[MS - SRVS - Diff];

Server Service Remote Protocol

Intellectual Property Rights Notice for Open Specifications Documentation

A Technical Documentation. Mi crosoft publishes Open Specifications doc
documentationo) for protocols, file formats, data portabil
support. Additionally, overview documents cover inter -protocol relationships and interactions.

A co pyrights . This documentation is covered by Microsoft copyrights. Regardless of any other

terms that are contained in the terms of use for the Microsoft website that hosts this

documentation, you can make copies of it in order to develop implementations of the technologies

that are described in this documentation and can distribute portions of it in your implementations

that use these technologies or in your documentation as necessary to properly document the

implementation. You can also distribute in your i mplementation, with or without modification, any

schemas, IDLs, or code samples that are included in the documentation. This permission also

applies to any documents that are referenced in the Open Specifications documentation.

No Trade Secrets . Microsoft does not claim any trade secret rights in this documentation.

Patents . Microsoft has patents that might cover your implementations of the technologies

described in the Open Specifications documentation. Neither this notice nor Microsoft's delivery of

thi s documentation grants any licenses under those patents or any other Microsoft patents.

However, a given Open Specifications document might be covered by the Microsoft Open

Specifications Promi__se or the Microsoft Community Promise . If you would prefer a written license,

or if the technologies described in this documentation are not covered by the Open Specifications

Promise or Commun ity Promise, as applicable, patent licenses are available by contacting

iplg@microsoft.com

License Programs . To see all of the protocols in scope under a specific license program and the

associated patents, visit the Patent Map .

Trademarks . The names of companies and products contained in this documentation might be

covered by trademarks or similar intellectual property rights. This notice does not grant any

licenses under t hose rights. For a list of Microsoft trademarks, visit

www.microsoft.com/trademarks

A Fictitious Names . The example companies, organizations, products, domain names, email
addresses, logos, people, place s, and events that are depicted in this documentation are fictitious.
No association with any real company, organization, product, domain name, email address, logo,
person, place, or event is intended or should be inferred.

> >

>

>

Reservation of Rights . All other rights are reserved, and this notice does not grant any rights other
than as specifically described above, whether by implication, estoppel, or otherwise.

Tools . The Open Specifications documentation does not require the use of Microsoft programming
tools or programming environments in order for you to develop an implementation. If you have access

to Microsoft programming tools and environments, you are free to take advantage of them. Certain

Open Specifications documents are int ended for use in conjunction with publicly available standards
specifications and network programming art and, as such, assume that the reader either is familiar

with the aforementioned material or has immediate access to it.

Support. For questions and sup port, please contact dochelp@microsoft.com

1/ 240

[MS -SRVS-Diff] - v20210625

Server Service Remote Protocol

Copyright © 2021 Microsoft Corporati on
Release: June 25, 2021

https://go.microsoft.com/fwlink/?LinkId=214445
https://go.microsoft.com/fwlink/?LinkId=214445
https://go.microsoft.com/fwlink/?LinkId=214448
mailto:iplg@microsoft.com
https://aka.ms/AA9ufj8
https://www.microsoft.com/trademarks
mailto:dochelp@microsoft.com

Revision Summary

Revision Revision
Date History Class Comments
10/22/2006 0.01 New Version 0.01 release
1/19/2007 1.0 Major Version 1.0 release
3/2/2007 1.1 Minor Version 1.1 release
4/3/2007 12 Minor Version 1.2 release
5/11/2007 1.3 Minor Version 1.3 release
6/1/2007 131 Editorial Changed language and formatting in the technical content.
713/2007 2.0 Major Updated and revised the technical content.
7/20/2007 3.0 Major Updated and revised the technical content.
8/10/2007 4.0 Major Updated and revised the technical content.
9/28/2007 4.1 Minor Clarified the meaning of the technical content.
10/23/2007 4.2 Minor Clarified the meaning of the technical content.
11/30/2007 421 Editorial Changed language and formatting in the technical content.
1/25/2008 422 Editorial Changed language and formatting in the technical content.
3/14/2008 5.0 Major Updated and revised the technical content
5/16/2008 6.0 Major Updated and revised the technical content.
6/20/2008 7.0 Major Updated and revised the technical content.
7/25/2008 7.1 Minor Clarified the meaning of the technical content.
8/29/2008 8.0 Major Updated and revised the technical content.
10/24/2008 8.1 Minor Clarified the meaning of the technical content.
12/5/2008 9.0 Major Updated and revised the technical content.
1/16/2009 9.1 Minor Clarified the meaning of the technical content.
2/27/2009 10.0 Major Updated and revised the technical content.
4/10/2009 11.0 Major Updated and revised the technical content.
5/22/2009 12.0 Major Updated and revised the technical content.
7/2/2009 12.1 Minor Clarified the meaning of the technical content.
8/14/2009 121.1 Editorial Changed language and formatting in the technical content.
9/25/2009 12.2 Minor Clarified the meaning of the technical content.
11/6/2009 13.0 Major Updated and revised the technical content.
12/18/2009 14.0 Major Updated and r evised the technical content.
1/29/2010 15.0 Major Updated and revised the technical content.
2/ 240
[MS - SRVS-Diff] - v20210625
Server Service Remote Protocol
Copyright © 2021 Microsoft Corporati on

Release: June 25, 2021

Revision Revision
Date History Class Comments
3/12/2010 16.0 Major Updated and revised the technical content.
4/23/2010 17.0 Major Updated and revised the technical content.
6/4/2010 18.0 Major Updated and revised the technical content.
7/16/2010 19.0 Major Updated and revised the technical content.
8/27/2010 20.0 Major Updated and revised the technical content.
10/8/2010 21.0 Major Updated and revised the technical content.
11/19/2010 22.0 Major Updated and revised the technical content.
1/7/2011 23.0 Major Updated and revised the technical content.
2/11/2011 24.0 Major Updated and revised the technical content.
3/25/2011 25.0 Major Updated and revised the technical content.
5/6/2011 26.0 Major Updated and revised the technical content.
6/17/2011 26.1 Minor Clarified the meaning of the technical content.
9/23/2011 27.0 Major Updated and revised the technical content.
12/16/2011 28.0 Major Updated and revised the technical content.
3/30/2012 29.0 Major Updated and revised the technical content.
7/12/2012 29.0 None tl\(l;é;:r:zéglgscs);%:tl-e meaning, language, or formatting of the
10/25/2012 30.0 Major Updated and revised the technical conte nt.
1/31/2013 30.0 None tl\(lac;hcr:iglgscsmttc;:tl-e meaning, language, or formatting of the
8/8/2013 31.0 Major Updated and revised the technical content.
11/14/2013 32.0 Major Updated and revised the technical content.
2/13/2014 32.0 None tl\;?:;r:iglgcegnttc:a::a meaning, language, or formatting of the
5/15/2014 320 None tl\;?:;r:iglgcegnttc:a::a meaning, language, or formatting of the
6/30/2015 33.0 Major Significantly changed the technical content.
10/16/2015 33.0 None tl\el?:r::r:iglgsgnt?e::a meaning, language, or formatting of the
7/14/2016 33.0 None tl\elt():r::r:ig?gsnt?em.e meaning, language, or formatting of the
6/1/2017 330 None théc;ﬁr:i;?sgnt?e::-e meaning, language, or formatting of the
9/15/2017 34.0 Major Significantly changed the technical content.
9/12/2018 35.0 Major Significantly changed the technical content.

[MS -SRVS-Diff] - v20210625

Server Service Remote Protocol

Copyright © 2021 Microsoft Corporati on
Release: June 25, 2021

3/ 240

Revision Revision
Date History Class Comments
4/7/2021 36.0 Major Significantly changed the technical content.
6/25/2021

4/ 240

[MS -SRVS-Diff] - v20210625
Server Service Remote Protocol
Copyright © 2021 Microsoft Corporati on

Release: June 25, 2021

Table of Contents

1 Introduction cccceveiiiiiiiiiniees
11 (Updated Section)
1.2 Referencescccoovvvvviiiennnen.
121 Normative ReferenCes ...t e e 12
1.2.2 Informative RefErenCes ... i e 13
13 OVEIVIEW coiiiiiiiii e eiies eeetiee e sree e e e sniees aveeeeaseeeeasee e e nneeeeas eeeeae 13
1.4 Relationship to Other Protocols ... e e 14
15 Prerequisites/Preconditions 14
1.6 Applicability Statement 14
1.7 Versioning and Capability Negotiation —coiiiiiiiiiiiiis e 14
1.8 Vendor -Extensible FIeldS ... e e 14
1.9 Standards ASSIGNMENTS oo e aeerree e 14
2 MESSAQES ciiiiiiiiiiiiiiiiiiees e
21 TranSPOIt v e
2.2 Common Data TYpe S ..cccevvieeiviiieeiiieeene
221 Simple Data TYPES ...ccovvvveivieeiieeeieens
2211 SRVSVC_HANDLEccccovieeiiieinenee.
2212 SHARE_DEL_HANDLEc.ccoveiiiiiieeciieene
2213 PSHARE_DEL_HANDLEcccoeviiiiiieiiens
222 Constantsccccevieeieiiiieeee
2221 Sessionclient Typescccccvevveennnen.
2222 MAX_PREFERRED_LENGTH
22.23 Session User Flags ocoevveeviiiniecinenne
2224 Share TYpescccvvvvvivevieeiieene
2225 Client -Side Caching (CSC) StateS ..o et 18
2226 Platform IDS .eiiiiiiii v e eeree e 19
2227 Software Type Flags oo e e 19
2228 NAME TYPES ooiiiiiiieiiieriiiieeiis ettt eees e 21
2229 Path TYPES i e e 22
2.2.2.10 Common Error COUES oot e eeeeeeeas 24
22.2.11 SHARE_INFO Parameter Error CodeS .ovvvvvviiiviiiiiiiiieeeiiiee aevveviiiieeeeae e 25
22212 SERVER_INFO Parameter Error COdeS ..occovciviiiiiiiiiiiiiiie e 26
2.2.2.13 DES ENtry FIAagS .oovoiiiiiiiiiiiiiiieiiies ettt eee e 30
223 UNIONS oot ettt nieeess eeeeaiee e aenaene 31
2231 CONNECT_ENUM_UNION oiiiiiiiiiiiiieiiieeiiees tvveveesseesnnesnensnenens veees 31
2232 FILE_ENUM_UNION 31
2.2.3.3 FILE_INFO .ooioieiieeieeee s 31
2234 SESSION_ENUM_UNION oo e eeenees 32
2235 SHARE_ENUM_UNION oo eevevevie e seeenieennes avvveenans 32
2.2.3.6 SHARE_INFO oooiiiiiiiicieiiiiiiiiies eevtvevee e snne e sniees aveeesseessseeaniee e 33
2237 SERVER_INFOcccooviiiiiiiieeiene 34
2.2.3.8 SERVER_XPORT_ENUM_UNION 38
2.2.3.9 TRANSPORT_INFO oot vt nees aeeeesaee s 39
2.2.3.10 SERVER_ALIAS INFO oo vvveeevee s snesnnennes aevreesnaens 39
224 SHUCIUIES oo iiicciiieciiiie e riirrreees ereeeeesssanrneeeeeeseaannes .40
2241 CONNECTION_INFO_0 oovovrcceececrcceieieiee eeeeeeeeneeeeeneneneees aeveenans 40
2242 CONNECTION_INFO 1 ooiovoicceicececceeieee eeeteeeeeneeeeeneneieee eevernans 40
2243 CONNECT_INFO_0O_CONTAINER 40
2244 CONNECT_INFO_1_CONTAINER 41
2245 CONNECT_ENUM_STRUCT ..ooiiiiviiiiiieciiiviieine veeeeneeenee e eneeenee eees 41
224.6 FILE_INFO 2 ooooioiceeeeeeeceieeieiee eeeeveveeenseeenenenenies evevenesetesesenannas 42
2247 FILE_INFO_3 oiiiiiiiiiiiiiiiiiiees e see e e e ene eeeraeeeseeeeseeeenaeas 42
2248 FILE_INFO_2 CONTAINER ..cooooiieecicciceeeeee eeeeveeeeeeeenenenieeies e 43
2.2.4.9 FILE_INFO_3 CONTAINER ..cooooiieccicccceeeeee eeveeeeeeeeeenenenieeies e 43
51/ 240

[MS -SRVS-Diff] - v20210625

Server Service Remote Protocol

Copyright © 2021 Microsoft Corporati on
Release: June 25, 2021

2.2.4.10 FILE_ENUM_STRUCT ...coiiiiiiiiiiiiiiiiiiiis v e 43

22411 SESSION INFO 0 ..oovoovevereeeeereeesere, a4
22412 SESSION_INFO 1 .o, . 44
22413 SESSION_INFO 2 oo, 45
22414 SESSION_INFO_10 oovooroereoeeeeseressrennes 45
22415 SESSION_INFO_502 ..ooooooovvieeireeeeer, 46
2.2.416 SESSION_INFO_0_CONTAINER ..ooocoorevorrireeerrersrnnnes 46

2.24.17 SESSION_INFO_1_CONTAINERccccoviiiiiiiiicnnn, a7

2.2.418 SESSION_INFO_2 CONTAINER ..oovooirverreeeeeeresernnee, 47
2.2.419 SESSION_INFO_10_CONTAINER 47
2.2.420 SESSION_INFO_502_CONTAINER 48
2.2.421 SESSION_ENUM_STRUCT .ooivoorererrmeesereennen. 48
2.2.422 SHARE_INFO 0 .oocoovoreeeseeeeeeeeena. 48
22423 SHARE_INFO 1 oo, 49
22424 SHARE_INFO 2 .o, 49
2.2.425 SHARE_INFO 501 49
2.2.426 SHARE_INFO_502_| 50
2.2.427 SHARE_INFO 503 | 51
22428 SHARE_INFO_1004 .oovooioooicoceicoecoee oeveeeeeeeeeeseeesmeeessensee oevveneessnon 52
22429 SHARE_INFO_1005 ..oooiivooioococoniceeie oeeeeeeeeeeeeeeeeemeeeneneiee oo 52
22430 SHARE_INFO_1006 .ovvovivoiecrceecoecone oeveeeeseesssesssseonsensee oeveesesssson 53
22431 SHARE_INFO_1501 | ocooicoocooioecececee oo e 53
22432 SHARE_INFO_0_CONTAINER .ooooiroooeomoeceeee eeveeeeeeseesseseeeseeseen .. 53
22433 SHARE_INFO_1 CONTAINER ..o oo .. 54
2.2434 SHARE_INFO_2 CONTAINER ..o oo .. 54
22435 SHARE_INFO_501_CONTAINER ooiooiiooioeeoomcoecines eoeveeesesereeesesseeesae 54
22436 SHARE_INFO_502_CONTAINER ..ooioiicoicoicomconcones oo 54
2.2.437 SHARE_INFO_503 CONTAINER ooioooioeiceeooecenciees eoeveeseeereeesesseeese 55
22438 SHARE_ENUM_STRUCT ...ooioiiomiomicoccone eoeeeeeeeeeeeseeeeeeeeenes v 55
22439 STAT_SERVER O ..oovoevrerereresreeernnnes 56
2.2.440 SERVER_INFO_100 57
2.2.441 SERVER_INFO_101 57
2.2.442 SERVER_INFO_102 57
2.2.443 SERVER_INFO_103 58
2.2.444 SERVER_INFO_502 60
2.2.445 SERVER_INFO_503 60
2.2.446 SERVER_INFO_599 61
2.2.447 SERVER_INFO_1005 66
2.2.448 SERVER_INFO_1107 66
2.2.449 SERVER_INFO_1010 66
2.2.450 SERVER_INFO_1016 66
2.2.451 SERVER_INFO_1017 67
2.2.452 SERVER_INFO_1018 67
2.2.453 SERVER_INFO_1501 67
2.2.454 SERVER_INFO_1502 67
2.2.455 SERVER_INFO_1503 68
2.2.456 SERVER_INFO_1506 68
2.2.457 SERVER_INFO_1510 68
2.2.458 SERVER_INFO_1511 68
2.2.459 SERVER_INFO_1512 69
2.2.460 SERVER_INFO_1513 69
2.2.461 SERVER_INFO_1514 69
2.2.462 SERVER_INFO_1515 69
22463 SERVER_INFO 1516 oooivcoicoocoeoeoecone eoeeeeeereesessesseesieneeeevesseien 70
2.2.4.64 SERVER_INFO 1518 .ocoiooicocoeioecicene eoeeeeeeeeoeeeeneeseeeeeenee oo, 70
22465 SERVER_INFO 1523 oooiooicocoeoeoeine eoeeeeeeseescessensensieneeoeevessien 70
2.2.4.66 SERVER_INFO 1528 ..coovcoiicocoeieeicicene eoeeeeeeeeoeeeeseeseeeeeenee oo, 70
2.2.4.67 SERVER_INFO_1529 ..oioooiicocoeioeicecne oo oo, 71
6 / 240

[MS -SRVS-Diff] - v20210625

Server Service Remote Protocol

Copyright © 2021 Microsoft Corporati on
Release: June 25, 2021

2.2.4.68 SERVER_INFO_1530 oo rivieee e s ssnininnnaee s aaeeennnenes 71
2.2.4.69 SERVER_INFO _1533 s et iiees e 71
2.2.4.70 SERVER_INFO_1534 .. eeeeesviiiiinenn e avveeveeees 71
2.24.71 SERVER_INFO _1535 .iiiiiiiiiiiiieiiies et riiees eee e 72
2.2.4.72 SERVER_INFO_1536 ..oooiiiiiiiiiiiiiiiiieiiies et riiees eee e 72
2.2.4.73 SERVER_INFO_1538 ..o teveevvviiineen e avveeveeees 72
2.2.4.74 SERVER_INFO_1539 .iiiiiiiiiiiiieiiies et riiees eee e 72
2.2.4.75 SERVER_INFO_1540 i eveeevviiiinnen e eniiinee avveeveeees 73
2.2.4.76 SERVER_INFO_1541 .iiiiiiiiiiieiiies et riees eee e 73
2.2.4.77 SERVER_INFO_1542 ..o eveeesviiiinen e avveeveeees 73
2.2.4.78 SERVER_INFO_1543 . iiiiiiiieiiies et iees e 73
2.2.4.79 SERVER_INFO_1544 . iiiiiiiiiiiiiiie et niees e 74
2.2.4.80 SERVER_INFO_1545 it e avveeveeees 74
2.2.4.81 SERVER_INFO_1546 .oiiiiiiiiiiiiiiiiiiieiiies et riiees eee e 74
2.2.4.82 SERVER_INFO_1547 i e esviiinnnn e avveeveeees 74
2.2.4.83 SERVER_INFO_1548 .iiiiiiiiiiiieiiies et iees e 75
2.2.4.84 SERVER_INFO_1549 .. eveeevviiinnnn e avveeveeees 75
2.2.4.85 SERVER_INFO_1550 .o veeeevvviinnee e e avveeveeees 75
2.2.4.86 SERVER_INFO_1552 iiiiiiiiiiiiiiiieiiiee vt niiees eae e 75
2.2.4.87 SERVER_INFO_1553 .. eeeevvviinnn e e avvreveeees 76
2.2.4.88 SERVER_INFO _1554 iiiiiiiiiiiieiiiee et ieees eee e 76
2.2.4.89 SERVER_INFO_1555 .. eveevsviinnne e e avveeveeees 76
2.2.4.90 SERVER_INFO _1556 ..oiiiiiiiiiiiiiiciiiiieiiiee vt sine e nieees eeeesees 76
2.2.4.91 DISK INFO oo iiiiiiis . svvtriee e e siiiinnrne e eaeaeasseneeeeaee e 77
2.2.4.92 DISK_ENUM_CONTAINER ..ccoocvveeeiiiiiiiiieeeeen 77
2.2.4.93 SERVER_TRANSPORT_INFO_O0 77
2.2.4.94 SERVER_TRANSPORT_INFO_1 77
2.2.4.95 SERVER_TRANSPORT_INFO_2 .iiiiiiiiiiieiiieiiies et e 78
2.2.4.96 SERVER_TRANSPORT _INFO_3 ..o eeveeesesinnee e e e e 78
2.2.4.97 SERVER_XPORT_INFO_0_CONTAINER 79
2.2.4.98 SERVER_XPORT_INFO_1 CONTAINER 79
2.2.4.99 SERVER_XPORT_INFO_2 CONTAINER 80
2.2.4.100 SERVER_XPORT_INFO_3 _CONTAINER ..ccciiiiiiiiiiiiiiiiees reeeiee e 80
2.2.4.101 SERVER_XPORT_ENUM_STRUCT .iiiiiiiiiiviiieieeiviiee aevvriiveee e e e e ssnnenees 80
2.2.4.102 SERVER_ALIAS INFO_0 oo et sieeesnieeees eaeanes 81
2.2.4.103 SERVER_ALIAS INFO_O0 CONTAINER .oiiiiiiiiiiiiiieeviiee eeevvvivieeeee e 81
2.2.4.104 SERVER_ALIAS _ENUM_STRUCT oot teesee e 82
2.2.4.105 TIME_OF_DAY_INFO iiiiiiiiiiieiiiieiiee et riee e niiees aeeeeaees 82
2.2.4. 106 ADT _SECURITY_DESCRIPTOR ...ccccciiiiiiiiiiiiiiiiiies eeee e e s ssiineeea e e e s . 83
2.2.4.107 NET_DFS_ENTRY_ID oo eeeviieesiee e niene e s aeveiveaeanes 83
2.2.4.108 NET_DFS ENTRY_ID _CONTAINER .o e e 84
2.2.4.109 DFS_SITENAME_INFO oo vttt sieeeniieees eaeeens 84
2.2.4. 110 DFS_SITELIST INFO i eteeevviinnn e avvevveeees 84
3 Protocol Details oo s v e 85
3.1 Server DEtailS ..o e e ———————— . 85
3.1.1 Abstract Data MOdeloovvvviiiiiiiiiiiiiiie v e 85
3.1.1.1 GlODAl ... e ————— .. 86
3.1.1.2 Per TranSPOrt ..o et areeeeeeee e e 87
3.1.1.3 Per Alias 87
3.114 Server Properties Object (ServerConfiguration) 88
3.1.15 Per Tre€@CONNECE ovviiiiieiicieeeiiie et e 88
3.1.16 PerOpenococccevvieeeiniiieeenns 88
3.1.1.7 Per Share 88
3.1.1.8 Per Sessionccccecvvvveeeeeeiiiinnns 89
3.1.1.9 Algorithm for Determining Path Type .t s 89
3.1.2 TIMEIS e e e ————————— s 90
3.1.3 INGIANIZALION oo e e 91
7 1 240

[MS -SRVS-Diff] - v20210625
Server Service Remote Protocol
Copyright © 2021 Microsoft Corporati
Release: June 25, 2021

on

3.14 Messag e Processing Events and Sequencing Rules cocviiiiiiviiieiviiees e, 93
3.141 (Updated Section) = NetrConnectionEnum (Opnum 8) ...oocviievieeiiee e .. 96
3.14.2 NetrFileEnum (Opnum 9) ..o,

3.14.3 NetrFileGetinfo (Opnum 10)

3.144 NetrFileClose (Opnum 11)

3.145 NetrSessionEnum (Opnum 12)

3.14.6 NetrSessionDel (Opnum 13) ..oooviiieenieeneeeeee,

3.1.47 NetrShareAdd (Opnum 14)

3.148 NetrShareEnum (Opnum 15)

3.1.4.9 NetrShareEnumsSticky (Opnum 36)

3.1.4.10 NetrShareGetinfo (Opnum 16)

3.14.11 NetrShareSetinfo (Opnum 17)

3.1.4.12 NetrShareDel (Opnum 18) ccooviiiiiiiieeecee,

3.1.4.13 NetrShareDelSticky (Opnum 19)

3.1.4.14 NetrShareDelStart (Opnum 37)

3.1.4.15 NetrShareDelCommit (Opnum 38)

3.1.4.16 NetrShareCheck (Opnum 20) cccceeviieeens

3.1.4.17 NetrServerGetinfo (Opnum 21)

3.1.4.18 NetrServerSetinfo (Opnum 22)

3.1.4.19 NetrServerDiskEnum (Opnum 23)

3.1.4.20 NetrServerStatisticsGet (OpnUM 24) i e 142
3.14.21 NetrRemoteTOD (OpnuUM 28) oo e e 143
3.1.4.22 NetrServerTransportAdd (Opnum 25) s e 144
3.1.4.23 NetrServerTransportAddEX (Opnum 41) s ereeriee e 144
3.1.4.24 NetrServerTransportEnum (Opnum 26) .o eveeeree e 146
3.1.4.25 NetrServerTransportDel (OpnumM 27) i e 148
3.1.4.26 NetrServerTransportDelEx (Opnum 53) i ereerieeenieens 149
3.1.4.27 NetrpGetFileSecurity (OpnuUM 39) oo e 150
3.1.4.28 NetrpSetFileSecurity (Opnum 40) 151
3.1.4.29 Net prPathType (Opnum 30) ..cooiiiiiieiieeeeeie, ..152
3.1.4.30 NetprPathCanonicalize (Opnum 31) 153
3.14.31 NetprPathCompare (OpnumM 32) i e 154
3.1.4.32 NetprNameValidate (Opnum 33) s e 156
3.1.4.33 NetprNameCanonicalize (Opnum 34) s e 157
3.1.4.34 NetprNameCompare (Opnum 35) .o e 159
3.1.4.35 NetrDfsGetVersion (OpnumM 43) s e 160
3.1.4.36 NetrDfsCreateLocalPartition (Opnum 44) e e 160
3.1.4.37 NetrDfsDeleteLocalPartition (Opnum 45) e e 162
3.1.4.38 NetrDfsSetLocalVolumeState (Opnum 46) i e 163
3.1.4.39 NetrDfsCreateExitPoint (Opnum 48) s e 163
3.1.4.40 NetrDfsModifyPrefix (Opnum 50) oo e 164
3.1.4.41 NetrDfsDeleteExitPoint (Opnum 49) s e 165
3.1.4.42 NetrDfsFixLocalVolume (Opnum 51) s e 166
3.1.4.43 NetrDfsManagerReportSitelnfo (Opnum 52) i e, 169
3.1.4.44 NetrServerAliasAdd (OpnuM 54) s e 169
3.1.4.45 NetrServerAliasEnum (Opnum 55) s e 171
3.1.4.46 NetrServerAliasDel (OpnuM 56) oo e 173
3.1.4.47 NetrShareDelEX (OpnumM 57) o et 174

3.15 TIMEIr EVENES i ettt eiies areeenie e 175

3.1.6 Other Local EVENIS ..ociiiiiiiiiiiis e e 175
3.161 Server Looks Up Shar€S ..o s e 175
3.1.6.2 Server Registers a NeW SESSION .o et 176
3.16.3 Server Deregisters @ SESSION i e e .176
3.164 Server Registers a NeW OPEN oo et 176
3.1.6.5 Server Deregisters an OPEN oo e .. 176
3.1.6.6 Server Registers a New Tre€CONNECE oo et 176
3.1.6.7 Server Deregisters a Tre€CONNECT .o e 176
3.1.6.8 Server Normalizes a ServerName e e 176

8/ 240

[MS -SRVS-Diff] - v20210625

Server Service Remote Protocol

Copyright © 2021 Microsoft Corporati on
Release: June 25, 2021

3.1.6.9 Local Application Enables Advertising a Service i v, 177

3.1.6.10 Local Application Disables Advertising a Service .o e 177
3.1.6.11 Server Queries EXIiSting SEIVICES i v 177
3.1.6.12 Server Service TerMINAES .oiiiiviieiiiiiecciiieiee e ... 178
3.1.6.13 Local Application Pauses or Resumes the CIFS Server —ocovievieiieennen, 178
3.1.6.14 Server Notifies Completion of Initialization ~ cccciiiiiiiiiiies e 178
3.1.6.15 Server Notifies Current Uses of a Share .iiiiiiiiiis e, 178
3.1.6.16 Server Updates Connection Count on a Transportcccccccvveeeeeinicvnennnn. ... 178
3.1.6.17 Server Looks Up Null Session Pipes 178
3.2 Client Detailsccccovviiiiiiiiiiiiiis e .. 178
3.2.1 Abstract Data Modelccooiiiiiiiiiiiiiis e e 178
3.2.2 1100 T=T £ U 179
323 INILANZALON oo e e 179
3.24 Message Processing Events and Sequencing Rules ... s 179
325 TIMEr EVENES oo et e 179
3.2.6 Other LoCal EVENES ..ooiiiiiiiiciiiiiiiiiiit et e e eereea e 179
4 ProtoCol EXamPpIES it et eee e 180
4.1 Example of ResumeHandle ociiiiiiiiiiiiis e e 180
4.2 Two-Phase Share Deletioncccccviiiiiiiiiciiiiiiis et iees e e 181
4.3 Adding a Scoped Share With an Alias to a Server i e 181
5 SECUMLY oo e 184
5.1 Security Considera tions for Implementers 184
5.2 Index of Security Parameters ..o e eeeees 184
6 Appendix A: FUILIDL e et e enee e e s 185
7 (Updated Section) Appendix B: Product Behavior .. e 208
8 Change TraCKiNg oo e eeea e .. 226
O INUEX oo e e e 227
9/ 240

[MS -SRVS-Diff] - v20210625

Server Service Remote Protocol

Copyright © 2021 Microsoft Corporati on
Release: June 25, 2021

1 Introduction

This document specifies the Server Service Remote Protocol. The Server Service Remote Protocol is a
remote procedure call (RPC) i based protocol that is used for remotely enabling file and printer sharing
and named pipe access to the server through the Server Message Block (SMB) Protocol, as specified in
[MS - SMB]. The protocol is also used for remote admin istration of servers that are running Windows.

Sections 1.5, 1.8, 1.9, 2, and 3 of this specification are normative. All other sections and examples in
this specification are informative.
1.1 (Updated Section) Glossary
This document uses the f ollowing terms:
client : A computer on which the remote procedure call (RPC) client is executing.

connection : Firewall rules are specified to apply to connections. Every packet is associated with a
connection based on TCP, UDP, or IP endpoint parameters; see [[ANAPORT].

connection blocks : A pre -allocated chunk of memory that is used to store a single connection
request.
Distributed File System (DFS) : A file system that logically groups physical shared folders located

on different servers by tra nsparently connecting them to one or more hierarchical namespaces.
DFS also provides fault -tolerance and load -sharing capabilities.

Distributed File System (DFS) link : A component in a DFS path that lies below the DFS root and
maps to one or more DFS link targets. Also interchangeably used to refer to a DFS path that
contains the DFS link.

Distributed File System (DFS) root : The starting point of the DFS namespace. The root is often
used to refer to the namespace as a whole. A DFS root maps to one or more r oot targets, each
of which corresponds to a share on a separate server. A DFS root has one of the following
formats " \\<ServerName> \<RootName>"or" \\<DomainName> \<RootName>". Where
<ServerName> is the name of the root target server hosting the DFS namespa ce;
<DomainName> is the name of the domain that hosts the DFS root; and <RootName> is the
name of the root of a domain -based DFS. The DFS root must reside on an NTFS volume.

Domain Name System (DNS) : A hierarchical, distributed database that contains mapp ings of
domain names to various types of data, such as IP addresses. DNS enables the location of
computers and services by user -friendly names, and it also enables the discovery of other
information stored in the database.

endpoint : A network -specific addr ess of a remote procedure call (RPC) server process for remote
procedure calls. The actual name and type of the endpoint depends on the RPC protocol
sequence that is being used. For example, for RPC over TCP (RPC Protocol Sequence
ncacn_ip_tcp), an endpoin t might be TCP port 1025. For RPC over Server Message Block (RPC
Protocol Sequence ncacn_np), an endpoint might be the name of a named pipe. For more
information, see [C706].

globally unique identifier (GUID) : A term used interchangeably with universally u nique
identifier (UUID) in Microsoft protocol technical documents (TDs). Interchanging the usage of
these terms does not imply or require a specific algorithm or mechanism to generate the value.
Specifically, the use of this term does not imply or require that the algorithms described in
[RFC4122] or [C706] must be used for generating the GUID. See also universally unique
identifier (UUID).

10 / 240

[MS -SRVS-Diff] - v20210625

Server Service Remote Protocol

Copyright © 2021 Microsoft Corporati on
Release: June 25, 2021

Interface Definition Language (IDL) : The International Standards Organization (ISO) standard
language for specifyingt he interface for remote procedure calls. For more information, see
[C706] section 4.

Internet host name : The name of a host as defined in [RFC1123] section 2.1, with the extensions
described in [MS -HNDS].

mailslot : A mechanism for one -way interprocess comm unications (IPC). For more information, see
[MSLOT] and [MS -MAIL].

Microsoft Interface Definition Language (MIDL) : The Microsoft implementation and extension
of the OSF -DCE Interface Definition Language (IDL). MIDL can also mean the Interface
Definition La nguage (IDL) compiler provided by Microsoft. For more information, see [MS -RPCE].

named pipe :Anamed, one -way, or duplex pipe for communication between a pipe server and one
or more pipe clients.

NetBIOS host name : The NetBIOS name of a host (as in [RFC1001] section 14
and [RFC1002] section 4), with the extensions described in [MS -NBTE].

Quality of Service (QoS) : A set of technologies that do network traffic manipulation, such as
packet marking and reshaping.

remote procedure call (RPC) : A communication protocol used primarily between client and
server. The term has three definitions that are often used interchangeably: a runtime
environment providing for communication facilities between computers (the RPC runtime); a set
of request -and -response message exchanges between computers (the RPC exchange); and the
single message from an RPC exchange (the RPC message). For more information, see [C706].

scoped share : A share that is only available to a client if accessed through a specific DNS or
NetBIOS name. Scoped shares can make a single server appear to be multiple, distinct servers
by providing access to a different set of shares based on the name the client uses to access the
server.

server : A computer on which the remote procedure call (RP C) server is executing.

Server Message Block (SMB) : A protocol that is used to request file and print services from
server systems over a network. The SMB protocol extends the CIFS protocol with additional
security, file, and disk management support. For m ore information, see [CIFS] and [MS -SMB].

share : A resource offered by a Common Internet File System (CIFS) server for access by CIFS
clients over the network. A share typically represents a directory tree and its included files
(referred to commonly as a "disk share" or "file share") or a printer (a "print share"). If the
information about the share is saved in persistent store (for example, Windows registry) and
reloaded when a file server is restarted, then the share is referred to as a "st icky share". Some
share names are reserved for specific functions and are referred to as special shares: IPC$,
reserved for interprocess communication, ADMINS, reserved for remote administration, and A$,
B$, C$ (and other local disk names followed by a dol lar sign), assigned to local disk devices.

site : A group of related webpages that is hosted by a server on the World Wide Web or an intranet.
Each website has its own entry points, metadata, administration settings, and workflows. Also
referred to asweb s ite.

standalone DFS implementation : A Distributed File System (DFS) namespace whose
configuration information is stored locally in the registry of the root server.

sticky share : A share that is available after a machine restarts.

universally unique identi fier (UUID) : A 128 -bit value. UUIDs can be used for multiple
purposes, from tagging objects with an extremely short lifetime, to reliably identifying very

11 / 240

[MS -SRVS-Diff] - v20210625

Server Service Remote Protocol

Copyright © 2021 Microsoft Corporati on
Release: June 25, 2021

persistent objects in cross -process communication such as client and server interfaces, manager
entry -point vectors, and RPC objects. UUIDs are highly likely to be unique. UUIDs are also

known as globally unique identifiers (GUIDs) and these terms are used interchangeably in the

Microsoft protocol technical documents (TDs). Interchanging the usage of thes e terms does not
imply or require a specific algorithm or mechanism to generate the UUID. Specifically, the use of

this term does not imply or require that the algorithms described in [RFC4122] or [C706] must

be used for generating the UUID.

work item : A b uffer that receives a user request, which is held by the Server Message Block
(SMB) server while it is being processed.

MAY, SHOULD, MUST, SHOULD NOT, MUST NOT: These terms (in all caps) are used as defined
in [RFC2119]. All statements of optional behavior use either MAY, SHOULD, or SHOULD NOT.

1.2 References
Links to a document in the Microsoft Open Specifications library point to the correct section in the
most recently published version of the referenced document. However, because individual documents

in the library are not updated at the same time, the sect ion numbers in the documents may not
match. You can confirm the correct section numbering by checking the Errata .

1.2.1 Normative References

We conduct frequent surveys of the normative references to as sure their continued availability. If you
have any issue with finding a normative reference, please contact dochelp@microsoft.com. We will

assist you in finding the relevant information.

[C706] The Open Group, "DCE 1.1: Remote Procedure Call", C706, Augus 11997,
https://publications.opengroup.org/c706

Note Registration is required to download the document.

[MS -BRWS] Microsoft Corporation, "Common Internet File System (CIFS) Browser Protocol”.
[MS - CIFS] Microsoft Corporation, "Common Internet File System (C IFS) Protocol".
[MS - DFSC] Microsoft Corporation, "Distributed File System (DFS): Referral Protocol".

[MS - DFSNM] Microsoft Corporation, "Distributed File System (DFS): Namespace Management
Protocol".

[MS -DTYP] Microsoft Corporation, "Windows Data Types".

[M S- EERR] Microsoft Corporation, "ExtendedError Remote Data Structure".

[MS - ERREF] Microsoft Corporation, "Windows Error Codes".

[MS -NRPC] Microsoft Corporation, "Netlogon Remote Protocol".

[MS - RPCE] Microsoft Corporation, "Remote Procedure Call Protocol Ext ensions".
[MS - SMB2] Microsoft Corporation, "Server Message Block (SMB) Protocol Versions 2 and 3".
[MS - SMB] Microsoft Corporation, "Server Message Block (SMB) Protocol”.

[RFC1001] Network Working Group, "Protocol Standard for a NetBIOS Service on a TCP/UDP
Transport: Concepts and Methods", RFC 1001, March 1987, http://www.ietf.org/rfc/rfc1001.txt

12 / 240

[MS -SRVS-Diff] - v20210625

Server Service Remote Protocol

Copyright © 2021 Microsoft Corporati on
Release: June 25, 2021

[RFC1002] Network Working Group, "Protocol Standard for a NetBIOS Service on a TCP/UDP
Transport: Detailed Specifications”, STD 19, RFC 1002, March 1987, http://ww w.rfc -
editor.org/rfc/rfc1002.txt

[RFC1034] Mockapetris, P., "Domain Names - Concepts and Facilities", STD 13, RFC 1034, November
1987, http://www.ietf.org/rfc/rfc1034.txt

[RFC1035] Mockapetris, P., "Domain Names - Implementation and Specification”, STD 13, RFC 1035,
November 1987, http://www.ietf.org/rfc/rfc1035.txt

[RFC2119] Bradner, S., "Key words for use in RFCs to Indicate Requirement Levels", BCP 14, RFC
2119, March 1997, http://www.rfc -editor.org/rfc/rfc2119.txt

1.2.2 Informative References

[MSDFS] Microsoft Corporation, "How DFS Works", March 2003, http://technet.microsoft.com/en -
us/library/cc782417%28WS.10%29.aspx

[MSDN - CoCreateGuid] Microsoft Corporation, "CoCreateGuid function", http://msdn.mi crosoft.com/en -
us/library/ms688568.aspx

[NWLINK] Microsoft Corporation, "Description of Microsoft NWLINK IPX/SPX -Compatible Transport",
October 2006, http://support.microsoft.com/?kbid=203051

[OFFLINE] Microsoft Corporation, "Offline Files", January 2005,
http://technet2.microsoft.com/WindowsServer/en/Library/830323a2 -23ca-4875 -af3c -
06671d68ca9a1033.mspx

[PIPE] Microsoft Corporation, "Named Pipes", http://msdn.microsoft.com/en -usl/library/aa365590.aspx

1.3 Overview

The Server Service Remote Protocol is designed for remotely querying and configuring a Server

Message Block (SMB) server on a remote computer. By using this protocol, a client can query and

configure information on the server such as active connections, sessions, shares, files, and transport
protocols. Clients can also query and configure the server itself, for instance by setting the server's

type, changing the services that are running on the server, or getting a list of all servers of a specific
type in a domain.

A server can be configured to present different resources based on the name the client connects with,
allowing it to appear as multiple, distinct servers. This is achieved by scoping a share to a specific
name , and hosting all of the names on the same server.

The server can also configure one or more aliases, identifying that multiple distinct names present the

same resources. For example, the administrator could choose to expose the same shares for the name
"server" and "server.example.com" by creating an alias indicating that "server. example.com" is the

same as "server". The SMB client will connect using the name provided by the calling applications, and

is not aware whether the name is the server's default m achine name, an additionally configured name,
or an alias. For more information, see the example in section 4.3.

This is an RPC -based protocol. The server does not maintain client state information. No sequence of
method calls is imposed on this protocol, with the exception of net share deletion, which requires a
two - phase commit, net file get information, and net file close.

13 / 240

[MS -SRVS-Diff] - v20210625

Server Service Remote Protocol

Copyright © 2021 Microsoft Corporati on
Release: June 25, 2021

1.4 Relationship to Other Protocols

This protocol depends on RPC and SMB for its transport. This protocol uses RPC over named pipes, as
specified in section 2.1. Named pipes use the SMB protocols, as specified in [MS -CIFS], [MS -SMB],
and [MS -SMB?2].

This protocol calls the Common Internet File System (CIFS) Protoc ol, the Server Message Block (SMB)
Protocol, or the SMB Version 2 Protocol for file server management.

CIFS, SMB, and SMB Version 2 call the Server Service Remote Protocol for synchronizing the
information on shares, sessions, treeconnects, file opens, and server configuration. The
synchronization mechanism is dependent upon CIFS, SMB, SMB2 servers, and the server service
starting up and terminating together, in order to share and maintain a consistent view of the common
data among all protocols at all time S.

This protocol calls the DFS Namespace Management Protocol, as specified in [MS -DFSNM], to identify
a DFS share.
1.5 Prerequisites/Preconditions

The Server Service Remote P rotocol is an RPC interface and, as a result, has the prerequisites that are
described in [MS -RPCE] section 1.5 as being common to RPC interfaces.

It is assumed that a Server Service Remote Protocol client has obtained the name of a remote
machine that su pports the Server Service Remote Protocol before this protocol is invoked. This
specification does not describe how a client invokes this protocol.

1.6 Applicability Statement

The Server Service Remote Proto col is applicable to environments that require management and

monitoring of a file server. In particular, this protocol provides for the creation, deletion, and

management of file shares on the server and the monitoring and administering of users who acces S
that file server. Therefore, this protocol is applicable to environments that require those features.

The Server Service Remote Protocol is used for the management of file servers that use the SMB
Protocol, as specified in [MS -SMB].
1.7 Versioning and Capa bility Negotiation

None.

1.8 Vendor -Extensible Fields
This protocol does not define any vendor -extensible fields.

This protocol uses Win32 error codes. These values are taken from the Windows error number space
defined in [MS -EERR]. Vendors SHOULD reuse those values with their indica ted meaning. Choosing
any other value runs the risk of a collision in the future.<1>

1.9 Standards Assignments

Parameter Value Reference

RPC Interface UUID 4b324fc8 -1670 -01d3 -1278 -5a47bf6eel88 Section 2.1

Pipe Name \PIPE\srvsvc Section 2.1

14 | 240

[MS -SRVS-Diff] - v20210625

Server Service Remote Protocol

Copyright © 2021 Microsoft Corporati on
Release: June 25, 2021

15 / 240

[MS -SRVS-Diff] - v20210625

Server Service Remote Protocol

Copyright © 2021 Microsoft Corporati on
Release: June 25, 2021

2 Messages

2.1 Transport
The RPC methods that the Server Service Remote Protocol exposes are available on one endpoint:
A srvsvc named pipe (RPC protseqs ncacn_np), as specified in [MS -RPCE] section 2.1.1.2.

The Server Service Remote Protocol endpoint is available only over named pipes. For more details
about named pipes, see [P IPE].

This protocol MUST use the UUID as specified in section 1.9. The RPC version number is 3.0.

This protocol allows any user to establish a connection to the RPC server. The protocol uses the

underlying RPC protocol to retrieve the identity of the calle r that made the method call, as specified in
[MS -RPCE] section 3.3.3.4.3. The server SHOULD use this identity to perform method -specific access
checks as specified in section 3.1.4.<2>

2.2 Common Data Types

In addition to RPC base types defined in [C706] and [MS -RPCE], the data types that follow are defined
in the Microsoft Interface Definition Language (MIDL) specification for this RPC interface.
This protocol uses the following types, as specified in [MS -DTYP].

Type Reference

DWORD [MS -DTYP] section 2.2.9

GUID [MS-DTYP] section 2.3.4

NET_API_STATUS [MS -DTYP] section 2.2.37

SECURITY_INFORMATION | [MS -DTYP] section 2.4.7

WCHAR [MS -DTYP] section 2.2.60

2.2.1 Simple Data Types

2211 SRVSVC _HANDLE

SRVSVC_HANDLE: A pointer to a null -terminated Unicode UTF -16 string that specifies the Internet
host name or NetBIOS host nhame of the remote server on which the method is to execute that is pre -
pended with " \\" (two literal backslash characters).

This type is declared as follows:

typedef [handle, string] wchar_t* SRVSVC_HANDLE;

2212 SHARE_DEL_HANDLE

SHARE_DEL_HANDLE: An RPC context handle, as specified in [C706] section 6, returned by the
NetrShareDelStart method, to be provided as a parameter to the NetrShareDelCommit method.

16 / 240

[MS -SRVS-Diff] - v20210625

Server Service Remote Protocol

Copyright © 2021 Microsoft Corporati on
Release: June 25, 2021

This type is declared as follows:

typedef [context_handle] void* SHARE_DEL_HANDLE;

2.2.1.3 PSHARE_DEL_HANDLE
PSHARE_DEL_HANDLE : A pointer to a SHARE_DEL_HANDLE (section 2.2.1.2) datatype.

This type is declared as follows:

typedef SHARE_DEL_HANDLE*SHARE_DEL_HANDLE;

2.2.2 Constants

2221 Sessionclient Types

Sessionclient is a Unicode UTF -16 string value that is used to specify the type of client that established
the session.<3>

The client generates an implementation -defined string that describes the client operating system
version. The server SHOULD NOT enfo rce any limits on the Sessionclient string length.<4>

2222 MAX_PREFERRED_LENGTH

The following table describes the MAX_PREFERRED_LENGTH constant.

Constant/value Description
MAX_PREFERRED_LENGTH | A constant of type DWORD that is set to 1 1. This value is valid as an input
1 parameter to any method in section 3.1.4 that takes a PreferedMaximumLength

parameter. When specified as an input parameter, this value indicates that the
method MUST allocate as m uch space as the data requires.

2.2.2.3 Session User Flags

The following flags specify information that is related to how a user established a session.

Constant/value Description
SESS_GUEST The user specified by the sesi*_username member established the session by using a
0x00000001 guest account.

SESS_NOENCRYPTION | The user specified by the sesi*_username member established the session without using
0x00000002 password encryption.

2.2.24 Share Types

The following values are used to specify the type of a shared resource.

17 | 240

[MS -SRVS-Diff] - v20210625

Server Service Remote Protocol

Copyright © 2021 Microsoft Corporati on
Release: June 25, 2021

Constant/value Description
STYPE_DISKTREE Disk drive
0x00000000
STYPE_PRINTQ Print queue
0x00000001
STYPE_DEVICE Communication device
0x00000002
STYPE_IPC Interprocess communication (IPC)
0x00000003
STYPE_CLUSTER_FS A cluster share
0x02000000
STYPE_CLUSTER_SOFS | A Scale -Out cluster share
0x04000000
STYPE_CLUSTER_DFS A DFS share in a cluster
0x08000000
The following table of values can be OR'd with the values in the preceding table to further specify the

characteristics of a shared resource. It is possible to use both values in this OR operation.

Constant/value Description
STYPE_SPECIAL Special share reserved for interprocess communication (IPC$) or re mote administration of
0x80000000 the server (ADMINS). Can also refer to administrative shares such as C$, D$, E$, and so

forth.

0x40000000

STYPE_TEMPORARY | A temporary share that is not persisted for creation each time the file server initializes.

2225 Client -Side Caching (CSC) States

The following values are used to specify states that provide hints to clients about whether to cache
files by using client -side caching with the SMB Protocol, as specified in [MS -SMB].
Constant/value Description

CSC_CACHE_MANUAL_REINT
0x00

The client MUST allow only manual caching for the files open from this share.

CSC_CACHE_AUTO_REINT
0x10

The client MAY cache every file that it opens from this share.

CSC_CACHE_VDO
0x20

The client MAY cache every file that it opens from this share. Also, the client MAY
satisfy the file requests from its local cache.

CSC_CACHE_NONE
0x30

The client MUST NOT cache any files from this share.

[MS -SRVS-Diff] - v20210625
Server Service Remote Protocol

Copyright © 2021 Microsoft Corporati

Release: June 25, 2021

18 / 240

on

2226

The following values are returned by the

Platform IDs

server to indicate its platform version.<5><6>

Constant/value

Description

PLATFORM_ID_DOS
300

Specified by a server running DOS.

PLATFORM_ID_OS2
400

Specified by a server running OS2.

PLATFORM_ID_NT
500

Specified by a server running Windows NT or a

newer Windows operating system version.

PLATFORM_ID_OSF
600

Specified by a server running OSF/1.

PLATFORM_ID_VMS

Specified by a server running VMS.

700

2227

Software Type Flags

The SV_TYPE flags indicate the services that are available on the server.

Constant/value

Description

SV_TYPE_WORKSTATION
0x00000001

A server running the WorkStation Service.

SV_TYPE_SERVER
0x00000002

A server running the Server Service.

SV_TYPE_SQLSERVER
0x00000004

A server running SQL Server.

SV_TYPE_DOMAIN_CTRL
0x00000008

A primary domain controller.

SV_TYPE_DOMAIN_BAKCTRL
0x00000010

A backup domain controller.

SV_TYPE_TIME_SOURCE
0x00000020

A server is available as a time source for network time synchronization.

SV_TYPE_AFP
0x00000040

An Apple File Protocol server.

SV_TYPE_NOVELL
0x00000080

A Novell server.

SV_TYPE_DOMAIN_MEMBER
0x00000100

A LAN Manager 2.x domain member.

SV_TYPE_PRINTQ_SERVER
0x00000200

A server sharing print queue.

[MS -SRVS-Diff] - v20210625
Server Service Remote Protocol

Copyright © 2021 Microsoft Corporati

Release: June 25, 2021

19 / 240

on

Constant/value

Description

SV_TYPE_DIALIN_SERVER
0x00000400

A server running a dial -in service.

SV_TYPE_XENIX_SERVER
0x00000800

A Xenix server.

SV_TYPE_NT
0x00001000

Windows Server 2003 operating system, Windows XP op erating system,
Windows 2000 operating system, or Windows NT operating system.

SV_TYPE_WFW
0x00002000

A server running Windows for Workgroups.

SV_TYPE_SERVER_MFPN
0x00004000

Microsoft File and Print for NetWare.

SV_TYPE_SERVER_NT
0x00008000

Windows Server 2003, Windows 2000 Server operating system, or a server
that is not a domain controller.

SV_TYPE_POTENTIAL_BROWSER
0x00010000

A server that can run the browser service.

SV_TYPE_BACKUP_BROWSER
0x00020000

A server running a browser service a s backup.

SV_TYPE_MASTER_BROWSER
0x00040000

A server running the master browser service.

SV_TYPE_DOMAIN_MASTER
0x00080000

A server running the domain master browser.

SV_TYPE_WINDOWS
0x00400000

Windows Millennium Edition operating system, Windows 98
or Windows 95 operating system.

operating system,

SV_TYPE_DFS
0x00800000

A server running the DFS service.

SV_TYPE_CLUSTER_NT
0x01000000

Server clusters available in the domain.

SV_TYPE_TERMINALSERVER
0x02000000

Terminal Server.

SV_TYPE_CLUSTER_VS_NT
0x04000000

Cluster virtual servers available in the domain.

SV_TYPE_DCE
0x10000000

A server running IBM DSS (Directory and Security Services) or equivalent.

SV_TYPE_ALTERNATE_XPORT
0x20000000

Return list for alternate transport.

SV_TYPE_LOCAL_LIST_ONLY
0x40000000

Servers maintained by the browser.

SV_TYPE_DOMAIN_ENUM
0x80000000

Primary domain.

[MS -SRVS-Diff] - v20210625
Server Service Remote Protocol
Copyright © 2021 Microsoft Corporati
Release: June 25, 2021

20 / 240

on

Constant/value Description

SV_TYPE_ALL All servers.
OXFFFFFFFF

2.2.2.8 Name Types

The following values specify types of names that are used with the NetprNameValidate,
NetprNameCanonicalize, and NetprNameCompare methods.

Constant/value Description
NAMETYPE_USER User name

1

NAMETYPE_PASSWORD User password

2

NAMETYPE_GROUP Group name

3

NAMETYPE_COMPUTER Computer name
4

NAMETYPE_EVENT Event name

5

NAMETYPE_DOMAIN NetBIOS name of a domain
6

NAMETYPE_SERVICE Service name

7

NAMETYPE_NET Net name

8

NAMETYPE_SHARE Share name

9

NAMETYPE_MESSAGE Message name
10

NAMETYPE_MESSAGEDEST Message destination
11

NAMETYPE_SHAREPASSWORD | Share password
12

NAMETYPE_WORKGROUP Workgroup name
13

More information for each NameType is listed following.

The set of default invalid characters includes "I'\[]:|<>+=;,? as well as the control characters in the
range from 0x01 through Ox1F, inclusive.

21 / 240

[MS -SRVS-Diff] - v20210625

Server Service Remote Protocol

Copyright © 2021 Microsoft Corporati on
Release: June 25, 2021

Restricted to
Min/max Invalid dots and
Constant length characters spaces? Other requirements
NAMETYPE_USER 1/256 Default No
NAMETYPE_PASSWORD 0/256 0x00 Yes
NAMETYPE_GROUP 1/256 Default No
NAMETYPE_COMPUTER 1/260 Default and no No leading or trailing blanks.
*
NAMETYPE_EVENT 1/16 Default No
NAMETYPE_DOMAIN 1/15 Default, *, No
0x20
NAMETYPE_SERVICE 1/80 Default No
NAMETYPE_NET 1/260 Default No
NAMETYPE_SHARE 1/80 Default No
NAMETYPE_MESSAGE 1/15 Default No
NAMETYPE_MESSAGEDEST 1/260 Default No "*" is allowed only as the last
character, and names of the
maximum length must contain
a trailing "*".
NAMETYPE_SHAREPASSWORD | 0/8 0x00 Yes
NAMETYPE_WORKGROUP 1/15 Default No

2229 Path Types

The following values specify types of paths used with the NetprPathType, NetprPathCanonicalize, and

NetprPathCompare methods.

Constant/value

Description

ITYPE_UNC_COMPNAME
4144

UNC ComputerName

ITYPE_UNC_WC
4145

UNC Wild Card ComputerName

ITYPE_UNC
4096

UNC Path; MUST NOT end with

\

ITYPE_UNC_WC_PATH
4097

UNC Path and WC (? or *)

ITYPE_UNC_SYS_SEM
6400

UNC Semaphore

ITYPE_UNC_SYS_SHMEM
6656

UNC Shared Memory

[MS -SRVS-Diff] - v20210625
Server Service Remote Protocol

Copyright © 2021 Microsoft Corporati

Release: June 25, 2021

on

22 | 240

Constant/value Description
ITYPE_UNC_SYS_MSLOT UNC Mailslot
6144

ITYPE_UNC_SYS_PIPE UNC Pipe
6912

ITYPE_UNC_SYS_QUEUE UNC Queue

7680

ITYPE_PATH_ABSND
8194

Absolute non dot path

ITYPE_PATH_ABSD
8198

Path beginning with \\. or <drive>:

ITYPE_PATH_RELND
8192

Relative path non dot

ITYPE_PATH_RELD
8196

Relative path beginning with \\.

ITYPE_PATH_ABSND_WC
8195

ITYPE_PATH_ABSND and WC

ITYPE_PATH_ABSD_WC
8199

ITYPE_PATH_ABSD and WC(? or *)

ITYPE_PATH_RELND_WC
8193

ITYPE_PATH_RELND and WC

ITYPE_PATH_RELD_WC
8197

ITYPE_PATH_RELD and WC

ITYPE_PATH_SYS_SEM
10498

Local System Semaphore \path

ITYPE_PATH_SYS_SHMEM
10754

Local System Shared Memory \path

ITYPE_PATH_SYS_MSLOT
10242

Local System Mailslot \path

ITYPE_PATH_SYS_PIPE
11010

Local System Pipe \path

ITYPE_PATH_SYS_COMM
11266

Local System COMM \path

ITYPE_PATH_SYS_PRINT
11522

Local System PRINT \path

ITYPE_PATH_SYS_QUEUE
11778

Local System QUEUE \path

ITYPE_PATH_SYS_SEM_M
43266

Local System Semaphore

[MS -SRVS-Diff] - v20210625
Server Service Remote Protocol
Copyright © 2021 Microsoft Corporati

Release: June 25, 2021

on

23 | 240

Constant/value Description

ITYPE_PATH_SYS_SHMEM_M Local System Shared Memory
43522

ITYPE_PATH_SYS_MSLOT_M Local System Mailslot
43010

ITYPE_PATH_SYS_PIPE_M Local System Pipe
43778

ITYPE_PATH_SYS_COMM_M | Local System COMM
44034

ITYPE_PATH_SYS_PRINT_M Local System PRINT
44290

ITYPE_PATH_SYS_QUEUE_M | Local System QUEUE

44546
ITYPE_DEVICE_DISK <drive>:
16384
ITYPE_DEVICE_LPT LPT[1-9][:]or \DEV\LPT[1-9]
16400
ITYPE_DEVICE_COM COM[1-9][]Jor \DEV\COM[1 -9]
16416
ITYPE_DEVICE_CON CON port
16448
ITYPE_DEVICE_NUL NULL port
16464
2.2.2.10 Common Error Codes

The following error codes are referenced in this specification.

Return value/code Description

0x00000005 The user does not have access to the requested information.
ERROR_ACCESS_DENIED

0x0000007C The value that is specified for the level parameter is invalid.
ERROR_INVALID_LEVEL

0x00000057 One or more of the specified parameters is invalid.
ERROR_INVALID_PARAMETER

0x000000EA More entries are available. Specify a large enough buffe r to receive all
ERROR_MORE_DATA entries.
0x00000000 Not enough storage is available to process this command.

ERROR_NOT_ENOUGH_MEMORY

24 | 240

[MS -SRVS-Diff] - v20210625

Server Service Remote Protocol

Copyright © 2021 Microsoft Corporati on
Release: June 25, 2021

Return value/code

Description

0x00000002
ERROR_FILE_NOT_FOUND

The system cannot find the file specified.

0x00000034
ERROR_DUP_NAME

A duplicate name exists on the network.

0x000004BC
ERROR_INVALID_DOMAINNAME

The format of the specified NetBIOS name of a domain is invalid.

0x00000032
ERROR_NOT_SUPPORTED

The server does not support branch cache.

0x00000424
ERROR_SERVICE_DOES_NOT_EXIST

The branch cache component does not exist as an installed service.

0x0000084B
NERR_BufTooSmall

The client request succeeded. More entries are available. The buffer size
that is specified by PreferedMaximumLength was too small to fit even a
single entry.

0x00000908
NERR_ClientNameNotFound

A session does not exist with the computer name.

0x0000092F
NERR_InvalidComputer

The computer name is not valid.

0x000008AD
NERR_UserNotFound

The user name could not be found.

0x00000846
NERR_DuplicateShare

The share name is already in use on this server.

0x00000845
NERR_RedirectedPath

The operation is not valid for a redirected resource. The specified device
name is assigned to a shared resource.

0x00000844
NERR_UnknownDevDir

The device or directory does not exist.

0x00000 906
NERR_NetNameNotFound

The share name does not exist.

0x00000907
NERR_DeviceNotShared

The device is not shared.

0x00000846
NERR_DuplicateShare

The alias already exists.

22211 SHARE_INFO Parameter Error Codes
When an invalid value is specified for a field of the SHARE_INFO structure, one of the following values
MUST be used to indicate which field contains an invalid value. In the following table, "*" is a wildcard
character.
25 / 240

[MS -SRVS-Diff] - v20210625
Server Service Remote Protocol
Copyright © 2021 Microsoft Corporati
Release: June 25, 2021

on

Return value/code Description

1 Indicates that a shi*_netname member caused the error.
SHARE_NETNAME_PARMNUM

3 Indicates that a shi*_type member caused the error.
SHARE_TYPE_PARMNUM

4 Indicates thata shi*_remark member caused the error.
SHARE_REMARK_PARMNUM

5 Indicates that a shi*_permissions member caused the error.
SHARE_PERMISSIONS_PARMNUM

6 Indicates that a shi*_max_uses member caused the error.
SHARE_MAX_USES_PARMNUM

7 Indicates that a sh i*_current_uses member caused the error.
SHARE_CURRENT_USES_PARMNUM

8 Indicates that a shi*_path member caused the error.
SHARE_PATH_PARMNUM

9 Indicates that a shi*_passwd member caused the error.
SHARE_PASSWD_PARMNUM

501 Indicates thata shi*_security_descriptor member caused the error.
SHARE_FILE_SD_PARMNUM

22212 SERVER_INFO Parameter Error Codes

When an invalid value is specified for a field of the SERVER_INFO structure, one of the following
values MUST be used to indicate which field contains an invalid value. In the following table, "*" is a
wildcard character.

Return value/code Description

101 Indicates that a sv*_platform_id member caused the error.
SV_PLATFORM_ID_PARMNUM

SV_NAME_PARMNUM

102 Indicates that a sv*_name member member caused the error.

103 Indicates that a sv*_version_major member caused the error.
SV_VERSION_MAJOR_PARMNUM

SV_VERSION_MINOR_PARMNUM

104 Indicates that a sv*_version_minor member caused the error.

105 Indicates that a sv*_type member caused the error.
SV_TYPE_PARMNUM

5 Indicates that a sv*_comment member caused the error.
SV_COMMENT_PARMNUM

107 Indicates that a sv*_users member caused the error.

[MS -SRVS-Diff] - v20210625

Server Service Remote Protocol

Copyright © 2021 Microsoft Corporati on
Release: June 25, 2021

26 / 240

Return value/code

Description

SV_USERS_PARMNUM

10
SV_DISC_PARMNUM

Indicates thata sv*_disc member caused the error.

16
SV_HIDDEN_PARMNUM

Indicates that a sv*_hidden member caused the error.

17
SV_ANNOUNCE_PARMNUM

Indicates that a sv*_announce member caused the error.

18
SV_ANNDELTA_PARMNUM

Indicates that a sv*_anndelta member caused the error.

112
SV_USERPATH_PARMNUM

Indicates that a sv*_userpath member caused the error.

501
SV_SESSOPENS_PARMNUM

Indicates that a sv*_sessopens member caused the error.

502
SV_SESSVCS_PARMNUM

Indicates that a sv*_sessvcs member caused the error.

503
SV_OPENSEARCH_PARMNUM

Indicates that a sv*_opensearch member caused the error.

504
SV_SIZREQBUF_PARMNUM

Indicates that a sv*_sizregbuf member caused the error.

505
SV_INITWORKITEMS_PARMNUM

Indicates that a sv*_initworkitems member caused the error.

506
SV_MAXWORKITEMS_PARMNUM

Indicates that a sv*_maxworkitems member caused the error.

507
SV_RAWWORKITEMS_PARMNUM

Indicates that a sv*_rawworkitems member caused the error.

508
SV_IRPSTACKSIZE_PARMNUM

Indicates that a sv*_irpstacksize member caused the error.

509
SV_MAXRAWBUFLEN_PARMNUM

Indicates that a sv*_maxrawbuflen member caused the error.

510
SV_SESSUSERS_PARMNUM

Indicates that a sv*_sessusers member caused the error.

511
SV_SESSCONNS_PARMNUM

Indicates that a sv*_sessconns member caus ed the error.

512

SV_MAXNONPAGEDMEMORYUSAGE_PARMNUM

Indicates that a sv*_maxnonpagedmemoryusage member
caused the error.

513

SV_MAXPAGEDMEMORYUSAGE_PARMNUM

Indicates that a sv*_maxpagedmemoryusage member caused
the error.

514

Indicates that a sv*_enablesoftcompat member caused the

[MS -SRVS-Diff] - v20210625
Server Service Remote Protocol
Copyright © 2021 Microsoft Corporati
Release: June 25, 2021

on

27 | 240

Return value/code

Description

SV_ENABLESOFTCOMPAT_PARMNUM

error.

515
SV_ENABLEFORCEDLOGOFF_PARMNUM

Indicates that a sv*_enableforcedlogoff member caused the
error.

516
SV_TIMESOURCE_PARMNUM

Indicates that a sv*_timesource member

caused the error.

517
SV_ACCEPTDOWNLEVELAPIS_PARMNUM

Indicates that a sv*_acceptdownlevelapis member caused the
error.

