

1 / 450

[MS -SMB2-Diff] - v20180316
Server Message Block (SMB) Protocol Versions 2 and 3
Copyright © 2018 Microsoft Corporation
Release: March 16, 2018

[MS - SMB2 - Diff]:

Server Message Block (SMB) Protocol Versions 2 and 3

Intellectual Property Rights Notice for Open Specifications Documentation

Á Technical Documentation. Microsoft publishes Open Specifications documentation (ñthis
documentationò) for protocols, file formats, data portability, computer languages, and standards
support. Additionally, overview documents cover inter -protocol relationships and interactions.

Á Copyrights . This documentation is covered by Microsoft copyrights. Regardless of any other
terms that are contained in the terms of use for the Microsoft website that hosts this
documentation, you can make copies of it in order to develop implementations of the technologies

that are described in this documentation and can distribute portions of it in your implementations
that use these technologies or in your documentation as necessary to properly document the

implementation. You can also distribute in your i mplementation, with or without modification, any
schemas, IDLs, or code samples that are included in the documentation. This permission also
applies to any documents that are referenced in the Open Specifications documentation.

Á No Trade Secrets . Microsoft does not claim any trade secret rights in this documentation.
Á Patents . Microsoft has patents that might cover your implementations of the technologies

described in the Open Specifications documentation. Neither this notice nor Microsoft's delivery of
thi s documentation grants any licenses under those patents or any other Microsoft patents.
However, a given Open Specifications document might be covered by the Microsoft Open
Specifications Promis e or the Microsoft Community Promise . If you would prefer a written license,
or if the technologies described in this documentation are not covered by the Open Specifications
Promise or Communit y Promise, as applicable, patent licenses are available by contacting
iplg@microsoft.com .

Á License Programs . To see all of the protocols in scope under a specific license program and the
associated patents, visit t he Patent Map .

Á Trademarks . The names of companies and products contained in this documentation might be

covered by trademarks or similar intellectual property rights. This notice does not grant any
licenses under those rights. For a list of Microsoft trademarks, visit
www.microsoft.com/trademarks .

Á Fictitious Names . The example companies, organizations, products, domain names, email
addresses, logos, people, places, and events tha t are depicted in this documentation are fictitious.
No association with any real company, organization, product, domain name, email address, logo,
person, place, or event is intended or should be inferred.

Reservation of Rights . All other rights are reser ved, and this notice does not grant any rights other
than as specifically described above, whether by implication, estoppel, or otherwise.

Tools . The Open Specifications documentation does not require the use of Microsoft programming

tools or programming environments in order for you to develop an implementation. If you have access
to Microsoft programming tools and environments, you are free to take advantage of them. Certain
Open Specifications documents are intended for use in conjunction with publicly available standards
specifications and network programming art and, as such, assume that the reader either is familiar

with the aforementioned material or has immediate access to it.

Support. For questions and support, please contact dochelp@microsoft.com .

http://go.microsoft.com/fwlink/?LinkId=214445
http://go.microsoft.com/fwlink/?LinkId=214445
http://go.microsoft.com/fwlink/?LinkId=214448
mailto:iplg@microsoft.com
https://msdn.microsoft.com/en-us/openspecifications/dn750984

2 / 450

[MS -SMB2-Diff] - v20180316
Server Message Block (SMB) Protocol Versions 2 and 3
Copyright © 2018 Microsoft Corporation
Release: March 16, 2018

Revision Summary

Date Revision History Revision Class Comments

10/22/2006 0.01 New Version 0.01 release

1/19/2007 1.0 Major Version 1.0 release

3/2/2007 1.1 Minor Version 1.1 release

4/3/2007 1.2 Minor Version 1.2 release

5/11/2007 1.3 Minor Version 1.3 release

6/1/2007 1.3.1 Editorial Changed language and formatting in the technical content.

7/3/2007 2.0 Major MLonghorn+90

7/20/2007 3.0 Major Updated and revised the technical content.

8/10/2007 4.0 Major Updated and revised the technical content.

9/28/2007 5.0 Major Updated and revised the technical content.

10/23/2007 6.0 Major Updated and revised the technical content.

11/30/2007 7.0 Major Updated and revised the technical content.

1/25/2008 7.0.1 Editorial Changed language and formatting in the technical content.

3/14/2008 8.0 Major Updated and revised the technical content.

5/16/2008 9.0 Major Updated and revised the technical content.

6/20/2008 10.0 Major Updated and revised the technical content.

7/25/2008 11.0 Major Updated and revised the technical content.

8/29/2008 12.0 Major Updated and revised the technical content.

10/24/2008 13.0 Major Updated and revised the technical content.

12/5/2008 14.0 Major Updated and revised the technical content.

1/16/2009 15.0 Major Updated and revised the technical content.

2/27/2009 16.0 Major Updated and revised the technical content.

4/10/2009 17.0 Major Updated and revised the technical content.

5/22/2009 18.0 Major Updated and revised the technical content.

7/2/2009 19.0 Major Updated and revised the technical content.

8/14/2009 20.0 Major Updated and revised the technical content.

9/25/2009 21.0 Major Updated and revised the technical content.

11/6/2009 22.0 Major Updated and revised the technical content.

12/18/2009 23.0 Major Updated and revised the technical content.

1/29/2010 24.0 Major Updated and revised the technical content.

3 / 450

[MS -SMB2-Diff] - v20180316
Server Message Block (SMB) Protocol Versions 2 and 3
Copyright © 2018 Microsoft Corporation
Release: March 16, 2018

Date Revision History Revision Class Comments

3/12/2010 25.0 Major Updated and revised the technical content.

4/23/2010 26.0 Major Updated and revised the technical content.

6/4/2010 27.0 Major Updated and revised the technical content.

7/16/2010 28.0 Major Updated and revised the technical content.

8/27/2010 29.0 Major Updated and revised the technical content.

10/8/2010 30.0 Major Updated and revised the technical content.

11/19/2010 31.0 Major Updated and revised the technical content.

1/7/2011 32.0 Major Updated and revised the technical content.

2/11/2011 33.0 Major Updated and revised the technical content.

3/25/2011 34.0 Major Updated and revised the technical content.

5/6/2011 35.0 Major Updated and revised the technical content.

6/17/2011 36.0 Major Updated and revised the technical content.

9/23/2011 37.0 Major Updated and revised the technical content.

12/16/2011 38.0 Major Updated and revised the technical content.

3/30/2012 39.0 Major Updated and revised the technical content.

7/12/2012 40.0 Major Updated and revised the technical content.

10/25/2012 41.0 Major Updated and revised the technical content.

1/31/2013 42.0 Major Updated and revised the technical content.

8/8/2013 43.0 Major Updated and revised the technical content.

11/14/2013 44.0 Major Updated and revised the technical content.

2/13/2014 45.0 Major Updated and revised the technical content.

5/15/2014 46.0 Major Updated and revised the technical content.

6/30/2015 47.0 Major Significantly changed the technical content.

10/16/2015 48.0 Major Significantly changed the technical content.

7/14/2016 49.0 Major Significantly changed the technical content.

9/26/2016 50.0 Major Significantly changed the technical content.

3/16/2017 51.0 Major Significantly changed the technical content.

6/1/2017 52.0 Major Significantly changed the technical content.

9/15/2017 53.0 Major Significantly changed the technical content.

12/1/2017 54.0 Major Significantly changed the technical content.

3/16/2018 55.0 Major Significantly changed the technical content.

4 / 450

[MS -SMB2-Diff] - v20180316
Server Message Block (SMB) Protocol Versions 2 and 3
Copyright © 2018 Microsoft Corporation
Release: March 16, 2018

Table of Contents

1 Introduction 13
1.1 Glossary 13
1.2 References 17

1.2.1 Normative References 17
1.2.2 Informative References 18

1.3 Overview 19
1.4 Relationship to Other Protocols 21
1.5 Prerequisites/Preconditions 23
1.6 Applicability Statement 23
1.7 Versioning and Capability Negotiation 23
1.8 Vendor -Extensible Fields 26
1.9 Standards Assignments 26

2 Messages 28
2.1 Transport 28
2.2 Message Syntax 28

2.2.1 SMB2 Packet Header 30
2.2.1.1 SMB2 Packet Header - ASYNC 30
2.2.1.2 SMB2 Packet Header - SYNC 33

2.2.2 SMB2 ERROR Response 36
2.2.2.1 SMB2 ERROR Context Response 37
2.2.2.2 ErrorData format 38

2.2.2.2.1 Symbolic Link Error Response 38
2.2.2.2.1.1 Handling the Symbolic Link Error Response 40

2.2.2.2.2 Share Redirect Error Context Response 41
2.2.2.2.2.1 MOVE_DST_IPADDR structure 42

2.2.3 SMB2 NEGOTIATE Request 43
2.2.3.1 SMB2 NEGOTIATE_CONTEXT Request Values 45

2.2.3.1.1 SMB2_PREAUTH_INTEGRITY_CAPABILITIES 46
2.2.3.1.2 SMB2_ENCRYPTION_CAPABILITIES 46

2.2.4 SMB2 NEGOTIATE Response 47
2.2.4.1 SMB2 NEGOTIATE_CONTEXT Response Values 50

2.2.4.1.1 SMB2_PREAUTH_INTEGRITY_CAPABILITIES 50
2.2.4. 1.2 SMB2_ENCRYPTION_CAPABILITIES 50

2.2.5 SMB2 SESSION_SETUP Request 50
2.2.6 SMB2 SESSION_SETUP Response 52
2.2.7 SMB2 LOGOFF Request 53
2.2.8 SMB2 LOGOFF Response 53
2.2.9 SMB2 TREE_CONNECT Request 54

2.2.9.1 SMB2 TREE_CONNECT Request Extension 55
2.2.9.2 SMB2 TREE_CONNECT_CONTEXT Request Values 55

2.2.9.2.1 SMB2_REMOTED_IDENTITY_TREE_CONNECT Context 56
2.2.9.2.1.1 BLOB_DATA 58
2.2.9.2.1.2 SID_ATTR_DATA 58
2.2.9.2.1.3 SID_ARRAY_DATA 59
2.2.9.2.1.4 LUID_ATTR_DATA 59
2.2.9.2.1.5 PRIVILEGE_DATA 60
2.2.9.2.1.6 PRIVILEGE_ARRAY_DATA 60

2.2.10 SMB2 TREE_CONNECT Response 60
2.2.11 SMB2 TREE_DISCONNECT Request 63
2.2.12 SMB2 TREE_DISCONNECT Response 63
2.2.13 SMB2 CREAT E Request 64

2.2.13.1 SMB2 Access Mask Encoding 68
2.2.13.1.1 File_Pipe_Printer_Access_Mask 69
2.2.13.1.2 Directory_Access_Mask 70

5 / 450

[MS -SMB2-Diff] - v20180316
Server Message Block (SMB) Protocol Versions 2 and 3
Copyright © 2018 Microsoft Corporation
Release: March 16, 2018

2.2.13.2 SMB2_CREATE_CONTEXT Request Values 71
2.2.13.2.1 SMB2_CREATE_EA_BUFFER 74
2.2.13.2.2 SMB2_CREATE_SD_BUFFER 74
2.2.13.2.3 SMB2_CREATE_DURABLE_HANDLE_REQUEST 74
2.2.13.2.4 SMB2_CREATE_DURABLE_HANDLE_RECONNECT 74
2.2. 13.2.5 SMB2_CREATE_QUERY_MAXIMAL_ACCESS_REQUEST 75
2.2.13.2.6 SMB2_CREATE_ALLOCATION_SIZE 75
2.2.13.2.7 SMB2_CREATE_TIMEWARP_TOKEN 75
2.2.13.2.8 SMB2_CREATE_REQUEST_LEASE 76
2.2.13.2.9 SMB2_CREATE_QUERY_ON_DISK_ID 77
2.2.13.2.10 SMB2_CREATE_REQUEST_LEASE_V2 77
2. 2.13.2.11 SMB2_CREATE_DURABLE_HANDLE_REQUEST_V2 78
2.2.13.2.12 SMB2_CREATE_DURABLE_HANDLE_RECONNECT_V2 79
2.2.13.2.13 SMB2_CREATE_APP_INSTANCE_ID 80
2.2.13.2.14 SVHDX_OPEN_DEVICE_CONTEXT 80
2.2.13.2.15 SMB2_CREATE_APP_INSTANCE_VERSION 80

2.2.14 SMB2 CREATE Response 81
2.2.14.1 SMB2_FILEID 83
2.2.14.2 SMB2_CREATE_CONTEXT Response Values 84

2.2.14.2 .1 SMB2_CREATE_EA_BUFFER 85
2.2.14.2.2 SMB2_CREATE_SD_BUFFER 85
2.2.14.2.3 SMB2_CREATE_DURABLE_HANDLE_RESPONSE 85
2.2.14.2.4 SMB2_CREATE_DURABLE_HANDLE_RECONNECT 85
2.2. 14.2.5 SMB2_CREATE_QUERY_MAXIMAL_ACCESS_RESPONSE 85
2.2.14.2.6 SMB2_CREATE_APP_INSTANCE_ID 86
2.2.14.2.7 SMB2_CREATE_ALLOCATION_SIZE 86
2.2.14.2.8 SMB2_CREATE_TIMEWARP_TOKEN 86
2.2.14.2.9 SMB2_CREATE_QUERY_ON_DISK_ID 86
2.2.14.2.10 SMB2_CREATE_RESPONSE_LEASE 87
2.2. 14.2.11 SMB2_CREATE_RESPONSE_LEASE_V2 88
2.2.14.2.12 SMB2_CREATE_DURABLE_HANDLE_RESPONSE_V2 89
2.2.14.2.13 SMB2_CREATE_DURABLE_HANDLE_RECONNECT_V2 90
2.2.14.2.14 SVHDX_OPEN_DEVICE_CONTEXT_RESPONSE 90
2.2.14.2.15 SMB2_CREATE_APP_INSTANCE_VERSION 90

2.2.15 SMB2 CLOSE Request 90
2.2.16 SMB2 CLOSE Response 91
2.2.17 SMB2 FLUSH Request 92
2.2.18 SMB2 FLUSH Response 93
2.2.19 SMB2 READ Request 93
2.2.20 SMB2 READ Response 95
2.2.21 SMB2 WRITE Request 96
2.2.22 SMB2 WRITE Response 98
2.2.23 SMB2 OPLOCK_BREAK Notification 98

2.2.23.1 Oplock Break Notification 98
2.2.23.2 Lease Break Notification 99

2.2.24 SMB2 OPLOCK_BREAK Acknowledgment 101
2.2.24.1 Oplock Break Acknowledgment 101
2.2.24.2 Lease Break Acknowledgment 102

2.2.25 SMB2 OPLOCK_BREAK Response 103
2.2.25.1 Oplock Break Response 103
2.2.25.2 Lease Break Re sponse 104

2.2.26 SMB2 LOCK Request 105
2.2.26.1 SMB2_LOCK_ELEMENT Structure 106

2.2.27 SMB2 LOCK Response 107
2.2.28 SMB2 ECHO Request 107
2.2.29 SMB2 ECHO Response 107
2.2.30 SMB2 CANCEL Request 108
2.2.31 SMB2 IOCTL Request 108

6 / 450

[MS -SMB2-Diff] - v20180316
Server Message Block (SMB) Protocol Versions 2 and 3
Copyright © 2018 Microsoft Corporation
Release: March 16, 2018

2.2.31.1 SRV_COPYCHUNK_COPY 110
2.2.31.1.1 SRV_COPYCHUNK 111

2.2.31.2 SRV_READ_HASH Request 112
2.2.31.3 NETWORK_RESILIENCY_REQUEST Request 113
2.2.31.4 VALIDATE_NEGOTIATE_INFO Request 113

2.2.32 SMB2 IOCTL Response 114
2.2.32.1 SRV_COPYCHUNK_RESPONSE 115
2.2.32.2 SRV_SNAPSHOT_ARRAY 116
2.2.32.3 SRV_REQUEST_RESUME_KEY Response 117
2.2.32.4 SRV_READ_HASH Response 118

2.2.32.4.1 HASH_HEADE R 118
2.2.32.4.2 SRV_HASH_RETRIEVE_HASH_BASED 119
2.2.32.4.3 SRV_HASH_RETRIEVE_FILE_BASED 120

2.2.32.5 NETWORK_INTERFACE_INFO Response 120
2.2.32.5.1 SOCKADDR_STORAGE 121

2.2.32.5.1.1 SOCKADDR_IN 122
2.2.32.5.1.2 SOCKADDR_IN6 122

2.2.32.6 VALIDATE_NEGOTIATE_INFO Response 123
2.2.33 SMB2 QUERY_DIRECTORY Request 123
2.2.34 SMB2 QUERY_DIRECTORY Response 125
2.2.35 SMB2 CHANGE_NOTIFY Request 126
2.2.36 SMB2 CHANGE_NOTIFY Response 127
2.2.37 SMB2 QUERY_INFO Request 128

2.2.37.1 SMB2_QUERY_QUOTA_INFO 131
2.2.38 SMB2 QUERY_INFO Response 132
2.2.39 SMB2 SET_INFO Request 133
2.2.40 SMB2 SET_INFO Response 136
2.2.41 SMB2 TRANSFORM_HEADER 136

3 Protocol Details 139
3.1 Common Details 139

3.1.1 Abstract Data Model 139
3.1.1.1 Global 139

3.1.2 Timers 139
3.1.3 Initialization 139
3.1.4 Higher -Layer Triggered Events 139

3.1.4.1 Signing An Outgoing Message 139
3.1.4.2 Generating Cryptographic Keys 140
3.1.4.3 Encrypt ing the Message 140

3.1.5 Processing Events and Sequencing Rules 141
3.1.5.1 Verifying an Incoming Message 141
3.1.5.2 Calculating the CreditCharge 141

3.1.6 Timer Event s 141
3.1.7 Other Local Events 141

3.2 Client Details 141
3.2.1 Abstract Data Model 141

3.2.1.1 Global 142
3.2.1.2 Per SMB2 Transport Connection 142
3.2.1.3 Per Session 144
3.2.1.4 Per Tree Connect 144
3.2.1.5 Per Open File 145
3.2.1.6 Per Application Open of a File 145
3.2.1.7 Per Pending Request 146
3.2.1.8 Per Channel 147
3.2.1.9 Per Server 147

3.2.2 Timers 147
3.2.2.1 Reque st Expiration Timer 147
3.2.2.2 Idle Connection Timer 147

7 / 450

[MS -SMB2-Diff] - v20180316
Server Message Block (SMB) Protocol Versions 2 and 3
Copyright © 2018 Microsoft Corporation
Release: March 16, 2018

3.2.2.3 Network Interface Information Timer 147
3.2.3 Initialization 147
3.2.4 Higher -Layer Triggered Even ts 148

3.2.4.1 Sending Any Outgoing Message 148
3.2.4.1.1 Signing the Message 148
3.2.4.1.2 Requesting Credits from the Server 149
3.2.4.1.3 Associating the Message with a MessageId 149
3.2.4.1.4 Sending Compounded Requests 150
3.2.4.1.5 Sending Multi -Credit Requests 150
3.2.4.1.6 Algorithm for Handling Available Message Sequence Numbers by the Client

 151
3.2.4.1.7 Selecting a Channel 151
3.2.4.1.8 Encrypting the Message 151

3.2.4.2 Application Requests a Connection to a Share 151
3.2.4.2.1 Connecting to the Target Server 154
3.2.4.2.2 Negotiating the Protocol 155

3.2.4.2.2.1 Multi -Protocol Negotiate 155
3.2.4.2.2.2 SMB2-Only Negotiate 155

3.2.4.2.3 Authenticating the User 157
3.2.4.2.3.1 Application Requests Reauthenticating a User 158

3.2.4.2.4 Connecting to the Share 159
3.2.4.3 Application Requests Opening a File 160

3.2.4.3.1 Application Requests Opening a Named Pipe 162
3.2.4.3.2 Application Requests Sending a File to Print 162
3.2.4.3.3 Application Requests Creating a File with Extended Attributes 162
3.2.4.3.4 Application Requests Creating a File with a Security Descriptor 162
3.2.4.3.5 Application Requests Creating a File Opened for Durable Operation 162
3.2.4.3.6 Application Request s Opening a Previous Version of a File 163
3.2.4.3.7 Application Requests Creating a File with a Specific Allocation Size 163
3.2.4.3.8 Requesting a Lease on a File or a Directory 163
3.2.4.3.9 Application Requests Maximal Access Information of a File 164
3.2. 4.3.10 Application Requests Identifier of a File 164
3.2.4.3.11 Application Supplies its Identifier 164
3.2.4.3.12 Application Provides an Application -Specific Create Context Structure to

Open a Remote File 164
3.2.4.3.13 Application Supplies a Version for its Identifier 164

3.2.4.4 Re-establishing a Durable Open 164
3.2.4.5 Application Requests Closing a File or Named Pipe 165
3.2.4.6 Application Requests Reading from a File or Named Pipe 166
3.2.4.7 Application Requests Writing to a File or Named Pipe 168
3.2.4.8 Application Requests Querying File Attributes 169
3.2.4.9 Application Requests Applying File Attributes 171
3.2.4.10 Application Requests Querying File System Attributes 171
3.2.4.11 Application Requests Applying File System Attributes 172
3.2.4.12 Application Requests Querying File Security 173
3.2.4.13 Application Requests Applying File Security 174
3.2.4.14 Application Requests Querying Quota Information 175
3.2.4.15 Application Requests Applying Quota Information 176
3.2.4.16 Application Requests Flushing Cached Data 177
3. 2.4.17 Application Requests Enumerating a Directory 178

3.2.4.17.1 Application Requests Continuing a Directory Enumeration 179
3.2.4.18 Application Requests Change Notifications for a Directory 179
3.2.4.19 Application Requests Locking of an Array of Byte Ranges 180
3.2.4.20 Application Requests an IO Control Code Operation 182

3.2.4.20.1 Application Requests Enumeration of Previous Versions 182
3.2.4.20.2 Application Requests a Server -Side Data Copy 182

3.2.4.20.2.1 Application Requests a Source File Key 18 3
3.2.4.20.2.2 Application Requests a Server Side Data Copy 184

8 / 450

[MS -SMB2-Diff] - v20180316
Server Message Block (SMB) Protocol Versions 2 and 3
Copyright © 2018 Microsoft Corporation
Release: March 16, 2018

3.2.4.20.3 Application Requests DFS Referral Information 185
3.2.4.20.4 Application Requests a Pipe Transaction 186
3.2.4.20.5 Application Requests a Peek at Pipe Data 187
3.2.4.20.6 Application Requests a Pass -Through Operation 188
3.2.4.20.7 Application Requests Content Information for a File 189
3.2.4.20.8 Application Requests Resiliency on an Open File 190
3.2.4.20.9 Application Requests Waiting for a Connection to a Pipe 192
3.2.4.20.10 Application Requests Querying Server's Network Interfaces 193
3.2.4.20.11 Application Requests Remote Shared Virtual Disk File Cont rol Operation 193
3.2.4.20.12 Application Requests Extent Duplication 194
3.2.4.20.13 Application Requests Extended Extent Duplication 195

3.2.4.21 Application Requests Unlocking of an Array of Byte Ranges 196
3.2.4.22 Application Requests Closing a Share Connection 197
3.2.4.23 Application Requests Terminating an Authenticated Context 198
3.2.4.24 Application Requests Canceling an Operation 198
3.2. 4.25 Application Requests the Session Key for an Authenticated Context 199
3.2.4.26 Application Requests Number of Opens on a Tree Connect 199
3.2.4.27 Application Notifies Offline Status of a Server 199
3.2.4.28 Application Notifies Online Status of a Server 199
3.2.4.29 Application Requests Moving to a Server Instance 200

3.2.5 Processing Events and Sequencing Rules 200
3.2.5.1 Receiving Any Message 200

3.2.5.1.1 Decrypting the Message 200
3.2.5.1.2 Finding the Application Request for This Response 201
3.2.5.1.3 Verifying the Signature 201
3.2.5.1.4 Granting Message Credits 202
3.2.5.1.5 Handling Asynchronous Responses 202
3.2.5.1.6 Handling Session Expiration 202
3.2.5.1.7 Handling Incorrectly Formatted Responses 202
3.2.5.1.8 Processing the Response 202
3.2.5.1.9 Handling Compounded Responses 202

3.2.5.2 Receiving an SMB2 NEGOTIATE Response 203
3.2.5.3 Receiving an SMB2 SESSION_SETUP Response 205

3.2.5.3.1 Handling a New Authentication 206
3.2.5.3.2 Handling a Reauthentication 209
3.2.5.3.3 Handling Session Binding 210

3.2.5.4 Receiving an SMB2 LOGOFF Response 212
3.2.5.5 Receiving an SMB2 TREE_CONNECT Response 212
3.2.5.6 Receiving an SMB2 TREE_DISCONNECT Response 216
3.2.5.7 Receiving an SMB2 CREATE Response for a New Create Operation 216

3.2.5.7.1 SMB2_CREATE_DURABLE_HANDLE_RESPONSE Create Context 217
3.2.5.7.2 SMB2_CREATE_QUERY_MAXIMAL_ACCESS_RESPONSE Create Context . 217
3.2.5.7.3 SMB2_CREATE_QUERY_ON_DISK_ID Create Context 217
3.2.5.7.4 SMB2_CREATE_RESPONSE_LEASE Create Context 217
3.2.5.7.5 SMB2_CREATE_RESPONSE_LEASE_V2 Create Context 218
3.2.5.7.6 SMB2_CREATE_DURABLE_HANDLE_RESPONSE_V2 Create Context 218

3.2.5.8 Receiving an SMB2 CREATE Response for an Open Reestab lishment 219
3.2.5.9 Receiving an SMB2 CLOSE Response 220
3.2.5.10 Receiving an SMB2 FLUSH Response 220
3.2.5.11 Receiving an SMB2 READ Response 220
3.2.5.12 Receiving an SMB2 WRITE Response 220
3.2.5.13 Receiving an SMB2 LOCK Response 221
3.2.5.14 Receiving an SMB2 IOCTL Response 221

3.2.5.14.1 Handling an Enumeration of Previous Versions Response 221
3.2.5.14.2 Handling a Server -Side Data Copy Source File Key Response 221
3.2.5.14.3 Handling a Server -Side Data Copy Res ponse 221
3.2.5.14.4 Handling a DFS Referral Information Response 222
3.2.5.14.5 Handling a Pipe Transaction Response 222

9 / 450

[MS -SMB2-Diff] - v20180316
Server Message Block (SMB) Protocol Versions 2 and 3
Copyright © 2018 Microsoft Corporation
Release: March 16, 2018

3.2.5.14.6 Handling a Peek at Pipe Data Response 222
3.2. 5.14.7 Handling a Content Information Retrieval Response 222
3.2.5.14.8 Handling a Pass -Through Operation Response 222
3.2.5.14.9 Handling a Resiliency Response 223
3.2.5.14.10 Handling a Pipe Wait Response 223
3.2.5.14.11 Handling a Network Interfaces Response 223
3. 2.5.14.12 Handling a Validate Negotiate Info Response 223
3.2.5.14.13 Handling a Shared Virtual Disk File Control Response 224

3.2.5.15 Receiving an SMB2 QUERY_DIRECTORY Response 224
3.2.5.16 Receiving an SMB2 CHANGE_NOTIFY Response 224
3. 2.5.17 Receiving an SMB2 QUERY_INFO Response 224
3.2.5.18 Receiving an SMB2 SET_INFO Response 224
3.2.5.19 Receiving an SMB2 OPLOCK_BREAK Notification 225

3.2.5.19.1 Receiving an Oplock Break Notification 225
3. 2.5.19.2 Receiving a Lease Break Notification 226
3.2.5.19.3 Receiving an Oplock Break Acknowledgment Response 227
3.2.5.19.4 Receiving a Lease Break Acknowledgment Response 227

3.2.6 Timer Events 227
3.2.6.1 Request Expiration Timer Event 227
3.2.6.2 Idle Co nnection Timer Event 227
3.2.6.3 Network Interface Information Timer Event 227

3.2.7 Other Local Events 228
3.2.7.1 Handling a Network Disconnect 228

3.3 Server Deta ils 229
3.3.1 Abstract Data Model 229

3.3.1.1 Algorithm for Handling Available Message Sequence Numbers by the Server 229
3.3.1.2 Algorithm for the Granting of Credits 230
3.3.1.3 Algorithm for Change Notifications in an Object Store 230
3.3.1.4 Algorithm for Leasing in an Object Store 231
3.3.1.5 Global 232
3.3.1.6 Per Share 234
3.3.1.7 Per Transport Connection 235
3.3.1.8 Per Session 236
3.3.1.9 Per Tree Connect 238
3.3.1.10 Per Open 238
3.3.1.11 Per Lease Table 241
3.3.1.12 Per Lease 241
3.3.1.13 Per Request 242
3.3.1.14 Per Channel 242
3.3.1.15 Per PreauthSession 242

