by using a NetrShareDel message call. The Print Operator can
delete printer shares. If the caller does not meet these requirements, Windows-based servers fail the
call with the error code ERROR_ACCESS_DENIED.

<177> Section 3.1.4.47: Windows uses the registry as permanent storage.

<178> Section 3.1.4.47: If the specified share is a file share, the Windows implementation checks to
see whether the caller is a member of the Administrators, Server Operators, or Power Users local
group. If the specified share is a printer share, the Windows implementation checks to see whether

the caller is a member of the Print Operator group.

<179> Section 3.1.4.47: Only members of the Administrators, Server Operators, or Power Users local
group can successfully delete file shares by using a NetrShareDel message call. The Print Operator can
delete printer shares. If the caller does not meet these requirements, Windows-based servers fail the
call with the error code ERROR_ACCESS_DENIED.

<180> Section 3.1.6.13: The Windows implementation checks to see whether the caller is a member
of the Administrator, Server Operator, or Power User local group.

<181> Section 3.1.6.13: If the caller is not a member of the Administrator, Server Operator, or Power
User local group, Windows-based servers fail the call with the error code ERROR_ACCESS_DENIED.

227 / 241

[MS-SRVS-Diff] - v20240423
Server Service Remote Protocol
Copyright © 2024 Microsoft Corporation
Release: April 23, 2024

8 Change Tracking

This section identifies changes that were made to this document since the last release. Changes are
classified as Major, Minor, or None.

The revision class Major means that the technical content in the document was significantly revised.
Major changes affect protocol interoperability or implementation. Examples of major changes are:

 A document revision that incorporates changes to interoperability requirements.
 A document revision that captures changes to protocol functionality.

The revision class Minor means that the meaning of the technical content was clarified. Minor changes

do not affect protocol interoperability or implementation. Examples of minor changes are updates to
clarify ambiguity at the sentence, paragraph, or table level.

The revision class None means that no new technical changes were introduced. Minor editorial and
formatting changes may have been made, but the relevant technical content is identical to the last
released version.

The changes made to this document are listed in the following table. For more information, please
contact dochelp@microsoft.com.

Section Description
Revision
class

7 Appendix B: Product
Behavior

Added Windows Server 2025 to the list of applicable
products.

Major

228 / 241

[MS-SRVS-Diff] - v20240423
Server Service Remote Protocol
Copyright © 2024 Microsoft Corporation
Release: April 23, 2024

9 Index

A

Abstract data model
 client 179
 server 85
Adding a scoped share with an alias to a server example 181
ADT_SECURITY_DESCRIPTOR structure 83
Applicability 14
Applicability statement 14

C

Capability negotiation 14
Change tracking 227
Client
 abstract data model 179
 initialization 179
 local events 179
 message processing 179
 message sequencing 179
 sequencing rules 179
 timer events 179
 timers 179
Client side caching states 18
Common data types 16
CONNECT_ENUM_STRUCT structure 41
CONNECT_INFO_0_CONTAINER structure 40
CONNECT_INFO_1_CONTAINER structure 41
CONNECTION_INFO_0 structure 40
CONNECTION_INFO_1 structure 40
Constants 17
CSC states 18
CSC_CACHE_AUTO_REINT 18

CSC_CACHE_MANUAL_REINT 18
CSC_CACHE_NONE 18
CSC_CACHE_VDO 18

D

Data model - abstract
 client 179
 server 85
Data model – abstract
 client 179
 server 85
Data types
 common - overview 16
Data types - common 16
Deleting two-phase share - example 181
DFS entry flags 30
DFS_SITELIST_INFO structure 84
DFS_SITENAME_INFO structure 84
DISK_ENUM_CONTAINER structure 77
DISK_INFO structure 77

E

Error codes (section 2.2.2.10 24, section 2.2.2.11 25, section 2.2.2.12 26)
Events
 local - client 179
 local - server 175
 timer - client 179
 timer - server 175

229 / 241

[MS-SRVS-Diff] - v20240423
Server Service Remote Protocol
Copyright © 2024 Microsoft Corporation
Release: April 23, 2024

Example of resumehandle example 180
Examples 180
 adding a scoped share with an alias to a server 181
 example of resumehandle 180
 overview 180
 two-phase share deletion 181

F

Fields - vendor-extensible 14
Fields – vendor-extensible 14
FILE_ENUM_STRUCT structure 43
FILE_INFO_2 structure 42
FILE_INFO_2_CONTAINER structure 43
FILE_INFO_3 structure 42
FILE_INFO_3_CONTAINER structure 43
Flags

 DFS entry 30
 session user 17
 software type 19
Full IDL 185

G

Glossary 10

I

IDL 185
Implementer - security considerations 184
Implementers – security considerations 184
Index of security parameters 184
Informative references 13
Initialization
 client 179
 server 91
Introduction 10
ITYPE_DEVICE_COM 22
ITYPE_DEVICE_CON 22
ITYPE_DEVICE_DISK 22
ITYPE_DEVICE_LPT 22
ITYPE_DEVICE_NUL 22
ITYPE_PATH_ABSD 22
ITYPE_PATH_ABSD_WC 22
ITYPE_PATH_ABSND 22
ITYPE_PATH_ABSND_WC 22
ITYPE_PATH_RELD 22
ITYPE_PATH_RELD_WC 22
ITYPE_PATH_RELND 22
ITYPE_PATH_RELND_WC 22
ITYPE_PATH_SYS_COMM 22

ITYPE_PATH_SYS_COMM_M 22
ITYPE_PATH_SYS_MSLOT 22
ITYPE_PATH_SYS_MSLOT_M 22
ITYPE_PATH_SYS_PIPE 22
ITYPE_PATH_SYS_PIPE_M 22
ITYPE_PATH_SYS_PRINT 22
ITYPE_PATH_SYS_PRINT_M 22
ITYPE_PATH_SYS_QUEUE 22
ITYPE_PATH_SYS_QUEUE_M 22
ITYPE_PATH_SYS_SEM 22
ITYPE_PATH_SYS_SEM_M 22
ITYPE_PATH_SYS_SHMEM 22
ITYPE_PATH_SYS_SHMEM_M 22
ITYPE_UNC 22

230 / 241

[MS-SRVS-Diff] - v20240423
Server Service Remote Protocol
Copyright © 2024 Microsoft Corporation
Release: April 23, 2024

