

1 / 95

[MS-SIP-Diff] - v20160714
Session Initiation Protocol Extensions
Copyright © 2016 Microsoft Corporation
Release: July 14, 2016

[MS-SIP-Diff]:

Session Initiation Protocol Extensions

Intellectual Property Rights Notice for Open Specifications Documentation

 Technical Documentation. Microsoft publishes Open Specifications documentation (“this
documentation”) for protocols, file formats, data portability, computer languages, and standards
as well as overviews of the interaction among each of these technologiessupport. Additionally,

overview documents cover inter-protocol relationships and interactions.

 Copyrights. This documentation is covered by Microsoft copyrights. Regardless of any other
terms that are contained in the terms of use for the Microsoft website that hosts this
documentation, you maycan make copies of it in order to develop implementations of the

technologies that are described in the Open Specifications this documentation and maycan
distribute portions of it in your implementations usingthat use these technologies or in your
documentation as necessary to properly document the implementation. You maycan also distribute

in your implementation, with or without modification, any schema, IDL'sschemas, IDLs, or code
samples that are included in the documentation. This permission also applies to any documents
that are referenced in the Open Specifications. documentation.

 No Trade Secrets. Microsoft does not claim any trade secret rights in this documentation.

 Patents. Microsoft has patents that maymight cover your implementations of the technologies
described in the Open Specifications. documentation. Neither this notice nor Microsoft's delivery of
thethis documentation grants any licenses under those patents or any other Microsoft patents.
However, a given Open Specification maySpecifications document might be covered by the
Microsoft Open Specifications Promise or the Microsoft Community Promise. If you would prefer a

written license, or if the technologies described in the Open Specificationsthis documentation are
not covered by the Open Specifications Promise or Community Promise, as applicable, patent

licenses are available by contacting iplg@microsoft.com.

 Trademarks. The names of companies and products contained in this documentation maymight
be covered by trademarks or similar intellectual property rights. This notice does not grant any
licenses under those rights. For a list of Microsoft trademarks, visit
www.microsoft.com/trademarks.

 Fictitious Names. The example companies, organizations, products, domain names, e-mailemail
addresses, logos, people, places, and events that are depicted in this documentation are fictitious.
No association with any real company, organization, product, domain name, email address, logo,
person, place, or event is intended or should be inferred.

Reservation of Rights. All other rights are reserved, and this notice does not grant any rights other
than as specifically described above, whether by implication, estoppel, or otherwise.

Tools. The Open Specifications dodocumentation does not require the use of Microsoft programming

tools or programming environments in order for you to develop an implementation. If you have access

to Microsoft programming tools and environments, you are free to take advantage of them. Certain
Open Specifications documents are intended for use in conjunction with publicly available
standardstandards specifications and network programming art, and assumes, as such, assume that
the reader either is familiar with the aforementioned material or has immediate access to it.

http://go.microsoft.com/fwlink/?LinkId=214445
http://go.microsoft.com/fwlink/?LinkId=214448
mailto:iplg@microsoft.com
http://www.microsoft.com/trademarks

2 / 95

[MS-SIP-Diff] - v20160714
Session Initiation Protocol Extensions
Copyright © 2016 Microsoft Corporation
Release: July 14, 2016

Revision Summary

Date
Revision
History

Revision
Class Comments

5/11/2007 0.1 New Version 0.1 release

8/10/2007 0.2 Minor Clarified the meaning of the technical content.

9/28/2007 0.3 Minor Clarified the meaning of the technical content.

10/23/2007 0.4 Minor Clarified the meaning of the technical content.

11/30/2007 1.0 Major Updated and revised the technical content.

1/25/2008 1.0.1 Editorial Changed language and formatting in the technical content.

3/14/2008 1.0.2 Editorial Changed language and formatting in the technical content.

5/16/2008 1.0.3 Editorial Changed language and formatting in the technical content.

6/20/2008 2.0 Major Updated and revised the technical content.

7/25/2008 2.0.1 Editorial Changed language and formatting in the technical content.

8/29/2008 2.0.2 Editorial Changed language and formatting in the technical content.

10/24/2008 2.1 Minor Clarified the meaning of the technical content.

12/5/2008 3.0 Major Updated and revised the technical content.

1/16/2009 4.0 Major Updated and revised the technical content.

2/27/2009 5.0 Major Updated and revised the technical content.

4/10/2009 5.0.1 Editorial Changed language and formatting in the technical content.

5/22/2009 5.0.2 Editorial Changed language and formatting in the technical content.

7/2/2009 5.0.3 Editorial Changed language and formatting in the technical content.

8/14/2009 5.0.4 Editorial Changed language and formatting in the technical content.

9/25/2009 5.1 Minor Clarified the meaning of the technical content.

11/6/2009 5.1.1 Editorial Changed language and formatting in the technical content.

12/18/2009 5.1.2 Editorial Changed language and formatting in the technical content.

1/29/2010 6.0 Major Updated and revised the technical content.

3/12/2010 6.0.1 Editorial Changed language and formatting in the technical content.

4/23/2010 6.0.2 Editorial Changed language and formatting in the technical content.

6/4/2010 6.0.3 Editorial Changed language and formatting in the technical content.

7/16/2010 6.0.3 None
No changes to the meaning, language, or formatting of the
technical content.

8/27/2010 6.0.3 None
No changes to the meaning, language, or formatting of the
technical content.

10/8/2010 6.0.3 None No changes to the meaning, language, or formatting of the

3 / 95

[MS-SIP-Diff] - v20160714
Session Initiation Protocol Extensions
Copyright © 2016 Microsoft Corporation
Release: July 14, 2016

Date
Revision
History

Revision
Class Comments

technical content.

11/19/2010 6.0.3 None
No changes to the meaning, language, or formatting of the
technical content.

1/7/2011 6.0.3 None
No changes to the meaning, language, or formatting of the
technical content.

2/11/2011 6.0.3 None
No changes to the meaning, language, or formatting of the
technical content.

3/25/2011 6.0.3 None
No changes to the meaning, language, or formatting of the
technical content.

5/6/2011 6.1 Minor Clarified the meaning of the technical content.

6/17/2011 6.2 Minor Clarified the meaning of the technical content.

9/23/2011 6.2 None
No changes to the meaning, language, or formatting of the
technical content.

12/16/2011 6.2 None
No changes to the meaning, language, or formatting of the
technical content.

3/30/2012 7.0 Major Updated and revised the technical content.

7/12/2012 7.0 None
No changes to the meaning, language, or formatting of the
technical content.

10/25/2012 7.0 None
No changes to the meaning, language, or formatting of the
technical content.

1/31/2013 7.0 None
No changes to the meaning, language, or formatting of the
technical content.

8/8/2013 7.0 None
No changes to the meaning, language, or formatting of the
technical content.

11/14/2013 7.0 None
No changes to the meaning, language, or formatting of the
technical content.

2/13/2014 7.0 None
No changes to the meaning, language, or formatting of the
technical content.

5/15/2014 8.0 Major Updated and revised the technical content.

6/30/2015 8.0
No
ChangeNone

No changes to the meaning, language, or formatting of the
technical content.

10/16/2015 8.0
No
ChangeNone

No changes to the meaning, language, or formatting of the
technical content.

4 / 95

[MS-SIP-Diff] - v20160714
Session Initiation Protocol Extensions
Copyright © 2016 Microsoft Corporation
Release: July 14, 2016

Table of Contents

1 Introduction .. 7
1.1 Glossary ... 7
1.2 References .. 10

1.2.1 Normative References ... 10
1.2.2 Informative References ... 11

1.3 Overview .. 11
1.4 Relationship to Other Protocols .. 12
1.5 Prerequisites/Preconditions ... 12
1.6 Applicability Statement ... 12
1.7 Versioning and Capability Negotiation ... 12
1.8 Vendor-Extensible Fields ... 13
1.9 Standards Assignments ... 13

2 Messages ... 14
2.1 Transport .. 14
2.2 Message Syntax ... 14

2.2.1 text/xml+msrtc.pidf Presence Document Format .. 14
2.2.2 SIP Extensions to XPIDF Presence Document Format 16
2.2.3 application/vnd-microsoft-roaming-acls+xml Document Format 16
2.2.4 Contacts/Groups Document Formats ... 17

2.2.4.1 application/vnd-microsoft-roaming-contacts+xml Document Format 17
2.2.4.2 Contacts/Groups Management Document Formats 18

2.3 Directory Service Schema Elements ... 19

3 Protocol Details ... 20
3.1 NTLM/Kerberos Authentication Extensions Details .. 20

3.1.1 Abstract Data Model .. 21
3.1.2 Timers .. 21
3.1.3 Initialization ... 21
3.1.4 Higher-Layer Triggered Events ... 21

3.1.4.1 Initiating the Login Sequence ... 21
3.1.4.2 Sending a SIP Message .. 21

3.1.5 Message Processing Events and Sequencing Rules .. 23
3.1.5.1 Overview of Authentication Protocol Elements .. 23
3.1.5.2 Verifying Message Signature for Incoming Messages 25
3.1.5.3 proxy=replace Extension for Firewall Traversal ... 25

3.1.6 Timer Events .. 25
3.1.7 Other Local Events .. 25

3.2 Presence Extensions Details .. 25
3.2.1 Abstract Data Model .. 26
3.2.2 Timers .. 27
3.2.3 Initialization ... 27
3.2.4 Higher-Layer Triggered Events ... 27

3.2.4.1 Indicating Support for Presence Extensions .. 27
3.2.4.2 Setting Presence for Self User (setPresence SERVICE Request) 27
3.2.4.3 Subscribing to a User's Presence Information ... 28
3.2.4.4 Getting Presence Information of Another User (getPresence SERVICE Request)

 .. 28
3.2.5 Message Processing Events and Sequencing Rules .. 29

3.2.5.1 Processing Response to a getPresence SERVICE Request 29
3.2.6 Timer Events .. 29
3.2.7 Other Local Events .. 29

3.3 Batched SUBSCRIBE and NOTIFY Extension Details .. 29
3.3.1 Abstract Data Model .. 30
3.3.2 Timers .. 30

5 / 95

[MS-SIP-Diff] - v20160714
Session Initiation Protocol Extensions
Copyright © 2016 Microsoft Corporation
Release: July 14, 2016

3.3.3 Initialization ... 30
3.3.4 Higher-Layer Triggered Events ... 30

3.3.4.1 Sending a Batched SUBSCRIBE Request .. 30
3.3.5 Message Processing Events and Sequencing Rules .. 33

3.3.5.1 Receiving a NOTIFY Response to a Batched SUBSCRIBE Request 33
3.3.5.2 Receiving a Failure Response to a Batched SUBSCRIBE Request 35

3.3.6 Timer Events .. 35
3.3.7 Other Local Events .. 35

3.4 Piggyback Notification in 200 OK Response Details ... 35
3.4.1 Abstract Data Model .. 36
3.4.2 Timers .. 36
3.4.3 Initialization ... 36
3.4.4 Higher-Layer Triggered Events ... 36

3.4.4.1 Indicating Support for Piggyback Notification .. 36
3.4.5 Message Processing Events and Sequencing Rules .. 36

3.4.5.1 Receiving a Piggyback Notification in a 200 OK ... 36
3.4.6 Timer Events .. 37
3.4.7 Other Local Events .. 37

3.5 Best Effort NOTIFY (BENOTIFY) Extension Details ... 37
3.5.1 Abstract Data Model .. 37

3.5.1.1 Indicating Support for BENOTIFY .. 37
3.5.2 Timers .. 38
3.5.3 Initialization ... 38
3.5.4 Higher-Layer Triggered Events ... 38
3.5.5 Message Processing Events and Sequencing Rules .. 38

3.5.5.1 Receiving a Failure Response to SUBSCRIBE .. 38
3.5.5.2 Receiving a Success Response to SUBSCRIBE ... 38
3.5.5.3 Receiving a BENOTIFY Request ... 39

3.5.6 Timer Events .. 39
3.5.7 Other Local Events .. 39

3.6 Auto-Extension of Subscriptions Details .. 39
3.6.1 Abstract Data Model .. 39
3.6.2 Timers .. 39
3.6.3 Initialization ... 39
3.6.4 Higher-Layer Triggered Events ... 40

3.6.4.1 Indicating Support for Auto-Extension of Subscriptions 40
3.6.5 Message Processing Events and Sequencing Rules .. 40

3.6.5.1 Receiving a 200 OK Response to SUBSCRIBE ... 40
3.6.5.2 Receiving a NOTIFY Request ... 40

3.6.6 Timer Events .. 40
3.6.7 Other Local Events .. 41

3.7 Contact Management Extensions Details ... 41
3.7.1 Abstract Data Model .. 41
3.7.2 Timers .. 42
3.7.3 Initialization ... 42
3.7.4 Higher-Layer Triggered Events ... 42

3.7.4.1 Subscribing to the Contact/Group List .. 43
3.7.4.2 Subscribing for the ACL ... 43
3.7.4.3 Add/Modify/Delete Contact ... 43
3.7.4.4 Add/Modify/Delete Group ... 44

3.7.5 Message Processing Events and Sequencing Rules .. 44
3.7.5.1 Setting ACEs for a Contact ... 44
3.7.5.2 Receiving the Contact List from the Server ... 44
3.7.5.3 Receiving the ACL from the Server .. 45

3.7.6 Timer Events .. 45
3.7.7 Other Local Events .. 45

4 Protocol Examples ... 46

6 / 95

[MS-SIP-Diff] - v20160714
Session Initiation Protocol Extensions
Copyright © 2016 Microsoft Corporation
Release: July 14, 2016

4.1 Registration with Kerberos .. 46
4.2 Registration with NTLM ... 50
4.3 Batched SUBSCRIBE and Piggybacked NOTIFY Example .. 55
4.4 Best Effort NOTIFY Example .. 57
4.5 setPresence Example .. 58
4.6 AddContact Example .. 60
4.7 DeleteContact Example ... 61
4.8 AddGroup Example ... 62
4.9 DeleteGroup Example ... 63
4.10 setACE Example ... 65
4.11 P2P Subscription and XPIDF Presence Format Example ... 66

5 Security ... 68
5.1 Security Considerations for Implementers ... 68
5.2 Index of Security Parameters .. 68

6 Appendix A: Full text/xml+msrtc.pidf Presence Document Format 69

7 Appendix B: XPIDF Presence Document Format .. 74

8 Appendix C: ACL XML Schema ... 78

9 Appendix D: Contact Management Schema .. 80
9.1 Contact Schema ... 80
9.2 SetContact Schema .. 84
9.3 ModifyGroup Schema .. 84
9.4 DeleteContact Schema .. 85
9.5 DeleteGroup Schema .. 86

10 Appendix E: common.xsd .. 87

11 Appendix F: Product Behavior ... 89

12 Change Tracking .. 90

13 Index ... 91

7 / 95

[MS-SIP-Diff] - v20160714
Session Initiation Protocol Extensions
Copyright © 2016 Microsoft Corporation
Release: July 14, 2016

1 Introduction

This document describes Microsoft extensions to the Session Initiation Protocol (SIP). SIP is used
by terminals to establish, modify, and terminate multimedia sessions or calls. SIP is specified in
[RFC3261], [RFC3262], [RFC3263], and [RFC3863].

Microsoft has added extensions for NTLM/Kerberos Authentication, for presence, for optimization of
subscriptions, and for notifications and contact management. These extensions are used by

Windows Messenger and the Real-Time Communications (RTC) Client API.

Sections 1.5, 1.8, 1.9, 2, and 3 of this specification are normative and can contain the terms MAY,
SHOULD, MUST, MUST NOT, and SHOULD NOT as defined in [RFC2119]. Sections 1.5 and 1.9 are also
normative but do not contain those terms. All other sections and examples in this specification are
informative.

1.1 Glossary

TheThis document uses the following terms are specific to this document:

200 OK: A response to indicate that the request has succeeded.

403 Forbidden: A response that indicates that a protocol server understood but denies a request.

access control entry (ACE): An entry in an access control list (ACL) that contains a set of user

rights and a security identifier (SID) that identifies a principal for whom the rights are allowed,
denied, or audited.

access control list (ACL): A list of access control entries (ACEs) that collectively describe the
security rules for authorizing access to some resource; for example, an object or set of objects.

Best Effort NOTIFY (BENOTIFY): A Session Initiation Protocol (SIP) method that is used to
send notifications to a subscriber, as described in [MS-SIP]. Unlike the NOTIFY method, the
BENOTIFY method does not require the recipient of the request to send a SIP response.

client: A computer on which the remote procedure call (RPC) client is executing.

dialog: A peer-to-peer Session Initiation Protocol (SIP) relationship that exists between two
user agents and persists for a period of time. A dialog is established by SIP messages, such
as a 2xx response to an INVITE request, and is identified by a call identifier, a local tag, and a
remote tag.

directory service (DS): A service that stores and organizes information about a computer

network's users and network shares, and that allows network administrators to manage users'
access to the shares. See also Active Directory.

domain: A set of users and computers sharing a common namespace and management
infrastructure. At least one computer member of the set must act as a domain controller (DC)
and host a member list that identifies all members of the domain, as well as optionally hosting
the Active Directory service. The domain controller provides authentication (2) of members,

creating a unit of trust for its members. Each domain has an identifier that is shared among its

members. For more information, see [MS-AUTHSOD] section 1.1.1.5 and [MS-ADTS].

endpoint: A participant that uses the Microsoft Groove Dynamics Protocol, as described in [MS-
GRVDYNM], to synchronize with a shared space. An endpoint is identified by the combination of
an identity URL and a client device URL. Each endpoint maintains a copy of the data in a shared
space.

event package: A specification that defines a set of state information to be reported by a notifying
Session Initiation Protocol (SIP) client to a subscriber. An event package also defines

8 / 95

[MS-SIP-Diff] - v20160714
Session Initiation Protocol Extensions
Copyright © 2016 Microsoft Corporation
Release: July 14, 2016

further syntax and semantics based on the framework that is required to convey such state
information.

fully qualified domain name (FQDN): An unambiguous domain name (2) that gives an absolute
location in the Domain Name System's (DNS) hierarchy tree, as defined in [RFC1035] section

3.1 and [RFC2181] section 11.

INVITE: A Session Initiation Protocol (SIP) method that is used to invite a user or a service to
participate in a session.

Kerberos: An authentication (2) system that enables two parties to exchange private information
across an otherwise open network by assigning a unique key (called a ticket) to each user that
logs on to the network and then embedding these tickets into messages sent by the users. For
more information, see [MS-KILE].

notification: The act of a notifier sending a NOTIFY message to a subscriber to inform the
subscriber of the state of a resource.

NOTIFY: A method that is used to notify a Session Initiation Protocol (SIP) client that an

event requested by an earlier SUBSCRIBE method has occurred. The notification optionally
provides details about the event.

NT LAN Manager (NTLM) Authentication Protocol: A protocol using a challenge-response

mechanism for authentication (2) in which clients are able to verify their identities without
sending a password to the server. It consists of three messages, commonly referred to as Type
1 (negotiation), Type 2 (challenge) and Type 3 (authentication). For more information, see [MS-
NLMP].

peer to peer (P2P): An Internet-based networking option in which two or more computers
connect directly to each other to communicate and share files without use of a central server.

peer-to-peer (P2P): An Internet-based networking option in which two or more computers

connect directly to each other in order to communicate.

Presence Information Data Format (PIDF): A common data format defined in [RFC3863] to

exchange presence information.

presentity: An entity that provides presence information to a presence service.

proxy: A network node that accepts network traffic originating from one network agent and
transmits it to another network agent.

REGISTER: A Session Initiation Protocol (SIP) method that is used by an SIP client to register

the client address with an SIP server.

salt: An additional random quantity, specified as input to an encryption function that is used to
increase the strength of the encryption.

security association (SA): A simplex "connection" that provides security services to the traffic
carried by it. See [RFC4301] for more information.

server: A computer on which the remote procedure call (RPC) server is executing.

SERVICE: A method that is defined by Session Initiation Protocol (SIP) extensions and is used
by an SIP client to request a service from a server.

service principal name (SPN): The name a client uses to identify a service for mutual
authentication. (For more information, see [RFC1964] section 2.1.1.) An SPN consists of either
two parts or three parts, each separated by a forward slash ('/'). The first part is the service
class, the second part is the instance name, and the third part (if present) is the service name.
For example, "ldap/dc-01.fabrikam.com/fabrikam.com" is a three-part SPN where "ldap" is the

9 / 95

[MS-SIP-Diff] - v20160714
Session Initiation Protocol Extensions
Copyright © 2016 Microsoft Corporation
Release: July 14, 2016

service class name, "dc-01.fabrikam.com" is the instance name, and "fabrikam.com" is the
service name. See [SPNNAMES] for more information about SPN format and composing a

unique SPN.

Session Initiation Protocol (SIP): An application-layer control (signaling) protocol for creating,

modifying, and terminating sessions with one or more participants. SIP is defined in [RFC3261].

SIP client (client): Any network client that sends SIP requests and receives SIP responses.
Clients may or may not interact directly with a human user. User agent clients (UACs) and
proxies are clients.

SIP header: A component of a SIP message that conveys information about the SIP message.
It is structured as a sequence of header fields.

SIP message: The data that is exchanged between Session Initiation Protocol (SIP) elements

as part of the protocol. An SIP message is either a request or a response.

SIP method: The primary function that an SIP request is meant to call on a server. This method
is carried in the request message itself. Example methods are INVITE and BYE.

SIP request: A Session Initiation Protocol (SIP) message that is sent from a user agent client
(UAC) to a user agent server (UAS) to call a specific operation.

SIP response: A Session Initiation Protocol (SIP) message that is sent from a user agent

server (UAS) to a user agent client (UAC) to indicate the status of a request from the UAC to the
UAS.

SIP transaction: A SIP transaction occurs between a UAC and a UAS. The SIP transaction
comprises all messages from the first request sent from the UAC to the UAS up to a final
response (non-1xx) sent from the UAS to the UAC. If the request is INVITE, and the final
response is a non-2xx, the SIP transaction also includes an ACK to the response. The ACK for
a 2xx response to an INVITE request is a separate SIP transaction.

SOAP: A lightweight protocol for exchanging structured information in a decentralized, distributed
environment. SOAP uses XML technologies to define an extensible messaging framework, which

provides a message construct that can be exchanged over a variety of underlying protocols. The
framework has been designed to be independent of any particular programming model and
other implementation-specific semantics. SOAP 1.2 supersedes SOAP 1.1. See [SOAP1.2-
1/2003].

SOAP envelope: A container for SOAP message information and the root element of a SOAP

document. See [SOAP1.2-1/2007] section 5.1 for more information.

SUBSCRIBE: A Session Initiation Protocol (SIP) method that is used to request asynchronous
notification of an event or a set of events at a later time.

subscription: The end result of an act of a SIP element sending a SUBSCRIBE request.

Transmission Control Protocol (TCP): A protocol used with the Internet Protocol (IP) to send
data in the form of message units between computers over the Internet. TCP handles keeping

track of the individual units of data (called packets) that a message is divided into for efficient

routing through the Internet.

Transport Layer Security (TLS): A security protocol that supports confidentiality and integrity of
messages in client and server applications communicating over open networks. TLS supports
server and, optionally, client authentication by using X.509 certificates (as specified in [X509]).
TLS is standardized in the IETF TLS working group. See [RFC4346].

10 / 95

[MS-SIP-Diff] - v20160714
Session Initiation Protocol Extensions
Copyright © 2016 Microsoft Corporation
Release: July 14, 2016

Uniform Resource Identifier (URI): A string that identifies a resource. The URI is an addressing
mechanism defined in Internet Engineering Task Force (IETF) Uniform Resource Identifier (URI):

Generic Syntax [RFC3986].

user agent: An HTTP user agent, as specified in [RFC2616].

User Datagram Protocol (UDP): The connectionless protocol within TCP/IP that corresponds to
the transport layer in the ISO/OSI reference model.

watcher: An entity that requests presence information on a presentity from the presence service.

XPIDF: A data format for presence using XML (for more information, see [DATAFORMATXML]).

MAY, SHOULD, MUST, SHOULD NOT, MUST NOT: These terms (in all caps) are used as defined
in [RFC2119]. All statements of optional behavior use either MAY, SHOULD, or SHOULD NOT.

1.2 References

Links to a document in the Microsoft Open Specifications library point to the correct section in the
most recently published version of the referenced document. However, because individual documents
in the library are not updated at the same time, the section numbers in the documents may not

match. You can confirm the correct section numbering by checking the Errata.

1.2.1 Normative References

We conduct frequent surveys of the normative references to assure their continued availability. If you
have any issue with finding a normative reference, please contact dochelp@microsoft.com. We will

assist you in finding the relevant information.

[MS-ADA1] Microsoft Corporation, "Active Directory Schema Attributes A-L".

[MS-ADA2] Microsoft Corporation, "Active Directory Schema Attributes M".

[MS-ADA3] Microsoft Corporation, "Active Directory Schema Attributes N-Z".

[MS-ADSC] Microsoft Corporation, "Active Directory Schema Classes".

[MS-KILE] Microsoft Corporation, "Kerberos Protocol Extensions".

[MS-NLMP] Microsoft Corporation, "NT LAN Manager (NTLM) Authentication Protocol".

[RFC1964] Linn, J., "The Kerberos Version 5 GSS-API Mechanism", RFC 1964, June 1996,
http://www.rfc-editor.org/rfc/rfc1964.txt

[RFC2119] Bradner, S., "Key words for use in RFCs to Indicate Requirement Levels", BCP 14, RFC
2119, March 1997, http://www.rfc-editor.org/rfc/rfc2119.txt

[RFC3261] Rosenberg, J., Schulzrinne, H., Camarillo, G., Johnston, A., Peterson, J., Sparks, R.,
Handley, M., and Schooler, E., "SIP: Session Initiation Protocol", RFC 3261, June 2002,

http://www.ietf.org/rfc/rfc3261.txt

[RFC3262] Rosenberg, J., and Schulzrinne, H., "Reliability of Provisional Responses in the Session
Initiation Protocol (SIP)", RFC 3262, June 2002, http://www.ietf.org/rfc/rfc3262.txt

[RFC3263] Rosenberg, J., and Schulzrinne, H., "Session Initiation Protocol (SIP): Locating SIP

Servers", RFC 3263, June 2002, http://www.ietf.org/rfc/rfc3263.txt

[RFC3265] Roach, A. B., "Session Initiation Protocol (SIP)-Specific Event Notification", RFC 3265, June
2002, http://www.ietf.org/rfc/rfc3265.txt

11 / 95

[MS-SIP-Diff] - v20160714
Session Initiation Protocol Extensions
Copyright © 2016 Microsoft Corporation
Release: July 14, 2016

[RFC3863] Sugano, H., Fujimoto, S., Klyne, G., et al., "Presence Information Data Format (PIDF)",
RFC 3863, August 2004, http://www.ietf.org/rfc/rfc3863.txt

[XML10] World Wide Web Consortium, "Extensible Markup Language (XML) 1.0 (Third Edition)",
February 2004, http://www.w3.org/TR/2004/REC-xml-20040204/

[XMLNS-2ED] World Wide Web Consortium, "Namespaces in XML 1.0 (Second Edition)", August 2006,
http://www.w3.org/TR/2006/REC-xml-names-20060816/

[XMLSCHEMA] World Wide Web Consortium, "XML Schema", September 2005,
http://www.w3.org/2001/XMLSchema

1.2.2 Informative References

[RFC1341] Borenstein, N., and Freed, N., "MIME (Multipurpose Internet Mail Extensions): Mechanisms
for Specifying and Describing the Format of Internet Message Bodies", RFC 1341, June 1992,
http://www.rfc-editor.org/rfc/rfc1341.txt

[SOAP1.1] Box, D., Ehnebuske, D., Kakivaya, G., et al., "Simple Object Access Protocol (SOAP) 1.1",
May 2000, http://www.w3.org/TR/2000/NOTE-SOAP-20000508/

[SOAP1.2-1/2007] Gudgin, M., Hadley, M., Mendelsohn, N., et al., "SOAP Version 1.2 Part 1:
Messaging Framework (Second Edition)", W3C Recommendation 27, April 2007,

http://www.w3.org/TR/2007/REC-soap12-part1-20070427/

[SOAP1.2-2/2007] Gudgin, M., Hadley, M., Mendelsohn, N., et al., "SOAP Version 1.2 Part 2: Adjuncts
(Second Edition)", W3C Recommendation, April 2007, http://www.w3.org/TR/2007/REC-soap12-
part2-20070427

1.3 Overview

Session Initiation Protocol Extensions is an extension of the original Session Initiation Protocol (SIP),
as specified in [RFC3261].

