

1 / 464

[MS-SMB2-Diff] - v20190923
Server Message Block (SMB) Protocol Versions 2 and 3
Copyright © 2019 Microsoft Corporation
Release: September 23, 2019

[MS-SMB2-Diff]:

Server Message Block (SMB) Protocol Versions 2 and 3

Intellectual Property Rights Notice for Open Specifications Documentation

▪ Technical Documentation. Microsoft publishes Open Specifications documentation (“this
documentation”) for protocols, file formats, data portability, computer languages, and standards
support. Additionally, overview documents cover inter-protocol relationships and interactions.

▪ Copyrights. This documentation is covered by Microsoft copyrights. Regardless of any other
terms that are contained in the terms of use for the Microsoft website that hosts this
documentation, you can make copies of it in order to develop implementations of the technologies
that are described in this documentation and can distribute portions of it in your implementations
that use these technologies or in your documentation as necessary to properly document the

implementation. You can also distribute in your implementation, with or without modification, any
schemas, IDLs, or code samples that are included in the documentation. This permission also

applies to any documents that are referenced in the Open Specifications documentation.
▪ No Trade Secrets. Microsoft does not claim any trade secret rights in this documentation.
▪ Patents. Microsoft has patents that might cover your implementations of the technologies

described in the Open Specifications documentation. Neither this notice nor Microsoft's delivery of
this documentation grants any licenses under those patents or any other Microsoft patents.
However, a given Open Specifications document might be covered by the Microsoft Open
Specifications Promise or the Microsoft Community Promise. If you would prefer a written license,

or if the technologies described in this documentation are not covered by the Open Specifications
Promise or Community Promise, as applicable, patent licenses are available by contacting
iplg@microsoft.com.

▪ License Programs. To see all of the protocols in scope under a specific license program and the
associated patents, visit the Patent Map.

▪ Trademarks. The names of companies and products contained in this documentation might be

covered by trademarks or similar intellectual property rights. This notice does not grant any
licenses under those rights. For a list of Microsoft trademarks, visit
www.microsoft.com/trademarks.

▪ Fictitious Names. The example companies, organizations, products, domain names, email
addresses, logos, people, places, and events that are depicted in this documentation are fictitious.
No association with any real company, organization, product, domain name, email address, logo,
person, place, or event is intended or should be inferred.

Reservation of Rights. All other rights are reserved, and this notice does not grant any rights other
than as specifically described above, whether by implication, estoppel, or otherwise.

Tools. The Open Specifications documentation does not require the use of Microsoft programming
tools or programming environments in order for you to develop an implementation. If you have access
to Microsoft programming tools and environments, you are free to take advantage of them. Certain
Open Specifications documents are intended for use in conjunction with publicly available standards
specifications and network programming art and, as such, assume that the reader either is familiar

with the aforementioned material or has immediate access to it.

Support. For questions and support, please contact dochelp@microsoft.com.

2 / 464

[MS-SMB2-Diff] - v20190923
Server Message Block (SMB) Protocol Versions 2 and 3
Copyright © 2019 Microsoft Corporation
Release: September 23, 2019

Revision Summary

Date Revision History Revision Class Comments

10/22/2006 0.01 New Version 0.01 release

1/19/2007 1.0 Major Version 1.0 release

3/2/2007 1.1 Minor Version 1.1 release

4/3/2007 1.2 Minor Version 1.2 release

5/11/2007 1.3 Minor Version 1.3 release

6/1/2007 1.3.1 Editorial Changed language and formatting in the technical content.

7/3/2007 2.0 Major MLonghorn+90

7/20/2007 3.0 Major Updated and revised the technical content.

8/10/2007 4.0 Major Updated and revised the technical content.

9/28/2007 5.0 Major Updated and revised the technical content.

10/23/2007 6.0 Major Updated and revised the technical content.

11/30/2007 7.0 Major Updated and revised the technical content.

1/25/2008 7.0.1 Editorial Changed language and formatting in the technical content.

3/14/2008 8.0 Major Updated and revised the technical content.

5/16/2008 9.0 Major Updated and revised the technical content.

6/20/2008 10.0 Major Updated and revised the technical content.

7/25/2008 11.0 Major Updated and revised the technical content.

8/29/2008 12.0 Major Updated and revised the technical content.

10/24/2008 13.0 Major Updated and revised the technical content.

12/5/2008 14.0 Major Updated and revised the technical content.

1/16/2009 15.0 Major Updated and revised the technical content.

2/27/2009 16.0 Major Updated and revised the technical content.

4/10/2009 17.0 Major Updated and revised the technical content.

5/22/2009 18.0 Major Updated and revised the technical content.

7/2/2009 19.0 Major Updated and revised the technical content.

8/14/2009 20.0 Major Updated and revised the technical content.

9/25/2009 21.0 Major Updated and revised the technical content.

11/6/2009 22.0 Major Updated and revised the technical content.

12/18/2009 23.0 Major Updated and revised the technical content.

1/29/2010 24.0 Major Updated and revised the technical content.

3 / 464

[MS-SMB2-Diff] - v20190923
Server Message Block (SMB) Protocol Versions 2 and 3
Copyright © 2019 Microsoft Corporation
Release: September 23, 2019

Date Revision History Revision Class Comments

3/12/2010 25.0 Major Updated and revised the technical content.

4/23/2010 26.0 Major Updated and revised the technical content.

6/4/2010 27.0 Major Updated and revised the technical content.

7/16/2010 28.0 Major Updated and revised the technical content.

8/27/2010 29.0 Major Updated and revised the technical content.

10/8/2010 30.0 Major Updated and revised the technical content.

11/19/2010 31.0 Major Updated and revised the technical content.

1/7/2011 32.0 Major Updated and revised the technical content.

2/11/2011 33.0 Major Updated and revised the technical content.

3/25/2011 34.0 Major Updated and revised the technical content.

5/6/2011 35.0 Major Updated and revised the technical content.

6/17/2011 36.0 Major Updated and revised the technical content.

9/23/2011 37.0 Major Updated and revised the technical content.

12/16/2011 38.0 Major Updated and revised the technical content.

3/30/2012 39.0 Major Updated and revised the technical content.

7/12/2012 40.0 Major Updated and revised the technical content.

10/25/2012 41.0 Major Updated and revised the technical content.

1/31/2013 42.0 Major Updated and revised the technical content.

8/8/2013 43.0 Major Updated and revised the technical content.

11/14/2013 44.0 Major Updated and revised the technical content.

2/13/2014 45.0 Major Updated and revised the technical content.

5/15/2014 46.0 Major Updated and revised the technical content.

6/30/2015 47.0 Major Significantly changed the technical content.

10/16/2015 48.0 Major Significantly changed the technical content.

7/14/2016 49.0 Major Significantly changed the technical content.

9/26/2016 50.0 Major Significantly changed the technical content.

3/16/2017 51.0 Major Significantly changed the technical content.

6/1/2017 52.0 Major Significantly changed the technical content.

9/15/2017 53.0 Major Significantly changed the technical content.

12/1/2017 54.0 Major Significantly changed the technical content.

3/16/2018 55.0 Major Significantly changed the technical content.

9/12/2018 56.0 Major Significantly changed the technical content.

4 / 464

[MS-SMB2-Diff] - v20190923
Server Message Block (SMB) Protocol Versions 2 and 3
Copyright © 2019 Microsoft Corporation
Release: September 23, 2019

Date Revision History Revision Class Comments

3/13/2019 57.0 Major Significantly changed the technical content.

4/30/2019 58.0 Major Significantly changed the technical content.

9/23/2019 59.0 Major Significantly changed the technical content.

5 / 464

[MS-SMB2-Diff] - v20190923
Server Message Block (SMB) Protocol Versions 2 and 3
Copyright © 2019 Microsoft Corporation
Release: September 23, 2019

Table of Contents

1 Introduction .. 14
1.1 Glossary ... 14
1.2 References .. 18

1.2.1 Normative References ... 18
1.2.2 Informative References ... 19

1.3 Overview .. 20
1.4 Relationship to Other Protocols .. 22
1.5 Prerequisites/Preconditions ... 24
1.6 Applicability Statement ... 24
1.7 Versioning and Capability Negotiation ... 24
1.8 Vendor-Extensible Fields ... 27
1.9 Standards Assignments ... 27

2 Messages ... 29
2.1 Transport .. 29
2.2 Message Syntax ... 29

2.2.1 SMB2 Packet Header ... 31
2.2.1.1 SMB2 Packet Header - ASYNC ... 31
2.2.1.2 SMB2 Packet Header - SYNC .. 34

2.2.2 SMB2 ERROR Response ... 37
2.2.2.1 (Updated Section) SMB2 ERROR Context Response 38
2.2.2.2 ErrorData format .. 39

2.2.2.2.1 Symbolic Link Error Response ... 39
2.2.2.2.1.1 Handling the Symbolic Link Error Response 41

2.2.2.2.2 Share Redirect Error Context Response .. 42
2.2.2.2.2.1 MOVE_DST_IPADDR structure ... 43

2.2.3 SMB2 NEGOTIATE Request .. 44
2.2.3.1 SMB2 NEGOTIATE_CONTEXT Request Values.. 46

2.2.3.1.1 SMB2_PREAUTH_INTEGRITY_CAPABILITIES 47
2.2.3.1.2 SMB2_ENCRYPTION_CAPABILITIES ... 47
2.2.3.1.3 SMB2_COMPRESSION_CAPABILITIES... 48
2.2.3.1.4 (Updated Section) SMB2_NETNAME_NEGOTIATE_CONTEXT_ID 49

2.2.4 SMB2 NEGOTIATE Response .. 49
2.2.4.1 SMB2 NEGOTIATE_CONTEXT Response Values ... 52

2.2.4.1.1 SMB2_PREAUTH_INTEGRITY_CAPABILITIES 52
2.2.4.1.2 SMB2_ENCRYPTION_CAPABILITIES ... 52
2.2.4.1.3 SMB2_COMPRESSION_CAPABILITIES... 52
2.2.4.1.4 SMB2_NETNAME_NEGOTIATE_CONTEXT_ID 53

2.2.5 SMB2 SESSION_SETUP Request ... 53
2.2.6 SMB2 SESSION_SETUP Response ... 54
2.2.7 SMB2 LOGOFF Request .. 55
2.2.8 SMB2 LOGOFF Response.. 56
2.2.9 SMB2 TREE_CONNECT Request .. 56

2.2.9.1 SMB2 TREE_CONNECT Request Extension .. 57
2.2.9.2 SMB2 TREE_CONNECT_CONTEXT Request Values 58

2.2.9.2.1 SMB2_REMOTED_IDENTITY_TREE_CONNECT Context 58
2.2.9.2.1.1 BLOB_DATA .. 60
2.2.9.2.1.2 SID_ATTR_DATA .. 60
2.2.9.2.1.3 SID_ARRAY_DATA ... 61
2.2.9.2.1.4 LUID_ATTR_DATA .. 62
2.2.9.2.1.5 PRIVILEGE_DATA ... 62
2.2.9.2.1.6 PRIVILEGE_ARRAY_DATA .. 62

2.2.10 SMB2 TREE_CONNECT Response .. 63
2.2.11 SMB2 TREE_DISCONNECT Request ... 65
2.2.12 SMB2 TREE_DISCONNECT Response ... 66

6 / 464

[MS-SMB2-Diff] - v20190923
Server Message Block (SMB) Protocol Versions 2 and 3
Copyright © 2019 Microsoft Corporation
Release: September 23, 2019

2.2.13 SMB2 CREATE Request .. 66
2.2.13.1 SMB2 Access Mask Encoding .. 71

2.2.13.1.1 File_Pipe_Printer_Access_Mask ... 71
2.2.13.1.2 Directory_Access_Mask .. 72

2.2.13.2 SMB2_CREATE_CONTEXT Request Values .. 74
2.2.13.2.1 SMB2_CREATE_EA_BUFFER .. 76
2.2.13.2.2 SMB2_CREATE_SD_BUFFER .. 76
2.2.13.2.3 SMB2_CREATE_DURABLE_HANDLE_REQUEST 76
2.2.13.2.4 SMB2_CREATE_DURABLE_HANDLE_RECONNECT 77
2.2.13.2.5 SMB2_CREATE_QUERY_MAXIMAL_ACCESS_REQUEST 77
2.2.13.2.6 SMB2_CREATE_ALLOCATION_SIZE .. 77
2.2.13.2.7 SMB2_CREATE_TIMEWARP_TOKEN .. 78
2.2.13.2.8 SMB2_CREATE_REQUEST_LEASE .. 78
2.2.13.2.9 SMB2_CREATE_QUERY_ON_DISK_ID ... 79
2.2.13.2.10 SMB2_CREATE_REQUEST_LEASE_V2 ... 79
2.2.13.2.11 SMB2_CREATE_DURABLE_HANDLE_REQUEST_V2 80
2.2.13.2.12 SMB2_CREATE_DURABLE_HANDLE_RECONNECT_V2 81
2.2.13.2.13 SMB2_CREATE_APP_INSTANCE_ID .. 82
2.2.13.2.14 SVHDX_OPEN_DEVICE_CONTEXT .. 82
2.2.13.2.15 SMB2_CREATE_APP_INSTANCE_VERSION .. 82

2.2.14 SMB2 CREATE Response .. 83
2.2.14.1 SMB2_FILEID ... 86
2.2.14.2 SMB2_CREATE_CONTEXT Response Values .. 86

2.2.14.2.1 SMB2_CREATE_EA_BUFFER .. 87
2.2.14.2.2 SMB2_CREATE_SD_BUFFER .. 87
2.2.14.2.3 SMB2_CREATE_DURABLE_HANDLE_RESPONSE 87
2.2.14.2.4 SMB2_CREATE_DURABLE_HANDLE_RECONNECT 88
2.2.14.2.5 SMB2_CREATE_QUERY_MAXIMAL_ACCESS_RESPONSE 88
2.2.14.2.6 SMB2_CREATE_APP_INSTANCE_ID .. 88
2.2.14.2.7 SMB2_CREATE_ALLOCATION_SIZE .. 88
2.2.14.2.8 SMB2_CREATE_TIMEWARP_TOKEN .. 88
2.2.14.2.9 (Updated Section) SMB2_CREATE_QUERY_ON_DISK_ID 88
2.2.14.2.10 SMB2_CREATE_RESPONSE_LEASE .. 89
2.2.14.2.11 SMB2_CREATE_RESPONSE_LEASE_V2 ... 90
2.2.14.2.12 SMB2_CREATE_DURABLE_HANDLE_RESPONSE_V2 91
2.2.14.2.13 SMB2_CREATE_DURABLE_HANDLE_RECONNECT_V2 92
2.2.14.2.14 SVHDX_OPEN_DEVICE_CONTEXT_RESPONSE 92
2.2.14.2.15 SMB2_CREATE_APP_INSTANCE_VERSION .. 92

2.2.15 SMB2 CLOSE Request ... 92
2.2.16 SMB2 CLOSE Response ... 93
2.2.17 SMB2 FLUSH Request .. 95
2.2.18 SMB2 FLUSH Response .. 95
2.2.19 SMB2 READ Request ... 96
2.2.20 SMB2 READ Response ... 98
2.2.21 SMB2 WRITE Request.. 98
2.2.22 SMB2 WRITE Response .. 100
2.2.23 SMB2 OPLOCK_BREAK Notification ... 101

2.2.23.1 Oplock Break Notification .. 101
2.2.23.2 Lease Break Notification .. 102

2.2.24 SMB2 OPLOCK_BREAK Acknowledgment ... 103
2.2.24.1 Oplock Break Acknowledgment .. 103
2.2.24.2 Lease Break Acknowledgment.. 104

2.2.25 SMB2 OPLOCK_BREAK Response ... 105
2.2.25.1 Oplock Break Response... 105
2.2.25.2 Lease Break Response .. 106

2.2.26 SMB2 LOCK Request .. 107
2.2.26.1 SMB2_LOCK_ELEMENT Structure ... 108

2.2.27 SMB2 LOCK Response .. 109

7 / 464

[MS-SMB2-Diff] - v20190923
Server Message Block (SMB) Protocol Versions 2 and 3
Copyright © 2019 Microsoft Corporation
Release: September 23, 2019

2.2.28 SMB2 ECHO Request .. 110
2.2.29 SMB2 ECHO Response .. 110
2.2.30 SMB2 CANCEL Request ... 110
2.2.31 SMB2 IOCTL Request ... 111

2.2.31.1 SRV_COPYCHUNK_COPY ... 113
2.2.31.1.1 SRV_COPYCHUNK ... 114

2.2.31.2 SRV_READ_HASH Request .. 114
2.2.31.3 NETWORK_RESILIENCY_REQUEST Request ... 115
2.2.31.4 VALIDATE_NEGOTIATE_INFO Request .. 116

2.2.32 SMB2 IOCTL Response ... 117
2.2.32.1 SRV_COPYCHUNK_RESPONSE ... 118
2.2.32.2 SRV_SNAPSHOT_ARRAY ... 119
2.2.32.3 SRV_REQUEST_RESUME_KEY Response .. 119
2.2.32.4 SRV_READ_HASH Response .. 120

2.2.32.4.1 HASH_HEADER .. 120
2.2.32.4.2 SRV_HASH_RETRIEVE_HASH_BASED ... 121
2.2.32.4.3 SRV_HASH_RETRIEVE_FILE_BASED ... 122

2.2.32.5 NETWORK_INTERFACE_INFO Response .. 123
2.2.32.5.1 SOCKADDR_STORAGE .. 124

2.2.32.5.1.1 SOCKADDR_IN ... 124
2.2.32.5.1.2 SOCKADDR_IN6 ... 125

2.2.32.6 VALIDATE_NEGOTIATE_INFO Response .. 126
2.2.33 (Updated Section) SMB2 QUERY_DIRECTORY Request 126
2.2.34 SMB2 QUERY_DIRECTORY Response .. 128
2.2.35 SMB2 CHANGE_NOTIFY Request .. 128
2.2.36 SMB2 CHANGE_NOTIFY Response .. 130
2.2.37 SMB2 QUERY_INFO Request ... 131

2.2.37.1 SMB2_QUERY_QUOTA_INFO ... 134
2.2.38 SMB2 QUERY_INFO Response ... 135
2.2.39 SMB2 SET_INFO Request .. 136
2.2.40 SMB2 SET_INFO Response .. 139
2.2.41 SMB2 TRANSFORM_HEADER ... 139
2.2.42 SMB2 COMPRESSION_TRANSFORM_HEADER .. 141

3 Protocol Details ... 142
3.1 Common Details ... 142

3.1.1 Abstract Data Model ... 142
3.1.1.1 Global... 142

3.1.2 Timers ... 142
3.1.3 Initialization .. 142
3.1.4 Higher-Layer Triggered Events .. 142

3.1.4.1 Signing An Outgoing Message .. 142
3.1.4.2 Generating Cryptographic Keys .. 143
3.1.4.3 Encrypting the Message .. 143
3.1.4.4 (Updated Section) Compressing the Message .. 144

3.1.5 Processing Events and Sequencing Rules .. 144
3.1.5.1 Verifying an Incoming Message .. 144
3.1.5.2 Calculating the CreditCharge ... 145

3.1.6 Timer Events ... 145
3.1.7 Other Local Events ... 145

3.2 Client Details .. 145
3.2.1 Abstract Data Model ... 145

3.2.1.1 Global... 145
3.2.1.2 (Updated Section) Per SMB2 Transport Connection................................... 146
3.2.1.3 Per Session ... 148
3.2.1.4 Per Tree Connect ... 148
3.2.1.5 Per Open File ... 149
3.2.1.6 (Updated Section) Per Application Open of a File 149

8 / 464

[MS-SMB2-Diff] - v20190923
Server Message Block (SMB) Protocol Versions 2 and 3
Copyright © 2019 Microsoft Corporation
Release: September 23, 2019

3.2.1.7 Per Pending Request .. 151
3.2.1.8 Per Channel... 151
3.2.1.9 (Updated Section) Per Server .. 151

3.2.2 Timers ... 151
3.2.2.1 Request Expiration Timer .. 151
3.2.2.2 Idle Connection Timer .. 151
3.2.2.3 Network Interface Information Timer .. 152

3.2.3 Initialization .. 152
3.2.4 Higher-Layer Triggered Events .. 152

3.2.4.1 Sending Any Outgoing Message ... 152
3.2.4.1.1 Signing the Message ... 153
3.2.4.1.2 Requesting Credits from the Server .. 153
3.2.4.1.3 Associating the Message with a MessageId .. 153
3.2.4.1.4 Sending Compounded Requests ... 154
3.2.4.1.5 Sending Multi-Credit Requests ... 154
3.2.4.1.6 Algorithm for Handling Available Message Sequence Numbers by the Client

 .. 155
3.2.4.1.7 (Updated Section) Selecting a Connection ... 155
3.2.4.1.8 Encrypting the Message .. 155
3.2.4.1.9 Compressing the Message ... 156

3.2.4.2 Application Requests a Connection to a Share .. 156
3.2.4.2.1 Connecting to the Target Server ... 158
3.2.4.2.2 Negotiating the Protocol .. 159

3.2.4.2.2.1 Multi-Protocol Negotiate ... 159
3.2.4.2.2.2 (Updated Section) SMB2-Only Negotiate 159

3.2.4.2.3 (Updated Section) Authenticating the User .. 161
3.2.4.2.3.1 Application Requests Reauthenticating a User 162

3.2.4.2.4 Connecting to the Share .. 163
3.2.4.3 Application Requests Opening a File ... 164

3.2.4.3.1 Application Requests Opening a Named Pipe 166
3.2.4.3.2 Application Requests Sending a File to Print 166
3.2.4.3.3 Application Requests Creating a File with Extended Attributes 166
3.2.4.3.4 Application Requests Creating a File with a Security Descriptor 166
3.2.4.3.5 Application Requests Creating a File Opened for Durable Operation 166
3.2.4.3.6 Application Requests Opening a Previous Version of a File 167
3.2.4.3.7 Application Requests Creating a File with a Specific Allocation Size 167
3.2.4.3.8 Requesting a Lease on a File or a Directory.. 167
3.2.4.3.9 Application Requests Maximal Access Information of a File 168
3.2.4.3.10 Application Requests Identifier of a File ... 168
3.2.4.3.11 Application Supplies its Identifier .. 168
3.2.4.3.12 Application Provides an Application-Specific Create Context Structure to

Open a Remote File .. 168
3.2.4.3.13 Application Supplies a Version for its Identifier 168

3.2.4.4 (Updated Section) Re-establishing a Durable Open 169
3.2.4.5 (Updated Section) Application Requests Closing a File or Named Pipe 170
3.2.4.6 (Updated Section) Application Requests Reading from a File or Named Pipe 171
3.2.4.7 (Updated Section) Application Requests Writing to a File or Named Pipe 172
3.2.4.8 (Updated Section) Application Requests Querying File Attributes 174
3.2.4.9 (Updated Section) Application Requests Applying File Attributes 176
3.2.4.10 (Updated Section) Application Requests Querying File System Attributes 176
3.2.4.11 (Updated Section) Application Requests Applying File System Attributes 177
3.2.4.12 (Updated Section) Application Requests Querying File Security 178
3.2.4.13 (Updated Section) Application Requests Applying File Security 179
3.2.4.14 (Updated Section) Application Requests Querying Quota Information 180
3.2.4.15 (Updated Section) Application Requests Applying Quota Information 182
3.2.4.16 (Updated Section) Application Requests Flushing Cached Data 183
3.2.4.17 (Updated Section) Application Requests Enumerating a Directory 183

3.2.4.17.1 Application Requests Continuing a Directory Enumeration 185

9 / 464

[MS-SMB2-Diff] - v20190923
Server Message Block (SMB) Protocol Versions 2 and 3
Copyright © 2019 Microsoft Corporation
Release: September 23, 2019

3.2.4.18 (Updated Section) Application Requests Change Notifications for a Directory185
3.2.4.19 (Updated Section) Application Requests Locking of an Array of Byte Ranges 186
3.2.4.20 Application Requests an IO Control Code Operation 187

3.2.4.20.1 (Updated Section) Application Requests Enumeration of Previous Versions

 .. 187
3.2.4.20.2 Application Requests a Server-Side Data Copy 188

3.2.4.20.2.1 (Updated Section) Application Requests a Source File Key 189
3.2.4.20.2.2 (Updated Section) Application Requests a Server Side Data Copy ... 190

3.2.4.20.3 Application Requests DFS Referral Information 191
3.2.4.20.4 (Updated Section) Application Requests a Pipe Transaction 192
3.2.4.20.5 (Updated Section) Application Requests a Peek at Pipe Data 193
3.2.4.20.6 (Updated Section) Application Requests a Pass-Through Operation 194
3.2.4.20.7 (Updated Section) Application Requests Content Information for a File .. 195
3.2.4.20.8 (Updated Section) Application Requests Resiliency on an Open File 196
3.2.4.20.9 Application Requests Waiting for a Connection to a Pipe 198
3.2.4.20.10 Application Requests Querying Server's Network Interfaces 199
3.2.4.20.11 (Updated Section) Application Requests Remote Shared Virtual Disk File

Control Operation ... 199
3.2.4.20.12 Application Requests Extent Duplication .. 200
3.2.4.20.13 Application Requests Extended Extent Duplication 201

3.2.4.21 (Updated Section) Application Requests Unlocking of an Array of Byte Ranges
 ... 202

3.2.4.22 Application Requests Closing a Share Connection 204
3.2.4.23 Application Requests Terminating an Authenticated Context 204
3.2.4.24 Application Requests Canceling an Operation ... 204
3.2.4.25 Application Requests the Session Key for an Authenticated Context 205
3.2.4.26 Application Requests Number of Opens on a Tree Connect 205
3.2.4.27 Application Notifies Offline Status of a Server .. 205
3.2.4.28 (Updated Section) Application Notifies Online Status of a Server 206
3.2.4.29 (Updated Section) Application Requests Moving to a Server Instance 206

3.2.5 Processing Events and Sequencing Rules .. 206
3.2.5.1 (Updated Section) Receiving Any Message .. 206

3.2.5.1.1 Handling the Transformed Message .. 207
3.2.5.1.1.1 Decrypting the Message ... 207
3.2.5.1.1.2 Decompressing the Message .. 208

3.2.5.1.2 Finding the Application Request for This Response 208
3.2.5.1.3 Verifying the Signature ... 208
3.2.5.1.4 Granting Message Credits .. 209
3.2.5.1.5 Handling Asynchronous Responses ... 209
3.2.5.1.6 Handling Session Expiration ... 209
3.2.5.1.7 Handling Incorrectly Formatted Responses .. 209
3.2.5.1.8 Processing the Response ... 210
3.2.5.1.9 Handling Compounded Responses .. 210

3.2.5.2 (Updated Section) Receiving an SMB2 NEGOTIATE Response 210
3.2.5.3 Receiving an SMB2 SESSION_SETUP Response .. 213

3.2.5.3.1 Handling a New Authentication ... 213
3.2.5.3.2 Handling a Reauthentication .. 217
3.2.5.3.3 Handling Session Binding .. 218

3.2.5.4 Receiving an SMB2 LOGOFF Response .. 220
3.2.5.5 (Updated Section) Receiving an SMB2 TREE_CONNECT Response 220
3.2.5.6 Receiving an SMB2 TREE_DISCONNECT Response 223
3.2.5.7 (Updated Section) Receiving an SMB2 CREATE Response for a New Create

Operation ... 224
3.2.5.7.1 SMB2_CREATE_DURABLE_HANDLE_RESPONSE Create Context 225
3.2.5.7.2 SMB2_CREATE_QUERY_MAXIMAL_ACCESS_RESPONSE Create Context . 225
3.2.5.7.3 SMB2_CREATE_QUERY_ON_DISK_ID Create Context 225
3.2.5.7.4 SMB2_CREATE_RESPONSE_LEASE Create Context 225
3.2.5.7.5 SMB2_CREATE_RESPONSE_LEASE_V2 Create Context 225

10 / 464

[MS-SMB2-Diff] - v20190923
Server Message Block (SMB) Protocol Versions 2 and 3
Copyright © 2019 Microsoft Corporation
Release: September 23, 2019

3.2.5.7.6 SMB2_CREATE_DURABLE_HANDLE_RESPONSE_V2 Create Context 226
3.2.5.8 Receiving an SMB2 CREATE Response for an Open Reestablishment 226
3.2.5.9 Receiving an SMB2 CLOSE Response .. 228
3.2.5.10 Receiving an SMB2 FLUSH Response .. 228
3.2.5.11 Receiving an SMB2 READ Response .. 228
3.2.5.12 Receiving an SMB2 WRITE Response .. 228
3.2.5.13 Receiving an SMB2 LOCK Response .. 229
3.2.5.14 Receiving an SMB2 IOCTL Response ... 229

3.2.5.14.1 Handling an Enumeration of Previous Versions Response 229
3.2.5.14.2 Handling a Server-Side Data Copy Source File Key Response 229
3.2.5.14.3 Handling a Server-Side Data Copy Response...................................... 229
3.2.5.14.4 Handling a DFS Referral Information Response................................... 230
3.2.5.14.5 Handling a Pipe Transaction Response ... 230
3.2.5.14.6 Handling a Peek at Pipe Data Response ... 230
3.2.5.14.7 Handling a Content Information Retrieval Response 230
3.2.5.14.8 Handling a Pass-Through Operation Response 230
3.2.5.14.9 Handling a Resiliency Response .. 231
3.2.5.14.10 Handling a Pipe Wait Response .. 231
3.2.5.14.11 Handling a Network Interfaces Response ... 231
3.2.5.14.12 Handling a Validate Negotiate Info Response 231
3.2.5.14.13 Handling a Shared Virtual Disk File Control Response 232

3.2.5.15 Receiving an SMB2 QUERY_DIRECTORY Response 232
3.2.5.16 Receiving an SMB2 CHANGE_NOTIFY Response 232
3.2.5.17 Receiving an SMB2 QUERY_INFO Response ... 232
3.2.5.18 Receiving an SMB2 SET_INFO Response ... 232
3.2.5.19 Receiving an SMB2 OPLOCK_BREAK Notification 233

3.2.5.19.1 Receiving an Oplock Break Notification .. 233
3.2.5.19.2 Receiving a Lease Break Notification ... 234
3.2.5.19.3 Receiving an Oplock Break Response .. 235
3.2.5.19.4 Receiving a Lease Break Response ... 235

3.2.6 Timer Events ... 235
3.2.6.1 Request Expiration Timer Event ... 235
3.2.6.2 Idle Connection Timer Event .. 235
3.2.6.3 Network Interface Information Timer Event ... 235

3.2.7 Other Local Events ... 236
3.2.7.1 (Updated Section) Handling a Network Disconnect 236
3.2.7.2 Handling Interface State Change .. 237

3.3 Server Details ... 237
3.3.1 Abstract Data Model ... 237

3.3.1.1 Algorithm for Handling Available Message Sequence Numbers by the Server237
3.3.1.2 Algorithm for the Granting of Credits .. 238
3.3.1.3 Algorithm for Change Notifications in an Object Store 238
3.3.1.4 Algorithm for Leasing in an Object Store ... 239
3.3.1.5 Global... 240
3.3.1.6 Per Share .. 242
3.3.1.7 Per Transport Connection .. 243
3.3.1.8 Per Session ... 245
3.3.1.9 Per Tree Connect ... 246
3.3.1.10 (Updated Section) Per Open .. 246
3.3.1.11 Per Lease Table ... 249
3.3.1.12 Per Lease .. 249
3.3.1.13 Per Request... 250
3.3.1.14 Per Channel... 251
3.3.1.15 Per PreauthSession .. 251

3.3.2 Timers ... 251
3.3.2.1 Oplock Break Acknowledgment Timer ... 251
3.3.2.2 Durable Open Scavenger Timer ... 251
3.3.2.3 Session Expiration Timer ... 251

11 / 464

[MS-SMB2-Diff] - v20190923
Server Message Block (SMB) Protocol Versions 2 and 3
Copyright © 2019 Microsoft Corporation
Release: September 23, 2019

3.3.2.4 Resilient Open Scavenger Timer ... 251
3.3.2.5 Lease Break Acknowledgment Timer... 251

3.3.3 Initialization .. 252
3.3.4 Higher-Layer Triggered Events .. 253

3.3.4.1 Sending Any Outgoing Message ... 253
3.3.4.1.1 Signing the Message ... 253
3.3.4.1.2 Granting Credits to the Client ... 254
3.3.4.1.3 Sending Compounded Responses ... 254
3.3.4.1.4 Encrypting the Message .. 254
3.3.4.1.5 Compressing the Message ... 255
3.3.4.1.6 (Added Section) Selecting a Connection .. 255

3.3.4.2 Sending an Interim Response for an Asynchronous Operation 255
3.3.4.3 Sending a Success Response ... 256
3.3.4.4 Sending an Error Response ... 256
3.3.4.5 Server Application Requests Session Key of the Client 257
3.3.4.6 (Updated Section) Object Store Indicates an Oplock Break 258
3.3.4.7 (Updated Section) Object Store Indicates a Lease Break 259
3.3.4.8 DFS Server Notifies SMB2 Server That DFS Is Active 260
3.3.4.9 DFS Server Notifies SMB2 Server That a Share Is a DFS Share 260
3.3.4.10 DFS Server Notifies SMB2 Server That a Share Is Not a DFS Share 260
3.3.4.11 Server Application Requests Security Context of the Client 260
3.3.4.12 Server Application Requests Closing a Session ... 260
3.3.4.13 Server Application Registers a Share .. 261
3.3.4.14 Server Application Updates a Share .. 262
3.3.4.15 Server Application Deregisters a Share ... 263
3.3.4.16 Server Application Requests Querying a Share ... 263
3.3.4.17 Server Application Requests Closing an Open .. 264
3.3.4.18 Server Application Queries a Session .. 265
3.3.4.19 Server Application Queries a TreeConnect ... 265
3.3.4.20 Server Application Queries an Open ... 266
3.3.4.21 Server Application Requests Transport Binding Change 266
3.3.4.22 Server Application Enables the SMB2 Server ... 267
3.3.4.23 Server Application Disables the SMB2 Server ... 267
3.3.4.24 Server Application Requests Server Statistics .. 267
3.3.4.25 RSVD Server Notifies SMB2 Server That Shared Virtual Disks Are Supported268

3.3.5 Processing Events and Sequencing Rules .. 268
3.3.5.1 Accepting an Incoming Connection ... 268
3.3.5.2 Receiving Any Message ... 269

3.3.5.2.1 Handling the Transformed Message .. 270
3.3.5.2.1.1 Decrypting the Message ... 270
3.3.5.2.1.2 Decompressing the Message .. 271

3.3.5.2.2 Verifying the Connection State ... 272
3.3.5.2.3 Verifying the Sequence Number ... 272
3.3.5.2.4 Verifying the Signature ... 272
3.3.5.2.5 Verifying the Credit Charge and the Payload Size 273
3.3.5.2.6 Handling Incorrectly Formatted Requests .. 273
3.3.5.2.7 Handling Compounded Requests .. 273

3.3.5.2.7.1 Handling Compounded Unrelated Requests 273
3.3.5.2.7.2 Handling Compounded Related Requests 273

3.3.5.2.8 Updating Idle Time ... 274
3.3.5.2.9 Verifying the Session .. 274
3.3.5.2.10 Verifying the Channel Sequence Number ... 275
3.3.5.2.11 Verifying the Tree Connect .. 275
3.3.5.2.12 Receiving an SVHDX operation Request ... 276

3.3.5.3 Receiving an SMB_COM_NEGOTIATE .. 276
3.3.5.3.1 SMB 2.1 or SMB 3.x Support .. 276
3.3.5.3.2 SMB 2.0.2 Support ... 277

3.3.5.4 (Updated Section) Receiving an SMB2 NEGOTIATE Request 278

12 / 464

[MS-SMB2-Diff] - v20190923
Server Message Block (SMB) Protocol Versions 2 and 3
Copyright © 2019 Microsoft Corporation
Release: September 23, 2019

3.3.5.5 Receiving an SMB2 SESSION_SETUP Request .. 283
3.3.5.5.1 Authenticating a New Session .. 284
3.3.5.5.2 Reauthenticating an Existing Session .. 285
3.3.5.5.3 Handling GSS-API Authentication ... 285

3.3.5.6 Receiving an SMB2 LOGOFF Request .. 292
3.3.5.7 Receiving an SMB2 TREE_CONNECT Request ... 293
3.3.5.8 Receiving an SMB2 TREE_DISCONNECT Request 296
3.3.5.9 (Updated Section) Receiving an SMB2 CREATE Request 297

3.3.5.9.1 Handling the SMB2_CREATE_EA_BUFFER Create Context 304
3.3.5.9.2 Handling the SMB2_CREATE_SD_BUFFER Create Context 304
3.3.5.9.3 Handling the SMB2_CREATE_ALLOCATION_SIZE Create Context 304
3.3.5.9.4 Handling the SMB2_CREATE_TIMEWARP_TOKEN Create Context 304
3.3.5.9.5 Handling the SMB2_CREATE_QUERY_MAXIMAL_ACCESS_REQUEST Create

Context ... 305
3.3.5.9.6 Handling the SMB2_CREATE_DURABLE_HANDLE_REQUEST Create Context

 .. 305
3.3.5.9.7 Handling the SMB2_CREATE_DURABLE_HANDLE_RECONNECT Create

Context ... 306
3.3.5.9.8 Handling the SMB2_CREATE_REQUEST_LEASE Create Context 308
3.3.5.9.9 Handling the SMB2_CREATE_QUERY_ON_DISK_ID Create Context 309
3.3.5.9.10 Handling the SMB2_CREATE_DURABLE_HANDLE_REQUEST_V2 Create

Context ... 310
3.3.5.9.11 Handling the SMB2_CREATE_REQUEST_LEASE_V2 Create Context 311
3.3.5.9.12 Handling the SMB2_CREATE_DURABLE_HANDLE_RECONNECT_V2 Create

Context ... 313
3.3.5.9.13 Handling the SMB2_CREATE_APP_INSTANCE_ID and

SMB2_CREATE_APP_INSTANCE_VERSION Create Contexts 315
3.3.5.9.14 Handling the SVHDX_OPEN_DEVICE_CONTEXT Create Context 316

3.3.5.10 Receiving an SMB2 CLOSE Request .. 317
3.3.5.11 Receiving an SMB2 FLUSH Request .. 318
3.3.5.12 Receiving an SMB2 READ Request .. 319
3.3.5.13 Receiving an SMB2 WRITE Request .. 321
3.3.5.14 Receiving an SMB2 LOCK Request .. 323

3.3.5.14.1 Processing Unlocks ... 325
3.3.5.14.2 Processing Locks .. 325

3.3.5.15 (Updated Section) Receiving an SMB2 IOCTL Request 326
3.3.5.15.1 Handling an Enumeration of Previous Versions Request 328
3.3.5.15.2 Handling a DFS Referral Information Request 329
3.3.5.15.3 Handling a Pipe Transaction Request ... 330
3.3.5.15.4 Handling a Peek at Pipe Data Request ... 330
3.3.5.15.5 Handling a Source File Key Request .. 331
3.3.5.15.6 Handling a Server-Side Data Copy Request .. 332

3.3.5.15.6.1 Sending a Copy Failure Server-Side Copy Response 333
3.3.5.15.6.2 Sending an Invalid Parameter Server-Side Copy Response 333

3.3.5.15.7 Handling a Content Information Retrieval Request 334
3.3.5.15.8 Handling a Pass-Through Operation Request 336
3.3.5.15.9 Handling a Resiliency Request .. 337
3.3.5.15.10 Handling a Pipe Wait Request ... 338
3.3.5.15.11 Handling a Query Network Interface Request 339
3.3.5.15.12 Handling a Validate Negotiate Info Request 339
3.3.5.15.13 Handling a Set Reparse Point Request ... 340
3.3.5.15.14 Handling a File Level Trim Request ... 341
3.3.5.15.15 Handling a Shared Virtual Disk Sync Tunnel Request 341
3.3.5.15.16 Handling a Query Shared Virtual Disk Support Request 341
3.3.5.15.17 Handling a Duplicate Extents To File Request 341
3.3.5.15.18 Handling an Extended Duplicate Extents To File Request 342

3.3.5.16 Receiving an SMB2 CANCEL Request .. 342
3.3.5.17 Receiving an SMB2 ECHO Request ... 343

13 / 464

[MS-SMB2-Diff] - v20190923
Server Message Block (SMB) Protocol Versions 2 and 3
Copyright © 2019 Microsoft Corporation
Release: September 23, 2019

3.3.5.18 Receiving an SMB2 QUERY_DIRECTORY Request 343
3.3.5.19 Receiving an SMB2 CHANGE_NOTIFY Request ... 345
3.3.5.20 Receiving an SMB2 QUERY_INFO Request ... 347

3.3.5.20.1 Handling SMB2_0_INFO_FILE .. 348
3.3.5.20.2 Handling SMB2_0_INFO_FILESYSTEM ... 349
3.3.5.20.3 Handling SMB2_0_INFO_SECURITY .. 350
3.3.5.20.4 Handling SMB2_0_INFO_QUOTA .. 351

3.3.5.21 Receiving an SMB2 SET_INFO Request ... 352
3.3.5.21.1 Handling SMB2_0_INFO_FILE .. 353
3.3.5.21.2 Handling SMB2_0_INFO_FILESYSTEM ... 354
3.3.5.21.3 Handling SMB2_0_INFO_SECURITY .. 354
3.3.5.21.4 Handling SMB2_0_INFO_QUOTA .. 355

3.3.5.22 Receiving an SMB2 OPLOCK_BREAK Acknowledgment 356
3.3.5.22.1 Processing an Oplock Acknowledgment ... 356
3.3.5.22.2 Processing a Lease Acknowledgment ... 357

3.3.6 Timer Events ... 358
3.3.6.1 Oplock Break Acknowledgment Timer Event .. 358
3.3.6.2 (Updated Section) Durable Open Scavenger Timer Event 358
3.3.6.3 Session Expiration Timer Event .. 359
3.3.6.4 (Updated Section) Resilient Open Scavenger Timer Event 359
3.3.6.5 Lease Break Acknowledgment Timer Event .. 359

3.3.7 Other Local Events ... 360
3.3.7.1 Handling Loss of a Connection ... 360

4 Protocol Examples ... 362
4.1 Connecting to a Share by Using a Multi-Protocol Negotiate 362
4.2 Negotiating SMB 2.1 dialect by using Multi-Protocol Negotiate 367
4.3 Connecting to a Share by Using an SMB2 Negotiate ... 372
4.4 Executing an Operation on a Named Pipe ... 377
4.5 Reading from a Remote File.. 384
4.6 Writing to a Remote File... 389
4.7 Disconnecting a Share and Logging Off .. 398
4.8 Establish Alternate Channel .. 400
4.9 Replay Create Request on an Alternate Channel .. 409

5 Security ... 414
5.1 Security Considerations for Implementers .. 414
5.2 Index of Security Parameters ... 414

6 (Updated Section) Appendix A: Product Behavior.. 415

7 Change Tracking .. 450

8 Index ... 453

14 / 464

[MS-SMB2-Diff] - v20190923
Server Message Block (SMB) Protocol Versions 2 and 3
Copyright © 2019 Microsoft Corporation
Release: September 23, 2019

1 Introduction

The Server Message Block (SMB) Protocol Versions 2 and 3 supports the sharing of file and print
resources between machines. The protocol borrows and extends concepts from the Server Message
Block (SMB) Version 1.0 Protocol, as specified in [MS-SMB]. This specification assumes familiarity with
[MS-SMB], and with the security concepts described in [MS-WPO] section 9.

Sections 1.5, 1.8, 1.9, 2, and 3 of this specification are normative. All other sections and examples in

this specification are informative.

1.1 Glossary

This document uses the following terms:

@GMT token: A special token that can be present as part of a file path to indicate a request to see
a previous version of the file or directory. The format is "@GMT-YYYY.MM.DD-HH.MM.SS". This
16-bit Unicode string represents a time and date in Coordinated Universal Time (UTC), with

YYYY representing the year, MM the month, DD the day, HH the hour, MM the minute, and SS
the seconds.

authenticated context: The runtime state that is associated with the successful authentication of
a security principal between the client and the server, such as the security principal itself, the

cryptographic key that was generated during authentication, and the rights and privileges of this
security principal.

Branch Cache: Branch Cache is intended to reduce bandwidth consumption on branch-office wide
area network (WAN) links. Branch Cache clients retrieve content from distributed caches within
a branch instead of remote servers. Distributed caches in the branch can either be on peer
clients within the branch or be on dedicated caching servers. Branch Cache details are discussed
in [MS-PCCRR].

channel: A logical entity that associates a transport connection to a session.

compounded requests and responses: A method of combining multiple SMB 2 Protocol requests
or responses into a single transmission request for submission to the underlying transport.

connection: Either a TCP or NetBIOS over TCP connection between an SMB 2 Protocol client and
an SMB 2 Protocol server.

content: Items that correspond to a file that an application attempts to access. Examples of

content include web pages and documents stored on either HTTP servers or SMB file servers.
Each content item consists of an ordered collection of one or more segments.

content information: An opaque blob of data containing a set of hashes for a specific file that can
be used by the application to retrieve the contents of the file using the branch cache. The details
of content information are discussed in [MS-PCCRC].

content information file: A file that stores Content Information along with a HASH_HEADER (see
section 2.2.32.4.1).

create context: A variable-length attribute that is sent with an SMB2 CREATE Request or SMB2
CREATE Response that either gives extra information about how the create will be processed, or
returns extra information about how the create was processed. See sections 2.2.13.2 and
2.2.14.2.

credit: A value that is granted to an SMB 2 Protocol client by an SMB 2 Protocol server that limits
the number of outstanding requests that a client can send to a server.

15 / 464

[MS-SMB2-Diff] - v20190923
Server Message Block (SMB) Protocol Versions 2 and 3
Copyright © 2019 Microsoft Corporation
Release: September 23, 2019

discretionary access control list (DACL): An access control list (ACL) that is controlled by the
owner of an object and that specifies the access particular users or groups can have to the

object.

Distributed File System (DFS): A file system that logically groups physical shared folders located

on different servers by transparently connecting them to one or more hierarchical namespaces.
DFS also provides fault-tolerance and load-sharing capabilities.

durable open: An open to a file that allows the client to attempt to preserve and reestablish the
open after a network disconnect. It cannot be permissible to a directory, named pipe, or printer.

file system: A system that enables applications to store and retrieve files on storage devices. Files
are placed in a hierarchical structure. The file system specifies naming conventions for files and
the format for specifying the path to a file in the tree structure. Each file system consists of one

or more drivers and DLLs that define the data formats and features of the file system. File
systems can exist on the following storage devices: diskettes, hard disks, jukeboxes, removable
optical disks, and tape backup units.

file system control (FSCTL): A command issued to a file system to alter or query the behavior of
the file system and/or set or query metadata that is associated with a particular file or with the
file system itself.

fully qualified domain name (FQDN): An unambiguous domain name that gives an absolute
location in the Domain Name System's (DNS) hierarchy tree, as defined in [RFC1035] section
3.1 and [RFC2181] section 11.

globally unique identifier (GUID): A term used interchangeably with universally unique
identifier (UUID) in Microsoft protocol technical documents (TDs). Interchanging the usage of
these terms does not imply or require a specific algorithm or mechanism to generate the value.
Specifically, the use of this term does not imply or require that the algorithms described in

[RFC4122] or [C706] must be used for generating the GUID. See also universally unique
identifier (UUID).

guest account: A security account available to users who do not have an account on the

computer.

handle: Any token that can be used to identify and access an object such as a device, file, or a
window.

I/O control (IOCTL): A command that is issued to a target file system or target device in order

to query or alter the behavior of the target; or to query or alter the data and attributes that are
associated with the target or the objects that are exposed by the target.

Internet Protocol version 4 (IPv4): An Internet protocol that has 32-bit source and destination
addresses. IPv4 is the predecessor of IPv6.

Internet Protocol version 6 (IPv6): A revised version of the Internet Protocol (IP) designed to
address growth on the Internet. Improvements include a 128-bit IP address size, expanded

routing capabilities, and support for authentication and privacy.

lease: A mechanism that is designed to allow clients to dynamically alter their buffering strategy in
a consistent manner in order to increase performance and reduce network use. The network
performance for remote file operations can be increased if a client can locally buffer file data,
which reduces or eliminates the need to send and receive network packets. For example, a client
might not have to write information into a file on a remote server if the client confirms that no
other client is accessing the data. Likewise, the client can buffer read-ahead data from the

remote file if the client confirms that no other client is writing data to the remote file. There are
three types of leases: a read-caching lease allows a client to cache reads and can be granted to
multiple clients, a write-caching lease allows a client to cache writes and byte range locks and
can only be granted to a single client and a handle-caching lease allows a client to cache open

16 / 464

[MS-SMB2-Diff] - v20190923
Server Message Block (SMB) Protocol Versions 2 and 3
Copyright © 2019 Microsoft Corporation
Release: September 23, 2019

handles and can be granted to multiple clients. A lease can be a combination of one or more of
the lease types listed above. When a client opens a file, it requests that the server grant it a

lease on the file. The response from the server indicates the lease that is granted to the client.
The client uses the granted lease to adjust its buffering policy. A lease can span multiple opens

as well as multiple connections from the same client.

Lease Break: An unsolicited request that is sent by an SMB 2 Protocol server to an SMB 2 Protocol
client to inform the client to change the lease state for a file.

Local object store: A system that provides the ability to create, query, modify, or apply policy to
a local resource on behalf of a remote client. The object store is backed by a file system, a
named pipe, or a print job that is accessed as a file.

main stream: The place within a file where data is stored or the data stored therein. A main

stream has no name. The main stream is what is ordinarily thought of as the contents of a file.

named pipe: A named, one-way, or duplex pipe for communication between a pipe server and one
or more pipe clients.

named stream: A place within a file in addition to the main stream where data is stored, or the
data stored therein. File systems support a mode in which it is possible to open either the main
stream of a file and/or to open a named stream. Named streams have different data than the

main stream (and than each other) and can be read and written independently. Not all file
systems support named streams. See also main stream.

NetBIOS: A particular network transport that is part of the LAN Manager protocol suite. NetBIOS
uses a broadcast communication style that was applicable to early segmented local area
networks. A protocol family including name resolution, datagram, and connection services. For
more information, see [RFC1001] and [RFC1002].

network byte order: The order in which the bytes of a multiple-byte number are transmitted on a

network, most significant byte first (in big-endian storage). This may or may not match the
order in which numbers are normally stored in memory for a particular processor.

normalized path name: A full pathname of a directory or a file relative to the root of the share on
which it resides.

open: A runtime object that corresponds to a currently established access to a specific file or a
named pipe from a specific client to a specific server, using a specific user security context. Both
clients and servers maintain opens that represent active accesses.

oplock break: An unsolicited request sent by a Server Message Block (SMB) server to an SMB
client to inform the client to change the oplock level for a file.

opportunistic lock (oplock): A mechanism designed to allow clients to dynamically alter their
buffering strategy in a consistent manner to increase performance and reduce network use. The
network performance for remote file operations may be increased if a client can locally buffer file
data, which reduces or eliminates the need to send and receive network packets. For example, a

client may not have to write information into a file on a remote server if the client knows that no
other process is accessing the data. Likewise, the client may buffer read-ahead data from the

remote file if the client knows that no other process is writing data to the remote file.

reparse point: An attribute that can be added to a file to store a collection of user-defined data
that is opaque to NTFS or ReFS. If a file that has a reparse point is opened, the open will
normally fail with STATUS_REPARSE, so that the relevant file system filter driver can detect the
open of a file associated with (owned by) this reparse point. At that point, each installed filter

driver can check to see if it is the owner of the reparse point, and, if so, perform any special
processing required for a file with that reparse point. The format of this data is understood by
the application that stores the data and the file system filter that interprets the data and
processes the file. For example, an encryption filter that is marked as the owner of a file's

17 / 464

[MS-SMB2-Diff] - v20190923
Server Message Block (SMB) Protocol Versions 2 and 3
Copyright © 2019 Microsoft Corporation
Release: September 23, 2019

reparse point could look up the encryption key for that file. A file can have (at most) 1 reparse
point associated with it. For more information, see [MS-FSCC].

security context: An abstract data structure that contains authorization information for a
particular security principal in the form of a Token/Authorization Context (see [MS-DTYP] section

2.5.2). A server uses the authorization information in a security context to check access to
requested resources. A security context also contains a key identifier that associates mutually
established cryptographic keys, along with other information needed to perform secure
communication with another security principal.

security descriptor: A data structure containing the security information associated with a
securable object. A security descriptor identifies an object's owner by its security identifier
(SID). If access control is configured for the object, its security descriptor contains a

discretionary access control list (DACL) with SIDs for the security principals who are allowed or
denied access. Applications use this structure to set and query an object's security status. The
security descriptor is used to guard access to an object as well as to control which type of
auditing takes place when the object is accessed. The security descriptor format is specified in
[MS-DTYP] section 2.4.6; a string representation of security descriptors, called SDDL, is

specified in [MS-DTYP] section 2.5.1.

security identifier (SID): An identifier for security principals that is used to identify an account
or a group. Conceptually, the SID is composed of an account authority portion (typically a
domain) and a smaller integer representing an identity relative to the account authority, termed
the relative identifier (RID). The SID format is specified in [MS-DTYP] section 2.4.2; a string
representation of SIDs is specified in [MS-DTYP] section 2.4.2 and [MS-AZOD] section 1.1.1.2.

security principal: A unique entity that is identifiable through cryptographic means by at least
one key. It frequently corresponds to a human user, but also can be a service that offers a

resource to other security principals. Also referred to as principal.

sequence number: A number that uniquely identifies a request and response that is sent on an
SMB 2 Protocol connection. For a description of how sequence numbers are allocated, see [MS-
SMB2] sections 3.2.4.1.6 and 3.3.1.1.

session: An authenticated context that is established between an SMB 2 Protocol client and an
SMB 2 Protocol server over an SMB 2 Protocol connection for a specific security principal. There
could be multiple active sessions over a single SMB 2 Protocol connection. The SessionId field in

the SMB2 packet header distinguishes the various sessions.

share: A local resource that is offered by an SMB 2 Protocol server for access by SMB 2 Protocol
clients over the network. The SMB 2 Protocol defines three types of shares: file (or disk) shares,
which represent a directory tree and its included files; pipe shares, which expose access to
named pipes; and print shares, which provide access to print resources on the server. A pipe
share as defined by the SMB 2 Protocol must always have the name "IPC$". A pipe share must

only allow named pipe operations and DFS referral requests to itself.

snapshot: The point in time at which a shadow copy of a volume is made.

symbolic link: A symbolic link is a reparse point that points to another file system object. The
object being pointed to is called the target. Symbolic links are transparent to users; the links

appear as normal files or directories, and can be acted upon by the user or application in exactly
the same manner. Symbolic links can be created using the FSCTL_SET_REPARSE_POINT request
as specified in [MS-FSCC] section 2.3.61. They can be deleted using the

FSCTL_DELETE_REPARSE_POINT request as specified in [MS-FSCC] section 2.3.5. Implementing
symbolic links is optional for a file system.

system access control list (SACL): An access control list (ACL) that controls the generation of
audit messages for attempts to access a securable object. The ability to get or set an object's
SACL is controlled by a privilege typically held only by system administrators.

18 / 464

[MS-SMB2-Diff] - v20190923
Server Message Block (SMB) Protocol Versions 2 and 3
Copyright © 2019 Microsoft Corporation
Release: September 23, 2019

Transmission Control Protocol (TCP): A protocol used with the Internet Protocol (IP) to send
data in the form of message units between computers over the Internet. TCP handles keeping

track of the individual units of data (called packets) that a message is divided into for efficient
routing through the Internet.

tree connect: A connection by a specific session on an SMB 2 Protocol client to a specific share on
an SMB 2 Protocol server over an SMB 2 Protocol connection. There could be multiple tree
connects over a single SMB 2 Protocol connection. The TreeId field in the SMB2 packet header
distinguishes the various tree connects.

Unicode: A character encoding standard developed by the Unicode Consortium that represents
almost all of the written languages of the world. The Unicode standard [UNICODE5.0.0/2007]
provides three forms (UTF-8, UTF-16, and UTF-32) and seven schemes (UTF-8, UTF-16, UTF-16

BE, UTF-16 LE, UTF-32, UTF-32 LE, and UTF-32 BE).

MAY, SHOULD, MUST, SHOULD NOT, MUST NOT: These terms (in all caps) are used as defined
in [RFC2119]. All statements of optional behavior use either MAY, SHOULD, or SHOULD NOT.

1.2 References

Links to a document in the Microsoft Open Specifications library point to the correct section in the
most recently published version of the referenced document. However, because individual documents
in the library are not updated at the same time, the section numbers in the documents may not
match. You can confirm the correct section numbering by checking the Errata.

1.2.1 Normative References

We conduct frequent surveys of the normative references to assure their continued availability. If you
have any issue with finding a normative reference, please contact dochelp@microsoft.com. We will
assist you in finding the relevant information.

[FIPS180-4] FIPS PUBS, "Secure Hash Standards (SHS)", March 2012,

http://csrc.nist.gov/publications/fips/fips180-4/fips-180-4.pdf

[IANAPORT] IANA, "Service Name and Transport Protocol Port Number Registry",
http://www.iana.org/assignments/service-names-port-numbers/service-names-port-numbers.xhtml

[MS-CIFS] Microsoft Corporation, "Common Internet File System (CIFS) Protocol".

[MS-DFSC] Microsoft Corporation, "Distributed File System (DFS): Referral Protocol".

[MS-DTYP] Microsoft Corporation, "Windows Data Types".

[MS-ERREF] Microsoft Corporation, "Windows Error Codes".

[MS-FSA] Microsoft Corporation, "File System Algorithms".

[MS-FSCC] Microsoft Corporation, "File System Control Codes".

[MS-KILE] Microsoft Corporation, "Kerberos Protocol Extensions".

[MS-LSAD] Microsoft Corporation, "Local Security Authority (Domain Policy) Remote Protocol".

[MS-NLMP] Microsoft Corporation, "NT LAN Manager (NTLM) Authentication Protocol".

[MS-PCCRC] Microsoft Corporation, "Peer Content Caching and Retrieval: Content Identification".

[MS-RPCE] Microsoft Corporation, "Remote Procedure Call Protocol Extensions".

19 / 464

[MS-SMB2-Diff] - v20190923
Server Message Block (SMB) Protocol Versions 2 and 3
Copyright © 2019 Microsoft Corporation
Release: September 23, 2019

[MS-RSVD] Microsoft Corporation, "Remote Shared Virtual Disk Protocol".

[MS-SMBD] Microsoft Corporation, "SMB2 Remote Direct Memory Access (RDMA) Transport Protocol".

[MS-SMB] Microsoft Corporation, "Server Message Block (SMB) Protocol".

[MS-SPNG] Microsoft Corporation, "Simple and Protected GSS-API Negotiation Mechanism (SPNEGO)

Extension".

[MS-SRVS] Microsoft Corporation, "Server Service Remote Protocol".

[MS-XCA] Microsoft Corporation, "Xpress Compression Algorithm".

[RFC1001] Network Working Group, "Protocol Standard for a NetBIOS Service on a TCP/UDP
Transport: Concepts and Methods", RFC 1001, March 1987, http://www.ietf.org/rfc/rfc1001.txt

[RFC1002] Network Working Group, "Protocol Standard for a NetBIOS Service on a TCP/UDP
Transport: Detailed Specifications", STD 19, RFC 1002, March 1987, http://www.rfc-

editor.org/rfc/rfc1002.txt

[RFC2104] Krawczyk, H., Bellare, M., and Canetti, R., "HMAC: Keyed-Hashing for Message

Authentication", RFC 2104, February 1997, http://www.ietf.org/rfc/rfc2104.txt

[RFC2119] Bradner, S., "Key words for use in RFCs to Indicate Requirement Levels", BCP 14, RFC
2119, March 1997, http://www.rfc-editor.org/rfc/rfc2119.txt

[RFC2743] Linn, J., "Generic Security Service Application Program Interface Version 2, Update 1", RFC
2743, January 2000, http://www.rfc-editor.org/rfc/rfc2743.txt

[RFC4178] Zhu, L., Leach, P., Jaganathan, K., and Ingersoll, W., "The Simple and Protected Generic

Security Service Application Program Interface (GSS-API) Negotiation Mechanism", RFC 4178, October
2005, https://www.rfc-editor.org/rfc/rfc4178.txt

[RFC4309] Housley, R., "Using Advanced Encryption Standard (AES) CCM Mode with IPsec

Encapsulating Security Payload (ESP)", RFC 4309, December 2005, http://www.ietf.org/rfc/rfc4309.txt

[RFC4493] Song, JH., Poovendran, R., Lee, J., and Iwata, T., "The AES-CMAC Algorithm", RFC 4493,
June 2006, http://www.ietf.org/rfc/rfc4493.txt

[RFC5084] Housley, R., "Using AES-CCM and AES-GCM Authenticated Encryption in the Cryptographic

Message Syntax (CMS)", RFC 5084, November 2007, http://www.ietf.org/rfc/rfc5084.txt

[SP800-108] National Institute of Standards and Technology., "Special Publication 800-108,
Recommendation for Key Derivation Using Pseudorandom Functions", October 2009,
http://csrc.nist.gov/publications/nistpubs/800-108/sp800-108.pdf

[UNICODE] The Unicode Consortium, "The Unicode Consortium Home Page", http://www.unicode.org/

1.2.2 Informative References

[FSBO] Microsoft Corporation, "File System Behavior in the Microsoft Windows Environment", June
2008, http://download.microsoft.com/download/4/3/8/43889780-8d45-4b2e-9d3a-
c696a890309f/File%20System%20Behavior%20Overview.pdf

[KB2770917] Microsoft Corporation, "Windows 8 and Windows Server 2012 update rollup: November

2012", Version 6.0, http://support.microsoft.com/kb/2770917/en-us

[MS-AUTHSOD] Microsoft Corporation, "Authentication Services Protocols Overview".

20 / 464

[MS-SMB2-Diff] - v20190923
Server Message Block (SMB) Protocol Versions 2 and 3
Copyright © 2019 Microsoft Corporation
Release: September 23, 2019

[MS-PCCRR] Microsoft Corporation, "Peer Content Caching and Retrieval: Retrieval Protocol".

[MS-SQOS] Microsoft Corporation, "Storage Quality of Service Protocol".

[MS-SWN] Microsoft Corporation, "Service Witness Protocol".

[MS-WPO] Microsoft Corporation, "Windows Protocols Overview".

[MSDFS] Microsoft Corporation, "How DFS Works", March 2003, http://technet.microsoft.com/en-
us/library/cc782417%28WS.10%29.aspx

[MSDN-IMPERS] Microsoft Corporation, "Impersonation", http://msdn.microsoft.com/en-
us/library/ms691341.aspx

[MSDN-IoCtlCodes] Microsoft Corporation, "Defining I/O Control Codes",
http://msdn.microsoft.com/en-us/library/ff543023.aspx

[MSKB-2536275] Microsoft Corporation, "Vulnerability in SMB Server could allow denial of service",

MS11-048, June 2011, http://support.microsoft.com/kb/2536275

[MSKB-2934016] Microsoft Corporation, "Windows RT, Windows 8, and Windows Server 2012 update

rollup: April 2014", http://support.microsoft.com/kb/2934016

[MSKB-2976995] Microsoft Corporation, "You cannot access an SMB share that is located on a
Windows 8.1 or Windows Server 2012 R2-based file server", August 2014,
http://support.microsoft.com/kb/2976995

[OFFLINE] Microsoft Corporation, "Offline Files", January 2005,
http://technet2.microsoft.com/WindowsServer/en/Library/830323a2-23ca-4875-af3c-
06671d68ca9a1033.mspx

1.3 Overview

The Server Message Block (SMB) Protocol Versions 2 and 3, hereafter referred to as "SMB 2 Protocol",
is an extension of the original Server Message Block (SMB) Protocol (as specified in [MS-SMB] and
[MS-CIFS]). Both protocols are used by clients to request file and print services from a server system
over the network. Both are stateful protocols in which clients establish a connection to a server,

establish an authenticated context on that connection, and then issue a variety of requests to access
files, printers, and named pipes for interprocess communication.

The SMB 2 Protocol is a major revision of the existing SMB Protocol, as specified in [MS-SMB]. The
packet formats are completely different from those of the SMB Protocol; however, many of the
underlying concepts are carried over. The underlying transports that are used to initiate and accept
connections are either Direct TCP as specified in section 2.1 or NetBIOS over TCP transports as
specified in [RFC1001] and [RFC1002].

To retain compatibility with existing clients and servers, the existing SMB Protocol can be used to
negotiate the use of the SMB 2 Protocol, as described in section 1.7. However, the two protocols will
never be intermixed on a specified connection after one is selected during negotiation.

Like its predecessor, which was the original SMB Protocol (as specified in [MS-SMB]), the SMB 2
Protocol supports the following features:

▪ Establishing one or more authenticated contexts for different security principals on a connection.

▪ Connecting to multiple shared resources on the target server on a connection.

▪ Opening, reading, modifying, or closing multiple files or named pipes on the target server.

21 / 464

[MS-SMB2-Diff] - v20190923
Server Message Block (SMB) Protocol Versions 2 and 3
Copyright © 2019 Microsoft Corporation
Release: September 23, 2019

▪ Using the opportunistic locking of files to allow clients to cache data for better performance.

▪ Querying and applying attributes to files or volumes on the target server.

▪ Canceling outstanding operations.

▪ Passing through IO control code operations to the underlying object store on the server machine.

▪ Validating the integrity of requests and responses.

▪ Support for share scoping and server aliases to allow a single server to appear as multiple distinct
servers, as described in [MS-SRVS] section 1.3.

The SMB 2 Protocol provides several enhancements in addition to the preceding features:

▪ Allowing an open to a file to be reestablished after a client connection becomes temporarily
disconnected.

▪ Allowing the server to balance the number of simultaneous operations that a client can have

outstanding at any time.

▪ Providing scalability in terms of the number of shares, users, and simultaneously open files.

▪ Supporting symbolic links.

▪ Using a stronger algorithm to validate the integrity of requests and responses.

The SMB 2.1 dialect introduces the following enhancements:

▪ Allowing a client to indicate support for multiple SMB 2 dialects in a multi-protocol negotiate

request.

▪ Allowing a client to obtain and preserve client caching state across multiple opens from the same
client.

▪ Allowing a client to mark individual write operations on unbuffered handles to be treated as write-

through.

▪ Allowing a client to retrieve hashes of a file for use in branch cache retrieval, as specified in [MS-
PCCRC] section 2.3.

The SMB 3.0 dialect introduces the following enhancements:

▪ Allowing a client to retrieve hashes for a particular region of a file for use in branch cache
retrieval, as specified in [MS-PCCRC] section 2.4.

▪ Allowing a client to obtain lease on a directory.

▪ Supporting the encryption of traffic between client and server on a per-share basis.

▪ Supporting the use of Remote Direct Memory Access (RDMA) transports, when the appropriate
hardware and network are available.

▪ Supporting enhanced failover between client and server, including optional handle persistence.

▪ Allowing an application to failover on a new client and open a file that was previously opened using
an application instance identifier.

▪ Allowing a client to bind a session to multiple connections to the server. A request can be sent
through any channel associated to the session, and the corresponding response is sent through
the same channel as used by the request. The following diagram shows an example of two

sessions using multiple channels to the server.

22 / 464

[MS-SMB2-Diff] - v20190923
Server Message Block (SMB) Protocol Versions 2 and 3
Copyright © 2019 Microsoft Corporation
Release: September 23, 2019

Figure 1: Two sessions using multiple channels

The SMB 3.0.2 dialect introduces the following enhancements:

▪ Allowing a client to detect asymmetric shares through tree connect response, so that client can

optimize its connections to the server, in order to improve availability and performance when
accessing such shares.

▪ Allowing a client to request unbuffered read, write operations.

▪ Allowing a client to request remote invalidation while performing I/O using RDMA transport.

The SMB 3.1.1 dialect introduces the following enhancements:

▪ Supporting the negotiation of encryption and integrity algorithms.

▪ Enhanced protection of negotiation and session establishment.

▪ Reconnecting with a specified dialect.

▪ Supporting the compression of messages between client and server.

1.4 Relationship to Other Protocols

The SMB 2 Protocol can be negotiated by using an SMB negotiate, as specified in [MS-SMB] section
1.7. After a dialect of the SMB 2 Protocol is selected during negotiation, all messages that are sent on
the connection (including the negotiate response) will be SMB 2 Protocol messages, as specified in this
document, and no further SMB traffic will be exchanged on the connection.

For authentication, the SMB 2 Protocol relies on Simple and Protected GSS-API Negotiation (SPNEGO),
as described in [MS-AUTHSOD] section 2.1.2.3.1 and specified in [RFC4178] and [MS-SPNG], which in
turn can rely on the Kerberos Protocol Extensions (as specified in [MS-KILE]) or the NT LAN Manager

(NTLM) Authentication Protocol (as specified in [MS-NLMP]).

The SMB 2 Protocol uses either TCP or NetBIOS over TCP as underlying transports. The SMB 3.x
dialect family also supports the use of RDMA as a transport.

23 / 464

[MS-SMB2-Diff] - v20190923
Server Message Block (SMB) Protocol Versions 2 and 3
Copyright © 2019 Microsoft Corporation
Release: September 23, 2019

Machines using the SMB 2 Protocol can use the Distributed File System (DFS): Referral Protocol as
specified in [MS-DFSC] to resolve names from a namespace distributed across many servers and

geographies into local names on specific file servers.

DFS clients communicate with DFS servers via referral requests/responses conveyed in SMB2 IOCTL

messages, analogous to a file system client performing control operations on a remote object store via
requests/responses conveyed in SMB2 IOCTL messages. The communication between the SMB2 server
and the DFS server (or SMB2 server and object store), for the purpose of performing the specified
IOCTL operations, is local to the server machine, and takes place via implementation-dependent
means.

The Remote Procedure Call Protocol Extensions, as specified in [MS-RPCE], define an RPC over SMB
Protocol or SMB 2 Protocol sequence that can use SMB 2 Protocol named pipes as its underlying

transport. The selection of protocol is based on client behavior during negotiation, as specified in
section 1.7.

Peer Content Caching and Retrieval framework, or Branch Cache as described in [MS-PCCRR], is
designed to reduce bandwidth consumption on branch-office wide area network (WAN) links by having

clients request Content from distributed caches. Content is uniquely identified by Content Information
retrieved from the server through SMB 2 IOCTL messages, as specified in sections 3.2.4.20.7 and

3.3.5.15.7. This capability is not supported for the SMB 2.0.2 dialect.

Figure 2: Relationship to other protocols

The diagram shows the following:

▪ [MS-RPCE] uses [MS-SMB2] named pipes as its underlying transport.

▪ [MS-DFSC] uses [MS-SMB2] as its transport layer.

▪ [MS-SRVS] calls [MS-SMB2] for file server management.

▪ [MS-SMB2] calls [MS-SPNG] for authenticating the user.

▪ [MS-SMB2] calls [MS-DFSC] to resolve names from a namespace.

24 / 464

[MS-SMB2-Diff] - v20190923
Server Message Block (SMB) Protocol Versions 2 and 3
Copyright © 2019 Microsoft Corporation
Release: September 23, 2019

▪ [MS-SMB2] calls [MS-SRVS] for server management and for synchronizing information on shares,
sessions, treeconnects, and file opens. The synchronization mechanism is dependent on the SMB2

server and the server service starting up and terminating at the same time.

▪ [MS-SMB2] uses either TCP, NetBIOS over TCP, or RDMA as underlying transports.

1.5 Prerequisites/Preconditions

The SMB 2 Protocol assumes the availability of the following resources:

▪ The SMB2 protocol requires a transport to support reliable, in-order message delivery. Three such

transports are used, depending on dialect, as specified in section 2.1.

▪ An underlying local resource, such as a file system on the server side, exposing file, named pipe,
or printer objects.

▪ Infrastructure that supports Simple and Protected GSS-API Negotiation (SPNEGO), as specified in
[RFC4178] and [MS-SPNG], on both the client and the server.

1.6 Applicability Statement

The SMB 2 Protocol<1> is applicable for all scenarios that involve transferring files between client and
server. The SMB 2 Protocol is also applicable for inter-process communication between client and
server using named pipes.

The SMB 2 Protocol can be more applicable than the SMB Protocol in scenarios that require the
following features:

▪ Higher scalability of the number of files that a client can open simultaneously, as well as the
number of shares and user sessions that servers can maintain.

▪ Quality of Service guarantees from the server for the number of requests that can be outstanding
against a server at any specified time.

▪ Symbolic link support.

▪ Stronger end-to-end data integrity protection, using the HMAC-SHA256 algorithm. The HMAC-

SHA256 is specified in [FIPS180-4] and [RFC2104].

▪ Improved throughput across networks that have disparate characteristics.

▪ Improved resilience to intermittent losses of network connectivity.

▪ Encryption of client/server traffic when the SMB 3.x dialect family is negotiated.

▪ Compression of client/server traffic when the SMB 3.1.1 dialect and a compression algorithm is
negotiated.

1.7 Versioning and Capability Negotiation

This document covers versioning in the following areas:

▪ Supported Transports: This protocol can be implemented on top of NetBIOS, TCP, or RDMA, as
defined in section 2.1.

▪ Protocol Versions: This protocol supports several capability bits. These are defined in section

2.2.5.

25 / 464

[MS-SMB2-Diff] - v20190923
Server Message Block (SMB) Protocol Versions 2 and 3
Copyright © 2019 Microsoft Corporation
Release: September 23, 2019

▪ Security and Authentication Methods: The SMB 2 Protocol supports authentication through the use
of the Generic Security Service Application Programming Interface (GSS-API), as specified in [MS-

SPNG].

When a suitable authentication is performed, the authenticity and integrity of SMB2 operations are

optionally protected by Message Authentication Code (MAC) signatures using cryptographically
secure keys. HMAC-SHA256 or AES-128-CMAC are used, depending on the negotiated dialect and
hash algorithm.

When the SMB 3.x dialect family is negotiated, and when suitable authentication is performed,
authenticated encryption and integrity protection are optionally supported through the use of AES-
128-CCM or AES-128-GCM, depending on the negotiated dialect and cipher algorithm.

▪ Capability Negotiation: Though the semantics and the command set for the SMB 2 Protocol closely

match the SMB Protocol, as specified in [MS-SMB], the wire format for SMB 2 Protocol packets is
different from that of the SMB Protocol. For maintaining interoperability between clients and
servers in a mixed SMB 2/SMB Protocol environment, the SMB 2 Protocol can be negotiated in one
of two ways:

▪ By using an SMB negotiate message (as specified in [MS-SMB] sections 2.2.4.5.1 and
3.2.4.2.2).

▪ By using an SMB2 NEGOTIATE Request, as specified in section 2.2.3.

If a client uses an SMB negotiate message to indicate to an SMB 2 Protocol–capable server that it
requests to use SMB 2, the server responds with an SMB2 NEGOTIATE Response as specified in
section 2.2.4.

A client that maintains a runtime cache for each server with which it communicates, including whether
the server is SMB 2 Protocol–capable, would then use an SMB2 NEGOTIATE Request (as specified in
section 2.2.3) in future attempts to connect to any server whose cached entry indicates support for

the SMB 2 Protocol.

Servers capable of only the SMB 2 Protocol would reject communication with traditional SMB Protocol

clients that do not offer "SMB 2.002" or "SMB 2.???" as a negotiate dialect, and accept communication
only from SMB 2 Protocol clients.

There are currently three dialect families of the SMB 2 Protocol:

Dialect Family Dialect Revisions Revision Code

SMB 2.0.2 SMB 2.0.2 dialect revision 0x0202

SMB 2.1 SMB 2.1 dialect revision 0x0210

SMB 3.x SMB 3.0 dialect revision

SMB 3.0.2 dialect revision

SMB 3.1.1 dialect revision

0x0300

0x0302

0x0311

▪ Negotiating the SMB 2.0.2 dialect implies support for the requests and responses as specified in

this document, except those explicitly marked for the SMB 2.1 or 3.x dialect family.

▪ Negotiating the SMB 2.1 dialect implies support for the requests and responses as specified in this
document and support for the SMB 2.0.2 dialect, except those explicitly marked for the SMB 3.x

dialect family.

▪ Negotiating the SMB 3.0 dialect implies support for the requests and responses as specified in this
document and support for the SMB 2.0.2 and SMB 2.1 dialects, except those explicitly marked for
the SMB 3.0.2 or SMB 3.1.1 dialect.

26 / 464

[MS-SMB2-Diff] - v20190923
Server Message Block (SMB) Protocol Versions 2 and 3
Copyright © 2019 Microsoft Corporation
Release: September 23, 2019

▪ Negotiating the SMB 3.0.2 dialect implies support for the requests and responses as specified in
this document and support for the SMB 2.0.2, SMB 2.1, and SMB 3.0 dialects, except those

explicitly marked for the SMB 3.1.1 dialect.

▪ Negotiating the SMB 3.1.1 dialect implies support for the requests and responses as specified in

this document and support for the SMB 2.0.2, SMB 2.1, SMB 3.0, and SMB 3.0.2 dialects.

For the rest of the document, unless otherwise specified, the term 'SMB 3.x dialect family' implies the
SMB 3.0, SMB 3.0.2, and SMB 3.1.1 dialect revisions. The following state diagram illustrates dialect
negotiation on the server implementing the SMB 2 Protocol dialects. In this diagram, state transitions
occur as the SMB_COM_NEGOTIATE, SMB2 NEGOTIATE, and other requests are received from the
client. The server uses a per-connection variable, Connection.NegotiateDialect, to represent the
current state of dialect negotiation between client and server on each transport connection.

27 / 464

[MS-SMB2-Diff] - v20190923
Server Message Block (SMB) Protocol Versions 2 and 3
Copyright © 2019 Microsoft Corporation
Release: September 23, 2019

Figure 3: Connection.NegotiateDialect state transitions in an SMB 2 Protocol server

1.8 Vendor-Extensible Fields

There are no vendor-extensible fields for the Server Message Block (SMB) Version 2 Protocol.

1.9 Standards Assignments

The SMB2 protocol supports Direct TCP Transport and makes use of the following assignments, as
specified in section 2.1.

28 / 464

[MS-SMB2-Diff] - v20190923
Server Message Block (SMB) Protocol Versions 2 and 3
Copyright © 2019 Microsoft Corporation
Release: September 23, 2019

Parameter TCP port value Reference

Microsoft-DS 445 (0x01BD) [IANAPORT]

When the SMB 3.x dialect family is negotiated and an RDMA transport is used, the standards
assignment for the protocol specified in [MS-SMBD] is used.

This protocol shares the standards assignments of NetBIOS-over-TCP port, as specified in [RFC1001]
and [RFC1002].

29 / 464

[MS-SMB2-Diff] - v20190923
Server Message Block (SMB) Protocol Versions 2 and 3
Copyright © 2019 Microsoft Corporation
Release: September 23, 2019

2 Messages

The following sections specify how SMB 2 Protocol messages are encapsulated on the wire and
common SMB 2 Protocol data types.

2.1 Transport

The SMB 2 Protocol supports Direct TCP, NetBIOS over TCP [RFC1001] [RFC1002], and SMB2 Remote
Direct Memory Access (RDMA) Transport [MS-SMBD] as transports. These transports are supported by
the various SMB2 dialects as follows:

▪ All dialects of SMB2 support operation over Direct TCP. The Direct TCP transport packet header
has the following structure.

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

Zero StreamProtocolLength

SMB2Message (variable)

...

Zero (1 byte): The first byte of the Direct TCP transport packet header MUST be zero (0x00).

StreamProtocolLength (3 bytes): The length, in bytes, of the SMB2Message in network byte order.
This field does not include the 4-byte Direct TCP transport packet header; rather, it is only the
length of the enclosed SMB2Message.

SMB2Message (variable): The body of the SMB2 packet. The length of an SMB2Message varies
based on the SMB2 command represented by the message.

▪ SMB2 dialects 2.0.2, 2.1, 3.0, and 3.0.2 allow NetBIOS over TCP [RFC1001] [RFC1002].

▪ SMB2 dialects 3.0, 3.0.2, and 3.1.1 allow operation over SMB2 RDMA Transport [MS-SMBD].

The server assigns an implementation-specific name to each transport, as specified in [MS-SRVS]
section 2.2.4.96.

The SMB2 Protocol can be negotiated as the result of a multi-protocol exchange as specified in section
3.2.4.2.1. When the SMB2 Protocol is negotiated on the connection, there is no inheritance of the base
SMB Protocol state. The SMB2 Protocol takes over the transport connection that is initially used for

negotiation, and thereafter, all protocol flow on that connection MUST be SMB2 Protocol.

2.2 Message Syntax

The SMB 2 Protocol is composed of, and driven by, message exchanges between the client and the

server in the following categories:

▪ Protocol negotiation (SMB2 NEGOTIATE)

▪ User authentication (SMB2 SESSION_SETUP, SMB2 LOGOFF)

▪ Share access (SMB2 TREE_CONNECT, SMB2 TREE_DISCONNECT)

▪ File access (SMB2 CREATE, SMB2 CLOSE, SMB2 READ, SMB2 WRITE, SMB2 LOCK, SMB2 IOCTL,
SMB2 QUERY_INFO, SMB2 SET_INFO, SMB2 FLUSH, SMB2 CANCEL)

30 / 464

[MS-SMB2-Diff] - v20190923
Server Message Block (SMB) Protocol Versions 2 and 3
Copyright © 2019 Microsoft Corporation
Release: September 23, 2019

▪ Directory access (SMB2 QUERY_DIRECTORY, SMB2 CHANGE_NOTIFY)

▪ Volume access (SMB2 QUERY_INFO, SMB2 SET_INFO)

▪ Cache coherency (SMB2 OPLOCK_BREAK)

▪ Simple messaging (SMB2 ECHO)

The SMB 2.1 dialect in the SMB 2 Protocol enhances the following categories of messages in the SMB 2
Protocol:

▪ Protocol Negotiation (SMB2 NEGOTIATE)

▪ Share Access (SMB2 TREE_CONNECT)

▪ File Access (SMB2 CREATE, SMB2 WRITE)

▪ Cache Coherency (SMB2 OPLOCK_BREAK)

▪ Hash Retrieval (SMB2 IOCTL)

The SMB 3.x dialect family in the SMB 2 Protocol further enhances the following categories of
messages in the SMB 2 Protocol:

▪ Protocol Negotiation and secure dialect validation (SMB2 NEGOTIATE, SMB2 IOCTL)

▪ Share Access (SMB2 TREE_CONNECT)

▪ File Access (SMB2 CREATE, SMB2 READ, SMB2 WRITE)

▪ Hash Retrieval (SMB2 IOCTL)

▪ Encryption (SMB2 TRANSFORM_HEADER)

The SMB 3.1.1 dialect in the SMB 2 Protocol further enhances the following categories of messages in
the SMB 2 Protocol:

▪ Compression (SMB2 COMPRESSION_TRANSFORM_HEADER)

This document specifies the messages in the preceding lists.

An SMB 2 Protocol message is the payload packet encapsulated in a transport packet.

All SMB 2 Protocol messages begin with a fixed-length SMB2 header that is described in section 2.2.1.

The SMB2 header contains a Command field indicating the operation code that is requested by the
client or responded to by the server. An SMB 2 Protocol message is of variable length, depending on
the Command field in the SMB2 header and on whether the SMB 2 Protocol message is a client
request or a server response.

Unless otherwise specified, multiple-byte fields (16-bit, 32-bit, and 64-bit fields) in an SMB 2 Protocol
message MUST be transmitted in little-endian order (least-significant byte first).

Unless otherwise indicated, numeric fields are integers of the specified byte length.

Unless otherwise specified, all textual strings MUST be in Unicode version 5.0 format, as specified in
[UNICODE], using the 16-bit Unicode Transformation Format (UTF-16) form of the encoding. Textual
strings with separate fields identifying the length of the string MUST NOT be null-terminated unless
otherwise specified.

Unless otherwise noted, fields marked as "unused" MUST be set to 0 when being sent and MUST be
ignored when received. These fields are reserved for future protocol expansion and MUST NOT be used

for implementation-specific functionality.

31 / 464

[MS-SMB2-Diff] - v20190923
Server Message Block (SMB) Protocol Versions 2 and 3
Copyright © 2019 Microsoft Corporation
Release: September 23, 2019

When it is necessary to insert unused padding bytes into a buffer for data alignment purposes, such
bytes MUST be set to 0 when being sent and MUST be ignored when received.

When an error occurs, a server MUST send back an SMB 2 Protocol error response as specified in
section 2.2.2, unless otherwise noted in section 3.3.

All constants in section 2 and 3 that begin with STATUS_ have their values defined in [MS-ERREF]
section 2.3.

Operations executed on a printer share are handled on the server by creating a file, and printing the
contents of the file when it is closed. Unless otherwise specified, descriptions in this document
concerning protocol behavior for files also apply to printers. More information about processing specific
to printers is specified in section 2.2.13.

2.2.1 SMB2 Packet Header

The SMB2 Packet Header (also called the SMB2 header) is the header of all SMB 2 Protocol requests
and responses.

There are two variants of this header:

▪ ASYNC

▪ SYNC

If the SMB2_FLAGS_ASYNC_COMMAND bit is set in Flags, the header takes the form SMB2 Packet
Header – ASYNC (section 2.2.1.1). This header format is used for responses to requests processed
asynchronously by the server, as specified in sections 3.3.4.2, 3.3.4.3, 3.3.4.4, and 3.2.5.1.5. The
SMB2 CANCEL Request MUST use this format for canceling requests that have received an interim
response, as specified in sections 3.2.4.24 and 3.3.5.16.

If the SMB2_FLAGS_ASYNC_COMMAND bit is not set in Flags, the header takes the form SMB2 Packet
Header – SYNC (section 2.2.1.2).

2.2.1.1 SMB2 Packet Header - ASYNC

If the SMB2_FLAGS_ASYNC_COMMAND bit is set in Flags, the header takes the following form.

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

ProtocolId

StructureSize CreditCharge

(ChannelSequence/Reserved)/Status

Command CreditRequest/CreditResponse

Flags

NextCommand

MessageId

...

32 / 464

[MS-SMB2-Diff] - v20190923
Server Message Block (SMB) Protocol Versions 2 and 3
Copyright © 2019 Microsoft Corporation
Release: September 23, 2019

AsyncId

...

SessionId

...

Signature

...

...

...

ProtocolId (4 bytes): The protocol identifier. The value MUST be set to 0x424D53FE, also
represented as (in network order) 0xFE, 'S', 'M', and 'B'.

StructureSize (2 bytes): MUST be set to 64, which is the size, in bytes, of the SMB2 header

structure.

CreditCharge (2 bytes): In the SMB 2.0.2 dialect, this field MUST NOT be used and MUST be
reserved. The sender MUST set this to 0, and the receiver MUST ignore it. In all other dialects, this
field indicates the number of credits that this request consumes.

(ChannelSequence/Reserved)/Status (4 bytes): In a request, this field is interpreted in different
ways depending on the SMB2 dialect.

In the SMB 3.x dialect family, this field is interpreted as the ChannelSequence field followed by

the Reserved field in a request.

ChannelSequence (2 bytes): This field is an indication to the server about the client's Channel
change.

Reserved (2 bytes): This field SHOULD be set to zero and the server MUST ignore it on receipt.

In the SMB 2.0.2 and SMB 2.1 dialects, this field is interpreted as the Status field in a request.

Status (4 bytes): The client MUST set this field to 0 and the server MUST ignore it on receipt.

In all SMB dialects for a response this field is interpreted as the Status field. This field can be set
to any value. For a list of valid status codes, see [MS-ERREF] section 2.3.

Command (2 bytes): The command code of this packet. This field MUST contain one of the following
valid commands:

Name Value

SMB2 NEGOTIATE 0x0000

SMB2 SESSION_SETUP 0x0001

SMB2 LOGOFF 0x0002

SMB2 TREE_CONNECT 0x0003

33 / 464

[MS-SMB2-Diff] - v20190923
Server Message Block (SMB) Protocol Versions 2 and 3
Copyright © 2019 Microsoft Corporation
Release: September 23, 2019

Name Value

SMB2 TREE_DISCONNECT 0x0004

SMB2 CREATE 0x0005

SMB2 CLOSE 0x0006

SMB2 FLUSH 0x0007

SMB2 READ 0x0008

SMB2 WRITE 0x0009

SMB2 LOCK 0x000A

SMB2 IOCTL 0x000B

SMB2 CANCEL 0x000C

SMB2 ECHO 0x000D

SMB2 QUERY_DIRECTORY 0x000E

SMB2 CHANGE_NOTIFY 0x000F

SMB2 QUERY_INFO 0x0010

SMB2 SET_INFO 0x0011

SMB2 OPLOCK_BREAK 0x0012

CreditRequest/CreditResponse (2 bytes): On a request, this field indicates the number of credits
the client is requesting. On a response, it indicates the number of credits granted to the client.

Flags (4 bytes): A flags field, which indicates how to process the operation. This field MUST be

constructed using the following values:

Value Meaning

SMB2_FLAGS_SERVER_TO_REDIR

0x00000001

When set, indicates the message is a response rather than a
request. This MUST be set on responses sent from the server to the
client, and MUST NOT be set on requests sent from the client to the
server.

SMB2_FLAGS_ASYNC_COMMAND

0x00000002

When set, indicates that this is an ASYNC SMB2 header. Always set
for headers of the form described in this section.

SMB2_FLAGS_RELATED_OPERATIONS

0x00000004

When set in an SMB2 request, indicates that this request is a
related operation in a compounded request chain. The use of this
flag in an SMB2 request is as specified in section 3.2.4.1.4.

When set in an SMB2 compound response, indicates that the
request corresponding to this response was part of a related
operation in a compounded request chain. The use of this flag in an
SMB2 response is as specified in section 3.3.5.2.7.2.

SMB2_FLAGS_SIGNED

0x00000008

When set, indicates that this packet has been signed. The use of
this flag is as specified in section 3.1.5.1.

SMB2_FLAGS_PRIORITY_MASK

0x00000070

This flag is only valid for the SMB 3.1.1 dialect. It is a mask for the
requested I/O priority of the request, and it MUST be a value in the
range 0 to 7.

34 / 464

[MS-SMB2-Diff] - v20190923
Server Message Block (SMB) Protocol Versions 2 and 3
Copyright © 2019 Microsoft Corporation
Release: September 23, 2019

Value Meaning

SMB2_FLAGS_DFS_OPERATIONS

0x10000000

When set, indicates that this command is a Distributed File System
(DFS) operation. The use of this flag is as specified in section
3.3.5.9.

SMB2_FLAGS_REPLAY_OPERATION

0x20000000

This flag is only valid for the SMB 3.x dialect family. When set, it
indicates that this command is a replay operation.

The client MUST ignore this bit on receipt.

NextCommand (4 bytes): For a compounded request and response, this field MUST be set to the
offset, in bytes, from the beginning of this SMB2 header to the start of the subsequent 8-byte

aligned SMB2 header. If this is not a compounded request or response, or this is the last header in
a compounded request or response, this value MUST be 0.

MessageId (8 bytes): A value that identifies a message request and response uniquely across all
messages that are sent on the same SMB 2 Protocol transport connection.

AsyncId (8 bytes): A unique identification number that is created by the server to handle operations
asynchronously, as specified in section 3.3.4.2.

SessionId (8 bytes): Uniquely identifies the established session for the command. This field MUST
be set to 0 for an SMB2 NEGOTIATE Request (section 2.2.3) and for an SMB2 NEGOTIATE
Response (section 2.2.4).

Signature (16 bytes): The 16-byte signature of the message, if SMB2_FLAGS_SIGNED is set in the
Flags field of the SMB2 header and the message is not encrypted. If the message is not signed,
this field MUST be 0.

2.2.1.2 SMB2 Packet Header - SYNC

If the SMB2_FLAGS_ASYNC_COMMAND bit is not set in Flags, the header takes the following form.

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

ProtocolId

StructureSize CreditCharge

(ChannelSequence/Reserved)/Status

Command CreditRequest/CreditResponse

Flags

NextCommand

MessageId

...

Reserved

TreeId

35 / 464

[MS-SMB2-Diff] - v20190923
Server Message Block (SMB) Protocol Versions 2 and 3
Copyright © 2019 Microsoft Corporation
Release: September 23, 2019

SessionId

...

Signature

...

...

...

ProtocolId (4 bytes): The protocol identifier. The value MUST be set to 0x424D53FE, also
represented as (in network order) 0xFE, 'S', 'M', and 'B'.

StructureSize (2 bytes): This MUST be set to 64, which is the size, in bytes, of the SMB2 header

structure.

CreditCharge (2 bytes): In the SMB 2.0.2 dialect, this field MUST NOT be used and MUST be
reserved. The sender MUST set this to 0, and the receiver MUST ignore it. In all other dialects, this
field indicates the number of credits that this request consumes.

(ChannelSequence/Reserved)/Status (4 bytes): In a request, this field is interpreted in different
ways depending on the SMB2 dialect.

In the SMB 3.x dialect family, this field is interpreted as the ChannelSequence field followed by
the Reserved field in a request.

ChannelSequence (2 bytes): This field is an indication to the server about the client's Channel
change.

Reserved (2 bytes): This field SHOULD be set to zero and the server MUST ignore it on receipt.

In the SMB 2.0.2 and SMB 2.1 dialects, this field is interpreted as the Status field in a request.

Status (4 bytes): The client MUST set this field to 0 and the server MUST ignore it on receipt.

In all SMB dialects for a response this field is interpreted as the Status field. This field can be set
to any value. For a list of valid status codes, see [MS-ERREF] section 2.3.

Command (2 bytes): The command code of this packet. This field MUST contain one of the following
valid commands.

Name Value

SMB2 NEGOTIATE 0x0000

SMB2 SESSION_SETUP 0x0001

SMB2 LOGOFF 0x0002

SMB2 TREE_CONNECT 0x0003

SMB2 TREE_DISCONNECT 0x0004

SMB2 CREATE 0x0005

SMB2 CLOSE 0x0006

36 / 464

[MS-SMB2-Diff] - v20190923
Server Message Block (SMB) Protocol Versions 2 and 3
Copyright © 2019 Microsoft Corporation
Release: September 23, 2019

Name Value

SMB2 FLUSH 0x0007

SMB2 READ 0x0008

SMB2 WRITE 0x0009

SMB2 LOCK 0x000A

SMB2 IOCTL 0x000B

SMB2 CANCEL 0x000C

SMB2 ECHO 0x000D

SMB2 QUERY_DIRECTORY 0x000E

SMB2 CHANGE_NOTIFY 0x000F

SMB2 QUERY_INFO 0x0010

SMB2 SET_INFO 0x0011

SMB2 OPLOCK_BREAK 0x0012

CreditRequest/CreditResponse (2 bytes): On a request, this field indicates the number of credits
the client is requesting. On a response, it indicates the number of credits granted to the client.

Flags (4 bytes): A Flags field indicates how to process the operation. This field MUST be constructed
using the following values:

Value Meaning

SMB2_FLAGS_SERVER_TO_REDIR

0x00000001

When set, indicates the message is a response, rather than a
request. This MUST be set on responses sent from the server to the
client and MUST NOT be set on requests sent from the client to the
server.

SMB2_FLAGS_ASYNC_COMMAND

0x00000002

When set, indicates that this is an ASYNC SMB2 header. This flag
MUST NOT be set when using the SYNC SMB2 header.

SMB2_FLAGS_RELATED_OPERATIONS

0x00000004

When set in an SMB2 request, indicates that this request is a
related operation in a compounded request chain. The use of this
flag in an SMB2 request is as specified in section 3.2.4.1.4.

When set in an SMB2 compound response, indicates that the
request corresponding to this response was part of a related
operation in a compounded request chain. The use of this flag in an
SMB2 response is as specified in section 3.3.5.2.7.2.

SMB2_FLAGS_SIGNED

0x00000008

When set, indicates that this packet has been signed. The use of
this flag is as specified in section 3.1.5.1.

SMB2_FLAGS_PRIORITY_MASK

0x00000070

This flag is only valid for the SMB 3.1.1 dialect. It is a mask for the
requested I/O priority of the request, and it MUST be a value in the
range 0 to 7.

SMB2_FLAGS_DFS_OPERATIONS

0x10000000

When set, indicates that this command is a DFS operation. The use
of this flag is as specified in section 3.3.5.9.

SMB2_FLAGS_REPLAY_OPERATION

0x20000000

This flag is only valid for the SMB 3.x dialect family. When set, it
indicates that this command is a replay operation.

37 / 464

[MS-SMB2-Diff] - v20190923
Server Message Block (SMB) Protocol Versions 2 and 3
Copyright © 2019 Microsoft Corporation
Release: September 23, 2019

Value Meaning

The client MUST ignore this bit on receipt.

NextCommand (4 bytes): For a compounded request and response, this field MUST be set to the
offset, in bytes, from the beginning of this SMB2 header to the start of the subsequent 8-byte
aligned SMB2 header. If this is not a compounded request or response, or this is the last header in
a compounded request or response, this value MUST be 0.

MessageId (8 bytes): A value that identifies a message request and response uniquely across all

messages that are sent on the same SMB 2 Protocol transport connection.

Reserved (4 bytes): The client SHOULD<2> set this field to 0. The server MAY<3> ignore this field
on receipt.

TreeId (4 bytes): Uniquely identifies the tree connect for the command. This MUST be 0 for the
SMB2 TREE_CONNECT Request. The TreeId can be any unsigned 32-bit integer that is received
from a previous SMB2 TREE_CONNECT Response. TreeId SHOULD be set to 0 for the following

commands:

▪ SMB2 NEGOTIATE Request

▪ SMB2 NEGOTIATE Response

▪ SMB2 SESSION_SETUP Request

▪ SMB2 SESSION_SETUP Response

▪ SMB2 LOGOFF Request

▪ SMB2 LOGOFF Response

▪ SMB2 ECHO Request

▪ SMB2 ECHO Response

▪ SMB2 CANCEL Request

SessionId (8 bytes): Uniquely identifies the established session for the command. This field MUST
be set to 0 for an SMB2 NEGOTIATE Request (section 2.2.3) and for an SMB2 NEGOTIATE
Response (section 2.2.4).

Signature (16 bytes): The 16-byte signature of the message, if SMB2_FLAGS_SIGNED is set in the

Flags field of the SMB2 header and the message is not encrypted. If the message is not signed,
this field MUST be 0.

2.2.2 SMB2 ERROR Response

The SMB2 ERROR Response packet is sent by the server to respond to a request that has failed or
encountered an error. This response is composed of an SMB2 Packet Header (section 2.2.1) followed

by this response structure.

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

StructureSize ErrorContextCount Reserved

ByteCount

38 / 464

[MS-SMB2-Diff] - v20190923
Server Message Block (SMB) Protocol Versions 2 and 3
Copyright © 2019 Microsoft Corporation
Release: September 23, 2019

ErrorData (variable)

...

StructureSize (2 bytes): The server MUST set this field to 9, indicating the size of the response
structure, not including the header. The server MUST set it to this value regardless of how long
ErrorData[] actually is in the response being sent.

ErrorContextCount (1 byte): This field MUST be set to 0 for SMB dialects other than 3.1.1. For the
SMB dialect 3.1.1, if this field is nonzero, the ErrorData field MUST be formatted as a variable-
length array of SMB2 ERROR Context structures containing ErrorContextCount entries.

Reserved (1 byte): This field MUST NOT be used and MUST be reserved. The server MUST set this to
0, and the client MUST ignore it on receipt.

ByteCount (4 bytes): The number of bytes of data contained in ErrorData[].

ErrorData (variable): A variable-length data field that contains extended error information. If the
ErrorContextCount field in the response is nonzero, this field MUST be formatted as a variable-
length array of SMB2 ERROR Context structures as specified in section 2.2.2.1. Each SMB2
ERROR Context MUST start at an 8-byte aligned boundary relative to the start of the SMB2
ERROR Response. Otherwise, it MUST be formatted as specified in section 2.2.2.2. If the
ByteCount field is zero then the server MUST supply an ErrorData field that is one byte in
length, and SHOULD set that byte to zero; the client MUST ignore it on receipt.<4>

2.2.2.1 (Updated Section) SMB2 ERROR Context Response

For the SMB dialect 3.1.1, the servers format the error data as an array of SMB2 ERROR Context
structures. Each error context is a variable-length structure that contains an identifier for the error
context followed by the error data.

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

ErrorDataLength

ErrorId

ErrorContextData (variable)

...

ErrorDataLength (4 bytes): The length, in bytes, of the ErrorContextData field.

ErrorId (4 bytes): An identifier for the error context. This field MUST be set to one of the following

valuevalues.

ErrorId Description

SMB2_ERROR_ID_DEFAULT

0x00000000

Unless otherwise specified, all errors defined in the [MS-
SMB2] protocol use this error ID.

SMB2_ERROR_ID_SHARE_REDIRECT

0x72645253

The ErrorContextData field contains a share redirect
message described in section 2.2.2.2.2.

39 / 464

[MS-SMB2-Diff] - v20190923
Server Message Block (SMB) Protocol Versions 2 and 3
Copyright © 2019 Microsoft Corporation
Release: September 23, 2019

ErrorContextData (variable): Variable-length error data formatted as specified in section 2.2.2.2.

2.2.2.2 ErrorData format

The ErrorData MUST be formatted based on the error code being returned in the Status field of the
SMB2 Packet header for the SMB2 Error Response (section 2.2.2).

If the Status field of the header of the response is set to STATUS_STOPPED_ON_SYMLINK, this field
MUST contain a Symbolic Link Error Response as specified in section 2.2.2.2.1.

If the Status field of the header of the response is set to STATUS_BAD_NETWORK_NAME, and the

ErrorId in the SMB2 Error Context response is set to SMB2_ERROR_ID_SHARE_REDIRECT, this field
MUST contain a Share Redirect Error Response as specified in section 2.2.2.2.2.

If the Status field of the header of the response is set to STATUS_BUFFER_TOO_SMALL, this field
MUST be set to a 4-byte value indicating the minimum required buffer length.

2.2.2.2.1 Symbolic Link Error Response

The Symbolic Link Error Response is used to indicate that a symbolic link was encountered on create;

it describes the target path that the client MUST use if it requires to follow the symbolic link. This
structure is contained in the ErrorData section of the SMB2 ERROR Response (section 2.2.2). This
structure MUST NOT be returned in an SMB2 ERROR Response unless the Status code in the header
of that response is set to STATUS_STOPPED_ON_SYMLINK.<5> The structure has the following
format.

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

SymLinkLength

SymLinkErrorTag

ReparseTag

ReparseDataLength UnparsedPathLength

SubstituteNameOffset SubstituteNameLength

PrintNameOffset PrintNameLength

Flags

PathBuffer (variable)

...

SymLinkLength (4 bytes): The length, in bytes, of the response including the variable-length
portion and excluding SymLinkLength.

SymLinkErrorTag (4 bytes): The server MUST set this field to 0x4C4D5953.

ReparseTag (4 bytes): The type of link encountered. The server MUST set this field to 0xA000000C.

40 / 464

[MS-SMB2-Diff] - v20190923
Server Message Block (SMB) Protocol Versions 2 and 3
Copyright © 2019 Microsoft Corporation
Release: September 23, 2019

ReparseDataLength (2 bytes): The length, in bytes, of the variable-length portion of the symbolic
link error response plus the size of the static portion, not including SymLinkLength,

SymLinkErrorTag, ReparseTag, ReparseDataLength, and UnparsedPathLength. The server
MUST set this to the size of PathBuffer[], in bytes, plus 12. (12 is the size of

SubstituteNameOffset, SubstituteNameLength, PrintNameOffset, PrintNameLength, and
Flags.)

UnparsedPathLength (2 bytes): The length, in bytes, of the unparsed portion of the path. The
unparsed portion is the remaining part of the path after the symbolic link. See section 2.2.2.2.1.1
for examples.

SubstituteNameOffset (2 bytes): The offset, in bytes, from the beginning of the PathBuffer field,
at which the substitute name is located. The substitute name is the name the client MUST use to

access this file if it requires to follow the symbolic link.

SubstituteNameLength (2 bytes): The length, in bytes, of the substitute name string. If there is a
terminating null character at the end of the string, it is not included in the
SubstituteNameLength count. This value MUST be greater than or equal to 0.

PrintNameOffset (2 bytes): The offset, in bytes, from the beginning of the PathBuffer field, at
which the print name is located. The print name is the user-friendly name the client MUST return

to the application if it requests the name of the symbolic link target.

PrintNameLength (2 bytes): The length, in bytes, of the print name string. If there is a terminating
null character at the end of the string, it is not included in the PrintNameLength count. This
value MUST be greater than or equal to 0.

Flags (4 bytes): A 32-bit bit field that specifies whether the substitute is an absolute target path
name or a path name relative to the directory containing the symbolic link.

This field contains one of the values in the table below.

Value Meaning

0x00000000 The substitute name is an absolute target path name.

SYMLINK_FLAG_RELATIVE

0x00000001

When this Flags value is set, the substitute name is a path name relative to
the directory containing the symbolic link.

PathBuffer (variable): A buffer that contains the Unicode strings for the substitute name and the
print name, as described by SubstituteNameOffset, SubstituteNameLength,
PrintNameOffset, and PrintNameLength. The substitute name string MUST be a Unicode path
to the target of the symbolic link. The print name string MUST be a Unicode string, suitable for
display to a user, that also identifies the target of the symbolic link.

▪ For an absolute target that is on a remote machine, the server MUST return the path in the
format "\??\UNC\server\share\..." where server is replaced by the target server name, share
is replaced by the target share name, and ... is replaced by the remainder of the path to the
target.

▪ The server SHOULD NOT return symbolic link information with an absolute target that is a
local resource, because local evaluation will vary based on client operating system (OS).<6>

▪ For a relative target, the server MUST return a path that does not start with "\". The path

MUST be evaluated, by the calling application, relative to the directory containing the symbolic
link. The path can contain either "." to refer to the current directory or ".." to refer to the
parent directory, and could contain multiple elements.

For more information on absolute and relative targets, see Handling the Symbolic Link Error
Response (section 2.2.2.2.1.1).

41 / 464

[MS-SMB2-Diff] - v20190923
Server Message Block (SMB) Protocol Versions 2 and 3
Copyright © 2019 Microsoft Corporation
Release: September 23, 2019

2.2.2.2.1.1 Handling the Symbolic Link Error Response

If a symbolic link error response is received, it MUST be processed by the calling application as
follows:

1. The unparsed portion of the original path name that is located at the end of the path-name string
MUST be extracted.

The size, in bytes, of the unparsed portion is specified in the UnparsedPathLength field. The
byte count MUST be used from the end of the path-name string and walked backward to find the
starting location of the unparsed bytes.

2. If the SYMLINK_FLAG_RELATIVE flag is not set in the Flags field of the symbolic link error
response, the unparsed portion of the file name MUST be appended to the substitute name to

create the new target path name.

3. If the SYMLINK_FLAG_RELATIVE flag is set in the Flags field of the symbolic link error response,
the symbolic link name MUST be identified by backing up one path name element from the

unparsed portion of the path name. The symbolic link MUST be replaced with the substitute name
to create the new target path name.

The following clarifies handling of the symbolic link error response:

▪ An absolute symbolic link located on the server links "\\MachX\ShareY\Public\ProtocolDocs" to
"\??\D:\DonHall\MiscDocuments\PDocs".

1. The original open request is for "\\MachX\ShareY\Public\ProtocolDocs\DailyDocs\[MS-
SMB].doc".

2. The server returns a symbolic link error response with the following data:

▪ UnparsedPathLength field value of 0x2E

▪ PathBuffer containing the Unicode string substitute name and print name

"\??\D:\DonHall\MiscDocuments\PDocsD:\DonHall\MiscDocuments\PDocs"

▪ SubstituteNameoffset 0x00

▪ SubstituteNamelength 0x44

The unparsed portion of the path name will be "\DailyDocs\[MS-SMB].doc". Appending the
substitute name with the unparsed portion of the file name gives the new target path name of
"\??\D:\DonHall\MiscDocuments\PDocs\DailyDocs\[MS-SMB].doc".

▪ A relative symbolic link located on the server links "\\MachX\ShareY\Public\ProtocolDocs" to

"..\DonHall\Documents\PDocs".

1. The original open request is for "\\MachX\ShareY\Public\ProtocolDocs\DailyDocs\[MS-
SMB].doc".

2. The server returns a symbolic link error response with the following data:

▪ UnparsedPathLength field value of 0x2E

▪ PathBuffer containing the Unicode string substitute name and print name

"..\DonHall\Documents\PDocs..\DonHall\Documents\PDocs"

▪ SubstituteNameoffset 0x00

▪ SubstituteNamelength 0x34

The symbolic link name in this case is "ProtocolDocs".

42 / 464

[MS-SMB2-Diff] - v20190923
Server Message Block (SMB) Protocol Versions 2 and 3
Copyright © 2019 Microsoft Corporation
Release: September 23, 2019

Replacing the symbolic link name "ProtocolDocs" in the original open request (path name
"\\MachX\ShareY\Public\ProtocolDocs\DailyDocs\[MS-SMB].doc") with the substitute name

"..\DonHall\Documents\PDocs" gives the new target path name
"\\MachX\ShareY\Public\..\DonHall\Documents\PDocs\DailyDocs\[MS-SMB].doc". Because "."

and ".." are not permitted as components of a path name to be sent over the wire, before
reissuing the SMB2 CREATE request the client MUST first eliminate the ".." by normalizing the
new target path name to "\\MachX\ShareY\DonHall\Documents\PDocs\DailyDocs\[MS-
SMB].doc".

2.2.2.2.2 Share Redirect Error Context Response

Servers which negotiate SMB 3.1.1 or higher can return this error context to a client in response to a

tree connect request with the SMB2_TREE_CONNECT_FLAG_REDIRECT_TO_OWNER bit set in the
Flags field of the SMB2 TREE_CONNECT request. The corresponding Status code in the SMB2 header
of the response MUST be set to STATUS_BAD_NETWORK_NAME. The error context data is formatted
as follows.

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

StructureSize

NotificationType

ResourceNameOffset

ResourceNameLength

Flags TargetType

IPAddrCount

IPAddrMoveList (variable)

...

ResourceName (variable)

...

StructureSize (4 bytes): This field MUST be set to the size of the structure.

NotificationType (4 bytes): This field MUST be set to 3.

ResourceNameOffset (4 bytes): The offset from the start of this structure to the ResourceName

field.

ResourceNameLength (4 bytes): The length of the share name provided in the ResourceName
field, in bytes.

Flags (2 bytes): This field MUST be set to zero.

TargetType (2 bytes): This field MUST be set to zero.

43 / 464

[MS-SMB2-Diff] - v20190923
Server Message Block (SMB) Protocol Versions 2 and 3
Copyright © 2019 Microsoft Corporation
Release: September 23, 2019

IPAddrCount (4 bytes): The number of MOVE_DST_IPADDR structures in the IPAddrMoveList
field.

IPAddrMoveList (variable): Array of MOVE_DST_IPADDR structures, as specified in section
2.2.2.2.2.1.

ResourceName (variable): Name of the share as a counted Unicode string, as specified in [MS-
DTYP] section 2.3.10.

2.2.2.2.2.1 MOVE_DST_IPADDR structure

The MOVE_DST_IPADDR structure is used in Share Redirect Error Context Response to indicate the
destination IP address.

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

Type

Reserved

(IPv4Address/Reserved2)/IPv6Address

...

...

...

Type (4 bytes): This field indicates the type of destination IP address. The field MUST be one of the

following values.

Value Meaning

MOVE_DST_IPADDR_V4

0x00000001

The type of destination IP address in this structure is
IPv4 address. The fields after Reserved field in this
structure are interpreted as IPv4Address followed by
Reserved2 as described below.

MOVE_DST_IPADDR_V6

0x00000002

The type of destination IP address in this structure is
IPv6 address. The field after Reserved field in this
structure is interpreted as IPv6Address as described
below.

Reserved (4 bytes): This field MUST NOT be used and MUST be reserved. The server SHOULD set
this field to zero, and the client MUST ignore it on receipt.

(IPv4Address/Reserved2)/ IPv6Address (16 bytes): This field is interpreted in different ways

depending on the value of the Type field.

▪ If the value of the Type field is MOVE_DST_IPADDR_V4, this field is the IPv4Address field
followed by Reserved2 fields.

IPv4Address (4 bytes): 32-bit destination IPv4 address.

44 / 464

[MS-SMB2-Diff] - v20190923
Server Message Block (SMB) Protocol Versions 2 and 3
Copyright © 2019 Microsoft Corporation
Release: September 23, 2019

Reserved2 (12 bytes): The server MUST set this to 0, and the client MUST ignore it on receipt.

▪ If the value of the Type field is MOVE_DST_IPADDR_V6, this field is the IPv6Address field.

IPv6Address (16 bytes): 128-bit destination IPv6 address.

2.2.3 SMB2 NEGOTIATE Request

The SMB2 NEGOTIATE Request packet is used by the client to notify the server what dialects of the
SMB 2 Protocol the client understands. This request is composed of an SMB2 header, as specified in
section 2.2.1, followed by this request structure.

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

StructureSize DialectCount

SecurityMode Reserved

Capabilities

ClientGuid

...

...

...

(NegotiateContextOffset/NegotiateContextCount/Reserved2)/ClientStartTime

...

Dialects (variable)

...

Padding (variable)

...

NegotiateContextList (variable)

...

StructureSize (2 bytes): The client MUST set this field to 36, indicating the size of a NEGOTIATE
request. This is not the size of the structure with a single dialect in the Dialects[] array. This
value MUST be set regardless of the number of dialects or number of negotiate contexts sent.

DialectCount (2 bytes): The number of dialects that are contained in the Dialects[] array. This
value MUST be greater than 0.<7>

45 / 464

[MS-SMB2-Diff] - v20190923
Server Message Block (SMB) Protocol Versions 2 and 3
Copyright © 2019 Microsoft Corporation
Release: September 23, 2019

SecurityMode (2 bytes): The security mode field specifies whether SMB signing is enabled or
required at the client. This field MUST be constructed using the following values.

Value Meaning

SMB2_NEGOTIATE_SIGNING_ENABLED

0x0001

When set, indicates that security signatures are enabled on the
client. The client MUST set this bit if the
SMB2_NEGOTIATE_SIGNING_REQUIRED bit is not set, and
MUST NOT set this bit if the
SMB2_NEGOTIATE_SIGNING_REQUIRED bit is set. The server
MUST ignore this bit.

SMB2_NEGOTIATE_SIGNING_REQUIRED

0x0002

When set, indicates that security signatures are required by the
client.

Reserved (2 bytes): The client MUST set this to 0, and the server SHOULD<8> ignore it on receipt.

Capabilities (4 bytes): If the client implements the SMB 3.x dialect family, the Capabilities field

MUST be constructed using the following values. Otherwise, this field MUST be set to 0.

Value Meaning

SMB2_GLOBAL_CAP_DFS

0x00000001

When set, indicates that the client supports the Distributed
File System (DFS).

SMB2_GLOBAL_CAP_LEASING

0x00000002

When set, indicates that the client supports leasing.

SMB2_GLOBAL_CAP_LARGE_MTU

0x00000004

When set, indicates that the client supports multi-credit
operations.

SMB2_GLOBAL_CAP_MULTI_CHANNEL

0x00000008

When set, indicates that the client supports establishing
multiple channels for a single session.

SMB2_GLOBAL_CAP_PERSISTENT_HANDLES

0x00000010

When set, indicates that the client supports persistent
handles.

SMB2_GLOBAL_CAP_DIRECTORY_LEASING

0x00000020

When set, indicates that the client supports directory
leasing.

SMB2_GLOBAL_CAP_ENCRYPTION

0x00000040

When set, indicates that the client supports encryption.

ClientGuid (16 bytes): It MUST be a GUID (as specified in [MS-DTYP] section 2.3.4.2) generated by
the client.

(NegotiateContextOffset/NegotiateContextCount/Reserved2)/ClientStartTime (8 bytes):
This field is interpreted in different ways depending on the SMB2 Dialects field.

If the Dialects field contains 0x0311, this field is interpreted as the NegotiateContextOffset,
NegotiateContextCount, and Reserved2 fields.

NegotiateContextOffset (4 bytes): The offset, in bytes, from the beginning of the SMB2 header
to the first, 8-byte-aligned negotiate context in the NegotiateContextList.

NegotiateContextCount (2 bytes): The number of negotiate contexts in

NegotiateContextList.

Reserved2 (2 bytes): The client MUST set this to 0, and the server MUST ignore it on receipt.

46 / 464

[MS-SMB2-Diff] - v20190923
Server Message Block (SMB) Protocol Versions 2 and 3
Copyright © 2019 Microsoft Corporation
Release: September 23, 2019

If the Dialects field doesn't contain 0x0311, this field is interpreted as the ClientStartTime field.

ClientStartTime (8 bytes): This field MUST NOT be used and MUST be reserved. The client MUST

set this to 0, and the server MUST ignore it on receipt.

Dialects (variable): An array of one or more 16-bit integers specifying the supported dialect revision

numbers. The array MUST contain at least one of the following values.

Value Meaning

0x0202 SMB 2.0.2 dialect revision number.

0x0210 SMB 2.1 dialect revision number.<9>

0x0300 SMB 3.0 dialect revision number. <10>

0x0302 SMB 3.0.2 dialect revision number.<11>

0x0311 SMB 3.1.1 dialect revision number.<12>

Padding (variable): Optional padding between the end of the Dialects array and the first negotiate
context in NegotiateContextList so that the first negotiate context is 8-byte aligned.

NegotiateContextList (variable): If the Dialects field contains 0x0311, then this field will contain
an array of SMB2 NEGOTIATE_CONTEXTs. The first negotiate context in the list MUST appear at

the byte offset indicated by the SMB2 NEGOTIATE request's NegotiateContextOffset field.
Subsequent negotiate contexts MUST appear at the first 8-byte-aligned offset following the
previous negotiate context.

2.2.3.1 SMB2 NEGOTIATE_CONTEXT Request Values

The SMB2_NEGOTIATE_CONTEXT structure is used by the SMB2 NEGOTIATE Request and the SMB2
NEGOTIATE Response to encode additional properties.

The server MUST support receiving negotiate contexts in any order.

Each structure takes the following form.

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

ContextType DataLength

Reserved

Data (variable)

...

ContextType (2 bytes): Specifies the type of context in the Data field. This field MUST be one of the

following values:

Value Meaning

SMB2_PREAUTH_INTEGRITY_CAPABILITIES

0x0001

The Data field contains a list of preauthentication integrity
hash functions as well as an optional salt value, as specified
in section 2.2.3.1.1.

47 / 464

[MS-SMB2-Diff] - v20190923
Server Message Block (SMB) Protocol Versions 2 and 3
Copyright © 2019 Microsoft Corporation
Release: September 23, 2019

Value Meaning

SMB2_ENCRYPTION_CAPABILITIES

0x0002

The Data field contains a list of encryption algorithms, as
specified in section 2.2.3.1.2.

SMB2_COMPRESSION_CAPABILITIES

0x0003

The Data field contains a list of compression algorithms, as
specified in section 2.2.3.1.3<13>.

SMB2_NETNAME_NEGOTIATE_CONTEXT_ID
0x0005

The Data field contains the server name to which the client
connects<14>.

DataLength (2 bytes): The length, in bytes, of the Data field.

Reserved (4 bytes): This field MUST NOT be used and MUST be reserved. This value MUST be set to
0 by the client, and MUST be ignored by the server.

Data (variable): A variable-length field that contains the negotiate context specified by the
ContextType field.

2.2.3.1.1 SMB2_PREAUTH_INTEGRITY_CAPABILITIES

The SMB2_PREAUTH_INTEGRITY_CAPABILITIES context is specified in an SMB2 NEGOTIATE request
by the client to indicate which preauthentication integrity hash algorithms the client supports and to
optionally supply a preauthentication integrity hash salt value. The format of the data in the Data field
of this SMB2_NEGOTIATE_CONTEXT is as follows.

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

HashAlgorithmCount SaltLength

HashAlgorithms (variable)

...

Salt (variable)

...

HashAlgorithmCount (2 bytes): The number of hash algorithms in the HashAlgorithms array.

This value MUST be greater than zero.

SaltLength (2 bytes): The size, in bytes, of the Salt field.

HashAlgorithms (variable): An array of HashAlgorithmCount 16-bit integer IDs specifying the
supported preauthentication integrity hash functions. The following IDs are defined.

Value Meaning

0x0001 SHA-512 as specified in [FIPS180-4]

Salt (variable): A buffer containing the salt value of the hash.

2.2.3.1.2 SMB2_ENCRYPTION_CAPABILITIES

48 / 464

[MS-SMB2-Diff] - v20190923
Server Message Block (SMB) Protocol Versions 2 and 3
Copyright © 2019 Microsoft Corporation
Release: September 23, 2019

The SMB2_ENCRYPTION_CAPABILITIES context is specified in an SMB2 NEGOTIATE request by the
client to indicate which encryption algorithms the client supports. The format of the data in the Data

field of this SMB2_NEGOTIATE_CONTEXT is as follows.

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

CipherCount Ciphers (variable)

...

CipherCount (2 bytes): The number of ciphers in the Ciphers array. This value MUST be greater
than zero.

Ciphers (variable): An array of CipherCount 16-bit integer IDs specifying the supported encryption
algorithms. These IDs MUST be in an order such that the most preferred cipher MUST be at the
beginning of the array and least preferred cipher at the end of the array. The following IDs are

defined.

Value Meaning

0x0001 AES-128-CCM

0x0002 AES-128-GCM

2.2.3.1.3 SMB2_COMPRESSION_CAPABILITIES

The SMB2_COMPRESSION_CAPABILITIES context is specified in an SMB2 NEGOTIATE request by the
client to indicate which compression algorithms the client supports. The format of the data in the Data
field of this SMB2_NEGOTIATE_CONTEXT is as follows.

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

CompressionAlgorithmCount Padding

Reserved

CompressionAlgorithms (variable)

…

CompressionAlgorithmCount (2 bytes): The number of elements in CompressionAlgorithms
array.

Padding (2 bytes): The sender MUST set this to 0, and the receiver MUST ignore it on receipt.

Reserved (4 bytes): This field MUST NOT be used and MUST be reserved. The sender MUST set this
to 0, and the receiver MUST ignore it on receipt.

CompressionAlgorithms (variable): An array of 16-bit integer IDs specifying the supported
compression algorithms. These IDs MUST be in order of preference from most to least. The
following IDs are defined.

49 / 464

[MS-SMB2-Diff] - v20190923
Server Message Block (SMB) Protocol Versions 2 and 3
Copyright © 2019 Microsoft Corporation
Release: September 23, 2019

Value Meaning

NONE

0x0000

No compression

LZNT1

0x0001

LZNT1 compression algorithm

LZ77

0x0002

LZ77 compression algorithm

LZ77+Huffman

0x0003

LZ77+Huffman compression algorithm

2.2.3.1.4 (Updated Section) SMB2_NETNAME_NEGOTIATE_CONTEXT_ID

The SMB2_NETNAME_NEGOTIATE_CONTEXT_ID context is specified in an SMB2 NEGOTIATE request

to indicate the server name the client connects to. The server MUST ignore this context. The format of
the data in the Data field of this SMB2_NEGOTIATE_CONTEXT is as follows.

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

NetName(variable)

...

NetName (variable): A null-terminated Unicode string containing the server name and specified by
the client application.

2.2.4 SMB2 NEGOTIATE Response

The SMB2 NEGOTIATE Response packet is sent by the server to notify the client of the preferred
common dialect. This response is composed of an SMB2 header, as specified in section 2.2.1, followed
by this response structure.

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

StructureSize SecurityMode

DialectRevision NegotiateContextCount/Reserved

ServerGuid

...

...

...

Capabilities

50 / 464

[MS-SMB2-Diff] - v20190923
Server Message Block (SMB) Protocol Versions 2 and 3
Copyright © 2019 Microsoft Corporation
Release: September 23, 2019

MaxTransactSize

MaxReadSize

MaxWriteSize

SystemTime

...

ServerStartTime

...

SecurityBufferOffset SecurityBufferLength

NegotiateContextOffset/Reserved2

Buffer (variable)

...

Padding (variable)

...

NegotiateContextList (variable)

...

StructureSize (2 bytes): The server MUST set this field to 65, indicating the size of the response
structure, not including the header. The server MUST set it to this value, regardless of the number
of negotiate contexts or how long Buffer[] actually is in the response being sent.

SecurityMode (2 bytes): The security mode field specifies whether SMB signing is enabled, required
at the server, or both. This field MUST be constructed using the following values.

Value Meaning

SMB2_NEGOTIATE_SIGNING_ENABLED

0x0001

When set, indicates that security signatures are enabled on the
server.

SMB2_NEGOTIATE_SIGNING_REQUIRED

0x0002

When set, indicates that security signatures are required by the
server.

DialectRevision (2 bytes): The preferred common SMB 2 Protocol dialect number from the Dialects
array that is sent in the SMB2 NEGOTIATE Request (section 2.2.3) or the SMB2 wildcard revision
number. The server SHOULD set this field to one of the following values.

Value Meaning

0x0202 SMB 2.0.2 dialect revision number.

51 / 464

[MS-SMB2-Diff] - v20190923
Server Message Block (SMB) Protocol Versions 2 and 3
Copyright © 2019 Microsoft Corporation
Release: September 23, 2019

Value Meaning

0x0210 SMB 2.1 dialect revision number.<15>

0x0300 SMB 3.0 dialect revision number.<16>

0x0302 SMB 3.0.2 dialect revision number.<17>

0x0311 SMB 3.1.1 dialect revision number. <18>

0x02FF SMB2 wildcard revision number; indicates that the server implements SMB 2.1 or future dialect
revisions and expects the client to send a subsequent SMB2 Negotiate request to negotiate the
actual SMB 2 Protocol revision to be used. The wildcard revision number is sent only in response
to a multi-protocol negotiate request with the "SMB 2.???" dialect string.<19>

NegotiateContextCount/Reserved (2 bytes): If the DialectRevision field is 0x0311, this field

specifies the number of negotiate contexts in NegotiateContextList; otherwise, this field MUST
NOT be used and MUST be reserved. The server SHOULD set this to 0, and the client MUST ignore
it on receipt.<20>

ServerGuid (16 bytes): A globally unique identifier (GUID) that is generated by the server to
uniquely identify this server. This field MUST NOT be used by a client as a secure method of
identifying a server.<21>

Capabilities (4 bytes): The Capabilities field specifies protocol capabilities for the server. This field

MUST be constructed using a combination of zero or more of the following values.

Value Meaning

SMB2_GLOBAL_CAP_DFS

0x00000001

When set, indicates that the server supports the Distributed
File System (DFS).

SMB2_GLOBAL_CAP_LEASING

 0x00000002

When set, indicates that the server supports leasing. This flag
is not valid for the SMB 2.0.2 dialect.

SMB2_GLOBAL_CAP_LARGE_MTU

0x00000004

When set, indicates that the server supports multi-credit
operations. This flag is not valid for the SMB 2.0.2 dialect.

SMB2_GLOBAL_CAP_MULTI_CHANNEL

0x00000008

When set, indicates that the server supports establishing
multiple channels for a single session. This flag is not valid for
the SMB 2.0.2 and SMB 2.1 dialects. .

SMB2_GLOBAL_CAP_PERSISTENT_HANDLES

0x00000010

When set, indicates that the server supports persistent
handles. This flag is not valid for the SMB 2.0.2 and SMB 2.1
dialects.

SMB2_GLOBAL_CAP_DIRECTORY_LEASING

0x00000020

When set, indicates that the server supports directory
leasing. This flag is not valid for the SMB 2.0.2 and SMB 2.1
dialects.

SMB2_GLOBAL_CAP_ENCRYPTION

0x00000040

When set, indicates that the server supports encryption. This
flag is valid for the SMB 3.0 and 3.0.2 dialects.

MaxTransactSize (4 bytes): The maximum size, in bytes, of the buffer that can be used for
QUERY_INFO, QUERY_DIRECTORY, SET_INFO and CHANGE_NOTIFY operations. This field is
applicable only for buffers sent by the client in SET_INFO requests, or returned from the server in
QUERY_INFO, QUERY_DIRECTORY, and CHANGE_NOTIFY responses.<22>

MaxReadSize (4 bytes): The maximum size, in bytes, of the Length in an SMB2 READ Request
(section 2.2.19) that the server will accept.

52 / 464

[MS-SMB2-Diff] - v20190923
Server Message Block (SMB) Protocol Versions 2 and 3
Copyright © 2019 Microsoft Corporation
Release: September 23, 2019

MaxWriteSize (4 bytes): The maximum size, in bytes, of the Length in an SMB2 WRITE Request
(section 2.2.21) that the server will accept.

SystemTime (8 bytes): The system time of the SMB2 server when the SMB2 NEGOTIATE Request
was processed; in FILETIME format as specified in [MS-DTYP] section 2.3.3.

ServerStartTime (8 bytes): The SMB2 server start time, in FILETIME format as specified in [MS-
DTYP] section 2.3.3.

SecurityBufferOffset (2 bytes): The offset, in bytes, from the beginning of the SMB2 header to the
security buffer.

SecurityBufferLength (2 bytes): The length, in bytes, of the security buffer.

NegotiateContextOffset/Reserved2 (4 bytes): If the DialectRevision field is 0x0311, then this
field specifies the offset, in bytes, from the beginning of the SMB2 header to the first 8-byte

aligned negotiate context in NegotiateContextList; otherwise, the server MUST set this to 0 and
the client MUST ignore it on receipt.

Buffer (variable): The variable-length buffer that contains the security buffer for the response, as
specified by SecurityBufferOffset and SecurityBufferLength. The buffer SHOULD contain a
token as produced by the GSS protocol as specified in section 3.3.5.4. If SecurityBufferLength
is 0, this field is empty and then client-initiated authentication, with an authentication protocol of

the client's choice, will be used instead of server-initiated SPNEGO authentication as described in
[MS-AUTHSOD] section 2.1.2.2.

Padding (variable): Optional padding between the end of the Buffer field and the first negotiate
context in the NegotiateContextList so that the first negotiate context is 8-byte aligned.

NegotiateContextList (variable): If the DialectRevision field is 0x0311, a list of negotiate
contexts. The first negotiate context in the list MUST appear at the byte offset indicated by the
SMB2 NEGOTIATE response's NegotiateContextOffset. Subsequent negotiate contexts MUST

appear at the first 8-byte aligned offset following the previous negotiate context.

2.2.4.1 SMB2 NEGOTIATE_CONTEXT Response Values

The SMB2_NEGOTIATE_CONTEXT structure is used by the SMB2 NEGOTIATE Response to encode

additional connection properties.

The client MUST support receiving negotiate contexts in any order.

Each structure takes the form specified in section 2.2.3.1

2.2.4.1.1 SMB2_PREAUTH_INTEGRITY_CAPABILITIES

The SMB2_PREAUTH_INTEGRITY_CAPABILITIES context is specified in an SMB2 NEGOTIATE response
by the server to indicate which preauthentication integrity hash algorithm the server selected for the

connection and to optionally supply a preauthentication integrity hash salt value. The format of the
data in the Data field of this SMB2_NEGOTIATE_CONTEXT MUST take the same form specified in
section 2.2.3.1.1 except that the HashAlgorithmCount field MUST be 1.

2.2.4.1.2 SMB2_ENCRYPTION_CAPABILITIES

The SMB2_ENCRYPTION_CAPABILITIES context is specified in an SMB2 NEGOTIATE response by the
server to indicate which encryption algorithm the server selected for the connection. The format of the

data in the Data field of this SMB2_NEGOTIATE_CONTEXT MUST take the same form specified in
section 2.2.3.1.2 except that the CipherCount field MUST be 1.

2.2.4.1.3 SMB2_COMPRESSION_CAPABILITIES

53 / 464

[MS-SMB2-Diff] - v20190923
Server Message Block (SMB) Protocol Versions 2 and 3
Copyright © 2019 Microsoft Corporation
Release: September 23, 2019

The SMB2_COMPRESSION_CAPABILITIES context is specified in an SMB2 NEGOTIATE response by the
server to indicate which compression algorithms the server supports of the set offered in the request.

The format of the data in the Data field of this SMB2_NEGOTIATE_CONTEXT MUST take the same
form specified in section 2.2.3.1.3.

2.2.4.1.4 SMB2_NETNAME_NEGOTIATE_CONTEXT_ID

The SMB2_NETNAME_NEGOTIATE_CONTEXT_ID request does not have an associated SMB2
NEGOTIATE_CONTEXT response.

2.2.5 SMB2 SESSION_SETUP Request

The SMB2 SESSION_SETUP Request packet is sent by the client to request a new authenticated
session within a new or existing SMB 2 Protocol transport connection to the server. This request is
composed of an SMB2 header as specified in section 2.2.1 followed by this request structure.

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

StructureSize Flags SecurityMode

Capabilities

Channel

SecurityBufferOffset SecurityBufferLength

PreviousSessionId

...

Buffer (variable)

...

StructureSize (2 bytes): The client MUST set this field to 25, indicating the size of the request
structure, not including the header. The client MUST set it to this value regardless of how long
Buffer[] actually is in the request being sent.

Flags (1 byte): If the client implements the SMB 3.x dialect family, this field MUST be set to
combination of zero or more of the following values. Otherwise, it MUST be set to 0.

Value Meaning

SMB2_SESSION_FLAG_BINDING

0x01

When set, indicates that the request is to bind an existing session to a
new connection.

SecurityMode (1 byte): The security mode field specifies whether SMB signing is enabled or
required at the client. This field MUST be constructed using the following values.

Value Meaning

SMB2_NEGOTIATE_SIGNING_ENABLED When set, indicates that security signatures are enabled on the
client. The client MUST set this bit if the

54 / 464

[MS-SMB2-Diff] - v20190923
Server Message Block (SMB) Protocol Versions 2 and 3
Copyright © 2019 Microsoft Corporation
Release: September 23, 2019

Value Meaning

0x01 SMB2_NEGOTIATE_SIGNING_REQUIRED bit is not set, and
MUST NOT set this bit if the
SMB2_NEGOTIATE_SIGNING_REQUIRED bit is set. The server
MUST ignore this bit.

SMB2_NEGOTIATE_SIGNING_REQUIRED

0x02

When set, indicates that security signatures are required by the
client.

Capabilities (4 bytes): Specifies protocol capabilities for the client. This field MUST be constructed
using the following values.

Value Meaning

SMB2_GLOBAL_CAP_DFS

0x00000001

When set, indicates that the client supports the Distributed File System
(DFS).

SMB2_GLOBAL_CAP_UNUSED1

0x00000002

SHOULD be set to zero, and server MUST ignore.

SMB2_GLOBAL_CAP_UNUSED2

0x00000004

SHOULD be set to zero and server MUST ignore.

SMB2_GLOBAL_CAP_UNUSED3

0x00000008

SHOULD be set to zero and server MUST ignore.

Values other than those that are defined in the previous table are unused at present and
SHOULD<23> be treated as reserved.

Channel (4 bytes): This field MUST NOT be used and MUST be reserved. The client MUST set this to
0, and the server MUST ignore it on receipt.

SecurityBufferOffset (2 bytes): The offset, in bytes, from the beginning of the SMB 2 Protocol

header to the security buffer.

SecurityBufferLength (2 bytes): The length, in bytes, of the security buffer.

PreviousSessionId (8 bytes): A previously established session identifier. The server uses this value
to identify the client session that was disconnected due to a network error.

Buffer (variable): A variable-length buffer that contains the security buffer for the request, as
specified by SecurityBufferOffset and SecurityBufferLength. If the server initiated
authentication using SPNEGO, the buffer MUST contain a token as produced by the GSS protocol
as specified in section 3.2.4.2.3. If the client initiated authentication, see section 2.2.4, the buffer

SHOULD<24> contain a token as produced by an authentication protocol of the client's choice.

2.2.6 SMB2 SESSION_SETUP Response

The SMB2 SESSION_SETUP Response packet is sent by the server in response to an SMB2

SESSION_SETUP Request packet. This response is composed of an SMB2 header, as specified in
section 2.2.1, that is followed by this response structure:

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

StructureSize SessionFlags

55 / 464

[MS-SMB2-Diff] - v20190923
Server Message Block (SMB) Protocol Versions 2 and 3
Copyright © 2019 Microsoft Corporation
Release: September 23, 2019

SecurityBufferOffset SecurityBufferLength

Buffer (variable)

...

StructureSize (2 bytes): The server MUST set this to 9, indicating the size of the fixed part of the
response structure not including the header. The server MUST set it to this value regardless of
how long Buffer[] actually is in the response.

SessionFlags (2 bytes): A flags field that indicates additional information about the session. This
field MUST contain either 0 or one of the following values:

Value Meaning

SMB2_SESSION_FLAG_IS_GUEST

0x0001

If set, the client has been authenticated as a guest user.

SMB2_SESSION_FLAG_IS_NULL

0x0002

If set, the client has been authenticated as an anonymous user.

SMB2_SESSION_FLAG_ENCRYPT_DATA

0x0004

If set, the server requires encryption of messages on this session,
per the conditions specified in section 3.3.5.2.9. This flag is only
valid for the SMB 3.x dialect family.

SecurityBufferOffset (2 bytes): The offset, in bytes, from the beginning of the SMB2 header to the
security buffer.

SecurityBufferLength (2 bytes): The length, in bytes, of the security buffer.

Buffer (variable): A variable-length buffer that contains the security buffer for the response, as
specified by SecurityBufferOffset and SecurityBufferLength. If the server initiated

authentication using SPNEGO, the buffer MUST contain a token as produced by the GSS protocol
as specified in section 3.3.5.5.3. If the client initiated authentication, see section 2.2.4, the buffer

SHOULD<25> contain a token as produced by an authentication protocol of the client's choice.

2.2.7 SMB2 LOGOFF Request

The SMB2 LOGOFF Request packet is sent by the client to request termination of a particular session.

This request is composed of an SMB2 header as specified in section 2.2.1 followed by this request
structure.

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

StructureSize Reserved

StructureSize (2 bytes): The client MUST set this field to 4, indicating the size of the request
structure not including the header.

Reserved (2 bytes): This field MUST NOT be used and MUST be reserved. The client MUST set this to
0, and the server MUST ignore it on receipt.

56 / 464

[MS-SMB2-Diff] - v20190923
Server Message Block (SMB) Protocol Versions 2 and 3
Copyright © 2019 Microsoft Corporation
Release: September 23, 2019

2.2.8 SMB2 LOGOFF Response

The SMB2 LOGOFF Response packet is sent by the server to confirm that an SMB2 LOGOFF Request
(section 2.2.7) was completed successfully. This response is composed of an SMB2 header, as

specified in section 2.2.1, followed by this request structure:

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

StructureSize Reserved

StructureSize (2 bytes): The server MUST set this field to 4, indicating the size of the response
structure, not including the header.

Reserved (2 bytes): This field MUST NOT be used and MUST be reserved. The server MUST set this
to 0, and the client MUST ignore it on receipt.

2.2.9 SMB2 TREE_CONNECT Request

The SMB2 TREE_CONNECT Request packet is sent by a client to request access to a particular share
on the server. This request is composed of an SMB2 Packet Header (section 2.2.1) that is followed by
this request structure.

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

StructureSize Flags/Reserved

PathOffset PathLength

Buffer (variable)

...

StructureSize (2 bytes): The client MUST set this field to 9, indicating the size of the request
structure, not including the header. The client MUST set it to this value regardless of how long
Buffer[] actually is in the request being sent.

Flags/Reserved (2 bytes): This field is interpreted in different ways depending on the SMB2 dialect.

In the SMB 3.1.1 dialect, this field is interpreted as the Flags field, which indicates how to process
the operation. This field MUST be constructed using the following values:

Value Meaning

SMB2_TREE_CONNECT_FLAG_CLUSTER_RECONNECT

0x0001

When set, indicates that the client has previously
connected to the specified cluster share using the
SMB dialect of the connection on which the request
is received.

SMB2_TREE_CONNECT_FLAG_REDIRECT_TO_OWNER

0x0002

When set, indicates that the client can handle
synchronous share redirects via a Share Redirect
error context response as specified in section
2.2.2.2.2.

SMB2_TREE_CONNECT_FLAG_EXTENSION_PRESENT

0x0004

When set, indicates that a tree connect request
extension, as specified in section 2.2.9.1, is present,

57 / 464

[MS-SMB2-Diff] - v20190923
Server Message Block (SMB) Protocol Versions 2 and 3
Copyright © 2019 Microsoft Corporation
Release: September 23, 2019

Value Meaning

starting at the Buffer field of this tree connect
request.

If the dialect is not 3.1.1, then this field MUST NOT be used and MUST be reserved. The client
MUST set this to 0, and the server MUST ignore it on receipt.

PathOffset (2 bytes): The offset, in bytes, of the full share path name from the beginning of the
packet header. The full share pathname is Unicode in the form "\\server\share" for the request.
The server component of the path MUST be less than 256 characters in length, and it MUST be a

NetBIOS name, a fully qualified domain name (FQDN), or a textual IPv4 or IPv6 address. The
share component of the path MUST be less than or equal to 80 characters in length. The share
name MUST NOT contain any invalid characters, as specified in [MS-FSCC] section 2.1.6. <26>

PathLength (2 bytes): The length, in bytes, of the full share path name.

Buffer (variable): If SMB2_TREE_CONNECT_FLAG_EXTENSION_PRESENT is not set in the Flags field

of this structure, this field is a variable-length buffer that contains the full share path name.

If SMB2_TREE_CONNECT_FLAG_EXTENSION_PRESENT is set in the Flags field in this structure,
this field is a variable-length buffer that contains the tree connect request extension, as specified
in section 2.2.9.1.

2.2.9.1 SMB2 TREE_CONNECT Request Extension

If the Flags field of the SMB2 TREE_CONNECT request has the
SMB2_TREE_CONNECT_FLAG_EXTENSION_PRESENT bit set, the following structure MUST be added at
the beginning of the Buffer field.

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

TreeConnectContextOffset

TreeConnectContextCount Reserved

...

...

PathName (variable)

...

TreeConnectContexts (variable)

...

TreeConnectContextOffset (4 bytes): The offset from the start of the SMB2 TREE_CONNECT
request of an array of tree connect contexts.

TreeConnectContextCount (2 bytes): The count of elements in the tree connect context array.

Reserved (10 bytes): MUST be set to zero.

58 / 464

[MS-SMB2-Diff] - v20190923
Server Message Block (SMB) Protocol Versions 2 and 3
Copyright © 2019 Microsoft Corporation
Release: September 23, 2019

PathName (variable): This field is a variable-length buffer that contains the full share path name as
specified in section 2.2.9.

TreeConnectContexts (variable): A variable length array of SMB2_TREE_CONNECT_CONTEXT
structures as described in section 2.2.9.2.

2.2.9.2 SMB2 TREE_CONNECT_CONTEXT Request Values

The SMB2_TREE_CONNECT_CONTEXT structure is used by the SMB2 TREE_CONNECT request and the
SMB2 TREE_CONNECT response to encode additional properties.

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

ContextType DataLength

Reserved

Data (variable)

...

ContextType (2 bytes): Specifies the type of context in the Data field. This field MUST be one of the
following values:

Value Meaning

SMB2_RESERVED_TREE_CONNECT_CONTEXT_ID

0x0000

This value is reserved.

SMB2_REMOTED_IDENTITY_TREE_CONNECT_CONTEXT_ID

0x0001

The Data field contains remoted identity tree
connect context data as specified in section
2.2.9.2.1.

DataLength (2 bytes): The length, in bytes, of the Data field.

Reserved (4 bytes): This field MUST NOT be used and MUST be reserved. This value MUST be set to

0 by the client, and MUST be ignored by the server.

Data (variable): A variable-length field that contains the tree connect context specified by the
ContextType field.

2.2.9.2.1 SMB2_REMOTED_IDENTITY_TREE_CONNECT Context

The SMB2_REMOTED_IDENTITY_TREE_CONNECT context is specified in
SMB2_TREE_CONNECT_CONTEXT structure when the ContextType is set to

SMB2_REMOTED_IDENTITY_TREE_CONNECT_CONTEXT_ID. The format of the data in the Data field of
this SMB2_TREE_CONNECT_CONTEXT is as follows:

59 / 464

[MS-SMB2-Diff] - v20190923
Server Message Block (SMB) Protocol Versions 2 and 3
Copyright © 2019 Microsoft Corporation
Release: September 23, 2019

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

TicketType TicketSize

User UserName

Domain Groups

RestrictedGroups Privileges

PrimaryGroup Owner

DefaultDacl DeviceGroups

UserClaims DeviceClaims

TicketInfo (variable)

...

TicketType (2 bytes): A 16-bit integer specifying the type of ticket requested. The value in this field
MUST be set to 0x0001.

TicketSize (2 bytes): A 16-bit integer specifying the total size of this structure.

User (2 bytes): A 16-bit integer specifying the offset, in bytes, from the beginning of this structure
to the user information in the TicketInfo buffer. The user information is stored in SID_ATTR_DATA
format as specified in section 2.2.9.2.1.2.

UserName (2 bytes): A 16-bit integer specifying the offset, in bytes, from the beginning of this
structure to the null-terminated Unicode string containing the username in the TicketInfo field.

Domain (2 bytes): A 16-bit integer specifying the offset, in bytes, from the beginning of this

structure to the null-terminated Unicode string containing the domain name in the TicketInfo
field.

Groups (2 bytes): A 16-bit integer specifying the offset, in bytes, from the beginning of this
structure to the information about the groups in the TicketInfo buffer. The information is stored in
SID_ARRAY_DATA format as specified in section 2.2.9.2.1.3.

RestrictedGroups (2 bytes): A 16-bit integer specifying the offset, in bytes, from the beginning of
this structure to the information about the restricted groups in the TicketInfo field. The

information is stored in SID_ARRAY_DATA format as specified in section 2.2.9.2.1.3.

Privileges (2 bytes): A 16-bit integer specifying the offset, in bytes, from the beginning of this

structure to the information about the privileges in the TicketInfo field. The information is stored
in PRIVILEGE_ARRAY_DATA format as specified in section 2.2.9.2.1.6.

PrimaryGroup (2 bytes): A 16-bit integer specifying the offset, in bytes, from the beginning of this
structure to the information about the primary group in the TicketInfo field. The information is
stored in SID_ARRAY_DATA format as specified in section 2.2.9.2.1.3.

Owner (2 bytes): A 16-bit integer specifying the offset, in bytes, from the beginning of this structure
to the information about the owner in the TicketInfo field. The information is stored in
BLOB_DATA format as specified in section 2.2.9.2.1.1, where BlobData contains the SID, as

60 / 464

[MS-SMB2-Diff] - v20190923
Server Message Block (SMB) Protocol Versions 2 and 3
Copyright © 2019 Microsoft Corporation
Release: September 23, 2019

specified in [MS-DTYP] section 2.4.2.2, representing the owner, and BlobSize contains the size of
SID.

DefaultDacl (2 bytes): A 16-bit integer specifying the offset, in bytes, from the beginning of this
structure to the information about the DACL, as specified in [MS-DTYP] section 2.5.2, in the

TicketInfo field. Information about the DACL is stored in BLOB_DATA format as specified in
section 2.2.9.2.1.1, where BlobSize contains the size of the ACL structure, as specified in [MS-
DTYP] section 2.4.5, and BlobData contains the DACL data.

DeviceGroups (2 bytes): A 16-bit integer specifying the offset, in bytes, from the beginning of this
structure to the information about the device groups in the TicketInfo field. The information is
stored in SID_ARRAY_DATA format as specified in section 2.2.9.2.1.3.

UserClaims (2 bytes): A 16-bit integer specifying the offset, in bytes, from the beginning of this

structure to the user claims data in the TicketInfo field. Information about user claims is stored
in BLOB_DATA format as specified in section 2.2.9.2.1.1, where BlobData contains an array of
CLAIM_SECURITY_ATTRIBUTE_RELATIVE_V1 structures, as specified in [MS-DTYP] section
2.4.10.1, representing the claims issued to the user, and BlobSize contains the size of the user

claims data.

DeviceClaims (2 bytes): A 16-bit integer specifying the offset, in bytes, from the beginning of this

structure to the device claims data in the TicketInfo field. Information about device claims is
stored in BLOB_DATA format as specified in section 2.2.9.2.1.1, where BlobData contains an
array of CLAIM_SECURITY_ATTRIBUTE_RELATIVE_V1 structures, as specified in [MS-DTYP]
section 2.4.10.1, representing the claims issued to the account of the device which the user is
connected from, and BlobSize contains the size of the device claims data.

TicketInfo (variable): A variable-length buffer containing the remoted identity tree connect context
data, including the information about all the previously defined fields in this structure.

2.2.9.2.1.1 BLOB_DATA

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

BlobSize BlobData (variable)

...

BlobSize (2 bytes): Size of the data, in bytes, in BlobData.

BlobData (variable): Blob data.

2.2.9.2.1.2 SID_ATTR_DATA

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

SidData (variable)

...

Attr

61 / 464

[MS-SMB2-Diff] - v20190923
Server Message Block (SMB) Protocol Versions 2 and 3
Copyright © 2019 Microsoft Corporation
Release: September 23, 2019

SidData (variable): SID, as specified in [MS-DTYP] section 2.4.2.2, information in BLOB_DATA
format as specified in section 2.2.9.2.1.1. BlobSize MUST be set to the size of SID and BlobData

MUST be set to the SID value.

Attr (4 bytes): Specified attributes of the SID, containing the following values.

Value Meaning

SE_GROUP_ENABLED

0x00000004

The SID is enabled for access checks. A SID without
this attribute is ignored during an access check unless
the SE_GROUP_USE_FOR_DENY_ONLY attribute is
set.

SE_GROUP_ENABLED_BY_DEFAULT

0x00000002

The SID is enabled by default.

SE_GROUP_INTEGRITY

0x00000020

The SID is a mandatory integrity SID.

SE_GROUP_INTEGRITY_ENABLED

0x00000040

The SID is enabled for mandatory integrity checks.

SE_GROUP_LOGON_ID

0xC0000000

The SID is a logon SID that identifies the logon
session associated with an access token.

SE_GROUP_MANDATORY

0x00000001

The SID cannot have the SE_GROUP_ENABLED
attribute cleared.

SE_GROUP_OWNER

0x00000008

The SID identifies a group account for which the user
of the token is the owner of the group, or the SID can
be assigned as the owner of the token or objects.

SE_GROUP_RESOURCE

0x20000000

The SID identifies a domain-local group.

SE_GROUP_USE_FOR_DENY_ONLY

0x00000010

The SID is a deny-only SID in a restricted token. If
this attribute is set, SE_GROUP_ENABLED is not set,
and the SID cannot be reenabled.

2.2.9.2.1.3 SID_ARRAY_DATA

62 / 464

[MS-SMB2-Diff] - v20190923
Server Message Block (SMB) Protocol Versions 2 and 3
Copyright © 2019 Microsoft Corporation
Release: September 23, 2019

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

SidAttrCount SidAttrList (variable)

...

SidAttrCount (2 bytes): Number of SID_ATTR_DATA elements in SidAttrList array.

SidAttrList (variable): An array with SidAttrCount number of SID_ATTR_DATA elements as
specified in section 2.2.9.2.1.2.

2.2.9.2.1.4 LUID_ATTR_DATA

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

Luid

...

Attr

Luid (8 bytes): Locally unique identifier, as specified in [MS-DTYP] section 2.3.7.

Attr (4 bytes): LUID attributes as specified in [MS-LSAD] section 2.2.5.4.

2.2.9.2.1.5 PRIVILEGE_DATA

PRIVILEGE_DATA takes the form BLOB_DATA as specified in section 2.2.9.2.1.1. BlobSize MUST be
set to the size of LUID_ATTR_DATA structure and BlobData MUST be set to the LUID_ATTR_DATA
specified in section 2.2.9.2.1.4.

2.2.9.2.1.6 PRIVILEGE_ARRAY_DATA

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

PrivilegeCount PrivilegeList (variable)

...

...

PrivilegeCount (2 bytes): Number of PRIVILEGE_DATA elements in PrivilegeList array.

PrivilegeList (variable): An array with PrivilegeCount number of PRIVILEGE_DATA elements as
specified in section 2.2.9.2.1.5.

63 / 464

[MS-SMB2-Diff] - v20190923
Server Message Block (SMB) Protocol Versions 2 and 3
Copyright © 2019 Microsoft Corporation
Release: September 23, 2019

2.2.10 SMB2 TREE_CONNECT Response

The SMB2 TREE_CONNECT Response packet is sent by the server when an SMB2 TREE_CONNECT
request is processed successfully by the server. This response is composed of an SMB2 Packet Header

(section 2.2.1) that is followed by this response structure.

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

StructureSize ShareType Reserved

ShareFlags

Capabilities

MaximalAccess

StructureSize (2 bytes): The server MUST set this field to 16, indicating the size of the response
structure, not including the header.

ShareType (1 byte): The type of share being accessed. This field MUST contain one of the following

values.

Value Meaning

SMB2_SHARE_TYPE_DISK

0x01

Physical disk share.

SMB2_SHARE_TYPE_PIPE

0x02

Named pipe share.

SMB2_SHARE_TYPE_PRINT

0x03

Printer share.

Reserved (1 byte): This field MUST NOT be used and MUST be reserved. The server MUST set this to

0, and the client MUST ignore it on receipt.

ShareFlags (4 bytes): This field contains properties for this share.

This field MUST contain one of the following offline caching properties:
SMB2_SHAREFLAG_MANUAL_CACHING, SMB2_SHAREFLAG_AUTO_CACHING,
SMB2_SHAREFLAG_VDO_CACHING and SMB2_SHAREFLAG_NO_CACHING.

For more information about offline caching, see [OFFLINE].

This field MUST contain zero or more of the following values: SMB2_SHAREFLAG_DFS,

SMB2_SHAREFLAG_DFS_ROOT, SMB2_SHAREFLAG_RESTRICT_EXCLUSIVE_OPENS,

SMB2_SHAREFLAG_FORCE_SHARED_DELETE, SMB2_SHAREFLAG_ALLOW_NAMESPACE_CACHING,
SMB2_SHAREFLAG_ACCESS_BASED_DIRECTORY_ENUM,
SMB2_SHAREFLAG_FORCE_LEVELII_OPLOCK and SMB2_SHAREFLAG_ENABLE_HASH.

Descriptions of the individual flags follow.

Value Meaning

SMB2_SHAREFLAG_MANUAL_CACHING The client can cache files that are explicitly
selected by the user for offline use.

64 / 464

[MS-SMB2-Diff] - v20190923
Server Message Block (SMB) Protocol Versions 2 and 3
Copyright © 2019 Microsoft Corporation
Release: September 23, 2019

Value Meaning

0x00000000

SMB2_SHAREFLAG_AUTO_CACHING

0x00000010

The client can automatically cache files that are
used by the user for offline access.