518
SV_LMANNOUNCE_PARMNUM

Indicates that a sv*_Imannounce member caused the error.

519
SV_DOMAIN_PARMNUM

Indicates thata sv*_domain member caused the error.

520
SV_MAXCOPYREADLEN_PARMNUM

Indicates that a sv*_maxcopyreadlen member caused the error.

521
SV_MAXCOPYWRITELEN_PARMNUM

Indicates that a sv*_maxcopywritelen member caused the
error.

522
SV_MINKEEPSEARCH_PARMNUM

Indi cates that a sv*_minkeepsearch member caused the error.

523
SV_MAXKEEPSEARCH_PARMNUM

Indicates that a sv*_maxkeepsearch member caused the error.

524
SV_MINKEEPCOMPLSEARCH_PARMNUM

Indicates that a sv*_minkeepcomplsearch member caused the
error.

525
SV_MAXKEEPCOMPLSEARCH_PARMNUM

Indicates that a sv*_maxkeepcomplsearch member caused the
error.

526
SV_THREADCOUNTADD_PARMNUM

Indicates that a sv*_threadcountadd member caused the error.

527
SV_NUMBLOCKTHREADS_PARMNUM

Indicates that a
error.

sv*_numblockthreads member caused the

528
SV_SCAVTIMEOUT_PARMNUM

Indicates that a sv*_scavtimeout member caused the error.

529
SV_MINRCVQUEUE_PARMNUM

Indicates that a sv*_minrcvqueue member caused the error.

530
SV_MINFREEWORKITEMS_PARMNUM

Indica tes that a sv*_minfreeworkitems member caused the
error.

531
SV_XACTMEMSIZE_PARMNUM

Indicates that a sv*_xactmemsize member caused the error.

532
SV_THREADPRIORITY_PARMNUM

Indicates that a sv*_threadpriority member caused the error.

533

Indicates that a sv*_maxmpxct member caused the error.

[MS -SRVS-Diff] - v20210625

Server Service Remote Protocol

Copyright © 2021 Microsoft Corporati on
Release: June 25, 2021

28 | 240

Return value/code Description

SV_MAXMPXCT_PARMNUM

534 Indicates that a sv*_oplockbreakwait member caused the error.
SV_OPLOCKBREAKWAIT_PARMNUM

535 Indicates that a sv*_oplockbreakresponsewait me mber caused
SV_OPLOCKBREAKRESPONSEWAIT PARMNUM | the error.

536 Indicates that a sv*_enableoplocks member caused the error.
SV_ENABLEOPLOCKS_PARMNUM

537 Indicates that a sv*_enableoplockforceclose member caused the
SV_ENABLEOPLOCKFORCECLOSE_PARMNUM error.

538 Indicates that a sv*_enablefcbopens member caused the error.
SV_ENABLEFCBOPENS_PARMNUM

539 Indicates that a sv*_enableraw member caused the error.
SV_ENABLERAW_PARMNUM

540 Indicates that a sv*_enablesharednetdrives member caused the
SV_ENABLESHAREDNETDRIVES_PARMNUM error.

541 Indicates that a sv*_minfreeconnections member caused the
SV_MINFREECONNECTIONS_PARMNUM error.

542 Indicates that a sv*_maxfreeconnections member caused the
SV_MAXFREECONNECTIONS_PARMNUM error.

543 Indicates that a sv*_initsesstable member caused the error.

SV_INITSESSTABLE_PARMNUM

544 Indicates that a sv*_initconntable member caused the error.
SV_INITCONNTABLE_PARMNUM

545 Indicates that a sv*_initfiletable member caused the error.
SV_INITFILETABLE_PARMNUM

546 Indicates that a sv*_initsearchtable member caused the error.
SV_INITSEARCHTABLE_PARMNUM

547 Indicates that a sv*_alertschedule member caused the error.
SV_ALERTSCHEDULE_PARMNUM

548 Indicates that a sv*_er rorthreshold member caused the error.
SV_ERRORTHRESHOLD_PARMNUM

549 Indicates that a sv*_networkerrorthreshold member caused the
SV_NETWORKERRORTHRESHOLD_PARMNUM error.

550 Indicates that a sv*_diskspacethreshold member caused the
SV_DISKSPACETHRESHOLD_PARMNUM error.
552 Indicates that a sv*_maxlinkdelay member caused the error.

SV_MAXLINKDELAY_PARMNUM

553 Indicates that a sv*_minlinkthroughput member caused the

29 / 240

[MS -SRVS-Diff] - v20210625

Server Service Remote Protocol

Copyright © 2021 Microsoft Corporati on
Release: June 25, 2021

Return value/code

Description

SV_MINLINKTHROUGHPUT_PARMNUM

error.

554
SV_LINKINFOVALIDTIME_PARMNUM

Indicates that a sv*_linkinfovalidtime me mber caused the error.

555
SV_SCAVQOSINFOUPDATETIME_PARMNUM

Indicates that a sv*_scavgosinfoupdatetime member caused the
error.

556
SV_MAXWORKITEMIDLETIME_PARMNUM

Indicates that a sv*_maxworkitemidletime member caused the
error.

22213 DFS Entry Flags

The following fl ags specify the details about a DFS entry that an SMB file server maintains. For more

details about DFS entries, see [MS

-DFSC].

Constant/value

Description

PKT_ENTRY_TYPE_CAIRO
0x0001

Entry refers to a particular machine.<7>

PKT_ENTRY_TYPE_MACHINE
0x0002

Entry is a machine volume.

PKT_ENTRY_TYPE_NONCAIRO
0x0004

Entry refers to a server running a pre

-Windows NT version of Windows.

PKT_ENTRY_TYPE_LEAFONLY
0x0008

Entry is a DFS link.

PKT_ENTRY_TYPE_OUTSIDE_MY_DOM
0x0010

Entry refers to volume in a f

oreign domain.

PKT_ENTRY_TYPE_INSITE_ONLY
0x0020

Only give Active Directory in

-site referrals.

PKT_ENTRY_TYPE_REFERRAL_SVC
0x0080

Entry refers to a DFS root.

PKT_ENTRY_TYPE_PERMANENT
0x0100

Entry cannot be scavenged.

PKT_ENTRY_TYPE_LOCAL
0x0400

Entry refers to local volume.

PKT_ENTRY_TYPE_LOCAL_XPOINT
0x0800

Entry refers to an exit point.

PKT_ENTRY_TYPE_MACH_SHARE
0x1000

Entry refers to a private machine share.

PKT_ENTRY_TYPE_OFFLINE
0x2000

Entry referstoa volume that is offline.

[MS -SRVS-Diff] - v20210625

Server Service Remote Protocol

Copyright © 2021 Microsoft Corporati on
Release: June 25, 2021

30 / 240

2.2.3 Unions

2231 CONNECT_ENUM_UNION

The CONNECT_ENUM_UNION union contains information about a connection. It is used in the
definition of the CONNECTION_ENUM_STRUCT structure.

typedef
[switch_type(DWORD)]
union _CONNECT_ENUM_UNION
[case(0)]
CONNECT_INFO_O0_CONTAINER1evel0;
[case(1)]
CONNECT_INFO_1_CONTAINERLevell;
} CONNECT_ENUM_UNION;

LevelO: A pointer to a structure containing information about a connection, as sp ecified in section
2.243.

Levell: A pointer to a structure containing information about a connection, as specified in section
2.2.4.4,

2.23.2 FILE_ENUM_UNION

The FILE_ENUM_UNION union contains information about files, devices, and pipes. It is used in the
defi nition of the FILE_ENUM_STRUCT structure.

typedef
[switch_type(DWORD)]
union _FILE_ENUM_UNION {
[case(2)]
FILE_INFO_2_ CONTAINER* Level2;
[case(3)]
FILE_INFO_3_CONTAINER* Level3;
} FILE_ENUM_UNION;

Level2: A pointer to a structure containin g information about a file, device or pipe, as specified in
section 2.2.4.8.

Level3: A pointer to a structure containing information about a file, device or pipe, as specified in
section 2.2.4.9.

2233 FILE_INFO

The FILE_INFO union contains information about a file, device, or pipe. This union is used by the
NetrFileGetlnfo method.

typedef
[switch_type(unsigned long)]
union _FILE_INFO {
[case(2)]
LPFILE_INFO_2 FileInfo2;
[case(3)]
LPFILE_INFO_3 FileInfo3;
} FILE_INFO,
*PFILE_INFO,

31/ 240

[MS -SRVS-Diff] - v20210625

Server Service Remote Protocol

Copyright © 2021 Microsoft Corporati on
Release: June 25, 2021

*LPFILE_INFO,;

FileInfo2: A pointer to a structure that contains information about a file, device, or pipe. For more
details, see FILE_INFO_2 (section 2.2.4.6).

FileInfo3: A pointer to a structure that contains information about a file, device, or pipe. For more
details, see FILE_INFO_3 (section 2.2.4.7).

2234 SESSION_ENUM_UNION

The SESSION_ENUM_UNION union contains information about sessions. It is used in the definition of
the SESSION_ENUM_STRUCT structure.

typedef
[switch_type(DWORD)]
union _SESSION_ENUM_UNION
[case(0)]
SESSION_INFO_0_CONTAINER* Level0;
[case(1)]
SESSION_INFO_1_CONTAINER* Levell;
[case(2)]
SESSION_INFO_2_CONTAINER* Level2;
[case(10)]
SESSION_INFO_10_CONTAINER* Levell0;
[case(502)]
SESSION_INFO_502_CONTAINER* Level502;
} SESSION_ENUM_UNION;

LevelO: A pointer to a structure that contains information about sessions, as specified in section
2.2.4.16.

Levell: A pointer to a structure that contains information about sessions, as specified in section
2.2.4.17.

Level2: A pointer to a structure that contains information about sessions, as specified in section
2.2.4.18.

Levell0: A pointer to a structure that contains information about sessions, as specified in section
2.2.4.19.

Level502: A pointer to a structure that contains information about sessions, as specified in section
2.2.4.20.

2235 SHARE_ENUM_UNION

The SHARE_ENUM_UNION union contains information about shares. It is used in the definition of the
SHARE_ENUM_STRUCT structure.

typedef
[switch_type(DWORD)]
union _SHARE_ENUM_UNION
[case(0)]
SHARE_INFO_0_CONTAINER*LevelO;
[case(1)]
SHARE_INFO_1 CONTAINER*Levell;
[case(2)]
SHARE_INFO_2_CONTAINER*Level2;
[case(501)]
SHARE_INFO_501_CONTAINER*Level50 1;
[case(502)]

32 / 240

[MS -SRVS-Diff] - v20210625

Server Service Remote Protocol

Copyright © 2021 Microsoft Corporati on
Release: June 25, 2021

SHARE_INFO_502_CONTAINER* Level502;
[case(503)]
SHARE_INFO_503_CONTAINER* Level503;
} SHARE_ENUM_UNION;

LevelO: A pointer to a structure that contains information about shares, as specified in section
2.2.4.32.

Levell: A poin ter to a structure that contains information about shares, as specified in section
2.2.4.33.

Level2: A pointer to a structure that contains information about shares, as specified in section
2.2.4.34.

Level501: A pointer to a structure that contains infor mation about shares, as specified in section
2.2.4.35.

Level502: A pointer to a structure that contains information about shares, as specified in section
2.2.4.36.

Level503: A pointer to a structure that contains information about shares, as specified in section
2.2.4.37.

2236 SHARE_INFO

The SHARE_INFO union contains information about a share.

typedef
[switch_type(unsigned long)]
union _SHARE_INFO {

[case(0)]

LPSHARE_INFO_0 SharelnfoO;
[case(1)]

LPSHARE_INFO_1 Sharelnfol,;
[case(2)]

LPSHARE_INFO_2 Sharelnfo2;
[case(502)]

LPSHARE_INFO_502_| Sharelnfo502;
[case(1004)]

LPSHARE_INFO_1004 ShareInfo1004;
[case(1006)]

LPSHARE_INFO_1006 Sharelnfo1006;
[case(1501)]

LPSHAREINFO_1501_| Sharelnfo1501;
[default] ;
[case(1005)]

LPSHARE_INFO_1005 Sharelnfo1005;
[case(501)]

LPSHARE_INFO_501 Sharelnfo501;
[case(503)]

LPSHARE_INFO_503_I| Sharelnfo503;

} SHARE_INFO,

*PSHARE_INFO,
*LPSHARE_INFO;

Sharelnfo0 : A pointer to a structure that contains information about a share, as specified in section
2.2.4.22.

Sharelnfol: A pointer to a structure that contains information about a share, as specified in section
2.2.4.23.

33/ 240

[MS -SRVS-Diff] - v20210625

Server Service Remote Protocol

Copyright © 2021 Microsoft Corporati on
Release: June 25, 2021

Sharelnfo2: A pointer to a structure th at contains information about a share, as specified in section
2.2.4.24.

Sharelnfo502: A pointer to a structure that contains information about a share, as specified in
section 2.2.4.26.

Sharelnfo1004: A pointer to a structure that contains information about a share, as specified in
section 2.2.4.28.

Sharelnfo1006: A pointer to a structure that contains information about a share, as specified in
section 2.2.4.30.

Sharelnfo1501: A pointer to a structure that contains information about a shar e, as specified in
section 2.2.4.31.

Sharelnfo1005: A pointer to a structure that contains information about a share, as specified in
section 2.2.4.29.

Sharelnfo501: A pointer to a structure that contains information about a share, as specified in
sectio n 2.2.4.25.

Sharelnfo503: A pointer to a structure that contains information about a share, as specified in
section 2.2.4.27.

2.2.3.7 SERVER_INFO

The SERVER_INFO union contains information about a server.

typedef
[switch_type(unsigned long)]
union _SERVER_INFO{
[case(100)]
LPSERVER_INFO_100 Serverinfol00;
[case(101)]
LPSERVER_INFO_101 Serverinfol01;
[case(102)]
LPSERVER_INFO_102 Serverinfo102;
[case(103)]
LPSERVER_INFO_103 Serverinfol03;
[case(502)]
LPSERVERINFO_502 Serverinfo502;
[case(503)]
LPSERVER_INFO_503 Serverinfo503;
[case(599)]
LPSERVER_INFO_599 Serverinfo599;
[case(1005)]
LPSERVER_INFO_1005 Serverinfo1005;
[case(1107)]
LPSERVER_INFO_1107 Serverinfol1107;
[case(1010)]
LPSERVER_INFO_1010 Serverinfo1010;
[case(1016)]
LPSERVER_INFO_1016 Serverinfol1016;
[case(1017)]
LPSERVER_INFO_1017 Serverinfol017;
[case(1018)]
LPSERVER_INFO_1018 Serverinfo1018;
[case(1501)]
LPSERVER_INFO_1501 Serverinfol501;
[case(1502)]
LPSERVER_INFO_1502 Serverinfo1502;
[case(1503)]
LPSERVER_INFO_1503 Serverinfol503;
[case(1506)]

34 | 240

[MS -SRVS-Diff] - v20210625

Server Service Remote Protocol

Copyright © 2021 Microsoft Corporati on
Release: June 25, 2021

LPSERVER_INFO_1506 Serverinfo1506;
[case(1510)]

LPSERVER_INFO_15D Serverinfol510;
[case(1511)]

LPSERVER_INFO_1511 Serverinfol511;
[case(1512)]

LPSERVER_INFO_1512 Serverinfol512;
[case(1513)]

LPSERVER_INFO_1513 Serverinfol513;
[case(1514)]

LPSERVER_INFO_1514 Serverinfol514;
[case(1515)]

LPSERVER_INFO_1515 Serverinfo1515;
[case(1516)]

LPSERVER_INFO_1516 Serverinfol516;
[case(1518)]

LPSERVER_INFO_1518 Serverinfol518;
[case(1523)]

LPSERVER_INFO_1523 Serverinfol523,;
[case(1528)]

LPSERVER_INFO_1528 Serverinfo1528;
[case(1529)]

LPSERVER_INFO_1529 Serverinfo1529;
[case(1530)]

LPSERVER_INFO_1530 Serverinfo1530;
[case(1533)]

LPSERVER_INFO_1533 Serverinfol533;
[case(1534)]

LPSERVER_INFO_1534 Serverinfol1534;
[case(1535)]

LPSERVER_INFO_1535 Serverinfol535;
[case(1536)]

LPSERVER_INFO_1536 Serverinfol536;
[case(1538)]

LPSERVER_INFO_1538 Serverinfol538;
[case(1539)]

LPSERVER_INFO_1539 Serverinfol539;
[case(1540)]

LPSERVER_INFO_154€ Serverinfol540;
[case(1541)]

LPSERVER_INFO_1541 Serverinfol541;
[case(1542)]

LPSERVER_INFO_1542 Serverinfol542;
[case(1543)]

LPSERVER_INFO_1543 Serverinfol543;
[case(1544)]

LPSERVER_INFO_1544 Serverinfol544;
[case(1545)]

LPSERVER_INFO_1545 Serverinfol1545;
[case(1546)]

LPSERVER_INFO_1546 Serverinfol1546;
[case(1547)]

LPSERVER_INFO_1547 Serverinfol547;
[case(1548)]

LPSERVER_INFO_1548 Serverinfo1548;
[case(1549)]

LPSERVER_INFO_1549 Serverinfol1549;
[case(1550)]

LPSERVER_INFO_1550 Serverinfol550;
[case(1552)]

LPSERVER_INFO_1552 Serverinfol552;
[case(1553)]

LPSERVER_INFO_1553 Serverinfol553;
[case(1554)]

LPSERVER_INFO_1554 Serverinfol554;
[case(1555)]

LPSERVER_INFO_1555 Serverinfol555;
[case(1556)]

LPSERVER_INFO_1556 Serverinfol556;

} SERVER_INFO,

35/ 240

[MS -SRVS-Diff] - v20210625

Server Service Remote Protocol

Copyright © 2021 Microsoft Corporati on
Release: June 25, 2021

*PSERVER_INFO,
*LPSERVER_INFO;

Serverinfo100:
section 2.2.4.40.

Serverinfol01:
section 2.2.4.41.

Serverinfol02:
section 2.2.4.42.

Serverinfol03:

A pointer to a structure that contains

A pointer to a structure that contains information about a se

information about a server, as specified in

A pointer to a structure that contains information about a server, as specified in

rver, as specified in

A pointer to a structure that contains information about a server, as specified in

section 2.2.4.43.<8>

Serverinfo502:
section 2.2.4.44.

Serverlnfo503:
section 2.2.4.45.

Serverlnfo599:
section 2.2.4.46.

Serverinfo1005:
section 2.2.4.47.

Serverinfol107:
section 2.2.4.48.

Serverinfo1010:
section 2.2.4.49.

Serverinfol1016:
section 2.2.4.50.

Serverinfol017:
section 2.2.4.51.

Serverinfo1018:
section 2.2.4.52.

Serverinfo1501:
section 2.2.4.53.

Serverinfo1502:
section 2.2.4.54.

Serverinfo1503:
section 2.2.4.55.

Serverinfo1506:
section 2.2.4.56.

Serverinfol510:
section 2.2.4.57.

Serverinfol511:
section 2.2.4.58.

A pointer to a structure that contains information about a server, as specified in

A pointer to a structure that contains information about a server, as specified in

A pointer to a structure that contains information about a server, as specified in

A pointer to a structure that contains information about a server, as specified in
A pointer to a structure that contains information about a server, as specified in
A pointer to a structure that contains information about a server, as specified in
A pointer to a structure that contains information about a server, as specified in
A pointer to a structure that contains information about a server, as specified in
A pointer to a structure that contains information about a server, as specified in

A pointer to a structure that contains infor mation about a server, as specified in
A pointer to a structure that contains information about a server, as specified in

A pointer to a structure that contains information about a serve r, as specified in
A pointer to a structure that contains information about a server, as specified in

A pointer to a structure that contains information about a server, as specified in

A pointer to a structure that contains information about a server, as specified in

36 / 240

[MS -SRVS-Diff] - v20210625
Server Service Remote Protocol

Copyright © 2021 Microsoft Corporati
Release: June 25, 2021

on

Serverinfol512: A pointer to a structure that contains information about a server, as specified in
section 2.2.4.59.

Ser verinfo1513: A pointer to a structure that contains information about a server, as specified in
section 2.2.4.60.

Serverinfol514: A pointer to a structure that contains information about a server, as specified in
section 2.2.4.61.

Serverinfol515: A poin ter to a structure that contains information about a server, as specified in
section 2.2.4.62

Serverinfol516: A pointer to a structure that contains information about a server, as specified in
section 2.2.4.63.

Serverinfol518: A pointer to a structure th at contains information about a server, as specified in
section 2.2.4.64.

Serverinfo1523: A pointer to a structure that contains information about a server, as specified in
section 2.2.4.65.

Serverinfo1528: A pointer to a structure that contains information about a server, as specified in
section 2.2.4.66.

Serverinfo1529: A pointer to a structure that contains information about a server, as specified in
section 2.2.4.67.

Serverinfo1530: A pointer to a structure that contains information about a server, as specified in
section 2.2.4.68.

Serverinfo1533: A pointer to a structure that contains information about a server, as specified in
section 2.2.4.69.

Serverinfo1534: A pointer to a structure that contains information about a server, as specified in
section 2.2.4.70.

Serverinfo1535: A pointer to a structure that contains information about a server, as specified in
section 2.2.4.71.

Serverinfo1536: A pointer to a structure that contains information about a server, as specified in
section 2.2.4.72.

Serverinfo1538: A pointer to a structure that contains information about a server, as specified in
section 2.2.4.73.

Serverinfo1539: A pointer to a structure that contains information about a server, as specified in
section 2.2.4.74

Serverinfo1540: A pointer to a structure that contains information about a server, as specified in
section 2.2.4.75.

Serverinfol541: A pointer to a structure that contains information about a server, as specified in
section 2.2.4.76.

Serverinfo1542: A pointer to a structure that contains information about a server, as specified in
section 2.2.4.77.

Serverinfo1543: A pointer to a structure that contains information about a server, as specified in
section 2.2.4.78.

37 / 240

[MS -SRVS-Diff] - v20210625

Server Service Remote Protocol

Copyright © 2021 Microsoft Corporati on
Release: June 25, 2021

Serverinfol544: A pointer to a struct ure that contains information about a server, as specified in
section 2.2.4.79.

Serverinfo1545: A pointer to a structure that contains information about a server, as specified in
section 2.2.4.80.

Serverinfo1546: A pointer to a structure that contains in formation about a server, as specified in
section 2.2.4.81.

Serverinfol547: A pointer to a structure that contains information about a server, as specified in
section 2.2.4.82.

Serverinfo1548: A pointer to a structure that contains information about a se rver, as specified in
section 2.2.4.83.

Serverinfo1549: A pointer to a structure that contains information about a server, as specified in
section 2.2.4.84.

Serverinfo1550: A pointer to a structure that contains information about a server, as specified i n
section 2.2.4.85.

Serverinfo1552: A pointer to a structure that contains information about a server, as specified in
section 2.2.4.86.

Serverinfo1553: A pointer to a structure that contains information about a server, as specified in
section 2.2.4.87.

Serverinfo1554: A pointer to a structure that contains information about a server, as specified in
section 2.2.4.88.

Serverinfo1555: A pointer to a structure that contains information about a server, as specified in
section 2.2.4.89.

Serverinfo1556: A pointer to a structure that contains information about a server, as specified in
section 2.2.4.90.

2238 SERVER_XPORT_ENUM_UNION

The SERVER_XPORT_ENUM_UNION union contains information about file server transports.

typedef
[switch_type(DWORD)]
union _SERVER_XPORT_ENUM_UNIGN
[case(0)]
PSERVER_XPORT_INFO_0_CONTAINERevel0;
[case(1)]
PSERVER_XPORT_INFO_1_CONTAINERevell;
[case(2)]
PSERVER_XPORT_INFO_2_CONTAINERevel2;
[case(3)]
PSERVER_XPORT_INFO_3_CONTAINERevel3;
} SERVER_XPORT_ENUM_UNION;

Level0: A pointer to a structure containing information about file server transports, as specified in
section 2.2.4.97.

Levell: A pointer to a structure containing information about file s erver transports, as specified in
section 2.2.4.98.

38 / 240

[MS -SRVS-Diff] - v20210625

Server Service Remote Protocol

Copyright © 2021 Microsoft Corporati on
Release: June 25, 2021

Level2: A pointer to a structure containing information about file server transports, as specified in
section 2.2.4.99.

Level3: A pointer to a structure containing information about file server transpor ts, as specified in
section 2.2.4.100.

2239 TRANSPORT_INFO

The TRANSPORT_INFO union contains information about a transport over which a file server is
operational.

typedef
[switch_type(unsigned long)]
union _TRANSPORT_INFO{
[case(0)]
SERVER_TRANSPORINFO_O0 Transport0O;
[case(1)]
SERVER_TRANSPORT_INFO_Transportl;
[case(2)]
SERVER_TRANSPORT_INFO_Zransport2;
[case(3)]
SERVER_TRANSPORT_INFO_3ransport3;
} TRANSPORT_INFO,
*PTRANSPORT_INFO,
*LPTRANSPORT_INFO;

TransportO: A pointer to a structure containing information about a file server transport, as specified
in section 2.2.4.93.

Transport1: A pointer to a structure containing information about a file server transport, as specified
in section 2.2.4.94.

Tran sport2: A pointer to a structure containing information about a file server transport, as specified
in section 2.2.4.95.

Transport3: A pointer to a structure containing information about a file server transport, as specified
in section 2.2.4.96.

2.23.10 SERVER_A LIAS_INFO

The SERVER_ALIAS_INFO union contains information about an alias attached to a server name.

typedef
[switch_type(unsigned long)]
union _SERVER_ALIAS_INFO {
[case(0)]
LPSERVER_ALIAS_INFO_O0 ServerAliasinfo0;

} SERVER_ALIAS_INFO,

*PSERVER_AIAS_INFO,

*LPSERVER_ALIAS_INFO;

ServerAliasinfoO: A pointer to a structure containing information about an alias attached to a
server, as specified in section 2.2.4.102.

39 / 240

[MS -SRVS-Diff] - v20210625

Server Service Remote Protocol

Copyright © 2021 Microsoft Corporati on
Release: June 25, 2021

2.2.4 Structures

2241 CONNECTION_INFO_O

The CONNECTION_INFO_O structure contains the identifier of a connection.

typedef struct _CONNECTION_INFO_0{
DWORLroniO_id;
} CONNECTION_INFO_0,
*PCONNECTION_INFO_O,
*LPCONNECTION_INFO_O;

coni0_id: Specifies a connection identifier. For more information, see Abstract Data
Model (section 3.1.1).

2242 CONNECTION_INFO_1

The CONNECTION_INF O_1 structure contains the identifier of a connection, the number of open files,
the connection time, the number of users on the connection, and the type of connection.

typedef struct _CONNECTION_INFO_1{
DWORLxonil_id;
DWORLxonil_type;
DWORLxonil_num_opens;
DWORLxonil_num_users;
DWORLxonil_time;
[string] wchar_t* conil_username;
[string] wchar_t* conil_netname;
} CONNECTION_INFO 1,
*PCONNECTION_INFO_1,
*LPCONNECTION_INFO_1,

conil_id: Specifies a connec tion identifier.

conil_type: Specifies the type of connection made from the local device name to the shared
resource. It MUST be one of the values listed in section 2.2.2.4.

conil_num_opens: Specifies the number of files that are currently opened by usi ng the connection.
conil_num_users: Specifies the number of users on the connection.
conil_time: Specifies the number of seconds that the connection has been established.

conil_username: A pointerto a null -terminated Unicode UTF -16 string that specif ies the name of
the user that is associated with the connection.

conil_netname: A pointerto a null -terminated Unicode UTF -16 Internet host name or NetBIOS host
name which is the computer name of the client. The value of this member depends on which name
was specified as the Qualifier parameter to the NetrConnectionEnum (section 3.1.4.1) method.
The name that is not specified in the Qualifier parameter to NetrConnectionEnum MUST be
returned in the conil _netname field.

2.24.3 CONNECT_INFO_0_CONTAINER

The CONNECT_INFO_0_CONTAINER structure contains a value that indicates the number of entries
that the NetrConnectionEnum method returns and a pointer to the buf fer that contains the entries.

40 / 240

[MS -SRVS-Diff] - v20210625

Server Service Remote Protocol

Copyright © 2021 Microsoft Corporati on
Release: June 25, 2021

typedef struct _CONNECT_INFO_0_CONTAINER
DWORCLEnNtriesRead;
[size_is(EntriesRead)] LPCONNECTION_INFO_O Buffer;
} CONNECT_INFO_0_CONTAINER,
*PCONNECT_INFO_O_CONTAINER,
*LPCONNECT_INFO_0_CONTAINER,;

EntriesRead: The number of entries returned by the method.

Buffer: A pointer to the CONNECTION_INFO_0 entries returned by the method.

2244 CONNECT_INFO_1_CONTAINER

The CONNECT_INFO_1_CONTAINER structure contains a value that indicates the number of entries

that the NetrConnectionEnum method returns and a pointer to the buffer that contains t he entries.
typedef struct _CONNECT_INFO_1_CONTAINER
DWORCLEnNtriesRead,;
[size_is(EntriesRead)] LPCONNECTION_INFO_1 Buffer;

} CONNECT_INFO_1_CONTAINER,
*PCONNECT_INFO_1_CONTAINER,
*LPCONNECT _INFO_1_CONTAINER;

EntriesRead: The number of entries retu rned by the method.

Buffer: A pointer to the CONNECTION_INFO_1 entries returned by the method.

2245 CONNECT_ENUM_STRUCT

The CONNECT_ENUM_STRUCT structure specifies th e information level that the client requests when
invoking the NetrConnectionEnum (section 3.1.4.1) method and encapsulates the
CONNECT_ENUM_UNION (section 2.2.3.1) union that receives the entries that are enumerated by the
server.

typedef struct _CONNECTENUM_STRUCT
DWORDL evel;
[switch_is(Level)] CONNECT_ENUM_UNION Connectinfo;
} CONNECT_ENUM_STRUCT,
*PCONNECT_ENUM_STRUCT,
*LPCONNECT_ENUM_STRUCT;

Level: Specifies the information level of the data. This parameter MUST have one of the following
val ues.

Value Meaning

0 CONNECT_INFO_0_CONTAINER

1 CONNECT_INFO_1_CONTAINER

Connectlinfo: Contains either a CONNECT _INFO_0_CONTAINER structure or a
CONNECT_INFO_1_CONTAINER structure depending on the value of the Level parameter. The
enumerated elements are returned in this member.

41 | 240

[MS -SRVS-Diff] - v20210625

Server Service Remote Protocol

Copyright © 2021 Microsoft Corporati on
Release: June 25, 2021

2246 FILE_INFO 2

The FILE_INFO_2 structure contains the identifier for a file, device, or pipe.

typedef struct _FILE_INFO_2 {
DWORDi2_id,;
} FILE_INFO_2,
*PFILE_INFO_2,
*LPFILE_INFO_2;

fi2_id: Specifies a DWORD value that contains the identifier that is assigned to the file, device, or
pipe when it was opened. See section 3.1.1 for details.

2247 FILE_INFO_3

The FILE_INFO_3 structure contains the identifier and other pertin ent information about files, devices,
and pipes.
typedef struct _FILE_INFO_3 {
DWORMi3_id;

DWORLi3_permissions;
DWORUGi3_num_locks;

[string] wchar_t* fi3_pathname;
[string] wchar_t* fi3_username;
} FILE_INFO_3,
*PFILE_INFO_3,

*LPFILE_INFO_3;

fi3_id: Specifies a DWORD value that contains the identifier that is assigned to the file, device, or
pipe when it was opened. See section 3.1.1 for details.

fi3_permissions: Specifies a DWORD value that contains the access permissions t hat are associated
with the opening application. This member MUST be a combination of one or more of the following
values.
Value Meaning
PERM_FILE_READ Permission to read a resource, and, by default, execute the resource.
0x00000001

PERM_FILE_WRITE Permission to write to a resource.
0x00 000002

PERM_FILE_CREATE | Permission to create a resource; data can be written when creating the resource.

0x00000004

ACCESS_EXEC Permission to execute a resource.

0x00000008

ACCESS_DELETE Permission to delete a resource.

0x00000010

ACCESS_ATRIB Permission to modify the attributes of a resource.

0x00000020

ACCESS_PERM Permission to modify the permissions assigned to a resource for a user or
0x00000040 application.

42 | 240

[MS -SRVS-Diff] - v20210625

Server Service Remote Protocol

Copyright © 2021 Microsoft Corporati on
Release: June 25, 2021

fi3_num_locks: Specifies a DWORD v alue that contains the number of file locks on the file, device,
or pipe.

fi3_pathname: A pointer to a string that specifies the path of the opened file, device, or pipe.

fi3_username: A pointer to a string that specifies which user opened the file, device, or pipe.

2248 FILE_INFO_2_CONTAINER

The FILE_INFO_2_CONTAINER structure contains a value that indicates the number of entries that the
NetrFileEnum metho d returns and a pointer to the buffer that contains the entries.

typedef struct _FILE_INFO_2_CONTAINER {
DWORCLEnNtriesRead;
[size_is(EntriesRead)] LPFILE_INFO_2 Buffer;
} FILE_INFO_2 CONTAINER,
*PFILE_INFO_2_CONTAINER,
*LPFILE_INFO_2_CONTAINER;

Entri esRead: The number of entries returned by the method.

Buffer: A pointer to the FILE_INFO_2 entries returned by the method.

2249 FILE_INFO_3_CONTAINER

The FILE_ INFO_3_CONTAINER structure contains a value that indicates the number of entries that the
NetrFileEnum method returns and a pointer to the buffer that contains the entries.

typedef struct _FILE_INFO_3_CONTAINER {
DWORCEnNtriesRead;
[size_is(EntriesRead)] LPFILE_INFO_3 Buffer;

} FILE_INFO_3_CONTAINER,
*PFILE_INFO_3_CONTAINER,
*LPFILE_INFO_3_CONTAINER;

EntriesRead: The number of entries returned by the method.

Buffer: A pointer to the FILE_INFO_3 entries returned by the method.

22410 FILE_ENUM_STRUCT

The FILE_ENUM_STRUCT structure specifies the information level that the client requests in the
NetrFileEnum method and encapsulates the FILE_ENUM_UNION union that receives the e ntries that
are enumerated by the server.

typedef struct _FILE_ENUM_STRUCT{
DWORD.evel;
[switch_is(Level)] FILE_ENUM_UNION Filelnfo;

} FILE_ENUM_STRUCT,
*PFILE_ENUM_STRUCT,
*LPFILE_ENUM_STRUCT;

Level: Specifies the information level of the data. This parameter MUST have one of the following
values.

43 | 240

[MS -SRVS-Diff] - v20210625

Server Service Remote Protocol

Copyright © 2021 Microsoft Corporati on
Release: June 25, 2021

Value Meaning

2 FILE_INFO_2_CONTAINER
3 FILE_INFO_3_CONTAINER
Filelnfo: Contains a file info container structure whose type is determined by the Level parameter as

shown in the preceding table. The enumerated elements are returned in this member.

22411 SESSION_INFO 0

The SESSION_INFO_O structure contains the name of the computer that established the session.

typedef struct _SESSION_INFO_0 {
[string] wchar_t* sesi0_cname;
} SESSION_INFO_0,
*PSESSION_INFO_O,
*LPSESSION_INFO _0;

sesi0_cname: A pointerto a null -terminated Unicode UTF -16 Internet host name or NetBIOS host
name of the computer that established the session.

2.2.4.12 SESSION_INFO_1

The SESSION_INFO_1 structure con tains information about the session, including the name of the
computer and user; open files, pipes, and devices that are on the computer; session active and idle
times; and how the user established the session.

typedef struct _SESSION_INFO_1 {
[string] wchar_t* sesil_cname;
[string] wchar_t* sesil_username;

DWORDsesil_num_opens;
DWORDBsesil_time;
DWORDBsesil_idle_time;
DWORDsesil_user_flags;
} SESSION_INFO_1,
*PSESSION_INFO_1,
*LPSESSION_INFO_1,;

sesil_cname: A pointerto anull -terminated Unicode UTF -16 Internet host name or NetBIOS host
name of the computer that established the session.

sesil_username: A pointerto a null -terminated Unicode UTF -16 string that specifies the name of
the user who established the session.

sesil_num_opens: Specifies a DWORD value that contains the number of files, devices, and pipes
that were opened during the session.

sesil_time: Specifies a DWORD value that contains the number of seconds since the session was
created.

sesil idle_time: Specifies a DWORD val ue that contains the number of seconds the session has
been idle.

sesil_user_flags: Specifies a DWORD value that specifies how the user established the session.

This member MUST be a combination of one or more of the values that are defined in 2.2.2.3.

[MS -SRVS-Diff] - v20210625

Server Service Remote Protocol

Copyright © 2021 Microsoft Corporati on
Release: June 25, 2021

44 | 240

2.2.4.13 SESSION_INFO_2

The SESSION_INFO_2 structure contains information about the session, including the name of the

computer; hame of the user; open files, pipes, and devices that are o n the computer; session active
and idle times; how the user established the session; and the type of client that established the

session.

typedef struct _SESSION_INFO_2 {
[string] wchar_t* sesi2_cname;
[string] wchar_t* sesi2_username;

DWORDBsesi2_num_opens;
DWORDBsesi2_time;
DWORDBsesi2_idle_time;
DWORDBsesi2_user_flags;
[string] wchar_t* sesi2_cltype_name;
} SESSION_INFO_2,
*PSESSION_INFO_2,
*LPSESSION_INFO_2;

sesi2_cname: A pointerto a null -terminated Unicode = UTF-16 Internet host name or NetBIOS host
name of the computer that established the session.

sesi2_username: A pointer to a null -terminated Unicode UTF - 16 string that specifies the name of
the user who established the session.

sesi2_num_opens: Specifies a DWORD value that contains the number of files, devices, and pipes
that were opened during the session.

sesi2_time: Specifies a DWORD value that contains the number of seconds the session has been
active.

sesi2_idle_time: Specifies a DWORD value that co ntains the number of seconds the session has
been idle.

sesi2_user_flags: Specifies a DWORD value that describes how the user established the session.

This member MUST be a combination of one or more of the values that are defined in section
2.2.2.3.

sesi 2_cltype_name: A pointerto a null -terminated Unicode UTF -16 string that specifies the type of
client that established the session. The server simply stores this string, as specified in section
2.2.2.1, and its value does not modify the behavior of the pr otocol. <9>
22414 SESSION_INFO_10
The SESSION_INFO_10 structure contains information about the session, including the name of the
computer, the name of the user, and the active and idle times for the session.
typedef struct _SESSION_INFO_10 {
[string] wchar_t* sesil0_cname;
[string] wchar_t* sesil0_username;

DWORDBsesil0_time;
DWORDBsesil0_idle_time;
} SESSION_INFO_10,
*PSESSION_INFO_10,
*LPSESSION_INFO_10;

sesil0_cname: A pointer to a null -terminated Unicode UTF -16 Internet host name or NetBIOS host
name of the computer that established the session.

45 | 240

[MS -SRVS-Diff] - v20210625

Server Service Remote Protocol

Copyright © 2021 Microsoft Corporati on
Release: June 25, 2021

sesil0_username: A pointerto anull -terminated Unicode UTF -16 string specifying the name of the
user who established the s ession.

sesil0_time: Specifies the number of seconds the session has been active.
sesil0_idle_time: Specifies the number of seconds the session has been idle.
22415 SESSION_INFO_502

The SESSION_INFO_502 structure contains information about the session, including the name of the
computer; the name of the user; open files, pipes, and devices that are on the computer; the client
type; s ession active and idle times; how the user established the session; and the name of the
transport that the client is using.

typedef struct _SESSION_INFO_502 {
[string] wchar_t* sesi502_cname;
[string] wchar_t* sesi502_username;

DWORDBsesi502_num_open s;
DWORDBsesi502_time;
DWORDBsesi502_idle_time;
DWORDBsesi502_user_flags;
[string] wchar_t* sesi502_cltype_name;
[string] wchar_t* sesi502_transport;
} SESSION_INFO_502,
*PSESSION_INFO_502,
*PSESSION_INFO_502;

sesi502_cname: A pointertoa null -terminated Unicode UTF -16 Internet host name or NetBIOS host
name of the computer that established the session.

sesi502_username: A pointer to a null -terminated Unicode UTF - 16 string that specifies the name of
the user who established the session.

se si502_num_opens: Specifies the number of files, devices, and pipes that were opened during the
session.

sesi502_time: Specifies the number of seconds the session has been active.

sesi502_idle_time: Specifies the number of seconds the session has been id le.

sesi502_user_flags: Specifies a value that describes how the user established the session. This

member MUST be a combination of one or more of the values that are listed in section 2.2.2.3.

sesi502_cltype_name: A pointer to a null -terminated Unicode UTF-16 string that specifies the type
of client that established the session. The server simply stores this string, as specified in section
2.2.2.1, and its value does not modify the behavior of the protocol.<10>

sesi502_transport: Specifies the name oft he transport that the client is using to communicate with
the server.

2.2.4.16 SESSION_INFO_0_CONTAINER

The SESSION_INFO_0_CONTAINER structure contains a va lue that indicates the number of entries

that the NetrSessionEnum method returns and a pointer to the buffer that contains the entries.

typedef struct _SESSION_INFO_0_CONTAINER({
DWORCLEnNtriesRead;
[size_is(EntriesRead)] LPSESSION_INFO_0 Buffer;
} SESS ION_INFO_0_CONTAINER,
*PSESSION_INFO_0_CONTAINER,

46 | 240

[MS -SRVS-Diff] - v20210625

Server Service Remote Protocol

Copyright © 2021 Microsoft Corporati on
Release: June 25, 2021

*LPSESSION_INFO_0_CONTAINER;

EntriesRead: The number of entries returned by the method.

Buffer: A pointer to the SESSION_INFO_O0 entries returned by the method.

22417 SESSION_INFO_1_CONTAINER

The SESSION_INFO_1_CONTAINER structure contains a value that indicates the number of entries
that the NetrSessionEnum meth od returns and a pointer to the buffer that contains the entries.

typedef struct _SESSION_INFO_1_CONTAINER{
DWORCLEnNtriesRead,;
[size_is(EntriesRead)] LPSESSION_INFO_1 Buffer;
} SESSION_INFO_1_CONTAINER,
*PSESSION_INFO_1_CONTAINER,
*LPSESSION_INFO_1_CONTAINER;

EntriesRead: The number of entries returned by the method.

Buffer: A pointer to the SESSION_INFO_1 entries returned by the method.

2.2.4.18 SESSION_INFO_2_CONTAINER

The SESSION_INFO_2_CONTAINER structure contains a value that indicates the number of entries

that the NetrSessionEnum method returns and a pointer to the buffer that contains the e ntries.

typedef struct _SESSION_INFO_2_CONTAINER({
DWORCLEnNtriesRead,;
[size_is(EntriesRead)] LPSESSION_INFO_2 Buffer;
} SESSION_INFO_2_CONTAINER,
*PSESSION_INFO_2_CONTAINER,
*LPSESSION_INFO_2_CONTAINER,;

EntriesRead: The number of entries returned b y the method.

Buffer: A pointer to the SESSION_INFO_2 entries returned by the method.

2.2.4.19 SESSION_INFO_10_CONTAINER

The SESSION_INFO_10 CONTAINER s tructure contains a value that indicates the number of entries
that the NetrSessionEnum method returns and a pointer to the buffer that contains the entries.

typedef struct _SESSION_INFO_10_CONTAINER{
DWORCLEnNtriesRead;
[size_is(EntriesRead)] LPSESSION_INFO_10 Buffer;
} SESSION_INFO_10_CONTAINER,
*PSESSION_INFO_10_CONTAINER,
*LPSESSION_INFO_10_CONTAINER;

EntriesRead: The number of entries returned by the method.

Buffer: A pointer to the SESSION_INFO_10 entries retur ned by the method.

[MS -SRVS-Diff] - v20210625

Server Service Remote Protocol

Copyright © 2021 Microsoft Corporati on
Release: June 25, 2021

47 | 240

2.2.4.20 SESSION_INFO_502_CONTAINER

The SESSION_INFO_502_CONTAINER structure contains a value that indicates the number of entries
that the NetrSessionEnum method returns and a pointer to the buffer that contains the entries.

typedef struct _SESSION_INFO_502_CONTAINER{
DWORCLEnNtriesRead;
[size_is(EntriesRead)] LPSESSION_INFO_502 Buffer;
} SESSION_INFO_502_CONTAINER,
*PSESSION_INFO_502_CONTAINER,
*LPSESSION_INFO_502_CONTAINER;

EntriesRead: The number of entries returned by the method.

Buffer: A pointer to the SESSION_INFO_502 entries returned by the method.

22421 SESSION_ENUM_STRUCT

The SESSION_ENUM_STRUCT structure specifies the information level that the client requests in the
NetrSessionEnum method and encapsulates the SESSION_ENUM_UNION union that receives the
entries that are enumerated by the server.

typedef struct _SESSION_ENUM_STRUCT
DWORDL.evel;
[switch_is(Level)] SESSION_ENUM_UNION Sessioninfo;

} SESSION_ENUM_STRUCT,
*PSESSION_ENUM_STRUCT,
*LPSESSION_ENUM_STRUCT;

Level: Specifies the information level of the data. This parameter MUST have one of the following
values.
Value Meaning
0 SESSION_INFO_0_CONTAINER
1 SESSION_INFO_1_CONTAINER
2 SESSION_INFO_2_CONTAINER
10 SESSION_INFO_10_CONTAINER
502 SESSION_INFO_502_CONTAINER
Sessioninfo: Contains a session info container whose type is specified by the Level parameter, as

shown in the preceding table. The enumerated session entries are returned in this member.

2.2.4.22 SHARE_INFO_0O
The SHARE_INFO_O0 structure contains the name of the shared resource. For a description of the fields
in this structure, see the description for the SHARE_INFO_502_1 (section 2.2.4.26) structure
(shi0_xxx denotes the same information as shi502_xxx).
typedef struct _SHARE_INFO_O0 {
[string] wchar_t* shi0_netname;

} SHARE_INFO 0,
*PSHARE_INFO_0,

48 | 240

[MS -SRVS-Diff] - v20210625

Server Service Remote Protocol

Copyright © 2021 Microsoft Corporati on
Release: June 25, 2021

*LPSHARE_INFO_0;

22423 SHARE_INFO_1

The SHARE_INFO_1 structure contains infor mation about the shared resource, including the name and
type of the resource and a comment associated with the resource. For a description of the fields in this
structure, see the description for the SHARE_INFO_502_| (section 2.2.4.26) structure (shil_xxx
denotes the same information as shi502_xxx).

typedef struct _SHARE_INFO_1 {
[string] wchar_t* shil_netname;
DWORDBshil_type;
[string] wchar_t* shil_remark;

} SHARE_INFO_1,
*PSHARE_INFO_1,
*LPSHARE_INFO_1;

22424 SHARE_INFO_2

The SHARE_INFO_2 structure contains information about the shared resource, including the name,

type, and permissions of the resource, comments associated with the resource, the maximum number

of concurrent connec tions, the number of current connections, the local path for the resource, and a
password for the current connection. For a description of the fields in this structure, see the

description for the SHARE_INFO_502_| (section 2.2.4.26) structure (shi2_xxx den otes the same
information as shi502_xxx).

typedef struct _SHARE_INFO_2 {
[string] wchar_t* shi2_netname;
DWORDBshi2_type;
[string] wchar_t* shi2_remark;

DWORDBshi2_permissions;
DWORDBshi2_max_uses;
DWORDBshi2_current_uses;
[string] wchar_t* shi2_path;
[string] wchar_t* shi2_passwd;
} SHARE_INFO 2,
*PSHARE_INFO_2,
*LPSHARE_INFO_2;

2.2.4.25 SHARE_INFO_501

The SHARE_INFO_501 structure contains information about the shared resource, including the name

and type of the resource and a comment that is associated with the resource. For a description of the

fields in this structure, see the description for the SHARE_IN FO_502_I| (section 2.2.4.26) structure
(shi501_netname, shi501_type, and shi501_remark denote the same information as shi502_xxx in

section 2.2.4.26, and shi501_flags denotes the same information as shil005_flags in section

2.2.4.29).

typedef struct _SHAREINFO_501 {
[string] wchar_t* shi501_netname;
DWORDBshi501_type;
[string] wchar_t* shi501_remark;

DWORDBhi501_flags;
} SHARE_INFO_501,
*PSHARE_INFO_501,
*LPSHARE_INFO_501;

49 | 240

[MS -SRVS-Diff] - v20210625

Server Service Remote Protocol

Copyright © 2021 Microsoft Corporati on
Release: June 25, 2021

2.2.4.26 SHARE_INFO_502_|

The SHARE_INFO_502_1 structure contains information about the shared resource, including the name
of the resource, type, and permissions, the number of connections, and other pertinent information.

typedef struct _SHARE_INFO_502 | {
[string] WCHAR* shi502_netname;
DWORDshi502_type;
[string] WCHAR* shi502_remark;
DWORDBshi502_permissions;
DWORDBhi502_max_uses;
DWORDBhi502_current_uses;
[string] WCHAR* shi502_path;
[string] WCHAR* shi502_passwd,;
DWORDBshi502_re served;
[size_is(shi502_reserved)] unsigned char* shi502_security_descriptor;
} SHARE_INFO_502_1,
*PSHARE_INFO_502_1,
*LPSHARE_INFO_502_I;

shi502_netname: A pointer to a null -terminated Unicode UTF - 16 string that specifies the name of a
shared resourc e. The server MUST ignore this member when processing the
NetrShareSetinfo (section 3.1.4.11) method.

shi502_type: Specifies a DWORD value that indicates the type of share. The server MUST ignore this
member when processing the NetrShareSetinfo method; ot herwise, it MUST be one of the values
that are listed in section 2.2.2.4.

shi502_remark: A pointerto a null -terminated Unicode UTF -16 string that specifies an optional
comment about the shared resource.

shi502_permissions: This field is not used. The server MUST ignore the value of this parameter on
receipt.

shi502_max_uses: Specifies a DWORD value that indicates the maximum number of concurrent
connections that the shared resource can accommodate. If the value that is specified by
shi502_max_uses is OXFFFFFFFF, the maximum number of connections MUST be unlimited.

shi502_current_uses: Specifies a DWORD value that indicates the number of current connections

to the resource. The server MUST ignore this member on receipt.

shi502_path: A pointer to a nul |-terminated Unicode UTF -16 string that contains the local path for
the shared resource. For disks, shi502_path is the path that is being shared. For print queues,
shi502_path is the name of the print queue that is being shared. For communication devices,
shi502_path is the name of the communication device that is being shared. For interprocess

communications (IPC), shi502_path is the name of the interprocess communication that is being
shared. The server MUST ignore this member when processing the NetrShar eSetinfo method.

shi502_passwd: This field is not used. The client MUST send a NULL (zero -length) string and the
server MUST ignore the value of this parameter on receipt.

shi502_reserved: The length of the security descriptor that is being passed in the
shi502_security_descriptor member.

shi502_security_descriptor: Specifies the SECURITY_DESCRIPTOR, as described in [MS -DTYP]

section 2.4.6, that is associated with this share.

50 / 240

[MS -SRVS-Diff] - v20210625

Server Service Remote Protocol

Copyright © 2021 Microsoft Corporati on
Release: June 25, 2021

2.2.4.27 SHARE_INFO_503_|

The SHARE_INFO_503_| structure contains information about the shared resource, including the name
of the resource, type, and permissions, the number of connections, and other pertinent information.

typedef struct _SHARE_INFO_503_1 {
[string] WCHAR* shi503_netname;
DWORDhi503_type;
[string] WCHAR* shi503_remark;
DWORDBshi503_permissions;
DWORDBhi503_max_uses;
DWORDBhi503_current_uses;
[string] WCHAR* shi503_path;
[string] WCHAR* shi503_passwd,;
[string] WCHAR* shi5 03_servername;
DWORDBhi503_reserved;
[size_is(shi503_reserved)] PUCHAR shi503_security_descriptor;
} SHARE_INFO_503_1,
*PSHARE_INFO_503_1,
*LPSHARE_INFO_503_1I;

shi503_netname: A pointerto a null -terminated Unicode UTF - 16 string that specifies the name of a
shared resource. The server MUST ignore this member when processing the
NetrShareSetinfo (section 3.1.4.11) method.

shi503_type: Specifies a DWORD value that indicates the type of share. The server MUST ignore this
member when processing the Net rShareSetinfo method. Otherwise, it MUST be one of the values
listed in section 2.2.2.4.

shi503_remark: A pointer to a null -terminated Unicode UTF - 16 string that specifies an optional
comment about the shared resource.

shi503_permissions: This field is not used. The server MUST ignore the value of this parameter on
receipt.

shi503_max_uses: Specifies a DWORD value that indicates the maximum number of concurrent
connections that the shared resource can accommodate. If t he value is OXFFFFFFFF, the maximum

number of connections MUST be unlimited.

shi503_current_uses: Specifies a DWORD value that indicates the number of current connections
to the resource. The server MUST ignore this member on receipt.

shi503_path: A pointerto anull -terminated Unicode UTF - 16 string that contains the local path for
the shared resource. For disks, it is the path being shared. For print queues, it is the name of the
print queue being shared. The server MUST ignore this member when proce ssing the
NetrShareSetinfo method.

shi503_passwd: This field is not used. The client MUST send a NULL (zero -length) string, and the
server MUST ignore the value of this parameter on receipt.

shi503_servername: A pointer to a string that specifies the DNS or NetBIOS name of the server on
which the shared resource resides. It SHOULD be either "*" or the string matching one of the
server names. Otherwise, the default server name will be used in < shi503_netname , default
server name> to locate a scoped share a s specified in section 2.2.4.102. A value of "*" indicates
that there is no configured server name.

shi503_reserved: The length of the security descriptor passed in the shi503_security_descriptor
member.
shi503_security_descriptor: Specifies the SECURITY _DESCRIPTOR, as described in [MS -DTYP]

section 2.4.6, that is associated with this share.

51 / 240

[MS -SRVS-Diff] - v20210625

Server Service Remote Protocol

Copyright © 2021 Microsoft Corporati on
Release: June 25, 2021

2.2.4.28 SHARE_INFO_1004

The SHARE_INFO_1004 structure contains a comment that is associated with the shared resource. For

a description of the fields in this structure, see the description for the
SHARE_INFO_502_1 (section 2.2.4.26) structure (shil004_xxx denotes the same information as
shi502_xxx).

typedef struct _SHARE_INFO_1004 {
[string] we har_t* shil004_remark;
} SHARE_INFO_1004,
*PSHARE_INFO_1004,
*LPSHARE_INFO_1004;

2.2.4.29 SHARE_INFO_1005

The SHARE_INFO_1005 structure contains information about the shared resourc e.

typedef struct _SHARE_INFO_1005 {
DWORDBshi1005_flags;
} SHARE_INFO_1005,
*PSHARE_INFO_1005,
* L PSHARE_INFO_1005;

shil005_flags: Specifiesa DWORD bitmask value that MUST contain zero or more of the following
values. The bit locations that are name d CSC_MASK in the following table MUST contain a client
side caching state value as given in section 2.2.2.5. The server MUST ignore SHI1005_FLAGS_DFS
and SHI1005_FLAGS_DFS_ROQOT as it processes the NetrShareSetinfo method.

closes the file.

prevents the file from being deleted until the client

Value Meaning

SHI1005_FLAGS_DFS The specified share is present in a DFS tree
0x00000001 structure.

SHI1005_FLAGS_DFS_ROOT The specified share is present in a DFS tree
0x00000002 structure.

CSC_MASK Provides a mask for one of the four possible client -
0x00000030 side ca ching (CSC) (section 2.2.2.5) states.
SHI1005_FLAGS_ RESTRICT_EXCLUSIVE_OPENS The specified share disallows exclusive file opens
0x00000100 that deny reads to an open file.
SHI1005_FLAGS_FORCE_SHARED_DELETE The specified share disallows clients from opening
0x00000200 files on the share in an exclusive mode that

cache retrieval of data. It is only valid if the server

SHI1005_FLAGS_ALLOW_NAMESPACE_CACHING Clients are allowed to cache the namespace of the
0x00000400 specified share.
SHI1005_FLAGS_ACCESS_BASED_DIRECTORY_ENUM The server filters directory entries based on the
0x00000800 access permissions of the client.<11>
SHI1005_FLAGS_FORCE_LEVELII_OPLOCK The server does not issue exclusive caching rights
0x00001000 on this share.<12>
SHI1005_FLAGS_ENABLE_HASH The share supports hash generation for branch

[MS -SRVS-Diff] - v20210625

Server Service Remote Protocol

Copyright © 2021 Microsoft Corporati on
Release: June 25, 2021

52 / 240

Value Meaning
0x00002000 supports the branch cache capability and the
branch cache component is installed.<13>

SHI1005_FLAGS_ENAB LE_CA A highly available share.<14>
0x00004000
SHI1005_FLAGS_ENCRYPT_DATA A share on which remote file access is
0x00008000 encrypted.<15>
SHI1005_FLAGS_COMPRESS_DATA A share on which remote file access is requested to
0x00100000 be compressed.

2.2.4.30 SHARE_INFO_1006

The SHARE_INFO_1006 structure specifies the maximum number of concurrent connections that the
shared resource can accommodate. For a description of the fields in this structure, see the description
for the SHARE_INFO_502_1 (section 2.2.4.26) structure (shil006_xxx denotes the same information

as shi502_xxx).

typedef struct _SHARE_INFO_1006 {
DWORDBshi1l006_max_uses;
} SHARE_INFO_10086,
*PSHARE_INFO_1006,
*LPSHARE_INFO_1006;

22431 SHARE_INFO_1501_|

The SHARE_INFO_1501_]| structure contains a security descriptor in self -relative format and a DWORD
that contains its len gth.<16> For a description of the fields in this structure, see the description for

the SHARE_INFO_502_| (section 2.2.4.26) structure (shil501_xxx denotes the same information as
shi502_xxx).

typedef struct _SHARE_INFO_1501_I {
DWORDBshil501_reserved;
[size_is(shi1501_reserved)] unsigned char* shil501_security_descriptor;
} SHARE_INFO_1501_|,
*PSHARE_INFO_1501 |,
*LPSHARE_INFO_1501 I;

2.2.4.32 SHARE_INFO_0_CONTAINER

The SHARE_INFO_0_CONTAINER structure contains a value that indicates the number of entries that
the NetrShareEnum method returns and a pointer to the buffer that contains the entries.

typedef struct _SHARE_INFO_0_CONTAINER{
DWORCLENtriesRead,;
[size_is(EntriesRead)] LPSHARE_INFO_0 Buffer;
} SHARE_INFO_O_CONTAINER;

EntriesRead: The number of entries returned by the method.

Buffer: A pointer to the SHARE_INFO_0 entries returned by the method.

53 / 240

[MS -SRVS-Diff] - v20210625

Server Service Remote Protocol

Copyright © 2021 Microsoft Corporati on
Release: June 25, 2021

2.2.4.33 SHARE_INFO_1_CONTAINER

The SHARE_INFO_1_ CONTAINER structure ¢ ontains a value that indicates the number of entries that
the NetrShareEnum method returns and a pointer to the buffer that contains the entries.

typedef struct _SHARE_INFO_1_CONTAINER{
DWORCLEnNtriesRead;
[size_is(EntriesRead)] LPSHARE_INFO_1 Buffer;
} SHARE_INFO_1_CONTAINER,;

EntriesRead: The number of entries returned by the method.

Buffer: A pointer to the SHARE_INFO_1 entries returned by the method.

22434 SHARE_INFO_2_CONTAINER

The SHARE_INFO_2 CONTAINER structure contains a value that indicates the number of entries that
the NetrShareEnum method returns and a pointer to the buffer that contains the entries.

typedef struct _SHARE_INFO_2_CONTAINER{
DVORD EntriesRead,;
[size_is(EntriesRead)] LPSHARE_INFO_2 Buffer;
} SHARE_INFO_2_CONTAINER,
*PSHARE_INFO_2_CONTAINER,
*LPSHARE_INFO_2_CONTAINER,;

EntriesRead: The number of entries returned by the method.

Buffer: A pointer to the SHARE_INFO_2 entries ret urned by the method.

2.2.4.35 SHARE_INFO_501_CONTAINER

The SHARE_INFO_501 CONTAINER structure contains a value that indicates the number of entries
that the NetrShareEnum method returns and a pointer to the buffer that contains the entries.

typedef struct _SHARE_INFO_501_CONTAINER{
DWORCLEnNtriesRead;
[size_is(EntriesRead)] LPSHARE_INFO_501 Buffer;
} SHARE_INFO_501_CONTAINER,
*PSHARE_INFO_501_CONTAINR,
*LPSHARE_INFO_501_CONTAINER;

EntriesRead: The number of entries returned by the method.

Buffer: A pointer to the SHARE_INFO_501 entries returned by the method.

2.2.4.36 SHARE_INFO_502_CONTAINER

The SHARE_INFO_502_ CONTAINER structure contains a value that indicates the number of entries
that the NetrShareEnum method returns and a pointer to the buffer that contains the entries.

typedef struct _SHARE_INFQ 502_CONTAINER {
DWORCLEnNtriesRead,;
[size_is(EntriesRead)] LPSHARE_INFO_502_| Buffer;
} SHARE_INFO_502_CONTAINER,
*PSHARE_INFO_502_CONTAINER,

[MS -SRVS-Diff] - v20210625

Server Service Remote Protocol

Copyright © 2021 Microsoft Corporati on
Release: June 25, 2021

54 | 240

*LPSHARE_INFO_502_CONTAINER;

EntriesRead: The number of entries returned by the method.

Buffer: A pointer to the SHARE_INFO_502_1I entries returned by the method.

2.2.4.37 SHARE_INFO_503_CONTAINER

The SHARE_INFO_503_CONTAINER structure contains a value th at indicates the number of entries the
NetrShareEnum method returns and a pointer to the buffer that contains the entries.

typedef struct _SHARE_INFO_503_CONTAINER{
DWORCLEnNtriesRead,;
[size_is(EntriesRead)] LPSHARE_INFO_503_| Buffer;
} SHARE_INFO_503_ CONTAINER,
*PSHARE_INFO_503_CONTAINER,
*LPSHARE_INFO_503_CONTAINER,;

EntriesRead: The number of entries returned by the method.

Buffer: A pointer to the SHARE_INFO_503_I entries returned by the method.

2.2.4.38 SHARE_ENUM_STRUCT

The SHARE_ENUM_STRUCT structure specifies the information level that the client requests in the
NetrShareEnum method and encapsulates the SHARE_ENUM_UNION union that r eceives the entries
enumerated by the server.

typedef struct _SHARE_ENUM_STRUCT
DWORD evel;
[switch_is(Level)] SHARE_ENUM_UNION Sharelnfo;

} SHARE_ENUM_STRUCT,
*PSHARE_ENUM_STRUCT,
*LPSHARE_ENUM_STRUCT;

Level: Specifies the information level of t he data. This parameter MUST have one of the following
values.
Value Meaning
0 SHARE_INFO_0_CONTAINER
1 SHARE_INFO_1_CONTAINER
2 SHARE_INFO_2_CONTAINER
501 SHARE_INFO_501_CONTAINER
502 SHARE_INFO_502_CONTAINER
503 SHARE_INFO_503_CONTAINER
Sharelnfo: Contains a share information container whose type is specified by the Level parameter as

the preceding table shows. The enumerated share entries are returned in this member.

55 / 240

[MS -SRVS-Diff] - v20210625

Server Service Remote Protocol

Copyright © 2021 Microsoft Corporati on
Release: June 25, 2021

2.2.4.39 STAT_SERVER_0

The STAT_SERVER_O structure contains statistical information about the server.

typedef struct _STAT_SERVER_0{
DWORDstsO_start;
DWORDBstsO_fopens;
DWORDstsO_devopens;
DWORDBstsO_jobsqueued;
DWORDBstsO_sopens;
DWORDBsts0_stimedout;
DWORDstsO_serrorout;
DWORDstsO_pwerrors;
DWORDstsO_permerrors;
DWORDBstsO_syserrors;
DWORDstsO_bytessent_low;
DWORDstsO_bytessent_high;
DWORDBstsO_bytesrcvd_low;
DW@D sts0_bytesrcvd_high;
DWORDBstsO_avresponse;
DWORDstsO_regbufneed;
DWORDBsts0_bigbufneed;

} STAT_SERVER_O,

*PSTAT_SERVER_O,
*LPSTAT_SERVER_O;

stsO_start: Specifies a DWORD value that indicates the time when statistics collection started (or
whe n the statistics were last cleared). The value MUST be stored as the number of seconds that
have elapsed since 00:00:00, January 1, 1970, Greenwich Mean Time (GMT). To calculate the
length of time that statistics have been collected, subtract the value of this member from the
present time.

stsO_fopens: Specifies a DWORD value that indicates the number of Opens that have been created
on a server. This MUST include the number of times named pipes are opened.

stsO_devopens: Specifies a DWORD value that indic ates the number of times a server device has
been opened. This field MUST be set to 0.

stsO_jobsqueued: Specifies a DWORD value that indicates the number of server print jobs that are
spooled.
stsO_sopens: Specifies a DWORD value that indicates the numbe r of sessions that have been

established to a server.

stsO_stimedout: Specifies a DWORD value that indicates the number of times a session is
disconnected.

stsO_serrorout: Specifies a DWORD value that indicates the number of times a session failed with
an error. This field MUST be set to 0.

stsO_pwerrors: Specifies a DWORD value that indicates the number of password violations that the
server has detected.

stsO_permerrors: Specifies a DWORD value that indicates the number of access permission errors
tha t have occurred on the server.

stsO_syserrors: Specifies a DWORD value that indicates the number of system errors that have
occurred on the server. This field MUST be set to 0.

stsO_bytessent_low: Specifies the low -order DWORD of the number of server byt es sent on the
network.