3.3.2 Timers 242
3.3.2.1 Oplock Break Acknowledgment Timer 242
3.3.2.2 Durable Open Scavenger Timer 243
3.3.2.3 Session Expiration Timer 243
3.3.2.4 Resilient Open Scavenger Timer 243

3.3.3 Initialization 243
3.3.4 Higher -Layer Triggered Events 244

3.3.4.1 Sending Any Outgoing Message 244
3.3.4.1.1 Signing the Message 245
3.3.4.1.2 Granting Credits to the Client 245
3.3.4.1.3 Sending Compounded Responses 245
3.3.4.1.4 Encrypting the Message 246

3.3.4.2 Sending an Interim Response for an Asynchronous Operation 246
3.3.4.3 Sending a Success Response 247
3.3.4.4 Sending an Error Response 247
3.3.4.5 Server Application Requests Session Key of the Client 249
3.3.4.6 Object Store Indicates an Oplock Break 249
3.3.4.7 Object Store Indicates a Lease Break 250

10 / 450

[MS -SMB2-Diff] - v20180316
Server Message Block (SMB) Protocol Versions 2 and 3
Copyright © 2018 Microsoft Corporation
Release: March 16, 2018

3.3.4.8 DFS Server Notifies SMB2 Server That DFS Is Active 251
3.3.4.9 DFS Server Notifies SMB2 Server That a Share Is a DFS Share 251
3.3.4.10 DFS Serv er Notifies SMB2 Server That a Share Is Not a DFS Share 251
3.3.4.11 Server Application Requests Security Context of the Client 251
3.3.4.12 Server Application Requests Closing a Session 251
3.3.4.13 Server Application Registers a Share 252
3.3.4. 14 Server Application Updates a Share 253
3.3.4.15 Server Application Deregisters a Share 254
3.3.4.16 Server Application Requests Querying a Share 254
3.3.4.17 Server Application Requests Closing an Open 255
3.3.4.18 Server Application Queries a Session 256
3.3.4.19 Server Application Queries a TreeConnect 256
3.3.4.20 Server Application Queries an Open 257
3.3.4.21 Server Application Requests Transport Binding Change 257
3.3.4.22 Server Application Enables the SMB2 Server 258
3.3.4.23 Server Application Disables the SMB2 Server 258
3.3.4.24 Server Application Requests Server Statistics 258
3.3.4.25 RSVD Server Notifies SMB2 Server That Shared Virtual Disks Are Supported 259

3.3.5 Processing Events and Sequencing Rules 259
3.3.5.1 Accepting an Incoming Connection 259
3.3.5.2 Receiving Any Message 260

3.3.5.2.1 Decrypting the Message 260
3.3.5.2.2 Verifyi ng the Connection State 261
3.3.5.2.3 Verifying the Sequence Number 261
3.3.5.2.4 Verifying the Signature 261
3.3.5.2.5 Verifying the C redit Charge and the Payload Size 262
3.3.5.2.6 Handling Incorrectly Formatted Requests 262
3.3.5.2.7 Handling Compounded Requests 263

3.3.5.2.7.1 Handling Compounded Unrelated Requests 263
3.3.5.2.7.2 Handling Compounded Related Requests 263

3.3.5.2.8 Updating Idle Time 264
3.3.5.2.9 Verifying the Session 264
3.3.5.2.10 Verifying the Channel Sequence Number 265
3.3. 5.2.11 Verifying the Tree Connect 265
3.3.5.2.12 Receiving an SVHDX operation Request 266

3.3.5.3 Receiving an SMB_COM_NEGOTIATE 266
3.3.5.3.1 SMB 2.1 or SMB 3.x Support 266
3.3.5.3.2 SMB 2.0 .2 Support 267

3.3.5.4 Receiving an SMB2 NEGOTIATE Request 268
3.3.5.5 Receiving an SMB2 SESSION_SETUP Request 272

3.3.5.5.1 Authenticating a New Session 273
3.3.5.5.2 Reauthenticating an Existing Session 274
3.3.5.5.3 Handling GSS -API Authentication 274

3.3. 5.6 Receiving an SMB2 LOGOFF Request 281
3.3.5.7 Receiving an SMB2 TREE_CONNECT Request 282
3.3.5.8 Receiving an SMB2 TREE_DISCONNECT Request 285
3.3.5.9 Receiving an SMB2 CREATE Request 286

3.3.5.9.1 Handling the SMB2_CREATE_EA_BUFFER Create Context 293
3.3.5.9.2 Handling the SMB2_CREATE_SD_BUFFER Create Context 293
3.3.5.9.3 Handling the SMB2_CREATE_ALLOCATION_SIZE Create Context 293
3.3.5.9.4 Handling the SMB2_CREATE_TIMEWARP_TOKEN Create Context 293
3.3.5.9.5 Handling the SMB2_CREATE_QUERY_MAXIMAL_ACCESS_REQUEST Create

Context 294
3.3.5.9.6 Handling the SMB2_CREATE_DU RABLE_HANDLE_REQUEST Create Context

 294
3.3.5.9.7 Handling the SMB2_CREATE_DURABLE_HANDLE_RECONNECT Create

Context 295
3.3.5.9.8 Handling the SMB2_CREATE_REQUEST_LEASE Create Context 297

11 / 450

[MS -SMB2-Diff] - v20180316
Server Message Block (SMB) Protocol Versions 2 and 3
Copyright © 2018 Microsoft Corporation
Release: March 16, 2018

3.3.5.9.9 Handling the SMB2_CREATE_QUERY_ON_DISK_ID Create Context 298
3.3.5.9.10 Handling the SMB2_CREATE_DURABLE_HANDLE_REQUEST_V2 Create

Context 299
3.3.5.9.11 Handling the SMB2_CREATE_REQUEST_LEA SE_V2 Create Context 300
3.3.5.9.12 Handling the SMB2_CREATE_DURABLE_HANDLE_RECONNECT_V2 Create

Context 302
3.3.5.9.13 Handling the SMB2_CREATE_APP_INSTANCE_ID and

SMB2_CREATE_APP_INSTANCE_VERSION Create Contexts 304
3.3.5.9.14 Handling the SVHDX_OPEN_DEVICE_CONTEXT Create Context 305

3.3.5.10 Receiving an SMB2 CLOSE Request 306
3.3.5.11 Receiving an SMB2 FLUSH Request 307
3.3.5.12 Receiving an SMB2 READ Request 307
3.3.5.13 Receiving an SMB2 WRITE Request 310
3.3.5.14 Receiving an SMB2 LOCK Request 312

3.3.5.14.1 Processing Unlocks 313
3.3.5.14.2 Processing Locks 314

3.3.5.15 Receiving an SMB2 IOCTL Request 315
3.3.5.15.1 Handling an Enumeration of Previous Versions Request 316
3.3.5.15.2 Handling a DFS Referral Information Request 317
3.3.5.15.3 Handling a Pipe Transaction Request 318
3.3.5.15.4 Handling a Peek at Pipe Data Request 319
3.3. 5.15.5 Handling a Source File Key Request 320
3.3.5.15.6 Handling a Server -Side Data Copy Request 320

3.3.5.15.6.1 Sending a Copy Failure Server -Side Copy Response 322
3.3.5.15.6.2 Sending an Invalid Parameter Server -Side Copy Response 322

3.3.5.15.7 Handling a Content Information Retrieval Request 323
3.3.5.15.8 Handling a Pass -Through Operation Request 325
3.3.5.15.9 Handling a Resiliency Request 326
3.3.5.15.10 Handling a Pipe Wait Request 327
3.3.5.15.11 Handling a Query Network Interface Request 327
3.3.5.15.12 Handling a Validate Negotiate Info Request 328
3.3.5.15.13 Handling a Set Reparse Point Request 329
3.3.5.15.14 Handling a File Level Trim Request 329
3.3.5.15.15 Handling a Shared Virtual Disk Sync Tunnel Request 330
3.3.5.15.16 Handling a Query Shared Virtual Disk Support Request 330
3.3.5.15.17 Handling a Duplicate Extents To File Request 330
3.3.5.15.18 Handling an Extended Duplicate Extents To File Request 330

3.3.5.16 Receiving an SMB2 CANCEL Request 331
3.3.5.17 Receiving an SMB2 ECHO Request 331
3.3.5.18 Receiving an SMB2 QUERY_DIRECTORY Request 332
3.3.5.19 Receiving an SMB2 CHANGE_NOTIFY Request 334
3.3.5.20 Receiving an SMB2 QUERY_INFO Request 335

3.3.5.20.1 Handling SMB2_0_INFO_FILE 336
3.3.5.20.2 Handling SMB2_0_INFO_FILESYSTEM 338
3.3.5.20.3 Handling SMB2_0_INFO_SECURITY 339
3.3.5.20.4 Handling SMB2_0_INFO_QUOTA 339

3.3.5.21 Receiving an SMB2 SET_INFO Request 341
3.3.5.21.1 Handling SMB2_0_INFO_FILE 342
3.3.5.21.2 Handli ng SMB2_0_INFO_FILESYSTEM 343
3.3.5.21.3 Handling SMB2_0_INFO_SECURITY 343
3.3.5.21.4 Handling SMB2_0_INFO_QUOTA 344

3.3.5.22 Receiving an SMB2 OPLOCK_BREAK Acknowledgment 344
3.3.5.22.1 Processing an Oplock Acknowledgment 344
3.3.5.22.2 Processing a Lease Acknowledgment 346

3.3.6 Timer Events 347
3.3.6.1 Oplock Break Acknowledgment Timer Event 347
3.3.6.2 Durable Open Scavenger Timer Event 347
3.3.6.3 Session Expiration Timer Event 347

12 / 450

[MS -SMB2-Diff] - v20180316
Server Message Block (SMB) Protocol Versions 2 and 3
Copyright © 2018 Microsoft Corporation
Release: March 16, 2018

3.3.6.4 Resilient Open Scavenger Timer Event 348
3.3.7 Other Local Events 348

3.3.7.1 Handling Loss of a Connection 348

4 Protocol Examples 350
4.1 Connecting to a Share by Using a Multi -Protocol Negotiate 350
4.2 Negotiating SMB 2.1 dialect by using Multi -Protocol Negotiate 355
4.3 Connecting to a Share by Using an SMB2 Negotiate 360
4.4 Executing an Operation on a Named Pipe 365
4.5 Reading from a Remote File 372
4.6 Writing to a Remote File................................ 377
4.7 Disconnecting a Share and Logging Off 386
4.8 Establish Alternate Channel 388
4.9 Replay Create Req uest on an Alternate Channel 397

5 Security 402
5.1 Security Considerations for Implementers 402
5.2 Index of Security Parameters 402

6 Appendix A: Product Behavior 403

7 Change Tracking 437

8 Index 439

13 / 450

[MS -SMB2-Diff] - v20180316
Server Message Block (SMB) Protocol Versions 2 and 3
Copyright © 2018 Microsoft Corporation
Release: March 16, 2018

1 Introduction

The Server Message Block (SMB) Protocol Versions 2 and 3 supports the sharing of file and print
resources between machines. The protocol borrows and extends concepts from the Server Message
Block (SMB) Version 1.0 Protocol, as specified in [MS -SMB]. This specification assumes fami liarity with
[MS -SMB], and with the security concepts described in [MS -WPO] section 9.

Sections 1.5, 1.8, 1.9, 2, and 3 of this specification are normative. All other sections and examples in

this specification are informative.

1.1 Glossary

This document uses the following terms:

@GMT token : A special token that can be present as part of a file path to indicate a request to see
a previous version of the file or directory. The format is "@GMT -YYYY.MM.DD-HH.MM.SS". This
16 -bit Unicode string repr esents a time and date in Coordinated Universal Time (UTC), with

YYYY representing the year, MM the month, DD the day, HH the hour, MM the minute, and SS
the seconds.

authenticated context : The runtime state that is associated with the successful authentic ation of
a security principal between the client and the server, such as the security principal itself, the

cryptographic key that was generated during authentication, and the rights and privileges of this
security principal.

Branch Cache : Branch Cache is intended to reduce bandwidth consumption on branch -office wide
area network (WAN) links. Branch Cache clients retrieve content from distributed caches within
a branch instead of remote servers. Distributed caches in the branch can either be on peer
clients within the branch or be on dedicated caching servers. Branch Cache details are discussed
in [MS -PCCRR].

channel : A logical entity that associates a transport connection to a session.

compounded requests and responses : A method of combining multiple SMB 2 Protocol requests
or responses into a single transmission request for submission to the underlying transport.

connection : Either a TCP or NetBIOS over TCP connection between an SMB 2 Protocol client and
an SMB 2 Protocol server.

content : Items that corresp ond to a file that an application attempts to access. Examples of

content include web pages and documents stored on either HTTP servers or SMB file servers.
Each content item consists of an ordered collection of one or more segments.

content information : A n opaque blob of data containing a set of hashes for a specific file that can
be used by the application to retrieve the contents of the file using the branch cache. The details
of content information are discussed in [MS -PCCRC].

content information file : A file that stores Content Information along with a HASH_HEADER (see
section 2.2.32.4.1).

create context : A variable - length attribute that is sent with an SMB2 CREATE Request or SMB2
CREATE Response that either gives extra information about how the create will be processed, or
returns extra information about how the create was processed. See sections 2.2.13.2 and
2.2.14.2.

credit : A value that is granted to an SMB 2 Protocol client by an SMB 2 Protocol server that limits
the number of outstanding requests t hat a client can send to a server.

14 / 450

[MS -SMB2-Diff] - v20180316
Server Message Block (SMB) Protocol Versions 2 and 3
Copyright © 2018 Microsoft Corporation
Release: March 16, 2018

discretionary access control list (DACL) : An access control list (ACL) that is controlled by the
owner of an object and that specifies the access particular users or groups can have to the

object.

Distributed File System (DFS) : A file system that logically groups physical shared folders located

on different servers by transparently connecting them to one or more hierarchical namespaces.
DFS also provides fault - tolerance and load -sharing capabilities.

durable open : An open to a file that allows the client to attempt to preserve and reestablish the
open after a network disconnect. It cannot be permissible to a directory, named pipe, or printer.

file system : A system that enables applications to store and retrieve files on sto rage devices. Files
are placed in a hierarchical structure. The file system specifies naming conventions for files and
the format for specifying the path to a file in the tree structure. Each file system consists of one

or more drivers and DLLs that define the data formats and features of the file system. File
systems can exist on the following storage devices: diskettes, hard disks, jukeboxes, removable
optical disks, and tape backup units.

file system control (FSCTL) : A command issued to a file system to alter or query the behavior of
the file system and/or set or query metadata that is associated with a particular file or with the
file system itself.

fully qualified domain name (FQDN) : An unambiguous domain name that gives an absolute
location in the Doma in Name System's (DNS) hierarchy tree, as defined in [RFC1035] section
3.1 and [RFC2181] section 11.

globally unique identifier (GUID) : A term used interchangeably with universally unique
identifier (UUID) in Microsoft protocol technical documents (TDs). I nterchanging the usage of
these terms does not imply or require a specific algorithm or mechanism to generate the value.
Specifically, the use of this term does not imply or require that the algorithms described in

[RFC4122] or [C706] must be used for gene rating the GUID. See also universally unique
identifier (UUID).

guest account : A security account available to users who do not have an account on the

computer.

handle : Any token that can be used to identify and access an object such as a device, file, or a
window.

I/O control (IOCTL) : A command that is issued to a target file system or target device in order

to query or alter the behavior of the target; or to query or alter the data and attributes that are
associated with the target or the objects that are exposed by the target.

Internet Protocol version 4 (IPv4) : An Internet protocol that has 32 -bit source and destination
addresses. IPv4 is the predecessor of IPv6.

Internet Protocol version 6 (IPv6) : A revised version of the Internet Protocol (IP) designed to
address growth on the Internet. Improvements include a 128 -bit IP address size, expanded

routing capabilities, and support for authentication and privacy.

lease : A mechanism that is designed to allow clients to dynamically alter their buffering strateg y in
a consistent manner in order to increase performance and reduce network use. The network
performance for remote file operations can be increased if a client can locally buffer file data,
which reduces or eliminates the need to send and receive network packets. For example, a client
might not have to write information into a file on a remote server if the client confirms that no
other client is accessing the data. Likewise, the client can buffer read -ahead data from the

remote file if the client confirm s that no other client is writing data to the remote file. There are
three types of leases: a read -caching lease allows a client to cache reads and can be granted to
multiple clients, a write -caching lease allows a client to cache writes and byte range loc ks and
can only be granted to a single client and a handle -caching lease allows a client to cache open

15 / 450

[MS -SMB2-Diff] - v20180316
Server Message Block (SMB) Protocol Versions 2 and 3
Copyright © 2018 Microsoft Corporation
Release: March 16, 2018

handles and can be granted to multiple clients. A lease can be a combination of one or more of
the lease types listed above. When a client opens a file, it requests that the server grant it a

lease on the file. The response from the server indicates the lease that is granted to the client.
The client uses the granted lease to adjust its buffering policy. A lease can span multiple opens

as well as multiple connections from the same client.

Lease Break : An unsolicited request that is sent by an SMB 2 Protocol server to an SMB 2 Protocol
client to inform the client to change the lease state for a file.

Local object store : A system that provides the ability to create, query, modify, or apply policy to
a local resource on behalf of a remote client. The object store is backed by a file system, a
named pipe, or a print job that is accessed as a file.

main stream : The place within a file where data is stored or the data stored therein. A main

stream has no name. The main stream is what is ordinarily thought of as the contents of a file.

named pipe : A named, one -way, or duplex pipe for communication between a pipe server and one
or more pipe clients.

named stream : A p lace within a file in addition to the main stream where data is stored, or the
data stored therein. File systems support a mode in which it is possible to open either the main
stream of a file and/or to open a named stream. Named streams have different dat a than the

main stream (and than each other) and can be read and written independently. Not all file
systems support named streams. See also main stream.

NetBIOS : A particular network transport that is part of the LAN Manager protocol suite. NetBIOS
uses a broadcast communication style that was applicable to early segmented local area
networks. A protocol family including name resolution, datagram, and connection services. For
more information, see [RFC1001] and [RFC1002].

network byte order : The order in w hich the bytes of a multiple -byte number are transmitted on a

network, most significant byte first (in big -endian storage). This may or may not match the
order in which numbers are normally stored in memory for a particular processor.

normalized path name : A full pathname of a directory or a file relative to the root of the share on
which it resides.

open : A runtime object that corresponds to a currently established access to a specific file or a
named pipe from a specific client to a specific server, using a specific user security context. Both
clients and servers maintain opens that represent active accesses.

oplock break : An unsolicited request sent by a Server Message Block (SMB) server to an SMB
client to inform the client to change the oplock level for a file.

opportunistic lock (oplock) : A mechanism designed to allow clients to dynamically alter their
buffering strategy in a consistent manner to increase performance and reduce network use. The
network performance for remote file operations may be incre ased if a client can locally buffer file
data, which reduces or eliminates the need to send and receive network packets. For example, a

client may not have to write information into a file on a remote server if the client knows that no
other process is acc essing the data. Likewise, the client may buffer read -ahead data from the

remote file if the client knows that no other process is writing data to the remote file. There are
three types of oplocks: Exclusive oplock allows a client to open a file for exclu sive access and
allows the client to perform arbitrary buffering. Batch oplock allows a client to keep a file open
on the server even though the local accessor on the client machine has closed the file. Level II
oplock indicates that there are multiple re aders of a file and no writers. Level II Oplocks are

supported if the negotiated SMB Dialect is NT LM 0.12 or later. When a client opens a file, it
requests the server to grant it a particular type of oplock on the file. The response from the
server indica tes the type of oplock granted to the client. The client uses the granted oplock type
to adjust its buffering policy.

16 / 450

[MS -SMB2-Diff] - v20180316
Server Message Block (SMB) Protocol Versions 2 and 3
Copyright © 2018 Microsoft Corporation
Release: March 16, 2018

reparse point : An attribute that can be added to a file to store a collection of user -defined data
that is opaque to NTFS or ReFS. If a fi le that has a reparse point is opened, the open will

normally fail with STATUS_REPARSE, so that the relevant file system filter driver can detect the
open of a file associated with (owned by) this reparse point. At that point, each installed filter

driver can check to see if it is the owner of the reparse point, and, if so, perform any special
processing required for a file with that reparse point. The format of this data is understood by
the application that stores the data and the file system filter that interprets the data and
processes the file. For example, an encryption filter that is marked as the owner of a file's
reparse point could look up the encryption key for that file. A file can have (at most) 1 reparse
point associated with it. For more infor mation, see [MS -FSCC].

security context : An abstract data structure that contains authorization information for a

particular security principal in the form of a Token/Authorization Context (see [MS -DTYP] section
2.5.2). A server uses the authorization info rmation in a security context to check access to
requested resources. A security context also contains a key identifier that associates mutually
established cryptographic keys, along with other information needed to perform secure
communication with anothe r security principal.

security descriptor : A data structure containing the security information associated with a

securable object. A security descriptor identifies an object's owner by its security identifier
(SID). If access control is configured for the object, its security descriptor contains a
discretionary access control list (DACL) with SIDs for the security principals who are allowed or
denied access. Applications use this structure to set and query an object's security status. The
security descript or is used to guard access to an object as well as to control which type of
auditing takes place when the object is accessed. The security descriptor format is specified in
[MS -DTYP] section 2.4.6; a string representation of security descriptors, called SD DL, is

specified in [MS -DTYP] section 2.5.1.

security identifier (SID) : An identifier for security principals that is used to identify an account
or a group. Conceptually, the SID is composed of an account authority portion (typically a
domain) and a small er integer representing an identity relative to the account authority, termed
the relative identifier (RID). The SID format is specified in [MS -DTYP] section 2.4.2; a string
representation of SIDs is specified in [MS -DTYP] section 2.4.2 and [MS -AZOD] secti on 1.1.1.2.

security principal : A unique entity that is identifiable through cryptographic means by at least

one key. It frequently corresponds to a human user, but also can be a service that offers a
resource to other security principals. Also referred to as principal.

sequence numbe r : A number that uniquely identifies a request and response that is sent on an
SMB 2 Protocol connection. For a description of how sequence numbers are allocated, see [MS -
SMB2] sections 3.2.4.1.6 and 3.3.1.1.

session : An authenticated context that is estab lished between an SMB 2 Protocol client and an

SMB 2 Protocol server over an SMB 2 Protocol connection for a specific security principal. There
could be multiple active sessions over a single SMB 2 Protocol connection. The SessionId field in
the SMB2 packe t header distinguishes the various sessions.

share : A local resource that is offered by an SMB 2 Protocol server for access by SMB 2 Protocol
clients over the network. The SMB 2 Protocol defines three types of shares: file (or disk) shares,
which represent a directory tree and its included files; pipe shares, which expose access to

named pipes; and print shares, which provide access to print resources on the server. A pipe

share as defined by the SMB 2 Protocol must always have the name "IPC$". A pipe share must
only allow named pipe operations and DFS referral requests to itself.

snapshot : The point in time at which a shadow copy of a volume is made.

symbolic link : A symbolic link is a reparse point that points to another file system object. The
object bein g pointed to is called the target. Symbolic links are transparent to users; the links
appear as normal files or directories, and can be acted upon by the user or application in exactly

17 / 450

[MS -SMB2-Diff] - v20180316
Server Message Block (SMB) Protocol Versions 2 and 3
Copyright © 2018 Microsoft Corporation
Release: March 16, 2018

the same manner. Symbolic links can be created using the FSCTL_SET_REPA RSE_POINT request
as specified in [MS -FSCC] section 2.3.61. They can be deleted using the

FSCTL_DELETE_REPARSE_POINT request as specified in [MS -FSCC] section 2.3.5. Implementing
symbolic links is optional for a file system.

system access control list (SACL) : An access control list (ACL) that controls the generation of
audit messages for attempts to access a securable object. The ability to get or set an object's
SACL is controlled by a privilege typically held only by system administrators.

Transmissio n Control Protocol (TCP) : A protocol used with the Internet Protocol (IP) to send
data in the form of message units between computers over the Internet. TCP handles keeping
track of the individual units of data (called packets) that a message is divided in to for efficient
routing through the Internet.

tree connect : A connection by a specific session on an SMB 2 Protocol client to a specific share on
an SMB 2 Protocol server over an SMB 2 Protocol connection. There could be multiple tree
connects over a sing le SMB 2 Protocol connection. The TreeId field in the SMB2 packet header
distinguishes the various tree connects.

Unicode : A character encoding standard developed by the Unicode Consortium that represents
almost all of the written languages of the world. T he Unicode standard [UNICODE5.0.0/2007]

provides three forms (UTF -8, UTF -16, and UTF -32) and seven schemes (UTF -8, UTF -16, UTF -16
BE, UTF-16 LE, UTF -32, UTF -32 LE, and UTF -32 BE).

MAY, SHOULD, MUST, SHOULD NOT, MUST NOT: These terms (in all caps) are used as defined
in [RFC2119]. All statements of optional behavior use either MAY, SHOULD, or SHOULD NOT.

1.2 References

Links to a document in the Microsoft Open Specifications library point to the correct section in the
most recently published v ersion of the referenced document. However, because individual documents
in the library are not updated at the same time, the section numbers in the documents may not
match. You can confirm the correct section numbering by checking the Errata .

1.2.1 Normative References

We conduct frequent surveys of the normative references to assure their continued availability. If you
have any issue with finding a normative reference, please contact dochelp@microsoft. com. We will
assist you in finding the relevant information.

[FIPS180 -4] FIPS PUBS, "Secure Hash Standards (SHS)", March 2012,

http://csrc.nist.gov/publications/fips/fips180 -4/fips -180 -4.pdf

[IANAPORT] IANA, "Service Name and Transport Protocol Port Numbe r Registry",
http://www.iana.org/assignments/service -names -port -numbers/service -names -port -numbers.xhtml

[MS -CIFS] Microsoft Corporation, "Common Internet File System (CIFS) Protocol".

[MS -DFSC] Microsoft Corporation, "Distributed File System (DFS): Referr al Protocol".

[MS -DTYP] Microsoft Corporation, "Windows Data Types".

[MS -ERREF] Microsoft Corporation, "Windows Error Codes".

[MS -FSA] Microsoft Corporation, "File System Algorithms".

[MS -FSCC] Microsoft Corporation, "File System Control Codes".

[MS -KILE] Microsoft Corporation, "Kerberos Protocol Extensions".

18 / 450

[MS -SMB2-Diff] - v20180316
Server Message Block (SMB) Protocol Versions 2 and 3
Copyright © 2018 Microsoft Corporation
Release: March 16, 2018

[MS -LSAD] Microsoft Corporation, "Local Security Authority (Domain Policy) Remote Protocol".

[MS -NLMP] Microsoft Corporation, "NT LAN Manager (NTLM) Authentication Protocol".

[MS -PCCRC] Microsoft Corpo ration, "Peer Content Caching and Retrieval: Content Identification".

[MS -RPCE] Microsoft Corporation, "Remote Procedure Call Protocol Extensions".

[MS -RSVD] Microsoft Corporation, "Remote Shared Virtual Disk Protocol".

[MS -SMB] Microsoft Corporation, "Server Message Block (SMB) Protocol".

[MS -SPNG] Microsoft Corporation, "Simple and Protected GSS -API Negotiation Mechanism (SPNEGO)
Extension".

[MS -SRVS] Microsoft Corporation, "Server Service Remote Protocol".