SMB2_SHAREFLAG_VDO_CACHING

0x00000020

The client can automatically cache files that are
used by the user for offline access and can use
those files in an offline mode even if the share is
available.

SMB2_SHAREFLAG_NO_CACHING

0x00000030

Offline caching MUST NOT occur.

SMB2_SHAREFLAG_DFS

0x00000001

The specified share is present in a Distributed File
System (DFS) tree structure. The server SHOULD
set the SMB2_SHAREFLAG_DFS bit in the
ShareFlags field if the per-share property
Share.IsDfs is TRUE.

SMB2_SHAREFLAG_DFS_ROOT

0x00000002

The specified share is present in a DFS tree
structure. The server SHOULD set the
SMB2_SHAREFLAG_DFS_ROOT bit in the
ShareFlags field if the per-share property
Share.IsDfs is TRUE.

SMB2_SHAREFLAG_RESTRICT_EXCLUSIVE_OPENS

0x00000100

The specified share disallows exclusive file opens
that deny reads to an open file.

SMB2_SHAREFLAG_FORCE_SHARED_DELETE

0x00000200

The specified share disallows clients from opening
files on the share in an exclusive mode that
prevents the file from being deleted until the
client closes the file.

SMB2_SHAREFLAG_ALLOW_NAMESPACE_CACHING

0x00000400

The client MUST ignore this flag.

SMB2_SHAREFLAG_ACCESS_BASED_DIRECTORY_ENUM

0x00000800

The server will filter directory entries based on
the access permissions of the client.

SMB2_SHAREFLAG_FORCE_LEVELII_OPLOCK

0x00001000

The server will not issue exclusive caching rights
on this share.<27>

SMB2_SHAREFLAG_ENABLE_HASH_V1

0x00002000

The share supports hash generation for branch
cache retrieval of data. For more information, see
section 2.2.31.2. This flag is not valid for the SMB
2.0.2 dialect.

SMB2_SHAREFLAG_ENABLE_HASH_V2

0x00004000

The share supports v2 hash generation for branch
cache retrieval of data. For more information, see
section 2.2.31.2. This flag is not valid for the SMB
2.0.2 and SMB 2.1 dialects.

SMB2_SHAREFLAG_ENCRYPT_DATA

0x00008000

The server requires encryption of remote file
access messages on this share, per the conditions
specified in section 3.3.5.2.11. This flag is only
valid for the SMB 3.x dialect family.

SMB2_SHAREFLAG_IDENTITY_REMOTING

0x00040000

The share supports identity remoting. The client
can request remoted identity access for the share
via the
SMB2_REMOTED_IDENTITY_TREE_CONNECT

65 / 464

[MS-SMB2-Diff] - v20190923
Server Message Block (SMB) Protocol Versions 2 and 3
Copyright © 2019 Microsoft Corporation
Release: September 23, 2019

Value Meaning

context as specified in section 2.2.9.2.1.

Capabilities (4 bytes): Indicates various capabilities for this share. This field MUST be constructed
using the following values.

Value Meaning

SMB2_SHARE_CAP_DFS

0x00000008

The specified share is present in a DFS tree structure.
The server MUST set the SMB2_SHARE_CAP_DFS bit in
the Capabilities field if the per-share property
Share.IsDfs is TRUE.

SMB2_SHARE_CAP_CONTINUOUS_AVAILABILITY

0x00000010

The specified share is continuously available. This flag is
only valid for the SMB 3.x dialect family.

SMB2_SHARE_CAP_SCALEOUT

0x00000020

The specified share is present on a server configuration
which facilitates faster recovery of durable handles. This
flag is only valid for the SMB 3.x dialect family.

SMB2_SHARE_CAP_CLUSTER

0x00000040

The specified share is present on a server configuration
which provides monitoring of the availability of share
through the Witness service specified in [MS-SWN]. This
flag is only valid for the SMB 3.x dialect family.

SMB2_SHARE_CAP_ASYMMETRIC

0x00000080

The specified share is present on a server configuration
that allows dynamic changes in the ownership of the
share. This flag is not valid for the SMB 2.0.2, 2.1, and
3.0 dialects.

SMB2_SHARE_CAP_REDIRECT_TO_OWNER

0x00000100

The specified share is present on a server configuration
that supports synchronous share level redirection via a
Share Redirect error context response (section
2.2.2.2.2). This flag is not valid for SMB 2.0.2, 2.1, 3.0,
and 3.0.2 dialects.

MaximalAccess (4 bytes): Contains the maximal access for the user that establishes the tree
connect on the share based on the share's permissions. This value takes the form as specified in
section 2.2.13.1.

2.2.11 SMB2 TREE_DISCONNECT Request

The SMB2 TREE_DISCONNECT Request packet is sent by the client to request that the tree connect
that is specified in the TreeId within the SMB2 header be disconnected. This request is composed of

an SMB2 header, as specified in section 2.2.1, that is followed by this variable-length request
structure.

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

StructureSize Reserved

StructureSize (2 bytes): The client MUST set this field to 4, indicating the size of the request
structure, not including the header.

Reserved (2 bytes): This field MUST NOT be used and MUST be reserved. The client MUST set this to
0, and the server MUST ignore it on receipt.

66 / 464

[MS-SMB2-Diff] - v20190923
Server Message Block (SMB) Protocol Versions 2 and 3
Copyright © 2019 Microsoft Corporation
Release: September 23, 2019

2.2.12 SMB2 TREE_DISCONNECT Response

The SMB2 TREE_DISCONNECT Response packet is sent by the server to confirm that an SMB2
TREE_DISCONNECT Request (section 2.2.11) was successfully processed. This response is composed

of an SMB2 header, as specified in section 2.2.1, that is followed by this request structure.

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

StructureSize Reserved

StructureSize (2 bytes): The server MUST set this field to 4, indicating the size of the response
structure, not including the header.

Reserved (2 bytes): This field MUST NOT be used and MUST be reserved. The server MUST set this
to 0, and the client MUST ignore it on receipt.

2.2.13 SMB2 CREATE Request

The SMB2 CREATE Request packet is sent by a client to request either creation of or access to a file.
In case of a named pipe or printer, the server MUST create a new file.

This request is composed of an SMB2 Packet Header, as specified in section 2.2.1, that is followed by

this request structure.

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

StructureSize SecurityFlags RequestedOplockLevel

ImpersonationLevel

SmbCreateFlags

...

Reserved

...

DesiredAccess

FileAttributes

ShareAccess

CreateDisposition

CreateOptions

NameOffset NameLength

CreateContextsOffset

67 / 464

[MS-SMB2-Diff] - v20190923
Server Message Block (SMB) Protocol Versions 2 and 3
Copyright © 2019 Microsoft Corporation
Release: September 23, 2019

CreateContextsLength

Buffer (variable)

...

StructureSize (2 bytes): The client MUST set this field to 57, indicating the size of the request
structure, not including the header. The client MUST set it to this value regardless of how long
Buffer[] actually is in the request being sent.

SecurityFlags (1 byte): This field MUST NOT be used and MUST be reserved. The client MUST set
this to 0, and the server MUST ignore it.

RequestedOplockLevel (1 byte): The requested oplock level. This field MUST contain one of the
following values.<28> For named pipes, the server MUST always revert to
SMB2_OPLOCK_LEVEL_NONE irrespective of the value of this field.

Value Meaning

SMB2_OPLOCK_LEVEL_NONE

0x00

No oplock is requested.

SMB2_OPLOCK_LEVEL_II

0x01

A level II oplock is requested.

SMB2_OPLOCK_LEVEL_EXCLUSIVE

0x08

An exclusive oplock is requested.

SMB2_OPLOCK_LEVEL_BATCH

0x09

A batch oplock is requested.

SMB2_OPLOCK_LEVEL_LEASE

0xFF

A lease is requested. If set, the request packet MUST contain an
SMB2_CREATE_REQUEST_LEASE (section 2.2.13.2.8) create context.

This value is not valid for the SMB 2.0.2 dialect.

ImpersonationLevel (4 bytes): This field specifies the impersonation level requested by the
application that is issuing the create request, and MUST contain one of the following values.

Value Meaning

Anonymous

0x00000000

The application-requested impersonation level is Anonymous.

Identification

0x00000001

The application-requested impersonation level is Identification.

Impersonation

0x00000002

 The application-requested impersonation level is Impersonation.

Delegate

0x00000003

The application-requested impersonation level is Delegate.

Impersonation is specified in [MS-WPO] section 9.7; for more information about impersonation, see
[MSDN-IMPERS].

SmbCreateFlags (8 bytes): This field MUST NOT be used and MUST be reserved. The client SHOULD

set this field to zero, and the server MUST ignore it on receipt.

68 / 464

[MS-SMB2-Diff] - v20190923
Server Message Block (SMB) Protocol Versions 2 and 3
Copyright © 2019 Microsoft Corporation
Release: September 23, 2019

Reserved (8 bytes): This field MUST NOT be used and MUST be reserved. The client sets this to any
value, and the server MUST ignore it on receipt.

DesiredAccess (4 bytes): The level of access that is required, as specified in section 2.2.13.1.

FileAttributes (4 bytes): This field MUST be a combination of the values specified in [MS-FSCC]

section 2.6, and MUST NOT include any values other than those specified in that section.

ShareAccess (4 bytes): Specifies the sharing mode for the open. If ShareAccess values of
FILE_SHARE_READ, FILE_SHARE_WRITE and FILE_SHARE_DELETE are set for a printer file or a
named pipe, the server SHOULD<29> ignore these values. The field MUST be constructed using a
combination of zero or more of the following bit values.

Value Meaning

FILE_SHARE_READ

0x00000001

 When set, indicates that other opens are allowed to read this file while this open is
present. This bit MUST NOT be set for a named pipe or a printer file. Each open
creates a new instance of a named pipe. Likewise, opening a printer file always
creates a new file.

FILE_SHARE_WRITE

0x00000002

 When set, indicates that other opens are allowed to write this file while this open is
present. This bit MUST NOT be set for a named pipe or a printer file. Each open
creates a new instance of a named pipe. Likewise, opening a printer file always
creates a new file.

FILE_SHARE_DELETE

0x00000004

When set, indicates that other opens are allowed to delete or rename this file while
this open is present. This bit MUST NOT be set for a named pipe or a printer file.
Each open creates a new instance of a named pipe. Likewise, opening a printer file
always creates a new file.

CreateDisposition (4 bytes): Defines the action the server MUST take if the file that is specified in
the name field already exists. For opening named pipes, this field can be set to any value by the
client and MUST be ignored by the server. For other files, this field MUST contain one of the

following values.

Value Meaning

FILE_SUPERSEDE

0x00000000

If the file already exists, supersede it. Otherwise, create the file. This value SHOULD
NOT be used for a printer object.<30>

FILE_OPEN

0x00000001

If the file already exists, return success; otherwise, fail the operation. MUST NOT be
used for a printer object.

FILE_CREATE

0x00000002

If the file already exists, fail the operation; otherwise, create the file.

FILE_OPEN_IF

0x00000003

Open the file if it already exists; otherwise, create the file. This value SHOULD NOT
be used for a printer object.<31>

FILE_OVERWRITE

0x00000004

Overwrite the file if it already exists; otherwise, fail the operation. MUST NOT be
used for a printer object.

FILE_OVERWRITE_IF

0x00000005

Overwrite the file if it already exists; otherwise, create the file. This value SHOULD
NOT be used for a printer object.<32>

CreateOptions (4 bytes): Specifies the options to be applied when creating or opening the file.
Combinations of the bit positions listed below are valid, unless otherwise noted. This field MUST be
constructed using the following values.<33>

69 / 464

[MS-SMB2-Diff] - v20190923
Server Message Block (SMB) Protocol Versions 2 and 3
Copyright © 2019 Microsoft Corporation
Release: September 23, 2019

Value Meaning

FILE_DIRECTORY_FILE

0x00000001

The file being created or opened is a directory file. With this flag,
the CreateDisposition field MUST be set to FILE_CREATE,
FILE_OPEN_IF, or FILE_OPEN. With this flag, only the following
CreateOptions values are valid: FILE_WRITE_THROUGH,
FILE_OPEN_FOR_BACKUP_INTENT, FILE_DELETE_ON_CLOSE, and
FILE_OPEN_REPARSE_POINT. If the file being created or opened
already exists and is not a directory file and FILE_CREATE is
specified in the CreateDisposition field, then the server MUST fail
the request with STATUS_OBJECT_NAME_COLLISION. If the file
being created or opened already exists and is not a directory file
and FILE_CREATE is not specified in the CreateDisposition field,
then the server MUST fail the request with
STATUS_NOT_A_DIRECTORY. The server MUST fail an invalid
CreateDisposition field or an invalid combination of
CreateOptions flags with STATUS_INVALID_PARAMETER.

FILE_WRITE_THROUGH

0x00000002

The server performs file write-through; file data is written to the
underlying storage before completing the write operation on this
open.

FILE_SEQUENTIAL_ONLY

0x00000004

This indicates that the application intends to read or write at
sequential offsets using this handle, so the server SHOULD optimize
for sequential access. However, the server MUST accept any access
pattern. This flag value is incompatible with the
FILE_RANDOM_ACCESS value.

FILE_NO_INTERMEDIATE_BUFFERING

0x00000008

File buffering is not performed on this open; file data is not retained
in memory upon writing it to, or reading it from, the underlying
storage.

FILE_SYNCHRONOUS_IO_ALERT

0x00000010

This bit SHOULD be set to 0 and MUST be ignored by the
server.<34>

FILE_SYNCHRONOUS_IO_NONALERT

0x00000020

This bit SHOULD be set to 0 and MUST be ignored by the
server.<35>

FILE_NON_DIRECTORY_FILE

0x00000040

If the name of the file being created or opened matches with an
existing directory file, the server MUST fail the request with
STATUS_FILE_IS_A_DIRECTORY. This flag MUST NOT be used with
FILE_DIRECTORY_FILE or the server MUST fail the request with
STATUS_INVALID_PARAMETER.

FILE_COMPLETE_IF_OPLOCKED

0x00000100

This bit SHOULD be set to 0 and MUST be ignored by the
server.<36>

FILE_NO_EA_KNOWLEDGE

0x00000200

The caller does not understand how to handle extended attributes.
If the request includes an SMB2_CREATE_EA_BUFFER create
context, then the server MUST fail this request with
STATUS_ACCESS_DENIED. If extended attributes with the
FILE_NEED_EA flag (see [MS-FSCC] section 2.4.15) set are
associated with the file being opened, then the server MUST fail this
request with STATUS_ACCESS_DENIED.

FILE_RANDOM_ACCESS

0x00000800

This indicates that the application intends to read or write at
random offsets using this handle, so the server SHOULD optimize
for random access. However, the server MUST accept any access
pattern. This flag value is incompatible with the
FILE_SEQUENTIAL_ONLY value. If both FILE_RANDOM_ACCESS and
FILE_SEQUENTIAL_ONLY are set, then FILE_SEQUENTIAL_ONLY is
ignored.

70 / 464

[MS-SMB2-Diff] - v20190923
Server Message Block (SMB) Protocol Versions 2 and 3
Copyright © 2019 Microsoft Corporation
Release: September 23, 2019

Value Meaning

FILE_DELETE_ON_CLOSE

0x00001000

The file MUST be automatically deleted when the last open request
on this file is closed. When this option is set, the DesiredAccess
field MUST include the DELETE flag. This option is often used for
temporary files.

FILE_OPEN_BY_FILE_ID

0x00002000

This bit SHOULD be set to 0 and the server MUST fail the request
with a STATUS_NOT_SUPPORTED error if this bit is set.<37>

FILE_OPEN_FOR_BACKUP_INTENT

0x00004000

The file is being opened for backup intent. That is, it is being
opened or created for the purposes of either a backup or a restore
operation. The server can check to ensure that the caller is capable
of overriding whatever security checks have been placed on the file
to allow a backup or restore operation to occur. The server can

check for access rights to the file before checking the
DesiredAccess field.

FILE_NO_COMPRESSION

0x00008000

The file cannot be compressed. This bit is ignored when
FILE_DIRECTORY_FILE is set in CreateOptions.

FILE_OPEN_REMOTE_INSTANCE

0x00000400

This bit SHOULD be set to 0 and MUST be ignored by the server.

FILE_OPEN_REQUIRING_OPLOCK

0x00010000

This bit SHOULD be set to 0 and MUST be ignored by the server.

FILE_DISALLOW_EXCLUSIVE

0x00020000

This bit SHOULD be set to 0 and MUST be ignored by the server.

FILE_RESERVE_OPFILTER

0x00100000

This bit SHOULD be set to 0 and the server MUST fail the request
with a STATUS_NOT_SUPPORTED error if this bit is set.<38>

FILE_OPEN_REPARSE_POINT

0x00200000

If the file or directory being opened is a reparse point, open the
reparse point itself rather than the target that the reparse point
references.

FILE_OPEN_NO_RECALL

0x00400000

In an HSM (Hierarchical Storage Management) environment, this
flag means the file SHOULD NOT be recalled from tertiary storage
such as tape. The recall can take several minutes. The caller can
specify this flag to avoid those delays.

FILE_OPEN_FOR_FREE_SPACE_QUERY

0x00800000

Open file to query for free space. The client SHOULD set this to 0
and the server MUST ignore it.<39>

NameOffset (2 bytes): The offset, in bytes, from the beginning of the SMB2 header to the 8-byte
aligned file name. If SMB2_FLAGS_DFS_OPERATIONS is set in the Flags field of the SMB2 header,
the file name includes a prefix that will be processed during DFS name normalization as specified
in section 3.3.5.9. Otherwise, the file name is relative to the share that is identified by the TreeId
in the SMB2 header. The NameOffset field SHOULD be set to the offset of the Buffer field from

the beginning of the SMB2 header. The file name (after DFS normalization if needed) MUST

conform to the specification of a relative pathname in [MS-FSCC] section 2.1.5. A zero length file
name indicates a request to open the root of the share.

NameLength (2 bytes): The length of the file name, in bytes. If no file name is provided, this field
MUST be set to 0.

CreateContextsOffset (4 bytes): The offset, in bytes, from the beginning of the SMB2 header to the

first 8-byte aligned SMB2_CREATE_CONTEXT structure in the request. If no
SMB2_CREATE_CONTEXTs are being sent, this value MUST be 0.

71 / 464

[MS-SMB2-Diff] - v20190923
Server Message Block (SMB) Protocol Versions 2 and 3
Copyright © 2019 Microsoft Corporation
Release: September 23, 2019

CreateContextsLength (4 bytes): The length, in bytes, of the list of SMB2_CREATE_CONTEXT
structures sent in this request.

Buffer (variable): A variable-length buffer that contains the Unicode file name and create context
list, as defined by NameOffset, NameLength, CreateContextsOffset, and

CreateContextsLength. In the request, the Buffer field MUST be at least one byte in length. The
file name (after DFS normalization if needed) MUST conform to the specification of a relative
pathname in [MS-FSCC] section 2.1.5.

2.2.13.1 SMB2 Access Mask Encoding

The SMB2 Access Mask Encoding in SMB2 is a 4-byte bit field value that contains an array of flags. An
access mask can specify access for one of two basic groups: either for a file, pipe, or printer (specified
in section 2.2.13.1.1) or for a directory (specified in section 2.2.13.1.2). Each access mask MUST be a
combination of zero or more of the bit positions that are shown below.

2.2.13.1.1 File_Pipe_Printer_Access_Mask

The following SMB2 Access Mask flag values can be used when accessing a file, pipe or printer.

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

File_Pipe_Printer_Access_Mask

File_Pipe_Printer_Access_Mask (4 bytes): For a file, pipe, or printer, the value MUST be
constructed using the following values (for a printer, the value MUST have at least one of the
following: FILE_WRITE_DATA, FILE_APPEND_DATA, or GENERIC_WRITE).

Value Meaning

FILE_READ_DATA

0x00000001

This value indicates the right to read data from the file or named pipe.

FILE_WRITE_DATA

0x00000002

This value indicates the right to write data into the file or named pipe beyond
the end of the file.

FILE_APPEND_DATA

 0x00000004

This value indicates the right to append data into the file or named pipe.

FILE_READ_EA

0x00000008

This value indicates the right to read the extended attributes of the file or
named pipe.

FILE_WRITE_EA

0x00000010

This value indicates the right to write or change the extended attributes to
the file or named pipe.

FILE_DELETE_CHILD

0x00000040

This value indicates the right to delete entries within a directory.

FILE_EXECUTE

0x00000020

This value indicates the right to execute the file.

FILE_READ_ATTRIBUTES

0x00000080

This value indicates the right to read the attributes of the file.

FILE_WRITE_ATTRIBUTES

0x00000100

This value indicates the right to change the attributes of the file.

72 / 464

[MS-SMB2-Diff] - v20190923
Server Message Block (SMB) Protocol Versions 2 and 3
Copyright © 2019 Microsoft Corporation
Release: September 23, 2019

Value Meaning

DELETE

0x00010000

This value indicates the right to delete the file.

READ_CONTROL

0x00020000

This value indicates the right to read the security descriptor for the file or
named pipe.

WRITE_DAC

0x00040000

This value indicates the right to change the discretionary access control list
(DACL) in the security descriptor for the file or named pipe. For the DACL
data structure, see ACL in [MS-DTYP].

WRITE_OWNER

0x00080000

This value indicates the right to change the owner in the security descriptor
for the file or named pipe.

SYNCHRONIZE

0x00100000

SMB2 clients set this flag to any value.<40>

SMB2 servers SHOULD<41> ignore this flag.

ACCESS_SYSTEM_SECURITY

0x01000000

This value indicates the right to read or change the system access control list
(SACL) in the security descriptor for the file or named pipe. For the SACL
data structure, see ACL in [MS-DTYP].<42>

MAXIMUM_ALLOWED

0x02000000

This value indicates that the client is requesting an open to the file with the
highest level of access the client has on this file. If no access is granted for
the client on this file, the server MUST fail the open with
STATUS_ACCESS_DENIED.

GENERIC_ALL

0x10000000

This value indicates a request for all the access flags that are previously listed
except MAXIMUM_ALLOWED and ACCESS_SYSTEM_SECURITY.

GENERIC_EXECUTE

0x20000000

This value indicates a request for the following combination of access flags
listed above: FILE_READ_ATTRIBUTES| FILE_EXECUTE| SYNCHRONIZE|
READ_CONTROL.

GENERIC_WRITE

0x40000000

This value indicates a request for the following combination of access flags
listed above: FILE_WRITE_DATA| FILE_APPEND_DATA|
FILE_WRITE_ATTRIBUTES| FILE_WRITE_EA| SYNCHRONIZE|
READ_CONTROL.

GENERIC_READ

0x80000000

This value indicates a request for the following combination of access flags
listed above: FILE_READ_DATA| FILE_READ_ATTRIBUTES| FILE_READ_EA|
SYNCHRONIZE| READ_CONTROL.

2.2.13.1.2 Directory_Access_Mask

The following SMB2 Access Mask flag values can be used when accessing a directory.

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

Directory_Access_Mask

Directory_Access_Mask (4 bytes): For a directory, the value MUST be constructed using the
following values:

Value Meaning

FILE_LIST_DIRECTORY This value indicates the right to enumerate the contents of the directory.

73 / 464

[MS-SMB2-Diff] - v20190923
Server Message Block (SMB) Protocol Versions 2 and 3
Copyright © 2019 Microsoft Corporation
Release: September 23, 2019

Value Meaning

0x00000001

FILE_ADD_FILE

0x00000002

This value indicates the right to create a file under the directory.

FILE_ADD_SUBDIRECTORY

0x00000004

This value indicates the right to add a sub-directory under the directory.

FILE_READ_EA

0x00000008

This value indicates the right to read the extended attributes of the directory.

FILE_WRITE_EA

0x00000010

This value indicates the right to write or change the extended attributes of
the directory.

FILE_TRAVERSE

0x00000020

This value indicates the right to traverse this directory if the server enforces
traversal checking.

FILE_DELETE_CHILD

0x00000040

This value indicates the right to delete the files and directories within this
directory.

FILE_READ_ATTRIBUTES

0x00000080

This value indicates the right to read the attributes of the directory.

FILE_WRITE_ATTRIBUTES

0x00000100

This value indicates the right to change the attributes of the directory.

DELETE

0x00010000

This value indicates the right to delete the directory.

READ_CONTROL

0x00020000

This value indicates the right to read the security descriptor for the directory.

WRITE_DAC

0x00040000

This value indicates the right to change the DACL in the security descriptor
for the directory. For the DACL data structure, see ACL in [MS-DTYP].

WRITE_OWNER

0x00080000

This value indicates the right to change the owner in the security descriptor
for the directory.

SYNCHRONIZE

0x00100000

SMB2 clients set this flag to any value.<43> SMB2 servers SHOULD<44>

ignore this flag.

ACCESS_SYSTEM_SECURITY

0x01000000

This value indicates the right to read or change the SACL in the security
descriptor for the directory. For the SACL data structure, see ACL in [MS-
DTYP].<45>

MAXIMUM_ALLOWED

0x02000000

This value indicates that the client is requesting an open to the directory with
the highest level of access the client has on this directory. If no access is
granted for the client on this directory, the server MUST fail the open with
STATUS_ACCESS_DENIED.

GENERIC_ALL

0x10000000

This value indicates a request for all the access flags that are listed above
except MAXIMUM_ALLOWED and ACCESS_SYSTEM_SECURITY.

GENERIC_EXECUTE

0x20000000

This value indicates a request for the following access flags listed above:
FILE_READ_ATTRIBUTES| FILE_TRAVERSE| SYNCHRONIZE| READ_CONTROL.

GENERIC_WRITE

0x40000000

This value indicates a request for the following access flags listed above:
FILE_ADD_FILE| FILE_ADD_SUBDIRECTORY| FILE_WRITE_ATTRIBUTES|

74 / 464

[MS-SMB2-Diff] - v20190923
Server Message Block (SMB) Protocol Versions 2 and 3
Copyright © 2019 Microsoft Corporation
Release: September 23, 2019

Value Meaning

FILE_WRITE_EA| SYNCHRONIZE| READ_CONTROL.

GENERIC_READ

0x80000000

This value indicates a request for the following access flags listed above:
FILE_LIST_DIRECTORY| FILE_READ_ATTRIBUTES| FILE_READ_EA|
SYNCHRONIZE| READ_CONTROL.

2.2.13.2 SMB2_CREATE_CONTEXT Request Values

The SMB2_CREATE_CONTEXT structure is used by the SMB2 CREATE Request and the SMB2 CREATE
Response to encode additional flags and attributes: in requests to specify how the CREATE request
MUST be processed, and in responses to specify how the CREATE request was in fact processed.

There is no required ordering when multiple Create Context structures are used. The server MUST

support receiving the contexts in any order.

Each structure takes the following form.

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

Next

NameOffset NameLength

Reserved DataOffset

DataLength

Buffer (variable)

...

Next (4 bytes): The offset from the beginning of this Create Context to the beginning of a
subsequent 8-byte aligned Create Context. This field MUST be set to 0 if there are no subsequent
contexts.

NameOffset (2 bytes): The offset from the beginning of this structure to its 8-byte aligned name
value.

NameLength (2 bytes): The length, in bytes, of the Create Context name.

Reserved (2 bytes): This field MUST NOT be used and MUST be reserved. This value MUST be set to
0 by the client, and ignored by the server.

DataOffset (2 bytes): The offset, in bytes, from the beginning of this structure to the 8-byte aligned
data payload. If DataLength is 0, the client SHOULD set this value to 0 and the server MUST

ignore it on receipt.<46>

DataLength (4 bytes): The length, in bytes, of the data. The format of the data is determined by the
type of SMB2_CREATE_CONTEXT request, as outlined in the following sections. The type is
inferred from the Create Context name specified by the NameOffset and NameLength fields.

75 / 464

[MS-SMB2-Diff] - v20190923
Server Message Block (SMB) Protocol Versions 2 and 3
Copyright © 2019 Microsoft Corporation
Release: September 23, 2019

Buffer (variable): A variable-length buffer that contains the name and data fields, as defined by
NameOffset, NameLength, DataOffset, and DataLength. The name is represented as four or

more octets and MUST be one of the values provided in the following table. The structure name
indicates what information is encoded by the data payload. The following values are the valid

Create Context values and are defined to be in network byte order. More details are provided for
each of these values in the following subsections.

Value Meaning

SMB2_CREATE_EA_BUFFER

0x45787441

("ExtA")

The data contains the extended attributes that MUST
be stored on the created file.

This value MUST NOT be set for named pipes and
print files.

SMB2_CREATE_SD_BUFFER

0x53656344

("SecD")

The data contains a security descriptor that MUST be
stored on the created file.

This value MUST NOT be set for named pipes and
print files.

SMB2_CREATE_DURABLE_HANDLE_REQUEST

0x44486e51

("DHnQ")

The client is requesting the open to be durable (see
section 3.3.5.9.6).

SMB2_CREATE_DURABLE_HANDLE_RECONNECT

0x44486e43

("DHnC")

The client is requesting to reconnect to a durable
open after being disconnected (see section
3.3.5.9.7).

SMB2_CREATE_ALLOCATION_SIZE

0x416c5369

("AISi")

The data contains the required allocation size of the
newly created file.

SMB2_CREATE_QUERY_MAXIMAL_ACCESS_REQUEST

0x4d784163

("MxAc")

The client is requesting that the server return
maximal access information.

SMB2_CREATE_TIMEWARP_TOKEN

0x54577270

("TWrp")

The client is requesting that the server open an
earlier version of the file identified by the provided
time stamp.

SMB2_CREATE_QUERY_ON_DISK_ID

0x51466964

("QFid")

The client is requesting that the server return a 32-
byte opaque BLOB that uniquely identifies the file
being opened on disk. No data is passed to the

server by the client.

SMB2_CREATE_REQUEST LEASE

0x52714c73

("RqLs")

The client is requesting that the server return a
lease. This value is only supported for the SMB 2.1
and 3.x dialect family.

SMB2_CREATE_REQUEST_LEASE_V2

0x52714c73

("RqLs")

The client is requesting that the server return a
lease for a file or a directory. This value is only
supported for the SMB 3.x dialect family. This
context value is the same as the
SMB2_CREATE_REQUEST_LEASE value; the server

76 / 464

[MS-SMB2-Diff] - v20190923
Server Message Block (SMB) Protocol Versions 2 and 3
Copyright © 2019 Microsoft Corporation
Release: September 23, 2019

Value Meaning

differentiates these requests based on the value of
the DataLength field.

SMB2_CREATE_DURABLE_HANDLE_REQUEST_V2

0x44483251

("DH2Q")

The client is requesting the open to be durable. This
value is only supported for the SMB 3.x dialect
family.

SMB2_CREATE_DURABLE_HANDLE_RECONNECT_V2

0x44483243

("DH2C")

The client is requesting to reconnect to a durable
open after being disconnected. This value is only
supported for the SMB 3.x dialect family.

SMB2_CREATE_APP_INSTANCE_ID

0x45BCA66AEFA7F74A9008FA462E144D74

The client is supplying an identifier provided by an
application instance while opening a file. This value
is only supported for the SMB 3.x dialect family.

SMB2_CREATE_APP_INSTANCE_VERSION

0xB982D0B73B56074FA07B524A8116A010

The client is supplying a version to correspond to the
application instance identifier. This value is only
supported for SMB 3.1.1 dialect.

SVHDX_OPEN_DEVICE_CONTEXT

0x9CCBCF9E04C1E643980E158DA1F6EC83

Provided by an application while opening a shared
virtual disk file, as specified in [MS-RSVD] sections
2.2.4.12 and 2.2.4.32. This Create Context value is
not valid for the SMB 2.002, SMB 2.1, and SMB 3.0
dialects.

2.2.13.2.1 SMB2_CREATE_EA_BUFFER

The SMB2_CREATE_EA_BUFFER context is specified on an SMB2 CREATE Request (section 2.2.13)

when the client is applying extended attributes as part of creating a new file. The extended attributes

are provided in the Data buffer of the SMB2_CREATE_CONTEXT request and MUST be in the format
that is specified for FILE_FULL_EA_INFORMATION in [MS-FSCC] section 2.4.15.

2.2.13.2.2 SMB2_CREATE_SD_BUFFER

The SMB2_CREATE_SD_BUFFER context is specified on an SMB2 CREATE Request when the client is
applying a security descriptor to a newly created file. The Data in the Buffer field of the

SMB2_CREATE_CONTEXT MUST contain a security descriptor that MUST be a self-relative
SECURITY_DESCRIPTOR in the format as specified in [MS-DTYP] section 2.4.6.

2.2.13.2.3 SMB2_CREATE_DURABLE_HANDLE_REQUEST

The SMB2_CREATE_DURABLE_HANDLE_REQUEST context is specified in an SMB2 CREATE request
when the client is requesting the server to mark the open as a durable open. The format of the data in
the Buffer field of this SMB2_CREATE_CONTEXT MUST be as follows.

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

DurableRequest

...

...

77 / 464

[MS-SMB2-Diff] - v20190923
Server Message Block (SMB) Protocol Versions 2 and 3
Copyright © 2019 Microsoft Corporation
Release: September 23, 2019

...

DurableRequest (16 bytes): A 16-byte field that MUST NOT be used and MUST be reserved. This
value MUST be set to 0 by the client and ignored by the server.

2.2.13.2.4 SMB2_CREATE_DURABLE_HANDLE_RECONNECT

The SMB2_CREATE_DURABLE_HANDLE_RECONNECT context is specified when the client is attempting
to reestablish a durable open as specified in section 3.2.4.4.

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

Data

...

...

...

Data (16 bytes): An SMB2_FILEID structure, as specified in section 2.2.14.1, for the open that is
being reestablished.

2.2.13.2.5 SMB2_CREATE_QUERY_MAXIMAL_ACCESS_REQUEST

The SMB2_CREATE_QUERY_MAXIMAL_ACCESS_REQUEST context is specified on an SMB2 CREATE
Request when the client is requesting the server to retrieve maximal access information as part of
processing the open. The Data in the Buffer field of the SMB2_CREATE_CONTEXT MUST either contain
the following structure or be empty (0 bytes in length).

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

Timestamp

...

Timestamp (8 bytes): A time stamp in the FILETIME format, as specified in [MS-DTYP] section
2.3.3.

2.2.13.2.6 SMB2_CREATE_ALLOCATION_SIZE

The SMB2_CREATE_ALLOCATION_SIZE context is specified on an SMB2 CREATE Request (section
2.2.13) when the client is setting the allocation size of a file that is being newly created or

overwritten. The Data in the Buffer field of the SMB2_CREATE_CONTEXT MUST be as follows.

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

AllocationSize

...

78 / 464

[MS-SMB2-Diff] - v20190923
Server Message Block (SMB) Protocol Versions 2 and 3
Copyright © 2019 Microsoft Corporation
Release: September 23, 2019

AllocationSize (8 bytes): The size, in bytes, that the newly created file MUST have reserved on disk.

2.2.13.2.7 SMB2_CREATE_TIMEWARP_TOKEN

The SMB2_CREATE_TIMEWARP_TOKEN context is specified on an SMB2 CREATE Request (section

2.2.13) when the client is requesting the server to open a version of the file at a previous point in
time. The Data in the Buffer field of the SMB2_CREATE_CONTEXT MUST contain the following
structure.

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

Timestamp

...

Timestamp (8 bytes): The time stamp of the version of the file to be opened, in FILETIME format as

specified in [MS-DTYP] section 2.3.3. If no version of this file exists at this time stamp, the
operation MUST be failed.

2.2.13.2.8 SMB2_CREATE_REQUEST_LEASE

The SMB2_CREATE_REQUEST_LEASE context is specified on an SMB2 CREATE
Request (section 2.2.13) packet when the client is requesting the server to return a lease. This value
is not valid for the SMB 2.0.2 dialect. The Data in the Buffer field of the
SMB2_CREATE_CONTEXT (section 2.2.13.2) structure MUST contain the following structure.

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

LeaseKey

...

...

...

LeaseState

LeaseFlags

LeaseDuration

...

LeaseKey (16 bytes): A client-generated key that identifies the owner of the lease.

LeaseState (4 bytes): The requested lease state. This field MUST be constructed as a combination of
the following values.<47>

Value Meaning

SMB2_LEASE_NONE No lease is requested.

79 / 464

[MS-SMB2-Diff] - v20190923
Server Message Block (SMB) Protocol Versions 2 and 3
Copyright © 2019 Microsoft Corporation
Release: September 23, 2019

Value Meaning

0x00

SMB2_LEASE_READ_CACHING

0x01

A read caching lease is requested.

SMB2_LEASE_HANDLE_CACHING

0x02

A handle caching lease is requested.

SMB2_LEASE_WRITE_CACHING

0x04

A write caching lease is requested.

LeaseFlags (4 bytes): This field MUST NOT be used and MUST be reserved. The client MUST set this
to 0, and the server MUST ignore it on receipt.

LeaseDuration (8 bytes): This field MUST NOT be used and MUST be reserved. The client MUST set
this to 0, and the server MUST ignore it on receipt.

2.2.13.2.9 SMB2_CREATE_QUERY_ON_DISK_ID

The SMB2_CREATE_QUERY_ON_DISK_ID context is specified on an SMB2 CREATE Request (section
2.2.13) when the client is requesting that the server return an identifier for the open file. The Data in
the Buffer field of the SMB2_CREATE_CONTEXT MUST be empty.

2.2.13.2.10 SMB2_CREATE_REQUEST_LEASE_V2

The SMB2_CREATE_REQUEST_LEASE_V2 context is specified on an SMB2 CREATE Request when the
client is requesting the server to return a lease on a file or a directory. This is valid only for the SMB
3.x dialect family. The data in the Buffer field of the SMB2_CREATE_CONTEXT (section 2.2.13.2)
structure MUST contain the following structure.

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

LeaseKey

...

...

...

LeaseState

Flags

LeaseDuration

...

ParentLeaseKey

...

80 / 464

[MS-SMB2-Diff] - v20190923
Server Message Block (SMB) Protocol Versions 2 and 3
Copyright © 2019 Microsoft Corporation
Release: September 23, 2019

...

...

Epoch Reserved

LeaseKey (16 bytes): A client-generated key that identifies the owner of the lease.

LeaseState (4 bytes): The requested lease state. This field MUST be constructed as a combination of
the following values.<48>

Value Meaning

SMB2_LEASE_NONE

0x00000000

No lease is requested.

SMB2_LEASE_READ_CACHING

0x00000001

A read caching lease is requested.

SMB2_LEASE_HANDLE_CACHING

0x00000002

A handle caching lease is requested.

SMB2_LEASE_WRITE_CACHING

0x00000004

A write caching lease is requested.

Flags (4 bytes): This field MUST be set as a combination of the following values.

Value Meaning

SMB2_LEASE_FLAG_PARENT_LEASE_KEY_SET

0x00000004

When set, indicates that the ParentLeaseKey is set.

LeaseDuration (8 bytes): This field MUST NOT be used and MUST be reserved. The client MUST set
this to 0, and the server MUST ignore it on receipt.

ParentLeaseKey (16 bytes): A key that identifies the owner of the lease for the parent directory.

Epoch (2 bytes): A 16-bit unsigned integer used to track lease state changes.

Reserved (2 bytes): This field MUST NOT be used and MUST be reserved. The client MUST set this to
0, and the server MUST ignore it on receipt.

2.2.13.2.11 SMB2_CREATE_DURABLE_HANDLE_REQUEST_V2

The SMB2_CREATE_DURABLE_HANDLE_REQUEST_V2 context is only valid for the SMB 3.x dialect
family. The SMB2_CREATE_DURABLE_HANDLE_REQUEST_V2 context is specified in an SMB2 CREATE
request when the client requests the server to mark the open as durable or persistent. The format of

the data in the Buffer field of this SMB2_CREATE_CONTEXT MUST be as follows:

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

Timeout

Flags

81 / 464

[MS-SMB2-Diff] - v20190923
Server Message Block (SMB) Protocol Versions 2 and 3
Copyright © 2019 Microsoft Corporation
Release: September 23, 2019

Reserved

...

CreateGuid

...

...

...

Timeout (4 bytes): The time, in milliseconds, for which the server reserves the handle after a
failover, waiting for the client to reconnect. To let the server use a default timeout value, the
client MUST set this field to 0.

Flags (4 bytes): This field MUST be constructed by using zero or more of the following values:

Value Meaning

SMB2_DHANDLE_FLAG_PERSISTENT

0x00000002

A persistent handle is requested.

Reserved (8 bytes): This field MUST NOT be used and MUST be reserved. The client MUST set this to
0, and the server MUST ignore it on receipt.

CreateGuid (16 bytes): A GUID that identifies the create request.

2.2.13.2.12 SMB2_CREATE_DURABLE_HANDLE_RECONNECT_V2

The SMB2_CREATE_DURABLE_HANDLE_RECONNECT_V2 context is specified when the client is

attempting to reestablish a durable open as specified in section 3.2.4.4. The
SMB2_CREATE_DURABLE_HANDLE_RECONNECT_V2 context is valid only for the SMB 3.x dialect
family.

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

FileId

...

...

...

CreateGuid

...

...

82 / 464

[MS-SMB2-Diff] - v20190923
Server Message Block (SMB) Protocol Versions 2 and 3
Copyright © 2019 Microsoft Corporation
Release: September 23, 2019

...

Flags

FileId (16 bytes): An SMB2_FILEID structure, as specified in section 2.2.14.1, for the open that is
being reestablished.

CreateGuid (16 bytes): A unique ID that identifies the create request.

Flags (4 bytes): This field MUST be constructed using zero or more of the following values:

Value Meaning

SMB2_DHANDLE_FLAG_PERSISTENT

0x00000002

A persistent handle is requested.

2.2.13.2.13 SMB2_CREATE_APP_INSTANCE_ID

The SMB2_CREATE_APP_INSTANCE_ID context is specified on an SMB2 CREATE Request when the
client is supplying an identifier provided by an application. The SMB2_CREATE_APP_INSTANCE_ID
context is only valid for the SMB 3.x dialect family. The client SHOULD also request a durable handle

by using an SMB2_CREATE_DURABLE_HANDLE_REQUEST_V2 or
SMB2_CREATE_DURABLE_HANDLE_RECONNECT_V2 create context.

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

StructureSize Reserved

AppInstanceId

...

...

...

StructureSize (2 bytes): This field MUST be set to 20, indicating the size of this structure.

Reserved (2 bytes): This field MUST NOT be used and MUST be reserved. This field MUST be set to
zero.

AppInstanceId (16 bytes): A unique ID that identifies an application instance.

2.2.13.2.14 SVHDX_OPEN_DEVICE_CONTEXT

The SVHDX_OPEN_DEVICE_CONTEXT and SVHDX_OPEN_DEVICE_CONTEXT_V2 are used to open the
shared virtual disk file as specified in [MS-RSVD] sections 2.2.4.12 and 2.2.4.32.

2.2.13.2.15 SMB2_CREATE_APP_INSTANCE_VERSION

83 / 464

[MS-SMB2-Diff] - v20190923
Server Message Block (SMB) Protocol Versions 2 and 3
Copyright © 2019 Microsoft Corporation
Release: September 23, 2019

The SMB2_CREATE_APP_INSTANCE_VERSION context is specified on an SMB2 CREATE Request when
the client is supplying a version for the app instance identifier provided by an application. The

SMB2_CREATE_APP_INSTANCE_VERSION context is only valid for the SMB 3.1.1 dialect.

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

StructureSize Reserved

Padding

AppInstanceVersionHigh

…

AppInstanceVersionLow

…

StructureSize (2 bytes): This field MUST be set to 24, indicating the size of this structure.

Reserved (2 bytes): This field MUST NOT be used and MUST be reserved. This field MUST be set to
zero.

Padding (4 bytes): This value MUST be set to 0 by the client and MUST be ignored by the server.

AppInstanceVersionHigh (8 bytes): An unsigned 64-bit integer containing the most significant
value of the version.

AppInstanceVersionLow (8 bytes): An unsigned 64-bit integer containing the least significant
value of the version.

2.2.14 SMB2 CREATE Response

The SMB2 CREATE Response packet is sent by the server to notify the client of the status of its SMB2
CREATE Request. This response is composed of an SMB2 header, as specified in section 2.2.1,
followed by this response structure.

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

StructureSize OplockLevel Flags

CreateAction

CreationTime

...

LastAccessTime

...

84 / 464

[MS-SMB2-Diff] - v20190923
Server Message Block (SMB) Protocol Versions 2 and 3
Copyright © 2019 Microsoft Corporation
Release: September 23, 2019

LastWriteTime

...

ChangeTime

...

AllocationSize

...

EndofFile

...

FileAttributes

Reserved2

FileId

...

...

...

CreateContextsOffset

CreateContextsLength

Buffer (variable)

...

StructureSize (2 bytes): The server MUST set this field to 89, indicating the size of the request
structure, not including the header. The server MUST set this field to this value regardless of how
long Buffer[] actually is in the request being sent.

OplockLevel (1 byte): The oplock level that is granted to the client for this open. This field MUST
contain one of the following values.<49>

Value Meaning

SMB2_OPLOCK_LEVEL_NONE

0x00

No oplock was granted.

SMB2_OPLOCK_LEVEL_II

0x01

A level II oplock was granted.

85 / 464

[MS-SMB2-Diff] - v20190923
Server Message Block (SMB) Protocol Versions 2 and 3
Copyright © 2019 Microsoft Corporation
Release: September 23, 2019

Value Meaning

SMB2_OPLOCK_LEVEL_EXCLUSIVE

0x08

An exclusive oplock was granted.

SMB2_OPLOCK_LEVEL_BATCH

0x09

A batch oplock was granted.

OPLOCK_LEVEL_LEASE

0xFF

A lease is requested. If set, the response packet MUST contain an
SMB2_CREATE_RESPONSE_LEASE create context.

Flags (1 byte): If the server implements the SMB 3.x dialect family, this field MUST be constructed
using the following value. Otherwise, this field MUST NOT be used and MUST be reserved.

Value Meaning

SMB2_CREATE_FLAG_REPARSEPOINT

0x01

When set, indicates the last portion of the file path is a reparse
point.

CreateAction (4 bytes): The action taken in establishing the open. This field MUST contain one of
the following values.<50>

Value Meaning

FILE_SUPERSEDED

0x00000000

An existing file was deleted and a new file was created in its place.

FILE_OPENED

0x00000001

An existing file was opened.

FILE_CREATED

0x00000002

A new file was created.

FILE_OVERWRITTEN

0x00000003

An existing file was overwritten.

CreationTime (8 bytes): The time when the file was created; in FILETIME format as specified in
[MS-DTYP] section 2.3.3.

LastAccessTime (8 bytes): The time the file was last accessed; in FILETIME format as specified in

[MS-DTYP] section 2.3.3.

LastWriteTime (8 bytes): The time when data was last written to the file; in FILETIME format as
specified in [MS-DTYP] section 2.3.3.

ChangeTime (8 bytes): The time when the file was last modified; in FILETIME format as specified in
[MS-DTYP] section 2.3.3.

AllocationSize (8 bytes): The size, in bytes, of the data that is allocated to the file.

EndofFile (8 bytes): The size, in bytes, of the file.

FileAttributes (4 bytes): The attributes of the file. The valid flags are as specified in [MS-FSCC]
section 2.6.

Reserved2 (4 bytes): This field MUST NOT be used and MUST be reserved. The server SHOULD set
this to 0, and the client MUST ignore it on receipt.<51>

86 / 464

[MS-SMB2-Diff] - v20190923
Server Message Block (SMB) Protocol Versions 2 and 3
Copyright © 2019 Microsoft Corporation
Release: September 23, 2019

FileId (16 bytes): An SMB2_FILEID, as specified in section 2.2.14.1.

The identifier of the open to a file or pipe that was established.

CreateContextsOffset (4 bytes): The offset, in bytes, from the beginning of the SMB2 header to the
first 8-byte aligned SMB2_CREATE_CONTEXT response that is contained in this response. If none

are being returned in the response, this value MUST be 0. These values are specified in section
2.2.14.2.

CreateContextsLength (4 bytes): The length, in bytes, of the list of SMB2_CREATE_CONTEXT
response structures that are contained in this response.

Buffer (variable): A variable-length buffer that contains the list of create contexts that are contained
in this response, as described by CreateContextsOffset and CreateContextsLength. This takes
the form of a list of SMB2_CREATE_CONTEXT Response Values, as specified in section 2.2.14.2.

2.2.14.1 SMB2_FILEID

The SMB2 FILEID is used to represent an open to a file.

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

Persistent

...

Volatile

...

Persistent (8 bytes): A file handle that remains persistent when an open is reconnected after being

lost on a disconnect, as specified in section 3.3.5.9.7. The server MUST return this file handle as
part of an SMB2 CREATE Response (section 2.2.14).

Volatile (8 bytes): A file handle that can be changed when an open is reconnected after being lost
on a disconnect, as specified in section 3.3.5.9.7. The server MUST return this file handle as part
of an SMB2 CREATE Response (section 2.2.14). This value MUST NOT change unless a
reconnection is performed. This value MUST be unique for all volatile handles within the scope of a

session.

2.2.14.2 SMB2_CREATE_CONTEXT Response Values

The SMB2_CREATE_CONTEXT Response Values MUST take the same form as specified in section

2.2.13.2 except that the Buffer field MUST be one of the values provided in the following table. The
following values are the valid create context values and are defined to be in network byte order. The
individual values that are contained in the data buffer of the create context responses varies, based on

the name of the create context in the request.

Value Meaning

SMB2_CREATE_DURABLE_HANDLE_RESPONSE

0x44486e51

("DHnQ")

The server marked the open to be durable.

SMB2_CREATE_CONTEXT Response takes the same
form as defined in section 2.2.13.2.

87 / 464

[MS-SMB2-Diff] - v20190923
Server Message Block (SMB) Protocol Versions 2 and 3
Copyright © 2019 Microsoft Corporation
Release: September 23, 2019

Value Meaning

SMB2_CREATE_QUERY_MAXIMAL_ACCESS_RESPONSE

0x4d784163

("MxAc")

The server returned maximal access information.

SMB2_CREATE_CONTEXT Response takes the same
form as defined in section 2.2.13.2.

SMB2_CREATE_QUERY_ON_DISK_ID

0x51466964

("QFid")

The server returned DiskID of the open file in a volume.

SMB2_CREATE_CONTEXT Response takes the same
form as defined in section 2.2.13.2.

SMB2_CREATE_RESPONSE_LEASE

0x52714c73

("RqLs")

The server returned a lease. This value is only
supported for the SMB 2.1 and 3.x dialect family.

SMB2_CREATE_CONTEXT Response takes the same
form as defined in section 2.2.13.2.

SMB2_CREATE_RESPONSE_LEASE_V2

0x52714c73

("RqLs")

The server returned a lease for a file or a directory. This
value is only supported for the SMB 3.x dialect family.
This context value is the same as the
SMB2_CREATE_RESPONSE_LEASE value; the client
differentiates these responses based on the value of the
DataLength field.

SMB2_CREATE_CONTEXT Response takes the same
form as defined in section 2.2.13.2.

SMB2_CREATE_DURABLE_HANDLE_RESPONSE_V2

0x44483251

("DH2Q")

The server marked the open to be durable. This value is
only supported for the SMB 3.x dialect family.

SMB2_CREATE_CONTEXT Response takes the same

form as defined in section 2.2.13.2.

SVHDX_OPEN_DEVICE_CONTEXT_RESPONSE

0x9CCBCF9E04C1E643980E158DA1F6EC83

A response context as specified in [MS-RSVD] sections
2.2.4.31 and 2.2.4.33 is returned. This create context
value is not valid for the SMB 2.002, SMB 2.1, and SMB
3.0 dialects.

For each well-known name that is specified in the previous table, the format of the response is
provided in the following sections.

2.2.14.2.1 SMB2_CREATE_EA_BUFFER

The SMB2_CREATE_EA_BUFFER request does not generate an SMB2_CREATE_CONTEXT Response.

2.2.14.2.2 SMB2_CREATE_SD_BUFFER

The SMB2_CREATE_SD_BUFFER request does not generate an SMB2_CREATE_CONTEXT Response.

2.2.14.2.3 SMB2_CREATE_DURABLE_HANDLE_RESPONSE

The SMB2_CREATE_DURABLE_HANDLE_RESPONSE is sent by the server in response to an
SMB2_CREATE_DURABLE_HANDLE_REQUEST (section 2.2.13.2.3) to inform the client that a durable
handle to a file was created successfully.

88 / 464

[MS-SMB2-Diff] - v20190923
Server Message Block (SMB) Protocol Versions 2 and 3
Copyright © 2019 Microsoft Corporation
Release: September 23, 2019

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

Reserved

...

Reserved (8 bytes): This field MUST NOT be used and MUST be reserved. The server MUST set this
to 0, and the client MUST ignore the value on receipt.

2.2.14.2.4 SMB2_CREATE_DURABLE_HANDLE_RECONNECT

The server responds to an SMB2_CREATE_DURABLE_HANDLE_RECONNECT request as specified in
section 3.3.5.9.7.

2.2.14.2.5 SMB2_CREATE_QUERY_MAXIMAL_ACCESS_RESPONSE

The SMB2_CREATE_QUERY_MAXIMAL_ACCESS_RESPONSE is sent by the server in response to an
SMB2_CREATE_QUERY_MAXIMAL_ACCESS_REQUEST (section 2.2.13.2.5) to return the results of the

query for maximal access information.

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

QueryStatus

MaximalAccess

QueryStatus (4 bytes): The resulting status code of the attempt to query maximal access. The
MaximalAccess field is valid only if QueryStatus is STATUS_SUCCESS. The status code MUST
be one of those defined in [MS-ERREF] section 2.3.

MaximalAccess (4 bytes): The maximal access that the user who is described by SessionId has on

the file or named pipe that was opened. This is an access mask value, as specified in section
2.2.13.1.

2.2.14.2.6 SMB2_CREATE_APP_INSTANCE_ID

The SMB2_CREATE_APP_INSTANCE_ID request has no associated SMB2_CREATE_CONTEXT
Response.

2.2.14.2.7 SMB2_CREATE_ALLOCATION_SIZE

The SMB2_CREATE_ALLOCATION_SIZE request does not generate an SMB2_CREATE_CONTEXT
Response.

2.2.14.2.8 SMB2_CREATE_TIMEWARP_TOKEN

The SMB2_CREATE_TIMEWARP_TOKEN request does not generate an SMB2_CREATE_CONTEXT
Response.

2.2.14.2.9 (Updated Section) SMB2_CREATE_QUERY_ON_DISK_ID

The server responds with a 32-byte structure that the client can use to identify the open file in a
volume. The SMB2_CREATE_QUERY_ON_DISK_ID returns an SMB2_CREATE_CONTEXT in the

89 / 464

[MS-SMB2-Diff] - v20190923
Server Message Block (SMB) Protocol Versions 2 and 3
Copyright © 2019 Microsoft Corporation
Release: September 23, 2019

response with the Name that is identified by SMB2_CREATE_QUERY_ON_DISK_ID as specified in
section 2.2.13.2.

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

DiskFileId

...

VolumeId

...

Reserved

...

...

...

DiskFileId (8 bytes): An 8-byte valueThe 64-bit file ID, as specified in [MS-FSCC] section 2.1.9, that

the client can use to identifyidentifies the open file within the VolumeId.

VolumeId (8 bytes): An 8-byte value assigned by the server that the client can use to
identifyidentifies the volume within which the file is opened.

Reserved (16 bytes): This field MUST NOT be used and MUST be reserved. The server MUST set this
to 0, and the client MUST ignore it on receipt.

2.2.14.2.10 SMB2_CREATE_RESPONSE_LEASE

The server responds with a lease that is granted for this open. The data in the Buffer field of the
SMB2_CREATE_CONTEXT structure MUST contain the following structure.

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

LeaseKey

...

...

...

LeaseState

LeaseFlags

LeaseDuration

90 / 464

[MS-SMB2-Diff] - v20190923
Server Message Block (SMB) Protocol Versions 2 and 3
Copyright © 2019 Microsoft Corporation
Release: September 23, 2019

...

LeaseKey (16 bytes): The client-generated key that identifies the owner of the lease.

LeaseState (4 bytes): The granted lease state. This field MUST be constructed using the following
values.

Value Meaning

SMB2_LEASE_NONE

0x00

No lease is granted.

SMB2_LEASE_READ_CACHING

0x01

A read caching lease is granted.

SMB2_LEASE_HANDLE_CACHING

0x02

A handle caching lease is granted.

SMB2_LEASE_WRITE_CACHING

0x04

A write caching lease is granted.

LeaseFlags (4 bytes): This field MUST be set to zero or more of the following values.

Value Meaning

SMB2_LEASE_FLAG_BREAK_IN_PROGRESS

0x02

A break for the lease identified by the lease key is in
progress.

LeaseDuration (8 bytes): This field MUST NOT be used and MUST be reserved. The server MUST set
this to 0, and the client MUST ignore it on receipt.

2.2.14.2.11 SMB2_CREATE_RESPONSE_LEASE_V2

The server responds with a lease that is granted for this open. The data in the Buffer field of the
SMB2_CREATE_CONTEXT structure MUST contain the following structure. The

SMB2_CREATE_RESPONSE_LEASE_V2 context is only valid for the SMB 3.x dialect family.

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

LeaseKey

...

...

...

LeaseState

Flags

LeaseDuration

91 / 464

[MS-SMB2-Diff] - v20190923
Server Message Block (SMB) Protocol Versions 2 and 3
Copyright © 2019 Microsoft Corporation
Release: September 23, 2019

...

ParentLeaseKey

...

...

...

Epoch Reserved

LeaseKey (16 bytes): The client-generated key that identifies the owner of the lease.

LeaseState (4 bytes): The granted lease state. This field MUST be constructed by using the following

values.

Value Meaning

SMB2_LEASE_NONE

0x00000000

No lease is granted.

SMB2_LEASE_READ_CACHING

0x00000001

A read caching lease is granted.

SMB2_LEASE_HANDLE_CACHING

0x00000002

A handle caching lease is granted.

SMB2_LEASE_WRITE_CACHING

0x00000004

A write caching lease is granted.

Flags (4 bytes): This field MUST be set to zero or the following value.

Value Meaning

SMB2_LEASE_FLAG_BREAK_IN_PROGRESS

0x00000002

A break for the lease identified by the lease key is in
progress.

SMB2_LEASE_FLAG_PARENT_LEASE_KEY_SET

0x00000004

When set, indicates that the ParentLeaseKey is set.

LeaseDuration (8 bytes): This field MUST NOT be used and MUST be reserved. The server MUST set
this to zero, and the client MUST ignore it on receipt.

ParentLeaseKey (16 bytes): A key that identifies the owner of the lease for the parent directory.

Epoch (2 bytes): A 16-bit unsigned integer incremented by the server on a lease state change.

Reserved (2 bytes): This field MUST NOT be used and MUST be reserved. The server SHOULD<52>
set this to 0, and the client MUST ignore it on receipt.

2.2.14.2.12 SMB2_CREATE_DURABLE_HANDLE_RESPONSE_V2

SMB2_CREATE_DURABLE_HANDLE_RESPONSE_V2 is sent by the server in response to an
SMB2_CREATE_DURABLE_HANDLE_REQUEST_V2 (section 2.2.13.2.11) to inform the client that a

92 / 464

[MS-SMB2-Diff] - v20190923
Server Message Block (SMB) Protocol Versions 2 and 3
Copyright © 2019 Microsoft Corporation
Release: September 23, 2019

durable handle to a file was created successfully. The
SMB2_CREATE_DURABLE_HANDLE_RESPONSE_V2 context is only valid for the SMB 3.x dialect family.

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

Timeout

Flags

Timeout (4 bytes): The server MUST set this field to the time, in milliseconds, it waits for the client

to reconnect after a failover.

Flags (4 bytes): This field MUST be constructed using zero or more of the following values:

Value Meaning

SMB2_DHANDLE_FLAG_PERSISTENT

0x00000002

A persistent handle is granted.

2.2.14.2.13 SMB2_CREATE_DURABLE_HANDLE_RECONNECT_V2

The server responds to an SMB2_CREATE_DURABLE_HANDLE_RECONNECT_V2 request as specified in
section 3.3.5.9.12.

2.2.14.2.14 SVHDX_OPEN_DEVICE_CONTEXT_RESPONSE

If the processing in [MS-RSVD] section 3.2.5.1 is successful, a response context as specified in [MS-
RSVD] sections 2.2.4.31 and 2.2.4.33 is returned.

2.2.14.2.15 SMB2_CREATE_APP_INSTANCE_VERSION

The SMB2_CREATE_APP_INSTANCE_VERSION request has no associated SMB2_CREATE_CONTEXT

Response.

2.2.15 SMB2 CLOSE Request

The SMB2 CLOSE Request packet is used by the client to close an instance of a file that was opened
previously with a successful SMB2 CREATE Request. This request is composed of an SMB2 header, as

specified in section 2.2.1, followed by this request structure:

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

StructureSize Flags

Reserved

FileId

...

93 / 464

[MS-SMB2-Diff] - v20190923
Server Message Block (SMB) Protocol Versions 2 and 3
Copyright © 2019 Microsoft Corporation
Release: September 23, 2019

...

...

StructureSize (2 bytes): The client MUST set this field to 24, indicating the size of the request
structure, not including the header.

Flags (2 bytes): A Flags field indicates how to process the operation. This field MUST be constructed

using the following value:

Value Meaning

SMB2_CLOSE_FLAG_POSTQUERY_ATTRIB

0x0001

If set, the server MUST set the attribute fields in the response,
as specified in section 2.2.16, to valid values. If not set, the
client MUST NOT use the values that are returned in the
response.

Reserved (4 bytes): This field MUST NOT be used and MUST be reserved. The client MUST set this to
0, and the server MUST ignore it on receipt.

FileId (16 bytes): An SMB2_FILEID structure, as specified in section 2.2.14.1.

The identifier of the open to a file or named pipe that is being closed.

2.2.16 SMB2 CLOSE Response

The SMB2 CLOSE Response packet is sent by the server to indicate that an SMB2 CLOSE Request was
processed successfully. This response is composed of an SMB2 header, as specified in section 2.2.1,
followed by this response structure:

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

StructureSize Flags

Reserved

CreationTime

...

LastAccessTime

...

LastWriteTime

...

ChangeTime

...

94 / 464

[MS-SMB2-Diff] - v20190923
Server Message Block (SMB) Protocol Versions 2 and 3
Copyright © 2019 Microsoft Corporation
Release: September 23, 2019

AllocationSize

...

EndofFile

...

FileAttributes

StructureSize (2 bytes): The server MUST set this field to 60, indicating the size of the response
structure, not including the header.

Flags (2 bytes): A Flags field indicates how to process the operation. This field MUST be either zero

or the following value:

Value Meaning

SMB2_CLOSE_FLAG_POSTQUERY_ATTRIB

0x0001

If set, the client MUST use the attribute fields in the response.
If not set, the client MUST NOT use the attribute fields that are
returned in the response.

Reserved (4 bytes): This field MUST NOT be used and MUST be reserved. The server MUST set this
to 0, and the client MUST ignore it on receipt.

CreationTime (8 bytes): The time when the file was created; in FILETIME format as specified in
[MS-DTYP] section 2.3.3. If the SMB2_CLOSE_FLAG_POSTQUERY_ATTRIB flag in the SMB2 CLOSE
Request was set, this field MUST be set to the value that is returned by the attribute query. If the
flag is not set, the field SHOULD be set to zero and MUST NOT be checked on receipt.

LastAccessTime (8 bytes): The time when the file was last accessed; in FILETIME format as

specified in [MS-DTYP] section 2.3.3. If the SMB2_CLOSE_FLAG_POSTQUERY_ATTRIB flag in the
SMB2 CLOSE Request was set, this field MUST be set to the value that is returned by the attribute
query. If the flag is not set, this field MUST be set to zero.

LastWriteTime (8 bytes): The time when data was last written to the file; in FILETIME format as
specified in [MS-DTYP] section 2.3.3. If the SMB2_CLOSE_FLAG_POSTQUERY_ATTRIB flag in the
SMB2 CLOSE Request was set, this field MUST be set to the value that is returned by the attribute

query. If the flag is not set, this field MUST be set to zero.

ChangeTime (8 bytes): The time when the file was last modified; in FILETIME format as specified in
[MS-DTYP] section 2.3.3. If the SMB2_CLOSE_FLAG_POSTQUERY_ATTRIB flag in the SMB2 CLOSE
Request was set, this field MUST be set to the value that is returned by the attribute query. If the
flag is not set, this field MUST be set to zero.

AllocationSize (8 bytes): The size, in bytes, of the data that is allocated to the file. If the

SMB2_CLOSE_FLAG_POSTQUERY_ATTRIB flag in the SMB2 CLOSE Request was set, this field

MUST be set to the value that is returned by the attribute query. If the flag is not set, this field
MUST be set to zero.

EndofFile (8 bytes): The size, in bytes, of the file. If the SMB2_CLOSE_FLAG_POSTQUERY_ATTRIB
flag in the SMB2 CLOSE Request was set, this field MUST be set to the value that is returned by
the attribute query. If the flag is not set, this field MUST be set to zero.

FileAttributes (4 bytes): The attributes of the file. If the SMB2_CLOSE_FLAG_POSTQUERY_ATTRIB

flag in the SMB2 CLOSE Request was set, this field MUST be set to the value that is returned by

95 / 464

[MS-SMB2-Diff] - v20190923
Server Message Block (SMB) Protocol Versions 2 and 3
Copyright © 2019 Microsoft Corporation
Release: September 23, 2019

the attribute query. If the flag is not set, this field MUST be set to zero. For more information
about valid flags, see [MS-FSCC] section 2.6.

2.2.17 SMB2 FLUSH Request

The SMB2 FLUSH Request packet is sent by a client to request that a server flush all cached file
information for a specified open of a file to the persistent store that backs the file. If the open refers to
a named pipe, the operation will complete once all data written to the pipe has been consumed by a
reader. This request is composed of an SMB2 header, as specified in section 2.2.1, followed by this

request structure:

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

StructureSize Reserved1

Reserved2

FileId

...

...

...

StructureSize (2 bytes): The client MUST set this field to 24, indicating the size of the request
structure, not including the header.

Reserved1 (2 bytes): This field MUST NOT be used and MUST be reserved. The client MUST set this
to 0, and the server MUST ignore it on receipt.

Reserved2 (4 bytes): This field MUST NOT be used and MUST be reserved. The client MUST set this

to 0, and the server MUST ignore it on receipt.

FileId (16 bytes): An SMB2_FILEID, as specified in section 2.2.14.1.

The client MUST set this field to the identifier of the open to a file or named pipe that is being flushed.

2.2.18 SMB2 FLUSH Response

The SMB2 FLUSH Response packet is sent by the server to confirm that an SMB2 FLUSH
Request (section 2.2.17) was successfully processed. This response is composed of an SMB2 header,
as specified in section 2.2.1, followed by this request structure:

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

StructureSize Reserved

StructureSize (2 bytes): The server MUST set this field to 4, indicating the size of the response
structure, not including the header.

Reserved (2 bytes): This field MUST NOT be used and MUST be reserved. The server MUST set this
field to 0, and the client MUST ignore it on receipt.

96 / 464

[MS-SMB2-Diff] - v20190923
Server Message Block (SMB) Protocol Versions 2 and 3
Copyright © 2019 Microsoft Corporation
Release: September 23, 2019

2.2.19 SMB2 READ Request

The SMB2 READ Request packet is sent by the client to request a read operation on the file that is
specified by the FileId. This request is composed of an SMB2 header, as specified in section 2.2.1,

followed by this request structure:

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

StructureSize Padding Flags

Length

Offset

...

FileId

...

...

...

MinimumCount

Channel

RemainingBytes

ReadChannelInfoOffset ReadChannelInfoLength

Buffer (variable)

...

StructureSize (2 bytes): The client MUST set this field to 49, indicating the size of the request
structure, not including the header. The client MUST set it to this value regardless of how long
Buffer[] actually is in the request being sent.

Padding (1 byte): The requested offset from the start of the SMB2 header, in bytes, at which to
place the data read in the SMB2 READ Response (section 2.2.20). This value is provided to

optimize data placement on the client and is not binding on the server.

Flags (1 byte): For the SMB 2.0.2, 2.1 and 3.0 dialects, this field MUST NOT be used and MUST be
reserved. The client MUST set this field to 0, and the server MUST ignore it on receipt. For the
SMB 3.0.2 and SMB 3.1.1 dialects, this field MUST contain zero or more of the following values:

Value Meaning

SMB2_READFLAG_READ_UNBUFFERED

0x01

The data is read directly from the underlying storage.

97 / 464

[MS-SMB2-Diff] - v20190923
Server Message Block (SMB) Protocol Versions 2 and 3
Copyright © 2019 Microsoft Corporation
Release: September 23, 2019

Value Meaning

SMB2_READFLAG_REQUEST_COMPRESSED

0x02

The server is requested to compress the read response when
responding to the request. This flag is not valid for the SMB
2.0.2, 2.1, 3.0 and 3.0.2 dialects<53>.

Length (4 bytes): The length, in bytes, of the data to read from the specified file or pipe. The length
of the data being read can be zero bytes.

Offset (8 bytes): The offset, in bytes, into the file from which the data MUST be read. If the read is
being executed on a pipe, the Offset MUST be set to 0 by the client and MUST be ignored by the

server.

FileId (16 bytes): An SMB2_FILEID, as specified in section 2.2.14.1.

The identifier of the file or pipe on which to perform the read.

MinimumCount (4 bytes): The minimum number of bytes to be read for this operation to be

successful. If fewer than the minimum number of bytes are read by the server, the server MUST
return an error rather than the bytes read.

Channel (4 bytes): For SMB 2.0.2 and 2.1 dialects, this field MUST NOT be used and MUST be

reserved. The client MUST set this field to 0, and the server MUST ignore it on receipt. For the
SMB 3.x dialect family, this field MUST contain exactly one of the following values:

Value Meaning

SMB2_CHANNEL_NONE

0x00000000

No channel information is present in the request. The
ReadChannelInfoOffset and ReadChannelInfoLength fields

MUST be set to 0 by the client and MUST be ignored by the
server.

SMB2_CHANNEL_RDMA_V1

0x00000001

One or more SMB_DIRECT_BUFFER_DESCRIPTOR_V1 structures
as specified in [MS-SMBD] section 2.2.3.1 are present in the
channel information specified by ReadChannelInfoOffset and
ReadChannelInfoLength fields.

SMB2_CHANNEL_RDMA_V1_INVALIDATE

0x00000002

This flag is not valid for the SMB 3.0 dialect. One or more
SMB_DIRECT_BUFFER_DESCRIPTOR_V1 structures, as specified
in [MS-SMBD] section 2.2.3.1, are present in the channel
information specified by the ReadChannelInfoOffset and
ReadChannelInfoLength fields. The server is requested to
perform remote invalidation when responding to the request as
specified in [MS-SMBD] section 3.1.4.2.

RemainingBytes (4 bytes): The number of subsequent bytes that the client intends to read from
the file after this operation completes. This value is provided to facilitate read-ahead caching, and
is not binding on the server.

ReadChannelInfoOffset (2 bytes): For the SMB 2.0.2 and 2.1 dialects, this field MUST NOT be used
and MUST be reserved. The client MUST set this field to 0, and the server MUST ignore it on

receipt. For the SMB 3.x dialect family, it contains the offset, in bytes, from the beginning of the

SMB2 header to the channel data as specified by the Channel field of the request.

ReadChannelInfoLength (2 bytes): For the SMB 2.0.2 and 2.1 dialects, this field MUST NOT be
used and MUST be reserved. The client MUST set this field to 0, and the server MUST ignore it on
receipt. For the SMB 3.x dialect family, it contains the length, in bytes, of the channel data as
specified by the Channel field of the request.

Buffer (variable): A variable-length buffer that contains the read channel information, as described

by ReadChannelInfoOffset and ReadChannelInfoLength.

98 / 464

[MS-SMB2-Diff] - v20190923
Server Message Block (SMB) Protocol Versions 2 and 3
Copyright © 2019 Microsoft Corporation
Release: September 23, 2019

2.2.20 SMB2 READ Response

The SMB2 READ Response packet is sent in response to an SMB2 READ Request (section 2.2.19)
packet. This response is composed of an SMB2 header, as specified in section 2.2.1, followed by this

response structure:

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

StructureSize DataOffset Reserved

DataLength

DataRemaining

Reserved2

Buffer (variable)

...

StructureSize (2 bytes): The server MUST set this field to 17, indicating the size of the response
structure, not including the header. This value MUST be used regardless of how large Buffer[] is
in the actual response.

DataOffset (1 byte): The offset, in bytes, from the beginning of the header to the data read being
returned in this response.

Reserved (1 byte): This field MUST NOT be used and MUST be reserved. The server MUST set this to
0, and the client MUST ignore it on receipt.

DataLength (4 bytes): The length, in bytes, of the data read being returned in this response.

DataRemaining (4 bytes): The length, in bytes, of the data being sent on the Channel specified in
the request.

Reserved2 (4 bytes): This field MUST NOT be used and MUST be reserved. The server MUST set this

to 0, and the client MUST ignore it on receipt.

Buffer (variable): A variable-length buffer that contains the data read for the response, as described
by DataOffset and DataLength. The minimum length is 1 byte. If 0 bytes are returned from the
underlying object store, the server MUST send a failure response with status equal to
STATUS_END_OF_FILE.

2.2.21 SMB2 WRITE Request

The SMB2 WRITE Request packet is sent by the client to write data to the file or named pipe on the

server. This request is composed of an SMB2 header, as specified in section 2.2.1, followed by this
request structure:

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

StructureSize DataOffset

99 / 464

[MS-SMB2-Diff] - v20190923
Server Message Block (SMB) Protocol Versions 2 and 3
Copyright © 2019 Microsoft Corporation
Release: September 23, 2019

Length

Offset

...

FileId

...

...

...

Channel

RemainingBytes

WriteChannelInfoOffset WriteChannelInfoLength

Flags

Buffer (variable)

...

StructureSize (2 bytes): The client MUST set this field to 49, indicating the size of the request
structure, not including the header. The client MUST set it to this value regardless of how long

Buffer[] actually is in the request being sent.

DataOffset (2 bytes): The offset, in bytes, from the beginning of the SMB2 header to the data being
written.

Length (4 bytes): The length of the data being written, in bytes. The length of the data being written
can be zero bytes.

Offset (8 bytes): The offset, in bytes, of where to write the data in the destination file. If the write is
being executed on a pipe, the Offset MUST be set to 0 by the client and MUST be ignored by the

server.

FileId (16 bytes): An SMB2_FILEID, as specified in section 2.2.14.1.

The identifier of the file or pipe on which to perform the write.

Channel (4 bytes): For the SMB 2.0.2 and 2.1 dialects, this field MUST NOT be used and MUST be

reserved. The client MUST set this field to 0, and the server MUST ignore it on receipt. For the
SMB 3.x dialect family, this field MUST contain exactly one of the following values:

Value Meaning

SMB2_CHANNEL_NONE

0x00000000

No channel information is present in the request. The
WriteChannelInfoOffset and WriteChannelInfoLength
fields MUST be set to zero by the client and MUST be ignored by
the server.

100 / 464

[MS-SMB2-Diff] - v20190923
Server Message Block (SMB) Protocol Versions 2 and 3
Copyright © 2019 Microsoft Corporation
Release: September 23, 2019

Value Meaning

SMB2_CHANNEL_RDMA_V1

0x00000001

One or more SMB_DIRECT_BUFFER_DESCRIPTOR_V1 structures
as specified in [MS-SMBD] section 2.2.3.1 are present in the
channel information specified by WriteChannelInfoOffset and
WriteChannelInfoLength fields.

SMB2_CHANNEL_RDMA_V1_INVALIDATE

0x00000002

This flag is not valid for the SMB 3.0 dialect. One or more
SMB_DIRECT_BUFFER_DESCRIPTOR_V1 structures as specified
in [MS-SMBD] section 2.2.3.1 are present in the channel
information specified by the WriteChannelInfoOffset and
WriteChannelInfoLength fields. The server is requested to
perform remote invalidation when responding to the request as
specified in [MS-SMBD] section 3.1.4.2.

RemainingBytes (4 bytes): The number of subsequent bytes the client intends to write to the file

after this operation completes. This value is provided to facilitate write caching and is not binding
on the server.

WriteChannelInfoOffset (2 bytes): For the SMB 2.0.2 and 2.1 dialects, this field MUST NOT be
used and MUST be reserved. The client MUST set this field to 0, and the server MUST ignore it on
receipt. For the SMB 3.x dialect family, it contains the offset, in bytes, from the beginning of the
SMB2 header to the channel data as specified by the Channel field of the request.

WriteChannelInfoLength (2 bytes): For the SMB 2.0.2 and SMB 2.1 dialects, this field MUST NOT

be used and MUST be reserved. The client MUST set this field to 0, and the server MUST ignore it
on receipt. For the SMB 3.x dialect family, it contains the length, in bytes, of the channel data as
specified by the Channel field of the request.

Flags (4 bytes): A Flags field indicates how to process the operation. This field MUST be constructed
using zero or more of the following values:

Value Meaning

SMB2_WRITEFLAG_WRITE_THROUGH

0x00000001

The server performs File write-through on the write operation.
This value is not valid for the SMB 2.0.2 dialect.

SMB2_WRITEFLAG_WRITE_UNBUFFERED

0x00000002

File buffering is not performed. This bit is not valid for the SMB
2.0.2, 2.1, and 3.0 dialects.

Buffer (variable): A variable-length buffer that contains the data to write and the write channel
information, as described by DataOffset, Length, WriteChannelInfoOffset, and
WriteChannelInfoLength.

2.2.22 SMB2 WRITE Response

The SMB2 WRITE Response packet is sent in response to an SMB2 WRITE Request (section 2.2.21)
packet. This response is composed of an SMB2 header, as specified in section 2.2.1, followed by this
response structure:

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

StructureSize Reserved

Count

101 / 464

[MS-SMB2-Diff] - v20190923
Server Message Block (SMB) Protocol Versions 2 and 3
Copyright © 2019 Microsoft Corporation
Release: September 23, 2019

Remaining

WriteChannelInfoOffset WriteChannelInfoLength

StructureSize (2 bytes): The server MUST set this field to 17, the actual size of the response
structure notwithstanding.

Reserved (2 bytes): This field MUST NOT be used and MUST be reserved. The server MUST set this

to 0, and the client MUST ignore it on receipt.

Count (4 bytes): The number of bytes written.

Remaining (4 bytes): This field MUST NOT be used and MUST be reserved. The server MUST set this
to 0, and the client MUST ignore it on receipt.

WriteChannelInfoOffset (2 bytes): This field MUST NOT be used and MUST be reserved. The
server MUST set this to 0, and the client MUST ignore it on receipt.

WriteChannelInfoLength (2 bytes): This field MUST NOT be used and MUST be reserved. The
server MUST set this to 0, and the client MUST ignore it on receipt.

2.2.23 SMB2 OPLOCK_BREAK Notification

2.2.23.1 Oplock Break Notification

The SMB2 Oplock Break Notification packet is sent by the server when the underlying object store
indicates that an opportunistic lock (oplock) is being broken, representing a change in the oplock
level. This message is composed of an SMB2 header, as specified in section 2.2.1, followed by this
notification structure:

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

StructureSize OplockLevel Reserved

Reserved2

FileId

...

...

...

StructureSize (2 bytes): The server MUST set this to 24, indicating the size of the response
structure, not including the header.

OplockLevel (1 byte): The server sets this to the maximum value of the OplockLevel that the
server will accept for an acknowledgment from the client. This field MUST contain one of the
following values.<54>

102 / 464

[MS-SMB2-Diff] - v20190923
Server Message Block (SMB) Protocol Versions 2 and 3
Copyright © 2019 Microsoft Corporation
Release: September 23, 2019

Value Meaning

SMB2_OPLOCK_LEVEL_NONE

0x00

No oplock is available.

SMB2_OPLOCK_LEVEL_II

0x01

A level II oplock is available.

Reserved (1 byte): This field MUST NOT be used and MUST be reserved. The server MUST set this to
0, and the client MUST ignore it on receipt.

Reserved2 (4 bytes): This field MUST NOT be used and MUST be reserved. The server MUST set this
to 0, and the client MUST ignore it on receipt.

FileId (16 bytes): An SMB2_FILEID, as specified in section 2.2.14.1.

The identifier of the file or pipe on which the oplock break occurred.

2.2.23.2 Lease Break Notification

The SMB2 Lease Break Notification packet is sent by the server when the underlying object store
indicates that a lease is being broken, representing a change in the lease state. This notification is not
valid for the SMB 2.0.2 dialect. This message is composed of an SMB2 header, as specified in section
2.2.1, followed by this notification structure:

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

StructureSize NewEpoch

Flags

LeaseKey

...

...

...

CurrentLeaseState

NewLeaseState

BreakReason

AccessMaskHint

ShareMaskHint

StructureSize (2 bytes): The server MUST set this to 44, indicating the size of the response
structure, not including the header.

103 / 464

[MS-SMB2-Diff] - v20190923
Server Message Block (SMB) Protocol Versions 2 and 3
Copyright © 2019 Microsoft Corporation
Release: September 23, 2019

NewEpoch (2 bytes): A 16-bit unsigned integer indicating a lease state change by the server. This
field is only valid for a server implementing the SMB 3.x dialect family.

For the SMB 2.1 dialect, this field MUST NOT be used and MUST be reserved. The server MUST set
this to 0, and the client MUST ignore it on receipt.

Flags (4 bytes): The field MUST be constructed by using zero or more of the following values.

Value Meaning

SMB2_NOTIFY_BREAK_LEASE_FLAG_ACK_REQUIRED

0x01

A Lease Break Acknowledgment is required.

LeaseKey (16 bytes): The client-generated key that identifies the owner of the lease.

CurrentLeaseState (4 bytes): The current lease state of the open. This field MUST be constructed
using the following values.

Value Meaning

SMB2_LEASE_READ_CACHING

0x01

A read caching lease is granted.

SMB2_LEASE_HANDLE_CACHING

0x02

A handle caching lease is granted.

SMB2_LEASE_WRITE_CACHING

0x04

A write caching lease is granted.

NewLeaseState (4 bytes): The new lease state for the open. This field MUST be constructed using
the SMB2_LEASE_NONE or above values.

BreakReason (4 bytes): This field MUST NOT be used and MUST be reserved. The server MUST set

this to 0, and the client MUST ignore it on receipt.

AccessMaskHint (4 bytes): This field MUST NOT be used and MUST be reserved. The server MUST
set this to 0, and the client MUST ignore it on receipt.

ShareMaskHint (4 bytes): This field MUST NOT be used and MUST be reserved. The server MUST
set this to 0, and the client MUST ignore it on receipt.

2.2.24 SMB2 OPLOCK_BREAK Acknowledgment

2.2.24.1 Oplock Break Acknowledgment

 The Oplock Break Acknowledgment packet is sent by the client in response to an SMB2 Oplock Break
Notification packet sent by the server. The server responds to an oplock break acknowledgment with
an SMB2 Oplock Break response. A break from level II MUST transition to none. Thus, the client does

not send a request to the server because there is no question how the transition was made. This
message is composed of an SMB2 header, as specified in section 2.2.1, followed by this
acknowledgement structure.

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

StructureSize OplockLevel Reserved

104 / 464

[MS-SMB2-Diff] - v20190923
Server Message Block (SMB) Protocol Versions 2 and 3
Copyright © 2019 Microsoft Corporation
Release: September 23, 2019

Reserved2

FileId

...

...

...

StructureSize (2 bytes): The client MUST set this to 24, indicating the size of the request structure,
not including the header.

OplockLevel (1 byte): The client will set this field to the lowered oplock level that the client accepts

for this file. This field MUST contain one of the following values.<55>

Value Meaning

SMB2_OPLOCK_LEVEL_NONE

0x00

 The client has lowered its oplock level for this file to none.

SMB2_OPLOCK_LEVEL_II

0x01

 The client has lowered its oplock level for this file to level II.

Reserved (1 byte): This field MUST NOT be used and MUST be reserved. The client MUST set this to
0, and the server MUST ignore it on receipt.

Reserved2 (4 bytes): This field MUST NOT be used and MUST be reserved. The client MUST set this
to 0, and the server MUST ignore it on receipt.

FileId (16 bytes): An SMB2_FILEID, as specified in section 2.2.14.1.

The identifier of the file or pipe on which the oplock break occurred.

2.2.24.2 Lease Break Acknowledgment

The SMB2 Lease Break Acknowledgment packet is sent by the client in response to an SMB2 Lease
Break Notification packet sent by the server. This acknowledgment is not valid for the SMB 2.0.2
dialect. The server responds to a lease break acknowledgment with an SMB2 Lease Break Response.
This message is composed of an SMB2 header, as specified in section 2.2.1, followed by this
acknowledgement structure.

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

StructureSize Reserved

Flags

LeaseKey

...

105 / 464

[MS-SMB2-Diff] - v20190923
Server Message Block (SMB) Protocol Versions 2 and 3
Copyright © 2019 Microsoft Corporation
Release: September 23, 2019

...

...

LeaseState

LeaseDuration

...

StructureSize (2 bytes): The client MUST set this to 36, indicating the size of the request structure,
not including the header.

Reserved (2 bytes): This field MUST NOT be used and MUST be reserved. The client MUST set this to

0, and the server MUST ignore it on receipt.

Flags (4 bytes): This field MUST NOT be used and MUST be reserved. The client MUST set this to 0,
and the server MUST ignore it on receipt.

LeaseKey (16 bytes): The client-generated key that identifies the owner of the lease.

LeaseState (4 bytes): The lease state in the Lease Break Acknowledgment message MUST be a
subset of the lease state granted by the server via the preceding Lease Break Notification

message.<56> This field MUST be constructed using the following values:

Value Meaning

SMB2_LEASE_NONE

0x00

No lease is granted.

SMB2_LEASE_READ_CACHING

0x01

A read caching lease is accepted.

SMB2_LEASE_HANDLE_CACHING

0x02

A handle caching lease is accepted.

SMB2_LEASE_WRITE_CACHING

0x04

A write caching lease is accepted.

LeaseDuration (8 bytes): This field MUST NOT be used and MUST be reserved. The client MUST set
this to 0, and the server MUST ignore it on receipt.

2.2.25 SMB2 OPLOCK_BREAK Response

2.2.25.1 Oplock Break Response

 The Oplock Break Response packet is sent by the server in response to an Oplock Break
Acknowledgment from the client. This response is composed of an SMB2 header, as specified in

section 2.2.1, followed by this response structure:

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

StructureSize OplockLevel Reserved

106 / 464

[MS-SMB2-Diff] - v20190923
Server Message Block (SMB) Protocol Versions 2 and 3
Copyright © 2019 Microsoft Corporation
Release: September 23, 2019

Reserved2

FileId

...

...

...

StructureSize (2 bytes): The server MUST set this to 24, indicating the size of the response
structure, not including the header.

OplockLevel (1 byte): The server will set this field to the granted OplockLevel value. This MUST

be the same as the level that is specified by the client in its oplock break acknowledgment packet.

This field MUST contain one of the following values.

Value Meaning

SMB2_OPLOCK_LEVEL_NONE

0x00

 The server has lowered oplock level for this file to none.

SMB2_OPLOCK_LEVEL_II

0x01

 The server has lowered oplock level for this file to level II.

Reserved (1 byte): This field MUST NOT be used and MUST be reserved. The server MUST set this to
0, and the client MUST ignore it on receipt.

Reserved2 (4 bytes): This field MUST NOT be used and MUST be reserved. The server MUST set this

to 0, and the client MUST ignore it on receipt.

FileId (16 bytes): An SMB2_FILEID, as specified in section 2.2.14.1.

The identifier of the file or pipe on which the oplock break occurred.

2.2.25.2 Lease Break Response

The SMB2 Lease Break Response packet is sent by the server in response to a Lease Break
Acknowledgment from the client. This response is not valid for the SMB 2.0.2 dialect.

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

StructureSize Reserved

Flags

LeaseKey

...

...

107 / 464

[MS-SMB2-Diff] - v20190923
Server Message Block (SMB) Protocol Versions 2 and 3
Copyright © 2019 Microsoft Corporation
Release: September 23, 2019

...

LeaseState

LeaseDuration

...

StructureSize (2 bytes): The server MUST set this to 36, indicating the size of the response
structure, not including the header.

Reserved (2 bytes): This field MUST NOT be used and MUST be reserved. The server MUST set this

to 0, and the client MUST ignore it on receipt.

Flags (4 bytes): This field MUST NOT be used and MUST be reserved. The server MUST set this to 0,
and the client MUST ignore it on receipt.

LeaseKey (16 bytes): The client-generated key that identifies the owner of the lease.

LeaseState (4 bytes): The requested lease state. This field MUST be constructed using the following
values:

Value Meaning

SMB2_LEASE_NONE

0x00

No lease is granted.

SMB2_LEASE_READ_CACHING

0x01

A read caching lease is granted.

SMB2_LEASE_HANDLE_CACHING

0x02

A handle caching lease is granted.

SMB2_LEASE_WRITE_CACHING

0x04

A write caching lease is granted.

LeaseDuration (8 bytes): This field MUST NOT be used and MUST be reserved. The server MUST set
this to 0, and the client MUST ignore it on receipt.

2.2.26 SMB2 LOCK Request

The SMB2 LOCK Request packet is sent by the client to either lock or unlock portions of a file. Several

different segments of the file can be affected with a single SMB2 LOCK Request packet, but they all
MUST be within the same file.

Byte range locks in SMB2 are associated with the handle (SMB2 FileId) on which the lock is taken. It
is the client's responsibility to locally resolve lock conflicts across multiple processes on the same

client, if any such conflicts exist. This message is composed of an SMB2 header, as specified in section
2.2.1, followed by this acknowledgement structure.

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

StructureSize LockCount

108 / 464

[MS-SMB2-Diff] - v20190923
Server Message Block (SMB) Protocol Versions 2 and 3
Copyright © 2019 Microsoft Corporation
Release: September 23, 2019

LSN LockSequenceIndex

FileId

...

...

...

Locks (variable)

...

StructureSize (2 bytes): The client MUST set this to 48, indicating the size of an SMB2 LOCK

Request with a single SMB2_LOCK_ELEMENT structure. This value is set regardless of the number
of locks that are sent.

LockCount (2 bytes): MUST be set to the number of SMB2_LOCK_ELEMENT structures that are
contained in the Locks[] array. The lock count MUST be greater than or equal to 1.

LSN – LockSequenceNumber (4 bits): In the SMB 2.0.2 dialect, this field is unused and MUST be
0. The client MUST set this to 0, and the server MUST ignore it on receipt. In all other dialects, a
4-bit integer value.

LockSequenceIndex (28 bits): In the SMB 2.0.2 dialect, this field is unused and MUST be 0. The

client MUST set this to 0, and the server MUST ignore it on receipt. In all other dialects, a 28-bit
integer value that MUST contain a value from 0 to 64, where 0 is reserved.

FileId (16 bytes): An SMB2_FILEID that identifies the file on which to perform the byte range locks
or unlocks.

Locks (variable): An array of LockCount (SMB2_LOCK_ELEMENT) structures that define the ranges
to be locked or unlocked.

2.2.26.1 SMB2_LOCK_ELEMENT Structure

The SMB2_LOCK_ELEMENT Structure packet is used by the SMB2 LOCK Request packet to indicate
segments of files that are locked or unlocked.

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

Offset

...

Length

...

Flags

109 / 464

[MS-SMB2-Diff] - v20190923
Server Message Block (SMB) Protocol Versions 2 and 3
Copyright © 2019 Microsoft Corporation
Release: September 23, 2019

Reserved

Offset (8 bytes): The starting offset, in bytes, in the destination file from where the range being
locked or unlocked starts.

Length (8 bytes): The length, in bytes, of the range being locked or unlocked.

Flags (4 bytes): The description of how the range is being locked or unlocked and how to process the
operation. This field takes the following format:

Value Meaning

SMB2_LOCKFLAG_SHARED_LOCK

0x00000001

The range MUST be locked shared, allowing other opens to read
from or take a shared lock on the range. All opens MUST NOT be
allowed to write within the range. Other locks can be requested and
taken on this range.

SMB2_LOCKFLAG_EXCLUSIVE_LOCK

0x00000002

The range MUST be locked exclusive, not allowing other opens to
read, write, or lock within the range.

SMB2_LOCKFLAG_UNLOCK

0x00000004

The range MUST be unlocked from a previous lock taken on this
range. The unlock range MUST be identical to the lock range. Sub-
ranges cannot be unlocked.

SMB2_LOCKFLAG_FAIL_IMMEDIATELY

0x00000010

The lock operation MUST fail immediately if it conflicts with an
existing lock, instead of waiting for the range to become available.

The following are the only valid combinations for the flags field:

▪ SMB2_LOCKFLAG_SHARED_LOCK

▪ SMB2_LOCKFLAG_EXCLUSIVE_LOCK

▪ SMB2_LOCKFLAG_SHARED_LOCK | SMB2_LOCKFLAG_FAIL_IMMEDIATELY

▪ SMB2_LOCKFLAG_EXCLUSIVE_LOCK | SMB2_LOCKFLAG_FAIL_IMMEDIATELY

▪ SMB2_LOCKFLAG_UNLOCK

Reserved (4 bytes): This field MUST NOT be used and MUST be reserved. The client MUST set this to
0, and the server MUST ignore it on receipt.

2.2.27 SMB2 LOCK Response

The SMB2 LOCK Response packet is sent by a server in response to an SMB2 LOCK
Request (section 2.2.26) packet. This response is composed of an SMB2 header, as specified in
section 2.2.1, followed by this request structure:

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

StructureSize Reserved

StructureSize (2 bytes): The server MUST set this to 4, indicating the size of the response

structure, not including the header.

Reserved (2 bytes): This field MUST NOT be used and MUST be reserved. The server MUST set this
to 0, and the client MUST ignore it on receipt.

110 / 464

[MS-SMB2-Diff] - v20190923
Server Message Block (SMB) Protocol Versions 2 and 3
Copyright © 2019 Microsoft Corporation
Release: September 23, 2019

2.2.28 SMB2 ECHO Request

The SMB2 ECHO Request packet is sent by a client to determine whether a server is processing
requests. This request is composed of an SMB2 header, as specified in section 2.2.1, followed by this

request structure:

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

StructureSize Reserved

StructureSize (2 bytes): The client MUST set this to 4, indicating the size of the request structure,
not including the header.

Reserved (2 bytes): This field MUST NOT be used and MUST be reserved. The client MUST set this to
0, and the server MUST ignore it on receipt.

2.2.29 SMB2 ECHO Response

The SMB2 ECHO Response packet is sent by the server to confirm that an SMB2 ECHO Request
(section 2.2.28) was successfully processed. This response is composed of an SMB2 header, as
specified in section 2.2.1, followed by the following response structure.

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

StructureSize Reserved

StructureSize (2 bytes): The server MUST set this to 4, indicating the size of the response
structure, not including the header.

Reserved (2 bytes): This field MUST NOT be used and MUST be reserved. The server MUST set this

to 0, and the client MUST ignore it on receipt.

2.2.30 SMB2 CANCEL Request

The SMB2 CANCEL Request packet is sent by the client to cancel a previously sent message on the
same SMB2 transport connection. The MessageId of the request to be canceled MUST be set in the
SMB2 header of the request. This request is composed of an SMB2 header, as specified in section
2.2.1, followed by this request structure:

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

StructureSize Reserved

StructureSize (2 bytes): The client MUST set this field to 4, indicating the size of the request
structure, not including the header.

Reserved (2 bytes): This field MUST NOT be used and MUST be reserved. The client MUST set this
field to 0, and the server MUST ignore it on receipt.

111 / 464

[MS-SMB2-Diff] - v20190923
Server Message Block (SMB) Protocol Versions 2 and 3
Copyright © 2019 Microsoft Corporation
Release: September 23, 2019

2.2.31 SMB2 IOCTL Request

The SMB2 IOCTL Request packet is sent by a client to issue an implementation-specific file system
control or device control (FSCTL/IOCTL) command across the network. For a list of IOCTL operations,

see section 3.2.4.20 and [MS-FSCC] section 2.3. This request is composed of an SMB2 header, as
specified in section 2.2.1, followed by this request structure.

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

StructureSize Reserved

CtlCode

FileId

...

...

...

InputOffset

InputCount

MaxInputResponse

OutputOffset

OutputCount

MaxOutputResponse

Flags

Reserved2

Buffer (variable)

...

StructureSize (2 bytes): The client MUST set this field to 57, indicating the size of the request

structure, not including the header. The client MUST set this field to this value regardless of how
long Buffer[] actually is in the request being sent.

Reserved (2 bytes): This field MUST NOT be used and MUST be reserved. The client MUST set this

field to 0, and the server MUST ignore it on receipt.

CtlCode (4 bytes): The control code of the FSCTL/IOCTL method. The values are listed in subsequent
sections, and in [MS-FSCC] section 2.3. The following values indicate SMB2-specific processing as
specified in sections 3.2.4.20 and 3.3.5.15.

112 / 464

[MS-SMB2-Diff] - v20190923
Server Message Block (SMB) Protocol Versions 2 and 3
Copyright © 2019 Microsoft Corporation
Release: September 23, 2019

Name Value

FSCTL_DFS_GET_REFERRALS 0x00060194

FSCTL_PIPE_PEEK 0x0011400C

FSCTL_PIPE_WAIT 0x00110018

FSCTL_PIPE_TRANSCEIVE 0x0011C017

FSCTL_SRV_COPYCHUNK 0x001440F2

FSCTL_SRV_ENUMERATE_SNAPSHOTS 0x00144064

FSCTL_SRV_REQUEST_RESUME_KEY 0x00140078

FSCTL_SRV_READ_HASH 0x001441bb

FSCTL_SRV_COPYCHUNK_WRITE 0x001480F2

FSCTL_LMR_REQUEST_RESILIENCY 0x001401D4

FSCTL_QUERY_NETWORK_INTERFACE_INFO 0x001401FC

FSCTL_SET_REPARSE_POINT 0x000900A4

FSCTL_DFS_GET_REFERRALS_EX 0x000601B0

FSCTL_FILE_LEVEL_TRIM 0x00098208

FSCTL_VALIDATE_NEGOTIATE_INFO 0x00140204

FSCTL_PIPE_TRANSCEIVE is valid only on a named pipe with mode set to
FILE_PIPE_MESSAGE_MODE as specified in [MS-FSCC] section 2.4.29.

FSCTL_SRV_COPYCHUNK and FSCTL_SRV_COPYCHUNK_WRITE FSCTL codes are used for

performing server side copy operations. These FSCTLs are issued by the application against an
open handle to the target file. FSCTL_SRV_COPYCHUNK is issued when a handle has

FILE_READ_DATA and FILE_WRITE_DATA access to the file; FSCTL_SRV_COPYCHUNK_WRITE is
issued when a handle only has FILE_WRITE_DATA access.

FileId (16 bytes): An SMB2_FILEID identifier of the file on which to perform the command.

InputOffset (4 bytes): The offset, in bytes, from the beginning of the SMB2 header to the input data
buffer. If no input data is required for the FSCTL/IOCTL command being issued, this field can be
set to any value by the client and MUST be ignored by the server.

InputCount (4 bytes): The size, in bytes, of the input data.

MaxInputResponse (4 bytes): The maximum number of bytes that the server can return for the
input data in the SMB2 IOCTL Response.

OutputOffset (4 bytes): The client SHOULD set this to 0.<57>

OutputCount (4 bytes): The client MUST set this to 0.

MaxOutputResponse (4 bytes): The maximum number of bytes that the server can return for the
output data in the SMB2 IOCTL Response.

Flags (4 bytes): A Flags field indicating how to process the operation. This field MUST be
constructed using one of the following values.

113 / 464

[MS-SMB2-Diff] - v20190923
Server Message Block (SMB) Protocol Versions 2 and 3
Copyright © 2019 Microsoft Corporation
Release: September 23, 2019

Value Meaning

0x00000000 If Flags is set to this value, the request is an IOCTL request.

SMB2_0_IOCTL_IS_FSCTL

0x00000001

If Flags is set to this value, the request is an FSCTL request.

Reserved2 (4 bytes): This field MUST NOT be used and MUST be reserved. The client MUST set this
field to 0, and the server MUST ignore it on receipt.

Buffer (variable): A variable-length buffer that contains the input and output data buffer for the
request, as described by the InputOffset, InputCount, OutputOffset, and OutputCount.
There is no minimum size restriction for this field as there can be FSCTLs with no input or output
buffers. The format of this buffer for FSCTLs is specified in subsequent sections of 3.2.4.20.

The following FSCTL requests do not provide an input buffer:

▪ FSCTL_PIPE_PEEK

▪ FSCTL_SRV_ENUMERATE_SNAPSHOTS

▪ FSCTL_SRV_REQUEST_RESUME_KEY

▪ FSCTL_QUERY_NETWORK_INTERFACE_INFO

2.2.31.1 SRV_COPYCHUNK_COPY

The SRV_COPYCHUNK_COPY packet is sent to the server in an SMB2 IOCTL Request using
FSCTL_SRV_COPYCHUNK or FSCTL_SRV_COPYCHUNK_WRITE by the client to initiate a server-side
copy of data. It is set as the contents of the input data buffer. This packet consists of the following:

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

SourceKey

...

...

...

...

...

ChunkCount

Reserved

Chunks (variable)

...

114 / 464

[MS-SMB2-Diff] - v20190923
Server Message Block (SMB) Protocol Versions 2 and 3
Copyright © 2019 Microsoft Corporation
Release: September 23, 2019

SourceKey (24 bytes): A key, obtained from the server in a SRV_REQUEST_RESUME_KEY Response
(section 2.2.32.3), that represents the source file for the copy.

ChunkCount (4 bytes): The number of chunks of data that are to be copied.

Reserved (4 bytes): This field MUST NOT be used and MUST be reserved. This field MUST be set to

0 by the client, and ignored by the server.

Chunks (variable): An array of packets describing the ranges to be copied. This array MUST be of a
length equal to ChunkCount * size of SRV_COPYCHUNK.

2.2.31.1.1 SRV_COPYCHUNK

The SRV_COPYCHUNK packet is sent in the Chunks array of a SRV_COPYCHUNK_COPY packet to
describe an individual data range to copy. This packet consists of the following:

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

SourceOffset

...

TargetOffset

...

Length

Reserved

SourceOffset (8 bytes): The offset, in bytes, from the beginning of the source file to the location
from which the data will be copied.

TargetOffset (8 bytes): The offset, in bytes, from the beginning of the destination file to where the
data will be copied.

Length (4 bytes): The number of bytes of data to copy.

Reserved (4 bytes): This field SHOULD<58> be set to zero and MUST be ignored on receipt.

2.2.31.2 SRV_READ_HASH Request

The SRV_READ_HASH request is sent to the server by the client in an SMB2 IOCTL Request
FSCTL_SRV_READ_HASH to retrieve data from the Content Information File associated with a

specified file. The request is not valid for the SMB 2.0.2 dialect. It is set as the contents of the input
data buffer. This packet consists of the following:

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

HashType

HashVersion

115 / 464

[MS-SMB2-Diff] - v20190923
Server Message Block (SMB) Protocol Versions 2 and 3
Copyright © 2019 Microsoft Corporation
Release: September 23, 2019

HashRetrievalType

Length

Offset

...

HashType (4 bytes): The hash type of the request indicates what the hash is used for. This field
MUST be set to the following value:

Value Meaning

SRV_HASH_TYPE_PEER_DIST

0x00000001

Indicates the hash is requested for branch caching as described in [MS-
PCCRC].

HashVersion (4 bytes): The version number of the algorithm used to create the Content

Information. This field MUST be set to one of the following values:

Value Meaning

SRV_HASH_VER_1

0x00000001

Branch cache version 1.

SRV_HASH_VER_2

0x00000002

Branch cache version 2. This value is only applicable for the SMB 3.x dialect family.

HashRetrievalType (4 bytes): Indicates the nature of the Offset field. This field MUST be set to one
of the following values:

Value Meaning

SRV_HASH_RETRIEVE_HASH_BASED

0x00000001

The Offset field in the SRV_READ_HASH request is relative to the
beginning of the Content Information File.

SRV_HASH_RETRIEVE_FILE_BASED

0x00000002

The Offset field in the SRV_READ_HASH request is relative to the
beginning of the file indicated by the FileId field in the IOCTL
request. This value is only applicable for the SMB 3.x dialect
family.

Length (4 bytes): If HashRetrievalType is SRV_HASH_RETRIEVE_HASH_BASED, this value is the
maximum length, in bytes, of the hash data to be returned in the SRV_READ_HASH response to
the client. If HashRetrievalType is SRV_HASH_RETRIEVE_FILE_BASED, this value is the
maximum length, in bytes, of the file data for which the hash information is to be retrieved and
returned in the SRV_READ_HASH response to the client.

Offset (8 bytes): If HashRetrievalType is SRV_HASH_RETRIEVE_HASH_BASED, this value is the
offset of the data to be retrieved, in bytes, from the beginning of the Content Information File. If

HashRetrievalType is SRV_HASH_RETRIEVE_FILE_BASED, this value is the offset in the file for
which the hash information is to be retrieved.

2.2.31.3 NETWORK_RESILIENCY_REQUEST Request

The NETWORK_RESILIENCY_REQUEST request packet is sent to the server by the client in an SMB2
IOCTL Request (section 2.2.31) FSCTL_LMR_REQUEST_RESILIENCY to request resiliency for a

116 / 464

[MS-SMB2-Diff] - v20190923
Server Message Block (SMB) Protocol Versions 2 and 3
Copyright © 2019 Microsoft Corporation
Release: September 23, 2019

specified open file. This request is not valid for the SMB 2.0.2 dialect. It is set as the contents of the
input data buffer. This packet consists of the following:

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

Timeout

Reserved

Timeout (4 bytes): The requested time the server holds the file open after a disconnect before
releasing it. This time is in milliseconds.

Reserved (4 bytes): This field MUST NOT be used and MUST be reserved. The client MUST set this to
0, and the server MUST ignore it on receipt.

2.2.31.4 VALIDATE_NEGOTIATE_INFO Request

The VALIDATE_NEGOTIATE_INFO request packet is sent to the server by the client in an SMB2 IOCTL

Request FSCTL_VALIDATE_NEGOTIATE_INFO to request validation of a previous SMB 2 NEGOTIATE.
The request is valid for clients and servers which implement the SMB 3.0 and SMB 3.0.2 dialects.

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

Capabilities

Guid

...

...

...

SecurityMode DialectCount

Dialects (variable)

...

Capabilities (4 bytes): The Capabilities of the client.

Guid (16 bytes): The ClientGuid of the client.

SecurityMode (2 bytes): The SecurityMode of the client.

DialectCount (2 bytes): The number of entries in the Dialects field.

Dialects (variable): The list of SMB2 dialects supported by the client. These entries SHOULD contain
only the 2-byte Dialects values defined in section 2.2.3.

117 / 464

[MS-SMB2-Diff] - v20190923
Server Message Block (SMB) Protocol Versions 2 and 3
Copyright © 2019 Microsoft Corporation
Release: September 23, 2019

2.2.32 SMB2 IOCTL Response

The SMB2 IOCTL Response packet is sent by the server to transmit the results of a client SMB2 IOCTL
Request. This response consists of an SMB2 header, as specified in section 2.2.1, followed by this

response structure:

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

StructureSize Reserved

CtlCode

FileId

...

...

...

InputOffset

InputCount

OutputOffset

OutputCount

Flags

Reserved2

Buffer (variable)

...

StructureSize (2 bytes): The server MUST set this field to 49, indicating the size of the response
structure, not including the header. This value MUST be used regardless of how large Buffer[] is
in the actual response.

Reserved (2 bytes): This field MUST NOT be used and MUST be reserved. The server MUST set this
field to 0, and the client MUST ignore it on receipt.

CtlCode (4 bytes): The control code of the FSCTL/IOCTL method that was executed. SMB2-specific
values are listed in section 2.2.31.

FileId (16 bytes): An SMB2_FILEID identifier of the file on which the command was performed. If
the CtlCode field value is FSCTL_DFS_GET_REFERRALS or FSCTL_PIPE_WAIT, this field MUST be
set to { 0xFFFFFFFFFFFFFFFF, 0xFFFFFFFFFFFFFFFF } by the server and MUST be ignored by the
client.

InputOffset (4 bytes): The InputOffset field SHOULD be set to the offset, in bytes, from the
beginning of the SMB2 header to the Buffer[] field of the IOCTL response.

118 / 464

[MS-SMB2-Diff] - v20190923
Server Message Block (SMB) Protocol Versions 2 and 3
Copyright © 2019 Microsoft Corporation
Release: September 23, 2019

InputCount (4 bytes): The InputCount field SHOULD<59> be set to zero in the IOCTL response.
An exception for pass-through operations is discussed in section 3.3.5.15.8.

OutputOffset (4 bytes): The offset, in bytes, from the beginning of the SMB2 header to the output
data buffer. If output data is returned, the output offset MUST be set to InputOffset +

InputCount rounded up to a multiple of 8. If no output data is returned for the FSCTL/IOCTL
command that was issued, then this value SHOULD<60> be set to 0.

OutputCount (4 bytes): The size, in bytes, of the output data.

Flags (4 bytes): This field MUST NOT be used and MUST be reserved. The server MUST set this field
to 0, and the client MUST ignore it on receipt.

Reserved2 (4 bytes): This field MUST NOT be used and MUST be reserved. The server MUST set this
field to 0, and the client MUST ignore it on receipt.

Buffer (variable): A variable-length buffer that contains the input and output data buffer for the
response, as described by InputOffset, InputCount, OutputOffset, and OutputCount. For
more details, refer to section 3.3.5.15.

The following FSCTL responses do not provide an output buffer:

▪ FSCTL_PIPE_WAIT

▪ FSCTL_LMR_REQUEST_RESILIENCY

2.2.32.1 SRV_COPYCHUNK_RESPONSE

The SRV_COPYCHUNK_RESPONSE packet is sent to the client by the server in an SMB2 IOCTL
Response for FSCTL_SRV_COPYCHUNK or FSCTL_SRV_COPYCHUNK_WRITE requests to return the
results of a server-side copy operation. It is placed in the Buffer field of the SMB2 IOCTL Response

packet. This packet consists of the following:

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

ChunksWritten

ChunkBytesWritten

TotalBytesWritten

ChunksWritten (4 bytes): If the Status field in the SMB2 header of the response is not
STATUS_INVALID_PARAMETER, as specified in [MS-ERREF] section 2.3, this value indicates the
number of chunks that were successfully written. If the Status field in the SMB2 header of the
response is STATUS_INVALID_PARAMETER, this value indicates the maximum number of chunks

that the server will accept in a single request. This would allow the client to correctly reissue the
request.

ChunkBytesWritten (4 bytes): If the Status field in the SMB2 header of the response is not
STATUS_INVALID_PARAMETER, as specified in [MS-ERREF] section 2.3, this value indicates the
number of bytes written in the last chunk that did not successfully process (if a partial write
occurred). If the Status field in the SMB2 header of the response is
STATUS_INVALID_PARAMETER, this value indicates the maximum number of bytes the server will

allow to be written in a single chunk.

TotalBytesWritten (4 bytes): If the Status field in the SMB2 header of the response is not
STATUS_INVALID_PARAMETER, as specified in [MS-ERREF] section 2.3, this value indicates the

119 / 464

[MS-SMB2-Diff] - v20190923
Server Message Block (SMB) Protocol Versions 2 and 3
Copyright © 2019 Microsoft Corporation
Release: September 23, 2019

total number of bytes written in the server-side copy operation. If the Status field in the SMB2
header of the response is STATUS_INVALID_PARAMETER, this value indicates the maximum

number of bytes the server will accept to copy in a single request.

2.2.32.2 SRV_SNAPSHOT_ARRAY

The SRV_SNAPSHOT_ARRAY packet is returned to the client by the server in an SMB2 IOCTL
Response for the FSCTL_SRV_ENUMERATE_SNAPSHOTS request, as specified in section 3.3.5.15.1.
This packet MUST contain all the revision time-stamps that are associated with the Tree Connect share

in which the open resides, provided that the buffer size required is less than or equal to the maximum
output buffer size received in the SMB2 IOCTL request. This SRV_SNAPSHOT_ARRAY is placed in the
Buffer field in the SMB2 IOCTL Response,<61> and the OutputOffset and OutputCount fields
MUST be updated to describe the buffer as specified in section 2.2.32. This packet consists of the
following:

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

NumberOfSnapShots

NumberOfSnapShotsReturned

SnapShotArraySize

SnapShots (variable)

...

NumberOfSnapShots (4 bytes): The number of previous versions associated with the volume that

backs this file.

NumberOfSnapShotsReturned (4 bytes): The number of previous version time stamps returned in
the SnapShots[] array. If the output buffer could not accommodate the entire array,
NumberOfSnapShotsReturned will be zero.

SnapShotArraySize (4 bytes): The length, in bytes, of the SnapShots[] array. If the output buffer
is too small to accommodate the entire array, SnapShotArraySize will be the amount of space that
the array would have occupied.

SnapShots (variable): An array of time stamps in GMT format, as specified by an @GMT token,
which are separated by UNICODE null characters and terminated by two UNICODE null characters.
It will be empty if the output buffer could not accommodate the entire array.

2.2.32.3 SRV_REQUEST_RESUME_KEY Response

The SRV_REQUEST_RESUME_KEY packet is returned to the client by the server in an SMB2 IOCTL

Response for the FSCTL_SRV_REQUEST_RESUME_KEY request. This
SRV_REQUEST_RESUME_KEY is placed in the Buffer field in the SMB2 IOCTL Response, and the
OutputOffset and OutputCount fields MUST be updated to describe the buffer as specified in section
2.2.32. This packet consists of the following:

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

ResumeKey

120 / 464

[MS-SMB2-Diff] - v20190923
Server Message Block (SMB) Protocol Versions 2 and 3
Copyright © 2019 Microsoft Corporation
Release: September 23, 2019

...

...

...

...

...

ContextLength

Context (variable)

...

ResumeKey (24 bytes): A 24-byte resume key generated by the server that can be subsequently
used by the client to uniquely identify the source file in an FSCTL_SRV_COPYCHUNK or
FSCTL_SRV_COPYCHUNK_WRITE request. The resume key MUST be treated as a 24-byte

opaque structure. The client that receives the 24-byte resume key MUST NOT attach any
interpretation to this key and MUST treat it as an opaque value.

ContextLength (4 bytes): The length, in bytes, of the context information. This field is unused. The
server MUST set this field to 0, and the client MUST ignore it on receipt.

Context (variable): The context extended information.<62>

2.2.32.4 SRV_READ_HASH Response

The SRV_READ_HASH response is returned to the client by the server in an SMB2 IOCTL Response for

the FSCTL_SRV_READ_HASH request. The response is not valid for the SMB 2.0.2 dialect. This
structure is placed in the Buffer field in the SMB2 IOCTL Response, and the OutputOffset and
OutputCount fields MUST be updated to describe the buffer as specified in section 2.2.32.

2.2.32.4.1 HASH_HEADER

All content information files MUST start with a valid format HASH_HEADER as follows.

Content information follows this header at an offset indicated by the HashBlobOffset field, if
HashVersion is set to SRV_HASH_VER_1, the Content Information data structure is as specified in
[MS-PCCRC] section 2.3; if HashVersion is set to SRV_HASH_VER_2, the Content Information data
structure is as specified in [MS-PCCRC] section 2.4.

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

HashType

HashVersion

SourceFileChangeTime

...

121 / 464

[MS-SMB2-Diff] - v20190923
Server Message Block (SMB) Protocol Versions 2 and 3
Copyright © 2019 Microsoft Corporation
Release: September 23, 2019

SourceFileSize

...

HashBlobLength

HashBlobOffset

Dirty SourceFileNameLength

SourceFileName (variable)

...

HashType (4 bytes): The hash type indicates what the hash is used for. This field MUST be

constructed using the following value.

Value Meaning

SRV_HASH_TYPE_PEER_DIST

0x00000001

Indicates that the hash is used for branch caching as described in [MS-
PCCRC].

HashVersion (4 bytes): The version number of the algorithm used to create the Content

Information. This field MUST be constructed using one of the following values.

Value Meaning

SRV_HASH_VER_1

0x00000001

Branch cache version 1.

SRV_HASH_VER_2

0x00000002

Branch cache version 2. This value is only applicable for servers that implement the
SMB 3.x dialect family.

SourceFileChangeTime (8 bytes): The last update time for the source file from which the Content
Information is generated, in FILETIME format as specified in [MS-DTYP] section 2.3.3.

SourceFileSize (8 bytes): The length, in bytes, of the source file from which the Content
Information is generated.

HashBlobLength (4 bytes): The length, in bytes, of the Content Information.

HashBlobOffset (4 bytes): The offset of the Content Information, in bytes, from the beginning of
the Content Information File.

Dirty (2 bytes): A flag that indicates whether the Content Information File is currently being

updated. A nonzero value indicates TRUE.

SourceFileNameLength (2 bytes): The length, in bytes, of the source file full name.

SourceFileName (variable): A variable-length buffer that contains the source file full name, with

length indicated by SourceFileNameLength.<63>

2.2.32.4.2 SRV_HASH_RETRIEVE_HASH_BASED

122 / 464

[MS-SMB2-Diff] - v20190923
Server Message Block (SMB) Protocol Versions 2 and 3
Copyright © 2019 Microsoft Corporation
Release: September 23, 2019

If the HashRetrievalType in the request is SRV_HASH_RETRIEVE_HASH_BASED the
SRV_READ_HASH response MUST be formatted as follows:

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

Offset

...

BufferLength

Reserved

Buffer (variable)

...

Offset (8 bytes): The offset, in bytes, from the beginning of the Content Information File to the

portion retrieved. This is equal to the Offset field in the SRV_READ_HASH request.

BufferLength (4 bytes): The length, in bytes, of the retrieved portion of the Content Information
File.

Reserved (4 bytes): This field MUST NOT be used and MUST be reserved. The server MUST set this
field to 0, and the client MUST ignore it on receipt.

Buffer (variable): A variable-length buffer that contains the retrieved portion of the Content

Information File, as specified in [MS-PCCRC] section 2.3.

2.2.32.4.3 SRV_HASH_RETRIEVE_FILE_BASED

This response is valid for servers that implement the SMB 3.x dialect family. If the
HashRetrievalType in the request is SRV_HASH_RETRIEVE_FILE_BASED, the SRV_READ_HASH
response MUST be formatted as follows:

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

FileDataOffset

...

FileDataLength

...

BufferLength

Reserved

Buffer (variable)

123 / 464

[MS-SMB2-Diff] - v20190923
Server Message Block (SMB) Protocol Versions 2 and 3
Copyright © 2019 Microsoft Corporation
Release: September 23, 2019

...

FileDataOffset (8 bytes): File data offset corresponding to the start of the hash data returned.

FileDataLength (8 bytes): The length, in bytes, starting from the FileDataOffset that is covered by
the hash data returned.

BufferLength (4 bytes): The length, in bytes, of the retrieved portion of the Content Information
File.

Reserved (4 bytes): This field MUST NOT be used and MUST be reserved. The server MUST set this
field to zero, and the client MUST ignore it on receipt.

Buffer (variable): A variable-length buffer that contains the retrieved portion of the Content
Information File, as specified in [MS-PCCRC] section 2.4.

2.2.32.5 NETWORK_INTERFACE_INFO Response

The NETWORK_INTERFACE_INFO is returned to the client by the server in an SMB2 IOCTL response
for FSCTL_QUERY_NETWORK_INTERFACE_INFO request. The interface structure is defined as
following.

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

Next

IfIndex

Capability

Reserved

LinkSpeed

...

SockAddr_Storage (128 bytes)

...

...

Next (4 bytes): The offset, in bytes, from the beginning of this structure to the beginning of a

subsequent 8-byte aligned network interface. This field MUST be set to zero if there are no
subsequent network interfaces.

IfIndex (4 bytes): This field specifies the network interface index.

Capability (4 bytes): This field specifies the capabilities of the network interface. This field MUST be
constructed using zero or more of the following values:

124 / 464

[MS-SMB2-Diff] - v20190923
Server Message Block (SMB) Protocol Versions 2 and 3
Copyright © 2019 Microsoft Corporation
Release: September 23, 2019

Value Meaning

RSS_CAPABLE

0x00000001

When set, specifies that the interface is RSS-capable.

RDMA_CAPABLE

0x00000002

When set, specifies that the interface is RDMA-capable.

Reserved (4 bytes): This field MUST be set to zero and the client MUST ignore it on receipt.

LinkSpeed (8 bytes): The field specifies the speed of the network interface in bits per second.

SockAddr_Storage (128 bytes): The field describes socket address information as specified in
section 2.2.32.5.1.

2.2.32.5.1 SOCKADDR_STORAGE

Socket Address Information is a 128-byte structure formatted as follows:

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

Family Buffer (variable)

...

Reserved (variable)

...

Family (2 bytes): Address family of the socket. This field MUST contain one of the following values:

Value Meaning

InterNetwork

0x0002

When set, indicates an IPv4 address in the socket.

InterNetworkV6

0x0017

When set, indicates an IPv6 address in the socket.

Buffer (variable): A variable-length buffer that contains the socket address information. If the value
of the field Family is 0x0002, this field MUST be interpreted as SOCKADDR_IN, specified in
2.2.32.5.1.1. Otherwise, if the value of the field Family is 0x0017, this field MUST be interpreted
as SOCKADDR_IN6, specified in 2.2.32.5.1.2.

Reserved (variable): The remaining bytes within the size of SOCKADDR_STORAGE structure (128

bytes) MUST NOT be used and MUST be reserved. The server SHOULD set this to zero, and the

client MUST ignore it on receipt.

2.2.32.5.1.1 SOCKADDR_IN

This socket address information is a 14-byte structure formatted as follows. All fields in this structure
are in network byte order.

125 / 464

[MS-SMB2-Diff] - v20190923
Server Message Block (SMB) Protocol Versions 2 and 3
Copyright © 2019 Microsoft Corporation
Release: September 23, 2019

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

Port IPv4Address

... Reserved

...

...

Port (2 bytes): This field MUST NOT be used and MUST be reserved. The server SHOULD set this
field to zero, and the client MUST ignore it on receipt.

IPv4Address (4 bytes): IPv4 address.

Reserved (8 bytes): This field MUST NOT be used and MUST be reserved. The server SHOULD set
this field to zero, and the client MUST ignore it on receipt.

2.2.32.5.1.2 SOCKADDR_IN6

This socket address information is a 26-byte structure formatted as follows. All fields in this structure
are in network byte order.

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

Port FlowInfo

... IPv6Address

...

...

...

... ScopeId

...

Port (2 bytes): This field MUST NOT be used and MUST be reserved. The server SHOULD set this
field to zero, and the client MUST ignore it on receipt.

FlowInfo (4 bytes): The server SHOULD set this field to zero, and the client MUST ignore it on

receipt.

IPv6Address (16 bytes): IPv6 address.

ScopeId (4 bytes): The server SHOULD set this field to zero, and the client MUST ignore it on

receipt.

126 / 464

[MS-SMB2-Diff] - v20190923
Server Message Block (SMB) Protocol Versions 2 and 3
Copyright © 2019 Microsoft Corporation
Release: September 23, 2019

2.2.32.6 VALIDATE_NEGOTIATE_INFO Response

The VALIDATE_NEGOTIATE_INFO response is returned to the client by the server in an SMB2 IOCTL
response for FSCTL_VALIDATE_NEGOTIATE_INFO request. The response is valid for servers which

implement the SMB 3.x dialect family, and optional for others.

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

Capabilities

Guid

...

...

...

SecurityMode Dialect

Capabilities (4 bytes): The Capabilities of the server.

Guid (16 bytes): The ServerGuid of the server.

SecurityMode (2 bytes): The SecurityMode of the server.

Dialect (2 bytes): The SMB2 dialect in use by the server on the connection.

2.2.33 (Updated Section) SMB2 QUERY_DIRECTORY Request

The SMB2 QUERY_DIRECTORY Request packet is sent by the client to obtain a directory enumeration
on a directory open. This request consists of an SMB2 header, as specified in section 2.2.1, followed
by this request structure:

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

StructureSize FileInformationClass Flags

FileIndex

FileId

...

...

...

FileNameOffset FileNameLength

OutputBufferLength

127 / 464

[MS-SMB2-Diff] - v20190923
Server Message Block (SMB) Protocol Versions 2 and 3
Copyright © 2019 Microsoft Corporation
Release: September 23, 2019

Buffer (variable)

...

StructureSize (2 bytes): The client MUST set this field to 33, indicating the size of the request
structure, not including the header. The client MUST set this field to this value regardless of how
long Buffer[] actually is in the request being sent.

FileInformationClass (1 byte): The file information class describing the format that data MUST be
returned in. Possible values are as specified in [MS-FSCC] section 2.4. This field MUST contain one
of the following values:

Value Meaning

FileDirectoryInformation

0x01

Basic information aboutof a file or directory. Basic information is defined as
the file's name, time stamp, size and attributes. File attributes are as
specified in [MS-FSCC] section 2.6.

FileFullDirectoryInformation

0x02

Full information aboutof a file or directory. Full information is defined as all
the basic information plus extended attribute size.

FileIdFullDirectoryInformation

0x26

Full information, plus volume64-bit file ID aboutof a file or directory. A
volume file ID is defined, as a number assigned by the underlying object
store that uniquely identifies a file within a volume.specified in [MS-FSCC]

section 2.1.9.

FileBothDirectoryInformation

0x03

Basic information plus extended attribute size and short name aboutof a
file or directory.

FileIdBothDirectoryInformation

0x25

FileBothDirectoryInformation plus volume64-bit file ID aboutof a file or
directory.

FileNamesInformation

0x0C

Detailed information onof the names of files and directories in a directory.

Flags (1 byte): Flags indicating how the query directory operation MUST be processed. This field
MUST be a logical OR of the following values, or zero if none are selected:

Value Meaning

SMB2_RESTART_SCANS

0x01

The server MUST restart the enumeration from the beginning as specified
in section 3.3.5.18.

SMB2_RETURN_SINGLE_ENTRY

0x02

The server MUST only return the first entry of the search results.

SMB2_INDEX_SPECIFIED

0x04

The server SHOULD<64> return entries beginning at the byte number
specified by FileIndex.

SMB2_REOPEN

0x10

The server MUST restart the enumeration from the beginning, and the
search pattern MUST be changed to the provided value.

FileIndex (4 bytes): The byte offset within the directory, indicating the position at which to resume
the enumeration. If SMB2_INDEX_SPECIFIED is set in Flags, this value MUST be supplied and is

based on the FileIndex value received in a previous enumeration response. Otherwise, it MUST
be set to zero and the server MUST ignore it.

128 / 464

[MS-SMB2-Diff] - v20190923
Server Message Block (SMB) Protocol Versions 2 and 3
Copyright © 2019 Microsoft Corporation
Release: September 23, 2019

FileId (16 bytes): An SMB2_FILEID identifier of the directory on which to perform the enumeration.
This is returned from an SMB2 Create Request to open a directory on the server.

FileNameOffset (2 bytes): The offset, in bytes, from the beginning of the SMB2 header to the
search pattern to be used for the enumeration. This field MUST be 0 if no search pattern is

provided.

FileNameLength (2 bytes): The length, in bytes, of the search pattern. This field MUST be 0 if no
search pattern is provided.

OutputBufferLength (4 bytes): The maximum number of bytes the server is allowed to return in
the SMB2 QUERY_DIRECTORY Response.

Buffer (variable): A variable-length buffer containing the Unicode search pattern for the request, as
described by the FileNameOffset and FileNameLength fields. The format, including wildcards

and other conventions for this pattern, is specified in [MS-CIFS] section 2.2.1.1.3.<65>

2.2.34 SMB2 QUERY_DIRECTORY Response

The SMB2 QUERY_DIRECTORY Response packet is sent by a server in response to an SMB2

QUERY_DIRECTORY Request (section 2.2.33). This response consists of an SMB2 header, as specified
in section 2.2.1, followed by this response structure:

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

StructureSize OutputBufferOffset

OutputBufferLength

Buffer (variable)

...

StructureSize (2 bytes): The server MUST set this field to 9, indicating the size of the request
structure, not including the header. The server MUST set this field to this value regardless of how
long Buffer[] actually is in the request.

OutputBufferOffset (2 bytes): The offset, in bytes, from the beginning of the SMB2 header to the

directory enumeration data being returned.

OutputBufferLength (4 bytes): The length, in bytes, of the directory enumeration being returned.

Buffer (variable): A variable-length buffer containing the directory enumeration being returned in
the response, as described by the OutputBufferOffset and OutputBufferLength. The format of
this content is as specified in [MS-FSCC] section 2.4, within the topic for the specific file
information class referenced in the SMB2 QUERY_DIRECTORY Request.

2.2.35 SMB2 CHANGE_NOTIFY Request

The SMB2 CHANGE_NOTIFY Request packet is sent by the client to request change notifications on a
directory. This request consists of an SMB2 header, as specified in section 2.2.1, followed by this
request structure:

129 / 464

[MS-SMB2-Diff] - v20190923
Server Message Block (SMB) Protocol Versions 2 and 3
Copyright © 2019 Microsoft Corporation
Release: September 23, 2019

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

StructureSize Flags

OutputBufferLength

FileId

...

...

...

CompletionFilter

Reserved

StructureSize (2 bytes): The client MUST set this field to 32, indicating the size of the request
structure, not including the header.

Flags (2 bytes): Flags indicating how the operation MUST be processed. This field MUST be either

zero or the following value:

Value Meaning

SMB2_WATCH_TREE

0x0001

The request MUST monitor changes on any file or directory contained beneath the
directory specified by FileId.

OutputBufferLength (4 bytes): The maximum number of bytes the server is allowed to return in
the SMB2 CHANGE_NOTIFY Response (section 2.2.36).

FileId (16 bytes): An SMB2_FILEID identifier of the directory to monitor for changes.

CompletionFilter (4 bytes): Specifies the types of changes to monitor. It is valid to choose multiple
trigger conditions. In this case, if any condition is met, the client is notified of the change and the
CHANGE_NOTIFY operation is completed. This field MUST be constructed using the following

values:

Value Meaning

FILE_NOTIFY_CHANGE_FILE_NAME

0x00000001

The client is notified if a file-name changes.

FILE_NOTIFY_CHANGE_DIR_NAME

0x00000002

The client is notified if a directory name changes.

FILE_NOTIFY_CHANGE_ATTRIBUTES

0x00000004

The client is notified if a file's attributes change. Possible file
attribute values are specified in [MS-FSCC] section 2.6.

FILE_NOTIFY_CHANGE_SIZE

0x00000008

The client is notified if a file's size changes.

FILE_NOTIFY_CHANGE_LAST_WRITE The client is notified if the last write time of a file changes.

130 / 464

[MS-SMB2-Diff] - v20190923
Server Message Block (SMB) Protocol Versions 2 and 3
Copyright © 2019 Microsoft Corporation
Release: September 23, 2019

Value Meaning

0x00000010

FILE_NOTIFY_CHANGE_LAST_ACCESS

0x00000020

The client is notified if the last access time of a file changes.

FILE_NOTIFY_CHANGE_CREATION

0x00000040

The client is notified if the creation time of a file changes.

FILE_NOTIFY_CHANGE_EA

0x00000080

The client is notified if a file's extended attributes (EAs) change.

FILE_NOTIFY_CHANGE_SECURITY

0x00000100

The client is notified of a file's access control list (ACL) settings
change.

FILE_NOTIFY_CHANGE_STREAM_NAME

0x00000200

The client is notified if a named stream is added to a file.

FILE_NOTIFY_CHANGE_STREAM_SIZE

0x00000400

The client is notified if the size of a named stream is changed.

FILE_NOTIFY_CHANGE_STREAM_WRITE

0x00000800

The client is notified if a named stream is modified.

Reserved (4 bytes): This field MUST NOT be used and MUST be reserved. The client MUST set this
field to 0, and the server MUST ignore it on receipt.

2.2.36 SMB2 CHANGE_NOTIFY Response

The SMB2 CHANGE_NOTIFY Response packet is sent by the server to transmit the results of a client's

SMB2 CHANGE_NOTIFY Request (section 2.2.35). This response consists of an SMB2 header, as
specified in section 2.2.1, followed by this response structure:

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

StructureSize OutputBufferOffset

OutputBufferLength

Buffer (variable)

...

StructureSize (2 bytes): The server MUST set this field to 9, indicating the size of the request
structure, not including the header. The server MUST set the field to this value regardless of how

long Buffer[] actually is in the request being sent.

OutputBufferOffset (2 bytes): The offset, in bytes, from the beginning of the SMB2 header to the

change information being returned.

OutputBufferLength (4 bytes): The length, in bytes, of the change information being returned.

Buffer (variable): A variable-length buffer containing the change information being returned in the
response, as described by the OutputBufferOffset and OutputBufferLength fields. This field is
an array of FILE_NOTIFY_INFORMATION structures, as specified in [MS-FSCC] section 2.7.1.

131 / 464

[MS-SMB2-Diff] - v20190923
Server Message Block (SMB) Protocol Versions 2 and 3
Copyright © 2019 Microsoft Corporation
Release: September 23, 2019

2.2.37 SMB2 QUERY_INFO Request

The SMB2 QUERY_INFO Request (section 2.2.37) packet is sent by a client to request information on a
file, named pipe, or underlying volume. This request consists of an SMB2 header, as specified in

section 2.2.1, followed by this request structure:

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

StructureSize InfoType FileInfoClass

OutputBufferLength

InputBufferOffset Reserved

InputBufferLength

AdditionalInformation

Flags

FileId

...

...

...

Buffer (variable)

...

StructureSize (2 bytes): The client MUST set this field to 41, indicating the size of the request
structure, not including the header. The client MUST set this field to this value regardless of how
long Buffer[] actually is in the request being sent.

InfoType (1 byte): The type of information queried. This field MUST contain one of the following
values:

Value Meaning

SMB2_0_INFO_FILE

0x01

The file information is requested.

SMB2_0_INFO_FILESYSTEM

0x02

The underlying object store information is requested.

SMB2_0_INFO_SECURITY

0x03

The security information is requested.

SMB2_0_INFO_QUOTA

0x04

The underlying object store quota information is requested.

132 / 464

[MS-SMB2-Diff] - v20190923
Server Message Block (SMB) Protocol Versions 2 and 3
Copyright © 2019 Microsoft Corporation
Release: September 23, 2019

FileInfoClass (1 byte): For file information queries, this field MUST contain one of the following
FILE_INFORMATION_CLASS values, as specified in section 3.3.5.20.1 and in [MS-FSCC] section

2.4:

▪ FileAccessInformation

▪ FileAlignmentInformation

▪ FileAllInformation

▪ FileAlternateNameInformation

▪ FileAttributeTagInformation

▪ FileBasicInformation

▪ FileCompressionInformation

▪ FileEaInformation

▪ FileFullEaInformation

▪ FileIdInformation

▪ FileInternalInformation

▪ FileModeInformation

▪ FileNetworkOpenInformation

▪ FileNormalizedNameInformation

▪ FilePipeInformation

▪ FilePipeLocalInformation

▪ FilePipeRemoteInformation

▪ FilePositionInformation

▪ FileStandardInformation

▪ FileStreamInformation

For underlying object store information queries, this field MUST contain one of the following

FS_INFORMATION_CLASS values, as specified in section 3.3.5.20.2 and in [MS-FSCC] section 2.5:

▪ FileFsAttributeInformation

▪ FileFsControlInformation

▪ FileFsDeviceInformation

▪ FileFsFullSizeInformation

▪ FileFsObjectIdInformation

▪ FileFsSectorSizeInformation

▪ FileFsSizeInformation

▪ FileFsVolumeInformation

133 / 464

[MS-SMB2-Diff] - v20190923
Server Message Block (SMB) Protocol Versions 2 and 3
Copyright © 2019 Microsoft Corporation
Release: September 23, 2019

For security queries, this field MUST be set to 0. For quota queries, this field SHOULD<66> be set
to 0.

OutputBufferLength (4 bytes): The maximum number of bytes of information the server can send
in the response.

InputBufferOffset (2 bytes): The offset, in bytes, from the beginning of the SMB2 header to the
input buffer. For quota requests, the input buffer MUST contain an SMB2_QUERY_QUOTA_INFO,
as specified in section 2.2.37.1. For FileFullEaInformation requests, the input buffer MUST contain
the user supplied EA list with zero or more FILE_GET_EA_INFORMATION structures, specified in
[MS-FSCC] section 2.4.15.1. For other information queries, this field SHOULD<67> be set to 0.

Reserved (2 bytes): This field MUST NOT be used and MUST be reserved. The client MUST set this
field to 0, and the server MUST ignore it on receipt.

InputBufferLength (4 bytes): The length of the input buffer. For quota requests, this MUST be the
length of the contained SMB2_QUERY_QUOTA_INFO embedded in the request. For
FileFullEaInformation requests, this MUST be set to the length of the user supplied EA list specified

in [MS-FSCC] section 2.4.15.1. For other information queries, this field SHOULD be set to 0 and
the server MUST ignore it on receipt.

AdditionalInformation (4 bytes): Provides additional information to the server.

If security information is being queried, this value contains a 4-byte bit field of flags indicating
what security attributes MUST be returned. For more information about security descriptors, see
SECURITY_DESCRIPTOR in [MS-DTYP].

Value Meaning

OWNER_SECURITY_INFORMATION

0x00000001

The client is querying the owner from the security descriptor of the
file or named pipe.

GROUP_SECURITY_INFORMATION

0x00000002

The client is querying the group from the security descriptor of the
file or named pipe.

DACL_SECURITY_INFORMATION

0x00000004

The client is querying the discretionary access control list from the
security descriptor of the file or named pipe.

SACL_SECURITY_INFORMATION

0x00000008

The client is querying the system access control list from the
security descriptor of the file or named pipe.

LABEL_SECURITY_INFORMATION

0x00000010

The client is querying the integrity label from the security descriptor
of the file or named pipe.

ATTRIBUTE_SECURITY_INFORMATION

0x00000020

The client is querying the resource attribute from the security

descriptor of the file or named pipe.

SCOPE_SECURITY_INFORMATION

0x00000040

The client is querying the central access policy of the resource from
the security descriptor of the file or named pipe.

BACKUP_SECURITY_INFORMATION

0x00010000

The client is querying the security descriptor information used for
backup operation.

If FileFullEaInformation is being queried and the application has not provided a list of EAs to
query, but has provided an index into the object's full extended attribute information array at
which to start the query, this field MUST contain a ULONG representation of that index. For all
other queries, this field MUST be set to 0 and the server MUST ignore it.

134 / 464

[MS-SMB2-Diff] - v20190923
Server Message Block (SMB) Protocol Versions 2 and 3
Copyright © 2019 Microsoft Corporation
Release: September 23, 2019

Flags (4 bytes): The flags MUST be set to a combination of zero or more of these bit values for a
FileFullEaInformation query.

Value Meaning

SL_RESTART_SCAN

0x00000001

Restart the scan for EAs from the beginning.

SL_RETURN_SINGLE_ENTRY

0x00000002

Return a single EA entry in the response buffer.

SL_INDEX_SPECIFIED

0x00000004

The caller has specified an EA index.

For all other queries, the client MUST set this field to 0, and the server MUST ignore it on receipt.

FileId (16 bytes): An SMB2_FILEID identifier of the file or named pipe on which to perform the
query. Queries for underlying object store or quota information are directed to the volume on

which the file resides.

Buffer (variable): A variable-length buffer containing the input buffer for the request, as described
by the InputBufferOffset and InputBufferLength fields.<68>

For quota requests, the input Buffer MUST contain an SMB2_QUERY_QUOTA_INFO, as specified in
section 2.2.37.1. For a FileFullEaInformation query, the Buffer MUST be in one of the following
formats:

▪ A zero-length buffer as indicated by an InputBufferLength that is equal to zero.

▪ A list of FILE_GET_EA_INFORMATION structures provided by the application, as specified in

[MS-FSCC] section 2.4.15.1.

2.2.37.1 SMB2_QUERY_QUOTA_INFO

The SMB2_QUERY_QUOTA_INFO packet specifies the quota information to return.

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

ReturnSingle RestartScan Reserved

SidListLength

StartSidLength

StartSidOffset

SidBuffer (variable)

...

ReturnSingle (1 byte): A Boolean value, where zero represents FALSE and nonzero represents
TRUE. If the ReturnSingle field is TRUE, the server MUST return a single value. Otherwise, the
server SHOULD return the maximum number of entries that will fit in the maximum output size
that is indicated in the request.

135 / 464

[MS-SMB2-Diff] - v20190923
Server Message Block (SMB) Protocol Versions 2 and 3
Copyright © 2019 Microsoft Corporation
Release: September 23, 2019

RestartScan (1 byte): A Boolean value, where zero represents FALSE and nonzero represents TRUE.
If RestartScan is TRUE, the quota information MUST be read from the beginning. Otherwise, the

quota information MUST be continued from the previous enumeration that was executed on this
open.

Reserved (2 bytes): This field MUST NOT be used and MUST be reserved. The client MUST set this
field to 0, and the server MUST ignore it on receipt.

SidListLength (4 bytes): The length, in bytes, of the SidBuffer when sent in format 1 as defined in
the SidBuffer field or zero in all other cases.

StartSidLength (4 bytes): The length, in bytes, of the SID, as specified in [MS-DTYP] section
2.4.2.2, when sent in format 2 as defined in the SidBuffer field, or zero in all other cases.

StartSidOffset (4 bytes): The offset, in bytes, from the start of the SidBuffer field to the SID when

sent in format 2 as defined in the SidBuffer field, or zero in all other cases.

SidBuffer (variable): If this field is empty, then SidListLength, StartSidLength and
StartSidOffset MUST each be set to zero. If the field is not empty, then it MUST contain either

one of the following two formats:

1. A list of FILE_GET_QUOTA_INFORMATION structures, as described in [MS-FSCC] section
2.4.33.1.

2. A SID.<69>

2.2.38 SMB2 QUERY_INFO Response

The SMB2 QUERY_INFO Response packet is sent by the server in response to an SMB2 QUERY_INFO
Request packet. This response consists of an SMB2 header, as specified in section 2.2.1, followed by

this response structure.

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

StructureSize OutputBufferOffset

OutputBufferLength

Buffer (variable)

...

StructureSize (2 bytes): The server MUST set this field to 9, indicating the size of the request
structure, not including the header. The server MUST set this field to this value regardless of how
long Buffer[] actually is in the request being sent.

OutputBufferOffset (2 bytes): The offset, in bytes, from the beginning of the SMB2 header to the

information being returned.

OutputBufferLength (4 bytes): The length, in bytes, of the information being returned.

Buffer (variable): A variable-length buffer that contains the information that is returned in the
response, as described by the OutputBufferOffset and OutputBufferLength fields. Buffer
format depends on InfoType and AdditionalInformation, as follows.

136 / 464

[MS-SMB2-Diff] - v20190923
Server Message Block (SMB) Protocol Versions 2 and 3
Copyright © 2019 Microsoft Corporation
Release: September 23, 2019

InfoType AdditionalInformation Buffer format specification

SMB2_0_INFO_FILE The value depends on FileInfoClass, as
specified in section 2.2.37.

See [MS-FSCC] section 2.4. For
FileFullEaInformation, the server
MUST return the list of extended
attributes (EA) that will fit in the
Buffer, beginning with the
attribute whose index is specified
by the AdditionalInformation
field of the request. The size of
the returned buffer is equal to the
size of the EA entries that are
returned.

SMB2_0_INFO_FILESYSTEM 0 See [MS-FSCC] section 2.5.

SMB2_0_INFO_SECURITY Any combination of the values:

OWNER_SECURITY_INFORMATION

GROUP_SECURITY_INFORMATION

LABEL_SECURITY_INFORMATION

DACL_SECURITY_INFORMATION

SACL_SECURITY_INFORMATION

ATTRIBUTE_SECURITY_INFORMATION

SCOPE_SECURITY_INFORMATION

BACKUP_SECURITY_INFORMATION

The security descriptor data
structure, as specified in [MS-
DTYP] section 2.4.6, populated
with the data specified by the
AdditionalInformation value.

SMB2_0_INFO_QUOTA 0 See [MS-FSCC] section 2.4.33.

2.2.39 SMB2 SET_INFO Request

The SMB2 SET_INFO Request packet is sent by a client to set information on a file or underlying object

store. This request consists of an SMB2 header, as specified in section 2.2.1, followed by this request
structure.

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

StructureSize InfoType FileInfoClass

BufferLength

BufferOffset Reserved

AdditionalInformation

FileId

...

...

...

137 / 464

[MS-SMB2-Diff] - v20190923
Server Message Block (SMB) Protocol Versions 2 and 3
Copyright © 2019 Microsoft Corporation
Release: September 23, 2019

Buffer (variable)

...

StructureSize (2 bytes): The client MUST set this field to 33, indicating the size of the request
structure, not including the header. The client MUST set this field to this value regardless of how
long Buffer[] actually is in the request being sent.

InfoType (1 byte): The type of information being set. The valid values are as follows.

Value Meaning

SMB2_0_INFO_FILE

0x01

The file information is being set.

SMB2_0_INFO_FILESYSTEM

0x02

The underlying object store information is being set.

SMB2_0_INFO_SECURITY

0x03

The security information is being set.

SMB2_0_INFO_QUOTA

0x04

The underlying object store quota information is being set.

FileInfoClass (1 byte): For setting file information, this field MUST contain one of the following
FILE_INFORMATION_CLASS values, as specified in section 3.3.5.21.1 and [MS-FSCC] section 2.4:

▪ FileAllocationInformation

▪ FileBasicInformation

▪ FileDispositionInformation

▪ FileEndOfFileInformation

▪ FileFullEaInformation

▪ FileLinkInformation

▪ FileModeInformation

▪ FilePipeInformation

▪ FilePositionInformation

▪ FileRenameInformation

▪ FileShortNameInformation

▪ FileValidDataLengthInformation

For setting underlying object store information, this field MUST contain one of the following
FS_INFORMATION_CLASS values, as specified in [MS-FSCC] section 2.5:

▪ FileFsControlInformation

▪ FileFsObjectIdInformation

For setting quota and security information, this field MUST be 0.

138 / 464

[MS-SMB2-Diff] - v20190923
Server Message Block (SMB) Protocol Versions 2 and 3
Copyright © 2019 Microsoft Corporation
Release: September 23, 2019

BufferLength (4 bytes): The length, in bytes, of the information to be set.

BufferOffset (2 bytes): The offset, in bytes, from the beginning of the SMB2 header to the

information to be set.<70>

Reserved (2 bytes): This field MUST NOT be used and MUST be reserved. The client MUST set this

field to 0, and the server MUST ignore it on receipt.

AdditionalInformation (4 bytes): Provides additional information to the server.

If security information is being set, this value MUST contain a 4-byte bit field of flags indicating
what security attributes MUST be applied. For more information about security descriptors, see
[MS-DTYP] section 2.4.6.

Value Meaning

OWNER_SECURITY_INFORMATION

0x00000001

The client is setting the owner in the security descriptor of the file
or named pipe.

GROUP_SECURITY_INFORMATION

0x00000002

The client is setting the group in the security descriptor of the file or
named pipe.

DACL_SECURITY_INFORMATION

0x00000004

The client is setting the discretionary access control list in the
security descriptor of the file or named pipe.

SACL_SECURITY_INFORMATION

0x00000008

The client is setting the system access control list in the security
descriptor of the file or named pipe.

LABEL_SECURITY_INFORMATION

0x00000010

The client is setting the integrity label in the security descriptor of
the file or named pipe.

ATTRIBUTE_SECURITY_INFORMATION

0x00000020

The client is setting the resource attribute in the security descriptor
of the file or named pipe.

SCOPE_SECURITY_INFORMATION

0x00000040

The client is setting the central access policy of the resource in the
security descriptor of the file or named pipe.

BACKUP_SECURITY_INFORMATION

0x00010000

The client is setting the backup operation information in the security
descriptor of the file or named pipe.

For all other set requests, this field MUST be 0.

FileId (16 bytes): An SMB2_FILEID identifier of the file or named pipe on which to perform the set.
Set operations for underlying object store and quota information are directed to the volume on
which the file resides.

Buffer (variable): A variable-length buffer that contains the information being set for the request, as

described by the BufferOffset and BufferLength fields. Buffer format depends on InfoType and
the AdditionalInformation, as follows.

InfoType AdditionalInformation Buffer format specification

SMB2_0_INFO_FILE 0 See [MS-FSCC] section 2.4.

SMB2_0_INFO_FILESYSTEM 0 See [MS-FSCC] section 2.5.

SMB2_0_INFO_SECURITY Any combination of the values:

OWNER_SECURITY_INFORMATION

GROUP_SECURITY_INFORMATION

The security descriptor data structure, as
specified in [MS-DTYP] section 2.4.6,
populated with the data specified by the
AdditionalInformation value.

139 / 464

[MS-SMB2-Diff] - v20190923
Server Message Block (SMB) Protocol Versions 2 and 3
Copyright © 2019 Microsoft Corporation
Release: September 23, 2019

InfoType AdditionalInformation Buffer format specification

LABEL_SECURITY_INFORMATION

DACL_SECURITY_INFORMATION

SACL_SECURITY_INFORMATION

SMB2_0_INFO_QUOTA 0 See [MS-FSCC] section 2.4.33.

2.2.40 SMB2 SET_INFO Response

The SMB2 SET_INFO Response packet is sent by the server in response to an SMB2 SET_INFO
Request (section 2.2.39) to notify the client that its request has been successfully processed. This
response consists of an SMB2 header, as specified in section 2.2.1, followed by this response
structure:

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

StructureSize

StructureSize (2 bytes): The server MUST set this field to 2, indicating the size of the request
structure, not including the header.

2.2.41 SMB2 TRANSFORM_HEADER

The SMB2 TRANSFORM_HEADER is used by the client or server when sending encrypted messages.
The SMB2 TRANSFORM_HEADER is only valid for the SMB 3.x dialect family.

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

ProtocolId

Signature

...

...

...

Nonce

...

...

...

OriginalMessageSize

140 / 464

[MS-SMB2-Diff] - v20190923
Server Message Block (SMB) Protocol Versions 2 and 3
Copyright © 2019 Microsoft Corporation
Release: September 23, 2019

Reserved Flags/EncryptionAlgorithm

SessionId

...

ProtocolId (4 bytes): The protocol identifier. The value MUST be set to 0x424D53FD, also
represented as (in network order) 0xFD, 'S', 'M', and 'B'.

Signature (16 bytes): The 16-byte signature of the encrypted message generated by using

Session.EncryptionKey.

Nonce (16 bytes): An implementation-specific value assigned for every encrypted message. This
MUST NOT be reused for all encrypted messages within a session.

If the AES-128-CCM cipher is used, Nonce MUST be interpreted as a structure, as follows:

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

AES128CCM_Nonce

...

... Reserved

...

AES128CCM_Nonce (11 bytes): An implementation-specific value assigned for every encrypted
message. This MUST NOT be reused for all encrypted messages within a session.

Reserved (5 bytes): The sender SHOULD<71> set this field to 0.

If the AES-128-GCM cipher is used, Nonce MUST be interpreted as a structure, as follows:

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

AES128GCM_Nonce

...

...

Reserved

AES128GCM_Nonce (12 bytes): An implementation-specific value assigned for every encrypted
message. This MUST NOT be reused for all encrypted messages within a session.

Reserved (4 bytes): The sender MUST set this field to 0.

OriginalMessageSize (4 bytes): The size, in bytes, of the SMB2 message.

141 / 464

[MS-SMB2-Diff] - v20190923
Server Message Block (SMB) Protocol Versions 2 and 3
Copyright © 2019 Microsoft Corporation
Release: September 23, 2019

Reserved (2 bytes): This field MUST NOT be used and MUST be reserved. The client MUST set this to
zero, and the server MUST ignore it on receipt.

Flags/EncryptionAlgorithm (2 bytes): This field is interpreted in different ways depending on the
SMB2 dialect.

In the SMB 3.1.1 dialect, this field is interpreted as the Flags field, which indicates how the SMB2
message was transformed. This field MUST be set to one of the following values:

Value Meaning

Encrypted

0x0001

The message is encrypted using the cipher that was negotiated for this connection.

In the SMB 3.0 and SMB 3.0.2 dialects, this field is interpreted as the EncryptionAlgorithm field,
which contains the algorithm used for encrypting the SMB2 message. This field MUST be set to
one of the following values:

Value Meaning

SMB2_ENCRYPTION_AES128_CCM

0x0001

The message is encrypted using the AES128 CCM algorithm.

SessionId (8 bytes): Uniquely identifies the established session for the command.

2.2.42 SMB2 COMPRESSION_TRANSFORM_HEADER

The SMB2 COMPRESSION_TRANSFORM_HEADER is used by the client or server when sending
compressed messages. This optional header is only valid for the SMB 3.1.1 dialect<72>.

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

ProtocolId

OriginalCompressedSegmentSize

CompressionAlgorithm Reserved

Offset

ProtocolId (4 bytes): The protocol identifier. The value MUST be set to 0x424D53FC, also

represented as (in network order) 0xFC, 'S', 'M', and 'B'.

OriginalCompressedSegmentSize (4 bytes): The size, in bytes, of the uncompressed data
segment.

CompressionAlgorithm (2 bytes): This field MUST contain one of the algorithms used to compress
the SMB2 message as specified in the CompressionAlgorithms field of section 2.2.3.1.3, except
“NONE”.

Reserved (2 bytes): This field MUST NOT be used and MUST be reserved. The sender MUST set this

to 0, and the receiver MUST ignore it.

Offset (4 bytes): The offset, in bytes, from the end of this structure to the start of compressed data
segment.

142 / 464

[MS-SMB2-Diff] - v20190923
Server Message Block (SMB) Protocol Versions 2 and 3
Copyright © 2019 Microsoft Corporation
Release: September 23, 2019

3 Protocol Details

3.1 Common Details

3.1.1 Abstract Data Model

This section describes a conceptual model of possible data organization that an implementation
maintains to participate in this protocol. The described organization is provided to facilitate the
explanation of how the protocol behaves. This document does not mandate that implementations

adhere to this model as long as their external behavior is consistent with what is described in this
document.

3.1.1.1 Global

The following global data is required by both the client and server:

RequireMessageSigning: A Boolean that, if set, indicates that this node requires that messages
MUST be signed if the message is sent with a user security context that is neither anonymous nor
guest. If not set, this node does not require that any messages be signed, but can still choose to do so
if the other node requires it.

IsEncryptionSupported: A Boolean; if set, indicates that encryption is supported by the node.

IsCompressionSupported: A Boolean; if set, indicates that compression is supported by the node.

3.1.2 Timers

There are no timers common to both client and server.