ITYPE_UNC_COMPNAME 22
ITYPE_UNC_SYS_MSLOT 22
ITYPE_UNC_SYS_PIPE 22
ITYPE_UNC_SYS_QUEUE 22
ITYPE_UNC_SYS_SEM 22
ITYPE_UNC_SYS_SHMEM 22
ITYPE_UNC_WC 22
ITYPE_UNC_WC_PATH 22

L

Local events
 client 179
 server 175
 local application
 disables advertising service 178
 enables advertising service 177

 server
 deregisters
 open 176
 session 176
 Treeconnect 176
 looks up
 null session pipes 178
 shares 175
 normalizes ServerName 177
 notifies
 completion of initialization 178
 current uses of share 178
 queries existing services 178
 registers new
 open 176
 session 176
 Treeconnect 176
 service terminates 178
 updates connection count on transport 178
 user pauses or resumes CIFS server 178
LPCONNECT_ENUM_STRUCT 41
LPCONNECT_INFO_0_CONTAINER 40
LPCONNECT_INFO_1_CONTAINER 41
LPCONNECTION_INFO_0 40
LPCONNECTION_INFO_1 40
LPDFS_SITELIST_INFO 84
LPDFS_SITENAME_INFO 84
LPDISK_INFO 77
LPFILE_ENUM_STRUCT 43
LPFILE_INFO_2 42
LPFILE_INFO_2_CONTAINER 43
LPFILE_INFO_3 42
LPFILE_INFO_3_CONTAINER 43
LPNET_DFS_ENTRY_ID 83
LPNET_DFS_ENTRY_ID_CONTAINER 84
LPSERVER_ALIAS_ENUM_STRUCT 82
LPSERVER_ALIAS_INFO_0 81
LPSERVER_INFO_100 57
LPSERVER_INFO_1005 66
LPSERVER_INFO_101 57
LPSERVER_INFO_1010 66
LPSERVER_INFO_1016 66
LPSERVER_INFO_1017 67
LPSERVER_INFO_1018 67
LPSERVER_INFO_102 57

LPSERVER_INFO_103 58
LPSERVER_INFO_1107 66
LPSERVER_INFO_1501 67

231 / 241

[MS-SRVS-Diff] - v20240423
Server Service Remote Protocol
Copyright © 2024 Microsoft Corporation
Release: April 23, 2024

LPSERVER_INFO_1502 67
LPSERVER_INFO_1503 68
LPSERVER_INFO_1506 68
LPSERVER_INFO_1510 68
LPSERVER_INFO_1511 68
LPSERVER_INFO_1512 69
LPSERVER_INFO_1513 69
LPSERVER_INFO_1514 69
LPSERVER_INFO_1515 69
LPSERVER_INFO_1516 70
LPSERVER_INFO_1518 70
LPSERVER_INFO_1523 70
LPSERVER_INFO_1528 70
LPSERVER_INFO_1529 71
LPSERVER_INFO_1530 71
LPSERVER_INFO_1533 71
LPSERVER_INFO_1534 71
LPSERVER_INFO_1535 72
LPSERVER_INFO_1536 72
LPSERVER_INFO_1538 72
LPSERVER_INFO_1539 72
LPSERVER_INFO_1540 73
LPSERVER_INFO_1541 73

LPSERVER_INFO_1542 73
LPSERVER_INFO_1543 73
LPSERVER_INFO_1544 74
LPSERVER_INFO_1545 74
LPSERVER_INFO_1546 74
LPSERVER_INFO_1547 74
LPSERVER_INFO_1548 75
LPSERVER_INFO_1549 75
LPSERVER_INFO_1550 75
LPSERVER_INFO_1552 75
LPSERVER_INFO_1553 76
LPSERVER_INFO_1554 76
LPSERVER_INFO_1555 76
LPSERVER_INFO_1556 76
LPSERVER_INFO_502 60
LPSERVER_INFO_503 60
LPSERVER_INFO_599 61
LPSERVER_TRANSPORT_INFO_0 77
LPSERVER_TRANSPORT_INFO_1 77
LPSERVER_TRANSPORT_INFO_2 78
LPSERVER_TRANSPORT_INFO_3 78
LPSERVER_XPORT_ENUM_STRUCT 80
LPSESSION_ENUM_STRUCT 48
LPSESSION_INFO_0 44
LPSESSION_INFO_0_CONTAINER 46
LPSESSION_INFO_1 44
LPSESSION_INFO_1_CONTAINER 47
LPSESSION_INFO_10 45
LPSESSION_INFO_10_CONTAINER 47
LPSESSION_INFO_2 45
LPSESSION_INFO_2_CONTAINER 47
LPSESSION_INFO_502 46
LPSESSION_INFO_502_CONTAINER 48
LPSHARE_ENUM_STRUCT 55
LPSHARE_INFO_0 48
LPSHARE_INFO_1 49
LPSHARE_INFO_1004 52
LPSHARE_INFO_1005 52
LPSHARE_INFO_1006 53
LPSHARE_INFO_1501_I 53
LPSHARE_INFO_2 49
LPSHARE_INFO_2_CONTAINER 54

232 / 241

[MS-SRVS-Diff] - v20240423
Server Service Remote Protocol
Copyright © 2024 Microsoft Corporation
Release: April 23, 2024

LPSHARE_INFO_501 49
LPSHARE_INFO_501_CONTAINER 54
LPSHARE_INFO_502_CONTAINER 54
LPSHARE_INFO_502_I 50
LPSHARE_INFO_503_CONTAINER 55
LPSHARE_INFO_503_I 51
LPSTAT_SERVER_0 56
LPTIME_OF_DAY_INFO 82