Session Initiation Protocol Extensions defines NTLM/Kerberos authentication extensions to support

client/server authentication and message signatures. See NTLM/Kerberos Authentication Extensions
Details (section 3.1).

Session Initiation Protocol Extensions also adds a number of extensions to SIMPLE-based presence, as
specified in [RFC3261], [RFC3265], and [RFC3863]. These extensions are briefly described below and
are defined further in section 3.

Many of the extensions have been designed to reduce the number of subscription and notification
messages exchanged between the client and the server. One such extension is the capability to

subscribe for the presence of a number of contacts in a single subscription. The client can send a
batched SUBSCRIBE request to create such a subscription. The server sends the presence information
of all the contacts in the batched subscription in a single NOTIFY request. This is useful when a client
needs to subscribe for presence of all the contacts in the user's contact list.

Another extension that helps reduce the number of messages between the server and client is the
piggyback notification. The server can send the presence information immediately in the final response
to the SUBSCRIBE request, thus obviating the need to send a separate NOTIFY. Any further changes

are conveyed using a NOTIFY.

A BENOTIFY request is similar to a NOTIFY request and is used by the server to send updates about
any changes to the presence state. The only difference is that the client does not need to send a SIP
response to a BENOTIFY request. Because the server does not need to wait for a response, the load on
the server can be reduced.

12 / 95

[MS-SIP-Diff] - v20160714
Session Initiation Protocol Extensions
Copyright © 2016 Microsoft Corporation
Release: July 14, 2016

Auto-Extension of subscriptions is an extension defined to reduce the frequency of the client
refreshing a subscription. The client refreshes a subscription after an interval negotiated with the

server. With this extension, any notification sent by the server to the client resets the subscription
refresh timer. After a notification, the client needs to wait for the negotiated interval before it can

refresh the subscription. Another notification during this time can again reset the timer. This extension
reduces the number of SUBSCRIBE requests sent by the client to refresh a subscription.

Microsoft also has made extensions to the Presence Information Data Format (PIDF). The
enhanced format is called msrtc.pidf and is documented in text/xml+msrtc.pidf Presence Document
Format (section 2.2.1). The msrtc.pidf format is used only in the client/server mode. The client uses a
setPresence SOAP request carried in the body of a SERVICE request to set or update its own presence
information. For more information on the SOAP protocol, see [SOAP1.1], [SOAP1.2-1/2007], and

[SOAP1.2-2/2007]. The counterpart to the setPresence SOAP request is a getPresence SOAP request.
This acts as a means to poll for presence rather than subscribing to presence. It is meant as a
lightweight alternative to a presence SUBSCRIBE request when only presence for a single entity is
needed and only that presence information for a one-time immediate purpose is needed.

Session Initiation Protocol Extensions uses the XPIDF format to exchange presence information when

the endpoints are acting in peer-to-peer (P2P) mode. The XPIDF format was introduced in an IETF

draft but was never standardized as an RFC. The details of the format and the schema are included in
Appendix B: XPIDF Presence Document Format (section 7). Session Initiation Protocol Extensions also
has made some extensions to the XPIDF format (see section 2.2.2).

Finally, Session Initiation Protocol Extensions includes protocol enhancements for contact
management operations such as adding or deleting a contact or a group, and setting access control
lists (ACLs) for viewing and establishing communication with a presence. All of these operations can
be done by sending SOAP requests carried within the body of a SERVICE request.

1.4 Relationship to Other Protocols

Session Initiation Protocol Extensions is dependent on SIP. Session Initiation Protocol Extensions
defines additional SIP primitives and XML schema to support various extensions specified in this

document. In addition, Session Initiation Protocol Extensions defines some authentication extensions

that make use of NT LAN Manager (NTLM) Authentication Protocol, specified in [MS-NLMP] and
Kerberos protocols. For more information on XML, see [XML10], [XMLNS-2ED], and [XMLSCHEMA].

Session Initiation Protocol Extensions is invoked as an extension of SIP and is dependent on all the
protocols on which the SIP specification depends.

1.5 Prerequisites/Preconditions

The Session Initiation Protocol Extensions assumes that both the SIP clients and the server support
SIP. The prerequisites for Session Initiation Protocol Extensions are the same as the prerequisites for
SIP.

1.6 Applicability Statement

The Session Initiation Protocol Extensions is applicable when both the SIP clients and the server

support SIP and want to utilize one or more of the enhancements offered by Session Initiation Protocol
Extensions.

1.7 Versioning and Capability Negotiation

There is no protocol versioning in the Session Initiation Protocol Extensions. Instead, explicit capability
negotiation is done as specified in this section by using the Supported header to indicate support of
various features. Using the Supported header is the standard SIP mechanism of doing capability
negotiation.

13 / 95

[MS-SIP-Diff] - v20160714
Session Initiation Protocol Extensions
Copyright © 2016 Microsoft Corporation
Release: July 14, 2016

1.8 Vendor-Extensible Fields

There are no vendor-extensible fields specific to the Session Initiation Protocol Extensions. Standard
extension mechanisms of the SIP MAY be used by vendors as needed.

1.9 Standards Assignments

None.

14 / 95

[MS-SIP-Diff] - v20160714
Session Initiation Protocol Extensions
Copyright © 2016 Microsoft Corporation
Release: July 14, 2016

2 Messages

The following sections specify how Session Initiation Protocol Extensions messages are transported
and the message syntax.

2.1 Transport

Microsoft extensions to SIP do not introduce a new transport to exchange messages but these
extensions can be used with any transport that is used by SIP. SIP messages can be transported
over User Datagram Protocol (UDP), Transmission Control Protocol (TCP), or Transport
Layer Security (TLS).

2.2 Message Syntax

Microsoft extensions to SIP do not introduce a new message format. They rely on the SIP message
format, as specified in [RFC3261] section 7. The Session Initiation Protocol Extensions does define a

new format for the Presence Document (see section 2.2.1).

2.2.1 text/xml+msrtc.pidf Presence Document Format

These extensions support a nonstandard Presence Document Format that has a number of
enhancements, such as the capability to carry device capabilities and the capability to support multiple
devices for a single user. A user can log on by using multiple devices. Each device presents its
presence information to the server. The XML instance containing presence information submitted to

the server is called the Presence Document. When retrieving presence information for a user, the
server not only returns the Presence Document from every device, but it also determines the overall
presence of the user. This XML instance returned by the server is called the Aggregated Presence
Document.

Some of the key elements and attributes are defined as follows:

 presentity

The element contains the overall aggregated availability and activity of a user, as well as the
availability and activity of all endpoints of the user. The uri attribute specifies the sip entity that
this element is describing.

 epid

This attribute can appear in the availability element, the activity element, or a devicePresence
element. When used in the availability and activity elements inside the presentity element, the
epid identifies the availability and activity for the most active endpoint. When used in the

devicePresence element, the epid advertises the availability and identifies the activity for a specific
endpoint. This value is a hexadecimal string no longer than 16 bytes in length. This epid value is
the same endpoint identifier value used to identify a specific SIP endpoint.

 ageOfPresence

The ageOfPresence attribute appears in a devicePresence element. This is the number of seconds
since the device last updated its presence information.

 availability

Availability indicates whether the user can receive a call. The availability element has an
aggregate attribute that represents the availability of a user on a device. The aggregate attribute
is processed by the server as being within a range that has a span of 100 (the class code). Note

15 / 95

[MS-SIP-Diff] - v20160714
Session Initiation Protocol Extensions
Copyright © 2016 Microsoft Corporation
Release: July 14, 2016

that within the XML sent by the client, the client does not specify the class code, but rather, the
actual value. The server interprets the values as being within the following classes.

Class
code Server interpretation

000-099 The user cannot receive calls.

100-199 The user maycan be online; however, availability is unknown until a call is attempted. A cell phone
gateway typically uses this setting.

200-299 The user has a device that is currently connected and it can receive calls.

300-399 The user is in proximity of a device that can receive calls.

Rather than a hard-coded enumeration, a numeric value is used. This makes it easy to compare
the availability that is sent by two different user agents. For example, the higher the availability,

the more available the user.

 activity

The purpose of activity is not to indicate if a user can receive a call, but rather, to indicate to

watchers how likely the user is to want to be disturbed. The activity element has an attribute
aggregate that contains a numeric value that defines the activity of the user.

Activity code Server interpretation

000-099 There is no information about the activity of the user.

100-149 The user is away.

150-199 The user is out to lunch.

200-299 The user is idle.

300-399 The user will be right back.

400-499 The user is active.

500-599 The user is already participating in a communications session.

600-699 The user is busy.

700-799 The user is away.

800-999 The user is active.

Rather than a hard-coded enumeration, a numeric value is used. This makes it easy to compare

the availability sent by two different user agents.

 note

This attribute in the activity element can be used by the client to store a string that indicates the
user's status on the device.

 userInfo

This element is used for storing persisted presence information for a user. This information is
stored by the server and is available regardless of the device to which a user is logged on or even

whether the user is logged on at all. Any valid XML can be stored on the server. The server
enforces a limit of 1,024 characters on the size of the element body, where the entire element

body is treated as a single string.

The Presence Document is described by the XML schema in Appendix A: Full text/xml+msrtc.pidf
Presence Document Format (section 6).

Note that the schema defines two different versions of the Presence Document:

 A version that is published by the client using a setPresence request.

16 / 95

[MS-SIP-Diff] - v20160714
Session Initiation Protocol Extensions
Copyright © 2016 Microsoft Corporation
Release: July 14, 2016

 A version that is generated by the server and sent in a NOTIFY or BENOTIFY request to the
watcher containing the aggregation of the various presence information published by the 1+

devices of the user.

The aggregated Presence Document describes a user's availability on all its devices as well as an

overall aggregated presence. This is the document published by the server to anyone obtaining the
presence of a particular user. The availability and activity elements in the aggregated Presence
Document indicate the availability and activity information from the most available device of the user.
The server MAY also include the displayName, email, and phoneNumber of the user in the aggregated
Presence Document.

2.2.2 SIP Extensions to XPIDF Presence Document Format

SIP allows the SIP endpoints to communicate in a P2P mode without requiring an SIP server. The
endpoints can also subscribe for presence information and send notifications carrying such information
in a P2P manner. Session Initiation Protocol Extensions uses the XPIDF format to exchange presence
information when the endpoints are acting in P2P mode.

The XPIDF format was introduced in an IETF draft but was never standardized as an RFC. The details
of the format and the schema are included in Appendix B: XPIDF Presence Document
Format (section 7).

Session Initiation Protocol Extensions introduces the following extensions to the XPIDF presence
document format:

 A new element, "display", is defined as a subelement of a presence element. The display element
has the attribute name that is a suggested name to identify a contact from other contacts in the

client's contact list.

 A new element, "msnsubstatus", is defined as a subelement of the address element. This element
indicates the availability of the user. The msnsubstatus element has the attribute substatus that
can have the following values: unknown, away, online, idle, busy, berightback, onthephone, or
outtolunch. The interpretation of these values is as follows:

msnsubstatus Server interpretation

unknown There is no information about the activity of the user.

away User is away.

online User is active and available for communication.

idle User is idle.

busy User is busy.

berightback User will be right back.

onthephone User is on the phone.

outtolunch User is out to lunch.

2.2.3 application/vnd-microsoft-roaming-acls+xml Document Format

Session Initiation Protocol Extensions support retrieving the ACL from the server in the form of an XML

document. The ACL document contains a list of access control entries (ACEs). An ACE is a set of
three attributes:

Type: Type defines what the ACE applies to. A type value of ALL indicates that the ACE applies to all
users. A type value of DOMAIN indicates that the ACE applies to all users on a domain. The
domain is specified by the mask field. For example, if type is DOMAIN, and mask is "contoso.com",
the ACE applies to "sip:user1@sip.contoso.com" and "sip:user@contoso.com" but not to

17 / 95

[MS-SIP-Diff] - v20160714
Session Initiation Protocol Extensions
Copyright © 2016 Microsoft Corporation
Release: July 14, 2016

"sip:user3@example.com". A type value of USER implies that the ACE applies to a specific user
specified by the mask field.

Mask: A user URI or DNSdomain to which the ACE applies.

Rights: The rights associated with this ACE. This is represented as a list of characters. Each position

in the list represents a right. The character in that position represents the value of that right. Four
values are defined.

Value Right

A Allow

D Deny

P Prompt

B Block (Polite blocking)

Session Initiation Protocol Extensions uses two characters for the Rights field. The first one
specifies the right to view the presence of a user, and the second one defines the right to

communicate with a user. The client MUST enforce the right to communicate. The server MUST
enforce the right to view presence information.

An example NOTIFY message for the roaming ACL data follows.

 <ACLlist deltaNum="282" >
 <userACL>
 <ace type="USER" mask="sip:user2@machine2.example.com" rights="AA"/>
 <ace type="USER" mask="sip:user3@machine2.example.com" rights="BA"/>
 <ace type="USER" mask="sip:user4@machine2.example.com" rights="PA"/>
 <ace type="USER" mask="sip:user5@machine2.example.com" rights="AA"/>
 <ace type="USER" mask="sip:user6@machine2.example.com" rights="AA"/>
 </userACL>
 </ACLlist>

Note The deltaNum attribute in the ACLlist element is a monotonically increasing sequence number

provided by the server that the client uses to ensure that its local copy is in sync with the server. The

initial value MUST be nonzero and is generally one.

2.2.4 Contacts/Groups Document Formats

2.2.4.1 application/vnd-microsoft-roaming-contacts+xml Document Format

Session Initiation Protocol Extensions supports retrieving the contact list from the server in the form of
an XML document. The server can return the full contact list, or a partial contact list. Both lists use
basic building blocks of contact and group elements.

1. group

The group element contains three attributes:

id: A nonnegative integer that uniquely identifies the group.

name: The name of the group.

externalURI: A URI pointing to auxiliary resources for the group. For example, the externalURI
can point to an LDAP URI that contains the list of contacts.

2. contact

The contact element contains the following attributes:

18 / 95

[MS-SIP-Diff] - v20160714
Session Initiation Protocol Extensions
Copyright © 2016 Microsoft Corporation
Release: July 14, 2016

uri: The SIP URI of the contact.

name: The name of the contact.

groups: A space-separated string of IDs for the groups to which this contact belongs.

subscribed: A Boolean indicating whether this contact is merely stored as an offline contact, or

whether the client should subscribesubscribes to its presence.

externalURI: A URI pointing to auxiliary resources for the group. For example, the externalURI
can point to an LDAP URI that contains the list of contacts.

The contact element can also contain an optional contactExtension element. The
contactExtension element can be any generic XML.

3. contactDelta

The contactDelta element represents a partial contact list containing only the changes in

contacts and groups information from the last contact list notification. The contactDelta element

contains a choice of six elements:

addedGroup: Takes the same form as the group element. This element shows the group that was
added.

modifiedGroup: : Takes the same form as the group element. This element shows the group that
was modified.

deletedGroup: Contains only a required id attribute. The id attribute identifies the group that was
deleted.

addedContact: Takes the same form as the contact element. This element shows the contact that
was added.

modifiedContact: Takes the same form as the contact element. This element shows the contact
that was modified.

deletedContact: Contains only a required uri attribute. The uri attribute identifies the contact

that was deleted.

The contactDelta element also contains two required attributes. The deltaNum nonnegative
integer attribute is the updated sequence number for the contact list after the changes take
place. The prevDeltaNum nonnegative integer attribute is the previous sequence number for the
contact list before the changes take place.

2.2.4.2 Contacts/Groups Management Document Formats

Session Initiation Protocol Extensions support modification to the contact list. These primitives are
defined as SOAP elements and are sent to the server by using a SERVICE request. Session Initiation
Protocol Extensions supports the following primitives:

1. setContact

The setContact primitive is used for adding a new contact or modifying an existing contact. It
contains the following elements:

uri: The SIP URI of the contact.

displayName: The name of the contact.

groups: A space-separated string of IDs for the groups to which this contact belongs.

19 / 95

[MS-SIP-Diff] - v20160714
Session Initiation Protocol Extensions
Copyright © 2016 Microsoft Corporation
Release: July 14, 2016

subscribed: A Boolean that indicates whether this contact is merely stored as an offline contact or
whether the client needs to subscribe to its presence.

externalURI: A URI that points to auxiliary information for this contact. For example, the
externalURI can point to an LDAP URI that contains the information for this contact. This

element is optional.

contactExtension: This element can be any generic XML. This element can be used to store any
additional application extension information about a contact. This element is optional.

2. deleteContact

The deleteContact primitive is used for deleting an existing contact. It contains the URI element,
which identifies the sip URI of the contact to be deleted.

3. addGroup/modifyGroup

The addGroup primitive is used to add a new group. The modifyGroup primitive is used to
modify an existing group. These primitives contain the following elements:

groupID: A nonnegative integer that is used as the identifier of the group.

name: The name of the group.

externalURI: A URI that points to auxiliary information about the group. This element is optional.

4. deleteGroup

The deleteGroup primitive is used for deleting an existing group. It contains the groupID of the
group to be deleted.

Each primitive must also include the deltaNum element. This nonnegative integer element is used as a
sequence number for the contact/group management view, and each primitive must include the
deltaNum equal to the current sequence number.

2.3 Directory Service Schema Elements

This protocol MAY access the directory service schema class and attributes listed in the following
table and include them in the presence document. For the syntactic specifications of the following
class or class/attribute pairs, refer to Active Directory Domain Services (AD DS) in [MS-ADA1], [MS-
ADA2], [MS-ADA3], and [MS-ADSC].

Class Attribute

User displayName
email

20 / 95

[MS-SIP-Diff] - v20160714
Session Initiation Protocol Extensions
Copyright © 2016 Microsoft Corporation
Release: July 14, 2016

3 Protocol Details

The following sections specify details of Session Initiation Protocol Extensions, including abstract data
models, message processing rules, and the SIP client and server roles.

3.1 NTLM/Kerberos Authentication Extensions Details

Session Initiation Protocol Extensions implements a proprietary Kerberos and NTLM Authentication
Protocol authentication mechanism that is used by the client for client-to-server authentication and
signing of messages. For more information on Kerberos, see [MS-KILE]. Encryption (privacy) is
provided by TLS and is not explicitly covered by this authentication mechanism.

Authentication is broken down into two phases. In the first phase, a security association (SA) is

established between the client and the server. In the second phase, the client and server use the
existing SA to sign messages that they send and to verify the messages they receive. Unauthenticated
messages from a client SHOULD NOT be accepted by the server. The exact message exchange in the
first phase differs depending on whether NTLM or Kerberos authentication is used.

During the NTLM SA establishment phase, a three-way handshake occurs between the client and the
server:

1. The client sends a request with no credential or authentication information. The server responds to

that request with a 401 or 407, indicating that it supports NTLM and Kerberos and requires
authentication.

2. The client reissues the request, indicating its preference for NTLM authentication. The server
responds with an appropriate challenge in a 401 or 407.

3. The client reissues the request with a response to the server's challenge. The server processes the
request and responds (including its signature for the response).

4. The SA is now established on both the client and server, and subsequent messages between the

client and server are signed.

During the Kerberos SA establishment phase, a two-way handshake occurs between the client and the
server:

1. The client sends a request with no credential or authentication information. The server responds to
that request with a 401 or 407, indicating that it supports NTLM and Kerberos and requires
authentication.

2. The client requests a Kerberos ticket for the server, and reissues the request with this encoded
Kerberos ticket information.

3. The server processes the request and responds (including its signature for the response).

4. The SA is now established on both the client and server, and subsequent messages between the
client and server are signed.

The primary distinction between NTLM and Kerberos is the need for connectivity to the domain
controller. In Kerberos, the client must request a Kerberos ticket from the Key Distribution Center

(KDC), which is a process that resides on the domain controller. In NTLM, the server verifies the
client's NTLM credentials by contacting the domain controller. This difference allows clients that do not
have connectivity to the domain controller to authenticate with the server using NTLM authentication,
and it is the main reason for supporting NTLM in addition to the more secure and standard Kerberos
authentication.

21 / 95

[MS-SIP-Diff] - v20160714
Session Initiation Protocol Extensions
Copyright © 2016 Microsoft Corporation
Release: July 14, 2016

3.1.1 Abstract Data Model

This section describes a conceptual model of possible data organization that an implementation
maintains to participate in this protocol. The described organization is provided to facilitate the

explanation of how the protocol behaves. This specification does not mandate that implementations
adhere to this model as long as their external behavior is consistent with what is described in this
specification.

The client can use a LastSnumReceived integer parameter for each SA to store the value of the last
snum received from the server. This is used to provide replay protection.

The client can also use two integer parameters, SnumWindowLow and SnumWindowHigh, to mark the
upper and lower values for the sliding window used by the client to allow pipelining of requests while

providing replay protection. SnumWindowLow and SnumWindowHigh can be initialized to 1 and 256,
respectively, for a 256-size sliding window.

Note The preceding conceptual data can be implemented by using a variety of techniques. An
implementation is at liberty to implement such data in any way convenient.

3.1.2 Timers

No timers are required other than the timers specified in [RFC3261].

3.1.3 Initialization

No initialization is required beyond the initialization that is specified in [RFC3261].

3.1.4 Higher-Layer Triggered Events

Except as specified in the following sections, the rules for message processing are as specified in

[RFC3261].

3.1.4.1 Initiating the Login Sequence

The client initiates the login sequence by sending a REGISTER request without any credentials, as
suggested in [RFC3261]. If the REGISTER request is challenged by a server request for NTLM

Authentication Protocol or Kerberos authentication, the client then resends the REGISTER request with
credentials. This step also establishes an SA between the client and the server that is used to sign any
future messages.

3.1.4.2 Sending a SIP Message

Before sending a message, the sender MUST generate a message signature or checksum that it will
send with the message so that the receiver can authenticate the message. The client and the server
SHOULD use the same algorithm to generate message signatures. The Microsoft implementation uses
the GSS_GetMIC() and GSS_VerifyMIC() implementations of the NTLM or Kerberos security service
provider interface to compute and verify a signature. For more information on NTLM GSS_GetMIC()

and GSS_VerifyMIC(), see [MS-NLMP] section 3.1.4. For more information on Kerberos GSS_GetMIC()

and GSS_VerifyMIC implementation, see [RFC1964] section 1.2.

The client MUST use the following values in order and enclosed by angle brackets to construct a
secure buffer that is then used to compute the message signature:

1. Authentication method (for example, NTLM or Kerberos)

2. crand for client or srand for server

22 / 95

[MS-SIP-Diff] - v20160714
Session Initiation Protocol Extensions
Copyright © 2016 Microsoft Corporation
Release: July 14, 2016

3. cnum for client or snum for server

4. realm

5. targetname

6. Call ID

7. CSeq#

8. CSeq method

9. From URL

10. From tag

11. To tag

12. Expires (optional)

13. Response code (responses only)

The only difference from the client signature is the use of a server-generated salt (srand) and
sequence number (snum) rather than the client-generated salt (crand) and sequence number (cnum).

Note Even though some parameter values are case-insensitive, these values MUST be used as they
appear in the message when performing the signature computation.

For optional fields, such as Expires, an empty set of angle brackets (<>) is included in the buffer to
signal when those headers do not exist in the SIP message.

The response code is only part of the signature computation for responses and is not part of the
signature for requests. An empty set of angle brackets (<>) is not included in the buffer to sign for
requests.

The client places the message signature in the response parameter of the Proxy-Authorization:

header. The server places the signature in the rspauth parameter of the Proxy-Authentication-Info:
header.

As an example, the following message,

 SUBSCRIBE sip:samtest1@pstntest.rtmp.selfhost.corp.microsoft.com SIP/2.0
 Via: SIP/2.0/TCP 172.24.34.1:16577
 Max-Forwards: 70
 From: <sip:samtest1@pstntest.rtmp.selfhost.corp.microsoft.com>;
 tag=82249b57436d4aa39ec38afa968fa994;
 epid=bd0238d966
 To: <sip:samtest1@pstntest.rtmp.selfhost.corp.microsoft.com>
 Call-ID: 72558074992e4f2cafb48c6e44b90a0c
 CSeq: 1 SUBSCRIBE
 Contact:
 <sip:samtest1@pstntest.rtmp.selfhost.corp.microsoft.com:16577;
 maddr=172.24.34.1;transport=tcp>;
 proxy=replace
 User-Agent: RTC/1.3
 Event: vnd-microsoft-roaming-contacts
 Accept: application/vnd-microsoft-roaming-contacts+xml
 Supported: com.microsoft.autoextend
 Supported: ms-benotify
 Proxy-Require: ms-benotify
 Supported: ms-piggyback-first-notify
 Proxy-Authorization:
 NTLM qop="auth",
 realm="SIP Communications Service",

23 / 95

[MS-SIP-Diff] - v20160714
Session Initiation Protocol Extensions
Copyright © 2016 Microsoft Corporation
Release: July 14, 2016

 opaque="9C55D687",
 crand="009139df",
 cnum="1",
 targetname="pstn.pstntest.rtmp.selfhost.corp.microsoft.com",
 response="0100000039623537c854b2e8ca6a203e"
 Content-Length: 0

would result in the following signature buffer (line breaks not included).

 <NTLM>
 <009139df >
 <1>
 < SIP Communications Service>
 < pstn.pstntest.rtmp.selfhost.corp.microsoft.com >
 <72558074992e4f2cafb48c6e44b90a0c >
 <1>
 <SUBSCRIBE>
 < sip:samtest1@pstntest.rtmp.selfhost.corp.microsoft.com >
 <82249b57436d4aa39ec38afa968fa994>

Note The signature computed for the preceding example is "0100000039623537c854b2e8ca6a203e",
which is included in the response parameter of the Proxy-Authorization header.

 For Kerberos, the buffer for signature computation is formed in a manner similar to what is shown in
the preceding NTLM example. The only differences are that the first element in the signature buffer is
<Kerberos> instead of <NTLM> and that Kerberos GSS-GetMIC() is used to compute the signature.

3.1.5 Message Processing Events and Sequencing Rules

Except as specified in the following section, the rules for message processing are as specified in
[RFC3261] and [RFC3265].

3.1.5.1 Overview of Authentication Protocol Elements

The server issues an authentication challenge by using either a 401 or 407 response to a SIP
request. The client SHOULD be capable of processing either response. The server uses the following
SIP headers as part of this authentication scheme.

SIP header Purpose Where used

Date Indicates current server time. Used by the client to detect clock skew,
which can cause authentication to fail. Client and server clocks must be
synchronized to within 15 minutes for the NTLM Authentication Protocol
and to within 5 minutes for Kerberos.