56 / 240

[MS -SRVS-Diff] - v20210625

Server Service Remote Protocol

Copyright © 2021 Microsoft Corporati on
Release: June 25, 2021

stsO_bytessent_high: Specifies the high -order DWORD of the number of server bytes sent on the
network.

stsO_bytesrcvd_low: Specifies the low -order DWORD of the number of server bytes received from
the network.

stsO_bytesrcvd_high: Specifies the high -order DWORD of the number of server bytes received from
the network.

stsO_avresponse: Specifies a DWORD value that indicates the average server response time, in
milliseconds. This field MUST be set to 0.

stsO_regb ufneed: Specifies a DWORD value that indicates the number of times the server required
a request buffer but failed to allocate one. This field MUST be set to 0.

stsO_bigbufneed: Specifies a DWORD value that indicates the number of times the server requir ed
a large buffer but failed to allocate one. This field MUST be set to 0.

2.2.4.40 SERVER_INFO_100

The SERVER_INFO_100 structure contains information about the specified server, incl uding the name
and platform. It MUST be used only to query information about a server. For a description of the fields

in this structure, see the description for the SERVER_INFO_103 structure (sv100_xxx denotes the

same information as sv103_xxx).

typedefs truct _SERVER_INFO_100 {
DWORDBsv100_platform_id;
[string] wchar_t* sv100_name;
} SERVER_INFO_100,
*PSERVER_INFO_100,
*LPSERVER_INFO_100;

22441 SERVER_INFO_101

The SERVER_INF O_101 structure contains information about the specified server, including name,

platform, type of server, and associated software. For a description about the fields in this structure,

see the description for the SERVER_INFO_103 structure (sv101_xxx denot es the same information as
SV103_XxX).

typedef struct _SERVER_INFO_101 {
DWORDBsv101_platform_id;
[string] wchar_t* sv101_name;
DWORDBsv101_version_major;
DWORDBsv101_version_minor;
DWORDBsv101_type;
[string] wchar_t* sv101_comment;
} SERVER_IN FO_101,
*PSERVER_INFO_101,
*LPSERVER_INFO_101;

2.2.4.42 SERVER_INFO_102

The SERVER_INFO_102 structure contains information about the specified server, including the name,
platform, and type of server, attributes, and associated software. For information about the fields in
this structure, see the description for the SERVER_INFO_103 structure (sv102_xxx denotes the same
information as sv103_xxx).

typedef struct _SERVER_INFO_102 {

57 / 240

[MS -SRVS-Diff] - v20210625

Server Service Remote Protocol

Copyright © 2021 Microsoft Corporati on
Release: June 25, 2021

DWORDBsv102_platform_id;

[string] wchar_t* sv102_name;

DWORDBsv102_version_major;

DWORDBsv102_version_minor;

DWORDBsV102_type;

[string] wchar_t* sv102_comment;

DWORDBsvV102_users;

long sv102_disc;

int sv102_hidden;

DWORDBsV102_announce;

DWORDBV102_anndelta;

DWORDBsv102_licenses;

[string] wchar_t* sv102_userpath;

} SERVER_INFO_102,

*PSERVER_INFO_102,
*LPSERVER_INFO_102;

2.2.443 SERVER_INFO_103

The SERVER_INFO_103 structure contains information about CIFS and SMB Version 1.0 file servers,
including the name, platform, type of server, attributes, associated software, and capabilities.

typedef struct _SERVER_INFO_103 {
DWORDBsv103_platform_id;
[string] wchar_t* sv103_name;
DWORDsv103_version_major;
DWORDBsv103_version_minor;
DWORDBsV103_type;
[string] wchar_t* sv103_comment;
DWORDBsV103_users;
LONG sv103_disc;
BOOL sv103_hidden;
DWORDBV103_announce;
DWORDBsv103_anndelta;
DWORDBsv103_licenses;
[string] wchar_t* sv103_userpath;
DWORDsv103_capabilities;
} SERVER_INFO_103,
*PSERVER_INFO_103,
*LPSERVER_INFO_103;

sv103_platform_id: Specifies the information level to use f or platform -specific information. This
member can be one of the values that are listed in PLATFORM IDs (section 2.2.2.6). The server
MUST ignore this field during a NetrServerSetinfo operation.

sv103_name: A pointer to a null -terminated Unicode UTF -16 In ternet host name or NetBIOS host
name of a server.

The server MUST ignore this field during a NetrServerSetinfo operation.

sv103_version_major: Specifies the major release version number of the operating system. The
server MUST ignore this field during a NetrServerSetinfo operation. The server MUST set this field
to an implementation - specific major release version humber that corresponds to the host
operating system on a NetrServerGetinfo operation.<17>

sv103_version_minor: Specifies the minor release ver sion number of the operating system. The
server MUST ignore this field during a NetrServerSetinfo operation. The server MUST set this field
to an implementation - specific minor release version number that corresponds to the host
operating system on a NetrSe rverGetinfo operation.<18>

58 / 240

[MS -SRVS-Diff] - v20210625

Server Service Remote Protocol

Copyright © 2021 Microsoft Corporati on
Release: June 25, 2021

sv103_type: Specifies the type of software the computer is running. This member MUST be a
combination of one or more of the values that are listed in section 2.2.2.7. The server MUST
ignore this field during a NetrServerSetinfo operation.

sv103_comment: An optional pointer to a null -terminated Unicode UTF - 16 string that specifies a
comment that describes the server.

sv103_users: Specifies the number of users who can attempt to log on to the server. The range of
values MUST be f rom 0x00000001 to OXFFFFFFFF, inclusive. The server enforces a ceiling, based
on the particular SKU that is running on the server, by taking a minimum of the specified value
and the ceiling.

sv103_disc: Specifies the automatic disconnect time, in minutes. A session MUST be disconnected if
it is idle longer than the period of time that the sv103_disc member specifies. If the value of
sv103_disc is SV_NODISC (0xFFFFFFFF), an automatic disconnect MUST NOT be enabled. The
range of values MUST be from 0x0000000 1 to OXFFFFFFFF, inclusive.

sv103_hidden: A Boolean that specifies whether the server is hidden or visible to other computers
in the same network domain. It MUST be set to TRUE (1) to indicate that the server is hidden; or
it MUST be set to FALSE (0) to indicate that the server is visible. The default value is FALSE (0).

sv103_announce: Specifies the network announce rate, in seconds. This rate determines how often
the server is announced to other computers on the network for discovery by using the CIFS
Browser Protocol. For more information, see [MS -BRWS]. The range of values MUST be from 1 to
65535, inclusive.

sv103_anndelta: Specifies the delta value for the announce rate, in milliseconds. This value
specifies how much the announce rate can vary from the period of time that is specified in the
sv103_announce member. The delta value enables the server to set randomly varied announce
rates in the range sv103_announce to sv103_announce +sv103_anndelta , inclusive, to
prevent many servers from announcing at the same time. The range of values MUST be from 0 to
65535, inclusive.

sv103_licenses: Unused. The server MUST ignore this field during a NetrServerSetinfo operation.
The server MUST return 0 during a NetrServerGetinfo operation.

sv103_userpath: A pointe rto anull -terminated Unicode UTF -16 string that specifies the path to the
user directories. Due to historical reasons, the default path is "c: \". The client can set this field to
any value. The server stores this string and returns it when queried. This field has no effect on the
server.

sv103_capabilities: Specifies the capabilities of the server. This MUST be a combination of zero or
more of the following flags. The server MUST ignore this field during a NetrServerSetinfo
operation. If the server does not support any of the following capabilities, it MUST set this field to
0x0000.

Value Meaning

SRV_SUPPORT_HASH_GENERATION Hash generation for branch cache functionality is supported by the

0x0001 server.
SRV_HASH_GENERATION_ACTIVE The branch cache component is installed.<19>
0x0002

59 / 240

[MS -SRVS-Diff] - v20210625

Server Service Remote Protocol

Copyright © 2021 Microsoft Corporati on
Release: June 25, 2021

2.2.4.44 SERVER_INFO_502

The SERVER_INFO_502 structure contains information about a specified server. For a description of

the fields in this structure, see the description for the SERVER_INFO_599 structure (sv502_xxx
denotes the same information as sv599_xxx).

typedef struct _SERVER_INFO_502 {
DWORDBsV502_sessopens;
DWORDBsV502_sessvcs;
DWORDBsV502_ opensearch;
DWORDsV502_sizregbuf;
DWORDBsV502_initworkitems;
DWORDBsv502_maxworkitems;
DWORDBV502_rawworkitems;
DWORDsV502_irpstacksize;
DWORDBsv502_maxrawbuflen;
DWORDsV502_sessusers;
DWORDBsV502_sessconns;
DWORDBsV502_maxpagedmemoryusage;
DWORDBsV502_maxnonpagedmemoryusage;
int sv502_enablesoftcompat;

int sv502_enableforcedlogoff;

int svb02_timesource;

int sv502_acceptdownlevelapis;

int sv502_Imannounce;

} SERVER_INFO_502,
*PSERVER_INFO_502,
*LPSERVER_INFO_502;

2.2.4.45 SERVER_INFO_503

The SERVER_INFO_503 structure contains information about a specified server. For a description of
the fields in this structure, see the d escription for the SERVER_INFO_599 structure (sv503_xxx
denotes the same information as sv599_xxx).

typedef struct _SERVER_INFO_503 {
DWORDBsV503_sessopens;
DWORDBsV503_sessvcs;
DWORDBsV503_opensearch;
DWORDV503_sizregbuf;
DWORDBsV503_initworki tems;
DWORDBsV503_maxworkitems;
DWORDsV503_rawworkitems;
DWORDsV503_irpstacksize;
DWORDBsV503_maxrawbuflen;
DWORDBsV503_sessusers;
DWORDBsV503_sessconns;
DWORDBV503_maxpagedmemoryusage;
DWORDBV503_maxnonpagedmemoryusage;
int sv503_enablesoftcompat;

int sv503_enableforcedlogoff;

int sv503_timesource;

int svb03_acceptdownlevelapis;

int sv503_Imannounce;

[string] wchar_t* sv503_domain;
DWORDBsV503_maxcopyreadlen;
DWORDBsv5 03_maxcopywritelen;
DWORDBsv503_minkeepsearch;
DWORDsV503_maxkeepsearch;
DWORDBsV503_minkeepcomplsearch;
DWORDBsv503_maxkeepcomplsearch;
DWORDBsv503_threadcountadd,;
DWORDBsvV503_numblockthreads;
DWORDBsV503_scavtimeout;
DWORDBsV503_minrcvqu eue;

[MS -SRVS-Diff] - v20210625

Server Service Remote Protocol

Copyright © 2021 Microsoft Corporati on
Release: June 25, 2021

60 / 240

DWORDBsV503_minfreeworkitems;
DWORDBV503_xactmemsize;
DWORDsV503_threadpriority;
DWORDBsV503_maxmpxct;
DWORDBsv503_oplockbreakwait;
DWORDsV503_oplockbreakresponsewait;
int sv503_enableoplocks;

int sv503_enableoplockforceclose;
int sv503_enablefcbopens;

int svb03_enableraw;

int svb03_enablesharednetdrives;
DWORDBsv503_minfreeconnections;
DWORDBsv503_maxfreeconnections;
} SERVER_INFO_503,
*PSERVER_INFO_503,
*LPSERVER_INFO_503;

2.2.4.46 SERVER_INFO_599

The SERVER_INFO_599 structure contains information about a specified server. The
SERVER_INFO_599 fields involve implementation - specific details of CIFS and SMB Version 1.0 f
servers. These fields can vary in how they apply to any given implementation. For more information,
see section 3.1.4.18.

typedef struct _SERVER_INFO_599 {
DWORDBsV599_sessopens;
DWORDBV599_sessvcs;
DWORDBsV599_opensearch;
DWORDBsV599_sizregbu f;
DWORDBsV599_initworkitems;
DWORDBV599 _maxworkitems;
DWORDBV599_rawworkitems;
DWORDBsV599 irpstacksize;
DWORDBsV599 _maxrawbuflen;
DWORDBV599_sessusers;
DWORDBV599 sessconns;
DWORDBV599 _maxpagedmemoryusage;
DWORDBsV599_maxnonpagedme moryusage;
int sv599_enablesoftcompat;

int sv599_enableforcedlogoff;

int sv599_timesource;

int sv599_ acceptdownlevelapis;

int sv599 Imannounce;

[string] wchar_t* sv599_domain;
DWORDBsV599 _maxcopyreadlen;
DWORDBsV599 _maxcopywritelen;
DWORDBsV599 _minkeepsearch;
DWORDV599_maxkeepsearch;
DWORDBV599_minkeepcomplsearch;
DWORDBsV599 _maxkeepcomplsearch;
DWORDBsV599 _threadcountadd,;
DWORDBV599_numblockthreads;
DWORDBsV599_scavtimeout;
DWORDBsV5 99_minrcvqueue;
DWORDBsV599_minfreeworkitems;
DWORDBsV599_xactmemsize;
DWORDBsV599 _threadpriority;
DWORDBV599 _maxmpxct;
DWORDBsV599_oplockbreakwait;
DWORDBsV599_oplockbreakresponsewait;
int sv599_enableoplocks;

int sv599_enableoplockforcec lose;
int sv599_enablefcbopens;

int sv599_enableraw;

int sv599_enablesharednetdrives;
DWORDBsV599_minfreeconnections;

ile

[MS -SRVS-Diff] - v20210625

Server Service Remote Protocol

Copyright © 2021 Microsoft Corporati on
Release: June 25, 2021

61 / 240

DWORDBsV599_maxfreeconnections;
DWORDBV599 _initsesstable;
DWORDBV599 _initconntable;
DWORDBsV599 initfiletable;
DWORDBsV599 _initsearchtable;
DWORDBV599_alertschedule;
DWORDBV599_errorthreshold;
DWORDBsV599_networkerrorthreshold;
DWORDBsV599_diskspacethreshold;
DWORDBV599_reserved;
DWORDBV599_maxlinkdelay;
DWORDBsV599_minlinkthroughput;
DWORDBsV599 _linkinfovalidtime;
DWORDBsV599_scavqosinfoupdatetime;
DWORDBV599_maxworkitemidletime;
} SERVER_INFO_599,
*PSERVER_INFO_599,
*LPSERVER_INFO_599;

sv599_sessopens: Specifies th e number of files that can be open in one session. The range of
values MUST be from 1 to 16384, inclusive.<20>

sv599_sessvcs: Specifies the maximum number of sessions that are permitted per client. This value
MUST be set to one.

sv599_opensearch: Specifi es the number of search operations that can be carried out
simultaneously. The range of values MUST be from 1 to 2,048, inclusive.

sv599_sizreqbuf: Specifies the size, in bytes, of each server buffer. This field MUST be ignored by
the server on receipt fo r set operations. The range of values MUST be 1,024 to 65,535,
inclusive.<21>

sv599 _initworkitems: Specifies the initial number of receive buffers, or work items, that the server
uses. The range of values for get operations MUST be from 1 to 512, inclusiv e. This field MUST be
ignored by the server on receipt for set operations.

sv599_maxworkitems: Specifies the maximum number of receive buffers, or work items, that the
server can allocate. If this limit is reached, the transport MUST initiate flow control . The range of
values MUST be from 1 to 65,535, inclusive. The server enforces a ceiling based on the particular
SKU that is running on the server by taking a minimum specified value and the ceiling.

sv599 rawworkitems: Specifies the number of special wor k items the server uses for raw mode
I/O. A larger value for this member can increase performance, but it requires more memory. The
range of values for get operations MUST be from 1 to 512, inclusive. This field MUST be ignored by
the server on receipt for set operations.

sv599 _irpstacksize: Specifies the number of stack locations that the server allocated in I/O request
packets (IRPs). This field MUST be ignored by the server on receipt for set operations. The range
of values MUST be 11 to 50, inclusive.< 22>

sv599 maxrawbuflen: The server MUST validate the value on receipt. This value MUST be set to
65,535. Due to historical reasons, the server does not store this value.

svb99_sessusers: Specifies the maximum number of users who can be logged on to the serverin a
single connection. The range of values MUST be from 1 to 2,048, inclusive.

sv599_sessconns: Specifies the maximum number of tree connections that can be made on the
server in a single session. The range of values MUST be from 1 to 2,048, inclu sive.

sv599 maxpagedmemoryusage: Specifies the maximum size of pageable memory, in bytes, that
the server can allocate at any one time. The range of values MUST be from 0x00400000 to
OxFFFFFFFF, inclusive.<23>

62 / 240

[MS -SRVS-Diff] - v20210625

Server Service Remote Protocol

Copyright © 2021 Microsoft Corporati on
Release: June 25, 2021

sv599 _maxnonpagedmemoryusage: Specifies the maximum size of nonpaged memory in bytes
that the server can allocate at any one time. The range of values MUST be from 0x00400000 to
OXFFFFFFFF, inclusive.<24>

sv599_enablesoftcompat: A Boolean that specifies the SoftCompatibility capability of the serve r.
This field MUST be set to TRUE (1) to enable the SoftCompatibility feature, or it MUST be set to
FALSE (0) to disable the SoftCompatibility feature. The default value is TRUE (1). This setting
affects the open mode when the client does not have read/wri te permission to the file it is
accessing. If this feature is enabled, the server uses share access (parameter to CreateFile) equal
to FILE_SHARE_READ and does not mark the open as compatibility mode open; otherwise, share
access is set equal to 0, and the open is marked as compatibility mode open.

sv599_enableforcedlogoff: A Boolean that specifies whether or not the server forces a client to
disconnect, even if the client has open files, after the client's logon time has expired. This field
MUST be setto TRUE (1) for the server to force a client to disconnect under those circumstances,
or it MUST be set to FALSE (0) for the server not to force a client to disconnect under those
circumstances. The default value is TRUE (1).

sv599_timesource: A Boolean tha t specifies whether the server is a reliable time source.

sv599_acceptdownlevelapis: A Boolean that specifies whether the server accepts method calls
from previous -generation NTLM clients. This field MUST be set to TRUE (1) to enable the server to
accept method calls from previous -generation NTLM clients, or it MUST be set to FALSE (0) to
disable the server from accepting method calls from previous NTLM clients. The default value is
TRUE (1). This field MUST be ignored by the server on receipt.

sv599 Imann ounce: A Boolean that specifies whether the server is visible to NTLM 2.x clients. The
default value is FALSE (0). If this feature is enabled, the server announces its presence through
LanMan or NetBIOS announcements.

sv599_domain: A pointerto a Unicode UTF character string that specifies the name of the server's
domain. This field cannot be modified by clients.

sv599_maxcopyreadlen: The server MUST validate this value on receipt. The range of values MUST
be from 0x00000000 to OXxFFFFFFFF, inclusi ve. Due to historical reasons, the server does not store
this value.

sv599_maxcopywritelen: The server MUST validate this value on receipt. The range of values

MUST be from 0x00000000 to OxFFFFFFFF, inclusive. Due to historical reasons, the server does
not store this value.

sv599 minkeepsearch: The server MUST validate this value on receipt. The range of values MUST
be from 5 to 5,000, inclusive. Due to historical reasons, the server does not store this value.

sv599_maxkeepsearch: Specifies the length of time, in seconds, that the server retains information
about incomplete directory search operations. For more information about directory searches, see
[MS -CIFS] sections 2.2.6.2 and 2.2.6.3. The range of values MUST be from 10 to 10,000,
inclusive.

sv5 99_minkeepcomplsearch: The server MUST validate this value on receipt. The range of values
MUST be from 1 to 1,000, inclusive. Due to historical reasons, the server does not store this value.

sv599 maxkeepcomplsearch: The server MUST validate this value on receipt. The range of values
MUST be from 2 to 10,000, inclusive. Due to historical reasons, the server does not store this
value.
sv599_threadcountadd: Unused. This field MUST be ignored on receipt.
sv599_numblockthreads: Unused. This field MUST be ignored on receipt.
63 / 240

[MS -SRVS-Diff] - v20210625

Server Service Remote Protocol

Copyright © 2021 Microsoft Corporati on
Release: June 25, 2021

sv599_scavtimeout: Specifies the period of time, in seconds, that an implementation -specific timer
on the server remains idle before waking up to service requests. This timer runs periodic
maintenance tasks that monitor time -out reque sts, log errors, update server statistics, and update
the connection Quality of Service (QoS) by querying the underlying transport. The range of values
MUST be from 1 to 300, inclusive.

sv599_minrcvqueue: Specifies the minimum number of free receive work items that the server
requires before it begins to allocate more. The server keeps a pool of free work items for each
worker queue. When a new request is posted to this queue, a work item is picked from the pool to
hold that request while it is being proce ssed. The work item is returned to the pool after the
processing is done. If the number of free work items (that is, work items that are not being used
to process a request) for a queue falls below this setting, the server will request more work items
to b e allocated for the queue. The range of values MUST be from 0 to 10, inclusive.

sv599_ minfreeworkitems: Specifies the minimum number of available receive work items that the
server requires to begin processing a server message block. The range of values M UST be from 0
to 10, inclusive.

sv599_xactmemsize: Specifies the size, in bytes, of the shared memory region that is used to
process server methods. The range of values MUST be from 0x10000 (64 KB) to 0x1000000 (16
MB), inclusive. This field MUST be ignor ed by the server on receipt for set operations.

sv599 _threadpriority: Specifies the priority of all server threads in relation to the base priority of
the process. The range of values MUST be from 0 to THREAD_BASE_PRIORITY_LOWRT (15),
inclusive. This fiel d MUST be ignored by the server on receipt for set operations.

sv599_maxmpxct: Specifies the maximum number of outstanding requests that any one client can
send to the server. The range of values MUST be from 1 to 65,535, inclusive.

sv599_oplockbreakwait: Specifies the period of time, in seconds, to wait before timing out an
opportunistic lock break request. For more information about opportunistic locks, see [MS -CIFS]
section 3.2.4.18. The range of values MUST be from 10 to 180, inclusive.

sv599_oplock breakresponsewait: Specifies the period of time, in seconds, that the server waits
for a client to respond to an opportunistic lock break request from the server. For more
information about opportunistic locks, see [MS -CIFS] section 3.2.4.18. The range of values MUST

be from 10 to 180, inclusive.

sv599_enableoplocks: A Boolean that specifies whether the server allows clients to use
opportunistic locks on files. Opportunistic locks are a significant performance enhancement, but
they have the potential to ¢ ause lost cached data on some networks, particularly wide -area
networks. For more information about opportunistic locks, see [MS - CIFS] section 3.2.4.18. This

field MUST be set to TRUE (1) to enable clients to use opportunistic locks on files, or it MUST be
set to FALSE (0) to restrict clients from using opportunistic locks on files. The default value is
TRUE (1).

sv599_enableoplockforceclose: Unused. MUST be set to zero and ignored on receipt.

sv599_enablefcbopens: Specifies whether several MS ~ -DOS File Co ntrol Blocks (FCBs) are placed in
a single location accessible to the server. If enabled, this option can save resources on the server.
This field MUST be set to TRUE (1) to place multiple MS -DOS FCBs in a single location accessible
to the server, and itM UST be set to FALSE (0) otherwise. The default value is TRUE (1).

sv599 enableraw: Specifies whether the server processes raw SMBs. If enabled, this allows more
data to transfer per transaction and improves performance. However, it is possible that proces sing
raw SMBs can impede performance on certain networks. This field MUST be set to TRUE (1) to
indicate that the server processes raw SMBs, and it MUST be set to FALSE (0) to indicate that the
server does not process raw SMBs. The server MUST maintain the value of this member. The
default value is TRUE (1).

64 / 240

[MS -SRVS-Diff] - v20210625

Server Service Remote Protocol

Copyright © 2021 Microsoft Corporati on
Release: June 25, 2021

sv599_enablesharednetdrives: Specifies whether the server allows redirected server drives to be
shared. The default value is FALSE (0).

sv599_minfreeconnections: Specifies the minimum number of free ¢ onnection blocks that are
maintained per endpoint. The server MUST set these aside to handle bursts of requests by clients
to connect to the server. The range of values MUST be from 2 to 1,024.<25>

sv599 maxfreeconnections: Specifies the maximum number of free connection blocks that are
maintained per endpoint. The server MUST set these aside to handle bursts of requests by clients
to connect to the server. The range of values MUST be from 2 to 16,384.<26>

sv599 _initsesstable: Specifies the initial sessio n table size for the server in terms of the number of
records (session structures used by the server internally to represent active sessions). The range
of values MUST be from 1 to 64, inclusive.

sv599 _initconntable: Specifies the initial connection table size for the server in terms of the
number of records (connection structures used by the server internally to represent active
connections). The range of values MUST be from 1 to 128, inclusive.

sv599_initfiletable: Specifies the initial file table size for the server in terms of the number of
records (file structures used by the server internally to represent current open resources). The
range of values MUST be from 1 to 256, inclusive.

sv599_initsearchtable: Specifies the initial search table size for the server in terms of the number
of records (search structures used by the server internally to represent active searches). The
range of values MUST be from 1 to 2,048, inclusive.

sv599 alertschedule: Specifies the time, in minutes, between two invocatio ns of an
implementation - specific algorithm on the server. This algorithm monitors server errors and disk
space limits, and it generates the implementation - specific failure events. The range of values

MUST be from 1 to 65,535, inclusive.

sv599_errorthreshold: Specifies the number of failed operations (non -network) that the server logs
before raising an administrative alert. The particular operations whose failure causes the count of
failed non -network operations to be incremented is imple mentation -dependent. The range of

values MUST be from 1 to 65,535, inclusive.

sv599_networkerrorthreshold: Specifies the minimum percentage of failed network operations
that the server records before raising an administrative alert. An alert MUST be raise d when (the
number of failed network operations / the number of all attempted network operations) * 100 is
greater than or equal to this value. The range of values MUST be from 1 to 100, inclusive.

sv599_diskspacethreshold: Specifies the percent of free disk at which to raise an administrative
alert. The range of values MUST be from 0 to 99, inclusive.

svb99 reserved: Reserved. This field MUST be set to zero.

sv599 maxlinkdelay: Specifies the maximum link delay, in seconds, for the server. The server
enables raw I/O [MS -SMB] for a connection only if oplocks are enabled for this connection and the
link delay on the connection is less than or equal to this value. The range of values MUST be from
0x00000000 to 0x10000000, inclusive.

sv599_minlinkth roughput: Specifies the minimum link throughput, in bytes/second, for the server.
The server enables oplocks for a connection only if its current throughput is greater than or equal
to this value. The range of values MUST be from 0x00000000 to OXFFFFFFFF, inclusive.

sv599 _linkinfovalidtime: Specifies the time interval, in seconds, during which the server can use
the computed link information before having to compute it again. The range of values MUST be
from 0x00000000 to 0x10000000, inclusive.

65 / 240

[MS -SRVS-Diff] - v20210625

Server Service Remote Protocol

Copyright © 2021 Microsoft Corporati on
Release: June 25, 2021

sv599 scav qosinfoupdatetime: Specifies the time interval for which an implementation - specific
timer on the server has to update QoS information. This time interval allows the client to have the
QoS information update done less frequently than the other tasks done b y the timer. The range of
values MUST be from 0x00000000 to 0x10000000, inclusive.

sv599 _maxworkitemidletime: Specifies the maximum work item idle time, in seconds. For
historical reasons, the server only stores this value, and it has no effect on server operation. The
range of values MUST be from 10 to 1,800, inclusive.

22447 SERVER_INFO_1005

The SERVER_INFO_1005 structure contains information about a specified server.

typedef struct _SERVER_INFO_1005 {
[string] wchar_t* sv1005_comment;
} SERVER_INFO_1005,
*PSERVER_INFO_1005,
*LPSERVER_INFO_1005;

sv1005_comment: This member is defined in the sv103_comment member in
SERVER_INFO_103 (section 2.2.4.43).

2.2.4.48 SERVER_INFO_1107

The SERVER_INFO_1107 structure contains information about a specified server.

typedef struct _SERVER_INFO_1107 {
DWORDBsvV1107_users;
} SERVER_INFO_1107,
*PSERVER_INFO_1107,
*LPSERVER_INFO_1107,

sv1107_users: This member is defined in the sv103_users member in
SERVER_INFO_103 (section 2.2.4.43).

2.2.4.49 SERVER_INFO_1010

The SERVER_INFO_1010 structure contains information about a specified server.

typedef struct _SERVER_INFO_1010 {
long sv1010_disc;
} SERVER_INFO_1010,
*PSERVER_INFO_1010,
*LPSERVER_INFO_1010;

sv1010_disc: This member is defined in the sv103_disc memberin
SERVER_INFO_103 (section 2.2.4.43).

22450 SERVER_INFO_1016

The SERVER_INFO_1016 structure contains information about a specified server.

typedef struct _SERVER_INFO_1016 {
int sv1016_hidden;
} SERVER_INFO_10186,

66 / 240

[MS -SRVS-Diff] - v20210625

Server Service Remote Protocol

Copyright © 2021 Microsoft Corporati on
Release: June 25, 2021

*PSERVER_INFO_1016,
*LPSERVER_INFO_1016;

sv1016_hidden: This member is defined in the sv103_hidden member in
SERVER_INFO_103 (section 2.2.4.43).

22451 SERVER_INFO_1017

The SERVER_INFO_1017 structure contains information about a specified server.

typedef struct _SERVER_INFO_1017 {
DWORDBV1017_announce;
} SERVER_INFO_1017,
*PSERVER_INFO_1017,
*LPSERVER_INFO 1017;

sv1017_announce: This member is defined in the sv103_announce member in
SERVER_INFO_103 (section 2.2.4.43).

22452 SERVER_INFO_1018

The SERVER_INFO_1018 structure contain s information about a specified server.

typedef struct _SERVER_INFO_1018 {
DWORDBsv1018_anndelta;
} SERVER_INFO_1018,
*PSERVER_INFO_1018,
*LPSERVER_INFO_1018;

sv1018_anndelta: This member is defined in the sv103_ anndelta member in
SERVER_INFO_103 (section 2.2.4.43).

22453 SERVER_INFO_1501

The SERVER_INFO_1501 structure contains information about a specified server.

typedef struct _SERVER_INFO_B01 {
DWORDBsV1501_sessopens;
} SERVER_INFO_1501,
*PSERVER_INFO_1501,
*LPSERVER_INFO_1501;

sv1501_sessopens: This member is defined in the sv599 sessopens member in
SERVER_INFO_599 (section 2.2.4.46).

2.2.4.54 SERVER_INFO_1502

The SERVER_INFO_1502 structure contains information about a specified server.

typedef struct _SERVER_INFO_1502 {
DWORDBsv1502_sessvcs;
} SERVER_INFO_1502,
*PSERVER_INFO_1502,
*LPSERVER_INFO_1502;

[MS -SRVS-Diff] - v20210625

Server Service Remote Protocol

Copyright © 2021 Microsoft Corporati on
Release: June 25, 2021

67 / 240

sv1502_sessvcs: This member is defined in the sv599 sessvcs member in
SERVER_INFO_599 (section 2.2.4.46).

22455 SERVER_INFO_1503

The SERVER_INFO__ 15083 structure contains information about a specified server.

typedef struct _SERVER_INFO_1503 {
DWORDBsv1503_opensearch;
} SERVER_INFO_1503,
*PSERVER_INFO_1503,
*LPSERVER_INFO_1503;

sv1503_opensearch: This member is defined in the sv599 opensearch me mber in
SERVER_INFO_599 (section 2.2.4.46).

2.2.4.56 SERVER_INFO_1506

The SERVER_INFO_1506 structure contains information about a specified server.

typedef struct _SERVER_INFO_1506 {
DWORDsv1506_maxworkitems;
} SERVER_INFO_1506,
*PSERVER_INFO_1506,
*LPSERVER_INFO_1506;

sv1506_maxworkitems: This member is defined in the sv599_maxworkitems member in
SERVER_INFO_599 (section 2.2.4.46).

22457 SERVER_INFO_1510

The SERVER_INFO_1510 structure contains information about a specified server.

typedef struct _SERVER_INFO_B510 {
DWORDBsV1510_sessusers;
} SERVER_INFO_1510,
*PSERVER_INFO_1510,
*LPSERVER_INFO_1510;

sv1510 sessusers: This member is defined in the svb599 sessusers member in
SERVER_INFO_599 (section 2.2.4.46).

2.2.458 SERVER_INFO_1511

The SERVER_INFO_1511 structure contains information about a specified server.

typedef struct _SERVER_INFO_1511 {
DWORDBsv1511_sessconns;
} SERVER_INFO_1511,
*PSERVER_INFO_1511,
*LPSERVER_INFO_1511,

sv1511 sessconns: This member is defined in the sv599_sessconns member in
SERVER_INFO_599 (section 2.2.4.46).

[MS -SRVS-Diff] - v20210625

Server Service Remote Protocol

Copyright © 2021 Microsoft Corporati on
Release: June 25, 2021

68 / 240

22459 SERVER_INFO_1512

The SERVER_INFO_1512 structure contains information about a specified server.

typedef struct _SERVER_INFO_1512 {
DWORDBsv1512_maxnonpagedmemoryusage;
} SERVER_INFO_1512,
*PSERVER_INFO_1512,
*LPSERVER_INFO_1512;

sv1512_maxnonpagedmemoryusage: This member is defined in the
sv599 _maxnonpagedmemoryusage member in SERVER_INFO_599 (section 2.2.4.46).
2.2.4.60 SERVER_INFO_1513

The SERVER_INFO_1 513 structure contains information about a specified server.

typedef struct _SERVER_INFO_1513 {
DWORDsv1513_maxpagedmemoryusage;
} SERVER_INFO_1513,
*PSERVER_INFO_1513,
*LPSERVER_INFO_1513;

sv1513 maxpagedmemoryusage: This member is defined in the
sv 599 maxpagedmemoryusage member in SERVER_INFO_599 (section 2.2.4.46).
22461 SERVER_INFO_1514

The SERVER_INFO_1514 structure contains information about a specified server.

typede f struct _SERVER_INFO_1514 {
int svl514 enablesoftcompat;
} SERVER_INFO_1514,
*PSERVER_INFO_1514,
*LPSERVER_INFO_1514;

sv1514 enablesoftcompat: This member is defined in the sv599_enablesoftcompat member in
SERVER_INFO_599 (section 2.2.4.46).

2.2.4.62 SERVER_INFO_1515

The SERVER_INFO_1515 structure contains information about a specified server.

typedef struct _SERVER_INFO_B15 {
int sv1515_enableforcedlogoff;
} SERVER_INFO_1515,
*PSERVER_INFO_1515,
*LPSERVER_INFO_1515;

sv1515_enableforcedlogoff: This member is defined in the sv599_enableforcedlogoff member
in SERVER_INFO_599 (section 2.2.4.46).

69 / 240

[MS -SRVS-Diff] - v20210625

Server Service Remote Protocol

Copyright © 2021 Microsoft Corporati on
Release: June 25, 2021

2.2.4.63 SERVER_INFO_1516

The SERVER_INFO_1516 structure contains information about a specified server.

typedef struct _SERVER_INFO_1516 {
int sv1516_timesource;
} SERVER_INFO_1516,
*PSERVER_INFO_1516,
*LPSERVER_INFO_1516;

sv1516_timesource: This member is defined in the sv599_timesource member in
SERVER_INFO_599 (section 2.2.4.46).

2.2.4.64 SERVER_INFO_1518

The SERVER_INFO_1518 structure contains information about a specified server.

typedef struct _SERVER_INFO_1518 {
int sv1518 Imannounce;
} SERVER_INFO_1518,
*PSERVER_INFO_1518,
*LPSERVER_INFO_1518;

sv1518 Imannounce: This member is defined in the sv5 99 Imannounce member in
SERVER_INFO_599 (section 2.2.4.46).

2.2.4.65 SERVER_INFO_1523

The SERVER_INFO_1523 structure contains information about a specified server.

typedef struct _SERVER_INFO_1523 {
DWORDsv1523 maxkeepsearch;
} SERVER_INFO_1523,
*PSERVER_INFO_1523,
*LPSERVER_INFO_1523;

sv1523 maxkeepsearch: This member is defined in the sv599 maxkeepsearch member in
SERVER_INFO_599 (section 2.2.4.46).

2.2.4.66 SERVER_INFO_1528

The SERVER_INFO_1528 structure contains information about a specified server.

typedef struct _SERVER_INFO_B528 {
DWORDBsv1528_scavtimeout;
} SERVER_INFO_1528,
*PSERVER_INFO_1528,
*LPSERVER_INFO_1528;

sv1528_ scavtimeout: This member is defined in the sv599_scavtimeout member in
SERVER_INFO_599 (section 2.2.4.46).

[MS -SRVS-Diff] - v20210625

Server Service Remote Protocol

Copyright © 2021 Microsoft Corporati on
Release: June 25, 2021

70 / 240

2.2.4.67 SERVER_INFO_1529

The SERVER_INFO_1529 structure contains information about a specified server.

typedef struct _SERVER_INFO_B29 {
DWORDBsV1529 minrcvqueue;
} SERVER_INFO_1529,
*PSERVER_INFO_1529,
*LPSERVER_INFO_1529;

sv1529 minrcvqueue: This member is defined in the sv599 minrcvqueue member in

SERVER_INFO_599 (section 2.2.4.46).

2.2.4.68 SERVER_INFO_1530

The SERVER_INFO_1530 structure contains information about a specified server.

typedef struct _SERVER_INFO_1530 {
DWORDBsv1530_minfreeworkitems;
} SERVER_INFO_1530,
*PSERVER_INFO_1530,
*LPSERVER_NFO_1530;

sv1530_minfreeworkitems: This member is defined in the sv599 minfreeworkitems
SERVER_INFO_599 (section 2.2.4.46).

2.2.4.69 SERVER_INFO_1533

The SERVER_INFO_15 33 structure contains information about a specified server.

typedef struct _SERVER_INFO_1533 {
DWORDBsV1533_maxmpxct;
} SERVER_INFO_1533,
*PSERVER_INFO_1533,
*LPSERVER_INFO_1533;

sv1533_maxmpxct: This member is defined in the sv599 _maxmpxct member in
SERVER_INFO_599 (section 2.2.4.46).

22470 SERVER_INFO_1534

The SERVER_INFO_1534 structure contains information about a s pecified server.

typedef struct _SERVER_INFO_1534 {
DWORDBsv1534_oplockbreakwait;
} SERVER_INFO_1534,
*PSERVER_INFO_1534,
*LPSERVER_INFO_1534;

sv1534_oplockbreakwait: This member is defined in the sv599_oplockbreakwait
SERVER_INFO_599 (section 2.2.4.46).

member in

member in

[MS -SRVS-Diff] - v20210625

Server Service Remote Protocol

Copyright © 2021 Microsoft Corporati on
Release: June 25, 2021

71/ 240

22471 SERVER_INFO_1535

The SERVER_INFO_1535 structure contains information about a specified server.

typedef struct _SERVER_INFO_B35 {
DWORDBsv1535_oplockbreakresponsewait;
} SERVER_INFO_1535,
*PSERVER_INFO_1535,
*LPSERVER_INFO_1535;

sv1535_oplockbreakresponsewait: This member is defined in the
sv599_oplockbreakresponsewait member in SERVER_INFO_599 (section 2.2.4.46).

22472 SERVER_| NFO_1536

The SERVER_INFO_1536 structure contains information about a specified server.

typedef struct _SERVER_INFO_1536 {
int sv1536_enableoplocks;
} SERVER_INFO_1536,
*PSERVER_INFO_1536,
*LPSERVER_INFO_1536;

sv1536_enableoplocks: This member is defined in the sv599_enableoplocks member in
SERVER_INFO_599 (section 2.2.4.46).

2.2.4.73 SERVER_INFO_1538

The SERVER_INFO_1538 structure contains information about a specified server.

typedef struct _SERVER_INFO_1538 {
int sv1538_enablefcbopens;
} SERVER_INFO_1538,
*PSERVER_INFO_1538,
*LPSERVER_INFO_1538;

sv1538_enablefcbopens: This member is defined in the sv599_enablefcbopens member in
SERVER_INFO_599 (section 2.2.4.46).

22474 SERVER_INFO_1539

The SERVER_INFO_1539 structure contains information abo ut a specified server.

typedef struct _SERVER_INFO_1539 {
int sv1539_enableraw;
} SERVER_INFO_1539,
*PSERVER_INFO_1539,
*LPSERVER_INFO_1539;

sv1539_enableraw: This member is defined in the sv599_enableraw member in
SERVER_INFO_599 (section 2.2.4.46).

[MS -SRVS-Diff] - v20210625

Server Service Remote Protocol

Copyright © 2021 Microsoft Corporati on
Release: June 25, 2021

72 | 240

2.2.4.75 SERVER_INFO_1540

The SERVER_INFO_1540 structure contains information about a specified server.

typedef struct _SERVER_INFO_1540 {
int sv1540_enablesharednetdrives;
} SER VER_INFO_1540,
*PSERVER_INFO_1540,
*LPSERVER_INFO_1540;

sv1540_enablesharednetdrives: This member is defined in the sv599 enablesharednetdrives
member in SERVER_INFO_599 (section 2.2.4.46).

2.2.4.76 SERVER_INFO_1541

The SERVER_INFO_1541 structure contains information about a specified server.

typedef struct _SERVER_INFO_1541 {
int svl1541 minfreeconnections;
} SERVER_INFO_1541,
*PSERVER_INFO_1541,
*LPSERVER_INFO_1541,

svl541 m infreeconnections: This member is defined in the sv599 minfreeconnections
member in SERVER_INFO_599 (section 2.2.4.46).

22477 SERVER_INFO_1542

The SERVER_INFO_1542 structure co ntains information about a specified server.

typedef struct _SERVER_INFO_1542 {
int svl1542_maxfreeconnections;
} SERVER_INFO_1542,
*PSERVER_INFO_1542,
*LPSERVER_INFO_1542;

sv1542 maxfreeconnections: This member is defined in the sv599 maxfreeconnections
member in SERVER_INFO_599 (section 2.2.4.46).

22478 SERVER_INFO_1543

The SERVER_INFO_1543 structure contains information about a specified server.

typedef struct _SERVER_INFO_1543 {
DWORDBsv1543_initsesstable;
} SERVER_INFO_1543,
*PSERVER_INFO_1543,
*LPSERVER_INFO_1543;

sv1543_initsesstable: This member is defined in the sv599_initsesstable member in
SERVER_INFO_599 (section 2.2.4.46).

[MS -SRVS-Diff] - v20210625

Server Service Remote Protocol

Copyright © 2021 Microsoft Corporati on
Release: June 25, 2021

73 | 240

22479 SERVER_INFO_1544

The SERVER_INFO_1544 structure contains information about a specified server.

typedef struct _SERVER_INFO_1544 {
DWORDBsv1544 initconn table;
} SERVER_INFO_1544,
*PSERVER_INFO_1544,
*LPSERVER_INFO_1544;

sv1544 initconntable: This member is defined in the sv599 initconntable member in
SERVER_INFO_599 (section 2.2.4.46).

2.2.4.80 SERVER_INFO_1545

The SERVER_INFO_1545 structure contains information about a specified server.

typedef struct _SERVER_INFO_1545 {
DWORDsv1545 _initfiletable;
} SERVER_INFO_1545,
*PSERVER_INFO_1545,
*LPSERVER_INFO_1545;

sv1545 initfiletable: This member is defined in the sv599 initfiletable member in
SERVER_INFO_599 (section 2.2.4.46).

22481 SERVER_INFO_1546

The SERVER_INFO_1546 structure contains information about a specified server.

typedef struct _SERVER_INFO_1546 {
DWORDsv1546 _initsearchtable;
} SERVER_INFO_1546,
*PSERVER_INFO_1546,
*LPSERVER_INFO_1546;

sv1546 _initsearchtable: This member is defined in t he sv599 initsearchtable member in
SERVER_INFO_599 (section 2.2.4.46).

2.2.4.82 SERVER_INFO_1547

The SERVER_INFO_1547 structure contains information about a specified server.

typed ef struct _SERVER_INFO_1547 {
DWORDBsv1547_alertschedule;
} SERVER_INFO_1547,
*PSERVER_INFO_1547,
*LPSERVER_INFO_1547;

sv1547_alertschedule: This member is defined in the sv599_alertschedule member in
SERVER_INFO_599 (section 2.2.4.46).

[MS -SRVS-Diff] - v20210625

Server Service Remote Protocol

Copyright © 2021 Microsoft Corporati on
Release: June 25, 2021

74 | 240

2.2.4.83 SERVER_INFO_15 48

The SERVER_INFO_1548 structure contains information about a specified server.

typedef struct _SERVER_INFO_1548 {
DWORDBsv1548_errorthreshold;
} SERVER_INFO_1548,
*PSERVER_INFO_1548,
*LPSERVER_INFO_1548;

sv1548_errorthreshold: This member is defined in the sv599_errorthreshold member in
SERVER_INFO_599 (section 2.2.4.46).

2.24.84 SERVER_INFO_1549

The SERVER_INFO_1549 structure contains information about a specified server.

typedef struct _SERVER_INFO_1549 {
DWORDsv1549_networkerrorthreshold;
} SERVER_INFO_1549,
*PSERVER_INFO_1549,
*LPSERVER_INFO_1549;

sv1549 networkerrorthreshold: This member is defined in the sv599 networkerrorthreshold
member in SERVER_INFO_599 (section 2.2.4.46).

2.2.4.85 SERVER_INFO_1550

The SERVER_INFO_1550 structure contains information about a specified server.

typedef struct _SERVER_INFO_1550 {
DWORDBsv1550_diskspacethreshold;
} SERVER_INFO_1550,
*PSERVER_INFO_1550,
*LPSERVER_INFO_1550;

sv1550_diskspacethr eshold: This member is defined in the sv599_diskspacethreshold member
in SERVER_INFO_599 (section 2.2.4.46).

2.2.4.86 SERVER_INFO_1552

The SERVER_INFO_1552 structure contains info rmation about a specified server.

typedef struct _SERVER_INFO_1552 {
DWORDBsv1552_maxlinkdelay;
} SERVER_INFO_1552,
*PSERVER_INFO_1552,
*LPSERVER_INFO_1552;

sv1552_maxlinkdelay: This member is defined in the sv599_maxlinkdelay member in
SERVER_INFO_59 9 (section 2.2.4.46).

75 | 240

[MS -SRVS-Diff] - v20210625

Server Service Remote Protocol

Copyright © 2021 Microsoft Corporati on
Release: June 25, 2021

2.2.4.87 SERVER_INFO_1553

The SERVER_INFO_1553 structure contains information about a specified server.

typedef struct _SERVER_INFO_1553 {
DWORDBsv1553_minl inkthroughput;
} SERVER_INFO_1553,
*PSERVER_INFO_1553,
*LPSERVER_INFO_1553;

sv1553_minlinkthroughput: This member is defined in the sv599_minlinkthroughput member

in SERVER_INFO_599 (section 2.2.4.46).

2.2.4.88 SERVER_INFO_1554

The SERVER_INFO_1554 structure contains information about a specified server.

typedef struct _SERVER_INFO_1554 {
DWORDsV1554_linkinfovalidtime;
} SERVER_INFO_1554,
*P SERVER_INFO_1554,
*LPSERVER_INFO_1554;

sv1554 linkinfovalidtime: This member is defined in the sv599_linkinfovalidtime member in
SERVER_INFO_599 (section 2.2.4.46).

2.2.4.89 SERVER_INFO_1555

The SERVER_INFO_1555 structure contains information about a specified server.

typedef struct _SERVER_INFO_1555 {
DWORDBsV1555_scavqosinfoupdatetime;
} SERVER_INFO_1555,
*PSERVER_INFO_1555,
*LPSERVER_INFO_1555;

sv1555_scavqgosinfoupdatetime: This member is defined in the sv599_scavqosinfoupdatetime
member in SERVER_INFO_599 (section 2.2.4.46).

22490 SERVER_INFO_1556

The SERVER_INFO_1556 structure contains information about a specified server.

typedef struct _SERVER_INFO_1556 {
DWORDBsv1556_maxworkitemidletime;
} SERVER_INFO_1556,
*PSERVER_INFO_1556,
*LPSERVER_INFO_1556;

sv1556_maxworkitemidletime: This member is definedi nthe sv599 maxworkitemidletime
member in SERVER_INFO_599 (section 2.2.4.46).

[MS -SRVS-Diff] - v20210625

Server Service Remote Protocol

Copyright © 2021 Microsoft Corporati on
Release: June 25, 2021

76 | 240

22491 DISK_INFO

The DISK_INFO structure contains information (the drive letter) about the disk device on the server.

typ edef struct _DISK_INFO {
[string] WCHAR Disk[3];
} DISK_INFO,
*PDISK_INFO,
*LPDISK_INFO;

Disk: The drive identifier of the disk device. This MUST consist of two Unicode UTF -16 characters
followed by the null -terminating character (for example, "A:\0"). The first character in this string
MUST be a drive letter in the range "A" through "Z", inclusive. The second character MUST be the
":" character.

2.2.4.92 DISK_ENUM_CONTAINER

The DISK_ENUM_CONTAINER structure contains a value that indicates the number of entries that the
NetrServerDiskEnum method returns and a pointer to the buffer that contains the entries.

typedef struct _DISK_ENUM_CONTAINER
DWORCLEnNtriesRead,;
[size_is(EntriesRead), length_is(EntriesRead)]

LPDISK_INFO Buffer;
} DISK_ENUM_CONTAINER;

EntriesRead: The number of entries that the method returns.

Buffer: A pointer to the DISK_INFO entries that the method returns.

2.2.4.93 SERVER_TRANSPORT_INFO_O

The SERVER_TRANSPORT_INFO_0 structure contains information about the specified transport

protocol, including the name, address, and location on the network. The definitions of fields in this
structure are specified in section 2.2.4.96. Fields having names of the form svti0_xxx MUST be

defined as in the corresponding SERVER_TRANSPORT_INFO_3 fields with names of the form

SVti3_XXX.

typedef struct _SERVER_TRANSPORT_INFO_#§
DWORDBsVti0O _numberofvcs;
[string] wchar_t* svti0_transportname;
[size_is(svtiO_transportaddresslength)]
unsigned char* svti0_transportaddress;
DWORDBsVtiO_transportaddresslength;
[string] wchar_t* svti0_networkaddress;
} SERVER_TRANSPORT_INFO_0,
*PSERVER_TRANSPORT_INFO_0,
*LPSERVER_TRANSPORT_INFO _0;

22494 SERVER_TRANSPORT_INFO_1

The SERVER_TRANSPORT_INFO_1 structure contains information about the specifie d transport
protocol, including the name, address, and location on the network. The definitions of fields in this
structure are specified in section 2.2.4.96. Fields having names of the form svtil_xxx MUST be

defined as in the corresponding SERVER_TRANSPOR T_INFO_3 fields with names of the form

SVti3_ XXX.

77 | 240

[MS -SRVS-Diff] - v20210625

Server Service Remote Protocol

Copyright © 2021 Microsoft Corporati on
Release: June 25, 2021

typedef struct _SERVER_TRANSPORT_INFO_{
DWORDBsvtil_numberofvcs;
[string] wchar_t* svtil_transportname;
[size_is(svtil_transportaddresslength)]
unsigned char* svtil_transportaddress;
DWORDsvtil_transportaddresslength;
[string] wchar_t* svtil_networkaddress;
[string] wchar_t* svtil_domain;
} SERVER_TRANSPORT_INFO_1,
*PSERVER_TRANSPORT_INFO_1,
*LPSERVER_TRANSPORT_INFO_1,

2.24.95 SERVER_TRANSPORT_INFO_2

The SERVER_TRANSPORT_INFO_2 structure contains information about the specified transport
protocol, including the name and address. The definitions of fiel ds in this structure are specified in
section 2.2.4.96. Fields having names of the form svti2_xxx MUST be defined as in the corresponding
SERVER_TRANSPORT_INFO_3 fields with names of the form svti3_xxx.

typedef struct _SERVER_TRANSPORT_INFO_2
DWORDsVt i2_numberofvcs;
[string] wchar_t* svti2_transportname;
[size_is(svti2_transportaddresslength)]
unsigned char* svti2_transportaddress;
DWORDBsvti2_transportaddresslength;
[string] wchar_t* svti2_networkaddress;
[string] wchar_t* svti2_domain;
unsigned long svti2_flags;
} SERVER_TRANSPORT_INFO_2,
*PSERVER_TRANSPORT_INFO_2,
*LPSERVER_TRANSPORT_INFO_2;

2.2.4.96 SERVER_TRANSPORT_INFO_3

The SERVER_TRANSPORT_INFO_3 structure contains information about the specified transport
protocol, including the name, address, and password (credentials).

typedef struct _SERVER_TRANSPORT_INFO_3
DWORDsVti3_numberofvcs ;
[string] wchar_t* svti3_transportname;
[size_is(svti3_transportaddresslength)]
unsigned char* svti3_transportaddress;
DWORDsVti3_transportaddresslength;
[string] wchar_t* svti3_networkaddress;
[string] wchar_t* svti3_domain;
unsigned long svti3_flags;
DWORDsVti3_passwordlength;
unsigned char svti3_password[256];
} SERVER_TRANSPORT_INFO_3,
*PSERVER_TRANSPORT_INFO_3,
*LPSERVER_TRANSPORT_INFO_3;

svti3_numberofvcs: Specifiesa DWORD valu e that indicates the number of clients that are
connected to the server and that are using the transport protocol that is specified by the
Svti3_transportname member.

Svti3_transportname: A pointer to a null -terminated Unicode string that contains the

im plementation -specific name of a device that implements support for the transport. This field is
provided by the transport driver and can depend on the physical network adapter over which the
transport runs.<27>

[MS -SRVS-Diff] - v20210625

Server Service Remote Protocol

Copyright © 2021 Microsoft Corporati on
Release: June 25, 2021

78 | 240

svti3_transportaddress: A pointer to avaria ble that contains the transport address that the server
is using on the transport device that is specified by the svti3_transportname member. <28>

This member is usually the NetBIOS name that the server is using. In these instances, the name
MUST be 16 cha racters long, and the last character MUST be a blank character (0x20).

svti3_transportaddresslength: Specifies a DWORD value that contains the length, in bytes, of the
svti3_transportaddress member.<29>

svti3_networkaddress: A pointerto anull -terminate d character string that contains the address
that the network adapter is using. The string is transport -specific. The server MUST ignore this
field on receipt.<30>

svti3_domain: A pointerto a null -terminated character string that contains the name of the domain
to which the server announces its presence.

svti3_flags: This member MUST be a combination of zero or more of the following values.
Value Meaning
SVTI2_REMAP_PIPE_NAMES If this value is set for an endpoint, client requests that arrive over the
0x00000002 transport to open a named pipe MUST be rerouted (remapped) to the local
pipe name $$ \ServerName \PipeName.
SVTI2_SCOPED_NAME If this value is set for an endpoint, all shares attached to
0x00000004 Svti3_transportname are scoped shares.
svt i3_passwordlength: Specifiesa DWORD value that indicates the number of valid bytes in the
svti3_password member.
svti3_password: Specifies the credentials to use for the new transport address. If the
svti3_passwordlength member is zero, the credentials for the server MUST be used.
2.2.4.97 SERVER_XPORT_INFO_0_CONTAINER
The SERVER_XPORT_INFO_0_CONTAINER structure contains a value that indicates the number of

entries that the NetrServerTransportEnum method returns and a pointer to the buffer that contains
the entries.

typedef struct _SERVER_XPORT_INFO_0_CONTAINER
DWORCLEnNtriesRead;
[size_is(EntriesRead)] LPSERVER_TRANSPORT_INFO_0 Buffer;
} SERV ER_XPORT_INFO_0_CONTAINER,
*PSERVER_XPORT_INFO_0_CONTAINER,;

EntriesRead: The number of entries that the method returns.

Buffer: A pointer to the SERVER_TRANSPORT_INFO_O entries that the method returns.

2.2.4.98 SERVER_XPORT_INFO_1_CONTAINER

The SERVER_XPORT_INFO_1 CONTAINER structure contains a value that indicates the number of
entries that the NetrServerTransportEnum method ret urns and a pointer to the buffer that contains
the entries.

typedef struct _SERVER_XPORT_INFO_1_CONTAINER
DWORCLEnNtriesRead;
[size_is(EntriesRead)] LPSERVER_TRANSPORT_INFO_1 Buffer;

79 | 240

[MS -SRVS-Diff] - v20210625

Server Service Remote Protocol

Copyright © 2021 Microsoft Corporati on
Release: June 25, 2021

} SERVER_XPORT_INFO_1_CONTAINER,
*PSERVER_XPORT_INFO_1_CONTAINER;

EntriesRead: The number of entries that the method returns.

Buffer: A pointer to the SERVER_TRANSPORT_INFO_1 entries that the method returns.

2.2.4.99 SERVER_XPORT_INFO_2_CONTAINER

The SERVER_XPORT_INFO_2_CONTAINER structure contains a value that indicates the number of
entries that the NetrServerTransportEnum method returns and a pointer to the buffer that contains
the entries.

typedef struct _SERVER_XPORT_INFO_2_CONTAINER
DW@D EntriesRead,;
[size_is(EntriesRead)] LPSERVER_TRANSPORT_INFO_2 Buffer;
} SERVER_XPORT_INFO_2_CONTAINER,
*PSERVER_XPORT_INFO_2_CONTAINER;

EntriesRead: The number of entries that the method returns.

Buffer: A pointer to the SERVER_TRANSPORT_INFO_2 ent ries that the method returns.

2.2.4.100 SERVER_XPORT_INFO_3_CONTAINER

The SERVER_XPORT_INFO_3_CONTAINER structure contains a value that indicates the number of
entries that the Netr ~ ServerTransportEnum method returns and a pointer to the buffer that contains
the entries.

typedef struct _SERVER_XPORT_INFO_3_CONTAINER
DWORCLEnNtriesRead,;
[size_is(EntriesRead)] LPSERVER_TRANSPORT_INFO_3 Buffer;
} SERVER_XPORT_INFO_3 CONTAINER,
*PSERVER_XPORT_INFO_3_CONTAINER;

EntriesRead: The number of entries that the method returns.

Buffer: A pointer to the SERVER_TRANSPORT_INFO_3 entries that the method returns.

2.2.4.101 SERVER_XPORT_ENUM_STRUCT

The SERVER_XPORT_ENUM_STRUCT structure specifies the information level that the client requests
in the NetrServerTransportEnum method and encapsul ates the SERVER_XPORT_ENUM_UNION union
that receives the entries that are enumerated by the server.

typedef struct _SERVER_XPORT_ENUM_STRUET
DWORDL.evel;
[switch_is(Level)] SERVER_XPORT_ENUM_UNION Xportinfo;
} SERVER_XPORT_ENUM_STRUCT,
*PSERVER_XPOR_ENUM_STRUCT,
*LPSERVER_XPORT_ENUM_STRUCT;

Level: Specifies the information level of the data. This parameter MUST have one of the following
values.

80 / 240

[MS -SRVS-Diff] - v20210625

Server Service Remote Protocol

Copyright © 2021 Microsoft Corporati on
Release: June 25, 2021

Value Meaning
0 SERVER_XPORT_INFO_0_CONTAINER
1 SERVER_XPORT_INFO_1_CONTAINER
2 SERVER_XPORT_INFO_2_CONTAINER
3 SERVER_XPORT_INFO_3_CONTAINER
Xportinfo: Contains information about file server transports in the format that is determined by the
Level parameter, as shown in the preceding table. This me mber receives the enumerated
information.
2.2.4.102 SERVER_ALIAS INFO_O

The SERVER_ALIAS_INFO_O structure contains the information about alias, including alias name and
ser ver target name.

typedef struct _SERVER_ALIAS_INFO_0 {
[string] LMSTR srvaiO_alias;
[string] LMSTR srvaiO_target;
BOOLEANSsrvai0_default;
ULONGsrvaiO_reserved;
} SERVER_ALIAS_INFO_0,
*PSERVER_ALIAS_INFO_0,
*LPSERVER_ALIAS_INFO_0;

srvai0_alias: An empty string or a pointer to a null -terminated Unicode UTF -16 string that specifies
the name of a specified alias. It MUST be an empty string if srvaiO_default is nonzero and MUST
be a non -empty string if srvai0O_default is 0.
srvai0_target: A pointerto a null -terminated Unicode UTF - 16 string. It specifies the server name
that alias is attached to. The server MUST ignore this member when processing the
NetrServerAliasDel method.
srvaiO_default: A BOOLEAN value. Ifitissett o TRUE, srvaiO_target MUST replace the default

server name that is used to locate a scoped share in
NetrShareAdd/NetrShareDel/NetrShareSetinfo. If a scoped share cannot be found through a tuple

of <share name, server name> due to a server name mismatch, th e default server name is used
in <share name, default server name> to continue scoped share searching. The server MUST
ignore srvai0_default when processing the NetrServerAliasDel method.
srvai0_reserved: This field is not used. The server MUST ignore the value of this parameter on
receipt.
2.2.4.103 SERVER_ALIAS INFO_0_CONTAINER
The SERVER_ALIAS INFO_0 CONTAINER structure contains a value that indicates the number of
entries that the NetrServerAliasEnum metho d returns and a pointer to the buffer that contains the
entries.
typedef struct _SERVER_ALIAS_INFO_0_CONTAINER{
DWORCLEnNtriesRead;
[size_is(EntriesRead)] LPSERVER_ALIAS_INFO_0 Buffer;

} SERVER_ALIAS_INFO_0_CONTAINER;

81 / 240

[MS -SRVS-Diff] - v20210625

Server Service Remote Protocol

Copyright © 2021 Microsoft Corporati on
Release: June 25, 2021

EntriesRead: The number of entrie s that the method returns.

Buffer: A pointer to the SERVER_ALIAS_INFO_0 entries that the method returns.

2.2.4.104 SERVER_ALIAS_ENUM_STRUCT

The SERVER_ALIAS _ENUM_STRUCT structure specifies the information level that the client requests in
the NetrServerAliasEnum method and encapsulates the SERVER_ALIAS_ENUM_UNION union that
receives the entries that are enumerated by the server.

typedef struct _SERVER_ALIAS_ENUM_STRUCT
DWORD evel;
[switch_is(Level)] union _SERVER_ALIAS_ENUM_UNION {
[case(0)]

SERVER_ALIAS_INFO_0_CONTAINER* LevelO;
} ServerAliasinfo;
} SERVER_ALIAS_ENUM_STRUCT,
*PSERVER_ALIAS_ENUM_STRUCT,
*LPSERVER_ALIAS_ENUM_STRUCT;

Level: Specifies the information level of the data. This parameter MUST have one of the following
values.

Value Meaning

0 SERVER_ALIAS_INFO_0_CONTAINER

ServerAliasinfo: Contains information about server aliases in the format that is determined by the
Level parameter, as shown in the preceding table. This member receives the enumerated
information.

2.2.4.105 TIME_OF_DAY_INFO

The TIME_OF_DAY_INFO structure contains information about the time of day from a remote server.

typedef struct _TIME_OF_DAY_INFO {
DWORDod_elapsedt;
DWORDOod_msecs;
DWORDGod_hours;
DWORDod_mins;
DWORDod_secs;
DWORDOod_hunds;
long tod_timezone;
DWORDod_tinterval;
DWORDOod_day;
DWORDGod_month;
DWORDOod_year;
DWORDOod_weekday;
} TIME_OF_DAY_INFO,
*PTIME_OF DAY _INFO,
*LPTIME_OF DAY _INFO;

tod_elapsedt: Specifiesa DWORD value that contains the number of seconds since 00:00:00,
January 1, 1970, GMT.

tod_msecs: Specifiesa DWORD value that contains the number of milliseconds from an arbitrary
starting point (system reset).

