

1 / 138

[MS-RTSP-Diff] - v20240423
Real-Time Streaming Protocol (RTSP) Windows Media Extensions
Copyright © 2024 Microsoft Corporation
Release: April 23, 2024

[MS-RTSP-Diff]:

Real-Time Streaming Protocol (RTSP) Windows Media
Extensions

Intellectual Property Rights Notice for Open Specifications Documentation

 Technical Documentation. Microsoft publishes Open Specifications documentation (“this
documentation”) for protocols, file formats, data portability, computer languages, and standards
support. Additionally, overview documents cover inter-protocol relationships and interactions.

 Copyrights. This documentation is covered by Microsoft copyrights. Regardless of any other
terms that are contained in the terms of use for the Microsoft website that hosts this

documentation, you can make copies of it in order to develop implementations of the technologies

that are described in this documentation and can distribute portions of it in your implementations
that use these technologies or in your documentation as necessary to properly document the
implementation. You can also distribute in your implementation, with or without modification, any
schemas, IDLs, or code samples that are included in the documentation. This permission also
applies to any documents that are referenced in the Open Specifications documentation.

 No Trade Secrets. Microsoft does not claim any trade secret rights in this documentation.
 Patents. Microsoft has patents that might cover your implementations of the technologies

described in the Open Specifications documentation. Neither this notice nor Microsoft's delivery of
this documentation grants any licenses under those patents or any other Microsoft patents.
However, a given Open Specifications document might be covered by the Microsoft Open
Specifications Promise or the Microsoft Community Promise. If you would prefer a written license,
or if the technologies described in this documentation are not covered by the Open Specifications

Promise or Community Promise, as applicable, patent licenses are available by contacting
iplg@microsoft.com.

 License Programs. To see all of the protocols in scope under a specific license program and the

associated patents, visit the Patent Map.
 Trademarks. The names of companies and products contained in this documentation might be

covered by trademarks or similar intellectual property rights. This notice does not grant any
licenses under those rights. For a list of Microsoft trademarks, visit

www.microsoft.com/trademarks.
 Fictitious Names. The example companies, organizations, products, domain names, email

addresses, logos, people, places, and events that are depicted in this documentation are fictitious.
No association with any real company, organization, product, domain name, email address, logo,
person, place, or event is intended or should be inferred.

Reservation of Rights. All other rights are reserved, and this notice does not grant any rights other

than as specifically described above, whether by implication, estoppel, or otherwise.

Tools. The Open Specifications documentation does not require the use of Microsoft programming
tools or programming environments in order for you to develop an implementation. If you have access
to Microsoft programming tools and environments, you are free to take advantage of them. Certain

Open Specifications documents are intended for use in conjunction with publicly available standards
specifications and network programming art and, as such, assume that the reader either is familiar
with the aforementioned material or has immediate access to it.

Support. For questions and support, please contact dochelp@microsoft.com.

https://go.microsoft.com/fwlink/?LinkId=214445
https://go.microsoft.com/fwlink/?LinkId=214445
https://go.microsoft.com/fwlink/?LinkId=214448
mailto:iplg@microsoft.com
https://aka.ms/AA9ufj8
https://www.microsoft.com/trademarks
mailto:dochelp@microsoft.com

2 / 138

[MS-RTSP-Diff] - v20240423
Real-Time Streaming Protocol (RTSP) Windows Media Extensions
Copyright © 2024 Microsoft Corporation
Release: April 23, 2024

Revision Summary

Date
Revision
History

Revision
Class Comments

4/3/2007 0.01 New Version 0.01 release

7/3/2007 1.0 Major MLonghorn+90

7/20/2007 1.1 Minor Clarified the meaning of the technical content.

8/10/2007 2.0 Major Added new protocol examples.

9/28/2007 2.0.1 Editorial Changed language and formatting in the technical content.

10/23/2007 2.0.2 Editorial Changed language and formatting in the technical content.

11/30/2007 2.1 Minor Clarified the meaning of the technical content.

1/25/2008 2.1.1 Editorial Changed language and formatting in the technical content.

3/14/2008 2.1.2 Editorial Changed language and formatting in the technical content.

5/16/2008 3.0 Major Updated and revised the technical content.

6/20/2008 3.1 Minor Clarified the meaning of the technical content.

7/25/2008 3.2 Minor Clarified the meaning of the technical content.

8/29/2008 3.3 Minor Clarified the meaning of the technical content.

10/24/2008 3.4 Minor Clarified the meaning of the technical content.

12/5/2008 4.0 Major Updated and revised the technical content.

1/16/2009 5.0 Major Updated and revised the technical content.

2/27/2009 6.0 Major Updated and revised the technical content.

4/10/2009 7.0 Major Updated and revised the technical content.

5/22/2009 8.0 Major Updated and revised the technical content.

7/2/2009 9.0 Major Updated and revised the technical content.

8/14/2009 9.1 Minor Clarified the meaning of the technical content.

9/25/2009 9.2 Minor Clarified the meaning of the technical content.

11/6/2009 10.0 Major Updated and revised the technical content.

12/18/2009 11.0 Major Updated and revised the technical content.

1/29/2010 12.0 Major Updated and revised the technical content.

3/12/2010 13.0 Major Updated and revised the technical content.

4/23/2010 13.1 Minor Clarified the meaning of the technical content.

6/4/2010 14.0 Major Updated and revised the technical content.

7/16/2010 15.0 Major Updated and revised the technical content.

8/27/2010 15.1 Minor Clarified the meaning of the technical content.

3 / 138

[MS-RTSP-Diff] - v20240423
Real-Time Streaming Protocol (RTSP) Windows Media Extensions
Copyright © 2024 Microsoft Corporation
Release: April 23, 2024

Date
Revision
History

Revision
Class Comments

10/8/2010 16.0 Major Updated and revised the technical content.

11/19/2010 17.0 Major Updated and revised the technical content.

1/7/2011 17.0 None
No changes to the meaning, language, or formatting of the
technical content.

2/11/2011 18.0 Major Updated and revised the technical content.

3/25/2011 19.0 Major Updated and revised the technical content.

5/6/2011 20.0 Major Updated and revised the technical content.

6/17/2011 20.1 Minor Clarified the meaning of the technical content.

9/23/2011 20.1 None
No changes to the meaning, language, or formatting of the
technical content.

12/16/2011 21.0 Major Updated and revised the technical content.

3/30/2012 21.0 None
No changes to the meaning, language, or formatting of the
technical content.

7/12/2012 21.0 None
No changes to the meaning, language, or formatting of the
technical content.

10/25/2012 21.0 None
No changes to the meaning, language, or formatting of the
technical content.

1/31/2013 21.0 None
No changes to the meaning, language, or formatting of the
technical content.

8/8/2013 22.0 Major Updated and revised the technical content.

11/14/2013 22.0 None
No changes to the meaning, language, or formatting of the
technical content.

2/13/2014 22.0 None
No changes to the meaning, language, or formatting of the
technical content.

5/15/2014 22.0 None
No changes to the meaning, language, or formatting of the

technical content.

6/30/2015 23.0 Major Significantly changed the technical content.

10/16/2015 23.0 None
No changes to the meaning, language, or formatting of the
technical content.

7/14/2016 24.0 Major Significantly changed the technical content.

6/1/2017 24.0 None
No changes to the meaning, language, or formatting of the
technical content.

9/15/2017 25.0 Major Significantly changed the technical content.

9/12/2018 26.0 Major Significantly changed the technical content.

4/7/2021 27.0 Major Significantly changed the technical content.

6/25/2021 28.0 Major Significantly changed the technical content.

4/23/2024 29.0 Major Significantly changed the technical content.

4 / 138

[MS-RTSP-Diff] - v20240423
Real-Time Streaming Protocol (RTSP) Windows Media Extensions
Copyright © 2024 Microsoft Corporation
Release: April 23, 2024

Table of Contents

1 Introduction .. 9
1.1 Glossary ... 9
1.2 References .. 11

1.2.1 (Updated Section) Normative References ... 11
1.2.2 (Updated Section) Informative References ... 12

1.3 Overview .. 12
1.4 Relationship to Other Protocols .. 13
1.5 Prerequisites/Preconditions ... 13
1.6 Applicability Statement ... 14
1.7 Versioning and Capability Negotiation ... 14
1.8 Vendor-Extensible Fields ... 14
1.9 Standards Assignments ... 14

2 Messages ... 15
2.1 Transport .. 15
2.2 Message Syntax ... 15

2.2.1 RTP Payload Format for ASF Data Packets .. 15
2.2.1.1 General Usage .. 15
2.2.1.2 RTP Header Usage for ASF Data .. 16
2.2.1.3 RTP Payload Format Header ... 16
2.2.1.4 ASF Data Packet Payload ... 17

2.2.2 RTP Payload Format for Forward Error Correction ... 18
2.2.2.1 General Usage .. 18
2.2.2.2 Vandermonde Matrix Algorithm ... 18

2.2.2.2.1 Basic Principles Used in the Encoding Technique 19
2.2.2.2.2 Generation of a Vandermonde Matrix ... 19

2.2.2.3 RTP Header Usage for RTP FEC Data .. 20
2.2.2.4 RTP Packet Header FEC Extension ... 20

2.2.3 RTP Payload Format for Retransmitted RTP Packets and Packet-Pair Data 21
2.2.3.1 Transmitting Copies of RTP Packets ... 22
2.2.3.2 Transmitting Packet-Pair Data .. 22

2.2.4 RTCP NACK Packet Syntax ... 23
2.2.5 Session Description Protocol Extensions .. 24

2.2.5.1 Bandwidth Modifiers for the "b=" Field ... 24
2.2.5.1.1 "AS" Bandwidth Modifier ... 24
2.2.5.1.2 "RS" Bandwidth Modifier ... 24
2.2.5.1.3 "RR" Bandwidth Modifier ... 24
2.2.5.1.4 "X-AV" Bandwidth Modifier ... 25

2.2.5.2 Attributes for the "a=" Field ... 25
2.2.5.2.1 Control URL Attribute ("a=control") ... 25
2.2.5.2.2 Max packetsize Attribute ("a=maxps") ... 25
2.2.5.2.3 Program Parameters URL Attribute ("a=pgmpu") 25

2.2.5.2.3.1 application/vnd.ms.wms-hdr.asfv1 ... 26
2.2.5.2.3.2 application/x-wms-contentdesc ... 26

2.2.5.2.4 Reliable Attribute ("a=reliable") .. 26
2.2.5.2.5 Stream Number Attribute ("a=stream") ... 26
2.2.5.2.6 Type Attribute ("a=type") ... 27

2.2.5.2.6.1 broadcast.. 27
2.2.5.2.6.2 lastentry ... 27
2.2.5.2.6.3 notseekable .. 27
2.2.5.2.6.4 notstridable ... 27
2.2.5.2.6.5 playlist ... 27
2.2.5.2.6.6 skipbackward .. 27
2.2.5.2.6.7 skipforward ... 27

2.2.5.3 RTP Payload Format for ASF Data Packets .. 28
2.2.5.4 RTP Payload Format for FEC Data .. 28

5 / 138

[MS-RTSP-Diff] - v20240423
Real-Time Streaming Protocol (RTSP) Windows Media Extensions
Copyright © 2024 Microsoft Corporation
Release: April 23, 2024

2.2.5.5 RTP Payload Format for Retransmitted RTP Packets and Packet-Pair Data 29
2.2.6 RTSP Header Fields ... 29

2.2.6.1 Bandwidth .. 30
2.2.6.2 Cache-Control .. 30

2.2.6.2.1 max-age .. 30
2.2.6.2.2 must-revalidate ... 30
2.2.6.2.3 no-cache .. 30
2.2.6.2.4 no-store ... 31
2.2.6.2.5 no-user-cache ... 31
2.2.6.2.6 private ... 31
2.2.6.2.7 proxy-revalidate .. 31
2.2.6.2.8 public ... 31
2.2.6.2.9 x-wms-content-size ... 31
2.2.6.2.10 x-wms-event-subscription .. 31
2.2.6.2.11 x-wms-proxy-split ... 31
2.2.6.2.12 x-wms-stream-type ... 31

2.2.6.3 Content-Type ... 32
2.2.6.3.1 application/sdp ... 32
2.2.6.3.2 application/x-rtsp-packetpair .. 32
2.2.6.3.3 application/x-rtsp-udp-packetpair .. 33
2.2.6.3.4 application/x-wms-extension-cmd ... 33
2.2.6.3.5 application/x-wms-getcontentinfo .. 33
2.2.6.3.6 application/x-wms-Logconnectstats ... 33
2.2.6.3.7 application/x-wms-Logplaystats .. 33
2.2.6.3.8 application/x-wms-sendevent ... 33
2.2.6.3.9 application/x-wms-streamswitch ... 33

2.2.6.4 Cookie ... 33
2.2.6.5 If-Match ... 34
2.2.6.6 If-None-Match .. 34
2.2.6.7 Range .. 34

2.2.6.7.1 x-asf-byte .. 34
2.2.6.7.2 x-asf-packet ... 34

2.2.6.8 RTP-Info .. 35
2.2.6.9 Set-Cookie ... 35
2.2.6.10 Supported .. 35

2.2.6.10.1 com.microsoft.wm.eosmsg ... 36
2.2.6.10.2 com.microsoft.wm.fastcache ... 36
2.2.6.10.3 com.microsoft.wm.locid.. 36
2.2.6.10.4 com.microsoft.wm.packetpairssrc .. 37
2.2.6.10.5 com.microsoft.wm.predstrm ... 37
2.2.6.10.6 com.microsoft.wm.srvppair ... 37
2.2.6.10.7 com.microsoft.wm.sswitch .. 37
2.2.6.10.8 com.microsoft.wm.startupprofile ... 38

2.2.6.11 Transport ... 38
2.2.6.12 User-Agent ... 39
2.2.6.13 X-Accelerate-Streaming ... 39
2.2.6.14 X-Accept-Authentication .. 40
2.2.6.15 X-Accept-Proxy-Authentication ... 40
2.2.6.16 X-Broadcast-Id ... 40
2.2.6.17 X-Burst-Streaming .. 40
2.2.6.18 X-Notice .. 41
2.2.6.19 X-Player-Lag-Time .. 41
2.2.6.20 X-Playlist ... 41
2.2.6.21 X-Playlist-Change-Notice .. 42
2.2.6.22 X-Playlist-Gen-Id .. 42
2.2.6.23 X-Playlist-Seek-Id ... 42
2.2.6.24 X-Proxy-Client-Agent ... 42
2.2.6.25 X-Proxy-Client-Verb .. 43

6 / 138

[MS-RTSP-Diff] - v20240423
Real-Time Streaming Protocol (RTSP) Windows Media Extensions
Copyright © 2024 Microsoft Corporation
Release: April 23, 2024

2.2.6.26 X-Receding-PlaylistChange ... 43
2.2.6.27 X-RTP-Info ... 43
2.2.6.28 X-StartupProfile .. 44

2.2.7 Request Types.. 45
2.2.7.1 Announce ... 45
2.2.7.2 Describe .. 46
2.2.7.3 EndOfStream .. 46
2.2.7.4 GetContentInfo ... 47
2.2.7.5 KeepAlive ... 48
2.2.7.6 LogConnect .. 48
2.2.7.7 LogPlay .. 49
2.2.7.8 Pause .. 49
2.2.7.9 Play ... 50
2.2.7.10 SelectStream .. 50

2.2.7.10.1 SelectStream Using SETUP ... 52
2.2.7.10.2 SelectStream Using TEARDOWN .. 52
2.2.7.10.3 SelectStream Using SET_PARAMETER .. 53

2.2.7.11 SendEvent ... 53
2.2.7.12 TcpPacketPair ... 54
2.2.7.13 Teardown ... 54
2.2.7.14 UdpPacketPair .. 54

3 Protocol Details ... 56
3.1 Client Details ... 56

3.1.1 Abstract Data Model .. 56
3.1.2 Timers .. 57
3.1.3 Initialization ... 58
3.1.4 Higher-Layer Triggered Events ... 58

3.1.4.1 Request to Retrieve Caching Information ... 58
3.1.4.2 Request to Retrieve Content Information ... 58

3.1.4.2.1 Sending the Describe Request ... 59
3.1.4.3 Request to Start Streaming Content .. 59

3.1.4.3.1 Sending a SelectStream Request ... 59
3.1.4.4 Request to Change Currently Selected Streams .. 60
3.1.4.5 Streams to Play from the New Playlist Entry Are Selected 60
3.1.4.6 Request to Retransmit Lost RTP Packets .. 61
3.1.4.7 Request to Stop Streaming .. 61
3.1.4.8 Request to Change Playback Position ... 62
3.1.4.9 Playback of Content Has Finished .. 62
3.1.4.10 Request to Finish Streaming Session ... 62

3.1.5 Processing Events and Sequencing Rules ... 62
3.1.5.1 Sending a Request (All Request Types) .. 62
3.1.5.2 Receiving a Response (All Request Types) .. 64
3.1.5.3 Receiving a GetContentInfo Response .. 64
3.1.5.4 Receiving a Describe Response ... 64
3.1.5.5 Receiving a TcpPacketPair Response .. 65
3.1.5.6 Receiving a SelectStream Response for the Retransmission Stream 65
3.1.5.7 Receiving a UdpPacketPair Response ... 66
3.1.5.8 Receiving an RTP Packet Containing Packet-Pair Data 66
3.1.5.9 Receiving a SelectStream Response .. 67

3.1.5.9.1 Sending a Play Request in READY State .. 67
3.1.5.10 Receiving a Play Response ... 68
3.1.5.11 Receiving a LogConnect Response ... 69
3.1.5.12 Receiving RTP Packets ... 69

3.1.5.12.1 Processing of RTP Packets When FEC Is Used 69
3.1.5.12.2 Processing of RTP Packets .. 70

3.1.5.13 Receiving an EndOfStream Request ... 71
3.1.5.14 Receiving a LogPlay Response .. 72

7 / 138

[MS-RTSP-Diff] - v20240423
Real-Time Streaming Protocol (RTSP) Windows Media Extensions
Copyright © 2024 Microsoft Corporation
Release: April 23, 2024

3.1.5.15 Receiving an Announce Request .. 72
3.1.5.16 Receiving a SelectStream Response After Announce 72

3.1.5.16.1 Sending a Play Request in PLAYING State ... 73
3.1.5.17 Receiving a Pause Response ... 73
3.1.5.18 Receiving a KeepAlive Response ... 73
3.1.5.19 Receiving a SendEvent Response .. 74
3.1.5.20 Receiving a Teardown Response ... 74

3.1.6 Timer Events .. 74
3.1.6.1 Firewall Timer Expires ... 74
3.1.6.2 Keepalive Timer Expires ... 74

3.1.7 Other Local Events .. 74
3.1.7.1 TCP Connection Is Disconnected ... 74

3.2 Server Details .. 74
3.2.1 Abstract Data Model .. 75
3.2.2 Timers .. 78
3.2.3 Initialization ... 78
3.2.4 Higher-Layer Triggered Events ... 78

3.2.4.1 Notification that the Last RTP Packet Has Been Sent 78
3.2.4.2 Notification that a New ASF File Header Is Available 79
3.2.4.3 Notification That an ASF Packet Is Ready to Be Sent.................................. 81

3.2.5 Processing Events and Sequencing Rules ... 82
3.2.5.1 Receiving a Request (All Request Types) .. 82
3.2.5.2 Sending a Response (All Request Types) .. 83
3.2.5.3 Receiving a GetContentInfo Request .. 84
3.2.5.4 Receiving a Describe Request ... 84
3.2.5.5 Receiving a TcpPacketPair Request .. 86
3.2.5.6 Receiving a SelectStream Request .. 86

3.2.5.6.1 Receiving a SelectStream Request Using SETUP 86
3.2.5.6.2 Receiving a SelectStream Request Using TEARDOWN 86
3.2.5.6.3 Receiving a SelectStream Request Using SET_PARAMETER 86
3.2.5.6.4 Common Processing Rules for SelectStream 87

3.2.5.7 Receiving a UdpPacketPair Request ... 88
3.2.5.8 Receiving a Play Request ... 88
3.2.5.9 Receiving a LogConnect Request ... 90
3.2.5.10 Receiving an RTCP Packet .. 91
3.2.5.11 Receiving a Pause Request ... 92
3.2.5.12 Receiving a LogPlay Request .. 93
3.2.5.13 Receiving an EndOfStream Response ... 93
3.2.5.14 Receiving an Announce Response .. 94
3.2.5.15 Receiving a KeepAlive Request ... 94
3.2.5.16 Receiving a SendEvent Request .. 95
3.2.5.17 Receiving a Teardown Request ... 96

3.2.6 Timer Events .. 96
3.2.6.1 Lag-Timer Timer Expires .. 96
3.2.6.2 Idle-Timeout Timer Expires .. 96
3.2.6.3 Heartbeat Timer Expires .. 96

3.2.7 Other Local Events .. 96
3.2.7.1 Selected-Stream Adjustment .. 96
3.2.7.2 Client Closes TCP Connection .. 96
3.2.7.3 Server Role .. 96
3.2.7.4 Redirection ... 96
3.2.7.5 Cache-Control Data ... 97
3.2.7.6 RTSP Request Received ... 97
3.2.7.7 Computing Values for the X-StartupProfile Header 97

3.2.7.7.1 Inspecting a Single ASF Payload .. 98
3.2.7.7.2 MaxDiffSndTime Calculations .. 99
3.2.7.7.3 ChosenRate Calculations ... 100
3.2.7.7.4 MaxBytes, Time and ByteRate Calculations .. 100

8 / 138

[MS-RTSP-Diff] - v20240423
Real-Time Streaming Protocol (RTSP) Windows Media Extensions
Copyright © 2024 Microsoft Corporation
Release: April 23, 2024

3.2.7.8 Broadcast ID ... 101
3.2.7.9 AS-Bandwidth Request ... 101
3.2.7.10 Fast Start Request ... 101
3.2.7.11 Proxy Authentication .. 101
3.2.7.12 Origin Server Authentication .. 102

4 Protocol Examples ... 103
4.1 RTP Packet Syntax .. 103
4.2 Vandermonde Matrix Algorithm ... 104
4.3 SDP Examples .. 107

4.3.1 Retransmission Stream .. 107
4.4 RTSP Examples ... 107

4.4.1 SETUP Request .. 107
4.4.2 Packet-Pair Bandwidth Estimation Using UDP .. 108
4.4.3 Packet-Pair Bandwidth Estimation Using TCP ... 109
4.4.4 Predictive Stream Selection and SelectStream ... 110

4.4.4.1 SelectStream Using SET_PARAMETER ... 110
4.4.4.2 SelectStream Using TEARDOWN .. 111
4.4.4.3 SelectStream After Predictive Stream Selection 112
4.4.4.4 Client Requests FEC Stream from Server .. 112

4.4.5 Server-Side Playlist Entry Switching ... 113
4.4.6 Stream Playback with Authentication ... 114
4.4.7 Streaming, Pausing, Fast-Forwarding, and Stopping Playback 116

4.5 Logging and RTSP ... 117
4.5.1 Submitting Connect-Time Statistics .. 117
4.5.2 Submitting a Play Log .. 118

4.6 RTSP Proxy Server Interaction .. 119
4.6.1 Sequencing for Playlist Content Delivery ... 121
4.6.2 Sequencing for Broadcast Content Delivery ... 123
4.6.3 Proxy Server and Origin Server Communication... 125

5 Security ... 127
5.1 Security Considerations for Implementers .. 127
5.2 Index of Security Parameters ... 127

6 (Updated Section) Appendix A: Product Behavior.. 128

7 Change Tracking .. 132

8 Index ... 133

9 / 138

[MS-RTSP-Diff] - v20240423
Real-Time Streaming Protocol (RTSP) Windows Media Extensions
Copyright © 2024 Microsoft Corporation
Release: April 23, 2024

1 Introduction

The Real-Time Streaming Protocol (RTSP): Windows Media Extensions are used for transmitting real-
time multimedia data such as audio and video data from a server to a client.

RTSP streams multimedia from Windows Media Services to Windows Media Player or other instances of
Windows Media Services. In its primary application, the client is a multimedia player which will render
or play the data, but the protocol can also be used for distributing data between two streaming media
servers.

RTSP Windows Media Extensions use TCP and UDP.

Sections 1.5, 1.8, 1.9, 2, and 3 of this specification are normative. All other sections and examples in
this specification are informative.

1.1 Glossary

This document uses the following terms:

Advanced Systems Format (ASF): An extensible file format that is designed to facilitate
streaming digital media data over a network. This file format is used by Windows Media.

ASCII: The American Standard Code for Information Interchange (ASCII) is an 8-bit character-
encoding scheme based on the English alphabet. ASCII codes represent text in computers,
communications equipment, and other devices that work with text. ASCII refers to a single 8-bit
ASCII character or an array of 8-bit ASCII characters with the high bit of each character set to

zero.

Augmented Backus-Naur Form (ABNF): A modified version of Backus-Naur Form (BNF),
commonly used by Internet specifications. ABNF notation balances compactness and simplicity
with reasonable representational power. ABNF differs from standard BNF in its definitions and
uses of naming rules, repetition, alternatives, order-independence, and value ranges. For more
information, see [RFC5234].

big-endian: Multiple-byte values that are byte-ordered with the most significant byte stored in the

memory location with the lowest address.

content: Multimedia data. content is always in ASF, for example, a single ASF music file or a single
ASF video file. Data in general. A file that an application accesses. Examples of content include
web pages and documents stored on either web servers or SMB file servers.

forward error correction (FEC): A process in which a sender uses redundancy to enable a
receiver to recover from packet loss.

globally unique identifier (GUID): A term used interchangeably with universally unique

identifier (UUID) in Microsoft protocol technical documents (TDs). Interchanging the usage of
these terms does not imply or require a specific algorithm or mechanism to generate the value.
Specifically, the use of this term does not imply or require that the algorithms described in
[RFC4122] or [C706] must be used for generating the GUID. See also universally unique

identifier (UUID).

MIME type: A method that is used by protocol clients to associate files of a certain type with

applications that can open or access files of that type.

Multipurpose Internet Mail Extensions (MIME): A set of extensions that redefines and
expands support for various types of content in email messages, as described in [RFC2045],
[RFC2046], and [RFC2047].

playlist: One or more content items that are streamed sequentially.

10 / 138

[MS-RTSP-Diff] - v20240423
Real-Time Streaming Protocol (RTSP) Windows Media Extensions
Copyright © 2024 Microsoft Corporation
Release: April 23, 2024

Real-Time Streaming Protocol (RTSP): A protocol used for transferring real-time multimedia
data (for example, audio and video) between a server and a client, as specified in [RFC2326]. It

is a streaming protocol; this means that RTSP attempts to facilitate scenarios in which the
multimedia data is being simultaneously transferred and rendered (that is, video is displayed

and audio is played).

Real-Time Transport Control Protocol (RTCP): A network transport protocol that enables
monitoring of Real-Time Transport Protocol (RTP) data delivery and provides minimal control
and identification functionality, as described in [RFC3550].

Real-Time Transport Protocol (RTP): A network transport protocol that provides end-to-end
transport functions that are suitable for applications that transmit real-time data, such as audio
and video, as described in [RFC3550].

RTCP packet: A control packet consisting of a fixed header part similar to that of RTP packets,
followed by structured elements that vary depending upon the RTCP packet type. Typically,
multiple RTCP packets are sent together as a compound RTCP packet in a single packet of the
underlying protocol; this is enabled by the length field in the fixed header of each RTCP packet.

See [RFC3550] section 3.

RTP packet: A data packet consisting of the fixed RTP header, a possibly empty list of contributing

sources, and the payload data. Some underlying protocols may require an encapsulation of the
RTP packet to be defined. Typically one packet of the underlying protocol contains a single RTP
packet, but several RTP packets can be contained if permitted by the encapsulation method. See
[RFC3550] section 3.

session: The state maintained by the server when it is streaming content to a client. If a server-
side playlist is used, the same session is used for all content in the playlist.

Session Description Protocol (SDP): A protocol that is used for session announcement, session

invitation, and other forms of multimedia session initiation. For more information see [MS-SDP]
and [RFC3264].

stream: A sequence of ASF media objects ([ASF] section 5.2) that can be selected individually. For

example, if a movie has an English and a Spanish soundtrack, each may be encoded in the ASF
file as a separate stream. The video data would also be a separate stream.

streaming: The act of transferring content from a sender to a receiver.

Transmission Control Protocol (TCP): A protocol used with the Internet Protocol (IP) to send

data in the form of message units between computers over the Internet. TCP handles keeping
track of the individual units of data (called packets) that a message is divided into for efficient
routing through the Internet.

Unicode: A character encoding standard developed by the Unicode Consortium that represents
almost all of the written languages of the world. The Unicode standard [UNICODE5.0.0/2007]
provides three forms (UTF-8, UTF-16, and UTF-32) and seven schemes (UTF-8, UTF-16, UTF-16

BE, UTF-16 LE, UTF-32, UTF-32 LE, and UTF-32 BE).

Uniform Resource Identifier (URI): A string that identifies a resource. The URI is an addressing

mechanism defined in Internet Engineering Task Force (IETF) Uniform Resource Identifier (URI):
Generic Syntax [RFC3986].

Uniform Resource Locator (URL): A string of characters in a standardized format that identifies
a document or resource on the World Wide Web. The format is as specified in [RFC1738].

universally unique identifier (UUID): A 128-bit value. UUIDs can be used for multiple

purposes, from tagging objects with an extremely short lifetime, to reliably identifying very
persistent objects in cross-process communication such as client and server interfaces, manager
entry-point vectors, and RPC objects. UUIDs are highly likely to be unique. UUIDs are also

11 / 138

[MS-RTSP-Diff] - v20240423
Real-Time Streaming Protocol (RTSP) Windows Media Extensions
Copyright © 2024 Microsoft Corporation
Release: April 23, 2024

known as globally unique identifiers (GUIDs) and these terms are used interchangeably in the
Microsoft protocol technical documents (TDs). Interchanging the usage of these terms does not

imply or require a specific algorithm or mechanism to generate the UUID. Specifically, the use of
this term does not imply or require that the algorithms described in [RFC4122] or [C706] must

be used for generating the UUID.

User Datagram Protocol (UDP): The connectionless protocol within TCP/IP that corresponds to
the transport layer in the ISO/OSI reference model.

UTF-8: A byte-oriented standard for encoding Unicode characters, defined in the Unicode standard.
Unless specified otherwise, this term refers to the UTF-8 encoding form specified in
[UNICODE5.0.0/2007] section 3.9.

MAY, SHOULD, MUST, SHOULD NOT, MUST NOT: These terms (in all caps) are used as defined

in [RFC2119]. All statements of optional behavior use either MAY, SHOULD, or SHOULD NOT.

1.2 References

Links to a document in the Microsoft Open Specifications library point to the correct section in the

most recently published version of the referenced document. However, because individual documents
in the library are not updated at the same time, the section numbers in the documents may not
match. You can confirm the correct section numbering by checking the Errata.

1.2.1 (Updated Section) Normative References

We conduct frequent surveys of the normative references to assure their continued availability. If you
have any issue with finding a normative reference, please contact dochelp@microsoft.com. We will
assist you in finding the relevant information.

[ASF] Microsoft Corporation, "Advanced Systems Format Specification", December 2004,
httphttps://download.microsoft.com/download/7/9/0/790fecaa-f64a-4a5e-a430-
0bccdab3f1b4/ASF_Specification.doc

[IANA] IANA, "Internet Assigned Numbers Authority (IANA)", http://www.iana.org

[MS-DTYP] Microsoft Corporation, "Windows Data Types".

[MS-RTSP] Microsoft Corporation, "Real-Time Streaming Protocol (RTSP) Windows Media Extensions".

[MS-WMLOG] Microsoft Corporation, "Windows Media Log Data Structure".

[MS-WMSP] Microsoft Corporation, "Windows Media HTTP Streaming Protocol".

[RFC2109] Kristol, D., and Montulli, L., "HTTP State Management Mechanism", RFC 2109, February
1997, httphttps://www.rfc-editor.org/rfcinfo/rfc2109.txt

[RFC2119] Bradner, S., "Key words for use in RFCs to Indicate Requirement Levels", BCP 14, RFC
2119, March 1997, httphttps://www.rfc-editor.org/rfcinfo/rfc2119.txt

[RFC2326] Schulzrinne, H., Rao, A., and Lanphier, R., "Real Time Streaming Protocol (RTSP)", RFC
2326, April 1998, httphttps://www.ietfrfc-editor.org/rfcinfo/rfc2326.txt

[RFC2397] Masinter, L., "The 'data' URL Scheme", RFC 2397, August 1998, httphttps://www.rfc-
editor.org/rfcinfo/rfc2397.txt

[RFC2616] Fielding, R., Gettys, J., Mogul, J., et al., "Hypertext Transfer Protocol -- HTTP/1.1", RFC
2616, June 1999, httphttps://www.rfc-editor.org/rfcinfo/rfc2616.txt

12 / 138

[MS-RTSP-Diff] - v20240423
Real-Time Streaming Protocol (RTSP) Windows Media Extensions
Copyright © 2024 Microsoft Corporation
Release: April 23, 2024

[RFC2617] Franks, J., Hallam-Baker, P., Hostetler, J., et al., "HTTP Authentication: Basic and Digest
Access Authentication", RFC 2617, June 1999, httphttps://www.rfc-editor.org/rfcinfo/rfc2617.txt

[RFC3550] Schulzrinne, H., Casner, S., Frederick, R., and Jacobson, V., "RTP: A Transport Protocol for
Real-Time Applications", STD 64, RFC 3550, July 2003, httphttps://www.ietfrfc-
editor.org/rfcinfo/rfc3550.txt

[RFC3556] Casner, S., "Session Description Protocol (SDP) Bandwidth Modifiers for RTP Control

Protocol (RTCP) Bandwidth", RFC 3556, July 2003, httphttps://www.ietfrfc-
editor.org/rfcinfo/rfc3556.txt

[RFC3629] Yergeau, F., "UTF-8, A Transformation Format of ISO 10646", STD 63, RFC 3629,
November 2003, httphttps://www.ietfrfc-editor.org/rfcinfo/rfc3629.txt

[RFC3986] Berners-Lee, T., Fielding, R., and Masinter, L., "Uniform Resource Identifier (URI): Generic
Syntax", STD 66, RFC 3986, January 2005, httphttps://www.rfc-editor.org/rfcinfo/rfc3986.txt

[RFC4122] Leach, P., Mealling, M., and Salz, R., "A Universally Unique Identifier (UUID) URN

Namespace", RFC 4122, July 2005, httphttps://www.rfc-editor.org/rfcinfo/rfc4122.txt

[RFC4559] Jaganathan, K., Zhu, L., and Brezak, J., "SPNEGO-based Kerberos and NTLM HTTP
Authentication in Microsoft Windows", RFC 4559, June 2006, httphttps://www.rfc-
editor.org/rfcinfo/rfc4559.txt

[RFC4566] Handley, M., Jacobson, V., and Perkins, C., "SDP: Session Description Protocol", RFC 4566,
July 2006, httphttps://www.ietfrfc-editor.org/rfcinfo/rfc4566.txt

[RFC4585] Ott, J., Wenger, S., Sato, N., et al., "Extended RTP Profile for Real-time Transport Control
Protocol (RTCP)-Based Feedback (RTP/AVPF)", RFC 4585, July 2006, httphttps://www.rfc-
editor.org/rfcinfo/rfc4585.txt

[RFC5234] Crocker, D., Ed., and Overell, P., "Augmented BNF for Syntax Specifications: ABNF", STD
68, RFC 5234, January 2008, httphttps://www.rfc-editor.org/rfcinfo/rfc5234.txt

1.2.2 (Updated Section) Informative References

[MS-MMSP] Microsoft Corporation, "Microsoft Media Server (MMS) Protocol".

[R-SCODES] Wicker, B., "Reed-Solomon Codes and Their Applications", Wiley-IEEE Press, 1999, ISBN:
0780353919.

[RFC1945] Berners-Lee, T., Fielding, R., and Frystyk, H., "Hypertext Transfer Protocol -- HTTP/1.0",
RFC 1945, May 1996, httphttps://www.ietfrfc-editor.org/rfcinfo/rfc1945.txt

[RFC2733] Rosenberg, J., and Schulzrinne, H., "An RTP Payload Format for Generic Forward Error
Correction", RFC 2733, December 1999, http://www.ietf.org/rfc/rfc2733.txt

[RFC768] Postel, J., "User Datagram Protocol", STD 6, RFC 768, August 1980, httphttps://www.rfc-
editor.org/rfcinfo/rfc768.txt

[RFC793] Postel, J., Ed., "Transmission Control Protocol: DARPA Internet Program Protocol
Specification", RFC 793, September 1981, httphttps://www.rfc-editor.org/rfcinfo/rfc793.txt

1.3 Overview

The Real-Time Streaming Protocol (RTSP) [RFC2326] is used for transferring real-time multimedia
data, including audio and video, between a server and a client. It is a streaming protocol, which

13 / 138

[MS-RTSP-Diff] - v20240423
Real-Time Streaming Protocol (RTSP) Windows Media Extensions
Copyright © 2024 Microsoft Corporation
Release: April 23, 2024

means it attempts to facilitate scenarios in which the multimedia data is being simultaneously
transferred and rendered; that is, video is displayed, and audio is played.

RTSP uses a Transmission Control Protocol (TCP) connection for control of the streaming media
session, although it is also possible to use UDP for this purpose.

The entity that sends the RTSP request that initiates the session is referred as the client, and the
entity that responds to that request is referred to as the server. Typically, the multimedia data flows
from the server to the client. RTSP also allows multimedia data to flow in the opposite direction.
However, the extensions defined in this specification were not designed for such scenarios.

Clients can send RTSP requests to the server requesting information on content before a session is
established. The information that the server returns is formatted by using a syntax specified by the
Session Description Protocol (SDP) [RFC4566].

Clients use RTSP requests to control the session and to request that the server perform actions, such
as starting or stopping the flow of multimedia data. Each request has a corresponding RTSP response
that is sent in the opposite direction. Servers can also send RTSP requests to clients, for example, to

inform them that the session state has changed.

If TCP is used to exchange RTSP requests and responses, the multimedia data can also be transferred
over the same TCP connection. Otherwise, the multimedia data is transferred over UDP.

The multimedia data is encapsulated in Real-Time Transport Protocol (RTP) packets [RFC3550]. For
each RTP stream, the server and client can also exchange Real-Time Transport Control Protocol
(RTCP) packets [RFC3556].

This specification defines extensions to RTSP, SDP, RTP, and RTCP that enable the delivery of
multimedia data that is encapsulated in Advanced Systems Format (ASF) packets [ASF].

1.4 Relationship to Other Protocols

RTSP relies on TCP [RFC793] for controlling the streaming media session. Although the User Datagram

Protocol (UDP) [RFC768] is also allowed, it is rarely used for this purpose.

RTSP uses Session Description Protocol (SDP) [RFC4566] syntax to specify the properties of content.

RTSP uses Real-Time Transport Protocol (RTP) [RFC3550] for the delivery of multimedia data and

Real-Time Transport Control Protocol (RTCP) [RFC3556] for RTP feedback and statistics. RTP and RTCP
packets are transmitted over either UDP or TCP. It is possible to transmit some RTP streams over UDP
and other RTP streams over TCP.

RTSP with Windows Media extensions depends on Advanced Systems Format (ASF) [ASF], which is
used in both the SDP syntax and the payload of RTP packets. This is similar in functionality to the
Windows Media HTTP Streaming Protocol [MS-WMSP]. However, in that protocol, the delivery of ASF
packets is limited to TCP only.

RTSP is similar in functionality to the Microsoft Media Server (MMS) protocol [MS-MMSP]. However,
RTSP with Windows Media extensions provides additional functionality that is not available in MMS.

1.5 Prerequisites/Preconditions

RTSP Windows Media Extensions do not provide a mechanism for a client to discover the URL to the

server. Therefore, it is a prerequisite that the client obtains a URL to the server before this protocol
can be used.

14 / 138

[MS-RTSP-Diff] - v20240423
Real-Time Streaming Protocol (RTSP) Windows Media Extensions
Copyright © 2024 Microsoft Corporation
Release: April 23, 2024

1.6 Applicability Statement

RTSP is suitable for streaming delivery of real-time multimedia data. The term streaming means that
the data is transmitted at some fixed rate or at some rate that is related to the rate at which the data

will be consumed (for example, displayed) by the receiver.

It is appropriate to use RTSP Windows Media Extensions when there is a need for a streaming protocol
that can deliver multimedia data over either UDP or TCP.

Although the Microsoft Media Server (MMS) protocol [MS-MMSP] also supports delivery of multimedia
data over UDP and TCP, RTSP with the Windows Media extensions provides additional functionality
that is not available in MMS. MMS is an older protocol that has been deprecated.

If the multimedia data is transmitted over TCP, the Windows Media HTTP Streaming Protocol [MS-

WMSP] might be a suitable alternative. That protocol provides the same functionality as RTSP with the
Windows Media extensions, except that the delivery of ASF packets is restricted to TCP.

1.7 Versioning and Capability Negotiation

This document covers versioning issues in the following areas:

Supported Transports: RTSP Windows Media Extensions are implemented on top of TCP. Also,
implementations that require connectionless transmission of multimedia data over an unreliable
network service support UDP. For details, see section 2.1.

Protocol Versions: RTSP version 1.0, as specified in [RFC2326], is supported.

Security and Authentication Methods: RTSP Windows Media Extensions support HTTP access
authentication, as specified in [RFC2616] section 11.

Localization: RTSP Windows Media Extensions do not specify any localization-dependent protocol
behavior.

Capability Negotiation: RTSP Windows Media Extensions perform explicit capability negotiation by

using the following mechanisms:

 The type attribute in SDP, as specified in section 2.2.5.2.6.

 The Supported (section 2.2.6.10) header.

 The X-Accept-Authentication (section 2.2.6.14) header.

1.8 Vendor-Extensible Fields

Vendor-extensible fields are specified in [RFC2326].

1.9 Standards Assignments

The following port numbers have been assigned for use by RTSP, RTP and RTCP.

 Parameter Value Reference

Port number used by server RTSP requests (both UDP and TCP) 554 [IANA]

Destination UDP port for RTP packets 5004 [IANA]

Destination UDP port for RTCP packets 5005 [IANA]

15 / 138

[MS-RTSP-Diff] - v20240423
Real-Time Streaming Protocol (RTSP) Windows Media Extensions
Copyright © 2024 Microsoft Corporation
Release: April 23, 2024

2 Messages

The following sections specify how messages are encapsulated on the wire and common data types.

2.1 Transport

RTSP requests and responses are sent over either UDP or TCP.<1>

The default port that an RTSP server listens on for incoming requests is port 554, but the use of other

port numbers is permitted.

The extensions defined in this specification use the access authentication functionality that was
originally defined for HTTP. This is possible because when RTSP requests a response, the syntax of the
request is, in many aspects, compatible with HTTP. The specific access authentication schemes
supported by any one implementation are implementation-specific.<2>

HTTP access authentication is specified in [RFC2616] section 11.

2.2 Message Syntax

The following table lists the structures that are defined in this section.

Name Section Description

RTP Payload Format for ASF Data Packets 2.2.1 The RTP payload format for ASF data packets

RTP Payload Format for Forward Error
Correction

2.2.2 The RTP payload format for forward error correction
(FEC)

RTP Payload Format for Retransmitted
RTP Packets and Packet-Pair Data

2.2.3 The RTP payload format for retransmitted RTP packets
and packet-pair data

RTCP NACK Packet Syntax 2.2.4 The syntax of RTCP negative acknowledgement (NACK)
packets

Session Description Protocol Extensions 2.2.5 Extensions to SDP

RTSP Header Fields 2.2.6 The syntax of RTSP headers

Request types 2.2.7 Logical request types, and how each type of request is
mapped to an RTSP method

2.2.1 RTP Payload Format for ASF Data Packets

This section defines an RTP payload format for ASF packets. RTP and ASF are specified in [RFC3550]
and [ASF].

2.2.1.1 General Usage

The RTP payload format defined in this section is suitable for any kind of multimedia data that is
encapsulated in ASF data packets. The RTP payload format is used for audio streams and video
streams, as well as streams of any of the other types, as specified in [ASF].

ASF data packets can contain multiple payloads from different streams of different types. Therefore, it

is possible for a single RTP packet to contain both audio and video data because the ASF packet
contained in the RTP packet can multiplex data from different streams.

16 / 138

[MS-RTSP-Diff] - v20240423
Real-Time Streaming Protocol (RTSP) Windows Media Extensions
Copyright © 2024 Microsoft Corporation
Release: April 23, 2024

This RTP payload format allows for multiple ASF data packets to be combined into a single RTP packet.
It is also possible to split (fragment) an ASF data packet across several consecutive RTP packets.

Each ASF data packet, or fragment thereof, is preceded by an RTP payload format header, specified in
section 2.2.1.3.

2.2.1.2 RTP Header Usage for ASF Data

The meaning and syntax of the fixed RTP header are specified in [RFC3550] section 5.1 and by the
RTP profile in use with the following additional notes:

Marker (M): This bit MUST be set to 1 if the RTP packet contains the last fragment of an ASF data
packet, or one or more complete ASF data packets. Otherwise, it MUST be set to 0.

Payload Type (PT): There is no predefined RTP payload type number for this RTP payload format.
Instead, this 7-bit field MUST be assigned to a number as defined by protocol implementer. For
example, the payload type can be assigned by using SDP, as specified in section 2.2.5.

Timestamp: This 32-bit field MUST be set to the value of the Send Time field of the first ASF data
packet contained in the RTP packet. To find the Send Time field of an ASF data packet, see [ASF]

section 5.2.2. The time is expressed in milliseconds, unless otherwise specified; for example, through
SDP.

2.2.1.3 RTP Payload Format Header

The RTP payload format header is inserted in front of each ASF data packet, or fragment thereof.

Therefore, if the RTP packet contains multiple ASF data packets, the RTP payload format header will
also be present multiple times.

The fields in the RTP payload format header are transmitted in big-endian byte order, also called
network byte order. The syntax of the RTP payload format header is as follows:

0 1 2 3 4 5 6 7 8 9
1
0

1 2 3 4 5 6 7 8 9
2
0

1 2 3 4 5 6 7 8 9
3
0

1

S L R D I RES Length/Offset

Relative Timestamp (optional)

Duration (optional)

LocationId (optional)

S (1 bit): This field MUST be set to 1 if the ASF data packet contains a payload that is a key-frame.

Otherwise, this field MUST be set to 0. In all RTP payload format headers that precede fragments
of the same ASF data packet, the S field MUST be set to the same value. How to determine if an

ASF payload contains a key-frame is specified in [ASF].

L (1 bit): This field MUST be set to 1 if the Length/Offset field specifies the size of the ASF data
packet that follows this RTP payload format header. Otherwise, this field MUST be set to 0, and
the Length/Offset field MUST specify an offset. The L field MUST be set to 1 in all RTP payload
format headers that precede complete ASF data packets, and MUST be set to 0 in all headers that

precede fragmented ASF data packets.

R (1 bit): This field MUST be set to 1 if the Relative Timestamp field is present in the RTP payload
format header. Otherwise, this field MUST be set to 0. In all RTP payload format headers that
precede fragments of the same ASF data packet, the R field MUST be set to the same value.

17 / 138

[MS-RTSP-Diff] - v20240423
Real-Time Streaming Protocol (RTSP) Windows Media Extensions
Copyright © 2024 Microsoft Corporation
Release: April 23, 2024

D (1 bit): This field MUST be set to 1 if the Duration field is present in the RTP payload format
header. Otherwise, this field MUST be set to 0. In all RTP payload format headers that precede

fragments of the same ASF data packet, the D field MUST be set to the same value.

I (1 bit): This field MUST be set to 1 if the LocationId field is present in the RTP payload format

header. Otherwise, this field MUST be set to 0.

RES (3 bits): This field MUST be set to 0 and MUST be ignored by the receiver.

Length/Offset (3 bytes): If the L field is 0, the RTP payload contains a fragment of an ASF data
packet, and the Length/Offset field MUST specify the byte offset of the fragment's first byte
counted from the beginning of the complete ASF data packet. If the L field is 1, the
Length/Offset field MUST specify the size of the ASF data packet that directly follows the RTP
payload format header in bytes.

If the Length/Offset field specifies the size of an ASF data packet, and that size is less than the
remaining bytes in the RTP packet, another RTP payload format header MUST follow directly after
the end of the ASF data packet.

Relative Timestamp (4 bytes): Optional. If this field is present, it MUST be set to the signed
difference between the Send Time field of the ASF data packet that follows this RTP payload
format header and the Timestamp field in the RTP header. If this field is not present, it SHOULD

be assumed that the difference between the two fields is zero. If the difference between the two
fields is nonzero, the Relative Timestamp field MUST be present. Otherwise, the Relative
Timestamp field SHOULD NOT be present. The time scale used for the Relative Timestamp field
MUST be the same as is used for the Timestamp field in the RTP header.

Where to find the Send Time field of an ASF data packet is specified in [ASF] section 5.2.2.

Duration (4 bytes): Optional. If this field is present, it MUST specify the duration of the ASF data
packet. The time scale used for the Duration field MUST be the same as that used for the

Timestamp field in the RTP header. If this field is not present, the duration of the ASF data
packet is unspecified, and a zero duration MUST NOT be assumed. In all RTP payload format
headers that precede fragments of the same ASF data packet, the Duration field MUST be set to

the same value.

How to assign a value for the Duration field is implementation-specific. For example, if duration
information is available in the ASF data packet (some ASF data packets can have a Duration
field), then that duration information can be used as the value of the Duration field in the RTP

payload format header. Where to find the Duration field of an ASF data packet is specified in
[ASF] section 5.2.2.

LocationId (4 bytes): Optional. If this field is present, it MUST specify the index number of the ASF
data packet in the original content from which the ASF data packet is extracted. The first ASF
packet in an ASF file MUST have LocationId 0x00000000, the second ASF packet in the file MUST
have LocationId 0x00000001, and so on. Note that because a server can skip ASF packets, the

value of the LocationId field might not be sequential from one RTP payload format header to the
next. If the server does not have access to the ASF file (for example, in case of live content), the
server MUST assume a virtual ASF file, incrementing LocationId (or decrementing it when

rewinding the content) exactly as if a real ASF file existed. If the LocationId field is not present,
the index number of the ASF data packet is unspecified, and the receiver SHOULD NOT make any
assumptions about the value of the index number.

2.2.1.4 ASF Data Packet Payload

Each RTP payload format header is followed by a payload that contains an ASF data packet. The ASF
data packet can be partial if it has been fragmented across multiple RTP payloads.

18 / 138

[MS-RTSP-Diff] - v20240423
Real-Time Streaming Protocol (RTSP) Windows Media Extensions
Copyright © 2024 Microsoft Corporation
Release: April 23, 2024

If the ASF data packet contains a Padding Data field, as specified in [ASF] section 5.2.4, that field
SHOULD be removed before encapsulating the ASF data packet in an RTP packet. If the Padding

Data field is removed, the Padding Length field in the ASF payload parsing information section (as
specified in [ASF] section 5.2.2) MUST be updated to indicate a nonexistent Padding Data field.

2.2.2 RTP Payload Format for Forward Error Correction

This section defines an RTP payload format for FEC by using the Vandermonde matrix algorithm. RTP
is specified in [RFC3550] section 5.

2.2.2.1 General Usage

FEC is a technique that adds redundancy to a bit stream to help protect against corrupted or lost bits.
The additional redundancy allows a receiver to recover the correct value of one or more incorrectly
received bits from the bits that were received correctly.

The RTP payload format defined in this section is a specific application of the FEC technique to the

delivery of RTP packets. The FEC data (redundant bits) generated by the FEC algorithm are
transmitted as a separate stream of RTP packets. The original (source) RTP packets that are protected
by the FEC algorithm are not modified by the use of this RTP payload format.

The RTP packets that contain FEC data are transmitted on the same RTP session that is used by the
source RTP packets. To ensure that the RTP packets with FEC data can be distinguished from the
source RTP packets, the RTP packets with FEC data MUST use a different value for the Payload Type

field in the RTP header than what is used by the source RTP packets.

The RTP packets that contain FEC data consist of the regular RTP header, as specified in [RFC3550]
section 5, followed by one RTP payload format header, as specified in section 2.2.2.4. The remainder
of the RTP payload consists of FEC data. The FEC data payload is computed over the complete source
RTP packets except for the RTP header specified in [RFC3550] section 5.

There is a need to be able to recover the values of some of the fields in the RTP header of the source

RTP packets, so those fields are encoded separately and stored in the RTP payload format header of
the FEC packets. For details, see section 2.2.2.4.

The RTP payload format uses a 24-bit field to identify what source RTP packets are encoded into the
FEC RTP packet. This means that at most 24 source RTP packets can be encoded into a single FEC RTP
packet.

The algorithm used to compute the FEC data is the Vandermonde matrix algorithm.

2.2.2.2 Vandermonde Matrix Algorithm

The Vandermonde matrix algorithm allows k data packets (referred to as source packets) to be
encoded into n encoded packets. The source packets are encoded in such a way that the reception of
any subset of k encoded packets at the client end would suffice to recover all the source packets. If
more than n–k encoded packets are lost, recovery of all the source packets is not possible.

The Vandermonde matrix algorithm generates the first k encoded packets to be identical to the k
source packets. This simplifies the decoding of the encoded packets and the recovery of the source
packets in cases in which little or no packet loss occurs on the network.

The Vandermonde matrix algorithm is also useful in cases in which more than n–k encoded packets
are lost. For such cases, the recovery of all the source packets is not possible; however, because first
k encoded packets are the same as the k source packets, any of the first k-encoded packets received

can be used by the receiver as the source packets.

19 / 138

[MS-RTSP-Diff] - v20240423
Real-Time Streaming Protocol (RTSP) Windows Media Extensions
Copyright © 2024 Microsoft Corporation
Release: April 23, 2024

The Vandermonde matrix algorithm uses the Reed-Solomon coding technique based on the
Vandermonde matrix for encoding the data. The Reed-Solomon algorithm uses linear algebra

principles for encoding and decoding the data. For more information on Reed-Solomon codes, see [R-
SCODES].

2.2.2.2.1 Basic Principles Used in the Encoding Technique

Treat k source packets as variables labeled xi...xk, where xi equals the numerical value of the ith
packet. The variables are arranged as a vector, X, with k rows.

Figure 1: RTSP encoding variables and formula (source matrix)

From the linear algebra principle, any k linearly independent equations involving k number of variables
can be solved to obtain the values for those variables. Now, consider an n * k generator matrix G,
where each row in G specifies the coefficients of an equation. Multiplying G with the vector X results in
k linear equations.

If the values of the variables in vector X are known, multiplying G and X results in the vector Y with n
elements.

Figure 2: RTSP encoding variables and formula (generator matrix)

Given the vector Y and the generator matrix G, the original vector X can be recalculated, provided that
any k rows of matrix G are linearly independent, that is, any submatrix formed by taking k rows of
matrix G is invertible. Any k rows of the matrix G can be chosen to generate G'. The multiplication of
the inverse of G' with vector Y will result in the original vector X.

Figure 3: RTSP encoding variables and formula (identity matrix for server, and inverse for
client)

2.2.2.2.2 Generation of a Vandermonde Matrix

An n * k size Vandermonde matrix is of the following form.

20 / 138

[MS-RTSP-Diff] - v20240423
Real-Time Streaming Protocol (RTSP) Windows Media Extensions
Copyright © 2024 Microsoft Corporation
Release: April 23, 2024

Figure 4: Vandermonde matrix using GF(n*k)

Xi are the elements of the Galois Field GF(pr). As is the case with all Galois Fields, p is a prime
number, and r is an integer greater than or equal to 0. If all Xi are different, then the determinant of

the matrix is formed by taking any k rows if the matrix is non-null and this submatrix is invertible.

The algorithm uses the following steps to generate the Vandermonde matrix.

1. The algorithm uses a field size of GF(28) to generate the matrix coefficients.

2. Assign Xi = I. This means that the values of the nth row become 1, n, n2, n3, ..., nk-1.

3. The algorithm uses the Gauss-Jordan elimination method to convert the first k rows of the
generator matrix to an identity matrix. The row reduction of the Vandermonde matrix results in
the system error correction matrix. The systematic error correction is useful because it makes

decoding and recovery easier, and it allows for at least some encoded packets to be decoded even
if more than n–k encoded packets are lost and complete recovery is not possible.

Section 4.2 contains an example of how the algorithm is used.

2.2.2.3 RTP Header Usage for RTP FEC Data

The syntax of the RTP header is specified in [RFC3550] section 5.1. The fields of the fixed RTP header
have their usual meaning, as specified in [RFC3550] section 5.1 and by the RTP profile in use, with the
following additional notes:

Marker (M): This bit MUST be set to 1.

Payload Type (PT): There is no predefined RTP payload type number for this RTP payload format.
Instead, this 7-bit field MUST be assigned to a number that is established through some mechanism

outside of RTP. For example, it can be assigned by using the SDP, as specified in section 2.2.5.

Timestamp: This 32-bit field MUST be set to the value of the Timestamp field of the last source RTP
packet in the span of source RTP packets that is encoded into this FEC RTP packet. The value of the
Timestamp field is expressed by using the same time units used for the Timestamp field of the
source RTP packets, unless otherwise specified (for example, through SDP).

2.2.2.4 RTP Packet Header FEC Extension

The fields in the RTP payload format header are transmitted in big-endian byte order, also called

network byte order. The syntax of the RTP payload format header is as follows.

0 1 2 3 4 5 6 7 8 9
1

0
1 2 3 4 5 6 7 8 9

2

0
1 2 3 4 5 6 7 8 9

3

0
1

SN Base Length Recovery

E PT Recovery Mask

21 / 138

[MS-RTSP-Diff] - v20240423
Real-Time Streaming Protocol (RTSP) Windows Media Extensions
Copyright © 2024 Microsoft Corporation
Release: April 23, 2024

TS Recovery

Padding1 FecIndex Padding2 FecPktSpan Padding3 ExFlags Reserved

SN Base (2 bytes): This field MUST be set to the value of the Sequence Number field in the RTP
header ([RFC3550] section 5.1) of the first source RTP packet that is encoded in this FEC RTP
packet.

Length Recovery (2 bytes): This field MUST be set to the result of applying the FEC algorithm to a
virtual 16-bit integer field in each source RTP packet. This virtual field, referred to here as the
payload length field, MUST specify the payload length in bytes of each source RTP packet. The
value of the payload length field MUST include the size of the RTP payload itself, as well as the
sizes of the contributing source (CSRC, specified in [RFC3550] section 5.1) list, RTP extension,
and RTP padding, if any. The Length Recovery field allows a receiver to recover the size of a

reconstructed source RTP packet and makes it possible to use the FEC algorithms when the sizes
of the source RTP packets vary.

E (1 bit): This field MUST be set to 0.

PT Recovery (7 bits): This field MUST be set to the result of applying the FEC algorithm to the value
of the Payload Type field in the RTP header in each source RTP packet.

Mask (3 bytes): The purpose of this field is to indicate what source RTP packets are encoded into this
FEC RTP packet. For each source RTP packet that is encoded into this FEC RTP packet, the bit with

index I in the Mask field MUST be set to 1 where I is computed as the unsigned difference
between the value of the Sequence Number field (defined in [RFC3550] section 5.1) in the
source RTP packet and the value of the SN Base field in this FEC RTP packet. All other bits in the
Mask field MUST be set to 0. Index 0 MUST correspond to the least significant bit in the Mask
field and index 23 to the most significant bit.

TS Recovery (4 bytes): This field MUST be set to the result of applying the FEC algorithm to the
value of the Timestamp field in the RTP header in each source RTP packet.

Padding1 (3 bits): This field MUST be ignored.

FecIndex (5 bits): This field MUST be set to the index of this FEC RTP packet among the FEC RTP
packets that are transmitted for the current span (group) of source RTP packets. The first FEC RTP
packet in the span has index 0, the second has index 1, and so on.

Padding2 (3 bits): This field MUST be ignored.

FecPktSpan (5 bits): This field MUST be set to the number of FEC RTP packets that are transmitted

for the current span (group) of source RTP packets or set to 0 if the span is unspecified. If the
span is specified, the current FEC RTP packet MUST be included in the count of FEC RTP packets.

Padding3 (3 bits): This field MUST be ignored.

ExFlags (5 bits): This field MUST be set to 0.

Reserved (1 byte): This field MUST be set to 0.

2.2.3 RTP Payload Format for Retransmitted RTP Packets and Packet-Pair Data

A client that discovers that it has lost one or more RTP packets might ask the server to retransmit the
lost RTP packets. This section defines an RTP payload format that can be used for transmitting copies
of RTP packets.

22 / 138

[MS-RTSP-Diff] - v20240423
Real-Time Streaming Protocol (RTSP) Windows Media Extensions
Copyright © 2024 Microsoft Corporation
Release: April 23, 2024

This RTP payload format can also be used for transmitting packet-pair data. Packet-pair data can be
used by the receiver to estimate the bottleneck bandwidth in the network path between the

transmitter and the receiver.

These two different usage modes of the RTP payload format are defined in the following two sections.

2.2.3.1 Transmitting Copies of RTP Packets

When this RTP payload format is used to transmit a copy of an RTP packet, the RTP payload format
does not insert an RTP payload format header of its own into the RTP packet.

The fields in the RTP payload format headers used in the original RTP packet MUST NOT be modified.
Also, the RTP header in the copied RTP packet MUST be identical to the RTP header of the original RTP
packet.

RTP packets using this RTP payload format SHOULD be transmitted on an RTP session that is different
from the one used for the original RTP packets. RTP sessions are different if the RTP packets are sent

to different UDP port numbers (see [RFC3550] section 3). RTP sessions are negotiated through the
SelectStream request that uses the RTSP SETUP method, as specified in section 2.2.7.10.1. This

allows a receiver to distinguish between the original RTP packets and retransmitted copies of the RTP
packets.

Also, because the RTP header is not changed, the value of the Sequence Number field (defined in
[RFC3550] section 5.1) in the RTP header of the retransmitted RTP packets does not necessarily
increment monotonically. Transmitting the copied RTP packets on a separate RTP session avoids any
confusion that might be caused by the Sequence Number field.

2.2.3.2 Transmitting Packet-Pair Data

When this RTP payload format is used for sending packet-pair data, one 4-byte RTP payload format
header MUST be added directly after the normal RTP header, as specified in [RFC3550] section 5.1.
The RTP payload format header MUST be followed by highly entropic (random) data.

The RTP header MUST be filled in, following the rules specified in section 2.2.1.2, with the following
exception: The value of the Timestamp field MUST be set to 0x00000000.

The fields in the RTP payload format header are transmitted in big-endian byte order. The following
diagram shows the RTP payload format header followed by the payload of data.

0 1 2 3 4 5 6 7 8 9
1

0
1 2 3 4 5 6 7 8 9

2

0
1 2 3 4 5 6 7 8 9

3

0
1

S L R D I RES Length/Offset

Payload (variable)

...

S (1 bit): This field MUST be set to 1 if this is the first RTP packet that contains packet-pair data.
Otherwise, the field MUST be set to 0.

L (1 bit): This field MUST be set to 1.

R (1 bit): This field MUST be set to 0.

D (1 bit): This field MUST be set to 0.

I (1 bit): This field MUST be set to 0.

23 / 138

[MS-RTSP-Diff] - v20240423
Real-Time Streaming Protocol (RTSP) Windows Media Extensions
Copyright © 2024 Microsoft Corporation
Release: April 23, 2024

RES (3 bits): This field MUST be set to 0 and MUST be ignored by the receiver.

Length/Offset (3 bytes): This field MUST specify the size of the packet-pair data that directly
follows the RTP payload format header in bytes.

Payload (variable): The bytes in this array MUST be set to highly entropic (random) data, and the

content of the Payload field in each RTP packet that contains packet-pair data MUST be different.
The size of the Payload field depends on if the sender is transmitting two or three RTP packets
with packet-pair data.

If the sender is transmitting three RTP packets with packet-pair data, and the receiver does not
allow the sender to decide the Payload field size, as specified in section 2.2.7.14, the size of the
Payload field MUST be 1,454 bytes for the first packet, 1,455 bytes for the second packet, and
1,456 bytes for the third packet.

If the sender is transmitting two RTP packets with packet-pair data, and the receiver does not
allow the sender to decide the Payload field size, the size of the Payload field MUST be 1,455
bytes for the first packet and 1,456 bytes for the second packet.

If the receiver does allow the sender to decide the Payload field size, the size of the Payload
field MUST NOT be less than 482 bytes. Additionally, the size of the Payload field MUST satisfy
the equation given by the following table. (PayloadSize denotes the size in bytes of the Payload

field.)

Packet Sending two packet-pair packets Sending three packet-pair packets

First packet PayloadSize modulo 3 = 0 PayloadSize modulo 3 = 2

Second packet PayloadSize modulo 3 = 1 PayloadSize modulo 3 = 0

Third packet N/A PayloadSize modulo 3 = 1

2.2.4 RTCP NACK Packet Syntax

The syntax for the RTCP NACK packets defined by RTSP Windows Media Extensions follows the syntax
for RTCP packets, as specified in [RFC3550] section 6.1, and the syntax for generic NACK messages,
as specified in [RFC4585] section 6.2.1, with the following exception.

Unlike what is specified in [RFC4585] section 6.1, which defines the FMT field of the RTCP feedback

message to be a 5-bit field, RTSP Windows Media Extensions defines the FMT field to be 4 bits in size.
The 4 least-significant bits, as specified in [RFC4585] section 6.1, of the FMT field are mapped to the
4-bit FMT field defined by RTSP Windows Media Extensions.

The most significant bit of the FMT field, as specified in [RFC4585] section 6.1, is redefined by RTSP
Windows Media Extensions as the E field.

A client that sends an RTCP NACK packet SHOULD set the E field to 1. Servers MUST ignore the value

of the E field.

According to the RTCP specification, as specified in [RFC3550] section 6.1, RTCP packets are
compound packets consisting of multiple RTCP messages, and all RTCP packets MUST contain a source
description (SDES) message with the CNAME field. RTSP Windows Media Extensions define the
following additional requirement.

An RTCP packet that contains a generic NACK message, as specified in [RFC4585] section 6.2.1, MUST
also contain an SDES message, as specified in [RFC3550] section 6.5, where the value of the CNAME

field in the SDES message MUST adhere to the following syntax.

24 / 138

[MS-RTSP-Diff] - v20240423
Real-Time Streaming Protocol (RTSP) Windows Media Extensions
Copyright © 2024 Microsoft Corporation
Release: April 23, 2024

 ssrc = 1*10DIGIT
 sdes-value = ssrc "@WMS:7ff42e07-3c7c-4eb5-9c17-6bdd11ad90de"

The preceding syntax is specified using Augmented Backus-Naur Form (ABNF) [RFC5234].

The value of the ssrc parameter MUST be identical to the numerical value of the ssrc field that the
server provided in the RTSP Transport (section 2.2.6.11) header in response to the SETUP request (as
specified in [RFC2326] section 10.4) for the retransmission stream, expressed using decimal digits.

For information on how to identify the retransmission stream, see section 2.2.5.2.5.

2.2.5 Session Description Protocol Extensions

This section defines extensions to the SDP. SDP is specified in [RFC4566], but there are constraints

and extensions that apply when SDP is used in conjunction with RTSP, as specified in [RFC2326]
Appendix C. RTSP Windows Media Extensions define additional extensions to SDP that apply when SDP
is used in conjunction with RTSP.

This section defines the syntax of SDP fields by using ABNF [RFC5234] .

2.2.5.1 Bandwidth Modifiers for the "b=" Field

The "b=" field is specified in [RFC4566] section 5.8.

2.2.5.1.1 "AS" Bandwidth Modifier

A "b=" field with the "AS" (Application-Specific) bandwidth modifier MUST be specified for each media
description that corresponds to a stream in the ASF content. The bandwidth that is specified by the
"b=" field MUST correspond to the peak bit rate of the ASF stream, if the ASF stream has a peak bit

rate that is different from the average bit rate. Otherwise, the bandwidth that is specified by the "b="
field MUST correspond to the average bit rate of the ASF stream.

How a server determines the peak and average bit rates is implementation-specific. The ASF
specification [ASF] provides various alternatives which might be used to determine the bit rates. For
example, see [ASF] sections 3.12 and 4.1.

Note What is referred to as "Average Bitrate" in [ASF] section 3.12 and "Alternate Data Bitrate" in

[ASF] section 4.1 is actually the peak bit rate. What is referred to as "Data Bitrate" in [ASF] section
4.1 is the average bit rate.

A "b=" field with the "AS" bandwidth modifier MUST also be specified once at the SDP session level. In
this situation, the value of the attribute MUST be set to the peak bit rate required to stream all of the
ASF streams. If an ASF stream does not have an explicitly defined peak bit rate, its average bit rate
MUST be used instead.

The following example shows the "a=control" attribute: a=control:rtsp://MS-WMSP-L-

S1/OnDemand/"AS" bandwidth modifier:

 b=AS:107

2.2.5.1.2 "RS" Bandwidth Modifier

A "b=" field with the "RS" bandwidth modifier, as specified in [RFC3556] section 2, MUST be specified
at the session level or once for every media description. The bandwidth that is specified by the "b="
field MUST be 0.

2.2.5.1.3 "RR" Bandwidth Modifier

25 / 138

[MS-RTSP-Diff] - v20240423
Real-Time Streaming Protocol (RTSP) Windows Media Extensions
Copyright © 2024 Microsoft Corporation
Release: April 23, 2024

A "b=" field with the "RR" bandwidth modifier, as specified in [RFC3556] section 2, MUST be specified
at the session level or once for every media description. The bandwidth that is specified by the "b="

field MUST be 0.

2.2.5.1.4 "X-AV" Bandwidth Modifier

The "X-AV" bandwidth modifier MUST be specified for each media description that corresponds to a
stream in the ASF content, if that stream has an average bit rate that is different from the peak bit
rate. In this case, the bandwidth that is specified by the "b=" field MUST correspond to the average bit
rate of the stream in kilobits per second. If the average bit rate is identical to the peak bit rate, a "b="
field with the "X-AV" modifier SHOULD NOT be specified.

The following example shows the "b=" field with the "X-AV" bandwidth modifier:

 b=X-AV:100

2.2.5.2 Attributes for the "a=" Field

RTSP Windows Media extensions define some new SDP attributes (that is, names that can be used in
the SDP "a=" field) as well as extensions to some existing attributes.

2.2.5.2.1 Control URL Attribute ("a=control")

The control URL attribute ("a=control") MUST be specified for each media description except if the
SDP contains only a single media description. The control URL attributes SHOULD be expressed as

relative URLs, using the URL specified by using the control attribute at the SDP session level as the
base URL.

When converting a relative URL from the media description level to an absolute URL, the URL specified
by the SDP session-level control attribute MUST be used as the base URL. If the session-level control
attribute is missing, the base URL MUST be determined by following the rules, as specified in

[RFC2326] section C.1.1.

The following example shows the "a=control" bandwidth modifier:

 a=control:rtsp://MS-WMSP-L-S1/OnDemand/

2.2.5.2.2 Max packetsize Attribute ("a=maxps")

The maxps attribute specifies the maximum ASF packet size in bytes. This attribute SHOULD be

present at the SDP session level.

The ABNF syntax for this attribute is as follows:

 maxps = "a=maxps:" 1*10DIGIT

A packet size of 0 is invalid.

2.2.5.2.3 Program Parameters URL Attribute ("a=pgmpu")

The pgmpu (program parameters URL) attribute specifies a data URL, as specified in [RFC2397].
Such URLs are useful for encoding binary data or other kinds of data that use a syntax that can
conflict with the SDP syntax.

The ABNF syntax for this attribute is as follows:

26 / 138

[MS-RTSP-Diff] - v20240423
Real-Time Streaming Protocol (RTSP) Windows Media Extensions
Copyright © 2024 Microsoft Corporation
Release: April 23, 2024

 pgmpu = "a=pgmpu:"
 dataurl ; defined in [RFC2397] section 3

As specified in [RFC2397], the data URL specifies the kind of data it encodes using a MIME-format
media type. RTSP Windows Media Extensions specify two different MIME types for use on data URLs.

2.2.5.2.3.1 application/vnd.ms.wms-hdr.asfv1

A data URL with the MIME type "application/vnd.ms.wms-hdr.asfv1" MUST be present at the SDP
session level. The data URL MUST use the base64 encoding mode. The data URL MUST encode an ASF
file header representing the content being described by the SDP.

The ASF file header that is generated by the server MUST conform to all requirements in the ASF
specification [ASF]. The ASF file header MUST describe the content that the server is able to stream.
For example, if the content consists of one audio stream and one video stream, then the ASF file

header MUST contain an ASF Properties Object [ASF] section 3.2 for each of the two streams.

2.2.5.2.3.2 application/x-wms-contentdesc

A data URL with the MIME type "application/x-wms-contentdesc" SHOULD be present at the SDP
session level. The data URL MUST NOT use the base64 encoding mode. The data URL MUST encode a
content description list pertaining to the content being described by the SDP.

The syntax for the content description list is specified in [MS-WMSP] section 2.2.4. Because the

content description list is an array of Unicode characters, the following conversion MUST be
performed: The Unicode characters MUST be converted to UTF-8 characters, as specified in [RFC3629]
section 3. Any UTF-8 characters that cannot be used in a Uniform Resource Identifier (URI) MUST be
encoded by using percent-encoding, as specified in [RFC3986] section 2.1.

2.2.5.2.4 Reliable Attribute ("a=reliable")

The Reliable attribute SHOULD be specified in a media description if it is preferable to transmit the RTP

packets that carry the data for this ASF stream by using a reliable transport mechanism, such as TCP,
instead of UDP.

Whether a stream uses reliable transport or not is specified in the Extended Stream Properties object,
[ASF] section 4.1.

The ABNF syntax for this attribute is as follows.

 Reliable = "a=reliable"

2.2.5.2.5 Stream Number Attribute ("a=stream")

The stream attribute MUST be present for each media description. It MUST specify the ASF stream
number that the media description refers to. The stream number specified by the stream attribute

MUST be the same number that is specified for the stream in the ASF Stream Properties object in the

ASF file header.

If the media description does not correspond to a stream in the ASF content because it is a
retransmission stream or an FEC stream, the stream number specified by the stream attribute MUST
be chosen according to the following table to correctly indicate if the media description is for a
retransmission stream or an FEC stream. If there are multiple media descriptions of the same type,
each MUST specify a different stream number.

27 / 138

[MS-RTSP-Diff] - v20240423
Real-Time Streaming Protocol (RTSP) Windows Media Extensions
Copyright © 2024 Microsoft Corporation
Release: April 23, 2024

 Stream-num Meaning

1-65534 Media description is for an ASF stream.

65536-131070 Media description is for a retransmission stream.

The ABNF syntax for this attribute is as follows:

 stream-num = "a=stream:" 1*10DIGIT

A stream number that is not within the preceding ranges is invalid.

2.2.5.2.6 Type Attribute ("a=type")

The purpose of the type attribute is to specify a list of properties and capabilities that are applicable to
the current content or playlist entry. The type attribute MUST be specified once at the SDP session

level, except if specifying it would result in an empty "a=type:" field, in which case the attribute
SHOULD be omitted.

The syntax of the type attribute is as follows.

 wm-feat = "broadcast" | "lastentry"
 | "notseekable" | "notstridable" | "playlist"
 | "skipbackward" | "skipforward"
 type = "a=type:" [wm-feat *6("," wm-feat)]

For example: a=type:notseekable,notstridable

2.2.5.2.6.1 broadcast

This property indicates that the content is being broadcast.

2.2.5.2.6.2 lastentry

This property indicates that the content is the last entry in a server-side playlist.

2.2.5.2.6.3 notseekable

This property indicates that the server does not support seeking within the content by using the RTSP

Range header.

2.2.5.2.6.4 notstridable

This property indicates that the server does not support fast forward or rewind of the content by using
the RTSP Scale header.

2.2.5.2.6.5 playlist

This property indicates to a client that the content is an entry (out of possibly multiple entries) in a
server-side playlist.

2.2.5.2.6.6 skipbackward

This property indicates that the server supports skipping to the previous entry in the server-side
playlist by using the pl-offset token on the X-Playlist (section 2.2.6.20) header.

2.2.5.2.6.7 skipforward

28 / 138

[MS-RTSP-Diff] - v20240423
Real-Time Streaming Protocol (RTSP) Windows Media Extensions
Copyright © 2024 Microsoft Corporation
Release: April 23, 2024

This property indicates that the server supports skipping to the next entry in the server-side playlist
by using the pl-offset token on the X-Playlist (section 2.2.6.20) header.

2.2.5.3 RTP Payload Format for ASF Data Packets

The RTP payload format for ASF data packets, as specified in section 2.2.1, MUST be identified by the
MIME type "audio/x-asf-pf" for audio streams, "video/x-asf-pf" for video streams, and "application/x-
asf-pf" for streams that are neither audio nor video.

The RTP clock frequency MUST be 1,000 Hz.

Example:

 m=audio 0 RTP/AVP 96
 a=rtpmap:96 x-asf-pf/1000

2.2.5.4 RTP Payload Format for FEC Data

The RTP payload format for FEC, as specified in section 2.2.2, MUST be identified by the MIME type
"audio/x-wms-fec" for audio streams, "video/x-wms-fec" for video streams, and "application/x-wms-

fec" for streams that are neither audio nor video.

The RTP clock frequency MUST be 1,000 Hz.

The "a=reliable" field MUST NOT be specified.

The "a=fmtp" field MUST be specified, and the value of the format-specific parameters syntax element
on the "a=fmtp" field (as specified in [RFC4566] section 6) MUST contain the URL that a client would
specify in an RTSP SETUP request if it wants to receive the FEC packets. For more information, see

[RFC2733] section 11.3.

The "a=fmtp" field specifies the control URL for the stream of FEC packets. If the URL is a relative

URL, the client MUST follow the rules specified in section 2.2.5.2.1 for converting a relative URL to an
absolute URL.

The "a=fmtp" field MUST also specify the FEC span and the number of FEC packets that will be
transmitted per span. These are default values that the client might be able to override by using the
Transport (section 2.2.6.11) header.

The syntax of the format-specific parameters syntax element on the "a=fmtp" field MUST adhere to
the following ABNF syntax.

 fecspan = 1*2DIGIT
 fecperspan = 1*2DIGIT
 format-spec-params = URI-reference ; [RFC3986] section 4.1
 SP
 fecspan
 SP
 fecperspan

The value of the fecspan parameter MUST be in the range 1 to 24, inclusive.

The value of the fecperspan parameter MUST be in the range 1 to 24, inclusive, and it MUST be less
than or equal to the value of the fecspan parameter.

When this RTP payload format is used, it MUST be specified as an additional RTP payload type in the
media description of the stream that is being encoded into the FEC packets.

29 / 138

[MS-RTSP-Diff] - v20240423
Real-Time Streaming Protocol (RTSP) Windows Media Extensions
Copyright © 2024 Microsoft Corporation
Release: April 23, 2024

The following example shows the SDP syntax for a case in which RTP payload type 96 is used for ASF
data packets containing audio data, and RTP payload type 98 is used for FEC packets generated from

the payload type 96 source packets. The URL on the "a=control" field and on the "a=fmtp" field are
both relative URLs. (The base URL is not shown in this example.)

 m=audio 0 RTP/AVP 96 98
 a=rtpmap:96 x-asf-pf/1000
 a=fmtp:96 audio/vnd.wave;codec=123
 a=control:audio
 a=rtpmap:98 x-wms-fec/1000
 a=fmtp:98 audio/fec 24 1

2.2.5.5 RTP Payload Format for Retransmitted RTP Packets and Packet-Pair Data

The RTP payload format for retransmitted RTP packets and packet-pair data, as specified in section

2.2.3, MUST be identified by the MIME type "application/x-wms-rtx".

The RTP clock frequency MUST be 1,000 Hz.

There are no format-specific parameters for this RTP payload format; therefore, the "a=fmtp" field
SHOULD NOT be specified.

The "a=reliable" field MUST NOT be specified.

When this RTP payload format is used, it MUST be specified as a separate media description; that is, it
MUST NOT share a media description with other ASF streams. That is because retransmitted RTP

packets SHOULD be transmitted on an RTP session separate from the one used by the original RTP
packets. For details, see section 2.2.3.<3>

For example:

 m=application 0 RTP/AVP 97
 a=rtpmap:97 x-wms-rtx/1000
 a=control:rtx

2.2.6 RTSP Header Fields

RTSP Windows Media Extensions defines several new headers that do not exist in RTSP, as specified in
[RFC2326] section 12. Some headers specified in [RFC2326] section 12 are further restrained by RTSP
Windows Media Extensions in how they can be used. The new headers and the modified existing ones

are defined in this section.

Unless otherwise specified, the headers specified in RTSP Windows Media Extensions, and any tokens
(also called tags or directives) used on those headers, are defined for use in both requests and
responses.

If a client or server receives an RTSP header that is not defined in this section, or if the header is not
defined in the current context; for example, receiving a request-only header in a response; the header

MUST be interpreted as specified in [RFC2326] section 12. If a particular header is not specified in
[RFC2326] section 12, it MUST be interpreted as specified in [RFC2616] section 14.

If a client or server receives an RTSP header that is defined in this section, and the header contains an
unknown token, or if the token is not defined in the current context (for example, receiving a request-
only token in a response), the token MUST be ignored.

30 / 138

[MS-RTSP-Diff] - v20240423
Real-Time Streaming Protocol (RTSP) Windows Media Extensions
Copyright © 2024 Microsoft Corporation
Release: April 23, 2024

This section defines the syntax of RTSP headers by using ABNF. Any ABNF syntax rules not specified in
[RFC5234] use the ABNF extensions specified in [RFC2326] section 15.

2.2.6.1 Bandwidth

The Bandwidth header MUST be used as specified in [RFC2326] section 12.6. Also, the bit rate
expressed on the Bandwidth header MUST be in bits per second.

This header is defined for use only in requests sent to a server.

2.2.6.2 Cache-Control

The purpose of the Cache-Control header is to specify to clients, and any intermediate caches (that is,
proxy servers), how they can cache the content. The syntax of the Cache-Control header specified in
this section applies only when the header is included in an Announce (section 2.2.7.1) request, in the
response to a Describe (section 2.2.7.2) request, and in the response to a

GetContentInfo (section 2.2.7.4) request. In all other cases, the syntax specified in [RFC2326] section

12.8 applies.

The syntax of the Cache-Control header is as follows.

 CCdir = "max-age" | "must-revalidate" | "no-cache" |
 "no-store" | "no-user-cache" | "private" |
 "proxy-revalidate" | "public" |
 "x-wms-event-subscription" | "x-wms-proxy-split" |
 "x-wms-content-size" | "x-wms-stream-type"

 Cache-Control = "Cache-Control:" CCdir *11("," [SP] CCdir)

For example:

 Cache-Control: no-cache, x-wms-content-size=638066, x-wms-event-subscription="remote-log"

2.2.6.2.1 max-age

This directive specifies how many seconds a cache is allowed to use the content without revalidating it
with the server. The max-age directive, including ABNF syntax, is specified in [RFC2616] section 14.9.

The following example shows the max-age directive:

 Cache-Control: max-age=86399

2.2.6.2.2 must-revalidate

This directive specifies that the cache MUST revalidate that the content is still refreshed before

streaming or playing the content. The directive does not apply if caching has been disabled by using
the no-cache (section 2.2.6.2.3) directive or the no-user-cache (section 2.2.6.2.5) directive. The
must-revalidate directive MUST be ignored by caches that are acting as proxy servers.

2.2.6.2.3 no-cache

This directive specifies that the cache MUST NOT cache the content. The no-cache directive applies to
both caches that are clients and caches that are proxy servers.

31 / 138

[MS-RTSP-Diff] - v20240423
Real-Time Streaming Protocol (RTSP) Windows Media Extensions
Copyright © 2024 Microsoft Corporation
Release: April 23, 2024

2.2.6.2.4 no-store

This directive specifies that the cache MUST NOT store the content on persistent storage, such as a
hard drive.

2.2.6.2.5 no-user-cache

This directive specifies that a cache that is a client (not a proxy server) MUST NOT cache the content.

2.2.6.2.6 private

This directive specifies that the content MUST NOT be shared with other users on the device on which
the client software is running, and it MUST NOT be shared by other proxy servers. The private

directive applies to both caches that are clients and caches that are proxy servers.

2.2.6.2.7 proxy-revalidate

This directive specifies that if the cache is a proxy server, it MUST revalidate that the content is still
refreshed before it is streamed. The directive does not apply if caching has been disabled by using the
no-cache (section 2.2.6.2.3) directive or the private (section 2.2.6.2.6) directive. The proxy-revalidate
directive MUST be ignored by caches that are not acting as proxy servers.

2.2.6.2.8 public

This directive specifies that the content is allowed to be cached and shared with other users on the
device on which the client software is running as well as by proxy servers. The public directive applies
to both caches that are clients and caches that are proxy servers.

2.2.6.2.9 x-wms-content-size

This directive specifies the approximate size of the content , in bytes, that is required if the content is
cached in its entirety. Approximate size means that the size might be inaccurate. For example, in the

case of streaming of live content, it is generally impossible to accurately estimate the size of the
content. The server SHOULD use the size of the original content as the value for this directive, except
in the case of broadcast content, in which case the directive SHOULD NOT be sent. The value shall be
considered as only an approximation of the number of bytes required to cache the content.<4>

2.2.6.2.10 x-wms-event-subscription

This directive contains a comma-separated list of event type names that the server accepts for the
current URL. The list is enclosed in quotation marks. The SendEvent (section 2.2.7.11) request is used
to send the remote events to the server.<5>

The syntax of the directive is as follows.

 log-event = ("remote-open" / "remote-close" / "remote-log")
 Eventsub = "x-wms-event-subscription="
 %x22 log-event *2("," log-event) %x22

2.2.6.2.11 x-wms-proxy-split

This directive indicates that the content is allowed to be split; that is, forwarded to multiple clients in
real time. This is used for live content, for which caching is inappropriate or not allowed.<6>

2.2.6.2.12 x-wms-stream-type

32 / 138

[MS-RTSP-Diff] - v20240423
Real-Time Streaming Protocol (RTSP) Windows Media Extensions
Copyright © 2024 Microsoft Corporation
Release: April 23, 2024

This directive specifies a comma-separated list of properties that apply to the content. The list is
enclosed in quotation marks.

The broadcast property specifies that the content is broadcast, or live (and therefore can be suitable
for splitting to multiple downstream clients). The playlist property specifies that the content consists of

possibly multiple entries from a server-side playlist.

The list of properties can be used by a caching proxy server to determine if the content is a suitable
candidate for caching or splitting.<7>

The syntax of the directive is as follows.

 stream-prop = ("broadcast" / "playlist")
 StreamTypes = "x-wms-stream-type="
 %x22 stream-prop *2("," stream-prop) %x22

2.2.6.3 Content-Type

The Content-Type header specifies the media type of data that is included in the message payload; for

example, the response to the DESCRIBE method or the message body of the ANNOUNCE and
SET_PARAMETER methods. When used in a GET_PARAMETER request, the Content-Type header can
be used to specify the media type of the data that is expected in the response.

The syntax of the Content-Type header is as follows.

 Ctype = "application/sdp" |
 "application/x-rtsp-packetpair" |
 "application/x-rtsp-udp-packetpair" |
 "application/x-wms-contentdesc" |
 "application/x-wms-extension-cmd" |
 "application/x-wms-getcontentinfo" |
 "application/x-wms-gettemplates" |
 "application/x-wms-Logconnectstats" |
 "application/x-wms-Logplaystats" |
 "application/x-wms-sendevent" |
 "application/x-wms-streamswitch"

 Content-Type = "Content-Type: " Ctype [";charset=UTF-8"]

For example:

 Content-Type: application/x-wms-Logplaystats;charset=UTF-8

2.2.6.3.1 application/sdp

This media type is used in the response to the DESCRIBE request method and in the ANNOUNCE
request method. It indicates that the message body in the response or request, respectively, contains

a complete SDP description. For information on SDP syntax when used with RTSP Windows Media
Extensions, see section 2.2.5.

2.2.6.3.2 application/x-rtsp-packetpair

This media type is used in a GET_PARAMETER request method and in the response to that request.
When used in the GET_PARAMETER request, it identifies the request as a
TcpPacketPair (section 2.2.7.12) request.

33 / 138

[MS-RTSP-Diff] - v20240423
Real-Time Streaming Protocol (RTSP) Windows Media Extensions
Copyright © 2024 Microsoft Corporation
Release: April 23, 2024

When used in the response to the GET_PARAMETER request method, this media type indicates that
the message body contains three $P packets, as specified in [MS-WMSP] section 2.2.3.7.

2.2.6.3.3 application/x-rtsp-udp-packetpair

This media type is used in a SET_PARAMETER request method and serves to identify the
SET_PARAMETER request as a UdpPacketPair (section 2.2.7.14) request. The message body of the
UdpPacketPair request MUST follow the syntax specified in section 2.2.7.14.

2.2.6.3.4 application/x-wms-extension-cmd

This media type specifies that the message body of the SET_PARAMETER request method adheres to
the syntax specified in section 2.2.7.3. This message body is used to provide details on why the server

is sending an EndOfStream (section 2.2.7.3) request.

2.2.6.3.5 application/x-wms-getcontentinfo

This media type is used in a GET_PARAMETER request and serves to identify the GET_PARAMETER
request as a GetContentInfo (section 2.2.7.4) request. The message body of the GetContentInfo
request is not significant because the sole purpose of the request is to retrieve the Cache-
Control (section 2.2.6.2) header in the response.

2.2.6.3.6 application/x-wms-Logconnectstats

This media type is used in a SET_PARAMETER request method and serves to identify the
SET_PARAMETER request as a LogConnect (section 2.2.7.6) request. The message body of the
LogConnect request MUST follow the syntax specified in section 2.2.7.6.

2.2.6.3.7 application/x-wms-Logplaystats

This media type is used in a SET_PARAMETER request method and serves to identify the
SET_PARAMETER request as a LogPlay (section 2.2.7.7) request. The message body of the LogPlay

request MUST follow the syntax specified in section 2.2.7.7.

2.2.6.3.8 application/x-wms-sendevent

This media type specifies that the message body of the SET_PARAMETER request contains a remote

event message in the remote event format, as specified in [MS-WMSP] section 2.2.5.
SET_PARAMETER requests that specify this media type are SendEvent (section 2.2.7.11) requests.

2.2.6.3.9 application/x-wms-streamswitch

This media type is used in a SET_PARAMETER request method and serves to identify the
SET_PARAMETER request as a SelectStream (section 2.2.7.10) request. The message body of the
SelectStream request MUST follow the syntax specified in section 2.2.7.10.

2.2.6.4 Cookie

The syntax of the Cookie header is specified in [RFC2109] section 4.2.2.

This header is defined for use in requests sent to a server. Clients SHOULD share a single repository
for RTSP cookies and HTTP cookies, and treat http:// and rtsp:// URLs as a single protocol.

This means that if a cookie is set for the URL http://example.com/ by using the HTTP protocol, and
the client sends an RTSP Describe request for the URL rtsp://example.com/, the cookie SHOULD be
included in the Describe request even though it was originally obtained through HTTP.

34 / 138

[MS-RTSP-Diff] - v20240423
Real-Time Streaming Protocol (RTSP) Windows Media Extensions
Copyright © 2024 Microsoft Corporation
Release: April 23, 2024

2.2.6.5 If-Match

The syntax of the If-Match header MUST adhere to the ABNF syntax specified in [RFC2616] section
14.24, with the following modification: The maximum number of entity-tag fields is 32.

These rules can be expressed using the following ABNF syntax:

 If-Match = "If-Match: "
 ("*" | 1*32#entity-tag); defined in [RFC2616] section 3.11

2.2.6.6 If-None-Match

The syntax of the If-None-Match header MUST adhere to the ABNF syntax specified in [RFC2616]
section 14.26, with the following modification: The maximum number of entity-tag fields is 32.

These rules can be expressed using the following ABNF syntax:

 If-None-Match = "If-None-Match: "
 ("*" | 1*32#entity-tag); defined in [RFC2616] section 3.11

2.2.6.7 Range

The syntax of the Range header MUST follow the general rules as specified in [RFC2326] section
12.29. However, a Range header MUST NOT contain more than one ranges-specifier syntax element.
Also, the time parameter and the utc-range ranges-specifier syntax element MUST NOT be used. RTSP
Windows Media Extensions define two additional ranges-specifier tokens.<8>

The ABNF syntax for the Range header is as follows.

 ranges-specifier = npt-range ; [RFC2326] section 3.6
 | smpte-range ; [RFC2326] section 3.5
 | byte-range ; section 2.2.6.7.1
 | packet-range ; section 2.2.6.7.2
 Range = "Range: " ranges-specifier

2.2.6.7.1 x-asf-byte

The x-asf-byte token is used to express a start position and, optionally, a stop position in units of
bytes counted from the start of the content. Byte offsets are expressed as integer decimal numbers.
The beginning of the ASF file has byte offset 0. The first ASF data packet is located at the byte offset

that corresponds to the size of the ASF file header (as specified in section 2.2.5.2.3.1).

The ABNF syntax for the x-asf-byte token is as follows.

 byte-offset = 1*20DIGIT
 byte-range = "x-asf-byte=" byte-offset "-" [byte-offset]

The value of byte-offset MUST be an integer in the range 0 to 18,446,744,073,709,551,614, inclusive.

2.2.6.7.2 x-asf-packet

35 / 138

[MS-RTSP-Diff] - v20240423
Real-Time Streaming Protocol (RTSP) Windows Media Extensions
Copyright © 2024 Microsoft Corporation
Release: April 23, 2024

The x-asf-packet token is used to express a start position and, optionally, a stop position as an ASF
data packet number. ASF data packet numbers are expressed as integer decimal numbers. The first

ASF data packet in the ASF file has number 0, and each ASF data packet in the file increments by one.

The ABNF syntax for the x-asf-packet token is as follows.

 packet-num = 1*20DIGIT
 packet-range = "x-asf-packet=" packet-num "-" [packet-num]

The value of packet-num MUST be an integer in the range 0 to 18,446,744,073,709,551,614,
inclusive.

2.2.6.8 RTP-Info

The syntax of the RTP-Info header MUST adhere to the ABNF syntax specified in [RFC2326] section
12.33, with the following modifications: The stream-url field can be enclosed in double-quotes and the

parameter field is optional and the maximum number of consecutive occurrences of the parameter
field is 32.

These rules can be expressed using the following ABNF syntax:

 RTP-Info = "RTP-Info: "
 1# (optq-stream-url ; defined in [MS-RTSP], "X-RTP-Info"
 *32parameter) ; defined in [RFC2326] section 12.33

Note See [MS-RTSP] section 2.2.6.27.

Note See [RFC2326] section 12.33.

2.2.6.9 Set-Cookie

The syntax of the Set-Cookie header is specified in [RFC2109] section 4.2.2.

This header is defined for use in responses sent to a client. Clients SHOULD share a single repository
for RTSP cookies and HTTP cookies, and treat http:// and rtsp:// URLs as a single protocol.

This means that if a cookie is set for the URL http://example.com/, and a cookie with the same name
is set for the URL rtsp://example.com/, the second cookie overrides the first cookie because the two

URLs are considered equivalent.

2.2.6.10 Supported

The Supported header is used for specifying features of the protocol that are supported and that are
allowed to be used in the current session. Different features can apply to different entries in a server-

side playlist.

If a feature is listed in the Supported header, the feature is supported, and the feature SHOULD be
used, if appropriate. If a feature has been defined for use on the Supported header, but it is not listed
on the Supported header, that feature MUST NOT be used.<9>

A missing Supported header (from either a request or response) MUST NOT be interpreted as
changing the list of features that are currently supported.

The syntax of the Supported header is as follows.

 WMCfeat = "com.microsoft.wm.eosmsg"

36 / 138

[MS-RTSP-Diff] - v20240423
Real-Time Streaming Protocol (RTSP) Windows Media Extensions
Copyright © 2024 Microsoft Corporation
Release: April 23, 2024

 | "com.microsoft.wm.fastcache"
 | "com.microsoft.wm.locid"
 | "com.microsoft.wm.packetpairssrc"
 | "com.microsoft.wm.predstrm"
 | "com.microsoft.wm.srvppair"
 | "com.microsoft.wm.sswitch"
 | "com.microsoft.wm.startupprofile"
 Supported = "Supported: " WMCfeat *7["," [SP] WMCfeat]

For example:

 Supported: com.microsoft.wm.srvppair, com.microsoft.wm.sswitch,
 com.microsoft.wm.predstrm, com.microsoft.wm.startupprofile

The tokens that can be used on the Supported header are defined in the following sections.

2.2.6.10.1 com.microsoft.wm.eosmsg

The com.microsoft.wm.eosmsg token specifies support for the EndOfStream (section 2.2.7.3) request.
If a client specifies this token, it means that the client supports the EndOfStream request and the

client expects the server to send such requests to it. If a server specifies the
com.microsoft.wm.eosmsg token, it means that the server intends to send EndOfStream requests to
the client.

If a server never sends the Supported header, or if a server does not specify the
com.microsoft.wm.eosmsg token on the Supported header, clients SHOULD assume that the server
will not send an EndOfStream request.<10>

If a client never sends the Supported header, or if a client does not specify the

com.microsoft.wm.eosmsg token on the Supported header, servers SHOULD assume that the client
does not support the EndOfStream request. In this case, the server MAY send the EndOfStream
request anyway, but MUST be prepared to handle an error response from the client.<11>

2.2.6.10.2 com.microsoft.wm.fastcache

The com.microsoft.wm.fastcache token specifies that the server permits the use of the Speed header,

as specified in [RFC2326] section 12.35.

This token is defined for use only in responses sent to a client.

If a server never sends the Supported header, clients MUST NOT include the Speed header in RTSP
requests sent to the server.<12>

2.2.6.10.3 com.microsoft.wm.locid

The com.microsoft.wm.locid token specifies that the client wants the server to include the LocationId

field in the RTP payload format headers of RTP packets. This applies only to RTP packets that use the
RTP payload format for ASF data packets, as specified in section 2.2.1.

This token is defined only for use in requests sent to a server.

If the client described the com.microsoft.wm.locid token on the Supported header in the most recently
received Describe or SelectStream request containing a Supported header, and the server is using the
RTP payload format for ASF data packets, then the server SHOULD include the LocationId field in the

RTP payload format header of each payload that includes the end of an ASF data packet. The server

37 / 138

[MS-RTSP-Diff] - v20240423
Real-Time Streaming Protocol (RTSP) Windows Media Extensions
Copyright © 2024 Microsoft Corporation
Release: April 23, 2024

MAY include the LocationId field in each RTP payload format header, as long as the client has
specified the com.microsoft.wm.locid token.

If a client never sends the Supported header, or if a client does not specify the
com.microsoft.wm.locid token on the Supported header, servers MUST NOT include the LocationId

field in the RTP payload format headers of RTP packets when the RTP payload format for ASF data
packets is used.

2.2.6.10.4 com.microsoft.wm.packetpairssrc

The com.microsoft.wm.packetpairssrc token specifies that when the server sends packet-pair data
over the RTP by using the RTP payload format, as specified in section 2.2.3.2, the SSRC field in the
RTP header is set to the same SSRC value specified by the server in the RTSP Transport header in the

response to the SETUP request for the retransmission stream. For information on the retransmission
stream, see section 2.2.5.5.

This token is defined only for use in responses sent to a client.

If a server does not specify the com.microsoft.wm.packetpairssrc token on the Supported header,
clients SHOULD ignore the SSRC field in the RTP header of RTP packets that contain packet-pair data
and that use the RTP payload format as specified in section 2.2.3.2.<13>

2.2.6.10.5 com.microsoft.wm.predstrm

The com.microsoft.wm.predstrm token specifies support for predictive stream selection. This is a
technique in which the server selects a set of streams from the next entry in a server-side playlist on
the client's behalf, and starts streaming those streams. When predictive stream selection is not used,
the server will not start streaming the next entry in the server-side playlist until the client has sent a
Play (section 2.2.7.9) request.

Although a client might support predictive stream selection, it might not want it to be used. For
example, if the client prefers having full control over what streams are selected for a new playlist
entry instead of having the server select the streams on its behalf. Therefore, if a Supported header

does not include the com.microsoft.wm.predstrm token, then the client does not want predictive
stream selection to be used at the moment.

If a client never sends the Supported header, or if a client does not specify the
com.microsoft.wm.predstrm token on the Supported header, servers MUST NOT use predictive stream

selection.

2.2.6.10.6 com.microsoft.wm.srvppair

The com.microsoft.wm.srvppair token specifies support for Packet-Pair. This is a technique in which
the server sends two or three packets with random data to the client over UDP or TCP. The client
measures the time it takes for the second packet to arrive and can use this information to estimate
the bottleneck bandwidth on the network path between the server and the client.

If a server never sends the Supported header, or if a server does not specify the
com.microsoft.wm.srvppair token on the Supported header, clients MUST NOT send a

TcpPacketPair (section 2.2.7.12) request or a UdpPacketPair (section 2.2.7.14) request to the
server.<14>

If a client never sends the Supported header, or if a client does not specify the
com.microsoft.wm.srvppair token on the Supported header, servers SHOULD assume that the client

does not intend to send a TcpPacketPair request or a UdpPacketPair request.

2.2.6.10.7 com.microsoft.wm.sswitch

38 / 138

[MS-RTSP-Diff] - v20240423
Real-Time Streaming Protocol (RTSP) Windows Media Extensions
Copyright © 2024 Microsoft Corporation
Release: April 23, 2024

The com.microsoft.wm.sswitch token specifies support for the SelectStream (section 2.2.7.10)
message body.

If a server never sends the Supported header, or if a server does not specify the
com.microsoft.wm.sswitch token on the Supported header, clients SHOULD assume that the server

does not support receiving a SelectStream request that includes a nonempty message body.<15>

If a client never sends the Supported header, or if a client does not specify the
com.microsoft.wm.sswitch token on the Supported header, servers SHOULD assume that the client
does not support sending a SelectStream request with a non-empty message body.

2.2.6.10.8 com.microsoft.wm.startupprofile

This token specifies support for the X-StartupProfile (section 2.2.6.28).

If a server never sends the Supported header, or if a server does not specify the
com.microsoft.wm.startupprofile token on the Supported header, clients MUST assume that the server
will not send the X-StartupProfile header.<16>

If a client never sends the Supported header, or if a client does not specify the
com.microsoft.wm.startupprofile token on the Supported header, servers MUST NOT send the X-
StartupProfile header to the client.<17>

2.2.6.11 Transport

The syntax of the Transport header MUST adhere to the ABNF syntax specified in [RFC2326] section
12.39, with the following modification. The transport-spec syntax element has been extended with an
optional fec-parameters element. The modified syntax for transport-spec is as follows:

 fec-parameters = ";FecSpan=" 1*2HEXDIG
 ";FecPerSpan=" 1*2HEXDIG
 ";FecBurstMargin=" HEXDIG
 transport-spec = transport-protocol "/" profile ; [RFC2326] section 12.39
 ["/" lower-transport] ; [RFC2326] section 12.39
 2*parameter ; [RFC2326] section 12.39
 [fec-parameters]

The syntax elements unicast and client_port, which are included in the parameter syntax element, as
specified in [RFC2326] section 12.39, MUST be present in each transport-spec syntax element where

the value of the lower-transport parameter is UDP.

The value of the FecSpan parameter MUST be in the range 0x01 to 0x18, inclusive.

The value of the FecPerSpan parameter MUST be in the range 0x01 to 0x18, inclusive, and it MUST
also be less than or equal to the value of the FecSpan parameter.

The value of the FecBurstMargin parameter MUST be in the range 0x1 to 0xC, inclusive. Also, the
value of FecSpan minus 1 multiplied by the value of FecBurstMargin MUST NOT exceed 0x18.

The fec-parameters syntax element SHOULD be present in a SETUP request for a stream that uses the

RTP payload format for FEC (for details, see section 2.2.2).

When used in a request, the numerical value after the FecSpan parameter specifies the number of RTP
source packets that the client wants to be included in a span. There is at least one RTP FEC packet for
each span, so a small span implies higher-loss tolerance because each RTP FEC packet protects few
RTP source packets. But a small span also implies higher overhead because RTP FEC packets are
transmitted more frequently than with a large span.

39 / 138

[MS-RTSP-Diff] - v20240423
Real-Time Streaming Protocol (RTSP) Windows Media Extensions
Copyright © 2024 Microsoft Corporation
Release: April 23, 2024

When used in a request, the numerical value after the FecPerSpan parameter specifies the number of
RTP FEC packets that the client wants to be included in each span. Each span will include at least one

RTP FEC packet, and any additional RTP FEC packets provide additional protection against lost RTP
source packets, with the overhead of having to transmit the RTP FEC packet.

When used in a request, the numerical value after the FecBurstMargin parameter specifies the
distance between RTP source packets in a single span. A value of 1 means that adjacent RTP source
packets belong to the same span. A value of 2 means that every second RTP source packet belongs to
the same span (that is, two spans are interleaved). Interleaving spans provides additional protection
against burst errors, which is a kind of packet-loss event that causes multiple adjacent RTP packets to
be lost.

The fec-parameters syntax element SHOULD be present in the response to a SETUP request for a

stream that uses the RTP payload format for FEC.

When used in a response, the FecSpan, FecPerSpan, and FecBurstMargin parameters specify the
actual values for these parameters that the server has chosen.

2.2.6.12 User-Agent

The User-Agent header specifies the major and minor version numbers of the software product that is
sending the RTSP request.

This header is defined only for use in requests sent to a server.

The syntax of the User-Agent header is as follows.

 client-token = ("WMPlayer" | "WMServer" | "WMCacheProxy")
 major = 1*2DIGIT
 minor = 1*2DIGIT ["." 1*4DIGIT "." 1*4DIGIT]
 guid-value = 8HEXDIG "-" 4HEXDIG "-" 4HEXDIG "-"
 4HEXDIG "-" 12HEXDIG
 client-guid = "guid/" guid-value
 user-agent-data = client-token "/" major "." minor
 [SP client-guid]
 *(SP product) ; defined in [RFC2616] section 3.8
 User-Agent = "User-Agent: " user-agent-data

The guid-value syntax element specifies an identifier that uniquely identifies the client software
installation that originated the request. The identifier MUST be identical for all requests belonging to
the same streaming session. The identifier MUST be a UUID, as specified in ABNF in [RFC4122] section
3.

2.2.6.13 X-Accelerate-Streaming

The X-Accelerate-Streaming header specifies an amount of multimedia data (in millisecond units) and
a transmission rate (in bits per second).

When used in a request, the client is requesting the server to transmit the specified amount of data at

the specified transmission rate.

When used in a response, the header states the server's intent to transmit the specified amount of
data at the specified transmission rate.

This header is defined only for use in requests sent to a server and responses sent to a client.

The ABNF syntax for the X-Accelerate-Streaming header is as follows:

 X-Accelerate-Streaming = "X-Accelerate-Streaming: AccelDuration="

40 / 138

[MS-RTSP-Diff] - v20240423
Real-Time Streaming Protocol (RTSP) Windows Media Extensions
Copyright © 2024 Microsoft Corporation
Release: April 23, 2024

 1*10DIGIT
 ";AccelBandwidth="
 1*10DIGIT

The value of each of the two numerical parameters MUST be an integer in the range 0 to
4,294,967,295, inclusive.

2.2.6.14 X-Accept-Authentication

The X-Accept-Authentication header specifies the authentication schemes that the client supports.

This header is defined only for use in requests sent to a server.

For more information on the X-Accept-Authentication header, including syntax, see [MS-WMSP]
section 2.2.1.9.

2.2.6.15 X-Accept-Proxy-Authentication

The X-Accept-Proxy-Authentication header specifies the authentication schemes that the client
supports when challenged by a proxy server.

This header is defined only for use in requests sent to a server.

For more information on the X-Accept-Proxy-Authentication header, including syntax, see [MS-WMSP]
section 2.2.1.10.

2.2.6.16 X-Broadcast-Id

The purpose of the X-Broadcast-Id header is to provide a numerical identifier for the source of the
current entry in the server-side playlist, if the current entry is broadcast.

This header is defined only for use in requests and responses sent to a client.

The ABNF syntax for the X-Broadcast-Id header is as follows:

 X-Broadcast-Id = "X-Broadcast-Id: " 1*10DIGIT

The value of the numerical parameter MUST be an integer in the range 0 to 4,294,967,295, inclusive.

2.2.6.17 X-Burst-Streaming

The X-Burst-Streaming header specifies an amount of multimedia data (in millisecond units) and a
transmission rate (in bits per second).

When this header is used in a request, the client is requesting that the server transmit the specified

amount of data at the specified transmission rate.

The client that is sending the request is normally an intermediate device that is relaying a request on
behalf of another client. The X-Accelerate-Streaming (section 2.2.6.13) header, if specified, is the one
provided by the original client. The X-Burst-Streaming header specifies the amount of multimedia data
and the transmission rate requested by the intermediate device.

When used in a response, the header states the server's intent to transmit the specified amount of
data at the specified transmission rate.

This header is defined only for use in requests sent to a server and responses sent to a client.

41 / 138

[MS-RTSP-Diff] - v20240423
Real-Time Streaming Protocol (RTSP) Windows Media Extensions
Copyright © 2024 Microsoft Corporation
Release: April 23, 2024

The ABNF syntax for the X-Burst-Streaming header is as follows:

 X-Burst-Streaming = "X-Burst-Streaming: BurstDuration="
 1*10DIGIT
 ";BurstBandwidth="
 1*10DIGIT

The value of each of the two numerical parameters MUST be an integer in the range 0 to
2,147,483,647, inclusive.

2.2.6.18 X-Notice

The X-Notice header SHOULD be included in EndOfStream (section 2.2.7.3) requests sent by the
server. This header is defined only for requests sent to a client.

The ABNF syntax of the X-Notice header is as follows:

 X-Notice = "X-Notice: 2101" SP %x22 "End-of-Stream Reached" %x22

2.2.6.19 X-Player-Lag-Time

The X-Player-Lag-Time header indicates to the server the amount of time (in milliseconds) by which
the client might be lagging behind the server as a result of predictive stream selection. During
predictive stream selection, after having streamed all of the content in one server-side playlist entry,
the server will start to stream the content in the next playlist entry without waiting for the
Play (section 2.2.7.9) request from the client. The time that lapses until the client eventually sends
the Play request is the amount of time that the client is lagging behind the server.

As a result of receiving this header in a Play request, the server is expected to slow down the pushing
of new ASF file headers to the client by several milliseconds to ensure that the client does not fall too

far behind.

For more information on predictive stream selection, see section 2.2.6.10.5.

This header is defined only for requests sent to a server.

The syntax of the X-Player-Lag-Time header is as follows:

 X-Player-Lag-Time = "X-Player-Lag-Time: " 1*10DIGIT

The numerical value MUST be an integer in the range 0 to 4,294,967,295, inclusive.

2.2.6.20 X-Playlist

The X-Playlist header indicates to the server whether to move forward or backward to an entry in a

playlist relative to the entry ID specified in the X-Playlist-Seek-Id (section 2.2.6.23) header. If the
numerical value specified on the X-Playlist header is 1, the server is requested to move forward to the
next entry. A value of -1 means that the server is requested to move backward to the previous entry.

This header is defined only for requests sent to a server.

The syntax of the X-Playlist header is as follows:

 X-Playlist = "X-Playlist: pl-offset=" ("1" | "-1")

42 / 138

[MS-RTSP-Diff] - v20240423
Real-Time Streaming Protocol (RTSP) Windows Media Extensions
Copyright © 2024 Microsoft Corporation
Release: April 23, 2024

2.2.6.21 X-Playlist-Change-Notice

The X-Playlist-Change-Notice header is defined only for use in the response to a Play request sent to a
client.

The header notifies the client that no RTP packets will be transmitted after the Play response. Instead,
the response is immediately followed by an EndOfStream request and an Announce request.

The syntax of the X-Playlist-Change-Notice header is as follows:

 X-Playlist-Change-Notice = "X-Playlist-Change-Notice: true"

2.2.6.22 X-Playlist-Gen-Id

The X-Playlist-Gen-Id header specifies the identifier of the playlist entry that the current request or
response applies to.

Once the client has obtained the identifier for the current playlist entry through the response to the

Describe (section 2.2.7.2) request, the client will include it in most subsequent RTSP requests for the
current session. See section 2.2.7 for details about which RTSP requests can include the X-Playlist-
Gen-Id header.

The syntax of the X-Playlist-Gen-Id header is as follows:

 X-Playlist-Gen-Id = "X-Playlist-Gen-Id: " 1*10DIGIT

The numerical value MUST be an integer in the range 1 to 4,294,967,295, inclusive.

2.2.6.23 X-Playlist-Seek-Id

The X-Playlist-Seek-Id header requests the server to seek the playlist entry with the ID specified as

the numerical value of this header.

If a client includes this header in a request, the numerical value MUST be either the identifier of the
current playlist entry or the identifier of the previous playlist entry. (Identifiers for playlist entries are
obtained from the X-Playlist-Gen-Id (section 2.2.6.22) header.)

This header is defined only for requests sent to a server.

The syntax of the X-Playlist-Seek-Id header is as follows:

 X-Playlist-Seek-Id = "X-Playlist-Seek-Id: " 1*10DIGIT

The numerical value MUST be an integer in the range 1 to 4,294,967,295, inclusive.

2.2.6.24 X-Proxy-Client-Agent

The X-Proxy-Client-Agent header is sent by intermediate devices (such as proxy servers) and specifies
the information that the original client who initiated the RTSP request specified in the User-Agent
header.

Because each intermediate device replaces the information on the User-Agent header with its own
information, the X-Proxy-Client-Agent header enables the information on the original User-Agent

header to be preserved and forwarded across possibly multiple intermediate devices to the server.

43 / 138

[MS-RTSP-Diff] - v20240423
Real-Time Streaming Protocol (RTSP) Windows Media Extensions
Copyright © 2024 Microsoft Corporation
Release: April 23, 2024

This header is defined only for requests sent to a server by an intermediate device, such as a proxy
server that is acting as a client.

The syntax of the X-Proxy-Client-Agent header is as follows:

 X-Proxy-Client-Agent = "X-Proxy-Client-Agent: "
 user-agent-data ; defined in section 2.2.6.9.

2.2.6.25 X-Proxy-Client-Verb

The X-Proxy-Client-Verb header is sent by intermediate devices (such as proxy servers) and specifies
the name of the HTTP or RTSP request method used by the client that triggered the RTSP request sent
by the intermediate device.

The header is useful when digest authentication (as specified in [RFC2617] section 3) is used, and one
or more of the intermediate devices is performing a protocol translation between HTTP and RTSP, or

vice versa. When digest authentication is used, the name of the HTTP or RTSP request method might
be a part of the authentication challenge. Intermediate devices can change the request method. In
particular, this is true if the intermediate device translates requests between different streaming
protocols. The X-Proxy-Client-Verb header enables the name of the request method to be preserved
and forwarded across possibly multiple intermediate devices to the server.

This header is defined only for requests sent to a server by an intermediate device, such as a proxy
server that is acting as a client.

The syntax of the X-Proxy-Client-Verb header is as follows:

 X-Proxy-Client-Verb = "X-Proxy-Client-Verb: "
 (Method ; defined in [RFC2326] section 6.1
 =| Method) ; defined in [RFC2616] section 5.1.1

2.2.6.26 X-Receding-PlaylistChange

The X-Receding-PlaylistChange header is defined only for use in an Announce (section 2.2.7.1)
request sent to a client. The header indicates that the playlist entry described by the SDP in the

Announce request is the previous entry in the server-side playlist.

The server MUST NOT send this header unless it was rewinding the content (that is, streaming the
content backward) and sent the Announce request as a result of reaching the beginning of the playlist
entry.

The syntax of the X-Receding-PlaylistChange header is as follows:

 X-Receding-PlaylistChange = "X-Receding-PlaylistChange: 1"

2.2.6.27 X-RTP-Info

The X-RTP-Info header is sent by servers in the Announce request when predictive stream selection is

used. This header is also sent by clients in the Play request when predictive stream selection is used.
For more information on predictive stream selection, see section 2.2.6.10.5.

When sent by the server in the Announce request, the X-RTP-Info header specifies what streams the
server has selected for the new playlist entry and specifies transport parameters for each stream.
When sent by the client in the Play request, the header lists the predicted streams that the client

44 / 138

[MS-RTSP-Diff] - v20240423
Real-Time Streaming Protocol (RTSP) Windows Media Extensions
Copyright © 2024 Microsoft Corporation
Release: April 23, 2024

wants to continue to receive. Any streams that the client no longer wants to receive are omitted from
the X-RTP-Info header.

The syntax of the X-RTP-Info header is modeled after the syntax of the RTP-Info header, as specified
in [RFC2326] section 12.33, but it contains additional syntax elements that are normally found in the

Transport (section 2.2.6.11) header.

The syntax of the X-RTP-Info header is as follows:

 parameter = ";blocksize=" 1*4DIGIT
 | (";client_port="
 port ["-" port]) ; [RFC2326] section 12.39
 | fec-parameters ; section 2.2.6.8
 | ("interleaved="
 channel "-" channel) ; [RFC2326] section 12.39
 | ";mode=PLAY"
 | ";rtptime=" 1*10DIGIT ; [RFC2326] section 12.33
 | (";server_port="
 port ["-" port]) ; [RFC2326] section 12.39
 | ";seq=" 1*4DIGIT ; [RFC2326] section 12.33
 | ";ssrc=" 8HEXDIG ; [RFC2326] section 12.39
 | (";thinlevel=" ("0" | "1" | "2"))
 | (";transport=RTP/AVP/" ("UDP" | "TCP"))
 | ";unicast"

 quoted-stream-url = <">
 stream-url ; [RFC2326] section 12.33
 <">

 optq-stream-url = stream-url ; [RFC2326] section 12.33
 | quoted-stream-url ; required if stream-url contains "," or ";"

 X-RTP-Info = "X-RTP-Info: "
 1# (optq-stream-url
 *32parameter)

When the X-RTP-Info header is sent in a Play request, any parameter syntax elements MUST NOT be

present.

The unicast parameter MUST be specified in the X-RTP-Info header.

The value of the blocksize parameter, if specified, is the maximum size of the RTP packets, in bytes,
that the server will send for the new playlist entry described by the SDP in the Announce request.

The numerical value of the thinlevel parameter MUST be set as follows.

 Value Meaning

0 All ASF media objects for the stream will be transmitted.

1 Only ASF media objects that are marked as containing key-frame data are to be transmitted.

2 No ASF media objects for the stream will be transmitted.

If the thinlevel parameter is missing from the X-RTP-Info header in an Announce request, a value of 0
MUST be assumed.

2.2.6.28 X-StartupProfile

The X-StartupProfile header specifies a list of streaming bit rates. For each bit rate, this header
specifies the maximum amount of data that the audio and video decoders will need, and the time

45 / 138

[MS-RTSP-Diff] - v20240423
Real-Time Streaming Protocol (RTSP) Windows Media Extensions
Copyright © 2024 Microsoft Corporation
Release: April 23, 2024

stamp of the ASF payload at which this maximum occurs. It is recommended that clients buffer at
least the amount of data that this header indicates to prevent buffer underflow.

This header is defined only for use in responses sent to a client.<18> For more information about the
X-StartupProfile header, including syntax, see [MS-WMSP] section 2.2.1.12.

2.2.7 Request Types

RTSP Windows Media Extensions define logical requests that are sent from the client to the server, or
from the server to the client.

The requests from the client and the corresponding responses from the server are exchanged by using
RTSP request methods. Each request type is mapped by using one of the following RTSP methods:
ANNOUNCE, DESCRIBE, GET_PARAMETER, PAUSE, PLAY, SET_PARAMETER, SETUP, and TEARDOWN.
For example, the EndOfStream request is mapped to the SET_PARAMETER method.

All RTSP methods specify a URI on the request line (as specified in [RFC2326] section 6). Unless

otherwise specified, when an RTSP method is used to implement one of the logical requests defined in
this section, the URI specified in the RTSP request line MUST be the aggregate control URL (that is,

the URL that references the entire presentation rather than an individual stream).

This section defines the syntax of RTSP requests by using ABNF. Any ABNF syntax rules not specified
in [RFC5234] use the ABNF extensions specified in [RFC2326] section 15.

2.2.7.1 Announce

The purpose of the Announce request is to send information to the client on a new entry in a server-
side playlist that the server will start to stream. The Announce request describes the playlist entry by
using SDP syntax (section 2.2.5), providing the ASF file header as well as a URL for each stream, and
information on the RTP payload format for each stream.

The Announce request is defined as the ANNOUNCE request method, sent by the server to the client,
as specified in [RFC2326] section 10.3, with the following additional constraints:

 The ANNOUNCE method includes the Session header, as specified in [RFC2326] section 12.37.

 The ANNOUNCE method includes the X-Playlist-Gen-Id (section 2.2.6.22) header.

 The ANNOUNCE method includes the Content-Type (section 2.2.6.3) header with the media type
application/sdp.

 The message body of the ANNOUNCE method contains SDP, as specified in section 2.2.5.

The X-Receding-PlaylistChange (section 2.2.6.26) is allowed to be included in the request.

The Announce request is allowed to include the Cache-Control (section 2.2.6.2) header, because

different cache control directives can apply to each entry in a server-side playlist.

The following example shows an Announce request with message body omitted.

 ANNOUNCE rtsp://myserver.com/ServerSidePlaylist.wsx RTSP/1.0
 Content-Type: application/sdp
 Vary: Accept
 Session: 13856065358275910855
 X-Playlist-Gen-Id: 5353
 X-Broadcast-Id: 73
 X-RTP-Info: url=rtsp://myserver.com/ServerSidePlaylist.wsx
 /audio;transport=RTP/AVP/UDP;unicast;server_port=5004;
 client_port=1790;ssrc=90cbcaac;mode=PLAY;
 blocksize=5994;thinlevel=0;seq=26968;rtptime=0,
 url=rtsp://myserver.com/ServerSidePlaylist.wsx/rtx;

46 / 138

[MS-RTSP-Diff] - v20240423
Real-Time Streaming Protocol (RTSP) Windows Media Extensions
Copyright © 2024 Microsoft Corporation
Release: April 23, 2024

 transport=RTP/AVP/UDP;
 unicast;server_port=5004-5005;client_port=1788-1789;
 ssrc=e740fe80;mode=PLAY;thinlevel=0
 Content-Length: 61337
 Date: Tue, 10 Sep 2002 23:09:36 GMT
 CSeq: 2
 User-Agent: WMServer/9.0.0.3191

2.2.7.2 Describe

The purpose of the Describe request is to request information on one particular piece of multimedia
content, which is identified by a URL. The client sends this request before it asks the server to start

streaming the content. The server's response describes the content using SDP syntax (section 2.2.5),
providing the ASF file header as well as a URL for each stream and information on the RTP payload
format for each stream. If the URL in the Describe request identifies a server-side playlist, the SDP in
the Describe response describes only the first entry in the playlist.

The Describe request is implemented by using the DESCRIBE request method, and MUST adhere to
the syntax for DESCRIBE, as specified in [RFC2326] section 10.2.

The Describe request also MUST include the User-Agent (section 2.2.6.12) header, and SHOULD

include the Supported (section 2.2.6.10) header and the X-Accept-Authentication (section 2.2.6.14)
header. The Cookie (section 2.2.6.4) header MUST be included if there are any applicable cookies to
send to the server.

The response to the Describe request SHOULD specify the Cache-Control (section 2.2.6.2) header.

The message body in the response to the Describe request MUST contain the SDP in accordance with
the rules specified in section 2.2.5. The SDP MUST be identified by the media type application/sdp on

the Content-Type (section 2.2.6.3) header.

The following example shows a Describe request.

 DESCRIBE rtsp://myserver.com/mycontent.wmv RTSP/1.0
 User-Agent: WMPlayer/9.0.0.2833 guid/B64345F5-8C45-4818-8A1A-4775F0923FAC
 Accept: application/sdp
 Accept-Charset: UTF-8, *;q=0.1
 X-Accept-Authentication: Negotiate, NTLM, Digest
 Accept-Language: en-US, *;q=0.1
 CSeq: 1
 Supported: com.microsoft.wm.srvppair, com.microsoft.wm.sswitch,
 com.microsoft.wm.eosmsg, com.microsoft.wm.predstrm

2.2.7.3 EndOfStream

The purpose of the EndOfStream request is to inform the client that the server has transmitted the
last RTP packet for all of the selected streams in the content.

The EndOfStream request is defined as the SET_PARAMETER request method, sent by the server to

the client, as specified in [RFC2326] section 10.9, with the following additional constraints:

 The SET_PARAMETER request includes the X-Notice header (section 2.2.6.18).

 The SET_PARAMETER request includes the Content-Type header with the media type
application/x-wms-extension-cmd.

 The message body of the SET_PARAMETER request adheres to the syntax for message-body.

The response is as defined in [RFC2326] sections 7 and 10.9.

47 / 138

[MS-RTSP-Diff] - v20240423
Real-Time Streaming Protocol (RTSP) Windows Media Extensions
Copyright © 2024 Microsoft Corporation
Release: April 23, 2024

The purpose of the RTP-Info header is to allow the client to determine the RTP sequence number of
the last RTP packet transmitted for each stream. Because the seq parameter specifies the RTP

sequence number of the first RTP packet transmitted after the SET_PARAMETER request, it follows
that the RTP sequence number of the last RTP packet transmitted prior to the SET_PARAMETER

request is equal to the value of the seq parameter minus 1, modulo 65536.

The following is the syntax for the message-body, with all characters in ASCII.

 message-body = "Session: " session-id ; [RFC2326] section 3.4
 CRLF
 "EOF: true" CRLF
 [("AdministrativeDisconnection: true"
 | "End-Of-Playlist-Entry: true"
 | "RecedingEos: true")
 CRLF]

The following example shows an EndOfStream request.

 SET_PARAMETER rtsp://myserver.com/ServerSidePlaylist.wsx RTSP/1.0
 Content-Type: application/x-wms-extension-cmd
 X-Notice: 2101 "End-of-Stream Reached"
 RTP-Info: url=rtsp://myserver.com/ServerSidePlaylist.wsx/audio;
 Seq=26968, url=rtsp://myserver.com/ServerSidePlaylist.wsx/video;
 Seq=46497
 X-Playlist-Gen-Id: 5351
 Content-Length: 71
 Date: Tue, 10 Sep 2002 23:09:36 GMT
 CSeq: 5
 User-Agent: WMServer/9.0.0.3191

 Session: 13856065358275910855
 EOF: true
 End-Of-Playlist-Entry: true

2.2.7.4 GetContentInfo

The purpose of the GetContentInfo request is to retrieve cache-control information from the server
without incurring the overhead of a Describe request. This request is normally sent only by clients that
are acting as intermediate devices (for example, a caching proxy server).

The GetContentInfo request is implemented by using the GET_PARAMETER request method (sent by
the client to the server) and MUST adhere to the syntax for GET_PARAMETER, as specified in
[RFC2326] section 10.8.

The Content-Type header MUST be present in the request, and MUST specify the media type
application/x-wms-getcontentinfo (section 2.2.6.3.5). The size of the message body MUST be 1 byte.
The value of this byte MUST be 0x00.

A server that receives a GET_PARAMETER request MUST treat it as a GetContentInfo request if the

Content-Type header specifies the application/x-wms-getcontentinfo media type.

The response to a GetContentInfo request MUST specify the Cache-Control (section 2.2.6.2) header,
and MUST contain a zero-length message body.

The following example shows a GetContentInfo request (message body omitted).

 GET_PARAMETER rtsp://myserver.com/mycontent.wmv RTSP/1.0
 Content-Length: 1
 User-Agent: WMCacheProxy/9.0.0.3191
 Accept-Charset: UTF-8, *;q=0.1

48 / 138

[MS-RTSP-Diff] - v20240423
Real-Time Streaming Protocol (RTSP) Windows Media Extensions
Copyright © 2024 Microsoft Corporation
Release: April 23, 2024

 X-Accept-Authentication: Negotiate, NTLM, Digest
 Accept-Language: en-US, *;q=0.1
 Content-Type: application/x-wms-getcontentinfo
 CSeq: 1

2.2.7.5 KeepAlive

The purpose of the KeepAlive request is to ensure that the RTSP session, specified by the Session
header, is not closed by the server due to the communication link having been idle for a period of
time. Clients need to send this request if they have not sent any other requests during the time
interval specified by the server in the Session header, as specified in [RFC2326] section 12.37. Clients
that are receiving RTP packets over TCP do not need to send this request while the server is sending
RTP packets.

The KeepAlive request is defined as the GET_PARAMETER request method (sent by the client to the
server), as specified in [RFC2326] section 10.8, with the following additional constraints:

 The GET_PARAMETER request method includes the Session header (as specified in [RFC2326]
section 12.37).

 The GET_PARAMETER request method MUST NOT include the Content-Type (section 2.2.6.3)
header.

 The GET_PARAMETER request MUST NOT have a message body.

The server's response to the KeepAlive request SHOULD NOT have a message body.

The following example shows a KeepAlive request.

 GET_PARAMETER rtsp://myserver.com/mycontent.wmv RTSP/1.0
 User-Agent: WMPlayer/9.0.0.2833 guid/B64345F5-8C45-4818-8A1A-4775F0923FAC
 Accept-Charset: UTF-8, *;q=0.1
 Accept-Language: en-US, *;q=0.1
 Session: 13856065358275910855
 CSeq: 10

2.2.7.6 LogConnect

The purpose of the LogConnect request is to submit statistics on the client to the server. This request
is optionally sent to the server when streaming starts for the first time, so the logging message does
not include any information on the content being streamed. Instead, the logging message contains
information on the client software and client operating system.

The LogConnect request is defined as the SET_PARAMETER request method (sent by the client to the
server), as specified in [RFC2326] section 10.9, with the following additional constraints:

 The Content-Type header is present in the request and specifies the media type application/x-
wms-Logconnectstats (section 2.2.6.3.6).

 The response to a LogConnect request is defined as a SET_PARAMETER response with the
additional constraint that the response cannot have a message body.

The following example shows a LogConnect request:

 SET_PARAMETER rtsp://myserver.com/mycontent.wmv RTSP/1.0
 Content-Length: 2067
 User-Agent: WMPlayer/9.0.0.2683 guid/3300AD50-2C39-46C0-AE0A-C4D98694D7B4
 Accept-Charset: UTF-8, *;q=0.1

49 / 138

[MS-RTSP-Diff] - v20240423
Real-Time Streaming Protocol (RTSP) Windows Media Extensions
Copyright © 2024 Microsoft Corporation
Release: April 23, 2024

 X-Accept-Authentication: Negotiate, NTLM, Digest
 Accept-Language: en-us, *;q=0.1
 Session: 2828013918854793989
 Content-Type: application/x-wms-Logconnectstats;charset=UTF-8
 CSeq: 8
 <Connect-Time Log message as defined in [MS-WMLOG] section 2.8>

2.2.7.7 LogPlay

The purpose of the LogPlay request is to submit statistics on the streamed content to the server. The
request specifies parameters such as streaming quality and packet transmission statistics.

The LogPlay request is defined as the SET_PARAMETER request method (sent by the client to the
server) and adheres to the syntax for SET_PARAMETER, as specified in [RFC2326] section 10.9, with
the following additional constraints:

 The Content-Type header is present in the request and specifies the media type application/x-
wms-Logplaystats (section 2.2.6.3.7).

 The message body of the SET_PARAMETER request includes a remote event that is an XML-format
legacy log or streaming log, as specified in [MS-WMLOG] sections 2.5 and 2.6.

 The response to a LogPlay request is defined as a SET_PARAMETER response with the additional
constraint that the response cannot have a message body.

The following example shows a LogPlay request:

 SET_PARAMETER rtsp://myserver.com/mycontent.wmv RTSP/1.0
 Content-Length: 2067
 User-Agent: WMPlayer/9.0.0.2683 guid/3300AD50-2C39-46C0-AE0A-C4D98694D7B4
 Accept-Charset: UTF-8, *;q=0.1
 X-Accept-Authentication: Negotiate, NTLM, Digest
 Accept-Language: en-us, *;q=0.1
 Session: 2828013918854793989
 Content-Type: application/x-wms-Logplaystats;charset=UTF-8
 CSeq: 9
 <Streaming Log message as defined in [MS-WMLOG] section 2.6>

2.2.7.8 Pause

The purpose of the Pause request is to request that the server stop streaming RTP packets for all of

the currently selected streams.

The Pause request is implemented by using the PAUSE request method and MUST adhere to the
syntax for PAUSE, as specified in [RFC2326] section 10.6.

The Pause request MUST include the Session header (as specified in [RFC2326] section 12.37).

The Range (section 2.2.6.7) header MUST NOT be present in the Pause request.

The following example shows a Pause request.

 PAUSE rtsp://myserver.com/mycontent.wmv RTSP/1.0
 User-Agent: WMPlayer/9.0.0.2833 guid/B64345F5-8C45-4818-8A1A-4775F0923FAC
 Accept-Charset: UTF-8, *;q=0.1
 X-Accept-Authentication: Negotiate, NTLM, Digest
 Accept-Language: en-us, *;q=0.1
 Session: 3358283865419300849

50 / 138

[MS-RTSP-Diff] - v20240423
Real-Time Streaming Protocol (RTSP) Windows Media Extensions
Copyright © 2024 Microsoft Corporation
Release: April 23, 2024

 CSeq: 7

2.2.7.9 Play

The main purpose of the Play request is to ask the server to start streaming RTP packets for the
currently selected streams. If the server has switched to a new entry in a server-side playlist and is
using predictive stream selection to select streams on the client's behalf, the Play request is also used

as a way for the client to confirm the stream selection made by the server and to confirm that it has
started to play the RTP packets for the new playlist entry.

The Play request is implemented by using the PLAY request method and MUST adhere to the syntax
for PLAY, as specified in [RFC2326] section 10.5, with the following additional constraints:

 The Play request includes the Session header (as specified in [RFC2326] section 12.37).

 The Play request specifies either a Range (section 2.2.6.7) header or an X-

Playlist (section 2.2.6.20) header.

 If the stream is a part of a server-side playlist then the Play request includes the X-Playlist-Gen-
Id (section 2.2.6.22) header.

For information on predictive stream selection, see section 2.2.6.10.5.

The response to the Play request can include the Cache-Control (section 2.2.6.2) header.

The following example shows a Play request.

 PLAY rtsp://myserver.com/ServerSidePlaylist.wsx RTSP/1.0
 X-Playlist-Seek-Id: 5353
 User-Agent: WMPlayer/9.0.0.2868 guid/832BF8C6-D8E4-40D4-A058-C31F3D4A3B65
 Accept-Charset: UTF-8, *;q=0.1
 X-Accept-Authentication: Negotiate, NTLM, Digest
 Accept-Language: en-us, *;q=0.1
 Session: 13856065358275910855
 CSeq: 8
 Range: npt=0.000-
 Bandwidth: 2147483647
 X-Accelerate-Streaming: AccelDuration=8000;AccelBandwidth=1024128
 X-RTP-Info: url=rtsp://myserver.com/ServerSidePlaylist.wsx/audio,
 url=rtsp://myserver.com/ServerSidePlaylist.wsx/rtx

2.2.7.10 SelectStream

The purpose of the SelectStream request is to ask the server to modify the streaming state of one or
two streams in the content. It is possible to ask the server to start or stop streaming a particular
stream. It is also possible to ask the server to replace one stream with another and to specify if a
stream is to be thinned. A thinned stream is a stream for which the server transmits only ASF media
objects that are marked as containing key-frame data. The entity that creates the ASF media objects

is responsible for marking them as key-frames as specified in [ASF] section 6.3, when appropriate.

The SelectStream request uses either the SETUP request method as specified in section 2.2.7.10.1,
the TEARDOWN request method as specified in section 2.2.7.10.2, or the SET_PARAMETER request
method as specified in section 2.2.7.10.3.

The syntax for the SelectStream requests that request a server to start streaming a new stream
without replacing some other stream with the new stream is defined in section 2.2.7.10.1.

The syntax for the SelectStream requests that request a server is to stop streaming a stream without

replacing that stream with some new stream is defined in section 2.2.7.10.2.

51 / 138

[MS-RTSP-Diff] - v20240423
Real-Time Streaming Protocol (RTSP) Windows Media Extensions
Copyright © 2024 Microsoft Corporation
Release: April 23, 2024

The syntax for the SelectStream requests that request a server to start or stop thinning that stream
(that is, start or stop transmitting only ASF media objects that are marked as containing key-frame

data) is defined in section 2.2.7.10.3.

The syntax for the SelectStream requests that request a server to replace one stream with another

stream when both streams can use the same RTP session is defined in section 2.2.7.10.3.

It is not possible to use a SelectStream request to replace a pair of streams if they use different RTP
sessions, for example, if one stream uses TCP and the other uses UDP. In this case, the client will
have to send two SelectStream requests instead, one mapped to the TEARDOWN method and the
other one mapped to the SETUP method.

Regardless of the RTSP request method used in the syntax of the SelectStream request, the following
constraints apply to the syntax:

 The URL specified on the RTSP request line is the stream URL, not the one of the complete RTSP
presentation.

 If the stream is a part of a server-side playlist then the SelectStream request includes the X-
Playlist-Gen-Id (section 2.2.6.22) header.

 If the request contains a message body then the Content-Type header specifies the media type
application/x-wms-streamswitch (section 2.2.6.3.9).

The message body is defined by the following ABNF syntax:

 OldStream = 1*10DIGIT
 NewStream = 1*10DIGIT
 ThinLevel = "0" | "1" | "2"
 OldStreamURI = rtsp_URL ; [RFC2326] section 3.2
 NewStreamURI = rtsp_URL ; [RFC2326] section 3.2
 message-body = "SSEntry:" SP OldStream SP NewStream SP ThinLevel
 [SP OldStreamURI]
 [SP NewStreamURI]
 CRLF

The value of the OldStream and NewStream parameters MUST be an integer in the range 0 to

4,294,967,295, inclusive. If there is a stream number then the value MUST be equal to the stream
number of the stream being referenced, as determined by the "a=stream" attribute (for details, see
section 2.2.5.2.5) in the corresponding SDP media description. If there is no applicable stream
number (because a stream is only added or only removed), then the value MUST be set to
4,294,967,295.

The OldStreamURI parameter MUST NOT be present if the value of OldStream is 4,294,967,295.
Otherwise, OldStreamURI MUST be present.

The NewStreamURI parameter MUST NOT be present if the value of NewStream is 4,294,967,295.
Otherwise, NewStreamURI MUST be present.

The ThinLevel parameter specifies the thinning level of the stream identified by the NewStreamURI

parameter, as specified in the following table.

Value Meaning

0 All ASF media objects for the stream given by NewStreamURI are to be transmitted.

1 Only ASF media objects for the stream given by NewStreamURI that are marked as containing key-
frame data are to be transmitted.

2 No ASF media objects for the stream given by NewStreamURI are to be transmitted.

52 / 138

[MS-RTSP-Diff] - v20240423
Real-Time Streaming Protocol (RTSP) Windows Media Extensions
Copyright © 2024 Microsoft Corporation
Release: April 23, 2024

If the value of the NewStream parameter is 4,294,967,295, then the value of the ThinLevel parameter
SHOULD be 0 and MUST be ignored by the server.

The server's response to a SelectStream request does not include a message body.

2.2.7.10.1 SelectStream Using SETUP

The syntax for the SETUP request method is specified in [RFC2326] section 10.4, with the following
additional constraints:

 The SelectStream request includes the Transport (section 2.2.6.11) header.

 For SelectStream requests for non-retransmission streams, the following rule applies: For
transport-spec syntax elements on the Transport header that specify UDP as the transport
protocol, each stream MUST specify the same port value on the client_port parameter. If the

client_port parameter specifies a pair of port values, the two values in the pair MUST be different
but the pair is identical for each transport-spec and for every Transport header.

 For retransmission streams, for transport-spec syntax elements on the Transport header that
specify UDP as the transport protocol, each stream specifies a port value on the client_port
parameter that is different from the port value used by any other stream. This makes it possible to
distinguish retransmitted RTP packets from non-retransmitted RTP packets. For details, see

section 2.2.3.1.

For information on how to determine if a stream is a retransmission stream, see section 2.2.5.2.5.

If the server is supposed to transmit only ASF media objects that contain key-frame data for the
stream identified by the URL in the SETUP request line then the SETUP request method includes the
message body, as specified in section 2.2.7.10. Otherwise, the message body is not included.

When the message body is included, the value of the OldStream parameter is 4,294,967,295 and the
value of the ThinLevel parameter is 1. The value of the NewStreamURI parameter is identical to the

URL specified on the SETUP request line.

The response to the SelectStream request includes the Transport header.

The following example shows a SETUP request without message body.

 SETUP rtsp://myserver.com/mycontent.wmv/audio RTSP/1.0
 User-Agent: WMPlayer/9.0.0.2833 guid/B64345F5-8C45-4818-8A1A-4775F0923FAC
 Accept-Charset: UTF-8, *;q=0.1
 X-Accept-Authentication: Negotiate, NTLM, Digest
 Accept-Language: en-US, *;q=0.1
 CSeq: 3
 X-Playlist-Gen-Id: 2
 Transport: RTP/AVP/TCP;unicast;interleaved=0-1;ssrc=6095d7d7;mode=PLAY

2.2.7.10.2 SelectStream Using TEARDOWN

The syntax for the TEARDOWN request method is specified in [RFC2326] section 10.7, with the

following additional constraints:

 The URL specified on the TEARDOWN request line is the same URL used in the corresponding
SETUP request. For details, see section 2.2.7.10.1.

 If the URL of the stream being deselected by the TEARDOWN request is different from the URL
specified on the TEARDOWN request line then the TEARDOWN request method includes the
message body, as specified in section 2.2.7.10. Otherwise, the message body is not included.

53 / 138

[MS-RTSP-Diff] - v20240423
Real-Time Streaming Protocol (RTSP) Windows Media Extensions
Copyright © 2024 Microsoft Corporation
Release: April 23, 2024

 When the message body is included, the value of the NewStream parameter MUST be
4,294,967,295 and the value of the ThinLevel parameter SHOULD be 0. The value of the

OldStreamURI parameter MUST be the stream URL of the stream that is being deselected.

For example, if a client first sends a SETUP request for stream 1, and then sends a SelectStream

request to replace stream 1 with stream 2 (this is implemented by using the SET_PARAMETER
method), and then wants to deselect stream 2, then the URL on the TEARDOWN request line is still
that of stream 1. The URL for stream 2 will be specified in the message body of the TEARDOWN
request.

2.2.7.10.3 SelectStream Using SET_PARAMETER

The syntax for the SET_PARAMETER request method is specified in [RFC2326] section 10.9, with the

following additional constraints:

 The SET_PARAMETER request method includes the message body, as specified in section 2.2.7.10.

 If the server is already streaming a particular stream, and the client wants the server to start or

stop thinning that stream, that is, start or stop transmitting only ASF media objects that are
marked as containing key frame data, then the OldStream and NewStream parameters of the
message body are set to the same value (the stream number of the stream whose thinning status

is being modified). Otherwise, the OldStream parameter is set to the stream number of the stream
being deselected and the NewStream parameter is set to the stream number of the stream that is
being selected.

 The URL specified on the SET_PARAMETER request line is the same URL that is used to select the
stream identified by the OldStream parameter in the message body. Note that the stream
identified by the OldStream parameter could have been selected by either a SETUP request or a
previous SET_PARAMETER request.

For example, if a client first sends a SETUP request for stream 1, and then uses SET_PARAMETER to
replace stream 1 with stream 2, the URL on the request line is that of stream 1. If the client
subsequently uses SET_PARAMETER to replace stream 2 with stream 3, the URL on the request line is

still that of stream 1, because the URL used to select stream 2 was that of stream 1.

2.2.7.11 SendEvent

The purpose of the SendEvent request is to submit a remote event to the server. The most common
remote event is remote-log, which specifies rendering statistics independently of streaming statistics.
It is possible for clients to send remote-log events to a server after playing content entirely from a
cache without having a streaming connection to the server.

The SendEvent request is implemented by using the SET_PARAMETER request method (sent by the

client to the server) and MUST adhere to the syntax for SET_PARAMETER, as specified in [RFC2326]
section 10.9.

The Content-Type header MUST be present in the request and MUST specify the media type
application/x-wms-sendevent (section 2.2.6.3.8).

The remote event included in the message body of the SendEvent request MUST be one of the types
previously specified by the server using the x-wms-event-subscription directive. For details, see
section 2.2.6.2.10 in the Cache-Control header.

The message body of the SET_PARAMETER request MUST adhere to the syntax for remote events, as
specified in [MS-WMSP] section 2.2.5.

A server that receives a SET_PARAMETER request MUST treat it as a SendEvent request if the
Content-Type header specifies the application/x-wms-sendevent media type.

54 / 138

[MS-RTSP-Diff] - v20240423
Real-Time Streaming Protocol (RTSP) Windows Media Extensions
Copyright © 2024 Microsoft Corporation
Release: April 23, 2024

The response to a SendEvent request MUST NOT have a message body.

2.2.7.12 TcpPacketPair

The purpose of the TcpPacketPair request is to request packet-pair data delivered over the TCP
connection. The server's response to this request will contain three packets of random data. The
server attempts to ensure that each packet is delivered in a separate TCP segment. By measuring the
time it takes for the second TCP segment to arrive, the client can estimate the bottleneck bandwidth
in the network path between the server and the client.

The TcpPacketPair request is defined as the GET_PARAMETER request method (sent by the client to
the server), as specified in [RFC2326] section 10.8, with the following additional constraints:

 The Content-Type header is present in the request and specifies the media type application/x-
rtsp-packetpair (section 2.2.6.3.2).

 The request has an empty message body.

 That the size of the message body is 0 bytes and is indicated with the Content-Length header, as
specified in [RFC2326] section 12.14.

The TcpPacketPair response is defined as a GET_PARAMETER response with the following additional
constraints:

 The Content-Type header is present in the response and specifies the media type application/x-
rtsp-packetpair.

 The message body of the response consists of three $P packets, as specified in [MS-WMSP]
section 2.2.3.7 (In the syntax for the Reason field in the $P packets, the size of the RTSP
response is used instead of the size of the HTTP response).

The following example shows a TcpPacketPair request:

 GET_PARAMETER rtsp://myserver.com/mycontent.wmv RTSP/1.0
 Content-Length: 0
 User-Agent: WMPlayer/9.0.0.2833 guid/B64345F5-8C45-4818-8A1A-4775F0923FAC
 Accept-Charset: UTF-8, *;q=0.1
 X-Accept-Authentication: Negotiate, NTLM, Digest
 Accept-Language: en-US, *;q=0.1
 Content-Type: application/x-rtsp-packetpair
 CSeq: 2

2.2.7.13 Teardown

The purpose of the Teardown request is to deselect all streams that were previously selected by using
SelectStream requests. It also invalidates the RTSP session state.

The Teardown request is defined as the TEARDOWN request method (sent by the client to the server),
as specified in [RFC2326] section 10.7, with the following additional constraints:

 The TEARDOWN request includes the Session header (as specified in [RFC2326] section 12.37).

 The response to the Teardown request is defined as the response to the TEARDOWN request
method, with the constraint that the response cannot include a message body.

2.2.7.14 UdpPacketPair

The purpose of the UdpPacketPair request is to request packet-pair data delivered as RTP packets over
UDP, using the RTP payload format for packet-pair data, as specified in section 2.2.3. The server's

55 / 138

[MS-RTSP-Diff] - v20240423
Real-Time Streaming Protocol (RTSP) Windows Media Extensions
Copyright © 2024 Microsoft Corporation
Release: April 23, 2024

response to this request contains an empty message body because the packet-pair data is transmitted
over UDP. By measuring the time it takes for the second RTP packet to arrive, the client can estimate

the bottleneck bandwidth in the network path between the server and the client.

The client needs to have sent a SelectStream request to establish an RTP session for a retransmission

stream before it sends the UdpPacketPair request because the RTP packets with packet-pair data will
be transmitted over that RTP session. For information on how to determine if a stream is a
retransmission stream, see section 2.2.5.2.5.

The UdpPacketPair request is defined as the SET_PARAMETER request method (sent by the client to
the server), as specified in [RFC2326] section 10.9, with the following additional constraints:

 The Content-Type header is present in the request and specifies the media type application/x-
rtsp-udp-packetpair (section 2.2.6.3.3).

The syntax of the message body of the SET_PARAMETER request is defined as follows, with all
characters in ASCII:

 message-body = "type:" SP "high-entropy-packetpair"
 [SP "variable-size"]

The following example shows a UdpPacketPair request:

 SET_PARAMETER rtsp://myserver.com/mycontent.wmv RTSP/1.0
 Content-Length: 43
 User-Agent: WMPlayer/9.0.0.2833 guid/B64345F5-8C45-4818-8A1A-4775F0923FAC
 Accept-Charset: UTF-8, *;q=0.1
 X-Accept-Authentication: Negotiate, NTLM, Digest
 Accept-Language: en-US, *;q=0.1
 Content-Type: application/x-rtsp-udp-packetpair
 CSeq: 3

 type: high-entropy-packetpair variable-size

56 / 138

[MS-RTSP-Diff] - v20240423
Real-Time Streaming Protocol (RTSP) Windows Media Extensions
Copyright © 2024 Microsoft Corporation
Release: April 23, 2024

3 Protocol Details

The following sections specify details of RTSP Windows Media Extensions, including abstract data
models and message processing rules.

3.1 Client Details

The state machine for RTSP clients is specified in [RFC2326] section A.1 and depicted in the following

figure. RTSP Windows Media Extensions define an additional state transition: An EndOfStream request
can cause the client to transition from PLAYING to READY state. The presence of a caching proxy
server introduces an additional state to the RTSP client state machine, as described in section 4.6.
Transitions in and out of the RECORD state are not described in this specification.<19>

Figure 5: RTSP state diagram (client perspective)

Unless otherwise specified, the protocol reports the occurrence of an error to the higher layer, stops
all timers, and stops processing further messages. Possible errors include failure to connect to the
server, unexpected closure of the connection to the server, or the response to a request indicating an
error.

3.1.1 Abstract Data Model

This section describes a conceptual model of possible data organization that an implementation

maintains to participate in this protocol. The organization is provided to facilitate the explanation of
how the protocol behaves. This document does not mandate that implementations adhere to this

model as long as their external behavior is consistent with that described in this document.

Note Only those Abstract Data Model (ADM) elements that are necessary for the Real-Time
Streaming Protocol (RTSP) Windows Media Extensions are listed here. Other ADMs can be required as
a consequence of implementing the base protocols RTSP, SDP, RTP, and RTC. For example: Sequence
Number as required for each packet as specified in [RFC3550] section 5.1.

57 / 138

[MS-RTSP-Diff] - v20240423
Real-Time Streaming Protocol (RTSP) Windows Media Extensions
Copyright © 2024 Microsoft Corporation
Release: April 23, 2024

$P-Arrival-Time: This is an unsigned 64-bit integer that stores the time at which a $P packet is
received. Because this variable is used only for computing relative time differences, the absolute

clock offset is of no consequence and can be chosen arbitrarily. The value of the variable is in
units of one hundred nanoseconds. The default is the minimum value 0x0000000000000000. The

maximum value is 0xFFFFFFFFFFFFFFFF.

InitialRequest: A flag that is set to 1 if the client has already connected to the server. The default
value of this variable is 0.

Keepalive-timeout: This variable stores the frequency at which the client will send KeepAlive
requests. The default value is 60 seconds.

Playlist-gen-id: The value of this variable is an identifier assigned by the server to identify the
current playlist entry. The default value is 0.

RTCP-Destination-Port: This is an unsigned 16-bit integer that stores the UDP port number that the
client sends RTCP packets to. The minimum value is 0. The maximum value is 65535. The default
value is 0.

RTP-Order-List: This variable is a list of RTP packets. By default, the list does not contain any RTP
packets.

RTP-Queue: This variable is a queue of RTP packets. By default, the queue does not contain any RTP

packets.

RTP-Queue-Limit: The value of this variable is the number of RTP packets that are allowed to be
stored in RTP-Queue. The variable can be set to a value between 0 and 48, inclusive. The default
is 0.

Server-features: This variable stores the capabilities that the server specified on the most recently
received Supported header. The default value of this variable is that the server does not support
any of the capabilities as specified in section 2.2.6.10.

State: This variable stores the client's state. Possible values are INIT, READY, and PLAYING.

SSRC-id: This variable is a 32-bit integer that stores the value of the "ssrc" parameter on the
Transport header of the SelectStream response for the retransmission stream. The default value is
0.

SelectStream-request-counter: This counter stores the number of SelectStream requests sent by
the client. The default value is 0.

X-Playlist-Change-Notice-Variable: This variable is assigned by the client to identify if the server

has specified that the X-Playlist-Change-Notice header was set to "true". Possible values are "true"
or "false". The default value is "false".

3.1.2 Timers

Firewall: This timer is used when waiting for the RTP packets that contain packet-pair data that the
server transmits by using UDP. The minimum-allowed value for the time-out period is 1 second,

and the maximum value is 30 seconds.

Keepalive: This timer is used for sending KeepAlive requests. The time-out period is controlled by the
Keepalive-timeout variable, as specified in section 3.1.1. The minimum allowed value for the time-
out period is 10 seconds. The maximum value of the time-out period is 4,294,967,295
milliseconds.

58 / 138

[MS-RTSP-Diff] - v20240423
Real-Time Streaming Protocol (RTSP) Windows Media Extensions
Copyright © 2024 Microsoft Corporation
Release: April 23, 2024

3.1.3 Initialization

Initialization of the protocol occurs as the result of a higher layer asking for information on multimedia
content located on a server. That event is specified in section 3.1.4.2.

The variables defined by the abstract data model MUST initially assume their default values. Variables
that do not have a default defined MUST be initialized as follows:

The State variable MUST be set to INIT.

3.1.4 Higher-Layer Triggered Events

3.1.4.1 Request to Retrieve Caching Information

This event can occur when the application is a caching proxy server. Possible uses for this event
include allowing the higher layer to check whether content is available or whether the content can be

cached.

The higher layer MUST provide the URL that will be used in the request.

If the InitialRequest value is 0, then the client MUST perform the initialization of the protocol, as
specified in section 3.1.3, and set the InitialRequest value to 1.

The client MUST then establish a TCP connection to the server by using the host and port number
obtained by parsing the URL.

The client MUST send a GetContentInfo request to the server, adhering to the syntax specified in

section 2.2.7.4.

In addition, the common processing steps, as specified in section 3.1.5.1, MUST be followed when
sending the GetContentInfo request.

After sending the request, the client MUST wait for the response to be received. How to process the

response is specified in section 3.1.5.3.

3.1.4.2 Request to Retrieve Content Information

This event causes the client to send a Describe request to the server. The following are the most
common scenarios in which an application would ask the client for information on multimedia content:

 A media player application that intends to play multimedia content that will be streamed from a
server. The media player knows the URL to the content, and it might already know at what time

position and at what rate it intends to play the content. However, before it can start playing the
content, it needs to, for example, retrieve information on what audio and video streams are
included in the content and what decoders will be needed to decompress the content.

 A cache that already has a copy of the content but wants to retrieve information on the content
from the server to determine if the cached copy is still fresh.

 A server or intermediate device, such as a non-caching proxy, that is asking for information on
behalf of another client.

The higher layer MUST provide the URL that will be specified in all requests sent by the client.

If the InitialRequest, the client MUST perform the initialization of the protocol, as specified in section
3.1.3, and set the InitialRequest value to 1.

59 / 138

[MS-RTSP-Diff] - v20240423
Real-Time Streaming Protocol (RTSP) Windows Media Extensions
Copyright © 2024 Microsoft Corporation
Release: April 23, 2024

The client MUST then establish a TCP connection to the server, using the IP address and port number
obtained by parsing the URL. Next, the client MUST send the Describe request to the server, as

specified in section 3.1.4.2.1.

3.1.4.2.1 Sending the Describe Request

The Describe request MUST adhere to the Describe syntax, as specified in section 2.2.7.2.

In addition, the common processing steps, as specified in section 3.1.5.1, MUST be followed when
sending the Describe request.

After sending the request, the client MUST wait for the response to be received. How to process the
response is specified in section 3.1.5.4.

3.1.4.3 Request to Start Streaming Content

This higher-layer triggered event can occur when the client is not currently streaming from the server.

The event causes the client to send one or more SelectStream requests to the server followed by a
Play request. The following are the most common scenarios in which an application would ask the

client to request the server to start streaming content:

 A media player application that has examined the ASF file header that was received from the
server (section 3.1.5.4) and determined that it can decompress and play the multimedia content.

 A cache that has determined that the currently cached copy of the content, if any, is either stale
or incomplete.

 A server or intermediate device, such as a non-caching proxy, that is asking for content to be
streamed on behalf of another client.

Next, the client MUST send a SelectStream request to the server, as specified in section 3.1.4.3.1.

3.1.4.3.1 Sending a SelectStream Request

Because the ASF file header specifies multiple streams, the higher layer MUST select exactly what
streams that are listed in the ASF file header are streamed from the server. The client MUST send one
SelectStream request for each stream that the higher layer wants to select and that is not yet selected
on the server.

The syntax for SelectStream requests is specified in section 2.2.7.10. the common processing steps
specified in section 3.1.5.1 MUST be followed when sending a SelectStream request.

The higher layer MUST specify, for each stream, if the stream is supposed to be streamed over UDP or
TCP. For streams that are to be streamed over UDP, the client MUST specify the same UDP port
number, or pair of UDP port numbers, in the client_port parameter on the Transport header. For
details, see section 2.2.7.10.1.

For each stream that is to be streamed over UDP, if the SDP media description for that stream
indicates that the server can transmit RTP packets that contain FEC data, the client SHOULD send a

SelectStream request to select RTP packets containing FEC data. (RTP packets containing FEC data
have a separate stream URL that has to be explicitly selected by using SelectStream for the server to
transmit the FEC RTP packets.) For information on how to determine if FEC RTP packets can be
selected and for how to determine the URL to use in the SelectStream request, see section 2.2.5.4.

If the value of the State variable is READY or PLAYING, all of the SelectStream requests SHOULD be

pipelined; that is, if there is more than one SelectStream request to send, the client SHOULD send all
of them at once without waiting for the response to one request before sending the next one.

60 / 138

[MS-RTSP-Diff] - v20240423
Real-Time Streaming Protocol (RTSP) Windows Media Extensions
Copyright © 2024 Microsoft Corporation
Release: April 23, 2024

If the value of the State variable is INIT, the client MUST only send one SelectStream request.
(Subsequent SelectStream requests will be sent after the response to the first one is received.)

The client MUST wait for the response to a SelectStream request. How to process the response is
specified in section 3.1.5.9. If the value of the State variable is PLAYING, the client MUST continue to

process incoming RTP packets while it is waiting for the response to a SelectStream request.

3.1.4.4 Request to Change Currently Selected Streams

This event occurs when the higher layer wants to change the streams that are currently being

streamed. For example, the higher layer can decide to switch from an English language audio stream
to a Spanish language audio stream, or it can decide to switch to a stream with higher-quality video.

For every stream that is being replaced by another stream, the client MUST send a SelectStream
request. For each stream that is to be added without being replaced by another stream, and for each
stream that is to be removed without being replaced by another stream, the client MUST also send a
SelectStream request.

Each SelectStream request MUST be sent by following the rules specified in section 3.1.4.3.1.

3.1.4.5 Streams to Play from the New Playlist Entry Are Selected

This event occurs after the client has received the Announce request and has delivered the ASF file
header for the new playlist entry to the higher layer. For details, see section 3.1.5.15. When this event
occurs, the higher layer is ready to start processing the ASF packets for the new playlist entry. This is

the higher layer's opportunity to select the streams that it wants to receive from the new playlist
entry. Because the bit rate needed to stream each playlist entry depends on how the content was
encoded and on what streams are selected, the higher layer can also specify new values for the
parameters that control how much faster than real time (if at all) the content is streamed.

The client MUST compare the list of streams that the higher layer has specified against the streams
listed by the server on the X-RTP-Info header in the Announce request. If that header was present in

the Announce request, any streams listed on the header are already selected by the server, and any
streams not listed are not selected. If the Announce request did not include an X-RTP-Info header, it
means that no streams in the new playlist entry have been selected by the server.

If the server has selected a stream for the new playlist entry that the client does not want to receive,
the client MUST send a SelectStream request to deselect that stream.

All SelectStream requests MUST adhere to the syntax as specified in section 2.2.7.10.

In addition, the common processing steps, as specified in section 3.1.5.1, MUST be followed when

sending a SelectStream request.

The client MUST send a SelectStream request for each stream that it wants to select for the new
playlist entry that the server has not already selected. The client SHOULD NOT send a SelectStream
request to select streams that the server has already selected except if it wants to change the
transport parameters.

For example, if the streams in the first playlist entry are all delivered over UDP, when the server sends
an Announce request for the next playlist entry, any streams that the server lists on the X-RTP-Info

header will also be delivered over UDP (to exactly the same UDP port specified by the client in an
earlier SelectStream request). If the client wants to receive the listed streams over UDP, it does not
need to send a SelectStream request. But for any stream that it wants delivered over TCP instead of
UDP, it will have to send a SelectStream request.

All of the SelectStream requests SHOULD be pipelined; that is, if there is more than one SelectStream
request to send, the client MUST send all of them at once without waiting for the response to one

request before sending the next one.

61 / 138

[MS-RTSP-Diff] - v20240423
Real-Time Streaming Protocol (RTSP) Windows Media Extensions
Copyright © 2024 Microsoft Corporation
Release: April 23, 2024

For each SelectStream request the client sends, the client increment the SelectStream-request-
counter by 1.

The client MUST wait for the response to each of the SelectStream requests that it has sent. How to
process the response is specified in section 3.1.5.16. The client MUST continue to process incoming

RTP packets while it is waiting for the response to the SelectStream requests.

If the client did not send any SelectStream requests, it MUST now send a Play request, as specified in
section 3.1.5.16.1.

3.1.4.6 Request to Retransmit Lost RTP Packets

This event occurs if the higher layer has detected that one or more RTP packets containing ASF data
packets has been lost, and the higher layer wants to ask the server to resend one or more of the lost
RTP packets.

For this higher-layer triggered event to be possible, the value of the State variable in the abstract

data model MUST be PLAYING, the client MUST have requested that at least one of the streams be
delivered over UDP by using the SelectStream request, and the client MUST have sent a SelectStream

request for the retransmission stream (section 3.1.5.4).

The Sequence Number field in the RTP packets that belong to the same RTP session increment
sequentially, and this allows the higher layer to detect if an RTP packet has been lost.

To request that the server resend one or more lost packets, the client MUST fill in the fields of one or
more RTCP NACK messages, as specified in section 2.2.4.

No more than 32 RTCP NACK messages SHOULD be encapsulated in a single RTCP packet.

The RTCP packet that contains the NACK message MUST also contain an SDES message. The value of

the ssrc parameter, in the syntax for the CNAME field in the SDES message, MUST be set to the
numerical value of the ssrc field that the server specified in the Transport (section 2.2.6.11) header in
the response to the SelectStream request for the retransmission stream.

The RTCP packet that contains the NACK message MUST be sent to the UDP port for RTCP packets
that is given by the value of the RTCP-Destination-Port variable.

3.1.4.7 Request to Stop Streaming

This event occurs if the higher layer wants to stop streaming. The end user can request that the
streaming stop. Or the end user can request to seek some position in the content while the client is
currently streaming multimedia content from a different position.

If the value of the State variable is PLAYING, the client MUST send a Pause request, adhering to the

syntax as specified in section 2.2.7.8. Otherwise, the client MUST NOT send a Pause request.

The common processing steps, as specified in section 3.1.5.1, MUST be followed when sending the
Pause request.

If the value of the State variable is PLAYING, the client MUST send a LogPlay request, adhering to the
syntax as specified in section 2.2.7.7. Otherwise, the client MUST NOT send a LogPlay request.

The common processing steps, as specified in section 3.1.5.1, MUST be followed when sending the
LogPlay request.

If the client will submit remote-log remote events by using the SendEvent request (as specified in
section 3.1.4.9), the logging information included in the LogPlay request MUST be a streaming log, as
specified in [MS-WMLOG]. Otherwise, the logging information MUST be a legacy style log, as specified
in [MS-WMLOG].

62 / 138

[MS-RTSP-Diff] - v20240423
Real-Time Streaming Protocol (RTSP) Windows Media Extensions
Copyright © 2024 Microsoft Corporation
Release: April 23, 2024

If requests were sent, the client MUST wait for the response to the Pause request. How to process the
response is specified in section 3.1.5.17.

3.1.4.8 Request to Change Playback Position

This event occurs when the higher layer wants to start streaming from some specific position in the
content.

If the value of the State variable is READY, this event MUST be treated the same way as a request to
start streaming, which is specified in section 3.1.4.3.

If the value of the State variable is PLAYING, the client MUST first request the server to stop
streaming, as specified in section 3.1.4.7. Once this has completed, the client MUST request to start
streaming at the new playback position, as specified in section 3.1.4.3.

3.1.4.9 Playback of Content Has Finished

This event occurs when the application software is a media player that has finished rendering (that is,
playing back) the content in the current playlist entry.

If the client specified the Speed header (as specified in [RFC2326] section 12.35) in the Play request
for the current playlist entry, and the server specified the remote-log remote event in the "x-wms-
event-subscription" directive (section 2.2.6.2.10) on the Cache-Control header, the client MUST send
a SendEvent (section 2.2.7.11) request to the server.

After sending the request, the client MUST be prepared for the response to be received. How to

process the response is specified in section 3.1.5.19.

If the value of the State variable is PLAYING, the client MUST also be prepared to receive RTP packets
and an EndOfStream request. Information on how to process RTP packets is specified in section
3.1.5.12, and information on how to process an EndOfStream request is specified in section 3.1.5.13.

3.1.4.10 Request to Finish Streaming Session

This event occurs if the higher layer wants to finish the streaming session. Possible causes are the end
user requesting that different content start streaming or the end user attempting to exit the client
software application.

If the value of the State variable in the abstract data model is READY or PLAYING, the client MUST
send a Teardown (section 2.2.7.13) request.

The common processing steps, as specified in section 3.1.5.1, MUST be followed when sending the
Teardown request.

If the Teardown request is sent, the client MUST wait for the response to be received. If the value of
the State variable is not READY and is not PLAYING, then the client MUST close the TCP connection to
the server. Information on how to process the response is specified in section 3.1.5.20.

3.1.5 Processing Events and Sequencing Rules

3.1.5.1 Sending a Request (All Request Types)

This section specifies common steps that MUST be performed whenever the client sends a request of
any of the types, as specified in section 2.2.7, to the server.

If the KeepAlive timer is running, it MUST be restarted (reset).

63 / 138

[MS-RTSP-Diff] - v20240423
Real-Time Streaming Protocol (RTSP) Windows Media Extensions
Copyright © 2024 Microsoft Corporation
Release: April 23, 2024

The request sent by the client MUST NOT specify any of the headers and tokens as specified in section
2.2.7 that are defined only for use in responses.

All headers that are specified in [RFC2326] section 12 that are defined as mandatory for requests
MUST be included in the request.

The client MUST specify the User-Agent (section 2.2.6.12) header in the request. The client-token
syntax element on the User-Agent header MUST be set to "WMCacheProxy" if the client is acting as a
caching proxy server. If the client is a server that will relay the content to one or more other clients
without caching it, the client-token syntax element on the User-Agent header MUST be set to
"WMServer". Otherwise, it MUST be set to "WMPlayer".

If the client-token syntax element on the User-Agent header is set to "WMServer", the User-Agent
header MAY also include the client-guid syntax element. Otherwise, the client-guid syntax element

MUST be included.<20>

The value of the guid-value syntax element, when specified, MUST be the same GUID for all requests
belonging to the same RTSP streaming session. The client MAY specify a different GUID on the guid-

value syntax element for different streaming sessions.<21>

The client SHOULD specify the Supported (section 2.2.6.10) header in the request if the request is
using the DESCRIBE, SETUP, or PLAY method. Otherwise, the client MAY specify the Supported header

in the request. If the Supported header is specified, the header MUST correctly reflect the features
that are supported by the client.

The client MUST support the following features: com.microsoft.wm.eosmsg and
com.microsoft.wm.sswitch. The client SHOULD support the following features:
com.microsoft.wm.predstrm, com.microsoft.wm.srvppair, and com.microsoft.wm.startupprofile.<22>

If the client intends to forward the content to another client by using a different streaming protocol,
such as the Windows Media HTTP Streaming Protocol as specified in [MS-WMSP], the client SHOULD

specify the com.microsoft.wm.locid token on the Supported header. Otherwise, that token MUST NOT
be specified.

If the request is any of the types Describe, SelectStream, Teardown, or UdpPacketPair, and if the
Playlist-gen-id variable in the abstract data model has a nonzero value, the client MUST specify the X-
Playlist-Gen-Id (section 2.2.6.22) header in the request. The numerical value specified on the X-
Playlist-Gen-Id header MUST be equal to the value of the Playlist-gen-id variable.

The client SHOULD specify the X-Accept-Authentication (section 2.2.6.14) and X-Accept-Proxy-

Authentication (section 2.2.6.15) headers in the request.

If the client is acting as a proxy server and relaying a request from another client, the request MUST
include the Via header (as specified in [RFC2326] section 12.43) in the request.

If the client is acting as a proxy server and relaying a request from another client, the request
SHOULD include the X-Proxy-Client-Verb (section 2.2.6.25) header in the request.

If the client is acting as a proxy server and relaying a request from another client, and if that request

contains either a User-Agent header or a X-Proxy-Client-Agent header, the client MUST include the X-

Proxy-Client-Agent (section 2.2.6.24) header in the request.

When the client is sending the X-Proxy-Client-Agent header in a request, it MUST be identical to the X-
Proxy-Client-Agent header that was received in the original request (that is, the request that the client
is relaying). If the original request does not have a X-Proxy-Client-Agent header, when the client
sends the X-Proxy-Client-Agent header, the user-agent-data syntax element on that header MUST be
identical to the user-agent-data syntax element of the User-Agent header in the original request.<23>

If there are any cookies to send for the URL specified on the RTSP request line, the
Cookie (section 2.2.6.4) header MUST be included in the request.

64 / 138

[MS-RTSP-Diff] - v20240423
Real-Time Streaming Protocol (RTSP) Windows Media Extensions
Copyright © 2024 Microsoft Corporation
Release: April 23, 2024

If the request contains a non-empty message body, the client MUST specify the Content-
Type (section 2.2.6.3) header.

3.1.5.2 Receiving a Response (All Request Types)

This section specifies common steps that MUST be performed whenever the client receives the
response to a request that it has sent. These steps MUST be performed prior to any processing that is
specific to a particular request type.

The client MUST assume that the responses are received in exactly the same order in which the

requests are sent.

The client MUST check the status code in the response to determine if the request succeeded, as
specified in [RFC2326] section 11. The sections dealing with responses for specific request types can
have rules for how to handle failed requests, and any such rules MUST be followed. However, if the
status code indicates that the request failed, and if the response is for a Describe, Play, or
SelectStream request, and no other rules describe how to handle the failure, then this MUST be

treated as an error and reported as such to the higher layer. If the response is not for a Describe,

Play, or SelectStream request, then responses that indicate a failure SHOULD be processed the same
way as if they indicated a success.

The client MUST process the Supported header, if present <24>. Each feature token on the header
MUST be added to the Server-features variable in the abstract data model. If the header is present,
any feature token not listed on the header MUST be removed from the Server-features variable.

The client MUST process the X-Playlist-Gen-Id (section 2.2.6.22) header, if present. If it is present,
the Playlist-gen-id variable in the abstract data model MUST be set to the numerical value specified on

that header.

The client MUST process the timeout parameter on the Session header, if present. If the Session
header is present, the KeepAlive-timeout variable in the abstract data model MUST be set to the value
of the delta-seconds syntax element. If the timeout parameter is missing, the KeepAlive-timeout
variable MUST be set to the default value for the delta-seconds syntax element. The Session header is

specified in [RFC2326] section 12.37.

The client SHOULD adhere to the directives specified by the Cache-Control (section 2.2.6.2) header
and MUST NOT cache the content unless explicitly allowed by the appropriate directive (that is, must-
revalidate, public, or proxy-revalidate).

If the Set-Cookie header is present in the response, the cookies on that header MUST be processed
according to the rules specified in section 2.2.6.9.

3.1.5.3 Receiving a GetContentInfo Response

The client MUST first follow the steps as specified in section 3.1.5.2.

If the RTSP status code indicates that the request succeeded (as specified in [RFC2326] section 11),
the server SHOULD report the information in the Cache-Control header to the higher layer.

3.1.5.4 Receiving a Describe Response

The client MUST first follow the steps as specified in section 3.1.5.2.

An RTSP status code in the response in the range 300 to 305 indicates that the server is asking the
client to connect to another server. The client MUST connect to the server specified in the response by
following the rules as specified in [RFC2326] section 11.2. This is a brief summary of those rules: If

the status code is 305, the URL on the Location header (as specified in [RFC2326] section 12.25) is for
a proxy, and the URL used in the Describe request MUST remain unchanged. For status codes 300 to

65 / 138

[MS-RTSP-Diff] - v20240423
Real-Time Streaming Protocol (RTSP) Windows Media Extensions
Copyright © 2024 Microsoft Corporation
Release: April 23, 2024

304, the URL on the Location header MUST replace the URL used in the Describe request. The server
MUST close the current TCP connection and establish a new TCP connection to the server or proxy

server, as appropriate, depending on the status code. The client MUST then continue by following the
steps, as specified in section 3.1.4.2.1.

If the RTSP status code in the response is 401, then the server requires authentication; if the status
code is 407, then the proxy server requires authentication. The rules for access authentication, as
specified in [RFC2616] section 11, MUST be followed. When the client is ready to resubmit the
Describe request with the authentication challenge, it MUST continue by following the steps defined in
section 3.1.4.2.1.<25>

If the RTSP status code indicates that the request succeeded (as specified in [RFC2326] section 11),
the client MUST perform the following steps:

The client MUST extract the ASF file header from the SDP (section 2.2.5.2.3.1) and SHOULD make it
available to the higher layer. If the SDP contains a content description list (section 2.2.5.2.3.2), it
SHOULD also be made available to the higher layer.

If the higher layer allows RTP packets to be streamed over UDP, and the SDP specifies a
retransmission stream (section 2.2.5.5), the client SHOULD send a SelectStream request to select that
retransmission stream. The SelectStream request MUST specify UDP as the transport protocol.

Otherwise, if the higher layer wants to measure the bottleneck bandwidth on the network path
between the server and the client, and the Server-features variable in the abstract data model
indicates that the server supports com.microsoft.wm.srvppair (section 2.2.6.10.6), the client MUST
send a TcpPacketPair request to the server.

If the value of the SelectStream-request-counter is greater than 0, then it MUST wait for the response
to the SelectStream request. How to process the response is specified in section 3.1.5.6.

If the client has sent the TcpPacketPair request, it MUST wait for the response to the TcpPacketPair

request. How to process the response is specified in section 3.1.5.5. <26>

Otherwise, the client MUST wait until a higher-layer triggered event occurs. The next higher-layer

triggered event is a request to start streaming content, as specified in section 3.1.4.3.

3.1.5.5 Receiving a TcpPacketPair Response

The client MUST first follow the steps as specified in section 3.1.5.2.

Section 2.2.7.12 specifies that the message body of the response consists of three $P packets. As
specified in [MS-WMSP] section 2.2.3.7, the client MUST process the $P packets as soon as each $P
packet is received, as opposed to waiting for the entire message body to be received.

As soon as the first $P packet has been completely received, the client SHOULD set the value of the
$P-Arrival-Time variable in the Abstract Data Model to the current time. When the second $P packet

has been completely received, the client can use the difference between the current time and the
value of the $P-Arrival-Time variable to compute the bit rate at which the second $P packet was
transferred.

The client MUST now wait until a higher-layer triggered event occurs. The next higher-layer triggered
event is a request to start streaming content, as specified in section 3.1.4.3.

3.1.5.6 Receiving a SelectStream Response for the Retransmission Stream

The client MUST first follow the steps as specified in section 3.1.5.2.

If the value of the State variable is INIT, it MUST be set to READY.

66 / 138

[MS-RTSP-Diff] - v20240423
Real-Time Streaming Protocol (RTSP) Windows Media Extensions
Copyright © 2024 Microsoft Corporation
Release: April 23, 2024

The client MUST set the value of the RTCP-Destination-Port variable to the value of the second port
number in the server_port parameter of the Transport header.

If the Server-features variable indicates that the server supports
com.microsoft.wm.srvppair (section 2.2.6.10.6), the client SHOULD set the value of the SSRC-id

variable to the value of the "ssrc" parameter on the Transport header and send a UdpPacketPair
request to the server.<27>

If the client has sent the UdpPacketPair request, the client MUST start the Firewall timer. The time-out
of the Firewall timer SHOULD be 10 seconds plus (if it can be determined) half the round-trip time
between the server and the client.

If the client has sent the UdpPacketPair request, the client MUST wait until one of the following
happens: It receives the response to the UdpPacketPair request, it receives an RTP packet containing

packet-pair data, or the Firewall timer expires. Information on how to process the response to the
UdpPacketPair request is specified in section 3.1.5.7. How to process RTP packets containing packet-
pair data is specified in section 3.1.5.8.

Otherwise, the client MUST wait until a higher-layer triggered event occurs. The next higher-layer
triggered event is a request to start streaming content, which is specified in section 3.1.4.3.

3.1.5.7 Receiving a UdpPacketPair Response

The client MUST first follow the steps as specified in section 3.1.5.2.

If the Firewall timer is still running, the client MUST wait for an RTP packet containing packet-pair data
to be received. How to process RTP packets containing packet-pair data is specified in section 3.1.5.8.

Otherwise, the client MUST wait until a higher-layer triggered event occurs. The next higher-layer

triggered event is a request to start streaming content, as specified in section 3.1.4.3.

3.1.5.8 Receiving an RTP Packet Containing Packet-Pair Data

The client MUST verify that the RTP packet is compliant with the syntax as specified in section 2.2.3.2.

If the value of the Server-features variable in the abstract data model indicates that the server
supports the com.microsoft.wm.srvppair (section 2.2.6.10.6), the client SHOULD validate that the
SSRC field in the RTP packet is identical to the value of the SSRC-id variable. If the SSRC field in the
RTP packet is not identical to the value of the SSRD-id variable, the client MUST ignore the RTP
packet.

If this is the first RTP packet received, the client SHOULD start measuring the time until the second
RTP packet is received.

After receiving the first RTP packet, the client MUST wait for the second RTP packet to be received,
and then process the rules as previously specified in this section.

If this is the second RTP packet received, the client can use the time elapsed between receiving the
first RTP packet and the second RTP packet to compute the bit rate at which the second RTP packet
was transferred. The client SHOULD make this information available to a higher layer.

The client can determine if an RTP packet that contains packet-pair data is the last or the second-to-
last such RTP packet by examining the size of the Payload field. For details, see section 2.2.3.2.

If this is the second-to-last RTP packet containing packet-pair data, the client MUST wait for the last
RTP packet containing packet-pair data to be received, and then apply the rules as previously specified
in this section.

After the last RTP packet containing packet-pair data has been received, the client MUST stop the
Firewall timer if it is running. The client MUST then wait until a higher-layer triggered event occurs.

67 / 138

[MS-RTSP-Diff] - v20240423
Real-Time Streaming Protocol (RTSP) Windows Media Extensions
Copyright © 2024 Microsoft Corporation
Release: April 23, 2024

The next higher-layer triggered event is a request to start streaming content, as specified in section
3.1.4.3.

3.1.5.9 Receiving a SelectStream Response

The client MUST first follow the steps as specified in section 3.1.5.2.

If the value of the State variable is INIT, the State variable MUST be set to READY.

If the Transport header in the response contains fec-parameters, as defined in section 2.2.6.11, then
the value of the RTP-Queue-Limit variable in the Abstract Data Model MUST be set to the value of

FecSpan multiplied by the value of FecBurstMargin plus the value of FecPerSpan.

If any responses to previously transmitted requests are still pending, the client MUST be prepared to
receive a response. If the value of the State variable is PLAYING, the client MUST also be prepared to
receive an RTP packet.

Otherwise, if there are no pending responses to previously transmitted requests, and if the higher

layer has selected streams for which the client has not yet sent a SelectStream request, the client
MUST now send one or more additional SelectStream requests by processing the rules as specified in

section 3.1.4.3.1.

Otherwise, if the value of the State variable is PLAYING, the client MUST wait for an RTP packet to be
received or for a higher-layer triggered event to occur.

How to process RTP packets is specified in section 3.1.5.12.

Otherwise, if the value of the State variable is READY, the client MUST send a Play request, following
the rules as specified in section 3.1.5.9.1.

3.1.5.9.1 Sending a Play Request in READY State

The Play request MUST adhere to the syntax as specified in section 2.2.7.9.

In addition, the common processing steps as specified in section 3.1.5.1 MUST be followed when
sending the Play request.

The higher layer SHOULD provide either the time position or the ASF packet number from which the
server starts streaming. If a time position is provided, the client MUST send this information by using
the npt-range syntax element on the Range (section 2.2.6.7) header. If an ASF packet number is

provided, the client MUST send this information by using either the x-asf-byte syntax element (section
2.2.6.7.1) or the x-asf-packet syntax element (section 2.2.6.7.2) on the Range header. Otherwise, the
Range header MUST be omitted.

The higher layer MUST specify the playlist entry ID of the current playlist entry on the X-Playlist-Seek-
Id (section 2.2.6.23) header. If the X-Playlist-Seek-Id header is present, the playlist entry ID on the
X-Playlist-Seek-Id header identifies the entry that the client wants to skip from. Otherwise, if the

Range header is present, the playlist entry ID on the X-Playlist-Seek-Id header identifies the entry
that the Range header applies to.

The playlist entry identified by the X-Playlist-Seek-Id header is the same playlist entry given by the
client's Playlist-gen-id variable. But it can happen that the client has recently received an Announce
request and updated its Playlist-gen-id variable, and that the higher layer has not yet processed the
fact that the playlist entry has changed. In that case, the X-Playlist-Seek-Id header identifies the
previous playlist entry from the server's point of view, although it is still the current playlist entry from

the client's point of view.

The higher layer MUST specify at what rate the multimedia content is played back. For example, if the
higher layer wants to play the multimedia content in reverse, it MUST specify this and the rate of

68 / 138

[MS-RTSP-Diff] - v20240423
Real-Time Streaming Protocol (RTSP) Windows Media Extensions
Copyright © 2024 Microsoft Corporation
Release: April 23, 2024

playback. The client MUST send this information by using the Scale header, as specified in [RFC2326]
section 12.34.

The higher layer SHOULD specify both an amount of data that is to be streamed faster than real time
and the bit rate at which the server streams this data. The client SHOULD send this information to the

server by using the X-Accelerate-Streaming (section 2.2.6.13) header. The higher layer SHOULD also
specify the bit rate that can be used for streaming between the server and the client. The client
SHOULD send this information to the server by using the Bandwidth (section 2.2.6.1) header.

If the client is acting as a proxy and will relay the content to another client, the higher layer SHOULD
specify both an alternate amount of data that is to be streamed faster than real time and an alternate
bit rate at which the server streams this data. These alternate amounts are for the client's own behalf,
as opposed to the values specified on the X-Accelerate-Streaming header, which are on the behalf of

the other (external) client. The client SHOULD send the alternate amount and alternate bit rate to the
server by using the X-Burst-Streaming (section 2.2.6.17) header.

If the client supports the X-StartupProfile (section 2.2.6.28) header, and the value of the Server-
features variable indicates that the server supports the com.microsoft.wm.startupprofile feature, the

client SHOULD specify the com.microsoft.wm.startupprofile token on the Supported header when it
sends the Play request. A client that does not support the X-StartupProfile header MUST NOT include

this token in the Supported header.

The higher layer SHOULD specify that the entire content is to be streamed faster than real time at
some transmission rate chosen by the higher layer. If the Server-features variable indicates that the
server supports the com.microsoft.wm.fastcache (section 2.2.6.10.2) feature, the client SHOULD send
this information to the server by using the Speed header, as specified in [RFC2326] section 12.35. The
Speed header MUST NOT be included in the request unless the server has explicitly specified that it
supports the com.microsoft.wm.fastcache feature.

After sending the Play request, if the client has not previously sent a LogConnect request in this RTSP
session, the client MUST send a LogConnect request.

The client MUST now wait for the response to the Play request to be received. How to process the
response is specified in section 3.1.5.10.

3.1.5.10 Receiving a Play Response

The client MUST first follow the steps as specified in section 3.1.5.2.

The value of the State variable MUST be set to PLAYING.

If at least one of the selected streams is delivered over TCP, the KeepAlive timer SHOULD be stopped.

The client MUST be prepared to receive RTP packets. How to process RTP packets is specified in
section 3.1.5.12. The client MUST also be prepared to receive an EndOfStream request. How to

process this request is specified in section 3.1.5.13.

If the client sent a LogConnect request immediately after sending the Play request, the client MUST
now be prepared to receive the LogConnect response. How to process that response is specified in

section 3.1.5.11.

If the Play response contains the X-Playlist-Change-Notice (section 2.2.6.21) header, and the value is
set to "true", then the client MUST set X-Playlist-Change-Notice-Variable equal to "true"; otherwise
the client MUST set X-Playlist-Change-Notice-Variable equal to "false".

If the response includes the X-Accelerate-Streaming (section 2.2.6.13) header, then the server
SHOULD make the values of the AccelDuration and AccelBandwidth parameters on that header
available to the higher layer.

69 / 138

[MS-RTSP-Diff] - v20240423
Real-Time Streaming Protocol (RTSP) Windows Media Extensions
Copyright © 2024 Microsoft Corporation
Release: April 23, 2024

If the response includes the X-StartupProfile (section 2.2.6.28) header, then the server SHOULD make
all fields on that header available to the higher layer.

3.1.5.11 Receiving a LogConnect Response

The client MUST first follow the steps as specified in section 3.1.5.2.

If the value of the State variable is PLAYING, the client MUST be prepared to receive RTP packets.
How to process RTP packets is specified in section 3.1.5.12. The client MUST also be prepared to
receive an EndOfStream request. How to process this request is specified in section 3.1.5.13.

Otherwise, the client MUST wait for a higher-layer triggered event.

3.1.5.12 Receiving RTP Packets

The client MUST verify that the RTP packet is compliant with the RTP payload format syntax. The RTP
payload format for ASF data packets is specified in section 2.2.1. The RTP payload format for FEC

packets is specified in section 2.2.2. The RTP payload format for retransmitted RTP packets is specified
in section 2.2.3.1.

Details on how to determine what RTP payload format is used for a packet are specified in [RFC3550],
section 5.1. In summary, it involves determining the RTP session by examining the UDP destination
port number (if UDP is used) and the SSRC field in the RTP header. It then involves checking the
value of the Payload Type field in the RTP header and cross-referencing this with the RTP payload
format for that value, as specified in SDP [RFC4566].

If the value of the RTP-Queue-Limit variable in the Abstract Data Model is greater than zero, then
the client MUST follow the rules in section 3.1.5.12.1 and then continue processing the remainder of
the rules in the current section.

If the RTP packet contains FEC data and the value of the RTP-Queue-Limit variable is zero, then the
client MUST discard the RTP packet and then continue processing the remainder of the rules in the
current section.

If the RTP packet uses the RTP payload format for ASF data packets or if the RTP packet uses the RTP
payload format for retransmitted RTP packets, then the client MUST follow the rules in section
3.1.5.12.2 and then continue processing the remainder of the rules in the current section.

If the client has sent any requests for which it has not yet received a response, it MUST be prepared
to receive the response. The client MUST also be prepared to receive more RTP packets and to follow
the rules specified in this section for each received RTP packet.

The client MUST also be prepared for a higher-layer triggered event to occur and to receive an

EndOfStream request. How to process an EndOfStream request is specified in section 3.1.5.13.

3.1.5.12.1 Processing of RTP Packets When FEC Is Used

The RTP packet MUST be added to the tail of RTP-Queue.

If the current number of packets in RTP-Queue exceeds the value of RTP-Queue-Limit, then the
RTP packet at the head of RTP-Queue MUST be removed from RTP-Queue and processed according
to the rules in section 3.1.5.12.2.

For every RTP packet in RTP-Queue that contains FEC data, the client SHOULD perform the following
procedure:

 The client SHOULD use the SN Base and Mask fields of the RTP payload format header for FEC
(defined in section 2.2.2.4) to determine the Sequence Number field (defined in [RFC3550]

70 / 138

[MS-RTSP-Diff] - v20240423
Real-Time Streaming Protocol (RTSP) Windows Media Extensions
Copyright © 2024 Microsoft Corporation
Release: April 23, 2024

section 5.1) values of RTP packets that were used in generating the FEC RTP packet. The
collection of Sequence Number field values thus determined is referred to as the Current Span.

 The client SHOULD search RTP-Queue for RTP packets that contain FEC data that were generated
by the RTP packets in the Current Span. The packets that are found are referred to as the Current

FEC Packets.

 The client SHOULD search RTP-Queue to determine whether any of the RTP packets in the
Current Span are missing.

 If no packets in the Current Span are missing, then the client MUST remove each of the RTP
packets that belong to the Current Span from RTP-Queue, and process each of them according to
the rules in section 3.1.5.12.2; the Current FEC Packets MUST be discarded without processing.

 If one or more of the RTP packets in the Current Span are missing, then recovery by using the

Vandermonde Matrix Algorithm (section 2.2.2.2) is possible if the count of Current FEC Packets is
greater than or equal to the count of RTP packets that are missing from the Current Span. If
recovery is possible, the client SHOULD use the Vandermonde Matrix Algorithm (section 2.2.2.2)

to reconstruct the missing RTP packets. Then, the client MUST remove each of the RTP packets
that belong to the Current Span from RTP-Queue and process each one of them as well as any
RTP packets that were reconstructed, according to the rules in section 3.1.5.12.2, and the Current

FEC Packets MUST be discarded without processing.

3.1.5.12.2 Processing of RTP Packets

If the RTP packet contains FEC data, then the RTP packet MUST be discarded.

If the RTP packet contains ASF data, then the client MUST insert the RTP packet into the list in the
RTP-Order-List variable unless the RTP packet has the same value for the Sequence Number field as
a RTP packet already present in the RTP-Order-List variable. RTP packets that are inserted into RTP-

Order-List MUST be inserted in numerical order based on the Sequence Number field (defined in
[RFC3550] section 5.1) of the RTP packets. The client MUST correctly handle wraparound of the
Sequence Number field. For example, if one RTP packet has Sequence Number 0xFFFF then the next

RTP packet in numerical order will have a Sequence Number field value of 0x0000.

As an example, the following method can be used to correctly handle wraparound of the sequence
number field: When comparing the Sequence Number fields of two RTP packets, A and B, compute the
difference between the Sequence Number field values of A and B, and treat the difference as a signed

16-bit integer. If the difference is a positive number, then A is later in the numerical order and would
be inserted behind B. If the difference is a negative number, then B is earlier in the numerical order
and would be inserted in front of A.

If the RTP packet is not inserted in RTP-Order-List, then it MUST be discarded.

The client MUST then process the RTP packets in RTP-Order-List, starting with the RTP packet at the
head of the list. The following rules apply to each packet that is processed in RTP-Order-List:

 Any ASF data packets that are fully contained within the RTP packet MUST be extracted from the
RTP packet and delivered to the higher layer.

 If an ASF data packet has been split up across multiple RTP packets and all the relevant RTP
packets have been received, then the client MUST recombine the ASF data packet and deliver it to
the higher layer. For information about how to determine if an RTP packet contains a complete
ASF data packet or a fragmented ASF data packet, see section 2.2.1.3.

 Once all ASF data packet data has been extracted from the RTP packet and delivered to the higher

layer, the RTP packet MUST be removed from RTP-Order-List.

 The client MUST compute the difference between the value of the Sequence Number field of the
next RTP packet in RTP-Order-List and the value of the Sequence Number field of the current

71 / 138

[MS-RTSP-Diff] - v20240423
Real-Time Streaming Protocol (RTSP) Windows Media Extensions
Copyright © 2024 Microsoft Corporation
Release: April 23, 2024

RTP packet. The difference MUST be treated as a 16-bit integer. The client MUST subtract 1 from
the difference. The result, which is the difference minus one, is referred to as NumLost.

 If the value of NumLost is greater than 0, then the client MUST report the value of NumLost to the
higher layer. The NumLost value specifies the number of RTP packets directly following the current

RTP packet that have been lost.

 If the value of NumLost is greater than 0, then the client MUST report the value of NumLost to the
higher layer. The NumLost value specifies the number of RTP packets directly following the current
RTP packet that have been lost.

 If the value of NumLost is greater than 0, then the client MUST report the value of the Sequence
Number field of the current RTP packet to the higher layer. The higher layer can use this
information together with NumLost to request retransmission of the lost RTP packets, as specified

in section 3.1.4.6.

 If the value of NumLost is greater than 0, then the higher layer MUST specify if the current RTP
packet is removed. If the higher layer specifies that the current RTP packet is to be removed, then

the client MUST remove the current RTP packet from RTP-Order-List and continue processing any
remaining packets in RTP-Order-List.

 If the value of NumLost is greater than 0 and the higher layer specifies that the current RTP

packet is not to be removed, then the client MUST NOT remove the current RTP packet from RTP-
Order-List and MUST stop processing any remaining packets in RTP-Order-List. The client will
process RTP-Order-List again the next time an RTP packet that contains ASF data is received.

3.1.5.13 Receiving an EndOfStream Request

The client MUST validate that the request adheres to the syntax as specified in section 2.2.7.3.

The client MUST send an EndOfStream response.

If the RTP-Info header is present in the request, for each stream specified on that header, the client

MUST compare the value of the seq parameter against the value of the Sequence Number field
(defined in [RFC3550] section 5.1) in the RTP header of the most recent RTP packet. If the seq
parameter indicates that the server has transmitted one or more RTP packets that have not yet been

received by the client, the client SHOULD wait for those remaining RTP packets to be received and
process the rules, as specified in section 3.1.5.12, for each RTP packet that is received. Processing of
the rules, as specified in section 3.1.5.13, MUST continue once the missing RTP packets are received.

If the message body of the request does not contain the "End-Of-Playlist-Entry: true" syntax element,
the State variable MUST be set to READY.

If the message body of the request does contain the "End-Of-Playlist-Entry: true" syntax element, this
syntax element MUST not cause a change to the value of the State variable.

If the Keepalive timer is stopped, it MUST be started.

If the variable X Playlist Change Notice Variable is equal to "true", then the client MUST NOT send

a LogPlay request. Otherwise, the client MUST send a LogPlay (section 2.2.7.7) request.

If the client will submit remote-log remote events by using the SendEvent request, as specified in
section 3.1.4.9, the logging information included in the LogPlay request MUST be a streaming log, as
specified in [MS-WMLOG] section 2.6. Otherwise, the logging information MUST be a legacy style log,
as specified in [MS-WMLOG] section 2.5.

If the client sent a LogPlay request, the client MUST be prepared to receive the response to that
request. How to process that response is specified in section 3.1.5.14.

72 / 138

[MS-RTSP-Diff] - v20240423
Real-Time Streaming Protocol (RTSP) Windows Media Extensions
Copyright © 2024 Microsoft Corporation
Release: April 23, 2024

If the State variable is PLAYING, the client MUST also be prepared to receive an Announce request.
How to process this request is specified in section 3.1.5.15.

Otherwise, the client MUST be prepared for a higher-layer triggered event to occur.

3.1.5.14 Receiving a LogPlay Response

The client MUST first follow the steps as specified in section 3.1.5.2.

If the value of the State variable is PLAYING, the client MUST wait for an Announce request to be
received. How to process this request is specified in section 3.1.5.15.

Otherwise, the client MUST wait for a higher-layer triggered event.

3.1.5.15 Receiving an Announce Request

The client MUST validate that the request adheres to the syntax as specified in section 2.2.7.1. If the

Announce request does not adhere to the syntax specified in section 2.2.7.1, then the server MUST

NOT process any of the headers in the request and SHOULD specify status code 400 in the response
to the Announce request.

The client MUST process Supported header, if present <28>. Each feature token on the header MUST
be added to the Server-features variable in the abstract data model. If the header is present, any
feature token not listed on the header MUST be removed from the Server-features variable.

The client MUST process the X-Playlist-Gen-Id (section 2.2.6.22) header, if present. If it is present,
the Playlist-gen-id variable in the abstract data model MUST be set to the numerical value specified on

that header.

The client MUST extract the ASF file header from the SDP (section 2.2.5.2.3.1), and SHOULD make it
available to the higher layer. If the SDP contains a content description list (section 2.2.5.2.3.2), it
SHOULD also be made available to the higher layer.

The client MUST send a response to the Announce request.

If the X-RTP-Info header is present in the request, it indicates the streams that the server has

selected for the playlist entry described by the SDP. The client needs to remember this because it will
need this information once it is ready to select the streams for this playlist entry that it wants to
receive. For details, see section 3.1.4.5.

If the value of the State variable is PLAYING, the client MUST be prepared to receive RTP packets
from any of the streams listed on the X-RTP-Info header. How to process RTP packets is specified in
section 3.1.5.12.

The client MUST also be prepared to receive a higher-layer triggered event. The next higher-layer

triggered event is a request to select the streams from the new playlist entry, as specified in section
3.1.4.5.

3.1.5.16 Receiving a SelectStream Response After Announce

The client MUST first follow the steps as specified in section 3.1.5.2.

If any responses to previously transmitted requests are still pending, the client MUST be prepared to
receive a response. For any SelectStream request for which a response is pending, the client MUST
follow the rules, as specified in this section. The client MUST also be prepared to receive an RTP
packet.

How to process RTP packets is specified in section 3.1.5.12.

73 / 138

[MS-RTSP-Diff] - v20240423
Real-Time Streaming Protocol (RTSP) Windows Media Extensions
Copyright © 2024 Microsoft Corporation
Release: April 23, 2024

For any received response, the client MUST decrement the SelectStream-request-counter by 1.

When the SelectStream-request-counter equals 0, no more responses to previously transmitted
requests remain, and the client MUST now send a Play request following the rules as specified in
section 3.1.5.16.1.

3.1.5.16.1 Sending a Play Request in PLAYING State

The Play request MUST adhere to the syntax as specified in section 2.2.7.9.

In addition, the common processing steps as specified in section 3.1.5.1 MUST be followed when
sending the Play request.

The Range header SHOULD NOT be included in the request.

The higher layer MUST include the X-Playlist-Seek-Id (section 2.2.6.23) header in the request, and the

numerical value on the header MUST be set to the value of the Playlist-gen-id variable in the abstract
data model.

If the server has selected any streams for the current playlist entry (as indicated by the X-RTP-
Info (section 2.2.6.27) header in the Announce request received from the server for this playlist
entry), and the client has not sent a SelectStream request for one or more of those streams, the client
MUST now include the X-RTP-Info header in the Play request. The X-RTP-Info header MUST list the

streams that the server selected for which the client has not sent a SelectStream request (to select or
deselect the stream).

The client SHOULD include the X-Player-Lag-Time (section 2.2.6.19) header if the delay between
receiving the Announce request for this playlist entry and sending this Play request is greater than
normal. (If the start of playback is initially delayed by a few seconds due to buffering, each Play
request would normally be delayed by the same amount. This is considered the normal delay, and the
client sends only the X-Player-Lag-Time header if the Play request is delayed more than normal.)

The higher layer MUST specify at what rate the multimedia content is to be played back. For example,
if the higher layer wants to play the multimedia content in reverse, it MUST specify this and the rate of

playback. The client MUST send this information by using the Scale header, as specified in [RFC2326]
section 12.34.

The client MUST now wait for the response to the Play request to be received. How to process the
response is specified in section 3.1.5.10.

3.1.5.17 Receiving a Pause Response

The client MUST first follow the steps as specified in section 3.1.5.2.

The value of the State variable MUST be set to READY.

If the LogPlay request was sent, and the response has not yet been received, the client MUST wait for

the response to be received. How to process this response is specified in section 3.1.5.14.

Otherwise, the client MUST wait for a higher-layer triggered event.

3.1.5.18 Receiving a KeepAlive Response

The client MUST first follow the steps as specified in section 3.1.5.2.

If the value of the State variable is PLAYING, the client MUST be prepared to receive RTP packets.
How to process RTP packets is specified in section 3.1.5.12. The client MUST also be prepared to
receive an EndOfStream request. How to process this request is specified in section 3.1.5.13.

74 / 138

[MS-RTSP-Diff] - v20240423
Real-Time Streaming Protocol (RTSP) Windows Media Extensions
Copyright © 2024 Microsoft Corporation
Release: April 23, 2024

Otherwise, the client MUST wait for a higher-layer triggered event.

3.1.5.19 Receiving a SendEvent Response

The client MUST first follow the steps as specified in section 3.1.5.2.

If the value of the State variable is PLAYING, the client MUST be prepared to receive RTP packets.
How to process RTP packets is specified in section 3.1.5.12. The client MUST also be prepared to
receive an EndOfStream request. How to process this request is specified in section 3.1.5.13.

Otherwise, the client MUST wait for a higher-layer triggered event.

3.1.5.20 Receiving a Teardown Response

The client MUST first follow the steps as specified in section 3.1.5.2.

The client MUST close the TCP connection to the server.

3.1.6 Timer Events

3.1.6.1 Firewall Timer Expires

The client MUST report to the higher layer that it is not possible to receive RTP packets streamed over
UDP. The likely cause is that a firewall is blocking UDP packets.

After this, the client MUST wait for a higher-layer triggered event to occur. (The higher layer can give
up, close the TCP connection, and display an error to the user; or the higher layer can simply decide
that all streams are streamed by using TCP instead of UDP.)

3.1.6.2 Keepalive Timer Expires

When the KeepAlive timer expires, the following actions MUST take place:

1. The client MUST send a KeepAlive (section 2.2.7.5) request.

2. After sending the request, the client MUST wait for the response to be received.

 Information on how to process the response is specified in section 3.1.5.18.

3.1.7 Other Local Events

3.1.7.1 TCP Connection Is Disconnected

If the TCP connection to the server is disconnected, and the client did not initiate the disconnection,
then the client MUST report this as an error to the higher layer.

3.2 Server Details

The state machine for RTSP servers is specified in [RFC2326] section A.2 and as depicted in the
following illustration. RTSP Windows Media Extensions define an additional state transition: A higher-
layer event can cause the server to transition from the PLAYING to the READY state. The presence of a
caching proxy server introduces an additional state to the RTSP server state machine; this state is
specified in section 4.6. Transitions in and out of the RECORD state are not described in this
specification.<29>

75 / 138

[MS-RTSP-Diff] - v20240423
Real-Time Streaming Protocol (RTSP) Windows Media Extensions
Copyright © 2024 Microsoft Corporation
Release: April 23, 2024

Figure 6: RTSP state diagram (server perspective)

3.2.1 Abstract Data Model

This section describes a conceptual model of possible data organization that an implementation
maintains to participate in this protocol. The described organization is provided to facilitate the

explanation of how the protocol behaves. This document does not mandate that implementations
adhere to this model as long as their external behavior is consistent with that described in this

document.

Announce-Sent: This variable is a flag with possible values 0 and 1. A value of 1 means that the
server has sent an Announce request but has not yet received the Announce response. A value of
0 means that an Announce response is not expected. The default value is 0.

Client-features: This variable stores the capabilities that the client specified on the most recently

received Supported header. The default value of this variable is that the client does not support
any of the capabilities as specified in section 2.2.6.10.

FEC-Parameter-State: This variable stores the fec-parameters token for each stream that uses FEC.
The fec-parameters token is defined in section 2.1. The initial value of this variable is empty.

FEC-Span-Counters: This is a collection of numerical counters. There is one counter for each stream
in the content. The counter counts the number of RTP packets that have been transmitted in an

FEC span. The value of a counter is in the range 0x00 to 0x17, inclusive. The initial value of all

counters is 0x00.

Listening-endpoint: This variable stores the listening TCP endpoint established by the server as
specified in [RFC2326] section 3.2. The default value for the port is 554.

New-ASF-File-Header: This variable stores the ASF header received from the higher layer. The ASF
header is for the current playlist entry. The default value is NULL.

76 / 138

[MS-RTSP-Diff] - v20240423
Real-Time Streaming Protocol (RTSP) Windows Media Extensions
Copyright © 2024 Microsoft Corporation
Release: April 23, 2024

Pending-ASF-File-Header: This variable stores an ASF header received from the higher layer that
has not yet been sent to the client. The ASF header is for the next playlist entry. The default value

is NULL.

Pause-Allowed-In-READY: This variable is a flag with possible values 0 and 1. If the value is 1, it

means that the server will accept a Pause request when the value of the State variable is READY.
If the value is 0, it means that the server will not accept a Pause request when the value of the
State variable is READY. The initial value is 0.

Play-Expected-Before-Announce: This variable is a flag with possible values 0 and 1. If the value is
1, it means that the server expects to receive a Play request before it will send an Announce
request. If the value is 0, it means that receiving a Play request is not a requirement for sending
an Announce request. The initial value is 1.

Playlist-gen-id: The value of this variable is an identifier assigned by the server to identify the
current playlist entry. The default value is 0.

Previous-playlist-entry-id: The value of this variable is an identifier assigned by the server to

identify the previous playlist entry. The default value is 0.

Profile_ByteRate: An array of five unsigned integer numbers. Each number specifies the average bit
rate, in bytes per second, of the encoded content, computed over the time interval given by the

value of Profile_LastPresTime minus the value of Profile_FirstPresTime. The minimum value
of each number is 0. The maximum value of each number is 4,294,967,295. The initial values of
all numbers are 0.

Profile_BytesNeeded: An unsigned integer number that specifies the cumulative size of all ASF
media objects in the interval given by the value of Profile_LastPresTime minus the value of
Profile_FirstPresTime. The minimum value is 0. The maximum value is 4,294,967,295. The
initial value is 0.

Profile_ChosenRate: An unsigned integer number that specifies the average bit rate, in bytes per
second, of a set of ASF payloads or a set of streams. The minimum value is 0. The maximum
value is 4,294,967,295. The initial value is 0.

Profile_FirstPresTime: An unsigned integer number that specifies the ASF presentation time value
([ASF] section 5.2.3) of the first ASF payload in an interval. The minimum value is 0. The
maximum value is 18,446,744,073,709,551,615. The initial value is 18,446,744,073,709,551,615.

Profile_FirstSendTime: An unsigned integer number that specifies the ASF send time value ([ASF]

section 5.2.2) of the first ASF packet in an interval. The minimum value is 0. The maximum value
is 18,446,744,073,709,551,615. The initial value is 0.

Profile_LastPresTime: An unsigned integer number that specifies the ASF presentation time value
([ASF] section 5.2.3) of the last ASF payload in an interval. The minimum value is 0. The
maximum value is 18,446,744,073,709,551,615. The initial value is 0.

Profile_LastSendTime: An unsigned integer number that specifies the ASF send time value ([ASF]

section 5.2.2) of the last ASF packet in an interval. The minimum value is 0. The maximum value
is 18,446,744,073,709,551,615. The initial value is 18,446,744,073,709,551,615.

Profile_MaxBytes: An array of five unsigned integer numbers. Each number specifies the number of
bytes by which a buffer underflows. The minimum value of each number is 0. The maximum value
of each number is 2,147,483,647. The initial values of all numbers are 0.

Profile_MaxDiffSndTime: A signed integer number that specifies the maximum latency, in
milliseconds, between the video and the audio streams during the time interval given by the value

of Profile_LastPresTime minus the value of Profile_FirstPresTime. The minimum value is -
2,147,483,646. The maximum value is 2,147,483,647. The initial value is 0.

77 / 138

[MS-RTSP-Diff] - v20240423
Real-Time Streaming Protocol (RTSP) Windows Media Extensions
Copyright © 2024 Microsoft Corporation
Release: April 23, 2024

Profile_PlaybackRate: An unsigned integer number that specifies the sum of the average bit rates,
in bytes per second, of each stream listed in the Selected-Streams variable. The minimum value

is 0. The maximum value is 2,147,483,647. The initial value is 0.

Profile_Time: An array of five unsigned integer numbers. Each number specifies the time when a

maximum buffer underflow will occur, in millisecond time units. The minimum value of each
number is 0. The maximum value of each number is 18,446,744,073,709,551,615. The initial
values of all numbers are 0.

Profile_TimeForMaxDiffSndTime: An unsigned integer number that specifies the ASF presentation
time value ([ASF] section 5.2.3) of an ASF payload that has the maximum latency specified by the
Profile_MaxDiffSndTime variable. The minimum value is 0. The maximum value is
18,446,744,073,709,551,615. The initial value is 0.

Proxy-Role: The possible values are 0 and 1. A value of 1 means the server is acting as a proxy
server for the current request. A value of 0 means the server is not acting as a proxy server for
the current request. The default value is 0.

Selected-New-Streams: This variable stores the list of streams that are listed in the Selected-
Streams variable for which no RTP packets have been transmitted after they were added to the
Selected-Streams variable. By default, the Selected-New-Streams variable contains an empty

list.

Selected-Replacement-Streams: This variable stores the list of entries where each entry is a pair of
streams. One of the streams is referred to as the old stream and the other as the new stream. The
server intends to replace the old stream with the new stream. By default, the variable contains no
entries.

RTP-Resend-Queue: This variable is a queue of RTP packets. By default, the queue does not contain
any RTP packets.

Selected-Streams: This variable stores the list of streams specified by the client in the SelectStream
(section 2.2.7.10).

Specified-Bandwidth: This variable stores the value specified by the Bandwidth header (section
2.2.6.1). The value MUST be in bits per second, and the default value is 0.

Specified-Lag-Time: This variable stores whether the client specified the X-Player-Lag-Time in the
header of the Play request. The default value is 0.

State: This variable stores the server's state. Possible values are INIT, READY, and PLAYING.

TransactionsPerHeartBeat: This variable counts how many RTSP "transactions" have occurred since
the Heartbeat timer last expired. A "transaction" is one or more RTSP requests, as shown by the
usage of this variable in section 3.2.5.1. The default value is 0, the minimum value is 0, and the
maximum value is 4,294,967,295.

TransactionsSETUP: This variable counts how many RTSP SETUP requests have been received since
the last time an RTSP request other than SETUP, TEARDOWN, SET_PARAMETER, or

GET_PARAMETER was received. The default value is 0, the minimum value is 0, and the maximum

value is 4,294,967,295.

TransactionsTEARDOWN: This variable counts how many RTSP SETUP requests have been received
since the last time an RTSP request other than SETUP, TEARDOWN, SET_PARAMETER, or
GET_PARAMETER was received. The default value is 0, the minimum value is 0, and the maximum
value is 4,294,967,295.

Use-UDP: This variable is a flag with possible values 0 and 1. If the value is 1, it means that the

server is sending RTP packets for streams other than the retransmission stream over UDP. If the

78 / 138

[MS-RTSP-Diff] - v20240423
Real-Time Streaming Protocol (RTSP) Windows Media Extensions
Copyright © 2024 Microsoft Corporation
Release: April 23, 2024

value is 0, it means that the server is sending RTP packets for streams other than the
retransmission stream over TCP. The default value is 0.

v-port: The value of this variable defines the RTP UDP port number in the client_port parameter of
the Transport header in the SelectStream request provided by the client for the retransmission

stream. The initial value is 0.

v-ssrc: The value of this variable is an identifier assigned by the server to the numerical value of the
ssrc field that the server provided in the Transport header in its response (see section 2.2.6.11).
The initial value is 0.

3.2.2 Timers

Heartbeat: This timer expires repeatedly, at a regular interval. The default interval is once every
30,000 milliseconds. The lowest interval is once every 1,000 milliseconds. The highest interval is
once every 4,294,967,295 milliseconds.

Idle-Timeout: This timer is used for cleaning up unused session state. If no requests are received
from the client, the Idle-Timeout timer will expire, and the server is then free to delete the session

state. The minimum allowed value for the timeout period is 10 seconds. There is no maximum
value defined for the timeout period.

Lag-Timer: This timer is used for implementing the delay required for the Announce requests as
specified by the X-Player-Lag-Time (section 2.2.6.19). The initial value is 0. The timer value
SHOULD NOT exceed 15 seconds.

3.2.3 Initialization

Initialization of the session state occurs when a Describe or SelectStream request is received and the
request does not specify the Session header (as specified in [RFC2326] section 12.37).

The variables defined by the abstract data model MUST initially assume their default values. Variables
that do not have a default defined MUST be initialized as follows:

The State variable MUST be set to INIT. The server SHOULD confirm its role as specified in section
3.2.7.3.

3.2.4 Higher-Layer Triggered Events

3.2.4.1 Notification that the Last RTP Packet Has Been Sent

When the higher layer notifies the server that the last RTP packet has been sent, the server MUST
send an EndOfStream (section 2.2.7.3) request to the client.

If the value of the Playlist-gen-id variable in the abstract data model does not equal 0, then the
EndOfStream request MUST include the X-Playlist-Gen-Id header (section 2.2.6.22).

If the Selected-Streams variable in the abstract data model contains one or more audio or video
streams, then the EndOfStream request MUST include the RTP-Info header, as specified in [RFC2326]
section 12.33. The seq parameter MUST be specified for each stream-url on the RTP-Info header. The
rtptime parameter SHOULD NOT be specified for any stream-url on the RTP-Info header.

The RTP-Info header in the EndOfStream request MUST NOT include a stream-url section for streams
used for retransmitted RTP packets and packet-pair data.

The higher layer MUST specify if a new ASF header is forthcoming (that is, there are additional entries
in the server-side playlist) or if this was the last entry in the playlist, so that the message body in the
request can be filled in correctly.

79 / 138

[MS-RTSP-Diff] - v20240423
Real-Time Streaming Protocol (RTSP) Windows Media Extensions
Copyright © 2024 Microsoft Corporation
Release: April 23, 2024

If the value of the Playlist-gen-id variable in the abstract data model does not equal 0, and the higher
layer specifies that a new ASF header is forthcoming, then the syntax element "End-Of-Playlist-Entry:

true" MUST be included in the EndOfStream request. Otherwise, the syntax element "End-Of-Playlist-
Entry: true" MUST NOT be included in the EndOfStream request.

If the higher layer indicates that the start of the content (or playlist entry) has been reached (this
could happen if the server is streaming the content for playback in the reverse direction), the syntax
element "RecedingEos: true" MUST be included in the EndOfStream request. Otherwise, the syntax
element "RecedingEos: true" MUST NOT be included in the EndOfStream request.

If the higher layer indicates that a system administrator decided that the server stop streaming to the
client, then the "AdministrativeDisconnection: true" syntax element MUST be included in the
EndOfStream request. Otherwise, the syntax element "AdministrativeDisconnection: true" MUST NOT

be included in the EndOfStream request.

The value of the State variable in the abstract data model MUST be changed to READY.

If the server includes the syntax element "End-Of-Playlist-Entry: true" in the EndOfStream request,

then the server MUST set the value of the Pause-Allowed-In-READY variable to 1.

The Idle-Timeout timer MUST be started.

After sending the EndOfStream request, the server MUST wait for the response to be received. How to

process the response is specified in section 3.2.5.13. While waiting for the response, the server MUST
also be prepared to receive RTCP packets. How to handle RTCP packets is specified in section
3.2.5.10.

3.2.4.2 Notification that a New ASF File Header Is Available

As a prerequisite for this event, the higher layer MUST already have notified the server that it has sent
the last RTP packet for the previous playlist entry, as specified in section 3.2.4.1.

If the value of the Play-Expected-Before-Announce variable is 1, then the server MUST store the

ASF File Header in the variable Pending-ASF-File-Header and MUST not process any further rules in
this section.

The server MUST store the ASF File Header in the variable New-ASF-File-Header.

If the Specified-Lag-Time does not equal 0, then the server SHOULD set the expiration time of the
Lag-Timer value of the Specified-Lag-Time and SHOULD restart the Lag-Timer. The server MUST
delay sending the Announce request until the Lag-Timer expires. If the server did not restart the Lag-
Timer, then server MUST NOT delay sending the Announce request.

The server MUST now send an Announce (section 2.2.7.1) request to the client.

The SDP in the message body of the Announce request MUST include the ASF file header of the new
playlist entry retrieved from the variable New-ASF-File-Header. For more information about how the

ASF file header is included in SDP, see section 2.2.5.2.3.1. For more information about SDP, see
section 2.2.5.

The SDP in the message body of the Announce response MUST specify a data URL with the MIME type
"application/vnd.ms.wms-hdr.asfv1" in the SDP session level as specified in section 2.2.5.2.3.1. The
SDP in the message body of the Announce response SHOULD specify a data URL with the MIME type
"application/x-wms-contentdesc" in the SDP session level as specified in section 2.2.5.2.3.1. The SDP
in the message body of the Announce response SHOULD include the content description list of the

current playlist entry as specified in section 2.2.5.2.3.2.

The SDP in the message body of the Announce request SHOULD specify the Reliable attribute and the
maxps attribute. For more information on how the reliable attribute is included in SDP, see section
2.2.5.2.4. For more information about how the maxps attribute is included in SDP, see section

80 / 138

[MS-RTSP-Diff] - v20240423
Real-Time Streaming Protocol (RTSP) Windows Media Extensions
Copyright © 2024 Microsoft Corporation
Release: April 23, 2024

2.2.5.2.2. The SDP MUST include the stream attribute for each media description. For more
information about how the stream attribute is included in SDP, see section 2.2.5.2.5.

For each media description that corresponds to a stream in the ASF content, the server SHOULD
request the "AS" bandwidth modifier from the higher layer (as specified in 3.2.7.9) and the server

MUST include the "AS" bandwidth modifier in SDP as specified in section 2.2.5.1.1.

For each stream in the ASF content that has an average bit rate that is different from the peak bit rate
the server MUST include the "X-AV" bandwidth modifier in SDP as specified in section 2.2.5.1.4.

If the value of the Playlist-gen-id does not equal 0, the server MUST change the value of the
Previous-playlist-entry-id variable to the current Playlist-gen-id.

The server MUST change the value of the Playlist-gen-id variable in the abstract data model such
that each playlist entry gets a different identifier. This variable MUST be used as the value for the X-

Playlist-Gen-Id header in the Announce request. For details, see section 2.2.7.1.

The server SHOULD use the local event defined in Broadcast ID (section 3.2.7.8) to obtain a numerical

identifier. If the numerical identifier is provided, the server MUST include the X-Broadcast-Id
header (section 2.2.6.16) in the Announce response, and the numerical value on that header MUST be
equal to the numerical identifier provided by the higher layer. If the numerical identifier is unavailable,
then the X-Broadcast-Id header MUST NOT be included in the Announce response.

If the ASF file header of the new playlist entry retrieved from the variable New-ASF-File-Header
describes the previous entry in the playlist (as opposed to the next entry), the X-Receding-
PlaylistChange (section 2.2.6.26) MUST be included in the Announce request. If the ASF file header of
the new playlist entry retrieved from the variable New-ASF-File-Header describes the next entry in
the playlist (the normal case during streaming in the forward direction), then the X-Receding-
PlaylistChange MUST NOT be included.

The server MAY specify the Supported (section 2.2.6.10) header in the request. If the Supported

header is specified, the header MUST correctly reflect the features that are supported by the server.
For information about what feature tokens to list on the Supported header, see section 3.2.5.2.

The Announce request SHOULD specify the Cache-Control header (section 2.2.6.2).

If the value of the Client-features variable specifies that the client supports the
com.microsoft.wm.predstrm (section 2.2.6.10.5) feature, the server has also specified that it supports
this feature, and the server has received a Play request for the previous playlist entry, the server
MUST select suitable streams from the ASF file header of the new playlist entry. The server SHOULD

use the Specified-Bandwidth to choose what streams to select from the ASF file header.

If the value of the Pending-ASF-File-Header variable is NULL, the server SHOULD do the following:

 The server SHOULD provide the value of the Selected-Streams variable to the higher layer and
allow the higher layer to modify the Selected-Streams variable.

 The server SHOULD provide the value of the Selected-New-Streams variable to the higher layer
and allow the higher layer to modify the Selected-New-Streams variable.

 The server SHOULD provide the value of the Selected-Replacement-Streams variable to the
higher layer and allow the higher layer to modify the Selected-Replacement-Streams variable.

If the value of the Pending-ASF-File-Header variable is not NULL, the server SHOULD set the
Selected-Streams variable, the Selected-New-Streams variable and the Selected-Replacement-
Streams variable to empty.

The server SHOULD provide the value of the Selected-Streams variable to the higher layer and allow
the higher layer to modify the Selected-Streams variable.

81 / 138

[MS-RTSP-Diff] - v20240423
Real-Time Streaming Protocol (RTSP) Windows Media Extensions
Copyright © 2024 Microsoft Corporation
Release: April 23, 2024

The server SHOULD provide the value of the Selected-New-Streams variable to the higher layer and
allow the higher layer to modify the Selected-New-Streams variable.

The server SHOULD provide the value of the Selected-Replacement-Streams variable to the higher
layer and allow the higher layer to modify the Selected-Replacement-Streams variable.

If the Selected-Streams variable is not empty, the Announce request MUST include the X-RTP-Info
header, and that header MUST include an optq-stream-url syntax element for each stream listed in the
Selected-Streams variable. For each stream listed in the Selected-Streams variable, the value of the
corresponding optq-stream-url syntax element MUST be the stream URL of that stream (section
2.2.6.27).

The higher layer SHOULD provide a value for the thinlevel parameter for each stream URL on the X-
RTP-Info header. For each stream URL included on the X-RTP-Info header for a stream that uses the

RTP payload format for FEC (section 2.2.2), the higher layer SHOULD specify each of the values on the
fec-parameter token on the X-RTP-Info header. For all streams in which the higher layer specifies the
fec-parameter token, the fec-parameter token MUST be saved in the FEC-Parameter-State variable.
If the FEC-Parameter-State variable already contains a fec-parameter token for a given stream, the

new token replaces the old token.

If the server selected any streams, the State variable MUST be set to PLAYING.

Otherwise, the State variable MUST be set to READY, and if the Idle-Timeout timer is not running, it
MUST be started.

If the State variable is set to PLAYING, the server MUST start streaming RTP packets to the client.
RTP packets for the new playlist entry MUST be sent to the same UDP port or TCP channel that was
previously specified by the client. For information on rules to follow when sending RTP packets, see
section 3.2.5.8.

If the State variable is set to PLAYING, and if the value of the Use-UDP variable is 1, then the Idle-

Timeout timer MUST be started. If the value of the Use-UDP variable is 0, then the Idle-Timeout
timer MUST be stopped if it is running.

The value of the Play-Expected-Before-Announce variable MUST be set to 1.

The value of the Pending-ASF-File-Header variable MUST be set to NULL.

If the value of the TransactionsPerHeartBeat variable in the Abstract Data Model is greater than 4,
then the value of the TransactionsPerHeartBeat variable SHOULD be decreased by 4.

If the value of the TransactionsPerHeartBeat variable is less than or equal to 4, then the value of

the TransactionsPerHeartBeat variable SHOULD be set to 0.

The value of the Announce-Sent variable MUST be set to 1.

After sending the Announce request, the server MUST wait for the response or any of the requests
specified in section 3.2.5.14 to be received. How to process the response is specified in section
3.2.5.14. While waiting for the response, the server MUST also be prepared to receive RTCP packets.
How to handle RTCP packets is specified in section 3.2.5.10.

3.2.4.3 Notification That an ASF Packet Is Ready to Be Sent

This event can occur when the value of the State variable is PLAYING. The higher layer provides an
ASF packet that will be sent to the client by the server using RTP packets.

The RTP packets MUST use the RTP payload for ASF data packets, as specified in section 2.2.1.

The ASF payloads in the ASF packets MUST be filtered such that only ASF payloads that belong to
streams specified in the variable Selected-Streams are included in the ASF packets.

82 / 138

[MS-RTSP-Diff] - v20240423
Real-Time Streaming Protocol (RTSP) Windows Media Extensions
Copyright © 2024 Microsoft Corporation
Release: April 23, 2024

If the ASF payload in an ASF packet belongs to a stream that is listed in the Selected-New-Streams
variable and the ASF payload does not have the Key Frame Bit ([ASF] section 5.2.3) set to 1, the ASF

payload MUST be removed from the ASF packet.

If the ASF payload in an ASF packet belongs to a stream that is listed in the Selected-New-Streams

variable and the ASF payload has the Key Frame Bit ([ASF] section 5.2.3) set to 1, the stream that
the ASF payload belongs to MUST be removed from the Selected-New-Streams variable.

If the ASF payload in an ASF packet belongs to a stream that is listed as the new stream in an entry in
the Selected-Replacement-Streams variable, that entry MUST be removed from the Selected-
Replacement-Streams variable and the old stream in that entry MUST be removed from the
Selected-Streams variable.

If the Client-features variable indicates that the client supports the

com.microsoft.wm.locid (section 2.2.6.10.3) feature, the LocationId field of the RTP payload format
header MUST be present in all RTP payload format headers that are contained in an RTP packet in
which the M field in the RTP header is set to 1. Otherwise, the LocationId field of the RTP payload
format header SHOULD NOT be present.

The RTP packet SHOULD be added to the RTP-Resend-Queue variable in the Abstract Data Model.
Any RTP packets in the RTP-Resend-Queue variable whose Timestamp fields are more than 10

seconds earlier than the Timestamp field of the current RTP packet SHOULD be removed from RTP-
Resend-Queue

If the selected stream uses the RTP payload format for FEC, the server. MUST increment the value of
the counter for the stream in the FEC-Span-Counters variable in the Abstract Data Model by 0x01.

If the selected stream uses the RTP payload format for FEC, the server MUST compute the result of
multiplying the value of FecSpan with the value of FecBurstMargin. These two values are obtained
from the fec-parameters token for the selected stream in the FEC-Parameter-State variable. The

result of the multiplication is referred to as the Total Span.

After an RTP packet for a stream that uses the RTP payload format for FEC has been sent, if the value
of the stream's counter in the FEC-Span-Counters variable is equal to the Total Span, then the

following rules apply:

 The stream's counter in the FEC-Span-Counters variable MUST be set to 0x00.

 The server MUST transmit a total of FecPerSpan multiplied by FecBurstMargin FEC RTP packets,
where FecPerSpan and FecBurstMargin are values obtained from the fec-parameters token for the

selected stream in the FEC-Parameter-State variable. The FEC RTP packets MUST adhere to the
RTP Payload Format for FEC, defined in section 2.2.2.

 If FecPerSpan and FecBurstMargin are both greater than 1, then the FEC RTP packets from
different spans SHOULD be transmitted in interleaved order. For example, the first FEC RTP packet
from the first span, followed by the first FEC RTP packet from the second span, followed by the
second FEC RTP packet from the first span, and so on.

3.2.5 Processing Events and Sequencing Rules

3.2.5.1 Receiving a Request (All Request Types)

This section specifies common steps that MUST be performed whenever the server receives a request
from a client. These steps MUST be performed prior to any processing that is specific to a particular
request type.

The server MUST validate that the request is of one of the types specified in section 2.2.7 and that the
request is using the appropriate RTSP request method. If the validation fails, the server MUST respond

with an appropriate RTSP error status code, as specified in [RFC2326] section 7.1.1.

83 / 138

[MS-RTSP-Diff] - v20240423
Real-Time Streaming Protocol (RTSP) Windows Media Extensions
Copyright © 2024 Microsoft Corporation
Release: April 23, 2024

The server SHOULD invoke the local event specified in section 3.2.7.6 to report to the higher layer
that a RTSP request has been received. If, as a result of invoking the event in section 3.2.7.6, the

higher layer specifies that the RTSP request is rejected, the server MUST delete the session state, if
any, and close the TCP connection to the client.

When receiving a request other than Play and Teardown where the X-Playlist-Gen-
Id (section 2.2.6.22) header is present, and the value on that header is both not equal to 0 and does
not match the value of the Playlist-gen-id variable in the abstract data model (section 3.1.1), then the
server SHOULD treat this as an error and respond with RTSP status code 412.

If the request is not a SendEvent request and the request includes the Session header then the server
MUST load the state associated with the RTSP session ID specified on that header. If the matching
state cannot be found then the server MUST treat this as an error and respond with status code 454

(as specified in [RFC2326] section 12.37). If the request includes the Session header and the length of
the session-id field on that header exceeds 20 characters then the server SHOULD treat this as an
error and respond with status code 454.

The server SHOULD obtain the total number of streams in the content from the higher layer, referred

to as the Total Number of Streams. If this information is not known by the higher layer, the Total
Number of Streams SHOULD be 3.

If the RTSP request method is SETUP, then the value of the TransactionsSETUP variable in the
Abstract Data Model SHOULD be incremented by 1.

If the value of the TransactionsTEARDOWN variable is 1, or if the value of the
TransactionsTEARDOWN variable is greater than or equal to the Total Number of Streams, then the
value of the TransactionsPerHeartBeat variable SHOULD be incremented by 1.

If the RTSP request method is not SETUP, TEARDOWN, SET_PARAMETER, or GET_PARAMETER, then
the value of the TransactionsSETUP variable SHOULD be set to 0 and the value of the

TransactionsTEARDOWN variable SHOULD be set to 0.

If the value of the TransactionsPerHeartBeat variable is greater than or equal to 240, then the
server SHOULD treat this as an error and respond with status code 503.

The server MUST process the Supported (section 2.2.6.10) header, if present. Each feature token on
the header MUST be added to the Client-features variable in the abstract data model. If the header is
present, any feature token not listed on the header MUST be removed from the Client-features
variable.

If the If-Match (2.2.6.5) header is present in the request and the If-Match header does not adhere to
the syntax in 2.2.6.5, then the server SHOULD treat this as an error and respond with status code
412.

If the If-None-Match (2.2.6.6) header is present in the request and the If-None-Match header does
not adhere to the syntax in 2.2.6.6, then the server SHOULD treat this as an error and respond with
status code 400.

If the Idle-Timeout timer is running, it MUST be stopped.

If the Heartbeat timer is not running, it SHOULD be started and set to expire at an interval of once
every 30,000 milliseconds.

3.2.5.2 Sending a Response (All Request Types)

This section specifies common steps that MUST be performed whenever the server sends a response
to a request from the client.

The response sent by the server MUST NOT specify any of the headers and tokens, as specified in
section 2.2.6, that are defined only for use in requests or responses sent to a server.

84 / 138

[MS-RTSP-Diff] - v20240423
Real-Time Streaming Protocol (RTSP) Windows Media Extensions
Copyright © 2024 Microsoft Corporation
Release: April 23, 2024

All headers that are specified in [RFC2326] section 12, that are defined as mandatory for responses,
MUST be included in the response.

The server SHOULD specify the Supported (section 2.2.6.10) header in the response, except when
sending a GetContentInfo and SendEvent response. If the Supported header is specified, the header

MUST correctly reflect the features that are supported by the server. The server MUST support the
com.microsoft.wm.eosmsg (section 2.2.6.10.1) and com.microsoft.wm.sswitch (section 2.2.6.10.7)
features. The server SHOULD support the com.microsoft.wm.fastcache (section 2.2.6.10.2),
com.microsoft.wm.packetpairssrc (section 2.2.6.10.4),
com.microsoft.wm.srvppair (section 2.2.6.10.6), and
com.microsoft.wm.startupprofile (section 2.2.6.10.8) features.<30>

When responding to a GetContentInfo request, the server SHOULD check for caching requirements

from the higher layer (as specified in 3.2.7.5) and use that information to specify the Cache-
Control (section 2.2.6.2) header in the response. If no information is provided by the higher layer,
then the server MUST specify only the no-cache (section 2.2.6.2.3) directive on the Cache-Control
header.

When the server includes the Session header in the response, it SHOULD also include the timeout
parameter (as specified in [RFC2326] section 12.37). The value of the timeout parameter MUST be set

to a value less than or equal to the timeout interval of the Idle-Timeout timer. It is recommended that
the value of the token be at least a few seconds less than the timeout interval to allow for processing
delays and network delays.

If the Playlist-gen-id variable in the abstract data model has a nonzero value, the client MUST specify
an X-Playlist-Gen-Id (section 2.2.6.22) header in the response. The numerical value specified on the
header MUST be equal to the value of the Playlist-gen-id variable.

The Idle-Timeout timer MUST be started unless the value of the State variable in the abstract data

model is PLAYING and RTP packets are transmitted over TCP.

3.2.5.3 Receiving a GetContentInfo Request

The server MUST first follow the steps as specified in section 3.2.5.1.

The server MUST check with the higher layer that the URL that the client specified in the request is
valid. If it is not valid, this is an error, and the server MUST respond with some suitable RTSP error
status code (as specified in [RFC2326] 7.1.1), such as 404.

The GetContentInfo request does not require any server state. Hence, if the Session header is
missing, this MUST NOT be treated as an error.

The GetContentInfo response MUST follow the rules as specified in sections 3.2.5.2 and 2.2.7.4.

3.2.5.4 Receiving a Describe Request

The server MUST first follow the steps as specified in section 3.2.5.1.

The server MUST check with the higher layer that the URL that the client specified in the request is

valid. If it is not valid, this is an error, and the server MUST respond with some suitable RTSP error
status code (as specified in [RFC2326] 7.1.1), such as 404.

The server MUST check with the higher layer to determine if the client is to be redirected to a different
server or to a proxy server, as specified in section 3.2.7.4. (The presence, or absence, of a Via header
in the request can be used to determine if the request was delivered directly by the client or through a
proxy server, as specified in section 3.2.7.4. Information on the Via header is specified in [RFC2326]
section 12.43.

85 / 138

[MS-RTSP-Diff] - v20240423
Real-Time Streaming Protocol (RTSP) Windows Media Extensions
Copyright © 2024 Microsoft Corporation
Release: April 23, 2024

If the higher layer indicates that the client is to be redirected to another server, the server MUST
respond with status code 302. If the client is to be redirected to a proxy server, as specified in section

3.2.7.4, the server SHOULD respond with status code 305. In both cases, the URL of the server, or
proxy server, MUST be specified on the Location header in the response. Information on the Location

header is specified in [RFC2326] section 12.25. The RTSP REDIRECT request method MUST NOT be
used to redirect the client.

After sending a response with status codes 302 or 305, the server MUST delete the session state, if
any, and close the TCP connection to the client.

If the value of proxy-role is equal to 1, as determined from the higher layer (section 3.2.7.3), the
server MUST process the local event for Proxy Authentication, as specified in section 3.2.7.11. If the
local event indicates that the client is not authorized to use the proxy server, the server MUST respond

to the request with status code 403. If the local event indicates that the server shall include a Proxy-
Authenticate header (as specified in [RFC2326] section 12.26) in the response, the server MUST
include the Proxy-Authenticate header as provided by the higher layer and MUST specify status code
407 in the response.

If the server is not sending a response with status code 403 or 407, the server MUST process the local
event for Origin Server Authentication, as specified in section 3.2.7.11. If the local event indicates that

the client is not authorized to access the content, the server MUST respond to the request with status
code 403. If the local event indicates that the server shall include a WWW-Authenticate header (as
specified in [RFC2326] section 12.44) in the response, the server MUST include the WWW-
Authenticate header as provided by the higher layer and MUST specify status code 401 in the
response.

After sending a response with status code 401 or 407, the server MUST NOT close the TCP connection
to the client because the client is expected to resubmit the Describe request with the appropriate

credentials.

If the server is not sending a response with an error status code, and if the request does not specify a
Session header, the server MUST create new state by performing the initialization procedure as
specified in section 3.2.3.

The Describe response MUST follow the rules as specified in section 3.2.5.2 and MUST conform to the
syntax specified in 2.2.7.2.

The server SHOULD use the local event defined in Broadcast ID (section 3.2.7.8) to obtain a numerical

identifier. If the numerical identifier is provided, the server MUST include the X-Broadcast-Id
header (section 2.2.6.16) in the Describe response, and the numerical value on that header MUST be
equal to the numerical identifier provided by the higher layer. If the numerical identifier is unavailable,
then the X-Broadcast-Id header MUST NOT be included in the Describe response.

The SDP in the message body of the Describe response MUST include the ASF file header of the
current playlist entry, which is provided by the higher layer.

The SDP in the message body of the Describe response MUST specify a data URL with the MIME type
"application/vnd.ms.wms-hdr.asfv1" in the SDP session level as specified in section 2.2.5.2.3.1. The
SDP in the message body of the Describe response SHOULD specify a data URL with the MIME type

"application/x-wms-contentdesc" in the SDP session level as specified in section 2.2.5.2.3.1. The SDP
in the message body of the Describe response SHOULD include the content description list of the
current playlist entry as specified in section 2.2.5.2.3.2.

The SDP in the message body of the Describe request SHOULD specify the Reliable attribute and the

maxps attribute. For more information about how the reliable attribute is included in SDP, see section
2.2.5.2.4. For more information about how the maxps attribute is included in SDP, see section
2.2.5.2.2. The SDP MUST include the stream attribute for each media description. For more
information about how the stream attribute is included in SDP, see section 2.2.5.2.5.

86 / 138

[MS-RTSP-Diff] - v20240423
Real-Time Streaming Protocol (RTSP) Windows Media Extensions
Copyright © 2024 Microsoft Corporation
Release: April 23, 2024

For each media description that corresponds to a stream in the ASF content, the server SHOULD
request the "AS" bandwidth modifier from the higher layer (as specified in 3.2.7.9), and the server

MUST include the "AS" bandwidth modifier in SDP as specified in section 2.2.5.1.1.

For each stream in the ASF content that has an average bit rate that is different from the peak bit rate

the server MUST include the "X-AV" bandwidth modifier in SDP as specified in section 2.2.5.1.4.

After sending the response, if the status code indicates success (for example, 200), the server MUST
wait for a TcpPacketPair request or a SelectStream request to be received. How to process a
TcpPacketPair request is specified in section 3.2.5.5. How to process a SelectStream request is
specified in section 3.2.5.6.

If the status code of the response was 401 or 407, the server MUST wait for another Describe request
and process it as specified in this section.

3.2.5.5 Receiving a TcpPacketPair Request

The server MUST first follow the steps as specified in section 3.2.5.1.

The TcpPacketPair request does not require any server state. Hence, if the Session header is missing,

this MUST NOT be treated as an error.

The TcpPacketPair response MUST follow the rules as specified in sections 3.2.5.2 and 2.2.7.12.

As specified in section 2.2.7.12, the response consists of three $P packets. The server SHOULD deliver
the $P packets to the TCP layer such that each $P packet is transmitted in a separate TCP segment.

After sending the response, the server MUST wait for another request to be received. Normally, a
SelectStream request will be received at this point. How to process this request is specified in section
3.2.5.6.

3.2.5.6 Receiving a SelectStream Request

The server MUST first follow the steps as specified in section 3.2.5.1.

If the SelectStream request uses the SETUP request method, it MUST be processed as specified in

section 3.2.5.6.1.

If the SelectStream request uses the TEARDOWN request method, it MUST be processed as specified
in section 3.2.5.6.2.

If the SelectStream request uses the SET_PARAMETER request method, it MUST be processed as
specified in section 3.2.5.6.3.

3.2.5.6.1 Receiving a SelectStream Request Using SETUP

The SelectStream request MUST follow the rules as specified in sections 2.2.7.10 and 2.2.7.10.1.

The SelectStream request MUST be processed as specified in section 3.2.5.6.4.

3.2.5.6.2 Receiving a SelectStream Request Using TEARDOWN

The SelectStream request MUST follow the rules as specified in sections 2.2.7.10 and 2.2.7.10.2.

The SelectStream request MUST be processed as specified in section 3.2.5.6.4.

3.2.5.6.3 Receiving a SelectStream Request Using SET_PARAMETER

The SelectStream request MUST follow the rules as specified in sections 2.2.7.10 and 2.2.7.10.3.

87 / 138

[MS-RTSP-Diff] - v20240423
Real-Time Streaming Protocol (RTSP) Windows Media Extensions
Copyright © 2024 Microsoft Corporation
Release: April 23, 2024

The SelectStream request MUST be processed as specified in section 3.2.5.6.4.

In addition to the rules in section 3.2.5.6.4, if the values of the OldStream and NewStream
parameters of the message body are not identical, then the following rules also apply:

 The stream identified by the OldStream parameter of the message body MUST be removed from

the Selected-New-Streams variable.

 The stream identified by the OldStream parameter of the message body SHOULD NOT be removed
from the Selected-Streams variable.

 If the stream identified by the OldStream parameter of the message body is listed in the
Selected-Streams variable, the server MUST add an entry to the Selected-Replacement-
Streams variable where the value of the OldStream parameter of the message body is the old
stream and the value of the NewStream parameter of the message body is the new stream.

3.2.5.6.4 Common Processing Rules for SelectStream

The server MUST check with the higher layer that the URL that the client specified in the request is
valid. It MUST be one of the URLs specified by the control attribute in SDP (section 2.2.5.2.1) or the
URL for one of the FEC streams (section 2.2.5.4). If it is not, this is an error, and the server MUST
respond with some suitable RTSP error status code such as 400.

If the request is for a retransmission stream, the server MUST set the v-ssrc value equal to the
numeric value of the ssrc field provided in the Transport header as specified in section 2.2.6.11. The
server MUST set the v-port value equal to the RTP UDP port in the client_port parameter of the
Transport header as specified in section 2.2.6.11.

If the request is not for a retransmission stream and the RTSP request method is not TEARDOWN and
the Transport header is present in the request and if the lower-transport field ([RFC2326] section
12.39) is equal to UDP, then the Use-UDP variable MUST be set to 1.

If the value of the State variable in the abstract data model is INIT, it MUST be set to READY. At this
point, the server MUST also choose a session ID value for use on the Session header in the response.

Any new streams that will be transmitted as a result of the request MUST be added to the Selected-
New-Streams variable and the Selected-Streams variable.

Any streams that are removed without being replaced by a different stream MUST be removed from
the Selected-New-Streams and Selected-Streams variable. If any entry in the Selected-
Replacement-Streams variable specifies the removed stream as being the old stream or the new

stream, that entry MUST be removed from the Selected-Replacement-Streams variable.

The SelectStream response MUST follow the rules as specified in sections 3.2.5.2 and 2.2.7.10.

If the request is for an FEC stream, the higher layer SHOULD specify the fec-parameter token, as
specified in section 2.1. If the higher layer specifies the fec-parameter token, the server MUST include
this token on the Transport header in the SelectStream's response. The server MUST also save the
fec-parameter token that was provided by the higher layer. If the FEC-Parameter-State variable

already contains a fec-parameter token for a given stream, the new token replaces the old token.

After sending the response, the server MUST wait for another request to be received.

If the value of the State variable is READY, then any one or more of the following requests are
possible: another SelectStream request, a UdpPacketPair request, a Play request, a KeepAlive request,
a SendEvent request, or a Teardown request.

If the value of the State variable is PLAYING, then any one or more of the following requests are
possible: another SelectStream request, a Pause request, a KeepAlive request, a SendEvent request,

88 / 138

[MS-RTSP-Diff] - v20240423
Real-Time Streaming Protocol (RTSP) Windows Media Extensions
Copyright © 2024 Microsoft Corporation
Release: April 23, 2024

or a Teardown request. The server MUST continue transmitting RTP packets while in the PLAYING
state and MUST be prepared to receive RTCP packets.

How to process a SelectStream request is specified in section 3.2.5.6.

How to process a UdpPacketPair request is specified in section 3.2.5.7.

How to process a Play request is specified in section 3.2.5.8.

How to process a Pause request is specified in section 3.2.5.11.

How to process a KeepAlive request is specified in section 3.2.5.15.

How to process a SendEvent request is specified in section 3.2.5.16.

How to process a Teardown request is specified in section 3.2.5.17.

How to process RTCP packets is specified in section 3.2.5.10.

3.2.5.7 Receiving a UdpPacketPair Request

The server MUST first follow the steps as specified in section 3.2.5.1.

The UdpPacketPair request MUST follow the rules as specified in section 2.2.7.14.

The server SHOULD send three RTP packets containing packet-pair data to the client, or the server

MAY send two RTP packets containing packet-pair data to the client. The RTP packets MUST use the
RTP payload format for packet-pair data as specified in section 2.2.3.

If the UdpPacketPair request specified the variable-size parameter, the first RTP packet sent by the
server SHOULD have a 1,283-byte Payload field. The size of the Payload field of each RTP packet
MUST be chosen in accordance with the rules as specified in section 2.2.3.2.<31>

The RTP packets MUST be sent to the v-port.

The UdpPacketPair response MUST follow the rules as specified in sections 3.2.5.2 and 2.2.7.14.

After sending the response, the server MUST wait for another request to be received. Normally, a
SelectStream request will be received at this point. How to process this request is specified in section
3.2.5.6.

3.2.5.8 Receiving a Play Request

The server MUST first follow the steps as specified in section 3.2.5.1.

The Play request MUST follow the rules as specified in this section.

The server MUST check with the higher layer that the URL that the client specified in the request is
valid. If it is not valid, this is an error, and the server MUST respond with some suitable RTSP error
status code (as specified in [RFC2326] 7.1.1), such as 404.

The value of the State variable in the abstract data model MUST be set to PLAYING.

The value of the Pause-Allowed-In-READY variable MUST be set to 0.

The value of the Play-Expected-Before-Announce variable MUST be set to 0.

The Play response MUST follow the rules as specified in this section and in section 3.2.5.2.

89 / 138

[MS-RTSP-Diff] - v20240423
Real-Time Streaming Protocol (RTSP) Windows Media Extensions
Copyright © 2024 Microsoft Corporation
Release: April 23, 2024

If the request specified the X-RTP-Info (section 2.2.6.27) header in the Play request, and the header
does not adhere to the syntax in section 2.2.6.27, then the server SHOULD treat this as an error and

specify status code 400 in the response.

If the request specified the X-Player-Lag-Time (section 2.2.6.19) in the header of the Play request,

then the server SHOULD set the Specified-Lag-Time value to the value of X-Player-Lag-Time,
otherwise the Specified-Lag-Time value SHOULD be set to 0.

If the request specified Bandwidth (section 2.2.6.1), then the server MUST store the value in
Specified-Bandwidth.

The server SHOULD specify the X-Accelerate-Streaming (section 2.2.6.13) header in the response if
the client sent that header in the Play request and if the server supports changing the transmission
rate according to that header's presence in the request.<32> Otherwise, the server SHOULD NOT

specify the X-Accelerate-Streaming header in the response.

The server is allowed to specify a value for AccelBandwidth parameter of the X-Accelerate-Streaming
token that is less than or equal to the value that the client requested; however, it MUST NOT specify a

larger value than the one requested by the client.

The server is allowed to specify a value for AccelDuration parameter of the X-Accelerate-Streaming
token that is less than or equal to the value that the client requested; however, it SHOULD NOT<33>

specify a larger value than the one that is requested by the client.

The server SHOULD specify the X-Burst-Streaming (section 2.2.6.17) header in the response if the
client sent that header in the Play request and if the higher layer indicates that it supports delivering
the ASF packets for transmission at a faster than real-time rate. Otherwise, the server SHOULD NOT
specify the X-Burst-Streaming header in the response.

The following rules apply to the case when the server specifies the X-Burst-Streaming header in the
response:

 The higher layer SHOULD specify the maximum bit rate at which it can deliver the ASF packets,
and the server SHOULD specify a value for the BurstBandwidth parameter of the X-Burst-

Streaming header that is the smaller of the bit rate value specified by the higher layer and the
value that the client requested.

 The server MUST NOT specify a larger value for the BurstBandwidth parameter than the one that
is requested by the client.

 The higher layer SHOULD specify how many milliseconds of content it can deliver at the rate that

the server will specify on the BurstBandwidth parameter on the X-Burst-Streaming header, and
the server SHOULD specify a value for BurstDuration parameter of the X-Burst-Streaming header
that is the smaller of the millisecond value provided by the higher layer and the value that the
client requested.

 The server MUST NOT specify a larger value for the BurstDuration parameter than the one that is
requested by the client.

If the value of the Client-features variable in the abstract data model indicates that the client

supports the com.microsoft.wm.startupprofile (section 2.2.6.10.8) feature, and if the server is
including the X-Accelerate-Streaming header in the response to the Play request, then the server
SHOULD invoke the event specified in section 3.2.7.7 to compute the values for the X-
StartupProfile (section 2.2.6.28) header. The value of the AccelDuration parameter on the X-
Accelerate-Streaming header that the server sends in the response to this Play request SHOULD be
provided as the input parameter to the event in section 3.2.7.7. If the server successfully computes

the values for the X-StartupProfile header, then the X-StartupProfile header SHOULD be included in
the response to the Play request.

90 / 138

[MS-RTSP-Diff] - v20240423
Real-Time Streaming Protocol (RTSP) Windows Media Extensions
Copyright © 2024 Microsoft Corporation
Release: April 23, 2024

If the request includes the X-Playlist-Seek-Id header, and if the value of this header is equal to the
Previous-playlist-entry-id variable, but not 0, the server MUST assign this value to the Playlist-

gen-id variable in the abstract data model. The server MUST set the value of the Previous-playlist-
entry-id variable to 0, and MUST send an EndOfStream request immediately after sending the Play

response.

The server MUST NOT specify the X-StartupProfile header in the response unless the client has
specified support for the com.microsoft.wm.startupprofile feature.

If the request specified X-Playlist header, then the server MUST provide the X-Playlist header and the
Playlist-gen-id variable to the higher layer and check with the higher layer that the request is valid.
If it is not valid (for example, if there is no next or previous playlist entry), this is an error and the
server MUST respond with some suitable RTSP error status code (as specified in [RFC2326] 7.1.1),

such as 400.

If the server will immediately send an EndOfStream request after this response (for example, this
would normally happen if the client included the X-Playlist header in the Play request), the Play
response MUST include the X-Playlist-Change-Notice (section 2.2.6.21) header.

After sending the response, the higher layer can deliver ASF packets that will be sent as RTP
[RFC3550] packets to the client. The ASF packets are delivered as an event from the higher layer,

specified in section 3.2.4.3.

If the value of the Use-UDP variable is 1, then the Idle-Timeout timer MUST be started. If the value
of the Use-UDP variable is 0, then the Idle-Timeout timer MUST be stopped if it is running.

If the value of the Pending-ASF-File-Header variable is not NULL, then the server MUST set the
value of the New-ASF-File-Header variable to the value of the Pending-ASF-File-Header variable
and then the server MUST follow the rules specified in 3.2.4.2, using the New-ASF-File-Header
value as the ASF File Header.

While sending RTP packets, the server MUST be prepared for another request to be received.

Any one or more of the following requests are possible: LogConnect, SelectStream, Pause, KeepAlive,

SendEvent, or Teardown request. The server MUST also be prepared to receive RTCP [RFC3556]
packets.

How to process a LogConnect request is specified in section 3.2.5.9.

How to process a SelectStream request is specified in section 3.2.5.6.

How to process a Pause request is specified in section 3.2.5.11.

How to process a KeepAlive request is specified in section 3.2.5.15.

How to process a SendEvent request is specified in section 3.2.5.16.

How to process a Teardown request is specified in section 3.2.5.17.

How to process RTCP packets is specified in section 3.2.5.10.

3.2.5.9 Receiving a LogConnect Request

The server MUST first follow the steps as specified in section 3.2.5.1.

The LogConnect request MUST follow the rules as specified in section 2.2.7.6.

The server SHOULD communicate the logging information submitted by the client to the higher layer.

The server SHOULD validate the syntax of the fields as specified in [MS-WMLOG].<34>

91 / 138

[MS-RTSP-Diff] - v20240423
Real-Time Streaming Protocol (RTSP) Windows Media Extensions
Copyright © 2024 Microsoft Corporation
Release: April 23, 2024

The LogConnect response MUST follow the rules as specified in sections 3.2.5.2 and 2.2.7.6.

After sending the response, the server MUST wait for another request to be received.

If the value of the State variable is READY, then any one or more of the following requests are
possible: SelectStream, Play, KeepAlive, SendEvent, or Teardown request.

If the value of the State variable is PLAYING, then any one or more of the following requests are
possible: SelectStream, Pause, KeepAlive, SendEvent, or Teardown request. The server MUST
continue transmitting RTP packets while in the PLAYING state and MUST be prepared to receive RTCP
packets.

How to process a SelectStream request is specified in section 3.2.5.6.

How to process a Play request is specified in section 3.2.5.8.

How to process a Pause request is specified in section 3.2.5.11.

How to process a KeepAlive request is specified in section 3.2.5.15.

How to process a SendEvent request is specified in section 3.2.5.16.

How to process a Teardown request is specified in section 3.2.5.17.

How to process RTCP packets is specified in section 3.2.5.10.

3.2.5.10 Receiving an RTCP Packet

The server MUST verify that the RTCP packet contains a generic NACK message adhering to the syntax
as specified in section 2.2.4.

The server MUST ignore any RTCP packet that does not contain a generic NACK message or an SDES
message.

The server MUST verify that the value of the ssrc parameter on the CNAME field in the SDES message

is identical to the numerical value of the v-ssrc, which is the ssrc field that the server provided in the
Transport (section 2.2.6.11) header in response to the SelectStream request for the retransmission
stream.

The server can use the value of the ssrc parameter to find the appropriate RTSP session state, but this
depends on how the server chose the value for the ssrc parameter from the Transport header in the
SelectStream response. This is implementation-specific depending on the server and the system

involved.

If the syntax of the CNAME field does not match what is expected by the server, or if the value of the
ssrc parameter in the CNAME field does not match the value of the v-ssrc, then the server MUST
ignore the RTCP packet.

For each generic NACK message that is included in the RTCP packet, the server SHOULD search the
RTP-Resend-Queue variable for RTP packets with the same value for the Sequence Number field

that the client specified in the generic NACK message.

For each received RTCP packet, the server SHOULD search the RTP-Resend-Queue variable for no
more than the first 128 RTP packets specified in generic NACK messages contained in that RTCP
packet.

If a matching RTP packet is found, the server SHOULD retransmit a copy of that RTP packet. The RTP
payload format for retransmitted RTP packets MUST adhere to the syntax specified in section 2.2.3.1.

Retransmitted RTP packets MUST be sent to v-port.

92 / 138

[MS-RTSP-Diff] - v20240423
Real-Time Streaming Protocol (RTSP) Windows Media Extensions
Copyright © 2024 Microsoft Corporation
Release: April 23, 2024

After this, the server MUST wait for a request to be received.

If the value of the State variable is READY, then any one or more of the following requests are
possible: SelectStream, Play, KeepAlive, SendEvent, or Teardown request.

If the value of the State variable is PLAYING, then any one or more of the following requests are

possible: SelectStream, Pause, KeepAlive, SendEvent, or Teardown request. The server MUST
continue transmitting RTP packets while in the PLAYING state and MUST be prepared to receive RTCP
packets.

How to process a SelectStream request is specified in section 3.2.5.6.

How to process a Play request is specified in section 3.2.5.8.

How to process a Pause request is specified in section 3.2.5.11.

How to process a KeepAlive request is specified in section 3.2.5.15.

How to process a SendEvent request is specified in section 3.2.5.16.

How to process a Teardown request is specified in section 3.2.5.17.

How to process RTCP packets is specified in section 3.2.5.10.

3.2.5.11 Receiving a Pause Request

The server MUST first follow the steps as specified in section 3.2.5.1.

The Pause request MUST follow the rules as specified in section 2.2.7.7.

If the value of the State variable is READY and the value of the Pause-Allowed-In-READY variable
is 0, the server SHOULD respond to the request with status code 455.

If the value of the State variable is READY and the value of the Pause-Allowed-In-READY variable

is 1, the server MUST NOT respond to the request with status code 455.

The State variable MUST be set to READY.

The Pause response MUST follow the rules as specified in sections 3.2.5.2 and 2.2.7.7.

After sending the response, the server MUST wait for another request to be received.

Any one or more of the following requests are possible: LogPlay, SelectStream, Play, KeepAlive,
SendEvent, or Teardown request.

How to process a LogPlay request is specified in section 3.2.5.12.

How to process a SelectStream request is specified in section 3.2.5.6.

How to process a Play request is specified in section 3.2.5.8.

How to process a KeepAlive request is specified in section 3.2.5.15.

How to process a SendEvent request is specified in section 3.2.5.16.

How to process a Teardown request is specified in section 3.2.5.17.

How to process RTCP packets is specified in section 3.2.5.10.

93 / 138

[MS-RTSP-Diff] - v20240423
Real-Time Streaming Protocol (RTSP) Windows Media Extensions
Copyright © 2024 Microsoft Corporation
Release: April 23, 2024

3.2.5.12 Receiving a LogPlay Request

The server MUST first follow the steps as specified in section 3.2.5.1.

The LogPlay request MUST follow the rules as specified in section 2.2.7.7.

The server SHOULD communicate the logging information submitted by the client to the higher layer.

The server SHOULD validate the syntax of the fields as specified in [MS-WMLOG].<35>

The LogPlay response MUST follow the rules as specified in sections 3.2.5.2 and 2.2.7.7.

After sending the response, the server MUST wait for another request to be received.

If the value of the State variable is READY, then any one or more of the following requests are
possible: SelectStream, Play, KeepAlive, SendEvent, or Teardown request.

If the value of the State variable is PLAYING, then any one or more of the following requests are

possible: SelectStream, Pause, KeepAlive, SendEvent, or Teardown request. The server MUST

continue transmitting RTP packets while in the PLAYING state and MUST be prepared to receive RTCP
packets.

How to process a SelectStream request is specified in section 3.2.5.6.

How to process a Play request is specified in section 3.2.5.8.

How to process a Pause request is specified in section 3.2.5.11.

How to process a KeepAlive request is specified in section 3.2.5.15.

How to process a SendEvent request is specified in section 3.2.5.16.

How to process a Teardown request is specified in section 3.2.5.17.

How to process RTCP packets is specified in section 3.2.5.10.

3.2.5.13 Receiving an EndOfStream Response

The server MUST validate that the response adheres to the syntax as specified in section 2.2.7.3. If
the EndOfStream response request does not adhere to the syntax specified in section 2.2.7.3, the
server MUST NOT process any of the headers in the response and SHOULD continue normal
processing as if a syntactically valid EndOfStream response had been received.

The status code in the response SHOULD be ignored. Therefore, normal processing continues even if
the client indicates that the EndOfStream request failed.

The server MUST then wait for another request or response to be received.

If the server has sent an Announce request, it is supposed to have received a response to that request
by this time. If the value of the Announce-Sent variable is 1, the server MUST wait to receive the

response to the Announce request, as previously stated. How to process the Announce response is
specified in section 3.2.5.14.

If the value of the State variable is READY, then any one or more of the following requests are

possible: SelectStream, Play, LogPlay, KeepAlive, SendEvent, or Teardown request.

If the value of the State variable is PLAYING, then any one or more of the following requests are
possible: LogPlay, SelectStream, Pause, or KeepAlive request. The server MUST continue transmitting
RTP packets while in the PLAYING state and MUST be prepared to receive RTCP packets.

How to process a LogPlay request is specified in section 3.2.5.12.

94 / 138

[MS-RTSP-Diff] - v20240423
Real-Time Streaming Protocol (RTSP) Windows Media Extensions
Copyright © 2024 Microsoft Corporation
Release: April 23, 2024

How to process a SelectStream request is specified in section 3.2.5.6.

How to process a Play request is specified in section 3.2.5.8.

How to process a Pause request is specified in section 3.2.5.11.

How to process a KeepAlive request is specified in section 3.2.5.15.

How to process a SendEvent request is specified in section 3.2.5.16.

How to process a Teardown request is specified in section 3.2.5.17.

How to process RTCP packets is specified in section 3.2.5.10.

3.2.5.14 Receiving an Announce Response

The server MUST set the value of the Announce-Sent variable to 0.

The server MUST validate that the response adheres to the syntax as specified in section 2.2.7.1.

The server MUST then wait for another request to be received.

If the value of the State variable is READY, then any one or more of the following requests are
possible: SelectStream, Play, LogPlay, KeepAlive, SendEvent, or Teardown request.

If the value of the State variable is PLAYING, then any one or more of the following requests are

possible: LogPlay, SelectStream, Pause, KeepAlive, SendEvent, or Teardown request. The server
MUST continue transmitting RTP packets while in the PLAYING state and MUST be prepared to receive
RTCP packets.

How to process a LogPlay request is specified in section 3.2.5.12.

How to process a SelectStream request is specified in section 3.2.5.6.

How to process a Play request is specified in section 3.2.5.8.

How to process a Pause request is specified in section 3.2.5.11.

How to process a KeepAlive request is specified in section 3.2.5.15.

How to process a SendEvent request is specified in section 3.2.5.16.

How to process a Teardown request is specified in section 3.2.5.17.

How to process RTCP packets is specified in section 3.2.5.10.

3.2.5.15 Receiving a KeepAlive Request

The server MUST first follow the steps as specified in section 3.2.5.1.

The KeepAlive request MUST follow the rules as specified in section 2.2.7.5.

The KeepAlive response MUST follow the rules as specified in sections 3.2.5.2 and 2.2.7.5.

After sending the response, the server MUST wait for another request to be received.

If the value of the State variable is READY, then any one or more of the following requests are

possible: SelectStream, Play, KeepAlive, SendEvent, or Teardown request.

If the value of the State variable is PLAYING, then any one or more of the following requests are
possible: SelectStream, Pause, KeepAlive, SendEvent, or Teardown request. The server MUST

95 / 138

[MS-RTSP-Diff] - v20240423
Real-Time Streaming Protocol (RTSP) Windows Media Extensions
Copyright © 2024 Microsoft Corporation
Release: April 23, 2024

continue transmitting RTP packets while in the PLAYING state and MUST be prepared to receive RTCP
packets.

How to process a SelectStream request is specified in section 3.2.5.6.

How to process a Play request is specified in section 3.2.5.8.

How to process a Pause request is specified in section 3.2.5.11.

How to process a KeepAlive request is specified in section 3.2.5.15.

How to process a SendEvent request is specified in section 3.2.5.16.

How to process a Teardown request is specified in section 3.2.5.17.

How to process RTCP packets is specified in section 3.2.5.10.

3.2.5.16 Receiving a SendEvent Request

The server MUST first follow the steps as specified in section 3.2.5.1.

The SendEvent request MUST follow the rules as specified in section 2.2.7.11.

The server MUST check with the higher layer that the URL that the client specified in the request is
valid. If it is not, this is an error, and the server MUST respond with an appropriate RTSP error status

code (as specified in [RFC2326] 7.1.1), such as 404.

The SendEvent request does not require any server state. Therefore, if the Session header is missing,
this MUST NOT be treated as an error.

The server SHOULD communicate the logging information submitted by the client to the higher layer.

The SendEvent response MUST follow the rules as specified in sections 3.2.5.2 and 2.2.7.11.

After sending the response, the server MUST wait for another request to be received.

If the value of the State variable is READY, then any one or more of the following requests are

possible: SelectStream, Play, LogPlay, KeepAlive, SendEvent, or Teardown request.

If the value of the State variable is PLAYING, then any one or more of the following requests are
possible: LogPlay, SelectStream, Pause, KeepAlive, SendEvent, or Teardown request. The server
MUST continue transmitting RTP packets while in the PLAYING state and MUST be prepared to receive
RTCP packets.

How to process a LogPlay request is specified in section 3.2.5.12.

How to process a SelectStream request is specified in section 3.2.5.6.

How to process a Play request is specified in section 3.2.5.8.

How to process a Pause request is specified in section 3.2.5.11.

How to process a KeepAlive request is specified in section 3.2.5.15.

How to process a SendEvent request is specified in section 3.2.5.16.

How to process a Teardown request is specified in section 3.2.5.17.

How to process RTCP packets is specified in section 3.2.5.10.

96 / 138

[MS-RTSP-Diff] - v20240423
Real-Time Streaming Protocol (RTSP) Windows Media Extensions
Copyright © 2024 Microsoft Corporation
Release: April 23, 2024

3.2.5.17 Receiving a Teardown Request

The server MUST first follow the steps as specified in section 3.2.5.1.

The Teardown request MUST follow the rules as specified in section 2.2.7.13.

The Teardown response MUST follow the rules as specified in sections 3.2.5.2 and 2.2.7.13.

After sending the response, the server MUST close the TCP connection to the client and delete the
session state.

3.2.6 Timer Events

3.2.6.1 Lag-Timer Timer Expires

When the Lag-Timer expires, the server MUST follow the rules specified in section 3.2.4.2, but use the
New-ASF-File-Header value as the ASF File Header, and MUST NOT restart the Lag-Timer.

3.2.6.2 Idle-Timeout Timer Expires

When the Idle-Timeout timer expires, the server MUST close the TCP connection to the client if the
connection is still open. After that, the server MUST delete the session state.

3.2.6.3 Heartbeat Timer Expires

When the Heartbeat timer expires, the timer SHOULD be restarted (or remain running), so that it will
expire again at the next regular interval.

The server SHOULD set the TransactionsPerHeartBeat variable in the Abstract Data Model to 0.

3.2.7 Other Local Events

3.2.7.1 Selected-Stream Adjustment

The server SHOULD provide a mechanism for allowing the higher-layer to evaluate and adjust the
values specified in the Selected-Streams variable.

3.2.7.2 Client Closes TCP Connection

If the value of the State variable in the abstract data model is READY or PLAYING and the client
disconnected its TCP connection, then the State variable MUST be set to READY and the Idle-Timeout
timer MUST be started. If the value of the State variable is INIT, then the session state MUST be
deleted.

3.2.7.3 Server Role

The server SHOULD provide a mechanism to determine from the higher layer whether the server is
operating in a proxy server role or regular server role. If the server is acting like a proxy server, the
server MUST set the proxy-role element value to 1.

3.2.7.4 Redirection

The server MUST provide a mechanism to determine from the higher layer whether a request from the
client is to be redirected to a server or to a proxy server. If the higher layer determines that the client

97 / 138

[MS-RTSP-Diff] - v20240423
Real-Time Streaming Protocol (RTSP) Windows Media Extensions
Copyright © 2024 Microsoft Corporation
Release: April 23, 2024

is to be redirected, then the higher layer MUST provide the URL to the server or proxy server. The
higher layer MUST also specify if the provided URL is for a server or a proxy server.

3.2.7.5 Cache-Control Data

The server SHOULD provide the URL received in the RTSP request to the higher-layer. In response,
the higher-layer SHOULD provide the CCdir token as specified in 2.2.6.2.

3.2.7.6 RTSP Request Received

The server SHOULD provide a mechanism to inform the higher layer that an RTSP request has been
received. The higher layer acknowledges the event by indicating whether the request can be accepted
or rejected.

The input parameters to this event SHOULD include the RTSP request type (for example, SETUP or
PLAY). The output parameter is a flag that indicates whether the higher layer determined that the

request is accepted or rejected.

3.2.7.7 Computing Values for the X-StartupProfile Header

This local event occurs when the server has received a Play request and intends to include the X-
StartupProfile (section 2.2.6.28) header in the response.

The input parameter to this event is the value of the AccelDuration parameter on the X-Accelerate-
Streaming header that is sent by the server. If the value of the input parameter is zero, it is not
possible to compute values for the X-StartupProfile header, and the processing of this local event
terminates unsuccessfully.

The values of the Profile_ByteRate, Profile_BytesNeeded, Profile_ChosenRate,
Profile_FirstPresTime, Profile_FirstSendTime, Profile_LastPresTime, Profile_LastSendTime,

Profile_MaxBytes, Profile_MaxDiffSndTime, Profile_PlaybackRate, Profile_Time, and
Profile_TimeForMaxDiffSndTime variables in the Abstract Data Model MUST be set to their initial

values.

The server MUST compute the sum of the average bit rates of each stream listed in the Selected-
Streams variable in the Abstract Data Model. The server MUST set the value of the
Profile_PlaybackRate variable to this sum divided by 8.

The server MUST inspect the ASF packets that will be sent to the client. The higher layer provides the

ASF packets that will be inspected. The ASF packets MUST be inspected in the same sequence as they
appear in the content, starting with the first ASF packet that is due to be transmitted to the client in
response to the Play request. For each ASF packet that is inspected, the server MUST inspect each
ASF payload ([ASF] section 5.2) that contains a complete media object or the beginning of a media
object by using the processing rules in section 3.2.7.7.1. (In other words, for the ASF payload to be
inspected, the Offset Into Media Object field defined in [ASF] section 5.2.3.1 MUST be 0 or not
present.) The server MUST continue inspecting ASF packets and the applicable ASF payloads contained

in the ASF packets, until the processing rules in section 3.2.7.7.1 indicate that no more ASF payloads
can be inspected.

When no more ASF payloads can be inspected, if the value of the Profile_FirstPresTime variable in
the Abstract Data Model is 18,446,744,073,709,551,615, then it is not possible to compute values for
the X-StartupProfile header, and the processing of this local event terminates unsuccessfully.

The XSP-Rate parameter ([MS-WMSP] section 2.2.1.12.1) of the X-StartupProfile header SHOULD

contain five rate-value parameters, and the values of the rate-value parameters SHOULD be 10, 12,
15, 20, and 30.

98 / 138

[MS-RTSP-Diff] - v20240423
Real-Time Streaming Protocol (RTSP) Windows Media Extensions
Copyright © 2024 Microsoft Corporation
Release: April 23, 2024

The XSP-MaxBytes parameter ([MS-WMSP] section 2.2.1.12.2) of the X-StartupProfile header SHOULD
contain five maxbyte-value parameters, and the values of the maxbyte-value parameters SHOULD be

set to values of the Profile_MaxBytes array's elements. The assignment SHOULD be done such that
the value of the first maxbyte-value parameter is equal to the value of the first element in the

Profile_MaxBytes array, and the second maxbyte-value parameter is equal to the value of the
second element in the Profile_MaxBytes array.

The XSP-Time parameter ([MS-WMSP] section 2.2.1.12.3) of the X-StartupProfile header SHOULD
contain five time-value parameters, and the values of the time-value parameters SHOULD be set to
the values of the elements of the Profile_Time array. The assignment SHOULD be done such that the
value of the first time-value parameter is equal to the value of the first element in the Profile_Time
array, and the second time-value parameter is equal to the value of the second element in the

Profile_Time array.

The XSP-STime parameter ([MS-WMSP] section 2.2.1.12.4) of the X-StartupProfile header SHOULD be
set to the value of the Profile_FirstPresTime variable in the Abstract Data Model.

If the value of the Profile_LastPresTime variable is greater than the value of the

Profile_FirstPresTime variable, then the value of the XSP-LTime parameter ([MS-WMSP] section
2.2.1.12.5) of the X-StartupProfile header SHOULD be set to the value obtained by subtracting the

value of Profile_FirstPresTime from the value of Profile_LastPresTime.

If the value of the Profile_LastPresTime variable is less than or equal to the value of the
Profile_FirstPresTime variable, then the value of the XSP-LTime parameter of the X-StartupProfile
header SHOULD be set to 0.

If the value of the Profile_TimeForMaxDiffSndTime variable is greater than the value of the
Profile_FirstPresTime variable, then the value of the XSP-MaxDTime parameter ([MS-WMSP]
section 2.2.1.12.6) of the X-StartupProfile header SHOULD be set to the value obtained by subtracting

the value of Profile_FirstPresTime from the value of Profile_TimeForMaxDiffSndTime.

If the value of the Profile_TimeForMaxDiffSndTime variable is less than or equal to the value of
the Profile_FirstPresTime variable, then the value of the XSP-MaxDTime parameter of the X-
StartupProfile header SHOULD be set to 0.

The XSP-MaxDSTime parameter ([MS-WMSP] section 2.2.1.12.7) of the X-StartupProfile header
SHOULD be set to the value of the Profile_MaxDiffSndTime variable in the Abstract Data Model.

The XSP-ByteRate parameter ([MS-WMSP] section 2.2.1.12.8) of the X-StartupProfile header SHOULD

contain five byterate-val parameters, and the values of the byterate-val parameters SHOULD be set to
the values of the elements of the Profile_ByteRate array. The assignment SHOULD be done such
that the value of the first byterate-val parameter is equal to the value of the first element in the
Profile_ByteRate array, and the value of the second byterate-val parameter is equal to the value of
the second element in the Profile_ByteRate array.

3.2.7.7.1 Inspecting a Single ASF Payload

If the value of the Profile_FirstSendTime variable is 18,446,744,073,709,551,615, the content is
broadcast content, the ASF payload belongs to a video stream, and the ASF payload has the Key

Frame Bit ([ASF] section 5.2.3) set to 1, then the value of the Profile_FirstSendTime variable MUST
be set to the value of the Send Time field of the ASF packet that includes the ASF payload.

If the value of the Profile_FirstSendTime variable is 18,446,744,073,709,551,615, the content is
broadcast content, and the Selected-Streams variable contains only audio streams, then the value of

the Profile_FirstSendTime variable MUST be set to the value of the Send Time field of the ASF
packet that includes the ASF payload.

99 / 138

[MS-RTSP-Diff] - v20240423
Real-Time Streaming Protocol (RTSP) Windows Media Extensions
Copyright © 2024 Microsoft Corporation
Release: April 23, 2024

If the value of the Profile_FirstSendTime variable is 18,446,744,073,709,551,615 and the content
is not broadcast content, then the value of the Profile_FirstSendTime variable MUST be set to the

value of the Send Time field of the ASF packet that includes the ASF payload.

If the value of the Profile_FirstSendTime variable is still 18,446,744,073,709,551,615, then the

current ASF payload MUST NOT be inspected further, and the server SHOULD continue inspecting the
next applicable ASF payload as specified in section 3.2.7.7.

If the value of the Send Time field of the ASF packet that includes the ASF payload, minus the value
of Profile_FirstSendTime, exceeds the value of the AccelDuration parameter on the X-Accelerate-
Streaming header that is sent by the server, then the current ASF payload MUST NOT be inspected
further, and the server MUST stop inspecting ASF payloads. (The server can then proceed with
assigning values to the fields of the X-StartupProfile header, as specified in section 3.2.7.7.)

If the value of the Profile_FirstPresTime variable is not 18,446,744,073,709,551,615, and the value
of the Profile_FirstPresTime variable is greater than the value of the Presentation Time field of
the ASF payload, then the value of the Profile_FirstPresTime variable MUST be set to the value of
the Presentation Time field of the ASF payload.

If the value of the Profile_FirstPresTime variable is 18,446,744,073,709,551,615, then the values
of the Profile_FirstPresTime and Profile_LastPresTime variables MUST be set to the value of the

Presentation Time field of the ASF payload.

If the ASF payload belongs to an audio stream, the Selected-Streams variable contains at least one
video stream, and the value of the Profile_LastSendTime variable is not 0, then the server MUST
perform the processing rules in section 3.2.7.7.2.

The value of the Profile_LastSendTime variable MUST now be set to the value of the Send Time
field of the ASF packet that includes the ASF payload.

If the ASF payload belongs to a video stream, or if the Selected-Streams variable does not contain

any video streams, then the server MUST perform the processing rules in section 3.2.7.7.3.

If the ASF payload does not belong to a video stream or the Selected-Streams variable contains at

least one video stream, and if the value obtained by subtracting the value of the
Profile_FirstPresTime variable from the value of the Presentation Time field of the ASF payload is
equal to the value of the first element in the Profile_Time array, then the server MUST process the
Profile_Time array as follows:

 For every element in the Profile_Time array where the value of the element is equal to the value

obtained by subtracting the value of the Profile_FirstPresTime variable from the value of the
Presentation Time field of the ASF payload, the server MUST increase the corresponding
element in the Profile_MaxBytes array by the size of the media object in the ASF payload.

 For example, if the condition is true for the third element in the Profile_Time array, then the
third element in the Profile_MaxBytes array is modified. If the current value of the third element
in the Profile_MaxBytes array is 5,000, and if the ASF payload contains the first 1,000 bytes of a

media object that is 7,000 bytes in size, then the third element is increased by 7,000 and its new
value becomes 12,000.

The value of the Profile_BytesNeeded variable MUST now be increased by the size of the media
object in the ASF payload, and then the server SHOULD continue inspecting the next applicable ASF
payload, as specified in section 3.2.7.7.

3.2.7.7.2 MaxDiffSndTime Calculations

The signed integer obtained by subtracting the value of the Presentation Time field of the ASF
payload from the value of the Profile_LastPresTime variable is referred to as DiffPresTime.

100 / 138

[MS-RTSP-Diff] - v20240423
Real-Time Streaming Protocol (RTSP) Windows Media Extensions
Copyright © 2024 Microsoft Corporation
Release: April 23, 2024

The signed integer obtained by subtracting the value of the Send Time field of the ASF packet that
includes the ASF payload from the value of the Profile_LastSendTime variable is referred to as

DiffSndTime.

If the value of DiffPresTime is greater than 0, and the value of DiffPresTime is greater than the value

of the Profile_MaxDiffSndTime variable, then the value of the Profile_TimeForMaxDiffSndTime
variable MUST be set to the value of the Presentation Time field of the ASF payload, and the value
of the Profile_MaxDiffSndTime variable MUST be set to the sum of the DiffPresTime and
DiffSndTime values.

3.2.7.7.3 ChosenRate Calculations

If the value of the Send Time field of the ASF packet that includes the ASF payload is greater than

the value of the Profile_FirstSendTime variable, then the server MUST compute the sum of the
value of the Profile_BytesNeeded variable and the size of the media object in the ASF payload, and
multiply the sum by 1,000. The resulting value MUST then be divided by the value of the Send Time
field of the ASF packet that includes the ASF payload with the value of the Profile_FirstSendTime

variable subtracted from it. The value that results is referred to as the Current Average Playback Byte
Rate.

If the value of the Send Time field of the ASF packet that includes the ASF payload is less than or
equal to the value of the Profile_FirstSendTime variable, then the Current Average Playback Byte
Rate is 0.

If the Current Average Playback Byte Rate is 0, or if the Current Average Playback Byte Rate is
greater than the value of the Profile_PlaybackRate variable, then the Profile_ChosenRate variable
MUST be set to the value of the Profile_PlaybackRate variable.

If the Current Average Playback Byte Rate is not 0, and if the Current Average Playback Byte Rate is

less than or equal to the value of the Profile_PlaybackRate variable, then the Profile_ChosenRate
variable MUST be set to the Current Average Playback Byte Rate.

If the value of the Presentation Time field of the ASF payload is greater than the value of the

Profile_LastPresTime variable, then the server MUST perform the processing rules in section
3.2.7.7.4.

The server MUST now set the value of the Profile_LastPresTime variable to the value of the
Presentation Time field of the ASF payload.

3.2.7.7.4 MaxBytes, Time and ByteRate Calculations

If the value of the Profile_LastPresTime variable is greater than the value of the
Profile_FirstPresTime variable, then the server MUST subtract the value of the
Profile_FirstPresTime variable from the value of the Profile_LastPresTime variable, and multiply
the resulting value by the value of the Profile_ChosenRate variable. The value that resulted from

the multiplication, divided by 1,000, is referred to as the Streamed Byte Count.

If the value of the Profile_LastPresTime variable is less than or equal to the value of the
Profile_FirstPresTime variable, then the Streamed Byte Count is 0.

For each element in the Profile_MaxBytes array, the server MUST perform the following: Multiply
the Streamed Byte Count by a constant. For the first element in the Profile_MaxBytes array, the
value of the constant is 10. For the second element, the value of the constant is 12. For the third
element, the value of the constant is 15. For the fourth element, the value of the constant is 20. For

the fifth element, the value of the constant is 30. The result of the multiplication MUST be divided by
10. The result of the division MUST be subtracted from the value of the Profile_BytesNeeded
variable. The result of the subtraction MUST be treated as a signed integer, as specified in [MS-
DTYP] section 2.2.19; if the signed integer is greater than the value of the current element in the
Profile_MaxBytes array, then the current element in the Profile_MaxBytes array MUST be set to

101 / 138

[MS-RTSP-Diff] - v20240423
Real-Time Streaming Protocol (RTSP) Windows Media Extensions
Copyright © 2024 Microsoft Corporation
Release: April 23, 2024

the value of the signed integer, and the corresponding elements in the Profile_Time and
Profile_ByteRate arrays MUST also be updated as follows:

 The element in the Profile_Time array MUST be set to the value of the Profile_LastPresTime
variable minus the value of the Profile_FirstPresTime variable.

 The element in the Profile_ByteRate array MUST be set to the value of the
Profile_ChosenRate variable.

For example, if the signed integer is greater than the value of the third element in the
Profile_MaxBytes array, then the third element in the Profile_MaxBytes, Profile_Time, and
Profile_ByteRate arrays are all modified.

3.2.7.8 Broadcast ID

The higher layer SHOULD provide a numerical identifier that uniquely identifies the source of
broadcast content within the scope of the current server-side playlist. For example, if the same live

content source is used in multiple entries in a single playlist, the numerical identifier MUST be the
same for each of those entries. There is no requirement that the numerical identifier be unique across

different server-side playlists. If a playlist entry is not using a broadcast content source, the numerical
identifier MUST be 0.

3.2.7.9 AS-Bandwidth Request

The server SHOULD provide a mechanism to provide the stream number of the ASF file to the higher

layer. In response, the higher layer SHOULD provide the value for the "AS" bandwidth modifier as
specified in 2.2.5.1.1.

3.2.7.10 Fast Start Request

The server SHOULD provide a mechanism to inform the higher layer of a request by the client to
receive packets at an accelerated rate. The higher layer SHOULD also be informed if the request used

the X-Accelerate-Streaming header (section 2.2.6.13) or the X-Burst-Streaming
header (section 2.2.6.17).

In response, the higher layer MUST deliver ASF packets at a rate that is less than or equal to the value
that the client requested when the value of the State variable is PLAYING. The duration of the
accelerated delivery SHOULD NOT exceed the duration requested by the client. The higher layer MUST

report whether it is able to comply with the request and MUST report the accelerated rate and
duration that was chosen.

3.2.7.11 Proxy Authentication

This local event can occur when a Describe request is received and the value of the proxy-role

variable is 1. The purpose of this local event is to enable the higher layer to authenticate the client.
After the higher layer has authenticated the client, or if the higher layer determines that
authentication is not required, the higher layer is expected to specify whether the client is authorized

to access the proxy server.

The server MUST provide the following information to the higher layer:

 The URL that the client specified in the Describe request.

 The value of the Proxy-Authorization header (defined in [RFC2616] section 14.34), if any, that
was provided by the client in the Describe request. If the Proxy-Authorization header is not
present in the request, the server MUST inform the higher layer that this header is missing.

102 / 138

[MS-RTSP-Diff] - v20240423
Real-Time Streaming Protocol (RTSP) Windows Media Extensions
Copyright © 2024 Microsoft Corporation
Release: April 23, 2024

 The list of authentication schemes on the X-Accept-Proxy-Authentication header (section
2.2.6.15), if any, that was provided by the client in the Describe request. The server MUST specify

to the higher layer that the list is arranged in order of preference, with the most preferred
authentication scheme at the head of the list. If the X-Accept-Proxy-Authentication header is not

present in the request, the server MUST inform the higher layer that this header is missing.

After the information has been provided to the higher layer, the server MUST be prepared to receive
the following from the higher layer:

 The value that the server shall put on the Proxy-Authenticate header (defined in [RFC2326]
section 12.26) in the response, or an indication that no Proxy-Authenticate header shall be sent in
the response. If the higher layer does not provide this information, the server MUST assume that
no Proxy-Authenticate header needs to be sent in the response.

 If no value for the Proxy-Authenticate header is provided, this indicates that the client is either
authorized or not authorized to use the proxy server. If the higher layer does not provide this
indication and does not provide a value for the Proxy-Authenticate header, the server MUST
assume that the client is authorized to use the proxy server.

3.2.7.12 Origin Server Authentication

This local event can occur when a Describe request is received. The purpose of this local event is to
enable the higher layer to authenticate the client. After the higher layer has authenticated the client,
or if the higher layer determines that authentication is not required, the higher layer is expected to
specify whether the client is authorized to access the content identified by the URL in the Describe
request.

The server MUST provide the following information to the higher layer:

 The URL that the client specified in the Describe request.

 The value of the Authorization header (defined in [RFC2326] section 12.5), if any, that was
provided by the client in the Describe request. If the Authorization header is not present in the

request, the server MUST inform the higher layer that this header is missing.

 The list of authentication schemes on the X-Accept-Authentication (2.2.6.14) header, if any, that

was provided by the client in the Describe request. The server MUST specify to the higher layer
that the list is arranged in order of preference, with the most preferred authentication scheme at
the head of the list. If the X-Accept-Authentication header is not present in the request, the server
MUST inform the higher layer that this header is missing.

After the information has been provided to the higher layer, the server MUST be prepared to receive
the following from the higher layer:

 The value that the server shall put on WWW-Authenticate header (defined in [RFC2326] section

12.44) in the response, or an indication that no WWW-Authenticate header shall be sent in the
response. If the higher layer does not provide this information, the server MUST assume that no
WWW-Authenticate header needs to be sent in the response.

 If no value for the WWW-Authenticate header is provided, this indicates that the client is either
authorized or not authorized to access the content. If the higher layer does not provide this
indication and does not provide a value for the WWW-Authenticate header, the server MUST
assume that the client is authorized to access the content.

103 / 138

[MS-RTSP-Diff] - v20240423
Real-Time Streaming Protocol (RTSP) Windows Media Extensions
Copyright © 2024 Microsoft Corporation
Release: April 23, 2024

4 Protocol Examples

The following sections describe several operations as used in common scenarios to illustrate the
function of RTSP Windows Media Extensions.

4.1 RTP Packet Syntax

The size of the RTP payload format header, as specified in section 2.2.1, varies from 4 to 16 bytes,

depending on how the R, D, and I fields are set. When none of the fields are set to 1, the size of the
RTP payload format header is 4 bytes. When only one of the fields is set to 1, the size of the RTP
payload format header is 8 bytes. When two fields are set to 1, the size of the RTP payload format
header is 12 bytes. When all three fields are set to 1, the size of the RTP payload format header is 16
bytes.

The following illustration represents an ASF data packet as it would be sent on the network. In this
typical scenario, the total packet size is 1,500 bytes, which includes the following headers and

payloads:

 IP header = 20 bytes

 UDP header = 8 bytes

 RTP header = 12 bytes

 RTP payload format header = 4 bytes

 ASF data packet header = 12 bytes

 ASF payload headers and compressed media data = 1,444 bytes

Therefore, the header overhead is approximately 3.73 percent. For smaller RTP packet sizes, such as
1,000 bytes, the overhead is increased to approximately 5.6 percent.

104 / 138

[MS-RTSP-Diff] - v20240423
Real-Time Streaming Protocol (RTSP) Windows Media Extensions
Copyright © 2024 Microsoft Corporation
Release: April 23, 2024

Figure 7: RTP packet diagram

4.2 Vandermonde Matrix Algorithm

The Vandermonde matrix is created by following the steps as specified in section 2.2.2.2.2.

All computations needed to perform encoding and decoding of the data are based on the finite field
GF(28). The following shows the tables for exp() and log() over a GF(28).

105 / 138

[MS-RTSP-Diff] - v20240423
Real-Time Streaming Protocol (RTSP) Windows Media Extensions
Copyright © 2024 Microsoft Corporation
Release: April 23, 2024

Figure 8: Galois fields table in hexadecimal and decimal (log and exp)

The following is a 10 * 6 size Vandermonde matrix created from the Galois Field tables.

Figure 9: Vandermonde matrix table in hexadecimal, using GF28

106 / 138

[MS-RTSP-Diff] - v20240423
Real-Time Streaming Protocol (RTSP) Windows Media Extensions
Copyright © 2024 Microsoft Corporation
Release: April 23, 2024

It is then reduced to the following identity matrix by using standard linear algebra.

Figure 10: Vandermonde identity matrix table in hexadecimal, using GF28

In this example, a group of 6 RTP packets labeled SourcePacket0 through SourcePacket5 are used to

create 4 FEC packets labeled FECPacket0 through FECPacket3.

The reduced form of the previous identity matrix is used as the generator matrix and is subsequently
used to generate 10 encoded packets. The first 6 encoded packets will be identical to SourcePacket0
through SourcePacket5, and the last 4 encoded packets will be the FEC packets.

Figure 11: Vandermonde-generated data equation using GF28 (definition)

The server multiplies the generator matrix, which has 10 rows and 6 columns, with a source matrix

with 6 rows and 8 columns. Each row in the source matrix corresponds to one of the 6 RTP packets
that will be encoded, and each column is 1 byte from the packet on the corresponding row. To reduce
the size of the matrices, this example uses 8-byte packets. Each byte is expressed as a hexadecimal
number in the following illustration.

The result of the matrix multiplication is another matrix with 10 rows and 6 columns, each row
corresponding to an encoded RTP packet. The first 6 rows are identical to the RTP packets in the
source matrix, and the last 4 rows are the FEC RTP packets.

107 / 138

[MS-RTSP-Diff] - v20240423
Real-Time Streaming Protocol (RTSP) Windows Media Extensions
Copyright © 2024 Microsoft Corporation
Release: April 23, 2024

Figure 12: Vandermonde-generated data equation using GF28 (implementation)

A client that has lost some RTP packets arranges the RTP packets that it received as the result matrix,
and multiplies it with the inverse of the identity matrix to obtain the source matrix.

4.3 SDP Examples

4.3.1 Retransmission Stream

Windows Media Services is capable of retransmitting lost RTP packets. Windows Media Services
indicates that it supports retransmission of RTP packets by including a retransmission stream in the

Session Description Protocol (SDP) description. The SDP description specifies a payload format of "x-
wms-rtx" in the rtpmap attribute, as shown in the following example.

 m=application 0 RTP/AVP 96
 a=rtpmap:96 x-wms-rtx/1000
 a=control:rtx
 a=stream:65536

4.4 RTSP Examples

4.4.1 SETUP Request

To recover lost RTP packets, the client selects the retransmission stream by sending the SETUP

request (section 2.2.7.10.1) to the server. In the SETUP request (section 2.2.7.10.1), the client
specifies the RTP port to receive retransmitted RTP packets. In the response to this request, the

server specifies the RTCP port to send the generic NACK messages. For example, the following SETUP
request (section 2.2.7.10.1) specifies an RTP port of 4958.

 SETUP rtsp://server/sample/rtx RTSP/1.0
 Transport: RTP/AVP/UDP;unicast;client_port=4958-4959;ssrc=b58db0de
 ;mode=PLAY

108 / 138

[MS-RTSP-Diff] - v20240423
Real-Time Streaming Protocol (RTSP) Windows Media Extensions
Copyright © 2024 Microsoft Corporation
Release: April 23, 2024

4.4.2 Packet-Pair Bandwidth Estimation Using UDP

 The following sequence occurs between a client and server when conducting the packet-pair
experiment over UDP:

1. The client sends a Describe (section 2.2.7.2) request.

2. The server sends a "200 OK:" response that includes the SDP record.

3. The client sends a SelectStream (section 2.2.7.10) request by using the Setup method to establish
an RTP session for a retransmission stream.

4. The server responds with "200 OK".

5. The client sends a UdpPacketPair (section 2.2.7.14) request with a content type of application/x-
rtsp-udp-packetpair (section 2.2.6.3.3).

6. The server sends a "200 OK" response with the message body empty.

7. The server transmits two or three RTP packets with packet-pair data over UDP (sections 2.2.3.2
and 2.2.7.14).

The following illustration shows the sequence described above.

Figure 13: Packet-pair experiment sequence over UDP

 The following example shows a client's packet-pair experiment request. Note that some headers
extraneous to this example have been omitted for brevity.

 DESCRIBE rtsp://wms4708/test RTSP/1.0
 User-Agent: WMPlayer/10.0.0.4332

109 / 138

[MS-RTSP-Diff] - v20240423
Real-Time Streaming Protocol (RTSP) Windows Media Extensions
Copyright © 2024 Microsoft Corporation
Release: April 23, 2024

 Accept: application/sdp
 CSeq: 5
 Supported: com.microsoft.wm.srvppair, com.microsoft.wm.sswitch,
 com.microsoft.wm.eosmsg, com.microsoft.wm.predstrm,
 com.microsoft.wm.startupprofile

 RTSP/1.0 200 OK
 Content-Type: application/sdp
 CSeq: 5
 Server: WMServer/9.5.5732.6324
 Supported: com.microsoft.wm.srvppair, com.microsoft.wm.sswitch,
 com.microsoft.wm.eosmsg, com.microsoft.wm.fastcache,
 com.microsoft.wm.packetpairssrc, com.microsoft.wm.startupprofile

 v=0
 ...
 m=application 0 RTP/AVP 96
 a=rtpmap:96 x-wms-rtx/1000
 a=control:rtx
 a=stream:65536

 SETUP rtsp://wms4708/test/rtx RTSP/1.0
 User-Agent: WMPlayer/10.0.0.4332
 CSeq: 6
 Transport: RTP/AVP/UDP;unicast;client_port=3236-
 3237;ssrc=16a4ffff;mode=PLAY

 RTSP/1.0 200 OK
 Transport: RTP/AVP/UDP;unicast;server_port=5004-5005;client_port=3236-
 3237;ssrc=2f73682b;mode=PLAY
 CSeq: 6
 Session: 8134007897615700187;timeout=60
 Server: WMServer/9.5.5732.6324
 Supported: com.microsoft.wm.srvppair, com.microsoft.wm.sswitch,
 com.microsoft.wm.eosmsg, com.microsoft.wm.fastcache,
 com.microsoft.wm.packetpairssrc, com.microsoft.wm.startupprofile

 SET_PARAMETER rtsp://wms4708/test RTSP/1.0
 User-Agent: WMPlayer/10.0.0.4332
 Accept-Language: en-US, *;q=0.1
 Session: 8134007897615700187
 Content-Type: application/x-rtsp-udp-packetpair;charset=UTF-8
 CSeq: 7

 type: high-entropy-packetpair

 RTSP/1.0 200 OK
 Content-Type: application/x-rtsp-udp-packetpair;charset=UTF-8
 CSeq: 7
 Session: 8134007897615700187;timeout=60
 Server: WMServer/9.5.5732.6324

 type: high-entropy-packetpair

4.4.3 Packet-Pair Bandwidth Estimation Using TCP

The following sequence occurs between a client and server when conducting the packet-pair
experiment over TCP:

1. The client sends a Describe (section 2.2.7.2) request.

2. The server sends a "200 OK" response that includes the SDP record.

3. The client sends a TcpPacketPair (section 2.2.7.12) request with a content type of application/x-
rtsp-packetpair (section 2.2.6.3.2).

110 / 138

[MS-RTSP-Diff] - v20240423
Real-Time Streaming Protocol (RTSP) Windows Media Extensions
Copyright © 2024 Microsoft Corporation
Release: April 23, 2024

4. The server sends a "200 OK" response with three $P packets in the message body (section
2.2.7.12).

 The following illustration shows the sequence described above.

Figure 14: Packet-pair experiment sequence over TCP

4.4.4 Predictive Stream Selection and SelectStream

The server can switch from streaming one piece of content to another. This can occur, for example,

when a server-side playlist is used. When the server transitions from one entry to the next, it can
attempt to predict what streams the client would select based on the client's previous stream
selections.

The server announces the entry change with an EndOfStream (section 2.2.7.3) request sent to the
client indicating end-of-stream (and playlist entry) followed by an Announce (section 2.2.7.1) request
with SDP in the message body. It then sends the streams that the server predicts the client would

select. Note that the client can send a SelectStream (section 2.2.7.10) request by using the
SET_PARAMETER method at any time to reduce the transmission rate while streaming. This action
does not interrupt the streaming.

If the client accepts the streams, it also includes the respective URLs for those streams in the X-RTP-
Info (section 2.2.6.27) header of the corresponding Play (section 2.2.7.9) request. If the client rejects
a stream, it also sends a SelectStream (section 2.2.7.10) request by using the TEARDOWN method
before sending any subsequent Play (section 2.2.7.9) requests. In this case, the client does not

include the URL of the rejected stream in the X-RTP-Info (section 2.2.6.27) header of the

Play (section 2.2.7.9) request.

4.4.4.1 SelectStream Using SET_PARAMETER

A client can request the server to switch streams. The stream switch requests are performed by

submitting a SelectStream (section 2.2.7.10) request to the server. The
SelectStream (section 2.2.7.10) request specifies the application/x-wms-
streamswitch (section 2.2.6.3.9) media type:

111 / 138

[MS-RTSP-Diff] - v20240423
Real-Time Streaming Protocol (RTSP) Windows Media Extensions
Copyright © 2024 Microsoft Corporation
Release: April 23, 2024

 Content-Type: application/x-wms-streamswitch

This is an example of the message body in the request:

 SSEntry: 7 6 0 rtsp://myserver.com/myMBRcontent.wmv/stream=7
 rtsp://myserver.com/myMBRcontent.wmv/stream=6

In this case, the client is requesting that the server stop sending stream 7, and instead start sending
stream 6 in its place. The client is requesting that the server perform no thinning (that is, thinning
level of 0).

The following example illustrates the conversation between the server and client during a stream
switch request from stream 7 to 6 with no thinning.

Client to server:

 SET_PARAMETER rtsp://myserver.com/myMBRcontent.wmv/stream=7
 RTSP/1.0
 Content-Length: 112
 User-Agent: WMPlayer/9.0.0.2899 guid/3300AD50-2C39-46C0-AE0A-FF4DD9402916
 Accept-Charset: UTF-8, *;q=0.1
 X-Accept-Authentication: Negotiate, NTLM, Digest, Basic
 Accept-Language: en-us, *;q=0.1
 Session: 14828520034371861638
 Content-Type: application/x-wms-streamswitch
 CSeq: 8
 X-Playlist-Gen-Id: 1547
 If-Match: "{0279ED14-1413-E1EE-14DF-E327B7519C52}"

 SSEntry: 7 6 0 rtsp://myserver.com/myMBRcontent.wmv/stream=7
 rtsp://myserver.com/myMBRcontent.wmv/stream=6

Server to client:

 RTSP/1.0 200 OK
 Date: Wed, 09 Oct 2002 19:26:03 GMT
 CSeq: 8
 Session: 14828520034371861638;timeout=60
 Server: WMServer/9.0.0.3239
 .
 .
 ... continue receiving content...

4.4.4.2 SelectStream Using TEARDOWN

When the SelectStream (section 2.2.7.10) request uses the TEARDOWN and SETUP methods, the
method can also contain an SSEntry message body (indicated by the application/x-wms-
streamswitch (section 2.2.6.3.9) media type on the Content-Type (section 2.2.6.3) header). The
application sends the SSEntry message body after predictive stream selection if the stream URLs for

an old entry are different from the stream URLs for a new entry.

112 / 138

[MS-RTSP-Diff] - v20240423
Real-Time Streaming Protocol (RTSP) Windows Media Extensions
Copyright © 2024 Microsoft Corporation
Release: April 23, 2024

For example, an application sets up the following stream:

 SETUP rtsp://host/abc/audio

 Server

It then sends an Announce (section 2.2.7.1) request where the X-RTP-Info (section 2.2.6.27) header
indicates that the stream "rtsp://host/abc/audio=5" has been selected.

Later, if the application wants to send a SelectStream (section 2.2.7.10) request to de-select the
/audio=5 stream, it sends the following:

 TEARDOWN rtsp://host/abc/audio
 Content-Type: application/x-wms-streamswitch

 5 5 2 rtsp://host/abc/audio=5 rtsp://host/abc/audio=5

Note The value 5 is the ASF stream ID for the audio=5 stream.

4.4.4.3 SelectStream After Predictive Stream Selection

Assume for the first entry that the client selects the following streams: /audio, /video. For the second
entry, the server predicts streams /audio=2, /video=5. If the client wants to deselect the stream
/audio=2, or switch from /audio=2 to /audio=3, the client chooses one of the originally selected
streams (/audio or /video), and then sends a TEARDOWN (section 2.2.7.13) or
SET_PARAMETER (section 2.2.7.10.3) request by using the original stream URL with the SSEntry
message body referencing the new stream. Both the original and the new stream require the same

transport (UDP or TCP) and use the same RTP payload format.

Looking at a simple case, if all streams (/audio, /video, /audio=2, /video=5) use the same transport

and RTP payload format, the client is free to select any stream (/audio or /video).

For example, the client can use the following request to deselect the /audio=2 stream:

 TEARDOWN rtsp://host/abc/video
 Content-Type: application/x-wms-streamswitch

 2 2 2 rtsp://host/abc/audio=2 rtsp://host/abc/audio=2

4.4.4.4 Client Requests FEC Stream from Server

From the SDP description sequence, the client can select audio or video streams, and for each of these
it can select associated FEC streams.

The following example illustrates a request/response exchange in which the client requests FEC using

a packet span of 24 and 4 FEC packets per span (FecSpan=4). The third parameter, the
FecBurstMargin field, is used to buffer a set of packet spans and associated FEC packets in the form

of a Vandermonde matrix (section 2.2.2.2), which is a calculation commonly applied to error
correction problems.

The example also shows another FEC parameter, known as the FEC burst margin (FecBurstMargin=6),
used to recover from burst losses.

Client to server:

113 / 138

[MS-RTSP-Diff] - v20240423
Real-Time Streaming Protocol (RTSP) Windows Media Extensions
Copyright © 2024 Microsoft Corporation
Release: April 23, 2024

 SETUP rtsp://myserver.com/mycontent.wmv/stream=5/fec98 RTSP/1.0
 Transport:
 RTP/AVP/UDP;unicast;client_port=2408;ssrc=6dded651;mode=PLAY;FecSpan=4;
 FecPerSpan=1;FecBurstMargin=6, RTP/AVP/TCP;unicast;interleaved=0-1;
 ssrc=6dded651;mode=PLAY
 If-Match: "{83A04BD0-FD30-1984-4994-0A22CA116ED3}"
 Date: Fri, 23 Mar 2001 04:28:14 GMT
 CSeq: 8
 Session: 1077055954
 User-Agent: WMPlayer/9.0.0.197 guid/CB131790-CC16-4CCE-A234-6D29BEE21FCE
 Accept-Language: en-us, *;q=0.1
 Accept-Charset: UTF-8, *;q=0.1
 X-Accept-Authentication: NTLM, Digest

Server to client:

 RTSP/1.0 200 OK
 Transport:
 RTP/AVP/UDP;unicast;source=157.56.216.159;server_port=2410;client_port=2408;
 ssrc=3874dd27;mode=PLAY;FecSpan=4;FecPerSpan=1;FecBurstMargin=6
 Date: Fri, 23 Mar 2001 04:28:14 GMT
 CSeq: 8
 Timestamp: 1 0.031
 Session:1077055954;timeout=60
 Server: WMServer/ 9.0.0.197
 Cache-Control: must-revalidate, proxy-revalidate

4.4.5 Server-Side Playlist Entry Switching

Content is identified as sourcing from a server-side playlist in the SDP included in the response to the
Describe (section 2.2.7.2) request.

How a server-side playlist is represented on the server is implementation-specific. However, the
following example shows how a server-side playlist can look using an XML-based syntax.

 <?wsx version="1.0"?>
 <smil>
 <media role="Advertisement" noSkip="TRUE" src="Ad_1.wmv"/>
 <media src="preview.wmv"/>
 <media src="movie.wmv"/>
 <media role="Advertisement" noSkip="TRUE" src="Ad_2.wmv"/>
 </smil>

In the following example, the server streams an advertisement that the client is unable to skip past.
Immediately after the ad is a movie preview followed by a movie. At the end, another advertisement

plays, and the client is again unable to skip past it.

For the client to successfully stream this server-side playlist, use the following sequence:

1. When the server transitions from one server-side playlist entry to the next, it sends an
EndOfStream (section 2.2.7.3) request to the client. The message body of the request contains
the following:

 EOF: True

114 / 138

[MS-RTSP-Diff] - v20240423
Real-Time Streaming Protocol (RTSP) Windows Media Extensions
Copyright © 2024 Microsoft Corporation
Release: April 23, 2024

 End-Of-Playlist-Entry: True

2. The client sends a LogPlay (section 2.2.7.7) request to submit the logging statistics to the server.

3. The server sends an Announce (section 2.2.7.1) request to the client providing the SDP record for
the next playlist entry.

4. The client sends a SelectStream (section 2.2.7.10) request by using the TEARDOWN method to
the server to de-select any old streams.

5. The client sends a SelectStream (section 2.2.7.10) request by using the SETUP method to the
server to select new streams.

6. The client repeats steps 4 and 5 until all old streams are de-selected, and the new streams have
been selected.

7. The client submits a Play (section 2.2.7.9) request to start receiving the RTP packets.

The following illustration shows the previously described sequence.

Figure 15: Streaming sequence between client and server for a server-side playlist

4.4.6 Stream Playback with Authentication

The following sequence occurs between a client and server if the server requires the client to be

authenticated:

1. The client sends a Describe (section 2.2.7.2) request.

2. The server responds with a "401 Unauthorized" response. The server and client exchange access
authentication messages, as described in [RFC1945] section 11.

Note The request/response exchanges required for authentication are defined by the selected
authentication scheme.

115 / 138

[MS-RTSP-Diff] - v20240423
Real-Time Streaming Protocol (RTSP) Windows Media Extensions
Copyright © 2024 Microsoft Corporation
Release: April 23, 2024

3. If authentication has succeeded, the server sends a "200 OK:" response that includes the SDP
record.

4. The client sends a SelectStream (section 2.2.7.10) request by using the Setup method for each
selected stream.

5. The server responds with "200 OK".

6. The client submits a Play (section 2.2.7.9) request to start receiving the RTP packets.

7. The server responds with "200 OK" and begins sending the RTP packets.

8. The client submits connect-time statistics using a LogConnect request.

The following illustration shows the previously described sequence.

Figure 16: RTSP client-server stream playback sequence with authentication

116 / 138

[MS-RTSP-Diff] - v20240423
Real-Time Streaming Protocol (RTSP) Windows Media Extensions
Copyright © 2024 Microsoft Corporation
Release: April 23, 2024

4.4.7 Streaming, Pausing, Fast-Forwarding, and Stopping Playback

The following sequence occurs between a client and server while performing other transport
operations in between streaming and then stopping a file:

 The client sends a Describe (section 2.2.7.2) request.

 The server responds with a "200 OK" response that includes the SDP record.

 The client sends a SelectStream (section 2.2.7.10) request using the Setup method for each
selected stream.

 The server responds with "200 OK".

 The client submits a Play (section 2.2.7.9) request to start receiving the RTP packets.

 The server responds with "200 OK" and begins sending the RTP packets.

 The client submits a Play (section 2.2.7.9) request using the Scale header (as defined in

[RFC2326] section 12.34) to request playback of the content at a rate other than normal playback
speed.

 The server responds with "200 OK" and continues sending RTP packets.

 The client submits a Pause (section 2.2.7.8) request to suspend receiving the RTP packets.

 The server responds with "200 OK".

 The client submits play statistics using a LogPlay (section 2.2.7.7) request.

 The server responds with "200 OK".

 The client submits a Teardown (section 2.2.7.13) request to stop receiving RTP packets and
deselects the streams.

 The server responds with "200 OK".

The following illustration shows the previously described sequence.

117 / 138

[MS-RTSP-Diff] - v20240423
Real-Time Streaming Protocol (RTSP) Windows Media Extensions
Copyright © 2024 Microsoft Corporation
Release: April 23, 2024

Figure 17: RTSP client-server stream playback sequence with transport operations

4.5 Logging and RTSP

4.5.1 Submitting Connect-Time Statistics

Submitting the connect-time statistics log is done by using the SET_PARAMETER (section 2.2.7)
request method with the Content-Type header set to application/x-wms-Logconnectstats, as specified
in LogConnect (section 2.2.7.6).

118 / 138

[MS-RTSP-Diff] - v20240423
Real-Time Streaming Protocol (RTSP) Windows Media Extensions
Copyright © 2024 Microsoft Corporation
Release: April 23, 2024

Client to server (note the absence of content in the <Summary> </Summary> tags):

 SET_PARAMETER rtsp://myserver.com/mycontent.wmv RTSP/1.0
 Content-Length: 218
 User-Agent: WMPlayer/9.0.0.2833 guid/3300AD50-2C39-46C0-AE0A-C4D98694D7B4
 Accept-Charset: UTF-8, *;q=0.1
 X-Accept-Authentication: Negotiate, NTLM, Digest
 Accept-Language: en-us, *;q=0.1
 Session: 2828013918854793989
 Content-Type: application/x-wms-Logconnectstats;charset=UTF-8
 CSeq: 6

 <XML><Summary></Summary><c-dns>-</c-dns><c-ip>0.0.0.0</c-ip>
 <c-os>Windows_XP</c-os><c-osversion>5.1.0.2600</c-osversion>
 <date>2002-07-30</date><time>15:42:30</time><c-cpu>Pentium</c-cpu>
 <transport>TCP</transport></XML>

Server to client:

 RTSP/1.0 200 OK
 Date: Tue, 30 Jul 2002 15:47:10 GMT
 CSeq: 6
 Session: 2828013918854793989;timeout=60
 Server: WMServer/9.0.0.3101

4.5.2 Submitting a Play Log

Client to server (note the <Summary></Summary> tags in this example):

 SET_PARAMETER rtsp://myserver.com/mycontent.wmv RTSP/1.0
 Content-Length: 2067
 User-Agent: WMPlayer/9.0.0.2683 guid/3300AD50-2C39-46C0-AE0A-C4D98694D7B4
 Accept-Charset: UTF-8, *;q=0.1
 X-Accept-Authentication: Negotiate, NTLM, Digest
 Accept-Language: en-us, *;q=0.1
 Session: 2828013918854793989
 Content-Type: application/x-wms-Logplaystats;charset=UTF-8
 CSeq: 8
 Supported: com.microsoft.wm.srvppair, com.microsoft.wm.sswitch,
 com.microsoft.wm.eosmsg, com.microsoft.wm.predstrm

 <XML><Summary>0.0.0.0 2002-04-22 23:31:24 -
 rtsp://myserver.com/mycontent.wmv 0 18 1 200 {3300AD50-2C39-46c0-
 AE0A-C4D98694D7B4} 9.0.0.2683 en-US
 WMFSDK/9.0.0.2683_WMPlayer/9.0.0.2683 - wmplayer.exe 9.0.0.2683
 Windows_.Net_Server 5.1.0.3604 Pentium 18 501880 144932 rtsp UPD
 Windows_Media_Audio_V2 Microsoft_MPEG-4_Video_Codec_V3 - - 136436 -
 156 0 0 0 0 0 0 1 0 100 - - - - rtsp://myserver.com/mycontent.wmv
 mycontent.wmv -</Summary><c-ip>0.0.0.0</c-ip><date>2002-04-22</date>
 22</date><time:23:31:24</time><c-dns>-</c-dns>
 .
 .
 .
 </XML

Server to client:

119 / 138

[MS-RTSP-Diff] - v20240423
Real-Time Streaming Protocol (RTSP) Windows Media Extensions
Copyright © 2024 Microsoft Corporation
Release: April 23, 2024

 RTSP/1.0 200 OK
 Date: Mon, 22 Apr 2002 23:31:33 GMT
 CSeq: 8
 Session: 2828013918854793989;timeout=60
 Server: WMServer/9.0.0.3067

4.6 RTSP Proxy Server Interaction

A server that is configured to operate as a proxy server provides the service of routing client requests
to one or more origin servers that publish the streaming media content. In this case, the proxy server

behaves as a client to the origin server. A proxy server might support caching of content. When the
client requests content from a caching proxy server, it can either transmit the content from its local
cache or obtain the content from the origin server and then transmit it to the requesting client.

 A Cache-Control (section 2.2.6.2) header contains directives about the content that indicates to the
proxy server how it handles the content. For example, the x-wms-stream-type directive is used to

determine whether the requested content is broadcast or on-demand. The header can include one or
more directives and can be passed from the origin server to the client through the intermediate proxy

server. When the proxy server is caching content, the Cache-Control header is saved and added to the
relevant response messages. For information on the Cache-Control header and the directives, see
section 2.2.6.2.

Figure 18: RTSP state diagram with caching proxy server (client perspective)

120 / 138

[MS-RTSP-Diff] - v20240423
Real-Time Streaming Protocol (RTSP) Windows Media Extensions
Copyright © 2024 Microsoft Corporation
Release: April 23, 2024

Figure 19: RTSP state diagram with caching proxy server (server perspective)

A proxy server, whether acting as a server or as a client, is largely identical in state to an origin server
(as specified in diagrams in sections 3.1 and 3.2.) That is, when streaming to a client, the proxy
server is acting as a regular (origin) server. When acting as a logical client, the proxy server is
forwarding requests to the origin server. As indicated in the following figure that illustrates caching

proxy server states, much of the decision matrix previously described occurs as a result of the Setup
request that causes the initial transition into the "Ready" state. One additional state—the Waiting for
GetContentInfo response state—becomes available with the introduction of a caching proxy server.
This state, which is indicated by the dotted boxes in the RTSP state diagrams shown here, is
applicable only if the caching proxy server is acting as a client to the origin server and only if the
content on the cache has expired. The caching proxy server remains in the "Waiting for
GetContentInfo response" state until it receives the GetContentInfo response from the origin server.

The response to the GetContentInfo request determines whether the session is streamed from the

cache or from the origin server. In either case, both the origin server and the proxy server transition
back to the "Ready" state.

When a client requests on-demand content from a caching proxy server, the proxy server first checks
whether the content exists locally and whether the content is valid. If both conditions are true, then
the proxy server can transmit the content from its local cache to the client. If the content has expired,

the proxy server establishes a connection to the origin server to determine whether the cached copy
of the content is still valid. If the proxy server is able to determine that the cached content is still
valid, then the proxy server is allowed to transmit the content to the client. If the cached copy of the
content is invalid and caching of the content is allowed, then the proxy server might replace its cached
copy by downloading the content from the origin server into the cache. The proxy server would then
be able to transmit the content to the requesting client.

121 / 138

[MS-RTSP-Diff] - v20240423
Real-Time Streaming Protocol (RTSP) Windows Media Extensions
Copyright © 2024 Microsoft Corporation
Release: April 23, 2024

Figure 20: Caching proxy server states

4.6.1 Sequencing for Playlist Content Delivery

The following sequence occurs when a client is requesting playlist content. A proxy server handles
requests and content delivery to and from the client, connecting with the playlist origin server if

required.

The proxy server comprises a server role and a client role. In the following description, the client that

connects to the proxy server is referred to as the media player client to keep it distinct from the client
role of the proxy server.

1. The media player client sends a Describe (section 2.2.7.2) request.

2. The higher layer of the proxy server checks whether the requested content is in its local cache. If
the content is not in the cache, the higher layer of the proxy server creates an instance of the

122 / 138

[MS-RTSP-Diff] - v20240423
Real-Time Streaming Protocol (RTSP) Windows Media Extensions
Copyright © 2024 Microsoft Corporation
Release: April 23, 2024

client role and uses the client role to open a connection with the origin server. These steps are
described in section 4.6.3.

3. The higher layer of the proxy server checks whether the content in the local cache is valid. If the
content is not valid, the higher layer of the proxy server creates an instance of the client role and

uses the client role to revalidate the content. If the content is still not valid, then the higher layer
of the proxy server opens a connection with the origin server. These steps are described in section
4.6.3.

4. The server role of the proxy server sends a "200 OK" response that includes the SDP record and
the Cache-Control (section 2.2.6.2) header, as specified in 3.2.5.4.

5. The media player client sends a SelectStream (2.2.7.10) request using the Setup method for each
selected stream.

6. The server role of the proxy server sends a "200 OK" response to the media player client, as
specified in 3.2.5.6.

7. The media player client submits a Play request to start receiving the RTP packets.

8. The server role of the proxy server responds with "200 OK" and begins sending the RTP packets
for the requested streams to the client, as specified in 3.2.5.8.

9. The client role of the proxy server communicates any subscribed-to events to the origin server

using the SendEvent (2.2.7.11) request, as specified in 3.1.4.7 and3.1.4.9.

10. The media player client submits play statistics using a LogPlay (section 2.2.7.7) request.

11. The server role of the proxy server responds with "200 OK", as specified in 3.2.5.12.

 The following illustration shows the sequencing that occurs when the media player client requests a
file from a media server that is configured as a proxy server.

123 / 138

[MS-RTSP-Diff] - v20240423
Real-Time Streaming Protocol (RTSP) Windows Media Extensions
Copyright © 2024 Microsoft Corporation
Release: April 23, 2024

Figure 21: Playlist content delivery

4.6.2 Sequencing for Broadcast Content Delivery

The following sequence occurs when a client is requesting broadcast content. A proxy server handles
requests and content delivery between the client and the origin server that generates the broadcast.

The proxy server comprises a server role and a client role. In the following description, the client that
connects to the proxy server is referred to as the media player client to keep it distinct from the client

role of the proxy server:

1. The media player client sends a Describe (section 2.2.7.2) request.

124 / 138

[MS-RTSP-Diff] - v20240423
Real-Time Streaming Protocol (RTSP) Windows Media Extensions
Copyright © 2024 Microsoft Corporation
Release: April 23, 2024

2. The higher layer of the proxy server checks whether it has a client role that is currently receiving
the content. If the content is not being received by any client role, then the higher layer of the

proxy server creates an instance of the client role and uses it to open a connection with the origin
server. These steps are described in section 4.6.3.

3. The higher layer of proxy server checks whether the content can be split, as determined by the x-
wms-proxy-split directive on the Cache-Control (section 2.2.6.2) header that is provided by the
client role. If the content cannot be split, and using the current client role would cause the content
to be split, then the higher layer of the proxy server creates another instance of the client role and
uses it to open a connection with the origin server. These steps are described in 4.6.3.

4. The server role of the proxy server sends a "200 OK" response that includes the SDP record and
the Cache-Control header, as specified in 3.2.5.4.

5. The media player client sends a SelectStream (2.2.7.10) request using the Setup method for each
selected stream.

6. The server role of the proxy server sends a "200 OK" response to the media player client, as

specified in 3.2.5.6.

7. The client role of the proxy server communicates any subscribed-to events to the origin server
using the SendEvent (2.2.7.11) request, as specified in 3.1.4.7 and 3.1.4.9.

8. The media player client submits play statistics using a LogPlay (section 2.2.7.7) request.

9. The server role of the proxy server responds with "200 OK", as specified in 3.2.5.12.

 The following illustration shows the sequencing that occurs when the media player client requests
broadcast content from a media server that is configured as a proxy server.

125 / 138

[MS-RTSP-Diff] - v20240423
Real-Time Streaming Protocol (RTSP) Windows Media Extensions
Copyright © 2024 Microsoft Corporation
Release: April 23, 2024

Figure 22: Broadcast content delivery

4.6.3 Proxy Server and Origin Server Communication

 The following sequence occurs when a proxy server is requesting content from an origin server:

1. The higher layer of the proxy server instructs the client role to requests content information from
the origin server by sending a GetContentInfo (section 2.2.7.4) request, as specified in 3.1.4.1.

2. The origin server responds with the Cache-Control (section 2.2.6.2) header for the content.

3. The higher layer of the proxy server determines whether to cache or split the content that the
origin server is about to stream. If the content is to be cached, the higher layer of the proxy
server stores the Cache-Control (section 2.2.6.2) header information and the content in the local
cache.

126 / 138

[MS-RTSP-Diff] - v20240423
Real-Time Streaming Protocol (RTSP) Windows Media Extensions
Copyright © 2024 Microsoft Corporation
Release: April 23, 2024

4. If the content is not fully cached in the proxy server's local cache, or if the content will not be
cached or split, the higher layer of the proxy server instructs the client role to send a

Describe (section 2.2.7.2) request, as specified in 3.1.4.2, followed by a Play (section 2.2.7.9)
request, as specified in 3.1.4.3 to the origin server.

5. The higher layer of the proxy server delivers the ASF packets for the requested content to the
server role, as specified in 3.1.4.3, which causes the server role to send the content as RTP
packets to the client. Depending on whether the content is already fully cached, the content
source used by the proxy server's higher layer to obtain the ASF packets is either the proxy
server's local cache or the origin server.

6. The proxy server's client role communicates any subscribed-to events to the origin server using
the SendEvent (2.2.7.11) request, as specified in 3.1.4.7 and 3.1.4.9.

127 / 138

[MS-RTSP-Diff] - v20240423
Real-Time Streaming Protocol (RTSP) Windows Media Extensions
Copyright © 2024 Microsoft Corporation
Release: April 23, 2024

5 Security

The following sections specify security considerations for implementers of RTSP Windows Media
Extensions.

5.1 Security Considerations for Implementers

RTSP Windows Media Extensions are at risk of an attack in which the attacker spoofs RTCP packets

containing generic NACK messages, causing the server to flood the client unnecessarily with
retransmitted RTP packets. To mitigate against the attack, the server chooses the value of the ssrc
parameter in the Transport (section 2.2.6.11) header in such a way that it is difficult for an attacker to
predict its value. The server can also impose a limit on how many RTP packets per second that it will
retransmit to a client.

5.2 Index of Security Parameters

The only security parameter, HTTP access authentication, is found in section 2.1.

128 / 138

[MS-RTSP-Diff] - v20240423
Real-Time Streaming Protocol (RTSP) Windows Media Extensions
Copyright © 2024 Microsoft Corporation
Release: April 23, 2024

6 (Updated Section) Appendix A: Product Behavior

The information in this specification is applicable to the following Microsoft products or supplemental
software. References to product versions include updates to those products.

The terms "earlier" and "later", when used with a product version, refer to either all preceding
versions or all subsequent versions, respectively. The term "through" refers to the inclusive range of
versions. Applicable Microsoft products are listed chronologically in this section.

Windows Client

 Windows XP operating system Service Pack 1 (SP1)

 Windows Vista operating system

 Windows 7 operating system

 Windows 8 operating system

 Windows 8.1 operating system

 Windows 10 operating system

 Windows 11 operating system

Windows Server

 Windows Server 2003 operating system

 Windows Server 2008 operating system

 Windows Server 2008 R2 operating system

 Windows Server 2012 operating system

 Windows Server 2012 R2 operating system

 Windows Server 2016 operating system

 Windows Server operating system

 Windows Server 2019 operating system

 Windows Server 2022 operating system

 Windows Server 2025 operating system

Exceptions, if any, are noted in this section. If an update version, service pack or Knowledge Base
(KB) number appears with a product name, the behavior changed in that update. The new behavior
also applies to subsequent updates unless otherwise specified. If a product edition appears with the

product version, behavior is different in that product edition.

Unless otherwise specified, any statement of optional behavior in this specification that is prescribed
using the terms "SHOULD" or "SHOULD NOT" implies product behavior in accordance with the
SHOULD or SHOULD NOT prescription. Unless otherwise specified, the term "MAY" implies that the
product does not follow the prescription.

<1> Section 2.1: Windows Media Format 9 Series Software Development Kit (SDK), Windows Media
Format 9.5 SDK, Windows Vista and later, and Windows Media Services on Windows Server 2003,

Windows Server 2008, and Windows Server 2008 R2 operating system support only RTSP using TCP.

129 / 138

[MS-RTSP-Diff] - v20240423
Real-Time Streaming Protocol (RTSP) Windows Media Extensions
Copyright © 2024 Microsoft Corporation
Release: April 23, 2024

<2> Section 2.1: Windows Media Format 9 Series SDK, Windows Media Format 9.5 SDK, Windows
Vista and later support NTLM, Digest (as specified in [RFC2617]), and Negotiate (as specified in

[RFC4559]) authentication. Basic authentication is supported only when challenged by a proxy server.
Windows Media Services on Windows Server 2003, Windows Server 2008, and Windows Server 2008

R2 support NTLM, Digest, and Negotiate authentication. Authentication protocols on the server are
disabled by default and can be selectively enabled by the server administrator.

<3> Section 2.2.5.5: For compatibility with Windows Media Format 9 Series SDK, Windows Media
Format 9.5 SDK, and Windows Media Services on Windows Server 2003, and for compatibility with all
of the RTSP implementations on Windows Vista and Windows 7, the URL specified on the control
attribute for this stream is "rtx".

<4> Section 2.2.6.2.9: Windows Media Services on Windows Server 2003, Windows Server 2008, and

Windows Server 2008 R2 do not provide the x-wms-content-size directive when the content being
streamed by the server is a playlist.

<5> Section 2.2.6.2.10: The Windows Media Format 9 Series SDK, the Windows Media Format 9.5
SDK, Windows Vista and later support only the remote-log event.

<6> Section 2.2.6.2.11: This directive is supported only by Windows Media Services on Windows
Server 2003.

<7> Section 2.2.6.2.12: This directive is supported only by Windows Media Services on Windows
Server 2003.

<8> Section 2.2.6.7: Windows Server 2003, Windows Server 2008 and Windows Server 2008 R2
ignore this directive if sent following a rewind.

<9> Section 2.2.6.10: The client role in Windows Media Format 9 Series Software Development Kit
(SDK), Windows Media Format 9.5 SDK, Windows Vista and later, and Windows Media Services on
Windows Server 2003, Windows Server 2008, and Windows Server 2008 R2 ignore the Supported

header when received in a request or response.

<10> Section 2.2.6.10.1: This rule is not adhered to by the client role in Windows Media Format 9

Series Software Development Kit (SDK), Windows Media Format 9.5 SDK, Windows Vista and later,
and Windows Media Services on Windows Server 2003, Windows Server 2008, and Windows Server
2008 R2.

<11> Section 2.2.6.10.1: Windows Media Services on Windows Server 2003 and Windows Server
2003 operating system with Service Pack 1 (SP1) ignores this token and sends the EndOfStream

request.

<12> Section 2.2.6.10.2: This rule is not adhered to by the client role in Windows Media Format 9
Series Software Development Kit (SDK), Windows Media Format 9.5 SDK, Windows Vista and later,
and Windows Media Services on Windows Server 2003, Windows Server 2008, and Windows Server
2008 R2.

<13> Section 2.2.6.10.4: This rule is not adhered to by the client role in Windows Media Format 9

Series Software Development Kit (SDK), Windows Media Format 9.5 SDK, Windows Vista and later,
and Windows Media Services on Windows Server 2003, Windows Server 2008, and Windows Server

2008 R2.

<14> Section 2.2.6.10.6: This rule is not adhered to by the client role in Windows Media Format 9
Series Software Development Kit (SDK), Windows Media Format 9.5 SDK, Windows Vista and later,
and Windows Media Services on Windows Server 2003, Windows Server 2008, and Windows Server
2008 R2.

<15> Section 2.2.6.10.7: This rule is not adhered to by the client role in Windows Media Format 9
Series Software Development Kit (SDK), Windows Media Format 9.5 SDK, Windows Vista and later,

130 / 138

[MS-RTSP-Diff] - v20240423
Real-Time Streaming Protocol (RTSP) Windows Media Extensions
Copyright © 2024 Microsoft Corporation
Release: April 23, 2024

and Windows Media Services on Windows Server 2003, Windows Server 2008, and Windows Server
2008 R2.

<16> Section 2.2.6.10.8: This rule is not adhered to by the client role in Windows Media Format 9
Series Software Development Kit (SDK), Windows Media Format 9.5 SDK, Windows Vista and later,

and Windows Media Services on Windows Server 2003, Windows Server 2008, and Windows Server
2008 R2.

<17> Section 2.2.6.10.8: The X-StartupProfile header is supported by Windows Media Format 9.5
SDK, Windows Vista and later, and by the server implementation in Windows Media Services on
Windows Server 2003 with SP1 and Windows Server 2003 operating system with Service Pack 2
(SP2).

<18> Section 2.2.6.28: This header is supported by the Windows Media Format 9.5 SDK, Windows

Vista, and Windows Media Services on Windows Server 2003 with SP1.

<19> Section 3.1: The Windows Media Format 9 Series SDK, Windows Media Format 9.5 SDK,
Windows Vista and later, and Windows Media Services on Windows Server 2003 do not support

transitions in or out of the RECORD state.

<20> Section 3.1.5.1: The client-guid syntax element is not sent by Windows Media Format 9.5 SDK.
An update is available from Microsoft to correct this problem.

<21> Section 3.1.5.1: Whether the same GUID is used for all sessions or changed between different
sessions is determined by how the user has configured Windows Media Player and/or the Windows
Media Format SDK.

<22> Section 3.1.5.1: The com.microsoft.wm.startupprofile token is specified only by Windows Media
Format 9.5 SDK, Windows Vista and later.

<23> Section 3.1.5.1: Only Windows Media Services on Windows Server 2003 supports sending the
X-Proxy-Client-Agent and X-Proxy-Client-Verb headers.

<24> Section 3.1.5.2: This rule is not adhered to by the client role in Windows Media Format 9 Series

Software Development Kit (SDK), Windows Media Format 9.5 SDK, Windows Vista, Windows 7,
Windows 8, and Windows Media Services on Windows Server 2003, Windows Server 2008, and
Windows Server 2008 R2.

<25> Section 3.1.5.4: The Windows Media Format 9 Series SDK, Windows Media Format 9.5 SDK,
Windows Media Services on Windows Server 2003, Windows Vista and later, and Windows Server
2008 R2 and later support NTLM, Digest (as specified in [RFC2617]), and Negotiate (as specified in

[RFC4559]) authentication. Basic authentication (as specified in [RFC2617]) is only supported when
challenged by a proxy server.

<26> Section 3.1.5.4: The client role in Windows Media Format 9 Series Software Development Kit
(SDK), Windows Media Format 9.5 SDK, Windows Vista and later, and Windows Media Services on
Windows Server 2003, Windows Server 2008, and Windows Server 2008 R2 does not check if Server-
features indicate that the server supports com.microsoft.wm.srvppair (section 2.2.6.10.6).

<27> Section 3.1.5.6: The client role in Windows Media Format 9 Series Software Development Kit

(SDK), Windows Media Format 9.5 SDK, Windows Vista and later, and Windows Media Services on
Windows Server 2003, Windows Server 2008, and Windows Server 2008 R2 does not check whether
Server-features indicate that the server supports com.microsoft.wm.srvppair (section 2.2.6.10.6).

<28> Section 3.1.5.15: This rule is not adhered to by the client role in Windows Media Format 9
Series Software Development Kit (SDK), Windows Media Format 9.5 SDK, Windows Vista, Windows 7,
and Windows Media Services on Windows Server 2003, Windows Server 2008 and Windows Server

2008 R2.

131 / 138

[MS-RTSP-Diff] - v20240423
Real-Time Streaming Protocol (RTSP) Windows Media Extensions
Copyright © 2024 Microsoft Corporation
Release: April 23, 2024

<29> Section 3.2: Windows Media Services on Windows Server 2003 does not support transitions in
or out of the RECORD state.

<30> Section 3.2.5.2: The com.microsoft.wm.startupprofile token is specified only by Windows Media
Services on Windows Server 2003 with SP1.

<31> Section 3.2.5.7: The variable-size parameter is only supported by Windows Server 2008 and
Windows Server 2008 R2.

<32> Section 3.2.5.8: The actual acceleration provided by Windows Media Services on Windows
Server 2003, Windows Server 2008, and Windows Server 2008 R2 is limited to 2Mbps.

<33> Section 3.2.5.8: The AccelDuration parameter of the X-Accelerate-Streaming token specified
by Windows Media Services on Windows Server 2003, Windows Server 2008, and Windows Server
2008 R2 could be larger than the client-specified value.

<34> Section 3.2.5.9: Windows Media Services on Windows NT 4.0 operating system, Windows Media
Services on Windows 2000 Server operating system, Windows Media Player 6, Windows Media Format

7.0 SDK, Windows Media Format 7.1 SDK, Windows Media Player for Windows XP operating system,
Windows Media Format 9 Series SDK, Windows Media Format 9.5 SDK, Windows Vista and later, and
Windows Media Services on Windows Server 2003, Windows Server 2008, and Windows Server 2008
R2 will not fail a logging request for invalid or illegal syntax.

<35> Section 3.2.5.12: Windows Media Services on Windows NT 4.0, Windows Media Services on
Windows 2000 Server, Windows Media Player 6, Windows Media Format 7.0 SDK, Windows Media
Format 7.1 SDK, Windows Media Player for Windows XP, Windows Media Format 9 Series SDK,
Windows Media Format 9.5 SDK, Windows Vista and later, and Windows Media Services on Windows
Server 2003, Windows Server 2008, and Windows Server 2008 R2 will not fail a logging request for
invalid or illegal syntax.

132 / 138

[MS-RTSP-Diff] - v20240423
Real-Time Streaming Protocol (RTSP) Windows Media Extensions
Copyright © 2024 Microsoft Corporation
Release: April 23, 2024

7 Change Tracking

This section identifies changes that were made to this document since the last release. Changes are
classified as Major, Minor, or None.

The revision class Major means that the technical content in the document was significantly revised.
Major changes affect protocol interoperability or implementation. Examples of major changes are:

 A document revision that incorporates changes to interoperability requirements.
 A document revision that captures changes to protocol functionality.

The revision class Minor means that the meaning of the technical content was clarified. Minor changes

do not affect protocol interoperability or implementation. Examples of minor changes are updates to
clarify ambiguity at the sentence, paragraph, or table level.

The revision class None means that no new technical changes were introduced. Minor editorial and
formatting changes may have been made, but the relevant technical content is identical to the last
released version.

The changes made to this document are listed in the following table. For more information, please
contact dochelp@microsoft.com.

Section Description
Revision
class

6 Appendix A: Product
Behavior

Added Windows Server 2025 to the list of applicable
products.

Major

133 / 138

[MS-RTSP-Diff] - v20240423
Real-Time Streaming Protocol (RTSP) Windows Media Extensions
Copyright © 2024 Microsoft Corporation
Release: April 23, 2024

8 Index

A

Abstract data model
 client 56
 server 75
Announce request 45
Applicability 14
ASF data packet payload 17
ASF Payload Inspection 98
Attributes for "b=" field 25

B

Bandwidth modifiers for "b=" field 24

C

Cache-Control header 30
Calculations for ChosenRate 100
Calculations for MaxBytes
 Time and ByteRate 100
Calculations for MaxDiffSndTime 99
Capability negotiation 14
Change tracking 132
ChosenRate Calculations 100
Client
 abstract data model 56

 higher-layer triggered events 58
 initialization 58
 local events 74
 message processing 62
 overview 56
 sequencing rules 62
 timer events 74
 timers 57
Computing Values for X-StartupProfile Header 97
Computing X-StartupProfile Header Values 97
Content-Type header 32
Cookie header 33

D

Data model - abstract
 client 56
 server 75
Describe request 46

E

EndOfStream request 46
Examples
 logging examples 117
 overview 103
 retransmission stream examples 107
 RTP packet syntax example 103
 RTSP examples (section 4.4 107, section 4.5 117)
 RTSP Proxy Server interaction examples 119
 SDP examples 107
 Vandermonde matrix algorithm example 104

F

134 / 138

[MS-RTSP-Diff] - v20240423
Real-Time Streaming Protocol (RTSP) Windows Media Extensions
Copyright © 2024 Microsoft Corporation
Release: April 23, 2024

Fields - vendor-extensible 14
Firewall timer 74

G

GetContentInfo request 47
Glossary 9

H

Heartbeat Timer Expires 96
Higher-layer triggered events

 client 58
 server 78

I

Idle-Timeout timer 96
If-Match header 34
If-None-Match header 34
Implementer - security considerations 127
Index of security parameters 127
Informative references 12
Initialization
 client 58
 server 78
Inspecting a Single ASF Payload 98
Introduction 9

K

KeepAlive request 48
Keepalive timer 74

L

Lag-Timer timer 96
Local events
 client 74

 server 96
LogConnect request 48
Logging examples 117
LogPlay request 49

M

MaxBytes
 Time and ByteRate Calculations 100
MaxDiffSndTime Calculations 99
Message processing
 client 62
 server 82
Messages
 overview 15
 Request Types 45
 RTCP NACK Packet Syntax 23
 RTP Payload Format for ASF Data Packets 15
 RTP Payload Format for Forward Error Correction 18
 RTP Payload Format for Retransmitted RTP Packets and Packet-Pair Data 21
 RTSP Header Fields 29
 Session Description Protocol Extensions 24
 syntax 15
 transport 15

135 / 138

[MS-RTSP-Diff] - v20240423
Real-Time Streaming Protocol (RTSP) Windows Media Extensions
Copyright © 2024 Microsoft Corporation
Release: April 23, 2024

N

Normative references 11
Notification of last RTP packet 78
Notification of new ASF File header 79

O

Overview 12
Overview (synopsis) 12

P

Packet-pair data - transmitting 22
Parameters - security index 127
Pause request 49
Play request 50
Playback of content has finished 62
Preconditions 13
Prerequisites 13
Product behavior 128
Protocol Details
 overview 56

R

Range header 34
Receiving Announce request 72
Receiving Announce response 94
Receiving Describe request 84
Receiving Describe response 64
Receiving EndOfStream request 71
Receiving EndOfStream response 93
Receiving GetContentInfo request 84
Receiving GetContentInfo response 64
Receiving KeepAlive request 94
Receiving KeepAlive response 73
Receiving LogConnect request 90
Receiving LogConnect response 69
Receiving LogPlay request 93
Receiving LogPlay response 72
Receiving Pause request 92
Receiving Pause response 73
Receiving Play request 88
Receiving Play response 68

Receiving request 82
Receiving responses 64
Receiving RTCP packet 91
Receiving RTP Packet 66
Receiving RTP packets 69
Receiving SelectStream request 86
Receiving SelectStream response (section 3.1.5.6 65, section 3.1.5.9 67, section 3.1.5.16 72)
Receiving SendEvent request 95
Receiving SendEvent response 74
Receiving TcpPacketPair request 86
Receiving TcpPacketPair response 65
Receiving Teardown request 96
Receiving Teardown response 74
Receiving UdpPacketPair request 88
Receiving UdpPacketPair response 66
References 11
 informative 12
 normative 11
Relationship to other protocols 13
Request to change currently selected streams 60

136 / 138

[MS-RTSP-Diff] - v20240423
Real-Time Streaming Protocol (RTSP) Windows Media Extensions
Copyright © 2024 Microsoft Corporation
Release: April 23, 2024

Request to change playback position 62
Request to finish streaming session 62
Request to receive content information 58
Request to retransmit lost RTP packets 61
Request to retrieve caching information 58
Request to start streaming content 59
Request to stop streaming 61
Request types
 Announce request 45
 Describe request 46
 EndOfStream request 46
 GetContentInfo request 47
 KeepAlive request 48
 LogConnect request 48
 LogPlay request 49
 overview 45
 Pause request 49
 Play request 50
 SelectStream request 50
 SendEvent request 53
 TcpPacketPair request 54
 Teardown request 54
 UdpPacketPair request 54

Request Types message 45
Retransmission stream examples 107
RTCP NACK packet syntax 23
RTCP NACK Packet Syntax message 23
RTP header usage (section 2.2.1.2 16, section 2.2.2.3 20)
RTP packet header FEC extension 20
RTP packet syntax example 103
RTP packets - transmitting copies 22
RTP payload format for ASF data packets 28
 ASF data packet payload 17
 general usage 15
 overview 15
 RTP header usage 16
 RTP payload format header 16
RTP Payload Format for ASF Data Packets message 15
RTP payload format for FEC data 28
RTP payload format for forward error correction
 general usage 18
 overview 18
 RTP header usage 20
 RTP packet header FEC extension 20
 Vandermonde matrix algorithm 18
RTP Payload Format for Forward Error Correction message 18
RTP payload format for retransmitted RTP packets 29
RTP payload format for retransmitted RTP packets and packet-pair data
 overview 21
 transmitting copies of RTP packets 22
 transmitting packet-pair data 22
RTP Payload Format for Retransmitted RTP Packets and Packet-Pair Data message 21
RTP payload format header 16
RTP_Packet_Header_FEC_Extension packet 20
RTP_Payload_Format_Header packet 16
RTSP examples (section 4.4 107, section 4.5 117)
RTSP header field
 bandwidth 30
 Cache-Control header 30
 Content-Type header 32
 Cookie header 33
 If-Match header 34
 If-None-Match header 34
 overview 29
 Range header 34

137 / 138

[MS-RTSP-Diff] - v20240423
Real-Time Streaming Protocol (RTSP) Windows Media Extensions
Copyright © 2024 Microsoft Corporation
Release: April 23, 2024

 Set-Cookie header 35
 Supported header 35
 Transport header 38
 User-Agent header 39
 X-Accelerate-Streaming header 39
 X-Accept-Authentication header 40
 X-Accept-Proxy-Authentication header 40
 X-Broadcast-Id header 40
 X-Burst-Streaming header 40
 X-Notice header 41
 X-Player-Lag-Time header 41
 X-Playlist header 41
 X-Playlist-Change-Notice header 42
 X-Playlist-Gen-Id header 42
 X-Playlist-Seek-Id header 42
 X-Proxy-Client-Agent header 42
 X-Proxy-Client-Verb header 43
 X-Receding-PlaylistChange header 43
 X-RTP-Info header 43
 X-StartupProfile header 44
RTSP Header Fields message 29
RTSP Proxy Server interaction examples 119

S

SDP examples 107
Security
 implementer considerations 127
 overview 127
 parameter index 127
SelectStream request 50
SendEvent request 53
Sending Describe request 59
Sending requests 62
Sending response 83
Sending SelectStream request 59
Sequencing rules
 client 62
 server 82
Server
 abstract data model 75
 higher-layer triggered events 78
 initialization 78
 local events 96
 message processing 82
 overview 74
 sequencing rules 82
 timer events 96
 timers 78
Session description protocol extensions
 attributes for "a=" field 25
 bandwidth modifiers for "b=" field 24
 overview 24
 RTP payload format for ASF data packets 28
 RTP payload format for FEC data 28
 RTP payload format for retransmitted RTP packets 29
Session Description Protocol Extensions message 24
Set-Cookie header 35
Standards assignments 14
Streams to play from new playlist entry 60
Supported header 35
Syntax 15

T

138 / 138

[MS-RTSP-Diff] - v20240423
Real-Time Streaming Protocol (RTSP) Windows Media Extensions
Copyright © 2024 Microsoft Corporation
Release: April 23, 2024

TCP connection closed by client 96
TCP connection disconnected 74
TcpPacketPair request 54
Teardown request 54
Timer events
 client 74
 server 96
Timers
 client 57
 server 78
Tracking changes 132
Transmitting_Packet_Pair_Data packet 22
Transport 15
Transport header 38
Triggered events - higher-layer
 client 58
 server 78

U

UdpPacketPair request 54
User-Agent header 39

V

Vandermonde matrix algorithm 18
Vandermonde matrix algorithm example 104
Vendor-extensible fields 14
Versioning 14

X

X-Accelerate-Streaming header 39
X-Accept-Authentication header 40
X-Accept-Proxy-Authentication header 40
X-Broadcast-Id header 40
X-Burst-Streaming header 40
X-Notice header 41
X-Player-Lag-Time header 41
X-Playlist header 41
X-Playlist-Change-Notice header 42
X-Playlist-Gen-Id header 42
X-Playlist-Seek-Id header 42
X-Proxy-Client-Agent header 42
X-Proxy-Client-Verb header 43
X-Receding-PlaylistChange header 43
X-RTP-Info header 43
X-StartupProfile header 44

	1 Introduction
	1.1 Glossary
	1.2 References
	1.2.1 (Updated Section) Normative References
	1.2.2 (Updated Section) Informative References

	1.3 Overview
	1.4 Relationship to Other Protocols
	1.5 Prerequisites/Preconditions
	1.6 Applicability Statement
	1.7 Versioning and Capability Negotiation
	1.8 Vendor-Extensible Fields
	1.9 Standards Assignments

	2 Messages
	2.1 Transport
	2.2 Message Syntax
	2.2.1 RTP Payload Format for ASF Data Packets
	2.2.1.1 General Usage
	2.2.1.2 RTP Header Usage for ASF Data
	2.2.1.3 RTP Payload Format Header
	2.2.1.4 ASF Data Packet Payload

	2.2.2 RTP Payload Format for Forward Error Correction
	2.2.2.1 General Usage
	2.2.2.2 Vandermonde Matrix Algorithm
	2.2.2.2.1 Basic Principles Used in the Encoding Technique
	2.2.2.2.2 Generation of a Vandermonde Matrix

	2.2.2.3 RTP Header Usage for RTP FEC Data
	2.2.2.4 RTP Packet Header FEC Extension

	2.2.3 RTP Payload Format for Retransmitted RTP Packets and Packet-Pair Data
	2.2.3.1 Transmitting Copies of RTP Packets
	2.2.3.2 Transmitting Packet-Pair Data

	2.2.4 RTCP NACK Packet Syntax
	2.2.5 Session Description Protocol Extensions
	2.2.5.1 Bandwidth Modifiers for the "b=" Field
	2.2.5.1.1 "AS" Bandwidth Modifier
	2.2.5.1.2 "RS" Bandwidth Modifier
	2.2.5.1.3 "RR" Bandwidth Modifier
	2.2.5.1.4 "X-AV" Bandwidth Modifier

	2.2.5.2 Attributes for the "a=" Field
	2.2.5.2.1 Control URL Attribute ("a=control")
	2.2.5.2.2 Max packetsize Attribute ("a=maxps")
	2.2.5.2.3 Program Parameters URL Attribute ("a=pgmpu")
	2.2.5.2.3.1 application/vnd.ms.wms-hdr.asfv1
	2.2.5.2.3.2 application/x-wms-contentdesc

	2.2.5.2.4 Reliable Attribute ("a=reliable")
	2.2.5.2.5 Stream Number Attribute ("a=stream")
	2.2.5.2.6 Type Attribute ("a=type")
	2.2.5.2.6.1 broadcast
	2.2.5.2.6.2 lastentry
	2.2.5.2.6.3 notseekable
	2.2.5.2.6.4 notstridable
	2.2.5.2.6.5 playlist
	2.2.5.2.6.6 skipbackward
	2.2.5.2.6.7 skipforward

	2.2.5.3 RTP Payload Format for ASF Data Packets
	2.2.5.4 RTP Payload Format for FEC Data
	2.2.5.5 RTP Payload Format for Retransmitted RTP Packets and Packet-Pair Data

	2.2.6 RTSP Header Fields
	2.2.6.1 Bandwidth
	2.2.6.2 Cache-Control
	2.2.6.2.1 max-age
	2.2.6.2.2 must-revalidate
	2.2.6.2.3 no-cache
	2.2.6.2.4 no-store
	2.2.6.2.5 no-user-cache
	2.2.6.2.6 private
	2.2.6.2.7 proxy-revalidate
	2.2.6.2.8 public
	2.2.6.2.9 x-wms-content-size
	2.2.6.2.10 x-wms-event-subscription
	2.2.6.2.11 x-wms-proxy-split
	2.2.6.2.12 x-wms-stream-type

	2.2.6.3 Content-Type
	2.2.6.3.1 application/sdp
	2.2.6.3.2 application/x-rtsp-packetpair
	2.2.6.3.3 application/x-rtsp-udp-packetpair
	2.2.6.3.4 application/x-wms-extension-cmd
	2.2.6.3.5 application/x-wms-getcontentinfo
	2.2.6.3.6 application/x-wms-Logconnectstats
	2.2.6.3.7 application/x-wms-Logplaystats
	2.2.6.3.8 application/x-wms-sendevent
	2.2.6.3.9 application/x-wms-streamswitch

	2.2.6.4 Cookie
	2.2.6.5 If-Match
	2.2.6.6 If-None-Match
	2.2.6.7 Range
	2.2.6.7.1 x-asf-byte
	2.2.6.7.2 x-asf-packet

	2.2.6.8 RTP-Info
	2.2.6.9 Set-Cookie
	2.2.6.10 Supported
	2.2.6.10.1 com.microsoft.wm.eosmsg
	2.2.6.10.2 com.microsoft.wm.fastcache
	2.2.6.10.3 com.microsoft.wm.locid
	2.2.6.10.4 com.microsoft.wm.packetpairssrc
	2.2.6.10.5 com.microsoft.wm.predstrm
	2.2.6.10.6 com.microsoft.wm.srvppair
	2.2.6.10.7 com.microsoft.wm.sswitch
	2.2.6.10.8 com.microsoft.wm.startupprofile

	2.2.6.11 Transport
	2.2.6.12 User-Agent
	2.2.6.13 X-Accelerate-Streaming
	2.2.6.14 X-Accept-Authentication
	2.2.6.15 X-Accept-Proxy-Authentication
	2.2.6.16 X-Broadcast-Id
	2.2.6.17 X-Burst-Streaming
	2.2.6.18 X-Notice
	2.2.6.19 X-Player-Lag-Time
	2.2.6.20 X-Playlist
	2.2.6.21 X-Playlist-Change-Notice
	2.2.6.22 X-Playlist-Gen-Id
	2.2.6.23 X-Playlist-Seek-Id
	2.2.6.24 X-Proxy-Client-Agent
	2.2.6.25 X-Proxy-Client-Verb
	2.2.6.26 X-Receding-PlaylistChange
	2.2.6.27 X-RTP-Info
	2.2.6.28 X-StartupProfile

	2.2.7 Request Types
	2.2.7.1 Announce
	2.2.7.2 Describe
	2.2.7.3 EndOfStream
	2.2.7.4 GetContentInfo
	2.2.7.5 KeepAlive
	2.2.7.6 LogConnect
	2.2.7.7 LogPlay
	2.2.7.8 Pause
	2.2.7.9 Play
	2.2.7.10 SelectStream
	2.2.7.10.1 SelectStream Using SETUP
	2.2.7.10.2 SelectStream Using TEARDOWN
	2.2.7.10.3 SelectStream Using SET_PARAMETER

	2.2.7.11 SendEvent
	2.2.7.12 TcpPacketPair
	2.2.7.13 Teardown
	2.2.7.14 UdpPacketPair

	3 Protocol Details
	3.1 Client Details
	3.1.1 Abstract Data Model
	3.1.2 Timers
	3.1.3 Initialization
	3.1.4 Higher-Layer Triggered Events
	3.1.4.1 Request to Retrieve Caching Information
	3.1.4.2 Request to Retrieve Content Information
	3.1.4.2.1 Sending the Describe Request

	3.1.4.3 Request to Start Streaming Content
	3.1.4.3.1 Sending a SelectStream Request

	3.1.4.4 Request to Change Currently Selected Streams
	3.1.4.5 Streams to Play from the New Playlist Entry Are Selected
	3.1.4.6 Request to Retransmit Lost RTP Packets
	3.1.4.7 Request to Stop Streaming
	3.1.4.8 Request to Change Playback Position
	3.1.4.9 Playback of Content Has Finished
	3.1.4.10 Request to Finish Streaming Session

	3.1.5 Processing Events and Sequencing Rules
	3.1.5.1 Sending a Request (All Request Types)
	3.1.5.2 Receiving a Response (All Request Types)
	3.1.5.3 Receiving a GetContentInfo Response
	3.1.5.4 Receiving a Describe Response
	3.1.5.5 Receiving a TcpPacketPair Response
	3.1.5.6 Receiving a SelectStream Response for the Retransmission Stream
	3.1.5.7 Receiving a UdpPacketPair Response
	3.1.5.8 Receiving an RTP Packet Containing Packet-Pair Data
	3.1.5.9 Receiving a SelectStream Response
	3.1.5.9.1 Sending a Play Request in READY State

	3.1.5.10 Receiving a Play Response
	3.1.5.11 Receiving a LogConnect Response
	3.1.5.12 Receiving RTP Packets
	3.1.5.12.1 Processing of RTP Packets When FEC Is Used
	3.1.5.12.2 Processing of RTP Packets

	3.1.5.13 Receiving an EndOfStream Request
	3.1.5.14 Receiving a LogPlay Response
	3.1.5.15 Receiving an Announce Request
	3.1.5.16 Receiving a SelectStream Response After Announce
	3.1.5.16.1 Sending a Play Request in PLAYING State

	3.1.5.17 Receiving a Pause Response
	3.1.5.18 Receiving a KeepAlive Response
	3.1.5.19 Receiving a SendEvent Response
	3.1.5.20 Receiving a Teardown Response

	3.1.6 Timer Events
	3.1.6.1 Firewall Timer Expires
	3.1.6.2 Keepalive Timer Expires

	3.1.7 Other Local Events
	3.1.7.1 TCP Connection Is Disconnected

	3.2 Server Details
	3.2.1 Abstract Data Model
	3.2.2 Timers
	3.2.3 Initialization
	3.2.4 Higher-Layer Triggered Events
	3.2.4.1 Notification that the Last RTP Packet Has Been Sent
	3.2.4.2 Notification that a New ASF File Header Is Available
	3.2.4.3 Notification That an ASF Packet Is Ready to Be Sent

	3.2.5 Processing Events and Sequencing Rules
	3.2.5.1 Receiving a Request (All Request Types)
	3.2.5.2 Sending a Response (All Request Types)
	3.2.5.3 Receiving a GetContentInfo Request
	3.2.5.4 Receiving a Describe Request
	3.2.5.5 Receiving a TcpPacketPair Request
	3.2.5.6 Receiving a SelectStream Request
	3.2.5.6.1 Receiving a SelectStream Request Using SETUP
	3.2.5.6.2 Receiving a SelectStream Request Using TEARDOWN
	3.2.5.6.3 Receiving a SelectStream Request Using SET_PARAMETER
	3.2.5.6.4 Common Processing Rules for SelectStream

	3.2.5.7 Receiving a UdpPacketPair Request
	3.2.5.8 Receiving a Play Request
	3.2.5.9 Receiving a LogConnect Request
	3.2.5.10 Receiving an RTCP Packet
	3.2.5.11 Receiving a Pause Request
	3.2.5.12 Receiving a LogPlay Request
	3.2.5.13 Receiving an EndOfStream Response
	3.2.5.14 Receiving an Announce Response
	3.2.5.15 Receiving a KeepAlive Request
	3.2.5.16 Receiving a SendEvent Request
	3.2.5.17 Receiving a Teardown Request

	3.2.6 Timer Events
	3.2.6.1 Lag-Timer Timer Expires
	3.2.6.2 Idle-Timeout Timer Expires
	3.2.6.3 Heartbeat Timer Expires

	3.2.7 Other Local Events
	3.2.7.1 Selected-Stream Adjustment
	3.2.7.2 Client Closes TCP Connection
	3.2.7.3 Server Role
	3.2.7.4 Redirection
	3.2.7.5 Cache-Control Data
	3.2.7.6 RTSP Request Received
	3.2.7.7 Computing Values for the X-StartupProfile Header
	3.2.7.7.1 Inspecting a Single ASF Payload
	3.2.7.7.2 MaxDiffSndTime Calculations
	3.2.7.7.3 ChosenRate Calculations
	3.2.7.7.4 MaxBytes, Time and ByteRate Calculations

	3.2.7.8 Broadcast ID
	3.2.7.9 AS-Bandwidth Request
	3.2.7.10 Fast Start Request
	3.2.7.11 Proxy Authentication
	3.2.7.12 Origin Server Authentication

	4 Protocol Examples
	4.1 RTP Packet Syntax
	4.2 Vandermonde Matrix Algorithm
	4.3 SDP Examples
	4.3.1 Retransmission Stream

	4.4 RTSP Examples
	4.4.1 SETUP Request
	4.4.2 Packet-Pair Bandwidth Estimation Using UDP
	4.4.3 Packet-Pair Bandwidth Estimation Using TCP
	4.4.4 Predictive Stream Selection and SelectStream
	4.4.4.1 SelectStream Using SET_PARAMETER
	4.4.4.2 SelectStream Using TEARDOWN
	4.4.4.3 SelectStream After Predictive Stream Selection
	4.4.4.4 Client Requests FEC Stream from Server

	4.4.5 Server-Side Playlist Entry Switching
	4.4.6 Stream Playback with Authentication
	4.4.7 Streaming, Pausing, Fast-Forwarding, and Stopping Playback

	4.5 Logging and RTSP
	4.5.1 Submitting Connect-Time Statistics
	4.5.2 Submitting a Play Log

	4.6 RTSP Proxy Server Interaction
	4.6.1 Sequencing for Playlist Content Delivery
	4.6.2 Sequencing for Broadcast Content Delivery
	4.6.3 Proxy Server and Origin Server Communication

	5 Security
	5.1 Security Considerations for Implementers
	5.2 Index of Security Parameters

	6 (Updated Section) Appendix A: Product Behavior
	7 Change Tracking
	8 Index