401 or 407
response

Proxy-
Authenticate

Carries the challenge issued by a proxy. One for each authentication
scheme (NTLM and Kerberos) that the proxy supports.

407 response

Proxy-
Authentication-
Info

Carries the proxy signature for a message. Authenticated
SIP message

Proxy-
Authorization

Allows the client to identify itself (or its user) to a proxy that requires
authentication. Carries the client response to challenge as well as the
signature for the message.

SIP message

WWW-
Authenticate

Carries the challenge issued by a server. One for each authentication
scheme (NTLM and Kerberos) that the server supports.

401 response

Authentication-
Info

Carries the server signature for a message. Authenticated
SIP message

Authorization Allows the client to identify itself (or its user) to a server that requires
authentication. Carries the client response to challenge as well as the

SIP message

24 / 95

[MS-SIP-Diff] - v20160714
Session Initiation Protocol Extensions
Copyright © 2016 Microsoft Corporation
Release: July 14, 2016

SIP header Purpose Where used

signature for the message. One for each SA that the client has
established with the server.

The protocol information that is used during the SA establishment phase differs from the information
that is used after an SA is established. During the establishment phase, the gssapi-data parameter
carries the bulk of the credential information. The realm parameter provides additional context
information.

After an SA is established, the srand, crand, cnum, snum, and opaque parameters are used in the

signing of requests and responses. Those signatures are carried in the response and rspauth
parameters. Parameter values are never escaped, and parameter names are case-insensitive. The
order of parameters in a header is not significant.

The following table gives an overview of the parameters used in Proxy-Authenticate, Proxy-
Authorization, and Proxy-Authentication-Info headers in the SIP messages. The "When" column
indicates the phase in which the parameter is used: Establishment or Signing.

Parameter Where Creator When Used for

realm Authenticate
Authorization
Auth Info

Server ES Identifies which set of credentials the user should
supplysupplies. Also used by the client to determine which
SA is used to sign a message. The realm value is case-
sensitive. The default value is "SIP Communications
Service".

epid From Client ES Identifies a unique endpoint for the user. Used by the server
to determine the correct SA to use for signing an outgoing
response. An epid MUST be present.

epid To Server ES Identifies a unique endpoint for the user. Used by the server
to determine the correct SA to use for signing an outgoing
request. An epid MUST be present.

targetname Authenticate
Authorization
Auth Info

Server ES Identifies the server for this SA. Contains the FQDN of the
server for NTLM and the service principal name (SPN) of
the server for Kerberos.

opaque Authenticate
Authorization
Auth Info

Server ES Identifies the SA on the server.

qop Authenticate
Authorization
Auth Info

Client
Server

ES Quality of Protection (auth only, no integrity protection).

crand Authorization Client S Identifies the salt that is used in the signature. An 8-
character hexadecimal digit string.

crum Authorization Client S Identifies the sequence number that is used in the signature
for replay protection. A 32-bit unsigned value that starts at
1.

srand Auth Info Server S Identifies the salt that is used in the signature. An 8-
character hexadecimal digit string.

snum Auth Info Server S Identifies the sequence number that is used in the signature
for replay protection. A 32-bit unsigned number that starts
at 1.

gssapi-data Authenticate
Authorization

Client
Server

E Exchanges credential information for establishing an SA.

response Authorization Client S Carries the client signature.

rspauth Auth Info Server S Carries the server signature.

For each SA, the client MUST keep track of the snum values that are used by the server when signing
messages with this SA. The client also tracks the last snum value that is received for this SA. The
client MUST maintain a sliding window to track the snum values that are used by the server for this

SA. The initial range of this window is 1 to 256, and is adjusted as messages are received. (The size of

25 / 95

[MS-SIP-Diff] - v20160714
Session Initiation Protocol Extensions
Copyright © 2016 Microsoft Corporation
Release: July 14, 2016

this window is 256.) This means that the server can issue as many as 256 simultaneous requests
before waiting for a response from the client. The purpose of maintaining this sliding window is to

provide replay protection while allowing pipelining of requests for performance reasons.

When a signed message arrives at the client, the client MUST validate the signature and extract the

snum value:

If the snum value is higher than the last snum received, the client shifts the window up so that the
window now spans from [snum – 256 to snum]. The client also marks this snum as having been used.

If the snum value is lower than the last snum received and is within the active window, the client
checks whether this value has been seen before. Previously seen values are rejected as a replay.
Replayed requests and responses are dropped. New values are marked as having been used.

If the snum value is lower than the last snum received and is outside the active window, the client

MUST drop the message.

3.1.5.2 Verifying Message Signature for Incoming Messages

After receiving a SIP message, the receiver MUST verify the message signature by using

GSS_VerifyMIC(). If the signature verification fails, the message MUST be discarded.

3.1.5.3 proxy=replace Extension for Firewall Traversal

Session Initiation Protocol Extensions introduces a new header parameter, proxy=replace, to enable
firewall traversal for the SIP channel. This parameter tells the outbound proxy to replace the contact

information in the contact header with its own, enabling other clients/servers to reach the client using
the proxy's IP address, even if the client is behind a firewall. The client SHOULD include a header
parameter proxy=replace in the "Contact" header if it wants to enable this extension. The client
SHOULD also include a maddr URI parameter containing its IP address. The outbound proxy SHOULD
replace the IP address in the maddr parameter with its own IP address if the proxy=replace header
parameter is present. Any entity receiving this contact header SHOULD send any new requests to the

new IP address in the maddr parameter, which is the IP address of the proxy. The proxy SHOULD then

route this request to the client.

3.1.6 Timer Events

None.

3.1.7 Other Local Events

None.

3.2 Presence Extensions Details

Session Initiation Protocol Extensions introduces several extensions to enhance presence. These
include the new Presence Document Format, msrtc.pidf (see text/xml+msrtc.pidf Presence Document

Format (section 2.2.1), SIP Extensions to XPIDF Presence Document Format (section 2.2.2), a new
SIP method, SERVICE, to set and get presence information, and the setPresence and getPresence

SOAP requests.

SIP allows SIP endpoints to communicate in a P2P mode without requiring a SIP server. The endpoints
can also subscribe for presence information and send notifications carrying such information in a P2P
manner. Session Initiation Protocol (SIP) extensions use the XPIDF format to exchange presence
information when the endpoints are acting in P2P mode. The msrtc.pidf format is used in the
client/server mode.

26 / 95

[MS-SIP-Diff] - v20160714
Session Initiation Protocol Extensions
Copyright © 2016 Microsoft Corporation
Release: July 14, 2016

The client can publish its presence to the server by sending a setPresence SOAP request inside the
body of a SERVICE method. The client can use the setPresence request only to set the logged in user's

presence. A user cannot publish presence on behalf of another user. The server sends a 200 OK SIP
response to indicate that the setPresence request was successful.

There are two ways for the client to obtain another user's presence information. If the client just
needs a one-time snapshot of the presence information, it SHOULD send a getPresence SOAP request
to the server to do so. This can be useful for web pages that need to show the presence state of a
user on a transient basis. The advantage of using a getPresence request is that it does not consume a
lot of resources on the server.

If the client wants to continue getting updates when the presence information changes, it SHOULD
subscribe for it by sending a SUBSCRIBE request to the server. The SUBSCRIBE request creates a

dialog, and as long as the dialog is kept alive, the server MUST send presence updates in NOTIFY or
BENOTIFY requests. This mode of operation can be useful for getting presence information of the
users in the client's contact list.

In the P2P mode, no server is used to exchange presence information, and clients can directly create

subscriptions between themselves. The setPresence and getPresence requests are not valid in P2P
mode. The client can send a SUBSCRIBE request to the user it wants to subscribe to create a

subscription. The other client can send NOTIFY with Presence Documents in XPIDF format to send
initial presence information and any updates.

SIP Proxies and Registrars should send an immediate 200 response status code to any SUBSCRIBE
messages before forwarding the message, and should notdon't forward responses to any SUBSCRIBE
messages. The 200 status code MUST only indicate successful receipt of the request, instead of
acceptance of the subscription. The response MUST be sent immediately to ensure that no state
information about a SIP client can be derived from any delays in the process. A SUBSCRIBE request

SHOULD then be sent to the requested client for processing.

If a SIP client is offline, the SIP Proxy or Registrar MUST immediately send a 200 status code in
response and queue the SUBSCRIBE request for a suitable time-out period. A recommended value of
this time-out is 180 seconds. Further SUBSCRIBE requests SHOULD update the time-out value. If the
end node comes online before the time-out period expires, then the SUBSCRIBE request should beis

forwarded to it.

A SIP Proxy or Registrar must never send a 600 status code in response to a SUBSCRIBE request.

When a SIP client receives a SUBSCRIBE request, it MUST immediately respond with a 200 status
code that only indicates successful receipt of the request, not any presence information. If the request
is accepted, then a NOTIFY transaction should beis created and sent. Otherwise, no message should
beis sent in response.

These extensions are optional. An implementation may support them.

3.2.1 Abstract Data Model

This section describes a conceptual model of possible data organization that an implementation
maintains to participate in this protocol. The described organization is provided to facilitate the

explanation of how the protocol behaves. This specification does not mandate that implementations
adhere to this model as long as their external behavior is consistent with what is described in this

specification.

The server MAY use a BOOLEAN flag, MSRTCPresenceSupported, for each registering client to track
whether the client supports the presence extensions described in this section.

Note The preceding conceptual data can be implemented using a variety of techniques. An
implementation is at liberty to implement such data in any way convenient.

27 / 95

[MS-SIP-Diff] - v20160714
Session Initiation Protocol Extensions
Copyright © 2016 Microsoft Corporation
Release: July 14, 2016

3.2.2 Timers

No timers are required other than the timers specified in [RFC3261] and [RFC3265].

3.2.3 Initialization

The client SHOULD be registered with the server before publishing or subscribing to presence
information. This is done by sending a REGISTER request to the server, as specified in [RFC3261].

3.2.4 Higher-Layer Triggered Events

Except as specified in the following sections, the rules for message processing are as specified in
[RFC3261] and [RFC3265]. When the user logs in, the client subscribes to the presence information of
the contacts using a batched SUBSCRIBE request.

3.2.4.1 Indicating Support for Presence Extensions

Session Initiation Protocol Extensions defines a new header to indicate support for presence. The client
SHOULD insert the following header in its REGISTER requests as part of the login sequence.

 Supported: com.microsoft.msrtc.presence

This header indicates to the server that the client understands the Session Initiation Protocol
Extensions for presence, notably its support for the setPresence SOAP request and
text/xml+msrtc.pidf presence document format (see section 2.2.1). The server assumes that a client
that inserts this header in its first REGISTER request will subsequently send a setPresence request to
set its presence state. Failure to do so will cause the server to show the client as offline after a short

period of time. The exact interval SHOULD be a configurable parameter on the server and can be set
to a suitable value between 3 minutes and 15 minutes.

3.2.4.2 Setting Presence for Self User (setPresence SERVICE Request)

The client uses a SOAP request, carried in the body of a SERVICE request, to set or update its own

presence information. This is done at least once (during login) and whenever the presence state of the
user changes. The setPresence SOAP request is the trigger for the server to generate NOTIFY requests
to the watchers of this user. An example setPresence request looks like the following.

 SERVICE sip:user@tradewind.com
 SIP/2.0 Via: SIP/2.0/TLS 157.56.65.142:3485 Max-Forwards: 70
 From: "Bob" <sip:user@tradewind.com >;
 tag=263b894bb94d444b801fc070cd8c403a;
 epid=a892397901
 To: < sip:user@tradewind.com >
 Call-ID: 157892a29f7e44199693e2a1e48fdd98
 CSeq: 3 SERVICE
 Contact:
 < sip:user@tradewind.com:3485;
 maddr=157.56.65.142;
 transport=tls>;
 proxy=replace
 User-Agent:
 RTC/1.3.5315 (Messenger 5.1.0530)
 Proxy-Authorization:
 NTLM qop="auth",
 realm="SIP Communications Service",
 opaque="bfaf9a7c",
 crand="84e2891d",
 cnum="8",

28 / 95

[MS-SIP-Diff] - v20160714
Session Initiation Protocol Extensions
Copyright © 2016 Microsoft Corporation
Release: July 14, 2016

 targetname="tradewind.com",
 response="0100000038393462892479edd2994f63"
 Content-Type: application/SOAP+xml
 Content-Length:

 <SOAP-ENV:Envelope
 xmlns:SOAP-ENV="http://schemas.xmlsoap.org/soap/envelope/">
 <SOAP-ENV:Body>
 <m:setPresence xmlns:m="http://schemas.microsoft.com/winrtc/2002/11/sip">
 <m:presentity m:uri="sip:sip:user@tradewind.com">
 <m:availability m:aggregate="300" m:description="online"/>
 <m:activity m:aggregate="400" m:description="Active"/>
 <deviceName
 xmlns="http://schemas.microsoft.com/2002/09/sip/client/presence"
 name="USER-DESKTOP"/>
 <rtc:devicedata
 xmlns:rtc="http://schemas.microsoft.com/2002/09/sip/client/presence"
 namespace="rtcService">
 <![CDATA[
 <caps>
 <renders_gif/>
 <renders_isf/>
 </caps>]]>
 </rtc:devicedata>
 </m:presentity>
 </m:setPresence>
 </SOAP-ENV:Body>
 </SOAP-ENV:Envelope>

The SERVICE method is used to carry a variety of SOAP requests between the client and the server.
The body of the request identifies the specific SOAP method that is being invoked. In this case, the

"m:setPresence" string indicates that this is a setPresence request. The uri attribute on the
presentity element indicates the user whose presence is being set and MUST match the To and From
header URIs. The remaining content of the setPresence body is a text/xml+msrtc.pidf Presence
Document. Note the namespace of the XML document that MUST match exactly for the server to
recognize this SOAP request.

3.2.4.3 Subscribing to a User's Presence Information

The client can subscribe to a user's presence information by sending a SUBSCRIBE request with the
request URI set to that user's SIP URI. In the client/server mode, this request creates a subscription
on the client and the server. In the P2P mode, the subscription is created on both clients. The
presence information is sent back in the 200 OK to the SUBSCRIBE if piggyback notification extension

is enabled. Otherwise, it is sent in a NOTIFY or BENOTIFY request. Any further updates to presence
are sent using NOTIFY or BENOTIFY requests.

3.2.4.4 Getting Presence Information of Another User (getPresence SERVICE

Request)

The counterpart to the setPresence SOAP request is a getPresence SOAP request. This acts as a
means to poll for presence rather than subscribing to presence. It is meant as a lightweight alternative

to a presence SUBSCRIBE request when only presence for a single entity is needed and only that
presence information for a one-time immediate purpose is needed.

 SERVICE sip:target@tradewind.com SIP/2.0
 Via: SIP/2.0/TLS 157.56.65.142:3485
 Max-Forwards: 70
 From: "Bob" <sip:user@tradewind.com>;
 tag=9aa9609ba6684c40bc8ec2917979c586;epid=a892397901
 To: <sip:target@tradewind.com>
 Call-ID: 875bb758890e436492cb83d300c33564
 CSeq: 1 SERVICE

29 / 95

[MS-SIP-Diff] - v20160714
Session Initiation Protocol Extensions
Copyright © 2016 Microsoft Corporation
Release: July 14, 2016

 Contact: <sip:user@tradewind.com:3485;
 maddr=157.56.65.142;transport=tls>;proxy=replace
 User-Agent: RTC/1.3.5315 (Messenger 5.1.0530)
 Proxy-Authorization: NTLM qop="auth",
 realm="SIP Communications Service",
 opaque="bfaf9a7c", crand="ffaf4afc",
 cnum="42", targetname="tradewind.com",
 response="01000000363039624edf6834d2994f63"
 Content-Type: application/SOAP+xml
 Content-Length:
 <SOAP-ENV:Envelope
 xmlns:SOAP-ENV="http://schemas.xmlsoap.org/soap/envelope/">
 <SOAP-ENV:Body>
 <m:getPresence
 xmlns:m=
 "http://schemas.microsoft.com/winrtc/2002/11/sip">
 <presentity uri="sip:target@tradewind.com"/>
 </m:getPresence>
 </SOAP-ENV:Body>
 </SOAP-ENV:Envelope>

Note The m:getPresence element indicates that this is a getPresence SOAP request. Also note the
XML namespace that is used; it must be matched exactly. The Request-URI, the To header URI, and
the uri attribute of the getPresence element indicate the user from which presence information is

wanted. Note that presence ACLs are enforced for getPresence requests as well; if the user is blocked
from seeing the target user's presence, the getPresence request returns a 403 Forbidden SIP
response.

3.2.5 Message Processing Events and Sequencing Rules

Except as specified in the following section, the rules for message processing are as specified in
[RFC3261] and [RFC3265].

The following event is specified in this section:

 Processing Response to a getPresence SERVICE Request (section 3.2.5.1)

3.2.5.1 Processing Response to a getPresence SERVICE Request

The client SHOULD receive the Presence Document in the body of the 200 OK response to the
SERVICE request. The client SHOULD parse the Presence Document as if it was received inside a
NOTIFY method.

3.2.6 Timer Events

None.

3.2.7 Other Local Events

None.

3.3 Batched SUBSCRIBE and NOTIFY Extension Details

Session Initiation Protocol Extensions uses the SUBSCRIBE and NOTIFY mechanism, as specified in

[RFC3265], to accept subscriptions for and send presence updates on members of the user's contact
list.

Session Initiation Protocol Extensions defines additional optimizations of that basic SUBSCRIBE and
NOTIFY mechanism to reduce message overhead associated with presence. The first such extension is

30 / 95

[MS-SIP-Diff] - v20160714
Session Initiation Protocol Extensions
Copyright © 2016 Microsoft Corporation
Release: July 14, 2016

the batched SUBSCRIBE mechanism. This mechanism allows the client to subscribe to a list of
contacts at once rather than send an individual SUBSCRIBE for each contact.

This extension is optional. An implementation may support it.

3.3.1 Abstract Data Model

This section describes a conceptual model of possible data organization that an implementation
maintains to participate in this protocol. The described organization is provided to facilitate the
explanation of how the protocol behaves. This specification does not mandate that implementations

adhere to this model as long as their external behavior is consistent with what is described in this
specification.

The client MAY use a Boolean flag, BatchSubscribeEnabled, for each subscription to track whether
batched SUBSCRIBE/NOTIFY requests are supported.

The server MAY also use a similar Boolean flag, BatchSubscribeEnabled, for each subscription to track
whether batched SUBSCRIBE/NOTIFY requests are supported.

The server MAY also have a configurable parameter, MaxNumberOfContacts, per user to keep track of

the limit on how many contacts that user maycan have.

Note The preceding conceptual data can be implemented by using a variety of techniques. An
implementation is at liberty to implement such data in any way convenient.

3.3.2 Timers

No timers are required other than the timers specified in [RFC3261] and [RFC3265].

3.3.3 Initialization

The client SHOULD be registered with the server before sending a batched SUBSCRIBE request. This is

done by sending a REGISTER request to the server, as specified in [RFC3261].

3.3.4 Higher-Layer Triggered Events

Except as specified in the following sections, the rules for message processing are as specified in
[RFC3261] and [RFC3265].

3.3.4.1 Sending a Batched SUBSCRIBE Request

The client can subscribe to presence information of a list of contacts by sending a batched SUBSCRIBE
request to the server. This is typically done after the client has logged in to the server by sending a

REGISTER request. The batched SUBSCRIBE request is a SUBSCRIBE request with the body of the
request containing the contact URIs of interest. A typical batched SUBSCRIBE is constructed similar to
the following example.

 SUBSCRIBE
 sip:watcher@tradewind.com SIP/2.0
 Via: SIP/2.0/TLS 157.56.65.142:3485
 Max-Forwards: 70
 From: "Bob" <sip:watcher@tradewind.com>;
 tag=4dcbf313b0ee4d;epid=a892397901
 To: <sip:watcher@tradewind.com>
 Call-ID: dba8c92428b241ccb233e5d1a59135e2
 CSeq: 1 SUBSCRIBE
 Contact:
 <sip:watcher@tradewind.com:3485;

31 / 95

[MS-SIP-Diff] - v20160714
Session Initiation Protocol Extensions
Copyright © 2016 Microsoft Corporation
Release: July 14, 2016

 maddr=157.56.65.142;
 transport="tls">;
 proxy=replace
 User-Agent: RTC/1.3
 Event: presence
 Accept:
 application/rlmi+xml,
 text/xml+msrtc.pidf,
 multipart/related
 Supported: com.microsoft.autoextend
 Supported: ms-benotify
 Proxy-Require: ms-benotify
 Supported: ms-piggyback-first-notify
 Require: adhoclist
 Supported: eventlist
 Proxy-Authorization:
 NTLM qop="auth",
 realm="SIP Communications Service",
 opaque="bfaf9a7c",
 crand="8c93c137",
 cnum="5",
 targetname="tradewind.com",
 response="0100000066333133cfcfdde1d2994f63"
 Content-Type: application/adrl+xml
 Content-Length: …
 <adhoclist uri="sip:watcher@tradewind.com"
 name="sip:watcher@tradewind.com">
 <create>
 <resource uri="sip:contact1@tradwind.com"/>
 <resource uri="sip:contact2@tradwind.com"/>
 <resource uri="sip:contact3@tradwind.com"/>
 <resource uri="sip:contact4@tradwind.com"/>
 <resource
 </create>
 </adhoclist>

Refer to the adhoclist node in the preceding example. The Supported, Require, and Proxy-Require
headers indicate support for a variety of presence extensions that are described in the following

sections. The Accept header indicates that the client is capable of receiving (in response to the
SUBSCRIBE) a multipart MIME (for more information, see [RFC1341]) specification that contains a list
of users (application/rlmi+xml) and their associated Presence Documents (text/xml+msrtc.pidf).

The Require: adhoclist and Supported: eventlist headers indicate support specifically for the batched
SUBSCRIBE mechanism (both are needed to enable this feature).

The Content-Type (application/adrl+xml) indicates that this SUBSCRIBE request carries an XML body
that contains the list of contacts of interest.

Note that the Request-URI as well as the To and From headers all carry the SIP URI of the watcher.

The content of the SUBSCRIBE request itself is straightforward. It is described by the following XML

schema. The schema allows the client to define a list as well as modify an existing list established by a
previous SUBSCRIBE request in the same SIP dialog. The list is flat, containing one entry per contact
that the watcher receives presence updates for. The size of the list SHOULD be bounded by the

maximum number of contacts per user setting on the server. The server maycan limit the maximum
number of contacts that a user can have. The implementation SHOULD permit an administrator to
configure this limit based on the needs of the users in a deployment, by some means outside of this
specification. A reasonable value for this limit may beis between a range of 100 and 250. The server

SHOULD reject any batched SUBSCRIBE request that contains more contacts than this limit.

 <?xml version="1.0" ?>
 <xs:schema id="batch subscribe" version="2.0"

32 / 95

[MS-SIP-Diff] - v20160714
Session Initiation Protocol Extensions
Copyright © 2016 Microsoft Corporation
Release: July 14, 2016

 elementFormDefault="qualified"
 targetNamespace="urn:ietf:params:xml:ns:adrl"
 xmlns:tns="urn:ietf:params:xml:ns:adrl"
 xmlns:xs="http://www.w3.org/2001/XMLSchema"
 xmlns:ct="http://schemas.microsoft.com/sip/types">

 <xs:annotation>
 <xs:documentation>
 Live Communications Server 2005 supports an extension to the
 SIP SUBSCRIBE request to allow subscribing to the presence
 of multiple users at the same time. This is called the Batch
 Subscribe request. The body of the Batch Subscribe request
 conforms to the schema specified here. Note that this schema
 is different from the adhoclist schema specified in the
 internet draft.
 </xs:documentation>
 </xs:annotation>

 <xs:import namespace="http://schemas.microsoft.com/sip/types"
 schemaLocation="common.xsd" />

 <xs:complexType name="resource">
 <xs:attribute name="uri" type="ct:sipURI" use="required" />
 <xs:anyAttribute namespace="##any" processContents="lax" />
 </xs:complexType>

 <xs:complexType name="roster">
 <xs:sequence>
 <xs:element name="resource" type="tns:resource" minOccurs="0"
 maxOccurs="unbounded" />
 </xs:sequence>
 <xs:anyAttribute namespace="##any" processContents="lax" />
 </xs:complexType>

 <xs:complexType name="adhoclist">
 <xs:sequence>
 <xs:choice>
 <xs:annotation>
 <xs:documentation>
 A Batch Subscribe request can specify one of
 three operations: create, add or delete.
 - A create operation creates a new batch
 subscription on the server
 - An add operation adds entries to an existing
 batch subscription
 - A delete operation deletes entries from a
 batch subsription

 Entries in a batch subscription consist of SIP URIs
 of users to whom presence subscriptions are created.
 </xs:documentation>
 </xs:annotation>

 <xs:element name="create" type="tns:roster" />
 <xs:element name="add" type="tns:roster" />
 <xs:element name="delete" type="tns:roster" />
 </xs:choice>

 <xs:any namespace="##any" processContents="lax"
 minOccurs="0" maxOccurs="unbounded" />
 </xs:sequence>

 <xs:attribute name="uri" type="ct:sipURI" use="required" />

 <xs:anyAttribute namespace="##any" processContents="lax" />
 </xs:complexType>
 <xs:element name="adhoclist" type="tns:adhoclist" />
 </xs:schema>

33 / 95

[MS-SIP-Diff] - v20160714
Session Initiation Protocol Extensions
Copyright © 2016 Microsoft Corporation
Release: July 14, 2016

3.3.5 Message Processing Events and Sequencing Rules

Except as specified in the following section, the rules for message processing are as specified in
[RFC3261] and [RFC3265].

The following events are specified in this section:

 Receiving a NOTIFY Response to a Batched SUBSCRIBE Request (section 3.3.5.1)

 Receiving a Failure Response to a Batched SUBSCRIBE Request (section 3.3.5.2)

3.3.5.1 Receiving a NOTIFY Response to a Batched SUBSCRIBE Request

On receiving a NOTIFY SIP response to a batched SUBSCRIBE request, the client parses the response
and retrieves the presence information for all contacts.

A typical NOTIFY SIP response to a batched subscription appears in the following example. Note that it
is a multipart MIME body containing both a list of contacts and the presence state for each of those

contacts.