[RFC1001] Network Working Group, "Protocol S tandard for a NetBIOS Service on a TCP/UDP

Transport: Concepts and Methods", RFC 1001, March 1987, http://www.ietf.org/rfc/rfc1001.txt

[RFC1002] Network Working Group, "Protocol Standard for a NetBIOS Service on a TCP/UDP
Transport: Detailed Specifications ", STD 19, RFC 1002, March 1987, http://www.rfc -
editor.org/rfc/rfc1002.txt

[RFC2104] Krawczyk, H., Bellare, M., and Canetti, R., "HMAC: Keyed -Hashing for Message

Authentication", RFC 2104, February 1997, http://www.ietf.org/rfc/rfc2104.txt

[RFC2119] Bradne r, S., "Key words for use in RFCs to Indicate Requirement Levels", BCP 14, RFC
2119, March 1997, http://www.rfc -editor.org/rfc/rfc2119.txt

[RFC2743] Linn, J., "Generic Security Service Application Program Interface Version 2, Update 1", RFC
2743, January 2 000, http://www.rfc -editor.org/rfc/rfc2743.txt

[RFC4178] Zhu, L., Leach, P., Jaganathan, K., and Ingersoll, W., "The Simple and Protected Generic

Security Service Application Program Interface (GSS -API) Negotiation Mechanism", RFC 4178, October

2005, http: //www.rfc -editor.org/rfc/rfc4178.txt

[RFC4309] Housley, R., "Using Advanced Encryption Standard (AES) CCM Mode with IPsec
Encapsulating Security Payload (ESP)", RFC 4309, December 2005, http://www.ietf.org/rfc/rfc4309.txt

[RFC4493] Song, JH., Poovendran, R ., Lee, J., and Iwata, T., "The AES -CMAC Algorithm", RFC 4493,
June 2006, http://www.ietf.org/rfc/rfc4493.txt

[RFC5084] Housley, R., "Using AES -CCM and AES -GCM Authenticated Encryption in the Cryptographic

Message Syntax (CMS)", RFC 5084, November 2007, ht tp://www.ietf.org/rfc/rfc5084.txt

[SP800 -108] National Institute of Standards and Technology., "Special Publication 800 -108,
Recommendation for Key Derivation Using Pseudorandom Functions", October 2009,
http://csrc.nist.gov/publications/nistpubs/800 -108/s p800 -108.pdf

[UNICODE] The Unicode Consortium, "The Unicode Consortium Home Page", http://www.unicode.org/

1.2.2 Informative References

[FSBO] Microsoft Corporation, "File System Behavior in the Microsoft Windows Environment", June
2008, http://download.microsoft.com/download/4/3/8/43889780 -8d45 -4b2e -9d3a -
c696a890309f/File%20System%20Behavior%20Overview.pdf

19 / 450

[MS -SMB2-Diff] - v20180316
Server Message Block (SMB) Protocol Versions 2 and 3
Copyright © 2018 Microsoft Corporation
Release: March 16, 2018

[KB2770917] Microsoft Corporation, "Windows 8 and Windows Server 2012 update rollup: Novemb er
2012", Version 6.0, http://support.microsoft.com/kb/2770917/en -us

[MS -AUTHSOD] Microsoft Corporation, "Authentication Services Protocols Overview".

[MS -PCCRR] Microsoft Corporation, "Peer Content Caching and Retrieval: Retrieval Protocol".

[MS -SMBD] Mic rosoft Corporation, "SMB2 Remote Direct Memory Access (RDMA) Transport Protocol".

[MS -SQOS] Microsoft Corporation, "Storage Quality of Service Protocol".

[MS -SWN] Microsoft Corporation, "Service Witness Protocol".

[MS -WPO] Microsoft Corporation, "Windows P rotocols Overview".

[MSDFS] Microsoft Corporation, "How DFS Works", March 2003, http://technet.microsoft.com/en -
us/library/cc782417%28WS.10%29.aspx

[MSDN - IMPERS] Microsoft Corporation, "Impersonation", http://msdn.microsoft.com/en -
us/library/ms691341.aspx

[MSDN - IoCtlCodes] Microsoft Corporation, "Defining I/O Control Codes",
http://msdn.microsoft.com/en -us/library/ff543023.aspx

[MSKB -2536275] Microsoft Corporation, "Vulnerability in SMB Server could allow denial of service",

MS11 -048, June 2011, http://supp ort.microsoft.com/kb/2536275

[MSKB -2934016] Microsoft Corporation, "Windows RT, Windows 8, and Windows Server 2012 update
rollup: April 2014", http://support.microsoft.com/kb/2934016

[MSKB -2976995] Microsoft Corporation, "You cannot access an SMB share that is located on a
Windows 8.1 or Windows Server 2012 R2 -based file server", August 2014,
http://support.microsoft.com/kb/2976995

[MSKB -978491] Microsoft Corporation, "FIX: A server that is running Server Message Block Version 2

does not respond to certa in FSCTL_SRV_NOTIFY_TRANSACTION requests from clients that are running
Windows Vista or Windows Server 2008", 2011, http://support.microsoft.com/kb/978491

[OFFLINE] Microsoft Corporation, "Offline Files", January 2005,
http://technet2.microsoft.com/Windows Server/en/Library/830323a2 -23ca -4875 -af3c -

06671d68ca9a1033.mspx

1.3 Overview

The Server Message Block (SMB) Protocol Versions 2 and 3, hereafter referred to as "SMB 2 Protocol",
is an extension of the orig inal Server Message Block (SMB) Protocol (as specified in [MS -SMB] and

[MS -CIFS]). Both protocols are used by clients to request file and print services from a server system
over the network. Both are stateful protocols in which clients establish a connect ion to a server,
establish an authenticated context on that connection, and then issue a variety of requests to access

files, printers, and named pipes for interprocess communication.

The SMB 2 Protocol is a major revision of the existing SMB Protocol, as specified in [MS -SMB]. The
packet formats are completely different from those of the SMB Protocol; however, many of the

underlying concepts are carried over. The underlying transports that are used to initiate and accept
connections are either Direct TCP a s specified in section 2.1 or NetBIOS over TCP transports as
specified in [RFC1001] and [RFC1002].

20 / 450

[MS -SMB2-Diff] - v20180316
Server Message Block (SMB) Protocol Versions 2 and 3
Copyright © 2018 Microsoft Corporation
Release: March 16, 2018

To retain compatibility with existing clients and servers, the existing SMB Protocol can be used to
negotiate the use of the SMB 2 Protocol, as described in section 1.7. However, the two protocols will

never be intermixed on a specified connection after one is selected during negotiation.

Like its predecessor, which was the original SMB Protocol (as specified in [MS -SMB]), the SMB 2

Protocol supports the follo wing features:

Á Establishing one or more authenticated contexts for different security principals on a connection.

Á Connecting to multiple shared resources on the target server on a connection.

Á Opening, reading, modifying, or closing multiple files or named pipes on the target server.

Á Using the opportunistic locking of files to allow clients to cache data for better performance.

Á Querying and applying attributes to files or volumes on the target server.

Á Canceling outstanding operations.

Á Passing through IO cont rol code operations to the underlying object store on the server machine.

Á Validating the integrity of requests and responses.

Á Support for share scoping and server aliases to allow a single server to appear as multiple distinct
servers, as described in [MS -SRVS] section 1.3.

The SMB 2 Protocol provides several enhancements in addition to the preceding features:

Á Allowing an open to a file to be reestablished after a client connection becomes temporarily

disconnected.

Á Allowing the server to balance the number of simultaneous operations that a client can have
outstanding at any time.

Á Providing scalability in terms of the number of shares, users, and simultaneously open files.

Á Supporting symbolic links.

Á Using a stronger algorithm to validate the integrity of re quests and responses.

The SMB 2.1 dialect introduces the following enhancements:

Á Allowing a client to indicate support for multiple SMB 2 dialects in a multi -protocol negotiate
request.

Á Allowing a client to obtain and preserve client caching state across m ultiple opens from the same
client.

Á Allowing a client to mark individual write operations on unbuffered handles to be treated as write -
through.

Á Allowing a client to retrieve hashes of a file for use in branch cache retrieval, as specified in [MS -

PCCRC] section 2.3.

The SMB 3.0 dialect introduces the following enhancements:

Á Allowing a client to retrieve hashes for a particular region of a file for use in branch cache
retrieval, as specified in [MS -PCCRC] section 2.4.

Á Allowing a client to obtain lease on a directory.

Á Supporting the encryption of traffic between client and server on a per -share basis.

21 / 450

[MS -SMB2-Diff] - v20180316
Server Message Block (SMB) Protocol Versions 2 and 3
Copyright © 2018 Microsoft Corporation
Release: March 16, 2018

Á Supporting the use of Remote Direct Memory Access (RDMA) transports, when the appropriate
hardware and network are available.

Á Supporting enhanced failover between client and server, including optional handle persistence.

Á Allowing an application to failover on a new client and open a file that was previously opened using

an application instance identifier.

Á Allowing a client to bind a session to multiple conne ctions to the server. A request can be sent
through any channel associated to the session, and the corresponding response is sent through
the same channel as used by the request. The following diagram shows an example of two
sessions using multiple channel s to the server.

Figure 1 : Two sessions using multiple channels

The SMB 3.0.2 dialect introduces the following enhancements:

Á Allowing a client to detect asymmetric shares through tree connect response, so that client can

optimize its connections to the server, in order to improve availability and performance when
accessing such shares.

Á Allowing a client to request unbuffered read, write operations.

Á Allowing a client to request remote invalidation while performing I/O using RDMA tr ansport.

The SMB 3.1.1 dialect introduces the following enhancements:

Á Supporting the negotiation of encryption and integrity algorithms.

Á Enhanced protection of negotiation and session establishment.

Á Reconnecting with a specified dialect.

1.4 Relationship to Other Protocols

The SMB 2 Protocol can be negotiated by using an SMB negotiate, as specified in [MS -SMB] section

1.7. After a dialect of the SMB 2 Protocol is selected during ne gotiation, all messages that are sent on

22 / 450

[MS -SMB2-Diff] - v20180316
Server Message Block (SMB) Protocol Versions 2 and 3
Copyright © 2018 Microsoft Corporation
Release: March 16, 2018

the connection (including the negotiate response) will be SMB 2 Protocol messages, as specified in this
document, and no further SMB traffic will be exchanged on the connection.

For authentication, the SMB 2 Protoco l relies on Simple and Protected GSS -API Negotiation (SPNEGO),
as described in [MS -AUTHSOD] section 2.1.2.3.1 and specified in [RFC4178] and [MS -SPNG], which in

turn can rely on the Kerberos Protocol Extensions (as specified in [MS -KILE]) or the NT LAN Man ager
(NTLM) Authentication Protocol (as specified in [MS -NLMP]).

The SMB 2 Protocol uses either TCP or NetBIOS over TCP as underlying transports. The SMB 3.x
dialect family also supports the use of RDMA as a transport.

Machines using the SMB 2 Protocol can use the Distributed File System (DFS): Referral Protocol as
specified in [MS -DFSC] to resolve names from a namespace distributed across many servers and
geographies into local names on specific file servers.

DFS clients communicate with DFS servers via re ferral requests/responses conveyed in SMB2 IOCTL
messages, analogous to a file system client performing control operations on a remote object store via
requests/responses conveyed in SMB2 IOCTL messages. The communication between the SMB2 server

and the DF S server (or SMB2 server and object store), for the purpose of performing the specified
IOCTL operations, is local to the server machine, and takes place via implementation -dependent
means.

The Remote Procedure Call Protocol Extensions, as specified in [MS -RPCE], define an RPC over SMB
Protocol or SMB 2 Protocol sequence that can use SMB 2 Protocol named pipes as its underlying
transport. The selection of protocol is based on client behavior during negotiation, as specified in
section 1.7.

Peer Content Cach ing and Retrieval framework, or Branch Cache as described in [MS -PCCRR], is
designed to reduce bandwidth consumption on branch -office wide area network (WAN) links by having
clients request Content from distributed caches. Content is uniquely identified by Content Information

retrieved from the server through SMB 2 IOCTL messages, as specified in sections 3.2.4.20.7 and
3.3.5.15.7. This capability is not supported for the SMB 2.0.2 dialect.

Figure 2 : Relationship to other protocols

The diagram shows the following:

23 / 450

[MS -SMB2-Diff] - v20180316
Server Message Block (SMB) Protocol Versions 2 and 3
Copyright © 2018 Microsoft Corporation
Release: March 16, 2018

Á [MS -RPCE] uses [MS -SMB2] named pipes as its underlying transport.

Á [MS -DFSC] uses [MS -SMB2] as its transport layer.

Á [MS -SRVS] calls [MS -SMB2] for file server management.

Á [MS -SMB2] calls [MS -SPNG] for authenticating the user.

Á [MS -SMB2] calls [MS -DFSC] to resolve names from a namespace.

Á [MS -SMB2] calls [MS -SRVS] for server management and for synchronizing information on shares,
sessions, treeconnects, and file opens. The synchronization mechanism is dependent on the S MB2
server and the server service starting up and terminating at the same time.

Á [MS -SMB2] uses either TCP, NetBIOS over TCP, or RDMA as underlying transports.

1.5 Prerequisites/Preconditions

The SMB 2 Protocol assumes the availability of the following resources:

Á The SMB2 protocol requires a transport to support reliable, in -order message delivery. Three such
transports are used, depending on dialect, as specified in section 2.1.

Á An underlying local resource, such as a file system on the server side, exposing file , named pipe,

or printer objects.

Á Infrastructure that supports Simple and Protected GSS -API Negotiation (SPNEGO), as specified in
[RFC4178] and [MS -SPNG], on both the client and the server.

1.6 Applicability Statement

The SMB 2 Protocol <1> is applicable for all scenarios that involve transferring files between client and
server. The SMB 2 Protocol is also applicable for inter -process communication between client and
server using named pipes.

The SMB 2 Protocol can be more applicable than the SMB Protocol in scenarios that require the
following features:

Á Higher scalability of the number of files that a client can open simultaneously, as well as the

number of shares and user sessions that servers can maintain.

Á Quality of Service guarantees from the server for the number of requests that can be outstanding
against a server at any specified time.

Á Symbolic link support.

Á Stronger end - to -end data integrity protection, using the HMAC -SHA256 algorithm. The HMAC -
SHA256 is specifi ed in [FIPS180 -4] and [RFC2104].

Á Improved throughput across networks that have disparate characteristics.

Á Improved resilience to intermittent losses of network connectivity.

Á Encryption of client/server traffic when the SMB 3.x dialect family is negotiated .

1.7 Versioning and Capability Negotiation

This document covers versioning in the following areas:

24 / 450

[MS -SMB2-Diff] - v20180316
Server Message Block (SMB) Protocol Versions 2 and 3
Copyright © 2018 Microsoft Corporation
Release: March 16, 2018

Á Supported Transports: This protocol can be implemented on top of NetBIOS, TCP, or RDMA, as
defined in section 2.1.

Á Protocol Versions: This protocol supports several capability bits. These are defined in section
2.2.5.

Á Security and Authentication Methods: The SMB 2 Protocol supports authentication through the use
of t he Generic Security Service Application Programming Interface (GSS -API), as specified in [MS -
SPNG].

When a suitable authentication is performed, the authenticity and integrity of SMB2 operations are
optionally protected by Message Authentication Code (MAC) signatures using cryptographically
secure keys. HMAC -SHA256 or AES -128 -CMAC are used, depending on the negotiated dialect and
hash algorithm.

When the SMB 3.x dialect family is negotiated, and when suitable authentication is performed,
authenticated encr yption and integrity protection are optionally supported through the use of AES -
128 -CCM or AES -128 -GCM, depending on the negotiated dialect and cipher algorithm.

Á Capability Negotiation: Though the semantics and the command set for the SMB 2 Protocol closel y
match the SMB Protocol, as specified in [MS -SMB], the wire format for SMB 2 Protocol packets is
different from that of the SMB Protocol. For maintaining interoperability between clients and

servers in a mixed SMB 2/SMB Protocol environment, the SMB 2 Pro tocol can be negotiated in one
of two ways:

Á By using an SMB negotiate message (as specified in [MS -SMB] sections 2.2.4.5.1 and
3.2.4.2.2).

Á By using an SMB2 NEGOTIATE Request, as specified in section 2.2.3.

If a client uses an SMB negotiate message to indic ate to an SMB 2 Protocol ïcapable server that it
requests to use SMB 2, the server responds with an SMB2 NEGOTIATE Response as specified in

section 2.2.4.

A client that maintains a runtime cache for each server with which it communicates, including whether

the server is SMB 2 Protocol ïcapable, would then use an SMB2 NEGOTIATE Request (as specified in
section 2.2.3) in future attempts to connect to any server whose cached entry indicates support for
the SMB 2 Protocol.

Servers capable of only the SMB 2 Protoc ol would reject communication with traditional SMB Protocol
clients that do not offer "SMB 2.002" or "SMB 2.???" as a negotiate dialect, and accept communication

only from SMB 2 Protocol clients.

There are currently three dialect families of the SMB 2 Prot ocol:

Dialect Family Dialect Revisions Revision Code

SMB 2.0.2 SMB 2.0.2 dialect revision 0x0202

SMB 2.1 SMB 2.1 dialect revision 0x0210

SMB 3.x SMB 3.0 dialect revision

SMB 3.0.2 dialect revision

SMB 3.1.1 dialect revision

0x0300

0x0302

0x0311

Á Negotiating the SMB 2.0.2 dialect implies support for the requests and responses as specified in
this document, except those explicitly marked for the SMB 2.1 or 3.x dialect family.

25 / 450

[MS -SMB2-Diff] - v20180316
Server Message Block (SMB) Protocol Versions 2 and 3
Copyright © 2018 Microsoft Corporation
Release: March 16, 2018

Á Negotiating the SMB 2.1 dialect implies support for the requests and resp onses as specified in this
document and support for the SMB 2.0.2 dialect, except those explicitly marked for the SMB 3.x

dialect family.

Á Negotiating the SMB 3.0 dialect implies support for the requests and responses as specified in this

document and suppo rt for the SMB 2.0.2 and SMB 2.1 dialects, except those explicitly marked for
the SMB 3.0.2 or SMB 3.1.1 dialect.

Á Negotiating the SMB 3.0.2 dialect implies support for the requests and responses as specified in
this document and support for the SMB 2.0.2, SMB 2.1, and SMB 3.0 dialects, except those
explicitly marked for the SMB 3.1.1 dialect.

Á Negotiating the SMB 3.1.1 dialect implies support for the requests and responses as specified in
this document and support for the SMB 2.0.2, SMB 2.1, SMB 3.0, and SM B 3.0.2 dialects.

For the rest of the document, unless otherwise specified, the term 'SMB 3.x dialect family' implies the
SMB 3.0, SMB 3.0.2, and SMB 3.1.1 dialect revisions. The following state diagram illustrates dialect
negotiation on the server impleme nting the SMB 2 Protocol dialects. In this diagram, state transitions

occur as the SMB_COM_NEGOTIATE, SMB2 NEGOTIATE, and other requests are received from the
client. The server uses a per -connection variable, Connection.NegotiateDialect , to represent the
current state of dialect negotiation between client and server on each transport connection.

26 / 450

[MS -SMB2-Diff] - v20180316
Server Message Block (SMB) Protocol Versions 2 and 3
Copyright © 2018 Microsoft Corporation
Release: March 16, 2018

Figure 3 : Connection.NegotiateDialect state transitions in an SMB 2 Protocol server

1.8 Vendor -Extensible Fields

There are no vendor -extensible fields for the Server Message Block (SMB) Version 2 Protocol.

1.9 Standards Assignments

The SMB2 protocol supports Direct TCP Transport and makes use of the following assignments, as
specified in section 2.1.

27 / 450

[MS -SMB2-Diff] - v20180316
Server Message Block (SMB) Protocol Versions 2 and 3
Copyright © 2018 Microsoft Corporation
Release: March 16, 2018

Parameter TCP port value Reference

Microsoft -DS 445 (0x01BD) [IANAPORT]

When the SMB 3.x dialect family is negotiated and an RDMA transport is used, the standards
assignment for the protocol specified in [MS -SMBD] is used.

This protocol shares the standards assignments of NetBIOS -over -TCP port, as specified in [RFC1001]
and [RFC1002].

28 / 450

[MS -SMB2-Diff] - v20180316
Server Message Block (SMB) Protocol Versions 2 and 3
Copyright © 2018 Microsoft Corporation
Release: March 16, 2018

2 Messages

The following sections specify how SMB 2 Protocol messages are encapsulated on the wire and
common SMB 2 Protocol data types.

2.1 Transport

The SMB 2 Protocol supports Direct TCP, NetBIOS over TCP [RFC1001] [RFC1002], and SMB2 Remote
Direct Memory Access (RDMA) Transport [MS -SMBD] as transports. These transports are supported by
the various SMB2 dialects as follows:

Á All dialects of SMB2 support operation over Direct TCP. The Direct TCP transport packet header
has the following structure.

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

Zero StreamProtocolLength

SMB2Message (variable)

...

Zero (1 byte): The first byte of the Direct TCP transport packet header MUST be zero (0x00).

StreamProtocolLength (3 bytes): The length, in bytes, of the SMB2Message in network byte
order. This field does not include the 4 -byte Direct TCP transport packet header; rather, it is only
the length of the enclosed SMB2Message.

SMB2Message (variable): The body of the SMB2 packet. The length of an SMB2Message varies
based on the SMB2 command represented by the message.

Á SMB2 dialects 2.0.2, 2.1, 3.0, and 3.0.2 allow NetBIOS over TCP [RFC1001] [RFC1002].

Á SMB2 dialects 3.0, 3.0.2, and 3.1.1 allow operation over SMB2 RDMA Transport [MS -SMBD].

The server assigns an implementation -specific name to each transport, as specified in [MS -SRVS]
section 2.2.4.96.

The SMB2 Protocol can be negotiated as the result of a multi -protocol exchange as specified in section
3.2.4.2.1. When the SMB2 Protocol is negotiated on the connection, there is no inheritance of the base
SMB Protocol state. The SMB2 Protocol takes over the transp ort connection that is initially used for

negotiation, and thereafter, all protocol flow on that connection MUST be SMB2 Protocol.

2.2 Message Syntax

The SMB 2 Protocol is composed of, and driven by, message exchanges betwe en the client and the

server in the following categories:

Á Protocol negotiation (SMB2 NEGOTIATE)

Á User authentication (SMB2 SESSION_SETUP, SMB2 LOGOFF)

Á Share access (SMB2 TREE_CONNECT, SMB2 TREE_DISCONNECT)

Á File access (SMB2 CREATE, SMB2 CLOSE, SMB2 READ, SM B2 WRITE, SMB2 LOCK, SMB2 IOCTL,
SMB2 QUERY_INFO, SMB2 SET_INFO, SMB2 FLUSH, SMB2 CANCEL)

29 / 450

[MS -SMB2-Diff] - v20180316
Server Message Block (SMB) Protocol Versions 2 and 3
Copyright © 2018 Microsoft Corporation
Release: March 16, 2018

Á Directory access (SMB2 QUERY_DIRECTORY, SMB2 CHANGE_NOTIFY)

Á Volume access (SMB2 QUERY_INFO, SMB2 SET_INFO)

Á Cache coherency (SMB2 OPLOCK_BREAK)

Á Simple messaging (SMB2 ECHO)

The SMB 2.1 dialect in the SMB 2 Protocol enhances the following categories of messages in the SMB 2
Protocol:

Á Protocol Negotiation (SMB2 NEGOTIATE)

Á Share Access (SMB2 TREE_CONNECT)

Á File Access (SMB2 CREATE, SMB2 WRITE)

Á Cache Coherency (SMB2 OPLOCK_BREAK)

Á Hash Retrieval (SMB2 IOCTL)

The SMB 3.x dialect family in the SMB 2 Protocol further enhances the following categories of
messages in the SMB 2 Protocol:

Á Protocol Negotiation and secure dialect validation (SMB2 NEGOTIATE, SMB2 IOCTL)

Á Share Ac cess (SMB2 TREE_CONNECT)

Á File Access (SMB2 CREATE, SMB2 READ, SMB2 WRITE)

Á Hash Retrieval (SMB2 IOCTL)

Á Encryption (SMB2 TRANSFORM_HEADER)

This document specifies the messages in the preceding lists.

An SMB 2 Protocol message is the payload packet encapsulat ed in a transport packet.

All SMB 2 Protocol messages begin with a fixed - length SMB2 header that is described in section 2.2.1.
The SMB2 header contains a Command field indicating the operation code that is requested by the
client or responded to by the se rver. An SMB 2 Protocol message is of variable length, depending on
the Command field in the SMB2 header and on whether the SMB 2 Protocol message is a client

request or a server response.

Unless otherwise specified, multiple -byte fields (16 -bit, 32 -bit, a nd 64 -bit fields) in an SMB 2 Protocol
message MUST be transmitted in little -endian order (least -significant byte first).

Unless otherwise indicated, numeric fields are integers of the specified byte length.

Unless otherwise specified, all textual strings MUST be in Unicode version 5.0 format, as specified in
[UNICODE], using the 16 -bit Unicode Transformation Format (UTF -16) form of the encoding. Textual
strings with separate fields identifying the length of the string MUST NOT be null - terminated unless

oth erwise specified.

Unless otherwise noted, fields marked as "unused" MUST be set to 0 when being sent and MUST be
ignored when received. These fields are reserved for future protocol expansion and MUST NOT be used
for implementation -specific functionality.

When it is necessary to insert unused padding bytes into a buffer for data alignment purposes, such
bytes MUST be set to 0 when being sent and MUST be ignored when received.

30 / 450

[MS -SMB2-Diff] - v20180316
Server Message Block (SMB) Protocol Versions 2 and 3
Copyright © 2018 Microsoft Corporation
Release: March 16, 2018

When an error occurs, a server MUST send back an SMB 2 Protocol error response as specified in
section 2.2.2, unless otherwise noted in section 3.3.

All constants in section 2 and 3 that begin with STATUS_ have their values defined in [MS -ERREF]
section 2.3.

Operations executed on a printer share are handled on the server by creating a file, and printing the
contents of the file when it is closed. Unless otherwise specified, descriptions in this document
concerning protocol behavior for files also apply to printers. More information about processing specific
to printers is specified in s ection 2.2.13.

2.2.1 SMB2 Packet Header

The SMB2 Packet Header (also called the SMB2 header) is the header of all SMB 2 Protocol r equests
and responses.

There are two variants of this header:

Á ASYNC

Á SYNC

If the SMB2_FLAGS_ASYNC_COMMAND bit is set in Flags , the header takes the form SMB2 Packet
Header ï ASYNC (section 2.2.1.1). This header format is used for responses to requests processed
asynchronously by the server, as specified in sections 3.3.4.2, 3.3.4.3, 3.3.4.4, and 3.2.5.1.5. This
header format MAY be used for any request, and the The SMB2 CANCEL Request MUST use this format
for canceling requests that have received an interim response, as specified in sections 3.2.4.24 and
3.3.5.16.

If the SMB2_FLAGS_ASYNC_COMMAND bit is not set in Flags , the heade r takes the form SMB2 Packet

Header ï SYNC (section 2.2.1.2). This format can be used for all requests and responses.

2.2.1.1 SMB2 Packet Header - ASYNC

If the SMB2_FLAGS_ASYNC_COMMAND bit is set in Flags , the header takes th e following form.

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

ProtocolId

StructureSize CreditCharge

(ChannelSequence/Reserved)/Status

Command CreditRequest/CreditResponse

Flags

NextCommand

MessageId

...

31 / 450

[MS -SMB2-Diff] - v20180316
Server Message Block (SMB) Protocol Versions 2 and 3
Copyright © 2018 Microsoft Corporation
Release: March 16, 2018

AsyncId

...

SessionId

...

Signature

...

...

...

ProtocolId (4 bytes): The protocol identifier. The value MUST be (in network order) 0xFE, 'S', 'M',
and 'B'.

StructureSize (2 bytes): MUST be set to 64, which is the size, in bytes, of the SMB2 header

structure.

CreditCharge (2 bytes): In the SMB 2.0.2 dialect, this field MUST NOT be used and MUST be
reserved. The sender MUST set this to 0, and the receiver MUST ignore it. In all other dialects, this
field indicates the number of credits that this request consumes .

(ChannelSequence/Reserved)/Status (4 bytes): In a request, this field is interpreted in different
ways depending on the SMB2 dialect.

In the SMB 3.x dialect family, this field is interpreted as the ChannelSequence field followed by

the Reserved field in a request.

ChannelSequence (2 bytes) : This field is an indication to the server about the client's Channel
change.

Reserved (2 bytes) : This field SHOULD be set to zero and the server MUST ignore it on receipt.

In the SMB 2.0.2 and SMB 2.1 dialects, this field is interpreted as the Status field in a request.

Status (4 bytes) : The client MUST set this field to 0 and the server MUST ignore it on receipt.

In all SMB dialects for a response this field is interpreted as the Status field. This field can be set
to any value. For a list of valid status codes, see [MS -ERREF] section 2.3.