3.1.3 Initialization

The value of RequireMessageSigning MUST be set based on system configuration, which is
implementation-dependent.<73>

IsEncryptionSupported MUST be set in an implementation-specific manner.<74>

IsCompressionSupported MUST be set in an implementation-specific manner.<75>

3.1.4 Higher-Layer Triggered Events

3.1.4.1 Signing An Outgoing Message

If the client or server sending the message requires that the message be signed, it provides the
message length, the buffer containing the message, and the key to use for signing. The following
steps describe the signing process:

1. The sender MUST zero out the 16-byte signature field in the SMB2 Header of the message to be
sent prior to generating the signature.

2. If Connection.Dialect belongs to the SMB 3.x dialect family, the sender MUST compute a 16-

byte hash using AES-128-CMAC over the entire message, beginning with the SMB2 Header from
step 1, and using the key provided. The AES-128-CMAC is specified in [RFC4493]. If the message
is part of a compounded chain, any padding at the end of the message MUST be used in the hash
computation. The sender MUST copy the 16-byte hash into the signature field of the SMB2 header.

143 / 464

[MS-SMB2-Diff] - v20190923
Server Message Block (SMB) Protocol Versions 2 and 3
Copyright © 2019 Microsoft Corporation
Release: September 23, 2019

3. If Connection.Dialect is "2.0.2" or "2.1", the sender MUST compute a 32-byte hash using HMAC-
SHA256 over the entire message, beginning with the SMB2 Header from step 1, and using the key

provided. The HMAC-SHA256 is specified in [FIPS180-4] and [RFC2104]. If the message is part of
a compounded chain, any padding at the end of the message MUST be used in the hash

computation. The first 16 bytes (the high-order portion) of the hash MUST be copied (beginning
with the first, most significant, byte) into the 16-byte signature field of the SMB2 Header.

Determining when a client will sign an outgoing message is specified in 3.2.4.1.1, and determining
when a server will sign an outgoing message is specified in 3.3.4.1.1.

3.1.4.2 Generating Cryptographic Keys

This optional interface is applicable only for the SMB 3.x dialect family.

When cryptographic keys are to be generated by processing as specified in sections 3.2.5.3 and
3.3.5.5, the Key Derivation specification in [SP800-108] is used with the following inputs:

▪ The key to be used for key derivation.

▪ The string to be used as label.

▪ The length of the label string.

▪ The string to be used as the context.

▪ The length of the context string.

The cryptographic keys MUST be generated using the KDF algorithm in Counter Mode, as specified in
[SP800-108] section 5.1, with 'r' value of 32 and 'L' value of 128 and by providing the inputs
mentioned above. The PRF used in the key derivation MUST be HMAC-SHA256.

3.1.4.3 Encrypting the Message

This optional interface is applicable only for the SMB 3.x dialect family.<76>

If the sender requires the message to be both encrypted and compressed, the sender MUST compress
the message first as specified in section 3.1.4.4 and then encrypt the compressed message.

The sender MUST construct the SMB2 TRANSFORM_HEADER specified in section 2.2.41 as follows:

▪ OriginalMessageSize is set to the size of the SMB2 message being sent.

▪ SessionId is set to Session.SessionId.

▪ EncryptionAlgorithm/Flags is set to 0x0001.

▪ Nonce is set to a newly generated implementation-specific value that is not used for any other
encrypted message within the session.

▪ Signature is set to a value generated using either the AES-128-CCM or AES-128-GCM algorithm

as specified in [RFC5084] with the following input:

▪ Nonce.AES128CCM_Nonce or Nonce.AES128GCM_Nonce based on the cipher specified by
Connection.CipherId.

▪ The SMB2 TRANSFORM_HEADER, excluding the ProtocolId and Signature fields, as the
optional authenticated data.

▪ The SMB2 message, including the header and the payload, as the data to be signed.

144 / 464

[MS-SMB2-Diff] - v20190923
Server Message Block (SMB) Protocol Versions 2 and 3
Copyright © 2019 Microsoft Corporation
Release: September 23, 2019

▪ Session.EncryptionKey as the key to be used for signing.

The sender MUST encrypt the SMB2 message using Session.EncryptionKey. If Connection.Dialect

is "3.1.1", then the cipher specified by Connection.CipherId is used. Otherwise, AES-128-CCM is
used to encrypt, as specified in [RFC4309]. The sender MUST append the encrypted SMB2 message to

the SMB2 TRANSFORM_HEADER and send it to the receiver.

3.1.4.4 (Updated Section) Compressing the Message

If IsCompressionSupported is FALSE or Connection.CompressionIds is empty, the sender MUST

skip the processing in this section.

The sender SHOULD<77> construct the SMB2 COMPRESSION_TRANSFORM_HEADER specified in
section 2.2.42 as follows:

▪ CompressionAlgorithm MUST be set to one from Connection.CompressionIds.

▪ The sender MAY choose to leave the leading portion of the SMB2 message uncompressed and

compressing only the trailing portion.<78>

▪ The sender MUST perform the following:

▪ Set Offset toIf the entire SMB2 message is being compressed, then set Offset to zero;
otherwise, set Offset to the length, in bytes, if any, of the uncompressed part of the message.
Otherwise, set Offset to zero.

▪ Set OriginalCompressedSegmentSize to the uncompressed length, in bytes, of the portion
of the message that is being compressed.
▪ Assemble the outgoing message as a concatenation of the SMB2

COMPRESSION_TRANSFORM_HEADER followed by the uncompressed portion of the

message followed by the compressed payload.

The sender MUST compress the data using the CompressionAlgorithm as specified in [MS-XCA]
section 2.

If the size of the resulting SMB2 messagecompressed data is less than
OriginalCompressedSegmentSize, the sender MUST perform the following:

▪ If Offset is zero, the sender MUST replace the SMB2 message with the concatenated SMB2

COMPRESSION_TRANSFORM_HEADER and compressed followed by the compressed SMB2
message. Otherwise, the sender MUST replace the portion of the SMB2 message. selected for
compression with the compressed part and prepend the SMB2 message with the SMB2
COMPRESSION_TRANSFORM_HEADER.

Otherwise, the uncompressed SMB2 message without the SMB2 COMPRESSION_TRANSFORM_HEADER
is used.

3.1.5 Processing Events and Sequencing Rules

3.1.5.1 Verifying an Incoming Message

If a client or server requires verification of a signed message, it provides the message length, the
buffer containing the message, and the key to verify the signature. The following steps describe how
the signature MUST be verified:

1. The receiver MUST save the 16-byte signature from the Signature field in the SMB2 Header for
use in step 5.

145 / 464

[MS-SMB2-Diff] - v20190923
Server Message Block (SMB) Protocol Versions 2 and 3
Copyright © 2019 Microsoft Corporation
Release: September 23, 2019

2. The receiver MUST zero out the 16-byte signature field in the SMB2 Header of the incoming
message.

3. If Session.Connection.Dialect belongs to the SMB 3.x dialect family, the receiver MUST
compute a 16-byte hash by using AES-128-CMAC over the entire message, beginning with the

SMB2 Header from step 2, and using the key provided. The AES-128-CMAC is specified in
[RFC4493]. If the message is part of a compounded chain, any padding at the end of the message
MUST be used in the hash computation.

4. If Session.Connection.Dialect is "2.0.2" or "2.1", the receiver MUST compute a 32-byte hash by
using HMAC-SHA256 over the entire message, beginning with the SMB2 Header from step 2, and
using the key provided. The HMAC-SHA256 is specified in [FIPS180-4] and [RFC2104]. If the
message is part of a compounded chain, any padding at the end of the message MUST be used in

the hash computation.

5. If the first 16 bytes (the high-order portion) of the computed signature from step 3 or step 4
matches the saved signature from step 1, the message is signed correctly.

Determining when a client will verify a signature and the action taken on the result of verification is
specified in section 3.2.5.1.3. Determining when a server will verify a signature and the action taken
on the result of verification is specified in section 3.3.5.2.4.

3.1.5.2 Calculating the CreditCharge

The CreditCharge of an SMB2 operation is computed from the payload size (the size of the data within
the variable-length field of the request) or the maximum size of the response.

 CreditCharge = (max(SendPayloadSize, Expected ResponsePayloadSize) – 1) / 65536 + 1

3.1.6 Timer Events

There are no timers common to both client and server.

3.1.7 Other Local Events

There are no local events common to both client and server.

3.2 Client Details

3.2.1 Abstract Data Model

This document specifies a conceptual model of possible data organization that an implementation
maintains to participate in this protocol. The described organization is provided to explain how the
protocol behaves. This document does not mandate that implementations adhere to this model as long
as their external behavior is consistent with what is described in this document.

3.2.1.1 Global

The client MUST implement the following:

ConnectionTable: A table of active SMB2 transport connections, as specified in section 3.2.1.2, that
are established to remote servers, indexed by the Connection.ServerName.

If a client implements the SMB 2.1 dialect or SMB 3.x dialect family, it MUST also implement the

following:

146 / 464

[MS-SMB2-Diff] - v20190923
Server Message Block (SMB) Protocol Versions 2 and 3
Copyright © 2019 Microsoft Corporation
Release: September 23, 2019

GlobalFileTable: A table of opened files, as specified in section 3.2.1.5, indexed by name, as
specified in section 3.2.4.3, and also indexed by File.LeaseKey.

ClientGuid: A global identifier for this client.

If the client implements the SMB 3.x dialect family, it MUST also implement the following:

MaxDialect: The highest SMB2 dialect that the client implements. It MUST take the format of dialect
values as specified in section 2.2.3.

RequireSecureNegotiate: A Boolean that, if set, indicates that the client requires validation of an
SMB2 NEGOTIATE request.

ServerList: A list of server entries, as specified in section 3.2.1.9, indexed by Server.ServerName.

If the client implements the SMB 3.1.1 dialect, it also implements the following:

CompressAllRequests: A Boolean that, if set, empowers the client to compress all requests.

3.2.1.2 (Updated Section) Per SMB2 Transport Connection

The client MUST implement the following:

Connection.SessionTable: A table of authenticated sessions, as specified in section 3.2.1.3, that the

client has established on this SMB2 transport connection. The table MUST allow lookup by both
Session.SessionId and by the security context of the user that established the connection.

Connection.PreauthSessionTable: A table of sessions that have not completed authentication, as
specified in section 3.2.1.3. The table MUST allow lookup by Session.SessionId.

Connection.OutstandingRequests: A table of requests, as specified in section 3.2.1.7, that have
been issued on this connection and are awaiting a response. The table MUST allow lookup by
Request.CancelId and by MessageId, and each request MUST store the time at which the

request was sent.

Connection.SequenceWindow: A table of available sequence numbers for sending requests to the
server, as specified in section 3.2.4.1.6.

Connection.GSSNegotiateToken: A byte array containing the token received during a negotiation
and remembered for authentication.

Connection.MaxTransactSize: The maximum buffer size, in bytes, that the server will accept on this

connection for QUERY_INFO, QUERY_DIRECTORY, SET_INFO and CHANGE_NOTIFY operations.
This field is applicable only for buffers sent by the client in SET_INFO requests, or returned from
the server in QUERY_INFO, QUERY_DIRECTORY, and CHANGE_NOTIFY responses.<79>

Connection.MaxReadSize: The maximum read size, in bytes, that the server will accept in an SMB2
READ Request on this connection.

Connection.MaxWriteSize: The maximum write size, in bytes, that the server will accept in an SMB2
WRITE Request on this connection.

Connection.ServerGuid: A globally unique identifier that is generated by the remote server to
uniquely identify the remote server. This field MUST NOT be used by a client as a secure method
of identifying a server.

Connection.RequireSigning: A Boolean indicating whether the server requires requests/responses
on this connection to be signed.

Connection.ServerName: A null-terminated Unicode UTF-16 fully qualified domain name, a NetBIOS
name, or an IP address of the server machine.

147 / 464

[MS-SMB2-Diff] - v20190923
Server Message Block (SMB) Protocol Versions 2 and 3
Copyright © 2019 Microsoft Corporation
Release: September 23, 2019

If the client implements the SMB 2.1 dialect or SMB 3.x dialect family, it MUST also implement the
following:

▪ Connection.Dialect: The dialect of SMB2 negotiated with the server. This value MUST be
"2.0.2", "2.1", "3.0", "3.0.2", "3.1.1", or "Unknown". For the purpose of generalization in the client

processing rules, the condition that Connection.Dialect is equal to "3.0", "3.0.2", or "3.1.1" is
referred to as "Connection.Dialect belongs to the SMB 3.x dialect family".

▪ Connection.SupportsFileLeasing: A Boolean indicating whether the server supports file leasing
functionality.

▪ Connection.SupportsMultiCredit: A Boolean indicating whether the server supports multi-credit
operations.

▪ Connection.ClientGuid: A GUID used to identify the client.

If the client implements the SMB 3.x dialect family, it MUST also implement the following:

▪ Connection.SupportsDirectoryLeasing: A Boolean indicating whether the server supports

directory leasing.

▪ Connection.SupportsMultiChannel: A Boolean indicating whether the server supports
establishing multiple channels for sessions.

▪ Connection.SupportsPersistentHandles: A Boolean indicating whether the server supports

persistent handles.

▪ Connection.SupportsEncryption: A Boolean indicating whether the SMB2 server supports
encryption.

▪ Connection.ClientCapabilities: The capabilities sent by the client in the SMB2 NEGOTIATE
Request on this connection, in a form that MUST follow the syntax as specified in section 2.2.3.

▪ Connection.ServerCapabilities: The capabilities received from the server in the SMB2
NEGOTIATE Response on this connection, in a form that MUST follow the syntax as specified in

section 2.2.4.

▪ Connection.ClientSecurityMode: The security mode sent by the client in the SMB2 NEGOTIATE
request on this connection, in a form that MUST follow the syntax as specified in section 2.2.3.

▪ Connection.ServerSecurityMode: The security mode received from the server in the SMB2
NEGOTIATE response on this connection, in a form that MUST follow the syntax as specified in
section 2.2.4.

▪ Connection.Server: A reference to the server entry to which the connection is established.

If the client implements the SMB 3.1.1 dialect, it MUST also implement the following:

▪ Connection.PreauthIntegrityHashId: The ID of the preauthentication integrity hash function
that was negotiated for this connection.

▪ Connection.PreauthIntegrityHashValue: The preauthentication integrity hash value that was
computed for the exchange of SMB2 NEGOTIATE request and response messages on this
connection.

▪ Connection.CipherId: The ID of the cipher that was negotiated for this connection.

▪ Connection.CompressionIds: A list of compression algorithm identifiers, if any, used for this
connection. Valid values are specified in section 2.2.3.1.3.

148 / 464

[MS-SMB2-Diff] - v20190923
Server Message Block (SMB) Protocol Versions 2 and 3
Copyright © 2019 Microsoft Corporation
Release: September 23, 2019

3.2.1.3 Per Session

The client MUST implement the following:

Session.SessionId: An 8-byte identifier returned by the server to identify this session on this SMB2

transport connection.

Session.TreeConnectTable: A table of tree connects, as specified in section 3.2.1.4. The table MUST
allow lookup by both TreeConnect.TreeConnectId and by share name.

Session.SessionKey: The first 16 bytes of the cryptographic key for this authenticated context. If the
cryptographic key is less than 16 bytes, it is right-padded with zero bytes.

Session.SigningRequired: A Boolean that, if set, indicates that all of the messages for this session
MUST be signed.

Session.Connection: A reference to the connection on which this session was established.

Session.UserCredentials: An opaque implementation-specific entity that identifies the credentials

that were used to authenticate to the server.

Session.OpenTable: A table of opens, as specified in section 3.2.1.6. The table MUST allow lookup
by either file name or by Open.FileId.

If the client implements the SMB 3.x dialect family, it MUST also implement the following:

Session.ChannelList: A list of channels, as specified in section 3.2.1.8.

Session.ChannelSequence: A 16-bit identifier incremented on a network disconnect that indicates to
the server the client's Channel change.

Session.EncryptData: A Boolean that, if set, indicates that all messages for this session MUST be
encrypted.

Session.EncryptionKey: A 128-bit key used for encrypting the messages sent by the client.

Session.DecryptionKey: A 128-bit key used for decrypting the messages received from the server.

Session.SigningKey: A 128-bit key used for signing the SMB2 messages.

Session.ApplicationKey: A 128-bit key, for the authenticated context, that is queried by the higher-
layer applications.

If the client implements the SMB 3.1.1 dialect, it MUST also implement the following:

Session.PreauthIntegrityHashValue: The preauthentication integrity hash value that was
computed for the exchange of SMB2 SESSION_SETUP request and response messages for this
session.

3.2.1.4 Per Tree Connect

The client MUST implement the following:

TreeConnect.ShareName: The share name corresponding to this tree connect.

TreeConnect.TreeConnectId: A 4-byte identifier returned by the server to identify this tree connect.

TreeConnect.Session: A reference to the session on which this tree connect was established.

TreeConnect.IsDfsShare: A Boolean that, if set, indicates that the tree connect was established to a
DFS share.

149 / 464

[MS-SMB2-Diff] - v20190923
Server Message Block (SMB) Protocol Versions 2 and 3
Copyright © 2019 Microsoft Corporation
Release: September 23, 2019

If the client implements the SMB 3.x dialect family, the client MUST also implement the following:

TreeConnect.IsCAShare: A Boolean that, if set, indicates that the tree connect was established on a

continuously available share.

TreeConnect.EncryptData: A Boolean that, if set, indicates that the server requires encrypted

messages for accessing the share associated with this tree connect.

TreeConnect.IsScaleoutShare: A Boolean that, if set, indicates that the tree connect was
established on a share that has the SMB2_SHARE_CAP_SCALEOUT capability set.

3.2.1.5 Per Open File

If the client implements the SMB 2.1 dialect or SMB 3.x dialect family, then for each opened file
(distinguished by name, as specified in section 3.2.4.3), the client MUST implement the following:

▪ File.OpenTable: A table of Opens to this file.

▪ File.LeaseKey: A 128-bit key generated by the client, which uniquely identifies this file's entry in
the GlobalFileTable.

▪ File.LeaseState: The lease level state granted for this file by the server as described in

2.2.13.2.8.

A lease state containing SMB2_LEASE_WRITE_CACHING implies that the client has exclusive
access to the file and it can choose to cache writes to the file. The client can also choose to cache
byte-range locks.

A lease state containing SMB2_LEASE_READ_CACHING implies there might be multiple readers of
the file, and the client can choose to satisfy reads from its cache. The client MUST send all writes
to the server.

A lease state containing SMB2_LEASE_HANDLE_CACHING implies that the client can choose to
keep open handles to the file even after the application that opened the file has closed its handles

or has ended.

If the client implements the SMB 3.x dialect family, the client MUST implement the following:

▪ File.LeaseEpoch: A sequence number stored by the client to track lease state changes.

3.2.1.6 (Updated Section) Per Application Open of a File

The client MUST implement the following:

Open.FileId: The SMB2_FILEID, as specified in section 2.2.14.1, returned by the server for this open.

Open.TreeConnect: A reference to the tree connect on which this Open was established.

Open.Connection: A reference to the SMB2 transport connection on which this open was established.

Open.Session: A reference to the authenticated session, as specified in section 3.2.1.3, over which
this open was performed.

Open.OplockLevel: The current oplock level for this open.

Open.Durable: A Boolean that indicates whether this open is setup for reestablishment after a
disconnect.

Open.FileName: A Unicode string with the name of the file.

150 / 464

[MS-SMB2-Diff] - v20190923
Server Message Block (SMB) Protocol Versions 2 and 3
Copyright © 2019 Microsoft Corporation
Release: September 23, 2019

Open.ResilientHandle: A Boolean that indicates whether resiliency was granted for this open by the
server.

Open.LastDisconnectTime: The time at which the last network disconnect occurred on the
connection used by this open.

Open.ResilientTimeout: The minimum time (in milliseconds) for which the server will hold this open,
while waiting for the client to reestablish the open after a network disconnect.

Open.OperationBuckets: An array of 64 entries used to maintain information about outstanding lock
and unlock operations performed on resilient Opens. Each entry MUST be assigned an index from
the range of 1 to 64. Each entry is a structure with the following fields:

▪ SequenceNumber: A 4-bit integer modulo 16.

▪ Free: A Boolean value of FALSE indicates that there is an outstanding lock or unlock request using

this index value and SequenceNumber combination.

Open.DesiredAccess: The access mode requested by the client for this Open, in the format specified

in section 2.2.13.1.

Open.ShareMode: The sharing mode requested by the client for this Open, in the format specified in
section 2.2.13.

Open.CreateOptions: The create options requested by the client for this Open, in the format

specified in section 2.2.13.

Open.FileAttributes: The file attributes used by the client for this Open, in the format specified in
section 2.2.13.

Open.CreateDisposition: The create disposition requested by the client for this Open, in the format
specified in section 2.2.13.

If the client implements the SMB 3.x dialect family, the client MUST implement the following:

Open.DurableTimeout: The minimum time (in milliseconds) for which the server will hold this

durable or persistent open, while waiting for the client to re-establish the open after a network
disconnect.

Open.OutstandingRequests: A table of requests, as specified in section 3.2.1.7, that have been
issued using this open and are awaiting a response. The table MUST allow lookup by
Request.CancelId and by MessageId.

Open.CreateGuid: A unique identifier which identifies the Open.

Open.IsPersistent: A Boolean that indicates whether this open is persistent.

Open.DesiredAccess: The access mode requested by the client while opening the file, in the format
specified in section 2.2.13.1.

Open.ShareMode: The sharing mode requested by the client while opening the file, in the format

specified in section 2.2.13.

Open.CreateOptions: The create options requested by the client while opening the file, in the format
specified in section 2.2.13.

Open.FileAttributes: The file attributes used by the client for opening the file, in the format specified
in section 2.2.13.

Open.CreateDisposition: The create disposition requested by the client for opening the file, in the
format specified in section 2.2.13.

151 / 464

[MS-SMB2-Diff] - v20190923
Server Message Block (SMB) Protocol Versions 2 and 3
Copyright © 2019 Microsoft Corporation
Release: September 23, 2019

3.2.1.7 Per Pending Request

For each request that was sent to the server and is awaiting a response, the client MUST implement
the following:

Request.CancelId: An implementation-dependent identifier generated by the client to support
cancellation of pending requests that are sent to the server. The identifier MUST uniquely identify
the request among all requests sent by the client to the server.

Request.AsyncId: An identifier generated by the server and sent to the client in an asynchronous
interim response.

Request.Message: The contents of the request sent to the server.

Request.Timestamp: The time at which the request was sent to the server.

3.2.1.8 Per Channel

If the client implements SMB 3.x dialect family, the client MUST implement the following:

Channel.SigningKey: A 128-bit key used for signing the SMB2 messages on this channel.

Channel.Connection: A reference to the connection on which this channel was established.

3.2.1.9 (Updated Section) Per Server

The client MUST implement the following:

▪ ServerGUID: A globally unique identifier (GUID) that is generated by the remote server to

uniquely identify the remote server.

▪ DialectRevision: Preferred dialect between client and server.

▪ Capabilities: The capabilities received from the server in the SMB2 NEGOTIATE response, in a

form that MUST follow the syntax as specified in section 2.2.4.

▪ SecurityMode: The security mode received from the server in the SMB2 NEGOTIATE response, in
a form that MUST follow the syntax as specified in section 2.2.4.

▪ AddressList: A list of IPv4 and IPv6 addresses hosted on the server.

▪ ServerName: A Unicode UTF-16 fully qualified domain name, a NetBIOS name, or an IP address
of the server machine.

3.2.2 Timers

3.2.2.1 Request Expiration Timer

This timer optionally regulates the amount of time the client waits for a response from the server

before failing the request and disconnecting the connection. The client MAY<80> choose to implement
this timer.

3.2.2.2 Idle Connection Timer

The client SHOULD scan existing connections on a periodic basis, and disconnect connections on which
no opens exist and no operations have been issued within an implementation-specific<81> time-out.

152 / 464

[MS-SMB2-Diff] - v20190923
Server Message Block (SMB) Protocol Versions 2 and 3
Copyright © 2019 Microsoft Corporation
Release: September 23, 2019

3.2.2.3 Network Interface Information Timer

The client SHOULD request the server’s network interface information on a periodic basis within an
implementation-specific<82> time-out.

3.2.3 Initialization

ConnectionTable: MUST be set to an empty table.

GlobalFileTable: If implemented, MUST be set to an empty table.

ClientGuid: If implemented, MUST be set to a newly generated GUID.

If the client implements SMB 3.x dialect family:

MaxDialect: MUST be set to the highest SMB2 dialect that the client implements.

RequireSecureNegotiate: MUST be set based on the local configuration policy.<83>

ServerList: MUST be set to empty.

If the client implements the SMB 3.1.1 dialect:

CompressAllRequests MUST be set based on the local configuration policy.<84>

3.2.4 Higher-Layer Triggered Events

The SMB2 client protocol is initiated and subsequently driven by a series of higher-layer triggered
events in the following categories:

▪ Initiating a connection to a remote share

▪ Opening a file, named pipe, or directory on a remote share

▪ Accessing a file, named pipe, or directory on a remote share (reading, writing, locking, unlocking,
handling IOCTL requests, querying or applying attributes, and so on)

▪ Closing a file, named pipe, or directory on a remote share

▪ Closing a connection to a remote share

▪ Required actions for sending any outgoing message

▪ Requests for the session key for authenticated sessions

The following sections provide details on these events.

3.2.4.1 Sending Any Outgoing Message

Unless specifically noted in a subsequent section, the following logic MUST be applied to any request

message being sent from the client to the server. After sending the request to the server, if the client
generates a CancelId for the request as specified in section 3.2.4.1.3, it is returned to the calling
application.

If Connection.Dialect belongs to the SMB 3.x dialect family and if
Connection.SupportsMultiChannel or Connection.SupportsPersistentHandles is TRUE, the
client MUST set ChannelSequence in the SMB2 header to Session.ChannelSequence.

153 / 464

[MS-SMB2-Diff] - v20190923
Server Message Block (SMB) Protocol Versions 2 and 3
Copyright © 2019 Microsoft Corporation
Release: September 23, 2019

If the Connection is over Direct TCP and the length of the message is greater than 16777215, the
Client MUST NOT send the message and an implementation-specific local error MUST be returned to

the caller.

If the Connection is over NetBIOS over TCP and the length of the message is greater than 131071,

the Client MUST NOT send the message and an implementation-specific local error MUST be returned
to the caller.

3.2.4.1.1 Signing the Message

The client MUST sign the message under the following conditions:

▪ If the request message being sent contains a nonzero value in the SessionId field, the session
identified by the SessionId has Session.SigningRequired equal to TRUE and either the request

is a TREE_CONNECT request or the tree connection identified by the TreeId field has
TreeConnect.EncryptData equal to FALSE.

▪ If Connection.Dialect is "3.1.1" and the message being sent is a TREE_CONNECT Request and

the session identified by SessionId has Session.EncryptData equal to FALSE.

If Session.SigningRequired is FALSE, the client MAY<85> sign the request.

If the client implements the SMB 3.x dialect family, and if the request is for session set up, the client

MUST use Session.SigningKey, and for all other requests the client MUST provide
Channel.SigningKey by looking up the Channel in Session.ChannelList, where the connection
matches the Channel.Connection. Otherwise, the client MUST use Session.SessionKey for signing
the request. The client provides the key for signing, the length of the request, and the request itself,
and calculates the signature as specified in section 3.1.4.1. If the client signs the request, it MUST set
the SMB2_FLAGS_SIGNED bit in the Flags field of the SMB2 header. If the client encrypts the
message, as specified in section 3.1.4.3, then the client MUST set the Signature field of the SMB2

header to zero.

3.2.4.1.2 Requesting Credits from the Server

The number of outstanding simultaneous requests that the client can have on a particular connection
is determined by the number of credits granted to the client by the server. To maintain its current
number of credits, the client MUST set CreditRequest to the number of credits that it will consume in
sending this request, as specified in sections 3.2.4.1.5 and 3.2.4.1.6. To increase or decrease this

number, the client MUST request the server to grant more or fewer credits than will be consumed by
the current request. The client MUST NOT decrease its credits to zero, and SHOULD<86>request a
sufficient number of credits to support implementation-defined local requirements.

Management of credits is initiated by the client and controlled by the server. Specific mechanisms for
credit management are implementation defined. <87>

3.2.4.1.3 Associating the Message with a MessageId

Any message sent from the client to the server MUST have a valid MessageId placed in the SMB2
header.

For any message other than SMB2 CANCEL Request the client MUST take an available identifier from
Connection.SequenceWindow.

If there is no available identifier, or range of consecutive identifiers for a multi-credit request, as
specified in section 3.2.4.1.5, the request MUST wait until the necessary identifiers are available

before it is sent to the server. The client MAY<88> send any newly-initiated requests which can be
satisfied with available identifiers (including the SMB2 CANCEL Request) to the server on this
connection. If the necessary identifiers exceed implementation-defined local requirements, the client
MAY fail the request with an implementation-specific error.

154 / 464

[MS-SMB2-Diff] - v20190923
Server Message Block (SMB) Protocol Versions 2 and 3
Copyright © 2019 Microsoft Corporation
Release: September 23, 2019

When the necessary identifiers are available, the client MUST remove them from
Connection.SequenceWindow, set MessageId in the SMB2 header of the request to the first of

these, create a new Request, generate a new CancelId and assign it to Request.CancelId, set
Request.Message to the SMB2 request being sent to the server, and set Request.Timestamp to

the current time; and the Request MUST be inserted into Connection.OutstandingRequests. If
Connection.Dialect belongs to the SMB 3.x dialect family and the request includes FileId, the
request MUST also be inserted into Open.OutstandingRequests. If the client chooses to implement
the Request Expiration Timer, the client MUST then set the Request Expiration Timer to signal at the
configured time-out interval for this command.

For an SMB2 CANCEL Request, the client SHOULD<89> set the MessageId field to the identifier that
was used for the request that is to be canceled. The SMB2 CANCEL Request MUST NOT be inserted

into Connection.OutstandingRequests, and the Request Expiration Timer MUST NOT be set.

3.2.4.1.4 Sending Compounded Requests

A nonzero value for the NextCommand field in the SMB2 header indicates a compound request.
NextCommand in the SMB2 header of a request specifies an offset, in bytes, from the beginning of

the SMB2 header under consideration to the start of the 8-byte aligned SMB2 header of the

subsequent request. Such compounding can be used to append multiple requests up to the maximum
size<90> that is supported by the transport. The client MUST choose one of two possible styles of
message compounding specified in subsequent sections. These two styles MUST NOT be intermixed in
the same transport send and, in such a case, the server SHOULD<91> fail the requests with
STATUS_INVALID_PARAMETER. Compounded requests MUST be aligned on 8-byte boundaries; the
last request of the compounded requests does not need to be padded to an 8-byte boundary. If a
client or server receives a message that is not aligned on such a boundary, the machine

SHOULD<92> disconnect the connection.

Compounding Unrelated Requests

SMB2_FLAGS_RELATED_OPERATIONS MUST NOT be set in the Flags field of all SMB2 headers in the
chain. The client MUST NOT expect the responses of unrelated requests to arrive in the same
transport receive from the server, or even in the same order they were sent.<93>

Compounding Related Requests

SMB2_FLAGS_RELATED_OPERATIONS MUST be set in the Flags field of SMB2 headers on all requests

except the first one. The client can choose to send multiple requests required to perform a desired
action as a compounded send containing related operations. Two examples would be to open a file and
read from it, or to write to a file and close it. This form of compounding MUST NOT be used in
combination with compounding unrelated requests within a single send.<94>

To issue a compounded send of related requests, take the following steps:

1. The client MUST construct the initial request as it would if sending the requests separately.

2. It MUST set the NextCommand field in the SMB2 header of the initial request to the offset, in
bytes, from the beginning of the SMB2 header to the beginning of the 8-byte aligned SMB2 header
of the subsequent request. It MUST NOT set SMB2_FLAGS_RELATED_OPERATIONS in the Flags
field of the SMB2 header for this request.

3. The client MUST construct the subsequent request as it would do normally. For any subsequent
requests the client MUST set SMB2_FLAGS_RELATED_OPERATIONS in the Flags field of the SMB2
header to indicate that it is using the SessionId, TreeId, and FileId supplied in the previous

request (or generated by the server in processing that request). For an operation compounded
with an SMB2 CREATE request, the FileId field SHOULD be set to { 0xFFFFFFFFFFFFFFFF,
0xFFFFFFFFFFFFFFFF }.

3.2.4.1.5 Sending Multi-Credit Requests

155 / 464

[MS-SMB2-Diff] - v20190923
Server Message Block (SMB) Protocol Versions 2 and 3
Copyright © 2019 Microsoft Corporation
Release: September 23, 2019

If Connection.SupportsMultiCredit is TRUE,

▪ For READ, WRITE, IOCTL, and QUERY_DIRECTORY requests, CreditCharge field in the SMB2

header SHOULD<95> be set to a value greater than or equal to the value computed in section
3.1.5.2.

▪ For all other requests, the client MUST set CreditCharge to 1, even if the payload size of a
request or the anticipated response is greater than 65536.

If the client implements the SMB 2.1 dialect or SMB 3.x dialect family and
Connection.SupportsMultiCredit is FALSE, CreditCharge SHOULD<96> be set to 0 and the
payload size of a request or the maximum size of a response MUST be a maximum of 65536.

Otherwise, the CreditCharge field MUST be set to 0 and the payload size of a request or the
maximum size of a response MUST be a maximum of 65536.

Before sending a multi-credit request, the client MUST consume the calculated number of consecutive
MessageIds from Connection.SequenceWindow.

3.2.4.1.6 Algorithm for Handling Available Message Sequence Numbers by the Client

The client MUST implement an algorithm to manage message sequence numbers. Sequence numbers
are used to associate requests with responses and to determine what requests are allowed for

processing. The algorithm MUST meet the following conditions:

▪ When the connection is first established, the allowable sequence numbers for sending a request
MUST be set to the set { 0 }.

▪ The client MUST never send a request on a given connection with a sequence number that has
already been used unless it is a request to cancel a previously sent request.

▪ The client MUST grow the set in a monotonically increasing manner based on the credits granted.
If the set is { 0 }, and 2 credits are granted, the set MUST grow to { 0, 1, 2 }.

▪ The client MUST use the lowest available sequence number in its allowable set for each request.

▪ For a multi-credit request as specified in section 3.2.4.1.5, the client MUST use the lowest
available range of consecutive sequence numbers.

▪ If an SMB2 CANCEL Request is sent, the client MUST NOT consume a sequence number.
Otherwise, the client MUST consume a sequence number, or range of consecutive sequence
numbers, when it sends out an SMB2 request.

For the server side of this algorithm, see section 3.3.1.1.

3.2.4.1.7 (Updated Section) Selecting a ChannelConnection

If the client implements the SMB 3.x dialect family and if the request being sent is not
SMB2_NEGOTIATE or SMB2 SESSION_SETUP, the client MUST choose a channel, to be used for
sending the request,select Channel.Connection from Open.Session.ChannelList in an

implementation-specific manner<97>.

Otherwise, the client MUST select Open.Connection.

3.2.4.1.8 Encrypting the Message

If the client does not implement the SMB 3.x dialect family, or the request being sent is SMB2
NEGOTIATE, or the request being sent is SMB2 SESSION_SETUP with the
SMB2_SESSION_FLAG_BINDING bit set in the Flags field, the client MUST NOT encrypt the message.

156 / 464

[MS-SMB2-Diff] - v20190923
Server Message Block (SMB) Protocol Versions 2 and 3
Copyright © 2019 Microsoft Corporation
Release: September 23, 2019

Otherwise, the client MUST encrypt the message as specified in section 3.1.4.3 before sending, if
IsEncryptionSupported is TRUE and either of the following conditions is satisfied:

▪ If Session.EncryptData is TRUE.

▪ If TreeConnect.EncryptData is TRUE.

3.2.4.1.9 Compressing the Message

If IsCompressionSupported is TRUE and Connection.CompressionIds is not empty, the client
SHOULD<98> compress the message as specified in section 3.1.4.4 if one of the following conditions
is satisfied.

▪ CompressAllRequests is TRUE.

▪ Application requested to compress SMB2 WRITE request as specified in section 3.2.4.7.

3.2.4.2 Application Requests a Connection to a Share

The application provides the following:

▪ ServerName: The name of the server to connect to.

▪ ShareName: The name of the share to connect to.

▪ UserCredentials: An opaque implementation-specific entity that identifies the credentials to be
used when authenticating to the remote server.

▪ TransportIdentifier: An optional implementation-specific identifier for the transport on which the
connection is to be established.

▪ SpecifiedDialects: An optional list of dialects to be negotiated. If provided, this MUST be one or
more values as specified in Dialects field of SMB2 NEGOTIATE Request in section 2.2.3.

▪ ClusterReconnect: An optional Boolean that, if set to TRUE, specifies that the client is
reconnecting to the cluster share specified by ShareName.

▪ SyncRedirect: An optional Boolean that, if set to TRUE, specifies that the client supports
synchronous share level redirection.

▪ RemotedIdentity: An optional Boolean that, if set to TRUE, specifies that the client is
establishing a remoted identity for accessing the share using additional provided identity values.

▪ Guid: An optional client GUID.

Upon successful completion, the client MUST return an existing or newly constructed Session handle
(section 3.2.1.3), an existing or newly constructed TreeConnect handle, and the share type (section
3.2.1.4) to the caller.

The request to connect to a server could be either explicit (the application requests the connection
directly) or implicit (the application requests opening a file with a network path including server and

share). In either case, the client MUST follow the steps described in the following flow chart.<99> For

the implicit case, any error returned from the connection attempt MUST be returned as the error code
for the operation that initiated the implicit connection attempt. For the explicit case, any error
returned from the connection attempt MUST be returned to the calling application.

The client SHOULD search the ConnectionTable and attempt to find an SMB2 connection where:

▪ Connection.ServerName matches the application-supplied ServerName.

157 / 464

[MS-SMB2-Diff] - v20190923
Server Message Block (SMB) Protocol Versions 2 and 3
Copyright © 2019 Microsoft Corporation
Release: September 23, 2019

▪ If provided by the application, the highest dialect in the SpecifiedDialects matches the
Connection.Dialect.

▪ If provided by the application, Guid matches the Connection.ClientGuid.

If a connection is found, the client SHOULD use the existing connection. For each existing connection

to the target server, the client MUST search through Connection.SessionTable for a Session that
satisfies the client implementation requirements for session reuse. <100>

▪ If UserCredentials, the credentials to be used for the application request, do not match
Session.UserCredentials, those used in establishing the existing session, the session MUST NOT
be reused.

▪ For operations on an existing Open, the client MUST select the same session that was used to
establish the Open.

▪ The client SHOULD attempt to minimize redundant sessions to the same server.

▪ The client MAY establish multiple sessions to the same server by the same security context.

▪ If a new session is being established, the client MAY reuse an existing connection such that
multiple sessions are multiplexed on the same connection. If not reusing an existing connection,
the client can establish a new connection for the new session.

▪ The client MUST synchronize simultaneous application requests, as needed, if an existing session

with the same user credential is currently being established.

If a matching session is found, the client MUST search through Session.TreeConnectTable to find a
matching tree connection to the share. If a tree connection is found, the client MUST use the existing
tree connection, and no additional steps are required to be performed. If a matching tree connection is
not found, the client MUST proceed with establishing a tree connection to the share as described in
section 3.2.4.2.4.

If a matching session is not found, the client MAY<101> either attempt to establish the session on the

existing connection, or establish a new connection. If the client is reusing an existing connection, the

client MUST perform the following steps:

1. Authenticate to the server as described in section 3.2.4.2.3.

2. Establish a new tree connection to the target share as described in section 3.2.4.2.4.

Otherwise, the client MUST perform the following steps:

1. Establish a new connection as described in section 3.2.4.2.1.

2. Negotiate the protocol as described in section 3.2.4.2.2.

3. Authenticate to the server as described in section 3.2.4.2.3.

4. Establish a new tree connection to the target share as described in section 3.2.4.2.4.

158 / 464

[MS-SMB2-Diff] - v20190923
Server Message Block (SMB) Protocol Versions 2 and 3
Copyright © 2019 Microsoft Corporation
Release: September 23, 2019

Figure 4: The client MUST follow the steps outlined in this chart

3.2.4.2.1 Connecting to the Target Server

The ServerName and the optional TransportIdentifier provided by the caller are used to establish

the connection. The client SHOULD resolve the ServerName as described in [MS-WPO] section 7.1.4,
and SHOULD attempt connections to one or more of the returned addresses. The client can attempt to

initiate each such SMB2 connection on all configured transports that it allows<102>, most commonly
Direct TCP and the other transports described in section 2.1.

The client can choose to prioritize the addresses and/or transport order and try each one sequentially,
or try to connect on them all and select one using any implementation-specific heuristic<103>. The
client can accept the TransportIdentifier parameter from the calling application, which specifies

what transport to use, and then attempt to use the transport specified. If the connection attempt is
successful, a connection object MUST be created, as specified in section 3.2.1.2, with the following
default parameters:

159 / 464

[MS-SMB2-Diff] - v20190923
Server Message Block (SMB) Protocol Versions 2 and 3
Copyright © 2019 Microsoft Corporation
Release: September 23, 2019

▪ Connection.SessionTable MUST be set to an empty table.

▪ Connection.OutstandingRequests MUST be set to an empty table.

▪ Connection.SequenceWindow MUST be set to a sequence window, as specified in section
3.2.4.1.6, with a single starting sequence number available, which is "0".

▪ Connection.GSSNegotiateToken MUST be set to an empty array.

▪ Connection.Dialect, if implemented, MUST be set to "Unknown".

▪ Connection.RequireSigning MUST be set to FALSE.

▪ Connection.ServerName MUST be set to the application-supplied server name.

▪ Connection.CompressionIds, if implemented, MUST be set to empty list.

This connection MUST be inserted into ConnectionTable, and processing MUST continue, as specified
in section 3.2.4.2.2.

If the connection attempt fails, the client returns the error code to the calling application.

3.2.4.2.2 Negotiating the Protocol

When a new connection is established, the client MUST negotiate capabilities with the server. The
client MAY<104> use either of two possible methods for negotiation.

The first is a multi-protocol negotiation that involves sending an SMB message to negotiate the use of

SMB2. If the server does not implement the SMB 2 Protocol, this method allows the negotiation to fall
back to older SMB dialects, as specified in [MS-SMB].

The second method is to send an SMB2-only negotiate message. This method will result in successful
negotiation only for servers that implement the SMB 2 Protocol.

3.2.4.2.2.1 Multi-Protocol Negotiate

To negotiate either the SMB 2 Protocol or the SMB Protocol, the client MUST allocate sequence number

0 from Connection.SequenceWindow. It MUST construct an SMB_COM_NEGOTIATE message
following the syntax as specified in [MS-SMB] sections 2.2.4.5.1 and 3.2.4.2 and in [MS-CIFS]
sections 2.2.4.52 and 3.2.4.2.2.

If the client implements the SMB 2.0.2 dialect, the client MUST also include the dialect string “SMB
2.002” in the SMB_Data.Bytes.Dialects[] array of the request. If the client implements the SMB 2.1
dialect or SMB 3.x dialect family, the client MUST also include the dialect string “SMB 2.???” in the
SMB_Data.Bytes.Dialects[] array of the request.

This request MUST be sent to the server.

3.2.4.2.2.2 (Updated Section) SMB2-Only Negotiate

To issue an SMB2-only negotiate, the client MUST construct an SMB2 NEGOTIATE Request following

the syntax as specified in section 2.2.3:

▪ Allocate sequence number 0 from the Connection.SequenceWindow and place it in the
MessageId field of the SMB2 header.

▪ Set the Command field in the SMB2 header to SMB2 NEGOTIATE.

If the application has provided SpecifiedDialects, the client MUST do the following:

▪ Set the DialectCount to number of elements in the SpecifiedDialects.

160 / 464

[MS-SMB2-Diff] - v20190923
Server Message Block (SMB) Protocol Versions 2 and 3
Copyright © 2019 Microsoft Corporation
Release: September 23, 2019

▪ Set the value in Dialects array to the values in SpecifiedDialects.

Otherwise,

▪ Set DialectCount to 0.

▪ If the client implements the SMB 2.0.2 dialect, it MUST do the following:

▪ Increment the DialectCount by 1.

▪ Set the value in Dialects[DialectCount-1] array to 0x0202.

▪ If the client implements the SMB 2.1 dialect, it MUST do the following:

▪ Increment the DialectCount by 1.

▪ Set the value in Dialects[DialectCount-1] array to 0x0210.

▪ If the client implements the SMB 3.0 dialect, it MUST do the following:

▪ Increment the DialectCount by 1.

▪ Set the value in the Dialects[DialectCount-1] array to 0x0300.

▪ If the client implements the SMB 3.0.2 dialect, it MUST do the following:

▪ Increment the DialectCount by 1.

▪ Set the value in the Dialects[DialectCount-1] array to 0x0302.

▪ If the client implements the SMB 3.1.1 dialect, it MUST do the following:

▪ Increment the DialectCount by 1.

▪ Set the value in the Dialects[DialectCount-1] array to 0x0311.

▪ If RequireMessageSigning is TRUE, the client MUST set the
SMB2_NEGOTIATE_SIGNING_REQUIRED bit to TRUE in SecurityMode. If RequireMessageSigning
is FALSE, the client MUST set the SMB2_NEGOTIATE_SIGNING_ENABLED bit to TRUE in
SecurityMode. The client MUST store the value of the SecurityMode field in
Connection.ClientSecurityMode.

▪ Set Capabilities and ClientStartTime to 0.

▪ If the client implements the SMB 2.1 or SMB 3.x dialect, ClientGuid SHOULD be set to the Guid
provided by the application<105>. Otherwise, it MUST be set to 0. The client MUST set
Connection.ClientGuid to the ClientGuid initialized above.

▪ If the client implements the SMB 3.x dialect family, the client MUST set the Capabilities field as
specified in section 2.2.3, and store the value of Capabilities field in
Connection.ClientCapabilities.

▪ If the client implements the SMB 3.1.1 dialect, it MUST do the following:

▪ Set NegotiateContextOffset to 0.

▪ Set NegotiateContextCount to 0.

▪ Add optional padding after Dialects array to make the next field 8-byte aligned.

161 / 464

[MS-SMB2-Diff] - v20190923
Server Message Block (SMB) Protocol Versions 2 and 3
Copyright © 2019 Microsoft Corporation
Release: September 23, 2019

▪ Add an SMB2 NEGOTIATE_CONTEXT with ContextType as
SMB2_PREAUTH_INTEGRITY_CAPABILITIES to the negotiate request as specified in section

2.2.3.1:

▪ Increment NegotiateContextCount by 1

▪ Set NegotiateContextOffset to the offset of the SMB2 NEGOTIATE_CONTEXT added
above.

▪ The SMB2_PREAUTH_INTEGRITY_CAPABILITIES negotiate context's Salt buffer
SHOULD<106> be initialized to an implementation-specific number of bytes generated for
this request by a cryptographically secure pseudo-random number generator.

▪ If IsEncryptionSupported is TRUE, it MUST do the following:

▪ Increment NegotiateContextCount by 1.

▪ Add an SMB2_NEGOTIATE_CONTEXT with ContextType as
SMB2_ENCRYPTION_CAPABILITIES to the negotiate request as specified in section 2.2.3.1

and initialize the Ciphers field with the ciphers supported by the client in the order of
preference.<107>

▪ If IsCompressionSupported is TRUE, it MUST do the following:

▪ Increment NegotiateContextCount by 1.

▪ Add an SMB2_NEGOTIATE_CONTEXT with ContextType as
SMB2_COMPRESSION_CAPABILITIES to the negotiate request as specified in section
2.2.3.1. CompressionAlgorithms SHOULD<108> be set to the algorithms supported by
the client in the order of preference.

▪ If the client implements the SMB 3.1.1 dialect, the client SHOULD<109> add an SMB2
NEGOTIATE_CONTEXT with ContextType as SMB2_NETNAME_NEGOTIATE_CONTEXT_ID to the
negotiate request as specified in section 2.2.3.1:

▪ Increment NegotiateContextCount by 1.

▪ NetName MUST be set to the application-provided ServerName formatted as null-
terminated Unicode string.

This request MUST be sent to the server.

3.2.4.2.3 (Updated Section) Authenticating the User

To establish a new session, the client MAY<110> either:

▪ Pass the Connection.GSSNegotiateToken to the configured GSS authentication mechanism to
obtain a GSS output token for the authentication protocol exchange, as specified in [MS-SPNG]
section 3.3.5.2.

OR

▪ Choose to ignore the Connection.GSSNegotiateToken that is received from the server, and
initiate a normal GSS sequence, as specified in [RFC4178] section 3.2.

In either case, it MUST call the GSS authentication protocol with the MutualAuth and Delegate
options. In addition, the client MUST also set the GSS_C_FRAGMENT_TO_FIT parameter as specified in
[MS-SPNG] section 3.3.1. The GSS-API output token is up to a size limit determined by local
policy<111> when GSS_C_FRAGMENT_TO_FIT is set.

162 / 464

[MS-SMB2-Diff] - v20190923
Server Message Block (SMB) Protocol Versions 2 and 3
Copyright © 2019 Microsoft Corporation
Release: September 23, 2019

If the GSS authentication protocol returns an error, the share connect attempt MUST be aborted and
the error MUST be returned to the higher-level application.

If the GSS authentication succeeds, the client MUST construct an SMB2 SESSION_SETUP Request, as
specified in section 2.2.5. The SMB2 header MUST be initialized as follows:

▪ The Command field MUST be set to SMB2 SESSION_SETUP.

▪ The MessageId field is set as specified in section 3.2.4.1.3.

The SMB2 SESSION_SETUP Request MUST be initialized as follows:

▪ If RequireMessageSigning is TRUE, the client MUST set the
SMB2_NEGOTIATE_SIGNING_REQUIRED bit in the SecurityMode field.

If RequireMessageSigning is FALSE, the client MUST set the
SMB2_NEGOTIATE_SIGNING_ENABLED bit in the SecurityMode field.

▪ The Flags field MUST be set to 0.

▪ If the client supports the Distributed File System (DFS), as specified in [MS-DFSC], the
SMB2_GLOBAL_CAP_DFS bit in the Capabilities field MUST be set.

▪ If the client is attempting to reestablish a session, the client MUST set PreviousSessionId to its
previous session identifier to allow the server to remove any session associated with this identifier.
Otherwise, the client MUST set PreviousSessionId to 0.

▪ The GSS output token is copied into the Buffer field in the request. The client MUST set
SecurityBufferOffset and SecurityBufferLength to describe the location and length of the GSS
output token in the request.

IfIf the client implements the SMB 3.x dialect family and this authentication is for establishing an
alternative channel for an existing Session, as specified in section 3.2.4.1.75.5, the client MUST also
set the following values:

▪ The SessionId field in the SMB2 header MUST be set to the Session.SessionId for the new

channel being established.

▪ The SMB2_SESSION_FLAG_BINDING bit MUST be set in the Flags field.

▪ The PreviousSessionId field MUST be set to zero.

This request MUST be sent to the server.

3.2.4.2.3.1 Application Requests Reauthenticating a User

It is possible that the server indicates that authentication has expired, as specified in sections 3.3.5.7

and 3.3.5.9, or the application or the client itself requests that an existing session be reauthenticated.
In either case, the client MUST issue a subsequent session setup request for the SessionId of the
session being reauthenticated. The application SHOULD NOT issue new requests until the
reauthentication succeeds.

The client MAY<112> either:

▪ Pass the Connection.GSSNegotiateToken to the configured GSS authentication mechanism to

obtain a GSS output token for the authentication protocol exchange, as specified in [MS-SPNG]
section 3.3.5.2.

or

163 / 464

[MS-SMB2-Diff] - v20190923
Server Message Block (SMB) Protocol Versions 2 and 3
Copyright © 2019 Microsoft Corporation
Release: September 23, 2019

▪ Choose to ignore the Connection.GSSNegotiateToken received from the server, and initiate a
normal GSS sequence as specified in [MS-SPNG] section 3.3.4 and [RFC4178] section 3.2.

In either case, it initializes the GSS authentication protocol with the MutualAuth and Delegate
options. In addition, the client MUST also set the GSS_C_FRAGMENT_TO_FIT parameter as specified in

[MS-SPNG] section 3.3.1. The GSS-API output token is up to a size limit determined by local policy
<113> when GSS_C_FRAGMENT_TO_FIT is set.

If the GSS authentication protocol returns an error, the reauthentication attempt MUST be aborted,
and the error MUST be returned to the higher-level application.

If the GSS authentication succeeds, the client MUST construct an SMB2 SESSION_SETUP request, as
specified in section 2.2.5. The SMB2 header MUST be initialized as follows:

▪ The Command field MUST be set to SMB2 SESSION_SETUP.

▪ The MessageId field is set as specified in section 3.2.4.1.3.

▪ The SessionId field MUST be set to the Session.SessionId for the session being

reauthenticated.

The SMB2 SESSION_SETUP Request MUST be initialized as follows:

▪ If RequireMessageSigning is TRUE, the client MUST set the
SMB2_NEGOTIATE_SIGNING_REQUIRED bit in the SecurityMode field.

If RequireMessageSigning is FALSE, the client MUST set the
SMB2_NEGOTIATE_SIGNING_ENABLED bit in the SecurityMode field.

▪ The Flags field MUST be set to 0.

▪ If the client supports the Distributed File System (DFS), as specified in [MS-DFSC], the
SMB2_GLOBAL_CAP_DFS bit in the Capabilities field MUST be set.

▪ The PreviousSessionId field MUST be set to 0.

▪ The GSS output token is copied into the Buffer field in the request. The client MUST set

SecurityBufferOffset and SecurityBufferLength to describe the location and length of the GSS
output token in the request.

This request MUST be sent to the server.

3.2.4.2.4 Connecting to the Share

To connect to a share, the client MUST follow the steps outlined below.

The client MUST construct an SMB2 TREE_CONNECT Request using the syntax specified in section

2.2.9. The SMB2 header MUST be initialized as follows:

▪ The Command field is set to SMB2 TREE_CONNECT.

▪ The MessageId field is set as specified in section 3.2.4.1.3.

▪ The SessionId field is set to Session.SessionId of the session that was identified in section
3.2.4.2 or established as a result of processing section 3.2.4.2.3.

The SMB2 TREE_CONNECT Request MUST be initialized as follows:

▪ If Connection.Dialect is "3.1.1" and the optional RemotedIdentity parameter is true, the client
MUST add a tree connect request extension in the Buffer field as specified in section 2.2.9.1, and
MUST set the SMB2_TREE_CONNECT_FLAG_EXTENSION_PRESENT bit in the Flags field. The

164 / 464

[MS-SMB2-Diff] - v20190923
Server Message Block (SMB) Protocol Versions 2 and 3
Copyright © 2019 Microsoft Corporation
Release: September 23, 2019

target share path, including server name, in the format "\\server\share", MUST be copied into the
PathName field of the tree connection request extension, as specified in section 2.2.9.2.1.

The client MUST construct a remoted identity tree connect context, as specified in section

2.2.9.2.1, by setting the User, UserName, Domain, Groups, RestrictedGroups, Privileges,
PrimaryGroup, Owner, DefaultDacl, DeviceGroups, UserClaims and DeviceClaims in the
SMB2_REMOTED_IDENTITY_TREE_CONNECT context, to the values specified by the application.

Otherwise, the target share path, including server name, in the format "\\server\share", is copied
into the Buffer field of the request. PathOffset and PathLength MUST be set to describe the
location and length of the target share path in the request.

▪ If Connection.Dialect is "3.1.1" and the optional ClusterReconnect parameter is true, the client
MUST set the SMB2_TREE_CONNECT_FLAG_CLUSTER_RECONNECT bit in the Flags field.

▪ If Connection.Dialect is "3.1.1" and the optional SyncRedirect parameter is true, the client
MUST set the SMB2_TREE_CONNECT_FLAG_REDIRECT_TO_OWNER bit in the Flags field.

This request MUST be sent to the server. The response from the server MUST be processed as
described in section 3.2.5.5.

3.2.4.3 Application Requests Opening a File

To open a file on a remote share, the application provides the following:

▪ A handle to the TreeConnect representing the share in which the file to be opened exists.

▪ The path name of the file being opened, as a DFS pathname for a DFS share, or relative to the

TreeConnect for a non-DFS share.

▪ A handle to the Session representing the security context of the user opening the file.

▪ The required access for the open, as specified in section 2.2.13.1.

▪ The sharing mode for the open, as specified in section 2.2.13.

▪ The create options to be applied for the open, as specified in section 2.2.13.

▪ The create disposition for the open, as specified in section 2.2.13.

▪ The file attributes for the open, as specified in section 2.2.13.

▪ The impersonation level for the open, as specified in section 2.2.13 (optional).

▪ The security flags for the open, as specified in section 2.2.13 (optional).

▪ The requested oplock level or lease state for the open, as specified in section 2.2.13 (optional).

▪ As outlined in subsequent sections, the application can also provide a series of create contexts, as
specified in section 2.2.13.2.

The client MUST verify the TreeConnect and Session handles. If the handles are invalid, or if no

TreeConnect referenced by the tree connect handle is found, or if no Session referenced by the
session handle is found, the client MUST return an implementation-specific error code locally to the
calling application.

If the handles are valid and a TreeConnect and Session are found, the caller MUST ensure that the
supplied TreeConnect is valid within the Session. TreeConnect.Session MUST match the Session.

The client MUST use the Connection referenced by Session.Connection to send the request to the
server.

165 / 464

[MS-SMB2-Diff] - v20190923
Server Message Block (SMB) Protocol Versions 2 and 3
Copyright © 2019 Microsoft Corporation
Release: September 23, 2019

If the client implements the SMB 2.1 dialect or SMB 3.x dialect family and
Connection.SupportsFileLeasing is TRUE, the client MUST search the GlobalFileTable for an entry

matching one of the following:

▪ The application-supplied PathName if TreeConnect.IsDfsShare is TRUE.

▪ The concatenation of Connection.ServerName, TreeConnect.ShareName, and the application-
supplied PathName, joined with pathname separators (example: server\share\path), if
TreeConnect.IsDfsShare is FALSE.

If an entry is not found, a new File entry MUST be created and added to the GlobalFileTable and a
File.LeaseKey,<114> as specified in section 3.2.1.5, MUST be assigned to the entry.
File.OpenTable MUST be initialized to an empty table and File.LeaseState MUST be initialized to
SMB2_LEASE_NONE.

If Connection.Dialect belongs to the SMB 3.x dialect family,
Connection.SupportsDirectoryLeasing is TRUE, and the file being opened is not the root of the
share, the client MUST search the GlobalFileTable for the parent directory of the file being opened.

The name of the parent directory is obtained by removing the last component of the path used to
search the GlobalFileTable above. If an entry for the parent directory is not found, a new File entry
MUST be created for it and added to the GlobalFileTable and a File.LeaseKey,<115> as specified in

section 3.2.1.5, MUST be assigned to the entry. File.OpenTable MUST be initialized to an empty
table and File.LeaseState MUST be initialized to SMB2_LEASE_NONE.

If the client accesses a file through multiple paths, such as using different server names or share
names or parent directory names, it will create multiple File elements, and therefore multiple
File.LeaseKeys for the same remote file. This loses the performance benefits of sharing cache state
across all Opens of the same file and can cause additional lease breaks to be generated, as actions by
a client through one path will affect caching by that client through other paths. However, the impact is

a matter of performance; cache correctness is preserved.

The client MUST construct an SMB2 CREATE Request using the syntax specified in section 2.2.13. The
SMB2 header MUST be initialized as follows:

▪ The Command field is set to SMB2 CREATE.

▪ The MessageId field is set as specified in section 3.2.4.1.3.

▪ The SessionId field is set to TreeConnect.Session.SessionId.

▪ The TreeId field is set to TreeConnect.TreeConnectId.

▪ If TreeConnect.IsDfsShare is TRUE, the SMB2_FLAGS_DFS_OPERATIONS flag is set in the
Flags field.

The SMB2 CREATE Request MUST be initialized as follows:

▪ The SecurityFlags field is set to 0.

▪ The RequestedOplockLevel field is set to the oplock level that is requested by the application. If
the application does not provide a requested oplock level, the client MUST choose an

implementation-specific oplock level.<116>

▪ The ImpersonationLevel field is set to the application-provided impersonation level. If the
application did not provide an impersonation level, the client sets the ImpersonationLevel to
Impersonation.

▪ The client sets the DesiredAccess field to the value that is provided by the application.

▪ The client sets the FileAttributes field to the attributes that are provided by the application.

166 / 464

[MS-SMB2-Diff] - v20190923
Server Message Block (SMB) Protocol Versions 2 and 3
Copyright © 2019 Microsoft Corporation
Release: September 23, 2019

▪ The client sets the ShareAccess field to the sharing mode that is provided by the application.

▪ The client sets the CreateDisposition field to the create disposition that is provided by the

application.

▪ The client sets the CreateOptions field to the create options that are provided by the application.

▪ The client copies the application-supplied path into the Buffer, and sets the NameLength to the
length, in bytes, of the path and the NameOffset to the offset, in bytes, to the path from the
beginning of the SMB2 header.

▪ The client copies any provided create contexts into the Buffer after the file name, and sets the
CreateContextOffset to the offset, in bytes, to the create contexts from the beginning of the
SMB2 header and sets the CreateContextLength to the length, in bytes, of the array of create
contexts. If there are no provided create contexts, CreateContextLength and

CreateContextOffset MUST be set to 0.

This request MUST be sent to the server. The response from the server MUST be processed as
described in section 3.2.5.7.

3.2.4.3.1 Application Requests Opening a Named Pipe

For opening a named pipe, the application provides the same parameters that are specified in section

3.2.4.3, except that TreeConnect.ShareName will be "IPC$". This share name indicates that the
open targets a named pipe.

3.2.4.3.2 Application Requests Sending a File to Print

For sending a file to a printer, the application opens the root of a print share, writes data, and closes
the file. The semantics and parameters are the same as specified in section 3.2.4.3, except that
TreeConnect.ShareName will be the name of a printer share, and the share relative path MUST be

NULL.

3.2.4.3.3 Application Requests Creating a File with Extended Attributes

To create a file with extended attributes, in addition to the parameters that are specified in section
3.2.4.3, the application provides a buffer of extended attributes in the format that is specified in [MS-
FSCC] section 2.4.15. The client MUST construct a create context, as specified in section 2.2.13.2.1,
and append it to any other create contexts being issued with this CREATE request.

3.2.4.3.4 Application Requests Creating a File with a Security Descriptor

To create a file with a security descriptor, in addition to the parameters that are specified in section
3.2.4.3, the application provides a buffer with a SECURITY_DESCRIPTOR in the format as specified in
[MS-DTYP] section 2.4.6. The client MUST construct a create context using the syntax specified for
SMB2_CREATE_SD_BUFFER in section 2.2.13.2.2, and append it to any other create contexts being
issued with this CREATE request.

3.2.4.3.5 Application Requests Creating a File Opened for Durable Operation

To request durable operation on a file being opened or created, in addition to the parameters that are
specified in section 3.2.4.3, the application provides a Boolean indicating whether durability is
requested.

If the application is requesting durability, the client MUST do the following:

▪ If Connection.Dialect belongs to the SMB 3.x dialect family, the client MUST construct a create

context by using the syntax specified in section 2.2.13.2.11, with the following values set:

167 / 464

[MS-SMB2-Diff] - v20190923
Server Message Block (SMB) Protocol Versions 2 and 3
Copyright © 2019 Microsoft Corporation
Release: September 23, 2019

▪ Timeout MUST be set to an implementation-specific value <117>.

▪ If TreeConnect.IsCAShare is TRUE, the client MUST set the

SMB2_DHANDLE_FLAG_PERSISTENT bit in the Flags field. Otherwise, the client SHOULD
perform one of the following:

▪ Request a batch oplock by setting RequestedOplockLevel in the create request to
SMB2_OPLOCK_LEVEL_BATCH.

▪ Request a handle caching lease by including an SMB2_CREATE_REQUEST_LEASE or
SMB2_CREATE_REQUEST_LEASE_V2 Create Context in the create request with a
LeaseState that includes SMB2_LEASE_HANDLE_CACHING.

▪ Reserved MUST be set to zero.

▪ CreateGuid MUST be set to a newly generated GUID.

▪ Otherwise, the client MUST construct a create context using the syntax specified in section
2.2.13.2.3. The client SHOULD perform one of the following:

▪ Request a batch oplock by setting RequestedOplockLevel in the create request to
SMB2_OPLOCK_LEVEL_BATCH.

▪ Request a handle caching lease by including an SMB2_CREATE_REQUEST_LEASE Create
Context in the create request with a LeaseState that includes

SMB2_LEASE_HANDLE_CACHING.

▪ The client MUST append the newly constructed create context to any other create contexts being
issued with this CREATE request.

If the application is not requesting durability, the client MUST follow the normal processing, as
specified in section 3.2.4.3.

3.2.4.3.6 Application Requests Opening a Previous Version of a File

To open a previous version of a file, in addition to the parameters that are specified in section 3.2.4.3,
the application provides a time stamp for the version to be opened, in FILETIME format as specified in
[MS-DTYP] section 2.3.3. The client MUST construct a create context following the syntax as specified
in section 2.2.13.2.7 using this time stamp. The client MUST append it to any other create contexts
being issued with this CREATE request.

3.2.4.3.7 Application Requests Creating a File with a Specific Allocation Size

To create a file with a specific allocation size, in addition to the parameters specified in section
3.2.4.3, the application provides an allocation size in LARGE_INTEGER format as specified in [MS-
DTYP] section 2.3.5. The client MUST construct a create context following the syntax that is specified
in section 2.2.13.2.6 and using this allocation size. The client appends it to any other create contexts
being issued with this CREATE request.

3.2.4.3.8 Requesting a Lease on a File or a Directory

To request a lease, in addition to the parameters that are specified in section 3.2.4.3, the application
provides a Boolean value indicating that a lease requires to be taken and a LeaseState value (as
defined in section 2.2.13.2.8) that indicates the type of lease to be requested.<118>

The client MUST fail this request with STATUS_NOT_SUPPORTED in the following cases:

▪ If Connection.Dialect is equal to "2.0.2".

▪ If Connection.SupportsFileLeasing is FALSE.

168 / 464

[MS-SMB2-Diff] - v20190923
Server Message Block (SMB) Protocol Versions 2 and 3
Copyright © 2019 Microsoft Corporation
Release: September 23, 2019

▪ If Connection.Dialect is equal to "2.1" and the application provided create options includes
FILE_DIRECTORY_FILE.

The client MUST construct an SMB2 CREATE request as described in section 3.2.4.3, with a
RequestedOplockLevel of SMB2_OPLOCK_LEVEL_LEASE.

If Connection.Dialect belongs to the SMB 3.x dialect family, the client MUST attach an
SMB2_CREATE_REQUEST_LEASE_V2 create context to the request. The create context MUST be
formatted as described in section 2.2.13.2.10 with the following values:

▪ LeaseKey obtained from File.LeaseKey of the file or directory being opened.

▪ The client MUST search the GlobalFileTable for the parent directory of the file being opened.
(The name of the parent directory is obtained by removing the last component of the path.) If any
entry is found, ParentLeaseKey is obtained from File.LeaseKey of that entry and

SMB2_LEASE_FLAG_PARENT_LEASE_KEY_SET bit MUST be set in the Flags field.

▪ LeaseState value provided by the application. If the filename to be opened, followed by a ":"
colon character and a stream name, indicates a named stream as defined in [MS-FSCC] section

2.1.5, the client SHOULD clear the SMB2_LEASE_HANDLE_CACHING bit in the LeaseState field.

▪ Epoch SHOULD be set to 0.

If Connection.Dialect is equal to "2.1", the client MUST attach an SMB2_CREATE_REQUEST_LEASE

create context to the request. The create context MUST be formatted as described in section
2.2.13.2.8, with the LeaseState value provided by the application.

3.2.4.3.9 Application Requests Maximal Access Information of a File

 To request maximal access information of a file being opened or created, in addition to the
parameters that are specified in section 3.2.4.3, the application provides a Boolean indicating whether
it is requesting maximal access information of a file, and optionally a Timestamp value, in FILETIME

format as specified in [MS-DTYP] section 2.3.3. If the application is requesting this information, the
client MUST construct an SMB2_CREATE_QUERY_MAXIMAL_ACCESS_REQUEST create context using

the syntax specified in section 2.2.13.2.5. The client appends it to any other create contexts being
issued with this CREATE request.

3.2.4.3.10 Application Requests Identifier of a File

To request an identifier of a file being opened or created, the client MUST construct an

SMB2_CREATE_QUERY_ON_DISK_ID create context using the syntax specified in section 2.2.13.2.
The client appends it to any other create contexts being issued with this CREATE request.

3.2.4.3.11 Application Supplies its Identifier

If Connection.Dialect belongs to the SMB 3.x dialect family, to associate a create or open with an
application-supplied identifier, the client MUST construct an SMB2_CREATE_APP_INSTANCE_ID create
context by using the syntax specified in section 2.2.13.2.13. The client appends it to any other create

contexts being issued with this CREATE request.

3.2.4.3.12 Application Provides an Application-Specific Create Context Structure to

Open a Remote File

The client MUST construct an SMB2_CREATE_CONTEXT structure using an application-provided
structure. The client appends it to any other create contexts issued with this CREATE request.

3.2.4.3.13 Application Supplies a Version for its Identifier

169 / 464

[MS-SMB2-Diff] - v20190923
Server Message Block (SMB) Protocol Versions 2 and 3
Copyright © 2019 Microsoft Corporation
Release: September 23, 2019

If Connection.Dialect is "3.1.1" and the application supplied a version for its identifier, the client
MUST construct an SMB2_CREATE_APP_INSTANCE_VERSION create context by using the syntax

specified in section 2.2.13.2.15. The client appends it to any other create contexts being issued with
this CREATE request.

3.2.4.4 (Updated Section) Re-establishing a Durable Open

When an application requests an operation on a durablean open, where Open.Durable is TRUE, that
existed on a now-disconnected connection, that is, Open.Connection is NULL, and Open.Durable is

TRUE, then the client SHOULD attempt to reconnect to this open as specified here.MUST perform the
following:

The client MUST attempt to connect to the target share, as specified in section 3.2.4.2, by obtaining
the name of the server and the name of the share to connect to from the Open.FileName. If this
attempt fails, the client MUST fail the re-establishment attempt. If this attempt succeeds, the client
MUST construct an SMB2 CREATE Request according to the syntax specified in section 2.2.13. The
SMB2 header MUST be initialized as follows:

▪ The Command field is set to SMB2 CREATE.

▪ The MessageId field is set as specified in section 3.2.4.1.3.

▪ The SessionId field is set to TreeConnect.Session.SessionId.

▪ The TreeId field is set to TreeConnect.TreeConnectId.

The SMB2 CREATE Request MUST be initialized as follows:

▪ The SecurityFlags field is set to 0.

▪ The RequestedOplockLevel field is set to Open.OplockLevel.

▪ The ImpersonationLevel field is set to 0.

▪ The client sets the DesiredAccess field is set to 0Open.DesiredAccess.

▪ The client sets the FileAttributes field is set to 0Open.FileAttributes.

▪ The client sets the ShareAccess field is set to 0Open.ShareMode.

▪ The client sets the CreateDisposition field is set to 0Open.CreateDisposition.

▪ The client sets the CreateOptions field is set to 0Open.CreateOptions.

▪ The client copies the relative path into Buffer and sets NameLength to the length, in bytes, of
the relative path, and NameOffset to the offset, in bytes, to the relative path from the beginning
of the SMB2 header.

▪ If Connection.Dialect belongs to the SMB 3.x dialect family, the client MUST set the following:

▪ The client sets the DesiredAccess field to Open.DesiredAccess.

▪ The client sets the FileAttributes field to Open.FileAttributes.

▪ The client sets the ShareAccess field to Open.ShareMode.

▪ The client sets the CreateDisposition field to Open.CreateDisposition.

▪ The client sets the CreateOptions field to Open.CreateOptions.

170 / 464

[MS-SMB2-Diff] - v20190923
Server Message Block (SMB) Protocol Versions 2 and 3
Copyright © 2019 Microsoft Corporation
Release: September 23, 2019

▪ If Connection.Dialect is "2.1", an SMB2_CREATE_DURABLE_HANDLE_RECONNECT create
context is constructed according to the syntax specified in section 2.2.13.2.4. The data value is set

to Open.FileId, and the create context is appended to the create request.

▪ If Connection.Dialect belongs to the SMB 3.x dialect family, an

SMB2_CREATE_DURABLE_HANDLE_RECONNECT_V2 create context is constructed according to the
syntax specified in section 2.2.13.2.12. The FileId value is set to Open.FileId, CreateGuid is set
to Open.CreateGuid, and the create context is appended to the create request. If
Open.IsPersistent is TRUE, the client MUST set SMB2_DHANDLE_FLAG_PERSISTENT bit in the
Flags field.

▪ If Connection.Dialect is not "2.0.2", and the original open was performed by using a lease as
described in section 3.2.4.3.8, as indicated by Open.OplockLevel set to

SMB2_OPLOCK_LEVEL_LEASE, it MUST also implement the following:

▪ The client MUST re-request the lease as described in section 3.2.4.3.8, and the LeaseState
field MUST be set to File.LeaseState of the file being opened.

This request MUST be sent to the server.

3.2.4.5 (Updated Section) Application Requests Closing a File or Named Pipe

The application provides:

▪ A handle to the Open identifying the file or named pipe to be closed.

▪ A Boolean that, if set, specifies that it requires the attributes of the file after the close is executed.

If the handle is invalid, or if no Open referenced by the handle is found, the client MUST return an
implementation-specific error code. If the handle is valid, and Open is found, the client MUST proceed

as follows.

If For the specified Open.Connection is NULL, and Open.Durable is TRUE, the client SHOULD
attempt to reconnect to this open,MUST select a connection as specified in section 3.2.4.4. If the

reconnect succeeds, the close MUST be retried. If it fails, the error code MUST be returned to the
application.

If Open.Connection is NULL, and Open.Durable is FALSE1.7. If no connection is available, the client

MUST fail the close operation.

If Open.Connection is not NULLOtherwise, the client MUST initialize an SMB2 CLOSE Request by
following the syntax specified in section 2.2.15. The SMB2 header MUST be initialized as follows:

▪ The Command field is set to SMB2 CLOSE.

▪ The MessageId field is set as specified in section 3.2.4.1.3.

▪ The SessionId field is set to Open.TreeConnect.Session.SessionId.

▪ The TreeId field is set to Open.TreeConnect.TreeConnectId.

The SMB2 CLOSE Request MUST be initialized as follows:

▪ If the application requires to have the attributes of the file returned after close, the client sets
SMB2_CLOSE_FLAG_POSTQUERY_ATTRIB to TRUE in the Flags field.

▪ The FileId field is set to Open.FileId.

This request MUST be sent to the server.

171 / 464

[MS-SMB2-Diff] - v20190923
Server Message Block (SMB) Protocol Versions 2 and 3
Copyright © 2019 Microsoft Corporation
Release: September 23, 2019

3.2.4.6 (Updated Section) Application Requests Reading from a File or Named Pipe

The application provides:

▪ A handle to the Open identifying a file or named pipe.

▪ The offset from which to read data.

▪ The number of bytes to read.

▪ The minimum number of bytes it would like to be read (optional).

▪ The buffer to receive the data that is read.

▪ UnbufferedRead, A Boolean flag indicating whether the read has to be unbuffered (optional).

▪ CompressRead, A Boolean flag indicating that the response is eligible for compression (optional).

If the handle is invalid, or if no Open referenced by the handle is found, the client MUST return an

implementation-specific error code. If the handle is valid and Open is found, the client MUST proceed
as follows.

If For the specified Open.Connection is NULL, and Open.Durable is TRUE, the client SHOULD
attempt to reconnect to this Open,MUST select a connection as specified in section 3.2.4.4. If the
reconnect succeeds, the read MUST be retried. If it fails, the error code MUST be returned to the
application.

If Open.Connection is NULL, and Open.Durable is FALSE1.7. If no connection is available, the
client MUST fail the read operation.

If Open.Connection is not NULLOtherwise, the client initializes an SMB2 READ Request following the
syntax specified in section 2.2.19. The SMB2 header MUST be initialized as follows:

▪ The Command field is set to SMB2 READ.

▪ The SessionId field is set to Open.TreeConnect.Session.SessionId.

▪ The TreeId field is set to Open.TreeConnect.TreeConnectId.

The SMB2 READ Request MUST be initialized as follows:

▪ If Connection.Dialect is "3.0.2" or "3.1.1", and if the application-supplied UnbufferedRead is
TRUE, the SMB2_READFLAG_READ_UNBUFFERED bit in the Flags field MUST be set.

▪ If Connection.Dialect is "3.1.1", IsCompressionSupported is TRUE,
Connection.CompressionIds is not empty, and the application-supplied CompressRead is
TRUE, the SMB2_READFLAG_REQUEST_COMPRESSED bit in the Flags field MUST be set.

▪ The Length field is set to the number of bytes the application requested to read.

▪ The Offset field is set to the offset within the file, in bytes, at which the application requested the
read to start.

▪ The MinimumCount field is set to the value that is provided by the application. If no value is
provided by the application, the client MUST set this field to 0.

▪ The FileId field is set to Open.FileId.

▪ The Padding field SHOULD be set to 0x50, which is the default padding of an SMB2 READ

Response.

172 / 464

[MS-SMB2-Diff] - v20190923
Server Message Block (SMB) Protocol Versions 2 and 3
Copyright © 2019 Microsoft Corporation
Release: September 23, 2019

If the number of bytes to read exceeds Connection.MaxReadSize, the client MUST split the read up
into separate read operations no larger than Connection.MaxReadSize. The client MAY send these

separate reads in any order.<119>

If a client requests reading from a file, Connection.Dialect is not "2.0.2", and if

Connection.SupportsMultiCredit is TRUE, the CreditCharge field in the SMB2 header MUST be set
to (1 + (Length – 1) / 65536).

If the Connection is established in RDMA mode and the size of any single operation exceeds an
implementation-specific threshold <120>, and if Open.TreeConnect.Session.SigningRequired and
Open.TreeConnect.Session.EncryptData are both FALSE, then the interface in [MS-SMBD] section
3.1.4.3 Register Buffer MUST be used to register the buffer provided by the calling application on the
Connection with write permissions, which will receive the data to be read. The returned list of

SMB_DIRECT_BUFFER_DESCRIPTOR_V1 structures MUST be stored in
Request.BufferDescriptorList. The following fields of the request MUST be initialized as follows:

▪ If Connection.Dialect is "3.0.2" or "3.1.1" and processing of received remote invalidation is
supported as specified in [MS-SMBD] section 3.1.5.8, the Channel field of the request SHOULD be

set to SMB2_CHANNEL_RDMA_V1_INVALIDATE. Otherwise, the Channel field of the request
MUST be set to SMB2_CHANNEL_RDMA_V1.

▪ The returned list of SMB_DIRECT_BUFFER_DESCRIPTOR_V1 structures MUST be added to the
Buffer field of the request.

▪ The ReadChannelInfoOffset MUST be set to the offset of the added list from the beginning of
the SMB2 header.

▪ The ReadChannelInfoLength MUST be set to the length of the added list.

Otherwise, the following fields of the request MUST be initialized as follows:

▪ If Connection.Dialect belongs to the SMB 3.x dialect family:

▪ The Channel field MUST be set to SMB2_CHANNEL_NONE.

▪ The ReadChannelInfoOffset field MUST be set to 0.

▪ The ReadChannelInfoLength field MUST be set to 0.

▪ The first byte of the Buffer field MUST be set to 0.

The MessageId field in the SMB2 header is set as specified in section 3.2.4.1.3, and the request is
sent to the server.

3.2.4.7 (Updated Section) Application Requests Writing to a File or Named Pipe

The application provides:

▪ A handle to the Open identifying a file or named pipe.

▪ The offset, in bytes, from where data is written.

▪ The number of bytes to write.

▪ A buffer containing the bytes to be written.

▪ WriteThrough, a Boolean flag indicating whether the data has to be written to persistent store on
the server before a response is sent (optional).

▪ UnbufferedWrite, a Boolean flag indicating whether the write data is not to be buffered on the
server (optional).

173 / 464

[MS-SMB2-Diff] - v20190923
Server Message Block (SMB) Protocol Versions 2 and 3
Copyright © 2019 Microsoft Corporation
Release: September 23, 2019

▪ CompressWrite, a Boolean flag indicating that the request is eligible for compression (optional).

If the handle is invalid, or if no Open referenced by the handle is found, the client MUST return an

implementation-specific error code. If the handle is valid and Open is found, the client MUST proceed
as follows.

If For the specified Open.Connection is NULL, and Open.Durable is TRUE, the client SHOULD
attempt to reconnect to this openMUST select a connection as specified in section 3.2.4.4. If the
reconnect succeeds, the write MUST be retried. If it fails, the error code MUST be returned to the
application.

If Open.Connection is NULL and Open.Durable is FALSE1.7. If no connection is available, the client
MUST fail the write operation.

If Open.Connection is not NULLOtherwise, the client initializes an SMB2 WRITE Request, following

the syntax specified in section 2.2.21. The SMB2 header MUST be initialized as follows:

▪ The Command field is set to SMB2 WRITE.

▪ The SessionId field is set to Open.TreeConnect.Session.SessionId.

▪ The TreeId field is set to Open.TreeConnect.TreeConnectId.

The SMB2 WRITE Request MUST be initialized as follows:

▪ The Length field is set to the number of bytes the application requested to write.

▪ The Offset field is set to the offset within the file, in bytes, at which the application requested the
write to start.

▪ The FileId field is set to Open.FileId.

▪ The DataOffset field MUST be set to an implementation-specific<121> value.

▪ If Connection.Dialect is not "2.0.2", and application-supplied WriteThrough is TRUE, the

SMB2_WRITEFLAG_WRITE_THROUGH bit in the Flags field MUST be set.

▪ If Connection.Dialect is "3.0.2" or "3.1.1", and the application-supplied UnbufferedWrite is

TRUE, the SMB2_WRITEFLAG_WRITE_UNBUFFERED bit in the Flags field MUST be set.

If the number of bytes to write exceeds the Connection.MaxWriteSize, the client MUST split the
write into separate write operations no larger than the Connection.MaxWriteSize. The client
MAY<122> send these separate writes in any order.

If the connection is not established in RDMA mode or if the size of the operation is less than or equal
to an implementation-specific threshold <123>or if either
Open.TreeConnect.Session.SigningRequired or Open.TreeConnect.Session.EncryptData is

TRUE, the following fields of the request MUST be initialized as follows:

▪ If Connection.Dialect belongs to the SMB 3.x dialect family,

▪ The Channel field MUST be set to SMB2_CHANNEL_NONE.

▪ The WriteChannelInfoOffset field MUST be set to 0.

▪ The WriteChannelInfoLength field MUST be set to 0.

▪ The RemainingBytes field MUST be set to 0.

▪ The data being written MUST be copied into the Buffer field at DataOffset bytes from the
beginning of the SMB2 header.

174 / 464

[MS-SMB2-Diff] - v20190923
Server Message Block (SMB) Protocol Versions 2 and 3
Copyright © 2019 Microsoft Corporation
Release: September 23, 2019

▪ The client MUST fill the bytes, if any, between the beginning of the Buffer field and the beginning
of the data (at DataOffset) with zeros.

Otherwise, the interface in [MS-SMBD] section 3.1.4.3 Register Buffer MUST be used to register the
buffer on the Connection with read permissions, which will supply the data to be written. The

returned list of SMB_DIRECT_BUFFER_DESCRIPTOR_V1 structures MUST be stored in
Request.BufferDescriptorList. The following fields of the request MUST be initialized as follows:

▪ If Connection.Dialect is "3.0.2" or "3.1.1" and processing of received remote invalidation is
supported as specified in [MS-SMBD] section 3.1.5.8, the Channel field of the request SHOULD be
set to SMB2_CHANNEL_RDMA_V1_INVALIDATE. Otherwise, the Channel field of the request MUST
be set to SMB2_CHANNEL_RDMA_V1.

▪ The returned list of SMB_DIRECT_BUFFER_DESCRIPTOR_V1 structures MUST be added to the

Buffer field of the request.

▪ The WriteChannelInfoOffset MUST be set to the offset of the added list from the beginning of
the SMB2 header.

▪ The WriteChannelInfoLength MUST be set to the length of the added list.

▪ The Length and DataOffset fields MUST be set to 0.

▪ The RemainingBytes field MUST be set to the number of bytes of data being written.

If a client requests writing to a file, Connection.Dialect is not "2.0.2", and if
Connection.SupportsMultiCredit is TRUE, the CreditCharge field in the SMB2 header MUST be set
to (1 + (Length – 1) / 65536).

The MessageId field in the SMB2 header is set as specified in section 3.2.4.1.3.

If Connection.Dialect is "3.1.1", IsCompressionSupported is TRUE,
Connection.CompressionIds is not empty, and the application-supplied CompressWrite is TRUE,
the client MUST process the request as specified in section 3.1.4.4.

The request MUST be sent to the server.

3.2.4.8 (Updated Section) Application Requests Querying File Attributes

The application provides:

▪ A handle to the Open identifying a file or named pipe.

▪ The maximum output buffer it will accept.

▪ The InformationClass of the attributes being queried, as specified in [MS-FSCC] section 2.4.

▪ If the information being queried is FileFullEaInformation, the application also MUST provide the
following:

▪ A Boolean indicating whether to restart the EA scan.

▪ A Boolean indicating whether only a single entry MUST be returned.

The application can also provide one of the following:

▪ The index of the first EA entry to return from the array of extended attributes that are
associated with the file or named pipe. An index value of 1 corresponds to the first extended
attribute.

▪ A list of FILE_GET_EA_INFORMATION structures, as specified in [MS-FSCC] section 2.4.15.1.

175 / 464

[MS-SMB2-Diff] - v20190923
Server Message Block (SMB) Protocol Versions 2 and 3
Copyright © 2019 Microsoft Corporation
Release: September 23, 2019

If the handle is invalid, or if no Open referenced by the handle is found, the client MUST return an
implementation-specific error code. If the handle is valid and Open is found, the client MUST proceed

as follows.

If For the specified Open.Connection is NULL and Open.Durable is TRUE, the client SHOULD

attempt to reconnect to this open,MUST select a connection as specified in section 3.2.4.4. If the
reconnect succeeds, the query MUST be retried. If it fails, the error code MUST be returned to the
application.

If Open.Connection is NULL, and Open.Durable is FALSE1.7. If no connection is available, the client
MUST fail the query operation.

If Open.Connection is not NULLOtherwise, the client initializes an SMB2 QUERY_INFO Request
following the syntax specified in section 2.2.37. The SMB2 header MUST be initialized as follows:

▪ The Command field is set to SMB2 QUERY_INFO.

▪ The MessageId field is set as specified in section 3.2.4.1.3.

▪ The SessionId field is set to Open.TreeConnect.Session.SessionId.

▪ The TreeId field is set to Open.TreeConnect.TreeConnectId.

The SMB2 QUERY_INFO Request MUST be initialized as follows:

▪ The InfoType field is set to SMB2_0_INFO_FILE.

▪ The FileInfoClass field is set to the InformationLevel received from the application.

▪ The OutputBufferLength field is set to the maximum output buffer the calling application will
accept.

▪ If the query is for FileFullEaInformation and the application has provided a list of EAs to query, the
InputBufferOffset field MUST be set to the offset of the Buffer field from the start of the SMB2
header. Otherwise, the InputBufferOffset field SHOULD be set to 0.<124>

▪ If the query is for FileFullEaInformation and the application has provided a list of EAs to query,

the InputBufferLength field MUST be set to the length of the FILE_GET_EA_INFORMATION
buffer provided by the application, as specified in [MS-FSCC] section 2.4.15.1. Otherwise, the
InputBufferLength field SHOULD be set to 0.

▪ If the query is for FileFullEaInformation, and the application has not provided a list of EAs to
query, but has provided an extended attribute index, the AdditionalInformation field MUST be
set to the extended attribute index provided by the calling application. Otherwise, the
AdditionalInformation field MUST be set to 0.

▪ If the query is for FileFullEaInformation, the Flags field in the SMB2 QUERY_INFO request
MUST be set to zero or more of the following bit flags. Otherwise, it MUST be set to 0.

▪ SL_RESTART_SCAN if the application requested that the EA scan be restarted.

▪ SL_RETURN_SINGLE_ENTRY if the application requested that only a single entry be returned.

▪ SL_INDEX_SPECIFIED if the application provided an EA index instead of a list of EAs.

▪ The FileId field is set to Open.FileId.

The request MUST be sent to the server.

176 / 464

[MS-SMB2-Diff] - v20190923
Server Message Block (SMB) Protocol Versions 2 and 3
Copyright © 2019 Microsoft Corporation
Release: September 23, 2019

3.2.4.9 (Updated Section) Application Requests Applying File Attributes

The application provides:

▪ A handle to the Open identifying a file or named pipe.

▪ The InformationClass of the information being applied to the file or pipe, as specified in [MS-
FSCC] section 2.4.

▪ A buffer containing the information being applied.

If the handle is invalid, or if no Open referenced by the handle is found, the client MUST return an
implementation-specific error code. If the handle is valid and Open is found, the client MUST proceed
as follows.

If For the specified Open.Connection is NULL, and Open.Durable is TRUE, the client SHOULD

attempt to reconnect to this open,MUST select a connection as specified in section 3.2.4.4. If the
reconnect succeeds, the set MUST be retried. If it fails, the error code MUST be returned to the
application.

If Open.Connection is NULL, and Open.Durable is FALSE1.7. If no connection is available, the client
MUST fail the set operation.

If Open.Connection is not NULLOtherwise, the client initializes an SMB2 SET_INFO Request following

the syntax specified in section 2.2.37. The SMB2 header MUST be initialized as follows:

▪ The Command field is set to SMB2 SET_INFO.

▪ The MessageId field is set as specified in section 3.2.4.1.3.

▪ The SessionId field is set to Open.TreeConnect.Session.SessionId.

▪ The TreeId field is set to Open.TreeConnect.TreeConnectId.

The SMB2 SET_INFO Request MUST be initialized as follows:

▪ The InfoType field is set to SMB2_0_INFO_FILE.

▪ The FileInfoClass field is set to the InformationClass provided by the application.

▪ The buffer provided by the client is copied into Buffer[].<125>

▪ The BufferOffset field is set to the offset, in bytes, from the beginning of the SMB2 header to
Buffer[].

▪ The BufferLength field is set to the length, in bytes, of the buffer that is provided by the
application.

▪ The AdditionalInformation is set to 0.

▪ The FileId field is set to Open.FileId.

The request MUST be sent to the server.

3.2.4.10 (Updated Section) Application Requests Querying File System Attributes

The application provides:

▪ A handle to the Open identifying a file that resides in the file system whose attributes are being
queried.

177 / 464

[MS-SMB2-Diff] - v20190923
Server Message Block (SMB) Protocol Versions 2 and 3
Copyright © 2019 Microsoft Corporation
Release: September 23, 2019

▪ The maximum output buffer it will accept.

▪ The InformationClass of the file system attributes being queried, as specified in [MS-FSCC]

section 2.5.

If the handle is invalid, or if no Open referenced by the handle is found, the client MUST return an

implementation-specific error code. If the handle is valid and Open is found, the client MUST proceed
as follows.

If For the specified Open.Connection is NULL, and Open.Durable is TRUE, the client SHOULD
attempt to reconnect to this open,MUST select a connection as specified in section 3.2.4.4. If the
reconnect succeeds, the query MUST be retried. If it fails, the error code MUST be returned to the
application.

If Open.Connection is NULL, and Open.Durable is FALSE1.7. If no connection is available, the client

MUST fail the query operation.

If Open.Connection is not NULLOtherwise, the client initializes an SMB2 QUERY_INFO Request
following the syntax specified in section 2.2.37. The SMB2 header MUST be initialized as follows:

▪ The Command field is set to SMB2 QUERY_INFO.

▪ The MessageId field is set as specified in section 3.2.4.1.3.

▪ The SessionId field is set to Open.TreeConnect.Session.SessionId.

▪ The TreeId field is set to Open.TreeConnect.TreeConnectId.

The SMB2 QUERY_INFO Request MUST be initialized as follows:

▪ The InfoType field is set to SMB2_0_INFO_FILESYSTEM.

▪ The FileInfoClass field is set to the InformationLevel that is received from the application.

▪ The OutputBufferLength field is set to the maximum output buffer that the calling application

will accept.

▪ The InputBufferOffset field SHOULD<126> be set to 0.

▪ The InputBufferLength field is set to 0.

▪ The AdditionalInformation is set to 0.

▪ The FileId field is set to Open.FileId.

The request MUST be sent to the server.

3.2.4.11 (Updated Section) Application Requests Applying File System Attributes

The application provides:

▪ A handle to the Open identifying a file that resides in the file system whose attributes are being
changed.

▪ The InformationClass of the file system attributes being applied, as specified in [MS-FSCC]
section 2.5.

▪ A buffer that contains the attributes being applied.

178 / 464

[MS-SMB2-Diff] - v20190923
Server Message Block (SMB) Protocol Versions 2 and 3
Copyright © 2019 Microsoft Corporation
Release: September 23, 2019

If the handle is invalid, or if no Open referenced by the handle is found, the client MUST return an
implementation-specific error code. If the handle is valid and Open is found, the client MUST proceed

as follows.

If For the specified Open.Connection is NULL, and Open.Durable is TRUE, the client SHOULD

attempt to reconnect to this open,MUST select a connection as specified in section 3.2.4.4. If the
reconnect succeeds, the set MUST be retried. If it fails, the error code MUST be returned to the
application.

If Open.Connection is NULL, and Open.Durable is FALSE1.7. If no connection is available, the
client MUST fail the set operation.

If Open.Connection is not NULLOtherwise, the client initializes an SMB2 SET_INFO Request following
the syntax specified in section 2.2.37. The SMB2 header MUST be initialized as follows:

▪ The Command field is set to SMB2 SET_INFO.

▪ The MessageId field is set as specified in section 3.2.4.1.3.

▪ The SessionId field is set to Open.TreeConnect.Session.SessionId.

▪ The TreeId field is set to Open.TreeConnect.TreeConnectId.

The SMB2 SET_INFO Request MUST be initialized as follows:

▪ The InfoType field is set to SMB2_0_INFO_FILESYSTEM.

▪ The FileInfoClass field is set to the InformationClass that is provided by the application.

▪ The buffer provided by the application is copied into Buffer[].

▪ The BufferOffset field is set to the offset, in bytes, from the beginning of the SMB2 header to
Buffer[].

▪ The BufferLength field is set to the length, in bytes, of the buffer that is provided by the

application.

▪ The AdditionalInformation is set to 0.

▪ The FileId field is set to Open.FileId.

The request MUST be sent to the server.

3.2.4.12 (Updated Section) Application Requests Querying File Security

The application provides:

▪ A handle to the Open identifying a file or named pipe.

▪ The maximum output buffer it will accept.

▪ The security attributes it is querying for the file, as specified in the AdditionalInformation
description of section 2.2.37.

If the handle is invalid, or if no Open referenced by the handle is found, the client MUST return an
implementation-specific error code. If the handle is valid and Open is found, the client MUST proceed

as follows.

If For the specified Open.Connection is NULL, and Open.Durable is TRUE, the client SHOULD
attempt to reconnect to this open,MUST select a connection as specified in section 3.2.4.4. If the

179 / 464

[MS-SMB2-Diff] - v20190923
Server Message Block (SMB) Protocol Versions 2 and 3
Copyright © 2019 Microsoft Corporation
Release: September 23, 2019

reconnect succeeds, the query MUST be retried. If it fails, the error code MUST be returned to the
application.

If Open.Connection is NULL, and Open.Durable is FALSE1.7. If no connection is available, the
client MUST fail the query operation.

If Open.Connection is not NULLOtherwise, the client initializes an SMB2 QUERY_INFO Request
following the syntax specified in section 2.2.37. The SMB2 header MUST be initialized as follows:

▪ The Command field is set to SMB2 QUERY_INFO.

▪ The MessageId field is set as specified in section 3.2.4.1.3.

▪ The SessionId field is set to Open.TreeConnect.Session.SessionId.

▪ The TreeId field is set to Open.TreeConnect.TreeConnectId.

The SMB2 QUERY_INFO Request MUST be initialized as follows:

▪ The InfoType field is set to SMB2_0_INFO_SECURITY.

▪ The FileInfoClass field is set to 0.

▪ The OutputBufferLength field is set to the maximum output buffer that the calling application
will accept.

▪ The InputBufferOffset field SHOULD<127> be set to 0.

▪ The InputBufferLength field is set to 0.

▪ The AdditionalInformation is set to the security attributes that are provided by the calling
application.

▪ The FileId field is set to Open.FileId.

The request MUST be sent to the server.

3.2.4.13 (Updated Section) Application Requests Applying File Security

The application provides:

▪ A handle to the Open identifying a file or named pipe.

▪ The security information being applied in security descriptor format, as specified in [MS-DTYP]
section 2.4.6.

▪ The security attributes it requires to set for the file, as specified in section 2.2.37.

If the handle is invalid, or if no Open referenced by the handle is found, the client MUST return an
implementation-specific error code. If the handle is valid and Open is found, the client MUST proceed
as follows.

If For the specified Open.Connection is NULL, and Open.Durable is TRUE, the client SHOULD
attempt to reconnect to this open,MUST select a connection as specified in section 3.2.4.4. If the
reconnect succeeds, the set MUST be retried. If it fails, the error code MUST be returned to the
application.

If Open.Connection is NULL, and Open.Durable is FALSE1.7. If no connection is available, the
client MUST fail the set operation.

180 / 464

[MS-SMB2-Diff] - v20190923
Server Message Block (SMB) Protocol Versions 2 and 3
Copyright © 2019 Microsoft Corporation
Release: September 23, 2019

If Open.Connection is not NULLOtherwise, the client initializes an SMB2 SET_INFO Request following
the syntax specified in section 2.2.37. The SMB2 header MUST be initialized as follows:

▪ The Command field is set to SMB2 SET_INFO.

▪ The MessageId field is set as specified in section 3.2.4.1.3.

▪ The SessionId field is set to Open.TreeConnect.Session.SessionId.

▪ The TreeId field is set to Open.TreeConnect.TreeConnectId.

The SMB2 SET_INFO Request MUST be initialized as follows:

▪ The InfoType field is set to SMB2_0_INFO_SECURITY.

▪ The FileInfoClass field is set to 0.

▪ The security descriptor that is provided by the client is copied into Buffer[].

▪ The BufferOffset field is set to the offset, in bytes, from the beginning of the SMB2 header to

Buffer[].

▪ The BufferLength field is set to the length, in bytes, of the security descriptor that is provided by
the application.

▪ The AdditionalInformation is set to the security attributes that are provided by the calling
application.

▪ The FileId field is set to Open.FileId.

The request MUST be sent to the server.

3.2.4.14 (Updated Section) Application Requests Querying Quota Information

The application provides:

▪ A handle to the Open identifying a directory.

▪ A Boolean indicating whether the enumeration is being restarted.

▪ A Boolean indicating whether only a single entry is to be returned.

▪ The maximum output buffer it will accept.

▪ It optionally can provide a list of the SIDs whose quota information is to be queried, in the form of
a SidList of FILE_GET_QUOTA_INFORMATION structures linked via the NextOffset field, as
specified in [MS-FSCC] section 2.4.33.1.

▪ It optionally can provide a StartSid, in the form of a SID as specified in [MS-DTYP] section
2.4.2.2, to enumerate quota information from the SID in the SidBuffer field.

If the handle is invalid, or if no Open referenced by the handle is found, the client MUST return an
implementation-specific error code. If the handle is valid and Open is found, the client MUST proceed
as follows.

If For the specified Open.Connection is NULL, and Open.Durable is TRUE, the client SHOULD
attempt to reconnect to this open,MUST select a connection as specified in section 3.2.4.4. If the

reconnect succeeds, the query MUST be retried. If it fails, the error code MUST be returned to the
application.

181 / 464

[MS-SMB2-Diff] - v20190923
Server Message Block (SMB) Protocol Versions 2 and 3
Copyright © 2019 Microsoft Corporation
Release: September 23, 2019

If Open.Connection is NULL, and Open.Durable is FALSE1.7. If no connection is available, the
client MUST fail the query operation.

If Open.Connection is not NULLOtherwise, the client initializes an SMB2 QUERY_INFO Request
following the syntax specified in section 2.2.37. The SMB2 header MUST be initialized as follows:

▪ The Command field is set to SMB2 QUERY_INFO.

▪ The MessageId field is set as specified in section 3.2.4.1.3.

▪ The SessionId field is set to Open.TreeConnect.Session.SessionId.

▪ The TreeId field is set to Open.TreeConnect.TreeConnectId.

The SMB2 QUERY_INFO Request MUST be initialized as follows:

▪ The InfoType field is set to SMB2_0_INFO_QUOTA.

▪ The FileInfoClass field is set to 0.

▪ The OutputBufferLength field is set to the maximum output buffer that the calling application
will accept.

▪ The AdditionalInformation is set to 0.

▪ The FileId field is set to Open.FileId.

▪ An SMB2_QUERY_QUOTA_INFO structure is constructed and copied into the Buffer field of the
SMB2 QUERY_INFO structure, and initialized as follows:

▪ If only a single entry is to be returned, the client sets ReturnSingle to TRUE. Otherwise, it is
set to FALSE.

▪ If the application requires to restart the scan, the client sets RestartScan to TRUE.
Otherwise, it is set to FALSE.

▪ SidListLength, StartSidOffset, and StartSidLength are set based on the parameters
received from the application as follows:

▪ If the application provides a SidList, via one or more FILE_GET_QUOTA_INFORMATION

structures linked by NextEntryOffset, they MUST be copied to the beginning of the
SidBuffer, SidListLength MUST be set to their length in bytes, StartSidLength SHOULD
be set to 0, and StartSidOffset SHOULD be set to 0.<128>

Otherwise, if the application provides a StartSid, the SidBuffer field contains a SID as
defined in [MS-DTYP] section 2.4.2.2. The SidListLength field MUST be set to zero,
StartSidLength MUST be set to length, in bytes, of the StartSid. The StartSidOffset

field SHOULD be set to offset, in bytes, from the beginning of SidBuffer.

▪ If neither a SidList nor a StartSid are provided by the application, then SidListLength
MUST be set to 0, StartSidLength SHOULD be set to 0, and StartSidOffset SHOULD be

set to 0.

▪ The InputBufferOffset field is set to the offset, in bytes, from the beginning of the SMB2 header
to the SMB2_QUERY_QUOTA_INFO structure.

▪ The InputBufferLength field is set to the size, in bytes, of the SMB2_QUERY_QUOTA_INFO
structure, including any trailing buffer for the SidList.

The request MUST be sent to the server.

182 / 464

[MS-SMB2-Diff] - v20190923
Server Message Block (SMB) Protocol Versions 2 and 3
Copyright © 2019 Microsoft Corporation
Release: September 23, 2019

3.2.4.15 (Updated Section) Application Requests Applying Quota Information

The application provides:

▪ A handle to the Open identifying a directory.

▪ A list of SIDs (as specified in [MS-DTYP] section 2.4.2) for which quota information is to be
applied.

▪ For each SID, the quota warning threshold and quota limit to be applied, as specified in [MS-
FSCC] section 2.4.33.

If the handle is invalid, or if no Open referenced by the handle is found, the client MUST return an
implementation-specific error code. If the handle is valid and Open is found, the client MUST proceed
as follows.

If For the specified Open.Connection is NULL, and Open.Durable is TRUE, the client SHOULD
attempt to reconnect to this open,MUST select a connection as specified in section 3.2.4.4. If the
reconnect succeeds, the set MUST be retried. If it fails, the error code MUST be returned to the

application.

If Open.Connection is NULL, and Open.Durable is FALSE1.7. If no connection is available, the client
MUST fail the set operation.

If Open.Connection is not NULLOtherwise, the client initializes an SMB2 SET_INFO Request,
following the syntax specified in section 2.2.37. The SMB2 header MUST be initialized as follows:

▪ The Command field is set to SMB2 SET_INFO.

▪ The MessageId field is set as specified in section 3.2.4.1.3.

▪ The SessionId field is set to Open.TreeConnect.Session.SessionId.

▪ The TreeId field is set to Open.TreeConnect.TreeConnectId.

The SMB2 SET_INFO Request MUST be initialized as follows:

▪ The InfoType field is set to SMB2_0_INFO_QUOTA.

▪ The FileInfoClass field is set to 0.

▪ The AdditionalInformation is set to 0.

▪ The FileId field is set to Open.FileId.

▪ The Buffer field is set to one or more FILE_QUOTA_INFORMATION structures, as specified in [MS-
FSCC] section 2.4.33.

▪ The NextEntryOffset field is set to the offset, in bytes, to the next

FILE_QUOTA_INFORMATION structure, or zero if this is the last structure in the buffer.

▪ The Sid field is set to the application-provided SID, in little-endian binary format as specified

in [MS-DTYP] section 2.4.2.2.

▪ The SidLength field is set to the length of the Sid field, in bytes.

▪ The ChangeTime field is set to the current time, as specified in [MS-DTYP] section 2.3.3.

▪ The QuotaUsed field is ignored and can be set to any value.

▪ The QuotaThreshold field is set to the application provided quota warning threshold.

183 / 464

[MS-SMB2-Diff] - v20190923
Server Message Block (SMB) Protocol Versions 2 and 3
Copyright © 2019 Microsoft Corporation
Release: September 23, 2019

▪ The QuotaLimit field is set to the application provided quota limit.

▪ The BufferLength is set to the length, in bytes, of the Buffer field. A BufferLength exceeding

Connection.MaxTransactSize will be rejected by the server.

▪ The BufferOffset is set to the offset to the Buffer, in bytes, from the beginning of the SMB2

header.

The request MUST be sent to the server.

3.2.4.16 (Updated Section) Application Requests Flushing Cached Data

The application provides:

▪ A handle to the Open identifying a file or named pipe for which it requires to flush cached data.

If the handle is invalid, or if no Open referenced by the handle is found, the client MUST return an
implementation-specific error code. If the handle is valid and Open is found, the client MUST proceed

as follows.

If For the specified Open.Connection is NULL, and Open.Durable is TRUE, the client SHOULD
attempt to reconnect to this open,MUST select a connection as specified in section 3.2.4.4. If the

reconnect succeeds, the flush MUST be retried. If it fails, the error code MUST be returned to the
application.

If Open.Connection is NULL, and Open.Durable is FALSE1.7. If no connection is available, the
client MUST fail the flush operation.

If Open.Connection is not NULLOtherwise, the client initializes an SMB2 FLUSH Request by following
the syntax specified in section 2.2.17. The SMB2 header MUST be initialized as follows:

▪ The Command field is set to SMB2 FLUSH.

▪ The MessageId field is set as specified in section 3.2.4.1.3.

▪ The SessionId field is set to Open.TreeConnect.Session.SessionId.

▪ The TreeId field is set to Open.TreeConnect.TreeConnectId.

The SMB2 FLUSH Request MUST be initialized as follows:

▪ The FileId field is set to Open.FileId.

The request MUST be sent to the server.

3.2.4.17 (Updated Section) Application Requests Enumerating a Directory

The application provides:

▪ A handle to the Open identifying a directory.

▪ The InformationClass of the file information being queried, as specified in [MS-FSCC] section

2.4.

▪ The maximum buffer size it will accept in response.

▪ A Boolean indicating whether the enumeration is restarted.

▪ A Boolean indicating whether only a single entry is returned.

184 / 464

[MS-SMB2-Diff] - v20190923
Server Message Block (SMB) Protocol Versions 2 and 3
Copyright © 2019 Microsoft Corporation
Release: September 23, 2019

▪ A Boolean indicating whether the file specifier has been changed if the enumeration is being
restarted.

▪ A 4-byte index number to resume the enumeration from if the destination file system supports it
(optional).

▪ A file specifier string for the enumeration.

If the handle is invalid, or if no Open referenced by the handle is found, the client MUST return an
implementation-specific error code. If the handle is valid and Open is found, the client MUST proceed
as follows.

If For the specified Open.Connection is NULL, and Open.Durable is TRUE, the client SHOULD
attempt to reconnect to this open,MUST select a connection as specified in section 3.2.4.4. If the
reconnect succeeds, the enumeration MUST be retried. If it fails, the error code MUST be returned to

the application.

If Open.Connection is NULL, and Open.Durable is FALSE1.7. If no connection is available, the client
MUST fail the enumeration operation.

If Open.Connection is not NULLOtherwise, the client initializes an SMB2 QUERY_DIRECTORY
Request, following the syntax specified in section 2.2.37. The SMB2 header MUST be initialized as
follows:

▪ The Command field is set to SMB2 QUERY_DIRECTORY.

▪ The SessionId field is set to Open.TreeConnect.Session.SessionId.

▪ The TreeId field is set to Open.TreeConnect.TreeConnectId.

The SMB2 QUERY_DIRECTORY Request MUST be initialized as follows:

▪ The FileInformationClass field is set to the InformationClass that is received from the
application.

▪ The OutputBufferLength field is set to the maximum output buffer that the calling application

will accept.

▪ If a file specifier string is provided, the client copies it into the Buffer[] and sets the
FileNameOffset to the offset, in bytes, from the beginning of the SMB2 header to the start of the
Buffer[]; and the FileNameLength to the length, in bytes, of the file specifier string. Otherwise,
it sets FileNameOffset and FileNameLength to 0.

▪ If a file index was provided by the application, the client sets the value in the FileIndex field and
sets SMB2_INDEX_SPECIFIED to TRUE in the Flags field.

▪ The FileId field is set to Open.FileId.

▪ The Flags field MUST be set to a combination of zero or more of the following bit values, as
specified in section 2.2.37:

▪ SMB2_RESTART_SCANS if the application requested that the enumeration be restarted.

▪ SMB2_REOPEN if the application requested that the enumeration be restarted and indicated
that the file specifier has changed<129>.

▪ SMB2_RETURN_SINGLE_ENTRY if the application requested that only a single entry be
returned.

If Connection.Dialect is not "2.0.2" and if Connection.SupportsMultiCredit is TRUE, the
CreditCharge field in the SMB2 header MUST be set to (1 + (OutputBufferLength – 1) / 65536).

185 / 464

[MS-SMB2-Diff] - v20190923
Server Message Block (SMB) Protocol Versions 2 and 3
Copyright © 2019 Microsoft Corporation
Release: September 23, 2019

The MessageId field in the SMB2 header is set as specified in section 3.2.4.1.3, and the request is
sent to the server.

3.2.4.17.1 Application Requests Continuing a Directory Enumeration

If an application requires to continue an enumeration for which only partial results were previously
returned, it does so by executing a request, as specified in section 3.2.4.17, but makes sure it does
not request restarting the enumeration. Doing so allows it to continue a previous enumeration.

3.2.4.18 (Updated Section) Application Requests Change Notifications for a

Directory

The application provides:

▪ A handle to the Open identifying a directory.

▪ The maximum output buffer it will accept.

▪ A Boolean indicating whether the directory is monitored recursively.

▪ The completion filter following the syntax specified in section 2.2.35, denoting which changes the
application would like to be notified of.

If the application requires to be notified when changes occur and does not require to see the actual
changes, the maximum output buffer MUST be set to 0.

If the handle is invalid, or if no Open referenced by the handle is found, the client MUST return an
implementation-specific error code. If the handle is valid and Open is found, the client MUST proceed
as follows.

If For the specified Open.Connection is NULL, and Open.Durable is TRUE, the client SHOULD
attempt to reconnect to this open,MUST select a connection as specified in section 3.2.4.4. If the
reconnect succeeds, the change notify MUST be retried. If it fails, the error code MUST be returned to
the application.

If Open.Connection is NULL, and Open.Durable is FALSE1.7. If no connection is available, the client
MUST fail the change notify operation.

If Open.Connection is not NULLOtherwise, the client initializes an SMB2 CHANGE_NOTIFY Request,

following the syntax specified in section 2.2.37. The SMB2 header MUST be initialized as follows:

▪ The Command field is set to SMB2 CHANGE_NOTIFY.

▪ The MessageId field is set as specified in section 3.2.4.1.3.

▪ The SessionId field is set to Open.TreeConnect.Session.SessionId.

▪ The TreeId field is set to Open.TreeConnect.TreeConnectId.

The SMB2 CHANGE_NOTIFY Request MUST be initialized as follows:

▪ The CompletionFilter field is set to the completion filter that is provided by the calling
application.

▪ The OutputBufferLength field is set to the maximum output buffer that the calling application
will accept.

▪ The FileId field is set to Open.FileId.

186 / 464

[MS-SMB2-Diff] - v20190923
Server Message Block (SMB) Protocol Versions 2 and 3
Copyright © 2019 Microsoft Corporation
Release: September 23, 2019

▪ If the application requested that the directory be monitored recursively, the client sets
SMB2_WATCH_TREE to TRUE in the Flags field.

The request MUST be sent to the server.

3.2.4.19 (Updated Section) Application Requests Locking of an Array of Byte

Ranges

The application provides:

▪ A handle to the Open identifying a file or named pipe.

▪ An array of byte ranges to lock. For each range, the application provides:

▪ A starting offset, in bytes.

▪ A length, in bytes.

▪ Whether the range is to be locked exclusively, or shared.

▪ Whether the lock request is to wait until the lock can be acquired to return, or whether it is to
fail immediately if the range is locked by another Open.

If the handle is invalid, or if no Open referenced by the handle is found, the client MUST return an
implementation-specific error code. If the handle is valid and Open is found, the client MUST proceed
as follows.

If For the specified Open.Connection is NULL, and Open.Durable is TRUE, the client SHOULD
attempt to reconnect to this Open,MUST select a connection as specified in section 3.2.4.4. If the
reconnect succeeds, the lock MUST be retried. If it fails, the error code MUST be returned to the
application.

If Open.Connection is NULL, and Open.Durable is FALSE1.7. If no connection is available, the client
MUST fail the lock operation.

If Open.Connection is not NULLOtherwise, the client initializes an SMB2 LOCK Request following the
syntax specified in section 2.2.26. The SMB2 header MUST be initialized as follows:

▪ The Command field is set to SMB2 LOCK.

▪ The MessageId field is set as specified in section 3.2.4.1.3.

▪ The SessionId field is set to Open.TreeConnect.Session.SessionId.

▪ The TreeId field is set to Open.TreeConnect.TreeConnectId.

The SMB2 LOCK Request MUST be initialized as follows:

▪ The FileId field is set to Open.FileId.

▪ The LockCount field is set to the number of byte ranges being locked.

▪ For each range being locked, the client creates an SMB2_LOCK_ELEMENT structure and places it in
the Locks[] array of the request, setting the following values:

▪ The offset is set to the offset of the range being locked.

▪ The length is set to the length of the range to be locked.

▪ If the lock is to be acquired shared, the client sets the SMB2_LOCKFLAG_SHARED_LOCK bit in
the Flags field.

187 / 464

[MS-SMB2-Diff] - v20190923
Server Message Block (SMB) Protocol Versions 2 and 3
Copyright © 2019 Microsoft Corporation
Release: September 23, 2019

▪ If the lock is to be acquired exclusively, the client sets the
SMB2_LOCKFLAG_EXCLUSIVE_LOCK bit in the Flags field.

▪ If the lock is to fail immediately if the range is already locked, the client sets the
SMB2_LOCKFLAG_FAIL_IMMEDIATELY bit in the Flags field. If the Locks[] array has more

than one element, the client MUST set SMB2_LOCKFLAG_FAIL_IMMEDIATELY.

If any of the Booleans Open.ResilientHandle, Open.IsPersistent, or
Connection.SupportsMultiChannel is TRUE, the client MUST do the following:

▪ Scan through Open.OperationBuckets and find an entry with its Free field set to TRUE. If no
such element could be found, an implementation-specific error MUST be returned to the
application.

▪ Set the Free element of the chosen entry to FALSE.

▪ The fields of the SMB2 lock request MUST be set as follows:

▪ LockSquenceIndex is set to the index value of the chosen entry.

▪ LockSequenceNumber is set to the SequenceNumber of the chosen entry.

Otherwise the client MUST set LockSequenceIndex and LockSequenceNumber to 0.

The request MUST be sent to the server.

3.2.4.20 Application Requests an IO Control Code Operation

If Connection.SupportsMultiCredit is TRUE, the CreditCharge field in the SMB2 header
SHOULD<130> be set to (max(InputCount, MaxOutputResponse) – 1) / 65536 + 1.

3.2.4.20.1 (Updated Section) Application Requests Enumeration of Previous

Versions

The application provides:

▪ A handle to the Open identifying a file on a volume for which the application requires the previous
version time stamps.

▪ The maximum output buffer size that it will accept.

If the handle is invalid, or if no Open referenced by the handle is found, the client MUST return an

implementation-specific error code. If the handle is valid and Open is found, the client MUST proceed
as follows.

If For the specified Open.Connection is NULL, and Open.Durable is TRUE, the client SHOULD
attempt to reconnect to this open,MUST select a connection as specified in section 3.2.4.4. If the
reconnect succeeds, this FSCTL MUST be retried. If it fails, the error code MUST be returned to the
application.

If Open.Connection is NULL, and Open.Durable is FALSE1.7. If no connection is available, the client
MUST fail thisthe FSCTL operation.

If Open.Connection is not NULLOtherwise, the client initializes an SMB2 IOCTL Request following the
syntax specified in section 2.2.31. The SMB2 header MUST be initialized as follows:

▪ The Command field is set to SMB2 IOCTL.

▪ The MessageId field is set as specified in section 3.2.4.1.3.

188 / 464

[MS-SMB2-Diff] - v20190923
Server Message Block (SMB) Protocol Versions 2 and 3
Copyright © 2019 Microsoft Corporation
Release: September 23, 2019

▪ The SessionId field is set to Open.TreeConnect.Session.SessionId.

▪ The TreeId field is set to Open.TreeConnect.TreeConnectId.

The SMB2 IOCTL Request MUST be initialized as specified in section 2.2.31, with the exception of the
following values:

▪ The CtlCode field is set to FSCTL_SRV_ENUMERATE_SNAPSHOTS.

▪ The FileId field is set to Open.FileId.

▪ The InputCount field is set to 0.

▪ The MaxInputResponse field is set to 0.

▪ The MaxOutputResponse field is set to the maximum output buffer size that the application will
accept.

▪ SMB2_0_IOCTL_IS_FSCTL is set to TRUE in the Flags field.

The request MUST be sent to the server.

3.2.4.20.2 Application Requests a Server-Side Data Copy

Requesting a server-side data copy occurs in several steps. These are outlined in the following
diagram:

189 / 464

[MS-SMB2-Diff] - v20190923
Server Message Block (SMB) Protocol Versions 2 and 3
Copyright © 2019 Microsoft Corporation
Release: September 23, 2019

Figure 5: Application requesting a server-side data copy

The method for requesting the key to the source file and for requesting the server-side copy of data

ranges is outlined in the following sections.

3.2.4.20.2.1 (Updated Section) Application Requests a Source File Key

The application provides:

▪ A handle to the Open identifying a file for which the application requires a key to use in server-
side data operations.

If the handle is invalid, or if no Open referenced by the handle is found, the client MUST return an

implementation-specific error code. If the handle is valid and Open is found, the client MUST proceed
as follows.

190 / 464

[MS-SMB2-Diff] - v20190923
Server Message Block (SMB) Protocol Versions 2 and 3
Copyright © 2019 Microsoft Corporation
Release: September 23, 2019

If For the specified Open.Connection is NULL, and Open.Durable is TRUE, the client SHOULD
attempt to reconnect to this open,MUST select a connection as specified in section 3.2.4.4. If the

reconnect succeeds, this FSCTL MUST be retried. If it fails, the error code MUST be returned to the
application.

If Open.Connection is NULL, and Open.Durable is FALSE1.7. If no connection is available, the client
MUST fail thisthe FSCTL operation.

If Open.Connection is not NULLOtherwise, the client initializes an SMB2 IOCTL Request following the
syntax specified in section 2.2.31. The SMB2 header MUST be initialized as follows:

▪ The Command field is set to SMB2 IOCTL.

▪ The MessageId field is set as specified in section 3.2.4.1.3.

▪ The SessionId field is set to Open.TreeConnect.Session.SessionId.

▪ The TreeId field is set to Open.TreeConnect.TreeConnectId.

The SMB2 IOCTL Request MUST be initialized as specified in section 2.2.31, with the exception of the
following values:

▪ The CtlCode field is set to the FSCTL_SRV_REQUEST_RESUME_KEY.

▪ The FileId field is set to Open.FileId.

▪ The InputCount field is set to 0.

▪ The OutputOffset field SHOULD<131> be set to 0.

▪ The MaxInputResponse field is set to 0.

▪ The MaxOutputResponse field is set to 32.

▪ SMB2_0_IOCTL_IS_FSCTL is set to TRUE in the Flags field.

The request MUST be sent to the server.

3.2.4.20.2.2 (Updated Section) Application Requests a Server Side Data Copy

The application provides:

▪ A handle to the Open identifying the destination file.

▪ The FSCTL code for the server side copy, either FSCTL_SRV_COPYCHUNK or
FSCTL_SRV_COPYCHUNK_WRITE.<132>

▪ The key for the source file queried, as specified in the previous section "Application Requests a
Source File Key".

▪ An array of ranges to copy. Each item in the array MUST contain the source offset, the destination

offset, and the number of bytes to copy.

If the handle is invalid, or if no Open referenced by the handle is found, the client MUST return an
implementation-specific error code. If the handle is valid and Open is found, the client MUST proceed
as follows.

If For the specified Open.Connection is NULL, and Open.Durable is TRUE, the client SHOULD
attempt to reconnect to this open,MUST select a connection as specified in section 3.2.4.4. If the

reconnect succeeds, this FSCTL MUST be retried. If it fails, the error code MUST be returned to the
application.

191 / 464

[MS-SMB2-Diff] - v20190923
Server Message Block (SMB) Protocol Versions 2 and 3
Copyright © 2019 Microsoft Corporation
Release: September 23, 2019

If Open.Connection is NULL, and Open.Durable is FALSE1.7. If no connection is available, the client
MUST fail thisthe FSCTL operation.

If Open.Connection is not NULLOtherwise, the client initializes an SMB2 IOCTL Request following the
syntax specified in section 2.2.31. The SMB2 header MUST be initialized as follows:

▪ The Command field is set to SMB2 IOCTL.

▪ The MessageId field is set as specified in section 3.2.4.1.3.

▪ The SessionId field is set to Open.TreeConnect.Session.SessionId.

▪ The TreeId field is set to Open.TreeConnect.TreeConnectId.

The SMB2 IOCTL Request MUST be initialized as follows:

▪ The CtlCode field MUST be set to the FSCTL code supplied by the application.

▪ The FileId field is set to Open.FileId.

▪ The Buffer field is set to an SRV_COPYCHUNK_COPY Request, as specified in section 2.2.31.1.

▪ The SourceKey field is set to the key of the source file.

▪ For each range to be copied, the client initializes the Chunks field following the syntax
specified in section 2.2.31.1.1 using the application provided source offset, destination offset,
and length, in bytes.

▪ The ChunkCount is set to the number of chunks being sent.

▪ The InputOffset field is set to the offset to the Buffer, in bytes, from the beginning of the SMB2
header.

▪ The InputCount is set to the size, in bytes, of the Buffer field.

▪ The OutputOffset field SHOULD<133> be set to zero.

▪ The OutputCount field is set to 0.

▪ The MaxInputResponse field is set to 0.

▪ The MaxOutputResponse field is set to the size of a SRV_COPYCHUNK_RESPONSE structure, as

specified in section 2.2.32.1.

▪ SMB2_0_IOCTL_IS_FSCTL is set to TRUE in the Flags field.

The request MUST be sent to the server.

3.2.4.20.3 Application Requests DFS Referral Information

The application provides the following:

▪ ServerName: The name of the server from which to query referrals.

▪ UserCredentials: An opaque implementation-specific entity that identifies the credentials to be
used when authenticating to the remote server.

▪ The maximum output buffer response size, in bytes.

▪ An input buffer containing the application-provided structure REQ_GET_DFS_REFERRAL
specified in [MS-DFSC] section 2.2.2 or REQ_GET_DFS_REFERRAL_EX specified in [MS-DFSC]
section 2.2.3.

192 / 464

[MS-SMB2-Diff] - v20190923
Server Message Block (SMB) Protocol Versions 2 and 3
Copyright © 2019 Microsoft Corporation
Release: September 23, 2019

▪ The FSCTL code for DFS referral information, either FSCTL_DFS_GET_REFERRALS or
FSCTL_DFS_GET_REFERRALS_EX.

The client MUST search for an existing Session and TreeConnect to any share on the server
identified by ServerName for the user identified by UserCredentials. If no Session and

TreeConnect are found, the client MUST establish a new Session and TreeConnect to IPC$ on the
target server as described in section 3.2.4.2 using the supplied ServerName and UserCredentials.

The client initializes an SMB2 IOCTL Request following the syntax specified in section 2.2.31. The
SMB2 header MUST be initialized as follows:

▪ The Command field is set to SMB2 IOCTL.

▪ The MessageId field is set as specified in section 3.2.4.1.3.

▪ The SessionId field is set to Session.SessionId.

▪ The TreeId field is set to TreeConnect.TreeConnectId.

The SMB2 IOCTL Request MUST be initialized as follows:

▪ The CtlCode field is set to the application-provided FSCTL code.

▪ The FileId field is set to { 0xFFFFFFFFFFFFFFFF, 0xFFFFFFFFFFFFFFFF }.

▪ The InputOffset field is set to the offset to the Buffer[], in bytes, from the beginning of the
SMB2 header.

▪ The InputCount field is set to the size of the Buffer field.

▪ The OutputOffset field SHOULD<134> be set to zero.

▪ The OutputCount field is set to 0.

▪ The MaxInputResponse field is set to 0.

▪ The MaxOutputResponse field is set to the maximum response buffer size that the calling
application will accept.

▪ SMB2_0_IOCTL_IS_FSCTL is set to TRUE in the Flags field.

▪ Buffer is set to the application-provided input buffer.

The request MUST be sent to the server using the Session and TreeConnect obtained as a result of
connecting to the IPC$ share on the server.

3.2.4.20.4 (Updated Section) Application Requests a Pipe Transaction

The application provides:

▪ A handle to the Open identifying the named pipe on which to issue the operation.

▪ An input buffer.

▪ A maximum output buffer response size, in bytes.

If the handle is invalid, or if no Open referenced by the handle is found, the client MUST return an
implementation-specific error code. If the handle is valid and Open is found, the client MUST proceed
as follows.

If For the specified Open.Connection is NULL, and Open.Durable is TRUE, the client SHOULD

attempt to reconnect to this open,MUST select a connection as specified in section 3.2.4.4. If the

193 / 464

[MS-SMB2-Diff] - v20190923
Server Message Block (SMB) Protocol Versions 2 and 3
Copyright © 2019 Microsoft Corporation
Release: September 23, 2019

reconnect succeeds, this FSCTL MUST be retried. If it fails, the error code MUST be returned to the
application.

If Open.Connection is NULL, and Open.Durable is FALSE1.7. If no connection is available, the client
MUST fail thisthe FSCTL operation.

If Open.Connection is not NULLOtherwise, the client initializes an SMB2 IOCTL Request following the
syntax specified in section 2.2.31. The SMB2 header MUST be initialized as follows:

▪ The Command field is set to SMB2 IOCTL.

▪ The MessageId field is set as specified in section 3.2.4.1.3.

▪ The SessionId field is set to Open.TreeConnect.Session.SessionId.

▪ The TreeId field is set to Open.TreeConnect.TreeConnectId.

The SMB2 IOCTL Request MUST be initialized as follows:

▪ The CtlCode field is set to FSCTL_PIPE_TRANSCEIVE.

▪ The FileId field is set to Open.FileId.

▪ The InputOffset field is set to the offset to the Buffer[], in bytes, from the beginning of the
SMB2 header.

▪ The InputCount field is set to the size, in bytes, of the application-provided input buffer.

▪ The OutputOffset field SHOULD<135> be set to zero.

▪ The OutputCount field is set to 0.

▪ The input buffer that is received from the application is copied into the request at InputOffset
bytes from the beginning of the SMB2 header.

▪ The MaxInputResponse field is set to 0.

▪ The MaxOutputResponse field is set to the maximum output buffer size that the application will
accept.

▪ SMB2_0_IOCTL_IS_FSCTL is set to TRUE in the Flags field.

The request MUST be sent to the server.

3.2.4.20.5 (Updated Section) Application Requests a Peek at Pipe Data

The application provides:

▪ A handle to the Open identifying the named pipe on which to issue the operation.

▪ The number of bytes to peek at in the pipe buffer.

If the handle is invalid, or if no Open referenced by the handle is found, the client MUST return an

implementation-specific error code. If the handle is valid and Open is found, the client MUST proceed
as follows.

If For the specified Open.Connection is NULL, and Open.Durable is TRUE, the client SHOULD
attempt to reconnect to this open,MUST select a connection as specified in section 3.2.4.4. If the
reconnect succeeds, this FSCTL MUST be retried. If it fails, the error code MUST be returned to the
application.

194 / 464

[MS-SMB2-Diff] - v20190923
Server Message Block (SMB) Protocol Versions 2 and 3
Copyright © 2019 Microsoft Corporation
Release: September 23, 2019

If Open.Connection is NULL, and Open.Durable is FALSE1.7. If no connection is available, the client
MUST fail thisthe FSCTL operation.

If Open.Connection is not NULLOtherwise, the client initializes an SMB2 IOCTL Request following the
syntax specified in section 2.2.31. The SMB2 header MUST be initialized as follows:

▪ The Command field is set to SMB2 IOCTL.

▪ The MessageId field is set as specified in section 3.2.4.1.3.

▪ The SessionId field is set to Open.TreeConnect.Session.SessionId.

▪ The TreeId field is set to Open.TreeConnect.TreeConnectId.

The SMB2 IOCTL Request MUST be initialized as specified in section 2.2.31, with the exception of the
following values:

▪ The CtlCode field is set to FSCTL_PIPE_PEEK.

▪ The FileId field is set to Open.FileId.

▪ The InputCount field is set to 0.

▪ The OutputOffset field SHOULD<136> be set to zero.

▪ The MaxInputResponse field is set to 0.

▪ The MaxOutputResponse field is set to the number of bytes that the client requires to peek at.

▪ SMB2_0_IOCTL_IS_FSCTL is set to TRUE in the Flags field.

The request MUST be sent to the server.

3.2.4.20.6 (Updated Section) Application Requests a Pass-Through Operation

An SMB2 server MAY<137> support pass-through operation requests.

The application provides:

▪ A handle to the Open identifying a file or named pipe on which to issue the operation.

▪ An input buffer.

▪ An output buffer.

▪ A maximum input buffer response size, in bytes.

▪ A maximum output buffer response size, in bytes.

▪ An operation code.

▪ A Boolean indicating whether the operation is an FSCTL or an IOCTL.

If the handle is invalid, or if no Open referenced by the handle is found, the client MUST return an
implementation-specific error code. If the handle is valid and Open is found, the client MUST proceed

as follows.

If For the specified Open.Connection is NULL, and Open.Durable is TRUE, the client SHOULD
attempt to reconnect to this open,MUST select a connection as specified in section 3.2.4.4. If the
reconnect succeeds, the FSCTL or IOCTL MUST be retried. If it fails, the error code MUST be returned
to the application.

195 / 464

[MS-SMB2-Diff] - v20190923
Server Message Block (SMB) Protocol Versions 2 and 3
Copyright © 2019 Microsoft Corporation
Release: September 23, 2019

If Open.Connection is NULL, and Open.Durable is FALSE1.7. If no connection is available, the client
MUST fail the FSCTL or IOCTL operation.

If Open.Connection is not NULLOtherwise, the client initializes an SMB2 IOCTL Request following the
syntax specified in section 2.2.31. The SMB2 header MUST be initialized as follows:

▪ The Command field is set to SMB2 IOCTL.

▪ The MessageId field is set as specified in section 3.2.4.1.3.

▪ The SessionId field is set to Open.TreeConnect.Session.SessionId.

▪ The TreeId field is set to Open.TreeConnect.TreeConnectId.

The SMB2 IOCTL Request MUST be initialized as follows:

▪ The CtlCode field is set to the operation code that is received from the application.

▪ The FileId field is set to Open.FileId.

▪ The InputOffset field is set to the offset to the Buffer[], in bytes, from the beginning of the
SMB2 header.

▪ The InputCount field is set to the size, in bytes, of the application-provided input buffer.

▪ The input buffer received from the application is copied into the request at InputOffset bytes
from the beginning of the SMB2 header.

▪ The OutputOffset field SHOULD<138> be set to zero.

▪ The OutputCount field is set to 0.

▪ The MaxInputResponse field is set to the maximum input buffer response size, in bytes, that the
application will accept.

▪ The MaxOutputResponse field is set to the maximum output buffer response size, in bytes, that

the application will accept.

▪ If the operation is an FSCTL, SMB2_0_IOCTL_IS_FSCTL in the Flags field is set to TRUE.
Otherwise, it is set to FALSE.

The request MUST be sent to the server.

3.2.4.20.7 (Updated Section) Application Requests Content Information for a File

An application can request Content Information from the server that contains a set of hashes that can
be used by the application to retrieve the contents of a specific file using the branch cache, as
specified in [MS-PCCRC]. This request is not supported for the SMB 2.0.2 dialect. To retrieve the
Content Information, the application provides the following:

▪ The HashType, as specified in section 2.2.31.2.

▪ The HashVersion, as specified in section 2.2.31.2.

▪ The HashRetrievalType, as specified in section 2.2.31.2.

▪ A handle to the Open identifying the remote file with which the Content Information is associated.

▪ The maximum number of bytes to get from the associated Content Information data structure.

▪ The offset into the Content Information data structure, if the structure is being retrieved across

multiple requests, in bytes.

196 / 464

[MS-SMB2-Diff] - v20190923
Server Message Block (SMB) Protocol Versions 2 and 3
Copyright © 2019 Microsoft Corporation
Release: September 23, 2019

If the handle is invalid, or if no Open referenced by the handle is found, the client MUST return an
implementation-specific error code. If the handle is valid and Open is found, the client MUST proceed

as follows.

If Open.Connection is NULL, and Open.Durable is TRUEFor the specified Open, the client SHOULD

attempt to reconnect to this open,MUST select a connection as specified in section 3.2.4.4. If the
reconnect succeeds, this FSCTL MUST be retried. If it fails, the error code MUST be returned to the
application.

If Open.Connection is NULL, and Open.Durable is FALSE1.7. If no connection is available, the client
MUST fail this FSCTL operation.

Otherwise, the client MUST perform the following:

If Open.Connection is not NULL and Open.Connection.Dialect is "2.0.2", the client MUST fail the

application request with STATUS_NOT_SUPPORTED.

If Open.Connection is not NULL, the client MUST Otherwise, format a SMB2 IOCTL Request following
the syntax specified in section 2.2.31. The SMB2 header MUST be initialized as follows:

▪ The Command field is set to SMB2 IOCTL.

▪ The MessageId field is set as specified in section 3.2.4.1.3.

▪ The SessionId field is set to Open.TreeConnect.Session.SessionId.

▪ The TreeId field is set to Open.TreeConnect.TreeConnectId.

The SMB2 IOCTL Request MUST be initialized as follows:

▪ The CtlCode field is set to FSCTL_SRV_READ_HASH.

▪ The FileId field is set to Open.FileId.

▪ The Buffer field is set to an SRV_READ_HASH Request, as specified in section 2.2.31.2.

▪ The client initializes an SRV_READ_HASH request structure following the syntax specified in
section 2.2.31.2 using the application-provided hash type, hash version, hash retrieval type,

length, and offset, in bytes.

▪ The InputOffset field is set to the offset to the Buffer, in bytes, from the beginning of the SMB2
header.

▪ The InputCount is set to the size, in bytes, of the Buffer field.

▪ The OutputOffset field SHOULD<139> be set to zero.

▪ The OutputCount field is set to 0.

▪ The MaxInputResponse field is set to 0.

▪ The MaxOutputResponse field is set to the maximum number of bytes that the application

expects to retrieve.

▪ The SMB2_0_IOCTL_IS_FSCTL in the Flags field is set to TRUE.

The request MUST be sent to the server, and the response from the server MUST be handled as
described in section 3.2.5.14.7.

The status of the response MUST be returned to the application.

3.2.4.20.8 (Updated Section) Application Requests Resiliency on an Open File

197 / 464

[MS-SMB2-Diff] - v20190923
Server Message Block (SMB) Protocol Versions 2 and 3
Copyright © 2019 Microsoft Corporation
Release: September 23, 2019

The application provides the following:

▪ A handle to the Open identifying the file to on which to request resiliency.

▪ The time-out for which the server MUST hold the handle open on behalf of the client after a
network disconnection, in milliseconds.

If the handle is invalid, or if no Open referenced by the handle is found, the client MUST return an
implementation-specific error code. If the handle is valid and Open is found, the client MUST proceed
as follows.

If Open.ResilientHandle is TRUE, an error MUST be returned toFor the application.

If Open.Connection is NULL, and Open.Durable is TRUEspecified Open, the client SHOULD attempt
to reconnect to this open,MUST select a connection as specified in section 3.2.4.41.7. If it failsno
connection is returned, the error codeclient MUST be returned tofail the applicationrequest.

If Open.Connection is not NULL and ifOtherwise, the client MUST perform the following:

If Open.Connection.Dialect is equal to "2.0.2", the client MUST fail the application request with
STATUS_NOT_SUPPORTED. Otherwise, set Open.ResilientTimeout to the application supplied time-
out.

The client MUST set Open.ResilientTimeout to the application supplied time-out.

If Open.Connection is not NULL, theThe client initializes an SMB2 IOCTL Request following the

syntax specified in section 2.2.31. The SMB2 header MUST be initialized as follows:

▪ The Command field is set to SMB2 IOCTL.

▪ The MessageId field is set as specified in section 3.2.4.1.3.

▪ The SessionId field is set to Open.TreeConnect.Session.SessionId.

▪ The TreeId field is set to Open.TreeConnect.TreeConnectId.

The SMB2 IOCTL Request MUST be initialized as follows:

▪ The CtlCode field MUST be set to FSCTL_LMR_REQUEST_RESILIENCY.

▪ The FileId field MUST be set to Open.FileId.

▪ The Buffer field is set to a NETWORK_RESILIENCY_REQUEST Request, as specified in section
2.2.31.3.

▪ The Timeout field MUST be set to the application-provided time-out (in milliseconds).

▪ The InputOffset field MUST be set to the offset to the Buffer, in bytes, from the beginning of the
SMB2 header.

▪ The InputCount field MUST be set to the size, in bytes, of the Buffer field.

▪ The OutputOffset field SHOULD<140> be set to zero.

▪ The OutputCount field MUST be set to 0.

▪ The MaxInputResponse field MUST be set to 0.

▪ The MaxOutputResponse field MUST be set to 0.

▪ SMB2_0_IOCTL_IS_FSCTL in the Flags field MUST be set to TRUE.

198 / 464

[MS-SMB2-Diff] - v20190923
Server Message Block (SMB) Protocol Versions 2 and 3
Copyright © 2019 Microsoft Corporation
Release: September 23, 2019

The request MUST be sent to the server, and the response from the server MUST be handled as
described in section 3.2.5.14.9.

The status of the response MUST be returned to the application.

3.2.4.20.9 Application Requests Waiting for a Connection to a Pipe

The application provides:

▪ A handle to the TreeConnect identifying the connection to the IPC$ share.

▪ The name of the named pipe, omitting any prefixes such as "\pipe\".

▪ An optional timeout value indicating the maximum amount of time to wait for availability of the
pipe, in units of 100 milliseconds.

If the handle is invalid, or if no TreeConnect referenced by the tree connect handle is found, the

client MUST return an implementation-specific error code locally to the calling application.

If the length of the name of the named pipe is greater than 0xFFFF, the client MUST fail the request
and return STATUS_INVALID_PARAMETER to the calling application.

The client initializes an SMB2 IOCTL Request following the syntax specified in section 2.2.31. The
SMB2 header MUST be initialized as follows:

▪ The Command field is set to SMB2 IOCTL.

▪ The MessageId field is set as specified in section 3.2.4.1.3.

▪ The SessionId field is set to TreeConnect.Session.SessionId.

▪ The TreeId field is set to TreeConnect.TreeConnectId.

The SMB2 IOCTL Request MUST be initialized as specified in section 2.2.31, with the exception of the
following values:

▪ The CtlCode field is set to FSCTL_PIPE_WAIT.

▪ The FileId field is set to { 0xFFFFFFFFFFFFFFFF, 0xFFFFFFFFFFFFFFFF }.

▪ The MaxInputResponse field is set to 0.

▪ The MaxOutputResponse field is set to 0.

▪ SMB2_0_IOCTL_IS_FSCTL is set to TRUE in the Flags field.

▪ The Buffer field is set to an FSCTL_PIPE_WAIT Request, as specified in [MS-FSCC] section 2.3.33.

▪ Timeout is set to the application provided timeout value, or 0 if none was provided.

▪ TimeoutSpecified is set to TRUE if the application provided a timeout value, or FALSE
otherwise.

▪ Name is set to the name of the named pipe.

▪ NameLength is set to the length, in bytes, of the Name field.

▪ The InputOffset field is set to the offset to the Buffer, in bytes, from the beginning of the SMB2
header.

▪ The InputCount field is set to the size, in bytes, of the Buffer field.

199 / 464

[MS-SMB2-Diff] - v20190923
Server Message Block (SMB) Protocol Versions 2 and 3
Copyright © 2019 Microsoft Corporation
Release: September 23, 2019

The request MUST be sent to the server.

3.2.4.20.10 Application Requests Querying Server's Network Interfaces

This optional interface is applicable only for the SMB 3.x dialect family.

The application provides:

▪ A handle to the TreeConnect.

If the handle is invalid, or if no TreeConnect referenced by the tree connect handle is found, the
client MUST return an implementation-specific error code locally to the calling application.

The client initializes an SMB2 IOCTL Request following the syntax specified in section 2.2.31. The
SMB2 header MUST be initialized as follows:

▪ The Command field is set to SMB2 IOCTL.

▪ The MessageId field is set as specified in section 3.2.4.1.3.

▪ The SessionId field is set to TreeConnect.Session.SessionId.

▪ The TreeId field is set to TreeConnect.TreeConnectId.

The SMB2 IOCTL Request MUST be initialized as specified in section 2.2.31, with the exception of the
following values:

▪ The CtlCode field is set to FSCTL_QUERY_NETWORK_INTERFACE_INFO.

▪ The FileId field is set to { 0xFFFFFFFFFFFFFFFF, 0xFFFFFFFFFFFFFFFF }.

▪ The InputCount field is set to 0.

▪ The MaxInputResponse field is set to 0.

▪ The MaxOutputResponse field is set to an implementation-specific<141> value.

▪ SMB2_0_IOCTL_IS_FSCTL is set to TRUE in the Flags field.

The request MUST be sent to the server.

3.2.4.20.11 (Updated Section) Application Requests Remote Shared Virtual Disk File

Control Operation

The application provides:

▪ A handle to the Open identifying a shared virtual disk file for which the application requires access.

▪ Operation Control code.

▪ Control code payload.

▪ The maximum output buffer size that it will accept.

If the handle is invalid, or if no Open referenced by the handle is found, the client MUST return an
implementation-specific error code. If the handle is valid and Open is found, the client MUST proceed
as follows.

If For the specified Open.Connection is NULL, and Open.Durable is TRUE, the client SHOULD
attempt to reconnect to this open,MUST select a connection as specified in section 3.2.4.4. If the

200 / 464

[MS-SMB2-Diff] - v20190923
Server Message Block (SMB) Protocol Versions 2 and 3
Copyright © 2019 Microsoft Corporation
Release: September 23, 2019

reconnect succeeds, this FSCTL MUST be retried. If it fails, the error code MUST be returned to the
application.

If Open.Connection is NULL, and Open.Durable is FALSE1.7. If no connection is available, the client
MUST fail this FSCTL operationthe request.

If Open.Connection is not NULLOtherwise, the client initializes an SMB2 IOCTL Request following the
syntax specified in section 2.2.31. The SMB2 header MUST be initialized as follows:

▪ The Command field is set to SMB2 IOCTL.

▪ The MessageId field is set as specified in section 3.2.4.1.3.

▪ The SessionId field is set to Open.TreeConnect.Session.SessionId.

▪ The TreeId field is set to Open.TreeConnect.TreeConnectId.

The SMB2 IOCTL Request MUST be initialized as follows:

▪ The CtlCode field is set to the application provided control code value.

▪ The FileId field is set to Open.FileId.

▪ The InputOffset field MUST be set to the offset from the start of the SMB2 header to the
beginning of the Buffer field.

▪ The InputCount field is set to the size, in bytes, of the input Buffer data.

▪ The OutputOffset field SHOULD<142> be set to zero.

▪ The OutputCount field is set to 0.

▪ The MaxInputResponse field is set to 0.

▪ The MaxOutputResponse field is set to the maximum output buffer size that the application will
accept.

▪ The application provided control code payload MUST be copied into Buffer field.

▪ SMB2_0_IOCTL_IS_FSCTL is set to TRUE in the Flags field.

The request MUST be sent to the server.

3.2.4.20.12 Application Requests Extent Duplication

The application provides the following:

▪ SourceHandle: A handle to the Open identifying a source file from which the extent is to be
copied.

▪ TargetHandle: A handle to the Open identifying a file on which to issue the operation.

▪ SourceOffset: The file offset, in bytes, of the start of a range of bytes in a file from which the

data is to be copied.

▪ DestinationOffset: The file offset, in bytes, of the start of a range of bytes in a file to which the
data is to be copied.

▪ ByteCount: The number of bytes to copy from source to target.

201 / 464

[MS-SMB2-Diff] - v20190923
Server Message Block (SMB) Protocol Versions 2 and 3
Copyright © 2019 Microsoft Corporation
Release: September 23, 2019

If the SourceHandle or TargetHandle is invalid, or if no Open referenced by these handles is found,
the client MUST return an implementation-specific error code. If these handles are valid and the Open

is found, the client MUST proceed as follows:

▪ The client initializes an SMB2 IOCTL Request following the syntax specified in section 2.2.31. The

SMB2 header MUST be initialized as follows:

▪ The Command field is set to SMB2 IOCTL.

▪ The MessageId field is set as specified in section 3.2.4.1.3.

▪ The SessionId field is set to TreeConnect.Session.SessionId of the Open referenced by
TargetHandle.

▪ The TreeId field is set to TreeConnect.TreeConnectId of the Open referenced by
TargetHandle.

The SMB2 IOCTL Request MUST be initialized as specified in section 2.2.31, with the exception of the
following values:

▪ The CtlCode field is set to FSCTL_DUPLICATE_EXTENTS_TO_FILE.

▪ The FileId field is set to the FileID of the Open referenced by TargetHandle.

▪ The MaxInputResponse field is set to 0.

▪ The MaxOutputResponse field is set to 0.

▪ SMB2_0_IOCTL_IS_FSCTL is set to TRUE in the Flags field.

▪ The Buffer field is set to an SMB2_DUPLICATE_EXTENTS_DATA Request, as specified in [MS-
FSCC] section 2.3.7.2:

▪ SourceFileID is set to the FileID of the Open referenced by SourceHandle.

▪ SourceFileOffset is set to the application-provided SourceOffset.

▪ DestinationFileOffset is set to the application-provided DestinationOffset.

▪ ByteCount is set to the application-provided ByteCount.

▪ The InputOffset field is set to the offset to the Buffer, in bytes, from the beginning of the SMB2
header.

▪ The InputCount field is set to the size, in bytes, of the Buffer field.

The request MUST be sent to the server.

3.2.4.20.13 Application Requests Extended Extent Duplication

The application provides the following:

▪ SourceHandle: A handle to the Open identifying a source file from which the extent is to be
copied.

▪ TargetHandle: A handle to the Open identifying a file on which to issue the operation.

▪ SourceOffset: The file offset, in bytes, of the start of a range of bytes in a file from which the
data is to be copied.

▪ DestinationOffset: The file offset, in bytes, of the start of a range of bytes in a file to which the

data is to be copied.

202 / 464

[MS-SMB2-Diff] - v20190923
Server Message Block (SMB) Protocol Versions 2 and 3
Copyright © 2019 Microsoft Corporation
Release: September 23, 2019

▪ ByteCount: The number of bytes to copy from source to target.

▪ Flags: Flags indicating how to process the request, as specified in [MS-FSCC] section 2.3.9.2.

If the SourceHandle or TargetHandle is invalid, or if no Open referenced by these handles is found,
the client MUST return an implementation-specific error code. If these handles are valid and the Open

is found, the client MUST proceed as follows:

▪ The client initializes an SMB2 IOCTL Request following the syntax specified in section 2.2.31. The
SMB2 header MUST be initialized as follows:

▪ The Command field is set to SMB2 IOCTL.

▪ The MessageId field is set as specified in section 3.2.4.1.3.

▪ The SessionId field is set to TreeConnect.Session.SessionId of the Open referenced by
TargetHandle.

▪ The TreeId field is set to TreeConnect.TreeConnectId of the Open referenced by

TargetHandle.

The SMB2 IOCTL Request MUST be initialized as specified in section 2.2.31, with the exception of the
following values:

▪ The CtlCode field is set to FSCTL_DUPLICATE_EXTENTS_TO_FILE_EX.

▪ The FileId field is set to the FileID of the Open referenced by TargetHandle.

▪ The MaxInputResponse field is set to 0.

▪ The MaxOutputResponse field is set to 0.

▪ SMB2_0_IOCTL_IS_FSCTL is set to TRUE in the Flags field.

▪ The Buffer field is set to an SMB2_DUPLICATE_EXTENTS_DATA_EX request, as specified in [MS-

FSCC] section 2.3.9.2:

▪ StructureSize is set to 0x30.

▪ SourceFileID is set to the FileID of the Open referenced by SourceHandle.

▪ SourceFileOffset is set to the application-provided SourceOffset.

▪ DestinationFileOffset is set to the application-provided DestinationOffset.

▪ ByteCount is set to the application-provided ByteCount.

▪ Flags is set to the application-provided Flags.

▪ The InputOffset field is set to the offset to the Buffer, in bytes, from the beginning of the SMB2
header.

▪ The InputCount field is set to the size, in bytes, of the Buffer field.

The request MUST be sent to the server.

3.2.4.21 (Updated Section) Application Requests Unlocking of an Array of Byte

Ranges

The application provides:

▪ A handle to the Open identifying a file.

203 / 464

[MS-SMB2-Diff] - v20190923
Server Message Block (SMB) Protocol Versions 2 and 3
Copyright © 2019 Microsoft Corporation
Release: September 23, 2019

▪ An array of byte ranges to unlock. For each range, the application provides:

▪ A starting offset, in bytes.

▪ A length, in bytes.

If the handle is invalid, or if no Open referenced by the handle is found, the client MUST return an

implementation-specific error code. If the handle is valid and Open is found, the client MUST proceed
as follows.

If For the specified Open.Connection is NULL, and Open.Durable is TRUE, the client SHOULD
attempt to reconnect to this openMUST select a connection as specified in section 3.2.4.4. If the
reconnect succeeds, the unlock MUST be retried. If it fails, the error code MUST be 1.7. If no
connection is returned to the application.

If Open.Connection is NULL, and Open.Durable is FALSE, the client MUST fail the unlock

operationapplication request.

If Open.Connection is not NULLOtherwise, the client initializes an SMB2 LOCK Request following the

syntax specified in section 2.2.26. The SMB2 header MUST be initialized as follows:

▪ The Command field is set to SMB2 LOCK.

▪ The MessageId field is set as specified in section 3.2.4.1.3.

▪ The SessionId field is set to Open.TreeConnect.Session.SessionId.

▪ The TreeId field is set to Open.TreeConnect.TreeConnectId.

The SMB2 LOCK Request MUST be initialized as follows:

▪ The FileId field is set to Open.FileId.

▪ The LockCount field is set to the number of byte ranges being unlocked.

▪ For each range being unlocked, the client creates an SMB2_LOCK_ELEMENT structure and places it
in the Locks[] array of the request, setting the following values:

▪ The offset is set to the offset of the range being unlocked.

▪ The length is set to the length of the range to be unlocked.

▪ The client sets SMB2_LOCKFLAG_UNLOCK to TRUE in the Flags field.

If any of the Booleans Open.ResilientHandle, Open.IsPersistent, or
Connection.SupportsMultiChannel are TRUE, the client MUST do the following:

▪ The client MUST scan through Open.OperationBuckets and find an entry with its Free element
set to TRUE. If no such entry could be found, an implementation-specific error MUST be returned
to the application.

▪ Set the Free element of the chosen entry to FALSE.

▪ The fields of the SMB2 lock request MUST be set as follows:

▪ LockSquenceIndex is set to the index value of the chosen entry.

▪ LockSequenceNumber is set to the SequenceNumber of the chosen entry.

Otherwise the client MUST set LockSequenceIndex and LockSequenceNumber to 0.

The request MUST be sent to the server.

204 / 464

[MS-SMB2-Diff] - v20190923
Server Message Block (SMB) Protocol Versions 2 and 3
Copyright © 2019 Microsoft Corporation
Release: September 23, 2019

3.2.4.22 Application Requests Closing a Share Connection

The application provides a handle to the TreeConnect. If the handle is invalid, or if no TreeConnect
referenced by the handle is found, the client MUST return an implementation-specific error code locally

to the calling application. If the handle is valid and a TreeConnect is found, the client MUST
enumerate all open files on TreeConnect.Session.Connection.OpenTable and close those Opens
where Open.TreeConnect matches the TreeConnect by issuing an SMB2 CLOSE as specified in
section 3.2.4.5.

The client initializes an SMB2 TREE_DISCONNECT Request following the syntax specified in section
2.2.11. The SMB2 header MUST be initialized as follows:

▪ The Command field is set to SMB2 TREE_DISCONNECT.

▪ The MessageId field is set as specified in section 3.2.4.1.3.

▪ The SessionId field is set to TreeConnect.Session.SessionId.

▪ The TreeId field is set to TreeConnect.TreeConnectId.

The SMB2 TREE_DISCONNECT Request MUST be initialized to the default values, as specified in
2.2.11.

The request MUST be sent to the server.

3.2.4.23 Application Requests Terminating an Authenticated Context

The application provides a handle to the Session. If the handle is invalid, or if no Session referenced
by the handle is found, the client MUST return an implementation-specific error code locally to the
calling application. If the handle is valid and a Session is found, the client MUST close all tree

connects in the Session.TreeConnectTable, as specified in section 3.2.4.22.

The client initializes an SMB2 LOGOFF Request, following the syntax specified in section 2.2.7. The
SMB2 header MUST be initialized as follows:

▪ The Command field is set to SMB2 LOGOFF.

▪ The MessageId field is set as specified in section 3.2.4.1.3.

▪ The SessionId field is set to Session.SessionId.