 From: "Bob" <sip:watcher@tradewind.com>;
 tag=4dcbf313b0ee4dd68fdfae2d851facf2;
 epid=a892397901
 To: <sip:watcher@tradewind.com>;
 tag=ee697d7f2d8dc2b899014154efb57a4c;
 Call-ID: dba8c92428b241ccb233e5d1a59135e2
 CSeq: 1 SUBSCRIBE
 Expires: 23903
 Content-Type:
 multipart/related;
 type="application/rlmi+xml";start=resourceList;
 boundary=50UBfW7LSCVLtggUPe5z Content-Length:
 Require: eventlist
 Event: presence subscription-state: active;expires=23903
 Supported: com.microsoft.autoextend,
 ms-piggyback-first-notify,
 ms-benotify

 --50UBfW7LSCVLtggUPe5z
 Content-Transfer-Encoding: binary
 Content-ID: resourceList
 Content-Type: application/rlmi+xml

 <list xmlns="urn:ietf:params:xml:ns:rlmi"
 uri="sip:watcher@tradewind.com"
 version="1" fullState="true" >
 <resource uri="sip:contact1@tradewind.com" >
 <instance id="0" state="active"
 cid="contact1@tradewind.com" />
 </resource>
 <resource uri="sip:contact2@tradewind.com" >
 <instance id="0" state="active"
 cid="contact2@tradewind.com" />
 </resource>
 <resource uri="sip:contact3@tradewind.com" >
 <instance id="0" state="active"
 cid="contact3@tradewind.com" />
 </resource>
 </list>

 --50UBfW7LSCVLtggUPe5z
 Content-Transfer-Encoding: binary
 Content-ID: contact1@tradewind.com
 Content-Type: text/xml+msrtc.pidf
 <presentity uri="contact1@tradewind.com" >
 <availability aggregate="300" description="" epid="8bfb9f3f24" />

34 / 95

[MS-SIP-Diff] - v20160714
Session Initiation Protocol Extensions
Copyright © 2016 Microsoft Corporation
Release: July 14, 2016

 <activity aggregate="500" description="" epid="8bfb9f3f24" />
 <displayName displayName="Dave" />
 <email email="contact1@tradewind.com" />
 <phoneNumber label="" number="555-5555" />
 <devices>
 <devicePresence epid="8bfb9f3f24" ageOfPresence="315" >
 <availability aggregate="300" description="online" />
 <activity aggregate="500" description="In Call" />
 <deviceName name="DESKTOP"
 xmlns="http://schemas.microsoft.com/2002/09/sip/client/presence">
 </deviceName>
 <rtc:devicedata namespace="rtcService"
 xmlns:rtc="http://schemas.microsoft.com/2002/09/sip/client/presence">
 <![CDATA[
 <caps><renders_gif/><renders_isf/></caps>
]]>
 </rtc:devicedata>
 </devicePresence>
 </devices>
 </presentity>

 --50UBfW7LSCVLtggUPe5z
 Content-Transfer-Encoding: binary
 Content-ID: contact2@tradewind.com
 Content-Type: text/xml+msrtc.pidf
 <presentity uri="contact2@tradewind.com" >
 <availability aggregate="300" description=""epid="43a34cb1f7"/>
 <activity aggregate="200" description="" epid="43a34cb1f7" />
 <displayName displayName="Joe" />"
 <email email="contact2@tradewind.com" />
 <phoneNumber label="" number="666-6666" />
 <devices>
 <devicePresence epid="43a34cb1f7" ageOfPresence="3301" >
 <availability aggregate="300" description="online" />
 <activity aggregate="200" description="Idle" />
 <deviceName name="DESKTOP"
 xmlns=http://schemas.microsoft.com/2002/09/sip/client/presence">
 </deviceName>
 <rtc:devicedata namespace="rtcService"
 xmlns:rtc=
 http://schemas.microsoft.com/2002/09/sip/client/presence" >
 <![CDATA[
 <caps><renders_gif/><renders_isf/></caps>
]]>
 </rtc:devicedata>
 </devicePresence>
 </devices>
 </presentity>

 --50UBfW7LSCVLtggUPe5z
 Content-Transfer-Encoding: binary
 Content-ID: contact3@tradewind.com
 Content-Type: text/xml+msrtc.pidf
 <presentity uri="contact3@tradewind.com" >
 <availability aggregate="300"
 description="" epid="0e7e556112"/>
 <activity aggregate="400"
 description="" epid="0e7e556112" />
 <displayName displayName="Tim" />"
 <email email="contact3@tradewind.com" />
 <phoneNumber label="" number="777-7777" />
 <devices>
 <devicePresence epid="0e7e556112"
 ageOfPresence="3617" >
 <availability aggregate="300"
 description="online" />
 <activity aggregate="400"
 description="Active" />
 <deviceName name="DESKTOP"
 xmlns=

35 / 95

[MS-SIP-Diff] - v20160714
Session Initiation Protocol Extensions
Copyright © 2016 Microsoft Corporation
Release: July 14, 2016

 "http://schemas.microsoft.com/2002/09/sip/client/presence">
 </deviceName>
 <rtc:devicedata
 namespace="rtcService"
 xmlns:rtc=
 "http://schemas.microsoft.com/2002/09/sip/client/presence">
 <![CDATA[
 <caps><renders_gif/><renders_isf/></caps>
]]>
 </rtc:devicedata>
 </devicePresence>
 </devices>
 </presentity>
 --50UBfW7LSCVLtggUPe5z--

The boundary string (--50UBfW7LSCVLtggUPe5z) is used to delimit the parts of the multipart body.
The first part is a list expressed in XML format that contains one entry for every Presence Document
(contact) carried in the remainder of the body. Each entry of the list has a SIP URI of the contact as
well as a content-id (the cid attribute) that corresponds to the Content-ID header of the subsequent

MIME part that contains the Presence Document for that contact. The list acts as an index to the
remaining content of the notification.

The remaining parts are Presence Documents in text/xml+msrtc.pidf format, as specified in section
2.2.1.

The batched SUBSCRIBE/NOTIFY supports versioning and partial notifications. The version number
and a flag—indicating whether this notification contains information for the complete contact list or
just a subset—are defined in the list portion of the body. The client SHOULD ignore out-of-order CSeq

for NOTIFY/BENOTIFY requests for batched subscriptions and rely on the version number instead.

3.3.5.2 Receiving a Failure Response to a Batched SUBSCRIBE Request

If the server does not support batched SUBSCRIBE and NOTIFY requests, it will send a failure

response to the batched SUBSCRIBE request. The client MAY set the BatchSubscribeEnabled flag to
false and fall back to sending individual SUBSCRIBE requests for each of the contacts.

3.3.6 Timer Events

None.

3.3.7 Other Local Events

None.

3.4 Piggyback Notification in 200 OK Response Details

As a performance optimization, Session Initiation Protocol Extensions introduces a mechanism
whereby the content of the first NOTIFY request that is normally sent in the SIP response to a
SUBSCRIBE request maycan actually be carried in the SUBSCRIBE 200 OK response itself. This is

referred to as piggybacking.

The benefit of this extension is in saving the traffic of the first NOTIFY request and its subsequent 200
OK response on the wire, reducing the total number of messages that must be processed as part of
the usual login sequence for the client.

Note This extension maycan be used independently or in conjunction with the batched SUBSCRIBE
mechanism defined previously.

This extension is optional. An implementation may support it.

36 / 95

[MS-SIP-Diff] - v20160714
Session Initiation Protocol Extensions
Copyright © 2016 Microsoft Corporation
Release: July 14, 2016

3.4.1 Abstract Data Model

 This section describes a conceptual model of possible data organization that an implementation
maintains to participate in this protocol. The described organization is provided to facilitate the

explanation of how the protocol behaves. This specification does not mandate that implementations
adhere to this model as long as their external behavior is consistent with that described in this
specification.

The client MAY use a Boolean flag, PiggybackNotifyEnabled, for each subscription to track whether
piggyback NOTIFY is supported for that subscription.

The server MAY also use a similar Boolean flag, PiggybackNotifyEnabled, for each subscription to track
whether piggyback NOTIFY is supported for that subscription.

 Note that the preceding conceptual data can be implemented by using a variety of techniques. An
implementation is at liberty to implement such data in any way convenient.

3.4.2 Timers

No additional timers are required other than the timers specified in [RFC3261] and [RFC3265].

3.4.3 Initialization

The client SHOULD be registered with the server before indicating support for piggyback NOTIFY in a
SUBSCRIBE request. This is done by sending a REGISTER request to the server, as specified in

[RFC3261].

3.4.4 Higher-Layer Triggered Events

Except as specified in the following sections, the rules for message processing are as specified in

[RFC3261] and [RFC3265].

3.4.4.1 Indicating Support for Piggyback Notification

The client can indicate support for this extension to the server by including the following header in the
SUBSCRIBE request.

 Supported: ms-piggyback-first-notify

3.4.5 Message Processing Events and Sequencing Rules

Except as specified in the following section, the rules for message processing are as specified in
[RFC3261] and [RFC3265].

The following event is specified in this section:

 Receiving a Piggyback Notification in 200 OK (section 3.4.5.1)

3.4.5.1 Receiving a Piggyback Notification in a 200 OK

If the server supports piggyback NOTIFY requests, it sends the content that is typically placed in the
first NOTIFY request within the 200 OK SIP response to the SUBSCRIBE request. The content of the
200 OK response to the SUBSCRIBE request matches the content type that the client specified in the
Accept header of the SUBSCRIBE. The server signals support for the piggyback extension in a similar

header in the 200 OK response to the SUBSCRIBE.

37 / 95

[MS-SIP-Diff] - v20160714
Session Initiation Protocol Extensions
Copyright © 2016 Microsoft Corporation
Release: July 14, 2016

 Supported: ms-piggyback-first-notify

When the client receives the 200 OK SIP response to the SUBSCRIBE request, it SHOULD check
whether the preceding header is included in the 200 OK. If it is, the client MAY set the
PiggybackNotifyEnabled flag to true, handle this 200 OK response as though it had received a separate
NOTIFY request, and parse the content to obtain the presence information.

The first NOTIFY request that the server sends is then delayed until an actual change in presence
occurs.

3.4.6 Timer Events

None.

3.4.7 Other Local Events

None.

3.5 Best Effort NOTIFY (BENOTIFY) Extension Details

Session Initiation Protocol Extensions introduces a variant of the regular NOTIFY request that is known
as Best Effort NOTIFY (BENOTIFY). The only difference between a BENOTIFY request and a NOTIFY
request is that a BENOTIFY request is never responded to: the client never sends a SIP response to a
BENOTIFY request, and the server ignores any response to a BENOTIFY request. The advantage of this
approach is that it removes unneeded responses from the wire. The disadvantage is that information
about the client request is subsequently unavailable.

Note This extension can be enabled independently or together with the batched SUBSCRIBE

mechanism.

This extension is optional. An implementation MAY support it.

3.5.1 Abstract Data Model

This section describes a conceptual model of possible data organization that an implementation
maintains to participate in this protocol. The described organization is provided to facilitate the
explanation of how the protocol behaves. This specification does not mandate that implementations
adhere to this model as long as their external behavior is consistent with what is described in this
specification.

The client MAY use a Boolean flag, BENOTIFYEnabled, for each subscription to track whether
BENOTIFY is enabled for that subscription.

The server MAY also use a similar Boolean flag, BENOTIFYEnabled, for each subscription to track
whether BENOTIFY is enabled for that subscription.

Note The preceding conceptual data can be implemented by using a variety of techniques. An
implementation is at liberty to implement such data in any way convenient.

3.5.1.1 Indicating Support for BENOTIFY

The client signals support for the BENOTIFY mechanism by inserting two headers in the SUBSCRIBE
request.

 Supported: ms-benotify

38 / 95

[MS-SIP-Diff] - v20160714
Session Initiation Protocol Extensions
Copyright © 2016 Microsoft Corporation
Release: July 14, 2016

 Proxy-Require: ms-benotify

The Proxy-Require header ensures that any intermediate SIP proxy that does not understand this
extension and that expects a SIP response to every SIP request to maintain proper SIP transaction
state will reject the initial subscription at which time the client can resend the SUBSCRIBE minus these

headers and disable the BENOTIFY mechanism for this subscription.

3.5.2 Timers

No additional timers are required other than the timers specified in [RFC3261] and [RFC3265].

3.5.3 Initialization

The client SHOULD be registered with the server before sending a SUBSCRIBE request indicating
support for BENOTIFY. This is done by sending a REGISTER request to the server, as specified in
[RFC3261].

3.5.4 Higher-Layer Triggered Events

Except as specified in the following sections, the rules for message processing are as specified in
[RFC3261] and [RFC3265].

3.5.5 Message Processing Events and Sequencing Rules

Except as specified in the following sections, the rules for message processing are as specified in
[RFC3261] and [RFC3265].

The following events are specified in this section:

 Receiving a Failure Response to SUBSCRIBE (section 3.5.5.1)

 Receiving a Success Response to SUBSCRIBE (section 3.5.5.2)

 Receiving a BENOTIFY (section 3.5.5.3)

3.5.5.1 Receiving a Failure Response to SUBSCRIBE

If the client receives a failure response to the SUBSCRIBE request because an intermediate proxy did
not support the BENOTIFY extension, it MAY set the BENOTIFYEnabled flag to false and resend the
SUBSCRIBE request without the supported:ms-benotify and proxy-require:ms-benotify headers. In
this case, the BENOTIFY extension is disabled.

3.5.5.2 Receiving a Success Response to SUBSCRIBE

When a client receives a success response (that is, a 200 OK to the SUBSCRIBE request), it MAY
determine whether the server supports BENOTIFY. In a 200 OK response to a SUBSCRIBE request, the

server indicates whether it supports BENOTIFY for this client by including the following header:

 Supported: ms-benotify

If the preceding header is present in 200 OK, the client MAY set the BENOTIFYEnabled flag to true.

The server MAY choose not to enable BENOTIFY for clients that are known to have unreliable network
connectivity. The client SHOULD also be prepared to handle regular NOTIFY requests.

39 / 95

[MS-SIP-Diff] - v20160714
Session Initiation Protocol Extensions
Copyright © 2016 Microsoft Corporation
Release: July 14, 2016

3.5.5.3 Receiving a BENOTIFY Request

On receiving a BENOTIFY request, the client MUST NOT send back a SIP response. The server MUST
ignore responses it receives to a BENOTIFY request. The client SHOULD process the content of a

BENOTIFY request in a manner identical to the way in which it processes a NOTIFY request.

3.5.6 Timer Events

None.

3.5.7 Other Local Events

None.

3.6 Auto-Extension of Subscriptions Details

As another performance optimization, Session Initiation Protocol Extensions introduce auto-extension

of the expiration time of a subscription. Normally with [RFC3265], the client must resend the
SUBSCRIBE request periodically to refresh the presence subscription. With the auto-extension
mechanism, this subscription is automatically refreshed (using the expires value from the initial
SUBSCRIBE) whenever a NOTIFY request is sent for this subscription. The client maymight still need

to re-SUBSCRIBE if no NOTIFY traffic is received for the subscription, but this is typically not the case.

This extension is optional. An implementation may support it.

3.6.1 Abstract Data Model

This section describes a conceptual model of possible data organization that an implementation
maintains to participate in this protocol. The described organization is provided to facilitate the
explanation of how the protocol behaves. This specification does not mandate that implementations
adhere to this model as long as their external behavior is consistent with that described in this
specification.

The client MAY use a Boolean flag, AutoExtendSubscriptionExpireTimerEnabled, for each subscription
to indicate whether or not auto-extension of that subscription is enabled.

The server MAY also use a similar Boolean flag, AutoExtendSubscriptionExpireTimerEnabled, for each
subscription to indicate whether or not auto-extension of that subscription is enabled.

Note The preceding conceptual data can be implemented using a variety of techniques. An
implementation is at liberty to implement such data in any way convenient.

3.6.2 Timers

Beyond what is specified in [RFC3261] and [RFC3265], the following timer is required.

 SubscriptionExpireTimer

Timer to track when a subscription expires. The client SHOULD refresh the subscription before
the timer expires. A subscription can be refreshed by sending a SUBSCRIBE request on the
dialog established by the first SUBSCRIBE request that resulted in creation of the subscription.

3.6.3 Initialization

The client SHOULD be registered with the server before sending a SUBSCRIBE request with auto-
extension support. This is done by sending a REGISTER request to the server, as specified in
[RFC3261].

40 / 95

[MS-SIP-Diff] - v20160714
Session Initiation Protocol Extensions
Copyright © 2016 Microsoft Corporation
Release: July 14, 2016

3.6.4 Higher-Layer Triggered Events

Except as specified in the following sections, the rules for message processing are as specified in
[RFC3261] and [RFC3265].

3.6.4.1 Indicating Support for Auto-Extension of Subscriptions

Support for the auto-extension mechanism is signaled in a header inserted in the SUBSCRIBE request
by the client.

 Supported: com.microsoft.autoextend

This header indicates to the server that the client supports the auto-extension mechanism.

3.6.5 Message Processing Events and Sequencing Rules

Except as specified in the following sections, the rules for message processing are as specified in
[RFC3261] and [RFC3265].

The following events are specified in this section:

 Receiving a 200 OK Response to SUBSCRIBE (section 3.6.5.1)

 Receiving a NOTIFY (section 3.6.5.2)

3.6.5.1 Receiving a 200 OK Response to SUBSCRIBE

When a client receives a 200 OK success response to the SUBSCRIBE request, it SHOULD determine
whether the server supports auto-extension by looking for the Supported: com.microsoft.autoextend
header in the response that is sent by the server. If the server supports the extension, it SHOULD

indicate this in the 200 OK response by using the following header.

 Supported: com.microsoft.autoextend

The client MAY set the AutoExtendSubscriptionExpireTimerEnabled flag to True if the preceding header
is present in the SIP response; otherwise, the client sets the flag to False. If the flag is set to True, the

client and the server are ready to auto-extend the subscriptions after they receive a notification. The
client operation is explained in Receiving a NOTIFY Request (section 3.6.5.2).

3.6.5.2 Receiving a NOTIFY Request

If the client and server have successfully negotiated the auto-extension for this subscription and the

AutoExtendSubscriptionExpireTimerEnabled flag is set to true, the client SHOULD reset the
SUBSCRIBE expiry timer when it receives a NOTIFY request.

The client SHOULD also reset this timer in a similar manner after it receives any subsequent NOTIFY
requests.

3.6.6 Timer Events

None.

41 / 95

[MS-SIP-Diff] - v20160714
Session Initiation Protocol Extensions
Copyright © 2016 Microsoft Corporation
Release: July 14, 2016

3.6.7 Other Local Events

None.

3.7 Contact Management Extensions Details

Session Initiation Protocol Extensions supports contact management. A client can store on the server
a list of contacts with which the client frequently communicates, and can retrieve and subsequently
manage this list. The client can also organize the contacts into self-defined groups, storing the list of
groups and their membership on the server, and can retrieve and manage the list. This section defines

the Session Initiation Protocol Extensions for adding, deleting, or modifying a contact or a group.

The server can return two types of contact and group lists (see the following). These lists are returned
by the server in NOTIFY and BENOTIFY requests, which are generated by the server, or are returned
in the body of a 200 OK response (also called a piggyback NOTIFY).

1. Full List

A complete list of all contacts and their associated groups. This list is returned from the server in a

SIP response to a SUBSCRIBE for the event vnd-microsoft-roaming-contact.

The Full List is a list of groups that is followed by a list of contacts. Groups are uniquely numbered.
The particular numbering sequence is not persisted and maycan vary from one transmission to the
next. Contacts are cross-referenced against groups by using group ID numbers. Contacts must be
in at least one group.

2. Delta List

A list that contains a subset of contacts and associated groups that were either added, modified,

or deleted from the Full List. This list is returned from the server in response to any of the
following: SetContact, DeleteContact, DeleteGroup, or ModifyGroup SERVICE operations.

A Delta List is a list of groups that were added or modified, followed by a list of contacts that were
added or modified, followed by a list of groups that were deleted, and finally, followed by a list of

contacts that were deleted.

The server maintains a single nonnegative integer version number for the contact/group list of every
user. Any time the user performs an operation that modifies the user contact/group list, the version

number is incremented.

The version number is returned to the client in the contact list, allowing the client to determine
whether it has the most up-to-date information, and to refresh the contact/group list if its state (as
seen by the server) needs synchronization. If the client delta number requires synchronization with
the server, it can obtain the current value by subscribing to the vnd-microsoft-roaming-contact event
and by looking at the deltaNum attribute of the contactList element in the body of the notification

data. The notification data is received in the 200 OK SIP response; or in a separate NOTIFY or
BENOTIFY request from the server.

The client can update the contact/group list by sending setContact, deleteContact, modifyGroup, and
deleteGroup SOAP requests that are carried in the body of SIP SERVICE requests to the server. The

server indicates completion of these requests by sending a SIP response to the SERVICE request.

The contact management extensions are optional. An implementation may support them.

3.7.1 Abstract Data Model

This section describes a conceptual model of possible data organization that an implementation
maintains to participate in this protocol. The described organization is provided to facilitate the
explanation of how the protocol behaves. This specification does not mandate that implementations

42 / 95

[MS-SIP-Diff] - v20160714
Session Initiation Protocol Extensions
Copyright © 2016 Microsoft Corporation
Release: July 14, 2016

adhere to this model as long as their external behavior is consistent with what is described in this
specification.

The client uses the following suggested data structures to facilitate implementation of the contact
management extensions:

Contact: A data structure to represent a contact for the user. A contact is uniquely identified by a URI
and maycan have other properties, such as its display name and the groups to which it belongs.

Contact List: A list data structure to store all contacts of the user.

Group: A data structure to represent a group of contacts for the user. A group is uniquely identified
by its name. The data structure should includeincludes references to the set of contacts that
belong to this group.

Group List: A list data structure to store all the groups for the user.

Access Control List (ACL): A list data structure to store the access control entries for the user.

The server can use the preceding suggested data structures to store this data for each user who is
assigned to this server.

The server can also have a configurable parameter MaxNumberOfContacts for each user to keep track
of the limit for how many contacts a specific user has.

In addition, both the client and the server should maintain a single nonnegative integer version

number for the contact/group list. The client should maintainmaintains this version number for the
user and the server should havehas the version number as an attribute for each user who subscribes
to the server for the contact/group list. Anytime the user performs an operation that modifies his
contact/group list, the version number is incremented by 1. The server should returnreturns this
version number to the client in the contact list. The version number allows the client to determine if it
has the most up-to-date information and to refresh the contact/group list if its state, as seen by the
server, is out-of-sync.

The client and the server should also maintain a separate nonnegative integer version number for the

ACL. The client should maintainmaintains this version number for the user and the server should
havehas the version number as an attribute for each user who subscribes to the server for the ACL.
Anytime the user performs an operation that modifies their ACL, the version number is incremented
by 1. The server should returnreturns this version number to the client along with the ACL. The
version number allows the client to determine if it has the most up-to-date information and to refresh
the ACL if its state, as seen by the server, is out-of-sync.

Note The preceding conceptual data can be implemented by using a variety of techniques. An
implementation can implement this data in any way that is convenient.

3.7.2 Timers

There are no additional timers required beyond what is specified in [RFC3261] and [RFC3265].

3.7.3 Initialization

The client SHOULD be registered with the server before retrieving the contact list or performing any
contact management operations. Registration is done by sending a REGISTER request to the server,

as specified in [RFC3261].

3.7.4 Higher-Layer Triggered Events

Except as specified in the following sections, the rules for message processing are as specified in

[RFC3261] and [RFC3265].

43 / 95

[MS-SIP-Diff] - v20160714
Session Initiation Protocol Extensions
Copyright © 2016 Microsoft Corporation
Release: July 14, 2016

3.7.4.1 Subscribing to the Contact/Group List

A client retrieves its contact list and learns of changes to the contact list (made by other clients for
this user) through a subscription. The client subscribes to the roaming contact list by sending a

SUBSCRIBE request for the vnd-microsoft-roaming-contact event. An example SUBSCRIBE request is
as follows.

 SUBSCRIBE sip:user@tradewind.com SIP/2.0
 Via: SIP/2.0/TLS 157.56.65.142:3485
 Max-Forwards: 70
 From: <sip:user@tradewind.com >;
 tag=51a7d2afbea6420a98d9c7629dacb811;epid=a892397901
 To: <sip:user@tradewind.com >
 Call-ID: f1c446dc3df340edb144a6e6471abf7b
 CSeq: 1 SUBSCRIBE
 Contact: <sip:user@tradewind.com:3485;
 maddr=157.56.65.142;transport=tls>;proxy=replace
 User-Agent: RTC/1.3

 Event: vnd-microsoft-roaming-contacts
 Accept: application/vnd-microsoft-roaming-contacts+xml

 Supported: com.microsoft.autoextend
 Supported: ms-benotify
 Proxy-Require: ms-benotify
 Supported: ms-piggyback-first-notify
 Proxy-Authorization: NTLM qop="auth",
 realm="SIP Communications Service",
 opaque="bfaf9a7c", crand="67b72300",
 cnum="1", targetname="tradewind.com",
 response="0100000064326166c2bdf103d2994f63"
 Content-Length: 0

Note The Request-URI, To URI, and From URI are all the SIP URIs of the user that is requesting a
contact list. The "Event: vnd-microsoft-roaming-contacts" header identifies that this is a roaming
contact list subscription. The Accept header contains the only supported content-type for this roaming

contact list. The remaining supported and proxy-require headers are described in more detail in the
Presence Document.

The full or delta contact/group list is returned by the server in NOTIFY and BENOTIFY requests, or in
the body of a 200 OK response (also called a piggyback NOTIFY). See Receiving the Contact List from
the Server (section 3.7.5.2).

3.7.4.2 Subscribing for the ACL

The ACL is stored at the server and the client can obtain the ACL after it is registered with the server
by using a SUBSCRIBE request. The client sends a SUBSCRIBE with an Event: type of vnd-microsoft-
roaming-ACL and an Accept: header with application/vnd-microsoft-roaming-acls+xml. Each device on
which the user logs in SHOULD subscribe to this event. The notifications for this event package
contain the ACL for the user. The initial notification carries the complete ACL, and any changes are
conveyed in subsequent notifications. This allows changes made by one device for a user to be

communicated to all other devices for the user maintaining a consistent ACL across all devices. The
server SHOULD maintain a database to hold the master copy of this ACL, which all devices sync to at
login time.

3.7.4.3 Add/Modify/Delete Contact

Adding, modifying, or deleting a contact is done through setContact and deleteContact SOAP requests
carried within a SIP SERVICE verb from the client to the server. Note that in all of these SERVICE
requests, the To URI, From URI, and Request-URI are the SIP URI of the user (not the contact). The

44 / 95

[MS-SIP-Diff] - v20160714
Session Initiation Protocol Extensions
Copyright © 2016 Microsoft Corporation
Release: July 14, 2016

associated XML schema for these common operations is specified in Appendix D: Contact Management
Schema (section 9).

The server indicates that a setContact or a deleteContact request was successful by sending a 200 OK
response to the SERVICE request.

3.7.4.4 Add/Modify/Delete Group

Similarly to managing contacts, managing groups within the contact list is done through modifyGroup,
and deleteGroup SOAP requests carried in a SIP SERVICE request from the client to the server.

Groups are identified in these requests by an integer (1-63). A contact maycan belong to one or more
groups. Every contact belongs to group #1 by default. This is the default group created automatically
by the server, and MUST NOT be created or deleted by the user.

Before a group can be deleted, all contacts must be removed from the group by using DeleteContact
operations. The associated XML schema for these operations is specified in Appendix D: Contact
Management Schema (section 9).

The server indicates that a modifyGroup request or a deleteGroup request was successful by sending a

200 OK response to the SERVICE request.

3.7.5 Message Processing Events and Sequencing Rules

Except as specified in the following sections, the rules for message processing are as specified in
[RFC3261] and [RFC3265].

3.7.5.1 Setting ACEs for a Contact

Adding a contact is usually accompanied by a setACE operation to allow that contact to view user
presence and communicate with the user.

This is done by using an ACL that is associated with each user object stored in the server database.

The ACL is composed of access control entries (ACEs), which are two character strings that encode the
permissions attributed to a certain URI relative to a given user. The From URI for an SIP INVITE
request or a SIP SUBSCRIBE request is compared against the ACL for the user in the To header to
determine whether or not the request is to be allowed. This comparison occurs in two different places.
The server MUST enforce the presence (SUBSCRIBE) portion of the ACE. The client MUST enforce the
session initiation (INVITE) portion of the ACE. Finally, note that the ACE comparison can take one of

three forms: it can apply to all URIs, it can apply to a specific SIP URI, or it can apply to a specific SIP
domain.

3.7.5.2 Receiving the Contact List from the Server

The server responds by sending the contact list in a notification. The initial notification is the full

contact list. Subsequent notifications are partial notifications containing only the delta from the last
notification. The version number ("deltaNum") allows the client to keep in sync with the version stored
on the server. In the following example, the contact list is piggybacked on the 200 OK to the

SUBSCRIBE. For piggybacking information, see Piggyback Notification in 200 OK Response
Details (section 3.4).

 SIP/2.0 200 OK
 Contact: <sip:tradewind.com:5061;transport=tls;ms-fe="fe.tradewind.com">
 Content-Length: 4558
 Via: SIP/2.0/TLS 157.56.65.142:3485;
 received=10.10.10.6; ms-received-port=29047;
 ms-received-cid=6c41700
 From: <sip:user@tradewind.com>;
 tag=51a7d2afbea6420a98d9c7629dacb811;epid=a892397901

45 / 95

[MS-SIP-Diff] - v20160714
Session Initiation Protocol Extensions
Copyright © 2016 Microsoft Corporation
Release: July 14, 2016

 To: <sip:user@tradewind.com="" tag=ee697d7f2d8dc2b899014154efb57a4c
 Call-ID: f1c446dc3df340edb144a6e6471abf7b
 CSeq: 1 SUBSCRIBE
 Expires: 39743
 Content-Type: application/vnd-microsoft-roaming-contacts+xml
 Event: vnd-microsoft-roaming-contacts
 subscription-state: active;expires=39743
 Supported: com.microsoft.autoextend, ms-piggyback-first-notify, ms-benotify
 <contactList deltaNum="685" >
 <group id="1" name="~" externalURI="" />
 <group id="2" name="Team" externalURI="" />
 <group id="3" name="External" externalURI="" />
 <contact uri="contact1@tradewind.com" name=""
 groups="1 3 " subscribed="true" externalURI="" />
 <contact uri="contact2@tradewind.com " name=""
 groups="1 2 " subscribed="true" externalURI="" />
 <contact uri="contact3@tradewind.com " name=""
 groups="1 " subscribed="true" externalURI="" />
 <contact uri="contact4@tradewind.com " name=""
 groups="1 " subscribed="true" externalURI="" />
 </contactList>

3.7.5.3 Receiving the ACL from the Server

On receiving the ACL from the server in NOTIFY and BENOTIFY requests or in a piggybacked
notification, the client SHOULD process it and store all ACEs locally. On receiving any subsequent
notifications containing changes to the ACL, the client SHOULD update its local copy.

3.7.6 Timer Events

None.

3.7.7 Other Local Events

None.

46 / 95

[MS-SIP-Diff] - v20160714
Session Initiation Protocol Extensions
Copyright © 2016 Microsoft Corporation
Release: July 14, 2016

4 Protocol Examples

The following sections describe several operations as used in common scenarios to illustrate the
function of Session Initiation Protocol Extensions.

4.1 Registration with Kerberos

The following flow outlines how the Kerberos authentication mechanism works during the registration
process. At this point in time, the client discovers its outbound proxy and initializes an SA (or context)

with it.

Figure 1: Kerberos registration flow

The fundamental difference between the NTLM Authentication Protocol and Kerberos is the way in
which the client answers a challenge from the server. With Kerberos, the client first acquires a
Kerberos ticket from the KDC (Active Directory) for the specific server that is issuing the challenge.
The server is identified by an SPN containing a fully qualified domain name (FQDN). The SPN must

beis of the form sip/<FQDN>. The SPN for a challenge is carried in the targetname parameter in the
Proxy-Authenticate: header of the challenge.

1. Alice's client sends a REGISTER request with no credentials (no Proxy-Authorization: header) to
the outbound server it selected.

 REGISTER sip:registrar.contoso.com SIP/2.0
 Via: SIP/2.0/TLS alice1.contoso.com;branch=z9hG4bK7
 From: "Alice" <sip:Alice@contoso.com>;tag=354354535;epid=6534555

47 / 95

[MS-SIP-Diff] - v20160714
Session Initiation Protocol Extensions
Copyright © 2016 Microsoft Corporation
Release: July 14, 2016

 To: "Alice" sip:Alice@contoso.com
 Call-ID: 123213@Alice1.contoso.com
 CSeq: 12345 REGISTER
 Max-Forwards: 70
 User-Agent: Windows RTC/1.1.2600
 Contact: "Alice" sip:Alice@Alice1.contoso.com
 Content-Length: 0

The epid parameter on the From: header uniquely identifies this particular endpoint for the user.
The server uses this value in subsequent messages to determine the SA with which to sign the

message.

2. Authentication is enabled at the outbound server, and it challenges Alice's client. The server
indicates support for NTLM and Kerberos in the challenge.

 SIP/2.0 407 Proxy Authentication Required
 Via: SIP/2.0/TLS Alice1.contoso.com;branch=z9hG4bK7
 From: "Alice" <sip:Alice@contoso.com>;tag=354354535;epid=6534555
 To: "Alice" <sip:Alice@contoso.com>;tag=5564566
 Call-ID: 123213@Alice1.contoso.com
 CSeq: 12345 REGISTER
 Date: Sat, 13 Nov 2010 23:29:00 GMT
 Proxy-Authenticate: Kerberos realm="Contoso RTC Service Provider",
 targetname="sip/hs1.contoso.com", qop="auth"
 Proxy-Authenticate: NTLM realm="Contoso RTC Service Provider",
 targetname="hs1.contoso.com", qop="auth"
 Content-Length: 0

The targetname parameter carries the SPN for this proxy for Kerberos and the FQDN of the proxy
for NTLM. The actual contents of this parameter must beare meaningful for this proxy but are

opaque to other proxies and the client. It is merely a unique string for correlation of the message
header to an SA. Two Proxy-Authenticate: headers are present, indicating the server's capability
to do one of Kerberos or NTLM.

The proxy inserts a Date: header in the 407 challenge to allow the client to detect clock skew
between the client and server. Both NTLM 2.0 and Kerberos 5.0 require synchronization of the
client and server clocks. Clock skew can cause authentication to fail even with valid credentials.

The presence of the Date: header allows the client to log this condition and the administrator to
correct the deviation.

3. The client acquires a Kerberos ticket for the server indicated in the targetname parameter of the
Kerberos Proxy-Authenticate: header. The client reissues the request with a Proxy-Authorization:
header containing the encoded Kerberos ticket.

 REGISTER sip:registrar.contoso.com SIP/2.0
 Via: SIP/2.0/TLS Alice1.contoso.com;branch=z9hG4bK9
 From: "Alice" <sip:Alice@contoso.com>;tag=354354535;epid=6534555
 To: "Alice" sip:Alice@contoso.com
 Call-ID: 123213@Alice1.contoso.com
 CSeq: 12346 REGISTER
 Max-Forwards: 70
 User-Agent: Windows RTC/1.1.2600
 Proxy-Authorization: Kerberos realm="Contoso RTC Service Provider",
 targetname="sip/hs1.contoso.com",qop="auth",gssapi-data="34fcdf9345345"
 Contact: "Alice" sip:alice@alice1.contoso.com
 Content-Length: 0

The Cseq number has been incremented. The Call-ID and epid remain the same.

48 / 95

[MS-SIP-Diff] - v20160714
Session Initiation Protocol Extensions
Copyright © 2016 Microsoft Corporation
Release: July 14, 2016

The targetname parameter echoes the value of the targetname parameter in the previous Proxy-
Authenticate: header. The gssapi-data parameter contains the Kerberos ticket information. The

choice of Kerberos authentication is indicated by the scheme (Kerberos) as the first token in the
header.

4. On reception of the REGISTER request, the outbound server authenticates the user with the
information in the Proxy-Authorization: header. Authentication succeeds, and an SA is created in
the outbound server for Alice's client.

The Director then redirects the REGISTER request to point the client at the appropriate home
server for this user. The redirect response is signed, using the newly established SA between the
client and this proxy.

 SIP/2.0 301 Moved Permanently
 Via: SIP/2.0/TLS Alice1.contoso.com;branch=z9hG4bK9
 From: "Alice" <sip:Alice@contoso.com>;tag=354354535;epid=6534555
 To: "Alice" sip:Alice@contoso.com
 Call-ID: 123213@Alice1.contoso.com
 CSeq: 12346 REGISTER
 Proxy-Authentication-Info:
 Kerberos realm="Contoso RTC Service Provider",
 targetname="sip/hs1.contoso.com", qop="auth", opaque="ACDC123",
 srand="3453453", snum=1, rspauth="23423acfdee2"
 Contact: sip:hs2.contoso.com
 Content-Length: 0

The Proxy-Authentication-Info: header carries the signature for this SIP message. The snum is set
to 1 as this is the first message signed with the newly established SA. The srand parameter
contains the (random) salt value used by the server to generate the signature. The opaque
parameter contains a unique token for this newly established SA.

5. The client receives the redirect response, verifies the signature using the now complete SA for the
outbound proxy, and reissues the REGISTER request to its proper home server.

 REGISTER sip:hs2.contoso.com SIP/2.0
 Via: SIP/2.0/TLS Alice1.contoso.com;branch=z9hG4bKa
 From: "Alice" <sip:Alice@contoso.com>;tag=354354535;epid=6534555
 To: "Alice" sip:Alice@contoso.com
 Call-ID: 123213@Alice1.contoso.com
 CSeq: 12347 REGISTER
 Max-Forwards: 70
 User-Agent: Windows RTC/1.1.2600
 Contact: "Alice" sip:Alice@Alice1.contoso.com
 Content-Length: 0

The client will replace its current outbound proxy with the proxy indicated in the Contact: header
of the 301 response. The REGISTER request is sent to this new outbound proxy (the user's true
home server). Because no SA exists yet with this new outbound proxy, no Proxy-Authorization:
header is present in the request.

6. Alice's home server receives the REGISTER request and issues a challenge, indicating support for

NTLM and Kerberos.

 SIP/2.0 407 Proxy Authentication Required
 Via: SIP/2.0/TLS Alice1.contoso.com;branch=z9hG4bKa
 From: "Alice" <sip:Alice@contoso.com>;tag=354354535;epid=6534555
 To: "Alice" <sip:Alice@contoso.com>;tag=8823488
 Call-ID: 123213@Alice1.contoso.com
 CSeq: 12347 REGISTER
 Date: Sat, 13 Nov 2010 23:29:00 GMT
 Proxy-Authenticate: Kerberos realm="Contoso RTC Service Provider",

49 / 95

[MS-SIP-Diff] - v20160714
Session Initiation Protocol Extensions
Copyright © 2016 Microsoft Corporation
Release: July 14, 2016

 targetname="sip/hs2.contoso.com", qop="auth"
 Proxy-Authenticate: NTLM realm="Contoso RTC Service Provider",
 targetname="hs2.contoso.com", qop="auth"
 Content-Length: 0

The targetname parameter for Kerberos contains the SPN for Alice's home server. The two Proxy-
Authenticate: headers indicate support for Kerberos and NTLM, respectively. The realm is the
same as for HS1 because they fall under the same protection space. This means the client will use
the same credentials in responding to HS2's challenge.

7. Alice's client receives the challenge, selects Kerberos authentication, and reissues the REGISTER
request to her home server. The client will acquire a Kerberos ticket for HS2 and include this

information in the gssapi-data parameter of the Proxy-Authorization: header.

 REGISTER sip:hs2.contoso.com SIP/2.0
 Via: SIP/2.0/TLS Alice1.contoso.com;branch=z9hG4bKc
 From: Alice <sip:Alice@contoso.com>;
 tag=354354535;
 epid=6534555
 To: Alice sip:Alice@contoso.com
 Call-ID: 123213@Alice1.contoso.com
 CSeq: 12348 REGISTER
 Max-Forwards: 70
 User-Agent: Windows RTC/1.1.2600
 Proxy-Authorization: Kerberos realm=Contoso RTC Service Provider,
 targetname=sip/hs2.contoso.com,
 qop=auth, gssapi-data=8234934234,
 opaque=CDEF1245
 Contact: Alice sip:alice@alice1.contoso.com
 Content-Length: 0

The Cseq: number is incremented. The Call-ID and epid remain the same. The Proxy-
Authorization: header indicates support for Kerberos authentication.

8. Alice's home server receives the REGISTER request, verifies the Kerberos ticket, and processes

the REGISTER request. The SA between Alice's home server and Alice's client is now complete.
The server responds to the REGISTER request and signs the response using the newly completed
SA. The epid parameter from the From: header is saved as part of the registration information for
Alice. This value will be inserted in the To: header of subsequent requests that are forwarded to
Alice via her home server (registrar).

 SIP/2.0 200 OK
 Via: SIP/2.0/TLS Alice1.contoso.com;branch=z9hG4bKc
 From: "Alice" <sip:Alice@contoso.com>;tag=354354535;epid=6534555
 To: "Alice" <sip:Alice@contoso.com>;tag=8823488
 Call-ID: 123213@Alice1.contoso.com
 CSeq: 12348 REGISTER
 Expires: 3600
 Proxy-Authentication-Info:
 Kerberos realm="Contoso RTC Service Provider",
 targetname="sip/hs2.contoso.com", qop="auth",
 opaque="CDEF1245", rspauth="fefeacdd", srand=98984345, snum=1
 Contact: "Alice" sip:Alice@Alice1.contoso.com
 Content-Length: 0

The epid parameter on the From: header is used by the server to determine how to sign this
response (find the SA). The signature for this response is carried in the rspauth parameter of the
Proxy-Authentication-Info: header. The opaque parameter indicates the newly established SA.

Because this is the first signed message from HS2 to the client, the snum parameter is set to 1.

50 / 95

[MS-SIP-Diff] - v20160714
Session Initiation Protocol Extensions
Copyright © 2016 Microsoft Corporation
Release: July 14, 2016

4.2 Registration with NTLM

The following call flow outlines how the NTLM Authentication Protocol authentication mechanism
works.

Figure 2: NTLM registration flow

1. Alice's client sends a REGISTER request with no credentials (no Proxy-Authorization: header) to
the server.

 REGISTER sip:registrar.contoso.com SIP/2.0
 Via: SIP/2.0/TLS alice1.contoso.com;branch=z9hG4bK7
 From: "Alice" <sip:alice@contoso.com>;tag=354354535;epid=6534555
 To: "Alice" sip:alice@contoso.com

51 / 95

[MS-SIP-Diff] - v20160714
Session Initiation Protocol Extensions
Copyright © 2016 Microsoft Corporation
Release: July 14, 2016

 Call-ID: 123213@alice1.contoso.com
 CSeq: 12345 REGISTER
 Max-Forwards: 70
 User-Agent: Windows RTC/1.1.2600
 Contact: "Alice" sip:alice@alice1.contoso.com
 Content-Length: 0

The epid parameter on the From: header uniquely identifies this particular endpoint for the user.
The server will use this value in subsequent messages to determine the SA with which to sign the
message.

2. Authentication is enabled at the outbound server, and it challenges Alice's client. The server
indicates support for NTLM and Kerberos in the challenge.

 SIP/2.0 407 Proxy Authentication Required
 Via: SIP/2.0/TLS alice1.contoso.com;branch=z9hG4bK7
 From: "Alice" <sip:alice@contoso.com>;tag=354354535;epid=6534555
 To: "Alice" <sip:alice@contoso.com>;tag=5564566
 Call-ID: 123213@alice1.contoso.com
 CSeq: 12345 REGISTER
 Date: Sat, 13 Nov 2010 23:29:00 GMT
 Proxy-Authenticate: Kerberos realm="Contoso RTC Service Provider",
 targetname="sip/hs1.contoso.com", qop="auth"
 Proxy-Authenticate: NTLM realm="Contoso RTC Service Provider",
 targetname="hs1.contoso.com', qop="auth"
 Content-Length: 0

The targetname parameter carries the FQDN for this proxy for NTLM and the SPN of the proxy for
Kerberos. The actual content of this parameter must beis meaningful for this proxy but is opaque
to other proxies and the client. It is merely a unique string for correlation of the message header
to an SA. Three Proxy-Authenticate: headers are present, indicating the server's capability to do
one of Kerberos or NTLM.

The proxy inserts a Date: header in the 407 challenge to allow the client to detect clock skew

between the client and server. Both NTLM 2.0 and Kerberos 5.0 require synchronization of the
client and server clocks. Clock skew can cause authentication to fail even with valid credentials.
The presence of the Date: header allows the client to log this condition and the administrator to
correct the deviation.

3. The client reissues the REGISTER request, indicating support for NTLM authentication.

 REGISTER sip:registrar.contoso.com SIP/2.0
 Via: SIP/2.0/TLS alice1.contoso.com;branch=z9hG4bK8
 From: "Alice" <sip:alice@contoso.com>;tag=354354535;epid=6534555
 To: "Alice" sip:alice@contoso.com
 Call-ID: 123213@alice1.contoso.com
 CSeq: 12346 REGISTER
 Max-Forwards: 70
 User-Agent: Windows RTC/1.1.2600
 Proxy-Authorization: NTLM realm="Contoso RTC Service Provider",
 targetname="hs1.contoso.com",qop="auth",gssapi-data=""
 Contact: "Alice" sip:alice@alice1.contoso.com
 Content-Length: 0

The Cseq number has been incremented. The Call-ID and epid remain the same.

The targetname parameter echoes the value of the targetname parameter in the previous Proxy-
Authenticate: header. The empty gssapi-data parameter indicates that no credentials (password)
are being sent in this header. The choice of NTLM authentication is indicated by the scheme
(NTLM) as the first token in the header.

52 / 95

[MS-SIP-Diff] - v20160714
Session Initiation Protocol Extensions
Copyright © 2016 Microsoft Corporation
Release: July 14, 2016

4. The outbound server responds with a 407 containing a Proxy-Authenticate: header, which includes
the NTLM challenge.

 SIP/2.0 407 Proxy Authentication Required
 Via: SIP/2.0/TLS alice1.contoso.com;branch=z9hG4bK8
 From: "Alice" <sip:alice@contoso.com>;tag=354354535;epid=6534555
 To: "Alice" <sip:alice@contoso.com>;tag=5564566
 Call-ID: 123213@alice1.contoso.com
 CSeq: 12346 REGISTER
 Date: Sat, 13 Nov 2010 23:29:00 GMT
 Proxy-Authenticate: NTLM realm="Contoso RTC Service Provider",
 targetname="hs1.contoso.com", qop="auth",
 gssapi-data ="345435acdecbba",opaque="ACDC123"
 Content-Length: 0

The gssapi-data parameter carries the challenge. The opaque parameter serves as an index to the
(incomplete) SA state on the proxy.

5. Alice's client reissues the REGISTER request with a response to the outbound server's challenge.

 REGISTER sip:registrar.contoso.com SIP/2.0
 Via: SIP/2.0/TLS alice1.contoso.com;branch=z9hG4bK9
 From: "Alice" <sip:alice@contoso.com>;tag=354354535;epid=6534555
 To: "Alice" sip:alice@contoso.com
 Call-ID: 123213@alice1.contoso.com
 CSeq: 12347 REGISTER
 Max-Forwards: 70
 User-Agent: Windows RTC/1.1.2600
 Proxy-Authorization: NTLM realm="Contoso RTC Service Provider",
 targetname="hs1.contoso.com",qop="auth",
 gssapi-data="34fcdf9345345",opaque="ACDC123"
 Contact: "Alice" sip:alice@alice1.contoso.com
 Content-Length: 0

The Cseq number has been incremented. The Call-ID and epid remain the same. The gssapi-data

parameter carries the client's response to the challenge. The opaque parameter is echoed from

the previous challenge.

6. On reception of the REGISTER request, the outbound server authenticates the user with the
information in the Proxy-Authorization: header. Authentication succeeds, and a SA is created in
the outbound server for Alice's client.

The outbound server then redirects the REGISTER request to point the client at the appropriate
home server for this user. The redirect response is signed, using the newly established SA
between the client and this proxy.

 SIP/2.0 301 Moved Permanently
 Via: SIP/2.0/TLS alice1.contoso.com;branch=z9hG4bK9
 From: "Alice" <sip:alice@contoso.com>;tag=354354535;epid=6534555
 To: "Alice" sip:alice@contoso.com
 Call-ID: 123213@alice1.contoso.com
 CSeq: 12347 REGISTER
 Proxy-Authentication-Info: NTLM realm="Contoso RTC Service Provider",
 targetname="hs1.contoso.com", qop="auth", opaque="ACDC123",
 srand="3453453", snum=1, rspauth="23423acfdee2"
 Contact: sip:hs2.contoso.com
 Content-Length: 0

53 / 95

[MS-SIP-Diff] - v20160714
Session Initiation Protocol Extensions
Copyright © 2016 Microsoft Corporation
Release: July 14, 2016

The Proxy-Authentication-Info: header carries the signature for this SIP message. The snum is set
to 1 because this is the first message signed with the newly established SA. The srand parameter

contains the (random) salt value used by the server to generate the signature.

7. The client receives the redirect response, verifies the signature using the now complete SA for the

outbound proxy, and reissues the REGISTER request to its proper home server.

 REGISTER sip:hs2.contoso.com SIP/2.0
 Via: SIP/2.0/TLS alice1.contoso.com;branch=z9hG4bKa
 From: "Alice" <sip:alice@contoso.com>;tag=354354535;epid=6534555
 To: "Alice" sip:alice@contoso.com
 Call-ID: 123213@alice1.contoso.com
 CSeq: 12348 REGISTER
 Max-Forwards: 70
 User-Agent: Windows RTC/1.1.2600
 Contact: "Alice" sip:alice@alice1.contoso.com
 Content-Length: 0

The client will replace its current outbound proxy with the proxy indicated in the Contact: header
of the 301 response. The REGISTER request is sent to this new outbound proxy (the user's true
home server). Since no SA exists yet with this new outbound proxy, no Proxy-Authenticate:
header is present in the request.

8. Alice's home server receives the REGISTER request and issues a challenge, indicating support for
NTLM and Kerberos authentication.

 SIP/2.0 407 Proxy Authentication Required
 Via: SIP/2.0/TLS alice1.contoso.com;branch=z9hG4bKa
 From: "Alice" <sip:alice@contoso.com>;tag=354354535;epid=6534555
 To: "Alice" <sip:alice@contoso.com>;tag=8823488
 Call-ID: 123213@alice1.contoso.com
 CSeq: 12348 REGISTER
 Date: Sat, 13 Nov 2010 23:29:00 GMT
 Proxy-Authenticate: Kerberos realm="Contoso RTC Service Provider",
 targetname="hs2.contoso.com", qop="auth"
 Proxy-Authenticate: NTLM realm="Contoso RTC Service Provider",
 targetname="hs2.contoso.com", qop="auth"
 Content-Length: 0

The targetname parameter contains the FQDN for Alice's home server. The two Proxy-
Authenticate: headers indicate support for Kerberos and NTLM, respectively. The realm is the
same as for HS1 because they fall under the same protection space. This means the client will use

the same credentials in responding to HS2's challenge.

9. Alice's client receives the challenge, selects NTLM authentication, and reissues the REGISTER
request to her home server.

 REGISTER sip:hs2.contoso.com SIP/2.0
 Via: SIP/2.0/TLS alice1.contoso.com;branch=z9hG4bKb
 From: "Alice" <sip:alice@contoso.com>;tag=354354535;epid=6534555
 To: "Alice" sip:alice@contoso.com
 Call-ID: 123213@alice1.contoso.com
 CSeq: 12349 REGISTER
 Max-Forwards: 70
 User-Agent: Windows RTC/1.1.2600
 Proxy-Authorization: NTLM realm="Contoso RTC Service Provider",
 targetname="hs2.contoso.com",qop="auth",gssapi-data=""
 Contact: "Alice" sip:alice@alice1.contoso.com
 Content-Length: 0

54 / 95

[MS-SIP-Diff] - v20160714
Session Initiation Protocol Extensions
Copyright © 2016 Microsoft Corporation
Release: July 14, 2016

The Cseq: number is incremented. The Call-ID and epid remain the same. The Proxy-
Authorization: header indicates support for NTLM authentication.

10. Alice's home server receives the REGISTER request and issues an appropriate NTLM challenge.

 SIP/2.0 407 Proxy Authentication Required
 Via: SIP/2.0/TLS alice1.contoso.com;branch=z9hG4bKb
 From: "Alice" <sip:alice@contoso.com>;tag=354354535;epid=6534555
 To: "Alice" <sip:alice@contoso.com>;tag=8823488
 Call-ID: 123213@alice1.contoso.com
 CSeq: 12349 REGISTER
 Date: Sat, 13 Nov 2010 23:29:00 GMT
 Proxy-Authenticate: NTLM realm="Contoso RTC Service Provider",
 targetname="hs2.contoso.com", qop="auth",
 opaque="CDEF1245", gssapi-data="dfd345435d"
 Content-Length: 0

The gssapi-data parameter contains the NTLM challenge. The opaque parameter identifies the

(incomplete) SA on Alice's home server.

11. Alice's client responds to the challenge from Alice's home server by reissuing the REGISTER

request.

 REGISTER sip:hs2.contoso.com SIP/2.0
 Via: SIP/2.0/TLS alice1.contoso.com;branch=z9hG4bKc
 From: "Alice" <sip:alice@contoso.com>;tag=354354535;epid=6534555
 To: "Alice" sip:alice@contoso.com
 Call-ID: 123213@alice1.contoso.com
 CSeq: 12350 REGISTER
 Max-Forwards: 70
 User-Agent: Windows RTC/1.1.2600
 Proxy-Authorization: NTLM realm="Contoso RTC Service Provider",
 targetname="hs2.contoso.com",qop="auth",
 gssapi-data="8234934234", opaque="CDEF1245"
 Contact: "Alice" sip:alice@alice1.contoso.com
 Content-Length: 0

The CSeq number is incremented. The Call-ID remains the same. The opaque parameter is echoed
from the server's challenge. The gssapi-data parameter carries the response to the server's
challenge.

12. Alice's home server receives the REGISTER request, verifies the response to its challenge, and
processes the REGISTER request. The SA between Alice's home server and Alice's client is now
complete. The server responds to the REGISTER request and signs the response using the newly
completed SA. The epid parameter from the From: header is saved as part of the registration

information for Alice. This value will be inserted in the To: header of subsequent requests that are
forwarded to Alice via her home server (registrar).

 SIP/2.0 200 OK
 Via: SIP/2.0/TLS alice1.contoso.com;branch=z9hG4bKc
 From: "Alice" <sip:alice@contoso.com>;tag=354354535;epid=6534555
 To: "Alice" <sip:alice@contoso.com>;tag=8823488
 Call-ID: 123213@alice1.contoso.com
 CSeq: 12350 REGISTER
 Expires: 3600
 Proxy-Authentication-Info: NTLM realm="Contoso RTC Service Provider",
 targetname="hs2.contoso.com", qop="auth", opaque="CDEF1245",
 rspauth="fefeacdd", srand=98984345, snum=1
 Contact: "Alice" sip:alice@alice1.contoso.com
 Content-Length: 0

55 / 95

[MS-SIP-Diff] - v20160714
Session Initiation Protocol Extensions
Copyright © 2016 Microsoft Corporation
Release: July 14, 2016

The epid parameter on the From: header is used by the server to determine how to sign this
response (find the SA). The signature for this response is carried in the rspauth parameter of the

Proxy-Authentication-Info: header.

4.3 Batched SUBSCRIBE and Piggybacked NOTIFY Example

This example shows the use of a batched SUBSCRIBE request by the client to subscribe for presence
information of multiple contacts with a single subscription. It also shows how the server returns the
presence information as a piggybacked notification within the 200 OK response to the SUBSCRIBE

request.

Figure 3: Batched SUBSCRIBE request and piggybacked NOTIFY example

The client sends a batched SUBSCRIBE request to subscribe for presence information of two other

users: user2 and user3. The content-type of the SUBSCRIBE request is application/adrl+xml, and the
xml body includes user2 and user3 URIs in the list of resources to subscribe to. Note that the
SUBSCRIBE request also includes the Supported: ms-piggyback-first-notify header, indicating that the
client supports piggybacked NOTIFY requests.

 SUBSCRIBE sip:user1@server.contoso.com SIP/2.0
 Via: SIP/2.0/TCP 11.22.33.44:14383
 Max-Forwards: 70
 From: "User 1" <sip:user1@server.contoso.com>
 ;tag=90ee61ca61c643f9b80c582e3d3e5aae;epid=f540d58d81
 To: sip:user1@server.contoso.com
 Call-ID: fb80bc9af4974421b96cebd16ea599f2
 CSeq: 1 SUBSCRIBE
 Contact:
 <sip:user1@server.contoso.com:14383;
 maddr=11.22.33.44;transport="tcp">
 ;proxy=replace
 User-Agent: RTC/1.3
 Event: presence
 Accept:
 application/rlmi+xml,text/xml+msrtc.pidf,multipart/related
 Supported: com.microsoft.autoextend
 Supported: ms-benotify
 Proxy-Require: ms-benotify
 Supported: ms-piggyback-first-notify
 Require: adhoclist
 Supported: eventlist
 Proxy-Authorization: Kerberos qop="auth", realm="SIP
 Communications Service", opaque="1CF1F9E0", crand="541f0209",
 cnum="5", targetname="sip/server.contoso.com",
 response="602306092a864886f71201020201011100
 ffffffff066ded2537aaae51fb4e69ca00ea6b20"
 Content-Type: application/adrl+xml
 Content-Length: 334

56 / 95

[MS-SIP-Diff] - v20160714
Session Initiation Protocol Extensions
Copyright © 2016 Microsoft Corporation
Release: July 14, 2016

 <adhoclist xmlns="urn:ietf:params:xml:ns:adrl"
 uri="sip:user1@server.contoso.com"
 name="sip:user1@server.contoso.com">
 <create xmlns="">
 <resource uri="sip:user2@server.contoso.com" />
 <resource uri="sip:user3@server.contoso.com" />
 </create>
 </adhoclist>

The server accepts the SUBSCRIBE request by sending a 200 OK. In this example, the server supports
piggybacked NOTIFY and includes the Supported: ms-piggyback-first-notify header in the 200 OK
response. The multipart body of the 200 OK contains the batched Presence Documents for user2 and
user3. If the server did not support piggybacked NOTIFY, the same body would have been sent in a
separate NOTIFY instead.

 SIP/2.0 200 OK
 Authentication-Info:
 Kerberos rspauth="602306092A864886F71201020201011100
 FFFFFFFFE6B2C6E2C3D68634CD116221CDDF5C40",
 srand="0AEB0220", snum="7", opaque="1CF1F9E0", qop="auth",
 targetname="sip/server.contoso.com",
 realm="SIP Communications Service"
 Contact: sip:server.contoso.com;transport=tcp
 Content-Length: 1672
 Via: SIP/2.0/TCP 11.22.33.44:14383;
 ms-received-port=1624;ms-received-cid=12c00
 From: "User 1" <sip:user1@server.contoso.com>
 ;tag=90ee61ca61c643f9b80c582e3d3e5aae;epid=f540d58d81
 To: <sip:user1@server.contoso.com>
 ;tag=A53585F7
 Call-ID: fb80bc9af4974421b96cebd16ea599f2
 CSeq: 1 SUBSCRIBE
 Expires: 24767
 Require: eventlist
 Content-Type: multipart/related; type="application/rlmi+xml";
 start=resourceList; boundary=e7904a528704417c9a90297d24081f8e
 Event: presence
 subscription-state: active;expires=24767
 ms-piggyback-cseq: 1
 Supported: com.microsoft.autoextend, ms-piggyback-first-notify,
 ms-benotify
 --e7904a528704417c9a90297d24081f8e
 Content-Transfer-Encoding: binary
 Content-ID: resourceList
 Content-Type: application/rlmi+xml
 <list xmlns="urn:ietf:params:xml:ns:rlmi"
 uri="sip:user1@server.contoso.com"
 version="0" fullState="true">
 <resource uri="sip:user2@server.contoso.com">
 <instance id="0" state="active"
 cid="user2@server.contoso.com" />
 </resource>
 <resource uri="sip:user3@server.contoso.com">
 <instance id="0" state="active"
 cid="user3@server.contoso.com" />
 </resource>
 </list>
 --e7904a528704417c9a90297d24081f8e
 Content-Transfer-Encoding: binary
 Content-ID: user2@server.contoso.com
 Content-Type: text/xml+msrtc.pidf
 <presentity uri="user2@server.contoso.com"
 xmlns="http://schemas.microsoft.com/2002/09/sip/presence"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" >
 <availability aggregate="0" description="" />
 <activity aggregate="0" description="" />

57 / 95

[MS-SIP-Diff] - v20160714
Session Initiation Protocol Extensions
Copyright © 2016 Microsoft Corporation
Release: July 14, 2016

 <displayName displayName="User 2" />
 </presentity>
 --e7904a528704417c9a90297d24081f8e
 Content-Transfer-Encoding: binary
 Content-ID: user3@server.contoso.com
 Content-Type: text/xml+msrtc.pidf
 <presentity uri="user3@server.contoso.com"
 xmlns="http://schemas.microsoft.com/2002/09/sip/presence"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" >
 <availability aggregate="0" description="" />
 <activity aggregate="0" description="" />
 <displayName displayName="User 3" />
 </presentity>
 --e7904a528704417c9a90297d24081f8e--

4.4 Best Effort NOTIFY Example

This example demonstrates the use of a BENOTIFY request to eliminate the need for the client to send
a response to the notifications sent by the server.

Figure 4: BENOTIFY request example

Notice that in the previous example, the client includes the Supported: ms-benotify and Proxy-
Require: ms-benotify headers in the SUBSCRIBE request. The 200 OK response also includes the
Supported: ms-benotify header, indicating that the server also supports BENOTIFY. The client
SHOULD now be ready to receive BENOTIFY messages from the server.

When the presence information of the user's clients is subscribed to changes, the server sends an

update to the client by using a BENOTIFY message. The BENOTIFY is similar to a NOTIFY except that
the client does not send a response to the BENOTIFY request.

 BENOTIFY sip:11.22.33.44:1677;transport=tcp;
 ms-received-cid=13000 SIP/2.0
 Authentication-Info: Kerberos
 rspauth="602306092A864886F71201020201011100
 FFFFFFFFDDD5FE865F40D223A53244106E693F3D",
 srand="8C489988", snum="13", opaque="B23769DD",
 qop="auth", targetname="sip/server.contoso.com",
 realm="SIP Communications Service"
 Via: SIP/2.0/TCP 10.196.50.15;branch=z9hG4bK50867967.8D409A15;
 branched=FALSE
 Max-Forwards: 70
 Content-Length: 1127
 From: <sip:user2@server.contoso.com>
 ;tag=DD35C0B2
 To: <sip:user2@server.contoso.com>

58 / 95

[MS-SIP-Diff] - v20160714
Session Initiation Protocol Extensions
Copyright © 2016 Microsoft Corporation
Release: July 14, 2016

 ;tag=9c4ef27513d24eb9be781420407b2a87;epid=62ccbeb808
 Call-ID: 91c6c88de3c04d5180d9a2e1434a18dd
 CSeq: 2 BENOTIFY
 Require: eventlist
 Content-Type: text/xml+msrtc.pidf
 Event: presence
 subscription-state: active;expires=28367
 <presentity uri="user1@server.contoso.com"
 xmlns="http://schemas.microsoft.com/2002/09/sip/presence"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance">
 <availability aggregate="300" description=""
 epid="03640fc59f" />
 <activity aggregate="400" description=""
 epid="03640fc59f" />
 <displayName displayName="User 1" />
 <devices>
 <devicePresence epid="03640fc59f" ageOfPresence="30"
 xmlns:SOAP-ENV="http://schemas.xmlsoap.org/soap/envelope/"
 xmlns:m="http://schemas.microsoft.com/winrtc/2002/11/sip">
 <availability aggregate="300" description="online" />
 <activity aggregate="400" description="Active"
 note="Note: I am online" />
 <email email="someone@microsoft.com"
 xmlns="http://schemas.microsoft.com/2002/09/sip/client/presence">
 </email>
 <deviceName
 name="HOSTNAME"
 xmlns="http://schemas.microsoft.com/2002/09/sip/client/presence">
 </deviceName>
 <rtc:devicedata
 namespace="rtcsample"
 xmlns:rtc="http://schemas.microsoft.com/2002/09/sip/client/presence">
 <![CDATA[<applicationname>RTC Sample</applicationdata>]]>
 </rtc:devicedata>
 </devicePresence>
 </devices>
 </presentity>

4.5 setPresence Example

This example demonstrates the use of the setPresence request.

Figure 5: Example of a setPresence request

The client sends a SERVICE request to the server to update its presence information stored at the
server. Any other clients subscribing to the presence of this client are then notified of the change by
the server, which uses a NOTIFY or BENOTIFY request.

 SERVICE sip:user2@server.contoso.com SIP/2.0
 Via: SIP/2.0/TCP 11.22.33.44:14423

59 / 95

[MS-SIP-Diff] - v20160714
Session Initiation Protocol Extensions
Copyright © 2016 Microsoft Corporation
Release: July 14, 2016

 Max-Forwards: 70
 From: "User 2" <sip:user2@server.contoso.com>
 ;tag=04bc6b4751344d05a8ae1c357e5b7ad1;epid=62ccbeb808
 To: sip:user2@server.contoso.com
 Call-ID: a61392c00bc14f74a1ef3293242e902a
 CSeq: 1 SERVICE
 Contact: <sip:user2@server.contoso.com:14423;maddr=11.22.33.44;
 transport="tcp">
 ;proxy=replace
 User-Agent: RTC/1.3.5369
 Proxy-Authorization: Kerberos qop="auth", realm="SIP
 Communications Service", opaque="B23769DD", crand="134ce932",
 cnum="5", targetname="sip/server.contoso.com",
 response="602306092a864886f71201020201011100
 ffffffff95b096c3a5d25aa1bb814c785aaa4957"
 Content-Type: application/SOAP+xml
 Content-Length: 822
 <SOAP-ENV:Envelope
 xmlns:SOAP-ENV="http://schemas.xmlsoap.org/soap/envelope/">
 <SOAP-ENV:Body>
 <m:setPresence
 xmlns:m="http://schemas.microsoft.com/winrtc/2002/11/sip">
 <m:presentity m:uri="sip:user2@server.contoso.com">
 <m:availability m:aggregate="300"
 m:description="online" />
 <m:activity m:aggregate="400" m:description="Active"
 m:note="Note: I am online" />
 <email
 xmlns="http://schemas.microsoft.com/2002/09/sip/client/presence"
 email="someone@microsoft.com" />
 <deviceName
 xmlns="http://schemas.microsoft.com/2002/09/sip/client/presence"
 name="HOSTNAME" />
 <rtc:devicedata
 xmlns:rtc="http://schemas.microsoft.com/2002/09/sip/client/presence"
 namespace="rtcsample">
 <![CDATA[<applicationname>RTC Sample</applicationdata>]]>
 </rtc:devicedata>
 </m:presentity>
 </m:setPresence>
 </SOAP-ENV:Body>
 </SOAP-ENV:Envelope>

The server responds to the SERVICE request with a 200 OK to indicate that the request was
successfully processed by the server.

 SIP/2.0 200 OK
 Authentication-Info:
 Kerberos rspauth="602306092A864886F71201020201011100
 FFFFFFFFE6AD66F99AD4B9143B76C025FE19FC23",
 srand="060568FB", snum="6", opaque="B23769DD", qop="auth",
 targetname="sip/server.contoso.com",
 realm="SIP Communications Service"
 Via: SIP/2.0/TCP 11.22.33.44:14423;ms-received-port=1677;
 ms-received-cid=13000
 From: "User 2"<sip:user2@server.contoso.com>
 ;tag=04bc6b4751344d05a8ae1c357e5b7ad1;epid=62ccbeb808
 To: <sip:user2@server.contoso.com>
 ;tag=07BC9BC862C48C8F4FE7756322318F0A
 Call-ID: a61392c00bc14f74a1ef3293242e902a
 CSeq: 1 SERVICE
 Content-Length: 0

60 / 95

[MS-SIP-Diff] - v20160714
Session Initiation Protocol Extensions
Copyright © 2016 Microsoft Corporation
Release: July 14, 2016

4.6 AddContact Example

This example demonstrates an AddContact request sent by the client to the server to add a contact to
its contact list.

Figure 6: AddContact request example

The client sends a SERVICE request with a SOAP envelope/xml envelope in the body. The
m:setContact element indicates to the server that this request is for adding or modifying a contact.
The xml contains the display name and URI of the contact that is being added along with any groups
of which this contact is a member and whether the client is subscribed for presence information of this
contact.

 SERVICE sip:server.contoso.com;transport=tcp SIP/2.0
 Via: SIP/2.0/TCP 11.22.33.44:13684
 Max-Forwards: 70
 From: <sip:user1@server.contoso.com>
 ;tag=e6b525fb274245a0b61ddbe877b7d0b9;epid=df527db094
 To: <sip:user1@server.contoso.com>
 ;tag=01C341BA
 Call-ID: b7c3b37ba4144a39a9bc82c224147f0c
 CSeq: 2 SERVICE
 Contact: <sip:user1@server.contoso.com:13684;maddr=11.22.33.44;
 transport="tcp">
 ;proxy=replace
 User-Agent: RTC/1.3.5369
 Proxy-Authorization: Kerberos qop="auth", realm="SIP
 Communications Service", opaque="C71765D4", crand="d48aaa37",
 cnum="6", targetname="sip/server.contoso.com",
 response="602306092a864886f71201020201011100
 ffffffffe25204ecf3fb4be0326639f5ee6f0f44"
 Content-Type: application/SOAP+xml
 Content-Length: 407
 <SOAP-ENV:Envelope
 xmlns:SOAP-ENV="http://schemas.xmlsoap.org/soap/envelope/">
 <SOAP-ENV:Body>
 <m:setContact
 xmlns:m="http://schemas.microsoft.com/winrtc/2002/11/sip">
 <m:displayName>buddy 1</m:displayName>
 <m:groups />
 <m:subscribed>true</m:subscribed>
 <m:URI>sip:user4@server.contoso.com</m:URI>
 <m:externalURI />
 <m:deltaNum>12</m:deltaNum>
 </m:setContact>
 </SOAP-ENV:Body>
 </SOAP-ENV:Envelope>

The server responds to the SERVICE request with a 200 OK to indicate that the AddContact request
was successful. The 200 OK response does not have a body.

61 / 95

[MS-SIP-Diff] - v20160714
Session Initiation Protocol Extensions
Copyright © 2016 Microsoft Corporation
Release: July 14, 2016

 SIP/2.0 200 OK
 Authentication-Info:
 Kerberos rspauth="602306092A864886F71201020201011100
 FFFFFFFFF545C705C4485BF958371C44ACFE31E3",
 srand="669CF161", snum="7", opaque="C71765D4", qop="auth",
 targetname="sip/server.contoso.com",
 realm="SIP Communications Service"
 Via: SIP/2.0/TCP 11.22.33.44:13684;ms-received-port=1558;
 ms-received-cid=12a00
 From: <sip:user1@server.contoso.com>;
 tag=e6b525fb274245a0b61ddbe877b7d0b9;epid=df527db094
 To: <sip:user1@server.contoso.com>;tag=01C341BA
 Call-ID: b7c3b37ba4144a39a9bc82c224147f0c
 CSeq: 2 SERVICE
 Content-Length: 0

4.7 DeleteContact Example

This example demonstrates a DeleteContact request sent by the client to the server to delete a

contact from its contact list.

Figure 7: DeleteContact request example

The client sends a SERVICE request with a SOAP envelope/xml envelope in the body. The
m:deleteContact element indicates to the server that this request is for deleting a contact. The xml
contains the URI of the contact that is being deleted. There is no need to specify any other properties
of the contact because a contact can be uniquely identified by the URI.

 SERVICE sip:server.contoso.com;transport=tcp SIP/2.0
 Via: SIP/2.0/TCP 11.22.33.44:13684
 Max-Forwards: 70
 From: <sip:user1@server.contoso.com>
 ;tag=e6b525fb274245a0b61ddbe877b7d0b9;epid=df527db094
 To: <sip:user1@server.contoso.com>
 ;tag=01C341BA
 Call-ID: b7c3b37ba4144a39a9bc82c224147f0c
 CSeq: 5 SERVICE
 Contact: <sip:user1@server.contoso.com:13684;maddr=11.22.33.44;
 transport="tcp">
 ;proxy=replace
 User-Agent: RTC/1.3.5369
 Proxy-Authorization: Kerberos qop="auth", realm="SIP
 Communications Service", opaque="C71765D4", crand="7435fe84",
 cnum="12", targetname="sip/server.contoso.com",
 response="602306092a864886f71201020201011100
 ffffffff7eba7f0331d6d9673f8bec24c9d4e389"
 Content-Type: application/SOAP+xml
 Content-Length: 315
 <SOAP-ENV:Envelope

62 / 95

[MS-SIP-Diff] - v20160714
Session Initiation Protocol Extensions
Copyright © 2016 Microsoft Corporation
Release: July 14, 2016

 xmlns:SOAP-ENV="http://schemas.xmlsoap.org/soap/envelope/">
 <SOAP-ENV:Body>
 <m:deleteContact
 xmlns:m="http://schemas.microsoft.com/winrtc/2002/11/sip">
 <m:URI>sip:user4@server.contoso.com</m:URI>
 <m:deltaNum>15</m:deltaNum>
 </m:deleteContact>
 </SOAP-ENV:Body>
 </SOAP-ENV:Envelope>

The server responds to the SERVICE request with a 200 OK to indicate that the DeleteContact request

was successful. The 200 OK response does not have a body.

 SIP/2.0 200 OK
 Authentication-Info: Kerberos
 rspauth="602306092A864886F71201020201011100
 FFFFFFFF7C224F0AC87E91DFE9D4A49F974961E9",
 srand="03254599", snum="16", opaque="C71765D4", qop="auth",
 targetname="sip/server.contoso.com",
 realm="SIP Communications Service"
 Via: SIP/2.0/TCP 11.22.33.44:13684;
 ms-received-port=1558;ms-received-cid=12a00
 From: <sip:user1@server.contoso.com>
 ;tag=e6b525fb274245a0b61ddbe877b7d0b9;epid=df527db094
 To: <sip:user1@server.contoso.com>
 ;tag=01C341BA
 Call-ID: b7c3b37ba4144a39a9bc82c224147f0c
 CSeq: 5 SERVICE
 Content-Length: 0

4.8 AddGroup Example

This example demonstrates an AddGroup request that is sent by the client to the server to add a
group to the list of groups for this client.

Figure 8: AddGroup request example

The client sends a SERVICE request with a SOAP envelope/xml envelope in the body. The m:addGroup

element indicates to the server that this request is for adding a group. The XML contains the name of
the group, which is "Friends" in this case.

 SERVICE sip:server.contoso.com;transport=tcp SIP/2.0
 Via: SIP/2.0/TCP 11.22.33.44:14383
 Max-Forwards: 70
 From: <sip:user1@server.contoso.com>
 ;tag=c3c995d890e144b2aa7f2bd38c424a51;epid=f540d58d81
 To: <sip:user1@server.contoso.com>
 ;tag=5FDD7BA7

63 / 95

[MS-SIP-Diff] - v20160714
Session Initiation Protocol Extensions
Copyright © 2016 Microsoft Corporation
Release: July 14, 2016

 Call-ID: f34928e3852c434a85a1f3c0e1e8a449
 CSeq: 2 SERVICE
 Contact: <sip:user1@server.contoso.com:14383;
 maddr=11.22.33.44;transport="tcp">
 ;proxy=replace
 User-Agent: RTC/1.3.5369
 Proxy-Authorization: Kerberos qop="auth",
 realm="SIP Communications Service", opaque="1CF1F9E0",
 crand="2daa2825", cnum="7", targetname="sip/server.contoso.com",
 response="602306092a864886f71201020201011100
 ffffffffb0dd9fa33c820618ea9ff577dcb659b8"
 Content-Type: application/SOAP+xml
 Content-Length: 281

 <SOAP-ENV:Envelope
 xmlns:SOAP-ENV="http://schemas.xmlsoap.org/soap/envelope/">
 <SOAP-ENV:Body>
 <m:addGroup
 xmlns:m="http://schemas.microsoft.com/winrtc/2002/11/sip">
 <m:name>Friends</m:name>
 <m:externalURI />
 <m:deltaNum>16</m:deltaNum>
 </m:addGroup>
 </SOAP-ENV:Body>
 </SOAP-ENV:Envelope>

The server responds to the SERVICE request with a 200 OK to indicate that the AddGroup request was
successful. The 200 OK response may or may notcan have a body.

 SIP/2.0 200 OK
 Authentication-Info: Kerberos
 rspauth="602306092A864886F71201020201011100
 FFFFFFFF18134184AFDFDDE2B92BA96B6B8318F9",
 srand="A8D0D0FF", snum="8", opaque="1CF1F9E0", qop="auth",
 targetname="sip/server.contoso.com",
 realm="SIP Communications Service"
 Content-Length: 250
 Via: SIP/2.0/TCP 11.22.33.44:14383;ms-received-port=1624;
 ms-received-cid=12c00
 From: <sip:user1@server.contoso.com>
 ;tag=c3c995d890e144b2aa7f2bd38c424a51;epid=f540d58d81
 To: <sip:user1@server.contoso.com>
 ;tag=5FDD7BA7
 Call-ID: f34928e3852c434a85a1f3c0e1e8a449
 CSeq: 2 SERVICE
 Content-Type: application/SOAP+xml
 <SOAP-ENV:Envelope
 xmlns:SOAP-ENV="http://schemas.xmlsoap.org/soap/envelope/">
 <SOAP-ENV:Body>
 <m:addGroup
 xmlns:m="http://schemas.microsoft.com/winrtc/2002/11/sip">
 <m:groupID>1</m:groupID>
 </m:addGroup>
 </SOAP-ENV:Body>
 </SOAP-ENV:Envelope>

4.9 DeleteGroup Example

This example demonstrates a DeleteGroup request sent by the client to the server to delete a group
from the list of groups for this client.

64 / 95

[MS-SIP-Diff] - v20160714
Session Initiation Protocol Extensions
Copyright © 2016 Microsoft Corporation
Release: July 14, 2016

Figure 9: DeleteGroup request example

The client sends a SERVICE request with a SOAP envelope/xml envelope in the body. The
m:deleteGroup element indicates to the server that this request is for deleting a group. The XML

contains the name of the group to be removed, which is "Friends" in this case.

 SERVICE sip:server.contoso.com;transport=tcp SIP/2.0
 Via: SIP/2.0/TCP 11.22.33.44:14383
 Max-Forwards: 70
 From: <sip:user1@server.contoso.com>
 ;tag=c3c995d890e144b2aa7f2bd38c424a51;epid=f540d58d81
 To: <sip:user1@server.contoso.com>
 ;tag=5FDD7BA7
 Call-ID: f34928e3852c434a85a1f3c0e1e8a449
 CSeq: 3 SERVICE
 Contact: <sip:user1@server.contoso.com:14383;
 maddr=11.22.33.44;transport="tcp">
 ;proxy=replace
 User-Agent: RTC/1.3.5369
 Proxy-Authorization: Kerberos qop="auth", realm="SIP
 Communications Service", opaque="1CF1F9E0", crand="277c6fef",
 cnum="8", targetname="sip/server.contoso.com",
 response="602306092a864886f71201020201011100
 ffffffff41d25b4ea77c777cc8045e47de492d38"
 Content-Type: application/SOAP+xml
 Content-Length: 271
 <SOAP-ENV:Envelope
 xmlns:SOAP-ENV="http://schemas.xmlsoap.org/soap/envelope/">
 <SOAP-ENV:Body>
 <m:deleteGroup
 xmlns:m="http://schemas.microsoft.com/winrtc/2002/11/sip">
 <m:groupID>1</m:groupID>
 <m:deltaNum>17</m:deltaNum>
 </m:deleteGroup>
 </SOAP-ENV:Body>
 </SOAP-ENV:Envelope>

The server responds to the SERVICE request with a 200 OK to indicate that the AddContact request
was successful. The 200 OK response does not have a body.

 SIP/2.0 200 OK
 Authentication-Info: Kerberos
 rspauth="602306092A864886F71201020201011100
 FFFFFFFFE25AF790F3790A7E416A443414ED5AE8", srand="15FE0D01",
 snum="10", opaque="1CF1F9E0", qop="auth",
 targetname="sip/server.contoso.com",
 realm="SIP Communications Service"
 Via: SIP/2.0/TCP 11.22.33.44:14383;ms-received-port=1624;
 ms-received-cid=12c00
 From: <sip:user1@server.contoso.com>

65 / 95

[MS-SIP-Diff] - v20160714
Session Initiation Protocol Extensions
Copyright © 2016 Microsoft Corporation
Release: July 14, 2016

 ;tag=c3c995d890e144b2aa7f2bd38c424a51;epid=f540d58d81
 To: <sip:user1@server.contoso.com>
 ;tag=5FDD7BA7
 Call-ID: f34928e3852c434a85a1f3c0e1e8a449
 CSeq: 3 SERVICE
 Content-Length: 0

4.10 setACE Example

This example demonstrates a setACE request sent by the client to the server to add a contact to its

contact list.

Figure 10: setACE request example

The client sends a SERVICE request with a SOAP envelope/XML envelope in the body. The m:setACE
element indicates to the server that this request is for setting an ACE. The XML contains the ACE type,
the URI of the user/domain to which the ACE applies, rights defined by the ACE, and a version
number.

 SERVICE sip:server.contoso.com;transport=tcp SIP/2.0
 Via: SIP/2.0/TCP 172.24.34.1:15950
 Max-Forwards: 70
 From: <sip:user1@server.contoso.com>;
 tag=0d71f68a88014f0485a2635cb7c83bc5;epid=bd0238d966
 To: <sip:user1@server.contoso.com>;tag=6A6C5447
 Call-ID: d934123784404081b0042c4075520f32
 CSeq: 40 SERVICE
 Contact: sip:user1@server.contoso.com:15950;
 maddr=172.24.34.1;transport=tcp>;proxy=replace
 User-Agent: RTC/1.3.5470 (Messenger 5.1.0680)
 Proxy-Authorization: NTLM qop="auth", realm="SIP Communications
 Service", opaque="8F8C803E", crand="bac716ec", cnum="12",
 targetname="server.contoso.com",
 response="0100000066363861cf249229af0f9ad1"
 Content-Type: application/SOAP+xml
 Content-Length: 327

 <SOAP-ENV:Envelope xmlns:SOAP-
 ENV="http://schemas.xmlsoap.org/soap/envelope/">
 <SOAP-ENV:Body>
 <m:setACE xmlns:m="http://schemas.microsoft.com/winrtc/2002/11/sip">
 <m:type>USER</m:type>
 <m:mask>sip:user3@server.contoso.com</m:mask>
 <m:rights>AA</m:rights>
 <m:deltaNum>2</m:deltaNum>
 </m:setACE>
 </SOAP-ENV:Body>
 </SOAP-ENV:Envelope>

66 / 95

[MS-SIP-Diff] - v20160714
Session Initiation Protocol Extensions
Copyright © 2016 Microsoft Corporation
Release: July 14, 2016

The server responds to the SERVICE request with a 200 OK to indicate that the AddContact request
was successful. The 200 OK response does not have a body.

 SIP/2.0 200 OK
 Authentication-Info: NTLM rspauth="0100000000000000E82E2E0BAF0F9AD1",
 srand="EAA5A52F", snum="14", opaque="8F8C803E", qop="auth",
 targetname="server.contoso.com", realm="SIP Communications Service"
 Via: SIP/2.0/TCP 172.24.34.1:15950;ms-received-port=3947;
 ms-received-cid=1400
 From: <sip:user1@server.contoso.com>;
 tag=0d71f68a88014f0485a2635cb7c83bc5;epid=bd0238d966
 To: <sip:user1@server.contoso.com>;tag=6A6C5447
 Call-ID: d934123784404081b0042c4075520f32
 CSeq: 40 SERVICE
 Content-Length: 0

4.11 P2P Subscription and XPIDF Presence Format Example

This example demonstrates how XPIDF format can be used in a P2P presence subscription.

Figure 11: P2P subscription and XPIDF presence format example

User1 sends a SUBSCRIBE request to user2 to create a subscription for the presence event-package.
This is indicated by the Event: presence header in the SUBSCRIBE request. The Accept header
indicates that user1 accepts the XPIDF Presence Document format.

 SUBSCRIBE sip:user2@193.12.62.199 SIP/2.0
 Via: SIP/2.0/UDP 193.12.63.150:13695
 Max-Forwards: 70
 From: "user1" <sip:host1>;tag=12e78ca4-85f7-4094-bbdf-e8e819188ae6
 To: <sip:user2@193.12.62.199>
 Call-ID: 21824beb-0ee4-4953-ad36-745a0614a0e9@193.12.63.150
 CSeq: 1 SUBSCRIBE
 Contact: <sip:193.12.63.150:13695>
 User-Agent: Windows RTC/1.2
 Event: presence
 Accept: application/xpidf+xml
 Content-Length: 0

User2 sends a 200 OK response to indicate that the SUBSCRIBE request has been accepted. The 200
OK response does not have a body.

67 / 95

[MS-SIP-Diff] - v20160714
Session Initiation Protocol Extensions
Copyright © 2016 Microsoft Corporation
Release: July 14, 2016

 SIP/2.0 200 OK
 From: "user1" <sip:host1>;tag=12e78ca4-85f7-4094-bbdf-e8e819188ae6
 To: <sip:user2@193.12.62.199>;tag=112040_T193.12.62.199
 Call-ID: 21824beb-0ee4-4953-ad36-745a0614a0e9@193.12.63.150
 CSeq: 1 SUBSCRIBE
 Via: SIP/2.0/UDP 193.12.63.150:13695
 Expires: 28800
 Content-Length: 0

User2 then sends a NOTIFY request to user1 to communicate its presence state, which is online in this
example. The body of the NOTIFY request is an XML in the XPIDF format. The XML includes the
presentity whose presence information is being communicated, the address element representing a

particular endpoint for the presentity and the presence status for that endpoint.

 NOTIFY sip:193.12.63.150:13695 SIP/2.0
 From: <sip:user2@193.12.62.199>;tag=112040_T193.12.62.199
 To: "user1" <sip:host1>;tag=12e78ca4-85f7-4094-bbdf-e8e819188ae6
 Call-ID: 21824beb-0ee4-4953-ad36-745a0614a0e9@193.12.63.150
 CSeq: 2 NOTIFY
 Via: SIP/2.0/UDP 193.12.62.199
 Content-Length: 356
 Contact: sip:user2@193.12.62.199
 Event: presence
 Content-Type: application/xpidf+xml

 <?xml version="1.0"?>
 <!DOCTYPE presence
 PUBLIC "-//IETF//DTD RFCxxxx XPIDF 1.0//EN" "xpidf.dtd">
 <presence>
 <presentity uri="sip:user2@193.12.62.199;method=SUBSCIRBE"/>
 <atom id="1002">
 <address uri="sip:user2@193.12.62.199 priority="0.600000">
 <status status="open"/>
 <msnstatus substatus="online"/>
 </address>
 </atom>
 </presence>

User1 acknowledges the receipt of the notification by sending a 200 OK response. The 200 OK
response does not have a body.

 SIP/2.0 200 OK
 Via: SIP/2.0/UDP 193.12.62.199
 From: <sip:user1@193.12.62.199>;tag=112040_T193.12.62.199
 To: "user2" <sip:host2>;tag=12e78ca4-85f7-4094-bbdf-e8e819188ae6
 Call-ID: 21824beb-0ee4-4953-ad36-745a0614a0e9@193.12.63.150
 CSeq: 2 NOTIFY
 User-Agent: Windows RTC/1.2
 Content-Length: 0

68 / 95

[MS-SIP-Diff] - v20160714
Session Initiation Protocol Extensions
Copyright © 2016 Microsoft Corporation
Release: July 14, 2016

5 Security

The following sections specify security considerations for implementers of Session Initiation Protocol
Extensions.

5.1 Security Considerations for Implementers

The Microsoft extensions defined in this specification do not require any special security considerations
beyond what is natively defined for the Session Initiation Protocol (SIP).

5.2 Index of Security Parameters

None.

69 / 95

[MS-SIP-Diff] - v20160714
Session Initiation Protocol Extensions
Copyright © 2016 Microsoft Corporation
Release: July 14, 2016

6 Appendix A: Full text/xml+msrtc.pidf Presence Document Format

 <?xml version="1.0" ?>
 <xs:schema id="presence" version="2.0"
 targetNamespace="http://schemas.microsoft.com/09/2002/sip/presence"
 elementFormDefault="qualified"
 xmlns:tns="http://schemas.microsoft.com/09/2002/sip/presence"
 xmlns:xs="http://www.w3.org/2001/XMLSchema"
 xmlns:ct="http://schemas.microsoft.com/sip/types">

 <xs:annotation>
 <xs:documentation>
 Live Communications Server 2005 provides Instant Messaging
 and presence capabilities amongst users in an enterprise. A
 user can login using multiple devices. Each device presents
 its presence information to the server. The XML instance
 containing presence submitted to the server is called the
 Presence Document. When retrieving presence information for
 a user, the server not only returns the presence document
 from every device, but it also determines the overall presence
 of the user. This XML instance returned by the server is
 called the Aggregated Presence Document.

 This schema describes the structure of both the Presence
 Document consumed by the server as well as the Aggregated
 Presence Document generated by the server.
 </xs:documentation>
 </xs:annotation>

 <xs:import namespace="http://schemas.microsoft.com/sip/types"
 schemaLocation="common.xsd" />

 <!-- Common Types -->

 <xs:simpleType name="aggregate">
 <xs:restriction base="xs:nonNegativeInteger">
 <xs:minInclusive value="0" />
 <xs:maxInclusive value="999" />
 </xs:restriction>
 </xs:simpleType>

 <xs:simpleType name="epid">
 <xs:annotation>
 <xs:documentation>
 Each device of a user is uniquely identified by its epid.
 This value cannot exceed 16 bytes.
 </xs:documentation>
 </xs:annotation>
 <xs:restriction base="xs:token" />
 </xs:simpleType>

 <xs:simpleType name="ageOfPresence">
 <xs:annotation>
 <xs:documentation>
 This is the number of seconds since the device last updated
 its presence information
 </xs:documentation>
 </xs:annotation>
 <xs:restriction base="xs:nonNegativeInteger" />
 </xs:simpleType>

 <xs:complexType name="availability">
 <xs:annotation>
 <xs:documentation>
 The purpose of availability is to indicate whether the user
 can receive a call.
 </xs:documentation>
 </xs:annotation>

70 / 95

[MS-SIP-Diff] - v20160714
Session Initiation Protocol Extensions
Copyright © 2016 Microsoft Corporation
Release: July 14, 2016

 <xs:attribute
 name="aggregate" type="tns:aggregate" use="required" >
 <xs:annotation>
 <xs:documentation>
 The value of the aggregate attribute defines the
 availability of a user on a device. The aggregate values
 are processed by the server as being within a range that
 has a span of 100 (class code). The server interprets
 the values as falling within the following classes (with
 their corresponding interpretations):

 000-099
 The user cannot receive calls.
 100-199
 The user may be online but availability is unknown
 until a call is attempted. A cell phone gateway would
 typically use this setting.
 200-299
 The user has a device that is currently connected and
 can receive calls.
 300-399
 The user is in the proximity of a device that can
 receive calls.

 Rather than using a hard-coded enumeration a numeric
 value is value. This makes it easy to compare the
 availability sent by two different PUAs.
 </xs:documentation>
 </xs:annotation>
 </xs:attribute>

 <xs:attribute name="description" type="xs:string" >
 <xs:annotation>
 <xs:documentation>
 The server always returns an empty string in the
 aggregated presence document.
 </xs:documentation>
 </xs:annotation>
 </xs:attribute>

 <xs:attribute name="epid" type="tns:epid" />
 </xs:complexType>

 <xs:complexType name="activity">
 <xs:annotation>
 <xs:documentation>
 The purpose of activity is to indicate not whether a user
 can receive a call, but rather, to indicate to watchers
 how likely the user is to want to be disturbed.
 </xs:documentation>
 </xs:annotation>

 <xs:attribute name="aggregate"
 type="tns:aggregate" use="required" >
 <xs:annotation>
 <xs:documentation>
 000 - 099 There is no information about the
 activity of the user
 100 - 149 The user is away
 150 - 199 The user is out to lunch
 200 - 299 The user is idle
 300 - 399 The user will be right back
 400 - 499 The user is active
 500 - 599 The user is already participating in a
 communications session
 600 - 699 The user is busy
 700 - 799 The user is away
 800 - 999 The user is active

71 / 95

[MS-SIP-Diff] - v20160714
Session Initiation Protocol Extensions
Copyright © 2016 Microsoft Corporation
Release: July 14, 2016

 Rather than using a hard-coded enumeration a numeric value
 is value. This makes it easy to compare the activity sent
 by two different PUAs.
 </xs:documentation>
 </xs:annotation>
 </xs:attribute>

 <xs:attribute name="description" type="xs:string" >
 <xs:annotation>
 <xs:documentation>
 The server always returns an empty string in the aggregated
 presence document.
 </xs:documentation>
 </xs:annotation>
 </xs:attribute>

 <xs:attribute name="epid" type="tns:epid" />

 <xs:attribute name="note" type="xs:string" >
 <xs:annotation>
 <xs:documentation>
 This attribute can be used by the client to store a string
 indicating the user's status on the device.
 </xs:documentation>
 </xs:annotation>
 </xs:attribute>
 </xs:complexType>

 <xs:complexType name="userInfo">
 <xs:annotation>
 <xs:documentation>
 This element is used for storing persisted presence
 information for a user. This information is stored by the
 server and is available regardless of the device a user is
 logged in and / or whether the user is logged in or not. Any
 valid XML can be stored by the client. The server enforces a
 limit of 1024 characters on the size of the element body,
 where the entire element body is treated as a single string.
 </xs:documentation>
 </xs:annotation>

 <xs:sequence>
 <xs:any namespace="##any" processContents="lax"
 minOccurs="0" maxOccurs="unbounded" />
 </xs:sequence>
 </xs:complexType>

 <xs:group name="presenceDocInfo">
 <xs:sequence>
 <xs:element name="availability" type="tns:availability" />
 <xs:element name="activity" type="tns:activity" />
 <xs:element name="userInfo" type="tns:userInfo" />

 <xs:any
 namespace="##any"
 processContents="lax"
 minOccurs="0"
 maxOccurs="unbounded" />
 </xs:sequence>
 </xs:group>

 <!-- Presence document consumed by the server -->

 <xs:complexType name="presenceDoc">
 <xs:annotation>
 <xs:documentation>
 The containing element and its contents are collectively
 called the presence document. The document describes a
 user's availability on a particular device. This is the
 document sent from a Presence User Agent that intends to

72 / 95

[MS-SIP-Diff] - v20160714
Session Initiation Protocol Extensions
Copyright © 2016 Microsoft Corporation
Release: July 14, 2016

 publish its presence.
 </xs:documentation>
 </xs:annotation>

 <xs:sequence>
 <xs:group ref="tns:presenceDocInfo" />
 </xs:sequence>

 <xs:attribute name="uri" type="ct:sipURI" use="required" />
 </xs:complexType>

 <!-- Aggregated Presence document generated by the server -->

 <xs:complexType name="aggregatedPresenceDoc">
 <xs:annotation>
 <xs:documentation>
 The containing element and its contents are collectively
 called the aggregated presence document. The document
 describes a user's availability on all its devices as well
 as an overall aggregated presence. This is the document
 published by the server to anyone obtaining the presence of
 a particular user.
 </xs:documentation>
 </xs:annotation>

 <xs:sequence>
 <xs:element name="availability" type="tns:availability" >
 <xs:annotation>
 <xs:documentation>
 This is the availability information from the most
 available device.
 </xs:documentation>
 </xs:annotation>
 </xs:element>

 <xs:element name="activity" type="tns:activity" >
 <xs:annotation>
 <xs:documentation>
 This is the activity information from
 the most available device.
 </xs:documentation>
 </xs:annotation>
 </xs:element>

 <xs:element name="displayName" >
 <xs:complexType>
 <xs:attribute name="displayName" type="ct:displayName" />
 </xs:complexType>
 </xs:element>

 <xs:element name="email">
 <xs:complexType>
 <xs:attribute name="email" type="ct:email" />
 </xs:complexType>
 </xs:element>

 <xs:element name="phoneNumber">
 <xs:complexType>
 <xs:attribute
 name="label"
 type="xs:string"
 use="required">
 <xs:annotation>
 <xs:documentation>
 This string is always empty.
 </xs:documentation>
 </xs:annotation>
 </xs:attribute>

 <xs:attribute

73 / 95

[MS-SIP-Diff] - v20160714
Session Initiation Protocol Extensions
Copyright © 2016 Microsoft Corporation
Release: July 14, 2016

 name="number"
 type="ct:phone"
 use="required" />
 </xs:complexType>
 </xs:element>

 <xs:element
 name="userInfo"
 type="tns:userInfo" />

 <xs:element name="devices">
 <xs:complexType>
 <xs:sequence>
 <xs:element
 name="devicePresence"
 maxOccurs="unbounded" >
 <xs:complexType>
 <xs:sequence>
 <xs:group ref="tns:presenceDocInfo" />
 </xs:sequence>

 <xs:attribute name="epid" type="tns:epid" />
 <xs:attribute name="ageOfPresence"
 type="tns:ageOfPresence"
 use="required" />
 </xs:complexType>
 </xs:element>
 </xs:sequence>
 </xs:complexType>
 </xs:element>
 </xs:sequence>

 <xs:attribute name="uri" type="ct:sipURI" use="required"/>
 </xs:complexType>

 <xs:element name="presentity" type="tns:aggregatedPresenceDoc"/>
 </xs:schema>

74 / 95

[MS-SIP-Diff] - v20160714
Session Initiation Protocol Extensions
Copyright © 2016 Microsoft Corporation
Release: July 14, 2016

7 Appendix B: XPIDF Presence Document Format

The XPIDF Presence Document always contains the top-level element "presence", which indicates that
the remainder of the document contains presence information.

 <!ELEMENT presence (presentity, atom*, display?)>

The first subelement of the presence element is the "presentity" element, which identifies the
presentity for whom the presence data is being reported.

 <!ELEMENT presentity (#PCDATA)>
 <!ATTLIST presentity uri CDATA #REQUIRED>

The presentity tag has a single mandatory attribute, uri, which gives the address of the presentity.
The content of the presentity tag is parsed character data giving a human-readable name.

Following the presentity tag within the presence tag is a list of atoms.

Atoms are structured as a collection of addresses. These can either be communications addresses,

represented by URLs, or a postal address.

 <!ELEMENT atom (postal?, address*)>
 <!ATTLIST atom atomid CDATA #REQUIRED
 expires CDATA #IMPLIED>

The atom element has the mandatory attribute "id", the unique identifier for the group, and the
optional attribute "expires", which indicates the time after which the presence data should beis

considered invalid. The expiration time is expressed as an integral number of seconds since January 1,
1970, 00:00 UTC.

A postal address is indicated by the "postal" element, and consists of freeform text:

 <!ELEMENT postal (#PCDATA)>

It maycan contain XML markup from some external namespace, as described previously.

Communications addresses are described by the "address" element.

 <!ELEMENT address (status | class | duplex | feature | note |
 mobility | msnsubstatus)*>
 <!ATTLIST address uri CDATA #REQUIRED
 priority CDATA #IMPLIED>

The address element has a single mandatory attribute, uri, which gives the URI of the

communications address being described. It also has an optional attribute priority. The priority tag
contains an integer that indicates the relative preference of this address over other addresses. It is a
floating-point value between 0 and 1, with 1 being the highest preference.

Within the address tag, several subtags are defined to specify characteristics of the communications
address. These tags have the following meanings:

 status

75 / 95

[MS-SIP-Diff] - v20160714
Session Initiation Protocol Extensions
Copyright © 2016 Microsoft Corporation
Release: July 14, 2016

An indicator meant for machine consumption that indicates the status of this communications
address. Valid values are "open", which means communications can be attempted to this address,

"closed", which means communications cannot be attempted, and "inuse", which means
communications is currently being actively used with the entity receiving the Presence Document.

For example, if an instant messaging URL is placed in the uri attribute of the address, and the
status is "inuse", this means that the user sending the updated Presence Document is currently
typing an instant message to the recipient of the Presence Document.

This enables a recent feature on MSN, which allows the user to see when the recipient of the
user's instant message is currently typing a reply to it.

 <!ELEMENT status EMPTY>
 <!ATTLIST status status (open|closed|inuse) #REQUIRED>

 class

This tag contains either the value "business" or "personal", indicating whether the address is for

business or nonbusiness use. There can be only one class tag per address.

 <!ELEMENT class EMPTY>
 <!ATTLIST class class (business|personal) #REQUIRED>

 duplex

The duplex tag contains one of the values "full", "half", "send-only", or "receive-only". It indicates
whether the address can be used for communications in one direction, the other direction, or both.
For example, a page would be considered receive-only. There can only be one duplex tag per
address.

 <!ELEMENT duplex EMPTY>
 <!ATTLIST duplex duplex
 (full|half|send-only|receive-only) #REQUIRED>

 feature

The feature tag lists features specific to that communications means. For voice addresses, defined
values include "voicemail" and "attendant". There can be more than one feature tag per address.

 <!ELEMENT feature EMPTY>
 <!ATTLIST feature feature (voicemail|attendant) #REQUIRED>

 mobility

The mobility tag indicates whether the terminal with the given communications address is moving
around ("mobile") or fixed ("fixed"). There can be only a single mobility tag per address.

 <!ELEMENT mobility EMPTY>
 <!ATTLIST mobility mobility (fixed|mobile) #REQUIRED>

 note

Contains freeform text meant for display to the user, indicating some kind of information about
the communications address. There can only be one note tag per address. The note tag maycan

contain XML data from a properly qualified external XML namespace.

76 / 95

[MS-SIP-Diff] - v20160714
Session Initiation Protocol Extensions
Copyright © 2016 Microsoft Corporation
Release: July 14, 2016

 <!ELEMENT note (#PCDATA)>

 msnsubstatus

Provides supplementary status information. The following values are defined: "unknown", "away",
"online", "idle", "busy", "berightback", "onthephone", "outtolunch".

 <!ELEMENT msnsubstatus EMPTY>
 <!ATTLIST msnsubstatus
 (unknown|away|online|idle|busy|berightback|onthephone|outtolunch)
 #REQUIRED>

A PIDF document that appears as a top-level XML document is identified with the formal public
identifier "-//IETF//DTD RFCxxxx XPIDF 1.0//EN". If this document is published as an RFC, "xxxx"

will be replaced by the RFC number. PIDF documents have the MIME type "application/xpidf+xml".

Note that the URIs specifying XML namespaces are only globally unique names; they do not have to
reference any particular actual object. The URI of a canonical source of this specification meets the

requirement of being globally unique, and is also useful to document the format.

 <!ELEMENT display EMPTY>
 <!ATTLIST display name CDATA #REQUIRED>

Following the atom tag within the presence tag, there can be a display tag. The display tag has a
single required attribute to specify the display name.

The DTD of XPIDF is shown below:

 <?xml version="1.0" encoding="UTF-8" ?>
 <!ELEMENT presence (presentity, atom*, display?)>

 <!ELEMENT presentity (#PCDATA)>
 <!ATTLIST presentity uri CDATA #REQUIRED>
 <!ELEMENT atom (postal?, address*)>
 <!ATTLIST atom atomid CDATA #REQUIRED
 expires CDATA #IMPLIED>
 <!ELEMENT postal (#PCDATA)>
 <!ELEMENT address (status | class | duplex | feature | note |
 mobility | msnsubstatus)*>
 <!ATTLIST address uri CDATA #REQUIRED
 priority CDATA #IMPLIED>
 <!ELEMENT status EMPTY>
 <!ATTLIST status status (open|closed|inuse) #REQUIRED>
 <!ELEMENT class EMPTY>
 <!ATTLIST class class (business|personal) #REQUIRED>
 <!ELEMENT duplex EMPTY>
 <!ATTLIST duplex duplex
 (full|half|send-only|receive-only) #REQUIRED>
 <!ELEMENT feature EMPTY>
 <!ATTLIST feature feature (voicemail|attendant) #REQUIRED>
 <!ELEMENT mobility EMPTY>
 <!ATTLIST mobility mobility (fixed|mobile) #REQUIRED>
 <!ELEMENT note (#PCDATA)>
 <!ELEMENT msnsubstatus EMPTY>
 <!ATTLIST msnsubstatus
 (unknown|away|online|idle|busy|berightback|onthephone|outtolunch)
 #REQUIRED>
 <!ELEMENT display EMPTY>

77 / 95

[MS-SIP-Diff] - v20160714
Session Initiation Protocol Extensions
Copyright © 2016 Microsoft Corporation
Release: July 14, 2016

 <!ATTLIST display name CDATA #REQUIRED>

78 / 95

[MS-SIP-Diff] - v20160714
Session Initiation Protocol Extensions
Copyright © 2016 Microsoft Corporation
Release: July 14, 2016

8 Appendix C: ACL XML Schema

 <?xml version="1.0" ?>
 <xsd:schema id="acl"
 targetNamespace="http://schemas.microsoft.com/sip/acl/"
 xmlns="http://schemas.microsoft.com/sip/acl/"
 xmlns:xsd="http://www.w3.org/2001/XMLSchema">

 <xsd:annotation>
 <xsd:documentation>
 Type definition for Access Control Lists
 </xsd:documentation>
 </xsd:annotation>

 <!-- - - -
 ACEs

 An ACE is a set of three attributes:
 type scopes what the ACE applies to
 mask a user URI or DNS domain
 rights the rights associated with this ACE
 -->
 <xsd:complexType name="ace">
 <xsd:attribute name="type" type="acetype" use="required"/>
 <xsd:attribute name="mask" type="acemask" use="optional"/>
 <xsd:attribute name="rights"
 type="rightsmask"
 use="optional"
 default="AA"/>
 </xsd:complexType>

 <!-- - - - - - -
 An ace can be scoped to:

 ALL
 Applies to all users.Mask is not used.

 DOMAIN
 Matches a domain specified in mask.
 For example, if mask is "microsoft.com" then
 "sip:user1@redmond.microsoft.com" and
 "sip:user2@microsoft.com"
 match, but "sip:user3@example.com" doesn't match.

 USER
 Matches a specific user. For example,mask could be
 "sip:user3@microsoft.com".

 -->

 <xsd:simpleType name="acetype">
 <xsd:restriction base="xsd:string">
 <xsd:enumeration value="ALL" />
 <xsd:enumeration value="USER" />
 <xsd:enumeration value="DOMAIN" />
 </xsd:restriction>
 </xsd:simpleType>

 <!-- - -
 An acemask is only used when the acetype is USER or DOMAIN.
 -->

 <xsd:simpleType name="acemask">
 <xsd:union memberTypes="domainmask xsd:anyURI" />
 </xsd:simpleType>

 <!-- - - - - - -
 A domain is a set of one or more pairs of
 label+. pairs.

79 / 95

[MS-SIP-Diff] - v20160714
Session Initiation Protocol Extensions
Copyright © 2016 Microsoft Corporation
Release: July 14, 2016

 For example "redmond.microsoft.com." and "microsoft.com.".
 SIP:roberbr@redmond.microsoft.com would match either of these.
 SIP:roberbr@southpacific.microsoft.com would
 only match "microsoft.com."
 -->
 <xsd:simpleType name="domainmask">
 <xsd:restriction base="xsd:string">
 <xsd:pattern value="[\w+\.]*\w+\.?" />
 <xsd:minLength value="2"/>
 <xsd:maxLength value="255"/>
 </xsd:restriction>
 </xsd:simpleType>

 <!-- - -
 The Rights mask.
 -->

 <xsd:simpleType name="rightsmask">

 <!--
 This is a list of characters. Each position in the list
 represents a Right. The character in that position represents
 the value of that right. Additional rights can be added to the
 end of the string in future versions.

 A = Allow
 D = Deny
 P = Prompt
 B = Block (Polite blocking)

 Incoming_
 \
 Presence_ |
 \|
 ||
 AA
 AD
 PA
 PD
 DA
 DD
 BA
 BD
 -->

 <xsd:restriction base="xsd:string">
 <xsd:pattern value="(A|P|D|B)(A|D)"/>
 </xsd:restriction>
 </xsd:simpleType>

 <!-- - - - - -
 ACLs
 - - - - - - -->
 <xsd:complexType name="acl">
 <xsd:sequence>
 <xsd:element name="ace" type="ace" minOccurs="0"
 maxOccurs="unbounded"/>
 </xsd:sequence>
 </xsd:complexType>
 <xsd:complexType name="aclList">
 <xsd:sequence>
 <xsd:element name="userACL" type="acl" minOccurs="0"/>
 </xsd:sequence>
 </xsd:complexType>
 <xsd:element name="ACLlist" type="aclList"/>
 </xsd:schema>

80 / 95

[MS-SIP-Diff] - v20160714
Session Initiation Protocol Extensions
Copyright © 2016 Microsoft Corporation
Release: July 14, 2016

9 Appendix D: Contact Management Schema

9.1 Contact Schema

 <?xml version="1.0" ?>
 <xs:schema id="contact"
 version="2.0"
 targetNamespace="http://schemas.microsoft.com/sip/types"
 xmlns:tns="http://schemas.microsoft.com/sip/types"
 xmlns:xs="http://www.w3.org/2001/XMLSchema">

 <xs:annotation>
 <xs:documentation>
 Live Communications Server 2005 provides Instant Messaging
 capabilities among users in an enterprise. Users can store
 a list of contacts that they frequently communicate with on
 the server and retrieve / manage this list from any machine
 from which they log on to the service. This schema specifies
 the structure of XML instances containing contact-related
 data returned by the server.

 The server can return two types of contact lists.
 1. Full List - A full list of all contacts and their
 associated groups.
 2. Delta List - A list containing a subset of contacts and
 associated groups that were added, modified, or deleted
 from the Full List.

 List (1) is returned from the server in response to a SUBSCRIBE
 for the event vnd-microsoft-roaming-contact.
 List (2) is returned from the server in response to any of the
 SetContact, DeleteContact, DeleteGroup, or
 ModifyGroup SERVICE operations.

 These lists are returned by the server in NOTIFY / BENOTIFY
 requests generated by the server or in the body of a 200 OK
 response (also called as a "piggy-back notify").

 A Full List is a list of groups followed by a list of
 contacts. Groups are uniquely numbered. The particular
 numbering sequence is not persisted and may vary from one
 transmission to the next. Contacts are cross-referenced
 against groups using group ID numbers. Contacts must be
 in at least one group.

 A Delta List is a list of groups that were added and / or
 modified, followed by a list of contacts that were added
 and / or modified, followed by a list of groups that were
 deleted and finally followed by a list of contacts that
 were deleted.
 </xs:documentation>
 </xs:annotation>

 <xs:include schemaLocation="common.xsd" />

 <!-- *************** Common Types *************** -->

 <xs:simpleType name="groupID">
 <xs:annotation>
 <xs:documentation>
 This is a number assigned by a server to identify a group.
 This number can be uniquely used to associate a contact
 with a group.
 </xs:documentation>
 </xs:annotation>

 <xs:restriction base="xs:nonNegativeInteger">

81 / 95

[MS-SIP-Diff] - v20160714
Session Initiation Protocol Extensions
Copyright © 2016 Microsoft Corporation
Release: July 14, 2016

 <xs:minInclusive value="0" />
 <xs:maxInclusive value="64" />
 </xs:restriction>
 </xs:simpleType>

 <xs:simpleType name="baseGroupList">
 <xs:list itemType="groupID" />
 </xs:simpleType>

 <xs:simpleType name="groupList">
 <xs:restriction base="baseGroupList">
 <xs:maxLength value="64" />
 </xs:restriction>
 </xs:simpleType>

 <xs:simpleType name="groupName">
 <xs:annotation>
 <xs:documentation>
 The length of this string cannot exceed 256 bytes.
 </xs:documentation>
 </xs:annotation>
 <xs:restriction base="xs:string" />
 </xs:simpleType>

 <xs:simpleType name="contactName">
 <xs:annotation>
 <xs:documentation>
 The length of this string cannot exceed 256 bytes.
 </xs:documentation>
 </xs:annotation>
 <xs:restriction base="xs:string" />
 </xs:simpleType>

 <xs:simpleType name="externalUri">
 <xs:restriction base="xs:string">
 <xs:annotation>
 <xs:documentation>
 Any string that points to an external resource. The
 server enforces that the raw representation of this
 string cannot exceed 1024 bytes.
 </xs:documentation>
 </xs:annotation>
 </xs:restriction>
 </xs:simpleType>

 <xs:simpleType name="contactDeltaNum">
 <xs:annotation>
 <xs:documentation>
 The server maintains a single non-negative integer version
 number for the contact / group list of every user. Anytime
 the user performs an operation that modifies his
 contact / group list, the version number gets incremented.
 The version number is returned to the client in the contact
 list allowing the client to determine if it has the most
 up-to-date information and to refresh the contact / group
 list if its state, as seen by the server, is out-of-sync.
 If the client's delta number is out-of-sync with the server,
 it can obtain the current value by subscribing to the
 vnd-microsoft-roaming-contact event and looking at the
 deltaNum attribute of the contactList element in the body
 of the notification data. The notification data will be
 received in the 200 OK response or in a separate NOTIIFY or
 BENOTIFY request from the server.
 </xs:documentation>
 </xs:annotation>
 <xs:restriction base="xs:nonNegativeInteger" />
 </xs:simpleType>

 <xs:complexType name="group">
 <xs:attribute name="id" type="tns:groupID" use="required" />

82 / 95

[MS-SIP-Diff] - v20160714
Session Initiation Protocol Extensions
Copyright © 2016 Microsoft Corporation
Release: July 14, 2016

 <xs:attribute name="name" type="tns:groupName" use="required" />

 <xs:attribute name="externalURI" type="tns:externalUri">
 <xs:annotation>
 <xs:documentation>
 An external URI is a list of contacts that is stored
 elsewhere. For example this may point to a location in an
 LDAP directory.
 </xs:documentation>
 </xs:annotation>
 </xs:attribute>
 </xs:complexType>

 <xs:complexType name="contactExtension">
 <xs:annotation>
 <xs:documentation>
 This element is provided for extensibility. Any valid XML
 can be stored by the client. The server enforces a limit
 of 1024 bytes on the size of the element body, where the
 entire element body is treated as a single string.
 </xs:documentation>
 </xs:annotation>

 <xs:sequence>
 <xs:any namespace="##any"
 processContents="lax"
 minOccurs="0"
 maxOccurs="unbounded" />
 </xs:sequence>
 </xs:complexType>

 <xs:complexType name="contact">
 <xs:sequence>
 <xs:element name="contactExtension"
 type="tns:contactExtension"
 minOccurs="0" maxOccurs="1" />
 </xs:sequence>

 <xs:attribute name="uri" type="tns:sipURI" use="required" />
 <xs:attribute name="name" type="tns:contactName" />
 <xs:attribute name="groups" type="tns:groupList" default="0" />
 <xs:attribute name="subscribed" type="xs:boolean"
 default="true">
 <xs:annotation>
 <xs:documentation>
 This attribute specifies whether the client subscribes
 to this contact's presence.
 </xs:documentation>
 </xs:annotation>
 </xs:attribute>

 <xs:attribute name="externalURI" type="tns:externalUri">
 <xs:annotation>
 <xs:documentation>
 Perhaps the contact is from the Outlook address book, an
 LDAP directory, or some other external source. A URL can
 be stored to obtain more information about this contact.
 </xs:documentation>
 </xs:annotation>
 </xs:attribute>
 </xs:complexType>

 <!-- ********* Full List ********* -->

 <xs:complexType name="fullContactList">
 <xs:sequence>
 <xs:element name="group" type="tns:group" minOccurs="0"
 maxOccurs="64" />
 <xs:element name="contact" type="tns:contact" minOccurs="0"

83 / 95

[MS-SIP-Diff] - v20160714
Session Initiation Protocol Extensions
Copyright © 2016 Microsoft Corporation
Release: July 14, 2016

 maxOccurs="unbounded" >
 <xs:annotation>
 <xs:documentation>
 Although the schema allows for an unbounded number of
 contacts, the administrator can configure a server to
 disallow more than a certain number of contacts.
 </xs:documentation>
 </xs:annotation>
 </xs:element>
 </xs:sequence>

 <xs:attribute name="deltaNum" type="tns:contactDeltaNum"
 use="required" />
 </xs:complexType>

 <xs:element name="contactList" type="tns:fullContactList" />

 <!-- *********** Delta List *********** -->

 <xs:complexType name="deltaContactList">
 <xs:choice>
 <xs:element name="addedGroup" type="tns:group" />
 <xs:element name="modifiedGroup" type="tns:group" />
 <xs:element name="addedContact" type="tns:contact" />
 <xs:element name="modifiedContact" type="tns:contact" />

 <xs:element name="deletedGroup">
 <xs:complexType>
 <xs:attribute name="id" type="tns:groupID"
 use="required" />
 </xs:complexType>
 </xs:element>

 <xs:element name="deletedContact">
 <xs:complexType>
 <xs:attribute name="uri" type="tns:sipURI"
 use="required" />
 </xs:complexType>
 </xs:element>
 </xs:choice>

 <xs:attribute name="deltaNum" type="tns:contactDeltaNum"
 use="required" >
 <xs:annotation>
 <xs:documentation>
 The value of this attribute is the new delta number
 after the SERVICE operation was performed.
 </xs:documentation>
 </xs:annotation>
 </xs:attribute>

 <xs:attribute name="prevDeltaNum" type="tns:contactDeltaNum"
 use="required" >
 <xs:annotation>
 <xs:documentation>
 The value of this attribute equals the value of the
 delta number specified in the SERVICE operation.
 </xs:documentation>
 </xs:annotation>
 </xs:attribute>
 </xs:complexType>

 <xs:element name="contactDelta" type="tns:deltaContactList" />
 </xs:schema>

84 / 95

[MS-SIP-Diff] - v20160714
Session Initiation Protocol Extensions
Copyright © 2016 Microsoft Corporation
Release: July 14, 2016

9.2 SetContact Schema

 <?xml version="1.0" ?>
 <xs:schema id="SetContact" version="2.0"
 elementFormDefault="qualified"
 targetNamespace="http://schemas.microsoft.com/sip/types/setcontact/"
 xmlns:tns="http://schemas.microsoft.com/sip/types/setcontact/"
 xmlns:ct="http://schemas.microsoft.com/sip/types"
 xmlns:xs="http://www.w3.org/2001/XMLSchema">

 <xs:import namespace="http://schemas.microsoft.com/sip/types"
 schemaLocation="contact.xsd" />

 <xs:annotation>
 <xs:documentation>
 Users can add contacts to their contact list by sending a
 SIP SERVICE request to their Live Communications Server.
 The content of this SERVICE request is a SOAP request. The
 body of the SOAP request contains an XML instance conforming
 to the structure specified in this schema.
 </xs:documentation>
 </xs:annotation>

 <xs:complexType name="SetContact">
 <xs:sequence>
 <xs:element name="displayName" type="ct:contactName" />
 <xs:element name="groups" type="ct:groupList" />
 <xs:element name="subscribed" type="xs:boolean" />
 <xs:element name="URI" type="ct:sipURI" />
 <xs:element name="externalURI" type="ct:externalUri"
 minOccurs="0" />

 <xs:element name="deltaNum" type="ct:contactDeltaNum" >
 <xs:annotation>
 <xs:documentation>
 This value must match the current delta number
 stored by the server.
 </xs:documentation>
 </xs:annotation>
 </xs:element>

 <xs:element name="contactExtension" type="tns:contactExtension"
 minOccurs="0" />
 </xs:sequence>
 </xs:complexType>

 <xs:element name="setContact" type="tns:SetContact" />
 </xs:schema>

9.3 ModifyGroup Schema

 <?xml version="1.0" ?>
 <xs:schema id="ModifyGroup" version="2.0"
 elementFormDefault="qualified"
 targetNamespace=
 "http://schemas.microsoft.com/sip/types/modifygroup/"
 xmlns:tns="http://schemas.microsoft.com/sip/types/modifygroup/"
 xmlns:ct="http://schemas.microsoft.com/sip/types"
 xmlns:xs="http://www.w3.org/2001/XMLSchema">

 <xs:import namespace="http://schemas.microsoft.com/sip/types"
 schemaLocation="contact.xsd" />

 <xs:annotation>
 <xs:documentation>
 Users can add a new group or modify the name of an existing

85 / 95

[MS-SIP-Diff] - v20160714
Session Initiation Protocol Extensions
Copyright © 2016 Microsoft Corporation
Release: July 14, 2016

 group by sending a SIP SERVICE request to their Live
 Communications Server. The content of this SERVICE request
 is a SOAP request. The body of the SOAP request contains
 an XML instance conforming to the structure specified in
 this schema.
 </xs:documentation>
 </xs:annotation>

 <xs:complexType name="ModifyGroup">
 <xs:sequence>
 <xs:element name="groupID" type="ct:groupID" />
 <xs:element name="name" type="ct:groupName" />
 <xs:element name="externalURI" type="ct:externalUri"
 minOccurs="0" />

 <xs:element name="deltaNum" type="ct:contactDeltaNum" >
 <xs:annotation>
 <xs:documentation>
 This value must match the current delta number
 stored by the server.
 </xs:documentation>
 </xs:annotation>
 </xs:element>

 </xs:sequence>
 </xs:complexType>

 <xs:element name="modifyGroup" type="tns:ModifyGroup" />
 <xs:element name="=”addGroup"” type="=”tns:ModifyGroup"” />
 </xs:schema>

9.4 DeleteContact Schema

 <?xml version="1.0" ?>
 <xs:schema id="DeleteContact" version="2.0"
 elementFormDefault="qualified"
 targetNamespace=
 "http://schemas.microsoft.com/sip/types/deletecontact/"
 xmlns:tns=
 "http://schemas.microsoft.com/sip/types/deletecontact/"
 xmlns:ct="http://schemas.microsoft.com/sip/types"
 xmlns:xs="http://www.w3.org/2001/XMLSchema">

 <xs:import namespace="http://schemas.microsoft.com/sip/types"
 schemaLocation="contact.xsd" />

 <xs:annotation>
 <xs:documentation>
 Users can delete contacts from their contact list by sending a
 SIP SERVICE request to their Live Communications Server.
 The content of this SERVICE request is a SOAP request. The
 body of the SOAP request contains an XML instance conforming
 to the structure specified in this schema.
 </xs:documentation>
 </xs:annotation>

 <xs:complexType name="DeleteContact">
 <xs:sequence>
 <xs:element name="URI" type="ct:sipURI" />
 </xs:sequence>
 </xs:complexType>

 <xs:element name="deleteContact" type="tns:DeleteContact" />
 </xs:schema>

86 / 95

[MS-SIP-Diff] - v20160714
Session Initiation Protocol Extensions
Copyright © 2016 Microsoft Corporation
Release: July 14, 2016

9.5 DeleteGroup Schema

 <?xml version="1.0" ?
 <xs:schema id="DeleteGroup" version="2.0"
 elementFormDefault="qualified"
 targetNamespace=
 "http://schemas.microsoft.com/sip/types/deletegroup/"
 xmlns:tns="http://schemas.microsoft.com/sip/types/deletegroup/"
 xmlns:ct="http://schemas.microsoft.com/sip/types"
 xmlns:xs="http://www.w3.org/2001/XMLSchema">

 <xs:import namespace="http://schemas.microsoft.com/sip/types"
 schemaLocation="contact.xsd" />
 <xs:annotation>
 <xs:documentation>
 Users can delete existing groups by sending a SIP SERVICE
 request to their Live Communications Server. The content of
 this SERVICE request is a SOAP request. The body of the SOAP
 request contains an XML instance conforming to the structure
 specified in this schema.

 NOTE: Before a group can be deleted all contacts must be
 removed from the group using DeleteContact operations.
 </xs:documentation>
 </xs:annotation>

 <xs:complexType name="DeleteGroup">
 <xs:sequence>
 <xs:element name="groupID" type="ct:groupID" />

 <xs:element name="deltaNum" type="ct:contactDeltaNum" >
 <xs:annotation>
 <xs:documentation>
 This value must match the current delta number
 stored by the server.
 </xs:documentation>
 </xs:annotation>
 </xs:element>

 </xs:sequence>
 </xs:complexType>

 <xs:element name="deleteGroup" type="tns:DeleteGroup" />
 </xs:schema>

87 / 95

[MS-SIP-Diff] - v20160714
Session Initiation Protocol Extensions
Copyright © 2016 Microsoft Corporation
Release: July 14, 2016

10 Appendix E: common.xsd

 <?xml version="1.0" ?>
 <xs:schema id="contact" version="2.0"
 targetNamespace="http://schemas.microsoft.com/sip/types"
 xmlns:tns="http://schemas.microsoft.com/sip/types"
 xmlns:xs="http://www.w3.org/2001/XMLSchema">

 <xs:simpleType name="adAttribute">
 <xs:restriction base="xs:token">
 <xs:minLength value="1" />
 <xs:pattern value="\w+" />
 </xs:restriction>
 </xs:simpleType>

 <xs:simpleType name="sipURI">
 <xs:annotation>
 <xs:documentation>
 The format of a SIP URI is sip:user@host. The user portion
 of the URI is treated as case-sensitive while the host portion
 is treated as case-insensitive.
 </xs:documentation>
 </xs:annotation>
 <xs:restriction base="xs:anyURI">
 <xs:maxLength value="454" />
 <xs:pattern value="sip:\w+@\w+(\.\w+)+" />
 </xs:restriction>
 </xs:simpleType>

 <xs:simpleType name="displayName">
 <xs:annotation>
 <xs:documentation>
 This value is retrieved by the server from the Active Directory
 'displayName' attribute on the user object.
 </xs:documentation>
 </xs:annotation>
 <xs:restriction base="tns:adAttribute" />
 </xs:simpleType>

 <xs:simpleType name="email">
 <xs:annotation>
 <xs:documentation>
 This value is retrieved by the server from the Active Directory
 'mail' attribute on the user object.
 </xs:documentation>
 </xs:annotation>
 <xs:restriction base="tns:adAttribute" />
 </xs:simpleType>

 <xs:simpleType name="phone">
 <xs:annotation>
 <xs:documentation>
 This value is retrieved by the server from the Active Directory
 'telephoneNumber' attribute on the user object.
 </xs:documentation>
 </xs:annotation>
 <xs:restriction base="tns:adAttribute" />
 </xs:simpleType>

 <xs:simpleType name="title">
 <xs:annotation>
 <xs:documentation>
 This value is retrieved by the server from the Active Directory
 'title' attribute on the user object.
 </xs:documentation>
 </xs:annotation>
 <xs:restriction base="tns:adAttribute" />
 </xs:simpleType>

88 / 95

[MS-SIP-Diff] - v20160714
Session Initiation Protocol Extensions
Copyright © 2016 Microsoft Corporation
Release: July 14, 2016

 <xs:simpleType name="office">
 <xs:annotation>
 <xs:documentation>
 This value is retrieved by the server from the Active Directory
 'physicalDeliveryOfficeName' attribute on the user object.
 </xs:documentation>
 </xs:annotation>
 <xs:restriction base="tns:adAttribute" />
 </xs:simpleType>

 <xs:simpleType name="company">
 <xs:annotation>
 <xs:documentation>
 This value is retrieved by the server from the Active Directory
 'company' attribute on the user object.
 </xs:documentation>
 </xs:annotation>
 <xs:restriction base="tns:adAttribute" />
 </xs:simpleType>

 <xs:simpleType name="city">
 <xs:annotation>
 <xs:documentation>
 This value is retrieved by the server from the Active Directory
 'l' attribute on the user object.
 </xs:documentation>
 </xs:annotation>
 <xs:restriction base="tns:adAttribute" />
 </xs:simpleType>

 <xs:simpleType name="state">
 <xs:annotation>
 <xs:documentation>
 This value is retrieved by the server from the Active Directory
 'st' attribute on the user object.
 </xs:documentation>
 </xs:annotation>
 <xs:restriction base="tns:adAttribute" />
 </xs:simpleType>

 <xs:simpleType name="country">
 <xs:annotation>
 <xs:documentation>
 This value is retrieved by the server from the Active Directory
 'c' attribute on the user object.
 </xs:documentation>
 </xs:annotation>
 <xs:restriction base="tns:adAttribute" />
 </xs:simpleType>

 </xs:schema>

89 / 95

[MS-SIP-Diff] - v20160714
Session Initiation Protocol Extensions
Copyright © 2016 Microsoft Corporation
Release: July 14, 2016

11 Appendix F: Product Behavior

The information in this specification is applicable to the following Microsoft products or supplemental
software. References to product versions include released service packs.

 Windows 2000 operating system Service Pack 4 (SP4)

 Windows XP operating system

 Windows Server 2003 operating system

Exceptions, if any, are noted below. If a service pack or Quick Fix Engineering (QFE) number appears
with the product version, behavior changed in that service pack or QFE. The new behavior also applies
to subsequent service packs of the product unless otherwise specified. If a product edition appears
with the product version, behavior is different in that product edition.

Unless otherwise specified, any statement of optional behavior in this specification that is prescribed
using the terms SHOULD or SHOULD NOT implies product behavior in accordance with the SHOULD or

SHOULD NOT prescription. Unless otherwise specified, the term MAY implies that the product does not
follow the prescription.

90 / 95

[MS-SIP-Diff] - v20160714
Session Initiation Protocol Extensions
Copyright © 2016 Microsoft Corporation
Release: July 14, 2016

12 Change Tracking

No table of changes is available. The document is either new or has had no changes since its last
release.

91 / 95

[MS-SIP-Diff] - v20160714
Session Initiation Protocol Extensions
Copyright © 2016 Microsoft Corporation
Release: July 14, 2016

13 Index

2

200 OK
 piggyback notification in 35
 receiving a piggyback notification in 36
 response to SUBSCRIBE 40

A

Abstract data model
 Auto-extension of Subscriptions 39
 Batched SUBSCRIBE and NOTIFY Extensions 30
 Best Effort NOTIFY Extension 37
 Contact Management Extensions 41
 NTLM/Kerberos Authentication Extensions 21
 Piggyback Notification in 200 OK Response 36
 Presence Extensions 26
Access Control List (ACL)

 receiving from server 45
 subscribing for 43
ACEs 44
ACL XML schema 78
Add/Modify/Delete Contact 43
Add/Modify/Delete Group 44
AddContact example 60
AddGroup example 62
Applicability 12
application/vnd-microsoft-roaming-acls+xml Document Format message 16
Authentication protocol elements 23
Auto-extension of Subscriptions
 abstract data model 39
 higher-layer triggered events 40
 initialization 39
 message processing 40
 overview 39
 sequencing rules 40
 timers 39

B

Batched SUBSCRIBE and NOTIFY Extensions
 abstract data model 30
 higher-layer triggered events 30
 initialization (section 3.3.2 30, section 3.3.3 30)
 message processing 33
 overview 29
 sequencing rules 33
BENOTIFY
 extension overview 37
 receiving 39
Best Effort NOTIFY example 57
Best Effort NOTIFY Extension
 abstract data model 37
 higher-layer triggered events 38
 initialization 38
 message processing 38
 overview 37

 sequencing rules 38
 support 37
 timers 38

C

92 / 95

[MS-SIP-Diff] - v20160714
Session Initiation Protocol Extensions
Copyright © 2016 Microsoft Corporation
Release: July 14, 2016

Capability negotiation 12
Change tracking 90
Contact List 44
Contact Management Extensions
 abstract data model 41
 higher-layer triggered events 42
 initialization 42
 message processing 44
 overview 41
 sequencing rules 44
 timers 42
Contact management schema 80
Contact/Group list 43

D

Data model - abstract
 Auto-extension of Subscriptions 39
 Batched SUBSCRIBE and NOTIFY Extensions 30
 Best Effort NOTIFY Extension 37
 Contact Management Extensions 41
 NTLM/Kerberos Authentication Extensions 21
 Piggyback Notification in 200 OK Response 36
 Presence Extensions 26
DeleteContact example 61
DeleteGroup example 63
Directory service schema elements 19

E

Elements - directory service schema 19
Examples
 AddContact example 60
 AddGroup example 62
 Best Effort NOTIFY example 57
 DeleteContact example 61
 DeleteGroup example 63
 Kerberos example 46
 NTLM example 50
 overview 46
 setPresence example 58
 SUBSCRIBE and Piggybacked NOTIFY example 55

F

Fields - vendor-extensible 13
Full text/xml+msrtc.pidf Presence Document Format 69

G

getPresence SERVICE Request 29
Glossary 7

H

Higher-layer triggered events
 Auto-extension of Subscriptions 40
 Batched SUBSCRIBE and NOTIFY Extensions 30
 Best Effort NOTIFY Extension 38
 Contact Management Extensions 42
 NTLM/Kerberos Authentication Extensions 21
 Piggyback Notification in 200 OK Response 36
 Presence Extensions 27

93 / 95

[MS-SIP-Diff] - v20160714
Session Initiation Protocol Extensions
Copyright © 2016 Microsoft Corporation
Release: July 14, 2016

I

Implementer - security considerations 68
Index of security parameters 68
Informative references 11
Initialization
 Auto-extension of Subscriptions 39
 Batched SUBSCRIBE and NOTIFY Extensions 30
 Best Effort NOTIFY Extension 38
 Contact Management Extensions 42
 NTLM/Kerberos Authentication Extensions 21
 Piggyback Notification in 200 OK Response 36
 Presence Extensions 27
Introduction 7

K

Kerberos example 46

L

Login sequence 21

M

Message processing
 Auto-extension of Subscriptions 40
 Batched SUBSCRIBE and NOTIFY Extensions 33
 Best Effort NOTIFY Extension 38
 Contact Management Extensions 44
 NTLM/Kerberos Authentication Extensions 23
 Piggyback Notification in 200 OK Response 36
 Presence Extensions 29
Messages
 application/vnd-microsoft-roaming-acls+xml Document Format 16
 overview 14
 signature 25
 SIP Extensions to XPIDF Presence Document Format 16
 syntax 14
 text/xml+msrtc.pidf Presence Document Format 14
 transport 14

N

Normative references 10
NOTIFY 40
NOTIFY response 33
NTLM example 50
NTLM/Kerberos Authentication Extensions
 abstract data model 21
 elements 23
 higher-layer triggered events 21
 initialization 21
 message processing 23
 overview 20
 proxy=replace 25
 sequencing rules 23
 timers 21

O

Overview 11
Overview (synopsis) 11

94 / 95

[MS-SIP-Diff] - v20160714
Session Initiation Protocol Extensions
Copyright © 2016 Microsoft Corporation
Release: July 14, 2016

P

Parameters - security index 68
Piggyback Notification - indicating support for 36
Piggyback Notification in 200 OK Response
 abstract data model 36
 higher-layer triggered events 36
 initialization 36
 message processing 36
 overview 35
 sequencing rules 36
 timers 36
Piggyback Notification in a 200 OK Response
 receiving 36
Preconditions 12
Prerequisites 12

Presence Document Format
 described 74
 extensions 16
 text/xml+msrtc.pidf 14
Presence Extensions
 abstract data model 26
 higher-layer triggered events 27
 initialization 27
 message processing 29
 overview 25
 sequencing rules 29
 support 27
 timers 27
Presence for Self User (setPresence SERVICE Request) 27
Presence information
 of another user (getPresence SERVICE Request) 28
 subscribing to 28
Product behavior 89
Protocol Details
 overview 20
proxy=replace 25

R

References 10
 informative 11
 normative 10
Relationship to other protocols 12

S

Schema elements - directory service 19
Security
 implementer considerations 68

 overview 68
 parameter index 68
Self User (setPresence SERVICE Request) 27
Sequencing rules
 Auto-extension of Subscriptions 40
 Batched SUBSCRIBE and NOTIFY Extensions 33
 Best Effort NOTIFY Extension 38
 Contact Management Extensions 44
 NTLM/Kerberos Authentication Extensions 23
 Piggyback Notification in 200 OK Response 36
 Presence Extensions 29
setPresence example 58
Signatures 25
SIP Extensions to XPIDF Presence Document Format 16

95 / 95

[MS-SIP-Diff] - v20160714
Session Initiation Protocol Extensions
Copyright © 2016 Microsoft Corporation
Release: July 14, 2016

SIP Extensions to XPIDF Presence Document Format message 16
SIP message 21
Standards assignments 13
SUBSCRIBE
 200 OK response to 40
 receiving a Failure response to 38
 receiving a success response to 38
SUBSCRIBE and Piggybacked NOTIFY example 55
SUBSCRIBE request
 Failure response 35
 sending 30
Subscriptions indicating support for auto-extension of 40
Support - Best Effort NOTIFY Extension 37
Syntax 14

T

text/xml+msrtc.pidf Presence Document Format 14
text/xml+msrtc.pidf Presence Document Format message 14
Timers
 Auto-extension of Subscriptions 39
 Batched SUBSCRIBE and NOTIFY Extensions 30
 Best Effort NOTIFY Extension 38
 Contact Management Extensions 42
 NTLM/Kerberos Authentication Extensions 21
 Piggyback Notification in 200 OK Response 36
 Presence Extensions 27
Tracking changes 90
Transport 14
Triggered events - higher-layer
 Auto-extension of Subscriptions 40
 Batched SUBSCRIBE and NOTIFY Extensions 30
 Best Effort NOTIFY Extension 38
 Contact Management Extensions 42
 NTLM/Kerberos Authentication Extensions 21
 Piggyback Notification in 200 OK Response 36
 Presence Extensions 27

V

Vendor-extensible fields 13
Versioning 12

X

XPIDF Presence Document Format 74