M

MAX_PREFERRED_LENGTH 17
Message processing
 client 179
 server 93
Message sequencing
 client 179

 server 93
Messages
 common data types 16
 transport 16
Methods
 NetprNameCanonicalize (Opnum 34) 157
 NetprNameCompare (Opnum 35) 159
 NetprNameValidate (Opnum 33) 156
 NetprPathCanonicalize (Opnum 31) 153
 NetprPathCompare (Opnum 32) 155
 NetprPathType (Opnum 30) 152
 NetrConnectionEnum (Opnum 8) 96
 NetrDfsCreateExitPoint (Opnum 48) 164
 NetrDfsCreateLocalPartition (Opnum 44) 161
 NetrDfsDeleteExitPoint (Opnum 49) 166
 NetrDfsDeleteLocalPartition (Opnum 45) 162
 NetrDfsFixLocalVolume (Opnum 51) 167
 NetrDfsGetVersion (Opnum 43) 160
 NetrDfsManagerReportSiteInfo (Opnum 52) 169
 NetrDfsModifyPrefix (Opnum 50) 165
 NetrDfsSetLocalVolumeState (Opnum 46) 163
 NetrFileClose (Opnum 11) 103
 NetrFileEnum (Opnum 9) 99
 NetrFileGetInfo (Opnum 10) 101
 NetrpGetFileSecurity (Opnum 39) 151
 NetrpSetFileSecurity (Opnum 40) 152
 NetrRemoteTOD (Opnum 28) 143
 NetrServerAliasAdd (Opnum 54) 169
 NetrServerAliasDel (Opnum 56) 173
 NetrServerAliasEnum (Opnum 55) 171
 NetrServerDiskEnum (Opnum 23) 141
 NetrServerGetInfo (Opnum 21) 129
 NetrServerSetInfo (Opnum 22) 134
 NetrServerStatisticsGet (Opnum 24) 142
 NetrServerTransportAdd (Opnum 25) 144
 NetrServerTransportAddEx (Opnum 41) 145
 NetrServerTransportDel (Opnum 27) 149
 NetrServerTransportDelEx (Opnum 53) 149
 NetrServerTransportEnum (Opnum 26) 147
 NetrSessionDel (Opnum 13) 108
 NetrSessionEnum (Opnum 12) 104
 NetrShareAdd (Opnum 14) 109
 NetrShareCheck (Opnum 20) 128
 NetrShareDel (Opnum 18) 124
 NetrShareDelCommit (Opnum 38) 127

 NetrShareDelEx (Opnum 57) 174
 NetrShareDelStart (Opnum 37) 126
 NetrShareDelSticky (Opnum 19) 126

233 / 241

[MS-SRVS-Diff] - v20240423
Server Service Remote Protocol
Copyright © 2024 Microsoft Corporation
Release: April 23, 2024

 NetrShareEnum (Opnum 15) 112
 NetrShareEnumSticky (Opnum 36) 116
 NetrShareGetInfo (Opnum 16) 117
 NetrShareSetInfo (Opnum 17) 120

N

Name types 21
NAMETYPE_COMPUTER 21
NAMETYPE_DOMAIN 21
NAMETYPE_EVENT 21
NAMETYPE_GROUP 21
NAMETYPE_MESSAGE 21
NAMETYPE_MESSAGEDEST 21
NAMETYPE_NET 21
NAMETYPE_PASSWORD 21
NAMETYPE_SERVICE 21

NAMETYPE_SHARE 21
NAMETYPE_SHAREPASSWORD 21
NAMETYPE_USER 21
NAMETYPE_WORKGROUP 21
NET_DFS_ENTRY_ID structure 83
NET_DFS_ENTRY_ID_CONTAINER structure 84
NetprNameCanonicalize (Opnum 34) method 157
NetprNameCanonicalize method 157
NetprNameCompare (Opnum 35) method 159
NetprNameCompare method 159
NetprNameValidate (Opnum 33) method 156
NetprNameValidate method 156
NetprPathCanonicalize (Opnum 31) method 153
NetprPathCanonicalize method 153
NetprPathCompare (Opnum 32) method 155
NetprPathCompare method 155
NetprPathType (Opnum 30) method 152
NetprPathType method 152
NetrConnectionEnum (Opnum 8) method 96
NetrConnectionEnum method 96
NetrDfsCreateExitPoint (Opnum 48) method 164
NetrDfsCreateExitPoint method 164
NetrDfsCreateLocalPartition (Opnum 44) method 161
NetrDfsCreateLocalPartition method 161
NetrDfsDeleteExitPoint (Opnum 49) method 166
NetrDfsDeleteExitPoint method 166
NetrDfsDeleteLocalPartition (Opnum 45) method 162
NetrDfsDeleteLocalPartition method 162
NetrDfsFixLocalVolume (Opnum 51) method 167
NetrDfsFixLocalVolume method 167
NetrDfsGetVersion (Opnum 43) method 160
NetrDfsGetVersion method 160
NetrDfsManagerReportSiteInfo (Opnum 52) method 169
NetrDfsManagerReportSiteInfo method 169
NetrDfsModifyPrefix (Opnum 50) method 165
NetrDfsModifyPrefix method 165
NetrDfsSetLocalVolumeState (Opnum 46) method 163
NetrDfsSetLocalVolumeState method 163
NetrFileClose (Opnum 11) method 103
NetrFileClose method 103
NetrFileEnum (Opnum 9) method 99
NetrFileEnum method 99
NetrFileGetInfo (Opnum 10) method 101
NetrFileGetInfo method 101
NetrpGetFileSecurity (Opnum 39) method 151

NetrpGetFileSecurity method 151
NetrpSetFileSecurity (Opnum 40) method 152
NetrpSetFileSecurity method 152

234 / 241

[MS-SRVS-Diff] - v20240423
Server Service Remote Protocol
Copyright © 2024 Microsoft Corporation
Release: April 23, 2024

NetrRemoteTOD (Opnum 28) method 143
NetrRemoteTOD method 143
NetrServerAliasAdd (Opnum 54) method 169
NetrServerAliasAdd method 169
NetrServerAliasDel (Opnum 56) method 173
NetrServerAliasDel method 173
NetrServerAliasEnum (Opnum 55) method 171
NetrServerAliasEnum method 171
NetrServerDiskEnum (Opnum 23) method 141
NetrServerDiskEnum method 141
NetrServerGetInfo (Opnum 21) method 129
NetrServerGetInfo method 129
NetrServerSetInfo (Opnum 22) method 134
NetrServerSetInfo method 134
NetrServerStatisticsGet (Opnum 24) method 142
NetrServerStatisticsGet method 142
NetrServerTransportAdd (Opnum 25) method 144
NetrServerTransportAdd method 144
NetrServerTransportAddEx (Opnum 41) method 145
NetrServerTransportAddEx method 145
NetrServerTransportDel (Opnum 27) method 149
NetrServerTransportDel method 149
NetrServerTransportDelEx (Opnum 53) method 149