Command (2 bytes): The command code of this packet. This field MUST contain one of the following
valid commands:

Name Value

SMB2 NEGOTIATE 0x0000

SMB2 SESSION_SETUP 0x0001

SMB2 LOGOFF 0x0002

SMB2 TREE_CONNECT 0x0003

32 / 450

[MS -SMB2-Diff] - v20180316
Server Message Block (SMB) Protocol Versions 2 and 3
Copyright © 2018 Microsoft Corporation
Release: March 16, 2018

Name Value

SMB2 TREE_DISCONNECT 0x0004

SMB2 CREATE 0x0005

SMB2 CLOSE 0x0006

SMB2 FLUSH 0x0007

SMB2 READ 0x0008

SMB2 WRITE 0x0009

SMB2 LOCK 0x000A

SMB2 IOCTL 0x000B

SMB2 CANCEL 0x000C

SMB2 ECHO 0x000D

SMB2 QUERY_DIRECTORY 0x000E

SMB2 CHANGE_NOTIFY 0x000F

SMB2 QUERY_INFO 0x0010

SMB2 SET_INFO 0x0011

SMB2 OPLOCK_BREAK 0x0012

CreditRequest/CreditResponse (2 bytes): On a request, this field indicates the number of credits
the client is requesting. On a respo nse, it indicates the number of credits granted to the client.

Flags (4 bytes): A flags field, which indicates how to process the operation. This field MUST be

constructed using the following values:

Value Meaning

SMB2_FLAGS_SERVER_TO_REDIR

0x00000001

When set, indicates the message is a response rather than a
request. This MUST be set on responses sent from the server to the
client, and MUST NOT be set on requests sent from the client to the
server.

SMB2_FLAGS_ASYNC_COMMAND

0x00000002

When set, indica tes that this is an ASYNC SMB2 header. Always set
for headers of the form described in this section.

SMB2_FLAGS_RELATED_OPERATIONS

0x00000004

When set in an SMB2 request, indicates that this request is a
related operation in a compounded request chain. Th e use of this
flag in an SMB2 request is as specified in section 3.2.4.1.4.

When set in an SMB2 compound response, indicates that the
request corresponding to this response was part of a related
operation in a compounded request chain. The use of this flag in an
SMB2 response is as specified in section 3.3.5.2.7.2.

SMB2_FLAGS_SIGNED

0x00000008

When set, indicates that this packet has been signed. The use of
this flag is as specified in section 3.1.5.1.

SMB2_FLAGS_PRIORITY_MASK

0x00000070

This flag is only valid for the SMB 3.1.1 dialect. It is a mask for the
requested I/O priority of the request, and it MUST be a value in the
range 0 to 7.

33 / 450

[MS -SMB2-Diff] - v20180316
Server Message Block (SMB) Protocol Versions 2 and 3
Copyright © 2018 Microsoft Corporation
Release: March 16, 2018

Value Meaning

SMB2_FLAGS_DFS_OPERATIONS

0x10000000

When set, indicates that this command is a Distributed File System
(DFS) operati on. The use of this flag is as specified in section
3.3.5.9.

SMB2_FLAGS_REPLAY_OPERATION

0x20000000

This flag is only valid for the SMB 3.x dialect family. When set, it
indicates that this command is a replay operation.

The client MUST ignore this bit on receipt.

NextCommand (4 bytes): For a compounded request, this field MUST be set to the offset, in bytes,
from the beginning of this SMB2 header to the start of the subsequent 8 -byte aligned SMB2

header. If this is not a compounded request, or this is th e last header in a compounded request,
this value MUST be 0.

MessageId (8 bytes): A value that identifies a message request and response uniquely across all
messages that are sent on the same SMB 2 Protocol transport connection.

AsyncId (8 bytes): A unique identification number that is created by the server to handle operations
asynchronously, as specified in section 3.3.4.2.

SessionId (8 bytes): Uniquely identifies the established session for the command. This field MUST
be set to 0 for an SMB2 NEGOTIATE R equest (section 2.2.3) and for an SMB2 NEGOTIATE
Response (section 2.2.4).

Signature (16 bytes): The 16 -byte signature of the message, if SMB2_FLAGS_SIGNED is set in the
Flags field of the SMB2 header and the message is not encrypted. If the message is no t signed,
this field MUST be 0.

2.2.1.2 SMB2 Packet Header - SYNC

If the SMB2_FLAGS_ASYNC_COMMAND bit is not set in Flags , the header takes the following form.

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

ProtocolId

StructureSize CreditCharge

(ChannelSequence/Reserved)/Status

Command CreditRequest/CreditResponse

Flags

NextCommand

MessageId

...

Reserved

TreeId

34 / 450

[MS -SMB2-Diff] - v20180316
Server Message Block (SMB) Protocol Versions 2 and 3
Copyright © 2018 Microsoft Corporation
Release: March 16, 2018

SessionId

...

Signature

...

...

...

ProtocolId (4 bytes): The protocol identifier. The value MUST be (in network order) 0xFE, 'S', 'M',
and 'B'.

StructureSize (2 bytes): This MUST be set to 64, which is the size, in bytes, of the SMB2 header

structure.

CreditCharge (2 bytes): In the SMB 2.0.2 dialect, this field MUST NOT be u sed and MUST be
reserved. The sender MUST set this to 0, and the receiver MUST ignore it. In all other dialects, this
field indicates the number of credits that this request consumes.

(ChannelSequence/Reserved)/Status (4 bytes): In a request, this field is interpreted in different
ways depending on the SMB2 dialect.

In the SMB 3.x dialect family, this field is interpreted as the ChannelSequence field followed by
the Reserved field in a request.

ChannelSequence (2 bytes) : This field is an indication to the s erver about the client's Channel
change.

Reserved (2 bytes) : This field SHOULD be set to zero and the server MUST ignore it on receipt.

In the SMB 2.0.2 and SMB 2.1 dialects, this field is interpreted as the Status field in a request.

Status (4 bytes) : The client MUST set this field to 0 and the server MUST ignore it on receipt.

In all SMB dialects for a response this field is interpreted as the Status field. This field can be set
to any value. For a list of valid status codes, see [MS -ERREF] section 2.3.

Command (2 bytes): The command code of this packet. This field MUST contain one of the following
valid commands.

Name Value

SMB2 NEGOTIATE 0x0000

SMB2 SESSION_SETUP 0x0001

SMB2 LOGOFF 0x0002

SMB2 TREE_CONNECT 0x0003

SMB2 TREE_DISCONNECT 0x0004

SMB2 CREATE 0x0005

SMB2 CLOSE 0x0006

35 / 450

[MS -SMB2-Diff] - v20180316
Server Message Block (SMB) Protocol Versions 2 and 3
Copyright © 2018 Microsoft Corporation
Release: March 16, 2018

Name Value

SMB2 FLUSH 0x0007

SMB2 READ 0x0008

SMB2 WRITE 0x0009

SMB2 LOCK 0x000A

SMB2 IOCTL 0x000B

SMB2 CANCEL 0x000C

SMB2 ECHO 0x000D

SMB2 QUERY_DIRECTORY 0x000E

SMB2 CHANGE_NOTIFY 0x000F

SMB2 QUERY_INFO 0x0010

SMB2 SET_INFO 0x0011

SMB2 OPLOCK_BREAK 0x0012

CreditRequest/CreditResponse (2 bytes): On a request, this field indicates the number of credits
the client is requesting. On a response, it indicates the number of credits granted to the client.

Flags (4 bytes): A Flags field indicates how to process the operation. This field MUST be constructed
using the following values:

Value Meaning

SMB2_FLAGS_SERVER_TO_REDIR

0x00000001

When set, indicates the message is a response, rather than a
request. This MUST be set on responses sent from the server to the
client and MUST NOT be set on requests sent from the client to the
server.

SMB2_FLAGS_ASYNC_COMMAND

0x00000002

When set, indicates that this is an ASYNC SMB2 header. This flag
MUST NOT be set when using the SYNC SMB2 header.

SMB2_FLAGS_RELATED_OPERATIONS

0x00000004

When set in an SMB2 request, indicates that this request is a
related operation in a compounded request chain. The use of this
flag in an SMB2 request is as specified in section 3.2.4.1.4.

When set in an SM B2 compound response, indicates that the
request corresponding to this response was part of a related
operation in a compounded request chain. The use of this flag in an
SMB2 response is as specified in section 3.3.5.2.7.2.

SMB2_FLAGS_SIGNED

0x00000008

When set, indicates that this packet has been signed. The use of
this flag is as specified in section 3.1.5.1.

SMB2_FLAGS_PRIORITY_MASK

0x00000070

This flag is only valid for the SMB 3.1.1 dialect. It is a mask for the
requested I/O priority of the reques t, and it MUST be a value in the
range 0 to 7.

SMB2_FLAGS_DFS_OPERATIONS

0x10000000

When set, indicates that this command is a DFS operation. The use
of this flag is as specified in section 3.3.5.9.

SMB2_FLAGS_REPLAY_OPERATION

0x20000000

This flag is on ly valid for the SMB 3.x dialect family. When set, it
indicates that this command is a replay operation.

36 / 450

[MS -SMB2-Diff] - v20180316
Server Message Block (SMB) Protocol Versions 2 and 3
Copyright © 2018 Microsoft Corporation
Release: March 16, 2018

Value Meaning

The client MUST ignore this bit on receipt.

NextCommand (4 bytes): For a compounded request, this field MUST be set to the offset, in bytes,
from the beginning of this SMB2 header to the start of the subsequent 8 -byte aligned SMB2
header. If this is not a compounded request, or this is the last header in a compounded request,
this value MUST be 0.

MessageId (8 bytes): A value that identifies a message r equest and response uniquely across all

messages that are sent on the same SMB 2 Protocol transport connection.

Reserved (4 bytes): The client SHOULD <2> set this field to 0. The server MAY <3> ignore this field
on receipt.

TreeId (4 bytes): Uniquely identif ies the tree connect for the command. This MUST be 0 for the
SMB2 TREE_CONNECT Request. The TreeId can be any unsigned 32 -bit integer that is received
from a previous SMB2 TREE_CONNECT Response. TreeId SHOULD be set to 0 for the following

commands:

Á SMB2 NE GOTIATE Request

Á SMB2 NEGOTIATE Response

Á SMB2 SESSION_SETUP Request

Á SMB2 SESSION_SETUP Response

Á SMB2 LOGOFF Request

Á SMB2 LOGOFF Response

Á SMB2 ECHO Request

Á SMB2 ECHO Response

Á SMB2 CANCEL Request

SessionId (8 bytes): Uniquely identifies the established session for the command. This field MUST
be set to 0 for an SMB2 NEGOTIATE Request (section 2.2.3) and for an SMB2 NEGOTIATE
Response (section 2.2.4).

Signature (16 bytes): The 16 -byte signature of the message, if SMB2_FLAGS_SIGNED is set in the

Flags fiel d of the SMB2 header and the message is not encrypted. If the message is not signed,
this field MUST be 0.

2.2.2 SMB2 ERROR Response

The SMB2 ERROR Respons e packet is sent by the server to respond to a request that has failed or
encountered an error. This response is composed of an SMB2 Packet Header (section 2.2.1) followed

by this response structure.

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

StructureSize ErrorContextCount Reserved

ByteCount

37 / 450

[MS -SMB2-Diff] - v20180316
Server Message Block (SMB) Protocol Versions 2 and 3
Copyright © 2018 Microsoft Corporation
Release: March 16, 2018

ErrorData (variable)

...

StructureSize (2 bytes): The server MUST set this field to 9, indicating the size of the response
structure, not including the header. The server MUST set it to this value regardless of how long
ErrorData [] actually is in the response being sent.

ErrorContextCount (1 byte) : This f ield MUST be set to 0 for SMB dialects other than 3.1.1. For the
SMB dialect 3.1.1, if this field is nonzero, the ErrorData field MUST be formatted as a variable -
length array of SMB2 ERROR Context structures containing ErrorContextCount entries.

Reserved (1 byte): This field MUST NOT be used and MUST be reserved. The server MUST set this to
0, and the client MUST ignore it on receipt.

ByteCount (4 bytes): The number of bytes of data contained in ErrorData [].

ErrorData (variable): A variable - length data fie ld that contains extended error information. If the
ErrorContextCount field in the response is nonzero, this field MUST be formatted as a variable -
length array of SMB2 ERROR Context structures as specified in section 2.2.2.1. Each SMB2
ERROR Context MUST s tart at an 8 -byte aligned boundary relative to the start of the SMB2
ERROR Response. Otherwise, it MUST be formatted as specified in section 2.2.2.2. If the
ByteCount field is zero then the server MUST supply an ErrorData field that is one byte in
length, and SHOULD set that byte to zero; the client MUST ignore it on receipt. <4>

2.2.2.1 SMB2 ERROR Context Response

For the SMB dialect 3.1.1, the servers format the error data as an array of SMB2 ERROR Context
structures. Each error context is a variable - length struct ure that contains an identifier for the error
context followed by the error data.

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

ErrorDataLength

ErrorId

ErrorContextData (variable)

...

ErrorDataLength (4 bytes): The length, in bytes, of the ErrorContextData field.

ErrorId (4 bytes): An identifier for the error context. This field MUST be set to the following value.

ErrorId Description

SMB2_ERROR_ID_DEFAULT

0x00000000

Unless otherwise specified, all errors defined in the [MS -
SMB2] protocol use this error ID.

SMB2_ERROR_ID_SHARE_REDIRECT

0x72645253

The ErrorContextData field contains a share redirect
message described in section 2.2.2.2.2.

ErrorContextData (variable): Variable - length error data formatted as specified in section 2.2.2.2.

38 / 450

[MS -SMB2-Diff] - v20180316
Server Message Block (SMB) Protocol Versions 2 and 3
Copyright © 2018 Microsoft Corporation
Release: March 16, 2018

2.2.2.2 ErrorData format

The ErrorData MUST be formatted based on the error code being returned . in the Status field of the
SMB2 Packet header for the SMB2 Error Response (section 2.2.2).

If th e error code in Status field of the header of the response is set to
STATUS_STOPPED_ON_SYMLINK, this field MUST contain a Symbolic Link Error Response as specified
in section 2.2.2.2.1.

If the error code in Status field of the header of the response is set to
STATUS_BAD_NETWORK_NAME, and the ErrorId in the SMB2 Error Context response is set to
SMB2_ERROR_ID_SHARE_REDIRECT, this field MUST contain a Share Redirect Error Response as
specified in section 2.2.2.2.2.

If the erro r code in Status field of the header of the response is set to STATUS_BUFFER_TOO_SMALL,
this field MUST be set to a 4 -byte value indicating the minimum required buffer length.

2.2.2.2.1 Symbolic Link Error Response

The Symbo lic Link Error Response is used to indicate that a symbolic link was encountered on create;
it describes the target path that the client MUST use if it requires to follow the symbolic link. This

structure is contained in the ErrorData section of the SMB2 E RROR Response (section 2.2.2). This
structure MUST NOT be returned in an SMB2 ERROR Response unless the Status code in the header
of that response is set to STATUS_STOPPED_ON_SYMLINK. <5> The structure has the following
format.

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

SymLinkLength

SymLinkErrorTag

ReparseTag

ReparseDataLength UnparsedPathLength

SubstituteNameOffset SubstituteNameLength

PrintNameOffset PrintNameLength

Flags

PathBuffer (variable)

...

SymLinkLength (4 bytes): The length, in bytes, of the response including the variable - length
portion and excluding SymLinkLength .

SymLinkErrorTag (4 bytes): The server MUST set this field to 0x4C4D5953.

ReparseTag (4 bytes): The type of link encountered. T he server MUST set this field to 0xA000000C.

39 / 450

[MS -SMB2-Diff] - v20180316
Server Message Block (SMB) Protocol Versions 2 and 3
Copyright © 2018 Microsoft Corporation
Release: March 16, 2018

ReparseDataLength (2 bytes): The length, in bytes, of the variable - length portion of the symbolic
link error response plus the size of the static portion, not including SymLinkLength ,

SymLinkErrorTag , ReparseTag , ReparseDataLength , and UnparsedPathLength . The server
MUST set this to the size of PathBuffer [], in bytes, plus 12. (12 is the size of

SubstituteNameOffset , SubstituteNameLength , PrintNameOffset , PrintNameLength , and
Flags .)

UnparsedPathLength (2 bytes): The length, in bytes, of the unparsed portion of the path. The
unparsed portion is the remaining part of the path after the symbolic link. See section 2.2.2.2.1.1
for examples.

SubstituteNameOffset (2 bytes): The offset, in bytes, from the beginning of th e PathBuffer field,
at which the substitute name is located. The substitute name is the name the client MUST use to

access this file if it requires to follow the symbolic link.

SubstituteNameLength (2 bytes): The length, in bytes, of the substitute name st ring. If there is a
terminating null character at the end of the string, it is not included in the
SubstituteNameLength count. This value MUST be greater than or equal to 0.

PrintNameOffset (2 bytes): The offset, in bytes, from the beginning of the PathBuffer field, at
which the print name is located. The print name is the user - friendly name the client MUST return

to the application if it requests the name of the symbolic link target.

PrintNameLength (2 bytes): The length, in bytes, of the print name string. If there is a terminating
null character at the end of the string, it is not included in the PrintNameLength count. This
value MUST be greater than or equal to 0.

Flags (4 bytes): A 32 -bit bit field that specifies whether the substitute is an abso lute target path
name or a path name relative to the directory containing the symbolic link.

This field contains one of the values in the table below.

Value Meaning

0x00000000 The substitute name is an absolute target path name.

SYMLINK_FLAG_RELATIVE

0x00000001

When this Flags value is set, the substitute name is a path name relative to
the directory containing the symbolic link.

PathBuffer (variable): A buffer that contains the Unicode strings for the substitute name and the
print name, as described by SubstituteNameOffset , SubstituteNameLength ,
PrintNameOffset , and PrintNameLength . The substitute name string MUST be a Unicode path
to the target of the symbolic link. The print name string MUST be a Unicode string, suitable for
display to a user, that also identifies the target of the symbolic link.

Á For an absolute target that is on a remote machine, the server MUST return the path in the
format " \ ??\ UNC\ server \ share \ ..." where server is replaced by the target server name, share
is replaced by the targe t share name, and ... is replaced by the remainder of the path to the
target.

Á The server SHOULD NOT return symbolic link information with an absolute target that is a
local resource, because local evaluation will vary based on client operating system (OS). <6>

Á For a relative target, the server MUST return a path that does not start with " \ ". The path

MUST be evaluated, by the calling application, relative to the directory containing the symbolic
link. The path can contain either "." to refer to the current d irectory or ".." to refer to the
parent directory, and could contain multiple elements.

For more information on absolute and relative targets, see Handling the Symbolic Link Error
Response (section 2.2.2.2.1.1).

40 / 450

[MS -SMB2-Diff] - v20180316
Server Message Block (SMB) Protocol Versions 2 and 3
Copyright © 2018 Microsoft Corporation
Release: March 16, 2018

2.2.2.2.1.1 Handling the Symbolic Link Error Response

If a symbolic link error response is received, it MUST be processed by the calling application as
follows:

1. The unparsed portion of the original path name that is located at the end of the path -name string
MUST be extracted.

The size, in bytes, of the unparse d portion is specified in the UnparsedPathLength field. The
byte count MUST be used from the end of the path -name string and walked backward to find the
starting location of the unparsed bytes.

2. If the SYMLINK_FLAG_RELATIVE flag is not set in the Flags fiel d of the symbolic link error
response, the unparsed portion of the file name MUST be appended to the substitute name to

create the new target path name.

3. If the SYMLINK_FLAG_RELATIVE flag is set in the Flags field of the symbolic link error response,
the sy mbolic link name MUST be identified by backing up one path name element from the

unparsed portion of the path name. The symbolic link MUST be replaced with the substitute name
to create the new target path name.

The following clarifies handling of the symb olic link error response:

Á An absolute symbolic link located on the server links " \ \ MachX \ ShareY \ Public \ ProtocolDocs" to
" \ ??\ D: \ DonHall \ MiscDocuments \ PDocs".

1. The original open request is for " \ \ MachX \ ShareY \ Public \ ProtocolDocs \ DailyDocs \ [MS -
SMB].doc".

2. The server returns a symbolic link error response with the following data:

Á UnparsedPathLength field value of 0x2E

Á PathBuffer containing the Unicode string substitute name and print name

"\ ??\ D: \ DonHall \ MiscDocuments \ PDocsD: \ DonHall \ MiscDocuments \ PDocs"

Á Substit uteNameoffset 0x00

Á SubstituteNamelength 0x44

The unparsed portion of the path name will be " \ DailyDocs \ [MS -SMB].doc". Appending the
substitute name with the unparsed portion of the file name gives the new target path name of
" \ ??\ D: \ DonHall \ MiscDocuments \ PDocs \ DailyDocs \ [MS -SMB].doc".

Á A relative symbolic link located on the server links " \ \ MachX \ ShareY \ Public \ ProtocolDocs" to

".. \ DonHall \ Documents \ PDocs".

1. The original open request is for " \ \ MachX \ ShareY \ Public \ ProtocolDocs \ DailyDocs \ [MS -
SMB].doc".

2. The server returns a symbolic link error response with the following data:

Á UnparsedPathLength field value of 0x2E

Á PathBuffer containing the Unicode string substitute name and print name

".. \ DonHall \ Documents \ PDocs.. \ DonHall \ Documents \ PDocs"

Á SubstituteNameoffse t 0x00

Á SubstituteNamelength 0x34

The symbolic link name in this case is "ProtocolDocs".

41 / 450

[MS -SMB2-Diff] - v20180316
Server Message Block (SMB) Protocol Versions 2 and 3
Copyright © 2018 Microsoft Corporation
Release: March 16, 2018

Replacing the symbolic link name "ProtocolDocs" in the original open request (path name
"\ \ MachX \ ShareY \ Public \ ProtocolDocs \ DailyDocs \ [MS -SMB].doc") with the substitute name

".. \ DonHall \ Documents \ PDocs" gives the new target path name
"\ \ MachX \ ShareY \ Public \ .. \ DonHall \ Documents \ PDocs\ DailyDocs \ [MS -SMB].doc". Because "."

and ".." are not permitted as components of a path name to be sent over the wire, before
reissuing the SMB2 CREATE request the client MUST first eliminate the ".." by normalizing the
new target path name to " \ \ MachX \ ShareY \ DonHall \ Documents \ PDocs\ DailyDocs \ [MS -
SMB].doc".

2.2.2.2.2 Share Redirect Error Context Response

Servers which negotiate SMB 3.1.1 or higher can r eturn this error context to a client in response to a

tree connect request with the SMB2_TREE_CONNECT_FLAG_REDIRECT_TO_OWNER bit set in the
Flags field of the SMB2 TREE_CONNECT request. The corresponding Status code in the SMB2 header
of the response MUST be set to STATUS_BAD_NETWORK_NAME. The error context data is formatted
as follows.

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

StructureSize

NotificationType

ResourceNameOffset

ResourceNameLength

Flags TargetType

IPAddrCount

IPAddrMoveList (variable)

...

ResourceName (variable)

...

StructureSize (4 bytes) : This field MUST be set to the size of the structure.

NotificationType (4 bytes) : This field MUST be set to 3.

ResourceNameOffset (4 bytes) : The offset from the start o f this structure to the ResourceName

field.

ResourceNameLength (4 bytes) : The length of the share name provided in the ResourceName
field, in bytes.

Flags (2 bytes) : This field MUST be set to zero.

TargetType (2 bytes) : This field MUST be set to zero.

42 / 450

[MS -SMB2-Diff] - v20180316
Server Message Block (SMB) Protocol Versions 2 and 3
Copyright © 2018 Microsoft Corporation
Release: March 16, 2018

IPAd drCount (4 bytes) : The number of MOVE_DST_IPADDR structures in the IPAddrMoveList
field.

IPAddrMoveList (variable) : Array of MOVE_DST_IPADDR structures, as specified in section
2.2.2.2.2.1.

ResourceName (variable) : Name of the share as a counted Unicode string, as specified in [MS -
DTYP] section 2.3.10.

2.2.2.2.2.1 MOVE_DST_IPADDR structure

The MOVE_DST_IPADDR structure is used in Share Redirect Error Context Response to indicate the
destination IP address.

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

Type

Reserved

(IPv4Address/Reserved2)/IPv6Address

...

...

...

Type (4 bytes): This field indicates the type of destination IP address. The field MUST be one of the

following values.

Value Meaning

MOVE_DST_IPADDR_V4

0x00000001

The type of destination IP address in this structure is
IPv4 address. The fields after Reserved field in this
structure are interpreted as IPv4Address followed by
Reserved2 as described below.

MOVE_DST_IPADDR_V6

0x00000002

The type of destination IP address in this structure is
IPv6 address. The field after Reserved field in this
structure is interpreted as IPv6Address as described
below.

Reserved (4 bytes): This field MUST NOT be used and MUST be reserved. The server SHOUL D set
this field to zero, and the client MUST ignore it on receipt.

(IPv4Address/Reserved2)/ IPv6Address (16 bytes): This field is interpreted in different ways

depending on the type of IP address passed in.

If the value of the Type field is MOVE_DST_IPADD R_V4, this field is the IPv4Address field
followed by Reserved2 fields.

IPv4Address (4 bytes): 32 -bit destination IPv4 address.

43 / 450

[MS -SMB2-Diff] - v20180316
Server Message Block (SMB) Protocol Versions 2 and 3
Copyright © 2018 Microsoft Corporation
Release: March 16, 2018

Reserved2 (12 bytes): The client MUST set this to 0, and the server MUST ignore it on receipt.

If the value of the Type field is MOVE_DST_IPADDR_V6, this field is the IPv6Address field.

IPv6Address (16 bytes): 128 -bit destination IPv6 address.

2.2.3 SMB2 NEGOTIATE Request

The SMB2 NEGOTIATE Request packet is used by the client to notify the server what dialects of the
SMB 2 Protocol the client understands. This request is composed of an SMB2 header, as specified in
section 2.2.1, followed by this request structure.

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

StructureSize DialectCount

SecurityMode Reserved

Capabilities

ClientGuid

...

...

...

(NegotiateContextOffset/NegotiateContextCount/Reserved2)/ClientStartTime

...

Dialects (variable)

...

Padding (variable)

...

NegotiateContextList (variable)

...

StructureSize (2 bytes): The client MUST set this field to 36, indicating the size of a NEGOTIATE
request. This is not the size of the structure with a single dialect in the Dialects [] array. This
value MUST be set regardless of the number of dialects or number of negotiate contexts sent.

DialectCount (2 bytes): The number of dialects that are contained in the Dialects [] array. This
value MUST be greater than 0. <7>

44 / 450

[MS -SMB2-Diff] - v20180316
Server Message Block (SMB) Protocol Versions 2 and 3
Copyright © 2018 Microsoft Corporation
Release: March 16, 2018

SecurityMod e (2 bytes): The security mode field specifies whether SMB signing is enabled or
required at the client. This field MUST be constructed using the following values.

Value Meaning

SMB2_NEGOTIATE_SIGNING_ENABLED

0x0001

When set, indicates that security signa tures are enabled on the
client. The client MUST set this bit if the
SMB2_NEGOTIATE_SIGNING_REQUIRED bit is not set, and
MUST NOT set this bit if the
SMB2_NEGOTIATE_SIGNING_REQUIRED bit is set. The server
MUST ignore this bit.

SMB2_NEGOTIATE_SIGNING_REQUI RED

0x0002

When set, indicates that security signatures are required by the
client.

Reserved (2 bytes): The client MUST set this to 0, and the server SHOULD <8> ignore it on receipt.

Capabilities (4 bytes): If the client implements the SMB 3.x dialect family, the Capabilities field

MUST be constructed using the following values. Otherwise, this field MUST be set to 0.

Value Meaning

SMB2_GLOBAL_CAP_DFS

0x00000001

When set, indicates that the client supports t he Distributed
File System (DFS).

SMB2_GLOBAL_CAP_LEASING

0x00000002

When set, indicates that the client supports leasing.

SMB2_GLOBAL_CAP_LARGE_MTU

0x00000004

When set, indicates that the client supports multi -credit
operations.

SMB2_GLOBAL_CAP_MULTI_CHANNEL

0x00000008

When set, indicates that the client supports establishing
multiple channels for a single session.

SMB2_GLOBAL_CAP_PERSISTENT_HANDLES

0x00000010

When set, indicates that the client supports persistent
handles.

SMB2_GLOBAL_CAP_DIRECTORY_LEASING

0x00000020

When set, indicates that the client supports directory
leasing.

SMB2_GLOBAL_CAP_ENCRYPTION

0x00000040

When set, indicates that the client supports encryption.

ClientGuid (16 bytes): It MUST be a GUID (as specified in [MS -DTYP] section 2.3.4.2) generated by
the client.

(NegotiateContextOffset/NegotiateContextCount/Reserved2)/ClientStartTime (8 bytes):
This field is interpreted in different ways depending on the SMB2 Dialects field.