82 / 240

[MS -SRVS-Diff] - v20210625

Server Service Remote Protocol

Copyright © 2021 Microsoft Corporati on
Release: June 25, 2021

tod_hours: Specifiesa DWORD value that contains the current hour. This value MUST be in the
range O through 23, inclusive.

tod_mins: Specifiesa DWORD value that contains the current minute. This value MUST be in the
range 0 through 59, inclusive.

tod_secs: Specifiesa DWORD value that contains the ¢ urrent second. This value MUST be in the
range 0 through 59, inclusive.

tod_hunds: Specifiesa DWORD value that contains the current hundredth second (0.01 second).
This value MUST be in the range 0 through 99, inclusive.

tod_timezone: Specifies the time zone of the server. This value MUST be calculated, in minutes,
from Greenwich Mean Time (GMT). For time zones that are west of Greenwich, the value MUST be

positive; for time zones that are east of Greenwich, the value MUST be negative. A value of Tl
MUST indicate that the time zone is undefined.
tod_tinterval: Specifiesa DWORD value that contains the time interval for each tick of the clock.
Each integral integer MUST represent one ten -thousandth second (0.0001 second).
tod_day: Specifiesa DWORD valu e that contains the day of the month. This value MUST be in the
range 1 through 31, inclusive.
tod_month: Specifiesa DWORD value that contains the month of the year. This value MUST be in
the range 1 through 12, inclusive.
tod_year: Specifiesa DWORD value that contains the year.
tod_weekday: Specifiesa DWORD value that contains the day of the week. This value MUST be in
the range 0 through 6, inclusive, where 0 is Sunday, 1 is Monday, and so on.
2.2.4.106 ADT_SECURITY_DESCRIPTOR
The ADT_SECURITY_DESCRIPTOR structure contains a security descriptor in self -relative format and a
value that includes the length of the buffer that contains the descriptor. For more information, see
[MS -DTYP] secti on 2.4.6.
typedef struct _ADT_SECURITY_DESCRIPTOR
DWORD_ength;
[size_is(Length)] unsigned char* Buffer;
} ADT_SECURITY_DESCRIPTOR,
*PADT_SECURITY_DESCRIPTOR,;
Length: The length of the Buffer member.
Buffer: A buffer for the security descriptor in self -relative form. For more information, see [MS -DTYP]
section 2.4.6.
2.2.4.107 NET_DFS_ENTRY_ID
The NET_DFS_ENTRY_ID structure specifies a DFS local partition.
typedef struct _NET_DFS_ENTRY_ID{
GUID Uid;
[string] WCHAR* Prefix;
}NET_DFS_ENTRY_ID,
*LPNET_DFS_ENTRY_ID;
83 / 240

[MS -SRVS-Diff] - v20210625

Server Service Remote Protocol

Copyright © 2021 Microsoft Corporati on
Release: June 25, 2021

Uid: Specifies the unique identifier for the partition.

Prefix: A pointerto anull -terminated Unicode UTF -16 string that contains the path prefix for the
partition.
2.2.4.108 NET_DFS _ENTRY_ID _CONTAINER

The NET_DFS_ENTRY_ID_CONTAINER structure contains a pointer to a buffer that contains
NET_DFS_ENTRY_ID entries and a value that in dicates the count of entries in the buffer.

typedef struct _NET_DFS_ENTRY_ID_CONTAINER
unsigned long Count;
[size_is(Count)] LPNET_DFS_ENTRY_ID Buffer;

}NET_DFS_ENTRY_ID_CONTAINER,
*LPNET_DFS_ENTRY_ID_CONTAINER;

Count: The count of buffer array en tries returned by the method.

Buffer: An array of NET_DFS_ENTRY_ID entries returned by the method.

2.2.4.109 DFS_SITENAME_INFO

The DFS_SITENAME_INFO structure specifies a site n ame.

typedef struct _DFS_SITENAME_INFO {
unsigned long SiteFlags;
[string, unique] WCHAR* SiteName;

} DFS_SITENAME_INFO,
*PDFS_SITENAME_INFO,
*LPDFS_SITENAME_INFO;

SiteFlags: This member MUST be a combination of zero or more of the following values.

Value Meaning

DFS_SITE_PRIMARY | The site name was returned by the DsrGetSiteName method, as specified in [MS -
0x00000001 NRPC] section 3.5.4.3.6.

SiteName: A pointerto anull -terminated Unicode UTF - 16 string that specifies a unique site name.

2.2.4.110 DFS_SITELIST_INFO
The DFS_SITELIST_INFO structure contains a value that indicates the count of entries and an array of
DFS_SITELIST_INFO entries that the NetrDfsManager ReportSitelnfo method returns.
typedef struct _DFS_SITELIST_INFO {
unsigned long cSites;
[size_is(cSites)] DFS_SITENAME_INFO SiteJ;

} DFS_SITELIST_INFO,
*PDFS_SITELIST_INFO,
*LPDFS_SITELIST_INFO;

cSites: A count of site array entries returned by th e method.

Site: An array of DFS_SITENAME_INFO entries that the method returns.

84 | 240

[MS -SRVS-Diff] - v20210625

Server Service Remote Protocol

Copyright © 2021 Microsoft Corporati on
Release: June 25, 2021

3 Protocol Details

The methods in this RPC interface all return 0x00000000 to indicate success and a nonzero,
implementation -specific, error code to indicate failure. Unless otherwise specified, a server -side
implementation of this protocol can choose any nonzero Win32 erro r value to signify an error
condition, as specified in section 1.8. The client side of the Server Service Remote Protocol MUST NOT
interpret returned error codes. The client side of the Server Service Remote Protocol MUST simply

return error codes to the i nvoking application without taking any protocol action.

Note that the terms "client side" and "server side" refer to the initiating and receiving ends of the

protocol respectively rather than to client or server versions of an operating system. These metho ds
MUST all behave the same, regardless whether the server side of the protocol is running in a client or

server version of an operating system.

3.1 Server Details

The server responds to messages it receives from the client.

3.1.1 AbstractDat a Model

This section describes a conceptual m odel of possible data organization that an implementation

maintains to participate in this protocol. The organization is provided to facilitate the explanation of

how the protocol behaves. This specification does not mandate that implementations adhere to this
model as long as their external behaviors are consistent with that described in this specification.

This data model requires elements to be synchronized with the Common Internet File System (CIFS)
Protocol, the Server Message Block (SMB) Protocol, or the Server Message Block (SMB) Version 2
Protocol servers. This data model also requires that these protocols maintain these elements

coherently with this data model at all times. An implementation that uses this data model has to

observe atomicity require ments in order that all these protocols always share and maintain an
identical view of the common data.

A server implementing this RPC interface contains several logical elements: an SMB file server, one or
more network protocol transports, and a list of shared resources that the server is making available.
There could also be virtual shares and services that provide SMB file server referrals for these virtual
shares.<31>

One or more network protocol transports SHOULD be configured by a server implementing this RPC
interface, to be associated with an SMB file server at its initialization.<32>A transport is a protocol

that logically lies below the file server and provides reliable delivery of file server messages. If a

transport is associated with a file ser ver, it is said to be bound to or enabled for the server. The act of
associating a transport with the file server is referred to as binding. The binding between a file server

and a transport is represented by a "transport handle".

Transports can be dynamic ally bound (or enabled) and unbound (or disabled) from a file server. The
server opens a transport handle when a transport is bound and closes it upon unbind. A transport

MUST be bound to the file server for the server to receive messages through the trans port. A
transport has an implementation - specific name; transport names are unique on a per -computer
basis.<33>

When a transport is bound to a file server, the server MUST perform the transport binding, as
specified in [MS -SMB] section 2.1, for the requeste d transport.

The file server can make available multiple sets of resources (that is, files, printers, pipes, disks, and
mailslots) for access by Common Internet File System (CIFS) clients over the network. Each set is
referred to as a share and is identifi ed by a unigue network name. Shares can be made dynamically
available, and the act of making a share available is referred to as adding a share. Shares can also be

85 / 240

[MS -SRVS-Diff] - v20210625

Server Service Remote Protocol

Copyright © 2021 Microsoft Corporati on
Release: June 25, 2021

made unavailable dynamically, which is referred to as removing a share. The server MUST keep a list
of all active shares that are identified by a share identifier. If the share is marked as a sticky share,

the same information MUST be stored in persistent storage. The server MUST support two -phase
deletion of shares.<34>

The SMB server assigns al | objects (active sessions, connections, opened resources, shares, and
transports) unique identifiers. Identifiers are integer values that allow the server to uniquely identify

the corresponding object. The server generates these identifiers when the corre sponding object is
created. The client obtains these identifiers in response to one of its requests (for example, an SMB

client gets the session identifier in response to a Session Setup request) and then uses these

identifiers in future requests to refer to the corresponding object. To support enumerating these
objects, the server MUST store each of these objects in separate lists.

The server MUST keep track of several implementation -dependent statistics (as described by the
STAT_SERVER_O (section 2.2.4.39) structure) about the server performance that clients can query by
calling the NetrServerStatisticsGet method.

If the server supports DFS, as specified in [MS -DFSC], it MUST provide a software component called a
DFS driver that processes all messages pert aining to DFS. These messages are specified in section
NetrDfsGetVersion (Opnum 43) (section 3.1.4.35) through section NetrDfsManagerReportSitelnfo
(Opnum 52) (section 3.1.4.43). The server MUST keep a list of the DFS shares and links and the
associated in formation about the shares and links.

3.1.11 Global
The server MUST implement the following:

AliasList: A list of aliases in the server. Each element in the list is an Alias as defined in section
3.1.1.3.

Cifslnitialized: A Boolean that indicates whether the CIF S or SMB server, as specified in [MS -CIFS],
has completed its initialization. For more details, see section 3.1.6.14.

NullSessionPipeList: A list of named pipe names, without the " \pipe \" prefix, that an anonymous
user is allowed to open. This list is quer ied by the Server Message Block (SMB) and SMB Version 2
protocols.

DefaultServerName: A null -terminated Unicode UTF -16 string that is used as a default server name

to locate a scoped share.

FileList: Alistof Opens . Each element in the listis an Open as defined in section 3.1.1.6. Entries are
inserted into the list as specified in section 3.1.6.4 and removed as specified in section 3.1.6.5.

GlobalServerAnnounce: A DWORD bitmask to indicate the services that are available on the server.
It MUST be a combination of one or more of the values that are listed in section 2.2.2.7.

PrinterShareCount: A numeric value that indicates the number of printer shares on the server.

ShareList: A list of shares. Each element in the list is a Share as defined in sect ion 3.1.1.7. Entries
are inserted into the list as specified in section 3.1.4.7 and removed as specified in section
3.1.4.12 and section 3.1.4.15.

SessionList: A list of sessions. Each element in the list is a Session as defined in section 3.1.1.8.
Entrie s are inserted into the list as specified in section 3.1.6.2 and removed as specified in section
3.1.6.3.

Smb2lnitialized: A Boolean that indicates whether the SMB2 server, as specified in [MS -SMB2], has
completed its initialization. For more details, see section 3.1.6.14.

86 / 240

[MS -SRVS-Diff] - v20210625

Server Service Remote Protocol

Copyright © 2021 Microsoft Corporati on
Release: June 25, 2021

StatisticsStartTime: A DWORD value indicating the time, in seconds, when the server statistics
collection started.

TransportList: A list of transports. Each element in the list is a Transport ADM element as defined in
section 3.1.1.2.

TreeConnectList: A list of tree connects. Each element in the list is a TreeConnect element defined
in section 3.1.1.5. Entries are inserted into the list as specified in section 3.1.6.6 and removed as
specified in section 3.1.6.7.

3.1.1.2 Per Transport

This Transport element provides an abstraction of an underlying network transport protocol on which
it listens for connections from clients. The properties defined by this element MUST be persisted by the
server.

The Tra nsport element contains the following properties:
Transport.Name: An implementation -specific name used to refer to the transport.

Transport.ServerName: A null -terminated Unicode UTF - 16 string that is used to identify the server.
It could be the server Net BIOS host name, an IP address, Domain Name System (DNS), or a
caller -supplied svti*_transportaddress provided by NetrServerTransportAdd or
NetrServerTransportAddEx

The following are the acceptable forms of Transport.ServerName
A NetBIOS name:
A "EXAMPLE", se e [RFC1001] and [RFC1002]
A IP address:
A XXXXXX XXX XXX
A DNS:

A rs.internic.net, see [RFC1034] and [RFC1035]

Transport.ConnectionCount: The number of connections established using this transport.

Transport.Flags: A DWORD bitmask value containing zero or more o f the values specified in section
2.2.4.96.

Transport.Domain: The name of the domain to which the server announces its presence.

3.1.1.3 Per Alias

The server provides an alias for the existing server name through which the shared resource can be
accessed.

Alias.t arget: The existing server name to which alias is attached. Alias.target must be a valid name
for the server that matches a Transport.ServerName in the TransportList

Alias.alias: An alias name for Alias.target through which the shared resource can be accessed.
Alias.alias MUST be unique inthe AliasList

Alias.default: A Boolean value. If itis set to TRUE, DefaultServerName MUST be set to
Alias.target if DefaultServerName is not NULL.

87 / 240

[MS -SRVS-Diff] - v20210625

Server Service Remote Protocol

Copyright © 2021 Microsoft Corporati on
Release: June 25, 2021

3.1.1.4 Server Properties Object (ServerConfiguration)

The ServerConfiguration object maintains the server configuration information for CIFS and SMB
Version 1.0 file servers. The properties defined by this object MUST be persisted by the server.

ServerConfiguration.Serverinfo103: All elements in this structure are as defined in section
2.2.4.43.

ServerConfiguration.Serverinfo599: All elements in this structure are as defined in section
2.2.4.46.

3.1.15 Per TreeConnect

GlobalTreeConnectld: A local, uniqgue 32-bit identifier generated to identify a TreeConnect

3.1.1.6 PerOpen

GlobalFileld: Alocal, unique 32 -bit identifier generated to identify an Open .

3.1.1.7 Per Share

The Share element maintains the following information for the shared resource (directory, named
pipe, or printer):

Share.ShareName: The name for the shared resource on this server.

Share.ServerName: The NetBIOS, fully qualified domain name (FQDN), or textual IPv4 or IPv6
address that the share is associated with. This value MUST be less than 256 characters in length.
If the share is associated with the default computer name of the machine, the ServerName
parameter MUST be set to "*". For more information, see sections 1.3, 3.1.6.8, and 4.3.

Share.IsPersistent: A BOOLEAN value indicating whether the share is a sticky share (persistent).

Share.IsMarkedForDeletion: A BOOLEAN value indicating whether the share has been marked for
deletion via the NetrShareDelStart (section 3.1.4.14) RPC method.

Share.IsPrinterShare: A BOOLEAN value indicating whether the share i s a printer share.

Share.LocalPath: A path that describes the local resource that is being shared. This MUST be a store
that either provides named pipe functionality, or that offers storage and/or retrieval of files. In the
case of the latter, it can be a device that accepts a file and then processes it in some format, such
as a printer.

Share.FileSecurity: An authorization policy, such as an access control list, that describes what
actions users that connect to this share are allowed to perform on the shar ed resource.<35>

Share.CscFlags: The configured offline caching policy for this share. This value MUST be manual
caching, automatic caching of files, automatic caching of files and programs, or no offline caching.
For more information, see [MS -SMB2] sectio n 2.2.10. For more information about offline caching,
see [OFFLINE].

Share.IsDfs: A BOOLEAN that, if set, indicates that this share is configured for DFS. For more
information, see [MSDFS].

Share.DoAccessBasedDirectoryEnumeration: A BOOLEAN that, if set,i ndicates that the results of
directory enumerations on this share MUST be trimmed to include only the files and directories
that the calling user has the right to access.

88 / 240

[MS -SRVS-Diff] - v20210625

Server Service Remote Protocol

Copyright © 2021 Microsoft Corporati on
Release: June 25, 2021

Share.AllowNamespaceCaching: A BOOLEAN that, if set, indicates that clients are allow ed to cache
directory enumeration results for better performance.

Share.ForceSharedDelete: A BOOLEAN that, if set, indicates that all opens on this share MUST
include FILE_SHARE_DELETE in the sharing access.

Share.RestrictExclusiveOpens: A BOOLEAN that, if set, indicates that users who request read -only
access to a file are not allowed to deny other readers.

Share.Type: The value indicates the type of share. It MUST be one of the values that are listed in
section 2.2.2.4.

Share.Remark: A pointertoa null -terminated Unicode UTF -16 string that specifies an optional
comment about the shared resource.

Share.MaxUses: The value indicates the maximum number of concurrent connections that the
shared resource can accommodate.

Share.CurrentUses: The value indic ates the number of current trees connected to the shared
resource.
Share.ForcelLevel20plock: A BOOLEAN that, if set, indicates that the server does not issue exclusive

caching rights on this share.

Share.HashEnabled: A BOOLEAN that, if set, indicates that the share supports hash generation for
branch cache retrieval of data.

3.1.1.8 Per Session

GlobalSessionld: A locally unique 32 -bit identifier generated to identify a Session

3.1.1.9 Algorithm for Determining Path Type
The input for this algorithm is:

A Path Name : Anull -terminated UTF -16 string that specifies the path name to check in a case -
insensitive manner.

The output for this algorithm is:

A Type : A path type value as specified in section 2.2.2.9 if the algorithm finds an appropriate path
type; otherwise E RROR_INVALID_NAME (0x0000007B).

The pseudo code for the algorithm is shown in the following example.

/I The following set of characters MUST be treated as invalid characters: <> "
If (PathName contains invalid character)
Return ERROR_INVALID_NAME;

I f (PathName beglibns with 6
If (PathName begins with " \W606)
If (PathName begins with " \WW. 606)

If (PathName begins with " \W.\606)

I'f (Remaining part of the PathName contains 6*d6 o1
Return Type=ITYPE_P ATH_ABSD_WC;
Else
Return Type= ITYPE_PATH_ABSD;
EndIf
Else
Return ERROR_INVALID_NAME;
EndIf
Elself ((PathName begins with " \\ <computer -name >0606)
89 / 240

[MS -SRVS-Diff] - v20210625

Server Service Remote Protocol

Copyright © 2021 Microsoft Corporati on
Release: June 25, 2021

/l <computer - name> is any string othe rthan".")
If (PathName begins with " \'\ <computer -name>\06 6)
If (Remaining part of the PathName is not empty)
I f (Remaining part of the PathName contains 6*6 or 67?0)
Return Type= ITYPE_UNC_WC_PATH;
Else
Return Type= ITYPE_UNC;
EndIf
EndIf
Else
Return Type= ITYPE_UNC_COMPNAME;
EndIf
Elself ((PathName begins with " \
If (PathName equals to " \WW*860)
Return Type= ITYPE_UNC_WC;
Else

*)

Return ERROR_INVALID_NAME;
EndIf
EndIf
Else // PathName begins with only single slash " \ "
If (PathName begins with " \DEV®60)
If (PathName equals " \DEMLPT<n>060\DEMLPT<n>:060)
/I <n> is any number, Examples: " \ DEM LPT1"," \ DEMLPT4:"
Return Type= ITYPE_DEVICE_LPT,;
Elself (PathName equals " \DEMCOM<n>060\DEMCOM<n>:060)
/I <n> is any number, Examples: " \ DEM COM1"," \ DEM COM4:"
Return Type= ITYPE_DEVICE_COM;
Else
Return ERROR_INVALID_NAME;
EndIf
El self (PathName contains 06*06 or 67?0)
Return Type= ITYPE_PATH_ABSND_WC;

Else
Return Type= ITYPE_PATH_ABSND;
EndIf
EndIf
Elself (PathName begins with [A -Z] foll owed b ¥xadples:)a:"/if"

If (PathName equals "<drive>:") // <drive> is any letter
Return ITYPE_DEVICE_DISK

Else // (PathName = "<drive>: VL
I f (Remaining part of the PathName after "<drive>:"contiins
Return Type= ITYPE_PATH_ABS D_WC;
Else
Return Type= ITYPE_PATH_ABSD;
EndIf
EndIf

Elself (PathName equals "LPT<n>" or "LPT<n>:") //[Examples: "LPT1", "Ipt4:"
Return Type= ITYPE_DEVICE_LPT,;
Elself (PathName equals "COM<n>" or "COM<n>:") /[Examples: "COM1", "com4:"
Retur n Type= ITYPE_DEVICE_COM;
Else // Relative Paths
I f (PathName contains 6*6 or 67?60)
Return Type= ITYPE_PATH_RELND_WC,;

Else
Return Type= ITYPE_PATH_RELND;
EndIf
EndIf
3.1.2 Timers

None.

90 / 240

[MS -SRVS-Diff] - v20210625

Server Service Remote Protocol

Copyright © 2021 Microsoft Corporati on
Release: June 25, 2021

3.1.3 Initialization

The server MUST initialize ~ GlobalServerAnnounce to SV_TYPE_SERVER. The server SHOULD
combine any architecture -specific flags defined in section 2.2.2.7 to the GlobalServerAnnounce
value using the bitwise OR operation.<36>

The server MUST initialize PrinterShareCount to 0.

The server MUST initialize Nul ISessionPipeList with implementation - specific defaults or with values
from the persistent store.<37>

Guest account support is optional and can be disabled.

The server MUST set CifslInitialized to FALSE.

The server MUST set Smb2lnitialized to FALSE.

The serv er MUST wait until Cifslnitialized and Smb2initialized are set to TRUE.<38>

The server MUST initialize ServerConfiguration.Serverinfo103 as follows:

A sv103_name MUST be set to the NetBIOS host name of the server.
A sv103_type MUST be set to GlobalServerAnnoun ce.
A sv103_capabilities MUST be set as follows.

A If the server does not support SMB2 or does not support Content Information Retrieval
requests as specified in [MS -SMB2] section 3.3.5.15.7, sv103_capabilities MUST be set to 0.

A If the server supports Content Information Retrieval requests but the local component that
generates hashes locally is not installed, sv103_capabilities MUST be set to
SRV_SUPPORT_HASH_GENERATION.

A If the server supports Content Information Retrieval requests and the local component that
generates hashes is installed, sv103_capabilities MUST be set to
(SRV_SUPPORT_HASH_GENERATION | SRV_HASH_GENERATION_ACTIVE).

A sv103_platform_id, sv103_version_major, sv103_version_minor, sv103_comment, sv103_users,
sv103_disc, sv103_hidden, sv103_announce, and sv103_anndelta are initialized with
implementation - specific defaults or with values from the persistent configuration store.<39>

The server MUST initialize ServerConfiguration.Serverinfo599 with implementation -specific defaults or
with values from the persistent store.<40>

The server MUST initialize DefaultServerName to NULL.
The server MUST initialize ~ TransportList to an empty list.

The server MUST then read each Transport stored in the persistent store and construct a
SERVER_TRANSPORT_INFO_3 structur e (specified in section 2.2.4.96) as follows:

A svti3_numberofvcs MUST be set to zero.

A svti3_transportname MUST be setto Transport.Name

A svti3_transportaddress MUST be setto Transport.ServerName

A svti3_transportaddresslength MUST be set to the length of Tr ansport.ServerName
A svti3_networkaddress MUST be set to NULL.

91 / 240

[MS -SRVS-Diff] - v20210625

Server Service Remote Protocol

Copyright © 2021 Microsoft Corporati on
Release: June 25, 2021

A svti3_domain MUST be setto Transport.Domain
A svti3_flags MUST be setto Transport.Flags

The server MUST then invoke the NetrServerTransportAddEx method specified in section 3.1.4.23,
passing SERVER_TRANSPORT_INFO_3 as the Buffer parameter and 3 as the Level parameter.

The server MUST initialize ~ TreeConnectList to an empty list.
The server MUST initialize FileList to an empty list.
The server MUST initialize ~ SessionList to an empty list.

The server MUST initialize AliasList to an empty list. The server MUST then add aliases stored in the
persistent configuration store by invoking the NetrServerAliasAdd method speci fied in section 3.1.4.44
and passing the InfoStruct and Level parameters stored in the persistent configuration store.

The server MUST initialize ~ ShareList to an empty list.

The server MUST then read each Share stored in the persistent store and construct a
SHARE_INFO_503_1 structure (specified in section 2.2.4.27) as follows:

A share.shi503_netname MUST be setto Share.ShareName

A share.shi503_type MUST be setto Share.Type

A share.shi503_remark MUST be setto Share.Remark

A share.shi503_permissions MUST be set to 0.

A share.shi503_max_uses MUST be setto Share.MaxUses

A share.shi503_current_uses MUST be set to 0.

A share.shi503_path MUST be setto Share.LocalPath

A share.shi503_passwd MUST be set to NULL.

A share.shi503_security_descriptor MUST be setto Share.FileSecu rity .
A share.shi503_servername MUST be setto Share.ServerName

The server MUST then add shares by invoking the NetrShareAdd method specified in section 3.1.4.7
and passing the SHARE_INFO_503 | as InfoStruct and 503 as Level parameters.

The server MUST then construct a SHARE_INFO_1005 structure (specified in section 2. 2.4.29) as
follows:

A shi1005_flags MUST be set to the result of bitwise AND of CSC_MASK and Share.CscFlags
A SHI1005_FLAGS_DFS and SHI1005_FLAGS_DFS_ROOT bits in shi1005_flags MUST be set if

Share.IsDfs is TRUE.

A SHI1005_FLAGS_ACCESS BASED_DIRECTORY_ENUM bit in shil005_flags MUST be set if
Share.DoAccessBasedDirectoryEnumeration is TRUE.

A SHI1005_FLAGS_ALLOW_NAMESPACE_CACHING bitin shil1005_flags MUST be set if
Share.AllowNamespaceCaching is TRUE.

A SHI1005 FLAGS FORCE_SHARED_DELETE bitin shi1005_flags MUST be s et if
Share.ForceSharedDelete is TRUE.

92 / 240

[MS -SRVS-Diff] - v20210625

Server Service Remote Protocol

Copyright © 2021 Microsoft Corporati on
Release: June 25, 2021

A SHI1005_FLAGS_RESTRICT_EXCLUSIVE_OPENS bitin shi1005_flags MUST be set if
Share.RestrictExclusiveOpens is TRUE.

A SHI1005_FLAGS_ENABLE_HASH bitin shil005_flags MUST be setif Share.HashEnabled is
TRUE.

A SHI1005 FLAGS F ORCE_LEVELII_OPLOCK bitin shi1005_flags MUST be set if
Share.ForceLevel20plock is TRUE.

The server MUST then update shares by invoking the NetrShareSetinfo method specified in section
3.1.4.11 and passing the SHARE_INFO_1005 as InfoStruct and 1005 as Level parameters.

The server MUST construct ~ SERVER_INFO_103 and SERVER_INFO_599 structures from
ServerConfiguration.Serverinfo103 and ServerConfiguration.Serverinfo599 respectively.

The server MUST update the SMB server configuration as specified in [MS -CIFS] section 3.3.4.22 by
providing SERVER_INFO_103 and SERVER_INFO_599 structures as input parameters.

The server MUST enable the SMB server as specified in [MS -CIFS] section 3.3.4.18 and MUST set
CifsEnabled to TRUE.

The server MUST enable the SMB2 server as specified in [MS -SMB2] section 3.3.4.22 and MUST set
Smb2Enabled to TRUE.

The server MUST initialize StatisticsStartTime to the number of seconds that have elapsed since
00:00:0 0, January 1, 1970, Greenwich Mean Time (GMT).

3.1.4 Message Processing Events and Sequencing Rules

Methods in RPC Opnum Order

Method Description

OpnumONotUsedOnWire Returns ERROR_NOT_IMP LEMENTED. Unused.
Opnum: 0

Opnum1NotUsedOnWire Returns ERROR_NOT_IMPLEMENTED. Unused.
Opnum: 1

Opnum2NotUsedOnWire Returns ERROR_NOT_IMPLEMENTED. Unused.
Opnum: 2

Opnum3NotUsedOnWire Returns ERROR_NOT_IMPLEMENTED. Unused.
Opnum: 3

Opnum4NotUsedOnWire Returns ERROR_NOT_IMPLEMENTED. Unused.
Opnum: 4

Opnum5NotUsedOnWire Returns ERROR_NOT_IMPLEMENTED. Unused.
Opnum: 5

Opnum6NotUsedOnWire Returns ERROR_NOT_IMPLEMENTED. Unused.
Opnum: 6

Opnum7NotUsedOnWire Returns ERROR_NOT_IMPLEMENTED . Unused.
Opnum: 7

NetrConnectionEnum Lists all connections made to a shared resource on the server or all connections
established from a particular computer.

93 / 240

[MS -SRVS-Diff] - v20210625

Server Service Remote Protocol

Copyright © 2021 Microsoft Corporati on
Release: June 25, 2021

Method Description
Opnum: 8
NetrFileEnum Returns information about some or all open files on a server, depending on the

parameters that are specified.
Opnum: 9

NetrFileGetInfo

Retrieves information about a particular opening of a server resource.
Opnum: 10

NetrFileClose

Forces an open resource instance (for example, file, device, or named pipe) on
the ser ver to close.

Opnum: 11

NetrSessionEnum

Provides information about sessions that are established on a server.
Opnum: 12

NetrSessionDel

Ends a network session between a server and a client.

Opnum: 13
NetrShareAdd Shares a server resource.
Opnum: 14
NetrShareEnum Retrieves information about each shared resource on a server.

Opnum: 15

NetrShareGetinfo

Retrieves information about a particular shared resource on the server.
Opnum: 16

NetrShareSetinfo

Sets the parameters of a shared resource.

Opnum: 17

NetrShareDel Del etes a share name from a serveroés |ist
all connections to the shared resource.
Opnum: 18

NetrShareDelSticky Del etes a sticky share name from a server 9
disconnects all connections to the shared resource.
Opnum: 19

NetrShareCheck Checks whether a server is sharing a device.

Opnum: 20

NetrServerGetinfo

Retrieves current configuration information for the specified server.
Opnum: 21

NetrServerSetinfo

Setsa server6s operating parameters.
Opnum: 22

NetrServerDiskEnum

Retrieves a list of disk drives on a server.
Opnum: 23

NetrServerStatisticsGet

Retrieves operating statistics for a service.
Opnum: 24

NetrServerTransportAdd

Binds the server to the transport p rotocol.
Opnum: 25

NetrServerTransportEnum

Supplies information about transport protocols that the server manages.

[MS -SRVS-Diff] - v20210625
Server Service Remote Protocol
Copyright © 2021 Microsoft Corporati
Release: June 25, 2021

on

94 | 240

Method

Description

Opnum: 26

NetrServerTransportDel

Unbinds (disconnects) the transport protocol from the server.

Opnum: 27

NetrRemoteTOD Returns the time of day information from a specified server.
Opnum: 28

Opnum29NotUsedOnWire Only used locally, never remotely.
Opnum: 29

NetprPathType Checks a path name to determine its type.

Opnum: 30

NetprPathCanonicalize

Converts a path name to an implementatio n-specific canonical format.

Opnum: 31

NetprPathCompare

Performs an implementation -specific comparison of two paths.
Opnum: 32

NetprNameValidate

Performs implementation -specific checks to ensure that the specified name is a
valid name for the specified type.

Opnum: 33

NetprNameCanonicalize

Converts a name to an implementation
specified type.

Opnum: 34

- specific canonical format for the

NetprNameCompare

Performs an implementation -specific comparison of two names of a specific
name type.

Opnum: 35

NetrShareEnumSticky

Retrieves information about each sticky shared resource on a server.
Opnum: 36

NetrShareDelStart

Performs the initial phase of a two -phase share delete.
Opnum: 37

NetrShareDelCommit

Performs the final phase of a two -phase share delete.
Opnum: 38

NetrpGetFileSecurity

Returns a copy of the security descriptor protecting a file or directory.
Opnum: 39

NetrpSetFileSecurity

Sets the security of a file or directory.
Opnum: 40

NetrServerTransportAddEx

Binds the specified server to the transport protocol. This extended method
allows the caller to specify information levels 1, 2, and 3 beyond what the
NetrServerTransportAdd (section 3.1.4.22) method allows.

Opnum: 41
Opnum42NotUsedOnWire Only used locally, never remotely.
Opnum: 42
NetrDfsGetVersion Checks whether the server is a DFS server, and if so, returns an

implementation -specific DFS version.
Opnum: 43

95 / 240

[MS -SRVS-Diff] - v20210625

Server Service Remote Protocol

Copyright © 2021 Microsoft Corporati on
Release: June 25, 2021

Method Description

NetrDfsCreateLocalPartition Marks a share as being a DFS share.
Opnum: 44

NetrDfsDeleteLocalPartition Deletes a DFS share (prefix) on the server.
Opnum: 45

NetrDfsSetLocalVolumeState Sets a local DFS share online or offline.
Opnum: 46

Opnum47NotUsedOnWire Unsupported and not defined. Unused.
Opnum: 47

NetrDfsCreateExitPoint Creates a DFS link on the server.
Opnum: 48

NetrDfsDeleteExitPoint Deletes a DFS link on the server.
Opnum: 49

NetrDfsModifyPrefix Changes the path that corresponds to a DFS link on the server.
Opnum: 50

NetrDfsFixLocalVolume Adds knowledge of anew DFS share on the server.
Opnum: 51

NetrDfsManagerReportSitelnfo Gets Active Directory site information.
Opnum: 52

NetrServerTransportDelEx Unbinds (disconnects) the transport protocol from the server.
Opnum: 53

NetrServerAliasAdd Attaches an alias name to an existing server name.
Opnum: 54

NetrServerAliasEnum Retrieves alias information for a server.
Opnum: 55

NetrServerAliasDel Deletes an alias name from a server alias list.
Opnum: 56

NetrShareDelEx Deletes a share name from a server's list of shared resources.
Opnum: 57

An implementation MAY<41> choose to support the methods whose names begin with NetrDfs.
The methods MUST NOT throw an exception.

The server SHOULD enforce security measures to ensure that the caller has the required permissions
to execute each method.<42>

3.1.4.1 (Updated Section) NetrConnectionEnum (Opnum 8)

The NetrConnectionEnum method lists all the treeconnects made to a shared resource on the server
or all treeconnects established from a particular computer.

NET_API_STATUS NetrConnectionEnum(
[in, string, unique] SRVSVC_ HANDLE ServerName,

96 / 240

[MS -SRVS-Diff] - v20210625

Server Service Remote Protocol

Copyright © 2021 Microsoft Corporati on
Release: June 25, 2021

[in, string, unique] WCHAR* Qualifier,

[in, out] LPCONNECT_ENUM_STRUCTInfoStruct,
[in] DWORD PreferedMaximumLength,

[out] DWORD* TotalEntries,

[in, out, unique] DWORD* ResumeHandle

ServerName: An SRVSVC_HANDLE (section 2.2. 1.1) pointer that identifies the server. The client
MUST map this structure to an RPC binding handle (see [C706] sections 4.3.5 and 5.1.5.2). The
server MUST ignore this parameter.

Qualifier: A pointerto anull -terminated UTF -16 string that specifies a sh are name or computer name
for the connections of interest to the client.

InfoStruct: A pointer to a structure, in the format of a CONNECT_ENUM_STRUCT (section 2.2.4.5).
The CONNECT_ENUM_STRUCT structure hasa Level member that specifies the type of structure
toreturn. The Level member MUST be one of the values specified in section 2.2.4.5

PreferedMaximumLength: Specifies the preferred maximum length, in bytes, of the returned data.
If the value that is specified is MAX_PREFERRED_LENGTH (section 2.2.2.2), the method MUST
attempt to return all entries.

TotalEntries: The total number of entr ies that could have been enumerated if the buffer had been big
enough to hold all the entries.

ResumeHandle: A pointer to a value that contains a handle that is used to continue an existing
TreeConnect search. The handle MUST be zero on the first call and left unchanged for subsequent
calls. If ResumeHandle is NULL, a resume handle MUST NOT be stored. If this parameter is not
NULL and the method returns ERROR_MORE_DATA, this parameter receives an implementation -
specific nonzero value that can be passed in s ubsequent calls to this method to continue with the
enumeration.

If this parameter is NULL or points to 0x00000000, the enumeration starts from the beginning of
the TreeConnectList

Return Values: The method returns 0x00000000 (NERR_Success) to indicate su ccess; otherwise, it
returns a nonzero error code. The method can take any specific error code value, as specified in
[MS -ERREF] section 2.2.

In response to a NetrConnectionEnum request, the server MUST enumerate the tree connection

entries in TreeConnect List based on the value of the ResumeHandle parameter. For each entry,
the server MUST query treeconnect properties by invoking underlying server events as specified

in [MS -CIFS] section 3.3.4.15 and [MS -SMB2] section 3.3.4.19, providing

TreeConnect.Global TreeConnectld as the input parameter. When the server receives STATUS
SUCCESS for a treeConnect.GlobalTreeConnectld from either a CIFS or SMB2 server, the
server MUST consider the received INFO_1 structure as valid, and it MUST
continue t o query all other treeconnects that are established on the server.

The server MUST filter the results of the queries based on the Qualifier input parameter:

The Qualifier parameter specifies a share name or computer name for treeconnects of interest to the
client. If the Qualifier begins with " \\", it is considered a computer name. Otherwise, it is considered a

share name. Share names MUST NOT begin with " W\

If the Qualifier is the name of a share on the server, the server MUST return all treeconnects made
to that share by returning only the entries where treeconnect. conil_netname matches with the
Qualifier.

If the Qualifier is a computer name, the server MUST return al | treeconnects made from the specified
computer to the server by returning only the entries where ServerName matches with the Qualifier .

97 | 240

[MS -SRVS-Diff] - v20210625

Server Service Remote Protocol

Copyright © 2021 Microsoft Corporati on
Release: June 25, 2021

If the Qualifier parameteris a NULL (zero -length) string, or if the length of the Qualifier parameter
(including the t erminating null character) is greater than 1,024, the server MUST fail the call with
ERROR_INVALID_PARAMETER.

The Qualifier parameter plays no role in determining the value of ResumeHandle . The server uses the
ResumeHandle parameter to start the enumerati on (as described in the processing rules that follow
for the ResumeHandle parameter), and then applies the Qualifier parameter, if specified, to restrict

the returned results to only those items that pass the qualifier test (as described previously in this
topic for Qualifier) for share name or computer name.

The InfoStruct parameterhasa Level member. The valid values of Level are Oand 1. If the Level
member is not equal to one of the valid values, the server MUST fail the call with
ERROR_INVALID_LEVEL.

Ifthe Level member is 0, the server MUST return the information about treeconnects by filling the
CONNECT_INFO_O0_CONTAINER structure in the Connectinfo field of the InfoStruct parameter as
follows. The CONNECT_INFO_0_CONTAINER structure contains an array of CONNECT_INFO_0
structures.

A coni0_id MUST be setto treeconnect.GlobalTreeConnectld

Ifthe Level memberis 1, the server MUST return the treeconnects by filling the
CONNECT_INFO_1_CONTAINER structure in the Connectinfo field of the InfoStruct parameter. The
CONNECT_INFO_1_CONTAINER structure contains an array of MINFO_l
structures.

The PreferedMaximumLength parameter specifies the maximum number of bytes that the server can

return for the Connectinfo buffer. If PreferedMaximumLength is insufficient to hold all the entries, the
server MUST return the maximum number of entries that will fit in the Connectinfo buffer and return
ERROR_MORE_DATA. If this parameter is equal to MAX_PREFERRED_LENGTH, the server MUST return

all the requested data.

If the server returns NERR_Success or ERROR_MORE_DATA, it MUST set the TotalEntries parameter to
equal the total number of entries passing the qualifier filter that could have been enumerated from the
current resume position.

If PreferedMaximumLength s insufficient to hold all the entries and if the client has specified a
ResumeHandle parameter, the server MUST set ResumeHan dle to some implementation -specific value

that allows the server to continue with this enumeration in the TreeConnectList on a subsequent call
to this method with the same value for the ResumeHandle parameter.
The following rules specify processing of the ResumeHandle parameter:

A Ifthe ResumeHandle parameter is either NULL or points to 0x00000000, the enumeration MUST
start from the beginning of the TreeConnectList

A Ifthe ResumeHandle parameter points to a nonzero value, the server MUST validate the
Resume Handle .

A Ifthe value of ResumeHandle is less than the size of the TreeConnectList , the server MUST

continue enumeration based on the value of ResumeHandle . The value of ResumeHandle
specifies the index value in the TreeConnectList after which enumerationi s to begin.
A Ifthevalue of ResumeHandle is greater than or equal to the size of the TreeConnectList | the

server MUST return NERR_Success and zero entries. fail the call with
ERROR_INVALID_PARAMETER.

A If the client specified a ResumeHandle and if the server returns ERROR_MORE_DATA
(OxO00000EA), the server MUST set ResumeHandle to the index value of the last enumerated
treeconnect in the TreeConnectList

98 / 240

[MS -SRVS-Diff] - v20210625

Server Service Remote Protocol

Copyright © 2021 Microsoft Corporati on
Release: June 25, 2021

Because the ResumeHandle specifies the index into the TreeConnectList , and the TreeConnectList
can be modi fied between multiple requests, the results of a query spanning multiple requests using
the ResumeHandle can be unreliable, resulting in either duplicate or missed active treeconnects

The server SHOULD<43> enforce security measures to verify that the caller has the required
permissions to execute this routine. If the caller does not have the required credentials, the server
SHOULD<44> fail the call.

3.1.4.2 NetrFileEnum (Opnum 9)

The NetrFileEnum method MUST return information about some or all open files on a server,
depending on the parameters specified, or return an error code.

NET_API_STATUS NetrFileEnum(
[in, string, unique] SRVSVC_HANDLE ServerName,
[in, string, unique] WCHAR* BasePath,
[in, string, unique] WCHAR* UserName,
[in, out] PFILE_ENUM_STRUCT InfoStruct,
[in] DWORD PreferedMaximumLength,
[out] DWORD* Total Entries,
[in, out, unique] DWVORD* ResumeHandle

ServerName: An SRVSVC_HANDLE (section 2.2.1.1) pointer that identifies the server. The client
MUST map this structure to an RPC binding handle (see [C706] sections 4.3.5 and 5.1.5.2). The
server MUST igno re this parameter.

BasePath: A pointerto anull -terminated UTF -16 string that specifies a path component.
UserName: A pointertoanull -terminated UTF -16 string that specifies the name of a user.

InfoStruct: A pointer to a structure, in the format of a FI LE_ENUM_STRUCT. The
FILE_ENUM_STRUCT structure hasa Level field that specifies the type of structure to return. The
Level member MUST be one of the values specified in section 2.2.4.10.

PreferedMaximumLength: Specifies the preferred maximum length, in by tes, of returned data. If
the value that is specified is MAX_PREFERRED_LENGTH, the method MUST attempt to return all
entries.

TotalEntries: The total number of entries that could have been enumerated if the buffer had been big
enough to hold all the entrie S.

ResumeHandle: A pointer to a value that contains a handle that is used to continue an Open
connection search. The handle MUST be zero on the first call and left unchanged for subsequent
calls. If ResumeHandle is NULL, a resume handle MUST NOT be stored. If this parameter is not
NULL and the method returns ERROR_MORE_DATA, this parameter receives an implementation -
specific nonzero value that can be passed in subsequent calls to this method to continue with the
enumeration.

If this parameter is NULL or poi nts to 0x00000000, the enumeration starts from the beginning of
the list of the currently active connections.

Return Values: The method returns 0x00000000 (NERR_Success) to indicate success; otherwise, it
returns a nonzero error code. The method can take a ny specific error code value, as specified in
[MS - ERREF] section 2.2. The most common error codes are listed in the following table.

Return value/code Description

0x00000000 The client request succeeded.

99 / 240

[MS -SRVS-Diff] - v20210625

Server Service Remote Protocol

Copyright © 2021 Microsoft Corporati on
Release: June 25, 2021

Return value/code Description

NERR_Success

0x00000005 Access is denied.
ERROR_ACCESS_DENIED

0x0000007C The system call level is not correct.
ERROR_INVALID_LEVEL

0x000000EA The client request succeeded. More entries are available. Not all entries
ERROR MORE DATA could be returned in the buffer size that is s pecified by
- - PreferedMaximumLength

0x00000008 Not enough storage is available to process this command.
ERROR_NOT_ENOUGH_MEMORY

0x0000084B The client request succeeded. More entries are available. The buffer size
NERR BufTooSmall that is specified by ~ PreferedMaximumLength ~ was too small to fit even a
- single entry.
In response to a NetrFileEnum message, the server MUST enumerate Open entriesin FileList based
on the value of the ResumeHandle parameter. For each entry, the server MUST query open properties
by invoking the underlying server events as specified in [MS -CIFS] section 3.3.4.16 and [MS -SMB2]

section 3.3.4.20, providing Open.GlobalFileld as the input parameter. When the server receives
STATUS_SUCCESS for an Open.GlobalFileld from either a CIFS or SMB2 server, the server MUST
consider the received FILE_INFO_3 structure as valid, and the server MUST continue to query all other
open entries on the server. The server MUST then return the information about some or all valid open
entries on a server, depending on the qualifier parameters that are specified.

The BasePath parameter specifies a qualifier for the returned information. If this parame ter is not
NULL, the server MUST return only those FILE_INFO_3 structures received from CIFS and SMB2

servers, where the field fi3_path_name contains BasePath as the prefix. (A prefix is the path

component up to a backslash.) If the BasePath parameterisn ot NULL and if the length of the
BasePath string, including the terminating null character, is greater than 1,024, the server MUST fail

the call with ERROR_INVALID_PARAMETER.

The UserName parameter MUST specify the name of a user. If this parameter is spec ified, the server
MUST return only those FILE_INFO_3 structures received from CIFS and SMB2 servers where the field
fi3_username matches UserName. If the UserName parameter is not NULL and if the length of the
UserName string, including the terminating nu Il character, is greater than 1,024, the server MUST falil

the call with ERROR_INVALID_PARAMETER.

The BasePath and UserName parameters have no role in determining the value of ResumeHandle . The
server uses the ResumeHandle parameter to start the enumeration (as described in the rules that

follow for processing the ResumeHandle parameter), and then applies these qualifier parameters, if

specified, to restrict the returned results to only those items that pass the qualifier test (as described

previously in thi s topic for BasePath and UserName) for returned information.

The InfoStruct parameterhasa Level member. The valid values of Level are 2 and 3. If the Level
member is not equal to one of the valid values, the server MUST fail the call with
ERROR_INVALID L EVEL.

The server MUST fill the return structures as follows.

If the Level member is 2, the server MUST return the information about Opens by filling the
FILE_INFO_2_CONTAINER structure in the Filelnfo field of the InfoStruct parameter as follows. The
FILE_INFO_2_ CONTAINER structure contains an array of FILE_INFO_2 structures.

A fi2_id MUST be setto open.fi3_id

100 / 240

[MS -SRVS-Diff] - v20210625

Server Service Remote Protocol

Copyright © 2021 Microsoft Corporati on
Release: June 25, 2021

Ifthe Level memberis 3, the server MUST return Opens directly by filling the
FILE_INFO_3 CONTAINER structure in the Fileinfo field of the InfoStru ct parameter. The
FILE_INFO_3 CONTAINER structure contains an array of FILE_INFO_3 structures.

The PreferedMaximumLength parameter specifies the maximum number of bytes that the server can
return for the FileInfo buffer.

If PreferedMaximumLength s insuffi cient to hold all the entries, the server MUST return the maximum
number of entries that will fit in the Fileinfo buffer and return ERROR_MORE_DATA. If this parameter
is equal to MAX_PREFERRED_LENGTH, the server MUST return all the requested data.

If the s erver returns NERR_Success or ERROR_MORE_DATA, it MUST set the TotalEntries parameter
equal to the total number of entries passing the qualifier filter (BasePath or UserName) that could
have been enumerated from the current resume position.

If the PreferedMaximumLength is insufficient to hold all the entries and if the client has specified a
ResumeHandle , the server MUST set ResumeHandle to some implementation -specific value that allows
the server to continue with this enumeration on a subsequent ca Il to this method with the same value

for ResumeHandle .

The following rules specify processing of the ResumeHandle parameter:

A Ifthe ResumeHandle parameter is either NULL or points to 0x00000000, the enumeration MUST
start from the beginning of the FileLis t.

A Ifthe ResumeHandle parameter points to a nonzero value, the server MUST validate the
ResumeHandle .

A Ifthe value of ResumeHandle is less than the size of the FileList , the server MUST continue
enumeration based on the value of ResumeHandle . The value of ResumeHandle specifies the
index into the FileList after which enumeration is to begin.

A Ifthevalue of ResumeHandle is greater than or equal to the size of the FileLis t, the server
MUST return NERR_Success and zero entries.

A If the client specified a ResumeHandle and if the server returns ERROR_MORE_DATA
(OxO00000EA), the server MUST set the ResumeHandle to the index of the last enumerated file
open in the FileList

Because the ResumeHandle specifies the index into the FileList , and the FileList can be modified
between multiple requests, the results of a query spanning multiple requests using the ResumeHandle
can be unreliable, offering either duplicate or missed open fil es.

The server SHOULD<45> enforce security measures to verify that the caller has the required
permissions to execute this routine. If the caller does not have the required credentials, the server
SHOULD<46> fail the call.

3.1.4.3 NetrFileGetinfo (Opnum 10)

The NetrFileGetinfo method MUST retrieve information about a particular open server resource or
return an error code.

NET_API_STATUS NetrFileGetInfo(
[in, string, unique] SRVSVC_HANDLE ServerName,
[in] DWORD Fileld,
[in] DWORD Level,
[out, switch_is(Level)] LPFILE_INFO InfoStruct

);

101 / 240

[MS -SRVS-Diff] - v20210625

Server Service Remote Protocol

Copyright © 2021 Microsoft Corporati on
Release: June 25, 2021

ServerName: An SRVSVC_HANDLE (section 2.2.1.1) pointer that id entifies the server. The client
MUST map this structure to an RPC binding handle (see [C706] sections 4.3.5 and 5.1.5.2). The
server MUST ignore this parameter.

Fileld: Specifies the file identifier of the open resource to return information for. The value of this
parameter MUST have been returned in a previous NetrFileEnum method call.

NOTE : The Fileld parameter returned in a previous NetrFileEnum call is not guaranteed to be
valid. Therefore, the NetrFileGetinfo method is not guaranteed to succeed ba sed on the validity of
the Fileld parameter.

Level: Specifies the information level of the data. This parameter MUST have one of the following
values.

Value Meaning

2 FILE_INFO_2

3 FILE_INFO_3

InfoStruct: This parameter is of type LPFILE_INFO, which is defined in section 2.2.3.3. Its contents
are determined by the value of the Level member, as shown in the previous parameter table.

Return Values: The method returns 0x00000000 (NERR_Success) to indicate succ ess; otherwise, it
returns a nonzero error code. The method can take any specific error code value, as specified in
[MS -ERREF] section 2.2. The most common error codes are listed in the following table.

Return value/code Description

0x00000000 The client request succeeded.
NERR_Succes s

0x00000005 Access is denied.
ERROR_ACCESS_DENIED

0x00000002 The system cannot find the file specified.
ERROR_FILE_NOT_FOUND

0x0000007C The system call level is not correct.
ERROR_INVALID_LEVEL

0x00000008 Not enough storage is available to process this command.
ERROR_NOT_ENOUGH_MEMORY

0x0000084B The supplied buffer is too small.
NERR_BufTooSmall

In response to a NetrFileGetlnfo message, the server MUST query open properties by invoking

underlying server e vents as specified in [MS - CIFS] section 3.3.4.16 and [MS -SMB?2] section 3.3.4.20,
providing Fileld as the input parameter. When the server receives a non -NULL FILE_INFO_3 structure
from either a CIFS or SMB2 server, the server MUST return information about a particular opening of a
server resource (file, device, or named pipe). Otherwise, the server MUST fail the call with an
ERROR_FILE_NOT_FOUND error code.

The Fileld parameter specifies the file identifier of the open resource in FileList to returninforma tion
for. The value of this parameter MUST have been returned in a previous NetrFileEnum message
response by the server.

102 / 240

[MS -SRVS-Diff] - v20210625

Server Service Remote Protocol

Copyright © 2021 Microsoft Corporati on
Release: June 25, 2021

The Level parameter can be either 2 or 3. If the value of the Level parameter is anything else, the
server MUST fail the call with ERROR_INVALID_LEVEL. The value of the Level parameter determines
the format of the InfoStruct parameter.

The server MUST retrieve the open in FILE_INFO_3 structure from CIFS and SMB2 servers and fill the
return structures as follows.

If the value of the Level parameter is 2, the server MUST return information about the open whose
file identifieris Fileld by filling the FILE_INFO_2 structure in the Filelnfo2 field of the InfoStruct
parameter as follows:

A fi2_id MUSTbesetto open.fi3_id

If the value of the Level parameter is 3, the server MUST return the open directly whose fi3_id is
equalto Fileld .

The server SHOULD<47> enforce security me asures to verify that the caller has the required
permissions to execute this routine. If the caller does not have the required credentials, the server
SHOULD<48> fail the call.

3.1.4.4 NetrFileClose (Opnum 11)

The server receives the NetrFileClose method in an RPC_REQUEST packet. In response, the server
MUST force an open resource instance (for example, file, d evice, or named pipe) on the server to
close. This message can be used when an error prevents closure by any other means.

NET_API_STATUS NetrFileClose(
[in, string, unique] SRVSVC_HANDLE ServerName,
[in] DWORD Fileld

);

ServerName: An SRVSVC_HANDLE (section 2.2.1.1) pointer that identifies the server. The client
MUST map this structure to an RPC binding handle (see [C706] sections 4.3.5 and 5.1.5.2). The
server MUST ignore this parameter.

Fileld: Specifies the file identifier of the open file, device, o r pipe to close.

Note The Fileld parameter that is returned in a previous NetrFileEnum method call is not
guaranteed to be valid. Therefore, the NetrFileClose method is not guaranteed to succeed based
on the validity of the Fileld parameter.

Return Value s: The method returns 0x00000000 (NERR_Success) to indicate success; otherwise, it
returns a nonzero error code. The method can take any specific error code value, as specified in

[MS - ERREF] section 2.2. The most common error codes are listed in the follow ing table.
Return value/code Description
0x00000000 The client request succeeded.

NERR_Success

0x00000005 Access is denied.
ERROR_ACCESS_DENIED

0x0000090A There is no open file with the specified identification number.
NERR_FileldNotFound

This message can be used when an error prevents closure by any other means.

103 / 240

[MS -SRVS-Diff] - v20210625

Server Service Remote Protocol

Copyright © 2021 Microsoft Corporati on
Release: June 25, 2021

The Fileld parameter specifies the file identifier of the Open in FileList to close. The value of the
Fileld parameter MUST correspond to a Fileld that is returned in a previous NetrFileEnum message
response by the server. The server MUST look up Open inthe FileList where Fileld matches
Open.GlobalFileld . If no match is found, the server MUST return NERR_FileldNotFound. If a match is

found, the ser ver MUST close the Open by invoking an underlying server event as specified in [MS -
CIFS] section 3.3.4.13 or [MS -SMB2] section 3.3.4.17, providing Fileld as the input parameter.

If either CIFS or SMB2 servers return STATUS_SUCCESS, the server MUST return N ERR_Success.
Otherwise, the server MUST fail the call with a NERR_FileldNotFound error code.

The server SHOULD<49> enforce security measures to verify that the caller has the required
permissions to execute this routine. If the caller does not have the req uired credentials, the server
SHOULD<50> fail the call.

3.1.45 NetrSessionEnum (Opnum 12)

The NetrS essionEnum method MUST return information about sessions that are established on a
server or return an error code.

NET_API_STATUS NetrSessionEnum(
[in, string, unique] SRVSVC_HANDLE ServerName,
[in, string, unique] WCHAR* ClientName,
[in, string, uni que] WCHAR* UserName,
[in, out] PSESSION_ENUM_STRUCT InfoStruct,
[in] DWORD PreferedMaximumLength,
[out] DWORD* TotalEntries,
[in, out, unique] DWORD* ResumeHandle

ServerName: An SRVSVC_HANDLE (section 2.2.1.1) pointer that identifies the server. The client
MUST map this structure to an RPC binding handle (see [C706] sections 4.3.5 and 5.1.5.2). The
server MUST ignore this parameter.

ClientName: A pointerto anull -terminated UTF -16 string that specifies the name of the computer
session for which information is to be returned. This string MUST be one of the following: a NULL
(zero -length) string; or a string that MUST begin with \\.

UserName: A pointertoanull -terminated UTF -16 string that specifies the user name for which
informationist o be returned.

InfoStruct: A pointer to a structure, in the format of a SESSION_ENUM_STRUCT. The
SESSION_ENUM_STRUCT structure hasa Level member that specifies the type of structure to
return. The Level member MUST be one of the values specified in sectio n2.24.21.

PreferedMaximumLength: Specifies the preferred maximum length, in bytes, of the returned data.
If the value that is specified is MAX_PREFERRED_LENGTH, the method MUST attempt to return all
entries.

TotalEntries: The total number of entries that could have been enumerated if the buffer had been big
enough to hold all the entries.

ResumeHandle: A pointer to a value that contains a handle that is used to continue an existing
session search in SessionList , as specified in section 3.1.1.1. The handle MUST be zero on the
first call and remain unchanged for subsequent calls. If the ResumeHandle parameteris NULL, no
resume handle MUST be stored. If this parameter is not NULL and the method returns
ERROR_MORE_DATA, this parameter receives an implementati on-specific nonzero value that can
be passed in subsequent calls to this method to continue with the enumeration.

104 | 240

[MS -SRVS-Diff] - v20210625

Server Service Remote Protocol

Copyright © 2021 Microsoft Corporati on
Release: June 25, 2021

If this parameter is NULL or points to 0x00000000, the enumeration starts from the beginning of
the SessionList

Return Values: The method ret urns 0x00000000 (NERR_Success) to indicate success; otherwise, it
returns a nonzero error code. The method can take any specific error code value, as specified in
[MS -ERREF] section 2.2. The most common error codes are listed in the following table.

Return value/code

Description

0x00000000
NERR_Success

The client request succeeded.

0x00000005
ERROR_ACCESS_DENIED

Access is denied.

0x0000007C
ERROR_INVALID_LEVEL

The system call level is not correct.

0x00000057
ERROR_INVALID_PARAMETER

The parameter is incorrect.

0X000000EA
ERROR_MORE_DATA

The client request succeeded. More entries are available. Not all entries
could be returned in the buffer size that is specified by
PreferedMaximumLength

0x00000008
ERROR_NOT_ENOUGH_MEMORY

Not enough storage is available to process this command.

0x00000908
NERR_ClientNameNotFound

A session does not exist with the computer name.

0x0000092F
NERR_InvalidComputer

The computer name is not valid.

0x000008AD

The user name could not be found.

NERR_UserNotFound

In response to the NetrSessionEnum message, the server MUST enumerate the Session entries in
SessionList based on the value of the ResumeHandle parameter. For each entry, the server MUST
query session pr operties by invoking the underlying server events as specified in [MS -CIFS] section
3.3.4.14 and [MS -SMB2] section 3.3.4.18, providing Session.GlobalSessionld as the input parameter.
When the server receives a STATUS SUCCESS for a Session.GlobalSessionld f rom either a CIFS or
SMB2 server, the server MUST consider the received SESSION_INFO_502 structure as valid, and it
MUST continue to query all other sessions that are established on the server. The server MUST then
return information about some or all vali d sessions that are established on the server, depending on
the qualifier parameters that are specified.

The ClientName parameter specifies a qualifier for the returned information. If a ClientName is
specified (that is, it is not a NULL (zero -length) stri ng), the sesi502_cname field returned in the
SESSION_INFO_502 structure MUST match the ClientName for the session to be returned.

Ifa ClientName is specified, it MUST start with " \\"; otherwise, the server MUST fail the call with a
NERR_InvalidComputer er ror code. Ifa ClientName is specified and it contains more than 1,024
characters, including the terminating null character, the server MUST fail the call with an
ERROR_INVALID_PARAMETER error code.

The UserName parameter specifies a qualifier for the retu rned information. If a
(that is, not a NULL (zero -length) string), the sesi502_username field returned in the
SESSION_INFO_502 structure MUST match the UserName parameter for the session to be returned. If

UserName is specified

105 / 240

[MS -SRVS-Diff] - v20210625
Server Service Remote Protocol
Copyright © 2021 Microsoft Corporati
Release: June 25, 2021

on

a UserName parameter is spec ified and the length of the UserName string, including the terminating
null character, is greater than 1,024 characters, the server MUST fail the call with an
ERROR_INVALID_PARAMETER error code.

The server MUST return only those sessions that match all specified qualifiers. If no entries tha t match
the qualifiers (ClientName/UserName) are found when a qualifier is specified, the server MUST fail the
call with either an NERR_UserNotFound or NERR_ClientNameNotFound error code.

The ClientName and UserName parameters have no role in determining t he value of ResumeHandle .
The server uses the ResumeHandle parameter to start the enumeration (as described in the

processing rules that follow for the ResumeHandle parameter), and then applies these qualifier
parameters, if specified, to restrict the retu rned results to only those items that pass the qualifier test

(as described previously in this topic for ResumeHandle).

The InfoStruct parameterhasa Level member whose valid values are 0, 1, 2, 10, and 502. If the
Level member is not equal to one of the valid values, the server MUST fail the call with an
ERROR_INVALID_LEVEL error code.

The server MUST fill the return structures as follows.

Ifthe Level memberis 0, the server MUST return the information about sessions by filling the
SESSION_INFO_O0_CONTAIN ER structure inthe Sessioninfo field of the InfoStruct parameter as
follows. The SESSION_INFO_0_CONTAINER structure contains an array of SESSION_INFO_0

structures.

A sesi0_cname MUST be setto session.sesi502_cname

Ifthe Level memberis 1, the server MUST return the information about sessions by filling the
SESSION_INFO_1_CONTAINER structure in the Sessioninfo field of the InfoStruct parameter as in
the following. The SESSION_INFO_1 CONTAINER structure contains an array of SESSION_INFO_1
structures.

A sesil_ cname MUST be setto session.sesi502_cname

A sesil_username MUST be setto session.sesi502_username

A sesil_num_opens MUST be setto session.sesi502_num_opens

If the Level member is 2, the server MUST return the information about sessions by filling the
SESSION_INFO_2_CONTAINER structure in the Sessioninfo field of the InfoStruct parameter as in
the following. The SESSION_INFO_2_ CONTAINER structure contains an array of SESS ION_INFO_2
structures.

A sesi2_cname MUST be setto session.sesi502_cname

A sesi2_username MUST be setto session.sesi502_username

A sesi2_num_opens MUST be setto session.sesi502_num_opens

A sesi2_idle_time MUST be setto session.sesi502_idletime

A sesi2_time MUST besetto session.sesi502_time

A sesi2_user_flags MUST be setto session.sesi502_user_flags

A sesi2_cltype_name MUST be setto session.sesi502_cltype_name

Ifthe Level memberis 10, the server MUST return the information about sessions by fi lling the

SESSION_INFO_10 CONTAINER structure in the Sessioninfo field of the InfoStruct parameter asin
the following. The SESSION_INFO_10_CONTAINER structure contains an array of SESSION_INFO_10
structures.

106 / 240

[MS -SRVS-Diff] - v20210625

Server Service Remote Protocol

Copyright © 2021 Microsoft Corporati on
Release: June 25, 2021

A sesil0_cname MUST be setto session.sesi502_cna me .
A sesil0_username MUST be setto session.sesi502_username
A sesilO_idle_time MUST be setto session.sesi502_idletime

A sesilO_time MUST be setto session.sesi502_time

Ifthe Level member is 502, the server MUST return the sessions in the SESSION_INFO_502 structure
by filling the SESSION_INFO_502_CONTAINER structure in the Sessioninfo field of the InfoStruct
parameter. The SESSION_INFO_502_CONTAINER structure contains an array of SESSION_INFO_502

structures.

The PreferedMaximumLength parameter specifies the maximum number of bytes that the server can
return for the SessionInfo buffer. If PreferedMaximumLength is insufficient to hold all the entries, the
server MUST return the maximum number of entries that will fit in the Sessioninfo buffer and return
ERROR_MORE_DATA. If this parameter is equal to MAX_PREFERRED_LENGTH, the server MUST return

all the requested data.

If the server returns NERR_Success or ERROR_MORE_DATA, it MUST set the TotalEntries parameter to
equal the total number of entries that exceed the qualifier filter (ClientName or UserName as
previously described) and that could have been enumerated from the current resume position.

If the PreferedMaximumLength is insufficient to hold all the entries and if the client has specified a
ResumeHandle , th e server MUST set ResumeHandle to some implementation -specific value that allows
the server to continue with this enumeration on a subsequent call to this method with the same value

for ResumeHandle .

The following rules specify processing of the ResumeHand le parameter:

A Ifthe ResumeHandle parameter is either NULL or points to 0x00000000, the enumeration MUST
start from the beginning of the SessionList

A Ifthe ResumeHandle parameter points to a nonzero value, the server must validate the
ResumeHandle .

A Ifthe value of ResumeHandle is less than the size of the SessionList , the server MUST

continue enumeration based on the value of ResumeHandle . The value of ResumeHandle
specifies the index into the SessionList after which enumeration is to b egin.
A Ifthe value of ResumeHandle is greater than or equal to the size of the SessionList , the

server MUST return NERR_Success and zero entries.