The SMB2 LOGOFF Request MUST be initialized to the default values, as specified in 2.2.7.

The request MUST be sent to the server.

3.2.4.24 Application Requests Canceling an Operation

The application provides the CancelId of the operation that is to be canceled.

The client MUST enumerate all connections in the ConnectionTable and look up a Request in

Connection.OutstandingRequests where Request.CancelId matches the application-supplied
CancelId. If there is a match, the client performs the following:

The client initializes an SMB2 CANCEL Request following the syntax specified in section 2.2.30. The
SMB2 header is initialized as follows:

▪ The Command field MUST be set to SMB2 CANCEL.

205 / 464

[MS-SMB2-Diff] - v20190923
Server Message Block (SMB) Protocol Versions 2 and 3
Copyright © 2019 Microsoft Corporation
Release: September 23, 2019

▪ The MessageId field SHOULD<143> be set to the identifier that is previously used for the
request being canceled. Because the same MessageId is reused, cancel requests MUST NOT

consume a sequence number.

▪ If Request.AsyncId is not empty, indicating that the command has previously returned an

interim response, the client sets SMB2_FLAGS_ASYNC_COMMAND to TRUE in the Flags field and
sets AsyncId to Request.AsyncId.

The SessionId field MUST be set to the session identifier that is previously used for the request being
canceled. If the session identified by SessionId has Session.SigningRequired equal to TRUE, the
client sets SMB2_FLAGS_SIGNED to TRUE in the Flags field. The SMB2 CANCEL Request MUST be
initialized to the default values, as specified in 2.2.30.

The request MUST be sent to the server.

No status is returned to the caller.

3.2.4.25 Application Requests the Session Key for an Authenticated Context

The application provides a handle to an Open established on the session of interest. If the handle is

invalid or if no Open referenced by the handle is found, the client MUST return an implementation-
specific error code locally to the calling application. If the handle is valid and an Open is found and the
Open.TreeConnect is NULL, the client MUST return an implementation-specific error code locally to
the calling application. If the handle is valid and an Open is found and the Open.TreeConnect is not
NULL, the client MUST do the following:

If Connection.Dialect belongs to the SMB 3.x dialect family, the client MUST return
Open.TreeConnect.Session.ApplicationKey. Otherwise, the client MUST return

Open.TreeConnect.Session.SessionKey.

3.2.4.26 Application Requests Number of Opens on a Tree Connect

The application provides a handle to the TreeConnect representing the share to be queried.

The client MUST determine the total number of opens on the TreeConnect by enumerating the
Opens in TreeConnect.Session.Connection.OpenTable and counting those Opens where
Open.TreeConnect matches the TreeConnect. The resulting count is returned to the calling
application.

3.2.4.27 Application Notifies Offline Status of a Server

This optional interface is applicable only for the SMB 3.x dialect family. The application provides the
following:

▪ ServerName: The name of the server which became unavailable.

For each Connection in the ConnectionTable where Connection.ServerName matches
ServerName, the client MUST determine if any TreeConnect exists in the
Session.TreeConnectTable with TreeConnect.IsScaleoutShare set to TRUE.

If a tree connect entry is found, the client MUST do the following:

▪ Disconnect the connection by performing the steps as specified in section 3.2.7.1.

▪ Invoke the event as specified in section 3.2.4.28 with ServerName set to the caller-supplied
ServerName.

If no tree connect entry is found, the client MUST disconnect the connection by performing the steps
as specified in section 3.2.7.1.

206 / 464

[MS-SMB2-Diff] - v20190923
Server Message Block (SMB) Protocol Versions 2 and 3
Copyright © 2019 Microsoft Corporation
Release: September 23, 2019

3.2.4.28 (Updated Section) Application Notifies Online Status of a Server

This optional interface is applicable only for the SMB 3.x dialect family. The application provides the
following:

▪ ServerName: The name of the server which became available.

For each Open in the GlobalFileTable, where Open.ConnectionSession.ChannelList is NULLempty
and the server name identified from Open.FileName matches ServerName, the client MUST re-
establish the durable open as specified in section 3.2.4.4.

3.2.4.29 (Updated Section) Application Requests Moving to a Server Instance

This optional interface is applicable only for SMB 3.x dialect family. The application provides the
following:

▪ ServerName: The name of the server.

▪ NewServerAddress: The IPv4 or IPv6 address of the server which the client is required to move
to.

For each Connection in the ConnectionTable where Connection.ServerName matches
ServerName, the client MUST disconnect the connection by performing the steps as specified in
section 3.2.7.1.

For each Open in the GlobalFileTable, where Open.ConnectionSession.ChannelList is NULLempty
and the server name identified from Open.FileName matches ServerName, the client MUST re-
establish the durable open as specified in section 3.2.4.4, and by using NewServerAddress as the
TransportIdentifier for the rules specified in section 3.2.4.2.

3.2.5 Processing Events and Sequencing Rules

The SMB 2 Protocol client is driven by a series of response messages that are sent by the server.

Processing for these messages is determined by the command in the SMB2 header of the response
and is detailed for each of the SMB2 response messages in the sections that follow.

3.2.5.1 (Updated Section) Receiving Any Message

If the client implements the SMB 3.x dialect family and ProtocolId in the header of the received
message is 0x424D53FD, the client MUST decrypt the request as specified in section 3.2.5.1.1.1

before performing the following steps.

If the client implements the SMB 3.1.1 dialect and ProtocolId in the header of the received message
is 0x424D53FC, the client MUST decompress the request as specified in section 3.2.5.1.1.2 before
performing the following steps.

If ProtocolId in the header of the received message is 0x424D53FE, the client MUST perform the
following:

▪ Unless specifically noted in a subsequent section, the following logic MUST be applied to any

response message that is received from the server by the client. If the status code in the SMB2
header is not equal to STATUS_SUCCESS, the client SHOULD<144> retry the operation, in an
implementation-specific manner, on the same or different channel. The client MUST ignore the
CreditCharge field in the SMB2 header.

▪ If the message size received exceeds Connection.MaxTransactSize, the client MUST disconnect
the connection.

Otherwise, the client MUST disconnect the connection as specified in section 3.2.7.1.

207 / 464

[MS-SMB2-Diff] - v20190923
Server Message Block (SMB) Protocol Versions 2 and 3
Copyright © 2019 Microsoft Corporation
Release: September 23, 2019

3.2.5.1.1 Handling the Transformed Message

3.2.5.1.1.1 Decrypting the Message

This section is applicable for only the SMB 3.x dialect family.<145>

If IsEncryptionSupported is TRUE and Connection.CipherId is not zero, the client MUST perform
the following:

▪ If the size of the message received from the server is not greater than the size of SMB2
TRANSFORM_HEADER as specified in section 2.2.41, the client MUST disconnect the connection as
specified in section 3.2.7.1.

▪ If the Flags/EncryptionAlgorithm in the SMB2 TRANSFORM_HEADER is not 0x0001, the client

MUST disconnect the connection as specified in section 3.2.7.1.

▪ The client MUST look up the session in the Connection.SessionTable using the SessionId in the
SMB2 TRANSFORM_HEADER of the response. If the session is not found, the client MUST

disconnect the connection as specified in section 3.2.7.1.

▪ The client MUST decrypt the message using Session.DecryptionKey. If Connection.Dialect is
"3.1.1", the algorithm specified by Connection.CipherId is used. Otherwise, the AES-128-CCM

algorithm is used. The client passes in the Nonce, OriginalMessageSize,
Flags/EncryptionAlgorithm, and SessionId fields of the SMB2 TRANSFORM_HEADER and the
encrypted SMB2 message as the Optional Authenticated Data input for the algorithm. If decryption
succeeds, the client MUST compare the signature in the SMB2 TRANSFORM_HEADER with the
signature returned by the decryption algorithm. If signature verification fails, the client MUST
disconnect the connection as specified in section 3.2.7.1.

▪ If signature verification succeeds, the client MUST perform the following:

▪ If ProtocolId in the header of the decrypted message is 0x424D53FD indicating a nested
encrypted message, the client MUST disconnect the connection as specified in section 3.2.7.1.

▪ If ProtocolId in the header of the decrypted message is 0x424D53FC indicating a nested
compressed message, the client MUST decompress the message as specified in section
3.2.5.1.1.2.

If decompression succeeds, the client MUST further validate the message:

▪ If the NextCommand field in the first SMB2 header of the message is equal to 0 and

SessionId of the first SMB2 header is not equal to the SessionId field in SMB2
TRANSFORM_HEADER of response, the client MUST disconnect the connection as specified
in section 3.2.7.1.

▪ For each response in a compounded response, if the SessionId field of SMB2 header is
not equal to the SessionId field in the SMB2 TRANSFORM_HEADER, the client MUST
disconnect the connection as specified in section 3.2.7.1.

▪ If ProtocolId in the header of the decrypted message is 0x424D53FE indicating an SMB2

header, the client MUST further validate the decrypted message:

▪ If the NextCommand field in the first SMB2 header of the message is equal to 0 and
SessionId of the first SMB2 header is not equal to the SessionId field in SMB2
TRANSFORM_HEADER of response, the client MUST disconnect the connection as specified
in section 3.2.7.1.

▪ For each response in a compounded response, if the SessionId field of SMB2 header is

not equal to the SessionId field in the SMB2 TRANSFORM_HEADER, the client
SHOULD<146> disconnect the connection as specified in section 3.2.7.1.

208 / 464

[MS-SMB2-Diff] - v20190923
Server Message Block (SMB) Protocol Versions 2 and 3
Copyright © 2019 Microsoft Corporation
Release: September 23, 2019

Otherwise, the client MUST disconnect the connection as specified in section 3.2.7.1.

3.2.5.1.1.2 Decompressing the Message

This section is applicable only for the SMB 3.1.1 dialect.<147>

If IsCompressionSupported is TRUE and Connection.CompressionIds is not empty, the client
MUST perform the following:

▪ The client MUST disconnect the connection as specified in section 3.2.7.1 if any of the following
conditions are satisfied:

▪ If the size of the message received from the server is less than the size of SMB2
COMPRESSION_TRANSFORM_HEADER, specified in section 2.2.42.

▪ If Connection.CompressionIds does not contain CompressionAlgorithm in SMB2

COMPRESSION_TRANSFORM_HEADER.

▪ If OriginalCompressedSegmentSize plus Offset in the SMB2

COMPRESSION_TRANSFORM_HEADER is greater than the largest of
Connection.MaxReadSize, Connection.MaxWriteSize, and
Connection.MaxTransactSize.

▪ The client MUST decompress the data specified at the Offset using the algorithm in

CompressionAlgorithm field as specified in [MS-XCA] section 2.

▪ The client MUST disconnect the connection as specified in section 3.2.7.1 if any of the following
conditions are satisfied:

▪ If decompression fails.

▪ If the size of the decompressed message is not equal to OriginalCompressedSegmentSize.

▪ If the ProtocolId in the header of the decompressed message is not equal to 0x424D53FE.

Otherwise, the client MUST disconnect the connection as specified in section 3.2.7.1.

3.2.5.1.2 Finding the Application Request for This Response

The client MUST locate the request for which this response was sent in reply by locating the request in
Connection.OutstandingRequests using the MessageId field of the SMB2 header. If the request is
not found, the response MUST be discarded as invalid.

If the MessageId is 0xFFFFFFFFFFFFFFFF, this is not a reply to a previous request, and the client
MUST NOT attempt to locate the request, but instead process it as follows:

If the command field in the SMB2 header is SMB2 OPLOCK_BREAK, it MUST be processed as specified
in 3.2.5.19. Otherwise, the response MUST be discarded as invalid.

3.2.5.1.3 Verifying the Signature

If the client implements the SMB 3.x dialect family and if the decryption in section 3.2.5.1.1.1
succeeds, the client MUST skip the processing in this section.

If the MessageId is 0xFFFFFFFFFFFFFFFF, no verification is necessary.

If the SMB2 header of the response has SMB2_FLAGS_SIGNED set in the Flags field and the message
is not encrypted, the client MUST verify the signature as follows:

209 / 464

[MS-SMB2-Diff] - v20190923
Server Message Block (SMB) Protocol Versions 2 and 3
Copyright © 2019 Microsoft Corporation
Release: September 23, 2019

The client MUST look up the session in the Connection.SessionTable using the SessionId in the
SMB2 header of the response. If the session is not found, the response MUST be discarded as invalid.

If Connection.Dialect belongs to the SMB 3.x dialect family, and the received message is an SMB2
SESSION_SETUP Response without a status code equal to STATUS_SUCCESS in the header, the client

MUST verify the signature of the message as specified in section 3.1.5.1, using Session.SigningKey
as the signing key, and passing the response message. For all other messages, the client MUST look
up the Channel in Session.ChannelList, where the Channel.Connection matches the connection
on which this message is received, and MUST use Channel.SigningKey for verifying the signature as
specified in section 3.1.5.1.

Otherwise, the client MUST verify the signature of the message as specified in section 3.1.5.1, using
Session.SessionKey as the signing key, and passing the response message.

If signature verification fails, the client MUST discard the received message and do no further
processing for it. The client MAY also choose to disconnect the connection. If signature verification
succeeds, the client MUST continue processing the packet, as specified in subsequent sections.

If the SMB2 header of the response does not have SMB2_FLAGS_SIGNED set in the Flags field, the
client MUST determine if the server failed to sign a packet that required signing. If the message is an
interim response or an SMB2 OPLOCK_BREAK notification, signing validation MUST NOT occur.

Otherwise, the client MUST look up the session in the Connection.SessionTable using the
SessionId in the SMB2 header of the response. If the session is found, the
Session.SigningRequired is equal to TRUE, the message is not an interim response, and the
message is not an SMB2 OPLOCK_BREAK notification, the client MUST discard the received message
and do no further processing for it. The client MAY also choose to disconnect the connection. If there is
no SessionId, if the session is not found, or if Session.SigningRequired is FALSE, the client
continues processing on the packet, as specified in subsequent sections.<148>

3.2.5.1.4 Granting Message Credits

If CreditResponse is greater than 0, the client MUST insert the newly granted credits into the
Connection.SequenceWindow. For each credit that is granted, the client MUST insert the next
highest value into the sequence window, as specified in section 3.2.4.1.6. The client MUST then signal

any requests that were waiting for available message identifiers to continue processing.

3.2.5.1.5 Handling Asynchronous Responses

If SMB2_FLAGS_ASYNC_COMMAND is set in the Flags field of the SMB2 header of the response and
the Status field in the SMB2 header is STATUS_PENDING, the client MUST mark the request in
Connection.OutstandingRequests as being handled asynchronously by storing the AsyncId of the
response in Request.AsyncId. The client SHOULD<149> extend the Request Expiration Timer, as
specified in section 3.2.6.1. Processing of this response is now complete.

If SMB2_FLAGS_ASYNC_COMMAND is set in the Flags field of the SMB2 header and Status is not
STATUS_PENDING, this is a final response to a request which was processed by the server
asynchronously, and processing MUST continue as specified below.

3.2.5.1.6 Handling Session Expiration

If the Status field in the SMB2 header is STATUS_NETWORK_SESSION_EXPIRED, the client MUST
attempt to reauthenticate the session that is identified by the SessionId in the SMB2 header, as

specified in section 3.2.4.2.3. If the reauthentication attempt succeeds, the client MUST retry the
request that failed with STATUS_NETWORK_SESSION_EXPIRED. If the reauthentication attempt fails,
the client MUST fail the operation and terminate the session, as specified in section 3.2.4.23.

3.2.5.1.7 Handling Incorrectly Formatted Responses

210 / 464

[MS-SMB2-Diff] - v20190923
Server Message Block (SMB) Protocol Versions 2 and 3
Copyright © 2019 Microsoft Corporation
Release: September 23, 2019

If the client receives a response that does not conform to the structures specified in 2, the client MUST
discard the response and fail the corresponding application request with an error indicating that an

invalid network response was received. The client MAY<150> also disconnect the connection.

3.2.5.1.8 Processing the Response

The client MUST process the response based on the Command field of the SMB2 header of the
response. When the processing is completed, the corresponding request MUST be removed from
Connection.OutstandingRequests. The corresponding request MUST also be removed from
Open.OutstandingRequests, if it exists.

If the command that is received is not a valid command, or if the server returned a command that did
not match the command of the request, the client SHOULD<151> fail the application request with an

implementation-specific error that indicates an invalid network response was received.

3.2.5.1.9 Handling Compounded Responses

A client detects that a server sent a compounded response (multiple responses chained together into a

single network send) by checking if the NextCommand in the SMB2 header of the response is not
equal to 0. The client MUST handle compounded responses by separating them into individual

responses, regardless of any compounding used when sending the requests.

For a series of responses compounded together, each response MUST be processed in order as an
individual message with a size, in bytes, as determined by the NextCommand field in the SMB2
header.

The final response in the compounded response chain will have NextCommand equal to 0, and it
MUST be processed as an individual message of a size equal to the number of bytes remaining in this
receive.

3.2.5.2 (Updated Section) Receiving an SMB2 NEGOTIATE Response

If the Status field in the SMB2 header of the response is not STATUS_SUCCESS, the client MUST

return the error code to the calling application.

The client MUST store the received MaxTransactSize in Connection.MaxTransactSize, the

received MaxReadSize in Connection.MaxReadSize, the received MaxWriteSize in
Connection.MaxWriteSize, and the received ServerGuid in Connection.ServerGuid.<152> The
client MUST store the received security buffer described by SecurityBufferOffset and
SecurityBufferLength into Connection.GSSNegotiateToken.

The client SHOULD<153> disconnect the connection if the size, in bytes, received in
MaxTransactSize, MaxReadSize, or MaxWriteSize is less than 65536.

If the SecurityMode field in the SMB2 header of the response has the
SMB2_NEGOTIATE_SIGNING_REQUIRED bit set, the client MUST set Connection.RequireSigning to
TRUE.

If the client implements SMB 3.1.1, the DialectRevision in the SMB2 NEGOTIATE Response is

0x02FF, and the Connection is NetBIOS over TCP, the client MUST close the connection. The client
MUST establish a new connection to the server, as specified in section 3.2.4.2.1, by providing the
ServerName and TransportIdentifier indicating Direct TCP transport.

If the DialectRevision field in the SMB2 NEGOTIATE Response is 0x02FF, the client MUST issue a
new SMB2 NEGOTIATE request as described in section 3.2.4.2.2.2 with the only exception that the
client MUST allocate sequence number 1 from Connection.SequenceWindow, and MUST set
MessageId field of the SMB2 header to 1. Otherwise, the client MUST proceed as follows.

211 / 464

[MS-SMB2-Diff] - v20190923
Server Message Block (SMB) Protocol Versions 2 and 3
Copyright © 2019 Microsoft Corporation
Release: September 23, 2019

If the DialectRevision field in the SMB2 NEGOTIATE Response is equal to one of the values in the
Dialects field of the SMB2 NEGOTIATE request, the client MUST set Connection.Dialect to

DialectRevision. Otherwise, the client MUST close the connection and SHOULD fail the application
request.

If the client implements SMB 2.1 or SMB 3.x dialect family, the client MUST perform the following:

▪ If SMB2_GLOBAL_CAP_LEASING is set in the Capabilities field of the SMB2 NEGOTIATE
Response, the client MUST set Connection.SupportsFileLeasing to TRUE. Otherwise, it MUST be
set to FALSE.

▪ If SMB2_GLOBAL_CAP_LARGE_MTU is set in the Capabilities field of the SMB2 NEGOTIATE
Response, the client MUST set Connection.SupportsMultiCredit to TRUE. Otherwise, it MUST be
set to FALSE.

If Connection.Dialect belongs to the SMB 3.x dialect family, the client MUST perform the following:

▪ If SMB2_GLOBAL_CAP_DIRECTORY_LEASING is set in the Capabilities field of the SMB2
NEGOTIATE Response, the client MUST set Connection.SupportsDirectoryLeasing to TRUE.

Otherwise, it MUST be set to FALSE.

▪ If SMB2_GLOBAL_CAP_MULTI_CHANNEL is set in the Capabilities field of the SMB2 NEGOTIATE
Response, the client MUST set Connection.SupportsMultiChannel to TRUE. Otherwise, it MUST

be set to FALSE.

▪ If SMB2_GLOBAL_CAP_PERSISTENT_HANDLES is set in the Capabilities field of the SMB2
NEGOTIATE Response, the client SHOULD invoke the event as specified in [MS-SWN] section
3.2.4.1 by providing Connection.ServerName as Netname parameter.

▪ If SMB2_GLOBAL_CAP_ENCRYPTION is set in the Capabilities field of the SMB2 NEGOTIATE
Response and Connection.Dialect is "3.0" or "3.0.2", the client MUST set
Connection.SupportsEncryption to TRUE. Otherwise, it MUST be set to FALSE.

▪ Connection.ServerCapabilities MUST be set to the Capabilities field of the SMB2 NEGOTIATE
Response.

▪ Connection.ServerSecurityMode MUST be set to the SecurityMode field of the SMB2
NEGOTIATE Response.

If the client implements the SMB 3.x dialect family, the client MUST look up the server entry in
ServerList where Server.ServerName matches the Connection.ServerName. If an entry is found,
the client MUST set Connection.Server to the server entry found. Otherwise, the client MUST

initialize a server object and MUST set Server.ServerName to Connection.ServerName and
Connection.Server to NULL. The client MUST add the Server entry to ServerList.

If the client implements the SMB 3.x dialect family and Connection.Server is not NULL, the client
MUST disconnect the connection if any of the following conditions is satisfied:

▪ Connection.Server.ServerGUID does not match ServerGUID in the response.

▪ Connection.Server.DialectRevision does not match DialectRevision in the response.

▪ Connection.Server.SecurityMode does not match SecurityMode in the response.

▪ Connection.Server.Capabilities does not match Capabilities in the response.

If the client implements the SMB 3.x dialect family and Connection.Server is NULL, the client MUST
set the following values:

▪ Connection.Server to the server entry in ServerList where Server.ServerName matches the
Connection.ServerName.

212 / 464

[MS-SMB2-Diff] - v20190923
Server Message Block (SMB) Protocol Versions 2 and 3
Copyright © 2019 Microsoft Corporation
Release: September 23, 2019

▪ Connection.Server.ServerGUID to ServerGUID in the response

▪ Connection.Server.DialectRevision to DialectRevision in the response

▪ Connection.Server.SecurityMode to SecurityMode in the response

▪ Connection.Server.Capabilities to Capabilities in the response

If Connection.Dialect is "3.1.1", the client MUST process the NegotiateContextList that is specified
by the response's NegotiateContextOffset and NegotiateContextCount fields as follows:

▪ If the NegotiateContextList contains more thandoes not contain exactly one
SMB2_PREAUTH_INTEGRITY_CAPABILITIES negotiate context, the client MUST return an error to
the calling application.

▪ If the NegotiateContextList contains more than one SMB2_ENCRYPTION_CAPABILITIES
negotiate context, the client MUST return an error to the calling application.

▪ If the NegotiateContextList contains more than one SMB2_COMPRESSION_CAPABILITIES

negotiate context, the client MUST return an error to the calling application.

▪ For each context in the received NegotiateContextList, if the context is any negotiate context
other than SMB2_PREAUTH_INTEGRITY_CAPABILITIES, SMB2_COMPRESSION_CAPABILITIES, and
SMB2_ENCRYPTION_CAPABILITIES negotiate context, the client MUST ignore the negotiate
context.

▪ Processing the SMB2_PREAUTH_INTEGRITY_CAPABILITIES negotiate context:

▪ The client MUST return an error to the calling application in the following cases:

▪ If the DataLength of the negotiate context is less than the size of
SMB2_PREAUTH_INTEGRITY_CAPABILITIES structure.

▪ If HashAlgorithmCount is not 1.

▪ If HashAlgorithms[0] is not one of the hash algorithms from the set of hash algorithms
that the client specified in its negotiate request.

▪ The client MUST set Connection.PreauthIntegrityHashId to HashAlgorithms[0].

▪ Processing the SMB2_ENCRYPTION_CAPABILITIES negotiate context

▪ The client MUST return an error to the calling application in the following cases:

▪ The DataLength of the negotiate context is less than the size of
SMB2_ENCRYPTION_CAPABILITIES structure.

▪ CipherCount is not 1.

▪ Ciphers[0] is not 0 and not one of the ciphers that the client specified in its negotiate

request.

▪ The client MUST set Connection.CipherId to Ciphers[0].

▪ If Connection.CipherId is nonzero, the client MUST set Connection.SupportsEncryption
to TRUE. Otherwise, it MUST be set to FALSE.

▪ Processing the SMB2_COMPRESSION_CAPABILITIES negotiate context

▪ If the DataLength of the negotiate context is less than the size of

SMB2_COMPRESSION_CAPABILITIES structure, the client MUST return an error to the calling
application.

213 / 464

[MS-SMB2-Diff] - v20190923
Server Message Block (SMB) Protocol Versions 2 and 3
Copyright © 2019 Microsoft Corporation
Release: September 23, 2019

▪ If CompressionAlgorithmCount is zero, the client MUST return an error to the calling
application.

▪ If the length of the negotiate context is greater than DataLength of the negotiate context,
the client MUST return an error to the calling application.

▪ For each algorithm in CompressionAlgorithms, if the value of algorithm is greater than 32,
the client MUST return an error to the calling application.

▪ If there is a duplicate value in CompressionAlgorithms, the client MUST return an error to
the calling application.

▪ If CompressionAlgorithmCount is 1 and CompressionAlgorithms contains “NONE”, the
client MUST set Connection.CompressionIds to an empty list.

▪ Otherwise, for each algorithm in CompressionAlgorithms, if the value of algorithm does not

match any of the algorithms sent in SMB2 NEGOTIATE request, the client MUST return an
error to the calling application.

▪ Otherwise, the client MUST set Connection.CompressionIds to all the algorithms received in
CompressionAlgorithms.

If Connection.Dialect is "3.1.1", the client MUST update its preauthentication integrity hash value as
follows:

▪ The client MUST initialize Connection.PreauthIntegrityHashValue with zero.

▪ The client MUST generate a hash using the Connection.PreauthIntegrityHashId algorithm on
the string constructed by concatenating Connection.PreauthIntegrityHashValue and the
negotiate request message retrieved from the first entry of Connection.OutstandingRequests.
The client MUST set Connection.PreauthIntegrityHashValue to the hash value generated
above.

▪ The client MUST generate a hash using Connection.PreauthIntegrityHashId algorithm on the

string constructed by concatenating Connection.PreauthIntegrityHashValue and the negotiate

response message, including all bytes from the response's SMB2 header to the last byte received
from the network. The client MUST set Connection.PreauthIntegrityHashValue to the hash
value generated above.

The client MUST continue processing, as specified in section 3.2.4.2.3.

3.2.5.3 Receiving an SMB2 SESSION_SETUP Response

The client MUST attempt to locate a session in Connection.SessionTable by using the SessionId in
the SMB2 header of the SMB2 SESSION_SETUP Response.

If a session is not located, this response MUST be handled as a new authentication, as specified in
section 3.2.5.3.1.

If a session is located:

▪ If Session.Connection matches the connection on which this response is received, this response
MUST be handled as a reauthentication, as specified in section 3.2.5.3.2.

▪ If Connection.Dialect belongs to the SMB 3.x dialect family, and if there is no Channel in
Session.ChannelList where the Channel.Connection matches the connection on which this
response is received, this response MUST be handled as a session binding, as specified in section
3.2.5.3.3.

3.2.5.3.1 Handling a New Authentication

214 / 464

[MS-SMB2-Diff] - v20190923
Server Message Block (SMB) Protocol Versions 2 and 3
Copyright © 2019 Microsoft Corporation
Release: September 23, 2019

If the Status field in the SMB2 header of the response is not STATUS_SUCCESS and is not
STATUS_MORE_PROCESSING_REQUIRED, the client MUST return the error code to the calling

application that initiated the authentication request and processing is complete.

Otherwise, the client MUST process the GSS token received in the SMB2 SESSION_SETUP Response

following the SMB2 header, described by SecurityBufferOffset and SecurityBufferLength. The
client MUST use the configured GSS authentication protocol as specified in [MS-SPNG] section 3.3.5
and [RFC4178] section 3.2 to obtain the next GSS output token for the authentication exchange.
Based on the result from the GSS authentication protocol, one of the following actions will be taken:

If the GSS protocol indicates an error, the error MUST be returned to the calling application that
initiated the authentication request and processing is complete.

If the GSS protocol returns success, and the Status code of the SMB2 header of the response was

STATUS_SUCCESS, authentication is complete. The client MUST process the message as follows:

If Connection.Dialect is "3.1.1", and if SMB2_FLAGS_SIGNED is not set in the Flags field of the
SMB2 packet header of the response, the client MUST return an error to the calling application.

If Connection.Dialect is "3.1.1", the client MUST look for a session object in the
Connection.PreAuthSessionTable by using the SessionId in the SMB2 header of the SMB2
SESSION_SETUP Response. If a session object is located, the client MUST remove it from

Connection.PreAuthSessionTable and place it in the Connection.SessionTable. Otherwise, the
client MUST allocate a session object and place it in the Connection.SessionTable.

If Connection.Dialect is "2.0.2", "2.1", "3.0", or "3.0.2", the client MUST allocate a session object
and place it in the Connection.SessionTable.

▪ Session.SessionId MUST be set to the SessionId in the SMB2 header of the response.

▪ Session.TreeConnectTable MUST be set to an empty table.

▪ Session.UserCredentials MUST be set to the OS-specific entity that identifies the credentials

that were used to authenticate to the server.

▪ Session.SessionKey MUST be set to the first 16 bytes of the cryptographic key queried from the
GSS protocol for this authenticated context. If the cryptographic key is less than 16 bytes, it is
right-padded with zero bytes. For information about how this is calculated for Kerberos
authentication using Generic Security Service Application Programming Interface (GSS-API), see
[MS-KILE] section 3.1.1.2. For information about how this is calculated for NTLM authentication
using GSS-API, see [MS-NLMP] section 3.1.5.1.

▪ If Connection.Dialect is "3.1.1", the client MUST compute its preauthentication integrity hash
value as follows:

▪ Set Session.PreauthIntegrityHashValue to Connection.PreauthIntegrityHashValue.

▪ The client MUST generate a hash using the Connection.PreauthIntegrityHashId algorithm
on the string constructed by concatenating the Session.PreauthIntegrityHashValue and
the session setup request message retrieved from the Connection.OutstandingRequests.

The client MUST set Session.PreauthIntegrityHashValue to the hash value generated

above.

▪ If Connection.Dialect belongs to the SMB 3.x dialect family, the client MUST generate
Session.SigningKey, as specified in section 3.1.4.2, and pass the following inputs:

▪ Session.SessionKey as the key derivation key.

▪ If Connection.Dialect is "3.1.1", the case-sensitive ASCII string "SMBSigningKey" as the
label; otherwise, the case-sensitive ASCII string "SMB2AESCMAC" as the label.

215 / 464

[MS-SMB2-Diff] - v20190923
Server Message Block (SMB) Protocol Versions 2 and 3
Copyright © 2019 Microsoft Corporation
Release: September 23, 2019

▪ The label buffer size in bytes, including the terminating null character. The size of
"SMBSigningKey" is 14. The size of "SMB2AESCMAC" is 12.

▪ If Connection.Dialect is "3.1.1", Session.PreauthIntegrityHashValue as the context;
otherwise, the case-sensitive ASCII string "SmbSign" as context for the algorithm.

▪ The context buffer size in bytes. If Connection.Dialect is "3.1.1", the size of
Session.PreauthIntegrityHashValue. Otherwise, the size of "SmbSign", including the
terminating null character, is 8.

▪ If Connection.Dialect belongs to the SMB 3.x dialect family, the client MUST allocate a new
channel entry with the following values and insert it in Session.ChannelList:

▪ Channel.SigningKey is set to Session.SigningKey.

▪ Channel.Connection is set to the connection on which this response is received.

▪ If Connection.Dialect belongs to the SMB 3.x dialect family, Session.ApplicationKey MUST be
generated as specified in section 3.1.4.2, and pass the following inputs:

▪ Session.SessionKey as the key derivation key.

▪ If Connection.Dialect is "3.1.1", the case-sensitive ASCII string "SMBAppKey" as the label;
otherwise, the case-sensitive ASCII string "SMB2APP" as the label.

▪ The label buffer size in bytes, including the terminating null character. The size of

"SMBAppKey" is 10. The size of "SMB2APP" is 8.

▪ If Connection.Dialect is "3.1.1", Session.PreauthIntegrityHashValue as the context;
otherwise, the case-sensitive ASCII string "SmbRpc" as context for the algorithm.

▪ The context buffer size in bytes. If Connection.Dialect is "3.1.1", the size of
Session.PreauthIntegrityHashValue. Otherwise, the size of "SmbRpc", including the
terminating null character, is 7.

▪ Session.Connection MUST be set to the connection on which this authentication attempt was

issued.

▪ If the global setting RequireMessageSigning is set to TRUE or Connection.RequireSigning is set
to TRUE then Session.SigningRequired MUST be set to TRUE, otherwise
Session.SigningRequired MUST be set to FALSE.

▪ If the security subsystem indicates that the session was established by an anonymous user,
Session.SigningRequired MUST be set to FALSE.

▪ If the SMB2_SESSION_FLAG_IS_GUEST bit is set in the SessionFlags field of the SMB2

SESSION_SETUP Response and if Session.SigningRequired is TRUE, this indicates a
SESSION_SETUP failure and the connection MUST be terminated. If the
SMB2_SESSION_FLAG_IS_GUEST bit is set in the SessionFlags field of the SMB2
SESSION_SETUP Response and if RequireMessageSigning is FALSE, Session.SigningRequired
MUST be set to FALSE.

▪ If Connection.Dialect belongs to the SMB 3.x dialect family and if the

SMB2_SESSION_FLAG_ENCRYPT_DATA bit is set in the SessionFlags field of the SMB2
SESSION_SETUP Response, Session.EncryptData MUST be set to TRUE, and
Session.SigningRequired MUST be set to FALSE.

▪ If Connection.Dialect belongs to the SMB 3.x dialect family, the
SMB2_SESSION_FLAG_IS_GUEST and SMB2_SESSION_FLAG_IS_NULL flags are not set in the
SessionFlags field of the SMB2 SESSION_SETUP response, and if
Connection.SupportsEncryption is TRUE, the client MUST do the following:

216 / 464

[MS-SMB2-Diff] - v20190923
Server Message Block (SMB) Protocol Versions 2 and 3
Copyright © 2019 Microsoft Corporation
Release: September 23, 2019

▪ Generate Session.EncryptionKey, as specified in section 3.1.4.2, and pass the following
inputs:

▪ Session.SessionKey as the key derivation key.

▪ If Connection.Dialect is "3.1.1", the case-sensitive ASCII string "SMBC2SCipherKey" as

the label; otherwise, the case-sensitive ASCII string "SMB2AESCCM" as the label.

▪ The label buffer length in bytes, including the terminating null character. The size of
"SMBC2SCipherKey" is 16. The size of "SMB2AESCCM" is 11.

▪ If Connection.Dialect is "3.1.1", Session.PreauthIntegrityHashValue as the context;
otherwise, the case-sensitive ASCII string "ServerIn " as context for the algorithm (note
the blank space at the end).

▪ The context buffer size in bytes. If Connection.Dialect is "3.1.1", the size of

Session.PreauthIntegrityHashValue. Otherwise, the size of "ServerIn ", including the
terminating null character, is 10.

▪ Generate Session.DecryptionKey, as specified in section 3.1.4.2, and pass the following
inputs:

▪ Session.SessionKey as the key derivation key.

▪ If Connection.Dialect is "3.1.1", the case-sensitive ASCII string "SMBS2CCipherKey" as

the label; otherwise, the case-sensitive ASCII string "SMB2AESCCM" as the label.

▪ The label buffer length in bytes, including the terminating null character. The size of
"SMBS2CCipherKey" is 16. The size of "SMB2AESCCM" is 11.

▪ If Connection.Dialect is "3.1.1", Session.PreauthIntegrityHashValue as the context;
otherwise, the case-sensitive ASCII string "ServerOut" as context for the algorithm.

▪ The context buffer size in bytes. If Connection.Dialect is "3.1.1", the size of
Session.PreauthIntegrityHashValue. Otherwise, the size of "ServerOut", including the

terminating null character, is 10.

▪ Session.OpenTable MUST be set to an empty table.

The client MUST generate a handle for the Session, and return the handle to the application that
initiated the authentication request, and processing is complete.

If the GSS protocol returns success and the Status code of the SMB2 header of the response was
STATUS_MORE_PROCESSING_REQUIRED, the client MUST process as follows:

▪ If Connection.Dialect is "3.1.1", the client MUST look for a session object in

Connection.PreAuthSessionTable by using the SessionId in the SMB2 header of the SMB2
SESSION_SETUP Response. If a session object is not present, the client MUST:

▪ Allocate a session object and place it in the Connection.PreAuthSessionTable.

▪ Set Session.PreauthIntegrityHashValue to Connection.PreauthIntegrityHashValue.

▪ Session.SessionId MUST be set to the SessionId in the SMB2 header of the response.

The session MUST be updated as follows:

▪ The client MUST generate a hash using the Connection.PreauthIntegrityHashId algorithm
on the string constructed by concatenating Session.PreauthIntegrityHashValue and the
session setup request message retrieved from the Connection.OutstandingRequests. The
client MUST set Session.PreauthIntegrityHashValue to the hash value generated above.

217 / 464

[MS-SMB2-Diff] - v20190923
Server Message Block (SMB) Protocol Versions 2 and 3
Copyright © 2019 Microsoft Corporation
Release: September 23, 2019

▪ The client MUST generate a hash using the Connection.PreauthIntegrityHashId algorithm
on the string constructed by concatenating Session.PreauthIntegrityHashValue and the

session setup response message, including all bytes from the response's SMB2 header to the
last byte received from the network. The client MUST set

Session.PreauthIntegrityHashValue to the hash value generated above.

▪ The client MUST send a subsequent session setup request to continue the authentication attempt.
The client MUST construct an SMB2 SESSION_SETUP Request by following the syntax specified in
section 2.2.5. The SMB2 header MUST be initialized as follows:

▪ The Command field MUST be set to SMB2 SESSION_SETUP.

▪ The MessageId field is set as specified in section 3.2.4.1.3.

▪ The client MUST set the SessionId field in the SMB2 header of the new request to the

SessionId received in the SMB2 header of the response.

The SMB2 SESSION_SETUP Request MUST be initialized as follows:

▪ If RequireMessageSigning is TRUE, the client MUST set the
SMB2_NEGOTIATE_SIGNING_REQUIRED bit in the SecurityMode field.

If RequireMessageSigning is FALSE, the client MUST set the
SMB2_NEGOTIATE_SIGNING_ENABLED bit in the SecurityMode field.

▪ The client MUST set the Flags field to 0.

▪ If the client supports the Distributed File System (DFS), the client MUST set the
SMB2_GLOBAL_CAP_DFS bit in the Capabilities field. For more information about DFS, see
[MSDFS].

▪ The client MUST copy the GSS output token into the response. The client MUST set
SecurityBufferOffset and SecurityBufferLength to describe the GSS output token.

If Connection.Dialect belongs to the SMB 3.x dialect family, and the request is for establishing a

new channel, the client MUST also implement the following:

▪ The SessionId field in the SMB2 header MUST be set to the Session.SessionId for the new
channel being established. The SMB2_SESSION_FLAG_BINDING bit MUST be set in the Flags
field.

▪ The request MUST be signed as specified in section 3.2.4.1.1.

This request MUST be sent to the server.

3.2.5.3.2 Handling a Reauthentication

If the Status field in the SMB2 header of the response is not STATUS_SUCCESS and is not
STATUS_MORE_PROCESSING_REQUIRED, the client MUST return the error code to the calling
application that initiated the reauthentication request and processing is complete.

Otherwise, the client MUST process the Generic Security Service (GSS) token that is received in the
SMB2 SESSION_SETUP response following the SMB2 header, described by SecurityBufferOffset and

SecurityBufferLength. The client MUST use the configured GSS authentication protocol, as specified
in [MS-SPNG] section 3.3.5 and [RFC4178] section 3.2, to obtain the next GSS output token for the
authentication exchange. Based on the result from the GSS authentication protocol, one of the
following actions will be taken:

If the GSS protocol indicates an error, the error MUST be returned to the calling application that
initiated the reauthentication request and processing is complete.

218 / 464

[MS-SMB2-Diff] - v20190923
Server Message Block (SMB) Protocol Versions 2 and 3
Copyright © 2019 Microsoft Corporation
Release: September 23, 2019

If the GSS protocol returns success and the Status code of the SMB2 header of the response was
STATUS_SUCCESS, reauthentication is complete. The client MUST return success to the calling

application that initiated the reauthentication request.

If the GSS protocol returns success and the Status code of the SMB2 header of the response was

STATUS_MORE_PROCESSING_REQUIRED, the client MUST send a subsequent session setup request
to continue the reauthentication attempt. The client MUST construct an SMB2 SESSION_SETUP
request following the syntax specified in section 2.2.5. The SMB2 header MUST be initialized as
follows:

▪ The Command field MUST be set to SMB2 SESSION_SETUP.

▪ The MessageId field is set as specified in section 3.2.4.1.3.

▪ The client MUST set the SessionId field in the SMB2 header of the new request to the SessionId

received in the SMB2 header of the response.

▪ The client MUST NOT regenerate Session.SessionKey.

The SMB2 SESSION_SETUP request MUST be initialized as follows:

▪ If RequireMessageSigning is TRUE, the client MUST set the
SMB2_NEGOTIATE_SIGNING_REQUIRED bit in the SecurityMode field.

If RequireMessageSigning is FALSE, the client MUST set the

SMB2_NEGOTIATE_SIGNING_ENABLED bit in the SecurityMode field.

▪ The client MUST set the Flags field to 0.

▪ If the client supports the Distributed File System (DFS), the client MUST set the
SMB2_GLOBAL_CAP_DFS bit in the Capabilities field. For more information about DFS, see
[MSDFS].

▪ The client MUST copy the GSS output token into the response. The client MUST set
SecurityBufferOffset and SecurityBufferLength to describe the GSS output token.

This request MUST be sent to the server.

3.2.5.3.3 Handling Session Binding

The processing in this section is only applicable to a client that implements the SMB 3.x dialect family.

If the Status field in the SMB2 header of the response is not STATUS_SUCCESS and is not
STATUS_MORE_PROCESSING_REQUIRED, the client MUST return the error code to the caller that
initiated the session binding request and processing is complete.

Otherwise, the client MUST process the Generic Security Service (GSS) token that is received in the
SMB2 SESSION_SETUP response following the SMB2 header, specified by the SecurityBufferOffset
and SecurityBufferLength fields. The client MUST use the configured GSS authentication protocol,
as specified in [MS-SPNG] section 3.3.5 and [RFC4178] section 3.2, to obtain the next GSS output
token for the authentication exchange. Based on the result from the GSS authentication protocol, one

of the following actions will be taken:

If the GSS protocol indicates an error, the error MUST be returned to the caller that initiated the
session binding request and processing is complete.

If the GSS protocol returns success and the Status code of the SMB2 header of the response was
STATUS_SUCCESS, session binding is complete. The client MUST process the request as follows:

▪ If Connection.Dialect is "3.1.1", the client MUST generate a hash using the
Connection.PreauthIntegrityHashId algorithm on the string constructed by concatenating

219 / 464

[MS-SMB2-Diff] - v20190923
Server Message Block (SMB) Protocol Versions 2 and 3
Copyright © 2019 Microsoft Corporation
Release: September 23, 2019

Session.PreauthIntegrityHashValue and the session setup request message retrieved from the
Connection.OutstandingRequests. The client MUST set Session.PreauthIntegrityHashValue

to the hash value generated above.

▪ The client MUST insert a new Channel entry in Session.ChannelList with the following values set:

▪ Channel.SigningKey: MUST be set to a new signing key generated as specified in section
3.1.4.2, and passing the following inputs:

▪ The first 16 bytes of the cryptographic key queried from the GSS protocol for this
authenticated context, as the key derivation key. If the cryptographic key is less than 16
bytes, it is right-padded with zero bytes. For information about how this key is calculated
for Kerberos authentication using Generic Security Service Application Programming
Interface (GSS-API), see [MS-KILE] section 3.1.1.2. For information about how this key is

calculated for NTLM authentication using GSS-API, see [MS-NLMP] section 3.1.5.1.

▪ The case-sensitive ASCII string "SMB2AESCMAC" as the label.

▪ The label buffer size in bytes, including the terminating null character. The size of

"SMB2AESCMAC" is 12.

▪ The case-sensitive ASCII string "SmbSign" as context for the algorithm.

▪ The context buffer size in bytes, including the terminating null character. The size of

"SmbSign" is 8.

▪ Channel.Connection: MUST be set to the Connection on which this response is received.

If the GSS protocol returns success and the Status code of the SMB2 header of the response was
STATUS_MORE_PROCESSING_REQUIRED, the client MUST send a subsequent session setup request
to continue the reauthentication attempt. The client MUST construct an SMB2 SESSION_SETUP
request following the syntax specified in section 2.2.5. The SMB2 header MUST be initialized as
follows:

▪ The Command field MUST be set to SMB2 SESSION_SETUP.

▪ The MessageId field is set as specified in section 3.2.4.1.3.

▪ The client MUST set the SessionId field in the SMB2 header of the new request to the SessionId
received in the SMB2 header of the response.

▪ The client MUST NOT regenerate Session.SessionKey.

The SMB2 SESSION_SETUP request MUST be initialized as follows:

▪ If RequireMessageSigning is TRUE, the client MUST set the

SMB2_NEGOTIATE_SIGNING_REQUIRED bit in the SecurityMode field.

If RequireMessageSigning is FALSE, the client MUST set the
SMB2_NEGOTIATE_SIGNING_ENABLED bit in the SecurityMode field.

▪ The client MUST set the Flags field to zero.

▪ If the client supports the Distributed File System (DFS), the client MUST set the
SMB2_GLOBAL_CAP_DFS bit in the Capabilities field. For more information about DFS, see

[MSDFS].

▪ The client MUST copy the GSS output token into the response. The client MUST set
SecurityBufferOffset and SecurityBufferLength to describe the GSS output token.

220 / 464

[MS-SMB2-Diff] - v20190923
Server Message Block (SMB) Protocol Versions 2 and 3
Copyright © 2019 Microsoft Corporation
Release: September 23, 2019

▪ The SessionId field in the SMB2 header MUST be set to the Session.SessionId for the new
channel being established.

▪ The SMB2_SESSION_FLAG_BINDING bit MUST be set in the Flags field.

If Connection.Dialect is "3.1.1", the client MUST update its Session.PreauthIntegrityHashValue

as follows:

▪ The client MUST generate a hash using the Connection.PreauthIntegrityHashId algorithm on
the string constructed by concatenating Session.PreauthIntegrityHashValue and the session
setup request message retrieved from the Connection.OutstandingRequests. The client MUST
set Session.PreauthIntegrityHashValue to the hash value generated above.

▪ The client MUST generate a hash using the Connection.PreauthIntegrityHashId algorithm on
the string constructed by concatenating Session.PreauthIntegrityHashValue and the session

setup response message, including all bytes from the response's SMB2 header to the last byte
received from the network. The client MUST set Session.PreauthIntegrityHashValue to the
hash value generated above.

This request MUST be sent to the server.

3.2.5.4 Receiving an SMB2 LOGOFF Response

The client MUST locate the session in Connection.SessionTable using the SessionId in the SMB2
header of the response. The associated session object MUST be removed from
Connection.SessionTable.

If Connection.Dialect belongs to the SMB 3.x dialect family, the client MUST locate the Session in
Session.ChannelList and remove all entries.

For each connection in ConnectionTable, the associated session object MUST be removed.

The client MUST return success to the application that requested the authenticated context
termination, and it MUST invalidate the Session handle.

3.2.5.5 (Updated Section) Receiving an SMB2 TREE_CONNECT Response

If Connection.Dialect is "3.1.1" and the Status field in the SMB2 header of the response is
STATUS_SMB_BAD_CLUSTER_DIALECT (0xC05D0001), the client MUST interpret the two bytes of
ErrorContextData in the SMB2 Error Context response as the maximum dialect at which the client
can connect to the cluster share. The client MUST connect to the share by passing the server-indicated
dialect as the SpecifiedDialect and a newly generated Guid, as specified in section 3.2.4.2.

If Connection.Dialect is "3.1.1", SMB2_TREE_CONNECT_FLAG_REDIRECT_TO_OWNER bit is set in

the Flags field of the SMB2 TREE_CONNECT Request, the Status field in the SMB2 header of the
response is STATUS_BAD_NETWORK_NAME, and the ErrorId in the SMB2 Error Context response is
set to SMB2_ERROR_ID_SHARE_REDIRECT, the client MUST return the Share Redirect Error Context
response to the calling application as specified in section 2.2.2.2.2.

If the Status field of the SMB2 header of the response indicates an error, the client MUST return the
received status code to the calling application.

If the Status field of the SMB2 header of the response indicates success, the client MUST locate the

session in the Connection.SessionTable using the SessionId in the SMB2 header of the response,
and locate the request message in Connection.OutstandingRequests using the MessageId. The
client MUST allocate a tree connect object and insert it into the Session.TreeConnectTable. The tree
connect is initialized as follows:

221 / 464

[MS-SMB2-Diff] - v20190923
Server Message Block (SMB) Protocol Versions 2 and 3
Copyright © 2019 Microsoft Corporation
Release: September 23, 2019

▪ TreeConnect.TreeConnectId MUST be set to the TreeId that is received in the SMB2 header of
the response.

▪ TreeConnect.Session MUST be set to the session that is looked up using SessionId from the
SMB2 header of the response.

▪ TreeConnect.IsDfsShare MUST be set to TRUE, if the SMB2_SHARE_CAP_DFS bit is set in the
Capabilities field of the response.

▪ TreeConnect.IsCAShare MUST be set to TRUE, if the
SMB2_SHARE_CAP_CONTINUOUS_AVAILABILITY bit is set in the Capabilities field of the
response.

▪ TreeConnect.ShareName MUST be set to the share name, taken from the share path in the
request message.

▪ If Connection.Dialect belongs to the SMB 3.x dialect family, Connection.SupportsEncryption
is TRUE, and if the SMB2_SHAREFLAG_ENCRYPT_DATA bit is set in the ShareFlags field of the
response, the client MUST do the following:

▪ TreeConnect.EncryptData MUST be set to TRUE.

The client MUST generate a handle for the TreeConnect and return the handle and share type
received in the response to the application that initiated the connection to the share. The client sets

the share type based on ShareType in the response.

Share type ShareType

"Disk Share" SMB2_SHARE_TYPE_DISK

0x01

"Named Pipe" SMB2_SHARE_TYPE_PIPE

0x02

"Printer Share" SMB2_SHARE_TYPE_PRINT

0x03

If Connection.Dialect belongs to the SMB 3.x dialect family and the Capabilities field in the
response includes SMB2_SHARE_CAP_CLUSTER bit, the client SHOULD invoke the event as specified

in [MS-SWN] section 3.2.4.1 by providing Connection.ServerName as Netname parameter.

If Connection.Dialect belongs to the SMB 3.x dialect family and the Capabilities field in the
response includes the SMB2_SHARE_CAP_SCALEOUT bit, the client MUST set
TreeConnect.IsScaleoutShare to TRUE.

If Connection.Dialect is "3.0.2" or "3.1.1" and the Capabilities field in the response includes the
SMB2_SHARE_CAP_ASYMMETRIC bit, the client MUST verify whether both of the following conditions

are true:

▪ Connection.SessionTable contains only one entry.

▪ Session.TreeConnectTable contains only one entry.

If either of the preceding conditions is FALSE, the client MUST perform the following:

▪ Disconnect the tree connection as specified in section 3.2.4.22.

▪ Establish a new transport connection by providing the ServerName and TransportIdentifier
used in the previous connection, as specified in section 3.2.4.2.1.

222 / 464

[MS-SMB2-Diff] - v20190923
Server Message Block (SMB) Protocol Versions 2 and 3
Copyright © 2019 Microsoft Corporation
Release: September 23, 2019

▪ Send an SMB2 NEGOTIATE request on the new connection, as specified in section 3.2.4.2.2.2. The
client also provides a newly generated Guid to be used as ClientGuid.

▪ If the SMB2 NEGOTIATE request is successful, the client MUST create a new session on the new
connection by sending an SMB2 SESSION_SETUP request, as specified in section 3.2.4.2.3. The

client provides the UserCredentials used in the previous connection.

▪ If the SMB2 SESSION_SETUP request is successful, the client MUST send an SMB2
TREE_CONNECT request, as specified in section 3.2.4.2.4. The client provides the ShareName
used in the previous connection.

▪ If the SMB2 TREE_CONNECT request is successful, the client SHOULD invoke the event as
specified in [MS-SWN] section 3.2.4.1 by providing Connection.ServerName as the Netname
parameter and TreeConnect.ShareName as the ShareName parameter, and by setting the

IsShareNameNotificationRequired parameter to TRUE.

If Connection.Dialect is not "3.1.1", MaxDialect belongs to the SMB 3.x dialect family, and
RequireSecureNegotiate is TRUE, the client MUST validate the SMB2 NEGOTIATE messages

originally sent on this connection by sending a signed VALIDATE_NEGOTIATE_INFO request as
specified in section 2.2.31.4. The client MUST issue an SMB2 IOCTL Request as follows:

▪ The SMB2 header MUST be initialized as follows:

▪ The Command field is set to SMB2 IOCTL.

▪ The MessageId field is set as specified in section 3.2.4.1.3.

▪ The SessionId field is set to TreeConnect.Session.SessionId.

▪ The TreeId field is set to TreeConnect.TreeConnectId.

▪ The SMB2 IOCTL Request MUST be initialized as specified in section 2.2.31, with the exception of
the following values:

▪ The CtlCode field is set to FSCTL_VALIDATE_NEGOTIATE_INFO.

▪ The FileId field is set to { 0xFFFFFFFFFFFFFFFF, 0xFFFFFFFFFFFFFFFF }.

▪ The InputOffset field is set to the offset of the Buffer[], in bytes, from the beginning of the
SMB2 header.

▪ The InputCount field is set to the size, in bytes, of the VALIDATE_NEGOTIATE_INFO request
structure that is constructed following the syntax specified in section 2.2.31.4.

▪ The VALIDATE_NEGOTIATE_INFO request structure is constructed as follows and copied into
the request at InputOffset bytes from the beginning of the SMB2 header:

▪ Capabilities is set to Connection.ClientCapabilities.

▪ Guid is set to the Connection.ClientGuid value.

▪ SecurityMode is set to Connection.ClientSecurityMode.

▪ Set DialectCount to 0.

▪ If the client implements the SMB 2.0.2 dialect, it MUST do the following:

▪ Increment the DialectCount by 1.

▪ Set the value in Dialects[DialectCount-1] array to 0x0202.

▪ If the client implements the SMB 2.1 dialect, it MUST do the following:

223 / 464

[MS-SMB2-Diff] - v20190923
Server Message Block (SMB) Protocol Versions 2 and 3
Copyright © 2019 Microsoft Corporation
Release: September 23, 2019

▪ Increment the DialectCount by 1.

▪ Set the value in Dialects[DialectCount-1] array to 0x0210.

▪ If the client implements the SMB 3.0 dialect, it MUST do the following:

▪ Increment the DialectCount by 1.

▪ Set the value in the Dialects[DialectCount-1] array to 0x0300.

▪ If the client implements the SMB 3.0.2 dialect, it MUST do the following:

▪ Increment the DialectCount by 1.

▪ Set the value in the Dialects[DialectCount-1] array to 0x0302.

▪ The OutputOffset field offset to the Buffer[], in bytes, from the beginning of the SMB2
header.

▪ The OutputCount field is set to 0.

▪ The MaxInputResponse field is set to 0.

▪ The MaxOutputResponse field is set to the size of the VALIDATE_NEGOTIATE_INFO
response structure as defined in section 2.2.32.6.

▪ The value of the Flags field is set to SMB2_0_IOCTL_IS_FSCTL.

▪ The request MUST be signed as specified in section 3.1.4.1, MUST be sent to the server, and the
response from the server MUST be handled as specified in section 3.2.5.14.12.

If Connection.Dialect belongs to the SMB 3.x dialect family and
Connection.SupportsMultiChannel is TRUE, the client MUST perform the following:

▪ The client MUST verify if the session requires additional channels to the server, in an
implementation-specific manner.<154>

▪ If the session requires additional channels, the client MUST query the network interfaces on the
server, as specified in section 3.2.4.20.10, and passing the TreeConnect.

▪ From the list of network interfaces returned by the server, as specified in section 3.2.5.14.11, the

client MUST use IfIndex to identify distinct interfaces on the server. The client MUST select a
network interface for establishing a new channel using implementation-specific criteria.<155>

▪ For each server’s network interface selected, the client MUST establish a new transport connection
to the server, as specified in section 3.2.4.2.1.

▪ The client MUST send SMB2 NEGOTIATE request on the new connection, as specified in section
3.2.4.2.2.2.

▪ If the SMB2 NEGOTIATE request is successful, the client MUST bind the current Session to the

new the connection as specified in section 3.2.4.2.3.

3.2.5.6 Receiving an SMB2 TREE_DISCONNECT Response

The client MUST locate the session in the Connection.SessionTable using the SessionId in the

SMB2 header of the response. It MUST locate the tree connect in the Session.TreeConnectTable
using the TreeId in the SMB2 header of the response. The associated tree connect object MUST be
removed from the Session.TreeConnectTable and freed. The client MUST return success to the
application that requested the share connection termination, and it MUST invalidate the TreeConnect
handle. If Connection.Dialect belongs to the SMB 3.x dialect family and if

224 / 464

[MS-SMB2-Diff] - v20190923
Server Message Block (SMB) Protocol Versions 2 and 3
Copyright © 2019 Microsoft Corporation
Release: September 23, 2019

Session.TreeConnectTable is empty in all sessions in the Connection.SessionTable for which
Connection.ServerName matches the server name, the client SHOULD invoke the event as specified

in [MS-SWN] section 3.2.4.3.

3.2.5.7 (Updated Section) Receiving an SMB2 CREATE Response for a New Create

Operation

If the Status field of the SMB2 header of the response indicates an error, the client MUST return the
received status code to the calling application that initiated the open of a file or named pipe.

The client MUST locate the corresponding request in Connection.OutstandingRequests using the
MessageId field of the SMB2 header. If the request is for a new create operation, then the processing
MUST continue as specified below.

If the Status field of the SMB2 header of the response indicates success, the client MUST locate the
session in the Connection.SessionTable using the SessionId in the SMB2 header of the response.
The client MUST locate a tree connect in the Session.TreeConnectTable using the TreeId in the

SMB2 header of the response. The client MUST allocate an open object and initialize it as follows:

▪ Open.FileId MUST be set to the FileId that is received in the SMB2 CREATE Response following
the SMB2 header.

▪ Open.TreeConnect MUST be set to the tree connect that was looked up in the
Session.TreeConnectTable.

▪ Open.Connection MUST be set to the connection on which the response was received.

▪ Open.OplockLevel MUST be set to the OplockLevel in the SMB2 CREATE Response.

▪ Open.Durable MUST be set to FALSE.

▪ Open.ResilientHandle MUST be set to FALSE.

▪ Open.LastDisconnectTime MUST be set to zero.

▪ Open.DesiredAccess MUST be set to the DesiredAccess field of the request.

▪ Open.ShareMode MUST be set to the ShareAccess field of the request.

▪ Open.CreateOptions MUST be set to the CreateOptions field of the request.

▪ Open.FileAttributes MUST be set to the FileAttributes field of the request.

▪ Open.CreateDisposition MUST be set to the CreateDisposition field of the request.

▪ If TreeConnect.IsDfsShare is TRUE, Open.FileName MUST be initialized with the name from
the Buffer field of the request.

▪ If TreeConnect.IsDfsShare is FALSE, Open.FileName MUST be initialized with the
concatenation of Connection.ServerName, TreeConnect.ShareName, and the name from the
Buffer field of the request, joined with pathname separators (example: server\share\path).

Each entry of Open.OperationBuckets MUST be initialized as follows:

Set the Free element to TRUE and SequenceNumber element to 0.

If Connection.Dialect belongs to the SMB 3.x dialect family, the client MUST set the following:

▪ Open.DesiredAccess MUST be set to the DesiredAccess field of the request.

▪ Open.ShareMode MUST be set to the ShareAccess field of the request.

225 / 464

[MS-SMB2-Diff] - v20190923
Server Message Block (SMB) Protocol Versions 2 and 3
Copyright © 2019 Microsoft Corporation
Release: September 23, 2019

▪ Open.CreateOptions MUST be set to the CreateOptions field of the request.

▪ Open.FileAttributes MUST be set to the FileAttributes field of the request.

▪ Open.CreateDisposition MUST be set to the CreateDisposition field of the request.

If the response includes response create contexts following the syntax specified in section 2.2.14.2,

the processing described in subsequent subsections MUST be handled if the specified create context is
present in the response.

The client MUST insert the Open into the Session.OpenTable. If Connection.Dialect is not "2.0.2"
and Connection.SupportsFileLeasing is TRUE, the client MUST locate the File corresponding to
Open.FileName in the GlobalFileTable. If no File is found, the client MUST create a new File entry
and add it to the GlobalFileTable and assign a new File.LeaseKey, as specified in section 3.2.1.5, to
the entry. File.OpenTable MUST be initialized to an empty table and File.LeaseState MUST be

initialized to SMB2_LEASE_NONE. The client MUST insert the Open into File.OpenTable.

If Connection.Dialect belongs to the SMB 3.x dialect family and
Connection.SupportsDirectoryLeasing is TRUE, the client MUST search the GlobalFileTable for

the parent directory of the file being opened. The name of the parent directory is obtained by
removing the last component of the path used to search the GlobalFileTable above. If an entry is not
found, a new File entry MUST be created and added to the GlobalFileTable and a File.LeaseKey, as

specified in section 3.2.1.5, MUST be assigned to the entry. File.OpenTable MUST be initialized to an
empty table and File.LeaseState MUST be initialized to SMB2_LEASE_NONE.

The client MUST generate a handle for the Open, and it MUST return success and the generated
handle to the calling application.

3.2.5.7.1 SMB2_CREATE_DURABLE_HANDLE_RESPONSE Create Context

If the SMB2_CREATE_DURABLE_HANDLE_RESPONSE context is present, the client MUST set

Open.Durable to TRUE. Otherwise, the client MUST set Open.Durable to FALSE.

3.2.5.7.2 SMB2_CREATE_QUERY_MAXIMAL_ACCESS_RESPONSE Create Context

If the SMB2_CREATE_QUERY_MAXIMAL_ACCESS_RESPONSE context is present, and QueryStatus in
the SMB2_CREATE_QUERY_MAXIMAL_ACCESS_RESPONSE context is STATUS_SUCCESS, the client
MUST return the MaximalAccess received in the context to the calling application.

3.2.5.7.3 SMB2_CREATE_QUERY_ON_DISK_ID Create Context

If the SMB2_CREATE_QUERY_ON_DISK_ID context is present, the client MUST return the context
structure to the calling application.

3.2.5.7.4 SMB2_CREATE_RESPONSE_LEASE Create Context

If Connection.Dialect is not "2.0.2" and an SMB2_CREATE_RESPONSE_LEASE create context is
present in the SMB2_CREATE response returned from the server, it MUST do the following:

▪ If Connection.SupportsFileLeasing is FALSE, the client MUST fail the create request from the
application.

▪ The client MUST locate the file corresponding to Open.FileName in the GlobalFileTable and
copy the LeaseState in the response to File.LeaseState.

3.2.5.7.5 SMB2_CREATE_RESPONSE_LEASE_V2 Create Context

If Connection.Dialect belongs to the SMB 3.x dialect family and an

SMB2_CREATE_RESPONSE_LEASE_V2 create context is present in the SMB2_CREATE response

226 / 464

[MS-SMB2-Diff] - v20190923
Server Message Block (SMB) Protocol Versions 2 and 3
Copyright © 2019 Microsoft Corporation
Release: September 23, 2019

returned from the server, the client MUST locate the File entry corresponding to Open.FileName in
the GlobalFileTable.

The client MUST evaluate Δepoch depending on the lease state change indicated in the table below. The
rows in the table represent the lease state currently held by the client (File.LeaseEpoch) and the

columns represent the LeaseState returned in the SMB2_CREATE_RESPONSE_LEASE_V2 create
context.

Δepoch is a 16-bit signed integer indicating if the Epoch value sent by the server is newer than the
current Epoch value held by the client. It is evaluated as follows:

▪ If the Epoch value sent by the server is equal to File.LeaseEpoch, then Δepoch is 0.

▪ If the Epoch value sent by the server is not equal to File.LeaseEpoch and Epoch value sent by
the server minus File.LeaseEpoch is less than or equal to 32767, then Δepoch is greater than 0.

New Lease
State R RH RWH None

None Δepoch=0 : Invalid

Δepoch>0 :
Upgrade

Δepoch=0 : Invalid

Δepoch>0 : Upgrade

Δepoch=0: Invalid

Δepoch>0: Upgrade

R Δepoch=0 : No
change

Δepoch>0 : Purge
cache

Δepoch=1: Upgrade

Δepoch>1: Upgrade &
purge cache.

Δepoch=0: Invalid.

Δepoch=1: Upgrade

Δepoch>1: Upgrade &
purge cache.

Δepoch=0 : Invalid

Δepoch>0:
Purge cache

RH Invalid Δepoch=0 : No change

Δepoch>0 : Purge cache

Δepoch=1: Upgrade

Δepoch>1: Upgrade &
purge cache.

Δepoch=0: Invalid

RWH Invalid Invalid Δepoch=0 : No change

Δepoch!= 0 : Invalid

When Δepoch indicates an upgrade to a new lease state, the client MUST perform the following:

▪ Set File.LeaseState to the LeaseState returned in the create context.

▪ Set File.LeaseEpoch to the Epoch returned in the create context.

When Δepoch indicates Purge cache, the client MUST notify the application to purge cached data for the
File.

3.2.5.7.6 SMB2_CREATE_DURABLE_HANDLE_RESPONSE_V2 Create Context

If the SMB2_CREATE_DURABLE_HANDLE_RESPONSE_V2 context is present, the client MUST set
Open.Durable to TRUE. Otherwise, the client MUST set Open.Durable to FALSE. If the
SMB2_DHANDLE_FLAG_PERSISTENT bit is set in the Flags field of the

SMB2_CREATE_DURABLE_HANDLE_RESPONSE_V2 context, the client MUST set Open.IsPersistent
to TRUE, otherwise set to FALSE. Open.DurableTimeout MUST be set to Timeout.

3.2.5.8 Receiving an SMB2 CREATE Response for an Open Reestablishment

If the Status field of the SMB2 header of the response indicates an error, the client MUST return the
received status code to the caller of section 3.2.4.4 that initiated the open reestablishment operation.

227 / 464

[MS-SMB2-Diff] - v20190923
Server Message Block (SMB) Protocol Versions 2 and 3
Copyright © 2019 Microsoft Corporation
Release: September 23, 2019

The client MUST locate the corresponding request in Connection.OutstandingRequests using the
MessageId field of the SMB2 header. If the request is for an open reestablishment, then the

processing MUST continue as specified below using the Open associated with this request in section
3.2.4.4.

If the Status field of the SMB2 header of the response indicates success, the client MUST locate the
session in the Connection.SessionTable using the SessionId in the SMB2 header of the response.
The client MUST locate a tree connect in the Session.TreeConnectTable using the TreeId in the
SMB2 header of the response. The following fields MUST be reinitialized:

▪ Open.FileId MUST be set to the FileId received in the SMB2 CREATE Response following the
SMB2 header.

▪ Open.TreeConnect MUST be set to the tree connect that was looked up in the

Session.TreeConnectTable.

▪ Open.Connection MUST be set to the connection on which the response was received.

The client MUST insert the Open into the Session.OpenTable.

If Connection.Dialect is not "2.0.2" and Connection.SupportsFileLeasing is TRUE, the client
MUST locate the File corresponding to Open.FileName in the GlobalFileTable. If no File is found,
the client MUST create a new File entry and add it to the GlobalFileTable and assign a new

File.LeaseKey, as specified in section 3.2.1.5, to the entry. File.OpenTable MUST be initialized to an
empty table and File.LeaseState MUST be initialized to SMB2_LEASE_NONE. The client MUST insert
the Open into File.OpenTable.

If Connection.Dialect is not "2.0.2" and an SMB2_CREATE_RESPONSE_LEASE create context is
present in the SMB2 CREATE response returned from the server, the client MUST do the following:

▪ If Connection.SupportsFileLeasing is FALSE, the client MUST return an error to the caller of
section 3.2.4.4 that initiated the open reestablishment operation.

▪ Otherwise, the client MUST copy the LeaseState in the response to File.LeaseState.

If Connection.Dialect belongs to the SMB 3.x dialect family and an
SMB2_CREATE_RESPONSE_LEASE_V2 create context is present in the SMB2 CREATE response
returned from the server, the client MUST do the following:

▪ If Connection.SupportsDirectoryLeasing is FALSE, the client MUST return an error to the caller
of section 3.2.4.4 that initiated the open reestablishment operation.

▪ Otherwise, the client MUST copy the LeaseState in the response to File.LeaseState.

If Connection.Dialect belongs to the SMB 3.x dialect family and the
Connection.SupportsDirectoryLeasing is TRUE, the client MUST search the GlobalFileTable for
the parent directory of the file opened. The name of the parent directory is obtained by removing the
last component of the path in Open.FileName. If an entry is not found, a new File entry MUST be
created and added to the GlobalFileTable and a File.LeaseKey, as specified in section 3.2.1.5,
MUST be assigned to the entry. File.OpenTable MUST be initialized to an empty table and

File.LeaseState MUST be initialized to SMB2_LEASE_NONE.

The client MUST return success to the caller of section 3.2.4.4 that initiated the open reestablishment
operation.

The client MUST attempt to replay any requests in Open.OutstandingRequests.

228 / 464

[MS-SMB2-Diff] - v20190923
Server Message Block (SMB) Protocol Versions 2 and 3
Copyright © 2019 Microsoft Corporation
Release: September 23, 2019

3.2.5.9 Receiving an SMB2 CLOSE Response

If the Status field of the SMB2 header of the response indicates an error, then the client MUST return
the received status code to the calling application.

The client MUST locate the Open in the Session.OpenTable using the FileId in the SMB2 header of
the response.

If Connection.SupportsLeasing is TRUE, the client MUST locate the File in the GlobalFileTable by
looking up Open.FileName. The client MUST delete the Open from the File.OpenTable. If all opens
in File.OpenTable are deleted, and if there is no entry in GlobalFileTable whose name with its last
component removed matches Open.FileName then the entry for this File MUST be deleted from the
GlobalFileTable, and the File object MUST be freed.

If Connection.Dialect belongs to the SMB 3.x dialect family and
Connection.SupportsDirectoryLeasing is TRUE, and if the File object was freed above, the client
MUST scan through the GlobalFileTable and remove all File objects where File.OpenTable is empty
and there is no entry in GlobalFileTable whose name with its last component removed matches the

name of this File entry (that is, no child objects exist).

The open object MUST be removed from the Session.OpenTable and freed.

If SMB2_CLOSE_FLAG_POSTQUERY_ATTRIB is set in the Flags field of the response, the client MUST
return file attributes that are returned in the response and success to the calling application.

If SMB2_CLOSE_FLAG_POSTQUERY_ATTRIB is not set, the client MUST ignore the file attributes and
return success to the calling application.

3.2.5.10 Receiving an SMB2 FLUSH Response

The client MUST return the received status code in the Status field of the SMB2 header of the
response to the application that issued the request to flush data on the file or named pipe.

3.2.5.11 Receiving an SMB2 READ Response

If Connection.Dialect belongs to the SMB 3.x dialect family, the underlying transport is RDMA, and
Request.BufferDescriptorList is not empty, then the processing specified in [MS-SMBD] section
3.1.4.4 Deregister Buffer MUST be used to deregister the buffer before returning to the application.

If the Status field of the SMB2 header of the response indicates an error, the client MUST return the
received status code to the calling application.

If the Status field of the SMB2 header of the response indicates success, the client MUST copy the

received information in the SMB2 READ Response following the SMB2 header described by DataOffset
and DataLength into the buffer that is provided by the calling application. The client MUST return
success and DataLength to the application.

3.2.5.12 Receiving an SMB2 WRITE Response

If Connection.Dialect belongs to the SMB 3.x dialect family, the underlying transport is RDMA and
Request.BufferDescriptorList is not empty, then the processing specified in [MS-SMBD] section
3.1.4.4 Deregister Buffer MUST be used to deregister the buffer before returning to the application.

If Connection.Dialect belongs to the SMB 3.x dialect family and the status code is
STATUS_FILE_NOT_AVAILABLE, the client SHOULD<156> replay the write request by looking up the
request in Connection.OutstandingRequests using the MessageId field of the SMB2 header.

229 / 464

[MS-SMB2-Diff] - v20190923
Server Message Block (SMB) Protocol Versions 2 and 3
Copyright © 2019 Microsoft Corporation
Release: September 23, 2019

The client MUST return the received status code in the Status field of the SMB2 header of the
response to the application that issued the request to write data to the file or named pipe. The client

MUST also return the Count value from the SMB2 WRITE Response following the SMB2 header,
indicating how many bytes were written.

3.2.5.13 Receiving an SMB2 LOCK Response

The client MUST look up the corresponding request by looking up Connection.OutstandingRequests
using the MessageId from the SMB2 header. If the LockSequenceIndex field in the request is

nonzero, then the client MUST scan through Open.OperationBuckets and find an entry with an index
value equal to LockSequenceIndex. If an entry is found, set its Free element to TRUE, and
increment the SequenceNumber element of the chosen entry using MOD 16 arithmetic.

The client MUST return the received status code in the Status field of the SMB2 header of the
response to the application that issued the request to lock or unlock ranges on the file.

3.2.5.14 Receiving an SMB2 IOCTL Response

If Connection.Dialect belongs to the SMB 3.x dialect family and the status code is
STATUS_FILE_NOT_AVAILABLE, the client SHOULD<157> replay the IOCTL request by looking up the
request in Connection.OutstandingRequests using the MessageId field of the SMB2 header.

If the OutputCount field in an SMB2 IOCTL Response is 0, the OutputOffset field SHOULD<158> be
ignored by the client.

IOCTL-specific processing is specified in the following sections.

3.2.5.14.1 Handling an Enumeration of Previous Versions Response

If the Status field of the SMB2 header of the response indicates an error, the client MUST return the
received status code to the calling application.

If the Status field of the SMB2 header of the response indicates success, the client MUST copy the

received information in the SMB2 IOCTL Response following the SMB2 header described by

OutputOffset and OutputCount into the buffer that is provided by the calling application for
receiving the response output buffer. The client MUST return success and OutputCount to the
application.

3.2.5.14.2 Handling a Server-Side Data Copy Source File Key Response

If the Status field of the SMB2 header of the response indicates an error, the client MUST return the

received status code to the calling application.

If the Status field of the SMB2 header of the response indicates success, the client MUST copy the
received information in the SMB2 IOCTL Response following the SMB2 header described by
OutputOffset and OutputCount into the buffer that is provided by the calling application for
receiving the response output buffer. The client MUST return success and OutputCount to the
application.

3.2.5.14.3 Handling a Server-Side Data Copy Response

If the status code is STATUS_INVALID_PARAMETER and the StructureSize of the response
indicates that the server has provided an SRV_COPYCHUNK_RESPONSE, the client MUST return a
result of STATUS_INVALID_PARAMETER to the application and SHOULD also return the values in
the accompanying SRV_COPYCHUNK_RESPONSE that indicate the maximum limits the server supports
for server side copy operations.

230 / 464

[MS-SMB2-Diff] - v20190923
Server Message Block (SMB) Protocol Versions 2 and 3
Copyright © 2019 Microsoft Corporation
Release: September 23, 2019

Otherwise, if the Status field of the SMB2 header of the response indicates an error, the client MUST
return the received status code to the calling application, ignoring any accompanying

SRV_COPYCHUNK_RESPONSE.

If the Status field of the SMB2 header of the response indicates success, the client MUST copy the

received information in the SMB2 IOCTL Response following the SMB2 header that is described by
OutputOffset and OutputCount into the buffer that is provided by the calling application for
receiving the response output buffer. The client MUST return success and the OutputCount to the
application.

3.2.5.14.4 Handling a DFS Referral Information Response

If the Status field of the SMB2 header of the response indicates an error, the client MUST return the

received status code to the calling application.

If the Status field of the SMB2 header of the response indicates success, the client MUST copy the
received information in the SMB2 IOCTL Response following the SMB2 header that is described by
OutputOffset and OutputCount into the buffer that is provided by the calling application for

receiving the response output buffer. The client MUST return success and the OutputCount to the
application.

3.2.5.14.5 Handling a Pipe Transaction Response

If the Status field of the SMB2 header of the response indicates an error, the client MUST return the
received status code to the calling application.

If the Status field of the SMB2 header of the response indicates success, the client MUST copy the
received information in the SMB2 IOCTL Response following the SMB2 header that is described by the
OutputOffset and OutputCount into the buffer that is provided by the calling application for

receiving the response output buffer. The client MUST ignore the InputOffset and InputCount. The
client MUST return success and the OutputCount to the application.

3.2.5.14.6 Handling a Peek at Pipe Data Response

If the Status field of the SMB2 header of the response indicates an error, the client MUST return the
received status code to the calling application.

If the Status field of the SMB2 header of the response indicates success, the client MUST copy the

received information in the SMB2 IOCTL Response following the SMB2 header that is described by the
OutputOffset and OutputCount into the buffer that is provided by the calling application for
receiving the response output buffer. The client MUST return success and the OutputCount to the
application.

3.2.5.14.7 Handling a Content Information Retrieval Response

If the Status field of the SMB2 header of the response indicates an error, the client MUST return the

received status code to the calling application.

If the Status field of the SMB2 header of the response indicates success, the client MUST copy the

received information in the SMB2 IOCTL Response following the SMB2 header that is described by the
OutputOffset and OutputCount into the buffer that is provided by the calling application for
receiving the response output buffer. The client MUST ignore the InputOffset and InputCount. The
client MUST return success and the OutputCount to the application.

3.2.5.14.8 Handling a Pass-Through Operation Response

If the Status field of the SMB2 header of the response indicates an error, the client MUST return the
received status code to the calling application.

231 / 464

[MS-SMB2-Diff] - v20190923
Server Message Block (SMB) Protocol Versions 2 and 3
Copyright © 2019 Microsoft Corporation
Release: September 23, 2019

If the Status field of the SMB2 header of the response indicates success, the client MUST copy the
received information in the SMB2 IOCTL Response following the SMB2 header that is described by the

InputOffset and InputLength into the buffer that is provided by the calling application for receiving
the response input buffer. The client MUST copy the received information in the SMB2 IOCTL Response

following the SMB2 header that is described by the OutputOffset and OutputCount into the buffer
that is provided by the calling application for receiving the response output buffer. The client MUST
return success, the InputLength, and the OutputCount to the application.

3.2.5.14.9 Handling a Resiliency Response

If the Status field of the SMB2 header of the response indicates an error, the client MUST return the
received status code to the calling application.

If the Status field of the SMB2 header of the response indicates success, the client MUST perform the
following steps:

1. The client SHOULD<159> setup periodic probing of the connection to detect an unresponsive or
dead server or a broken TCP connection.

2. The client MUST set Open.ResilientHandle and Open.Durable to TRUE.

3. The status of the operation MUST be returned to the application.

3.2.5.14.10 Handling a Pipe Wait Response

The client MUST return the Status field of the SMB2 header of the response to the calling application.

3.2.5.14.11 Handling a Network Interfaces Response

The client MUST extract IPv4Address and IPv6Address addresses from each
NETWORK_INTERFACE_INFO structure and MUST set Connection.Server.AddressList to the

received values.

The client MUST return the list of network interfaces received from the server to the calling

application.

3.2.5.14.12 Handling a Validate Negotiate Info Response

If the response is not signed or the signature verification in section 3.2.5.1.3 does not succeed, the
client MUST terminate the Connection.

If the Status field of the SMB2 header of the response is STATUS_ACCESS_DENIED, the client MUST
terminate the Connection.

If the Status field of the SMB2 header of the response indicates success, the client MUST verify the
VALIDATE_NEGOTIATE_INFO response received in the Buffer field of the SMB2 IOCTL Response as
follows:

▪ Capabilities MUST be equal to Connection.ServerCapabilities.

▪ Guid MUST be equal to Connection.ServerGuid.

▪ SecurityMode MUST be equal to Connection.ServerSecurityMode.

▪ Dialect MUST be equal to Connection.Dialect.

If any of the above verifications fails, the client MUST close all the sessions in
Connection.SessionTable as specified in section 3.2.4.23 and MUST terminate the Connection.

Otherwise, the result is successful.

232 / 464

[MS-SMB2-Diff] - v20190923
Server Message Block (SMB) Protocol Versions 2 and 3
Copyright © 2019 Microsoft Corporation
Release: September 23, 2019

3.2.5.14.13 Handling a Shared Virtual Disk File Control Response

If the Status field of the SMB2 header of the response indicates an error, the client MUST return the
received status code to the calling application.

If the Status field of the SMB2 header of the response indicates success, the client MUST copy the
received information in the SMB2 IOCTL Response following the SMB2 header that is described by
OutputOffset and OutputCount, into the buffer that is provided by the calling application for
receiving the response output buffer. The client MUST return success and OutputCount to the
application.

3.2.5.15 Receiving an SMB2 QUERY_DIRECTORY Response

If the Status field of the SMB2 header of the response indicates an error, the client MUST return the
received status code to the calling application.

If the Status field of the SMB2 header of the response indicates success, the client MUST copy the
received information in the SMB2 QUERY_DIRECTORY Response following the SMB2 header that is

described by the OutputBufferOffset and OutputBufferLength into the buffer that is provided by
the calling application. The client MUST return success and the OutputBufferLength to the
application.

3.2.5.16 Receiving an SMB2 CHANGE_NOTIFY Response

If the Status field of the SMB2 header of the response indicates an error, the client MUST return the
received status code to the calling application.

If the Status field of the SMB2 header of the response indicates success, the client MUST copy the
received information in the SMB2 CHANGE_NOTIFY Response following the SMB2 header that is
described by the OutputBufferOffset and OutputBufferLength into the buffer that is provided by
the calling application. The client MUST return success and the OutputBufferLength to the
application.

3.2.5.17 Receiving an SMB2 QUERY_INFO Response

If the Status field of the SMB2 header of the response indicates an error, the client MUST return the
received status code to the calling application. If the error code is either

STATUS_BUFFER_TOO_SMALL or STATUS_INFO_LENGTH_MISMATCH and the SMB2 ERROR
Response following the SMB2 header has a ByteCount of 4, the client MUST also return the 4-byte
error data to the calling application. This error data indicates the size, in bytes, that is required to
successfully query the information.

If the Status field of the SMB2 header of the response indicates success, the client MUST copy the
received information in the SMB2 QUERY_INFO Response following the SMB2 header that is described
by the OutputBufferOffset and OutputBufferLength into the buffer that is provided by the calling

application. The client MUST return success and the OutputBufferLength to the application.

3.2.5.18 Receiving an SMB2 SET_INFO Response

If Connection.Dialect belongs to the SMB 3.x dialect family and the status code is

STATUS_FILE_NOT_AVAILABLE, the client SHOULD<160> replay the SetInfo request by looking up
the request in Connection.OutstandingRequests using the MessageId field of the SMB2 header.

The client MUST return the received status code in the Status field of the SMB2 header of the
response to the application that issued the request to set information on the file, underlying object
store, or named pipe. This applies for requests to set file information, underlying object store
information, quota information, and security information.

233 / 464

[MS-SMB2-Diff] - v20190923
Server Message Block (SMB) Protocol Versions 2 and 3
Copyright © 2019 Microsoft Corporation
Release: September 23, 2019

3.2.5.19 Receiving an SMB2 OPLOCK_BREAK Notification

If the MessageId field of the SMB2 header of the response is 0xFFFFFFFFFFFFFFFF, this MUST be
processed as an oplock break indication. Otherwise, the client MUST process it as a response to an

oplock break acknowledgment.

If Connection.Dialect is not "2.0.2", the client MUST verify:

▪ If Connection.SupportsFileLeasing is TRUE or Connection.SupportsDirectoryLeasing is
TRUE, the client MUST use the StructureSize field in the SMB2 OPLOCK_BREAK notification to
differentiate between an oplock break notification and a lease break notification as specified in
2.2.25.

3.2.5.19.1 Receiving an Oplock Break Notification

The client MUST locate the open in the Session.OpenTable using the FileId in the Oplock Break
Notification following the SMB2 header. If the open is not found, the oplock break indication MUST be
discarded, and no further processing is required.

If the open is found, the client MUST take action based on the Open.OplockLevel and the new
OplockLevel that is received in the Oplock Break Notification.

If the Open.OplockLevel is SMB2_OPLOCK_LEVEL_NONE, no action is required, and no further
processing is required.

If the Open.OplockLevel is SMB2_OPLOCK_LEVEL_II, and the OplockLevel is
SMB2_OPLOCK_LEVEL_NONE, the client MUST set Open.OplockLevel to
SMB2_OPLOCK_LEVEL_NONE and an Oplock Break Acknowledgment MUST NOT be sent.

If the Open.OplockLevel is SMB2_OPLOCK_LEVEL_BATCH, and the OplockLevel is
SMB2_OPLOCK_LEVEL_NONE, the client MUST set Open.OplockLevel to

SMB2_OPLOCK_LEVEL_NONE. The client MUST flush any writes or byte range locks that it has cached
locally to the server. When that is complete, the client MUST send an oplock break acknowledgment,
as specified in the following sections.

If the Open.OplockLevel is SMB2_OPLOCK_LEVEL_BATCH, and the OplockLevel is
SMB2_OPLOCK_LEVEL_II, the client MUST set Open.OplockLevel to SMB2_OPLOCK_LEVEL_II. The
client MUST flush any writes or byte range locks that it has cached locally to the server. When that is
complete, the client MUST send an oplock break acknowledgment, specified as follows.

The client MAY<161> choose to request and support SMB2_OPLOCK_LEVEL_EXCLUSIVE. If it does,
the break operation would match those specified above for SMB2_OPLOCK_LEVEL_BATCH. It MUST
NOT break from batch to exclusive.

If the client is required to send an oplock break acknowledgment, it MUST construct a request
following the syntax that is specified in section 2.2.24.1. The SMB2 header is initialized as follows:

▪ Command MUST be set to SMB2 OPLOCK_BREAK.

▪ The MessageId field is set as specified in section 3.2.4.1.3.

▪ The client MUST set SessionId to Open.TreeConnect.Session.SessionId.

▪ The client MUST set TreeId to Open.TreeConnect.TreeConnectId.

The Oplock Break Acknowledgment request is initialized as follows:

▪ The FileId MUST be set to Open.FileId.

▪ The OplockLevel MUST be set to Open.OplockLevel.

234 / 464

[MS-SMB2-Diff] - v20190923
Server Message Block (SMB) Protocol Versions 2 and 3
Copyright © 2019 Microsoft Corporation
Release: September 23, 2019

The request MUST be sent to the server.

3.2.5.19.2 Receiving a Lease Break Notification

If Connection.Dialect is not "2.0.2", the client MUST verify:

If Connection.SupportsDirectoryLeasing is TRUE or Connection.SupportsFileLeasing is TRUE,
the client MUST perform the following:

▪ The client MUST locate the file in the GlobalFileTable using the LeaseKey in the Lease Break
Notification. If a file is not found, no further processing is required.

▪ If a File entry is located, the client MUST take action based on the File.LeaseState and the new
LeaseState that is received in the Lease Break Notification.

▪ If File.LeaseState includes SMB2_LEASE_WRITE_CACHING and the new LeaseState does not

include SMB2_LEASE_WRITE_CACHING, the client MUST flush any cached data associated with
this file by issuing one or more SMB2 WRITE requests as described in 3.2.4.7. It MUST also flush

out any cached byte-range locks it has on the file by enumerating the File.OpenTable and for
each open, send the cached byte-range locks by issuing SMB2 LOCK requests as described in
3.2.4.19.

▪ If File.LeaseState includes SMB2_LEASE_READ_CACHING and the new LeaseState does not

include SMB2_LEASE_READ_CACHING, the client MUST notify the application to purge cached data
for the File.

▪ If File.LeaseState includes SMB2_LEASE_HANDLE_CACHING and the new LeaseState does not
include SMB2_LEASE_HANDLE_CACHING, the client MUST enumerate all handles in
File.OpenTable and close any cached handles that have already been closed by the application.
The close process is described in 3.2.4.5.

▪ If Connection.Dialect belongs to the SMB 3.x dialect family and File.LeaseState is equal to the

new LeaseState and (NewEpoch - File.LeaseEpoch) is greater than 1, the client MUST notify the
application to purge cached data for the File.

▪ If Connection.Dialect belongs to the SMB 3.x dialect family and NewEpoch is greater than
File.LeaseEpoch, the client MUST copy the new LeaseState into File.LeaseState. The client
MUST set File.LeaseEpoch to NewEpoch.

▪ Otherwise, if Connection.Dialect is "2.1", the new LeaseState granted by the server in the Lease
Break Notification MUST be copied to File.LeaseState.

▪ If a lease acknowledgment is required by the server as indicated by the
SMB2_NOTIFY_BREAK_LEASE_FLAG_ACK_REQUIRED bit in the Flags field of the Lease Break
Notification, the client SHOULD<162> send a Lease Break Acknowledgment request described as
follows.

▪ If all open handles on this file are closed (that is, File.OpenTable is empty for this file), the
client SHOULD consider it as an implicit acknowledgment of the lease break. No explicit

acknowledgment is required.

▪ The client MUST construct a Lease Break Acknowledgment request following the syntax
specified in 2.2.24.2. The LeaseKey in the request MUST be set to File.LeaseKey and the
LeaseState in the request MUST be set to File.LeaseState.

▪ The client MUST choose an Open from among the remaining opens in File.OpenTable and it
MUST be used to send the acknowledgment to the server, via the connection identified by
Open.Connection.

▪ The SMB2 header is initialized as follows:

235 / 464

[MS-SMB2-Diff] - v20190923
Server Message Block (SMB) Protocol Versions 2 and 3
Copyright © 2019 Microsoft Corporation
Release: September 23, 2019

▪ Command MUST be set to SMB2 OPLOCK_BREAK.

▪ The MessageId field is set as specified in section 3.2.4.1.3.

▪ The client MUST set SessionId to Open.TreeConnect.Session.SessionId.

▪ The client MUST set TreeId to Open.TreeConnect.TreeConnectId.

3.2.5.19.3 Receiving an Oplock Break Response

If the Status field in the SMB2 header of the response to the Oplock Break Acknowledgment is zero,
no further processing is required.

Otherwise, the client MUST set Open.OplockLevel to SMB2_OPLOCK_LEVEL_NONE.

3.2.5.19.4 Receiving a Lease Break Response

If the Status field in the SMB2 header of the response to the Lease Break Acknowledgment is zero, no

further processing is required.

Otherwise, the client MUST set File.LeaseState to SMB2_LEASE_NONE and Open.OplockLevel to
SMB2_OPLOCK_LEVEL_NONE.

3.2.6 Timer Events

3.2.6.1 Request Expiration Timer Event

When the Request Expiration timer expires, the client MUST walk all connections in the

ConnectionTable. For each connection, the client MUST walk the outstanding requests in
Connection.OutstandingRequests.

The client MAY<163> choose any time-out it requires based on local policy, the type of request, and
network characteristics.

If Request.Timestamp plus the time-out interval exceeds the current time, the client MUST process
the request as if it received a failure response from the server and the client SHOULD<164> return an
implementation-specific error to the calling application.

The client MAY<165> choose to disconnect the connection as well.

3.2.6.2 Idle Connection Timer Event

When the Idle Connection timer expires, the client MUST scan through the global ConnectionTable

(defined in section 3.2.1.1). For each connection in ConnectionTable, for each session in
Connection.SessionTable, if Session.OpenTable is empty and the idle time-out has expired, the
client MUST tear down the Connection and all associated Sessions and Tree Connects, in the manner
specified in section 3.2.7.1. The client is not required to explicitly send SMB2 LOGOFF and SMB2
TREE_DISCONNECT requests to the server because the teardown of the connection will implicitly

result in the teardown of all server Sessions and Tree Connects on the connection, as specified in
section 3.3.7.1.

3.2.6.3 Network Interface Information Timer Event

When the Network Interface Information Timer expires and Connection.Dialect belongs to the SMB
3.x dialect family, the client MUST request the available server network interfaces as specified in
section 3.2.4.20.10 and provide the information to the higher-layer application in an implementation-

specific manner.

236 / 464

[MS-SMB2-Diff] - v20190923
Server Message Block (SMB) Protocol Versions 2 and 3
Copyright © 2019 Microsoft Corporation
Release: September 23, 2019

3.2.7 Other Local Events

3.2.7.1 (Updated Section) Handling a Network Disconnect

When the underlying transport indicates a disconnect, for each Session in
Connection.SessionTable, the client MUST perform the following:

▪ If Connection.Dialect belongs to the SMB 3.x dialect family, and if
Connection.SupportsMultiChannel or Connection.SupportsPersistentHandles is TRUEthe
Session has more than one channel in Session.ChannelList, the client MUST perform the

following actions:

▪ The channel entry MUST be removed from the Session.ChannelList, where
Channel.Connection matches the disconnected connection.

▪ For each outstanding create request in Connection.OutstandingRequests containing
SMB2_CREATE_DURABLE_HANDLE_REQUEST_V2 context, the client MUST replay the create
request on an alternate channel by setting the SMB2_FLAGS_REPLAY_OPERATION bit in the

SMB2 header.

▪ Session.ChannelSequence MUST be incremented by 1.

▪ If Session.Connection matches the disconnected connection, Session.Connection MUST be
set to the first entry in Session.ChannelList.

▪ Otherwise, the client MUST perform the following actions:

▪ For each Open in Session.OpenTable:

▪ If Connection.Dialect is not "2.0.2" and Connection.SupportsFileLeasing is TRUE, the

client MUST locate the File in the GlobalFileTable by looking up Open.FileName. The
client MUST delete the Open from the File.OpenTable.

▪ If Connection.Dialect belongs to the SMB 3.x dialect family and if

Connection.SupportsDirectoryLeasing is TRUE, and if all opens in File.OpenTable are
deleted and if there is no entry in the GlobalFileTable whose name with its last
component removed matches the Open.FileName, then the entry for the File MUST be
deleted from the GlobalFileTable, and the File object MUST be freed.

▪ Otherwise, if all opens in File.OpenTable are deleted, then the entry for this File MUST
be deleted from the GlobalFileTable, and the File object MUST be freed.

▪ If Open.Durable is not TRUE, the Open MUST be removed from the Session.OpenTable
and freed, and the handle generated for the Open MUST be invalidated.

▪ If Open.Durable is TRUE, the Open MUST be removed from the Session.OpenTable, the
Open.Connection MUST be set to NULL, and the Open.TreeConnect MUST be set to NULL.

The client MUSTSHOULD<166> attempt to re-establish the durable open as specified in
section 3.2.4.4. If Connection.Dialect belongs to the SMB 3.x dialect family, Open.Durable
is TRUE, and the client fails to re-establish the durable open within Open.DurableTimeout

milliseconds, the Open MUST be freed and the handle generated for the Open MUST be
invalidated. The client SHOULD<166> attempt to reestablish the durable open as specified in
section 3.2.4.4.

▪ If Open.ResilientHandle or Open.IsPersistent is TRUE, the client MUST perform the

following steps:

▪ Capture the current system time at which the disconnect occurred into
Open.LastDisconnectTime.

237 / 464

[MS-SMB2-Diff] - v20190923
Server Message Block (SMB) Protocol Versions 2 and 3
Copyright © 2019 Microsoft Corporation
Release: September 23, 2019

▪ Attempt to reestablish the durable open as specified in section 3.2.4.4.

▪ If the reestablishment fails with a network error, the client MUST retry the reestablishment

of the open for at least Open.ResilientTimeout milliseconds after
Open.LastDisconnectTime, before giving up.

▪ If the reestablishment of the durable handle fails, Open.Durable MUST be set to FALSE,
Open.ResilientHandle MUST be set to FALSE, the Open MUST be removed from
Session.OpenTable and the Open MUST be freed, and the handle generated for the
Open MUST be invalidated.

▪ Each TreeConnect in Session.TreeConnectTable MUST be freed, the handle generated for
the TreeConnect MUST be invalidated, and the TreeConnect entry MUST be removed from
Session.TreeConnectTable.

▪ If Connection.Dialect belongs to the SMB 3.x dialect family, the client MUST free the channel
and remove the channel entry in Session.ChannelList.

▪ The client MUST free the Session and invalidate the session handle.

If Connection.Dialect belongs to the SMB 3.x dialect family and if Session.TreeConnectTable is
empty in all sessions in the Connection.SessionTable for which Connection.ServerName matches
the server name, the client SHOULD invoke the event as specified in [MS-SWN] section 3.2.4.3.

Finally, the connection MUST be removed from the ConnectionTable and freed.

3.2.7.2 Handling Interface State Change

When an RDMA network interface is disabled, for each connection over the network interface in
ConnectionTable, the client MUST disconnect the connection as specified in section 3.2.7.1.

3.3 Server Details

3.3.1 Abstract Data Model

This document specifies a conceptual model of possible data organization that an implementation
maintains to participate in this protocol. The described organization is provided to explain how the
protocol behaves. This document does not mandate that implementations adhere to this model as long
as their external behavior is consistent with what is described in this document. This data model
requires elements to be synchronized with the Server Service Remote Protocol [MS-SRVS]. An

implementation that uses this data model observes atomicity requirements in order that the protocols
always maintain an identical view of the common data.

This document assumes the SMB 2 Protocol server is a combination of a server and one or more
underlying object store(s). However, an implementation can subdivide the server into whatever
functional blocks it chooses, including combining them into a single block.

3.3.1.1 Algorithm for Handling Available Message Sequence Numbers by the Server

The server MUST implement an algorithm to manage message sequence numbers. Sequence numbers
are used to associate requests with responses, and to determine what requests are allowed for
processing. The algorithm MUST meet the following conditions:

▪ When an SMB2 transport connection is first established, the allowable sequence numbers that

comprise the valid command window for received messages on that connection MUST be the set {
0 }.

238 / 464

[MS-SMB2-Diff] - v20190923
Server Message Block (SMB) Protocol Versions 2 and 3
Copyright © 2019 Microsoft Corporation
Release: September 23, 2019

▪ After a sequence number is received, its value MUST never be allowed to be received again. (After
the sequence number 0 is received, no other request that uses the sequence number 0 shall be

processed.) If the 64-bit sequence wraps, the connection MUST be terminated.

▪ As credits are granted as specified in section 3.3.1.2, the acceptable sequence numbers MUST

progress in a monotonically increasing manner. For example, if the set consists of { 0 }, and 3
credits are granted, the valid command window set MUST grow to { 0, 1, 2, 3 }.

▪ The server MUST allow requests to be received out of sequence. For example, if the valid
command window set is { 0, 1, 2, 3 }, it is valid to receive a request with sequence number 2
before receiving a request with sequence number 0.

▪ The server MAY limit the maximum range of the acceptable sequence numbers. For example, if
the valid command window set is { 0, 1, 2, 3, 4, 5 }, and the server receives requests for 1, 2, 3,

4, and 5, it MAY<167> choose to not grant more credits and keep the valid command window set
at { 0 } until the sequence number 0 is received.

▪ The client's request consumes at least one sequence number for any request except the SMB2

CANCEL Request. If the negotiated dialect is SMB 2.1 or SMB 3.x and the request is a multi-credit
request, it consumes sequence numbers based on the CreditCharge field in the SMB2 header, as
specified in 3.3.5.2.3.

For the client side of this algorithm, see section 3.2.4.1.6.

3.3.1.2 Algorithm for the Granting of Credits

The server MUST implement an algorithm for granting credits to the client. Each credit provides the
client the capability to send a request to the server. Multiple credits allow for multiple simultaneous

requests. The algorithm MUST meet the following conditions:

▪ The number of credits held by the client MUST be considered as 1 when the connection is
established.

▪ The server MUST ensure that the number of credits held by the client is never reduced to zero. If

the condition occurs, there is no way for the client to send subsequent requests for more credits.

▪ The server MAY<168> grant any number of credits up to that which the client requests, or more if

required by the preceding rule.

▪ The server SHOULD<169> grant the client a non-zero value of credits in response to any non-zero
value requested, within administratively configured limits. The server MUST grant the client at
least 1 credit when responding to SMB2 NEGOTIATE.

▪ The server MAY<170> vary the number of credits granted to different clients based on quality of
service features, such as identity, behavior, or administrator configuration.

3.3.1.3 Algorithm for Change Notifications in an Object Store

The server MUST implement an algorithm that monitors for changes on an object store. The effect of

this algorithm MUST be identical to that used to offer the behavior specified in [MS-CIFS] sections
3.2.4.39 and 3.3.5.59.4. The algorithm MUST meet the following conditions:

▪ The algorithm MUST perform the change notification processing based on the CompletionFilter

and SMB2_WATCH_TREE flag in the Flags field of the first CHANGE_NOTIFY request on an
Open.LocalOpen. The algorithm MUST ignore the CompletionFilter and SMB2_WATCH_TREE
flag in all further requests on the same open.

▪ If the client sets the SMB2_WATCH_TREE flag in the Flags field of the first request on an
Open.LocalOpen, indicating that an entire tree is being watched, the algorithm MUST monitor all

239 / 464

[MS-SMB2-Diff] - v20190923
Server Message Block (SMB) Protocol Versions 2 and 3
Copyright © 2019 Microsoft Corporation
Release: September 23, 2019

objects beneath the directory on which the operation was issued, instead of simply the immediate
children objects of that directory.

▪ If a client issues multiple change notification requests on the same open to a directory, the server
MUST queue the requests and complete them on a First In, First Out (FIFO) basis when changes

are indicated by the underlying object store.

▪ If a change notification request is pending on a directory and a change occurs to the directory
contents matching the events to be monitored as specified by the CompletionFilter, the server
MUST copy the results into the Buffer field of the CHANGE_NOTIFY response. The server SHOULD
send the maximum number of events that match the CompletionFilter of the first
CHANGE_NOTIFY request indicated by the underlying object store into a single response up to the
maximum of the OutputBufferLength field. The server MUST construct the response in the

format specified in section 2.2.36 and the change notification information in the format specified in
[MS-FSCC] section 2.7.1. The server MUST then return the results to the client.

3.3.1.4 Algorithm for Leasing in an Object Store

If the server implements the SMB 2.1 or SMB 3.x dialect family and supports leasing, the underlying
object store needs to implement an algorithm that permits multiple opens to the same object, as
described in [MS-FSA] section 2.1.5.1.2, to share the lease state (for valid lease states, see section
3.3.1.12). The algorithm MUST meet the following conditions:

▪ The algorithm MUST permit a create request from the server to the underlying object store to be
accompanied by an implementation-specific<171> identifier that indicates the unique server-local
context for this lease, which will be referred to as the ClientLeaseId.

▪ The algorithm MUST allow multiple opens to an object that shares the same ClientLeaseId.
These opens MUST NOT alter the lease state on an object.

▪ The algorithm MUST permit three different caching capabilities within a lease: READ, WRITE, and
HANDLE, with the following semantics:

▪ READ caching permits the SMB2 client to cache data read from the object. Before processing

one of the following operations from a client with a different ClientLeaseId, the object store

MUST request that the server revoke READ caching. The object store is not required to wait
for acknowledgment:

READ caching on a file:

▪ The file is opened in a manner that overwrites the existing file.

▪ Data is written to the file.

▪ The file size is changed.

▪ A byte range lock is requested for the file.

READ caching on a directory:

▪ A new file or directory is added, deleted, or renamed within the directory.

▪ Directory metadata such as timestamps, file attributes, and file sizes are updated.

▪ WRITE caching permits the SMB2 client to cache writes and byte-range locks on an object.
Before processing one of the following operations, the underlying object store MUST request
that the server revoke WRITE caching, and the object store MUST wait for acknowledgment
from the server before proceeding with the operation:

240 / 464

[MS-SMB2-Diff] - v20190923
Server Message Block (SMB) Protocol Versions 2 and 3
Copyright © 2019 Microsoft Corporation
Release: September 23, 2019

▪ The file is opened by a client with a different ClientLeaseId, and requested access
includes any flags other than FILE_READ_ATTRIBUTES, FILE_WRITE_ATTRIBUTES, and

SYNCHRONIZE.

▪ HANDLE caching permits one or more SMB2 clients to delay closing handles it holds open, or

to defer sending opens. Before processing one of the following operations, the underlying
object store MUST request that the server revoke HANDLE caching, and the object store MUST
wait for acknowledgment before proceeding with the operation:

HANDLE caching on a file:

▪ A file is opened with an access or share mode incompatible with opens from clients with
different ClientLeaseIds.

▪ The parent directory is being renamed.

HANDLE caching on a directory:

▪ The directory is opened with an access/share mode incompatible with opens from a client

with a different ClientLeaseId.

▪ Parent directory is renamed or deleted.

▪ The underlying object store SHOULD request that the server revoke multiple lease state flags at
the same time if an operation results in the loss of several caching flags.

▪ The algorithm SHOULD support the following combinations of caching flags on a file: No caching,
Read caching, Read + Write caching, Read + Handle caching, and Read + Write + Handle caching.
The algorithm SHOULD support No caching, Read caching, and Read + Handle caching on a
directory.

▪ The algorithm MAY<172> support other combinations of caching flags.

▪ The algorithm MUST allow a client to flow one or more creates with the same ClientLeaseId to
the underlying object store during a lease break without blocking the create until the

acknowledgment of the lease break is received.

▪ The algorithm SHOULD allow additional lease state flags on subsequent opens with the same
ClientLeaseId to permit upgrading the lease state. The algorithm MUST NOT allow the client to
release lease state flags on subsequent opens with the same ClientLeaseId to downgrade the
lease state.

▪ If the requested lease state is not a superset of the existing lease state flags for this
ClientLeaseId, then the requested lease state SHOULD be interpreted as the union of the

existing lease state and the requested lease state.

▪ When the underlying object store requests that the server issue a lease break, it MUST also
provide a new lease state for the server to pass to the client as part of the lease break packet,
based on the operations that caused the lease break to occur.

3.3.1.5 Global

The server implements the following:

▪ ServerStatistics: Server statistical information. This contains all the members of STAT_SRV_0
structure as specified in [MS-SRVS] section 2.2.4.39.

▪ ServerEnabled: A Boolean that indicates whether the SMB2 server is accepting incoming
connections or requests.

241 / 464

[MS-SMB2-Diff] - v20190923
Server Message Block (SMB) Protocol Versions 2 and 3
Copyright © 2019 Microsoft Corporation
Release: September 23, 2019

▪ ShareList: A list of available shares for the system. The structure of a share is as specified in
section 3.3.1.6 and is uniquely indexed by the tuple <Share.ServerName, Share.Name>.

▪ GlobalOpenTable: A table containing all the files opened by remote clients on the server,
indexed by Open.DurableFileId. The structure of an open is as specified in section 3.3.1.10. The

table MUST support enumeration of all entries in the table.

▪ GlobalSessionTable: A list of all the active sessions established to this server, indexed by the
Session.SessionId.

▪ ConnectionList: A list of all open connections on the server, indexed by the connection endpoint
addresses.

▪ ServerGuid: A global identifier for this server.

▪ ServerStartTime: The start time of the SMB2 server, in FILETIME format as specified in [MS-

DTYP] section 2.3.3.

▪ IsDfsCapable: A Boolean that, if set, indicates that the server supports the Distributed File

System.

▪ ServerSideCopyMaxNumberofChunks: The maximum number of chunks the server will accept
in a server side copy operation.

▪ ServerSideCopyMaxChunkSize: The maximum number of bytes the server will accept in a

single chunk for a server side copy operation.

▪ ServerSideCopyMaxDataSize: The maximum total number of bytes the server will accept for a
server side copy operation.

If the server implements the SMB 2.1 or SMB 3.x dialect family, it MUST implement the following:

▪ ServerHashLevel: A state that indicates the caching level configured on the server. It takes any
of the following three values:

▪ HashEnableAll: Indicates that caching is enabled for all shares on the server.

▪ HashDisableAll: Indicates that caching is disabled for all shares on the server.

▪ HashEnableShare: Indicates that caching is enabled or disabled on a per-share basis.

If the server implements the SMB 2.1 or SMB 3.x dialect family and supports leasing, it MUST
implement the following:

▪ GlobalLeaseTableList: A list of all the lease tables as described in 3.3.1.11, indexed by the
ClientGuid.

If the server implements the SMB 2.1 or SMB 3.x dialect family and supports resiliency, it MUST

implement the following:

▪ MaxResiliencyTimeout: The maximum resiliency time-out in milliseconds, for the TimeOut field

of NETWORK_RESILIENCY_REQUEST Request, as specified in section 2.2.31.3.

▪ ResilientOpenScavengerExpiryTime: The time at which the Resilient Open Scavenger Timer,
as specified in section 3.3.2.4, is currently set to expire.

If the server implements the SMB 3.x dialect family, it MUST implement the following:

▪ EncryptData: A Boolean that, if set, indicates that the server requires messages to be encrypted
after session establishment, per the conditions specified in section 3.3.5.2.9.

242 / 464

[MS-SMB2-Diff] - v20190923
Server Message Block (SMB) Protocol Versions 2 and 3
Copyright © 2019 Microsoft Corporation
Release: September 23, 2019

▪ RejectUnencryptedAccess: A Boolean that, if set, indicates that the server will reject any
unencrypted messages. This flag is applicable only if EncryptData is TRUE or if

Share.EncryptData (as defined in section 3.3.1.6) is TRUE.

▪ IsMultiChannelCapable: A Boolean that, if set, indicates that the server supports the

multichannel capability.

If the server implements the SMB 3.0.2 or SMB 3.1.1 dialect, it MUST implement the following:

▪ IsSharedVHDSupported: A Boolean that, if set, indicates that the server supports shared virtual
disks.

If the server implements the SMB 3.1.1 dialect, it MUST implement the following:

▪ MaxClusterDialect: The maximum SMB dialect at which clients can access clustered shares on
the server.

▪ SupportsTreeConnectExtn: A Boolean, if set, indicates the server supports the SMB2
TREE_CONNECT Request Extension.

3.3.1.6 Per Share

The server implements the following:

▪ Share.Name: A name for the shared resource on this server.

▪ Share.ServerName: The NetBIOS, fully qualified domain name (FQDN), or textual IPv4 or IPv6
address that the share is associated with. For more information, see [MS-SRVS] section 3.1.1.7.

▪ Share.LocalPath: A path that describes the local resource that is being shared. This MUST be a
store that either provides named pipe functionality, or that offers storage and/or retrieval of files.
In the case of the latter, it MAY<173> be a device that accepts a file and then processes it in

some format, such as a printer.

▪ Share.ConnectSecurity: An authorization policy such as an access control list that describes
which users are allowed to connect to this share.

▪ Share.FileSecurity: An authorization policy such as an access control list that describes what
actions users that connect to this share are allowed to perform on the shared resource.<174>

▪ Share.CscFlags: The configured offline caching policy for this share. This value MUST be manual

caching, automatic caching of files, automatic caching of files and programs, or no offline caching.
For more information, see section 2.2.10. For more information about offline caching, see
[OFFLINE].

▪ Share.IsDfs: A Boolean that, if set, indicates that this share is configured for DFS. For more
information, see [MSDFS].

▪ Share.DoAccessBasedDirectoryEnumeration: A Boolean that, if set, indicates that the results
of directory enumerations on this share MUST be trimmed to include only the files and directories

that the calling user has the right to access.

▪ Share.AllowNamespaceCaching: A Boolean that, if set, indicates that clients are allowed to
cache directory enumeration results for better performance.<175>

▪ Share.ForceSharedDelete: A Boolean that, if set, indicates that all opens on this share MUST
include FILE_SHARE_DELETE in the sharing access.

▪ Share.RestrictExclusiveOpens: A Boolean that, if set, indicates that users who request read-
only access to a file are not allowed to deny other readers.

243 / 464

[MS-SMB2-Diff] - v20190923
Server Message Block (SMB) Protocol Versions 2 and 3
Copyright © 2019 Microsoft Corporation
Release: September 23, 2019

▪ Share.Type: The value indicates the type of share. It MUST be one of the values that are listed in
[MS-SRVS] section 2.2.2.4.

▪ Share.Remark: A null-terminated Unicode UTF-16 string that specifies an optional comment
about the shared resource.

▪ Share.MaxUses: The value indicates the maximum number of concurrent connections that the
shared resource can accommodate.

▪ Share.CurrentUses: The value indicates the number of current trees connected to the shared
resource.

▪ Share.ForceLevel2Oplock: A Boolean that, if set, indicates that the server does not issue
exclusive caching rights on this share.

▪ Share.HashEnabled: A Boolean that, if set, indicates that the share supports hash generation for

branch cache retrieval of data.

▪ Share.SnapshotList: The list of available snapshots in this Share.

If the server implements the SMB 3.x dialect family, it MUST implement the following:

▪ Share.CATimeout: The minimum time, in milliseconds, before closing an unreclaimed persistent
handle on a continuously available share.

▪ Share.IsCA: A Boolean that, if set, indicates that the share is continuously available.

▪ Share.EncryptData: A Boolean that, if set, indicates that the server requires messages for
accessing this share to be encrypted, per the conditions specified in section 3.3.5.2.11.

▪ Share.SupportsIdentityRemoting: A Boolean that, if set, indicates that the share supports
identity remoting by the client.

3.3.1.7 Per Transport Connection

The server implements the following:

▪ Connection.CommandSequenceWindow: A list of the sequence numbers that is valid to
receive from the client at this time. For more information, see section 3.3.1.1.

▪ Connection.RequestList: A list of requests, as specified in section 3.3.1.13, that are currently
being processed by the server. This list is indexed by the MessageId field.

▪ Connection.ClientCapabilities: The capabilities of the client of this connection in a form that
MUST follow the syntax as specified in section 2.2.3.

▪ Connection.NegotiateDialect: A numeric value representing the current state of dialect
negotiation between the client and server on this transport connection.

▪ Connection.AsyncCommandList: A list of client requests being handled asynchronously. Each
request MUST have been assigned an AsyncId.

▪ Connection.Dialect: The dialect of SMB2 negotiated with the client. This value MUST be either

"2.0.2", "2.1", "3.0", "3.0.2", "3.1.1", or "Unknown". For the purpose of generalization in the
server processing rules, the condition that Connection.Dialect is equal to "3.0", "3.0.2", or
"3.1.1" is referred to as "Connection.Dialect belongs to the SMB 3.x dialect family".

▪ Connection.ShouldSign: A Boolean that, if set, indicates that all sessions on this connection
(with the exception of anonymous and guest sessions) MUST have signing enabled.

244 / 464

[MS-SMB2-Diff] - v20190923
Server Message Block (SMB) Protocol Versions 2 and 3
Copyright © 2019 Microsoft Corporation
Release: September 23, 2019

▪ Connection.ClientName: A null-terminated Unicode UTF-16 IP address string, or NetBIOS host
name of the client machine.

▪ Connection.MaxTransactSize: The maximum buffer size, in bytes, that the server allows on the
transport that established this connection for QUERY_INFO, QUERY_DIRECTORY, SET_INFO and

CHANGE_NOTIFY operations. This field is applicable only for buffers sent by the client in SET_INFO
requests, or returned from the server in QUERY_INFO, QUERY_DIRECTORY, and CHANGE_NOTIFY
responses.

▪ Connection.MaxWriteSize: The maximum buffer size, in bytes, that the server allows to be
written on the connection using the SMB2 WRITE Request.

▪ Connection.MaxReadSize: The maximum buffer size, in bytes, that the server allows to be read
on the connection using the SMB2 READ Request.

▪ Connection.SupportsMultiCredit: A Boolean indicating whether the connection supports multi-
credit operations.

▪ Connection.TransportName: An implementation-specific name of the transport used by this

connection.

▪ Connection.SessionTable: A table of authenticated sessions, as specified in section 3.3.1.8,
established on this SMB2 transport connection. The table MUST allow lookup by both

Session.SessionId and by the security context of the user that established the connection.

▪ Connection.CreationTime: The time when the connection was established.

▪ Connection.ConstrainedConnection: A Boolean that, if set, indicates that authentication to a
non-anonymous principal has not yet been successfully performed on this connection.

▪ Connection.PreauthSessionTable: A table to store preauthentication hash values for session
binding, as specified in section 3.3.1.15. The table MUST allow lookup by
PreauthSession.SessionId.

If the server implements the SMB 2.1 or 3.x dialect family, it MUST implement the following:

▪ Connection.ClientGuid: An identifier for the client machine.

If the server implements the SMB 3.x dialect family, it MUST implement the following:

▪ Connection.ServerCapabilities: The capabilities sent by the server in the SMB2 NEGOTIATE
Response on this connection, in a form that MUST follow the syntax as specified in section 2.2.4.

▪ Connection.ClientSecurityMode: The security mode sent by the client in the SMB2 NEGOTIATE
request on this connection, in a form that MUST follow the syntax as specified in section 2.2.3.

▪ Connection.ServerSecurityMode: The security mode received from the server in the SMB2
NEGOTIATE response on this connection, in a form that MUST follow the syntax as specified in
section 2.2.4.

If the server implements the SMB 3.1.1 dialect, it MUST also implement the following:

▪ Connection.PreauthIntegrityHashId: The ID of the preauthentication integrity hash function
that was negotiated for this connection.

▪ Connection.PreauthIntegrityHashValue: The preauthentication integrity hash value that was
computed for the exchange of SMB2 NEGOTIATE request and response messages on this
connection.

▪ Connection.CipherId: The ID of the cipher that was negotiated for this connection.

245 / 464

[MS-SMB2-Diff] - v20190923
Server Message Block (SMB) Protocol Versions 2 and 3
Copyright © 2019 Microsoft Corporation
Release: September 23, 2019

▪ Connection.ClientDialects: An array of dialects received in the SMB2 NEGOTIATE Request on
this connection.

▪ Connection.CompressionIds: A list of compression algorithm identifiers, if any, used for this
connection. Valid values are specified in section 2.2.3.1.3.

3.3.1.8 Per Session

The server implements the following:

▪ Session.SessionId: A numeric value that is used as an index in GlobalSessionTable, and

(transformed into a 64-bit number) is sent to clients as the SessionId in the SMB2 header.

▪ Session.State: The current activity state of this session. This value MUST be either InProgress,
Valid, or Expired.

▪ Session.SecurityContext: The security context of the user that authenticated this session. This
value MUST be in a form that allows for evaluating security descriptors within the server, as well

as being passed to the underlying object store to handle security evaluation that can happen
there.

▪ Session.IsAnonymous: A Boolean that, if set, indicates that the session is for an anonymous
user.

▪ Session.IsGuest: A Boolean that, if set, indicates that the session is for a guest user.

▪ Session.SessionKey: The first 16 bytes of the cryptographic key for this authenticated context.
If the cryptographic key is less than 16 bytes, it is right-padded with zero bytes.

▪ Session.SigningRequired: A Boolean that, if set, indicates that all of the messages for this
session MUST be signed.

▪ Session.OpenTable: A table of opens of files or named pipes, as specified in section 3.3.1.10,
that have been opened by this authenticated session and indexed by Open.FileId. The server

MUST support enumeration of all entries in the table.

▪ Session.TreeConnectTable: A table of tree connects that have been established by this
authenticated session to shares on this server, indexed by TreeConnect.TreeId. The server
MUST allow enumeration of all entries in the table.

▪ Session.ExpirationTime: A value that specifies the time after which the client MUST
reauthenticate with the server.

▪ Session.Connection: The connection on which this session was established (see also section
3.3.5.5.1).

▪ Session.SessionGlobalId: A numeric 32-bit value obtained via registration with [MS-SRVS], as
specified in [MS-SRVS] section 3.1.6.2.

▪ Session.CreationTime: The time the session was established.

▪ Session.IdleTime: The time the session processed its most recent request.

▪ Session.UserName: The name of the user who established the session.

If the server implements the SMB 3.x dialect family, it MUST implement the following:

▪ Session.ChannelList: A list of channels that have been established on this authenticated session,
as specified in section 3.3.1.14.

246 / 464

[MS-SMB2-Diff] - v20190923
Server Message Block (SMB) Protocol Versions 2 and 3
Copyright © 2019 Microsoft Corporation
Release: September 23, 2019

▪ Session.EncryptData: A Boolean that, if set, indicates that the messages on this session
SHOULD be encrypted.

▪ Session.EncryptionKey: A 128-bit key used for encrypting the messages sent by the server.

▪ Session.DecryptionKey: A 128-bit key used for decrypting the messages received from the

client.

▪ Session.SigningKey: A 128 bit key used for signing the SMB2 messages.

▪ Session.ApplicationKey: A 128-bit key, for the authenticated context, that is queried by the
higher-layer applications.

If the server implements the SMB 3.1.1 dialect, it MUST also implement the following:

▪ Session.PreauthIntegrityHashValue: The preauthentication integrity hash value that was
computed for the exchange of SMB2 SESSION_SETUP request and response messages for this

session.

3.3.1.9 Per Tree Connect

The server implements the following:

▪ TreeConnect.TreeId: A numeric value that uniquely identifies a tree connect within the scope of
the session over which it was established. This value is represented as a 32-bit TreeId in the
SMB2 header. 0xFFFFFFFF(-1) MUST be considered as a reserved and invalid value for the
TreeId.

▪ TreeConnect.Session: The authenticated session that established this tree connect.

▪ TreeConnect.Share: The share that this tree connect was established for.

▪ TreeConnect.OpenCount: A numeric value that indicates the number of files that are currently

opened on TreeConnect.

▪ TreeConnect.TreeGlobalId: A numeric value obtained via registration with [MS-SRVS], as
specified in [MS-SRVS] section 3.1.6.6.

▪ TreeConnect.CreationTime: The time tree connect was established.

▪ TreeConnect.MaximalAccess: Access rights for the user that established the tree connect on
TreeConnect.Share, in the format specified in section 2.2.13.1.

▪ TreeConnect.RemotedIdentitySecurityContext: The remoted identity security context of the
caller optionally provided by the client via the remoted identity tree connect context.

3.3.1.10 (Updated Section) Per Open

The server implements the following:

▪ Open.FileId: A numeric value that uniquely identifies the open handle to a file or a pipe within
the scope of a session over which the handle was opened. A 64-bit representation of this value,
combined with Open.DurableFileId as described below, form the SMB2_FILEID described in
section 2.2.14.1.

▪ Open.FileGlobalId: A numeric value obtained via registration with [MS-SRVS], as specified in
[MS-SRVS] section 3.1.6.4.

▪ Open.DurableFileId: A numeric value that uniquely identifies the open handle to a file or a pipe

within the scope of all opens granted by the server, as described by the GlobalOpenTable. A 64-

247 / 464

[MS-SMB2-Diff] - v20190923
Server Message Block (SMB) Protocol Versions 2 and 3
Copyright © 2019 Microsoft Corporation
Release: September 23, 2019

bit representation of this value combined with Open.FileId, as described above, form the
SMB2_FILEID described in section 2.2.14.1. This value is the persistent portion of the identifier.

▪ Open.Session: A reference to the authenticated session, as specified in section 3.3.1.8, over
which this open was performed. If the open is not attached to a session at this time, this value

MUST be NULL.

▪ Open.TreeConnect: A reference to the TreeConnect, as specified in section 3.3.1.9, over which
the open was performed. If the open is not attached to a TreeConnect at this time, this value
MUST be NULL.

▪ Open.Connection: A reference to the connection, as specified in section 3.3.1.7, that created this
open. If the open is not attached to a connection at this time, this value MUST be NULL.

▪ Open.LocalOpen: An open of a file or named pipe in the underlying local resource that is used to

perform the local operations, such as reading or writing, to the underlying object. For named
pipes, Open.LocalOpen is shared between the SMB server and RPC server applications which
serve RPC requests on a given named pipe. The higher level interfaces described in sections

3.3.4.5 and 3.3.4.11 require this shared element.

▪ Open.GrantedAccess: The access granted on this open, as defined in section 2.2.13.1.

▪ Open.OplockLevel: The current oplock level for this open. This value MUST be one of the

OplockLevel values defined in section 2.2.14: SMB2_OPLOCK_LEVEL_NONE,
SMB2_OPLOCK_LEVEL_II, SMB2_OPLOCK_LEVEL_EXCLUSIVE, SMB2_OPLOCK_LEVEL_BATCH, or
OPLOCK_LEVEL_LEASE.

▪ Open.OplockState: The current oplock state of the file. This value MUST be Held, Breaking, or
None.

▪ Open.OplockTimeout: The time value that indicates when an oplock that is breaking and has not
received an acknowledgment from the client will be acknowledged by the server.

▪ Open.IsDurable: A Boolean that indicates whether the Open is preserved for reconnect.

▪ Open.DurableOpenTimeout: The time the server waits before closing a handle that has been
preserved for durability, if a client has not reclaimed it.

▪ Open.DurableOpenScavengerTimeout: A time stamp value, if non-zero, representing the
maximum time to preserve the open for reclaim.

▪ Open.DurableOwner: A security descriptor that holds the original opener of the open. This
allows the server to determine if a caller that is trying to reestablish a durable open is allowed to

do so. If the server implements SMB 2.1 or SMB 3.x and supports resiliency, this value is also
used to enforce security during resilient open reestablishment.

▪ Open.CurrentEaIndex: For extended attribute information, this value indicates the current
location in an extended attribute information list and allows for the continuing of an enumeration
across multiple requests.

▪ Open.CurrentQuotaIndex: For quota queries, this value indicates the current index in the quota

information list and allows for the continuation of an enumeration across multiple requests.

▪ Open.LockCount: A numeric value that indicates the number of locks that are held by current
open.

▪ Open.PathName: A variable-length Unicode string that contains the local path name on the
server that the open is performed on.

▪ Open.ResumeKey: A 24-byte key that identifies a source file in a server-side data copy
operation.

248 / 464

[MS-SMB2-Diff] - v20190923
Server Message Block (SMB) Protocol Versions 2 and 3
Copyright © 2019 Microsoft Corporation
Release: September 23, 2019

▪ Open.FileName: A Unicode file name supplied by the client for this Open.

▪ Open.CreateOptions: The create options requested by the client for this Open, in the format

specified in section 2.2.13.

▪ Open.FileAttributes: The file attributes used by the client for this Open, in the format specified

in section 2.2.13.

If the server supports leasing, it MUST implement the following:

▪ Open.ClientGuid: An identifier for the client machine that created this open.

▪ Open.Lease: The lease associated with this open, as defined in 3.3.1.12. This value MUST point
to a valid lease, or be set to NULL.

If the server supports resiliency, it MUST implement the following:

▪ Open.IsResilient: A Boolean that indicates whether this open has requested resilient operation.

▪ Open.ResiliencyTimeout: A time-out value that indicates how long the server will hold the file
open after a disconnect before releasing the open.

▪ Open.ResilientOpenTimeout: A time-out value that indicates when a handle that has been
preserved for resiliency will be closed by the system if a client has not reclaimed it.

▪ Open.LockSequenceArray: An array of 64 entries used to maintain lock sequences for resilient
opens. Each entry MUST be assigned an index from the range of 1 to 64. Each entry is a structure

with the following elements:

▪ SequenceNumber: A 4-bit integer modulo 16.

▪ Valid: A Boolean, if set to TRUE, indicates that the SequenceNumber element is valid.

If the server implements the SMB 3.x dialect family, it MUST implement the following:

▪ Open.CreateGuid: A 16-byte value that associates this open to a create request.

▪ Open.AppInstanceId: A 16-byte value that associates this open with a calling application.

▪ Open.IsPersistent: A Boolean that indicates whether this open is persistent.

▪ Open.ChannelSequence: A 16-bit identifier indicating the client's Channel change.

▪ Open.OutstandingRequestCount: A numerical value that indicates the number of outstanding
requests issued with ChannelSequence equal to Open.ChannelSequence.

▪ Open.OutstandingPreRequestCount: A numerical value that indicates the number of
outstanding requests issued with ChannelSequence less than Open.ChannelSequence.

▪ Open.FileName: A variable-length string that contains the Unicode file name supplied by the
client for opening the file.

▪ Open.DesiredAccess: The access mode requested by the client while opening the file, in the
format specified in section 2.2.13.1.

▪ Open.ShareMode: The sharing mode requested by the client while opening the file, in the format
specified in section 2.2.13.

▪ Open.CreateOptions: The create options requested by the client while opening the file, in the
format specified in section 2.2.13.

249 / 464

[MS-SMB2-Diff] - v20190923
Server Message Block (SMB) Protocol Versions 2 and 3
Copyright © 2019 Microsoft Corporation
Release: September 23, 2019

▪ Open.FileAttributes: The file attributes used by the client for opening the file, in the format
specified in section 2.2.13.

▪ Open.CreateDisposition: The create disposition requested by the client for opening the file, in
the format specified in section 2.2.13.

If the server implements the SMB 3.0.2 or SMB 3.1.1 dialect, it MUST implement the following:

▪ Open.IsSharedVHDX: A Boolean that indicates whether this open is a shared virtual disk
operation.

If the server implements the SMB 3.1.1 dialect, it MUST implement the following:

▪ Open.ApplicationInstanceVersionHigh: An unsigned 64-bit numeric value representing the
most significant value of the application instance version.

▪ Open.ApplicationInstanceVersionLow: An unsigned 64-bit numeric value representing the

least significant value of the application instance version.

3.3.1.11 Per Lease Table

If the server implements the SMB 2.1 or SMB 3.x dialect family and supports leasing, it implements

the following:

▪ LeaseTable.ClientGuid: A global identifier to associate which connections MUST use this
LeaseTable.

▪ LeaseTable.LeaseList: A list of lease structures, as defined in section 3.3.1.12, indexed by
LeaseKey.

3.3.1.12 Per Lease

If the server implements the SMB 2.1 or SMB 3.x dialect family and supports leasing, it implements
the following:

▪ Lease.LeaseKey: The 128-bit client-generated identifier for this lease.

▪ Lease.ClientLeaseId: The implementation-defined server identifier for this lease.

▪ Lease.Filename: The name of the file backing this lease.

▪ Lease.LeaseState: The current state of the lease as indicated by the underlying object store.
This value MUST be a combination of the flags described in section 2.2.13.2.8 for "LeaseState".
For the remainder of section 3.3, these will be referred to as follows:

Lease State
Abbreviated
Name

0 NONE

SMB2_LEASE_READ_CACHING R

SMB2_LEASE_READ_CACHING | SMB2_LEASE_WRITE_CACHING RW

SMB2_LEASE_READ_CACHING | SMB2_LEASE_HANDLE_CACHING RH

SMB2_LEASE_READ_CACHING | SMB2_LEASE_WRITE_CACHING |
SMB2_LEASE_HANDLE_CACHING

RWH

250 / 464

[MS-SMB2-Diff] - v20190923
Server Message Block (SMB) Protocol Versions 2 and 3
Copyright © 2019 Microsoft Corporation
Release: September 23, 2019

▪ Lease.BreakToLeaseState: The state to which the lease is breaking. This value MUST be a
combination of the flags described in section 2.2.13.2.8 for "LeaseState". For the remainder of

section 3.3, these will be referred to as described in the table above.

▪ Lease.LeaseBreakTimeout: The time value that indicates when a lease that is breaking and has

not received a Lease Break Acknowledgment from the client will be acknowledged by the server to
the underlying object store.

▪ Lease.LeaseOpens: The list of opens associated with this lease.

▪ Lease.Breaking: A Boolean, if set to TRUE, indicating a lease break requiring acknowledgement
is in progress.

▪ Lease.Held: A Boolean, if set to TRUE, indicating that at least one Open is associated with this
lease.

▪ Lease.BreakNotification: A Lease Break Notification, as specified in section 2.2.23.2, if any, to
be sent to the client.

If the server implements the SMB 3.x dialect family and supports leasing, it implements the following:

▪ Lease.Epoch: A sequence number incremented by the server on every lease state change.

▪ Lease.ParentLeaseKey: The 128-bit client-generated identifier of the lease for the parent
directory of this lease.

▪ Lease.Version: A number indicating the lease version.

3.3.1.13 Per Request

The server implements the following:

▪ Request.MessageId: The value of the MessageId field from the SMB2 Header of the client

request.

▪ Request.AsyncId: An asynchronous identifier generated for an Asynchronous Operation, as
specified in section 3.3.4.2. The identifier MUST uniquely identify this Request among all requests
currently being processed asynchronously on a specified SMB2 transport connection. If the request
is not being processed asynchronously, this value MUST be set to zero.

▪ Request.CancelRequestId: An implementation-dependent identifier generated by the server to

support cancellation of pending requests that are sent to the object store. The identifier MUST be
unique among all requests currently being processed by the server and all object store operations
being performed by other server applications.<176>

▪ Request.Open: A reference to an Open of a file or named pipe, as specified in section 3.3.1.10.
If the request is not associated with an Open at this time, this value MUST be NULL.

If the server implements the SMB 3.x dialect family, it MUST implement the following:

▪ Request.IsEncrypted: A Boolean that, if set, indicates that the request has been encrypted.

▪ Request.TransformSessionId: The SessionId sent by the client in the SMB2
TRANSFORM_HEADER, if the request is encrypted.

If the server implements the SMB 3.1.1 dialect, it implements the following:

▪ Request.CompressReply: A Boolean that, if set, indicates that the reply to this request is
eligible for compression.

251 / 464

[MS-SMB2-Diff] - v20190923
Server Message Block (SMB) Protocol Versions 2 and 3
Copyright © 2019 Microsoft Corporation
Release: September 23, 2019

3.3.1.14 Per Channel

If the server implements the SMB 3.x dialect family, the server implements the following:

▪ Channel.SigningKey: A 128-bit key used for signing the SMB2 messages on this channel.

▪ Channel.Connection: The connection on which this channel was established.

3.3.1.15 Per PreauthSession

The server implements the following:

▪ PreauthSession.SessionId: A numeric value to identify a session that is used as an index in

GlobalSessionTable.

▪ PreauthSession.PreauthIntegrityHashValue: The preauthentication integrity hash value that
was computed for the exchange of SMB2 SESSION_SETUP request and response messages for this
session.

3.3.2 Timers

3.3.2.1 Oplock Break Acknowledgment Timer

This timer controls the amount of time the server waits for an oplock break acknowledgment from the

client (as specified in section 2.2.24.1) after sending an oplock break notification (as specified in
section 2.2.23.1) to the client. The server MUST wait for an interval of time greater than or equal to
the oplock break acknowledgment timer. This timer MUST be smaller than the client Request
Expiration time, as specified in section 3.2.6.1.<177>

3.3.2.2 Durable Open Scavenger Timer

This timer controls the amount of time the server keeps a durable handle active after the underlying

transport connection to the client is lost.<178> The server MUST keep the durable handle active for at
least this amount of time, except in the cases of an oplock break indicated by the object store as
specified in section 3.3.4.6, administrative actions, or resource constraints.

3.3.2.3 Session Expiration Timer

This timer controls the periodic scheduling of searching for sessions that have passed their expiration
time. The server SHOULD<179> schedule this timer such that sessions are expired in a timely
manner. This timer is also used for scavenging connections on which the NEGOTIATE and
SESSION_SETUP have not been performed within a specified time.

3.3.2.4 Resilient Open Scavenger Timer

This timer controls the amount of time the server keeps a resilient handle active after the underlying
transport connection to the client is lost. This value is not a constant but set based on the time-out

requested by the client as specified in section 3.3.5.15.9. The server MUST keep the resilient handle
active for that amount of time except in cases of administrative actions or resource constraints.

3.3.2.5 Lease Break Acknowledgment Timer

If the server implements the SMB 2.1 or SMB 3.x dialect family and supports leasing, this timer

controls the amount of time the server waits for a Lease Break acknowledgment from the client (as
specified in section 2.2.24.2) after sending a lease break notification (as specified in section 2.2.23.2)
to the client. The server MUST wait for an interval of time greater than or equal to the lease break

252 / 464

[MS-SMB2-Diff] - v20190923
Server Message Block (SMB) Protocol Versions 2 and 3
Copyright © 2019 Microsoft Corporation
Release: September 23, 2019

acknowledgment timer. This timer MUST be smaller than the client Request Expiration time, as
specified in section 3.2.6.1.<180>

3.3.3 Initialization

The server MUST initialize the following:

▪ All the members in ServerStatistics MUST be set to zero.

▪ SnapshotList MUST be set to empty in all shares in ShareList.

▪ ServerEnabled MUST be set to FALSE.

▪ GlobalOpenTable MUST be set to an empty table.

▪ GlobalSessionTable MUST be set to an empty table.

▪ ServerGuid MUST be set to a newly generated GUID.

▪ ConnectionList MUST be set to an empty list.

▪ ServerStartTime SHOULD<181> be set to zero.

▪ IsDfsCapable MUST be set to FALSE.

▪ ServerSideCopyMaxNumberofChunks MUST be set to an implementation-specific<182>

default value.

▪ ServerSideCopyMaxChunkSize MUST be set to an implementation-specific<183> default value.

▪ ServerSideCopyMaxDataSize MUST be set to an implementation-specific<184> default value.

▪ ShareList MUST be set to an empty list.

▪ Open.DurableOpenScavengerTimeout MUST be set to zero.

If the server implements the SMB 2.1 or SMB 3.x dialect family, it MUST initialize the following:

▪ ServerHashLevel MUST be set to an implementation-specific<185> default value.

If the server implements the SMB 2.1 or 3.x dialect family and supports leasing, the server MUST
initialize the following:

▪ GlobalLeaseTableList MUST be set to an empty list.

If the server implements the SMB 2.1 or SMB 3.x dialect family and supports resiliency, it MUST
implement the following:

▪ MaxResiliencyTimeout SHOULD<186> be set to an implementation-specific default value.

If the server implements the SMB 3.x dialect family, the server MUST initialize the following:

▪ EncryptData MUST be set in an implementation-specific manner.

▪ RejectUnencryptedAccess MUST be set in an implementation-specific manner.<187>

▪ IsMultiChannelCapable MUST be set in an implementation-specific manner.<188>

If the server implements the SMB 3.0.2 or SMB 3.1.1 dialect, the server MUST initialize the following:

▪ IsSharedVHDSupported: MUST be set to FALSE.

253 / 464

[MS-SMB2-Diff] - v20190923
Server Message Block (SMB) Protocol Versions 2 and 3
Copyright © 2019 Microsoft Corporation
Release: September 23, 2019

If the server implements the SMB 3.1.1 dialect, the server MUST initialize the following:

▪ MaxClusterDialect MUST be set in an implementation-specific manner.

▪ Server.SupportsTreeConnectExtn MUST be set in an implementation-specific<189> manner.

The server MUST notify the completion of its initialization to the server service by invoking the event

as specified in [MS-SRVS] section 3.1.6.14, providing the string "SMB2" as an input parameter.

3.3.4 Higher-Layer Triggered Events

The SMB 2 Protocol server is driven by a series of higher-layer triggered events in the following

categories:

▪ Indications of buffering state changes on local opens (oplock breaks or lease breaks).

▪ Requests for the session key of authenticated sessions.

▪ Required actions for sending any outgoing message.

The following sections provide details on the above events.

3.3.4.1 Sending Any Outgoing Message

Unless specifically noted in a subsequent section, the following logic MUST be applied to any response
message being sent from the server to the client.

▪ For every outgoing message, the server MUST calculate the total number of bytes in the message
and update the values of ServerStatistics.sts0_bytessent_low and
ServerStatistics.sts0_bytessent_high.

▪ For the command requests which include FileId, if Connection.Dialect belongs to the SMB 3.x
dialect family and ChannelSequence is equal to Open.ChannelSequence, the server MUST
decrement Open.OutstandingRequestCount by 1. Otherwise, the server MUST decrement

Open.OutstandingPreRequestCount by 1.

▪ For every outgoing message, the server SHOULD set the CreditCharge field in the SMB2 header
of the response to the CreditCharge value in the SMB2 header of the request.

3.3.4.1.1 Signing the Message

The server SHOULD<190> sign the message under the following conditions:

▪ If the request was signed by the client, the response message being sent contains a nonzero
SessionId and a zero TreeId in the SMB2 header, and the session identified by SessionId has
Session.SigningRequired equal to TRUE.

▪ If the request was signed by the client, the response message being sent contains a nonzero

SessionId, and a nonzero TreeId in the SMB2 header, and the session identified by SessionId
has Session.SigningRequired equal to TRUE, if either global EncryptData is FALSE or

Connection.ClientCapabilities does not include the SMB2_GLOBAL_CAP_ENCRYPTION bit.

▪ If the request was signed by the client, and the response is not an interim response to an
asynchronously processed request.

If Connection.Dialect belongs to the SMB 3.x dialect family, and if the response being signed is an
SMB2 SESSION_SETUP Response without a status code equal to STATUS_SUCCESS in the header, the

server MUST use Session.SigningKey. For all other responses being signed the server MUST provide

254 / 464

[MS-SMB2-Diff] - v20190923
Server Message Block (SMB) Protocol Versions 2 and 3
Copyright © 2019 Microsoft Corporation
Release: September 23, 2019

Channel.SigningKey by looking up the Channel in Session.ChannelList, where the connection
matches the Channel.Connection.

Otherwise, the server MUST use Session.SessionKey for signing the response.

The server provides the key for signing, the length of the response, and the response itself, and

calculates the signature as specified in section 3.1.4.1. If the server signs the message, it MUST set
the SMB2_FLAGS_SIGNED bit in the Flags field of the SMB2 header. If the server encrypts the
message, as specified in section 3.1.4.3, the server MUST set the Signature field of the SMB2 header
to zero.

3.3.4.1.2 Granting Credits to the Client

As described in section 3.3.1.1, the server maintains a list of message identifiers available for

incoming requests. The total number of available message identifiers can change dynamically as the
system runs, with the server granting credits based on some local policy.

Based on the CreditRequest specified in the SMB2 header of a client request, the server MUST

determine how many credits it will grant the client on each request by using a vendor-specific
algorithm as specified in section 3.3.1.2. The server MUST then place the number of credits granted in
the CreditResponse field in the SMB2 header of the response.

The server consumes one credit for any request except for the SMB2 CANCEL Request. If the server
implements the SMB 2.1 or SMB 3.x dialect family and the request is a multi-credit request, the server
MUST consume multiple credits as specified in section 3.3.5.2.3. To maintain the same number of
credits already granted, the server returns a value equal to the number of credits consumed by this
command. To reduce or increase the number of credits granted, the server respectively returns a
value less than or greater than the number of credits consumed by this command.

For an asynchronously processed request, any credits to be granted MUST be granted in the interim

response, as specified in section 3.3.4.2.<191>

3.3.4.1.3 Sending Compounded Responses

The server MAY<192> compound responses to the client.

To compound responses, the server MUST set the NextCommand in the first response to the offset,
in bytes, from the beginning of the SMB2 header of the first response to the beginning of the 8-byte
aligned SMB2 header in the subsequent response. This process MUST be done for each response

except the final response in the chain, whose NextCommand SHOULD<193> be set to 0. The length
of the last response in the compounded responses SHOULD be padded to a multiple of 8 bytes. The
server MAY<194> grant credits separately on each response in the compounded chain. Then the
entire response chain MUST be sent to the client as a single submission to the underlying transport.

The server SHOULD NOT<195> send the response message when the size is greater than
Connection.MaxTransactSize+256.

3.3.4.1.4 Encrypting the Message

If Connection.Dialect belongs to the SMB 3.x dialect family and Connection.ClientCapabilities
includes the SMB2_GLOBAL_CAP_ENCRYPTION bit, the server MUST encrypt the message before
sending, if IsEncryptionSupported is TRUE and any of the following conditions are satisfied:

▪ If the message being sent is any response to a client request for which Request.IsEncrypted is
TRUE.

▪ If Session.EncryptData is TRUE and the response being sent is not SMB2_NEGOTIATE or SMB2
SESSION_SETUP.

255 / 464

[MS-SMB2-Diff] - v20190923
Server Message Block (SMB) Protocol Versions 2 and 3
Copyright © 2019 Microsoft Corporation
Release: September 23, 2019

▪ If Session.EncryptData is FALSE, the response being sent is not SMB2_NEGOTIATE or SMB2
SESSION_SETUP or SMB2 TREE_CONNECT, and Share.EncryptData for the share associated with

the TreeId in the SMB2 header of the response is TRUE.

The server MUST encrypt the message as specified in section 3.1.4.3, before sending it to the client.

3.3.4.1.5 Compressing the Message

If Connection.Dialect is 3.1.1, IsCompressionSupported is TRUE, Connection.CompressionIds
is not empty, and Request.CompressReply is TRUE, the server MUST process the message as
specified in section 3.1.4.4, before sending it to the client.

3.3.4.1.6 (Added Section) Selecting a Connection

If the server implements the SMB 3.x dialect family, the server MUST select Channel.Connection
from Open.Session.ChannelList in an implementation-specific manner.

Otherwise, the server MUST select Open.Connection.

3.3.4.2 Sending an Interim Response for an Asynchronous Operation

The server MAY<196> choose to send an interim response for any request that is received. It
SHOULD<197> send an interim response for any request that could potentially block for an indefinite
amount of time. If an operation would require asynchronous processing but resources are constrained,
the server MAY<198> choose to fail that operation with STATUS_INSUFFICIENT_RESOURCES.

An interim response indicates to the client that the request has been received and a full response will
come later. The server SHOULD NOT sign an interim response.

To send an interim response for a request, the server MUST generate an asynchronous identifier for it,
and Request.AsyncId MUST be set to this asynchronous identifier.

▪ The identifier MUST be an 8-byte value.

▪ The identifier MUST be unique for all outstanding asynchronous requests on a specified SMB2
transport connection.

▪ The identifier MUST remain valid until the final response for the request is sent.

▪ The identifier MUST NOT be reused until the final response is sent.

▪ The identifier MUST be nonzero.

The server MUST insert the Request in Connection.AsyncCommandList.

The server MUST construct a response packet for the request. The SMB2 header of the response MUST
be identical to that in the request with the following changes:

▪ It MUST set the Status field in the SMB2 header to STATUS_PENDING.

▪ The NextCommand field MUST be set to 0 if this is not a compounded response. Otherwise,

NextCommand MUST be set as specified in section 3.3.4.1.3.

▪ The server MUST set the SMB2_FLAGS_SERVER_TO_REDIR bit in the Flags field of the SMB2
header.

▪ The server MUST set the SMB2_FLAGS_ASYNC_COMMAND bit in the Flags field of the SMB2
header.

▪ It MUST set the AsyncId field of the SMB2 header to the value that was generated earlier.

256 / 464

[MS-SMB2-Diff] - v20190923
Server Message Block (SMB) Protocol Versions 2 and 3
Copyright © 2019 Microsoft Corporation
Release: September 23, 2019

▪ It MUST set the CreditResponse field to the number of credits the server chooses to grant for
this request, as specified in section 3.3.1.2.

It MUST append an SMB2 ERROR Response following the SMB2 header, as specified in section 2.2.2,
with a ByteCount of zero. This response MUST be sent to the client.

3.3.4.3 Sending a Success Response

When the server responds with a success to any command sent by the client, the response message
MUST be constructed as specified in this section.

The server MUST fill in the SMB2 header of the success response to match the SMB2 header of the
request with the following changes:

▪ The Status field of the SMB2 header MUST be set to the status code provided.

▪ The NextCommand field MUST be set to zero. If this response is later combined with other
responses into a compounded response, as specified in section 3.3.4.1.3, this value will change.

▪ The SMB2_FLAGS_SERVER_TO_REDIR bit MUST be set in the Flags field of the SMB2 header.

▪ If Request.AsyncId is nonzero, the server MUST set the AsyncId field to it, MUST set the

SMB2_FLAGS_ASYNC_COMMAND bit in the Flags field, and MUST set the CreditResponse field
to 0.

▪ Otherwise, the server MUST set the CreditResponse field to the number of credits the server
chooses to grant the request, as specified in section 3.3.1.2.

Any other additional changes to the header will be made on a command-specific basis.

The information that follows the SMB2 header is command-specific, as specified in section 3.3.5. This
response MUST be sent to the client and the request MUST be removed from

Connection.RequestList and freed.

3.3.4.4 Sending an Error Response

When the server is responding with a failure to any command sent by the client, the response

message MUST be constructed as described here. An error code other than one of the following
indicates a failure:

▪ STATUS_MORE_PROCESSING_REQUIRED in an SMB2 SESSION_SETUP Response specified in
section 2.2.6.

▪ STATUS_BUFFER_OVERFLOW in an SMB2 QUERY_INFO Response specified in section 2.2.38.

▪ STATUS_BUFFER_OVERFLOW in a FSCTL_PIPE_TRANSCEIVE, FSCTL_PIPE_PEEK or
FSCTL_DFS_GET_REFERRALS Response specified in section 2.2.32.<199>

▪ STATUS_BUFFER_OVERFLOW in an SMB2 READ Response on a named pipe specified in section
2.2.20.

▪ STATUS_INVALID_PARAMETER in an FSCTL_SRV_COPYCHUNK or
FSCTL_SRV_COPYCHUNK_WRITE response, when returning an SRV_COPYCHUNK_RESPONSE as
described in section 3.3.5.15.6.2.

▪ STATUS_NOTIFY_ENUM_DIR in an SMB2 CHANGE_NOTIFY Response specified in section 2.2.36.

The server MUST provide the error code of the failure and a data buffer to be returned with the error.

If nothing is specified, the buffer MUST be considered to be zero bytes in length.

257 / 464

[MS-SMB2-Diff] - v20190923
Server Message Block (SMB) Protocol Versions 2 and 3
Copyright © 2019 Microsoft Corporation
Release: September 23, 2019

The server can return any of the following errors if the server, the file, or the share is not ready to
process an I/O request from the client.

▪ STATUS_SERVER_UNAVAILABLE

▪ STATUS_FILE_NOT_AVAILABLE

▪ STATUS_SHARE_UNAVAILABLE

The server MUST construct the SMB2 header of the error response to match the SMB2 header of the
request with the following changes:

▪ The Status field of the SMB2 header MUST be set to the error code provided.

▪ The NextCommand field MUST be set to 0. If this response is later combined with other
responses into a compounded response, as specified in section 3.3.4.1.3, this value will change
later.

▪ The SMB2_FLAGS_SERVER_TO_REDIR bit MUST be set in the Flags field of the SMB2 header.

▪ If Request.AsyncId is nonzero, the server MUST set the AsyncId field to it, and MUST set the
SMB2_FLAGS_ASYNC_COMMAND bit in the Flags field, and MUST set the CreditResponse field
to 0.

▪ Otherwise, the server MUST set the CreditResponse field to the number of credits the server
chooses to grant the request, as specified in section 3.3.1.2.

Following the SMB2 header MUST be an SMB2 ERROR Response structure, as specified in section
2.2.2.

If Connection.Dialect is "3.1.1", the server MUST construct the SMB2 ERROR Response structure
as follows:

▪ The ErrorContextCount of this response MUST be set to the number of SMB2 ERROR Context
structures to be set in the ErrorData array of the response.

▪ The ByteCount of this response MUST be set to the length of the buffer that is provided as part of

the error.

▪ If ErrorContextCount is greater than zero, the server MUST format the ErrorData array of the
response as a variable-length array of SMB2 ERROR Context structures as specified in section
2.2.2.1.

Otherwise, the server MUST construct the SMB2 ERROR Response structure as follows:

▪ The ErrorContextCount of this response MUST be set to 0.

▪ The ByteCount of this response MUST be set to the length of the buffer that is provided as part of

the error.

▪ If ByteCount is greater than zero, the server MUST format the ErrorData array of the response

as described in section 2.2.2.2.

This response MUST then be sent to the client, and the request MUST be removed from
Connection.RequestList and freed.

3.3.4.5 Server Application Requests Session Key of the Client

An application running on the server issues a query for a session key, specifying the LocalOpen to a
named pipe that has been opened by the SMB2 server on behalf of the remote client. The application
also provides a 16-byte buffer to receive the session key.

258 / 464

[MS-SMB2-Diff] - v20190923
Server Message Block (SMB) Protocol Versions 2 and 3
Copyright © 2019 Microsoft Corporation
Release: September 23, 2019

The server MUST cycle through the entries in the GlobalOpenTable and locate the Open for which
Open.LocalOpen matches the provided LocalOpen. If no Open is found, the request MUST be failed

with STATUS_OBJECT_NAME_NOT_FOUND.

If Open.Connection is NULL, the request MUST be failed with STATUS_NO_TOKEN.

If Open.TreeConnect.Share.Name is not equal to "IPC$" (indicating that the open is not a named
pipe), the request SHOULD be failed with STATUS_ACCESS_DENIED.

If Connection.Dialect belongs to the SMB 3.x dialect family, the server MUST return
Open.TreeConnect.Session.ApplicationKey. Otherwise, the server MUST return
Open.TreeConnect.Session.SessionKey to the caller.

3.3.4.6 (Updated Section) Object Store Indicates an Oplock Break

The underlying object store on the local resource indicates the breaking of an opportunistic lock,
specifying the LocalOpen and the new oplock level, a status code of the oplock break, and optionally
expects the new oplock level in return. The new oplock level MUST be either

SMB2_OPLOCK_LEVEL_NONE or SMB2_OPLOCK_LEVEL_II. The conditions under which each oplock

level is to be indicated are described in [MS-FSA] section 2.1.5.17.3.

The server MUST locate the open by walking the GlobalOpenTable to find an entry whose
Open.LocalOpen matches the one provided in the oplock break. If no entry is found, the break
indication MUST be ignored and the server MUST complete the oplock break call with
SMB2_OPLOCK_LEVEL_NONE as the new oplock level.

If an entry is found, the server MUST perform the following:

If For the specified Open.Connection, the server MUST select the connection as specified in section

3.3.4.1.6. If no connection is NULLavailable, Open.IsResilient is FALSE, Open.IsDurable is FALSE,
and Open.IsPersistent is FALSE, the server SHOULD close the Open as specified in section 3.3.4.17.

The server MUST construct an Oplock Break Notification following the syntax specified in section
2.2.23.1 to send back to the client. The server MUST set the Command in the SMB2 header to SMB2

OPLOCK_BREAK, and the MessageId to 0xFFFFFFFFFFFFFFFF. The server SHOULD<200> set the
SessionId in the SMB2 header to Open.Session.SessionId. The server MUST set the TreeId in the

SMB2 header to zero. The FileId field of the response structure MUST be set to the values from the
Open structure, with the volatile part set to Open.FileId and the persistent part set to
Open.DurableFileId. The oplock Level of the response MUST be set to the value provided by the
object store. The server MUST set Open.OplockState to Breaking and set Open.OplockTimeout to
the current time plus an implementation-specific default value in milliseconds.<201> The message
SHOULD NOT be signed.

If the server implements the SMB 3.x dialect family, SMB2 Oplock Break Notification MUST be sent to

the client using the first available connection in Open.Session.ChannelList where
Channel.Connection is not NULL. If the server fails to send the notification to the client, the server
MUST retry the send using an alternate connection, if available, in Open.Session.ChannelList.

Otherwise, SMB2 Oplock Break Notification MUST be sent to the client using Open.Connection.

If the notification could not be sent on any connection, the server MUST complete the oplock break
from the underlying object store with SMB2_OPLOCK_LEVEL_NONE as the new oplock level and MUST
set Open.OplockLevel to SMB2_OPLOCK_LEVEL_NONE and Open.OplockState to None.

If the server succeeds in sending the notification, the server MUST start the oplock break
acknowledgment timer as specified in section 3.3.2.1.

259 / 464

[MS-SMB2-Diff] - v20190923
Server Message Block (SMB) Protocol Versions 2 and 3
Copyright © 2019 Microsoft Corporation
Release: September 23, 2019

3.3.4.7 (Updated Section) Object Store Indicates a Lease Break

The underlying object store indicates the breaking of a lease by specifying the ClientGuid, the
ClientLeaseId, and the new lease state. The new lease state MUST be one of NONE, R, RW, and RH.

When the underlying object store indicates the lease break, the server MUST locate the Lease Table by
performing a lookup in GlobalLeaseTableList using the provided ClientGuid as the lookup key, and
then locate the Lease entry by performing a lookup in the LeaseTable.LeaseList using the provided
ClientLeaseId as the lookup key.

If no entry is found, the server MUST complete the lease break call from the underlying object store
with "NONE" as the new lease state, and take no further action.

If a Lease entry is found, the server MUST perform the following:

If Lease.LeaseOpens is empty, the server MUST complete the lease break call from the underlying
object store with "NONE" as the new lease state, set Lease.LeaseState to "NONE", and take no
further action.

Otherwise, for the specified Open, the server MUST select the connection as specified in section
3.3.4.1.6.

If no connection is available, for each Open in Lease.LeaseOpens, if Open.Connection is NULL,

Open.IsResilient is FALSE and Open.IsPersistent is FALSE, the server MUST close the Open as
specified in section 3.3.4.17 for the following cases:

▪ Open.IsDurable is, Open.IsResilient, and Open.IsPersistent are all FALSE.

▪ Lease.BreakToLeaseState does not contain SMB2_LEASE_HANDLE_CACHING and
Open.IsDurable is TRUE.

If Lease.LeaseOpens is not emptyOtherwise, the server MUST construct a Lease Break Notification
(section 2.2.23.2) message to send to the client.

The server MUST set the Command field in the SMB2 header to SMB2 OPLOCK_BREAK, and the

MessageId field to 0xFFFFFFFFFFFFFFFF. The server MUST set the SessionId and TreeId fields in
the SMB2 header to 0.

If Lease.LeaseState is SMB2_LEASE_READ_CACHING, the server MUST set the Flags field of the
message to zero and MUST set Open.OplockState to “None” for all opens in Lease.LeaseOpens.
The server MUST set Lease.Breaking to FALSE, and the LeaseKey field MUST be set to
Lease.LeaseKey.

Otherwise, the server MUST set the Flags field of the message to
SMB2_NOTIFY_BREAK_LEASE_FLAG_ACK_REQUIRED, indicating to the client that lease
acknowledgment is required. The LeaseKey field MUST be set to Lease.LeaseKey. The server MUST
set Open.OplockState to “Breaking” for all Opens in Lease.LeaseOpens. The server MUST set the
CurrentLeaseState field of the message to Lease.LeaseState, set Lease.Breaking to TRUE, set
Lease.BreakToLeaseState to the new lease state indicated by the object store, and set

Lease.LeaseBreakTimeout to the current time plus an implementation-specific<202> default value

in milliseconds.

If the server implements the SMB 3.x dialect family and Lease.Version is 2, the server MUST set
NewEpoch to Lease.Epoch + 1. Otherwise, NewEpoch MUST be set to zero.

The message SHOULD NOT be signed. The server MUST set Lease.BreakNotification to the newly
constructed Lease Break Notification.

The server MUST look up all the connections in ConnectionList where Connection.ClientGuid

matches the provided ClientGuid. The server MUST send Lease.BreakNotification using the first

260 / 464

[MS-SMB2-Diff] - v20190923
Server Message Block (SMB) Protocol Versions 2 and 3
Copyright © 2019 Microsoft Corporation
Release: September 23, 2019

available connection. If the server fails to send the notification to the client, the server MUST retry the
send using an alternate connection available.

If the server succeeds in sending the Lease Break Notification, the server MUST set
Lease.BreakNotification to empty and MUST start the lease break acknowledgment timer as

specified in section 3.3.2.5.

Otherwise, the server MUST perform the following steps:

▪ If Open.IsPersistent is TRUE and Lease.LeaseState is not SMB2_LEASE_READ_CACHING, the
server MUST take no further action.

▪ Otherwise, the server MUST set Open.Lease.Breaking to FALSE, Lease.Held to FALSE,
Open.OplockState to None, Lease.BreakNotification to empty, and MUST complete the lease
break call from the underlying object store with "NONE" as the new lease state.

3.3.4.8 DFS Server Notifies SMB2 Server That DFS Is Active

In response to this event, the SMB2 server MUST set the global state variable IsDfsCapable to TRUE.
If the DFS server is running on this computer, it MUST notify the SMB2 server that the DFS capability

is available via this event.

3.3.4.9 DFS Server Notifies SMB2 Server That a Share Is a DFS Share

In response to this event, the SMB2 server MUST set the Share.IsDfs attribute of the share specified
in section 3.3.1.6. When a DFS server running on this computer claims a share as a DFS share, it

MUST notify the SMB2 server via this event.

3.3.4.10 DFS Server Notifies SMB2 Server That a Share Is Not a DFS Share

In response to this event, the SMB2 server MUST clear the Share.IsDfs attribute of the share

specified in section 3.3.1.6.

3.3.4.11 Server Application Requests Security Context of the Client

An application running on the server issues a query for the security context of a client, specifying the
LocalOpen to a named pipe that has been opened by the SMB2 server on behalf of the remote client.

The server MUST cycle through the entries in the GlobalOpenTable and locate the Open for which
Open.LocalOpen matches the provided LocalOpen. If no Open is found, the request MUST be failed
with STATUS_OBJECT_NAME_NOT_FOUND.

If Open.Connection is NULL, the request MUST be failed with STATUS_NO_TOKEN.

If Open.TreeConnect.Share.Name is not equal to "IPC$" (indicating that the open is not a named
pipe), the request SHOULD be failed with STATUS_ACCESS_DENIED.

If Open.TreeConnect.Session.SecurityContext is NULL, the request MUST be failed with

STATUS_NO_TOKEN.

Otherwise, the server MUST return Open.TreeConnect.Session.SecurityContext to the caller.

3.3.4.12 Server Application Requests Closing a Session

The calling application provides GlobalSessionId of the session to be closed. The server MUST look
up Session from the GlobalSessionTable where Session.SessionGlobalId is equal to

261 / 464

[MS-SMB2-Diff] - v20190923
Server Message Block (SMB) Protocol Versions 2 and 3
Copyright © 2019 Microsoft Corporation
Release: September 23, 2019

GlobalSessionId, and remove it from the table. If there is no matching session, the call MUST
return.

The server MUST deregister the session by invoking the event specified in [MS-SRVS] section 3.1.6.3,
providing GlobalSessionId as the input parameter. ServerStatistics.sts0_sopens MUST be

decreased by 1.

The server MUST close every Open in Session.OpenTable as specified in 3.3.4.17.

The server MUST disconnect every TreeConnect in Session.TreeConnectTable and deregister
TreeConnect by invoking the event specified in [MS-SRVS] section 3.1.6.7, providing the tuple
<TreeConnect.Share.ServerName, TreeConnect.Share.Name> and TreeConnect.TreeGlobalId
as the input parameters. For each deregistered TreeConnect, TreeConnect.Share.CurrentUses
MUST be decreased by 1.

The session MUST be torn down and freed.

3.3.4.13 Server Application Registers a Share

The calling application provides a share in SHARE_INFO_503_I structure as specified in [MS-SRVS]

section 2.2.4.27 to register a share. The server MUST validate the SHARE_INFO_503_I structure as
specified in [MS-SRVS] section 3.1.4.7. If any member in the structure is invalid, the server MUST
return STATUS_INVALID_PARAMETER to the calling application. The server MUST look up the Share in
the ShareList, where shi503_servername matches Share.ServerName and shi503_netname
matches Share.Name. If a matching Share is found, the server MUST fail the call with an
implementation-dependent error. Otherwise, the server MUST create a new Share with the following
value set and insert it into ShareList and return STATUS_SUCCESS.

▪ Share.Name MUST be set to shi503_netname.

▪ Share.Type MUST be set to shi503_type. The server SHOULD<203> set STYPE_CLUSTER_FS,
STYPE_CLUSTER_SOFS, and STYPE_CLUSTER_DFS in an implementation-defined manner.

▪ Share.Remark MUST be set to shi503_remark.

▪ Share.LocalPath MUST be set to shi503_path.

▪ Share.ServerName MUST be set to the shi503_servername.

▪ Share.FileSecurity MUST be set to shi503_security_descriptor.

▪ Share.MaxUses MUST be set to shi503_max_uses.

▪ Share.CurrentUses MUST be set to 0.

▪ Share.CscFlags MUST be set to 0.

▪ Share.IsDfs MUST be set to FALSE.

▪ Share.DoAccessBasedDirectoryEnumeration MUST be set to FALSE.

▪ Share.AllowNamespaceCaching MUST be set to FALSE.

▪ Share.ForceSharedDelete MUST be set to FALSE.

▪ Share.RestrictExclusiveOpens MUST be set to FALSE.

▪ Share.ForceLevel2Oplock MUST be set to FALSE.

▪ Share.HashEnabled MUST be set to FALSE.

262 / 464

[MS-SMB2-Diff] - v20190923
Server Message Block (SMB) Protocol Versions 2 and 3
Copyright © 2019 Microsoft Corporation
Release: September 23, 2019

▪ If the server implements the SMB 3.x dialect family, Share.EncryptData MUST be set to FALSE.

If Share.Name is equal to "IPC$" or Share.Type does not have the STYPE_SPECIAL bit set, then

Share.ConnectSecurity SHOULD be set to a security descriptor allowing all users. Otherwise,
Share.ConnectSecurity SHOULD be set to a security descriptor allowing only administrators.

If the server implements the SMB 3.x dialect family, Share.CATimeout MUST be set to an
implementation-specific value.<204>

3.3.4.14 Server Application Updates a Share

The calling application provides a share in SHARE_INFO_503_I structure and SHARE_INFO_1005
structure as input parameters to update an existing Share. The server MUST validate the
SHARE_INFO_503_I and SHARE_INFO_1005 structures as specified in [MS-SRVS] section 3.1.4.11. If
any member in the structures is invalid, the server MUST return STATUS_INVALID_PARAMETER to the
calling application. The server MUST look up the Share in the ShareList, where shi503_servername
matches Share.ServerName and shi503_netname matches Share.Name. If the matching Share is
found, the server MUST update the share with the following value set and return STATUS_SUCCESS to

the calling application; otherwise the server MUST return an implementation-dependent error.

▪ Share.FileSecurity MUST be set to shi503_security_descriptor.

▪ Share.Remark MUST be set to shi503_remark.

▪ Share.MaxUses MUST be set to shi503_max_uses.

▪ Share.CscFlags MUST be set to the value of SHI1005_flags masked by CSC_MASK as specified in
[MS-SRVS] section 2.2.4.29.

▪ Share.IsDfs MUST be set to TRUE if SHI1005_flags contains SHI1005_FLAGS_DFS or

SHI1005_FLAGS_DFS_ROOT as specified in [MS-SRVS] section 2.2.4.29; otherwise, it MUST be
set to FALSE.

▪ Share.DoAccessBasedDirectoryEnumeration MUST be set to TRUE if SHI1005_flags contains

the SHI1005_FLAGS_ACCESS_BASED_DIRECTORY_ENUM bit as specified in [MS-SRVS] section
2.2.4.29; otherwise it MUST be set to FALSE.

▪ Share.AllowNamespaceCaching MUST be set to TRUE if SHI1005_flags contains

SHI1005_FLAGS_ALLOW_NAMESPACE_CACHING bit as specified in [MS-SRVS] section 2.2.4.29;
otherwise it MUST be set to FALSE.

▪ Share.ForceSharedDelete MUST be set to TRUE if SHI1005_flags contains the
SHI1005_FLAGS_FORCE_SHARED_DELETE bit as specified in [MS-SRVS] section 2.2.4.29;
otherwise it MUST be set to FALSE.

▪ Share.RestrictExclusiveOpens MUST be set to TRUE if SHI1005_flags contains the
SHI1005_FLAGS_RESTRICT_EXCLUSIVE_OPENS bit as specified in [MS-SRVS] section 2.2.4.29;

otherwise it MUST be set to FALSE.

▪ Share.HashEnabled MUST be set to TRUE if SHI1005_flags contains the

SHI1005_FLAGS_ENABLE_HASH bit as specified in [MS-SRVS] section 2.2.4.29; otherwise it MUST
be set to FALSE.

▪ Share.ForceLevel2Oplock MUST be set to TRUE if SHI1005_flags contains
SHI1005_FLAGS_FORCE_LEVELII_OPLOCK bit as specified in [MS-SRVS] section 2.2.4.29;
otherwise, it MUST be set to FALSE.

▪ Share.IsCA MUST be set to TRUE if SHI1005_flags contains SHI1005_FLAGS_ENABLE_CA bit as
specified in [MS-SRVS] section 2.2.4.29; otherwise, it MUST be set to FALSE.

263 / 464

[MS-SMB2-Diff] - v20190923
Server Message Block (SMB) Protocol Versions 2 and 3
Copyright © 2019 Microsoft Corporation
Release: September 23, 2019

▪ Share.EncryptData MUST be set to TRUE if SHI1005_flags contains
SHI1005_FLAGS_ENCRYPT_DATA bit as specified in [MS-SRVS] section 2.2.4.29. Otherwise, it

MUST be set to FALSE.

3.3.4.15 Server Application Deregisters a Share

The calling application provides tuple <ServerName, ShareName> of the share that is being
deregistered. The server MUST look up the Share in ShareList where ServerName matches
Share.ServerName and ShareName matches Share.Name. If a Share is found, the server MUST

remove it from the list and MUST return STATUS_SUCCESS to the calling application; otherwise, the
server MUST return an implementation-specific error.

The server MUST close every Open in GlobalOpenTable where Open.TreeConnect is not NULL and
Open.TreeConnect.Share matches the current share as specified in 3.3.4.17.

The server MUST enumerate every session in GlobalSessionTable and every tree connect in
Session.TreeConnectTable to free all tree connect objects where TreeConnect.Share matches the
current share.

3.3.4.16 Server Application Requests Querying a Share

The calling application provides tuple <ServerName, ShareName> of the share that is being queried.
The server MUST look up the Share in ShareList where ServerName matches Share.ServerName
and ShareName matches Share.Name. If the matching Share is found, the server MUST return a

share in SHARE_INFO_503_I structure and SHARE_INFO_1005 structure with the following values set
and return STATUS_SUCCESS to the calling application; otherwise the server MUST return an
implementation-dependent error.

Output Parameters SMB2 Share Properties

SHARE_INFO_503_I.shi503_netname Share.Name

SHARE_INFO_503_I.shi503_type Share.Type

SHARE_INFO_503_I.shi503_remark Share.Remark

SHARE_INFO_503_I.shi503_permissions 0

SHARE_INFO_503_I.shi503_max_uses Share.MaxUses

SHARE_INFO_503_I.shi503_current_uses Share.CurrentUses

SHARE_INFO_503_I.shi503_path Share.LocalPath

SHARE_INFO_503_I.shi503_passwd Empty string

SHARE_INFO_503_I.shi503_servername Share.ServerName

SHARE_INFO_503_I.shi503_security_descriptor Share.FileSecurity

SHARE_INFO_1005.shi1005_flags ShareFlags MUST be set based on the individual share
properties:

▪ The server MUST set all flags contained in Share.CscFlags.

▪ The server MUST set the SHI1005_FLAGS_DFS bit if the
per-share property Share.IsDfs is TRUE.

▪ The server MUST set the SHI1005_FLAGS_DFS_ROOT bit if
the per-share property Share.IsDfs is TRUE.

264 / 464

[MS-SMB2-Diff] - v20190923
Server Message Block (SMB) Protocol Versions 2 and 3
Copyright © 2019 Microsoft Corporation
Release: September 23, 2019

Output Parameters SMB2 Share Properties

▪ The server MUST set the
SHI1005_FLAGS_ACCESS_BASED_DIRECTORY_ENUM bit if
Share.DoAccessBasedDirectoryEnumeration is TRUE.

▪ The server MUST set the
SHI1005_FLAGS_ALLOW_NAMESPACE_CACHING bit if
Share.AllowNamespaceCaching is TRUE.

▪ The server MUST set the
SHI1005_FLAGS_FORCE_SHARED_DELETE bit if
Share.ForceSharedDelete is TRUE.

▪ The server MUST set the
SHI1005_FLAGS_RESTRICT_EXCLUSIVE_OPENS bit if
Share.RestrictExclusiveOpens is TRUE.

▪ The server MUST set the
SHI1005_FLAGS_FORCE_LEVELII_OPLOCK bit if
Share.ForceLevel2Oplock is TRUE.

▪ The server MUST set the SHI1005_FLAGS_ENABLE_HASH
bit if Share.HashEnabled is TRUE.

3.3.4.17 Server Application Requests Closing an Open

The calling application provides GlobalFileId as input parameter. The server MUST look up Open in
GlobalOpenTable where Open.FileGlobalId is equal to GlobalFileId, and, if the Open is found, the
server MUST perform the following:

▪ Remove the Open from the GlobalOpenTable.

▪ If Open.Connection is not NULL, cancel all requests in Open.Connection.RequestList for which
Request.Open matches the Open, as specified in section 3.3.5.16.

▪ If Open.IsSharedVHDX is TRUE, close the underlying Open.LocalOpen as specified in [MS-
RSVD] section 3.2.5.2.

▪ Close the underlying Open.LocalOpen.

▪ If Open.Session is not NULL, remove the Open from Open.Session.OpenTable.

▪ If Open.TreeConnect is not NULL, decrease Open.TreeConnect.OpenCount by 1.

▪ If Open.Connection.Dialect is not "2.0.2", the server supports leasing, and Open.Lease is not
NULL:

▪ The server MUST identify a LeaseTable by enumerating each entry in GlobalLeaseTableList
to find the one whose LeaseTable.LeaseList contains Open.Lease.

▪ The server MUST then remove the Open from Open.Lease.LeaseOpens. If this Open is the
last open in Open.Lease.LeaseOpens, the server MUST set Open.Lease.Held to FALSE.

▪ If Open.Lease.Held is FALSE:

▪ If Open.Lease.Breaking is TRUE, the server MUST complete the lease break to the
underlying object store with NONE as the new lease state. <205>

265 / 464

[MS-SMB2-Diff] - v20190923
Server Message Block (SMB) Protocol Versions 2 and 3
Copyright © 2019 Microsoft Corporation
Release: September 23, 2019

▪ The server MUST remove the Open.Lease from the LeaseTable.LeaseList and free the
Open.Lease.

▪ If LeaseTable.LeaseList is now empty, the server MAY remove the LeaseTable from the
GlobalLeaseTableList and free the LeaseTable.

▪ Provide Open.FileGlobalId as the input parameter and deregister the Open by invoking the
event specified in [MS-SRVS] section 3.1.6.5.

▪ The Open object is then freed.

▪ Return STATUS_SUCCESS to the calling application.

If no Open is found, the call MUST return an implementation-dependent error.

3.3.4.18 Server Application Queries a Session

The calling application provides GlobalSessionId as an identifier for the Session. The server MUST

look up session in GlobalSessionTable where GlobalSessionId is equal to
Session.SessionGlobalId. If Session is found, the server MUST return a session in
SESSION_INFO_502 structure as specified in [MS-SRVS] section 2.2.4.15 with the following values set

and return STATUS_SUCCESS to the calling application.

SESSION_INFO_502 Parameters SMB2 Session Properties

sesi502_cname Session.Connection.ClientName

sesi502_username Session.UserName

sesi502_num_opens The count of entries in Session.OpenTable

sesi502_time The current time minus Session.CreationTime, in seconds

sesi502_idle_time The current time minus Session.IdleTime, in seconds

sesi502_user_flags SESS_GUEST if Session.IsGuest is TRUE

sesi502_cltype_name Empty string

sesi502_transport Session.Connection.TransportName

If no Session is found, the server MUST return an implementation-dependent error.

3.3.4.19 Server Application Queries a TreeConnect

The calling application provides GlobalTreeConnectId as an identifier for the tree connect. The
server MUST enumerate all session entries in GlobalSessionTable and look up all TreeConnect
entries in Session.TreeConnectTable where GlobalTreeConnectId is equal to
TreeConnect.TreeGlobalId. If TreeConnect is found, the server MUST return ServerName and a
CONNECT_INFO_1 structure as specified in [MS-SRVS] section 2.2.4.2 with the following values set

and return STATUS_SUCCESS to the calling application.

Output Parameters SMB2 TreeConnect Properties

coni1_id TreeConnect.TreeGlobalId

coni1_type TreeConnect.Share.Type

coni1_num_opens TreeConnect.OpenCount

266 / 464

[MS-SMB2-Diff] - v20190923
Server Message Block (SMB) Protocol Versions 2 and 3
Copyright © 2019 Microsoft Corporation
Release: September 23, 2019

Output Parameters SMB2 TreeConnect Properties

coni1_num_users 1

coni1_time Current time minus TreeConnect.CreationTime, in seconds.

coni1_username TreeConnect.Session.UserName

coni1_netname TreeConnect.Share.Name

ServerName TreeConnect.Share.ServerName

If no TreeConnect is found, the server MUST return an implementation-dependent error.

3.3.4.20 Server Application Queries an Open

The calling application provides GlobalFileId as an identifier for the Open. The server MUST look up
open in GlobalOpenTable where GlobalFileId is equal to Open.FileGlobalId. If Open is found, the

server MUST return an open in FILE_INFO_3 structure as specified in [MS-SRVS] section 2.2.4.7 with

the following values set and return STATUS_SUCCESS to the calling application.

FILE_INFO_3 Parameters SMB2 Open Properties

fi3_id Open.FileGlobalId

fi3_permissions Open.GrantedAccess

fi3_num_locks Open.LockCount

fi3_path_name Open.PathName

fi3_username Open.Session.UserName, or empty if Open.Session is NULL

If no Open is found, the server MUST return an implementation-dependent error.

3.3.4.21 Server Application Requests Transport Binding Change

The application provides:

▪ TransportName: A string containing an implementation-specific name of the transport.

▪ ServerName: An optional string containing the name of the server to be used for binding the
transport.

▪ EnableFlag: A Boolean flag indicating whether to enable or disable the transport.

The server MUST use implementation-specific<206> means to determine whether TransportName is

an eligible transport entry as specified in section 2.1, and if not, the server MUST return
ERROR_NOT_SUPPORTED to the caller.

If EnableFlag is TRUE, the server SHOULD obtain binding information for the transport from the
appropriate standards assignments as specified in section 1.9 and ServerName <207>and MUST
attempt to start listening on the requested transport endpoint.

If EnableFlag is FALSE, the server MUST attempt to stop listening on the transport indicated by

TransportName.

If the attempt to start or stop listening on the transport succeeds, the server MUST return
STATUS_SUCCESS to the caller. Otherwise, it MUST return an implementation-dependent error.

267 / 464

[MS-SMB2-Diff] - v20190923
Server Message Block (SMB) Protocol Versions 2 and 3
Copyright © 2019 Microsoft Corporation
Release: September 23, 2019

3.3.4.22 Server Application Enables the SMB2 Server

The server MUST verify that the caller of this interface is the server service [MS-SRVS], in an
implementation-specific manner. In this case only, ServerEnabled MUST be set to TRUE.

3.3.4.23 Server Application Disables the SMB2 Server

The server MUST verify, in an implementation-specific manner, that the caller of this interface is the
server service [MS-SRVS]. Only if so, the server MUST take the following actions:

▪ The server MUST set ServerEnabled to FALSE to prevent accepting new connections.

▪ For each session in GlobalSessionTable, the server MUST take the following actions:

▪ The server MUST disconnect Session.Connection.

▪ The server MUST close the session as specified in section 3.3.4.12, providing
Session.SessionGlobalId as the input parameter.

▪ For each Open in GlobalOpenTable, the server MUST close the open as specified in section
3.3.4.17, providing Open.FileGlobalId as the input parameter.

▪ The server MUST remove and free all the shares in ShareList.

▪ For each connection in ConnectionList, the server MUST invoke the event specified in [MS-SRVS]
section 3.1.6.16 to update the connection count by providing the tuple
<Connection.TransportName,FALSE>. The server MUST remove and free all connections in
ConnectionList.

3.3.4.24 Server Application Requests Server Statistics

The server MUST return the ServerStatistics in a STAT_SERVER_0 structure as specified in [MS-
SRVS] section 2.2.4.39 to the server application with the following values:

STAT_SERVER_0 members SMB2 ServerStatistics Properties

sts0_start zero

sts0_fopens ServerStatistics.sts0_fopens

sts0_devopens zero

sts0_jobsqueued ServerStatistics.sts0_jobsqueued

sts0_sopens ServerStatistics.sts0_sopens

sts0_stimedout ServerStatistics.sts0_stimedout

sts0_serrorout zero

sts0_pwerrors ServerStatistics.sts0_pwerrors

sts0_permerrors ServerStatistics.sts0_permerrors

sts0_syserrors zero

sts0_bytessent_low ServerStatistics.sts0_bytessent_low

sts0_bytessent_high ServerStatistics.sts0_bytessent_high

sts0_bytesrcvd_low ServerStatistics.sts0_bytesrcvd_low

268 / 464

[MS-SMB2-Diff] - v20190923
Server Message Block (SMB) Protocol Versions 2 and 3
Copyright © 2019 Microsoft Corporation
Release: September 23, 2019

STAT_SERVER_0 members SMB2 ServerStatistics Properties

sts0_bytesrcvd_high ServerStatistics.sts0_bytesrcvd_high

sts0_avresponse zero

sts0_reqbufneed zero

sts0_bigbufneed zero

3.3.4.25 RSVD Server Notifies SMB2 Server That Shared Virtual Disks Are

Supported

In response to this event, the SMB2 server MUST set the global state variable
IsSharedVHDSupported to TRUE.

3.3.5 Processing Events and Sequencing Rules

The SMB 2 Protocol server is driven by a series of request messages sent by the client. Processing for
these messages is determined by the command in the SMB2 header of the response and is detailed for
each of the SMB2 response messages below.

3.3.5.1 Accepting an Incoming Connection

If ServerEnabled is FALSE, the server MUST NOT accept any incoming connections. Otherwise, when
the server accepts an incoming connection from any of its registered transports, it MUST allocate a
Connection object for it. The Connection object is initialized as described here.

Connection.CommandSequenceWindow is set to a sequence window, as specified in section

3.3.1.1, with a starting receive sequence of 0 and a window size of 1.

Connection.AsyncCommandList is set to an empty list.

Connection.RequestList is set to an empty list.

Connection.ClientCapabilities is set to 0.

Connection.NegotiateDialect is set to 0xFFFF.

Connection.Dialect is set to "Unknown".

Connection.ShouldSign is set to FALSE.

Connection.ClientName is set to be a null-terminated Unicode string of an IP address if the
connection is on TCP port 445, or a NetBIOS host name if the connection is on TCP port 139.

Connection.MaxTransactSize is set to 0.

Connection.SupportsMultiCredit is set to FALSE.

Connection.TransportName is set to the implementation-specific name of the transport used by this
connection <208> as obtained by implementation-specific means from the transport that indicated the
incoming connection.

Connection.SessionTable MUST be set to an empty table.

Connection.CreationTime is set to the current time.

269 / 464

[MS-SMB2-Diff] - v20190923
Server Message Block (SMB) Protocol Versions 2 and 3
Copyright © 2019 Microsoft Corporation
Release: September 23, 2019

Connection.ConstrainedConnection is set to TRUE.

Connection.CompressionIds, if implemented, MUST be set to an empty list.

The server MUST invoke the event specified in [MS-SRVS] section 3.1.6.16 to update the connection
count by providing the tuple <Connection.TransportName,TRUE>.

This connection MUST be inserted into the global ConnectionList.

3.3.5.2 Receiving Any Message

If ProtocolId in the header of the received message is 0x424D53FF and the command received is

SMB_COM_NEGOTIATE, the client MUST process the request as specified in section 3.3.5.3.

If the server implements the SMB 3.x dialect family, and the ProtocolId in the header of the received
message is 0x424D53FD, the server MUST decrypt the message as specified in section 3.3.5.2.1.1
before performing the following steps.

If the server implements the SMB 3.1.1 dialect and the ProtocolId in the header of the received
message is 0x424D53FC, the server MUST decompress the message as specified in section 3.3.5.2.1.2
before performing the following steps.

If ProtocolId in the header of the received message is 0x424D53FE, the server MUST perform the
following:

If the received request is not an SMB2 CANCEL, the server MUST create a new Request object
initialized as follows, and insert it into the Connection.RequestList before verifying the
connection state, sequence number, or signature.

▪ Request.MessageId MUST be set to the MessageId value in the SMB2 header.

▪ Request.AsyncId MUST be set to 0.

▪ Request.CancelRequestId MUST be set to a unique identifier generated by the server. In each

invocation of an object store operation, the server MUST pass the CancelRequestId as an
additional parameter to the operation, in order to support cancellation of in-progress operations as
specified in section 3.3.5.16.<209>

▪ Request.Open MUST be set to NULL.

▪ If the server implements the SMB 3.x dialect family, Request.IsEncrypted MUST be initialized to

FALSE and Request.TransformSessionId MUST be initialized to empty. If the request was
successfully received as encrypted as specified in section 3.3.5.2.1.1, Request.IsEncrypted
MUST be set to TRUE and Request.TransformSessionId MUST be set to the SessionId value in
the SMB2 TRANSFORM_HEADER.

▪ If IsCompressionSupported is TRUE, and the request was successfully received as compressed
as specified in section 3.3.5.2.1.1 or section 3.3.5.2.1.2, Request.CompressReply MAY be set to
TRUE.<210>

If the length of the message exceeds Connection.MaxTransactSize+256, the server MUST
disconnect the connection.

For a compound request, the server MUST register each SMB2 command as a separate entry in
the Connection.RequestList, and Request.MessageId MUST be set to the MessageId values
from the individual command headers.

If Connection.SupportsMultiCredit is FALSE and the size of the request is greater than
68*1024 bytes, the server SHOULD<211> terminate the connection.

270 / 464

[MS-SMB2-Diff] - v20190923
Server Message Block (SMB) Protocol Versions 2 and 3
Copyright © 2019 Microsoft Corporation
Release: September 23, 2019

If Connection.SupportsMultiCredit is TRUE, the command is other than READ, WRITE, IOCTL,
QUERY_DIRECTORY, CHANGE_NOTIFY, QUERY_INFO, or SET_INFO, and the size of the request is

greater than 68*1024 bytes, the server MUST terminate the connection.

For every message received, the server MUST calculate the total number of bytes in the message

and update the values of ServerStatistics.sts0_bytesrcvd_low and
ServerStatistics.sts0_bytesrcvd_high.

Otherwise, the server MUST disconnect the connection as specified in section 3.3.7.1.

3.3.5.2.1 Handling the Transformed Message

3.3.5.2.1.1 Decrypting the Message

This section is applicable for only the SMB 3.x dialect family.<212>

If IsEncryptionSupported is TRUE and Connection.CipherId is not zero, the server MUST perform
the following:

▪ If the size of the message received from the client is not greater than the size of the SMB2
TRANSFORM_HEADER as specified in section 2.2.41, the server MUST disconnect the connection
as specified in section 3.3.7.1.

▪ If the Flags/EncryptionAlgorithm in the SMB2 TRANSFORM_HEADER is not 0x0001, the server
MUST disconnect the connection as specified in section 3.3.7.1.

▪ The server MUST look up the session in the Connection.SessionTable using the SessionId in
the SMB2 TRANSFORM_HEADER of the request. If the session is not found, the server MUST
disconnect the connection as specified in section 3.3.7.1.

▪ The server MUST decrypt the message using Session.DecryptionKey. If Connection.Dialect is
less than "3.1.1", then AES-128-CCM MUST be used, as specified in [RFC4309]. Otherwise, the

algorithm specified by the Connection.CipherId MUST be used. The server passes in the Nonce,
OriginalMessageSize, Flags/EncryptionAlgorithm, and SessionId fields of the SMB2

TRANSFORM_HEADER as the Optional Authenticated Data input for the algorithm. If decryption
succeeds, the server MUST compare the signature in the SMB2 TRANSFORM_HEADER with the
signature returned by the decryption algorithm. If the signature verification fails, the server MUST
disconnect the connection as specified in section 3.3.7.1. If the signature verification succeeds,
the server MUST continue processing the decrypted packet.

▪ If the OriginalMessageSize field in the SMB2 TRANSFORM_HEADER is not equal to the size of
the decrypted message, the server SHOULD<213> disconnect the connection as specified in
section 3.3.7.1.

▪ If ProtocolId in the header of the decrypted message is 0x424D53FC indicating a nested
compressed message, IsCompressionSupported is TRUE, and Connection.CompressionIds is
not empty, the server MUST decompress the message as specified in section 3.3.5.2.1.2. If

decompression succeeds, the server MUST further validate the message:

▪ The server MUST verify if any of the following conditions are true and, if so, the server MUST

disconnect the connection as specified in section 3.3.7.1:

▪ For a singleton request and the first operation of a compounded request,

▪ The size of the decrypted message is less than the size of the SMB2 Header

▪ SMB2_FLAGS_RELATED_OPERATIONS is set in the Flags field of the SMB2 header of
the request

271 / 464

[MS-SMB2-Diff] - v20190923
Server Message Block (SMB) Protocol Versions 2 and 3
Copyright © 2019 Microsoft Corporation
Release: September 23, 2019

▪ The SessionId field in the SMB2 header of the request is not equal to
Request.TransformSessionId.

▪ In a compounded request, for each operation in the compounded chain except the first
one, SMB2_FLAGS_RELATED_OPERATIONS is not set in the Flags field of the SMB2

header of the operation and SessionId in the SMB2 header of the operation is not equal
to Request.TransformSessionId.

▪ If ProtocolId in the header of the decrypted message is 0x424D53FE indicating an SMB2 header,
the server MUST further validate the decrypted message:

▪ The server MUST verify if any of the following conditions are true and, if so, the server MUST
disconnect the connection as specified in section 3.3.7.1:

▪ For a singleton request and the first operation of a compounded request,

▪ The size of the decrypted message is less than the size of the SMB2 Header

▪ SMB2_FLAGS_RELATED_OPERATIONS is set in the Flags field of the SMB2 header of

the request

▪ The SessionId field in the SMB2 header of the request is not equal to
Request.TransformSessionId.

▪ In a compounded request, for each operation in the compounded chain except the first

one, SMB2_FLAGS_RELATED_OPERATIONS is not set in the Flags field of the SMB2
header of the operation and SessionId in the SMB2 header of the operation is not equal
to Request.TransformSessionId.

Otherwise the server MUST disconnect the connection as specified in section 3.3.7.1.

3.3.5.2.1.2 Decompressing the Message

This section is applicable only for the SMB 3.1.1 dialect.<214>

If IsCompressionSupported is TRUE and Connection.CompressionIds is not empty, the server
MUST perform the following:

▪ The server MUST disconnect the connection as specified in section 3.3.7.1 if any of the following
conditions are satisfied:

▪ If the size of the message received from the client is less than the size of SMB2

COMPRESSION_TRANSFORM_HEADER, specified in section 2.2.42.

▪ If Connection.CompressionIds does not contain the CompressionAlgorithm field in the

SMB2 COMPRESSION_TRANSFORM_HEADER.

▪ The server MUST decompress the data specified at Offset using the algorithm in
CompressionAlgorithm field as specified in [MS-XCA] section 2.

▪ The server MUST disconnect the connection as specified in section 3.3.7.1 if any of the following

conditions are satisfied:

▪ If decompression fails.

▪ If the size of the decompressed message is not equal to OriginalCompressedSegmentSize.

▪ If the ProtocolId in the decompressed message is not equal to 0x424D53FE.

Otherwise the server MUST disconnect the connection as specified in section 3.3.7.1.

272 / 464

[MS-SMB2-Diff] - v20190923
Server Message Block (SMB) Protocol Versions 2 and 3
Copyright © 2019 Microsoft Corporation
Release: September 23, 2019

3.3.5.2.2 Verifying the Connection State

If the request being received is not an SMB2 NEGOTIATE Request or a traditional
SMB_COM_NEGOTIATE, as described in section 1.7, and Connection.NegotiateDialect is 0xFFFF or

0x02FF, the server MUST disconnect the connection, as specified in section 3.3.7.1, and send no reply.

3.3.5.2.3 Verifying the Sequence Number

If the received request is an SMB2 CANCEL, this section MUST be skipped.

If the received request is an SMB_COM_NEGOTIATE, as described in section 1.7, the server MUST
assume that MessageId is zero for this request.

The server MUST check that the MessageId for the received request falls within the

Connection.CommandSequenceWindow, as specified in section 3.3.1.7.

If Connection.SupportsMultiCredit is TRUE and the CreditCharge field in the SMB2 header is
greater than zero, the server MUST check that a number of CreditCharge consecutive sequence

numbers starting from MessageId fall within the Connection.CommandSequenceWindow.

If the server determines that the MessageId or the range of MessageIds for the incoming request is
not valid, the server SHOULD<215> terminate the connection. Otherwise, the server MUST remove

the MessageId or the range of MessageIds from the Connection.CommandSequenceWindow.

3.3.5.2.4 Verifying the Signature

If Connection.Dialect belongs to the SMB 3.x dialect family and if the decryption in section
3.3.5.2.1.1 succeeds, the server MUST skip the processing in this section.

If the SMB2 header of the SMB2 NEGOTIATE request has the SMB2_FLAGS_SIGNED bit set in the
Flags field, the server MUST fail the request with STATUS_INVALID_PARAMETER.

If the SMB2 header of the request has SMB2_FLAGS_SIGNED set in the Flags field and the message
is not encrypted, the server MUST verify the signature. If the request is for binding the session, the

server MUST look up the session in the GlobalSessionTable using the SessionId in the SMB2
header of the request. For all other requests, the server MUST look up the session in the
Connection.SessionTable using the SessionId in the SMB2 header of the request. If the session is
not found, the request MUST be failed, as specified in section Sending an Error
Response (section 3.3.4.4), with the error code STATUS_USER_SESSION_DELETED. If the session is

found, the server MUST verify the signature of the message as specified in section 3.1.5.1.

If Session.Connection.Dialect belongs to the SMB 3.x dialect family, the server MUST use
Session.SigningKey if the request is for binding a session, and for all other requests the server
MUST use Channel.SigningKey in Session.ChannelList, where Channel.Connection matches the
connection on which the request is received.

Otherwise, the server MUST use Session.SessionKey as the session key to verify the signature.

If Session.SigningKey, Channel.SigningKey, or Session.SessionKey is NULL, the server MUST

fail the request with STATUS_NOT_SUPPORTED and MUST stop processing the request.

If the signature verification fails, the server MUST fail the request with the error code
STATUS_ACCESS_DENIED. The server MAY also disconnect the connection as specified in section
3.3.7.1. If signature verification succeeds, the server MUST continue processing on the packet.<216>

If the SMB2 header of the request does not have SMB2_FLAGS_SIGNED set in the Flags field, the
server MUST determine if the client failed to sign a packet that required it. The server MUST look up

the session in the GlobalSessionTable using the SessionId in the SMB2 header of the request. If
the session is found and Session.SigningRequired is equal to TRUE, the server MUST fail this
request with STATUS_ACCESS_DENIED. The server MAY<217> also disconnect the connection, as

273 / 464

[MS-SMB2-Diff] - v20190923
Server Message Block (SMB) Protocol Versions 2 and 3
Copyright © 2019 Microsoft Corporation
Release: September 23, 2019

specified in section 3.3.7.1. If either the session is not found, or Session.SigningRequired is FALSE,
the server continues processing on the packet.

If the connection is disconnected, the server MUST remove the connection from the ConnectionList,
as specified in section 3.3.7.1.

3.3.5.2.5 Verifying the Credit Charge and the Payload Size

If Connection.SupportsMultiCredit is TRUE, the server MUST verify the CreditCharge field in the
SMB2 header and the payload size (the size of the data within the variable-length field) of the request
or the maximum response size.

▪ If CreditCharge is zero and the payload size of the request or the maximum response size is
greater than 64 kilobytes, the server MUST fail the request with the error code

STATUS_INVALID_PARAMETER.

▪ If CreditCharge is greater than zero, the server MUST calculate the expected CreditCharge for
the current operation using the formula specified in section 3.1.5.2. If the calculated credit

number is greater than the CreditCharge, the server MUST fail the request with the error code
STATUS_INVALID_PARAMETER.

3.3.5.2.6 Handling Incorrectly Formatted Requests

If the server receives a request that does not conform to the structures outlined in section 2, the
server MUST fail the request, as specified in section 3.3.4.4, with the error code
STATUS_INVALID_PARAMETER. The server MAY<218> also disconnect the connection.

The server MUST disconnect, as specified in section 3.3.7.1, without sending an error response if any
of the following are true:

▪ The Command code in the SMB2 header does not match one of the command codes in the SMB2

header as specified in section 2.2.1.

▪ The server receives a request with a length less than the length of the SMB2 header as specified in

section 2.2.1.

3.3.5.2.7 Handling Compounded Requests

If the NextCommand field in the SMB2 header of the request is not equal to 0, the server MUST
process the received request as a compounded series of requests. The server MAY<219> fail requests

in a compound chain which require asynchronous processing.

There are two different styles of compounded requests, which are described in the following
subsections.

The two styles MUST NOT be intermixed in the same transport send, and in such a case, the server
SHOULD<220> fail each of the requests with STATUS_INVALID_PARAMETER.

3.3.5.2.7.1 Handling Compounded Unrelated Requests

If SMB2_FLAGS_RELATED_OPERATIONS is off in the Flags field of the SMB2 header of every request,
the received requests MUST be handled as a series of compounded unrelated requests.

The server MUST handle each individual request described in the chain separately. The length of each
request is determined by the NextCommand value in the SMB2 header of the request. The length of
the final request is equal to the length between the beginning of SMB2 header and the end of the
received buffer. The server MAY send responses to unrelated compounded requests separately.

3.3.5.2.7.2 Handling Compounded Related Requests

274 / 464

[MS-SMB2-Diff] - v20190923
Server Message Block (SMB) Protocol Versions 2 and 3
Copyright © 2019 Microsoft Corporation
Release: September 23, 2019

If SMB2_FLAGS_RELATED_OPERATIONS is set in the Flags field of the SMB2 header of all requests
except the first one, the received request MUST be handled as a series of compounded related

operations. If the first operation has SMB2_FLAGS_RELATED_OPERATIONS set, the server
SHOULD<221> fail processing the compound chain request.

The server MUST handle each individual operation that is described in the chain in order. For the first
operation, the identifiers for FileId, SessionId, and TreeId MUST be taken from the received
operation. For every subsequent operation, the values used for FileId, SessionId, and TreeId MUST
be the ones used in processing the previous operation or generated for the previous resulting
response.

When the current operation requires a SessionId or TreeId, and if the previous operation failed to
create SessionId or TreeId, or the previous operation does not contain a SessionId or TreeId, the

server MUST fail the current operation and all subsequent operations with
STATUS_INVALID_PARAMETER.

When the current operation requires a FileId, and if the previous operation neither contains nor
generates a FileId, the server MUST fail the current operation and all subsequent operations with

STATUS_INVALID_PARAMETER.

When the current operation requires a FileId and the previous operation either contains or generates

a FileId, if the previous operation fails with an error, the server SHOULD<222> fail the current
operation with the same error code returned by the previous operation.

When an operation requires asynchronous processing, all the subsequent operations MUST also be
processed asynchronously. The server MUST send an interim response for all such operations as
specified in section 3.3.4.2.

When all operations are complete, the responses SHOULD be compounded into a single response to
return to the client. If the responses are compounded, the server MUST set

SMB2_FLAGS_RELATED_OPERATIONS in the Flags field of the SMB2 header of all responses except
the first one. This indicates that the response was part of a compounded chain.

3.3.5.2.8 Updating Idle Time

For every request received, the server MUST locate the session, using the SessionId in the SMB2
header of the request to do a lookup on the GlobalSessionTable. If a session is found,
Session.IdleTime MUST be set to the current time. If the request does not have an SMB2 header

following the syntax specified in section 2.2.1 or no session is found, no action regarding the idle time
is taken.

3.3.5.2.9 Verifying the Session

If Connection.ConstrainedConnection is TRUE, the server SHOULD<223> disconnect the
connection.

The server MUST look up the Session in Connection.SessionTable by using the SessionId in the
SMB2 header of the request. If SessionId is not found in Connection.SessionTable, the server
MUST fail the request with STATUS_USER_SESSION_DELETED.

If a session is found and Session.State is Expired, the server MUST continue to process the SMB2
LOGOFF, SMB2 CLOSE, and SMB2 LOCK commands. If the command is not one of these, the server
SHOULD<224> fail the request with STATUS_NETWORK_SESSION_EXPIRED.

If Session.State is InProgress, the server MUST continue to process the SMB2 LOGOFF, SMB2

CLOSE, and SMB2 LOCK commands. If the command is not one of these, the server MUST fail the
request with an implementation-specific<225> error code.

275 / 464

[MS-SMB2-Diff] - v20190923
Server Message Block (SMB) Protocol Versions 2 and 3
Copyright © 2019 Microsoft Corporation
Release: September 23, 2019

If Connection.Dialect belongs to the SMB 3.x dialect family, and Session.EncryptData is TRUE, the
server MUST do the following:

▪ If the server supports the 3.1.1 dialect, locate the Request in the Connection.RequestList for
which the Request.MessageId matches the MessageId value in the SMB2 header of the

request.

Otherwise, if the server supports the 3.0 or 3.0.2 dialect, and RejectUnencryptedAccess is
TRUE, locate the Request in the Connection.RequestList for which Request.MessageId
matches the MessageId value in the SMB2 header of the request.

▪ If Request.IsEncrypted is FALSE, the server MUST fail the request with
STATUS_ACCESS_DENIED.

3.3.5.2.10 Verifying the Channel Sequence Number

If Connection.Dialect is equal to "2.0.2" or "2.1", or the command request does not include FileId,
this section MUST be skipped.

If the SMB2_FLAGS_REPLAY_OPERATION bit is not set in the Flags field of the SMB2 Header:

▪ If ChannelSequence in the SMB2 Header is equal to Open.ChannelSequence, the server MUST

increment Open.OutstandingRequestCount by 1.

▪ Otherwise, if the unsigned difference using 16-bit arithmetic between ChannelSequence and
Open.ChannelSequence is less than or equal to 0x7FFF, the server MUST increment
Open.OutstandingPreRequestCount by Open.OutstandingRequestCount, and MUST set
Open.OutstandingRequestCount to 1. The server MUST set Open.ChannelSequence to
ChannelSequence in the SMB2 Header.

▪ Otherwise, the server MUST fail SMB2 WRITE, SET_INFO, and IOCTL requests with

STATUS_FILE_NOT_AVAILABLE.

If the SMB2_FLAGS_REPLAY_OPERATION bit is set in the Flags field of the SMB2 Header:

▪ If ChannelSequence in the SMB2 Header is equal to Open.ChannelSequence and the
following:

▪ If ChannelSequence in the SMB2 Header is equal to Open.ChannelSequence and
Open.OutstandingPreRequestCount is equal to zero, the server MUST increment
Open.OutstandingRequestCount by 1.

▪ Otherwise, if the unsigned difference using 16-bit arithmetic between ChannelSequence and
Open.ChannelSequence is less than or equal to 0x7FFF and
Open.OutstandingPreRequestCount is equal to zero, the server MUST increment
Open.OutstandingPreRequestCount by Open.OutstandingRequestCount and MUST set
Open.OutstandingRequestCount to 1. The server MUST set Open.ChannelSequence to
ChannelSequence in the SMB2 Header.

▪ Otherwise, the server MUST fail SMB2 WRITE, SET_INFO, and IOCTL requests with

STATUS_FILE_NOT_AVAILABLE.

3.3.5.2.11 Verifying the Tree Connect

The server MUST look up the TreeConnect in Session.TreeConnectTable by using the TreeId in
the SMB2 header of the request. If no tree connect is found, the request MUST be failed with
STATUS_NETWORK_NAME_DELETED.

If Connection.Dialect belongs to the SMB 3.x dialect family, the server MUST fail the request with
STATUS_ACCESS_DENIED in the following cases:

276 / 464

[MS-SMB2-Diff] - v20190923
Server Message Block (SMB) Protocol Versions 2 and 3
Copyright © 2019 Microsoft Corporation
Release: September 23, 2019

▪ If the server supports the 3.1.1 dialect, TreeConnect.Share.EncryptData is TRUE,
Connection.ServerCapabilities includes SMB2_GLOBAL_CAP_ENCRYPTION, and

Request.IsEncrypted is FALSE.

Otherwise, if the server supports the 3.0 or 3.0.2 dialect, EncryptData or
TreeConnect.Share.EncryptData is TRUE, Connection.ServerCapabilities includes
SMB2_GLOBAL_CAP_ENCRYPTION, RejectUnencryptedAccess is TRUE, and
Request.IsEncrypted is FALSE.

▪ EncryptData or TreeConnect.Share.EncryptData or Request.IsEncrypted is TRUE,
RejectUnencryptedAccess is TRUE, and Connection.ServerCapabilities does not include
SMB2_GLOBAL_CAP_ENCRYPTION.

3.3.5.2.12 Receiving an SVHDX operation Request

This section applies only to servers that implement the SMB 3.0.2 or SMB 3.1.1 dialect.

If Open.IsSharedVHDX is TRUE, the server MUST process as follows:

▪ The server MUST perform Request validation as specified in respective subsections of 3.3.5.

▪ The server MUST process the operation as specified in [MS-RSVD] section 3.2.5, passing the

command name, Open.LocalOpen, and Request Parameters.

▪ The server MUST perform Response construction as specified in respective subsections of 3.3.5.

Otherwise, the server MUST process the request as specified in section 3.3.5.

3.3.5.3 Receiving an SMB_COM_NEGOTIATE

If Connection.NegotiateDialect is 0xFFFF, processing MUST continue as specified in 3.3.5.3.1.
Otherwise, the server MUST disconnect the connection, as specified in section 3.3.7.1, without sending
a response.

3.3.5.3.1 SMB 2.1 or SMB 3.x Support

If the server does not implement the SMB 2.1 or 3.x dialect family, processing MUST continue as
specified in 3.3.5.3.2.

Otherwise, the server MUST scan the dialects provided for the dialect string "SMB 2.???". If the string
is not present, continue to section 3.3.5.3.2. If the string is present, the server MUST respond with an
SMB2 NEGOTIATE Response as specified in 2.2.4. If the string is present and the underlying
connection is either TCP port 445 or RDMA, Connection.SupportsMultiCredit MUST be set to TRUE.

The server MUST set the command of the SMB2 header to SMB2 NEGOTIATE. All other values MUST
be set following the syntax specified in section 2.2.1, and any value not defined there with a default

MUST be set to 0. The header is followed by an SMB2 NEGOTIATE Response that MUST be constructed
as specified in 2.2.4, with the following specific values:

▪ SecurityMode MUST have the SMB2_NEGOTIATE_SIGNING_ENABLED bit set.

▪ If RequireMessageSigning is TRUE, the server MUST also set
SMB2_NEGOTIATE_SIGNING_REQUIRED in the SecurityMode.

▪ DialectRevision MUST be set to 0x02FF.

▪ ServerGuid is set to the global ServerGuid value.

▪ The Capabilities field MUST be set to a combination of zero or more of the following bit values, as
specified in section 2.2.4:

277 / 464

[MS-SMB2-Diff] - v20190923
Server Message Block (SMB) Protocol Versions 2 and 3
Copyright © 2019 Microsoft Corporation
Release: September 23, 2019

▪ SMB2_GLOBAL_CAP_DFS if the server supports the Distributed File System.

▪ SMB2_GLOBAL_CAP_LEASING if the server supports leasing.

▪ SMB2_GLOBAL_CAP_LARGE_MTU if Connection.SupportsMultiCredit is TRUE.

▪ MaxTransactSize is set to the maximum buffer size, in bytes, that the server will accept on this

connection for QUERY_INFO, QUERY_DIRECTORY, SET_INFO, and CHANGE_NOTIFY operations.
This field is applicable only for buffers sent by the client in SET_INFO requests, or returned from
the server in QUERY_INFO, QUERY_DIRECTORY, and CHANGE_NOTIFY responses. This value
SHOULD<226> be greater than or equal to 65536. Connection.MaxTransactSize MUST be set
to MaxTransactSize.

▪ MaxReadSize is set to the maximum size, in bytes, of the Length in an SMB2 READ Request
(2.2.19) that the server will accept on the transport that established this connection. This value

SHOULD<227> be greater than or equal to 65536. Connection.MaxReadSize MUST be set to
MaxReadSize.

▪ MaxWriteSize is set to the maximum size, in bytes, of the Length in an SMB2 Write Request

(2.2.21) that the server will accept on the transport that established this connection. This value
SHOULD<228> be greater than or equal to 65536. Connection.MaxWriteSize MUST be set to
MaxWriteSize.

▪ SystemTime is set to the current time, in FILETIME format as specified in [MS-DTYP] section
2.3.3.

▪ ServerStartTime SHOULD<229> be set to zero.

▪ SecurityBufferOffset is set to the offset to the Buffer field in the response, in bytes, from the
beginning of the SMB2 header.

▪ SecurityBufferLength is set to the length of the data being returned in the Buffer field.

▪ Buffer is filled with a GSS token, generated as follows. Alternatively, an empty Buffer MAY be

returned, which elicits client-initiated authentication with an authentication protocol of the client's

choice.

The generation of the GSS token for the SMB2 NEGOTIATE Response MUST be done as specified in
[MS-SPNG] 3.2.5.2. The server MUST initialize the mechanism with the Integrity, Confidentiality, and
Delegate options and use the server-initiated variation as specified in [MS-SPNG] section 3.2.5.2.

Connection.NegotiateDialect MUST be set to 0x02FF, and the response is sent to the client.

3.3.5.3.2 SMB 2.0.2 Support

The server MUST scan the dialects provided for the dialect string "SMB 2.002". If the string is present,
the client understands SMB2, and the server MUST respond with an SMB2 NEGOTIATE Response. If
the string is not present in the dialect list and the server also implements SMB as specified in [MS-
SMB], it MUST terminate SMB2 processing on this connection and start SMB processing on this
connection. If the string is not present in the dialect list and the server does not implement SMB, the

server MUST disconnect the connection, as specified in section 3.3.7.1, without sending a response.

The server MUST set the command of the SMB2 header to SMB2 NEGOTIATE. All other values MUST
be set following the syntax specified in section 2.2.1, and any value not defined there with a default
MUST be set to 0. The header is followed by an SMB2 NEGOTIATE Response that MUST be constructed
as specified in section 2.2.4, with the following specific values:

▪ SecurityMode MUST have the SMB2_NEGOTIATE_SIGNING_ENABLED bit set.

278 / 464

[MS-SMB2-Diff] - v20190923
Server Message Block (SMB) Protocol Versions 2 and 3
Copyright © 2019 Microsoft Corporation
Release: September 23, 2019

▪ If RequireMessageSigning is TRUE, the server MUST also set
SMB2_NEGOTIATE_SIGNING_REQUIRED in the SecurityMode.

▪ DialectRevision MUST be set to 0x0202.

▪ ServerGuid is set to the global ServerGuid value.

▪ If the server supports the Distributed File System, set the SMB2_GLOBAL_CAP_DFS bit in the
Capabilities field of the negotiate response.

▪ MaxTransactSize is set to the maximum buffer size,<230> in bytes, that the server will accept
on this connection for QUERY_INFO, QUERY_DIRECTORY, SET_INFO, and CHANGE_NOTIFY
operations. This field is applicable only for buffers sent by the client in SET_INFO requests, or
returned from the server in QUERY_INFO, QUERY_DIRECTORY, and CHANGE_NOTIFY responses.
Connection.MaxTransactSize MUST be set to MaxTransactSize.

▪ MaxReadSize is set to the maximum size,<231> in bytes, of the Length in an SMB2 READ
Request (2.2.19) that the server will accept on the transport that established this connection.
Connection.MaxReadSize MUST be set to MaxReadSize.

▪ MaxWriteSize is set to the maximum size,<232> in bytes, of the Length in an SMB2 WRITE
Request (2.2.21) that the server will accept on the transport that established this connection.
Connection.MaxWriteSize MUST be set to MaxWriteSize.

▪ SystemTime is set to the current time, in FILETIME format as specified in [MS-DTYP] section
2.3.3.

▪ ServerStartTime SHOULD<233> be set to zero.

▪ SecurityBufferOffset is set to the offset to the Buffer field in the response in bytes from the
beginning of the SMB2 header.

▪ SecurityBufferLength is set to the length of the data being returned in the Buffer field.

▪ Buffer is filled with a GSS token, generated as follows. Alternatively, an empty Buffer MAY be

returned, which elicits client-initiated authentication with an authentication protocol of the client's
choice.

The generation of the GSS token for the SMB2 NEGOTIATE Response MUST be done as specified in
[MS-SPNG] section 3.2.5.2. The server MUST initialize the mechanism with the Integrity,
Confidentiality, and Delegate options and use the server-initiated variation as specified in [MS-SPNG]
section 3.2.5.2.

Connection.Dialect MUST be set to "2.0.2", Connection.NegotiateDialect MUST be set to 0x0202,

and the response is sent to the client.

Connection.SupportsMultiCredit MUST be set to FALSE.

3.3.5.4 (Updated Section) Receiving an SMB2 NEGOTIATE Request

When the server receives a request with an SMB2 header with a Command value equal to SMB2
NEGOTIATE, it MUST process it as follows:

If Connection.NegotiateDialect is 0x0202, 0x0210, 0x0300, 0x0302, or 0x0311, the server MUST
disconnect the connection, as specified in section 3.3.7.1, and not reply.

The server MUST set Connection.ClientCapabilities to the capabilities received in the SMB2
NEGOTIATE request.

279 / 464

[MS-SMB2-Diff] - v20190923
Server Message Block (SMB) Protocol Versions 2 and 3
Copyright © 2019 Microsoft Corporation
Release: September 23, 2019

If the server implements the SMB 3.x dialect family, the server MUST set
Connection.ClientSecurityMode to the SecurityMode field of the SMB2 NEGOTIATE Request.

If the server implements the SMB2.1 or 3.x dialect family, the server MUST set
Connection.ClientGuid to the ClientGuid field of the SMB2 NEGOTIATE Request.

If SMB2_NEGOTIATE_SIGNING_REQUIRED is set in SecurityMode, the server MUST set
Connection.ShouldSign to TRUE.

If the DialectCount of the SMB2 NEGOTIATE Request is 0, the server MUST fail the request with
STATUS_INVALID_PARAMETER.

The server MUST select the greatest common dialect between the dialects it implements and the
Dialects array of the SMB2 NEGOTIATE request. If a common dialect is not found, the server MUST fail
the request with STATUS_NOT_SUPPORTED.

If the server implements the SMB 3.1.1 dialect, the server MUST set Connection.ClientDialects to
the Dialects field received in the SMB2 NEGOTIATE request.

If a common dialect is found, the server MUST set Connection.Dialect to "2.0.2", "2.1", "3.0",
"3.0.2", or "3.1.1", and Connection.NegotiateDialect to 0x0202, 0x0210, 0x0300, 0x0302, or
0x0311, accordingly, to reflect the dialect selected.

If the Connection.Dialect is "3.1.1", then the server MUST process the NegotiateContextList that is

specified by the request's NegotiateContextOffset and NegotiateContextCount fields as follows:

▪ If the NegotiateContextList contains more thandoes not contain exactly one
SMB2_PREAUTH_INTEGRITY_CAPABILITIES negotiate context, the server MUST fail the negotiate
request with STATUS_INVALID_PARAMETER.

▪ If the NegotiateContextList contains more than one SMB2_ENCRYPTION_CAPABILITIES
negotiate context, the server MUST fail the negotiate request with STATUS_INVALID_PARAMETER.

▪ If the NegotiateContextList contains more than one SMB2_COMPRESSION_CAPABILITIES

negotiate context, the server MUST fail the negotiate request with STATUS_INVALID_PARAMETER.

▪ For each context in the received NegotiateContextList , if the context is
SMB2_NETNAME_NEGOTIATE_CONTEXT_ID or any negotiate context other than
SMB2_PREAUTH_INTEGRITY_CAPABILITIES, SMB2_COMPRESSION_CAPABILITIES, and
SMB2_ENCRYPTION_CAPABILITIES negotiate context, the server MUST ignore the negotiate
context.

▪ Processing the SMB2_PREAUTH_INTEGRITY_CAPABILITIES negotiate context:

▪ If the DataLength of the negotiate context is less than the size of
SMB2_PREAUTH_INTEGRITY_CAPABILITIES structure, the server MUST fail the negotiate
request with STATUS_INVALID_PARAMETER.

▪ If the SMB2_PREAUTH_INTEGRITY_CAPABILITIES HashAlgorithms array does not contain
any hash algorithms that the server supports, the server MUST fail the negotiate request with
STATUS_SMB_NO_PREAUTH_INTEGRITY_HASH_OVERLAP (0xC05D0000).

▪ The server MUST set Connection.PreauthIntegrityHashId to one of the hash algorithms in
the client's SMB2_PREAUTH_INTEGRITY_CAPABILITIES HashAlgorithms array. When more
than one hash algorithm is supported by the server, the policy for selecting a hash algorithm
from the set of hash algorithms that the client and server support is implementation-
dependent.

▪ The server MUST initialize Connection.PreauthIntegrityHashValue with zero.

280 / 464

[MS-SMB2-Diff] - v20190923
Server Message Block (SMB) Protocol Versions 2 and 3
Copyright © 2019 Microsoft Corporation
Release: September 23, 2019

▪ The server MUST generate a hash using the Connection.PreauthIntegrityHashId algorithm
on the string constructed by concatenating Connection.PreauthIntegrityHashValue and

the negotiate request message, including all bytes from the request's SMB2 header to the last
byte received from the network. The server MUST set

Connection.PreauthIntegrityHashValue to the hash value generated above.

▪ Processing the SMB2_ENCRYPTION_CAPABILITIES negotiate context:

▪ If the DataLength of the negotiate context is less than the size of the
SMB2_ENCRYPTION_CAPABILITIES structure, the server MUST fail the negotiate request with
STATUS_INVALID_PARAMETER.

▪ The server MUST set Connection.CipherId to one of the ciphers in the client's
SMB2_ENCRYPTION_CAPABILITIES Ciphers array in an implementation-specific manner. If

the client and server have no common cipher, the server MUST set Connection.CipherId to
0.

▪ Processing the SMB2_COMPRESSION_CAPABILITIES negotiate context:

▪ If IsCompressionSupported is FALSE, the server MUST ignore the context.

▪ The server MUST fail the negotiate request with STATUS_INVALID_PARAMETER if any of the
following conditions are satisfied.

▪ If the DataLength of the negotiate context is less than the size of the
SMB2_COMPRESSION_CAPABILITIES structure.

▪ If CompressionAlgorithmCount is equal to zero.

▪ If CompressionAlgorithm received in the request is “NONE”.

▪ The server SHOULD<234> set Connection.CompressionIds to all the supported
compression algorithms common to both client and server in the CompressionAlgorithms
field, in the order they are received. If the server does not support any of the algorithms

provided by the client, Connection.CompressionIds MUST be set to an empty list.

The server MUST then construct an SMB2 NEGOTIATE Response, as specified in section 2.2.4, with the
following specific values, and return STATUS_SUCCESS to the client.

If the common dialect is SMB 2.1 or 3.x dialect family and the underlying connection is either TCP port
445 or RDMA, Connection.SupportsMultiCredit MUST be set to TRUE; otherwise, it MUST be set to
FALSE.

▪ SecurityMode MUST have the SMB2_NEGOTIATE_SIGNING_ENABLED bit set.

▪ If RequireMessageSigning is TRUE, the server MUST also set
SMB2_NEGOTIATE_SIGNING_REQUIRED in the SecurityMode field.

▪ DialectRevision MUST be set to the common dialect.

▪ ServerGuid is set to the global ServerGuid value.

▪ The Capabilities field MUST be set to a combination of zero or more of the following bit values, as
specified in section 2.2.4:

▪ SMB2_GLOBAL_CAP_DFS if the server supports the Distributed File System.

▪ SMB2_GLOBAL_CAP_LEASING if the server supports leasing.

▪ SMB2_GLOBAL_CAP_LARGE_MTU if Connection.SupportsMultiCredit is TRUE.

281 / 464

[MS-SMB2-Diff] - v20190923
Server Message Block (SMB) Protocol Versions 2 and 3
Copyright © 2019 Microsoft Corporation
Release: September 23, 2019

▪ SMB2_GLOBAL_CAP_MULTI_CHANNEL if Connection.Dialect belongs to the SMB 3.x dialect
family, IsMultiChannelCapable is TRUE, and SMB2_GLOBAL_CAP_MULTI_CHANNEL is set in

the Capabilities field of the request.

▪ SMB2_GLOBAL_CAP_DIRECTORY_LEASING if Connection.Dialect belongs to the SMB 3.x

dialect family, the server supports directory leasing, and
SMB2_GLOBAL_CAP_DIRECTORY_LEASING is set in the Capabilities field of the request.

▪ SMB2_GLOBAL_CAP_PERSISTENT_HANDLES if Connection.Dialect belongs to the SMB 3.x
dialect family, SMB2_GLOBAL_CAP_PERSISTENT_HANDLES is set in the Capabilities field of
the request, and the server supports persistent handles.

▪ SMB2_GLOBAL_CAP_ENCRYPTION if Connection.Dialect is "3.0" or "3.0.2",
IsEncryptionSupported is TRUE, and SMB2_GLOBAL_CAP_ENCRYPTION is set in the

Capabilities field of the request.

▪ MaxTransactSize is set to the maximum buffer size, in bytes, that the server will accept on this
connection for QUERY_INFO, QUERY_DIRECTORY, SET_INFO and CHANGE_NOTIFY operations.

This field is applicable only for buffers sent by the client in SET_INFO requests, or returned from
the server in QUERY_INFO, QUERY_DIRECTORY, and CHANGE_NOTIFY responses. This value
SHOULD<235> be greater than or equal to 65536. Connection.MaxTransactSize MUST be set

to MaxTransactSize.

▪ MaxReadSize is set to the maximum size, in bytes, of the Length in an SMB2 READ
Request (section 2.2.19) that the server will accept on the transport that established this
connection. This value SHOULD<236> be greater than or equal to 65536.
Connection.MaxReadSize MUST be set to MaxReadSize.

▪ MaxWriteSize is set to the maximum size, in bytes, of the Length in an SMB2 WRITE
Request (section 2.2.21) that the server will accept on the transport that established this

connection. This value SHOULD<237> be greater than or equal to 65536.
Connection.MaxWriteSize MUST be set to MaxWriteSize.

▪ SystemTime is set to the current time, in FILETIME format as specified in [MS-DTYP] section

2.3.3.

▪ ServerStartTime SHOULD<238> be set to zero.

▪ SecurityBufferOffset is set to the offset to the Buffer field in the response, in bytes, from the
beginning of the SMB2 header.

▪ SecurityBufferLength is set to the length of the data being returned in the Buffer field.

▪ Buffer is filled with the GSS token, generated as follows. Alternatively, an empty Buffer MAY be
returned, which elicits client-initiated authentication with an authentication protocol of the client's
choice.

The generation of the GSS token for the SMB2 NEGOTIATE Response MUST be done as specified in
[MS-SPNG] section 3.2.5.2. The server MUST initialize the mechanism with the Integrity,

Confidentiality, and Delegate options and use the server-initiated variation as specified in [MS-SPNG]

section 3.2.5.2.

If Connection.Dialect is "3.1.1", then the server MUST build a NegotiateContextList for its
negotiate response as follows:

▪ Building an SMB2_PREAUTH_INTEGRITY_CAPABILITIES negotiate context:

▪ The server MUST add an SMB2_PREAUTH_INTEGRITY_CAPABILITIES negotiate context to the
response's NegotiateContextList.

▪ HashAlgorithmCount MUST be set to 1.

282 / 464

[MS-SMB2-Diff] - v20190923
Server Message Block (SMB) Protocol Versions 2 and 3
Copyright © 2019 Microsoft Corporation
Release: September 23, 2019

▪ SaltLength MUST be set to an implementation-specific<239> number of Salt bytes.

▪ HashAlgorithms[0] MUST be set to Connection.PreauthIntegrityHashId.

▪ The Salt buffer MUST be filled with SaltLength unique bytes that are generated for this
response by a cryptographic secure pseudo-random number generator.

▪ Building an SMB2_ENCRYPTION_CAPABILITIES negotiate response context:

▪ If the server received an SMB2_ENCRYPTION_CAPABILITIES negotiate context in the client's
negotiate request, the server MUST add an SMB2_ENCRYPTION_CAPABILITIES negotiate
context to the response's NegotiateContextList. Note that the server MUST send an
SMB2_ENCRYPTION_CAPABILITIES context even if the client and server have no common
cipher. This is done so that the client can differentiate between a server that does not support
encryption (no SMB2_ENCRYPTION_CAPABILITIES context in the response's

NegotiateContextList) and a server that supports encryption but does not share a cipher
with the client (an SMB2_ENCRYPTION_CAPABILITIES context in the response's
NegotiateContextList that indicates a cipher of 0).

▪ CipherCount MUST be set to 1.

▪ Ciphers[0] MUST be set to Connection.CipherId.

▪ Building an SMB2_COMPRESSION_CAPABILITIES negotiate response context:

If the server processed the SMB2_COMPRESSION_CAPABILITIES negotiate request context, then
the server MUST build an SMB2_COMPRESSION_CAPABILITIES negotiate response context by
setting the following:

▪ If Connection.CompressionIds is empty,

▪ Set CompressionAlgorithmCount to 1.

▪ Set CompressionAlgorithms to “NONE”.

Otherwise,

Otherwise,

▪ Set CompressionAlgorithmCount to the number of compression algorithms in
Connection.CompressionIds.

▪ Set CompressionAlgorithms to Connection.CompressionIds.

The status code returned by this operation MUST be one of those defined in [MS-ERREF]. Common
status codes returned by this operation include:

▪ STATUS_SUCCESS

▪ STATUS_INSUFFICIENT_RESOURCES

▪ STATUS_INVALID_PARAMETER

▪ STATUS_NOT_SUPPORTED

If the server implements the SMB 3.x dialect family, the server MUST store the value of the
SecurityMode field in Connection.ServerSecurityMode and MUST store the value of the

Capabilities field in Connection.ServerCapabilities.

If Connection.Dialect is "3.1.1", the server MUST do the following:

283 / 464

[MS-SMB2-Diff] - v20190923
Server Message Block (SMB) Protocol Versions 2 and 3
Copyright © 2019 Microsoft Corporation
Release: September 23, 2019

▪ The server MUST generate a hash using the Connection.PreauthIntegrityHashId algorithm on
the string constructed by concatenating Connection.PreauthIntegrityHashValue and the

negotiate response message, including all bytes from the response's SMB2 header to the last byte
sent to the network. The server MUST set Connection.PreauthIntegrityHashValue to the hash

value generated above.

▪ If Connection.CipherId is nonzero, the server MUST set the SMB2_GLOBAL_CAP_ENCRYPTION
flag in Connection.ServerCapabilities.

3.3.5.5 Receiving an SMB2 SESSION_SETUP Request

When the server receives a request with an SMB2 header with a Command value equal to SMB2
SESSION_SETUP, message handling proceeds as follows:

1. If the server implements the SMB 3.x dialect family, Connection.Dialect does not belong to the
SMB 3.x dialect family, EncryptData is TRUE, and RejectUnencryptedAccess is TRUE, the
server MUST fail the request with STATUS_ACCESS_DENIED.

2. If Connection.Dialect belongs to the SMB 3.x dialect family, EncryptData is TRUE,

RejectUnencryptedAccess is TRUE, and Connection.ClientCapabilities does not include the
SMB2_GLOBAL_CAP_ENCRYPTION bit, the server MUST fail the request with
STATUS_ACCESS_DENIED.

3. If SessionId in the SMB2 header of the request is zero, the server MUST process the
authentication request as specified in section 3.3.5.5.1.

4. If Connection.Dialect belongs to the SMB 3.x dialect family, IsMultiChannelCapable is TRUE,
and the SMB2_SESSION_FLAG_BINDING bit is set in the Flags field of the request, the server

MUST perform the following:

▪ The server MUST look up the session in GlobalSessionTable using the SessionId from the
SMB2 header. If the session is not found, the server MUST fail the session setup request with
STATUS_USER_SESSION_DELETED. If a session is found, the server MUST do the following:

▪ If Connection.Dialect is not the same as Session.Connection.Dialect, the server MUST
fail the request with STATUS_INVALID_PARAMETER.

▪ If the SMB2_FLAGS_SIGNED bit is not set in the Flags field in the header, the server
MUST fail the request with error STATUS_INVALID_PARAMETER.

▪ If Session.Connection.ClientGuid is not the same as Connection.ClientGuid, the
server MAY fail the request with STATUS_USER_SESSION_DELETED.

▪ If Session.State is InProgress, the server MUST fail the request with
STATUS_REQUEST_NOT_ACCEPTED.

▪ If Session.State is Expired, the server MUST fail the request with

STATUS_NETWORK_SESSION_EXPIRED.

▪ If Session.IsAnonymous or Session.IsGuest is TRUE, the server MUST fail the request

with STATUS_NOT_SUPPORTED.

▪ If there is a session in Connection.SessionTable identified by the SessionId in the
request, the server MUST fail the request with STATUS_REQUEST_NOT_ACCEPTED.

▪ The server MUST verify the signature as specified in section 3.3.5.2.4, using the
Session.SigningKey.

▪ The server MUST obtain the security context from the GSS authentication subsystem, and
it MUST invoke the GSS_Inquire_context call as specified in [RFC2743] section 2.2.6,

284 / 464

[MS-SMB2-Diff] - v20190923
Server Message Block (SMB) Protocol Versions 2 and 3
Copyright © 2019 Microsoft Corporation
Release: September 23, 2019

passing the security context as the input parameter. If the returned "src_name" does not
match with the Session.Username, the server MUST fail the request with error code

STATUS_NOT_SUPPORTED.

▪ If Connection.Dialect is "3.1.1", the server MUST look up the PreauthSession in

Connection.PreauthSessionTable using the SessionId from the SMB2 header. If the
PreauthSession is not found, the server MUST construct a PreauthSession object, insert
it into Connection.PreauthSessionTable, and continue processing the request. The
PreauthSession object MUST be initialized as follows:

▪ Set PreauthSession.PreauthIntegrityHashValue to
Connection.PreauthIntegrityHashValue.

▪ Set PreauthSession.SessionID as SessionId from the SMB2 header.

Otherwise, it MUST continue processing the request.

Otherwise, if the server implements the SMB 3.x dialect family, and Connection.Dialect is
equal to "2.0.2" or "2.1" or IsMultiChannelCapable is FALSE, and

SMB2_SESSION_FLAG_BINDING bit is set in the Flags field of the request, the server
SHOULD<240> fail the session setup request with STATUS_REQUEST_NOT_ACCEPTED.

Otherwise, the server MUST look up the session in Connection.SessionTable using the

SessionId from the SMB2 header. If the session is not found, the server MUST fail the session
setup request with STATUS_USER_SESSION_DELETED. If a session is found, proceed with the
following steps.

5. If Session.State is Expired, the server MUST process the session setup request as specified in
section 3.3.5.5.2.

6. If Session.State is Valid, the server SHOULD<241> process the session setup request as
specified in section 3.3.5.5.2.

7. The server MUST continue processing the request as specified in section 3.3.5.5.3.

The status code returned by this operation MUST be one of those defined in [MS-ERREF]. Common
status codes returned by this operation include:

▪ STATUS_LOGON_FAILURE

▪ STATUS_INSUFFICIENT_RESOURCES

▪ STATUS_SUCCESS

▪ STATUS_MORE_PROCESSING_REQUIRED

▪ STATUS_INVALID_PARAMETER

▪ STATUS_USER_SESSION_DELETED

▪ STATUS_REQUEST_NOT_ACCEPTED

▪ STATUS_PASSWORD_EXPIRED

▪ SEC_E_INVALID_TOKEN

▪ SEC_E_NO_CREDENTIALS

3.3.5.5.1 Authenticating a New Session

285 / 464

[MS-SMB2-Diff] - v20190923
Server Message Block (SMB) Protocol Versions 2 and 3
Copyright © 2019 Microsoft Corporation
Release: September 23, 2019

A session object MUST be allocated for this request. The session MUST be inserted into the
GlobalSessionTable and a unique Session.SessionId is assigned to serve as a lookup key in the

table. The session MUST be inserted into Connection.SessionTable. The server MUST register the
session by invoking the event specified in [MS-SRVS] section 3.1.6.2 and assign the return value to

Session.SessionGlobalId. ServerStatistics.sts0_sopens MUST be increased by 1. The SMB2
server MUST reserve -1 as an invalid SessionId and 0 as a SessionId for which no session exists.
The other values MUST be initialized as follows:

▪ Session.Connection is set to the connection on which the request was received.

▪ Session.State is set to InProgress.

▪ Session.SecurityContext is set to NULL.

▪ Session.SessionKey is set to NULL, indicating that it is uninitialized.

▪ Session.SigningRequired is set to FALSE.

▪ Session.OpenTable is set to an empty table.

▪ Session.TreeConnectTable is set to an empty table.

▪ Session.IsAnonymous is set to FALSE.

▪ Session.CreationTime is set to the current time.

▪ Session.IdleTime is set to the current time.

▪ If Connection.Dialect belongs to the SMB 3.x dialect family, Session.EncryptData is set to
global EncryptData.

▪ If Connection.Dialect belongs to the SMB 3.x dialect family, Session.ChannelList MUST be set
to an empty list.

▪ If Connection.Dialect is "3.1.1", the server MUST set Session.PreauthIntegrityHashValue to

Connection.PreauthIntegrityHashValue.

Using this session, authentication is continued as specified in section 3.3.5.5.3.

3.3.5.5.2 Reauthenticating an Existing Session

If Session.State is Expired, the server MUST set Session.State to InProgress and
Session.SecurityContext to NULL.

Authentication is continued as specified in section 3.3.5.5.3. Note that the existing
Session.SessionKey will be retained.

3.3.5.5.3 Handling GSS-API Authentication

The server MUST extract the GSS token from the request. The token is SecurityBufferLength bytes
in length and located SecurityBufferOffset bytes from the beginning of the SMB2 header. The server

MUST invoke GSS_Accept_sec_context, as specified in [RFC2743], by passing the GSS token to obtain
the next GSS output token for the authentication exchange.<242>

If the authentication protocol indicates an error, the server MUST fail the session setup request with

the error received by placing the 32-bit NTSTATUS code received into the Status field of the SMB2
header. The server MUST remove the session object from GlobalSessionTable and
Connection.SessionTable and deregister the session by invoking the event specified in [MS-SRVS]
section 3.1.6.3, providing Session.SessionGlobalId as an input parameter. The server MUST
remove the PreauthSession object from Connection.PreauthSessionTable.
ServerStatistics.sts0_sopens MUST be decreased by 1. The server MUST close every Open in

286 / 464

[MS-SMB2-Diff] - v20190923
Server Message Block (SMB) Protocol Versions 2 and 3
Copyright © 2019 Microsoft Corporation
Release: September 23, 2019

Session.OpenTable as specified in section 3.3.4.17. The server MUST deregister every TreeConnect
in Session.TreeConnectTable by providing the tuple <TreeConnect.Share.ServerName,

TreeConnect.Share.Name> and TreeConnect.TreeGlobalId as the input parameters and invoking
the event specified in [MS-SRVS] section 3.1.6.7. For each deregistered TreeConnect,

TreeConnect.Share.CurrentUses MUST be decreased by 1. All the tree connects in
Session.TreeConnectTable MUST be removed and freed. The session object MUST also be freed,
and the error response MUST be sent to the client. ServerStatistics.sts0_pwerrors MUST be
increased by 1.

The following errors can be returned by the GSS-API interface as specified in [RFC2743].
STATUS_PASSWORD_EXPIRED SHOULD be treated as GSS_S_CREDENTIALS_EXPIRED,
SEC_E_INVALID_TOKEN SHOULD be treated as GSS_S_DEFECTIVE_TOKEN, and

SEC_E_NO_CREDENTIALS SHOULD be treated as GSS_S_NO_CRED. All other errors SHOULD be
treated as a GSS_S_FAILURE error code. A detailed description of these errors is specified in [MS-
ERREF].

▪ STATUS_DOWNGRADE_DETECTED

▪ STATUS_NO_SUCH_LOGON_SESSION

▪ SEC_E_WRONG_PRINCIPAL

▪ STATUS_NO_SUCH_USER

▪ STATUS_ACCOUNT_DISABLED

▪ STATUS_ACCOUNT_RESTRICTION

▪ STATUS_ACCOUNT_LOCKED_OUT

▪ STATUS_WRONG_PASSWORD

▪ STATUS_SMARTCARD_WRONG_PIN

▪ STATUS_ACCOUNT_EXPIRED

▪ STATUS_PASSWORD_EXPIRED

▪ STATUS_INVALID_LOGON_HOURS

▪ STATUS_INVALID_WORKSTATION

▪ STATUS_PASSWORD_MUST_CHANGE

▪ STATUS_LOGON_TYPE_NOT_GRANTED

▪ STATUS_PASSWORD_RESTRICTION

▪ STATUS_SMARTCARD_SILENT_CONTEXT

▪ STATUS_SMARTCARD_NO_CARD

▪ STATUS_SMARTCARD_CARD_BLOCKED

▪ STATUS_PKINIT_FAILURE

▪ STATUS_PKINIT_CLIENT_FAILURE

▪ STATUS_PKINIT_NAME_MISMATCH

▪ STATUS_NETLOGON_NOT_STARTED

287 / 464

[MS-SMB2-Diff] - v20190923
Server Message Block (SMB) Protocol Versions 2 and 3
Copyright © 2019 Microsoft Corporation
Release: September 23, 2019

▪ STATUS_DOMAIN_CONTROLLER_NOT_FOUND

▪ STATUS_NO_SUCH_DOMAIN

▪ STATUS_BAD_NETWORK_PATH

▪ STATUS_TRUST_FAILURE

▪ STATUS_TRUSTED_RELATIONSHIP_FAILURE

▪ STATUS_NETWORK_UNREACHABLE

▪ SEC_E_INVALID_TOKEN

▪ SEC_E_NO_AUTHENTICATING_AUTHORITY

▪ SEC_E_NO_CREDENTIALS

▪ STATUS_INTERNAL_ERROR

▪ STATUS_NO_MEMORY

▪ SEC_E_NOT_OWNER

▪ SEC_E_CERT_WRONG_USAGE

▪ SEC_E_SMARTCARD_LOGON_REQUIRED

▪ SEC_E_SHUTDOWN_IN_PROGRESS

▪ STATUS_LOGON_FAILURE

If the authentication protocol indicates success, the server MUST construct an SMB2 SESSION_SETUP

Response, specified in section 2.2.6, as described here:

▪ SMB2_FLAGS_SERVER_TO_REDIR MUST be set in the Flags field of the SMB2 header.

▪ The output token received from the GSS mechanism MUST be returned in the response.
SecurityBufferLength indicates the length of the output token, and SecurityBufferOffset
indicates its offset, in bytes, from the beginning of the SMB2 header.

▪ Session.SessionId MUST be placed in the SessionId field of the SMB2 header.

If the GSS mechanism indicates that this is the final message in the authentication exchange, the

server MUST verify the dialect as follows:

The server MUST look up all existing connections from the client in the global ConnectionList where
Connection.ClientGuid matches Session.Connection.ClientGuid. For any matching Connection, if
Connection.Dialect is not the same as Session.Connection.Dialect, the server SHOULD<243>
close the newly created Session, as specified in section 3.3.4.12, by providing
Session.SessionGlobalId as the input parameter, and fail the session setup request with
STATUS_USER_SESSION_DELETED.

If the dialect verification succeeds, the server MUST perform the following:

1. If Connection.Dialect is "3.1.1" and SMB2_SESSION_FLAG_BINDING is set in the Flags field of
the request, the server MUST generate a hash using the Connection.PreauthIntegrityHashId
algorithm on the string constructed by concatenating the
PreauthSessionTable.PreauthSession.PreauthIntegrityHashValue and the session setup
request message, including all bytes from the request's SMB2 header to the last byte received

from the network. The server MUST set
PreauthSessionTable.PreauthSession.PreauthIntegrityHashValue to the hash value

288 / 464

[MS-SMB2-Diff] - v20190923
Server Message Block (SMB) Protocol Versions 2 and 3
Copyright © 2019 Microsoft Corporation
Release: September 23, 2019

generated above.

Otherwise, the server MUST generate a hash using the Connection.PreauthIntegrityHashId
algorithm on the string constructed by concatenating Session.PreauthIntegrityHashValue and

the session setup request message, including all bytes from the request's SMB2 header to the last
byte received from the network. The server MUST set Session.PreauthIntegrityHashValue to
the hash value generated above.

2. The status code in the SMB2 header of the response MUST be set to STATUS_SUCCESS. If
Connection.Dialect belongs to the SMB 3.x dialect family, the server MUST insert the Session
into Connection.SessionTable. If Session.ChannelList does not have a channel entry for which
Channel.Connection matches the connection on which this request is received, the server MUST

allocate a new Channel object with the following values and insert it into Session.ChannelList:

▪ Channel.SigningKey is set to NULL.

▪ Channel.Connection is set to the connection on which this request is received.

3. If Session.SecurityContext is NULL, it MUST be set to a value representing the user that
successfully authenticated this connection. The security context MUST be obtained from the GSS
authentication subsystem. If Session.SecurityContext is not NULL or the request is for binding

the session, no changes are necessary. The server MUST invoke the GSS_Inquire_context call as
specified in [RFC2743] section 2.2.6, passing the Session.SecurityContext as the input
parameter, and set Session.UserName to the returned "src_name".

4. The server MUST invoke the GSS_Inquire_context call as specified in [RFC2743] section 2.2.6,
passing the Session.SecurityContext as the context_handle parameter.

If the returned anon_state is TRUE, the server MUST set Session.IsAnonymous to TRUE and the
server MAY set the SMB2_SESSION_FLAG_IS_NULL flag in the SessionFlags field of the SMB2

SESSION_SETUP Response.

Otherwise, if the returned src_name corresponds to an implementation-specific guest user,<244>
the server MUST set the SMB2_SESSION_FLAG_IS_GUEST in the SessionFlags field of the SMB2

SESSION_SETUP Response and MUST set Session.IsGuest to TRUE.

If Session.IsAnonymous is FALSE, the server MUST set Connection.ConstrainedConnection
to FALSE.

5. Session.SigningRequired MUST be set to TRUE under the following conditions:

▪ If the SMB2_NEGOTIATE_SIGNING_REQUIRED bit is set in the SecurityMode field of the
client request.

▪ If the SMB2_SESSION_FLAG_IS_GUEST bit is not set in the SessionFlags field and
Session.IsAnonymous is FALSE and either Connection.ShouldSign or global
RequireMessageSigning is TRUE.

6. The server MUST query the session key for this authentication from the underlying authentication

protocol and store the session key in Session.SessionKey, if Session.SessionKey is NULL.

Session.SessionKey MUST be set as specified in section 3.3.1.8, using the value queried from
the GSS protocol. For how this value is calculated for Kerberos authentication via GSS-API, see
[MS-KILE] section 3.1.1.2. When NTLM authentication via GSS-API is used, Session.SessionKey
MUST be set to ExportedSessionKey, see [MS-NLMP] section 3.1.5.1. The server SHOULD
choose an authentication mechanism that provides unique and randomly generated session keys
in order to secure the integrity of the signing key, encryption key, and decryption key, which are

derived using the session key.

289 / 464

[MS-SMB2-Diff] - v20190923
Server Message Block (SMB) Protocol Versions 2 and 3
Copyright © 2019 Microsoft Corporation
Release: September 23, 2019

7. If Connection.Dialect belongs to the SMB 3.x dialect family and SMB2_SESSION_FLAG_BINDING
is not set in the Flags field of the request, the server MUST generate Session.SigningKey as

specified in section 3.1.4.2 by providing the following inputs:

▪ Session.SessionKey as the key derivation key.

▪ If Connection.Dialect is "3.1.1", the case-sensitive ASCII string "SMBSigningKey" as the
label; otherwise, the case-sensitive ASCII string "SMB2AESCMAC" as the label.

▪ The label buffer size in bytes, including the terminating null character. The size of
"SMBSigningKey" is 14. The size of "SMB2AESCMAC" is 12.

▪ If Connection.Dialect is "3.1.1", Session.PreauthIntegrityHashValue as the context;
otherwise, the case-sensitive ASCII string "SmbSign" as context for the algorithm.

▪ The context buffer size in bytes. If Connection.Dialect is "3.1.1", the size of

Session.PreauthIntegrityHashValue. Otherwise, the size of "SmbSign", including the
terminating null character, is 8.

8. If Connection.Dialect belongs to the SMB 3.x dialect family and SMB2_SESSION_FLAG_BINDING
is not set in the Flags field of the request, Session.ApplicationKey MUST be generated as
specified in section 3.1.4.2 and passing the following inputs:

▪ Session.SessionKey as the key derivation key.

▪ If Connection.Dialect is "3.1.1", the case-sensitive ASCII string "SMBAppKey" as the label;
otherwise, the case-sensitive ASCII string "SMB2APP" as the label.

▪ The label buffer size in bytes, including the terminating null character. The size of
"SMBAppKey" is 10. The size of "SMB2APP" is 8.

▪ If Connection.Dialect is "3.1.1", Session.PreauthIntegrityHashValue as the context;
otherwise, the case-sensitive ASCII string "SmbRpc" as context for the algorithm.

▪ The context buffer size in bytes. If Connection.Dialect is "3.1.1", the size of

Session.PreauthIntegrityHashValue. Otherwise, the size of "SmbRpc", including the
terminating null character, is 7.

9. If Connection.Dialect belongs to the SMB 3.x dialect family and SMB2_SESSION_FLAG_BINDING
is set in the Flags field of the request, the server MUST generate Channel.SigningKey by
providing the following input values:

▪ The session key returned by the authentication protocol (in step 6) as the key derivation key.

▪ If Connection.Dialect is "3.1.1", the case-sensitive ASCII string "SMBSigningKey" as the

label; otherwise, the case-sensitive ASCII string "SMB2AESCMAC" as the label.

▪ The label buffer size in bytes, including the terminating null character. The size of
"SMBSigningKey" is 14. The size of "SMB2AESCMAC" is 12.

▪ If Connection.Dialect is "3.1.1",

PreauthSessionTable.PreauthSession.PreauthIntegrityHashValue as the context;
otherwise, the case-sensitive ASCII string "SmbSign" as context for the algorithm.

▪ The context buffer size in bytes. If Connection.Dialect is "3.1.1", the size of
PreauthSessionTable.PreauthSession.PreauthIntegrityHashValue. Otherwise, the size
of "SmbSign", including the terminating null character, is 8.

Otherwise, if Connection.Dialect belongs to the SMB 3.x dialect family and
SMB2_SESSION_FLAG_BINDING is not set in the Flags field of the request, the server MUST set
Channel.SigningKey as Session.SigningKey.

290 / 464

[MS-SMB2-Diff] - v20190923
Server Message Block (SMB) Protocol Versions 2 and 3
Copyright © 2019 Microsoft Corporation
Release: September 23, 2019

The server MUST remove the PreauthSession object identified by SessionId from

Connection.PreauthSessionTable.

10. If global EncryptData is TRUE, the server MUST do the following:

If Connection.ServerCapabilities includes SMB2_GLOBAL_CAP_ENCRYPTION or
RejectUnencryptedAccess is TRUE,

▪ Set the SMB2_SESSION_FLAG_ENCRYPT_DATA flag in the SessionFlags field of the SMB2
SESSION_SETUP Response.

▪ Set Session.SigningRequired to FALSE.

▪ Set Session.EncryptData to TRUE.

Otherwise,

▪ Set Session.SigningRequired to TRUE.

▪ Set Session.EncryptData to FALSE.

11. If Connection.Dialect belongs to the SMB 3.x dialect family, SMB2_SESSION_FLAG_BINDING is
not set in the Flags field of the request, Session.IsAnonymous and Session.IsGuest are set to
FALSE, and Connection. ServerCapabilities includes the SMB2_GLOBAL_CAP_ENCRYPTION bit,

the server MUST do the following:

▪ Generate Session.EncryptionKey as specified in section 3.1.4.2 by providing the following
inputs:

▪ Session.SessionKey as the key derivation key.

▪ If Connection.Dialect is "3.1.1", the case-sensitive ASCII string "SMBS2CCipherKey" as
the label; otherwise, the case-sensitive ASCII string "SMB2AESCCM" as the label.

▪ The label buffer length in bytes, including the terminating null character. The size of

"SMBS2CCipherKey" is 16. The size of "SMB2AESCCM" is 11.

▪ If Connection.Dialect is "3.1.1", Session.PreauthIntegrityHashValue as the context;
otherwise, the case-sensitive ASCII string "ServerOut" as context for the algorithm.

▪ The context buffer size in bytes. If Connection.Dialect is "3.1.1", the size of
Session.PreauthIntegrityHashValue; otherwise, the size of "ServerOut", including the
terminating null character, is 10.

▪ Generate Session.DecryptionKey as specified in section 3.1.4.2 by providing the following

inputs:

▪ Session.SessionKey as the key derivation key.

▪ If Connection.Dialect is "3.1.1", the case-sensitive ASCII string "SMBC2SCipherKey" as

the label; otherwise, the case-sensitive ASCII string "SMB2AESCCM" as the label.

▪ The label buffer length in bytes, including the terminating null character. The size of
"SMBC2SCipherKey" is 16. The size of "SMB2AESCCM" is 11.

▪ If Connection.Dialect is "3.1.1", Session.PreauthIntegrityHashValue as the context;
otherwise, the case-sensitive ASCII string "ServerIn " as context for the algorithm (note
the blank space at the end.)

291 / 464

[MS-SMB2-Diff] - v20190923
Server Message Block (SMB) Protocol Versions 2 and 3
Copyright © 2019 Microsoft Corporation
Release: September 23, 2019

▪ The context buffer size in bytes. If Connection.Dialect is "3.1.1", the size of
Session.PreauthIntegrityHashValue; otherwise, the size of "ServerIn ", including the

terminating null character, is 10.

12. If the SMB2_SESSION_FLAG_IS_GUEST bit is not set in the SessionFlags field, and

Session.IsAnonymous is FALSE, the server MUST sign the final session setup response before
sending it to the client, as follows:

▪ If Connection.Dialect belongs to the 3.x dialect family, and SMB2_SESSION_FLAG_BINDING
is set in the Flags field of the request, the server MUST use Channel.SigningKey.

▪ Otherwise, the server MUST use Session.SigningKey.

13. If the PreviousSessionId field of the request is not equal to zero, the server MUST take the
following actions:

1. The server MUST look up the old session in GlobalSessionTable, where Session.SessionId
matches PreviousSessionId. If no session is found, no other processing is necessary.

2. If a session is found with Session.SessionId equal to PreviousSessionId, the server MUST
determine if the old session and the newly established session are created by the same user
by comparing the user identifiers obtained from the Session.SecurityContext on the new
and old session.

1. If the PreviousSessionId and SessionId values in the SMB2 header of the request are
equal, the server SHOULD<245> ignore PreviousSessionId and no other processing is
required.

2. Otherwise, if the server determines the authentications were for the same user, the server
MUST remove the old session from the GlobalSessionTable and also from the
Connection.SessionTable, as specified in section 3.3.7.1.

3. Otherwise, if the server determines that the authentications were for different users, the

server MUST ignore the PreviousSessionId value.

14. Session.State MUST be set to Valid.

15. Session.ExpirationTime MUST be set to the expiration time returned by the GSS authentication
subsystem. If the GSS authentication subsystem does not return an expiration time, the
Session.ExpirationTime is set to infinity.

The GSS-API can indicate that this is not the final message in the authentication exchange by using
the GSS_S_CONTINUE_NEEDED semantics as specified in [MS-SPNG] section 3.3.1. If the GSS

mechanism indicates that this is not the final message of the authentication exchange, the following
additional steps MUST be taken:

▪ The status code in the SMB2 header of the response MUST be set to
STATUS_MORE_PROCESSING_REQUIRED.

▪ If Connection.Dialect belongs to the SMB 3.x dialect family, and if the
SMB2_SESSION_FLAG_BINDING is set in the Flags field of the request, the server MUST sign the

response by using Session.SigningKey.

▪ If Connection.Dialect is "3.1.1", SMB2_SESSION_FLAG_BINDING is not set in the Flags field of
the request, and this is not a session reauthentication request, the server MUST set the
preauthentication hash as follows:

▪ The server MUST generate a hash using the Connection.PreauthIntegrityHashId algorithm
on the string constructed by concatenating Session.PreauthIntegrityHashValue and the
session setup request message, including all bytes from the request's SMB2 header to the last

292 / 464

[MS-SMB2-Diff] - v20190923
Server Message Block (SMB) Protocol Versions 2 and 3
Copyright © 2019 Microsoft Corporation
Release: September 23, 2019

byte received from the network. The server MUST set Session.PreauthIntegrityHashValue
to the hash value generated above.

▪ The server MUST generate a hash using the Connection.PreauthIntegrityHashId algorithm
on the string constructed by concatenating Session.PreauthIntegrityHashValue and the

session setup response message, including all bytes from the response's SMB2 header to the
last byte sent to the network. The server MUST set Session.PreauthIntegrityHashValue to
the hash value generated above.

Otherwise, if Connection.Dialect is "3.1.1", SMB2_SESSION_FLAG_BINDING is set in the Flags
field of the request, and the server MUST set the preauthentication hash as follows:

▪ The server MUST generate a hash using the Connection.PreauthIntegrityHashId
algorithm on the string constructed by concatenating

PreauthSessionTable.PreauthSession.PreauthIntegrityHashValue and the session
setup request message, including all bytes from the request's SMB2 header to the last
byte received from the network. The server MUST set
PreauthSessionTable.PreauthSession.PreauthIntegrityHashValue to the hash value

generated above.

▪ The server MUST generate a hash using the Connection.PreauthIntegrityHashId

algorithm on the string constructed by concatenating
PreauthSessionTable.PreauthSession.PreauthIntegrityHashValue and the session
setup response message, including all bytes from the response's SMB2 header to the last
byte sent to the network. The server MUST set
PreauthSessionTable.PreauthSession.PreauthIntegrityHashValue to the hash value
generated above.

3.3.5.6 Receiving an SMB2 LOGOFF Request

When the server receives a request with an SMB2 header with a Command value equal to SMB2
LOGOFF, message handling MUST proceed as follows.

The server MUST locate the session being logged off, as specified in section 3.3.5.2.9.

The server MUST remove this session from the GlobalSessionTable and also from the
Connection.SessionTable, and deregister the session by invoking the event specified in [MS-SRVS]
section 3.1.6.3, providing Session.SessionGlobalId as input parameter.
ServerStatistics.sts0_sopens MUST be decreased by 1. The server MUST close every Open in
Session.OpenTable of the old session, where Open.IsDurable is FALSE and Open.IsResilient is
FALSE, as specified in section 3.3.4.17. For all opens in Session.OpenTable where Open.IsDurable
is TRUE or Open.IsResilient is TRUE, the server MUST set Open.Session, Open.Connection, and

Open.TreeConnect to NULL. Any tree connects in Session.TreeConnectTable of the old session
MUST be deregistered by invoking the event specified in [MS-SRVS] section 3.1.6.7, providing the
tuple <TreeConnect.Share.ServerName, TreeConnect.Share.Name> and
TreeConnect.TreeGlobalId as input parameters, and each of them MUST be freed. For each
deregistered TreeConnect, TreeConnect.Share.CurrentUses MUST be decreased by 1.

If Connection.Dialect belongs to the SMB 3.x dialect family, the server MUST remove the session

from each Channel.Connection.SessionTable in Session.ChannelList. All channels in

Session.ChannelList MUST be removed and freed.

The server MUST construct an SMB2 LOGOFF Response with a status code of STATUS_SUCCESS,
following the syntax specified in section 2.2.8, and send it to the client. The session itself is then
freed.

The status code returned by this operation MUST be one of those defined in [MS-ERREF]. Common
status codes returned by this operation include:

293 / 464

[MS-SMB2-Diff] - v20190923
Server Message Block (SMB) Protocol Versions 2 and 3
Copyright © 2019 Microsoft Corporation
Release: September 23, 2019

▪ STATUS_SUCCESS

▪ STATUS_USER_SESSION_DELETED

▪ STATUS_INVALID_PARAMETER

▪ STATUS_NETWORK_SESSION_EXPIRED

▪ STATUS_ACCESS_DENIED

3.3.5.7 Receiving an SMB2 TREE_CONNECT Request

When the server receives a request with an SMB2 header with a Command value equal to SMB2

TREE_CONNECT, message handling proceeds as follows:

The server MUST locate the authenticated session, as specified in section 3.3.5.2.9.

If Connection.Dialect is "3.1.1" and Session.IsAnonymous and Session.IsGuest are set to FALSE

and the request is not signed or not encrypted, then the server MUST disconnect the connection.

The server MUST parse the Unicode string in the Buffer field, specified by PathOffset and
PathLength fields, to extract the hostname and sharename components, as specified in [MS-DTYP]
section 2.2.49. If the Buffer field is not in the format specified in section 2.2.9, the server MUST fail

the request with STATUS_INVALID_PARAMETER. Otherwise, the server MUST provide the tuple
<hostname, sharename> parsed from the request message to invoke the event specified in [MS-
SRVS] section 3.1.6.8, to normalize the hostname by resolving server aliases and evaluating share
scope. The server MUST use <normalized hostname, sharename> to look up the Share in
ShareList. If no share with a matching share name and server name is found, the server MUST fail
the request with STATUS_BAD_NETWORK_NAME. If a share is found, the server MUST do the
following:

If Share.Type includes STYPE_CLUSTER_FS, STYPE_CLUSTER_SOFS, or STYPE_CLUSTER_DFS and
Connection.Dialect is greater than MaxClusterDialect and
SMB2_TREE_CONNECT_FLAG_CLUSTER_RECONNECT is not set in Flags/Reserved field, the server

MUST fail the request with STATUS_SMB_BAD_CLUSTER_DIALECT (0xC05D0001) and if
Connection.Dialect is SMB 3.1.1, the server MUST return error data as specified in section 2.2.2 with
ByteCount set to 10, ErrorContextCount set to 1, and ErrorData set to SMB2 ERROR Context

response formatted as ErrorDataLength set to 2, ErrorId set to 0, and ErrorData set to
MaxClusterDialect; otherwise, the server MUST return error data as specified in section 2.2.2 with
ByteCount set to 2 and ErrorContextData set to MaxClusterDialect.

If the server implements the SMB 3.x dialect family, EncryptData or Share.EncryptData is TRUE,
RejectUnencryptedAccess is TRUE, and Connection.ServerCapabilities does not include
SMB2_GLOBAL_CAP_ENCRYPTION, the server MUST fail the request with STATUS_ACCESS_DENIED.

If Connection.Dialect belongs to the SMB 3.x dialect family, Share.EncryptData is TRUE,

RejectUnencryptedAccess is TRUE, and Connection.ClientCapabilities does not include the
SMB2_GLOBAL_CAP_ENCRYPTION bit, the server MUST fail the request with
STATUS_ACCESS_DENIED.

The server MUST determine whether the user represented by Session.SecurityContext is granted
access based on the authorization policy specified in Share.ConnectSecurity. If the server
determines that it will grant access, the server MUST fail the request with STATUS_ACCESS_DENIED.

The server MUST provide the tuple <hostname, sharename> to invoke the event specified in [MS-

SRVS] section 3.1.6.15 to get the total number of current uses of the share. If the total number of
current uses is equal to or greater than Share.MaxUses, the server MUST fail the request with
STATUS_REQUEST_NOT_ACCEPTED.

294 / 464

[MS-SMB2-Diff] - v20190923
Server Message Block (SMB) Protocol Versions 2 and 3
Copyright © 2019 Microsoft Corporation
Release: September 23, 2019

If TreeConnect.Share.Type includes STYPE_CLUSTER_SOFS, Connection.Dialect is "3.1.1" and the
SMB2_TREE_CONNECT_FLAG_REDIRECT_TO_OWNER bit is set in the Flags field of the SMB2

TREE_CONNECT request, the server MUST query the underlying object store in an implementation-
specific manner to determine whether the share is hosted on this node. If not, the server MUST fail

the tree connect request by setting the Status field in SMB2 header to
STATUS_BAD_NETWORK_NAME, return error data as specified in section 2.2.2 with ErrorData set to
SMB2 ERROR Context response formatted as ErrorId set to SMB2_ERROR_ID_SHARE_REDIRECT, and
ErrorContextData set to the Share Redirect error context data as specified in section 2.2.2.2.2 with
IPAddrMoveList set to the list of IP addresses determined for where to access the share.

If Connection.Dialect is "3.1.1", Server.SupportsTreeConnectExtn is TRUE, and the
SMB2_TREE_CONNECT_FLAG_EXTENSION_PRESENT bit is set in the Flags field of the SMB2

TREE_CONNECT request, the server MUST process the SMB2 tree connect contexts described in
section 2.2.9.1. If an SMB2_REMOTED_IDENTITY_TREE_CONNECT context is present and
Share.SupportsIdentityRemoting is set, the server MUST perform the following:

▪ If the TicketType is not 0x0001, ignore the context and continue tree connect processing.

Otherwise, the server MUST obtain User, UserName, Domain, Groups, RestrictedGroups,

Privileges, PrimaryGroup, Owner, DefaultDacl, DeviceGroups, UserClaims, and DeviceClaims from
the SMB2_REMOTED_IDENTITY_TREE_CONNECT context, and use them to impersonate the
remoted identity as specified in [MS-DTYP] section 2.7.1. If successful, set
TreeConnect.RemotedIdentitySecurityContext to the impersonated security context.

The server MUST allocate a tree connect object and insert it into Session.TreeConnectTable. The
server MUST provide the tuple <hostname, sharename> and MUST register TreeConnect by
invoking the event specified in [MS-SRVS] section 3.1.6.6 and assign the return value to

TreeConnect.TreeGlobalId. The other initial values MUST be set as follows:

▪ TreeConnect.TreeId MUST be set to a value generated to uniquely identify this tree connect in
the Session.TreeConnectTable. The SMB2 server MUST reserve -1 for invalid TreeId.

▪ TreeConnect.Session MUST be set to the session found on the SessionId lookup.

▪ TreeConnect.Share MUST be set to the share found on the lookup.

▪ TreeConnect.OpenCount MUST be set to 0.

▪ TreeConnect.CreationTime MUST be set to current time.

▪ TreeConnect.Share.CurrentUses MUST be increased by 1.

The SMB2 TREE_CONNECT response MUST be constructed following the syntax specified in section
2.2.10, as described here:

▪ ShareFlags MUST be set based on the individual share properties (Share.CscFlags,
Share.DoAccessBasedDirectoryEnumeration, Share.AllowNamespaceCaching,
Share.ForceSharedDelete, Share.RestrictExclusiveOpens, Share.HashEnabled,

Share.ForceLevel2Oplock, Share.IsDfs, Share.EncryptData.)

▪ The server MUST set all flags contained in Share.CscFlags.

▪ The server SHOULD<246> set the SMB2_SHAREFLAG_DFS bit if the per-share property
Share.IsDfs is TRUE, indicating that the share is part of a DFS namespace.

▪ The server SHOULD<247> set the SMB2_SHAREFLAG_DFS_ROOT bit if the per-share property
Share.IsDfs is TRUE, indicating that the share is part of a DFS namespace.

295 / 464

[MS-SMB2-Diff] - v20190923
Server Message Block (SMB) Protocol Versions 2 and 3
Copyright © 2019 Microsoft Corporation
Release: September 23, 2019

▪ The server MUST set the SMB2_SHAREFLAG_ACCESS_BASED_DIRECTORY_ENUM bit if
Share.DoAccessBasedDirectoryEnumeration is TRUE and ServerHashLevel is not

HashDisableAll.

▪ The server MUST set the SMB2_SHAREFLAG_ALLOW_NAMESPACE_CACHING bit if

Share.AllowNamespaceCaching is TRUE.

▪ The server MUST set the SMB2_SHAREFLAG_FORCE_SHARED_DELETE bit if
Share.ForceSharedDelete is TRUE.

▪ The server MUST set the SMB2_SHAREFLAG_RESTRICT_EXCLUSIVE_OPENS bit if
Share.RestrictExclusiveOpens is TRUE.

▪ If Connection.Dialect belongs to the SMB 3.x dialect family, and Share.EncryptData is
TRUE, the server MUST do the following:

▪ Set the SMB2_SHAREFLAG_ENCRYPT_DATA bit.

▪ If Share.HashEnabled is TRUE and ServerHashLevel is not HashDisableAll.

▪ If Connection.Dialect belongs to the SMB 3.x dialect family, the server MUST set the
SMB2_SHAREFLAG_ENABLE_HASH_V1 and SMB2_SHAREFLAG_ENABLE_HASH_V2 bits in
an implementation-specific manner.<248>

▪ Otherwise, it SHOULD<249> set the SMB2_SHAREFLAG_ENABLE_HASH_V1 bit.

▪ The server MUST set the SMB2_SHAREFLAG_FORCE_LEVELII_OPLOCK bit if
Share.ForceLevel2Oplock is TRUE.

▪ ShareType MUST be set based on the resource being shared, as indicated by Share.Type:

▪ If this share provides access to named pipes, as indicated by resource type STYPE_IPC,
ShareType MUST be set to SMB2_SHARE_TYPE_PIPE.

▪ If this share provides access to a printer, as indicated by the resource type STYPE_PRINTQ,

ShareType MUST be set to SMB2_SHARE_TYPE_PRINT.

▪ Otherwise, ShareType MUST be set to SMB2_SHARE_TYPE_DISK.

▪ If Share.IsDfs is TRUE, the server MUST set the SMB2_SHARE_CAP_DFS bit in the Capabilities
field.

▪ If Connection.Dialect belongs to the SMB 3.x dialect family and Share.IsCA is TRUE, the server
MUST set the SMB2_SHARE_CAP_CONTINUOUS_AVAILABILITY bit in the Capabilities field.

▪ If Connection.Dialect belongs to the SMB 3.x dialect family and TreeConnect.Share.Type
includes STYPE_CLUSTER_SOFS, the server MUST set the SMB2_SHARE_CAP_SCALEOUT bit in the

Capabilities field.

▪ If Connection.Dialect belongs to the SMB 3.x dialect family and TreeConnect.Share.Type
includes STYPE_CLUSTER_FS, STYPE_CLUSTER_SOFS, or STYPE_CLUSTER_DFS, the server MUST

set the SMB2_SHARE_CAP_CLUSTER bit in the Capabilities field.

▪ If Connection.Dialect is "3.0.2" or "3.1.1", TreeConnect.Share.Type includes
STYPE_CLUSTER_SOFS, and TreeConnect.Share is asymmetric, the server MUST set the

SMB2_SHARE_CAP_ASYMMETRIC bit in the Capabilities field.

▪ If Connection.Dialect is "3.1.1" and TreeConnect.Share.SupportsIdentityRemoting is set,
the server MUST set the SMB2_SHAREFLAG_IDENTITY_REMOTING bit in the ShareFlags field of
the SMB2 TREE_CONNECT response.

296 / 464

[MS-SMB2-Diff] - v20190923
Server Message Block (SMB) Protocol Versions 2 and 3
Copyright © 2019 Microsoft Corporation
Release: September 23, 2019

▪ If Connection.Dialect is "3.1.1", TreeConnect.Share.Type includes STYPE_CLUSTER_SOFS,
and the SMB2_TREE_CONNECT_FLAG_REDIRECT_TO_OWNER bit is set in the Flags field of the

SMB2 TREE_CONNECT request and the SMB2_SHARE_CAP_ASYMMETRIC bit is set in the
Capabilities field, the server SHOULD<250> set the SMB2_SHARE_CAP_REDIRECT_TO_OWNER

bit in the Capabilities field.

▪ MaximalAccess MUST be set to the highest access the user described by
Session.SecurityContext would have when accessing resources underneath the security
descriptor Share.FileSecurity. The server MUST set TreeConnect.MaximalAccess to
MaximalAccess.

The response MUST then be sent to the client.

The status code returned by this operation MUST be one of those defined in [MS-ERREF]. Common

status codes returned by this operation include:

▪ STATUS_SUCCESS

▪ STATUS_ACCESS_DENIED

▪ STATUS_INSUFFICIENT_RESOURCES

▪ STATUS_BAD_NETWORK_NAME

▪ STATUS_INVALID_PARAMETER

▪ STATUS_USER_SESSION_DELETED

▪ STATUS_NETWORK_SESSION_EXPIRED

▪ STATUS_SERVER_UNAVAILABLE

3.3.5.8 Receiving an SMB2 TREE_DISCONNECT Request

When the server receives a request with an SMB2 header having a Command value equal to SMB2

TREE_DISCONNECT, message handling proceeds as follows:

Session Verification:

The server MUST locate the session, as specified in section 3.3.5.2.9.

Tree Connect Verification:

The server MUST locate the tree connection, as specified in section 3.3.5.2.11.

For any Open in Session.OpenTable, if Open.TreeConnect matches the tree connect being
disconnected, the server MUST close the Open as specified in section 3.3.4.17.

The server MUST provide the tuple <TreeConnect.Share.ServerName,
TreeConnect.Share.Name> and TreeConnect.TreeGlobalId as input parameters and deregister
TreeConnect by invoking the event specified in [MS-SRVS] section 3.1.6.7.

TreeConnect.Share.CurrentUses MUST be decreased by 1. The tree connect MUST then be
removed from Session.TreeConnectTable and freed. The server MUST initialize an SMB2

TREE_DISCONNECT Response following the syntax specified in section 2.2.12, and send it to the
client.

The status code returned by this operation MUST be one of those defined in [MS-ERREF]. Common
status codes returned by this operation include:

▪ STATUS_SUCCESS

297 / 464

[MS-SMB2-Diff] - v20190923
Server Message Block (SMB) Protocol Versions 2 and 3
Copyright © 2019 Microsoft Corporation
Release: September 23, 2019

▪ STATUS_INSUFFICIENT_RESOURCES

▪ STATUS_USER_SESSION_DELETED

▪ STATUS_NETWORK_NAME_DELETED

▪ STATUS_INVALID_PARAMETER

▪ STATUS_NETWORK_SESSION_EXPIRED

▪ STATUS_ACCESS_DENIED

3.3.5.9 (Updated Section) Receiving an SMB2 CREATE Request

When the server receives a request with an SMB2 header with a Command value equal to SMB2
CREATE, message handling proceeds as described in the following sections.

If Connection.Dialect belongs to the SMB 3.x dialect family and the request does not contain

SMB2_CREATE_DURABLE_HANDLE_RECONNECT Create Context or
SMB2_CREATE_DURABLE_HANDLE_RECONNECT_V2 Create Context, the server MUST look up an
existing open in the GlobalOpenTable where Open.FileName matches the file name in the Buffer
field of the request. If an Open entry is found, and if all the following conditions are satisfied, the

server SHOULD<251> fail the request with STATUS_FILE_NOT_AVAILABLE.

▪ Open.IsPersistent is TRUE

▪ Open.Connection is NULL

The server MAY<252> validate the create contexts before session verification.

Session Verification:

The server MUST locate the session, as specified in section 3.3.5.2.9.

Tree Connect Verification:

The server MUST locate the tree connection, as specified in section 3.3.5.2.11.

Path Name Validation:

The server MUST verify the request size. If the size of the SMB2 CREATE Request (excluding the SMB2
header) is less than specified in the StructureSize field, then the request MUST be failed with
STATUS_INVALID_PARAMETER.

The server MUST extract the target path name for the create from the SMB2 CREATE Request.

If the request received has SMB2_FLAGS_DFS_OPERATIONS set in the Flags field of the SMB2
header, and TreeConnect.Share.IsDfs is TRUE, the server MUST verify the value of IsDfsCapable:

▪ If IsDfsCapable is TRUE, the server MUST invoke the interface defined in [MS-DFSC] section
3.2.4.1 to normalize the path name by supplying the target path name.

▪ If IsDfsCapable is FALSE, the server MUST fail the request with STATUS_FS_DRIVER_REQUIRED.

If the request received does not have the SMB2_FLAGS_DFS_OPERATIONS flag set in the Flags field
of the SMB2 header, or TreeConnect.Share.IsDfs is FALSE, the server MUST NOT invoke

normalization and continue the create process.

If normalization fails, the server MUST fail the create request with the error code returned by the DFS
normalization routine.

298 / 464

[MS-SMB2-Diff] - v20190923
Server Message Block (SMB) Protocol Versions 2 and 3
Copyright © 2019 Microsoft Corporation
Release: September 23, 2019

If the normalization procedure succeeds, returning an altered target name, the modified name MUST
be used for further operations.

If the file name length is greater than zero and the first character is a path separator character, the
server MUST fail the request with STATUS_INVALID_PARAMETER. If the file name fails to conform with

the specification of a relative pathname in [MS-FSCC] section 2.1.5, the server MUST fail the request
with STATUS_OBJECT_NAME_INVALID.

The server MUST verify the file name in an implementation-specific manner.<253>

For pipe opens, the server MUST ignore FileAttributes.

For print files, if the FileAttributes field includes FILE_ATTRIBUTE_DIRECTORY, the server MUST fail
the open with the error code STATUS_NOT_SUPPORTED.

If the share that is the target of the create request is the IPC$ share and Session.IsAnonymous is

TRUE, the server MUST invoke the event specified in [MS-SRVS] section 3.1.6.17 by providing the
target name as the input parameter. If the event returns FALSE, indicating that no matching named
pipe is found that allows an anonymous user, the server MUST fail the request with

STATUS_ACCESS_DENIED and increase ServerStatistics.sts0_permerrors by 1. Otherwise, the
server MUST continue the open processing.

If the share that is the target of the create request is a printer, the server MUST validate the

DesiredAccess and CreateDisposition fields of the request. If the DesiredAccess value does not
include one or more of the FILE_WRITE_DATA, FILE_APPEND_DATA, or GENERIC_WRITE bits, the
server SHOULD<254> fail the request with STATUS_NOT_SUPPORTED. If the DesiredAccess value
contains any other bits, the server MUST fail the request with STATUS_NOT_SUPPORTED. If the
CreateDisposition value is other than FILE_CREATE, the server SHOULD<255> fail the request with
STATUS_OBJECT_NAME_NOT_FOUND.

If any intermediate component of the path specified in the create request is a symbolic link, the server

MUST return an error as specified in section 2.2.2.2.1. Symbolic links MUST NOT be evaluated by the
server.

If the final component of the path is a symbolic link, the server behavior depends on whether the flag
FILE_OPEN_REPARSE_POINT was specified in the CreateOptions field of the request. If
FILE_OPEN_REPARSE_POINT was specified, the server MUST open the underlying file or directory and
return a handle to it. Otherwise, the server MUST return an error as specified in section 2.2.2.2.1.

Create Context Validation:

The server MUST fail create contexts having a NameLength less than 4 with a
STATUS_INVALID_PARAMETER error.

If the size of each individual create context is not equal to the DataLength of the create context, the
server MUST fail the request with STATUS_INVALID_PARAMETER.

The following subsections detail server behavior when various create contexts are provided in the
request and describe how that affects server operation.

If the server implements the SMB 3.x dialect family and all of the following conditions are TRUE, the

server MUST look up an Open in GlobalOpenTable where Open.CreateGuid matches the
CreateGuid in the SMB2_CREATE_DURABLE_HANDLE_REQUEST_V2 create context and
Open.ClientGuid matches the ClientGuid of the connection that received this request:

▪ The SMB2_FLAGS_REPLAY_OPERATION bit is set in the SMB2 header.

▪ The request includes an SMB2_CREATE_DURABLE_HANDLE_REQUEST_V2 create context.

▪ The Treeconnect.Share.Type is STYPE_DISKTREE.

299 / 464

[MS-SMB2-Diff] - v20190923
Server Message Block (SMB) Protocol Versions 2 and 3
Copyright © 2019 Microsoft Corporation
Release: September 23, 2019

If an Open is found, the server MUST perform the following:

▪ The server MUST fail the create request with STATUS_ACCESS_DENIED in the following cases:

▪ Open.IsDurable is FALSE.

▪ Open.DurableOwner is not the user represented by Open.Session.SecurityContext.

▪ If Open.Lease is not NULL and Open.Lease.LeaseKey is not equal to the LeaseKey
specified in the SMB2_CREATE_REQUEST_LEASE or SMB2_CREATE_REQUEST_LEASE_V2
Create Context.

▪ If Open.Session.SessionId is not equal to the current Session.SessionId, the server MUST fail
the request with STATUS_DUPLICATE_OBJECTID.

▪ If Open.IsPersistent is TRUE and the SMB2_DHANDLE_FLAG_PERSISTENT bit is not set in the
Flags field of the SMB2_CREATE_DURABLE_HANDLE_REQUEST_V2 Create Context, the server

SHOULD<256> fail the request with STATUS_INVALID_PARAMETER.

▪ Construct the create response from Open, as specified in the "Response Construction" phase; the
remaining create processing MUST be skipped.

Open Execution:

If the FILE_DELETE_ON_CLOSE flag is set in CreateOptions and Treeconnect.MaximalAccess does
not include DELETE or GENERIC, the server SHOULD<257> fail the request with

STATUS_ACCESS_DENIED.

When opening a named pipe, if the ImpersonationLevel level is Delegate, the server MUST fail the
request with STATUS_BAD_IMPERSONATION_LEVEL.

For open requests on a share of type STYPE_DISKTREE (as indicated by TreeConnect.Share.Type),
the server MUST do the following:

▪ If TreeConnect.Share.RestrictExclusiveOpens is TRUE and the ShareAccess field does not

include FILE_SHARE_READ, and the DesiredAccess field does not include GENERIC_ALL,

GENERIC_WRITE, FILE_WRITE_DATA, FILE_WRITE_ATTRIBUTES, FILE_WRITE_EA, or
FILE_APPEND_DATA, the server SHOULD<258> set FILE_SHARE_READ in the ShareAccess field.

▪ If TreeConnect.Share.ForceSharedDelete is TRUE, the server MUST set FILE_SHARE_DELETE
in the ShareAccess field.

▪ If TreeConnect.Share.ForceLevel2Oplock is TRUE, and RequestedOplockLevel is
SMB2_OPLOCK_LEVEL_BATCH or SMB2_OPLOCK_LEVEL_EXCLUSIVE, the server SHOULD<259>
set RequestedOplockLevel to SMB2_OPLOCK_LEVEL_II.

▪ If Connection.Dialect belongs to the SMB 3.x dialect family TreeConnect.Share.Type includes
STYPE_CLUSTER_SOFS and the RequestedOplockLevel is SMB2_OPLOCK_LEVEL_BATCH, the
server MUST set RequestedOplockLevel to SMB2_OPLOCK_LEVEL_II.

▪ If CreateOptions includes FILE_NO_INTERMEDIATE_BUFFERING and DesiredAccess includes

FILE_APPEND_DATA, the server MUST set FILE_APPEND_DATA to zero in the DesiredAccess field
in the request.

The server MUST set the following flags to zero in the CreateOptions field:

▪ FILE_COMPLETE_IF_OPLOCKED

▪ FILE_SYNCHRONOUS_IO_ALERT

▪ FILE_SYNCHRONOUS_IO_NONALERT

300 / 464

[MS-SMB2-Diff] - v20190923
Server Message Block (SMB) Protocol Versions 2 and 3
Copyright © 2019 Microsoft Corporation
Release: September 23, 2019

▪ FILE_OPEN_FOR_FREE_SPACE_QUERY

The server MUST use TreeConnect.RemotedIdentitySecurityContext if present, otherwise the

server MUST use the security context of the session in Session.SecurityContext to attempt to open
the named object in the underlying object store using the parameters specified for DesiredAccess,

FileAttributes, ShareAccess, CreateDisposition, CreateOptions, and the PathName. The
PathName MUST be parsed relative to TreeConnect.Share.LocalPath. The server MUST map these
flags to match the semantics of its implementation-specific object store [MS-FSA].<260> See section
2.2.13 for more details on the exact meaning of the various flags and options. If the underlying object
store returns a failure for the attempted Open, the server MUST send an SMB2 error response with an
error code as specified in section 2.2.2. The same rules apply when opening named pipe and print
files, except that some flags and options are not supported when opening named pipes and print files.

The flags and options that are not supported when opening named pipes and print files are specified in
section 2.2.13.

Failed Open Handling:

If the underlying object store returns a failure indicating that the attempted open operation failed due

to the presence of a symbolic link in the target path name, the server MUST fail the create operation
with the error code STATUS_STOPPED_ON_SYMLINK, and pass back the error to the client by

constructing an error response as specified in section 2.2.2.2.1.<261>

If the underlying object store returns STATUS_ACCESS_DENIED, ServerStatistics.sts0_permerrors
MUST be increased by 1.

Successful Open Initialization:

If the open is successful, the server MUST allocate an open object for this open and insert it into
Session.OpenTable and GlobalOpenTable. If TreeConnect.Share.Type is not equal to
STYPE_PRINTQ, ServerStatistics.sts0_fopens MUST be increased by 1. If

TreeConnect.Share.Type is equal to STYPE_PRINTQ, ServerStatistics.sts0_jobsqueued MUST be
increased by 1. The server MUST also register the Open by invoking the event specified in [MS-SRVS]
section 3.1.6.4 and assign the return value to Open.FileGlobalId. The other initial values MUST be
set as follows:

▪ Open.FileId is set to a generated value that uniquely identifies this Open in Session.OpenTable.
The SMB2 server MUST reserve -1 for invalid FileId.

▪ Open.DurableFileId is set to a generated value that uniquely identifies this open in

GlobalOpenTable.

▪ Open.Session is set to refer to the session that performed the open.

▪ Open.Connection is set to refer to the connection on which the open request was received.

▪ Open.ClientGuid is set to Open.Connection.ClientGuid.

▪ Open.LocalOpen is set to the open of the object in the local resource received as part of the local
create operation.

▪ Open.GrantedAccess is the access granted to the caller for the open by the underlying object

store. It MUST be equal to the DesiredAccess specified in the request, except in the case where
MAXIMUM_ALLOWED is included in the DesiredAccess.

▪ If Open.GrantedAccess includes FILE_EXECUTE, the server MUST set FILE_READ_DATA in
Open.GrantedAccess.

▪ Open.OplockLevel is set to SMB2_OPLOCK_LEVEL_NONE.

▪ Open.OplockState is set to None.

301 / 464

[MS-SMB2-Diff] - v20190923
Server Message Block (SMB) Protocol Versions 2 and 3
Copyright © 2019 Microsoft Corporation
Release: September 23, 2019

▪ Open.OplockTimeout is set to 0.

▪ Open.IsDurable is set to FALSE.

▪ Open.DurableOpenTimeout is set to 0.

▪ Open.DurableOwner is set to NULL.

▪ Open.CurrentEaIndex is set to 1.

▪ Open.CurrentQuotaIndex is set to 1.

▪ Open.TreeConnect is set to refer to the TreeConnect on which the open request was performed
and Open.TreeConnect.OpenCount MUST be increased by 1.

▪ Open.LockCount is set to 0.

▪ Open.PathName is set to the full local path that the current open is performed on.

▪ Open.FileName MUST be set to the file name in the Buffer field of the request.

▪ Open.CreateOptions MUST be set to the CreateOptions field of the request.

▪ Open.FileAttributes MUST be set to the FileAttributes field of the request.

If Connection.Dialect is not "2.0.2" and the server supports leasing, the server MUST initialize the
following:

▪ Open.Lease MUST be set to NULL.

If Connection.Dialect is not "2.0.2" and the server supports resiliency, the server MUST initialize the

following:

▪ Open.IsResilient MUST be set to FALSE.

▪ Open.ResilientOpenTimeout MUST be set to 0.

▪ Each entry of Open.LockSequenceArray MUST be initialized as follows:

▪ Set Valid to FALSE.

If the server implements the SMB 3.x dialect family, the server MUST initialize the following:

▪ If the server does not implement the SMB 3.1.1 dialect, Open.AppInstanceId MUST be set to

AppInstanceId in the SMB2_CREATE_APP_INSTANCE_ID create context request if the create
request includes the SMB2_CREATE_DURABLE_HANDLE_REQUEST_V2 and
SMB2_CREATE_APP_INSTANCE_ID create contexts. Otherwise, Open.AppInstanceId MUST be
set to the AppInstanceId field in the SMB2_CREATE_APP_INSTANCE_ID create context request.

▪ Open.CreateGuid MUST be set to NULL.

▪ Open.IsPersistent MUST be set to FALSE.

▪ Open.FileName MUST be set to the file name in the Buffer field of the request.

▪ Open.DesiredAccess MUST be set to the DesiredAccess field of the request.

▪ Open.ShareMode MUST be set to the ShareAccess field of the request.

▪ Open.CreateOptions MUST be set to the CreateOptions field of the request.

▪ Open.FileAttributes MUST be set to the FileAttributes field of the request.

302 / 464

[MS-SMB2-Diff] - v20190923
Server Message Block (SMB) Protocol Versions 2 and 3
Copyright © 2019 Microsoft Corporation
Release: September 23, 2019

▪ Open.CreateDisposition MUST be set to the CreateDisposition field of the request.

If both an SMB2_CREATE_APP_INSTANCE_ID and an SMB2_CREATE_APP_INSTANCE_VERSION are

present in the request and Open.Connection.Dialect is not 2.0.2, 2.1, 3.0, or 3.0.2:

▪ Open.ApplicationInstanceVersionHigh MUST be set to the AppInstanceVersionHigh in the

SMB2_CREATE_APP_INSTANCE_VERSION create context.

▪ Open.ApplicationInstanceVersionLow MUST be set to the AppInstanceVersionLow in the
SMB2_CREATE_APP_INSTANCE_VERSION create context request.

The server MUST locate the Request in Connection.RequestList for which Request.MessageId
matches the MessageId value in the SMB2 header, and set Request.Open to the Open.

Oplock Acquisition:

If the server does not support leasing and RequestedOplockLevel is set to

SMB2_OPLOCK_LEVEL_LEASE, the server MUST ignore the "RqLs" create context.

If the server supports leasing, the name of the create context is "RqLs" as defined in section 2.2.13.2,
and RequestedOplockLevel is set to SMB2_OPLOCK_LEVEL_LEASE, the server MUST do the
following:

▪ If the size of the Buffer, in bytes, of the SMB2_CREATE_CONTEXT is not equal to the size of the
SMB2_CREATE_REQUEST_LEASE (0x20) or the size of the SMB2_CREATE_REQUEST_LEASE_V2 (

0x34), the server MUST fail the request with STATUS_INVALID_PARAMETER.

▪ If Connection.Dialect is "2.1" or belongs to the "3.x" dialect family, and the DataLength field
equals 0x20, the server MUST attempt to acquire a lease on the open from the underlying object
store as described in section 3.3.5.9.8.

▪ If Connection.Dialect belongs to the "3.x" dialect family, and the DataLength field equals 0x34,
the server MUST attempt to acquire a lease on the open from the underlying object store, as
described in section 3.3.5.9.11.

▪ Otherwise, the server MUST fail the request with STATUS_INVALID_PARAMETER.

If the open is successful, the shared resource is not a named pipe, and the RequestedOplockLevel
is not SMB2_OPLOCK_LEVEL_NONE, the server MUST attempt to acquire an oplock on the open from
the underlying object store.<262> If the underlying object store grants the oplock, then
Open.OplockState MUST be set to Held and Open.OplockLevel MUST be set to the level of the
oplock acquired. Otherwise, the server MUST perform the following steps:

▪ If the RequestedOplockLevel is SMB2_OPLOCK_LEVEL_II, then the server MUST set

RequestedOplockLevel to SMB2_OPLOCK_LEVEL_NONE.

▪ Otherwise, the server MUST set the RequestedOplockLevel to SMB2_OPLOCK_LEVEL_II, and
attempt to acquire an oplock on the open from the underlying object store.

▪ If the underlying object store grants an oplock for SMB2_OPLOCK_LEVEL_II, then
Open.OplockState MUST be set to Held and Open.OplockLevel MUST be set to the level of

the oplock acquired.

▪ Otherwise, the server MUST set RequestedOplockLevel to SMB2_OPLOCK_LEVEL_NONE.

Response Construction:

The server MUST construct a response following the syntax specified in section 2.2.14. The values
MUST be set as follows:

▪ OplockLevel is set to Open.OplockLevel.

303 / 464

[MS-SMB2-Diff] - v20190923
Server Message Block (SMB) Protocol Versions 2 and 3
Copyright © 2019 Microsoft Corporation
Release: September 23, 2019

▪ CreateAction is set to the action taken by the create following the syntax specified in section
2.2.14.

▪ CreationTime is set to the value queried from the object store for when the object was
created.<263>

▪ LastAccessTime is set to the value queried from the object store for when the object was last
accessed.<264>

▪ LastWriteTime is set to the value queried from the object store for when the object was last
written to.<265>

▪ ChangeTime is set to the value queried from the object store for when the object was last
modified, including attribute changes.<266>

▪ AllocationSize is set to the amount of space reserved for the object, in bytes, on the underlying

object store.<267> If this is a named pipe, AllocationSize SHOULD be 0.<268>

▪ EndofFile is set to the size of the main stream of the object in bytes.<269> For named pipes this

value SHOULD be 0.<270>

▪ FileAttributes MUST be set to the attributes of the object following the syntax specified in section
2.2.14.<271>

▪ FileId.Persistent MUST be set to Open.DurableFileId.

▪ FileId.Volatile MUST be set to Open.FileId.

▪ CreateContextsOffset MUST be set to the offset, in bytes, from the beginning of the SMB2
header to the first SMB2_CREATE_CONTEXT response. If no SMB2_CREATE_CONTEXT response is
returned, this value MUST be set to 0.

▪ CreateContextsLength MUST be set to the length, in bytes, of the list of
SMB2_CREATE_CONTEXT response structures. If no SMB2_CREATE_CONTEXT response structure
is returned, this value MUST be set to 0.

This response MUST be sent back to the client.

The status code returned by this operation MUST be one of those defined in [MS-ERREF]. Common
status codes returned by this operation include:

▪ STATUS_SUCCESS

▪ STATUS_INSUFFICIENT_RESOURCES

▪ STATUS_ACCESS_DENIED

▪ STATUS_OBJECT_NAME_NOT_FOUND

▪ STATUS_INVALID_PARAMETER

▪ STATUS_STOPPED_ON_SYMLINK

▪ STATUS_USER_SESSION_DELETED

▪ STATUS_NETWORK_NAME_DELETED

▪ STATUS_NETWORK_SESSION_EXPIRED

▪ STATUS_NOT_SUPPORTED

▪ STATUS_EAS_NOT_SUPPORTED

304 / 464

[MS-SMB2-Diff] - v20190923
Server Message Block (SMB) Protocol Versions 2 and 3
Copyright © 2019 Microsoft Corporation
Release: September 23, 2019

▪ STATUS_DISK_FULL

▪ STATUS_FILE_CLOSED

The following create contexts are potentially received as part of the create request. In each
subsection, handling this create context is outlined.

3.3.5.9.1 Handling the SMB2_CREATE_EA_BUFFER Create Context

The client is requesting that an array of extended attributes be applied to the file that is being created.
The server MUST ignore this Create Context for requests to open an existing file, a pipe, or a printer.
This create context can be combined with any of those listed here except
SMB2_CREATE_DURABLE_HANDLE_RECONNECT.

The processing changes involved for this create context are:

If IsSharedVHDSupported is TRUE and the file name in the Buffer field ends with
":SharedVirtualDisk", the processing changes for this create context are:

▪ In the "Open Execution" phase, this request MUST be processed as specified in [MS-RSVD] section
3.2.5.7 by providing the file name, Open.CreateOptions, and SMB2_CREATE_EA_BUFFER Create
Context.

▪ In the "Successful Open Initialization" phase, the server MUST set Open.IsSharedVHDX to

TRUE.

Otherwise, in the "Open Execution" phase, the server MUST pass the received extended attributes
array to the underlying object store to be stored on the created file.<272> If the object store does not
support extended attributes, the server MUST fail the open request with
STATUS_EAS_NOT_SUPPORTED.

3.3.5.9.2 Handling the SMB2_CREATE_SD_BUFFER Create Context

The client is requesting that a specific security descriptor be applied to the file that is being created.

The server MUST ignore this Create Context for requests to open an existing file, a pipe, or a printer.

The processing changes involved for this create context are:

In the "Open Execution" phase, the server MUST pass the received security descriptor to the
underlying object store to be stored on the created file.<273> If the object store does not support file
security, the value MAY<274> be ignored or STATUS_NOT_SUPPORTED SHOULD be returned to the
client.

3.3.5.9.3 Handling the SMB2_CREATE_ALLOCATION_SIZE Create Context

The client is requesting that a specific allocation size be set for the file that is being created. The
server SHOULD support this create context request.<275> If the server does not support it, the
SMB2_CREATE_ALLOCATION_SIZE create context request MUST be ignored.

The processing changes involved for this create context are:

In the "Open Execution" phase, the server MUST pass the received allocation size to the underlying

object store to reserve the requested space for the created file.<276> If the object store does not
have sufficient space available to hold a file of the requested size, the server MUST fail the open
request with STATUS_DISK_FULL.

3.3.5.9.4 Handling the SMB2_CREATE_TIMEWARP_TOKEN Create Context

The client is requesting that the create operation be performed on a snapshot of the underlying object

store taken at a previous time.

305 / 464

[MS-SMB2-Diff] - v20190923
Server Message Block (SMB) Protocol Versions 2 and 3
Copyright © 2019 Microsoft Corporation
Release: September 23, 2019

The processing changes involved for this create context are:

In the "Path Name Validation" phase, the server MUST verify that a snapshot of the underlying object

store at the time stamp provided in the create context exists.<277> If it does not, the server MUST
fail the request with STATUS_OBJECT_NAME_NOT_FOUND.

In the "Open Execution" phase, the server MUST perform the open on the snapshot of the underlying
object store taken at the time specified, instead of using the current view of the object store.<278>

If Connection.Dialect belongs to the SMB 3.x dialect family, the server MUST set the
SMB2_CREATE_FLAG_REPARSEPOINT bit in the Flags field in SMB2 CREATE response.

3.3.5.9.5 Handling the SMB2_CREATE_QUERY_MAXIMAL_ACCESS_REQUEST Create

Context

The client is requesting that the server return maximal access information if the last modified time for
the object that was opened, as returned by the underlying object store, is not equal to the time stamp
provided by the client in the create context.

The processing changes involved for this create context are:

In the "Response Construction" phase, the server MUST construct an

SMB2_CREATE_QUERY_MAXIMAL_ACCESS_RESPONSE create context, following the syntax specified
in section 2.2.14.2.5, and include it in the buffer described by the response fields
CreateContextLength and CreateContextOffset. This structure MUST have the following values
set:

▪ If the ChangeTime is not equal to the Timestamp in the request create context, the server MUST
calculate the maximal access that the user identified by Session.SecurityContext has on the
object that was opened. <279>

▪ If the ChangeTime is equal to the Timestamp in the request create context, the server MUST set
QueryStatus to STATUS_NONE_MAPPED and MaximalAccess to zero.

If no time stamp is present in the request, the server MUST return maximal access information
unconditionally.

3.3.5.9.6 Handling the SMB2_CREATE_DURABLE_HANDLE_REQUEST Create Context

The client is requesting that the open be marked for durable operation. If the underlying object store

does not support durable operation, the server MUST ignore the
SMB2_CREATE_DURABLE_HANDLE_REQUEST create context.

If the create request also includes an SMB2_CREATE_DURABLE_HANDLE_RECONNECT create context,
the server MUST process the create context as specified in section 3.3.5.9.7 and skip this section.

If the create request also includes an SMB2_CREATE_DURABLE_HANDLE_REQUEST_V2 or
SMB2_CREATE_DURABLE_HANDLE_RECONNECT_V2 create context, the server SHOULD<280> fail the
create request with STATUS_INVALID_PARAMETER.

If the RequestedOplockLevel field in the create request is not set to SMB2_OPLOCK_LEVEL_BATCH
and the create request does not include an SMB2_CREATE_REQUEST_LEASE create context with a
LeaseState field that includes the SMB2_LEASE_HANDLE_CACHING bit value, the server MUST ignore
this create context and skip this section.

If an SMB2_CREATE_REQUEST_LEASE Create Context or an SMB2_CREATE_REQUEST_LEASE_V2
Create Context is also present in the request and the lease is being requested on a directory, the

server MUST ignore this SMB2_CREATE_DURABLE_HANDLE_REQUEST Create Context and skip this
section.

306 / 464

[MS-SMB2-Diff] - v20190923
Server Message Block (SMB) Protocol Versions 2 and 3
Copyright © 2019 Microsoft Corporation
Release: September 23, 2019

The processing changes involved for this create context are:

In the "Successful Open Initialization" phase, if the underlying object store does not grant durability,

the server MUST skip the rest of the processing in this phase. Otherwise, the server MUST set
Open.IsDurable to TRUE and Open.DurableOwner to a security descriptor accessible only by the

user represented by Open.Session.SecurityContext and Open.DurableOpenTimeout MUST be set
to an implementation specific value<281>.

In the "Response Construction" phase, the server MUST construct an
SMB2_CREATE_DURABLE_HANDLE_RESPONSE response create context, following the syntax specified
in section 2.2.14.2.3, and include it in the buffer described by the response CreateContextLength
and CreateContextOffset.

3.3.5.9.7 Handling the SMB2_CREATE_DURABLE_HANDLE_RECONNECT Create Context

The client is requesting a reconnect to an existing durable or resilient open.

There is no processing done for "Path Name Validation" or "Open Execution" as listed in the section

above.

The processing changes involved for this create context are:

1. If the create request also includes an SMB2_CREATE_DURABLE_HANDLE_REQUEST create

context, the server MUST ignore the SMB2_CREATE_DURABLE_HANDLE_REQUEST create context.

2. If the create request also contains an SMB2_CREATE_DURABLE_HANDLE_REQUEST_V2 or
SMB2_CREATE_DURABLE_HANDLE_RECONNECT_V2 create context, the server SHOULD<282> fail
the request with STATUS_INVALID_PARAMETER.

3. The server MUST look up an existing open in the GlobalOpenTable by doing a lookup with the
FileId.Persistent portion of the create context. If the lookup fails, the server SHOULD<283> fail
the request with STATUS_OBJECT_NAME_NOT_FOUND and proceed as specified in "Failed Open

Handling" in section 3.3.5.9.

4. If any Open.Lease is not NULL and Open.ClientGuid is not equal to the ClientGuid of the
connection that received this request, the server MUST fail the request with
STATUS_OBJECT_NAME_NOT_FOUND.

5. If Open.Lease is not NULL and Open.FileName does not match the file name specified in the
Buffer field of the SMB2 CREATE request, the server MUST fail the request with
STATUS_INVALID_PARAMETER.

6. If any of the following conditions is TRUE, the server MUST fail the request with
STATUS_OBJECT_NAME_NOT_FOUND.

▪ Open.Lease is not NULL and the SMB2_CREATE_REQUEST_LEASE_V2 or the
SMB2_CREATE_REQUEST_LEASE create context is not present.

▪ Open.Lease is NULL and the SMB2_CREATE_REQUEST_LEASE_V2 or the
SMB2_CREATE_REQUEST_LEASE create context is present.

▪ Open.IsDurable is FALSE and Open.IsResilient is FALSE or unimplemented.

▪ Open.Session is not NULL.

▪ The SMB2_CREATE_REQUEST_LEASE_V2 create context is also present in the request,
Connection.Dialect belongs to the SMB 3.x dialect family, the server supports directory
leasing, Open.Lease is not NULL, and Open.Lease.LeaseKey does not match the LeaseKey
provided in the SMB2_CREATE_REQUEST_LEASE_V2 create context.

307 / 464

[MS-SMB2-Diff] - v20190923
Server Message Block (SMB) Protocol Versions 2 and 3
Copyright © 2019 Microsoft Corporation
Release: September 23, 2019

▪ The SMB2_CREATE_REQUEST_LEASE create context is also present in the request,
Connection.Dialect is "2.1" or belongs to the SMB 3.x dialect family, the server supports

leasing, Open.Lease is not NULL, and Open.Lease.LeaseKey does not match the LeaseKey
provided in the SMB2_CREATE_REQUEST_LEASE create context.

7. If Open.Lease is not NULL, the server supports leasing and if Lease.Version is 1 and the request
does not contain the SMB2_CREATE_REQUEST_LEASE create context or if Lease.Version is 2 and
the request does not contain the SMB2_CREATE_REQUEST_LEASE_V2 create context, the server
SHOULD<284> fail the request with STATUS_OBJECT_NAME_NOT_FOUND.

8. If the user represented by Session.SecurityContext is not the same user denoted by
Open.DurableOwner, the server MUST fail the request with STATUS_ACCESS_DENIED and
proceed as specified in "Failed Open Handling" in section 3.3.5.9.

9. The server MUST set the Open.Connection to refer to the connection that received this request.

10. The server MUST set the Open.Session to refer to the session that received this request.

11. The server MUST set the Open.TreeConnect to refer to the tree connect that received this

request, and Open.TreeConnect.OpenCount MUST be increased by 1.

12. Open.FileId MUST be set to a generated value that uniquely identifies this Open in
Session.OpenTable.

13. The server MUST insert the open into the Session.OpenTable with the Open.FileId as the new
key.

14. The "Successful Open Initialization" and "Oplock Acquisition" phases MUST be skipped, and
processing MUST continue as specified in "Response Construction".

15. In the "Response Construction" phase:

The server MAY<285> construct an SMB2_CREATE_DURABLE_HANDLE_RESPONSE create
context, as specified in section 2.2.14.2.3, and include it in the buffer described by the response

CreateContextLength and CreateContextOffset fields.

If the server supports directory leasing, Open.Lease is not NULL, and Lease.Version is 2, then
the server MUST construct an SMB2_CREATE_RESPONSE_LEASE_V2 create context, following
the syntax specified in section 2.2.14.2.11, and include it in the buffer described by the
response CreateContextLength and CreateContextOffset fields. This structure MUST have
the following values set:

▪ LeaseKey MUST be set to Lease.LeaseKey.

▪ LeaseState MUST be set to Lease.LeaseState.

▪ If Lease.ParentLeaseKey is not empty, ParentLeaseKey MUST be set to
Lease.ParentLeaseKey, and the SMB2_LEASE_FLAG_PARENT_LEASE_KEY_SET bit MUST
be set in the Flags field of the response.

If the server supports leasing, Open.Lease is not NULL, and Lease.Version is 1, then the

server MUST construct an SMB2_CREATE_RESPONSE_LEASE create context, following the

syntax specified in section 2.2.14.2.10, and include it in the buffer described by the response
CreateContextLength and CreateContextOffset fields. This structure MUST have the
following values set:

▪ LeaseKey MUST be set to Lease.LeaseKey.

▪ LeaseState MUST be set to Lease.LeaseState.

308 / 464

[MS-SMB2-Diff] - v20190923
Server Message Block (SMB) Protocol Versions 2 and 3
Copyright © 2019 Microsoft Corporation
Release: September 23, 2019

If Open.IsPersistent is TRUE, Open.Lease.Breaking is TRUE, and Open.Lease.BreakNotification
is not empty, the server MUST send Open.Lease.BreakNotification to the client over an available

connection in ConnectionList where Open.ClientGuid matches Connection.ClientGuid. If the
server succeeds in sending the notification, the server MUST set Open.Lease.BreakNotification to

empty and MUST start the lease break acknowledgment timer as specified in section 3.3.2.5.

3.3.5.9.8 Handling the SMB2_CREATE_REQUEST_LEASE Create Context

This section applies only to servers that implement the SMB 2.1 or 3.x dialect family.

If both SMB2_CREATE_DURABLE_HANDLE_RECONNECT and SMB2_CREATE_REQUEST_LEASE create
contexts are present in the request, they are processed as specified in section 3.3.5.9.7, and this
section does not apply.

If the server does not support leasing, the server MUST ignore the SMB2_CREATE_REQUEST_LEASE
Create Context request.

If RequestedOplockLevel is not SMB2_OPLOCK_LEVEL_LEASE, the server SHOULD<286> ignore the

SMB2_CREATE_REQUEST_LEASE Create Context request.

By specifying a RequestedOplockLevel of SMB2_OPLOCK_LEVEL_LEASE, the client is requesting
that a lease be acquired for this open. If the request does not provide an

SMB2_CREATE_REQUEST_LEASE Create Context, the lease request MUST be ignored and
Open.OplockLevel MUST be set to SMB2_OPLOCK_LEVEL_NONE.

The processing changes involved in acquiring the lease are:

In the "Path Name Validation" phase, the server MUST attempt to locate a Lease Table by performing
a lookup in GlobalLeaseTableList using Connection.ClientGuid as the lookup key. If no
LeaseTable is found, one MUST be allocated and the following values set:

▪ LeaseTable.ClientGuid is set to Connection.ClientGuid.

▪ LeaseTable.LeaseList is set to an empty list.

If the allocation fails, the create request MUST be failed with STATUS_INSUFFICIENT_RESOURCES.

The server MUST attempt to locate a Lease by performing a lookup in the LeaseTable.LeaseList
using the LeaseKey in the SMB2_CREATE_REQUEST_LEASE as the lookup key. If a lease is found but
Lease.Filename does not match the file name for the incoming request, the request MUST be failed
with STATUS_INVALID_PARAMETER.

If no lease is found, one MUST be allocated with the following values set:

▪ Lease.LeaseKey is set to the LeaseKey in the SMB2_CREATE_REQUEST_LEASE create
context.

▪ Lease.ClientLeaseId is set to a value as specified in section 3.3.1.4.

▪ Lease.Filename is set to the file being opened.

▪ Lease.LeaseState is set to NONE.

▪ Lease.BreakToLeaseState is set to NONE.

▪ Lease.LeaseBreakTimeout is set to 0.

▪ Lease.LeaseOpens is set to an empty list.

▪ Lease.Breaking is set to FALSE.

309 / 464

[MS-SMB2-Diff] - v20190923
Server Message Block (SMB) Protocol Versions 2 and 3
Copyright © 2019 Microsoft Corporation
Release: September 23, 2019

▪ If Connection.Dialect belongs to the SMB 3.x dialect family, Lease.Version is set to 1.

If the allocation fails, the create request MUST be failed with STATUS_INSUFFICIENT_RESOURCES.

Otherwise, if a LeaseTable was created it MUST be added to the GlobalLeaseTableList, and if a
Lease was created it MUST be added to the LeaseTable.LeaseList.

At this point, execution of create continues as described in 3.3.5.9 until the Oplock Acquisition phase.

During "Oplock Acquisition", if the underlying object store does not support leasing, the server
SHOULD fall back to requesting a batch oplock instead of a lease and continue processing as described
in "Oplock Acquisition". If the underlying object store does support leasing, the following steps are
taken:

If TreeConnect.Share.ForceLevel2Oplock is TRUE, and LeaseState includes
SMB2_LEASE_WRITE_CACHING, the server MUST clear the bit SMB2_LEASE_WRITE_CACHING in the

LeaseState field.

If Connection.Dialect belongs to the SMB 3.x dialect family, TreeConnect.Share.Type includes
STYPE_CLUSTER_SOFS, and if LeaseState includes SMB2_LEASE_READ_CACHING, the server MUST

set LeaseState to SMB2_LEASE_READ_CACHING, otherwise set LeaseState to SMB2_LEASE_NONE.

If the caching state requested in LeaseState of the SMB2_CREATE_REQUEST_LEASE is not a
superset of Lease.LeaseState or if Lease.Breaking is TRUE, the server MUST NOT promote

Lease.LeaseState. If the lease state requested is a superset of Lease.LeaseState and
Lease.Breaking is FALSE, the server MUST request promotion of the lease state from the underlying
object store to the new caching state.<287>

If the object store succeeds this request, Lease.LeaseState MUST be set to the new caching state. If
Lease.Breaking is TRUE, the server MUST return the existing Lease.LeaseState to client and set
LeaseFlags to be SMB2_LEASE_FLAG_BREAK_IN_PROGRESS. At this point, execution continues as
described in section 3.3.5.9 until the "Response Construction" phase.

In the "Response Construction" phase, the server MUST construct an
SMB2_CREATE_RESPONSE_LEASE response create context, following the syntax specified in section

2.2.14.2.10, and include it in the buffer described by the response CreateContextLength and
CreateContextOffset. This structure MUST have the following values set:

▪ LeaseKey MUST be set to Lease.LeaseKey.

▪ LeaseState MUST be set to Lease.LeaseState.

The server MUST set Open.OplockState to Held, set Open.Lease to a reference to Lease, set

Open.OplockLevel to SMB2_OPLOCK_LEVEL_LEASE, and add Open to Lease.LeaseOpens. If this
Open is the first open in Lease.LeaseOpens, the server MUST set Lease.Held to TRUE. The
remainder of open response construction continues as described in "Response Construction".

3.3.5.9.9 Handling the SMB2_CREATE_QUERY_ON_DISK_ID Create Context

If the create request also contains either of the SMB2_CREATE_DURABLE_HANDLE_RECONNECT or

SMB2_CREATE_DURABLE_HANDLE_RECONNECT_V2 contexts, this section MUST be skipped.

The server MUST construct an SMB2_CREATE_QUERY_ON_DISK_ID Create Context structure, as
specified in section 2.2.14.2.9.

The server MUST set the DiskFileId by querying the underlying object store in an implementation-
specific manner. The DiskFileId value MUST be the same as the value returned in an SMB2
QUERY_INFO response to an SMB2 QUERY_INFO request with the FileInformationClass field set to
the FileInternalInformation value, as specified in section 3.3.5.20.1. The DiskFileId value SHOULD

uniquely identify the file among all other files sharing the same VolumeId value on the server.

310 / 464

[MS-SMB2-Diff] - v20190923
Server Message Block (SMB) Protocol Versions 2 and 3
Copyright © 2019 Microsoft Corporation
Release: September 23, 2019

The server MUST set the VolumeId field by querying the underlying object store in an
implementation-specific manner. The VolumeId value SHOULD uniquely identify the storage volume

for all volumes on the server.

In the "Response Construction" phase, the server MUST include the create context in the buffer

described by the CreateContextLength and CreateContextOffset fields of the response.

3.3.5.9.10 Handling the SMB2_CREATE_DURABLE_HANDLE_REQUEST_V2 Create

Context

This section applies only to servers that implement the SMB 3.x dialect family.

If the create request also includes an SMB2_CREATE_DURABLE_HANDLE_REQUEST create context, or

an SMB2_CREATE_DURABLE_HANDLE_RECONNECT or
SMB2_CREATE_DURABLE_HANDLE_RECONNECT_V2 create context, the server MUST fail the create
request with STATUS_INVALID_PARAMETER.

If RequestedOplockLevel in the create request is not set to SMB2_OPLOCK_LEVEL_BATCH, and if

the create request does not include a SMB2_CREATE_REQUEST_LEASE or
SMB2_CREATE_REQUEST_LEASE_V2 create context with a LeaseState field that includes

SMB2_LEASE_HANDLE_CACHING, and if any of the following conditions is TRUE, the server MUST
ignore this create context and skip this section:

▪ The SMB2_DHANDLE_FLAG_PERSISTENT bit is set in the Flags field of this create context and
TreeConnect.Share.IsCA is FALSE.

▪ The SMB2_DHANDLE_FLAG_PERSISTENT bit is not set in the Flags field of this create context.

If the create request also includes the SMB2_CREATE_APP_INSTANCE_ID create context, the server
MUST process the SMB2_CREATE_DURABLE_HANDLE_REQUEST_V2 create context only after

processing the SMB2_CREATE_APP_INSTANCE_ID create context.

The server MUST locate the Open in GlobalOpenTable where Open.CreateGuid matches the
CreateGuid in the SMB2_CREATE_DURABLE_HANDLE_REQUEST_V2 create context, and

Open.ClientGuid matches the ClientGuid of the connection that received this request.

If an Open is not found, the server MUST continue the create process specified in the "Open
Execution" Phase, and perform the following additional steps:

▪ The server MUST set Open.CreateGuid to the CreateGuid in

SMB2_CREATE_DURABLE_HANDLE_REQUEST_V2.

▪ In the "Successful Open Initialization" phase, if the underlying object store does not grant
durability, the server MUST skip the rest of the processing in this section. Otherwise, the server
MUST set Open.IsDurable to TRUE. The server MUST also set Open.DurableOwner to a
security descriptor accessible only by the user represented by Open.Session.SecurityContext. If
the SMB2_DHANDLE_FLAG_PERSISTENT bit is set in the Flags field of the request,

TreeConnect.Share.IsCA is TRUE, and Connection.ServerCapabilities includes
SMB2_GLOBAL_CAP_PERSISTENT_HANDLES, the server MUST set Open.IsPersistent to TRUE.

If an Open is found and the SMB2_FLAGS_REPLAY_OPERATION bit is not set in the SMB2 header, the
server MUST fail the request with STATUS_DUPLICATE_OBJECTID.

If an Open is found and the SMB2_FLAGS_REPLAY_OPERATION bit is set in the SMB2 header, the
server MUST perform the following:

▪ The server MUST set Open.Connection to the connection that received this request.

▪ The server MUST construct an SMB2_CREATE_DURABLE_HANDLE_RESPONSE_V2 create context
as follows:

311 / 464

[MS-SMB2-Diff] - v20190923
Server Message Block (SMB) Protocol Versions 2 and 3
Copyright © 2019 Microsoft Corporation
Release: September 23, 2019

▪ The Timeout field MUST be set to Open.DurableOpenTimeout.

▪ If Open.IsPersistent is TRUE, the server MUST set the SMB2_DHANDLE_FLAG_PERSISTENT

bit in the Flags field.

▪ The Buffer specified by the response MUST include the CreateContextsLength and

CreateContextsOffset fields.

The server MUST skip the construction of the SMB2_CREATE_DURABLE_HANDLE_RESPONSE_V2
create context if the SMB2_DHANDLE_FLAG_PERSISTENT bit is not set in the Flags field of the
request and if any of the following conditions is satisfied:

▪ Open.FileAttributes includes FILE_ATTRIBUTE_DIRECTORY.

▪ Open.OplockLevel is not equal to SMB2_OPLOCK_LEVEL_BATCH and Open.Lease.LeaseState
does not contain SMB2_LEASE_HANDLE_CACHING.

The server MUST construct an SMB2_CREATE_DURABLE_HANDLE_RESPONSE_V2 response create
context, with the following values set, as specified in section 2.2.14.2.12.

▪ If the Timeout value in the request is not zero, the Timeout value in the response
SHOULD<288> be set to whichever is smaller, the Timeout value in the request or 300 seconds.

▪ If the Timeout value in the request is zero, the Timeout value in the response SHOULD<289> be
set to an implementation-specific value.

▪ Open.DurableOpenTimeout MUST be set to the Timeout value in the response.

▪ If Open.IsPersistent is TRUE, the server MUST set the SMB2_DHANDLE_FLAG_PERSISTENT bit
in the Flags field.

▪ The buffer specified by the response MUST include the CreateContextLength and
CreateContextOffset fields.

3.3.5.9.11 Handling the SMB2_CREATE_REQUEST_LEASE_V2 Create Context

This section applies only to servers that implement the SMB 3.x dialect family.

If both SMB2_CREATE_DURABLE_HANDLE_RECONNECT and SMB2_CREATE_REQUEST_LEASE_V2
create contexts are present in the request, they are processed as specified in section 3.3.5.9.7, and
this section does not apply.

If the server does not support leasing, the server MUST ignore the
SMB2_CREATE_REQUEST_LEASE_V2 Create Context request.

If Connection.Dialect does not belong to the SMB 3.x dialect family or if RequestedOplockLevel is

not SMB2_OPLOCK_LEVEL_LEASE, the server SHOULD<290> ignore the
SMB2_CREATE_REQUEST_LEASE_V2 Create Context request.

By specifying a RequestedOplockLevel of SMB2_OPLOCK_LEVEL_LEASE, the client is requesting
that a lease be acquired for this open. If the request does not provide an

SMB2_CREATE_REQUEST_LEASE_V2 Create Context, the lease request MUST be ignored and
Open.OplockLevel MUST be set to SMB2_OPLOCK_LEVEL_NONE.

The processing changes involved in acquiring the lease are:

In the "Path Name Validation" phase, the server MUST attempt to locate a Lease Table by performing
a lookup in GlobalLeaseTableList using Connection.ClientGuid as the lookup key. If no
LeaseTable is found, one MUST be allocated and the following values set:

▪ LeaseTable.ClientGuid is set to Connection.ClientGuid.

312 / 464

[MS-SMB2-Diff] - v20190923
Server Message Block (SMB) Protocol Versions 2 and 3
Copyright © 2019 Microsoft Corporation
Release: September 23, 2019

▪ LeaseTable.LeaseList is set to an empty list.

If the allocation fails, the create request MUST be failed with STATUS_INSUFFICIENT_RESOURCES.

The server MUST attempt to locate a Lease by performing a lookup in the LeaseTable.LeaseList
using the LeaseKey in the SMB2_CREATE_REQUEST_LEASE_V2 as the lookup key. If a lease is found

but Lease.Filename does not match the file name for the incoming request, the request MUST be
failed with STATUS_INVALID_PARAMETER.

If a lease is found, the server MUST construct an SMB2_CREATE_RESPONSE_LEASE_V2 response
create context as specified below.

If no lease is found, one MUST be allocated with the following values set:

▪ Lease.LeaseKey is set to the LeaseKey in the SMB2_CREATE_REQUEST_LEASE_V2 create
context.

▪ If the SMB2_LEASE_FLAG_PARENT_LEASE_KEY_SET bit is set in the Flags field of the request,
Lease.ParentLeaseKey MUST be set to the ParentLeaseKey of the request.

▪ Lease.ClientLeaseId is set to a value as specified in section 3.3.1.4

▪ Lease.Filename is set to the file being opened.

▪ Lease.LeaseState is set to NONE.

▪ Lease.BreakToLeaseState is set to NONE.

▪ Lease.LeaseBreakTimeout is set to 0.

▪ Lease.LeaseOpens is set to an empty list.

▪ Lease.Breaking is set to FALSE.

▪ Lease.Epoch is set to 0.

▪ Lease.Version is set to 2.

If the allocation fails, the create request MUST be failed with STATUS_INSUFFICIENT_RESOURCES.
Otherwise, if a LeaseTable was created it MUST be added to the GlobalLeaseTableList, and if a

Lease was created it MUST be added to the LeaseTable.LeaseList.

At this point, execution of create continues as described in 3.3.5.9 until the "Oplock Acquisition"
phase.

During "Oplock Acquisition", if the underlying object store does not support leasing, the server
SHOULD fall back to requesting a batch oplock instead of a lease and continue processing as described
in "Oplock Acquisition". If the underlying object store does support leasing, the following steps are
taken:

If TreeConnect.Share.ForceLevel2Oplock is TRUE, and LeaseState includes
SMB2_LEASE_WRITE_CACHING, the server MUST clear the bit SMB2_LEASE_WRITE_CACHING in the

LeaseState field.

If the FileAttributes field in the request includes FILE_ATTRIBUTE_DIRECTORY and LeaseState
includes SMB2_LEASE_WRITE_CACHING, the server MUST clear the bit
SMB2_LEASE_WRITE_CACHING in the LeaseState field.

If TreeConnect.Share.Type includes STYPE_CLUSTER_SOFS, and if LeaseState includes
SMB2_LEASE_READ_CACHING, the server MUST set LeaseState to SMB2_LEASE_READ_CACHING,
otherwise set LeaseState to SMB2_LEASE_NONE.

313 / 464

[MS-SMB2-Diff] - v20190923
Server Message Block (SMB) Protocol Versions 2 and 3
Copyright © 2019 Microsoft Corporation
Release: September 23, 2019

If the caching state requested in LeaseState of the SMB2_CREATE_REQUEST_LEASE_V2 is not a
superset of Lease.LeaseState or if Lease.Breaking is TRUE, the server MUST NOT promote

Lease.LeaseState. If the lease state requested is a superset of Lease.LeaseState and
Lease.Breaking is FALSE, the server MUST request promotion of the lease state from the underlying

object store to the new caching state.<291>

If the object store succeeds this request, Lease.LeaseState MUST be set to the new caching state.
The server MUST increment Lease.Epoch by 1. If Lease.Breaking is TRUE, the server MUST return
the existing Lease.LeaseState to client and set Flags to be
SMB2_LEASE_FLAG_BREAK_IN_PROGRESS. At this point, execution continues as described in section
3.3.5.9 until the "Response Construction" phase.

In the "Response Construction" phase, the server MUST construct an

SMB2_CREATE_RESPONSE_LEASE_V2 response create context, following the syntax specified in
section 2.2.14.2.11, and include it in the buffer described by the response CreateContextLength and
CreateContextOffset. This structure MUST have the following values set:

▪ LeaseKey MUST be set to Lease.LeaseKey.

▪ LeaseState MUST be set to Lease.LeaseState.

▪ If Lease.ParentLeaseKey is not empty, ParentLeaseKey MUST be set to

Lease.ParentLeaseKey, and the SMB2_LEASE_FLAG_PARENT_LEASE_KEY_SET bit MUST be set
in the Flags field of the response.

▪ Epoch MUST be set to Lease.Epoch.

The server MUST set Open.OplockState to Held, set Open.Lease to a reference to Lease, set
Open.OplockLevel to SMB2_OPLOCK_LEVEL_LEASE, and add Open to Lease.LeaseOpens. If this
Open is the first open in Lease.LeaseOpens, the server MUST set Lease.Held to TRUE. The
remainder of open response construction continues as described in the "Response Construction"

phase.

3.3.5.9.12 Handling the SMB2_CREATE_DURABLE_HANDLE_RECONNECT_V2 Create

Context

This section applies only to servers that implement the SMB 3.x dialect family.

There is no processing done for "Path Name Validation" or "Open Execution" as listed in section

3.3.5.9.

The processing changes involved for this create context are:

▪ The server MUST look up an existing Open in the GlobalOpenTable by doing a lookup with the
FileId.Persistent portion of the create context.

▪ If the lookup fails:

▪ If the request includes the SMB2_DHANDLE_FLAG_PERSISTENT bit in the Flags field of the

SMB2_CREATE_DURABLE_HANDLE_RECONNECT_V2 create context, the server MUST look up

an existing Open in the GlobalOpenTable by doing a lookup with the CreateGuid of the
create context. If the lookup fails, the server SHOULD<292> fail the request with
STATUS_OBJECT_NAME_NOT_FOUND and proceed as specified in "Failed Open Handling" in
section 3.3.5.9.

▪ Otherwise, the server SHOULD<293> fail the request with
STATUS_OBJECT_NAME_NOT_FOUND and proceed as specified in "Failed Open Handling" in

section 3.3.5.9.

314 / 464

[MS-SMB2-Diff] - v20190923
Server Message Block (SMB) Protocol Versions 2 and 3
Copyright © 2019 Microsoft Corporation
Release: September 23, 2019

▪ If any of the following conditions is TRUE, the server MUST fail the request with
STATUS_OBJECT_NAME_NOT_FOUND:

▪ Open.Lease is not NULL and Open.ClientGuid is not equal to the ClientGuid of the
connection that received this request.

▪ If Open.IsPersistent is TRUE and the SMB2_DHANDLE_FLAG_PERSISTENT bit is not set in
the Flags field of the SMB2_CREATE_DURABLE_HANDLE_RECONNECT_V2 Create Context, the
server SHOULD<294> fail the request with STATUS_OBJECT_NAME_NOT_FOUND.

▪ Open.CreateGuid is not equal to the CreateGuid in the request.

▪ Open.IsDurable is FALSE and Open.IsResilient is FALSE or unimplemented.

▪ Open.Session is not NULL.

▪ Open.Lease is NULL and the SMB2_CREATE_REQUEST_LEASE or

SMB2_CREATE_REQUEST_LEASE_V2 create context is present.

▪ Open.Lease is NOT NULL and the SMB2_CREATE_REQUEST_LEASE or
SMB2_CREATE_REQUEST_LEASE_V2 create context is not present.

▪ The SMB2_CREATE_REQUEST_LEASE_V2 create context is also present in the request, the
server supports directory leasing, and Open.Lease.LeaseKey does not match the LeaseKey
provided in the SMB2_CREATE_REQUEST_LEASE_V2 create context.

▪ The SMB2_CREATE_REQUEST_LEASE create context is also present in the request, the server
supports leasing, and Open.Lease.LeaseKey does not match the LeaseKey provided in the
SMB2_CREATE_REQUEST_LEASE create context.

▪ If Open.Lease is not NULL, the server supports leasing, Lease.Version is 1, and the request
does not contain the SMB2_CREATE_REQUEST_LEASE create context, or if Lease.Version is 2
and the request does not contain the SMB2_CREATE_REQUEST_LEASE_V2 create context, the
server SHOULD<295> fail the request with STATUS_OBJECT_NAME_NOT_FOUND.

▪ If any of the following conditions is TRUE, the server MUST fail the request with
STATUS_INVALID_PARAMETER:

▪ The CREATE request also contains the SMB2_CREATE_DURABLE_HANDLE_REQUEST context,
the SMB2_CREATE_DURABLE_HANDLE_RECONNECT context, or the
SMB2_CREATE_DURABLE_HANDLE_REQUEST_V2 context.

▪ Open.Lease is not NULL and Open.FileName does not match the file name specified in the
Buffer field of the SMB2 CREATE request.

▪ If Open.IsPersistent is FALSE and the SMB2_DHANDLE_FLAG_PERSISTENT bit is set in the
Flags field of the SMB2_CREATE_DURABLE_HANDLE_RECONNECT_V2 Create Context, the
server SHOULD<296> fail the request with STATUS_INVALID_PARAMETER.

▪ The server MUST ignore the DesiredAccess, ShareAccess, and CreateOptions fields in the
request.

▪ If the user represented by Session.SecurityContext is not the same user denoted by

Open.DurableOwner, the server MUST fail the request with STATUS_ACCESS_DENIED and
proceed as specified in "Failed Open Handling" in section 3.3.5.9.

▪ The server MUST set the Open.Connection to refer to the connection that received this request.

▪ The server MUST set the Open.Session to refer to the session that received this request.

315 / 464

[MS-SMB2-Diff] - v20190923
Server Message Block (SMB) Protocol Versions 2 and 3
Copyright © 2019 Microsoft Corporation
Release: September 23, 2019

▪ The server MUST set the Open.TreeConnect to refer to the tree connect that received this
request, and Open.TreeConnect.OpenCount MUST be increased by 1.

▪ Open.FileId MUST be set to a generated value that uniquely identifies this Open in
Session.OpenTable.

▪ The server MUST insert the Open into the Session.OpenTable with the Open.FileId as the new
key.

▪ If Open.IsSharedVHDX and Open.IsPersistent are TRUE, the request MUST be processed as
specified in [MS-RSVD] section 3.2.5.1 by providing Open.LocalOpen.

The "Successful Open Initialization" and "Oplock Acquisition" phases MUST be skipped, and processing
MUST continue as specified in "Response Construction".

In the "Response Construction" phase:

If the server supports directory leasing, Open.Lease is not NULL, and Lease.Version is 2, then the
server MUST construct an SMB2_CREATE_RESPONSE_LEASE_V2 create context that follows the

syntax specified in section 2.2.14.2.11, and include it in the buffer described by the response
CreateContextLength and CreateContextOffset fields. This structure MUST have the following
values set:

▪ LeaseKey MUST be set to Lease.LeaseKey.

▪ LeaseState MUST be set to Lease.LeaseState.

▪ If Lease.ParentLeaseKey is not empty, ParentLeaseKey MUST be set to
Lease.ParentLeaseKey, and the SMB2_LEASE_FLAG_PARENT_LEASE_KEY_SET bit MUST be set
in the Flags field of the response.

▪ If Lease.LeaseState includes SMB2_LEASE_WRITE_CACHING, the server MUST set Lease.Epoch
to the Epoch field in the Create Context request. Otherwise, the server MUST set Lease.Epoch to
the Epoch field in the Create Context request incremented by 1. Epoch MUST be set to

Lease.Epoch.

If the server supports leasing, Open.Lease is not NULL, and Lease.Version is 1, then the server
MUST construct an SMB2_CREATE_RESPONSE_LEASE create context that follows the syntax specified
in section 2.2.14.2.10, and include it in the buffer described by the response CreateContextLength
and CreateContextOffset fields. This structure MUST have the following values set:

▪ LeaseKey MUST be set to Lease.LeaseKey.

▪ LeaseState MUST be set to Lease.LeaseState.

If Open.IsPersistent is TRUE, Open.Lease.Breaking is TRUE, and Open.Lease.BreakNotification
is not empty, the server MUST send Open.Lease.BreakNotification to the client over an available
connection in ConnectionList where Open.ClientGuid matches Connection.ClientGuid. If the
server succeeds in sending the notification, the server MUST set Open.Lease.BreakNotification to
empty and MUST start the lease break acknowledgment timer as specified in section 3.3.2.5.

3.3.5.9.13 Handling the SMB2_CREATE_APP_INSTANCE_ID and

SMB2_CREATE_APP_INSTANCE_VERSION Create Contexts

This section applies only to servers that implement the SMB 3.x dialect family.

If the create request also includes the SMB2_CREATE_DURABLE_HANDLE_RECONNECT_V2 create
context, the server MUST process the SMB2_CREATE_DURABLE_HANDLE_RECONNECT_V2 create
context as specified in section 3.3.5.9.12, and this section MUST be skipped.

316 / 464

[MS-SMB2-Diff] - v20190923
Server Message Block (SMB) Protocol Versions 2 and 3
Copyright © 2019 Microsoft Corporation
Release: September 23, 2019

The server MAY validate the StructureSize field of the create context.

The server MUST attempt to locate an Open in GlobalOpenTable where:

▪ AppInstanceId in the request is equal to Open.AppInstanceId.

▪ Target path name is equal to Open.PathName.

▪ Open.TreeConnect.Share is equal to TreeConnect.Share.

▪ Open.Session.Connection.ClientGuid is not equal to the current Connection.ClientGuid.

If an Open is found, Connection.Dialect is "3.1.1", the request includes the
SMB2_CREATE_APP_INSTANCE_VERSION context, Open.ApplicationInstanceVersionHigh and
Open.ApplicationInstanceVersionLow are not empty, and either of the following is true, then
the CREATE operation MUST be failed with STATUS_FILE_FORCED_CLOSED (0xC00000B6):

▪ Open.ApplicationInstanceVersionHigh is greater than the AppInstanceVersionHigh field

in the SMB2_CREATE_APP_INSTANCE_VERSION create context.

▪ Open.ApplicationInstanceVersionHigh is equal to the AppInstanceVersionHigh and
Open.ApplicationInstanceVersionLow is greater than or equal to the
AppInstanceVersionLow fields provided in the SMB2_CREATE_APP_INSTANCE_VERSION
create context.

If the server implements SMB dialect 3.1.1, an Open is found,

Open.ApplicationInstanceVersionHigh and Open.ApplicationInstanceVersionLow are not
empty, and the request does not include the SMB2_CREATE_APP_INSTANCE_VERSION create context,
then the CREATE operation MUST be failed with STATUS_FILE_FORCED_CLOSED (0xC00000B6).

If an Open is found, the server MUST calculate the maximal access that the user, identified by
Session.SecurityContext, has on the file being opened.<297> If the maximal access includes
GENERIC_READ access, the server MUST close the open as specified in 3.3.4.17.

If Open.CreateGuid is NULL, and Open.TreeConnect.Share.IsCA is FALSE, the server

SHOULD<298> close the open as specified in section 3.3.4.17.

The server MUST then continue the create process specified in the "Open Execution" Phase.

3.3.5.9.14 Handling the SVHDX_OPEN_DEVICE_CONTEXT Create Context

This section applies only to servers that implement the SMB 3.0.2 or SMB 3.1.1 dialect.

If IsSharedVHDSupported is FALSE, the server MUST ignore the create context.

If the create request has any other create contexts, the server MUST process those create contexts

before processing the SVHDX_OPEN_DEVICE_CONTEXT.

If IsSharedVHDSupported is TRUE and the file name in the Buffer field ends with
":SharedVirtualDisk", the processing changes involved for this create context are:

▪ In the "Open Execution" phase, this request MUST be processed as specified in [MS-RSVD] section
3.2.5.1 by providing the file name, Open.CreateOptions, and the
SVHDX_OPEN_DEVICE_CONTEXT Create Context.

▪ In the "Successful Open Initialization" phase, the server MUST set Open.IsSharedVHDX to
TRUE.

▪ In the "Response Construction" phase:

317 / 464

[MS-SMB2-Diff] - v20190923
Server Message Block (SMB) Protocol Versions 2 and 3
Copyright © 2019 Microsoft Corporation
Release: September 23, 2019

▪ If the RSVD server has returned a response create context, as specified in [MS-RSVD] sections
2.2.4.31 and 2.2.4.33, the server MUST include it in the buffer described by the response

CreateContextLength and CreateContextOffset fields.

If IsSharedVHDSupported is TRUE and the file name in the Buffer field does not end with

":SharedVirtualDisk", the processing changes involved for this create context are:

▪ The server MUST set Open.IsSharedVHDX to FALSE.

▪ If OriginatorFlags in SVHDX_OPEN_DEVICE_CONTEXT is set to SVHDX_ORIGINATOR_VHDMP,
the server MUST fail the request with STATUS_VHD_SHARED. Otherwise, the create operation
MUST be ignored.

3.3.5.10 Receiving an SMB2 CLOSE Request

When the server receives a request with an SMB2 header with a Command value equal to SMB2
CLOSE, message handling proceeds as follows:

The server MAY<299> validate the open before session verification.

The server MUST locate the session, as specified in section 3.3.5.2.9.

Next, the server MUST locate the open being closed by performing a lookup in the
Session.OpenTable, using FileId.Volatile of the request as the lookup key. If no open is found, or if
Open.DurableFileId is not equal to FileId.Persistent, the server MUST fail the request with
STATUS_FILE_CLOSED.

The server MUST locate the tree connection, as specified in section 3.3.5.2.11.

The server MUST locate the Request in Connection.RequestList for which Request.MessageId
matches the MessageId value in the SMB2 header and set Request.Open to the Open.

If SMB2_CLOSE_FLAG_POSTQUERY_ATTRIB is set in the Flags field of the request, the server MUST
query the creation time, last access time, last write time, change time, allocation size in bytes, end of

file in bytes, and file attributes of the file from the underlying object store in an implementation-
specific manner<300>.

The server MUST close the Open as specified in section 3.3.4.17.

The server then MUST construct the response following the syntax specified in section 2.2.16. The

values MUST be set as follows:

▪ If the attributes of the file were requested and can be fetched, the server MUST set the Flags field
to SMB2_CLOSE_FLAG_POSTQUERY_ATTRIB. Otherwise Flags MUST be set to 0.

▪ If SMB2_CLOSE_FLAG_POSTQUERY_ATTRIB was set:

▪ CreationTime, LastAccessTime, LastWriteTime, ChangeTime, AllocationSize,
EndofFile, and FileAttributes MUST be set to the values returned from the attribute query.

▪ If SMB2_CLOSE_FLAG_POSTQUERY_ATTRIB was not set:

▪ CreationTime, LastAccessTime, LastWriteTime, ChangeTime, AllocationSize,
EndofFile, and FileAttributes MUST all be set to 0.

The response MUST then be sent to the client.

The Server MUST send an SMB2 CHANGE_NOTIFY Response with STATUS_NOTIFY_CLEANUP status
code for all pending CHANGE_NOTIFY requests associated with the FileId that is closed.

318 / 464

[MS-SMB2-Diff] - v20190923
Server Message Block (SMB) Protocol Versions 2 and 3
Copyright © 2019 Microsoft Corporation
Release: September 23, 2019

The status code returned by this operation MUST be one of those defined in [MS-ERREF]. Common
status codes returned by this operation include:

▪ STATUS_SUCCESS

▪ STATUS_INSUFFICIENT_RESOURCES

▪ STATUS_FILE_CLOSED

▪ STATUS_NETWORK_NAME_DELETED

▪ STATUS_USER_SESSION_DELETED

▪ STATUS_INVALID_PARAMETER

▪ STATUS_NETWORK_SESSION_EXPIRED

▪ STATUS_ACCESS_DENIED

3.3.5.11 Receiving an SMB2 FLUSH Request

When the server receives a request with an SMB2 header with a Command value equal to SMB2
FLUSH, message handling proceeds as follows:

The server MUST locate the session, as specified in section 3.3.5.2.9.

The server MUST locate the tree connection, as specified in section 3.3.5.2.11.

Next the server MUST locate the open being flushed by performing a lookup in the
Session.OpenTable, using the FileId.Volatile of the request as the lookup key. If no open is found,
or if Open.DurableFileId is not equal to FileId.Persistent, the server MUST fail the request with
STATUS_FILE_CLOSED. Otherwise, the server MUST locate the Request in Connection.RequestList
for which Request.MessageId matches the MessageId value in the SMB2 header, and set
Request.Open to the Open.

If the Open is on a file and Open.GrantedAccess includes neither FILE_WRITE_DATA nor
FILE_APPEND_DATA, the server MUST fail the request with STATUS_ACCESS_DENIED.

If the Open is on a directory and Open.GrantedAccess includes neither FILE_ADD_FILE nor
FILE_ADD_SUBDIRECTORY, the server MUST fail the request with STATUS_ACCESS_DENIED.

If Open.IsPersistent is TRUE, the server MUST succeed the operation and MUST respond with an
SMB2 FLUSH Response specified in section 2.2.18.

Otherwise, the server MUST issue a request to the underlying object store to flush any cached data for
Open.LocalOpen.<301> If this is a file, the object store MUST propagate any cached data to
underlying storage. If this is a named pipe, the server MUST wait for all data written to the pipe to be
consumed by a reader. This operation MUST block until the flush is complete. (The server
SHOULD<302> choose to handle this request asynchronously, as specified in section 3.3.4.2.)

If the operation succeeds, the server MUST initialize a response following the syntax specified in

section 2.2.18.

If the operation fails, the server MUST return the error code to the client.

The status code returned by this operation MUST be one of those defined in [MS-ERREF]. Common
status codes returned by this operation include:

▪ STATUS_SUCCESS

▪ STATUS_INSUFFICIENT_RESOURCES

319 / 464

[MS-SMB2-Diff] - v20190923
Server Message Block (SMB) Protocol Versions 2 and 3
Copyright © 2019 Microsoft Corporation
Release: September 23, 2019

▪ STATUS_ACCESS_DENIED

▪ STATUS_FILE_CLOSED

▪ STATUS_NETWORK_NAME_DELETED

▪ STATUS_USER_SESSION_DELETED

▪ STATUS_NETWORK_SESSION_EXPIRED

▪ STATUS_INVALID_PARAMETER

▪ STATUS_PIPE_BROKEN

▪ STATUS_DISK_FULL

▪ STATUS_CANCELLED

3.3.5.12 Receiving an SMB2 READ Request

When the server receives a request with an SMB2 header with a Command value equal to SMB2
READ, message handling proceeds as follows:

The server MUST locate the session, as specified in section 3.3.5.2.9.

The server MUST locate the tree connection, as specified in section 3.3.5.2.11.

Next the server MUST locate the open that is being read from, by performing a lookup in the
Session.OpenTable, using the FileId.Volatile of the request as the lookup key. If no open is found,
or if Open.DurableFileId is not equal to FileId.Persistent, the server MUST fail the request with
STATUS_FILE_CLOSED. Otherwise, the server MUST locate the Request in Connection.RequestList
for which Request.MessageId matches the MessageId value in the SMB2 header, and set
Request.Open to the Open.

If Open.GrantedAccess does not allow for FILE_READ_DATA, the request MUST be failed with

STATUS_ACCESS_DENIED.

The server SHOULD<303> fail the request with STATUS_INVALID_PARAMETER if the Length field is
greater than Connection.MaxReadSize.

If Connection.SupportsMultiCredit is TRUE the server MUST validate CreditCharge based on
Length, as specified in section 3.3.5.2.5. If the validation fails, it MUST fail the read request with
STATUS_INVALID_PARAMETER.

If the server implements the SMB 3.0.2 or SMB 3.1.1 dialect, the read is being executed on a named
pipe, and the SMB2_READFLAG_READ_UNBUFFERED bit is set in the Flags field, the server MUST fail
the request with STATUS_INVALID_PARAMETER.

If Connection.Dialect belongs to the SMB 3.x dialect family and if any of the following conditions are
TRUE, the server MUST fail the request with STATUS_INVALID_PARAMETER:

▪ Connection.Dialect is "3.0.2" or "3.1.1" and Channel is not equal to
SMB2_CHANNEL_RDMA_V1_INVALIDATE or SMB2_CHANNEL_RDMA_V1 or

SMB2_CHANNEL_NONE.

▪ Connection.Dialect is "3.0" and Channel is not equal to SMB2_CHANNEL_RDMA_V1 or
SMB2_CHANNEL_NONE.

▪ Channel is equal to SMB2_CHANNEL_RDMA_V1 or SMB2_CHANNEL_RDMA_V1_INVALIDATE and
any of the following conditions is TRUE:

320 / 464

[MS-SMB2-Diff] - v20190923
Server Message Block (SMB) Protocol Versions 2 and 3
Copyright © 2019 Microsoft Corporation
Release: September 23, 2019

▪ The underlying Connection is not RDMA.

▪ Length, ReadChannelInfoOffset, or ReadChannelInfoLength is equal to 0.

The server MUST issue a read to the underlying object store represented by Open.LocalOpen for the
length, in bytes, given by Length, at the offset, in bytes, from the beginning of the file, provided in

Offset. If the server implements the SMB 3.0.2 or SMB 3.1.1 dialect and if the
SMB2_READFLAG_READ_UNBUFFERED bit is set in the Flags field of the request, the server
SHOULD<304> indicate to the underlying object store not to buffer the read data.

If the read is being executed on a named pipe, and the pipe is in blocking mode (the default), the
operation could block for a long time, so the server MAY<305> choose to handle it asynchronously, as
specified in section 3.3.4.2. To query a pipe's blocking mode, use the FilePipeInformation file
information class, as specified in [MS-FSCC] section 2.4.29. To change a pipe's blocking mode, use an

SMB2 SET_INFO Request with the FilePipeInformation file information class, as specified in [MS-FSCC]
section 2.4.29.<306> If the read is not finished in 0.5 milliseconds, the server MUST send an interim
response to the client.

If the read fails, the server MUST fail the request using the error code received from the read
operation. If the read returns fewer bytes than specified by the MinimumCount field of the request,
the server MUST fail the request with STATUS_END_OF_FILE.

If the read succeeds, the server MUST construct a read response using the syntax specified in section
2.2.20 with the following values.

If the request Channel field contains the value SMB2_CHANNEL_NONE, then:

▪ DataOffset MUST be set to the offset into the response, in bytes, from the beginning of the SMB2
header where the data is located.

▪ The data MUST be copied into the response.

▪ DataLength MUST be set to the number of bytes returned.

▪ DataRemaining MUST be set to zero.

If IsCompressionSupported is TRUE, Connection.CompressionIds is not empty, underlying
Connection is not RDMA, and Flags field in the request includes
SMB2_READFLAG_REQUEST_COMPRESSED, Request.CompressReply MUST be set to TRUE.

If the request Channel field contains the value SMB2_CHANNEL_RDMA_V1 or
SMB2_CHANNEL_RDMA_V1_INVALIDATE, the data MUST be sent via the processing specified in [MS-
SMBD] section 3.1.4.5 RDMA Write to Peer Buffer, providing the Connection, the data, and the array

of SMB_DIRECT_BUFFER_DESCRIPTOR_V1 structures passed in the request at offset
ReadChannelInfoOffset and of length ReadChannelInfoLength fields.

▪ The DataOffset field MUST be set to the offset into the response, in bytes, from the beginning of
the SMB2 header to the Buffer field.

▪ The data MUST NOT be copied into the response.

▪ DataRemaining MUST be set to the number of bytes returned via RDMA.

▪ DataLength MUST be set to zero.

The response MUST then be sent to the client. If the request Channel field contains the value
SMB2_CHANNEL_RDMA_V1_INVALIDATE, then the Token in the first element of the array of
SMB_DIRECT_BUFFER_DESCRIPTOR_V1 structures passed in the request MUST additionally be
supplied, as specified in [MS-SMBD] section 3.1.4.2.

321 / 464

[MS-SMB2-Diff] - v20190923
Server Message Block (SMB) Protocol Versions 2 and 3
Copyright © 2019 Microsoft Corporation
Release: September 23, 2019

The status code returned by this operation MUST be one of those defined in [MS-ERREF]. Common
status codes returned by this operation include:

▪ STATUS_SUCCESS

▪ STATUS_INSUFFICIENT_RESOURCES

▪ STATUS_ACCESS_DENIED

▪ STATUS_FILE_CLOSED

▪ STATUS_NETWORK_NAME_DELETED

▪ STATUS_USER_SESSION_DELETED

▪ STATUS_NETWORK_SESSION_EXPIRED

▪ STATUS_INVALID_PARAMETER

▪ STATUS_END_OF_FILE

▪ STATUS_PIPE_BROKEN

▪ STATUS_BUFFER_OVERFLOW

▪ STATUS_CANCELLED

▪ STATUS_FILE_LOCK_CONFLICT

3.3.5.13 Receiving an SMB2 WRITE Request

When the server receives a request with an SMB2 header with a Command value equal to SMB2
WRITE, message handling proceeds as follows:

The server MUST locate the session, as specified in section 3.3.5.2.9.

The server MUST locate the tree connection, as specified in section 3.3.5.2.11.

Next the server MUST locate the open being written to by performing a lookup in the

Session.OpenTable, using FileId.Volatile of the request as the lookup key. If no open is found, or if
Open.DurableFileId is not equal to FileId.Persistent, the server MUST fail the request with
STATUS_FILE_CLOSED. Otherwise, the server MUST locate the Request in Connection.RequestList
for which Request.MessageId matches the MessageId value in the SMB2 Header, and set
Request.Open to the Open.

If the range being written to is within the existing file size and Open.GrantedAccess does not include

FILE_WRITE_DATA, or if the range being written to extends the file size and Open.GrantedAccess
does not include FILE_APPEND_DATA, the server SHOULD<307> fail the request with
STATUS_ACCESS_DENIED.

The server SHOULD<308> fail the request with STATUS_INVALID_PARAMETER if the Length field is

greater than Connection.MaxWriteSize.

If Connection.Dialect belongs to the SMB 3.x dialect family and if any of the following conditions are
TRUE, the server MUST fail the request with STATUS_INVALID_PARAMETER:

▪ Connection.Dialect is "3.0.2" or "3.1.1" and Channel is not equal to
SMB2_CHANNEL_RDMA_V1_INVALIDATE or SMB2_CHANNEL_RDMA_V1 or
SMB2_CHANNEL_NONE.

322 / 464

[MS-SMB2-Diff] - v20190923
Server Message Block (SMB) Protocol Versions 2 and 3
Copyright © 2019 Microsoft Corporation
Release: September 23, 2019

▪ Connection.Dialect is "3.0" and Channel is not equal to SMB2_CHANNEL_RDMA_V1 or
SMB2_CHANNEL_NONE.

▪ Channel is equal to SMB2_CHANNEL_RDMA_V1 or SMB2_CHANNEL_RDMA_V1_INVALIDATE and
any of the following conditions is TRUE:

▪ The underlying Connection is not RDMA.

▪ Length or DataOffset are not equal to 0.

▪ RemainingBytes, WriteChannelInfoOffset, or WriteChannelInfoLength are equal to 0.

If Channel is equal to SMB2_CHANNEL_NONE and DataOffset is greater than 0x100, the server
MUST fail the request with STATUS_INVALID_PARAMETER.

If Channel is equal to SMB2_CHANNEL_NONE and the number of bytes received in Buffer is less than
(DataOffset + Length), the server MUST fail the request with STATUS_INVALID_PARAMETER.

If Connection.SupportsMultiCredit is TRUE, the server MUST validate CreditCharge based on

Length, as specified in section 3.3.5.2.5. If the validation fails, it MUST fail the write request with
STATUS_INVALID_PARAMETER.

If the server implements the SMB 3.x dialect family, and if a write is being executed on a named pipe
and the Flags field is set to SMB2_WRITEFLAG_WRITE_UNBUFFERED or
SMB2_WRITEFLAG_WRITE_THROUGH, the server MUST fail the request with

STATUS_INVALID_PARAMETER.

The server SHOULD<309> ignore undefined bits in the Flags field.

If the server implements the SMB 3.0.2 or SMB 3.1.1 dialect, Connection.Dialect is not "3.0.2" or
"3.1.1", and the SMB2_WRITEFLAG_WRITE_UNBUFFERED bit is set in the Flags field, the server
MUST ignore the bit.

If the request Channel field contains the value SMB2_CHANNEL_RDMA_V1 or
SMB2_CHANNEL_RDMA_V1_INVALIDATE, then the data MUST be first obtained via the processing

specified in [MS-SMBD] section 3.1.4.6 RDMA Read from Peer Buffer, providing the Connection, a
newly allocated buffer to receive the data, and the array of SMB_DIRECT_BUFFER_DESCRIPTOR_V1
structures passed in the request at offset WriteChannelInfoOffset and of length
WriteChannelInfoLength fields.

If the server implements the SMB 3.0.2 or SMB 3.1.1 dialect, SMB2_WRITEFLAG_WRITE_THROUGH is
set in the Flags field of the request, SMB2_WRITEFLAG_WRITE_UNBUFFERED is not set in the Flags
field of the request, and Open.CreateOptions doesn't include the

FILE_NO_INTERMEDIATE_BUFFERING bit, the server MUST fail the request with
STATUS_INVALID_PARAMETER.

If the server implements the SMB 2.1 or the SMB 3.x dialect family,
SMB2_WRITEFLAG_WRITE_THROUGH is set in the Flags field of the request, and
Open.CreateOptions doesn't include the FILE_NO_INTERMEDIATE_BUFFERING bit, the server MUST
fail the request with STATUS_INVALID_PARAMETER.

The server MUST issue a write to the underlying object store represented by Open.LocalOpen for the
length, in bytes, given by Length, at the offset, in bytes, from the beginning of the file, provided in
Offset. If Connection.Dialect is not "2.0.2", and SMB2_WRITEFLAG_WRITE_THROUGH is set in the
Flags field of the SMB2 WRITE Request, the server SHOULD<310> indicate to the underlying object
store that the write is to be written to underlying storage before completion is returned. If the server
implements the SMB 3.0.2 or SMB 3.1.1 dialect, and if the SMB2_WRITEFLAG_WRITE_UNBUFFERED
bit is set in the Flags field of the request, the server SHOULD indicate to the underlying object store

that the write data is not to be buffered.

323 / 464

[MS-SMB2-Diff] - v20190923
Server Message Block (SMB) Protocol Versions 2 and 3
Copyright © 2019 Microsoft Corporation
Release: September 23, 2019

If the write is being executed on a named pipe, and the pipe is in blocking mode (the default), the
operation could block for a long time, so the server MAY<311> choose to handle it asynchronously, as

specified in section 3.3.4.2. To query a pipe's blocking mode, use the FilePipeInformation file
information class, as specified in [MS-FSCC] section 2.4.29. To change a pipe's blocking mode, use an

SMB2 SET_INFO Request with the FilePipeInformation file information class, as specified in [MS-FSCC]
section 2.4.29.

If the write fails, the server MUST fail the request with the error code received from the write.

If the write succeeds, the server MUST construct a write response following the syntax specified in
section 2.2.22 with the following values:

▪ Count MUST be set to the number of bytes written.

▪ Remaining MUST be set to zero.

▪ WriteChannelInfoOffset MUST be set to zero.

▪ WriteChannelInfoLength MUST be set to zero.

The response MUST then be sent to the client. If the request Channel field contains the value
SMB2_CHANNEL_RDMA_V1_INVALIDATE, then the Token in the first element of the array of
SMB_DIRECT_BUFFER_DESCRIPTOR_V1 structures passed in the request MUST additionally be
supplied, as specified in [MS-SMBD] section 3.1.4.2.

The status code returned by this operation MUST be one of those defined in [MS-ERREF]. Common
status codes returned by this operation include:

▪ STATUS_SUCCESS

▪ STATUS_INSUFFICIENT_RESOURCES

▪ STATUS_ACCESS_DENIED

▪ STATUS_FILE_CLOSED

▪ STATUS_NETWORK_NAME_DELETED

▪ STATUS_USER_SESSION_DELETED

▪ STATUS_NETWORK_SESSION_EXPIRED

▪ STATUS_INVALID_PARAMETER

▪ STATUS_PIPE_BROKEN

▪ STATUS_DISK_FULL

▪ STATUS_CANCELLED

▪ STATUS_FILE_LOCK_CONFLICT

3.3.5.14 Receiving an SMB2 LOCK Request

When the server receives a request that has an SMB2 header (section 2.2.1) with a Command value
equal to SMB2 LOCK, message handling proceeds as follows:

The server MAY<312> validate the open before session verification.

The server MUST locate the Session, as specified in section 3.3.5.2.9.

324 / 464

[MS-SMB2-Diff] - v20190923
Server Message Block (SMB) Protocol Versions 2 and 3
Copyright © 2019 Microsoft Corporation
Release: September 23, 2019

The server MUST locate the Tree Connect, as specified in section 3.3.5.2.11.

Next, the server MUST locate the Open on which the client is requesting a lock or unlock by

performing a lookup in the Session.OpenTable, using the FileId.Volatile of the request as the
lookup key. If no Open is found, or if Open.DurableFileId is not equal to FileId.Persistent, the

server MUST fail the request with STATUS_FILE_CLOSED. Otherwise, the server MUST locate the
Request in Connection.RequestList for which Request.MessageId matches the MessageId value
in the SMB2 header, and set Request.Open to the Open.

If the LockSequence value in the SMB2 LOCK Request (section 2.2.26) is not zero, and either one of
the following conditions is TRUE, the server SHOULD verify whether the lock/unlock request with that
LockSequence value has been successfully processed before:

▪ Connection.Dialect is "2.1" and Open.IsResilient is TRUE.

▪ Connection.Dialect belongs to the SMB 3.x dialect family.<313>

The server verifies the LockSequence by performing the following steps:

1. The server MUST use LockSequenceIndex as an index into Open.LockSequenceArray in order
to locate the sequence number entry. If the index exceeds the maximum extent of the
Open.LockSequenceArray, or LockSequenceIndex is 0, or if the
Open.LockSequenceArray.Valid is FALSE, the server MUST skip step 2 and continue lock/unlock

processing.

2. The server MUST compare LockSequenceNumber to the SequenceNumber of the entry located
in step 1. If the sequence numbers are equal, the server MUST complete the lock/unlock request
with success. Otherwise, the server MUST reset the entry by setting Valid to FALSE and continue
lock/unlock processing.

If the flags of the initial SMB2_LOCK_ELEMENT in the Locks array of the request has
SMB2_LOCKFLAG_UNLOCK set, the server MUST process the lock array as a series of unlocks.

Otherwise, it MUST process the lock array as a series of lock requests.

The status code returned by this operation MUST be one of those defined in [MS-ERREF]. Common

status codes returned by this operation include:

▪ STATUS_SUCCESS

▪ STATUS_INSUFFICIENT_RESOURCES

▪ STATUS_ACCESS_DENIED

▪ STATUS_FILE_CLOSED

▪ STATUS_NETWORK_NAME_DELETED

▪ STATUS_USER_SESSION_DELETED

▪ STATUS_NETWORK_SESSION_EXPIRED

▪ STATUS_INVALID_PARAMETER

▪ STATUS_FILE_LOCK_CONFLICT

▪ STATUS_CANCELLED

▪ STATUS_LOCK_NOT_GRANTED

▪ STATUS_RANGE_NOT_LOCKED

325 / 464

[MS-SMB2-Diff] - v20190923
Server Message Block (SMB) Protocol Versions 2 and 3
Copyright © 2019 Microsoft Corporation
Release: September 23, 2019

3.3.5.14.1 Processing Unlocks

For each SMB2_LOCK_ELEMENT entry in the Locks array, if either SMB2_LOCKFLAG_SHARED_LOCK
or SMB2_LOCKFLAG_EXCLUSIVE_LOCK is set, the server MUST fail the request with

STATUS_INVALID_PARAMETER and stop processing further entries in the Locks array, and all
successfully processed unlock operations will not be rolled back.

If SMB2_LOCKFLAG_FAIL_IMMEDIATELY is set, the server MAY<314> ignore this flag.

The server MUST issue the byte-range unlock request to the underlying object store using
Open.LocalOpen, and passing the Offset and Length (in bytes) from the SMB2_LOCK_ELEMENT
entry.<315> If the unlock operation fails, the server MUST fail the operation with the error code
received from the object store and stop processing further entries in the Locks array.

If the unlock operation succeeds, the server MUST decrease Open.LockCount by 1. If there are
remaining entries in the Locks array, the server MUST continue processing the next entry in the
Locks array as specified above.

If the unlock operation succeeds and there are no remaining entries in the Locks array,
Connection.Dialect is "2.1" or belongs to the SMB 3.x dialect family, and Open.IsResilient or
Open.IsPersistent is TRUE, the server MUST set the lock sequence number in

Open.LockSequenceArray through the following step to indicate that the unlock request with
LockSequence has been successfully processed by the server:

1. If an entry is found via the lock request process described in the numbered list in section 3.3.5.14,
the server MUST set Valid to TRUE and save LockSequenceNumber into SequenceNumber of
the corresponding entry.

If the unlock operation succeeds and there are no remaining entries in the Locks array, the server
initializes an SMB2 LOCK Response following the syntax specified in section 2.2.27, which then MUST

be sent to the client.

3.3.5.14.2 Processing Locks

If the Locks array has more than one entry and the Flags field in any of these entries does not have
SMB2_LOCKFLAG_FAIL_IMMEDIATELY set, the server SHOULD<316> fail the request with
STATUS_INVALID_PARAMETER. For each SMB2_LOCK_ELEMENT entry in the Locks array, if
SMB2_LOCKFLAG_UNLOCK is set, the server MUST fail the request with

STATUS_INVALID_PARAMETER and stop processing further entries in the Locks array. All successfully
processed Lock operations are not rolled back. For combinations of Lock Flags other than those that
are defined in the Flags field of section 2.2.26.1, the server SHOULD fail the request with
STATUS_INVALID_PARAMETER.

The server MUST issue a byte-range lock request to the underlying object store using
Open.LocalOpen and passing the Offset and Length (in bytes) from the SMB2_LOCK_ELEMENT

entry.<317> If SMB2_LOCKFLAG_SHARED_LOCK is set, the lock MUST be acquired in a manner that
allows read operations and other shared lock operations from other opens, but disallows writes to the
region specified by the lock. If SMB2_LOCKFLAG_EXCLUSIVE_LOCK is set, the lock MUST be acquired
in a manner that does not allow read, write, or lock operations from other opens for the range
specified.<318>

If the range being locked is already locked by another open in a way that does not allow this open to
take a lock on the range, and if SMB2_LOCKFLAG_FAIL_IMMEDIATELY is set, the server MUST fail the

request with STATUS_LOCK_NOT_GRANTED.

If the lock operation fails, the server MUST unlock any ranges locked as part of processing the
previous entries in the Locks array of this request. It MUST decrement Open.LockCount by the
number of locks unlocked. It MUST stop processing any remaining entries in the Locks array and
MUST fail the operation with the error code received from the lock operation.

326 / 464

[MS-SMB2-Diff] - v20190923
Server Message Block (SMB) Protocol Versions 2 and 3
Copyright © 2019 Microsoft Corporation
Release: September 23, 2019

If the lock operation succeeds, the server MUST increase Open.LockCount by 1. If there are
remaining entries in the Locks array, the server MUST continue processing the next entry in the

Locks array as described previously.

If the lock operation succeeds and there are no remaining entries in the Locks array,

Connection.Dialect is "2.1" or belongs to the SMB 3.x dialect family, and Open.IsResilient or
Open.IsPersistent is TRUE, the server MUST set the lock sequence number in
Open.LockSequenceArray through the following step to indicate that the lock request with
LockSequence has been successfully processed by the server:

1. If an entry is found via the lock request process described in the numbered list in section 3.3.5.14,
the server MUST set Valid to TRUE and save LockSequenceNumber into the SequenceNumber
of the corresponding entry.

If the lock operation succeeds and there are no remaining entries in the Locks array, the server MUST
construct an SMB2_RESP_LOCK Response following the syntax specified in section 2.2.27, which is
then sent to the client.

3.3.5.15 (Updated Section) Receiving an SMB2 IOCTL Request

When the server receives a request with an SMB2 Header with a Command value equal to SMB2
IOCTL, message handling proceeds as follows:

The server MUST locate the session, as specified in section 3.3.5.2.9.

The server MUST locate the tree connection, as specified in section 3.3.5.2.11.

If the Flags field of the request is not SMB2_0_IOCTL_IS_FSCTL, the server MUST fail the request
with STATUS_NOT_SUPPORTED.

If the CtlCode is FSCTL_DFS_GET_REFERRALS, FSCTL_DFS_GET_REFERRALS_EX,
FSCTL_QUERY_NETWORK_INTERFACE_INFO, FSCTL_VALIDATE_NEGOTIATE_INFO, or
FSCTL_PIPE_WAIT and the value of FileId in the SMB2 Header of the request is not
0xFFFFFFFFFFFFFFFF, then the server MUST fail the request with STATUS_INVALID_PARAMETER.

For CtlCode values other than FSCTL_DFS_GET_REFERRALS, FSCTL_DFS_GET_REFERRALS_EX,
FSCTL_QUERY_NETWORK_INTERFACE_INFO, FSCTL_VALIDATE_NEGOTIATE_INFO, and

FSCTL_PIPE_WAIT, the server MUST locate the open on which the client is requesting the operation by
performing a lookup in Session.OpenTable by using the FileId.Volatile field of the request as the
lookup key. If no open is found or if Open.DurableFileId is not equal to FileId.Persistent, the
server MUST fail the request with STATUS_FILE_CLOSED. Otherwise, the server MUST locate the
Request in Connection.RequestList for which Request.MessageId matches the MessageId value
in the SMB2 header, and set Request.Open to the Open.

If either InputCount, MaxInputResponse, or MaxOutputResponse is greater than

Connection.MaxTransactSize, the server SHOULD<319> fail the request with
STATUS_INVALID_PARAMETER.

If InputCount is not equal to zero, the server MUST fail the request with
STATUS_INVALID_PARAMETER in the following cases:

▪ If InputOffset is greater than zero but less than (size of SMB2 header + size of the SMB2 IOCTL
request not including Buffer) or if InputOffset is greater than (size of SMB2 header + size of the
SMB2 IOCTL request).).

▪ If OutputOffset InputOffset is not a multiple of 8 bytes.

▪ If InputOffset is greater than zero but less than (size of SMB2 header + size of the SMB2 IOCTL
request not including Buffer) or if OutputOffset is greater than (size of SMB2 header + size of
the SMB2 IOCTL request).Message.

327 / 464

[MS-SMB2-Diff] - v20190923
Server Message Block (SMB) Protocol Versions 2 and 3
Copyright © 2019 Microsoft Corporation
Release: September 23, 2019

▪ If (InputOffset + InputCount) is greater than (size of SMB2 header + size of the SMB2 IOCTL
request).Message.

If (InputCount is equal to zero and InputOffset is greater than size of SMB2 Message, the server
MAY<320> fail the request with STATUS_INVALID_PARAMETER.

The server SHOULD<321> ignore OutputOffset +and OutputCount) is greater than (size of SMB2
header + size of the SMB2 IOCTL request). fields.

▪ If OutputCount is greater than zero and OutputOffset is less than (InputOffset +
InputCount).

Note that any padding inserted in the response message between the input buffer and output buffer to
align the output buffer to an 8-byte boundary, if necessary, is not included in the size of either the
input or the output buffer.

The server MUST NOT return an output buffer containing more bytes of data than the
MaxOutputResponse value specified by the client. If the underlying object store indicates an
insufficient buffer passed in with STATUS_BUFFER_OVERFLOW, the server SHOULD set the

OutputCount in the IOCTL response structure to the size of the data returned in that buffer by the
underlying object store and SHOULD<322> copy OutputCount bytes into the output buffer, and
MUST return a status of STATUS_BUFFER_OVERFLOW.

If Connection.SupportsMultiCredit is TRUE, the server MUST validate CreditCharge based on the
maximum of (InputCount + OutputCount) and (MaxInputResponse + MaxOutputResponse), as
specified in section 3.3.5.2.5. If the validation fails, it MUST fail the IOCTL request with
STATUS_INVALID_PARAMETER.

The server SHOULD<323> fail the request with STATUS_NOT_SUPPORTED when an FSCTL is not
allowed on the server, and SHOULD<324> fail the request with STATUS_INVALID_DEVICE_REQUEST
when the FSCTL is allowed, but is not supported on the file system on which the file or directory

handle specified by the FSCTL exists, as specified in [MS-FSCC] section 2.2.

If IsSharedVHDSupported is FALSE, and CtlCode is FSCTL_SVHDX_SYNC_TUNNEL_REQUEST,

FSCTL_QUERY_SHARED_VIRTUAL_DISK_SUPPORT, or FSCTL_SVHDX_ASYNC_TUNNEL_REQUEST, the
server MUST fail the request with STATUS_INVALID_DEVICE_REQUEST.

Processing for a specific CtlCode is as specified in subsequent sections.

The status code returned by this operation MUST be one of those defined in [MS-ERREF]. Common
status codes returned by this operation include:

▪ STATUS_SUCCESS

▪ STATUS_INSUFFICIENT_RESOURCES

▪ STATUS_ACCESS_DENIED

▪ STATUS_FILE_CLOSED

▪ STATUS_NETWORK_NAME_DELETED

▪ STATUS_USER_SESSION_DELETED

▪ STATUS_NETWORK_SESSION_EXPIRED

▪ STATUS_CANCELLED

▪ STATUS_INVALID_PARAMETER

▪ STATUS_BUFFER_OVERFLOW

328 / 464

[MS-SMB2-Diff] - v20190923
Server Message Block (SMB) Protocol Versions 2 and 3
Copyright © 2019 Microsoft Corporation
Release: September 23, 2019

▪ STATUS_NOT_SUPPORTED

▪ STATUS_BUFFER_TOO_SMALL

▪ STATUS_OBJECT_NAME_NOT_FOUND

▪ STATUS_END_OF_FILE

▪ STATUS_INVALID_DEVICE_REQUEST

3.3.5.15.1 Handling an Enumeration of Previous Versions Request

When the server receives a request with an SMB2 header with a Command value equal to SMB2
IOCTL and a CtlCode of FSCTL_SRV_ENUMERATE_SNAPSHOTS, message handling proceeds as
follows:

If the MaxOutputResponse of the request is less than 16 bytes, the server MUST fail the request

with STATUS_INVALID_PARAMETER.

The server SHOULD<325> refresh the snapshot list by querying the timestamps of available previous
versions of the share. The server MUST construct Share.SnapshotList so that the list contains only
the snapshots that are active.

The server MUST calculate the size required to return the SRV_SNAPSHOT_ARRAY structure containing
the previous version array based on the number of previous versions of the file available in the listed

snapshots in Share.SnapshotList as constructed in the previous paragraph.

If there are no previous versions of the file available or if the size required in bytes is greater than the
MaxOutputResponse received in the SMB2 IOCTL request, the server MUST construct an
SRV_SNAPSHOT_ARRAY structure following the syntax specified in section 2.2.32.2, with the following
values:

▪ NumberOfSnapShots MUST be set to the number of previous versions of the file available in the
listed snapshots in Share.SnapshotList.

▪ NumberOfSnapShotsReturned MUST be set to 0.

▪ SnapShotArraySize SHOULD<326> be set to the size, in bytes, required to receive all of the
previous version timestamps of the file listed in Share.SnapshotList.

Otherwise, the server MUST construct an SRV_SNAPSHOT_ARRAY structure following the syntax
specified in section 2.2.32.2, with the following values:

▪ NumberOfSnapShots MUST be set to the number of previous versions of the file available in the
listed snapshots in Share.SnapshotList.

▪ NumberOfSnapShotsReturned MUST be set to the number of previous version timestamps
being returned in the SnapShots array.

▪ SnapShotArraySize MUST be set to the size, in bytes, of the SnapShots array.

▪ The SnapShots array MUST list the time stamps in textual GMT format for all of the previous
version timestamps listed in Share.SnapshotList, as specified in section 2.2.32.2.

The server MUST then construct an SMB2 IOCTL response following the syntax specified in section

2.2.32, with the following values:

▪ CtlCode MUST be set to FSCTL_SRV_ENUMERATE_SNAPSHOTS.

▪ FileId.Persistent MUST be set to Open.DurableFileId. FileId.Volatile MUST be set to
Open.FileId.

329 / 464

[MS-SMB2-Diff] - v20190923
Server Message Block (SMB) Protocol Versions 2 and 3
Copyright © 2019 Microsoft Corporation
Release: September 23, 2019

▪ InputOffset SHOULD be set to the offset, in bytes, from the beginning of the SMB2 header to the
Buffer[] field of the response.

▪ InputCount SHOULD be set to zero.

▪ OutputOffset MUST be set to InputOffset + InputCount, rounded up to a multiple of 8.

▪ OutputCount MUST be set to the size of the SRV_SNAPSHOT_ARRAY that is constructed, as
specified above.

▪ Flags MUST be set to zero.

▪ The server MUST copy the constructed SRV_SNAPSHOT_ARRAY into the Buffer field at the
OutputOffset computed above.

The response MUST be sent to the client.

3.3.5.15.2 Handling a DFS Referral Information Request

When the server receives a request with an SMB2 header with a Command value equal to SMB2
IOCTL, and a CtlCode of FSCTL_DFS_GET_REFERRALS or FSCTL_DFS_GET_REFERRALS_EX, message
handling proceeds as follows:

If IsDfsCapable is set to FALSE, the server MUST return STATUS_FS_DRIVER_REQUIRED to the
client.

The server MUST invoke the event as specified in [MS-DFSC] section 3.2.4.2 and pass the following:

▪ The IP address of the client.

▪ The buffer containing the DFS referral request packet.

▪ IsExtendedReferral: Set to TRUE when CtlCode is FSCTL_DFS_GET_REFERRALS_EX.

▪ The maximum size of the response data buffer that will be accepted by the client, as indicated by

MaxOutputResponse field in the request.

If DFS returns a failure, the server MUST fail the request with the error code received from DFS. If the

error returned from DFS is STATUS_BUFFER_OVERFLOW, the server SHOULD<327> copy the data
returned by DFS into a normal FSCTL_GET_DFS_REFERRALS response and return
STATUS_BUFFER_OVERFLOW to the client as noted in sections 3.3.4.4 and 3.3.5.15.

If DFS returns success and a response buffer containing the referrals, the server MUST then construct
an SMB2 IOCTL response following the syntax specified in section 2.2.32, with the following values:

▪ CtlCode MUST be set to the CtrlCode in the request.

▪ FileId MUST be set to { 0xFFFFFFFFFFFFFFFF, 0xFFFFFFFFFFFFFFFF }.

▪ InputOffset SHOULD be set to the offset, in bytes, from the beginning of the SMB2 header to the
Buffer[] field of the response.

▪ InputCount SHOULD be set to zero.

▪ OutputOffset MUST be set to InputOffset + InputCount, rounded up to a multiple of 8.

▪ OutputCount MUST be set to the number of bytes received from DFS.

▪ Flags MUST be set to zero.

▪ The server MUST copy the buffer that was received from DFS into the Buffer field at the
OutputOffset computed above.

330 / 464

[MS-SMB2-Diff] - v20190923
Server Message Block (SMB) Protocol Versions 2 and 3
Copyright © 2019 Microsoft Corporation
Release: September 23, 2019

The response MUST be sent to the client.

3.3.5.15.3 Handling a Pipe Transaction Request

When the server receives a request with an SMB2 header with a Command value equal to SMB2

IOCTL, and a CtlCode of FSCTL_PIPE_TRANSCEIVE, message handling proceeds as follows.

If the share on which the request is being executed is not a named pipe share, the server
SHOULD<328> fail the request with STATUS_NOT_SUPPORTED.

The server MUST attempt to write the number of bytes specified in the request by the InputCount
field into the named pipe. If the write attempt fails, the server MUST fail the request returning the
error code received from the named pipe.

The server MUST then attempt to read the number of bytes specified in the request by

MaxOutputResponse from the named pipe. If the read attempt fails, the server MUST fail the
request returning the error code received from the named pipe. For more information on reading from
a pipe, see section 3.3.5.12.

If the read/write attempt is not finished in 1 millisecond, the server MUST send an interim response to
the client. If the read/write attempt succeeds,<329> the server MUST then construct an SMB2 IOCTL
response following the syntax specified in section 2.2.32, with the following values:

▪ CtlCode MUST be set to FSCTL_PIPE_TRANSCEIVE.

▪ FileId.Persistent MUST be set to Open.DurableFileId. FileId.Volatile MUST be set to
Open.FileId.

▪ InputOffset SHOULD be set to the offset, in bytes, from the beginning of the SMB2 header to the
Buffer[] field of the response.

▪ InputCount SHOULD<330> be set to zero.

▪ If any data was read from the pipe, OutputOffset MUST be set to InputOffset + InputCount,

rounded up to a multiple of 8. Otherwise, OutputOffset SHOULD<331> be set to zero.

▪ OutputCount MUST be set to the number of bytes read from the pipe. If no data is to be
returned, the server MUST set OutputCount to zero.

▪ Flags MUST be set to zero.

▪ The server MUST copy the bytes read into the Buffer field at the OutputOffset computed above.

The response MUST be sent to the client.

3.3.5.15.4 Handling a Peek at Pipe Data Request

When the server receives a request with an SMB2 header with a Command value equal to SMB2
IOCTL, and a CtlCode of FSCTL_PIPE_PEEK, message handling proceeds as follows:

The server MUST attempt to read the number of bytes specified in the request by

MaxOutputResponse from the named pipe without removing the bytes from the pipe. If the read
attempt fails, the server MUST fail the request and return the error code received from the named

pipe. An FSCTL_PIPE_PEEK MUST never block. A MaxOutputResponse value of zero is allowed.

If the share on which the request is being executed is not a named pipe share, the server
SHOULD<332> fail the request with STATUS_NOT_SUPPORTED.

If the read attempt succeeds, the server MUST then construct an SMB2 IOCTL response by following
the syntax specified in section 2.2.32, with the following values:

331 / 464

[MS-SMB2-Diff] - v20190923
Server Message Block (SMB) Protocol Versions 2 and 3
Copyright © 2019 Microsoft Corporation
Release: September 23, 2019

▪ CtlCode MUST be set to FSCTL_PIPE_PEEK.

▪ FileId.Persistent MUST be set to Open.DurableFileId. FileId.Volatile MUST be set to

Open.FileId.

▪ InputOffset SHOULD be set to the offset, in bytes, from the beginning of the SMB2 header to the

Buffer[] field of the response.

▪ InputCount SHOULD be set to zero.

▪ If any data was read from the pipe, OutputOffset MUST be set to InputOffset + InputCount,
rounded up to a multiple of 8. Otherwise, OutputOffset SHOULD<333> be set to zero.

▪ OutputCount MUST be set to the number of bytes read from the pipe.

▪ Flags MUST be set to zero.

▪ The server MUST copy the bytes read into the Buffer field at the OutputOffset computed above.

The response MUST be sent to the client.

3.3.5.15.5 Handling a Source File Key Request

When the server receives a request with an SMB2 header with a Command value equal to SMB2
IOCTL, and a CtlCode of FSCTL_SRV_REQUEST_RESUME_KEY, message handling proceeds as follows.

The SRV_REQUEST_RESUME_KEY Response is an opaque 24 byte blob followed by optional context as

described in 2.2.32.3.<334>

The server MUST provide a 24-byte value that is used to uniquely identify the open. The server
SHOULD use Open.DurableFileId, or alternately, MAY use an internally generated value that is
unique for all opens on the server.<335> The server MUST set the Open.ResumeKey and
ResumeKey values in the SRV_REQUEST_RESUME_KEY Response to the generated value.

If the maximum output buffer size specified is too small to contain an SRV_REQUEST_RESUME_KEY

structure, the server MUST return the status STATUS_INVALID_PARAMETER.

The server MUST construct an SMB2 IOCTL response following the syntax specified in section 2.2.32,
with the following values:

▪ CtlCode MUST be set to FSCTL_SRV_REQUEST_RESUME_KEY.

▪ FileId.Persistent MUST be set to Open.DurableFileId. FileId.Volatile MUST be set to
Open.FileId.

▪ InputOffset SHOULD be set to the offset, in bytes, from the beginning of the SMB2 header to the
Buffer[] field of the response.

▪ InputCount SHOULD be set to zero.

▪ OutputOffset MUST be set to InputOffset + InputCount, rounded up to a multiple of 8.

▪ OutputCount MUST be set to 32.

▪ Flags MUST be set to zero.

▪ The server MUST copy the constructed SRV_REQUEST_RESUME_KEY that is used to identify the
open into the Buffer field at the OutputOffset computed above.

The response MUST be sent to the client.

332 / 464

[MS-SMB2-Diff] - v20190923
Server Message Block (SMB) Protocol Versions 2 and 3
Copyright © 2019 Microsoft Corporation
Release: September 23, 2019

3.3.5.15.6 Handling a Server-Side Data Copy Request

When the server receives a request with an SMB2 header with a Command value equal to SMB2
IOCTL, and a CtlCode of FSCTL_SRV_COPYCHUNK or FSCTL_SRV_COPYCHUNK_WRITE, message

handling proceeds as follows:

The server MUST locate the source open from where data will be read by locating the open where
Open.ResumeKey matches the SourceKey that was received in the SRV_COPYCHUNK_COPY
structure, which was received in the buffer described by the InputCount and InputOffset fields of
the SMB2 IOCTL Request. If the open is not found, the server MUST fail the request with
STATUS_OBJECT_NAME_NOT_FOUND.

If the MaxOutputResponse value in the SMB2 IOCTL Request is less than the size of the

SRV_COPYCHUNK_RESPONSE structure, the server MUST fail the SMB2 IOCTL Request with
STATUS_INVALID_PARAMETER.

If the MaxOutputResponse value in the SMB2 IOCTL Request is greater than or equal to the size of
the SRV_COPYCHUNK_RESPONSE structure and any of the following are true, the server MUST send

an SMB2 IOCTL Response as specified in section 3.3.5.15.6.2:

▪ The InputCount value in the SMB2 IOCTL Request is less than the size of the Buffer field

containing the SRV_COPYCHUNK_COPY structure.

▪ The ChunkCount value is greater than ServerSideCopyMaxNumberofChunks.

▪ The Length value in a single chunk is greater than ServerSideCopyMaxChunkSize or equal to
zero.

▪ Sum of Lengths in all chunks is greater than ServerSideCopyMaxDataSize.

▪ The TargetOffset value in any chunk is less than zero but not equal to 0xFFFFFFFFFFFFFFFF.

▪ The Open.TreeConnect value of the source or destination file is on a named pipe file system.

The server MUST fail the request with STATUS_ACCESS_DENIED if any of the following are true:

▪ The Open.GrantedAccess of the source file does not include FILE_READ_DATA access.

▪ The Open.GrantedAccess of the destination file does not include FILE_WRITE_DATA or
FILE_APPEND_DATA.

▪ The Open.GrantedAccess of the destination file does not include FILE_READ_DATA, and the
CtlCode is FSCTL_SRV_COPYCHUNK.

If the Open.GrantedAccess value of the destination file does not include FILE_WRITE_DATA or

FILE_APPEND_DATA, then the request MUST be failed with STATUS_ACCESS_DENIED. If the
Open.GrantedAccess value of the source file does not include FILE_READ_DATA access, then the
request MUST be failed with STATUS_ACCESS_DENIED.

If Open.TreeConnect.Session of the destination file is not equal to Open.TreeConnect.Session of
the source file, the server MUST fail the request with STATUS_OBJECT_NAME_NOT_FOUND.

The server SHOULD<336> verify that no byte-range locks conflicting with read access to the source

file region starting from SourceOffset and extending Length bytes, and with write access to the
destination file region starting from TargetOffset and extending Length bytes, are held. If any such
locks are found, the server MUST not perform the copy and MUST fail the request as specified in
section 3.3.5.15.6.1. If no such locks are found, starting with the first chunk received in the Chunks
field, the server MUST copy each chunk from the source file to the destination file in an
implementation-specific manner. If the copy operation fails, the server MUST fail the request as
specified in section 3.3.5.15.6.1.

333 / 464

[MS-SMB2-Diff] - v20190923
Server Message Block (SMB) Protocol Versions 2 and 3
Copyright © 2019 Microsoft Corporation
Release: September 23, 2019

If all ranges are copied successfully, the server MUST construct an SMB2 IOCTL Response following
the syntax specified in the section 2.2.32, with the following values:

▪ CtlCode MUST be set to FSCTL_SRV_COPYCHUNK or FSCTL_SRV_COPYCHUNK_WRITE.

▪ FileId.Persistent MUST be set to Open.DurableFileId. FileId.Volatile MUST be set to

Open.FileId.

▪ InputOffset SHOULD be set to the offset, in bytes, from the beginning of the SMB2 header to the
Buffer[] field of the response.

▪ InputCount SHOULD be set to zero.

▪ OutputOffset MUST be set to InputOffset + InputCount, rounded up to a multiple of 8.

▪ OutputCount MUST be set to 12.

▪ Flags MUST be set to zero.

▪ The server MUST copy a SRV_COPYCHUNK_RESPONSE following the syntax specified in section
2.2.32.1 into the Buffer field at the OutputOffset computed above. ChunksWritten MUST be
set to the number of chunks processed. ChunkBytesWritten MUST be set to zero.
TotalBytesWritten MUST be set to the total number of bytes written to the destination file across
all chunk writes.

The response MUST be sent to the client.

3.3.5.15.6.1 Sending a Copy Failure Server-Side Copy Response

If a range is encountered that is not copied successfully, the server MUST construct an SMB2 IOCTL
Response following the syntax specified in section 2.2.32, with the following values:

▪ Status in the SMB2 header MUST be set to the error that is returned during processing, as
specified in section 3.3.5.15.6.

▪ CtlCode MUST be set to the CtlCode value in the SMB2 IOCTL Request.

▪ FileId.Persistent MUST be set to Open.DurableFileId. FileId.Volatile MUST be set to
Open.FileId.

▪ InputOffset SHOULD be set to the offset, in bytes, from the beginning of the SMB2 header to the
Buffer[] field of the response.

▪ InputCount SHOULD be set to zero.

▪ OutputOffset MUST be set to InputOffset + InputCount, rounded up to a multiple of 8.

▪ OutputCount MUST be set to 12.

▪ Flags MUST be set to zero.

▪ The server MUST copy a SRV_COPYCHUNK_RESPONSE following the syntax specified in section
2.2.32.1 into the Buffer field at the OutputOffset computed above. ChunksWritten MUST be
set to the number of chunks successfully written. If the error was encountered partway through a
write, ChunkBytesWritten MUST be set to the number of bytes written in the final, partial write.
Otherwise, ChunkBytesWritten MUST be set to 0. TotalBytesWritten MUST be set to the total

number of bytes written to the destination file across all chunk writes.

The response MUST be sent to the client.

3.3.5.15.6.2 Sending an Invalid Parameter Server-Side Copy Response

334 / 464

[MS-SMB2-Diff] - v20190923
Server Message Block (SMB) Protocol Versions 2 and 3
Copyright © 2019 Microsoft Corporation
Release: September 23, 2019

The server MUST construct an SMB2 IOCTL Response, following the syntax specified in section 2.2.32,
with the following values:

▪ Status in the SMB2 header MUST be set to STATUS_INVALID_PARAMETER.

▪ CtlCode MUST be set to the CtlCode value in the SMB2 IOCTL Request.

▪ FileId.Persistent MUST be set to Open.DurableFileId. FileId.Volatile MUST be set to
Open.FileId.

▪ InputOffset SHOULD be set to the offset, in bytes, from the beginning of the SMB2 header to the
Buffer[] field of the response.

▪ InputCount SHOULD be set to zero.

▪ OutputOffset MUST be set to InputOffset + InputCount, rounded up to a multiple of 8.

▪ OutputCount MUST be set to 12.

▪ Flags MUST be set to zero.

▪ The server MUST copy a SRV_COPYCHUNK_RESPONSE, following the syntax specified in section
2.2.32.1, into the Buffer field at the OutputOffset computed above, with the following
differences. ChunksWritten MUST be set ServerSideCopyMaxNumberofChunks.
ChunkBytesWritten MUST be set ServerSideCopyMaxChunkSize. TotalBytesWritten MUST
be set to ServerSideCopyMaxDataSize.

The response MUST be sent to the client.

3.3.5.15.7 Handling a Content Information Retrieval Request

When the server receives a request that has an SMB2 header with a Command value equal to SMB2
IOCTL and a CtlCode of FSCTL_SRV_READ_HASH, message handling proceeds as follows:

The server MUST fail the SRV_READ_HASH request (section 2.2.31.2) with the error code specified in

the following cases:

▪ If the server does not support SRV_READ_HASH requests, it MUST fail the request with
STATUS_NOT_SUPPORTED.<337>

▪ If the server supports SRV_READ_HASH requests but does not have the branch cache feature
available, it SHOULD<338> fail the request with STATUS_HASH_NOT_PRESENT.

▪ The server MUST fail the request with error STATUS_BUFFER_TOO_SMALL if any of the following
cases:

▪ InputCount in the request is less than the size of a SRV_READ_HASH request

▪ HashRetrievalType is SRV_HASH_RETRIEVE_HASH_BASED and MaxOutputResponse in
the request is less than the size of the SRV_HASH_RETRIEVE_HASH_BASED structure

▪ HashRetrievalType is SRV_HASH_RETRIEVE_FILE_BASED and MaxOutputResponse in the
request is less than the size of the SRV_HASH_RETRIEVE_FILE_BASED structure

▪ The server MUST fail the SRV_READ_HASH request with an error of
STATUS_INVALID_PARAMETER in the following cases:

▪ If the HashType field of the SRV_READ_HASH request is not equal to
SRV_HASH_TYPE_PEER_DIST.

335 / 464

[MS-SMB2-Diff] - v20190923
Server Message Block (SMB) Protocol Versions 2 and 3
Copyright © 2019 Microsoft Corporation
Release: September 23, 2019

▪ If the server implements only the SMB 2.1 dialect and the HashVersion field is not equal to
SRV_HASH_VER_1.

▪ If the server implements the SMB 3.x dialect family and the HashVersion field is not equal to
either SRV_HASH_VER_1 or SRV_HASH_VER_2.

▪ If the HashRetrievalType field is not equal to SRV_HASH_RETRIEVE_HASH_BASED or
SRV_HASH_RETRIEVE_FILE_BASED.

▪ If the HashVersion field is equal to SRV_HASH_VER_1 and the HashRetrievalType field is
not equal to SRV_HASH_RETRIEVE_HASH_BASED.

▪ If the HashVersion field is equal to SRV_HASH_VER_2 and the HashRetrievalType field is
not equal to SRV_HASH_RETRIEVE_FILE_BASED.

▪ If ServerHashLevel is HashDisableAll, the server MUST fail the SRV_READ_HASH request with

error code STATUS_HASH_NOT_SUPPORTED.

▪ If the HashRetrievalType is SRV_HASH_RETRIEVE_HASH_BASED the server MUST open the

Content Information File from the object store for the object represented by Open.LocalOpen
with the specified offset. If the Content Information File open fails, the server MUST fail the
request with STATUS_HASH_NOT_PRESENT.

▪ If the HashRetrievalType is SRV_HASH_RETRIEVE_FILE_BASED the server MUST open the

Content Information File from the object store for the object represented by Open.LocalOpen. If
the Content Information File open fails, the server MUST fail the request with
STATUS_HASH_NOT_PRESENT.

▪ If ServerHashLevel is HashEnableShare and Open.TreeConnect.Share.HashEnabled is
FALSE, the server MUST fail the SRV_READ_HASH request with error code
STATUS_HASH_NOT_SUPPORTED.

If HashRetrievalType is SRV_HASH_RETRIEVE_HASH_BASED, the Length MUST be set to

min[(MaxOutputResponse-16), Length in the request]. If HashRetrievalType is
SRV_HASH_RETRIEVE_FILE_BASED, the Length MUST be set to min[(MaxOutputResponse-24),

Length in the request].

The server MUST open the Content Information File from the object store for the object represented
by Open.LocalOpen and read Length number of bytes at the specified Offset. If the Content
Information File open fails, the server MUST fail the SRV_READ_HASH request with the error code
returned by object store.

If the Content Information File open succeeds, the server MUST verify the following:

▪ If the Content Information File is empty, the server MUST fail the SRV_READ_HASH request with
the error code STATUS_HASH_NOT_PRESENT.

▪ If HashRetrievalType is SRV_HASH_RETRIEVE_HASH_BASED and the Offset field of the
SRV_READ_HASH request is equal to or beyond the end of the Content Information File, the
server MUST fail the SRV_READ_HASH request with error code STATUS_END_OF_FILE.

▪ If the HashRetrievalType is SRV_HASH_RETRIEVE_FILE_BASED and Offset field of the
SRV_READ_HASH request is equal to or beyond the end of the file represented by
Open.LocalOpen, the server MUST fail the SRV_READ_HASH request with error code
STATUS_END_OF_FILE.

▪ The Content Information File MUST start with a valid HASH_HEADER as specified in section
2.2.32.4.1.

336 / 464

[MS-SMB2-Diff] - v20190923
Server Message Block (SMB) Protocol Versions 2 and 3
Copyright © 2019 Microsoft Corporation
Release: September 23, 2019

▪ If the HashType field in the HASH_HEADER is not equal to the HashRetrievalType field of
the SRV_READ_HASH request, the server MUST fail the SRV_READ_HASH request with the

error code STATUS_HASH_NOT_PRESENT.

▪ If the HashVersion field in the HASH_HEADER is not equal to the HashVersion field of the

SRV_READ_HASH request, the server MUST fail the SRV_READ_HASH request with the error
code STATUS_HASH_NOT_PRESENT.

▪ If the Dirty field in the HASH_HEADER is a nonzero value, the server MUST fail the
SRV_READ_HASH request with the error code STATUS_HASH_NOT_PRESENT.

▪ If the server implements the SMB 3.x dialect family and the HashVersion field in the
SRV_READ_HASH Request is SRV_HASH_VER_2, the server MUST set HashBlobLength in
the HASH_HEADER to zero.

If the Content Information File is verified successfully, the server MUST construct an SMB2 IOCTL
response following the syntax specified in section 2.2.32, with the following values:

▪ CtlCode MUST be set to FSCTL_SRV_READ_HASH.

▪ FileId.Persistent MUST be set to Open.DurableFileId.

▪ FileId.Volatile MUST be set to Open.FileId.

▪ InputOffset SHOULD be set to the offset, in bytes, from the beginning of the SMB2 header to the

Buffer[] field of the response.

▪ InputCount SHOULD be set to 0.

▪ OutputOffset MUST be set to InputOffset + InputCount, rounded up to a multiple of 8.

▪ OutputCount MUST be set to the size of SRV_READ_HASH Response, including the variable
length for Content Information.

▪ Flags MUST be set to zero.

▪ If the HashRetrievalType is SRV_HASH_RETRIEVE_HASH_BASED, the server MUST copy a

SRV_READ_HASH Response following the syntax specified in section 2.2.32.4.2 into the Buffer
field at the OutputOffset computed above. The server MUST set the Offset to the Offset field in
the SRV_READ_HASH request and BufferLength to the length of the returned content.

▪ If the HashRetrievalType is SRV_HASH_RETRIEVE_FILE_BASED, the server MUST copy a
SRV_READ_HASH Response following the syntax specified in section 2.2.32.4.3 into the Buffer
field at the OutputOffset computed above. The server SHOULD<339> set the FileDataOffset
and FileDataLength fields to the offset and length of the region of the object that is covered by

the returned content. If the Offset field in the SRV_READ_HASH request is zero, the server MUST
also copy the HASH_HEADER from the Content Information File, as specified in section 2.2.32.4.1,
at the beginning of the Buffer[] field of the response.

3.3.5.15.8 Handling a Pass-Through Operation Request

Pass-through requests are I/O Control requests and File System Control (FSCTL) requests with a

CtlCode value that is not specified in section 2.2.31. As noted in section 3.3.5.15, the server MUST
fail I/O Control requests with STATUS_NOT_SUPPORTED.

Pass-through FSCTL requests fall further into two types, those for which a CtlCode value matches an
FSCTL function number defined in [MS-FSCC] section 2.3, and those that do not. When the latter type
of pass-through request does not meet the private FSCTL requirements of [MS-FSCC] section 2.3, the
server MUST NOT pass the request to the underlying object store and MUST fail the request by
sending a response of STATUS_NOT_SUPPORTED.

337 / 464

[MS-SMB2-Diff] - v20190923
Server Message Block (SMB) Protocol Versions 2 and 3
Copyright © 2019 Microsoft Corporation
Release: September 23, 2019

Otherwise, when the server receives a pass-through FSCTL request, the server SHOULD<340> pass it
through to the underlying object store.

The server MUST pass the following to the underlying object store: CtlCode, the input buffer
described by InputOffset and InputCount, the output buffer described by OutputOffset and

OutputCount, the MaxOutputResponse as the maximum output buffer size, in bytes, for the
response, and MaxInputResponse as the maximum input buffer size, in bytes, for the response.
Where the CtlCode value matches an FSCTL function number defined in [MS-FSCC], the server
SHOULD verify that the above buffers and sizes conform to the requirements of the corresponding
structures defined in [MS-FSCC] section 2.3, and use the FileId from the SMB2 IOCTL request to
obtain the handle described in [MS-FSCC] section 2.3 to pass to the object store. Where the CtlCode
value is not defined in [MS-FSCC], the server SHOULD<341> ensure that the other requirements for

private FSCTLs defined in [MS-FSCC] are met.

If the underlying object store returns a failure, the server MUST fail the request and send a response
with an error code, as specified in [MS-ERREF] section 2.2.

Note that a successful FSCTL pass-through request could return 0 bytes of output buffer data, and

have OutputCount set to 0. Similarly, it is possible for a valid FSCTL pass-through request to send 0
bytes of input buffer data, depending on the requirements of the FSCTL.

If the operation succeeds, the server MUST then construct an SMB2 IOCTL Response following the
syntax specified in section 2.2.32, with the following values:

▪ CtlCode MUST be set to the CtlCode of the request.

▪ FileId.Persistent MUST be set to Open.DurableFileId. FileId.Volatile MUST be set to
Open.FileId.

▪ InputOffset SHOULD be set to the offset, in bytes, from the beginning of the SMB2 header to the
Buffer[] field of the response.

▪ InputCount MUST be set to the number of input bytes the object store is returning to the client.

▪ If the object store is returning output data to the client, OutputOffset MUST be set to

InputOffset + InputCount, rounded up to a multiple of 8. Otherwise, OutputOffset
SHOULD<342> be set to zero.

▪ The server MUST set the OutputCount to the actual number of bytes returned by the underlying
object store in the output buffer.

▪ Flags MUST be set to zero.

▪ The server MUST copy the input and output response bytes into the ranges in Buffer described by
InputOffset/InputCount and OutputOffset/OutputCount.

The response MUST be sent to the client.

3.3.5.15.9 Handling a Resiliency Request

This section applies only to servers that implement the SMB 2.1 or the SMB 3.x dialect family.

When the server receives a request with an SMB2 header with a Command value equal to SMB2
IOCTL and a CtlCode FSCTL_LMR_REQUEST_RESILIENCY, message handling proceeds as follows.

If Open.Connection.Dialect is "2.0.2", the server MAY<343> fail the request with
STATUS_INVALID_DEVICE_REQUEST.

Otherwise, if the server does not support FSCTL_LMR_REQUEST_RESILIENCY requests, the server
SHOULD fail the request with STATUS_NOT_SUPPORTED.

338 / 464

[MS-SMB2-Diff] - v20190923
Server Message Block (SMB) Protocol Versions 2 and 3
Copyright © 2019 Microsoft Corporation
Release: September 23, 2019

If InputCount is smaller than the size of the NETWORK_RESILIENCY_REQUEST request as
specified in section 2.2.31.3, or if the requested Timeout in seconds is greater than

MaxResiliencyTimeout in seconds, the request MUST be failed with STATUS_INVALID_PARAMETER.

Open.IsDurable MUST be set to FALSE. Open.IsResilient MUST be set to TRUE. If the value of the

Timeout field specified in NETWORK_RESILIENCY_REQUEST of the request is not zero,
Open.ResiliencyTimeout MUST be set to the value of the Timeout field; otherwise,
Open.ResiliencyTimeout SHOULD be set to an implementation-specific value.<344>
Open.DurableOwner MUST be set to a security descriptor accessible only by the user represented by
Open.Session.SecurityContext.

The server MUST construct an SMB2 IOCTL response following the syntax specified in section 2.2.32,
with the following values:

▪ CtlCode MUST be set to FSCTL_LMR_REQUEST_RESILIENCY.

▪ FileId.Persistent MUST be set to Open.DurableFileId. FileId.Volatile MUST be set to
Open.FileId.

▪ InputOffset SHOULD be set to the offset, in bytes, from the beginning of the SMB2 header to the
Buffer[] field of the response.

▪ InputCount SHOULD be set to zero.

▪ OutputOffset MUST be set to InputOffset + InputCount, rounded up to a multiple of 8.

▪ OutputCount MUST be set to zero.

▪ Flags MUST be set to zero.

The response MUST be sent to the client.

3.3.5.15.10 Handling a Pipe Wait Request

When the server receives a request with an SMB2 header with a Command value equal to SMB2

IOCTL and a CtlCode of FSCTL_PIPE_WAIT, message handling proceeds as follows.

The server MUST ensure that the Name field of the FSCTL_PIPE_WAIT request identifies a named
pipe. If the Name field is malformed, or no such object exists, the server MUST fail the request with
STATUS_OBJECT_NAME_NOT_FOUND. If an object of that name exists, but it is not a named pipe, the
server MUST fail the request with STATUS_INVALID_DEVICE_REQUEST.

The server MUST attempt to wait for a connection to the specified named pipe. If TimeoutSpecified
is TRUE in the FSCTL_PIPE_WAIT request, the server MUST wait for the amount of time specified in

the Timeout field in the FSCTL_PIPE_WAIT request for a connection to the named pipe. If no
connection is available within the specified time, the server MUST fail the request with
STATUS_IO_TIMEOUT. If TimeoutSpecified is FALSE, the server MUST wait forever for a connection
to the named pipe.

If a connection to the specified named pipe is available, the server MUST construct an SMB2 IOCTL
Response by following the syntax specified in section 2.2.32, with the exception of the following

values:

▪ The CtlCode field MUST be set to FSCTL_PIPE_WAIT.

▪ The FileId field MUST be set to { 0xFFFFFFFFFFFFFFFF, 0xFFFFFFFFFFFFFFFF }.

▪ The OutputCount field MUST be set to 0.

The response MUST be sent to the client.

339 / 464

[MS-SMB2-Diff] - v20190923
Server Message Block (SMB) Protocol Versions 2 and 3
Copyright © 2019 Microsoft Corporation
Release: September 23, 2019

3.3.5.15.11 Handling a Query Network Interface Request

When the server receives a request with an SMB2 header with a Command value equal to SMB2
IOCTL and a CtlCode of FSCTL_QUERY_NETWORK_INTERFACE_INFO, message handling proceeds as

follows:

The server MUST enumerate the local network interfaces in an implementation-specific manner. For
each IP address in each network interface, the server MUST construct a NETWORK_INTERFACE_INFO
structure as specified in section 2.2.32.5, with the following values:

▪ The server MUST NOT include the IP address for a network interface with IfIndex equal to zero.

▪ IfIndex, Capability, and LinkSpeed MUST be set in an implementation-specific manner.

▪ The Family field in SockAddr_Storage MUST be set based on the IP address format. The Buffer

field in SockAddr_Storage MUST be set as specified in section 2.2.32.5.1.

If a network interface has multiple IP addresses, IfIndex MUST be the same in all
NETWORK_INTERFACE_INFO structures for those IP addresses.

The server MUST construct an SMB2 IOCTL Response by following the syntax specified in section
2.2.32, with the exception of the following values:

▪ The CtlCode field MUST be set to FSCTL_QUERY_NETWORK_INTERFACE_INFO.

▪ The FileId field MUST be set to { 0xFFFFFFFFFFFFFFFF, 0xFFFFFFFFFFFFFFFF }.

▪ InputOffset SHOULD be set to the offset, in bytes, from the beginning of the SMB2 header to the
Buffer[] field of the response.

▪ InputCount SHOULD be set to zero.

▪ OutputOffset MUST be set to InputOffset + InputCount, rounded up to a multiple of 8.

▪ OutputCount MUST be set to the size of the NETWORK_INTERFACE_INFO that was previously

constructed.

▪ Flags MUST be set to zero.

▪ The server MUST copy the constructed array of NETWORK_INTERFACE_INFO structures into the
Buffer field at the OutputOffset that was previously computed.

The response MUST be sent to the client.

3.3.5.15.12 Handling a Validate Negotiate Info Request

This section applies only to servers that implement the SMB 3.x dialect family.

When the server receives a request with an SMB2 header with a Command value equal to SMB2
IOCTL, and a CtlCode of FSCTL_VALIDATE_NEGOTIATE_INFO, message handling proceeds as follows:

▪ If Connection.Dialect is "3.1.1", the server MUST terminate the transport connection and free
the Connection object.

▪ If MaxOutputResponse in the IOCTL request is less than the size of a
VALIDATE_NEGOTIATE_INFO Response, the server MUST terminate the transport connection and

free the Connection object.

▪ If the server implements the SMB 3.1.1 dialect and if the Dialects array of the
VALIDATE_NEGOTIATE_INFO request structure is not equal to Connection.ClientDialects, the
server MUST terminate the transport connection and free the Connection object. Otherwise, the

340 / 464

[MS-SMB2-Diff] - v20190923
Server Message Block (SMB) Protocol Versions 2 and 3
Copyright © 2019 Microsoft Corporation
Release: September 23, 2019

server MUST determine the greatest common dialect between the dialects it implements and the
Dialects array of the VALIDATE_NEGOTIATE_INFO request. If no dialect is matched, or if the

value is not equal to Connection.Dialect, the server MUST terminate the transport connection
and free the Connection object.

▪ If the Guid received in the VALIDATE_NEGOTIATE_INFO request structure is not equal to the
Connection.ClientGuid, the server MUST terminate the transport connection and free the
Connection object.

▪ If the SecurityMode received in the VALIDATE_NEGOTIATE_INFO request structure is not equal
to Connection.ClientSecurityMode, the server MUST terminate the transport connection and
free the Connection object.

▪ If Connection.ClientCapabilities is not equal to the Capabilities received in the

VALIDATE_NEGOTIATE_INFO request structure, the server MUST terminate the transport
connection and free the Connection object.

The server MUST construct the VALIDATE_NEGOTIATE_INFO Response specified in section 2.2.32.6,

as follows:

▪ Capabilities is set to Connection.ServerCapabilities.

▪ Guid is set to ServerGuid.

▪ SecurityMode is set to Connection.ServerSecurityMode.

▪ Dialect is set to Connection.Dialect.

The server MUST then construct an SMB2 IOCTL response following the syntax specified in section
2.2.32, with the following values:

▪ CtlCode MUST be set to FSCTL_VALIDATE_NEGOTIATE_INFO.

▪ FileId MUST be set to { 0xFFFFFFFFFFFFFFFF, 0xFFFFFFFFFFFFFFFF }.

▪ InputOffset SHOULD be set to the offset, in bytes, from the beginning of the SMB2 header to the

Buffer[] field of the response.

▪ InputCount SHOULD be set to zero.

▪ OutputOffset MUST be set to InputOffset + InputCount, rounded up to a multiple of 8.

▪ OutputCount MUST be set to the size of the VALIDATE_NEGOTIATE_INFO response that is
constructed as above.

▪ Flags MUST be set to zero.

▪ The server MUST copy the constructed VALIDATE_NEGOTIATE_INFO Response structure into the

Buffer field at the OutputOffset computed above.

The response MUST be sent to the client.

3.3.5.15.13 Handling a Set Reparse Point Request

This section applies only to servers that implement the SMB 3.x dialect family.

When the server receives a request that contains an SMB2 header with a Command value equal to

SMB2 IOCTL and a CtlCode of FSCTL_SET_REPARSE_POINT, message handling proceeds as follows:

If the ReparseTag field in FSCTL_SET_REPARSE_POINT, as specified in [MS-FSCC] section 2.3.65, is
not IO_REPARSE_TAG_SYMLINK, the server SHOULD verify that the caller has the required

341 / 464

[MS-SMB2-Diff] - v20190923
Server Message Block (SMB) Protocol Versions 2 and 3
Copyright © 2019 Microsoft Corporation
Release: September 23, 2019

permissions to execute this FSCTL.<345> If the caller does not have the required permissions, the
server MUST fail the call with an error code of STATUS_ACCESS_DENIED.

The server MUST process this request as a pass-through operation as specified in section 3.3.5.15.8.

3.3.5.15.14 Handling a File Level Trim Request

This section applies only to servers that implement the SMB 3.x dialect family.

When the server receives a request that contains an SMB2 header with a Command value equal to
SMB2 IOCTL and a CtlCode of FSCTL_FILE_LEVEL_TRIM, message handling proceeds as follows:

If the Key field in FSCTL_FILE_LEVEL_TRIM, as specified in [MS-FSCC] section 2.3.77, is not zero, the
server MUST fail the request with an error code of STATUS_INVALID_PARAMETER.

The server MUST process this request as a pass-through operation as specified in section 3.3.5.15.8.

3.3.5.15.15 Handling a Shared Virtual Disk Sync Tunnel Request

This section applies only to servers that implement the SMB 3.0.2 or SMB 3.1.1 dialect.

When the server receives a request with an SMB2 header with a Command value equal to SMB2
IOCTL and a CtlCode of FSCTL_SVHDX_SYNC_TUNNEL_REQUEST, message handling proceeds as
follows.

If Open.IsSharedVHDX is TRUE, the server MUST invoke the event as specified in [MS-RSVD]
section 3.2.5.5 by providing the following input parameters:

▪ Open.LocalOpen

▪ Buffer containing the Shared Virtual Disk Sync Tunnel request

▪ The maximum size of the response that will be accepted by the client, as indicated by
MaxOutputResponse field in the request.

Otherwise, the server MUST fail the request with STATUS_INVALID_DEVICE_REQUEST.

3.3.5.15.16 Handling a Query Shared Virtual Disk Support Request

This section applies only to servers that implement the SMB 3.0.2 or SMB 3.1.1 dialect.

When the server receives a request with an SMB2 header with a Command value equal to SMB2 IOCTL
and a CtlCode of FSCTL_QUERY_SHARED_VIRTUAL_DISK_SUPPORT, message handling proceeds as
follows:

If IsSharedVHDSupported is TRUE, the server MUST invoke the event as specified in [MS-RSVD]

section 3.2.5.6 by providing the following input parameters:

▪ Open.LocalOpen

▪ Open.FileName

▪ The maximum size of the response that will be accepted by the client, as indicated
byMaxOutputResponse field in the request.

Otherwise, the server MUST fail the request with STATUS_INVALID_DEVICE_REQUEST.

3.3.5.15.17 Handling a Duplicate Extents To File Request

342 / 464

[MS-SMB2-Diff] - v20190923
Server Message Block (SMB) Protocol Versions 2 and 3
Copyright © 2019 Microsoft Corporation
Release: September 23, 2019

When the server receives a request that contains an SMB2 header with a Command value equal to
SMB2 IOCTL and a CtlCode of FSCTL_DUPLICATE_EXTENTS_TO_FILE, message handling proceeds as

follows:

If InputCount in SMB2 IOCTL Request is less than the size of SMB2_DUPLICATE_EXTENTS_DATA

Request, as specified in [MS-FSCC] section 2.3.7.2, the server MUST fail the request with an error
code of STATUS_INVALID_PARAMETER.

If no Open.FileId identified by the Volatile subfield of the SourceFileID field in
SMB2_DUPLICATE_EXTENTS_DATA, as specified in [MS-FSCC] section 2.3.7.2, is found in
Session.OpenTable, the server MUST fail the request with an error code of
STATUS_INVALID_HANDLE.

The server MUST process this request as a pass-through operation as specified in section 3.3.5.15.8.

3.3.5.15.18 Handling an Extended Duplicate Extents To File Request

When the server receives a request that contains an SMB2 header with a Command value equal to

SMB2 IOCTL and a CtlCode of FSCTL_DUPLICATE_EXTENTS_TO_FILE_EX, message handling proceeds
as follows:

If the InputCount in SMB2 IOCTL request is less than the size of

SMB2_DUPLICATE_EXTENTS_DATA_EX request, as specified in [MS-FSCC] section 2.3.9.2, the server
MUST fail the request with an error code of STATUS_INVALID_PARAMETER.

If the Open.FileId identified by the Volatile subfield of the SourceFileID field in
SMB2_DUPLICATE_EXTENTS_DATA_EX, as specified in [MS-FSCC] section 2.3.9.2, is not found in
Session.OpenTable, the server MUST fail the request with an error code of
STATUS_INVALID_HANDLE.

The server MUST process this request as a pass-through operation as specified in section 3.3.5.15.8.

3.3.5.16 Receiving an SMB2 CANCEL Request

When the server receives a request with an SMB2 header with a Command value equal to SMB2
CANCEL, message handling proceeds as follows:

An SMB2 CANCEL Request does not contain a sequence number that MUST be checked. Thus, the

server MUST NOT process the received packet as specified in section 3.3.5.2.3.

If SMB2_FLAGS_SIGNED bit is set in the Flags field of the SMB2 header of the cancel request, the
server MUST verify the session, as specified in section 3.3.5.2.9.

If SMB2_FLAGS_ASYNC_COMMAND is set in the Flags field of the SMB2 header of the cancel request,
the server SHOULD<346> search for a request in Connection.AsyncCommandList where
Request.AsyncId matches the AsyncId of the incoming cancel request. If

SMB2_FLAGS_ASYNC_COMMAND is not set, then the server MUST search for a request in
Connection.RequestList where Request.MessageId matches the MessageId of the incoming
cancel request.

If a request is not found, the server MUST stop processing for this cancel request. No response is sent.

If a request is found, the server SHOULD<347> attempt to cancel the request that was found,
referred to here as the target request. If the target request is successfully canceled, the target request
MUST be failed by sending an ERROR response packet as specified in section 2.2.2, with the status

field of the SMB2 header (specified in section 2.2.1) set to STATUS_CANCELLED. If the target request
is not successfully canceled, processing of the target request MUST continue and no response is sent
to the cancel request.

343 / 464

[MS-SMB2-Diff] - v20190923
Server Message Block (SMB) Protocol Versions 2 and 3
Copyright © 2019 Microsoft Corporation
Release: September 23, 2019

The cancel request indicates that the client is required to get a response for the target request,
whether successful or not. The server MUST expedite the cancellation request by following the above

steps.

3.3.5.17 Receiving an SMB2 ECHO Request

When the server receives a request with an SMB2 header with a Command value equal to SMB2
ECHO, message handling proceeds as follows:

If Connection.SessionTable is empty, the server SHOULD<348> disconnect the connection.

The server MUST verify the session, as specified in section 3.3.5.2.9, if any of the following conditions
is TRUE:

▪ SMB2_FLAGS_SIGNED bit is set in the Flags field of the SMB2 header of the request.

▪ The request is not encrypted, and the SessionId field of the SMB2 header of the request is not
zero.

The server MUST construct an SMB2 ECHO Response following the syntax specified in section 2.2.29
and MUST send it to the client.

The status code returned by this operation MUST be one of those defined in [MS-ERREF]. Common
status codes returned by this operation include:

▪ STATUS_SUCCESS

▪ STATUS_INVALID_PARAMETER

3.3.5.18 Receiving an SMB2 QUERY_DIRECTORY Request

When the server receives a request with an SMB2 header with a Command value equal to SMB2
QUERY_DIRECTORY, message handling proceeds as follows:

The server MUST locate the session, as specified in section 3.3.5.2.9.

The server MUST locate the tree connection, as specified in section 3.3.5.2.11.

Next, the server MUST locate the open for the directory to be queried by performing a lookup in the

Session.OpenTable, using the FileId.Volatile of the request as the lookup key. If no open is found,
or if Open.DurableFileId is not equal to FileId.Persistent, the server MUST fail the request with
STATUS_FILE_CLOSED. Otherwise, the server MUST locate the Request in Connection.RequestList
for which Request.MessageId matches the MessageId value in the SMB2 header, and set
Request.Open to the Open.

If the open is not an open to a directory, the server MUST process the request as follows:

▪ If SMB2_REOPEN is set in the Flags field of the SMB2 QUERY_DIRECTORY request, the request

MUST be failed with an implementation-specific error code.<349>

▪ Otherwise, the request MUST be failed with STATUS_INVALID_PARAMETER.

If OutputBufferLength is greater than Connection.MaxTransactSize, the server SHOULD<350>
fail the request with STATUS_INVALID_PARAMETER.

If Connection.SupportsMultiCredit is TRUE, the server MUST validate CreditCharge based on
OutputBufferLength, as specified in section 3.3.5.2.5. If the validation fails, it MUST fail the request
with STATUS_INVALID_PARAMETER.

344 / 464

[MS-SMB2-Diff] - v20190923
Server Message Block (SMB) Protocol Versions 2 and 3
Copyright © 2019 Microsoft Corporation
Release: September 23, 2019

If Open.GrantedAccess does not include FILE_LIST_DIRECTORY, the operation MUST be failed with
STATUS_ACCESS_DENIED.

The information classes supported are specified in [MS-FSCC] section 2.4. The supported classes for
the query are:

▪ FileDirectoryInformation

▪ FileFullDirectoryInformation

▪ FileBothDirectoryInformation

▪ FileIdFullDirectoryInformation

▪ FileIdBothDirectoryInformation

▪ FileNamesInformation

If any other information class is specified in the FileInformationClass field of the SMB2

QUERY_DIRECTORY Request, the server MUST fail the operation with STATUS_INVALID_INFO_CLASS.
If the information class requested is not supported by the server, the server MUST fail the request
with STATUS_NOT_SUPPORTED.

If SMB2_RESTART_SCANS or SMB2_REOPEN is set in the Flags field of the SMB2 QUERY_DIRECTORY
Request, the server MUST restart the scan with the search pattern specified, in an implementation-
specific manner<351>.

If SMB2_RETURN_SINGLE_ENTRY is set in the Flags field of the request, the server MUST return only
a single entry.

The server MUST invoke the query directory procedure from the underlying object store in an
implementation-specific manner<352>.

An underlying object store MAY<353> choose to support resuming enumerations by index number, if
SMB2_INDEX_SPECIFIED is set in the Flags field and an index number is specified in the FileIndex

field of the SMB2 QUERY_DIRECTORY Request.

If TreeConnect.Share.DoAccessBasedDirectoryEnumeration is TRUE and the object store
supports security, the server MUST also exclude entries for which the user represented by
Session.SecurityContext is not granted GENERIC_READ and FILE_LIST_DIRECTORY access.

Otherwise, the server MUST construct an SMB2_QUERY_DIRECTORY Response following the syntax
specified in section 2.2.34, with the following values:

▪ OutputBufferOffset MUST be set to the offset, in bytes, from the beginning of the SMB2 header
where the enumeration data is being placed, the offset to Buffer[].

▪ OutputBufferLength MUST be set to the length, in bytes, of the result of the enumeration.

▪ The enumeration data MUST be copied into Buffer[].

The response MUST be sent to the client.

The status code returned by this operation MUST be one of those defined in [MS-ERREF]. Common
status codes returned by this operation include:

▪ STATUS_SUCCESS

▪ STATUS_INSUFFICIENT_RESOURCES

▪ STATUS_ACCESS_DENIED

345 / 464

[MS-SMB2-Diff] - v20190923
Server Message Block (SMB) Protocol Versions 2 and 3
Copyright © 2019 Microsoft Corporation
Release: September 23, 2019

▪ STATUS_FILE_CLOSED

▪ STATUS_NETWORK_NAME_DELETED

▪ STATUS_USER_SESSION_DELETED

▪ STATUS_NETWORK_SESSION_EXPIRED

▪ STATUS_INVALID_PARAMETER

▪ STATUS_INVALID_INFO_CLASS

▪ STATUS_NO_SUCH_FILE

▪ STATUS_CANCELLED

▪ STATUS_NOT_SUPPORTED

▪ STATUS_OBJECT_NAME_INVALID

▪ STATUS_VOLUME_DISMOUNTED

▪ STATUS_INVALID_INFO_CLASS

▪ STATUS_FILE_CORRUPT_ERROR

▪ STATUS_NO_MORE_FILES

3.3.5.19 Receiving an SMB2 CHANGE_NOTIFY Request

When the server receives a request that has an SMB2 header with a Command value equal to SMB2
CHANGE_NOTIFY, message handling proceeds as follows.

The server MUST locate the session, as specified in section 3.3.5.2.9.

The server MUST locate the tree connection, as specified in section 3.3.5.2.11.

Next, the server MUST locate the open on which the client is requesting a change notification by
performing a lookup in the Session.OpenTable, using the FileId.Volatile of the request as the

lookup key. If no open is found, or if Open.DurableFileId is not equal to FileId.Persistent, the
server MUST fail the request with STATUS_FILE_CLOSED. Otherwise, the server MUST locate the
Request in Connection.RequestList for which Request.MessageId matches the MessageId value
in the SMB2 header, and set Request.Open to the Open.

If OutputBufferLength is greater than Connection.MaxTransactSize, the server SHOULD<354>
fail the request with STATUS_INVALID_PARAMETER.

If Connection.SupportsMultiCredit is TRUE, the server MUST validate CreditCharge based on
OutputBufferLength, as specified in section 3.3.5.2.5. If the validation fails, it MUST fail the request
with STATUS_INVALID_PARAMETER.

If the open is not an open to a directory, the request MUST be failed with
STATUS_INVALID_PARAMETER.

If Open.GrantedAccess does not include FILE_LIST_DIRECTORY, the operation MUST be failed with
STATUS_ACCESS_DENIED.

Because change notify operations are not guaranteed to complete within a deterministic amount of
time, the server SHOULD<355> handle this operation asynchronously as specified in section 3.3.4.2.

346 / 464

[MS-SMB2-Diff] - v20190923
Server Message Block (SMB) Protocol Versions 2 and 3
Copyright © 2019 Microsoft Corporation
Release: September 23, 2019

If the underlying object store does not support change notifications, the server MUST fail this request
with STATUS_NOT_SUPPORTED.

The server MUST register a change notification on the underlying object store for the directory that is
specified by Open.LocalOpen, using the completion filter supplied in the CompletionFilter field of

the client request.<356> If SMB2_WATCH_TREE is set in the Flags field of the client request, the
server MUST request that the change notify monitor all subtrees of the directory that is specified by
Open.LocalOpen. The server indicates the maximum amount of notification data that it can accept by
passing in the OutputBufferLength that is received from the client. An OutputBufferLength of zero
indicates that the client allows the occurrence of an event but the client does not allow the notification
data details. A Change notification request processed by the server with invalid bits in the
CompletionFilter field MUST ignore the invalid bits and process the valid bits. If there are no valid

bits in the CompletionFilter, the request will remain pending until the change notification is canceled
or the directory handle is closed.

The server MUST process a change notification request in the object store as specified by the
algorithm in section 3.3.1.3.

The server MUST send an SMB2 CHANGE_NOTIFY Response only if a change occurs. An SMB2
CHANGE_NOTIFY Request (section 2.2.35) will result in, at most, one response from the server. The

server can choose to aggregate multiple changes into the same response. The server MUST include at
least one FILE_NOTIFY_INFORMATION structure if it detects a change.

If the server is unable to copy the results into the buffer of the SMB2 CHANGE_NOTIFY Response,
then the server MUST construct the response as described below, with an OutputBufferLength of
zero, and set the Status in the SMB2 header to STATUS_NOTIFY_ENUM_DIR.

If the object store returns an error, the server MUST fail the request with the error code received.

If the object store returns success, the server MUST construct an SMB2 CHANGE_NOTIFY Response

following the syntax that is specified in section 2.2.36 with the following values:

▪ OutputBufferOffset MUST be set to the offset, in bytes, from the beginning of the SMB2 header
where the enumeration data is being placed, the offset to Buffer[].

▪ OutputBufferLength MUST be set to the length, in bytes, of the result of the enumeration. It is
valid for length to be 0, indicating a change occurred but it could not be fit within the buffer.

▪ The change data MUST be copied into Buffer[].

The response MUST be sent to the client.

The status code returned by this operation MUST be one of those defined in [MS-ERREF]. Common
status codes returned by this operation include:

▪ STATUS_SUCCESS

▪ STATUS_INSUFFICIENT_RESOURCES

▪ STATUS_ACCESS_DENIED

▪ STATUS_FILE_CLOSED

▪ STATUS_NETWORK_NAME_DELETED

▪ STATUS_USER_SESSION_DELETED

▪ STATUS_NETWORK_SESSION_EXPIRED

▪ STATUS_CANCELLED

347 / 464

[MS-SMB2-Diff] - v20190923
Server Message Block (SMB) Protocol Versions 2 and 3
Copyright © 2019 Microsoft Corporation
Release: September 23, 2019

▪ STATUS_INVALID_PARAMETER

▪ STATUS_NOTIFY_ENUM_DIR

3.3.5.20 Receiving an SMB2 QUERY_INFO Request

When the server receives a request with an SMB2 header with a Command value equal to SMB2
QUERY_INFO, message handling proceeds as follows:

The server MUST locate the session, as specified in section 3.3.5.2.9.

The server MUST locate the tree connection, as specified in section 3.3.5.2.11.

Next, the server MUST locate the open on which the client is requesting the information by performing
a lookup in the Session.OpenTable, using the FileId.Volatile of the request as the lookup key. If no
open is found, or if Open.DurableFileId is not equal to FileId.Persistent, the server MUST fail the
request with STATUS_FILE_CLOSED. Otherwise, the server MUST locate the Request in
Connection.RequestList for which Request.MessageId matches the MessageId value in the

SMB2 header, and set Request.Open to the Open.

If OutputBufferLength is greater than Connection.MaxTransactSize, the server SHOULD<357>

fail the request with STATUS_INVALID_PARAMETER.

If Connection.SupportsMultiCredit is TRUE, the server MUST validate CreditCharge based on the
maximum of InputBufferLength and OutputBufferLength, as specified in section 3.3.5.2.5. If the
validation fails, it MUST fail the request with STATUS_INVALID_PARAMETER.

The server MUST verify the InputBufferLength as noted in the following:

▪ For quota requests, if the InputBufferLength is not equal to the size of
SMB2_QUERY_QUOTA_INFO in the request, the server MUST fail the request with

STATUS_INVALID_PARAMETER.

▪ For FileFullEaInformation requests, if InputBufferLength is not equal to the size of Buffer in the

request, the server MUST fail the request with STATUS_INVALID_PARAMETER.

▪ For other information queries, the server MUST ignore the InputBufferLength value.

The remaining processing for this request depends on the InfoType that is requested and described
below.

The status code returned by this operation MUST be one of those defined in [MS-ERREF]. Common
status codes returned by this operation include:

▪ STATUS_SUCCESS

▪ STATUS_INSUFFICIENT_RESOURCES

▪ STATUS_ACCESS_DENIED

▪ STATUS_FILE_CLOSED

▪ STATUS_NETWORK_NAME_DELETED

▪ STATUS_USER_SESSION_DELETED

▪ STATUS_NETWORK_SESSION_EXPIRED

▪ STATUS_INVALID_PARAMETER

▪ STATUS_INVALID_INFO_CLASS

348 / 464

[MS-SMB2-Diff] - v20190923
Server Message Block (SMB) Protocol Versions 2 and 3
Copyright © 2019 Microsoft Corporation
Release: September 23, 2019

▪ STATUS_NOT_SUPPORTED

▪ STATUS_EA_LIST_INCONSISTENT

▪ STATUS_BUFFER_OVERFLOW

▪ STATUS_CANCELLED

▪ STATUS_INFO_LENGTH_MISMATCH

3.3.5.20.1 Handling SMB2_0_INFO_FILE

The information classes that are supported for querying files are listed in section 2.2.37.
Documentation for these is provided in [MS-FSCC] section 2.4.

Requests for information classes that are not listed in section 2.2.37 but which are documented in
section 2.4 of [MS-FSCC] SHOULD<358> be failed with STATUS_NOT_SUPPORTED.

Requests for information classes not documented in [MS-FSCC] section 2.4 SHOULD<359> be failed

with STATUS_INVALID_INFO_CLASS.

If the server does not implement the SMB 3.x dialect family and the request is for the
FileIdInformation information class, the server MUST fail the request with STATUS_NOT_SUPPORTED.

For FileNormalizedNameInformation information class requests, if not supported by the server
implementation<360>, or if Connection.Dialect is "2.0.2", "2.1" or "3.0.2", the server MUST fail the

request with STATUS_NOT_SUPPORTED.

If the request is for the FilePositionInformation information class, the SMB2 server SHOULD<361> set
the CurrentByteOffset field to zero. The CurrentByteOffset field is part of the
FILE_POSITION_INFORMATION structure specified in section 2.4.32 of [MS-FSCC].

If the object store supports security and the information class is FileBasicInformation,
FileAllInformation, FilePipeInformation, FilePipeLocalInformation, FilePipeRemoteInformation,
FileNetworkOpenInformation, or FileAttributeTagInformation, and Open.GrantedAccess does not

include FILE_READ_ATTRIBUTES, the server MUST fail the request with STATUS_ACCESS_DENIED.

If the object store supports security and the information class is FileFullEaInformation and
Open.GrantedAccess does not include FILE_READ_EA, the server MUST fail the request with
STATUS_ACCESS_DENIED.

The server MUST query the information requested from the underlying object store.<362>

If the information class is FileAllInformation, the server SHOULD<363> return an empty
FileNameInformation by setting FileNameLength field to zero and FileName field to an empty

string. If the store does not support the data requested, the server MUST fail the request with
STATUS_NOT_SUPPORTED.

If the information class is FileNormalizedNameInformation, the server MUST convert the
information returned from the underlying object store to a normalized path name, as defined in [MS-
FSCC] section 2.1.5, in an implementation-specific manner. If the normalized path name is not

relative to TreeConnect.Share.LocalPath, the server MUST fail the request with

STATUS_NOT_SUPPORTED. Otherwise, the server MUST return the normalized path name.

Depending on the information class, the output data consists of a fixed portion followed by optional
variable-length data. If the OutputBufferLength given in the client request is zero or is insufficient
to hold the fixed-length part of the information requested, the server MUST fail the request with
STATUS_INFO_LENGTH_MISMATCH and MUST return error data as specified in section 2.2.2 with
ByteCount set to 8, ErrorDataLength set to 0, and ErrorId set to 0 if Connection.Dialect is
"3.1.1"; otherwise, ByteCount set to zero.

349 / 464

[MS-SMB2-Diff] - v20190923
Server Message Block (SMB) Protocol Versions 2 and 3
Copyright © 2019 Microsoft Corporation
Release: September 23, 2019

If the underlying object store returns an error, the server MUST fail the request with the error code
received.

If the underlying object store returns only a portion of the variable-length data, the server MUST
construct a response as described below but set the Status field in the SMB2 header to

STATUS_BUFFER_OVERFLOW. If FileFullEaInformation is being queried and the requested entries do
not fit in the Buffer field of the response, the server MUST construct a response as described below
but set the Status field in the SMB2 header to STATUS_BUFFER_OVERFLOW.

If the underlying object store returns the information successfully, the server MUST construct an SMB2
QUERY_INFO Response with the following values:

▪ OutputBufferOffset MUST be set to the offset, in bytes, from the beginning of the SMB2 header
to the attribute data at Buffer[].

▪ OutputBufferLength MUST be set to the length of the attribute data being returned to the client.

▪ The data MUST be placed in the response in Buffer[].

The response MUST then be sent to the client.

FullEaList: The list of extended attribute entries maintained by underlying object store.

EaIndex: Index of the EA in FullEaList to start enumerating EA entries. It starts from 1.

EaList: The list of FILE_GET_EA_INFORMATION structures as specified in [MS-FSCC] section 2.4.15.1.

If the object store supports security and the information class is set to FileFullEaInformation, the
server MUST return one or more extended attribute entries associated with the current Open, as
follows:

▪ If EaList is specified by the client, the server MUST query the EA entries from FullEaList through
the EA names in EaList until the buffer is full or has run to the end of EaList. The EaList is
contained at the offset InputBufferOffset, starting from the SMB2 header with the length set to
InputBufferLength.

▪ If SL_INDEX_SPECIFIED is not set in the Flags field and EaList is not specified, the server MUST
enumerate the EA entries from FullEaList starting at Open.CurrentEaIndex until the buffer is
full or has run out of the EA entries in FullEaList. Open.CurrentEaIndex MUST be incremented
by the number of EA entries returned to the client.

▪ If SL_RESTART_SCAN is set in the Flags field, the server MUST ignore it if either
SL_INDEX_SPECIFIED is set in the Flags field or EaList is specified by the client. Otherwise, the
server MUST set Open.CurrentEaIndex to 1.

▪ If SL_INDEX_SPECIFIED is set in the Flags field, it SHOULD be ignored by the server if EaList is
specified by the client. Otherwise, the server MUST use EaIndex as the starting index in
FullEaList to enumerate the EA entries until the buffer is full or has run out of the EA entries in
FullEaList. If an out-of-range EaIndex is specified, the server MUST fail the request with
STATUS_NONEXISTENT_EA_ENTRY.

▪ If SL_RETURN_SINGLE_ENTRY is set in the Flags field, the server MUST return the single EA entry

to the client.

3.3.5.20.2 Handling SMB2_0_INFO_FILESYSTEM

The information classes that are supported for querying file systems are listed in section 2.2.37.
Documentation for these is provided in [MS-FSCC] section 2.5.

Requests for information classes not listed in section 2.2.37 but documented in [MS-FSCC] section 2.5
SHOULD be failed with STATUS_NOT_SUPPORTED.

350 / 464

[MS-SMB2-Diff] - v20190923
Server Message Block (SMB) Protocol Versions 2 and 3
Copyright © 2019 Microsoft Corporation
Release: September 23, 2019

Requests for information classes not documented in [MS-FSCC] section 2.5 SHOULD be failed with
STATUS_INVALID_INFO_CLASS.

The server MUST query the information requested from the underlying volume that hosts the open in
the object store.<364> If the store does not support the data requested, the server MUST fail the

request with STATUS_NOT_SUPPORTED.

Depending on the information class, the output data consists of a fixed portion followed by optional
variable-length data. If the OutputBufferLength given in the client request is either zero or is
insufficient to hold the fixed length part of the information requested, the server MUST fail the request
with STATUS_INFO_LENGTH_MISMATCH and MUST return error data, as specified in section 2.2.2
with ByteCount set to 8, ErrorDataLength set to 0, and ErrorId set to 0 if Connection.Dialect is
"3.1.1"; otherwise, ByteCount set to zero.

If the underlying object store returns an error, the server MUST fail the request with the error code
received.

If the underlying object store returns only a portion of the variable-length data, the server MUST

construct a success response as described below but set the Status in the SMB2 header to
STATUS_BUFFER_OVERFLOW.

If the underlying object store returns the information successfully, the server MUST construct an SMB2

QUERY_INFO Response with the following values:

▪ OutputBufferOffset MUST be set to the offset, in bytes, from the beginning of the SMB2 header
to the attribute data at Buffer[].

▪ OutputBufferLength MUST be set to the length of the attribute data being returned to the client.

▪ The data MUST be placed in the response in Buffer[].

The response MUST then be sent to the client.<365>

3.3.5.20.3 Handling SMB2_0_INFO_SECURITY

This section assumes knowledge about security concepts, as described in [MS-WPO] section 9 and
specified in [MS-DTYP].

The server MUST ignore any flag value in the AdditionalInformation field that is not specified in
section 2.2.37.

The server SHOULD<366> call into the underlying object store to query the security descriptor for the
object.

The fields required in the resulting security descriptor are denoted by the flags given in the
AdditionalInformation field of the request.

If the OutputBufferLength given in the client request is either zero or is insufficient to hold the
information requested, the server MUST fail the request with STATUS_BUFFER_TOO_SMALL. If
Connection.Dialect is "3.1.1", the server MUST return error data containing the buffer size, in bytes,
that would be required to return the requested information, as specified in section 2.2.2, with

ByteCount set to 12, ErrorContextCount set to 1, and ErrorData set to SMB2 ERROR Context
response with ErrorDataLength set to 4, ErrorId set to 0, and ErrorContextData is set to the
buffer size, in bytes, indicating the minimum required buffer length; otherwise, the server MUST
return error data with ByteCount set to 4 and ErrorData set to a 4-byte value indicating the
minimum required buffer length. The server MUST NOT return STATUS_BUFFER_OVERFLOW with an
incomplete security descriptor to the client as in the previous cases. If the underlying object store
returns an error, the server MUST fail the request with the error code received.

351 / 464

[MS-SMB2-Diff] - v20190923
Server Message Block (SMB) Protocol Versions 2 and 3
Copyright © 2019 Microsoft Corporation
Release: September 23, 2019

If the underlying object store returns the information successfully, the server MUST construct an SMB2
QUERY_INFO Response with the following values:

▪ OutputBufferOffset MUST be set to the offset, in bytes, from the beginning of the SMB2 header
to the attribute data at Buffer[].

▪ OutputBufferLength MUST be set to the length of the attribute data being returned to the client.

▪ The security descriptor MUST be placed in the response in Buffer[].

The response MUST then be sent to the client.

3.3.5.20.4 Handling SMB2_0_INFO_QUOTA

The server's object store MAY support quotas that are associated with a security principal. If the
server exposes support for quotas, it MUST allow security principals to be identified using security

identifiers (SIDs) in the format that is specified in [MS-DTYP] section 2.4.2.2.<367>

If the underlying object store does not support user quotas, the server MUST fail the request with

STATUS_NOT_SUPPORTED.

The server MUST verify that the InputBufferOffset and InputBufferLength of the client request
describe an SMB2_QUERY_QUOTA_INFO structure following the syntax specified in section 2.2.37.1. If
not, the server MUST fail the request with STATUS_INVALID_PARAMETER.

The server MUST query the quota information retrieved from the underlying volume that hosts the
open in the object store.<368>

FullQuotaList: The list of the volume's quota information entries maintained by the underlying
object store.

SidList: The list of FILE_GET_QUOTA_INFORMATION structures as specified in [MS-FSCC]
section 2.4.33.1.

▪ If ReturnSingle is TRUE, the server MUST return at most a single quota information entry to the

client.

▪ If SidListLength is nonzero, the server MUST ignore the values of StartSidOffset and
StartSidLength, and enumerate the quota information entries for all the SIDs specified in
SidList. If SidList is not a list of FILE_GET_QUOTA_INFORMATION structures linked via the
NextEntryOffset field, the server MUST fail the request with STATUS_INVALID_PARAMETER. If
the server can't find the corresponding quota information entry through the SID specified in the
FILE_GET_QUOTA_INFORMATION structure, then the server MUST return

FILE_QUOTA_INFORMATION for the SID with the following fields set to zero: ChangeTime,
QuotaUsed, QuotaThreshold, and QuotaLimit.

▪ If SidListLength is zero, SidBuffer.StartSid is nonzero and StartSidLength is nonzero, the
server SHOULD enumerate the quota information entries for the SIDs following the StartSid.

▪ If StartSidLength or StartSidOffset or SidListLength are nonzero, the server MUST ignore the
value of RestartScan.

▪ If StartSidLength and StartSidOffset and SidListLength are all zero, the server MUST check
the value of RestartScan. If RestartScan is TRUE, the server MUST set
Open.CurrentQuotaIndex to 1. The server MUST use Open.CurrentQuotaIndex as the
starting index in FullQuotaList to enumerate the quota information entries until the buffer is full
or has run out of the quota information entries in FullQuotaList. Open.CurrentQuotaIndex
MUST be incremented by the number of quota information entries returned to the client.

352 / 464

[MS-SMB2-Diff] - v20190923
Server Message Block (SMB) Protocol Versions 2 and 3
Copyright © 2019 Microsoft Corporation
Release: September 23, 2019

The server MUST return STATUS_SUCCESS if at least one FILE_QUOTA_INFORMATION entry is
returned.

If the OutputBufferLength given in the client request is either zero or is insufficient to hold single
FILE_QUOTA_INFORMATION entry, the server MUST fail the request with

STATUS_BUFFER_TOO_SMALL and return error data, as specified in section 2.2.2, with ByteCount set
to zero.

If the underlying object store returns STATUS_NO_MORE_ENTRIES, indicating that no information was
returned, the server MUST set the same error in the Status field of the SMB2 header. The server
MUST also construct an SMB2 QUERY_INFO Response with OutputBufferOffset,
OutputBufferLength and Buffer set to 0.

If the underlying object store returns any other error, the server MUST fail the entire request with the

error code received.

If the underlying object store returns the information successfully, the server MUST construct an SMB2
QUERY_INFO Response with the following values:

▪ OutputBufferOffset MUST be set to the offset, in bytes, from the beginning of the SMB2 header
to the attribute data at Buffer[].

▪ OutputBufferLength MUST be set to the length of the attribute data being returned to the client.

▪ The data MUST be placed in the response in Buffer[].

The response MUST then be sent to the client.

3.3.5.21 Receiving an SMB2 SET_INFO Request

When the server receives a request with an SMB2 Header with a Command value equal to SMB2

SET_INFO, message handling proceeds as follows:

The server MUST locate the session, as specified in section 3.3.5.2.9.

The server MUST locate the tree connection, as specified in section 3.3.5.2.11.

Next, the server MUST locate the open on which the client is requesting to set information by
performing a lookup in Session.OpenTable using FileId.Volatile of the request as the lookup key. If
no open is found, or if Open.DurableFileId is not equal to FileId.Persistent, the server MUST fail

the request with STATUS_FILE_CLOSED. Otherwise, the server MUST locate the Request in
Connection.RequestList for which Request.MessageId matches the MessageId value in the
SMB2 header, and set Request.Open to the Open.

If BufferLength is greater than Connection.MaxTransactSize, the server SHOULD<369> fail the
request with STATUS_INVALID_PARAMETER.

If the BufferLength field is zero, the server SHOULD fail the request with
STATUS_INVALID_PARAMETER.

If Connection.SupportsMultiCredit is TRUE, the server MUST validate CreditCharge based on
BufferLength, as specified in section 3.3.5.2.5. If the validation fails, it MUST fail the request with
STATUS_INVALID_PARAMETER.

The remaining processing for this request depends on the InfoType requested, as described below.

The status code returned by this operation MUST be one of those defined in [MS-ERREF]. Common
status codes returned by this operation include:

▪ STATUS_SUCCESS

353 / 464

[MS-SMB2-Diff] - v20190923
Server Message Block (SMB) Protocol Versions 2 and 3
Copyright © 2019 Microsoft Corporation
Release: September 23, 2019

▪ STATUS_INSUFFICIENT_RESOURCES

▪ STATUS_ACCESS_DENIED

▪ STATUS_FILE_CLOSED

▪ STATUS_NETWORK_NAME_DELETED

▪ STATUS_USER_SESSION_DELETED

▪ STATUS_NETWORK_SESSION_EXPIRED

▪ STATUS_INVALID_PARAMETER

▪ STATUS_INVALID_INFO_CLASS

▪ STATUS_NOT_SUPPORTED

▪ STATUS_EA_LIST_INCONSISTENT

▪ STATUS_CANCELLED

3.3.5.21.1 Handling SMB2_0_INFO_FILE

The information classes that are supported for setting file information are listed in section 2.2.39.
Documentation for these is provided in [MS-FSCC] section 2.4.

Requests for information classes documented in [MS-FSCC] section 2.4 with "Set" not specified in the
Uses column are not allowed and SHOULD be failed with STATUS_INVALID_INFO_CLASS.

Requests for information classes not documented in section 2.4 of [MS-FSCC] SHOULD<370> be
failed with STATUS_INVALID_INFO_CLASS.

Requests for information classes not listed in section 2.2.39 but documented in [MS-FSCC] section 2.4
with "Set" specified in the Uses column are not allowed and SHOULD be failed with

STATUS_NOT_SUPPORTED.

If FileInfoClass is FileRenameInformation, the server does the following:

▪ If the size of the buffer is less than the size of FILE_RENAME_INFORMATION_TYPE_2 as specified

in [MS-FSCC] section 2.4.34.2, the server MUST fail the request with
STATUS_INFO_LENGTH_MISMATCH.

▪ If the file name pointed to by the FileName parameter of the
FILE_RENAME_INFORMATION_TYPE_2, as specified in [MS-FSCC] section 2.4.34.2, contains a
separator character, then the server MUST fail the request with STATUS_NOT_SUPPORTED.

▪ If the RootDirectory field of FILE_RENAME_INFORMATION_TYPE_2 as specified in [MS-FSCC]
section 2.4.34.2 is zero, the FileName field MUST specify a full pathname as specified in [MS-

FSCC] section 2.1.5 to be assigned to the file. If the RootDirectory field is not zero, the server
MUST return STATUS_INVALID_PARAMETER.

If the object store supports security and the information class is FileBasicInformation or
FilePipeInformation, and Open.GrantedAccess does not include FILE_WRITE_ATTRIBUTES, the
server MUST fail the request with STATUS_ACCESS_DENIED.

If the object store supports security and the information class is FileRenameInformation,

FileDispositionInformation, or FileShortNameInformation, and Open.GrantedAccess does not include
DELETE, the server MUST fail the request with STATUS_ACCESS_DENIED.

354 / 464

[MS-SMB2-Diff] - v20190923
Server Message Block (SMB) Protocol Versions 2 and 3
Copyright © 2019 Microsoft Corporation
Release: September 23, 2019

If the object store supports security and the information class is FileFullEaInformation, and
Open.GrantedAccess does not include FILE_WRITE_EA, the server MUST fail the request with

STATUS_ACCESS_DENIED.

If the object store supports security and the information class is FileFullEaInformation and the EA

buffer in the Buffer field is not in a valid format, the server MUST fail the request with
STATUS_EA_LIST_INCONSISTENT.

If the object store supports security and the information class is FileAllocationInformation,
FileEndOfFileInformation, or FileValidDataLengthInformation, and Open.GrantedAccess does not
include FILE_WRITE_DATA, the server MUST fail the request with STATUS_ACCESS_DENIED.

The server MUST apply the information requested to the underlying object store.<371> If the store
does not support the information class requested, the server MUST fail the request with

STATUS_NOT_SUPPORTED.

If the underlying object store returns an error, the server MUST fail the request with the error code
received.

Otherwise, the server MUST initialize an SMB2 SET_INFO Response following the syntax given in
section 2.2.40.

If the underlying object store returns successfully, the information class is FileRenameInformation,

Connection.Dialect is "2.1" or belongs to the SMB 3.x dialect family, the server supports leasing,
and Open.Lease is not NULL, the server MUST update Open.Lease.Filename to the new name for
the file.

The response MUST then be sent to the client.

3.3.5.21.2 Handling SMB2_0_INFO_FILESYSTEM

The information classes that are supported for setting underlying object store information are listed in

section 2.2.39. Documentation for these is provided [MS-FSCC] section 2.5. Requests for information
classes not listed in section 2.2.39 but documented in section 2.5 of [MS-FSCC] for Uses of "Set" or

"LOCAL" MUST be failed with STATUS_NOT_SUPPORTED. Requests for information classes not
documented in section 2.5 of [MS-FSCC] or documented in section 2.5 of [MS-FSCC] for Uses of only
"Query" MUST be failed with STATUS_INVALID_INFO_CLASS.

If the object store supports security and the information class is FileFsControlInformation or
FileFsObjectIdInformation and Open.GrantedAccess does not include FILE_WRITE_DATA, the server

MUST fail the request with STATUS_ACCESS_DENIED.

The server MUST apply the information requested to the underlying object store.<372> If the
underlying object store returns an error, the server MUST fail the request with the error code received.
Otherwise, the server MUST initialize an SMB2 SET_INFO Response following the syntax given in
section 2.2.40. The response MUST then be sent to the client.

3.3.5.21.3 Handling SMB2_0_INFO_SECURITY

The following section assumes knowledge about security concepts as described in [MS-WPO] section 9

and specified in [MS-DTYP].<373>

The server MUST ignore any flag value in the AdditionalInformation field that is not specified in
section 2.2.39.

1. If SACL_SECURITY_INFORMATION is set in the AdditionalInformation field of the request, and
Open.GrantedAccess does not include ACCESS_SYSTEM_SECURITY, the server MUST fail the

request with STATUS_ACCESS_DENIED.

355 / 464

[MS-SMB2-Diff] - v20190923
Server Message Block (SMB) Protocol Versions 2 and 3
Copyright © 2019 Microsoft Corporation
Release: September 23, 2019

2. If DACL_SECURITY_INFORMATION is set in the AdditionalInformation field of the request, and
Open.GrantedAccess does not include WRITE_DAC, the server MUST fail the request with

STATUS_ACCESS_DENIED.

3. If the object store supports security, either LABEL_SECURITY_INFORMATION,

GROUP_SECURITY_INFORMATION, or OWNER_SECURITY_INFORMATION is set in the
AdditionalInformation field of the request, and Open.GrantedAccess does not include
WRITE_OWNER, the server MUST fail the request with STATUS_ACCESS_DENIED.

4. If ATTRIBUTE_SECURITY_INFORMATION is set in the AdditionalInformation field of the request,
and Open.GrantedAccess does not include WRITE_DAC, the server SHOULD<374> fail the
request with STATUS_ACCESS_DENIED.

5. If SCOPE_SECURITY_INFORMATION is set in the AdditionalInformation field of the request, and

Open.GrantedAccess does not include ACCESS_SYSTEM_SECURITY, the server SHOULD<375>
fail the request with STATUS_ACCESS_DENIED.

6. If BACKUP_SECURITY_INFORMATION is set in the AdditionalInformation field of the request,

and Open.GrantedAccess does not include WRITE_DAC, WRITE_OWNER and
ACCESS_SYSTEM_SECURITY the server SHOULD<376> fail the request with
STATUS_ACCESS_DENIED.

7. The server MUST call into the underlying object store to set the security on the object.<377>

The fields being applied in the provided security descriptor are denoted by the flags given in the
AdditionalInformation field of the request.

If the underlying object store returns an error, the server MUST fail the request with the error code
received.

Otherwise, the server MUST initialize an SMB2 SET_INFO Response following the syntax given in
section 2.2.40.

The response MUST then be sent to the client.

3.3.5.21.4 Handling SMB2_0_INFO_QUOTA

The server's object store MAY support quotas associated with a security principal. If the server
exposes support for quotas, it MUST allow security principals to be identified using security identifiers
(SIDs) in the format specified in [MS-DTYP] section 2.4.2.2.<378>

If the object store does not support quotas, the server MUST fail the request with

STATUS_NOT_SUPPORTED.

If the user represented by Session.SecurityContext is not granted the right to manage quotas on
the underlying volume in the object store, the server MUST fail the request with
STATUS_ACCESS_DENIED.

The server MUST apply the provided quota information to the underlying volume that hosts the open
in the object store.<379>

If the underlying object store returns an error, the server MUST fail the request with the error code
received.

Otherwise, the server MUST initialize an SMB2 SET_INFO Response following the syntax given in
section 2.2.40.

The response MUST then be sent to the client.

356 / 464

[MS-SMB2-Diff] - v20190923
Server Message Block (SMB) Protocol Versions 2 and 3
Copyright © 2019 Microsoft Corporation
Release: September 23, 2019

3.3.5.22 Receiving an SMB2 OPLOCK_BREAK Acknowledgment

When the server receives a request with an SMB2 header with a Command value equal to SMB2
OPLOCK_BREAK, message handling proceeds as follows:

▪ If Connection.Dialect is not "2.0.2", and the StructureSize of the request is equal to 36, the
server MUST process the request as described in section 3.3.5.22.2.

▪ Otherwise, the server MUST process the request as described in section 3.3.5.22.1.

3.3.5.22.1 Processing an Oplock Acknowledgment

The server MUST locate the session, as specified in section 3.3.5.2.9.

The server MUST locate the tree connection, as specified in section 3.3.5.2.11.

Next, the server MUST locate the open on which the client is acknowledging an oplock break by
performing a lookup in Session.OpenTable using FileId.Volatile of the request as the lookup key. If

no open is found, or if Open.DurableFileId is not equal to FileId.Persistent, the server MUST fail
the request with STATUS_FILE_CLOSED. Otherwise, the server MUST locate the Request in
Connection.RequestList for which Request.MessageId matches the MessageId value in the
SMB2 header, and set Request.Open to the Open.

If the OplockLevel in the acknowledgment is SMB2_OPLOCK_LEVEL_LEASE, the server MUST do the
following:

▪ If Open.OplockState is not Breaking, stop processing the acknowledgment, and send an error
response with STATUS_INVALID_PARAMETER.

▪ If Open.OplockState is Breaking, complete the oplock break request received from the object
store as described in section 3.3.4.6, with a new level SMB2_OPLOCK_LEVEL_NONE in an
implementation-specific manner,<380> and set Open.OplockLevel to

SMB2_OPLOCK_LEVEL_NONE, and Open.OplockState to None.

If Open.OplockLevel is SMB2_OPLOCK_LEVEL_EXCLUSIVE or SMB2_OPLOCK_LEVEL_BATCH, and if
OplockLevel is not SMB2_OPLOCK_LEVEL_II or SMB2_OPLOCK_LEVEL_NONE, the server MUST do
the following:

▪ If Open.OplockState is not Breaking, stop processing the acknowledgment, and send an error
response with STATUS_INVALID_OPLOCK_PROTOCOL.

▪ If Open.OplockState is Breaking, complete the oplock break request received from the object

store, as described in section 3.3.4.6, with a new level SMB2_OPLOCK_LEVEL_NONE in an
implementation-specific manner,<381> and set Open.OplockLevel to
SMB2_OPLOCK_LEVEL_NONE and Open.OplockState to None.

If Open.OplockLevel is SMB2_OPLOCK_LEVEL_II, and if OplockLevel is not
SMB2_OPLOCK_LEVEL_NONE, the server MUST do the following:

▪ If Open.OplockState is not Breaking, stop processing the acknowledgment, and send an error

response with STATUS_INVALID_OPLOCK_PROTOCOL.

▪ If Open.OplockState is Breaking, complete the oplock break request received from the object
store, as described in section 3.3.4.6, with a new level SMB2_OPLOCK_LEVEL_NONE in an
implementation-specific manner,<382> and set Open.OplockLevel to
SMB2_OPLOCK_LEVEL_NONE and Open.OplockState to None.

If OplockLevel is SMB2_OPLOCK_LEVEL_II or SMB2_OPLOCK_LEVEL_NONE, the server MUST do the
following:

357 / 464

[MS-SMB2-Diff] - v20190923
Server Message Block (SMB) Protocol Versions 2 and 3
Copyright © 2019 Microsoft Corporation
Release: September 23, 2019

▪ If Open.OplockState is not Breaking, stop processing the acknowledgment, and send an error
response with STATUS_INVALID_DEVICE_STATE.

▪ If Open.OplockState is Breaking, complete the oplock break request received from the object
store as described in section 3.3.4.6, with a new level received in OplockLevel in an

implementation-specific manner.<383>

▪ If the object store indicates an error, set the Open.OplockLevel to
SMB2_OPLOCK_LEVEL_NONE, the Open.OplockState to None, and send the error response
with the error code received.

▪ If the object store indicates success, update Open.OplockLevel and Open.OplockState as
follows:

▪ If OplockLevel is SMB2_OPLOCK_LEVEL_II, set Open.OplockLevel to

SMB2_OPLOCK_LEVEL_II and Open.OplockState to Held.

▪ If OplockLevel is SMB2_OPLOCK_LEVEL_NONE, set Open.OplockLevel to
SMB2_OPLOCK_LEVEL_NONE and the Open.OplockState to None.

The server then MUST construct an oplock break response using the syntax specified in section
2.2.25.1 with the following value:

▪ OplockLevel MUST be set to Open.OplockLevel.

This response MUST then be sent to the client.

The status code returned by this operation MUST be one of those defined in [MS-ERREF]. Common
status codes returned by this operation include:

▪ STATUS_ACCESS_DENIED

▪ STATUS_FILE_CLOSED

▪ STATUS_INVALID_OPLOCK_PROTOCOL

▪ STATUS_INVALID_PARAMETER

▪ STATUS_INVALID_DEVICE_STATE

▪ STATUS_NETWORK_NAME_DELETED

▪ STATUS_USER_SESSION_DELETED

3.3.5.22.2 Processing a Lease Acknowledgment

The server MUST locate the session, as specified in section 3.3.5.2.9.

The server MUST locate the tree connection, as specified in section 3.3.5.2.11.

Next, the server MUST locate the Lease Table by performing a lookup in GlobalLeaseTableList using

Connection.ClientGuid as the lookup key. If no lease table is found, the server MUST fail the request
with STATUS_OBJECT_NAME_NOT_FOUND.

The server MUST locate the lease on which the client is acknowledging a lease break by performing a
lookup in LeaseTable.LeaseList using the LeaseKey of the request as the lookup key. If no lease is
found, the server MUST fail the request with STATUS_OBJECT_NAME_NOT_FOUND.

If Lease.Breaking is FALSE, the server MUST fail the request with STATUS_UNSUCCESSFUL.

358 / 464

[MS-SMB2-Diff] - v20190923
Server Message Block (SMB) Protocol Versions 2 and 3
Copyright © 2019 Microsoft Corporation
Release: September 23, 2019

If LeaseState is not <= Lease.BreakToLeaseState, the server MUST fail the request with
STATUS_REQUEST_NOT_ACCEPTED.

The server completes the lease break request received from the object store as described in section
3.3.4.7. The server MUST set Lease.LeaseState to LeaseState received in the request,

Open.OplockState to “Held”, and Lease.Breaking to FALSE.

The server then MUST construct a lease break response using the syntax specified in section 2.2.25.2
with the following values:

▪ LeaseKey MUST be set to Lease.LeaseKey.

▪ LeaseState MUST be set to Lease.LeaseState.

This response MUST then be sent to the client.

The status code returned by this operation MUST be one of those defined in [MS-ERREF]. Common

status codes returned by this operation include:

▪ STATUS_ACCESS_DENIED

▪ STATUS_OBJECT_NAME_NOT_FOUND

▪ STATUS_INVALID_OPLOCK_PROTOCOL

▪ STATUS_INVALID_PARAMETER

▪ STATUS_INVALID_DEVICE_STATE

▪ STATUS_NETWORK_NAME_DELETED

▪ STATUS_USER_SESSION_DELETED

3.3.6 Timer Events

3.3.6.1 Oplock Break Acknowledgment Timer Event

The oplock break acknowledgment timer MUST be started when the server sends an oplock break
notification (as specified in section 2.2.23.1) to the client as a result of the underlying object store
indicating an oplock break on a file.

When the oplock break acknowledgment timer expires, the server MUST scan for oplock breaks that
have not been acknowledged by the client within the configured time. It does this by enumerating all
opens in the GlobalOpenTable. For each open, if Open.OplockState is Breaking and
Open.OplockTimeout is earlier than the current time, the server MUST acknowledge the oplock
break to the underlying object store represented by Open.LocalOpen with
SMB2_OPLOCK_LEVEL_NONE as the new oplock level, and MUST set Open.OplockLevel to
SMB2_OPLOCK_LEVEL_NONE, and Open.OplockState to None.

The timer MUST be restarted if there is an open where Open.OplockState is equal to “Breaking”.

3.3.6.2 (Updated Section) Durable Open Scavenger Timer Event

The durable open scavenger timer MUST be started (if it is not already active) when the transport
connection associated with a durable open is lost.

When the durable open scavenger timer expires, the server MUST scan for durable opens that have
not been reclaimed by a client within the configured time. It does this by enumerating all opens in the
GlobalOpenTable. For each open, if Open.IsDurable is TRUE, Open.Connection is NULL, and

359 / 464

[MS-SMB2-Diff] - v20190923
Server Message Block (SMB) Protocol Versions 2 and 3
Copyright © 2019 Microsoft Corporation
Release: September 23, 2019

Open.DurableOpenScavengerTimeout is earlier than the system time, the server MUST close the
open as specified in section 3.3.4.17.

The timer MUST then be restarted to expire again at the time of the next durable open time-out. If no
other durable opens have Open.Connection equal to NULL, the timer MUST NOT be restarted.

If there is an Open in GlobalOpenTable where Open.IsDurable is TRUE, and connection is available
as specified in section 3.3.4.1.6, the timer MUST be restarted.

3.3.6.3 Session Expiration Timer Event

When the session expiration timer expires, the server MUST walk each Session in the
GlobalSessionTable. If the Session.State is Valid and the Session.ExpirationTime has passed,
the Session.State MUST be set to Expired and ServerStatistics.sts0_stimedout MUST be
increased by 1. For each Connection in the global ConnectionList where the current time minus
Connection.CreationTime is more than an implementation-specific time-out,<384> the server
MUST disconnect the Connection, as specified in section 3.3.7.1, if any of the following conditions are
TRUE:

▪ Connection.Dialect is "Unknown".

▪ Connection.Dialect is not "Unknown", and Connection.SessionTable is empty.

▪ Connection.Dialect is not "Unknown", Connection.SessionTable is not empty, and there is no
Session in Connection.SessionList where Session.State is Valid or Expired.

3.3.6.4 (Updated Section) Resilient Open Scavenger Timer Event

If the server implements the SMB 2.1 or SMB 3.x dialect family and supports resiliency, it MUST
implement this timer event.

When the resilient open scavenger timer expires, the server MUST scan for resilient opens that have
not been reclaimed by a client within the configured time. It does this by enumerating all opens in the

GlobalOpenTable. For each open, if Open.IsResilient is TRUE, Open.Connection is NULL and

Open.ResilientOpenTimeout is earlier than the current time, the server MUST close the Open as
specified in section 3.3.4.17.

The timer MUST then be restarted to expire again atIf there is an Open in GlobalOpenTable where
Open.IsResilient is TRUE, and connection is available as specified in section 3.3.4.1.6, the time
ofserver MUST set ResilientOpenScavengerExpiryTime to the next resilient open time-out and
ResilientOpenScavengerExpiryTime MUST be set to the next resilient open time-out. If no other
resilient opens have Open.Connection equal to NULL, the timer MUST NOT the timer MUST be

restarted.

3.3.6.5 Lease Break Acknowledgment Timer Event

The Lease Break acknowledgment timer MUST be started when the server sends a lease break
notification (as specified in section 2.2.23.2) to the client as a result of the underlying object store

indicating a lease break on a file.

When the lease break acknowledgment timer expires, the server MUST scan for lease breaks that
have not been acknowledged by the client within the configured time. It does this by enumerating all
lease tables in GlobalLeaseTableList. For each lease table, it enumerates all leases in
LeaseTable.LeaseList. For each lease, if Lease.Breaking is TRUE and Lease.LeaseBreakTimeout
is earlier than the current time, the server MUST acknowledge the lease break to the underlying object

store represented by the opens in Lease.LeaseOpens with NONE as the new lease state and MUST
set Lease.LeaseState to NONE and Lease.Breaking to FALSE.

360 / 464

[MS-SMB2-Diff] - v20190923
Server Message Block (SMB) Protocol Versions 2 and 3
Copyright © 2019 Microsoft Corporation
Release: September 23, 2019

The timer MUST be restarted if there is a lease where Lease.Breaking is set to TRUE.

3.3.7 Other Local Events

3.3.7.1 Handling Loss of a Connection

When the underlying transport indicates loss of a connection or after the server initiates a transport

disconnect, for each session in Connection.SessionTable, the server MUST perform the following:

If Connection.Dialect belongs to the SMB 3.x dialect family and if the Session has more than one
channel in Session.ChannelList, the server MUST perform the following action:

▪ All requests in Session.Channel.Connection.RequestList MUST be canceled. The server
SHOULD<385> pass the CancelRequestId to the object store to request cancellation of the
pending operation.

▪ The channel entry MUST be removed from the Session.ChannelList where Channel.Connection

matches the disconnected connection.

▪ If Session.Connection matches the disconnected connection, Session.Connection MUST be set
to the first entry in Session.ChannelList.

Otherwise, the server MUST perform the following actions:

▪ The server MUST iterate over the Session.OpenTable and determine whether each Open is to be
preserved for reconnect. If any of the following conditions is satisfied, it indicates that the Open is
to be preserved for reconnect.

▪ Open.IsResilient is TRUE.

▪ Open.OplockLevel is equal to SMB2_OPLOCK_LEVEL_BATCH and Open.OplockState is
equal to Held, and Open.IsDurable is TRUE.

▪ Open.OplockLevel is equal to SMB2_OPLOCK_LEVEL_LEASE, Lease.LeaseState contains

SMB2_LEASE_HANDLE_CACHING, Open.OplockState is equal to Held, and Open.IsDurable
is TRUE.

▪ Open.IsPersistent is TRUE.

If the Open is to be preserved for reconnect, perform the following actions:

▪ Set Open.Connection to NULL, Open.Session to NULL, Open.TreeConnect to NULL.

▪ If Open.IsResilient is TRUE, set Open.ResilientOpenTimeOut to the current time plus
Open.ResiliencyTimeout. The server SHOULD<386> start or reset the Resilient Open
Scavenger Timer, as specified in section 3.3.2.4, under the following conditions:

▪ If the Resilient Open Scavenger Timer is not already active.

▪ If the Resilient Open Scavenger Timer is active and

ResilientOpenScavengerExpiryTime is greater than Open.ResilientOpenTimeOut.

In both of the preceding cases, the server MUST set the timer to expire at
Open.ResilientOpenTimeOut and MUST set ResilientOpenScavengerExpiryTime to
Open.ResilientOpenTimeOut.

▪ If Open.IsDurable is TRUE, the server MUST do the following:

▪ The server MUST set Open.DurableOpenScavengerTimeout to the system time plus

Open.DurableOpenTimeOut.

361 / 464

[MS-SMB2-Diff] - v20190923
Server Message Block (SMB) Protocol Versions 2 and 3
Copyright © 2019 Microsoft Corporation
Release: September 23, 2019

▪ The server MUST start the durable open scavenger timer, as specified in sections 3.3.2.2.

If the Open is not to be preserved for reconnect, the server MUST close the Open as specified in

section 3.3.4.17.

▪ The server MUST disconnect every TreeConnect in Session.TreeConnectTable and deregister

the TreeConnect by invoking the event specified in [MS-SRVS] section 3.1.6.7, providing the
tuple <TreeConnect.Share.ServerName, TreeConnect.Share.Name> and
TreeConnect.TreeGlobalId as the input parameters, and the TreeConnect MUST be removed
from Session.TreeConnectTable and freed. For each deregistered TreeConnect,
TreeConnect.Share.CurrentUses MUST be decreased by 1.

▪ The server MUST deregister the Session by invoking the event specified in [MS-SRVS] section
3.1.6.3, providing Session.SessionGlobalId as the input parameter, and the Session MUST be

removed from GlobalSessionTable and freed. ServerStatistics.sts0_sopens MUST be
decreased by 1.

All requests in Connection.RequestList MUST be canceled. The server SHOULD<387> pass the

CancelRequestId to the object store to request cancellation of the pending operation.

The server MUST invoke the event specified in [MS-SRVS] section 3.1.6.16 to update the connection
count by providing the tuple <Connection.TransportName,FALSE>.

The connection MUST be removed from ConnectionList and MUST be freed.

362 / 464

[MS-SMB2-Diff] - v20190923
Server Message Block (SMB) Protocol Versions 2 and 3
Copyright © 2019 Microsoft Corporation
Release: September 23, 2019

4 Protocol Examples

The following sections describe common scenarios that indicate normal traffic flow in order to illustrate
the function of the SMB 2 Protocol.

4.1 Connecting to a Share by Using a Multi-Protocol Negotiate

The following diagram shows the steps taken by a client that is negotiating SMB2 by using an SMB-
style negotiate.

Figure 6: Client negotiating SMB2 with SMB-style negotiate

1. The client sends an SMB negotiate packet with the string "SMB 2.002" in the dialect string list,
along with the other SMB dialects the client implements.

 Smb: C; Negotiate, Dialect = PC NETWORK PROGRAM 1.0, LANMAN1.0, Windows for Workgroups 3.1a,
LM1.2X002, LANMAN2.1, NT LM 0.12, SMB 2.002

 Protocol: SMB

363 / 464

[MS-SMB2-Diff] - v20190923
Server Message Block (SMB) Protocol Versions 2 and 3
Copyright © 2019 Microsoft Corporation
Release: September 23, 2019

 Command: Negotiate 114(0x72)
 SMBHeader: Command, TID: 0xFFFF, PID: 0xFEFF, UID: 0x0000, MID: 0x0000
 Flags: 24 (0x18)
 Bit0: (.......0) SMB_FLAGS_LOCK_AND_READ_OK: LOCK_AND_READ and WRITE_AND_CLOSE not supported
(obsoleted)

 Bit1: (......0.) SMB_FLAGS_SEND_NO_ACK [not implemented]
 Bit2: (.....0..) Reserved (value is zero)
 Bit3: (....1...) SMB_FLAGS_CASE_INSENSITIVE: SMB paths are case-insensitive
 Bit4: (...1....) SMB_FLAGS_CANONICALIZED_PATHS: Canonicalized File and pathnames (obsoleted)
 Bit5: (..0.....) SMB_FLAGS_OPLOCK: No Oplocks supported for OPEN, CREATE & CREATE_NEW
(obsoleted)

 Bit6: (.0......) SMB_FLAGS_OPLOCK_NOTIFY_ANY: No Notifications supported for OPEN, CREATE &
CREATE_NEW (obsoleted)

 Bit7: (0.......) SMB_FLAGS_SERVER_TO_REDIR: Command - SMB is being sent from the client
 Flags2: 51283 (0xC853)
 Bit00: (...............1) SMB_FLAGS2_KNOWS_LONG_NAMES: May return long file names
 Bit01: (..............1.) SMB_FLAGS2_KNOWS_EAS: Understands extended attributes
 Bit02: (.............0..) SMB_FLAGS2_SMB_SECURITY_SIGNATURE: Not security signature-enabled
 Bit03: (............0...) Reserved
 Bit04: (...........1....) Reserved
 Bit05: (..........0.....) SMB_FLAGS2_SMB_SECURITY_SIGNATURE_REQUIRED: SMB packets are signed
 Bit06: (.........1......) SMB_FLAGS2_IS_LONG_NAME: Any path name in the request is a long
name

 Bit07: (........0.......) Reserved
 Bit08: (.......0........) Reserved
 Bit09: (......0.........) Reserved
 Bit10: (.....0..........) SMB_FLAGS2_REPARSE_PATH: Not requesting Reparse path
 Bit11: (....1...........) SMB_FLAGS2_EXTENDED_SECURITY: Aware of extended security
 Bit12: (...0............) SMB_FLAGS2_DFS: No DFS namespace
 Bit13: (..0.............) SMB_FLAGS2_PAGING_IO: Read operation will NOT be permitted if has
no read permission

 Bit14: (.1..............) SMB_FLAGS2_NT_STATUS: Using 32-bit NT status error codes
 Bit15: (1...............) SMB_FLAGS2_UNICODE: Using UNICODE strings
 PIDHigh: 0 (0x0)
 SecuritySignature: 0x0
 Reserved: 0 (0x0)
 TreeID: 65535 (0xFFFF)
 Reserved: 0 (0x0)
 UserID: 0 (0x0)
 MultiplexID: 0 (0x0)
 CNegotiate:
 WordCount: 0 (0x0)
 ByteCount: 109 (0x6D)
 Dialect: PC NETWORK PROGRAM 1.0
 BufferFormat: Dialect 2(0x2)
 DialectName: PC NETWORK PROGRAM 1.0
 Dialect: LANMAN1.0
 BufferFormat: Dialect 2(0x2)
 DialectName: LANMAN1.0
 Dialect: Windows for Workgroups 3.1a
 BufferFormat: Dialect 2(0x2)
 DialectName: Windows for Workgroups 3.1a
 Dialect: LM1.2X002
 BufferFormat: Dialect 2(0x2)
 DialectName: LM1.2X002
 Dialect: LANMAN2.1
 BufferFormat: Dialect 2(0x2)
 DialectName: LANMAN2.1
 Dialect: NT LM 0.12
 BufferFormat: Dialect 2(0x2)
 DialectName: NT LM 0.12
 Dialect: SMB 2.002
 BufferFormat: Dialect 2(0x2)
 DialectName: SMB 2.002

364 / 464

[MS-SMB2-Diff] - v20190923
Server Message Block (SMB) Protocol Versions 2 and 3
Copyright © 2019 Microsoft Corporation
Release: September 23, 2019

2. The server receives the SMB negotiate request and finds dialect "SMB 2.002". The server responds
with an SMB2 negotiate.

 Smb2: R NEGOTIATE
 SMB2Header:
 Size: 64 (0x40)
 CreditCharge: 0 (0x0)
 Status: STATUS_SUCCESS
 Command: NEGOTIATE
 Credits: 1 (0x1)
 Flags: 1 (0x1)
 ServerToRedir:1 Server to Client
 AsyncCommand: 0. Command is not asynchronous
 Related: 0.. Packet is single message
 Signed: 0... Packet is not signed
 Reserved: 0 (0x0)
 DFS: 0............................... Command is not a DFS Operation
 NextCommand: 0 (0x0)
 MessageId: 0 (0x0)
 Reserved: 0 (0x0)
 TreeId: 0 (0x0)
 SessionId: 0 (0x0)
 RNegotiate:
 Size: 65 (0x41)
 SecurityMode: Signing Enabled
 DialectRevision: 0x0202
 Reserved: 0 (0x0)
 Guid: {3F5CF209-A4E5-0049-A7D6-6A456D5CA5CF}
 Capabilities: 1 (0x1)
 DFS: 1 DFS available
 MaxTransactSize: 65536 (0x10000)
 MaxReadSize: 65536 (0x10000)
 MaxWriteSize: 65536 (0x10000)
 SystemTime: 127972992061679232 (0x1C6A6C21CAE2680)
 ServerStartTime: 127972985895467232 (0x1C6A6C0AD2538E0)
 SecurityBufferOffset: 128 (0x80)
 SecurityBufferLength: 30 (0x1E)
 Reserved2: 0 (0x0)
 Buffer:

3. The client queries GSS for the authentication token and sends an SMB2 SESSION_SETUP Request
with the output token received from GSS.

 Smb2: C SESSION SETUP
 Smb2: C SESSION SETUP
 SMB2Header:
 Size: 64 (0x40)
 CreditCharge: 0 (0x0)
 Status: STATUS_SUCCESS
 Command: SESSION SETUP
 Credits: 126 (0x7E)
 Flags: 0 (0x0)
 ServerToRedir:0 Client to Server
 AsyncCommand: 0. Command is not asynchronous
 Related: 0.. Packet is single message
 Signed: 0... Packet is not signed
 Reserved: 0 (0x0)
 DFS: 0............................... Command is not a DFS Operation
 NextCommand: 0 (0x0)
 MessageId: 1 (0x1)
 Reserved: 0 (0x0)
 TreeId: 0 (0x0)
 SessionId: 0 (0x0)
 CSessionSetup:

365 / 464

[MS-SMB2-Diff] - v20190923
Server Message Block (SMB) Protocol Versions 2 and 3
Copyright © 2019 Microsoft Corporation
Release: September 23, 2019

 Size: 25 (0x19)
 VcNumber: 0 (0x0)
 SecurityMode: Signing Enabled
 Capabilities: 1 (0x1)
 DFS: 1 DFS available
 Channel: 0 (0x0)
 SecurityBufferOffset: 88 (0x58)
 SecurityBufferLength: 74 (0x4A)
 Buffer: (74 bytes)

4. The server processes the token received with GSS and gets a return code indicating a subsequent

round trip is required. The server responds to the client with an SMB2 SESSION_SETUP Response
with Status equal to STATUS_MORE_PROCESSING_REQUIRED and the response containing the
output token from GSS.

 Smb2: R SESSION SETUP (Status=STATUS_MORE_PROCESSING_REQUIRED)
 Smb2: R SESSION SETUP (Status=STATUS_MORE_PROCESSING_REQUIRED)
 SMB2Header:
 Size: 64 (0x40)
 CreditCharge: 0 (0x0)
 Status: STATUS_MORE_PROCESSING_REQUIRED
 Command: SESSION SETUP
 Credits: 2 (0x2)
 Flags: 1 (0x1)
 ServerToRedir:1 Server to Client
 AsyncCommand: 0. Command is not asynchronous
 Related: 0.. Packet is single message
 Signed: 0... Packet is not signed
 Reserved: 0 (0x0)
 DFS: 0............................... Command is not a DFS Operation
 NextCommand: 0 (0x0)
 MessageId: 1 (0x1)
 Reserved: 0 (0x0)
 TreeId: 0 (0x0)
 SessionId: 4398046511113 (0x40000000009)
 RSessionSetup:
 Size: 9 (0x9)
 SessionFlags: Normal session
 SecurityBufferOffset: 72 (0x48)
 SecurityBufferLength: 219 (0xDB)
 Buffer: (219 bytes)

5. The client processes the received token with GSS and sends an SMB2 SESSION_SETUP Request
with the output token received from GSS and the SessionId received on the previous response.

 Smb2: C SESSION SETUP
 Smb2: C SESSION SETUP
 SMB2Header:
 Size: 64 (0x40)
 CreditCharge: 0 (0x0)
 Status: STATUS_SUCCESS
 Command: SESSION SETUP
 Credits: 125 (0x7D)
 Flags: 0 (0x0)
 ServerToRedir:0 Client to Server
 AsyncCommand: 0. Command is not asynchronous
 Related: 0.. Packet is single message
 Signed: 0... Packet is not signed
 Reserved: 0 (0x0)
 DFS: 0............................... Command is not a DFS Operation
 NextCommand: 0 (0x0)

366 / 464

[MS-SMB2-Diff] - v20190923
Server Message Block (SMB) Protocol Versions 2 and 3
Copyright © 2019 Microsoft Corporation
Release: September 23, 2019

 MessageId: 2 (0x2)
 Reserved: 0 (0x0)
 TreeId: 0 (0x0)
 SessionId: 4398046511113 (0x40000000009)
 CSessionSetup:
 Size: 25 (0x19)
 VcNumber: 0 (0x0)
 SecurityMode: Signing Enabled
 Capabilities: 1 (0x1)
 DFS: 1 DFS available
 Channel: 0 (0x0)
 SecurityBufferOffset: 88 (0x58)
 SecurityBufferLength: 245 (0xF5)
 Buffer: (245 bytes)

6. The server processes the token received with GSS and gets a successful return code. The server
responds to client with an SMB2 SESSION_SETUP Response with Status equal to
STATUS_SUCCESS and the response containing the output token from GSS.

 Smb2: R SESSION SETUP
 Smb2: R SESSION SETUP
 SMB2Header:
 Size: 64 (0x40)
 CreditCharge: 0 (0x0)
 Status: STATUS_SUCCESS
 Command: SESSION SETUP
 Credits: 3 (0x3)
 Flags: 9 (0x9)
 ServerToRedir:1 Server to Client
 AsyncCommand: 0. Command is not asynchronous
 Related: 0.. Packet is single message
 Signed: 1... Packet is signed
 Reserved: 0 (0x0)
 DFS: 0............................... Command is not a DFS Operation
 NextCommand: 0 (0x0)
 MessageId: 2 (0x2)
 Reserved: 0 (0x0)
 TreeId: 0 (0x0)
 SessionId: 4398046511113 (0x40000000009)
 RSessionSetup:
 Size: 9 (0x9)
 SessionFlags: Normal session
 SecurityBufferOffset: 72 (0x48)
 SecurityBufferLength: 29 (0x1D)
 Buffer: (29 bytes)

7. The client completes the authentication and sends an SMB2 TREE_CONNECT Request with the
SessionId for the session, and a tree connect request containing the Unicode share name
"\\smb2server\IPC$".

 Smb2: C TREE CONNECT \\smb2server\IPC$
 SMB2Header:
 Size: 64 (0x40)
 CreditCharge: 0 (0x0)
 Status: STATUS_SUCCESS
 Command: TREE CONNECT
 Credits: 123 (0x7B)
 Flags: 0 (0x0)
 ServerToRedir:0 Client to Server
 AsyncCommand: 0. Command is not asynchronous
 Related: 0.. Packet is single message

367 / 464

[MS-SMB2-Diff] - v20190923
Server Message Block (SMB) Protocol Versions 2 and 3
Copyright © 2019 Microsoft Corporation
Release: September 23, 2019

 Signed: 0... Packet is not signed
 Reserved: 0 (0x0)
 DFS: 0............................... Command is not a DFS Operation
 NextCommand: 0 (0x0)
 MessageId: 3 (0x3)
 Reserved: 0 (0x0)
 TreeId: 0 (0x0)
 SessionId: 4398046511113 (0x40000000009)
 CTreeConnect:
 Size: 9 (0x9)
 Reserved: 0 (0x0)
 PathOffset: 72 (0x48)
 PathLength: 34 (0x22)
 Share: \\smb2server\IPC$

8. The server responds with an SMB2 TREE_CONNECT Response with MessageId of 3,
CreditResponse of 5, Status equal to STATUS_SUCCESS, SessionId of 0x40000000009, and
TreeId set to the locally generated identifier 0x1.

 Smb2: R TREE CONNECT TID=0x1
 SMB2Header:
 Size: 64 (0x40)
 CreditCharge: 0 (0x0)
 Status: STATUS_SUCCESS
 Command: TREE CONNECT
 Credits: 5 (0x5)
 Flags: 1 (0x1)
 ServerToRedir:1 Server to Client
 AsyncCommand: 0. Command is not asynchronous
 Related: 0.. Packet is single message
 Signed: 0... Packet is not signed
 Reserved: 0 (0x0)
 DFS: 0............................... Command is not a DFS Operation
 NextCommand: 0 (0x0)
 MessageId: 3 (0x3)
 Reserved: 0 (0x0)
 TreeId: 1 (0x1)
 SessionId: 4398046511113 (0x40000000009)
 RTreeConnect:
 Size: 16 (0x10)
 ShareType: Pipe
 Reserved: 0 (0x0)
 Flags: No Caching
 Capabilities: 0 (0x0)
 MaximalAccess: 2032127 (0x1F01FF)

Further operations can now continue, using the SessionId and TreeId generated in the connection to
this share.

4.2 Negotiating SMB 2.1 dialect by using Multi-Protocol Negotiate

The following diagram shows the steps taken by a client that is negotiating SMB 2.1 dialect by using
an SMB-style negotiate.

368 / 464

[MS-SMB2-Diff] - v20190923
Server Message Block (SMB) Protocol Versions 2 and 3
Copyright © 2019 Microsoft Corporation
Release: September 23, 2019

Figure 7: Client negotiating SMB 2.1 dialect with SMB-style negotiate

1. The client sends an SMB negotiate packet with the string "SMB 2.???" in the dialect string list,
along with the other SMB dialects the client implements.

 Smb: C; Negotiate, Dialect = PC NETWORK PROGRAM 1.0, LANMAN1.0, Windows for Workgroups 3.1a,
LM1.2X002, LANMAN2.1, NT LM 0.12, SMB 2.002, SMB 2.???

 Protocol: SMB
 Command: Negotiate 114(0x72)
 NTStatus: 0x0, Facility = FACILITY_SYSTEM, Severity = STATUS_SEVERITY_SUCCESS, Code = (0)
STATUS_SUCCESS

 Code: (................0000000000000000) (0) STATUS_SUCCESS
 Facility: (...0000000000000................) FACILITY_SYSTEM
 Customer: (..0.............................) NOT Customer Defined
 Severity: (00..............................) STATUS_SEVERITY_SUCCESS
 SMBHeader: Command, TID: 0xFFFF, PID: 0xFEFF, UID: 0x0000, MID: 0x0000
 Flags: 24 (0x18)
 LockAndRead: (.......0) LOCK_AND_READ and WRITE_AND_UNLOCK NOT supported (Obsolete)
(SMB_FLAGS_LOCK_AND_READ_OK)

 NoAck: (......0.) An ACK response is needed (SMB_FLAGS_SEND_NO_ACK[only applicable
when SMB transport is NetBIOS over IPX])

 Reserved_bit2: (.....0..) Reserved (Must Be Zero)
 CaseInsensitive: (....1...) SMB paths are caseinsensitive (SMB_FLAGS_CASE_INSENSITIVE)
 Canonicalized: (...1....) Canonicalized File and pathnames (Obsolete)
(SMB_FLAGS_CANONICALIZED_PATHS)

 Oplock: (..0.....) Oplocks NOT supported for OPEN, CREATE & CREATE_NEW (Obsolete)
(SMB_FLAGS_OPLOCK)

 OplockNotify: (.0......) Notifications NOT supported for OPEN, CREATE & CREATE_NEW
(Obsolete) (SMB_FLAGS_OPLOCK_NOTIFY_ANY)

 FromServer: (0.......) Command SMB is being sent from the client
(SMB_FLAGS_SERVER_TO_REDIR)

 Flags2: 51283 (0xC853)
 KnowsLongFiles: (...............1) Understands Long File Names
(SMB_FLAGS2_KNOWS_LONG_NAMES)

 ExtendedAttribs: (..............1.) Understands extended attributes (SMB_FLAGS2_KNOWS_EAS)
 SignEnabled: (.............0..) Security signatures NOT enabled
(SMB_FLAGS2_SMB_SECURITY_SIGNATURE)

 Compressed: (............0...) Compression Disabled for REQ_NT_WRITE_ANDX and
RESP_READ_ANDX (SMB_FLAGS2_COMPRESSED)

369 / 464

[MS-SMB2-Diff] - v20190923
Server Message Block (SMB) Protocol Versions 2 and 3
Copyright © 2019 Microsoft Corporation
Release: September 23, 2019

 SignRequired: (...........1....) Security Signatures are required
(SMB_FLAGS2_SMB_SECURITY_SIGNATURE_REQUIRED)

 Reserved_bit5: (..........0.....) Reserved (Must Be Zero)
 LongFileNames: (.........1......) Use Long File Names (SMB_FLAGS2_IS_LONG_NAME)
 Reserved_bits7_9: (......000.......) Reserved (Must Be Zero)
 ReparsePath: (.....0..........) NOT a Reparse path (SMB_FLAGS2_REPARSE_PATH)
 ExtSecurity: (....1...........) Aware of extended security
(SMB_FLAGS2_EXTENDED_SECURITY)

 Dfs: (...0............) NO DFS namespace (SMB_FLAGS2_DFS)
 Paging: (..0.............) Read operation will NOT be permitted unless user has
permission (NO Paging IO) (SMB_FLAGS2_PAGING_IO)

 StatusCodes: (.1..............) Using 32bit NT status error codes (SMB_FLAGS2_NT_STATUS)
 Unicode: (1...............) Using UNICODE strings (SMB_FLAGS2_UNICODE)
 PIDHigh: 0 (0x0)
 SecuritySignature: 0x0
 Reserved: 0 (0x0)
 TreeID: 65535 (0xFFFF)
 Reserved: 0 (0x0)
 UserID: 0 (0x0)
 MultiplexID: 0 (0x0)
 CNegotiate:
 WordCount: 0 (0x0)
 ByteCount: 120 (0x78)
 Dialect: PC NETWORK PROGRAM 1.0
 BufferFormat: Dialect 2(0x2)
 DialectName: PC NETWORK PROGRAM 1.0
 Dialect: LANMAN1.0
 BufferFormat: Dialect 2(0x2)
 DialectName: LANMAN1.0
 Dialect: Windows for Workgroups 3.1a
 BufferFormat: Dialect 2(0x2)
 DialectName: Windows for Workgroups 3.1a
 Dialect: LM1.2X002
 BufferFormat: Dialect 2(0x2)
 DialectName: LM1.2X002
 Dialect: LANMAN2.1
 BufferFormat: Dialect 2(0x2)
 DialectName: LANMAN2.1
 Dialect: NT LM 0.12
 BufferFormat: Dialect 2(0x2)
 DialectName: NT LM 0.12
 Dialect: SMB 2.002
 BufferFormat: Dialect 2(0x2)
 DialectName: SMB 2.002
 Dialect: SMB 2.???
 BufferFormat: Dialect 2(0x2)
 DialectName: SMB 2.???

2. The server receives the SMB negotiate request and finds the "SMB 2.???" string in the dialect
string list. The server responds with an SMB2 NEGOTIATE Response with the DialectRevision set to
0x02ff.

 Smb2: R NEGOTIATE (0x0), GUID={1ED9580F5FEF1AA04B9DDB1C77C63757}, Mid = 0
 SMBIdentifier: SMB
 SMB2Header: R NEGOTIATE (0x0)
 Size: 64 (0x40)
 CreditCharge: 0 (0x0)
 Status: 0x0, Facility = FACILITY_SYSTEM, Severity = STATUS_SEVERITY_SUCCESS, Code = (0)
STATUS_SUCCESS

 Code: (................0000000000000000) (0) STATUS_SUCCESS
 Facility: (...0000000000000................) FACILITY_SYSTEM
 Customer: (..0.............................) NOT Customer Defined
 Severity: (00..............................) STATUS_SEVERITY_SUCCESS
 Command: NEGOTIATE (0x0)
 Credits: 1 (0x1)
 Flags: 0x1

370 / 464

[MS-SMB2-Diff] - v20190923
Server Message Block (SMB) Protocol Versions 2 and 3
Copyright © 2019 Microsoft Corporation
Release: September 23, 2019

 ServerToRedir: (...............................1) Server to Client
(SMB2_FLAGS_SERVER_TO_REDIR)

 AsyncCommand: (..............................0.) Command is not asynchronous
(SMB2_FLAGS_ASYNC_COMMAND)

 Related: (.............................0..) Packet is single message
(SMB2_FLAGS_RELATED_OPERATIONS)

 Signed: (............................0...) Packet is not signed (SMB2_FLAGS_SIGNED)
 Reserved4_27: (....000000000000000000000000....)
 DFS: (...0............................) Command is not a DFS Operation
(SMB2_FLAGS_DFS_OPERATIONS)

 Reserved29_31: (000.............................)
 NextCommand: 0 (0x0)
 MessageId: 0 (0x0)
 Reserved: 0 (0x0)
 TreeId: 0 (0x0)
 SessionId: 0 (0x0)
 Signature: Binary Large Object (16 Bytes)
 RNegotiate:
 Size: 65 (0x41)
 SecurityMode: Signing Enabled (0x1)
 DialectRevision: 767 (0x2FF)
 Reserved: 0 (0x0)
 Guid: {1ED9580F5FEF1AA04B9DDB1C77C63757}
 Capabilities: 0x3
 DFS: (...............................1) DFS available
 Reserved_bits1_31: (0000000000000000000000000000001.) Reserved
 MaxTransactSize: 1048576 (0x100000)
 MaxReadSize: 1048576 (0x100000)
 MaxWriteSize: 1048576 (0x100000)
 SystemTime: 12/29/2008, 11:18:59 PM
 SystemStartTime: 12/05/2008, 11:55:51 PM
 SecurityBufferOffset: 128 (0x80)
 SecurityBufferLength: 120 (0x78)
 Reserved2: 541936672 (0x204D4C20)
 securityBlob:

3. The client receives the SMB2 NEGOTIATE Response. The client issues a new SMB2 NEGOTIATE
Request with a new dialect 0x0210 appended along with other SMB2 dialects.

 Smb2: C NEGOTIATE (0x0), GUID={9879BE56-0D00-58BA-11DD-D5F0AF3A5B5D}, Mid = 1
 SMBIdentifier: SMB
 SMB2Header: C NEGOTIATE (0x0)
 Size: 64 (0x40)
 CreditCharge: 0 (0x0)
 Status: 0x0, Facility = FACILITY_SYSTEM, Severity = STATUS_SEVERITY_SUCCESS, Code = (0)
STATUS_SUCCESS

 Code: (................0000000000000000) (0) STATUS_SUCCESS
 Facility: (...0000000000000................) FACILITY_SYSTEM
 Customer: (..0.............................) NOT Customer Defined
 Severity: (00..............................) STATUS_SEVERITY_SUCCESS
 Command: NEGOTIATE (0x0)
 Credits: 0 (0x0)
 Flags: 0x0
 ServerToRedir: (...............................0) Client to Server
(SMB2_FLAGS_SERVER_TO_REDIR)

 AsyncCommand: (..............................0.) Command is not asynchronous
(SMB2_FLAGS_ASYNC_COMMAND)

 Related: (.............................0..) Packet is single message
(SMB2_FLAGS_RELATED_OPERATIONS)

 Signed: (............................0...) Packet is not signed (SMB2_FLAGS_SIGNED)
 Reserved4_27: (....000000000000000000000000....)
 DFS: (...0............................) Command is not a DFS Operation
(SMB2_FLAGS_DFS_OPERATIONS)

 Reserved29_31: (000.............................)
 NextCommand: 0 (0x0)
 MessageId: 1 (0x1)
 Reserved: 0 (0x0)

371 / 464

[MS-SMB2-Diff] - v20190923
Server Message Block (SMB) Protocol Versions 2 and 3
Copyright © 2019 Microsoft Corporation
Release: September 23, 2019

 TreeId: 0 (0x0)
 SessionId: 0 (0x0)
 Signature: Binary Large Object (16 Bytes)
 CNegotiate:
 Size: 36 (0x24)
 DialectCount: 2 (0x2)
 SecurityMode: Signing Enabled (0x1)
 Reserved: 0 (0x0)
 Capabilities: 0x0
 DFS: (...............................0) DFS unavailable
 Reserved_bits1_31: (0000000000000000000000000000000.) Reserved
 Guid: {9879BE56-0D00-58BA-11DD-D5F0AF3A5B5D}
 StartTime: No Time Specified (0)
 Dialects:
 Dialects: 514 (0x202)
 Dialects: 528 (0x210)

4. The server receives the SMB2 negotiate request and finds dialect 0x0210. The server sends an
SMB2 NEGOTIATE Response with DialectRevision set to 0x0210.

 Smb2: R NEGOTIATE (0x0), GUID={1ED9580F-5FEF-1AA0-4B9D-DB1C77C63757}, Mid = 1
 SMBIdentifier: SMB
 SMB2Header: R NEGOTIATE (0x0)
 Size: 64 (0x40)
 CreditCharge: 0 (0x0)
 Status: 0x0, Facility = FACILITY_SYSTEM, Severity = STATUS_SEVERITY_SUCCESS, Code = (0)
STATUS_SUCCESS

 Code: (................0000000000000000) (0) STATUS_SUCCESS
 Facility: (...0000000000000................) FACILITY_SYSTEM
 Customer: (..0.............................) NOT Customer Defined
 Severity: (00..............................) STATUS_SEVERITY_SUCCESS
 Command: NEGOTIATE (0x0)
 Credits: 1 (0x1)
 Flags: 0x1
 ServerToRedir: (...............................1) Server to Client
(SMB2_FLAGS_SERVER_TO_REDIR)

 AsyncCommand: (..............................0.) Command is not asynchronous
(SMB2_FLAGS_ASYNC_COMMAND)

 Related: (.............................0..) Packet is single message
(SMB2_FLAGS_RELATED_OPERATIONS)

 Signed: (............................0...) Packet is not signed (SMB2_FLAGS_SIGNED)
 Reserved4_27: (....000000000000000000000000....)
 DFS: (...0............................) Command is not a DFS Operation
(SMB2_FLAGS_DFS_OPERATIONS)

 Reserved29_31: (000.............................)
 NextCommand: 0 (0x0)
 MessageId: 1 (0x1)
 Reserved: 0 (0x0)
 TreeId: 0 (0x0)
 SessionId: 0 (0x0)
 Signature: Binary Large Object (16 Bytes)
 RNegotiate:
 Size: 65 (0x41)
 SecurityMode: Signing Enabled (0x1)
 DialectRevision: 528 (0x210)
 Reserved: 0 (0x0)
 Guid: {1ED9580F-5FEF-1AA0-4B9D-DB1C77C63757}
 Capabilities: 0x3
 DFS: (...............................1) DFS available
 Reserved_bits1_31: (0000000000000000000000000000001.) Reserved
 MaxTransactSize: 1048576 (0x100000)
 MaxReadSize: 1048576 (0x100000)
 MaxWriteSize: 1048576 (0x100000)
 SystemTime: 12/29/2008, 11:18:59 PM
 SystemStartTime: 12/05/2008, 11:55:51 PM
 SecurityBufferOffset: 128 (0x80)
 SecurityBufferLength: 120 (0x78)

372 / 464

[MS-SMB2-Diff] - v20190923
Server Message Block (SMB) Protocol Versions 2 and 3
Copyright © 2019 Microsoft Corporation
Release: September 23, 2019

 Reserved2: 0 (0x0)
 securityBlob:

4.3 Connecting to a Share by Using an SMB2 Negotiate

The following diagram shows the steps taken by a client that is negotiating SMB2 by using an SMB2
negotiate.

Figure 8: Client negotiating SMB2 with SMB2 negotiate

1. The client sends an SMB2 negotiate packet with the dialect 0x0202 in the Dialects array.

 Smb2: C NEGOTIATE
 SMB2Header:
 Size: 64 (0x40)
 CreditCharge: 0 (0x0)
 Status: STATUS_SUCCESS
 Command: NEGOTIATE

373 / 464

[MS-SMB2-Diff] - v20190923
Server Message Block (SMB) Protocol Versions 2 and 3
Copyright © 2019 Microsoft Corporation
Release: September 23, 2019

 Credits: 126 (0x7E)
 Flags: 0 (0x0)
 ServerToRedir:0 Client to Server
 AsyncCommand: 0. Command is not asynchronous
 Related: 0.. Packet is single message
 Signed: 0... Packet is not signed
 Reserved: 0 (0x0)
 DFS: 0............................... Command is not a DFS Operation
 NextCommand: 0 (0x0)
 MessageId: 0 (0x0)
 Reserved: 0 (0x0)
 TreeId: 0 (0x0)
 SessionId: 0 (0x0)

 CNegotiate:
 Size: 36 (0x24)
 DialectCount: 1 (0x1)
 SecurityMode: Signing Enabled
 Reserved: 0 (0x0)
 Capabilities: 0 (0x0)
 Guid: {00000000-0000-0000-0000-000000000000}
 StartTime: 0 (0x0)
 Dialects: 514 (0x0202)

2. The server receives the SMB2 NEGOTIATE Request and finds dialect 0x0202. The server responds
with an SMB2 negotiate.

 Smb2: R NEGOTIATE
 SMB2Header:
 Size: 64 (0x40)
 CreditCharge: 0 (0x0)
 Status: STATUS_SUCCESS
 Command: NEGOTIATE
 Credits: 1 (0x1)
 Flags: 1 (0x1)
 ServerToRedir:1 Server to Client
 AsyncCommand: 0. Command is not asynchronous
 Related: 0.. Packet is single message
 Signed: 0... Packet is not signed
 Reserved: 0 (0x0)
 DFS: 0............................... Command is not a DFS Operation
 NextCommand: 0 (0x0)
 MessageId: 0 (0x0)
 Reserved: 0 (0x0)
 TreeId: 0 (0x0)
 SessionId: 0 (0x0)
 RNegotiate:
 Size: 65 (0x41)
 SecurityMode: Signing Enabled
 DialectRevision: 514 (0x0202)
 Reserved: 0 (0x0)
 Guid: {3F5CF209-A4E5-0049-A7D6-6A456D5CA5CF}
 Capabilities: 1 (0x1)
 DFS: 1 DFS available
 MaxTransactSize: 65536 (0x10000)
 MaxReadSize: 65536 (0x10000)
 MaxWriteSize: 65536 (0x10000)
 SystemTime: 127972992061679232 (0x1C6A6C21CAE2680)
 ServerStartTime: 127972985895467232 (0x1C6A6C0AD2538E0)
 SecurityBufferOffset: 128 (0x80)
 SecurityBufferLength: 30 (0x1E)
 Reserved2: 0 (0x0)
 Buffer:

3. The client queries GSS for the authentication token and sends an SMB2 SESSION_SETUP Request
with the output token received from GSS.

374 / 464

[MS-SMB2-Diff] - v20190923
Server Message Block (SMB) Protocol Versions 2 and 3
Copyright © 2019 Microsoft Corporation
Release: September 23, 2019

 Smb2: C SESSION SETUP
 SMB2Header:
 Size: 64 (0x40)
 CreditCharge: 0 (0x0)
 Status: STATUS_SUCCESS
 Command: SESSION SETUP
 Credits: 126 (0x7E)
 Flags: 0 (0x0)
 ServerToRedir:0 Client to Server
 AsyncCommand: 0. Command is not asynchronous
 Related: 0.. Packet is single message
 Signed: 0... Packet is not signed
 Reserved: 0 (0x0)
 DFS: 0............................... Command is not a DFS Operation
 NextCommand: 0 (0x0)
 MessageId: 1 (0x1)
 Reserved: 0 (0x0)
 TreeId: 0 (0x0)
 SessionId: 0 (0x0)
 CSessionSetup:
 Size: 25 (0x19)
 VcNumber: 0 (0x0)
 SecurityMode: Signing Enabled
 Capabilities: 1 (0x1)
 DFS: 1 DFS available
 Channel: 0 (0x0)
 SecurityBufferOffset: 88 (0x58)
 SecurityBufferLength: 74 (0x4A)
 Buffer: (74 bytes)

4. The server processes the token received with GSS and gets a return code indicating a subsequent
round trip is required. The server responds to the client with an SMB2 SESSION_SETUP Response
with Status equal to STATUS_MORE_PROCESSING_REQUIRED and the response containing the

output token from GSS.

 Smb2: R SESSION SETUP (Status=STATUS_MORE_PROCESSING_REQUIRED)
 SMB2Header:
 Size: 64 (0x40)
 CreditCharge: 0 (0x0)
 Status: STATUS_MORE_PROCESSING_REQUIRED
 Command: SESSION SETUP
 Credits: 2 (0x2)
 Flags: 1 (0x1)
 ServerToRedir:1 Server to Client
 AsyncCommand: 0. Command is not asynchronous
 Related: 0.. Packet is single message
 Signed: 0... Packet is not signed
 Reserved: 0 (0x0)
 DFS: 0............................... Command is not a DFS Operation
 NextCommand: 0 (0x0)
 MessageId: 1 (0x1)
 Reserved: 0 (0x0)
 TreeId: 0 (0x0)
 SessionId: 4398046511113 (0x40000000009)
 RSessionSetup:
 Size: 9 (0x9)
 SessionFlags: Normal session
 SecurityBufferOffset: 72 (0x48)
 SecurityBufferLength: 219 (0xDB)
 Buffer: (219 bytes)

5. The client processes the received token with GSS and sends an SMB2 SESSION_SETUP Request
with the output token received from GSS and the SessionId received on the previous response.

375 / 464

[MS-SMB2-Diff] - v20190923
Server Message Block (SMB) Protocol Versions 2 and 3
Copyright © 2019 Microsoft Corporation
Release: September 23, 2019

 Smb2: C SESSION SETUP
 SMB2Header:
 Size: 64 (0x40)
 CreditCharge: 0 (0x0)
 Status: STATUS_SUCCESS
 Command: SESSION SETUP
 Credits: 125 (0x7D)
 Flags: 0 (0x0)
 ServerToRedir:0 Client to Server
 AsyncCommand: 0. Command is not asynchronous
 Related: 0.. Packet is single message
 Signed: 0... Packet is not signed
 Reserved: 0 (0x0)
 DFS: 0............................... Command is not a DFS Operation
 NextCommand: 0 (0x0)
 MessageId: 2 (0x2)
 Reserved: 0 (0x0)
 TreeId: 0 (0x0)
 SessionId: 4398046511113 (0x40000000009)
 CSessionSetup:
 Size: 25 (0x19)
 VcNumber: 0 (0x0)
 SecurityMode: Signing Enabled
 Capabilities: 1 (0x1)
 DFS: 1 DFS available
 Channel: 0 (0x0)
 SecurityBufferOffset: 88 (0x58)
 SecurityBufferLength: 245 (0xF5)
 Buffer: (245 bytes)

6. The server processes the token received with GSS and gets a successful return code. The server
responds to the client with an SMB2 SESSION_SETUP Response with Status equal to
STATUS_SUCCESS and the response containing the output token from GSS.

 Smb2: R SESSION SETUP
 SMB2Header:
 Size: 64 (0x40)
 CreditCharge: 0 (0x0)
 Status: STATUS_SUCCESS
 Command: SESSION SETUP
 Credits: 3 (0x3)
 Flags: 9 (0x9)
 ServerToRedir:1 Server to Client
 AsyncCommand: 0. Command is not asynchronous
 Related: 0.. Packet is single message
 Signed: 1... Packet is signed
 Reserved: 0 (0x0)
 DFS: 0............................... Command is not a DFS Operation
 NextCommand: 0 (0x0)
 MessageId: 2 (0x2)
 Reserved: 0 (0x0)
 TreeId: 0 (0x0)
 SessionId: 4398046511113 (0x40000000009)
 RSessionSetup:
 Size: 9 (0x9)
 SessionFlags: Normal session
 SecurityBufferOffset: 72 (0x48)
 SecurityBufferLength: 29 (0x1D)
 Buffer: (29 bytes)

7. The client completes the authentication and sends an SMB2 TREE_CONNECT Request with the
SessionId for the session, and a tree connect request containing the Unicode share name
"\\smb2server\IPC$".

376 / 464

[MS-SMB2-Diff] - v20190923
Server Message Block (SMB) Protocol Versions 2 and 3
Copyright © 2019 Microsoft Corporation
Release: September 23, 2019

 Smb2: C TREE CONNECT \\smb2server\IPC$
 SMB2Header:
 Size: 64 (0x40)
 CreditCharge: 0 (0x0)
 Status: STATUS_SUCCESS
 Command: TREE CONNECT
 Credits: 123 (0x7B)
 Flags: 0 (0x0)
 ServerToRedir:0 Client to Server
 AsyncCommand: 0. Command is not asynchronous
 Related: 0.. Packet is single message
 Signed: 0... Packet is not signed
 Reserved: 0 (0x0)
 DFS: 0............................... Command is not a DFS Operation
 NextCommand: 0 (0x0)
 MessageId: 3 (0x3)
 Reserved: 0 (0x0)
 TreeId: 0 (0x0)
 SessionId: 4398046511113 (0x40000000009)
 CTreeConnect:
 Size: 9 (0x9)
 Reserved: 0 (0x0)
 PathOffset: 72 (0x48)
 PathLength: 34 (0x22)
 Share: \\smb2server\IPC$

8. The server responds with an SMB2 TREE_CONNECT Response with MessageId of 3,
CreditResponse of 5, Status equal to STATUS_SUCCESS, SessionId of 0x40000000009, and
TreeId set to the locally generated identifier 0x1.

 Smb2: R TREE CONNECT TID=0x1
 SMB2Header:
 Size: 64 (0x40)
 CreditCharge: 0 (0x0)
 Status: STATUS_SUCCESS
 Command: TREE CONNECT
 Credits: 5 (0x5)
 Flags: 1 (0x1)
 ServerToRedir:1 Server to Client
 AsyncCommand: 0. Command is not asynchronous
 Related: 0.. Packet is single message
 Signed: 0... Packet is not signed
 Reserved: 0 (0x0)
 DFS: 0............................... Command is not a DFS Operation
 NextCommand: 0 (0x0)
 MessageId: 3 (0x3)
 Reserved: 0 (0x0)
 TreeId: 1 (0x1)
 SessionId: 4398046511113 (0x40000000009)
 RTreeConnect:
 Size: 16 (0x10)
 ShareType: Pipe
 Reserved: 0 (0x0)
 Flags: No Caching
 Capabilities: 0 (0x0)
 MaximalAccess: 2032127 (0x1F01FF)

Further operations can now continue, using the SessionId and TreeId generated in the connection to
this share.

377 / 464

[MS-SMB2-Diff] - v20190923
Server Message Block (SMB) Protocol Versions 2 and 3
Copyright © 2019 Microsoft Corporation
Release: September 23, 2019

4.4 Executing an Operation on a Named Pipe

The following diagram demonstrates the steps taken to execute transactions over a named pipe using
both individual reads and writes, and the transact named pipe operation. Assume that this sequence

starts on a connection where the session and tree connect have been established as described in
previous sections with SessionId = 0x4000000000D and TreeId 0x1, and messages have been
exchanged such that the current MessageId is 9.

Figure 9: Executing an operation on a named pipe

1. The client sends an SMB2 CREATE Request to open the named pipe "srvsvc".

378 / 464

[MS-SMB2-Diff] - v20190923
Server Message Block (SMB) Protocol Versions 2 and 3
Copyright © 2019 Microsoft Corporation
Release: September 23, 2019

 Smb2: C CREATE srvsvc
 SMB2Header:
 Size: 64 (0x40)
 CreditCharge: 0 (0x0)
 Status: STATUS_SUCCESS
 Command: CREATE
 Credits: 111 (0x6F)
 Flags: 0 (0x0)
 ServerToRedir:0 Client to Server
 AsyncCommand: 0. Command is not asynchronous
 Related: 0.. Packet is single message
 Signed: 0... Packet is not signed
 Reserved: 0 (0x0)
 DFS: 0............................... Command is not a DFS Operation
 NextCommand: 0 (0x0)
 MessageId: 9 (0x9)
 Reserved: 0 (0x0)
 TreeId: 1 (0x1)
 SessionId: 4398046511117 (0x4000000000D)
 CCreate:
 Size: 57 (0x39)
 SecurityFlags: 0 (0x0)
 RequestedOplockLevel: 9 (0x9)
 ImpersonationLevel: 2 (0x2)
 SmbCreateFlags: 0 (0x0)
 Reserved: 0(0x0)
 DesiredAccess: 0x0012019f
 read: (...............................1) Read Data
 write: (..............................1.) Write Data
 append: (.............................1..) Append Data
 readEA: (............................1...) Read EA
 writeEA: (...........................1....) Write EA
 FileExecute: (..........................0.....) No File Execute
 FileDeleted: (.........................0......) No File Delete
 FileRead: (........................1.......) File Read Attributes
 FileWrite: (.......................1........) File Write Attributes
 FileAttributes: 0x00000000
 ReadOnly: (...............................0) Read/Write
 Hidden: (..............................0.) Not Hidden
 System: (.............................0..) Not System
 Reserverd3: 0 (0x0)
 Directory: (...........................0....) File
 Archive: (..........................0.....) Not Archive
 Device: (.........................0......) Not Device
 Normal: (........................0.......) Not Normal
 Temporary: (.......................0........) Permanent
 Sparse: (......................0.........) Not Sparse
 Reparse: (.....................0..........) Not Reparse Point
 Compressed: (....................0...........) Uncompressed
 Offline: (...................0............) Content indexed
 NotIndexed: (..................0.............) Permanent
 Encrypted: (.................0..............) Unencrypted
 ShareAccess: Shared for Read/Write
 CreateDisposition: Open
 CreateOptions: 0x00400040
 dir: (...............................0) non-directory
 write: (..............................0.) non-write through
 sq: (.............................0..) non-sequentially writing allowed
 buffer: (............................0...) intermediate buffering allowed
 alert: (...........................0....) IO alerts bits not set
 nonalert: (..........................0.....) IO non-alerts bit not set
 nondir: (.........................1......) Operation is on non-directory file
 connect: (........................0.......) tree connect bit not set
 oplock: (.......................0........) complete if oplocked bit not set
 EA: (......................0.........) no EA knowledge bit is not set
 filename: (.....................0..........) 8.3 filenames bit is not set
 random: (....................0...........) random access bit is not set
 delete: (...................0............) delete on close bit is not set
 open: (..................0.............) open by filename

379 / 464

[MS-SMB2-Diff] - v20190923
Server Message Block (SMB) Protocol Versions 2 and 3
Copyright © 2019 Microsoft Corporation
Release: September 23, 2019

 backup: (.................0..............) open for backup bit not set
 NameOffset: 120 (0x78)
 NameLength: 12 (0xC)
 CreateContextsOffset: 0 (0x0)
 CreateContextsLength: 0 (0x0)
 Name: srvsvc

2. The server responds with an SMB2 CREATE Response with the FileId for the pipe open.

 Smb2: R CREATE FID=
 SMB2Header:
 Size: 64 (0x40)
 CreditCharge: 0 (0x0)
 Status: STATUS_SUCCESS
 Command: CREATE
 Credits: 1 (0x1)
 Flags: 1 (0x1)
 ServerToRedir:1 Server to Client
 AsyncCommand: 0. Command is not asynchronous
 Related: 0.. Packet is single message
 Signed: 0... Packet is not signed
 Reserved: 0 (0x0)
 DFS: 0............................... Command is not a DFS Operation
 NextCommand: 0 (0x0)
 MessageId: 9 (0x9)
 Reserved: 0 (0x0)
 TreeId: 1 (0x1)
 SessionId: 4398046511117 (0x4000000000D)
 RCreate:
 Size: 89 (0x59)
 OplockLevel: 0 (0x0)
 Reserved1: 9 (0x9)
 CreateAction: 1 (0x1)
 CreationTime: 0 (0x0)
 LastAccessTime: 0 (0x0)
 LastWriteTime: 0 (0x0)
 ChangeTime: 0 (0x0)
 AllocationSize: 4096 (0x1000)
 EndOfFile: 0 (0x0)
 FileAttributes: 0x00000080
 ReadOnly: (...............................0) Read/Write
 Hidden: (..............................0.) Not Hidden
 System: (.............................0..) Not System
 Reserverd3: 0 (0x0)
 Directory: (...........................0....) File
 Archive: (..........................0.....) Not Archive
 Device: (.........................0......) Not Device
 Normal: (........................1.......) Normal
 Temporary: (.......................0........) Permanent
 Sparse: (......................0.........) Not Sparse
 Reparse: (.....................0..........) Not Reparse Point
 Compressed: (....................0...........) Uncompressed
 Offline: (...................0............) Content indexed
 NotIndexed: (..................0.............) Permanent
 Encrypted: (.................0..............) Unencrypted
 Reserved2: 7536758 (0x730076)
 Fid:
 Persistent: 5 (0x5)
 Volatile: -4294967291 (0xFFFFFFFF00000005)
 CreateContextsOffset: 0 (0x0)
 CreateContextsLength: 0 (0x0)

3. The client sends an SMB2 WRITE Request to write data into the pipe.

 Smb2: C WRITE 0x74 bytes at offset 0 (0x0)

380 / 464

[MS-SMB2-Diff] - v20190923
Server Message Block (SMB) Protocol Versions 2 and 3
Copyright © 2019 Microsoft Corporation
Release: September 23, 2019

 SMB2Header:
 Size: 64 (0x40)
 CreditCharge: 0 (0x0)
 Status: STATUS_SUCCESS
 Command: WRITE
 Credits: 111 (0x6F)
 Flags: 0 (0x0)
 ServerToRedir:0 Client to Server
 AsyncCommand: 0. Command is not asynchronous
 Related: 0.. Packet is single message
 Signed: 0... Packet is not signed
 Reserved: 0 (0x0)
 DFS: 0............................... Command is not a DFS Operation
 NextCommand: 0 (0x0)
 MessageId: 10 (0xA)
 Reserved: 0 (0x0)
 TreeId: 1 (0x1)
 SessionId: 4398046511117 (0x4000000000D)
 CWrite:
 Size: 49 (0x31)
 DataOffset: 112 (0x70)
 DataLength: 116 (0x74)
 Offset: 0 (0x0)
 Fid:
 Persistent: 5 (0x5)
 Volatile: -4294967291 (0xFFFFFFFF00000005)
 Channel: 0 (0x0)
 RemainingBytes: 0 (0x0)
 WriteChannelInfoOffset: 0 (0x0)
 WriteChannelInfoLength: 0 (0x0)
 Flags: 0 (0x0)
 Data: (116 bytes)

4. The server responds with an SMB2 WRITE Response indicating the data was written successfully.

 Smb2: R WRITE 0x74 bytes written
 SMB2Header:
 Size: 64 (0x40)
 CreditCharge: 0 (0x0)
 Status: STATUS_SUCCESS
 Command: WRITE
 Credits: 1 (0x1)
 Flags: 1 (0x1)
 ServerToRedir:1 Server to Client
 AsyncCommand: 0. Command is not asynchronous
 Related: 0.. Packet is single message
 Signed: 0... Packet is not signed
 Reserved: 0 (0x0)
 DFS: 0............................... Command is not a DFS Operation
 NextCommand: 0 (0x0)
 MessageId: 10 (0xA)
 Reserved: 0 (0x0)
 TreeId: 1 (0x1)
 SessionId: 4398046511117 (0x4000000000D)
 RWrite:
 Size: 17 (0x11)
 Reserved: 0 (0x0)
 DataLength: 116 (0x74)
 Remaining: 0 (0x0)
 WriteChannelInfoOffset: 0 (0x0)
 WriteChannelInfoLength: 0 (0x0)

5. The client sends an SMB2 READ Request to read data from the pipe.

 Smb2: C READ 0x400 bytes from offset 0 (0x0)

381 / 464

[MS-SMB2-Diff] - v20190923
Server Message Block (SMB) Protocol Versions 2 and 3
Copyright © 2019 Microsoft Corporation
Release: September 23, 2019

 SMB2Header:
 Size: 64 (0x40)
 CreditCharge: 0 (0x0)
 Status: STATUS_SUCCESS
 Command: READ
 Credits: 111 (0x6F)
 Flags: 0 (0x0)
 ServerToRedir:0 Client to Server
 AsyncCommand: 0. Command is not asynchronous
 Related: 0.. Packet is single message
 Signed: 0... Packet is not signed
 Reserved: 0 (0x0)
 DFS: 0............................... Command is not a DFS Operation
 NextCommand: 0 (0x0)
 MessageId: 11 (0xB)
 Reserved: 0 (0x0)
 TreeId: 1 (0x1)
 SessionId: 4398046511117 (0x4000000000D)
 CRead:
 Size: 49 (0x31)
 Padding: 80 (0x50)
 Reserved: 0 (0x0)
 DataLength: 1024 (0x400)
 Offset: 0 (0x0)
 Fid:
 Persistent: 5 (0x5)
 Volatile: -4294967291 (0xFFFFFFFF00000005)
 MinimumCount: 0 (0x0)
 Channel: 0 (0x0)
 RemainingBytes: 0 (0x0)
 ReadChannelInfoOffset: 0 (0x0)
 ReadChannelInfoLength: 0 (0x0)

6. The server responds with an SMB2 READ Response with the data that was read.

 Smb2: R READ 0x5c bytes read
 SMB2Header:
 Size: 64 (0x40)
 CreditCharge: 0 (0x0)
 Status: STATUS_SUCCESS
 Command: READ
 Credits: 1 (0x1)
 Flags: 1 (0x1)
 ServerToRedir:1 Server to Client
 AsyncCommand: 0. Command is not asynchronous
 Related: 0.. Packet is single message
 Signed: 0... Packet is not signed
 Reserved: 0 (0x0)
 DFS: 0............................... Command is not a DFS Operation
 NextCommand: 0 (0x0)
 MessageId: 11 (0xB)
 Reserved: 0 (0x0)
 TreeId: 1 (0x1)
 SessionId: 4398046511117 (0x4000000000D)
 RRead:
 Size: 17 (0x11)
 DataOffset: 80 (0x50)
 Reserved: 0 (0x0)
 DataLength: 92 (0x5C)
 DataRemaining: 0 (0x0)
 Reserved2: 0 (0x0)
 Data: (92 bytes)

7. The client sends an SMB2 IOCTL Request to perform a pipe transaction, writing data into the
buffer and then reading the response in a single operation.

382 / 464

[MS-SMB2-Diff] - v20190923
Server Message Block (SMB) Protocol Versions 2 and 3
Copyright © 2019 Microsoft Corporation
Release: September 23, 2019

 Smb2: C IOCTL
 SMB2Header:
 Size: 64 (0x40)
 CreditCharge: 0 (0x0)
 Status: STATUS_SUCCESS
 Command: IOCTL
 Credits: 111 (0x6F)
 Flags: 0 (0x0)
 ServerToRedir:0 Client to Server
 AsyncCommand: 0. Command is not asynchronous
 Related: 0.. Packet is single message
 Signed: 0... Packet is not signed
 Reserved: 0 (0x0)
 DFS: 0............................... Command is not a DFS Operation
 NextCommand: 0 (0x0)
 MessageId: 12 (0xC)
 Reserved: 0 (0x0)
 TreeId: 1 (0x1)
 SessionId: 4398046511117 (0x4000000000D)
 CIoCtl:
 Size: 57 (0x39)
 Reserved: 0 (0x0)
 Code: 0x0011c017
 Fid:
 Persistent: 5 (0x5)
 Volatile: -4294967291 (0xFFFFFFFF00000005)
 InputOffset: 120 (0x78)
 InputCount: 68 (0x44)
 MaxInputResponse: 0 (0x0)
 OutputOffset: 120 (0x78)
 OutputCount: 0 (0x0)
 MaxOutputResponse: 1024 (0x400)
 Flags: 1 (0x1)
 Reserved2: 0 (0x0)
 Input: (68 bytes)

8. The server sends an SMB2 IOCTL Response with the data that was read.

 Smb2: R IOCTL
 SMB2Header:
 Size: 64 (0x40)
 CreditCharge: 0 (0x0)
 Status: STATUS_SUCCESS
 Command: IOCTL
 Credits: 1 (0x1)
 Flags: 1 (0x1)
 ServerToRedir:1 Server to Client
 AsyncCommand: 0. Command is not asynchronous
 Related: 0.. Packet is single message
 Signed: 0... Packet is not signed
 Reserved: 0 (0x0)
 DFS: 0............................... Command is not a DFS Operation
 NextCommand: 0 (0x0)
 MessageId: 12 (0xC)
 Reserved: 0 (0x0)
 TreeId: 1 (0x1)
 SessionId: 4398046511117 (0x4000000000D)
 RIoCtl:
 Size: 49 (0x31)
 Reserved: 0 (0x0)
 Code: 0x0011c017
 Method: 11 Method neither
 Function: 0x005
 Access: 11.............. Read/Write
 Device: 0x0011
 Fid:
 Persistent: 5 (0x5)

383 / 464

[MS-SMB2-Diff] - v20190923
Server Message Block (SMB) Protocol Versions 2 and 3
Copyright © 2019 Microsoft Corporation
Release: September 23, 2019

 Volatile: -4294967291 (0xFFFFFFFF00000005)
 InputOffset: 112 (0x70)
 InputCount: 68 (0x44)
 OutputOffset: 184 (0xB8)
 OutputCount: 112 (0x70)
 Flags: 0 (0x0)
 Reserved2: 0 (0x0)
 Input: (68 bytes)
 Output: (112 bytes)

9. The client sends an SMB2 CLOSE Request to close the named pipe.

 Smb2: C CLOSE FID=
 SMB2Header:
 Size: 64 (0x40)
 CreditCharge: 0 (0x0)
 Status: STATUS_SUCCESS
 Command: CLOSE
 Credits: 111 (0x6F)
 Flags: 0 (0x0)
 ServerToRedir:0 Client to Server
 AsyncCommand: 0. Command is not asynchronous
 Related: 0.. Packet is single message
 Signed: 0... Packet is not signed
 Reserved: 0 (0x0)
 DFS: 0............................... Command is not a DFS Operation
 NextCommand: 0 (0x0)
 MessageId: 13 (0xD)
 Reserved: 0 (0x0)
 TreeId: 1 (0x1)
 SessionId: 4398046511117 (0x4000000000D)
 CClose:
 Size: 24 (0x18)
 Flags: 1 (0x1)
 Reserved: 0 (0x0)
 Fid:
 Persistent: 5 (0x5)
 Volatile: -4294967291 (0xFFFFFFFF00000005)

10. The server sends an SMB2 CLOSE Response to indicate the close was successful.

 Smb2: R CLOSE
 SMB2Header:
 Size: 64 (0x40)
 CreditCharge: 0 (0x0)
 Status: STATUS_SUCCESS
 Command: CLOSE
 Credits: 1 (0x1)
 Flags: 1 (0x1)
 ServerToRedir:1 Server to Client
 AsyncCommand: 0. Command is not asynchronous
 Related: 0.. Packet is single message
 Signed: 0... Packet is not signed
 Reserved: 0 (0x0)
 DFS: 0............................... Command is not a DFS Operation
 NextCommand: 0 (0x0)
 MessageId: 13 (0xD)
 Reserved: 0 (0x0)
 TreeId: 1 (0x1)
 SessionId: 4398046511117 (0x4000000000D)
 RClose:
 Size: 60 (0x3C)
 Flags: 0 (0x0)
 Reserved: 0 (0x0)
 CreationTime: 0 (0x0)

384 / 464

[MS-SMB2-Diff] - v20190923
Server Message Block (SMB) Protocol Versions 2 and 3
Copyright © 2019 Microsoft Corporation
Release: September 23, 2019

 LastAccessTime: 0 (0x0)
 LastWriteTime: 0 (0x0)
 ChangeTime: 0 (0x0)
 AllocationSize: 0 (0x0)
 EndOfFile: 0 (0x0)
 FileAttributes: 0x00000000
 ReadOnly: (...............................0) Read/Write
 Hidden: (..............................0.) Not Hidden
 System: (.............................0..) Not System
 Reserverd3: 0 (0x0)
 Directory: (...........................0....) File
 Archive: (..........................0.....) Not Archive
 Device: (.........................0......) Not Device
 Normal: (........................0.......) Not Normal
 Temporary: (.......................0........) Permanent
 Sparse: (......................0.........) Not Sparse
 Reparse: (.....................0..........) Not Reparse Point
 Compressed: (....................0...........) Uncompressed
 Offline: (...................0............) Content indexed
 NotIndexed: (..................0.............) Permanent
 Encrypted: (.................0..............)

4.5 Reading from a Remote File

The following diagram demonstrates the steps taken to open a remote file, read from it, and close it.
Assume that this sequence starts on a connection where the session and tree connect have been
established as described in previous sections with SessionId of 0x40000000011 and TreeId of 0x5,
and messages have been exchanged such that the current MessageId is 10.

385 / 464

[MS-SMB2-Diff] - v20190923
Server Message Block (SMB) Protocol Versions 2 and 3
Copyright © 2019 Microsoft Corporation
Release: September 23, 2019

Figure 10: Reading from a remote file

1. The client sends an SMB2 CREATE Request for the file "testfile.txt".

 Smb2: C CREATE testfile.txt
 SMB2Header:
 Size: 64 (0x40)
 CreditCharge: 0 (0x0)
 Status: STATUS_SUCCESS
 Command: CREATE
 Credits: 111 (0x6F)
 Flags: 0 (0x0)
 ServerToRedir:0 Client to Server
 AsyncCommand: 0. Command is not asynchronous
 Related: 0.. Packet is single message
 Signed: 0... Packet is not signed
 Reserved: 0 (0x0)
 DFS: 0............................... Command is not a DFS Operation
 NextCommand: 0 (0x0)
 MessageId: 10 (0xA)
 Reserved: 0 (0x0)
 TreeId: 5 (0x5)
 SessionId: 4398046511121 (0x40000000011)
 CCreate:
 Size: 57 (0x39)
 SecurityFlags: 0 (0x0)
 RequestedOplockLevel: 9 (0x9)
 ImpersonationLevel: 2 (0x2)
 SmbCreateFlags: 0 (0x0)
 Reserved: 0 (0x0)
 DesiredAccess: 0x00120089

386 / 464

[MS-SMB2-Diff] - v20190923
Server Message Block (SMB) Protocol Versions 2 and 3
Copyright © 2019 Microsoft Corporation
Release: September 23, 2019

 read: (...............................1) Read Data
 write: (..............................0.) No Write Data
 append: (.............................0..) No Append Data
 readEA: (............................1...) Read EA
 writeEA: (...........................0....) No Write EA
 FileExecute: (..........................0.....) No File Execute
 FileDeleted: (.........................0......) No File Delete
 FileRead: (........................1.......) File Read Attributes
 FileWrite: (.......................0........) No File Write Attributes
 FileAttributes: 0x00000080
 ReadOnly: (...............................0) Read/Write
 Hidden: (..............................0.) Not Hidden
 System: (.............................0..) Not System
 Reserverd3: 0 (0x0)
 Directory: (...........................0....) File
 Archive: (..........................0.....) Not Archive
 Device: (.........................0......) Not Device
 Normal: (........................1.......) Normal
 Temporary: (.......................0........) Permanent
 Sparse: (......................0.........) Not Sparse
 Reparse: (.....................0..........) Not Reparse Point
 Compressed: (....................0...........) Uncompressed
 Offline: (...................0............) Content indexed
 NotIndexed: (..................0.............) Permanent
 Encrypted: (.................0..............) Unencrypted
 ShareAccess: Shared for Read/Write
 CreateDisposition: Open
 CreateOptions: 0x00000060
 dir: (...............................0) non-directory
 write: (..............................0.) non-write through
 sq: (.............................0..) non-sequentially writing allowed
 buffer: (............................0...) intermediate buffering allowed
 alert: (...........................0....) IO alerts bits not set
 nonalert: (..........................1.....) Do synchronous IO non-alerts
 nondir: (.........................1......) Operation is on non-directory file
 connect: (........................0.......) tree connect bit not set
 oplock: (.......................0........) complete if oplocked bit not set
 EA: (......................0.........) no EA knowledge bit is not set
 filename: (.....................0..........) 8.3 filenames bit is not set
 random: (....................0...........) random access bit is not set
 delete: (...................0............) delete on close bit is not set
 open: (..................0.............) open by filename
 backup: (.................0..............) open for backup bit not set
 NameOffset: 120 (0x78)
 NameLength: 24 (0x18)
 CreateContextsOffset: 0 (0x0)
 CreateContextsLength: 0 (0x0)
 Name: testfile.txt

2. The server responds with an SMB2 CREATE Response giving the FileId of the opened file.

 Smb2: R CREATE FID=
 SMB2Header:
 Size: 64 (0x40)
 CreditCharge: 0 (0x0)
 Status: STATUS_SUCCESS
 Command: CREATE
 Credits: 1 (0x1)
 Flags: 1 (0x1)
 ServerToRedir:1 Server to Client
 AsyncCommand: 0. Command is not asynchronous
 Related: 0.. Packet is single message
 Signed: 0... Packet is not signed
 Reserved: 0 (0x0)
 DFS: 0............................... Command is not a DFS Operation
 NextCommand: 0 (0x0)
 MessageId: 10 (0xA)
 Reserved: 0 (0x0)

387 / 464

[MS-SMB2-Diff] - v20190923
Server Message Block (SMB) Protocol Versions 2 and 3
Copyright © 2019 Microsoft Corporation
Release: September 23, 2019

 TreeId: 5 (0x5)
 SessionId: 4398046511121 (0x40000000011)
 RCreate:
 Size: 89 (0x59)
 OplockLevel: 9 (0x9)
 Reserved1: 9 (0x9)
 CreateAction: 1 (0x1)
 CreationTime: 127972992877715232 (0x1C6A6C24D51DF20)
 LastAccessTime: 127972992923579232 (0x1C6A6C2500DB360)
 LastWriteTime: 127972992923579232 (0x1C6A6C2500DB360)
 ChangeTime: 127972992923579232 (0x1C6A6C2500DB360)
 AllocationSize: 104 (0x68)
 EndOfFile: 98 (0x62)
 FileAttributes: 0x00000020
 ReadOnly: (...............................0) Read/Write
 Hidden: (..............................0.) Not Hidden
 System: (.............................0..) Not System
 Reserverd3: 0 (0x0)
 Directory: (...........................0....) File
 Archive: (..........................1.....) Archive
 Device: (.........................0......) Not Device
 Normal: (........................0.......) Not Normal
 Temporary: (.......................0........) Permanent
 Sparse: (......................0.........) Not Sparse
 Reparse: (.....................0..........) Not Reparse Point
 Compressed: (....................0...........) Uncompressed
 Offline: (...................0............) Content indexed
 NotIndexed: (..................0.............) Permanent
 Encrypted: (.................0..............) Unencrypted
 Reserved2: 0 (0x0)
 Fid:
 Persistent: 17 (0x11)
 Volatile: -4294967287 (0xFFFFFFFF00000009)
 CreateContextsOffset: 0 (0x0)
 CreateContextsLength: 0 (0x0)

3. The client sends an SMB2 READ Request to read data from the file.

 Smb2: C READ 0x62 bytes from offset 0 (0x0)
 SMB2Header:
 Size: 64 (0x40)
 CreditCharge: 0 (0x0)
 Status: STATUS_SUCCESS
 Command: READ
 Credits: 111 (0x6F)
 Flags: 0 (0x0)
 ServerToRedir:0 Client to Server
 AsyncCommand: 0. Command is not asynchronous
 Related: 0.. Packet is single message
 Signed: 0... Packet is not signed
 Reserved: 0 (0x0)
 DFS: 0............................... Command is not a DFS Operation
 NextCommand: 0 (0x0)
 MessageId: 11 (0xB)
 Reserved: 0 (0x0)
 TreeId: 5 (0x5)
 SessionId: 4398046511121 (0x40000000011)
 CRead:
 Size: 49 (0x31)
 Padding: 80 (0x50)
 Reserved: 0 (0x0)
 DataLength: 98 (0x62)
 Offset: 0 (0x0)
 Fid:
 Persistent: 17 (0x11)
 Volatile: -4294967287 (0xFFFFFFFF00000009)
 MinimumCount: 0 (0x0)
 Channel: 0 (0x0)

388 / 464

[MS-SMB2-Diff] - v20190923
Server Message Block (SMB) Protocol Versions 2 and 3
Copyright © 2019 Microsoft Corporation
Release: September 23, 2019

 RemainingBytes: 0 (0x0)
 ReadChannelInfoOffset: 0 (0x0)
 ReadChannelInfoLength: 0 (0x0)

4. The server responds with an SMB2 READ Response with the data read from the file.

 Smb2: R READ 0x62 bytes read
 SMB2Header:
 Size: 64 (0x40)
 CreditCharge: 0 (0x0)
 Status: STATUS_SUCCESS
 Command: READ
 Credits: 1 (0x1)
 Flags: 1 (0x1)
 ServerToRedir:1 Server to Client
 AsyncCommand: 0. Command is not asynchronous
 Related: 0.. Packet is single message
 Signed: 0... Packet is not signed
 Reserved: 0 (0x0)
 DFS: 0............................... Command is not a DFS Operation
 NextCommand: 0 (0x0)
 MessageId: 11 (0xB)
 Reserved: 0 (0x0)
 TreeId: 5 (0x5)
 SessionId: 4398046511121 (0x40000000011)
 RRead:
 Size: 17 (0x11)
 DataOffset: 80 (0x50)
 Reserved: 0 (0x0)
 DataLength: 98 (0x62)
 DataRemaining: 0 (0x0)
 Reserved2: 0 (0x0)
 Data: (98 bytes)

5. The client sends an SMB2 CLOSE Request to close the file.

 Smb2: C CLOSE FID=
 SMB2Header:
 Size: 64 (0x40)
 CreditCharge: 0 (0x0)
 Status: STATUS_SUCCESS
 Command: CLOSE
 Credits: 111 (0x6F)
 Flags: 0 (0x0)
 ServerToRedir:0 Client to Server
 AsyncCommand: 0. Command is not asynchronous
 Related: 0.. Packet is single message
 Signed: 0... Packet is not signed
 Reserved: 0 (0x0)
 DFS: 0............................... Command is not a DFS Operation
 NextCommand: 0 (0x0)
 MessageId: 12 (0xC)
 Reserved: 0 (0x0)
 TreeId: 5 (0x5)
 SessionId: 4398046511121 (0x40000000011)
 CClose:
 Size: 24 (0x18)
 Flags: 1 (0x1) <- Post-query attributes
 Reserved: 0 (0x0)
 Fid:
 Persistent: 9 (0x9)
 Volatile: -4294967295 (0xFFFFFFFF00000001)

6. The server sends an SMB2 CLOSE Response indicating the close was successful.

389 / 464

[MS-SMB2-Diff] - v20190923
Server Message Block (SMB) Protocol Versions 2 and 3
Copyright © 2019 Microsoft Corporation
Release: September 23, 2019

 Smb2: R CLOSE
 SMB2Header:
 Size: 64 (0x40)
 CreditCharge: 0 (0x0)
 Status: STATUS_SUCCESS
 Command: CLOSE
 Credits: 1 (0x1)
 Flags: 1 (0x1)
 ServerToRedir:1 Server to Client
 AsyncCommand: 0. Command is not asynchronous
 Related: 0.. Packet is single message
 Signed: 0... Packet is not signed
 Reserved: 0 (0x0)
 DFS: 0............................... Command is not a DFS Operation
 NextCommand: 0 (0x0)
 MessageId: 12 (0xC)
 Reserved: 0 (0x0)
 TreeId: 5 (0x5)
 SessionId: 4398046511121 (0x40000000011)
 RClose:
 Size: 60 (0x3C)
 Flags: 1 (0x1)
 Reserved: 0 (0x0)
 CreationTime: 127972990708847232 (0x1C6A6C1CC0B9280)
 LastAccessTime: 127972993090343232 (0x1C6A6C259FE5140)
 LastWriteTime: 127972992877715232 (0x1C6A6C24D51DF20)
 ChangeTime: 127972992877715232 (0x1C6A6C24D51DF20)
 AllocationSize: 0 (0x0)
 EndOfFile: 0 (0x0)
 FileAttributes: 0x00000010
 ReadOnly: (...............................0) Read/Write
 Hidden: (..............................0.) Not Hidden
 System: (.............................0..) Not System
 Reserverd3: 0 (0x0)
 Directory: (...........................1....) Directory
 Archive: (..........................0.....) Not Archive
 Device: (.........................0......) Not Device
 Normal: (........................0.......) Not Normal
 Temporary: (.......................0........) Permanent
 Sparse: (......................0.........) Not Sparse
 Reparse: (.....................0..........) Not Reparse Point
 Compressed: (....................0...........) Uncompressed
 Offline: (...................0............) Content indexed
 NotIndexed: (..................0.............) Permanent
 Encrypted: (.................0..............) Unencrypted

4.6 Writing to a Remote File

The following diagram demonstrates the steps taken to open a remote file, write to it, and close it.
Assume that this sequence starts on a connection where the session and tree connect have been
established as described in previous sections, and messages have been exchanged such that the
current MessageId is 30. Let us assume TreeId is set to 0x1 and SessionId is set to
0x40000000015 for all requests and responses listed below.

390 / 464

[MS-SMB2-Diff] - v20190923
Server Message Block (SMB) Protocol Versions 2 and 3
Copyright © 2019 Microsoft Corporation
Release: September 23, 2019

Figure 11: Writing to a remote file

1. The client sends an SMB2 CREATE Request for the file "test.dat".

 Smb2: C CREATE test.dat
 SMB2Header:
 Size: 64 (0x40)
 CreditCharge: 0 (0x0)
 Status: STATUS_SUCCESS
 Command: CREATE
 Credits: 111 (0x6F)
 Flags: 0 (0x0)
 ServerToRedir:0 Client to Server
 AsyncCommand: 0. Command is not asynchronous
 Related: 0.. Packet is single message
 Signed: 0... Packet not signed
 Reserved: 0 (0x0)
 DFS: 0............................... Command is not a DFS Operation
 NextCommand: 0 (0x0)
 MessageId: 10 (0xA)
 Reserved: 0 (0x0)
 TreeId: 1 (0x1)

391 / 464

[MS-SMB2-Diff] - v20190923
Server Message Block (SMB) Protocol Versions 2 and 3
Copyright © 2019 Microsoft Corporation
Release: September 23, 2019

 SessionId: 4398046511125 (0x40000000015)
 CCreate:
 Size: 57 (0x39)
 SecurityFlags: 0 (0x0)
 RequestedOplockLevel: 9 (0x9)
 ImpersonationLevel: 2 (0x2)
 SmbCreateFlags: 0 (0x0)
 Reserved: 0 (0x0)
 DesiredAccess: 0x00130197
 read: (...............................1) Read Data
 write: (..............................1.) Write Data
 append: (.............................1..) Append Data
 readEA: (............................0...) No Read EA
 writeEA: (...........................1....) Write EA
 FileExecute: (..........................0.....) No File Execute
 FileDeleted: (.........................0......) No File Delete
 FileRead: (........................1.......) File Read Attributes
 FileWrite: (.......................1........) File Write Attributes
 FileAttributes: 0x00000020
 ReadOnly: (...............................0) Read/Write
 Hidden: (..............................0.) Not Hidden
 System: (.............................0..) Not System
 Reserverd3: 0 (0x0)
 Directory: (...........................0....) File
 Archive: (..........................1.....) Archive
 Device: (.........................0......) Not Device
 Normal: (........................0.......) Not Normal
 Temporary: (.......................0........) Permanent
 Sparse: (......................0.........) Not Sparse
 Reparse: (.....................0..........) Not Reparse Point
 Compressed: (....................0...........) Uncompressed
 Offline: (...................0............) Content indexed
 NotIndexed: (..................0.............) Permanent
 Encrypted: (.................0..............) Unencrypted
 ShareAccess: No sharing
 CreateDisposition: Overwrite if
 CreateOptions: 0x0000004c
 dir: (...............................0) Non-directory
 write: (..............................0.) Non-write through
 sq: (.............................1..) Data is written
 to the file sequentially
 buffer: (............................1...) Do not do intermediate
 buffering
 alert: (...........................0....) IO alerts bits not set
 nonalert: (..........................0.....) IO non-alerts bit not set
 nondir: (.........................1......) Operation is on non-directory
 file
 connect: (........................0.......) Tree connect bit not set
 oplock: (.......................0......
 ..) Complete if oplocked bit is not
 set
 EA: (......................0.........) No EA knowledge bit is not set
 filename: (.....................0..........) 8.3 filenames bit is not set
 random: (....................0...........) Random access bit is not set
 delete: (...................0............) Delete on close bit is not set
 open: (..................0.............) Open by filename
 backup: (.................0..............) Open for backup bit not set
 NameOffset: 120 (0x78)
 NameLength: 16 (0x10)
 CreateContextsOffset: 0 (0x0)
 CreateContextsLength: 0 (0x0)
 Name: test.dat

2. The server responds with an SMB2 CREATE Response with the FileId of the opened file.

 Smb2: R CREATE FID=
 SMBIdentifier: SMB

392 / 464

[MS-SMB2-Diff] - v20190923
Server Message Block (SMB) Protocol Versions 2 and 3
Copyright © 2019 Microsoft Corporation
Release: September 23, 2019

 SMB2Header:
 Size: 64 (0x40)
 CreditCharge: 0 (0x0)
 Status: STATUS_SUCCESS
 Command: CREATE
 Credits: 1 (0x1)
 Flags: 1 (0x1)
 ServerToRedir:1 Server to Client
 AsyncCommand: 0. Command not asynchronous
 Related: 0.. Packet is single message
 Signed: 0... Packet not signed
 Reserved: 0 (0x0)
 DFS: 0............................... Command not DFS Operation
 NextCommand: 0 (0x0)
 MessageId: 10 (0xA)
 Reserved: 0 (0x0)
 TreeId: 1 (0x1)
 SessionId: 4398046511125 (0x40000000015)
 RCreate:
 Size: 89 (0x59)
 OplockLevel: 9 (0x9)
 Reserved1: 9 (0x9)
 CreateAction: 2 (0x2)
 CreationTime: 127972994486543232 (0x1C6A6C2AD36A380)
 LastAccessTime: 127972994486543232 (0x1C6A6C2AD36A380)
 LastWriteTime: 127972994486543232 (0x1C6A6C2AD36A380)
 ChangeTime: 127972994486543232 (0x1C6A6C2AD36A380)
 AllocationSize: 765952 (0xBB000)
 EndOfFile: 0 (0x0)
 FileAttributes: 0x00000020
 ReadOnly: (...............................0) Read/Write
 Hidden: (..............................0.) Not Hidden
 System: (.............................0..) Not System
 Reserverd3: 0 (0x0)
 Directory: (...........................0....) File
 Archive: (..........................1.....) Archive
 Device: (.........................0......) Not Device
 Normal: (........................0.......) Not Normal
 Temporary: (.......................0........) Permanent
 Sparse: (......................0.........) Not Sparse
 Reparse: (.....................0..........) Not Reparse Point
 Compressed: (....................0...........) Uncompressed
 Offline: (...................0............) Content indexed
 NotIndexed: (..................0.............) Permanent
 Encrypted: (.................0..............) Unencrypted
 Reserved2: 0 (0x0)
 Fid:
 Persistent: 25 (0x19)
 Volatile: -4294967291
 (0xFFFFFFFF00000005)
 CreateContextsOffset: 0 (0x0)
 CreateContextsLength: 0 (0x0)

3. The client sends an SMB2 SET_INFO Request to set FileEndOfFileInformation (specified in [MS-
FSCC] section 2.4.13) to 0x2f000.

 Smb2: C SET INFORMATION
 SMB2Header:
 Size: 64 (0x40)
 CreditCharge: 0 (0x0)
 Status: STATUS_SUCCESS
 Command: SET INFORMATION
 Credits: 111 (0x6F)
 Flags: 0 (0x0)
 ServerToRedir:0 Client to Server
 AsyncCommand: 0. Command not asynchronous

393 / 464

[MS-SMB2-Diff] - v20190923
Server Message Block (SMB) Protocol Versions 2 and 3
Copyright © 2019 Microsoft Corporation
Release: September 23, 2019

 Related: 0.. Packet is single message
 Signed: 0... Packet not signed
 Reserved: 0 (0x0)
 DFS: 0............................... Command not DFS Operation
 NextCommand: 0 (0x0)
 MessageId: 11 (0xB)
 Reserved: 0 (0x0)
 TreeId: 1 (0x1)
 SessionId: 4398046511125 (0x40000000015)
 CSetInfo:
 Size: 33 (0x21)
 InfoType: 1 (0x1)
 FileInformationClass:
 FileEndOfFileInformation
 BufferLength: 8 (0x8)
 BufferOffset: 96 (0x60)
 Reserved: 0 (0x0)
 AdditionalInformation: 0 (0x0)
 Fid:
 Persistent: 25 (0x19)
 Volatile: -4294967291
 (0xFFFFFFFF00000005)
 Buffer: (8 bytes) 0x000000000002f000

4. The server sends an SMB2 SET_INFO Response with success.

 Smb2: R SET INFORMATION
 SMB2Header:
 Size: 64 (0x40)
 CreditCharge: 0 (0x0)
 Status: STATUS_SUCCESS
 Command: SET INFORMATION
 Credits: 1 (0x1)
 Flags: 1 (0x1)
 ServerToRedir:1 Server to Client
 AsyncCommand: 0. Command not asynchronous
 Related: 0.. Packet is single message
 Signed: 0... Packet not signed
 Reserved: 0 (0x0)
 DFS: 0............................... Command not DFS Operation
 NextCommand: 0 (0x0)
 MessageId: 11 (0xB)
 Reserved: 0 (0x0)
 TreeId: 1 (0x1)
 SessionId: 4398046511125 (0x40000000015)
 RSetInfo:
 Size: 2 (0x2)

5. The client sends an SMB2 WRITE Request to write the first 0x10000 bytes.

 Smb2: C WRITE 0x10000 bytes at
 offset 0 (0x0)
 SMB2Header:
 Size: 64 (0x40)
 CreditCharge: 0 (0x0)
 Status: STATUS_SUCCESS
 Command: WRITE
 Credits: 111 (0x6F)
 Flags: 0 (0x0)
 ServerToRedir:0 Client to Server
 AsyncCommand: 0. Command not asynchronous
 Related: 0.. Packet is single message
 Signed: 0... Packet not signed

394 / 464

[MS-SMB2-Diff] - v20190923
Server Message Block (SMB) Protocol Versions 2 and 3
Copyright © 2019 Microsoft Corporation
Release: September 23, 2019

 Reserved: 0 (0x0)
 DFS: 0............................... Command not DFS Operation
 NextCommand: 0 (0x0)
 MessageId: 12 (0xC)
 Reserved: 0 (0x0)
 TreeId: 1 (0x1)
 SessionId: 4398046511125 (0x40000000015)
 CWrite:
 Size: 49 (0x31)
 DataOffset: 112 (0x70)
 DataLength: 65536 (0x10000)
 Offset: 0 (0x0)
 Fid:
 Persistent: 25 (0x19)
 Volatile: -4294967291
 (0xFFFFFFFF00000005)
 Channel: 0 (0x0)
 RemainingBytes: 0 (0x0)
 WriteChannelInfoOffset: 0 (0x0)
 WriteChannelInfoLength: 0 (0x0)
 Flags: 0 (0x0)

6. The server responds with an SMB2 WRITE Response indicating 0x10000 bytes were written.

 Smb2: R WRITE 0x10000 bytes
 written
 SMB2Header:
 Size: 64 (0x40)
 CreditCharge: 0 (0x0)
 Status: STATUS_SUCCESS
 Command: WRITE
 Credits: 1 (0x1)
 Flags: 1 (0x1)
 ServerToRedir:1 Server to Client
 AsyncCommand: 0. Command not asynchronous
 Related: 0.. Packet is single message
 Signed: 0... Packet not signed
 Reserved: 0 (0x0)
 DFS: 0............................... Command not DFS Operation
 NextCommand: 0 (0x0)
 MessageId: 12 (0xC)
 Reserved: 0 (0x0)
 TreeId: 1 (0x1)
 SessionId: 4398046511125 (0x40000000015)
 RWrite:
 Size: 17 (0x11)
 Reserved: 0 (0x0)
 DataLength: 65536 (0x10000)
 Remaining: 0 (0x0)
 WriteChannelInfoOffset: 0 (0x0)
 WriteChannelInfoLength: 0 (0x0)

7. The client sends an SMB2 WRITE Request to write the next 0x10000 bytes.

 Smb2: C WRITE 0x10000 bytes at
 offset 65536 (0x10000)
 SMB2Header:
 Size: 64 (0x40)
 CreditCharge: 0 (0x0)
 Status: STATUS_SUCCESS
 Command: WRITE
 Credits: 111 (0x6F)
 Flags: 0 (0x0)

395 / 464

[MS-SMB2-Diff] - v20190923
Server Message Block (SMB) Protocol Versions 2 and 3
Copyright © 2019 Microsoft Corporation
Release: September 23, 2019

 ServerToRedir:0 Client to Server
 AsyncCommand: 0. Command not asynchronous
 Related: 0.. Packet is single message
 Signed: 0... Packet not signed
 Reserved: 0 (0x0)
 DFS: 0............................... Command not DFS Operation
 NextCommand: 0 (0x0)
 MessageId: 13 (0xD)
 Reserved: 0 (0x0)
 TreeId: 1 (0x1)
 SessionId: 4398046511125 (0x40000000015)
 CWrite:
 Size: 49 (0x31)
 DataOffset: 112 (0x70)
 DataLength: 65536 (0x10000)
 Offset: 65536 (0x10000)
 Fid:
 Persistent: 25 (0x19)
 Volatile: -4294967291
 (0xFFFFFFFF00000005)
 Channel: 0 (0x0)
 RemainingBytes: 0 (0x0)
 WriteChannelInfoOffset: 0 (0x0)
 WriteChannelInfoLength: 0 (0x0)
 Flags: 0 (0x0)

8. The server responds with an SMB2 WRITE Response indicating 0x10000 bytes were written.

 Smb2: R WRITE 0x10000 bytes
 written
 SMB2Header:
 Size: 64 (0x40)
 CreditCharge: 0 (0x0)
 Status: STATUS_SUCCESS
 Command: WRITE
 Credits: 1 (0x1)
 Flags: 1 (0x1)
 ServerToRedir:1 Server to Client
 AsyncCommand: 0. Command not asynchronous
 Related: 0.. Packet is single message
 Signed: 0... Packet not signed
 Reserved: 0 (0x0)
 DFS: 0............................... Command not DFS Operation
 NextCommand: 0 (0x0)
 MessageId: 13 (0xD)
 Reserved: 0 (0x0)
 TreeId: 1 (0x1)
 SessionId: 4398046511125 (0x40000000015)
 RWrite:
 Size: 17 (0x11)
 Reserved: 0 (0x0)
 DataLength: 65536 (0x10000)
 Remaining: 0 (0x0)
 WriteChannelInfoOffset: 0 (0x0)
 WriteChannelInfoLength: 0 (0x0)

9. The client sends an SMB2 WRITE Request to write the final 0xf000 bytes.

 Smb2: C WRITE 0xF000 bytes at
 offset 131072 (0x20000)
 SMB2Header:
 Size: 64 (0x40)
 CreditCharge: 0 (0x0)

396 / 464

[MS-SMB2-Diff] - v20190923
Server Message Block (SMB) Protocol Versions 2 and 3
Copyright © 2019 Microsoft Corporation
Release: September 23, 2019

 Status: STATUS_SUCCESS
 Command: WRITE
 Credits: 111 (0x6F)
 Flags: 0 (0x0)
 ServerToRedir:0 Client to Server
 AsyncCommand: 0. Command not asynchronous
 Related: 0.. Packet is single message
 Signed: 0... Packet is not signed
 Reserved: 0 (0x0)
 DFS: 0............................... Command not DFS Operation
 NextCommand: 0 (0x0)
 MessageId: 14 (0xE)
 Reserved: 0 (0x0)
 TreeId: 1 (0x1)
 SessionId: 4398046511125 (0x40000000015)
 CWrite:
 Size: 49 (0x31)
 DataOffset: 112 (0x70)
 DataLength: 61440 (0xF000)
 Offset: 131072 (0x20000)
 Fid:
 Persistent: 25 (0x19)
 Volatile: -4294967291
 (0xFFFFFFFF00000005)
 Channel: 0 (0x0)
 RemainingBytes: 0 (0x0)
 WriteChannelInfoOffset: 0 (0x0)
 WriteChannelInfoLength: 0 (0x0)
 Flags: 0 (0x0)

10. The server responds with an SMB2 WRITE Response indicating 0xf000 bytes were written.

 Smb2: R WRITE 0xF000 bytes
 written
 SMB2Header:
 Size: 64 (0x40)
 CreditCharge: 0 (0x0)
 Status: STATUS_SUCCESS
 Command: WRITE
 Credits: 1 (0x1)
 Flags: 1 (0x1)
 ServerToRedir:1 Server to Client
 AsyncCommand: 0. Command not asynchronous
 Related: 0.. Packet is single message
 Signed: 0... Packet not signed
 Reserved: 0 (0x0)
 DFS: 0............................... Command not DFS Operation
 NextCommand: 0 (0x0)
 MessageId: 14 (0xE)
 Reserved: 0 (0x0)
 TreeId: 1 (0x1)
 SessionId: 4398046511125 (0x40000000015)
 RWrite:
 Size: 17 (0x11)
 Reserved: 0 (0x0)
 DataLength: 61440 (0xF000)
 Remaining: 0 (0x0)
 WriteChannelInfoOffset: 0 (0x0)
 WriteChannelInfoLength: 0 (0x0)

11. The client sends an SMB2 CLOSE Request to close the opened file.

 Smb2: C CLOSE FID=

397 / 464

[MS-SMB2-Diff] - v20190923
Server Message Block (SMB) Protocol Versions 2 and 3
Copyright © 2019 Microsoft Corporation
Release: September 23, 2019

 SMB2Header:
 Size: 64 (0x40)
 CreditCharge: 0 (0x0)
 Status: STATUS_SUCCESS
 Command: CLOSE
 Credits: 111 (0x6F)
 Flags: 0 (0x0)
 ServerToRedir:0 Client to Server
 AsyncCommand: 0. Command not asynchronous
 Related: 0.. Packet is single message
 Signed: 0... Packet not signed
 Reserved: 0 (0x0)
 DFS: 0............................... Command not DFS Operation
 NextCommand: 0 (0x0)
 MessageId: 15 (0xF)
 Reserved: 0 (0x0)
 TreeId: 1 (0x1)
 SessionId: 4398046511125 (0x40000000015)
 CClose:
 Size: 24 (0x18)
 Flags: 1 (0x1)
 Reserved: 0 (0x0)
 Fid:
 Persistent: 25 (0x19)
 Volatile: -4294967291
 (0xFFFFFFFF00000005)

12. The server sends an SMB2 CLOSE Response indicating the close was successful.

 Smb2: R CLOSE
 SMBIdentifier: SMB
 SMB2Header:
 Size: 64 (0x40)
 CreditCharge: 0 (0x0)
 Status: STATUS_SUCCESS
 Command: CLOSE
 Credits: 1 (0x1)
 Flags: 1 (0x1)
 ServerToRedir:1 Server to Client
 AsyncCommand: 0. Command not asynchronous
 Related: 0.. Packet is single message
 Signed: 0... Packet not signed
 Reserved: 0 (0x0)
 DFS: 0............................... Command not DFS Operation
 NextCommand: 0 (0x0)
 MessageId: 15 (0xF)
 Reserved: 0 (0x0)
 TreeId: 1 (0x1)
 SessionId: 4398046511125 (0x40000000015)
 RClose:
 Size: 60 (0x3C)
 Flags: 1 (0x1)
 Reserved: 0 (0x0)
 CreationTime: 127972994486543232
 (0x1C6A6C2AD36A380)
 LastAccessTime: 127972994494343232
 (0x1C6A6C2ADADA840)
 LastWriteTime: 127965940833141721
 (0x1C6A0585EB543D9)
 ChangeTime: 127972993511484705
 (0x1C6A6C273186D21)
 AllocationSize: 196608 (0x30000)
 EndOfFile: 192512 (0x2F000)
 FileAttributes: 0x00000020
 ReadOnly: (...............................0) Read/Write
 Hidden: (..............................0.) Not Hidden
 System: (.............................0..) Not System

398 / 464

[MS-SMB2-Diff] - v20190923
Server Message Block (SMB) Protocol Versions 2 and 3
Copyright © 2019 Microsoft Corporation
Release: September 23, 2019

 Reserverd3: 0 (0x0)
 Directory: (...........................0....) File
 Archive: (..........................1.....) Archive
 Device: (.........................0......) Not Device
 Normal: (........................0.......) Not Normal
 Temporary: (.......................0........) Permanent
 Sparse: (......................0.........) Not Sparse
 Reparse: (.....................0..........) Not Reparse Point
 Compressed: (....................0...........) Uncompressed
 Offline: (...................0............) Content indexed
 NotIndexed: (..................0.............) Permanent
 Encrypted: (.................0..............) Unencrypted

4.7 Disconnecting a Share and Logging Off

The following diagram demonstrates the steps taken to close a tree connect and log off a session.
Assume that this sequence starts on a connection where the session and tree connect have been
established as described in previous sections with SessionId of 0x40000000015 and TreeId of 0x1.

Figure 12: Disconnecting a share and logging off a session

1. The client sends an SMB2 TREE_DISCONNECT Request for the tree connect.

 Smb2: C TREE DISCONNECT TID=0x1
 SMB2Header:
 Size: 64 (0x40)
 CreditCharge: 0 (0x0)
 Status: STATUS_SUCCESS
 Command: TREE DISCONNECT
 Credits: 111 (0x6F)
 Flags: 0 (0x0)
 ServerToRedir:0 Client to Server
 AsyncCommand: 0. Command is not asynchronous
 Related: 0.. Packet is single message
 Signed: 0... Packet is not signed
 Reserved: 0 (0x0)
 DFS: 0............................... Command is not a DFS Operation

399 / 464

[MS-SMB2-Diff] - v20190923
Server Message Block (SMB) Protocol Versions 2 and 3
Copyright © 2019 Microsoft Corporation
Release: September 23, 2019

 NextCommand: 0 (0x0)
 MessageId: 32 (0x20)
 Reserved: 0 (0x0)
 TreeId: 1 (0x1)
 SessionId: 4398046511125 (0x40000000015)
 CTreeDisconnect:
 Size: 4 (0x4)
 Reserved: 0 (0x0)

2. The server responds with an SMB2 TREE_DISCONNECT Response indicating success.

 Smb2: R TREE DISCONNECT
 SMB2Header:
 Size: 64 (0x40)
 CreditCharge: 0 (0x0)
 Status: STATUS_SUCCESS
 Command: TREE DISCONNECT
 Credits: 1 (0x1)
 Flags: 1 (0x1)
 ServerToRedir:1 Server to Client
 AsyncCommand: 0. Command is not asynchronous
 Related: 0.. Packet is single message
 Signed: 0... Packet is not signed
 Reserved: 0 (0x0)
 DFS: 0............................... Command is not a DFS Operation
 NextCommand: 0 (0x0)
 MessageId: 32 (0x20)
 Reserved: 0 (0x0)
 TreeId: 1 (0x1)
 SessionId: 4398046511125 (0x40000000015)
 RTreeDisconnect:
 Size: 4 (0x4)
 Reserved: 0 (0x0)

3. The client sends an SMB2 LOGOFF Request for the session.

 Smb2: C LOGOFF
 SMB2Header:
 Size: 64 (0x40)
 CreditCharge: 0 (0x0)
 Status: STATUS_SUCCESS
 Command: LOGOFF
 Credits: 111 (0x6F)
 Flags: 0 (0x0)
 ServerToRedir:0 Client to Server
 AsyncCommand: 0. Command is not asynchronous
 Related: 0.. Packet is single message
 Signed: 0... Packet is not signed
 Reserved: 0 (0x0)
 DFS: 0............................... Command is not a DFS Operation
 NextCommand: 0 (0x0)
 MessageId: 33 (0x21)
 Reserved: 0 (0x0)
 TreeId: 0 (0x0)
 SessionId: 4398046511125 (0x40000000015)
 CLogoff:
 Size: 4 (0x4)
 Reserved: 0 (0x0)

4. The server responds with an SMB2 LOGOFF Response indicating success.

 Smb2: R LOGOFF
 SMB2Header:

400 / 464

[MS-SMB2-Diff] - v20190923
Server Message Block (SMB) Protocol Versions 2 and 3
Copyright © 2019 Microsoft Corporation
Release: September 23, 2019

 Size: 64 (0x40)
 CreditCharge: 0 (0x0)
 Status: STATUS_SUCCESS
 Command: LOGOFF
 Credits: 1 (0x1)
 Flags: 1 (0x1)
 ServerToRedir:1 Server to Client
 AsyncCommand: 0. Command is not asynchronous
 Related: 0.. Packet is single message
 Signed: 0... Packet is not signed
 Reserved: 0 (0x0)
 DFS: 0............................... Command is not a DFS Operation
 NextCommand: 0 (0x0)
 MessageId: 33 (0x21)
 Reserved: 0 (0x0)
 TreeId: 0 (0x0)
 SessionId: 4398046511125 (0x40000000015)
 RLogoff:
 Size: 4 (0x4)
 Reserved: 0 (0x0)

4.8 Establish Alternate Channel

The following diagram demonstrates the steps taken to establish an alternate channel.

401 / 464

[MS-SMB2-Diff] - v20190923
Server Message Block (SMB) Protocol Versions 2 and 3
Copyright © 2019 Microsoft Corporation
Release: September 23, 2019

Figure 13: Establishing an alternate channel

1. The client sends an SMB2 NEGOTIATE Request with dialect 0x300 in the Dialects array, and
SMB2_GLOBAL_CAP_MULTI_CHANNEL(0x00000008) bit set in Capabilities.

 SMB2: C NEGOTIATE (0x0), ClientGUID={F62E4D0B-C685-E48B-40B6-D815CB56FF6E}
 CNegotiate:
 StructureSize: 36 (0x24)
 DialectCount: 3 (0x3)
 SecurityMode: 1 (0x1)
 SMB2NEGOTIATESIGNINGENABLED: (...............1) security signatures are enabled on the
client.

402 / 464

[MS-SMB2-Diff] - v20190923
Server Message Block (SMB) Protocol Versions 2 and 3
Copyright © 2019 Microsoft Corporation
Release: September 23, 2019

 SMB2NEGOTIATESIGNINGREQUIRED: (..............0.) security signatures are not required by the
client.

 Reserved: (00000000000000..) Reserved
 Reserved: 0 (0x0)
 Capabilities: 0x7F
 ClientGuid: {F62E4D0B-C685-E48B-40B6-D815CB56FF6E}
 ClientStartTime: No Time Specified (0)
 Dialects:
 Dialects: 514 (0x202)
 Dialects: 528 (0x210)
 Dialects: 768 (0x300)

2. The server receives the SMB2 NEGOTIATE Request and finds dialect 0x0300. The server responds
with an SMB2 NEGOTIATE Response with dialect 0x300 in the DialectRevision, and the
SMB2_GLOBAL_CAP_MULTI_CHANNEL(0x00000008) bit set in Capabilities.

 SMB2: R NEGOTIATE (0x0), ServerGUID={1B005379-8063-F0B6-4907-4957998700A1}
 SMBIdByte: 254 (0xFE)
 SMBIdentifier: SMB
 SMB2Header: R NEGOTIATE (0x0),TID=0x0000, MID=0x0000, PID=0xFEFF, SID=0x0000
 StructureSize: 64 (0x40)
 CreditCharge: 0 (0x0)
 Status: 0x0, Code = (0) STATUS_SUCCESS, Facility = FACILITY_SYSTEM, Severity =
STATUS_SEVERITY_SUCCESS

 Flags: 0x1
 NextCommand: 0 (0x0)
 MessageId: 0 (0x0)
 Reserved: 65279 (0xFEFF)
 TreeId: 0 (0x0)
 SessionId: 0 (0x0)
 Signature: Binary Large Object (16 Bytes)
 RNegotiate:
 StructureSize: 65 (0x41)
 SecurityMode: 1 (0x1)
 SMB2NEGOTIATESIGNINGENABLED: (...............1) security signatures are enabled on the
client.

 SMB2NEGOTIATESIGNINGREQUIRED: (..............0.) security signatures are not required by the
client.

 Reserved: (00000000000000..) Reserved
 DialectRevision: (0x300) - SMB 3.0 dialect revision number.
 Reserved: 0 (0x0)
 ServerGuid: {1B005379-8063-F0B6-4907-4957998700A1}
 Capabilities: 0x7F
 MaxTransactSize: 1048576 (0x100000)
 MaxReadSize: 1048576 (0x100000)
 MaxWriteSize: 1048576 (0x100000)
 SystemTime: 05/11/2012, 06:41:20.036527 UTC
 ServerStartTime: 05/10/2012, 09:56:03.345351 UTC
 SecurityBufferOffset: 128 (0x80)
 SecurityBufferLength: 120 (0x78)
 Reserved2: 0 (0x0)

3. The client queries GSS for the authentication token and sends an SMB2 SESSION_SETUP Request
with the output token received from GSS.

 SMB2: C SESSION SETUP (0x1)
 CSessionSetup:
 StructureSize: 25 (0x19)
 Flags: 0 (0x0)
 SecurityMode: 1 (0x1)
 Capabilities: 0x1
 Channel: 0 (0x0)
 SecurityBufferOffset: 88 (0x58)

403 / 464

[MS-SMB2-Diff] - v20190923
Server Message Block (SMB) Protocol Versions 2 and 3
Copyright © 2019 Microsoft Corporation
Release: September 23, 2019

 SecurityBufferLength: 74 (0x4A)
 PreviousSessionId: 0 (0x0)
 securityBlob:

4. The server processes the token received with GSS and gets a return code. The GSS return code
indicates that an additional exchange is required to complete the authentication. The server
responds to the client with an SMB2 SESSION_SETUP Response with Status equal to
STATUS_MORE_PROCESSING_REQUIRED and the response containing the output token from GSS.

 SMB2: R - NT Status: System - Error, Code = (22) STATUS_MORE_PROCESSING_REQUIRED SESSION
SETUP (0x1), SessionFlags=0x0

 SMBIdByte: 254 (0xFE)
 SMBIdentifier: SMB
 SMB2Header: R SESSION SETUP (0x1),TID=0x0000, MID=0x0001, PID=0xFEFF, SID=0x4000001
 StructureSize: 64 (0x40)
 CreditCharge: 0 (0x0)
 Status: 0xC0000016, Code = (22) STATUS_MORE_PROCESSING_REQUIRED, Facility = FACILITY_SYSTEM,
Severity = STATUS_SEVERITY_ERROR

 Command: SESSION SETUP (0x1)
 Credits: 1 (0x1)
 Flags: 0x1
 NextCommand: 0 (0x0)
 MessageId: 1 (0x1)
 Reserved: 65279 (0xFEFF)
 TreeId: 0 (0x0)
 SessionId: 1130302315429889 (0x4040104000001)
 Signature: Binary Large Object (16 Bytes)
 RSessionSetup:
 StructureSize: 9 (0x9)
 SessionFlags: 0x0
 SecurityBufferOffset: 72 (0x48)
 SecurityBufferLength: 349 (0x15D)

5. The client processes the received token with GSS and sends an SMB2 SESSION_SETUP Request

with the output token received from GSS and the SessionId received on the previous response.

 SMB2: C SESSION SETUP (0x1)
 SMBIdByte: 254 (0xFE)
 SMBIdentifier: SMB
 SMB2Header: C SESSION SETUP (0x1),TID=0x0000, MID=0x0002, PID=0xFEFF, SID=0x4000001
 StructureSize: 64 (0x40)
 CreditCharge: 0 (0x0)
 ChannelSequence: (0x0) - (SMB 3.00 and later only)
 Reserved2: 0 (0x0)
 Command: SESSION SETUP (0x1)
 Credits: 10 (0xA)
 Flags: 0x0
 NextCommand: 0 (0x0)
 MessageId: 2 (0x2)
 Reserved: 65279 (0xFEFF)
 TreeId: 0 (0x0)
 SessionId: 1130302315429889 (0x4040104000001)
 Signature: Binary Large Object (16 Bytes)
 SMB2: C SESSION SETUP (0x1)
 CSessionSetup:
 StructureSize: 25 (0x19)
 Flags: 0 (0x0)
 SecurityMode: 1 (0x1)
 Capabilities: 0x1
 Channel: 0 (0x0)
 SecurityBufferOffset: 88 (0x58)
 SecurityBufferLength: 625 (0x271)
 PreviousSessionId: 0 (0x0)

404 / 464

[MS-SMB2-Diff] - v20190923
Server Message Block (SMB) Protocol Versions 2 and 3
Copyright © 2019 Microsoft Corporation
Release: September 23, 2019

6. The server processes the token received with GSS and gets a successful return code. The server
responds to the client with an SMB2 SESSION_SETUP Response with Status equal to
STATUS_SUCCESS and the response containing the output token from GSS.

 SMB2: R SESSION SETUP (0x1), SessionFlags=0x0
 SMBIdByte: 254 (0xFE)
 SMBIdentifier: SMB
 SMB2Header: R SESSION SETUP (0x1),TID=0x0000, MID=0x0002, PID=0xFEFF, SID=0x4000001
 StructureSize: 64 (0x40)
 CreditCharge: 0 (0x0)
 Status: 0x0, Code = (0) STATUS_SUCCESS, Facility = FACILITY_SYSTEM, Severity =
STATUS_SEVERITY_SUCCESS

 Flags: 0x9
 NextCommand: 0 (0x0)
 MessageId: 2 (0x2)
 Reserved: 65279 (0xFEFF)
 TreeId: 0 (0x0)
 SessionId: 1130302315429889 (0x4040104000001)
 Signature: Binary Large Object (16 Bytes)
 RSessionSetup:
 StructureSize: 9 (0x9)
 SessionFlags: 0x0
 SecurityBufferOffset: 72 (0x48)
 SecurityBufferLength: 29 (0x1D)

7. The client completes the authentication and sends an SMB2 TREE_CONNECT Request with the
SsessionId for the session, and a tree connect request containing the Unicode share name
"\\smb2server\share".

 SMB2: C TREE CONNECT (0x3), Path:\\smb2server\share
 SMBIdByte: 254 (0xFE)
 SMBIdentifier: SMB
 SMB2Header: C TREE CONNECT (0x3),TID=0x0000, MID=0x0003, PID=0xFEFF, SID=0x4000001
 StructureSize: 64 (0x40)
 CreditCharge: 0 (0x0)
 ChannelSequence: (0x0) - (SMB 3.00 and later only)
 Reserved2: 0 (0x0)
 Command: TREE CONNECT (0x3)
 Credits: 10 (0xA)
 Flags: 0x0
 NextCommand: 0 (0x0)
 MessageId: 3 (0x3)
 Reserved: 65279 (0xFEFF)
 TreeId: 0 (0x0)
 SessionId: 1130302315429889 (0x4040104000001)
 Signature: Binary Large Object (16 Bytes)
 CTreeConnect:
 StructureSize: 9 (0x9)
 Reserved: 0 (0x0)
 PathOffset: 72 (0x48)
 PathLength: 42 (0x2A)
 Path:\\smb2server\share

8. The server responds with an SMB2 TREE_CONNECT Response with the MessageId of 3, the
CreditResponse of 5, the Status equal to STATUS_SUCCESS, the SessionId of
0x8040030000075, and TreeId set to the locally generated identifier 0x1.

 SMB2: R TREE CONNECT (0x3), TID=0x1

405 / 464

[MS-SMB2-Diff] - v20190923
Server Message Block (SMB) Protocol Versions 2 and 3
Copyright © 2019 Microsoft Corporation
Release: September 23, 2019

 SMBIdByte: 254 (0xFE)
 SMBIdentifier: SMB
 SMB2Header: R TREE CONNECT (0x3),TID=0x0001, MID=0x0003, PID=0xFEFF, SID=0x4000001
 StructureSize: 64 (0x40)
 CreditCharge: 0 (0x0)
 Status: 0x0, Code = (0) STATUS_SUCCESS, Facility = FACILITY_SYSTEM, Severity =
STATUS_SEVERITY_SUCCESS

 Flags: 0x1
 NextCommand: 0 (0x0)
 MessageId: 3 (0x3)
 Reserved: 65279 (0xFEFF)
 TreeId: 1 (0x1)
 SessionId: 1130302315429889 (0x4040104000001)
 Signature: Binary Large Object (16 Bytes)
 RTreeConnect: 0x1
 StructureSize: 16 (0x10)
 ShareType: Disk (0x1)
 Reserved: 0 (0x0)
 ShareFlags: 2048 (0x800)
 Capabilities: 0x0
 MaximalAccess: 0x1F01FF

9. The client sends a FSCTL_VALIDATE_NEGOTIATE_INFO IOCTL request with the Dialects array set
to 0x202, 0x210, and 0x300, along with the expected server capabilities, security mode, and
GUID, to protect against a downgrade attack.

 SMB2: C IOCTL (0xb), FID=0xFFFFFFFFFFFFFFFF, FSCTL_VALIDATE_NEGOTIATE_INFO
 CIoCtl:
 StructureSize: 57 (0x39)
 Reserved: 0 (0x0)
 CtlCode: FSCTL_VALIDATE_NEGOTIATE_INFO
 FileId: Persistent: 0xFFFFFFFFFFFFFFFF, Volatile: 0xFFFFFFFFFFFFFFFF
 Persistent: 18446744073709551615 (0xFFFFFFFFFFFFFFFF)
 volatile: 18446744073709551615 (0xFFFFFFFFFFFFFFFF)
 InputOffset: 120 (0x78)
 InputCount: 30 (0x1E)
 MaxInputResponse: 0 (0x0)
 OutputOffset: 120 (0x78)
 OutputCount: 0 (0x0)
 MaxOutputResponse: 24 (0x18)
 Flags: (00000000000000000000000000000001) FSCTL request
 Reserved2: 0 (0x0)
 ValidateNegotiate:
 Capabilities: 0x7F
 Guid: {F62E4D0B-C685-E48B-40B6-D815CB56FF6E}
 SecurityMode: 1 (0x1)
 DialectCount: 3 (0x3)
 Dialects:
 Dialects: 514 (0x202)
 Dialects: 528 (0x210)
 Dialects: 768 (0x300)

10. The server determines that dialect, capabilities, security mode, and GUID are as expected, and
sends an FSCTL_VALIDATE_NEGOTIATE_INFO IOCTL Response with the established values for the
connection in an SMB2 IOCTL Response. Upon receiving and validating these, the client

successfully validates the end-to-end negotiation and processing proceeds to using the session.

 SMB2: R IOCTL (0xb), FSCTL_VALIDATE_NEGOTIATE_INFO
 SMBIdByte: 254 (0xFE)
 SMBIdentifier: SMB
 SMB2Header: R IOCTL (0xb),TID=0x0001, MID=0x0004, PID=0x000D, SID=0x4000001
 StructureSize: 64 (0x40)

406 / 464

[MS-SMB2-Diff] - v20190923
Server Message Block (SMB) Protocol Versions 2 and 3
Copyright © 2019 Microsoft Corporation
Release: September 23, 2019

 CreditCharge: 1 (0x1)
 Status: 0x0, Code = (0) STATUS_SUCCESS, Facility = FACILITY_SYSTEM, Severity =
STATUS_SEVERITY_SUCCESS

 Flags: 0x9
 NextCommand: 0 (0x0)
 MessageId: 4 (0x4)
 Reserved: 13 (0xD)
 TreeId: 1 (0x1)
 SessionId: 1130302315429889 (0x4040104000001)
 Signature: Binary Large Object (16 Bytes)
 RIoCtl:
 StructureSize: 49 (0x31)
 Reserved: 0 (0x0)
 CtlCode: FSCTL_VALIDATE_NEGOTIATE_INFO
 FileId: Persistent: 0xFFFFFFFFFFFFFFFF, Volatile: 0xFFFFFFFFFFFFFFFF
 Persistent: 18446744073709551615 (0xFFFFFFFFFFFFFFFF)
 volatile: 18446744073709551615 (0xFFFFFFFFFFFFFFFF)
 InputOffset: 112 (0x70)
 InputCount: 0 (0x0)
 OutputOffset: 112 (0x70)
 OutputCount: 24 (0x18)
 Flags: 0 (0x0)
 Reserved2: 0 (0x0)
 ValidateNegotiate:
 Capabilities: 0x7F
 Dialect: 768 (0x300)

11. To establish an alternative channel, the client sends an
FSCTL_QUERY_NETWORK_INTERFACE_INFO IOCTL request to query the available network

interface on the server.

 SMB2: C IOCTL (0xb), FID=0xFFFFFFFFFFFFFFFF, FSCTL_QUERY_NETWORK_INTERFACE_INFO
 SMBIdByte: 254 (0xFE)
 SMBIdentifier: SMB
 SMB2Header: C IOCTL (0xb),TID=0x0001, MID=0x0005, PID=0x000D, SID=0x4000001
 StructureSize: 64 (0x40)
 CreditCharge: 1 (0x1)
 ChannelSequence: (0x0) - (SMB 3.00 and later only)
 Reserved2: 0 (0x0)
 Command: IOCTL (0xb)
 Credits: 10 (0xA)
 Flags: 0x0
 NextCommand: 0 (0x0)
 MessageId: 5 (0x5)
 Reserved: 13 (0xD)
 TreeId: 1 (0x1)
 SessionId: 1130302315429889 (0x4040104000001)
 Signature: Binary Large Object (16 Bytes)
 CIoCtl:
 StructureSize: 57 (0x39)
 Reserved: 0 (0x0)
 CtlCode: FSCTL_QUERY_NETWORK_INTERFACE_INFO
 FileId: Persistent: 0xFFFFFFFFFFFFFFFF, Volatile: 0xFFFFFFFFFFFFFFFF
 InputOffset: 0 (0x0)
 InputCount: 0 (0x0)
 MaxInputResponse: 0 (0x0)
 OutputOffset: 0 (0x0)
 OutputCount: 0 (0x0)
 MaxOutputResponse: 1000 (0x3E8)
 Flags: (00000000000000000000000000000001) FSCTL request
 Reserved2: 0 (0x0)

12. The server sends a NETWORK_INTERFACE_INFO Response in an SMB2 IOCTL Response with the
available network interfaces.

407 / 464

[MS-SMB2-Diff] - v20190923
Server Message Block (SMB) Protocol Versions 2 and 3
Copyright © 2019 Microsoft Corporation
Release: September 23, 2019

 SMB2: R IOCTL (0xb), FSCTL_QUERY_NETWORK_INTERFACE_INFO
 RIoCtl:
 StructureSize: 49 (0x31)
 Reserved: 0 (0x0)
 CtlCode: FSCTL_QUERY_NETWORK_INTERFACE_INFO
 FileId: Persistent: 0xFFFFFFFFFFFFFFFF, Volatile: 0xFFFFFFFFFFFFFFFF
 InputOffset: 112 (0x70)
 InputCount: 0 (0x0)
 OutputOffset: 112 (0x70)
 OutputCount: 912 (0x390)
 Flags: 0 (0x0)
 Reserved2: 0 (0x0)
 InterfaceInfo:
 Next: 152 (0x98)
 IfIndex: 12 (0xC)
 Capability: 1 (0x1)
 RSSCapable: 1 (0x1)
 RDMACapable: 0 (0x0)
 Reserved: 0 (0x0)
 Reserved: 0 (0x0)
 LinkSpeed: 10000000000 (0x2540BE400)
 SockAddr: 172.25.220.21:0
 Family: 2 (0x2)
 IPv4: 172.25.220.21:0
 Port: 0 (0x0)
 Address: 172.25.220.21
 Reserved: Binary Large Object (8 Bytes)
 EntryPadding: Binary Large Object (112 Bytes)

13. The client selects any one network interface pair to establish a new connection, and sends an
SMB2 NEGOTIATE Request with dialect 0x300 in the Dialects array, and
SMB2_GLOBAL_CAP_MULTI_CHANNEL(0x00000008) bit set in Capabilities.

 SMB2: C NEGOTIATE (0x0), ClientGUID={F62E4D0B-C685-E48B-40B6-D815CB56FF6E}
 SMBIdByte: 254 (0xFE)
 SMBIdentifier: SMB
 SMB2Header: C NEGOTIATE (0x0),TID=0x0000, MID=0x0000, PID=0xFEFF, SID=0x0000
 StructureSize: 64 (0x40)
 CreditCharge: 0 (0x0)
 ChannelSequence: (0x0) - (SMB 3.00 and later only)
 Reserved2: 0 (0x0)
 Command: NEGOTIATE (0x0)
 Credits: 10 (0xA)
 Flags: 0x0
 NextCommand: 0 (0x0)
 MessageId: 0 (0x0)
 Reserved: 65279 (0xFEFF)
 TreeId: 0 (0x0)
 SessionId: 0 (0x0)
 Signature: Binary Large Object (16 Bytes)
 CNegotiate:
 StructureSize: 36 (0x24)
 DialectCount: 3 (0x3)
 SecurityMode: 1 (0x1)
 Reserved: 0 (0x0)
 Capabilities: 0x3F
 ClientGuid: {F62E4D0B-C685-E48B-40B6-D815CB56FF6E}
 ClientStartTime: No Time Specified (0)
 Dialects:
 Dialects: 514 (0x202)
 Dialects: 528 (0x210)
 Dialects: 768 (0x300)

408 / 464

[MS-SMB2-Diff] - v20190923
Server Message Block (SMB) Protocol Versions 2 and 3
Copyright © 2019 Microsoft Corporation
Release: September 23, 2019

14. The server responds with an SMB2 NEGOTIATE Response with dialect 0x300 in the
DialectRevision, and SMB2_GLOBAL_CAP_MULTI_CHANNEL(0x00000008) bit set in

Capabilities.

 SMB2: R NEGOTIATE (0x0), ServerGUID={1B005379-8063-F0B6-4907-4957998700A1}
 RNegotiate:
 StructureSize: 65 (0x41)
 SecurityMode: 1 (0x1)
 DialectRevision: (0x300) - SMB 3.0 dialect revision number.
 Reserved: 0 (0x0)
 ServerGuid: {1B005379-8063-F0B6-4907-4957998700A1}
 Capabilities: 0x3F
 MaxTransactSize: 1048576 (0x100000)
 MaxReadSize: 1048576 (0x100000)
 MaxWriteSize: 1048576 (0x100000)
 SystemTime: 05/11/2012, 06:41:49.996099 UTC
 ServerStartTime: 05/10/2012, 09:56:03.345351 UTC
 SecurityBufferOffset: 128 (0x80)
 SecurityBufferLength: 120 (0x78)
 Reserved2: 0 (0x0)

15. The client sends an SMB2 SESSION_SETUP Request with SMB2_SESSION_FLAG_BINDING set in
the Flags field and previous channel/session SessionId (0x4040104000001) set in the Header,

PreviousSessionId field set to 0, and sign the message using Session.SigningKey derived from
AES-128-CMAC. Because the request and response are signed, the client does not need to
revalidate the negotiation.

 SMB2: C SESSION SETUP (0x1)
 SMBIdByte: 254 (0xFE)
 SMBIdentifier: SMB
 SMB2Header: C SESSION SETUP (0x1),TID=0x0000, MID=0x0001, PID=0xFEFF, SID=0x4000001
 StructureSize: 64 (0x40)
 CreditCharge: 0 (0x0)
 ChannelSequence: (0x0) - (SMB 3.00 and later only)
 Reserved2: 0 (0x0)
 Command: SESSION SETUP (0x1)
 Credits: 10 (0xA)
 Flags: 0x8
 NextCommand: 0 (0x0)
 MessageId: 1 (0x1)
 Reserved: 65279 (0xFEFF)
 TreeId: 0 (0x0)
 SessionId: 1130302315429889 (0x4040104000001)
 Signature: Binary Large Object (16 Bytes)
 CSessionSetup:
 StructureSize: 25 (0x19)
 Flags: 1 (0x1)
 SessionBind: (.......1) bind this connection to an existing session (specified in
PreviousSessionId)

 Reserved: (0000000.) Reserved
 SecurityMode: 1 (0x1)
 Capabilities: 0x1
 Channel: 0 (0x0)
 SecurityBufferOffset: 88 (0x58)
 SecurityBufferLength: 74 (0x4A)
 PreviousSessionId: 0 (0x0)

16. The server processes the token received with GSS and gets a return code. The GSS return code
indicates that an additional exchange is required to complete the authentication. The server
responds to the client with an SMB2 SESSION_SETUP Response with Status equal to
STATUS_MORE_PROCESSING_REQUIRED and the response containing the output token from GSS.

409 / 464

[MS-SMB2-Diff] - v20190923
Server Message Block (SMB) Protocol Versions 2 and 3
Copyright © 2019 Microsoft Corporation
Release: September 23, 2019

 SMB2: R - NT Status: System - Error, Code = (22) STATUS_MORE_PROCESSING_REQUIRED SESSION
SETUP (0x1), SessionFlags=0x0

 RSessionSetup:
 StructureSize: 9 (0x9)
 SessionFlags: 0x0
 GU: (...............0) NOT a guest user
 NU: (..............0.) NOT a NULL user
 Reserved_bits2_15: (00000000000000..) Reserved
 SecurityBufferOffset: 72 (0x48)
 SecurityBufferLength: 349 (0x15D)

17. The client processes the received token with GSS and sends an SMB2 SESSION_SETUP Request
with the output token received from GSS and the SessionId received on the response.

 SMB2: C SESSION SETUP (0x1)
 CSessionSetup:
 StructureSize: 25 (0x19)
 Flags: 1 (0x1)
 SessionBind: (.......1) bind this connection to an existing session (specified in
PreviousSessionId)

 Reserved: (0000000.) Reserved
 SecurityMode: 1 (0x1)
 Capabilities: 0x1
 Channel: 0 (0x0)
 SecurityBufferOffset: 88 (0x58)
 SecurityBufferLength: 625 (0x271)
 PreviousSessionId: 0 (0x0)

18. The server processes the token received with GSS and gets a successful return code. The server
responds to the client with an SMB2 SESSION_SETUP Response with Status equal to

STATUS_SUCCESS and the response containing the output token from GSS.

 SMB2: R SESSION SETUP (0x1), SessionFlags=0x0
 SMBIdByte: 254 (0xFE)
 RSessionSetup:
 StructureSize: 9 (0x9)
 SessionFlags: 0x0
 GU: (...............0) NOT a guest user
 NU: (..............0.) NOT a NULL user
 Reserved_bits2_15: (00000000000000..) Reserved
 SecurityBufferOffset: 72 (0x48)
 SecurityBufferLength: 29 (0x1D)
 securityBlob:

19. An alternate channel has been established for the session.

4.9 Replay Create Request on an Alternate Channel

The following diagram demonstrates the steps taken to replay an SMB2 CREATE Request on an
alternate channel.

410 / 464

[MS-SMB2-Diff] - v20190923
Server Message Block (SMB) Protocol Versions 2 and 3
Copyright © 2019 Microsoft Corporation
Release: September 23, 2019

Figure 14: Replay Create Request on an alternate channel

1. The client establishes an alternate channel for a session as described in section 4.8

2. The client sends an SMB2 CREATE Request with SMB2_CREATE_DURABLE_HANDLE_REQUEST_V2
and SMB2_CREATE_REQUEST_LEASE_V2 create contexts.

 SMB2: C CREATE (0x5), Da(RW), Sh(RWD), DH2Q+RqLs(RWH-PK), File=Replay.txt@#14
 SMBIdByte: 254 (0xFE)
 SMBIdentifier: SMB
 SMB2Header: C CREATE (0x5),TID=0x0001, MID=0x0006, PID=0x000D, SID=0x4000059
 StructureSize: 64 (0x40)
 CreditCharge: 0 (0x0)
 ChannelSequence: (0x0) - (SMB 3.0 and later only)
 Reserved2: 0 (0x0)
 Command: CREATE (0x5)
 Credits: 10 (0xA)
 Flags: 0x0
 SMB2_FLAGS_REPLAY_OPERATION: (..0.............................) Command is a Replay
Operation

 NextCommand: 0 (0x0)
 MessageId: 6 (0x6)
 Reserved: 13 (0xD)
 TreeId: 1 (0x1)
 SessionId: 1130302315429977 (0x4040104000059)
 Signature: Binary Large Object (16 Bytes)
 CCreate: 0x1
 StructureSize: 57 (0x39)
 SecurityFlags: 0 (0x0)
 RequestedOplockLevel: SMB2_OPLOCK_LEVEL_LEASE - A lease is requested.
 ImpersonationLevel: Impersonation - The application-requested impersonation level is
Impersonation.

 SmbCreateFlags: 0 (0x0)
 Reserved: 0 (0x0)
 DesiredAccess: 0x12019F
 FileAttributes:

411 / 464

[MS-SMB2-Diff] - v20190923
Server Message Block (SMB) Protocol Versions 2 and 3
Copyright © 2019 Microsoft Corporation
Release: September 23, 2019

 FSCCFileAttribute: 32 (0x20)
 ShareAccess: Shared for Read/Write/Delete (0x00000007)
 CreateDisposition: (0x00000003) Open the file if it already exists; otherwise, create the
file.

 CreateOptions: 0x40
 NameOffset: 120 (0x78)
 NameLength: 20 (0x14)
 CreateContextsOffset: 144 (0x90)
 CreateContextsLength: 132 (0x84)
 Name: Replay.txt
 ContextPadding: Binary Large Object (4 Bytes)
 Context: DH2Q,Request Durable Handle Open v2
 Context:
 ECPRequestDurableHandleV2: Request Durable Handle v2
 Timeout: 0 (0x0)
 Flags: 0 (0x0)
 Reserved: (...............................0) Reserved
 Persistent: (..............................0.)
 Reserved2: (000000000000000000000000000000..) Reserved
 Reserved: 0 (0x0)
 CreateGuid: {33AA3970-EF1A-60A4-4BF1-11F5F9FBBFDB}
 Context: RqLs,Lease Request/Response
 Context:
 CreateRequestLeaseV2: The requested lease state:0x7
 LeaseKey: {5A0E33E0-478A-9FA7-4286-B52390B5857B}
 LeaseState: 7 (0x7)
 READ: (...............................1) A read caching lease is requested
 HANDLE: (..............................1.) A handle caching lease is requested
 WRITE: (.............................1..) A write caching lease is requested
 Reserved: (00000000000000000000000000000...) Reserved
 LeaseFlags: 4 (0x4)
 Reserved: (..............................00) Reserved
 ParentKeyValid: (.............................1..) Parent lease key field is valid
 Reserved2: (00000000000000000000000000000...) Reserved
 LeaseDuration: 0 (0x0)
 ParentLeaseKey: {5B4F4EAD-B0E6-B997-4222-50FADEC1FD86}
 Epoch: 0 (0x0)

3. The connection on which the client sent the SMB2 CREATE request is disconnected; the client

cannot receive the SMB2 CREATE response. Since there is another connection on which the same
session was bound, the client after a timeout, sends a replay SMB2 CREATE request on that
connection. The client sends the SMB2 CREATE request on the alternate channel with the same
parameters and create contexts as the original request except that
SMB2_FLAGS_REPLAY_OPERATION bit is set in the Flags field of the SMB2 Header.

 SMB2: C CREATE (0x5), Da(RW), Sh(RWD), DH2Q+RqLs(RWH-PK), File=Replay.txt@#23
 SMBIdByte: 254 (0xFE)
 SMBIdentifier: SMB
 SMB2Header: C CREATE (0x5),TID=0x0001, MID=0x0006, PID=0x000D, SID=0x4000059
 StructureSize: 64 (0x40)
 CreditCharge: 0 (0x0)
 ChannelSequence: (0x0) - (SMB 3.0 and later only)
 Reserved2: 0 (0x0)
 Command: CREATE (0x5)
 Credits: 10 (0xA)
 Flags: 0x0
 SMB2_FLAGS_REPLAY_OPERATION: (..1.............................) Command is a Replay
Operation

 NextCommand: 0 (0x0)
 MessageId: 6 (0x6)
 Reserved: 13 (0xD)
 TreeId: 1 (0x1)
 SessionId: 1130302315429977 (0x4040104000059)
 Signature: Binary Large Object (16 Bytes)
 CCreate: 0x1
 StructureSize: 57 (0x39)

412 / 464

[MS-SMB2-Diff] - v20190923
Server Message Block (SMB) Protocol Versions 2 and 3
Copyright © 2019 Microsoft Corporation
Release: September 23, 2019

 SecurityFlags: 0 (0x0)
 RequestedOplockLevel: SMB2_OPLOCK_LEVEL_LEASE - A lease is requested.
 ImpersonationLevel: Impersonation - The application-requested impersonation level is
Impersonation.

 SmbCreateFlags: 0 (0x0)
 Reserved: 0 (0x0)
 DesiredAccess: 0x12019F
 FileAttributes:
 FSCCFileAttribute: 32 (0x20)
 ShareAccess: Shared for Read/Write/Delete (0x00000007)
 CreateDisposition: (0x00000003) Open the file if it already exists; otherwise, create the
file.

 CreateOptions: 0x40
 NameOffset: 120 (0x78)
 NameLength: 20 (0x14)
 CreateContextsOffset: 144 (0x90)
 CreateContextsLength: 132 (0x84)
 Name: Replay.txt
 ContextPadding: Binary Large Object (4 Bytes)
 Context: DH2Q,Request Durable Handle Open v2
 Context:
 ECPRequestDurableHandleV2: Request Durable Handle v2
 Timeout: 0 (0x0)
 Flags: 0 (0x0)
 Reserved: (...............................0) Reserved
 Persistent: (..............................0.)
 Reserved2: (000000000000000000000000000000..) Reserved
 Reserved: 0 (0x0)
 CreateGuid: {33AA3970-EF1A-60A4-4BF1-11F5F9FBBFDB}
 Context: RqLs,Lease Request/Response
 Context:
 CreateRequestLeaseV2: The requested lease state:0x7
 LeaseKey: {5A0E33E0-478A-9FA7-4286-B52390B5857B}
 LeaseState: 7 (0x7)
 READ: (...............................1) A read caching lease is requested
 HANDLE: (..............................1.) A handle caching lease is requested
 WRITE: (.............................1..) A write caching lease is requested
 Reserved: (00000000000000000000000000000...) Reserved
 LeaseFlags: 4 (0x4)
 Reserved: (..............................00) Reserved
 ParentKeyValid: (.............................1..) Parent lease key field is valid
 Reserved2: (00000000000000000000000000000...) Reserved
 LeaseDuration: 0 (0x0)
 ParentLeaseKey: {5B4F4EAD-B0E6-B997-4222-50FADEC1FD86}
 Epoch: 0 (0x0)

4. The server responds with an SMB2 CREATE response with
SMB2_CREATE_DURABLE_HANDLE_REQUEST_V2 and SMB2_CREATE_REQUEST_LEASE_V2 create
contexts.

 SMB2: R CREATE (0x5), RqLs(RWH-PK)+DH2Q, FID=0x10100000001(Replay.txt@#23)
 SMBIdByte: 254 (0xFE)
 SMBIdentifier: SMB
 SMB2Header: R CREATE (0x5),TID=0x0001, MID=0x0003, PID=0x000D, SID=0x4000059
 StructureSize: 64 (0x40)
 CreditCharge: 0 (0x0)
 Status: 0x0, Code = (0) STATUS_SUCCESS, Facility = FACILITY_SYSTEM, Severity =
STATUS_SEVERITY_SUCCESS

 Command: CREATE (0x5)
 Credits: 10 (0xA)
 Flags: 0x20000001
 SMB2_FLAGS_REPLAY_OPERATION: (..1.............................) Command is a Replay
Operation

 NextCommand: 0 (0x0)
 MessageId: 3 (0x3)
 Reserved: 13 (0xD)

413 / 464

[MS-SMB2-Diff] - v20190923
Server Message Block (SMB) Protocol Versions 2 and 3
Copyright © 2019 Microsoft Corporation
Release: September 23, 2019

 TreeId: 1 (0x1)
 SessionId: 1130302315429977 (0x4040104000059)
 Signature: Binary Large Object (16 Bytes)
 RCreate: 0x1
 StructureSize: 89 (0x59)
 OplockLevel: SMB2_OPLOCK_LEVEL_LEASE - A lease is requested.
 Flags: 0 (0x0)
 CreateAction: Opened (0x00000001)
 CreationTime: 05/11/2012, 09:23:05.943750 UTC
 LastAccessTime: 05/11/2012, 09:23:05.943750 UTC
 LastWriteTime: 05/11/2012, 09:23:05.943750 UTC
 ChangeTime: 05/11/2012, 09:23:05.943750 UTC
 AllocationSize: 0 (0x0)
 EndofFile: 0 (0x0)
 FileAttributes:
 FSCCFileAttribute: 32 (0x20)
 Reserved2: 0 (0x0)
 FileId: Persistent: 0x10000010000001D, Volatile: 0x10100000001
 Persistent: 72057598332895261 (0x10000010000001D)
 volatile: 1103806595073 (0x10100000001)
 CreateContextsOffset: 152 (0x98)
 CreateContextsLength: 112 (0x70)
 Context: RqLs,Lease Request/Response
 Context:
 CreateResponseLeaseV2: The response lease state:0x087
 LeaseKey: {5A0E33E0-478A-9FA7-4286-B52390B5857B}
 LeaseState: 7 (0x7)
 READ: (...............................1) A read caching lease is granted
 HANDLE: (..............................1.) A handle caching lease is granted
 WRITE: (.............................1..) A write caching lease is granted
 Reserved: (00000000000000000000000000000...) Reserved
 LeaseFlags: 4 (0x4)
 Reserved1: (...............................0) Reserved
 BREAK: (..............................0.)
 ParentKeyValid: (.............................1..) Parent lease key field is valid
 Reserved: (00000000000000000000000000000...) Reserved
 LeaseDuration: 0 (0x0)
 ParentLeaseKey: {5B4F4EAD-B0E6-B997-4222-50FADEC1FD86}
 Epoch: 1 (0x1)
 ContextPadding: Binary Large Object (4 Bytes)
 Context: DH2Q,Request Durable Handle Open v2
 Context:
 ECPResponseDurableHandleV2: Response Durable Handle V2
 Timeout: 60000 (0xEA60)
 Flags: 0 (0x0)
 Reserved: (...............................0) Reserved
 Persistent: (..............................0.)
 Reserved2: (000000000000000000000000000000..) Reserved

414 / 464

[MS-SMB2-Diff] - v20190923
Server Message Block (SMB) Protocol Versions 2 and 3
Copyright © 2019 Microsoft Corporation
Release: September 23, 2019

5 Security

The following sections specify security considerations for implementers of the SMB 2 Protocol.

5.1 Security Considerations for Implementers

The protocol does not sign oplock break requests from the server to the client if message signing is
enabled. This could allow attackers to affect performance but it does not allow them to deny access or
alter data.

The protocol does not require cancel requests from the client to the server to be signed if message
signing is enabled. This could allow attackers to cancel previously sent messages from the client to the
server on the same SMB2 transport connection.

The previous versions support does potentially allow access to versions of a file that have been
deleted or modified, and so could allow access to information that was not available without these
extensions. However, this access is still subject to the same access checks it would have normally

been subject to.

The SMB 2.0.2 and SMB 2.1 dialects do not support encryption. The SMB 3.x dialect family optionally
allows for encryption. For data that requires stricter security, encryption by the SMB protocol version 3
is preferred. Alternatively, encryption of the data by the underlying transport is provided.

All SMB2 dialects use a session key returned by the authentication mechanism to generate keys for
signing, encryption, and decryption. If the session keys are nonrandom or can be forced to be
repeated in a predictable manner, attackers could deduce the signing and decryption keys and thereby
gain access to messages and data.

5.2 Index of Security Parameters

 Security parameter Section

SHA-256 hashing 3.1.4.1 and 3.1.5.1

CMAC-128 hashing 3.1.4.1 and 3.1.5.1

Cryptographic key generation 3.1.4.2

CCM-128 encryption 3.1.4.3, 3.2.5.1.1.1, and 3.3.5.2.1.1

GCM-128 encryption 3.1.4.3, 3.2.5.1.1.1, and 3.3.5.2.1.1

GSSAPI authentication 3.2.4.2.3

GSSAPI authentication 3.3.5.5.3

415 / 464

[MS-SMB2-Diff] - v20190923
Server Message Block (SMB) Protocol Versions 2 and 3
Copyright © 2019 Microsoft Corporation
Release: September 23, 2019

6 (Updated Section) Appendix A: Product Behavior

The information in this specification is applicable to the following Microsoft products or supplemental
software. References to product versions include updates to those products.

▪ Windows Vista operating system

▪ Windows Server 2008 operating system

▪ Windows 7 operating system

▪ Windows Server 2008 R2 operating system

▪ Windows 8 operating system

▪ Windows Server 2012 operating system

▪ Windows 8.1 operating system

▪ Windows Server 2012 R2 operating system

▪ Windows 10 operating system

▪ Windows Server 2016 operating system

▪ Windows Server operating system

▪ Windows Server 2019 operating system

Exceptions, if any, are noted in this section. If an update version, service pack or Knowledge Base
(KB) number appears with a product name, the behavior changed in that update. The new behavior
also applies to subsequent updates unless otherwise specified. If a product edition appears with the
product version, behavior is different in that product edition.

Unless otherwise specified, any statement of optional behavior in this specification that is prescribed

using the terms "SHOULD" or "SHOULD NOT" implies product behavior in accordance with the
SHOULD or SHOULD NOT prescription. Unless otherwise specified, the term "MAY" implies that the
product does not follow the prescription.

<1> Section 1.6: The following table illustrates the support of SMB 2 protocol on various Windows
operating system versions.

Operating System SMB 2 dialects supported

Windows 10, Windows Server 2016, Windows Server operating
system, Windows Server 2019

SMB 3.1.1, SMB 3.0.2, SMB 3.0, SMB 2.1,
SMB 2.0.2

Windows 8.1, Windows Server 2012 R2 SMB 3.0.2, SMB 3.0, SMB 2.1, SMB 2.0.2

Windows 8, Windows Server 2012 SMB 3.0, SMB 2.1, SMB 2.0.2

Windows 7, Windows Server 2008 R2 SMB 2.1, SMB 2.0.2

Windows Vista operating system with Service Pack 1 (SP1),
Windows Server 2008

SMB 2.0.2

Previous versions of Windows None. They support the SMB Protocol, as
specified in [MS-SMB]

Windows Vista RTM implemented dialect 2.000, which was not interoperable and was obsoleted by
Windows Vista SP1.

416 / 464

[MS-SMB2-Diff] - v20190923
Server Message Block (SMB) Protocol Versions 2 and 3
Copyright © 2019 Microsoft Corporation
Release: September 23, 2019

<2> Section 2.2.1.2: Windows clients set this field to 0xFEFF.

<3> Section 2.2.1.2: Windows servers do not use this field in the request processing and return the

value received in the request.

<4> Section 2.2.2: Windows–based SMB2 servers leave this one byte of ErrorData uninitialized and

it can contain any value.

<5> Section 2.2.2.2.1: Windows-based servers will never follow a symlink. It is the client's
responsibility to evaluate the symlink and access the actual file using the symlink. Windows-based
servers only return STATUS_STOPPED_ON_SYMLINK when the open fails due to presence of a
symlink.

<6> Section 2.2.2.2.1: Windows-based servers will return an absolute target to a local resource in the
format of "\??\C:\..." where C: is the drive mount point on the local system and ... is replaced by the

remainder of the path to the target.

<7> Section 2.2.3: Windows-based SMB2 servers fail the request and return
STATUS_INVALID_PARAMETER, if the DialectCount field is greater than 64.

<8> Section 2.2.3: Windows 8.1, Windows Server 2012 R2, Windows 10, Windows Server 2016,
Windows Server operating system, and Windows Server 2019 fail the request with
STATUS_NOT_SUPPORTED if the Reserved field is set to a nonzero value.

<9> Section 2.2.3: Windows Vista SP1 and Windows Server 2008 do not support this dialect revision.

<10> Section 2.2.3: Windows Vista SP1, Windows Server 2008, Windows 7, and Windows Server
2008 R2 do not support this dialect revision.

<11> Section 2.2.3: Windows Vista SP1, Windows Server 2008, Windows 7, Windows Server 2008
R2, Windows 8, and Windows Server 2012 do not support the SMB 3.0.2 dialect.

<12> Section 2.2.3: Windows Vista SP1, Windows Server 2008, Windows 7, Windows Server 2008
R2, Windows 8, Windows Server 2012, Windows 8.1, and Windows Server 2012 R2 do not support the

SMB 3.1.1 dialect.

<13> Section 2.2.3.1: Windows 10 v1809 operating system and prior, Windows Server v1809
operating system and prior, and Windows Server 2019 and prior do not send or process
SMB2_COMPRESSION_CAPABILITIES.

<14> Section 2.2.3.1: Windows 10 v1809 and prior, Windows Server v1809 and prior, and Windows
Server 2019 and prior do not send or process SMB2_NETNAME_NEGOTIATE_CONTEXT_ID.

<15> Section 2.2.4: Windows Vista SP1 and Windows Server 2008 do not support this dialect

revision.

<16> Section 2.2.4: Windows Vista SP1, Windows Server 2008, Windows 7 and Windows Server 2008
R2 do not support this dialect revision.

<17> Section 2.2.4: Windows Vista SP1, Windows Server 2008, Windows 7, Windows Server 2008
R2, Windows 8, and Windows Server 2012 do not support this dialect revision.

<18> Section 2.2.4: Windows Vista SP1, Windows Server 2008, Windows 7, Windows Server 2008

R2, Windows 8, Windows Server 2012, Windows 8.1, and Windows Server 2012 R2 do not support the
SMB 3.1.1 dialect.

<19> Section 2.2.4: The "SMB 2.???" dialect string is not supported by SMB2 clients and servers in
Windows Vista SP1 and Windows Server 2008.

<20> Section 2.2.4: Windows-based SMB2 servers can set this field to any value.

417 / 464

[MS-SMB2-Diff] - v20190923
Server Message Block (SMB) Protocol Versions 2 and 3
Copyright © 2019 Microsoft Corporation
Release: September 23, 2019

<21> Section 2.2.4: Windows–based SMB2 servers generate a new ServerGuid each time they are
started.

<22> Section 2.2.4: Windows clients do not enforce the MaxTransactSize value.

<23> Section 2.2.5: Windows-based clients always set the Capabilities field to

SMB2_GLOBAL_CAP_DFS(0x00000001) and the server will ignore them on receipt.

<24> Section 2.2.5: Windows clients set the Buffer with a token as produced by the NTLM
authentication protocol in the case, see [MS-NLMP] section 3.1.5.1.

<25> Section 2.2.6: Windows clients set the Buffer with a token as produced by the NTLM
authentication protocol in the case, see [MS-NLMP] section 3.1.5.1.

<26> Section 2.2.9: The Windows SMB 2 Protocol client translates any names of the form
\\server\pipe to \\server\IPC$ before sending a request on the network.

<27> Section 2.2.10: SMB2_SHAREFLAG_FORCE_LEVELII_OPLOCK is not supported on Windows

Vista SP1 and Windows Server 2008.

<28> Section 2.2.13: Windows-based clients never use exclusive oplocks. Because there are no
situations where the client would require an exclusive oplock where it would not also require an
SMB2_OPLOCK_LEVEL_BATCH, it always requests an SMB2_OPLOCK_LEVEL_BATCH.

<29> Section 2.2.13: When opening a printer file or a named pipe, Windows-based servers ignore
these ShareAccess values.

<30> Section 2.2.13: When opening a printer object, Windows-based servers ignore this value.

<31> Section 2.2.13: When opening a printer object, Windows-based servers ignore this value.

<32> Section 2.2.13: When opening a printer object, Windows-based servers ignore this value.

<33> Section 2.2.13: Windows-based servers reserve all bits that are not specified in the table. If any
of the reserved bits are set, STATUS_NOT_SUPPORTED is returned.

<34> Section 2.2.13: Windows SMB2 clients do not initialize this bit. The bit contains the value
specified by the caller when requesting the open.

<35> Section 2.2.13: Windows SMB2 clients do not initialize this bit. The bit contains the value
specified by the caller when requesting the open.

<36> Section 2.2.13: Windows SMB2 clients do not initialize this bit. The bit contains the value
specified by the caller when requesting the open.

<37> Section 2.2.13: Windows SMB2 clients do not initialize this bit. The bit contains the value
specified by the caller when requesting the open.

<38> Section 2.2.13: Windows SMB2 clients do not initialize this bit. The bit contains the value

specified by the caller when requesting the open.

<39> Section 2.2.13: Windows Vista SP1, Windows Server 2008, Windows 7, Windows 8, and
Windows 8.1-based clients will set this bit when it is requested by the application.

<40> Section 2.2.13.1.1: Windows sets this flag to the value passed in by the higher-level
application.

<41> Section 2.2.13.1.1: Windows 7, Windows Server 2008 R2, Windows 8, Windows Server 2012,
Windows 8.1, Windows Server 2012 R2, Windows 10, Windows Server 2016, Windows Server

operating system, and Windows Server 2019 do not ignore the SYNCHRONIZE bit, and pass it to the
underlying object store. If the caller requests SYNCHRONIZE in the DesiredAccess parameter, but the

418 / 464

[MS-SMB2-Diff] - v20190923
Server Message Block (SMB) Protocol Versions 2 and 3
Copyright © 2019 Microsoft Corporation
Release: September 23, 2019

SYNCHRONIZE access is not granted to the caller for the object being created or opened, the
underlying object store fails the request and returns STATUS_ACCESS_DENIED. When SYNCHRONIZE

access is granted, the SYNCHRONIZE bit is returned in MaximalAccess field of
SMB2_CREATE_QUERY_MAXIMAL_ACCESS_RESPONSE with no other behavior.

<42> Section 2.2.13.1.1: Windows fails the create request with STATUS_ACCESS_DENIED if the caller
does not have the SeSecurityPrivilege, as specified in [MS-LSAD] section 3.1.1.2.1.

<43> Section 2.2.13.1.2: Windows sets this flag to the value passed in by the higher-level
application.

<44> Section 2.2.13.1.2: Windows 7, Windows Server 2008 R2, Windows 8, Windows Server 2012,
Windows 8.1, Windows Server 2012 R2, Windows 10, Windows Server 2016, Windows Server
operating system, and Windows Server 2019 do not ignore the SYNCHRONIZE bit, and pass it to the

underlying object store. If the caller requests SYNCHRONIZE in the DesiredAccess parameter, but
the SYNCHRONIZE access is not granted to the caller for the object being created or opened, the
underlying object store fails the request and returns STATUS_ACCESS_DENIED. When SYNCHRONIZE
access is granted, the SYNCHRONIZE bit is returned in MaximalAccess field of

SMB2_CREATE_QUERY_MAXIMAL_ACCESS_RESPONSE (section 2.2.14.2.5) with no other behavior.

<45> Section 2.2.13.1.2: Windows fails the create request with STATUS_ACCESS_DENIED if the caller

does not have the SeSecurityPrivilege, as specified in [MS-LSAD] section 3.1.1.2.1.

<46> Section 2.2.13.2: If DataLength is 0, Windows-based clients set this field to any value.

<47> Section 2.2.13.2.8: Windows 7, Windows Server 2008 R2, Windows 8, Windows Server 2012,
Windows 8.1, Windows Server 2012 R2, Windows 10, Windows Server 2016, Windows Server
operating system, and Windows Server 2019 acting as SMB servers support the following
combinations of values: 0, READ, READ | WRITE, READ | HANDLE, READ | WRITE | HANDLE.

<48> Section 2.2.13.2.10: Windows Server 2012, Windows Server 2012 R2, Windows Server 2016,

Windows Server operating system, and Windows Server 2019 support the following combinations of
values: 0, READ, READ | WRITE, READ | HANDLE, READ | WRITE | HANDLE.

<49> Section 2.2.14: Windows-based clients never use exclusive oplocks. Because there are no
situations where it would require an exclusive oplock where it would not also require an
SMB2_OPLOCK_LEVEL_BATCH, it always requests an SMB2_OPLOCK_LEVEL_BATCH.

<50> Section 2.2.14: Windows-based SMB2 servers always return FILE_OPENED for pipes with
successful opens.

<51> Section 2.2.14: Windows-based SMB2 servers can set this field to any value.

<52> Section 2.2.14.2.11: Windows 8, Windows Server 2012, Windows 8.1, Windows Server 2012
R2, Windows 10, Windows Server 2016, Windows Server operating system, and Windows Server 2019
set this field to an arbitrary value.

<53> Section 2.2.19: Windows 10 v1809 and prior and Windows Server v1809 and prior do not send
or process SMB2_READFLAG_REQUEST_COMPRESSED flag.

<54> Section 2.2.23.1: Windows-based clients never use exclusive oplocks. Because there are no

situations where it would require an exclusive oplock where it would not also require an
SMB2_OPLOCK_LEVEL_BATCH, it always requests an SMB2_OPLOCK_LEVEL_BATCH.

<55> Section 2.2.24.1: Windows-based clients never use exclusive oplocks. There are no situations
where an exclusive oplock would be used instead of using a SMB2_OPLOCK_LEVEL_BATCH.

<56> Section 2.2.24.2: Windows clients always set the LeaseState in the Lease Break
Acknowledgment to be equal to the LeaseState in the Lease Break Notification from the server.

<57> Section 2.2.31: Windows clients set the OutputOffset field equal to the InputOffset field.

419 / 464

[MS-SMB2-Diff] - v20190923
Server Message Block (SMB) Protocol Versions 2 and 3
Copyright © 2019 Microsoft Corporation
Release: September 23, 2019

<58> Section 2.2.31.1.1: Windows clients set this field to an arbitrary value.

<59> Section 2.2.32: Windows–based SMB2 servers set InputCount to the same value as the value

received in the IOCTL request for the following FSCTLs.

▪ FSCTL_FIND_FILES_BY_SID

▪ FSCTL_GET_RETRIEVAL_POINTERS

▪ FSCTL_QUERY_ALLOCATED_RANGES

▪ FSCTL_READ_FILE_USN_DATA

▪ FSCTL_RECALL_FILE

▪ FSCTL_WRITE_USN_CLOSE_RECORD

Windows clients ignore the InputCount field.

<60> Section 2.2.32: Windows–based SMB2 servers set OutputOffset to InputOffset +

InputCount, rounded up to a multiple of 8.

<61> Section 2.2.32.2: Windows-based SMB2 server will place 2 extra bytes set to zero in the
SRV_SNAPSHOT_ARRAY response, if NumberOfSnapShotsReturned is zero.

<62> Section 2.2.32.3: Windows-based servers always send 4 bytes of zero for the Context field.

<63> Section 2.2.32.4.1: Windows–based SMB2 servers and clients do not check SourceFileName.
It is ignored.

<64> Section 2.2.33: Windows-based servers do not support resuming an enumeration at a specified
FileIndex. The server will ignore this flag.

<65> Section 2.2.33: SMB2 wildcard characters are based on Windows wildcard characters, as
described in [MS-FSA] section 2.1.4.4, Algorithm for Determining if a FileName Is in an Expression.

For more information on wildcard behavior in Windows, see [FSBO] section 7.

<66> Section 2.2.37: Windows SMB2 servers ignore the FileInfoClass field for quota queries.
Windows SMB2 clients set the FileInfoClass field to 0x20 for quota queries.

<67> Section 2.2.37: Windows clients set this value to the offset from the start of the SMB2 header
to the beginning of the Buffer field.

<68> Section 2.2.37: Windows clients send a 1-byte buffer of 0 when InputBufferLength is set to 0.

<69> Section 2.2.37.1: Windows-based clients never send a request using the SidBuffer format 2.

<70> Section 2.2.39: Windows-based servers will fail the request with STATUS_INVALID_PARAMETER
if BufferOffset is less than 0x60 or greater than 0xA0.

<71> Section 2.2.41: Windows 8, Windows Server 2012, Windows 8.1, Windows Server 2012 R2,

Windows 10, Windows Server 2016, Windows Server operating system, and Windows Server 2019 set

this field to an arbitrary value.

<72> Section 2.2.42: Windows 10 v1809 and prior and Windows Server v1809 and prior do not send
or process SMB2 COMPRESSION_TRANSFORM_HEADER.

<73> Section 3.1.3: By default, Windows-based servers set the RequireMessageSigning value to TRUE
for domain controllers and FALSE for all other machines.

<74> Section 3.1.3: Windows 8 and later and Windows Server 2012 and later set
IsEncryptionSupported to TRUE.

420 / 464

[MS-SMB2-Diff] - v20190923
Server Message Block (SMB) Protocol Versions 2 and 3
Copyright © 2019 Microsoft Corporation
Release: September 23, 2019

<75> Section 3.1.3: Windows 10 v1903 operating system and later and Windows Server v1903
operating system and later set IsCompressionSupported to TRUE.

<76> Section 3.1.4.3: Windows-based clients and servers do not encrypt the message if the
connection is NetBIOS over TCP.

<77> Section 3.1.4.4: Windows-based clients and servers do not compress the message if the
connection is over RDMA.

<78> Section 3.1.4.4: Windows-based clients choose to selectively compress only segments of SMB2
requests with large payloads, whose size is greater than 4096 bytes.

<79> Section 3.2.1.2: Windows clients do not enforce the MaxTransactSize value.

<80> Section 3.2.2.1: The Windows-based client implements this timer with a default value of 60
seconds. The client does not enforce this timer for the following commands:

▪ Named Pipe Read

▪ Named Pipe Write

▪ Directory Change Notifications

▪ Blocking byte range lock requests

▪ FSCTLs: FSCTL_PIPE_PEEK, FSCTL_PIPE_TRANSCEIVE, FSCTL_PIPE_WAIT

<81> Section 3.2.2.2: The Windows-based clients scan existing connections every 10 seconds and

disconnect idle connects that have no open files and that have had no activity for 10 or more seconds.

<82> Section 3.2.2.3: Windows clients set this timer to 600 seconds, except Windows Vista, Windows
Server 2008, Windows 7, and Windows Server 2008 R2 clients, which do not implement this timer.

<83> Section 3.2.3: Windows 8, Windows Server 2012, Windows 8.1, Windows Server 2012 R2,
Windows 10, Windows Server 2016, Windows Server operating system, and Windows Server 2019

clients set this based on a stored value in the registry.

<84> Section 3.2.3: Windows 10 v1903 and later, and Windows Server v1903 and later set this to

FALSE.

<85> Section 3.2.4.1.1: A client can selectively sign requests, and the server will sign the
corresponding responses. Windows-based clients do not selectively sign requests.

<86> Section 3.2.4.1.2: Windows-based clients require a minimum of 4 credits.

<87> Section 3.2.4.1.2: The Windows-based client will request credits up to a configurable maximum
of 128 by default. A Windows-based client sends a CreditRequest value of 0 for an SMB2 NEGOTIATE
Request and expects the server to grant at least 1 credit. In subsequent requests, the client will

request credits sufficient to maintain its total outstanding limit at the configured maximum.

<88> Section 3.2.4.1.3: Windows 7, Windows Server 2008 R2, Windows 8, Windows Server 2012,

Windows 8.1, Windows Server 2012 R2, Windows 10, Windows Server 2016, Windows Server
operating system, and Windows Server 2019 SMB2 clients will block any newly initiated multi-credit
requests that exceed the shortage, but will send out other requests that can be satisfied using the
available credits.

<89> Section 3.2.4.1.3: Windows-based clients set the MessageId field to 0, when the AsyncId
field is set to an asynchronous identifier of the request.

421 / 464

[MS-SMB2-Diff] - v20190923
Server Message Block (SMB) Protocol Versions 2 and 3
Copyright © 2019 Microsoft Corporation
Release: September 23, 2019

<90> Section 3.2.4.1.4: Windows-based clients do not send compounded CREATE + READ/WRITE
requests when the payload size of the WRITE request or the anticipated response of the READ request

is greater than 65536.

<91> Section 3.2.4.1.4: Windows SMB2 Server allows a mix of related and unrelated compound

requests in the same transport send. Upon encountering a request with
SMB2_FLAGS_RELATED_OPERATIONS not set Windows SMB2 Server treats it as the start of a chain.

<92> Section 3.2.4.1.4: Windows-based clients will align their compounded requests and responses
on 8-byte boundaries. They do not disconnect other machines that disobey this rule.

<93> Section 3.2.4.1.4: The Windows-based client does not send unrelated compounded requests.

<94> Section 3.2.4.1.4: Windows-based clients will compound certain related requests to improve
performance, by combining a Create with another operation, such as an attribute query.

<95> Section 3.2.4.1.5: Windows 7 and Windows Server 2008 R2 SMB2 clients set CreditCharge to
1 for IOCTL requests.

<96> Section 3.2.4.1.5: Windows 7, Windows 8, Windows Server 2012, Windows 8.1, Windows
Server 2012 R2, Windows 10, Windows Server 2016, Windows Server operating system, and Windows
Server 2019-based SMB2 clients set the CreditCharge field to 1 if Connection.SupportsMultiCredit
is FALSE.

<97> Section 3.2.4.1.7: Windows-based clients choose the Channel with the least value of
Channel.Connection.OutstandingRequests.

<98> Section 3.2.4.1.9: Windows 10 v1903 and later, and Windows Server v1903 and later do not
compress SMB2 NEGOTIATE request and SMB2 OPLOCK_BREAK Acknowledgment.

<99> Section 3.2.4.2: Windows-based clients always set up a new transport connection when
establishing a new session to a server.

<100> Section 3.2.4.2: Windows will reuse an existing session only if the access is by the same

logged-on user and the Connection.ServerName matches the application-supplied ServerName.

<101> Section 3.2.4.2: Windows will reuse the connection to establish a new session, if a connection
is available and Connection.ServerName matches the application-supplied ServerName

<102> Section 3.2.4.2.1: Windows clients initiate new transport connections to the server with Direct
TCP and NetBIOS over TCP. Windows Server 2012, Windows Server 2012 R2 operating system,
Windows Server 2016, Windows 10 v1511 Enterprise operating system, Windows Server operating
system, and Windows Server 2019 do not initiate a new transport connection with RDMA, but do after

a multichannel exchange if a suitable interface is available.