If the Dialects field con tains 0x0311, this field is interpreted as the NegotiateContextOffset ,
NegotiateContextCount , and Reserved2 fields.

NegotiateContextOffset (4 bytes): The offset, in bytes, from the beginning of the SMB2 header
to the first, 8 -byte -aligned negotiate context in the NegotiateContextList .

NegotiateContextCount (2 bytes) : The number of negotiate contexts in

NegotiateContextList .

Reserved2 (2 bytes): The client MUST set this to 0, and the server MUST ignore it on receipt.

45 / 450

[MS -SMB2-Diff] - v20180316
Server Message Block (SMB) Protocol Versions 2 and 3
Copyright © 2018 Microsoft Corporation
Release: March 16, 2018

If the Dialects field doesn't contain 0x0 311, this field is interpreted as the ClientStartTime field.

ClientStartTime (8 bytes): This field MUST NOT be used and MUST be reserved. The client MUST

set this to 0, and the server MUST ignore it on receipt.

Dialects (variable): An array of one or more 16 -bit integers specifying the supported dialect revision

numbers. The array MUST contain at least one of the following values. <9>

Value Meaning

0x0202 SMB 2.0.2 dialect revision number.

0x0210 SMB 2.1 dialect revision number. <10>

0x0300 SMB 3.0 dialect revision number. <11>

0x0302 SMB 3.0.2 dialect revision number. <12>

0x0311 SMB 3.1.1 dialect revision number. <13>

Padding (variable): Optional padding between the end of the Dialects array and the first negotiate
context in NegotiateContextList so that the first negotiate context is 8 -byte aligned.

NegotiateContextList (variable): If the Dialects field contains 0x0311, then this field will contain
an array of SMB2 NEGOTIATE_CONTEXTs. The first negotiate context in the list MU ST appear at

the byte offset indicated by the SMB2 NEGOTIATE request's NegotiateContextOffset field.
Subsequent negotiate contexts MUST appear at the first 8 -byte -aligned offset following the
previous negotiate context.

2.2.3.1 SMB2 NEGOTIATE_CONTEXT Request Value s

The SMB2_NEGOTIATE_CONTEXT structure is used by the SMB2 NEGOTIATE Request and the SMB2
NEGOTIATE Response to encode additional properties.

The server MUST support receiving negotiate contexts in any or der.

Each structure takes the following form.

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

ContextType DataLength

Reserved

Data (variable)

...

ContextType (2 bytes): Specifies the type of context in the Data field. This field MUST be one of the

following values:

Value Meaning

SMB2_PREAUTH_INTEGRITY_CAPABILITIES

0x0001

The Data field contains a list of preauthentication integrity
hash functions as well as an optional salt value, as specified
in section 2.2.3. 1.1.

46 / 450

[MS -SMB2-Diff] - v20180316
Server Message Block (SMB) Protocol Versions 2 and 3
Copyright © 2018 Microsoft Corporation
Release: March 16, 2018

Value Meaning

SMB2_ENCRYPTION_CAPABILITIES

0x0002

The Data field contains a list of encryption algorithms, as
specified in section 2.2.3.1.2.

DataLength (2 bytes): The length, in bytes, of the Data field.

Reserved (4 bytes): This field MUST NOT be used and MUST be reserved. This value MUST be set to
0 by the client, and MUST be ignored by the server.

Data (variable): A variable - length field that contains the negotiate context specified by the
ContextType field.

2.2.3.1.1 SMB2_PREAUTH_INTEGRITY_CAPABILITIES

The SMB2_PREAUTH_INTEGRITY_CAPABILITIES context is specified in an SMB2 NEGOTIATE request
by the client to indicate which preauthentication integrity hash algorithms the client supports and to

optionally supply a preauthen tication integrity hash salt value. The format of the data in the Data field
of this SMB2_NEGOTIATE_CONTEXT is as follows.

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

HashAlgorithmCount SaltLength

HashAlgorithms (variable)

...

Salt (variable)

...

HashAlgorithmCount (2 bytes): The number of hash algorithms in the HashAlgorithms array.
This value MUST be greater than zero.

SaltLength (2 bytes): The size, in bytes, of the Salt field.

HashAlgorithms (variable): An array of HashAlgorithmCount 16 -bit integer IDs specifying the
supported preauthentication integrity hash functions. The following IDs are defined.

Value Meaning

0x0001 SHA-512 as specified in [FIPS180 -4]

Salt (variable): A buffer containing the salt value of the hash.

2.2.3.1.2 SMB2_ENCRYPTION_CAPABILITIES

The SMB2_ENCRYPTION_CAPABILITIES context is specified in an SMB2 NEGOTIATE request by the
client to indicate which encryption algorithms the client supports. The format of the d ata in the Data
field of this SMB2_NEGOTIATE_CONTEXT is as follows.

47 / 450

[MS -SMB2-Diff] - v20180316
Server Message Block (SMB) Protocol Versions 2 and 3
Copyright © 2018 Microsoft Corporation
Release: March 16, 2018

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

CipherCount Ciphers (variable)

...

CipherCount (2 bytes): The number of ciphers in the Ciphers array. This value MUST be greater
than zero.

Ciphers (variable): An array of CipherCount 16 -bit integer IDs specifying the supported encryption

algorithms. These IDs MUST be in an order such that the most preferred cipher MUST be at the
beginning of the a rray and least preferred cipher at the end of the array. The following IDs are
defined.

Value Meaning

0x0001 AES-128 -CCM

0x0002 AES-128 -GCM

2.2.4 SMB2 NEGOTIATE Response

The SMB2 NEGOTIATE Response packet is sent by the server to notify the client of the preferred
common dialect. This response is composed of an SMB2 header, as specified in section 2.2.1, followed
by this response stru cture.

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

StructureSize SecurityMode

DialectRevision NegotiateContextCount/Reserved

ServerGuid

...

...

...

Capabilities

MaxTransactSize

MaxReadSize

MaxWriteSize

SystemTime

48 / 450

[MS -SMB2-Diff] - v20180316
Server Message Block (SMB) Protocol Versions 2 and 3
Copyright © 2018 Microsoft Corporation
Release: March 16, 2018

...

ServerStartTime

...

SecurityBufferOffset SecurityBufferLength

NegotiateContextOffset/Reserved2

Buffer (variable)

...

Padding (variable)

...

NegotiateContextList (variable)

...

StructureSize (2 bytes): The server MUST set this field to 65, indicating the size of the response
structure, not including the header. The server MUST set it to this value, regardless of the number
of negotiate contexts or how long Buffer [] actually is in the response being sent.

SecurityMode (2 bytes): The security mode field specifies whether SMB signing is enabled, required
at the server, or both. This field MUST be constructed using the following values.

Value Meaning

SMB2_NEGOTIATE_SIGNING_ENABLED

0x0001

When set, indicates that security signatures are enabled on the
server.

SMB2_NEGOTIATE_SIGNING_REQUIRED

0x0002

When set, indicates that security signatures are required by the
server.

DialectRevision (2 bytes): The preferred common SMB 2 Protocol dialect number from the Dia lects
array that is sent in the SMB2 NEGOTIATE Request (section 2.2.3) or the SMB2 wildcard revision
number. The server SHOULD set this field to one of the following values. <14>

Value Meaning

0x0202 SMB 2.0.2 dialect revision number.

0x0210 SMB 2.1 dialect revision number. <15>

0x0300 SMB 3.0 dialect revision number. <16>

0x0302 SMB 3.0.2 dialect revision number. <17>

0x0311 SMB 3.1.1 dialect revision number. <18>

0x02FF SMB2 wildcard revision number; indicates that the server implements SMB 2.1 or future dialect
revisions and expects the client to send a subsequent SMB2 Negotiate request to negotiate the

49 / 450

[MS -SMB2-Diff] - v20180316
Server Message Block (SMB) Protocol Versions 2 and 3
Copyright © 2018 Microsoft Corporation
Release: March 16, 2018

Value Meaning

actual SMB 2 Protocol revision to be used. The wildcard revision number is sent only in response
to a multi -protocol negotiate request with the "SM B 2.???" dialect string. <19>

NegotiateContextCount/Reserved (2 bytes): If the DialectRevision field is 0x0311, this field
specifies the number of negotiate contexts in NegotiateContextList ; otherwise, this field MUST
NOT be used and MUST be reserved. The server SHOULD set this to 0, and the client MUST ignore
it on receipt. <20>

ServerGuid (16 bytes): A globally unique identifier (GUID) that is generated by the server to

uniquely identify this server. This field MUST NOT be used by a client as a secure meth od of
identifying a server. <21>

Capabilities (4 bytes): The Capabilities field specifies protocol capabilities for the server. This field
MUST be constructed using a combination of zero or more of the following values.

Value Meaning

SMB2_GLOBAL_CAP_DFS

0x 00000001

When set, indicates that the server supports the Distributed
File System (DFS).

SMB2_GLOBAL_CAP_LEASING

 0x00000002

When set, indicates that the server supports leasing. This flag
is not valid for the SMB 2.0.2 dialect.

SMB2_GLOBAL_CAP_LARGE_MTU

0x00000004

When set, indicates that the server supports multi -credit
operations. This flag is not valid for the SMB 2.0.2 dialect.

SMB2_GLOBAL_CAP_MULTI_CHANNEL

0x00000008

When set, indicates that the server supports establishing
multiple channels for a single session. This flag is not valid for
the SMB 2.0.2 and SMB 2.1 dialects. .

SMB2_GLOBAL_CAP_PERSISTENT_HANDLES

0x00000010

When set, indicates that the server supports persistent
handles. This flag is not valid for the SMB 2.0.2 and SMB 2.1
dialects.

SMB2_GLOBAL_CAP_DIRECTORY_LEASING

0x00000020

When set, indicates that the server supports directory
leasing. This flag is not valid for the SMB 2.0.2 and SMB 2.1
dialects.

SMB2_GLOBAL_CAP_ENCRYPTION

0x00000040

When set, indicates that the server support s encryption. This
flag is valid for the SMB 3.0 and 3.0.2 dialects.

MaxTransactSize (4 bytes): The maximum size, in bytes, of the buffer that can be used for

QUERY_INFO, QUERY_DIRECTORY, SET_INFO and CHANGE_NOTIFY operations. This field is
applicable only for buffers sent by the client in SET_INFO requests, or returned from the server in
QUERY_INFO, QUERY_DIRECTORY, and CHANGE_NOTIFY responses. <22>

MaxReadSize (4 bytes): The maximum size, in bytes, of the Length in an SMB2 READ Request
(section 2.2.19) that the server will accept.

MaxWriteSize (4 bytes): The maximum size, in bytes, of the Length in an SMB2 WRITE Request

(section 2.2.21) that the server will accept.

SystemTime (8 bytes): The system time of the SMB2 server when the SMB2 NEGOTIATE Request
was processed; in FILETIME format as specified in [MS -DTYP] section 2.3.3.

ServerStartTime (8 bytes): The SMB2 server start time, in FILETIME format as specified in [MS -
DTYP] section 2.3.3.

50 / 450

[MS -SMB2-Diff] - v20180316
Server Message Block (SMB) Protocol Versions 2 and 3
Copyright © 2018 Microsoft Corporation
Release: March 16, 2018

SecurityBufferOffset (2 bytes): The offset, in bytes, from the beginning of the SMB2 header to the
security buffer.

SecurityBufferLength (2 bytes): The length, in bytes, of the security buffer.

NegotiateContextOffset/Reserved2 (4 bytes): If the DialectRevision field is 0x0311, then this

field specifies the offset, in bytes, from the beginning of the SMB2 header to the first 8 -byte
aligned negotiate context in NegotiateContextList ; otherwise, the server MUST set this to 0 and
the client MUST ignore it on receipt.

Buffer (variable): The variable - length buffer that contai ns the security buffer for the response, as
specified by SecurityBufferOffset and SecurityBufferLength . The buffer SHOULD contain a
token as produced by the GSS protocol as specified in section 3.3.5.4. If SecurityBufferLength
is 0, this field is empty and then client - initiated authentication, with an authentication protocol of

the client's choice, will be used instead of server - initiated SPNEGO authentication as described in
[MS -AUTHSOD] section 2.1.2.2.

Padding (variable): Optional padding between the end of the Buffer field and the first negotiate

context in the NegotiateContextList so that the first negotiate context is 8 -byte aligned.

NegotiateContextList (variable): If the DialectRevision field is 0x0311, a list of negotiate
contexts. The first negoti ate context in the list MUST appear at the byte offset indicated by the

SMB2 NEGOTIATE response's NegotiateContextOffset . Subsequent negotiate contexts MUST
appear at the first 8 -byte aligned offset following the previous negotiate context.

2.2.4.1 SMB2 NEGOTIATE _CONTEXT Response Values

The SMB2_NEGOTIATE_CONTEXT structure is used by the SMB2 NEGOTIATE Response to encode

additional connection properties.

The client MUST support receiving negotiate contexts in any order.

Each structure takes the form specified in s ection 2.2.3.1

2.2.4.1.1 SMB2_PREAUTH_INTEGRITY_CAPABILITIES

The SMB2_PREAUTH_INTEGRITY_CAPABILITIES context is specified in an SMB2 NEGOTIATE response
by the server to indicate which preauthentication integrity hash algorithm the server selected for the

connection and to optionally supply a preauthentication integrity hash salt value. The format of the
data in the Data field of this SMB2_NEGOTIATE_CONTEXT MUST take the same form specified in
section 2.2.3.1.1 except that the HashAlgorithmCount field MUST be 1.

2.2.4.1.2 SMB2 _ENCRYPTION_CAPABILITIES

The SMB2_ENCRYPTION_CAPABILITIES context is specified in an SMB2 NEGOTIATE response by the

server to indicate which encryption algorithm the server selected for the connection. The format of the
data in the Data field of this SMB2_ NEGOTIATE_CONTEXT MUST take the same form specified in
section 2.2.3.1.2 except that the CipherCount field MUST be 1.

2.2.5 SMB2 SESSION_SETUP Request

The SMB2 SESSION_SETUP Request packet is sent by the client to request a new authenticated
session within a new or existing SMB 2 Protocol transport connection to the server. This request is
composed of an SMB2 header as specified in secti on 2.2.1 followed by this request structure.

51 / 450

[MS -SMB2-Diff] - v20180316
Server Message Block (SMB) Protocol Versions 2 and 3
Copyright © 2018 Microsoft Corporation
Release: March 16, 2018

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

StructureSize Flags SecurityMode

Capabilities

Channel

SecurityBufferOffset SecurityBufferLength

PreviousSessionId

...

Buffer (variable)

...

StructureSize (2 bytes): The client MUST set this field to 25, indicating the size of the request

structure, not including the header. The client MUST set it to this value regardless of how long
Buffer [] actually is in the request being se nt.

Flags (1 byte): If the client implements the SMB 3.x dialect family, this field MUST be set to
combination of zero or more of the following values. Otherwise, it MUST be set to 0.

Value Meaning

SMB2_SESSION_FLAG_BINDING

0x01

When set, indicates that the request is to bind an existing session to a
new connection.

SecurityMode (1 byte): The security mode field specifies whether SMB signing is enabled or
required at the client. This field MUST be constructed using the following values.

Value Meaning

SMB2_NEGOTIATE_SIGNING_ENABLED

0x01

When set, indicates that security signatures are enabled on the
client. The client MUST set this bit if the
SMB2_NEGOTIATE_SIGNING_REQUIRED bit is not set, and
MUST NOT set this bit if the
SMB2_NEGOTIATE_SIGNING_REQUIRED bit is set. The server
MUST ignore this bit.

SMB2_NEGOTIATE_SIGNING_REQUIRED

0x02

When set, indicates that security signatures are required by the
client.

Capabilities (4 bytes): Specifies protocol capabilities for the client. This field MUST be constru cted
using the following values.

Value Meaning

SMB2_GLOBAL_CAP_DFS

0x00000001

When set, indicates that the client supports the Distributed File System
(DFS).

52 / 450

[MS -SMB2-Diff] - v20180316
Server Message Block (SMB) Protocol Versions 2 and 3
Copyright © 2018 Microsoft Corporation
Release: March 16, 2018

Value Meaning

SMB2_GLOBAL_CAP_UNUSED1

0x00000002

SHOULD be set to zero, and server MUST ignore.

SMB2_GLOBAL_CAP_UNUSED2

0x00000004

SHOULD be set to zero and server MUST ignore.

SMB2_GLOBAL_CAP_UNUSED3

0x00000008

SHOULD be set to zero and server MUST ignore.

Values other than those that are defined in the previous table are unused at present and
SHOULD<23> be treated as reserved.

Channel (4 bytes): This field MUST NOT be used and MUST be reserved. The client MUST set this to
0, and the server MUST ignore it on receipt.

SecurityBufferOffset (2 bytes): The offset, in bytes, from the beginning of the S MB 2 Protocol

header to the security buffer.

SecurityBufferLength (2 bytes): The length, in bytes, of the security buffer.

PreviousSessionId (8 bytes): A previously established session identifier. The server uses this value
to identify the client session t hat was disconnected due to a network error.

Buffer (variable): A variable - length buffer that contains the security buffer for the request, as
specified by SecurityBufferOffset and SecurityBufferLength . If the server initiated
authentication using SPNEGO, the buffer MUST contain a token as produced by the GSS protocol
as specified in section 3.2.4.2.3. If the client initiated authentication, see section 2.2.4, the buffer

SHOULD<24> contain a token as produced by an authentication protocol of the client's ch oice.

2.2.6 SMB2 SESSION_SETUP Response

The SMB2 SESSION_SETUP Response packet is sent by the server in response to an SMB2

SESSION _SETUP Request packet. This response is composed of an SMB2 header, as specified in
section 2.2.1, that is followed by this response structure:

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

StructureSize SessionFlags

SecurityBufferOffset SecurityBufferLength

Buffer (variable)

...

StructureSize (2 bytes): The server MUST set this to 9, indicating the size of the fixed part of the
response structure not including the header. The server MUST set it to this value regardless of
how long Buffer [] actually is in the response.

SessionFlags (2 bytes): A flags field that indicates additional information about the session. This

field MUST contain either 0 or one of the following values:

53 / 450

[MS -SMB2-Diff] - v20180316
Server Message Block (SMB) Protocol Versions 2 and 3
Copyright © 2018 Microsoft Corporation
Release: March 16, 2018

Value Meaning

SMB2_SESSION_FLAG_IS_GUEST

0x0001

If set, the client has been authenticated as a guest user.

SMB2_SESSION_FLAG_IS_NULL

0x0002

If set, the client has been authenticated as an anonymous user.

SMB2_SESSION_FLAG_ENCRYPT_DATA

0x0004

If set, the server requires encryption of messages on this session,
per the conditions specified in section 3.3.5.2.9. This flag is only
valid for the SMB 3.x dialect family.

SecurityBufferOffset (2 bytes): The offset, in bytes, from the beginning of the SMB2 header to the
security buffer.

SecurityBufferLength (2 bytes): The length, in bytes, of the security buffer.

Buffe r (variable): A variable - length buffer that contains the security buffer for the response, as

specified by SecurityBufferOffset and SecurityBufferLength . If the server initiated
authentication using SPNEGO, the buffer MUST contain a token as produced by th e GSS protocol

as specified in section 3.3.5.5.3. If the client initiated authentication, see section 2.2.4, the buffer
SHOULD<25> contain a token as produced by an authentication protocol of the client's choice.

2.2.7 SMB2 LOGOFF Request

The SMB2 LOGOFF Request packet is sent by the client to request termination of a particular session.

This request is composed of an SMB2 header as specified in section 2.2. 1 followed by this request
structure.

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

StructureSize Reserved

StructureSize (2 bytes): The client MUST set this field to 4, indicating the size of the request
structure not including the header.

Reserved (2 bytes): This field MUST NOT be used and MUST be reserved. The client MUST set this to

0, and the server MUST ignore it on receipt.

2.2.8 SMB2 LOGOFF Response

The SMB2 LOGOFF Response packet is sent by the server to confirm that an SMB2 LOGOFF Request
(section 2.2.7) was completed successfully. This response is composed of an SMB2 header, as

specified in section 2.2.1, followed by t his request structure:

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

StructureSize Reserved

StructureSize (2 bytes): The server MUST set this field to 4, indicating the size of the response
structure, not including the header.

Reserved (2 bytes): This field MUST NOT be used and MUST be reserved. The server MUST set this
to 0, and the client MUST ignore it on receipt.

54 / 450

[MS -SMB2-Diff] - v20180316
Server Message Block (SMB) Protocol Versions 2 and 3
Copyright © 2018 Microsoft Corporation
Release: March 16, 2018

2.2.9 SMB2 TREE_CONNECT Request

The SMB2 TREE_CONNECT Request packet is sent by a client to request access to a particular share
on the server. This request is composed of an SMB2 Packet Header (section 2.2.1) that is followed by

this request structu re.

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

StructureSize Flags/Reserved

PathOffset PathLength

Buffer (variable)

...

StructureSize (2 bytes): The client MUST set this field to 9, indicating the size of the request
structure, not including the header. The client MUST set it to this value regardless of how long
Buffer [] actually is in the request being sent.

Flags/Reserved (2 bytes): This field is interpreted in different ways depending on the SMB2 dialect.

In the SMB 3.1.1 dialect, this field is interpreted as the Flags field, which indicates how to process

the operation. This field MUST be constructed using the following values:

Value Meaning

SMB2_TREE_CONNECT_FLAG_CLUSTER_RECONNECT

0x0001

When set, indicates that the client has previously
connected to the specified cluster share using the
SMB dialect of the connection on which the request
is received.

SMB2_TREE_CONNECT_FLAG_REDIRECT_TO_OWNER

0x0002

When set, indicates that the client can handle
synchronous share redirects via a Share Redirect
error context response as specified in section
2.2.2.2.2.

SMB2_TREE_CONNECT_FLAG_EXTENSION_PRESENT

0x0004

When set, indicates that a tree connect reques t
extension, as specified in section 2.2.9.1, is present,
starting at the Buffer field of this tree connect
request.

If the dialect is not 3.1.1, then this field MUST NOT be used and MUST be reserved. The client
MUST set this to 0, and the server MUST ig nore it on receipt.

PathOffset (2 bytes): The offset, in bytes, of the full share path name from the beginning of the
packet header. The full share pathname is Unicode in the form " \ \ server \ share" for the request.
The server component of the path MUST be less than 256 characters in length, and it MUST be a

NetBIOS name, a fully qualified domain name (FQDN), or a textual IPv4 or IPv6 address. The
share component of the path MUST be less than or equal to 80 characters in length. The share

name MUST NOT contain any invalid characters, as specified in [MS -FSCC] section 2.1.6. <26>

PathLength (2 bytes): The length, in bytes, of the full share path name.

Buffer (variable): If SMB2_TREE_CONNECT_FLAG_EXTENSION_PRESENT is not set in the Flags field
of this structure, this field is a variable - length buffer th at contains the full share path name.

55 / 450

[MS -SMB2-Diff] - v20180316
Server Message Block (SMB) Protocol Versions 2 and 3
Copyright © 2018 Microsoft Corporation
Release: March 16, 2018

If SMB2_TREE_CONNECT_FLAG_EXTENSION_PRESENT is set in the Flags field in this structure,
this field is a variable - length buffer that contains the tree connect request extension, as specified

in section 2.2.9.1.

2.2.9.1 SMB2 TR EE_CONNECT Request Extension

If the Flags field of the SMB2 TREE_CONNECT request has the
SMB2_TREE_CONNECT_FLAG_EXTENSION_PRESENT bit set, the following structure MUST be added at
the beginning of the Buffer field.

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

TreeConnectContextOffset

TreeConnectContextCount Reserved

...

...

PathName (variable)

...

TreeConnectContexts (variable)

...

TreeConnectContextOffset (4 bytes): The offset from the start of the SMB2 TREE_CONNECT

request of an array of tree connect contexts.

TreeConnectContextCount (2 bytes): The count of elements in the tree connect context array.

Reserved (10 bytes): MUST be set to zero.

PathName (variable): Thi s field is a variable - length buffer that contains the full share path name as
specified in section 2.2.9.

TreeConnectContexts (variable): A variable length array of SMB2_TREE_CONNECT_CONTEXT
structures as described in section 2.2.9.2.

2.2.9.2 SMB2 TREE_CONNECT_CONTEXT Request Values

The SMB2_TREE_CONNECT_CONTEXT structure is used by the SMB2 TREE_CONNECT request and the

SMB2 TREE_CONNECT response to encode additional properties.

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

ContextType DataLength

Reserved

56 / 450

[MS -SMB2-Diff] - v20180316
Server Message Block (SMB) Protocol Versions 2 and 3
Copyright © 2018 Microsoft Corporation
Release: March 16, 2018

Data (variable)

...

ContextType (2 bytes) : Specifies the type of context in the Data field. This field MUST be one of the
following values:

Value Meaning

SMB2_RESERVED_TREE_CONNECT_CONTEXT_ID

0x00000000 0x0000

This value is reserved.

SMB2_REMOTED_IDENTITY_TREE_CONNECT_CONTEXT_ID

0x00000001 0x0001

The Data field contains remoted identity tree
connect context data as specified in section
2.2.9.2.1.

DataLength (2 bytes) : The length, in bytes, of the Data field.

Reserved (4 bytes) : This field MUST NOT be used and MUST be reserved. This value MUST be set to
0 by the client, and MUST be ignored by the server.

Data (variable) : A variable - length field that contains the tree connect context specified by the
ContextType field.

2.2.9.2.1 SMB2 _REMOTED_IDENTITY_TREE_CONNECT Context

The SMB2_REMOTED_IDENTITY_TREE_CONNECT context is specified in
SMB2_TREE_CONNECT_CONTEXT structure when the ContextType is set to

SMB2_REMOTED_IDENTITY_TREE_CONNECT_CONTEXT_ID. The format of the data in the Data field of
this SMB2_TREE_CONNECT_CONTEXT is as follows:

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

TicketType TicketSize

User UserName

Domain Groups

RestrictedGroups Privileges

PrimaryGroup Owner

DefaultDacl DeviceGroups

UserClaims DeviceClaims

TicketInfo (variable)

57 / 450

[MS -SMB2-Diff] - v20180316
Server Message Block (SMB) Protocol Versions 2 and 3
Copyright © 2018 Microsoft Corporation
Release: March 16, 2018

...

TicketType (2 bytes): A 16 -bit integer specifying the type of ticket requested. The value in this field
MUST be set to 0x0001.

TicketSize (2 bytes): A 16 -bit integer specifying the total size of this str ucture.

User (2 bytes): A 16 -bit integer specifying the offset, in bytes, from the beginning of this structure
to the user information in the TicketInfo buffer. The user information is stored in SID_ATTR_DATA
format as specified in section 2.2.9.2.1.2.

Use rName (2 bytes): A 16 -bit integer specifying the offset, in bytes, from the beginning of this
structure to the null - terminated Unicode string containing the username in the TicketInfo field.

Domain (2 bytes): A 16 -bit integer specifying the offset, in byte s, from the beginning of this

structure to the null - terminated Unicode string containing the domain name in the TicketInfo
field.

Groups (2 bytes): A 16 -bit integer specifying the offset, in bytes, from the beginning of this
structure to the information ab out the groups in the TicketInfo buffer. The information is stored in
SID_ARRAY_DATA format as specified in section 2.2.9.2.1.3.

RestrictedGroups (2 bytes): A 16 -bit integer specifying the offset, in bytes, from the beginning of
this structure to the infor mation about the restricted groups in the TicketInfo field. The

information is stored in SID_ARRAY_DATA format as specified in section 2.2.9.2.1.3.

Privileges (2 bytes): A 16 -bit integer specifying the offset, in bytes, from the beginning of this
structure to the information about the privileges in the TicketInfo field. The information is stored
in PRIVILEGE_ARRAY_DATA format as specified in section 2.2.9.2.1.6.

PrimaryGroup (2 bytes): A 16 -bit integer specifying the offset, in bytes, from the beginning of this
structure to the information about the primary group in the TicketInfo field. The information is
stored in SID_ARRAY_DATA format as specified in section 2.2.9.2.1.3.

Owner (2 bytes): A 16 -bit integer specifying the offset, in bytes, from the beginning of this structure
to the information about the owner in the TicketInfo field. The information is stored in
BLOB_DATA format as specified in section 2.2.9.2.1.1, where BlobData contains the SID, as
specified in [MS -DTYP] section 2.4.2.2, representing the o wner, and BlobSize contains the size of
SID.