A If the client specified a ResumeHandle and the server returns ERROR_MORE_DATA (0x000000EA),
the server MUST se t ResumeHandle to the index value of the last enumerated session in the
SessionList

Because the ResumeHandle specifies the index into the list and the list of active sessions can be
modified between multiple requests, the results of a query spanning multi ple requests using the
ResumeHandle can be unreliable, offering either duplicate or inactive sessions.

The server SHOULD<51> enforce the security measures to verify that the caller has the required

permissions to execute this routine. If the caller does no t have the required credentials, the server
SHOULD<52> fail the call.

3.1.4.6 NetrSessionDel (Opnum 13)

The NetrSessionDel method MUST end one or more network sessions between a server and a client.

NET_API_STATUS NetrSessionDel(

107 / 240

[MS -SRVS-Diff] - v20210625

Server Service Remote Protocol

Copyright © 2021 Microsoft Corporati on
Release: June 25, 2021

[in, string, unique] SRVSVC_HANDLE ServerName,
[in, string, unique] WCHAR* ClientName,
[in, string, unique] WCHAR* UserName
)i

ServerName: An SRVSVC_HANDLE (section 2.2.1.1) pointer that identifies the server. The client
MUST map this structure to an RPC binding handle (see [C706] sections 4.3.5 and 5.1.5.2). The
server MUST ignore this parameter.

ClientName: A pointerto a nul I-terminated UTF -16 string that specifies the computer name of the
client whose sessions are to be disconnected. This string MUST be one of the following: a NULL
(zero -length) string; or a string that MUST begin with \\.

UserName: A pointerto anull -termi nated UTF -16 string that specifies the user name whose sessions
are to be terminated.

Return Values: This method returns 0x00000000 (NERR_Success) to indicate success; otherwise, it
returns a nonzero error code. This method can take any specific error code value, as specified in
[MS -ERREF] section 2.2. The most common error codes are listed in the following table.

Return value/code Description

0x00000000 The client request succeeded.
NERR_Success

0x00000005 Access is denied.
ERROR_ACCESS_DENIED

0x00000057 The parameter is incorrect.
ERROR_INVALID_PARAMETER

0x00000008 Not enough storage is available to process this command.
ERROR_NOT_ENOUGH_MEMORY

0x00000908 A session does not exist with the computer name.
NERR_ClientNameNotFound

In response to a NetrSessionDel message, the server ends network sessions between the server and a
workstation.

The server SHOULD<53> enforce security measures to verify that the caller has the required
permissions to execute this routine. If the caller does not have the required credentials, the server
SHOULD<54> fail the call.

The ClientName parameter specifies the computer name of the client to disconnect. If a ClientName is
specified, it MUST start with " \\"; otherwise, the server MUST fail the call with a n
NERR_ClientNameNotFound error code. If a ClientName is specified and it contains more than 1,024

characters, including the terminating null character, the server MUST fail the call with an
ERROR_INVALID_PARAMETER error code.

The UserName parameter specif ies the name of the user whose session is to be terminated. If a
UserName is specified and the length of the UserName string, including the terminating null character,
is greater than 1,024, the server MUST fail the call with an ERROR_INVALID_PARAMETER err or code.

If both ClientName and UserName are unspecified (a NULL (zero -length) string), the server MUST fail
the call with a NERR_ClientNameNotFound or an ERROR_INVALID_PARAMETER error code.

The server MUST enumerate all Session entries in SessionList . For each entry, the server MUST
query session properties by invoking the underlying server events as specified in [MS - CIFS] section

108 / 240

[MS -SRVS-Diff] - v20210625

Server Service Remote Protocol

Copyright © 2021 Microsoft Corporati on
Release: June 25, 2021

3.3.4.14 and [MS -SMB2] section 3.3.4.18, providing Session.GlobalSessionld as the input parameter.
If the server receives a STA TUS_SUCCESS fora Session.GlobalSessionld from either a CIFS or an
SMB2 server, and the received SESSION_INFO_502.sesi502_cname matches the ClientName (if it is
specified) and SESSION_INFO_502.sesi502_username matches the UserName (if it is specified),
the server MUST close the session by invoking the underlying server event as specified in [MS -CIFS]
section 3.3.4.8 or [MS -SMB2] section 3.3.4.12, providing Session.GlobalSessionld as input parameter.
The server MUST continue to query all other sessions and ¢ lose all the matching sessions.

If no matching session is found with the ClientName and UserName , the server MUST fail the call with
error code NERR_ClientNameNotFound.

3.1.4.7 NetrShareAdd (Opnum 14)

The NetrShareAdd method shares a server resource.

NET_API_STATUS NetrShareAdd(

[in, string, unique] S RVSVC_HANDLEServerName,
[in] DWORD Level,

[in, switch_is(Level)] LPSHARE_INFO InfoStruct,
[in, out, unique] DWORD* ParmErr

)i

ServerName: An SRVSVC_HANDLE (section 2.2.1.1) pointer that identifies the server. The client
MUST map this structure to an RPC binding handle (see [C706] sections 4.3.5 and 5.1.5.2). The
server MUST ignore this parameter.

Level: Specifies the information level of the data. This parameter MUST be one of the following

values.
Value Meaning
2 The buffer is of type ~ SHARE_INFO_2.
502 The buffer is of type SHARE_INFO_502_1I.
503 The buffer is of type SHARE_INFO_503_1I.
InfoStruct: A pointer to the SHARE_INFO union. The contents of the InfoStruct parameter depend on

the value of the Level parameter. The client MUST set the STYPE_CLUSTER_FS,
STYPE_CLUSTER_SOFS, and STYPE_CLUSTER_DFS bits in the shi*_type field of the SHARE_INFO
union to zero; the server MUST ignore them on receipt.

ParmErr: A point er to a value that receives the index of the first member of the share information
structure that caused an ERROR_INVALID_PARAMETER error code, if it occurs.

Return Values: The method returns 0x00000000 (NERR_Success) to indicate success; otherwise, it
ret urns a nonzero error code. The method can take any specific error code value, as specified in
[MS -ERREF] section 2.2. The most common error codes are listed in the following table.

Return value/code Description

0x00000000 The client request s ucceeded.
NERR_Success

0x00000005 Access is denied.
ERROR_ACCESS_DENIED

0x0000007C The system call level is not correct.

109 / 240

[MS -SRVS-Diff] - v20210625

Server Service Remote Protocol

Copyright © 2021 Microsoft Corporati on
Release: June 25, 2021

Return value/code Description

ERROR_INVALID_LEVEL

0x0000007B The file name, directory name, or volume label syntax is incorrect.
ERROR_INVALID_NAME

0x00000057 The client request failed because the specified parameter is invalid. For
ERROR_INVALID_PARAMETER details, see the description that follows for the ParmErr parameter.
0x00000008 Not enough storage is available to process this comma nd.

ERROR_NOT_ENOUGH_MEMORY

0x00000846 The share name is already in use on this server.
NERR_DuplicateShare

0x00000844 The device or directory does not exist.
NERR_UnknownDevDir

In response to a NetrShareAdd message, the server MUST share a server resource or return an error
code. A shared resource is a local resource on a server (for example, a disk directory, print device, or
named pipe) that can be accessed by users and applications on the network.

The Level parameter determines the type of structure that the client h as used to specify information
about the new share. The value of the Level parameter MUST be 2, 502, or 503. If the Level
parameter is not one of the valid values, the server MUST fail the call with an ERROR_INVALID_LEVEL

error code.

Ifthe Level parameter is 2, InfoStruct contains a SHARE_INFO_2 structure.
Ifthe Level parameter is 502, InfoStruct contains a SHARE_INFO_502_1 structure.
Ifthe Level parameter is 503, InfoStruct contains a SHARE_INFO_503_| structure.

The name of the share to be add ed is specified in the shi*_netname member of the SHARE_INFO

structure. If the specified share name is an empty string, or is a nonempty string of length greater

than 80 characters, the server MUST fail the call with an ERROR_INVALID_PARAMETER error code. If
the specified share name is "pipe" or "mailslot”, the server MUST fail the call with an

ERROR_ACCESS_DENIED error code.

If Level is 2 or 502, the server MUST look up the Share in ShareList ,where Share.ShareName
matches shi*_netname and Share.ServerName matches "*".

If Level is 503, the server MUST look up the Share in ShareList , where Share.ShareName matches
shi503_netname and Share.ServerName matches shi503_servername.

If a matching Share is found, the server MUST fail the call with NERR_DuplicateShare

The server MUST validate all information that is provided in the SHARE_INFO (section 2.2.3.6)
structure, and if any SHARE_INFO structure member is found to be invalid, the server MUST fail the
call with an ERROR_INVALID_PARAMETER error code.

The server p erforms the following validation on the structure:

A shi*_netname must not be a NULL (zero -length) string, and its length must not be greater than 80
characters.
A If Level=502 and a security descriptor is provided, it must be a valid security descriptor.

110 / 240

[MS -SRVS-Diff] - v20210625

Server Service Remote Protocol

Copyright © 2021 Microsoft Corporati on
Release: June 25, 2021

A If s hi*_netname specifies an IPC$ or the ADMIN$ share, shi*_path must be NULL; otherwise,
shi*_path must be a nonempty string that specifies a valid share path (must not have "." and ".."
appear as directory names).

A If shi*_netname specifies an NT path (begins with " \\\"), shi*_type must not have a
STYPE_DISKTREE flag.
A If shi*_remark is specified, its length must not be greater than 48.
A If shi*_ type specifies a STYPE_DISKTREE flag and shi*_netname is not an ADMIN$ share,
shi*_path must specify an absolute directory path. If the server does not support shared net
drivers (determined by the SERVER_INFO field sv*_enablesharednetdrives), the path must not be
on a network drive.
A If adisk share is being added, the directory to be shared must exist and t he caller must have

access to it.

Ifthe ParmErr parameter is not NULL and the server finds a member of the SHARE_INFO structure to
be invalid, the server MUST set ParmErr to a value that denotes the index of the member that was
found to have an invalid va lue and fail the call with an ERROR_INVALID_PARAMETER (0x00000057)
error code. The mapping between the values to set and the corresponding member is listed in section
2.2.2.11.

Ifthe ParmErr parameter is NERR_Success, the server MUST create a Share and in sert it into
ShareList with the following fields set:

A Ifthe STYPE_TEMPORARY field is set in shi*_type, Share.IsPersistent MUST be set to FALSE.
Otherwise, Share.IsPersistent MUST be set to TRUE.

A Share.IsMarkedForDeletion MUST be set to FALSE.

A Share.IsPrin terShare MUST be set to TRUE if shi*_ type specifies STYPE_PRINTQ flag.

A Share.ShareName MUST be set to shi*_netname.

A Share.ServerName MUST be set to shi503_servername if it is specified and if Level is equal to
503; otherwise it MUST be set to "*".

A Share.LocalPath MUST be set to shi*_path.

A Share.FileSecurity MUST be set to shi*_security_descriptor if it is specified and if Level is equal
to 502 or 503; otherwise it MUST be set to NULL.

A Share.CscFlags MUST be set to 0.

A Share.lsDfs MUST be set to FALSE .

A Share.DoAccessBasedDirectoryEnumeration MUST be set to FALSE.

A Share.AllowNamespaceCaching MUST be set to FALSE.

A Share.ForceSharedDelete MUST be set to FALSE.

A Share.RestrictExclusiveOpens MUST be set to FALSE.

A Share.Type MUST be set to shi*_type.

A Share.Re mark MUST be set to shi*_remark.

A Share.MaxUses MUST be set to OxFFFF if shi*_max_uses is not specified; otherwise it MUST be

set to shi*_max_uses.

111 / 240

[MS -SRVS-Diff] - v20210625

Server Service Remote Protocol

Copyright © 2021 Microsoft Corporati on
Release: June 25, 2021

A Share.CurrentUses MUST be set to 0.
A Share.ForceLevel20plock MUST be set to FALSE.

If shi*_ type specifies STY PE_PRINTQ flag, PrinterShareCount MUST be increased by 1, and the
server MUST invoke the events as specified in section 3.1.6.9, providing SV_TYPE_PRINTQ_SERVER as
the input parameter.

The server MUST construct a share in SHARE_INFO_503_1 structure as the input parameter to register
the share by invoking underlying server event as specified in [MS -CIFS] section 3.3.4.9 and [MS -
SMBZ2] section 3.3.4.13, providing share as the input parameter. The fields in share MUST be set as
follows:

A share.shi503_netname MUST be setto Share.ShareName

A share.shi503_type MUST be setto Share.Type

A share.shi503_remark MUST be setto Share.Remark

A share.shi503_permissions MUST be set to 0.

A share.shi503_max_uses MUST be setto Share.MaxUses

A share.shi503_current_uses MUST be set to 0.

A share.shi503_path MUST be setto Share.LocalPath

A share.shi503_passwd MUST be set to NULL.

A share.shi503_security_descriptor MUST be setto Share.FileSecurity

A share.shi503_servername MUST be setto Share.ServerNa me .

If either the CIFS or the SMB2 server returns an error:
A The server MUST remove the Share from ShareList and free the share object.

A The server MUST invoke the underlying server events as specified in [MS -CIFS] section 3.3.4.11
and [MS -SMB2] section 3.3.4.15, providing tuple <Share.ServerName, Share.ShareName> as
input parameters.

A If the error returned by the CIFS or the SMB2 server is STATUS_INVALID_PARAMETER, then the
server MUST fail the call with ERROR_INVALID_DATA (0x0000000D). Otherwise, the server MUST
fail the call with NERR_DuplicateShare.

If Share.lsPersistent is TRUE, the server MUST persist the Share to a persistent configuration store.
If a share with the same ShareName already exists in the store, the preexisting entry MUST be
ove rwritten with this entry.

The server SHOULD<55> enforce the security measures to verify that the caller has the required
permissions to execute this call. If the caller does not have the required credentials, the server
SHOULD<56> fail the call.

3.1.4.8 NetrShareE num (Opnum 15)

The NetrShareEnum method retrieves information about each shared resource on a server

NET_API_STATUS NetrShareEnum(
[in, string, unique] SRVSVC_HANDLE ServerName,
[in, out] LPSHARE_ENUM_STRUCT InfoStruct,
[in] DWORD PreferedMaximumLength,

112 / 240

[MS -SRVS-Diff] - v20210625

Server Service Remote Protocol

Copyright © 2021 Microsoft Corporati on
Release: June 25, 2021

[out] DWORD* TotalEntries,
[in, out, unique] DWORD* ResumeHandle
)i

ServerName: An SRVSVC_H ANDLE (section 2.2.1.1) pointer that identifies the server. The client
MUST map this structure to an RPC binding handle (see [C706] sections 4.3.5 and 5.1.5.2). If this
parameter is NULL, the local computer is used.

InfoStruct: A pointer to a structure, in the format of a SHARE_ENUM_STRUCT (section 2.2.4.38), as
specified in section 2.2.4.38. The SHARE_ENUM_STRUCT structure hasa Level member that
specifies the type of structure to return in the Sharelnfo member. The Level member MUST be
one of the values s pecified in section 2.2.4.38.

PreferedMaximumLength: Specifies the preferred maximum length, in bytes, of the returned data.
If the specified value is MAX_PREFERRED_LENGTH, the method MUST attempt to return all
entries.

TotalEntries: The total number of en tries that could have been enumerated if the buffer had been big
enough to hold all the entries.

ResumeHandle: A pointer to a value that contains a handle, which is used to continue an existing
share searchin ShareList . The handle MUST be zero on the firs t call and remain unchanged for
subsequent calls. If the ResumeHandle parameter is NULL, no resume handle MUST be stored. If
this parameter is not NULL and the method returns ERROR_MORE_DATA, this parameter receives
a nonzero value that can be passed in su bsequent calls to this method to continue with the
enumeration in ShareList

If this parameter is NULL or points to 0x00000000, the enumeration starts from the beginning of
the ShareList

Return Values: The method returns 0x00000000 (NERR_Success) to indic ate success; otherwise, it
returns a nonzero error code. The method can take any specific error code value, as specified in
[MS -ERREF] section 2.2. The most common error codes are listed in the following table.

Return value/code Description

0x00000000 The client request succeeded.
NERR_Success

0x000000EA The client request succeeded. More entries are available. Not all entries could be
ERROR MORE DATA returned in the buffer size that is specified by PreferedMaximumLength
0x0000007C The system call level is not correct.

ERROR_INVALID_LEVEL

If ServerName does not match any Transport.ServerName in TransportList with the
SVTI2_SCOPED_NAME bit setin Transport.Flags , the server MUST reset ServerName as "™".

The server MUST remove any preceding " \\"fromthe ServerName parameter and normalize the
ServerName parameter as specified in section 3.1.6.8, passing in the updated ServerName parameter
as the ServerName, and an empty string as the ShareName.

In response to a NetrShareEnum request, the server MUST enumerate the Share entries in ShareList
based on the value of the ResumeHandle parameter and query share properties by invoking the

underlying server events as specified in [MS -CIFS] section 3.3.4.12 or [MS -SMB] section 3.3.4.7, and
[MS -SMB2] section 3.3.4.16, providing the tuple <normalized server name, Share.ShareName> as the
input parameter. When the server receives STATUS_SUCCESS for a share, it MUST consider the

received SHARE_INFO_503_| and SHARE_INFO_1005 structures as valid. The server MUST return
information about each shared resource on a server.

113 / 240

[MS -SRVS-Diff] - v20210625

Server Service Remote Protocol

Copyright © 2021 Microsoft Corporati on
Release: June 25, 2021

The InfoStruct parameterhasa Level member. The valid values of Level areO, 1, 2,501, 502, and
503. Ifthe Level member is not equal to one of the valid val ues, the server MUST fail the call with an
ERROR_INVALID_LEVEL error code.

The server MUST use the shares in valid SHARE_INFO_503_| and SHARE_INFO_1005 structures

returned from either CIFS or SMB2 server and fill the return structures as follows. For each share , the
server MUST discard the structures received from other file server except the value of

share.shi503_current_uses

Ifthe Level member is 503, the server MUST return all shares in SHARE_INFO_503_| structures.

Otherwise, the server MUST return the shares in which share.shi503_servername matches
ServerName .
Ifthe Level member is 0, the server MUST return the information about share resources by filling the

SHARE_INFO_0O_CONTAINER structure in the Sharelnfo member of the InfoStruct parameter. The
SHARE_INFO_O_CONTAINER structure contains an array of SHARE_INFO_0 structures.

A shi0_netname MUST be setto share.shi503_netname

If the Level memberis 1, the server MUST return the information about share resources by filling the
SHARE_INFO_1_CONTAINER struc tureinthe Sharelnfo member of the InfoStruct parameter. The
SHARE_INFO_1_CONTAINER structure contains an array of SHARE_INFO_1 structures.

A shil_netname MUST be setto share.shi503_netname
A shil _type MUST be setto share.shi503_type
A shil_remark MUST be setto share.shi503_remark

Ifthe Level memberis 2, the server MUST return the information about share resources by filling the
SHARE_INFO_2_CONTAINER structure in the Sharelnfo member of the InfoStruct parameter. The
SHARE_INFO_2_CON TAINER structure contains an array of SHARE_INFO_2 structures.

A shi2_netname MUST be setto share.shi503_netname

A shi2_type MUST be setto share.shi503_type

A shi2_remark MUST be setto share.shi503_remark

A shi2_permissions MUST be setto share.shi503_permis sions .

A shi2_max_uses MUST be setto share.shi503_max_uses

A shi2_current_uses MUST be set to the sum of share.shi503_current_uses values retrieved

from both CIFS and SMB2 servers.

A shi2_path MUST be setto share.shi503_path

A shi2_passwd MUST be setto share. shi503_passwd

Ifthe Level memberis 501, the server MUST return the information about share resources by filling
the SHARE INFO_501 CONTAINER structure in the Sharelnfo member of the InfoStruct parameter.
The SHARE_INFO_501_CONTAINER structure contains a n array of SHARE_INFO_501 structures.

A shi501_netname MUST be setto share.shi503_netname

A shi501_type MUST be setto share.shi503_type

>

shi501_remark MUST be setto share.shi503_remark

>

shi501_flags MUST be setto share.ShareFlags

114 | 240

[MS -SRVS-Diff] - v20210625

Server Service Remote Protocol

Copyright © 2021 Microsoft Corporati on
Release: June 25, 2021

Ifthe Level memberis5 02, the server MUST return the information about Share resources by filling
the SHARE_INFO_502_CONTAINER structure in the Sharelnfo member of the InfoStruct parameter.
The SHARE_INFO_502_CONTAINER structure contains an array of SHARE_INFO_502_1 structures.

shi502_netname MUST be setto share.shi503_netname
shi502_type MUST be setto share.shi503_type

shi502_remark MUST be setto share.shi503_remark
shi502_permissions MUST be setto share.shi503_permissions

A
A
A
A
A shi502_max_uses MUST be setto share.shi503_max_uses

A shi502_current_uses MUST be set to the sum of share.shi503_current_uses values retrieved
from both CIFS and SMB2 servers.

A shi502_path MUST be setto share.shi503_path
A shi502_passwd MUST be setto share.shi503_passwd
A shi502_security_descriptor MUST be setto share.shi503_security_descriptor

If the Level member is 503, the server MUST return the information about share reso urces in the
SHARE_INFO_503_1 structure by filling the SHARE_INFO_503_CONTAINER structure in the Sharelnfo
member of the InfoStruct parameter, except that shi503_current_uses MUST be set to the sum of
share.shi503_current_uses values retrieved from both ClI FS and SMB2 server. The
SHARE_INFO_503_CONTAINER structure contains an array of SHARE_INFO_503_1 structures.

The server MUST set the STYPE_CLUSTER_FS, STYPE_CLUSTER_SOFS, and STYPE_CLUSTER_DFS bits
in the shi*_type field to zero; the client MUST ignore the m on receipt.

The PreferedMaximumLength parameter specifies the maximum number of bytes that the server can

return for the Shareinfo buffer. If PreferedMaximumLength is insufficient to hold all the entries, the
server MUST return the maximum number of entr ies that will fit in the Sharelnfo buffer and return
ERROR_MORE_DATA. If this parameter is equal to MAX_PREFERRED_LENGTH (section 2.2.2.2), the
server MUST return all the requested data.

If the server returns NERR_Success or ERROR_MORE_DATA, it MUST set th e TotalEntries parameter to
equal the total number of entries that could have been enumerated from the current resume position.

If PreferedMaximumLength s insufficient to hold all the entries and if the client has specified a
ResumeHandle , the server MUST set ResumeHandle to some implementation -specific value that allows
the server to continue with this enumeration on a subsequent call to this method with the same value

for ResumeHandle .

The server MUST maintain the share list in the order in which shares are inserted into ShareList

The following rules specify processing of the ResumeHandle parameter:

A Ifthe ResumeHandle parameter is either NULL or points to 0x00000000, the enumeration MUST
start from the beginning of the SharelList

A Ifthe ResumeHandle parameter points to a nonzero value, the server MUST validate the
ResumeHandle .

A If the value of the ResumeHandle isless than the size of the ShareList , the server MUST
continue enumeration based on the value of ResumeHandle . The value of ResumeHandle
specifies the index into the ShareList after which enumeration is to begin.

115 / 240

[MS -SRVS-Diff] - v20210625

Server Service Remote Protocol

Copyright © 2021 Microsoft Corporati on
Release: June 25, 2021

A If the value of the ResumeHandle is greaterthan or equal to the size of the SharelList , the
server MUST return NERR_Success and zero entries.

A If the client specified a ResumeHandle and if the server returns ERROR_MORE_DATA
(OxO00000EA), the server MUST set ResumeHandle to the index of the last enumerated share in
the ShareList

Because the ResumeHandle specifies the index into the ShareList ,andthe ShareList can be
modified between multiple requests, the results of a query spanning multiple requests using the
ResumeHandle can be unreliable, offering eith er duplicate or unavailable shares.

The server SHOULD<57> enforce security measures to verify that the caller has the required
permissions to execute this routine. If the caller does not have the required credentials, the server
SHOULD<58> fail the call.

3.1.4.9 NetrShareEnumSticky (Opnum 36)

The NetrShareEnumSticky method retrieves infor mation about each sticky shared resource whose
IsPersistent setting is set in a ShareList

NET_API_STATUS NetrShareEnumSticky/(
[in, string, unique] SRVSVC_HANDLE ServerName,
[in, out] LPSHARE_ENUM_STRUCT InfoStruct,
[in] DWORD PreferedMaximumLength,
[out] DWORD* TotalEntries,
[in, out, unique] DWORD* ResumeHandle

ServerName: An SRVSVC_HANDLE (section 2.2.1.1) pointer that identifies the server. The client
MUST map this structure to an RPC binding handle (see [C706] sections 4.3.5 and 5.1.5.2). If this
parameter is NULL, the local computer is used.

InfoStruct: A pointer to a structure, in the format of a SHARE_ENUM_STRUCT (section 2.2.4.38). The
SHARE_ENUM_STRUCT structure hasa Level member that specifies the type of structure to
return inthe Sharelnfo member. The Level member MUST be set to one of the values specified
in section 2.2.4.38 (excluding SHARE_INFO_501_CONTAINER).

PreferedMaximumLength: Specifies the preferred maximum length, in bytes, of the returned data.
If the specified value is MAX_PREFERRED_LENGTH, the method MUST attempt to return all
entries.

TotalEntries: The total number of entries that could have been enumerated if the buffer had been big
enough to hold all the entries.

ResumeHandle: A pointer to a value that conta ins a handle, which is used to continue an existing
connection search. The handle MUST be zero on the first call and remain unchanged for
subsequent calls. If the ResumeHandle parameter is NULL, a resume handle MUST NOT be stored.
If this parameter is not NULL and the method returns ERROR_MORE_DATA, this parameter
receives an implementation -specific nonzero value that can be passed in subsequent calls to this
method to continue with the enumeration.

If this parameter is NULL or points to 0x00000000, the en umeration starts from the beginning of
the list of the currently active connections.

Return Values: The method returns 0x00000000 (NERR_Success) to indicate success; otherwise, it
returns a nonzero error code. The method can take any specific error code va lue, as specified in
[MS - ERREF] section 2.2. The most common error codes are listed in the following table.

116 / 240

[MS -SRVS-Diff] - v20210625

Server Service Remote Protocol

Copyright © 2021 Microsoft Corporati on
Release: June 25, 2021

Return
value/code Description

0x00000000 The client request succeeded.
NERR_Success

0x000000EA The client request succeeded. More entries are available. Not all entries could be
ERROR MORE DATA | returnedin the buffer size that is specified by PreferedMaximumLength
0x0000084B The client request succeeded. More entries are available. The buffer siz e thatis
NERR BufTooSmall specified by PreferedMaximumLength ~ was too small to fit even a single entry.

In response to a NetrShareEnumsSticky message, the server MUST enumerate all the sticky shares in

the ShareList whose IsPersistent setting is set, or return an error cod e. If the server is restarted,
any shares that are created before the restart that are not sticky MUST be forgotten. Information

about sticky shares MUST be stored in a persistent store,<59> and the shares MUST be restored (that

is, re -created on the serve r) after the server is restarted.

The NetrShareEnumSticky method MUST NOT support Level 501 and MUST enumerate only sticky
shares. Other than this difference, the server MUST process this message in exactly the same manner
as the NetrShareEnum message.

3.1.4.10 Net rShareGetinfo (Opnum 16)

The NetrShareGetlnfo method retrieves information about a parti cular shared resource on the server
from the ShareList

NET_API_STATUS NetrShareGetInfo(
[in, string, unique] SRVSVC_HANDLE ServerName,
[in, string] WCHAR* NetName,
[in] DWORD Level,
[out, switch_is(Level)] LPSHARE_INFO InfoStruct

);

ServerName: An SRVSVC_HANDLE (section 2.2.1.1) pointer that identifies the server. The client
MUST map this structure to an RPC binding handle ([C706] sections 4.3.5 and 5.1.5.2). If this
parameter is NULL, the local computer is used.

NetName: A pointerto a null -termin ated UTF -16 string that specifies the name of the share to return
information for.

Level: Specifies the information level of the data. This parameter MUST be one of the following

values.
Value Meaning
0 LPSHARE_INFO_O
1 LPSHARE_INFO _1
2 LPSHARE_INFO_2
501 LPSHARE_INFO_501
502 LPSHARE_INFO_502_|
503 LPSHARE_INFO_503 |
1005 LPSHARE_INFO_1005

117 | 240

[MS -SRVS-Diff] - v20210625

Server Service Remote Protocol

Copyright © 2021 Microsoft Corporati on
Release: June 25, 2021

InfoStruct: This parameter is of type LPSHARE_INFO union, as specified in section 2.2.3.6. Its
contents are determined by the value of the Level parameter, as shown in the preceding table.

Return Values: The method returns 0x00000000 (NERR_Success) to indicate success ; otherwise, it
returns a nonzero error code. The method can take any specific error code value, as specified in
[MS -ERREF] section 2.2. The most common error codes are listed in the following table.

Return value/code Description

0x00000000 The client request succeeded.
NERR_Success

0x00000005 Access is denied.
ERROR_ACCESS_DENIED

0x0000007C The system call level is not correct.
ERROR_INVALID_LEVEL

0x00000057 The client request failed because the specified parameter is invalid.
ERROR_INVALID_PARAMETER

0x00000008 Not enough storage is available to process this command.
ERROR_NOT_ENOUGH_MEMORY

0x0000084B The supplied buffer is too small.
NERR_BufTooSmall

0x00000906 The share name does not exist.
NERR_NetNameNotFound

If ServerName does not match any Transport.ServerName in TransportList with the
SVTI2_SCOPED_NAME bit setin Transport.Flags , the server MUST reset ServerName as "™".

The server MUST remove any preceding " \\" from the parameter ServerName and normalize the
ServerName parameter as specified in section 3.1.6.8, passing in the updated ServerName parameter
as the ServerName, and an empty string as the ShareName.

The NetName parameter specifies the name of the share for which to return informat ion. This MUST
be a nonempty null -terminated UTF - 16 string; otherwise, the server MUST fail the call with an
ERROR_INVALID_PARAMETER error code.

The value of the Level parameter can be 0, 1, 2, 501, 502, 503, or 1005. If the value of the Level
parameter is anything else, the server MUST fail the call with an ERROR_INVALID_LEVEL error code.
The value of the Level parameter determines the format of the InfoStruct parameter.

The server MUST locate a Share from ShareList ,where NetName matches Share.ShareName and
the normalized ServerName matches Share.ServerName . If no share is found, the server MUST fail

the call with NERR_NetNameNotFound error code. If a matching Share is found, the server MUST
query share properties by invoking the underlying server events as specified in [MS -CIFS] section
3.3.4.12 or [MS -SMB] section 3.3.4.7, and [MS -SMB2] section 3.3.4.16, providing the tuple

<normalized server name , NetName > as the input parameter. When the server receives
STATUS_SUCCESS for a share, it MUST consider the received SHARE_INFO_503_| and
SHARE_INFO_1005 structures as valid. The server MUST return information about the shared resource

on the server.

The server MUST use the share invalid SHARE_INFO 503 | and SHARE_INFO_1005 structures from
either CIFS or SMB2 servers and fill the return structures as follows. The server MUST discard the
structures received from other file server except the value of share.shi503_current_uses

118 / 240

[MS -SRVS-Diff] - v20210625

Server Service Remote Protocol

Copyright © 2021 Microsoft Corporati on
Release: June 25, 2021

If the value of the Level parameter is 0, the server MUST return information about the share by filling
the SHARE_INFO_O structure in the Sharelnfo0 member of the InfoStruct parameter.

A shi0_netname MUST be setto share.shi503_netname

If the value of the Level parameter is 1, the server MUST return information about the share Dby filling
the SHARE_INFO_1 structure in the Sharelnfol member of the InfoStruct parameter.

A shil_netname MUST be setto share.shi503_netname
A shil_type MUST be setto share.shi503_type
A shil_remark MUST be setto share.shi503_remark

If the value of the Level parameteri s 2, the server MUST return information about the share by filling
the SHARE_INFO_2 structure in the Sharelnfo2 member of the InfoStruct parameter.

A shi2_netname MUST be setto share.shi503_netname

A shi2_type MUST be setto share.shi503_type

A shi2_remark MUST be setto share.shi503_remark

A shi2_permissions MUST be setto share.shi503_permissions

A shi2_max_uses MUST be setto share.shi503_max_uses

A shi2_current_uses MUST be set to the sum of share.shi503_current_uses values re trieved

from both CIFS and SMB2 servers.
A shi2_path MUST be setto share.shi503_path
A shi2_passwd MUST be setto share.shi503_passwd

If the value of the Level parameter is 501, the server MUST return information about the share by
filling the SHARE_INFO_501 structure in the Sharelnfo501 member of the InfoStruct parameter.

A shi501_netname MUST be setto share.shi503_netname
A shi501_type MUST be setto share.shi50 3_type
A shi501_remark MUST be setto share.shi503_remark

A shi501_flags MUST be setto share.ShareFlags

If the value of the Level parameter is 502, the server MUST return information about the share by

filling the SHARE_INFO_502_1 structure in the Sharelnf 0502 member of the InfoStruct parameter.

A shi502_netname MUST be setto share.shi503_netname

A shi502_type MUST be setto share.shi503_type

A shi502_remark MUST be setto share.shi503_remark

A shi502_permissions MUST be setto share.shi503_permissions

A shi502_max_uses MUST be setto share.shi503_max_uses

A shi502_current_uses MUST be set to the sum of share.shi503_current_uses values retrieved
from both CIFS and SMB2 servers.

A shi502_path MUST be setto share.shi503_path

119 / 240

[MS -SRVS-Diff] - v20210625

Server Service Remote Protocol

Copyright © 2021 Microsoft Corporati on
Release: June 25, 2021

A shi502_p asswd MUST be setto share.shi503_passwd

A shi502_security_descriptor MUST be setto share.shi503_security_descriptor

If the value of the Level parameter is 503, the server MUST return information about the share inthe
SHARE_INFO_503_]I structure by fillin g the SHARE_INFO_503_| structure in the Sharelnfo503

member of the InfoStruct parameter, except that shi503_current_uses MUST be set to the sum of

share.shi503_current_uses values retrieved from both CIFS and SMB2 servers.

The server MUST set the STYPE_CLU STER_FS, STYPE_CLUSTER_SOFS, and STYPE_CLUSTER_DFS bits

of the shi*_type field to zero; the client MUST ignore them on receipt.

If the value of the Level parameter is 1005, the server MUST return information about the share in
the SHARE_INFO_1005 structure directly by filling the SHARE_INFO_1005 structure in the
Sharelnfo1005 member of the InfoStruct parameter.

If both the SMB server and the SMB2 server return an error, the server MUST fail the call with

NERR_NetNameNotFound error code.

The server SHOULD<60 > enforce security measures to verify that the caller has the required

permissions to execute this routine. If the caller does not have the required credentials, the server
SHOULD<61> fail the call.
31411 NetrShareSetinfo (Opnum 17)
The NetrShareSetInfo method sets the parameters of a shared resource in a ShareList
NET_API_STATUS NetrShareSetInfo(
[in, string, unique] SRVSVC_HANDLE ServerName,
[in, string] WCHAR* NetName,
[in] DWORD Level,
[in, switch_is(Level)] LPSHARE_INFO Sharelnfo,
[in, out, unique] DWORD* ParmErr

)

ServerName: An SRVSVC_HANDLE (section 2.2.1.1) pointer that identifies the server. The client
MUST map this structure to an RPC binding handle ([C706] sections 4.3.5 and 5.1.5.2). If this
parameter is NULL, the local computer is used.

NetName: A pointerto a null -ter minated UTF - 16 string that specifies the name of the share to set
information for.

Level: Specifies the information level of the data. This parameter MUST be one of the following
values.

Value Meaning
1 LPSHARE_INFO_1
2 LPSHARE_INFO_2
502 SHARE_INFO_502 _|
503 SHARE_INFO_503_|
1004 LPSHARE_INFO_1004
1005 LPSHARE_INFO_1005
1006 LPSHARE_INFO_1006
120 / 240

[MS -SRVS-Diff] - v20210625

Server Service Remote Protocol

Copyright © 2021 Microsoft Corporati on
Release: June 25, 2021

Value Meaning

1501 LPSHARE_INFO_1501_1

Sharelnfo: This parameter is of type LPSHARE_INFO union, as specified in section 2.2.3.6. Its
contents are determined by the value of the Level parameter, as shown in the preceding table.
This parameter MUST NOT contain a null value. If the Level parameter is equal t 01,2,502, or
503, the client MUST set the STYPE_CLUSTER_FS, STYPE_CLUSTER_SOFS, and
STYPE_CLUSTER_DFS bits in the shi*_type field of the SHARE_INFO union to zero; the server
MUST ignore them on receipt.

ParmErr: A pointer to a value that receives the in dex of the first member of the share information
structure that caused the ERROR_INVALID_PARAMETER error, if it occurs.

Return Values: The method returns 0x00000000 (NERR_Success) to indicate success; otherwise, it
returns a nonzero error code. The method can take any specific error code value, as specified in
[MS -ERREF] section 2.2. The most common error codes are listed in the following table.

Return value/code Description

0x00000000 The client request succeeded.
NERR_Success

0x00000005 Access is denied.
ERROR_ACCESS_DENIED

0x00000057 The client request failed because the specified parameter is invalid.

ERROR INVALID PARAMETER For details, see the description that follows for the ParmErr
- - parameter.

0x00000008 Not enough storage is available to process this command.

ERROR_NOT_ENOUGH_MEMORY

0x00000906 The share name does not exist.
NERR_NetNameNotFound

0x00000032 The server does not support branch cache. <62>
ERROR_NOT_SUPPORTED

0x00000424 The branch cache component does not exist as an installed service.
ERROR_SERVICE_DOES_NOT_EXIST | <63>

0x0000007C The system call level is not correct.
ERROR_INVALID_LEVEL

In response to a NetrShareSetInfo message, the server MUST set the parameters ofa s hared resource
or return an error code.

The NetName parameter specifies the name of the share for which to set information in ShareList
The NetName MUST be a nonempty, null -terminated UTF -16 string; otherwise, the server MUST fail
the call with an ERROR_I NVALID_PARAMETER error code.

The value of the Level parameter can be 1, 2, 502, 503, 1004, 1005, 1006, or 1501. If the value of
the Level parameter is anything else, the server MUST fail the call with an ERROR_INVALID_LEVEL
error code. The value of the Level parameter determines the format of the InfoStruct parameter.

If ServerName does not match any Transport.ServerName in TransportList with the
SVTI2_SCOPED_NAME bit setin Transport.Flags , the server MUST reset ServerName as "*".

121 / 240

[MS -SRVS-Diff] - v20210625

Server Service Remote Protocol

Copyright © 2021 Microsoft Corporati on
Release: June 25, 2021

The server MUST remove an y preceding \\ fromthe ServerName parameter and normalize the
ServerName parameter as specified in section 3.1.6.8, passing in the updated ServerName parameter
as the ServerName, and an empty string as the ShareName.

The server MUST validate all informati on that is provided in the SHARE_INFO structure. If a member
of the SHARE_INFO structure is found to be invalid, the server MUST fail the call with an
ERROR_INVALID_PARAMETER error code. The server does the following validation on the

SHARE_INFO structure:

A If shi*_type has the flag STYPE_SPECIAL, a security descriptor MUST NOT be specified in
shi502_security _descriptor (Level = 502).

A If shi*_remark is specified, its length MUST NOT be greater than 48.

A If Level=502 and a security descriptor is provided, it MUST be a valid security descriptor.
If the ParmErr parameter is not NULL and the server finds a member of the SHARE_INFO structure
to be invalid, the server MUST set ParmErr to a value that denotes the index of the member that was

found to ha ve an invalid value and fail the call with ERROR_INVALID_PARAMETER (0x00000057). The
mapping between the values to set and the corresponding member MUST be as specified in section
2.2.2.11.

The server MUST locate a Share from ShareList , where NetName match es Share.ShareName and
ServerName matches Share.ServerName . If no share is found, the server MUST fail the call with a
NERR_NetNameNotFound error code.

If a matching share is found, the server MUST construct a SHARE_INFO_503 | structure and a
SHARE_INFO_1005 structure from the share, as specified in section 3.1.3.

The server MUST update the members of SHARE_INFO_503 | and SHARE_INFO_1005 structures
based on the Level parameter, as follows:

If the Level parameteris equal to 1, all the settings that are defined by the SHARE_INFO_1 structure
as settable (that is, they are not defined as ignored on receipt or ignored for the NetrShareSetInfo
method) MUST be updated. The share properties MUST be updated as follows:

A SHARE_INFO 503 1. shi503_remark MUST be setto shil_remark

If the Level parameter is equal to 2, all the settings that are defined by the SHARE_INFO_2 structure
as settable (that is, they are not defined as ignored on receipt or ignored for the NetrShareSetInfo
method) MUS T be updated. The share properties MUST be updated as follows:

A SHARE_INFO_503_1.shi503_remark MUST be setto shi2_remark
A SHARE_INFO_503_|.shi503_max_uses MUST be setto shi2_max_uses
Ifthe Level parameter is equal to 502, all the settings that are defin ed by the SHARE_INFO_502_1

structure as settable (that is, they are not defined as ignored on receipt or ignored for the
NetrShareSetinfo method) MUST be updated. The share properties MUST be updated as follows:

A SHARE_INFO_503_1.shi503_remark MUST be sett o shi502_remark
A SHARE_INFO_503_l.shi503_max_uses MUST be setto shi502_max_uses
A SHARE_INFO_503_1.shi503_security_descriptor MUST be set to

shi502_security_descriptor

If the Level parameter is equal to 503, all the settings that are defined by the SHARE _ INFO_503_1I
structure as settable (that is, they are not defined as ignored on receipt or ignored for the
NetrShareSetinfo method) MUST be updated. The share properties MUST be updated as follows:

122 | 240

[MS -SRVS-Diff] - v20210625

Server Service Remote Protocol

Copyright © 2021 Microsoft Corporati on
Release: June 25, 2021

A SHARE_INFO_503_1.shi503_remark MUST be setto shi503_remark
A SHARE_INFO_503_1.shi503_max_uses MUST be setto shi503_max_uses
A SHARE_INFO_503_1.shi503_security_descriptor MUST be set to

shi503_security_descriptor

If the Level parameter is equal to 1004, all the settings that are defined by the SHARE_INFO_1004
struc ture as settable (that is, they are not defined as ignored on receipt or ignored for the
NetrShareSetinfo method) MUST be updated.

A SHARE_INFO_503_1.shi503_remark MUST be setto shil004_remark

If the Level parameter is equal to 1005, all the settings that are defined by the SHARE_INFO_1005
structure as settable (that is, they are not defined as ignored on receipt or ignored for the

NetrShareSetinfo method) MUST be updated. Only disk shares can be affected by this Level . The

share MUST be updated as follows: <64>
A SHARE_INFO_1005.shi1005_flags MUST be setto shil005_flags

Ifthe Level parameter is equal to 1006, all the settings that are defined by the SHARE_INFO_1006
structure as settable (that is, they are not defined as ignored on receipt or ignored for the
NetrShareSetinfo method) MUST be updated. The share properties are updated a s follows:

A SHARE_INFO_503_|.shi503_max_uses MUST be setto shil006_max_uses

Ifthe Level parameter is equal to 1501, all the settings that are defined by the SHARE_INFO_1501_|
structure as settable (that is, they are not defined as ignored on receipt or i gnored for the
NetrShareSetinfo method) MUST be updated. The share properties MUST be updated as follows:

A SHARE_INFO_503_l.shi503_security_descriptor MUST be set to
shi1501_security_descriptor

The server MUST invoke the underlying server events as specifi ed in [MS -CIFS] section 3.3.4.10 or

[MS - SMB] section 3.3.4.6 and [MS -SMB?2] section 3.3.4.14, providing the updated

SHARE_INFO_503 | structure and the updated SHARE_INFO_1005 structure as input

parameters.

If both the SMB and SMB2 servers return an error, the server MUST fail the call with

ERROR_INVALID_DATA.
If only one of the SMB and SMB2 servers returns STATUS_SUCCESS:

A The server MUST construct a new SHARE_INFO_503_| structure and a new
SHARE_INFO_1005 structure from the Share , as specified in sec tion 3.1.3.

A The server MUST revert the updates made to the share on the server that returned

STATUS_SUCCESS by invoking the underlying server event (as specified in [MS - CIFS] section
3.3.4.10, [MS -SMB] section 3.3.4.6, or [MS -SMB2] section 3.3.4.14), provi ding the
SHARE_INFO_503 | structure and the SHARE_INFO_1005 structure as input parameters.

A The server MUST return ERROR_INVALID_ DATA to the caller.

If both the SMB and the SMB2 servers return STATUS_SUCCESS, the server MUST update the Share

as follows and return NERR_Success to the caller:

A Ifthe Level parameter is equal to 1, 2, 502, 503, or 1004, Share.Remark MUST be set to
shi*_remark.

A Ifthe Level parameter is equal to 2, 502, 503, or 1006, Share.MaxUses =~ MUST be set to

shi*_max_uses.

123 | 240

[MS -SRVS-Diff] - v20210625

Server Service Remote Protocol

Copyright © 2021 Microsoft Corporati on
Release: June 25, 2021

A Ifthe Level parame teris equal to 502, 503, or 1501, Share.FileSecurity MUST be set to
shi*_security_descriptor if Level is equal to 502 or 503; otherwise, it MUST be set to NULL.

A Ifthe Level parameter is equal to 1005:

A Share.CscFlags MUST be set to the value of shi1005_fl ags masked by CSC_MASK as
specified in section 2.2.4.29.

A Share.lsDfs MUST be set to TRUE if shi1005_flags contains SHI1005_FLAGS_DFS or
SHI1005_FLAGS_DFS_ROOT as specified in section 2.2.4.29; otherwise, it MUST be set to
FALSE.

A Share.DoAccessBasedDirector yEnumeration MUST be set to TRUE if shi1005_flags
contains SHI1005_FLAGS_ACCESS_BASED_DIRECTORY_ENUM bit as specified in section
2.2.4.29; otherwise it MUST be set to FALSE.

A Share.AllowNamespaceCaching MUST be set to True if shil005_flags contains
SHI1005_ FLAGS_ALLOW_NAMESPACE_CACHING bit as specified in section 2.2.4.29;
otherwise, it MUST be set to FALSE.

A Share.ForceSharedDelete MUST be set to TRUE if shil005_flags contains
SHI1005_FLAGS_FORCE_SHARED_DELETE bit as specified in section 2.2.4.29; otherwise,
MUST be set to FALSE.

A Share.RestrictExclusiveOpens MUST be set to TRUE if shi1005_flags contains
SHI1005_FLAGS_RESTRICT_EXCLUSIVE_OPENS bit as specified in section 2.2.4.29;
otherwise, it MUST be set to FALSE.

A Share.HashEnabled MUST be setto TRUE if s hi1005_flags contains
SHI1005_FLAGS_ENABLE_HASH bit as specified in section 2.2.4.29; otherwise it MUST be set
to FALSE.

A Share.ForcelLevel2Oplock MUST be set to TRUE if shil005_flags contains
SHI1005_FLAGS_FORCE_LEVELII_OPLOCK bit as specified in section 2.2.4.29; otherwise, it
MUST be set to FALSE.

The server SHOULD<65> enforce security measures to verify that the caller has the required
permissio ns to execute this routine. If the caller does not have the required credentials, the server
SHOULD<66> fail the call.

3.14.12 NetrShareDel (Opnum 18)

The NetrShareDel method deletes a share name from the ShareList , which disconnects all
connections to the shared resource. If the share is sticky, all information about the share is also
deleted from permanent storage <67>

NET_API_STATUS NetrShareDel(

[in, string, unique] SRVSVC_HANDLE ServerName,
[in, string] WCHAR* NetName,

[in] DWORD Reserved

)i

ServerName: An SRVSVC_HANDLE (section 2.2.1.1) pointer that identifies the server. The client
MUST map this structur e to an RPC binding handle ([C706] sections 4.3.5 and 5.1.5.2). If this
parameter is NULL, the local computer is used.

NetName: A pointerto a null -terminated UTF - 16 string that specifies the name of the share to delete.

Reserved: The server MUST ignore this parameter.<68>

124 | 240

[MS -SRVS-Diff] - v20210625

Server Service Remote Protocol

Copyright © 2021 Microsoft Corporati on
Release: June 25, 2021

Return Values: The method returns 0x00000000 (NERR_Success) to indicate success; otherwise, it
returns a nonzero error code. The method can take any specific error code value, as specified in
[MS -ERREF] section 2.2. The most comm on error codes are listed in the following table.

Return value/code Description

0x00000000 The client request succeeded.
NERR_Success

0x00000005 Access is denied.
ERROR_ACCESS_DENIED

0x00000057 The client request failed because the specified parameter is invalid.
ERROR_INVALID_PARAMETER

0x00000008 Not enough storage is available to process this command.
ERROR_NOT_ENOUGH_MEMORY

0x00000906 The share name does not exist.
NERR_NetNameNotFound

If ServerName does not match any Transport.ServerName in TransportList with the
SVTI2_SCOPED_NAME bit setin Transport.Flags , the server MUST reset ServerName as "™".

The server MUST remove any preceding " \\"from the ServerName parameter and normalize the
ServerName parameter as specified in section 3.1.6.8, passing in the updated ServerName parameter
as the ServerName, and an empty string as the ShareName.

The server MUST look up the ShareList andlocate a Share where NetName matches
Share.ShareName and ServerName matches Share.ServerName . If no match is found, the server
MUST fail the call with a NERR_NetNameNotFound error code. If a matching share is found, the server
MUST remove the share from ShareList and free the share object.

If the Share is found and Share.IsPrinterShare is TRUE, PrinterShareCount MUST be decreased by
1. If PrinterShareCount becomes 0, the server MUST invoke the events as specified in section
3.1.6.10, providing SV_TYPE_PRINTQ_SERVER as input parameter.

The server MUST delete the Share by invoking underlying server event as specified in [MS -CIFS]
section 3.3.4.11 and [MS -SMB2] section 3.3.4.15, providing tuple < ServerName , NetName > as input
parameters. If either CIFS or SMB2 servers return STATUS_SUCCESS, the server MUST return

NERR_Success. Otherwise, the server MU ST fail the call with an implementation -dependent error.

The server SHOULD<69> enforce security measures to verify that the caller has the required
permissions to execute this routine. If the caller does not have the required credentials, the server
SHOULD <70> fail the call.

3.14.13 NetrShareDelSticky (Opnum 19)

The NetrShareDelSticky method marks the share as nonpersistent by clearing the IsPersistent
member of a Share in the ShareList

NET_API_STATUS NetrShareDelSticky(

[in, string, unique] SRVSVC_HANDLE ServerName,
[in, string] WCHAR* NetName,

[in] DWORD Reserved

)

125 | 240

[MS -SRVS-Diff] - v20210625

Server Service Remote Protocol

Copyright © 2021 Microsoft Corporati on
Release: June 25, 2021

ServerName: An SRVSVC_HANDLE (section 2.2.1.1) pointer that identifies the server. The client
MUST map this structure to an RPC binding handle ([C706] sections 4.3.5 and 5.1.5.2). If this
parameter is NULL, the local computer is used.

NetName: A pointerto a null -terminated UTF - 16 string that specifies the name of the share to delete.
Reserved: The server MUST ignore this parameter.<71>

Return Values: The method returns 0x00000000 (NERR_Success) to indicate success; otherwise, it
returns a nonzero error cod e. The method can take any specific error code value, as specified in
[MS -ERREF] section 2.2.

The primary use of this method is to delete a sticky share whose root directory has been deleted (thus
preventing actual re -creation of the share) but whose entr y still exists in permanent storage.<72>
This method can also be used to remove the persistence of a share without deleting the current
incarnation of the share.

If ServerName does not match any Transport.ServerName in TransportList with the
SVTI2_SCOPED_N AME bit setin Transport.Flags , the server MUST reset ServerName as "*".

The server MUST remove any preceding " \\"from the ServerName parameter and normalize the
ServerName parameter as specified in section 3.1.6.8, passing in the updated ServerName parameter
as the ServerName, and an empty string as the ShareName.

The NetName parameter specifies the name of the share to delete. This MUST be a nonempty, null -
terminated UTF - 16 string; otherwise, the server MUST fail the call with an
ERROR_INVALID_PARA METER error code.

The server MUST search through ShareList andlocate a Share where Share.ShareName matches

NetName , Share.ServerName matches ServerName , and Share.lsPersistent is TRUE. If a match
is not found, the server MUST fail the call with an NERR_N etNameNotFound error code.
If a match is found, the server MUST make the share nonpersistent by setting Share.IsPersistent to

FALSE and the server MUST delete the share entry from permanent storage.

The server SHOULD<73> enforce security measures to verify that the caller has the required
permissions to execute this routine. If the caller does not have the required credentials, the server
SHOULD<74> fail the call.

3.1.4.14 NetrShareDelStart (Opnum 37)

The NetrShareDelStart method performs the initial phase of a two -phase share delete.

NET_API_STATUS NetrShareDelStart(
[in, string, unique] SRVSVC_ HANDLE ServerName,
[in, string] WCHAR* NetName,
[in] DWORD Reserved,
[out] PSHARE_DEL_HANDLE ContextHandle
)

ServerName: An SRVSVC_HANDLE (section 2.2.1.1) pointer that identifies the server. The client
MUST map this structure to an RPC binding hand le (see [C706] sections 4.3.5 and 5.1.5.2). If this
parameter is NULL, the local computer is used.

NetName: A pointerto a null -terminated UTF -16 string that specifies the name of the share to delete.

Reserved: Reserved; SHOULD be set to zero when sent and MUST be ignored on receipt.

126 / 240

[MS -SRVS-Diff] - v20210625

Server Service Remote Protocol

Copyright © 2021 Microsoft Corporati on
Release: June 25, 2021

ContextHandle: A handle for the second phase of the two -phase share delete, in the form of a
PSHARE_DEL_HANDLE (section 2.2.1.3) data type.

Return Values: The method returns 0x00000000 (NERR_Success) to indicate success; otherw ise, it
returns a nonzero error code. The method can take any specific error code value, as specified in
[MS -ERREF] section 2.2.

In response to a NetrShareDelStart request, the server MUST mark a share for deletion and return to
the client an RPC context handle that the client can use to actually perform the deletion by calling the
NetrShareDelCommit method.

This two -phase deletion MUST be used to delete IPC$, which is the share that is used for named pipes.
Deleting IPC$ results in the closing of the pipe on which the RPC is being executed. Thus, the client
never receives the response to the RPC. The two -phase delete offers a positive response in phase 1
and then an expected error in phase 2.

If ServerName does not match any Transport.ServerName in Transpo rtList with the
SVTI2_SCOPED_NAME bit setin Transport.Flags , the server MUST reset ~ ServerName as "*".

The server MUST remove any preceding " \\"fromthe ServerName parameter and normalize the
ServerName parameter as specified in section 3.1.6.8, passing in the updated ServerName parameter
as the ServerName, and an empty string as the ShareName.

The server MUST search through ShareList andlocate a Share where Share.ShareName matches
NetName and Share.ServerName matches ServerName . If a match is not found, the server MUST
fail the call with an NERR_NetNameNotFound error code.

If a match is found, the server MUST mark the share for deletion by setting the
IsMarkedForDeletion member of the Share ele mentin ShareList . The share MUST remain available
until the client calls the NetrShareDelCommit method.

The server MUST return a handle to the share being deleted in the ContextHandle parameter. The
client is expected to use the handle to actually delete the share by calling the NetrShareDelCommit
method.

The server SHOULD<75> enforce security measures to verify that the caller has the required
permissions to execute this routine. If the caller does not have the required credentials, the server
SHOULD<76> fail the call.

3.1.4.15 NetrShareDelCommit (Opnum 38)

The NetrShareDelCommit method perfo rms the final phase of a two -phase share delete.

NET_API_STATUS NetrShareDelCommit(
[in, out] PSHARE_DEL_HANDLE ContextHandle

ContextHandle: A handle returned by the first phase of a two -phase share delete.

Return Values: The method returns 0x00000000 (NERR_Success) to indicate success. Otherwise, the
method returns a nonzero error code unless the share being deleted is IPC$. If the share being
deleted is IPC$, the return value is not meaningful. The method can take any specific error code
value, as sp ecified in [MS -ERREF] section 2.2.

The NetrShareDelCommit message is the continuation of the NetrShareDelStart message and MUST
cause the share to be actually deleted, which disconnects all connections to the share, or MUST return
an error code.

127 | 240

[MS -SRVS-Diff] - v20210625

Server Service Remote Protocol

Copyright © 2021 Microsoft Corporati on
Release: June 25, 2021

This metho d can be used to delete the IPC$ share as well as other shares. When the share is not
IPCS$, only a return value of 0 indicates success.

This two -phase deletion MUST be used to delete IPC$, which is the share that is used for named pipes.
Deleting IPC$ resu Its in the closing of the pipe on which the RPC is being executed. Thus, the client
never receives the response to the RPC. The two -phase delete offers a positive response in phase 1
and then an expected error in phase 2.

ContextHandle MUST reference the s hare to be deleted in the NetrShareDelStart method. If a share
is not found, the server MUST fail the call with an ERROR_INVALID_PARAMETER error code.

If a share is found, but the IsMarkedForDeletion member of the Share is not set, the server MUST
fail the call with an ERROR_INVALID_PARAMETER error code.

Otherwise, the server MUST delete the share by invoking the underlying server event, as specified in
[MS -CIFS] section 3.3.4.11and [MS -SMB2] section 3.3.4.15, providing tuple < ServerName ,
NetName > as input parameters.

The server does not enforce any security measures when processing this call.

3.14.16 NetrShareCheck (Opnum 20)

The NetrShareCheck method checks whether a server is sharing a device.

NET_API_STATUS NetrShareCheck(

[in, string, unique] SRVSVC_HANDLE ServerName,
[in, string] WCHAR* Device,

[out] DWORD* Type

)i

ServerName: An SRVSVC_HANDLE (section 2.2.1.1) pointer that identifies the server. The client
MUST map this structure to an RPC binding handle (see [C706] sections 4.3.5 and 5.1.5.2). The
server MUST ignore this parameter.

Device: A pointertoanull -terminated UTF -16 st ring that specifies the name of the device to check for
shared access.

Type: A pointer to a DWORD that receives the type of the shared device. This parameter is set only if
the method returns successfully. On success, the server MUST set this parameter as specified in
section 2.2.2.4, except that STYPE_SPECIAL is not returned.

Return Values: The method returns 0x00000000 (NERR_Success) to indicate success; otherwise, it
returns a nonzero error code. The method can take any specific error code v alue, as specified in
[MS - ERREF] section 2.2. The most common error codes are listed in the following table.

Return value/code Description

0x00000000 The client request succeeded.
NERR_Success

0x00000008 Not enough storage is avai lable to process this command.
ERROR_NOT_ENOUGH_MEMORY

0x00000907 The device is not shared.
NERR_DeviceNotShared

In response to a NetrShareCheck request, the server MUST scan through the ShareList . For each
share, if Share.LocalPath , as specified in [MS -SMBZ2] section 3.3.1.6 or [MS -CIFS] section 3.3.1.2,

128 / 240

[MS -SRVS-Diff] - v20210625

Server Service Remote Protocol

Copyright © 2021 Microsoft Corporati on
Release: June 25, 2021

points to the device or volume specified by the caller, the server MUST return the type of the

matching device in the Type parameter. The type can be one of the values that are liste d in Share
Types (section 2.2.2.4). In response to a NetrShareCheck message, the server MUST check whether it

is sharing a device and return a response to the client.

The Device parameter specifies the name of the shared device to check for. The server MUS T
enumerate the active shared devices, and if it finds a match to the Device parameter, the server
MUST return the type of the matching device in the Type parameter. The type can be one of the
values that are listed in Share Types. The server MUST set the STYPE_CLUSTER_FS,
STYPE_CLUSTER_SOFS, and STYPE_CLUSTER_DFS hits ofthe = Type parameter to zero; the client
MUST ignore them on receipt.

If no match is found, the server MUST fail the call by using an NERR_DeviceNotShared error code.

The server does not enf orce any security measures when it processes this call.

3.1.4.17 NetrServerGetinfo (Opnum 21)

The NetrServerGetinfo method retrieves current configuration information for CIFS and SMB Version
1.0 servers.

NET_API_STATUS NetrServerGetinfo(

[in, string, unique] SRVSVC_HANDLE ServerName,
[in] DWORD Level,

[out, switch_is(Level)] LPSERVER_INFO InfoStruct

);

ServerName: An SRVSVC_HANDLE (section 2.2.1.1) pointer that identifies the server. The client
MUST map this structure to an RPC binding handle (see [C706] sections 4.3.5 and 5.1.5.2).

Level: Specifies the information level of the data. The va lue of the Level parameter determines the
contents of the InfoStruct parameter. This parameter MUST be one of the following values.

Value Meaning

100 LPSERVER_INFO_100
101 LPSERVER_INFO_101
102 LPSERVER_INFO_102
103 LPSERVER_INFO_103
502 LPSERVER_INFO_502
503 LPSERVER_INFO_503

InfoStruct: This is a structure of type LPSERVER_INFO, as specified in section 2.2.3.7. The content of
the InfoStruct parameter is determined by the Level parameter, as the preceding table shows.

Return Values: The method returns 0x00000000 (NERR_Success) to indicate success; otherwise, it
returns a nonzero error code. The method can take any specific error code value, as specified in
[MS -ERREF] section 2.2. The most common error codes are listed in the following ta ble.

Return value/code Description

0x00000000 The client request succeeded.
NERR_Success

129 /| 240

[MS -SRVS-Diff] - v20210625

Server Service Remote Protocol

Copyright © 2021 Microsoft Corporati on
Release: June 25, 2021

Return value/code Description

0x00000005 Access is denied.
ERROR_ACCESS_DENIED

0x0000007C The system call level is not correct.
ERROR_INVALID_LEVEL

0x00000057 The client request failed because the specified parameter is invalid.
ERROR_INVALID_PARAMETER

0x00000008 Not enough storage is available to process this command.
ERROR_NOT_ENOUGH_MEMORY

In response to the NetrServerGetinfo request, the server MUST return configuration information from
the ServerConfiguration object based on the value of the Level parameter.

The value of the Level parameter can be 100, 101, 102, 502, or 503. If the Level parameter has any
other value, the server MUST fail the call with an ERROR_INVALID_LEVEL error code.<77>

The value of the Level parameter determines the format of the InfoStruct parameter.

If the value of the Level parameter is 100, the server MUST return i ts information by filling the
SERVER_INFO_100 structure in the Serverinfo100 member of the InfoStruct parameter.

A sv100_platform_id MUST be set to ServerConfiguration.Serverinfo103.sv103_platform_id

A Ifthe ServerName parameteris NULL, sv100_name MUST be set to
ServerConfiguration.Serverinfo103.sv103_name . Otherwise, sv100_name MUST be set to
the value of ServerName

If the value of the Level parameter is 101, the server MUST return its information by filling the
SERVER_INFO_101 structure in the Serverinfol101 member of the InfoStruct parameter.

A sv101_platform_id MUST be set to ServerConfiguration.Serverinfo103.sv103_platform_id

A Ifthe ServerName parameter is NULL, sv101_name MUST be set to
ServerConfiguration.Serverin f0103.sv103_name. Otherwise, svl01_name MUST be set to the
value of ServerName .

A sv101_sv101_version_major MUST be set to
ServerConfiguration.Serverinfo103.sv103_version_major

A sv101_version_minor MUST be set to

ServerConfiguration.Serverinfo103.sv103_versi on_minor
A sv101_type MUST be setto GlobalServerAnnounce
A svl101l_comment MUST be setto ServerConfiguration.Serverinfo103.sv103_comment

If the value of the Level parameter is 102, the server MUST return its information by filling the
SERVER_INFO_102 struct ure in the ServerInfol02 member of the InfoStruct parameter.

A sv102_platform_id MUST be set to
ServerConfiguration.Serverinfo103.sv103_platform_id

A Ifthe ServerName parameteris NULL, sv102_name MUST be set to
ServerConfiguration.Serverinfo103.sv103_name . Otherwise, sv102_name MUST be set to
the value of ServerName .

130 / 240

[MS -SRVS-Diff] - v20210625

Server Service Remote Protocol

Copyright © 2021 Microsoft Corporati on
Release: June 25, 2021

A sv102_ version_major MUST be set to
ServerConfiguration.Serverinfo103.sv103_version_major

A sv102_version_minor MUST be set to
ServerConfiguration.ServerIinfo103.sv103_version_minor

sv102_type MUST be setto GlobalServerAnnounce
sv102_comment MUST be setto ServerConfiguration.Serverinfo103.sv103_comment
sv102_users MUST be setto ServerConfiguration.Serverinfo103.sv103_users

sv102_disc MUST be setto ServerConfiguration.Serverinfo103.sv103_disc

> > > > >

sv102_hidden MUST be setto ServerConfiguration.Serverinfo103.sv103_hidden
A sv102_anndelta MUST be setto ServerConfiguration.Serverinfo103.sv103_anndelta
A sv102_licenses MUST be set to 0.