<103> Section 3.2.4.2.1: Windows Vista SP1 and Windows Server 2008 clients enumerate all
transports, send a Direct TCP connection request, and then, after 500 milliseconds, send connection
requests to all other eligible addresses and all other NetBIOS over TCP transports.

Windows 7 and Windows Server 2008 R2 clients enumerate all transports, send a Direct TCP
connection request, and then, after 1,000 milliseconds, send connection requests to all other eligible

addresses and all other NetBIOS over TCP transports.

Windows 8, Windows Server 2012, Windows 8.1, Windows Server 2012 R2, Windows 10, Windows
Server 2016, Windows Server operating system, and Windows Server 2019 clients look up a server
entry in ServerList where Server.ServerName matches the ServerName to which the connection
is established. If no entry is found, the clients enumerate all transports, send a Direct TCP connection
request, and then, after 1,000 milliseconds, send connection requests to all other eligible addresses
over Direct TCP and NetBIOS over TCP transports. If an entry is found, the clients send a Direct TCP

422 / 464

[MS-SMB2-Diff] - v20190923
Server Message Block (SMB) Protocol Versions 2 and 3
Copyright © 2019 Microsoft Corporation
Release: September 23, 2019

connection request, and then, after 1,000 milliseconds, enumerate all transports and send connection
requests to all Direct TCP addresses.

In each case, the first successful connection is used and all others are closed.

<104> Section 3.2.4.2.2: The Windows-based client will initiate a multi-protocol negotiation unless it

has previously negotiated with this server and the negotiated server's DialectRevision is equal to
0x0202, 0x0210, 0x0300, 0x0302, or 0x0311. In the latter case, it will initiate an SMB2-only
negotiate.

<105> Section 3.2.4.2.2.2: Windows 7 without [MSKB-3002286] sets ClientGuid to the global
ClientGuid value.

<106> Section 3.2.4.2.2.2: Windows 10, Windows Server 2016, Windows Server operating system,
and Windows Server 2019 use 32 bytes of Salt.

<107> Section 3.2.4.2.2.2: Windows 10, Windows Server 2016, Windows Server operating system,
and Windows Server 2019 initialize with AES-128-GCM(0x0002) followed by AES-128-CCM(0x0001).

<108> Section 3.2.4.2.2.2: Windows 10 v1903 and later, and Windows Server v1903 operating
system and later initialize with LZ77(0x0002) followed by LZ77+Huffman(0x0003) followed by
LZNT1(0x0001).

<109> Section 3.2.4.2.2.2: Windows 10 v1809 and prior and Windows Server v1809 and prior do not

support SMB2_NETNAME_NEGOTIATE_CONTEXT_ID.

<110> Section 3.2.4.2.3: Windows-based clients implement the first option that is specified.

<111> Section 3.2.4.2.3: All the GSS-API tokens used by Windows SMB2 clients are up to 4Kbytes in
size. SMB2 servers always instruct the GSS_API server to expect the GSS_C_FRAGMENT_TO_FIT.

<112> Section 3.2.4.2.3.1: Windows-based clients implement the first option that is specified.

<113> Section 3.2.4.2.3.1: All the GSS-API tokens used by Windows SMB2 clients are up to 4Kbytes
in size. SMB2 servers always instruct the GSS_API server to expect the GSS_C_FRAGMENT_TO_FIT.

<114> Section 3.2.4.3: Windows clients set File.LeaseKey to a newly generated GUID as specified in
[MS-DTYP] section 2.3.4.2.

<115> Section 3.2.4.3: Windows clients set File.LeaseKey to a newly generated GUID as specified in
[MS-DTYP] section 2.3.4.2.

<116> Section 3.2.4.3: Windows-based clients will request a batch oplock for file creates.

<117> Section 3.2.4.3.5: Windows 8, Windows Server 2012, Windows 8.1, Windows Server 2012 R2,
Windows 10, Windows Server 2016, Windows Server operating system, and Windows Server 2019

clients set this to zero.

<118> Section 3.2.4.3.8: A Windows client application requestsSMB2_LEASE_READ_CACHING and
SMB2_LEASE_HANDLE_CACHING when a file is opened for read access. In addition, a Windows client
application requests SMB2_LEASE_WRITE_CACHING if the file is being opened for write access.

<119> Section 3.2.4.6: Windows-based clients will try to send multiple read commands at the same
time, starting at the lowest offset and working to the highest.

<120> Section 3.2.4.6: Windows-based clients default to 4 KB.

<121> Section 3.2.4.7: Windows-based clients set the DataOffset field to 0x70, which indicates that
the payload is always placed at the beginning of the Buffer field.

423 / 464

[MS-SMB2-Diff] - v20190923
Server Message Block (SMB) Protocol Versions 2 and 3
Copyright © 2019 Microsoft Corporation
Release: September 23, 2019

<122> Section 3.2.4.7: Windows-based clients will try to send multiple write commands at the same
time, starting at the lowest offset and working to the highest.

<123> Section 3.2.4.7: Windows-based clients default to 4 KB.

<124> Section 3.2.4.8: Windows clients set this value to the offset from the start of the SMB2 header

to the beginning of the Buffer field.

<125> Section 3.2.4.9: In a SET_INFO request where FileInfoClass is set to FileRenameInformation,
and the size of the buffer is less than 24, Windows clients pad the buffer to 24 bytes. These padding
bytes are set to arbitrary values. Windows Vista SP1, Windows Server 2008, Windows 7, and Windows
Server 2008 R2 clients append up to 4 additional padding bytes set to arbitrary values.

<126> Section 3.2.4.10: Windows clients set this value to the offset from the start of the SMB2
header to the beginning of the Buffer field.

<127> Section 3.2.4.12: Windows clients set this value to the offset from the start of the SMB2
header to the beginning of the Buffer field.

<128> Section 3.2.4.14: Windows-based clients will set StartSidLength and StartSidOffset to any
value.

<129> Section 3.2.4.17: The Windows SMB2 server implementation closes and reopens the directory
handle in order to "reset" the enumeration state. So any outstanding operations on the directory

handle will be failed with a STATUS_FILE_CLOSED error.

<130> Section 3.2.4.20: Windows 7 and Windows Server 2008 R2 SMB2 clients set CreditCharge to
1 for IOCTL requests.

<131> Section 3.2.4.20.2.1: Windows clients set this field to InputOffset + InputCount, rounded
up to a multiple of 8 bytes.

<132> Section 3.2.4.20.2.2: Windows applications use FSCTL_SRV_COPYCHUNK if the target file
handle has FILE_READ_DATA access. Otherwise, they use the FSCTL_SRV_COPYCHUNK_WRITE.

<133> Section 3.2.4.20.2.2: Windows clients set the OutputOffset field to InputOffset +
InputCount, rounded up to a multiple of 8 bytes.

<134> Section 3.2.4.20.3: Windows clients set the OutputOffset field to InputOffset +
InputCount, rounded up to a multiple of 8 bytes.

<135> Section 3.2.4.20.4: Windows clients set the OutputOffset field to InputOffset +
InputCount, rounded up to a multiple of 8 bytes.

<136> Section 3.2.4.20.5: Windows clients set the OutputOffset field to InputOffset +

InputCount, rounded up to a multiple of 8 bytes.

<137> Section 3.2.4.20.6: Windows-based SMB2 servers pass File System Control requests through
to the local object store but do not support I/O Control requests and fail such requests with
STATUS_NOT_SUPPORTED.

<138> Section 3.2.4.20.6: Windows clients set the OutputOffset field to InputOffset +
InputCount, rounded up to a multiple of 8 bytes.

<139> Section 3.2.4.20.7: Windows clients set the OutputOffset field to the sum of the values of the
InputOffset and the InputCount fields, rounded up to a multiple of 8 bytes.

<140> Section 3.2.4.20.8: Windows clients set the OutputOffset field to InputOffset +
InputCount, rounded up to a multiple of 8 bytes.

<141> Section 3.2.4.20.10: Windows clients set this to 64 kilobytes.

424 / 464

[MS-SMB2-Diff] - v20190923
Server Message Block (SMB) Protocol Versions 2 and 3
Copyright © 2019 Microsoft Corporation
Release: September 23, 2019

<142> Section 3.2.4.20.11: Windows clients set the OutputOffset field to InputOffset.

<143> Section 3.2.4.24: Windows based clients set the MessageId field to 0, when the AsyncId

field is set to an asynchronous identifier of the request.

<144> Section 3.2.5.1: For the following error codes, Windows-based clients will retry the operation

up to three times and then retry the operation every 5 seconds until the count of milliseconds
specified by Open.ResilientTimeout is exceeded:

▪ STATUS_SERVER_UNAVAILABLE

▪ STATUS_FILE_NOT_AVAILABLE

▪ STATUS_SHARE_UNAVAILABLE

<145> Section 3.2.5.1.1.1: Windows-based clients discard the message if it is encrypted and the
connection is NetBIOS over TCP.

<146> Section 3.2.5.1.1.1: Windows 8.1 and Windows Server 2012 R2 continue to process the entire

compound response if SMB2_FLAGS_RELATED_OPERATIONS is set in the Flags field of the SMB2
header of the response.

<147> Section 3.2.5.1.1.2: Windows-based clients discard the message if it is compressed and the
connection is over RDMA.

<148> Section 3.2.5.1.3: Windows-based clients will not disconnect the connection but simply

disregard the incorrectly signed response.

<149> Section 3.2.5.1.5: Windows clients extend the Request Expiration Timer for requests being
processed asynchronously as follows:

If the registry value ExtendedSessTimeout in
HKLM\System\CurrentControlSet\Services\LanmanWorkStation\Parameters\ is set, the clients use the
same value. Otherwise, the clients extend the expiration time to four times the value of default
session timeout.

Windows Vista SP1, Windows Server 2008, Windows 7 and Windows Server 2008 R2 never enforce a
timeout on SMB2 CHANGE_NOTIFY requests, SMB2 LOCK requests without the
SMB2_LOCKFLAG_FAIL_IMMEDIATELY flag, SMB2 READ requests on named pipes, SMB2 WRITE
requests on named pipes, and the FSCTL_PIPE_PEEK, FSCTL_PIPE_TRANSCEIVE and
FSCTL_PIPE_WAIT named pipe FSCTLs.

<150> Section 3.2.5.1.7: Windows-based clients will not disconnect the connection, but will simply
fail the request.

<151> Section 3.2.5.1.8: Windows-based SMB 2 Protocol clients do not check the validity of the
command in the response.

<152> Section 3.2.5.2: Windows-based clients will not use the MaxTransactSize and will use the
ServerGuid to determine if the client and server are the same machine.

<153> Section 3.2.5.2: Windows Vista SP1, Windows Server 2008, Windows 7, Windows Server 2008
R2, Windows 8, Windows Server 2012, Windows 8.1, and Windows Server 2012 R2 disconnect the

connection if MaxTransactSize, MaxReadSize, or MaxWriteSize is less than 4096.

<154> Section 3.2.5.5: By default Windows 8 and Windows 8.1 will try to establish alternate
channels, if Connection.OutstandingRequests exceeds 8. Windows Server 2012, Windows Server
2012 R2, Windows 10, Windows Server 2016, Windows Server operating system, and Windows Server
2019 will try to establish alternate channels, if Connection.OutstandingRequests exceeds 1.

425 / 464

[MS-SMB2-Diff] - v20190923
Server Message Block (SMB) Protocol Versions 2 and 3
Copyright © 2019 Microsoft Corporation
Release: September 23, 2019

<155> Section 3.2.5.5: Windows-based SMB2 clients will choose the interfaces using the following
criteria:

1. Skip the interfaces in NETWORK_INTERFACE_INFO Response where IfIndex is 0.

2. For each interface returned in NETWORK_INTERFACE_INFO Response, if the interface has both

link-local and non-link-local IP addresses, skip the link-local IP address.

3. If there is one or more multiple link-local addresses (suppose there are Y such interfaces), select
local interfaces which only have link-local addresses (suppose there are X such local interfaces).

4. Build a destination address list, include all server non-link-local addresses and X*Y server link-
local addresses.

5. For each RDMA capable address pair, duplicate the address pair, one for RDMA and one for Direct
TCP.

6. Sort address pairs by which address pair is best suited for connection between client and server.

7. For each address pair, compute

▪ Link speed of the pair = min(link speed of local interface, link speed of remote interface)

▪ RSS capable = RSS capable of local interface and RSS capable of remote interface

8. If there are RDMA capable address pairs, select them.

▪ Otherwise if there are RSS capable address pairs, select them.

▪ Otherwise select remaining address pairs.

9. Select the pairs with the highest link speed from the selected address pairs.

10. Select local/remote address pairs so that all eligible local/remote interfaces are used and the
connections are distributed among local and remote interfaces.

11. The client attempts to establish an alternate channel on each selected interface and address pair.
The client will create only a single connection per address pair when the server interface is neither
RSS- nor RDMA-capable.

<156> Section 3.2.5.12: Windows 8, Windows Server 2012, Windows 8.1, Windows Server 2012 R2,
Windows 10, Windows Server 2016, Windows Server operating system, and Windows Server 2019
replay the write operation up to three times or until all channels in the session are disconnected.

<157> Section 3.2.5.14: Windows 8, Windows Server 2012, Windows 8.1, Windows Server 2012 R2,
Windows 10, Windows Server 2016, Windows Server operating system, and Windows Server 2019
replay the IOCTL operation up to three times or until all of the channels in the session are
disconnected.

<158> Section 3.2.5.14: If the OutputCount field in an SMB2 IOCTL Response is 0 and the
OutputOffset exceeds the size of the SMB2 response, Windows clients will return

STATUS_INVALID_NETWORK_RESPONSE to the application.

<159> Section 3.2.5.14.9: Windows clients enable TCP keepalives to detect broken connections.

<160> Section 3.2.5.18: Windows 8, Windows Server 2012, Windows 8.1, Windows Server 2012 R2,
Windows 10, Windows Server 2016, Windows Server operating system, and Windows Server 2019

replay the SetInfo operation up to three times or until all of the channels in the session are
disconnected.

<161> Section 3.2.5.19.1: Windows-based clients will not request exclusive oplocks.

426 / 464

[MS-SMB2-Diff] - v20190923
Server Message Block (SMB) Protocol Versions 2 and 3
Copyright © 2019 Microsoft Corporation
Release: September 23, 2019

<162> Section 3.2.5.19.2: Windows clients do not send a Lease Break Acknowledgement when they
have an outstanding SMB2 CREATE Request on the same File.

<163> Section 3.2.6.1: Windows clients use a default time-out of 60 seconds.

<164> Section 3.2.6.1: Windows-based clients return a STATUS_CONNECTION_DISCONNECTED error

code to the calling application.

<165> Section 3.2.6.1: The Windows-based clients will disconnect the connection.

<166> Section 3.2.7.1: When the reestablishment of the durable handleshandle fails with a network
error, Windows clients retry the reestablishment three times.

<167> Section 3.3.1.1: Windows-based servers will limit the maximum range of sequence numbers.
If a client has been granted 10 credits, the server will not allow the difference between the smallest
available sequence number and the largest available sequence number to exceed 2*10 = 20.

Therefore, if the client has sequence number 10 available and does not send it, the server will stop
granting credits as the client nears sequence number 30, and eventually will grant no further credits
until the client sends sequence number 10.

<168> Section 3.3.1.2: A Windows-based server will grant some portion of the client request based
on available resources and the number of credits the client is currently taking advantage of. A
Windows–based server grants credits based on usage but will attempt to enforce fairness if there are

insufficient credits.

<169> Section 3.3.1.2: Windows-based SMB2 servers support a configurable minimum credit limit
below which the client is unconditionally granted all credits it requests, and a configurable maximum
credit limit above which credits are never granted, as follows:

SMB2 server
Default
minimum

Default
maximum

Windows Vista SP1, Windows 7, Windows 8, Windows 8.1, and Windows 10 128 2048

Windows Server 2008, Windows Server 2008 R2, Windows Server 2012,
Windows Server 2012 R2, Windows Server 2016, Windows Server operating
system, and Windows Server 2019

512 8192

<170> Section 3.3.1.2: A Windows–based server does not currently scale credits based on quality of
service features.

<171> Section 3.3.1.4: On Windows 7 and Windows Server 2008 R2, a 128-bit ClientLeaseId is
generated by an arithmetic combination of LeaseKey and ClientGuid, which is passed to the object
store at open/create time. On Windows 8, Windows Server 2012, Windows 8.1, Windows Server 2012
R2, Windows 10, Windows Server 2016, Windows Server operating system, and Windows Server
2019, the LeaseKey in the request is used as the ClientLeaseId.

<172> Section 3.3.1.4: Windows 7, Windows Server 2008 R2, Windows 8, Windows Server 2012,

Windows 8.1, Windows Server 2012 R2, Windows 10, Windows Server 2016, Windows Server
operating system, and Windows Server 2019-based SMB2 servers support only the levels described
above, and Windows 7, Windows Server 2008 R2, Windows 8, Windows Server 2012, Windows 8.1,
Windows Server 2012 R2, Windows 10, Windows Server 2016, Windows Server operating system, and
Windows Server 2019-based SMB2 clients request only those levels.

<173> Section 3.3.1.6: Windows-based servers allow the sharing of both printers and traditional file
shares.

427 / 464

[MS-SMB2-Diff] - v20190923
Server Message Block (SMB) Protocol Versions 2 and 3
Copyright © 2019 Microsoft Corporation
Release: September 23, 2019

<174> Section 3.3.1.6: In Windows, this abstract state element contains the security descriptor for
the share.

<175> Section 3.3.1.6: Windows-based SMB2 clients do not cache directory enumeration results.

<176> Section 3.3.1.13: The Windows SMB2 server allocates an I/O request (IRP) structure which it

uses to locally request action from the object store. The Request.CancelRequestId is set to the
unique address of this structure.

<177> Section 3.3.2.1: Windows SMB2 servers set this timer to 35 seconds.

<178> Section 3.3.2.2: Windows-based SMB2 servers set this timer to a constant value of 16
minutes.

<179> Section 3.3.2.3: Windows-based servers implement this timer with a constant value of 45
seconds.

<180> Section 3.3.2.5: Windows SMB2 servers set this timer to 35 seconds.

<181> Section 3.3.3: Windows Vista SP1, Windows Server 2008, Windows 7, Windows Server 2008
R2, Windows 8, Windows Server 2012, Windows 8.1, Windows Server 2012 R2, Windows 10 v1507
operating system through Windows 10 v1703 operating system, and Windows Server 2016 set the
ServerStartTime to the time at which the SMB2 server was started.

<182> Section 3.3.3: Windows-based SMB2 servers set this value to 256.

<183> Section 3.3.3: Windows-based SMB2 servers set this value to 1 MB.

<184> Section 3.3.3: Windows-based SMB2 servers set this value to 16 MB.

<185> Section 3.3.3: Windows-based servers initialize ServerHashLevel based on a stored value in
the registry.

<186> Section 3.3.3: Windows 7, Windows Server 2008 R2, Windows 8, Windows Server 2012,
Windows 8.1, Windows Server 2012 R2, Windows 10, Windows Server 2016, Windows Server

operating system, and Windows Server 2019 SMB2 servers provide a constant maximum resiliency

time-out of 300000 milliseconds.

<187> Section 3.3.3: Windows 8, Windows Server 2012, Windows 8.1, Windows Server 2012 R2,
Windows 10, Windows Server 2016, Windows Server operating system, and Windows Server 2019 by
default, set RejectUnencryptedAccess to TRUE. If the registry value RejectUnencryptedAccess
under HKLM\System\CurrentControlSet\Services\LanmanServer\Parameters\ is set to zero,
RejectUnencryptedAccess is set to FALSE.

<188> Section 3.3.3: Windows 8, Windows Server 2012, Windows 8.1, Windows Server 2012 R2,

Windows 10, Windows Server 2016, Windows Server operating system, and Windows Server 2019 set
IsMultiChannelCapable to TRUE.

<189> Section 3.3.3: Windows 10 v1709 operating system, Windows Server operating system, and
Windows Server 2019 set this value to TRUE.

<190> Section 3.3.4.1.1: Windows-based servers always sign the final session setup response when
the user is neither anonymous nor guest.

Windows 8, Windows Server 2012, Windows 8.1 without [MSKB-2976995] and Windows Server 2012
R2 without [MSKB-2976995] servers fail to sign responses other than SMB2_NEGOTIATE,
SMB2_SESSION_SETUP, and SMB2_TREE_CONNECT when Session.SigningRequired is TRUE, global
EncryptData is TRUE, RejectUnencryptedAccess is FALSE and either Connection.Dialect is
"2.0.2" or "2.1" or Connection.ClientCapabilities does not include
SMB2_GLOBAL_CAP_ENCRYPTION.

428 / 464

[MS-SMB2-Diff] - v20190923
Server Message Block (SMB) Protocol Versions 2 and 3
Copyright © 2019 Microsoft Corporation
Release: September 23, 2019

<191> Section 3.3.4.1.2: For an asynchronously processed request, Windows-based servers grant
credits on the interim response and do not grant credits on the final response. The interim response

grants credits to keep the transaction from stalling in case the client is out of credits.

<192> Section 3.3.4.1.3: The Windows-based server compounds responses for any received

compounded operations. Otherwise, it does not compound responses.

<193> Section 3.3.4.1.3: When there are not enough credits to process a subsequent compounded
request, Windows SMB2 servers set the NextCommand field to the size of the last SMB2 response
message including the SMB2 header.

<194> Section 3.3.4.1.3: Windows-based servers grant all credits in the final response of the
compounded chain, and grant 0 credits in all responses other than the final response.

<195> Section 3.3.4.1.3: Windows-based servers do not calculate the size of the response message;

servers depend on the transport to send the response message.

<196> Section 3.3.4.2: Windows-based servers send interim responses for the following operations if
they cannot be completed immediately:

▪ SMB2_CREATE, if the underlying object store indicates an Oplock/Lease Break Notification or if
access/sharing modes are incompatible with another existing open

▪ SMB2_CHANGE_NOTIFY

▪ Byte Range Lock

▪ Named Pipe Read on a blocking named pipe

▪ Named Pipe Write on a blocking named pipe

▪ Large file write

▪ FSCTL_PIPE_TRANSCEIVE

▪ FSCTL_SRV_COPYCHUNK or FSCTL_SRV_COPYCHUNK_WRITE, when oplock break happens

▪ SMB2 FLUSH on a named pipe

▪ FSCTL_GET_DFS_REFERRALS

<197> Section 3.3.4.2: Windows-based servers incorrectly process the FSCTL_PIPE_WAIT request on
named pipes synchronously.

<198> Section 3.3.4.2: Windows-based servers enforce a configurable blocking operation credit,
which defaults to 64 on Windows Vista SP1, Windows 7, Windows 8, Windows 8.1, and, Windows 10,
and defaults to 512 on Windows Server 2008, Windows Server 2008 R2, Windows Server 2012,
Windows Server 2012 R2, Windows Server 2016, Windows Server operating system, and Windows

Server 2019.

<199> Section 3.3.4.4: For Windows 7, Windows Server 2008 R2, Windows 8, Windows Server 2012,

Windows 8.1, Windows Server 2012 R2, Windows 10, Windows Server 2016, Windows Server
operating system, and Windows Server 2019, STATUS_BUFFER_OVERFLOW will be returned for
FSCTL_GET_RETRIEVAL_POINTERS and FSCTL_GET_REPARSE_POINT, along with the ones mentioned
in section 3.3.4.4.

<200> Section 3.3.4.6: Windows Vista SP1, Windows Server 2008, Windows 7, Windows Server 2008
R2, Windows 8, Windows Server 2012 operating system, Windows 8.1, and Windows Server 2012 R2
set the SessionId in the SMB2 header to zero.

429 / 464

[MS-SMB2-Diff] - v20190923
Server Message Block (SMB) Protocol Versions 2 and 3
Copyright © 2019 Microsoft Corporation
Release: September 23, 2019

<201> Section 3.3.4.6: Windows-based SMB2 servers set Open.OplockTimeout to the current time
plus 35000 milliseconds. If Open.IsPersistent is TRUE, Open.OplockTimeout is set to the current

time plus 60000 milliseconds.

<202> Section 3.3.4.7: Windows-based SMB2 servers set Lease.LeaseBreakTimeout to the current

time plus 35000 milliseconds. If Open.IsPersistent is TRUE, Windows 8 and Windows Server 2012
set Lease.LeaseBreakTimeout to the current time plus 60000 milliseconds. If Open.IsPersistent is
TRUE, Windows 8.1, Windows Server 2012 R2, Windows 10, Windows Server 2016, Windows Server
operating system, and Windows Server 2019 set Lease.LeaseBreakTimeout to the current time plus
180000 milliseconds.

<203> Section 3.3.4.13: Windows Server 2012 and Windows Server 2012 R2 set these bits as
appropriate for shared volume configurations.

<204> Section 3.3.4.13: By default, Windows 8, Windows Server 2012, Windows 8.1, Windows
Server 2012 R2, Windows 10, Windows Server 2016, Windows Server operating system, and Windows
Server 2019 set Share.CATimeout to zero.

<205> Section 3.3.4.17: Windows Lease break is described in [MS-FSA] section 2.1.5.17. The Open
parameter passed is the Open.Local value from the current close operation, the Type parameter is
LEVEL_GRANULAR to indicate a Lease request, and the RequestedOplockLevel parameter is zero.

<206> Section 3.3.4.21: For each supported transport type as listed in section 2.1, the Windows
SMB2 server attempts to form an association with the specified device with local calls specific to each
supported transport type and rejects the entry if none of the associations succeed.

<207> Section 3.3.4.21: On Windows, ServerName is used only when the transport is NetBIOS over
TCP.

<208> Section 3.3.5.1: Possible Windows-specific values for Connection.TransportName are listed
in a product behavior note attached to [MS-SRVS] section 2.2.4.96.

<209> Section 3.3.5.2: Windows performs cancellation of in-progress requests via the interface in
[MS-FSA] section 2.1.5.19, Server Requests Canceling an Operation, passing

Request.CancelRequestId as an input parameter.

<210> Section 3.3.5.2: Windows 10 v1903 and later, and Windows Server v1903 and later set this to
TRUE.

<211> Section 3.3.5.2: Windows 7 without [MSKB-2536275], and Windows Server 2008 R2 without
[MSKB-2536275] terminate the connection when the size of the request is greater than 64*1024

bytes.

Windows Vista SP1 and Windows Server 2008 on Direct TCP transport disconnect the connection if the
size of the message exceeds 128*1024 bytes, and Windows Vista SP1 and Windows Server 2008 on
NetBIOS over TCP transport will disconnect the connection if the size of the message exceeds
64*1024 bytes.

<212> Section 3.3.5.2.1.1: Windows-based servers will discard the message if it is encrypted and the

connection is NetBIOS over TCP.

<213> Section 3.3.5.2.1.1: Windows 8, Windows Server 2012, Windows 8.1, and Windows Server
2012 R2 disconnect the connection if OriginalMessageSize is greater than 1028 kilobytes.

<214> Section 3.3.5.2.1.2: Windows-based servers discard the message if it is compressed and the
connection is over RDMA.

<215> Section 3.3.5.2.3: For an SMB2 Write request with an invalid MessageId, Windows 8 and
Windows Server 2012 will stop processing the request and any further requests on that connection.

430 / 464

[MS-SMB2-Diff] - v20190923
Server Message Block (SMB) Protocol Versions 2 and 3
Copyright © 2019 Microsoft Corporation
Release: September 23, 2019

<216> Section 3.3.5.2.4: Windows-based servers will not disconnect the connection due to a
mismatched signature.

<217> Section 3.3.5.2.4: Windows-based servers will not disconnect the connection due to an
unsigned packet.

<218> Section 3.3.5.2.6: Windows-based servers will disconnect the connection when it processes
packets that are smaller than the SMB2 header or packets that contain an invalid SMB2 command. For
all other validations, it will not disconnect the connection but simply return the error.

<219> Section 3.3.5.2.7: In Windows Vista and Windows Server 2008, when an operation in a
compound request requires asynchronous processing, Windows-based servers fail them with
STATUS_INTERNAL_ERROR except for the following two cases: when a create request in the
compound request triggers an oplock break, or when the operation is last in the compound request.

In all SMB2 servers, if a create request in a compound chain is processed asynchronously due to an
oplock break, Windows-based servers send an interim response to the client. If there are one or more
conflicting create operations in a compounded request, Windows-based servers send an oplock break

notification for the completed create prior to sending any response, and the level of the broken oplock
is not updated in all prior create responses in the compound response.

<220> Section 3.3.5.2.7: Windows-based SMB2 servers allow a mix of related and unrelated

compound requests in the same transport send. Upon encountering a request with
SMB2_FLAGS_RELATED_OPERATIONS not set, a Windows-based SMB2 server treats it as the start of
a chain.

<221> Section 3.3.5.2.7.2: If SMB2_FLAGS_RELATED_OPERATIONS is present in the first request,
Windows-based servers fail all related requests in the compounded chain with error
STATUS_INVALID_PARAMETER.

<222> Section 3.3.5.2.7.2: If the previous session expired, Windows Vista SP1, Windows Server

2008, Windows 7, and Windows Server 2008 R2 servers fail the next request in the compounded chain
with STATUS_NETWORK_SESSION_EXPIRED, and the subsequent requests in the compounded chain
will be failed with STATUS_INVALID_PARAMETER.

<223> Section 3.3.5.2.9: Windows Vista SP1, Windows Server 2008, Windows 7, and Windows Server
2008 R2 do not disconnect the connection but continue session verification.

<224> Section 3.3.5.2.9: Windows Vista SP1, Windows Server 2008, Windows 7, and Windows Server
2008 R2 servers do not fail the request if the SMB2 header of the request has SMB2_FLAGS_SIGNED

set in the Flags field and the request is not an SMB2 LOCK request as specified in section 2.2.26.

<225> Section 3.3.5.2.9: Windows-based servers fail the request with 0x80090302 when the
authentication method is GSS-API.

<226> Section 3.3.5.3.1: If the underlying transport is NETBIOS over TCP, Windows-based servers
set MaxTransactSize to 65536. Otherwise, MaxTransactSize is set based on the following table.

Windows version\Connection.Dialect MaxTransactSize

Windows 7\Windows Server 2008 R2 1048576

Windows 8 without [MSKB-2934016]\Windows Server 2012 without [MSKB-2934016] 1048576

All other SMB2 servers 8388608

<227> Section 3.3.5.3.1: If the underlying transport is NETBIOS over TCP, Windows-based servers
set MaxReadSize to 65536. Otherwise, MaxReadSize is set based on the following table.

431 / 464

[MS-SMB2-Diff] - v20190923
Server Message Block (SMB) Protocol Versions 2 and 3
Copyright © 2019 Microsoft Corporation
Release: September 23, 2019

Windows version\Connection.Dialect MaxReadSize

Windows 7\Windows Server 2008 R2 1048576

Windows 8 without [MSKB-2934016]\Windows Server 2012 without [MSKB-2934016] 1048576

All other SMB2 servers 8388608

<228> Section 3.3.5.3.1: If the underlying transport is NETBIOS over TCP, Windows-based servers
set MaxWriteSize to 65536. Otherwise, MaxWriteSize is based on the following table.

Windows version\Connection.Dialect MaxWriteSize

Windows 7\Windows Server 2008 R2 1048576

Windows 8 without [MSKB-2934016]\Windows Server 2012 without [MSKB-2934016] 1048576

All other SMB2 servers 8388608

<229> Section 3.3.5.3.1: Windows Vista SP1, Windows Server 2008, Windows 7, Windows Server
2008 R2, Windows 8, Windows Server 2012, Windows 8.1, Windows Server 2012 R2, Windows 10
v1507 through Windows 10 v1703, and Windows Server 2016 set the ServerStartTime to the global
ServerStartTime value.

<230> Section 3.3.5.3.2: Windows-based servers set this to a default value of 65536.

<231> Section 3.3.5.3.2: Windows-based servers set MaxReadSize to a default value of 65536.

<232> Section 3.3.5.3.2: Windows-based servers set MaxWriteSize to a default value of 65536.

<233> Section 3.3.5.3.2: Windows Vista SP1, Windows Server 2008, Windows 7, Windows Server

2008 R2, Windows 8, Windows Server 2012, Windows 8.1, Windows Server 2012 R2, Windows 10
v1507 through Windows 10 v1703, and Windows Server 2016 set the ServerStartTime to the global
ServerStartTime value.

<234> Section 3.3.5.4: Windows 10 v1903 and later and Windows Server v1903 and later only set

CompressionAlgorithms to the first common algorithm supported by the client and server.

<235> Section 3.3.5.4: If the underlying transport is NETBIOS over TCP, Windows-based servers set
MaxTransactSize to 65536. Otherwise, MaxTransactSize is set based on the following table.

Windows version\Connection.Dialect 2.0.2
All other SMB2
dialects

Windows Vista SP1\Windows Server 2008 65536 N/A

Windows 7\Windows Server 2008 R2 65536 1048576

Windows 8 without [MSKB-2934016]\Windows Server 2012 without [MSKB-
2934016]

65536 1048576

All other SMB2 servers 65536 8388608

<236> Section 3.3.5.4: If the underlying transport is NETBIOS over TCP, Windows-based servers set
MaxReadSize to 65536. Otherwise, MaxReadSize is set based on the following table.

432 / 464

[MS-SMB2-Diff] - v20190923
Server Message Block (SMB) Protocol Versions 2 and 3
Copyright © 2019 Microsoft Corporation
Release: September 23, 2019

Windows version\Connection.Dialect 2.0.2
All other SMB2
dialects

Windows Vista SP1\Windows Server 2008 65536 N/A

Windows 7\Windows Server 2008 R2 65536 1048576

Windows 8 without [MSKB-2934016]\Windows Server 2012 without [MSKB-
2934016]

65536 1048576

All other SMB2 servers 65536 8388608

<237> Section 3.3.5.4: If the underlying transport is NETBIOS over TCP, Windows-based servers set
MaxWriteSize to 65536. Otherwise, MaxWriteSize is set based on the following table.

Windows version\Connection.Dialect 2.0.2
All other SMB2
dialects

Windows Vista SP1\Windows Server 2008 65536 N/A

Windows 7\Windows Server 2008 R2 65536 1048576

Windows 8 without [MSKB-2934016]\Windows Server 2012 without [MSKB-
2934016]

65536 1048576

All other SMB2 servers 65536 8388608

<238> Section 3.3.5.4: Windows Vista SP1, Windows Server 2008, Windows 7, Windows Server 2008
R2, Windows 8, Windows Server 2012, Windows 8.1, Windows Server 2012 R2, Windows 10 v1507
through Windows 10 v1703, and Windows Server 2016 set the ServerStartTime to the global
ServerStartTime value.

<239> Section 3.3.5.4: Windows 10, Windows Server 2016, Windows Server operating system, and
Windows Server 2019 use 32 bytes of Salt.

<240> Section 3.3.5.5: Windows 8 and Windows Server 2012 look up the session in

GlobalSessionTable using the SessionId from the SMB2 header if the
SMB2_SESSION_FLAG_BINDING bit is set in the Flags field of the request. If the session is found, the
server fails the request with STATUS_REQUEST_NOT_ACCEPTED. If the session is not found, the
server fails the request with STATUS_USER_SESSION_DELETED.

<241> Section 3.3.5.5: Windows Vista SP1 and Windows Server 2008 servers fail the session setup
request with STATUS_REQUEST_NOT_ACCEPTED.

<242> Section 3.3.5.5.3: Windows Vista SP1, Windows Server 2008, Windows 7, Windows Server
2008 R2, Windows 8, Windows Server 2012, Windows 8.1, Windows Server 2012 R2, Windows 10,
Windows Server 2016, Windows Server operating system, and Windows Server 2019 will also accept

raw Kerberos messages and implicit NTLM messages as part of GSS authentication.

<243> Section 3.3.5.5.3: Windows Vista SP1, Windows Server 2008, Windows 7, and Windows Server
2008 R2 servers do not fail the request if dialects do not match.

<244> Section 3.3.5.5.3: Windows by default uses the guest account to represent guest users.

Alternatively, any user account that is a member of the well-known BUILTIN_GUESTS or
DOMAIN_GUESTS group (see [MS-DTYP] section 2.4.2.4) is considered a guest account.

433 / 464

[MS-SMB2-Diff] - v20190923
Server Message Block (SMB) Protocol Versions 2 and 3
Copyright © 2019 Microsoft Corporation
Release: September 23, 2019

<245> Section 3.3.5.5.3: Windows 7 and Windows Server 2008 R2 remove the current session from
GlobalSessionTable and Connection.SessionTable but the SESSION_SETUP request succeeds, if

the PreviousSessionId and SessionId values in the SMB2 header of the request are equal and the
authentications were for the same user. Further requests using this SessionId will fail with

STATUS_USER_SESSION_DELETED.

<246> Section 3.3.5.7: Windows-based SMB2 servers do not set this bit in the ShareFlags field.

<247> Section 3.3.5.7: Windows-based SMB2 servers do not set this bit in the ShareFlags field.

<248> Section 3.3.5.7: Windows Server 2012 and Windows Server 2012 R2 set these two bits based
on group policy settings.

<249> Section 3.3.5.7: Windows Vista SP1 and Windows Server 2008 do not support the
SMB2_SHAREFLAG_ENABLE_HASH_V1 bit.

<250> Section 3.3.5.7: Windows Server v1709 operating system and later and Windows Server 2019
and later support the SMB2_SHARE_CAP_REDIRECT_TO_OWNER bit.

<251> Section 3.3.5.9: If Open.ClientGuid is not equal to the ClientGuid of the connection that
received this request, Open.Lease.LeaseState is equal to RWH, or Open.OplockLevel is equal to
SMB2_OPLOCK_LEVEL_BATCH, Windows-based servers will attempt to break the lease/oplock and
return STATUS_PENDING to process the create request asynchronously. Otherwise, if

Open.Lease.LeaseState does not include SMB2_LEASE_HANDLE_CACHING and Open.OplockLevel
is not equal to SMB2_OPLOCK_LEVEL_BATCH, Windows-based servers return
STATUS_FILE_NOT_AVAILABLE.

<252> Section 3.3.5.9: Windows Vista and Windows Server 2008 validate the create requests before
session verification as described in the "Create Context Validation" phase in section 3.3.5.9.

<253> Section 3.3.5.9: Windows-based SMB2 servers fail an SMB2 CREATE request with
STATUS_ACCESS_DENIED if the file name in the request is one of the following: "LPT1", "LPT2",

"LPT3","LPT4", "LPT5", "LPT6", "LPT7", "LPT8", "LPT9", "COM1", "COM2", "COM3", "COM4", "COM5",
"COM6", "COM7", "COM8", "COM9", "PRN", "AUX", "NUL", "CON", and "CLOCK$".

<254> Section 3.3.5.9: Windows-based servers ignore DesiredAccess values other than
FILE_WRITE_DATA, FILE_APPEND_DATA and GENERIC_WRITE if any one of these values is specified.

<255> Section 3.3.5.9: Windows-based servers fail requests having a CreateDisposition of
FILE_OPEN or FILE_OVERWRITE, but ignore values of FILE_SUPERSEDE, FILE_OPEN_IF and
FILE_OVERWRITE_IF.

<256> Section 3.3.5.9: Windows 8, Windows Server 2012, Windows 8.1, and Windows Server 2012
R2 do not perform this verification and continue to process the request.

<257> Section 3.3.5.9: Windows Vista SP1, Windows Server 2008, Windows 7, and Windows Server
2008 R2 do not perform this verification.

<258> Section 3.3.5.9: Windows-based SMB2 servers check only for FILE_WRITE_DATA,
FILE_WRITE_ATTRIBUTES, FILE_WRITE_EA, and FILE_APPEND_DATA in the DesiredAccess field.

<259> Section 3.3.5.9: Windows Vista SP1 and Windows Server 2008 do not support the
SMB2_SHAREFLAG_FORCE_LEVELII_OPLOCK flag and ignore the
TreeConnect.Share.ForceLevel2Oplock value.

<260> Section 3.3.5.9: Windows performs the following open/create mappings from SMB2
parameters to the object store as described in [MS-FSA] section 2.1.5.1 Server Requests an Open of a
File.

434 / 464

[MS-SMB2-Diff] - v20190923
Server Message Block (SMB) Protocol Versions 2 and 3
Copyright © 2019 Microsoft Corporation
Release: September 23, 2019

Object Store
parameter SMB2 parameter Notes

DesiredAccess DesiredAccess

DesiredFileAttributes FileAttributes

ShareAccess ShareAccess

CreateDisposition CreateDisposition

CreateOptions CreateOptions

SecurityContext Session.SecurityContext

SecurityFlags

ImpersonationLevel

SecurityFlags and ImpersonationLevel are not passed to the
object store

PathName PathName Relative to TreeConnect.Share.LocalPath

RootOpen TreeConnect.Share A LocalOpen representing TreeConnect.Share.LocalPath.
Windows SMB2 servers maintain such a LocalOpen for each
active Share.

IsCaseSensitive FALSE Windows-based SMB2 servers always handle path names as
case-insensitive

TargetOplockKey NULL OplockKey specified only for obtaining Leases

ParentOplockKey NULL Oplock Key to identify the owner of an oplock on the parent
directory of the file being opened.

Windows performs the following mappings from object store results to SMB2 response.

Object Store result SMB2 response Notes

CreateAction CreateAction

Open FileId The FileId to Open mapping is computed and maintained by the server

<261> Section 3.3.5.9: Windows-based servers will receive the data from the local create operation
for constructing the error response when a symbolic link is present in the target path name.

<262> Section 3.3.5.9: Windows Oplock acquisition is described in [MS-FSA] section 2.1.5.17. Oplock

acquisition is an optional step in open/create processing; the Open parameter passed is the
Open.Local result from the open or create operation, and the Type parameter is mapped as follows.

Object Store oplock Type SMB2 oplock level

LEVEL_BATCH SMB2_OPLOCK_LEVEL_BATCH

LEVEL_ONE SMB2_OPLOCK_LEVEL_EXCLUSIVE

LEVEL_TWO SMB2_OPLOCK_LEVEL_II

The Status code returned indicates whether the requested oplock was granted.

<263> Section 3.3.5.9: Windows obtains CreationTime from the object store FileBasicInformation
[MS-FSA] section 2.1.5.11.6 and [MS-FSCC] section 2.4.7.

435 / 464

[MS-SMB2-Diff] - v20190923
Server Message Block (SMB) Protocol Versions 2 and 3
Copyright © 2019 Microsoft Corporation
Release: September 23, 2019

<264> Section 3.3.5.9: Windows obtains LastAccessTime from the object store FileBasicInformation
[MS-FSA] section 2.1.5.11.6 and [MS-FSCC] section 2.4.7.

<265> Section 3.3.5.9: Windows obtains LastWriteTime from the object store FileBasicInformation
[MS-FSA] section 2.1.5.11.6 and [MS-FSCC] section 2.4.7.

<266> Section 3.3.5.9: Windows obtains ChangeTime from the object store FileBasicInformation
[MS-FSA] section 2.1.5.11.6 and [MS-FSCC] section 2.4.7.

<267> Section 3.3.5.9: Windows obtains AllocationSize from the object store
FileStandardInformation [MS-FSA] section 2.1.5.11.27 and [MS-FSCC] section 2.4.38.

<268> Section 3.3.5.9: Windows-based SMB2 servers will set AllocationSize to any value for the
named pipe.

<269> Section 3.3.5.9: Windows obtains EndOfFile from the object store FileStandardInformation

[MS-FSA] section 2.1.5.11.27 and [MS-FSCC] section 2.4.38.

<270> Section 3.3.5.9: Windows-based SMB2 servers will set EndofFile to any value for the named

pipe.

<271> Section 3.3.5.9: Windows obtains FileAttributes from the object store FileBasicInformation
[MS-FSA] section 2.1.5.11.6 and [MS-FSCC] section 2.4.7.

<272> Section 3.3.5.9.1: Windows sets extended attributes on a newly created file with the

FSCTL_SET_OBJECT_ID_EXTENDED FSCTL [MS-FSA] section 2.1.5.9.31 and [MS-FSCC] section
2.3.65.

<273> Section 3.3.5.9.2: Windows sets security attributes on a newly created file with the Application
requests setting of security information [MS-FSA] section 2.1.5.16.

<274> Section 3.3.5.9.2: Windows will ignore security descriptors if the underlying object store does
not support them.

<275> Section 3.3.5.9.3: Windows-based servers support this request.

<276> Section 3.3.5.9.3: Windows sets allocation size on a newly created file with the
FileAllocationInformation [MS-FSA] section 2.1.5.14.1 and [MS-FSCC] section 2.4.4, after converting
bytes to volume cluster size.

<277> Section 3.3.5.9.4: Windows validates that a snapshot with the time stamp provided exists by
forming a FileBothDirectoryInformation object store request for the file including the provided
@GMT token in the path, as described in [MS-SMB] section 2.2.1.1.1 and [MS-FSA] section
2.1.5.5.3.1.

<278> Section 3.3.5.9.4: Windows opens a file on a snapshot with the time stamp provided by the
file including the provided @GMT token in the path, as described in [MS-SMB] section 2.2.1.1.1 and
[MS-FSA] section 2.1.5.1.

<279> Section 3.3.5.9.5: Windows computes the MaximalAccess to return by querying the security
attributes of the file with [MS-FSA] section 2.1.5.13, and performing an access check against the

credentials provided by the request. QueryStatus is set to the Status returned in that operation.

<280> Section 3.3.5.9.6: Windows Vista SP1, Windows 7, Windows Server 2008, and Windows Server
2008 R2 ignore undefined create contexts.

<281> Section 3.3.5.9.6: Windows Vista, Windows Server 2008, Windows 7, and Windows Server
2008 R2 set Open.DurableOpenTimeout to 16 minutes. Windows 8, Windows Server 2012,
Windows 8.1, Windows Server 2012 R2, Windows 10, Windows Server 2016, and Windows Server set
Open.DurableOpenTimeout to 2 minutes.

436 / 464

[MS-SMB2-Diff] - v20190923
Server Message Block (SMB) Protocol Versions 2 and 3
Copyright © 2019 Microsoft Corporation
Release: September 23, 2019

<282> Section 3.3.5.9.7: Windows Vista SP1, Windows Server 2008, Windows 7 and Windows Server
2008 R2 ignore undefined create contexts.

<283> Section 3.3.5.9.7: If the Session was established by invalidating the previous session by
specifying PreviousSessionId in the SMB2 SESSION_SETUP request, Windows 8.1 and Windows

Server 2012 R2 close the durable opens established on the previous session.

<284> Section 3.3.5.9.7: Windows 8, Windows Server 2012, Windows 8.1 and Windows Server 2012
R2 do not perform lease version verification.

<285> Section 3.3.5.9.7: Windows Vista SP1, Windows Server 2008, Windows 7, and Windows Server
2008 R2 servers respond with the SMB2_CREATE_DURABLE_HANDLE_RESPONSE create context after
a successful reconnect of a durable open.

<286> Section 3.3.5.9.8: Windows 7, Windows Server 2008 R2, Windows 8, Windows Server 2012,

Windows 8.1, and Windows Server 2012 R2 do not ignore the SMB2_CREATE_REQUEST_LEASE create
context when RequestedOplockLevel is not equal to SMB2_OPLOCK_LEVEL_LEASE.

<287> Section 3.3.5.9.8: On Windows 7, Windows Server 2008 R2, Windows 8, Windows Server

2012, Windows 8.1, and Windows Server 2012 R2, the Lease.ClientLeaseId is passed to the object
store when processing continues at open/create time. A new or existing lease is thereby associated
with the resulting open.

To acquire or promote the lease as dictated by the SMB2_CREATE_REQUEST_LEASE Create Context, a
subsequent object store call is invoked as described in [MS-FSA] section 2.1.5.17. The Open
parameter passed is the Open.Local result from the above operation, and the Type parameter is
LEVEL_GRANULAR to indicate a Lease request. The RequestedOplockLevel parameter is constructed
to include zero or more bits as follows.

Object Store RequestedOplockLevel bit to be set SMB2 Lease.LeaseState bit requested

READ_CACHING SMB2_LEASE_READ_CACHING

WRITE_CACHING SMB2_LEASE_WRITE_CACHING

HANDLE_CACHING SMB2_LEASE_HANDLE_CACHING

The Status code returned indicates whether the requested lease was granted.

<288> Section 3.3.5.9.10: If the Timeout value in the request is not zero, Windows 8, Windows
Server 2012, Windows 8.1, and Windows Server 2012 R2 SMB2 servers set Timeout to the Timeout
value in the request.

<289> Section 3.3.5.9.10: If the Timeout value in the request is zero and Share.CATimeout is not

zero, Windows 8, Windows Server 2012, Windows 8.1, Windows Server 2012 R2, Windows 10,
Windows Server 2016, and Windows Server SMB2 servers set Timeout to Share.CATimeout. If the
Timeout value in the request is zero and Share.CATimeout is zero, Windows 8 and Windows Server
2012 SMB2 servers set Timeout to 60 seconds.

<290> Section 3.3.5.9.11: Windows 8, Windows Server 2012, Windows 8.1, and Windows Server

2012 R2 servers do not ignore the SMB2_CREATE_REQUEST_LEASE_V2 create context when

Connection.Dialect is equal to "2.1" or if RequestedOplockLevel is not equal to
SMB2_OPLOCK_LEVEL_LEASE.

<291> Section 3.3.5.9.11: On Windows 8, Windows Server 2012, Windows 8.1, and Windows Server
2012 R2, the Lease.ClientLeaseId and Lease.ParentLeaseKey are passed to the object store in
the form of TargetOplockKey and ParentOplockKey. A new or existing lease is thereby associated
with the resulting open.

437 / 464

[MS-SMB2-Diff] - v20190923
Server Message Block (SMB) Protocol Versions 2 and 3
Copyright © 2019 Microsoft Corporation
Release: September 23, 2019

To acquire or promote the lease as dictated by the SMB2_CREATE_REQUEST_LEASE_V2 Create
Context, a subsequent object store call is invoked as described in [MS-FSA] section 2.1.5.17 Server

Requests an Oplock. The Open parameter passed is the Open result from the above operation, and the
Type parameter is LEVEL_GRANULAR to indicate a Lease request. The RequestedOplockLevel field is

constructed to include zero or more bits as follows.

Object Store RequestedOplockLevel bit to be set SMB2 Lease.LeaseState bit requested

READ_CACHING SMB2_LEASE_READ_CACHING

WRITE_CACHING SMB2_LEASE_WRITE_CACHING

HANDLE_CACHING SMB2_LEASE_HANDLE_CACHING

The Status code returned indicates whether the requested lease was granted.

<292> Section 3.3.5.9.12: Windows 8 with [KB2770917] and Windows Server 2012 with

[KB2770917] fail the CREATE request with STATUS_INVALID_PARAMETER.

<293> Section 3.3.5.9.12: If the Session was established by specifying PreviousSessionId in the
SMB2 SESSION_SETUP request, therefore invalidating the previous session, Windows 8.1 and
Windows Server 2012 R2 close the durable opens established on the previous session.

<294> Section 3.3.5.9.12: If Open.OplockLevel is equal to SMB2_OPLOCK_LEVEL_BATCH or
Open.Lease.LeaseState includes SMB2_LEASE_HANDLE_CACHING, Windows 8, Windows Server

2012, Windows 8.1, and Windows Server 2012 R2 continue to process the request.

<295> Section 3.3.5.9.12: Windows 8, Windows Server 2012, Windows 8.1, and Windows Server
2012 R2 do not perform Lease version verification.

<296> Section 3.3.5.9.12: Windows 8, Windows Server 2012, Windows 8.1, and Windows Server
2012 R2 do not perform this verification and continue to process the request.

<297> Section 3.3.5.9.13: Windows SMB3 servers compute the maximal access to return by querying

the security attributes of the file with [MS-FSA] section 2.1.5.13, and performing an access check

against the credentials provided by the request.

<298> Section 3.3.5.9.13: Windows Server 2012 and Windows Server 2012 R2 servers do not close
the open.

<299> Section 3.3.5.10: Windows Vista, Windows Server 2008, Windows 7, and Windows Server
2008 R2 validate the open before verifying the session.

<300> Section 3.3.5.10: Windows obtains FileNetworkOpenInformation from the object store as
described in [MS-FSA] section 2.1.5.11.21 and [MS-FSCC] section 2.4.27.

Windows-based servers do not return an updated ChangeTime unless Open.GrantedAccess includes
FILE_WRITE_DATA, FILE_WRITE_ATTRIBUTES, FILE_WRITE_EA, or FILE_APPEND_DATA and any prior
WRITE/SET_INFO operations were performed on that Open.

<301> Section 3.3.5.11: Windows flushes any cached data to the file with Server Requests Flushing

Cached Data [MS-FSA] section 2.1.5.6.

<302> Section 3.3.5.11: If the request target is a named pipe or file, Windows-based servers handle

this request asynchronously.

<303> Section 3.3.5.12: Windows 7 and Windows Server 2008 R2 fail the request with
STATUS_BUFFER_OVERFLOW if the Length field is greater than Connection.MaxReadSize. Windows
Vista SP1 and Windows Server 2008 will fail the request with STATUS_BUFFER_OVERFLOW if the
Length field is greater than 524288.

438 / 464

[MS-SMB2-Diff] - v20190923
Server Message Block (SMB) Protocol Versions 2 and 3
Copyright © 2019 Microsoft Corporation
Release: September 23, 2019

<304> Section 3.3.5.12: Windows reads from a file with Server Requests a Read [MS-FSA] section
2.1.5.2.

Object Store
parameter SMB2 parameter

ByteOffset ByteOffset

ByteCount ByteCount

Open Open.Local

Key 0

Unbuffered Set to TRUE if SMB2_READFLAG_READ_UNBUFFERED is set in the Flags field of the
request, otherwise set to FALSE.

<305> Section 3.3.5.12: Windows SMB2 servers send an interim response to the client and handle
the read asynchronously if the read is not finished in 0.5 milliseconds.

<306> Section 3.3.5.12: Windows-based servers handle the following commands asynchronously:
SMB2 Create (section 2.2.13) when this create would result in an oplock break, SMB2 IOCTL
Request (section 2.2.31) for FSCTL_PIPE_TRANSCEIVE if it blocks for more than 1 millisecond, SMB2

IOCTL Request for FSCTL_SRV_COPYCHUNK or FSCTL_SRV_COPYCHUNK_WRITE (section 2.2.31)
when oplock break happens, SMB2 Change_Notify Request (section 2.2.35) if it blocks for more than
0.5 milliseconds, SMB2 Read request (section 2.2.19) for named pipes if it blocks for more than 0.5
milliseconds, SMB2 Write request (section 2.2.21) for named pipes if it blocks for more than 0.5
milliseconds, SMB2 Write Request (section 2.2.21) for large file write, SMB2 lock
request (section 2.2.26) if the SMB2_LOCKFLAG_FAIL_IMMEDIATELY flag is not set, and SMB2 FLUSH
Request (section 2.2.17) for named pipes.

<307> Section 3.3.5.13: Windows SMB2 servers allow the operation when either FILE_APPEND_DATA
or FILE_WRITE_DATA is set in Open.GrantedAccess.

<308> Section 3.3.5.13: Windows 7 and Windows Server 2008 R2 fail the request with
STATUS_BUFFER_OVERFLOW instead of STATUS_INVALID_PARAMETER if the Length field is greater
than Connection.MaxWriteSize. Windows Vista SP1 and Windows Server 2008 do not validate the
Length field in SMB2 Write Request.

<309> Section 3.3.5.13: If the Flags field contains any bit values other than those specified in

section 2.2.21, Windows Vista SP1, Windows Server 2008, Windows 7, Windows Server 2008 R2,
Windows 8, and Windows Server 2012 fail the request with STATUS_INVALID_PARAMETER.

<310> Section 3.3.5.13: Windows writes to a file with Server Requests a Write [MS-FSA] section
2.1.5.3.

Object Store

parameter SMB2 parameter

ByteOffset ByteOffset

ByteCount ByteCount

InputBuffer Buffer

Open Open.Local

Key 0

439 / 464

[MS-SMB2-Diff] - v20190923
Server Message Block (SMB) Protocol Versions 2 and 3
Copyright © 2019 Microsoft Corporation
Release: September 23, 2019

Object Store
parameter SMB2 parameter

Unbuffered Set to TRUE if SMB2_WRITEFLAG_WRITE_UNBUFFERED is set in the Flags field of the
request, otherwise set to FALSE.

<311> Section 3.3.5.13: Windows-based servers handle the following commands asynchronously:

▪ SMB2 CREATE Request (section 3.3.5.9) when this create would result in an oplock break.

▪ SMB2 IOCTL Request (section 3.3.5.15) for FSCTL_PIPE_TRANSCEIVE if it blocks for more than 1

millisecond. For FSCTL_SRV_COPYCHUNK or FSCTL_SRV_COPYCHUNK_WRITE, when an oplock
break happens.

▪ SMB2 CHANGE_NOTIFY Request (section 3.3.5.19) if it blocks for more than 0.5 milliseconds.

▪ SMB2 READ Request (section 3.3.5.12) for named pipes if it blocks for more than 0.5 milliseconds.

▪ SMB2 WRITE Request (section 3.3.5.13) for named pipes if it blocks for more than 0.5
milliseconds.

▪ SMB2 WRITE Request (section 3.3.5.13) for large file write.

▪ SMB2 LOCK Request (section 3.3.5.14) if the SMB2_LOCKFLAG_FAIL_IMMEDIATELY flag is not set.

▪ SMB2 FLUSH Request (section 3.3.5.11) for named pipes.

<312> Section 3.3.5.14: Windows Vista, Windows Server 2008, Windows 7, and Windows Server
2008 R2 validate the open before verifying the session.

<313> Section 3.3.5.14: Windows 8, Windows Server 2012, Windows 8.1, and Windows Server 2012
R2 do not verify the LockSequence value in the SMB2 LOCK Request (section 2.2.26) when both
Open.IsResilient and Open.IsPersistent are FALSE.

<314> Section 3.3.5.14.1: Windows-based servers ignore this value while processing Unlocks.

<315> Section 3.3.5.14.1: Windows processes unlock with Server Requests unlock of a Byte-Range
[MS-FSA] section 2.1.5.8.

Object Store parameter SMB2 parameter

FileOffset Offset

Length Length

Open Open.Local

LockKey 0

<316> Section 3.3.5.14.2: Windows-based servers check for SMB2_LOCKFLAG_FAIL_IMMEDIATELY
only for the first element of the Locks array.

<317> Section 3.3.5.14.2: Refer to [FSBO] for implementation-specific details of how byte range

locks can be implemented.

<318> Section 3.3.5.14.2: Windows processes lock with Server Requests a Byte-Range Lock [MS-
FSA] section 2.1.5.7.

440 / 464

[MS-SMB2-Diff] - v20190923
Server Message Block (SMB) Protocol Versions 2 and 3
Copyright © 2019 Microsoft Corporation
Release: September 23, 2019

Object Store
parameter SMB2 parameter

FileOffset Offset

Length Length

ExclusiveLock FALSE if SMB2_LOCKFLAG_SHARED_LOCK set, or TRUE if
SMB2_LOCKFLAG_EXCLUSIVE_LOCK set

FailImmediately TRUE if SMB2_LOCKFLAG_FAIL_IMMEDIATELY set

Open Open.Local

LockKey 0

<319> Section 3.3.5.15: Windows Vista SP1 and Windows Server 2008 SMB2 servers fail an IOCTL

request with STATUS_INVALID_PARAMETER if [max(InputCount, MaxInputResponse) +
max(OutputCount, MaxOutputResponse)] is greater than 262144.

<320<320> Section 3.3.5.15: Windows 8 and later and Windows Server 2012 and later do not fail the
request.

<321> Section 3.3.5.15: Windows Vista, Windows Server 2008, Windows 7, and Windows Server
2008 R2 fail the request with STATUS_INVALID_PARAMETER in the following cases:

▪ If OutputCount is not equal to zero and OutputOffset is greater than zero but less than
(size of SMB2 header + size of the SMB2 IOCTL request not including Buffer).

▪ If OutputCount is not equal to zero and OutputOffset is greater than size of SMB2 Message.

▪ If OutputCount is not equal to zero and OutputOffset is not rounded up to a multiple of 8
bytes.

▪ If (OutputOffset + OutputCount) is greater than size of SMB2 Message.

▪ If OutputCount is greater than zero and OutputOffset is less than (InputOffset +
InputCount).

Windows 7 and Windows Server 2008 R2 fail the request with STATUS_INVALID_PARAMETER if
OutputOffset or OutputCount is greater than size of SMB2 Message.

<322> Section 3.3.5.15: Windows 7, Windows Server 2008 R2, Windows 8, Windows Server 2012,

Windows 8.1, and Windows Server 2012 R2 SMB2 servers copy the OutputCount bytes into the
output buffer for the following FSCTLs:

▪ FSCTL_GET_RETRIEVAL_POINTERS

▪ FSCTL_GET_REPARSE_POINT

▪ FSCTL_PIPE_TRANSCEIVE

▪ FSCTL_PIPE_PEEK

▪ FSCTL_DFS_GET_REFERRALS

Windows Vista SP1 and Windows Server 2008 SMB2 servers copy the OutputCount bytes into the
output buffer for the following FSCTLs:

▪ FSCTL_PIPE_TRANSCEIVE

441 / 464

[MS-SMB2-Diff] - v20190923
Server Message Block (SMB) Protocol Versions 2 and 3
Copyright © 2019 Microsoft Corporation
Release: September 23, 2019

▪ FSCTL_PIPE_PEEK

▪ FSCTL_DFS_GET_REFERRALS

All other FSCTL commands will be failed with error STATUS_BUFFER_OVERFLOW through error
response specified in section 2.2.2.

<323> Section 3.3.5.15: Windows 8 and later and Windows Server 2012 and later allow only the
CtlCode values, as specified in section 2.2.31, and the following CtlCode values, as specified in [MS-
FSCC] section 2.3.

FSCTL name FSCTL function number

FSCTL_CREATE_OR_GET_OBJECT_ID 0x900c0

FSCTL_DELETE_OBJECT_ID 0x900a0

FSCTL_DELETE_REPARSE_POINT 0x900ac

FSCTL_FILESYSTEM_GET_STATISTICS 0x90060

FSCTL_FIND_FILES_BY_SID 0x9008f

FSCTL_GET_COMPRESSION 0x9003c

FSCTL_GET_NTFS_VOLUME_DATA 0x90064

FSCTL_GET_OBJECT_ID 0x9009c

FSCTL_GET_REPARSE_POINT 0x900a8

FSCTL_GET_RETRIEVAL_POINTERS 0x90073

FSCTL_IS_PATHNAME_VALID 0x9002c

FSCTL_LMR_SET_LINK_TRACKING_INFORMATION 0x1400ec

FSCTL_OFFLOAD_READ 0x94264

FSCTL_OFFLOAD_WRITE 0x98268

FSCTL_QUERY_FAT_BPB 0x90058

FSCTL_QUERY_FILE_REGIONS 0x90284

FSCTL_QUERY_ALLOCATED_RANGES 0x940cf

FSCTL_QUERY_ON_DISK_VOLUME_INFO 0x9013c

FSCTL_QUERY_SPARING_INFO 0x90138

FSCTL_READ_FILE_USN_DATA 0x900eb

FSCTL_SET_COMPRESSION 0x9c040

FSCTL_SET_DEFECT_MANAGEMENT 0x98134

FSCTL_SET_OBJECT_ID 0x90098

FSCTL_SET_OBJECT_ID_EXTENDED 0x900bc

FSCTL_SET_REPARSE_POINT 0x900a4

FSCTL_SET_SPARSE 0x900c4

442 / 464

[MS-SMB2-Diff] - v20190923
Server Message Block (SMB) Protocol Versions 2 and 3
Copyright © 2019 Microsoft Corporation
Release: September 23, 2019

FSCTL name FSCTL function number

FSCTL_SET_ZERO_DATA 0x980c8

FSCTL_SET_ZERO_ON_DEALLOCATION 0x90194

FSCTL_WRITE_USN_CLOSE_RECORD 0x900ef

Windows 8.1 and later and Windows Server 2012 R2 and later allow these additional CtlCode values,
as specified in [MS-RSVD].

FSCTL name FSCTL function number

FSCTL_SVHDX_SYNC_TUNNEL_REQUEST 0x90304

FSCTL_QUERY_SHARED_VIRTUAL_DISK_SUPPORT 0x90300

Windows 10 and later and Windows Server 2016 and later allow the additional CtlCode value, as

specified in [MS-RSVD].

FSCTL name FSCTL function number

FSCTL_SVHDX_ASYNC_TUNNEL_REQUEST 0x90364

Windows 10 and later and Windows Server 2016 and later allow the additional CtlCode value, as
specified in [MS-FSCC].

FSCTL name FSCTL function number

FSCTL_DUPLICATE_EXTENTS_TO_FILE 0x98344

Windows 10 v1803 operating system and later and Windows Server v1803 operating system and later

allow the additional CtlCode value, as specified in [MS-FSCC].

FSCTL name FSCTL function number

FSCTL_DUPLICATE_EXTENTS_TO_FILE_EX 0x983e80x983e8

Windows 10 and later and Windows Server 2016 and later allow the additional CtlCode value, as
specified in [MS-SQOS].

FSCTL name FSCTL function number

FSCTL_STORAGE_QOS_CONTROL 0x90350

<324> Section 3.3.5.15: For the following FSCTLs, Windows Vista SP1, Windows Server 2008,
Windows 7, and Windows Server 2008 R2 return STATUS_FILE_CLOSED instead of

STATUS_INVALID_DEVICE_REQUEST:

▪ FSCTL_QUERY_NETWORK_INTERFACE_INFO

▪ FSCTL_DFS_GET_REFERRALS_EX

▪ FSCTL_VALIDATE_NEGOTIATE_INFO

443 / 464

[MS-SMB2-Diff] - v20190923
Server Message Block (SMB) Protocol Versions 2 and 3
Copyright © 2019 Microsoft Corporation
Release: September 23, 2019

<325> Section 3.3.5.15.1: If MaxOutputResponse is not 16 bytes, Windows-based servers do not
refresh the snapshots.

<326> Section 3.3.5.15.1: Windows-based SMB2 servers will place two extra bytes set to zero in the
SnapShots array and set SnapShotArraySize to two, if NumberOfSnapShots is zero.

<327> Section 3.3.5.15.2: A Windows-based DFS server does not return any data to the caller if the
buffer supplied to FSCTL_GET_DFS_REFERRALS is too small.

<328> Section 3.3.5.15.3: Windows-based servers return STATUS_INVALID_DEVICE_REQUEST if the
FSCTL_PIPE_TRANSCEIVE being executed is not a named pipe share.

<329> Section 3.3.5.15.3: Windows SMB2 servers send an interim response to the client if the
read/write attempt is not finished in 1 millisecond.

<330> Section 3.3.5.15.3: Some Windows–based SMB2 servers return the input buffer that was

received in the request as part of the response. Windows 7, Windows Server 2008 R2, Windows 8,
Windows Server 2012, Windows 8.1, and Windows Server 2012 R2 will not return the input buffer that
was received in the request, and the InputCount field is always zero. Windows Vista SP1 and

Windows Server 2008 will send back the input buffer based on the InputOffset and InputCount
fields indicated in the request.

<331> Section 3.3.5.15.3: Windows–based SMB2 servers set OutputOffset to InputOffset +

InputCount, rounded up to a multiple of 8.

<332> Section 3.3.5.15.4: Windows-based servers return STATUS_INVALID_DEVICE_REQUEST, if
FSCTL_PIPE_PEEK request being executed is not a named pipe share.

<333> Section 3.3.5.15.4: Windows SMB2 servers will set OutputOffset to InputOffset +
InputCount, rounded up to a multiple of 8.

<334> Section 3.3.5.15.5: Windows-based servers do not support any additional contexts.

<335> Section 3.3.5.15.5: Windows-based servers construct the 24-byte blob using

Open.DurableFileId and other pieces of information which include the process ID of the caller and a

timestamp.

<336> Section 3.3.5.15.6: Windows Vista SP1, Windows Server 2008, Windows 7, and Windows
Server 2008 R2 do not verify byte-range locks on both source and destination files.

<337> Section 3.3.5.15.7: Windows 7, Windows Server 2008 R2, Windows 8, Windows Server 2012,
Windows 8.1, and Windows Server 2012 R2 servers support the FSCTL_SRV_READ_HASH request.

<338> Section 3.3.5.15.7: When the branch cache feature is available and the file size is less than

65,536 bytes, Windows servers fail the request with STATUS_HASH_NOT_PRESENT.

<339> Section 3.3.5.15.7: Windows-based servers set the FileDataOffset field to the starting offset
from the segment covering the Offset requested in the SRV_READ_HASH request.

<340> Section 3.3.5.15.8: The following FSCTLs are explicitly blocked by Windows-based SMB2
server and not passed through to the object store. They are failed with STATUS_NOT_SUPPORTED.

FSCTL_REQUEST_OPLOCK_LEVEL_1 (0x00090000)

FSCTL_REQUEST_OPLOCK_LEVEL_2 (0x00090004)

FSCTL_REQUEST_BATCH_OPLOCK (0x00090008)

FSCTL_REQUEST_FILTER_OPLOCK (0x0009005C)

FSCTL_OPLOCK_BREAK_ACKNOWLEDGE (0x0009000C)

444 / 464

[MS-SMB2-Diff] - v20190923
Server Message Block (SMB) Protocol Versions 2 and 3
Copyright © 2019 Microsoft Corporation
Release: September 23, 2019

FSCTL_OPBATCH_ACK_CLOSE_PENDING (0x00090010)

FSCTL_OPLOCK_BREAK_NOTIFY (0x00090014)

FSCTL_MOVE_FILE (0x00090074)

FSCTL_MARK_HANDLE (0x000900FC)

FSCTL_QUERY_RETRIEVAL_POINTERS (0x0009003B)

FSCTL_PIPE_ASSIGN_EVENT (0x00110000)

FSCTL_GET_VOLUME_BITMAP (0x0009006F)

FSCTL_GET_NTFS_FILE_RECORD (0x00090068)

FSCTL_INVALIDATE_VOLUMES (0x00090054)

FSCTL_READ_USN_JOURNAL (0x000900BB)

FSCTL_CREATE_USN_JOURNAL (0x000900E7)

FSCTL_QUERY_USN_JOURNAL (0x000900F4)

FSCTL_DELETE_USN_JOURNAL (0x000900F8)

FSCTL_ENUM_USN_DATA (0x000900B3)

FSCTL_QUERY_DEPENDENT_VOLUME (0x000901F0)

FSCTL_SD_GLOBAL_CHANGE (0x000901F4)

FSCTL_GET_BOOT_AREA_INFO (0x00090230)

FSCTL_GET_RETRIEVAL_POINTER_BASE (0x00090234)

FSCTL_SET_PERSISTENT_VOLUME_STATE (0x00090238)

FSCTL_QUERY_PERSISTENT_VOLUME_STATE (0x0009023C)

FSCTL_REQUEST_OPLOCK (0x00090240)

FSCTL_TXFS_MODIFY_RM (0x00098144)

FSCTL_TXFS_QUERY_RM_INFORMATION (0x00094148)

FSCTL_TXFS_ROLLFORWARD_REDO (0x00098150)

FSCTL_TXFS_ROLLFORWARD_UNDO (0x00098154)

FSCTL_TXFS_START_RM (0x00098158)

FSCTL_TXFS_SHUTDOWN_RM (0x0009815C)

FSCTL_TXFS_READ_BACKUP_INFORMATION (0x00094160)

FSCTL_TXFS_WRITE_BACKUP_INFORMATION (0x00098164)

FSCTL_TXFS_CREATE_SECONDARY_RM (0x00098168)

FSCTL_TXFS_GET_METADATA_INFO (0x0009416C)

FSCTL_TXFS_GET_TRANSACTED_VERSION (0x00094170)

445 / 464

[MS-SMB2-Diff] - v20190923
Server Message Block (SMB) Protocol Versions 2 and 3
Copyright © 2019 Microsoft Corporation
Release: September 23, 2019

FSCTL_TXFS_SAVEPOINT_INFORMATION (0x00098178)

FSCTL_TXFS_CREATE_MINIVERSION (0x0009817C)

FSCTL_TXFS_TRANSACTION_ACTIVE (0x0009418C)

FSCTL_TXFS_LIST_TRANSACTIONS (0x000941E4)

FSCTL_TXFS_READ_BACKUP_INFORMATION2 (0x000901F8)

FSCTL_TXFS_WRITE_BACKUP_INFORMATION2 (0x00090200)

FSCTL_QUERY_FILE_REGIONS (0x00090284)

FSCTL_IS_CSV_FILE (0x00090248)

FSCTL_IS_FILE_ON_CSV_VOLUME (0x0009025C)

Windows-based SMB2 servers fail FSCTLs whose transfer type is METHOD_NEITHER with error

STATUS_NOT_SUPPORTED except the following ones. For more information about FSCTL transfer

type, see [MSDN-IoCtlCodes].

FSCTL_PIPE_TRANSCEIVE (0x0011C017)

FSCTL_QUERY_ALLOCATED_RANGES (0x000940CF)

FSCTL_WRITE_USN_CLOSE_RECORD (0x000900EF)

FSCTL_READ_FILE_USN_DATA (0x000900EB)

FSCTL_GET_RETRIEVAL_POINTERS (0x00090073)

FSCTL_FIND_FILES_BY_SID (0x0009008F)

FSCTL_SRV_READ_HASH (0x001441BB)

<341> Section 3.3.5.15.8: Windows performs passthrough FSCTL operations via Server Requests an
FsControl Request [MS-FSA] section 2.1.5.9.

<342> Section 3.3.5.15.8: Windows–based SMB2 servers will set OutputOffset to InputOffset +
InputCount, rounded up to a multiple of 8.

<343> Section 3.3.5.15.9: Windows 7, Windows Server 2008 R2, Windows 8, Windows Server 2012,

Windows 8.1, and Windows Server 2012 R2 servers process the FSCTL_LMR_REQUEST_RESILIENCY
request regardless of the negotiated dialect.

<344> Section 3.3.5.15.9: Windows 7 and Windows Server 2008 R2 servers keep the resilient handle
open indefinitely when the requested Timeout value is equal to zero. Windows 8, Windows Server
2012, Windows 8.1, and Windows Server 2012 R2 servers set a constant value of 120 seconds.

<345> Section 3.3.5.15.13: Windows 8, Windows Server 2012, Windows 8.1, and Windows Server
2012 R2 require that the caller is a member of the Administrators group.

<346> Section 3.3.5.16: Windows-based servers use only the 30 least significant bits of AsyncId to
look up a request in Connection.AsyncCommandList.

<347> Section 3.3.5.16: When being handled by an object store, Windows performs cancellation of
in-progress requests via the interface in [MS-FSA] section 2.1.5.19, Server Requests Canceling an
Operation, passing Request.CancelRequestId as an input parameter. Windows does not attempt to
cancel other in-progress requests.

446 / 464

[MS-SMB2-Diff] - v20190923
Server Message Block (SMB) Protocol Versions 2 and 3
Copyright © 2019 Microsoft Corporation
Release: September 23, 2019

<348> Section 3.3.5.17: Windows Vista SP1, Windows 7, Windows Server 2008, and Windows Server
2008 R2 servers do not disconnect the connection.

<349> Section 3.3.5.18: Windows Vista SP1, Windows Server 2008, Windows 7, Windows Server
2008 R2, Windows 8, Windows Server 2012, Windows 8.1, and Windows Server 2012 R2 fail the

request with STATUS_NOT_SUPPORTED.

<350> Section 3.3.5.18: Windows-based SMB2 servers fail the request with
STATUS_INVALID_PARAMETER if OutputBufferLength is greater than 65536.

<351> Section 3.3.5.18: Windows Vista SP1, Windows Server 2008, Windows 7, and Windows Server
2008 R2 close and reopen the directory handle prior to processing the request.

<352> Section 3.3.5.18: Windows-based servers perform query directory requests, as specified in
[MS-FSA] section 2.1.5.5 with the following input parameters:

▪ Open is set to Open.LocalOpen.

▪ FileInformationClass is set to the InformationClass that is received in the SMB2

QUERY_DIRECTORY Request.

▪ OutputBufferSize is set to the OutputBufferLength that is received in the SMB2
QUERY_DIRECTORY Request.

▪ If SMB2_RESTART_SCANS or SMB2_REOPEN is set in the Flags field of the SMB2

QUERY_DIRECTORY Request, RestartScan is set to TRUE.

▪ If SMB2_RETURN_SINGLE_ENTRY is set in the Flags field of the request, ReturnSingleEntry is set
to TRUE.

▪ FileIndex is set to FileIndex received in the SMB2 QUERY_DIRECTORY Request.

▪ FileNamePattern is set to the search pattern specified in the SMB2 QUERY_DIRECTORY by
FileNameOffset and FileNameLength.

<353> Section 3.3.5.18: Windows-based servers do not support resuming an enumeration at a

specified FileIndex. The server will ignore this flag.

<354> Section 3.3.5.19: Windows-based SMB2 servers fail the request with
STATUS_INVALID_PARAMETER if OutputBufferLength is greater than 65536.

<355> Section 3.3.5.19: Windows-based servers handle the following commands asynchronously:
SMB2 Create (section 2.2.13) when this create would result in an oplock break, SMB2 IOCTL
Request (section 2.2.31) for FSCTL_PIPE_TRANSCEIVE if it blocks for more than 1 millisecond, SMB2
IOCTL Request for FSCTL_SRV_COPYCHUNK or FSCTL_SRV_COPYCHUNK_WRITE (section 2.2.31)

when oplock break happens, SMB2 Change_Notify Request (section 2.2.35) if it blocks for more than
0.5 milliseconds, SMB2 Read Request (section 2.2.19) for named pipes if it blocks for more than 0.5
milliseconds, SMB2 Write Request (section 2.2.21) for named pipes if it blocks for more than 0.5
milliseconds, SMB2 Write Request (section 2.2.21) for large file write, SMB2 lock
Request (section 2.2.26) if the SMB2_LOCKFLAG_FAIL_IMMEDIATELY flag is not set, and SMB2 FLUSH
Request (section 2.2.17) for named pipes.

<356> Section 3.3.5.19: Windows requests ChangeNotify processing via Server Requests Change
Notifications for a Directory in [MS-FSA] section 2.1.5.10. If the SMB2_WATCH_TREE flag is set, the
WatchTree boolean is passed as TRUE. ChangeNotify notification is reported as described in [MS-FSA]
section 2.1.5.10.1.

<357> Section 3.3.5.20: Windows-based SMB2 servers fail the request with
STATUS_INVALID_PARAMETER if OutputBufferLength is greater than 65536.

447 / 464

[MS-SMB2-Diff] - v20190923
Server Message Block (SMB) Protocol Versions 2 and 3
Copyright © 2019 Microsoft Corporation
Release: September 23, 2019

<358> Section 3.3.5.20.1: Windows-based SMB2 servers fail the following request levels with
STATUS_INVALID_INFO_CLASS instead of STATUS_NOT_SUPPORTED: 1, 2, 3, 10, 11, 12, 13, 19, 20,

27, 31, 36, 37, 38, 39, 40, 50.

<359> Section 3.3.5.20.1: Windows-based SMB2 servers fail the following request levels with

STATUS_NOT_SUPPORTED instead of STATUS_INVALID_INFO_CLASS: 41, 43, 47, 49, 51, and 53.
Windows-based SMB2 servers fail requests of level 52 with STATUS_INFO_LENGTH_MISMATCH.

<360> Section 3.3.5.20.1: Windows 10 v1709, Windows Server v1709 and prior do not support the
FileNormalizedNameInformation information class.

<361> Section 3.3.5.20.1: Windows-based SMB2 servers will set CurrentByteOffset to any value.

<362> Section 3.3.5.20.1: Windows performs SMB2 GET_INFO SMB2_0_INFO_FILE processing as
specified in the subsection of [MS-FSA] section 2.1.5.11, corresponding to the requested

FILE_INFORMATION_CLASS value of the FileInfoClass request field, as listed in section 2.2.37.

<363> Section 3.3.5.20.1: If the information class is FileAllInformation, Windows Vista SP1,
Windows Server 2008, Windows 7, Windows Server 2008 R2, Windows 8, Windows Server 2012,

Windows 8.1, and Windows Server 2012 R2 return an absolute path to the file name as part of
FileNameInformation.

<364> Section 3.3.5.20.2: Windows performs SMB2 GET_INFO SMB2_0_INFO_FILESYSTEM

processing via the subsection of [MS-FSA] section 2.1.5.12 corresponding to the requested
FS_INFORMATION_CLASS value of the FileInfoClass request field, as listed in section 2.2.37.

<365> Section 3.3.5.20.2: SetFsInfo calls to Windows-based servers fail with
STATUS_ACCESS_DENIED because Windows-based servers do not allow setting volume information
over the network.

<366> Section 3.3.5.20.3: Windows performs SMB2 GET_INFO SMB2_0_INFO_SECURITY processing
via Server Requests a Query of Security Information ([MS-FSA] section 2.1.5.13).

<367> Section 3.3.5.20.4: Windows-based servers do support quotas, if configured.

<368> Section 3.3.5.20.4: Windows performs SMB2 GET_INFO SMB2_0_INFO_QUOTA processing via
Server Requests a Query of Quota Information ([MS-FSA] section 2.1.5.20).

<369> Section 3.3.5.21: Windows-based SMB2 servers fail the request with
STATUS_INVALID_PARAMETER if BufferLength is greater than 65536.

<370> Section 3.3.5.21.1: Windows-based SMB2 servers fail the following request levels with
STATUS_NOT_SUPPORTED instead of STATUS_INVALID_INFO_CLASS: 30, 41, 42, 43.

<371> Section 3.3.5.21.1: Windows performs SMB2 SET_INFO SMB2_0_INFO_FILE processing via the
subsection of [MS-FSA] section 2.1.5.14 corresponding to the requested FILE_INFORMATION_CLASS
value of the FileInfoClass request field, as listed in section 2.2.37.

<372> Section 3.3.5.21.2: Windows performs SMB2 SET_INFO SMB2_0_INFO_FILESYSTEM
processing via the subsection of [MS-FSA] section 2.1.5.15 corresponding to the requested
FS_INFORMATION_CLASS value of the FileInfoClass request field, as listed in section 2.2.37.

<373> Section 3.3.5.21.3: If the underlying object store does not support object security based on
Access Control Lists (as specified in [MS-DTYP] section 2.4.5), it returns STATUS_SUCCESS.

<374> Section 3.3.5.21.3: Windows Server 2008, Windows 7 and Windows Server 2008 R2 ignore the
ATTRIBUTE_SECURITY_INFORMATION flag value.

<375> Section 3.3.5.21.3: Windows Server 2008, Windows 7 and Windows Server 2008 R2 ignore
the SCOPE_SECURITY_INFORMATION flag value.

448 / 464

[MS-SMB2-Diff] - v20190923
Server Message Block (SMB) Protocol Versions 2 and 3
Copyright © 2019 Microsoft Corporation
Release: September 23, 2019

<376> Section 3.3.5.21.3: Windows Server 2008, Windows 7 and Windows Server 2008 R2 ignore
the BACKUP_SECURITY_INFORMATION flag value.

<377> Section 3.3.5.21.3: Windows performs SMB2 SET_INFO SMB2_0_INFO_SECURITY processing
via Server Requests Setting of Security Information [MS-FSA] section 2.1.5.16.

<378> Section 3.3.5.21.4: Windows-based servers do support quotas, if configured.

<379> Section 3.3.5.21.4: Windows performs SMB2 SET_INFO SMB2_0_INFO_QUOTA processing via
Server Requests Setting of Quota Information ([MS-FSA] section 2.1.5.21).

<378<380> Section 3.3.5.22.1: Windows-based servers complete the oplock break indication request
with the object store by providing the following SMB2 parameters as input parameters, as specified
[MS-FSA] section 2.1.5.18:

Object Store parameter SMB2 parameter

Open Open.LocalOpen

Type SMB2_OPLOCK_LEVEL_NONE

<381> Section 3.3.5.22.1: Windows-based servers complete the oplock break indication request with
the object store by providing the following SMB2 parameters as input parameters, as specified [MS-
FSA] section 2.1.5.18:

Object Store parameter SMB2 parameter

Open Open.LocalOpen

Type SMB2_OPLOCK_LEVEL_NONE

<382> Section 3.3.5.22.1: Windows-based servers complete the oplock break indication request with
the object store by providing the following SMB2 parameters as input parameters, as specified [MS-
FSA] section 2.1.5.18:

Object Store parameter SMB2 parameter

Open Open.LocalOpen

Type SMB2_OPLOCK_LEVEL_NONE

<380> Section 3.3.5.22.1: Windows-based servers complete the oplock break indication request with
the object store by providing the following SMB2 parameters as input parameters, as specified [MS-
FSA] section 2.1.5.18:

Object Store parameter SMB2 parameter

Open Open.LocalOpen

Type SMB2_OPLOCK_LEVEL_NONE

449 / 464

[MS-SMB2-Diff] - v20190923
Server Message Block (SMB) Protocol Versions 2 and 3
Copyright © 2019 Microsoft Corporation
Release: September 23, 2019

<381<383> Section 3.3.5.22.1: If multiple conflicting Opens occur before an Oplock
Acknowledgment for the first oplock break is received, that change the server oplock state to a level

that is lower than the pending notification, the server fails the Oplock Acknowledgment with
STATUS_REQUEST_NOT_ACCEPTED. Windows-based servers complete the oplock break indication

request with the object store by providing the following SMB2 parameters as input parameters, as
specified in [MS-FSA] section 2.1.5.18:

Object Store parameter SMB2 parameter

Open Open.LocalOpen

Type OplockLevel

<384> Section 3.3.6.3: Windows-based servers use a constant time-out value of 45 seconds.

<385> Section 3.3.7.1: Windows performs cancellation of in-progress requests via the interface in

[MS-FSA] section 2.1.5.19, Server Requests Canceling an Operation, passing
Request.CancelRequestId as an input parameter.

<386> Section 3.3.7.1: Windows 7, Windows Server 2008 R2, Windows 8, Windows Server 2012,
Windows 8.1, and Windows Server 2012 R2 servers will not reset
ResilientOpenScavengerExpiryTime.

<387> Section 3.3.7.1: Windows performs cancellation of in-progress requests via the interface in
[MS-FSA] section 2.1.5.19, Server Requests Canceling an Operation, passing

Request.CancelRequestId as an input parameter.

450 / 464

[MS-SMB2-Diff] - v20190923
Server Message Block (SMB) Protocol Versions 2 and 3
Copyright © 2019 Microsoft Corporation
Release: September 23, 2019

7 Change Tracking

This section identifies changes that were made to this document since the last release. Changes are
classified as Major, Minor, or None.

The revision class Major means that the technical content in the document was significantly revised.
Major changes affect protocol interoperability or implementation. Examples of major changes are:

▪ A document revision that incorporates changes to interoperability requirements.

▪ A document revision that captures changes to protocol functionality.

The revision class Minor means that the meaning of the technical content was clarified. Minor changes
do not affect protocol interoperability or implementation. Examples of minor changes are updates to
clarify ambiguity at the sentence, paragraph, or table level.

The revision class None means that no new technical changes were introduced. Minor editorial and
formatting changes may have been made, but the relevant technical content is identical to the last

released version.

The changes made to this document are listed in the following table. For more information, please
contact dochelp@microsoft.com.

Section Description
Revision
class

2.2.2.1 SMB2 ERROR Context Response
10020 : Updated the description of the ErrorId
field.

Major

2.2.3.1.4
SMB2_NETNAME_NEGOTIATE_CONTEXT_ID

10048 : Updated the description of the
NetName field.

Major

2.2.3.1.4
SMB2_NETNAME_NEGOTIATE_CONTEXT_ID

10010 : Updated the description of the
SMB2_NETNAME_NEGOTIATE_CONTEXT_ID.

Major

2.2.14.2.9
SMB2_CREATE_QUERY_ON_DISK_ID

10042 : Updated the description of the
DiskFileId field.

Major

2.2.33 SMB2 QUERY_DIRECTORY Request
10042 : Updated the descriptions in the
FileInformationClass field.

Major

3.1.4.4 Compressing the Message
9987 : Updated the processing rules for the
Offset field.

Major

3.2.1.2 Per SMB2 Transport Connection
10048 : Updated the description of the
Connection.ServerName ADM.

Major

3.2.1.6 Per Application Open of a File 9931 : Added the Open.Session ADM element. Major

3.2.1.6 Per Application Open of a File
Updated the processing rules for ADM elements
based on negotiated dialect.

Major

3.2.4.1.7 Selecting a Connection
9931 : Updated the processing rules for
selecting a connection.

Major

3.2.4.2.3 Authenticating the User
9931 : Updated the processing rules for
selecting a Session.

Major

3.2.4.4 Re-establishing a Durable Open
9931 : Updated the processing rules for
Open.Durable.

Major

3.2.4.4 Re-establishing a Durable Open
Updated the processing rules for ADM elements
based on negotiated dialect.

Major

451 / 464

[MS-SMB2-Diff] - v20190923
Server Message Block (SMB) Protocol Versions 2 and 3
Copyright © 2019 Microsoft Corporation
Release: September 23, 2019

Section Description
Revision
class

3.2.4.5 Application Requests Closing a File or
Named Pipe

9931 : Updated the processing rules for
selecting a connection.

Major

3.2.4.6 Application Requests Reading from a
File or Named Pipe

9931 : Updated the processing rules for
selecting a connection.

Major

3.2.4.7 Application Requests Writing to a File
or Named Pipe

9931 : Updated the processing rules for
selecting a connection.

Major

3.2.4.8 Application Requests Querying File
Attributes

9931 : Updated the processing rules for
selecting a connection.

Major

3.2.4.9 Application Requests Applying File
Attributes

9931 : Updated the processing rules for
selecting a connection.

Major

3.2.4.10 Application Requests Querying File
System Attributes

9931 : Updated the processing rules for
selecting a connection.

Major

3.2.4.11 Application Requests Applying File
System Attributes

9931 : Updated the processing rules for
selecting a connection.

Major

3.2.4.12 Application Requests Querying File
Security

9931 : Updated the processing rules for
selecting a connection.

Major

3.2.4.13 Application Requests Applying File
Security

9931 : Updated the processing rules for
selecting a connection.

Major

3.2.4.14 Application Requests Querying Quota
Information

9931 : Updated the processing rules for
selecting a connection.

Major

3.2.4.15 Application Requests Applying Quota
Information

9931 : Updated the processing rules for
selecting a connection.

Major

3.2.4.16 Application Requests Flushing
Cached Data

9931 : Updated the processing rules for
selecting a connection.

Major

3.2.4.17 Application Requests Enumerating a
Directory

9931 : Updated the processing rules for
selecting a connection.

Major

3.2.4.18 Application Requests Change
Notifications for a Directory

9931 : Updated the processing rules for
selecting a connection.

Major

3.2.4.19 Application Requests Locking of an
Array of Byte Ranges

9931 : Updated the processing rules for
selecting a connection.

Major

3.2.4.20.1 Application Requests Enumeration
of Previous Versions

9931 : Updated the processing rules for
selecting a connection.

Major

3.2.4.20.2.1 Application Requests a Source
File Key

9931 : Updated the processing rules for
selecting a connection.

Major

3.2.4.20.2.2 Application Requests a Server
Side Data Copy

9931 : Updated the processing rules for
selecting a connection.

Major

3.2.4.20.4 Application Requests a Pipe
Transaction

9931 : Updated the processing rules for
selecting a connection.

Major

3.2.4.20.5 Application Requests a Peek at
Pipe Data

9931 : Updated the processing rules for
selecting a connection.

Major

3.2.4.20.6 Application Requests a Pass-
Through Operation

9931 : Updated the processing rules for
selecting a connection.

Major

452 / 464

[MS-SMB2-Diff] - v20190923
Server Message Block (SMB) Protocol Versions 2 and 3
Copyright © 2019 Microsoft Corporation
Release: September 23, 2019

Section Description
Revision
class

3.2.4.20.7 Application Requests Content
Information for a File

9931 : Updated the processing rules for
selecting a connection.

Major

3.2.4.20.8 Application Requests Resiliency on
an Open File

9931 : Updated the processing rules for
selecting a connection.

Major

3.2.4.20.11 Application Requests Remote
Shared Virtual Disk File Control Operation

9931 : Updated the processing rules for
selecting a connection.

Major

3.2.4.21 Application Requests Unlocking of an
Array of Byte Ranges

9931 : Updated the processing rules for
selecting a connection.

Major

3.2.4.28 Application Notifies Online Status of
a Server

9931 : Updated the processing rules for an
Open.

Major

3.2.4.29 Application Requests Moving to a
Server Instance

9931 : Updated the processing rules for an
Open.

Major

3.2.5.2 Receiving an SMB2 NEGOTIATE
Response

10010 : Updated the processing rules for
NegotiateContextList.

Major

3.2.5.7 Receiving an SMB2 CREATE Response
for a New Create Operation

Updated the processing rules for ADM elements
based on negotiated dialect.

Major

3.2.7.1 Handling a Network Disconnect
9931 : Updated the processing rules for a
Session.

Major

3.3.1.10 Per Open
Updated the processing rules for ADM elements
based on negotiated dialect.

Major

3.3.4.1.6 Selecting a Connection 9931 : New Topic. Major

3.3.4.6 Object Store Indicates an Oplock
Break

9931 : Updated the processing rules for an
Open.

Major

3.3.4.7 Object Store Indicates a Lease Break
9931 : Updated the processing rules for an
Open.

Major

3.3.5.4 Receiving an SMB2 NEGOTIATE
Request

9957 : Updated the processing rules for the
SMB2_COMPRESSION_CAPABILITIES negotiate
context.

Major

3.3.5.4 Receiving an SMB2 NEGOTIATE
Request

9988 : Updated the processing rules for
Connection.CompressionIds.

Major

3.3.5.4 Receiving an SMB2 NEGOTIATE
Request

10010 : Updated the processing rules for
NegotiateContextList.

Major

3.3.5.9 Receiving an SMB2 CREATE Request
Updated the processing rules for ADM elements
based on negotiated dialect.

Major

3.3.5.15 Receiving an SMB2 IOCTL Request
Updated the processing rules for when
STATUS_INVALID_PARAMETER is returned.

Major

3.3.6.2 Durable Open Scavenger Timer Event
9931 : Updated the processing rules for an
Open.

Major

3.3.6.4 Resilient Open Scavenger Timer Event
9931 : Updated the processing rules for an
Open.

Major

453 / 464

[MS-SMB2-Diff] - v20190923
Server Message Block (SMB) Protocol Versions 2 and 3
Copyright © 2019 Microsoft Corporation
Release: September 23, 2019

8 Index
A

Abstract data model
 client (section 3.1.1 142, section 3.2.1 145)
 server (section 3.1.1 142, section 3.3.1 237)
Access mask encoding 71
Applicability 24
Application Requests Reauthenticating a User 162
Authenticating the user 161

C

Capability negotiation 24
Change notifications algorithm 238
Change tracking 450
Channel (section 3.2.1.8 151, section 3.3.1.14 251)
Client
 abstract data model (section 3.1.1 142, section 3.2.1 145)

 global connections 145
 higher-layer triggered events 152
 notifying offline status of server 205
 notifying online status of server 206
 overview 152
 re-establishing a durable open 169
 requesting applying of file attributes 176
 requesting applying of file security attributes 179
 requesting applying of file system attributes 177
 requesting applying of quota information 182
 requesting cancellation of operation 204
 requesting change of notifications for directory 185
 requesting closing of file or named pipe 170
 requesting closing of share connection 204
 requesting connection to share 156
 requesting enumeration of directory 183
 requesting flushing of cached data 183
 requesting IO control code operation 187
 requesting locking of array of byte ranges 186
 requesting move to server instance 206
 requesting number of opens on tree connect 205
 requesting opening of file 164
 requesting querying for file attributes 174
 requesting querying for file security attributes 178
 requesting querying for file system attributes 176
 requesting querying for quota information 180
 requesting reading from file or named pipe 171
 requesting session key for authenticated context 205
 requesting termination of authenticated context 204
 requesting unlocking of array of byte ranges 202
 requesting writing to file or named pipe 172
 sending any outgoing message 152
 signing outgoing message 142
 initialization (section 3.1.3 142, section 3.2.3 152)
 local events (section 3.1.7 145, section 3.2.7 236, section 3.2.7.1 236)
 message processing
 overview 206
 receiving any message 206
 receiving SMB2 CHANGE_NOTIFY response 232
 receiving SMB2 CLOSE response 228
 receiving SMB2 CREATE response for new create operation 224
 receiving SMB2 CREATE response for open reestablishment 226
 receiving SMB2 FLUSH response 228

454 / 464

[MS-SMB2-Diff] - v20190923
Server Message Block (SMB) Protocol Versions 2 and 3
Copyright © 2019 Microsoft Corporation
Release: September 23, 2019

 receiving SMB2 IOCTL response 229
 receiving SMB2 LOCK response 229
 receiving SMB2 LOGOFF response 220
 receiving SMB2 NEGOTIATE response 210
 receiving SMB2 OPLOCK_BREAK notification 233
 receiving SMB2 QUERY_DIRECTORY response 232
 receiving SMB2 QUERY_INFO response 232
 receiving SMB2 READ response 228
 receiving SMB2 SESSION_SETUP response 213
 receiving SMB2 SET_INFO response 232
 receiving SMB2 TREE_CONNECT response 220
 receiving SMB2 TREE_DISCONNECT response 223
 receiving SMB2 WRITE response 228
 verifying incoming message 144
 message sequence numbers algorithm 155
 per channel 151
 per open 149
 per pending request 151
 per session 148
 per SMB2 transport connection 146
 per tree connect 148
 per unique open file 149
 required global data 142

 sequencing rules
 overview 206
 receiving any message 206
 receiving SMB2 CHANGE_NOTIFY response 232
 receiving SMB2 CLOSE response 228
 receiving SMB2 CREATE response for new create operation 224
 receiving SMB2 CREATE response for open reestablishment 226
 receiving SMB2 FLUSH response 228
 receiving SMB2 IOCTL response 229
 receiving SMB2 LOCK response 229
 receiving SMB2 LOGOFF response 220
 receiving SMB2 NEGOTIATE response 210
 receiving SMB2 OPLOCK_BREAK notification 233
 receiving SMB2 QUERY_DIRECTORY response 232
 receiving SMB2 QUERY_INFO response 232
 receiving SMB2 READ response 228
 receiving SMB2 SESSION_SETUP response 213
 receiving SMB2 SET_INFO response 232
 receiving SMB2 TREE_CONNECT response 220
 receiving SMB2 TREE_DISCONNECT response 223
 receiving SMB2 WRITE response 228
 verifying incoming message 144
 timer events (section 3.1.6 145, section 3.2.6 235)
 timers (section 3.1.2 142, section 3.2.2 151)
Connecting to the share 163
Connecting to the target server 158
Connections - global 145
Credit granting algorithm 238

D

Data - global 142
Data model - abstract
 client 145
 server 237
Data model – abstract
 client (section 3.1.1 142, section 3.2.1 145)
 server (section 3.1.1 142, section 3.3.1 237)
Directory_Access_Mask packet 72

Disconnecting example 398
Durable open scavenger timer 251
Durable open scavenger timer event 358

455 / 464

[MS-SMB2-Diff] - v20190923
Server Message Block (SMB) Protocol Versions 2 and 3
Copyright © 2019 Microsoft Corporation
Release: September 23, 2019

E

Establishing alternate channel example 400
Examples
 disconnecting 398
 establishing alternate channel 400
 logging off 398
 multi-protocol negotiate 362
 named pipe 377
 negotiating SMB 2.10 dialect by using multi-protocol negotiate 367
 overview 362
 remote files
 reading 384
 writing 389
 SMB2 negotiate 372

F

Fields - vendor-extensible 27
Fields – vendor-extensible 27
File_Pipe_Printer_Access_Mask packet 71

G

Global connections 145
Global data 142
Global structures 240
Glossary 14

H

HASH_HEADER packet 120
Higher-layer triggered events
 client 152
 notifying offline status of server 205
 notifying online status of server 206
 overview 152
 re-establishing a durable open 169
 requesting applying of file attributes 176
 requesting applying of file security attributes 179
 requesting applying of file system attributes 177
 requesting applying of quota information 182
 requesting cancellation of operation 204
 requesting change of notifications for directory 185

 requesting closing of file or named pipe 170
 requesting closing of share connection 204
 requesting connection to share 156
 requesting enumeration of directory 183
 requesting flushing of cached data 183
 requesting IO control code operation 187
 requesting locking of array of byte ranges 186
 requesting move to server instance 206
 requesting number of opens on tree connect 205
 requesting opening of file 164
 requesting querying for file attributes 174
 requesting querying for file security attributes 178
 requesting querying for file system attributes 176
 requesting querying for quota information 180
 requesting reading from file or named pipe 171
 requesting session key for authenticated context 205
 requesting termination of authenticated context 204
 requesting unlocking of array of byte ranges 202
 requesting writing to file or named pipe 172
 sending any outgoing message 152

456 / 464

[MS-SMB2-Diff] - v20190923
Server Message Block (SMB) Protocol Versions 2 and 3
Copyright © 2019 Microsoft Corporation
Release: September 23, 2019

 signing outgoing message 142
 server 253
 deregistering share 263
 disabling SMB2 server 267
 enabling SMB2 server 267
 notification that DFS is active 260
 notification that share is DFS share 260
 notification that share is not DFS share 260
 object store indicating lease break 259
 object store indicating oplock break 258
 overview 253
 querying Open 266
 querying session 265
 querying share 263
 querying TreeConnect 265
 registering share 261
 requesting closing of open 264
 requesting closing of session 260
 requesting security context 260
 requesting server statistics 267
 requesting session key 257
 requesting transport binding change 266
 sending any outgoing message 253

 sending error response 256
 sending interim response for asynchronous operation 255
 sending success response 256
 signing outgoing message 142
 updating share 262

I

Idle connection timer 151
Idle connection timer event 235
Implementer - security considerations 414
Incoming message - verifying 144
Index of security parameters 414
Informative references 19
Initialization
 client (section 3.1.3 142, section 3.2.3 152)
 server (section 3.1.3 142, section 3.3.3 252)
Introduction 14

L

Lease 249
Lease table 249
Leasing algorithm 239
Local events
 client (section 3.1.7 145, section 3.2.7 236, section 3.2.7.1 236)
 server (section 3.1.7 145, section 3.3.7 360, section 3.3.7.1 360)
Logging off example 398

M

Message processing
 client
 overview 206
 receiving any message 206
 receiving SMB2 CHANGE_NOTIFY response 232
 receiving SMB2 CLOSE response 228
 receiving SMB2 CREATE response for new create operation 224
 receiving SMB2 CREATE response for open reestablishment 226
 receiving SMB2 FLUSH response 228
 receiving SMB2 IOCTL response 229
 receiving SMB2 LOCK response 229

457 / 464

[MS-SMB2-Diff] - v20190923
Server Message Block (SMB) Protocol Versions 2 and 3
Copyright © 2019 Microsoft Corporation
Release: September 23, 2019

 receiving SMB2 LOGOFF response 220
 receiving SMB2 NEGOTIATE response 210
 receiving SMB2 OPLOCK_BREAK notification 233
 receiving SMB2 QUERY_DIRECTORY response 232
 receiving SMB2 QUERY_INFO response 232
 receiving SMB2 READ response 228
 receiving SMB2 SESSION_SETUP response 213
 receiving SMB2 SET_INFO response 232
 receiving SMB2 TREE_CONNECT response 220
 receiving SMB2 TREE_DISCONNECT response 223
 receiving SMB2 WRITE response 228
 verifying incoming message 144
 server
 accepting incoming connection 268
 overview 268
 receiving any message 269
 receiving SMB_COM_NEGOTIATE 276
 receiving SMB2 CANCEL request 342
 receiving SMB2 CHANGE_NOTIFY request 345
 receiving SMB2 CLOSE request 317
 receiving SMB2 CREATE request 297
 receiving SMB2 ECHO request 343
 receiving SMB2 FLUSH request 318

 receiving SMB2 IOCTL request 326
 receiving SMB2 LOCK request 323
 receiving SMB2 LOGOFF request 292
 receiving SMB2 NEGOTIATE request 278
 receiving SMB2 OPLOCK_BREAK acknowledgment 356
 receiving SMB2 QUERY_DIRECTORY request 343
 receiving SMB2 QUERY_INFO request 347
 receiving SMB2 READ request 319
 receiving SMB2 SESSION_SETUP request 283
 receiving SMB2 SET_INFO request 352
 receiving SMB2 TREE_CONNECT request 293
 receiving SMB2 TREE_DISCONNECT request 296
 receiving SMB2 WRITE request 321
 verifying incoming message 144
Message sequence numbers algorithm (section 3.2.4.1.6 155, section 3.3.1.1 237)
Messages
 overview 29
 signing outgoing 142
 SMB2 CANCEL Request 110
 SMB2 CHANGE_NOTIFY Request 128
 SMB2 CHANGE_NOTIFY Response 130
 SMB2 CLOSE Request 92
 SMB2 CLOSE Response 93
 SMB2 COMPRESSION_TRANSFORM_HEADER 141
 SMB2 CREATE Request 66
 SMB2 CREATE Response 83
 SMB2 ECHO Request 110
 SMB2 ECHO Response 110
 SMB2 ERROR Response 37
 SMB2 FLUSH Request 95
 SMB2 FLUSH Response 95
 SMB2 IOCTL Request 111
 SMB2 IOCTL Response 117
 SMB2 LOCK Request 107
 SMB2 LOCK Response 109
 SMB2 LOGOFF Request 55
 SMB2 LOGOFF Response 56
 SMB2 NEGOTIATE Request 44
 SMB2 NEGOTIATE Response 49
 SMB2 Packet Header 31
 SMB2 QUERY_DIRECTORY Request 126
 SMB2 QUERY_DIRECTORY Response 128

458 / 464

[MS-SMB2-Diff] - v20190923
Server Message Block (SMB) Protocol Versions 2 and 3
Copyright © 2019 Microsoft Corporation
Release: September 23, 2019

 SMB2 QUERY_INFO Request 131
 SMB2 QUERY_INFO Response 135
 SMB2 READ Request 96
 SMB2 READ Response 98
 SMB2 SESSION_SETUP Request 53
 SMB2 SESSION_SETUP Response 54
 SMB2 SET_INFO Request 136
 SMB2 SET_INFO Response 139
 SMB2 TRANSFORM_HEADER 139
 SMB2 TREE_CONNECT Request 56
 SMB2 TREE_CONNECT Response 63
 SMB2 TREE_DISCONNECT Request 65
 SMB2 TREE_DISCONNECT Response 66
 SMB2 WRITE Request 98
 SMB2 WRITE Response 100
 syntax 29
 transport 29
 verifying incoming 144
Multi-protocol negotiate example 362

N

Named pipe example 377
Negotiating SMB 2.10 dialect by using multi-protocol negotiate example 367
Negotiating the protocol 159
Network disconnect 236
NETWORK_INTERFACE_INFO_Response packet 123
NETWORK_RESILIENCY_REQUEST_Request packet 115
Normative references 18

O

Open (section 3.2.1.6 149, section 3.3.1.10 246)
Oplock break acknowledgment timer 251
Oplock break acknowledgment timer event 358
Outgoing message - signing 142
Overview (synopsis) 20

P

Parameter index - security 414
Parameters - security index 414
Pending request 151
Pipe - named - example 377
Preconditions 24
Prerequisites 24
Product behavior 415

R

References 18
 informative 19
 normative 18
Relationship to other protocols 22
Remote files
 reading - example 384
 writing - example 389
Request 250
Request expiration timer 151
Request expiration timer event 235
Resilient open scavenger timer 251
Resilient open scavenger timer event 359

S

459 / 464

[MS-SMB2-Diff] - v20190923
Server Message Block (SMB) Protocol Versions 2 and 3
Copyright © 2019 Microsoft Corporation
Release: September 23, 2019

Security
 implementer considerations 414
 overview 414
 parameter index 414
Sequencing rules
 client
 overview 206
 receiving any message 206
 receiving SMB2 CHANGE_NOTIFY response 232
 receiving SMB2 CLOSE response 228
 receiving SMB2 CREATE response for new create operation 224
 receiving SMB2 CREATE response for open reestablishment 226
 receiving SMB2 FLUSH response 228
 receiving SMB2 IOCTL response 229
 receiving SMB2 LOCK response 229
 receiving SMB2 LOGOFF response 220
 receiving SMB2 NEGOTIATE response 210
 receiving SMB2 OPLOCK_BREAK notification 233
 receiving SMB2 QUERY_DIRECTORY response 232
 receiving SMB2 QUERY_INFO response 232
 receiving SMB2 READ response 228
 receiving SMB2 SESSION_SETUP response 213

 receiving SMB2 SET_INFO response 232
 receiving SMB2 TREE_CONNECT response 220
 receiving SMB2 TREE_DISCONNECT response 223
 receiving SMB2 WRITE response 228
 verifying incoming message 144
 server
 accepting incoming connection 268
 overview 268
 receiving any message 269
 receiving SMB_COM_NEGOTIATE 276
 receiving SMB2 CANCEL request 342
 receiving SMB2 CHANGE_NOTIFY request 345
 receiving SMB2 CLOSE request 317
 receiving SMB2 CREATE request 297
 receiving SMB2 ECHO request 343
 receiving SMB2 FLUSH request 318
 receiving SMB2 IOCTL request 326
 receiving SMB2 LOCK request 323
 receiving SMB2 LOGOFF request 292
 receiving SMB2 NEGOTIATE request 278
 receiving SMB2 OPLOCK_BREAK acknowledgment 356
 receiving SMB2 QUERY_DIRECTORY request 343
 receiving SMB2 QUERY_INFO request 347
 receiving SMB2 READ request 319
 receiving SMB2 SESSION_SETUP request 283
 receiving SMB2 SET_INFO request 352
 receiving SMB2 TREE_CONNECT request 293
 receiving SMB2 TREE_DISCONNECT request 296
 receiving SMB2 WRITE request 321
 verifying incoming message 144
Server
 abstract data model (section 3.1.1 142, section 3.3.1 237)
 change notifications algorithm 238
 credit granting algorithm 238
 global structures 240
 higher-layer triggered events 253
 deregistering share 263
 disabling SMB2 server 267
 enabling SMB2 server 267
 notification that DFS is active 260
 notification that share is DFS share 260
 notification that share is not DFS share 260

460 / 464

[MS-SMB2-Diff] - v20190923
Server Message Block (SMB) Protocol Versions 2 and 3
Copyright © 2019 Microsoft Corporation
Release: September 23, 2019

 object store indicating lease break 259
 object store indicating oplock break 258
 overview 253
 querying Open 266
 querying session 265
 querying share 263
 querying TreeConnect 265
 registering share 261
 requesting closing of open 264
 requesting closing of session 260
 requesting security context 260
 requesting server statistics 267
 requesting session key 257
 requesting transport binding change 266
 sending any outgoing message 253
 sending error response 256
 sending interim response for asynchronous operation 255
 sending success response 256
 signing outgoing message 142
 updating share 262
 initialization (section 3.1.3 142, section 3.3.3 252)
 leasing algorithm 239
 local events (section 3.1.7 145, section 3.3.7 360, section 3.3.7.1 360)

 message processing
 accepting incoming connection 268
 overview 268
 receiving any message 269
 receiving SMB_COM_NEGOTIATE 276
 receiving SMB2 CANCEL request 342
 receiving SMB2 CHANGE_NOTIFY request 345
 receiving SMB2 CLOSE request 317
 receiving SMB2 CREATE request 297
 receiving SMB2 ECHO request 343
 receiving SMB2 FLUSH request 318
 receiving SMB2 IOCTL request 326
 receiving SMB2 LOCK request 323
 receiving SMB2 LOGOFF request 292
 receiving SMB2 NEGOTIATE request 278
 receiving SMB2 OPLOCK_BREAK acknowledgment 356
 receiving SMB2 QUERY_DIRECTORY request 343
 receiving SMB2 QUERY_INFO request 347
 receiving SMB2 READ request 319
 receiving SMB2 SESSION_SETUP request 283
 receiving SMB2 SET_INFO request 352
 receiving SMB2 TREE_CONNECT request 293
 receiving SMB2 TREE_DISCONNECT request 296
 receiving SMB2 WRITE request 321
 verifying incoming message 144
 message sequence numbers algorithm 237
 per channel 251
 per lease 249
 per lease table 249
 per open 246
 per request 250
 per session 245
 per share 242
 per transport connection 243
 per tree connect 246
 required global data 142
 sequencing rules
 accepting incoming connection 268
 overview 268
 receiving any message 269
 receiving SMB_COM_NEGOTIATE 276
 receiving SMB2 CANCEL request 342

461 / 464

[MS-SMB2-Diff] - v20190923
Server Message Block (SMB) Protocol Versions 2 and 3
Copyright © 2019 Microsoft Corporation
Release: September 23, 2019

 receiving SMB2 CHANGE_NOTIFY request 345
 receiving SMB2 CLOSE request 317
 receiving SMB2 CREATE request 297
 receiving SMB2 ECHO request 343
 receiving SMB2 FLUSH request 318
 receiving SMB2 IOCTL request 326
 receiving SMB2 LOCK request 323
 receiving SMB2 LOGOFF request 292
 receiving SMB2 NEGOTIATE request 278
 receiving SMB2 OPLOCK_BREAK acknowledgment 356
 receiving SMB2 QUERY_DIRECTORY request 343
 receiving SMB2 QUERY_INFO request 347
 receiving SMB2 READ request 319
 receiving SMB2 SESSION_SETUP request 283
 receiving SMB2 SET_INFO request 352
 receiving SMB2 TREE_CONNECT request 293
 receiving SMB2 TREE_DISCONNECT request 296
 receiving SMB2 WRITE request 321
 verifying incoming message 144
 timer events (section 3.1.6 145, section 3.3.6 358, section 3.3.6.1 358)
 timers (section 3.1.2 142, section 3.3.2 251)
Session (section 3.2.1.3 148, section 3.3.1.8 245)
Session expiration timer 251

Session expiration timer event 359
Share 242
SMB2 CANCEL Request message 110
SMB2 CHANGE_NOTIFY Request message 128
SMB2 CHANGE_NOTIFY Response message 130
SMB2 CLOSE Request message 92
SMB2 CLOSE Response message 93
SMB2 COMPRESSION_TRANSFORM_HEADER message 141
SMB2 CREATE Request message 66
SMB2 CREATE Response message 83
SMB2 ECHO Request message 110
SMB2 ECHO Response message 110
SMB2 ERROR Response message 37
SMB2 FLUSH Request message 95
SMB2 FLUSH Response message 95
SMB2 IOCTL Request message 111
SMB2 IOCTL Response message 117
SMB2 LOCK Request message 107
SMB2 LOCK Request packet 107
SMB2 LOCK Response message 109
SMB2 LOGOFF Request message 55
SMB2 LOGOFF Response message 56
SMB2 negotiate example 372
SMB2 NEGOTIATE Request message 44
SMB2 NEGOTIATE Response message 49
SMB2 Packet Header 31
SMB2 Packet Header message 31
SMB2 QUERY_DIRECTORY Request message 126
SMB2 QUERY_DIRECTORY Response message 128
SMB2 QUERY_INFO Request message 131
SMB2 QUERY_INFO Response message 135
SMB2 READ Request message 96
SMB2 READ Response message 98
SMB2 SESSION_SETUP Request message 53
SMB2 SESSION_SETUP Response message 54
SMB2 SET_INFO Request message 136
SMB2 SET_INFO Response message 139
SMB2 TRANSFORM_HEADER message 139
SMB2 TREE_CONNECT Request message 56
SMB2 TREE_CONNECT Response message 63
SMB2 TREE_DISCONNECT Request message 65
SMB2 TREE_DISCONNECT Response message 66

462 / 464

[MS-SMB2-Diff] - v20190923
Server Message Block (SMB) Protocol Versions 2 and 3
Copyright © 2019 Microsoft Corporation
Release: September 23, 2019

SMB2 WRITE Request message 98
SMB2 WRITE Response message 100
SMB2_CANCEL_Request packet 110
SMB2_CHANGE_NOTIFY_Request packet 128
SMB2_CHANGE_NOTIFY_Response packet 130
SMB2_CLOSE_Request packet 92
SMB2_CLOSE_Response packet 93
SMB2_CREATE_ALLOCATION_SIZE 88
SMB2_CREATE_ALLOCATION_SIZE packet 77
SMB2_CREATE_APP_INSTANCE_ID packet 82
SMB2_CREATE_CONTEXT Response Values 86
SMB2_CREATE_CONTEXT_Request_Values packet 74
SMB2_CREATE_DURABLE_HANDLE_RECONNECT 88
SMB2_CREATE_DURABLE_HANDLE_RECONNECT packet 77
SMB2_CREATE_DURABLE_HANDLE_RECONNECT_V2 packet 81
SMB2_CREATE_DURABLE_HANDLE_REQUEST packet 76
SMB2_CREATE_DURABLE_HANDLE_REQUEST_V2 packet 80
SMB2_CREATE_DURABLE_HANDLE_RESPONSE packet 87
SMB2_CREATE_DURABLE_HANDLE_RESPONSE_V2 packet 91
SMB2_CREATE_EA_BUFFER 87
SMB2_CREATE_QUERY_MAXIMAL_ACCESS_REQUEST packet 77
SMB2_CREATE_QUERY_MAXIMAL_ACCESS_RESPONSE packet 88
SMB2_CREATE_QUERY_ON_DISK_ID 79

SMB2_CREATE_QUERY_ON_DISK_ID packet 88
SMB2_CREATE_Request packet 66
SMB2_CREATE_REQUEST_LEASE packet 78
SMB2_CREATE_REQUEST_LEASE_V2 packet 79
SMB2_CREATE_Response packet 83
SMB2_CREATE_RESPONSE_LEASE packet 89
SMB2_CREATE_RESPONSE_LEASE_V2 packet 90
SMB2_CREATE_SD_BUFFER 87
SMB2_CREATE_TIMEWARP_TOKEN 88
SMB2_CREATE_TIMEWARP_TOKEN packet 78
SMB2_ECHO_Request packet 110
SMB2_ECHO_Response packet 110
SMB2_ENCRYPTION_CAPABILITIES packet 47
SMB2_ERROR_Response packet 37
SMB2_FILEID packet 86
SMB2_FLUSH_Request packet 95
SMB2_FLUSH_Response packet 95
SMB2_IOCTL_Request packet 111
SMB2_IOCTL_Response packet 117
SMB2_Lease_Break_Acknowledgment packet 104
SMB2_Lease_Break_Notification packet 102
SMB2_Lease_Break_Response packet 106
SMB2_LOCK_ELEMENT packet 108
SMB2_LOCK_Request packet 107
SMB2_LOCK_Response packet 109
SMB2_LOGOFF_Request packet 55
SMB2_LOGOFF_Response packet 56
SMB2_NEGOTIATE_CONTEXT_Request_Values packet 46
SMB2_NEGOTIATE_Request packet 44
SMB2_NEGOTIATE_Response packet 49
SMB2_Oplock_Break_Acknowledgment packet 103
SMB2_Oplock_Break_Notification packet 101
SMB2_Oplock_Break_Response packet 105
SMB2_Packet_Header_ASYNC packet 31
SMB2_Packet_Header_SYNC packet 34
SMB2_Packet_Transport packet 29
SMB2_PREAUTH_INTEGRITY_CAPABILITIES packet 47
SMB2_QUERY_DIRECTORY_Request packet 126
SMB2_QUERY_DIRECTORY_Response packet 128
SMB2_QUERY_INFO_Request packet 131
SMB2_QUERY_INFO_Response packet 135
SMB2_QUERY_QUOTA_INFO packet 134

463 / 464

[MS-SMB2-Diff] - v20190923
Server Message Block (SMB) Protocol Versions 2 and 3
Copyright © 2019 Microsoft Corporation
Release: September 23, 2019

SMB2_READ_Request packet 96
SMB2_READ_Response packet 98
SMB2_SESSION_SETUP_Request packet 53
SMB2_SESSION_SETUP_Response packet 54
SMB2_SET_INFO_Request packet 136
SMB2_SET_INFO_Response packet 139
SMB2_TRANSFORM_HEADER packet 139
SMB2_TREE_CONNECT_Request packet 56
SMB2_TREE_CONNECT_Response packet 63
SMB2_TREE_DISCONNECT_Request packet 65
SMB2_TREE_DISCONNECT_Response packet 66
SMB2_WRITE_Request packet 98
SMB2_WRITE_Response packet 100
SOCKADDR_IN packet 124
SOCKADDR_IN6 packet 125
SOCKADDR_STORAGE packet 124
SRV_COPYCHUNK packet 114
SRV_COPYCHUNK_COPY packet 113
SRV_COPYCHUNK_RESPONSE packet 118
SRV_HASH_RETRIEVE_FILE_BASED_Response packet 122
SRV_READ_HASH packet 114
SRV_READ_HASH response 120
SRV_READ_HASH_Response packet 121

SRV_REQUEST_RESUME_KEY_Response packet 119
SRV_SNAPSHOT_ARRAY packet 119
Standards assignments 27
Symbolic_Link_Error_Response packet 39
Syntax 29

T

Timer events
 client (section 3.1.6 145, section 3.2.6 235)
 server (section 3.1.6 145, section 3.3.6 358, section 3.3.6.1 358)
Timers
 client (section 3.1.2 142, section 3.2.2 151)
 server (section 3.1.2 142, section 3.3.2 251)
Tracking changes 450
Transport 29
 connection 243
 disconnect 360
 messages 29
Transport connection 146
Tree connect (section 3.2.1.4 148, section 3.3.1.9 246)
Triggered events – higher layer
 client
 notifying offline status of server 205
 notifying online status of server 206
 overview 152
 re-establishing a durable open 169
 requesting applying of file attributes 176
 requesting applying of file security attributes 179
 requesting applying of file system attributes 177
 requesting applying of quota information 182
 requesting cancellation of operation 204
 requesting change of notifications for directory 185
 requesting closing of file or named pipe 170
 requesting closing of share connection 204
 requesting connection to share 156
 requesting enumeration of directory 183
 requesting flushing of cached data 183
 requesting IO control code operation 187

 requesting locking of array of byte ranges 186
 requesting move to server instance 206
 requesting number of opens on tree connect 205

464 / 464

[MS-SMB2-Diff] - v20190923
Server Message Block (SMB) Protocol Versions 2 and 3
Copyright © 2019 Microsoft Corporation
Release: September 23, 2019

 requesting opening of file 164
 requesting querying for file attributes 174
 requesting querying for file security attributes 178
 requesting querying for file system attributes 176
 requesting querying for quota information 180
 requesting reading from file or named pipe 171
 requesting session key for authenticated context 205
 requesting termination of authenticated context 204
 requesting unlocking of array of byte ranges 202
 requesting writing to file or named pipe 172
 sending any outgoing message 152
 signing outgoing message 142
 server
 deregistering share 263
 disabling SMB2 server 267
 enabling SMB2 server 267
 notification that DFS is active 260
 notification that share is DFS share 260
 notification that share is not DFS share 260
 object store indicating lease break 259
 object store indicating oplock break 258
 overview 253
 querying Open 266

 querying session 265
 querying share 263
 querying TreeConnect 265
 registering share 261
 requesting closing of open 264
 requesting closing of session 260
 requesting security context 260
 requesting server statistics 267
 requesting session key 257
 requesting transport binding change 266
 sending any outgoing message 253
 sending error response 256
 sending interim response for asynchronous operation 255
 sending success response 256
 signing outgoing message 142
 updating share 262
Triggered events - higher-layer
 client 152
 server 253

U

Unique open file 149

V

VALIDATE_NEGOTIATE_INFO_Request packet 116
VALIDATE_NEGOTIATE_INFO_Response packet 126
Vendor-extensible fields 27
Versioning 24

	1 Introduction
	1.1 Glossary
	1.2 References
	1.2.1 Normative References
	1.2.2 Informative References

	1.3 Overview
	1.4 Relationship to Other Protocols
	1.5 Prerequisites/Preconditions
	1.6 Applicability Statement
	1.7 Versioning and Capability Negotiation
	1.8 Vendor-Extensible Fields
	1.9 Standards Assignments

	2 Messages
	2.1 Transport
	2.2 Message Syntax
	2.2.1 SMB2 Packet Header
	2.2.1.1 SMB2 Packet Header - ASYNC
	2.2.1.2 SMB2 Packet Header - SYNC

	2.2.2 SMB2 ERROR Response
	2.2.2.1 (Updated Section) SMB2 ERROR Context Response
	2.2.2.2 ErrorData format
	2.2.2.2.1 Symbolic Link Error Response
	2.2.2.2.1.1 Handling the Symbolic Link Error Response

	2.2.2.2.2 Share Redirect Error Context Response
	2.2.2.2.2.1 MOVE_DST_IPADDR structure

	2.2.3 SMB2 NEGOTIATE Request
	2.2.3.1 SMB2 NEGOTIATE_CONTEXT Request Values
	2.2.3.1.1 SMB2_PREAUTH_INTEGRITY_CAPABILITIES
	2.2.3.1.2 SMB2_ENCRYPTION_CAPABILITIES
	2.2.3.1.3 SMB2_COMPRESSION_CAPABILITIES
	2.2.3.1.4 (Updated Section) SMB2_NETNAME_NEGOTIATE_CONTEXT_ID

	2.2.4 SMB2 NEGOTIATE Response
	2.2.4.1 SMB2 NEGOTIATE_CONTEXT Response Values
	2.2.4.1.1 SMB2_PREAUTH_INTEGRITY_CAPABILITIES
	2.2.4.1.2 SMB2_ENCRYPTION_CAPABILITIES
	2.2.4.1.3 SMB2_COMPRESSION_CAPABILITIES
	2.2.4.1.4 SMB2_NETNAME_NEGOTIATE_CONTEXT_ID

	2.2.5 SMB2 SESSION_SETUP Request
	2.2.6 SMB2 SESSION_SETUP Response
	2.2.7 SMB2 LOGOFF Request
	2.2.8 SMB2 LOGOFF Response
	2.2.9 SMB2 TREE_CONNECT Request
	2.2.9.1 SMB2 TREE_CONNECT Request Extension
	2.2.9.2 SMB2 TREE_CONNECT_CONTEXT Request Values
	2.2.9.2.1 SMB2_REMOTED_IDENTITY_TREE_CONNECT Context
	2.2.9.2.1.1 BLOB_DATA
	2.2.9.2.1.2 SID_ATTR_DATA
	2.2.9.2.1.3 SID_ARRAY_DATA
	2.2.9.2.1.4 LUID_ATTR_DATA
	2.2.9.2.1.5 PRIVILEGE_DATA
	2.2.9.2.1.6 PRIVILEGE_ARRAY_DATA

	2.2.10 SMB2 TREE_CONNECT Response
	2.2.11 SMB2 TREE_DISCONNECT Request
	2.2.12 SMB2 TREE_DISCONNECT Response
	2.2.13 SMB2 CREATE Request
	2.2.13.1 SMB2 Access Mask Encoding
	2.2.13.1.1 File_Pipe_Printer_Access_Mask
	2.2.13.1.2 Directory_Access_Mask

	2.2.13.2 SMB2_CREATE_CONTEXT Request Values
	2.2.13.2.1 SMB2_CREATE_EA_BUFFER
	2.2.13.2.2 SMB2_CREATE_SD_BUFFER
	2.2.13.2.3 SMB2_CREATE_DURABLE_HANDLE_REQUEST
	2.2.13.2.4 SMB2_CREATE_DURABLE_HANDLE_RECONNECT
	2.2.13.2.5 SMB2_CREATE_QUERY_MAXIMAL_ACCESS_REQUEST
	2.2.13.2.6 SMB2_CREATE_ALLOCATION_SIZE
	2.2.13.2.7 SMB2_CREATE_TIMEWARP_TOKEN
	2.2.13.2.8 SMB2_CREATE_REQUEST_LEASE
	2.2.13.2.9 SMB2_CREATE_QUERY_ON_DISK_ID
	2.2.13.2.10 SMB2_CREATE_REQUEST_LEASE_V2
	2.2.13.2.11 SMB2_CREATE_DURABLE_HANDLE_REQUEST_V2
	2.2.13.2.12 SMB2_CREATE_DURABLE_HANDLE_RECONNECT_V2
	2.2.13.2.13 SMB2_CREATE_APP_INSTANCE_ID
	2.2.13.2.14 SVHDX_OPEN_DEVICE_CONTEXT
	2.2.13.2.15 SMB2_CREATE_APP_INSTANCE_VERSION

	2.2.14 SMB2 CREATE Response
	2.2.14.1 SMB2_FILEID
	2.2.14.2 SMB2_CREATE_CONTEXT Response Values
	2.2.14.2.1 SMB2_CREATE_EA_BUFFER
	2.2.14.2.2 SMB2_CREATE_SD_BUFFER
	2.2.14.2.3 SMB2_CREATE_DURABLE_HANDLE_RESPONSE
	2.2.14.2.4 SMB2_CREATE_DURABLE_HANDLE_RECONNECT
	2.2.14.2.5 SMB2_CREATE_QUERY_MAXIMAL_ACCESS_RESPONSE
	2.2.14.2.6 SMB2_CREATE_APP_INSTANCE_ID
	2.2.14.2.7 SMB2_CREATE_ALLOCATION_SIZE
	2.2.14.2.8 SMB2_CREATE_TIMEWARP_TOKEN
	2.2.14.2.9 (Updated Section) SMB2_CREATE_QUERY_ON_DISK_ID
	2.2.14.2.10 SMB2_CREATE_RESPONSE_LEASE
	2.2.14.2.11 SMB2_CREATE_RESPONSE_LEASE_V2
	2.2.14.2.12 SMB2_CREATE_DURABLE_HANDLE_RESPONSE_V2
	2.2.14.2.13 SMB2_CREATE_DURABLE_HANDLE_RECONNECT_V2
	2.2.14.2.14 SVHDX_OPEN_DEVICE_CONTEXT_RESPONSE
	2.2.14.2.15 SMB2_CREATE_APP_INSTANCE_VERSION

	2.2.15 SMB2 CLOSE Request
	2.2.16 SMB2 CLOSE Response
	2.2.17 SMB2 FLUSH Request
	2.2.18 SMB2 FLUSH Response
	2.2.19 SMB2 READ Request
	2.2.20 SMB2 READ Response
	2.2.21 SMB2 WRITE Request
	2.2.22 SMB2 WRITE Response
	2.2.23 SMB2 OPLOCK_BREAK Notification
	2.2.23.1 Oplock Break Notification
	2.2.23.2 Lease Break Notification

	2.2.24 SMB2 OPLOCK_BREAK Acknowledgment
	2.2.24.1 Oplock Break Acknowledgment
	2.2.24.2 Lease Break Acknowledgment

	2.2.25 SMB2 OPLOCK_BREAK Response
	2.2.25.1 Oplock Break Response
	2.2.25.2 Lease Break Response

	2.2.26 SMB2 LOCK Request
	2.2.26.1 SMB2_LOCK_ELEMENT Structure

	2.2.27 SMB2 LOCK Response
	2.2.28 SMB2 ECHO Request
	2.2.29 SMB2 ECHO Response
	2.2.30 SMB2 CANCEL Request
	2.2.31 SMB2 IOCTL Request
	2.2.31.1 SRV_COPYCHUNK_COPY
	2.2.31.1.1 SRV_COPYCHUNK

	2.2.31.2 SRV_READ_HASH Request
	2.2.31.3 NETWORK_RESILIENCY_REQUEST Request
	2.2.31.4 VALIDATE_NEGOTIATE_INFO Request

	2.2.32 SMB2 IOCTL Response
	2.2.32.1 SRV_COPYCHUNK_RESPONSE
	2.2.32.2 SRV_SNAPSHOT_ARRAY
	2.2.32.3 SRV_REQUEST_RESUME_KEY Response
	2.2.32.4 SRV_READ_HASH Response
	2.2.32.4.1 HASH_HEADER
	2.2.32.4.2 SRV_HASH_RETRIEVE_HASH_BASED
	2.2.32.4.3 SRV_HASH_RETRIEVE_FILE_BASED

	2.2.32.5 NETWORK_INTERFACE_INFO Response
	2.2.32.5.1 SOCKADDR_STORAGE
	2.2.32.5.1.1 SOCKADDR_IN
	2.2.32.5.1.2 SOCKADDR_IN6

	2.2.32.6 VALIDATE_NEGOTIATE_INFO Response

	2.2.33 (Updated Section) SMB2 QUERY_DIRECTORY Request
	2.2.34 SMB2 QUERY_DIRECTORY Response
	2.2.35 SMB2 CHANGE_NOTIFY Request
	2.2.36 SMB2 CHANGE_NOTIFY Response
	2.2.37 SMB2 QUERY_INFO Request
	2.2.37.1 SMB2_QUERY_QUOTA_INFO

	2.2.38 SMB2 QUERY_INFO Response
	2.2.39 SMB2 SET_INFO Request
	2.2.40 SMB2 SET_INFO Response
	2.2.41 SMB2 TRANSFORM_HEADER
	2.2.42 SMB2 COMPRESSION_TRANSFORM_HEADER

	3 Protocol Details
	3.1 Common Details
	3.1.1 Abstract Data Model
	3.1.1.1 Global

	3.1.2 Timers
	3.1.3 Initialization
	3.1.4 Higher-Layer Triggered Events
	3.1.4.1 Signing An Outgoing Message
	3.1.4.2 Generating Cryptographic Keys
	3.1.4.3 Encrypting the Message
	3.1.4.4 (Updated Section) Compressing the Message

	3.1.5 Processing Events and Sequencing Rules
	3.1.5.1 Verifying an Incoming Message
	3.1.5.2 Calculating the CreditCharge

	3.1.6 Timer Events
	3.1.7 Other Local Events

	3.2 Client Details
	3.2.1 Abstract Data Model
	3.2.1.1 Global
	3.2.1.2 (Updated Section) Per SMB2 Transport Connection
	3.2.1.3 Per Session
	3.2.1.4 Per Tree Connect
	3.2.1.5 Per Open File
	3.2.1.6 (Updated Section) Per Application Open of a File
	3.2.1.7 Per Pending Request
	3.2.1.8 Per Channel
	3.2.1.9 (Updated Section) Per Server

	3.2.2 Timers
	3.2.2.1 Request Expiration Timer
	3.2.2.2 Idle Connection Timer
	3.2.2.3 Network Interface Information Timer

	3.2.3 Initialization
	3.2.4 Higher-Layer Triggered Events
	3.2.4.1 Sending Any Outgoing Message
	3.2.4.1.1 Signing the Message
	3.2.4.1.2 Requesting Credits from the Server
	3.2.4.1.3 Associating the Message with a MessageId
	3.2.4.1.4 Sending Compounded Requests
	3.2.4.1.5 Sending Multi-Credit Requests
	3.2.4.1.6 Algorithm for Handling Available Message Sequence Numbers by the Client
	3.2.4.1.7 (Updated Section) Selecting a Connection
	3.2.4.1.8 Encrypting the Message
	3.2.4.1.9 Compressing the Message

	3.2.4.2 Application Requests a Connection to a Share
	3.2.4.2.1 Connecting to the Target Server
	3.2.4.2.2 Negotiating the Protocol
	3.2.4.2.2.1 Multi-Protocol Negotiate
	3.2.4.2.2.2 (Updated Section) SMB2-Only Negotiate

	3.2.4.2.3 (Updated Section) Authenticating the User
	3.2.4.2.3.1 Application Requests Reauthenticating a User

	3.2.4.2.4 Connecting to the Share

	3.2.4.3 Application Requests Opening a File
	3.2.4.3.1 Application Requests Opening a Named Pipe
	3.2.4.3.2 Application Requests Sending a File to Print
	3.2.4.3.3 Application Requests Creating a File with Extended Attributes
	3.2.4.3.4 Application Requests Creating a File with a Security Descriptor
	3.2.4.3.5 Application Requests Creating a File Opened for Durable Operation
	3.2.4.3.6 Application Requests Opening a Previous Version of a File
	3.2.4.3.7 Application Requests Creating a File with a Specific Allocation Size
	3.2.4.3.8 Requesting a Lease on a File or a Directory
	3.2.4.3.9 Application Requests Maximal Access Information of a File
	3.2.4.3.10 Application Requests Identifier of a File
	3.2.4.3.11 Application Supplies its Identifier
	3.2.4.3.12 Application Provides an Application-Specific Create Context Structure to Open a Remote File
	3.2.4.3.13 Application Supplies a Version for its Identifier

	3.2.4.4 (Updated Section) Re-establishing a Durable Open
	3.2.4.5 (Updated Section) Application Requests Closing a File or Named Pipe
	3.2.4.6 (Updated Section) Application Requests Reading from a File or Named Pipe
	3.2.4.7 (Updated Section) Application Requests Writing to a File or Named Pipe
	3.2.4.8 (Updated Section) Application Requests Querying File Attributes
	3.2.4.9 (Updated Section) Application Requests Applying File Attributes
	3.2.4.10 (Updated Section) Application Requests Querying File System Attributes
	3.2.4.11 (Updated Section) Application Requests Applying File System Attributes
	3.2.4.12 (Updated Section) Application Requests Querying File Security
	3.2.4.13 (Updated Section) Application Requests Applying File Security
	3.2.4.14 (Updated Section) Application Requests Querying Quota Information
	3.2.4.15 (Updated Section) Application Requests Applying Quota Information
	3.2.4.16 (Updated Section) Application Requests Flushing Cached Data
	3.2.4.17 (Updated Section) Application Requests Enumerating a Directory
	3.2.4.17.1 Application Requests Continuing a Directory Enumeration

	3.2.4.18 (Updated Section) Application Requests Change Notifications for a Directory
	3.2.4.19 (Updated Section) Application Requests Locking of an Array of Byte Ranges
	3.2.4.20 Application Requests an IO Control Code Operation
	3.2.4.20.1 (Updated Section) Application Requests Enumeration of Previous Versions
	3.2.4.20.2 Application Requests a Server-Side Data Copy
	3.2.4.20.2.1 (Updated Section) Application Requests a Source File Key
	3.2.4.20.2.2 (Updated Section) Application Requests a Server Side Data Copy

	3.2.4.20.3 Application Requests DFS Referral Information
	3.2.4.20.4 (Updated Section) Application Requests a Pipe Transaction
	3.2.4.20.5 (Updated Section) Application Requests a Peek at Pipe Data
	3.2.4.20.6 (Updated Section) Application Requests a Pass-Through Operation
	3.2.4.20.7 (Updated Section) Application Requests Content Information for a File
	3.2.4.20.8 (Updated Section) Application Requests Resiliency on an Open File
	3.2.4.20.9 Application Requests Waiting for a Connection to a Pipe
	3.2.4.20.10 Application Requests Querying Server's Network Interfaces
	3.2.4.20.11 (Updated Section) Application Requests Remote Shared Virtual Disk File Control Operation
	3.2.4.20.12 Application Requests Extent Duplication
	3.2.4.20.13 Application Requests Extended Extent Duplication

	3.2.4.21 (Updated Section) Application Requests Unlocking of an Array of Byte Ranges
	3.2.4.22 Application Requests Closing a Share Connection
	3.2.4.23 Application Requests Terminating an Authenticated Context
	3.2.4.24 Application Requests Canceling an Operation
	3.2.4.25 Application Requests the Session Key for an Authenticated Context
	3.2.4.26 Application Requests Number of Opens on a Tree Connect
	3.2.4.27 Application Notifies Offline Status of a Server
	3.2.4.28 (Updated Section) Application Notifies Online Status of a Server
	3.2.4.29 (Updated Section) Application Requests Moving to a Server Instance

	3.2.5 Processing Events and Sequencing Rules
	3.2.5.1 (Updated Section) Receiving Any Message
	3.2.5.1.1 Handling the Transformed Message
	3.2.5.1.1.1 Decrypting the Message
	3.2.5.1.1.2 Decompressing the Message

	3.2.5.1.2 Finding the Application Request for This Response
	3.2.5.1.3 Verifying the Signature
	3.2.5.1.4 Granting Message Credits
	3.2.5.1.5 Handling Asynchronous Responses
	3.2.5.1.6 Handling Session Expiration
	3.2.5.1.7 Handling Incorrectly Formatted Responses
	3.2.5.1.8 Processing the Response
	3.2.5.1.9 Handling Compounded Responses

	3.2.5.2 (Updated Section) Receiving an SMB2 NEGOTIATE Response
	3.2.5.3 Receiving an SMB2 SESSION_SETUP Response
	3.2.5.3.1 Handling a New Authentication
	3.2.5.3.2 Handling a Reauthentication
	3.2.5.3.3 Handling Session Binding

	3.2.5.4 Receiving an SMB2 LOGOFF Response
	3.2.5.5 (Updated Section) Receiving an SMB2 TREE_CONNECT Response
	3.2.5.6 Receiving an SMB2 TREE_DISCONNECT Response
	3.2.5.7 (Updated Section) Receiving an SMB2 CREATE Response for a New Create Operation
	3.2.5.7.1 SMB2_CREATE_DURABLE_HANDLE_RESPONSE Create Context
	3.2.5.7.2 SMB2_CREATE_QUERY_MAXIMAL_ACCESS_RESPONSE Create Context
	3.2.5.7.3 SMB2_CREATE_QUERY_ON_DISK_ID Create Context
	3.2.5.7.4 SMB2_CREATE_RESPONSE_LEASE Create Context
	3.2.5.7.5 SMB2_CREATE_RESPONSE_LEASE_V2 Create Context
	3.2.5.7.6 SMB2_CREATE_DURABLE_HANDLE_RESPONSE_V2 Create Context

	3.2.5.8 Receiving an SMB2 CREATE Response for an Open Reestablishment
	3.2.5.9 Receiving an SMB2 CLOSE Response
	3.2.5.10 Receiving an SMB2 FLUSH Response
	3.2.5.11 Receiving an SMB2 READ Response
	3.2.5.12 Receiving an SMB2 WRITE Response
	3.2.5.13 Receiving an SMB2 LOCK Response
	3.2.5.14 Receiving an SMB2 IOCTL Response
	3.2.5.14.1 Handling an Enumeration of Previous Versions Response
	3.2.5.14.2 Handling a Server-Side Data Copy Source File Key Response
	3.2.5.14.3 Handling a Server-Side Data Copy Response
	3.2.5.14.4 Handling a DFS Referral Information Response
	3.2.5.14.5 Handling a Pipe Transaction Response
	3.2.5.14.6 Handling a Peek at Pipe Data Response
	3.2.5.14.7 Handling a Content Information Retrieval Response
	3.2.5.14.8 Handling a Pass-Through Operation Response
	3.2.5.14.9 Handling a Resiliency Response
	3.2.5.14.10 Handling a Pipe Wait Response
	3.2.5.14.11 Handling a Network Interfaces Response
	3.2.5.14.12 Handling a Validate Negotiate Info Response
	3.2.5.14.13 Handling a Shared Virtual Disk File Control Response

	3.2.5.15 Receiving an SMB2 QUERY_DIRECTORY Response
	3.2.5.16 Receiving an SMB2 CHANGE_NOTIFY Response
	3.2.5.17 Receiving an SMB2 QUERY_INFO Response
	3.2.5.18 Receiving an SMB2 SET_INFO Response
	3.2.5.19 Receiving an SMB2 OPLOCK_BREAK Notification
	3.2.5.19.1 Receiving an Oplock Break Notification
	3.2.5.19.2 Receiving a Lease Break Notification
	3.2.5.19.3 Receiving an Oplock Break Response
	3.2.5.19.4 Receiving a Lease Break Response

	3.2.6 Timer Events
	3.2.6.1 Request Expiration Timer Event
	3.2.6.2 Idle Connection Timer Event
	3.2.6.3 Network Interface Information Timer Event

	3.2.7 Other Local Events
	3.2.7.1 (Updated Section) Handling a Network Disconnect
	3.2.7.2 Handling Interface State Change

	3.3 Server Details
	3.3.1 Abstract Data Model
	3.3.1.1 Algorithm for Handling Available Message Sequence Numbers by the Server
	3.3.1.2 Algorithm for the Granting of Credits
	3.3.1.3 Algorithm for Change Notifications in an Object Store
	3.3.1.4 Algorithm for Leasing in an Object Store
	3.3.1.5 Global
	3.3.1.6 Per Share
	3.3.1.7 Per Transport Connection
	3.3.1.8 Per Session
	3.3.1.9 Per Tree Connect
	3.3.1.10 (Updated Section) Per Open
	3.3.1.11 Per Lease Table
	3.3.1.12 Per Lease
	3.3.1.13 Per Request
	3.3.1.14 Per Channel
	3.3.1.15 Per PreauthSession

	3.3.2 Timers
	3.3.2.1 Oplock Break Acknowledgment Timer
	3.3.2.2 Durable Open Scavenger Timer
	3.3.2.3 Session Expiration Timer
	3.3.2.4 Resilient Open Scavenger Timer
	3.3.2.5 Lease Break Acknowledgment Timer

	3.3.3 Initialization
	3.3.4 Higher-Layer Triggered Events
	3.3.4.1 Sending Any Outgoing Message
	3.3.4.1.1 Signing the Message
	3.3.4.1.2 Granting Credits to the Client
	3.3.4.1.3 Sending Compounded Responses
	3.3.4.1.4 Encrypting the Message
	3.3.4.1.5 Compressing the Message
	3.3.4.1.6 (Added Section) Selecting a Connection

	3.3.4.2 Sending an Interim Response for an Asynchronous Operation
	3.3.4.3 Sending a Success Response
	3.3.4.4 Sending an Error Response
	3.3.4.5 Server Application Requests Session Key of the Client
	3.3.4.6 (Updated Section) Object Store Indicates an Oplock Break
	3.3.4.7 (Updated Section) Object Store Indicates a Lease Break
	3.3.4.8 DFS Server Notifies SMB2 Server That DFS Is Active
	3.3.4.9 DFS Server Notifies SMB2 Server That a Share Is a DFS Share
	3.3.4.10 DFS Server Notifies SMB2 Server That a Share Is Not a DFS Share
	3.3.4.11 Server Application Requests Security Context of the Client
	3.3.4.12 Server Application Requests Closing a Session
	3.3.4.13 Server Application Registers a Share
	3.3.4.14 Server Application Updates a Share
	3.3.4.15 Server Application Deregisters a Share
	3.3.4.16 Server Application Requests Querying a Share
	3.3.4.17 Server Application Requests Closing an Open
	3.3.4.18 Server Application Queries a Session
	3.3.4.19 Server Application Queries a TreeConnect
	3.3.4.20 Server Application Queries an Open
	3.3.4.21 Server Application Requests Transport Binding Change
	3.3.4.22 Server Application Enables the SMB2 Server
	3.3.4.23 Server Application Disables the SMB2 Server
	3.3.4.24 Server Application Requests Server Statistics
	3.3.4.25 RSVD Server Notifies SMB2 Server That Shared Virtual Disks Are Supported

	3.3.5 Processing Events and Sequencing Rules
	3.3.5.1 Accepting an Incoming Connection
	3.3.5.2 Receiving Any Message
	3.3.5.2.1 Handling the Transformed Message
	3.3.5.2.1.1 Decrypting the Message
	3.3.5.2.1.2 Decompressing the Message

	3.3.5.2.2 Verifying the Connection State
	3.3.5.2.3 Verifying the Sequence Number
	3.3.5.2.4 Verifying the Signature
	3.3.5.2.5 Verifying the Credit Charge and the Payload Size
	3.3.5.2.6 Handling Incorrectly Formatted Requests
	3.3.5.2.7 Handling Compounded Requests
	3.3.5.2.7.1 Handling Compounded Unrelated Requests
	3.3.5.2.7.2 Handling Compounded Related Requests

	3.3.5.2.8 Updating Idle Time
	3.3.5.2.9 Verifying the Session
	3.3.5.2.10 Verifying the Channel Sequence Number
	3.3.5.2.11 Verifying the Tree Connect
	3.3.5.2.12 Receiving an SVHDX operation Request

	3.3.5.3 Receiving an SMB_COM_NEGOTIATE
	3.3.5.3.1 SMB 2.1 or SMB 3.x Support
	3.3.5.3.2 SMB 2.0.2 Support

	3.3.5.4 (Updated Section) Receiving an SMB2 NEGOTIATE Request
	3.3.5.5 Receiving an SMB2 SESSION_SETUP Request
	3.3.5.5.1 Authenticating a New Session
	3.3.5.5.2 Reauthenticating an Existing Session
	3.3.5.5.3 Handling GSS-API Authentication

	3.3.5.6 Receiving an SMB2 LOGOFF Request
	3.3.5.7 Receiving an SMB2 TREE_CONNECT Request
	3.3.5.8 Receiving an SMB2 TREE_DISCONNECT Request
	3.3.5.9 (Updated Section) Receiving an SMB2 CREATE Request
	3.3.5.9.1 Handling the SMB2_CREATE_EA_BUFFER Create Context
	3.3.5.9.2 Handling the SMB2_CREATE_SD_BUFFER Create Context
	3.3.5.9.3 Handling the SMB2_CREATE_ALLOCATION_SIZE Create Context
	3.3.5.9.4 Handling the SMB2_CREATE_TIMEWARP_TOKEN Create Context
	3.3.5.9.5 Handling the SMB2_CREATE_QUERY_MAXIMAL_ACCESS_REQUEST Create Context
	3.3.5.9.6 Handling the SMB2_CREATE_DURABLE_HANDLE_REQUEST Create Context
	3.3.5.9.7 Handling the SMB2_CREATE_DURABLE_HANDLE_RECONNECT Create Context
	3.3.5.9.8 Handling the SMB2_CREATE_REQUEST_LEASE Create Context
	3.3.5.9.9 Handling the SMB2_CREATE_QUERY_ON_DISK_ID Create Context
	3.3.5.9.10 Handling the SMB2_CREATE_DURABLE_HANDLE_REQUEST_V2 Create Context
	3.3.5.9.11 Handling the SMB2_CREATE_REQUEST_LEASE_V2 Create Context
	3.3.5.9.12 Handling the SMB2_CREATE_DURABLE_HANDLE_RECONNECT_V2 Create Context
	3.3.5.9.13 Handling the SMB2_CREATE_APP_INSTANCE_ID and SMB2_CREATE_APP_INSTANCE_VERSION Create Contexts
	3.3.5.9.14 Handling the SVHDX_OPEN_DEVICE_CONTEXT Create Context

	3.3.5.10 Receiving an SMB2 CLOSE Request
	3.3.5.11 Receiving an SMB2 FLUSH Request
	3.3.5.12 Receiving an SMB2 READ Request
	3.3.5.13 Receiving an SMB2 WRITE Request
	3.3.5.14 Receiving an SMB2 LOCK Request
	3.3.5.14.1 Processing Unlocks
	3.3.5.14.2 Processing Locks

	3.3.5.15 (Updated Section) Receiving an SMB2 IOCTL Request
	3.3.5.15.1 Handling an Enumeration of Previous Versions Request
	3.3.5.15.2 Handling a DFS Referral Information Request
	3.3.5.15.3 Handling a Pipe Transaction Request
	3.3.5.15.4 Handling a Peek at Pipe Data Request
	3.3.5.15.5 Handling a Source File Key Request
	3.3.5.15.6 Handling a Server-Side Data Copy Request
	3.3.5.15.6.1 Sending a Copy Failure Server-Side Copy Response
	3.3.5.15.6.2 Sending an Invalid Parameter Server-Side Copy Response

	3.3.5.15.7 Handling a Content Information Retrieval Request
	3.3.5.15.8 Handling a Pass-Through Operation Request
	3.3.5.15.9 Handling a Resiliency Request
	3.3.5.15.10 Handling a Pipe Wait Request
	3.3.5.15.11 Handling a Query Network Interface Request
	3.3.5.15.12 Handling a Validate Negotiate Info Request
	3.3.5.15.13 Handling a Set Reparse Point Request
	3.3.5.15.14 Handling a File Level Trim Request
	3.3.5.15.15 Handling a Shared Virtual Disk Sync Tunnel Request
	3.3.5.15.16 Handling a Query Shared Virtual Disk Support Request
	3.3.5.15.17 Handling a Duplicate Extents To File Request
	3.3.5.15.18 Handling an Extended Duplicate Extents To File Request

	3.3.5.16 Receiving an SMB2 CANCEL Request
	3.3.5.17 Receiving an SMB2 ECHO Request
	3.3.5.18 Receiving an SMB2 QUERY_DIRECTORY Request
	3.3.5.19 Receiving an SMB2 CHANGE_NOTIFY Request
	3.3.5.20 Receiving an SMB2 QUERY_INFO Request
	3.3.5.20.1 Handling SMB2_0_INFO_FILE
	3.3.5.20.2 Handling SMB2_0_INFO_FILESYSTEM
	3.3.5.20.3 Handling SMB2_0_INFO_SECURITY
	3.3.5.20.4 Handling SMB2_0_INFO_QUOTA

	3.3.5.21 Receiving an SMB2 SET_INFO Request
	3.3.5.21.1 Handling SMB2_0_INFO_FILE
	3.3.5.21.2 Handling SMB2_0_INFO_FILESYSTEM
	3.3.5.21.3 Handling SMB2_0_INFO_SECURITY
	3.3.5.21.4 Handling SMB2_0_INFO_QUOTA

	3.3.5.22 Receiving an SMB2 OPLOCK_BREAK Acknowledgment
	3.3.5.22.1 Processing an Oplock Acknowledgment
	3.3.5.22.2 Processing a Lease Acknowledgment

	3.3.6 Timer Events
	3.3.6.1 Oplock Break Acknowledgment Timer Event
	3.3.6.2 (Updated Section) Durable Open Scavenger Timer Event
	3.3.6.3 Session Expiration Timer Event
	3.3.6.4 (Updated Section) Resilient Open Scavenger Timer Event
	3.3.6.5 Lease Break Acknowledgment Timer Event

	3.3.7 Other Local Events
	3.3.7.1 Handling Loss of a Connection

	4 Protocol Examples
	4.1 Connecting to a Share by Using a Multi-Protocol Negotiate
	4.2 Negotiating SMB 2.1 dialect by using Multi-Protocol Negotiate
	4.3 Connecting to a Share by Using an SMB2 Negotiate
	4.4 Executing an Operation on a Named Pipe
	4.5 Reading from a Remote File
	4.6 Writing to a Remote File
	4.7 Disconnecting a Share and Logging Off
	4.8 Establish Alternate Channel
	4.9 Replay Create Request on an Alternate Channel

	5 Security
	5.1 Security Considerations for Implementers
	5.2 Index of Security Parameters

	6 (Updated Section) Appendix A: Product Behavior
	7 Change Tracking
	8 Index