DefaultDacl (2 bytes): A 16 -bit integer specifying the offset, in bytes, from the beginning of this

structure to the information about the DACL, as specified in [MS -DTYP] section 2.5.2, in the
TicketInfo field. Information about the DACL is stored in BLOB_DATA format as specified in
section 2.2.9.2.1.1, where BlobSize contains the size of the ACL structure, as specified in [MS -
DTYP] section 2.4.5, and BlobData contains the DACL data.

DeviceGroups (2 bytes): A 16 -bit integer specifying the offset, in bytes, from the beginning of this
structure to the information about the device groups in the TicketInfo field. The information is
stored in SID_ARRAY_DATA format as specified in section 2.2.9.2.1.3.

UserClaims (2 bytes): A 16 -bit integer specifying the offset, in bytes, from the beginning of this
structure to the user claims data in the TicketInfo field. Information about user claims is stored
in BLOB_DATA format as specified in section 2.2.9.2.1.1, where BlobD ata contains an array of
CLAIM_SECURITY_ATTRIBUTE_RELATIVE_V1 structures, as specified in [MS -DTYP] section
2.4.10.1, representing the claims issued to the user, and BlobSize contains the size of the user
claims data.

DeviceClaims (2 bytes): A 16 -bit integ er specifying the offset, in bytes, from the beginning of this

structure to the device claims data in the TicketInfo field. Information about device claims is

58 / 450

[MS -SMB2-Diff] - v20180316
Server Message Block (SMB) Protocol Versions 2 and 3
Copyright © 2018 Microsoft Corporation
Release: March 16, 2018

stored in BLOB_DATA format as specified in section 2.2.9.2.1.1, where BlobData contains an
array of CLAIM_SECURITY_ATTRIBUTE_RELATIVE_V1 structures, as specified in [MS -DTYP]

section 2.4.10.1, representing the claims issued to the account of the device which the user is
connected from, and BlobSize contains the size of the device claims data.

TicketIn fo (variable): A variable - length buffer containing the remoted identity tree connect context
data, including the information about all the previously defined fields in this structure.

2.2.9.2.1.1 BLOB_DATA

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

BlobSize BlobData (variable)

...

BlobSize (2 bytes): Size of the data, in bytes, in BlobData .

BlobData (variable): Blob data.

2.2.9.2.1.2 SID_ATTR_DATA

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

SidData (variable)

...

Attr

SidData (variable): SID, as specified in [MS -DTYP] section 2.4.2.2, information in BLOB_DATA

format as specified in section 2.2.9.2.1.1. BlobSize MUST be set to the size of SID and BlobData
MUST be set to the SID value.

Attr (4 bytes): Specified attributes of the SID, containing the following values.

Value Meaning

SE_GROUP_ENABLED

0x00000004

The SID is enabled for access checks. A SID without
this attribute is ignored during an access check unless
the SE_GROUP_USE_FOR_DENY_ONLY attribute is
set.

SE_GROUP_ENABLED_BY_DEFAULT

0x00000002

The SID is enabled by default.

59 / 450

[MS -SMB2-Diff] - v20180316
Server Message Block (SMB) Protocol Versions 2 and 3
Copyright © 2018 Microsoft Corporation
Release: March 16, 2018

Value Meaning

SE_GROUP_INTEGRITY

0x00000020

The SID is a mandatory integrity SID.

SE_GROUP_INTEGRITY_ENABLED

0x00000040

The SID is enabled for mandatory integrity checks.

SE_GROUP_LOGON_ID

0xC00000 00

The SID is a logon SID that identifies the logon
session associated with an access token.

SE_GROUP_MANDATORY

0x00000001

The SID cannot have the SE_GROUP_ENABLED
attribute cleared.

SE_GROUP_OWNER

0x00000008

The SID identifies a group account for which the user
of the token is the owner of the group, or the SID can
be assigned as the owner of the token or objects.

SE_GROUP_RESOURCE

0x20000000

The SID identifies a domain - local group.

SE_GROUP_USE_FOR_DENY_ONLY

0x00000010

The SID is a deny -only SID in a restricted token. If
this attribute is set, SE_GROUP_ENABLED is not set,
and the SID cannot be reenabled.

2.2.9.2.1.3 SID_ARRAY_DATA

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

SidAttrCount SidAttrList (variable)

...

SidAttrCount (2 bytes): Number of SID_ATTR_DATA elements in SidAttrList array.

SidAttrList (variable): An array with SidAttrCount number of SID_ATTR_DATA elements as
specified in section 2.2.9.2.1.2.

2.2.9.2.1.4 LUID_ATTR_DATA

60 / 450

[MS -SMB2-Diff] - v20180316
Server Message Block (SMB) Protocol Versions 2 and 3
Copyright © 2018 Microsoft Corporation
Release: March 16, 2018

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

Luid

...

Attr

Luid (4 8 bytes): LUID is a locally Locally unique identifier, as specified in [MS -DTYP] section 2.3.7.

Attr (4 bytes): LUID attributes as specified in [MS -LSAD] section 2.2.5.4.

2.2.9.2.1.5 PRIVILEGE_DATA

PRIVILEGE_DATA takes the form BLOB_DATA as specified in section 2.2.9.2.1.1. BlobSize MUST be

set to the size of LUID_ATTR_DATA structure and BlobData MUST be set to the LUID_ATTR_DATA
specified in section 2.2.9.2.1.4.

2.2.9.2.1.6 PRIVILEGE_ARRAY_DATA

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

PrivilegeCount PrivilegeList (variable)

...

...

PrivilegeCount (2 bytes): Number of PRIVILEGE_DATA elements in PrivilegeList array.

PrivilegeList (variable): An array with PrivilegeCount number of PRIVILEGE_DATA elements as
specified in section 2.2.9.2.1.5.

2.2.10 SMB2 TREE_CONNECT Response

The SMB2 TREE_CONNECT Respons e packet is sent by the server when an SMB2 TREE_CONNECT
request is processed successfully by the server. This response is composed of an SMB2 Packet Header
(section 2.2.1) that is followed by this response structure.

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

StructureSize ShareType Reserved

ShareFlags

Capabilities

MaximalAccess

61 / 450

[MS -SMB2-Diff] - v20180316
Server Message Block (SMB) Protocol Versions 2 and 3
Copyright © 2018 Microsoft Corporation
Release: March 16, 2018

StructureSize (2 bytes): The server MUST set this field to 16, indicating the size of the response
structure, not including the header.

ShareType (1 byte): The type of share being accessed. This field MUST contain one of the following
values.

Value Meaning

SMB2_SHARE_TYPE_DISK

0x01

Physical disk share.

SMB2_SHARE_TYPE_PIPE

0x02

Named pipe share.

SMB2_SHARE_TYPE_PRINT

0x03

Printer share.

Reserved (1 byte): This field MUST NOT be used and MUST be reserved. The server MUST set this to

0, and the client MUST ignore it on receipt.

ShareFlags (4 bytes): This field contains properties for this share.

This field MUST contain one of the followin g offline caching properties:
SMB2_SHAREFLAG_MANUAL_CACHING, SMB2_SHAREFLAG_AUTO_CACHING,
SMB2_SHAREFLAG_VDO_CACHING and SMB2_SHAREFLAG_NO_CACHING.

For more information about offline caching, see [OFFLINE].

This field MUST contain zero or more of the follo wing values: SMB2_SHAREFLAG_DFS,
SMB2_SHAREFLAG_DFS_ROOT, SMB2_SHAREFLAG_RESTRICT_EXCLUSIVE_OPENS,

SMB2_SHAREFLAG_FORCE_SHARED_DELETE, SMB2_SHAREFLAG_ALLOW_NAMESPACE_CACHING,
SMB2_SHAREFLAG_ACCESS_BASED_DIRECTORY_ENUM,
SMB2_SHAREFLAG_FORCE_LEVELII_OPLOCK a nd SMB2_SHAREFLAG_ENABLE_HASH.

Descriptions of the individual flags follow.

Value Meaning

SMB2_SHAREFLAG_MANUAL_CACHING

0x00000000

The client can cache files that are explicitly
selected by the user for offline use.

SMB2_SHAREFLAG_AUTO_CACHING

0x00000010

The client can automatically cache files that are
used by the user for offline access.

SMB2_SHAREFLAG_VDO_CACHING

0x00000020

The client can automatically cache files that are
used by the user for offline access and can use
those files in an offline mode even if the share is
available.

SMB2_SHAREFLAG_NO_CACHING

0x00000030

Offline caching MUST NOT occur.

SMB2_SHAREFLAG_DFS

0x00000001

The specified share is present in a Distributed File
System (DFS) tree structure. The server SHOULD
set the SMB2_SHAREFLAG_DFS bit in the
ShareFlags field if the per -share property
Share.IsDfs is TRUE.

SMB2_SHAREFLAG_DFS_ROOT

0x00000002

The specified shar e is present in a DFS tree
structure. The server SHOULD set the

62 / 450

[MS -SMB2-Diff] - v20180316
Server Message Block (SMB) Protocol Versions 2 and 3
Copyright © 2018 Microsoft Corporation
Release: March 16, 2018

Value Meaning

SMB2_SHAREFLAG_DFS_ROOT bit in the
ShareFlags field if the per -share property
Share.IsDfs is TRUE.

SMB2_SHAREFLAG_RESTRICT_EXCLUSIVE_OPENS

0x00000100

The specified share disallows exclusive file opens
that deny reads to an open file.

SMB2_SHAREFLAG_FORCE_SHARED_DELETE

0x00000200

The specified share disallows clients from opening
files on the share in an exclusive mode that
prevents the file from being deleted until the
client closes the file .

SMB2_SHAREFLAG_ALLOW_NAMESPACE_CACHING

0x00000400

The client MUST ignore this flag.

SMB2_SHAREFLAG_ACCESS_BASED_DIRECTORY_ENUM

0x00000800

The server will filter directory entries based on
the access permissions of the client.

SMB2_SHAREFLAG_FORCE_LEVELII_OPLOCK

0x00001000

The server will not issue exclusive caching rights
on this share. <27>

SMB2_SHAREFLAG_ENABLE_HASH_V1

0x00002000

The share supports hash generation for branch
cache retrieval of data. For more information, see
section 2.2.31.2. This flag is not valid for the SMB
2.0.2 dialect.

SMB2_SHAREFLAG_ENABLE_HASH_V2

0x00004000

The share supports v2 hash generation for branch
cache retrieval of data. For more information, see
section 2.2.31.2. This flag is not valid for t he SMB
2.0.2 and SMB 2.1 dialects.

SMB2_SHAREFLAG_ENCRYPT_DATA

0x00008000

The server requires encryption of remote file
access messages on this share, per the conditions
specified in section 3.3.5.2.11. This flag is only
valid for the SMB 3.x dialect fam ily.

SMB2_SHAREFLAG_IDENTITY_REMOTING

0x00040000

The share supports identity remoting. The client
can request remoted identity access for the share
via the
SMB2_REMOTED_IDENTITY_TREE_CONNECT
context as specified in section 2.2.9.2.1.

Capabilities (4 bytes): Indicates various capabilities for this share. This field MUST be constructed
using the following values.

Value Meaning

SMB2_SHARE_CAP_DFS

0x00000008

The specified share is present in a DFS tree structure.
The server MUST set the S MB2_SHARE_CAP_DFS bit in

the Capabilities field if the per -share property
Share.IsDfs is TRUE.

SMB2_SHARE_CAP_CONTINUOUS_AVAILABILITY

0x00000010

The specified share is continuously available. This flag is
only valid for the SMB 3.x dialect family.

SMB2_SHARE_CAP_SCALEOUT

0x00000020

The specified share is present on a server configuration
which facilitates faster recovery of durable handles. This
flag is only valid for the SMB 3.x dialect family.

SMB2_SHARE_CAP_CLUSTER The specified share is present on a server configuration

63 / 450

[MS -SMB2-Diff] - v20180316
Server Message Block (SMB) Protocol Versions 2 and 3
Copyright © 2018 Microsoft Corporation
Release: March 16, 2018

Value Meaning

0x00000040 which provides monitoring of the availability of share
through the Witness service specified in [MS -SWN]. This
flag is only valid for the SMB 3.x dialect family.

SMB2_SHARE_CAP_ASYMMETRIC

0x00000080

The specified share is present on a server configuration
that allows dynamic changes in the ownership of the
share. This flag is not valid for the SMB 2.0.2, 2.1, and
3.0 dialects.

SMB2_SHARE_CAP_REDIRECT_TO_OWNER

0x00000100

The specified share is present on a server c onfiguration
that supports synchronous share level redirection via a
Share Redirect error context response (section
2.2.2.2.2). This flag is not valid for SMB 2.0.2, 2.1, 3.0,

and 3.0.2 dialects.

MaximalAccess (4 bytes): Contains the maximal access for th e user that establishes the tree
connect on the share based on the share's permissions. This value takes the form as specified in

section 2.2.13.1.

2.2.11 SMB2 TREE_DISCONNECT Request

The SMB2 TREE_DISCONNECT Request packet is sent by the client to request that the tree connect
that is specified in the TreeId within the SMB2 header be disconnected. This request is composed of
an SMB 2 header, as specified in section 2.2.1, that is followed by this variable - length request
structure.

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

StructureSize Reserved

StructureSize (2 bytes): The client MUST set this field to 4, indicating the size of the request
structure, not including the header.

Reserved (2 bytes): This field MUST NOT be used and MUST be reserved. The client MUST set this to
0, and the server MUST ignore it on receipt.

2.2.12 SMB2 TREE_DISCONNECT Response

The SMB2 TREE_DISCONNECT Response packet is sent by the server to confirm that an SMB2
TREE_DISCONNECT Request (section 2.2.11) was successfully processed. This response is composed
of an SMB2 header, as specified in section 2.2.1, that is followed by this request structure.

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

StructureSize Reserved

StructureSize (2 bytes): The server MUST set this field to 4, indicating the size of the response

structure, not including the header.

Reserved (2 bytes): This field MUST NOT be used and MUST be reserved. The server MUST set this
to 0, and the client MUST ignore it on receipt.

64 / 450

[MS -SMB2-Diff] - v20180316
Server Message Block (SMB) Protocol Versions 2 and 3
Copyright © 2018 Microsoft Corporation
Release: March 16, 2018

2.2.13 SMB2 CREATE Request

The SMB2 CREATE Request packet is sent by a client to request either creation of or access to a file.
In ca se of a named pipe or printer, the server MUST create a new file.

This request is composed of an SMB2 Packet Header, as specified in section 2.2.1, that is followed by
this request structure.

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

StructureSize SecurityFlags RequestedOplockLevel

ImpersonationLevel

SmbCreateFlags

...

Reserved

...

DesiredAccess

FileAttributes

ShareAccess

CreateDisposition

CreateOptions

NameOffset NameLength

CreateContextsOffset

CreateContextsLength

Buffer (variable)

...

StructureSize (2 bytes): The client MUST set this field to 57, indicating the size of the request
structure, not including the header. The client MUST set it to this value regardless of how long
Buffer [] actual ly is in the request being sent.

SecurityFlags (1 byte): This field MUST NOT be used and MUST be reserved. The client MUST set

this to 0, and the server MUST ignore it.

RequestedOplockLevel (1 byte): The requested oplock level. This field MUST contain one of the
following values. <28> For named pipes, the server MUST always revert to
SMB2_OPLOCK_LEVEL_NONE irrespective of the value of this field.

65 / 450

[MS -SMB2-Diff] - v20180316
Server Message Block (SMB) Protocol Versions 2 and 3
Copyright © 2018 Microsoft Corporation
Release: March 16, 2018

Value Meaning

SMB2_OPLOCK_LEVEL_NONE

0x00

No oplock is requested.

SMB2_OPLOCK_LEVEL_II

0x01

A level II oplock is requested.

SMB2_OPLOCK_LEVEL_EXCLUSIVE

0x08

An exclusive oplock is requested.

SMB2_OPLOCK_LEVEL_BATCH

0x09

A batch oplock is requested.

SMB2_OPLOCK_LEVEL_LEASE

0xFF

A lease is requested. If set, the request packet MUST contain an
SMB2_CREATE_REQUEST_LEASE (section 2.2.13.2.8) create context.
This value is not valid for the SMB 2.0.2 dialect.

ImpersonationLevel (4 bytes): This field specifies the impersonation level requested by the

application that is issuing the create request, a nd MUST contain one of the following values.

Value Meaning

Anonymous

0x00000000

The application - requested impersonation level is Anonymous.

Identification

0x00000001

The application - requested impersonation level is Identification.

Impersonation

0x00000002

 The application - requested impersonation level is Impersonation.

Delegate

0x00000003

The application - requested impersonation level is Delegate.

Impersonation is specified in [MS -WPO] section 9.7; for more information about impersonation, see
[MSDN- IMPERS].

SmbCreateFlags (8 bytes): This field MUST NOT be used and MUST be reserved. The client SHOULD
set this field to zero, and the server MUST ignore it on receipt.

Reserved (8 bytes): This field MUST NOT be used and MUST be reserved. The client s ets this to any

value, and the server MUST ignore it on receipt.

DesiredAccess (4 bytes): The level of access that is required, as specified in section 2.2.13.1.

FileAttributes (4 bytes): This field MUST be a combination of the values specified in [MS -FSCC]
section 2.6, and MUST NOT include any values other than those specified in that section.

ShareAccess (4 bytes): Specifies the sharing mode for the open. If ShareAccess values of
FILE_SHARE_READ, FILE_SHARE_WRITE and FILE_SHARE_DELETE are set for a printe r file or a
named pipe, the server SHOULD <29> ignore these values. The field MUST be constructed using a

combination of zero or more of the following bit values.

Value Meaning

FILE_SHARE_READ

0x00000001

 When set, indicates that other opens are allowed to read this file while this open is
present. This bit MUST NOT be set for a named pipe or a printer file. Each open
creates a new instance of a named pipe. Likewise, opening a printer file always

66 / 450

[MS -SMB2-Diff] - v20180316
Server Message Block (SMB) Protocol Versions 2 and 3
Copyright © 2018 Microsoft Corporation
Release: March 16, 2018

Value Meaning

creates a new file.

FILE_SHARE_WRITE

0x00000002

 When set, indicates that other opens are allowed to write this file while this open is
present. This bit MUST NOT be set for a named pipe or a printer file. Each open
creates a new instance of a named pipe. Likewise , opening a printer file always
creates a new file.

FILE_SHARE_DELETE

0x00000004

When set, indicates that other opens are allowed to delete or rename this file while
this open is present. This bit MUST NOT be set for a named pipe or a printer file.
Each o pen creates a new instance of a named pipe. Likewise, opening a printer file
always creates a new file.

CreateDisposition (4 bytes): Defines the action the server MUST take if the file that is specified in
the name field already exists. For opening named pipes, this field can be set to any value by the
client and MUST be ignored by the server. For other files, this field MUST contain one of the
following values.

Value Meaning

FILE_SUPERSEDE

0x00000000

If the file already exists, supersede it. Otherwise, create the file. This value SHOULD
NOT be used for a printer object. <30>

FILE_OPEN

0x00000001

If the file already exists, return success; otherwise, fail the operation. MUST NOT be
used for a printer object.

FILE_CREATE

0x00000002

If the file already exists, fail the operation; otherwise, create the file.

FILE_OPEN_IF

0x00000003

Open the file if it already exists; otherwise, create the file. This value SHOULD NOT
be used for a printer object. <31>

FILE_OVERWRITE

0x00000004

Overwrite the file if it already exists; otherwise, fail the operation. MUST NOT be
used for a printer object.

FILE_OVERWRITE_IF

0x00000005

Overwrite the file if it already exists; otherwise, create the file. This value SHOULD
NOT be used for a printer object. <32>

CreateOptions (4 bytes): Specifies the options to be applied when creating or opening the file.
Combinations of the bit positions listed below are valid, unless otherwise noted. This field MUST be
constructed using the following values. <33>

Value Meaning

FILE_DIRECTORY _FILE

0x00000001

The file being created or opened is a directory file. With this flag,
the CreateDisposition field MUST be set to FILE_CREATE,
FILE_OPEN_IF, or FILE_OPEN. With this flag, only the following
CreateOptions values are valid: FILE_WRITE_THROUGH ,
FILE_OPEN_FOR_BACKUP_INTENT, FILE_DELETE_ON_CLOSE, and
FILE_OPEN_REPARSE_POINT. If the file being created or opened
already exists and is not a directory file and FILE_CREATE is
specified in the CreateDisposition field, then the server MUST fail
the requ est with STATUS_OBJECT_NAME_COLLISION. If the file
being created or opened already exists and is not a directory file
and FILE_CREATE is not specified in the CreateDisposition field,
then the server MUST fail the request with
STATUS_NOT_A_DIRECTORY. The se rver MUST fail an invalid
CreateDisposition field or an invalid combination of
CreateOptions flags with STATUS_INVALID_PARAMETER.

67 / 450

[MS -SMB2-Diff] - v20180316
Server Message Block (SMB) Protocol Versions 2 and 3
Copyright © 2018 Microsoft Corporation
Release: March 16, 2018

Value Meaning

FILE_WRITE_THROUGH

0x00000002

The server MUST propagate writes to this open to persistent
storage before returning success to the client on write operations.

FILE_SEQUENTIAL_ONLY

0x00000004

This indicates that the application intends to read or write at
sequential offsets using this handle, so the server SHOULD optimize
for sequential access. However, the server MUST accept any access
pattern. This flag value is incompatible with the
FILE_RANDOM_ACCESS value.

FILE_NO_INTERMEDIATE_BUFFERING

0x00000008

The server or underlying object store SHOULD NOT cache data at
intermediate layers and SHOULD allow it to flow through to
persist ent storage.

FILE_SYNCHRONOUS_IO_ALERT

0x00000010

This bit SHOULD be set to 0 and MUST be ignored by the
server. <34>

FILE_SYNCHRONOUS_IO_NONALERT

0x00000020

This bit SHOULD be set to 0 and MUST be ignored by the
server. <35>

FILE_NON_DIRECTORY_FILE

0x000 00040

If the name of the file being created or opened matches with an
existing directory file, the server MUST fail the request with
STATUS_FILE_IS_A_DIRECTORY. This flag MUST NOT be used with
FILE_DIRECTORY_FILE or the server MUST fail the request with
STATUS_INVALID_PARAMETER.

FILE_COMPLETE_IF_OPLOCKED

0x00000100

This bit SHOULD be set to 0 and MUST be ignored by the
server. <36>

FILE_NO_EA_KNOWLEDGE

0x00000200

The caller does not understand how to handle extended attributes.
If the request includes an SMB2_CREATE_EA_BUFFER create
context, then the server MUST fail this request with
STATUS_ACCESS_DENIED. If extended attributes with the
FILE_NEED_EA flag (see [MS -FSCC] section 2.4.15) set are

associated with the file being opened, then the server MUST fail this
request with STATUS_ACCESS_DENIED.

FILE_RANDOM_ACCESS

0x00000800

This indicates that the application intends to read or write at
random offsets using this handle, so the server SHOULD optimize
for random access. However, the server MUST accept any access
pattern. This flag value is incompatible with the
FILE_SEQUENTIAL_ONLY value. If both FILE_RANDOM_ACCESS and
FILE_SEQUENTIAL_ONLY are set, then FILE_SEQUEN TIAL_ONLY is
ignored.

FILE_DELETE_ON_CLOSE

0x00001000

The file MUST be automatically deleted when the last open request
on this file is closed. When this option is set, the DesiredAccess
field MUST include the DELETE flag. This option is often used for
te mporary files.

FILE_OPEN_BY_FILE_ID

0x00002000

This bit SHOULD be set to 0 and the server MUST fail the request
with a STATUS_NOT_SUPPORTED error if this bit is set. <37>

FILE_OPEN_FOR_BACKUP_INTENT

0x00004000

The file is being opened for backup intent. That is, it is being
opened or created for the purposes of either a backup or a restore
operation. The server can check to ensure that the caller is capable
of overriding whatever security checks have been placed on the file
to allow a backup or restore operation to occur. The server can
check for access rights to the file before checking the
DesiredAccess field.

FILE_NO_COMPRESSION The file cannot be compressed. This bit is ignored when

68 / 450

[MS -SMB2-Diff] - v20180316
Server Message Block (SMB) Protocol Versions 2 and 3
Copyright © 2018 Microsoft Corporation
Release: March 16, 2018

Value Meaning

0x00008000 FILE_DIRECTOR Y_FILE is set in CreateOptions .

FILE_OPEN_REMOTE_INSTANCE

0x00000400

This bit SHOULD be set to 0 and MUST be ignored by the server.

FILE_OPEN_REQUIRING_OPLOCK

0x00010000

This bit SHOULD be set to 0 and MUST be ignored by the server.

FILE_DISALLOW_EXCLUS IVE

0x00020000

This bit SHOULD be set to 0 and MUST be ignored by the server.

FILE_RESERVE_OPFILTER

0x00100000

This bit SHOULD be set to 0 and the server MUST fail the request
with a STATUS_NOT_SUPPORTED error if this bit is set. <38>

FILE_OPEN_REPARSE_POINT

0x00200000

If the file or directory being opened is a reparse point, open the
reparse point itself rather than the target that the reparse point

references.

FILE_OPEN_NO_RECALL

0x00400000

In an HSM (Hierarchical Storage Management) environment, this
flag means the file SHOULD NOT be recalled from tertiary storage
such as tape. The recall can take several minutes. The caller can
specify this flag to avoid those delays.

FILE_OPEN_FOR_FREE_SPACE_QUERY

0x00800000

Open file to query for free space. The client SHOULD set this to 0
and the server MUST ignore it. <39>

NameOffset (2 bytes): The offset, in bytes, from the beginning of the SMB2 header to the 8 -byte
aligned file name. If SMB2_FLAGS_DFS_OPERATIONS is set in the Flags field of th e SMB2 header,
the file name includes a prefix that will be processed during DFS name normalization as specified
in section 3.3.5.9. Otherwise, the file name is relative to the share that is identified by the TreeId
in the SMB2 header. The NameOffset field SHOULD be set to the offset of the Buffer field from
the beginning of the SMB2 header. The file name (after DFS normalization if needed) MUST

conform to the specification of a relative pathname in [MS -FSCC] section 2.1.5. A zero length file

name indicates a request to open the root of the share.

NameLength (2 bytes): The length of the file name, in bytes. If no file name is provided, this field
MUST be set to 0.

CreateContextsOffset (4 bytes): The offset, in bytes, from the beginning of the SMB2 header to the
first 8 -byte aligned SMB2_CREATE_CONTE XT structure in the request. If no
SMB2_CREATE_CONTEXTs are being sent, this value MUST be 0.

CreateContextsLength (4 bytes): The length, in bytes, of the list of SMB2_CREATE_CONTEXT
structures sent in this request.

Buffer (variable): A variable - length buf fer that contains the Unicode file name and create context
list, as defined by NameOffset , NameLength , CreateContextsOffset , and
CreateContextsLength . In the request, the Buffer field MUST be at least one byte in length. The

file name (after DFS normalizat ion if needed) MUST conform to the specification of a relative
pathname in [MS -FSCC] section 2.1.5.

2.2.13.1 SMB2 Access Mask Encoding

The SMB2 Access Mask Encoding in SMB2 is a 4 -byte bit field value that contains an array of flags. An
access mask can specify access for one of two basic groups: either for a file, pipe, or printer (specified
in section 2.2.13.1.1) or for a directory (specified in section 2.2.13.1.2). Each access mask MUST be a

combination of zero or more of the bit positi ons that are shown below.

69 / 450

[MS -SMB2-Diff] - v20180316
Server Message Block (SMB) Protocol Versions 2 and 3
Copyright © 2018 Microsoft Corporation
Release: March 16, 2018

2.2.13.1.1 File_Pipe_Printer_Access_Mask

The following SMB2 Access Mask flag values can be used when accessing a file, pipe or printer.

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

File_Pipe_Printer_Access_Mask

File_Pipe_Printer_Access_Mask (4 bytes): For a file, pipe, or printer, the value MUST be
constructed using the following values (for a printer, the value MUST have at least one of the
following: FILE_WRITE_DATA, FIL E_APPEND_DATA, or GENERIC_WRITE).

Value Meaning

FILE_READ_DATA

0x00000001

This value indicates the right to read data from the file or named pipe.

FILE_WRITE_DATA

0x00000002

This value indicates the right to write data into the file or named pipe beyond
the end of the file.

FILE_APPEND_DATA

 0x00000004

This value indicates the right to append data into the file or named pipe.

FILE_READ_EA

0x00000008

This value indicates the right to read the extended attributes of the file or
named pipe.

FILE_WRITE_EA

0x00000010

This value indicates the right to write or change the extended attributes to
the file or named pipe.