If the value of the Level parameter is 103, the server MUST return server information in

ServerConfiguration.Serverinfo103 directly by filling the SERVER_INFO_103 structure in the
Serverinfol03 member of the InfoStruct parameter and setting sv103_type to
GlobalServerAnnounce < 78>

If the value of the Level parameter is 502, the server MUST return its information by filling the

SERVER_INFO_502 structure in the Serverinfo502 member of the InfoStruct parameter.
A sv502_sessopens MUST be setto ServerConfiguration.Serverinfo599.sv599 sessopens
A sv502_sessvcs MUST be setto ServerConfiguration.Serverinfo599.sv599 sessvcs
A sv502_opensearch MUST be set to
ServerConfiguration.Serverinfo599.sv599_opensearch
A sv502_sizregbuf MUST be setto ServerConfiguration.Serverinfo599.sv599_sizregbuf
A sv502_initworkitems MUST be set to
ServerConfiguration.Serverinfo599.sv599_initworkitems
A sv502_maxworkitems MUST be set to
ServerConfiguration.Serverinfo599.sv599_maxworkitems
A sv502_rawworkitems MUST be set to ServerConfiguration.Serverinfo599.sv599_rawwo rkitems.
A sv502_irpstacksize MUST be set to
ServerConfiguration.Serverinfo599.sv599_irpstacksize
A sv502_maxrawbuflen MUST be set to ServerConfiguration.Serverinfo599.sv599_maxrawbuflen.
A sv502_sessusers MUST be setto ServerConfiguration.Serverinfo599.sv599 sessusers
A sv502_sessconns MUST be setto ServerConfiguration.Serverinfo599.sv599 sessconns
A sv502_maxpagedmemoryusage MUST be set to
ServerConfiguration.Serverinfo599.sv599_maxpagedmemoryusage
A sv502_maxnonpagedmemoryusage MUST be set to
ServerConfiguration.Serverinfo599.sv599 _maxnonpagedmemoryusage
A sv502_enablesoftcompat MUST be set to

ServerConfiguration.Serverinfo599.sv599_enablesoftcompat

131 / 240

[MS -SRVS-Diff] - v20210625

Server Service Remote Protocol

Copyright © 2021 Microsoft Corporati on
Release: June 25, 2021

A sv502_enableforcedlogoff MUST be set to

ServerConfiguration.Serverinfo599.sv599_enableforcedlogo ff .

A sv502_timesource MUST be setto ServerConfiguration.Serverinfo599.sv599_timesource

A sv502_acceptdownlevelapis MUST be set to
ServerConfiguration.Serverinfo599.sv599_acceptdownlevelapis

A sv502_Imannounce MUST be setto ServerConfiguration.Serverinfo599. sv599
Imannounce

If the value of the Level parameter is 503, the server MUST return its information by filling the
SERVER_INFO_503 structure in the Serverinfo503 member of the InfoStruct parameter.

A sv503_sessopens MUST be setto ServerConfiguration.Serve rinfo599.sv599_sessopens

A sv503_sessvcs MUST be setto ServerConfiguration.Serverinfo599.sv599_sessvcs

A sv503_opensearch MUST be set to
ServerConfiguration.Serverinfo599.sv599_opensearch

A sv503_sizregbuf MUST be setto ServerConfiguration.Serverinfo599.sv599_sizregbuf

A sv503_initworkitems MUST be set to
ServerConfiguration.Serverinfo599.sv599 _initworkitems

A sv503_maxworkitems MUST be set to
ServerConfiguration.ServerIinfo599.sv599 maxworkitems

A sv503_rawworkitems MUST be setto
ServerConfiguration.Serverinfo599.sv599_rawworkitems

A sv503_irpstacksize MUST be set to
ServerConfiguration.ServerIinfo599.sv599 _irpstacksize

A sv503_maxrawbuflen MUST be set to
ServerConfiguration.Serverinfo599.sv599_maxrawbuflen

A sv503_sessusers MUST be setto ServerConfiguration.Serverinfo599.sv599 sessusers

A sv503_sessconns MUST be setto ServerConfiguration.Serverinfo599.sv599 sessconns

A sv503_maxpagedmemoryusage MUST be set to
ServerConfiguration.Serverinfo599.sv599_maxpagedmemoryusage

A sv503_maxnonpagedmemoryusage MUST be set to
ServerConfiguration.Serverinfo599.sv599 _maxnonpagedmemoryusage

A sv503_enablesoftcompat MUST be set to
ServerConfiguration.Serverinfo599.sv599_enablesof tcompat

A sv503_enableforcedlogoff MUST be set to
ServerConfiguration.Serverinfo599.sv599_enableforcedlogoff

A sv503_timesource MUST be setto ServerConfiguration.Serverinfo599.sv599 timesource

A sv503_acceptdownlevelapis MUST be set to
ServerConfiguration.Se rverinfo599.sv599_acceptdownlevelapis

A sv503_Imannounce MUST be set to

ServerConfiguration.Serverinfo599.sv599 Imannounce

132 / 240

[MS -SRVS-Diff] - v20210625

Server Service Remote Protocol

Copyright © 2021 Microsoft Corporati on
Release: June 25, 2021

A sv503_domain MUST be setto ServerConfiguration.Serverinfo599.sv599 domain

A sv503_maxcopyreadlen MUST be set to
ServerConfiguration.S erverinfo599.sv599 maxcopyreadlen

A sv503_maxcopywritelen MUST be set to
ServerConfiguration.Serverinfo599.sv599 _maxcopywritelen

A sv503_minkeepsearch MUST be set to
ServerConfiguration.Serverinfo599.sv599 _minkeepsearch

A sv503_maxkeepsearch MUST be set to
ServerConfiguration.Serverinfo599.sv599 _maxkeepsearch

A sv503_minkeepcomplsearch MUST be set to
ServerConfiguration.Serverinfo599.sv599 _minkeepcomplsearch

A sv503_maxkeepcomplsearch MUST be set to
ServerConfiguration.ServerIinfo599.sv599 maxkeepcomplsearch.

A sv5 03_threadcountadd MUST be set to
ServerConfiguration.Serverinfo599.sv599_threadcountadd

A sv503_numblockthreads MUST be set to
ServerConfiguration.ServerIinfo599.sv599 _numblockthreads

A sv503_scavtimeout MUST be set to
ServerConfiguration.Serverinfo599.sv599 scavtimeout

A sv503_minrcvqueue MUST be set to

ServerConfiguration.Serverinfo599.sv599_minrcvqueue

A sv503_minfreeworkitems MUST be set to
ServerConfiguration.Serverinfo599.sv599_minfreeworkitems

A sv503_xactmemsize MUST be set to
ServerConfiguration.Serverinfo599.sv599_xactmemsize

A sv503_threadpriority MUST be set to
ServerConfiguration.Serverinfo599.sv599_threadpriority

A sv503_maxmpxct MUST be setto ServerConfiguration.Serverinfo599.sv599 _maxmpxct

A sv503_oplockbreakwait MUST be set to
ServerConfiguration.Serverinfo599.sv599_oplockbreakwait.

A sv503_oplockbreakresponsewait MUST be set to

ServerConfiguration.Serverinfo599.sv599_oplockbreakresponsewait

A sv503_enableoplocks MUST be set to
ServerConfiguration.Serverinfo599.sv599_enableoplocks

A sv503_enableoplockforceclose MUST be set to
ServerConfiguration.Serverinfo599.sv599_enableoplockforceclose

A sv503_enablefcbopens MUST be set to
ServerConfiguration.Serv erInfo599.sv599_enablefcbopens.
A sv503_enableraw MUST be setto ServerConfiguration.Serverinfo599.sv599 enableraw

133 / 240

[MS -SRVS-Diff] - v20210625

Server Service Remote Protocol

Copyright © 2021 Microsoft Corporati on
Release: June 25, 2021

A sv503_enablesharednetdrives MUST be set to
ServerConfiguration.Serverinfo599.sv599_enablesharednetdrives

A sv503_minfreeconnections MUST be set to
ServerConfiguration.Serverinfo599.sv599_minfreeconnections

A sv503_maxfreeconnections MUST be set to
ServerConfiguration.Serverinfo599.sv599_maxfreeconnections

The server SHOULD<79> enforce security measures to verify that the caller has the required
permissions to execute this routine. If the caller does not have the required credentials, the server
SHOULD<80> fail the call.

The ServerName parameter MUST be either NULL or a null -terminated string, as described in section
2.2.1.1. Ifitis non -NULL, the length of the string MUST be less than 1,024 or the server MUST fail the
call with ERROR_INVALID_PARAMETER.

3.1.4.18 NetrServerSetinfo (Opnum 22)

The NetrServerSetinfo method sets server operating parameters for CIFS and SMB Version 1.0 file
servers; it can set them individually or collectively. The information is stored in a way that allows it t o]
remain in effect after the system is reinitialized.<81>

NET_API_STATUS NetrServerSetinfo(

[in, string, unique] SRVSVC_HANDLE ServerName,
[in] DWORD Level,

[in, switch_is(Level)] LPSERVER_INFO Serverinfo,
[in, out, unique] DWORD* ParmErr

)

Server Name: An SRVSVC_HANDLE (section 2.2.1.1) pointer that identifies the server. The client
MUST map this structure to an RPC binding handle (see [C706] sections 4.3.5 and 5.1.5.2). The
server MUST ignore this parameter.

Level: Specifies the information level of the data. The value of the Level parameter determines the
contents of the Serverinfo parameter. This parameter MUST be one of the values in the following
table. The NetrServerSetinfo method does not support a Level value of 103.I1fa Level value of

103 is specified, the server MUST return ERROR_INVALID_LEVEL.

Value Meaning

101 LPSERVER_INFO_101
102 LPSERVER_INFO_102
502 LPSERVER_INFO_502
503 LPSERVER_INFO_503
599 LPSERVER_INFO_599

1005 LPSERVER_INFO_1005

1107 LPSERVER_INFO_1107

1010 LPSERVER_INFO_1010

1016 LPSERVER_INFO_1016

1017 LPSERVER_INFO_1017

134 | 240

[MS -SRVS-Diff] - v20210625

Server Service Remote Protocol

Copyright © 2021 Microsoft Corporati on
Release: June 25, 2021

Value

Meaning

1018 LPSERVER_INFO_1018
1501 LPSERVER_INFO_1501
1502 LPSERVER_INFO_1502
1503 LPSERVER_INFO_1503
1506 LPSERVER_INFO_1506
1510 LPSERVER_INFO_1510
1511 LPSERVER_INFO_1511
1512 LPSERVER_INFO_1512
1513 LPSERVER_INFO_1513
1514 LPSERVER_INFO_1514
1515 LPSERVER_INFO_1515
1516 LPSERVER_INFO_1516
1518 LPSERVER_INFO_1518
1523 LPSERVER_INFO_1523
1528 LPSERVER_INFO_1528
1529 LPSERVER_INFO_1529
1530 LPSERVER_INFO_1530
1533 LPSERVER_INFO_1533
1534 LPSERVER_INFO_1534
1535 LPSERVER_INFO_1535
1536 LPSERVER_INFO_1536
1538 LPSERVER_INFO_1538
1539 LPSERVER_INFO_1539
1540 LPSERVER_INFO_1540
1541 LPSERVER_INFO_1541
1542 LPSERVER_INFO_1542
1543 LPSERVER_INFO_1543
1544 LPSERVER_INFO_1544
1545 LPSERVER_INFO_1545
1546 LPSERVER_INFO_1546
1547 LPSERVER_INFO_1547
1548 LPSERVER_INFO_1548

[MS -SRVS-Diff] - v20210625
Server Service Remote Protocol
Copyright © 2021 Microsoft Corporati
Release: June 25, 2021

on

135 / 240

Value Meaning

1549 LPSERVER_INFO_1549

1550 LPSERVER_INFO_1550

1552 LPSERVER_INFO_1552

1553 LPSERVER_INFO_1553

1554 LPSERVER_INFO_1554

1555 LPSERVER_INFO_1555

1556 LPSERVER_INFO_1556

Serverlinfo: This is a structure of type LPSERVER_INFO, as specified in section 2.2.3.7. The content
of the Serverinfo parameter is determined by the Level parameter, as the preceding table shows.

ParmErr: A pointer to a value that receives the index of the first memb er of the server information
structure that caused an ERROR_INVALID_PARAMETER error code, if it occurs.

Return Values: The method returns 0x00000000 (NERR_Success) to indicate success; otherwise, it
returns a nonzero error code. The method can take any spe cific error code value, as specified in
[MS -ERREF] section 2.2. The most common error codes are listed in the following table.

Return value/code Description

0x00000000 The client request succeeded.
NERR_Success

0x00000005 Access is denied.
ERROR_ACCESS_DENIED

0x0000007C The system call level is not correct.
ERROR_INVALID_LEVEL

0x00000057 The client request failed because the specified parameter is invalid. For
ERROR INVALID PARAMETER details see the description that follo ws for the ParmErr parameter.
0x00000008 Not enough storage is available to process this command.

ERROR_NOT_ENOUGH_MEMORY

In response to a NetrServerSetinfo request, the server MUST update the ServerConfiguration object
based on the caller -supplied values and the Level . The server can set its operating parameters
individually or collectively. The information is stored in a wa y that allows it to remain in effect after
the system is reinitialized.

The value of the Level parameter can be 101, 102, 502, 503, 599, 1005, 1107, 1010, 1016, 1017,

1018, 1501, 1502, 1503, 1506, 1510, 1511, 1512, 1513, 1514, 1515, 1516, 1518, 1523, 1528, 1529,
1530, 1533, 1534, 1535, 1536, 1538, 1539, 1540, 1541, 1542, 1543, 1544, 1545, 1546, 1547, 1548,

1549, 1550, 1552, 1553, 1554, 1555, and 1556.

As previously stated, a Level value of 103 is not supported by the NetrServerSetinfo method. If the
Level parameter has any other value, the server MUST fail the call with an ERROR_INVALID_LEVEL
error code.

After receiving the NetrServerSetinfo method, the server MUST update the server setting that
corresponds to the Serverinfo parameter. The format for the Serverinfo parameter is as specified in
SERVER_INFO (section 2.2.3.7).

136 / 240

[MS -SRVS-Diff] - v20210625

Server Service Remote Protocol

Copyright © 2021 Microsoft Corporati on
Release: June 25, 2021

If the Level parameter is equal to 101, the server MUST update all the settings in
ServerConfiguration.Serverinfo103 that are defined by the SERVER_INFO_101 structure as
settable (that is, they are not defined as ignored on receipt or ignored for the NetrServerSetinfo
method).

If the Level parameter is equal to 102, the server MUST update all the settings in

ServerConfi guration.Serverinfo103 that are defined by the SERVER_INFO_102 structure as
settable (that is, they are not defined as ignored on receipt or ignored for the NetrServerSetinfo
method).

Ifthe Level parameter is equal to 502, the server MUST update all the s ettings in
ServerConfiguration.ServerInfo599 that are defined by the SERVER_INFO_502 structure as
settable (that is, they are not defined as ignored on receipt or ignored for the NetrServerSetinfo
method).

Ifthe Level parameter is equal to 503, the server MUST update all the settings in
ServerConfiguration.Serverinfo599 that are defined by the SERVER_INFO_503 structure as
settable (that is, they are not defined as ignored on receipt or ignored for the NetrServerSetinfo
method).

Ifthe Level parameteris eq ualto 599, the server MUST update all the settings in
ServerConfiguration.Serverinfo599 that are defined by the SERVER_INFO_599 structure as
settable (that is, they are not defined as ignored on receipt or ignored for the NetrServerSetinfo
method).

Ifthe Level parameter is equal to 1005, the server MUST update all the settings in
ServerConfiguration that are defined by the SERVER_INFO_1005 structure as settable (that is, they
are not defined as ignored on receipt or ignored for the NetrServerSetinfo metho d).

Ifthe Level parameter is equal to 1107, the server MUST update all the settings in

ServerConfiguration.Serverinfo103 that are defined by the SERVER_INFO_1107 structure as
settable (that is, they are not defined as ignored on receipt or ignored for the NetrServerSetinfo
method).

If the Level parameter is equal to 1016, the server MUST update all the settings in
ServerConfiguration.Serverinfo103 that are defined by the SERVER_INFO_1016 structure as
settable (that is, they are not defined as ignored on re ceipt or ignored for the NetrServerSetinfo
method).

If the Level parameter is equal to 1017, the server MUST update all the settings in
ServerConfiguration.Serverinfo103 that are defined by the SERVER_INFO_1017 structure as
settable (that is, they are not defined as ignored on receipt or ignored for the NetrServerSetinfo
method).

Ifthe Level parameter is equal to 1018, the server MUST update all the settings in
ServerConfiguration.Serverinfo103 that are defined by the SERVER_INFO_1018 structure as
settable (thatis, they are not defined as ignored on receipt or ignored for the NetrServerSetinfo
method).

If the Level parameter is equal to 1501, the server MUST update all the settings in
ServerConfiguration.Serverinfo599 that are defined by the SERVER_INFO_15 01 structure as
settable (that is, they are not defined as ignored on receipt or ignored for the NetrServerSetinfo

method).

If the Level parameter is equal to 1502, the server MUST update all the settings in
ServerConfiguration.Serverinfo599 that are defin ed by the SERVER_INFO_1502 structure as
settable (that is, they are not defined as ignored on receipt or ignored for the NetrServerSetinfo

method).

137 | 240

[MS -SRVS-Diff] - v20210625

Server Service Remote Protocol

Copyright © 2021 Microsoft Corporati on
Release: June 25, 2021

If the Level parameter is equal to 1503, the server MUST update all the settings in
ServerConfiguration.Serv erinfo599 that are defined by the SERVER_INFO_1503 structure as
settable (that is, they are not defined as ignored on receipt or ignored for the NetrServerSetinfo
method).

If the Level parameter is equal to 1506, the server MUST update all the settings in
ServerConfiguration.Serverinfo599 that are defined by the SERVER_INFO_1506 structure as
settable (that is, they are not defined as ignored on receipt or ignored for the NetrServerSetinfo
method).

If the Level parameter is equal to 1510, the server MUST upd ate all the settings in
ServerConfiguration.ServerInfo599 that are defined by the SERVER_INFO_1510 structure as
settable (that is, they are not defined as ignored on receipt or ignored for the NetrServerSetinfo
method).

If the Level parameterisequaltol 511, the server MUST update all the settings in
ServerConfiguration.Serverinfo599 that are defined by the SERVER_INFO_1511 structure as
settable (that is, they are not defined as ignored on receipt or ignored for the NetrServerSetinfo
method).

Ifthe Level parameter is equal to 1512, the server MUST update all the settings in
ServerConfiguration.Serverinfo599 that are defined by the SERVER_INFO_1512 structure as
settable (that is, they are not defined as ignored on receipt or ignored for the NetrServerSetinfo
method).

Ifthe Level parameter is equal to 1513, the server MUST update all the settings in
ServerCon figuration.Serverinfo599 that are defined by the SERVER_INFO_1513 structure as settable
(that is, they are not defined as ignored on receipt or ignored for the NetrServerSetinfo method).

Ifthe Level parameter is equal to 1514, the server MUST update all t he settings in
ServerConfiguration.Serverinfo599 that are defined by the SERVER_INFO_1514 structure as
settable (that is, they are not defined as ignored on receipt or ignored for the NetrServerSetinfo
method).

If the Level parameter is equal to 1515, the server MUST update all the settings in
ServerConfiguration.Serverinfo599 that are defined by the SERVER_INFO_1515 structure as
settable (that is, they are not defined as ignored on receipt or ignored for the NetrServerSetinfo
method).

If the Level paramete ris equal to 1516, the server MUST update all the settings in
ServerConfiguration.Serverinfo599 that are defined by the SERVER_INFO_1516 structure as
settable (that is, they are not defined as ignored on receipt or ignored for the NetrServerSetinfo

method).

Ifthe Level parameter is equal to 1518, the server MUST update all the settings in

ServerConfiguration.Serverinfo599 that are defined by the SERVER_INFO_1518 structure as
settable (that is, they are not defined as ignored on receipt or ignored for the NetrServerSetinfo
method).

Ifthe Level parameter is equal to 1523, the server MUST update all the settings in
ServerConfiguration.Serverinfo599 that are defined by the SERVER_INFO_1523 structure as
settable (that is, they are not defined as ignored on rec eipt or ignored for the NetrServerSetinfo
method).

If the Level parameter is equal to 1528, the server MUST update all the settings in
ServerConfiguration.Serverinfo599 that are defined by the SERVER_INFO_1528 structure as
settable (that is, they are not d efined as ignored on receipt or ignored for the NetrServerSetinfo
method).

[MS -SRVS-Diff] - v20210625

Server Service Remote Protocol

Copyright © 2021 Microsoft Corporati on
Release: June 25, 2021

138 / 240

If the Level parameter is equal to 1529, the server MUST update all the settings in
ServerConfiguration.Serverinfo599 that are defined by the SERVER_INFO_1529 structure as
settable (thatis, they are not defined as ignored on receipt or ignored for the NetrServerSetinfo
method).

If the Level parameter is equal to 1530, the server MUST update all the settings in
ServerConfiguration.Serverinfo599 that are defined by the SERVER_INFO_153 0 structure as
settable (that is, they are not defined as ignored on receipt or ignored for the NetrServerSetinfo

method).

Ifthe Level parameter is equal to 1533, the server MUST update all the settings in
ServerConfiguration.ServerInfo599 that are define d by the SERVER_INFO_1533 structure as
settable (that is, they are not defined as ignored on receipt or ignored for the NetrServerSetinfo

method).

Ifthe Level parameter is equal to 1534, the server MUST update all the settings in
ServerConfiguration.Serve rinfo599 that are defined by the SERVER_INFO_1534 structure as
settable (that is, they are not defined as ignored on receipt or ignored for the NetrServerSetinfo
method).

Ifthe Level parameter is equal to 1535, the server MUST update all the settings in
ServerConfiguration.Serverinfo599 that are defined by the SERVER_INFO_1535 structure as
settable (that is, they are not defined as ignored on receipt or ignored for the NetrServerSetinfo
method).

Ifthe Level parameter is equal to 1536, the server MUST upda te all the settings in
ServerConfiguration.Serverinfo599 that are defined by the SERVER_INFO_1536 structure as
settable (that is, they are not defined as ignored on receipt or ignored for the NetrServerSetinfo
method).

Ifthe Level parameteris equalto 15 38, the server MUST update all the settings in
ServerConfiguration.Serverinfo599 that are defined by the SERVER_INFO_1538 structure as
settable (that is, they are not defined as ignored on receipt or ignored for the NetrServerSetinfo
method).

If the Level parameter is equal to 1539, the server MUST update all the settings in

ServerConfiguration.Serverinfo599 that are defined by the SERVER_INFO_1539 structure as
settable (that is, they are not defined as ignored on receipt or ignored for the NetrServerSetinf o]
method).

If the Level parameter is equal to 1540, the server MUST update all the settings in
ServerConfiguration.Serverinfo599 that are defined by the SERVER_INFO_1540 structure as
settable (that is, they are not defined as ignored on receipt or ignored for the NetrServerSetinfo
method).

If the Level parameter is equal to 1541, the server MUST update all the settings in

ServerCon figuration.Serverinfo599 that are defined by the SERVER_INFO_1541 structure as
settable (that is, they are not defined as ignored on receipt or ignored for the NetrServerSetinfo
method).

If the Level parameter is equal to 1542, the server MUST update all t he settings in
ServerConfiguration.Serverinfo599 that are defined by the SERVER_INFO_1542 structure as
settable (that is, they are not defined as ignored on receipt or ignored for the NetrServerSetinfo
method).

If the Level parameter is equal to 1543, the server MUST update all the settings in
ServerConfiguration.Serverinfo599 that are defined by the SERVER_INFO_1543 structure as
settable (that is, they are not defined as ignored on receipt or ignored for the NetrServerSetinfo
method).

139 / 240

[MS -SRVS-Diff] - v20210625

Server Service Remote Protocol

Copyright © 2021 Microsoft Corporati on
Release: June 25, 2021

If the Level paramete ris equal to 1544, the server MUST update all the settings in
ServerConfiguration.Serverinfo599 that are defined by the SERVER_INFO_1544 structure as
settable (that is, they are not defined as ignored on receipt or ignored for the NetrServerSetinfo

method).

If the Level parameter is equal to 1545, the server MUST update all the settings in

ServerConfiguration.Serverinfo599 that are defined by the SERVER_INFO_1545 structure as
settable (that is, they are not defined as ignored on receipt or ignored for the NetrServerSetinfo
method).

If the Level parameter is equal to 1546, the server MUST update all the settings in
ServerConfiguration.Serverinfo599 that are defined by the SERVER_INFO_1546 structure as
settable (that is, they are not defined as ignored on rec eipt or ignored for the NetrServerSetinfo
method).

If the Level parameter is equal to 1547, the server MUST update all the settings in
ServerConfiguration.Serverinfo599 that are defined by the SERVER_INFO_1547 structure as
settable (that is, they are not d efined as ignored on receipt or ignored for the NetrServerSetinfo
method).

Ifthe Level parameter is equal to 1548, the server MUST update all the settings in
ServerConfiguration.Serverinfo599 that are defined by the SERVER_INFO_1548 structure as
settable (thatis, they are not defined as ignored on receipt or ignored for the NetrServerSetinfo
method).

Ifthe Level parameter is equal to 1549, the server MUST update all the settings in
ServerConfiguration.Serverinfo599 that are defined by the SERVER_INFO_154 9 structure as
settable (that is, they are not defined as ignored on receipt or ignored for the NetrServerSetinfo

method).

Ifthe Level parameter is equal to 1550, the server MUST update all the settings in
ServerConfiguration.Serverinfo599 that are define d by the SERVER_INFO_1550 structure as
settable (that is, they are not defined as ignored on receipt or ignored for the NetrServerSetinfo

method).

If the Level parameter is equal to 1552, the server MUST update all the settings in
ServerConfiguration.Serve rinfo599 that are defined by the SERVER_INFO_1552 structure as
settable (that is, they are not defined as ignored on receipt or ignored for the NetrServerSetinfo
method).

If the Level parameter is equal to 1553, the server MUST update all the settings in
ServerConfiguration.Serverinfo599 that are defined by the SERVER_INFO_1553 structure as
settable (that is, they are not defined as ignored on receipt or ignored for the NetrServerSetinfo
method).

If the Level parameter is equal to 1554, the server MUST update all the settings in

ServerConfiguration.Serverinfo599 that are defined by the SERVER_INFO_1554 structure as
settable (that is, they are not defined as ignored on receipt or ignored for the NetrServerSetin fo
method).

If the Level parameter is equal to 1555, the server MUST update all the settings in
ServerConfiguration.Serverinfo599 that are defined by the SERVER_INFO_1555 structure as
settable (that is, they are not defined as ignored on receipt or ignored for the NetrServerSetinfo
method).

If the Level parameter is equal to 1556, the server MUST update all the settings in
ServerConfiguration.Serverinfo599 that are defined by the SERVER_INFO_1556 structure as
settable (that is, they are not defined as ignor ed on receipt or ignored for the NetrServerSetinfo
method).

140 / 240

[MS -SRVS-Diff] - v20210625

Server Service Remote Protocol

Copyright © 2021 Microsoft Corporati on
Release: June 25, 2021

The server MUST validate each member of the structure that is passed in the

The validation involves making sure each member of the structure in the
valid value as specified in the definition of the corresponding SERVER_INFO structure. If any member

of the structure is not valid and the

Serverl

value based on the first member of the structure that is not valid and fail the call with an
ERROR_INVALID_PARAMETER (0x00000057) error code. The mapping between the values to set and
ing member is listed in section 2.2.2.12.<82>

the correspond

The server MUST construct SERVER_INFO_103 and SERVER_INFO_599 structures from

ServerConfiguration.Serverinfo103

The server MUST update server configuration by

parameters.

and ServerConfiguration.Serverinfo599

Serverinfo parameter.

nfo parameter has a

ParmEr r parameter is not NULL, the server MUST set ParmErr toa

respectively.

invoking the underlying server event as specified in
[MS -CIFS] section 3.3.4.22, providing SERVER_INFO_103 and SERVER_INFO_599 structures as input

The server MUST update browser configuration by invoking the underlying server event specified i n
[MS -BRWS] section 3.2.4.1, providing the SERVER_INFO_103 structure as input parameter.

The server MUST persist the values in
ServerConfiguration.Serverinfo599

The server SHOULD<83

ServerConfiguration.Serverinfo103
in a persistent configuration store.

and

> enforce security measures to verify that the caller has the required

permissions to execute this routine. If the caller does not have the required credentials, the server

SHOULD<84>

3.1.4.19

fail the call.

NetrServerDiskEnum (Opnum 23)

The NetrServerDiskEnum method retrieves a list of disk drives on a server. The method returns an
array of t hree -character strings (a drive letter, a colon, and a terminating null character).

NET_API_STATUS NetrServerDiskEnum(

[in, string,

[in] DWORD Level,

[in, out] DISK_ENUM_CONTAINER*

[in] DWORD Prefer edMaximumLength,

[out] DWORD*
[in, out,

ServerName:

TotalEntries,
unique] DWORD*

ResumeHandle

unique] SRVSVC_HANDLE ServerName,

DiskiInfoStruct,

An SRVSVC_HANDLE (section 2.2.1.1) pointer that identifies the server. The client
MUST map this structure to an RPC binding handle (see [C706] sections 4.3
server MUST ignore this parameter.

Level: Specifies the information level of the data. It MUST be the following value.

Value

Meaning

0

The buffer is of type

DISK_INFO

DisklInfoStruct:

A pointer to a structure of type

PreferedMaximumLength:

TotalEntries:

ResumeHandle:

The serv er MUST ignore this parameter.

.5and5.1.5.2). The

DISK_ENUM_CONTAINER, as specified in section
2.2.4.92. Although this parameter is defined as an [in, out] parameter, it is used only as an [out]
parameter. The server MUST ignore any values that are passed in this parameter.

The number of entries being returned in the Buffer
parameter. This MUST be in the range 0

1 26.

The server MUST ignore this parameter.

member of the

DiskInfoStruct

[MS - SRVS- Diff]
Server Service R

Copyright © 2021 Microsoft Corporati

- v20210625
emote Protocol

Release: June 25, 2021

on

141 | 240

Return Values: The method returns 0 x00000000 (NERR_Success) to indicate success; otherwise, it
returns a nonzero error code. The method can take any specific error code value, as specified in
[MS -ERREF] section 2.2. The most common error codes are listed in the following table.

Return value /code Description

0x00000000 The client request succeeded.
NERR_Success

0x0000007C The system call level is not correct.
ERROR_INVALID_LEVEL

0x00000008 Not enough storage is available to process this command.
ERROR_NOT_ENOUGH_MEMORY

0x00000005 The caller does not have the permissions to perform the operation.
ERROR_ACCESS_DENIED

The server MUST ignore the PreferedMaximumLength ~ parameter.
The server MUST ignore the ResumeHandle parameter.

Upon successful processing of the request, the server MUST setthe TotalEntries parameter equal to
the number of disk drive entries that the server enumerated in the Buffer member of DiskinfoStruct
and the EntriesRead member of DiskinfoStruct MUST be set to 1 plus the value set for TotalEntries .

Upon successful processing of the request, the server MUST return the enumerated disk drives in the

Buffer member of DiskInfoStruct in the format of the DISK_INFO structure. The server MUST
allocate the memory required to return all enumerated disk drives in th e Buffer member of the
InfoStruct parameter. In cases where the RPC allocated a buffer because the client specified a non -
NULL value for the Buffer parameter, the server MUST free the buffer that is allocated by the RPC.

The server SHOULD<85> enforce secu rity measures to verify that the caller has the required
permissions to execute this routine. If the caller does not have the required credentials, the server
SHOULD<86> fail the call.

3.1.4.20 NetrServerStatisticsGet (Opnum 24)

The NetrServerStatisticsGet method retrieves the operating statistics for a service.

NET_API_STATUS NetrServerStatisticsGet(
[in, string, unique] SRVSVC_HANDLE ServerName,
[in, string, unique] WCHAR* Service,
[in] DWORD Level,
[in] DWORD Options,
[out] LPSTAT_SERVER_0* InfoStruct
)

ServerName: An SRVSVC_HANDLE (section 2.2.1.1) pointer that identifies the server. The client
MUST map this structure to an RPC binding handle (see [C706] sections 4.3.5 and 5.1.5.2). The
server MUST ignore this parameter.

Service: A pointerto anull -terminated UTF -16 s tring. This parameter MUST be ignored on receipt.
Level: Specifies the information level of the data. This MUST be set to 0.

Options: Reserved; MUST be 0.

142 | 240

[MS -SRVS-Diff] - v20210625

Server Service Remote Protocol

Copyright © 2021 Microsoft Corporati on
Release: June 25, 2021

InfoStruct: A pointer to the buffer that receives the data, as specified in section 2.2.4.39. This
pointer is in the format of STAT_SERVER_O.

Return Values: The method returns 0x00000000 (NERR_Success) to indicate success; otherwise, it
returns a nonzero error code. The method can take any specific error code value, as specified in
[MS -ERREF] section 2.2.

In response to the NetrServerStatisticsGet message, the server MUST return the operating statistics
for the service or return an error code.

The server MUST ignore the Service parameter on receipt.

If the Level parameter is not equal to O, the server MUS T fail the call with an ERROR_INVALID_LEVEL
error code.

If the Options parameter is not equal to 0, the server MUST fail the call with an
ERROR_INVALID_PARAMETER error code.

The server MUST query the statistics by invoking the underlying server events as s pecified in [MS -

CIFS] section 3.3.4.23 and [MS -SMB2] section 3.3.4.24. The server MUST aggregate all the values in

the structures received from both CIFS and SMB2 servers into a new STAT_SERVER_O0 structure. In
addition to these values, stsO_start MUST be s etto StatisticsStartTime . The server MUST return the
statistics inthe STAT_SERVER_O structure in the InfoStruct parameter.

The server SHOULD<87> enforce security measures to verify that the caller has the required
permissions to execute this routine. If the caller does not have the required credentials, the server
SHOULD<88> fail the call.

3.1.4.21 NetrRemoteTOD (Opnum 28)

The NetrRemoteTOD method returns the time of day information on a server.

NET_API_STATUS NetrRemoteTOD(
[in, string, unique] SRVSVC_HANDLE ServerName,
[out] LPTIME_OF _DAY_INFO* BufferPtr

);

ServerName: An SRVSVC_HANDLE (section 2.2.1.1) po inter that identifies the server. The client
MUST map this structure to an RPC binding handle (see [C706] sections 4.3.5 and 5.1.5.2). The
server MUST ignore this parameter.

BufferPtr: A pointer to a structure of type TIME_OF_DAY_INFO where the information is returned.

Return Values: The method returns 0x00000000 (NERR_Success) to indicate success; otherwise, it
returns a nonzero error code. The method can take any specific error code value, as specified in
[MS - ERREF] section 2.2.

Inresponsetoa NetrRemoteTOD message, the server MUST return the time of day information or
return an error code.

The server MUST return the time of day information on the server in the BufferPtr parameter in the
format of the LPTIME_OF_DAY_INFO structure, as specified i n section 2.2.4.105.

The server SHOULD<89> enforce security measures to verify that the caller has the required
permissions to execute this routine. If the caller does not have the required credentials, the server
SHOULD<90> fail the call.

143 | 240

[MS -SRVS-Diff] - v20210625

Server Service Remote Protocol

Copyright © 2021 Microsoft Corporati on
Release: June 25, 2021

3.1.4.22 NetrServerTransp ortAdd (Opnum 25)

The NetrServerTransportAdd method binds the se rver to the transport protocol.

NET_API_STATUS NetrServerTransportAdd(
[in, string, unique] SRVSVC_HANDLE ServerName,
[in] DWORD Level,
[in] LPSERVER_TRANSPORT_INFO_0O Buffer

);

ServerName: An SRVSVC_HANDLE (section 2.2.1.1) pointer that identifies the server. The client
MUST map this structure to an RPC binding handle (see [C706] sections 4.3.5 and 5.1.5.2). The
server MUST ignore this parameter.

Level: Specifies the information level of the da ta. This parameter MUST be zero.
Buffer: A pointer to the SERVER_TRANSPORT _INFO_O0 structure that describes the data.

Return Values: The method returns 0x00000000 (NERR_Success) to indicate success; otherwise, it
returns a nonzero error code. The method can take any specific error code value, as specified in
[MS -ERREF] section 2.2. The most common error codes are listed in the following table.

Return value/code Description

0x00000000 The client request succeeded.
NERR_Success

0x00000005 Access is denied.
ERROR_ACCESS_DENIED

0x00000034 A duplicate name exists on the network.
ERROR_DUP_NAME

0x0000007C The system call level is not correct.
ERROR_INVALID_LEVEL

0x00000057 The parameter is incorrect.
ERROR_INVALID_PARAMETER

0x00000008 Not enough storage is available to process this command.
ERROR_NOT_ENOUGH_MEMORY

The NetrServerTransportAdd message MUST be processed in the same way as the
NetrServerTransportAddEx message, except that it MUST allow only level O (that is,
SERVER_TRANSPORT_INFO_0). The NetrServerTransportAddEx message is specified in section
3.1.4.23.

The server MAY<91> enforce security measures to verify that the caller has the required permissions
to execute this call. If the server enforces these security measures and the ca ller does not have the
required credentials, the server SHOULD<92> fail the call.

3.1.4.23 NetrServerTransportAddEx (Opnum 41)
The NetrServerTransportAddEx method binds the specified server to the transport protocol. This

extended method al lows the caller to specify information levels 1, 2, and 3 beyond what the
NetrServerTransportAdd method allows.

NET_API_STATUS NetrServerTransportAddEx(

144 | 240

[MS -SRVS-Diff] - v20210625

Server Service Remote Protocol

Copyright © 2021 Microsoft Corporati on
Release: June 25, 2021

[in, string, unique] SRVSVC_HANDLE ServerName,
[in] DWORD Level,
[in, switch_is(Level)] LPTRANSPO RT_INFO Buffer

);

ServerName: An SRVSVC_HANDLE (section 2.2.1.1) pointer that identifies the server. The client
MUST map this structure to an RPC binding handle (see [C706] sections 4.3.5 and 5.1.5.2). The
server MUST ignore this parameter.

Level: Specifies the information level of the data. This parameter MUST be the following value.

Value Meaning

0 The buffer is of type SERVER_TRANSPORT_INFO_O0.

1 The buffer is of type SERVER_TRANSPORT_INFO_1.

2 The buffer is of type =~ SERVER_TRANSPORT_INFO_2.
3 The buffer is of type SERVER_TRANSPORT_INFO_3.

Buffer: A pointer to the TRANSPORT_INFO union that describes the data. The type of data depends
on the value of the Level parameter, as the preceding table shows.

Return Values: The method returns 0x00000000 (NERR_Success) to indicate success; otherwise, it
returns a nonzero error code. The method can take any specific error code value, as specified in

[MS -ERREF] section 2.2. The most common error codes are listed in the following t able.

Return value/code Description

0x00000000 The client request succeeded.
NERR_Success

0x00000005 Access is denied.
ERROR_ACCESS_DENIED

0x00000034 A duplicate name exists on the network.
ERROR_DUP_NAME

0x0000007C The system call level is not correct.
ERROR_INVALID_LEVEL

0x00000057 The parameter is incorrect.
ERROR_INVALID_PARAMETER

0x00000008 Not enough storage is available to process this command.
ERROR_NOT_ENOUGH_MEMORY

The server SHOULD<93> enforce security m easures to verify that the caller has the required
permissions to execute this call. If the caller does not have the required credentials, the server
SHOULD<94> fail the call.

The Level parameter determines the type of structure that the client has used to specify information
about the new transport. The value MUST be 0, 1, 2, or 3. If the Level parameter is not equal to one

of the valid values, the server MUST fail the call with an ERROR_INVALID_LEVEL error code.

If the Level parameteris 0,the Buffer parameter points to a SERVER_TRANSPORT_INFO_O structure.

If the Level parameteris 1, the Buffer parameter points to a SERVER_TRANSPORT_INFO_1 structure.

[MS -SRVS-Diff] - v20210625

Server Service Remote Protocol

Copyright © 2021 Microsoft Corporati on
Release: June 25, 2021

145 | 240

If the Level parameteris 2,the Buffer parameter points to a SERVER_TRANSPORT_INFO_2 structure.
Ifthe Level parameteris 3,the Buffer parameter points to a SERVER_TRANSPORT_INFO_3 structure.

The server MUST validate all information that is provided in the SERVER_TRANSPORT_INFO structure
and MUST fail the call with ERROR_INVALID_PARAMETER if any of these checks fail:

A Both svti*_transportname and svti*_transportaddress MUST NOT be NULL;
svti*_transportaddresslength MUST NOT be zero.

A If svti*_domain is not NULL, its length MUST NOT be greater th an 15.

A The svti*_flags can be any combination of the following flags as defined in section 2.2.4.96: 0,
SVTI2_REMAP_PIPE_NAMES, and SVTI2_SCOPED_NAME.

The server MUST invoke the events specified in [MS -CIFS] section 3.3.4.17 and [MS -SMB?2] section
3.3.4.21, passing the following as the parameters: svti*_transportname , svti*_transportaddress , and
a transport enable flag set to TRUE.

If both the CIFS and SMB2 servers return ERROR_NOT_SUPPORTED, the server MUST return
ERROR_NOT_SUPPORTED (0x00000032) to the cal ler. If both the CIFS and SMB2 servers return an
error other than ERROR_NOT_SUPPORTED, the server must fail the call with an implementation -
dependent error.

If either the CIFS or SMB2 server returns STATUS_SUCCESS, the server MUST create a new Transport
and add ittothe TransportList . The Transport MUST be initialized as follows:

A Transport.Name MUST be set to the caller -supplied svti*_transportname . For acceptable forms
of svti*_transportname, see section 2.2.4.96.

A Transport.ServerName MUST be setto the caller -supplied svti*_transportaddress . For
acceptable forms of ~ svti*_transportaddress , see section 2.2.4.96.

A Transport.Domain MUST be set to svti*_domain.

A Transport.Flags MUST be set to svti*_flags.

A Transport.ConnectionCount MUST be set to zero.

A The Trans port MUST be persisted in an implementation - specific store.

The server MUST then return NERR_Success to the caller.

3.1.4.24 NetrServerTransportEnum (Opnum 26)

The NetrServerTransportEnum method enumerates the information about transport protocols that the
server manages in TransportList

NET_API_STATUS NetrServerTransportE num(

[in, string, unique] SRVSVC_HANDLE ServerName,
[in, out] LPSERVER_XPORT_ENUM_STRUCTInfoStruct,
[in] DWORD PreferedMaximumLength,

[out] DWORD* TotalEntries,

[in, out, unique] DWORD* ResumeHandle

)

ServerName: An SRVSVC_HANDLE (section 2.2.1 .1) pointer that identifies the server. The client
MUST map this structure to an RPC binding handle (see [C706] sections 4.3.5 and 5.1.5.2). The
server MUST ignore this parameter.

146 / 240

[MS -SRVS-Diff] - v20210625

Server Service Remote Protocol

Copyright © 2021 Microsoft Corporati on
Release: June 25, 2021

InfoStruct: A pointer to a structure, in the format of a SERVER_XPORT_ENUM_STRUCT structure that
receives the data. The SERVER_XPORT _ENUM_STRUCT structure has a Level member that
specifies the type of the structure to return in the Xportinfo member. The Level member MUST
be set to one of the values in section 2.2.4.101 (excluding SERVER_XPORT_INFO_3_CONTAINER).

PreferedMaximumLength: Specifies the preferred maximum length, in bytes, of returned data. If
the value that is specified is MAX_PREFERRED_LENGTH (sect ion 2.2.2.2), the method MUST
attempt to return all entries.

TotalEntries: The total number of entries that can be enumerated if the buffer is large enough to
hold all the entries.

ResumeHandle: A pointer to a value that contains a handle that is used to ¢ ontinue an existing
connection search. The handle MUST be zero on the first call and remain unchanged for
subsequent calls. If the ResumeHandle parameter is NULL, no resume handle MUST be stored. If
this parameter is not NULL and the method returns ERROR_M ORE_DATA, this parameter receives
an implementation -specific nonzero value that can be passed in subsequent calls to this method to
continue with the enumeration.

If this parameter is NULL or points to 0x00000000, the enumeration starts from the beginning of
the list of the currently active connections.

Return Values: The method returns 0x00000000 (NERR_Success) to indicate success; otherwise, it
returns a nonzero error code. The method can take any specific error code value, as specified in
[MS -ERREF] sect ion 2.2. The most common error codes are listed in the following table.

Return value/code Description

0x00000000 The client request succeeded.
NERR_Success

0x0000007C The system call level is not correct.
ERROR_INVALID_LEVEL

0x000000EA The client request succeeded. More entries are available. Not all entries
ERROR MORE DATA could be returned in the buffer size that is specified by
- - PreferedMaximumLength

0x00000008 Not enough storage is available to process this c ommand.
ERROR_NOT_ENOUGH_MEMORY

0x0000084B The client request succeeded. More entries are available. The buffer
NERR BufTooSmall size that is specified by ~ PreferedMaximumLength ~ was too small to fit
- even a single entry.

In response to the NetrServerTransportEnum request, the ser ver MUST enumerate the Transports
from the TransportList or return an error code.

The InfoStruct parameterhasa Level member. The value of Level MUST be 0, 1, or 2. If the Level
member is not equal to one of the valid values, the server MUST fail the call with an
ERROR_INVALID_LEVEL error code.

If the value of the Level member is 0, the server MUST return the information about the transport
protocols that it is managing by filling the SERVER_XPORT _INFO_0_CONTAINER structure in the
Xportinfo member of the InfoStruct parameter.

If the Level memberis 1, the server MUST return the information about the transport protocols that it
is managing by filling the SERVER_XPORT _INFO_1_CONTAINER structure in the Xportinfo member
of the InfoStruct parameter.

147 | 240

[MS -SRVS-Diff] - v20210625

Server Service Remote Protocol

Copyright © 2021 Microsoft Corporati on
Release: June 25, 2021

The Prefer edMaximumLength parameter specifies the maximum number of bytes that the server can
return for the Xportinfo buffer.

If the PreferedMaximumLength is insufficient to hold all the entries, the server MUST return the
maximum number of entries that can fit in the Xportinfo buffer and return ERROR_MORE_DATA. If
this parameter is equal to MAX_PREFERRED_LENGTH, the server MUST return all the requested dat a.

If the server returns NERR_Success or ERROR_MORE_DATA, it MUST set the TotalEntries parameter
equal to the total number of entries that could have been enumerated from the current resume
position.

If the PreferedMaximumLength s insufficient to hold all the entries and if the client has specified a
ResumeHandle parameter, the server MUST set ResumeHandle to some implementation -specific value
that allows the server to continue with this enumeration on a subsequent call to this method with the

same value f or ResumeHandle .

The following rules specify processing of the ResumeHandle parameter:

A Ifthe ResumeHandle parameter is either NULL or points to 0x00000000, the enumeration MUST
start from the beginning of the TransportList

A Ifthe ResumeHandle parameter points to a nonzero value, the server MUST continue enumeration
based on the value of ResumeHandle . The val ue of ResumeHandle specifies the index into the
TransportList after which the enumeration is to begin.

A If the client specified a ResumeHandle and if the server returns ERROR_MORE_DATA
(OxO00000EA), the server MUST set ResumeHandle to the index of the last enumerated transport
in the TransportList

Because the ResumeHandle parameter specifies an offset into the list, and the list of all available
transports can be modified between multiple requests, the results of a query spanning multiple
requests using ResumeHandle can be unreliable, offering either duplicate or unavailable transports.

The server SHOULD<95> enforce security measures to verify that the caller has the required
permissions to execute this call. If the caller does not have the required credenti als, the server
SHOULD<96> fail the call.

3.1.4.25 NetrServerTransportDel (Opnum 27)

The NetrServerTransportDel method unbinds (or disconnects) the transport protocol from the server.
If this method succeeds, the server can no longer communicate with clients by using the specified
transport protocol (such as TCP or XNS).

NET_AR_STATUS NetrServerTransportDel(

[in, string, unique] SRVSVC_HANDLE ServerName,
[in] DWORD Level,

[in] LPSERVER_TRANSPORT_INFO_0 Buffer

);

ServerName: An SRVSVC_HANDLE (section 2.2.1.1) pointer that identifies the server. The client
MUST map this str ucture to an RPC binding handle (see [C706] sections 4.3.5 and 5.1.5.2). The
server MUST ignore this parameter.

Level: Specifies the information level of the data. This SHOULD be zero and MUST be ignored on
receipt.

148 | 240

[MS -SRVS-Diff] - v20210625

Server Service Remote Protocol

Copyright © 2021 Microsoft Corporati on
Release: June 25, 2021

Value Meaning

0 The bufferis oftype S ERVER_TRANSPORT_INFO_0.

Buffer: A pointer to the SERVER_TRANSPORT _INFO_O0 structure that contains information about the
transport.

Return Values: The method returns 0x00000000 (NERR_Success) to indicate success; otherwise, it
returns a nonzero error code. The method can take any specific error code value, as specified in
[MS -ERREF] section 2.2. The most common error codes are listed in the following table.

Return value/code Description

0x00000000 The client request succeeded.
NERR_Success

0x00000005 Access is denied.
ERROR_ACCESS_DENIED

0x00000057 The parameter is incorrect.
ERROR_INVALID_PARAMETER

0x00000008 Not enough storage is available to process this command.
ERROR_NOT_ENOUGH_MEMORY

The NetrServerTransportDel message MUST be processed in the same way as the
NetrServerTransportDelEx message, except that it MUST allow only level O (that is,
SERVER_TRANSPORT_INFO_0). The processing for this message is specified in section 3.1.4.26.

The server MAY<97> enforce security measures to verify that the caller has the required permissions
to execute this call. If the server enforces these security measures and the caller does not have the
required credentials, the server SHOULD<98> fail the call.

3.1.4.26 NetrServerTransportDelEx (Opnum 53)

The server receives the NetrServerTransportDelEx method in an R PC_REQUEST packet. In response,
the server unbinds (or disconnects) the transport protocol from the server. If this method succeeds,

the server can no longer communicate with clients by using the specified transport protocol (such as

TCP or XNS). This exte nded method allows level 1 beyond what the NetrServerTransportDel method

allows.

NET_API_STATUS NetrServerTransportDelEx(
[in, string, unique] SRVSVC_HANDLE ServerName,
[in] DWORD Level,
[in, switch_is(Level)] LPTRANSPORT_INFO Buffer

);

ServerName: An SRVSVC_HANDLE (section 2.2.1.1) pointer that identifies the server. The client
MUST map this structure to an RPC binding handle (see [C706] sections 4.3.5 and 5.1.5.2). The
server MUST ignore this parameter.

Level: Specifies the information level of the data. It MUST be one of the following values.

Value Meaning

0 The buffer is of type SERVER_XPORT INFO_0_CONTAINER.

149 /| 240

[MS -SRVS-Diff] - v20210625

Server Service Remote Protocol

Copyright © 2021 Microsoft Corporati on
Release: June 25, 2021

Value Meaning

1 The buffer is of type SERVER_XPORT INFO_1_CONTAINER.

Buffer: A pointer to the TRANSPORT _INFO union that contains information about the transport. The
value of the Level parameter determines the type of the contents of the Buffer parameter, as the
preceding table shows.

Return Values: The method returns 0x00000000 (N ERR_Success) to indicate success; otherwise, it
returns a nonzero error code. The method can take any specific error code value, as specified in
[MS - ERREF] section 2.2.<99>

The Level parameter determines the type of structure the client has used to specify information about
the new transport. Valid values are 0 and 1. If the Level parameter is not equal to one of the valid
values, the server MUST fail the call with an ERROR_INVALID_LEVEL error code.

If the Level parameter is 0, the Buffer parameter points to a SERVER_TRANSPORT_INFO_O structure.
If the Level parameter is 1, the Buffer parameter points to a SERVER_TRANSPORT_INFO_1 structure.

The server MUST validate all information that is provided in the SERVER_TR ANSPORT_INFO structure
in an implementation -specific manner, and, if any member of the structure is found to be invalid, the
server MUST fail the call with an ERROR_INVALID_PARAMETER error code.

The server MUST look up the Transport in the TransportList , w here Transport.Name matches the
caller -supplied svti*_transportname and Transport.ServerName matches the caller -supplied svti*_
transportaddress . If a match is not found, the server MUST return NERR_NetNameNotFound to the

caller.

If a match is found, the server MUST invoke the events described in [MS -CIFS] section 3.3.4.17 and
[MS -SMB2] section 3.3.4.21, passing Transport.ServerName , Transport.Name , and a transport enable
flag set to FALSE as the parameters. This means that the SMB file server can no long er initiate

communications with clients by using the specified transport protocol (such as SMB2 over Direct
TCP).<100>

If both the CIFS and SMB2 servers return ERROR_NOT_SUPPORTED, the server MUST return
ERROR_NOT_SUPPORTED (0x00000032) to the caller. If b oth the CIFS and SMB2 servers return an
error other than ERROR_NOT_SUPPORTED, the server must fail the call with an implementation -
dependent error.

If either the CIFS or SMB2 server returns STATUS_SUCCESS, the server MUST remove Transport
from TransportList and from the persistent store, free the transport object and return
NERR_Success.

The server SHOULD<101> enforce security measures to verify that the caller has the required
permissions to execute this call. If the caller does not have the required credentials, the server
SHOULD<102> fail the call.

3.1.4.27 NetrpGetFileSecurity (Opnum 39)

The NetrpGetFileSecurity method returns to the caller a copy of the security descriptor that protects a
file or directory.

DWORDNetrpGetFile Security(

[in, string, unique] SRVSVC_HANDLE ServerName,
[in, string, unique] WCHAR* ShareName,

[in, string] WCHAR* IpFileName,

[in] SECURITY_INFORMATION Requestedinformation,

[out] PADT_SECURITY_DESCRIPTOR* SecurityDescriptor

);

150 / 240

[MS -SRVS-Diff] - v20210625

Server Service Remote Protocol

Copyright © 2021 Microsoft Corporati on
Release: June 25, 2021

ServerName: An SRVSVC_HANDLE (section 2.2.1.1) pointer that identifies the server. The client
MUST map this structure to an RPC binding handle (see [C706] sections 4.3.5 and 5.1.5.2). The
server MUST ignore this parameter.

ShareName: A pointertoanull -terminated UTF -16 string that specifies the share name on which the
file is found.

IpFileName: A pointerto anull -terminated UTF -16 string that specifies the name of the file or
directory whose security is being retrieved. The name MUST specify the full path to the file fr om
the ShareName parameter.

Requestedinformation: The type of security information being requested, as specified in [MS -DTYP]
section 2.4.7.

SecurityDescriptor: A pointer to a PADT_SECURITY_DESCRIPTOR structure, where the desired
information is returned.

Return Values: The method returns 0x00000000 (NERR_Success) to indicate success; otherwise, it
returns a nonzero error code. The method can take any specific error code value, as specified in
[MS - ERREF] section 2.2.

In response to a NetrpGetFileSecurity me ssage, the server MUST return to the caller a copy of the
security descriptor that protects a file or directory, or return an error code. The security descriptor is
always returned in the self ~ -relative format.

The ShareName parameter specifies a local shar e name on the server. The server MUST locate a

Share from ShareList ,where ShareName matches Share.ShareName . If no share is found, the

server MUST fail the call with NERR_NetNameNotFound. The server MUST then combine

Share.LocalPath with the IpFileName parameter in order to create a fully qualified path name that is

local to the server. If the file does not exi st, the server SHOULD<103> fail the call with
ERROR_FILE_NOT_FOUND. The server MUST then obtain the security descriptor with the information

that the client requires, as specified in the Requestedinformation parameter, for the local file that the

path name obtained specifies, and return it to the client in the out parameter SecurityDescriptor . The
security descriptor itself is stored in the Buffer member ofthe SecurityDescriptor — parameter; the
length of the security descriptor is stored in the Length membe r.

The server SHOULD<104> enforce security measures to verify that the caller has the required
permissions to execute this call. If the caller does not have the required credentials, the server
SHOULD<105> fail the call.

3.1.4.28 NetrpSetFileSecurity (Opnum 40)

The NetrpSetFileSecurity method sets the security of a file or directory.

DWORDNetrpSetFileSecurity(

[in, string, unique] SRVSVC_HANDLE ServerName,
[in, string, unique] WCHAR* ShareName,

[in, string] WCHAR* IpFileName,

[in] SECURITY_INFORMATION Securitylnformation,

[in] PADT_SECURITY_DESCRIPTOR SecurityDescriptor

ServerName: An SRVSVC_HANDLE (section 2.2.1.1) pointer that identifies the server. The client
MUST map this structure to an RPC binding handle (see [C706] sections 4.3.5 and 5.1.5.2). The
server MUST ignore this parameter.

ShareName: A pointertoanull -terminated UTF -16 string that specifies the share name on which the
file is found.

151 / 240

[MS -SRVS-Diff] - v20210625

Server Service Remote Protocol

Copyright © 2021 Microsoft Corporati on
Release: June 25, 2021

IpFileName: A pointerto a null -terminated UTF -16 string that specifies the name of the file or
directory whose security is being set.

Securitylnformation: The type of securit y information being set, as specified in [MS -DTYP] section
24.7.
SecurityDescriptor: A pointer to a PADT_SECURITY_DESCRIPTOR structure, which provides the

security descriptor to set.

Return Values: The method returns 0x00000000 (NERR_Success) to indicate success; otherwise, it
returns a nonzero error code. The method can take any specific error code value, as specified in
[MS -ERREF] section 2.2.

In response to a NetrpSetFileSecurity message, the server MUST set the security descriptor of the
specified fil e or directory on the server or return an error code.

The ShareName parameter specifies a local share name on the server. The server MUST locate a

Share from ShareList , where ShareName matches Share.ShareName . If no share is found, the
server MUST fail the call with NERR_NetNameNotFound. The server MUST then combine

Share.LocalPath with the IpFileName parameter to create a fully qualified path name that is local to

the server. If the file does not exist, the server MUST fail the call with ERROR_FILE_NOT_FOU ND.

The SecurityDescriptor parameter hasa Buffer member that contains a security descriptor in self -
relative format and a Length member that specifies the length, in bytes, of the Buffer member. The
server MUST apply the descriptor in the Buffer member to the local file, whose PathName was
computed as previously specified, by combining the local path that corresponds to the ShareName
parameter and the IpFileName parameter.

The server SHOULD<106> enforce security measures to verify that the caller has the required
permissions to execute this call. If the caller does not have the required credentials, the server
SHOULD<107> fail the call.

3.1.4.29 NetprPathType (Opnum 30)

The NetprPathType method checks a path name to determine its type.

NET_API_STATUS NetprPathType(

[in, string, unique] SRVSVC_HANDLE ServerName,
[in, string] WCHAR* PathName,

[out] D WORD*PathType,

[in] DWORD Flags

)

ServerName: An SRVSVC_HANDLE (section 2.2.1.1) pointer that identifies the server. The client
MUST map this structure to an RPC binding handle (see [C706] sections 4.3.5 and 5.1.5.2). The
server MUST ignore this parame ter.

PathName: A pointerto anull -terminated UTF -16 string that specifies the path name to check.
PathType: A path type is returned. It MUST be one of the values that are defined in section 2.2.2.9.

Flags: A bitmask that MUST contain the bitwise OR of zer o or more of the following values specifying
controlling flags.

Value Meaning

0x00000001 If set, the method uses old -style path rules (128 -byte paths, 8.3 components) when
validating the path. This flag is set on MS -DOS and OS/2 1.1 systems.

152 / 240

[MS -SRVS-Diff] - v20210625

Server Service Remote Protocol

Copyright © 2021 Microsoft Corporati on
Release: June 25, 2021

Return Values: The method returns 0x00000000 (NERR_Success) to indicate success; otherwise, it
returns a nonzero error code. The method can take any specific error code value, as specified in
[MS -ERREF] section 2.2.

In response to a NetprPathType message, the server MUST parse the specified path, determining if it
is a valid path and determining its path type, or return an error code. Path type values are defined in
section 2.2.2.9.

The PathName parameter specifies the path name whose type needs to be dete rmined.

If the PathName parameter is an empty string or has a length greater than 260, the server MUST falil
the call with ERROR_INVALID_NAME. If the Flag parameter has a value other than 0 or 1, the server
MUST fail the call with ERROR_INVALID_PARAMETER.

If the Flag parameter is Ox1, the server MUST use old (MS -DOS) style path name rules that state that

a path name can be 128 bytes long and that the file portion of the path has an 8 -bitname and a3 -bit
extension. If the value of the Flag parameteris 0x0, the server MUST use the long path name rules as
specified in [MS -CIFS] section 2.2.1.1.1.

The server MUST obtain the path type value for the PathName by using the algorithm as specified in

section 3.1.1.9. If the algorithm yields ERROR_INVALID_NAME, the s erver MUST fail the call with the
same error code. Otherwise, the server MUST copy the path type value resulting from the algorithm

into PathType and return NERR_Success.

The server MAY<108> enforce security measures to verify that the caller has the requi red permissions
to execute this call. If the server enforces these security measures and the caller does not have the
required credentials, the server SHOULD<109> fail the call.

3.1.4.30 NetprPathCanonicalize (Opnum 31)

The NetprPathCanonicalize method converts a path name to the canonical format.

NET_API_STATUS NetprPathCanonicali ze(
[in, string, unique] SRVSVC_HANDLE ServerName,
[in, string] WCHAR* PathName,
[out, size_is(OutbufLen)] unsigned char* Outbuf,
[in, range(0,64000)] DWORD OutbufLen,
[in, string] WCHAR* Prefix,
[in, out] DWORD* PathType,
[in] DWORLFlags

ServerName: An SRVSVC_HANDLE (section 2.2.1.1) pointer that identifies the server. The client
MUST map this structure to an RPC binding handle (see [C706] sections 4.3.5 and 5.1.5.2). The
server MUST ignore this parameter.

PathName: A pointe rto anull -terminated UTF -16 string that specifies the path name to canonicalize.
Outbuf: A pointer to the output buffer where the canonicalized path name is returned.

OutbufLen: The length, in bytes, of the output buffer, Outbuf . The value of this field MUST be within
the range 0 1 64,000, inclusive.

Prefix: A pointerto anull -terminated UTF -16 string that specifies an optional prefix to use when
canonicalizing a relative path name.

PathType: A place to store the path type. This parameter MUST be set by th e client either to zero or
to one of the values defined in section 2.2.2.9. After successful completion of the request, the
server MUST set PathType to one of the values defined in section 2.2.2.9.

153 / 240

[MS -SRVS-Diff] - v20210625

Server Service Remote Protocol

Copyright © 2021 Microsoft Corporati on
Release: June 25, 2021

Flags: Reserved, MUST be zero.

Return Values: The method r eturns 0x00000000 (NERR_Success) to indicate success; otherwise, it
returns a nonzero error code. The method can take any specific error code value, as specified in
[MS -ERREF] section 2.2.

If the Flags parameter is not equal to zero, the server SHOULD fai | the call with an implementation
specific error code.<110>

In response to a NetprPathCanonicalize message, the server MUST compute the canonical version of
the specified path name or return an error code.

The PathName parameter specifies the path name tha t needs to be canonicalized.

The PathType parameter, if nonzero, MUST specify the path type of the path that is specified by the
PathName parameter by a previous successful call to the NetprPathType method. Even if it is set to

the correct nonzero value by the client, the server can change it because the canonicalized version of

a name can be of a different type than the original version. If PathType is zero, the server MUST
validate and get the type of PathName (as specified in section 3.1.4.29) first. If this fails, the server
MUST fail the call with an ERROR_INVALID_NAME error code.

The Prefix parameter, if it is a nonempty string, specifies a path component that MUST be prefixed to

PathName to get the full path to canonicalize. The server MUST treat Prefix as a PathName : it MUST
validate and get the type of Prefix in the same way as it does the PathName . If this fails, the server
MUST fail the call with an ERROR_INVALID_NAME error code. The optional Prefix parameter is a
convenience that this method provi des to clients. The client is free to construct the complete

PathName and pass NULL for the Prefix . For example, this parameter can be used when canonicalizing

path names for a list of files in a directory. In such a scenario, the value for Prefix is the a bsolute path
for the directory, and the value for PathName specifies the relative path for a file.

The OutBufLen parameter specifies the length of the output buffer OutBuf that is provided by the
client. If the length of the canonicalized path name is grea terthan OutBufLen , the server MUST fail
the call with an NERR_BufTooSmall error code.