NetrServerTransportDelEx method 149
NetrServerTransportEnum (Opnum 26) method 147
NetrServerTransportEnum method 147
NetrSessionDel (Opnum 13) method 108
NetrSessionDel method 108
NetrSessionEnum (Opnum 12) method 104
NetrSessionEnum method 104
NetrShareAdd (Opnum 14) method 109
NetrShareAdd method 109
NetrShareCheck (Opnum 20) method 128
NetrShareCheck method 128
NetrShareDel (Opnum 18) method 124
NetrShareDel method 124
NetrShareDelCommit (Opnum 38) method 127
NetrShareDelCommit method 127
NetrShareDelEx (Opnum 57) method 174
NetrShareDelEx method 174
NetrShareDelStart (Opnum 37) method 126
NetrShareDelStart method 126
NetrShareDelSticky (Opnum 19) method 126
NetrShareDelSticky method 126
NetrShareEnum (Opnum 15) method 112
NetrShareEnum method 112
NetrShareEnumSticky (Opnum 36) method 116
NetrShareEnumSticky method 116
NetrShareGetInfo (Opnum 16) method 117
NetrShareGetInfo method 117
NetrShareSetInfo (Opnum 17) method 120
NetrShareSetInfo method 120
Normative references 12

O

Overview (synopsis) 13

P

PADT_SECURITY_DESCRIPTOR 83
Parameters – security 184
Parameters - security index 184
Path types 22
PCONNECT_ENUM_STRUCT 41

235 / 241

[MS-SRVS-Diff] - v20240423
Server Service Remote Protocol
Copyright © 2024 Microsoft Corporation
Release: April 23, 2024

PCONNECT_INFO_0_CONTAINER 40
PCONNECT_INFO_1_CONTAINER 41
PCONNECTION_INFO_0 40
PCONNECTION_INFO_1 40
PDFS_SITELIST_INFO 84
PDFS_SITENAME_INFO 84
PDISK_INFO 77
PFILE_ENUM_STRUCT 43
PFILE_INFO_2 42
PFILE_INFO_2_CONTAINER 43
PFILE_INFO_3 42
PFILE_INFO_3_CONTAINER 43
PKT_ENTRY_TYPE_CAIRO 30
PKT_ENTRY_TYPE_INSITE_ONLY 30
PKT_ENTRY_TYPE_LEAFONLY 30
PKT_ENTRY_TYPE_LOCAL 30
PKT_ENTRY_TYPE_LOCAL_XPOINT 30
PKT_ENTRY_TYPE_MACH_SHARE 30
PKT_ENTRY_TYPE_MACHINE 30
PKT_ENTRY_TYPE_NONCAIRO 30
PKT_ENTRY_TYPE_OFFLINE 30
PKT_ENTRY_TYPE_OUTSIDE_MY_DOM 30
PKT_ENTRY_TYPE_PERMANENT 30

PKT_ENTRY_TYPE_REFERRAL_SVC 30
Platform IDs 19
PLATFORM_ID_DOS 19
PLATFORM_ID_NT 19
PLATFORM_ID_OS2 19
PLATFORM_ID_OSF 19
PLATFORM_ID_VMS 19
Preconditions 14
Prerequisites 14
Product behavior 209
Protocol Details
 overview 85
PSERVER_ALIAS_ENUM_STRUCT 82
PSERVER_ALIAS_INFO_0 81
PSERVER_INFO_100 57
PSERVER_INFO_1005 66
PSERVER_INFO_101 57
PSERVER_INFO_1010 66
PSERVER_INFO_1016 66
PSERVER_INFO_1017 67
PSERVER_INFO_1018 67
PSERVER_INFO_102 57
PSERVER_INFO_103 58
PSERVER_INFO_1107 66
PSERVER_INFO_1501 67
PSERVER_INFO_1502 67
PSERVER_INFO_1503 68
PSERVER_INFO_1506 68
PSERVER_INFO_1510 68
PSERVER_INFO_1511 68
PSERVER_INFO_1512 69
PSERVER_INFO_1513 69
PSERVER_INFO_1514 69
PSERVER_INFO_1515 69
PSERVER_INFO_1516 70
PSERVER_INFO_1518 70
PSERVER_INFO_1523 70
PSERVER_INFO_1528 70
PSERVER_INFO_1529 71
PSERVER_INFO_1530 71
PSERVER_INFO_1533 71
PSERVER_INFO_1534 71

236 / 241

[MS-SRVS-Diff] - v20240423
Server Service Remote Protocol
Copyright © 2024 Microsoft Corporation
Release: April 23, 2024

PSERVER_INFO_1535 72
PSERVER_INFO_1536 72
PSERVER_INFO_1538 72
PSERVER_INFO_1539 72
PSERVER_INFO_1540 73
PSERVER_INFO_1541 73
PSERVER_INFO_1542 73
PSERVER_INFO_1543 73
PSERVER_INFO_1544 74
PSERVER_INFO_1545 74
PSERVER_INFO_1546 74
PSERVER_INFO_1547 74
PSERVER_INFO_1548 75
PSERVER_INFO_1549 75
PSERVER_INFO_1550 75
PSERVER_INFO_1552 75
PSERVER_INFO_1553 76
PSERVER_INFO_1554 76
PSERVER_INFO_1555 76
PSERVER_INFO_1556 76
PSERVER_INFO_502 60
PSERVER_INFO_503 60
PSERVER_INFO_599 61

PSERVER_TRANSPORT_INFO_0 77
PSERVER_TRANSPORT_INFO_1 77
PSERVER_TRANSPORT_INFO_2 78
PSERVER_TRANSPORT_INFO_3 78
PSERVER_XPORT_ENUM_STRUCT 80
PSERVER_XPORT_INFO_0_CONTAINER 79
PSERVER_XPORT_INFO_1_CONTAINER 79
PSERVER_XPORT_INFO_2_CONTAINER 80
PSERVER_XPORT_INFO_3_CONTAINER 80
PSESSION_ENUM_STRUCT 48
PSESSION_INFO_0 44
PSESSION_INFO_0_CONTAINER 46
PSESSION_INFO_1 44
PSESSION_INFO_1_CONTAINER 47
PSESSION_INFO_10 45
PSESSION_INFO_10_CONTAINER 47
PSESSION_INFO_2 45
PSESSION_INFO_2_CONTAINER 47
PSESSION_INFO_502 46
PSESSION_INFO_502_CONTAINER 48
PSHARE_ENUM_STRUCT 55
PSHARE_INFO_0 48
PSHARE_INFO_1 49
PSHARE_INFO_1004 52
PSHARE_INFO_1005 52
PSHARE_INFO_1006 53
PSHARE_INFO_1501_I 53
PSHARE_INFO_2 49
PSHARE_INFO_2_CONTAINER 54
PSHARE_INFO_501 49
PSHARE_INFO_501_CONTAINER 54
PSHARE_INFO_502_CONTAINER 54
PSHARE_INFO_502_I 50
PSHARE_INFO_503_CONTAINER 55
PSHARE_INFO_503_I 51
PSTAT_SERVER_0 56
PTIME_OF_DAY_INFO 82

R

References 12
 informative 13

237 / 241

[MS-SRVS-Diff] - v20240423
Server Service Remote Protocol
Copyright © 2024 Microsoft Corporation
Release: April 23, 2024

 normative 12
Relationship to other protocols 14
ResumeHandle example 180

S

Security 184
 implementer considerations 184
 parameter index 184
Sequencing – message
 client 179
 server 93
Sequencing rules
 client 179
 server 93
Server
 abstract data model 85

 initialization 91
 local events 175
 local application
 disables advertising service 178
 enables advertising service 177
 server
 deregisters
 open 176
 session 176
 Treeconnect 176
 looks up
 null session pipes 178
 shares 175
 normalizes ServerName 177
 notifies
 completion of initialization 178
 current uses of share 178
 queries existing services 178
 registers new
 open 176
 session 176
 Treeconnect 176
 service terminates 178
 updates connection count on transport 178
 user pauses or resumes CIFS server 178
 message processing 93
 message sequencing 93
 NetprNameCanonicalize (Opnum 34) method 157
 NetprNameCompare (Opnum 35) method 159
 NetprNameValidate (Opnum 33) method 156
 NetprPathCanonicalize (Opnum 31) method 153
 NetprPathCompare (Opnum 32) method 155
 NetprPathType (Opnum 30) method 152
 NetrConnectionEnum (Opnum 8) method 96
 NetrDfsCreateExitPoint (Opnum 48) method 164
 NetrDfsCreateLocalPartition (Opnum 44) method 161
 NetrDfsDeleteExitPoint (Opnum 49) method 166
 NetrDfsDeleteLocalPartition (Opnum 45) method 162
 NetrDfsFixLocalVolume (Opnum 51) method 167
 NetrDfsGetVersion (Opnum 43) method 160
 NetrDfsManagerReportSiteInfo (Opnum 52) method 169
 NetrDfsModifyPrefix (Opnum 50) method 165
 NetrDfsSetLocalVolumeState (Opnum 46) method 163
 NetrFileClose (Opnum 11) method 103
 NetrFileEnum (Opnum 9) method 99

 NetrFileGetInfo (Opnum 10) method 101
 NetrpGetFileSecurity (Opnum 39) method 151
 NetrpSetFileSecurity (Opnum 40) method 152

238 / 241

[MS-SRVS-Diff] - v20240423
Server Service Remote Protocol
Copyright © 2024 Microsoft Corporation
Release: April 23, 2024

 NetrRemoteTOD (Opnum 28) method 143
 NetrServerAliasAdd (Opnum 54) method 169
 NetrServerAliasDel (Opnum 56) method 173
 NetrServerAliasEnum (Opnum 55) method 171
 NetrServerDiskEnum (Opnum 23) method 141
 NetrServerGetInfo (Opnum 21) method 129
 NetrServerSetInfo (Opnum 22) method 134
 NetrServerStatisticsGet (Opnum 24) method 142
 NetrServerTransportAdd (Opnum 25) method 144
 NetrServerTransportAddEx (Opnum 41) method 145
 NetrServerTransportDel (Opnum 27) method 149
 NetrServerTransportDelEx (Opnum 53) method 149
 NetrServerTransportEnum (Opnum 26) method 147
 NetrSessionDel (Opnum 13) method 108
 NetrSessionEnum (Opnum 12) method 104
 NetrShareAdd (Opnum 14) method 109
 NetrShareCheck (Opnum 20) method 128
 NetrShareDel (Opnum 18) method 124
 NetrShareDelCommit (Opnum 38) method 127
 NetrShareDelEx (Opnum 57) method 174
 NetrShareDelStart (Opnum 37) method 126
 NetrShareDelSticky (Opnum 19) method 126
 NetrShareEnum (Opnum 15) method 112

 NetrShareEnumSticky (Opnum 36) method 116
 NetrShareGetInfo (Opnum 16) method 117
 NetrShareSetInfo (Opnum 17) method 120
 overview 85
 sequencing rules 93
 timer events 175
 timers 90
SERVER_ALIAS_ENUM_STRUCT structure 82
SERVER_ALIAS_INFO_0 structure 81
SERVER_ALIAS_INFO_0_CONTAINER structure 81
SERVER_INFO error codes 26
SERVER_INFO_100 structure 57
SERVER_INFO_1005 structure 66
SERVER_INFO_101 structure 57
SERVER_INFO_1010 structure 66
SERVER_INFO_1016 structure 66
SERVER_INFO_1017 structure 67
SERVER_INFO_1018 structure 67
SERVER_INFO_102 structure 57
SERVER_INFO_103 structure 58
SERVER_INFO_1107 structure 66
SERVER_INFO_1501 structure 67
SERVER_INFO_1502 structure 67
SERVER_INFO_1503 structure 68
SERVER_INFO_1506 structure 68
SERVER_INFO_1510 structure 68
SERVER_INFO_1511 structure 68
SERVER_INFO_1512 structure 69
SERVER_INFO_1513 structure 69
SERVER_INFO_1514 structure 69
SERVER_INFO_1515 structure 69
SERVER_INFO_1516 structure 70
SERVER_INFO_1518 structure 70
SERVER_INFO_1523 structure 70
SERVER_INFO_1528 structure 70
SERVER_INFO_1529 structure 71
SERVER_INFO_1530 structure 71
SERVER_INFO_1533 structure 71
SERVER_INFO_1534 structure 71
SERVER_INFO_1535 structure 72
SERVER_INFO_1536 structure 72
SERVER_INFO_1538 structure 72

239 / 241

[MS-SRVS-Diff] - v20240423
Server Service Remote Protocol
Copyright © 2024 Microsoft Corporation
Release: April 23, 2024

SERVER_INFO_1539 structure 72
SERVER_INFO_1540 structure 73
SERVER_INFO_1541 structure 73
SERVER_INFO_1542 structure 73
SERVER_INFO_1543 structure 73
SERVER_INFO_1544 structure 74
SERVER_INFO_1545 structure 74
SERVER_INFO_1546 structure 74
SERVER_INFO_1547 structure 74
SERVER_INFO_1548 structure 75
SERVER_INFO_1549 structure 75
SERVER_INFO_1550 structure 75
SERVER_INFO_1552 structure 75
SERVER_INFO_1553 structure 76
SERVER_INFO_1554 structure 76
SERVER_INFO_1555 structure 76
SERVER_INFO_1556 structure 76
SERVER_INFO_502 structure 60
SERVER_INFO_503 structure 60
SERVER_INFO_599 structure 61
SERVER_TRANSPORT_INFO_0 structure 77
SERVER_TRANSPORT_INFO_1 structure 77
SERVER_TRANSPORT_INFO_2 structure 78

SERVER_TRANSPORT_INFO_3 structure 78
SERVER_XPORT_ENUM_STRUCT structure 80
SERVER_XPORT_INFO_0_CONTAINER structure 79
SERVER_XPORT_INFO_1_CONTAINER structure 79
SERVER_XPORT_INFO_2_CONTAINER structure 80
SERVER_XPORT_INFO_3_CONTAINER structure 80
SESS_GUEST 17
SESS_NOENCRYPTION 17
Session user flags 17
SESSION_ENUM_STRUCT structure 48
SESSION_INFO_0 structure 44
SESSION_INFO_0_CONTAINER structure 46
SESSION_INFO_1 structure 44
SESSION_INFO_1_CONTAINER structure 47
SESSION_INFO_10 structure 45
SESSION_INFO_10_CONTAINER structure 47
SESSION_INFO_2 structure 45
SESSION_INFO_2_CONTAINER structure 47
SESSION_INFO_502 structure 46
SESSION_INFO_502_CONTAINER structure 48
Sessionclient 17
Share types 17
SHARE_ENUM_STRUCT structure 55
SHARE_INFO error codes 25
SHARE_INFO_0 structure 48
SHARE_INFO_0_CONTAINER structure 53
SHARE_INFO_1 structure 49
SHARE_INFO_1_CONTAINER structure 54
SHARE_INFO_1004 structure 52
SHARE_INFO_1005 structure 52
SHARE_INFO_1006 structure 53
SHARE_INFO_1501_I structure 53
SHARE_INFO_2 structure 49
SHARE_INFO_2_CONTAINER structure 54
SHARE_INFO_501 structure 49
SHARE_INFO_501_CONTAINER structure 54
SHARE_INFO_502_CONTAINER structure 54
SHARE_INFO_502_I structure 50
SHARE_INFO_503_CONTAINER structure 55
SHARE_INFO_503_I structure 51
Software type flags 19
Standards assignments 14

240 / 241

[MS-SRVS-Diff] - v20240423
Server Service Remote Protocol
Copyright © 2024 Microsoft Corporation
Release: April 23, 2024

STAT_SERVER_0 structure 56
Structures 40
STYPE_CLUSTER_DFS 17
STYPE_CLUSTER_FS 17
STYPE_CLUSTER_SOFS 17
STYPE_DEVICE 17
STYPE_DISKTREE 17
STYPE_IPC 17
STYPE_PRINTQ 17
STYPE_SPECIAL 17
STYPE_TEMPORARY 17
SV_TYPE_AFP 19
SV_TYPE_ALL 19
SV_TYPE_ALTERNATE_XPORT 19
SV_TYPE_BACKUP_BROWSER 19
SV_TYPE_CLUSTER_NT 19
SV_TYPE_CLUSTER_VS_NT 19
SV_TYPE_DCE 19
SV_TYPE_DFS 19
SV_TYPE_DIALIN_SERVER 19
SV_TYPE_DOMAIN_BAKCTRL 19
SV_TYPE_DOMAIN_CTRL 19
SV_TYPE_DOMAIN_ENUM 19

SV_TYPE_DOMAIN_MASTER 19
SV_TYPE_DOMAIN_MEMBER 19
SV_TYPE_LOCAL_LIST_ONLY 19
SV_TYPE_MASTER_BROWSER 19
SV_TYPE_NOVELL 19
SV_TYPE_NT 19
SV_TYPE_POTENTIAL_BROWSER 19
SV_TYPE_PRINTQ_SERVER 19
SV_TYPE_SERVER 19
SV_TYPE_SERVER_MFPN 19
SV_TYPE_SERVER_NT 19
SV_TYPE_SQLSERVER 19
SV_TYPE_TERMINALSERVER 19
SV_TYPE_TIME_SOURCE 19
SV_TYPE_WFW 19
SV_TYPE_WINDOWS 19
SV_TYPE_WORKSTATION 19
SV_TYPE_XENIX_SERVER 19

T

TIME_OF_DAY_INFO structure 82
Timer events
 client 179
 server 175
Timers
 client 179
 server 90
Tracking changes 227
Transport 16
Transport – message 16
Two-phase share deletion example 181

U

Unions 31

V

Vendor-extensible fields 14
Versioning 14

241 / 241

[MS-SRVS-Diff] - v20240423
Server Service Remote Protocol
Copyright © 2024 Microsoft Corporation
Release: April 23, 2024

W

Windows error codes 24

	1 Introduction
	1.1 Glossary
	1.2 References
	1.2.1 (Updated Section) Normative References
	1.2.2 (Updated Section) Informative References

	1.3 Overview
	1.4 Relationship to Other Protocols
	1.5 Prerequisites/Preconditions
	1.6 Applicability Statement
	1.7 Versioning and Capability Negotiation
	1.8 Vendor-Extensible Fields
	1.9 Standards Assignments

	2 Messages
	2.1 Transport
	2.2 Common Data Types
	2.2.1 Simple Data Types
	2.2.1.1 SRVSVC_HANDLE
	2.2.1.2 SHARE_DEL_HANDLE
	2.2.1.3 PSHARE_DEL_HANDLE

	2.2.2 Constants
	2.2.2.1 Sessionclient Types
	2.2.2.2 MAX_PREFERRED_LENGTH
	2.2.2.3 Session User Flags
	2.2.2.4 Share Types
	2.2.2.5 Client-Side Caching (CSC) States
	2.2.2.6 Platform IDs
	2.2.2.7 Software Type Flags
	2.2.2.8 Name Types
	2.2.2.9 Path Types
	2.2.2.10 Common Error Codes
	2.2.2.11 SHARE_INFO Parameter Error Codes
	2.2.2.12 SERVER_INFO Parameter Error Codes
	2.2.2.13 DFS Entry Flags

	2.2.3 Unions
	2.2.3.1 CONNECT_ENUM_UNION
	2.2.3.2 FILE_ENUM_UNION
	2.2.3.3 FILE_INFO
	2.2.3.4 SESSION_ENUM_UNION
	2.2.3.5 SHARE_ENUM_UNION
	2.2.3.6 SHARE_INFO
	2.2.3.7 SERVER_INFO
	2.2.3.8 SERVER_XPORT_ENUM_UNION
	2.2.3.9 TRANSPORT_INFO
	2.2.3.10 SERVER_ALIAS_INFO

	2.2.4 Structures
	2.2.4.1 CONNECTION_INFO_0
	2.2.4.2 CONNECTION_INFO_1
	2.2.4.3 CONNECT_INFO_0_CONTAINER
	2.2.4.4 CONNECT_INFO_1_CONTAINER
	2.2.4.5 CONNECT_ENUM_STRUCT
	2.2.4.6 FILE_INFO_2
	2.2.4.7 FILE_INFO_3
	2.2.4.8 FILE_INFO_2_CONTAINER
	2.2.4.9 FILE_INFO_3_CONTAINER
	2.2.4.10 FILE_ENUM_STRUCT
	2.2.4.11 SESSION_INFO_0
	2.2.4.12 SESSION_INFO_1
	2.2.4.13 SESSION_INFO_2
	2.2.4.14 SESSION_INFO_10
	2.2.4.15 SESSION_INFO_502
	2.2.4.16 SESSION_INFO_0_CONTAINER
	2.2.4.17 SESSION_INFO_1_CONTAINER
	2.2.4.18 SESSION_INFO_2_CONTAINER
	2.2.4.19 SESSION_INFO_10_CONTAINER
	2.2.4.20 SESSION_INFO_502_CONTAINER
	2.2.4.21 SESSION_ENUM_STRUCT
	2.2.4.22 SHARE_INFO_0
	2.2.4.23 SHARE_INFO_1
	2.2.4.24 SHARE_INFO_2
	2.2.4.25 SHARE_INFO_501
	2.2.4.26 SHARE_INFO_502_I
	2.2.4.27 SHARE_INFO_503_I
	2.2.4.28 SHARE_INFO_1004
	2.2.4.29 (Updated Section) SHARE_INFO_1005
	2.2.4.30 SHARE_INFO_1006
	2.2.4.31 SHARE_INFO_1501_I
	2.2.4.32 SHARE_INFO_0_CONTAINER
	2.2.4.33 SHARE_INFO_1_CONTAINER
	2.2.4.34 SHARE_INFO_2_CONTAINER
	2.2.4.35 SHARE_INFO_501_CONTAINER
	2.2.4.36 SHARE_INFO_502_CONTAINER
	2.2.4.37 SHARE_INFO_503_CONTAINER
	2.2.4.38 SHARE_ENUM_STRUCT
	2.2.4.39 STAT_SERVER_0
	2.2.4.40 SERVER_INFO_100
	2.2.4.41 SERVER_INFO_101
	2.2.4.42 SERVER_INFO_102
	2.2.4.43 SERVER_INFO_103
	2.2.4.44 SERVER_INFO_502
	2.2.4.45 SERVER_INFO_503
	2.2.4.46 SERVER_INFO_599
	2.2.4.47 SERVER_INFO_1005
	2.2.4.48 SERVER_INFO_1107
	2.2.4.49 SERVER_INFO_1010
	2.2.4.50 SERVER_INFO_1016
	2.2.4.51 SERVER_INFO_1017
	2.2.4.52 SERVER_INFO_1018
	2.2.4.53 SERVER_INFO_1501
	2.2.4.54 SERVER_INFO_1502
	2.2.4.55 SERVER_INFO_1503
	2.2.4.56 SERVER_INFO_1506
	2.2.4.57 SERVER_INFO_1510
	2.2.4.58 SERVER_INFO_1511
	2.2.4.59 SERVER_INFO_1512
	2.2.4.60 SERVER_INFO_1513
	2.2.4.61 SERVER_INFO_1514
	2.2.4.62 SERVER_INFO_1515
	2.2.4.63 SERVER_INFO_1516
	2.2.4.64 SERVER_INFO_1518
	2.2.4.65 SERVER_INFO_1523
	2.2.4.66 SERVER_INFO_1528
	2.2.4.67 SERVER_INFO_1529
	2.2.4.68 SERVER_INFO_1530
	2.2.4.69 SERVER_INFO_1533
	2.2.4.70 SERVER_INFO_1534
	2.2.4.71 SERVER_INFO_1535
	2.2.4.72 SERVER_INFO_1536
	2.2.4.73 SERVER_INFO_1538
	2.2.4.74 SERVER_INFO_1539
	2.2.4.75 SERVER_INFO_1540
	2.2.4.76 SERVER_INFO_1541
	2.2.4.77 SERVER_INFO_1542
	2.2.4.78 SERVER_INFO_1543
	2.2.4.79 SERVER_INFO_1544
	2.2.4.80 SERVER_INFO_1545
	2.2.4.81 SERVER_INFO_1546
	2.2.4.82 SERVER_INFO_1547
	2.2.4.83 SERVER_INFO_1548
	2.2.4.84 SERVER_INFO_1549
	2.2.4.85 SERVER_INFO_1550
	2.2.4.86 SERVER_INFO_1552
	2.2.4.87 SERVER_INFO_1553
	2.2.4.88 SERVER_INFO_1554
	2.2.4.89 SERVER_INFO_1555
	2.2.4.90 SERVER_INFO_1556
	2.2.4.91 DISK_INFO
	2.2.4.92 DISK_ENUM_CONTAINER
	2.2.4.93 SERVER_TRANSPORT_INFO_0
	2.2.4.94 SERVER_TRANSPORT_INFO_1
	2.2.4.95 SERVER_TRANSPORT_INFO_2
	2.2.4.96 SERVER_TRANSPORT_INFO_3
	2.2.4.97 SERVER_XPORT_INFO_0_CONTAINER
	2.2.4.98 SERVER_XPORT_INFO_1_CONTAINER
	2.2.4.99 SERVER_XPORT_INFO_2_CONTAINER
	2.2.4.100 SERVER_XPORT_INFO_3_CONTAINER
	2.2.4.101 SERVER_XPORT_ENUM_STRUCT
	2.2.4.102 SERVER_ALIAS_INFO_0
	2.2.4.103 SERVER_ALIAS_INFO_0_CONTAINER
	2.2.4.104 SERVER_ALIAS_ENUM_STRUCT
	2.2.4.105 TIME_OF_DAY_INFO
	2.2.4.106 ADT_SECURITY_DESCRIPTOR
	2.2.4.107 NET_DFS_ENTRY_ID
	2.2.4.108 NET_DFS_ENTRY_ID_CONTAINER
	2.2.4.109 DFS_SITENAME_INFO
	2.2.4.110 DFS_SITELIST_INFO

	3 Protocol Details
	3.1 Server Details
	3.1.1 Abstract Data Model
	3.1.1.1 Global
	3.1.1.2 Per Transport
	3.1.1.3 Per Alias
	3.1.1.4 Server Properties Object (ServerConfiguration)
	3.1.1.5 Per TreeConnect
	3.1.1.6 Per Open
	3.1.1.7 Per Share
	3.1.1.8 Per Session
	3.1.1.9 Algorithm for Determining Path Type

	3.1.2 Timers
	3.1.3 Initialization
	3.1.4 Message Processing Events and Sequencing Rules
	3.1.4.1 NetrConnectionEnum (Opnum 8)
	3.1.4.2 NetrFileEnum (Opnum 9)
	3.1.4.3 NetrFileGetInfo (Opnum 10)
	3.1.4.4 NetrFileClose (Opnum 11)
	3.1.4.5 NetrSessionEnum (Opnum 12)
	3.1.4.6 NetrSessionDel (Opnum 13)
	3.1.4.7 NetrShareAdd (Opnum 14)
	3.1.4.8 NetrShareEnum (Opnum 15)
	3.1.4.9 NetrShareEnumSticky (Opnum 36)
	3.1.4.10 NetrShareGetInfo (Opnum 16)
	3.1.4.11 NetrShareSetInfo (Opnum 17)
	3.1.4.12 NetrShareDel (Opnum 18)
	3.1.4.13 NetrShareDelSticky (Opnum 19)
	3.1.4.14 NetrShareDelStart (Opnum 37)
	3.1.4.15 NetrShareDelCommit (Opnum 38)
	3.1.4.16 NetrShareCheck (Opnum 20)
	3.1.4.17 NetrServerGetInfo (Opnum 21)
	3.1.4.18 NetrServerSetInfo (Opnum 22)
	3.1.4.19 NetrServerDiskEnum (Opnum 23)
	3.1.4.20 NetrServerStatisticsGet (Opnum 24)
	3.1.4.21 NetrRemoteTOD (Opnum 28)
	3.1.4.22 NetrServerTransportAdd (Opnum 25)
	3.1.4.23 NetrServerTransportAddEx (Opnum 41)
	3.1.4.24 NetrServerTransportEnum (Opnum 26)
	3.1.4.25 NetrServerTransportDel (Opnum 27)
	3.1.4.26 NetrServerTransportDelEx (Opnum 53)
	3.1.4.27 NetrpGetFileSecurity (Opnum 39)
	3.1.4.28 NetrpSetFileSecurity (Opnum 40)
	3.1.4.29 NetprPathType (Opnum 30)
	3.1.4.30 NetprPathCanonicalize (Opnum 31)
	3.1.4.31 NetprPathCompare (Opnum 32)
	3.1.4.32 NetprNameValidate (Opnum 33)
	3.1.4.33 NetprNameCanonicalize (Opnum 34)
	3.1.4.34 NetprNameCompare (Opnum 35)
	3.1.4.35 NetrDfsGetVersion (Opnum 43)
	3.1.4.36 NetrDfsCreateLocalPartition (Opnum 44)
	3.1.4.37 NetrDfsDeleteLocalPartition (Opnum 45)
	3.1.4.38 NetrDfsSetLocalVolumeState (Opnum 46)
	3.1.4.39 NetrDfsCreateExitPoint (Opnum 48)
	3.1.4.40 NetrDfsModifyPrefix (Opnum 50)
	3.1.4.41 NetrDfsDeleteExitPoint (Opnum 49)
	3.1.4.42 NetrDfsFixLocalVolume (Opnum 51)
	3.1.4.43 NetrDfsManagerReportSiteInfo (Opnum 52)
	3.1.4.44 NetrServerAliasAdd (Opnum 54)
	3.1.4.45 NetrServerAliasEnum (Opnum 55)
	3.1.4.46 NetrServerAliasDel (Opnum 56)
	3.1.4.47 NetrShareDelEx (Opnum 57)

	3.1.5 Timer Events
	3.1.6 Other Local Events
	3.1.6.1 Server Looks Up Shares
	3.1.6.2 Server Registers a New Session
	3.1.6.3 Server Deregisters a Session
	3.1.6.4 Server Registers a New Open
	3.1.6.5 Server Deregisters an Open
	3.1.6.6 Server Registers a New Treeconnect
	3.1.6.7 Server Deregisters a Treeconnect
	3.1.6.8 Server Normalizes a ServerName
	3.1.6.9 Local Application Enables Advertising a Service
	3.1.6.10 Local Application Disables Advertising a Service
	3.1.6.11 Server Queries Existing Services
	3.1.6.12 Server Service Terminates
	3.1.6.13 Local Application Pauses or Resumes the CIFS Server
	3.1.6.14 Server Notifies Completion of Initialization
	3.1.6.15 Server Notifies Current Uses of a Share
	3.1.6.16 Server Updates Connection Count on a Transport
	3.1.6.17 Server Looks Up Null Session Pipes

	3.2 Client Details
	3.2.1 Abstract Data Model
	3.2.2 Timers
	3.2.3 Initialization
	3.2.4 Message Processing Events and Sequencing Rules
	3.2.5 Timer Events
	3.2.6 Other Local Events

	4 Protocol Examples
	4.1 Example of ResumeHandle
	4.2 Two-Phase Share Deletion
	4.3 Adding a Scoped Share With an Alias to a Server

	5 Security
	5.1 Security Considerations for Implementers
	5.2 Index of Security Parameters

	6 (Updated Section) Appendix A: Full IDL
	7 (Updated Section) Appendix B: Product Behavior
	8 Change Tracking
	9 Index