FILE_DELETE_CHILD

0x00000040

This value indicates the right to delete entries within a directory.

FILE_EXECUTE

0x00000020

This value indicates the right to execute the file.

FILE_READ_ATTRIBUTES

0x00000080

This value indicates the right to read the attributes of the file.

FILE_WRITE_ATTRIBUTES

0x00000100

This value indicates the right to change the attributes of the file.

DELETE

0x00010000

This value indicates the right to delete the file.

READ_CONTROL

0x00020000

This value indicates the right to read the security descriptor for the file or
named pipe.

WRITE_DAC

0x00040000

This value indicates the right to change the discretionary access control list
(DACL) in the security descriptor for the file or named pipe. For the DACL
data structure, see ACL in [MS -DTYP].

WRITE_OWNER

0x00080000

This value indicates the right to change the owner in the security descriptor
for the file or named pipe.

SYNCHRONIZE

0x00100000

SMB2 clients set this flag to any value. <40>

SMB2 servers SHOULD <41> ignore this flag.

ACCESS_SYSTEM_SECURITY This value indicates the right to read or change the system access control list

70 / 450

[MS -SMB2-Diff] - v20180316
Server Message Block (SMB) Protocol Versions 2 and 3
Copyright © 2018 Microsoft Corporation
Release: March 16, 2018

Value Meaning

0x01000000 (SACL) in the security descrip tor for the file or named pipe. For the SACL
data structure, see ACL in [MS -DTYP]. <42>

MAXIMUM_ALLOWED

0x02000000

This value indicates that the client is requesting an open to the file with the
highest level of access the client has on this file. If no access is granted for
the client on this file, the server MUST fail the open with
STATUS_ACCESS_DENIED.

GENERIC_ALL

0x10000000

This value indicates a request for all the access flags that are previously listed
except MAXIMUM_ALLOWED and ACCESS_SYSTEM_SECU RITY.

GENERIC_EXECUTE

0x20000000

This value indicates a request for the following combination of access flags
listed above: FILE_READ_ATTRIBUTES| FILE_EXECUTE| SYNCHRONIZE|
READ_CONTROL.

GENERIC_WRITE

0x40000000

This value indicates a request for the fol lowing combination of access flags
listed above: FILE_WRITE_DATA| FILE_APPEND_DATA|
FILE_WRITE_ATTRIBUTES| FILE_WRITE_EA| SYNCHRONIZE|
READ_CONTROL.

GENERIC_READ

0x80000000

This value indicates a request for the following combination of access flags
liste d above: FILE_READ_DATA| FILE_READ_ATTRIBUTES| FILE_READ_EA|
SYNCHRONIZE| READ_CONTROL.

2.2.13.1.2 Directory_Access_Mask

The following SMB2 Access Mask flag values can be used when accessing a directory.

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

Directory_Access_Mask

Directory_Access_Mask (4 bytes): For a directory, the value MUST be constructed using the
following values:

Value Meaning

FILE_LIST_DIRECTORY

0x00000001

 This value indicates the right to enumerate the contents of the directory.

FILE_ADD_FILE

0x00000002

 This value indicates the right to create a file under the directory.

FILE_ADD_SUBDIRECTORY

0x00000004

This value indicates the right to add a sub -direct ory under the directory.

FILE_READ_EA

0x00000008

This value indicates the right to read the extended attributes of the directory.

FILE_WRITE_EA

0x00000010

This value indicates the right to write or change the extended attributes of
the directory.

FILE_TRAVERSE

0x00000020

This value indicates the right to traverse this directory if the server enforces
traversal checking.

71 / 450

[MS -SMB2-Diff] - v20180316
Server Message Block (SMB) Protocol Versions 2 and 3
Copyright © 2018 Microsoft Corporation
Release: March 16, 2018

Value Meaning

FILE_DELETE_CHILD

0x00000040

This value indicates the right to delete the files and directories within this
directory.

FILE_READ _ATTRIBUTES

0x00000080

This value indicates the right to read the attributes of the directory.

FILE_WRITE_ATTRIBUTES

0x00000100

This value indicates the right to change the attributes of the directory.

DELETE

0x00010000

This value indicates the right to delete the directory.

READ_CONTROL

0x00020000

This value indicates the right to read the security descriptor for the directory.

WRITE_DAC

0x00040000

This value indicates the right to change the DACL in the security descriptor

for the directory. For the DACL data structure, see ACL in [MS -DTYP].

WRITE_OWNER

0x00080000

This value indicates the right to change the owner in the security descriptor
for the directory.

SYNCHRONIZE

0x00100000

SMB2 clients set this flag to any value. <43> SMB2 servers SHOULD <44>
ignore this flag.

ACCESS_SYSTEM_SECURITY

0x01000000

This value indicates the right to read or change the SACL in the security
descriptor for the directory. For the SACL data structure, see ACL in [MS -
DTYP]. <45>

MAXIMUM_ALLOWED

0x02000000

This value indi cates that the client is requesting an open to the directory with
the highest level of access the client has on this directory. If no access is
granted for the client on this directory, the server MUST fail the open with
STATUS_ACCESS_DENIED.

GENERIC_ALL

0x10000000

This value indicates a request for all the access flags that are listed above
except MAXIMUM_ALLOWED and ACCESS_SYSTEM_SECURITY.

GENERIC_EXECUTE

0x20000000

This value indicates a request for the following access flags listed above:
FILE_READ_AT TRIBUTES| FILE_TRAVERSE| SYNCHRONIZE| READ_CONTROL.

GENERIC_WRITE

0x40000000

This value indicates a request for the following access flags listed above:
FILE_ADD_FILE| FILE_ADD_SUBDIRECTORY| FILE_WRITE_ATTRIBUTES|
FILE_WRITE_EA| SYNCHRONIZE| READ_CONTROL.

GENERIC_READ

0x80000000

This value indicates a request for the following access flags listed above:
FILE_LIST_DIRECTORY| FILE_READ_ATTRIBUTES| FILE_READ_EA|
SYNCHRONIZE| READ_CONTROL.

2.2.13.2 SMB2_CREATE_CONTEXT Request Values

The SMB2_CREATE_CONTEXT structure is used by the SMB2 CREATE Request and the SMB2 CREATE
Response to encode additional flags and attributes: in requests to specify how the CREATE request
MUST be processed, and in responses to specify how th e CREATE request was in fact processed.

There is no required ordering when multiple Create Context structures are used. The server MUST
support receiving the contexts in any order.

72 / 450

[MS -SMB2-Diff] - v20180316
Server Message Block (SMB) Protocol Versions 2 and 3
Copyright © 2018 Microsoft Corporation
Release: March 16, 2018

Each structure takes the following form.

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

Next

NameOffset NameLength

Reserved DataOffset

DataLength

Buffer (variable)

...

Next (4 bytes): The offset from the beginning of this Create Context to the beginning of a
subsequent 8 -byte aligned Create Context. This field MUST be set to 0 if there are no subsequent

contexts.

NameOffset (2 bytes): The offset from the beginning of this structure to its 8 -byte aligned name
value.

NameLength (2 bytes): The length, in bytes, of the Create Context name.

Reserved (2 by tes): This field MUST NOT be used and MUST be reserved. This value MUST be set to
0 by the client, and ignored by the server.

DataOffset (2 bytes): The offset, in bytes, from the beginning of this structure to the 8 -byte aligned
data payload. If DataLength is 0, the client SHOULD set this value to 0 and the server MUST
ignore it on receipt. <46>

DataLength (4 bytes): The length, in bytes, of the data. The format of the data is determined by the
type of SMB2_CREATE_CONTEXT request, as outlined in the followin g sections. The type is
inferred from the Create Context name specified by the NameOffset and NameLength fields.

Buffer (variable): A variable - length buffer that contains the name and data fields, as defined by

NameOffset , NameLength , DataOffset , and DataL ength . The name is represented as four or
more octets and MUST be one of the values provided in the following table. The structure name
indicates what information is encoded by the data payload. The following values are the valid
Create Context values and are defined to be in network byte order. More details are provided for
each of these values in the following subsections.

Value Meaning

SMB2_CREATE_EA_BUFFER

0x45787441

("ExtA")

The data contains the extended attributes that MUST
be stored on the created file.

This value MUST NOT be set for named pipes and
print files.

SMB2_CREATE_SD_BUFFER

0x53656344

("SecD")

The data contains a security descriptor that MUST be
stored on the created file.

This value MUST NOT be set for named pipes and

73 / 450

[MS -SMB2-Diff] - v20180316
Server Message Block (SMB) Protocol Versions 2 and 3
Copyright © 2018 Microsoft Corporation
Release: March 16, 2018

Value Meaning

print files.

SMB2_ CREATE_DURABLE_HANDLE_REQUEST

0x44486e51

("DHnQ")

The client is requesting the open to be durable (see
section 3.3.5.9.6).

SMB2_CREATE_DURABLE_HANDLE_RECONNECT

0x44486e43

("DHnC")

The client is requesting to reconnect to a durable
open after being disconnected (see section
3.3.5.9.7).

SMB2_CREATE_ALLOCATION_SIZE

0x416c5369

("AISi")

The data contains the required allocation size of the
newly created file.

SMB2_CREATE_QUERY_MAXIMAL_ACCESS_REQUEST

0x4d784163

("MxAc")

The client is requesting that the server return
maximal access information.

SMB2_CREATE_TIMEWARP_TOKEN

0x54577270

("TWrp")

The client is requesting that the server open an
earlier version of the file identified by the provided
time stamp.

SMB2_CREATE_QUERY_ON_DISK_ID

0x51466964

("QFid")

The client is requesting that the server return a 32 -
byte opaque BLOB that uniquely identifies the file
being opened on disk. No data is passed to the
server by the client.

SMB2_CREATE_REQUEST LEASE

0x52714c73

("RqLs")

The client is requesting that the server return a
lease. This value is only supported for the SMB 2.1

and 3.x dialect family.

SMB2_CREATE_REQUEST_LEASE_V2

0x52714c73

("RqLs")

The client is requesting that the server return a
lease for a file or a directory. This value is only
supported fo r the SMB 3.x dialect family. This
context value is the same as the
SMB2_CREATE_REQUEST_LEASE value; the server
differentiates these requests based on the value of
the DataLength field.

SMB2_CREATE_DURABLE_HANDLE_REQUEST_V2

0x44483251

("DH2Q")

The client is requesting the open to be durable. This
value is only supported for the SMB 3.x dialect
family.

SMB2_CREATE_DURABLE_HANDLE_RECONNECT_V2

0x44483243

("DH2C")

The client is requesting to reconnect to a durable
open after being disconnected. This value is only
supported for the SMB 3.x dialect family.

SMB2_CREATE_APP_INSTANCE_ID

0x45BCA66AEFA7F74A9008FA462E144D74

The client is supplying an identifier provided by an
application instance while opening a file. This value
is only supported for the SMB 3.x dial ect family.

SMB2_CREATE_APP_INSTANCE_VERSION The client is supplying a version to correspond to the
application instance identifier. This value is only

74 / 450

[MS -SMB2-Diff] - v20180316
Server Message Block (SMB) Protocol Versions 2 and 3
Copyright © 2018 Microsoft Corporation
Release: March 16, 2018

Value Meaning

0xB982D0B73B56074FA07B524A8116A010 supported for SMB 3.1.1 dialect.

SVHDX_OPEN_DEVICE_CONTEXT

0x9CCBC F9E04C1E643980E158DA1F6EC83

Provided by an application while opening a shared
virtual disk file, as specified in [MS -RSVD] sections
2.2.4.12 and 2.2.4.32. This Create Context value is
not valid for the SMB 2.002, SMB 2.1, and SMB 3.0
dialects.

2.2.13.2.1 SMB2_CRE ATE_EA_BUFFER

The SMB2_CREATE_EA_BUFFER context is specified on an SMB2 CREATE Request (section 2.2.13)
when the client is applying extended attributes as part of creating a new file. The extended attributes
are provided in the Data buffer of the SMB2_CREA TE_CONTEXT request and MUST be in the format
that is specified for FILE_FULL_EA_INFORMATION in [MS -FSCC] section 2.4.15.

2.2.13.2.2 SMB2_CREATE_SD_BUFFER

The SMB2_CREATE_SD_BUFFER context is specified on an SMB2 CREATE Request when the client is
applying a security d escriptor to a newly created file. The Data in the Buffer field of the
SMB2_CREATE_CONTEXT MUST contain a security descriptor that MUST be a self - relative
SECURITY_DESCRIPTOR in the format as specified in [MS -DTYP] section 2.4.6.

2.2.13.2.3 SMB2_CREATE_DURABLE_HANDLE _REQUEST

The SMB2_CREATE_DURABLE_HANDLE_REQUEST context is specified in an SMB2 CREATE request
when the client is requesting the server to mark the open as a durable open. The format of the data in
the Buffe r field of this SMB2_CREATE_CONTEXT MUST be as follows.

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

DurableRequest

...

...

...

DurableRequest (16 bytes): A 16 -byte field that MUST NOT be used and MUST be reserved. This
value MUST be set to 0 by the client and ignored by the server.

2.2.13.2.4 SMB2_CREATE_DURABLE_HANDLE_RECONNECT

The SMB2_CREATE_DURABLE_HANDLE_RECONNECT context is specified when the client is attempting
to reestablish a durable open as specified in section 3.2.4.4.

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

Data

75 / 450

[MS -SMB2-Diff] - v20180316
Server Message Block (SMB) Protocol Versions 2 and 3
Copyright © 2018 Microsoft Corporation
Release: March 16, 2018

...

...

...

Data (16 bytes): An SMB2_FILEID structure, as specified in section 2.2.14.1, for the open that is
being reestablished.

2.2.13.2.5 SMB2_CREATE_QUERY_MAXIMAL_ACCESS_REQUEST

The SMB2_CREATE_QUERY_MAXIMAL_ACCESS_REQUEST context is specified on an SMB2 CREATE
Request when the client is requesting the server to retrieve maximal access information as part of
processing the open. The Data in the Buffer field of the SMB2_CREATE_CONTEXT MUST either contain
the following structure or be empty (0 bytes in length).

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

Timestamp

...

Timestamp (8 bytes): A time stamp in the FILETIME format, as specified in [MS -DTYP] section
2.3.3.

2.2.13.2.6 SMB2_CREATE_ALLOCATION_SIZE

The SMB2_CREATE_ALLOCATION_SIZE context is specified on an SMB2 CREATE Request (section
2.2.13) when the client is setting the allocation size of a file that is being newly created or

overwritten. The Data in the Buffer field of the SMB2_CREATE_CONTEXT MUS T be as follows.

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

AllocationSize

...

AllocationSize (8 bytes): The size, in bytes, that the newly created file MUST have reserved on disk.

2.2.13.2.7 SMB2_CREATE_TIMEWARP_TOKEN

The SMB2_CREATE_TIMEWARP_TOKEN context is specified on an SMB2 CREATE Request (section
2.2.13) when the client is requesting the server to open a version of the file at a previous point in

time. The Data in the Buf fer field of the SMB2_CREATE_CONTEXT MUST contain the following

structure.

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

Timestamp

76 / 450

[MS -SMB2-Diff] - v20180316
Server Message Block (SMB) Protocol Versions 2 and 3
Copyright © 2018 Microsoft Corporation
Release: March 16, 2018

...

Timestamp (8 bytes): The time stamp of the version of the file to be opened, in FILETIME format as
specified in [MS -DTYP] section 2.3.3. If no version of this file exists at this time stamp, the
operation MUST be failed.

2.2.13.2.8 SMB2_CREATE_REQUEST_LEASE

The SMB2_CREATE_REQUEST_LEASE context is specified on an S MB2 CREATE
Request (section 2.2.13) packet when the client is requesting the server to return a lease. This value
is not valid for the SMB 2.0.2 dialect. The Data in the Buffer field of the
SMB2_CREATE_CONTEXT (section 2.2.13.2) structure MUST contain the following structure.

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

LeaseKey

...

...

...

LeaseState

LeaseFlags

LeaseDuration

...

LeaseKey (16 bytes): A client -generated key that identifies the owner of the lease.

LeaseState (4 bytes): The requested lease state. This field MUST be constructed as a combination of
the following values. <47>

Value Meaning

SMB2_LEASE_NONE

0x00

No lease is requested.

SMB2_LEASE_READ_CACHING

0x01

A read caching lease is requested.

SMB2_LEASE_HANDLE_CACHING

0x02

A handle caching lease is requested.

SMB2_LEASE_WRITE_CACHING

0x04

A write caching lease is requested.

LeaseFlags (4 bytes): This field MUST NOT be used and MUST be reserved. The client MUST set this
to 0, and the server MU ST ignore it on receipt.

77 / 450

[MS -SMB2-Diff] - v20180316
Server Message Block (SMB) Protocol Versions 2 and 3
Copyright © 2018 Microsoft Corporation
Release: March 16, 2018

LeaseDuration (8 bytes): This field MUST NOT be used and MUST be reserved. The client MUST set
this to 0, and the server MUST ignore it on receipt.

2.2.13.2.9 SMB2_CREATE_QUERY_ON_DISK_ID

The SMB2_CREATE_QU ERY_ON_DISK_ID context is specified on an SMB2 CREATE Request (section
2.2.13) when the client is requesting that the server return an identifier for the open file. The Data in
the Buffer field of the SMB2_CREATE_CONTEXT MUST be empty.

2.2.13.2.10 SMB2_CREATE_REQUEST_LEASE_V2

The SMB2_CREATE_REQUEST_LEASE_V2 context is specified on an SMB2 CREATE Request when the
client is requesting the server to return a lease on a file or a directory. This is valid only for the SMB

3.x dialect family. The data in the Buffer field of the SMB2_CREATE_CONTEXT (section 2.2.13.2)
structure MUST contain the following structure.

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

LeaseKey

...

...

...

LeaseState

Flags

LeaseDuration

...

ParentLeaseKey

...

...

...

Epoch Reserved

LeaseKey (16 bytes): A client -generated key that identifies the owner of the lease.

LeaseState (4 bytes): The requested lease state. This field MUST be constructed as a combination of
the following values. <48>

Value Meaning

SMB2_LEASE_NONE No lease is requested.

78 / 450

[MS -SMB2-Diff] - v20180316
Server Message Block (SMB) Protocol Versions 2 and 3
Copyright © 2018 Microsoft Corporation
Release: March 16, 2018

Value Meaning

0x00000000

SMB2_LEASE_READ_CACHING

0x00000001

A read caching lease is requested.

SMB2_LEASE_HANDLE_CACHING

0x00000002

A handle caching lease is requested.

SMB2_LEASE_WRITE_CACHING

0x00000004

A write caching lease is requested.

Flags (4 bytes): This field MUST be set as a combination of the following values.

Value Meaning

SMB2_LEASE_FLAG_PARENT_LEASE_KEY_SET

0x00000004

When set, indicates that the ParentLea seKey is set.

LeaseDuration (8 bytes): This field MUST NOT be used and MUST be reserved. The client MUST set
this to 0, and the server MUST ignore it on receipt.

ParentLeaseKey (16 bytes): A key that identifies the owner of the lease for the parent directory.

Epoch (2 bytes): A 16 -bit unsigned integer used to track lease state changes.

Reserved (2 bytes): This field MUST NOT be used and MUST be reserved. The client MUST set this to
0, and the server MUST ignore it on receipt.

2.2.13.2.11 SMB2_CREATE_DURABLE_HAND LE_REQUEST_V2

The SMB2_CREATE_DURABLE_HANDLE_REQUEST_V2 context is only valid for the SMB 3.x dialect

family. The SMB2_CREATE_DURABLE_HANDLE_REQUEST_V2 context is specified in an SMB2 CREATE

request when the client requests the server to mark the open as durable or persistent. The format of
the data in the Buffer field of this SMB2_CREATE_CONTEXT MUST be as follows:

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

Timeout

Flags

Reserved

...

CreateGuid

...

...

...

79 / 450

[MS -SMB2-Diff] - v20180316
Server Message Block (SMB) Protocol Versions 2 and 3
Copyright © 2018 Microsoft Corporation
Release: March 16, 2018

Timeout (4 bytes): The time, in milliseconds, for which the server reserves the handle after a
failover, waiting for the client to reconnect. To let the server use a default timeout value, the

client MUST set this field to 0.

Flags (4 bytes): This field MUST be constructed by using zero or more of the following values:

Value Meaning

SMB2_DHANDLE_FLAG_PERSISTENT

0x00000002

A persistent handle is requested.

Reserved (8 bytes): This field MUST NOT be used and MUST be reserved. The client MUST set this to

0, and the server MUST ignore it on receipt.

CreateGuid (16 bytes): A GUID that identifies the create request.

2.2.13.2.12 SMB2_CREATE_DURABLE_HANDLE_RECONNECT_V2

The SMB2_CRE ATE_DURABLE_HANDLE_RECONNECT_V2 context is specified when the client is
attempting to reestablish a durable open as specified in section 3.2.4.4. The

SMB2_CREATE_DURABLE_HANDLE_RECONNECT_V2 context is valid only for the SMB 3.x dialect
family.

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

FileId

...

...

...

CreateGuid

...

...

...

Flags

FileId (16 bytes): An SMB2_FILEID structure, as specified in section 2.2.14.1, for the open that is

being reestablished.

CreateGuid (16 bytes): A unique ID that identifies the create request.

Flags (4 bytes): This field MUST be constructed using zero or more of the following values:

Value Meaning

SMB2_DHANDLE_FLAG_PERSISTENT

0x00000002

A persistent handle is requested.

80 / 450

[MS -SMB2-Diff] - v20180316
Server Message Block (SMB) Protocol Versions 2 and 3
Copyright © 2018 Microsoft Corporation
Release: March 16, 2018

2.2.13.2.13 SMB2_CREATE_APP_INSTANCE_ID

The SMB2_CREATE_APP_INSTANCE_ID context is specified on an SMB2 CREATE Request when the

client is supplying an identifier provided by an application. The SMB2_CREATE_APP_INSTANCE_ID
contex t is only valid for the SMB 3.x dialect family. The client SHOULD also request a durable handle
by using an SMB2_CREATE_DURABLE_HANDLE_REQUEST_V2 or
SMB2_CREATE_DURABLE_HANDLE_RECONNECT_V2 create context.

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

StructureSize Reserved

AppInstanceId

...

...

...

StructureSize (2 bytes): The client MUST set this field to 20, indicating the size of this structure.

Reserved (2 bytes): This field MUST NOT be used and MUST be reserved. This field MUST be set to

zero.

AppInstanceId (16 bytes): A unique ID that identifies an application instance.

2.2.13.2.14 SVHDX_OPEN_DEVICE_CONTEXT

The SVHDX_OPEN_DEVICE_CONTEXT and SVHDX_OPEN_DEVICE_CONTEXT_V2 are used to open the
shared virtual disk file as specified in [MS -RSVD] sections 2.2.4.12 and 2.2.4.32.

2.2.13.2.15 SMB2_CREATE_APP_INSTANCE_VERSION

The SMB2_CREATE_APP_INSTANCE_VERSION context is specified on an SMB2 CREATE Request when
the client is supplying a version for the app instance identifier provided by an application. Th e
SMB2_CREATE_APP_INSTANCE_VERSION context is only valid for the SMB 3.1.1 dialect.

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

StructureSize Reserved

Padding

AppInstanceVersionHigh

é

AppInstanceVersionLow

81 / 450

[MS -SMB2-Diff] - v20180316
Server Message Block (SMB) Protocol Versions 2 and 3
Copyright © 2018 Microsoft Corporation
Release: March 16, 2018

é

StructureSize (2 bytes) : The client MUST set this field to 24, indicating the size of this structure.

Reserved (2 bytes) : This field MUST NOT be used and MUST be reserved. This field MUST be set to
zero.

Padding (4 bytes): This value MUST be set to 0 by th e client and MUST be ignored by the server.

AppInstanceVersionHigh (8 bytes) : An unsigned 64 -bit integer containing the most significant
value of the version.

AppInstanceVersionLow (8 bytes) : An unsigned 64 -bit integer containing the least significant
valu e of the version.

2.2.14 SMB2 CREATE Response

The SMB2 CREATE Response packet is sent by the server to notify the client of the status of its SMB2
CREATE Request. This response is composed of an SMB2 header, as specified in section 2.2.1,
followed by this response structure.

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

StructureSize OplockLevel Flags

CreateAction

CreationTime

...

LastAccessTime

...

LastWriteTime

...

ChangeTime

...

AllocationSize

...

EndofFile

...

82 / 450

[MS -SMB2-Diff] - v20180316
Server Message Block (SMB) Protocol Versions 2 and 3
Copyright © 2018 Microsoft Corporation
Release: March 16, 2018

FileAttributes

Reserved2

FileId

...

...

...

CreateContextsOffset

CreateContextsLength

Buffer (variable)

...

StructureSize (2 bytes): The server MUST set this field to 89, indicating the size of the request
structure, not including the header. The server MUST set this field to this value regardless of how
long Buffer [] actually is in the request being sent.

OplockLevel (1 byte): The oplock level that is granted to the client for this open. This field MUST
contain one of the following values. <49>

Value Meaning

SMB2_OPLOCK_LEVEL_NONE

0x00

No oplock was granted.

SMB2_OPLOCK_LEVEL_II

0x01

A level II oplock was granted.

SMB2_OPLOCK_LEVEL_EXCLUSIVE

0x08

An exclusive oplock was granted.

SMB2_OPLOCK_LEVEL_BATCH

0x09

A batch oplock was granted.

OPLOCK_LEVEL_LEASE

0xFF

A lease is requested. If set, the response packet MUST contain an
SMB2_CREATE_RESPONSE_LEASE create context .

Flags (1 byte): If the server implements the SMB 3.x dialect family, this field MUST be constructed

using the following value. Otherwise, this field MUST NOT be used and MUST be reserved.

Value Meaning

SMB2_CREATE_FLAG_REPARSEPOINT

0x01

When set, indicates the last portion of the file path is a reparse
point.

CreateAction (4 bytes): The action taken in establishing the open. This field MUST contain one of
the following values. <50>

83 / 450

[MS -SMB2-Diff] - v20180316
Server Message Block (SMB) Protocol Versions 2 and 3
Copyright © 2018 Microsoft Corporation
Release: March 16, 2018

Value Meaning

FILE_SUPERSEDED

0x00000000

An existing file was deleted and a new file was created in its place.

FILE_OPENED

0x00000001

An existing file was opened.

FILE_CREATED

0x00000002

A new file was created.

FILE_OVERWRITTEN

0x00000003

An existing file was overwritten.

CreationTime (8 bytes): The time when the file was created; in FILETIME format as specified in
[MS -DTYP] section 2.3.3.

LastAccessTime (8 bytes): The time the file was last accessed; in FILETIME format as specified in

[MS -DTYP] section 2.3.3.

LastWriteTime (8 bytes): The time when data was last written to the file; in FILETIME format as
specified in [MS -DTYP] section 2.3.3.

ChangeTime (8 bytes): The time when the file was last modified; in FILETIME format as specified in
[MS -DTYP] section 2.3.3.

AllocationSize (8 bytes): The size, in bytes, of th e data that is allocated to the file.

EndofFile (8 bytes): The size, in bytes, of the file.

FileAttributes (4 bytes): The attributes of the file. The valid flags are as specified in [MS -FSCC]
section 2.6.

Reserved2 (4 bytes): This field MUST NOT be used an d MUST be reserved. The server SHOULD set

this to 0, and the client MUST ignore it on receipt. <51>

FileId (16 bytes): An SMB2_FILEID, as specified in section 2.2.14.1.

The identifier of the open to a file or pipe that was established.

CreateContextsOffset (4 bytes): The offset, in bytes, from the beginning of the SMB2 header to the

first 8 -byte aligned SMB2_CREATE_CONTEXT response that is contained in this response. If none
are being returned in the response, this value MUST be 0. These values are specified in section
2.2.14.2.

CreateContextsLength (4 bytes): The length, in bytes, of the list of SMB2_CREATE_CONTEXT
response structures that are contained in this response.

Buffer (variable): A variable - length buffer that contains the list of create contexts that are contained
in this response, as described by CreateContextsOffset and CreateContextsLength . This takes

the form of a list of SMB2_CREATE_CONTEXT Response Values, as specified in section 2.2.14.2.

2.2.14.1 SMB2_FILEID

The SMB2 FILEID is used to represent an open to a file.

84 / 450

[MS -SMB2-Diff] - v20180316
Server Message Block (SMB) Protocol Versions 2 and 3
Copyright © 2018 Microsoft Corporation
Release: March 16, 2018

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

Persistent

...

Volatile

...