The server MUST construct the path to canonicalize by appending the PathName to the Prefix . If the
Prefix parameter does not end with one, the server SHOULD insert an implementation - specific path
separator between the Prefix and PathName .<111> The server MUST then canonicalize the resultant
path. The canonicalization process is implementation -dependent.<112>

After the canonicalization is successfully finished, the server MUST determine the path type of the
canonicalized path name, as specified in NetprPathType (section 3.1.4.29), and store the result in the
PathType parameter. Valid return codes for the PathTy pe parameter are as specified in Path

Types (section 2.2.2.9). If this fails, the server MUST fail the call with an ERROR_INVALID_NAME error
code.

The server MAY<113> enforce security measures to verify that the caller has the required permissions
to execu te this call. If the server enforces these security measures and the caller does not have the
required credentials, the server SHOULD<114> fail the call.

31431 NetprPathCompare (Opnum 32)

The NetprPathCompare method performs comparison of two paths.

long NetprPathCompare(
[in, string, unique] SRVSVC_HANDLE ServerName,
[in, string] WCHAR* PathNa mel,
[in, string] WCHAR* PathName2,
[in] DWORD PathType,
[in] DWORD Flags

154 | 240

[MS -SRVS-Diff] - v20210625

Server Service Remote Protocol

Copyright © 2021 Microsoft Corporati on
Release: June 25, 2021

ServerName: An SRVSVC_HANDLE (section 2.2.1.1) pointer that identifies the server. The client
MUST map this structure to an RPC binding handle (see [C706] sections 4.3.5and 5.1.5.2). The
server MUST ignore this parameter.

PathNamel: A pointertoanull -terminated UTF -16 string that contains the first PathName to
compare.

PathName2: A pointertoanull -terminated UTF -16 string that contains the second PathName to
com pare.

PathType: The type of PathName, as specified in section 2.2.2.9.

Flags: A bitmask that MUST contain the bitwise OR of zero or more of the following values that
specify controlling flags.

Value Meaning

0x00000001 SHOULD be set if both of the paths ha ve already been canonicalized.

Return Values: Upon successful processing, the server MUST return 0 if both paths are the same, [
if the first is less than the second, and 1 otherwise. If the method fails, it can return any specific
error code value as sp ecified in [MS -ERREF] section 2.2.

In response to a NetprPathCompare message, the server MUST compare the two paths that are
specified as parameters to see if they match and return this result or return an error code. If the
supplied names are not canonica lized, the server MUST do the canonicalization of the path names
before a comparison can occur. This does not modify the input path names. The clients SHOULD call
this method with canonicalized path names only, because the canonicalization operation can be
expensive. If uncanonicalized path names are passed in, the caller SHOULD be aware that a nonzero
result could be due to an error that occurred during canonicalization.

The PathNamel and PathName2 parameters specify the two path names to be compared.

The Flags parameter MUST be either O or 1. If the Flags parameter has any other value, the server
MUST fail the call with ERROR_INVALID_PARAMETER. If the Flags parameter is 1, it implies that the
specified path names are already canonicalized and the serve r MUST not try to canonicalize them.

Any combination of Namel (canonicalized or not), Name2 (canonicalized or not), and Flags (Oor1)is
valid.

If Flags is setto 0, the server MUST first attempt to canonicalize both Namel and Name2 (and MUST
respond with an error if canonicalization fails) before comparing the names.

If Flags is setto 1, the server MUST compare the names without first attempting canonic alization.
Using Flags=1 could optimize performance because it eliminates the need for the server to repeatedly
canonicalize a path name if it is being compared multiple times. If the Flags parameter does not have
a valid value, the server MUST fail the ca Il with an ERROR_INVALID_PARAMETER error code.

If the Flags parameteris 1,the PathType parameter MUST specify the path type for the two path
names. Valid values for the PathType parameter are as specified in section 2.2.2.9. If the PathType
parameter doe s not have a valid value, the server MAY<115> fail the call.

If the Flags parameter is 0, the server MUST canonicalize the specified path names and obtain their
PathTypes first, as specified in section 3.1.4.30. If this fails, the server MUST fail the call with
ERROR_INVALID_NAME. If the PathTypes for the two path names thus obtained are different, the
server MUST return 1.

155 / 240

[MS -SRVS-Diff] - v20210625

Server Service Remote Protocol

Copyright © 2021 Microsoft Corporati on
Release: June 25, 2021

The server then compares the canonicalized path names by using an implementation -specific<116>
comparison and MUST return 0 to the call er if the paths match, T 1if PathNamel is less than
PathName2 ,and 1if PathNamel is greaterthan PathName2 .

The server MAY<117> enforce security measures to verify that the caller has the required permissions
to execute this call. If the server enforces t hese security measures and the caller does not have the
required credentials, the server SHOULD<118> fail the call.

3.1.4.32 NetprNameValidate (Opnum 33)

The NetprNameValidate method performs checks to ensure that the specified name is a valid name for
the specified type.

NET_API_STATUS NetprNameValidate(
[in, string, unique] SRVSVC_HANDLE Serve rName,
[in, string] WCHAR* Name,
[in] DWORD NameType,
[in] DWORD Flags
)i

ServerName: An SRVSVC_HANDLE (section 2.2.1.1) pointer that identifies the server. The client
MUST map this structure to an RPC binding handle (see [C706] sections 4.3.5 and 5. 1.5.2). The
server MUST ignore this parameter.

Name: A pointertoanull -terminated UTF -16 string that specifies the name to check.
NameType: The type of Name . It MUST be one of the values defined in section 2.2.2.8.
Flags: Reserved, MUST be zero.

Return V alues: The method returns 0x00000000 (NERR_Success) to indicate success; otherwise, it
returns a nonzero error code. The method can take any specific error code value, as specified in
[MS -ERREF] section 2.2.

If the Flags parameter is not equal to zero, th e server SHOULD fail the call with an implementation -
specific error code.<119>

In response to a NetprNameValidate message, the server MUST validate the value of the Name
parameter to ensure that it contains only the characters that are allowed for the spec ified NameType
and that the length of the Name parameter is no greater than the maximum allowed length for its

NameType (as specified in section 2.2.2.8).

The NameType parameter determines what validation is done on the name that is specified by the

Name parameter. Valid values for the NameType parameter are as specified in section 2.2.2.8. If the
NameType parameter does not have a valid value, the server MUST fail the call with an
ERROR_INVALID_PARAMETER error code.

The value of NameType identifies the minimum and maximum lengths for a particular NameType and
the characters that are permitted in a name for that NameType . The server MUST validate the

specified name by be ing sure that its length is within the minimum and maximum lengths for its type

and that there are no characters in its name that are invalid for its type. If any of these checks falil,

the server MUST fail the call with an ERROR_INVALID_NAME error code.

The server MAY<120> enforce security measures to verify that the caller has the required permissions
to execute this call. If the server enforces these security measures and the caller does not have the
required credentials, the server SHOULD<121> fail the ¢ all.

156 / 240

[MS -SRVS-Diff] - v20210625

Server Service Remote Protocol

Copyright © 2021 Microsoft Corporati on
Release: June 25, 2021

3.1.4.33 NetprNameCanonicalize (Opnum 34)

The NetprNameCanonicalize meth od converts a name to the canonical format for the specified type.

NET_API_STATUS NetprNameCanonicalize(
[in, string, unique] SRVSVC_HANDLE ServerName,
[in, string] WCHAR* Name,
[out, size_is(OutbufLen)] WCHAR* Outbuf,
[in, range(0,64000)] DWORD OutbufLen,
[in] DWORD NameType,
[in] DWORD Flags

ServerName: An SRVSVC_HANDLE (section 2.2.1.1) pointer that identifies the server. The client
MUST map this structure to an RPC binding handle (see [C706] sections 4.3.5 a nd 5.1.5.2). The
server MUST ignore this parameter.

Name: A pointertoanull -terminated UTF -16 string specifying the name to canonicalize.

Outbuf: A pointerto anull -terminated UTF - 16 string that is the buffer where the canonicalized name
is returned.

OutbufLen: The length of output buffer Outbuf . The value of this field MUST be within the range 0
through 64,000, inclusive.

NameType: The type of Name, as specified in section 2.2.2.8.

Flags: A bitmask that MUST contain the bitwise OR of zero or more of the following values that
specify controlling flags.

Value Meaning

0x80000000 LM2.x compatible name canonicalization.

0x00000001 If set, the method requires the length of the output buffer to be sufficient to hold any name
of the specified type. Otherwise, the buffer length only needs to be large enough to hold the
canonicalized version of the input name that is specified in this invocation of the method.

Return Values: The method returns 0x00000000 (NERR_Success) to indicate success; otherwise, it
returns a nonzero error code. The method can take any specific error code value, as specified in
[MS - ERREF] section 2.2.

In response to a NetprNameCanonicalize message, the server MUST convert the value of the Name
parameter to one of the canonical for ms that are defined in section 2.2.2.8.

The NameType parameter determines what needs to be done on the name that is specified by the

Name parameter to convert it to a canonical format. Valid values for the NameType parameter are as
specified in Name Types (section 2.2.2.8).Ifthe = NameType parameter does not have a valid value,
the server MUST fail the call with an ERROR_INVALID_PARAMETER e rror code.

The Flags parameter is a bitmask that specifies certain controlling flags that affect how the server
processes this message. The valid bits are 0x80000000 and 0x1. If any other bit is set, the server
MUST fail the call with an ERROR_INVALID_PARA METER error code.

If (Flags & 0x80000000) is true, it implies that the server MUST perform an NTLM version 2.x T
compatible canonicalization. As the following table specifies, some NameTypes have different rules
about how to define a canonical name for those types on NTLM version 2.x.

157 | 240

[MS -SRVS-Diff] - v20210625

Server Service Remote Protocol

Copyright © 2021 Microsoft Corporati on
Release: June 25, 2021

The server MUST validate the Name (as specified by the NetprNameValidate method) to ensure that it
is a valid name of type NameType . If validation fails, the server MUST fail the call with
ERROR_INVALID_NAME.

The server MUST u se the NameType parameter to determine the maximum length of any name for

that type (as specified in the following table). If (Flags & 0x1) is true and the length of the output

buffer specified by the OutBufLen parameter is not greater than or equal to the maximum length of
any name for that type, the server MUST fail the call with an NERR_BufTooSmall error code.

The canonicalization process then truncates the Name so that the length is no greater than the
maximum length for that type, converting the name t o uppercase if needed. The following table
specifies the maximum length for each NameType and whether the server converts names to
uppercase. The second column in the table specifies the behavior when (Flags & 0x80000000) is true,
and the third column spec ifies the behavior when it is false.

Max name length for NTLM 2.x mode Max name length otherwise /
NameType / Uppercase Uppercase
NAMETYPE_USER 20/YES 256/NO
1
NAMETYPE_PASSWORD 14/NO 256/NO
2
NAMETYPE_GROUP 20/YES 256/NO
3
NAMETYPE_COMPUTER 15/YES 259/NO
4
NAMETYPE_EVENT 16/YES 16/YES
5
NAMETYPE_DOMAIN 15/YES 15/NO
6
NAMETYPE_SERVICE 15/YES 80/NO
7
NAMETYPE_NET 259/YES 259/YES
8
NAMETYPE_SHARE 12/YES 80/NO
9
NAMETYPE_MESSAGE 259/YES 259/YES
10
NAMETYPE_MESSAGEDEST 259/YES 259/YES
11
NAMETYPE_SHAREPASSWORD | 8/NO 8/NO
12
NAMETYPE_WORKGROUP 15/YES 15/NO
13

158 / 240

[MS -SRVS-Diff] - v20210625

Server Service Remote Protocol

Copyright © 2021 Microsoft Corporati on
Release: June 25, 2021

The server MAY<122> enforce security measures to verify that the caller has the required permissions
to execute this call. If the server enfor ces these security measures and the caller does not have the
required credentials, the server SHOULD<123> fail the call.

3.1.4.34 NetprNameCompare (Opnum 35)

The NetprNameCompare method does comparison of two names of a specific name type.

long NetprNameCompare(
[in, string, unique] SRVSVC_HANDLE ServerName,
[in, string] WCHAR* Namel,
[in, string] WCHAR* Name2,
[in] DWORD NameType,
[in] DWORD Flags

ServerName: An SRVSVC_HANDLE (section 2.2.1.1) pointer that identifies the server. The client
MUST map this structure to an RPC binding handle (see [C706] sections 4.3.5 and 5.1.5.2) . The
server MUST ignore this parameter.

Namel: A pointertoanull -terminated UTF -16 string that contains the first name to compare.
Name2: A pointerto anull -terminated UTF -16 string that contains the second name to compare.
NameType: The type of names, as specified in section 2.2.2.8.

Flags: A bitmask that MUST contain the bitwise OR of zero or more of the following values, which
specify controlling flags.

Value Meaning

0x80000000 Enable LM2.x compatibility.

0x00000001 SHOULD be set if both names have already been canonicalized (by using
NetprNameCanonicalize).

Return Values: MUST return O if both paths are the same. Other values indicate that either the paths
are different or an error occurred when the client request was processed.

In response to a NetprNameCompare message, the server MUST compare the two names that are
specified as parameters to ensure that they contain only the characters that are allowed for the

specified NameType and that the length is no greater than the maximum allowed lengt h for its
NameType (as specified in section 2.2.2.8). If the supplied names are not canonicalized, the server

MUST do the canonicalization of the names.

The Namel parameterand Name2 parameter specify the two names to be compared.

The Flags parameterisa bitmask that specifies certain controlling flags that affect how the server
processes this message. The valid bits are 0x80000000 and 0x1. If any other bit is set, the server
MUST fail the call with an ERROR_INVALID PARAMETER error code.

If (Flags & 0x800 00000) is true, it implies that the server MUST enable NTLM version 2.x

compatibility. This implies that the rules that are used for comparison and canonicalization (if needed)

MUST be those that are defined for NTLM version 2.x. For details about the effe ct on canonicalization,
see NetprNameCanonicalize (Opnum 34) (section 3.1.4.33). With respect to comparison, if (Flags &
0x80000000) is true and the NameType being compared is NAMETYPE_PASSWORD,
NAMETYPE_SHAREPASSWORD, NAMETYPE_MESSAGE, or NAMETYPE_MESSAGE DEST, the server MUST
perform a case -sensitive comparison. Otherwise, the server MUST perform a case -insensitive
comparison.

159 / 240

[MS -SRVS-Diff] - v20210625

Server Service Remote Protocol

Copyright © 2021 Microsoft Corporati on
Release: June 25, 2021

If (Flags & Ox1) is true, the names that are specified by Namel and Name2 are already canonicalized,
and the NameType parameter MUS T specify the name type for the two names. Valid values for the
NameType parameter are listed in Name Types (section 2.2.2.8).Ifthe = NameType parameter does not
have a valid value, the server MUST fail the call with an ERROR_INVALID_PARAMETER error code.

If (Flags & Ox1) is not true, the server MUST canonicalize the specified names and obtain their name
types, as specified in NetprNameCanonicalize (section 3.1.4.33). If this fails, the server MUST fail the
call with an ERROR_INVALID_PARAMETER error code.

The server MUST compare the canonicalized version of the names, if the names were not already

canonicalized; otherwise, it MUST compare the original names and MUST return O if both names are

the same, 71 1if Namel islessthan Name2,and 1if Namel is greate rthan Name2 . The comparison is
implementation - specific.<124>

The server MAY<125> enforce security measures to verify that the caller has the required permissions

to execute this call. If the caller does not have the required credentials, the server SHOULD <126> fail
the call.
3.14.35 NetrDfsGetVersion (Opnum 43)

The NetrDfsGetVersion method check s whether the server is a DFS server and if so, returns the DFS
version. An implementation MAY<127> choose to support this method.

NET_API_STATUS NetrDfsGetVersion(
[in, string, unique] SRVSVC_HANDLE ServerName,
[out] DWORD* Version

);

ServerName: An SRVSVC_HANDLE (section 2.2.1.1) pointer that identifies the server. The client
MUST map this structure to an RPC binding handle (see [C706] sections 4.3.5 and 5.1.5.2). The
server MUST ignore this parameter.

Version: A pointer to a DWORD where the server re turns the DFS version.

Return Values: The method returns 0x00000000 (NERR_Success) to indicate success; otherwise, it
returns a nonzero error code. The method can take any specific error code value, as specified in
[MS - ERREF] section 2.2.

In response to a NetrDfsGetVersion message, the server SHOULD<128> choose to perform no
processing and return an implementation -specific error code when this method is called. If the server
supports DFS, the server MAY return the DFS version number that is in use on the server.

The Version parameter is a pointer to a DWORD. If the server supports DFS, the server MUST set this
parameter to an implementation -specific<129> DFS version number that the server supports.

The server MAY<130> enforce security measures to verify that the server enforces these security
measures and that the caller has the required permissions to execute this call. If the caller does not
have the required credentials, the server SHOULD<131> fail the call.

3.1.4.36 NetrDfsCreatel ocalPartiti on (Opnum 44)

The NetrDfsCreateLocalPartitio n method marks a share as being a DFS share. In addition, if the

Relationinfo parameter is non -NULL, it creates DFS links, as specified in [MS -DFSC], for each of the
entries inthe Relationinfo parameter. An implementation MAY<132> choose to support this m ethod.

NET_API_STATUS NetrDfsCreateLocalPartition(
[in, string, unique] SRVSVC_HANDLE ServerName,
[in, string] WCHAR* ShareName,

160 / 240

[MS -SRVS-Diff] - v20210625

Server Service Remote Protocol

Copyright © 2021 Microsoft Corporati on
Release: June 25, 2021

[in] GUID* EntryUid,

[in, string] WCHAR* EntryPrefix,

[in, string] WCHAR* ShortName,

[in] LPNET_DFS_ENTRY_ID_CONTAI NER RelationInfo,
[in] int Force

ServerName: An SRVSVC_HANDLE (section 2.2.1.1) pointer that identifies the server. The client
MUST map this structure to an RPC binding handle (see [C706] sections 4.3.5 and 5.1.5.2). The
server MUST ignore this parame ter.

ShareName: A pointertoanull -terminated UTF -16 string that specifies the name of a local disk share
on the server to add to DFS.

EntryUid: A pointer to a GUID type that specifies the GUID for this DFS share. The GUID for this
share MUST NOT match a GUID for an existing local partition.<133>

EntryPrefix: A pointertoanull -terminated UTF -16 string that specifies the path of the DFS share.

ShortName: A pointertoanull -terminated UTF - 16 string that specifies the short -name version (8.3
format) of the EntryPrefix parameter.

Relationinfo: A pointer to a NET_DFS_ENTRY_ID_CONTAINER structure. Specifies the DFS child links
that are under the DFS share that is specified by the EntryPrefix parameter.

Force: The Force parameter is ignored and MUST be set to z ero.

Return Values: The method returns 0x00000000 (NERR_Success) to indicate success; otherwise, it
returns a nonzero error code. The method can take any specific error code value, as specified in
[MS -ERREF] section 2.2.

In response to a NetrDfsCreateLocal Partition message, the server SHOULD<134> choose to perform

no processing and return an implementation -specific error code when this method is called. If the

server supports DFS, the server MAY mark an existing SMB file share as a DFS share that enables it to
be accessed by using DFS, as specified in [MS -DFSC].

The ShareName parameter MUST specify the name of an existing SMB file share of type
STYPE_DISKTREE (for more information, see Share Types (section 2.2.2.4)), or the server MUST fail
the call withan ERROR_BAD_NET_NAME error code if the share is not present. If the share is present,
but not of type STYPE_DISKTREE, it MUST fail with an ERROR_BAD_DEV_TYPE error code.

The EntryUid parameter specifies the GUID that the server MUST assign to the new DFS sha re.

This parameter MUST NOT be NULL, or the server MUST fail the call with an
ERROR_INVALID_PARAMETER error code. If the EntryUid parameter matches a GUID for an existing
local partition, the server MUST fail the call with an ERROR_INVALID_PARAMETER error code.

The EntryPrefix parameter specifies the path of the DFS share. This string MUST be in one of the
following two forms:

A Thefirstformis \Dfsname \sharename, where Dfsname is the name of the storage server that
hosts the root of a standalone DFS implem entation; and sharename is the name of a shared folder
that is published on the DFS host server.

A The second formis \DomainName \DomDfsname, where = DomainName is the name of the domain
that hosts the DFS root; and DomDfsname is the name of the root of a domain -based DFS
implementation that is published in the directory service of the domain.

The Relationinfo parameter specifies the DFS child links to create und er the share that is specified by
EntryPrefix . It has a member count that specifies the number of child links and a Buffer member that
is an array of the Count structure of type NET_DFS_ENTRY_ID. A DFS child link MUST be created for

161 / 240

[MS -SRVS-Diff] - v20210625

Server Service Remote Protocol

Copyright © 2021 Microsoft Corporati on
Release: June 25, 2021

each entry in the Buffe r. The Relationinfo parameter MUST not be NULL, or the server MUST fail the
call with an ERROR_INVALID_PARAMETER error code.

The ShortName parameter specifies a share name (in the 8.3 format) that is specified by EntryPrefix
and MUST be interpreted by the server in an implementation -specific manner.<135>

The Force parameter is ignored and MUST be zero.

The server MAY<136> enforce security measures to verify that the caller has the required permissions
to execute this call. If the server enforces these secur ity measures and the caller does not have the
required credentials, the server SHOULD<137> fail the call.

3.14.37 NetrDfsDeleteLocalPartition (Opnum 45)

The NetrDfsDeleteLocalPartition method deletes a DFS share (Prefix) on the server. An implementation
MAY<138> choose to support this method.

NET_API_STATUS NetrDfsDeleteLocalPartition(
[in, string, unique] SRVSVC_HANDLE ServerName,
[in] GUID* vid,
[in, string] WCHAR* Prefix

)

ServerName: An SRVSVC_HANDLE (section 2.2.1.1) pointer that identifies the server. The client
MUST map this structure to an RPC binding handle (see [C706] sections 4.3.5 and 5.1.5.2). The
server MUST ignore this parameter.

Uid: Specifies the GUID of the DFS share to delete. This GUID MUST be obtained by using the
NetrDfsGetInfo (Opnum 4) method, which is specified in [MS -DFSNM] se ction 3.1.4.1.6.

Prefix: A pointerto anull -terminated UTF -16 string that contains the path to the DFS share.

Return Values: The method returns 0x00000000 (NERR_Success) to indicate success; otherwise, it
returns a nonzero error code. The method can take any specific error code value, as specified in
[MS - ERREF] section 2.2.

In response to a NetrDfsDeleteLocalPartition message, the server SHOULD<139> choose to perform
no processing and return an implementation -specific error code when this method is called. If the
server supports DFS, the server MAY delete a DFS share.

The Prefix parameter specifies the path of the DFS share to delete. This string MUST be in one of the
following two forms:

A Thefirstformis \Dfsname \sharename, where Dfsname isthe name ofth e storage server that
hosts the root of a standalone DFS implementation; and sharename is the name of a shared folder
that is published on the DFS host server.

A The second formis \DomainName \DomDfsname, where = DomainName is the name of the domain
that hosts the DFSroot; and DomDfsname is the root name of a domain -based DFS
implementation that is published in the directory service of the domain.

If the server cannot find a DFS share whose GUID matches the Uid parameter and whose path
matches the Prefix param eter, it MUST fail the call with an implementation -specific error code. If a
matching share is found, the server deletes the share and returns 0.

The server MAY<140> enforce security measures to verify that the caller has the required permissions
to execut e this call. If the server enforces these security measures and the caller does not have the
required credentials, the server SHOULD<141> fail the call.

162 / 240

[MS -SRVS-Diff] - v20210625

Server Service Remote Protocol

Copyright © 2021 Microsoft Corporati on
Release: June 25, 2021

3.1.4.38 NetrDfsSetLocalVolumeState (Opnum 46)

The NetrDfsSetLocalVolumeState method sets a local DFS share online or offline. An implementation
MAY<142> choose to support this method.

NET_API_STATUS NetrDfsSetLocalVolumeState(
[in, string, unique] SRVSVC_HANDLE ServerName,
[in] GUID* Uid,
[in, string] WCHAR* Prefix,
[in] unsigned long State

ServerName: An SRVSVC_HANDLE (section 2.2.1.1) pointer that identifies the server. The client
MUST map this structure to an RPC binding handle (see [C706] sections 4.3.5 and 5.1.5.2). The
server MUST ignore this parameter.

Uid: Specifies the GUID of the DFS share. This G UID MUST be obtained by using the NetrDfsGetInfo
(Opnum 4) method, as specified in [MS -DFSNM] section 3.1.4.1.6.

Prefix: A pointerto a null -terminated UTF -16 string that specifies the path to the DFS share.

State: A DWORD that specifies the new state for the DFS share. To set the share to offline, the State
parameter MUST be (0x80). The State parameter MUST be set to any other value to take the
share online.

Return Values: The method returns 0x00000000 (NERR_Success) to indicate success; otherwise, it
retu rns a nonzero error code. The method can take any specific error code value, as specified in
[MS -ERREF] section 2.2.

In response to a NetrDfsSetLocalVolumeState message, the server SHOULD<143> choose to perform
no processing and return an implementation -specific error code when this method is called. If the
server supports DFS, the server MAY set the state of a local DFS share to online or offline. Marking a
share state offline makes the share inaccessible over DFS.

The Uid parameter specifies the GUID of t he share whose state needs to be set.

The Prefix parameter specifies the path of the DFS share whose state needs to be set. This parameter
MUST refer to a local DFS share. If the server does not find a DFS share whose path starts with the

value of the Prefix parameter and whose GUID matches the value of the Uid parameter, the server
MUST fail the call and return an implementation - specific error code.

The State parameter specifies whether the share state MUST be set to online or offline. If the value of
Stat e is 0x80, the share state MUST be set to offline. For any other value, the share state MUST be set
to online.

The server MAY<144> enforce security measures to verify that the caller has the required permissions
to execute this call. If the server enforces these security measures and the caller does not have the
required credentials, the server SHOULD<145> fail the call.

3.1.4.39 NetrDfsCreateExitPoint (Opnum 48)

The NetrDfsCreateExitPoint method creates a DFS link on the server. An implementation MAY<146>
choose to support this method.

NET_API_STATUS NetrDfsCreateExitPoint(
[in, string, unique] SRVSVC_HANDLE ServerName,
[in] GUID* vid,
[in, string] WCHAR* Prefix,
[in] unsigned long Type,

163 / 240

[MS -SRVS-Diff] - v20210625

Server Service Remote Protocol

Copyright © 2021 Microsoft Corporati on
Release: June 25, 2021

[in, range(0,32)] DWORD ShortPrefixLen,
[out, size_is(ShortPrefixLen)] WCHAR* ShortPrefix

);

ServerName: An SRVSVC_HANDLE (section 2.2.1.1) pointer that identifies the server. The client
MUST map this structure to an RPC binding handle (see [C706] sections 4.3.5 and 5.1.5.2). The
server MUST ignore this parameter.

Uid: Specifies the GUID for the DFS link. This GUID MUST be obtained by using the NetrDfsGetInfo
(Opnum 4) method, which is specified in [MS -DFSNM] section 3.1.4.1.6.

Prefix: A pointerto a null -terminated UTF -16 string that specifies the path of the DFS link.
Type: This parameter MUST be one of the values that are specified in section 2.2.2.13.

ShortPrefixLen: Specifies the size of the buffer passed in the ShortPrefix . The value of this field
MUST be within the range 0 through 32, inclusive.

ShortPrefix: A pointerto a null -terminated UTF -16 string that is the buffer where the name of the
DFS namespace root or link is returned.<147>

Return Values: The method returns 0x00000000 (NERR_Success) to indicate success; otherwise, it
returns a nonzero error code. The method can take any specific error code value, as spe cified in
[MS -ERREF] section 2.2.

In response to a NetrDfsCreateExitPoint message, the server SHOULD<148> choose to perform no
processing and return an implementation -specific error code when this method is called. If the server
supports DFS, the server MA Y create a DFS link, as specified in [MS -DFSC].

The Uid parameter specifies the GUID to be assigned to the new link.

The Prefix parameter specifies the path of the DFS link. The string MUST be in one of two forms:

A Thefirstformis \Dfsname \sharename \path _to_link, where Dfsname is the name of the storage
server that hosts the root of a standalone DFS implementation; sharename is the name of a
shared folder that is published on the DFS host server; and path_to_link specifies the path on the
physical network share.

A The second formis \DomainName \DomDfsname \path_to_link, where DomainName is the name of
the domain that hosts the DFS root; DomDfsname is the root name of a domain -based DFS
implementation that is published in the directory service of the domain; a nd path_to_link specifies
the path on the physical network share.

The Type parameter specifies the type of the new link and MUST be one of the values listed in section

2.2.2.13. If the value of this parameter is PKT_ENTRY_TYPE_MACHINE, the server MUST fail the call
and return an implementation - specific error code.
The ShortPrefixLen parameter specifies the length of the ShortPrefix parameter that specifies a short

name for the new link in the 8.3 format.

The server MAY<149> enforce security measures to veri fy that the caller has the required permissions
to execute this call. If the server enforces these security measures and the caller does not have the
required credentials, the server SHOULD<150> fail the call.

3.1.4.40 NetrDfsModifyPrefix (Opnum 50)

The NetrDfsModifyPrefix method changes the path that corresponds to a DFS link on the serve r. An
implementation MAY<151> choose to support this method.

164 | 240

[MS -SRVS-Diff] - v20210625

Server Service Remote Protocol

Copyright © 2021 Microsoft Corporati on
Release: June 25, 2021

NET_API_STATUS NetrDfsModifyPrefix(

[in, string, unique] SRVSVC_HANDLE ServerName,
[in] GUID* vid,

[in, string] WCHAR* Prefix

)

ServerName: An SRVSVC_HANDLE (section 2.2.1.1) pointer that identifies the server. The client
MUST map this structure to an RPC binding handle (see [C706] sections 4.3.5 and 5.1.5.2). The
server MUST ignore this parameter.

Uid: Specifies the GUID that corresponds to the DFS link that needs to be changed. This GUID MUST
be obtained by using the NetrDfsGetInfo (Opnum 4) method, specified in [MS -DFSNM] section
3.1.4.1.6.

Prefix: A pointerto anull -terminated UTF -16 string that specifies the path of the updated DFS link.

Return Values: The method returns 0x00000000 (NE RR_Success) to indicate success; otherwise, it
returns a nonzero error code. The method can take any specific error code value, as specified in
[MS -ERREF] section 2.2.

In response to a NetrDfsModifyPrefix message, the server SHOULD<152> choose to perform n o]
processing and return an implementation -specific error code when this method is called. If the server
supports DFS, the server MAY update the path for a DFS link. This message is typically used by

domain controllers (DCs) to fix a bad prefix match.

The Uid parameter specifies the GUID that corresponds to the DFS link that needs to be changed.

The Prefix parameter specifies the path of the updated DFS link. The string MUST be in one of two
forms:

A Thefirstformis \Dfsname \sharename \path_to_link, where = Dfsname is the name of the storage
server that hosts the root of a standalone DFS implementation; sharename is the name of a
shared folder that is published on the DFS host server; and path_to_link specifies the path on the
physical network share.

A The secon d formis \DomainName \DomDfsname \path_to_link, where DomainName is the name of
the domain that hosts the DFS root; DomDfsname is the name of the root of a domain -based DFS
implementation that is published in the directory service of the domain; and path_to _link specifies
the path on the physical network share.

The server MAY<153> enforce security measures to verify that the caller has the required permissions
to execute this call. If the server enforces these security measures and the caller does not have t he
required credentials, the server SHOULD<154> fail the call.

3.1.441 NetrDfsDeleteExitPoint (Opnum 49)

The NetrDfsDeleteExitPoint method deletes a DFS link on the server. An implementation MAY<155>
choose to support this method.

NET_API_STATUS NetrDfsDeleteExitPoint(
[in, string, unique] SRVSVC_HANDLE ServerName,
[in] GUID* vid,
[in, string] WCHAR* Prefix,
[in] unsigned long Type
)

165 / 240

[MS -SRVS-Diff] - v20210625

Server Service Remote Protocol

Copyright © 2021 Microsoft Corporati on
Release: June 25, 2021

ServerName: An SRVSVC_HANDLE (section 2.2.1.1) point that identifies the server. The client MUST
map this structure to an RPC binding handle (see [C706] sections 4.3.5 and 5.1.5.2). The server
MUST ignore this parameter.

Uid: Specifies the GUID that corresponds to the DFS link that is specified by the Prefix parameter.
This GUID MUST be obtained by using the NetrDfsGetInfo (Opnum 4) met hod, specified in [MS -
DFSNM] section 3.1.4.1.6.

Prefix: A pointerto a null -terminated UTF -16 string that specifies the path of the DFS link.
Type: This parameter MUST be one of the values listed in section 2.2.2.13.

Return Values: The method returns 0x000 00000 (NERR_Success) to indicate success; otherwise, it
returns a nonzero error code. The method can take any specific error code value, as specified in
[MS -ERREF] section 2.2.

In response to a NetrDfsDeleteExitPoint message, the server SHOULD<156> choose to perform no
processing and return an implementation -specific error code when this method is called. If the server
supports DFS, the server MAY delete a DFS link, as specified in [MS -DFSC].

The Uid parameter specifies the GUID of the link to delete.

The Prefix parameter specifies the path of the DFS link. The string MUST be in one of two forms:

A Thefirstformis \Dfsname \sharename \path_to_link, where = Dfsname is the name of the storage
server that hosts the root of a standalone DFS implementation; sharenam e is the name of a
shared folder that is published on the DFS host server; and path_to_link specifies the path on the
physical network share.

A The second formis \DomainName \DomDfsname \path_to_link, where DomainName is the name of
the domain that hosts the DFS root; DomDfsname is the root name of a domain -based DFS
implementation that is published in the directory service of the domain; and path_to_link specifies
the path on the physical network share.

The Type parameter specifies the type of the link to delete and MUST be one of the values listed in
section 2.2.2.13. If the value of this parameter is PKT_ENTRY_TYPE_MACHINE, the server MUST fall
the call and return an implementation - specific error code.

If alin k whose GUID, path, and type match the specified parameters is present, the server MUST
delete it; otherwise, it MUST fail the call with an implementation - specific error code.

The server MAY<157> enforce security measures to verify that the caller has the required permissions
to execute this call. If the server enforces these security measures and the caller does not have the
required credentials, the server SHOULD<158> fail the call.

3.1.4.42 NetrDfsFixLocalVolume (Opnum 51)

The NetrDfsFixLocalVolume method provides knowledge of a new DFS share on the server. An
implementation MAY< 159> choose to support this method.

NET_API_STATUS NetrDfsFixLocalVolume(
[in, string, unique] SRVSVC_HANDLE ServerName,
[in, string] WCHAR* VolumeName,
[in] unsigned long EntryType,
[in] unsigned long ServiceType,
[in, string] WCHAR*Stgld,
[in] GUID* EntryUid,
[in, string] WCHAR* EntryPrefix,
[in] LPNET_DFS_ENTRY_ID_CONTAINER RelationInfo,
[in] unsigned long CreateDisposition

166 / 240

[MS -SRVS-Diff] - v20210625

Server Service Remote Protocol

Copyright © 2021 Microsoft Corporati on
Release: June 25, 2021

ServerName: An SRVSVC_HANDLE (section 2.2.1.1) pointer that identifies the server. The clien t
MUST map this structure to an RPC binding handle (see [C706] sections 4.3.5 and 5.1.5.2). The
server MUST ignore this parameter.

VolumeName: A pointer to a null -terminated UTF -16 string that specifies the target for the DFS root
share. This target MUST b e local to the server; for example, \??2\ C:\ DfsShare.<160> This target
SHOULD NOT contain a directory that is in DFS, and it SHOULD NOT be a child of a DFS share. If
the specified volume name is not valid, the server SHOULD fail the call by using an
impleme ntation -specific error code.

EntryType: This parameter MUST be one of the values listed in section 2.2.2.13. If the specified entry
type is not valid, the server SHOULD fail the call with an implementation - specific error code.

ServiceType: This parameter M UST be a combination of one or more of the following values. If the

specified service type is not valid, the server SHOULD fail the call with an implementation -specific
error code.
Value Meaning
DFS_SERVICE_TYPE_MASTER Master service
0x00000001
DFS_SERVICE_TYPE_READONLY Read-only service
0x00000002
DFS_SERVICE_TYPE_LOCAL Local service
0x00000004
DFS_SERVICE_TYPE_REFERRAL Referral service
0x00000008
DFS_SERVICE_TYPE_ACTIVE Active service
0x000000010
DFS_SERVICE_TYPE_DOWN_LEVEL | Down -level service
0x000000020
DFS_SERVICE_TYPE_COSTLIER Costlier service than previous
0x000000040
DFS_SERVICE_TYPE_OFFLINE Service is offline
0x000000080

Stgld: A pointer to a variable that specifies an ID for the local storage. The server MUST ignore the
value that is passed in for the Stgld parameter.

EntryUid: Specifies the GUID that corresponds to the DFS share. This GUID MUST be obtained by
using the NetrDfsG etinfo (Opnum 4) method, which is specified in [MS -DFSNM] section 3.1.4.1.6.

EntryPrefix: A pointertoanull -terminated UTF -16 string that specifies the path of the DFS share to
be updated.

RelationInfo: A pointer to a NET_DFS_ENTRY_ID_CONTAINER structure as specified in section
2.2.4.108. Specifies the DFS child links under the DFS share as specified by the EntryPrefix
parameter.

167 / 240

[MS -SRVS-Diff] - v20210625

Server Service Remote Protocol

Copyright © 2021 Microsoft Corporati on
Release: June 25, 2021

CreateDisposition: Specifies what to do, depending on whether the share already exists. This field
MUST be set to one of the fo llowing values.

Value Meaning

FILE_SUPERSEDE | If the share already exists, replace it with the specified share. If it does not exist,
0x00000000 create the specified share.

FILE_OPEN If the share already exists, fail the request and do not create or open the specified
0x00000001 share. If it does not exist, create the specified share.

FILE_CREATE If the file already exists, open it instead of creating a new share. If it does not exist, fail
0x00000002 the request and do not create a new share.

Return Values: The method returns 0x00000000 (NERR_Success) to indicate success; otherwise, it
returns a nonzero error code. The method can take any specific error code value, as specified in
[MS -ERREF] section 2.2.

In response to a NetrDfsFixLocalVolume message , the server SHOULD<161> choose to perform no
processing and return an implementation -specific error code when this method is called. If the server
supports DFS, the server MAY add the link name that corresponds to a specified Uid. This message
typically i s sent by a domain controller when it discovers that the server is completely unaware of a

new DFS volume.

The VolumeName parameter specifies the target for the DFS root share. This target MUST be local to
the server and is in the form of a Windows NT oper ating system path name, for example,

\??\ C:\ DfsShare.<162> This target SHOULD NOT contain a directory that is in DFS, and it SHOULD
NOT be a child of a DFS share.

The EntryType parameter specifies the type of the link and MUST be one of the values listed i n section
2.2.2.13.

The ServiceType parameter specifies the service type of the client.
The Stgld parameter specifies an implementation -specific ID for the local storage.
The EntryUid parameter specifies the GUID for the new link.

The Prefix parameter spec ifies the path of the updated DFS link. The string MUST be in one of two
forms:

A Thefirstformis \Dfsname \sharename \path_to_link, where Dfsname is the name of the storage
server that hosts the root of a standalone DFS implementation; sharename isthe name ofa
shared folder that is published on the DFS host server; and path_to_link specifies the path on the
physical network share.

A The second formis \DomainName \DomDfsname \path_to_link, where DomainName is the name of
the domain that hosts the DFS root; DomDfsname is the name of the root of a domain -based DFS
implementation that is published in the directory service of the domain; and path_to_link specifies
the path on the physical network share.

The Relationinfo parameter specifies the DFS child links under the DFS share that is specified by

EntryPrefix . If this parameter is NULL or if its Count member is nonzero and its Buffer member is
NULL, the server fails the call by using an ERROR_INVALID_PARAMETER error code.
The CreateDisposition parameter specifies what MUST happen if a share with the path EntryPrefix

already exists.

168 / 240

[MS -SRVS-Diff] - v20210625

Server Service Remote Protocol

Copyright © 2021 Microsoft Corporati on
Release: June 25, 2021

The server MAY<163> enforce security measures to verify that the caller has the required permissions
to execute this call. If the s erver enforces these security measures and the caller does not have the
required credentials, the server SHOULD<164> fail the call.

3.1.4.43 NetrDfsManagerReportSitelnfo (Opnum 52)

The NetrDfsManagerReportSitelnfo method obtains a list of names that SHOULD<165> correspond to
the Active Directory sites covered by the specified server. An implementation MAY<166> choose to
support this method.

NET_API_STATUS NetrDfsManagerReportSitelnfo(
[in, string, unique] SRVSVC_HANDLE ServerName,
[in, out, unique] LPDFS_SITELIST_INFO* ppSitelnfo

);

ServerName: An SRVSVC_HANDLE (section 2.2.1.1) pointer that identifies the server. The client
MUST map this structure to an RPC binding handle (see [C706] sections 4.3.5 and 5.1.5.2).

ppSit elnfo: A pointer to an LPDFS_SITELIST_INFO structure, which in turn points to the location of a
DFS_SITELIST_INFO structure in which the information is returned.

Return Values: The method returns 0x00000000 (NERR_Success) to indicate success; otherwise, it
returns a nonzero error code. The method can take any specific error code value, as specified in
[MS - ERREF] section 2.2.

The ppSitelnfo parameter is a pointer to a LPDFS_SITELIST_INFO member, which in turn points to the
location of a DFS_SITELIST_INFO str ucture in which the information is returned. That structure has a
cSites member that the server SHOULD set to the number of sites returned. The information about

the sites themselves MUST be returned in the Site member, which is an array of

DFS_SITENAME_IN FO structures. The sites the server returns are implementation -specific.<167>

The server MAY<168> enforce security measures to verify that the caller has the required permissions
to execute this call. If the server enforces these security measures and the caller does not have the
required credentials, the server SHOULD<169> fail the call.

3.1.4.44 NetrServerAliasAdd (Opnum 54)

The NetrServerAliasAdd method attaches an alias name to an existing server name and inserts Alias
objects into AliasList , through which the shared resource can be accessed either with server name or
alias name. An aliasi s used to identify which resources are visible to an SMB client based on the
server name presented in each tree connect request.

NET_API_STATUS NetrServerAliasAdd(

[in, string, unique] SRVSVC_HANDLE ServerName,

[in] DWORD Level,

[in, switch_is(Level)] LPSERVER_ALIAS_INFO InfoStruct

);

ServerName: An SRVSVC_HANDLE (section 2.2.1.1) that identifies the server. The client MUST map
this structure to an RPC binding handle (see [C706] sections 4.3.5 and 5.1.5.2). The server MUST
ignore this parameter.

Level : Specifies the information level of the data. It MUST be one of the following values.

169 / 240

[MS -SRVS-Diff] - v20210625

Server Service Remote Protocol

Copyright © 2021 Microsoft Corporati on
Release: June 25, 2021

Value Meaning

0 The buffer is of type SERVER_ALIAS_INFO_0_CONTAINER.

InfoStruct: A pointer to the SERVER_ALIAS_INFO union that contains information about the alias.
The value of the Level parameter determines the type of the contents of the InfoStruct parameter,
as the preceding table shows.

Return Values: The method returns 0x00000000 (NERR_Success) to indicate success; otherwise, it
returns a nonzero error code. The method can take any specific error code value, as specified in
[MS -ERREF] section 2.2. The most common error codes are listed in the following table.

Return value/code Des cription

0x00000000 The client request succeeded.
NERR_Success

0x00000005 Access is denied.
ERROR_ACCESS_DENIED

0x00000057 The client request failed because the specified parameter is invalid.
ERROR_INVALID_PARAMETER

0x00000008 Not enough storage is available to process this command.
ERROR_NOT_ENOUGH_MEMORY

0x00000846 The alias already exists.
NERR_DuplicateShare

0x0000007C The system call level is not correct.
ERROR_INVALID_LEVEL

In response to a NetrServerAliasAdd message, t he server MUST add an alias to attach the existing
server name and insert it into AliasList upon successful return, or return an error code for a failure
case. Multiple alias names can be attached to the same server name.

The server name to be attached to the alias is specified in the srvai*_target member of the
SERVER_ALIAS_INFO structure. If the specified target name is an empty string or does not match any
Transport.ServerName in the TransportList , the server SHOULD fail the call with an
ERROR_INVALID_PA RAMETER error code.

The Level parameter determines the type of structure that the client has used to specify information

about the new alias. The value of the Level parameter MUST be 0. If the Level parameter is not equal
to 0, the server MUST fail the call and return an ERROR_INVALID _LEVEL error code.
The name of the alias to be added is specified in the srvai*_alias member of the
SERVER_ALIAS_INFO structure. srvai*_alias MUST be a nonempty null -terminated UTF -16 string if
srvai*_default is 0 or an empty string if srvai*_default is no nzero; otherwise, the server MUST fail
the call with an ERROR_INVALID_PARAMETER error code. If srvai*_alias is a nonempty string and it
matches an existing Alias.alias in the AliasList , the server MUST fail the call with an
ERROR_INVALID PARAMETER errorco de. If srvai*_alias is an empty string and srvai*_default is
set, the server MUST fail the call with an implementation -specific error code if ~ DefaultServerName is
not NULL. Otherwise, DefaultServerName MUST be setto srvai*_target as specified in section
3.1.1.1.
The server MAY<170> enforce security measures to verify that the caller has the required permissions
to execute this call. If the server enforces these security measures and the caller does not have the
required credential s, the server SHOULD<171> fail the call.
170 / 240

[MS -SRVS-Diff] - v20210625

Server Service Remote Protocol

Copyright © 2021 Microsoft Corporati on
Release: June 25, 2021

The server MUST persist the InfoStruct and Level parameters to a persistent configuration store. If an
alias with the same srvaiO_alias and srvaiQ_target already exists in the store, the preexisting entry
MUST be ov erwritten with this entry.

3.1.4.45 NetrServerAliasEnum (Opnum 55)

The NetrServerAlia sEnum method retrieves alias information for a server based on specified alias
name or server name.

NET_API_STATUS NetrServerAliasEnum(
[in, string, unique] SRVSVC_HANDLE ServerName,
[in, out] LPSERVER_ALIAS_ENUM_STRUCT InfoStruct,
[in] DWORD Prefere dMaximumLength,
[out] LPDWORD TotalEntries,
[in, out, unique] LPDWORD ResumeHandle

ServerName: An SRVSVC_HANDLE (section 2.2.1.1) pointer that identifies the server. The client
MUST map this structure to an RPC binding handle (see [C706] sections 4. 3.5and 5.1.5.2). The
server MUST ignore this parameter.

InfoStruct: A pointer to a structure, in the format of a SERVER_ALIAS_ENUM_STRUCT, as specified
in section 2.2.4.104. The SERVER_ALIAS_ENUM_STRUCT structure has a Level member that
specifies the type of structure to return in the ServerAliasinfo member. The Level member
MUST be one of the values specified in section 2.2.4.104.

PreferedMaximumLength: Specifies the preferred maximum length, in bytes, of the returned data.
If the specified value is MAX_P REFERRED_LENGTH, the method MUST attempt to return all
entries.

TotalEntries: The total number of entries that could have been enumerated if the buffer had been big
enough to hold all the entries.

ResumeHandle: A pointer to a value that contains a handle, which is used to continue an existing
alias search in AliasList . The handle MUST be zero on the first call and remain unchanged for
subsequent calls. If the ResumeHandle parameter is NULL, no resume handle MUST be stored. If
this parameter is not NULL and the method returns ERROR_MORE_DATA, this parameter receives
an implementation -specific nonzero value that can be passed in subsequent calls to this method to
continue with the enumeration.

If this parameter is NULL or points to 0x00000000, the enumeration starts from the beginning of
the AliasList
Return Values: The method returns 0x00000000 (NERR_Success) to indicate success; otherwise, it

returns a nonzero error code. The method can take any specific error code value, as specified in
[MS -ERREF] section 2 .2. The most common error codes are listed in the following table.

Return value/code Description

0x00000000 The client request succeeded.
NERR_Success

0x00000005 Access is denied.
ERROR_ACCESS_DENIED

0x00000057 The client request failed because the specified parameter is invalid.
ERROR_INVALID_PARAMETER

171 | 240

[MS -SRVS-Diff] - v20210625

Server Service Remote Protocol

Copyright © 2021 Microsoft Corporati on
Release: June 25, 2021

Return value/code Description

0x00000008 Not enough storage is available to process this command.
ERROR_NOT_ENOUGH_MEMORY

0x0000084B The allocated buffer is too small to hold single entry.
NERR_BufTooSmall

0x0000007C The system call level is not correct.
ERROR_INVALID_LEVEL

0x000000EA The client request succeeded. More entries are available. Not all entries
ERROR MORE DATA could be returned in the buffer size that is specified by
- - Prefere dMaximumLength

In response to a NetrServerAliasEnum message, the server MUST return information about each alias
resource on a server, or return an error code.

The InfoStruct parameter has a Level member. The valid values of Level areO.Ifthe Level mem ber
is not equal to 0, the server MUST fail the call with an ERROR_INVALID_LEVEL error code.

If the Level memberis 0, the server MUST return the information about aliases by filling the
SERVER_ALIAS_INFO_0_CONTAINER structure in the ServerAliasinfo member of the InfoStruct
parameter. The SERVER_ALIAS_INFO_O0_CONTAINER structure contains an array of
SERVER_ALIAS_INFO_O0 structures.

The PreferedMaximumLength parameter specifies the maximum number of bytes that the server can
return for the ServerAliasinfo buff er. If PreferedMaximumLength is insufficient to hold all the
entries, the server MUST return the maximum number of entries as will fit in the ServerAliasinfo
buffer and return ERROR_MORE_DATA. If this parameter is equal to MAX_PREFERRED_LENGTH, the
server MUST return all the requested data.

If the server returns NERR_Success or ERROR_MORE_DATA, it MUST set the TotalEntries parameter to
equal the total number of entries that could have been enumerated from the current resume position.

If PreferedMaximumLengt h is insufficient to hold all the entries and if the client has specified a
ResumeHandle , the server MUST set ResumeHandle to some implementation -specific value that allows
the server to continue with this enumeration on a subsequent call to this method wi th the same value
for ResumeHandle .

The server MUST maintain AliasList

The following rules specify processing of the ResumeHandle parameter:

A Ifthe ResumeHandle parameter is either NULL or points to 0x00000000, the enumeration MUST
start from the beginnin g of the list of the AliasList

A Ifthe ResumeHandle parameter points to a nonzero value, the server MUST continue enumeration
based on the value of ResumeHandle . The value of ResumeHandle specifies the index into the
AliasList after which the enumeration is to begin.

A If the client specified a ResumeHandle and if the server returns ERROR_MORE_DATA
(OxO00000EA), the server MUST set ResumeHandle to the index of the last enumerated alias in
the AliasList

Because the ResumeHandle specifies an offset into the list, and the list of aliases can be modified
between multiple requests, the results of a query spanning multiple requests using the ResumeHandle
can be unreliable, offering either duplicate or missed aliases.

172 | 240

[MS -SRVS-Diff] - v20210625

Server Service Remote Protocol

Copyright © 2021 Microsoft Corporati on
Release: June 25, 2021

The server SHOULD<172> enforce security measures to verify that the caller has the required
permissions to execute this routine. If the caller does not have the required credentials, the server
SHOULD<173> fail the call.

3.1.4.46 NetrServerAliasDel (Opnum 56)
The NetrServerAliasDel method deletes an alias name from a server alias list based on spe cified alias
name.

NET_API_STATUS NetrServerAliasDel(

[in, string, unique] SRVSVC_HANDLE ServerName,

[in] DWORD Level,

[in, switch_is(Level)] LPSERVER_ALIAS_INFO InfoStruct

);

ServerName: An SRVSVC_HANDLE (section 2.2.1.1) pointer that identifies the server. The client
MUST map this structure to an RPC binding handle ([C706] sections 4.3.5 and 5.1.5.2). If this
parameter is NULL, the local computer is used.

Level: Specifies the information level of the data. It MUST be one of the following values.

Val ue | Meaning

0 The buffer is of type SERVER_ALIAS_INFO_0_CONTAINER.

InfoStruct: A pointer to the SERVER_ALIAS_INFO union that contains information about the alias.
The value of the Level parameter determines the type of the contents of the InfoStruct parameter,
as the preceding table shows.

Return Values: The method returns 0x00000000 (NERR_Success) to indicate success; otherwise, it
returns a nonzero error code. The method can take any specific error code value, as specified in
[MS -ERREF] section 2.2. The most common error codes are listed in the following table.

Return value/code Des cription

0x00000000 The client request succeeded.
NERR_Success

0x00000005 Access is denied.
ERROR_ACCESS_DENIED

0x00000057 The client request failed because the specified parameter is invalid.
ERROR_INVALID_PARAMETER

0x00000008 Not enough storage is available to process this command.
ERROR_NOT_ENOUGH_MEMORY

0x00000906 The alias does not exist.
NERR_NetNameNotFound

0x0000007C The system call level is not correct.
ERROR_INVALID_LEVEL

In response to a NetrServerAliasDel message, the server MUST delete the alias name from the
AliasList based on specified alias name, or MUST return an error code.

173 | 240

[MS -SRVS-Diff] - v20210625

Server Service Remote Protocol

Copyright © 2021 Microsoft Corporati on
Release: June 25, 2021

The srvai*_alias parameter specifies the name of the alias to be deleted. This MUST be a none mpty
null -terminated UTF -16 string if srvai*_default is O or empty string if srvai*_default is nonzero;
otherwise, the server MUST fail the call with an ERROR_INVALID_PARAMETER error code.

If no alias matching srvai*_alias exists, the server fails the call with a NERR_NetNameNotFound error
code.

srvai*_target MUST be ignored by the server.

The server SHOULD<174> enforce security measures to verify that the caller has the required
permissions to execute this routine. If the caller does not have the required credentials, the server
SHOULD<175> fail the call.

The server MUST delete configuration data for this alias from the persistent configuration store.

3.1.4.47 NetrShareDelEx (Opnum 57)

The NetrShareDelEx method deletes a share from the ShareList , which disconnects all connections to
the shared resource. If the share is sticky, all information about the share is also deleted from
permanent storage.<176>

NET_API_STATUS NetrShareDelEx(
[in, string, unique] SRVSVC_HANDLE ServerName,
[in] DWORD Level,
[in, switch_is(Level)] LPSHA RE_INFO Sharelnfo
)

ServerName: An SRVSVC_HANDLE pointer that identifies the server. The client MUST map this
structure to an RPC binding handle ([C706] sections 4.3.5 and 5.1.5.2). The server MUST ignore
this parameter.

Level: Specifies the information| evel of the data. This parameter MUST be one of the following
values.

Value Meaning

503 LPSHARE_INFO_503_|

Sharelnfo: ~ This parameter is of type LPSHARE_INFO union, as specified in section 2.2.3.6. Its
contents are determined by the value of the Level parameter, as shown in the preceding table.
This parameter MUST NOT contain a null value.

Return Values: The method returns ~ 0x00000000 (NERR_Success) to indicate success; otherwise, it
returns a nonzero error code. The method can take any specific error code value, as specified in
[MS -ERREF] section 2.2. The most common error codes are listed in the following table.

Return val ue/code Description

0x00000000 The client request succeeded.
NERR_Success

0x00000005 Access is denied.
ERROR_ACCESS_DENIED

0x00000057 The client request failed because the specified parameter is invalid.
ERROR_INVALID_PARAMETER

174 | 240

[MS -SRVS-Diff] - v20210625

Server Service Remote Protocol

Copyright © 2021 Microsoft Corporati on
Release: June 25, 2021

Return val ue/code Description

0x00000008 Not enough storage is available to process this command.
ERROR_NOT_ENOUGH_MEMORY

0x00000906 The share name does not exist.
NERR_NetNameNotFound

0x0000007C The system call level is not correct.
ERROR_INVALID_LEVEL

The Sharelnfo.shi503_netname parameter s pecifies the name of the share to delete from the
ShareList . This MUST be a nonempty null -terminated UTF - 16 string; otherwise, the server MUST fail
the call with an ERROR_INVALID_PARAMETER error code.

The server MUST provide tuple < Sharelnfo.shi503_servern ame, Sharelnfo.shi503_netname > to look
up the Share as specified in section 3.1.6.1. If no match is found, the server MUST fail the call with a
NERR_NetNameNotFound (0x00000906) error code. If the Share is found and Share.IsPrinterShare

is TRUE, PrinterSha reCount MUST be decreased by 1. If PrinterShareCount becomes 0, the server
MUST invoke an event as specified in section 3.1.6.10, providing SV_TYPE_PRINTQ_SERVER as the

input parameter. The server MUST remove the share entry from ShareList

In response to a NetrShareDelEx message, the server MUST delete the Share by invoking the

underlying server event as specified in [MS -CIFS] section 3.3.4.11 and [MS -SMB2] section 3.3.4.15,
providing the tuple < Sharelnfo.shi503_servername , Sharelnfo.shi503_netname >asinp ut
parameters. If the event fails, the server MUST return an error code.

The server SHOULD<177> enforce security measures to verify that the caller has the required

permissions to execute this routine. If the caller does not have the required credentials, the server
SHOULD<178> fail the call.

3.1.5 Timer Events

No protocol timer events are required on the client beyond the ti mers that are required in the
underlying RPC transport.

3.1.6 Other Local Events

None.

3.1.6.1 Server Looks Up Shares

The server MUST provide the tuple <ServerName, ShareName> to look up sharesin ShareList , as
specified in section 3.1.1.1.

ShareName: The name of a shared resource. This MUST not be an empty string.

ServerName: The name of a local server to which the shared resource attaches. This could be an
empty string.

To look up the share(s) in ShareList , the following algorithm MUST be used.

FOREACH Share in ShareList
IF Share.Name is equal to ShareName
IF Share.ServerName is equal to ServerName
RETURN Share
ENDIF
ENDIF

175 | 240

[MS -SRVS-Diff] - v20210625

Server Service Remote Protocol

Copyright © 2021 Microsoft Corporati on
Release: June 25, 2021

ENDFOR
RETURN NULL

3.1.6.2 Server Registers a New Session

The CIFS or SMB2 server requesting registration of a Session provides no parameters. The server
MUST insert a new Session into SessionList , and MUST assign Session.GlobalSessionld the value that
uniquely identifies the entry in the list. This value MU ST be returned to the caller.

3.1.6.3 Server Deregisters a Session

The CIFS or SMB2 server MUST provide the Sessionld of the Session that is being deregiste red.
The server MUST look up the Session in SessionList where Session.GlobalSessionld is equal to the
Sessionld provided by the caller, and remove it from SessionList

3.1.6.4 Server Registers a New Open

The CIFS or SMB2 server requesting registration of an Open provides no parameters. The server MUST
insert a new Open into FileList , and MUST assign Open.GlobalFileld a value that uniquely identifies
the entry i n the list. This value MUST be returned to the caller.

3.1.6.5 Server Deregisters an Open

The CIFS or SMB2 server MUST provide the Fileld ofthe Open thatis bein g deregistered.

The server MUST look up the Open in FileList , where Open.GlobalFileld is equal to the Fileld provided
by the caller, and remove it from FileList

3.1.6.6 Server Registers a New Treeconnect

The CIFS or SMB2 server requesting registration of a TreeConnect MUST provide the tuple

< ServerName , ShareName >. The server MUST insert a new TreeConnect into TreeConnectList
and MUST assign TreeConnect.GlobalTreeConnectld the value that uniquely identifies the entry in
the list. This value MUST be returned to the caller. The server MUST look up the Share inthe
ShareList , where ShareName matches Share.ShareName , and MUST incr ease
Share.CurrentUses by 1.

3.1.6.7 Server Deregisters a Treeconnect

The CIFS or SMB2 server MUST provide the tuple < ServerName , ShareName > and the
Treeconnectld ofthe TreeConnect thatis being deregistered.

The server MUST look up the TreeConnect in TreeConnectList , where

TreeConnect.GlobalTreeConnectld is equal to the Treeconnectld provided by the caller, and MUST
remove it from TreeConnectList . The server MUST look up the Share inthe ShareList , where
ShareName matches Share.ShareName , and MUST decrease Share.CurrentUses by 1.

3.1.6.8 Server Normalizes a ServerName
The server MUST provide the tuple < ServerName , ShareName > as input parameters.

ShareName: The name of a shared resource.

176 | 240

[MS -SRVS-Diff] - v20210625

Server Service Remote Protocol

Copyright © 2021 Microsoft Corporati on
Release: June 25, 2021

ServerName: The name of a local server that the client is connecting to. This name MUST be less
than 256 characters in length, and it MUST be a NetBIOS name, a fully qualified domain name
(FQDN), a textual IPv4 or IPv6 address, or an empty string.

If ServerName is a nonempty string and it does not match any Transport.ServerName in
TransportList and Alias.alia sin AliasList , the server MUST set it as DefaultServerName. If
ServerName is an empty string, the server MUST set it as "*" to indicate that the local server name
used.

If ShareName is empty, the server MUST determine the normalized ServerName to be retur
the following algorithm:

FOREACH Transport in TransportList
IF ServerName is equal to Transport.ServerName
RETURN ServerName
ENDIF
ENDFOR
FOREACH Alias in AliasList
IF ServerName is equal to Alias.alias
RETURN Alias.target
ENDIF
ENDFOR
RETURN DefaultServerName

If ShareName is not empty, to determine the normalized ServerName to be returned, the server MUST
look up the sharein ShareList , using the following algorithm:

FOREACH Share in ShareLi st
IF ShareName is equal to Share.Name
IF Share.ServerName is equal to ServerName
RETURN Share.ServerName
ELSE
FOREACH Alias in AliasList
IF ServerName is equal to Alias.alias
RETUR Alias.target
ENDIF
ENDFOR
ENDIF
ENDIF
ENDFOR
RETURN empty string

3.1.6.9 Local Application Enables Advertising a Service

The caller MUST provide the service type flags, as specified in section 2.2.2.7, that it is enabling. The
server MUST set these flag to TRUE in GlobalServerAnnounce

3.1.6.10 Local Application Disables Advertising a Service

The caller MUST provide the service type flags, as specified in section 2.2.2.7, that it is disabling. The
server MUST set these flag to FALSE in GlobalServerAnnounce

3.1.6.11 Server Queries Existing Services

The server MUST return GlobalServerAnnounce to the caller to indicate the available services
running on the server.

ned using

[MS -SRVS-Diff] - v20210625

Server Service Remote Protocol

Copyright © 2021 Microsoft Corporati on
Release: June 25, 2021

177 | 240

3.1.6.12 Server Service Terminates

When the server service terminates, the server MUST disable the SMB server as specified in [MS -

CIFS] section 3.3.4.19, and MUST disable the SMB2 server as specified in [MS -SMB2] section
3.3.4.23.
The s erver MUST remove all elements from AliasList , ShareList ,and TransportList

The server MUST free AliasList , FileList , ShareList , SessionList , TransportList , and
TreeConnectList

3.1.6.13 Local Application Pauses or Resumes the CIFS Server

The server SHOULD <179> enforce security measures to verify that the caller has the required

permissions to execute this routine. | f the caller does not have the required credentials, the server

SHOULD <180> fail the call. If the call is for the service to be paused, the server service MUST pause

the CIFS server as specified in [MS -CIFS] section 3.3.4.20. If the call is for the servic e to be resumed,
the server service MUST resume normal operation of the CIFS server as specified in [MS -CIFS] section
3.3.4.21.

3.16.14 Server Notifies Completion of Initialization

The CIFS, SMB, or SMB2 server that calls this event provides a string that indicates the name of the

protocol. If the protocol name is "CIFS", indicating notification from a CIFS or SMB server, t he server
MUST set Cifsinitialized to TRUE. If the protocol name is "SMB2", the server MUST set

Smb2lInitialized to TRUE.

3.1.6.15 Server Notifies Current Uses of a Share
The CIFS or SMB2 server MUST provide the tuple < ServerName , ShareName >. The server MUST
look up the Share inthe ShareList ,where ShareName matches Share.ShareName , and MUST

return Share.CurrentUses

3.1.6.16 Server Updates Connec tion Count on a Transport

The CIFS or SMB2 server MUST provide the tuple <TransportName,ConnectionFlag>. The ser ver MUST
look up the Transport inthe TransportList , where TransportName matches Transport.Name f
ConnectionFlag is TRUE, the server MUST increase Transport.ConnectionCount by 1. If
ConnectionFlag is FALSE, the server MUST decrease Transport.ConnectionCo unt by 1.

3.16.17 Server Looks Up Null Session Pipes

The CIFS or SMB2 server MUST provide the pipe name, without the " \pipe \" prefix. The se rver MUST
look up the pipe name in NullSessionPipeList . If a matching name is found in NullSessionPipeList ,

the server MUST return TRUE; otherwise, it MUST return FALSE.

3.2 Client Details

3.2.1 Abstract Data Model

No abstract data model is used.

178 | 240

[MS -SRVS-Diff] - v20210625

Server Service Remote Protocol

Copyright © 2021 Microsoft Corporati on
Release: June 25, 2021

3.2.2 Timers

No protocol timers are required beyond those internal ones that are used in RPC to implement
resiliency to network outages. For more information, see [MS -RPCE].

3.2.3 Initialization

The client MUST create an RPC connection to the remote computer, as specified in section 2.1.

3.2.4 Message Processing Events and Sequencing Ru les

Upon the completion of the RPC method, the client MUST return the result unmodified to the higher
layer. This is a stateless protocol with the exception of the NetrShareDelCommit method.

No sequence of method calls is imposed on this protocol, with the following exceptions:

1. NetrShareDelCommit method: The first phase MUST be completed (by the NetrShareDelStart
method) before the second phase is attempted.

2. NetrFileGetInfo method: The NetrFileEnum method MUST be called to obtain the Fileld before the
NetrFileGetIinfo method is called.

3. NetrFileClose method: NetrFileEnum MUST be called to obtain the Fileld before the NetrFileClose
method is called.

When a method is completed, the values that the RPC returns MUST be returned unmodified to the

upper layer.

The client MUST ignore errors returned from the RPC server and notify the application invoker about
the error that was received in the higher layer. Otherwise, no special message processing is required
on the client beyond the processing that is required in the underlying RPC protocol.

3.2.5 Timer Events

None.

3.2.6 Other Local Events

None.

179 | 240

[MS -SRVS-Diff] - v20210625

Server Service Remote Protocol

Copyright © 2021 Microsoft Corporati on
Release: June 25, 2021

4 Protocol Examples

For most methods, the Server Service Remote Protocol is a simple request -response protocol. For
every method that the server receives, except the NetrShareDelStart method and the

NetrShareDelCommit method, the server executes the method and returns a completion. The client

simply returns the completion status t o the caller.

For example, the client calls the NetrShareAdd method, and the server executes the method and
returns NERR_Success, as shown in the following figure.

Client Server

|

Mg trs ha refdd

T

MERR_SucCCess

A

Figure 1: A simple request -response example

41 Exampleof ResumeHandle

The client calls the NetrFileEnum method to enumerate all open files on a server named "wingtiptoys".

There are five open files on the server "wingtiptoys".
The client calls the NetrFileEnum method with the ServerName parameter equal to "wingtiptoys", and
the Level field of the FILE_ENUM_STRUCT structure that is passed in the InfoStruct parameter is set to

0x00000003. The client also se ts the PreferedMaximumLength parameter to 0x00000100 and passes
a non -NULL pointer inthe TotalEntries parameter and the = ResumeHandle parameter.

If, for example, only the information for the first two open files fits into 0x00000100 bytes, when the

server receives this method, it executes the method locally and returns ERROR_MORE_DATA. The

server returns the information for the first two open files in the InfoStruct parameter. It also sets the
value of TotalEntries to 0x00000005 and the value of ResumeHand| e to 0x00000120. The value of
ResumeHandle is implementation -specific.

To continue enumerating the open files, the client calls the NetrFileEnum method with ServerName
equal to "wingtiptoys", and the Level field of the FILE_ENUM_STRUCT structure that is pa ssed in the
InfoStruct parameter is set to 0x00000003. The client also sets the PreferedMaximumLength
parameter to MAX_PREFERRED_LENGTH and passes a non -NULL pointer as TotalEntries . The client
also passes the unchanged value of ResumeHandle (0x000000120).

On receiving this method, the server executes the method locally to continue enumeration based on a
ResumeHandle value of 0x00000120 and returns ERROR_SUCCESS. The server returns the names of
the next three open files in the InfoStruct parameter. It also sets the value of TotalEntries to
0x00000003. The value of ResumeHandle is irrelevant.

180 / 240

[MS -SRVS-Diff] - v20210625

Server Service Remote Protocol

Copyright © 2021 Microsoft Corporati on
Release: June 25, 2021

4.2 Two -Phase Share Deletion

The following figure shows the protocol message sequence for a two -phase share deletion.

Client Server

|

EtrShareDErgtart

T

———
MERR_Success

|

etrShare DeiCq mmit

It

Figure 2:Two -phase share deletion

If the IPC$ share is being deleted, a two -phase delete has to be performed because this action deletes
the means of communication between the client and the server. The following is the sequence of
messages for atwo -phase share delete:

1. The client sends the NetrShareDelStart method to the server.
2. The server processes the first ph ase of the delete and returns the status NERR_Success.
3. The client sends the NetrShareDelCommit method to the server.

4. The server processes the second phase of the delete. Because the communication channel
between the client and the server is deleted, the cl ient does not receive a status that indicates the
successful completion of the NetrShareDelCommit method.

4.3 Adding a Scoped Share With an Alias to a Server

The following figure shows the protocol message sequence for an administrator remotely configuring a
server to support an additional server name, and configuring an alias for that new name.

181 / 240

[MS -SRVS-Diff] - v20210625

Server Service Remote Protocol

Copyright © 2021 Microsoft Corporati on
Release: June 25, 2021

Client Server

_-—-—-_________- .
''—-—-_______.-

MERR_SuCcess

ol ——

Figure 3: Me ssage sequence for adding a scoped share with an alias to a server

1. The client calls NetrServerTransportAddEx (Opnum 41) to bind the server to the transport protocol
with svti3_transport_address set to "server”, and SVTI2_SCOPED_NAME set to TRUE.

2. The server processes the transport add and returns the status NERR_Success.

3. The client calls NetrShareAdd (Opnum 14) to add a share on the server. Along with other share
parameters, the shi303_servername field is set to "server".

4. The server processes the share add a nd returns the status NERR_Success.

5. The client calls NetrServerAliasAdd (Opnum 54) to add an alias, with srvai0_alias set to
"server.example.com", srvaiO_target set to "server", and srvaiO_default set to FALSE.

6. The server processes the alias add, and retur ns the status NERR_Success.

On completion of these steps, a client connecting to the server and attempting to enumerate shares

on this server and passing in "server" or "server.example.com"” for the ServerName parameter for
NetrShareEnum, would find only th ose shares that were added as specified in step 3 above. Clients
connecting and attempting to enumerate shares on this server and passing in any other name for the

182 / 240

[MS -SRVS-Diff] - v20210625

Server Service Remote Protocol

Copyright © 2021 Microsoft Corporati on
Release: June 25, 2021

ServerName parameter for NetrShareEnum would not see the shares added as specified in step 3
above. (Note that the administrator is responsible for configuring the network such that the names
"server" and "server.example.com" correctly resolve to the server above. This is not handled by
NetrServerTransportAddEx (Opnum 41).)

183 / 240

[MS -SRVS-Diff] - v20210625

Server Service Remote Protocol

Copyright © 2021 Microsoft Corporati on
Release: June 25, 2021

5 Security

5.1 Security Considerations for Implementers

This protocol allows any user to connect to the server; therefore, any secu rity weakness in the server
implementation could be exploitable. It is important that the server implementation enforce security
on each method.

5.2 Index of Security Parameters

This protocol allows any user to establish a connection to the RPC server as specified in section 2.1.

184 | 240

[MS -SRVS-Diff] - v20210625

Server Service Remote Protocol

Copyright © 2021 Microsoft Corporati on
Release: June 25, 2021

6 Appendix A: Full IDL

For ease of implementation, the full IDL is provided, where "ms
[MS -DTYP] Appendix A.

import "'ms - dtyp.idl";

[

]

uuid(4B324FC8 - 1670- 01D3- 1278 - 5A47BF6EE188),
version(3.0),

ms_union,

pointer_default(unique)

interface srvsvc

{

typedef [handle, string] wchar_t * SRVSVC_HANDLE;
typedef struct _CONNECTION_INFO_0

DWORD coni0_id;
} CONNECTION_INFO_0,
*PCONNECTION_INFO_O,
*LPCONNECTION_INFO_O;

t ypedef struct _CONNECT_INFO_0_CONTAINER

DWORD EntriesRead;
[size_is(EntriesRead)] LPCONNECTION_INFO_0 Buffer;
} CONNECT_INFO_0_CONTAINER,
*PCONNECT_INFO_0_CONTAINER,
*LPCONNECT_INFO_0_CONTAINER,;

typedef struct _CONN ECTION_INFO_1

DWORD conil_id;

DWORD conil_type;

DWORD conil_num_opens;

DWORD conil_num_users;

DWORD conil_time;

[string] wchar_t * conil_username;

[string] wchar_t * conil_netname;

} CONNECTION_INFO _1,

*PCONNECTION_INFO_1,
*LPCONNECTION_INFO_1,

typedef struct _CONNECT_INFO_1_CONTAINER
{

DWORD EntriesRead;
[size_is(EntriesRead)] LPCONNECTION_INFO_1 Buffer
} CONNECT_INFO_1_CONTAINER,
*PCONNECT_INFO_1 CONTAINER,
*LPCONNECT_INFO_1 CONTAINER,;

typedef [switch_type(DWORD)] union _CONNECT_ENUM_UNION {

[case(0)]
CONNECT_INFO_0_CONTAINER* Level0;
[case(1)]
CONNECT_INFO_1_CONTAINER* Levell;
} CONNECT_ENUM_UNION;

typedef struct _ CONNECT_ENUM_STRUCT {
DWORD Level;

[switch_is(Level)] CONNECT_ENUM_UNION Connectinfo;

} CONNECT_ENUM_STRUCT,
*PCONNECT_ENUM_STRUCT,
*LPCONNECT_ENUM_STRUCT;

-dtyp.idl" is the IDL as specified in

[MS -SRVS-Diff] - v20210625

Server Service Remote Protocol

Copyright © 2021 Microsoft Corporati on
Release: June 25, 2021

185 / 240

typedef struct _FILE_INFO_2

DWORD fi2_id;
}FILE_INFO_2, *PFILE_INFO_2, *LPFILE_INFO_2;

typedef struct _FILE_INFO_2_CONTAINER

DWORD EntriesRead;
[size_is(EntriesRead)] LPFILE_INFO_2 Buffer;
} FILE_INFO_2_CONTAINER,
*PFILE_INFO_2_CONTAINER,
*LPFILE_INFO_2_CONTAINER,;

typedef struct _FILE_INFO_3 {
DWORD fi3_id;
DWORD fi3_permissions;
DWORD fi3_num_locks;
[string] wchar_t * fi3_pathname;
[string] wchar_t * fi3_username;
}FILE_INFO_3,
*PFILE_INFO_3,
*LPFILE_INFO_3;

typedef struct _FILE_INFO_3_CO NTAINER

DWORD EntriesRead;
[size_is(EntriesRead)] LPFILE_INFO_3 Buffer;
}FILE_INFO_3 CONTAINER,
*PFILE_INFO_3_CONTAINER,
*LPFILE_INFO_3 CONTAINER;

typedef [switch_type(DWORD)] union _FILE_ENUM_UNION {

[case(2)]
FILE_INFO_2_ CONTAINER* Level2;
[case(3)]
FILE_INFO_3_CONTAINER* Level3;
} FILE_ENUM_UNION;

typedef struct _FILE_ENUM_STRUCT {
DWORD kevel;
[switch_is(Level)] FILE_ENUM_UNION Filelnfo;
} FILE_ENUM_STRUCT,
*PFILE_ENUM_STRUCT,
*LPFILE_ENUM_STRUCT,

typedef [switch_type(unsigned long)] union _FILE_INFO

[case(2)]
LPFILE_INFO_2 Filelnfo2;
[case(3)]
LPFILE_INFO_3 Filelnfo3;
} FILE_INFO,
*PFILE_INFO,
*LPFILE_INFO;

typedef struct _SESSION_INFO_0

[string] wchar_t * sesi0_cname;
} SESSION_INFO_0,
*PSESSION_INFO_0,
*LPSESSION_INFO_0;

typedef struct _SESSION_INFO_0_CONTAINER
{

DWORD EntriesRead;
[size_is(EntriesRead)] LPSESSION_INFO_0 Buffer;
} SESSIO N_INFO_0_CONTAINER,
*PSESSION_INFO_0_CONTAINER,
*LPSESSION_INFO_0_CONTAINER,;

[MS -SRVS-Diff] - v20210625

Server Service Remote Protocol

Copyright © 2021 Microsoft Corporati on
Release: June 25, 2021

186 / 240

typedef struct _SESSION_INFO_1

[string] wchar_t * sesil_cname;
[string] wchar_t * sesil_username;
DWORD sesil_num_opens;
DWORDBsesil_time;
DWORD sesil_idle_time;
DWORD sesil_user_flags;
} SESSION_INFO_1,
*PSESSION_INFO_1,
*LPSESSION_INFO_1,

typedef struct _SESSION_INFO_1_CONTAINER

DWORD EntriesRead,;
[size_is(EntriesRead)] LPSESSION_INFO_1 Buffer;
} SESSION_INFO_1_CONTAINER,
*PSESSION_INFO_1_CONTAINER,
*LPSESSION_INFO_1_CONTAINER,;

typedef struct _SESSION_INFO_2

[string] wchar_t * sesi2_cname;
[string] wc har_t * sesi2_username;
DWORD sesi2_num_opens;
DWORD sesi2_time;
DWORD sesi2_idle_time;
DWORD sesi2_user_flags;
[string] wchar_t * sesi2_cltype_name;
} SESSION_INFO_2,
*PSESSION_INFO_2,
*LPSESSION_INFO_2;

typedef struct _SESSION_INFO_2_CONTAINER
{

DWORD EntriesRead,;
[size_is(EntriesRead)] LPSESSION_INFO_2 Buffer;
} SESSION_INFO_2_CONTAINER,
*PSESSION_INFO_2_CONTAINER,
*LPSESSION_INFO_2_CONTAINER

typedef struct _SESSION_INFO_10

[string] wchar_t * sesil0_cname;
[string] wchar_t * sesil0_username;
DWORD sesilO_time;
DWORD sesil0_idle_time;
} SESSION_INFO_10,
*PSESSION_INFO_10,
*LPSESSION_INFO_10;

typedef struct _SESSION_INFO_10_CONTAINER

DWORD EntriesRead;
[size_is(EntriesRead)] LPSESSION_INFO_10 Buffer;
} SESSION_INFO_10_CONTAINER,
*PSESSION_INFO_10_CONTAINER,
*LPSESSION_INFO_10_CONTAINER;

typedef struct _SESSION_INFO_502

[string] wchar_t * sesi502_cname;
[string] wchar_t * sesi502_username;
DWORD sesi502_num_opens;
DWORD sesi502_time;
DWORD sesi502_idle_time;
DWORD sesi502_user_flags;
[string] wchar_t * sesi502_cltype_name;
[string] wchar_t * sesi502_transport;

} SESSION_INFO_502,

[MS -SRVS-Diff] - v20210625

Server Service Remote Protocol

Copyright © 2021 Microsoft Corporati on
Release: June 25, 2021

187 / 240

*PSESSION_INFO_502,
*LPSESSION_INFO_502;

typedef struct_SESSION_INFO_502_CONTAINER

DWORD EntriesRead,;
[size_is(EntriesRead)] LPSESSION_INFO_502 Buffer;
} SESSION_INFO_502_CONTAINER,
*PSESSION_INFO_502_CONTAINER,
*LPSESSION_INFO_502_CONTAINER;

typedef [switch_type(DWORD)] union _SESSION_ENUM_UNION {
[case(0)]
SESSION_INFO_O_CONTAINER* LevelO;
[case(1)]
SESSION_INFO_1_CONTAINER* Levell,;
[case(2)]
SESSION_INFO_2_CONTAINER* Level2;
[case(10)]
SESSION_INFO_10_CONTAINER* Levell0;

[case(502)]
SESSION_INFO_502_CONTAINER* Level502;

} SESSION_ENUM_UNION;

typedef struct _SESSION_ENUM_STRUCT {
DWOR Level;
[switch_is(Level)] SESSION_ENUM_UNION SessionlInfo;
} SESSION_ENUM_STRUCT,
*PSESSION_ENUM_STRUCT,
*LPSESSION_ENUM_STRUCT;

typedef struct _SHARE_INFO_502_1
{

[string] WCHAR * shi502_netname;

DWORD shi502_type;

[string] WCHAR * shi502_remark;

DWORD shi502_permissions;

DWORD shi502_max_uses;

DWORD shi502_current_uses;

[string] WCHAR * shi502_path;

[s tring] WCHAR * shi502_passwd;

DWORD shi502_reserved;

[size_is(shi502_reserved)] unsigned char

* shi502_security_descriptor;
} SHARE_INFO _502_1,

*PSHARE_INFO_502_1,
*LPSHARE_INFO_502_1I;

typedef struct _SHAR E_INFO_503_|
{

[string] WCHAR * shi503_netname;

DWORD shi503_type;

[string] WCHAR * shi503_remark;

DWORD shi503_permissions;

DWORD shi503_max_uses;

DWORD shi503 _current_uses;

[string] WCHAR * shi503_path;
[string] WCHAR * shi503_passwd;
[string] WCHAR * shi503_servername;
DWORD shi503_reserved;
[size_is(shi503_reserved)] PUCHAR shi503_security _descriptor;
} SHARE_INFO_503_1,
*PSHARE_INFO_503 |,
*LPSHARE_INFO_503_I;

typedef struct _SHARE_INFO_503_CONTAINER
{ DWORD EntriesRead;
[size_is(EntriesRead)] LPSHARE_INFO_503_|I Buffer;
} SHARE_INFO_503_CONTAINER,
*PSHARE_INFO_503_CONTAINER,

188 / 240

[MS -SRVS-Diff] - v20210625

Server Service Remote Protocol

Copyright © 2021 Microsoft Corporati on
Release: June 25, 2021

*LPSHARE_INFO_503_CONTAINER,;
typedef struct _SHARE_INFO_1501_|

DWORD shil501_reserved,;
[size_is(sh i1501_reserved)] unsigned char
* shil501_security_descriptor;
} SHARE_INFO_1501_|,
*PSHARE_INFO_1501_|,
*LPSHARE_INFO_1501_1;

typedef struct _SHARE_INFO_0O

[string] wchar_t * shi0_netname;
} SHARE_INFO_O,
*PSHARE_INFO_0,
*LPSHARE_INFO_O;

typedef struct _SHARE_INFO_0_CONTAINER
{

DWORD EntriesRead;
[size_is(EntriesRead)] LPSHARE_INFO_0 Buffer;
} SHARE_INFO_0_CONTAINER;

typedef struct _ SHARE_INFO_1

[string] wchar_t * shil_netname;
DWORD shil_type;
[string] wchar_t * shil_remark;
} SHARE_INFO 1,
*PSHARE_INFO_1,
*LPSHARE_INFO_1;

typedef struct _SHARE_INFO_1 CONTAINER
{

DWORD EntriesRead,;
[size_is(EntriesRead)] LPSHARE_INFO_1 Buffer;
} SHARE_INFO_1_CONTAINER;

typedef struct _SHARE_INFO_2

[string] wchar_t * shi2_netname;
DWORD shi2_type;
[string] wchar_t * shi2_remar k;
DWORD shi2_permissions;
DWORD shi2_max_uses;
DWORD shi2_current_uses;
[string] wchar_t * shi2_path;
[string] wchar_t * shi2_passwd;
} SHARE_INFO _2,
*PSHARE_INFO_2,
*LPSHARE_INFO_2;

typedef struct _SHARE_INFO_2_CONTAINER

DWORD EntriesRead,;
[size_is(EntriesRead)] LPSHARE_INFO_2 Buffer;
} SHARE_INFO_2_ CONTAINER,
*PSHARE_INFO_2_CONTAINER,
*LPSHARE_INFO_2_CONTAINER;

typedef struct _SHARE_INFO_501

[string] wchar_t * shi501_netname;
DWORD shi501_type;
[string] wchar_t * shi501_remark;
DWORD shi501_flags;
} SHARE_INFO_501,
*PSHARE_INFO_501,
*LPSHARE_INFO_501;

[MS -SRVS-Diff] - v20210625

Server Service Remote Protocol

Copyright © 2021 Microsoft Corporati on
Release: June 25, 2021

189 / 240

typedef struct_ SHARE_INFO_501_CONTAINER

DWORD EntriesRead;
[size_is(EntriesRead)] LPSHARE_INFO_501 Buffer;
} SHARE_INFO_501_CONTAINER, *PSHARE_INFO_501_CONTAINER,
*LPSHARE_INFO_501_CONTAINER;

typedef struct_SHARE_INFO_502_CONTAINER

DWORD EntriesRead,;
[size_is(EntriesRead)] LPSHARE_INFO_502_1I Buffer;
} SHARE_INFO_502_CONTAINER,
*PSHARE_INFO_502_CONTAINER,
*LPSHARE_INFO_502_CONTAINER;

typedef [switch_type(DWORD)] union _SHARE_ENUM_UNION {
[case(0)]
SHARE_INFO_O_CONTAINER* LevelO;
[case(1)]
SHARE_INFO_1_CONTAINER* Levell;
[case(2)]
SHARE_INFO_2_CONTAINER*Level2;
[case(501)]
SHARE_INFO_501_CONTAINER* Level501;
[case(502)]
SHARE_INFO_502_CONTAINER* Level502;
[case(503)]
SHARE_INFO_503_CONTAINER* Level503;
} SHARE_ENUM_UNION;

typedef struct _SHARE_ENUM_ST RUCT

DWORD Level;
[switch_is(Level)] SHARE_ENUM_UNION Sharelnfo;
} SHARE_ENUM_STRUCT,
*PSHARE_ENUM_STRUCT,
*LPSHARE_ENUM_STRUCT,;

typedef struct _SHARE_INFO_1004

[string] wchar_t * shil004_remark;
} SHARE_INFO_1004,
*PSHARE_INFO_1004,
*LPSHARE_INFO_1004;

typedef struct _SHARE_INFO_1006

DWORD shi1l006_max_uses;
} SHARE_INFO_1008,
*PSHARE_INFO_1006,
*LPSHARE_INFO_1006;

typedef struct _ SHARE_INFO_1005

DWORD shi1005_flags;
} SHARE_INFO_1005,
*PSHARE_INFO_1005,
*LPSHARE_INFO_1005;

/IIMP: order differs in documentation
typedef [switch_type(unsigned long)] union _SHARE_INFO
/IforG et & Setinfo
{
[case(0)]
LPSHARE_INFO_0 SharelnfoO;
[case(1)]
LPSHARE_INFO_1 Sharelnfol;
[case(2)]
LPSHARE_INFO_2 Sharelnfo2;

190 / 240

[MS -SRVS-Diff] - v20210625

Server Service Remote Protocol

Copyright © 2021 Microsoft Corporati on
Release: June 25, 2021

[case(502)]

LPSHARE_INFO_502_| Sharelnfo502;
[case(1004)]

LPSHARE_INFO_1004 Sharelnfo1004;
[case(1006)]

LPSHARE_INFO_1006 Sharelnfo1006;
[case(1501)]

LPSHARE_INFO_1501_| Sharelnfo1501;
[de fault]

[case(1005)]
LPSHARE_INFO_1005 Sharelnfo1005;
[case(501)]
LPSHARE_INFO_501 Sharelnfo501,;
[case(503)]
LPSHARE_INFO_503_1I ShareInfo503;
} SHARE_INFO,
*PSHARE_INFO,
*LPSHARE_INFO;

typedef struct _SERVER_INFO_102

DWORD sv102_platform_id,;

[string] wchar_t * sv102_name;

DWORD sv102_version_major;

DWORD sv102_version_minor;

DWORD sv102_type;

[string] wchar_t * sv102_comment;

DWORD sv102_users;

long sv102_disc;

int sv102_hidden;

DWORD sv102_announce;

DWORD sv102_anndelta;

DWORD sv102_licenses;

[st ring] wchar_t * sv102_userpath;

} SERVER_INFO_102,

*PSERVER_INFO_102,
*LPSERVER_INFO_102;

typedef struct _SERVER_INFO_103

DWORD sv103_platform_id;
[string] wchar_t* sv103_name;
DWORD sv103_version_major;
DWORD sv103_version_minor;
DWORD sv103_type;
[string] wchar_t* sv103_comment;
DWORD sv103_users;
LONG sv103_disc;
BOOL sv103_hidden;
DWORD sv103_announce;
DWORD sv103_anndelta;
DWORD sv103_licenses;
[string] wchar_t* sv103_userpath;
DWORD sv103_capabilities;
} SERVER_INFO_103,
*PSERVER_INFO_103,
*LPSERVER_INFO_103;

typedef struct _SERVER_INFO_502

DWORD sv502_sessopens;
DWORD sv502_sessvcs;
DWORD sv502_opensearch;
DWORD sv502_sizregbuf;
DWORD sv502_initworkitems;
DWORD sv502_maxworkitems;
DWORD sv502_rawworkitems;

191 / 240

[MS -SRVS-Diff] - v20210625

Server Service Remote Protocol

Copyright © 2021 Microsoft Corporati on
Release: June 25, 2021

DWORD sv502_irpstacksize;
DWORD sv502_maxrawbuflen;
DWORD sv502_sessusers;
DWORD sv502_sessconns;
DWORD sv502_maxpagedmemoryusage;
DWORD sv502_maxnonpagedmemoryusage;
int sv502_enablesoftcompat;
int sv502_enableforcedlogoff;
int sv502_timesource;
int sv502_acceptdownlevelapis;
int sv502_Imannounce;
} SERVER_INFO_502,
*PSERVER_INFO_502,
*LPSERVER_INFO_502;

typedef struct _SERVER_INFO_503

DWORD sv503_sessopens;

DWORD sv503_sessvcs;

DWORD sv503_opensearch;

DWORD sv503_sizregbuf;

DWORD sv503_initworkitems;

DWORD sv503_maxworkitems;

DWORD sv503_rawworkitems;

DWORD sv503_irpstacksize;

DWORD sv503_maxrawbuflen;

DWORD sv503_sessusers;

DWORD sv503_sessconns;

DWORD sv503_maxpagedmemoryusage;

DWORD sv503_maxnonpagedmemoryusage;

int sv503_enablesoftc ompat;

int sv503_enableforcedlogoff;

int sv503_timesource;

int sv503_acceptdownlevelapis;

int sv503_Imannounce;

[string] wchar_t * sv503_domain;

DWORD sv503_maxcopyreadlen;

DWORD sv503_maxcopywritelen

DWORD sv503_minkeepsearch;

DWORD sv503_maxkeepsearch;

DWORD sv503_minkeepcomplsearch;

DWORD sv503_maxkeepcomplsearch;

DWORD sv503_threadcountadd;

DWORD sv503_numblockthreads;

DWORD sv503_scavtimeout;

DWORD sv503_minrcvqueue;

DWORD sv503_minfreeworkitems;

DWORD sv503_xactmemsize;

DWORD sv503_threadpriority;

DWORD sv503_maxmpxct;

DWORD s%03_oplockbreakwait;

DWORD sv503_oplockbreakresponsewait;

int sv503_enableoplocks;

int sv503_enableoplockforceclose;

int sv503_enablefcbopens;

int sv503_enableraw;

int sv503_enablesharednetdrives;

DWORD sv503_minfreeconnections;

DWORD sv503_maxfreeconnections;

} SERVER_INFO_503,

*PSERVER_INFO_503,
*LPSERVER_INFO_503;

typedef struct _SERVER_INFO_599
{
DWORD sv599 sessopens;
DWORD sv599_sessvcs;
DWORD sv599_opensearch;
DWORD sv599_sizregbuf;
DWORD sv599 _initworkitems;

[MS -SRVS-Diff] - v20210625

Server Service Remote Protocol

Copyright © 2021 Microsoft Corporati on
Release: June 25, 2021

192 / 240

DWORD sv599 _maxworkitems;

DWORD sv599_rawworkitems;

DWORD sv599 _irpstacksize;

DWORD sv599 maxrawbuflen;

DWORD sv599_sessusers;

DWORD sv599_sessconns;

DWORD sv599_maxpagedmemoryusage;

DWORD sv599 maxnonpagedmemoryusage;

int sv599_enablesoftcompat;

int sv599_enableforcedlogoff;

int sv599_timesource;

int sv599_acceptdownlevelapis;

int sv599_Imannounce;

[string] wchar_t * sv599_domain;

DWORD sv599_maxcopyreadlen;

DWORD sv599 _maxcopywritelen;

DVORD sv599_minkeepsearch;

DWORD sv599_maxkeepsearch;

DWORD sv599_minkeepcomplsearch;

DWORD sv599 _maxkeepcomplsearch;

DWORD sv599 _threadcountadd;

DWORD sv599_numblockthreads;

DWORD sv599_scavtimeout;

DVORD sv599_minrcvqueue;

DWORD sv599_minfreeworkitems;

DWORD sv599 xactmemsize;

DWORD sv599_threadpriority;

DWORD sv599_maxmpxct;

DWORD sv599_oplockbreakwait;

DWORD sv599_oplockbreakresponsewait;

int sv599_enableoplocks;

int sv599_enableoplockforceclose;

int sv599_enablefcbopens;

int sv599_enableraw;

int sv599_enablesharednetdrives;

DWORD sv599_minfreeconnections;

DWORD sv599_maxfreeconnections;

DWORD sv599 initsesstable;

DWORD sv599 _initconntable;

DWORD sv599 _initfiletable;

DWORD sv599 initsearchtable;

DWORD sv599_alertschedule;

DWORD sv599_errorthreshold;

DWORD sv599_networkerrorthreshold;

DWORD sv599_diskspacethreshold;

DWORD sv599_reserved;

DWORD sv599_maxlinkdelay;

DWORD sv599_minlinkthroughput;

DWORD sv599_linkinfovalid time;

DWORD sv599_scavqosinfoupdatetime;

DWORD sv599_maxworkitemidletime;

} SERVER_INFO_599,

*PSERVER_INFO_599,
*LPSERVER_INFO_599;

typedef struct _SERVER_INFO_1005

[string] wchar_t * sv1005_comment;
}S ERVER_INFO_1005,
*PSERVER_INFO_1005,
*LPSERVER_INFO_1005;

typedef struct _SERVER_INFO_1107
{
DWORD sv1107_users;
} SERVER_INFO_1107,
*PSERVER_INFO_1107,
*LPSERVER_INFO_1107;

typedef struct _ SERVER_INFO_1010

[MS -SRVS-Diff] - v20210625

Server Service Remote Protocol

Copyright © 2021 Microsoft Corporati on
Release: June 25, 2021

193 / 240

long sv1010_disc;
} SERVER_INFO_1010,
*PSERVER_INFO_1010,
*LPSERVER_INFO_1010;

typedef struct _SERVER_INFO_1016
{

int sv1016_hidden;
} SERVER_INFO_1016,
*PSERVER_INFO_1016,
*LPSERVER_INFO_1016;

typedef struct _SERVER_INFO_1017

DWORD sv1017_announce;
} SERVER_INFO_1017,
*PSERVER_INFO_1017,
*LPSERVER_INFO_1017;

typedef struct _SERVER_INFO_1018

DWORD sv1018_anndelta;
} SERVER_INFO_1018,
*PSERVER_INFO_1018,
*LPSERVER_INFO_1018;

typedef struct _SERVER_INFO_1501
DWORD sv1501_sessopens;
} SERVER_INFO_1501,
*P SERVER_INFO_1501,
*LPSERVER_INFO_1501;
typedef struct _SERVER_INFO_1502
DWORD sv1502_sessvcs;

} SERVER_INFO_1502,
*PSERVER_INFO_1502,
*LPSERVER_INFO_1502;

typedef struct _ SERVER_INFO_1503

DWORD sv15@_opensearch;

} SERVER_INFO_1503, *PSERVER_INFO_1503, *LPSERVER_INFO_1503;

typedef struct _SERVER_INFO_1506

DWORD sv1506_maxworkitems;

} SERVER_INFO_1506, *PSERVER_INFO_1506, *LPSERVER_INFO_1506;

typedef struct _SERVER_INFO_1510

DWORD sv1510_sessusers;

} SERVER_INFO_1510, *PSERVER_INFO_1510, *LPSERVER_INFO_1510;

typedef struct _SERVER_INFO_1511

DWORD sv1511_sessconns;

} SERVER_INFO_1511, *PSERVER_INFO_1511, *LPSERVER_INFO_1511;

typedef struct _ SERVER_INFO_1512

DWORD sv1512_maxnonpagedmemoryusage;
} SERVER_INFO_1512, *PSERVER_INFO_1512, *LPSERVER_INFO_1512;

typede fstruct SERVER_INFO_1513

DWORD sv1513_maxpagedmemoryusage;
} SERVER_INFO_1513, *PSERVER_INFO_1513, *LPSERVER_INFO_1513;

[MS -SRVS-Diff] - v20210625
Server Service Remote Protocol
Copyright © 2021 Microsoft Corporati
Release: June 25, 2021

on

194 | 240

typedef struct _SERVER_INFO_1514

int sv1514 enablesoftcompat;
} SERVER_INFO_1514, *PSERVER_IN FO_1514, *LPSERVER_INFO_1514;

typedef struct _SERVER_INFO_1515
{

int sv1515_enableforcedlogoff;
} SERVER_INFO_1515, *PSERVER_INFO_1515, *LPSERVER_INFO_1515;

typedef struct _SERVER_INFO_1516

int sv1516_timesource;
} SERVER_INFO_1516, *PSERVER_INFO_1516, *LPSERVER_INFO_1516;

typedef struct _SERVER_INFO_1518

int sv1518_Imannounce;
} SERVER_INFO_1518, *PSERVER_INFO_1518, *LPSERVER_INFO_1518;

typedef struct _SERVER_INFO_1523

DWORD sv1523_maxkeepsearch;
} SERVER_INFO_1523, *PSERVER_INFO_1523, *LPSERVER_INFO_1523;

typedef struct _SERVER_INFO_1528

DWORD sv1528_scavtimeout;
} SERVER_INFO_1528, *PSERVER_INFO_1528, *LPSERVER _INFO_1528;

typedef struct _SERVER_INFO_1529

DWORD sv1529_minrcvqueue;
} SERVER_INFO_1529, *PSERVER_INFO_1529, *LPSERVER_INFO_1529;

typedef struct _ SERVER_INFO_1530

DWORD sv1530_minfreeworkitems;
} SERVER_INFO_1530, *PSERVER_INFO_1530, *LPSERVER_INFO_1530;

typedef struct _ SERVER_INFO_1533

DWORD sv1533_maxmpxct;
} SERVER_INFO_1533, *PSERVER_INFO_1533, *LPSERVER_INFO_1533;

typedef struct _SERVER_INFO_1534

DWORD sv1534_oplockbreakwait;
} SERVER_INFO_1534, *PSERVER_INFO_1534, *LPSERVER_INFO_1534;

typedef struct _SERVER_INFO_1535

DWORD sv1535_oplockbreakresponsewait;
} SERVER_INFO_1535, *PSERVE R_INFO_1535, *LPSERVER_INFO_1535;

typedef struct _SERVER_INFO_1536

int sv1536_enableoplocks;
} SERVER_INFO_1536, *PSERVER_INFO_1536, *LPSERVER_INFO_1536;

typedef struct _ SERVER_INFO_1538

int sv1538_enablefchopens;
} SERVER_INFO_1538, *PSERVER_INFO_1538, *LPSERVER_INFO_1538;

typedef struct _ SERVER_INFO_1539

int sv1539_enableraw;
} SERVER_INFO_1539, *PSERVER_INFO_1539, *LPSERVER_INFO_1539;

[MS -SRVS-Diff] - v20210625

Server Service Remote Protocol

Copyright © 2021 Microsoft Corporati on
Release: June 25, 2021

195 / 240

typedef struct _SERVER_INFO_1540

int sv1540_enablesharednetdrives;
} SERVER_INFO_1540, *PSERVER_INFO_1540, *LPSERVER_INFO_1540;

typedef struct _SERVER_INFO_1541
{

int sv1541_minfreeconnections;
} SERVER_INFO_1541, *PSERVER_INFO_1541, *LPSERVER_INFO_1541,

typedef struct _SERVER_INFO_1542

int sv1542_maxfreeconnections;
} SERVER_INFO_1542, *PSERVER_INFO_1542, *LPSERVER_INFO_1542;

typedef struct _ SERVER_INFO_1543

DWORD sv1543_initsesstable;
} SERVER_INFO_1543, *PSERVER_INFO_1543, *LPSERVER_INFO_1543;

typedef struct _SERVER_INFO_1544

DWORD sv1544 _initconntable;
} SERVER_INFO_1544, *PSERVER_INFO_1544, *LPSERVER_INFO_1544;

typedef struct _SERVER_INFO_1545

DWORD sv1545_initfiletable;
} SERVER_INFO_1545, *PSERVER_INFO_1545, *LPSERVER_INFO_1545;

typed ef struct _SERVER_INFO_1546

DWORD sv1546_initsearchtable;
} SERVER_INFO_1546, *PSERVER_INFO_1546, *LPSERVER_INFO_1546;

typedef struct _ SERVER_INFO_1547

DWORD sv1547_alertschedule;
} SERVER_INFO_1547, *PSERVER_INFO_1 547, *LPSERVER_INFO_1547;

typedef struct _ SERVER_INFO_1548

DWORD sv1548_errorthreshold;
} SERVER_INFO_1548, *PSERVER_INFO_1548, *LPSERVER_INFO_1548;

typedef struct _SERVER_INFO_1549

DWORD sv1549 networkerrorthresho Id;
} SERVER_INFO_1549, *PSERVER_INFO_1549, *LPSERVER_INFO_1549;

typedef struct _SERVER_INFO_1550

DWORD sv1550_diskspacethreshold;
} SERVER_INFO_1550, *PSERVER_INFO_1550, *LPSERVER_INFO_1550;

typedef struct _SERVER_INFO_1552

DWORD sv1552_maxlinkdelay;
} SERVER_INFO_1552, *PSERVER_INFO_1552, *LPSERVER_INFO_1552;

typedef struct _ SERVER_INFO_1553

DWORD sv1553_minlinkthroughput;
} SERVER_INFO_1553, *PSERVER_INFO_1553, *LPSERVER_INFO_1553;

typedef struct _SERVER_INFO_1554

DWORD sv1554_linkinfovalidtime;
} SERVER_INFO_1554, *PSERVER_INFO_1554, *LPSERVER_INFO_1554;

[MS -SRVS-Diff] - v20210625

Server Service Remote Protocol

Copyright © 2021 Microsoft Corporati on
Release: June 25, 2021

196 / 240

typedef struct _SERVER_INFO_1555

DWORD sv1555_scavqosinfoupdatetime;
} SERVER_INFO_1555, *PSERVER_INFO_1555, *LPSERVER_INFO_1555;

typedef struct _SERVER_INFO_1556
{

DWORD sv1%6_maxworkitemidletime;
} SERVER_INFO_1556, *PSERVER_INFO_1556, *LPSERVER_INFO_1556;

typedef [switch_type(unsigned long)] union _SERVER_INFO
{

[case(100)]

LPSERVER_INFO_100 Serverinfo100;
[case(101)]

LPSERVER_INFO_101 Serverinfo101;
[case(102)]

LPSERVER_INFO_102 Serverinfo102;

[case(103)]
LPSERVER_INFO_103 Serverinfo103;

[case(502)

LPSERVER_INFO_502 Serverinfo502;
[case(503)]

LPSERVER_INFO_503 ServerInfo503;
[case(599)]

LPSERVER_INFO_599 ServerIinfo599;
[case(1005)]

LPSERVER_INFO_1005 Serverinfo1005;
[ca se(1107)]

LPSERVER_INFO_1107 Serverinfo1107;
[case(1010)]

LPSERVER_INFO_1010 Serverinfo1010;
[case(1016)]

LPSERVER_INFO_1016 Serverinfol016;
[case(1017)]

LPSERVER_INFO_1017 Serverinfol 017
[case(1018)]

LPSERVER_INFO_1018 Serverinfo1018;
[case(1501)]

LPSERVER_INFO_1501 Serverinfo1501;
[case(1502)]

LPSERVER_INFO_1502 Serverinfo1502;
[case(1503)]

LPSERVER_INFO_1503 Serverinfo1503;
[case(1506)]

LPSERVER_INFO_1506 Serverinfol506;
[case(1510)]

LPSERVER_INFO_1510 Serverinfol1510;
[case(1511)]

LPSERVER_INFO_1511 Serverinfo1511;
[case(1512)]

LPSERVER_INFO_1512 Serverinfol512;
[case(1513)]

LPSERVER_INFO_1513 Serverinfo1513;
[case(1514)]

LPSERVER_INFO_1514 Serverinfol514;
[case(1515)]

LPSERVER_INFO_1515 Serve rinfol515;
[case(1516)]

LPSERVER_INFO_1516 Serverinfol516;
[case(1518)]

LPSERVER_INFO_1518 Serverinfo1518;
[case(1523)]

LPSERVER_INFO_1523 Serverinfo1523;
[case(1528)]

LPSERVERINFO_1528 Serverinfol528;
[case(1529)]

LPSERVER_INFO_1529 Serverinfo1529;
[case(1530)]

197 / 240

[MS -SRVS-Diff] - v20210625

Server Service Remote Protocol

Copyright © 2021 Microsoft Corporati on
Release: June 25, 2021

LPSERVER_INFO_1530 ServerInfo1530;
[case(1533)]

LPSERVER_INFO_1533 ServerInfo1533;
[case(1534)]

LPSERVER_INFO_1534 Serverinfo1534;
[case(1535)]

LPSERVER_INFO_1535 ServerInfo1535;
[case(1536)]

LPSERVER_INFO_1536 ServerInfo1536;
[case(1538)]

LPSERVER_INFO_1538 ServerInfo1538;
[case(1539)]

LPSERVER_INFO_1539 ServerInfo1539;
[case(1540)]

LPSERVER_INFO_1540 ServerInfo1540;
[case(1541)]

LPSERVER_INFO_1541 Serve rinfol541;
[case(1542)]

LPSERVER_INFO_1542 Serverinfol542;
[case(1543)]

LPSERVER_INFO_1543 ServerInfo1543;
[case(1544)]

LPSERVER_INFO_1544 Serverinfol544;
[case(1545)]

LPSERVER_INFO_1545 ServerInfo1545;
[case(1546)]

LPSERVER_INFO_1546 Serverinfol546;
[case(1547)]

LPSERVER_INFO_1547 ServerInfol547,;
[case(1548)]

LPSERVER_INFO_1548 Serverinfo1548;
[case(1549)]

LPSERVER_INFO_1549 ServerInfo1549;
[case(1550)]

LPSERVER_INFO_1550 Serverinfol550;
[case(1552)]

LPSERVER_INFO_1552 ServerInfo1552;
[case(1553)]

LPSERVER_INFO_1553 Serverinfol553;
[case(1554)]

LPSERVER_INFO_1554 ServerInfo1554;
[case(1555)]

LPSERVER_INFO_1555 Serverinfol555;
[case(1556)]

LPSERVER_INFO_1556 Serve rinfol556;

} SERVER_INFO, *PSERVER_INFO, *LPSERVER_INFO;

typedef struct _DISK_INFO

[string] WCHAR Disk[3];
} DISK_INFO, *PDISK_INFO, *LPDISK_INFO;

typedef struct _DISK_ENUM_CONTAINER
{

DWORD EntriesRead;
[size_is(EntriesRead), length_is(EntriesRead)] LPDISK_INFO
Buffer;
} DISK_ENUM_CONTAINER;

typedef struct _ SERVER_TRANSPORT_INFO_0

DWORD svti0_numberofvcs;
[string] wchar_t * svtiO_transportname;
[size_is(svtiO_transportaddresslength)] unsigned char
* svti0_transportaddress;
DWORD svti0_transportaddresslength;
[string] wchar_t * svti0_networkaddress;
} SERVER_TRANSPORT_INFO_0, *PSERVER_TRANSPORT_INFO_0,
*LPSERVER_TRANSPORT_INFO_O0;

198 / 240

[MS -SRVS-Diff] - v20210625

Server Service Remote Protocol

Copyright © 2021 Microsoft Corporati on
Release: June 25, 2021

typedef struct_SERVER_XPORT_INFO_0_CONTAINER

DWORD EntriesRead,;
[size_is(EntriesRead)] LPSERVER_TRANSPORT_INFO_0 Buffer;
} SERVER_XPORT_INFO_0_CONAINER, *PSERVER_XPORT_INFO_0_CONTAINER,;

typedef struct _SERVER_TRANSPORT_INFO_1

DWORD svtil_numberofvcs;
[string] wchar_t * svtil_transportname;
[size_is(svtil_transportaddresslength)] unsigned char
* svtil_transportaddress;
DWORD svtil_transportaddresslength;
[string] wchar_t * svtil_networkaddress;
[string] wchar_t * svtil_domain;
} SERVER_TRANSPOR_INFO_1, *PSERVER_TRANSPORT_INFO 1,
*LPSERVER_TRANSPORT_INFO_1,

typedef struct_SERVER_XPORT_INFO_1_CONTAINER

DWORD EntriesRead;
[size_is(EntriesRead)] LPSERVER_TRANSPORT_INFO_1 Buffer;
} SERVER_XPORT_INFO_1_CONTAINER, *PSERVER_XPORT_INFO_1_CONTAINER;

typedef struct _SERVER_TRANSPORT_INFO_2
{
DWORD svti2_numberofvcs;
[string] wchar_t * svti2_tran sportname;
[size_is(svti2_transportaddresslength)] unsigned char
* svti2_transportaddress;
DWORD svti2_transportaddresslength;
[string] wchar_t * svti2_networkaddress;
[string] wchar_t * svti2_domain;
unsigned long svti2_flags;
} SERVER_TRANSPORT _INFO_2, *PSERVER_TRANSPORT_INFO_2,
*LPSERVER_TRANSPORT_INFO_2;

typedef struct _SERVER_XPORT_INFO_2_CONTAINER

DWORD EntriesRead;
[size_is(EntriesRead)] LPSERVER_TRANSPORT_INFO_ 2 Buffer;
} SERVER_XPORT_INFO_2_CONTAINER, *PSERVER_XPORT_INFO_2_CONTAINER;

typedef struct _ SERVER_TRANSPORT_INFO_3

DWORD svti3_numberofvcs;
[string] wchar_t * svti3_transportname;
[size_is(svti3_transportaddresslength)] unsigned char
* svti3_transportaddress;
DWORD svti3_transportaddresslength;
[string] wchar_t * svti3_networkaddress;
[strin g] wchar_t * svti3_domain;
unsigned long svti3_flags;
DWORD svti3_passwordlength;
unsigned char svti3_password[256];
} SERVER_TRANSPORT _INFO_3, *PSERVER_TRANSPORT_INFO_3,
*LPSERVER_TRANSPORT_INFO_3;

typedef struct _ SERVER_XPORT_INFO_3_CONTAINER

DWORD EntriesRead;
[size_is(EntriesRead)] LPSERVER_TRANSPORT_INFO_3 Buffer;
} SERVER_XPORT_INFO_3 CONTAINER, *PSERVER_XPORT_INFO_3_CONTAINER,;

typedef [switch_type(unsigned long)] union _TRANSPORT_INFO
{

[case(0)]

SERVER_TRANSPORT_INFO_0 TransportO;
[case(1)]

SERVER_TRANSPORT_IND- 1 Transport1,;

199 / 240

[MS -SRVS-Diff] - v20210625

Server Service Remote Protocol

Copyright © 2021 Microsoft Corporati on
Release: June 25, 2021

[case(2)]
SERVER_TRANSPORT_INFO_2 Transport2;
[case(3)]
SERVER_TRANSPORT_INFO_3 Transport3;
} TRANSPORT_INFO, *PTRANSPORT_INFO, *LPTRANSPORT_INFO;

typedef [switch_type(DWORD)] union _SERVER_XPORT_ENUM_UNION {
[case(0)]
PSERVER_XPORT_INFO_0_CONTAINER Level0;
[case(1)]
PSERVER_XPORT_INFO_1_CONTAINER Levé;
[case(2)]
PSERVER_XPORT_INFO_2_CONTAINER Level2;
[case(3)]
PSERVER_XPORT_INFO_3_CONTAINER Level3;
} SERVER_XPORT_ENUM_UNION;

typedef struct_ SERVER_XPORT_ENUM_STRUCT

DWORD Level;
[switc h_is(Level)] SERVER_XPORT_ENUM_UNION Xportinfo;

} SERVER_XPORT_ENUM_STRUCT, *PSERVER_XPORT_ENUM_STRUCT,
*LPSERVER_XPORT_ENUM_STRUCT;

typedef [context_handle] void *SHARE_DEL_HANDLE;
typedef SHARE_DEL_HANDLE *PSHARE_DEL_HANDLE;

type def struct ADT_SECURITY_DESCRIPTOR
{

DWORD Length;
[size_is(Length)] unsigned char * Buffer;
} ADT_SECURITY_DESCRIPTOR, *PADT_SECURITY_DESCRIPTOR;

typedef struct _STAT_SERVER_O

DWORD stsO_start;
DWORD sts0_fopens;
DWORD sts0_devopens;
DWORD sts0_jobsqueued,;
DWORD stsO_sopens;
DWORD sts0_stimedout;
DWORD stsO_serrorout;
DWORD stsO_pwerrors;
DWORD sts0_permerrors;
DWORD stsO_syserrors;
DWORD sts0_bytessent_low;
DWORD sts0_bytessent_high;
DWORD sts0_bytesrcvd_low;
DWORD stsO_bytesrcvd_high;
DWORD stsO_avresponse;
DWORD sts0_regbufneed;
DWORD sts0_bigbufneed;

} STAT_SERVER_0, *PSTAT_SERVER_0, *LPSTAT_SERVER_0;

typedef struct _TIME_OF_DAY_INFO
{

DWORD tod_elapsedt;
DWORD tod_msecs;
DWORD tod_hours;
DWORDod_mins;
DWORD tod_secs;
DWORD tod_hunds;
long tod_timezone;
DWORD tod_tinterval;
DWORD tod_day;
DWORD tod_month;
DWORD tod_year;
DWORD tod_weekday;
} TIME_OF_DAY_INFO, *PTIME_OF_DAY_INFO, *LPTIME_OF_DAY_INFO;

200 / 240

[MS -SRVS-Diff] - v20210625

Server Service Remote Protocol

Copyright © 2021 Microsoft Corporati on
Release: June 25, 2021

typedef struct _NET_DFS_ENTRY_ID

GUID Uid;
[string] WCHAR * Prefix;
}NET_DFS_ENTRY_ID, *LPNET_DFS_ENTRY_ID;

typedef struct _NET_DFS_ENTRY_ID_CONTAINER
{

unsigned long Count;

[size_is(Count)] LPNET_DFS_ENTRY_ID Buffer;
}NET_DFS_ENTRY_ID_CONTAINER, *LPNET_DFS_ENTRY_ID_CONTAINER;

typedef struct _DFS_SITENAME_INFO

unsigned long SiteFlags;
[string,unique] WCHAR * SiteName;
} DFS_SITENAME_INFO, *PDFS_SITENAME_INFO, *LPDFS_SITENAME_INFO;

typedef struct _DFS_SITELIST_INFO
{
unsigned long cSites;
[size_is(cSites)] DFS_SITENAME_INFO Site[];
} DFS_SITELIST_INFO, *PDFS_SITELIST_INFO, *LPDFS_SITELIST_INFO;

typedef struct _SERVER_ALIAS_INFO_O {

[string] LMSTR srvaiO_alias;

[string] LMSTR srvaiO_target;

BOOLEAN srvaiO_default;

ULONG srvai0_reserved;

}SERVER_ALIAS_INFO_0, *PSERVER_ALIAS_INFO_0, *LPSERVER_ALIAS_INFO_0;

typedef struct _SERVER_ALIAS_INFO_0_CONTAINER {
DWORD EntriesRead;

[size_is(EntriesRead)] LPSERVER_ALIAS_INFO_O0 Buffer;
} SERVER_ALIAS_INFO_0_CONTAINER;

typedef struct _SERVER_ALIAS_ENUM_STRUCT {

DWORD Level;

[switch_is(Level)] union _SERVER_ALIAS_ENUM_UNION {

[case(0)]

SERVER_ALIAS_INFO_0_CONTAINER *Level0;

} ServerAliasinfo;

}SERVER_ALIAS_ENUM_STRUCT, *PSERVER_ALIAS_ENUMSTRUCT,
*LPSERVER_ALIAS_ENUM_STRUCT;

typedef [switch_type(unsigned long)] union _SERVER_ALIAS_INFO
{ /I for Get & Set Info
[case(0)]
LPSERVER_ALIAS_INFO_0 ServerAliasinfo0;
} SERVER_ALIAS_INFO, *PSERVER_ALIAS_INFO, *LPSERVER_ALIAS_INFO;

/I This method not used on the wire
void OpnumONotUsedOnWire(void);

/I This method not used on the wire
void Opnum1NotUsedOnWire(void);

/I This method not used on the wire
void Opnum2NotUsedOnWire(void);

/I This method not used on the wire
void Opnum3NotUsedOnWire(void);

/I This method not used on the wire
void Opnum4NotUsedOnWire(void);

/I This method not used on the wire
void Opnum5NotUsedOnWire(void);

201 / 240

[MS -SRVS-Diff] - v20210625

Server Service Remote Protocol

Copyright © 2021 Microsoft Corporati on
Release: June 25, 2021

/I This method not used on the wire
void Opnum6 NotUsedOnWire(void);

/I This method not used on the wire
void Opnum7NotUsedOnWire(void);

NET_API_STATUS

NetrConnectionEnum (
[in,string,unique] SRVSVC_HANDLE ServerName,
[in,string,unique] WCHAR * Quialifier,
[in,out] LPCONNECT_ENUM_STRUCT InfoStruct,
[in] DWORD PreferedMaximumLength,
[out] DWORD * TotalEntries,
[in,out,unique] DWORD * ResumeHandle

)

NET_API_STATUS
NetrF ileEnum (
[in,string,unique] SRVSVC_HANDLE ServerName,
[in,string,unique] WCHAR * BasePath,
[in,string,unique] WCHAR * UserName,
[in,out] PFILE_ENUM_STRUCT InfoStruct,
[in] DWORD PreferedMaximumLength,
[out] DWORD * TotalEntries,
[in,out,unique] DWORD * ResumeHandle
)

NET_API_STATUS
NetrFileGetInfo (
[in,string,unique] SRVSVC_HANDLE ServerName,
[in] DWORD Fileld,
[in] DWORD Level,
[out, switch_is(Level)] LPFILE_INFO InfoStruct

);

NET_API_STATUS

NetrFileClose (
[in,string,unique] SRVSVC_HANDLE ServerName,
[in] DWORD Fileld

)i

NET_API_STATUS
NetrSessionEnum (
[in,string,unique] SRVSVC_HANDLE ServerName,
[in,string,unique] WCHAR * ClientName,
[in,string,unique] WCHAR * UserName,
[in,out] PSESSION_ENUM_STRUCT InfoStruct,
[in] DWORD PreferedMaximumLength,
[out] DWORD * TotalEntries,
[in,out,unique] DWORD * ResumeHandle
)

NET_API_STATUS

NetrSessionDel (
[in,string,unique] SRVSVC_HANDLE ServerName,
[in,string,unique] WCHAR * ClientName,
[in,string,uniqgue] WCHAR * UserName

)

NET_API_STATUS

NetrShareAdd (
[in,string,unique] SRVSVC_HANDLE ServerName,
[in] DWORD Level,
[in, switch_is(Level)] LPSHARE_INFO InfoStruct,
[in,out,unique] DWORD * ParmErr

)

NET_API_STATUS
NetrShareEnum (
[in,string,unique] SRVSVC_HANDLE ServerName,

[MS -SRVS-Diff] - v20210625

Server Service Remote Protocol

Copyright © 2021 Microsoft Corporati on
Release: June 25, 2021

202 / 240

[in,out] LPSHARE_ENUM_STRUCT InfoStruct,
[in] DWORD PreferedMaximumLength,

[out] DWORD * TotalEntries,

[in,out,unique] DWORD * Resum eHandle

);

NET_API_STATUS
NetrShareGetlnfo (
[in,string,unique] SRVSVC_HANDLE ServerName,
[in,string] WCHAR * NetName,
[in] DWORD Level,
[out, switch_is(Level)] LPSHARE_INFO InfoStruct

);

NET_API_STATUS

NetrShareSetinfo (
[in,string,unique] SRVSVC_HANDLE ServerName,
[in,string] WCHAR * NetName,
[in] DWORD Level,
[in, switch_is(Level)] LPS HARE_INFO Sharelnfo,
[in,out,unique] DWORD * ParmErr

)

NET_API_STATUS

NetrShareDel (
[in,string,unique] SRVSVC_HANDLE ServerName,
[in,string] WCHAR * NetName,
[in] DWORD Reserved

)

NET_API_STATUS

NetrShareDelSticky (
[in,string,unique] SRVSVC_HANDLE ServerName,
[in,string] WCHAR * NetName,
[in] DWORD Reserved

)i

NET_API_STATUS

NetrShareCheck (
[in,string,unique] SRVSVC_HANDLE Serve rName,
[in,string] WCHAR * Device,
[out] DWORD * Type

)i

NET_API_STATUS
NetrServerGetinfo (
[in,string,unique] SRVSVC_HANDLE ServerName,
[in] DWORD Level,
[out, switch_is(Level)] LPSERVER_INFO InfoStruct
)

NET_API_STATUS

NetrServerSetinfo (
[in,string,unique] SRVSVC_HANDLE ServerName,
[in] DWORD Level,
[in, switch_is(Level)] LPSERVER_INFO Serverinfo,
[in,out,unique] DWORD * ParmErr

)

NET_API_STATUS

NetrServerDiskEnum (
[in,string,unique] SRVSVC_HANDLE ServerName,
[in] DWORD Level,
[in,out] DISK_ENUM_CONTAINER *DiskInfoStruct,
[in] DWORD PreferedMaxi mumLength,
[out] DWORD * TotalEntries,
[in,out,unique] DWORD * ResumeHandle

)i

NET_AP|_STATUS

[MS -SRVS-Diff] - v20210625

Server Service Remote Protocol

Copyright © 2021 Microsoft Corporati on
Release: June 25, 2021

203 / 240

NetrServerStatisticsGet (
[in,string,unique] SRVSVC_HANDLE ServerName,
[in,string,uniqgue] WCHAR * Service,
[in] DWORD Level,
[in] DWORD Options,
[out] LPSTAT_SERVER_O *InfoStruct
)i

NET_API_STATUS
NetrServerTransportAdd (
[in,string,unique] SRVSVC_HANDLE ServerName,
[in] DWORD Level,
[in] LPSERVER_TRANSPORT_INFO_0 Buffer

)

NET_API_STATUS

NetrServerTransportEnum (
[in,string,unique] SRVSVC_HANDLE ServerName,
[in,out] LPSERVER_XPORT_ENUM_STRUCT InfoStruct,
[in] DWORD PreferedMaximumLength,
[out] DWORD * TotalEntries,
[in,out,unique] DWORD * ResumeHandle

)

NET_API_STATUS
NetrServerTransportDel (
[in,string,un iqgue] SRVSVC_HANDLE ServerName,
[in] DWORD Level,
[in] LPSERVER_TRANSPORT_INFO_0 Buffer
)

NET_API_STATUS

NetrRemoteTOD (
[in,string,unique] SRVSVC_HANDLE ServerName,
[out] LPTIME_OF_DAY_INFO *BufferPtr

)i

/I This method not used on the wire
void Opnum29NotUsedOnWire(void);

NET_API_STATUS
NetprPathType(
[in,string,unique] SRVSVC_HANDLE ServerName,
[in,string] WCHAR * PathName,
[out] DWORD * PathType,
[in] DWORD Flags
)i

NET_API_STATUS
NetprPathCanonicalize(
[in,string,unique] SRVSVC_HANDLE ServerName,
[in,string] WCHAR * PathName,
[out,size_is(OutbufLen)] unsigned char * Outbu f,
[in,range(0, 64000)] DWORD OutbufLen,
[in,string] WCHAR * Prefix,
[in,out] DWORD * PathType,
[in] DWORD Flags
)

long
NetprPathCompare(
[in,string,unique] SRVSVC_HANDLE ServerName,
[in,string] WCHAR * PathNamel,
[in,string] WCHAR * PathName2,
[in] DWORD PathType,
[in] DWORD Flags
)

NET_API_STATUS
NetprNameValidate(

204 | 240

[MS -SRVS-Diff] - v20210625

Server Service Remote Protocol

Copyright © 2021 Microsoft Corporati on
Release: June 25, 2021

[in,string,un ique] SRVSVC_HANDLE ServerName,
[in,string] WCHAR * Name,
[in] DWORD NameType,
[in] DWORD Flags
)

NET_API_STATUS

NetprNameCanonicalize(
[in,string,unique] SRVSVC_HANDLE ServerName,
[in,string] WCHAR * Name,
[out, size_is(OutbufLen)] WCHAR * Outbuf,
[in,range(0, 64000)] DWORD OutbufLen,
[in] DWORD NameType,
[in] DWORD Flags

)i

long
NetprNameCompare(
[in,string,unique] SRVSVC_HANDLE ServerName,
[in,string] WCHAR * Namel,
[in,string] WCHAR * Name?2,
[in] DWORD NameType,
[in] DWORD Flags
)i

NET_API_STATUS

NetrShareEnumSticky (
[in,string,unique] SRVSVC_HANDLE ServerName,
[in,out] LPSHARE_ENUM_STRUCT InfoStruct,
[in] DWORD PreferedMaximumLength,
[out] DWORD * TotalEntries,
[in,out,unique] DWORD * ResumeHandle

)

NET_API_STATUS
NetrShareDelStart (
[in,string,unique] SRVSVC_HANDLE ServerName,
[in,string] WCHAR * NetName,
[in] DWORD Reserved,
[out] PSHARE_DEL_HANDLE ContextHandle
)

NET_API_STATUS
NetrShareDelCommit (

[in, out] PSHARE_DEL_HANDLE ContextHandle
)

DWORD
NetrpGetFileSecurity (
[in,string,unique] SRVSVC_HANDLE ServerName,
[i n,string,uniqgue] WCHAR * ShareName,
[in,string] WCHAR * IpFileName,
[in] SECURITY_INFORMATION RequestedInformation,
[out] PADT_SECURITY_DESCRIPTOR *SecurityDescriptor
)

DWORD
NetrpSetFileSecurity (
[in,string,u nique] SRVSVC_HANDLE ServerName,
[in,string,unique] WCHAR * ShareName,
[in,string] WCHAR * IpFileName,
[in] SECURITY_INFORMATION Securitylnformation,
[in] PADT_SECURITY_DESCRIPTOR SecurityDescriptor
)i

NET_API_STATUS

NetrServerTransportAddEx (
[in,string,unique] SRVSVC_HANDLE ServerName,
[in] DWORD Level,
[in, switch_is(Level)] LPTRANSPORT_INFO Buffer

[MS -SRVS-Diff] - v20210625

Server Service Remote Protocol

Copyright © 2021 Microsoft Corporati on
Release: June 25, 2021

205 / 240

);

/I This method not used on the wire
void Opnum42NotUsedOnWire(void);

NET_API_STATUS

NetrDfsGetVersion(
[in,string,unique] SRVSVC_HANDLE ServerName,
[out] DWORD * Version

)

NET_API_STATUS
NetrDfsCreateLocalPartiti on (
[in,string,unique] SRVSVC_HANDLE ServerName,
[in,string] WCHAR * ShareName,
[in] GUID * EntryUid,
[in,string] WCHAR * EntryPrefix,
[in,string] WCHAR * ShortName,
[in] LPNET_DFS_ENTRY_ID_CONTAINER Relatio
[in] int Force

);

NET_API_STATUS
NetrDfsDeleteLocalPartition (
[in,string,unique] SRVSVC_HANDLE ServerName,
[in] GUID * Uid,
[in,string] WCHAR * Prefix
)i

NET_API_STATUS
NetrDfsSetLocalVolumeState (
[in,string,unique] SRVSVC_HANDLE ServerName,
[in] GUID * Uid,
[in,string] WCHAR * Prefix,
[in] unsigned long State

)

/I This method not used on the wire
void Opnum47NotUsedOnWire(vo id);

NET_API_STATUS
NetrDfsCreateExitPoint (

[in,string,unique] SRVSVC_HANDLE ServerName,

[in] GUID * Uid,

[in,string] WCHAR * Prefix,

[in] unsigned long Type,

[in, range(0,32)] DWORD ShortPrefixLen,

[out, size_is(ShortPrefixLen)] WCHAR * ShortPrefix

)

NET_API_STATUS
NetrDfsDeleteExitPoint (
[in,string,unique] SRVSVC_HANDLE ServerName,
[in] GUID * Uid,
[in,string] WCHAR * Prefix,
[in] unsigned long Type
)i

NET_API_STATUS

NetrDfsModifyPrefix (
[in,string,unique] SRVSVC_HANDLE ServerName,
[in] GUID * Uid,
[in,string] WCHAR * Prefix

)i

NET_API_STATUS

NetrDfsFixLocalVolume (
[in,string,unique] SRVSVC_HANDLE ServerName,
[in,string] WCHAR * VolumeName,
[in] unsigned long EntryType,

ninfo,

[MS -SRVS-Diff] - v20210625

Server Service Remote Protocol

Copyright © 2021 Microsoft Corporati on
Release: June 25, 2021

206 / 240