Persistent (8 bytes): A file handle that remains persistent when an open is reconnected after being
lost on a disconnect, as specified in section 3.3.5.9.7. The server MUST return this file handle as
part of an SMB2 CREATE Response (section 2.2.14).

Volatile (8 bytes): A file handle that can be changed when an open is reconnected after being lost

on a disconnect, as specified in section 3.3.5.9.7. The server MUST return this file handle as part
of an SMB2 CREATE Response (section 2.2.14). This value MUST NOT change unless a
rec onnection is performed. This value MUST be unique for all volatile handles within the scope of a
session.

2.2.14.2 SMB2_CREATE_CONTEXT Response Values

The SMB2_CREATE_CONTEXT Response Values MUST take the same form as spec ified in section
2.2.13.2 except that the Buffer field MUST be one of the values provided in the following table. The
following values are the valid create context values and are defined to be in network byte order. The
individual values that are contained in the data buffer of the create context responses varies, based on

the name of the create context in the request.

Value Meaning

SMB2_CREATE_DURABLE_HANDLE_RESPONSE

0x44486e51

("DHnQ")

The server marked the open to be durable.

SMB2_CREATE_CONTEXT Response takes the same
form as defined in section 2.2.13.2.

SMB2_CREATE_QUERY_MAXIMAL_ACCESS_RESPONSE

0x4d784163

("MxAc")

The server returned maximal access information.

SMB2_CREATE_CONTEXT Response takes the same
form as defined in section 2.2.13.2.

SMB2_CREATE_QUERY_ON_DISK_ID

0x51466964

("QFid")

The server returned DiskID of the open file in a volume.

SMB2_CREATE_CONTEXT Response takes the same
form as defined in section 2.2.13.2.

SMB2_CREATE_RESPONSE_LEASE

0x52714c73

("RqLs")

The server returned a l ease. This value is only
supported for the SMB 2.1 and 3.x dialect family.

SMB2_CREATE_CONTEXT Response takes the same
form as defined in section 2.2.13.2.

SMB2_CREATE_RESPONSE_LEASE_V2

0x52714c73

("RqLs")

The server returned a lease for a file or a directory. This
value is only supported for the SMB 3.x dialect family.
This context value is the same as the

85 / 450

[MS -SMB2-Diff] - v20180316
Server Message Block (SMB) Protocol Versions 2 and 3
Copyright © 2018 Microsoft Corporation
Release: March 16, 2018

Value Meaning

SMB2_CREATE_RESPONSE_LEASE value; the client
differentiates these responses based on the value of the
DataLength field.

SMB2_CREATE_CONTEXT Response takes the same
form as defined in section 2.2.13.2.

SMB2_CREATE_DURABLE_HANDLE_RESPONSE_V2

0x44483251

("DH2Q")

The server marked the open to be durable. This value is
only supported for the SMB 3.x dialect family.

SMB2_CREATE_CONTEXT Response takes the same
form as defined in section 2.2.13.2.

SVHDX_OPEN_DEVICE_CONTEXT_RESPONSE

0x9CCBCF9E04C1E643980E158DA1F6EC83

A response context as specified in [MS -RSVD] sections

2.2.4.31 and 2.2.4.33 is returned. This cr eate context
value is not valid for the SMB 2.002, SMB 2.1, and SMB
3.0 dialects.

For each well -known name that is specified in the previous table, the format of the response is
provided in the following sections.

2.2.14.2.1 SMB2_CREATE_EA_BUFFER

The SMB2_CREATE_EA_BUFFER request does not generate an SMB2_CREATE_CONTEXT Response.

2.2.14.2.2 SMB2_CREATE_SD_BUFFER

The SMB2_CREATE_SD_BUFFER request does not generate an SMB2_CREATE_CONTEXT Response.

2.2.14.2.3 SMB2_CREATE_DURABLE_HANDL E_RESPONSE

The SMB2_CREATE_DURABLE_HANDLE_RESPONSE is sent by the server in response to an
SMB2_CREATE_DURABLE_HANDLE_REQUEST (section 2.2.13.2.3) to inform the client that a durable

handle to a file was cr eated successfully.

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

Reserved

...

Reserved (8 bytes): This field MUST NOT be used and MUST be reserved. The server MUST set this
to 0, and the client MUST ignore the value on receipt.

2.2.14.2.4 SMB2_CREATE_DURABLE_HANDLE_RECONNECT

The server responds to an SMB2_CREATE_DURABLE_HANDLE_RECONNECT request as specified in

section 3.3.5.9.7.

2.2.14.2.5 SMB2_CREATE_QUERY_MAXIMAL_ACCESS_RESPONSE

The SMB2_CREATE_QUERY_MAXIMAL_ACCESS_RESPONSE is sent by the server in response to an
SMB2_CREATE_QUERY_MAXIMAL_ACCESS_REQUEST (section 2.2.13.2.5) to return the results of the
query for maximal access information.

86 / 450

[MS -SMB2-Diff] - v20180316
Server Message Block (SMB) Protocol Versions 2 and 3
Copyright © 2018 Microsoft Corporation
Release: March 16, 2018

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

QueryStatus

MaximalAccess

QueryStatus (4 bytes): The resulting status code of the attempt to query maximal access. The
MaximalAccess field is valid only if QueryStatus is STATUS_SUCCESS. The status code MUST
be one of those defined in [MS -ERREF] section 2.3.

MaximalAccess (4 bytes): The maximal access that the user who is described by SessionId has on
the file or named pipe that was opened. This is an access mask value, as specified in section
2.2.13.1.

2.2.14.2.6 SMB2_CREATE_APP_INSTANCE_ID

The SMB2_CREATE_APP_INSTANCE_ID request has no associated SMB2_CREATE_CONTEXT
Response.

2.2.14.2.7 SMB2_CREATE_ALLOCATION_SIZE

The SMB2_CREATE_ALLOCATION_SIZE request do es not generate an SMB2_CREATE_CONTEXT
Response.

2.2.14.2.8 SMB2_CREATE_TIMEWARP_TOKEN

The SMB2_CREATE_TIMEWARP_TOKEN request does not generate an SMB2_CREATE_CONTEXT

Response.

2.2.14.2.9 SMB2_CREATE_QUERY_ON_DISK_ID

The server responds with a 32 -byte structure that the client can use to identify the open file in a
volume. The SMB2_CREATE_QUERY_ON_DISK_ID returns an SMB2_CREATE_CONTEXT in the
response with the Name that is id entified by SMB2_CREATE_QUERY_ON_DISK_ID as specified in

section 2.2.13.2.

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

DiskFileId

...

VolumeId

...

Reserved

...

...

87 / 450

[MS -SMB2-Diff] - v20180316
Server Message Block (SMB) Protocol Versions 2 and 3
Copyright © 2018 Microsoft Corporation
Release: March 16, 2018

...

DiskFileId (8 bytes): An 8 -byte value that the client can use to identify the open file.

VolumeId (8 bytes): An 8 -byte value that the client can use to identify the volume within which the
file is opened.

Reserved (16 bytes): This field MUST NOT be used and MUST be reserved. The server MUST set this
to 0, an d the client MUST ignore it on receipt.

2.2.14.2.10 SMB2_CREATE_RESPONSE_LEASE

The server responds with a lease that is granted for this open. The data in the Buffer field of the
SMB2_CREATE_CONTEXT structure MUST contain the f ollowing structure.

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

LeaseKey

...

...

...

LeaseState

LeaseFlags

LeaseDuration

...

LeaseKey (16 bytes): The client -generated key that identifies the owner of the lease.

LeaseState (4 bytes): The granted lease state. This field MUST be constructed using the following
values.

Value Meaning

SMB2_LEASE_NONE

0x00

No lease is granted.

SMB2_LEASE_READ_CACHING

0x01

A read caching lease is granted.

SMB2_LEASE_HANDLE_CACHING

0x02

A handle caching lease is granted.

SMB2_LEASE_WRITE_CACHING

0x04

A write caching lease is granted.

LeaseFlags (4 bytes): This field MUST be set to zero or more of the following values.

88 / 450

[MS -SMB2-Diff] - v20180316
Server Message Block (SMB) Protocol Versions 2 and 3
Copyright © 2018 Microsoft Corporation
Release: March 16, 2018

Value Meaning

SMB2_LEASE_FLAG_BREAK_IN_PROGRESS

0x02

A break for the lease identified by the lease key is in
progress.

LeaseDuration (8 bytes): This field MUST NOT be used and MUST be reserved. The server MUST set
this to 0, and the client MUST ignore it on receipt.

2.2.14.2.11 SMB2_CREATE_RESPONSE_LEASE_V2

The server responds with a lease that is granted for this open. The data in the Buffer field of the

SMB2_CREATE_CONTEXT structure MUST contain the following structure. The
SMB2_CREATE_RESPONSE_LEASE_V2 context i s only valid for the SMB 3.x dialect family.

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

LeaseKey

...

...

...

LeaseState

Flags

LeaseDuration

...

ParentLeaseKey

...

...

...

Epoch Reserved

LeaseKey (16 bytes): The client -generated key that identifies the owner of the lease.

LeaseState (4 bytes): The granted lease state. This field MUST be constructed by using the following
values.

Value Meaning

SMB2_LEASE_NONE

0x00000000

No lease is granted.

89 / 450

[MS -SMB2-Diff] - v20180316
Server Message Block (SMB) Protocol Versions 2 and 3
Copyright © 2018 Microsoft Corporation
Release: March 16, 2018

Value Meaning

SMB2_LEASE_READ_CACHIN G

0x00000001

A read caching lease is granted.

SMB2_LEASE_HANDLE_CACHING

0x00000002

A handle caching lease is granted.

SMB2_LEASE_WRITE_CACHING

0x00000004

A write caching lease is granted.

Flags (4 bytes): This field MUST be set to zero or the following value.

Value Meaning

SMB2_LEASE_FLAG_BREAK_IN_PROGRESS

0x00000002

A break for the lease identified by the lease key is in
progress.

SMB2_LEASE_FLAG_PARENT_LEASE_KEY_SET

0x00000004

When set, indicates that the ParentLeaseKey is set.

LeaseDuration (8 bytes): This field MUST NOT be used and MUST be reserved. The server MUST set
this to zero, and the client MUST ignore it on receipt.

ParentLeaseKey (16 bytes): A key that identifies the owner of the lease for the parent directory.

Epoch (2 bytes): A 16 -bit unsigned integer incremented by the server on a lease state change.

Reserved (2 bytes): This field MUST NOT be used and MUST be reserved. The server SHOULD <52>
set this to 0, and the client MUST ignore it on receipt.

2.2.14.2.12 SMB2_CREATE_DURABLE_HANDLE_RESPONSE_V2

SMB2_CREATE_DURABLE_HANDLE_RESPONSE_V2 is sent by the server in response to an
SMB2_CREATE_DURABLE_HANDLE_REQUEST_V2 (section 2.2.13.2.11) to inform the client that a

durable handle to a file was created successfully. The
SMB2_CREATE_DURABLE_HANDLE_RESPONSE_V2 context is only valid for the SMB 3.x dialect family.

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

Timeout

Flags

Timeout (4 bytes): The server MUST set this field to the time, in milliseconds, it waits for the client
to reconnect after a failover.

Flags (4 bytes): This field MUST be constructed using zero or more of the following values:

Value Meaning

SMB2_DHANDLE_FLAG_PERSISTENT

0x00000002

A persistent handle is granted.

90 / 450

[MS -SMB2-Diff] - v20180316
Server Message Block (SMB) Protocol Versions 2 and 3
Copyright © 2018 Microsoft Corporation
Release: March 16, 2018

2.2.14.2.13 SMB2_CREATE_DURABLE_HANDLE_RECONNECT_V2

The server responds to an SMB2_CREATE_DURABLE_HANDLE_RECONNECT_V2 request as specified in
section 3.3.5.9.12.

2.2.14.2.14 SVHDX_OPEN_DEVICE_CONTEXT_RESPONSE

If the processing in [MS -RSVD] section 3.2.5.1 is successful, a response context as specified in [MS -
RSVD] sections 2.2.4.31 and 2.2.4.33 is returned.

2.2.14.2.15 SMB2_CREATE_APP_INSTANCE_VERSION

The SMB2_CREATE_APP_INSTANCE_VERSION request has no associated SMB2_CREATE_CONTEXT

Response.

2.2.15 SMB2 CLOSE Request

The SMB2 CLOSE Request packet is used by the client to close an instance of a file that was opened
previously with a successful SMB2 CREATE Request. This request is composed of an SMB2 header, as

specified in section 2.2.1, followed by this request structure:

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

StructureSize Flags

Reserved

FileId

...

...

...

StructureSize (2 bytes): The client MUST set this field to 24, indicating the size of the request
structure, not including the header.

Flags (2 bytes): A Flags field indicates how to process the operation. This field MUST be constructed
using the following value:

Value Meaning

SMB2_CLOSE_FLAG_POSTQUERY_ATTRIB

0x0001

If set, the server MUST set the attribute fields in the response,
as specified in section 2.2.16 , to valid values. If not set, the
client MUST NOT use the values that are returned in the
response.

Reserved (4 bytes): This field MUST NOT be used and MUST be reserved. The client MUST set this to

0, and the server MUST ignore it on receipt.

FileId (16 bytes): An SMB2_FILEID structure, as specified in section 2.2.14.1.

The identifier of the open to a file or named pipe that is being closed.

91 / 450

[MS -SMB2-Diff] - v20180316
Server Message Block (SMB) Protocol Versions 2 and 3
Copyright © 2018 Microsoft Corporation
Release: March 16, 2018

2.2.16 SMB2 CLOSE Response

The SMB2 CLOSE Response packet is sent by the server to indicate that an SMB2 CLOSE Request was
processed successfully. This response is composed of an SMB2 header, as specified in section 2.2.1,

followed by this response structure:

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

StructureSize Flags

Reserved

CreationTime

...

LastAccessTime

...

LastWriteTime

...

ChangeTime

...

AllocationSize

...

EndofFile

...

FileAttributes

StructureSize (2 bytes): The server MUST set this field to 60, indicating the size of the response
structure, not including the header.

Flags (2 bytes): A Flags field indicates how to process the operation. This field MUST be either zero
or the following value:

Value Meaning

SMB2_CLOSE_FLA G_POSTQUERY_ATTRIB

0x0001

If set, the client MUST use the attribute fields in the response.
If not set, the client MUST NOT use the attribute fields that are
returned in the response.

Reserved (4 bytes): This field MUST NOT be used and MUST be reserved. The server MUST set this

to 0, and the client MUST ignore it on receipt.

92 / 450

[MS -SMB2-Diff] - v20180316
Server Message Block (SMB) Protocol Versions 2 and 3
Copyright © 2018 Microsoft Corporation
Release: March 16, 2018

CreationTime (8 bytes): The time when the file was created; in FILETIME format as specified in
[MS -DTYP] section 2.3.3. If the SMB2_CLOSE_FLAG_POSTQUERY_ATTRIB flag in the SMB2 CLOSE

Request was set, this field MUST be set to the value that is returned by the attribute query. If the
flag is not set, the field SHOULD be set to zero and MUST NOT be checked on receipt.

LastAccessTime (8 bytes): The time when the file was last accessed; in FILETIME format as
specified in [MS -DTYP] section 2.3.3. If the SMB2_CLOSE_FLAG_POSTQUERY_ATTRIB flag in the
SMB2 CLOSE Request was set, this field MUST be set to the value that is returned by the attribute
query. If the flag is not set, this field MUST b e set to zero.

LastWriteTime (8 bytes): The time when data was last written to the file; in FILETIME format as
specified in [MS -DTYP] section 2.3.3. If the SMB2_CLOSE_FLAG_POSTQUERY_ATTRIB flag in the
SMB2 CLOSE Request was set, this field MUST be set to the value that is returned by the attribute

query. If the flag is not set, this field MUST be set to zero.

ChangeTime (8 bytes): The time when the file was last modified; in FILETIME format as specified in
[MS -DTYP] section 2.3.3. If the SMB2_CLOSE_FLAG_PO STQUERY_ATTRIB flag in the SMB2 CLOSE
Request was set, this field MUST be set to the value that is returned by the attribute query. If the

flag is not set, this field MUST be set to zero.

AllocationSize (8 bytes): The size, in bytes, of the data that is al located to the file. If the

SMB2_CLOSE_FLAG_POSTQUERY_ATTRIB flag in the SMB2 CLOSE Request was set, this field
MUST be set to the value that is returned by the attribute query. If the flag is not set, this field
MUST be set to zero.

EndofFile (8 bytes): The size, in bytes, of the file. If the SMB2_CLOSE_FLAG_POSTQUERY_ATTRIB
flag in the SMB2 CLOSE Request was set, this field MUST be set to the value that is returned by
the attribute query. If the flag is not set, this field MUST be set to zero.

FileAttribu tes (4 bytes): The attributes of the file. If the SMB2_CLOSE_FLAG_POSTQUERY_ATTRIB

flag in the SMB2 CLOSE Request was set, this field MUST be set to the value that is returned by
the attribute query. If the flag is not set, this field MUST be set to zero. For more information
about valid flags, see [MS -FSCC] section 2.6.

2.2.17 SMB2 FLUSH Request

The SMB2 FLUSH Request packet is sent by a client to request that a server flush all cached file
information for a specified open of a file to the persistent store that backs the file. If the open refers to
a named pipe, the operation will complete once all data written to the pipe has been consumed by a
reader. This req uest is composed of an SMB2 header, as specified in section 2.2.1, followed by this
request structure:

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

StructureSize Reserved1

Reserved2

FileId

...

...

...

93 / 450

[MS -SMB2-Diff] - v20180316
Server Message Block (SMB) Protocol Versions 2 and 3
Copyright © 2018 Microsoft Corporation
Release: March 16, 2018

StructureSize (2 bytes): The client MUST set this field to 24, indicating the size of the request
structure, not including the header.

Reserved1 (2 bytes): This field MUST NOT be used and MUST be reserved. The client MUST set this
to 0, and the server MUST ignore it on receipt.

Reserved2 (4 bytes): This field MUST NOT be used and MUST be reserved. The client MUST set this
to 0, and the server MUST ignore it on receipt.

FileId (16 bytes): An SMB2_FILEID, as specified in section 2.2.14.1.

The client MUST set this field to the identifier of the open to a file or named pipe that is being flushed.

2.2.18 SMB2 FLUSH Response

The SMB2 FLUSH Response packet is sent by the server to confirm that an SMB2 FLUSH
Request (section 2.2.17) was successfully processed. This response is composed of an SMB2 header,
as specified in section 2.2.1, followed by this request structure:

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

StructureSize Reserved

StructureSize (2 bytes): The server MUST set this field to 4, indicating the size of the response

structure, not including the header.

Reserved (2 bytes): This field MUST NOT be used and MUST be reserved. The server MUST set this
field to 0, and the client MUST ignore it on receipt.

2.2.19 SMB2 READ Request

The SMB2 READ Request packet is sent by the client to request a read operation on the file that is

specified by the FileId . This request is composed of an SMB2 header, as specified in section 2.2.1,
followed by this request structure:

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

StructureSize Padding Flags

Length

Offset

...

FileId

...

...

...

94 / 450

[MS -SMB2-Diff] - v20180316
Server Message Block (SMB) Protocol Versions 2 and 3
Copyright © 2018 Microsoft Corporation
Release: March 16, 2018

MinimumCount

Channel

RemainingBytes

ReadChannelInfoOffset ReadChannelInfoLength

Buffer (variable)

...

StructureSize (2 bytes): The client MUST set this field to 49, indicating the size of the request
structure, not including the header. The client MUST set it to this value regardless of how long
Buffer [] actually is in the request being sent.

Padding (1 byte): The requested offset from the start of the SMB2 header, in bytes, at which to
place the data read in the SMB2 READ Response (section 2.2.20). This value is provided to
optimize data placement on the client and is not binding on the server.

Flags (1 byte): For the SMB 2.0.2, 2 .1 and 3.0 dialects, this field MUST NOT be used and MUST be
reserved. The client MUST set this field to 0, and the server MUST ignore it on receipt. For the
SMB 3.0.2 and SMB 3.1.1 dialects, this field MUST contain zero or more of the following values:

Va lue Meaning

SMB2_READFLAG_READ_UNBUFFERED

0x01

The server or underlying object store SHOULD NOT cache the read
data at intermediate layers.

Length (4 bytes): The length, in bytes, of the data to read from the specified file or pipe. The length

of the data being read can be zero bytes.

Offset (8 bytes): The offset, in bytes, into the file from which the data MUST be read. If the read is
being executed on a pipe, the Offset MUST be set to 0 by the client and MUST be ignored by the
server.

FileId (16 byte s): An SMB2_FILEID, as specified in section 2.2.14.1.

The identifier of the file or pipe on which to perform the read.

MinimumCount (4 bytes): The minimum number of bytes to be read for this operation to be

successful. If fewer than the minimum number of b ytes are read by the server, the server MUST
return an error rather than the bytes read.

Channel (4 bytes): For SMB 2.0.2 and 2.1 dialects, this field MUST NOT be used and MUST be
reserved. The client MUST set this field to 0, and the server MUST ignore it on receipt. For the
SMB 3.x dialect family, this field MUST contain exactly one of the following values:

Value Meaning

SMB2_CHANNEL_NONE

0x00000000

No channel information is present in the request. The
ReadChannelInfoOffset and ReadChannelInfoLength fields
MUST be set to 0 by the client and MUST be ignored by the
server.

SMB2_CHANNEL_RDMA_V1 One or more SMB_DIRECT_BUFFER_DESCRIPTOR_V1 structures
as specified in [MS -SMBD] section 2.2.3.1 are present in the

95 / 450

[MS -SMB2-Diff] - v20180316
Server Message Block (SMB) Protocol Versions 2 and 3
Copyright © 2018 Microsoft Corporation
Release: March 16, 2018

Value Meaning

0x00000001 channel information specified by ReadChannelInfoOffset and
ReadChannelInfoLength fields.

SMB2_CHANNEL_RDMA_V1_INVALIDATE

0x00000002

This flag is not valid for the SMB 2.0.2, 2.1, and 3.0 dialects.
One or more SMB_DIRECT_BUFFER_DESCRIPTOR_V1
structures, as specified in [MS -SMBD] section 2 .2.3.1, are
present in the channel information specified by the
ReadChannelInfoOffset and ReadChannelInfoLength fields.
The server is requested to perform remote invalidation when
responding to the request as specified in [MS -SMBD] section
3.1.4.2.

Remain ingBytes (4 bytes): The number of subsequent bytes that the client intends to read from

the file after this operation completes. This value is provided to facilitate read -ahead caching, and
is not binding on the server.

ReadChannelInfoOffset (2 bytes): For the SMB 2.0.2 and 2.1 dialects, this field MUST NOT be used

and MUST be reserved. The client MUST set this field to 0, and the server MUST ignore it on
receipt. For the SMB 3.x dialect family, it contains the offset, in bytes, from the beginning of the
SMB2 header to the channel data as specified by the Channel field of the request.

ReadChannelInfoLength (2 bytes): For the SMB 2.0.2 and 2.1 dialects, this field MUST NOT be

used and MUST be reserved. The client MUST set this field to 0, and the server MUST ignore it on
receipt. For the SMB 3.x dialect family, it contains the length, in bytes, of the channel data as
specified by the Channel field of the request.

Buffer (variable): A variable - length buffer that contains the read channel information, as describ ed
by ReadChannelInfoOffset and ReadChannelInfoLength . Unused at present. The client MUST
set one byte of this field to 0, and the server MUST ignore it on receipt.

2.2.20 SMB2 READ Response

The SMB2 READ Response packet is sent in response to an SMB2 READ Request (section 2.2.19)
packet. This response is composed of an SMB2 header, as specified in section 2.2.1, followed by this
response structure:

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

StructureSize DataOffset Reserved

DataLength

DataRemaining

Reserved2

Buffer (variable)

...

StructureSize (2 bytes): The server MUST set this field to 17, indicating the size of the response
structure, not including the header. This value MUST be used regardless of how large Buffer [] is
in the actual response.

96 / 450

[MS -SMB2-Diff] - v20180316
Server Message Block (SMB) Protocol Versions 2 and 3
Copyright © 2018 Microsoft Corporation
Release: March 16, 2018

DataOffset (1 byte): The offset, in bytes, from the beginning of the header to the data read being
returned in this response.

Reserved (1 byte): This field MUST NOT be used and MUST be reserved. The server MUST set this to
0, and the client MUST ignore it on receipt.

DataLength (4 bytes): The length, in bytes, of th e data read being returned in this response.

DataRemaining (4 bytes): The length, in bytes, of the data being sent on the Channel specified in
the request.

Reserved2 (4 bytes): This field MUST NOT be used and MUST be reserved. The server MUST set this
to 0, and the client MUST ignore it on receipt.

Buffer (variable): A variable - length buffer that contains the data read for the response, as described
by DataOffset and DataLength . The minimum length is 1 byte. If 0 bytes are returned from the

underlying obje ct store, the server MUST send a failure response with status equal to
STATUS_END_OF_FILE.

2.2.21 SMB2 WRITE Request

The SMB2 WRITE Request packet is sent by the client to write data to the file or named pipe on the
server. This request is composed of an SMB2 header, as specified in section 2.2.1, followed by this
request structure:

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

StructureSize DataOffset

Length

Offset

...

FileId

...

...

...

Channel

RemainingBytes

WriteChannelInfoOffset WriteChannelInfoLength

Flags

Buffer (variable)

97 / 450

[MS -SMB2-Diff] - v20180316
Server Message Block (SMB) Protocol Versions 2 and 3
Copyright © 2018 Microsoft Corporation
Release: March 16, 2018

...

StructureSize (2 bytes): The client MUST set this field to 49, indicating the size of the request
structure, not including the header. The client MUST set it to this value regardless of how long
Buffer [] actually is in the request being sent.

DataOffset (2 bytes): The offset, in b ytes, from the beginning of the SMB2 header to the data being
written.

Length (4 bytes): The length of the data being written, in bytes. The length of the data being written
can be zero bytes.

Offset (8 bytes): The offset, in bytes, of where to write the d ata in the destination file. If the write is
being executed on a pipe, the Offset MUST be set to 0 by the client and MUST be ignored by the

server.

FileId (16 bytes): An SMB2_FILEID, as specified in section 2.2.14.1.

The identifier of the file or pipe on which to perform the write.

Channel (4 bytes): For the SMB 2.0.2 and 2.1 dialects, this field MUST NOT be used and MUST be
reserved. The client MUST set this field to 0, and the server MUST ignore it on receipt. For the
SMB 3.x dialect family, this field MUST contain exactly one of the following values:

Value Meaning

SMB2_CHANNEL_NONE

0x00000000

No channel information is present in the request. The
WriteChannelInfoOffset and WriteChannelInfoLength
fields MUST be set to zero by the client and MUST be ignored by
the server.

SMB2_CHANNEL_RDMA_V1

0x00000001

One or more SMB_DIRECT_BUFFER_DESCRIPTOR_V1 structures
as specified in [MS -SMBD] section 2.2.3.1 are present in the
channel information specified by WriteChannelInfoOffset and

WriteChannelInfoLength fields.

SMB2_CHANNEL_RDMA_V1_INVALIDATE

0x00000002

This flag is not valid for the SMB 2.0.2, 2.1, and 3.0 dialects.
One or more SMB_DIRECT_BUFFER_DESCRIPTOR_V1 structures
as specified in [MS -SMBD] secti on 2.2.3.1 are present in the
channel information specified by the WriteChannelInfoOffset
and WriteChannelInfoLength fields. The server is requested
to perform remote invalidation when responding to the request
as specified in [MS -SMBD] section 3.1.4.2.

RemainingBytes (4 bytes): The number of subsequent bytes the client intends to write to the file
after this operation completes. This value is provided to facilitate write caching and is not binding

on the server.

WriteChannelInfoOffset (2 bytes): For the S MB 2.0.2 and 2.1 dialects, this field MUST NOT be
used and MUST be reserved. The client MUST set this field to 0, and the server MUST ignore it on

receipt. For the SMB 3.x dialect family, it contains the length, in bytes, of the channel data as
specified b y the Channel field of the request.

WriteChannelInfoLength (2 bytes): For the SMB 2.0.2 and SMB 2.1 dialects, this field MUST NOT
be used and MUST be reserved. The client MUST set this field to 0, and the server MUST ignore it

on receipt. For the SMB 3.x d ialect family, it contains the offset, in bytes, from the beginning of
the SMB2 header to the channel data as described by the Channel field of the request.

Flags (4 bytes): A Flags field indicates how to process the operation. This field MUST be construct ed
using zero or more of the following values:

