

1 / 547

[MS-RRASM-Diff] - v20210407
Routing and Remote Access Server (RRAS) Management Protocol
Copyright © 2021 Microsoft Corporation
Release: April 7, 2021

[MS-RRASM-Diff]:

Routing and Remote Access Server (RRAS) Management
Protocol

Intellectual Property Rights Notice for Open Specifications Documentation

▪ Technical Documentation. Microsoft publishes Open Specifications documentation (“this
documentation”) for protocols, file formats, data portability, computer languages, and standards
support. Additionally, overview documents cover inter-protocol relationships and interactions.

▪ Copyrights. This documentation is covered by Microsoft copyrights. Regardless of any other
terms that are contained in the terms of use for the Microsoft website that hosts this

documentation, you can make copies of it in order to develop implementations of the technologies

that are described in this documentation and can distribute portions of it in your implementations
that use these technologies or in your documentation as necessary to properly document the
implementation. You can also distribute in your implementation, with or without modification, any
schemas, IDLs, or code samples that are included in the documentation. This permission also
applies to any documents that are referenced in the Open Specifications documentation.

▪ No Trade Secrets. Microsoft does not claim any trade secret rights in this documentation.
▪ Patents. Microsoft has patents that might cover your implementations of the technologies

described in the Open Specifications documentation. Neither this notice nor Microsoft's delivery of
this documentation grants any licenses under those patents or any other Microsoft patents.
However, a given Open Specifications document might be covered by the Microsoft Open
Specifications Promise or the Microsoft Community Promise. If you would prefer a written license,
or if the technologies described in this documentation are not covered by the Open Specifications

Promise or Community Promise, as applicable, patent licenses are available by contacting
iplg@microsoft.com.

▪ License Programs. To see all of the protocols in scope under a specific license program and the
associated patents, visit the Patent Map.

▪ Trademarks. The names of companies and products contained in this documentation might be
covered by trademarks or similar intellectual property rights. This notice does not grant any
licenses under those rights. For a list of Microsoft trademarks, visit

www.microsoft.com/trademarks.
▪ Fictitious Names. The example companies, organizations, products, domain names, email

addresses, logos, people, places, and events that are depicted in this documentation are fictitious.
No association with any real company, organization, product, domain name, email address, logo,
person, place, or event is intended or should be inferred.

Reservation of Rights. All other rights are reserved, and this notice does not grant any rights other

than as specifically described above, whether by implication, estoppel, or otherwise.

Tools. The Open Specifications documentation does not require the use of Microsoft programming
tools or programming environments in order for you to develop an implementation. If you have access
to Microsoft programming tools and environments, you are free to take advantage of them. Certain
Open Specifications documents are intended for use in conjunction with publicly available standards

specifications and network programming art and, as such, assume that the reader either is familiar
with the aforementioned material or has immediate access to it.

Support. For questions and support, please contact dochelp@microsoft.com.

https://go.microsoft.com/fwlink/?LinkId=214445
https://go.microsoft.com/fwlink/?LinkId=214445
https://go.microsoft.com/fwlink/?LinkId=214448
mailto:iplg@microsoft.com
https://aka.ms/AA9ufj8
https://www.microsoft.com/trademarks
mailto:dochelp@microsoft.com

2 / 547

[MS-RRASM-Diff] - v20210407
Routing and Remote Access Server (RRAS) Management Protocol
Copyright © 2021 Microsoft Corporation
Release: April 7, 2021

Revision Summary

Date
Revision
History

Revision
Class Comments

6/20/2008 0.01 New Version 0.01 release

7/25/2008 0.01.1 Editorial Changed language and formatting in the technical content.

8/29/2008 0.2 Minor Clarified the meaning of the technical content.

10/24/2008 0.2.1 Editorial Changed language and formatting in the technical content.

12/5/2008 1.0 Major Updated and revised the technical content.

1/16/2009 2.0 Major Updated and revised the technical content.

2/27/2009 3.0 Major Updated and revised the technical content.

4/10/2009 3.0.1 Editorial Changed language and formatting in the technical content.

5/22/2009 4.0 Major Updated and revised the technical content.

7/2/2009 5.0 Major Updated and revised the technical content.

8/14/2009 6.0 Major Updated and revised the technical content.

9/25/2009 7.0 Major Updated and revised the technical content.

11/6/2009 7.0.1 Editorial Changed language and formatting in the technical content.

12/18/2009 7.0.2 Editorial Changed language and formatting in the technical content.

1/29/2010 8.0 Major Updated and revised the technical content.

3/12/2010 9.0 Major Updated and revised the technical content.

4/23/2010 10.0 Major Updated and revised the technical content.

6/4/2010 11.0 Major Updated and revised the technical content.

7/16/2010 12.0 Major Updated and revised the technical content.

8/27/2010 13.0 Major Updated and revised the technical content.

10/8/2010 13.0 None
No changes to the meaning, language, or formatting of the
technical content.

11/19/2010 13.0 None
No changes to the meaning, language, or formatting of the
technical content.

1/7/2011 14.0 Major Updated and revised the technical content.

2/11/2011 14.0 None
No changes to the meaning, language, or formatting of the
technical content.

3/25/2011 14.1 Minor Clarified the meaning of the technical content.

5/6/2011 14.1 None
No changes to the meaning, language, or formatting of the
technical content.

6/17/2011 14.2 Minor Clarified the meaning of the technical content.

9/23/2011 15.0 Major Updated and revised the technical content.

3 / 547

[MS-RRASM-Diff] - v20210407
Routing and Remote Access Server (RRAS) Management Protocol
Copyright © 2021 Microsoft Corporation
Release: April 7, 2021

Date
Revision
History

Revision
Class Comments

12/16/2011 16.0 Major Updated and revised the technical content.

3/30/2012 16.0 None
No changes to the meaning, language, or formatting of the
technical content.

7/12/2012 16.1 Minor Clarified the meaning of the technical content.

10/25/2012 17.0 Major Updated and revised the technical content.

1/31/2013 17.0 None
No changes to the meaning, language, or formatting of the
technical content.

8/8/2013 18.0 Major Updated and revised the technical content.

11/14/2013 19.0 Major Updated and revised the technical content.

2/13/2014 19.0 None
No changes to the meaning, language, or formatting of the
technical content.

5/15/2014 19.0 None
No changes to the meaning, language, or formatting of the
technical content.

6/30/2015 20.0 Major Significantly changed the technical content.

10/16/2015 20.0 None
No changes to the meaning, language, or formatting of the
technical content.

7/14/2016 21.0 Major Significantly changed the technical content.

6/1/2017 21.0 None
No changes to the meaning, language, or formatting of the
technical content.

9/15/2017 22.0 Major Significantly changed the technical content.

12/1/2017 22.0 None
No changes to the meaning, language, or formatting of the
technical content.

9/12/2018 23.0 Major Significantly changed the technical content.

4/7/2021 24.0 Major Significantly changed the technical content.

4 / 547

[MS-RRASM-Diff] - v20210407
Routing and Remote Access Server (RRAS) Management Protocol
Copyright © 2021 Microsoft Corporation
Release: April 7, 2021

Table of Contents

1 (Updated Section) Introduction... 18
1.1 (Updated Section) Glossary ... 18
1.2 References .. 26

1.2.1 (Updated Section) Normative References ... 26
1.2.2 (Updated Section) Informative References ... 28

1.3 (Updated Section) Overview .. 30
1.3.1 Interface Object ... 32
1.3.2 Transport Object .. 33
1.3.3 Management Information Base (MIB) .. 34
1.3.4 Ports Object ... 34
1.3.5 Connection Object .. 35

1.4 (Updated Section) Relationship to Other Protocols .. 35
1.5 Prerequisites/Preconditions ... 35
1.6 Applicability Statement ... 36
1.7 Versioning and Capability Negotiation ... 36
1.8 Vendor-Extensible Fields ... 36
1.9 Standards Assignments ... 36

2 Messages ... 38
2.1 Transport .. 38

2.1.1 DIMSVC Security Settings .. 38
2.1.1.1 Server Security Settings .. 38
2.1.1.2 Client Security Settings ... 38

2.1.2 Rasrpc Security Settings .. 39
2.1.2.1 Server Security Settings .. 39
2.1.2.2 (Updated Section) Client Security Settings ... 39

2.1.3 Remras Security Settings... 39
2.2 Common Data Types .. 39

2.2.1 RRASM RPC Common Messages .. 40
2.2.1.1 Data Types, Enumerations, and Constants ... 40

2.2.1.1.1 ROUTER_INTERFACE_TYPE ... 40
2.2.1.1.2 ROUTER_CONNECTION_STATE .. 40
2.2.1.1.3 RAS_QUARANTINE_STATE .. 41
2.2.1.1.4 RAS_PORT_CONDITION ... 41
2.2.1.1.5 RAS_HARDWARE_CONDITION .. 42
2.2.1.1.6 DIM_HANDLE .. 42
2.2.1.1.7 FORWARD_ACTION .. 42
2.2.1.1.8 MIB_IPFORWARD_TYPE .. 42
2.2.1.1.9 MIB_IPFORWARD_PROTO ... 43
2.2.1.1.10 MIB_IPSTATS_FORWARDING .. 44
2.2.1.1.11 MIB_TCP_STATE ... 44
2.2.1.1.12 TCP_RTO_ALGORITHM ... 45
2.2.1.1.13 IP_NAT_DIRECTION ... 45
2.2.1.1.14 OSPF_PARAM_TYPE ... 46
2.2.1.1.15 OSPF_FILTER_ACTION ... 46
2.2.1.1.16 RASDEVICETYPE ... 47
2.2.1.1.17 RASMAN_STATUS .. 48
2.2.1.1.18 ReqTypes ... 48
2.2.1.1.19 RASMAN_STATE .. 49
2.2.1.1.20 RASMAN_DISCONNECT_TYPE ... 49
2.2.1.1.21 RASMAN_USAGE ... 49
2.2.1.1.22 BGP_POLICY_DIRECTION ... 50
2.2.1.1.23 BGP_POLICY_TYPE .. 50
2.2.1.1.24 BGP_PEERING_OP_MODE ... 51

2.2.1.2 Structures .. 51

5 / 547

[MS-RRASM-Diff] - v20210407
Routing and Remote Access Server (RRAS) Management Protocol
Copyright © 2021 Microsoft Corporation
Release: April 7, 2021

2.2.1.2.1 DIM_INFORMATION_CONTAINER .. 51
2.2.1.2.2 DIM_INTERFACE_CONTAINER ... 52
2.2.1.2.3 RTR_INFO_BLOCK_HEADER .. 53
2.2.1.2.4 RTR_TOC_ENTRY ... 54
2.2.1.2.5 FILTER_DESCRIPTOR ... 58
2.2.1.2.6 FILTER_INFO .. 59
2.2.1.2.7 FILTER_DESCRIPTOR_V6 ... 60
2.2.1.2.8 FILTER_INFO_V6 ... 61
2.2.1.2.9 GLOBAL_INFO ... 62
2.2.1.2.10 IN6_ADDR .. 63
2.2.1.2.11 INTERFACE_ROUTE_INFO ... 63
2.2.1.2.12 PRIORITY_INFO .. 66
2.2.1.2.13 PROTOCOL_METRIC ... 66
2.2.1.2.14 (Updated Section) RTR_DISC_INFO ... 66
2.2.1.2.15 MCAST_HBEAT_INFO ... 67
2.2.1.2.16 (Updated Section) MIB_MCAST_LIMIT_ROW 68
2.2.1.2.17 IPINIP_CONFIG_INFO .. 68
2.2.1.2.18 INTERFACE_STATUS_INFO ... 69
2.2.1.2.19 DIM_MIB_ENTRY_CONTAINER .. 69
2.2.1.2.20 MIB_IPDESTROW .. 71
2.2.1.2.21 MIB_IPDESTTABLE .. 71
2.2.1.2.22 MIB_ROUTESTATE ... 71
2.2.1.2.23 MIB_BEST_IF .. 71
2.2.1.2.24 MIB_BOUNDARYROW ... 72
2.2.1.2.25 MIB_ICMP .. 72
2.2.1.2.26 MIBICMPINFO ... 73
2.2.1.2.27 MIBICMPSTATS ... 73
2.2.1.2.28 MIB_IFNUMBER ... 74
2.2.1.2.29 MIB_IFROW .. 74
2.2.1.2.30 (Updated Section) MIB_IFSTATUS ... 76
2.2.1.2.31 MIB_IFTABLE .. 77
2.2.1.2.32 MIB_IPADDRROW .. 77
2.2.1.2.33 MIB_IPADDRTABLE .. 78
2.2.1.2.34 MIB_IPFORWARDNUMBER .. 79
2.2.1.2.35 MIB_IPFORWARDROW ... 79
2.2.1.2.36 MIB_IPFORWARDTABLE ... 81
2.2.1.2.37 (Updated Section) MIB_IPMCAST_BOUNDARY 81
2.2.1.2.38 (Updated Section) MIB_IPMCAST_BOUNDARY_TABLE 82
2.2.1.2.39 (Updated Section) MIB_IPMCAST_GLOBAL.. 82
2.2.1.2.40 (Updated Section) MIB_IPMCAST_IF_ENTRY 83
2.2.1.2.41 MIB_IPMCAST_IF_TABLE .. 83
2.2.1.2.42 (Updated Section) MIB_IPMCAST_MFE ... 83
2.2.1.2.43 (Updated Section) MIB_IPMCAST_OIF .. 84
2.2.1.2.44 MIB_IPMCAST_MFE_STATS ... 85
2.2.1.2.45 (Updated Section) MIB_IPMCAST_OIF_STATS 86
2.2.1.2.46 (Updated Section) MIB_IPMCAST_SCOPE ... 87
2.2.1.2.47 MIB_IPNETROW .. 88
2.2.1.2.48 MIB_IPNETTABLE .. 88
2.2.1.2.49 MIB_IPSTATS .. 89
2.2.1.2.50 MIB_MFE_STATS_TABLE .. 91
2.2.1.2.51 MIB_MFE_TABLE ... 91
2.2.1.2.52 MIB_OPAQUE_INFO ... 92
2.2.1.2.53 (Updated Section) MIB_OPAQUE_QUERY .. 95
2.2.1.2.54 MIB_PROXYARP ... 99
2.2.1.2.55 (Updated Section) MIB_TCPROW .. 100
2.2.1.2.56 MIB_TCPSTATS .. 100
2.2.1.2.57 MIB_TCPTABLE .. 101
2.2.1.2.58 (Updated Section) MIB_UDPROW ... 102

6 / 547

[MS-RRASM-Diff] - v20210407
Routing and Remote Access Server (RRAS) Management Protocol
Copyright © 2021 Microsoft Corporation
Release: April 7, 2021

2.2.1.2.59 MIB_UDPSTATS .. 102
2.2.1.2.60 MIB_UDPTABLE .. 102
2.2.1.2.61 MPR_SERVER_0 ... 103
2.2.1.2.62 MPR_SERVER_1 ... 103
2.2.1.2.63 MPR_SERVER_2 ... 104
2.2.1.2.64 PPP_NBFCP_INFO ... 105
2.2.1.2.65 PPP_IPCP_INFO .. 105
2.2.1.2.66 (Updated Section) PPP_IPCP_INFO2 ... 106
2.2.1.2.67 PPP_IPXCP_INFO .. 106
2.2.1.2.68 PPP_IPV6_CP_INFO .. 107
2.2.1.2.69 PPP_ATCP_INFO ... 107
2.2.1.2.70 PPP_CCP_INFO ... 108
2.2.1.2.71 PPP_LCP_INFO ... 109
2.2.1.2.72 PPP_INFO .. 111
2.2.1.2.73 PPP_INFO_2 .. 112
2.2.1.2.74 PPP_INFO_3 .. 112
2.2.1.2.75 RASI_PORT_0 .. 113
2.2.1.2.76 RASI_PORT_1 .. 114
2.2.1.2.77 (Updated Section) RASI_CONNECTION_0 .. 115
2.2.1.2.78 (Updated Section) RASI_CONNECTION_1 .. 116
2.2.1.2.79 (Updated Section) RASI_CONNECTION_2 .. 117
2.2.1.2.80 RASI_CONNECTION_3 .. 118
2.2.1.2.81 MPRI_INTERFACE_0 ... 118
2.2.1.2.82 MPRI_INTERFACE_1 ... 120
2.2.1.2.83 (Updated Section) MPRI_INTERFACE_2 ... 121
2.2.1.2.84 (Updated Section) MPRI_INTERFACE_3 ... 129
2.2.1.2.85 MPR_DEVICE_0 .. 136
2.2.1.2.86 MPR_DEVICE_1 .. 137
2.2.1.2.87 (Updated Section) MPR_CREDENTIALSEX_1 137
2.2.1.2.88 IFFILTER_INFO .. 138
2.2.1.2.89 MPR_FILTER_0 ... 138
2.2.1.2.90 IPX_GLOBAL_INFO ... 138
2.2.1.2.91 IPX_IF_INFO .. 139
2.2.1.2.92 IPXWAN_IF_INFO ... 139
2.2.1.2.93 IPX_STATIC_ROUTE_INFO ... 139
2.2.1.2.94 IPX_STATIC_SERVICE_INFO .. 140
2.2.1.2.95 IPX_STATIC_NETBIOS_NAME_INFO .. 141
2.2.1.2.96 IPX_ADAPTER_INFO ... 141
2.2.1.2.97 IPX_TRAFFIC_FILTER_GLOBAL_INFO .. 142
2.2.1.2.98 IPX_TRAFFIC_FILTER_INFO ... 142
2.2.1.2.99 IF_TABLE_INDEX .. 144
2.2.1.2.100 (Updated Section) ROUTING_TABLE_INDEX 144
2.2.1.2.101 (Updated Section) STATIC_ROUTES_TABLE_INDEX 144
2.2.1.2.102 (Updated Section) SERVICES_TABLE_INDEX 144
2.2.1.2.103 (Updated Section) STATIC_SERVICES_TABLE_INDEX 145
2.2.1.2.104 IPX_MIB_INDEX ... 145
2.2.1.2.105 (Updated Section) IPX_MIB_GET_INPUT_DATA 146
2.2.1.2.106 IPXMIB_BASE .. 147
2.2.1.2.107 IPX_IF_STATS .. 148
2.2.1.2.108 (Updated Section) IPX_INTERFACE ... 149
2.2.1.2.109 IPX_ROUTE .. 151
2.2.1.2.110 IPX_MIB_ROW ... 152
2.2.1.2.111 IPX_MIB_SET_INPUT_DATA ... 153
2.2.1.2.112 (Updated Section) SAP_SERVICE_FILTER_INFO 153
2.2.1.2.113 (Updated Section) SAP_IF_FILTERS .. 154
2.2.1.2.114 SAP_IF_CONFIG ... 155
2.2.1.2.115 SAP_MIB_BASE .. 155
2.2.1.2.116 SAP_IF_STATS ... 155

7 / 547

[MS-RRASM-Diff] - v20210407
Routing and Remote Access Server (RRAS) Management Protocol
Copyright © 2021 Microsoft Corporation
Release: April 7, 2021

2.2.1.2.117 SAP_INTERFACE ... 156
2.2.1.2.118 (Updated Section) SAP_MIB_GET_INPUT_DATA 156
2.2.1.2.119 SAP_MIB_SET_INPUT_DATA .. 157
2.2.1.2.120 IPX_SERVICE ... 157
2.2.1.2.121 SAP_IF_INFO ... 157
2.2.1.2.122 RIPMIB_BASE .. 158
2.2.1.2.123 RIP_IF_STATS .. 159
2.2.1.2.124 RIP_INTERFACE ... 159
2.2.1.2.125 (Updated Section) RIP_MIB_GET_INPUT_DATA 160
2.2.1.2.126 (Updated Section) RIP_MIB_SET_INPUT_DATA 160
2.2.1.2.127 EAPTLS_HASH.. 160
2.2.1.2.128 (Updated Section) EAPTLS_USER_PROPERTIES 161
2.2.1.2.129 (Updated Section) MPRAPI_OBJECT_HEADER_IDL 162
2.2.1.2.130 (Updated Section) PPP_PROJECTION_INFO_1 164
2.2.1.2.131 IKEV2_PROJECTION_INFO_1 ... 167
2.2.1.2.132 PROJECTION_INFO_IDL_1 ... 168
2.2.1.2.133 (Updated Section) RAS_CONNECTION_EX_1_IDL 169
2.2.1.2.134 RAS_CONNECTION_EX_IDL ... 171
2.2.1.2.135 CERT_BLOB_1 .. 171
2.2.1.2.136 IKEV2_TUNNEL_CONFIG_PARAMS_1 .. 172
2.2.1.2.137 IKEV2_CONFIG_PARAMS_1 ... 173
2.2.1.2.138 PPTP_CONFIG_PARAMS_1 ... 173
2.2.1.2.139 L2TP_CONFIG_PARAMS_1 ... 174
2.2.1.2.140 SSTP_CERT_INFO_1 ... 174
2.2.1.2.141 SSTP_CONFIG_PARAMS_1 ... 175
2.2.1.2.142 MPR_SERVER_EX_1 .. 175
2.2.1.2.143 MPR_SERVER_EX_IDL ... 176
2.2.1.2.144 MPRAPI_TUNNEL_CONFIG_PARAMS_1 .. 176
2.2.1.2.145 MPR_SERVER_SET_CONFIG_EX_1 .. 176
2.2.1.2.146 MPR_SERVER_SET_CONFIG_EX_IDL ... 177
2.2.1.2.147 RAS_UPDATE_CONNECTION_1_IDL .. 177
2.2.1.2.148 RAS_UPDATE_CONNECTION_IDL.. 178
2.2.1.2.149 IPBOOTP_GLOBAL_CONFIG ... 178
2.2.1.2.150 IPBOOTP_IF_CONFIG .. 179
2.2.1.2.151 IPBOOTP_MIB_GET_INPUT_DATA ... 179
2.2.1.2.152 (Updated Section) IPBOOTP_MIB_GET_OUTPUT_DATA 180
2.2.1.2.153 IPBOOTP_IF_STATS .. 181
2.2.1.2.154 IPBOOTP_IF_BINDING .. 181
2.2.1.2.155 (Updated Section) IPBOOTP_IP_ADDRESS ... 182
2.2.1.2.156 DHCPV6R_MIB_GET_OUTPUT_DATA ... 182
2.2.1.2.157 (Updated Section) DHCPV6R_GLOBAL_CONFIG 183
2.2.1.2.158 DHCPV6R_IF_STATS ... 183
2.2.1.2.159 DHCPV6R_IF_CONFIG ... 184
2.2.1.2.160 DHCPV6R_MIB_GET_INPUT_DATA .. 185
2.2.1.2.161 IPRIP_MIB_GET_INPUT_DATA .. 185
2.2.1.2.162 (Updated Section) IPRIP_MIB_GET_OUTPUT_DATA 186
2.2.1.2.163 IPRIP_GLOBAL_STATS .. 187
2.2.1.2.164 (Updated Section) IPRIP_GLOBAL_CONFIG .. 187
2.2.1.2.165 (Updated Section) IPRIP_IF_STATS .. 188
2.2.1.2.166 IPRIP_IF_CONFIG ... 189
2.2.1.2.167 IPRIP_ROUTE_FILTER ... 194
2.2.1.2.168 IPRIP_IF_BINDING ... 194
2.2.1.2.169 IPRIP_IP_ADDRESS .. 195
2.2.1.2.170 (Updated Section) IPRIP_PEER_STATS .. 195
2.2.1.2.171 IGMP_MIB_GET_INPUT_DATA .. 195
2.2.1.2.172 IGMP_MIB_GET_OUTPUT_DATA ... 197
2.2.1.2.173 IGMP_MIB_GLOBAL_CONFIG ... 198
2.2.1.2.174 IGMP_MIB_IF_CONFIG .. 199

8 / 547

[MS-RRASM-Diff] - v20210407
Routing and Remote Access Server (RRAS) Management Protocol
Copyright © 2021 Microsoft Corporation
Release: April 7, 2021

2.2.1.2.175 IGMP_MIB_IF_GROUPS_LIST ... 201
2.2.1.2.176 (Updated Section) IGMP_MIB_GROUP_INFO 202
2.2.1.2.177 (Updated Section) IGMP_MIB_IF_STATS ... 203
2.2.1.2.178 (Updated Section) IGMP_MIB_GROUP_IFS_LIST 205
2.2.1.2.179 (Added Section) IGMP_MIB_GROUP_SOURCE_INFO_V3 206
2.2.1.2.180 (Updated Section) IGMP_MIB_GROUP_INFO_V3 206
2.2.1.2.181 INTERFACE_ROUTE_ENTRY .. 207
2.2.1.2.182 (Updated Section) IP_NAT_MIB_QUERY .. 208
2.2.1.2.183 IP_NAT_ENUMERATE_SESSION_MAPPINGS 208
2.2.1.2.184 IP_NAT_SESSION_MAPPING .. 209
2.2.1.2.185 IP_NAT_INTERFACE_STATISTICS ... 210
2.2.1.2.186 IP_DNS_PROXY_MIB_QUERY ... 211
2.2.1.2.187 IP_DNS_PROXY_STATISTICS ... 211
2.2.1.2.188 IP_AUTO_DHCP_MIB_QUERY ... 212
2.2.1.2.189 IP_AUTO_DHCP_STATISTICS ... 212
2.2.1.2.190 (Updated Section) MIB_DA_MSG .. 213
2.2.1.2.191 IP_AUTO_DHCP_GLOBAL_INFO .. 216
2.2.1.2.192 IP_AUTO_DHCP_INTERFACE_INFO ... 217
2.2.1.2.193 IP_DNS_PROXY_GLOBAL_INFO .. 218
2.2.1.2.194 IP_DNS_PROXY_INTERFACE_INFO ... 218
2.2.1.2.195 IP_NAT_GLOBAL_INFO .. 219
2.2.1.2.196 IP_NAT_TIMEOUT ... 220
2.2.1.2.197 IP_NAT_INTERFACE_INFO ... 220
2.2.1.2.198 IP_NAT_ADDRESS_RANGE .. 222
2.2.1.2.199 IP_NAT_PORT_MAPPING ... 222
2.2.1.2.200 IP_NAT_ADDRESS_MAPPING ... 222
2.2.1.2.201 IP_ALG_GLOBAL_INFO .. 223
2.2.1.2.202 RIP_GLOBAL_INFO ... 223
2.2.1.2.203 RIP_ROUTE_FILTER_INFO ... 224
2.2.1.2.204 RIP_IF_FILTERS ... 224
2.2.1.2.205 RIP_IF_INFO .. 225
2.2.1.2.206 RIP_IF_CONFIG .. 226
2.2.1.2.207 SAP_GLOBAL_INFO .. 226
2.2.1.2.208 (Updated Section) OSPF_ROUTE_FILTER ... 227
2.2.1.2.209 OSPF_ROUTE_FILTER_INFO ... 227
2.2.1.2.210 OSPF_PROTO_FILTER_INFO ... 228
2.2.1.2.211 OSPF_GLOBAL_PARAM .. 228
2.2.1.2.212 OSPF_AREA_PARAM .. 228
2.2.1.2.213 OSPF_AREA_RANGE_PARAM .. 229
2.2.1.2.214 OSPF_VIRT_INTERFACE_PARAM ... 230
2.2.1.2.215 OSPF_INTERFACE_PARAM ... 230
2.2.1.2.216 OSPF_NBMA_NEIGHBOR_PARAM .. 231
2.2.1.2.217 RequestBuffer .. 232
2.2.1.2.218 DeviceConfigInfo .. 233
2.2.1.2.219 RAS_DEVICE_INFO ... 233
2.2.1.2.220 (Updated Section) GetSetCalledId .. 235
2.2.1.2.221 RAS_CALLEDID_INFO ... 235
2.2.1.2.222 GetNdiswanDriverCapsStruct ... 236
2.2.1.2.223 RAS_NDISWAN_DRIVER_INFO ... 236
2.2.1.2.224 (Updated Section) GetDevConfigStruct .. 236
2.2.1.2.225 Enum .. 237
2.2.1.2.226 RASMAN_PORT_32 ... 238
2.2.1.2.227 Info .. 238
2.2.1.2.228 RASMAN_INFO ... 239
2.2.1.2.229 RASRPC_PBUSER ... 240
2.2.1.2.230 RASRPC_CALLBACKLIST .. 242
2.2.1.2.231 RASRPC_STRINGLIST ... 243
2.2.1.2.232 RASRPC_LOCATIONLIST .. 244

9 / 547

[MS-RRASM-Diff] - v20210407
Routing and Remote Access Server (RRAS) Management Protocol
Copyright © 2021 Microsoft Corporation
Release: April 7, 2021

2.2.1.2.233 (Updated Section) PPP_PROJECTION_INFO_2 244
2.2.1.2.234 IKEV2_PROJECTION_INFO_2 ... 246
2.2.1.2.235 PROJECTION_INFO_IDL_2 ... 247
2.2.1.2.236 (Updated Section) RAS_CONNECTION_4_IDL 247
2.2.1.2.237 ROUTER_CUSTOM_IKEv2_POLICY_0 ... 249
2.2.1.2.238 IKEV2_TUNNEL_CONFIG_PARAMS_2 .. 252
2.2.1.2.239 IKEV2_CONFIG_PARAMS_2 ... 253
2.2.1.2.240 MPRAPI_TUNNEL_CONFIG_PARAMS_2 .. 253
2.2.1.2.241 MPR_SERVER_SET_CONFIG_EX_2 .. 254
2.2.1.2.242 MPR_SERVER_EX_2 .. 254
2.2.1.2.243 (Updated Section) ROUTER_IKEv2_IF_CUSTOM_CONFIG_0 255
2.2.1.2.244 MPR_IF_CUSTOMINFOEX_0 ... 255
2.2.1.2.245 MPR_IF_CUSTOMINFOEX_IDL .. 256
2.2.1.2.246 CERT_EKU_1 ... 256
2.2.1.2.247 (Updated Section) IKEV2_TUNNEL_CONFIG_PARAMS_3 256
2.2.1.2.248 (Updated Section) IKEV2_CONFIG_PARAMS_3 258
2.2.1.2.249 MPRAPI_TUNNEL_CONFIG_PARAMS_3 .. 258
2.2.1.2.250 (Updated Section) MPR_SERVER_SET_CONFIG_EX_3 259
2.2.1.2.251 MPR_SERVER_EX_3 .. 259
2.2.1.2.252 BGP_CONFIG_HEADER .. 260
2.2.1.2.253 BGP_TOC_ENTRY ... 260
2.2.1.2.254 BGP_IP_ADDRESS .. 262
2.2.1.2.255 BGP_IP_PREFIX .. 262
2.2.1.2.256 BGP_ASN_RANGE ... 263
2.2.1.2.257 BGP_ROUTER_CONFIG .. 263
2.2.1.2.258 BGP_POLICY_MATCH .. 264
2.2.1.2.259 BGP_POLICY_MODIFY ... 265
2.2.1.2.260 BGP_POLICY_ACTION ... 266
2.2.1.2.261 (Updated Section) BGP_POLICY .. 266
2.2.1.2.262 (Updated Section) BGP_PEER ... 268
2.2.1.2.263 (Updated Section) BGP_PEER_TO_POLICIES 269
2.2.1.2.264 BGP_ADVERTISE .. 269
2.2.1.2.265 BGP_ROUTER_V6 ... 270
2.2.1.2.266 PRIORITY_INFO_EX .. 270
2.2.1.2.267 PROTOCOL_METRIC_EX .. 271
2.2.1.2.268 ROUTER_IKEv2_IF_CUSTOM_CONFIG_1 ... 271
2.2.1.2.269 MPR_IF_CUSTOMINFOEX_1 ... 272
2.2.1.2.270 (Updated Section) L2TP_TUNNEL_CONFIG_PARAMS_1 272
2.2.1.2.271 (Updated Section) L2TP_CONFIG_PARAMS_2 273

2.2.2 (Updated Section) File Format for Phonebook .. 274
2.2.2.1 RRAS entry section name .. 274
2.2.2.2 Phonebook entry settings .. 274

2.2.2.2.1 Encoding ... 275
2.2.2.2.2 PBVersion .. 275
2.2.2.2.3 Type ... 275
2.2.2.2.4 Autologon .. 275
2.2.2.2.5 UseRasCredentials .. 275
2.2.2.2.6 LowDateTime ... 276
2.2.2.2.7 HighDateTime .. 276
2.2.2.2.8 DialParamsUID ... 276
2.2.2.2.9 Guid ... 276
2.2.2.2.10 BaseProtocol .. 276
2.2.2.2.11 (Updated Section) VpnStrategy .. 276
2.2.2.2.12 ExcludedProtocols ... 276
2.2.2.2.13 LcpExtensions .. 277
2.2.2.2.14 DataEncryption .. 277
2.2.2.2.15 SwCompression .. 277
2.2.2.2.16 NegotiateMultilinkAlways ... 278

10 / 547

[MS-RRASM-Diff] - v20210407
Routing and Remote Access Server (RRAS) Management Protocol
Copyright © 2021 Microsoft Corporation
Release: April 7, 2021

2.2.2.2.17 SkipNwcWarning .. 278
2.2.2.2.18 SkipDownLevelDialog .. 278
2.2.2.2.19 SkipDoubleDialDialog .. 278
2.2.2.2.20 DialMode ... 278
2.2.2.2.21 DialPercent .. 278
2.2.2.2.22 DialSeconds ... 278
2.2.2.2.23 HangupPercent... 279
2.2.2.2.24 HangupSeconds ... 279
2.2.2.2.25 OverridePref .. 279
2.2.2.2.26 RedialAttempts... 279
2.2.2.2.27 RedialSeconds .. 279
2.2.2.2.28 IdleDisconnectSeconds .. 279
2.2.2.2.29 RedialOnLinkFailure .. 279
2.2.2.2.30 CallbackMode ... 279
2.2.2.2.31 CustomDialDll .. 280
2.2.2.2.32 CustomDialFunc ... 280
2.2.2.2.33 CustomRasDialDll ... 280
2.2.2.2.34 ForceSecureCompartment ... 280
2.2.2.2.35 DisableIKENameEkuCheck ... 280
2.2.2.2.36 AuthenticateServer ... 280
2.2.2.2.37 ShareMsFilePrint... 280
2.2.2.2.38 BindMsNetClient ... 281
2.2.2.2.39 SharedPhoneNumbers ... 281
2.2.2.2.40 GlobalDeviceSettings .. 281
2.2.2.2.41 PrerequisitePbk .. 281
2.2.2.2.42 PrerequisiteEntry .. 281
2.2.2.2.43 PreferredPort ... 281
2.2.2.2.44 PreferredDevice.. 282
2.2.2.2.45 PreferredBps .. 282
2.2.2.2.46 PreferredHwFlow .. 282
2.2.2.2.47 PreferredProtocol .. 282
2.2.2.2.48 PreferredCompression ... 282
2.2.2.2.49 PreferredSpeaker ... 283
2.2.2.2.50 PreferredMdmProtocol ... 283
2.2.2.2.51 PreviewUsePw .. 283
2.2.2.2.52 PreviewDomain .. 283
2.2.2.2.53 PreviewPhoneNumber ... 283
2.2.2.2.54 ShowDialingProgress... 283
2.2.2.2.55 ShowMonitorIconInTaskbar .. 283
2.2.2.2.56 CustomAuthKey ... 283
2.2.2.2.57 CustomAuthData .. 283
2.2.2.2.58 AuthRestrictions ... 284
2.2.2.2.59 TypicalAuth.. 284
2.2.2.2.60 IpPrioritizeRemote .. 284
2.2.2.2.61 IpInterfaceMetric .. 284
2.2.2.2.62 fCachedDnsSuffix ... 284
2.2.2.2.63 IpHeaderCompression ... 285
2.2.2.2.64 IpAddress .. 285
2.2.2.2.65 IpDnsAddress .. 285
2.2.2.2.66 IpDns2Address ... 285
2.2.2.2.67 IpWinsAddress ... 286
2.2.2.2.68 IpWins2Address ... 286
2.2.2.2.69 IpAssign .. 286
2.2.2.2.70 IpNameAssign .. 286
2.2.2.2.71 IpFrameSize .. 287
2.2.2.2.72 IpDnsFlags .. 287
2.2.2.2.73 IpNBTFlags .. 287
2.2.2.2.74 TcpWindowSize .. 287

11 / 547

[MS-RRASM-Diff] - v20210407
Routing and Remote Access Server (RRAS) Management Protocol
Copyright © 2021 Microsoft Corporation
Release: April 7, 2021

2.2.2.2.75 UseFlags ... 287
2.2.2.2.76 IpSecFlags ... 288
2.2.2.2.77 IpDnsSuffix ... 288
2.2.2.2.78 IpCachedDnsSuffix ... 288
2.2.2.2.79 (Updated Section) Ipv6Assign .. 288
2.2.2.2.80 Ipv6PrefixLength .. 288
2.2.2.2.81 Ipv6PrioritizeRemote .. 288
2.2.2.2.82 Ipv6InterfaceMetric .. 288
2.2.2.2.83 Ipv6NameAssign .. 289
2.2.2.2.84 Ipv6DnsAddress ... 289
2.2.2.2.85 Ipv6Dns2Address ... 289
2.2.2.2.86 Ipv6Prefix.. 289
2.2.2.2.87 Ipv6InterfaceId .. 289
2.2.2.2.88 DisableClassBasedDefaultRoute .. 290
2.2.2.2.89 DisableMobility ... 290
2.2.2.2.90 NetworkOutageTime ... 290
2.2.2.2.91 ProvisionType .. 290
2.2.2.2.92 PreSharedKey .. 290
2.2.2.2.93 NETCOMPONENTS .. 290
2.2.2.2.94 ms_msclient .. 290
2.2.2.2.95 ms_server ... 290
2.2.2.2.96 MEDIA .. 290
2.2.2.2.97 Port .. 291
2.2.2.2.98 Device .. 291
2.2.2.2.99 ConnectBPS ... 291
2.2.2.2.100 DEVICE ... 291
2.2.2.2.101 Terminal.. 292
2.2.2.2.102 Name .. 292
2.2.2.2.103 Script .. 292
2.2.2.2.104 X25Pad ... 292
2.2.2.2.105 X25Address ... 292
2.2.2.2.106 UserData ... 293
2.2.2.2.107 Facilities .. 293
2.2.2.2.108 PhoneNumber .. 293
2.2.2.2.109 AreaCode .. 293
2.2.2.2.110 CountryCode .. 293
2.2.2.2.111 CountryID ... 294
2.2.2.2.112 UseDialingRules ... 294
2.2.2.2.113 Comment .. 294
2.2.2.2.114 FriendlyName ... 294
2.2.2.2.115 LastSelectedPhone .. 294
2.2.2.2.116 PromoteAlternates .. 294
2.2.2.2.117 TryNextAlternateOnFail ... 294
2.2.2.2.118 HwFlowControl ... 295
2.2.2.2.119 Protocol... 295
2.2.2.2.120 Compression .. 295
2.2.2.2.121 Speaker .. 295
2.2.2.2.122 MdmProtocol .. 296
2.2.2.2.123 LineType ... 296
2.2.2.2.124 Fallback .. 296
2.2.2.2.125 EnableCompression .. 296
2.2.2.2.126 ChannelAggregation .. 297
2.2.2.2.127 Proprietary .. 297

2.2.3 Registry Keys .. 297
2.2.3.1 Transport Configuration .. 297

2.2.3.1.1 ProtocolId .. 297
2.2.3.1.2 (Updated Section) GlobalInfo ... 298
2.2.3.1.3 (Updated Section) GlobalInterfaceInfo .. 298

12 / 547

[MS-RRASM-Diff] - v20210407
Routing and Remote Access Server (RRAS) Management Protocol
Copyright © 2021 Microsoft Corporation
Release: April 7, 2021

2.2.3.2 Interface Configuration ... 298
2.2.3.2.1 Common Interface Configuration Values .. 298

2.2.3.2.1.1 InterfaceName ... 298
2.2.3.2.1.2 Type ... 299
2.2.3.2.1.3 Enabled ... 299
2.2.3.2.1.4 DialOutHours .. 299

2.2.3.2.2 Transport-specific Configuration ... 299
2.2.3.2.2.1 (Updated Section) ProtocolId .. 299
2.2.3.2.2.2 InterfaceInfo .. 299

2.2.3.2.3 IKEv2 Custom Configuration .. 299
2.2.3.2.3.1 SaMaxDataSize ... 300
2.2.3.2.3.2 SaLifeTime ... 300
2.2.3.2.3.3 MachineCertificateName .. 300
2.2.3.2.3.4 IKEv2 Custom Policies ... 300

2.2.3.2.3.4.1 IntegrityMethod .. 300
2.2.3.2.3.4.2 EncryptionMethod .. 300
2.2.3.2.3.4.3 CipherTransformConstant ... 300
2.2.3.2.3.4.4 AuthTransformConstant ... 300
2.2.3.2.3.4.5 PfsGroup .. 300
2.2.3.2.3.4.6 DHGroup .. 301

2.2.3.3 Ports Configuration .. 301
2.2.3.3.1 Non-modem Device Port Configurations .. 301

2.2.3.3.1.1 ComponentId ... 301
2.2.3.3.1.2 DriverDesc ... 302
2.2.3.3.1.3 EnableForOutboundRouting .. 302
2.2.3.3.1.4 EnableForRas ... 302
2.2.3.3.1.5 EnableForRouting .. 302
2.2.3.3.1.6 CalledIDInformation .. 302
2.2.3.3.1.7 MaxWanEndpoints ... 302
2.2.3.3.1.8 WanEndpoints .. 302

2.2.3.3.2 (Updated Section) Modem device Port Configurations.......................... 302
2.2.3.4 Miscellaneous Configuration Information ... 303

2.2.3.4.1 RouterType .. 303
2.2.3.4.2 IKEv2 Tunnel Configuration Settings ... 304

2.2.3.4.2.1 idleTimeout .. 304
2.2.3.4.2.2 networkBlackoutTime .. 304
2.2.3.4.2.3 saDataSize ... 304
2.2.3.4.2.4 saLifeTime ... 304
2.2.3.4.2.5 TrustedRootCert ... 304
2.2.3.4.2.6 EncryptionType ... 304
2.2.3.4.2.7 MachineCertificateName .. 305
2.2.3.4.2.8 IKEv2 Custom Policy Configuration .. 305

2.2.3.4.2.8.1 IntegrityMethod .. 305
2.2.3.4.2.8.2 EncryptionMethod .. 305
2.2.3.4.2.8.3 CipherTransformConstant ... 305
2.2.3.4.2.8.4 AuthTransformConstant ... 305
2.2.3.4.2.8.5 PfsGroup .. 306
2.2.3.4.2.8.6 DHGroup .. 306

2.2.3.4.3 SSTP Tunnel Configuration Settings .. 306
2.2.3.4.3.1 UseHttps .. 306
2.2.3.4.3.2 IsHashConfiguredByAdmin ... 306
2.2.3.4.3.3 SHA256CertificateHash .. 306
2.2.3.4.3.4 SHA1CertificateHash ... 306

2.2.3.4.4 QuarantineInstalled .. 306
2.2.3.4.5 LoggingFlags .. 307
2.2.3.4.6 ServerFlags ... 307
2.2.3.4.7 ConfigurationFlags .. 308
2.2.3.4.8 AllowNetworkAccess ... 308

13 / 547

[MS-RRASM-Diff] - v20210407
Routing and Remote Access Server (RRAS) Management Protocol
Copyright © 2021 Microsoft Corporation
Release: April 7, 2021

2.2.3.4.9 EnableIn ... 309
2.2.3.4.10 EnableNetbtBcastFwd .. 309
2.2.3.4.11 IpAddress .. 309
2.2.3.4.12 IpMask .. 309
2.2.3.4.13 NetworkAdapterGUID .. 310
2.2.3.4.14 UseDhcpAddressing .. 310
2.2.3.4.15 StaticAddressPool ... 310
2.2.3.4.16 AdvertiseDefaultRoute .. 310
2.2.3.4.17 StaticPrefixPool .. 310
2.2.3.4.18 Accounting Settings .. 311

2.2.3.4.18.1 AcctGroupName .. 311
2.2.3.4.18.2 ActiveProvider .. 311
2.2.3.4.18.3 RADIUS-based Accounting Settings ... 311

2.2.3.4.18.3.1 Score ... 311
2.2.3.4.18.3.2 AcctPort ... 311
2.2.3.4.18.3.3 Timeout ... 312
2.2.3.4.18.3.4 EnableAccountingOnOff .. 312

2.2.3.4.19 Authentication Settings ... 312
2.2.3.4.19.1 AuthGroupName ... 312
2.2.3.4.19.2 CRPName... 312
2.2.3.4.19.3 ActiveProvider .. 312
2.2.3.4.19.4 RADIUS-based Authentication Settings .. 312

2.2.3.4.19.4.1 Score ... 313
2.2.3.4.19.4.2 AuthPort ... 313
2.2.3.4.19.4.3 Timeout ... 313
2.2.3.4.19.4.4 SendSignature .. 313

2.2.4 Error Codes... 313
2.2.5 REMRAS Common Messages ... 315

2.2.5.1 Structures ... 315
2.2.5.1.1 (Updated Section) IPV6Address .. 315

3 (Updated Section) Protocol Details ... 316
3.1 DIMSVC Interface Server Details ... 316

3.1.1 Abstract Data Model ... 316
3.1.2 Timers ... 317
3.1.3 Initialization .. 317
3.1.4 Message Processing Events and Sequencing Rules ... 317

3.1.4.1 (Updated Section) RMprAdminServerGetInfo (Opnum 0) 321
3.1.4.2 RRasAdminConnectionEnum (Opnum 1) .. 322
3.1.4.3 (Updated Section) RRasAdminConnectionGetInfo (Opnum 2) 324
3.1.4.4 RRasAdminConnectionClearStats (Opnum 3) ... 325
3.1.4.5 RRasAdminPortEnum (Opnum 4) ... 326
3.1.4.6 RRasAdminPortGetInfo (Opnum 5) ... 328
3.1.4.7 RRasAdminPortClearStats (Opnum 6) ... 329
3.1.4.8 (Updated Section) RRasAdminPortReset (Opnum 7) 330
3.1.4.9 RRasAdminPortDisconnect (Opnum 8) .. 331
3.1.4.10 RRouterInterfaceTransportSetGlobalInfo (Opnum 9) 332
3.1.4.11 RRouterInterfaceTransportGetGlobalInfo (Opnum 10) 333
3.1.4.12 RRouterInterfaceGetHandle (Opnum 11) ... 336
3.1.4.13 (Updated Section) RRouterInterfaceCreate (Opnum 12) 337
3.1.4.14 (Updated Section) RRouterInterfaceGetInfo (Opnum 13) 339
3.1.4.15 (Updated Section) RRouterInterfaceSetInfo (Opnum 14) 341
3.1.4.16 RRouterInterfaceDelete (Opnum 15) .. 343
3.1.4.17 RRouterInterfaceTransportRemove (Opnum 16) 344
3.1.4.18 (Updated Section) RRouterInterfaceTransportAdd (Opnum 17) 345
3.1.4.19 RRouterInterfaceTransportGetInfo (Opnum 18) 348
3.1.4.20 (Updated Section) RRouterInterfaceTransportSetInfo (Opnum 19) 350
3.1.4.21 RRouterInterfaceEnum (Opnum 20) ... 354

14 / 547

[MS-RRASM-Diff] - v20210407
Routing and Remote Access Server (RRAS) Management Protocol
Copyright © 2021 Microsoft Corporation
Release: April 7, 2021

3.1.4.22 RRouterInterfaceConnect (Opnum 21) .. 355
3.1.4.23 RRouterInterfaceDisconnect (Opnum 22) .. 356
3.1.4.24 RRouterInterfaceUpdateRoutes (Opnum 23) .. 357
3.1.4.25 RRouterInterfaceQueryUpdateResult (Opnum 24) 358
3.1.4.26 RRouterInterfaceUpdatePhonebookInfo (Opnum 25)................................. 360
3.1.4.27 RMIBEntryCreate (Opnum 26) ... 360
3.1.4.28 RMIBEntryDelete (Opnum 27) ... 363
3.1.4.29 (Updated Section) RMIBEntrySet (Opnum 28) ... 364
3.1.4.30 (Updated Section) RMIBEntryGet (Opnum 29) ... 368
3.1.4.31 (Updated Section) RMIBEntryGetFirst (Opnum 30) 372
3.1.4.32 RMIBEntryGetNext (Opnum 31) ... 376
3.1.4.33 RMIBGetTrapInfo (Opnum 32) ... 377
3.1.4.34 RMIBSetTrapInfo (Opnum 33) ... 378
3.1.4.35 RRasAdminConnectionNotification (Opnum 34) .. 380
3.1.4.36 RRasAdminSendUserMessage (Opnum 35) .. 381
3.1.4.37 RRouterDeviceEnum (Opnum 36) ... 382
3.1.4.38 RRouterInterfaceTransportCreate (Opnum 37) ... 383
3.1.4.39 (Updated Section) RRouterInterfaceDeviceGetInfo (Opnum 38) 384
3.1.4.40 (Updated Section) RRouterInterfaceDeviceSetInfo (Opnum 39) 386
3.1.4.41 RRouterInterfaceSetCredentialsEx (Opnum 40) .. 387
3.1.4.42 (Updated Section) RRouterInterfaceGetCredentialsEx (Opnum 41) 388
3.1.4.43 RRasAdminConnectionRemoveQuarantine (Opnum 42) 389
3.1.4.44 (Updated Section) RMprAdminServerSetInfo (Opnum 43) 390
3.1.4.45 RMprAdminServerGetInfoEx (Opnum 44) .. 392
3.1.4.46 RRasAdminConnectionEnumEx (Opnum 45) .. 392
3.1.4.47 RRasAdminConnectionGetInfoEx (Opnum 46) .. 394
3.1.4.48 (Updated Section) RMprAdminServerSetInfoEx (Opnum 47) 395
3.1.4.49 RRasAdminUpdateConnection (Opnum 48) .. 396
3.1.4.50 (Updated Section) RRouterInterfaceSetCredentialsLocal (Opnum 49) 397
3.1.4.51 (Updated Section) RRouterInterfaceGetCredentialsLocal (Opnum 50) 398
3.1.4.52 RRouterInterfaceGetCustomInfoEx (Opnum 51) 399
3.1.4.53 RRouterInterfaceSetCustomInfoEx (Opnum 52) 400

3.1.5 Timer Events ... 400
3.1.6 Other Local Events ... 401

3.1.6.1 Invoke DIMSVC Method .. 401
3.1.6.2 Start DIMSVC .. 401
3.1.6.3 Stop DIMSVC... 401

3.2 DIMSVC Interface Client Details .. 401
3.2.1 Abstract Data Model ... 401
3.2.2 Timers ... 401
3.2.3 Initialization .. 402
3.2.4 Message Processing Events and Sequencing Rules ... 402

3.2.4.1 RMprAdminServerGetInfo (Opnum 0) ... 402
3.2.4.2 RRasAdminConnectionEnum (Opnum 1) .. 402
3.2.4.3 RRasAdminConnectionGetInfo (Opnum 2) ... 402
3.2.4.4 RRasAdminConnectionClearStats (Opnum 3) ... 402
3.2.4.5 RRasAdminPortEnum (Opnum 4) ... 402
3.2.4.6 RRasAdminPortGetInfo (Opnum 5) ... 402
3.2.4.7 RRasAdminPortClearStats (Opnum 6) ... 403
3.2.4.8 RRasAdminPortReset (Opnum 7) .. 403
3.2.4.9 RRasAdminPortDisconnect (Opnum 8) .. 403
3.2.4.10 RRouterInterfaceTransportSetGlobalInfo (Opnum 9) 403
3.2.4.11 RRouterInterfaceTransportGetGlobalInfo (Opnum 10) 403
3.2.4.12 RRouterInterfaceGetHandle (Opnum 11) ... 403
3.2.4.13 RRouterInterfaceCreate (Opnum 12) .. 403
3.2.4.14 RRouterInterfaceGetInfo (Opnum 13) ... 403
3.2.4.15 RRouterInterfaceSetInfo (Opnum 14) ... 403
3.2.4.16 RRouterInterfaceDelete (Opnum 15) .. 403

15 / 547

[MS-RRASM-Diff] - v20210407
Routing and Remote Access Server (RRAS) Management Protocol
Copyright © 2021 Microsoft Corporation
Release: April 7, 2021

3.2.4.17 RRouterInterfaceTransportRemove (Opnum 16) 403
3.2.4.18 RRouterInterfaceTransportAdd (Opnum 17) .. 404
3.2.4.19 RRouterInterfaceTransportGetInfo (Opnum 18) 404
3.2.4.20 RRouterInterfaceTransportSetInfo (Opnum 19) .. 404
3.2.4.21 RRouterInterfaceEnum (Opnum 20) ... 404
3.2.4.22 RRouterInterfaceConnect (Opnum 21) .. 404
3.2.4.23 RRouterInterfaceDisconnect (Opnum 22) .. 404
3.2.4.24 RRouterInterfaceUpdateRoutes (Opnum 23) .. 404
3.2.4.25 RRouterInterfaceQueryUpdateResult (Opnum 24) 404
3.2.4.26 RRouterInterfaceUpdatePhonebookInfo (Opnum 25)................................. 404
3.2.4.27 RMIBEntryCreate (Opnum 26) ... 404
3.2.4.28 RMIBEntryDelete (Opnum 27) ... 404
3.2.4.29 RMIBEntrySet (Opnum 28) .. 405
3.2.4.30 RMIBEntryGet (Opnum 29) ... 405
3.2.4.31 RMIBEntryGetFirst (Opnum 30) ... 405
3.2.4.32 RMIBEntryGetNext (Opnum 31) ... 405
3.2.4.33 RMIBGetTrapInfo (Opnum 32) ... 405
3.2.4.34 RMIBSetTrapInfo (Opnum 33) ... 405
3.2.4.35 RRasAdminConnectionNotification (Opnum 34) .. 405
3.2.4.36 RRasAdminSendUserMessage (Opnum 35) .. 405
3.2.4.37 RRouterDeviceEnum (Opnum 36) ... 405
3.2.4.38 RRouterInterfaceTransportCreate (Opnum 37) ... 405
3.2.4.39 RRouterInterfaceDeviceGetInfo (Opnum 38).. 405
3.2.4.40 RRouterInterfaceDeviceSetInfo (Opnum 39) .. 406
3.2.4.41 RRouterInterfaceSetCredentialsEx (Opnum 40) .. 406
3.2.4.42 RRouterInterfaceGetCredentialsEx (Opnum 41) 406
3.2.4.43 RRasAdminConnectionRemoveQuarantine (Opnum 42) 406
3.2.4.44 RMprAdminServerSetInfo (Opnum 43) .. 406
3.2.4.45 RMprAdminServerGetInfoEx (Opnum 44) .. 406
3.2.4.46 RRasAdminConnectionEnumEx (Opnum 45) .. 406
3.2.4.47 RRasAdminConnectionGetInfoEx (Opnum 46) .. 406
3.2.4.48 RMprAdminServerSetInfoEx (Opnum 47) .. 406
3.2.4.49 RRasAdminUpdateConnection (Opnum 48) .. 406
3.2.4.50 RRouterInterfaceSetCredentialsLocal (Opnum 49) 406
3.2.4.51 RRouterInterfaceGetCredentialsLocal (Opnum 50) 407
3.2.4.52 RRouterInterfaceGetCustomInfoEx (Opnum 51) 407
3.2.4.53 RRouterInterfaceSetCustomInfoEx (Opnum 52) 407

3.2.5 Timer Events ... 407
3.2.6 Other Local Events ... 407

3.3 RASRPC Interface Server Details ... 407
3.3.1 Abstract Data Model ... 407
3.3.2 Timers ... 407
3.3.3 Initialization .. 407
3.3.4 Message Processing Events and Sequencing Rules ... 407

3.3.4.1 RasRpcDeleteEntry (Opnum 5) .. 409
3.3.4.2 (Updated Section) RasRpcGetUserPreferences (Opnum 9) 410
3.3.4.3 RasRpcSetUserPreferences (Opnum 10) .. 411
3.3.4.4 RasRpcGetSystemDirectory (Opnum 11) ... 411
3.3.4.5 (Updated Section) RasRpcSubmitRequest (Opnum 12) 412
3.3.4.6 RasRpcGetInstalledProtocolsEx (Opnum 14) .. 417
3.3.4.7 RasRpcGetVersion (Opnum 15) .. 417

3.3.5 Timer Events ... 418
3.3.6 Other Local Events ... 418

3.3.6.1 Invoke RASRPC Method .. 418
3.3.6.2 Start RASRPC .. 419
3.3.6.3 Stop RASRPC ... 419

3.4 RASRPC Interface Client Details .. 419
3.4.1 Abstract Data Model ... 419

16 / 547

[MS-RRASM-Diff] - v20210407
Routing and Remote Access Server (RRAS) Management Protocol
Copyright © 2021 Microsoft Corporation
Release: April 7, 2021

3.4.2 Timers ... 419
3.4.3 Initialization .. 419
3.4.4 Message Processing Events and Sequencing Rules ... 419

3.4.4.1 RasRpcDeleteEntry (Opnum 5) .. 420
3.4.4.2 RasRpcGetUserPreferences (Opnum 9) ... 420
3.4.4.3 RasRpcSetUserPreferences (Opnum 10) .. 420
3.4.4.4 RasRpcGetSystemDirectory (Opnum 11) ... 420
3.4.4.5 (Updated Section) RasRpcSubmitRequest (Opnum 12) 420
3.4.4.6 RasRpcGetInstalledProtocolsEx (Opnum 14) .. 421
3.4.4.7 RasRpcGetVersion (Opnum 15) .. 421

3.4.5 Timer Events ... 421
3.4.6 Other Local Events ... 421

3.5 REMRAS Interface Server Details .. 421
3.5.1 Abstract Data Model ... 421
3.5.2 Timers ... 421
3.5.3 Initialization .. 422
3.5.4 Message Processing Events and Sequencing Rules ... 422

3.5.4.1 IRemoteNetworkConfig Interface (Opnum 3) ... 423
3.5.4.1.1 UpgradeRouterConfig Method (Opnum 3) .. 423
3.5.4.1.2 SetUserConfig Method (Opnum 4) .. 423

3.5.4.2 IRemoteRouterRestart Interface (Opnum 3) .. 424
3.5.4.2.1 RestartRouter Method (Opnum 3) ... 424

3.5.4.3 IRemoteSetDnsConfig Interface (Opnum 3) ... 424
3.5.4.3.1 SetDnsConfig Method (Opnum 3) ... 425

3.5.4.4 IRemoteICFICSConfig Interface (Opnum 3) ... 425
3.5.4.4.1 GetIcfEnabled Method (Opnum 3) ... 426
3.5.4.4.2 (Updated Section) GetIcsEnabled Method (Opnum 4) 426

3.5.4.5 (Updated Section) IRemoteStringIdConfig Interface (Opnum 3) 427
3.5.4.5.1 GetStringFromId Method (Opnum 3) ... 427

3.5.4.6 IRemoteIPV6Config Interface (Opnum 3) .. 428
3.5.4.6.1 GetAddressList Method (Opnum 3) ... 429

3.5.4.7 IRemoteSSTPCertCheck Interface (Opnum 3) .. 429
3.5.4.7.1 CheckIfCertificateAllowedRR Method (Opnum 3) 430

3.5.5 Timer Events ... 430
3.5.6 Other Local Events ... 430

3.5.6.1 Invoke REMRAS Method .. 430
3.6 REMRAS Interface Client Details .. 431

3.6.1 Abstract Data Model ... 431
3.6.2 Timers ... 431
3.6.3 Initialization .. 431
3.6.4 Message Processing Events and Sequencing Rules ... 431
3.6.5 Timer Events ... 431
3.6.6 Other Local Events ... 431

4 Protocol Examples ... 432
4.1 (Updated Section) Querying Server Configuration Information 432
4.2 (Updated Section) Disconnecting a Particular User Connection 432
4.3 (Updated Section) Creating a Demand Dial Interface on RRAS with Filters 434
4.4 (Updated Section) Enumerating Interfaces and Connecting "dd1" 436
4.5 Querying Interface Status Through MIB ... 437
4.6 (Updated Section) Updating the Connection Endpoint of an IKEv2-Based Connection438
4.7 Retrieving the Rasrpc Server Version Info .. 439
4.8 Retrieving Device Configuration Information ... 439
4.9 Retrieving Specific Port Information... 440
4.10 Sample Phonebook File for a Demand-dial Connection ... 441
4.11 Registry Configuration ... 445

4.11.1 Transport Configuration .. 445
4.11.2 Interface Configuration ... 446

17 / 547

[MS-RRASM-Diff] - v20210407
Routing and Remote Access Server (RRAS) Management Protocol
Copyright © 2021 Microsoft Corporation
Release: April 7, 2021

4.11.3 Ports Configuration .. 447
4.11.4 Other Miscellaneous Configuration Information .. 448

4.12 Querying validity of SSTP certificate .. 449

5 Security ... 451
5.1 Security Considerations for Implementers .. 451

5.1.1 Security Considerations Specific to the RRAS Management Protocol 451
5.2 Index of Security Parameters ... 451

6 (Updated Section) Appendix A: Full IDL .. 452

7 (Updated Section) Appendix B: Product Behavior .. 508

8 Change Tracking .. 528

9 Index ... 530

18 / 547

[MS-RRASM-Diff] - v20210407
Routing and Remote Access Server (RRAS) Management Protocol
Copyright © 2021 Microsoft Corporation
Release: April 7, 2021

1 (Updated Section) Introduction

The routing and remote access service (RRAS) server management (RRASM) protocol enables remote
management (configuration and monitoring) of a RRAS implementation. The RRAS implementation
here refers to the components that can be configured to provide the following functionality:

▪ Routing

▪ Remote access service

▪ Site-to-site connectivity

The RRASM protocol is a client/server protocol based on remote procedure call (RPC). It comprises
RPC methods that enable the remote management of an RRAS implementation.

It also specifies Distributed Component Object Model (DCOM) interfaces that enable the remote
management of RRAS implementation. As a part of remote management of RRAS implementation, a
management application uses the RPC and DCOM methods to manage the RRAS implementation

actively (while RRAS is running).

This protocol also specifies the registry information that can be used to specify the overall RRAS
configuration. These registry settings can be managed remotely using the [MS-RRP] protocol. When
RRAS is not active, the configurations are managed through the registry information.

Additionally, for site-to-site connectivity, the settings to be used to connect to a remote site are
specified in the form of a phonebook file. This protocol also specifies the format of the phonebook file
used by RRAS server. The management application can use the phonebook file format to specify the

connection configuration to be used for site-to-site connections.

The client-side Remote Access Service (RAS) is a point-to-point or point-to-site service that is not in
the RRASM protocol. See legacy information in [MSDOCS-RRAS] and [MSDOCS-RA-API]. RAS client
uses a different phonebook file; see legacy information in [MSDOCS-RASpbk].

Sections 1.5, 1.8, 1.9, 2, and 3 of this specification are normative. All other sections and examples in

this specification are informative.

1.1 (Updated Section) Glossary

This document uses the following terms:

administrator: A user who has complete and unrestricted access to the computer or domain.

Advanced Encryption Standard (AES): A block cipher that supersedes the Data Encryption

Standard (DES). AES can be used to protect electronic data. The AES algorithm can be used to
encrypt (encipher) and decrypt (decipher) information. Encryption converts data to an
unintelligible form called ciphertext; decrypting the ciphertext converts the data back into its
original form, called plaintext. AES is used in symmetric-key cryptography, meaning that the
same key is used for the encryption and decryption operations. It is also a block cipher,
meaning that it operates on fixed-size blocks of plaintext and ciphertext, and requires the size of

the plaintext as well as the ciphertext to be an exact multiple of this block size. AES is also

known as the Rijndael symmetric encryption algorithm [FIPS197].

authentication: The ability of one entity to determine the identity of another entity.

authentication level: A numeric value indicating the level of authentication or message protection
that remote procedure call (RPC) will apply to a specific message exchange. For more
information, see [C706] section 13.1.2.1 and [MS-RPCE].

19 / 547

[MS-RRASM-Diff] - v20210407
Routing and Remote Access Server (RRAS) Management Protocol
Copyright © 2021 Microsoft Corporation
Release: April 7, 2021

Authentication Service (AS): A service that issues ticket granting tickets (TGTs), which are used
for authenticating principals within the realm or domain served by the Authentication Service.

autonomous system: A group of routers that share a single administrative policy. These routers
all use the same routing protocol, called an Interior Gateway Protocol, to communicate.

autonomous system number (ASN): A unique number allocated to each autonomous system for
use in the BGP routing protocol.

best route: The optimal route to a network destination, based on specified criteria. This concept is
based on the fact that there is a certain "cost" involved in taking a route across a network. The
best route to take is the one with the lowest cost, based on specified criteria. This criteria can
include the number of networks crossed, the type of network crossed (for example, public or
private), or a monetary or bandwidth limit.

BGP speaker: A router that implements the Border Gateway Protocol (BGP).

binary large object (BLOB): A collection of binary data stored as a single entity in a database.

Border Gateway Protocol (BGP): An interautonomousinter-autonomous system routing protocol
designed for TCP/IP routing.

callback: The mechanism through which a remote access client gets called back by the server in
order to establish connectivity.

CalledId: Originating address of a call.

certificate: A certificate is a collection of attributes and extensions that can be stored persistently.
The set of attributes in a certificate can vary depending on the intended usage of the certificate.
A certificate securely binds a public key to the entity that holds the corresponding private key. A
certificate is commonly used for authentication and secure exchange of information on open
networks, such as the Internet, extranets, and intranets. Certificates are digitally signed by the
issuing certification authority (CA) and can be issued for a user, a computer, or a service. The

most widely accepted format for certificates is defined by the ITU-T X.509 version 3
international standards. For more information about attributes and extensions, see [RFC3280]

and [X509] sections 7 and 8.

Challenge-Handshake Authentication Protocol (CHAP): A protocol for user authentication to a
remote resource. For more information, see [RFC1994] and [RFC2759].

client: A computer on which the remote procedure call (RPC) client is executing.

Compression Control Protocol (CCP): Allows two computers that communicate through Point-

to-Point Protocol (PPP) [RFC1661] to negotiate compatible algorithms for sending and receiving
compressed PPP frames. The two computers may not use CCP until the network-control-protocol
phase of the PPP connection. For more information, see [RFC1962].

connection: The successful completion of necessary protocol arrangements (authentication,
network parameters negotiation, and so on) between a remote client computer and the RRAS
server to set up a dial-up or virtual private networking (VPN) association. Connection enables

the remote client computer to function on the RRAS server network as if it were connected to

the server network directly.

Connection Point Services (CPS) phonebook file: A file that contains POP entries.

credential: Previously established, authentication data that is used by a security principal to
establish its own identity. When used in reference to the Netlogon Protocol, it is the data that is
stored in the NETLOGON_CREDENTIAL structure.

cyclic redundancy check (CRC): An algorithm used to produce a checksum (a small, fixed

number of bits) against a block of data, such as a packet of network traffic or a block of a

20 / 547

[MS-RRASM-Diff] - v20210407
Routing and Remote Access Server (RRAS) Management Protocol
Copyright © 2021 Microsoft Corporation
Release: April 7, 2021

computer file. The CRC is a broad class of functions used to detect errors after transmission or
storage. A CRC is designed to catch random errors, as opposed to intentional errors. If errors

might be introduced by a motivated and intelligent adversary, a cryptographic hash function
should be used instead.

Data Encryption Standard (DES): A specification for encryption of computer data that uses a
56-bit key developed by IBM and adopted by the U.S. government as a standard in 1976. For
more information see [FIPS46-3].

datagram: A style of communication offered by a network transport protocol where each message
is contained within a single network packet. In this style, there is no requirement for
establishing a session prior to communication, as opposed to a connection-oriented style.

demand-dial: Dialing a preconfigured connection only when there is traffic to be sent. Interfaces

configured to do so are called demand dial or dial-on-demand (DOD) interfaces.

device: Any peripheral or part of a computer system that can send or receive data.

dialing rule: The rule that specifies the correct sequence of numbers to dial on a modem device.

This includes rules that specify the long distance operator and international prefix that is dialed
before domestic long distance or international phone numbers.

Distributed Component Object Model (DCOM): The Microsoft Component Object Model (COM)

specification that defines how components communicate over networks, as specified in [MS-
DCOM].

domain: A set of users and computers sharing a common namespace and management
infrastructure. At least one computer member of the set must act as a domain controller (DC)
and host a member list that identifies all members of the domain, as well as optionally hosting
the Active Directory service. The domain controller provides authentication of members, creating
a unit of trust for its members. Each domain has an identifier that is shared among its members.

For more information, see [MS-AUTHSOD] section 1.1.1.5 and [MS-ADTS].

domain name: A domain name used by the Domain Name System (DNS).

EAP: See Extensible Authentication Protocol (EAP).

endpoint: A client that is on a network and is requesting access to a network access server (NAS).

enhanced key usage (EKU): An extension that is a collection of object identifiers (OIDs) that
indicate the applications that use the key.

Extensible Authentication Protocol (EAP): A framework for authentication that is used to

provide a pluggable model for adding authentication protocols for use in network access
authentication, as specified in [RFC3748].

Exterior Gateway Protocol (EGP): Distributes routing information to the routers that connect
autonomous systems to a backbone.

filter: A setting that excludes subfolders (and their contents) or files from replication. There are
two types of filters: file filters and folder filters.

filtering: To share a subset of the host applications or windows with participants instead of sharing
all of the applications and windows.

forwarder: The forwarder is the kernel-mode component of the router that is responsible for
forwarding data from one router interface to the others. The forwarder also decides whether a
packet is destined for local delivery, whether it is destined to be forwarded out of another
interface, or both. There are two kernel-mode forwarders: unicast and multicast.

21 / 547

[MS-RRASM-Diff] - v20210407
Routing and Remote Access Server (RRAS) Management Protocol
Copyright © 2021 Microsoft Corporation
Release: April 7, 2021

globally unique identifier (GUID): A term used interchangeably with universally unique
identifier (UUID) in Microsoft protocol technical documents (TDs). Interchanging the usage of

these terms does not imply or require a specific algorithm or mechanism to generate the value.
Specifically, the use of this term does not imply or require that the algorithms described in

[RFC4122] or [C706] must be used for generating the GUID. See also universally unique
identifier (UUID).

Hash-based Message Authentication Code (HMAC): A mechanism for message authentication
using cryptographic hash functions. HMAC can be used with any iterative cryptographic hash
function (for example, MD5 and SHA-1) in combination with a secret shared key. The
cryptographic strength of HMAC depends on the properties of the underlying hash function.

interface: Represents a network that can be reached over an adapter. Each interface has a unique

interface identifier also known as an interface index. interfaces that are active have an adapter
that is providing connectivity to the network they represent. interfaces that are inactive do not
have an adapter providing connectivity unless an administrator disabled the interface after it
already had an adapter. Routing a packet to a network represented by an interface will cause
the router to allocate an adapter for that interface, and will establish a wide area network (WAN)

connection to the remote network. Allocating an adapter to an interface is referred to as binding.

In the case of a local area network (LAN) interface, the interface corresponds to an actual
physical device in the computer, a LAN adapter. In the case of a WAN interface, the interface is
mapped to a port at the time that a connection is established. The port could be a COM port, a
parallel port, or a virtual port (for tunnels such as PPTP [RFC2637] and L2TP [RFC2661]). WAN
interfaces have the additional quality that they typically receive a network address only at the
time that a connection is established. For example, a WAN interface using PPP [RFC1661]
receives its network layer address from the remote peer during the connection process.

Receiving a network address as part of the connection process is sometimes referred to as late-
binding.

Interface Definition Language (IDL): The International Standards Organization (ISO) standard
language for specifying the interface for remote procedure calls. For more information, see
[C706] section 4.

interface identifier (IID): A GUID that identifies an interface.

internal interface: The interface on the RRAS server that corresponds to all the modem dial-up

and virtual private networking clients connected to the RAS server. This is also referred as a dial
in interface.

Internet Key Exchange (IKE): The protocol that is used to negotiate and provide authenticated
keying material for security associations (SAs) in a protected manner. For more information, see
[RFC2409].

key value pair (KVP): A set of two linked data items: a key that is an identifier for some data

item, and a value that is a value associated with the data item for the identifier represented by
the key.

L2TP: Layer Two Tunneling Protocol, as defined in [RFC2661].

little-endian: Multiple-byte values that are byte-ordered with the least significant byte stored in

the memory location with the lowest address.

local computer: In case of a remote access client connection endpoint on the RRAS server, the
local computer is the RRAS machine whereas remote computer is the machine from which the

client has connected.

locally unique identifier (LUID): A 64-bit value guaranteed to be unique within the scope of a
single machine.

22 / 547

[MS-RRASM-Diff] - v20210407
Routing and Remote Access Server (RRAS) Management Protocol
Copyright © 2021 Microsoft Corporation
Release: April 7, 2021

main mode (MM): The first phase of an Internet Key Exchange (IKE) negotiation that performs
authentication and negotiates a main mode security association (MM SA) between the peers. For

more information, see [RFC2409] section 5.

main mode security association (MM SA): A security association that is used to protect

Internet Key Exchange (IKE) traffic between two peers. For more information, see [RFC2408]
section 2.

marshal: To encode one or more data structures into an octet stream using a specific remote
procedure call (RPC) transfer syntax (for example, marshaling a 32-bit integer).

multi exit discriminator (MED): An optional, nontransitive attribute in the BGP that is used as a
hint to external neighbors about the preferred path into an autonomous system that has
multiple entry points. This is also known as the external metric of a route. A route with a lower

MED value is preferred over a higher value.

multicast: Allows a host to send data to only those destinations that specifically request to receive
the data. In this way, multicasting differs from sending broadcast data, because broadcast data

is sent to all hosts. multicasting saves network bandwidth because multicast data is received
only by those hosts that request the data, and the data travels over any link only once.
multicasting saves server bandwidth because a server has to send only one multicast message

per network instead of one unicast message per receiver.

multicast heartbeat: The ability of the router to listen for a regular multicast notification to a
specified group address. Multicast heartbeat is used to verify that IP multicast connectivity is
available on the network. If the heartbeat is not received within a configured amount of time,
the multicast heartbeat status of the configured interface is set to inactive.

multicast routing protocol: A protocol that manages group membership and controls the path
that multicast data takes over the network. Examples of multicast routing protocols include

Protocol Independent Multicast (PIM), Multicast Open Shortest Path First (MOSPF), and Distance
Vector multicast routing protocol (DVMRP). The Internet Group Management Protocol (IGMP) is
a special multicast routing protocol that acts as an intermediary between hosts and routers.

multilink phonebook entry: A dial-up phonebook entry that can connect to the RAS server using
multiple configured devices (or channels, in the case of an ISDN device).

named pipe: A named, one-way, or duplex pipe for communication between a pipe server and one
or more pipe clients.

NetBEUI: NetBIOS Enhanced User Interface. NetBEUI is an enhanced NetBIOS protocol for
network operating systems, originated by IBM for the LAN Manager server and now used with
many other networks.

NetBIOS: A particular network transport that is part of the LAN Manager protocol suite. NetBIOS
uses a broadcast communication style that was applicable to early segmented local area
networks. A protocol family including name resolution, datagram, and connection services. For

more information, see [RFC1001] and [RFC1002].

Network Access Protection (NAP): A feature of an operating system that provides a platform

for system health-validated access to private networks. NAP provides a way of detecting the
health state of a network client that is attempting to connect to or communicate on a network,
and limiting the access of the network client until the health policy requirements have been met.
NAP is implemented through quarantines and health checks, as specified in [TNC-IF-
TNCCSPBSoH].

network address translation (NAT): The process of converting between IP addresses used
within an intranet, or other private network, and Internet IP addresses.

23 / 547

[MS-RRASM-Diff] - v20210407
Routing and Remote Access Server (RRAS) Management Protocol
Copyright © 2021 Microsoft Corporation
Release: April 7, 2021

Network Address Translator (NAT): An IPv4 router defined in [RFC1631] that can translate the
IP addresses and TCP/UDP port numbers of packets as they are forwarded.

network byte order: The order in which the bytes of a multiple-byte number are transmitted on a
network, most significant byte first (in big-endian storage). This may or may not match the

order in which numbers are normally stored in memory for a particular processor.

Network Data Representation (NDR): A specification that defines a mapping from Interface
Definition Language (IDL) data types onto octet streams. NDR also refers to the runtime
environment that implements the mapping facilities (for example, data provided to NDR). For
more information, see [MS-RPCE] and [C706] section 14.

next hop: The next router on the path toward a destination. Packets from a source are forwarded
to a destination on a hop-by-hop basis.

next hops: Routes have one or more next hops associated with them. If the destination is not on a
directly connected network, the next hop is the address of the next router (or network) on the
outgoing network that can best route data to the destination. Each next hop is uniquely

identified by the address of the next hop and the interface index used to reach the next hop. If
the next hop itself is not directly connected, it is marked as a "remote" next hop. In this case,
the forwarder must perform another lookup using the next hop's network address. This lookup is

necessary to find the "local" next hop used to reach the remote next hop and the destination.

object identifier (OID): In the context of an object server, a 64-bit number that uniquely
identifies an object.

opnum: An operation number or numeric identifier that is used to identify a specific remote
procedure call (RPC) method or a method in an interface. For more information, see [C706]
section 12.5.2.12 or [MS-RPCE].

phone book (PBK): A file maintained by RRAS to store telephone numbers, and security and

network settings used for RAS connections.

point-to-multipoint interface: An interface that provides communication between a single host

and multiple destinations. Point-to-multipoint interfaces can be thought of as a collection of
point-to-point links with a single termination, such as an ATM link.

point-to-point interface: An interface that provides communication between a single source and
a single destination, such as a PPP link.

port: The logical endpoint of a remote access connection on the client or server.

PPP: Point-to-Point Protocol (PPP), as defined in [RFC1661].

PPPoE: Specifies a method for transmitting PPP frames over Ethernet as specified in [RFC2516].

PPTP: Point-to-Point Tunneling Protocol (PPTP) Profile, as defined in [MS-PTPT].

preshared key: A shared secret agreed upon by two authenticating entities (routing and remote
access service (RRAS) server or client in this document).

process identifier (PID): A nonzero integer used by some operating systems (for example,

Windows and UNIX) to uniquely identify a process. For more information, see [PROCESS].

quick mode security association (QM SA): A security association (SA) that is used to protect IP
packets between peers (the Internet Key Exchange (IKE) traffic is protected by the main mode
security association (MM SA)). For more information, see [RFC2409] section 5.5.

RAS port: The logical endpoint of a remote access connection on the client or server.

REG_SZ: A registry value type defined to be a REG_VALUE_TYPE of 1 as defined in [MS-RRP].

24 / 547

[MS-RRASM-Diff] - v20210407
Routing and Remote Access Server (RRAS) Management Protocol
Copyright © 2021 Microsoft Corporation
Release: April 7, 2021

registry: A local system-defined database in which applications and system components store and
retrieve configuration data. It is a hierarchical data store with lightly typed elements that are

logically stored in tree format. Applications use the registry API to retrieve, modify, or delete
registry data. The data stored in the registry varies according to the version of the operating

system.

Remote Authentication Dial-In User Service (RADIUS): A protocol for carrying authentication,
authorization, and configuration information between a network access server (NAS) that
prefers to authenticate connection requests from endpoints and a shared server that performs
authentication, authorization, and accounting.

remote procedure call (RPC): A communication protocol used primarily between client and
server. The term has three definitions that are often used interchangeably: a runtime

environment providing for communication facilities between computers (the RPC runtime); a set
of request-and-response message exchanges between computers (the RPC exchange); and the
single message from an RPC exchange (the RPC message). For more information, see [C706].

RIP for IPX: Routing Information Protocol (RIP) for IPX, is the primary routing protocol used in

IPX internetworks.

route: A "network path" to a destination that has a certain cost associated with it. The cost is

represented by its administrative preference and its protocol-specific metric.

router: A server that handles data forwarding and runs routing protocols.

routing and remote access service (RRAS) server: A server implementation that is managed
by the RRASM protocol and provides routing and remote access service functionality.

routing protocol: Used to exchange information regarding routes to a destination. Routing
protocols are either unicast or multicast. Routing protocols advertise routes to a destination. A
unicast route to a destination is used by a unicast routing protocol to forward unicast data to

that destination. Examples of unicast routing protocols include RIP, OSPF, and Border Gateway
Protocol (BGP). A multicast route to a destination is used by some multicast routing protocols to
create the information that is used to forward multicast data from hosts on the destination

network of the route (known as reverse-path forwarding).

routing table: A table that consists of destinations, routes, and next hops. These entries define a
route to a destination network.

RPC protocol sequence: A character string that represents a valid combination of a remote

procedure call (RPC) protocol, a network layer protocol, and a transport layer protocol, as
described in [C706] and [MS-RPCE].

RRAS entry name: The display name for the RRAS entry.

RRAS entry section: A grouping of the RRAS entry name and the settings associated with the
RRAS entry stored as key value pairs.

RRAS Entry Subsection: Refers to a group of related key value pairs in the RRAS Phonebook

Entry.

RRAS entry/RRAS phonebook entry/RRAS phonebook section: A grouping of the demand
dial connection name and the settings associated with the demand dial connection stored as key
value pairs.

RRAS phonebook path: Refers to the location of the phonebook file.

RRASM client: The RPC client-side implementation of the RRASM protocol, which can be used to
develop management software to remotely manage the RRAS server.

25 / 547

[MS-RRASM-Diff] - v20210407
Routing and Remote Access Server (RRAS) Management Protocol
Copyright © 2021 Microsoft Corporation
Release: April 7, 2021

RRASM server: The RPC server-side implementation of the RRASM protocol, which provides the
server endpoint for remote management of the RRAS server implementation.

security association (SA): A simplex "connection" that provides security services to the traffic
carried by it. See [RFC4301] for more information.

Server Message Block (SMB): A protocol that is used to request file and print services from
server systems over a network. The SMB protocol extends the CIFS protocol with additional
security, file, and disk management support. For more information, see [CIFS] and [MS-SMB].

Simple Symmetric Transport Protocol (SSTP): A protocol that enables two applications to
engage in bi-directional, asynchronous communication. SSTP supports multiple application
endpoints over a single network connection between client nodes.

smart card: A portable device that is shaped like a business card and is embedded with a memory

chip and either a microprocessor or some non-programmable logic. Smart cards are often used
as authentication tokens and for secure key storage. Smart cards used for secure key storage
have the ability to perform cryptographic operations with the stored key without allowing the

key itself to be read or otherwise extracted from the card.

static NetBIOS names: The names that can be configured so that NetBIOS over IPX name query
broadcasts for specific NetBIOS names can be forwarded using specific interfaces.

static route: A route that is manually added to the routing table. A static route is associated with
an interface that represents the remote network. Unlike dynamic routes, static routes are
retained even if the router is restarted or the interface is disabled. Typically, routes to remote
networks are obtained dynamically through routing protocols. However, the administrator can
also seed the routing table by providing routes manually. These routes are referred to as static.

subInterface: For each RAS client connection in RRAS, one is created and has an index similar to
interface index called a subInterface index. Different RAS clients on the server are associated

with different subInterfaces identified by their subInterface index.

Telephony Application Programming Interface (TAPI): A set of functions that allows

programming of telephone line-based devices in a device-independent manner. TAPI is used for
the development of communications applications.

terminal window: An ANSI text-only window in a graphical user interface that emulates a
console. This is also referred to as a hyper terminal.

transport: routable transport that fits into the router architecture, for example, IPv4, IPv6, or IPX

Unicode: A character encoding standard developed by the Unicode Consortium that represents
almost all of the written languages of the world. The Unicode standard [UNICODE5.0.0/2007]
provides three forms (UTF-8, UTF-16, and UTF-32) and seven schemes (UTF-8, UTF-16, UTF-16
BE, UTF-16 LE, UTF-32, UTF-32 LE, and UTF-32 BE).

universally unique identifier (UUID): A 128-bit value. UUIDs can be used for multiple
purposes, from tagging objects with an extremely short lifetime, to reliably identifying very

persistent objects in cross-process communication such as client and server interfaces, manager

entry-point vectors, and RPC objects. UUIDs are highly likely to be unique. UUIDs are also
known as globally unique identifiers (GUIDs) and these terms are used interchangeably in the
Microsoft protocol technical documents (TDs). Interchanging the usage of these terms does not
imply or require a specific algorithm or mechanism to generate the UUID. Specifically, the use of
this term does not imply or require that the algorithms described in [RFC4122] or [C706] must
be used for generating the UUID.

Upstream Partner: The partner that sends out change orders, files, and folders.

26 / 547

[MS-RRASM-Diff] - v20210407
Routing and Remote Access Server (RRAS) Management Protocol
Copyright © 2021 Microsoft Corporation
Release: April 7, 2021

User Datagram Protocol (UDP): The connectionless protocol within TCP/IP that corresponds to
the transport layer in the ISO/OSI reference model.

view: A subset of the routing table and contains a group of related routes (for example, multicast
routes). Views are sometimes called routing information bases (RIBs).

virtual private network (VPN): A network that provides secure access to a private network over
public infrastructure.

MAY, SHOULD, MUST, SHOULD NOT, MUST NOT: These terms (in all caps) are used as defined
in [RFC2119]. All statements of optional behavior use either MAY, SHOULD, or SHOULD NOT.

1.2 References

Links to a document in the Microsoft Open Specifications library point to the correct section in the
most recently published version of the referenced document. However, because individual documents
in the library are not updated at the same time, the section numbers in the documents may not
match. You can confirm the correct section numbering by checking the Errata.

1.2.1 (Updated Section) Normative References

We conduct frequent surveys of the normative references to assure their continued availability. If you
have any issue with finding a normative reference, please contact dochelp@microsoft.com. We will
assist you in finding the relevant information.

[C706] The Open Group, "DCE 1.1: Remote Procedure Call", C706, August 1997,

https://www2publications.opengroup.org/ogsys/catalog/c706

Note Registration is required to download the document.

[IANA-EAP] IANA, "Extensible Authentication Protocol (EAP) Registry", October 2006,
http://www.iana.org/assignments/eap-numbers

[IANAifType] IANA, "IANAifType-MIB Definitions", January 2007,
http://www.iana.org/assignments/ianaiftype-mib

[MS-DCOM] Microsoft Corporation, "Distributed Component Object Model (DCOM) Remote Protocol".

[MS-DTYP] Microsoft Corporation, "Windows Data Types".

[MS-ERREF] Microsoft Corporation, "Windows Error Codes".

[MS-L2TPIE] Microsoft Corporation, "Layer 2 Tunneling Protocol (L2TP) IPsec Extensions".

[MS-RNAP] Microsoft Corporation, "Vendor-Specific RADIUS Attributes for Network Access Protection

(NAP) Data Structure".

[MS-RPCE] Microsoft Corporation, "Remote Procedure Call Protocol Extensions".

[MS-RRP] Microsoft Corporation, "Windows Remote Registry Protocol".

[MS-SSTP] Microsoft Corporation, "Secure Socket Tunneling Protocol (SSTP)".

[MS-TRP] Microsoft Corporation, "Telephony Remote Protocol".

[RFC1002] Network Working Group, "Protocol Standard for a NetBIOS Service on a TCP/UDP
Transport: Detailed Specifications", STD 19, RFC 1002, March 1987, http://www.rfc-
editor.org/rfc/rfc1002.txt

27 / 547

[MS-RRASM-Diff] - v20210407
Routing and Remote Access Server (RRAS) Management Protocol
Copyright © 2021 Microsoft Corporation
Release: April 7, 2021

[RFC1058] Hedrick, C., "Routing Information Protocol", RFC 1058, June 1988,
http://www.ietf.org/rfc/rfc1058.txt

[RFC1144] Jacobson, V., "Compressing TCP/IP Headers for Low-Speed Serial Links", February 1990,
http://www.rfc-editor.org/rfc/rfc1144.txt

[RFC1172] Perkins, D., and Hobby, R., "The Point-to-Point Protocol (PPP) Initial Configuration
Options", RFC 1172, July 1990, http://www.ietf.org/rfc/rfc1172.txt

[RFC1256] Deering, S., "ICMP Router Discovery Messages", RFC 1256, September 1991,
http://www.ietf.org/rfc/rfc1256.txt

[RFC1301] Armstrong, S., Freier, A., and Marzullo, K., "Multicast Transport Protocol", RFC 1301,
February 1992, http://www.ietf.org/rfc/rfc1301.txt

[RFC1334] Lloyd, B., and Simpson, W., "PPP Authentication Protocols", RFC 1334, October 1992,
http://www.ietf.org/rfc/rfc1334.txt

[RFC1354] Baker, F., "IP Forwarding Table MIB", RFC 1354, July 1992,
http://www.ietf.org/rfc/rfc1354.txt

[RFC1542] Wimer, W., "Clarifications and Extensions for the Bootstrap Protocol", RFC 1542, October

1993, http://www.ietf.org/rfc/rfc1542.txt

[RFC1570] Simpson, W., Ed., "PPP LCP Extensions", RFC 1570, January 1994,
http://www.ietf.org/rfc/rfc1570.txt

[RFC1634] Allen, M., "Novell IPX Over Various WAN Media (IPXWAN)", RFC 1634, May 1994,
http://www.ietf.org/rfc/rfc1634.txt

[RFC1661] Simpson, W., Ed., "The Point-to-Point Protocol (PPP)", STD 51, RFC 1661, July 1994,
http://www.ietf.org/rfc/rfc1661.txt

[RFC1700] Reynolds, J. and Postel, J., "Assigned Numbers", STD 2, RFC 1700, October 1994,

http://www.ietf.org/rfc/rfc1700.txt

[RFC1723] Malkin, G., "RIP Version 2 Carrying Additional Information", RFC 1723, November 1994,
http://tools.ietf.org/html/rfc/rfc1723.txt

[RFC1850] Baker, F., and Coltun, R., "OSPF Version 2 Management Information Base", RFC 1850,
November 1995, http://www.ietf.org/rfc/rfc1850.txt

[RFC1962] Rand, D., "The PPP Compression Control Protocol (CCP)", RFC 1962, June 1996,
http://ietf.org/rfc/rfc1962.txt

[RFC1974] Friend, R., and Simpson, W., "PPP Stac LZS Compression Protocol", RFC 1974, June 1996,

http://www.ietf.org/rfc/rfc1974.txt

[RFC1990] Sklower, K., Lloyd, B., McGregor, G., et al., "The PPP Multilink Protocol (MP)", RFC 1990,
August 1996, http://www.ietf.org/rfc/rfc1990.txt

[RFC2119] Bradner, S., "Key words for use in RFCs to Indicate Requirement Levels", BCP 14, RFC
2119, March 1997, http://www.rfc-editor.org/rfc/rfc2119.txt

[RFC2125] Richards, C., and Smith, K., "The PPP Bandwidth Allocation Protocol (BAP) and The PPP

Bandwidth Allocation Control Protocol (BACP)", RFC 2125, March 1997,
http://www.ietf.org/rfc/rfc2125.txt

28 / 547

[MS-RRASM-Diff] - v20210407
Routing and Remote Access Server (RRAS) Management Protocol
Copyright © 2021 Microsoft Corporation
Release: April 7, 2021

[RFC2284] Blunk, L. and Vollbrecht, J., "PPP Extensible Authentication Protocol (EAP)", RFC 2284,
March 1998, http://www.ietf.org/rfc/rfc2284.txt

[RFC2328] Moy, J., "OSPF Version 2", STD 54, RFC 2328, April 1998,
http://www.ietf.org/rfc/rfc2328.txt

[RFC2365] Meyer, D., "Administratively Scoped IP Multicast", BCP 23, RFC2365, July 1998,
http://www.ietf.org/rfc/rfc2365.txt

[RFC2433] Zorn, G., and Cobb, S., "Microsoft PPP CHAP Extensions", RFC 2433, October 1998,
http://www.ietf.org/rfc/rfc2433.txt

[RFC2459] Housley, R., Ford, W., Polk, W., and Solo, D., "Internet X.509 Public Key Infrastructure
Certificate and CRL Profile", RFC 2459, January 1999, http://www.rfc-editor.org/rfc/rfc2459.txt

[RFC2865] Rigney, C., Willens, S., Rubens, A., and Simpson, W., "Remote Authentication Dial In User
Service (RADIUS)", RFC 2865, June 2000, http://www.ietf.org/rfc/rfc2865.txt

[RFC3315] Droms, R., Bound, J., Volz, B., et al., "Dynamic Host Configuration Protocol for IPv6
(DHCPv6)", RFC 3315, July 2003, http://www.ietf.org/rfc/rfc3315.txt

[RFC3376] Cain, B., Deering S., Kouvelas, I., et al., "Internet Group Management Protocol, Version 3",

RFC 3376, October 2002, http://www.ietf.org/rfc/rfc3376.txt

[RFC4292] Haberman, B., "IP Forwarding Table MIB", RFC 4292, April 2006,
http://www.ietf.org/rfc/rfc4292.txt

[RFC4306] Kaufman, C., "Internet Key Exchange (IKEv2) Protocol", RFC 4306, December 2005,
http://www.ietf.org/rfc/rfc4306.txt

[RFC4555] P. Eronen, Ed., "IKEv2 Mobility and Multihoming Protocol (MOBIKE)", RFC 4555, June
2006, http://www.ietf.org/rfc/rfc4555.txt

[RFC5072] Varada, S., Ed., Haskins, D., and Allen, E., "IP Version 6 over PPP", RFC 5072, September

2007, http://www.ietf.org/rfc/rfc5072.txt

[RFC950] Mogul, J., and Postel, J., "Internet Standard Subnetting Procedure", STD 5, RFC 950, August
1985, http://www.rfc-editor.org/rfc/rfc950.txt

1.2.2 (Updated Section) Informative References

[E164] ITU-T, "The International Public Telecommunication Numbering Plan", Recommendation E.164,
February 2005, http://www.itu.int/rec/T-REC-E.164/e

Note There is a charge to download the specification.

[MS-CHAP] Microsoft Corporation, "Extensible Authentication Protocol Method for Microsoft Challenge
Handshake Authentication Protocol (CHAP)".

[MS-PEAP] Microsoft Corporation, "Protected Extensible Authentication Protocol (PEAP)".

[MSDN-NAP] Microsoft Corporation, "Network Access Protection", http://msdn.microsoft.com/en-

us/library/aa369712(VS.85).aspx

[MSDN-RASMSDOCS-RA-API] Microsoft Corporation, "Remote Access", https://docs.microsoft.com/en-
us/windows/win32/rras/remote-access-start-page

29 / 547

[MS-RRASM-Diff] - v20210407
Routing and Remote Access Server (RRAS) Management Protocol
Copyright © 2021 Microsoft Corporation
Release: April 7, 2021

[MSDOCS-RASENTRY] Microsoft Corporation, "RASENTRY structure",
http://msdnhttps://docs.microsoft.com/en-us/libraryprevious-

versions/windows/desktop/legacy/aa377274.aspx(v=vs.85)

[MSDOCS-RASpbk] Microsoft Corporation, "RAS Phone`Books", https://docs.microsoft.com/en-
us/windows/win32/rras/ras-phone-books

[MSDOCS-ROUT-API] Microsoft Corporation, "Routing and Remote Access Service",

https://docs.microsoft.com/en-us/windows/win32/rras/portal

[MSDOCS-RRAS] Microsoft Corporation, "Routing and Remote Access Service",
https://docs.microsoft.com/en-us/windows/win32/api/_rras/

[MSFT-CERT] Microsoft Corporation, "How Certificates Work", https://technet.microsoft.com/en-
us/library/cc776447(v=ws.10).aspx

[MSFT-NAQC] Microsoft Corporation, "Network Access Quarantine Control in Windows Server 2003",
2004, http://technet.microsoft.com/en-us/library/bb726973.aspx

[MSFT-ROUTING] Microsoft Corporation, "Routing Technologies", http://technet.microsoft.com/en-
us/library/cc786023.aspx

[MSFT-RRA] Microsoft Corporation, "Routing and Remote Access", http://technet.microsoft.com/en-
us/network/bb545655.aspx

[OB930E] ITU-T, "List of ITU-T Recommendation E.164 Assigned Country Codes", Complement to ITU-
T Recommendation E.164, April 2009, http://www.itu.int/dms_pub/itu-t/opb/sp/T-SP-E.164D-2009-

PDF-E.pdf

[RFC1994] Simpson, W, "PPP Challenge Handshake Authentication Protocol (CHAP)", RFC 1994,
August 1996, http://www.ietf.org/rfc/rfc1994.txt

[RFC2403] Madson, C. and Glenn, R., "The Use of HMAC-MD5-96 Within ESP and AH", RFC 2403,
November 1998, http://www.ietf.org/rfc/rfc2403.txt

[RFC2404] Madson, C. and Glenn, R., "The Use of HMAC-SHA-1-96 Within ESP and AH", RFC 2404,
November 1998, http://www.ietf.org/rfc/rfc2404.txt

[RFC2410] Glenn, R. and Kent, S., "The NULL Encryption Algorithm and Its Use With IPsec", RFC
2410, November 1998, http://www.ietf.org/rfc/rfc2410.txt

[RFC2451] Pereira, R. and Adams, R., "The ESP CBC-Mode Cipher Algorithms", RFC 2451, November
1998, http://www.ietf.org/rfc/rfc2451.txt

[RFC2516] Mamakos, L., Lidl, K., Evarts, J., et al., "A Method for Transmitting PPP over Ethernet
(PPPoE)", RFC 2516, February 1999, http://www.ietf.org/rfc/rfc2516.txt

[RFC2759] Zorn, G., "Microsoft PPP CHAP Extensions, Version 2", RFC 2759, January 2000,
http://www.ietf.org/rfc/rfc2759.txt

[RFC2761] Dunn, J., and Martin, C., "Terminology for ATM Benchmarking", RFC 2761, February 2000,

http://www.ietf.org/rfc/rfc2761.txt

[RFC3602] Frankel, S., Glenn, R., and Kelly, S., "The AES-CBC Cipher Algorithm and Its Use with
IPsec", RFC 3602, September 2003, http://www.ietf.org/rfc/rfc3602.txt

[RFC3629] Yergeau, F., "UTF-8, A Transformation Format of ISO 10646", STD 63, RFC 3629,
November 2003, http://www.ietf.org/rfc/rfc3629.txt

30 / 547

[MS-RRASM-Diff] - v20210407
Routing and Remote Access Server (RRAS) Management Protocol
Copyright © 2021 Microsoft Corporation
Release: April 7, 2021

[RFC4022] Raghunarayan, R., Ed., "Management Information Base for the Transmission Control
Protocol (TCP)", RFC 4022, March 2005, http://www.ietf.org/rfc/rfc4022.txt

[RFC4106] Viega, J. and McGrew, D., "The Use of Galois/Counter Mode (GCM) in IPsec Encapsulating
Security Payload (ESP)", RFC 4106, June 2005, http://www.ietf.org/rfc/rfc4106.txt

[SPNNAMES] Microsoft Corporation, "Name Formats for Unique SPNs", http://msdn.microsoft.com/en-
us/library/ms677601.aspx

[X.25] ITU-T, "Interface between Data Terminal Equipment (DTE) and Data Circuit-terminating
Equipment (DCE) for Terminals Operating in the Packet Mode and Connected to Public Data Networks
by Dedicated Circuit", Recommendation x.25, October 1996, http://www.itu.int/rec/T-REC-X.25-
199610-I/en

1.3 (Updated Section) Overview

The routing and remote access service (RRAS) server management (RRASM) protocol enables remote
management (configuration and monitoring) of RRAS routers. This protocol exposes the RRAS

management data objects (described in sections 1.3.1, 1.3.2, 1.3.3, 1.3.4, and 1.3.5) and the

methods to manage these objects remotely. An RRAS implementation that exposes its configuration in
the form of these objects and methods can be managed remotely using the RRASM protocol. The
RRASM protocol is responsible for providing the remote management capability only. The way the
management objects are used in order to provide RRAS functionality, is specific to the RRAS
implementation and is outside the scope of this protocol.

The remote procedure call (RPC) protocol provides the mechanism to define methods and data
structures that are passed as parameters to these methods. It also provides the underlying with which

these methods can be invoked remotely as well as the data passed as parameters.

This document, in addition, specifies the registry keys and values that can be used to specify an RRAS
server configuration. These registry keys can be remotely configured using the [MS-RRP] protocol.
They form the initial configuration for the RRAS implementation. Runtime configuration changes are
done through the RPC protocol itself. An RRAS implementation that understands these registry keys

and realizes their intended semantics can then be configured remotely using the [MS-RRP] protocol.

This document also specifies the format of the phonebook file that can be used to specify site-to-site
connection settings. An RRAS implementation that understands the semantics of this phonebook file
can then be configured to provide site-to-site connectivity. The phonebook file can be created
remotely at a well-known location using any remote file management mechanism such as the Server
Message Block (SMB) protocol. The RRAS implementation can read the settings and realize the
configuration based on the semantics specified.

The client-side Remote Access Service (RAS) is a point-to-point or point-to-site service that is not in

this RRASM protocol server site-to-site router remote access service. See legacy information in
[MSDOCS-RRAS] and [MSDOCS-ROUT-API]. Some of the functions in the RAS API are supported only
on network servers, and other functions are supported only on network clients. See legacy information
in [MSDOCS-RA-API]. RAS client uses a different phonebook file; see legacy information in [MSDOCS-
RASpbk].

The interaction between a RRASM client and a RRASM server itself is stateless and is accomplished
through RPC method invocation. Each RPC method request is independent of others and no context is

maintained by RRASM pertaining to the sequence of operations. Each method involves passing of
certain parameters from the RRASM client to the RRAS implementation through the RRASM RPC
server. The RRAS server performs the required operation locally in response to the RPC method
request and provides the result of the operation to the RRASM server in the form of result information
and associated data. The RRASM server is responsible for transporting the result information and the
data associated, back to the client that originated the request. This request-response mechanism is

provided by the RPC protocol as defined in [MS-RPCE]. In a nutshell, the RRASM client and server act

31 / 547

[MS-RRASM-Diff] - v20210407
Routing and Remote Access Server (RRAS) Management Protocol
Copyright © 2021 Microsoft Corporation
Release: April 7, 2021

as the endpoints providing remote communication to the RRAS implementation which already has
these objects defined and managed locally.

The following two figures respectively show the Client/server message exchange and the RRAS
conceptual model.

Figure 1: Client/server message exchange

Figure 2: RRAS conceptual model

The RRASM client and server interact with each other using RPC and Distributed Component Object
Model (DCOM) interfaces. There are two RPC interfaces supported by RRASM: DIMSVC and RASRPC.
There is a DCOM interface supported by RRAS: REMRAS. These interfaces are specified in section 3.

The RRAS implementation can be viewed as comprising the following components:

▪ Router Managers

▪ Interface Manager

32 / 547

[MS-RRASM-Diff] - v20210407
Routing and Remote Access Server (RRAS) Management Protocol
Copyright © 2021 Microsoft Corporation
Release: April 7, 2021

▪ Connection Manager

Router Managers are responsible for managing various routing protocols. Router Managers start

as a part of the RRAS server initialization. The RRAS server will read the router configuration as
specified in the registry store and will initialize the Router Managers with their configuration. There is

one Router Manager per transport (for example, the IPv4 Router Manager). The Router Manager in
turn is responsible for configuring the various routing protocols (for example, Routing Information
Protocol (RIP) for IPv4 transport) for which the configuration is available. The Router Manager
interacts with Interface Manager to monitor the various interfaces and their status. This in turn
enables the Router Manager (and the routing protocols) to apply the routing configuration on the
various interfaces. The Router Manager is also responsible for providing status and statistical
information in the form of a Management Information Base (MIB).

The Interface Manager is the component responsible for managing the various interfaces
(LAN/WAN) on the RRAS server. The LAN interface refers to the Ethernet interfaces that can
participate in routing. The WAN interface can be a dial-in interface (the interface that collectively
represents all the remote access clients that are connected to the RRAS server), or a demand-dial
interface (a WAN interface that is connected on demand to realize secure site-to-site router-level

connectivity). For demand-dial interfaces, the Interface Manager is responsible for initiating the

connection. The connection settings are managed by the Interface Manager using the phonebook
file format. The manager reads the phonebook entry for the demand-dial connection settings and
passes it to the Connection Manager to perform the task of setting up the connection using a
specific protocol.

The Connection Manager is the component responsible for managing remote access connections. It
provides the implementation of the various protocols as mentioned in the conceptual model (such as
PPTP, L2TP, PPP, and so on). It is also responsible for providing authentication, accounting, auditing,

and authorization (AAAA) support for the remote access connections. This provides connection-specific
detailed information for monitoring purposes.

These three components of RRAS server implement their own providers for configuration and
monitoring tasks based on the defined objects and semantics. RRASM can then be used to perform
these tasks remotely. The way these tasks are actually realized is outside the scope of the RRASM
protocol itself.

The high-level data objects defined for an RRAS implementation to understand and operate on, and

remotely managed by the RRASM protocol, are as follows:

▪ Interface

▪ Transport

▪ Management Information Base

▪ Port

▪ Connection

▪ Server

The RRAS implementation is defined to be the provider of these methods and objects for local
management. These methods and objects are made available for the RRASM server to call into. The
RRASM protocol makes these objects and methods available remotely over RPC interfaces, thereby
enabling remote management.

1.3.1 Interface Object

This object provides the interface-specific information and the routing protocol configurations
associated with the interface. The interfaces on the RRAS server can be enumerated using

33 / 547

[MS-RRASM-Diff] - v20210407
Routing and Remote Access Server (RRAS) Management Protocol
Copyright © 2021 Microsoft Corporation
Release: April 7, 2021

RRouterInterfaceEnum. Each interface is associated with a handle that can be used to refer to a
specific interface. This handle can be obtained through the RRouterInterfaceEnum or through

RRouterInterfaceGetHandle. For new interfaces, creating the interface through RRouterInterfaceCreate
will also provide the reference handle. With the interface handle, specific tasks on the interface can be

performed, which are as follows:

▪ RRouterInterfaceDelete

▪ RRouterInterfaceGetInfo

▪ RRouterInterfaceSetInfo

▪ RRouterInterfaceUpdatePhonebookInfo

▪ RRouterInterfaceDeviceGetInfo

▪ RRouterInterfaceDeviceSetInfo

▪ RRouterInterfaceSetCredentialsEx

▪ RRouterInterfaceGetCredentialsEx

▪ RRouterInterfaceSetCredentialsLocal

▪ RRouterInterfaceGetCredentialsLocal

An interface object corresponding to a demand-dial interface can also be used to perform tasks like
connect and disconnect using the RRouterInterfaceConnect and RRouterInterfaceDisconnect methods.

1.3.2 Transport Object

The transports are the various protocols that participate in the routing operation. The transport
configurations are realized by the router managers and the routing protocols that are part of the
router managers. Each transport is identified by a well-known transport identifier that specifies the

protocol for which a certain operation needs to be performed. The transport-specific configuration can

be managed through the following methods by specifying the appropriate transport identifier:

▪ RRouterInterfaceTransportSetGlobalInfo

▪ RRouterInterfaceTransportGetGlobalInfo

▪ RRouterInterfaceTransportCreate

Additionally, the transport configurations can be managed for a specific interface using the following

methods by specifying the transport identifier and the interface handle:

▪ RRouterInterfaceTransportRemove

▪ RRouterInterfaceTransportGetInfo

▪ RRouterInterfaceTransportSetInfo

▪ RRouterInterfaceTransportAdd

For the routing functionality, the route configuration can be updated on the interfaces for a particular
transport by using the following methods.

▪ RRouterInterfaceUpdateRoutes

▪ RRouterInterfaceQueryUpdateResult

34 / 547

[MS-RRASM-Diff] - v20210407
Routing and Remote Access Server (RRAS) Management Protocol
Copyright © 2021 Microsoft Corporation
Release: April 7, 2021

1.3.3 Management Information Base (MIB)

A number of statistics are collected as a part of the routing functionality of the various routing
protocols. The MIB object provides methods and data structures with which this information can be

gathered from the router managers and the routing protocols. The following methods enable these
monitoring operations:

▪ RMIBEntryCreate

▪ RMIBEntryDelete

▪ RMIBEntrySet

▪ RMIBEntryGet

▪ RMIBEntryGetFirst

▪ RMIBEntryGetNext

▪ RMIBGetTrapInfo

▪ RMIBSetTrapInfo

Each of these methods takes the transport identifier and the routing protocol identifier for which the
MIB operations are performed.

1.3.4 Ports Object

The remote access and site-to-site connection functionality is associated with connectivity. In turn,
connectivity is provided by physical devices, such as a modem or ISDN (dial-up), or by virtual devices,
such as PPTP, L2TP, PPPoE, IKEv2, and SSTP. For the RRAS server to accept connectivity, the devices
(physical or virtual) need to be configured to accept connections. This is specified through the port

configuration. A port is associated with each device type supported. The ports can be used for various
connectivity purposes like remote access or demand-dial routing connectivity. There can be

miscellaneous configurations associated with a specific device type. Configurations of the devices can
be set or retrieved through the following methods:

▪ RMprAdminServerSetInfo

▪ RMprAdminServerGetInfo

▪ RMprAdminServerGetInfoEx

▪ RMprAdminServerSetInfoEx

▪ RRouterDeviceEnum

The following request types, used by RasRpcSubmitRequest, also enable these operations:

▪ REQTYPE_GETDEVICECONFIGINFO

▪ REQTYPE_SETDEVICECONFIGINFO

▪ REQTYPE_GETCALLEDID

▪ REQTYPE_SETCALLEDID

▪ REQTYPE_GETDEVCONFIG

▪ REQTYPE_GETNDISWANDRIVERCAPS

35 / 547

[MS-RRASM-Diff] - v20210407
Routing and Remote Access Server (RRAS) Management Protocol
Copyright © 2021 Microsoft Corporation
Release: April 7, 2021

Each port is associated with a port handle that can be retrieved using RRasAdminPortEnum or the
RasRpcSubmitRequest with REQTYPE_PORTENUM. This handle can be used to perform tasks or queries

specific to a port using this handle as reference. For each configured port there are runtime
information and statistics obtainable through RRasAdminPortGetInfo. The specific request type

REQTYPE_GETINFO of the RasRpcSubmitRequest method also enables these operations. Other than
these get and set operations, there are other port-specific operations possible such as
RRasAdminPortClearStats, RRasAdminPortReset, and RRasAdminPortDisconnect.

1.3.5 Connection Object

The ports represent an endpoint of the remote access or demand-dial connectivity. As a part of the
individual device process of establishing the underlying connectivity, there is data available at
runtime. The data is represented as connection objects. The connections can be enumerated using
RRasAdminConnectionEnumEx or RRasAdminConnectionEnum. Each connection is associated with a
connection handle that can be used to refer to a specific connection instance. This can be obtained
through the RRasAdminPortEnum or RRasAdminPortGetInfo methods. RRasAdminConnectionGetInfo or

RRasAdminConnectionGetInfoEx enable the retrieval of the connection-specific information. Other than

these, the connection-specific tasks that can be performed are as follows:

▪ RRasAdminConnectionClearStats

▪ RRasAdminConnectionNotification

▪ RRasAdminUpdateConnection

▪ RRasAdminConnectionRemoveQuarantine

▪ RRasAdminSendUserMessage

1.4 (Updated Section) Relationship to Other Protocols

The RRAS Management Protocol relies on RPC [MS-RPCE] as a transport. It is used to remotely
manage RRAS server implementations. For more information about RRAS, see [MSDN-RAS].

This protocol uses RPC over named pipes as specified in section 2.1. The support for the RPC protocol
sequence using named pipes is as specified in the [MS-RPCE] section 2.1.1.2.

This protocol uses DCOM [MS-DCOM] as specified in section 2.

The registry values that the RRASM client uses for configurations are handled using the [MS-RRP]
protocol. Any RRAS server implementation can use these registry settings to initialize the RRAS server
configuration.

The client-side Remote Access Service (RAS) is a point-to-point or point-to-site service. It is not to be

confused with this RRASM protocol, which is a site-to-site server-side router management protocol.
Some of the functions in the RAS API are supported only on network servers, and other functions are
supported only on network clients. See legacy information in [MSDOCS-RA-API].

1.5 Prerequisites/Preconditions

This protocol is implemented on top of DCOM and RPC. The pre-requisites specified in [MS-DCOM] and
[MS-RPCE] are applicable.

The RRAS Management Protocol assumes that a client has obtained the name or the IP address of the
RRAS server that implements this protocol suite before the protocol is invoked.

36 / 547

[MS-RRASM-Diff] - v20210407
Routing and Remote Access Server (RRAS) Management Protocol
Copyright © 2021 Microsoft Corporation
Release: April 7, 2021

1.6 Applicability Statement

This protocol is applicable when an application needs to remotely configure, manage, or monitor an
RRAS server implementation.

1.7 Versioning and Capability Negotiation

Supported Transports: The RRAS Management Protocol uses the RPC protocol as a transport and
the RPC protocol sequence as specified in section 2.1.

Protocol Versions: This protocol has three interfaces named DIMSVC, RASRPC, and REMRAS. Each

interface has only one interface version. The interfaces have been extended by adding additional
methods at the end. The use of these methods is specified in section 3.1, section 3.3, and section 3.5.

Security and Authentication Methods: Authentication and security for the transport used by this
protocol are specified in [MS-RPCE]. For the RPC and DCOM interfaces, the security and authentication
mechanisms are described in section 5.

Localization: This protocol passes text strings in various methods. Localization considerations for

such strings are specified where relevant.

Capability Negotiation: The RRAS Management Protocol does not support negotiation of the
interface version to use for the RPC interfaces. Instead, this protocol uses only the interface version
number specified in the Interface Definition Language (IDL) for versioning and capability negotiation.

1.8 Vendor-Extensible Fields

This protocol uses error codes as defined in [MS-ERREF] section 2.2. Additional error codes are
defined in section 2.2.4. Vendors SHOULD reuse those values with their indicated meaning. Choosing
any other value runs the risk of a collision in the future.

1.9 Standards Assignments

The following parameters are private Microsoft assignments.

Parameter Value Reference

RPC interface UUID for DIMSVC interface 8f09f000-b7ed-11ce-bbd2-00001a181cad [C706] section A.2.5

RPC interface UUID for RASRPC interface 20610036-fa22-11cf-9823-00a0c911e5df [C706] section A.2.5

Named pipe name \PIPE\ROUTER

CLSID for REMRAS interface 1aa7f844-c7F5-11d0-A376-00c04fc9da04

RPC interface UUID for
IRemoteNetworkConfig interface

66a2db1b-d706-11d0-a37b-00c04fc9da04

RPC interface UUID for
IRemoteRouterRestart interface

66a2db20-d706-11d0-a37b-00c04fc9da04

RPC interface UUID for
IRemoteSetDnsConfig interface

66a2db21-d706-11d0-a37b-00c04fc9da04

RPC interface UUID for
IRemoteICFICSConfig interface

66a2db22-d706-11d0-a37b-00c04fc9da04

RPC interface UUID for

IRemoteStringIdConfig interface

67e08fc2-2984-4b62-b92e-fc1aae64bbbb

37 / 547

[MS-RRASM-Diff] - v20210407
Routing and Remote Access Server (RRAS) Management Protocol
Copyright © 2021 Microsoft Corporation
Release: April 7, 2021

Parameter Value Reference

RPC interface UUID for
IRemoteIPV6Config interface

6139d8a4-e508-4ebb-bac7-d7f275145897

RPC interface UUID for
IRemoteSstpCertCheck interface

5ff9bdf6-bd91-4d8b-a614-d6317acc8dd8

38 / 547

[MS-RRASM-Diff] - v20210407
Routing and Remote Access Server (RRAS) Management Protocol
Copyright © 2021 Microsoft Corporation
Release: April 7, 2021

2 Messages

The following sections specify how Routing and Remote Access Server Management messages are
transported and specifies their message syntax, Phonebook format, registry keys, and error codes.

2.1 Transport

RRASM uses RPC over named pipes, with the named pipe-name as \PIPE\ROUTER and DCOM
interfaces.

The protocol MUST use the following UUID for the RPC interfaces:

▪ 8f09f000-b7ed-11ce-bbd2-00001a181cad for the dimsvc interface

▪ 20610036-fa22-11cf-9823-00a0c911e5df for the rasrpc interface

The protocol MUST use the following UUIDs for the REMRAS DCOM interfaces:

▪ 66a2db1b-d706-11d0-a37b-00c04fc9da04 for the IRemoteNetworkConfig interface

▪ 66a2db20-d706-11d0-a37b-00c04fc9da04 for the IRemoteRouterRestart interface

▪ 66a2db21-d706-11d0-a37b-00c04fc9da04 for the IRemoteSetDnsConfig interface

▪ 66a2db22-d706-11d0-a37b-00c04fc9da04 for the IRemoteICFICSConfig interface

▪ 67e08fc2-2984-4b62-b92e-fc1aae64bbbb for the IRemoteStringIdConfig interface

▪ 6139d8a4-e508-4ebb-bac7-d7f275145897 for the IRemoteIPV6Config interface

▪ 5ff9bdf6-bd91-4d8b-a614-d6317acc8dd8 for the IRemoteSstpCertCheck interface

2.1.1 DIMSVC Security Settings

The following sections specify DIMSVC server and client security settings.

2.1.1.1 Server Security Settings

The server interface MUST be identified by the UUID 8f09f000-b7ed-11ce-bbd2-00001a181cad version
0.0. The server MUST specify RPC over SMB as the RPC protocol sequence to the RPC implementation,
as specified in [MS-RPCE]. The DIMSVC RPC server MUST specify "Simple and Protected GSS-API

Negotiation Mechanism" (0x09) as the RPC authentication service (AS) as specified in [MS-RPCE]
section 2.2.1.1.7. The dimsvc RPC SHOULD<1> support RPC_C_AUTHN_LEVEL_PKT_PRIVACY (0x06)
as the RPC authentication level. This enables clients requiring data confidentiality to be able to connect
to the RPC server interface with data confidentiality.

The DIMSVC RPC server, to perform its task, MUST impersonate the RPC client and retrieve its
identity as specified in [MS-RPCE] section 3.3.3.4.3. To determine whether the client has access to an

RPC method, all the RPC methods described under section 3.1.4 use this identity to ensure that the

client belongs to the local administrators group on the server.

2.1.1.2 Client Security Settings

The RPC client for the DIMSVC RPC interface MUST use ncacn_np as the RPC protocol sequence. The

client MUST specify "Simple and Protected GSS-API Negotiation Mechanism" (0x09) as the
authentication service, as specified in [MS-RPCE] section 2.2.1.1.7. The client SHOULD supply a
service principal name (SPN) (for more information, see [SPNNAMES]) of "host/hostname" where

39 / 547

[MS-RRASM-Diff] - v20210407
Routing and Remote Access Server (RRAS) Management Protocol
Copyright © 2021 Microsoft Corporation
Release: April 7, 2021

hostname is the actual name of the server to which the client is connecting and "host/" is the literal
string "host/". The RPC client MUST first bind to the named pipe mentioned in section 2.1 and use the

binding handle obtained (as a part of the binding process) to further communicate with the server, as
specified in section 2 of [C706]. The RPC client MAY also negotiate

RPC_C_AUTHN_LEVEL_PKT_PRIVACY as the authentication level in order to ensure the communication
to the RPC server is also protected with data confidentiality. The client MUST enable the server to
impersonate the client identity by specifying RPC_C_IMPL_LEVEL_IMPERSONATE as the impersonation
level, as specified in [MS-RPCE] section 2.2.1.1.9.

2.1.2 Rasrpc Security Settings

The following sections specify RASRPC server and client security settings.

2.1.2.1 Server Security Settings

The server interface MUST be identified by the UUID 20610036-fa22-11cf-9823-00a0c911e5df
version 1.0. The server MUST specify RPC over SMB as the RPC protocol sequence to the RPC

implementation, as specified in [MS-RPCE]. The RASRPC RPC server SHOULD<2> specify "Simple and
Protected GSS-API Negotiation Mechanism" (0x09) as the RPC Authentication service, as specified in
[MS-RPCE] section 2.2.1.1.7. The RASRPC RPC server SHOULD<3> specify "NT LAN Manager
(NTLM)" and "Kerberos" as additional authentication services supported, as specified in [MS-RPCE]
section 2.2.1.1.7. The RASRPC RPC server SHOULD<4> support all authentication levels up to

RPC_C_AUTHN_LEVEL_PKT_PRIVACY (0x06) to enable clients to use data confidentiality as required.
It SHOULD allow clients to connect only with an authentication level of at least
RPC_C_AUTHN_LEVEL_CONNECT.<5> Additionally, the RPC server MUST allow only clients that are
part of the administrators group on the server.

2.1.2.2 (Updated Section) Client Security Settings

The RPC client for RASRPC RPC interface MUST use ncacn_np as the RPC protocol sequence. The
client SHOULD<6> specify "Simple and Protected GSS-API Negotiation Mechanism" (0x09) as the
authentication service, as specified in [MS-RPCE] section 2.2.1.1.7. The client MAY<7> use "NT LAN

Manager (NTLM)" or "Kerberos" as the authentication services specifically to connect to the server.
The client SHOULD supply a service principal name (SPN) (for more information, see [SPNNAMES]) of

"host/hostname" where "hostname" is the actual name of the server to which the client is connecting.
"host/" is the literal string "host/". The RPC client MUST first bind to the named pipe mentioned in
section 2.1 and use the binding handle obtained (as a part of the binding process) to further
communicate with the server, as specified in section 2 of [C706]. The client SHOULD negotiate
RPC_C_AUTHN_LEVEL_PKT_PRIVACY<8> as the authentication level in order to have a secure
connection to the RPC server with data confidentiality also. The client MUST enable the server to
impersonate the client identity by specifying RPC_C_IMPL_LEVEL_IMPERSONATE as the impersonation

level as describedspecified in [MS-RPCE] section 2.2.1.1.9.

2.1.3 Remras Security Settings

The remras interfaces make use of the underlying DCOM security framework, as specified in [MS-

DCOM], and rely upon its access control.

2.2 Common Data Types

In addition to RPC base types and definitions specified in [C706] and [MS-RPCE], common data types
used by this protocol are specified in the following sections. Additionally, RRAS phonebook file format

server registry keys and server error codes are specified in the following sections. Finally, additional
structures are specified that are used for REMRAS DCOM-based common messages that are not
defined in [MS-DCOM].

40 / 547

[MS-RRASM-Diff] - v20210407
Routing and Remote Access Server (RRAS) Management Protocol
Copyright © 2021 Microsoft Corporation
Release: April 7, 2021

2.2.1 RRASM RPC Common Messages

In addition to RPC base types and definitions specified in [C706] and [MS-RPCE], additional data types
are defined in this section.

All multi-byte integer values in the messages declared in this section use little-endian byte order.

2.2.1.1 Data Types, Enumerations, and Constants

The data types, enumerations, and constants specified in this section are used as fields in one or more
messages or structures in the DIMSRV and RASRPC RPC interfaces.

2.2.1.1.1 ROUTER_INTERFACE_TYPE

The ROUTER_INTERFACE_TYPE type enumerates the different kinds of interfaces on the RRAS
server.

 typedef enum _ROUTER_INTERFACE_TYPE
 {
 ROUTER_IF_TYPE_CLIENT,
 ROUTER_IF_TYPE_HOME_ROUTER,
 ROUTER_IF_TYPE_FULL_ROUTER,
 ROUTER_IF_TYPE_DEDICATED,
 ROUTER_IF_TYPE_INTERNAL,
 ROUTER_IF_TYPE_LOOPBACK,
 ROUTER_IF_TYPE_TUNNEL1,
 ROUTER_IF_TYPE_DIALOUT
 } ROUTER_INTERFACE_TYPE;

ROUTER_IF_TYPE_CLIENT: The interface is for a remote access client.

ROUTER_IF_TYPE_HOME_ROUTER: The interface is for a home RRAS server or a one-way initiated
demand-dial interface. With one-way initiated connections, one router is always the answering
router and the other router is always the calling router [MSFT-ROUTING].

ROUTER_IF_TYPE_FULL_ROUTER: The interface is for a full router or a two-way initiated demand-
dial interface. With two-way initiated connections, either router can be the answering router or the
calling router, depending on which router initiates the connection [MSFT-ROUTING].

ROUTER_IF_TYPE_DEDICATED: The interface is always connected. It is a LAN interface, or the
interface is connected over a leased line.

ROUTER_IF_TYPE_INTERNAL: The interface is an internal-only interface.

ROUTER_IF_TYPE_LOOPBACK: The interface is a loopback interface.

ROUTER_IF_TYPE_TUNNEL1: The interface is an IP in IP tunnel.<9>

ROUTER_IF_TYPE_DIALOUT: The interface is a demand-dial interface [MSFT-ROUTING].

2.2.1.1.2 ROUTER_CONNECTION_STATE

The ROUTER_CONNECTION_STATE type enumerates the possible states of an interface on the
RRAS server.

 typedef enum
 {
 ROUTER_IF_STATE_UNREACHABLE,
 ROUTER_IF_STATE_DISCONNECTED,
 ROUTER_IF_STATE_CONNECTING,

41 / 547

[MS-RRASM-Diff] - v20210407
Routing and Remote Access Server (RRAS) Management Protocol
Copyright © 2021 Microsoft Corporation
Release: April 7, 2021

 ROUTER_IF_STATE_CONNECTED
 } ROUTER_CONNECTION_STATE;

ROUTER_IF_STATE_UNREACHABLE: The interface is unreachable.

ROUTER_IF_STATE_DISCONNECTED: The interface is reachable but disconnected.

ROUTER_IF_STATE_CONNECTING: The interface is in the process of connecting.

ROUTER_IF_STATE_CONNECTED: The interface is connected.

2.2.1.1.3 RAS_QUARANTINE_STATE

The RAS_QUARANTINE_STATE enumerated type indicates the quarantine state of a client
connection [MS-RNAP]. For more information, see [MSDN-NAP].

 typedef enum _RAS_QUARANTINE_STATE
 {
 RAS_QUAR_STATE_NORMAL,
 RAS_QUAR_STATE_QUARANTINE,
 RAS_QUAR_STATE_PROBATION,
 RAS_QUAR_STATE_UNKNOWN
 } RAS_QUARANTINE_STATE;

RAS_QUAR_STATE_NORMAL: The connection state is normal.

RAS_QUAR_STATE_QUARANTINE: The connection is quarantined, meaning that the client did not
meet the health requirements [MS-RNAP] and therefore, its access is restricted to specific servers.

RAS_QUAR_STATE_PROBATION: The connection is in probation, meaning that the client is not
healthy [MS-RNAP] and needs to become healthy within a specified duration.

RAS_QUAR_STATE_UNKNOWN: The connection state is unknown.

2.2.1.1.4 RAS_PORT_CONDITION

The RAS_PORT_CONDITION enumerated type specifies information regarding the connection
condition of a given RAS port.

 typedef enum _RAS_PORT_CONDITION
 {
 RAS_PORT_NON_OPERATIONAL,
 RAS_PORT_DISCONNECTED,
 RAS_PORT_CALLING_BACK,
 RAS_PORT_LISTENING,
 RAS_PORT_AUTHENTICATING,
 RAS_PORT_AUTHENTICATED,
 RAS_PORT_INITIALIZING
 } RAS_PORT_CONDITION;

RAS_PORT_NON_OPERATIONAL: The port is non-operational.

RAS_PORT_DISCONNECTED: The port is disconnected.

RAS_PORT_CALLING_BACK: The port is in the process of a calling back a dialed connection.

RAS_PORT_LISTENING: The port is listening for incoming calls.

RAS_PORT_AUTHENTICATING: The user connected to the port is being authenticated.

42 / 547

[MS-RRASM-Diff] - v20210407
Routing and Remote Access Server (RRAS) Management Protocol
Copyright © 2021 Microsoft Corporation
Release: April 7, 2021

RAS_PORT_AUTHENTICATED: The port has authenticated a user.

RAS_PORT_INITIALIZING: The port is initializing.

2.2.1.1.5 RAS_HARDWARE_CONDITION

The RAS_HARDWARE_CONDITION enumeration type specifies hardware status information about a
given RAS port.

 typedef enum _RAS_HARDWARE_CONDITION
 {
 RAS_HARDWARE_OPERATIONAL,
 RAS_HARDWARE_FAILURE
 } RAS_HARDWARE_CONDITION;

RAS_HARDWARE_OPERATIONAL: The hardware attached to this RAS port is operational and is

ready to receive client calls.

RAS_HARDWARE_FAILURE: The hardware attached to this RAS port has failed.

2.2.1.1.6 DIM_HANDLE

The DIM_HANDLE is a handle_t used by methods specified in section 3.1.4; details of how it is
obtained are specified in section 3.1.3.

This type is declared as follows:

 typedef handle_t DIM_HANDLE;

2.2.1.1.7 FORWARD_ACTION

The FORWARD_ACTION enumeration type specifies the type of action to be taken in a filter.

 typedef enum _FORWARD_ACTION
 {
 FORWARD = 0,
 DROP = 1,
 } FORWARD_ACTION;

FORWARD: Allows the traffic to pass through the filter.

DROP: Does not allow the traffic to pass through the filter: drops the traffic.

2.2.1.1.8 MIB_IPFORWARD_TYPE

The MIB_IPFORWARD_TYPE enumeration type specifies the type of the IP route.

 typedef enum
 {
 MIB_IPROUTE_TYPE_OTHER = 1,
 MIB_IPROUTE_TYPE_INVALID = 2,
 MIB_IPROUTE_TYPE_DIRECT = 3,
 MIB_IPROUTE_TYPE_INDIRECT = 4,
 } MIB_IPFORWARD_TYPE;

MIB_IPROUTE_TYPE_OTHER: Other than the type specified in [RFC1354].

43 / 547

[MS-RRASM-Diff] - v20210407
Routing and Remote Access Server (RRAS) Management Protocol
Copyright © 2021 Microsoft Corporation
Release: April 7, 2021

MIB_IPROUTE_TYPE_INVALID: An invalid route is deleted.

MIB_IPROUTE_TYPE_DIRECT: A local route where the next hop is the final destination (a local

interface).

MIB_IPROUTE_TYPE_INDIRECT: The remote route where the next hop is not the final destination

(a remote destination).

2.2.1.1.9 MIB_IPFORWARD_PROTO

The MIB_IPFORWARD_PROTO enumeration indicates which protocols have updated routes.

 typedef enum
 {
 MIB_IPPROTO_OTHER = 1,
 MIB_IPPROTO_LOCAL = 2,
 MIB_IPPROTO_NETMGMT = 3,
 MIB_IPPROTO_ICMP = 4,
 MIB_IPPROTO_EGP = 5,
 MIB_IPPROTO_GGP = 6,
 MIB_IPPROTO_HELLO = 7,
 MIB_IPPROTO_RIP = 8,
 MIB_IPPROTO_IS_IS = 9,
 MIB_IPPROTO_ES_IS = 10,
 MIB_IPPROTO_CISCO = 11,
 MIB_IPPROTO_BBN = 12,
 MIB_IPPROTO_OSPF = 13,
 MIB_IPPROTO_BGP = 14,
 MIB_IPPROTO_NT_AUTOSTATIC = 10002,
 MIB_IPPROTO_NT_STATIC = 10006,
 MIB_IPPROTO_NT_STATIC_NON_DOD = 10007,
 } MIB_IPFORWARD_PROTO;

MIB_IPPROTO_OTHER: A route added by a protocol not specified in [RFC1354].

MIB_IPPROTO_LOCAL: A route added locally on an interface.

MIB_IPPROTO_NETMGMT: A static route. This value is used to identify route information for IP
routing set through network management such as DHCP, the Simple Network Management
Protocol (SNMP), or by any other API to create routes.

MIB_IPPROTO_ICMP: A route added as a result of an Internet Control Message Protocol (ICMP)
redirect.

MIB_IPPROTO_EGP: A route added by the Exterior Gateway Protocol (EGP), a dynamic routing
protocol.

MIB_IPPROTO_GGP: A route added by the Gateway-to-Gateway Protocol (GGP), a dynamic routing
protocol.

MIB_IPPROTO_HELLO: A route added by the Hellospeak protocol, a dynamic routing protocol. This
protocol is not supported and MUST NOT be used.

MIB_IPPROTO_RIP: A route added by the Berkeley Routing Information Protocol (RIP) or RIP-II, a
dynamic routing protocol. See [RFC1058] and [RFC1723].

MIB_IPPROTO_IS_IS: A route added by the Intermediate System-to-Intermediate System (IS-IS)
protocol, a dynamic routing protocol. The IS-IS protocol was developed for use in the Open
Systems Interconnection (OSI) protocol suite.

44 / 547

[MS-RRASM-Diff] - v20210407
Routing and Remote Access Server (RRAS) Management Protocol
Copyright © 2021 Microsoft Corporation
Release: April 7, 2021

MIB_IPPROTO_ES_IS: A route added by the End System-to-Intermediate System (ES-IS) protocol,
a dynamic routing protocol. The ES-IS protocol was developed for use in the Open Systems

Interconnection (OSI) protocol suite.

MIB_IPPROTO_CISCO: A route added by the Cisco Interior Gateway Routing Protocol (IGRP), a

dynamic routing protocol.

MIB_IPPROTO_BBN: A route added by the Bolt, Beranek, and Newman (BBN) Interior Gateway
Protocol (IGP) that used the Shortest Path First (SPF) algorithm, a dynamic routing protocol.

MIB_IPPROTO_OSPF: A route added by the Open Shortest Path First (OSPF) protocol, a dynamic
routing protocol.

MIB_IPPROTO_BGP: A route added by the Border Gateway Protocol (BGP), a dynamic routing
protocol.

MIB_IPPROTO_NT_AUTOSTATIC: A route that was originally generated by a routing protocol, but
now is static.

MIB_IPPROTO_NT_STATIC: A route added as a static route from the routing user interface (5) or a
routing command.

MIB_IPPROTO_NT_STATIC_NON_DOD: A route added as a static route from the routing user
interface or a routing command. These routes do not cause demand-dial.

2.2.1.1.10 MIB_IPSTATS_FORWARDING

The MIB_IPSTATS_FORWARDING enumerates different forwarding possibilities.

 typedef enum
 {
 MIB_IP_FORWARDING = 1,
 MIB_IP_NOT_FORWARDING = 2,
 } MIB_IPSTATS_FORWARDING,
 *PMIB_IPSTATS_FORWARDING;

MIB_IP_FORWARDING: Forwarding-enabled.

MIB_IP_NOT_FORWARDING: Not forwarding-enabled.

2.2.1.1.11 MIB_TCP_STATE

The MIB_TCP_STATE enumeration enumerates different possible TCP states.

 typedef enum
 {
 MIB_TCP_STATE_CLOSED = 1,
 MIB_TCP_STATE_LISTEN = 2,
 MIB_TCP_STATE_SYN_SENT = 3,
 MIB_TCP_STATE_SYN_RCVD = 4,
 MIB_TCP_STATE_ESTAB = 5,
 MIB_TCP_STATE_FIN_WAIT1 = 6,
 MIB_TCP_STATE_FIN_WAIT2 = 7,
 MIB_TCP_STATE_CLOSE_WAIT = 8,
 MIB_TCP_STATE_CLOSING = 9,
 MIB_TCP_STATE_LAST_ACK = 10,
 MIB_TCP_STATE_TIME_WAIT = 11,
 MIB_TCP_STATE_DELETE_TCB = 12,
 } MIB_TCP_STATE;

45 / 547

[MS-RRASM-Diff] - v20210407
Routing and Remote Access Server (RRAS) Management Protocol
Copyright © 2021 Microsoft Corporation
Release: April 7, 2021

MIB_TCP_STATE_CLOSED: The TCP connection is closed.

MIB_TCP_STATE_LISTEN: The TCP connection is in the listen state.

MIB_TCP_STATE_SYN_SENT: A SYN packet has been sent.

MIB_TCP_STATE_SYN_RCVD: A SYN packet has been received.

MIB_TCP_STATE_ESTAB: The TCP connection has been established.

MIB_TCP_STATE_FIN_WAIT1: The TCP connection is waiting for a FIN packet.

MIB_TCP_STATE_FIN_WAIT2: The TCP connection is waiting for a FIN packet.

MIB_TCP_STATE_CLOSE_WAIT: The TCP connection is in the close wait state.

MIB_TCP_STATE_CLOSING: The TCP connection is closing.

MIB_TCP_STATE_LAST_ACK: The TCP connection is in the last ACK state.

MIB_TCP_STATE_TIME_WAIT: The TCP connection is in the time wait state.

MIB_TCP_STATE_DELETE_TCB: The TCP connection is in the delete TCB state.

2.2.1.1.12 TCP_RTO_ALGORITHM

The TCP_RTO_ALGORITHM enumerates different TCP retransmission time-out algorithms.

 typedef enum
 {
 MIB_TCP_RTO_OTHER = 1,
 MIB_TCP_RTO_CONSTANT = 2,
 MIB_TCP_RTO_RSRE = 3,
 MIB_TCP_RTO_VANJ = 4,
 } TCP_RTO_ALGORITHM,
 *PTCP_RTO_ALGORITHM;

MIB_TCP_RTO_OTHER: Other.

MIB_TCP_RTO_CONSTANT: Constant time-out.

MIB_TCP_RTO_RSRE: MIL-STD-1778. See [RFC4022].

MIB_TCP_RTO_VANJ: Van Jacobson's algorithm. See [RFC1144].

2.2.1.1.13 IP_NAT_DIRECTION

The IP_NAT_DIRECTION enumeration contains Network Address Translator (NAT) directions.

 typedef enum _IP_NAT_DIRECTION
 {
 NatInboundDirection = 0,
 NatOutboundDirection
 } IP_NAT_DIRECTION,
 *PIP_NAT_DIRECTION;

NatInboundDirection: The packet was received from a public address and is to be sent to private
address.

46 / 547

[MS-RRASM-Diff] - v20210407
Routing and Remote Access Server (RRAS) Management Protocol
Copyright © 2021 Microsoft Corporation
Release: April 7, 2021

NatOutboundDirection: The packet was received from a private address and is to be sent to public
address.

2.2.1.1.14 OSPF_PARAM_TYPE

The OSPF_PARAM_TYPE enumeration contains an OSPF parameter type that defines the type of
information in the following structures:

▪ OSPF_ROUTE_FILTER_INFO (section 2.2.1.2.209)

▪ OSPF_PROTO_FILTER_INFO (section 2.2.1.2.210)

▪ OSPF_GLOBAL_PARAM (section 2.2.1.2.211)

▪ OSPF_AREA_PARAM (section 2.2.1.2.212)

▪ OSPF_AREA_RANGE_PARAM (section 2.2.1.2.213)

▪ OSPF_VIRT_INTERFACE_PARAM (section 2.2.1.2.214)

▪ OSPF_INTERFACE_PARAM (section 2.2.1.2.215)

▪ OSPF_NBMA_NEIGHBOR_PARAM (section 2.2.1.2.216)

 typedef enum
 {
 OSPF_END_PARAM_TYPE = 0,
 OSPF_GLOBAL_PARAM_TYPE,
 OSPF_AREA_PARAM_TYPE,
 OSPF_AREA_RANGE_PARAM_TYPE,
 OSPF_INTF_PARAM_TYPE,
 OSPF_NEIGHBOR_PARAM_TYPE,
 OSPF_VIRT_INTF_PARAM_TYPE,
 OSPF_ROUTE_FILTER_PARAM_TYPE,
 OSPF_PROTOCOL_FILTER_PARAM_TYPE
 } OSPF_PARAM_TYPE;

OSPF_END_PARAM_TYPE: Specifies that there is no more configuration information and marks the
end of the configuration.

OSPF_GLOBAL_PARAM_TYPE: Mapped to the OSPF_GLOBAL_PARAM structure.

OSPF_AREA_PARAM_TYPE: Mapped to the OSPF_AREA_PARAM structure.

OSPF_AREA_RANGE_PARAM_TYPE: Mapped to the OSPF_AREA_RANGE_PARAM structure.

OSPF_INTF_PARAM_TYPE: Mapped to the OSPF_INTERFACE_PARAM structure.

OSPF_NEIGHBOR_PARAM_TYPE: Mapped to the OSPF_NBMA_NEIGHBOR_PARAM structure.

OSPF_VIRT_INTF_PARAM_TYPE: Mapped to the OSPF_VIRT_INTF_PARAM structure.

OSPF_ROUTE_FILTER_PARAM_TYPE: Mapped to the OSPF_ROUTE_FILTER_PARAM structure.

OSPF_PROTOCOL_FILTER_PARAM_TYPE: Mapped to the OSPF_PROTOCOL_FILTER_PARAM
structure.

2.2.1.1.15 OSPF_FILTER_ACTION

The OSPF_FILTER_ACTION enumeration is used to determine whether or not a route is added to
the OSPF database.

47 / 547

[MS-RRASM-Diff] - v20210407
Routing and Remote Access Server (RRAS) Management Protocol
Copyright © 2021 Microsoft Corporation
Release: April 7, 2021

 typedef enum _OSPF_FILTER_ACTION
 {
 ACTION_DROP = 0,
 ACTION_ACCEPT = 1
 } OSPF_FILTER_ACTION,
 *POSPF_FILTER_ACTION;

ACTION_DROP: The route is not added to the OSPF database.

ACTION_ACCEPT: The route is added to the OSPF database.

2.2.1.1.16 RASDEVICETYPE

The RASDEVICETYPE type enumeration defines the different device types on the RRAS server.

 typedef enum _RASDEVICETYPE
 {
 RDT_Modem = 0,
 RDT_X25,
 RDT_Isdn,
 RDT_Serial,
 RDT_FrameRelay,
 RDT_Atm,
 RDT_Sonet,
 RDT_Sw56,
 RDT_Tunnel_Pptp,
 RDT_Tunnel_L2tp,
 RDT_Irda,
 RDT_Parallel,
 RDT_Other,
 RDT_PPPoE,
 RDT_Tunnel_Sstp,
 RDT_Tunnel_Ikev2,
 RDT_Tunnel = 0x00010000,
 RDT_Direct = 0x00020000,
 RDT_Null_Modem = 0x00040000,
 RDT_Broadband = 0x00080000
 } RASDEVICETYPE;

RDT_Modem: Modem device

RDT_X25: X.25 device

RDT_Isdn: ISDN device

RDT_Serial: Serial port device

RDT_FrameRelay: Frame relay device

RDT_Atm: Asynchronous transfer mode (ATM) device

RDT_Sonet: Sonet device

RDT_Sw56: Switched 56K access device

RDT_Tunnel_Pptp: PPTP device

RDT_Tunnel_L2tp: L2TP device

RDT_Irda: Infrared Data Association (IrDA) device.

RDT_Parallel: Parallel port device.

48 / 547

[MS-RRASM-Diff] - v20210407
Routing and Remote Access Server (RRAS) Management Protocol
Copyright © 2021 Microsoft Corporation
Release: April 7, 2021

RDT_Other: Any other device.

RDT_PPPoE: PPPoE device.<10>

RDT_Tunnel_Sstp: SSTP device.<11>

RDT_Tunnel_Ikev2: IKEv2 device.<12>

RDT_Tunnel: Specifies the tunnel device class like PPTP, L2TP, SSTP, IKEv2.

RDT_Direct: Specifies the direct device class like Serial, Parallel.

RDT_Null_Modem: Specifies modem device class like Modem, Isdn, Irda.

RDT_Broadband: Specifies broadband device class like PPPoE.<13>

The final four values (RDT_Tunnel, RDT_Direct, RDT_Null_Modem, RDT_Broadband) are used to
specify the class of the device.

2.2.1.1.17 RASMAN_STATUS

The RASMAN_STATUS type enumerates the status of the Port.

 typedef enum _RASMAN_STATUS
 {
 OPEN = 0,
 CLOSED = 1,
 UNAVAILABLE = 2,
 REMOVED = 3
 } RASMAN_STATUS;

OPEN: Port is in open state for a connection.

CLOSED: Port is in closed state and is available for connection.

UNAVAILABLE: Port is in the process of being removed and is not available for connection.

REMOVED: Port is removed and is not available for connection.

2.2.1.1.18 ReqTypes

The ReqTypes enumeration indicates the different types of message requests that can be passed in

the RB_ReqType field of RequestBuffer structure.

 typedef enum _ReqTypes
 {
 REQTYPE_PORTENUM = 21,
 REQTYPE_GETINFO = 22,
 REQTYPE_GETDEVCONFIG = 73,
 REQTYPE_SETDEVICECONFIGINFO = 94,
 REQTYPE_GETDEVICECONFIGINFO = 95,
 REQTYPE_GETCALLEDID = 105,
 REQTYPE_SETCALLEDID = 106,
 REQTYPE_GETNDISWANDRIVERCAPS = 111
 } ReqTypes;

REQTYPE_PORTENUM: Request to enumerate all the port information on the RRAS.

REQTYPE_GETINFO: Request to get information about a specific port on the RRAS.

REQTYPE_GETDEVCONFIG: Request to get device information on the RRAS.

49 / 547

[MS-RRASM-Diff] - v20210407
Routing and Remote Access Server (RRAS) Management Protocol
Copyright © 2021 Microsoft Corporation
Release: April 7, 2021

REQTYPE_SETDEVICECONFIGINFO: Request to set device configuration information on RRAS.

REQTYPE_GETDEVICECONFIGINFO: Request to get device configuration information on RRAS.

REQTYPE_GETCALLEDID: Request to get CalledId information for a specific device on RRAS.

REQTYPE_SETCALLEDID: Request to set CalledId information for a specific device on RRAS.

REQTYPE_GETNDISWANDRIVERCAPS: Request to get the encryption capabilities of the RRAS.

2.2.1.1.19 RASMAN_STATE

The RASMAN_STATE enumeration indicates the connection condition of a given RAS port.

 typedef enum _RASMAN_STATE
 {
 CONNECTING = 0,
 LISTENING = 1,
 CONNECTED = 2,
 DISCONNECTING = 3,
 DISCONNECTED = 4,
 LISTENCOMPLETED = 5,
 } RASMAN_STATE;

CONNECTING: The port is in the process of connecting.

LISTENING: The port is listening for connection requests.

CONNECTED: The port is connected.

DISCONNECTING: The port is in the process of disconnecting.

DISCONNECTED: The port is disconnected.

LISTENCOMPLETED: The port has completed listening for connection requests.

2.2.1.1.20 RASMAN_DISCONNECT_TYPE

The RASMAN_DISCONNECT_TYPE enumeration indicates different types of disconnection requests
for a given RAS port.

 typedef enum _RASMAN_DISCONNECT_TYPE
 {
 USER_REQUESTED = 0,
 REMOTE_DISCONNECTION = 1,
 HARDWARE_FAILURE = 2,
 NOT_DISCONNECTED = 3
 } RASMAN_DISCONNECT_TYPE;

USER_REQUESTED: The local user requested the disconnect action.

REMOTE_DISCONNECTION: The remote dial-up or VPN client requested the disconnect action.

HARDWARE_FAILURE: The hardware attached to this RAS port has failed.

NOT_DISCONNECTED: The port is not disconnected.

2.2.1.1.21 RASMAN_USAGE

50 / 547

[MS-RRASM-Diff] - v20210407
Routing and Remote Access Server (RRAS) Management Protocol
Copyright © 2021 Microsoft Corporation
Release: April 7, 2021

The RASMAN_USAGE enumerates the usage for a port. It can be any combination of the following
values.

 typedef enum _RASMAN_USAGE
 {
 CALL_NONE = 0x00,
 CALL_IN = 0x01,
 CALL_OUT = 0x02,
 CALL_ROUTER = 0x04,
 CALL_LOGON = 0x08,
 CALL_OUT_ONLY = 0x10,
 CALL_IN_ONLY = 0x20,
 CALL_OUTBOUND_ROUTER = 0x40
 } RASMAN_USAGE;

CALL_NONE: Port is not configured for any usage.

CALL_IN: Port is configured for incoming connection requests.

CALL_OUT: Port is configured for outgoing connection requests

CALL_ROUTER: Port is configured for demand-dial connection requests.

CALL_LOGON: Port is configured for connection during logon.

CALL_OUT_ONLY: Port is configured only for outgoing connection requests.

CALL_IN_ONLY: Port is configured only for incoming connection requests.

CALL_OUTBOUND_ROUTER: Port is configured for outgoing demand-dial connection requests.

2.2.1.1.22 BGP_POLICY_DIRECTION

The BGP_POLICY_DIRECTION enumeration<14> enumerates the values that specify the source of
the Border Gateway Protocol (BGP) routes on which the BGP policy is applied.

 typedef enum _BGP_POLICY_DIRECTION
 {
 DirectionIngress = 1,
 DirectionEgress = 2
 } BGP_POLICY_DIRECTION,
 *PBGP_POLICY_DIRECTION;

DirectionIngress: The BGP policy is applied to the BGP routes advertised by BGP peers.

DirectionEgress: The BGP policy is applied to the BGP routes advertised by the BGP speaker.

2.2.1.1.23 BGP_POLICY_TYPE

The BGP_POLICY_TYPE enumeration<15> enumerates the type of the BGP policy.

 typedef enum _BGP_POLICY_TYPE
 {
 PolicyFilter = 1,
 PolicyModify = 2
 } BGP_POLICY_TYPE,
 *PBGP_POLICY_TYPE;

PolicyFilter: The policy filters the routes based on the match criteria provided.

51 / 547

[MS-RRASM-Diff] - v20210407
Routing and Remote Access Server (RRAS) Management Protocol
Copyright © 2021 Microsoft Corporation
Release: April 7, 2021

PolicyModify: The policy modifies some BGP route path attributes based on the match criteria.

2.2.1.1.24 BGP_PEERING_OP_MODE

The BGP_PEERING_OP_MODE enumeration<16> enumerates the operation mode of a BGP peer.

 typedef enum _BGP_PEERING_OP_MODE
 {
 OpModeMixed = 1,
 OpModeServer = 2
 } BGP_PEERING_OP_MODE,
 *PBGP_PEERING_OP_MODE;

OpModeMixed: The BGP speaker is configured to accept an incoming connection from the BGP peer
on port 179. It is also configured to initiate a connection to BGP peers.

OpModeServer: The BGP speaker is configured to only accept an incoming connection from the BGP
peer. It never initiates the connection itself.

2.2.1.2 Structures

The structures specified in this section are used as fields in one or more messages or structures in the
DIMSRV and RASRPC RPC interfaces.

2.2.1.2.1 DIM_INFORMATION_CONTAINER

The DIM_INFORMATION_CONTAINER structure specifies a generic information container used by

certain methods to store and retrieve information.

 typedef struct _DIM_INFORMATION_CONTAINER {
 DWORD dwBufferSize;
 [size_is(dwBufferSize)] LPBYTE pBuffer;
 } DIM_INFORMATION_CONTAINER,
 *PDIM_INFORMATION_CONTAINER;

dwBufferSize: This MUST be set to the size, in bytes, of the data being pointed to by pBuffer.

pBuffer: A pointer to a buffer of size dwBufferSize that contains the information. The information
contained in this buffer is specific to the API in which this structure is used.

This information can be any of the following structures:

▪ MPR_SERVER_0

▪ MPR_SERVER_1

▪ MPR_SERVER_2

▪ RASI_CONNECTION_0

▪ RASI_CONNECTION_1

▪ RASI_CONNECTION_2

▪ RASI_CONNECTION_3

▪ RASI_PORT_0

▪ RASI_PORT_1

52 / 547

[MS-RRASM-Diff] - v20210407
Routing and Remote Access Server (RRAS) Management Protocol
Copyright © 2021 Microsoft Corporation
Release: April 7, 2021

▪ MPRI_INTERFACE_0

▪ MPRI_INTERFACE_1

▪ MPRI_INTERFACE_2

DIM_INFORMATION_CONTAINER specifies a generic information container used by the following

methods to store and retrieve information:

▪ RMprAdminServerGetInfo (section 3.1.4.1)

▪ RRasAdminConnectionEnum (section 3.1.4.2)

▪ RRasAdminConnectionGetInfo (section 3.1.4.3)

▪ RRasAdminPortEnum (section 3.1.4.5)

▪ RRasAdminPortGetInfo (section 3.1.4.6)

▪ RRouterInterfaceCreate (section 3.1.4.13)

▪ RRouterInterfaceGetInfo (section 3.1.4.14)

▪ RRouterInterfaceSetInfo (section 3.1.4.15)

▪ RRouterInterfaceEnum (section 3.1.4.21)

▪ RRouterInterfaceDeviceGetInfo (section 3.1.4.39)

▪ RRouterInterfaceDeviceSetInfo (section 3.1.4.40)

▪ RRouterInterfaceSetCredentialsEx (section 3.1.4.41)

▪ RRouterInterfaceGetCredentialsEx (section 3.1.4.42)

▪ RMprAdminServerSetInfo (section 3.1.4.44)

▪ RRouterDeviceEnum (section 3.1.4.37)

2.2.1.2.2 DIM_INTERFACE_CONTAINER

The DIM_INTERFACE_CONTAINER structure specifies a generic structure used by certain methods
to set, create, or retrieve information from the RRAS server.

 typedef struct _DIM_INTERFACE_CONTAINER {
 DWORD fGetInterfaceInfo;
 DWORD dwInterfaceInfoSize;
 [size_is(dwInterfaceInfoSize)] LPBYTE pInterfaceInfo;
 DWORD fGetGlobalInfo;
 DWORD dwGlobalInfoSize;
 [size_is(dwGlobalInfoSize)] LPBYTE pGlobalInfo;
 } DIM_INTERFACE_CONTAINER,
 *PDIM_INTERFACE_CONTAINER;

fGetInterfaceInfo: This field is used to get interface information from the server. This MUST be set
to TRUE when the client needs to retrieve interface information from the server while calling the

RRouterInterfaceTransportGetGlobalInfo (section 3.1.4.11) and
RRouterInterfaceTransportGetInfo (section 3.1.4.19) methods.

dwInterfaceInfoSize: This MUST be set to the size of pInterfaceInfo.

53 / 547

[MS-RRASM-Diff] - v20210407
Routing and Remote Access Server (RRAS) Management Protocol
Copyright © 2021 Microsoft Corporation
Release: April 7, 2021

pInterfaceInfo: This MUST point to a buffer that specifies the default client interface information for
the transport. The buffer MUST contain RTR_INFO_BLOCK_HEADER (section 2.2.1.2.3) with a

valid info type of RTR_TOC_ENTRY (section 2.2.1.2.4).

fGetGlobalInfo: This field is used to get or set global information. This field MUST be set to TRUE

when the client needs to retrieve global information from the server while calling
RRouterInterfaceTransportGetGlobalInfo.

dwGlobalInfoSize: This MUST be set to the size of pGlobalInfo.

pGlobalInfo: This MUST point to a buffer that specifies global information for the transport. The
buffer MUST contain a RTR_INFO_BLOCK_HEADER with a valid info type of RTR_TOC_ENTRY.

The DIM_INTERFACE_CONTAINER specifies a generic structure used by the following methods to
set, create, or retrieve information from the RRAS server:

▪ RRouterInterfaceTransportSetGlobalInfo (section 3.1.4.10)

▪ RRouterInterfaceTransportGetGlobalInfo (section 3.1.4.11)

▪ RRouterInterfaceTransportAdd (section 3.1.4.18)

▪ RRouterInterfaceTransportGetInfo (section 3.1.4.19)

▪ RRouterInterfaceTransportSetInfo (section 3.1.4.20)

▪ RRouterInterfaceTransportCreate (section 3.1.4.38)

2.2.1.2.3 RTR_INFO_BLOCK_HEADER

The RTR_INFO_BLOCK_HEADER structure specifies information pertaining to the protocol using a
set of RTR_TOC_ENTRY (section 2.2.1.2.4) structures. These structures are encapsulated by an
RTR_INFO_BLOCK_HEADER.

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

Version

Size

TocEntriesCount

TocEntry (variable)

...

Version (4 bytes): A 32-bit, unsigned integer in network byte order that MUST be set to

0x00000001. No other versions are defined.

Size (4 bytes): A 32-bit, unsigned integer in network byte order that MUST specify the size of the
structure in bytes including the Version, Size, TocEntriesCount, and entries (TocEntry). The
size MUST be at least 28 bytes. The total size depends on the number and type of the entries. This
value MUST be the size of the blob represented by the structure. This MUST be the sum of the
InfoSize of each element of TocEntry and TocEntriesCount times the size of
RTR_TOC_ENTRY.

54 / 547

[MS-RRASM-Diff] - v20210407
Routing and Remote Access Server (RRAS) Management Protocol
Copyright © 2021 Microsoft Corporation
Release: April 7, 2021

TocEntriesCount (4 bytes): A 32-bit, unsigned integer in network byte order that MUST specify the
number of entries. It MUST be greater than 0.

TocEntry (variable): A list of consecutive entries, TocEntriesCount in number, each of which MUST
be formatted as defined in RTR_TOC_ENTRY.

2.2.1.2.4 RTR_TOC_ENTRY

The RTR_TOC_ENTRY structure specifies the format in which information pertaining to the type of
data is stored in RTR_INFO_BLOCK_HEADER (section 2.2.1.2.3). The following figure shows the
relationships between the block header and the entries.

Figure 3: Block header and entries

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

InfoType

InfoSize

Count

Offset

55 / 547

[MS-RRASM-Diff] - v20210407
Routing and Remote Access Server (RRAS) Management Protocol
Copyright © 2021 Microsoft Corporation
Release: April 7, 2021

InfoType (4 bytes): A 32-bit, unsigned integer in network byte order that MUST indicate the type of
data contained in the list. The value MUST be one of the following when the transport is IPv4 or

IPv6.<17>

Value Meaning Structure pointed to at offset

IP_IN_FILTER_INFO

0xFFFF0001

The input filter that is applied
to the IP packets sent to the
RRAS server.

FILTER_DESCRIPTOR (section 2.2.1.2
.5)

IP_OUT_FILTER_INFO

0xFFFF0002

The output filter that is
applied to the IP packets sent
from the RRAS server.

FILTER_DESCRIPTOR (section 2.2.1.2
.5)

IP_GLOBAL_INFO

0xFFFF0003

Global IP filtering information. GLOBAL_INFO (section 2.2.1.2.9)

IP_INTERFACE_STATUS_INFO

0xFFFF0004

IPv4 interface status
information.

INTERFACE_STATUS_INFO (section 2.
2.1.2.18)

IP_ROUTE_INFO

0xFFFF0005

Routing information is added.
If bV4 of
INTERFACE_ROUTE_INFO is
set, an IPv4 route is added;
otherwise, an IPv6 route is
added.

INTERFACE_ROUTE_INFO (section 2.2
.1.2.11)

IP_PROT_PRIORITY_INFO

0xFFFF0006

Protocol priority information. PRIORITY_INFO (section 2.2.1.2.12)

IP_PROT_PRIORITY_INFO_EX<18
>

0xFFFF0017

Protocol priority information. PRIORITY_INFO_EX (section 2.2.1.2.2
66)

IP_ROUTER_DISC_INFO

0xFFFF0007

Router discovery information. RTR_DISC_INFO (section 2.2.1.2.14)

IP_DEMAND_DIAL_FILTER_INFO

0xFFFF0009

The IP traffic that matches
this filter indicates that a
demand-dial connection is
available and all the IP
packets matching this filter
MUST be routed into the
connection.

FILTER_DESCRIPTOR (section 2.2.1.2
.5)

IP_MCAST_HEARTBEAT_INFO

0xFFFF000A

Specifies the multicast
heartbeat configuration for an
interface.

MCAST_HBEAT_INFO (section 2.2.1.2
.15)

IP_MCAST_BOUNDARY_INFO

0xFFFF000B

Multicast boundary
information.

MIB_BOUNDARYROW (section 2.2.1.2
.24)

IP_IPINIP_CFG_INFO

0xFFFF000C

IP in IP configuration

information.

IPINIP_CONFIG_INFO (section 2.2.1.2

.17)<19>

IP_IFFILTER_INFO

0xFFFF000D

IPv4 interface filter
information.

IFFILTER_INFO (section 2.2.1.2.88)

IP_MCAST_LIMIT_INFO

0xFFFF000E

Multicast configuration
information.

MIB_MCAST_LIMIT_ROW (section 2.2
.1.2.16)

56 / 547

[MS-RRASM-Diff] - v20210407
Routing and Remote Access Server (RRAS) Management Protocol
Copyright © 2021 Microsoft Corporation
Release: April 7, 2021

Value Meaning Structure pointed to at offset

IPV6_GLOBAL_INFO

0xFFFF000F

Global lPv6 filtering
information.

GLOBAL_INFO (section 2.2.1.2.9)

IP_IN_FILTER_INFO_V6

0xFFFF0011

The input filter that MUST be
applied to the IPv6 packets
sent to the RRAS server.

FILTER_DESCRIPTOR_V6 (section 2.2
.1.2.7)

IP_OUT_FILTER_INFO_V6

0xFFFF0012

The output filter that MUST be
applied to the IPv6 packets
sent from the RRAS server.

FILTER_DESCRIPTOR_V6 (section 2.2
.1.2.7)

IP_DEMAND_DIAL_FILTER_INFO_
V6

0xFFFF0013

IPv6 traffic that matches this
filter indicates that a site-to-
site connection MUST be
available and all the IPv6
packets matching this filter
MUST be routed into the
connection.

FILTER_DESCRIPTOR_V6 (section 2.2
.1.2.7)

IP_IFFILTER_INFO_V6

0xFFFF0014

IPv6 interface filter
information.

IFFILTER_INFO (section 2.2.1.2.88)

IP_FILTER_ENABLE_INFO

0xFFFF0015

Enable or disable IPv4
interface filter.

MPR_FILTER_0 (section 2.2.1.2.89)<
20>

IP_FILTER_ENABLE_INFO_V6

0xFFFF0016

Enable or disable IPv6
interface filter.

MPR_FILTER_0 (section 2.2.1.2.89)

MS_IP_BOOTP

0x0000270F

IP BOOTP global or interface
information depending on the
method that calls.

IPBOOTP_GLOBAL_CONFIG (section 2
.2.1.2.149)

IPBOOTP_IF_CONFIG (section 2.2.1.2
.150)

MS_IP_IGMP

0x4137000A

IGMP global or interface
information depending on the
method that calls.

IGMP_MIB_GLOBAL_CONFIG (section
2.2.1.2.173)

IGMP_MIB_IF_CONFIG (section 2.2.1.
2.174)

MS_IP_RIP

0x00000008

IP RIP global or interface
information depending on the
method that calls.

IPRIP_IF_CONFIG (section 2.2.1.2.16
6)

IPRIP_GLOBAL_CONFIG (section 2.2.
1.2.164)

MS_IP_BGP

0x0137000E

BGP configuration. When the transport is IPv4, the
structure pointed to at the offset is
BGP_CONFIG_HEADER (section 2.2.1.
2.252).

When the transport is IPv6, the
structure pointed to at the offset is
BGP_ROUTER_V6 (section 2.2.1.2.26
5).

MS_IP_DHCP_ALLOCATOR

0x81372714

DHCP allocator global or
interface information
depending on the method that
calls.

IP_AUTO_DHCP_GLOBAL_INFO (secti
on 2.2.1.2.191)

IP_AUTO_DHCP_INTERFACE_INFO (se
ction 2.2.1.2.192)

MS_IP_DNS_PROXY

0x81372713

DNS Proxy global or interface
information depending on the
method that calls.

IP_DNS_PROXY_GLOBAL_INFO (secti
on 2.2.1.2.193)

IP_DNS_PROXY_INTERFACE_INFO (se

57 / 547

[MS-RRASM-Diff] - v20210407
Routing and Remote Access Server (RRAS) Management Protocol
Copyright © 2021 Microsoft Corporation
Release: April 7, 2021

Value Meaning Structure pointed to at offset

ction 2.2.1.2.194)

MS_IP_NAT

0x81372715

IP NAT global or interface
information depending on the
method that calls.

IP_NAT_GLOBAL_INFO (section
2.2.1.2.195)

IP_NAT_INTERFACE_INFO (section
2.2.1.2.197)

MS_IP_OSPF<21>

0x0000000D

OSPF global or interface
information depending on the
method that calls.

OSPF_ROUTE_FILTER_INFO (section
2.2.1.2.209)

OSPF_PROTO_FILTER_INFO (section
2.2.1.2.210)

OSPF_GLOBAL_PARAM (section
2.2.1.2.211)

OSPF_AREA_PARAM (section
2.2.1.2.212)

OSPF_AREA_RANGE_PARAM (section
2.2.1.2.213)

OSPF_VIRT_INTERFACE_PARAM (secti
on 2.2.1.2.214)

OSPF_INTERFACE_PARAM (section
2.2.1.2.215)

OSPF_NBMA_NEIGHBOR_PARAM (sect
ion 2.2.1.2.216)

MS_IPV6_DHCP

0x000003E7

DHCPv6 Relay global or
interface information
depending on the method that
calls.

DHCPV6R_IF_CONFIG (section 2.2.1.
2.159)

DHCPV6R_GLOBAL_CONFIG (section
2.2.1.2.157)

The value MUST be one of the following when the transport is IPX.<22>

Value Meaning Structure pointed to at offset

IPX_INTERFACE_INFO_TYPE

0x00000001

Specifies the IPX
interface data.

IPX_IF_INFO (section 2.2.1.2.91)

IPX_STATIC_ROUTE_INFO_TYPE

0x00000002

Specifies the route
information for an IPX
interface.

IPX_STATIC_ROUTE_INFO (sectio
n 2.2.1.2.93)

IPX_STATIC_SERVICE_INFO_TYPE

0x00000003

Specifies information
about the transport layer
protocol that is being
multiplexed.

IPX_STATIC_SERVICE_INFO (sec
tion 2.2.1.2.94)

IPX_IN_TRAFFIC_FILTER_INFO_TYPE

0x00000006

Specifies the filter data
for an IPX interface.

IPX_TRAFFIC_FILTER_INFO (secti
on 2.2.1.2.98)

IPX_ADAPTER_INFO_TYPE

0x00000007

Specifies the adapter
information for the IPX.

IPX_ADAPTER_INFO (section 2.2.
1.2.96)

IPXWAN_IF_INFO

0x00000008

Specifies whether
IPXWAN negotiation is to
be disabled or enabled.

IPXWAN_IF_INFO (section 2.2.1.
2.92)

IPX_GLOBAL_INFO_TYPE

0x00000009

Specifies global IPX
information. See
IPX_GLOBAL_INFO for

IPX_GLOBAL_INFO (section 2.2.1
.2.90)

58 / 547

[MS-RRASM-Diff] - v20210407
Routing and Remote Access Server (RRAS) Management Protocol
Copyright © 2021 Microsoft Corporation
Release: April 7, 2021

Value Meaning Structure pointed to at offset

the actual information.

IPX_STATIC_NETBIOS_NAME_INFO_TYPE

0x0000000A

Specifies the NetBIOS
name of an IPX interface.

IPX_STATIC_NETBIOS_NAME_IN
FO (section 2.2.1.2.95)

IPX_IN_TRAFFIC_FILTER_GLOBAL_INFO_T
YPE

0x0000000B

Specifies the action for a
filter match.

IPX_TRAFFIC_FILTER_GLOBAL_I
NFO (section 2.2.1.2.97)

IPX_OUT_TRAFFIC_FILTER_INFO_TYPE

0x0000000C

Specifies the filter data
for an IPX interface.

IPX_TRAFFIC_FILTER_INFO (secti
on 2.2.1.2.98)

IPX_OUT_TRAFFIC_FILTER_GLOBAL_INFO_
TYPE

0x0000000D

Specifies the action for a
filter match.

IPX_TRAFFIC_FILTER_GLOBAL_I
NFO (section 2.2.1.2.97)

IPX_PROTOCOL_RIP

0x00020000

RIP global or interface
information depending on
the method that calls.

RIP_GLOBAL_INFO (section
2.2.1.2.202)

RIP_IF_CONFIG (section
2.2.1.2.206)

IPX_PROTOCOL_SAP

0x00020001

SAP global or interface
information depending on
the method that calls.

SAP_GLOBAL_INFO (section
2.2.1.2.207)

SAP_IF_CONFIG (section 2.2.1.2.
114)

InfoSize (4 bytes): A 32-bit, unsigned integer, in network byte-order, that MUST specify the number
of bytes in an information structure of this type in this entry.

Count (4 bytes): A 32-bit, unsigned integer in network byte order that MUST specify the number of
information structures of this type in this entry.

Offset (4 bytes): A 32-bit, unsigned integer in network byte order that MUST specify the offset of
start of the first structure for this entry.

2.2.1.2.5 FILTER_DESCRIPTOR

The FILTER_DESCRIPTOR structure MUST be used while specifying IPv4 filters.

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

dwVersion

dwNumFilters

faDefaultAction

fiFilter (variable)

...

dwVersion (4 bytes): A 32-bit integer in network byte order used to specify the version. It MUST be
0x00000001. No other versions are defined.

59 / 547

[MS-RRASM-Diff] - v20210407
Routing and Remote Access Server (RRAS) Management Protocol
Copyright © 2021 Microsoft Corporation
Release: April 7, 2021

dwNumFilters (4 bytes): A 32-bit integer in network byte order used to specify the number of
filters. It MUST be greater than 0.

faDefaultAction (4 bytes): A 32-bit integer in network byte order used to specify the action for the
filter. It MUST be FORWARD_ACTION (section 2.2.1.1.7).

fiFilter (variable): This MUST contain the actual five-tuple filters as specified in section 2.2.1.2.6.

When this structure is used as an embedded structure in RTR_TOC_ENTRY (section 2.2.1.2.4), the
infoType of RTR_TOC_ENTRY MUST have the value 0xFFFF0001, 0xFFFF0002, or 0xFFFF0009 to
specify an IPv4 in filter, an IPv4 out filter, or an IPv4 demand-dial filter respectively.

This structure is used in the following methods:

▪ RRouterInterfaceTransportAdd (section 3.1.4.18)

▪ RRouterInterfaceTransportGetInfo (section 3.1.4.19)

▪ RRouterInterfaceTransportSetInfo (section 3.1.4.20)

▪ RRouterInterfaceTransportCreate (section 3.1.4.38)

2.2.1.2.6 FILTER_INFO

The FILTER_INFO structure MUST specify the five-tuple filter to be used in
FILTER_DESCRIPTOR (section 2.2.1.2.5).

 typedef struct _FILTER_INFO {
 DWORD dwSrcAddr;
 DWORD dwSrcMask;
 DWORD dwDstAddr;
 DWORD dwDstMask;
 DWORD dwProtocol;
 DWORD fLateBound;
 WORD wSrcPort;
 WORD wDstPort;
 } FILTER_INFO,
 *PFILTER_INFO;

dwSrcAddr: A 32-bit, unsigned integer in network byte order that MUST contain the IPv4 source
address for which the filter (2) applies. A value of 0x00000000 in this field signifies ANY.

dwSrcMask: A 32-bit, unsigned integer in network byte order that MUST contain the subnet mask for
the source address. See [RFC950].

dwDstAddr: A 32-bit, unsigned integer in network byte order that MUST contain the IPv4 destination
address for the filter. A value of 0x00000000 in this field signifies ANY.

dwDstMask: A 32-bit, unsigned integer in network byte order that MUST be the subnet mask for the
destination address in network byte order. See [RFC950].

dwProtocol: A 32-bit, unsigned integer in little-endian byte order that MUST be the protocol number

(such as TCP or UDP) for the filter. Possible values include the following.

Value Meaning

0x00000000 ANY

0x00000001 ICMP

0x0000003A ICMPv6

60 / 547

[MS-RRASM-Diff] - v20210407
Routing and Remote Access Server (RRAS) Management Protocol
Copyright © 2021 Microsoft Corporation
Release: April 7, 2021

Value Meaning

0x00000006 TCP

0x00000011 UDP

The complete list is specified in [RFC1700].

fLateBound: A 32-bit, unsigned integer in little-endian byte order that indicates to the RRAS server if

the fields in the filter can be dynamically replaced by the RRAS server with values for specific
endpoints at the time those endpoints request network access. This MUST be a combination of one
or more of the following values.

Value Meaning

0x00000000 No source or destination address or mask replacement.

0x00000001 Source address replaceable with a new address.

0x00000004 Destination address replaceable with a new address.

0x00000010 Source address mask replaceable with a new mask.

0x00000020 Destination address mask replaceable with a new mask.

wSrcPort: If the protocol is TCP or UDP, this MUST be a 16-bit, unsigned integer in network byte
order that specifies a port number for the corresponding protocol. If the protocol is ICMP or

ICMPv6, this MUST be a 16-bit, unsigned integer in little-endian byte order that specifies a type
indicator for ICMP or ICMPv6 correspondingly. For all other protocol values, this MUST be set to 0
(byte order does not matter).

wDstPort: If the protocol is TCP or UDP, this MUST be a 16-bit, unsigned integer in network byte
order that specifies a port number for the corresponding protocol. If the protocol is ICMP or
ICMPv6, this MUST be a 16-bit, unsigned integer in little-endian byte order that specifies a code

indicator for ICMP or ICMPv6 correspondingly. For all other protocol values, this MUST be set to 0

(byte order does not matter).

2.2.1.2.7 FILTER_DESCRIPTOR_V6

The FILTER_DESCRIPTOR_V6 structure MUST be used while specifying IPv6 filters.

This structure is used in the following methods:

▪ RRouterInterfaceTransportAdd (section 3.1.4.18)

▪ RRouterInterfaceTransportGetInfo (section 3.1.4.19)

▪ RRouterInterfaceTransportSetInfo (section 3.1.4.20)

▪ RRouterInterfaceTransportCreate (section 3.1.4.38)

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

dwVersion

dwNumFilters

61 / 547

[MS-RRASM-Diff] - v20210407
Routing and Remote Access Server (RRAS) Management Protocol
Copyright © 2021 Microsoft Corporation
Release: April 7, 2021

faDefaultAction

fiFilter (variable)

...

dwVersion (4 bytes): A 32-bit integer in network byte order used to specify the version. It MUST be
0x00000001. No other versions are defined.

dwNumFilters (4 bytes): A 32-bit integer in network byte order used to specify the number of

filters. It MUST be greater than 0.

faDefaultAction (4 bytes): A 32-bit integer in network byte order used to specify the action for the
filter. It MUST be FORWARD_ACTION (section 2.2.1.1.7).

fiFilter (variable): This is defined in FILTER_INFO_V6 (section 2.2.1.2.8).

When this structure is used as an embedded structure in RTR_TOC_ENTRY (section 2.2.1.2.4), the
InfoType of RTR_TOC_ENTRY MUST be 0xFFFF0011, 0xFFFF0012, or 0xFFFF0013 to specify an IPv6

in filter, an IPv6 out filter, or an IPv6 demand-dial filter respectively.<23>

2.2.1.2.8 FILTER_INFO_V6

The FILTER_INFO_V6 structure SHOULD<24> specify the five-tuple filters to be used in
FILTER_DESCRIPTOR_V6 (section 2.2.1.2.7).

 typedef struct _FILTER_INFO_V6 {
 BYTE ipv6SrcAddr[16];
 DWORD dwSrcPrefixLength;
 BYTE ipv6DstAddr[16];
 DWORD dwDstPrefixLength;
 DWORD dwProtocol;
 DWORD fLateBound;
 WORD wSrcPort;
 WORD wDstPort;
 } FILTER_INFO_V6,
 *PFILTER_INFO_V6;

ipv6SrcAddr: A 128-bit, unsigned integer in network byte order that MUST contain the IPv6 source
address for which the filter applies. A value of zero (0) in this field signifies ANY.

dwSrcPrefixLength: A 32-bit, unsigned integer in network byte order that MUST be the prefix length
for the source address. A value of zero (0) in this field signifies ANY source address.

ipv6DstAddr: A 128-bit, unsigned integer in network byte order that MUST contain the IPv6
destination address for the filter. A value of zero (0) in this field signifies ANY.

dwDstPrefixLength: A 32-bit, unsigned integer in network byte order that MUST be the prefix length

for the destination address. A value of zero (0) in this field signifies ANY destination address.

dwProtocol: A 32-bit, unsigned integer in network byte order that specifies the protocol number
(such as TCP or UDP) for the filter.

Possible values include the following.

Value Meaning

0x00000000 ANY

62 / 547

[MS-RRASM-Diff] - v20210407
Routing and Remote Access Server (RRAS) Management Protocol
Copyright © 2021 Microsoft Corporation
Release: April 7, 2021

Value Meaning

0x00000001 ICMP

0x0000003A ICMPv6

0x00000006 TCP

0x00000011 UDP

fLateBound: A 32-bit, unsigned integer in network byte order that indicates if the fields in the filter
can be dynamically replaced by the network access server (NAS) with values for specific
endpoints.

The value MUST be one of the following values, or a bit-wise OR a combination of the following

values.

Value Meaning

0x00000000 No source or destination address or mask replacement.

0x00000001 Source address replaceable with a new address.

0x00000004 Destination address replaceable with a new address.

0x00000010 Source address mask replaceable with a new mask.

0x00000020 Destination address mask replaceable with a new mask.

wSrcPort: If the protocol is TCP or UDP, this MUST be a 16-bit, unsigned integer in network byte
order that specifies a port number for the corresponding protocol. If the protocol is ICMP or
ICMPv6, this MUST be a 16-bit, unsigned integer in network byte order that specifies a type
indicator for ICMP or ICMPv6 correspondingly. For all other protocol values, this MUST be set to 0

(byte order does not matter).

wDstPort: If the protocol is TCP or UDP, this MUST be a 16-bit, unsigned integer in network byte
order that specifies a port number for the corresponding protocol. If the protocol is ICMP or
ICMPv6, this MUST be a 16-bit, unsigned integer in network byte order that specifies a code
indicator for ICMP or ICMPv6 correspondingly. For all other protocol values, this MUST be set to 0
(byte order does not matter).

2.2.1.2.9 GLOBAL_INFO

The GLOBAL_INFO structure is used to set logging levels and enable filtering on the RRAS server.

This structure is used in the following methods:

▪ RRouterInterfaceTransportSetGlobalInfo (section 3.1.4.10)

▪ RRouterInterfaceTransportGetGlobalInfo (section 3.1.4.11)

 typedef struct _GLOBAL_INFO {
 IN OUT BOOL bFilteringOn;
 IN OUT DWORD dwLoggingLevel;
 } GLOBAL_INFO,
 *PGLOBAL_INFO;

bFilteringOn: This is of type BOOL ([MS-DTYP] section 2.2.3). This MUST be set to 0x00000001;
filtering is always enabled.

63 / 547

[MS-RRASM-Diff] - v20210407
Routing and Remote Access Server (RRAS) Management Protocol
Copyright © 2021 Microsoft Corporation
Release: April 7, 2021

dwLoggingLevel: This MUST be set to the logging levels so that if the RRAS server has different
levels of logging information this field specifies the logging level and MUST be one of the following

values.

Value Meaning

0x00000000 Log no messages.

0x00000001 Log all errors.

0x00000002 Log all warnings and errors.

0x00000003 Log all errors, warnings, and information.

When this structure is used, the InfoType of RTR_TOC_ENTRY (section 2.2.1.2.4) MUST be

0xFFFF0003 or 0xFFFF000F to specify global IP filtering or global lPv6 filtering.

2.2.1.2.10 IN6_ADDR

The IN6_ADDR structure represents an IPv6 address.

 typedef struct in6_addr {
 union {
 UCHAR Byte[16];
 USHORT Word[8];
 } u;
 } IN6_ADDR,
 *PIN6_ADDR,
 *LPIN6_ADDR;

Byte: An IPv6 address represented as an array of 16 UCHAR values.

Word: An IPv6 address represented as an array of USHORT values.

2.2.1.2.11 INTERFACE_ROUTE_INFO

The INTERFACE_ROUTE_INFO structure MAY<25> be used or
MIB_IPFORWARDROW (section 2.2.1.2.35) structure MAY<26> be used to specify the routes to be
added or deleted on the RRAS server. Whenever this structure is used, the InfoType of
RTR_TOC_ENTRY (section 2.2.1.2.4) structure MUST be 0xFFFF0005 to specify IP route
information.<27>

This structure is used in the following methods:

▪ RRouterInterfaceTransportAdd (section 3.1.4.18)

▪ RRouterInterfaceTransportGetInfo (section 3.1.4.19)

▪ RRouterInterfaceTransportSetInfo (section 3.1.4.20)

 typedef struct _INTERFACE_ROUTE_INFO {
 union {
 struct {
 DWORD dwRtInfoDest;
 DWORD dwRtInfoMask;
 DWORD dwRtInfoPolicy;
 DWORD dwRtInfoNextHop;
 DWORD dwRtInfoAge;
 DWORD dwRtInfoNextHopAS;
 DWORD dwRtInfoMetric1;
 DWORD dwRtInfoMetric2;

64 / 547

[MS-RRASM-Diff] - v20210407
Routing and Remote Access Server (RRAS) Management Protocol
Copyright © 2021 Microsoft Corporation
Release: April 7, 2021

 DWORD dwRtInfoMetric3;
 };
 struct {
 IN6_ADDR DestinationPrefix;
 DWORD DestPrefixLength;
 IN6_ADDR NextHopAddress;
 ULONG ValidLifeTime;
 DWORD Flags;
 ULONG Metric;
 };
 };
 DWORD dwRtInfoIfIndex;
 DWORD dwRtInfoType;
 DWORD dwRtInfoProto;
 DWORD dwRtInfoPreference;
 DWORD dwRtInfoViewSet;
 BOOL bV4;
 } INTERFACE_ROUTE_INFO,
 *PINTERFACE_ROUTE_INFO;

dwRtInfoDest: This MUST be the destination IPv4 address of the route. An entry with an IPv4
address of 0.0.0.0 is considered a default route. This member cannot be set to a multicast IPv4
address.

dwRtInfoMask: This MUST be the IPv4 subnet mask to be logically ANDed with the destination IPv4
address before being compared to the value in the dwRtInfoDest member. See [RFC950].

dwRtInfoPolicy: This MUST be set to the conditions that would cause the selection of a multipath
route (the set of next hops for a given destination). This member is typically in IP TOS format. The

encoding of this member is specified in [RFC1354].

dwRtInfoNextHop: This MUST be the IPv4 address of the next system in the route. Otherwise, this
member SHOULD be an IPv4 address of 0.0.0.0.

dwRtInfoAge: This MUST be the number of seconds since the route was added or modified in the
network routing table.

dwRtInfoNextHopAS: This MUST be the autonomous system number of the next hop. When this

member is unknown or not relevant to the protocol or routing mechanism specified in
dwRtInfoProto, this value SHOULD be set to 0. This value is documented in [RFC1354].

dwRtInfoMetric1: This MUST be the primary routing metric value for this route. The semantics of
this metric are determined by the routing protocol specified in the dwRtInfoProto member. If
this metric is not used, its value SHOULD be set to -1. This value is documented in [RFC1354].

dwRtInfoMetric2: This MUST be an alternate routing metric value for this route. The semantics of
this metric are determined by the routing protocol specified in the dwRtInfoProto member. If

this metric is not used, its value SHOULD be set to -1. This value is documented in [RFC1354].

dwRtInfoMetric3: This MUST be an alternate routing metric value for this route. The semantics of
this metric are determined by the routing protocol specified in the dwRtInfoProto member. If
this metric is not used, its value SHOULD be set to -1. This value is documented in [RFC1354].

DestinationPrefix: This MUST be the IPv6 address prefix for the destination IP address for this route.

DestPrefixLength: The length, in bits, of the site prefix or network part of the IP address specified in
DestinationPrefix. Any value greater than 128 is an illegal value. A value of 255 is commonly

used to represent an illegal value.

NextHopAddress: This MUST be the IPv6 address of the next system or gateway for a remote route.
If the route is to a local loopback address or an IP address on the local link, the next hop is

65 / 547

[MS-RRASM-Diff] - v20210407
Routing and Remote Access Server (RRAS) Management Protocol
Copyright © 2021 Microsoft Corporation
Release: April 7, 2021

unspecified (all zeros). For a local loopback route, this member SHOULD be an IPv6 address of
0::0.

ValidLifeTime: The maximum time, in seconds, the IP route entry is valid. A value of 0xFFFFFFFF is
infinite.

Flags: Reserved. This MUST be set to 0.

Metric: The route metric offset for this IP route entry. The semantics of this metric are determined by
the routing protocol specified in dwRtInfoProto. If this metric is not used, its value SHOULD be
set to -1. This value is documented in [RFC4292].

dwRtInfoIfIndex: This MUST be the index of the local interface through which the next hop of this
route is reachable.

dwRtInfoType: This MUST be the route type as specified in [RFC1354].

The following list shows the possible values for this member.<28>

Value Meaning

MIB_IPROUTE_TYPE_OTHER

0x00000001

A type other than what is specified in [RFC1354].

MIB_IPROUTE_TYPE_INVALID

0x00000002

An invalid route is logically deleted.

MIB_IPROUTE_TYPE_DIRECT

0x00000003

A local route where the next hop is the final destination (a local
interface).

MIB_IPROUTE_TYPE_INDIRECT

0x00000004

The remote route where the next hop is not the final destination (a
remote destination).

dwRtInfoProto: The protocol or routing mechanism that generated the route. It MUST be one of the

values specified in the MIB_IPFORWARD_PROTO enumeration.

dwRtInfoPreference: Specifies the route preference as determined by the routing protocol in
dwRtInfoProto.

dwRtInfoViewSet: Specifies the Route Information Table views. It MUST be a combination of the

following values, or a combination of RTM_VIEW_MASK_UCAST and RTM_VIEW_MASK_MCAST.

Value Meaning

RTM_VIEW_MASK_ANY

0x00000000

This value is used to define or set the mask for the Route Information
Table view. This value is a mask for any type of route.

RTM_VIEW_MASK_UCAST

0x00000001

This value is used to define or set the mask for Route Information Table
view. This value is a mask for unicast routes.

RTM_VIEW_MASK_MCAST

0x00000002

This value is used to define or set the mask for the Route Information
Table view. This value is a mask for multicast routes.

RTM_VIEW_MASK_ALL

0xFFFFFFFF

This value is used to define or set the mask for the Route Information
Table view. This value is a mask for all types of routes.

bV4: Set to 1 if it is an IPV4 route; set to 0 to indicate an IPV6 route. For an IPV4 route, the first
structure in the union is used. For an IPV6 route, the second structure in the union is used.

66 / 547

[MS-RRASM-Diff] - v20210407
Routing and Remote Access Server (RRAS) Management Protocol
Copyright © 2021 Microsoft Corporation
Release: April 7, 2021

2.2.1.2.12 PRIORITY_INFO

The PRIORITY_INFO structure MUST be used to set preferences to different protocols on the RRAS
server.

This structure is used in the following methods:

▪ RRouterInterfaceTransportSetGlobalInfo (section 3.1.4.10)

▪ RRouterInterfaceTransportGetGlobalInfo (section 3.1.4.11)

▪ RRouterInterfaceTransportCreate (section 3.1.4.38)

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

dwNumProtocols

ppmProtocolMetric (variable)

...

dwNumProtocols (4 bytes): This MUST be the number of protocols for which metric information is
given in the PROTOCOL_METRIC (section 2.2.1.2.13) structure.

ppmProtocolMetric (variable): This MUST be an array of PROTOCOL_METRIC structures with
dwNumProtocols specifying the number of elements in the array.

When this structure is used, the InfoType of RTR_TOC_ENTRY (section 2.2.1.2.4) structure MUST be
0xFFFF0006 to specify protocol priority information. Multiple instances of this structure can be present.
If multiple instances are present, and there are overlapping protocol IDs, the metric specified in the
last instance will be set.

2.2.1.2.13 PROTOCOL_METRIC

The PROTOCOL_METRIC structure MAY<29> be used to specify the metric of a protocol in
PRIORITY_INFO (section 2.2.1.2.12) structure.

 typedef struct _PROTOCOL_METRIC {
 IN OUT DWORD dwProtocolId;
 IN OUT DWORD dwMetric;
 } PROTOCOL_METRIC,
 *PPROTOCOL_METRIC;

dwProtocolId: The protocol ID. This SHOULD be one of the values specified in the
MIB_IPFORWARD_PROTO structure (section 2.2.1.1.9).<30>

dwMetric: The metric for dwProtocolId.

2.2.1.2.14 (Updated Section) RTR_DISC_INFO

The RTR_DISC_INFO structure is used to set and retrieve router discovery information according to

[RFC1256].

This structure is used in the following methods:

▪ RRouterInterfaceTransportSetInfo (section 3.1.4.20)

67 / 547

[MS-RRASM-Diff] - v20210407
Routing and Remote Access Server (RRAS) Management Protocol
Copyright © 2021 Microsoft Corporation
Release: April 7, 2021

▪ RRouterInterfaceTransportAdd (section 3.1.4.18)

 typedef struct _RTR_DISC_INFO {
 IN OUT WORD wMaxAdvtInterval;
 IN OUT WORD wMinAdvtInterval;
 IN OUT WORD wAdvtLifetime;
 IN OUT BOOL bAdvertise;
 IN OUT LONG lPrefLevel;
 } RTR_DISC_INFO,
 *PRTR_DISC_INFO;

wMaxAdvtInterval: This MUST be set to the maximum time allowed between sending multicast
Router Advertisements from the interface, in seconds. It MUST be no less than 4 seconds and no

greater than 1800 seconds.

wMinAdvtInterval: This MUST be the minimum time allowed between sending unsolicited
mullticastmulticast Router Advertisements from the interface, in seconds. It MUST be no less than
3 seconds and no greater than wMaxAdvtInterval.

wAdvtLifetime: This MUST be the value to be placed in the Lifetime field of Router Advertisements
sent from the interface, in seconds. It MUST be no less than wMaxAdvtInterval and no greater

than 9000 seconds.

bAdvertise: This MUST be the flag indicating whether or not the address is to be advertised.

lPrefLevel: This MUST be the preference of the address as a default router address, relative to other
router addresses on the same subnet. A 32-bit, signed, twos complement integer, with higher
values meaning more preferable. The minimum value (0x80000000) is used to indicate that the
address, even if advertised, is not to be used by neighboring hosts as a default router address.

When this structure is used, the InfoType of RTR_TOC_ENTRY (section 2.2.1.2.4) MUST be

0xFFFF0007 to specify router discovery information.

2.2.1.2.15 MCAST_HBEAT_INFO

The MCAST_HBEAT_INFO is used for multicast heartbeat information. See [RFC1301] and
[RFC3376] for more details.

 typedef struct _MCAST_HBEAT_INFO {
 WCHAR pwszGroup[MAX_GROUP_LEN];
 BOOL bActive;
 ULONG ulDeadInterval;
 BYTE byProtocol;
 WORD wPort;
 } MCAST_HBEAT_INFO,
 *PMCAST_HBEAT_INFO;

pwszGroup: A null-terminated Unicode string that contains the name and address of the multicast

group.

bActive: Indicates whether or not the heartbeat is active.

ulDeadInterval: The dead interval in minutes.

byProtocol: Specifies how the heartbeat is being carried out. This MUST have one of the following
values.

68 / 547

[MS-RRASM-Diff] - v20210407
Routing and Remote Access Server (RRAS) Management Protocol
Copyright © 2021 Microsoft Corporation
Release: April 7, 2021

Value Meaning

RAW

(0xFF)

A non-UDP based protocol is specified for use as multicast heartbeat. wPort specifies the
identifier for the protocol.

UDP

(0x11)

UDP-based protocol is specified for use as multicast heartbeat. wPort specifies the UDP port
number.

wPort: The port or protocol for which the heartbeat is being carried out.

When this structure is used, the InfoType of RTR_TOC_ENTRY (section 2.2.1.2.4) MUST be

0xFFFF000A to specify IP multicast heartbeat configuration.

2.2.1.2.16 (Updated Section) MIB_MCAST_LIMIT_ROW 1

The MIB_MCAST_LIMIT_ROW structure is used to specify the configuration information for a
multicast interface. It contains the configurable limit information from a corresponding

MIB_IPMCAST_IF_ENTRY (section 2.2.1.2.40) structure. Whenever this structure is used, the
InfoType of RTR_TOC_ENTRY (section 2.2.1.2.4) MUST be 0xFFFF000E to specify multicast

configuration information.

This structure is used in the following methods:

▪ RRouterInterfaceTransportAdd (section 3.1.4.18)

▪ RRouterInterfaceTransportGetInfo (section 3.1.4.19)

▪ RRouterInterfaceTransportSetInfo (section 3.1.4.20)

 typedef struct {
 DWORD dwTtl;
 DWORD dwRateLimit;
 } MIB_MCAST_LIMIT_ROW,
 *PMIB_MCAST_LIMIT_ROW;

dwTtl: The Time to Live (TTL) value for a mullticastmulticast interface.

dwRateLimit: The rate limit for a mullticastmulticast interface. This MUST be set to 0.

When this structure is used, the InfoType of RTR_TOC_ENTRY (section 2.2.1.2.4) MUST be
0xFFFF000E to specify IP multicast configuration.

2.2.1.2.17 IPINIP_CONFIG_INFO

The IPINIP_CONFIG_INFO structure MAY<31> be used to specify configuration information for an
IP in an IP tunnel.

 typedef struct _IPINIP_CONFIG_INFO {
 DWORD dwRemoteAddress;
 DWORD dwLocalAddress;
 BYTE byTtl;
 } IPINIP_CONFIG_INFO,
 *PIPINIP_CONFIG_INFO;

dwRemoteAddress: The destination address of the IP in the IP packet.

dwLocalAddress: The source address of the IP in the IP packet.

69 / 547

[MS-RRASM-Diff] - v20210407
Routing and Remote Access Server (RRAS) Management Protocol
Copyright © 2021 Microsoft Corporation
Release: April 7, 2021

byTtl: The TTL field for the IP in the IP packet.

When this structure is used, the InfoType of RTR_TOC_ENTRY (section 2.2.1.2.4) MUST be

0xFFFF000C to specify IP in IP configuration information.

2.2.1.2.18 INTERFACE_STATUS_INFO

The INTERFACE_STATUS_INFO structure contains the administrative status of an interface.

This structure is used in the following methods:

▪ RRouterInterfaceTransportAdd (section 3.1.4.18)

▪ RRouterInterfaceTransportGetInfo (section 3.1.4.19)

▪ RRouterInterfaceTransportSetInfo (section 3.1.4.20)

 typedef struct _INTERFACE_STATUS_INFO {
 IN OUT DWORD dwAdminStatus;
 } INTERFACE_STATUS_INFO,
 *PINTERFACE_STATUS_INFO;

dwAdminStatus: The administrative status of the interface. It MUST be one of the following values.

Value Meaning

IF_ADMIN_STATUS_UP

0x00000001

Interface is administratively enabled

IF_ADMIN_STATUS_DOWN

0x00000002

Interface is administratively disabled

When this structure is used, the InfoType of RTR_TOC_ENTRY (section 2.2.1.2.4) MUST be

0xFFFF0004 to specify IPv4 interface status information.

2.2.1.2.19 DIM_MIB_ENTRY_CONTAINER

The DIM_MIB_ENTRY_CONTAINER structure contains the size and the data for the management
information base (MIB) entries that are either set or retrieved from the MIB variables. This structure is
used in the following methods:

▪ RMIBEntryCreate (section 3.1.4.27)

▪ RMIBEntryDelete (section 3.1.4.28)

▪ RMIBEntrySet (section 3.1.4.29)

▪ RMIBEntryGet (section 3.1.4.30)

▪ RMIBEntryGetFirst (section 3.1.4.31)

▪ RMIBEntryGetNext (section 3.1.4.32)

 typedef struct _DIM_MIB_ENTRY_CONTAINER
 {
 DWORD dwMibInEntrySize;
 [size_is(dwMibInEntrySize)] LPBYTE pMibInEntry;
 DWORD dwMibOutEntrySize;
 [size_is(dwMibOutEntrySize)] LPBYTE pMibOutEntry;
 } DIM_MIB_ENTRY_CONTAINER,

70 / 547

[MS-RRASM-Diff] - v20210407
Routing and Remote Access Server (RRAS) Management Protocol
Copyright © 2021 Microsoft Corporation
Release: April 7, 2021

 *PDIM_MIB_ENTRY_CONTAINER;

dwMibInEntrySize: This field gives the size of the MIB entry data being input. It represents the size
of the data contained in pMibInEntry.

pMibInEntry: A pointer to a protocol-specific structure that contains input data.

dwMibOutEntrySize: This field gives the size of the MIB entry data being output. It represents the
size of the data contained in pMibOutEntry.

pMibOutEntry: This member points to the protocol-specific structure that points to the MIB.

The contents of pMibInEntry and pMibOutEntry are based on the transport and the routing
protocol for which the MIB information is requested.

Transport Routing Protocol pMibInEntry pMibOutEntry

PID_IP

0x00000021

IPRTRMGR_PID

0x00002710

MIB_OPAQUE_QUERY (sectio
n 2.2.1.2.53)

MIB_OPAQUE_QUERY (sectio
n 2.2.1.2.53)

PID_IP

0x00000021

MS_IP_BOOTP

0x0000270F

IPBOOT_MIB_GET_INPUT_DA
TA (section 2.2.1.2.151)

IPBOOTP_MIB_GET_OUTPUT
_DATA (section 2.2.1.2.152)

PID_IP

0x00000021

MS_IP_NAT

0x81372715

IP_NAT_MIB_QUERY (section
2.2.1.2.182)

IP_NAT_MIB_QUERY (section
 2.2.1.2.182)

PID_IP

0x00000021

MS_IP_DNS_PROXY

0x81372713

IP_DNS_PROXY_MIB_QUERY
(section 2.2.1.2.186)

IP_DNS_PROXY_MIB_QUERY
 (section 2.2.1.2.186)

PID_IP

0x00000021

MS_IP_DHCP_ALLOCATOR

0x81372714

IP_AUTO_DHCP_MIB_QUERY
(section 2.2.1.2.188)

IP_AUTO_DHCP_MIB_QUERY
 (section 2.2.1.2.188)

PID_IP

0x00000021

MS_IP_OSPF

0x0000000D

MIB_DA_MSG (section
2.2.1.2.190)

MIB_DA_MSG (section
2.2.1.2.190)

PID_IP

0x00000021

MS_IP_RIP

0x00000008

IPRIP_MIB_GET_INPUT_DATA
 (section 2.2.1.2.161)

IPRIP_MIB_GET_OUTPUT_DA
TA (section 2.2.1.2.162)

PID_IP

0x00000021

MS_IP_IGMP

0x4137000A

IGMP_MIB_GET_INPUT_DATA
 (section 2.2.1.2.171)

IGMP_MIB_GET_OUTPUT_DA
TA (section 2.2.1.2.172)

PID_IPV6

0x00000057

MS_IPV6_DHCP

0x000003E7

DHCPV6R_MIB_GET_INPUT_
DATA (section 2.2.1.2.160)

DHCPV6R_MIB_GET_OUTPUT
_DATA (section 2.2.1.2.156)

PID_IPV6

0x00000057

IPRTRMGR_PID

0x00002710

MIB_OPAQUE_QUERY (sectio
n 2.2.1.2.53)

MIB_OPAQUE_QUERY (sectio
n 2.2.1.2.53)

PID_IPX

0x0000002B

IPX_PROTOCOL_BASE

0x0001FFFF

IPX_MIB_GET_INPUT_DATA (
section 2.2.1.2.105)

IPX_MIB_GET_INPUT_DATA
(section 2.2.1.2.105)

PID_IPX

0x0000002B

IPX_PROTOCOL_RIP

0x00020000

RIP_MIB_GET_INPUT_DATA (
section 2.2.1.2.125)

RIP_MIB_GET_INPUT_DATA
(section 2.2.1.2.125)

PID_IPX

0x0000002B

IPX_PROTOCOL_SAP

0x00020000

SAP_MIB_GET_INPUT_DATA (
section 2.2.1.2.118)

SAP_MIB_GET_INPUT_DATA
(section 2.2.1.2.118)

71 / 547

[MS-RRASM-Diff] - v20210407
Routing and Remote Access Server (RRAS) Management Protocol
Copyright © 2021 Microsoft Corporation
Release: April 7, 2021

2.2.1.2.20 MIB_IPDESTROW

The MIB_IPDESTROW structure contains information about how a destination can be reached. In
addition to the route information, this structure contains preference and view information. This

structure is used in MIB_OPAQUE_INFO (section 2.2.1.2.52) structure.

 typedef struct _MIB_IPDESTROW {
 MIB_IPFORWARDROW ForwardRow;
 DWORD dwForwardPreference;
 DWORD dwForwardViewSet;
 } MIB_IPDESTROW,
 *PMIB_IPDESTROW;

ForwardRow: Contains the MIB_IPFORWARDROW (section 2.2.1.2.35) structure that contains the
route information.

dwForwardPreference: This MUST be the preference value of the ForwardRow. While routing
packets for two routes, if the prefix length is the same, the packet with the lower

dwForwardPreference is chosen.

dwForwardViewSet: This MUST be the view information of the ForwardRow. This member
describes the type of route, for example a multicast route. For more information, see the
dwRtInfoViewSet member of INTERFACE_ROUTE_INFO (section 2.2.1.2.11).

2.2.1.2.21 MIB_IPDESTTABLE

The MIB_IPDESTTABLE structure contains a table of MIB_IPDESTROW (section 2.2.1.2.20)
structures that contains the interface entries.

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

dwNumEntries

table (variable)

...

dwNumEntries (4 bytes): The number of interface entries in the table.

table (variable): An array of MIB_IPDESTROW structures that contains the interface entries.

2.2.1.2.22 MIB_ROUTESTATE

The MIB_ROUTESTATE structure contains information as to whether the route needs to be added to

the forwarder or not. Typically, only the best routes are added to the forwarder.

 typedef struct _MIB_ROUTESTATE {
 BOOL bRoutesSetToStack;
 } MIB_ROUTESTATE,
 *PMIB_ROUTESTATE;

bRoutesSetToStack: This MUST be set to 0x00000001 to set routes to the forwarder.

2.2.1.2.23 MIB_BEST_IF

72 / 547

[MS-RRASM-Diff] - v20210407
Routing and Remote Access Server (RRAS) Management Protocol
Copyright © 2021 Microsoft Corporation
Release: April 7, 2021

The MIB_BEST_IF structure stores the index of the interface that has the best route to a specific
destination IPv4 address.

 typedef struct _MIB_BEST_IF {
 DWORD dwDestAddr;
 DWORD dwIfIndex;
 } MIB_BEST_IF,
 *PMIB_BEST_IF;

dwDestAddr: Specifies the IPv4 address of the destination address.

dwIfIndex: Specifies the index of the interface that has the best route to the destination address
specified by the dwDestAddr member.

2.2.1.2.24 MIB_BOUNDARYROW

The MIB_BOUNDARYROW structure contains the IPv4 group address value and mask for a multicast

boundary. Whenever this structure is used, the InfoType of RTR_TOC_ENTRY (section 2.2.1.2.4)
MUST be 0xFFFF000B to specify multicast boundary information.

This structure is used in MIB_OPAQUE_INFO (section 2.2.1.2.52) structure.

This structure is used in the following methods:

▪ RRouterInterfaceTransportAdd (section 3.1.4.18)

▪ RRouterInterfaceTransportSetInfo (section 3.1.4.20)

▪ RRouterInterfaceTransportGetInfo (section 3.1.4.19)

 typedef struct {
 DWORD dwGroupAddress;
 DWORD dwGroupMask;
 } MIB_BOUNDARYROW,
 *PMIB_BOUNDARYROW;

dwGroupAddress: The 32-bit integer representation of the IPv4 group address which, when

combined with the corresponding value in dwGroupMask, identifies the group range for which
the scoped boundary exists.

Note Scoped addresses MUST come from the range 239.*.*.* as specified in [RFC2365].

dwGroupMask: The 32-bit integer representation of the IPv4 group address mask which, when
combined with the corresponding value in dwGroupAddress, identifies the group range for which
the scoped boundary exists.

2.2.1.2.25 MIB_ICMP

The MIB_ICMP structure contains the ICMP statistics. This structure is used in

MIB_OPAQUE_INFO (section 2.2.1.2.52) structure.

 typedef struct _MIB_ICMP {
 MIBICMPINFO stats;
 } MIB_ICMP,
 *PMIB_ICMP;

stats: An MIBICMPINFO (section 2.2.1.2.26) structure that contains the ICMP statistics.

73 / 547

[MS-RRASM-Diff] - v20210407
Routing and Remote Access Server (RRAS) Management Protocol
Copyright © 2021 Microsoft Corporation
Release: April 7, 2021

2.2.1.2.26 MIBICMPINFO

The MIBICMPINFO structure that contains the incoming and outgoing statistics for the ICMP.

This structure is used in MIB_ICMP (section 2.2.1.2.25) structure.

 typedef struct _MIBICMPINFO {
 MIBICMPSTATS icmpInStats;
 MIBICMPSTATS icmpOutStats;
 } MIBICMPINFO;

icmpInStats: An MIBICMPSTATS (section 2.2.1.2.27) structure that contains the statistics for
incoming ICMP messages.

icmpOutStats: An MIBICMPSTATS structure that contains the statistics for outgoing ICMP
messages.

2.2.1.2.27 MIBICMPSTATS

The MIBICMPSTATS structure contains statistics for the ICMP messages on a specific computer. This
structure is used in MIBICMPINFO (section 2.2.1.2.26).

 typedef struct _MIBICMPSTATS {
 DWORD dwMsgs;
 DWORD dwErrors;
 DWORD dwDestUnreachs;
 DWORD dwTimeExcds;
 DWORD dwParmProbs;
 DWORD dwSrcQuenchs;
 DWORD dwRedirects;
 DWORD dwEchos;
 DWORD dwEchoReps;
 DWORD dwTimestamps;
 DWORD dwTimestampReps;
 DWORD dwAddrMasks;
 DWORD dwAddrMaskReps;
 } MIBICMPSTATS;

dwMsgs: The number of ICMP messages received or sent.

dwErrors: The number of errors that occurred while sending or receiving ICMP messages.

dwDestUnreachs: The number of destination-unreachable messages received or sent. A destination-
unreachable message is sent to the originating computer when the destination address in a
datagram cannot be reached.

dwTimeExcds: The number of TTL-exceeded messages received or sent. A TTL-exceeded message is

sent to the originating computer when a datagram is discarded because the number of routers it
has passed through exceeds its TTL value.

dwParmProbs: The number of parameter-problem messages received or sent. A parameter-problem
message is sent to the originating computer when a router or host detects an error in a
datagram's IP header.

dwSrcQuenchs: The number of source quench messages received or sent. A source quench request
is sent to a computer to request that it reduce its rate of packet transmission.

dwRedirects: The number of redirect messages received or sent. A redirect message is sent to the
originating computer when a better route is discovered for a datagram sent by that computer.

74 / 547

[MS-RRASM-Diff] - v20210407
Routing and Remote Access Server (RRAS) Management Protocol
Copyright © 2021 Microsoft Corporation
Release: April 7, 2021

dwEchos: The number of echo requests received or sent. An echo request causes the receiving
computer to send an echo reply message back to the originating computer.

dwEchoReps: The number of echo replies received or sent. A computer sends an echo reply in
response to receiving an echo request message.

dwTimestamps: The number of time stamp requests received or sent. A time stamp request causes
the receiving computer to send a time stamp reply back to the originating computer.

dwTimestampReps: The number of time stamp replies received or sent. A computer sends a time
stamp reply in response to having received a time stamp request. Routers can use time stamp
requests and replies to measure the transmission speed of datagrams on a network.

dwAddrMasks: The number of address mask requests received or sent. A computer sends an address
mask request to determine the number of bits in the subnet mask for its local subnet.

dwAddrMaskReps: The number of address mask responses received or sent. A computer sends an
address mask response in response to an address mask request.

2.2.1.2.28 MIB_IFNUMBER

The MIB_IFNUMBER structure stores the number of interfaces on a specific computer.

 typedef struct _MIB_IFNUMBER {
 DWORD dwValue;
 } MIB_IFNUMBER,
 *PMIB_IFNUMBER;

dwValue: The number of interfaces on the computer.

2.2.1.2.29 MIB_IFROW

The MIB_IFROW structure stores information about a specific interface.

 typedef struct _MIB_IFROW {
 WCHAR wszName[256];
 DWORD dwIndex;
 DWORD dwType;
 DWORD dwMtu;
 DWORD dwSpeed;
 DWORD dwPhysAddrLen;
 BYTE bPhysAddr[8];
 DWORD dwAdminStatus;
 DWORD dwOperStatus;
 DWORD dwLastChange;
 DWORD dwInOctets;
 DWORD dwInUcastPkts;
 DWORD dwInNUcastPkts;
 DWORD dwInDiscards;
 DWORD dwInErrors;
 DWORD dwInUnknownProtos;
 DWORD dwOutOctets;
 DWORD dwOutUcastPkts;
 DWORD dwOutNUcastPkts;
 DWORD dwOutDiscards;
 DWORD dwOutErrors;
 DWORD dwOutQLen;
 DWORD dwDescrLen;
 BYTE bDescr[256];
 } MIB_IFROW;

75 / 547

[MS-RRASM-Diff] - v20210407
Routing and Remote Access Server (RRAS) Management Protocol
Copyright © 2021 Microsoft Corporation
Release: April 7, 2021

wszName: A pointer to a Unicode string that contains the name of the interface.

dwIndex: The index that identifies the interface. This index value is not persistent and can change

when a network adapter is disabled and then enabled.

dwType: The interface type as defined by the Internet Assigned Names Authority (IANA)

[IANAifType].

The following table lists common values for the interface type, although many other values are
possible.

Value Meaning

IF_TYPE_OTHER

0x00000001

Another type of network interface.

IF_TYPE_ETHERNET_CSMACD

0x00000006

An Ethernet network interface.

IF_TYPE_ISO88025_TOKENRING

0x00000009

A token ring network interface.

IF_TYPE_PPP

0x00000017

A PPP network interface.

IF_TYPE_SOFTWARE_LOOPBACK

0x00000018

A software loopback network interface.

IF_TYPE_ATM

0x00000027

An ATM network interface.

IF_TYPE_IEEE80211

0x00000047

An IEEE 802.11 wireless network interface.

IF_TYPE_TUNNEL

0x00000083

A tunnel type encapsulation network interface.

IF_TYPE_IEEE1394

0x00000090

An IEEE 1394 (FireWire) high-performance serial bus network
interface.

dwMtu: The maximum transmission unit (MTU) size in bytes.

dwSpeed: The speed of the interface in bits per second.

dwPhysAddrLen: The length, in bytes, of the physical address specified by the bPhysAddr member.

bPhysAddr: The physical address of the adapter for this interface.

dwAdminStatus: The administrative status of the interface. It can be either enabled or disabled.

dwOperStatus: The operational status of the interface.

This member can be one of the following values.

Value Meaning

IF_OPER_STATUS_NON_OPERATIONAL

0x00000000

LAN adapter has been disabled, for example, because of
an address conflict.

76 / 547

[MS-RRASM-Diff] - v20210407
Routing and Remote Access Server (RRAS) Management Protocol
Copyright © 2021 Microsoft Corporation
Release: April 7, 2021

Value Meaning

IF_OPER_STATUS_UNREACHABLE

0x00000001

WAN adapter that is not connected.

IF_OPER_STATUS_DISCONNECTED

0x00000002

For LAN adapters: network cable disconnected. For WAN
adapters: no carrier.

IF_OPER_STATUS_CONNECTING

0x00000003

WAN adapter that is in the process of connecting.

IF_OPER_STATUS_CONNECTED

0x00000004

WAN adapter that is connected to a remote peer.

IF_OPER_STATUS_OPERATIONAL

0x00000005

Default status for LAN adapters.

dwLastChange: The length of time, in hundredths of seconds, starting from the last computer

restart, when the interface entered its current operational state.<32>

dwInOctets: The number of octets of data received through this interface.

dwInUcastPkts: The number of unicast packets received through this interface.

dwInNUcastPkts: The number of nonunicast packets received through this interface. Broadcast and
multicast packets are included.

dwInDiscards: The number of incoming packets that were discarded even though they did not have
errors.

dwInErrors: The number of incoming packets that were discarded because of errors.

dwInUnknownProtos: The number of incoming packets that were discarded because the protocol
was unknown.

dwOutOctets: The number of octets of data sent through this interface.

dwOutUcastPkts: The number of unicast packets sent through this interface.

dwOutNUcastPkts: The number of nonunicast packets sent through this interface. Broadcast and

multicast packets are included.

dwOutDiscards: The number of outgoing packets that were discarded even though they did not have
errors.

dwOutErrors: The number of outgoing packets that were discarded because of errors.

dwOutQLen: The transmit queue length. This field is not currently used.

dwDescrLen: The length, in bytes, of the bDescr member.

bDescr: A null-terminated ASCII string that contains the description of the interface.

2.2.1.2.30 (Updated Section) MIB_IFSTATUS

The MIB_IFSTATUS structure stores status information for a specific interface.

 typedef struct _MIB_IFSTATUS {
 DWORD dwIfIndex;
 DWORD dwAdminStatus;

77 / 547

[MS-RRASM-Diff] - v20210407
Routing and Remote Access Server (RRAS) Management Protocol
Copyright © 2021 Microsoft Corporation
Release: April 7, 2021

 DWORD dwOperationalStatus;
 BOOL bMHbeatActive;
 BOOL bMHbeatAlive;
 } MIB_IFSTATUS,
 *PMIB_IFSTATUS;

dwIfIndex: The index that identifies the interface.

dwAdminStatus: The administrative status of the interface, that is, whether the interface is

administratively enabled or disabled.

dwOperationalStatus: The operational status of the interface. This member can be one of the values
defined in ROUTER_CONNECTION_STATE (section 2.2.1.1.2).

bMHbeatActive: Specifies whether multicast heartbeat detection is enabled. A value of TRUE
indicates that heartbeat detection is enabled. A value of FALSE indicates that heartbeat detection
is disabled.

Value Meaning

TRUE Heartbeat detection is enabled.

FALSE Heartbeat detection is disabled.

bMHbeatAlive: Specifies whether the mullticastmulticast heartbeat dead interval has been exceeded.
A value of FALSE indicates that the interval has been exceeded. A value of TRUE indicates that the
interval has not been exceeded.

Value Meaning

TRUE Heartbeat dead interval has not been exceeded.

FALSE Heartbeat dead interval has been exceeded.

2.2.1.2.31 MIB_IFTABLE

The MIB_IFTABLE structure contains a table of interface entries. This structure is used in
MIB_OPAQUE_INFO (section 2.2.1.2.52) structure.

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

dwNumEntries

table (variable)

...

dwNumEntries (4 bytes): The number of interface entries in the table.

table (variable): An array of MIB_IFROW (section 2.2.1.2.29) structures that contains interface

entries.

2.2.1.2.32 MIB_IPADDRROW

78 / 547

[MS-RRASM-Diff] - v20210407
Routing and Remote Access Server (RRAS) Management Protocol
Copyright © 2021 Microsoft Corporation
Release: April 7, 2021

The MIB_IPADDRROW structure specifies information for a specific IPv4 address. This structure is
used in the following methods:

▪ MIB_OPAQUE_INFO (section 2.2.1.2.52)

▪ MIB_IPADDRTABLE (section 2.2.1.2.33)

 typedef struct _MIB_IPADDRROW {
 DWORD dwAddr;
 DWORD dwIndex;
 DWORD dwMask;
 DWORD dwBCastAddr;
 DWORD dwReasmSize;
 unsigned short unused1;
 unsigned short wType;
 } MIB_IPADDRROW,
 *PMIB_IPADDRROW;

dwAddr: The IPv4 address.

dwIndex: The index of the interface associated with this IPv4 address.

dwMask: The subnet mask for the IPv4 address. See [RFC950].

dwBCastAddr: The broadcast address. A broadcast address is typically the IPv4 address with the
host portion set to either all zeros or all ones.

dwReasmSize: The maximum reassembly size for received datagrams.

unused1: This member is reserved and SHOULD be set to 0.

wType: The address type or state.<33>

Value Meaning

MIB_IPADDR_PRIMARY

0x0001

Primary IP address.

MIB_IPADDR_DYNAMIC

0x0004

Dynamic IP address.

MIB_IPADDR_DISCONNECTED

0x0008

Address is on a disconnected interface.

MIB_IPADDR_DELETED

0x0040

Address is being deleted.

MIB_IPADDR_TRANSIENT

0x0080

Transient address.

2.2.1.2.33 MIB_IPADDRTABLE

The MIB_IPADDRTABLE structure contains a table of IPv4 address entries. This structure is used in
MIB_OPAQUE_INFO (section 2.2.1.2.52) structure.

79 / 547

[MS-RRASM-Diff] - v20210407
Routing and Remote Access Server (RRAS) Management Protocol
Copyright © 2021 Microsoft Corporation
Release: April 7, 2021

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

dwNumEntries

table (variable)

...

dwNumEntries (4 bytes): The number of IPv4 address entries in the table.

table (variable): A pointer to a table of IPv4 address entries implemented as an array of
MIB_IPADDRROW (section 2.2.1.2.32) structures.

2.2.1.2.34 MIB_IPFORWARDNUMBER

The MIB_IPFORWARDNUMBER structure stores the number of routes in a specific IP routing table.

 typedef struct _MIB_IPFORWARDNUMBER {
 DWORD dwValue;
 } MIB_IPFORWARDNUMBER,
 *PMIB_IPFORWARDNUMBER;

dwValue: Specifies the number of routes in the IP routing table.

2.2.1.2.35 MIB_IPFORWARDROW

The MIB_IPFORWARDROW structure contains information that describes an IPv4 network route.
This structure is used in the following methods:

▪ MIB_OPAQUE_INFO (section 2.2.1.2.52)

▪ MIB_IPDESTROW (section 2.2.1.2.20)

▪ MIB_IPFORWARDTABLE (section 2.2.1.2.36)

 typedef struct _MIB_IPFORWARDROW
 {
 DWORD dwForwardDest;
 DWORD dwForwardMask;
 DWORD dwForwardPolicy;
 DWORD dwForwardNextHop;
 DWORD dwForwardIfIndex;
 union {
 DWORD dwForwardType;
 MIB_IPFORWARD_TYPE ForwardType;
 };
 union {
 DWORD dwForwardProto;
 MIB_IPFORWARD_PROTO ForwardProto;
 };
 DWORD dwForwardAge;
 DWORD dwForwardNextHopAS;
 DWORD dwForwardMetric1;
 DWORD dwForwardMetric2;
 DWORD dwForwardMetric3;
 DWORD dwForwardMetric4;
 DWORD dwForwardMetric5;
 } MIB_IPFORWARDROW,

80 / 547

[MS-RRASM-Diff] - v20210407
Routing and Remote Access Server (RRAS) Management Protocol
Copyright © 2021 Microsoft Corporation
Release: April 7, 2021

 *PMIB_IPFORWARDROW;

dwForwardDest: The destination IPv4 address of the route. An entry with an IPv4 address of 0.0.0.0
is considered a default route. This member MUST NOT be set to a multicast (class D) IPv4
address.

dwForwardMask: The IPv4 subnet mask to be logically ANDed with the destination IPv4 address
before being compared to the value in the dwForwardDest member; see [RFC950].

dwForwardPolicy: The set of conditions that would cause the selection of a multipath route (the set
of next hops for a given destination). This member is typically in IP TOS format. The encoding of
this member is specified in [RFC1354].

dwForwardNextHop: For remote routes, the IPv4 address of the next system in the route.

Otherwise, this member SHOULD be an IPv4 address of 0x00000000.

dwForwardIfIndex: The index of the local interface through which the next hop of this route is
reachable. This MUST be an interface index of one of the interfaces on RRAS.

dwForwardType: The route type as specified in [RFC1354]. The enum
MIB_IPFORWARD_TYPE (section 2.2.1.1.8) describes the possible values for this member. In
addition, dwForwardType can also be IP_PRIORITY_MAX_METRIC (0x000000FF) or
IP_PRIORITY_DEFAULT_METRIC (0x0000007F).

ForwardType: The route type as specified in [RFC1354].<34>

dwForwardProto: The protocol or routing mechanism that generated the route. It can take one of
the values specified in [RFC1354]. The enum MIB_IPFORWARD_PROTO (section 2.2.1.1.9)
describes the possible values for this member.

ForwardProto: The protocol or routing mechanism that generated the route.<35>

dwForwardAge: The number of seconds since the route was added or modified in the network
routing table. The dwForwardAge member is also used if the RRAS server is running for routes

of type PROTO_IP_NETMGMT as defined on the Protocol Identifiers reference page. When
dwForwardAge is set to INFINITE (-1) when running the RRAS server, the route will not be
removed based on a time-out value.

dwForwardNextHopAS: The autonomous system number of the next hop. When this member is
unknown or not relevant to the protocol or routing mechanism specified in dwForwardProto, this
value SHOULD be set to 0. This value is documented in [RFC1354].

dwForwardMetric1: The primary routing metric value for this route. The semantics of this metric are
determined by the routing protocol specified in the dwForwardProto member. If this metric is
not used, its value SHOULD be set to MIB_IPROUTE_METRIC_UNUSED (-1). This value is
documented in [RFC1354].

dwForwardMetric2: An alternate routing metric value for this route. The semantics of this metric are
determined by the routing protocol specified in the dwForwardProto member. If this metric is
not used, its value SHOULD be set to -1. This value is documented in [RFC1354].

dwForwardMetric3: An alternate routing metric value for this route. The semantics of this metric are
determined by the routing protocol specified in the dwForwardProto member. If this metric is
not used, its value SHOULD be set to -1. This value is documented in [RFC1354].

dwForwardMetric4: An alternate routing metric value for this route. The semantics of this metric are
determined by the routing protocol specified in the dwForwardProto member. If this metric is
not used, its value SHOULD be set to -1. This value is documented in [RFC1354].

81 / 547

[MS-RRASM-Diff] - v20210407
Routing and Remote Access Server (RRAS) Management Protocol
Copyright © 2021 Microsoft Corporation
Release: April 7, 2021

dwForwardMetric5: An alternate routing metric value for this route. The semantics of this metric are
determined by the routing protocol specified in the dwForwardProto member. If this metric is

not used, its value SHOULD be set to -1. This value is documented in [RFC1354].

2.2.1.2.36 MIB_IPFORWARDTABLE

The MIB_IPFORWARDTABLE structure contains a table of the IP route entries.

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

dwNumEntries

table (variable)

...

reserved

...

dwNumEntries (4 bytes): Specifies the number of route entries in the table.

table (variable): Pointer to a table of route entries implemented as an array of
MIB_IPFORWARDROW (section 2.2.1.2.35) structures.

reserved (8 bytes): An array of 8 bytes that SHOULD be set to zero (0) and ignored on receipt.

2.2.1.2.37 (Updated Section) MIB_IPMCAST_BOUNDARY

The MIB_IPMCAST_BOUNDARY structure contains a router's scoped IPv4 multicast address

boundaries. This structure is used in the following methods:

▪ MIB_OPAQUE_INFO (section 2.2.1.2.52)

▪ MIB_IPMCAST_BOUNDARY_TABLE (section 2.2.1.2.38)

 typedef struct {
 DWORD dwIfIndex;
 DWORD dwGroupAddress;
 DWORD dwGroupMask;
 DWORD dwStatus;
 } MIB_IPMCAST_BOUNDARY,
 *PMIB_IPMCAST_BOUNDARY;

dwIfIndex: The index value for the interface that applies to this boundary. Packets with a destination
address in the associated address/mask range are not forwarded with this interface.

dwGroupAddress: The 32-bit integer representation of the IPv4 group address which, when

combined with the corresponding value in dwGroupMask, identifies the group range for which
the scoped boundary exists.

Note Scoped addresses MUST come from the range 239.*.*.* as specified in [RFC2365].

dwGroupMask: The 32-bit integer representation of the IPv4 group address mask which, when
combined with the corresponding value in dwGroupAddress, identifies the group range for which
the scoped boundary exists.

82 / 547

[MS-RRASM-Diff] - v20210407
Routing and Remote Access Server (RRAS) Management Protocol
Copyright © 2021 Microsoft Corporation
Release: April 7, 2021

dwStatus: A status value that describes the current status of this entry in a mullticastmulticast
forwarding entry (MFE) boundary table.

Value Meaning

ROWSTATUS_ACTIVE

0x00000001

The entry has an active status.

ROWSTATUS_NOTINSERVICE

0x00000002

The entry has a notInService status.

ROWSTATUS_NOTREADY

0x00000003

The entry has a notReady status.

ROWSTATUS_CREATEANDGO

0x00000004

The entry has a createAndGo status.

ROWSTATUS_CREATEANDWAIT

0x00000005

The entry has a createAndWait status.

ROWSTATUS_DESTROY

0x00000006

The entry has a destroy status.

2.2.1.2.38 (Updated Section) MIB_IPMCAST_BOUNDARY_TABLE

The MIB_IPMCAST_BOUNDARY_TABLE structure contains a list of a router's scoped IPv4 multicast
address boundaries. This structure is used in MIB_OPAQUE_INFO (section 2.2.1.2.52) structure.

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

dwNumEntries

table (variable)

...

dwNumEntries (4 bytes): The number of MIB_IPMCAST_BOUNDARY (section 2.2.1.2.37) structures
listed in table.

table (variable): An array of MIB_IPMCAST_BOUNDARY structures that collectively define the set
of scoped IPv4 mullticastmulticast address boundaries on a router

2.2.1.2.39 (Updated Section) MIB_IPMCAST_GLOBAL

The MIB_IPMCAST_GLOBAL structure stores global information for IP multicast on a specific
computer.

 typedef struct _MIB_IPMCAST_GLOBAL {
 DWORD dwEnable;
 } MIB_IPMCAST_GLOBAL,
 *PMIB_IPMCAST_GLOBAL;

83 / 547

[MS-RRASM-Diff] - v20210407
Routing and Remote Access Server (RRAS) Management Protocol
Copyright © 2021 Microsoft Corporation
Release: April 7, 2021

dwEnable: Specifies whether or not IP mullticastmulticast is enabled on the computer. This value is
set to 1 if IP multicast is enabled on the computer and is set to 2 if IP multicast is not enabled on

the computer.

2.2.1.2.40 (Updated Section) MIB_IPMCAST_IF_ENTRY

The MIB_IPMCAST_IF_ENTRY structure stores information about an IP multicast interface.

 typedef struct _MIB_IPMCAST_IF_ENTRY {
 DWORD dwIfIndex;
 DWORD dwTtl;
 DWORD dwProtocol;
 DWORD dwRateLimit;
 ULONG ulInMcastOctets;
 ULONG ulOutMcastOctets;
 } MIB_IPMCAST_IF_ENTRY,
 *PMIB_IPMCAST_IF_ENTRY;

dwIfIndex: The index of this interface.

dwTtl: The TTL value for this interface.

dwProtocol: The multicast routing protocol that owns this interface.

dwRateLimit: The rate limit of this interface.

ulInMcastOctets: The number of octets of mullticastmulticast data received through this interface.

ulOutMcastOctets: The number of octets of mullticastmulticast data sent through this interface.

2.2.1.2.41 MIB_IPMCAST_IF_TABLE

The MIB_IPMCAST_IF_TABLE structure contains a table of IP multicast interface entries.

 typedef struct _MIB_IPMCAST_IF_TABLE {
 DWORD dwNumEntries;
 MIB_IPMCAST_IF_ENTRY table[1];
 } MIB_IPMCAST_IF_TABLE,
 *PMIB_IPMCAST_IF_TABLE;

dwNumEntries: Specifies the number of interface entries in the table.

table: A pointer to a table of interface entries implemented as an array of
MIB_IPMCAST_IF_ENTRY (section 2.2.1.2.40) structures.

2.2.1.2.42 (Updated Section) MIB_IPMCAST_MFE

The MIB_IPMCAST_MFE structure stores the information for an IP multicast forwarding entry (MFE).
This structure is used in MIB_MFE_TABLE (section 2.2.1.2.51) structure.

 typedef struct _MIB_IPMCAST_MFE {
 DWORD dwGroup;
 DWORD dwSource;
 DWORD dwSrcMask;
 DWORD dwUpStrmNgbr;
 DWORD dwInIfIndex;
 DWORD dwInIfProtocol;
 DWORD dwRouteProtocol;
 DWORD dwRouteNetwork;
 DWORD dwRouteMask;

84 / 547

[MS-RRASM-Diff] - v20210407
Routing and Remote Access Server (RRAS) Management Protocol
Copyright © 2021 Microsoft Corporation
Release: April 7, 2021

 ULONG ulUpTime;
 ULONG ulExpiryTime;
 ULONG ulTimeOut;
 ULONG ulNumOutIf;
 DWORD fFlags;
 DWORD dwReserved;
 MIB_IPMCAST_OIF rgmioOutInfo[1];
 } MIB_IPMCAST_MFE,
 *PMIB_IPMCAST_MFE;

dwGroup: The range of IPv4 mullticastmulticast groups for this MFE. A value of zero (0) indicates a

wildcard group.

dwSource: The range of IPv4 source addresses for this MFE. A value of zero (0) indicates a wildcard
source.

dwSrcMask: The IPv4 subnet mask that corresponds to dwSource. The dwSource and dwSrcMask
members are used together to define a range of sources.

dwUpStrmNgbr: The upstream neighbor that is related to this MFE.

dwInIfIndex: The index of the interface to which this MFE is related.

dwInIfProtocol: The routing protocol that owns the incoming interface to which this MFE is related.

dwRouteProtocol: The protocol that created the route. This is the enum
MIB_IPFORWARD_PROTO (section 2.2.1.1.9).

dwRouteNetwork: The IPv4 address associated with the route referred to by dwRouteProtocol.

dwRouteMask: The IPv4 mask associated with the route referred to by dwRouteProtocol.

ulUpTime: The time, in seconds, that this MFE has been valid. This value starts from zero (0) and is
incremented until it reaches the ulTimeOut value, at which time the MFE is deleted.

ulExpiryTime: The time, in seconds, that remains before the MFE expires and is deleted. This value
starts from ulTimeOut and is decremented until it reaches zero (0), at which time the MFE is
deleted.

ulTimeOut: The total length of time, in seconds, that this MFE remains valid. After the time-out value
is exceeded, the MFE is deleted.

ulNumOutIf: The number of outgoing interfaces that are associated with this MFE.

fFlags: Reserved. This member SHOULD be NULL.

dwReserved: Reserved. This member SHOULD be NULL.

rgmioOutInfo: A pointer to a table of outgoing interface statistics that are implemented as an array
of MIB_IPMCAST_OIF (section 2.2.1.2.43) structures.

2.2.1.2.43 (Updated Section) MIB_IPMCAST_OIF

The MIB_IPMCAST_OIF structure stores the information required to send an outgoing IP multicast

packet.

 typedef struct _MIB_IPMCAST_OIF {
 DWORD dwOutIfIndex;
 DWORD dwNextHopAddr;
 PVOID pvReserved;
 DWORD dwReserved;
 } MIB_IPMCAST_OIF,

85 / 547

[MS-RRASM-Diff] - v20210407
Routing and Remote Access Server (RRAS) Management Protocol
Copyright © 2021 Microsoft Corporation
Release: April 7, 2021

 *PMIB_IPMCAST_OIF;

dwOutIfIndex: The index of the interface on which to send the outgoing IP mullticastmulticast
packet.

dwNextHopAddr: The destination address for the outgoing IPv4 mullticastmulticast packet.

pvReserved: Reserved. This member MUST be NULL.

dwReserved: Reserved. This member MUST be zero (0).

2.2.1.2.44 MIB_IPMCAST_MFE_STATS

The MIB_IPMCAST_MFE_STATS structure stores the statistics associated with an MFE.

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

dwGroup

dwSource

dwSrcMask

dwUpStrmNgbr

dwInIfIndex

dwInIfProtocol

dwRouteProtocol

dwRouteNetwork

dwRouteMask

ulUpTime

ulExpiryTime

ulNumOutIf

ulInPkts

ulInOctets

ulPktsDifferentIf

ulQueueOverflow

rgmiosOutStats (variable)

86 / 547

[MS-RRASM-Diff] - v20210407
Routing and Remote Access Server (RRAS) Management Protocol
Copyright © 2021 Microsoft Corporation
Release: April 7, 2021

...

dwGroup (4 bytes): The multicast group for this MFE. A value of zero (0) indicates a wildcard group.

dwSource (4 bytes): The range of source addresses for this MFE. A value of zero (0) indicates a
wildcard source.

dwSrcMask (4 bytes): The IPv4 subnet mask that corresponds to the dwSource. The dwSource
and the dwSrcMask members are used together to define a range of sources.

dwUpStrmNgbr (4 bytes): The upstream neighbor that is related to this MFE.

dwInIfIndex (4 bytes): The index of the incoming interface that is related to this MFE.

dwInIfProtocol (4 bytes): The routing protocol that owns the incoming interface that is related to
this MFE.

dwRouteProtocol (4 bytes): The protocol that created the route. It is the enum

MIB_IPFORWARD_PROTO (section 2.2.1.1.9).

dwRouteNetwork (4 bytes): The address associated with the route referred to by the
dwRouteProtocol.

dwRouteMask (4 bytes): The mask associated with the route referred to by the dwRouteProtocol.

ulUpTime (4 bytes): The time, in 100ths of a second, since the MFE was created.

ulExpiryTime (4 bytes): The time, in 100ths of a second, until the MFE will be deleted. A value of

zero (0) is specified if the MFE is not subject to aging requirements.

ulNumOutIf (4 bytes): The number of interfaces in the outgoing interface list for this MFE.

ulInPkts (4 bytes): The number of packets that have been forwarded that matched this MFE.

ulInOctets (4 bytes): The number of octets of data forwarded that match this MFE.

ulPktsDifferentIf (4 bytes): The number of packets matching this MFE that were dropped due to an
incoming interface check.

ulQueueOverflow (4 bytes): The number of packets matching this MFE that were dropped due to a

queue overflow. There is one queue per MFE.

rgmiosOutStats (variable): A pointer to a table of outgoing interface statistics that are
implemented as an array of MIB_IPMCAST_OIF_STATS (section 2.2.1.2.45) structures. The
number of entries in the table is specified by the value of the ulNumOutIf member.

2.2.1.2.45 (Updated Section) MIB_IPMCAST_OIF_STATS

The MIB_IPMCAST_OIF_STATS structure stores the statistics that are associated with an outgoing

multicast interface.

 typedef struct _MIB_IPMCAST_OIF_STATS {
 DWORD dwOutIfIndex;
 DWORD dwNextHopAddr;
 PVOID pvDialContext;
 ULONG ulTtlTooLow;
 ULONG ulFragNeeded;
 ULONG ulOutPackets;
 ULONG ulOutDiscards;
 } MIB_IPMCAST_OIF_STATS,

87 / 547

[MS-RRASM-Diff] - v20210407
Routing and Remote Access Server (RRAS) Management Protocol
Copyright © 2021 Microsoft Corporation
Release: April 7, 2021

 *PMIB_IPMCAST_OIF_STATS;

dwOutIfIndex: Specifies the outgoing interface to which these statistics are related.

dwNextHopAddr: Specifies the address of the next hop that corresponds to dwOutIfIndex. The
dwOutIfIndex and dwIfNextHopIPAddrdwNextHopAddr members uniquely identify a next

hop on point-to-multipoint interfaces, where one interface connects to multiple networks.
Examples of point-to-multipoint interfaces include non-broadcast multiple-access (NBMA)
interfaces, and the internal interface on which all dial-up clients connect. For Ethernet and other
broadcast interfaces, specify zero (0). Also specify zero (0) for point-to-point interfaces, which are
identified by only dwOutIfIndex.

pvDialContext: Reserved. This member MUST be NULL.

ulTtlTooLow: Specifies the number of packets on this outgoing interface that were discarded because
the packet's TTL value was too low.

ulFragNeeded: Specifies the number of packets that required fragmentation when they were

forwarded on this interface.

ulOutPackets: Specifies the number of packets that were forwarded out of this interface.

ulOutDiscards: Specifies the number of packets that were discarded on this interface.

2.2.1.2.46 (Updated Section) MIB_IPMCAST_SCOPE

The MIB_IPMCAST_SCOPE structure contains a multicast scope name and the associated IPv4
mullticastmulticast group address and mask that define the scope. This structure is used in
MIB_OPAQUE_INFO (section 2.2.1.2.52) structure.

 typedef struct {
 DWORD dwGroupAddress;
 DWORD dwGroupMask;
 WCHAR snNameBuffer[256];
 DWORD dwStatus;
 BYTE reserved[492];
 } MIB_IPMCAST_SCOPE,
 *PMIB_IPMCAST_SCOPE;

dwGroupAddress: A 32-bit integer representation of the IPv4 group address which, when combined
with the corresponding value in dwGroupMask, identifies the group range for which the

mullticastmulticast scope exists.

Note Scoped addresses MUST come from the range 239.0.0.0 to 239.255.255.255 as specified in
[RFC2365].

dwGroupMask: A 32-bit integer representation of the IPv4 group address mask which, when
combined with the corresponding value in dwGroupAddress, identifies the group range for which
the mullticastmulticast scope exists.

snNameBuffer: A Unicode string, suitable for display to mullticastmulticast application users, that
contains the text name associated with the mullticastmulticast scope.

If no name is specified, the default name is the string representation of the scoped address in
dwGroupAddress with the address and mask length appended and separated by a backslash "/"
character, of the form "239.*.*.*.x/y", where x is the address length and y is the mask length.

dwStatus: A status value that describes the current status of this row in an MFE scope table.

88 / 547

[MS-RRASM-Diff] - v20210407
Routing and Remote Access Server (RRAS) Management Protocol
Copyright © 2021 Microsoft Corporation
Release: April 7, 2021

Value Meaning

0x00000001 Row has an active status.

0x00000002 Row has a notInService status.

0x00000003 Row has a notReady status.

0x00000004 Row has a createAndGo status.

0x00000005 Row has a createAndWait status.

0x00000006 Row has a destroy status.

reserved: An array of 492 bytes that SHOULD be set to 0 and ignored on receive.

2.2.1.2.47 MIB_IPNETROW

The MIB_IPNETROW structure contains information for an Address Resolution Protocol (ARP) table

entry for an IPv4 address. This structure is used in MIB_OPAQUE_INFO (section 2.2.1.2.52)
structure.

 typedef struct _MIB_IPNETROW {
 DWORD dwIndex;
 DWORD dwPhysAddrLen;
 BYTE bPhysAddr[8];
 DWORD dwAddr;
 DWORD dwType;
 } MIB_IPNETROW,
 *PMIB_IPNETROW;

dwIndex: This MUST be the interface index of an adapter.

dwPhysAddrLen: The length, in bytes, of the physical address.

bPhysAddr: The physical address.

dwAddr: The IPv4 address.

dwType: The type of ARP entry. This type MUST be one of the following values.

Value Meaning

0x00000001 Other

0x00000002 Invalid

0x00000003 Dynamic

0x00000004 Static

2.2.1.2.48 MIB_IPNETTABLE

 The MIB_IPNETTABLE structure contains a table of ARP entries for IPv4 addresses.

 typedef struct _MIB_IPNETTABLE {
 DWORD dwNumEntries;
 MIB_IPNETROW table[1];

89 / 547

[MS-RRASM-Diff] - v20210407
Routing and Remote Access Server (RRAS) Management Protocol
Copyright © 2021 Microsoft Corporation
Release: April 7, 2021

 BYTE reserved[8];
 } MIB_IPNETTABLE,
 *PMIB_IPNETTABLE;

dwNumEntries: The number of ARP entries in the table.

table: A pointer to a table of ARP entries implemented as an array of

MIB_IPNETROW (section 2.2.1.2.47) structures.

reserved: An array of 8 bytes that SHOULD be set to 0 and ignored on receipt.

2.2.1.2.49 MIB_IPSTATS

The MIB_IPSTATS structure stores information about the IP protocol running on a specific computer.
This structure is used in MIB_OPAQUE_INFO (section 2.2.1.2.52) structure.

 typedef struct _MIB_IPSTATS {
 union {
 DWORD dwForwarding;
 MIB_IPSTATS_FORWARDING Forwarding;
 };
 DWORD dwDefaultTTL;
 DWORD dwInReceives;
 DWORD dwInHdrErrors;
 DWORD dwInAddrErrors;
 DWORD dwForwDatagrams;
 DWORD dwInUnknownProtos;
 DWORD dwInDiscards;
 DWORD dwInDelivers;
 DWORD dwOutRequests;
 DWORD dwRoutingDiscards;
 DWORD dwOutDiscards;
 DWORD dwOutNoRoutes;
 DWORD dwReasmTimeout;
 DWORD dwReasmReqds;
 DWORD dwReasmOks;
 DWORD dwReasmFails;
 DWORD dwFragOks;
 DWORD dwFragFails;
 DWORD dwFragCreates;
 DWORD dwNumIf;
 DWORD dwNumAddr;
 DWORD dwNumRoutes;
 } MIB_IPSTATS,
 *PMIB_IPSTATS;

dwForwarding: Specifies whether IP forwarding is enabled or disabled. This value MUST be
0xFFFFFFFF or one of the following values. If set to 0xFFFFFFFF, RMIBEntrySet does not change
the current value of dwForwarding.

Value Meaning

0x00000001 IP Forwarding enabled.

0x00000002 IP Forwarding not enabled.

Forwarding: Specifies whether IP forwarding is enabled or disabled.<36>

dwDefaultTTL: The default initial TTL for datagrams originating on a specific computer. This value
MUST be 0xFFFFFFFF or a value less than or equal to 255.

90 / 547

[MS-RRASM-Diff] - v20210407
Routing and Remote Access Server (RRAS) Management Protocol
Copyright © 2021 Microsoft Corporation
Release: April 7, 2021

dwInReceives: The number of datagrams received. This is a read-only field and MUST be ignored
while writing.

dwInHdrErrors: The number of datagrams received that have header errors. This is a read-only field
and MUST be ignored while writing.

dwInAddrErrors: The number of datagrams received that have address errors. This is a read-only
field and MUST be ignored while writing.

dwForwDatagrams: The number of datagrams forwarded. This is a read-only field and MUST be
ignored while writing.

dwInUnknownProtos: The number of datagrams received that have an unknown protocol. This is a
read-only field and MUST be ignored while writing.

dwInDiscards: The number of received datagrams discarded. This is a read-only field and MUST be

ignored while writing.

dwInDelivers: The number of received datagrams delivered. This is a read-only field and MUST be

ignored while writing.

dwOutRequests: The number of outgoing datagrams that the IP is requested to transmit. This
number does not include forwarded datagrams. This is a read-only field and MUST be ignored
while writing.

dwRoutingDiscards: The number of outgoing datagrams discarded. This is a read-only field and
MUST be ignored while writing.

dwOutDiscards: The number of transmitted datagrams to be discarded. This is a read-only field and
MUST be ignored while writing.

dwOutNoRoutes: The number of datagrams for which this computer did not have a route to the
destination IP address. These datagrams were discarded. This is a read-only field and MUST be
ignored while writing.

dwReasmTimeout: The amount of time allowed for all pieces of a fragmented datagram to arrive. If
all pieces do not arrive within this time, the datagram is discarded. This is a read-only field and
MUST be ignored while writing.

dwReasmReqds: The number of datagrams that require reassembly. This is a read-only field and
MUST be ignored while writing.

dwReasmOks: The number of datagrams that were successfully reassembled. This is a read-only
field and MUST be ignored while writing.

dwReasmFails: The number of datagrams that cannot be reassembled. This is a read-only field and
MUST be ignored while writing.

dwFragOks: The number of datagrams that were fragmented successfully. This is a read-only field
and MUST be ignored while writing.

dwFragFails: The number of datagrams that have not been fragmented because the IP header
specifies no fragmentation. These datagrams are discarded. This is a read-only field and MUST be

ignored while writing.

dwFragCreates: The number of fragments created. This is a read-only field and MUST be ignored
while writing.

dwNumIf: The number of interfaces. This is a read-only field and MUST be ignored while writing.

91 / 547

[MS-RRASM-Diff] - v20210407
Routing and Remote Access Server (RRAS) Management Protocol
Copyright © 2021 Microsoft Corporation
Release: April 7, 2021

dwNumAddr: The number of IP addresses associated with this computer. This is a read-only field and
MUST be ignored while writing.

dwNumRoutes: The number of routes in the IP routing table. This is a read-only field and MUST be
ignored while writing.

2.2.1.2.50 (Removed Section) MIB_MCAST_LIMIT_ROW 2

The MIB_MCAST_LIMIT_ROW structure contains the configurable limit information from a
corresponding MIB_IPMCAST_IF_ENTRY (section 2.2.1.2.40) structure. Whenever this structure is

used, the InfoType of RTR_TOC_ENTRY (section 2.2.1.2.4) MUST be 0xFFFF000E to specify multicast
configuration information.

This structure is used in the following methods:

▪ RRouterInterfaceTransportAdd (section 3.1.4.18)

▪ RRouterInterfaceTransportGetInfo (section 3.1.4.19)

▪ RRouterInterfaceTransportSetInfo (section 3.1.4.20)

 typedef struct {
 DWORD dwTtl;
 DWORD dwRateLimit;
 } MIB_MCAST_LIMIT_ROW,
 *PMIB_MCAST_LIMIT_ROW;

dwTtl: The TTL value for a multicast interface.

dwRateLimit: The rate limit for a multicast interface. This MUST be set to 0.

2.2.1.2.50 MIB_MFE_STATS_TABLE

The MIB_MFE_STATS_TABLE structure stores statistics for a group of MFEs. This structure is used
in MIB_OPAQUE_INFO (section 2.2.1.2.52) structure.

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

dwNumEntries

table (variable)

...

dwNumEntries (4 bytes): The number of MFEs in the table.

table (variable): A pointer to a table of MFEs that are implemented as an array of

MIB_IPMCAST_MFE_STATS (section 2.2.1.2.44) structures.

2.2.1.2.51 MIB_MFE_TABLE

The MIB_MFE_TABLE structure contains a table of MFEs. This structure is used in
MIB_OPAQUE_INFO (section 2.2.1.2.52) structure.

92 / 547

[MS-RRASM-Diff] - v20210407
Routing and Remote Access Server (RRAS) Management Protocol
Copyright © 2021 Microsoft Corporation
Release: April 7, 2021

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

dwNumEntries

table (variable)

...

dwNumEntries (4 bytes): The number of MFEs in the table.

table (variable): A pointer to a table of MFEs implemented as an array of MIB_IPMCAST_MFE
(section 2.2.1.2.42) structures.

2.2.1.2.52 MIB_OPAQUE_INFO

The MIB_OPAQUE_INFO structure contains information related to an MIB entry. This structure is
used to handle MIB data in MIB methods such as the following:

▪ RMIBEntryCreate (section 3.1.4.27)

▪ RMIBEntrySet (section 3.1.4.29)

▪ RMIBEntryGet (section 3.1.4.30)

▪ RMIBEntryGetFirst (section 3.1.4.31)

▪ RMIBEntryGetNext (section 3.1.4.32)

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

dwId

ullAlign

rgbyData

dwId (4 bytes): MIB ID for the type of information being submitted or returned. IPX does not use
this structure. For IP transport, the MIB ID MUST be one of the following values.

dwId Value Meaning Structure to be pointed to by rgbyData.

IF_NUMBER

0x00000000

Information about
number of interfaces on
the server.

MIB_IFNUMBER (section 2.2.1.2.28)

IF_TABLE

0x00000001

Table of interface entries. MIB_IFTABLE (section 2.2.1.2.31)

IF_ROW

0x00000002

Information about a
particular interface.

MIB_IFROW (section 2.2.1.2.29)

IP_STATS

0x00000003

Information about the IP
protocol.

MIB_IPSTATS (section 2.2.1.2.49)

IP_ADDRTABLE Table of IPv4 address MIB_IPADDRTABLE (section 2.2.1.2.33)

93 / 547

[MS-RRASM-Diff] - v20210407
Routing and Remote Access Server (RRAS) Management Protocol
Copyright © 2021 Microsoft Corporation
Release: April 7, 2021

dwId Value Meaning Structure to be pointed to by rgbyData.

0x00000004 entries.

IP_ADDRROW

0x00000005

Information for a
particular IPv4 address.

MIB_IPADDRROW (section 2.2.1.2.32)

IP_FORWARDNUMBER

0x00000006

Information about
number of routes in a
particular IP routing
table.

MIB_IPFORWARDNUMBER (section 2.2.1.2.34)

IP_FORWARDTABLE

0x00000007

Table of IPv4 route
entries.

MIB_IPFORWARDTABLE (section 2.2.1.2.36)

IP_FORWARDROW

0x00000008

Information that
describes an IPv4/IPv6
network route.

MIB_IPFORWARDROW (section 2.2.1.2.35) for
IPv4,
INTERFACE_ROUTE_ENTRY (section 2.2.1.2.181
) for IPv6 based on the transport

IP_NETTABLE

0x00000009

Table of ARP entries for
IPv4 addresses.

MIB_IPNETTABLE (section 2.2.1.2.48)

IP_NETROW

0x0000000A

Information about an ARP
table entry for an IPv4
address.

MIB_IPNETROW (section 2.2.1.2.47)

ICMP_STATS

0x0000000B

Statistics for ICMP
messages on a particular
computer.

MIB_ICMP (section 2.2.1.2.25)

TCP_STATS

0x0000000C

Statistics for the TCP
protocol running on the
local computer.

MIB_TCPSTATS (section 2.2.1.2.56)

TCP_TABLE

0x0000000D

Table of IPv4 TCP
connections.

MIB_TCPTABLE (section 2.2.1.2.57)

TCP_ROW

0x0000000E

Information for an IPv4
TCP connection.

MIB_TCPROW (section 2.2.1.2.55)

UDP_STATS

0x0000000F

Statistics for the UDP
running on the local
computer.

MIB_UDPSTATS (section 2.2.1.2.59)

UDP_TABLE
0x00000010

Table of address
information for sending
and receiving UDP
datagrams.

MIB_UDPTABLE (section 2.2.1.2.60)

UDP_ROW

0x00000011

Information for a UDP
session.

MIB_UDPROW (section 2.2.1.2.58)

MCAST_MFE

0x00000012

Information for an IP
multicast forwarding
entry.

MIB_MFE_TABLE (section 2.2.1.2.51). rgbyData
SHOULD be specified as NULL when the
requested IP multicast forwarding entry is not
found when using the RMIBEntryGet,
RMIBEntryGetFirst, and RMIBEntryGetNext
methods. These methods return
ERROR_SUCCESS even if they do not find the
requested IP multicast forwarding entry.

MCAST_MFE_STATS Statistics associated with MIB_MFE_STATS_TABLE (section 2.2.1.2.50)

94 / 547

[MS-RRASM-Diff] - v20210407
Routing and Remote Access Server (RRAS) Management Protocol
Copyright © 2021 Microsoft Corporation
Release: April 7, 2021

dwId Value Meaning Structure to be pointed to by rgbyData.

0x00000013 an MFE.

BEST_IF

0x00000014

Information about the
interface that has the
best route to a particular
destination IPv4 address.

MIB_BEST_IF (section 2.2.1.2.23)

BEST_ROUTE

0x00000015

Information about a
particular route.

INTERFACE_ROUTE_INFO (section 2.2.1.2.11)

PROXY_ARP

0x00000016

Information for a Proxy
Address Resolution
Protocol (PARP) entry.

MIB_PROXYARP (section 2.2.1.2.54)

MCAST_IF_ENTRY

0x00000017

Information about an IP
multicast interface.

MIB_IPMCAST_IF_ENTRY (section 2.2.1.2.40)

MCAST_GLOBAL

0x00000018

Global information for IP
multicast on a particular
computer.

MIB_IPMCAST_GLOBAL (section 2.2.1.2.39)

IF_STATUS

0x00000019

Status information for a
particular interface.

MIB_IFSTATUS (section 2.2.1.2.30)

MCAST_BOUNDARY

0x0000001A

Information about a
router's scoped IPv4
multicast address
boundaries.

MIB_IPMCAST_BOUNDARY (section 2.2.1.2.37)

MCAST_SCOPE

0x0000001B

Information about a
multicast scope.

MIB_IPMCAST_SCOPE (section 2.2.1.2.46)

DEST_MATCHING

0x0000001C

Route information about
a matching destination.

MIB_IPDESTTABLE (section 2.2.1.2.21)

DEST_LONGER

0x0000001D

Information about all the

possible routes to a
destination.

MIB_IPDESTTABLE (section 2.2.1.2.21)

DEST_SHORTER

0x0000001E

Information about the
best matching routes to a
destination.

MIB_IPDESTTABLE (section 2.2.1.2.21)

ROUTE_MATCHING

0x0000001F

Information about a
matching IP route.

MIB_IPDESTTABLE (section 2.2.1.2.21)

ROUTE_LONGER

0x00000020

Information about all the
possible routes to a
destination.

MIB_IPDESTTABLE (section 2.2.1.2.21)

ROUTE_SHORTER

0x00000021

Information about the
best matching routes to a
destination.

MIB_IPDESTTABLE (section 2.2.1.2.21)

ROUTE_STATE

0x00000022

Information about
whether the route needs
to be added to the

forwarder or not.

MIB_ROUTESTATE (section 2.2.1.2.22)

MCAST_MFE_STATS_EX

0x00000023

Statistics associated with
an MFE.

MIB_MFE_STATS_TABLE (section 2.2.1.2.50)

95 / 547

[MS-RRASM-Diff] - v20210407
Routing and Remote Access Server (RRAS) Management Protocol
Copyright © 2021 Microsoft Corporation
Release: April 7, 2021

ullAlign (4 bytes): The number of bytes that align the information returned. This is used to align the
field to a long boundary so that the structure is aligned.

rgbyData (4 bytes): A pointer to the information returned from the opaque query.

2.2.1.2.53 (Updated Section) MIB_OPAQUE_QUERY

The MIB_OPAQUE_QUERY structure contains the MIB ID and the corresponding index of the MIB
object. This structure is used in the following methods:

▪ RMIBEntryGet (section 3.1.4.30)

▪ RMIBEntryDelete (section 3.1.4.28)

▪ RMIBEntryGetFirst (section 3.1.4.31)

▪ RMIBEntryGetNext (section 3.1.4.32)

The same structure is also used as a blob for querying MIB if dwPid is PID_IPX, or if dwPid is PID_IP

and dwRoutingPid is not IPRTRMGR_PID (0x00002710) in the parameter of the methods using this
structure.

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

dwVarId

rgdwVarIndex (variable)

...

dwVarId (4 bytes): The identifier of the MIB object while querying IPv4 or IPv6 MIB variables. The
value MUST be the same as dwId for MIB_OPAQUE_INFO (section 2.2.1.2.53).52) structure.

rgdwVarIndex (variable): Place holder for data of the blob as previously mentioned. If
dwRoutingPid is IPRTRMGR_PID (0x00002710), then this MUST indicate the index of the MIB
object to query as shown in the following table.

dwVarId rgdwVarIndex
Structure that needs
to be retrieved Meaning of rgdwVarIndex

IF_NUMBER

0x00000000

Not used. MIB_IFNUMBER (sectio
n 2.2.1.2.28)

Not used.

IF_TABLE

0x00000001

Not used. MIB_IFTABLE (section
2.2.1.2.31)

Not used.

IF_ROW

0x00000002

Index of the
interface.

MIB_IFROW (section 2.
2.1.2.29)

The instance of the structure
whose interface index matches
with the value specified in
rgdwVarIndex.

IP_STATS

0x00000003

Not used. MIB_IPSTATS (section
2.2.1.2.49)

Not used.

0x00000004

IP_ADDRTABLE

Not used. MIB_IPADDRTABLE (se
ction 2.2.1.2.33)

Not used.

96 / 547

[MS-RRASM-Diff] - v20210407
Routing and Remote Access Server (RRAS) Management Protocol
Copyright © 2021 Microsoft Corporation
Release: April 7, 2021

dwVarId rgdwVarIndex
Structure that needs
to be retrieved Meaning of rgdwVarIndex

IP_ADDRROW

0x00000005

IP address. MIB_IPADDRROW (sect
ion 2.2.1.2.32)

The instance of the structure
whose dwAddr matches the
value specified in
rgdwVarIndex.

IP_FORWARDNUMBER

0x00000006

Not used. MIB_IPFORWARDNUMB
ER (section 2.2.1.2.34)

Not used.

IP_FORWARDTABLE

0x00000007

Not used. MIB_IPFORWARDTABLE
 (section 2.2.1.2.36)

Not used.

IP_FORWARDROW

0x00000008

This MUST be of 4
DWORDS size
(rgdwVarIndex[4])
for IPV4.

For IPV6 this MUST
be index.

MIB_IPFORWARDROW
(section 2.2.1.2.35) for
IPv4,
INTERFACE_ROUTE_EN
TRY (section 2.2.1.2.18
1) for IPv6

For IPv4, the instance of the
structure whose
dwForwardDest matches
rgdwVarIndex[0],
dwForwardProto matches
rgdwVarIndex[1],
dwForwardPolicy matches
rgdwVarIndex[2], and
dwForwardNextHop matches
rgdwVarIndex[3].

For IPv6, the instance of the
structure whose dwIndex
matches rgdwVarIndex.

IP_NETTABLE

0x00000009

MUST be of size
one DWORD
(rgdwVarIndex[1])
or two DWORDS

(rgdwVarIndex[2])
.

MIB_IPNETTABLE (secti
on 2.2.1.2.48)

If one DWORD is passed, an
instance of the structure whose
dwIndex matches the value
specified in rgdwVarIndex[0]

is returned.

If two DWORDs are passed, an
instance of the structure whose
dwIndex matches the value
specified in rgdwVarIndex[0]
and whose dwAddr matches
rgdwVarIndex[1] is returned.

IP_NETROW

0x0000000A

This MUST be of
size one DWORD
(rgdwVarIndex[1])
or two DWORDS
(rgdwVarIndex[2])
.

MIB_IPNETROW (sectio
n 2.2.1.2.47)

If one DWORD is passed, an
instance of the structure whose
dwIndex matches the value
specified in rgdwVarIndex[0]
is returned.

If two DWORDs are passed, an
instance of the structure whose
dwIndex matches the value
specified in rgdwVarIndex[0]
and whose dwAddr matches
rgdwVarIndex[1] is returned.

ICMP_STATS

0x0000000B

Not used. MIB_ICMP (section 2.2.
1.2.25)

Not used.

TCP_STATS

0x0000000C

Not used. MIB_TCPSTATS (sectio
n 2.2.1.2.56)

Not used.

TCP_ROW

0x0000000E

This MUST be of 4
DWORDS size
(rgdwVarIndex[4])
for IPV4.

MIB_TCPROW (section
2.2.1.2.55)

The instance of the structure
whose dwLocalAddr matches
rgdwVarIndex[0],
dwLocalPort matches

97 / 547

[MS-RRASM-Diff] - v20210407
Routing and Remote Access Server (RRAS) Management Protocol
Copyright © 2021 Microsoft Corporation
Release: April 7, 2021

dwVarId rgdwVarIndex
Structure that needs
to be retrieved Meaning of rgdwVarIndex

rgdwVarIndex[1],
dwRemoteAddr matches
rgdwVarIndex[2], and
dwRemotePort matches
rgdwVarIndex[3].

UDP_STATS

0x0000000F

Not used. MIB_UDPSTATS (sectio
n 2.2.1.2.59)

Not used.

UDP_TABLE

0x00000010

Not used. MIB_UDPTABLE (sectio
n 2.2.1.2.60)

Not used.

UDP_ROW

0x00000011

This MUST be of
size one DWORD
(rgdwVarIndex[1])
or two DWORDS
(rgdwVarIndex[2])
.

MIB_UDPROW (section
2.2.1.2.58)

If one DWORD is passed, an
instance of the structure whose
dwLocalAddr matches the
value specified in
rgdwVarIndex[0] is returned.

If two DWORDs are passed, an
instance of the structure whose
dwLocalAddr matches the
value specified in
rgdwVarIndex[0] and whose
dwLocalPort matches the
value specified in
rgdwVarIndex[1].

Both dwLocalAddr and
dwLocalPort MUST be specified
for RMIBEntryGet.

MCAST_MFE

0x00000012

This MUST be of 3
DWORDS size
(rgdwVarIndex[3])
.

MIB_MFE_TABLE (secti
on 2.2.1.2.51)

The instance of the structure
whose dwGroup matches
rgdwVarIndex[0], dwSource
matches rgdwVarIndex[1],
dwSrcMask matches
rgdwVarIndex[2] is returned,
and rgdwVarIndex[2] MUST
be 0xFFFFFFFF.

MCAST_MFE_STATS

0x00000013

This MUST be of 3
DWORDS size
(rgdwVarIndex[3])
.

MIB_IPMCAST_MFE_ST
ATS (section 2.2.1.2.44
)

The instance of the structure
whose dwGroup matches
rgdwVarIndex[0], dwSource
matches rgdwVarIndex[1],
dwSrcMask matches
rgdwVarIndex[2] is returned,
and rgdwVarIndex[2] MUST
be 0xFFFFFFFF.

BEST_IF

0x00000014

MUST be of 1
DWORDS size
(rgdwVarIndex[1])
.

MIB_BEST_IF (section
2.2.1.2.23)

The interface having the best
route for the destination
specified in rgdwVarIndex[0]
is returned.

BEST_ROUTE

0x00000015

MUST be of 2
DWORDS size
(rgdwVarIndex[2])

INTERFACE_ROUTE_IN
FO (section 2.2.1.2.11)

The best route information for
the destination specified in
rgdwVarIndex[0] is returned;

rgdwVarIndex[1] MUST be set
to 0.

MCAST_IF_ENTRY MUST be of 1 MIB_IPMCAST_IF_ENT The instance of the structure

98 / 547

[MS-RRASM-Diff] - v20210407
Routing and Remote Access Server (RRAS) Management Protocol
Copyright © 2021 Microsoft Corporation
Release: April 7, 2021

dwVarId rgdwVarIndex
Structure that needs
to be retrieved Meaning of rgdwVarIndex

0x00000017 DWORDS size
(rgdwVarIndex[1])
.

RY (section 2.2.1.2.40) whose interface index matches
with the value specified in
rgdwVarIndex.

MCAST_GLOBAL

0x00000018

Not used. MIB_IPMCAST_GLOBAL
 (section 2.2.1.2.39)

Not used.

IF_STATUS

0x00000019

MUST be of 1
DWORDS size
(rgdwVarIndex[1])
.

MIB_IFSTATUS (section
 2.2.1.2.30)

The instance of the structure
whose interface index matches
with the value specified in
rgdwVarIndex.

MCAST_BOUNDARY

0x0000001A

MUST be of 3
DWORDS size
(rgdwVarIndex[3])
.

MIB_IPMCAST_BOUND
ARY (section 2.2.1.2.37
)

The instance with dwIfIndex
equal to rgdwVarIndex[0],
dwGroupAddress equal to
rgdwVarIndex[1], and
dwGroupMask equal to
rgdwVarIndex[2] is returned.

MCAST_SCOPE

0x0000001B

MUST be of size
one DWORD
(rgdwVarIndex[1])
or two DWORDS
(rgdwVarIndex[2])
.

MIB_IPMCAST_SCOPE (
section 2.2.1.2.46)

If one DWORD is passed, an
instance of the structure whose
dwGroupAddress matches the
value specified in
rgdwVarIndex[0] is returned.

If two DWORDs are passed, an
instance of the structure whose
dwGroupAddress matches the
value specified in
rgdwVarIndex[0] and whose

dwGroupMask matches
rgdwVarIndex[1] is returned.

Both dwGroupAddress and
dwGroupMask MUST be
specified for RMIBEntryGet.

DEST_MATCHING

0x0000001C

MUST be of 4
DWORDS size
(rgdwVarIndex[4])
.

MIB_IPDESTTABLE (sec
tion 2.2.1.2.21)

The instance of the structure
whose ForwardRow fields of
dwForwardDest matches
rgdwVarIndex[0],
dwForwardMask matches
rgdwVarIndex[1],
dwForwardViewSet matches
rgdwVarIndex[2], and whose
dwForwardProto matches
rgdwVarIndex[3].

DEST_LONGER

0x0000001D

MUST be of 4
DWORDS size
(rgdwVarIndex[4])
.

MIB_IPDESTTABLE (sec
tion 2.2.1.2.21)

The instance of the structure
whose ForwardRow fields of
dwForwardDest matches
rgdwVarIndex[0],
dwForwardMask matches
rgdwVarIndex[1],
dwForwardViewSet matches
rgdwVarIndex[2], and whose
dwForwardProto matches
rgdwVarIndex[3].

DEST_SHORTER

0x0000001E

MUST be of 4
DWORDS size
(rgdwVarIndex[4])
.

MIB_IPDESTTABLE (sec
tion 2.2.1.2.21)

The instance of the structure
whose ForwardRow fields of
dwForwardDest matches
rgdwVarIndex[0],

99 / 547

[MS-RRASM-Diff] - v20210407
Routing and Remote Access Server (RRAS) Management Protocol
Copyright © 2021 Microsoft Corporation
Release: April 7, 2021

dwVarId rgdwVarIndex
Structure that needs
to be retrieved Meaning of rgdwVarIndex

dwForwardMask matches
rgdwVarIndex[1],
dwForwardViewSet matches
rgdwVarIndex[2], and whose
dwForwardProto matches
rgdwVarIndex[3].

ROUTE_MATCHING

0x0000001F

This MUST be of 4
DWORDS size
(rgdwVarIndex[4])
.

MIB_IPDESTTABLE (sec
tion 2.2.1.2.21)

The instance of the structure
whose ForwardRow fields of
dwForwardDest matches
rgdwVarIndex[0],
dwForwardMask matches
rgdwVarIndex[1],
dwForwardViewSet matches
rgdwVarIndex[2], and whose
dwForwardProto matches
rgdwVarIndex[3].

ROUTE_LONGER

0x00000020

MUST be of 4
DWORDS size
(rgdwVarIndex[4])
.

MIB_IPDESTTABLE (sec
tion 2.2.1.2.21)

The instance of the structure
whose ForwardRow fields of
dwForwardDest matches
rgdwVarIndex[0],
dwForwardMask matches
rgdwVarIndex[1],
dwForwardViewSet matches
rgdwVarIndex[2], and whose
dwForwardProto matches
rgdwVarIndex[3].

ROUTE_SHORTER

0x00000021

MUST be of 4
DWORDS size
(rgdwVarIndex[4])
.

MIB_IPDESTTABLE (sec
tion 2.2.1.2.21)

The instance of the structure
whose ForwardRow fields of
dwForwardDest matches
rgdwVarIndex[0],
dwForwardMask matches
rgdwVarIndex[1],
dwForwardViewSet matches
rgdwVarIndex[2], and whose
dwForwardProto matches
rgdwVarIndex[3].

ROUTE_STATE

0x00000022

Not used. MIB_ROUTESTATE (sec
tion 2.2.1.2.22)

Not used.

MCAST_MFE_STATS_EX

0x00000023

MUST be of 3
DWORDS size
(rgdwVarIndex[3])
.

MIB_MFE_STATS_TABL
E (section 2.2.1.2.50)

The instance of the structure
whose dwGroup field matches
rgdwVarIndex[0], dwSource
matches rgdwVarIndex[1],
and rgdwVarIndex[2] is not
used.

2.2.1.2.54 MIB_PROXYARP

The MIB_PROXYARP structure stores information for a Proxy Address Resolution Protocol (PARP)
entry. This structure is used in MIB_OPAQUE_INFO (section 2.2.1.2.52).

 typedef struct _MIB_PROXYARP {
 DWORD dwAddress;
 DWORD dwMask;

100 / 547

[MS-RRASM-Diff] - v20210407
Routing and Remote Access Server (RRAS) Management Protocol
Copyright © 2021 Microsoft Corporation
Release: April 7, 2021

 DWORD dwIfIndex;
 } MIB_PROXYARP,
 *PMIB_PROXYARP;

dwAddress: The IPv4 address that acts as a proxy.

dwMask: The subnet mask for the IPv4 address specified by the dwAddress member. See [RFC950].

dwIfIndex: The index of the interface that acts as a proxy for the address specified by the
dwAddress member.

2.2.1.2.55 (Updated Section) MIB_TCPROW

The MIB_TCPROW structure contains information for an IPv4 TCP connection. This structure is used
in the following methodsstructures:

▪ MIB_OPAQUE_INFO (section 2.2.1.2.52)

▪ MIB_TCPTABLE (section 2.2.1.2.57)

 typedef struct _MIB_TCPROW {
 union {
 DWORD dwState;
 MIB_TCP_STATE State;
 };
 DWORD dwLocalAddr;
 DWORD dwLocalPort;
 DWORD dwRemoteAddr;
 DWORD dwRemotePort;
 } MIB_TCPROW,
 *PMIB_TCPROW;

dwState: The state of the TCP connection. This member can be one of the enums in the

MIB_TCP_STATE (section 2.2.1.1.11) enumeration.

State: The state of the TCP connection.<37>

dwLocalAddr: The local IPv4 address for the TCP connection on the local computer. A value of zero
(0) indicates the listener can accept a connection on any interface.

dwLocalPort: The local port number in network byte order for the TCP connection on the local
computer.

dwRemoteAddr: The IPv4 address for the TCP connection on the remote computer.

dwRemotePort: The remote port number in network byte order for the TCP connection on the
remote computer.

2.2.1.2.56 MIB_TCPSTATS

The MIB_TCPSTATS structure contains statistics for the TCP protocol running on the local computer.
This structure is used in MIB_OPAQUE_INFO (section 2.2.1.2.52) structure.

 typedef struct _MIB_TCPSTATS {
 union {
 DWORD dwRtoAlgorithm;
 TCP_RTO_ALGORITHM RtoAlgorithm;
 };
 DWORD dwRtoMin;
 DWORD dwRtoMax;

101 / 547

[MS-RRASM-Diff] - v20210407
Routing and Remote Access Server (RRAS) Management Protocol
Copyright © 2021 Microsoft Corporation
Release: April 7, 2021

 DWORD dwMaxConn;
 DWORD dwActiveOpens;
 DWORD dwPassiveOpens;
 DWORD dwAttemptFails;
 DWORD dwEstabResets;
 DWORD dwCurrEstab;
 DWORD dwInSegs;
 DWORD dwOutSegs;
 DWORD dwRetransSegs;
 DWORD dwInErrs;
 DWORD dwOutRsts;
 DWORD dwNumConns;
 } MIB_TCPSTATS,
 *PMIB_TCPSTATS;

dwRtoAlgorithm: The retransmission time-out (RTO) algorithm in use. This member can be one of
the enum values in TCP_RTO_ALGORITHM (section 2.2.1.1.12).

RtoAlgorithm: The RTO algorithm in use.<38>

dwRtoMin: The minimum RTO value in milliseconds.

dwRtoMax: The maximum RTO value in milliseconds.

dwMaxConn: The maximum number of connections. If this member is -1, the maximum number of
connections is variable.

dwActiveOpens: The number of active open connections. In an active open, the client is initiating a
connection with the server.

dwPassiveOpens: The number of passive open connections. In a passive open, the server is listening
for a connection request from a client.

dwAttemptFails: The number of failed connection attempts.

dwEstabResets: The number of established connections that were reset.

dwCurrEstab: The number of currently established connections.

dwInSegs: The number of segments received.

dwOutSegs: The number of segments transmitted. This number does not include retransmitted
segments.

dwRetransSegs: The number of segments retransmitted.

dwInErrs: The number of errors received.

dwOutRsts: The number of segments transmitted with the reset flag set.

dwNumConns: The number of connections that are currently present in the system. This total
number includes connections in all states except listening connections.

2.2.1.2.57 MIB_TCPTABLE

The MIB_TCPTABLE structure contains a table of IPv4 TCP connections on the local computer.

 typedef struct _MIB_TCPTABLE {
 DWORD dwNumEntries;
 MIB_TCPROW table[1];
 BYTE reserved[8];
 } MIB_TCPTABLE,

102 / 547

[MS-RRASM-Diff] - v20210407
Routing and Remote Access Server (RRAS) Management Protocol
Copyright © 2021 Microsoft Corporation
Release: April 7, 2021

 *PMIB_TCPTABLE;

dwNumEntries: The number of entries in the table.

table: A pointer to a table of TCP connections implemented as an array of MIB_TCPROW (section
2.2.1.2.55) structures.

reserved: An array of 8 bytes that SHOULD be set to 0 and ignored on receipt.

2.2.1.2.58 (Updated Section) MIB_UDPROW

The MIB_UDPROW structure contains address information for sending and receiving User Datagram
Protocol (UDP) datagrams. This structure is used in the following methodsstructures:

▪ MIB_OPAQUE_INFO (section 2.2.1.2.52)

▪ MIB_UDPTABLE (section 2.2.1.2.60)

 typedef struct _MIB_UDPROW {
 DWORD dwLocalAddr;
 DWORD dwLocalPort;
 } MIB_UDPROW,
 *PMIB_UDPROW;

dwLocalAddr: The IPv4 address on the local computer.

dwLocalPort: The port number on the local computer.

2.2.1.2.59 MIB_UDPSTATS

The MIB_UDPSTATS structure contains statistics for the UDP running on the local computer. This
structure is used in MIB_OPAQUE_INFO (section 2.2.1.2.52) structure.

 typedef struct _MIB_UDPSTATS {
 DWORD dwInDatagrams;
 DWORD dwNoPorts;
 DWORD dwInErrors;
 DWORD dwOutDatagrams;
 DWORD dwNumAddrs;
 } MIB_UDPSTATS,
 *PMIB_UDPSTATS;

dwInDatagrams: The number of datagrams received.

dwNoPorts: The number of datagrams received that were discarded because the port specified was

invalid.

dwInErrors: The number of erroneous datagrams received. This number does not include the value

contained by the dwNoPorts member.

dwOutDatagrams: The number of datagrams transmitted.

dwNumAddrs: The number of entries in the UDP listener table.

2.2.1.2.60 MIB_UDPTABLE

The MIB_UDPTABLE structure contains a table of address information for sending and receiving UDP
datagrams on the local computer.

103 / 547

[MS-RRASM-Diff] - v20210407
Routing and Remote Access Server (RRAS) Management Protocol
Copyright © 2021 Microsoft Corporation
Release: April 7, 2021

 typedef struct _MIB_UDPTABLE {
 DWORD dwNumEntries;
 MIB_UDPROW table[1];
 BYTE reserved[8];
 } MIB_UDPTABLE,
 *PMIB_UDPTABLE;

dwNumEntries: The number of entries in the table.

table: Pointer to an array of MIB_UDPROW (section 2.2.1.2.58) structures.

reserved: An array of 8 bytes that SHOULD be set to 0 and ignored on receipt.

2.2.1.2.61 MPR_SERVER_0

The MPR_SERVER_0 structure contains configuration information for a router.

 typedef struct MPR_SERVER_0 {
 BOOL fLanOnlyMode;
 DWORD dwUpTime;
 DWORD dwTotalPorts;
 DWORD dwPortsInUse;
 } MPR_SERVER_0,
 *PMPR_SERVER_0;

fLanOnlyMode: This is of type BOOL. It specifies whether the RRAS server is running in LAN only
mode or not. If the value is 1, the RRAS server is not routing; if the value is 0, then the RRAS
server is functioning as a router.

Value Meaning

0 The RRAS server is functioning as a router.

1 The RRAS server is not routing.

dwUpTime: Specifies the elapsed time (in seconds) since the router was started.

dwTotalPorts: Specifies the number of ports on the router.

dwPortsInUse: Specifies the number of ports on the router currently in use.

2.2.1.2.62 MPR_SERVER_1

The MPR_SERVER_1 structure is used to get and set the number of Point-to-Point Tunneling
Protocol/Layer Two Tunneling Protocol (PPTP/L2TP) ports configured on the RRAS server. It is also
used to get and set the RRAS functionality and router functionality enabled on those ports.

 typedef struct MPR_SERVER_1 {
 DWORD dwNumPptpPorts;
 DWORD dwPptpPortFlags;
 DWORD dwNumL2tpPorts;
 DWORD dwL2tpPortFlags;
 } MPR_SERVER_1,
 *PMPR_SERVER_1;

dwNumPptpPorts: Specifies the number of ports configured on that (PPTP) device. This value cannot
exceed the server port limit.<39>

104 / 547

[MS-RRASM-Diff] - v20210407
Routing and Remote Access Server (RRAS) Management Protocol
Copyright © 2021 Microsoft Corporation
Release: April 7, 2021

dwPptpPortFlags: Indicates the RRAS server and/or router functionality configured on the PPTP
device. Possible flag values are as follows.

Value Meaning

MPR_ENABLE_RAS_ON_DEVICE

0x00000001

Remote access is enabled for PPTP.

MPR_ENABLE_ROUTING_ON_DEVICE

0x00000002

Routing is enabled for PPTP.

dwNumL2tpPorts: Specifies the number of ports configured on that (L2TP) device. This value cannot
exceed the server port limit.<40>

dwL2tpPortFlags: Indicates the RAS and/or router functionality configured on the L2TP device.
Possible flag values are as follows.

Value Meaning

MPR_ENABLE_RAS_ON_DEVICE

0x00000001

Remote access is enabled for L2TP.

MPR_ENABLE_ROUTING_ON_DEVICE

0x00000002

Routing is enabled for L2TP.

2.2.1.2.63 MPR_SERVER_2

The MPR_SERVER_2 structure<41> is used to get and set the number of Point-to-Point Tunneling
Protocol/Layer Two Tunneling Protocol/Secure Socket Tunneling Protocol (PPTP/L2TP/SSTP) ports
configured on the RRAS server. It also gets and sets the RRAS functionality and router functionality
enabled on the server.

 typedef struct MPR_SERVER_2 {
 DWORD dwNumPptpPorts;
 DWORD dwPptpPortFlags;
 DWORD dwNumL2tpPorts;
 DWORD dwL2tpPortFlags;
 DWORD dwNumSstpPorts;
 DWORD dwSstpPortFlags;
 } MPR_SERVER_2,
 *PMPR_SERVER_2;

dwNumPptpPorts: Specifies the number of ports configured on that (PPTP) device. This value cannot
exceed the server port limit.<42>

dwPptpPortFlags: Indicates the RRAS server and/or router functionality configured on the PPTP

device. Possible flag values are as follows.

Value Meaning

MPR_ENABLE_RAS_ON_DEVICE

0x00000001

Remote access is enabled for PPTP.

MPR_ENABLE_ROUTING_ON_DEVICE

0x00000002

Routing is enabled for PPTP.

105 / 547

[MS-RRASM-Diff] - v20210407
Routing and Remote Access Server (RRAS) Management Protocol
Copyright © 2021 Microsoft Corporation
Release: April 7, 2021

dwNumL2tpPorts: Specifies the number of ports configured on that (L2TP) device. This value cannot
exceed the server port limit.<43>

dwL2tpPortFlags: Indicates the RRAS server and/or router functionality configured on the L2TP
device. Possible flag values are as follows.

Value Meaning

MPR_ENABLE_RAS_ON_DEVICE

0x00000001

Remote access is enabled for L2TP.

MPR_ENABLE_ROUTING_ON_DEVICE

0x00000002

Routing is enabled for L2TP.

dwNumSstpPorts: specifies the number of ports configured on that (SSTP) device. This value cannot
exceed the server port limit.<44>

dwSstpPortFlags: indicates the RRAS server and/or router functionality configured on the SSTP

device. Possible flag values are as follows.<45>

Value Meaning

MPR_ENABLE_RAS_ON_DEVICE

0x00000001

Remote access is enabled for SSTP.

2.2.1.2.64 PPP_NBFCP_INFO

The PPP_NBFCP_INFO structure MAY<46> be used to contain the result of a PPP NetBEUI Framer
(NBF) projection operation.

 typedef struct _PPP_NBFCP_INFO {
 DWORD dwError;
 WCHAR wszWksta[17];
 } PPP_NBFCP_INFO;

dwError: Specifies the result of the PPP control protocol negotiation. A value of zero (0) indicates
success. A nonzero value indicates failure and is the actual fatal error that occurred during the
control protocol negotiation.

wszWksta: Specifies a null-terminated Unicode string that is the local workstation's computer name.
This unique computer name is the closest NetBIOS equivalent to a client's NetBEUI address on a
remote access connection.

2.2.1.2.65 PPP_IPCP_INFO

 The PPP_IPCP_INFO structure contains the result of a PPP control protocol negotiation for IP.

 typedef struct _PPP_IPCP_INFO {
 DWORD dwError;
 WCHAR wszAddress[16];
 WCHAR wszRemoteAddress[16];
 } PPP_IPCP_INFO;

106 / 547

[MS-RRASM-Diff] - v20210407
Routing and Remote Access Server (RRAS) Management Protocol
Copyright © 2021 Microsoft Corporation
Release: April 7, 2021

dwError: Specifies the result of the PPP control protocol negotiation. A value of zero (0) indicates
success. A nonzero value indicates failure and is the actual fatal error that occurred during the

control protocol negotiation.

wszAddress: Specifies a null-terminated Unicode string that holds the local computer's IP address for

the connection. This string has the form a.b.c.d; for example, "10.102.235.84".

If a remote access client is connecting to a RRAS server, this member holds the IP address of the
server.

wszRemoteAddress: Specifies a null-terminated Unicode string that holds the IP address of the
remote computer. This string has the form a.b.c.d. If the address is not available, this member is
an empty string.

If a remote access client is connecting to a RRAS server, this member holds the IP address of the

client.

2.2.1.2.66 (Updated Section) PPP_IPCP_INFO2

The PPP_IPCP_INFO2 structure contains the result of a PPP control protocol negotiation for the IP.

 typedef struct _PPP_IPCP_INFO2 {
 DWORD dwError;
 WCHAR wszAddress[16];
 WCHAR wszRemoteAddress[16];
 DWORD dwOptions;
 DWORD dwRemoteOptons;
 } PPP_IPCP_INFO2;

dwError: See dwError in PPP_IPCP_INFO (section 2.2.1.2.66).65).

wszAddress: See wszAddress in PPP_IPCP_INFO.

wszRemoteAddress: See wszRemoteAddress in PPP_IPCP_INFO.

dwOptions: Specifies IP Configuration Parameters (IPCP) options for the local computer.

When set to PPP_IPCP_VJ (0x00000001), indicates that IP datagrams sent by the local computer

are compressed using Van Jacobson compression [RFC1144]. Otherwise, set to 0x00000000.

dwRemoteOptons: Uses the same values as dwOptions but applies to datagrams received by the
local computer.

2.2.1.2.67 PPP_IPXCP_INFO

The PPP_IPXCP_INFO structure MAY<47> be used to contain the result of a PPP IPX projection
operation.

 typedef struct _PPP_IPXCP_INFO {
 DWORD dwError;
 WCHAR wszAddress[16];
 } PPP_IPXCP_INFO;

dwError: Specifies the result of the PPP control protocol negotiation. As value of zero (0) indicates
success. A nonzero value indicates failure and is the actual fatal error that occurred during the
control protocol negotiation.

107 / 547

[MS-RRASM-Diff] - v20210407
Routing and Remote Access Server (RRAS) Management Protocol
Copyright © 2021 Microsoft Corporation
Release: April 7, 2021

wszAddress: Specifies a null-terminated Unicode string that holds the client's IPX address on the
RRAS server connection. This address string has the form of "net.node" (for example,

"1234ABCD.12AB34CD56EF").

2.2.1.2.68 PPP_IPV6_CP_INFO

The PPP_IPV6_CP_INFO structure contains the result of a PPP control protocol negotiation for IPv6.

 typedef struct _PPP_IPV6CP_INFO {
 DWORD dwVersion;
 DWORD dwSize;
 DWORD dwError;
 BYTE bInterfaceIdentifier[8];
 BYTE bRemoteInterfaceIdentifier[8];
 DWORD dwOptions;
 DWORD dwRemoteOptions;
 BYTE bPrefix[8];
 DWORD dwPrefixLength;
 } PPP_IPV6_CP_INFO,
 *PPPP_IPV6_CP_INFO;

dwVersion: Specifies the version of the PPP_IPV6_CP_INFO structure used. Currently this field is
not used and MUST be set to zero (0).

dwSize: This SHOULD be set to 0. This MAY be used to specify the size, in bytes, of this

PPP_IPV6_CP_INFO structure.

dwError: Specifies the result of the PPP control protocol negotiation. A value of zero (0) indicates
success. A nonzero value indicates failure and is the actual fatal error that occurred during the
control protocol negotiation.

bInterfaceIdentifier: Specifies the 64-bit interface identifier of the IPv6 server interface.

bRemoteInterfaceIdentifier: Specifies the 64-bit interface identifier of the IPv6 client interface.

dwOptions: Currently this is not used and MUST be set to zero (0).

dwRemoteOptions: Currently this is not used and MUST be set to zero (0).

bPrefix: Specifies the address prefix of the IPv6 client interface.

dwPrefixLength: The length, in bits, of the address prefix.

2.2.1.2.69 PPP_ATCP_INFO

The PPP_ATCP_INFO structure MAY<48> be used to contain the result of a PPP AppleTalk projection

operation.

 typedef struct _PPP_ATCP_INFO {
 DWORD dwError;
 WCHAR wszAddress[33];
 } PPP_ATCP_INFO;

dwError: Specifies the result of the PPP control protocol negotiation. A value of zero (0) indicates
success. A nonzero value indicates failure and is the actual fatal error that occurred during the
control protocol negotiation.

wszAddress: Specifies a null-terminated Unicode string that holds the client's AppleTalk address on
the RRAS server connection.

108 / 547

[MS-RRASM-Diff] - v20210407
Routing and Remote Access Server (RRAS) Management Protocol
Copyright © 2021 Microsoft Corporation
Release: April 7, 2021

2.2.1.2.70 PPP_CCP_INFO

 The PPP_CCP_INFO structure contains information that describes the results of a Compression
Control Protocol (CCP) negotiation.

 typedef struct _PPP_CCP_INFO {
 DWORD dwError;
 DWORD dwCompressionAlgorithm;
 DWORD dwOptions;
 DWORD dwRemoteCompressionAlgorithm;
 DWORD dwRemoteOptions;
 } PPP_CCP_INFO;

dwError: Specifies an error if the negotiation were unsuccessful. Zero (0) indicates success.

dwCompressionAlgorithm: Specifies the compression algorithm used by the local computer. The

following table shows the possible values for this member.

Value Meaning

0x00000000 The local computer has not negotiated any compression algorithm.

RASCCPCA_MPPC

0x00000006

Microsoft Point-to-Point Compression (MPPC) Protocol.

RASCCPCA_STAC

0x00000005

STAC LZS data compression algorithm [RFC1974] option 4.

dwOptions: Specifies the compression options on the local computer. The following options are
supported.

Value Meaning

0x00000000 No additional compression options are available.

PPP_CCP_COMPRESSION

0x00000001

Compression without encryption.

PPP_CCP_HISTORYLESS

0x01000000

Microsoft Point-to-Point Encryption (MPPE) in stateless mode. The session
key is changed after every packet. This mode improves performance on
high-latency networks, or networks that experience significant packet loss.

PPP_CCP_ENCRYPTION40BIT

0x00000020

MPPE using 40-bit keys.

PPP_CCP_ENCRYPTION56BIT

0x00000080

MPPE using 56-bit keys.

PPP_CCP_ENCRYPTION128BIT

0x00000040

MPPE using 128-bit keys.

dwRemoteCompressionAlgorithm: Specifies the compression algorithm used by the remote

computer. The following table shows the possible values for this member.

Value Meaning

0x00000000 The remote computer has not negotiated any compression algorithm.

109 / 547

[MS-RRASM-Diff] - v20210407
Routing and Remote Access Server (RRAS) Management Protocol
Copyright © 2021 Microsoft Corporation
Release: April 7, 2021

Value Meaning

RASCCPCA_MPPC

0x00000006

MPPC Protocol.

RASCCPCA_STAC

0x00000005

STAC option 4.

dwRemoteOptions: Specifies the compression options on the remote computer. The following
options are supported.

Value Meaning

0x00000000 No additional compression options are available.

PPP_CCP_COMPRESSION

0x00000001

Compression without encryption.

PPP_CCP_HISTORYLESS

0x01000000

MPPE in stateless mode. The session key is changed after every packet. This
mode improves performance on high-latency networks, or networks that
experience significant packet loss.

PPP_CCP_ENCRYPTION40BIT

0x00000020

MPPE using 40-bit keys.

PPP_CCP_ENCRYPTION56BIT

0x00000080

MPPE using 56-bit keys.

PPP_CCP_ENCRYPTION128BIT

0x00000040

MPPE using 128-bit keys.

2.2.1.2.71 PPP_LCP_INFO

The PPP_LCP_INFO structure contains information that describes the results of a PPP Link Control
Protocol (LCP) negotiation.

 typedef struct _PPP_LCP_INFO {
 DWORD dwError;
 DWORD dwAuthenticationProtocol;
 DWORD dwAuthenticationData;
 DWORD dwRemoteAuthenticationProtocol;
 DWORD dwRemoteAuthenticationData;
 DWORD dwTerminateReason;
 DWORD dwRemoteTerminateReason;
 DWORD dwOptions;
 DWORD dwRemoteOptions;
 DWORD dwEapTypeId;
 DWORD dwRemoteEapTypeId;
 } PPP_LCP_INFO;

dwError: Specifies the error that occurred if the negotiation were unsuccessful. Zero (0) indicates
success.

dwAuthenticationProtocol: Specifies the authentication protocol used to authenticate the local
computer. The following table shows the possible values for this member.<49>

110 / 547

[MS-RRASM-Diff] - v20210407
Routing and Remote Access Server (RRAS) Management Protocol
Copyright © 2021 Microsoft Corporation
Release: April 7, 2021

Value Meaning

0x00000000 Either no authentication was negotiated by the local end, or no LCP settings are
applicable for the connection (for example, an IKEv2 connection).

PPP_LCP_PAP

0x0000C023

Password Authentication Protocol (PAP)

PPP_LCP_SPAP

0x0000C027

Shiva Password Authentication Protocol (SPAP)

PPP_LCP_CHAP

0x0000C223

Challenge-Handshake Authentication Protocol (CHAP)

PPP_LCP_EAP

0x0000C227

Extensible Authentication Protocol (EAP)

dwAuthenticationData: Specifies additional information about the authentication protocol specified

by the dwAuthenticationProtocol member. The following table shows the possible values for
this member.<50>

Value Meaning

0x00000000 No additional authentication data applies.

PPP_LCP_CHAP_MD5

0x00000005

MD5 CHAP

PPP_LCP_CHAP_MS

0x00000080

Microsoft CHAP

PPP_LCP_CHAP_MSV2

0x00000081

Microsoft CHAP version 2

dwRemoteAuthenticationProtocol: Specifies the authentication protocol used to authenticate the
remote computer. See the dwAuthenticationProtocol member for a list of possible values. The
following table shows the possible values for this member.<51>

Value Meaning

0x00000000 Either no authentication was negotiated by the remote end, or no LCP settings are
applicable for the connection (for example, an IKEv2 connection).

PPP_LCP_PAP

0x0000C023

Password Authentication Protocol (PAP)

PPP_LCP_SPAP

0x0000C027

Shiva Password Authentication Protocol (SPAP)

PPP_LCP_CHAP

0x0000C223

Challenge-Handshake Authentication Protocol (CHAP)

PPP_LCP_EAP

0x0000C227

Extensible Authentication Protocol (EAP)

dwRemoteAuthenticationData: Specifies additional information about the authentication protocol
specified by dwRemoteAuthenticationProtocol. See the dwAuthenticationData member for a
list of possible values.

111 / 547

[MS-RRASM-Diff] - v20210407
Routing and Remote Access Server (RRAS) Management Protocol
Copyright © 2021 Microsoft Corporation
Release: April 7, 2021

dwTerminateReason: Specifies the reason the connection was terminated by the local computer.
This member always has a value of zero (0).

dwRemoteTerminateReason: Specifies the reason the connection was terminated by the remote
computer. This member always has a value of zero (0).

dwOptions: Specifies information about the LCP options in use by the local computer. This member is
a combination of the following flags.<52>

Value Meaning

0x00000000 No flag is set.

PPP_LCP_MULTILINK_FRAMING

0x00000001

The connection is using multilink.

PPP_LCP_PFC

0x00000002

Protocol Field Compression (see [RFC1172]).

PPP_LCP_ACFC

0x00000004

Address and Control Field Compression (see [RFC1172]).

PPP_LCP_SSHF

0x00000008

Short Sequence Number Header Format (see [RFC1990]).

PPP_LCP_DES_56

0x00000010

Data Encryption Standard (DES) 56-bit encryption.

PPP_LCP_3_DES

0x00000020

Triple DES encryption.

PPP_LCP_AES_128

0x00000040

128-bit AES encryption.

PPP_LCP_AES_256

0x00000080

256-bit AES encryption.

PPP_LCP_AES_192

0x00000100

192-bit AES encryption.

PPP_LCP_GCM_AES_128

0x00000200

128-bit AES encryption GCM (Galois Counter Mode) mode of
operation (see [RFC4106]).

PPP_LCP_GCM_AES_192

0x00000400

192-bit AES encryption GCM (Galois Counter Mode) mode of
operation (see [RFC4106]).

PPP_LCP_GCM_AES_256

0x00000800

256-bit AES encryption GCM (Galois Counter Mode) mode of
operation (see [RFC4106]).

dwRemoteOptions: Specifies information about the LCP options in use by the remote computer. See

dwOptions member for a list of possible values.

dwEapTypeId: Specifies the type identifier of the EAP used to authenticate the local computer. MUST
be one of the values specified in Method Types of [IANA-EAP]. The value of this member is valid
only if dwAuthenticationProtocol is PPP_LCP_EAP.

dwRemoteEapTypeId: This field MUST be zero (0) and has no significance.

2.2.1.2.72 PPP_INFO

112 / 547

[MS-RRASM-Diff] - v20210407
Routing and Remote Access Server (RRAS) Management Protocol
Copyright © 2021 Microsoft Corporation
Release: April 7, 2021

The PPP_INFO structure is used to report the results of the various PPP projection operations for a
connection.

 typedef struct _PPP_INFO {
 PPP_NBFCP_INFO nbf;
 PPP_IPCP_INFO ip;
 PPP_IPXCP_INFO ipx;
 PPP_ATCP_INFO at;
 } PPP_INFO;

nbf: A PPP_NBFCP_INFO (section 2.2.1.2.64) structure that contains information about the NetBEUI

Framer (NBF) for a connection.

ip: A PPP_IPCP_INFO (section 2.2.1.2.65) structure that contains the IPv4 PPP information for a
connection.

ipx: A PPP_IPXCP_INFO (section 2.2.1.2.67) structure<53> that contains the IPX information for a
connection.

at: A PPP_ATCP_INFO (section 2.2.1.2.69) structure<54> that contains the AppleTalk information for
a connection.

2.2.1.2.73 PPP_INFO_2

The PPP_INFO_2 structure<55> is used to report the results of the various PPP projection
operations for a connection.

 typedef struct _PPP_INFO_2 {
 PPP_NBFCP_INFO nbf;
 PPP_IPCP_INFO2 ip;
 PPP_IPXCP_INFO ipx;
 PPP_ATCP_INFO at;
 PPP_CCP_INFO ccp;
 PPP_LCP_INFO lcp;
 } PPP_INFO_2;

nbf: A PPP_NBFCP_INFO (section 2.2.1.2.64) structure that contains information about the NetBEUI

Framer (NBF) for a connection.

ip: A PPP_IPCP_INFO2 (section 2.2.1.2.66) structure that contains the IPv4 information for a
connection.

ipx: A PPP_IPXCP_INFO (section 2.2.1.2.67) structure<56> that contains the IPX information for a
connection.

at: A PPP_ATCP_INFO (section 2.2.1.2.69) structure<57> that contains AppleTalk information for a
connection.

ccp: A PPP_CCP_INFO (section 2.2.1.2.70) structure that contains compression information details for

a given PPP connection.

lcp: A PPP_LCP_INFO (section 2.2.1.2.71) structure that contains the PPP information related to the
Link Control Protocol (LCP) for a given connection.

2.2.1.2.74 PPP_INFO_3

The PPP_INFO_3 structure<58> be used to report the results of the various PPP projection

operations for a connection.

113 / 547

[MS-RRASM-Diff] - v20210407
Routing and Remote Access Server (RRAS) Management Protocol
Copyright © 2021 Microsoft Corporation
Release: April 7, 2021

 typedef struct _PPP_INFO_3 {
 PPP_NBFCP_INFO nbf;
 PPP_IPCP_INFO2 ip;
 PPP_IPV6_CP_INFO ipv6;
 PPP_CCP_INFO ccp;
 PPP_LCP_INFO lcp;
 } PPP_INFO_3;

nbf: A PPP_NBFCP_INFO (section 2.2.1.2.64) structure that contains information about NetBEUI
Framer (NBF) for a connection.

ip: A PPP_IPCP_INFO2 (section 2.2.1.2.66) structure that contains the IPv4 information for a
connection.

ipv6: A PPP_IPV6_CP_INFO (section 2.2.1.2.68) structure that contains the IPv6 information for a
connection.

ccp: A PPP_CCP_INFO (section 2.2.1.2.70) structure that contains the compression information details

for a given connection.

lcp: A PPP_LCP_INFO (section 2.2.1.2.71) structure that contains the compression information related
to the Link Control Protocol (LCP) for a given connection.

2.2.1.2.75 RASI_PORT_0

The RASI_PORT_0 structure contains general information regarding a specific RRAS port, such as the

port condition and the port name.

 typedef struct _RASI_PORT_0 {
 DWORD dwPort;
 DWORD dwConnection;
 RAS_PORT_CONDITION dwPortCondition;
 DWORD dwTotalNumberOfCalls;
 DWORD dwConnectDuration;
 WCHAR wszPortName[17];
 WCHAR wszMediaName[17];
 WCHAR wszDeviceName[129];
 WCHAR wszDeviceType[17];
 } RASI_PORT_0,
 *PRASI_PORT_0;

dwPort: A unique identifier for the port.

dwConnection: A unique identifier that specifies the connection.

dwPortCondition: A RAS_PORT_CONDITION (section 2.2.1.1.4) enumeration value indicating the
condition of a port specified in dwPort.

dwTotalNumberOfCalls: Specifies the cumulative number of calls that this port has serviced.

dwConnectDuration: Specifies the duration of the current connection on this port, in seconds.

wszPortName: Specifies the port name.

wszMediaName: Specifies the media name.

wszDeviceName: Specifies the device name.

wszDeviceType: Specifies the device type. This member can be one of the following string constants.

114 / 547

[MS-RRASM-Diff] - v20210407
Routing and Remote Access Server (RRAS) Management Protocol
Copyright © 2021 Microsoft Corporation
Release: April 7, 2021

Value Meaning

MPRDT_Modem

"Modem"

A modem that is accessed through a Component Object Model (COM)
port.

MPRDT_Isdn

"Isdn"

An ISDN adapter with the corresponding NDISWAN driver installed.

MPRDT_X25

"x25"

An X.25 adapter with the corresponding NDISWAN driver installed.

MPRDT_Vpn

"Vpn"

A virtual private network (VPN) connection.

MPRDT_Pad

"Pad"

A packet assembler/disassembler.

MPRDT_Generic

"GENERIC"

Generic.

MPRDT_Serial

"SERIAL"

Direct serial connection through a serial port.

MPRDT_FrameRelay

"FRAMERELAY"

Frame relay.

MPRDT_Atm

"ATM"

Asynchronous transfer mode (ATM).

MPRDT_Sonet

"SONET"

Sonet.

MPRDT_SW56

"SW56"

Switched 56K access.

MPRDT_Irda

"IRDA"

An Infrared Data Association (IrDA)-compliant device.

MPRDT_Parallel

"PARALLEL"

Direct parallel connection through a parallel port.

2.2.1.2.76 RASI_PORT_1

 The RASI_PORT_1 structure contains information about a RRAS port.

 typedef struct _RASI_PORT_1 {
 DWORD dwPort;
 DWORD dwConnection;
 RAS_HARDWARE_CONDITION dwHardwareCondition;
 DWORD dwLineSpeed;
 DWORD dwBytesXmited;
 DWORD dwBytesRcved;
 DWORD dwFramesXmited;
 DWORD dwFramesRcved;
 DWORD dwCrcErr;
 DWORD dwTimeoutErr;
 DWORD dwAlignmentErr;
 DWORD dwHardwareOverrunErr;

115 / 547

[MS-RRASM-Diff] - v20210407
Routing and Remote Access Server (RRAS) Management Protocol
Copyright © 2021 Microsoft Corporation
Release: April 7, 2021

 DWORD dwFramingErr;
 DWORD dwBufferOverrunErr;
 DWORD dwCompressionRatioIn;
 DWORD dwCompressionRatioOut;
 } RASI_PORT_1,
 *PRASI_PORT_1;

dwPort: A unique identifier that specifies the port.

dwConnection: A unique identifier that specifies the connection.

dwHardwareCondition: A RAS_HARDWARE_CONDITION (section 2.2.1.1.5) value that specifies the
condition of a port specified in dwPort.

dwLineSpeed: Specifies the line speed of the port, represented in bits per second.

dwBytesXmited: Specifies the bytes transmitted on the port. This value is the number of bytes of
compressed data.

dwBytesRcved: Specifies the bytes received on the port. This value is the number of bytes of
compressed data.

dwFramesXmited: Specifies the frames transmitted on the port.

dwFramesRcved: Specifies the frames received on the port.

dwCrcErr: Specifies the cyclic redundancy check (CRC) errors on the port.

dwTimeoutErr: Specifies the time-out errors on the port.

dwAlignmentErr: Specifies the alignment errors on the port.

dwHardwareOverrunErr: Specifies the hardware-overrun errors on the port.

dwFramingErr: Specifies the framing errors on the port.

dwBufferOverrunErr: Specifies the buffer-overrun errors on the port.

dwCompressionRatioIn: Specifies a percentage that indicates the degree to which data received on
this connection is compressed. The ratio is the size of the compressed data divided by the size of

the same data in an uncompressed state.

dwCompressionRatioOut: Specifies a percentage indicating the degree to which data transmitted on
this connection is compressed. The ratio is the size of the compressed data divided by the size of
the same data in an uncompressed state.

2.2.1.2.77 (Updated Section) RASI_CONNECTION_0

The RASI_CONNECTION_0 structure contains general information regarding a specific connection,
such as user nameusername or domain.

 typedef struct _RASI_CONNECTION_0 {
 DWORD dwConnection;
 DWORD dwInterface;
 DWORD dwConnectDuration;
 ROUTER_INTERFACE_TYPE dwInterfaceType;
 DWORD dwConnectionFlags;
 WCHAR wszInterfaceName[257];
 WCHAR wszUserName[257];
 WCHAR wszLogonDomain[16];
 WCHAR wszRemoteComputer[17];
 } RASI_CONNECTION_0,

116 / 547

[MS-RRASM-Diff] - v20210407
Routing and Remote Access Server (RRAS) Management Protocol
Copyright © 2021 Microsoft Corporation
Release: April 7, 2021

 *PRASI_CONNECTION_0;

dwConnection: Contains the connection handle that specifies a unique identifier of the connection.

dwInterface: Contains the interface handle and specifies a unique identifier of the interface through
which the connection exists.

dwConnectDuration: Specifies the duration of the current connection, in seconds.

dwInterfaceType: A ROUTER_INTERFACE_TYPE (section 2.2.1.1.1) value specifying the interface
type of the current connection.

dwConnectionFlags: Specifies certain attributes of the connection. This member can contain the
following flags.

Value Meaning

RAS_FLAGS_PPP_CONNECTION

0x00000001

The connection is using PPP.

RAS_FLAGS_MESSENGER_PRESENT

0x00000002

The messenger service is active on the client, and messages can be
sent to the client using
RRasAdminSendUserMessage (section 3.1.4.36).

RAS_FLAGS_RAS_CONNECTION

0x00000004

The connection is a NetBIOS connection.

RAS_FLAGS_QUARANTINE_PRESENT

0x00000008

The connection is currently in quarantine. See
RRasAdminConnectionRemoveQuarantine (section 3.1.4.43) for
more information.

RAS_FLAGS_ARAP_CONNECTION

0x00000010

The connection is using AppleTalk Remote Access Protocol
(ARAP).<59>

wszInterfaceName: Specifies a null-terminated Unicode string that contains the name of the
interface for this connection.

wszUserName: Specifies a null-terminated Unicode string that contains the name of the user logged
on to the connection.

wszLogonDomain: Specifies a null-terminated Unicode string that contains the domain on which the

connected user is authenticated.

wszRemoteComputer: Specifies a null-terminated Unicode string that contains the name of the
remote computer.

2.2.1.2.78 (Updated Section) RASI_CONNECTION_1

The RASI_CONNECTION_1 structure contains detailed statistical information regarding a specific
connection, such as error counts and bytes received.

 typedef struct RASI_CONNECTION_1 {
 DWORD dwConnection;
 DWORD dwInterface;
 PPP_INFO PppInfo;
 DWORD dwBytesXmited;
 DWORD dwBytesRcved;
 DWORD dwFramesXmited;
 DWORD dwFramesRcved;
 DWORD dwCrcErr;

117 / 547

[MS-RRASM-Diff] - v20210407
Routing and Remote Access Server (RRAS) Management Protocol
Copyright © 2021 Microsoft Corporation
Release: April 7, 2021

 DWORD dwTimeoutErr;
 DWORD dwAlignmentErr;
 DWORD dwHardwareOverrunErr;
 DWORD dwFramingErr;
 DWORD dwBufferOverrunErr;
 DWORD dwCompressionRatioIn;
 DWORD dwCompressionRatioOut;
 } RASI_CONNECTION_1,
 *PRASI_CONNECTION_1;

dwConnection: See dwConnection in RASI_CONNECTION_0 (section 2.2.1.2.78).77).

dwInterface: See dwInterface in RASI_CONNECTION_0.

PppInfo: A PPP_INFO (section 2.2.1.2.72) structure giving the connections details.

dwBytesXmited: Specifies the bytes transmitted on the current connection.

dwBytesRcved: Specifies the bytes received on the current connection.

dwFramesXmited: Specifies the frames transmitted on the current connection.

dwFramesRcved: Specifies the frames received on the current connection.

dwCrcErr: Specifies the CRC errors on the current connection.

dwTimeoutErr: Specifies the time-out errors on the current connection.

dwAlignmentErr: Specifies the alignment errors on the current connection.

dwHardwareOverrunErr: Specifies the number of hardware-overrun errors on the current
connection.

dwFramingErr: Specifies the number of framing errors for the current connection.

dwBufferOverrunErr: Specifies the number of buffer-overrun errors.

dwCompressionRatioIn: Specifies a percentage that indicates the degree to which data received on

this connection is compressed. The ratio is the size of the compressed data divided by the size of
the same data in an uncompressed state.

dwCompressionRatioOut: Specifies a percentage that indicates the degree to which data
transmitted on this connection is compressed. The ratio is the size of the compressed data divided
by the size of the same data in an uncompressed state.

2.2.1.2.79 (Updated Section) RASI_CONNECTION_2

The RASI_CONNECTION_2 structure contains information for a connection, including the GUID that
identifies the connection, as defined in [MS-DTYP] section 2.3.4.

 typedef struct _RASI_CONNECTION_2 {
 DWORD dwConnection;
 WCHAR wszUserName[257];
 ROUTER_INTERFACE_TYPE dwInterfaceType;
 GUID guid;
 PPP_INFO_2 PppInfo2;
 } RASI_CONNECTION_2,
 *PRASI_CONNECTION_2;

dwConnection: See dwConnection in RASI_CONNECTION_0 (section 2.2.1.2.78).77).

118 / 547

[MS-RRASM-Diff] - v20210407
Routing and Remote Access Server (RRAS) Management Protocol
Copyright © 2021 Microsoft Corporation
Release: April 7, 2021

wszUserName: See wszUserName in RASI_CONNECTION_0.

dwInterfaceType: A ROUTER_INTERFACE_TYPE (section 2.2.1.1.1) that specifies the interface type

of the current connection.

guid: A GUID uniquely identifying the connection.

PppInfo2: A PPP_INFO_2 (section 2.2.1.2.73) structure that contains information about the PPP
negotiation for this connection.

2.2.1.2.80 RASI_CONNECTION_3

The RASI_CONNECTION_3 structure contains information for a connection, including the GUID that
identifies the connection, the Network Access Protection (NAP), and the PPP-related data for the
connection.

 typedef struct _RASI_CONNECTION_3 {
 DWORD dwVersion;
 DWORD dwSize;
 DWORD dwConnection;
 WCHAR wszUserName[257];
 ROUTER_INTERFACE_TYPE dwInterfaceType;
 GUID guid;
 PPP_INFO_3 PppInfo3;
 RAS_QUARANTINE_STATE rasQuarState;
 FILETIME timer;
 } RASI_CONNECTION_3,
 *PRASI_CONNECTION_3;

dwVersion: Determines the version of the RASI_CONNECTION_3 structure used.

dwSize: This SHOULD be set to 0. This MAY be used to specify the size, in bytes, of this
RASI_CONNECTION_3 structure.

dwConnection: Contains the connection handle that specifies a unique identifier of a connection.

wszUserName: Specifies a null-terminated Unicode string that contains the name of the user on this

connection.

dwInterfaceType: A ROUTER_INTERFACE_TYPE (section 2.2.1.1.1) value that specifies the type
of interface.

guid: Specifies a GUID that identifies the connection. For an incoming connection, this GUID is valid
only as long as the connection is active.

PppInfo3: Specifies a PPP_INFO_3 (section 2.2.1.2.74) structure<60> that contains information

about the PPP negotiation for this connection.

rasQuarState: Specifies the NAP quarantine state for the connection through the
RAS_QUARANTINE_STATE (section 2.2.1.1.3) that contains the quarantine state of this
connection.

timer: Specifies the NAP probation time for the connection in the UTC. This value is valid only if the
rasQuarState has a value of RAS_QUAR_STATE_PROBATION (see RAS_QUARANTINE_STATE
section 2.2.1.1.3).

2.2.1.2.81 MPRI_INTERFACE_0

The MPRI_INTERFACE_0 structure contains information for a particular router interface. This
structure is used in the following methods:

119 / 547

[MS-RRASM-Diff] - v20210407
Routing and Remote Access Server (RRAS) Management Protocol
Copyright © 2021 Microsoft Corporation
Release: April 7, 2021

▪ RRouterInterfaceCreate (section 3.1.4.13)

▪ RRouterInterfaceGetInfo (section 3.1.4.14)

▪ RRouterInterfaceSetInfo (section 3.1.4.15)

▪ RRouterInterfaceEnum (section 3.1.4.21)

 typedef struct _MPRI_INTERFACE_0 {
 WCHAR wszInterfaceName[257];
 DWORD dwInterface;
 BOOL fEnabled;
 ROUTER_INTERFACE_TYPE dwIfType;
 ROUTER_CONNECTION_STATE dwConnectionState;
 DWORD fUnReachabilityReasons;
 DWORD dwLastError;
 } MPRI_INTERFACE_0,
 *PMPRI_INTERFACE_0;

wszInterfaceName: A null-terminated Unicode string that contains the name of a valid interface.
This value MUST be specified during the call to RRouterInterfaceCreate and cannot be modified
after the interface is created.

dwInterface: Specifies a unique identifier of the interface. This is a read-only field that cannot be set
or modified.

fEnabled: Specifies whether the interface is enabled. The value TRUE is greater than zero (0) if the
interface is enabled, or FALSE is zero (0) if the interface is disabled by an administrator.

This member can have one of the following values.

Value Meaning

TRUE

>0

The interface is enabled.

FALSE

0

The interface is disabled.

dwIfType: A ROUTER_INTERFACE_TYPE (section 2.2.1.1.1) value that specifies the interface type.
This value MUST be specified during the call to RRouterInterfaceCreate and cannot be modified

after the interface is created.

dwConnectionState: A ROUTER_CONNECTION_STATE (section 2.2.1.1.2) value that specifies the
current state of the interface (for example: connected, disconnected, or unreachable). This is a
read-only field that cannot be set or modified.

fUnReachabilityReasons: Specifies a value that represents a reason the interface cannot be
reached. This is a read-only field that cannot be set or modified. The following table lists constant
values that indicate why an interface is unreachable.

Value Meaning

MPR_INTERFACE_OUT_OF_RESOURCES

0x00000001

No ports or devices are available for use.

MPR_INTERFACE_ADMIN_DISABLED

0x00000002

The administrator has disabled the interface.

120 / 547

[MS-RRASM-Diff] - v20210407
Routing and Remote Access Server (RRAS) Management Protocol
Copyright © 2021 Microsoft Corporation
Release: April 7, 2021

Value Meaning

MPR_INTERFACE_CONNECTION_FAILURE

0x00000004

The previous connection attempt failed. Look at the
dwLastError member for the error code.

MPR_INTERFACE_DIALOUT_HOURS_RESTRICTION

0x00000010

Dialing out is not allowed at the current time.

MPR_INTERFACE_SERVICE_PAUSED

0x00000008

The RRAS is paused.

MPR_INTERFACE_NO_MEDIA_SENSE

0x00000020

The network cable is disconnected from the
network card.

MPR_INTERFACE_NO_DEVICE

0x00000040

The network card has been removed from the
machine.

dwLastError: Specifies a nonzero value if the interface fails to connect. The value is a Win32 error

code as specified in [MS-ERREF]. This is a read-only field that cannot be set or modified.

2.2.1.2.82 MPRI_INTERFACE_1

The MPRI_INTERFACE_1 structure<61> is used to contain configuration and status information for
a specific router interface. This structure is used in the following methods:

▪ RRouterInterfaceCreate (section 3.1.4.13)

▪ RRouterInterfaceGetInfo (section 3.1.4.14)

▪ RRouterInterfaceSetInfo (section 3.1.4.15)

 typedef struct _MPRI_INTERFACE_1 {
 WCHAR wszInterfaceName[257];
 DWORD dwInterface;
 BOOL fEnabled;
 ROUTER_INTERFACE_TYPE dwIfType;
 ROUTER_CONNECTION_STATE dwConnectionState;
 DWORD fUnReachabilityReasons;
 DWORD dwLastError;
 LPWSTR lpwsDialoutHoursRestriction;
 } MPRI_INTERFACE_1,
 *PMPRI_INTERFACE_1;

wszInterfaceName: The same as wszInterfaceName in MPRI_INTERFACE_0 (section 2.2.1.2.81)

structure.

dwInterface: The same as dwInterface in MPRI_INTERFACE_0.

fEnabled: The same as fEnabled in MPRI_INTERFACE_0.

dwIfType: The same as dwIfType in MPRI_INTERFACE_0.

dwConnectionState: The same as dwConnectionState in MPRI_INTERFACE_0.

fUnReachabilityReasons: The same as fUnReachabilityReasons in MPRI_INTERFACE_0.

dwLastError: The same as dwLastError in MPRI_INTERFACE_0.

lpwsDialoutHoursRestriction: Pointer to a Unicode string that specifies the times during which dial-
out is restricted. The format for this string is as follows.

121 / 547

[MS-RRASM-Diff] - v20210407
Routing and Remote Access Server (RRAS) Management Protocol
Copyright © 2021 Microsoft Corporation
Release: April 7, 2021

<day><space><time range><space><time range>. . .<NULL><day>. . .<NULL><NULL>

Where <day> is a numeral that corresponds to a day of the week.

Value Meaning

0 Sunday

1 Monday

2 Tuesday

3 Wednesday

4 Thursday

5 Friday

6 Saturday

<Time range> is of the form HH:MM-HH:MM, using 24-hour notation.

<space> denotes a space character.

<NULL> denotes a null character. The restriction string is terminated by two consecutive null
characters as in the following example:

2 09:00-12:00 13:00-17:30<NULL>4 09:00-12:00 13:00-17:30<NULL><NULL>

The preceding string restricts dial-out to Tuesdays and Thursdays from 9:00 A.M. to 12:00 P.M.
and from 1:00 P.M. to 5:30 P.M.

2.2.1.2.83 (Updated Section) MPRI_INTERFACE_2

The MPRI_INTERFACE_2 structure<62> is used to contain data for a router demand-dial interface.

This structure is used in the following methods:

▪ RRouterInterfaceCreate (section 3.1.4.13)

▪ RRouterInterfaceGetInfo (section 3.1.4.14)

▪ RRouterInterfaceSetInfo (section 3.1.4.15)

 typedef struct _MPRI_INTERFACE_2 {
 WCHAR wszInterfaceName[257];
 DWORD dwInterface;
 BOOL fEnabled;
 ROUTER_INTERFACE_TYPE dwIfType;
 ROUTER_CONNECTION_STATE dwConnectionState;
 DWORD fUnReachabilityReasons;
 DWORD dwLastError;
 DWORD dwfOptions;
 WCHAR szLocalPhoneNumber[129];
 PWCHAR szAlternates;
 DWORD ipaddr;
 DWORD ipaddrDns;
 DWORD ipaddrDnsAlt;
 DWORD ipaddrWins;
 DWORD ipaddrWinsAlt;
 DWORD dwfNetProtocols;
 WCHAR szDeviceType[17];
 WCHAR szDeviceName[129];
 WCHAR szX25PadType[33];
 WCHAR szX25Address[201];

122 / 547

[MS-RRASM-Diff] - v20210407
Routing and Remote Access Server (RRAS) Management Protocol
Copyright © 2021 Microsoft Corporation
Release: April 7, 2021

 WCHAR szX25Facilities[201];
 WCHAR szX25UserData[201];
 DWORD dwChannels;
 DWORD dwSubEntries;
 DWORD dwDialMode;
 DWORD dwDialExtraPercent;
 DWORD dwDialExtraSampleSeconds;
 DWORD dwHangUpExtraPercent;
 DWORD dwHangUpExtraSampleSeconds;
 DWORD dwIdleDisconnectSeconds;
 DWORD dwType;
 DWORD dwEncryptionType;
 DWORD dwCustomAuthKey;
 DWORD dwCustomAuthDataSize;
 LPBYTE lpbCustomAuthData;
 GUID guidId;
 DWORD dwVpnStrategy;
 } MPRI_INTERFACE_2,
 *PMPRI_INTERFACE_2;

wszInterfaceName: Specifies a Unicode string that contains the name of a valid interface. This value
MUST be specified during the call to the RRouterInterfaceCreate<63> method and cannot be
modified after the interface is created.<64>

dwInterface: Specifies a unique identifier of the interface. This is a read-only field and cannot be set
or modified.

fEnabled: Specifies whether the interface is enabled. The value TRUE is greater than zero (0) if the
interface is enabled, or FALSE is zero (0) if the interface is disabled by an administrator.

Value Meaning

TRUE

>0

The interface is enabled.

FALSE

0

The interface is disabled.

dwIfType: A ROUTER_INTERFACE_TYPE (section 2.2.1.1.1) value that specifies the type of interface.

dwConnectionState: A ROUTER_CONNECTION_STATE (section 2.2.1.1.2) value that specifies the
current state of the interface (for example: connected, disconnected, or unreachable). This is a
read-only field and cannot be set or modified.

fUnReachabilityReasons: A value that describes the reason that the interface is unreachable. This is

a read-only field and cannot be set or modified. The following is the list of possible values.

Value Meaning

MPR_INTERFACE_ADMIN_DISABLED

0x00000002

The administrator has disabled the interface.

MPR_INTERFACE_CONNECTION_FAILURE

0x00000004

The previous connection attempt failed.

MPR_INTERFACE_DIALOUT_HOURS_RESTRICTION

0x00000010

Dial-out is not allowed at the current time.

MPR_INTERFACE_OUT_OF_RESOURCES

0x00000001

No ports or devices are available for use.

123 / 547

[MS-RRASM-Diff] - v20210407
Routing and Remote Access Server (RRAS) Management Protocol
Copyright © 2021 Microsoft Corporation
Release: April 7, 2021

Value Meaning

MPR_INTERFACE_SERVICE_PAUSED

0x00000008

The service is paused.

MPR_INTERFACE_NO_MEDIA_SENSE

0x00000020

The network cable is disconnected from the
network card.

MPR_INTERFACE_NO_DEVICE

0x00000040

The network card has been removed from the
machine.

dwLastError: Contains a nonzero value if the interface fails to connect. This value is a Win32 error
code as defined in [MS-ERREF]. This is a read-only field and cannot be set or modified.

dwfOptions: A value that specifies the bit flags that are used to set connection options. This value
SHOULD<65> be a combination of the flags listed in the following table.

Value Meaning

MPRIO_SpecificIpAddr

0x00000002

If this flag is set, the RRAS server attempts to use the IP
address specified by the ipaddr field as the IP address for
the dial-up connection. If this flag is not set, the value of
the ipaddr member is ignored.

MPRIO_SpecificNameServers

0x00000004

If this flag is set, the RRAS server uses the ipaddrDns,
ipaddrDnsAlt, ipaddrWins, and ipaddrWinsAlt
members to specify the name server addresses for the
dial-up connection. If this flag is not set, the RRAS server
ignores these members.

MPRIO_IpHeaderCompression

0x00000008

If this flag is set, the RRAS server negotiates to use the
IP header compression on PPP connections. The IP header
compression can significantly improve performance.

If this flag is not set, the IP header compression is not
negotiated.

MPRIO_RemoteDefaultGateway

0x00000010

If this flag is set, the default route for the IP packets is
through the dial-up adapter when the connection is
active. If this flag is cleared, the default route is not
modified.

MPRIO_DisableLcpExtensions

0x00000020

If this flag is set, the PPP LCP extensions defined in
[RFC1570] are disabled for the connection associated
with the interface. This flag MUST not be set, unless
interoperating with some older PPP implementations that
do not support LCP extensions.

MPRIO_SwCompression

0x00000200

If this flag is set, software compression is negotiated on
the link. Setting this flag causes the PPP to attempt to
negotiate a Compression Control Protocol (CCP) with the
server. This flag SHOULD be set by default but clearing it

can reduce the negotiation period if the server does not
support a compatible compression protocol.

124 / 547

[MS-RRASM-Diff] - v20210407
Routing and Remote Access Server (RRAS) Management Protocol
Copyright © 2021 Microsoft Corporation
Release: April 7, 2021

Value Meaning

MPRIO_RequireEncryptedPw

0x00000400

If this flag is set, only secure password schemes can be
used to authenticate the client with the server. This
prevents the PPP from using the PAP plaintext
authentication protocol to authenticate the client.
However, the [MS-CHAP], MD5-CHAP, and SPAP
authentication protocols are supported. For increased
security, set this flag. For increased interoperability, clear
this flag.

MPRIO_RequireMsEncryptedPw

0x00000800

If this flag is set, it prevents the PPP from using the PAP
plaintext authentication protocol, MD5-CHAP, or SPAP.
For increased security, set this flag. For increased
interoperability, clear this flag. This flag takes precedence
over MPRIO_RequireEncryptedPw.

MPRIO_RequireDataEncryption

0x00001000

If this flag is set, data encryption MUST be negotiated
successfully or the connection is dropped. This flag is
ignored unless MPRIO_RequireMsEncryptedPw is also set.

MPRIO_UseLogonCredentials

0x00004000

If this flag is set, the RRAS server uses the user
nameusername, password, and domain of the currently
logged-on user when dialing this entry. This flag is
ignored unless MPRIO_RequireMsEncryptedPw is also set.

MPRIO_PromoteAlternates

0x00008000

This flag has an effect when alternate phone numbers are
defined by the szAlternates member. If this flag is set,
an alternate phone number that connects successfully
becomes the primary phone number, and the current
primary phone number is moved to the alternate list.

MPRIO_SecureLocalFiles

0x00010000

If this flag is set, the RRAS server checks for an existing
remote file system and remote printer bindings before
making a connection with this entry. Typically, this flag is
set on phone book entries for public networks to remind
users to break connections to their private network before
connecting to a public network.

MPRIO_RequireEAP

0x00020000

If this flag is set, Extensible Authentication Protocol (EAP)
MUST be supported for authentication.

MPRIO_RequirePAP

0x00040000

If this flag is set, Password Authentication Protocol (PAP)
MUST be supported for authentication.

MPRIO_RequireSPAP

0x00080000

If this flag is set, Shiva's Password Authentication
Protocol (SPAP) MUST be supported for authentication.

MPRIO_SharedPhoneNumbers

0x00800000

This flag is not used.

MPRIO_RequireCHAP

0x08000000

If this flag is set, the Challenge Handshake Authentication
Protocol (CHAP) MUST be supported for authentication.

MPRIO_RequireMsCHAP

0x10000000

If this flag is set, the Microsoft Challenge Handshake
Authentication Protocol [MS-CHAP] MUST be supported
for authentication.

MPRIO_RequireMsCHAP2

0x20000000

If this flag is set, version 2 of the [MS-CHAP] MUST be
supported for authentication.

125 / 547

[MS-RRASM-Diff] - v20210407
Routing and Remote Access Server (RRAS) Management Protocol
Copyright © 2021 Microsoft Corporation
Release: April 7, 2021

Value Meaning

MPRIO_IpSecPreSharedKey

0x80000000

Configured the demand-dial interface to use preshared
key.

MPRIO_RequireMachineCertificates

0x01000000

If this flag is set, the machine certificate is to be used for
IKEv2 authentication.

MPRIO_UsePreSharedKeyForIkev2Initiator

0x02000000

If this flag is set, a preshared key is to be used by the
initiator of the IKEv2 connection for authentication.

MPRIO_UsePreSharedKeyForIkev2Responder

0x04000000

If this flag is set, a preshared key is to be used by the
responder of the IKEv2 connection for authentication.

szLocalPhoneNumber: A null-terminated Unicode string that contains the local telephone number or
the destination IP, IPv4, or IPv6 address.

szAlternates: Offset from the beginning of this structure where the alternate phone numbers are

stored. If no alternate phone number is available, this value MUST be set to 0. Alternate phone

numbers are a list of consecutive null-terminated Unicode strings. The last string is terminated by
two consecutive null characters. The strings are alternate phone numbers that the router dials, in
the order listed, if the primary number fails to connect. For more information, see the description
of szLocalPhoneNumber. The alternate phone numbers MUST be stored after the
CustomAuthData field that is appended at the end of this structure.

ipaddr: A value that specifies the IP address to be used while this connection is active. This member

is ignored unless dwfOptions specifies the MPRIO_SpecificIpAddr flag.

ipaddrDns: A value that specifies the IP address of the DNS server to be used while this connection is
active. This member is ignored unless dwfOptions specifies the MPRIO_SpecificNameServers flag.

ipaddrDnsAlt: A value that specifies the IP address of a secondary or backup DNS server to be used
while this connection is active. This member is ignored unless dwfOptions specifies the

MPRIO_SpecificNameServers flag.

ipaddrWins: A value that specifies the IP address of the WINS server to be used while this connection

is active. This member is ignored unless dwfOptions specifies the MPRIO_SpecificNameServers
flag.

ipaddrWinsAlt: A value that specifies the IP address of a secondary WINS server to be used while
this connection is active. This member is ignored unless dwfOptions specifies the
MPRIO_SpecificNameServers flag.

dwfNetProtocols: A value that specifies the network protocols to negotiate. This member can be a
combination of the following flags.<66>

Value Meaning

MPRNP_Ipx

0x00000002

Negotiate the IPX protocol.

MPRNP_Ip

0x00000004

Negotiate the TCP/IPv4 protocol.

MPRNP_Ipv6

0x00000008

Negotiate the TCP/IPv6 protocol.

126 / 547

[MS-RRASM-Diff] - v20210407
Routing and Remote Access Server (RRAS) Management Protocol
Copyright © 2021 Microsoft Corporation
Release: April 7, 2021

szDeviceType: A value that specifies a null-terminated Unicode string that indicates the RRAS server
device type that is referenced by szDeviceName. This is a read-only field that is computed based

on the value of szDeviceName. This member can be one of the following string constants.

Value Meaning

MPRDT_Modem

"Modem"

A modem that is accessed through a COM port.

MPRDT_Isdn

"Isdn"

An ISDN adapter with the corresponding NDISWAN driver installed.

MPRDT_X25

"x25"

An X.25 adapter with the corresponding NDISWAN driver installed.

MPRDT_Vpn

"Vpn"

A VPN connection.

MPRDT_Pad

"Pad"

A packet assembler/disassembler.

MPRDT_Generic

"GENERIC"

Generic.

MPRDT_Serial

"SERIAL"

Direct serial connection through a serial port.

MPRDT_FrameRelay

"FRAMERELAY"

Frame relay.

MPRDT_Atm

"ATM"

Asynchronous transfer mode.

MPRDT_Sonet

"SONET"

Sonet.

MPRDT_SW56

"SW56"

Switched 56K access.

MPRDT_Irda

"IRDA"

An Infrared Data Association (IrDA)-compliant device.

MPRDT_Parallel

"PARALLEL"

Direct parallel connection through a parallel port.

szDeviceName: Specifies a null-terminated Unicode string that contains the name of a telephony
application programming interface (TAPI) device to use with this phone book entry, for example,
"Fabrikam Inc 28800 External". To enumerate all available RAS-capable devices, use the
RRouterDeviceEnum (section 3.1.4.37) function.

szX25PadType: Contains a null-terminated Unicode string that identifies the X.25 PAD type. This

value SHOULD be set to an empty string ("") unless the entry dials using an X.25 PAD.<67>

szX25Address: Contains a null-terminated Unicode string that identifies the X.25 address to connect
to. This value SHOULD be set to an empty string ("") unless the entry dials using an X.25 PAD or
native X.25 device.<68>

127 / 547

[MS-RRASM-Diff] - v20210407
Routing and Remote Access Server (RRAS) Management Protocol
Copyright © 2021 Microsoft Corporation
Release: April 7, 2021

szX25Facilities: Contains a null-terminated Unicode string that specifies the facilities to request from
the X.25 host at connection time. This member is ignored if szX25Address is an empty string

("").

szX25UserData: Contains a null-terminated Unicode string that specifies additional connection data

supplied to the X.25 host at connection time. This member is ignored if szX25Address is an
empty string ("").

dwChannels: Not used and MUST be set to zero (0).

dwSubEntries: A value that specifies the number of multilink subentries associated with this entry.
This is a read-only field that cannot be set or modified. Multilink subentries can be added and
configured as described in 3.1.4.40. Multilink subentries can be removed by updating the Media
section of the phonebook file as specified in 2.2.2.2.96.

dwDialMode: Indicates whether the RRAS server dials all of this entry's multilink subentries when the
entry is first connected. This member can be one of the following values.

Value Meaning

0x00000000 Dial the first available device only.

MPRDM_DialAll

0x00000001

Dial all subentries initially.

MPRDM_DialAsNeeded

0x00000002

Adjust the number of subentries as bandwidth is required. The RRAS server uses
the dwDialExtraPercent, dwDialExtraSampleSeconds,
dwDialHangUpExtraPercent, and dwHangUpExtraSampleSeconds members
to determine when to dial or disconnect a subentry. This value SHOULD<69> be
ignored and treated identically to MPRDM_DialAll.

dwDialExtraPercent: A value that specifies the percentage of the total bandwidth that is available
from the currently connected subentries. The RRAS server dials an additional subentry when the
total bandwidth that is used exceeds the percentage limit (dwDialExtraPercent) of the available

bandwidth for at least dwDialExtraSampleSeconds seconds.

This member is ignored unless the dwDialMode member specifies the MPRDM_DialAsNeeded flag.

dwDialExtraSampleSeconds: A value that specifies the time, in seconds, for which current

bandwidth usage MUST exceed the threshold that is specified by
dwHangUpExtraSampleSeconds before the RRAS server dials an additional subentry.

This member is ignored unless the dwDialMode member specifies the MPRDM_DialAsNeeded flag.

dwHangUpExtraPercent: A value that specifies the percentage of the total bandwidth that is
available from the currently connected subentries. The RRAS server terminates (hangs up) an
existing subentry connection when the total bandwidth used is less than the percentage limit,
indicated by dwHangUpExtraPercent, of the available bandwidth for at least

dwHangUpExtraSampleSeconds seconds.

This member is ignored unless the dwDialMode member specifies the MPRDM_DialAsNeeded flag.

dwHangUpExtraSampleSeconds: A value that specifies the time, in seconds, for which current
bandwidth usage MUST be less than the threshold that is specified by dwHangUpExtraPercent
before the RRAS server terminates an existing subentry connection.

This member is ignored unless the dwDialMode member specifies the MPRDM_DialAsNeeded flag.

dwIdleDisconnectSeconds: A value that specifies the time, in seconds, after which an idle

connection is terminated. Unless the idle time-out is disabled, the entire connection is terminated

128 / 547

[MS-RRASM-Diff] - v20210407
Routing and Remote Access Server (RRAS) Management Protocol
Copyright © 2021 Microsoft Corporation
Release: April 7, 2021

if the connection is idle for the specified dwIdleDisconnectSeconds. This member can specify
either a time-out value or one of the following values.

Value Meaning

MPRIDS_UseGlobalValue

0x00000000

Use the user preference value as the default.

MPRIDS_Disabled

0xFFFFFFFF

There is no idle time-out for this connection.

dwType: A value that specifies the type of phone book entry. This is a read-only field and specifies
the type of entry based on the value of the szDeviceType member. This member can be one of
the following types.<70>

Value Meaning

MPRET_Phone

0x00000001

Phone line (for example: modem, ISDN, or X.25).

MPRET_Vpn

0x00000002

Virtual private network (VPN).

MPRET_Direct

0x00000003

Direct serial or parallel connection.

dwEncryptionType: A value that specifies the type of encryption to use for Microsoft Point-to-Point
Encryption (MPPE) with the connection. This member can be one of the following values.

Value Meaning

MPR_ET_None

0x00000000

Do not use encryption.

MPR_ET_Require

0x00000001

Use encryption.

MPR_ET_RequireMax

0x00000002

Use maximum-strength encryption.

MPR_ET_Optional

0x00000003

If possible, use encryption.

The value of the dwEncryptionType does not affect how passwords are encrypted. Whether
passwords are encrypted and how passwords are encrypted is determined by the authentication
protocol (for example: PAP, [MS-CHAP], or EAP).

dwCustomAuthKey: A value that specifies the authentication key to be provided to an EAP vendor.

dwCustomAuthDataSize: A value that specifies the size of the data pointed to by the
lpbCustomAuthData member.

lpbCustomAuthData: Offset from the beginning of this structure where the CustomAuthData is
stored. If CustomAuthData is not specified, it MUST be set to 0. CustomAuthData is the
authentication data to use with EAP. CustomAuthData MUST be appended to the end of this
structure.

guidId: The GUID that represents this phone book entry. This member is read-only.

129 / 547

[MS-RRASM-Diff] - v20210407
Routing and Remote Access Server (RRAS) Management Protocol
Copyright © 2021 Microsoft Corporation
Release: April 7, 2021

dwVpnStrategy: The VPN strategy to use when dialing a VPN connection. This member can have one
of the following values.<71>

Value Meaning

MPR_VS_Default

0x00000000

The RRAS server dials the PPTP first. If the PPTP fails, the L2TP is attempted.
If the L2TP fails, the IKEv2 is attempted. The protocol that succeeds is tried
first in subsequent dialing for this entry.

MPR_VS_PptpOnly

0x00000001

The RRAS server dials only the PPTP.

MPR_VS_PptpFirst

0x00000002

The RRAS server always dials the PPTP first, the L2TP second, and the IKEv2
third.

MPR_VS_L2tpOnly

0x00000003

The RRAS server dials only the L2TP.

MPR_VS_L2tpFirst

0x00000004

The RRAS server dials the L2TP first, the PPTP second, and the IKEv2 third.

MPR_VS_Ikev2Only

0x00000007

The RRAS server dials only the IKEv2.

MPR_VS_Ikev2First

0x00000008

The RRAS server dials the IKEv2 first, the PPTP second, and the L2TP third.

2.2.1.2.84 (Updated Section) MPRI_INTERFACE_3

The MPRI_INTERFACE_3 structure<72> is used to contain data for a router demand-dial interface.
This structure is used in the following methods:

▪ RRouterInterfaceCreate (section 3.1.4.13)

▪ RRouterInterfaceGetInfo (section 3.1.4.14)

▪ RRouterInterfaceSetInfo (section 3.1.4.15)

 typedef struct _MPR_INTERFACE_3 {
 WCHAR wszInterfaceName[257];
 DWORD dwInterface;
 BOOL fEnabled;
 ROUTER_INTERFACE_TYPE dwIfType;
 ROUTER_CONNECTION_STATE dwConnectionState;
 DWORD fUnReachabilityReasons;
 DWORD dwLastError;
 DWORD dwfOptions;
 WCHAR szLocalPhoneNumber[129];
 PWCHAR szAlternates;
 DWORD ipaddr;
 DWORD ipaddrDns;
 DWORD ipaddrDnsAlt;
 DWORD ipaddrWins;
 DWORD ipaddrWinsAlt;
 DWORD dwfNetProtocols;
 WCHAR szDeviceType[17];
 WCHAR szDeviceName[129];
 WCHAR szX25PadType[33];
 WCHAR szX25Address[201];
 WCHAR szX25Facilities[201];

130 / 547

[MS-RRASM-Diff] - v20210407
Routing and Remote Access Server (RRAS) Management Protocol
Copyright © 2021 Microsoft Corporation
Release: April 7, 2021

 WCHAR szX25UserData[201];
 DWORD dwChannels;
 DWORD dwSubEntries;
 DWORD dwDialMode;
 DWORD dwDialExtraPercent;
 DWORD dwDialExtraSampleSeconds;
 DWORD dwHangUpExtraPercent;
 DWORD dwHangUpExtraSampleSeconds;
 DWORD dwIdleDisconnectSeconds;
 DWORD dwType;
 DWORD dwEncryptionType;
 DWORD dwCustomAuthKey;
 DWORD dwCustomAuthDataSize;
 LPBYTE lpbCustomAuthData;
 GUID guidId;
 DWORD dwVpnStrategy;
 ULONG AddressCount;
 IN6_ADDR ipv6addrDns;
 IN6_ADDR ipv6addrDnsAlt;
 IN6_ADDR* ipv6addr;
 } MPRI_INTERFACE_3,
 *PMPRI_INTERFACE_3;

wszInterfaceName: A pointer to a Unicode string that contains the name of the interface. This value
MUST be specified during the call to the RRouterInterfaceCreate<73> method and cannot be
modified after the interface is created.<74>

dwInterface: Specifies a unique identifier of the interface. This is a read-only field and cannot be set
or modified.

fEnabled: Specifies whether the interface is enabled. The value TRUE is greater than zero (0) if the
interface is enabled, or FALSE is zero (0) if the interface is disabled by an administrator.

Value Meaning

TRUE

>0

The interface is enabled.

FALSE

0

The interface is disabled.

dwIfType: A ROUTER_INTERFACE_TYPE (section 2.2.1.1.1) value specifying the type of interface.

dwConnectionState: A ROUTER_CONNECTION_STATE (section 2.2.1.1.2) value specifying the
current state of the interface (for example: connected, disconnected, or unreachable). This is a
read-only field and cannot be set or modified.

fUnReachabilityReasons: A value that describes the reason why the interface is unreachable. This is
a read-only field and cannot be set or modified. The following table has the list of possible values.

Value Meaning

MPR_INTERFACE_ADMIN_DISABLED

0x00000002

The administrator has disabled the interface.

MPR_INTERFACE_CONNECTION_FAILURE

0x00000004

The previous connection attempt failed.

MPR_INTERFACE_DIALOUT_HOURS_RESTRICTION

0x00000010

Dial-out is not allowed at the current time.

131 / 547

[MS-RRASM-Diff] - v20210407
Routing and Remote Access Server (RRAS) Management Protocol
Copyright © 2021 Microsoft Corporation
Release: April 7, 2021

Value Meaning

MPR_INTERFACE_OUT_OF_RESOURCES

0x00000001

No ports or devices are available for use.

MPR_INTERFACE_SERVICE_PAUSED

0x00000008

The service is paused.

MPR_INTERFACE_NO_MEDIA_SENSE

0x00000020

The network cable is disconnected from the
network card.

MPR_INTERFACE_NO_DEVICE

0x00000040

The network card has been removed from the
machine.

dwLastError: A value that contains a nonzero value if the interface fails to connect. This value is a
Win32 error code as defined in [MS-ERREF]. This is a read-only field and cannot be set or
modified.

dwfOptions: A value that specifies bit flags used to set connection options. It SHOULD<75> be a

combination of the flags listed in the following table.

Value Meaning

MPRIO_SpecificIpAddr

0x00000002

If this flag is set, the RRAS server attempts to use the
IP address specified by the ipaddr field as the IP
address for the dial-up connection. If this flag is not set,
the value of the ipaddr member is ignored.

MPRIO_SpecificNameServers

0x00000004

If this flag is set, the RRAS server uses the ipaddrDns,
ipaddrDnsAlt, ipaddrWins, and ipaddrWinsAlt
members to specify the name server addresses for the
dial-up connection. If this flag is not set, the RRAS
server ignores these members.

MPRIO_IpHeaderCompression

0x00000008

If this flag is set, the RRAS server negotiates to use the
IP header compression on the PPP connections. The IP
header compression can significantly improve
performance.

If this flag is not set, the IP header compression is not
negotiated.

MPRIO_RemoteDefaultGateway

0x00000010

If this flag is set, the default route for the IP packets is
through the dial-up adapter when the connection is
active. If this flag is cleared, the default route is not
modified.

MPRIO_DisableLcpExtensions

0x00000020

If this flag is set, the RRAS server disables the PPP LCP
extensions defined in [RFC1570]. Disabling the PPP LCP
extensions is sometimes necessary to connect to certain
older PPP implementations, but it interferes with
features such as server callback. This flag MUST NOT be
set unless it is specifically required.

MPRIO_SwCompression

0x00000200

If this flag is set, software compression is negotiated on
the link. Setting this flag causes the PPP to attempt to
negotiate the CCP with the server. This flag SHOULD be
set by default but clearing it can reduce the negotiation
period if the server does not support a compatible
compression protocol.

MPRIO_RequireEncryptedPw If this flag is set, only secure password schemes can be
used to authenticate the client with the server. This

132 / 547

[MS-RRASM-Diff] - v20210407
Routing and Remote Access Server (RRAS) Management Protocol
Copyright © 2021 Microsoft Corporation
Release: April 7, 2021

Value Meaning

0x00000400 prevents the PPP from using the PAP plaintext
authentication protocol to authenticate the client.
However, the [MS-CHAP], MD5-CHAP, and SPAP
authentication protocols are supported. For increased
security, set this flag. For increased interoperability,
clear this flag.

MPRIO_RequireMsEncryptedPw

0x00000800

If this flag is set, only the Microsoft secure password
schemes can be used to authenticate the client with the
server. This prevents the PPP from using the PAP
plaintext authentication protocol, MD5-CHAP, or SPAP.
For increased security, set this flag. For increased
interoperability, clear this flag. This flag takes
precedence over MPRIO_RequireEncryptedPw.

MPRIO_RequireDataEncryption

0x00001000

If this flag is set, data encryption MUST be negotiated
successfully or the connection is dropped. This flag is
ignored unless MPRIO_RequireMsEncryptedPw is also
set.

MPRIO_UseLogonCredentials

0x00004000

If this flag is set, the RRAS server uses the user
nameusername, password, and domain of the currently
logged-on user when dialing this entry. This flag is
ignored unless MPRIO_RequireMsEncryptedPw is also
set.

MPRIO_PromoteAlternates

0x00008000

This flag has an effect when alternate phone numbers
are defined by the szAlternates member. If this flag is
set, an alternate phone number that connects
successfully becomes the primary phone number, and

the current primary phone number is moved to the
alternate list.

MPRIO_SecureLocalFiles

0x00010000

If this flag is set, the RRAS server checks for an existing
remote file system and remote printer bindings before
making a connection with this entry. Typically, this flag
is set on phone book entries for public networks to
remind users to break connections to their private
network before connecting to a public network.

MPRIO_RequireEAP

0x00020000

If this flag is set, Extensible Authentication Protocol
(EAP) MUST be supported for authentication.

MPRIO_RequirePAP

0x00040000

If this flag is set, Password Authentication Protocol
(PAP) MUST be supported for authentication.

MPRIO_RequireSPAP

0x00080000

If this flag is set, Shiva's Password Authentication
Protocol (SPAP) MUST be supported for authentication.

MPRIO_SharedPhoneNumbers

0x00800000

If this flag is set, phone numbers are shared.

MPRIO_RequireCHAP

0x08000000

If this flag is set, the Challenge Handshake
Authentication Protocol (CHAP) MUST be supported for
authentication.

MPRIO_RequireMsCHAP

0x10000000

If this flag is set, the Microsoft Challenge Handshake
Authentication Protocol [MS-CHAP] MUST be supported
for authentication.

MPRIO_RequireMsCHAP2 If this flag is set, version 2 of the [MS-CHAP] MUST be
supported for authentication.

133 / 547

[MS-RRASM-Diff] - v20210407
Routing and Remote Access Server (RRAS) Management Protocol
Copyright © 2021 Microsoft Corporation
Release: April 7, 2021

Value Meaning

0x20000000

MPRIO_IpSecPreSharedKey

0x80000000

Configured the demand-dial interface to use preshared
key.

MPRIO_RequireMachineCertificates

0x01000000

If this flag is set, a machine certificate is to be used for
IKEv2 authentication.

MPRIO_UsePreSharedKeyForIkev2Initiator

0x02000000

If this flag is set, a preshared key is to be used by the
initiator of the IKEv2 connection for authentication.

MPRIO_UsePreSharedKeyForIkev2Responder

0x04000000

If this flag is set, a preshared key is to be used by the
responder of the IKEv2 connection for authentication.

szLocalPhoneNumber: A value that specifies a null-terminated Unicode string that contains a

telephone number.

szAlternates: The offset from the beginning of this structure where the alternate phone numbers are
stored. If no alternate phone number is available, this value MUST be set to 0. Alternate phone
numbers are a list of consecutive null-terminated Unicode strings. The last string is terminated by
two consecutive null characters. The strings are alternate phone numbers that the router dials, in
the order listed, if the primary number fails to connect. For more information, see
szLocalPhoneNumber. The alternate phone numbers MUST be stored after the custom data that

is appended to this structure.

ipaddr: A value that specifies the IP address to be used while this connection is active. This member
is ignored unless dwfOptions specifies the MPRIO_SpecificIpAddr flag.

ipaddrDns: A value that specifies the IP address of the DNS server to be used while this connection is
active. This member is ignored unless dwfOptions specifies the MPRIO_SpecificNameServers flag.

ipaddrDnsAlt: A value that specifies the IP address of a secondary or backup DNS server to be used

while this connection is active. This member is ignored unless dwfOptions specifies the

MPRIO_SpecificNameServers flag.

ipaddrWins: A value that specifies the IP address of the WINS server to be used while this connection
is active. This member is ignored unless dwfOptions specifies the MPRIO_SpecificNameServers
flag.

ipaddrWinsAlt: A value that specifies the IP address of a secondary WINS server to be used while
this connection is active. This member is ignored unless dwfOptions specifies the

MPRIO_SpecificNameServers flag.

dwfNetProtocols: A value that specifies the network protocols to negotiate. This member can be a
combination of the following flags.

Value Meaning

MPRNP_Ipx

0x00000002

Negotiate the IPX protocol.

MPRNP_Ip

0x00000004

Negotiate the TCP/IPv4 protocol.

MPRNP_Ipv6

0x00000008

Negotiate the TCP/IPv6 protocol.

134 / 547

[MS-RRASM-Diff] - v20210407
Routing and Remote Access Server (RRAS) Management Protocol
Copyright © 2021 Microsoft Corporation
Release: April 7, 2021

szDeviceType: A value that specifies a null-terminated Unicode string that indicates the RRAS server
device type that is referenced by szDeviceName. This is a read-only field that is computed based

on the value of the szDeviceName member. The possible values for this member are the same
as the wszDeviceName defined in RASI_PORT_0.

szDeviceName: Contains a null-terminated Unicode string that contains the name of a TAPI device to
use with this phone book entry (for example, "Fabrikam Inc 28800 External"). To enumerate all
available RAS-capable devices, use the RRouterDeviceEnum (section 3.1.4.37) method.

szX25PadType: Contains a null-terminated Unicode string that identifies the X.25 PAD type. This
value SHOULD be set to an empty string ("") unless the entry dials using an X.25 PAD.<76>

szX25Address: Contains a null-terminated Unicode string that identifies the X.25 address to connect
to. This value SHOULD be set to an empty string ("") unless the entry dials using an X.25 PAD or

native X.25 device.<77>

szX25Facilities: Contains a null-terminated Unicode string that specifies the facilities to request from
the X.25 host at connection time. This member is ignored if szX25Address is an empty string ("").

szX25UserData: Contains a null-terminated Unicode string that specifies the additional connection
data supplied to the X.25 host at connection time. This member is ignored if szX25Address is an
empty string ("").

dwChannels: Reserved for future use.

dwSubEntries: A value that specifies the number of multilink subentries associated with this entry.
This is a read-only field and cannot be set or modified. Multilink entries SHOULD be specified by
updating the Media section of the phonebook file as specified in 2.2.2.2.96.

dwDialMode: Indicates whether the RRAS server needs to dial all of this entry's multilink subentries
when the entry is first connected. This member can be one of the following values.

Value Meaning

0x00000000 Dial the first available device only.

MPRDM_DialAll

0x00000001

Dial all subentries initially.

MPRDM_DialAsNeeded

0x00000002

Adjust the number of subentries as bandwidth is required. The RRAS server
uses the dwDialExtraPercent, dwDialExtraSampleSeconds,
dwDialHangUpExtraPercent, and dwHangUpExtraSampleSeconds
members to determine when to dial or disconnect a subentry. This value
SHOULD<78> be ignored and treated identically to MPRDM_DialAll.

dwDialExtraPercent: A value that specifies the percentage of the total bandwidth that is available
from the currently connected subentries. The RRAS server dials an additional subentry when the
total bandwidth that is used exceeds dwDialExtraPercent percent of the available bandwidth for

at least dwDialExtraSampleSeconds seconds.

This member is ignored unless the dwDialMode member specifies the MPRDM_DialAsNeeded flag.

dwDialExtraSampleSeconds: A value that specifies the time, in seconds, for which current
bandwidth usage MUST exceed the threshold that is specified by dwDialExtraPercent before the
RRAS server dials an additional subentry.

This member is ignored unless the dwDialMode member specifies the MPRDM_DialAsNeeded.

dwHangUpExtraPercent: A value that specifies the percentage of the total bandwidth that is

available from the currently connected subentries. The RRAS server terminates (hangs up) an

135 / 547

[MS-RRASM-Diff] - v20210407
Routing and Remote Access Server (RRAS) Management Protocol
Copyright © 2021 Microsoft Corporation
Release: April 7, 2021

existing subentry connection when the total bandwidth used is less than
dwHangUpExtraPercent percent of the available bandwidth for at least

dwHangUpExtraSampleSeconds seconds.

This member is ignored unless the dwDialMode member specifies the MPRDM_DialAsNeeded flag.

dwHangUpExtraSampleSeconds: A value that specifies the time, in seconds, for which current
bandwidth usage MUST be less than the threshold that is specified by dwHangUpExtraPercent
before the RRAS server terminates an existing subentry connection.

This member is ignored unless the dwDialMode member specifies the MPRDM_DialAsNeeded flag.

dwIdleDisconnectSeconds: A value that specifies the time, in seconds, after which an inactive
connection is terminated. Unless the idle time-out is disabled, the entire connection is terminated
if the connection is idle for the specified interval. This member can specify either a time-out value

or one of the following values.

Value Meaning

MPRIDS_UseGlobalValue

0x00000000

Use the user preference value as the default.

MPRIDS_Disabled

0xFFFFFFFF

There is no idle time-out for this connection.

dwType: A value that specifies the type of phone book entry. This is a read-only field that is
calculated based on the value of the szDeviceType member. This member can be one of the
following types.

Value Meaning

MPRET_Phone

0x00000001

Phone line (for example: modem, ISDN, or X.25).

MPRET_Vpn

0x00000002

Virtual private network (VPN).

MPRET_Direct

0x00000003

Direct serial or parallel connection.

dwEncryptionType: A value that specifies the type of encryption to use for Microsoft Point-to-Point
Encryption (MPPE) with the connection. This member can be one of the following values.

Value Meaning

MPR_ET_None

0x00000000

Do not use encryption.

MPR_ET_Require

0x00000001

Use encryption.

MPR_ET_RequireMax

0x00000002

Use maximum-strength encryption.

MPR_ET_Optional

0x00000003

If possible, use encryption.

136 / 547

[MS-RRASM-Diff] - v20210407
Routing and Remote Access Server (RRAS) Management Protocol
Copyright © 2021 Microsoft Corporation
Release: April 7, 2021

The value of dwEncryptionType does not affect how passwords are encrypted. Whether
passwords are encrypted and how passwords are encrypted is determined by the authentication

protocol, for example: PAP, MS-CHAP, or EAP.

dwCustomAuthKey: A value that specifies the authentication key to be provided to an EAP ([MS-

PEAP]) vendor.

dwCustomAuthDataSize: A value that specifies the size of the data pointed to by the
lpbCustomAuthData member.

lpbCustomAuthData: The offset from the beginning of this structure where the CustomAuthData is
stored. If CustomAuthData are not specified, this member MUST be set to 0. CustomAuthData is
the authentication data to use with EAP [MS-PEAP]. CustomAuthData MUST be appended to the
end of this structure.

guidId: The GUID that represents this phone book entry. This member is read-only.

dwVpnStrategy: The VPN strategy to use when dialing a VPN connection. This member SHOULD
have one of the following values.<79>

Value Meaning

MPR_VS_Default

0x00000000

The RRAS server dials the PPTP first. If the PPTP fails, the L2TP is attempted. If the
L2TP fails, the IKEv2 is attempted. The protocol that succeeds is tried first in
subsequent dialing for this entry.

MPR_VS_PptpOnly

0x00000001

The RRAS server dials only the PPTP.

MPR_VS_PptpFirst

0x00000002

The RRAS server always dials the PPTP first, the L2TP second, and the IKEv2 third.

MPR_VS_L2tpOnly

0x00000003

The RRAS server dials only the L2TP.

MPR_VS_L2tpFirst

0x00000004

The RRAS server dials the L2TP first, the PPTP second, and the IKEv2 third.

MPR_VS_Ikev2Only

0x00000007

The RRAS server dials only the IKEv2.

MPR_VS_Ikev2First

0x00000008

The RRAS server dials the IKEv2 first, the PPTP second, and the L2TP third.

AddressCount: Not used.

ipv6addrDns: A value that specifies the IP address of the DNS server to be used while this

connection is active.

ipv6addrDnsAlt: A value that specifies the IP address of a secondary or backup DNS server to be

used while this connection is active.

ipv6addr: Not used.

2.2.1.2.85 MPR_DEVICE_0

The MPR_DEVICE_0 structure stores information about a device used for a link in a multilinked

demand-dial interface.

137 / 547

[MS-RRASM-Diff] - v20210407
Routing and Remote Access Server (RRAS) Management Protocol
Copyright © 2021 Microsoft Corporation
Release: April 7, 2021

 typedef struct _MPR_DEVICE_0 {
 WCHAR szDeviceType[17];
 WCHAR szDeviceName[129];
 } MPR_DEVICE_0,
 *PMPR_DEVICE_0;

szDeviceType: Specifies a null-terminated Unicode string that indicates the RRAS server device type
referenced by szDeviceName. See MPRI_INTERFACE_2 (section 2.2.1.2.83) for a list of possible
device types.

szDeviceName: Specifies a null-terminated Unicode string that contains the name of the TAPI device
to use with this phone book entry.

2.2.1.2.86 MPR_DEVICE_1

The MPR_DEVICE_1 structure stores information about a device used for a link in a multilinked
demand-dial interface. In addition to the information in MPR_DEVICE_0 (section 2.2.1.2.85),

MPR_DEVICE_1 contains phone number information.

 typedef struct _MPR_DEVICE_1 {
 WCHAR szDeviceType[17];
 WCHAR szDeviceName[129];
 WCHAR szLocalPhoneNumber[129];
 PWCHAR szAlternates;
 } MPR_DEVICE_1,
 *PMPR_DEVICE_1;

szDeviceType: Specifies a null-terminated Unicode string that indicates the device type referenced by
szDeviceName. See MPRI_INTERFACE_2 (section 2.2.1.2.83) for a list of possible device types.

szDeviceName: Specifies a null-terminated Unicode string that contains the name of the TAPI device
to use with this phone book entry.

szLocalPhoneNumber: Specifies a null-terminated Unicode string that contains a telephone number.
The router uses the szLocalPhoneNumber string as the entire phone number.

szAlternates: Pointer to a list of consecutive null-terminated Unicode strings. The last string is
terminated by two consecutive null characters. The strings are alternate phone numbers that the
router dials in the order listed if the primary number (see szLocalPhoneNumber) fails to
connect.

2.2.1.2.87 (Updated Section) MPR_CREDENTIALSEX_1

The MPR_CREDENTIALSEX_1 structure is used to contain extended credentials information (other
than username/password), such as the information used by Extensible Authentication Protocols (EAPs)
or a preshared key based on the level being passed in by the methods that use this structure. This
structure is used in RRouterInterfaceSetCredentialsEx (section 3.1.4.41) and
RRouterInterfaceGetCredentialsEx (section 3.1.4.42). If a preshared key is being used dwSsize MUST

be less than 257. Note that the preshared key here is used to specify the credential for the connection
endpoint on the RRAS server. The other end of the connection endpoint MUST be configured with the

same preshared key in order for the connection to be successful.

 typedef struct _MPR_CREDENTIALSEX_1 {
 DWORD dwSize;
 DWORD dwOffset;
 BYTE bData[1];
 } MPR_CREDENTIALSEX_1,
 *PMPR_CREDENTIALSEX_1;

138 / 547

[MS-RRASM-Diff] - v20210407
Routing and Remote Access Server (RRAS) Management Protocol
Copyright © 2021 Microsoft Corporation
Release: April 7, 2021

dwSize: Specifies the size of the data pointed to by the bData member. If dwSize is zero (0) in a call
to RRouterInterfaceSetCredentialsEx and the key is a preshared key, the key is deleted.

dwOffset: Offset where the data starts in the structure.

bData: Pointer to the credential information. Note that bData[1] is only a placeholder and the actual

data of size dwSize is stored at the end of the structure. The actual value stored here can be
either a preshared key or the EAP information
EAPTLS_USER_PROPERTIES (section 2.2.1.2.129).128).

2.2.1.2.88 IFFILTER_INFO

The IFFILTER_INFO structure is used to specify the filter settings for an interface. When this
structure is encapsulated within the RTR_TOC_ENTRY (section 2.2.1.2.4) structure, the InfoType

value used MUST be 0xFFFF000D or 0xFFFF0014 to specify IPv4 interface filter or IPv6 interface filter
information.

 typedef struct _IFFILTER_INFO {
 BOOL bEnableFragChk;
 } IFFILTER_INFO,
 *PIFFILTER_INFO;

bEnableFragChk: When this field is set to TRUE, the fragmented packets are filtered at the interface
and dropped. If this field is set to FALSE, the fragment checking is not done at the interface.

Value Meaning

TRUE Fragment checking is done at the interface.

FALSE Fragment checking is not done at the interface.

2.2.1.2.89 MPR_FILTER_0

The MPR_FILTER_0 structure<80> is used to specify whether RRAS server filtering is enabled or
not. When this structure is encapsulated within RTR_TOC_ENTRY (section 2.2.1.2.4), the InfoType
value used MUST be 0xFFFF0015 or 0xFFFF0016.

 typedef struct _MPR_FILTER_0 {
 IN BOOL fEnable;
 } MPR_FILTER_0,
 *PMPR_FILTER_0;

fEnable: This MUST be set to 0x00000000 to disable filtering and MUST be set to 0x00000001 to
enable filtering on the RRAS server.

2.2.1.2.90 IPX_GLOBAL_INFO

The IPX_GLOBAL_INFO structure MAY<81> be used to give the global IPX information for the RRAS
server. When this structure is encapsulated in RTR_TOC_ENTRY (section 2.2.1.2.4), the InfoType
value used MUST be 0x00000009.

 typedef struct _IPX_GLOBAL_INFO {
 ULONG RoutingTableHashSize;
 ULONG EventLogMask;
 } IPX_GLOBAL_INFO,

139 / 547

[MS-RRASM-Diff] - v20210407
Routing and Remote Access Server (RRAS) Management Protocol
Copyright © 2021 Microsoft Corporation
Release: April 7, 2021

 *PIPX_GLOBAL_INFO;

RoutingTableHashSize: The hash size of the IPX routing table.

EventLogMask: Mask to manage event logging on the IPX interface on the RRAS server.

2.2.1.2.91 IPX_IF_INFO

The IPX_IF_INFO structure MAY<82> be used to specify the IPX interface data. When this structure
is encapsulated in RTR_TOC_ENTRY (section 2.2.1.2.4), the InfoType value used MUST be
0x00000001.

 typedef struct _IPX_IF_INFO {
 ULONG AdministratorState;
 ULONG NetbiosAccept;
 ULONG NetbiosDeliver;
 } IPX_IF_INFO,
 *PIPX_IF_INFO;

AdministratorState: This MUST be set to the desired state of the interface (5). A value of
0x00000001 disables the interface and a value of 0x00000002 enables the interface.

NetbiosAccept: This MUST be set to 0x00000001 for the interface to accept NetBIOS broadcast
packets.

NetbiosDeliver: This MUST be set to 0x00000000 on a WAN interface and 0x00000001 on a LAN
interface.

2.2.1.2.92 IPXWAN_IF_INFO

The IPXWAN_IF_INFO structure MAY<83> be used to specify the IPX interface data for the WAN
interface. When this structure is encapsulated in RTR_TOC_ENTRY (section 2.2.1.2.4), the InfoType
value used MUST be 0x00000008.

 typedef struct _IPXWAN_IF_INFO {
 ULONG Adminstate;
 } IPXWAN_IF_INFO,
 *PIPXWAN_IF_INFO;

Adminstate: This MUST be set to the desired state of the interface. A value of 0x00000001 disables
the interface, and a value of 0x00000002 enables the interface. This enables or disables the
IPXWAN negotiation.

2.2.1.2.93 IPX_STATIC_ROUTE_INFO

The IPX_STATIC_ROUTE_INFO structure MAY<84> be used to carry the route information for an
IPX interface. When this structure is encapsulated within the RTR_TOC_ENTRY (section 2.2.1.2.4), the

InfoType value used MUST be 0x00000002.

 typedef struct _IPX_STATIC_ROUTE_INFO {
 union {
 ULONG DwordAlign;
 UCHAR Network[4];
 };
 USHORT TickCount;
 USHORT HopCount;
 UCHAR NextHopMacAddress[6];
 } IPX_STATIC_ROUTE_INFO,

140 / 547

[MS-RRASM-Diff] - v20210407
Routing and Remote Access Server (RRAS) Management Protocol
Copyright © 2021 Microsoft Corporation
Release: April 7, 2021

 *PIPX_STATIC_ROUTE_INFO;

DwordAlign: This field of the union MUST NOT be used.

Network: This member MUST be the 4-byte IPX network number in hexadecimal (8 hexadecimal
digits). For example, 1abe32.0000.0c33.2331. The first 32 bits represent the network address and

the remaining bits represent the node address; that is, the format is network.node.

TickCount: This MUST be the number of ticks to get to the network number. One unit of tick count is
approximately 1/18 seconds.

HopCount: This MUST be the number of routers to be traversed to get to the network number.

NextHopMacAddress: This MUST be the 6-byte MAC address of the next hop in hexadecimal (12
hexadecimal digits).

2.2.1.2.94 IPX_STATIC_SERVICE_INFO

The IPX_STATIC_SERVICE_INFO structure MAY<85> be used to carry the IPX server information.
When this structure is encapsulated in RTR_TOC_ENTRY (section 2.2.1.2.4), the InfoType value used
MUST be 0x00000003.

 typedef IPX_SERVER_ENTRY IPX_STATIC_SERVICE_INFO, *PIPX_STATIC_SERVICE_INFO;

 typedef struct _IPX_SERVER_ENTRY {
 USHORT Type;
 UCHAR Name[48];
 UCHAR Network[4];
 UCHAR Node[6];
 UCHAR Socket[2];
 USHORT HopCount;
 } IPX_SERVER_ENTRY,
 *PIPX_SERVER_ENTRY;

Type: Indicates the contents of the payload portion of the IPX packet. It allows a number of client
protocols to use the IPX and be identified by the IPX router.

Routers can filter the IPX traffic based on the Packet Type field. For example, some routers by
default do not propagate NetBIOS over IPX broadcast traffic and MUST be manually configured to

enable packets with a packet type value of 20. The following table lists some common defined
values of the IPX packet type.

Value Meaning

0x0000 Unspecified

0x0001 RIP

0x0004 SAP/Normal IPX

0x0005 SPX

0x0014 IPX WAN broadcast (used for NetBIOS over IPX broadcasts)

Name: A null-terminated Unicode string giving the name of the interface.

Network: This MUST be the 4-byte IPX network number in hexadecimal (8 hexadecimal digits).

Node: Identifies a node on an IPX network. The 6-byte fields can be used to store physical addresses,

also known as media access control (MAC) addresses.

141 / 547

[MS-RRASM-Diff] - v20210407
Routing and Remote Access Server (RRAS) Management Protocol
Copyright © 2021 Microsoft Corporation
Release: April 7, 2021

Socket: Identifies the software process addresses of the destination and source applications. With
multiple processes communicating between the same two computers, the IPX network and node

numbers are the same. The IPX socket number is a software process identifier that is used to
forward the IPX payload to the proper process.

HopCount: This MUST be the number of routers to be traversed to get to the network number.

2.2.1.2.95 IPX_STATIC_NETBIOS_NAME_INFO

The IPX_STATIC_NETBIOS_NAME_INFO structure MAY<86> be used to contain the static
NetBIOS name for an IPX interface. When this structure is encapsulated in
RTR_TOC_ENTRY (section 2.2.1.2.4), the InfoType value MUST be 0x0000000A.

 typedef struct _IPX_STATIC_NETBIOS_NAME_INFO {
 union {
 ULONG DwordAlign;
 UCHAR Name[16];
 };
 } IPX_STATIC_NETBIOS_NAME_INFO,
 *PIPX_STATIC_NETBIOS_NAME_INFO;

DwordAlign: This field of the union MUST NOT be used.

Name: Static NetBIOS names MUST be used to confine NetBIOS over IPX broadcast traffic in
environments where client-side NetBIOS applications need to access a small set of server-side

NetBIOS applications.

2.2.1.2.96 IPX_ADAPTER_INFO

The IPX_ADAPTER_INFO structure MAY<87> be used to contain the adapter information for the
IPX. When this structure is encapsulated in RTR_TOC_ENTRY (section 2.2.1.2.4), the InfoType value
used MUST be 0x00000007.

 typedef struct _IPX_ADAPTER_INFO {
 ULONG PacketType;
 WCHAR AdapterName[MAX_ADAPTOR_NAME_LEN];
 } IPX_ADAPTER_INFO,
 *PIPX_ADAPTER_INFO;

PacketType: The PacketType field indicates the contents of the payload portion of the IPX packet. It
allows several client protocols to use the IPX and be identified by the IPX router. The following
table lists some common defined values of the IPX packet type.

Value Meaning

0x0000 Unspecified

0x0001 RIP

0x0004 SAP/Normal IPX

0x0005 SPX

0x0014 IPX WAN broadcast (used for NetBIOS over IPX broadcasts)

AdapterName: Name of the adapter. The MAX_ADAPTER_NAME_LEN value is defined as follows.

 #define MAX_ADAPTOR_NAME_LEN 48

142 / 547

[MS-RRASM-Diff] - v20210407
Routing and Remote Access Server (RRAS) Management Protocol
Copyright © 2021 Microsoft Corporation
Release: April 7, 2021

2.2.1.2.97 IPX_TRAFFIC_FILTER_GLOBAL_INFO

The IPX_TRAFFIC_FILTER_GLOBAL_INFO structure MAY<88> be used to specify the filter action

to be taken when any IPX interface filter condition is met. When this structure is encapsulated in
RTR_TOC_ENTRY (section 2.2.1.2.4), the InfoType value MUST be 0x0000000B or 0x0000000D. If
the value in InfoType is 0x0000000B, the filter is applied to incoming traffic and if the value is
0x0000000D, the filter is applied to outgoing traffic.

 typedef struct _IPX_TRAFFIC_FILTER_GLOBAL_INFO {
 ULONG FilterAction;
 } IPX_TRAFFIC_FILTER_GLOBAL_INFO,
 *PIPX_TRAFFIC_FILTER_GLOBAL_INFO;

FilterAction: This specifies the action if there is a match with any filter on the interface. This MUST
be set to 0x00000001 to permit traffic and to 0x00000002 to deny traffic.

Value Meaning

0x00000001 Permit traffic

0x00000002 Deny traffic

2.2.1.2.98 IPX_TRAFFIC_FILTER_INFO

The IPX_TRAFFIC_FILTER_INFO structure MAY<89> be used to specify the filter data for an IPX
interface. When this structure is encapsulated in RTR_TOC_ENTRY (section 2.2.1.2.4), the InfoType

value MUST be 0x00000006 or 0x0000000C. If the value of InfoType is 0x00000006, the filter is
applied to incoming traffic, if the value of InfoType is 0x0000000C, the filter is applied to outgoing

traffic.

 typedef struct _IPX_TRAFFIC_FILTER_INFO {
 ULONG FilterDefinition;
 UCHAR DestinationNetwork[4];
 UCHAR DestinationNetworkMask[4];
 UCHAR DestinationNode[6];
 UCHAR DestinationSocket[2];
 UCHAR SourceNetwork[4];
 UCHAR SourceNetworkMask[4];
 UCHAR SourceNode[6];
 UCHAR SourceSocket[2];
 UCHAR PacketType;
 } IPX_TRAFFIC_FILTER_INFO,
 *PIPX_TRAFFIC_FILTER_INFO;

FilterDefinition: Flags that specify relevant IPX address fields to filter on. The values MUST be one of
the following values.

Value Meaning

IPX_TRAFFIC_FILTER_ON_SRCNET

0x00000001

Apply filter on source network.

IPX_TRAFFIC_FILTER_ON_SRCNODE Apply filter on source node.

143 / 547

[MS-RRASM-Diff] - v20210407
Routing and Remote Access Server (RRAS) Management Protocol
Copyright © 2021 Microsoft Corporation
Release: April 7, 2021

Value Meaning

0x00000002

IPX_TRAFFIC_FILTER_ON_SRCSOCKET

0x00000004

Apply filter on source socket.

IPX_TRAFFIC_FILTER_ON_DSTNET

0x00000010

Apply filter on destination network.

IPX_TRAFFIC_FILTER_ON_DSTNODE

0x00000020

Apply filter on destination node.

IPX_TRAFFIC_FILTER_ON_DSTSOCKET

0x00000040

Apply filter on destination socket.

IPX_TRAFFIC_FILTER_ON_PKTTYPE

0x00000100

Apply filter based on packet type.

IPX_TRAFFIC_FILTER_LOG_MATCHES

0x80000000

Apply filters based on log matches.

DestinationNetwork: The DestinationNetwork field identifies the network (a segment of the IPX
internetwork bounded by the IPX routers) to which an IPX node is connected.

DestinationNetworkMask: The mask that MUST be logically ANDed with DestinationNetwork.

DestinationNode: Identifies a node on an IPX network. The 6-byte fields can be used to store
physical addresses, also known as MAC addresses.

DestinationSocket: Identifies the software process addresses of the destination and source
applications respectively. With multiple processes communicating between the same two
computers, the IPX network and node numbers are the same. The IPX socket number is a
software process identifier that is used to forward the IPX payload to the proper process.

SourceNetwork: Identifies the network (a segment of the IPX internetwork bounded by the IPX

routers) to which an IPX node is connected.

SourceNetworkMask: The mask that MUST be logically ANDed with SourceNetwork.

SourceNode: Identifies a node on an IPX network. The 6-byte fields can be used to store physical
addresses, also known as MAC addresses.

SourceSocket: Identifies the software process addresses of the destination and source applications
respectively. With multiple processes communicating between the same two computers, the IPX

network and node numbers are the same. The IPX socket number is a software process identifier
that is used to forward the IPX payload to the proper process.

PacketType: The PacketType field indicates the contents of the payload portion of the IPX packet. It
allows several client protocols to use the IPX and be identified by the IPX router. The following

table lists some common defined values of the IPX packet type.

Value Meaning

0x0000 Unspecified

0x0001 RIP

0x0004 SAP/Normal IPX

144 / 547

[MS-RRASM-Diff] - v20210407
Routing and Remote Access Server (RRAS) Management Protocol
Copyright © 2021 Microsoft Corporation
Release: April 7, 2021

Value Meaning

0x0005 SPX

0x0014 IPX WAN broadcast (used for NetBIOS over IPX broadcasts)

2.2.1.2.99 IF_TABLE_INDEX

The IF_TABLE_INDEX structure MAY<90> be used to specify the index within the Interface Table. It
is used in the IPX_MIB_INDEX (section 2.2.1.2.104) structure.

 typedef struct _IF_TABLE_INDEX {
 ULONG InterfaceIndex;
 } IF_TABLE_INDEX,
 *PIF_TABLE_INDEX;

InterfaceIndex: The local index value for the network interface. This index value MAY change when
a network adapter is disabled and then enabled, or under other circumstances, and need not be
persistent.

2.2.1.2.100 (Updated Section) ROUTING_TABLE_INDEX

The ROUTING_TABLE_INDEX structure MAY<91> be used to specify the index within the routing
table. It is used in IPX_MIB_INDEX (section 2.2.1.2.105).104).

 typedef struct _ROUTING_TABLE_INDEX {
 UCHAR Network[4];
 } ROUTING_TABLE_INDEX,
 *PROUTING_TABLE_INDEX;

Network: This MUST be the 4-byte IPX network number in hexadecimal (8 hexadecimal digits).

2.2.1.2.101 (Updated Section) STATIC_ROUTES_TABLE_INDEX

The STATIC_ROUTES_TABLE_INDEX structure MAY<92> be used to specify the index within the
static routes table. It is used in IPX_MIB_INDEX (section 2.2.1.2.105).104).

 typedef struct _STATIC_ROUTES_TABLE_INDEX {
 ULONG InterfaceIndex;
 UCHAR Network[4];
 } STATIC_ROUTES_TABLE_INDEX,
 *PSTATIC_ROUTES_TABLE_INDEX;

InterfaceIndex: The local index value for the network interface. This index value MAY change when

a network adapter is disabled and then enabled, or under other circumstances, and need not be
persistent.

Network: This MUST be the 4-byte IPX network number in hexadecimal (8 hexadecimal digits).

2.2.1.2.102 (Updated Section) SERVICES_TABLE_INDEX

The SERVICES_TABLE_INDEX structure MAY<93> be used to specify the index within the services

table. It is used in IPX_MIB_INDEX (section 2.2.1.2.105).104).

145 / 547

[MS-RRASM-Diff] - v20210407
Routing and Remote Access Server (RRAS) Management Protocol
Copyright © 2021 Microsoft Corporation
Release: April 7, 2021

 typedef struct _SERVICES_TABLE_INDEX {
 USHORT ServiceType;
 UCHAR ServiceName[48];
 } SERVICES_TABLE_INDEX,
 *PSERVICES_TABLE_INDEX;

ServiceType: The type of service (for example: file server, print server, or application server).
Commonly used types are described in the following table.

Service type (hexadecimal) Server

0x000x0000 Unknown

0x00 — 0x040x0000 — 0x0004 NetWare file server

0x00 — 0x070x0000 — 0x0007 NetWare print server

0x06 — 0x400x0006 — 0x0040 Microsoft RPC server

0xFF0x00FF General SAP request

ServiceName: The name of the server hosting the service.

2.2.1.2.103 (Updated Section) STATIC_SERVICES_TABLE_INDEX

The STATIC_SERVICES_TABLE_INDEX structure MAY<94> be used to specify the index within the
static services table. It is used in IPX_MIB_INDEX (section 2.2.1.2.105).104).

 typedef struct _STATIC_SERVICES_TABLE_INDEX {
 ULONG InterfaceIndex;
 USHORT ServiceType;
 UCHAR ServiceName[48];
 } STATIC_SERVICES_TABLE_INDEX,
 *PSTATIC_SERVICES_TABLE_INDEX;

InterfaceIndex: The local index value for the network interface. This index value MAY change when
a network adapter is disabled and then enabled, or under other circumstances, and need not be
persistent.

ServiceType: The type of service (for example: file server, print server, or application server).
Commonly used types are described in the following table.

Service Type (Hexadecimal) Server

0x000x0000 Unknown

0x00 — 0x040x0000 — 0x0004 NetWare File Server

0x00 — 0x070x0000 — 0x0007 NetWare Print Server

0x06 — 0x400x0006 — 0x0040 Microsoft RPC Server

0xFF0x00FF General SAP Request

ServiceName: The name of the server hosting the service.

2.2.1.2.104 IPX_MIB_INDEX

146 / 547

[MS-RRASM-Diff] - v20210407
Routing and Remote Access Server (RRAS) Management Protocol
Copyright © 2021 Microsoft Corporation
Release: April 7, 2021

The IPX_MIB_INDEX union MAY<95> be used in the
IPX_MIB_GET_INPUT_DATA (section 2.2.1.2.105) structure to specify the MIB index for which the

query is made.

 typedef union _IPX_MIB_INDEX {
 IF_TABLE_INDEX InterfaceTableIndex;
 ROUTING_TABLE_INDEX RoutingTableIndex;
 STATIC_ROUTES_TABLE_INDEX StaticRoutesTableIndex;
 SERVICES_TABLE_INDEX ServicesTableIndex;
 STATIC_SERVICES_TABLE_INDEX StaticServicesTableIndex;
 } IPX_MIB_INDEX,
 *PIPX_MIB_INDEX;

InterfaceTableIndex: Gives the MIB index within the interface table, as specified in section
2.2.1.2.99.

RoutingTableIndex: Gives the MIB index within the routing table, as specified in section
2.2.1.2.100.

StaticRoutesTableIndex: Gives the MIB index within the static routes table, as specified in section
2.2.1.2.101.

ServicesTableIndex: Gives the MIB index within the services table, as specified in section
2.2.1.2.102.

StaticServicesTableIndex: Gives the MIB index within the static services table, as specified in
section 2.2.1.2.103.

2.2.1.2.105 (Updated Section) IPX_MIB_GET_INPUT_DATA

The IPX_MIB_GET_INPUT_DATA structure MAY<96> be used to retrieve IPX MIB entries. This

structure is used in the following methods:

▪ RMIBEntryGet (section 3.1.4.30)

▪ RMIBEntryGetFirst (section 3.1.4.31)

▪ RMIBEntryGetNext (section 3.1.4.32)

 typedef struct _IPX_MIB_GET_INPUT_DATA {
 ULONG TableId;
 IPX_MIB_INDEX MibIndex;
 } IPX_MIB_GET_INPUT_DATA,
 *PIPX_MIB_GET_INPUT_DATA;

TableId: Specifies the type of table. Values MUST be one of the following values.

Value Meaning

IPX_BASE_ENTRY

0x00000000

IPX base. See IPXMIB_BASE (section 2.2.1.2.106).

IPX_INTERFACE_TABLE

0x00000001

 IPX interface table. See IPX_INTERFACE (section 2.2.1.2.108).

IPX_DEST_TABLE

0x00000002

IPX destination table. See IPX_ROUTE (section 2.2.1.2.109).

147 / 547

[MS-RRASM-Diff] - v20210407
Routing and Remote Access Server (RRAS) Management Protocol
Copyright © 2021 Microsoft Corporation
Release: April 7, 2021

Value Meaning

IPX_STATIC_ROUTE_TABLE

0x00000003

IPX Static Route Table. See IPX_STATIC_ROUTE_INFO (section 2.2.1.2.93).

IPX_SERV_TABLE

0x00000004

IPX service table. See IPX_SERVICE (section 2.2.1.2.120).

IPX_STATIC_SERV_TABLE

0x00000005

IPX static service table. See IPX_STATIC_SERVICE_INFO (section 2.2.1.2.94).

MibIndex: Specifies the MIB index for the query. See section 2.2.1.2.104.

2.2.1.2.106 IPXMIB_BASE

The IPXMIB_BASE structure MAY<97> be used to contain basic information about the IPX protocol.
This structure is returned as part of the following methods:

▪ RMIBEntryGet (section 3.1.4.30)

▪ RMIBEntryGetFirst (section 3.1.4.31)

▪ RMIBEntryGetNext (section 3.1.4.32)

 typedef struct _IPXMIB_BASE {
 ULONG OperState;
 UCHAR PrimaryNetNumber[4];
 UCHAR Node[6];
 UCHAR SysName[48];
 ULONG MaxPathSplits;
 ULONG IfCount;
 ULONG DestCount;
 ULONG ServCount;
 } IPXMIB_BASE,
 *PIPXMIB_BASE;

OperState: The operational status of the interface. This member can be one of the following values.

Value Meaning

OPER_STATE_DOWN

0x00000001

Nonoperational.

OPER_STATE_UP

0x00000002

Operational and can pass packets.

OPER_STATE_SLEEPING

0x00000003

Operational but has to connect to pass packets.

PrimaryNetNumber: Every IPX WAN router has a "primary network number". This is an IPX network
number unique to the entire internet. This number will be a permanently assigned network

number for the router.

A 32-bit number assigned by a network administrator; set to 0 on the local network.

Node: A 48-bit number that identifies the LAN hardware address. If the node number is FFFF FFFF
FFFF, it means broadcast. If the node number is 0000 0000 0001, that means it is the server.

148 / 547

[MS-RRASM-Diff] - v20210407
Routing and Remote Access Server (RRAS) Management Protocol
Copyright © 2021 Microsoft Corporation
Release: April 7, 2021

SysName: An administratively assigned name for this managed node. By convention, this is the
node's fully qualified domain name.

MaxPathSplits: The maximum number of path splits implies the number of network interface boards
in the server that are connected to the network or the number of ports in the server that are

connected to a switch. The highest possible number is 8.

IfCount: Indicates the number of available interfaces.

DestCount: This value indicates the maximum destinations (networks) that the user expects the
router to learn. This is used to pre-allocate table sizes for network tables. Changing this value can
greatly affect the memory used by the IPX, but it can also speed learning times.

ServCount: This value indicates the maximum services that the user expects the router to learn. This
is used to pre-allocate table sizes for service tables. Changing this value can greatly affect the

memory used by the IPX, but it can also speed learning times.

2.2.1.2.107 IPX_IF_STATS

The IPX_IF_STATS structure MAY<98> be used to gather the IPX interface statistics. This structure
is returned as part of the following methods:

▪ RMIBEntryGet (section 3.1.4.30)

▪ RMIBEntryGetFirst (section 3.1.4.31)

▪ RMIBEntryGetNext (section 3.1.4.32)

 typedef struct _IPX_IF_STATS {
 ULONG IfOperState;
 ULONG MaxPacketSize;
 ULONG InHdrErrors;
 ULONG InFiltered;
 ULONG InNoRoutes;
 ULONG InDiscards;
 ULONG InDelivers;
 ULONG OutFiltered;
 ULONG OutDiscards;
 ULONG OutDelivers;
 ULONG NetbiosReceived;
 ULONG NetbiosSent;
 } IPX_IF_STATS,
 *PIPX_IF_STATS;

IfOperState: The operational status of the interface. This member can be one of the following values.

Value Meaning

OPER_STATE_DOWN

0x00000001

Nonoperational.

OPER_STATE_UP

0x00000002

Operational and can pass packets.

OPER_STATE_SLEEPING

0x00000003

Operational but has to connect to pass packets.

MaxPacketSize: The size of the MAX size packet received on the interface.

InHdrErrors: The number of packets received with header errors.

149 / 547

[MS-RRASM-Diff] - v20210407
Routing and Remote Access Server (RRAS) Management Protocol
Copyright © 2021 Microsoft Corporation
Release: April 7, 2021

InFiltered: The number of incoming packets filtered.

InNoRoutes: The number of packets received with no matching routes.

InDiscards: The number of incoming packets discarded.

InDelivers: The number of incoming packets delivered.

OutFiltered: The number of outgoing packets filtered.

OutDiscards: The number of outgoing packets discarded.

OutDelivers: The number of outgoing packets delivered.

NetbiosReceived: The number of NetBIOS packets received.

NetbiosSent: The number of NetBIOS packets sent.

2.2.1.2.108 (Updated Section) IPX_INTERFACE

The IPX_INTERFACE structure MAY<99> be used to describe the MIB Row for
IPX_INTERFACE_TABLE. This structure is returned as part of the following methods:

▪ RMIBEntryGet (section 3.1.4.30)

▪ RMIBEntryGetFirst (section 3.1.4.31)

▪ RMIBEntryGetNext (section 3.1.4.32)

 typedef struct _IPX_INTERFACE {
 ULONG InterfaceIndex;
 ULONG AdministratorState;
 ULONG AdapterIndex;
 UCHAR InterfaceName[48];
 ULONG InterfaceType;
 ULONG MediaType;
 UCHAR NetNumber[4];
 UCHAR MacAddress[6];
 ULONG Delay;
 ULONG Throughput;
 ULONG NetbiosAccept;
 ULONG NetbiosDeliver;
 ULONG EnableIpxWanNegotiation;
 IPX_IF_STATS IfStats;
 } IPX_INTERFACE,
 *PIPX_INTERFACE;

InterfaceIndex: The local index value for the network interface. This index value MAY change when
a network adapter is disabled and then enabled, or under other circumstances, and need not be

persistent.

AdministratorState: This MUST be set to the desired state of the interface. A value of 0x00000001

disables the interface and a value of 0x00000002 enables the interface.

AdapterIndex: The interface index associated with the network adapter.

InterfaceName: A null-terminated Unicode string that contains the name of the adapter.

InterfaceType: The type of the interface. The type MUST be one of the following values.

150 / 547

[MS-RRASM-Diff] - v20210407
Routing and Remote Access Server (RRAS) Management Protocol
Copyright © 2021 Microsoft Corporation
Release: April 7, 2021

Value Meaning

IF_TYPE_OTHER

0x00000001

Other

IF_TYPE_LAN

0x00000002

LAN

IF_TYPE_WAN_ROUTER

0x00000003

WAN router

IF_TYPE_WAN_WORKSTATION

0x00000004

Remote workstation dialing in

IF_TYPE_INTERNAL

0x00000005

Internal (virtual) interface

IF_TYPE_PERSONAL_WAN_ROUTER

0x00000006

Personal WAN router

IF_TYPE_ROUTER_WORKSTATION_DIALOUT

0x00000007

Local workstation dialing out

IF_TYPE_STANDALONE_WORKSTATION_DIALOUT

0x00000008

Stand-alone workstation dialing out

MediaType: The type of media. This MUST one of the following values.

Value Meaning

NdisMedium802_3

0x00000000

An Ethernet (802.3) network.

NdisMedium802_5

0x00000001

A Token Ring (802.5) network.

NdisMediumFddi

0x00000002

A Fiber Distributed Data Interface (FDDI) network.

NdisMediumWan

0x00000003

A wide area network (WAN). This type covers various forms of point-to-point
and WAN NICs and variant address/header formats that MUST be negotiated
between the protocol driver and the underlying driver after the binding is
established.

NdisMediumLocalTalk

0x00000004

A LocalTalk network.

NdisMediumDix

0x00000005

An Ethernet network for which the drivers use the DIX Ethernet header format.

NdisMediumArcnetRaw

0x00000006

An ARCNET network.

NdisMediumArcnet878_2

0x00000007

An ARCNET (878.2) network.

NdisMediumAtm

0x00000008

An ATM network. Connection-oriented client protocol drivers can bind
themselves to an underlying miniport driver that returns this value. Otherwise,
legacy protocol drivers bind themselves to the system-supplied LanE

151 / 547

[MS-RRASM-Diff] - v20210407
Routing and Remote Access Server (RRAS) Management Protocol
Copyright © 2021 Microsoft Corporation
Release: April 7, 2021

Value Meaning

intermediate driver, which reports its medium type as either NdisMedium802_3
or NdisMedium802_5, depending on how the network administrator configures
the LanE driver.

NdisMediumWirelessWan

0x00000009

A wireless network. NDIS 5.x miniport drivers that support wireless LAN
(WLAN) or wireless WAN (WWAN) packets declare their medium as
NdisMedium802_3 and emulate Ethernet to higher-level NDIS drivers.<100>

NdisMediumIrda

0x0000000A

An infrared (IrDA) network.

NdisMediumBpc

0x0000000B

A broadcast computer network.

NdisMediumCoWan

0x0000000C

A wide area network (WAN) in a connection-oriented environment.

NdisMedium1394

0x0000000D

An IEEE 1394 (FireWire) network.

NdisMediumInfiniBand

0x0000000E

An InfiniBand network.

NdisMediumTunnel

0x0000000F

A tunnel network.

NdisMediumNative802_11

0x00000010

A native IEEE 802.11 network.

NdisMediumLoopback

0x00000011

An NDIS loopback network.

NetNumber: The IPX network number that is matched to the destination network number in a
packet's IPX header.

MacAddress: The destination MAC address of the IPX packet when it is forwarded to the next hop.
For directly attached networks, the Forwarding MAC Address field is blank.

Delay: Link delay indicated in milliseconds.

Throughput: Throughput of the interface indicated in bits per second.

NetbiosAccept: This MUST be set to 0x00000001 for the interface to accept NetBIOS broadcast
packets.

NetbiosDeliver: This MUST be set to 0x00000000 on the WAN interface and 0x00000001 on the LAN
interface.

EnableIpxWanNegotiation: A value of 0x00000001 disables the WAN negotiation, and a value of

0x00000002 enables the WAN negotiation.

IfStats: The interface statistics. See IPX_IF_STATS (section 2.2.1.2.108).107).

2.2.1.2.109 IPX_ROUTE

The IPX_ROUTE structure MAY<101> be used to specify the details for an IPX route in the RRAS
server.

152 / 547

[MS-RRASM-Diff] - v20210407
Routing and Remote Access Server (RRAS) Management Protocol
Copyright © 2021 Microsoft Corporation
Release: April 7, 2021

 typedef struct _IPX_ROUTE {
 ULONG InterfaceIndex;
 ULONG Protocol;
 UCHAR Network[4];
 USHORT TickCount;
 USHORT HopCount;
 UCHAR NextHopMacAddress[6];
 ULONG Flags;
 } IPX_ROUTE,
 *PIPX_ROUTE;

InterfaceIndex: The local index value for the network interface. This index value MAY change when
a network adapter is disabled and then enabled, or under other circumstances, and need not be

persistent.

Protocol: The protocol that added the route. The value MUST be one of the following values.

Value Meaning

IPX_PROTOCOL_LOCAL

0x00000000

Local route

IPX_PROTOCOL_STATIC

0x00000001

Static route

IPX_PROTOCOL_RIP

0x00000002

Added by RIP

IPX_PROTOCOL_NLSP

0x00000004

Added by NLSP

Network: This MUST be the 4-byte IPX network number in hexadecimal (8 hexadecimal digits).

TickCount: The number of ticks it takes to reach the destination network where one tick is

approximately 1/18 of a second. This estimate is based on ongoing RIP requests and replies and is
determined by the transmission speed of network segments. LAN links are typically one tick, and
WAN links, such as a T1 link, are usually six or seven ticks. The tick count is an estimated, not

precise, measurement of the delay.

HopCount: This MUST be the number of routers to be traversed to get to the network number.

NextHopMacAddress: This MUST be the 6-byte MAC address of the next hop in hexadecimal (12
hexadecimal digits).

Flags: Indicates the type of route being added. It MUST be one of the following values.

Value Meaning

GLOBAL_WAN_ROUTE

0x00000001

Global route.

DO_NOT_ADVERTISE_ROUTE

0x00000002

This route is not advertised.

2.2.1.2.110 IPX_MIB_ROW

153 / 547

[MS-RRASM-Diff] - v20210407
Routing and Remote Access Server (RRAS) Management Protocol
Copyright © 2021 Microsoft Corporation
Release: April 7, 2021

The IPX_MIB_ROW union MAY<102> be used to contain information about the IPX interface, route,
and service.

 typedef union _IPX_MIB_ROW {
 IPX_INTERFACE Interface;
 IPX_ROUTE Route;
 IPX_SERVICE Service;
 } IPX_MIB_ROW,
 *PIPX_MIB_ROW;

Interface: The IPX_INTERFACE (section 2.2.1.2.108) structure.

Route: The IPX_ROUTE (section 2.2.1.2.109) structure.

Service: The IPX_SERVICE (section 2.2.1.2.120) structure.

2.2.1.2.111 IPX_MIB_SET_INPUT_DATA

The IPX_MIB_SET_INPUT_DATA structure MAY<103> be used in RMIBEntrySet (section 3.1.4.29)
method.

 typedef struct _IPX_MIB_SET_INPUT_DATA {
 ULONG TableId;
 IPX_MIB_ROW MibRow;
 } IPX_MIB_SET_INPUT_DATA,
 *PIPX_MIB_SET_INPUT_DATA;

TableId: Specifies the type of tables. It MUST be one of the following values.

Value Meaning

0x00000000 IPX_BASE_ENTRY

0x00000001 IPX_INTERFACE_TABLE

0x00000002 IPX_DEST_TABLE

0x00000003 IPX_STATIC_ROUTE_TABLE

0x00000004 IPX_SERV_TABLE

0x00000005 IPX_STATIC_SERV_TABLE

MibRow: An IPX_MIB_ROW (section 2.2.1.2.110) structure.

2.2.1.2.112 (Updated Section) SAP_SERVICE_FILTER_INFO

The SAP_SERVICE_FILTER_INFO structure MAY<104> be used in the structure
SAP_IF_FILTERS (section 2.2.1.2.114).113).

 typedef struct _SAP_SERVICE_FILTER_INFO {
 union {
 USHORT ServiceType;
 ULONG ServiceType_align;
 };
 UCHAR ServiceName[48];
 } SAP_SERVICE_FILTER_INFO,
 *PSAP_SERVICE_FILTER_INFO;

154 / 547

[MS-RRASM-Diff] - v20210407
Routing and Remote Access Server (RRAS) Management Protocol
Copyright © 2021 Microsoft Corporation
Release: April 7, 2021

ServiceType: A field that indicates the type of the service. Service types are assigned uniquely by
Novell, Inc. Some commonly defined SAP service types are listed in the following table.

Service type (hexadecimal) Server

0x00 Unknown

0x00 — 0x04 NetWare file server

0x00 — 0x07 NetWare print server

0x06 — 0x40 Microsoft RPC server

0xFF General SAP request

ServiceType_align: Ensures alignment.

ServiceName: Stores the name of the server advertising the service. The combination of server
name and service type uniquely identifies a service on an IPX internetwork. Server names that are

fewer than 48 bytes are terminated with the ASCII NULL character.

2.2.1.2.113 (Updated Section) SAP_IF_FILTERS

The SAP_IF_FILTERS structure MAY<105> be used to contain information about the SAP interface

filters.

 typedef struct _SAP_IF_FILTERS {
 ULONG SupplyFilterAction;
 ULONG SupplyFilterCount;
 ULONG ListenFilterAction;
 ULONG ListenFilterCount;
 SAP_SERVICE_FILTER_INFO ServiceFilter[1];
 } SAP_IF_FILTERS,
 *PSAP_IF_FILTERS;

SupplyFilterAction: This MUST be set to 0x00000001 to permit data and to 0x00000002 to deny
data.

Value Meaning

0x00000001 Permit data

0x00000002 Deny data

SupplyFilterCount: The count of supply filters.

ListenFilterAction: This MUST be set to 0x00000001 to permit data and to 0x00000002 to deny
data.

Value Meaning

0x00000001 Permit data

0x00000002 Deny data

ListenFilterCount: The count of listen filters.

ServiceFilter: This is a SAP_SERVICE_FILTER_INFO (section 2.2.1.2.113).112).

155 / 547

[MS-RRASM-Diff] - v20210407
Routing and Remote Access Server (RRAS) Management Protocol
Copyright © 2021 Microsoft Corporation
Release: April 7, 2021

2.2.1.2.114 SAP_IF_CONFIG

The SAP_IF_CONFIG structure MAY<106> be used to contain SAP InterfaceConfiguration
Information. This structure MUST be used when the InfoType in RTR_TOC_ENTRY (section 2.2.1.2.4)

is 0x00020001.

 typedef struct _SAP_IF_CONFIG {
 SAP_IF_INFO SapIfInfo;
 SAP_IF_FILTERS SapIfFilters;
 } SAP_IF_CONFIG,
 *PSAP_IF_CONFIG;

SapIfInfo: This MUST be a SAP_IF_INFO (section 2.2.1.2.121) structure.

SapIfFilters: This is a SAP_IF_FILTERS (section 2.2.1.2.113) structure.

2.2.1.2.115 SAP_MIB_BASE

The SAP_MIB_BASE structure MAY<107> be used to contain the operation status. This structure is
returned as part of the following methods:

▪ RMIBEntryGet (section 3.1.4.30)

▪ RMIBEntryGetFirst (section 3.1.4.31)

▪ RMIBEntryGetNext (section 3.1.4.32)

 typedef struct _SAP_MIB_BASE {
 ULONG SapOperState;
 } SAP_MIB_BASE,
 *PSAP_MIB_BASE;

SapOperState: Contains the operational status of the SAP. It MUST be one of the following values.

Value Meaning

OPER_STATE_DOWN

0x00000001

Nonoperational.

OPER_STATE_UP

0x00000002

Operational and can pass packets.

OPER_STATE_SLEEPING

0x00000003

Sleeping.

OPER_STATE_STARTING

0x00000004

Starting the router.

OPER_STATE_STOPPING

0x00000005

Stopping the router.

2.2.1.2.116 SAP_IF_STATS

The SAP_IF_STATS structure MAY<108> be used to contain the SAP MIB Interface Table Entry. This
structure is returned as part of the following methods:

156 / 547

[MS-RRASM-Diff] - v20210407
Routing and Remote Access Server (RRAS) Management Protocol
Copyright © 2021 Microsoft Corporation
Release: April 7, 2021

▪ RMIBEntryGet (section 3.1.4.30)

▪ RMIBEntryGetFirst (section 3.1.4.31)

▪ RMIBEntryGetNext (section 3.1.4.32)

 typedef struct _SAP_IF_STATS {
 ULONG SapIfOperState;
 ULONG SapIfInputPackets;
 ULONG SapIfOutputPackets;
 } SAP_IF_STATS,
 *PSAP_IF_STATS;

SapIfOperState: Indicates the operation status of the SAP on the interface. It MUST be one of the
following values.

Value Meaning

OPER_STATE_DOWN

0x00000001

Nonoperational.

OPER_STATE_UP

0x00000002

Operational and can pass packets.

OPER_STATE_SLEEPING

0x00000003

Sleeping.

SapIfInputPackets: Counts the SAP input packets on the interface.

SapIfOutputPackets: Counts the SAP output packets on the interface.

2.2.1.2.117 SAP_INTERFACE

The SAP_INTERFACE structure MAY<109> be used to contain information about an SAP interface.
This structure is returned as part of the following methods:

▪ RMIBEntryGet (section 3.1.4.30)

▪ RMIBEntryGetFirst (section 3.1.4.31)

▪ RMIBEntryGetNext (section 3.1.4.32)

 typedef struct _SAP_INTERFACE {
 ULONG InterfaceIndex;
 SAP_IF_INFO SapIfInfo;
 SAP_IF_STATS SapIfStats;
 } SAP_INTERFACE,
 *PSAP_INTERFACE;

InterfaceIndex: This MUST be the index of the interface.

SapIfInfo: This MUST be a SAP_IF_INFO (section 2.2.1.2.121) structure.

SapIfStats: This MUST be a SAP_IF_STATS (section 2.2.1.2.116) structure.

2.2.1.2.118 (Updated Section) SAP_MIB_GET_INPUT_DATA

157 / 547

[MS-RRASM-Diff] - v20210407
Routing and Remote Access Server (RRAS) Management Protocol
Copyright © 2021 Microsoft Corporation
Release: April 7, 2021

The SAP_MIB_GET_INPUT_DATA structure MAY<110> be used to retrieve the SAP MIB
information. This structure is used in the following methods to retrieve the MIB information of the

TableId and specified InterfaceIndex:

▪ RMIBEntryGet (section 3.1.4.30)

▪ RMIBEntryGetFirst (section 3.1.4.31)

▪ RMIBEntryGetNext (section 3.1.4.32)

 typedef struct _SAP_MIB_GET_INPUT_DATA {
 ULONG TableId;
 ULONG InterfaceIndex;
 } SAP_MIB_GET_INPUT_DATA,
 *PSAP_MIB_GET_INPUT_DATA;

TableId: This MUST be set to 0x00000000 if the table refers to SAP_MIB_BASE (section 2.2.1.2.115)
or MUST be set to 0x00000001 if the table refers to SAP_INTERFACE (section 2.2.1.2.118).117).

InterfaceIndex: MUST be the interface index of the interface.

2.2.1.2.119 SAP_MIB_SET_INPUT_DATA

The SAP_MIB_SET_INPUT_DATA structure MAY<111> be used in the
RMIBEntrySet (section 3.1.4.29) method to set information corresponding to the TableId and the

SapInterface.

 typedef struct _SAP_MIB_SET_INPUT_DATA {
 ULONG TableId;
 SAP_INTERFACE SapInterface;
 } SAP_MIB_SET_INPUT_DATA,
 *PSAP_MIB_SET_INPUT_DATA;

TableId: This MUST be set to 0x00000001.

SapInterface: This MUST be a SAP_INTERFACE (section 2.2.1.2.117) structure.

2.2.1.2.120 IPX_SERVICE

The IPX_SERVICE structure MAY<112> be used to contain information about the IPX service and is
part of the IPX_MIB_ROW (section 2.2.1.2.110) structure.

 typedef struct _IPX_SERVICE {
 ULONG InterfaceIndex;
 ULONG Protocol;
 IPX_SERVER_ENTRY Server;
 } IPX_SERVICE,
 *PIPX_SERVICE;

InterfaceIndex: This MUST be the interface index.

Protocol: This MUST be the protocol from which knowledge of the service was obtained.

Server: This MUST be an IPX_SERVER_ENTRY (section 2.2.1.2.94) structure.

2.2.1.2.121 SAP_IF_INFO

158 / 547

[MS-RRASM-Diff] - v20210407
Routing and Remote Access Server (RRAS) Management Protocol
Copyright © 2021 Microsoft Corporation
Release: April 7, 2021

The SAP_IF_INFO structure MAY<113> be used to contain information about the SAP interface. This
structure is returned as part of the following methods:

▪ RMIBEntryGet (section 3.1.4.30)

▪ RMIBEntryGetFirst (section 3.1.4.31)

▪ RMIBEntryGetNext (section 3.1.4.32)

 typedef struct _SAP_IF_INFO {
 ULONG AdminState;
 ULONG UpdateMode;
 ULONG PacketType;
 ULONG Supply;
 ULONG Listen;
 ULONG GetNearestServerReply;
 ULONG PeriodicUpdateInterval;
 ULONG AgeIntervalMultiplier;
 } SAP_IF_INFO,
 *PSAP_IF_INFO;

AdminState: This MUST be the desired state of the interface. A value of 0x00000001 disables the

SAP on the interface, and a value of 0x00000002 enables the SAP on the interface.

UpdateMode: This MUST be the SAP update mechanism used on the interface.

PacketType: This MUST be the SAP packet type used on this interface.

Supply: This MUST be set to a value of 0x00000001 to disable sending SAP updates on this interface
and to a value of 0x00000002 to enable.

Listen: This MUST be set to a value of 0x00000001 to disable listening to SAP updates on this

interface and to a value of 0x00000002 to enable.

GetNearestServerReply: Set to a value of 0x00000001 to disable GetNearestServer and to a value

of 0x00000002 to enable.

PeriodicUpdateInterval: This MUST be the interval, in seconds, at which the information is
periodically updated. The default value is 60.

AgeIntervalMultiplier: Each time a periodic update is done at the server, PeriodicUpdateInterval
is multiplied by AgeIntervalMultiplier. The default value is 3.

2.2.1.2.122 RIPMIB_BASE

The RIPMIB_BASE structure contains information about the RIP MIB base. This structure is returned
as part of the following methods:

▪ RMIBEntryGet (section 3.1.4.30)

▪ RMIBEntryGetFirst (section 3.1.4.31)

▪ RMIBEntryGetNext (section 3.1.4.32)

 typedef struct _RIPMIB_BASE {
 ULONG RIPOperState;
 } RIPMIB_BASE,
 *PRIPMIB_BASE;

RIPOperState: RIPOperState MUST be one of the following values.

159 / 547

[MS-RRASM-Diff] - v20210407
Routing and Remote Access Server (RRAS) Management Protocol
Copyright © 2021 Microsoft Corporation
Release: April 7, 2021

Value Meaning

OPER_STATE_DOWN

0x00000001

Nonoperational

OPER_STATE_UP

0x00000002

Operational and can pass packets

OPER_STATE_SLEEPING

0x00000003

Sleeping

OPER_STATE_STARTING

0x00000004

Starting the router

OPER_STATE_STOPPING

0x00000005

Stopping the router

2.2.1.2.123 RIP_IF_STATS

The RIP_IF_STATS structure contains the RIP interface statistics. This structure is returned as part
of the following methods:

▪ RMIBEntryGet (section 3.1.4.30)

▪ RMIBEntryGetFirst (section 3.1.4.31)

▪ RMIBEntryGetNext (section 3.1.4.32)

 typedef struct _RIP_IF_STATS {
 ULONG RipIfOperState;
 ULONG RipIfInputPackets;
 ULONG RipIfOutputPackets;
 } RIP_IF_STATS,
 *PRIP_IF_STATS;

RipIfOperState: This MUST be one of the following values.

Value Meaning

OPER_STATE_DOWN

0x00000001

Nonoperational

OPER_STATE_UP

0x00000002

Operational and can pass packets

OPER_STATE_SLEEPING

0x00000003

Sleeping

RipIfInputPackets: The count of the RIP interface input packets.

RipIfOutputPackets: The count of the RIP interface output packets.

2.2.1.2.124 RIP_INTERFACE

The RIP_INTERFACE structure contains information about a specific RIP interface. This structure is
returned as part of the following methods:

160 / 547

[MS-RRASM-Diff] - v20210407
Routing and Remote Access Server (RRAS) Management Protocol
Copyright © 2021 Microsoft Corporation
Release: April 7, 2021

▪ RMIBEntryGet (section 3.1.4.30)

▪ RMIBEntryGetFirst (section 3.1.4.31)

▪ RMIBEntryGetNext (section 3.1.4.32)

 typedef struct _RIP_INTERFACE {
 ULONG InterfaceIndex;
 RIP_IF_INFO RipIfInfo;
 RIP_IF_STATS RipIfStats;
 } RIP_INTERFACE,
 *PRIP_INTERFACE;

InterfaceIndex: This MUST be the interface index of the interface.

RipIfInfo: This MUST be the RIP_IF_INFO (section 2.2.1.2.205) structure.

RipIfStats: This MUST be the RIP_IF_STATS (section 2.2.1.2.123) structure.

2.2.1.2.125 (Updated Section) RIP_MIB_GET_INPUT_DATA

The RIP_MIB_GET_INPUT_DATA structure MAY<114> be used to retrieve information from the IPX
RIP MIB.

 typedef struct _RIP_MIB_GET_INPUT_DATA {
 ULONG TableId;
 ULONG InterfaceIndex;
 } RIP_MIB_GET_INPUT_DATA,
 *PRIP_MIB_GET_INPUT_DATA;

TableId: This MUST contain 0x00000000 if the table refers to RIPMIB_BASE (section 2.2.1.2.122) or
it MUST contain 0x00000001 if the table refers to RIP_INTERFACE (section 2.2.1.2.125).124).

InterfaceIndex: The interface index.

2.2.1.2.126 (Updated Section) RIP_MIB_SET_INPUT_DATA

The RIP_MIB_SET_INPUT_DATA structure MAY<115> be used to set information in the IPX RIP
MIB.

 typedef struct _RIP_MIB_SET_INPUT_DATA {
 ULONG TableId;
 RIP_INTERFACE RipInterface;
 } RIP_MIB_SET_INPUT_DATA,
 *PRIP_MIB_SET_INPUT_DATA;

TableId: This MUST contain 0x00000000 if the table refers to RIPMIB_BASE (section 2.2.1.2.122) or
it MUST contain 0x00000001 if the table refers to RIP_INTERFACE (section 2.2.1.2.125).124).

RipInterface: This MUST be the RIP_INTERFACE structure.

2.2.1.2.127 EAPTLS_HASH

The EAPTLS_HASH structure contains the certificate hash.

 typedef struct _EAPTLS_HASH {
 DWORD cbHash;
 BYTE pbHash[20];

161 / 547

[MS-RRASM-Diff] - v20210407
Routing and Remote Access Server (RRAS) Management Protocol
Copyright © 2021 Microsoft Corporation
Release: April 7, 2021

 } EAPTLS_HASH;

cbHash: This MUST contain the number of bytes in the hash.

pbHash: This MUST contain the hash of the certificate.

2.2.1.2.128 (Updated Section) EAPTLS_USER_PROPERTIES

The EAPTLS_USER_PROPERTIES structure is used to store the EAP Transport Layer Security (TLS)
user properties.

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

reserved

dwVersion

dwSize

fFlags

Hash (24 bytes)

...

...

pwszDiffUser

dwPinOffset

pwszPin

usLength usMaximumLength

ucSeed awszString (variable)

...

reserved (4 bytes): This MUST be 0x00000000.

dwVersion (4 bytes): This MUST be 0x00000001.

dwSize (4 bytes): This MUST be the number of bytes in this structure.

fFlags (4 bytes): Unused; it MUST be set to 0x00000000.

Hash (24 bytes): An EAPTLS_HASH (section 2section2.2.1.2.128127) structure that MUST contain
the hash for the user certificate.

pwszDiffUser (4 bytes): Pointer to a null-terminated Unicode string that contains the EAP identity to
send. The string SHOULD be stored starting at awszString.

162 / 547

[MS-RRASM-Diff] - v20210407
Routing and Remote Access Server (RRAS) Management Protocol
Copyright © 2021 Microsoft Corporation
Release: April 7, 2021

dwPinOffset (4 bytes): Offset from the end of this structure to where the PIN is stored. This
SHOULD be set to sizeof(pwszDiffUser).

pwszPin (4 bytes): Pointer to a null-terminated Unicode string that contains the smart card PIN.

usLength (2 bytes): Unused; it MUST be set to zero (0).

usMaximumLength (2 bytes): Unused; it MUST be set to zero (0).

ucSeed (1 byte): Unused; it MUST be set to zero (0).

awszString (variable): Storage for pwszDiffUser and pwszPin.

2.2.1.2.129 (Updated Section) MPRAPI_OBJECT_HEADER_IDL

The MPRAPI_OBJECT_HEADER_IDL structure SHOULD<116> define the version of the structure
that needs to be used by the following methods and structures:

▪ RRasAdminConnectionEnumEx (section 3.1.4.46)

▪ RRasAdminConnectionGetInfoEx (section 3.1.4.47)

▪ RAS_CONNECTION_EX_1_IDL (section 2.2.1.2.134)133)

▪ MPR_SERVER_EX_1 (section 2.2.1.2.143)142)

▪ MPR_SERVER_SET_CONFIG_EX_1 (section 2.2.1.2.146)145)

▪ RAS_UPDATE_CONNECTION_1_IDL (section 2.2.1.2.148)147)

▪ MPR_SERVER_SET_CONFIG_EX_2 (section 2.2.1.2.241)

▪ MPR_SERVER_EX_2 (section 2.2.1.2.242)

▪ MPR_IF_CUSTOMINFOEX_0 (section 2.2.1.2.244)

▪ MPR_SERVER_SET_CONFIG_EX_3 (section 2.2.1.2.250)

▪ MPR_SERVER_EX_3 (section 2.2.1.2.251)

▪ MPR_IF_CUSTOMINFOEX_1 (section 2.2.1.2.269)

 typedef struct _MPRAPI_OBJECT_HEADER_IDL {
 UCHAR revision;
 UCHAR type;
 USHORT size;
 } MPRAPI_OBJECT_HEADER_IDL,
 *PMPRAPI_OBJECT_HEADER_IDL;

revision: This represents the version of the structure that is being used depending on the numeric
value in the type field. The following values are supported.

Value Meaning

MPRAPI_RAS_CONNECTION_OBJECT_REVISION_1

0x01

Represents revision 1 of the structure
RAS_CONNECTION_EX_1_IDL (section 2.2.1.2.13
3) if type is 0x01.

MPRAPI_MPR_SERVER_SET_CONFIG_OBJECT_REVISI
ON_1

0x01

Represents revision 1 of the structure
MPR_SERVER_SET_CONFIG_EX_1 (section 2.2.1.2
.145) if type is 0x03.

163 / 547

[MS-RRASM-Diff] - v20210407
Routing and Remote Access Server (RRAS) Management Protocol
Copyright © 2021 Microsoft Corporation
Release: April 7, 2021

Value Meaning

MPRAPI_MPR_SERVER_SET_CONFIG_OBJECT_REVISI
ON_2

0x02

Represents revision 2 of the structure
MPR_SERVER_SET_CONFIG_EX_2 (section 2.2.1.2
.241) if type is 0x03.

MPRAPI_MPR_SERVER_SET_CONFIG_OBJECT_REVISI
ON_3

0x03

Represents revision 3 of the structure
MPR_SERVER_SET_CONFIG_EX_3 (section 2.2.1.2
.250) if type is 0x03.

MPRAPI_MPR_SERVER_OBJECT_REVISION_1

0x01

Represents revision 1 of the structure
MPR_SERVER_EX_1 (section 2.2.1.2.142) if type
is 0x02.

MPRAPI_MPR_SERVER_OBJECT_REVISION_2

0x02

Represents revision 2 of the structure
MPR_SERVER_EX_2 (section 2.2.1.2.242) if type
is 0x02.

MPRAPI_MPR_SERVER_OBJECT_REVISION_3

0x03

Represents revision 3 of the structure
MPR_SERVER_EX_3 (section 2.2.1.2.251) if type
is 0x02.

MPRAPI_RAS_UPDATE_CONNECTION_OBJECT_REVISI
ON_1

0x01

Represents revision 1 of the structure
RAS_UPDATE_CONNECTION_1_IDL (section 2.2.1.
2.147) if type is 0x05.

MPRAPI_MPR_IF_CUSTOM_CONFIG_OBJECT_REVISIO
N_1

0x01

Represents revision 1 of the structure
MPR_IF_CUSTOMINFOEX_0 (section 2.2.1.2.244)
if type is 0x06.

MPRAPI_MPR_IF_CUSTOM_CONFIG_OBJECT_REVISIO
N_2

0x02

Represents revision 2 of the structure
MPR_IF_CUSTOMINFOEX_1 (section 2.2.1.2.269)
if type is 0x06.

type: The following represents the type of structure being used.

Value Meaning

MPRAPI_OBJECT_TYPE_RAS_CONNECTION_OBJ
ECT

0x01

Represents a
RAS_CONNECTION_EX_IDL (section 2.2.1.2.134)

structure.

MPRAPI_OBJECT_TYPE_MPR_SERVER_OBJECT

0x02

Represents an MPR_SERVER_EX structure
(MPR_SERVER_EX_1 (section 2.2.1.2.142) structure or an
MPR_SERVER_EX_2 (section 2.2.1.2.242)) based on the
value of revision.

MPRAPI_OBJECT_TYPE_MPR_SERVER_SET_CON
FIG_OBJECT

0x03

Represents an MPR_SERVER_SET_CONFIG_EX structure
(an MPR_SERVER_SET_CONFIG_EX_1 or an
MPR_SERVER_SET_CONFIG_EX_2 (section 2.2.1.2.241)
structure based on the value of revision).

MPRAPI_OBJECT_TYPE_UPDATE_CONNECTION_
OBJECT

0x05

Represents a
RAS_UPDATE_CONNECTION_1_IDL (section 2.2.1.2.147)
structure.

MPRAPI_OBJECT_TYPE_IF_CUSTOM_CONFIG_O
BJECT

0x06

Represents an
MPR_IF_CUSTOMINFOEX_IDL (section 2.2.1.2.245)
structure.

size: Size of the BLOB (structure) being passed based on the type and revision.

164 / 547

[MS-RRASM-Diff] - v20210407
Routing and Remote Access Server (RRAS) Management Protocol
Copyright © 2021 Microsoft Corporation
Release: April 7, 2021

2.2.1.2.130 (Updated Section) PPP_PROJECTION_INFO_1

The PPP_PROJECTION_INFO_1 structure<117> contains information obtained during the PPP
negotiation for the PPP-based tunnels.

 typedef struct _PPP_PROJECTION_INFO_1{
 DWORD dwIPv4NegotiationError;
 WCHAR wszAddress[16];
 WCHAR wszRemoteAddress[16];
 DWORD dwIPv4Options;
 DWORD dwIPv4RemoteOptions;
 ULONG64 IPv4SubInterfaceIndex;
 DWORD dwIPv6NegotiationError;
 UCHAR bInterfaceIdentifier[8];
 UCHAR bRemoteInterfaceIdentifier[8];
 UCHAR bPrefix[8];
 DWORD dwPrefixLength;
 ULONG64 IPv6SubInterfaceIndex;
 DWORD dwLcpError;
 DWORD dwAuthenticationProtocol;
 DWORD dwAuthenticationData;
 DWORD dwRemoteAuthenticationProtocol;
 DWORD dwRemoteAuthenticationData;
 DWORD dwLcpTerminateReason;
 DWORD dwLcpRemoteTerminateReason;
 DWORD dwLcpOptions;
 DWORD dwLcpRemoteOptions;
 DWORD dwEapTypeId;
 DWORD dwRemoteEapTypeId;
 DWORD dwCcpError;
 DWORD dwCompressionAlgorithm;
 DWORD dwCcpOptions;
 DWORD dwRemoteCompressionAlgorithm;
 DWORD dwCcpRemoteOptions;
 } PPP_PROJECTION_INFO_1,
 *PPPP_PROJECTION_INFO_1;

dwIPv4NegotiationError: Same as dwError in PPP_IPCP_INFO (section 2.2.1.2.66).65).

wszAddress: Same as wszAddress in PPP_IPCP_INFO.

wszRemoteAddress: Same as wszRemoteAddress in PPP_IPCP_INFO.

dwIPv4Options: Same as dwOptions in PPP_IPCP_INFO.

dwIPv4RemoteOptions: Same as dwIPv4Options.

IPv4SubInterfaceIndex: Specifies the index of the subinterface corresponding to the connection on

the server.

dwIPv6NegotiationError: Specifies the result of PPP_IPv6. Network control protocol negotiation. A
value of zero (0) indicates that either IPv6 was not negotiated or Ipv6 has been negotiated
successfully. A nonzero value indicates failure and is the actual fatal error that occurred during the

control protocol.

bInterfaceIdentifier: If dwIPv6NegotiationError is zero (0) and IPv6 was negotiated, this MUST

be the 64-bit interface identifier of the IPv6 address of the server interface. If
dwIPv6NegotiationError is zero, a value of zero for this indicates that IPv6 was not negotiated.
It MUST be zero when dwIPv6NegotiationError is nonzero.

bRemoteInterfaceIdentifier: If dwIPv6NegotiationError is zero (0) and IPv6 was negotiated,
this MUST be the 64-bit interface identifier of the IPv6 address of the client interface. If

165 / 547

[MS-RRASM-Diff] - v20210407
Routing and Remote Access Server (RRAS) Management Protocol
Copyright © 2021 Microsoft Corporation
Release: April 7, 2021

dwIPv6NegotiationError is zero, a value of zero for this indicates that IPv6 was not negotiated.
It MUST be zero when dwIPv6NegotiationError is nonzero.

bPrefix: Specifies the prefix of the IPv6 address of the client interface.

dwPrefixLength: The length, in bits, of the address prefix.

IPv6SubInterfaceIndex: Specifies the index of the subInterface corresponding to the connection on
the server.

dwLcpError: Specifies the error that occurred if the PPP negotiation was unsuccessful and it MUST be
one of the following values.

Value Meaning

ERROR_NO_LOCAL_ENCRYPTION

0x000002E5

The local computer does not support the required data
encryption type.

ERROR_NO_REMOTE_ENCRYPTION

0x000002E6

The remote computer does not support the required data
encryption type.

ERROR_CHANGING_PASSWORD

0x000002C5

There was an error changing the password on the domain.
The password might have been too short or might have
matched a previously used password.

ERROR_PPP_NO_PROTOCOLS_CONFIGURED

0x000002D0

The PPP controlled protocols were not configured.

ERROR_AUTHENTICATION_FAILURE

0x000002B3

The connection was denied because the user nameusername
or password specified is not valid or because the selected
authentication protocol is not permitted on the remote server.

ERROR_MORE_DATA

0x000000EA

More data is available.

ERROR_PROTOCOL_NOT_CONFIGURED

0x000002DC

The received control protocol of the PPP is not configured.

ERROR_AUTH_INTERNAL

0x00000285

There was an internal error while processing authentication.

ERROR_NO_DIALIN_PERMISSION

0x00000289

The user does not have permission to dial in.

ERROR_SERVER_POLICY

0x0000032C

The connection was prevented because of a policy configured
on the RRAS.

ERROR_PEER_REFUSED_AUTH

0x00000397

The connection could not be established because the
authentication protocol used by the RRAS to verify user
nameusername and password could not be matched with the
one proposed by the client.

ERROR_UNKNOWN_FRAMED_PROTOCOL

0x0000031A

The Framed Protocol RADIUS [RFC2865] attribute for this
client is not PPP.

ERROR_WRONG_TUNNEL_TYPE

0x0000031B

The Tunnel Type RADIUS [RFC2865] attribute for this user is
not correct.

ERROR_UNKNOWN_SERVICE_TYPE

0x0000031C

The Service Type RADIUS [RFC2865] attribute for this user is
neither Framed nor callback Framed.

166 / 547

[MS-RRASM-Diff] - v20210407
Routing and Remote Access Server (RRAS) Management Protocol
Copyright © 2021 Microsoft Corporation
Release: April 7, 2021

Value Meaning

ERROR_RESTRICTED_LOGON_HOURS

0x00000286

The user is not permitted to log on at this time of day.

ERROR_ACCT_DISABLED

0x00000287

The account is disabled.

ERROR_PASSWD_EXPIRED

0x00000288

The password for this account has expired.

ERROR_ILL_FORMED_PASSWORD

0x0000052C

Unable to update the password. The value provided for the
new password contains values that are not allowed in
passwords.

dwAuthenticationProtocol: The same as dwAuthenticatedProtocol in PPP_LCP_INFO.

dwAuthenticationData: The same as dwAuthenticatedDatadwAuthenticationData in

PPP_LCP_INFO. (see section 2.2.1.2.71).

dwRemoteAuthenticationProtocol: Specifies the authentication protocol used to authenticate the
remote computer. This will be different from dwAuthenticationProtocol in the case of demand-
dial if the authentication protocol used by the two ends are different. See the
dwAuthenticationProtocol member for a list of possible values.

dwRemoteAuthenticationData: Specifies additional information about the authentication protocol
specified by dwRemoteAuthenticationProtocol. This will be different from dwAuthenticationData
in the case of demand-dial if the authentication protocol used by the two ends are different. See

the dwAuthenticationData member for a list of possible values.

dwLcpTerminateReason: Specifies the reason the connection was terminated by the local computer.
This member always has a value of zero (0).

dwLcpRemoteTerminateReason: Specifies the reason the connection was terminated by the

remote computer. This member always has a value of zero (0).

dwLcpOptions: The same as dwOptions in PPP_LCP_INFO. (see section 2.2.1.2.71).

dwLcpRemoteOptions: Specifies information about the LCP options in use by the remote computer.

See the dwLcpOptions member for a list of possible values.

dwEapTypeId: Specifies the type identifier of the EAP used to authenticate the local computer. The
value of this member is valid only if dwAuthenticationProtocol is PPP_LCP_EAP. The valid
values are defined in [IANA-EAP].

dwRemoteEapTypeId: MUST be zero (0). This value has no significance.

dwCcpError: Specifies an error if the negotiation is unsuccessful.

dwCompressionAlgorithm: The same as dwCompressionAlgorithm in PPP_LCP_INFO.

dwCcpOptions: The same as dwCcpOptions in PPP_LCP_INFO.

dwRemoteCompressionAlgorithm: Specifies the compression algorithm used by the remote
computer. The values are the same as those for dwCompressionAlgorithm.

dwCcpRemoteOptions: Specifies the compression options on the remote computer. The following
options are supported.

167 / 547

[MS-RRASM-Diff] - v20210407
Routing and Remote Access Server (RRAS) Management Protocol
Copyright © 2021 Microsoft Corporation
Release: April 7, 2021

Value Meaning

PPP_CCP_COMPRESSION

0x00000001

Compression without encryption.

PPP_CCP_HISTORYLESS

0x01000000

MPPE in stateless mode. The session key is changed after every packet.
This mode improves performance on high-latency networks, or
networks that experience significant packet loss.

PPP_CCP_ENCRYPTION40BITOLD

0x00000010

PPE using 40-bit keys.

PPP_CCP_ENCRYPTION40BIT

0x00000020

MPPE using 40-bit keys.

PPP_CCP_ENCRYPTION56BIT

0x00000080

MPPE using 56-bit keys.

PPP_CCP_ENCRYPTION128BIT

0x00000040

MPPE using 128-bit keys.

ERROR_PPP_NOT_CONVERGING

0x000002DC

The remote computer and RRAS could not converge on address
negotiation.

2.2.1.2.131 IKEV2_PROJECTION_INFO_1

The IKEV2_PROJECTION_INFO_1 structure SHOULD<118> contain information obtained during
Internet Key Exchange (IKE) negotiation.

 typedef struct IKEV2_PROJECTION_INFO_1 {
 DWORD dwIPv4NegotiationError;
 WCHAR wszAddress[16];
 WCHAR wszRemoteAddress[16];
 ULONG64 IPv4SubInterfaceIndex;
 DWORD dwIPv6NegotiationError;
 UCHAR bInterfaceIdentifier[8];
 UCHAR bRemoteInterfaceIdentifier[8];
 UCHAR bPrefix[8];
 DWORD dwPrefixLength;
 ULONG64 IPv6SubInterfaceIndex;
 DWORD dwOptions;
 DWORD dwAuthenticationProtocol;
 DWORD dwEapTypeId;
 DWORD dwCompressionAlgorithm;
 DWORD dwEncryptionMethod;
 } IKEV2_PROJECTION_INFO_1,
 *PIKEV2_PROJECTION_INFO_1;

dwIPv4NegotiationError: Specifies if an Internal IPv4 address [RFC4306] has been successfully
assigned. A value of zero (0) indicates success. A nonzero value indicates failure.

wszAddress: The same as wszAddress in PPP_PROJECTION_INFO_1.

wszRemoteAddress: The same as wszRemoteAddress in PPP_PROJECTION_INFO_1.

IPv4SubInterfaceIndex: The same as IPv4SubInterfaceIndex in PPP_PROJECTION_INFO_1.

dwIPv6NegotiationError: The same as dwIPv5NegotiationError in
PPP_PROJECTION_INFO_1.

168 / 547

[MS-RRASM-Diff] - v20210407
Routing and Remote Access Server (RRAS) Management Protocol
Copyright © 2021 Microsoft Corporation
Release: April 7, 2021

bInterfaceIdentifier: The same as bInterfaceIdentifier in PPP_PROJECTION_INFO_1.

bRemoteInterfaceIdentifier: The same as bRemoteInterfaceIdentifier in

PPP_PROJECTION_INFO_1.

bPrefix: The same as bPrefix in PPP_PROJECTION_INFO_1.

dwPrefixLength: The same as dwPrefixLength in PPP_PROJECTION_INFO_1.

IPv6SubInterfaceIndex: The same as IPv6SubInterfaceIndex in PPP_PROJECTION_INFO_1.

dwOptions: Not used.

dwAuthenticationProtocol: Specifies the authentication protocol used to authenticate the remote
computer. It MUST be one of the following values.

Value Meaning

MPRAPI_IKEV2_AUTH_USING_CERT

0x00000001

Using x.509 machine certificate [RFC2459].

MPRAPI_IKEV2_AUTH_USING_EAP

0x00000002

Extensible Authentication Protocol (EAP).

dwEapTypeId: Specifies the type identifier of the EAP used to authenticate the local computer. The
value of this member is valid only if dwAuthenticationProtocol is
MPRAPI_IKEV2_AUTH_USING_EAP [IANA-EAP].

dwCompressionAlgorithm: Not used.

dwEncryptionMethod: Specifies the encryption method used in the connection. It MUST be one of
the following values.

Value Meaning

IPSEC_CIPHER_TYPE_3DES

2

Specifies 3DES encryption.

IPSEC_CIPHER_TYPE_AES_128

3

Specifies AES-128 encryption.

IPSEC_CIPHER_TYPE_AES_192

4

Specifies AES-192 encryption.

IPSEC_CIPHER_TYPE_AES_256

5

Specifies AES-256 encryption.

2.2.1.2.132 PROJECTION_INFO_IDL_1

The PROJECTION_INFO_IDL_1 union is used in
RAS_CONNECTION_EX_1_IDL (section 2.2.1.2.133) structure as a placeholder for
PPP_PROJECTION_INFO_1 (section 2.2.1.2.130) structure or
IKEV2_PROJECTION_INFO_1 (section 2.2.1.2.131) structure.

typedef union _PROJECTION_INFO_IDL_1 switch (UCHAR projectionInfoType) ProjectInfoObject

 {
 case 1:

169 / 547

[MS-RRASM-Diff] - v20210407
Routing and Remote Access Server (RRAS) Management Protocol
Copyright © 2021 Microsoft Corporation
Release: April 7, 2021

 PPP_PROJECTION_INFO_1 PppProjectionInfo;
 case 2:
 IKEV2_PROJECTION_INFO_1 Ikev2ProjectionInfo;
 } ProjectionInfoObject} PROJECTION_INFO_IDL_1,
 *PPROJECTION_INFO_IDL_1;

projectionInfoType: Specifies if the projection is for a PPP-based or IKEv2-based tunnel.

Value Meaning

MPRAPI_PPP_PROJECTION_INFO_TYPE

0x01

Data corresponds to PPP_PROJECTION_INFO_1.

MPRAPI_IKEV2_PROJECTION_INFO_TYPE

0x02

Data corresponds to IKEV2_PROJECTION_INFO_1.

PppProjectionInfo: Contains a PPP_PROJECTION_INFO_1 for a PPP-based tunnel.

Ikev2ProjectionInfo: Contains an IKEV2_PROJECTION_INFO_1 for an IKEv2-based tunnel.

2.2.1.2.133 (Updated Section) RAS_CONNECTION_EX_1_IDL

The RAS_CONNECTION_EX_1_IDL structure contains information for a connection, including the
GUID that identifies the connection, the NAP, and the PPP or the IKEv2 related data for the

connection.

 typedef struct _RAS_CONNECTION_EX_1_IDL {
 MPRAPI_OBJECT_HEADER_IDL Header;
 DWORD dwConnectDuration;
 ROUTER_INTERFACE_TYPE dwInterfaceType;
 DWORD dwConnectionFlags;
 WCHAR wszInterfaceName[257];
 WCHAR wszUserName[257];
 WCHAR wszLogonDomain[16];
 WCHAR wszRemoteComputer[17];
 GUID guid;
 RAS_QUARANTINE_STATE rasQuarState;
 FILETIME probationTime;
 DWORD dwBytesXmited;
 DWORD dwBytesRcved;
 DWORD dwFramesXmited;
 DWORD dwFramesRcved;
 DWORD dwCrcErr;
 DWORD dwTimeoutErr;
 DWORD dwAlignmentErr;
 DWORD dwHardwareOverrunErr;
 DWORD dwFramingErr;
 DWORD dwBufferOverrunErr;
 DWORD dwCompressionRatioIn;
 DWORD dwCompressionRatioOut;
 DWORD dwNumSwitchOvers;
 WCHAR wszRemoteEndpointAddress[65];
 WCHAR wszLocalEndpointAddress[65];
 PROJECTION_INFO_IDL_1 ProjectionInfo;
 ULONG hConnection;
 ULONG hInterface;
 } RAS_CONNECTION_EX_1_IDL,
 *PRAS_CONNECTION_EX_1_IDL;

Header: A MPRAPI_OBJECT_HEADER_IDL (section 2.2.1.2.129) whose revision field MUST be 0x01

and type field MUST be 0x01.

170 / 547

[MS-RRASM-Diff] - v20210407
Routing and Remote Access Server (RRAS) Management Protocol
Copyright © 2021 Microsoft Corporation
Release: April 7, 2021

dwConnectDuration: Specifies the duration in seconds for which the current connection is active.

dwInterfaceType: Specifies a ROUTER_INTERFACE_TYPE (section 2.2.1.1.1) value specifying the

interface type of the current connection.

dwConnectionFlags: Specifies certain attributes of the connection.

This member SHOULD contain one of the following flags.<119>

Value Meaning

0x00000000 No flag is set.

RAS_FLAGS_PPP_CONNECTION

0x00000001

The connection is using the Point-to-Point Protocol (PPP).

RAS_FLAGS_MESSENGER_PRESENT

0x00000002

The messenger service is active on the client and messages
can be sent to the client using
RRasAdminSendUserMessage (section 3.1.4.36).

RAS_FLAGS_QUARANTINE_PRESENT

0x00000008

The connection is currently in quarantine. See

RRasAdministratorConnectionRemoveQuarantineRRasAdm
inConnectionRemoveQuarantine (section 3.1.4.43) for
more information.

RAS_FLAGS_ARAP_CONNECTION

0x00000010

The connection is using the AppleTalk Remote Access
Protocol (ARAP).

RAS_FLAGS_DORMANT

0x00000020

The connection is using the IKEv2 and the server is not
reachable.

wszInterfaceName: Specifies a null-terminated Unicode string that contains the name of the
interface for this connection.

wszUserName: Specifies a null-terminated Unicode string that contains the name of the user logged

on to the connection.

wszLogonDomain: Specifies a null-terminated Unicode string that contains the domain on which the
connected user is authenticated.

wszRemoteComputer: Specifies a null-terminated Unicode string that contains the name of the

remote computer.

guid: A GUID uniquely identifying the connection.

rasQuarState: Specifies the NAP quarantine state for the connection through the type
RAS_QUARANTINE_STATE (section 2.2.1.1.3) that contains the quarantine state of this
connection.

probationTime: Specifies the NAP probation time for the connection in UTC. This value is valid only if

the rasQuarState has a value of RAS_QUAR_STATE_PROBATION (see

RAS_QUARANTINE_STATE).

dwBytesXmited: Specifies the bytes transmitted on the current connection.

dwBytesRcved: Specifies the bytes received on the current connection.

dwFramesXmited: Specifies the frames transmitted on the current connection.

dwFramesRcved: Specifies the frames received on the current connection.

171 / 547

[MS-RRASM-Diff] - v20210407
Routing and Remote Access Server (RRAS) Management Protocol
Copyright © 2021 Microsoft Corporation
Release: April 7, 2021

dwCrcErr: Specifies the CRC errors on the current connection.

dwTimeoutErr: Specifies the time-out errors on the current connection.

dwAlignmentErr: Specifies the alignment errors on the current connection.

dwHardwareOverrunErr: Specifies the number of hardware-overrun errors on the current

connection.

dwFramingErr: Specifies the number of framing errors for the current connection.

dwBufferOverrunErr: Specifies the number of buffer-overrun errors.

dwCompressionRatioIn: Specifies a percentage that indicates the degree to which data received on
this connection is compressed. The ratio is the size of the compressed data divided by the size of
the same data in an uncompressed state.

dwCompressionRatioOut: Specifies a percentage that indicates the degree to which data

transmitted on this connection is compressed. The ratio is the size of the compressed data divided

by the size of the same data in an uncompressed state.

dwNumSwitchOvers: Specifies the number of MOBIKE [RFC4555] switches that happened on the
connection. Valid only if dwConnectionFlags is RAS_FLAGS_IKEV2_CONNECTION.

wszRemoteEndpointAddress: Specifies a null-terminated Unicode string that holds the remote
computer's IP address for the connection. This string has the form a.b.c.d; for example,

"10.102.235.84".

wszLocalEndpointAddress: Specifies a null-terminated Unicode string that holds the local
computer's IP address for the connection. This string has the form a.b.c.d or a::1234; for
example, "10.102.235.84" or 2ffe::1234.

ProjectionInfo: This is a PROJECTION_INFO_IDL_1 structure.

hConnection: A handle to the connection.

hInterface: A handle to the interface.

2.2.1.2.134 RAS_CONNECTION_EX_IDL

The RAS_CONNECTION_EX_IDL union contains a placeholder for
RAS_CONNECTION_EX_1_IDL (section 2.2.1.2.133) structure. This union is used in the
RRasAdminConnectionGetInfoEx (section 3.1.4.47) method.

 typedef union _RAS_CONNECTION_EX_IDL switch (UCHAR revision) ConnObject {
 case 1: RAS_CONNECTION_EX_1_IDL RasConnection1;
 } RAS_CONNECTION_EX_IDL,
 *PRAS_CONNECTION_EX_IDL;

RasConnection1: This MUST be the structure RAS_CONNECTION_EX_1_IDL.

2.2.1.2.135 CERT_BLOB_1

The CERT_BLOB_1 is a generic structure that contains x.509 [RFC2459] certificate information.

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

cbData

172 / 547

[MS-RRASM-Diff] - v20210407
Routing and Remote Access Server (RRAS) Management Protocol
Copyright © 2021 Microsoft Corporation
Release: April 7, 2021

pbData (variable)

...

cbData (4 bytes): Size (in bytes) of the certificate information present in pbData.

pbData (variable): Pointer to the information of the certificate. This information depends on the
structure in which this used. In the methods IKEV2_TUNNEL_CONFIG_PARAMS_1 (section

2.2.1.2.136), IKEV2_TUNNEL_CONFIG_PARAMS_2 (section 2.2.1.2.238), or
IKEV2_TUNNEL_CONFIG_PARAMS_3 (section 2.2.1.2.247), this points to the subject name of the
certificate. In SSTP_CERT_INFO_1, pbData contains a SHA-1 hash.

2.2.1.2.136 IKEV2_TUNNEL_CONFIG_PARAMS_1

The IKEV2_TUNNEL_CONFIG_PARAMS_1 structure<120> be used to get or set configured
parameters for IKEv2 devices [RFC4306].

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

dwIdleTimeout

dwNetworkBlackoutTime

dwSaLifeTime

dwSaDataSizeForRenegotiation

dwConfigOptions

dwTotalCertificates

certificateNames (variable)

...

dwIdleTimeout (4 bytes): Duration, in seconds, after which the connection will be disconnected if
there is no traffic. This value MUST be between 300 and 17,279,999.

dwNetworkBlackoutTime (4 bytes): Retransmission timeout, in seconds, for IKEv2 Request
packets [RFC4306]. IKEv2 expects a response for every request packet sent, this value specifies
the time after which the connection is deleted incase response is not received. This value MUST be

greater than or equal to 120.

dwSaLifeTime (4 bytes): Lifetime of a security association (SA), in seconds, after which the SA is

no longer valid [RFC4306]. This value MUST be between 300 and 17,279,999.

dwSaDataSizeForRenegotiation (4 bytes): Number of Kilobytes that are allowed to transfer using
a SA. After that the SA will be renegotiated [RFC4306]. This value MUST be greater than or equal
to 1024.

dwConfigOptions (4 bytes): Unused and MUST be set to 0.

dwTotalCertificates (4 bytes): Total number of certificates in member variable certificateNames.

173 / 547

[MS-RRASM-Diff] - v20210407
Routing and Remote Access Server (RRAS) Management Protocol
Copyright © 2021 Microsoft Corporation
Release: April 7, 2021

certificateNames (variable): An array of CERT_BLOB_1.

2.2.1.2.137 IKEV2_CONFIG_PARAMS_1

The IKEV2_CONFIG_PARAMS_1 structure<121> is used to get or set configured parameters for

IKEv2 devices.

 typedef struct _IKEV2_CONFIG_PARAMS_1 {
 DWORD dwNumPorts;
 DWORD dwPortFlags;
 DWORD dwTunnelConfigParamFlags;
 IKEV2_TUNNEL_CONFIG_PARAMS_1 TunnelConfigParams;
 } IKEV2_CONFIG_PARAMS_1,
 *PIKEV2_CONFIG_PARAMS_1;

dwNumPorts: Specifies the number of ports configured on RRAS to accept IKEv2 connections. This

value cannot exceed the server port limit.<122>

dwPortFlags: Specifies the type of port configured on IKEv2 devices. Possible flag values are as
follows.

Value Meaning

MPR_ENABLE_RAS_ON_DEVICE

0x00000001

Remote Access is enabled for IKEv2.

dwTunnelConfigParamFlags: SHOULD be set to 0x00000001 when sent and SHOULD be ignored on
receipt.

TunnelConfigParams: IKEv2 tunnel related parameters. MUST be an
IKEV2_TUNNEL_CONFIG_PARAMS_1 structure.

2.2.1.2.138 PPTP_CONFIG_PARAMS_1

The PPTP_CONFIG_PARAMS_1 structure<123> be used to get or set the device configuration for
PPTP on the RAS Server.

 typedef struct _PPTP_CONFIG_PARAMS_1 {
 DWORD dwNumPorts;
 DWORD dwPortFlags;
 } PPTP_CONFIG_PARAMS_1,
 *PPPTP_CONFIG_PARAMS_1;

dwNumPorts: Specifies the number of ports configured on that (PPTP) device. This value cannot
exceed the server port limit.<124>

dwPortFlags: Specifies the type of port configured on PPTP devices. The possible flag values are as
follows.

Value Meaning

MPR_ENABLE_RAS_ON_DEVICE

0x00000001

PPTP is enabled to accept Remote Access client
connection.

MPR_ENABLE_ROUTING_ON_DEVICE

0x00000002

PPTP is enabled to accept demand-dial connections.

174 / 547

[MS-RRASM-Diff] - v20210407
Routing and Remote Access Server (RRAS) Management Protocol
Copyright © 2021 Microsoft Corporation
Release: April 7, 2021

2.2.1.2.139 L2TP_CONFIG_PARAMS_1

The L2TP_CONFIG_PARAMS_1 structure<125> is used to get or set the device configuration for

L2TP on RAS Server.

 typedef struct _L2TP_CONFIG_PARAMS_1 {
 DWORD dwNumPorts;
 DWORD dwPortFlags;
 } L2TP_CONFIG_PARAMS_1,
 *PL2TP_CONFIG_PARAMS_1;

dwNumPorts: Specifies the number of ports configured on the (L2TP) device. This value cannot
exceed the server port limit.<126>

dwPortFlags: Specifies the type of port configured on L2TP devices. Possible flag values are as

follows.

Value Meaning

MPR_ENABLE_RAS_ON_DEVICE

0x00000001

L2TP is enabled to accept Remote Access client
connection.

MPR_ENABLE_ROUTING_ON_DEVICE

0x00000002

L2TP is enabled to accept demand-dial connections.

2.2.1.2.140 SSTP_CERT_INFO_1

The SSTP_CERT_INFO_1 structure<127> contain the subject name of the x.509 certificates that will

be configured by the RRAS to be used in SSL/TLS negotiation as a part of the [MS-SSTP] protocol.

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

isDefault

certBlob (variable)

...

isDefault (4 bytes): This value specifies how the SSTP certificate hash values are configured.
Possible flag values are as follows.

Value Meaning

TRUE RRAS server chooses a certificate hash on its own automatically.

FALSE The SSTP certificate hash values are configured by the administrator.

This value SHOULD be set to FALSE when sent. The RRAS server specifies TRUE for this value if
administrator has not configured the certificate and default certificate selection logic is used. This
value is FALSE if the administrator has configured the certificate.

175 / 547

[MS-RRASM-Diff] - v20210407
Routing and Remote Access Server (RRAS) Management Protocol
Copyright © 2021 Microsoft Corporation
Release: April 7, 2021

certBlob (variable): This MUST be a CERT_BLOB_1. This contains the Certificate HASH Length and
Certificate Hash. It accepts ONLY SHA256 HASH as the valid HASH. Thus, the value of the length

field SHOULD always be 32 [RFC2459]. Specifying a value 0 for the cbData member of
CERT_BLOB_1 removes the certificate configuration. In this case, RRAS server uses its default

certificate selection logic.

2.2.1.2.141 SSTP_CONFIG_PARAMS_1

The SSTP_CONFIG_PARAMS_1 structure<128> be used to get or set the device configuration for
SSTP on a RAS Server [MS-SSTP].

 typedef struct _SSTP_CONFIG_PARAMS_1 {
 DWORD dwNumPorts;
 DWORD dwPortFlags;
 BOOL isUseHttps;
 DWORD certAlgorithm;
 SSTP_CERT_INFO_1 sstpCertDetails;
 } SSTP_CONFIG_PARAMS_1,
 *PSSTP_CONFIG_PARAMS_1;

dwNumPorts: Specifies the number of ports configured on that (SSTP) device. This value cannot

exceed the server port limit.<129>

dwPortFlags: Specifies the type of port configured on SSTP devices. Possible flag values are as
follows.

Value Meaning

MPR_ENABLE_RAS_ON_DEVICE

0x00000001

Remote Access is enabled for SSTP.

isUseHttps: MUST be set to TRUE if HTTPS used, MUST be set to FALSE if HTTPS is not used.

certAlgorithm: MUST be set to 0x0000800C.

sstpCertDetails: MUST be a SSTP_CERT_INFO_1 structure.

2.2.1.2.142 MPR_SERVER_EX_1

The MPR_SERVER_EX_1 structure<130> be used to get or set the configuration of a RAS server.

 typedef struct _MPR_SERVER_EX_1 {
 MPRAPI_OBJECT_HEADER_IDL Header;
 BOOL fLanOnlyMode;
 DWORD dwUpTime;
 DWORD dwTotalPorts;
 DWORD dwPortsInUse;
 DWORD Reserved;
 MPRAPI_TUNNEL_CONFIG_PARAMS_1 ConfigParams;
 } MPR_SERVER_EX_1,
 *PMPR_SERVER_EX_1;

Header: This specifies the version of the MPR_SERVER_EX_1 structure; and MUST be a
MPRAPI_OBJECT_HEADER_IDL (section 2.2.1.2.129) whose revision field MUST be 0x01, and
whose type field MUST be 0x02.

fLanOnlyMode: Specifies whether RRAS is running on the router. If TRUE, RRAS is not running as the
router; if FALSE, RRAS is running as router.

176 / 547

[MS-RRASM-Diff] - v20210407
Routing and Remote Access Server (RRAS) Management Protocol
Copyright © 2021 Microsoft Corporation
Release: April 7, 2021

dwUpTime: Specifies the elapsed time, in seconds, since the router was started.

dwTotalPorts: Specifies the number of ports on the system.

dwPortsInUse: Specifies the number of ports currently in use.

Reserved: Unused, MUST be set to 0.

ConfigParams: This MUST be a MPRAPI_TUNNEL_CONFIG_PARAMS_1 structure.

2.2.1.2.143 MPR_SERVER_EX_IDL

The MPR_SERVER_EX_IDL union<131> be a placeholder for one of the following structures:
MPR_SERVER_EX_1 (section 2.2.1.2.142), MPR_SERVER_EX_2 (section 2.2.1.2.242), or
MPR_SERVER_EX_3 (section 2.2.1.2.251).<132>

 typedef union _MPR_SERVER_EX_IDL switch (UCHAR revision) ServerConfigObject {
 case 1: MPR_SERVER_EX_1 ServerConfig1;
 case 2: MPR_SERVER_EX_2 ServerConfig2;
 case 3: MPR_SERVER_EX_3 ServerConfig3;
 } MPR_SERVER_EX_IDL,
 *PMPR_SERVER_EX_IDL;

ServerConfig1: This MUST be an MPR_SERVER_EX_1 structure.

ServerConfig2: This MUST be an MPR_SERVER_EX_2 structure.

ServerConfig3: This MUST be an MPR_SERVER_EX_3 structure.

2.2.1.2.144 MPRAPI_TUNNEL_CONFIG_PARAMS_1

The MPRAPI_TUNNEL_CONFIG_PARAMS_1 structure<133> be used to get or set configuration of
various tunnels on RAS server.

 typedef struct _MPRAPI_TUNNEL_CONFIG_PARAMS_1 {
 IKEV2_CONFIG_PARAMS_1 IkeConfigParams;
 PPTP_CONFIG_PARAMS_1 PptpConfigParams;
 L2TP_CONFIG_PARAMS_1 L2tpConfigParams;
 SSTP_CONFIG_PARAMS_1 SstpConfigParams;
 } MPRAPI_TUNNEL_CONFIG_PARAMS_1,
 *PMPRAPI_TUNNEL_CONFIG_PARAMS_1;

IkeConfigParams: MUST be a IKEV2_CONFIG_PARAMS_1 structure and is used to get or set IKEv2
tunnel parameters.

PptpConfigParams: MUST be a PPTP_CONFIG_PARAMS_1 structure and is used to get or set PPTP
tunnel parameters.

L2tpConfigParams: MUST be a L2TP_CONFIG_PARAMS_1 structure and is used to get or set L2TP

tunnel parameters.

SstpConfigParams: MUST be a SSTP_CONFIG_PARAMS_1 structure and is used to get or set SSTP
tunnel parameters.

2.2.1.2.145 MPR_SERVER_SET_CONFIG_EX_1

The MPR_SERVER_SET_CONFIG_EX_1 structure<134> be used to set the configuration
parameters for the RRAS.

177 / 547

[MS-RRASM-Diff] - v20210407
Routing and Remote Access Server (RRAS) Management Protocol
Copyright © 2021 Microsoft Corporation
Release: April 7, 2021

 typedef struct _MPR_SERVER_SET_CONFIG_EX_1 {
 MPRAPI_OBJECT_HEADER_IDL Header;
 DWORD setConfigForProtocols;
 MPRAPI_TUNNEL_CONFIG_PARAMS_1 ConfigParams;
 } MPR_SERVER_SET_CONFIG_EX_1,
 *PMPR_SERVER_SET_CONFIG_EX_1;

Header: This MUST be MPRAPI_OBJECT_HEADER_IDL (section 2.2.1.2.129), the revision field MUST
be 0x01, and the type field MUST be 0x03.

setConfigForProtocols: This MUST be one of the following values that specify the type of tunnel.

Value Meaning

MPRAPI_SET_CONFIG_PROTOCOL_FOR_PPTP

0x00000001

PPTP device configuration parameters are present
in the structure.

MPRAPI_SET_CONFIG_PROTOCOL_FOR_L2TP

0x00000002

L2TP device configuration parameters are present
in the structure.

MPRAPI_SET_CONFIG_PROTOCOL_FOR_SSTP

0x00000004

SSTP device configuration parameters are
present in the structure.

MPRAPI_SET_CONFIG_PROTOCOL_FOR_IKEV2

0x00000008

IKEv2 device configuration parameters are
present in the structure.

ConfigParams: This MUST be a MPRAPI_TUNNEL_CONFIG_PARAMS_1.

2.2.1.2.146 MPR_SERVER_SET_CONFIG_EX_IDL

The MPR_SERVER_SET_CONFIG_EX_IDL union is used to get or set configured parameters for
PPTP, L2TP, SSTP, and IKEv2 devices.

 typedef union _MPR_SERVER_SET_CONFIG_EX_IDL switch (UCHAR revision) ServerSetConfigObject {
 case 1: MPR_SERVER_SET_CONFIG_EX_1 ServerSetConfig1;
 case 2: MPR_SERVER_SET_CONFIG_EX_2 ServerSetConfig2;
 case 3: MPR_SERVER_SET_CONFIG_EX_3 ServerSetConfig3;
 } MPR_SERVER_SET_CONFIG_EX_IDL,
 *PMPR_SERVER_SET_CONFIG_EX_IDL;

ServerSetConfig1: This MUST be an MPR_SERVER_SET_CONFIG_EX_1 structure.

ServerSetConfig2: This MUST be an MPR_SERVER_SET_CONFIG_EX_2 structure.

ServerSetConfig3: This MUST be an MPR_SERVER_SET_CONFIG_EX_3 structure.

2.2.1.2.147 RAS_UPDATE_CONNECTION_1_IDL

The RAS_UPDATE_CONNECTION_1_IDL structure<135> contain information about the tunnel
endpoint address on an IKEv2 connection.

 typedef struct _RAS_UPDATE_CONNECTION_1_IDL
 {
 MPRAPI_OBJECT_HEADER_IDL Header;
 DWORD dwIfIndex;
 WCHAR wszRemoteEndpointAddress[65];
 } RAS_UPDATE_CONNECTION_1_IDL,

178 / 547

[MS-RRASM-Diff] - v20210407
Routing and Remote Access Server (RRAS) Management Protocol
Copyright © 2021 Microsoft Corporation
Release: April 7, 2021

 *PRAS_UPDATE_CONNECTION_1_IDL;

Header: MUST be a MPRAPI_OBJECT_HEADER_IDL.

dwIfIndex: MUST be set to the index of the local interface to which the connections has to be
switched and on which MOBIKE [RFC4555] is to be sent.

wszRemoteEndpointAddress: Specifies a null-terminated Unicode string that holds the remote IP
address to which connections has to be switched and on which MOBIKE is to be sent for the
connection. This string has the form a.b.c.d in case of IPv4 address and a::b:c in case of IPv6; for
example, "10.102.235.84" or "2001::a456".

2.2.1.2.148 RAS_UPDATE_CONNECTION_IDL

The RAS_UPDATE_CONNECTION_IDL union<136> be used to send the MOBIKE [RFC4555] on an
IKEv2 connection.

 typedef union _RAS_UPDATE_CONNECTION_IDL switch (UCHAR revision) UpdateConnection
 {
 case 1: RAS_UPDATE_CONNECTION_1_IDL UpdateConnection1;
 } RAS_UPDATE_CONNECTION_IDL,
 *PRAS_UPDATE_CONNECTION_IDL;

UpdateConnection1: This MUST be an RAS_UPDATE_CONNECTION_1_IDL structure.

2.2.1.2.149 IPBOOTP_GLOBAL_CONFIG

The IPBOOTP_GLOBAL_CONFIG structure is used to set or retrieve global configuration for the
IPBOOTP. This is used in the following methods:

▪ RRouterInterfaceTransportSetGlobalInfo (section 3.1.4.10)

▪ RRouterInterfaceTransportGetGlobalInfo (section 3.1.4.11)

 typedef struct _IPBOOTP_GLOBAL_CONFIG {
 DWORD GC_LoggingLevel;
 DWORD GC_MaxRecvQueueSize;
 DWORD GC_ServerCount;
 } IPBOOTP_GLOBAL_CONFIG,
 *PIPBOOTP_GLOBAL_CONFIG;

GC_LoggingLevel: Specifies the logging level. It MUST be one of the following values.

Value Meaning

IPBOOTP_GLOBAL_CONFIG

0x00000000

No Logging is done.

IPBOOTP_LOGGING_ERROR

0x00000001

Only errors are logged.

IPBOOTP_LOGGING_WARN

0x00000002

Errors and warnings are logged.

IPBOOTP_LOGGING_INFO

0x00000003

Errors, warnings, and information are logged.

179 / 547

[MS-RRASM-Diff] - v20210407
Routing and Remote Access Server (RRAS) Management Protocol
Copyright © 2021 Microsoft Corporation
Release: April 7, 2021

GC_MaxRecvQueueSize: Specifies the maximum size in bytes of messages in the receive queue
while processing.

GC_ServerCount: The number of BOOTP server IP addresses.

2.2.1.2.150 IPBOOTP_IF_CONFIG

The IPBOOTP_IF_CONFIG structure is used to set or retrieve the per-interface configuration. This is
used in the following methods:

▪ RRouterInterfaceTransportAdd (section 3.1.4.18)

▪ RRouterInterfaceTransportGetInfo (section 3.1.4.19)

▪ RRouterInterfaceTransportSetInfo (section 3.1.4.20)

All IP address are in network order.

 typedef struct _IPBOOTP_IF_CONFIG {
 DWORD IC_State;
 DWORD IC_RelayMode;
 DWORD IC_MaxHopCount;
 DWORD IC_MinSecondsSinceBoot;
 } IPBOOTP_IF_CONFIG,
 *PIPBOOTP_IF_CONFIG;

IC_State: Contains the status of the IPBOOTP. This member is read only.

Value Meaning

IPBOOTP_STATE_ENABLED

0x00000001

The interface is enabled.

IPBOOTP_STATE_BOUND

0x00000002

The socket is bound and can listen to the IP BOOTP packets
[RFC1542].

IC_RelayMode: Contains the IPBOOTP relay mode status. It MUST be one of the following values.

Value Meaning

IPBOOTP_RELAY_DISABLED

0x00000000

The relay is configured.

IPBOOTP_RELAY_ENABLED

0x00000001

The relay is not configured.

IC_MaxHopCount: The maximum number of DHCP relay agents that will handle the DHCP relayed
traffic. It MUST be less than 17.

IC_MinSecondsSinceBoot: The number of seconds the relay agent waits before forwarding the

DHCP messages; no validation is done while setting this value.

2.2.1.2.151 IPBOOTP_MIB_GET_INPUT_DATA

The IPBOOTP_MIB_GET_INPUT_DATA structure is passed as input data for the following methods:

▪ RMIBEntryGet (section 3.1.4.30)

180 / 547

[MS-RRASM-Diff] - v20210407
Routing and Remote Access Server (RRAS) Management Protocol
Copyright © 2021 Microsoft Corporation
Release: April 7, 2021

▪ RMIBEntryGetFirst (section 3.1.4.31)

▪ RMIBEntryGetNext (section 3.1.4.32)

 typedef struct _IPBOOTP_MIB_GET_INPUT_DATA {
 DWORD IMGID_TypeID;
 DWORD IMGID_IfIndex;
 } IPBOOTP_MIB_GET_INPUT_DATA,
 *PIPBOOTP_MIB_GET_INPUT_DATA;

IMGID_TypeID: This MUST be one of the following values.

Value Meaning

IPBOOTP_GLOBAL_CONFIG_ID

0x00000000

The global configuration for the IPBOOTP.

IPBOOTP_IF_STATS_ID

0x00000001

The per-interface statistics.

IPBOOTP_IF_CONFIG_ID

0x00000002

The per-interface configuration.

IPBOOTP_IF_BINDING_ID

0x00000003

The IP addresses to which each interface is bound.

IMGID_IfIndex: The index of the interface.

2.2.1.2.152 (Updated Section) IPBOOTP_MIB_GET_OUTPUT_DATA

The IPBOOTP_MIB_GET_OUTPUT_DATA structure is passed as output data for the following
methods:

▪ RMIBEntryGet (section 3.1.4.30)

▪ RMIBEntryGetFirst (section 3.2.4.31)

▪ RMIBEntryGetNext (section 3.2.4.32)

Note At the end of a table RMIBEntryGetNext wraps to the next table.

 typedef struct _IPBOOTP_MIB_GET_OUTPUT_DATA {
 DWORD IMGOD_TypeID;
 DWORD IMGOD_IfIndex;
 BYTE IMGOD_Buffer[1];
 } IPBOOTP_MIB_GET_OUTPUT_DATA,
 *PIPBOOTP_MIB_GET_OUTPUT_DATA;

IMGOD_TypeID: It MUST be one of the following values.

Value Meaning

IPBOOTP_GLOBAL_CONFIG_ID

0x00000000

The global configuration for the IPBOOTP, IPBOOTP_GLOBAL_CONFIG.

IPBOOTP_IF_STATS_ID

0x00000001

The per interface statistics, IPBOOTP_IF_STATS.

181 / 547

[MS-RRASM-Diff] - v20210407
Routing and Remote Access Server (RRAS) Management Protocol
Copyright © 2021 Microsoft Corporation
Release: April 7, 2021

Value Meaning

IPBOOTP_IF_CONFIG_ID

0x00000002

The IPBOOTP_IF_CONFIG Identifier.

IPBOOTP_IF_BINDING_ID

0x00000003

The IP addresses to which each interface is bound, IPBOOTP_IF_BINDING.

IMGOD_IfIndex: The index of the interface.

IMGOD_Buffer: One of the structures in the previous table based on IMGOD_TypeID.

2.2.1.2.153 IPBOOTP_IF_STATS

The IPBOOTP_IF_STATS structure is an MIB entry, stores per interface statistics for the IPBOOTP.
All of the IP addresses are in network order. This structure is read-only.

 typedef struct _IPBOOTP_IF_STATS {
 DWORD IS_State;
 DWORD IS_SendFailures;
 DWORD IS_ReceiveFailures;
 DWORD IS_ArpUpdateFailures;
 DWORD IS_RequestsReceived;
 DWORD IS_RequestsDiscarded;
 DWORD IS_RepliesReceived;
 DWORD IS_RepliesDiscarded;
 } IPBOOTP_IF_STATS,
 *PIPBOOTP_IF_STATS;

IS_State: Contains status of the IPBOOTP. This member is read-only.

Value Meaning

IPBOOTP_STATE_ENABLED

0x00000001

The interface is enabled.

IPBOOTP_STATE_BOUND

0x00000002

The socket is bound and can listen to the IPBOOTP packets
[RFC1542].

IS_SendFailures: The number of relay messages that could not be sent.

IS_ReceiveFailures: The number of times errors were encountered in receiving relay messages.

IS_ArpUpdateFailures: The number of times errors were encountered while updating the ARP cache.

IS_RequestsReceived: The number of IP BOOTP requests received.

IS_RequestsDiscarded: The number of IP BOOTP requests discarded.

IS_RepliesReceived: The number of IP BOOTP replies received.

IS_RepliesDiscarded: The number of IP BOOTP replies discarded.

2.2.1.2.154 IPBOOTP_IF_BINDING

In the IPBOOTP_IF_BINDING structure, the MIB entry contains the table of IP addresses to which
each interface is bound. All of the IP addresses are in network order. The base structure contains the
field IB_AddrCount, which gives the number of IP addresses to which the indexed interface is bound.

182 / 547

[MS-RRASM-Diff] - v20210407
Routing and Remote Access Server (RRAS) Management Protocol
Copyright © 2021 Microsoft Corporation
Release: April 7, 2021

The IP addresses themselves follow the base structure and are given as
IPBOOTP_IP_ADDRESS (section 2.2.1.2.155) structures.

 typedef struct _IPBOOTP_IF_BINDING {
 DWORD IB_State;
 DWORD IB_AddrCount;
 } IPBOOTP_IF_BINDING,
 *PIPBOOTP_IF_BINDING;

IB_State: The state of the IPBOOTP. It MUST be one of the following values.

Value Meaning

IPBOOTP_STATE_ENABLED

0x00000001

The interface is enabled.

IPBOOTP_STATE_BOUND

0x00000002

The socket is bound and can listen to the IP BOOTP packets [RFC1542].

IB_AddrCount: The number of IP addresses to which the indexed interface is bound.

2.2.1.2.155 (Updated Section) IPBOOTP_IP_ADDRESS

The IPBOOTP_IP_ADRRESSADDRESS structure is used for storing interface bindings. A series of
structures of this type follows the IPBOOTP_IF_BINDING structure. Both fields are IP address fields in
network order.

 typedef struct _IPBOOTP_IP_ADDRESS {
 DWORD IA_Address;
 DWORD IA_Netmask;
 } IPBOOTP_IP_ADDRESS,
 *PIPBOOTP_IP_ADDRESS;

IA_Address: The IP address in network byte order.

IA_Netmask: The network mask in network byte order. See [RFC950].

2.2.1.2.156 DHCPV6R_MIB_GET_OUTPUT_DATA

The DHCPV6R_MIB_GET_OUTPUT_DATA structure is passed as output data for the following

methods:

▪ RMIBEntryGet (section 3.1.4.30)

▪ RMIBEntryGetFirst (section 3.1.4.31)

▪ RMIBEntryGetNext (section 3.1.4.32)

 typedef struct _DHCPV6R_MIB_GET_OUTPUT_DATA {
 DWORD IMGOD_TypeID;
 DWORD IMGOD_IfIndex;
 BYTE IMGOD_Buffer[1];
 } DHCPV6R_MIB_GET_OUTPUT_DATA,
 *PDHCPV6R_MIB_GET_OUTPUT_DATA;

IMGOD_TypeID: It MUST be the following value.

183 / 547

[MS-RRASM-Diff] - v20210407
Routing and Remote Access Server (RRAS) Management Protocol
Copyright © 2021 Microsoft Corporation
Release: April 7, 2021

Value Meaning

DHCPV6R_IF_STATS_ID

0x00000001

The interface statistics data,
DHCPV6R_IF_STATS (section 2.2.1.2.158), is specified in the location
that starts with IMGOD_Buffer.

IMGOD_IfIndex: The index of the interface.

IMGOD_Buffer: This specifies the output data corresponding to the type specified by IMGOD_TypeID.

2.2.1.2.157 (Updated Section) DHCPV6R_GLOBAL_CONFIG

The DHCPV6R_GLOBAL_CONFIG structure contains the global configuration of the DHCPV6 Relay

Agent. This structure is used in the following methods:

▪ RRouterInterfaceTransportSetGlobalInfo (section 3.1.4.10)

▪ RRouterInterfaceTransportGetGlobalInfo (section 3.1.4.11)

This structure is variable length, after the base structure there will be an array of GC_ServerCount
in6_addr structures, each of which contains an IPv6 address of a DHCP server to which packets will be
sent. All IPv6 address fields MUST be in network order.

 typedef struct _DHCPV6R_GLOBAL_CONFIG {
 DWORD GC_LoggingLevel;
 DWORD GC_MaxRecvQueueSize;
 DWORD GC_ServerCount;
 } DHCPV6R_GLOBAL_CONFIG,
 *PDHCPV6R_GLOBAL_CONFIG;

GC_LoggingLevel: Specifies the logging level. It MUST be one of the following values.

Value Meaning

DHCPV6R_LOGGING_NONE

0x00000000

No logging is done.

DHCPV6R_LOGGING_ERROR

0x00000001

Only errors are logged.

DHCPV6R_LOGGING_WARN

0x00000002

Errors and warnings are logged.

DHCPV6R_LOGGING_INFO

0x00000003

Errors, warnings, and information are logged.

GC_MaxRecvQueueSize: Specifies the maximum size in bytes of messages in the receive queue
while processing

GC_ServerCount: The number of the IPv6 addresses of DHCP servers.

2.2.1.2.158 DHCPV6R_IF_STATS

The DHCPV6R_IF_STATS structure stores per interface statistics for the DHCPv6 relay agent. This
structure is read-only. This structure is part of the
DHCPV6R_MIB_GET_OUTPUT_DATA (section 2.2.1.2.156) structure.

 typedef struct _DHCPV6R_IF_STATS {

184 / 547

[MS-RRASM-Diff] - v20210407
Routing and Remote Access Server (RRAS) Management Protocol
Copyright © 2021 Microsoft Corporation
Release: April 7, 2021

 DWORD IS_State;
 DWORD IS_SendFailures;
 DWORD IS_ReceiveFailures;
 DWORD IS_RequestsReceived;
 DWORD IS_RequestsDiscarded;
 DWORD IS_RepliesReceived;
 DWORD IS_RepliesDiscarded;
 } DHCPV6R_IF_STATS,
 *PDHCPV6R_IF_STATS;

IS_State: Contains the status of the DHCPv6 relay agent. This member is read-only and MUST be a

combination of one or more of the following values.

Value Meaning

DHCPV6R_STATE_ENABLED

0x00000001

The interface is enabled.

DHCPV6R_STATE_BOUND

0x00000002

The socket is bound and can listen to the DHCPv6 relay agent
packets [RFC3315].

IS_SendFailures: The number of relay messages that could not be sent.

IS_ReceiveFailures: The number of times errors were encountered while receiving relay messages.

IS_RequestsReceived: The number of DHCPV6 relay requests received.

IS_RequestsDiscarded: The number of DHCPV6 relay requests discarded.

IS_RepliesReceived: The number of DHCPV6 relay replies received.

IS_RepliesDiscarded: The number of DHCPV6 relay replies discarded.

2.2.1.2.159 DHCPV6R_IF_CONFIG

The DHCPV6R_IF_CONFIG structure is an MIB entry and describes the per-interface configuration.
This structure is used in DHCPV6R_MIB_GET_INPUT_DATA (section 2.2.1.2.160) and
DHCPV6R_MIB_GET_OUTPUT_DATA (section 2.2.1.2.156) structures.

 typedef struct _DHCPV6R_IF_CONFIG {
 DWORD IC_State;
 DWORD IC_RelayMode;
 DWORD IC_MaxHopCount;
 DWORD IC_MinElapsedTime;
 } DHCPV6R_IF_CONFIG,
 *PDHCPV6R_IF_CONFIG;

IC_State: Contains the status of the DHCPV6 relay. This member is read-only and MUST be a
combination of one or more of the following values.

Value Meaning

DHCPV6R_STATE_ENABLED

0x00000001

The interface is enabled

DHCPV6R_STATE_BOUND

0x00000002

The socket is bound and can listen to the DHCPv6 relay agent packets

[RFC3315].

IC_RelayMode: Contains the DHCPV6 relay mode status. It MUST be one of the following values.

185 / 547

[MS-RRASM-Diff] - v20210407
Routing and Remote Access Server (RRAS) Management Protocol
Copyright © 2021 Microsoft Corporation
Release: April 7, 2021

Value Meaning

DHCPV6R_RELAY_DISABLED

0x00000000

The relay is configured.

DHCPV6R_RELAY_ENABLED

0x00000001

The relay is not configured.

IC_MaxHopCount: The maximum number of DHCPv6 relay agents that will handle the DHCPv6
relayed traffic. It MUST be less than 33.

IC_MinElapsedTime: The number of seconds the relay agent waits before forwarding the DHCPv6
messages.

2.2.1.2.160 DHCPV6R_MIB_GET_INPUT_DATA

The DHCPV6R_MIB_GET_INPUT_DATA structure is passed as input for the following methods:

▪ RMIBEntryGet (section 3.1.4.30)

▪ RMIBEntryGetFirst (section 3.1.4.31)

▪ RMIBEntryGetNext (section 3.1.4.32)

 typedef struct _DHCPV6R_MIB_GET_INPUT_DATA {
 DWORD IMGID_TypeID;
 DWORD IMGID_IfIndex;
 } DHCPV6R_MIB_GET_INPUT_DATA,
 *PDHCPV6R_MIB_GET_INPUT_DATA;

IMGID_TypeID: This MUST be one of the following values.

Value Meaning

DHCPV6R_IF_STATS_ID

0x00000001

Interface statistics data

IMGID_IfIndex: The index of the interface for which Get has to be performed.

2.2.1.2.161 IPRIP_MIB_GET_INPUT_DATA

The IPRIP_MIB_GET_INPUT_DATA structure is passed as input data for the following methods:

▪ RMIBEntryGet (section 3.1.4.30)

▪ RMIBEntryGetFirst (section 3.1.4.31)

▪ RMIBEntryGetNext (section 3.1.4.32)

All the IP addresses MUST be in network order.

 typedef struct _IPRIP_MIB_GET_INPUT_DATA {
 DWORD IMGID_TypeID;
 union {
 DWORD IMGID_IfIndex;
 DWORD IMGID_PeerAddress;
 };
 } IPRIP_MIB_GET_INPUT_DATA,

186 / 547

[MS-RRASM-Diff] - v20210407
Routing and Remote Access Server (RRAS) Management Protocol
Copyright © 2021 Microsoft Corporation
Release: April 7, 2021

 *PIPRIP_MIB_GET_INPUT_DATA;

IMGID_TypeID: This MUST be one of the following values.

Value Meaning

IPRIP_GLOBAL_STATS_ID

0x00000000

The global statistics for the Microsoft Internet Protocol Routing
Information Protocol (IPRIP).

IPRIP_GLOBAL_CONFIG_ID

0x00000001

The global configuration for the IPRIP.

IPRIP_IF_STATS_ID

0x00000002

The per-interface statistics for the IPRIP.

IPRIP_IF_CONFIG_ID

0x00000003

The per-interface configuration.

IPRIP_IF_BINDING_ID

0x00000004

The table of IP addresses to which each interface is bound.

IPRIP_PEER_STATS_ID

0x00000005

The statistics kept about neighboring routers.

(unnamed union): The interface index or peer IP address for which data specified by
IMGID_TypeID needs to be retrieved.

2.2.1.2.162 (Updated Section) IPRIP_MIB_GET_OUTPUT_DATA

The IPRIP_MIB_GET_OUTPUT_DATA structure is populated by the following methods:

▪ RMIBEntryGet (section 3.1.4.30)

▪ RMIBEntryGetFirst (section 3.1.4.31)

▪ RMIBEntryGetNext (section 3.1.4.32)

 typedef struct _IPRIP_MIB_GET_OUTPUT_DATA {
 DWORD IMGOD_TypeID;
 union {
 DWORD IMGOD_IfIndex;
 DWORD IMGOD_PeerAddress;
 };
 BYTE IMGOD_Buffer[1];
 } IPRIP_MIB_GET_OUTPUT_DATA,
 *PIPRIP_MIB_GET_OUTPUT_DATA;

IMGOD_TypeID: This MUST be one of the following values.

Value Meaning

IPRIP_GLOBAL_STATS_ID

0x00000000

The global statistics for the IP RIP,
IPRIP_GLOBAL_STATS (section 2.2.1.2.164).163).

IPRIP_GLOBAL_CONFIG_ID

0x00000001

The global configuration for the IP RIP,
IPRIP_GLOBAL_CONFIG (section 2.2.1.2.165).164).

IPRIP_IF_STATS_ID The per-interface statistics for the IP RIP,

187 / 547

[MS-RRASM-Diff] - v20210407
Routing and Remote Access Server (RRAS) Management Protocol
Copyright © 2021 Microsoft Corporation
Release: April 7, 2021

Value Meaning

0x00000002 IPRIP_IF_STATS (section 2.2.1.2.166).165).

IPRIP_IF_CONFIG_ID

0x00000003

The per-interface configuration,
IPRIP_IF_CONFIG (section 2.2.1.2.167).166).

IPRIP_IF_BINDING_ID

0x00000004

The table of IP addresses to which each interface is bound,
IPRIP_IF_BINDING (section 2.2.1.2.169).168).

IPRIP_PEER_STATS_ID

0x00000005

The statistics kept about neighboring routers,
IPRIP_PEER_STATS (section 2.2.1.2.171).170).

(unnamed union): The interface index or peer IP address for which data specified by
IMGOD_TypeID needs to be retrieved.

IMGOD_Buffer: One of the structures in the previous table based on the IMGOD_TypeID.

2.2.1.2.163 IPRIP_GLOBAL_STATS

The IPRIP_GLOBAL_STATS structure contains global statistics for the IP RIP. There is only one
instance, so this entry has no index. This structure is read-only. This structure is used in
IPRIP_MIB_GET_INPUT_DATA (section 2.2.1.2.161) and
IPRIP_MIB_GET_OUTPUT_DATA (section 2.2.1.2.162) structures.

 typedef struct _IPRIP_GLOBAL_STATS {
 DWORD GS_SystemRouteChanges;
 DWORD GS_TotalResponsesSent;
 } IPRIP_GLOBAL_STATS,
 *PIPRIP_GLOBAL_STATS;

GS_SystemRouteChanges: The number of global route changes due to the IPRIP.

GS_TotalResponsesSent: The count of global RIP responses sent.

2.2.1.2.164 (Updated Section) IPRIP_GLOBAL_CONFIG

The IPRIP_GLOBAL_CONFIG structure contains global configuration for the IPRIP. This structure is
used in structures IPRIP_MIB_GET_INPUT_DATA (section 2.2.1.2.161),
IPRIP_MIB_GET_OUTPUT_DATA (section 2.2.1.2.162), and in the following methods:

▪ RRouterInterfaceTransportSetGlobalInfo (section 3.1.4.10)

▪ RRouterInterfaceTransportGetGlobalInfo (section 3.1.4.11)

There is only one instance of this entry in the MIB. Following it is an array of GC_PeerFilterCount
DWORDs, each of which contains an IP address which is a peer which will be accepted or rejected

depending on the value of GC_PeerFilterMode. If the GC_PeerFilterMode is set to
IPRIP_FILTER_EXCLUDE, routes will be rejected which come from the routers whose addresses are in

the peer array, and all other routers will be accepted.

Likewise, if the GC_PeerFilterMode is set to IPRIP_FILTER_INCLUDE, routes will only be accepted if
they are from the routers in the peer array.

 typedef struct _IPRIP_GLOBAL_CONFIG {
 DWORD GC_LoggingLevel;
 DWORD GC_MaxRecvQueueSize;
 DWORD GC_MaxSendQueueSize;
 DWORD GC_MinTriggeredUpdateInterval;

188 / 547

[MS-RRASM-Diff] - v20210407
Routing and Remote Access Server (RRAS) Management Protocol
Copyright © 2021 Microsoft Corporation
Release: April 7, 2021

 DWORD GC_PeerFilterMode;
 DWORD GC_PeerFilterCount;
 } IPRIP_GLOBAL_CONFIG,
 *PIPRIP_GLOBAL_CONFIG;

GC_LoggingLevel: Specifies the logging level. This MUST be one of the following values.

Value Meaning

IPRIP_LOGGING_NONE

0x00000000

No logging is done.

IPRIP_LOGGING_ERROR

0x00000001

Only errors are logged.

IPRIP_LOGGING_WARN

0x00000002

Errors and warnings are logged.

IPRIP_LOGGING_INFO

0x00000003

Errors, warnings, and information is logged.

GC_MaxRecvQueueSize: The maximum queue size of outstanding RIP messages that need to be
processed.

GC_MaxSendQueueSize: The maximum queue size for outstanding RIP messages that have been
sent out.

GC_MinTriggeredUpdateInterval: The minimum amount of time router waits before it sends
triggered updates.

GC_PeerFilterMode: Specifies whether route changes from all the IP addresses are accepted. It
MUST be one of the following values.

Value Meaning

IPRIP_FILTER_DISABLED

0x00000000

Updates from all the IP addresses are accepted.

IPRIP_FILTER_INCLUDE

0x00000001

Updates only from the IP addresses specified in this structure after
GC_PeerFilterCount are accepted.

IPRIP_FILTER_EXCLUDE

0x00000002

Ignores updates from the IP addresses specified in this structure after

GC_PeerFilterCount.

GC_PeerFilterCount: The number of IP addresses in this structure after this field.

2.2.1.2.165 (Updated Section) IPRIP_IF_STATS

The IPRIP_IF_STATS structure contains per-interface statistics for the IPRIP. This structure is read-
only. This structure is used in IPRIP_MIB_GET_INPUT_DATA (section 2.2.1.2.161) and

IPRIP_MIB_GET_OUTPUT_DATA (section 2.2.1.2.163).162).

 typedef struct _IPRIP_IF_STATS {
 DWORD IS_State;
 DWORD IS_SendFailures;
 DWORD IS_ReceiveFailures;
 DWORD IS_RequestsSent;
 DWORD IS_RequestsReceived;
 DWORD IS_ResponsesSent;

189 / 547

[MS-RRASM-Diff] - v20210407
Routing and Remote Access Server (RRAS) Management Protocol
Copyright © 2021 Microsoft Corporation
Release: April 7, 2021

 DWORD IS_ResponsesReceived;
 DWORD IS_BadResponsePacketsReceived;
 DWORD IS_BadResponseEntriesReceived;
 DWORD IS_TriggeredUpdatesSent;
 } IPRIP_IF_STATS,
 *PIPRIP_IF_STATS;

IS_State: The IP RIP state on the interface. It MUST be a combination of one or more of the following
values.

Value Meaning

IPRIP_STATE_ENABLED

0x00000001

IP RIP is enabled.

IPRIP_STATE_BOUND

0x00000002

The socket is bound.

IS_SendFailures: The number of send failures on the interface.

IS_ReceiveFailures: The number of receive failures on the interface.

IS_RequestsSent: The number of requests sent on the interface.

IS_RequestsReceived: The number of requests received on the interface.

IS_ResponsesSent: The number of responses sent on the interface.

IS_ResponsesReceived: The number of responses received on the interface.

IS_BadResponsePacketsReceived: The number of bad response packets received.

IS_BadResponseEntriesReceived: The number of bad response entries received.

IS_TriggeredUpdatesSent: The number of triggered updates sent.

2.2.1.2.166 IPRIP_IF_CONFIG

The IPRIP_IF_CONFIG structure contains the per-interface configuration. This structure is used in
structures IPRIP_MIB_GET_INPUT_DATA (section 2.2.1.2.161),
IPRIP_MIB_GET_OUTPUT_DATA (section 2.2.1.2.162), and in the following methods:

▪ RRouterInterfaceTransportAdd (section 3.1.4.18)

▪ RRouterInterfaceTransportGetInfo (section 3.2.4.19)

▪ RRouterInterfaceTransportSetInfo (section 3.1.4.20)

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

IC_State

IC_Metric

IC_UpdateMode

IC_AcceptMode

190 / 547

[MS-RRASM-Diff] - v20210407
Routing and Remote Access Server (RRAS) Management Protocol
Copyright © 2021 Microsoft Corporation
Release: April 7, 2021

IC_AnnounceMode

IC_ProtocolFlags

IC_RouteExpirationInterval

IC_RouteRemovalInterval

IC_FullUpdateInterval

IC_AuthenticationType

IC_AuthenticationKey (16 bytes)

...

...

IC_RouteTag IC_Padding

IC_UnicastPeerMode

IC_AcceptFilterMode

IC_AnnounceFilterMode

IC_UnicastPeerCount

IC_AcceptFilterCount

IC_AnnounceFilterCount

IC_UnicastPeer (variable)

...

IC_AcceptFilter (variable)

...

IC_AnnounceFilter (variable)

...

IC_State (4 bytes): Specifies the IP RIP state on the interface. This field MUST be read-only and
MUST be ignored if modified. It MUST be a combination of one or more of the following values.

Value Meaning

IPRIP_STATE_ENABLED The IP RIP is enabled.

191 / 547

[MS-RRASM-Diff] - v20210407
Routing and Remote Access Server (RRAS) Management Protocol
Copyright © 2021 Microsoft Corporation
Release: April 7, 2021

Value Meaning

0x00000001

IPRIP_STATE_BOUND

0x00000002

The socket is bound.

IC_Metric (4 bytes): Specifies the metric of the interface.

IC_UpdateMode (4 bytes): Specifies whether the update mode is periodic or on demand.

Value Meaning

IPRIP_UPDATE_PERIODIC

0x00000000

The RIP updates are done periodically.

IPRIP_UPDATE_DEMAND

0x00000001

The RIP updates are done only when there is change.

IC_AcceptMode (4 bytes): Specifies the type of routes that are accepted.

Value Meaning

IPRIP_ACCEPT_DISABLED

0x00000000

Does not accept routes.

IPRIP_ACCEPT_RIP1

0x00000001

Accepts RIPv1 routes.

IPRIP_ACCEPT_RIP1_COMPAT

0x00000002

Accepts RIPv1 compatible routes (RIPv1 was designed to be compatible with
future versions of the RIP. If a RIPv1 router receives a message and if the
RIP version indicated in the RIP header is not 1, the RIPv1 router does not
discard the RIP announcement, but instead processes only the RIPv1
defined fields.)

IPRIP_ACCEPT_RIP2

0x00000003

Accepts RIPv2 routes. See [RFC1723].

IC_AnnounceMode (4 bytes): Specifies the type of routes that are announced.

Value Meaning

IPRIP_ANNOUNCE_DISABLED

0x00000000

Does not announce routes.

IPRIP_ANNOUNCE_RIP1

0x00000001

Announces RIPv1 routes.

IPRIP_ANNOUNCE_RIP1_COMPAT

0x00000002

Accepts RIPv1 compatible routes. (RIPv1 was designed to be compatible
with future versions of the RIP. If a RIPv1 router receives a message
and if the RIP version indicated in the RIP header is not 1, the RIPv1
router does not discard the RIP announcement, but instead processes
only the RIPv1 defined fields.)

IPRIP_ANNOUNCE_RIP2

0x00000003

Announces RIPv2 routes. See [RFC1723].

IC_ProtocolFlags (4 bytes): Specifies which routes are included or excluded from RIP
announcements.

192 / 547

[MS-RRASM-Diff] - v20210407
Routing and Remote Access Server (RRAS) Management Protocol
Copyright © 2021 Microsoft Corporation
Release: April 7, 2021

Value Meaning

IPRIP_FLAG_ACCEPT_HOST_ROUTES

0x00000000

Specifies whether host routes in received RIP announcements
are accepted.

IPRIP_FLAG_ANNOUNCE_HOST_ROUTES

0x00000002

Specifies whether host routes are included in RIP
announcements.

IPRIP_FLAG_ACCEPT_DEFAULT_ROUTES

0x00000004

Specifies whether host routes are included in RIP
announcements.

IPRIP_FLAG_ANNOUNCE_DEFAULT_ROUTES

0x00000008

Specifies whether default routes are included in RIP
announcements.

IPRIP_FLAG_SPLIT_HORIZON

0x00000010

Enables split-horizon processing.

Specifies whether routes learned on a network are not
announced in RIP announcements sent on that network.

IPRIP_FLAG_POISON_REVERSE

0x00000020

Enables the poison-reverse processing.

Specifies whether routes learned on a network are announced
with a metric of 16 (unreachable) in RIP announcements sent
on that network.

IPRIP_FLAG_GRACEFUL_SHUTDOWN

0x00000040

Sends cleanup updates when shutting down.

Specifies whether, if the RIP is stopping on this interface, the
RIP sends an announcement with all routes that are marked
with a metric of 15. This enables neighboring routers to
immediately update their routing tables to indicate that the
routes available through the router that is stopping are no
longer reachable.

IPRIP_FLAG_TRIGGERED_UPDATES

0x00000080

Enables triggered updates processing.

Specifies whether new routes and metric changes trigger an
immediate update that includes only the changes. This is
called a triggered update.

IPRIP_FLAG_OVERWRITE_STATIC_ROUTES

0x00000100

Overwrites the static routes on the interface.

IPRIP_FLAG_NO_SUBNET_SUMMARY

0x00000200

Specifies that subnet routes are not summarized in the form
of the class-based network ID when announced on a network
that is not a subnet of the class-based network ID. By default,
subnet summarization is disabled.

IC_RouteExpirationInterval (4 bytes): The lifetime (in seconds) of a route that is learned through
the RIP before it expires.

IC_RouteRemovalInterval (4 bytes): The amount of time (in seconds) after which a RIP-learned
route that has expired is removed from the routing table.

IC_FullUpdateInterval (4 bytes): The number of seconds between full RIP updates.

IC_AuthenticationType (4 bytes): One of the following values.

Value Meaning

IPRIP_AUTHTYPE_NONE

0x00000001

No authentication is used.

IPRIP_AUTHTYPE_SIMPLE_PASSWORD Password authentication is used. Plain comparison of text is made.

193 / 547

[MS-RRASM-Diff] - v20210407
Routing and Remote Access Server (RRAS) Management Protocol
Copyright © 2021 Microsoft Corporation
Release: April 7, 2021

Value Meaning

0x00000002

IPRIP_AUTHTYPE_MD5

0x00000003

This is unused.

IC_AuthenticationKey (16 bytes): The authentication data being sent depending on
IC_AuthenticationType. This MUST be a write-only field and MUST be ignored on receive.

IC_RouteTag (2 bytes): A tag number for the routes advertised on this interface. Use this option if
to have all packets sent over this interface to include a tag in RIP version 2 announcements. See
[RFC1723].

IC_Padding (2 bytes): This is a padding field and MUST be set to 0 and ignored on receive.

IC_UnicastPeerMode (4 bytes): This MUST be one of the following values.

Value Meaning

IPRIP_PEER_DISABLED

0x00000000

 RIP packets will not be sent to peers.

IPRIP_PEER_ALSO

0x00000001

RIP packets will be sent to peers, as well as being sent via broadcast or multicast.

IPRIP_PEER_ONLY

0x00000002

RIP packets will only be sent to the peers specified in the structure.

IC_AcceptFilterMode (4 bytes): This MUST be one of the following values.

Value Meaning

IPRIP_FILTER_DISABLED

0x00000000

Updates from all IP addresses are accepted.

IPRIP_FILTER_INCLUDE

0x00000001

Updates are only accepted from the IP addresses specified by the
IC_AcceptFilter.

IPRIP_FILTER_EXCLUDE

0x00000002

Ignores updates from the IP addresses specified by the IC_AcceptFilter.

IC_AnnounceFilterMode (4 bytes): This MUST be one of the following values.

Value Meaning

IPRIP_FILTER_DISABLED

0x00000000

Updates from all IP addresses are accepted.

IPRIP_FILTER_INCLUDE

0x00000001

Updates are only accepted from IP addresses specified by the IC_AnnounceFilter.

IPRIP_FILTER_EXCLUDE

0x00000002

Ignores updates from the IP addresses specified by the IC_AnnounceFilter.

IC_UnicastPeerCount (4 bytes): The number of peer IP addresses specified in IC_UnicastPeer
array.

194 / 547

[MS-RRASM-Diff] - v20210407
Routing and Remote Access Server (RRAS) Management Protocol
Copyright © 2021 Microsoft Corporation
Release: April 7, 2021

IC_AcceptFilterCount (4 bytes): The number of accept filters specified in IC_AcceptFilter.

IC_AnnounceFilterCount (4 bytes): The number of announce filters specified in

IC_AnnounceFilter.

IC_UnicastPeer (variable): This specifies an array of IPv4 address of the peers in network byte

order. The array MUST have IC_UnicastPeerCount number of elements in it.

IC_AcceptFilter (variable): This specifies an array of IPRIP_ROUTE_FILTER (section 2.2.1.2.167)
entries. The array MUST have IC_AcceptFilterCount number of elements in it. The default filter
action to be applied for these filters is specified by IC_AcceptFilterMode.

IC_AnnounceFilter (variable): This specifies an array of IPRIP_ROUTE_FILTER entries. The
array MUST have IC_AnnounceFilterCount number of elements in it. The default filter action to
be applied for these filters is specified by IC_AnnounceFilterMode.

2.2.1.2.167 IPRIP_ROUTE_FILTER

The IPRIP_ROUTE_FILTER structure is used to specify a route filter for use in the IC_AcceptFilter
and IC_AnnounceFilter fields of the IPRIP_IF_CONFIG (section 2.2.1.2.166) structure.

 typedef struct _IPRIP_ROUTE_FILTER {
 DWORD RF_LoAddress;
 DWORD RF_HiAddress;
 } IPRIP_ROUTE_FILTER,
 *PIPRIP_ROUTE_FILTER;

RF_LoAddress: The starting IPv4 address of the route filter specified in network byte order.

RF_HiAddress: The ending IPv4 address of the route filter specified in network byte order.

2.2.1.2.168 IPRIP_IF_BINDING

The IPRIP_IF_BINDING structure is an MIB entry that contains the table of IP addresses to which

each interface is bound. This structure is used in IPRIP_MIB_GET_INPUT_DATA (section 2.2.1.2.161)
and IPRIP_MIB_GET_OUTPUT_DATA (section 2.2.1.2.162) structures.

All IP addresses are in network order. This structure is variable length.

The base structure contains the field IB_AddrCount, which gives the number of IP addresses to
which the indexed interface is bound. The IP addresses themselves follow the base structure and are
given as IPRIP_IP_ADDRESS (section 2.2.1.2.169) structures. This MIB entry is read-only.

 typedef struct _IPRIP_IF_BINDING {
 DWORD IB_State;
 DWORD IB_AddrCount;
 } IPRIP_IF_BINDING,
 *PIPRIP_IF_BINDING;

IB_State: The IP RIP state on the interface. It MUST be a combination of one or more of the following
values.

Value Meaning

IPRIP_STATE_ENABLED

0x00000001

The IP RIP is enabled.

IPRIP_STATE_BOUND The socket is bound.

195 / 547

[MS-RRASM-Diff] - v20210407
Routing and Remote Access Server (RRAS) Management Protocol
Copyright © 2021 Microsoft Corporation
Release: April 7, 2021

Value Meaning

0x00000002

IB_AddrCount: The number of IPRIP_IP_ADDRESS structures present at the end of this structure.

2.2.1.2.169 IPRIP_IP_ADDRESS

The IPRIP_IP_ADDRESS structure is used for storing interface bindings. A series of structures of
this type follows the IPRIP_IF_BINDING (section 2.2.1.2.168) structure. This structure is used in

IPRIP_IF_BINDING. Both fields are IP address fields in network-order.

 typedef struct _IPRIP_IP_ADDRESS {
 DWORD IA_Address;
 DWORD IA_Netmask;
 } IPRIP_IP_ADDRESS,
 *PIPRIP_IP_ADDRESS;

IA_Address: The IP address.

IA_Netmask: The net mask. See [RFC950].

2.2.1.2.170 (Updated Section) IPRIP_PEER_STATS

The IPRIP_PEER_STATS structure is an MIB entry that describes the statistics kept about
neighboring routers. All IP addresses are in network order. This structure is read-only. This structure
is used in IPRIP_MIB_GET_INPUT_DATA (section 2.2.1.2.161) and
IPRIP_MIB_GET_OUTPUT_DATA (section 2.2.1.2.163).162) structures.

 typedef struct _IPRIP_PEER_STATS {
 DWORD PS_LastPeerRouteTag;
 DWORD PS_LastPeerUpdateTickCount;
 DWORD PS_LastPeerUpdateVersion;
 DWORD PS_BadResponsePacketsFromPeer;
 DWORD PS_BadResponseEntriesFromPeer;
 } IPRIP_PEER_STATS,
 *PIPRIP_PEER_STATS;

PS_LastPeerRouteTag: The route tag last received from the peer.

PS_LastPeerUpdateTickCount: The number of updates received from peer.

PS_LastPeerUpdateVersion: The RIP version of the last update received from peer.

PS_BadResponsePacketsFromPeer: The number of bad response packets received from peer.

PS_BadResponseEntriesFromPeer: The number of bad entries in responses received from peer.

2.2.1.2.171 IGMP_MIB_GET_INPUT_DATA

The IGMP_MIB_GET_INPUT_DATA structure is passed as input data for the following methods:

▪ RMIBEntryGet (section 3.1.4.30)

▪ RMIBEntryGetFirst (section 3.1.4.31)

▪ RMIBEntryGetNext (section 3.1.4.32)

All IP addresses MUST be in network order.

196 / 547

[MS-RRASM-Diff] - v20210407
Routing and Remote Access Server (RRAS) Management Protocol
Copyright © 2021 Microsoft Corporation
Release: April 7, 2021

 typedef struct _IGMP_MIB_GET_INPUT_DATA {
 DWORD TypeId;
 USHORT Flags;
 USHORT Signature;
 DWORD IfIndex;
 DWORD RasClientAddr;
 DWORD GroupAddr;
 DWORD Count;
 } IGMP_MIB_GET_INPUT_DATA,
 *PIGMP_MIB_GET_INPUT_DATA;

TypeID: Specifies the type of entry being requested. It MUST be one of the following, otherwise an
error is returned.

Value Meaning

IGMP_IF_STATS_ID

0x00000004

The Internet Group Management Protocol (IGMP) statistics for an
interface. If TypeID is set to this value, Count MUST be nonzero.

IGMP_IF_GROUPS_LIST_ID

0x00000005

The list of multicast group members on an interface. If TypeID is set

to this value, Count MUST be nonzero.

IGMP_GROUP_IFS_LIST_ID

0x00000006

The list of interfaces joined for a group. If TypeID is set to this
value, Count MUST be nonzero and GroupAddr MUST match a valid
existing IGMP group address.

IGMP_PROXY_IF_INDEX_ID

0x00000007

Returns the index of the interface owned by the IGMP proxy.

RMIBEntryGetNext is invalid as there is only one proxy interface
and ERROR_NO_MORE_ITEMS is returned.

Flags: This MUST be one of the following combinations, otherwise an error is returned.

Value Meaning

IGMP_ENUM_FOR_RAS_CLIENTS

0x00000001

Enumerate for RAS clients only.

IGMP_ENUM_ONE_ENTRY

0x00000002

Return only one interface group entry.

IGMP_ENUM_ALL_INTERFACES_GROUPS

0x00000004

Enumerate all interfaces. If enumeration reaches end of
an interface, it will go to the next interface.

IGMP_ENUM_ALL_TABLES

0x00000010

Enumerate all tables.

IGMP_ENUM_SUPPORT_FORMAT_IGMPV3

0x00000010

Set if IGMPv3 is supported.

Signature: This MUST be set to zero (0).

IfIndex: The index of the interface for which information needs to be retrieved.

RasClientAddr: The address of the RAS client for which information needs to be retrieved.

GroupAddr: The IGMP group address for which information needs to be retrieved.

Count: The count of entries that need to be retrieved.

197 / 547

[MS-RRASM-Diff] - v20210407
Routing and Remote Access Server (RRAS) Management Protocol
Copyright © 2021 Microsoft Corporation
Release: April 7, 2021

2.2.1.2.172 IGMP_MIB_GET_OUTPUT_DATA

The IGMP_MIB_GET_OUTPUT_DATA structure is written into the output data on calling the
following methods:

▪ RMIBEntryGet (section 3.1.4.30)

▪ RMIBEntryGetFirst (section 3.1.4.31)

▪ RMIBEntryGetNext (section 3.1.4.32)

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

TypeID

Flags

Count

Buffer (variable)

...

TypeID (4 bytes): Specifies the type of entry being populated.

Value Meaning

IGMP_IF_STATS_ID

0x00000004

Returns the statistics for an interface, see IGMP_MIB_IF_STATS for more
details.

IGMP_IF_GROUPS_LIST_ID

0x00000005

Returns the list of multicast group members on an interface,
IGMP_MIB_IF_GROUPS_LIST.

IGMP_GROUP_IFS_LIST_ID

0x00000006

Returns the list of interfaces joined for that group,
IGMP_MIB_GROUP_IFS_LIST.

IGMP_PROXY_IF_INDEX_ID

0x00000007

Returns the index of interface owned by the IGMP proxy.

Flags (4 bytes): This MUST be a combination of the following flags.

Value Meaning

IGMP_ENUM_FOR_RAS_CLIENTS

0x00000001

Enumerate for RAS clients only.

IGMP_ENUM_ONE_ENTRY

0x00000002

Returns only one interface group entry.

IGMP_ENUM_ALL_INTERFACES_GROUPS

0x00000004

Enumerate all interfaces. If the enumeration reaches the end
of an interface, it will go to the next interface.

IGMP_ENUM_ALL_TABLES

0x00000010

Enumerate all tables.

198 / 547

[MS-RRASM-Diff] - v20210407
Routing and Remote Access Server (RRAS) Management Protocol
Copyright © 2021 Microsoft Corporation
Release: April 7, 2021

Value Meaning

IGMP_ENUM_SUPPORT_FORMAT_IGMPV3

0x00000010

Set if IGMPv3 is supported.

IGMP_ENUM_INTERFACE_TABLE_BEGIN

0x00000100

Indicates the beginning of the table.

IGMP_ENUM_INTERFACE_TABLE_CONTINUE

0x00000200

The enumeration for the interface has to continue.

IGMP_ENUM_INTERFACE_TABLE_END

0x00000400

End of the enumeration for the interface.

IGMP_ENUM_FORMAT_IGMPV3

0x00001000

A set of IGMPv3 information is present.

Count (4 bytes): The number of entries being returned.

Buffer (variable): One of the structures specified previously depending on the TypeId.

2.2.1.2.173 IGMP_MIB_GLOBAL_CONFIG

The IGMP_MIB_GLOBAL_CONFIG structure contains the global configuration for the IGMP. This
structure is used in the following methods:

▪ RRouterInterfaceTransportSetGlobalInfo (section 3.1.4.10)

▪ RRouterInterfaceTransportGetGlobalInfo (section 3.1.4.11)

 typedef struct _IGMP_MIB_GLOBAL_CONFIG {
 DWORD Version;
 DWORD LoggingLevel;
 DWORD RasClientStats;
 } IGMP_MIB_GLOBAL_CONFIG,
 *PIGMP_MIB_GLOBAL_CONFIG;

Version: It MUST be one of the following.

Value Meaning

IGMP_VERSION_1_2

0x00000201

IGMPv1 or IGMPv2

IGMP_VERSION_3

0x00000301

IGMPv3

LoggingLevel: Specifies the logging level. It MUST be one of the following values.

Value Meaning

IGMP_LOGGING_NONE

0x00000000

No logging is done.

IGMP_LOGGING_ERROR

0x00000001

Only errors are logged.

199 / 547

[MS-RRASM-Diff] - v20210407
Routing and Remote Access Server (RRAS) Management Protocol
Copyright © 2021 Microsoft Corporation
Release: April 7, 2021

Value Meaning

IGMP_LOGGING_WARN

0x00000002

Errors and warnings are logged.

IGMP_LOGGING_INFO

0x00000003

Errors, warnings, and information is logged.

RasClientStats: If RASClientStats is nonzero, then per RAS client statistics are maintained.

2.2.1.2.174 IGMP_MIB_IF_CONFIG

The IGMP_MIB_IF_CONFIG structure contains per-interface configuration. This structure is used in
the following methods:

▪ RRouterInterfaceTransportAdd (section 3.1.4.18)

▪ RRouterInterfaceTransportGetInfo (section 3.2.4.19)

▪ RRouterInterfaceTransportSetInfo (section 3.1.4.20)

All IP address fields MUST be in network order.

 typedef struct _IGMP_MIB_IF_CONFIG {
 DWORD Version;
 DWORD IfIndex;
 DWORD IpAddr;
 DWORD IfType;
 DWORD Flags;
 DWORD IgmpProtocolType;
 DWORD RobustnessVariable;
 DWORD StartupQueryInterval;
 DWORD StartupQueryCount;
 DWORD GenQueryInterval;
 DWORD GenQueryMaxResponseTime;
 DWORD LastMemQueryInterval;
 DWORD LastMemQueryCount;
 DWORD OtherQuerierPresentInterval;
 DWORD GroupMembershipTimeout;
 DWORD NumStaticGroups;
 } IGMP_MIB_IF_CONFIG,
 *PIGMP_MIB_IF_CONFIG;

Version: It MUST be one of the following values.

Value Meaning

IGMP_VERSION_1_2

0x00000201

IGMPv1 or IGMPv2

IGMP_VERSION_3

0x00000301

IGMPv3

IfIndex: The index of the interface, it is read-only.

IpAddr: The IP address of the interface, it is read-only.

IfType: The type of the interface, it is read-only. It MUST be one of the following values.

200 / 547

[MS-RRASM-Diff] - v20210407
Routing and Remote Access Server (RRAS) Management Protocol
Copyright © 2021 Microsoft Corporation
Release: April 7, 2021

Value Meaning

IGMP_IF_NOT_RAS

0x00000001

The interface is connected to a LAN.

IGMP_IF_RAS_ROUTER

0x00000002

The interface is connected to another router over RAS.

IGMP_IF_RAS_SERVER

0x00000003

The entry corresponds to a RAS server if it contains statistics, then it
represents summarized statistics.

IGMP_IF_RAS_CLIENT

0x00000004

The entry corresponds to a RAS client.

IGMP_IF_PROXY

0x00000008

One of the first four flags will still be set to enable the switch from the
proxy to an IGMP router.

Flags: It MUST be one of the following values.

Value Meaning

IGMP_INTERFACE_ENABLED_IN_CONFIG

0x00000001

The interface is enabled in this configuration.

IGMP_ACCEPT_RTRALERT_PACKETS_ONLY

0x00000002

Can accept only router alerts.

IgmpProtocolType: Takes one of the following values.

Value Meaning

IGMP_PROXY

0x00000000

The interface is an IGMPv2 proxy.

IGMP_ROUTER_V1

0x00000001

The interface is an IGMPv1 router.

IGMP_ROUTER_V2

0x00000002

The interface is an IGMPv2 router.

IGMP_ROUTER_V3

0x00000003

The interface is an IGMPv3 router.

IGMP_PROXY_V3

0x00000010

The interface is an IGMPv3 proxy.

RobustnessVariable: The robustness variable is a way of indicating the lossy nature of the subnet to

which this interface is attached. The IGMP can recover from lost IGMP packets (robustness

variable is set to 1). The robustness variable SHOULD be set to a value of 2 or greater.

StartupQueryInterval: The startup query interval is the amount of time in seconds between
successive general query messages sent by a querier during startup.

StartupQueryCount: The startup query count is the number of general query messages sent at
startup.

GenQueryInterval: The query interval is the amount of time, in seconds, between the IGMP general

query messages sent by the router (if the router is the querier on this subnet).

201 / 547

[MS-RRASM-Diff] - v20210407
Routing and Remote Access Server (RRAS) Management Protocol
Copyright © 2021 Microsoft Corporation
Release: April 7, 2021

GenQueryMaxResponseTime: The query response interval is the maximum amount of time, in
seconds, that the IGMP router waits to receive a response to a general query message.

LastMemQueryInterval: The last member query interval is the amount of time, in milliseconds, that
the IGMP router waits to receive a response to a group-specific query message. The last member

query interval is also the amount of time, in seconds, between successive group-specific query
messages.

LastMemQueryCount: The last member query count is the number of group-specific query messages
sent before the router assumes there are no members of the host group being queried on this
interface.

OtherQuerierPresentInterval: Displays the calculated other querier present interval. The other
querier present interval is the number of seconds that MUST pass before a multicast router

determines that there is no other multicast router that can be the querier. The other querier
present interval is (robustness variable) * (query interval) + (query response interval)/2.

GroupMembershipTimeout: Displays the calculated group membership interval. The group

membership interval is the number of seconds that MUST pass before a multicast router
determines that there are no more members of a host group on a subnet. The group membership
interval is (robustness variable) * (query interval) + (query response interval).

NumStaticGroups: The number of static groups. This value MUST be zero (0) when calling
RRouterInterfaceTransportAdd and RRouterInterfaceTransportSetInfo.

2.2.1.2.175 IGMP_MIB_IF_GROUPS_LIST

The IGMP_MIB_IF_GROUPS_LIST structure is an MIB entry that stores the list of multicast groups
that are members of that interface. This structure has variable length. The structure is followed by
NumGroups number of IGMP_MIB_GROUP_INFO (section 2.2.1.2.176) structures.

 typedef struct _IGMP_MIB_IF_GROUPS_LIST {
 DWORD IfIndex;
 DWORD IpAddr;
 DWORD IfType;
 DWORD NumGroups;
 BYTE Buffer[1];
 } IGMP_MIB_IF_GROUPS_LIST,
 *PIGMP_MIB_IF_GROUPS_LIST;

IfIndex: Index of the interface

IpAddr: IP address of the interface

IfType: Type of the interface, MUST be one of the following values.

Value Meaning

IGMP_IF_NOT_RAS

0x00000001

The interface is connected to a LAN

IGMP_IF_RAS_ROUTER

0x00000002

The interface is connected to another router over RAS

IGMP_IF_RAS_SERVER

0x00000003

The entry corresponds to a RAS server if it contains stats, then it
represents summarized stats

IGMP_IF_RAS_CLIENT

0x00000004

The entry corresponds to a RAS client

202 / 547

[MS-RRASM-Diff] - v20210407
Routing and Remote Access Server (RRAS) Management Protocol
Copyright © 2021 Microsoft Corporation
Release: April 7, 2021

Value Meaning

IGMP_IF_PROXY

0x00000008

then one of the 1st 4 flags still will be set to enable switch from proxy to
IGMP router

NumGroups: Number of IGMP_MIB_GROUP_INFO structures

Buffer: MUST point to IGMP_MIB_GROUP_INFO.

2.2.1.2.176 (Updated Section) IGMP_MIB_GROUP_INFO

The IGMP_MIB_GROUP_INFO structure is used in the

IGMP_MIB_IF_GROUPS_LIST (section 2.2.1.2.175) structure. If the interface is of type
IGMP_IF_RAS_SERVER then the group membership of all the RAS clients is summarized, and the
GroupUpTime and GroupExpiryTime is the maximum over all member RAS clients, while the
V1HostPresentTimeLeft is set to 0. If the interface is of type IGMP_IF_RAS_CLIENT, the IpAddr is
the next hop IP address of the RAS client. The membership is summarized over the RAS clients unless

the IGMP_ENUM_FOR_RAS_CLIENTS_ID flag is set in Flags.

 typedef struct _IGMP_MIB_GROUP_INFO {
 union {
 DWORD IfIndex;
 DWORD GroupAddr;
 };
 DWORD IpAddr;
 DWORD GroupUpTime;
 DWORD GroupExpiryTime;
 DWORD LastReporter;
 DWORD V1HostPresentTimeLeft;
 DWORD Flags;
 } IGMP_MIB_GROUP_INFO,
 *PIGMP_MIB_GROUP_INFO;

IfIndex/ GroupAddr: The index of the interface or group address.

IpAddr: The IP address of the interface.

GroupUpTime: The time, in seconds, since the group is up.

GroupExpiryTime: The time, in seconds, before the group expires.

LastReporter: The IP address of the last reporter.

V1HostPresentTimeLeft: The time left for the present IGMPv1 hosts.

Flags: It MUST be one of the following values.

Value Meaning

IGMP_GROUP_TYPE_NON_STATIC

0x00000001

The IGMP group is not static.

IGMP_GROUP_TYPE_STATIC

0x00000002

The IGMP group is static.

IGMP_GROUP_FWD_TO_MGM

0x00000004

The IGMP group needs to be forwarded to the multiple
multicast routing protocols.

IGMP_GROUP_ALLOW Allows IGMP groups.

203 / 547

[MS-RRASM-Diff] - v20210407
Routing and Remote Access Server (RRAS) Management Protocol
Copyright © 2021 Microsoft Corporation
Release: April 7, 2021

Value Meaning

0x00000010

IGMP_GROUP_BLOCK

0x00000020

Blocks IGMP groups.

IGMP_GROUP_NO_STATE

0x00000040

There is no IGMP group state.

2.2.1.2.177 (Updated Section) IGMP_MIB_IF_STATS

The IGMP_MIB_IF_STATS structure contains statistics about an interface.

 typedef struct _IGMP_MIB_IF_STATS {
 DWORD IfIndex;
 DWORD IpAddr;
 DWORD IfType;
 BYTE State;
 BYTE QuerierState;
 DWORD IgmpProtocolType;
 DWORD QuerierIpAddr;
 DWORD ProxyIfIndex;
 DWORD QuerierPresentTimeLeft;
 DWORD LastQuerierChangeTime;
 DWORD V1QuerierPresentTimeLeft;
 DWORD Uptime;
 DWORD TotalIgmpPacketsReceived;
 DWORD TotalIgmpPacketsForRouter;
 DWORD GeneralQueriesReceived;
 DWORD WrongVersionQueries;
 DWORD JoinsReceived;
 DWORD LeavesReceived;
 DWORD CurrentGroupMemberships;
 DWORD GroupMembershipsAdded;
 DWORD WrongChecksumPackets;
 DWORD ShortPacketsReceived;
 DWORD LongPacketsReceived;
 DWORD PacketsWithoutRtrAlert;
 } IGMP_MIB_IF_STATS,
 *PIGMP_MIB_IF_STATS;

IfIndex: The index of the interface.

IpAddr: The IP address of the interface. If the interface is a RAS interface, then the IpAddr is set to

the NextHopAddress of the RAS client.

IfType: The type of the interface. It MUST be one of the following values.

Value Meaning

IGMP_IF_NOT_RAS

0x00000001

The interface is connected to a LAN.

IGMP_IF_RAS_ROUTER

0x00000002

The interface is connected to another router over RAS.

IGMP_IF_RAS_SERVER

0x00000003

The entry corresponds to a RAS server if it contains statistics and it
represents summary statistics.

204 / 547

[MS-RRASM-Diff] - v20210407
Routing and Remote Access Server (RRAS) Management Protocol
Copyright © 2021 Microsoft Corporation
Release: April 7, 2021

Value Meaning

IGMP_IF_RAS_CLIENT

0x00000004

The entry corresponds to a RAS client.

IGMP_IF_PROXY

0x00000008

The interface is an IGMP PROXY. One of the first four flags will still be
set to enable the switch from the proxy to the IGMP router.

State: It MUST be a combination of one or more of the following values.

Value Meaning

IGMP_STATE_BOUND

0x01

The socket is bound.

IGMP_STATE_ENABLED_BY_RTRMGR

0x02

The interface is enabled by router.

IGMP_STATE_ENABLED_IN_CONFIG

0x04

The interface is enabled in the configuration.

IGMP_STATE_ENABLED_BY_MGM

0x08

The interface is enabled by component that aggregates
multiple routing protocols.

QuerierState: It MUST be one of the following.

Value Meaning

RTR_QUERIER

0x10

The interface is the IGMP querier.

RTR_NOT_QUERIER

0x00

The interface is not the IGMP querier.

IgmpProtocolType: Takes one of the following values.

Value Meaning

IGMP_PROXY

0x00000000

The interface is an IGMPv2 proxy.

Specifies that the IGMPv2 proxy mode is enabled on this interface. An interface in
IGMP proxy mode acts as a host, forwarding the IGMP host membership messages for
all the IGMP host membership messages received on all other interfaces on which the
IGMP router mode is enabled. Additionally, all nonlocal multicast traffic received on all
other interfaces (on which the IGMP router mode is enabled) is forwarded over the
IGMP proxy mode interface.

IGMP_ROUTER_V1

0x00000001

The interface is an IGMPv1 router.

Specifies that IGMPv1 router mode is enabled on this interface. An interface in IGMP
router mode listens for IGMP messages from hosts and updates the TCP/IP multicast
forwarding table.

IGMP_ROUTER_V2

0x00000002

The interface is an IGMPv2 router.

Specifies that IGMPv2 router mode is enabled on this interface. An interface in IGMP
router mode listens for IGMP messages from hosts and updates the TCP/IP multicast
forwarding table.

IGMP_ROUTER_V3

0x00000003

The interface is an IGMPv3 router.

Specifies that IGMPv3 router mode is enabled on this interface. An interface in IGMP

205 / 547

[MS-RRASM-Diff] - v20210407
Routing and Remote Access Server (RRAS) Management Protocol
Copyright © 2021 Microsoft Corporation
Release: April 7, 2021

Value Meaning

router mode listens for IGMP messages from hosts and updates the TCP/IP multicast
forwarding table.

IGMP_PROXY_V3

0x00000010

The interface is an IGMPv3 proxy.

Specifies that IGMPv3 proxy mode is enabled on this interface. An interface in IGMP
proxy mode acts as a host, forwarding IGMP host membership messages for all IGMP
host membership messages received on all other interfaces on which IGMP router
mode is enabled. Additionally, all nonlocal multicast traffic received on all other
interfaces (on which IGMP router mode is enabled) is forwarded over the IGMP proxy
mode interface.

QuerierIpAddr: The IP address of the querier.

ProxyIfIndex: The IfIndex of the IGMP proxy.

QuerierPresentTimeLeft: If no IGMPv2 queries are heard on this interface within this interval, the
local router will take over the querier on the IP subnet to which this interface is attached.

LastQuerierChangeTime: The number of seconds since igmpInterfaceQuerierQuerierIpAddr was
last changed.

V1QuerierPresentTimeLeft: The time remaining until the host assumes that there are no IGMPv1
routers present on the interface. While this is nonzero, the host will reply to all queries with

version 1 membership reports.

Uptime: The time, in seconds, the interface has been activated.

TotalIgmpPacketsReceived: The total IGMP packets received.

TotalIgmpPacketsForRouter: The total IGMP packets received for a router.

GeneralQueriesReceived: The total queries received.

WrongVersionQueries: The count of wrong version queries received.

JoinsReceived: The count of IGMP joins received.

LeavesReceived: The count of IGMP leaved received.

CurrentGroupMemberships: The count of current group memberships.

GroupMembershipsAdded: The count of group memberships received.

WrongChecksumPackets: The count of packets with wrong checksum received.

ShortPacketsReceived: The count of short packets received.

LongPacketsReceived: The count of long packets received.

PacketsWithoutRtrAlert: The count of packets with router alerts received.

2.2.1.2.178 (Updated Section) IGMP_MIB_GROUP_IFS_LIST

The IGMP_MIB_GROUP_IFS_LIST structure is an MIB entry and stores the list of interfaces that
have received joins for that group. This structure has variable length. The structure is followed by the
NumInterfaces number of structures of type IGMP_MIB_GROUP_INFO or
IGMP_MIB_GROUP_INFO_V3.

This structure is read only.

206 / 547

[MS-RRASM-Diff] - v20210407
Routing and Remote Access Server (RRAS) Management Protocol
Copyright © 2021 Microsoft Corporation
Release: April 7, 2021

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

GroupAddr

NumInterfaces

Buffer (variable)

...

GroupAddr (4 bytes): The address of the IGMP group.

NumInterfaces (4 bytes): The number of structures in the buffer.

Buffer (variable): If IGMP_ENUM_FORMAT_IGMPV3 is set, then Flags of

IGMP_MIB_GET_OUTPUT_DATA contains IGMP_MIB_GROUP_INFO_V3 structures otherwise.
Otherwise, it contains IGMP_MIB_GROUP_INFO structures.

2.2.1.2.179 (Added Section) IGMP_MIB_GROUP_SOURCE_INFO_V3

The IGMP_MIB_GROUP_SOURCE_INFO_V3 structure provides information about each source IP
endpoint.

 typedef struct _IGMP_MIB_GROUP_SOURCE_INFO_V3 {
 DWORD Source;
 DWORD SourceExpiryTime;
 DWORD SourceUpTime;
 DWORD Flags;
 } IGMP_MIB_GROUP_SOURCE_INFO_V3, *PIGMP_MIB_GROUP_SOURCE_INFO_V3;

Source: IP endpoint address of a source.

SourceExpiryTime: The time, in seconds, that remains before source expires. Not valid for exclusion
mode.

SourceUpTime: The time, in seconds since the source was up.

Flags: Reserved. This is unused and SHOULD be NULL, or MAY be set to 0x00000000.

2.2.1.2.180 (Updated Section) IGMP_MIB_GROUP_INFO_V3

The IGMP_MIB_GROUP_INFO_V3 provides information about a group.

 typedef struct _IGMP_MIB_GROUP_INFO_V3
 {
 union {
 DWORD IfIndex;
 DWORD GroupAddr;
 };
 DWORD IpAddr;
 DWORD GroupUpTime;
 DWORD GroupExpiryTime;
 DWORD LastReporter;
 DWORD V1HostPresentTimeLeft;
 DWORD Flags;
 DWORD Version;
 DWORD Size;
 DWORD FilterType;

207 / 547

[MS-RRASM-Diff] - v20210407
Routing and Remote Access Server (RRAS) Management Protocol
Copyright © 2021 Microsoft Corporation
Release: April 7, 2021

 DWORD V2HostPresentTimeLeft;
 DWORD NumSources;
 } IGMP_MIB_GROUP_INFO_V3,
 *PIGMP_MIB_GROUP_INFO_V3;

IfIndex: The interface for which this entry contains information for an IP multicast group address.

GroupAddr: The IP multicast group address for which this entry contains information.

IpAddr: The IP address of the interface.

GroupUpTime: The time, in seconds, since the group membership was up.

GroupExpiryTime: The time, in seconds, before the group membership expires.

LastReporter: The IP address of the source of the last membership report received for this IP

multicast group address on this interface. If no membership report has been received, this object
has the value 0.0.0.0.

V1HostPresentTimeLeft: The time remaining until the local router will assume that there are no
longer any IGMP version 1 members on the IP subnet attached to this interface. Upon hearing any
IGMPv1 membership report, this value is reset to the group membership timer. While this time
remaining is nonzero, the local router ignores any IGMPv1 leave messages for this group that it

receives on this interface.

Flags: This MUST be 0x1000 if IGMPv3 information is available and a IGMP_MIB_GROUP_INFO_V3
structure MUST be used. All other values have no meaning.

Version: The IGMP version. It MUST be 3.

Size: The size of the structure.

FilterType: Indicates whether the sources specified need to be included or excluded. It MUST be
either EXCLUSION (0x00000000) or INCLUSION (0x00000001).

V2HostPresentTimeLeft: The time remaining until the local router will assume that there are no
longer any IGMP version 2 members on the IP subnet attached to this interface. Upon hearing any
IGMPv2 membership report, this value is reset to the group membership timer. While this time
remaining is nonzero, the local router ignores any IGMPv2 leave messages for this group that it
receives on this interface.

NumSources: The number of entries of IGMP_MIB_GROUP_SOURCE_INFO_V3.

Sources: The IGMP_MIB_GROUP_SOURCE_INFO_V3 structure. (section 2.2.1.2.179).

2.2.1.2.181 INTERFACE_ROUTE_ENTRY

The INTERFACE_ROUTE_ENTRY structure is used to store and retrieve entries of the IPv6
ForwardRow based on the dwIndex.

 typedef struct _INTERFACE_ROUTE_ENTRY {
 DWORD dwIndex;
 INTERFACE_ROUTE_INFO routeInfo;
 } INTERFACE_ROUTE_ENTRY,
 *PINTERFACE_ROUTE_ENTRY;

dwIndex: The index to the table of INTERFACE_ROUTE_INFO structures defined on RRAS.

routeInfo: This MUST be INTERFACE_ROUTE_INFO.

208 / 547

[MS-RRASM-Diff] - v20210407
Routing and Remote Access Server (RRAS) Management Protocol
Copyright © 2021 Microsoft Corporation
Release: April 7, 2021

2.2.1.2.182 (Updated Section) IP_NAT_MIB_QUERY

The IP_NAT_MIB_QUERY structure is used to retrieve Network Address Translator (NAT)
information and is passed to the following methods:

▪ RMIBEntryGet (section 3.1.4.30)

▪ RMIBGetEntryFirstRMIBEntryGetFirst (section 3.1.4.31)

▪ RMIBEntryGetNext (section 3.1.4.32)

 typedef struct _IP_NAT_MIB_QUERY {
 ULONG Oid;
 union {
 ULONG Index;
 UCHAR Data;
 };
 } IP_NAT_MIB_QUERY,
 *PIP_NAT_MIB_QUERY;

Oid: This is an index of the NAT MIB. It MUST be one of the following values.

Value Meaning

IP_NAT_INTERFACE_STATISTICS_OID

0x00000000

NAT interface statistics information is retrieved.

When RMIBEntryGet, RMIBGetEntryFirstRMIBEntryGetFirst,
and RMIBEntryGetNext return pMibOutEntry or pInfoStruct it
MUST be typecast to
IP_NAT_INTERFACE_STATISTICS (section 2.2.1.2.185).

IP_NAT_INTERFACE_MAPPING_TABLE_OID

0x00000001

NAT interface mapping table information.

When RMIBEntryGet, RMIBGetEntryFirstRMIBEntryGetFirst,
and RMIBEntryGetNext return pMibOutEntry or pInfoStruct it
MUST be typecast to
IP_NAT_ENUMERATE_SESSION_MAPPINGS (section

2.2.1.2.183).

IP_NAT_MAPPING_TABLE_OID

0x00000002

NAT mapping table information.

Retrieves the session mappings of an interface.

When RMIBEntryGet, RMIBGetEntryFirstRMIBEntryGetFirst,
and RMIBEntryGetNext return pMibOutEntry or pInfoStruct it
MUST be typecast to
IP_NAT_ENUMERATE_SESSION_MAPPINGS.

Index: This MUST be the index of the interface when Oid is 0x00000000.

Data: This MUST be IP_NAT_ENUMERATE_SESSION_MAPPINGS if Oid is not 0x00000000.

2.2.1.2.183 IP_NAT_ENUMERATE_SESSION_MAPPINGS

The IP_NAT_ENUMERATE_SESSION_MAPPINGS structure is used for enumerating NAT session
mappings and is part of the IP_NAT_MIB_QUERY (section 2.2.1.2.182) structure.

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

Index

209 / 547

[MS-RRASM-Diff] - v20210407
Routing and Remote Access Server (RRAS) Management Protocol
Copyright © 2021 Microsoft Corporation
Release: April 7, 2021

EnumerateContext (16 bytes)

...

...

EnumerateCount

EnumerateTotalHint

EnumerateTable (variable)

Index (4 bytes): This MUST be the index of the interface.

EnumerateContext (16 bytes): This is represented by an array of 4 ULONG values. On the first call

to RMIBEntryGet (section 3.1.4.30) or RMIBEntryGetFirst (section 3.1.4.31) methods

EnumerateContext is zeroed out. It will be filled by the NAT with the information to be passed
back down as the enumeration continues. To indicate there are no items remaining, the NAT will
set EnumerateContext[0] to 0. In RMIBEntryGetNext (section 3.2.4.32) method,
EnumerateContext MUST be returned to the value returned in the previous calls.

EnumerateCount (4 bytes): Contains the number of enumerations returned and the number of
IP_NAT_SESSION_MAPPING (section 2.2.1.2.184) structures being returned.

EnumerateTotalHint (4 bytes): Count of the total number of entries.

EnumerateTable (variable): This MUST be IP_NAT_SESSION_MAPPING structures.

Note The EnumerateTable field is of variable size depending on the value of EnumerateCount.
While calculating the structure size, the size of EnumerateTable MUST NOT be added if value of
EnumerateCount is zero.

2.2.1.2.184 IP_NAT_SESSION_MAPPING

The IP_NAT_SESSION_MAPPING structure holds information for a single NAT mapping and is part
of IP_NAT_ENUMERATE_SESSION_MAPPINGS (section 2.2.1.2.183).

 typedef struct _IP_NAT_SESSION_MAPPING {
 UCHAR Protocol;
 ULONG PrivateAddress;
 USHORT PrivatePort;
 ULONG PublicAddress;
 USHORT PublicPort;
 ULONG RemoteAddress;
 USHORT RemotePort;
 IP_NAT_DIRECTION Direction;
 ULONG IdleTime;
 } IP_NAT_SESSION_MAPPING,
 *PIP_NAT_SESSION_MAPPING;

Protocol: This MUST be one of the following.

Value Meaning

NAT_PROTOCOL_ICMP

0x01

ICMP Protocol

210 / 547

[MS-RRASM-Diff] - v20210407
Routing and Remote Access Server (RRAS) Management Protocol
Copyright © 2021 Microsoft Corporation
Release: April 7, 2021

Value Meaning

NAT_PROTOCOL_IGMP

0x02

IGMP Protocol

NAT_PROTOCOL_TCP

0x06

TCP Protocol

NAT_PROTOCOL_UDP

0x11

UDP Protocol

NAT_PROTOCOL_IP6IN4

0x29

IPv6 in IPv4

NAT_PROTOCOL_PPTP

0x2F

PPTP Protocol

NAT_PROTOCOL_IPSEC_ESP

0x32

IPSec ESP

NAT_PROTOCOL_IPSEC_AH

0x33

IPSec AH

NAT_PROTOCOL_PGM

0x71

PGM

PrivateAddress: The private address of the NAT entry.

PrivatePort: The private port of the NAT entry.

PublicAddress: The public address of the NAT entry.

PublicPort: The public port of the NAT entry

RemoteAddress: The remote address of the NAT entry.

RemotePort: The remote port of the NAT entry.

Direction: This MUST be IP_NAT_DIRECTION.

IdleTime: The time, in seconds, since the last packet matching this entry was sent or received.

2.2.1.2.185 IP_NAT_INTERFACE_STATISTICS

The IP_NAT_INTERFACE_STATISTICS structure holds statistics for an interface and is part of
IP_NAT_MIB_QUERY (section 2.2.1.2.182) structure.

 typedef struct _IP_NAT_INTERFACE_STATISTICS {
 OUT ULONG TotalMappings;
 OUT ULONG InboundMappings;
 OUT ULONG64 BytesForward;
 OUT ULONG64 BytesReverse;
 OUT ULONG64 PacketsForward;
 OUT ULONG64 PacketsReverse;
 OUT ULONG64 RejectsForward;
 OUT ULONG64 RejectsReverse;
 } IP_NAT_INTERFACE_STATISTICS,
 *PIP_NAT_INTERFACE_STATISTICS;

TotalMappings: The count of the total number of mappings present in the NAT table.

211 / 547

[MS-RRASM-Diff] - v20210407
Routing and Remote Access Server (RRAS) Management Protocol
Copyright © 2021 Microsoft Corporation
Release: April 7, 2021

InboundMappings: The count of the total number of inbound mappings present in the NAT table.

BytesForward: The count of the total bytes forwarded.

BytesReverse: The count of the total bytes reversed.

PacketsForward: The count of the packets forwarded.

PacketsReverse: The count of the packets reversed.

RejectsForward: The count of the forward packets rejected.

RejectsReverse: The count of the reverse packets rejected.

2.2.1.2.186 IP_DNS_PROXY_MIB_QUERY

The IP_DNS_PROXY_MIB_QUERY structure is passed to RMIBEntryGet (section 3.1.4.30) method
to retrieve the DNS proxy information.

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

Oid

Index

Data (variable)

...

Oid (4 bytes): This MUST be set to 0x00000000.

Index (4 bytes): This MUST be the index of the interface.

Data (variable): This MUST be an IP_DNS_PROXY_STATISTICS structure.

Note Index and Data are of variable size and while calculating the structure size, the size of
Index or Data needs to be added. Data is unused and has been kept for extensibility.

2.2.1.2.187 IP_DNS_PROXY_STATISTICS

The IP_DNS_PROXY_STATISTICS structure contains the IP DNS proxy statistics.

 typedef struct _IP_DNS_PROXY_STATISTICS {
 ULONG MessagesIgnored;
 ULONG QueriesReceived;
 ULONG ResponsesReceived;
 ULONG QueriesSent;
 ULONG ResponsesSent;
 } IP_DNS_PROXY_STATISTICS,
 *PIP_DNS_PROXY_STATISTICS;

MessagesIgnored: The count of the DNS proxy messages ignored.

QueriesReceived: The count of the DNS proxy queries received.

ResponsesReceived: The count of the DNS proxy responses received.

212 / 547

[MS-RRASM-Diff] - v20210407
Routing and Remote Access Server (RRAS) Management Protocol
Copyright © 2021 Microsoft Corporation
Release: April 7, 2021

QueriesSent: The count of the DNS proxy queries sent.

ResponsesSent: The count of the DNS proxy responses sent.

2.2.1.2.188 IP_AUTO_DHCP_MIB_QUERY

The IP_AUTO_DHCP_MIB_QUERY structure is used to retrieve the DNS proxy information and is
passed to the following methods:

▪ RMIBEntryGet (section 3.1.4.30)

▪ RMIBEntryGetFirst (section 3.1.4.31)

▪ RMIBEntryGetNext (section 3.1.4.32)

 typedef struct _IP_AUTO_DHCP_MIB_QUERY {
 ULONG Oid;
 union {
 ULONG Index;
 UCHAR Data;
 };
 ULONG Reserved;
 } IP_AUTO_DHCP_MIB_QUERY,
 *PIP_AUTO_DHCP_MIB_QUERY;

Oid: This MUST be set to 0x00000000.

Index: This MUST be index of the interface.

Data: This MUST be an IP_AUTO_DHCP_STATISTICS structure.

Note Index and Data are variable-sized arrays. While calculating the structure size, the size of

Index or Data is added. Data is unused and has been kept for extensibility.

Reserved: MUST be set to zero (0) when sent and MUST be ignored on receipt.

2.2.1.2.189 IP_AUTO_DHCP_STATISTICS

The IP_AUTO_DHCP_STATISTICS structure contains the DHCP auto-discovery statistics. This
structure defines the statistics kept by the DHCP allocator, and is accessible to the following methods:

▪ RMIBEntryGet (section 3.2.4.30)

▪ RMIBEntryGetFirst (section 3.2.4.31)

▪ RMIBEntryGetNext (section 3.2.4.32)

 typedef struct _IP_AUTO_DHCP_STATISTICS {
 ULONG MessagesIgnored;
 ULONG BootpOffersSent;
 ULONG DiscoversReceived;
 ULONG InformsReceived;
 ULONG OffersSent;
 ULONG RequestsReceived;
 ULONG AcksSent;
 ULONG NaksSent;
 ULONG DeclinesReceived;
 ULONG ReleasesReceived;
 } IP_AUTO_DHCP_STATISTICS,
 *PIP_AUTO_DHCP_STATISTICS;

213 / 547

[MS-RRASM-Diff] - v20210407
Routing and Remote Access Server (RRAS) Management Protocol
Copyright © 2021 Microsoft Corporation
Release: April 7, 2021

MessagesIgnored: The count of the messages ignored.

BootpOffersSent: The count of the IPBOOTP offers sent.

DiscoversReceived: The count of the discover messages received.

InformsReceived: The count of the INFORM messages received.

OffersSent: The count of the OFFER messages sent.

RequestsReceived: The count of the REQUEST messages received.

AcksSent: The count of the acknowledge control packets (ACKs) sent.

NaksSent: The count of the negative acknowledge (NAK) messages sent.

DeclinesReceived: The count of the DECLINE messages received.

ReleaseReceived: The count of the RELEASE messages received.

2.2.1.2.190 (Updated Section) MIB_DA_MSG

The MIB_DA_MSG structure MAY<137> be used for retrieving OSPF MIB entries in the following
methods:

▪ RMIBEntryGet (section 3.1.4.30)

▪ RMIBEntryGetFirst (section 3.1.4.31)

▪ RMIBEntryGetNext (section 3.1.4.32).)

 typedef struct _MIB_DA_MSG {
 UINT32 op_code;
 UINT32 ret_code;
 UINT32 in_snmp_id[44];
 UINT32 obj_id[17];
 UINT32 attr_id;
 UINT32 inst_id[23];
 UINT32 next_snmp_id[44];
 UINT32 creator;
 UINT32 attr_type;
 UINT32 inst_cnt;
 UINT32 map_flag;
 ULONG_PTR data[32];
 } MIB_DA_MSG;

op_code: This MUST have one of the following values.

Value Meaning

ASN_RFC1157_GETREQUEST

0x000000A0

MIB get request: RMIBEntryGet (section 3.1.4.30)

ASN_RFC1157_GETNEXTREQUEST

0x000000A1

MIB get next request: RMIBEntryGetNext (section 3.1.4.32)

ASN_RFC1157_SETREQUEST

0x000000A3

MIB set request: RMIBEntrySet (section 3.1.4.29)

ret_code: This contains a return value which MUST be one of the following values.

214 / 547

[MS-RRASM-Diff] - v20210407
Routing and Remote Access Server (RRAS) Management Protocol
Copyright © 2021 Microsoft Corporation
Release: April 7, 2021

Value Meaning

MIB_OK

0x00000000

The call was successful.

All other values The call was not successful.

in_snmp_id: Contains the index of the entry that needs to be retrieved.

in_snmp_id[0] contains the length (excluding the zeroth element) of the data passed in

in_snmp_id. in_snmp_id[1] onwards contains the MIB object identifier [RFC1850].

Value in_snmp_id[1] and
beyond Meaning [RFC 1850]

g_oidOspfAreaEntry

{ 4, 1, 18, 3, 5, 3, 2, 3, 2, 1 }

Open Shortest Path First (OSPF) area entry. See
ospfAreaEntry, section 3.2 in [RFC1850].

Information describing the configured parameters and
cumulative statistics of one of the router's attached areas.

g_oidOspfLsdbEntry

{ 4, 1, 18, 3, 5, 3, 2, 3, 3, 1 }

A single link state advertisement. See ospfLsdbEntry, section
3.4 in [RFC1850].

g_oidOspfNbrEntry

{ 4, 1, 18, 3, 5, 3, 2, 3, 7, 1 }

The information regarding a single neighbor. See
OspfNbrEntry, section 3.10 in [RFC1850].

g_oidOspfVIEntry

{ 4, 1, 18, 3, 5, 3, 2, 3, 6, 1 }

The information about a single Virtual Interface. See
OspfVirtIfEntry, section 3.9 in [RFC1850].

g_oidOspfAreaState

{ 4, 1, 18, 3, 5, 3, 2, 3, 2, 1, 3 }

Retrieves the state. This value indicates the state of the OSPF
Area, either up(0x00000001), or down(0x00000002). See
ospfAreaStatus, section 3.2 in [RFC1850].

g_oidOspfAreaSpfCount

{ 4, 1, 18, 3, 5, 3, 2, 3, 2, 1, 9 }

Retrieves the number of times the SPF algorithm has run for
the area. See ospfSpfRuns, section 3.2 in [RFC1850].

g_oidOspfLsdbAge

{ 4, 1, 18, 3, 5, 3, 2, 3, 3, 1, 6 }

Retrieves the age of the link state advertisement in seconds.
See ospfLsdbAge, section 3.4 in [RFC1850] and section 12.1.1
LS age in [RFC2328].

g_oidOspfLsdbSequence

{ 4, 1, 18, 3, 5, 3, 2, 3, 3, 1, 5 }

Retrieves the sequence. The OSPF Sequence Number is a 32-
bit signed integer. It starts with the value '80000001'h, or
'7FFFFFFF'h, and increments until '7FFFFFFF'h. Thus, a typical
sequence number will be very negative. The sequence number
field is a signed 32-bit integer. It is used to detect old and
duplicate link state advertisements. The space of sequence
numbers is linearly ordered. The larger the sequence number
the more recent the advertisement. See ospfLsdbSequence,
section 3.4 of [RFC1850] and LS sequence number, section
12.1.6 in [RFC2328].

g_oidOspfNbrRtrId

{ 4, 1, 18, 3, 5, 3, 2, 3, 7, 1, 7 }

Retrieves the router ID. A 32-bit integer uniquely identifying
the neighboring router in the autonomous system. See
ospfNbrRtrId, section 3.10 in [RFC1850].

g_oidOspfNbrState

{ 4, 1, 18, 3, 5, 3, 2, 3, 7, 1, 3 }

Retrieves the state. The state of the Virtual Neighbor
Relationship. It can be down (0x00000001), attempt
(0x00000002), init (0x00000003), twoWay (0x00000004),
exchangeStart (0x00000005), exchange (0x00000006),
loading (0x00000007), and full (0x00000008) See
ospfNbrState, section 3.10 in [RFC1850].

215 / 547

[MS-RRASM-Diff] - v20210407
Routing and Remote Access Server (RRAS) Management Protocol
Copyright © 2021 Microsoft Corporation
Release: April 7, 2021

Value in_snmp_id[1] and
beyond Meaning [RFC 1850]

g_oidOspfNbrPriority

{ 4, 1, 18, 3, 5, 3, 2, 3, 7, 1, 9 }

Retrieves the priority. The priority of this neighbor in the
designated router election algorithm. The value 0 signifies that
the neighbor is not eligible to become the designated router
on this particular network. See ospfNbrPriority, section 3.10 in
[RFC1850].

g_oidOspfNbrEvents

{ 4, 1, 18, 3, 5, 3, 2, 3, 7, 1, 10 }

Retrieves the event count. The number of times this neighbor
relationship has changed state, or that an error has occurred.
See ospfNbrEvents, section 3.10 in [RFC1850].

g_oidOspfNbrLSRetransQLen

{ 4, 1, 18, 3, 5, 3, 2, 3, 7, 1, 11 }

Retrieves the queue length. See ospfNbrLsRetransQLen,
section 3.10 in [RFC1850].

g_oidOspfVIState

{ 4, 1, 18, 3, 5, 3, 2, 3, 6, 1, 3 }

Retrieves the state. See ospfVirtIfState, section 3.9 in
[RFC1850].

g_oidOspfVIDrops

{ 4, 1, 18, 3, 5, 3, 2, 3, 6, 1, 21}

The number of OSPF packets dropped on Virtual Interfaces.
The data returned is a 32-bit integer.

g_oidOspfVIRxHellos

{ 4, 1, 18, 3, 5, 3, 2, 3, 6, 1, 16 }

The number of OSPF Hello packets received on Virtual
Interfaces. Data returned is a 32-bit integer.

g_oidOspfVITxHellos

{ 4, 1, 18, 3, 5, 3, 2, 3, 6, 1, 11 }

The number of OSPF Hello packets transmitted on the Virtual
Interfaces. The data returned is a 32-bit integer.

g_oidOspfIfArea

{ 4, 1, 18, 3, 5, 3, 2, 3, 5, 1, 6 }

See ospfIfAreaId, section 3.7 in [RFC1850].

g_oidOspfIfType

{ 4, 1, 18, 3, 5, 3, 2, 3, 5, 1, 7 }

See ospfIfType, section 3.7 in [RFC1850].

g_oidOspfIfState

{ 4, 1, 18, 3, 5, 3, 2, 3, 5, 1, 3 }

See ospfIfState, section 3.7 in [RFC1850].

g_oidOspfIfRxDBDescripts

{ 4, 1, 18, 3, 5, 3, 2, 3, 5, 1, 24 }

The number of OSPF DataBase Description packets received.

The data returned is a 32-bit integer.

g_oidOspfIfRxLinkStateAcks

{ 4, 1, 18, 3, 5, 3, 2, 3, 5, 1, 27 }

The number of OSPF Link State Acknowledgements received.
The data returned is a 32-bit integer.

g_oidOspfIfRxLinkStateReqs

{ 4, 1, 18, 3, 5, 3, 2, 3, 5, 1, 25 }

The number of OSPF Link State Requests received. The data
returned is a 32-bit integer.

g_oidOspfIfRxLinkStateUpds

{ 4, 1, 18, 3, 5, 3, 2, 3, 5, 1, 26 }

The number of OSPF Link State Updates received. The ata
returned is a 32-bit integer.

g_oidOspfIfTxDBDescripts

{ 4, 1, 18, 3, 5, 3, 2, 3, 5, 1, 19 }

The number of OSPF DataBase Description packets
transmitted. The data returned is a 32-bit integer.

g_oidOspfIfTxLinkStateAcks

{ 4, 1, 18, 3, 5, 3, 2, 3, 5, 1, 22 }

The number of OSPF Link State Update packets transmitted.
The data returned is a 32-bit integer.

g_oidOspfIfTxLinkStateReqs

{ 4, 1, 18, 3, 5, 3, 2, 3, 5, 1, 20 }

The number of OSPF Link State Request packets transmitted.
The data returned is a 32-bit integer.

g_oidOspfIfTxLinkStateUpds

{ 4, 1, 18, 3, 5, 3, 2, 3, 5, 1, 21 }

The number of OSPF Link State Update packets transmitted.
The data returned is a 32-bit integer.

216 / 547

[MS-RRASM-Diff] - v20210407
Routing and Remote Access Server (RRAS) Management Protocol
Copyright © 2021 Microsoft Corporation
Release: April 7, 2021

Value in_snmp_id[1] and
beyond Meaning [RFC 1850]

g_oidOspfIfDrops

{ 4, 1, 18, 3, 5, 3, 2, 3, 5, 1, 28 }

The number of OSPF packets dropped because of invalid
information in the packet. The data returned is a 32-bit
integer.

obj_id: Unused and MUST be set to zero (0).

attr_id: Unused and MUST be set to zero (0).

inst_id: Unused and MUST be set to zero (0).

next_snmp_id: Unused and MUST be set to zero (0).

creator: Unused and MUST be set to zero (0).

attr_type: Unused and MUST be set to zero (0).

inst_cnt: Unused and MUST be set to zero (0).

map_flag: Unused and MUST be set to zero (0).

data: Contains the data returned by the OSPF MIB based on the entry requested in the previous table.
See [RFC1850] for more information about how to interpret the returned data. The length of the
data returned is specified in dwMibOutEntrySize of pInfoStruct in the call to RMIBEntryGet,

RMIBEntryGetFirst, and RMIBEntryGetNext.

2.2.1.2.191 IP_AUTO_DHCP_GLOBAL_INFO

The IP_AUTO_DHCP_GLOBAL_INFO structure holds the global configuration for the DHCP allocator
and is used in the following methods:

▪ RRouterInterfaceTransportSetGlobalInfo (section 3.1.4.10)

▪ RRouterInterfaceTransportGetGlobalInfo (section 3.1.4.11)

The configuration consists of two things:

1. The network and mask from which addresses are to be allocated.

2. An optional list of addresses to be excluded from allocation. Thus, this structure is of variable
length.

 typedef struct _IP_AUTO_DHCP_GLOBAL_INFO {
 ULONG LoggingLevel;
 ULONG Flags;
 ULONG LeaseTime;
 ULONG ScopeNetwork;
 ULONG ScopeMask;
 ULONG ExclusionCount;
 ULONG ExclusionArray;
 } IP_AUTO_DHCP_GLOBAL_INFO,
 *PIP_AUTO_DHCP_GLOBAL_INFO;

LoggingLevel: Specifies the logging level. It MUST be one of the following values.

Value Meaning

IPNATHLP_LOGGING_NONE No logging is done.

217 / 547

[MS-RRASM-Diff] - v20210407
Routing and Remote Access Server (RRAS) Management Protocol
Copyright © 2021 Microsoft Corporation
Release: April 7, 2021

Value Meaning

0x00000000

IPNATHLP_LOGGING_ERROR

0x00000001

Only errors are logged.

IPNATHLP_LOGGING_WARN

0x00000002

Errors and warnings are logged.

IPNATHLP_LOGGING_INFO

0x00000003

Errors, warnings, and information is logged.

Flags: This MUST be set to 0.

LeaseTime: The lease time, in minutes.

ScopeNetwork: The scope of the network from which addresses are to be allocated.

ScopeMask: The mask used to identify the subnet portion of the address. See [RFC950]. The value

obtained by logically ANDing ScopeMask and ScopeNetwork MUST equal ScopeNetwork. Any
ScopeMask that produces a different ANDed result is invalid.

ExclusionCount: The number of IP addresses that need to be excluded from being allocated. This is
also indicates the size of the ExclusionArray.

ExclusionArray: An array of IP addresses that need to be excluded. The size of the array is given by
ExclusionCount.

2.2.1.2.192 IP_AUTO_DHCP_INTERFACE_INFO

The IP_AUTO_DHCP_INTERFACE_INFO structure holds per-interface configuration for the DHCP
allocator. This structure is used in the following methods:

▪ RRouterInterfaceTransportAdd (section 3.1.4.18)

▪ RRouterInterfaceTransportGetInfo (section 3.1.4.19)

▪ RRouterInterfaceTransportSetInfo (section 3.1.4.20)

The configuration only allows the DHCP allocator to be disabled on the given interface. Since the
allocator runs in promiscuous-interface mode, it is enabled by default on all interfaces. Thus, the only
interfaces that require any configuration are those on which the allocator is to be disabled.

 typedef struct _IP_AUTO_DHCP_INTERFACE_INFO {
 ULONG Flags;
 } IP_AUTO_DHCP_INTERFACE_INFO,
 *PIP_AUTO_DHCP_INTERFACE_INFO;

Flags: Specifies whether or not the DHCP allocator is enabled.

Value Meaning

0x00000000 The DHCP allocator is enabled.

IPNATHLP_INTERFACE_FLAG_DISABLED

0x00000001

The DHCP allocator is disabled.

218 / 547

[MS-RRASM-Diff] - v20210407
Routing and Remote Access Server (RRAS) Management Protocol
Copyright © 2021 Microsoft Corporation
Release: April 7, 2021

2.2.1.2.193 IP_DNS_PROXY_GLOBAL_INFO

The IP_DNS_PROXY_GLOBAL_INFO structure holds global configuration for the DNS proxy and is
used in the following methods:

▪ RRouterInterfaceTransportSetGlobalInfo (section 3.1.4.10)

▪ RRouterInterfaceTransportGetGlobalInfo (section 3.1.4.11)

 typedef struct _IP_DNS_PROXY_GLOBAL_INFO {
 ULONG LoggingLevel;
 ULONG Flags;
 ULONG TimeoutSeconds;
 } IP_DNS_PROXY_GLOBAL_INFO, *PIP_DNS_PROXY_GLOBAL_INFO;

LoggingLevel: Specifies the logging level. It MUST be one of the following values.

Value Meaning

IPNATHLP_LOGGING_NONE

0x00000000

No logging is done.

IPNATHLP_LOGGING_ERROR

0x00000001

Only errors are logged.

IPNATHLP_LOGGING_WARN

0x00000002

Errors and warnings are logged.

IPNATHLP_LOGGING_INFO

0x00000003

Errors, warnings, and information is logged.

Flags: It MUST be one of the following values.

Value Meaning

IP_DNS_PROXY_FLAG_ENABLE_DNS

0x00000001

DNS is enabled.

IP_DNS_PROXY_FLAG_ENABLE_WINS

0x00000002

WINS is enabled.

TimeoutSeconds: This MUST be the number of seconds that entry is maintained in the cache.

2.2.1.2.194 IP_DNS_PROXY_INTERFACE_INFO

The IP_DNS_PROXY_INTERFACE_INFO structure holds per-interface configuration for the DNS
proxy. The configuration currently only allows the proxy to be disabled on a given interface. The proxy
runs in promiscuous-interface mode so that all interfaces are added to it and it is enabled on all of

them by default. Hence, the configuration need only be present for those interfaces on which the
proxy is not to be run.

 typedef struct _IP_DNS_PROXY_INTERFACE_INFO {
 ULONG Flags;
 } IP_DNS_PROXY_INTERFACE_INFO, *PIP_DNS_PROXY_INTERFACE_INFO;

Flags: It MUST be a combination of the following values.

219 / 547

[MS-RRASM-Diff] - v20210407
Routing and Remote Access Server (RRAS) Management Protocol
Copyright © 2021 Microsoft Corporation
Release: April 7, 2021

Value Meaning

IP_DNS_PROXY_INTERFACE_FLAG_DISABLED

0x00000001

The DNS proxy is disabled on the interface. This flag
overrides the rest of the flags. The DNS proxy will not
be enabled on this interface regardless of other flags
being present.

IP_DNS_PROXY_INTERFACE_FLAG_DEFAULT

0x00000002

The interface is marked as the default DNS proxy. All
DNS queries will be sent over this interface.

DNS_INTERFACE_FLAG_DELETED

0x80000000

The DNS proxy is disabled on the interface.

DNS_INTERFACE_FLAG_BOUND

0x40000000

The DNS proxy socket is bound on the interface.

DNS_INTERFACE_FLAG_ENABLED

0x20000000

The DNS proxy is enabled on the interface.

DNS_INTERFACE_FLAG_CONFIGURED

0x10000000

The DNS proxy is configured on the interface.

2.2.1.2.195 IP_NAT_GLOBAL_INFO

The IP_NAT_GLOBAL_INFO structure holds the global configuration information for NAT. This
structure is used in the following methods:

▪ RRouterInterfaceTransportSetGlobalInfo (section 3.1.4.10)

▪ RRouterInterfaceTransportGetGlobalInfo (section 3.1.4.11)

 typedef struct _IP_NAT_GLOBAL_INFO {
 ULONG LoggingLevel;
 ULONG Flags;
 RTR_INFO_BLOCK_HEADER Header;
 } IP_NAT_GLOBAL_INFO, *PIP_NAT_GLOBAL_INFO;

LoggingLevel: Specifies the logging level. It MUST be one of the following values.

Value Meaning

IPNATHLP_LOGGING_NONE

0x00000000

No logging is done.

IPNATHLP_LOGGING_ERROR

0x00000001

Only errors are logged.

IPNATHLP_LOGGING_WARN

0x00000002

Errors and warnings are logged.

IPNATHLP_LOGGING_INFO

0x00000003

Errors, warnings, and information is logged.

Flags: This MUST be set to 0.

220 / 547

[MS-RRASM-Diff] - v20210407
Routing and Remote Access Server (RRAS) Management Protocol
Copyright © 2021 Microsoft Corporation
Release: April 7, 2021

Header: This MUST be RTR_INFO_BLOCK_HEADER (section 2.2.1.2.3). The InfoType field of header
MUST be either 0x00000000 or 0xFFFF0001. If it is 0x0000000, there is no other information

beyond the header and the rest of the fields MUST be zero. If the InfoType is 0xFFFF0001, the
Offset MUST point to a structure of type IP_NAT_TIMEOUT (section 2.2.1.2.196).

2.2.1.2.196 IP_NAT_TIMEOUT

The IP_NAT_TIMEOUT structure is used to amend the default timeouts for TCP and UDP session
mappings.

 typedef struct _IP_NAT_TIMEOUT {
 ULONG TCPTimeoutSeconds;
 ULONG UDPTimeoutSeconds;
 } IP_NAT_TIMEOUT, *PIP_NAT_TIMEOUT;

TCPTimeoutSeconds: The number of seconds that a dynamic mapping for a TCP session remains in
the translation table.

UDPTimeoutSeconds: The number of seconds that a dynamic mapping for a UDP session remains in
the translation table.

2.2.1.2.197 IP_NAT_INTERFACE_INFO

The IP_NAT_INTERFACE_INFO structure is used to configure the NAT on an interface. This
structure is used in the following methods:

▪ RRouterInterfaceTransportAdd (section 3.1.4.18)

▪ RRouterInterfaceTransportSetGlobalInfo (section 3.1.4.10)

▪ RRouterInterfaceTransportGetGlobalInfo (section 3.1.4.11)

The configuration information uses the RTR_INFO_BLOCK_HEADER (section 2.2.1.2.3) structure.

 typedef struct _IP_NAT_INTERFACE_INFO {
 ULONG Index;
 ULONG Flags;
 RTR_INFO_BLOCK_HEADER Header;
 } IP_NAT_INTERFACE_INFO, *PIP_NAT_INTERFACE_INFO;

Index: This MUST be set to the interface index that identifies the interface to be configured.

Flags: This specifies the logging level. It MUST be a combination of one or more of the following
values.

Value Meaning

IP_NAT_INTERFACE_FLAGS_BOUNDARY

0x00000001

Set to mark the interface as a boundary-interface.

IP_NAT_INTERFACE_FLAGS_NAPT

0x00000002

Set to enable address-sharing via port-translation.

IP_NAT_INTERFACE_FLAGS_DISABLE_PPTP

0x00000004

The PPTP is disabled.

IP_NAT_INTERFACE_FLAGS_FW Set to enable the firewall mode on the interface. This works
with all other flags. An interface in the firewall mode is

221 / 547

[MS-RRASM-Diff] - v20210407
Routing and Remote Access Server (RRAS) Management Protocol
Copyright © 2021 Microsoft Corporation
Release: April 7, 2021

Value Meaning

0x00000010 much more strict on what inbound packets it will allow to
propagate up the stack; in general, it will only allow packets
that are part of a locally initiated connection flow (for
example, packets for which a mapping or ticket exists).

IP_NAT_INTERFACE_FLAGS_DIALUP

0x00000040

This is a dial-up interface.

IP_NAT_INTERFACE_FLAGS_ALL

0x0000007F

All of the above.

Header: This MUST be RTR_INFO_BLOCK_HEADER. The InfoType field of the header MUST be
one of the following and the offset MUST point to a structure specified in the following table.

Value Meaning

IP_NAT_PORT_MAPPING_TYPE

0xFFFF0003

IP_NAT_PORT_MAPPING (section 2.2.1.2.199).

IP_NAT_ADDRESS_RANGE_TYPE

0xFFFF0002

IP_NAT_ADDRESS_RANGE (section 2.2.1.2.198).

IP_NAT_ADDRESS_MAPPING_TYPE

0xFFFF0004

IP_NAT_ADDRESS_MAPPING (section 2.2.1.2.200).

IP_NAT_ICMP_CONFIG_TYPE

0xFFFF0005

There is no structure for IP_NAT_ICMP_CONFIG; it's just a ULONG.
The flags in the following table define the behavior.

The values for IP_NAT_ICMP_CONFIG_TYPE are as follows:

Value Meaning

IP_NAT_ICMP_ALLOW_OB_DEST_UNREACH

0x00000008

The data sent over the Internet that fails to reach this
computer due to an error will be discarded and
acknowledged with a destination unreachable message
explaining the failure.

IP_NAT_ICMP_ALLOW_OB_SOURCE_QUENCH

0x00000010

When this computer's ability to process incoming data
cannot keep up with the rate of a transmission, data will
be dropped and the sender will be asked to slow down.

IP_NAT_ICMP_ALLOW_REDIRECT

0x00000020

The data sent from this computer will be rerouted if the
default path changes.

IP_NAT_ICMP_ALLOW_IB_ECHO

0x00000100

The messages sent to this computer will be repeated back
to the sender. This is commonly used for troubleshooting,
for example, to ping a machine.

IP_NAT_ICMP_ALLOW_IB_ROUTER

0x00000200

This computer will respond to requests for information
about the routes it recognizes.

IP_NAT_ICMP_ALLOW_OB_TIME_EXCEEDED

0x00000800

When this computer discards an incomplete data
transmission because the entire transmission required
more time than allowed, it will reply to the sender with a
time-expired message.

IP_NAT_ICMP_ALLOW_OB_PARAM_PROBLEM

0x00001000

When this computer discards data it has received due to a
problematic header, it will reply to the sender with a bad-

222 / 547

[MS-RRASM-Diff] - v20210407
Routing and Remote Access Server (RRAS) Management Protocol
Copyright © 2021 Microsoft Corporation
Release: April 7, 2021

Value Meaning

header error message.

IP_NAT_ICMP_ALLOW_IB_TIMESTAMP

0x00002000

The data sent to this computer can be acknowledged with
a confirmation message indicating the time that the data
was received.

IP_NAT_ICMP_ALLOW_IB_MASK

0x00020000

This computer will listen for and respond to requests for
more information about the public network to which it is
attached.

2.2.1.2.198 IP_NAT_ADDRESS_RANGE

The IP_NAT_ADDRESS_RANGE structure holds a range of addresses that are part of the address-
pool for a boundary interface. An address pool consists of a list of these structures. Overlapping
address ranges are not supported. Noncontiguous subnet masks are also unsupported.

 typedef struct _IP_NAT_ADDRESS_RANGE {
 ULONG StartAddress;
 ULONG EndAddress;
 ULONG SubnetMask;
 } IP_NAT_ADDRESS_RANGE, *PIP_NAT_ADDRESS_RANGE;

StartAddress: The starting IP address of the address pool.

EndAddress: The end IP address of the address pool.

SubnetMask: The subnet mask of the address pool; see [RFC950].

2.2.1.2.199 IP_NAT_PORT_MAPPING

The IP_NAT_PORT_MAPPING structure holds a static mapping that ties a public-side port on this
NAT interface to a specific private machine's address or port. In the case of an interface with a pool of
addresses, the "PublicAddress" specifies which of those addresses this static mapping applies to.

 typedef struct _IP_NAT_PORT_MAPPING {
 UCHAR Protocol;
 USHORT PublicPort;
 ULONG PublicAddress;
 USHORT PrivatePort;
 ULONG PrivateAddress;
 } IP_NAT_PORT_MAPPING, *PIP_NAT_PORT_MAPPING;

Protocol: Specifies the protocol used for data reception and transmission.

PublicPort: Specifies the destination port number of incoming public traffic.

PublicAddress: Specifies the public IPv4 address.

PrivatePort: The destination port number of the private traffic.

PrivateAddress: Specifies the private IPv4 address.

2.2.1.2.200 IP_NAT_ADDRESS_MAPPING

223 / 547

[MS-RRASM-Diff] - v20210407
Routing and Remote Access Server (RRAS) Management Protocol
Copyright © 2021 Microsoft Corporation
Release: April 7, 2021

The IP_NAT_ADDRESS_MAPPING structure holds a static mapping that ties an address from this
NAT interface's address pool to a specific private-machine's address.

Note This address MUST fall within one of the ranges comprising the pool as specified by the
IP_NAT_ADDRESS_RANGE structures.

 typedef struct _IP_NAT_ADDRESS_MAPPING {
 ULONG PrivateAddress;
 ULONG PublicAddress;
 BOOLEAN AllowInboundSessions;
 } IP_NAT_ADDRESS_MAPPING, *PIP_NAT_ADDRESS_MAPPING;

PrivateAddress: The private IP address of the translation.

PublicAddress: The public IP address of the translation.

AllowInboundSessions: This is of type BOOLEAN ([MS-DTYP] section 2.2.4). Specifies whether
sessions from public networks are allowed.

2.2.1.2.201 IP_ALG_GLOBAL_INFO

The IP_ALG_GLOBAL_INFO structure<138> be used to hold the global configuration for the
Application Layer Gateway transparent proxy and is used in the following methods:

▪ RRouterInterfaceTransportSetGlobalInfo (section 3.1.4.10)

▪ RRouterInterfaceTransportGetGlobalInfo (section 3.1.4.11)

 typedef struct IP_ALG_GLOBAL_INFO {
 ULONG LoggingLevel;
 ULONG Flags;
 } IP_ALG_GLOBAL_INFO, *PIP_ALG_GLOBAL_INFO;

LoggingLevel: Specifies the logging level. It MUST be one of the following values.

Value Meaning

IPNATHLP_LOGGING_NONE

0x00000000

No logging is done.

IPNATHLP_LOGGING_ERROR

0x00000001

Only errors are logged.

IPNATHLP_LOGGING_WARN

0x00000002

Errors and warnings are logged.

IPNATHLP_LOGGING_INFO

0x00000003

Errors, warnings, and information is logged.

Flags: This MUST be set to 0.

2.2.1.2.202 RIP_GLOBAL_INFO

The RIP_GLOBAL_INFO structure<139> be used to give the global IPX RIP information for the RRAS

server. When this structure is encapsulated in RTR_TOC_ENTRY (section 2.2.1.2.4), the InfoType
value used MUST be set to 0x00020000. This structure is used in the following methods:

▪ RRouterInterfaceTransportSetGlobalInfo (section 3.1.4.10)

224 / 547

[MS-RRASM-Diff] - v20210407
Routing and Remote Access Server (RRAS) Management Protocol
Copyright © 2021 Microsoft Corporation
Release: April 7, 2021

▪ RRouterInterfaceTransportGetGlobalInfo (section 3.1.4.11)

 typedef struct _RIP_GLOBAL_INFO {
 DWORD EventLogMask;
 } RIP_GLOBAL_INFO, *PRIP_GLOBAL_INFO;

EventLogMask: The mask to manage event logging on the RIP interface on the RRAS server. This
MUST be set as combination of one or more of the following flags.

Value Meaning

0x0000 Nothing will be logged.

EVENTLOG_ERROR_TYPE

(0x0001)

Only errors will be logged.

EVENTLOG_WARNING_TYPE

0x0002

Only warnings will be logged.

EVENTLOG_INFORMATION_TYPE

0x0004

Only information will be logged.

2.2.1.2.203 RIP_ROUTE_FILTER_INFO

The RIP_ROUTE_FILTER_INFO structure contains the information about a route filter to which the

filter actions specified in RIP_IF_FILTERS (section 2.2.1.2.204) are applied. This structure is used in
RIP_IF_FILTERS.

 typedef struct _RIP_ROUTE_FILTER_INFO {
 UCHAR Network[4];
 UCHAR Mask[4];
 } RIP_ROUTE_FILTER_INFO, *PRIP_ROUTE_FILTER_INFO;

Network: The network to which this filter is to be applied.

Mask: The mask that MUST be ANDed with the network and with the IP address of the packet to
establish a filter match. See [RFC950].

2.2.1.2.204 RIP_IF_FILTERS

The RIP_IF_FILTERS structure<140> specify the filter data for a RIP for IPX interface. This
structure is used in RIP_IF_CONFIG (section 2.2.1.2.206). Supply filters are applied to the RIP
updates supplied by the interface, while the listening filters are applied to the RIP updates being
listened to by the interface.

 typedef struct _RIP_IF_FILTERS {
 ULONG SupplyFilterAction;
 ULONG SupplyFilterCount;
 ULONG ListenFilterAction;
 ULONG ListenFilterCount;
 RIP_ROUTE_FILTER_INFO RouteFilter[1];
 } RIP_IF_FILTERS, *PRIP_IF_FILTERS;

225 / 547

[MS-RRASM-Diff] - v20210407
Routing and Remote Access Server (RRAS) Management Protocol
Copyright © 2021 Microsoft Corporation
Release: April 7, 2021

SupplyFilterAction: This MUST be set to 0x00000001 to permit data and to 0x00000002 to deny
data.

Value Meaning

0x00000001 Permit data.

0x00000002 Deny data.

SupplyFilterCount: The count of supply filters.

ListenFilterAction: This MUST be set to 0x00000001 to permit data and to 0x00000002 to deny
data.

Value Meaning

0x00000001 Permit data.

0x00000002 Deny data.

ListenFilterCount: The count of listen filters.

RouteFilter: This is a RIP_ROUTE_FILTER_INFO (section 2.2.1.2.203).

2.2.1.2.205 RIP_IF_INFO

The RIP_IF_INFO structure MAY<141> contain information about the RIP for IPX interface. This
structure is used in RIP_IF_CONFIG (section 2.2.1.2.206) and RIP_INTERFACE (section 2.2.1.2.124)
structures.

 typedef struct _RIP_IF_INFO {
 ULONG AdminState;
 ULONG UpdateMode;
 ULONG PacketType;
 ULONG Supply;
 ULONG Listen;
 ULONG PeriodicUpdateInterval;
 ULONG AgeIntervalMultiplier;
 } RIP_IF_INFO, *PRIP_IF_INFO;

AdminState: This MUST be set to the desired state of the interface. A value of 0x00000001 disables
the interface, and a value of 0x00000002 enables the interface.

UpdateMode: This MUST be set to the RIP update mechanism used on the interface. It can have one
of the following values.

Value Meaning

0x00000001 Periodic update.

0x00000002 No update.

0x00000003 AutoStatic triggered update.

PacketType: Indicates the RIP packet type used on this interface and MUST be one of the following
values.

226 / 547

[MS-RRASM-Diff] - v20210407
Routing and Remote Access Server (RRAS) Management Protocol
Copyright © 2021 Microsoft Corporation
Release: April 7, 2021

Value Meaning

IPX_STANDARD_PACKET_TYPE

0x00000001

IPX standard packet

IPX_RELIABLE_DELIVERY_PACKET_TYPE

0x00000002

IPX reliable packet

Supply: Determines whether to send RIP updates on this interface. A value of 0x00000001 disables
sending of a RIP updated on this interface, and a value of 0x00000002 enables sending of a RIP

updated on this interface.

Listen: Determines whether to listen for RIP updates on this interface. A value of 0x00000001
disables listening for a RIP updated on this interface, and a value of 0x00000002 enables listening
for a RIP updated on this interface.

PeriodicUpdateInterval: This MUST be the interval at which the information is updated periodically,
in seconds. The default value is 60.

AgeIntervalMultiplier: Each time a periodic update is done at the server, PeriodicUpdateInterval is

multiplied by AgeIntervalMultiplier. The default value is 3.

2.2.1.2.206 RIP_IF_CONFIG

The RIP_IF_CONFIG structure<142> be used to specify the configuration information of a RIP for
IPX interface. When this structure is encapsulated in RTR_TOC_ENTRY (section 2.2.1.2.4), the
InfoType value used MUST be set to 0x00020000 and the transport MUST be PID_IPX.

 typedef struct _RIP_IF_CONFIG {
 RIP_IF_INFO RipIfInfo;
 RIP_IF_FILTERS RipIfFilters;
 } RIP_IF_CONFIG, *PRIP_IF_CONFIG;

RipIfInfo: This MUST be a RIP_IF_INFO (section 2.2.1.2.205) structure.

RipIfFilters: This MUST be a RIP_IF_FILTERS (section 2.2.1.2.204) structure.

2.2.1.2.207 SAP_GLOBAL_INFO

The SAP_GLOBAL_INFO structure<143> be used to give the global SAP information for the RRAS
server. When this structure is encapsulated in RTR_TOC_ENTRY (section 2.2.1.2.4), the InfoType
value used MUST be set to 0x00020001 and the transport MUST be PID_IPX.

 typedef struct _SAP_GLOBAL_INFO {
 DWORD EventLogMask;
 } SAP_GLOBAL_INFO, *PSAP_GLOBAL_INFO;

EventLogMask: The mask to manage event logging on the SAP interface on the RRAS server. This
MUST be set as combination of one or more following flags.

Value Meaning

0x0000 Nothing will be logged.

EVENTLOG_ERROR_TYPE

(0x0001)

Only errors will be logged.

227 / 547

[MS-RRASM-Diff] - v20210407
Routing and Remote Access Server (RRAS) Management Protocol
Copyright © 2021 Microsoft Corporation
Release: April 7, 2021

Value Meaning

EVENTLOG_WARNING_TYPE

0x0002

Only warnings will be logged.

EVENTLOG_INFORMATION_TYPE

0x0004

Only information will be logged.

2.2.1.2.208 (Updated Section) OSPF_ROUTE_FILTER

The OSPF_ROUTE_FILTER structure MAY<144> be used as part of OSPF_ROUTE_FILTER_INFO
(section 2.2.1.2.209) structure.

 typedef struct _OSPF_ROUTE_FILTER {
 DWORD dwAddress;
 DWORD dwMask;
 } OSPF_ROUTE_FILTER, *POSPF_ROUTE_FILTER;

dwAddress: The IPV4 address or subnet.

dwMask: The IP subnet mask. See [RFC950].

2.2.1.2.209 OSPF_ROUTE_FILTER_INFO

The OSPF_ROUTE_FILTER_INFO structure MAY<145> be used to contain OSPF route filter
information and is used by the following methods:

▪ RRouterInterfaceTransportSetGlobalInfo (section 3.1.4.10)

▪ RRouterInterfaceTransportGetGlobalInfo (section 3.1.4.11)

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

type

ofaActionOnMatch

dwNumFilters

pFilters (variable)

...

type (4 bytes): This MUST be set to OSPF_ROUTE_FILTER_PARAM_TYPE.

ofaActionOnMatch (4 bytes): Set to 0 or 1 as mentioned in OSPF_FILTER_ACTION (section
2.2.1.1.15).

dwNumFilters (4 bytes): Set to the number of route filters present in the pFilters field.

pFilters (variable): List of route filters. This points to a buffer that contains a list of structures of
type OSPF_ROUTE_FILTER (section 2.2.1.2.208).

228 / 547

[MS-RRASM-Diff] - v20210407
Routing and Remote Access Server (RRAS) Management Protocol
Copyright © 2021 Microsoft Corporation
Release: April 7, 2021

2.2.1.2.210 OSPF_PROTO_FILTER_INFO

The OSPF_PROTO_FILTER_INFO structure MAY<146> be used to contain the OSPF protocol filter
information and is used by the following methods:

▪ RRouterInterfaceTransportSetGlobalInfo (section 3.1.4.10)

▪ RRouterInterfaceTransportGetGlobalInfo (section 3.1.4.11)

 typedef struct _OSPF_PROTO_FILTER_INFO {
 DWORD type;
 OSPF_FILTER_ACTION ofaActionOnMatch;
 DWORD dwNumProtoIds;
 DWORD pdwProtoId[1];
 } OSPF_PROTO_FILTER_INFO, *POSPF_PROTO_FILTER_INFO;

type: This MUST be set to OSPF_PROTO_FILTER_INFO_TYPE.

ofaActionOnMatch: Set to 0 or 1 as mentioned in OSPF_FILTER_ACTION (section 2.2.1.1.15).

dwNumProtoIds: The number of protocol IDs present in the pdwProtoId field.

pdwProtoId: A list of protocol IDs. This list MUST contain one or more values defined in

MIB_IPFORWARD_PROTO (section 2.2.1.1.9). All other values are ignored.

2.2.1.2.211 OSPF_GLOBAL_PARAM

The OSPF_GLOBAL_PARAM structure MAY<147> be used to contain the OPSF global parameters
and is used by the following methods:

▪ RRouterInterfaceTransportSetGlobalInfo (section 3.1.4.10)

▪ RRouterInterfaceTransportGetGlobalInfo (section 3.1.4.11)

 typedef struct _OSPF_GLOBAL_PARAM {
 DWORD type;
 DWORD create;
 DWORD enable;
 DWORD routerId;
 DWORD ASBrdrRtr;
 DWORD logLevel;
 } OSPF_GLOBAL_PARAM, *POSPF_GLOBAL_PARAM;

type: This MUST be set to OSPF_GLOBAL_PARAM_TYPE.

create: Set to 1 if the configuration needs to be created or set to 2 if it needs to be deleted.

enable: Set to 1 if the configuration needs to be enabled or set to 2 if it needs to be deleted.

routerId: This can be any value, or the IP address of the router, and MUST NOT be zero.

ASBrdrRtr: If it is the boundary router set to 1, otherwise set to 2.

logLevel: Set to 0 if no logging, 1 if an error, 2 if a warning, and 3 if information.

2.2.1.2.212 OSPF_AREA_PARAM

The OSPF_AREA_PARAM structure MAY<148> be used to contain the OSPF area parameters and is
used by the following methods:

229 / 547

[MS-RRASM-Diff] - v20210407
Routing and Remote Access Server (RRAS) Management Protocol
Copyright © 2021 Microsoft Corporation
Release: April 7, 2021

▪ RRouterInterfaceTransportSetGlobalInfo (section 3.1.4.10)

▪ RRouterInterfaceTransportGetGlobalInfo (section 3.1.4.11)

When calling RRouterInterfaceTransportSetGlobalInfo you MUST NOT delete the area with the
areaId set to 0.0.0.0, which works as the backbone area for the OSPF, otherwise the method will

return a failure.

 typedef struct _OSPF_AREA_PARAM {
 DWORD type;
 DWORD create;
 DWORD enable;
 DWORD areaId;
 DWORD authType;
 DWORD importASExtern;
 DWORD stubMetric;
 DWORD importSumAdv;
 } OSPF_AREA_PARAM, *POSPF_AREA_PARAM;

type: This MUST be set to OSPF_AREA_PARAM_TYPE.

create: Set to 1 if the configuration needs to be created or set to 2 if it needs to be deleted.

enable: Set to 1 if the configuration needs to be enabled or set to 2 if it needs to be deleted.

areaId: Set to 0 if it is border. Otherwise, set to any nonzero value.

authType: Set to 1 if there is no password or set to 2 for a simple password.

importASExtern: Set to 1 if yes, 2 for no.

stubMetric: Stub area metric. It MUST be set to a value between 1 and USHORTMAX/2.

importSumAdv: The import summary advertisement. Set to 1 if yes, 2 for no.

2.2.1.2.213 OSPF_AREA_RANGE_PARAM

The OSPF_AREA_RANGE_PARAM structure MAY<149> be used to contain the OSPF area range

parameters. This structure is used by the following methods:

▪ RRouterInterfaceTransportSetGlobalInfo (section 3.1.4.10)

▪ RRouterInterfaceTransportGetGlobalInfo (section 3.1.4.11)

 typedef struct _OSPF_AREA_RANGE_PARAM {
 DWORD type;
 DWORD create;
 DWORD enable;
 DWORD areaId;
 DWORD rangeNet;
 DWORD rangeMask;
 } OSPF_AREA_RANGE_PARAM, *POSPF_AREA_RANGE_PARAM;

type: This MUST be set to OSPF_AREA_RANGE_PARAM_TYPE.

create: Set to 1 if the configuration needs to be created or set to 2 if it needs to be deleted.

enable: Set to 1 if the configuration needs to be enabled or set to 2 if it needs to be deleted.

areaId: Set to 0 if it is a border. Otherwise, set it to any nonzero value.

230 / 547

[MS-RRASM-Diff] - v20210407
Routing and Remote Access Server (RRAS) Management Protocol
Copyright © 2021 Microsoft Corporation
Release: April 7, 2021

rangeNet: The IP address of the subnet.

rangeMask: The mask of the IP address subnet.

2.2.1.2.214 OSPF_VIRT_INTERFACE_PARAM

The OSPF_VIRT_INTERFACE_PARAM structure MAY<150> be used to contain the OSPF virtual
interface parameters and is used by the following methods:

▪ RRouterInterfaceTransportSetGlobalInfo (section 3.1.4.10)

▪ RRouterInterfaceTransportGetGlobalInfo (section 3.1.4.11)

 typedef struct _OSPF_VIRT_INTERFACE_PARAM {
 DWORD type;
 DWORD create;
 DWORD enable;
 DWORD transitAreaId;
 DWORD virtNeighborRouterId;
 DWORD transitDelay;
 DWORD retransInterval;
 DWORD helloInterval;
 DWORD deadInterval;
 BYTE password[8];
 } OSPF_VIRT_INTERFACE_PARAM, *POSPF_VIRT_INTERFACE_PARAM;

type: This MUST be set to OSPF_VIRT_INTF_PARAM_TYPE.

create: Set to 1 if the configuration needs to be created or set to 2 if it needs to be deleted.

enable: Set to 1 if the configuration needs to be enabled or set to 2 if it needs to be deleted.

transitAreaId: The transit area ID. It MUST not be set to 0; it MUST be set to an IP address.

virtNeighborRouterId: The virtual neighbor router ID (for example, the IP address).

transitDelay: This MUST be set to a value a value between 1 and 3600.

retransInterval: This MUST be set to a value between 1 and 3600.

helloInterval: This MUST be set to a value between 1 and USHORTMAX/2.

deadInterval: This MUST be set to a value between 1 and USHORTMAX/2.

password: The password.

2.2.1.2.215 OSPF_INTERFACE_PARAM

The OSPF_INTERFACE_PARAM structure MAY<151> be used to contain the OSPF Non-Broadcast
Multiple Access (NBMA) neighbor parameters and is used in the following methods:

▪ RRouterInterfaceTransportAdd (section 3.1.4.18)

▪ RRouterInterfaceTransportGetInfo (section 3.1.4.19)

▪ RRouterInterfaceTransportSetInfo (section 3.1.4.20)

 typedef struct _OSPF_INTERFACE_PARAM {
 DWORD type;
 DWORD create;
 DWORD enable;
 DWORD intfIpAddr;

231 / 547

[MS-RRASM-Diff] - v20210407
Routing and Remote Access Server (RRAS) Management Protocol
Copyright © 2021 Microsoft Corporation
Release: April 7, 2021

 DWORD intfSubnetMask;
 DWORD areaId;
 DWORD intfType;
 DWORD routerPriority;
 DWORD transitDelay;
 DWORD retransInterval;
 DWORD helloInterval;
 DWORD deadInterval;
 DWORD pollInterval;
 DWORD metricCost;
 BYTE password[8];
 DWORD mtuSize;
 } OSPF_INTERFACE_PARAM, *POSPF_INTERFACE_PARAM;

type: This MUST be set to OSPF_INTF_PARAM_TYPE.

create: This MUST be set to 1 if the configuration needs to be created or set to 2 if it needs to be
deleted.

enable: This MUST set to 1 if the configuration needs to be enabled or set to 2 if it needs to be
deleted.

intfIpAddr: The interface address on which the OSPF is enabled.

intfSubnetMask: The interface subnet address on which the OSPF is enabled. See [RFC950].

areaId: The area ID of the OSPF area of which the interface is a part.

intfType: Set to 1 for broadcast, set to 2 for NBMA, and set to 3 for point-to-point.

routerPriority: This MUST be set to a value between 1 and 255.

transitDelay: This MUST be set to a value between 1 and 3600.

retransInterval: This MUST be set to a value between 1 and 3600.

helloInterval: This MUST be set to a value between 1 and USHORTMAX/2.

deadInterval: This MUST be set to a value between 1 and USHORTMAX/2.

pollInterval: This MUST be set to a value between 1 and USHORTMAX/2.

metricCost: This MUST be set to a value between 1 and USHORTMAX/2.

password[8]: The password.

mtuSize: This MUST be set to a value between 1 and 10000.

2.2.1.2.216 OSPF_NBMA_NEIGHBOR_PARAM

The OSPF_NBMA_NEIGHBOR_PARAM structure MAY<152> be used to contain the OSPF NBMA

neighbor parameters and is used in the following methods:

▪ RRouterInterfaceTransportAdd (section 3.1.4.18)

▪ RRouterInterfaceTransportGetInfo (section 3.1.4.19)

▪ RRouterInterfaceTransportSetInfo (section 3.1.4.20)

 typedef struct _OSPF_NBMA_NEIGHBOR_PARAM {
 DWORD type;
 DWORD create;
 DWORD enable;

232 / 547

[MS-RRASM-Diff] - v20210407
Routing and Remote Access Server (RRAS) Management Protocol
Copyright © 2021 Microsoft Corporation
Release: April 7, 2021

 DWORD neighborIpAddr;
 DWORD intfIpAddr;
 DWORD neighborPriority;
 } OSPF_NBMA_NEIGHBOR_PARAM, *POSPF_NBMA_NEIGHBOR_PARAM;

type: This MUST be set to OSPF_NEIGHBOR_PARAM_TYPE.

create: Set to 1 if the configuration needs to be created or set to 2 if it needs to be deleted.

enable: Set to 1 if the configuration needs to be created or set to 2 if it needs to be deleted.

neighborIpAddr: The neighbor IP address.

intfIpAddr: The interface IP address.

neighborPriority: The priority of the neighbor.

2.2.1.2.217 RequestBuffer

The RequestBuffer structure is a generic information container used by the
RasRpcSubmitRequest (section 3.4.4.5) method to set or retrieve information on RRAS server.

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

RB_PCBIndex

RB_Reqtype

RB_Dummy (optional)

RB_Done

Alignment

...

RB_Buffer (variable)

...

RB_PCBIndex (4 bytes): A unique identifier for the port.

RB_Reqtype (4 bytes): A ReqTypes (section 2.2.1.1.18) enumeration value indicating the request
type sent to the server.

RB_Dummy (4 bytes): SHOULD<153> be set to the size of the ULONG_PTR on the client.

RB_Done (4 bytes): MUST be set to zero (0) when sent and MUST be ignored on receipt.

Alignment (8 bytes): MUST be set to zero (0) when sent and MUST be ignored on receipt.

RB_Buffer (variable): A pointer to the buffer that contains the information specific to the
RB_Reqtype request type. This information MUST be one of the following structures depending

upon the RB_Reqtype ReqTypes.

233 / 547

[MS-RRASM-Diff] - v20210407
Routing and Remote Access Server (RRAS) Management Protocol
Copyright © 2021 Microsoft Corporation
Release: April 7, 2021

ReqTypes Structure

REQTYPE_SETDEVICECONFIGINFO DeviceConfigInfo (section 2.2.1.2.218)

REQTYPE_GETDEVICECONFIGINFO DeviceConfigInfo (section 2.2.1.2.218)

REQTYPE_GETCALLEDID GetSetCalledId (section 2.2.1.2.220)

REQTYPE_SETCALLEDID GetSetCalledId (section 2.2.1.2.220)

REQTYPE_GETNDISWANDRIVERCAPS GetNdiswanDriverCapsStruct (section 2.2.1.2.222)

REQTYPE_GETDEVCONFIG GetDevConfigStruct (section 2.2.1.2.224)

REQTYPE_PORTENUM Enum (section 2.2.1.2.225)

REQTYPE_GETINFO Info (section 2.2.1.2.227)

2.2.1.2.218 DeviceConfigInfo

The DeviceConfigInfo structure contains information specific to the
REQTYPE_SETDEVICECONFIGINFO and REQTYPE_GETDEVICECONFIGINFO in the
ReqTypes (section 2.2.1.1.18) enumeration.

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

retcode

dwVersion

cbBuffer

cEntries

abdata (variable)

...

retcode (4 bytes): A 32-bit, unsigned integer value that indicates return status. A return value

ERROR_SUCCESS (0x00000000) indicates that the operation was completed successfully;
otherwise it contains an error code, specified in [MS-ERREF] or in section 2.2.4.

dwVersion (4 bytes): Specifies the version of the server.<154>

cbBuffer (4 bytes): This MUST be set to the size, in bytes, of the buffer passed in abdata.

cEntries (4 bytes): Specifies the number of device entries as returned by the server.

abdata (variable): This refers to the buffer that contains the array of RAS_DEVICE_INFO (section
2.2.1.2.219) structures as returned by the server.

2.2.1.2.219 RAS_DEVICE_INFO

The RAS_DEVICE_INFO structure contains device information.

234 / 547

[MS-RRASM-Diff] - v20210407
Routing and Remote Access Server (RRAS) Management Protocol
Copyright © 2021 Microsoft Corporation
Release: April 7, 2021

 typedef struct _RAS_DEVICE_INFO {
 DWORD dwVersion;
 BOOL fWrite;
 BOOL fRasEnabled;
 BOOL fRouterEnabled;
 BOOL fRouterOutboundEnabled;
 DWORD dwTapiLineId;
 DWORD dwError;
 DWORD dwNumEndPoints;
 DWORD dwMaxOutCalls;
 DWORD dwMaxInCalls;
 DWORD dwMinWanEndPoints;
 DWORD dwMaxWanEndPoints;
 RASDEVICETYPE eDeviceType;
 GUID guidDevice;
 CHAR szPortName[17];
 CHAR szDeviceName[129];
 WCHAR wszDeviceName[129];
 } RAS_DEVICE_INFO,
 *PRAS_DEVICE_INFO;

dwVersion: Specifies the version of the Rasrpc server.<155>

fWrite: If set to 1, specifies that device information needs to be stored on RRAS. If set to 0, specifies
that the device information does not need to be stored.

fRasEnabled: If set to 1, specifies that the device is enabled for incoming connections. If set to 0,
specifies that the device is not enabled for incoming connections.

fRouterEnabled: If set to 1, specifies that the device is enabled for both incoming and outgoing
demand-dial connection. If set to 0, specifies that the device is not enabled for both incoming and
outgoing demand-dial connection.

fRouterOutboundEnabled: If set to 1, specifies that the device is enabled for outgoing Demand dial
connection. This can be set to 1 only when fRouterEnabled is set to 0.<156>

dwTapiLineId: Unique TAPI identifier for the device.

dwError: Specifies the return status as explained in section 2.2.1.2.218 for the retcode field.

dwNumEndPoints: Specifies the number of WAN end points available for the device.

dwMaxOutCalls: Specifies the maximum number of outgoing connections allowed on the device.

dwMaxInCalls: Specifies the maximum number of incoming connections allowed on the device.

dwMinWanEndPoints: Specifies the minimum number of WAN end points allowed on the device.

dwMaxWanEndPoints: Specifies the maximum number of WAN end points allowed on the device.

eDeviceType: Specifies the RASDEVICETYPE enumeration type.

guidDevice: A GUID uniquely identifying the device. This value MUST NOT be used when

eDeviceType is RDT_Modem.

szPortName: Specifies a null-terminated ASCII string specifying the Port Name.

szDeviceName: Specifies a null-terminated ASCII string specifying the Device Name.

wszDeviceName: SHOULD<157> contain a null-terminated Unicode string specifying the Device
Name.

235 / 547

[MS-RRASM-Diff] - v20210407
Routing and Remote Access Server (RRAS) Management Protocol
Copyright © 2021 Microsoft Corporation
Release: April 7, 2021

2.2.1.2.220 (Updated Section) GetSetCalledId

The GetSetCalledId structure contains information specific to the REQTYPE_GETCALLEDID and
REQTYPE_SETCALLEDID in the ReqTypes (section 2.2.1.1.18) enumeration.

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

retcode

fWrite

dwSize

guidDevice (16 bytes)

...

...

rdi (472 bytes)

...

...

rciInfo (variable)

...

retcode (4 bytes): Specifies the return status as explained in section 2.2.1.2.218 for the retcode
field.

fWrite (4 bytes): If set to 1, specifies that CalledId information MUST be stored on RRAS. If set to 0,
CalledId information MUST not be stored.

dwSize (4 bytes): Specifies the size, in bytes, of the rciInfo structure, including the rciInfo.bCalledId
buffer, which is specified by the dwSize member of the RAS_CALLEDID_INFO structure.

guidDevice (16 bytes): This value MUST be set to 0 when sent and ignored on receipt.

rdi (472 bytes): Specifies the RAS_DEVICE_INFO structure as defined in section 2.2.1.2.219.

rciInfo (variable): Specifies the RAS_CALLEDID_INFO structure as defined in section 2.2.1.2.221.

2.2.1.2.221 RAS_CALLEDID_INFO

The RAS_CALLEDID_INFO structure contains the TAPI CalledId information.

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

dwSize

236 / 547

[MS-RRASM-Diff] - v20210407
Routing and Remote Access Server (RRAS) Management Protocol
Copyright © 2021 Microsoft Corporation
Release: April 7, 2021

bCalledId (variable)

...

dwSize (4 bytes): Specifies the size in bytes of the bCalledId buffer.

bCalledId (variable): Specifies the buffer that contains the null-terminated Unicode string
representing the called device phonenumber information.

2.2.1.2.222 GetNdiswanDriverCapsStruct

The GetNdiswanDriverCapsStruct structure contains the information specific to the
REQTYPE_GETNDISWANDRIVERCAPS in the ReqTypes (section 2.2.1.1.18) enumeration.

 typedef struct GetNdiswanDriverCapsStruct {
 DWORD retcode;
 RAS_NDISWAN_DRIVER_INFO NdiswanDriverInfo;
 } GetNdiswanDriverCapsStruct;

retcode: Specifies the return status as explained in section 2.2.1.2.218 for retcode field.

NdiswanDriverInfo: The RAS_NDISWAN_DRIVER_INFO structure.

2.2.1.2.223 RAS_NDISWAN_DRIVER_INFO

The RAS_NDISWAN_DRIVER_INFO structure contains the encryption capabilities of the RRAS
server.

 typedef struct _RAS_NDISWAN_DRIVER_INFO {
 ULONG DriverCaps;
 ULONG Reserved;
 } RAS_NDISWAN_DRIVER_INFO,
 *P_NDISWAN_DRIVER_INFO;

DriverCaps: Specifies the encryption capabilities of the RRAS. It MUST be one of the following values.

Value Meaning

RAS_NDISWAN_40BIT_ENABLED

0x00000000

40-bit encryption supported

RAS_NDISWAN_128BIT_ENABLED

0x00000001

128-bit encryption supported

Reserved: MUST be set to zero (0) when sent and MUST be ignored on receipt.

2.2.1.2.224 (Updated Section) GetDevConfigStruct

The GetDevConfigStruct structure contains information specific to the REQTYPE_GETDEVCONFIG in
the ReqTypes (section 2.2.1.1.18) enumeration.

237 / 547

[MS-RRASM-Diff] - v20210407
Routing and Remote Access Server (RRAS) Management Protocol
Copyright © 2021 Microsoft Corporation
Release: April 7, 2021

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

retcode

devicetype (17 bytes)

...

...

... size

... config (variable)

...

retcode (4 bytes): Specifies the return status as explained in section 2.2.1.2.218 for retcode field.

devicetype (17 bytes): Specifies a null-terminated ASCII string that indicates the RRAS server
device type as specified for the wszDeviceType field in the RASI_PORT_0 (section 2.2.1.2.7675)

structure.

size (4 bytes): Specifies the size in bytes of the configuration data as specified by config.

config (variable): Tapi device configuration blob as specified by GetDevConfig.lpDeviceConfig in
section 2.2.4.1.3.33 of [MS-TRP].

2.2.1.2.225 Enum

The Enum structure contains information specific to the REQTYPE_PORTENUM

ReqTypes (section 2.2.1.1.18) value.

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

retcode

size

entries

buffer (variable)

...

retcode (4 bytes): Specifies the return status as explained in section 2.2.1.2.218 for the retcode
field.

size (4 bytes): Specifies the size in bytes of the buffer.

entries (4 bytes): Specifies the number of port entries as pointed by the buffer.

buffer (variable): Points to the array of RASMAN_PORT_32 (section 2.2.1.2.226) structures.

238 / 547

[MS-RRASM-Diff] - v20210407
Routing and Remote Access Server (RRAS) Management Protocol
Copyright © 2021 Microsoft Corporation
Release: April 7, 2021

2.2.1.2.226 RASMAN_PORT_32

The RASMAN_PORT_32 structure contains information regarding a specific RAS port, such as port
status and port name.

 typedef struct _RASMAN_PORT_32 {
 DWORD P_Port;
 CHAR P_PortName[16];
 RASMAN_STATUS P_Status;
 RASDEVICETYPE P_rdtDeviceType;
 RASMAN_USAGE P_ConfiguredUsage;
 RASMAN_USAGE P_CurrentUsage;
 CHAR P_MediaName[16];
 CHAR P_DeviceType[16];
 CHAR P_DeviceName[129];
 DWORD P_LineDeviceId;
 DWORD P_AddressId;
 } RASMAN_PORT_32;

P_Port: A unique identifier for the port.

P_PortName: Specifies a null-terminated ASCII string specifying the port name.

P_Status: Specifies the status of the port as defined in the RASMAN_STATUS (section 2.2.1.1.17)
enumeration type.

P_rdtDeviceType: Specifies the device type of the port as defined in the
RASDEVICETYPE (section 2.2.1.1.16) enumeration type.

P_ConfiguredUsage: Specifies the configured usage of the port as defined in section 2.2.1.1.21.

P_CurrentUsage: Specifies the usage for the port currently being used as defined in section

2.2.1.1.21.

P_MediaName: A null-terminated ASCII string specifying the name of the media associated with the

port.

P_DeviceType: Specifies a null-terminated ASCII string that indicates the RRAS server device type as
specified for the wszDeviceType field of the RASI_PORT_0 (section 2.2.1.2.75) structure.

P_DeviceName: A null-terminated ASCII string specifying the name of the device associated with the
port.

P_LineDeviceId: Specifies a unique identifier for the device.

P_AddressId: MUST be set to zero (0) when sent and ignored on receipt.

2.2.1.2.227 Info

The Info structure contains information specific to the REQTYPE_GETINFO
ReqTypes (section 2.2.1.1.18) value.

 typedef struct Info {
 union {
 DWORD retcode;
 HANDLE paddingField;
 };
 RASMAN_INFO info;
 } Info;

239 / 547

[MS-RRASM-Diff] - v20210407
Routing and Remote Access Server (RRAS) Management Protocol
Copyright © 2021 Microsoft Corporation
Release: April 7, 2021

retcode: Specifies the return status as explained in section 2.2.1.2.218 for the retcode field.

paddingField: Reserved field to provide proper alignment of the structure.

info: Specifies the port information as defined in the RASMAN_INFO (section 2.2.1.2.228) structure.

2.2.1.2.228 RASMAN_INFO

The RASMAN_INFO structure contains general information regarding a specific RRAS port, such as
port status and port name.

 typedef struct _RASMAN_INFO {
 RASMAN_STATUS RI_PortStatus;
 RASMAN_STATE RI_ConnState;
 DWORD RI_LinkSpeed;
 DWORD RI_LastError;
 RASMAN_USAGE RI_CurrentUsage;
 CHAR RI_DeviceTypeConnecting[16];
 CHAR RI_DeviceConnecting[129];
 CHAR RI_szDeviceType[16];
 CHAR RI_szDeviceName[129];
 CHAR RI_szPortName[17];
 RASMAN_DISCONNECT_TYPE RI_DisconnectType;
 DWORD RI_OwnershipFlag;
 DWORD RI_ConnectDuration;
 DWORD RI_BytesReceived;
 CHAR RI_Phonebook[261];
 CHAR RI_PhoneEntry[257];
 HANDLE RI_ConnectionHandle;
 DWORD RI_SubEntry;
 RASDEVICETYPE RI_rdtDeviceType;
 GUID RI_GuidEntry;
 DWORD RI_dwSessionId;
 DWORD RI_dwFlags;
 GUID RI_CorrelationGuid;
 } RASMAN_INFO;

RI_PortStatus: Specifies the status of the port as defined in RASMAN_STATUS (section 2.2.1.1.17)
enumeration type.

RI_ConnState: Specifies the connection state of the port as defined in
RASMAN_STATE (section 2.2.1.1.19).

RI_LinkSpeed: Specifies the link speed in bits per second (bps) of the connection using port as
specified by RI_szPortName.

RI_LastError: Specifies the return status as explained in section 2.2.1.2.218 for retcode field.

RI_CurrentUsage: Specifies the current usage of the port as defined in section 2.2.1.1.21.

RI_DeviceTypeConnecting: Specifies a null-terminated ASCII string that indicates the RRAS server
device type as specified for the wszDeviceType field of a RASI_PORT_0 (section 2.2.1.2.75)

structure.

RI_DeviceConnecting: Specifies a null-terminated ASCII string that contains the name of the device
associated with the port.

RI_szDeviceType: Specifies a null-terminated ASCII string that contains the RRAS server device
type as specified for the wszDeviceType field of RASI_PORT_0 structure.

RI_szDeviceName: Specifies a null-terminated ASCII string that contains the name of the device
associated with the port.

240 / 547

[MS-RRASM-Diff] - v20210407
Routing and Remote Access Server (RRAS) Management Protocol
Copyright © 2021 Microsoft Corporation
Release: April 7, 2021

RI_szPortName: Specifies a null-terminated ASCII string that contains the port name.

RI_DisconnectType: Specifies the disconnect type of the port as defined by the

RASMAN_DISCONNECT_TYPE (section 2.2.1.1.20) enumeration type.

RI_OwnershipFlag: Specifies the process identifier (PID) of the client application that has opened

the port.

RI_ConnectDuration: Specifies the duration of the current connection on this port, in milliseconds.

RI_BytesReceived: Specifies the number of bytes received on this port.

RI_Phonebook: Specifies the RRAS Phonebook path for the connection associated with this port.

RI_PhoneEntry: Specifies the RRAS Phonebook entry name for the connection associated with this
port.

RI_ConnectionHandle: Specifies a unique 32-bit unsigned integer identifying the connection

associated with this port.

RI_SubEntry: Specifies an index to the multilink subentry associated with this port.

RI_rdtDeviceType: Specifies a value giving the RASDEVICETYPE (section 2.2.1.1.16) enumeration
type.

RI_GuidEntry: Specifies a GUID uniquely identifying the connection associated with the port.

RI_dwSessionId: Specifies the unique session ID associated with the port.<158>

RI_dwFlags: Specifies the configuration option of the connection associated with this port.<159>

The value MUST be one of the following values or a bit-wise OR combination of the following
values.

Value Meaning

0x00000001 Connection associated with this port is configured to store the credentials for
everyone.

0x00000002 Connection associated with this port is configured as outgoing connection.

RI_CorrelationGuid: Specifies a GUID that uniquely identifies the connection associated with this
port.<160>

2.2.1.2.229 RASRPC_PBUSER

The RASRPC_PBUSER structure contains configuration information of Demand Dial connection.

 typedef struct _RASRPC_PBUSER {
 BOOL fOperatorDial;
 BOOL fPreviewPhoneNumber;
 BOOL fUseLocation;
 BOOL fShowLights;
 BOOL fShowConnectStatus;
 BOOL fCloseOnDial;
 BOOL fAllowLogonPhonebookEdits;
 BOOL fAllowLogonLocationEdits;
 BOOL fSkipConnectComplete;
 BOOL fNewEntryWizard;
 DWORD dwRedialAttempts;
 DWORD dwRedialSeconds;
 DWORD dwIdleDisconnectSeconds;

241 / 547

[MS-RRASM-Diff] - v20210407
Routing and Remote Access Server (RRAS) Management Protocol
Copyright © 2021 Microsoft Corporation
Release: April 7, 2021

 BOOL fRedialOnLinkFailure;
 BOOL fPopupOnTopWhenRedialing;
 BOOL fExpandAutoDialQuery;
 DWORD dwCallbackMode;
 [unique] LPRASRPC_CALLBACKLIST pCallbacks;
 WCHAR pszLastCallbackByCaller[129];
 DWORD dwPhonebookMode;
 WCHAR pszPersonalFile[260];
 WCHAR pszAlternatePath[260];
 [unique] LPRASRPC_STRINGLIST pPhonebooks;
 [unique] LPRASRPC_STRINGLIST pAreaCodes;
 BOOL fUseAreaAndCountry;
 [unique] LPRASRPC_STRINGLIST pPrefixes;
 [unique] LPRASRPC_STRINGLIST pSuffixes;
 [unique] LPRASRPC_LOCATIONLIST pLocations;
 DWORD dwXPhonebook;
 DWORD dwYPhonebook;
 WCHAR pszDefaultEntry[257];
 BOOL fInitialized;
 BOOL fDirty;
 } RASRPC_PBUSER,
 *LPRASRPC_PBUSER;

fOperatorDial: It is unused and can be set to any value.

fPreviewPhoneNumber: It is unused and can be set to any value.

fUseLocation: It is unused can be set to any value.

fShowLights: It is unused and can be set to any value.

fShowConnectStatus: It is unused and can be set to any value.

fCloseOnDial: It is unused and can be set to any value.

fAllowLogonPhonebookEdits: It is unused and can be set to any value.

fAllowLogonLocationEdits: It is unused and can be set to any value.

fSkipConnectComplete: It is unused and can be set to any value.

fNewEntryWizard: It is unused and can be set to any value.

dwRedialAttempts: It is unused and can be set to any value.

dwRedialSeconds: It is unused and can be set to any value.

dwIdleDisconnectSeconds: It is unused and can be set to any value.

fRedialOnLinkFailure: It is unused and can be set to any value.

fPopupOnTopWhenRedialing: It is unused and can be set to any value.

fExpandAutoDialQuery: It is unused and can be set to any value.

dwCallbackMode: It is unused and can be set to any value.

pCallbacks: A pointer to a linked list of callback information specified by
RASRPC_CALLBACKLIST (section 2.2.1.2.230) structures. Each member of the linked list specifies
the callback information for a particular port associated with a device.

pszLastCallbackByCaller: A null-terminated Unicode string specifying the callback phone number
last used.

242 / 547

[MS-RRASM-Diff] - v20210407
Routing and Remote Access Server (RRAS) Management Protocol
Copyright © 2021 Microsoft Corporation
Release: April 7, 2021

dwPhonebookMode: It is unused and can be set to any value.

pszPersonalFile: It MUST be set to an empty string ("").

pszAlternatePath: It MUST be set to an empty string ("").

pPhonebooks: It is not used and can be set to NULL.

pAreaCodes: It is not used and can be set to NULL.

fUseAreaAndCountry: It is unused and can be set to any value.

pPrefixes: It MUST be set to NULL.

pSuffixes: It MUST be set to NULL.

pLocations: It MUST be set to NULL.

dwXPhonebook: It is unused and can be set to any value.

dwYPhonebook: It is unused can be set to any value.

pszDefaultEntry: It MUST be set to an empty string (").

fInitialized: If set to 1, specifies that the RASRPC_PBUSER structure is initialized if set to 0 specifies
that the RASRPC_PBUSER structure is not initialized.

fDirty: If set to 1, specifies that the RASRPC_PBUSER structure needs to be stored on server. If set to
0, specifies that the RASRPC_PBUSER structure need not be stored on RRAS.

2.2.1.2.230 RASRPC_CALLBACKLIST

The RASRPC_CALLBACKLIST structure specifies the callback information such as the callback device
name and the callback phonenumber.

 typedef struct _RASRPC_CALLBACKLIST {
 WCHAR pszPortName[RASRPC_MaxPortName + 1];
 WCHAR pszDeviceName[RASRPC_MaxDeviceName + 1];
 WCHAR pszNumber[RASRPC_MaxPhoneNumber + 1];
 DWORD dwDeviceType;
 [unique] struct _RASRPC_CALLBACKLIST* pNext;
 } RASRPC_CALLBACKLIST,
 *LPRASRPC_CALLBACKLIST;

pszPortName: A null-terminated Unicode string specifying the port name on which callback is made.

pszDeviceName: A null-terminated Unicode string specifying the device name on which callback is be
made.

pszNumber: A null-terminated Unicode string specifying the phone number to which callback is be
made.

dwDeviceType: Specifies the device type to which callback is to be made.

This MUST take one of the following values:<161>

Value Meaning

PBDT_None

0

No device.

243 / 547

[MS-RRASM-Diff] - v20210407
Routing and Remote Access Server (RRAS) Management Protocol
Copyright © 2021 Microsoft Corporation
Release: April 7, 2021

Value Meaning

PBDT_Null

1

Serial or parallel port device.

PBDT_Other

2

Device other than mentioned in the table.

PBDT_Modem

3

A modem device.

PBDT_Pad

4

An X.25 [X.25] packet assembler/disassembler.

PBDT_Switch

5

Switch device.

PBDT_Isdn

6

An ISDN device.

PBDT_X25

7

An X.25 [X.25] device.

PBDT_ComPort

8

Generic COM port device.

PBDT_Irda

10

An Infrared Data Association (IrDA)-compliant device.

PBDT_Vpn

11

A virtual private networking (VPN) device

PBDT_Serial

12

Serial port device.

PBDT_Atm

13

Asynchronous Transfer Mode (ATM) device.

PBDT_Parallel

14

Parallel port device.

PBDT_Sonet

15

Sonet device.

PBDT_Sw56

16

Switched 56K Access.

PBDT_FrameRelay

17

Frame Relay device.

PBDT_PPPoE

18

PPPoE device.

pNext: Specifies the pointer to the next RASRPC_CALLBACKLIST structure. The last member of the
linked list of RASRPC_CALLBACKLIST structures MUST have the pNext field set to NULL.

2.2.1.2.231 RASRPC_STRINGLIST

The RASRPC_STRINGLIST structure contains a null-terminated Unicode string.

244 / 547

[MS-RRASM-Diff] - v20210407
Routing and Remote Access Server (RRAS) Management Protocol
Copyright © 2021 Microsoft Corporation
Release: April 7, 2021

 typedef struct _RASRPC_STRINGLIST {
 WCHAR psz[256];
 [unique] struct _RASRPC_STRINGLIST* pNext;
 } RASRPC_STRINGLIST,
 *LPRASRPC_STRINGLIST;

psz: Specifies a null-terminated Unicode string.

pNext: Specifies the pointer to the next RASRPC_STRINGLIST structure.

2.2.1.2.232 RASRPC_LOCATIONLIST

The RASRPC_LOCATIONLIST structure contains information related to the TAPI location identifier.

 typedef struct _RASRPC_LOCATIONLIST {
 DWORD dwLocationId;
 DWORD iPrefix;
 DWORD iSuffix;
 [unique] struct _RASRPC_LOCATIONLIST* pNext;
 } RASRPC_LOCATIONLIST,
 *LPRASRPC_LOCATIONLIST;

dwLocationId: Specifies the TAPI location id.

iPrefix: It is unused and if set MUST be ignored by RRAS.

iSuffix: It is unused and if set MUST be ignored by RRAS.

pNext: Specifies the pointer to the next RASRPC_LOCATIONLIST structure.

2.2.1.2.233 (Updated Section) PPP_PROJECTION_INFO_2

The PPP_PROJECTION_INFO_2 structure<162> contain information obtained during the PPP

negotiation for the PPP-based tunnels.

 typedef struct _PPP_PROJECTION_INFO_2 {
 DWORD dwIPv4NegotiationError;
 WCHAR wszAddress[16];
 WCHAR wszRemoteAddress[16];
 DWORD dwIPv4Options;
 DWORD dwIPv4RemoteOptions;
 ULONG64 IPv4SubInterfaceIndex;
 DWORD dwIPv6NegotiationError;
 UCHAR bInterfaceIdentifier[8];
 UCHAR bRemoteInterfaceIdentifier[8];
 UCHAR bPrefix[8];
 DWORD dwPrefixLength;
 ULONG64 IPv6SubInterfaceIndex;
 DWORD dwLcpError;
 DWORD dwAuthenticationProtocol;
 DWORD dwAuthenticationData;
 DWORD dwRemoteAuthenticationProtocol;
 DWORD dwRemoteAuthenticationData;
 DWORD dwLcpTerminateReason;
 DWORD dwLcpRemoteTerminateReason;
 DWORD dwLcpOptions;
 DWORD dwLcpRemoteOptions;
 DWORD dwEapTypeId;
 DWORD dwEmbeddedEAPTypeId;
 DWORD dwRemoteEapTypeId;
 DWORD dwCcpError;
 DWORD dwCompressionAlgorithm;

245 / 547

[MS-RRASM-Diff] - v20210407
Routing and Remote Access Server (RRAS) Management Protocol
Copyright © 2021 Microsoft Corporation
Release: April 7, 2021

 DWORD dwCcpOptions;
 DWORD dwRemoteCompressionAlgorithm;
 DWORD dwCcpRemoteOptions;
 } PPP_PROJECTION_INFO_2,
 *PPPP_PROJECTION_INFO_2;

dwIPv4NegotiationError: Same as dwIPv4NegotiationError in
PPP_PROJECTION_INFO_1 (section 2.2.1.2.131).130).

wszAddress: Same as wszAddress in PPP_PROJECTION_INFO_1.

wszRemoteAddress: Same as wszRemoteAddress in PPP_PROJECTION_INFO_1.

dwIPv4Options: Same as dwIPv4Options in PPP_PROJECTION_INFO_1.

dwIPv4RemoteOptions: Same as dwIPv4RemoteOptions in PPP_PROJECTION_INFO_1.

IPv4SubInterfaceIndex: Same as IPv4SubInterfaceIndex in PPP_PROJECTION_INFO_1.

dwIPv6NegotiationError: Same as dwIPv6NegotiationError in PPP_PROJECTION_INFO_1.

bInterfaceIdentifier: Same as bInterfaceIdentifier in PPP_PROJECTION_INFO_1.

bRemoteInterfaceIdentifier: Same as bRemoteInterfaceIdentifier in
PPP_PROJECTION_INFO_1.

bPrefix: Same as bPrefix in PPP_PROJECTION_INFO_1.

dwPrefixLength: Same as bPrefix in PPP_PROJECTION_INFO_1.

IPv6SubInterfaceIndex: Same as IPv6SubInterfaceIndex in PPP_PROJECTION_INFO_1.

dwLcpError: Same as dwLcpError in PPP_PROJECTION_INFO_1.

dwAuthenticationProtocol: Same as dwAuthenticationProtocol in PPP_PROJECTION_INFO_1.

dwAuthenticationData: Same as dwAuthenticationData in PPP_PROJECTION_INFO_1.

dwRemoteAuthenticationProtocol: Same as dwRemoteAuthenticationProtocol in
PPP_PROJECTION_INFO_1.

dwRemoteAuthenticationData: Same as dwRemoteAuthenticationData in
PPP_PROJECTION_INFO_1.

dwLcpTerminateReason: Same as dwLcpTerminateReason in PPP_PROJECTION_INFO_1.

dwLcpRemoteTerminateReason: Same as dwLcpRemoteTerminateReason in
PPP_PROJECTION_INFO_1.

dwLcpOptions: Same as dwLcpOptions in PPP_PROJECTION_INFO_1.

dwLcpRemoteOptions: Same as dwLcpRemoteOptions in PPP_PROJECTION_INFO_1.

dwEapTypeId: Same as dwEapTypeId in PPP_PROJECTION_INFO_1.

dwEmbeddedEAPTypeId: Specifies the type identifier of the inner EAP method used in the EAP [MS-
PEAP] authentication. The value of this member is valid only if the dwEapTypeId member is set

to PEAP (defined in [IANA-EAP]). The valid values are defined in [IANA-EAP].

dwRemoteEapTypeId: Same as dwRemoteEapTypeId in PPP_PROJECTION_INFO_1.

dwCcpError: Same as dwCcpError in PPP_PROJECTION_INFO_1.

246 / 547

[MS-RRASM-Diff] - v20210407
Routing and Remote Access Server (RRAS) Management Protocol
Copyright © 2021 Microsoft Corporation
Release: April 7, 2021

dwCompressionAlgorithm: Same as dwCompressionAlgorithm in PPP_PROJECTION_INFO_1.

dwCcpOptions: Same as dwCcpOptions in PPP_PROJECTION_INFO_1.

dwRemoteCompressionAlgorithm: Same as dwRemoteCompressionAlgorithm in
PPP_PROJECTION_INFO_1.

dwCcpRemoteOptions: Same as dwCcpRemoteOptions in PPP_PROJECTION_INFO_1.

2.2.1.2.234 IKEV2_PROJECTION_INFO_2

The IKEV2_PROJECTION_INFO_2 structure<163> contain information obtained during Internet
key exchange (IKE) negotiation.

 typedef struct IKEV2_PROJECTION_INFO_2 {
 DWORD dwIPv4NegotiationError;
 WCHAR wszAddress[16];
 WCHAR wszRemoteAddress[16];
 ULONG64 IPv4SubInterfaceIndex;
 DWORD dwIPv6NegotiationError;
 UCHAR bInterfaceIdentifier[8];
 UCHAR bRemoteInterfaceIdentifier[8];
 UCHAR bPrefix[8];
 DWORD dwPrefixLength;
 ULONG64 IPv6SubInterfaceIndex;
 DWORD dwOptions;
 DWORD dwAuthenticationProtocol;
 DWORD dwEapTypeId;
 DWORD dwEmbeddedEAPTypeId;
 DWORD dwCompressionAlgorithm;
 DWORD dwEncryptionMethod;
 } IKEV2_PROJECTION_INFO_2,
 *PIKEV2_PROJECTION_INFO_2;

dwIPv4NegotiationError: Same as dwIPv4NegotiationError in IKEV2_PROJECTION_INFO_1.

wszAddress: Same as wszAddress in IKEV2_PROJECTION_INFO_1.

wszRemoteAddress: Same as wszRemoteAddress in IKEV2_PROJECTION_INFO_1.

IPv4SubInterfaceIndex: Same as IPv4SubInterfaceIndex in IKEV2_PROJECTION_INFO_1.

dwIPv6NegotiationError: Same as dwIPv6NegotiationError in IKEV2_PROJECTION_INFO_1.

bInterfaceIdentifier: Same as bInterfaceIdentifier in IKEV2_PROJECTION_INFO_1.

bRemoteInterfaceIdentifier: Same as bRemoteInterfaceIdentifier in
IKEV2_PROJECTION_INFO_1.

bPrefix: Same as bPrefix in IKEV2_PROJECTION_INFO_1.

dwPrefixLength: Same as dwPrefixLength in IKEV2_PROJECTION_INFO_1.

IPv6SubInterfaceIndex: Same as IPv6SubInterfaceIndex in IKEV2_PROJECTION_INFO_1.

dwOptions: Same as dwOptions in IKEV2_PROJECTION_INFO_1.

dwAuthenticationProtocol: Same as dwAuthenticationProtocol in
IKEV2_PROJECTION_INFO_1.

dwEapTypeId: Same as dwEapTypeId in IKEV2_PROJECTION_INFO_1.

dwEmbeddedEAPTypeId: Same as dwEmbeddedEAPTypeId in IKEV2_PROJECTION_INFO_1.

247 / 547

[MS-RRASM-Diff] - v20210407
Routing and Remote Access Server (RRAS) Management Protocol
Copyright © 2021 Microsoft Corporation
Release: April 7, 2021

dwCompressionAlgorithm: Same as dwCompressionAlgorithm in
IKEV2_PROJECTION_INFO_1.

dwEncryptionMethod: Same as dwEncryptionMethod in IKEV2_PROJECTION_INFO_1.

2.2.1.2.235 PROJECTION_INFO_IDL_2

The PROJECTION_INFO_IDL_2 structure<164> is used in the RAS_CONNECTION_4_IDL
(section 2.2.1.2.236) structure as a placeholder for PPP_PROJECTION_INFO_2 (section 2.2.1.2.233)
structure or IKEV2_PROJECTION_INFO_2 (section 2.2.1.2.234) structure.

 typedef union _PROJECTION_INFO_IDL_2 switch (UCHAR projectionInfoType) ProjectionInfoObject {
 case 1:
 PPP_PROJECTION_INFO_2 PppProjectionInfo;
 case 2:
 IKEV2_PROJECTION_INFO_2 Ikev2ProjectionInfo;
 } PROJECTION_INFO_IDL_2,
 *PPROJECTION_INFO_IDL_2;

projectionInfoType: Specifies if the projection is for a PPP-based or IKEv2-based tunnel.

Value Meaning

MPRAPI_PPP_PROJECTION_INFO_TYPE

0x01

Data corresponds to PPP_PROJECTION_INFO_2.

MPRAPI_IKEV2_PROJECTION_INFO_TYPE

0x02

Data corresponds to IKEV2_PROJECTION_INFO_2.

PppProjectionInfo: Contains a PPP_PROJECTION_INFO_2 for a PPP-based tunnel.

Ikev2ProjectionInfo: Contains an IKEV2_PROJECTION_INFO_2 for an IKEv2-based tunnel.

2.2.1.2.236 (Updated Section) RAS_CONNECTION_4_IDL

The RAS_CONNECTION_4_IDL structure<165> contains information for a connection, including the
GUID that identifies the connection, the NAP, and the PPP or the IKEv2- related data for the
connection.

 typedef struct _RAS_CONNECTION_4_IDL {
 DWORD dwConnectDuration;
 ROUTER_INTERFACE_TYPE dwInterfaceType;
 DWORD dwConnectionFlags;
 WCHAR wszInterfaceName[257];
 WCHAR wszUserName[257];
 WCHAR wszLogonDomain[16];
 WCHAR wszRemoteComputer[17];
 GUID guid;
 RAS_QUARANTINE_STATE rasQuarState;
 FILETIME probationTime;
 FILETIME connectionStartTime;
 DWORD dwBytesXmited;
 DWORD dwBytesRcved;
 DWORD dwFramesXmited;
 DWORD dwFramesRcved;
 DWORD dwCrcErr;
 DWORD dwTimeoutErr;
 DWORD dwAlignmentErr;
 DWORD dwHardwareOverrunErr;
 DWORD dwFramingErr;
 DWORD dwBufferOverrunErr;

248 / 547

[MS-RRASM-Diff] - v20210407
Routing and Remote Access Server (RRAS) Management Protocol
Copyright © 2021 Microsoft Corporation
Release: April 7, 2021

 DWORD dwCompressionRatioIn;
 DWORD dwCompressionRatioOut;
 DWORD dwNumSwitchOvers;
 WCHAR wszRemoteEndpointAddress[65];
 WCHAR wszLocalEndpointAddress[65];
 PROJECTION_INFO_IDL_2 ProjectionInfo;
 ULONG hConnection;
 ULONG hInterface;
 DWORD dwDeviceType;
 } RAS_CONNECTION_4_IDL,
 *PRAS_CONNECTION_4_IDL;

dwConnectDuration: Same as dwConnectDuration in RAS_CONNECTION_EX_1_IDL. (section

2.2.1.2.133).

dwInterfaceType: Same as dwInterfaceType in RAS_CONNECTION_EX_1_IDL.

dwConnectionFlags: Same as dwConnectionFlags in RAS_CONNECTION_EX_1_IDL.

wszInterfaceName: Same as wszInterfaceName in RAS_CONNECTION_EX_1_IDL.

wszUserName: Same as wszUserName in RAS_CONNECTION_EX_1_IDL.

wszLogonDomain: Same as wszLogonDomain in RAS_CONNECTION_EX_1_IDL.

wszRemoteComputer: Same as wszRemoteComputer in RAS_CONNECTION_EX_1_IDL.

guid: Same as guid in RAS_CONNECTION_EX_1_IDL.

rasQuarState: Same as rasQuarState in RAS_CONNECTION_EX_1_IDL.

probationTime: Same as probationTime in RAS_CONNECTION_EX_1_IDL.

connectionStartTime: Same as connectionStartTime in RAS_CONNECTION_EX_1_IDL.

dwBytesXmited: Same as dwBytesXmited in RAS_CONNECTION_EX_1_IDL.

dwBytesRcved: Same as dwBytesRcved in RAS_CONNECTION_EX_1_IDL.

dwFramesXmited: Same as dwFramesXmited in RAS_CONNECTION_EX_1_IDL.

dwFramesRcved: Same as dwFramesRcved in RAS_CONNECTION_EX_1_IDL.

dwCrcErr: Same as dwCrcErr in RAS_CONNECTION_EX_1_IDL.

dwTimeoutErr: Same as dwTimeoutErr in RAS_CONNECTION_EX_1_IDL.

dwAlignmentErr: Same as dwAlignmentErr in RAS_CONNECTION_EX_1_IDL.

dwHardwareOverrunErr: Same as dwHardwareOverrunErr in RAS_CONNECTION_EX_1_IDL.

dwFramingErr: Same as dwFramingErr in RAS_CONNECTION_EX_1_IDL.

dwBufferOverrunErr: Same as dwBufferOverrunErr in RAS_CONNECTION_EX_1_IDL.

dwCompressionRatioIn: Same as dwCompressionRatioIn in RAS_CONNECTION_EX_1_IDL.

dwCompressionRatioOut: Same as dwCompressionRatioOut in RAS_CONNECTION_EX_1_IDL.

dwNumSwitchOvers: Same as dwNumSwitchOvers in RAS_CONNECTION_EX_1_IDL.

wszRemoteEndpointAddress: Same as wszRemoteEndpointAddress in
RAS_CONNECTION_EX_1_IDL.

249 / 547

[MS-RRASM-Diff] - v20210407
Routing and Remote Access Server (RRAS) Management Protocol
Copyright © 2021 Microsoft Corporation
Release: April 7, 2021

wszLocalEndpointAddress: Same as wszLocalEndpointAddress in RAS_CONNECTION_EX_1_IDL.

ProjectionInfo: Same as ProjectionInfo in RAS_CONNECTION_EX_1_IDL.

hConnection: Same as hConnection in RAS_CONNECTION_EX_1_IDL.

hInterface: Same as hInterface in RAS_CONNECTION_EX_1_IDL.

dwDeviceType: Specifies the device type of the port associated with the RAS connection as defined
in the RASDEVICETYPE (section 2.2.1.1.16) enumeration type.

2.2.1.2.237 ROUTER_CUSTOM_IKEv2_POLICY_0

The ROUTER_CUSTOM_IKEv2_POLICY_0 structure<166> is used to get or set configuration
parameters to be used during quick mode security association (QM SA) or main mode security
association (MM SA) negotiation for IKEv2 [RFC4306] and L2TP devices.

 typedef struct _ROUTER_CUSTOM_IKEv2_POLICY_0 {
 DWORD dwIntegrityMethod;
 DWORD dwEncryptionMethod;
 DWORD dwCipherTransformConstant;
 DWORD dwAuthTransformConstant;
 DWORD dwPfsGroup;
 DWORD dwDhGroup;
 } ROUTER_CUSTOM_IKEv2_POLICY_0,
 *PROUTER_CUSTOM_IKEv2_POLICY_0,
 ROUTER_CUSTOM_L2TP_POLICY_0,
 *PROUTER_CUSTOM_L2TP_POLICY_0;

dwIntegrityMethod: Specifies the integrity check algorithm to be negotiated during MM SA

negotiation [RFC4306]. This SHOULD have one of the following values.

Value Meaning

INTEGRITY_MD5

(0x0)

Specifies MD5 hash algorithm.

INTEGRITY_SHA1

(0x1)

Specifies SHA1 hash algorithm.

INTEGRITY_SHA_256

(0x2)

Specifies a 256-bit SHA encryption.

INTEGRITY_SHA_384

(0x3)

Specifies a 384-bit SHA encryption.

dwEncryptionMethod: Specifies the encryption algorithm to be negotiated during MM SA negotiation
[RFC4306]. This SHOULD have one of the following values.

Value Meaning

CIPHER_DES

(0x0)

Specifies DES encryption.

CIPHER_3DES

(0x1)

Specifies 3DES encryption.

CIPHER_AES_128

(0x2)

Specifies AES-128 encryption.

250 / 547

[MS-RRASM-Diff] - v20210407
Routing and Remote Access Server (RRAS) Management Protocol
Copyright © 2021 Microsoft Corporation
Release: April 7, 2021

Value Meaning

CIPHER_AES_192

(0x3)

Specifies AES-192 encryption.

CIPHER_AES_256

(0x4)

Specifies AES-256 encryption.

dwCipherTransformConstant: Specifies the encryption algorithm to be negotiated during QM SA
negotiation [RFC4306]. This SHOULD have one of the following values.

Value Meaning

CIPHER_CONFIG_CBC_DES

(0x1)

DES (Data Encryption Standard) algorithm. CBC (Cipher Block
Chaining) mode of operation. [RFC2410]

CIPHER_CONFIG_CBC_3DES

(0x2)

3DES algorithm. CBC mode of operation. [RFC2451]

CIPHER_CONFIG_CBC_AES_128

(0x3)

AES-128 (Advanced Encryption Standard) algorithm. CBC mode
of operation. [RFC3602]

CIPHER_CONFIG_CBC_AES_192

(0x4)

AES-192 algorithm. CBC mode of operation. [RFC3602]

CIPHER_CONFIG_CBC_AES_256

(0x5)

AES-256 algorithm. CBC mode of operation. [RFC3602]

CIPHER_CONFIG_GCM_AES_128

(0x6)

AES-128 algorithm. GCM (Galois Counter Mode) mode of
operation. [RFC4106]

CIPHER_CONFIG_GCM_AES_192

(0x7)

AES-192 algorithm. GCM (Galois Counter Mode) mode of
operation. [RFC4106]

CIPHER_CONFIG_GCM_AES_256

(0x8)

AES-256 algorithm. GCM (Galois Counter Mode) mode of
operation. [RFC4106]

dwAuthTransformConstant: Specifies the hash algorithm to be negotiated during QM SA
negotiation [RFC4306]. This SHOULD have one of the following values.

Value Meaning

AUTH_CONFIG_HMAC_MD5_96

(0x0)

Hash-based Message Authentication Code (HMAC) secret
key authentication algorithm. MD5data integrity and data
origin authentication algorithm. [RFC2403]

AUTH_CONFIG_HMAC_SHA_1_96

(0x1)

HMAC secret key authentication algorithm. SHA-1 (Secure
Hash Algorithm) data integrity and data origin
authentication algorithm. [RFC2404]

AUTH_CONFIG_HMAC_SHA_256_128

(0x2)

HMAC secret key authentication algorithm. SHA-256 data
integrity and data origin authentication algorithm.

AUTH_CONFIG_GCM_AES_128

(0x3)

GCM (Galois Counter Mode) secret key authentication
algorithm. AES(Advanced Encryption Standard) data
integrity and data origin authentication algorithm, with
128-bit key.

AUTH_CONFIG_GCM_AES_192 GCM secret key authentication algorithm. AES data

251 / 547

[MS-RRASM-Diff] - v20210407
Routing and Remote Access Server (RRAS) Management Protocol
Copyright © 2021 Microsoft Corporation
Release: April 7, 2021

Value Meaning

(0x4) integrity and data origin authentication algorithm, with
192-bit key.

AUTH_CONFIG_GCM_AES_256

(0x5)

GCM secret key authentication algorithm. AES data
integrity and data origin authentication algorithm, with
256-bit key.

dwPfsGroup: Specifies the Diffie-Hellman algorithm to be used for Quick Mode Perfect Forward
Secrecy (PFS) [RFC4306]. This SHOULD have one of the following values.

Value Meaning

PFS_NONE

(0x0)

Specifies no Quick Mode PFS.

PFS_1

(0x1)

Specifies Diffie- Hellman group 1.

PFS_2

(0x2)

Specifies Diffie- Hellman group 2.

PFS_2048

(0x3)

Specifies Diffie- Hellman group 2048.

PFS_ECP_256

(0x4)

Specifies Diffie- Hellman ECP group 256.

PFS_ECP_384

(0x5)

Specifies Diffie- Hellman ECP group 384.

PFS_MM

(0x6)

Use the same Diffie- Hellman as the main mode (MM) that contains this
quick mode (QM).

PFS_24

(0x7)

Specifies Diffie- Hellman group 24.

dwDhGroup: Specifies the type of Diffie-Hellman group used for Internet Key Exchange (IKE) key
generation during MM SA negotiation [RFC4306]. This SHOULD have one of the following values.

Value Meaning

DH_GROUP_NONE

(0x0)

No key exchange algorithms defined.

DH_GROUP_1

(0x1)

Do key exchange with Diffie-Hellman group 1.

DH_GROUP_2

(0x2)

Do key exchange with Diffie-Hellman group 2.

DH_GROUP_14

(0x3)

Do key exchange with Diffie-Hellman group 14.

DH_GROUP_2048

(0x3)

Do key exchange with Diffie-Hellman group 14. This group was called Diffie-
Hellman group 2048 when it was introduced. The name has been changed to
match standard terminology.

252 / 547

[MS-RRASM-Diff] - v20210407
Routing and Remote Access Server (RRAS) Management Protocol
Copyright © 2021 Microsoft Corporation
Release: April 7, 2021

Value Meaning

DH_ECP_256

(0x4)

Do key exchange with elliptic curve Diffie-Hellman 256.

DH_ECP_384

(0x5)

Do key exchange with elliptic curve Diffie-Hellman 384.

DH_GROUP_24

(0x6)

Do key exchange with Diffie-Hellman group 24.

2.2.1.2.238 IKEV2_TUNNEL_CONFIG_PARAMS_2

The IKEV2_TUNNEL_CONFIG_PARAMS_2 structure<167> is used to get or set configured
parameters for IKEv2 devices [RFC4306].

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

dwIdleTimeout

dwNetworkBlackoutTime

dwSaLifeTime

dwSaDataSizeForRenegotiation

dwConfigOptions

dwTotalCertificates

certificateNames (variable)

...

machineCertificateName (variable)

...

dwEncryptionType

customPolicy

...

dwIdleTimeout (4 bytes): Same as dwIdleTimeout in IKEV2_TUNNEL_CONFIG_PARAMS_1.

dwNetworkBlackoutTime (4 bytes): Same as dwNetworkBlackoutTime in
IKEV2_TUNNEL_CONFIG_PARAMS_1.

dwSaLifeTime (4 bytes): Same as dwSaLifeTime in IKEV2_TUNNEL_CONFIG_PARAMS_1.

253 / 547

[MS-RRASM-Diff] - v20210407
Routing and Remote Access Server (RRAS) Management Protocol
Copyright © 2021 Microsoft Corporation
Release: April 7, 2021

dwSaDataSizeForRenegotiation (4 bytes): Same as dwSaDataSizeForRenegotiation in
IKEV2_TUNNEL_CONFIG_PARAMS_1.

dwConfigOptions (4 bytes): Same as dwConfigOptions in
IKEV2_TUNNEL_CONFIG_PARAMS_1.

dwTotalCertificates (4 bytes): Same as dwTotalCertificates in
IKEV2_TUNNEL_CONFIG_PARAMS_1.

certificateNames (variable): Same as certificateNames in
IKEV2_TUNNEL_CONFIG_PARAMS_1.

machineCertificateName (variable): This MUST be a CERT_BLOB_1. This member specifies the
certificate configured to be sent to the peer for authentication during the main mode (MM SA)
negotiation [RFC4306] for the IKE2 tunnel-based VPN connections. A zero (0) value for the

cbData member of CERT_BLOB_1 indicates that no certificate is configured.

dwEncryptionType (4 bytes): Specifies the encryption type to be negotiated during the SA
negotiation [RFC4306] for the IKE2 tunnel-based VPN connections. This SHOULD have one of the

values in the following table.

Value Meaning

0 RRAS will not negotiate encryption.

1 RRAS requests encryption during negotiation. Negotiation will succeed even if remote RRAS does
not support encryption.

2 RRAS requires encryption to be negotiated.

3 RRAS requires maximum-strength encryption to be negotiated.

customPolicy (8 bytes): This MUST be a pointer to ROUTER_CUSTOM_IKEv2_POLICY_0 that
specifies the custom IKEv2 configurations to be used during the SA negotiation [RFC4306]. The

NULL value for this member indicates that no custom IKEv2 configuration is available.

2.2.1.2.239 IKEV2_CONFIG_PARAMS_2

The IKEV2_CONFIG_PARAMS_2 structure<168> is used to get or set configured parameters for
IKEv2 devices.

 typedef struct _IKEV2_CONFIG_PARAMS_2 {
 DWORD dwNumPorts;
 DWORD dwPortFlags;
 DWORD dwTunnelConfigParamFlags;
 IKEV2_TUNNEL_CONFIG_PARAMS_2 TunnelConfigParams;
 } IKEV2_CONFIG_PARAMS_2,
 *PIKEV2_CONFIG_PARAMS_2;

dwNumPorts: Same as dwNumPorts in IKEV2_CONFIG_PARAMS_1.

dwPortFlags: Same as dwPortFlags in IKEV2_CONFIG_PARAMS_1.

dwTunnelConfigParamFlags: Same as dwTunnelConfigParamFlags in
IKEV2_CONFIG_PARAMS_1.

TunnelConfigParams: IKEv2 tunnel-related parameters. MUST be an

IKEV2_TUNNEL_CONFIG_PARAMS_2 structure.

2.2.1.2.240 MPRAPI_TUNNEL_CONFIG_PARAMS_2

254 / 547

[MS-RRASM-Diff] - v20210407
Routing and Remote Access Server (RRAS) Management Protocol
Copyright © 2021 Microsoft Corporation
Release: April 7, 2021

The MPRAPI_TUNNEL_CONFIG_PARAMS_2 structure<169> is used to get or set configuration of
various tunnels on a RAS server.

 typedef struct _MPRAPI_TUNNEL_CONFIG_PARAMS_2 {
 IKEV2_CONFIG_PARAMS_2 IkeConfigParams;
 PPTP_CONFIG_PARAMS_1 PptpConfigParams;
 L2TP_CONFIG_PARAMS_1 L2tpConfigParams;
 SSTP_CONFIG_PARAMS_1 SstpConfigParams;
 } MPRAPI_TUNNEL_CONFIG_PARAMS_2,
 *PMPRAPI_TUNNEL_CONFIG_PARAMS_2;

IkeConfigParams: MUST be an IKEV2_CONFIG_PARAMS_2 structure and is used to get or set IKEv2
tunnel parameters.

PptpConfigParams: MUST be a PPTP_CONFIG_PARAMS_1 structure and is used to get or set PPTP
tunnel parameters.

L2tpConfigParams: MUST be an L2TP_CONFIG_PARAMS_1 structure and is used to get or set L2TP

tunnel parameters.

SstpConfigParams: MUST be an SSTP_CONFIG_PARAMS_1 structure and is used to get or set SSTP
tunnel parameters.

2.2.1.2.241 MPR_SERVER_SET_CONFIG_EX_2

The MPR_SERVER_SET_CONFIG_EX_2 structure<170> is used to set the configuration parameters

for the RRAS server.

 typedef struct _MPR_SERVER_SET_CONFIG_EX_2 {
 MPRAPI_OBJECT_HEADER_IDL Header;
 DWORD setConfigForProtocols;
 MPRAPI_TUNNEL_CONFIG_PARAMS_2 ConfigParams;
 } MPR_SERVER_SET_CONFIG_EX_2,
 *PMPR_SERVER_SET_CONFIG_EX_2;

Header: This MUST be an MPRAPI_OBJECT_HEADER_IDL (section 2.2.1.2.129) structure, the
revision field MUST be 0x02, and the type field MUST be 0x03.

setConfigForProtocols: Same as setConfigForProtocols in MPR_SERVER_SET_CONFIG_EX_1.

ConfigParams: This MUST be an MPRAPI_TUNNEL_CONFIG_PARAMS_2 structure.

2.2.1.2.242 MPR_SERVER_EX_2

The MPR_SERVER_EX_2 structure<171> is used to get or set the configuration of a RAS server.

 typedef struct _MPR_SERVER_EX_2 {
 MPRAPI_OBJECT_HEADER_IDL Header;
 BOOL fLanOnlyMode;
 DWORD dwUpTime;
 DWORD dwTotalPorts;
 DWORD dwPortsInUse;
 DWORD Reserved;
 MPRAPI_TUNNEL_CONFIG_PARAMS_2 ConfigParams;
 } MPR_SERVER_EX_2,
 *PMPR_SERVER_EX_2;

255 / 547

[MS-RRASM-Diff] - v20210407
Routing and Remote Access Server (RRAS) Management Protocol
Copyright © 2021 Microsoft Corporation
Release: April 7, 2021

Header: This specifies the version of the MPR_SERVER_EX_2 structure and MUST be an
MPRAPI_OBJECT_HEADER_IDL (section 2.2.1.2.129) whose revision field MUST be 0x02 and

whose type field MUST be 0x02.

fLanOnlyMode: Same as fLanOnlyMode in MPR_SERVER_EX_1.

dwUpTime: Same as dwUpTime in MPR_SERVER_EX_1.

dwTotalPorts: Same as dwTotalPorts in MPR_SERVER_EX_1.

dwPortsInUse: Same as dwPortsInUse in MPR_SERVER_EX_1.

Reserved: Same as Reserved in MPR_SERVER_EX_1.

ConfigParams: This MUST be an MPRAPI_TUNNEL_CONFIG_PARAMS_2 structure.

2.2.1.2.243 (Updated Section) ROUTER_IKEv2_IF_CUSTOM_CONFIG_0

The ROUTER_IKEv2_IF_CUSTOM_CONFIG_0 structure<172> is used to get or set IKEv2 tunnel

configuration parameters for IKEv2 tunnel- based demand- dial interfaces.

 typedef struct _ROUTER_IKEv2_IF_CUSTOM_CONFIG_0 {
 DWORD dwSaLifeTime;
 DWORD dwSaDataSize;
 CERT_BLOB_1 certificateName;
 PROUTER_CUSTOM_IKEv2_POLICY_0 customPolicy;
 } ROUTER_IKEv2_IF_CUSTOM_CONFIG_0,
 *PROUTER_IKEv2_IF_CUSTOM_CONFIG_0;

dwSaLifeTime: Same as dwSaLifeTime in IKEV2_TUNNEL_CONFIG_PARAMS_1.

dwSaDataSize: Same as dwSaDataSize in IKEV2_TUNNEL_CONFIG_PARAMS_1.

certificateName: Same as certificateName in IKEV2_TUNNEL_CONFIG_PARAMS_1.

customPolicy: MUST be a pointer to a ROUTER_CUSTOM_IKEv2_POLICY_0 structure.

2.2.1.2.244 MPR_IF_CUSTOMINFOEX_0

The MPR_IF_CUSTOMINFOEX_0 structure<173> contains the IKEv2 policy configuration of a

demand-dial interface (see section 1.3).

 typedef struct _MPR_IF_CUSTOMINFOEX_0 {
 MPRAPI_OBJECT_HEADER_IDL Header;
 DWORD dwFlags;
 ROUTER_IKEv2_IF_CUSTOM_CONFIG_0 customIkev2Config;
 } MPR_IF_CUSTOMINFOEX_0,
 *PMPR_IF_CUSTOMINFOEX_0;

Header: This MUST be an MPRAPI_OBJECT_HEADER_IDL (section 2.2.1.2.129). The revision field
MUST be 0x01, and the type field MUST be 0x06.

dwFlags: This MUST be one of the following values that specify the type of tunnel.

Value Meaning

0x00000000 No custom configuration is available.

MPRAPI_IF_CUSTOM_CONFIG_FOR_IKEV2 IKEv2 tunnel-specific configuration is available.

256 / 547

[MS-RRASM-Diff] - v20210407
Routing and Remote Access Server (RRAS) Management Protocol
Copyright © 2021 Microsoft Corporation
Release: April 7, 2021

Value Meaning

0x00000001

customIkev2Config: Specifies the IKEv2 tunnel configuration parameters. This MUST be a pointer to
ROUTER_IKEv2_IF_CUSTOM_CONFIG_0. The value of this member is valid only if the dwFlag
member is set to MPRAPI_IF_CUSTOM_CONFIG_FOR_IKEV2.

2.2.1.2.245 MPR_IF_CUSTOMINFOEX_IDL

The MPR_IF_CUSTOMINFOEX_IDL structure<174> is a placeholder for
MPR_IF_CUSTOMINFOEX_0 (section 2.2.1.2.244) and
MPR_IF_CUSTOMINFOEX_1 (section 2.2.1.2.269) structures.

 typedef union _MPR_IF_CUSTOMINFOEX_IDL switch(UCHAR revision) IfCustomConfigObject {
 case 1: MPR_IF_CUSTOMINFOEX_0 IfConfigObj1;
 case 2: MPR_IF_CUSTOMINFOEX_1 IfConfigObj2;
 } MPR_IF_CUSTOMINFOEX_IDL,
 *PMPR_IF_CUSTOMINFOEX_IDL;

IfConfigObj1: This MUST be an MPR_IF_CUSTOMINFOEX_0 (section 2.2.1.2.244) structure.

IfConfigObj2: This MUST be an MPR_IF_CUSTOMINFOEX_1 (section 2.2.1.2.269) structure.

2.2.1.2.246 CERT_EKU_1

The CERT_EKU_1 structure<175> contains the EKU OID or EKU name of an x.509 certificate (see
[RFC2459]).

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

dwSize

IsEKUOID

pwszEKU (variable)

...

dwSize (4 bytes): The size (in bytes) of pwszEKU.

IsEKUOID (4 bytes): Specifies a Boolean value that indicates whether the pwszEKU parameter
specifies the EKU OID or EKU name of a certificate. If this parameter is a TRUE value, pwszEKU
specifies an EKU OID of a certificate. Otherwise, pwszEKU specifies an EKU name of a connection.

pwszEKU (variable): A pointer to the EKU OID or EKU name of a certificate.

2.2.1.2.247 (Updated Section) IKEV2_TUNNEL_CONFIG_PARAMS_3

The IKEV2_TUNNEL_CONFIG_PARAMS_3 structure<176> is used to get or set configured
parameters for IKEv2 devices (see [RFC4306]).

257 / 547

[MS-RRASM-Diff] - v20210407
Routing and Remote Access Server (RRAS) Management Protocol
Copyright © 2021 Microsoft Corporation
Release: April 7, 2021

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

dwIdleTimeout

dwNetworkBlackoutTime

dwSaLifeTime

dwSaDataSizeForRenegotiation

dwConfigOptions

dwTotalCertificates

certificateNames (variable)

...

machineCertificateName (variable)

...

dwEncryptionType

customPolicy

...

dwTotalEkus

certificateEKUs (variable)

...

machineCertificateHash (variable)

...

dwIdleTimeout (4 bytes): Same as dwIdleTimeout in IKEV2_TUNNEL_CONFIG_PARAMS_1
(section 2.2.1.2.137).136).

dwNetworkBlackoutTime (4 bytes): Same as dwNetworkBlackoutTime in

IKEV2_TUNNEL_CONFIG_PARAMS_1.

dwSaLifeTime (4 bytes): Same as dwSaLifeTime in IKEV2_TUNNEL_CONFIG_PARAMS_1.

dwSaDataSizeForRenegotiation (4 bytes): Same as dwSaDataSizeForRenegotiation in
IKEV2_TUNNEL_CONFIG_PARAMS_1.

dwConfigOptions (4 bytes): Same as dwConfigOptions in
IKEV2_TUNNEL_CONFIG_PARAMS_1.

258 / 547

[MS-RRASM-Diff] - v20210407
Routing and Remote Access Server (RRAS) Management Protocol
Copyright © 2021 Microsoft Corporation
Release: April 7, 2021

dwTotalCertificates (4 bytes): Same as dwTotalCertificates in
IKEV2_TUNNEL_CONFIG_PARAMS_1.

certificateNames (variable): Same as certificateNames in
IKEV2_TUNNEL_CONFIG_PARAMS_1.

machineCertificateName (variable): Same as machineCertificateName in
IKEV2_TUNNEL_CONFIG_PARAMS_2 (section 2.2.1.2.238).

dwEncryptionType (4 bytes): Same as dwEncryptionType in
IKEV2_TUNNEL_CONFIG_PARAMS_2.

customPolicy (8 bytes): Same as customPolicy in IKEV2_TUNNEL_CONFIG_PARAMS_2.

dwTotalEkus (4 bytes): Total number of EKUs in member variable certificateEKUs.

certificateEKUs (variable): An array of CERT_EKU_1 (section 2.2.1.2.246) that specifies the EKU

parameter of the certificates that are accepted by the RemoteAccess server for IKEv2 tunnel-
based VPN connections.

machineCertificateHash (variable): This MUST be a CERT_BLOB_1 (section 2.2.1.2.136135). This
member specifies the hash of the X.509 certificate that is configured to be sent to the peer for
authentication during the MM SA negotiation [RFC4306] for the IKE2 tunnel-based VPN
connections. A zero (0) value for the cbData member of CERT_BLOB_1 indicates that no

certificate is configured.

2.2.1.2.248 (Updated Section) IKEV2_CONFIG_PARAMS_3

The IKEV2_CONFIG_PARAMS_3 structure<177> is used to get or set configured parameters for
IKEv2 devices.

 typedef struct _IKEV2_CONFIG_PARAMS_3 {
 DWORD dwNumPorts;
 DWORD dwPortFlags;
 DWORD dwTunnelConfigParamFlags;
 IKEV2_TUNNEL_CONFIG_PARAMS_3 TunnelConfigParams;
 } IKEV2_CONFIG_PARAMS_3,
 *PIKEV2_CONFIG_PARAMS_3;

dwNumPorts: Same as dwNumPorts in IKEV2_CONFIG_PARAMS_1 (section 2.2.1.2.138).137).

dwPortFlags: Same as dwPortFlags in IKEV2_CONFIG_PARAMS_1.

dwTunnelConfigParamFlags: Same as dwTunnelConfigParamFlags in
IKEV2_CONFIG_PARAMS_1.

TunnelConfigParams: IKEv2 tunnel-related parameters. MUST be an
IKEV2_TUNNEL_CONFIG_PARAMS_3 structure.

2.2.1.2.249 MPRAPI_TUNNEL_CONFIG_PARAMS_3

The MPRAPI_TUNNEL_CONFIG_PARAMS_3 structure<178> is used to get or set configuration of
various tunnels on a RAS server.

 typedef struct _MPRAPI_TUNNEL_CONFIG_PARAMS_3 {
 IKEV2_CONFIG_PARAMS_3 IkeConfigParams;
 PPTP_CONFIG_PARAMS_1 PptpConfigParams;
 L2TP_CONFIG_PARAMS_2 L2tpConfigParams;
 SSTP_CONFIG_PARAMS_1 SstpConfigParams;
 } MPRAPI_TUNNEL_CONFIG_PARAMS_3,

259 / 547

[MS-RRASM-Diff] - v20210407
Routing and Remote Access Server (RRAS) Management Protocol
Copyright © 2021 Microsoft Corporation
Release: April 7, 2021

 *PMPRAPI_TUNNEL_CONFIG_PARAMS_3;

IkeConfigParams: MUST be an IKEV2_CONFIG_PARAMS_3 (section 2.2.1.2.2488) structure. This is
used to get or set IKEv2 tunnel parameters.

PptpConfigParams: MUST be a PPTP_CONFIG_PARAMS_1 (section 2.2.1.2.138) structure. This is

used to get or set PPTP tunnel parameters.

L2tpConfigParams: MUST be an L2TP_CONFIG_PARAMS_2 (section 2.2.1.2.271) structure. This is
used to get or set L2TP tunnel parameters.

SstpConfigParams: MUST be an SSTP_CONFIG_PARAMS_1 (section 2.2.1.2.141) structure. This is
used to get or set SSTP tunnel parameters.

2.2.1.2.250 (Updated Section) MPR_SERVER_SET_CONFIG_EX_3

The MPR_SERVER_SET_CONFIG_EX_3 structure<179> is used to set the configuration parameters
for the RRAS server

 typedef struct _MPR_SERVER_SET_CONFIG_EX_3 {
 MPRAPI_OBJECT_HEADER_IDL Header;
 DWORD setConfigForProtocols;
 MPRAPI_TUNNEL_CONFIG_PARAMS_3 ConfigParams;
 } MPR_SERVER_SET_CONFIG_EX_3,
 *PMPR_SERVER_SET_CONFIG_EX_3;

Header: This MUST be an MPRAPI_OBJECT_HEADER_IDL (section 2.2.1.2.129), the revision field
MUST be 0x03, and the type field MUST be 0x03.

setConfigForProtocols: Same as setConfigForProtocols in

MPR_SERVER_SET_CONFIG_EX_1 (section 2.2.1.2.146).145).

ConfigParams: This MUST be an MPRAPI_TUNNEL_CONFIG_PARAMS_3 (section 2.2.1.2.249)

structure.

2.2.1.2.251 MPR_SERVER_EX_3

The MPR_SERVER_EX_3 structure<180> is used to get or set the configuration of a RAS server.

 typedef struct _MPR_SERVER_EX_3 {
 MPRAPI_OBJECT_HEADER_IDL Header;
 BOOL fLanOnlyMode;
 DWORD dwUpTime;
 DWORD dwTotalPorts;
 DWORD dwPortsInUse;
 DWORD Reserved;
 MPRAPI_TUNNEL_CONFIG_PARAMS_3 ConfigParams;
 } MPR_SERVER_EX_3,
 *PMPR_SERVER_EX_3;

Header: This specifies the version of the MPR_SERVER_EX_3 structure and MUST be an
MPRAPI_OBJECT_HEADER_IDL (section 2.2.1.2.129) whose revision field is 0x03 and whose type
field is 0x02.

fLanOnlyMode: This is the same as fLanOnlyMode in MPR_SERVER_EX_1.

dwUpTime: This is the same as dwUpTime in MPR_SERVER_EX_1.

dwTotalPorts: This is the same as dwTotalPorts in MPR_SERVER_EX_1.

260 / 547

[MS-RRASM-Diff] - v20210407
Routing and Remote Access Server (RRAS) Management Protocol
Copyright © 2021 Microsoft Corporation
Release: April 7, 2021

dwPortsInUse: This is the same as dwPortsInUse in MPR_SERVER_EX_1.

Reserved: This is the same as Reserved in MPR_SERVER_EX_1.

ConfigParams: This MUST be an MPRAPI_TUNNEL_CONFIG_PARAMS_3 structure.

2.2.1.2.252 BGP_CONFIG_HEADER

The BGP_CONFIG_HEADER structure<181> specifies information pertaining to the BGP protocol
using a set of BGP_TOC_ENTRY (section 2.2.1.2.253) structures.

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

Version

Size

TocEntriesCount

TocEntry (variable)

...

Version (4 bytes): This is a 32-bit, unsigned integer in network byte order that MUST be set to
0x00000001. No other versions are defined.

Size (4 bytes): This is a 32-bit, unsigned integer in network byte order that MUST specify the size of

the structure in bytes including the Version, Size, TocEntriesCount, and entries (TocEntry).
The size MUST be at least 28 bytes. The total size depends on the number and type of the entries.
This value MUST be the size of the BLOB represented by the structure. This MUST be the sum of
the InfoSize of each element of TocEntry and TocEntriesCount times the size of

BGP_TOC_ENTRY.

TocEntriesCount (4 bytes): This is a 32-bit, unsigned integer in network byte order that MUST

specify the number of entries. It MUST be greater than zero (0).

TocEntry (variable): This is a list of consecutive entries, TocEntriesCount in number, each of which
MUST be formatted as defined in BGP_TOC_ENTRY.

2.2.1.2.253 BGP_TOC_ENTRY

The BGP_TOC_ENTRY structure<182> specifies the format in which information pertaining to the
type of data is stored in BGP_CONFIG_HEADER (section 2.2.1.2.252). The following figure shows the

relationships between the BGP_CONFIG_HEADER and the entries.

261 / 547

[MS-RRASM-Diff] - v20210407
Routing and Remote Access Server (RRAS) Management Protocol
Copyright © 2021 Microsoft Corporation
Release: April 7, 2021

Figure 4: Relationship between the BGP_CONFIG_HEADER and the entries

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

InfoType

InfoSize

Count

Offset

InfoType (4 bytes): A 32-bit, unsigned integer in network byte order that MUST indicate the type of
data contained in the list. The value MUST be one of the following values.

Value Meaning The structure pointed to at offset.

0x00000001

BGP_ROUTER_CONFIG

This is the BGP router
configuration.

BGP_ROUTER_CONFIG (section 2.2.1.2.257)

0x00000002

BGP_POLICY_INFO

This is the BGP policy
configuration.

BGP_POLICY (section 2.2.1.2.261)

0x00000003

BGP_PEER_INFO

This is the BGP peer
configuration.

BGP_PEER (section 2.2.1.2.262)

0x00000004 This is the BGP peer to BGP
policy mapping.

BGP_PEER_TO_POLICIES (section 2.2.1.2.263)

262 / 547

[MS-RRASM-Diff] - v20210407
Routing and Remote Access Server (RRAS) Management Protocol
Copyright © 2021 Microsoft Corporation
Release: April 7, 2021

Value Meaning The structure pointed to at offset.

BGP_PEER_POLICY_MAP

0x00000005

BGP_ADVERTISE_INFO

This is the BGP route advertise
configuration.

BGP_ADVERTISE (section 2.2.1.2.264)

InfoSize (4 bytes): A 32-bit, unsigned integer, in network byte order, that MUST specify the number
of bytes in an information structure of this type in this entry.

Count (4 bytes): A 32-bit, unsigned integer in network byte order that MUST specify the number of
information structures of this type in this entry.

Offset (4 bytes): A 32-bit, unsigned integer in network byte order that MUST specify the offset
starting from BGP_CONFIG_HEADER to start of the first structure for this entry.

2.2.1.2.254 BGP_IP_ADDRESS

The BGP_IP_ADDRESS structure<183> is used to represent an IPv4 or IPv6 address in the BGP

configuration.

 typedef struct _BGP_IP_ADDRESS {
 union {
 DWORD v4;
 BYTE v6[16];
 } address;
 USHORT uAddressFamily;
 } BGP_IP_ADDRESS,
 *PBGP_IP_ADDRESS;

v4: A 32-bit, unsigned integer in network byte order that represents an IPv4 address.

v6[16]: A 128-bit, unsigned integer in network byte order that represents an IPv6 address.

uAddressFamily: Specifies whether the IP address is an IPv4 or IPv6 address.

Value Meaning

AF_INET

0x02

The IP address is an IPv4 address.

AF_INET6

0x17

The IP address is an IPv6 address.

2.2.1.2.255 BGP_IP_PREFIX

The BGP_IP_PREFIX structure<184> is used to represent the prefix of an IPv4 or IPv6 network

subnet.

 typedef struct _BGP_IP_PREFIX {
 union {
 DWORD v4;
 BYTE v6[16];
 } address;
 USHORT uPrefixLength;
 USHORT uAddressFamily;
 } BGP_IP_PREFIX,

263 / 547

[MS-RRASM-Diff] - v20210407
Routing and Remote Access Server (RRAS) Management Protocol
Copyright © 2021 Microsoft Corporation
Release: April 7, 2021

 *PBGP_IP_PREFIX;

v4: A 32-bit, unsigned integer in network byte order that represents an IPv4 address prefix.

v6[16]: A 128-bit, unsigned integer in network byte order that represents an IPv6 address prefix.

uPrefixLength: Specifies prefix length of the IPv4 or IPv6 network subnet.

uAddressFamily: Specifies whether the subnet is an IPv4 or IPv6 network subnet.

Value Meaning

AF_INET

0x02

The IP address is an IPv4 network subnet.

AF_INET6

0x17

The IP address is an IPv6 network subnet.

2.2.1.2.256 BGP_ASN_RANGE

The BGP_ASN_RANGE structure<185> is used to represent an autonomous system number (ASN)

range.

 typedef struct _BGP_ASN_RANGE {
 DWORD dwStartRange;
 DWORD dwEndRange;
 } BGP_ASN_RANGE,
 *PBGP_ASN_RANGE;

dwStartRange: Specifies the first ASN in the range. This value MUST be between 1 and 65534.

dwEndRange: Specifies the last ASN in the range. This value MUST be greater than or equal to
dwStartRange. This value MUST be between 1 and 65534.

2.2.1.2.257 BGP_ROUTER_CONFIG

The BGP_ROUTER_CONFIG structure<186> is used to get or set the BGP speaker configuration of a
RAS server.

 typedef struct _BGP_ROUTER_CONFIG {
 DWORD dwFlags;
 DWORD dwBGPIdentifier;
 DWORD dwLocalASN;
 BOOL bCompareMedAcrossASN;
 BOOL bUseDefaultGateway;
 BOOL bIPv6Routing;
 in6_addr localIPv6Address;
 } BGP_ROUTER_CONFIG,
 *PBGP_ROUTER_CONFIG;

dwFlags: Specifies the attributes of this structure that are modified. This field is used while modifying
the BGP configuration. This value MUST be a bitwise OR combination of one or more of the
following values.

264 / 547

[MS-RRASM-Diff] - v20210407
Routing and Remote Access Server (RRAS) Management Protocol
Copyright © 2021 Microsoft Corporation
Release: April 7, 2021

Value Meaning

0x00000001 The BGP identifier is modified.

0x00000002 The local autonomous system number (ASN) is modified.

0x00000004 The bCompareMedAcrossASN value is modified.

0x00000008 The default gateway configuration is changed.

0x00000010 The configuration regarding whether the IPv6 routing state is modified.

0x00000020 The default next hop IPv6 address is modified.

dwBGPIdentifier: Specifies the unique BGP identifier that the BGP speaker uses while
communicating with BGP peers.

dwLocalASN: Specifies the local autonomous system number (ASN) to be used for peering. This
value MUST be between 1 and 65534.

bCompareMedAcrossASN: Specifies if the BGP speaker compares the multi exit discriminator (MED)
attribute in a BGP route received from BGP peers across an autonomous system. This value MUST

be one of the following values.

Value Meaning

0x00000000 The BGP speaker MUST NOT compare the MED attribute in a BGP route received from BGP
peers across an autonomous system.

0x00000001 The BGP speaker MUST compare the MED attribute in a BGP route received from BGP
peers across an autonomous system.

bUseDefaultGateway: Specifies whether the default route would be used to recursively resolve a
route. This value MUST be one of the following values.

Value Meaning

0x00000000 The BGP speaker MUST NOT use the default route while recursively resolving a
route.

0x00000001 The BGP speaker MUST use the default route while recursively resolving a route.

bIPv6Routing: Specifies whether the BGP speaker would advertise the IPv6 MultiProtocol Extension
capability as specified in [RFC 2545]. This value MUST be one of the following values.

Value Meaning

0x00000000 The BGP speaker MUST NOT advertise the IPv6 MultiProtocol Extension capability.

0x00000001 The BGP speaker MUST advertise the IPv6 MultiProtocol Extension capability.

localIPv6Address: Species the default IPv6 address that the BGP server would use as next hop while
advertising IPv6 routes to peers. This configuration is used only when the IPv6 addresses are
advertised over peering done using IPv4 address or link-local IPv6 address.

2.2.1.2.258 BGP_POLICY_MATCH

The BGP_POLICY_MATCH structure<187> is used to represent a single Match clause in a BGP
policy. The Match clause is used to filter the BGP routes on which the BGP policy would be allowed.

265 / 547

[MS-RRASM-Diff] - v20210407
Routing and Remote Access Server (RRAS) Management Protocol
Copyright © 2021 Microsoft Corporation
Release: April 7, 2021

 typedef struct _BGP_POLICY_MATCH {
 BGP_POLICY_MATCH_TYPE eType;
 union {
 BGP_IP_PREFIX prefix;
 BGP_ASN_RANGE asnRange;
 DWORD dwCommunity;
 DWORD dwMaxPrefixes;
 } PolicyMatch;
 } BGP_POLICY_MATCH,
 *PBGP_POLICY_MATCH;

eType: Specifies the attribute type to be used while matching the policy for a BGP route. This value
MUST be one of the following values.

Value Meaning

MatchPrefix

(0x1)

The policy match is done based on the network prefix of the BGP route. The
value of the prefix field is used for the comparison.

MatchIgnorePrefix

(0x2)

The policy match is done based on the network prefix of the BGP route. It

filters out the BGP routes whose prefix value is the same as that specified in
the prefix field.

MatchAsnRange

(0x3)

The policy match is done based on the ASN attribute of the BGP route. The
value of the asnRange field is used for the comparison.

MatchCommunity

(0x4)

The policy match is done based on the community attribute of the route. The
value of the dwCommunity field is used for the comparison.

MatchMaxPrefixes

(0x5)

The policy match is done based on the number of prefixes learned from a BGP
peer. The value of the dwMaxPrefixes field is used for the comparison.

prefix: Specifies the network prefix that would be compared with the network prefix of the BGP route.
This MUST be of type BGP_IP_PREFIX (section 2.2.1.2.255).

asnRange: Specifies the ASN range that would be compared with the ASN in the ASN path attribute
of the BGP route. This MUST be of type BGP_ASN_RANGE (section 2.2.1.2.256).

dwCommunity: Specifies the value of the community attribute that would be compared with the
community attribute of the BGP route.

dwMaxPrefixes: Specifies the maximum number of prefixes that can be learned from a BGP peer.

2.2.1.2.259 BGP_POLICY_MODIFY

The BGP_POLICY_MODIFY structure<188> specifies an attribute of the BGP route that MUST be
modified if the policy is matched.

 typedef struct _BGP_POLICY_MODIFY {
 BGP_POLICY_MODIFY_ATTR_TYPE eAttrType;
 union {
 DWORD dwCommunity;
 DWORD dwLocalPref;
 BGP_IP_ADDRESS nextHop;
 DWORD dwMed;
 } ModifyAttr;
 } BGP_POLICY_MODIFY,
 *PBGP_POLICY_MODIFY;

266 / 547

[MS-RRASM-Diff] - v20210407
Routing and Remote Access Server (RRAS) Management Protocol
Copyright © 2021 Microsoft Corporation
Release: April 7, 2021

eAttrType: Specifies the attribute type that is used to modify a BGP route. This value MUST be one of
the following values.

Value Meaning

AddCommunity

(0x1)

A community attribute with the value specified in the dwCommunity field
is added to the BGP route.

RemoveCommunity

(0x2)

A community attribute with the value specified in the dwCommunity field
is removed from the BGP route (if present).

NewLocalPref

(0x3)

A Local preference attribute with the value specified in the dwLocalPref
field is added or modified to the BGP route.

NewNextHop

(0x4)

The next hop specified in the nextHop field is updated to the BGP route.

NewMed

(0x5)

The MED attribute in the BGP route is updated with the MED attribute
specified in the dwMed field.

dwCommunity: Specifies the value of the community attribute used to modify a BGP route.

dwLocalPref: Specifies the value of the local preference that is used to modify the path attribute of a
BGP route.

nextHop: Specifies the value of the next hop that is used to modify the path attribute of a BGP route

dwMed: Specifies the value of the MED that is used to modify the MED attribute of a BGP route.

2.2.1.2.260 BGP_POLICY_ACTION

The BGP_POLICY_ACTION structure<189> specifies the modified value of a BGP attribute.

 typedef struct _BGP_POLICY_ACTION {
 union {
 BGP_POLICY_MODIFY Modify;
 BOOL bDeny;
 } Action;
 } BGP_POLICY_ACTION,
 *PBGP_POLICY_ACTION;

Modify: Specifies the attribute value that would be used to modify the BGP route. This MUST be of
type BGP_POLICY_MODIFY (section 2.2.1.2.259).

bDeny: Specifies whether the BGP route is to be filtered out. This value MUST be one of the following
values.

Value Meaning

0x00000000 If the BGP policy is of type PolicyFilter, all the BGP routes that do not match the
policy MUST be ignored while broadcasting to BGP peers and while receiving from
BGP peers.

0x00000001 The BGP route that matches the BGP policy MUST be ignored while broadcasting to
BGP peers and while receiving from BGP peers.

2.2.1.2.261 (Updated Section) BGP_POLICY

267 / 547

[MS-RRASM-Diff] - v20210407
Routing and Remote Access Server (RRAS) Management Protocol
Copyright © 2021 Microsoft Corporation
Release: April 7, 2021

The BGP_POLICY structure<190> is used to get or set the policy configuration of a BGP speaker. A
policy can be composed of zero or more Match clauses and one or more Action clauses. All the Match

clauses are always grouped in logical AND. Similarly, all the Action clauses are always grouped in
logical AND. Action clauses are applied only if all the Match clauses are satisfied.

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

dwFlags

szPolicyName (152 bytes)

...

...

eType

uMatchCount

uActionCount

Matches (variable)

...

Actions (variable)

...

dwFlags (4 bytes): Specifies the policy attribute that is being modified. This field is used while
modifying the BGP policy configuration. The value MUST be a bit-wise OR combination of one or
more of the following values.

Value Meaning

0x00000001 The Match clauses are modified.

0x00000002 The Action clauses are modified.

szPolicyName (152 bytes): A null-terminated Unicode string that contains the name of the BGP

policy.

eType (4 bytes): Specifies the policy type as defined in BGP_POLICY_TYPE (section 2.2.1.1.23)
enumeration type.

uMatchCount (4 bytes): Specifies the number of Match clauses.

uActionCount (4 bytes): Specifies the number of Action clauses.

Matches (variable): A list of consecutive entries of Match clauses, uMatchCount in number, each of
which MUST be of type BGP_POLICY_MATCH (section 2.2.1.2.258).

Actions (variable): A list of consecutive entries of Action clauses, uActionCount in number, each of
which MUST be of type BGP_POLICY_ACTION (section 2.2.1.2.260). The Action clause MUST

268 / 547

[MS-RRASM-Diff] - v20210407
Routing and Remote Access Server (RRAS) Management Protocol
Copyright © 2021 Microsoft Corporation
Release: April 7, 2021

ignore the Modify field of BGP_POLICY_ACTION when the eType field is set to PolicyFilter
(0x1).

A BGP policy:

▪ MUST NOT have more than one Match clause with eType in BGP_POLICY_MATCH set to

MatchASNRange (0x3).

▪ MUST NOT have more than one Match clause with eType in BGP_POLICY_MATCH set to
MatchMaxPrefixMatchMaxPrefixes (0x5).

▪ MUST NOT have more than one modify Action clause with eAttrType in
BGP_POLICY_MODIFY (section 2.2.1.2.259) set to ModifyLocalPrefNewLocalPref (0x3).

▪ MUST NOT have more than one modify Action clause with eAttrType in
BGP_POLICY_MODIFY set to ModifyNextHopNewNextHop (0x4).

▪ MUST NOT have more than one modify Action clause with eAttrType in
BGP_POLICY_MODIFY set to ModifyMedNewMed (0x5).

▪ MUST have only one Action clause with bDeny in BGP_POLICY_ACTION set to TRUE when a
Match clause with eType in BGP_POLICY_MATCH is specified as
MatchMaxPrefixMatchMaxPrefixes (0x5).

2.2.1.2.262 (Updated Section) BGP_PEER

The BGP_PEER structure<191> is used to get or set the configuration of a BGP peer.

 typedef struct _BGP_PEER {
 DWORD dwFlags;
 WCHAR szPeeringName (152 bytes)[76];
 BGP_IP_ADDRESS localIP;
 BGP_IP_ADDRESS remoteIP;
 USHORT uHoldTime;
 DWORD dwRemoteASN;
 BOOL bAutoStart;
 BGP_PEERING_OP_MODE opMode;
 } BGP_PEER,
 *PBGP_PEER;

dwFlags: Specifies the BGP peer attribute that is being modified. This field is used while modifying
the BGP peer configuration. This value MUST be a bit-wisebitwise OR combination of one or more
of the following values.

Value Meaning

0x00000001 The local IP address is modified.

0x00000002 The local hold timeout is modified.

0x00000004 The remote ASN is modified.

0x00000010 The operation mode of the BGP peer is modified.

szPeeringName (152 bytes): A null-terminated Unicode string that specifies a unique name for the
BGP peer.

localIP: Specifies local IP Address to be used for BGP peering. This MUST be of type
BGP_IP_ADDRESS (section 2.2.1.2.254).

269 / 547

[MS-RRASM-Diff] - v20210407
Routing and Remote Access Server (RRAS) Management Protocol
Copyright © 2021 Microsoft Corporation
Release: April 7, 2021

remoteIP: Specifies remote IP address to be used for BGP peering. This MUST be of type
BGP_IP_ADDRESS.

uHoldTime: Specifies the local value of the Hold Timer in seconds. This value MUST NOT be 1 or 2.

dwRemoteASN: Specifies the peer's ASN number. This value MUST be between 1 and 65534.

bAutoStart: This MUST be set to TRUE.

opMode: Specifies the operation mode of the BGP as defined in
BGP_PEERING_OP_MODE (section 2.2.1.1.24) enumeration type.

2.2.1.2.263 (Updated Section) BGP_PEER_TO_POLICIES

The BGP_PEER_TO_POLICIES structure<192> is used to configure BGP policies for a BGP peer.

 typedef struct _BGP_PEER_TO_POLICIES {
 DWORD dwFlags;
 BGP_IP_ADDRESS peerIP;
 BGP_POLICY_DIRECTION eDirection;
 USHORT uPolicyCount;
 BYTE policyNames[1];
 } BGP_PEER_TO_POLICIES,
 *PBGP_PEER_TO_POLICIES;

dwFlags: This value MUST be set to one of the following values while modifying the BGP peer to
policy mapping.

Value Meaning

0x00000000 None of the attributes in the BGP_PEER_TO_POLICIES structure is modified.

0xFFFFFFFF One or more attributes in the BGP_PEER_TO_POLICIES structure are modified.

peerIP: Specifies the IP address of the BGP peer for which the policies are configured. This MUST be
of type BGP_IP_ADDRESS (section 2.2.1.2.254) .).

eDirection: Specifies the source of the BGP routes to which the BGP policies are applied. This value

MUST be of type BGP_POLICY_DIRECTION (section 2.2.1.1.22).

uPolicyCount: Specifies the number of policies configured for the BGP peer. This value MUST be
greater than zero (0).

policyNames: A list of consecutive policy name entries, uPolicyCount in number; each entry MUST
be a null-terminated Unicode string of 152 bytes.

2.2.1.2.264 BGP_ADVERTISE

The BGP_ADVERTISE structure<193> is used to get or set the BGP route advertisement
configuration.

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

dwFlags

uInterfaceCount

270 / 547

[MS-RRASM-Diff] - v20210407
Routing and Remote Access Server (RRAS) Management Protocol
Copyright © 2021 Microsoft Corporation
Release: April 7, 2021

uPrefixCount

Interfaces (variable)

...

Prefixes (variable)

...

dwFlags (4 bytes): This flag MUST to set to one of the following values while modifying the BGP
route advertisement configuration and MUST be ignored on receipt.

Value Meaning

0x00000000 None of the attributes in the BGP_ADVERTISE structure is modified

0xFFFFFFFF One or more attributes in the BGP_ADVERTISE structure are modified.

uInterfaceCount (4 bytes): Specifies the number of interfaces whose static routes would be
advertised.

uPrefixCount (4 bytes): Specifies the number of prefixes in addition to the prefixes learned from the
BGP peers that would be advertised. These additional prefix values are specified in the Prefixes
field.

Interfaces (variable): An array of LUIDs of the interfaces whose static routes would be advertised.

The number of entries in this array MUST be uInterfaceCount.

Prefixes (variable): An array of prefixes, uPrefixCount in number, each of which MUST be of type
BGP_IP_PREFIX (section 2.2.1.2.255).

2.2.1.2.265 BGP_ROUTER_V6

The BGP_ROUTER_V6 structure<194> is used to enable a BGP speaker to handle IPv6 address
changes for the local interfaces while peering using IPv6 addresses.

 typedef struct _BGP_ROUTER_V6 {
 DWORD dwReserved;
 } BGP_ROUTER_V6,
 *PBGP_ROUTER_V6;

dwReserved: Reserved. MUST be set to zero (0) when sent and MUST be ignored on receipt.

2.2.1.2.266 PRIORITY_INFO_EX

The PRIORITY_INFO_EX structure<195> is used to set preferences to different protocols on the
RRAS server. This structure is used in the following methods:

▪ RRouterInterfaceTransportSetGlobalInfo (section 3.1.4.10)

▪ RRouterInterfaceTransportGetGlobalInfo (section 3.2.4.11)

271 / 547

[MS-RRASM-Diff] - v20210407
Routing and Remote Access Server (RRAS) Management Protocol
Copyright © 2021 Microsoft Corporation
Release: April 7, 2021

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

dwNumProtocols

ppmProtocolMetric (variable)

...

dwNumProtocols (4 bytes): This MUST be the number of protocols for which metric information is
given in this structure PROTOCOL_METRIC_EX (section 2.2.1.2.267).

ppmProtocolMetric (variable): This MUST be an array of PROTOCOL_METRIC_EX structures with

dwNumProtocols specifying the number of elements in the array.

When this structure is used, the InfoType of RTR_TOC_ENTRY (section 2.2.1.2.4) MUST be
0xFFFF0017. Multiple instances of this structure can be present. If multiple instances are present, and

there are overlapping protocol IDs, the metric specified in the last instance will be set.

2.2.1.2.267 PROTOCOL_METRIC_EX

The PROTOCOL_METRIC_EX structure<196> is used to specify the metric of a protocol in

PRIORITY_INFO_EX (section 2.2.1.2.266).

 typedef struct _PROTOCOL_METRIC_EX {
 IN OUT DWORD dwProtocolId;
 IN OUT DWORD dwSubProtocolId;
 IN OUT DWORD dwMetric;
 } PROTOCOL_METRIC_EX,
 *PPROTOCOL_METRIC_EX;

dwProtocolId: This is same as dwProtocolId in PROTOCOL_METRIC (section 2.2.1.2.13).

dwSubProtocolId: This is the subprotocol ID. This value MUST be set to zero (0) if the
dwProtocolId is not set to MIB_IPPROTO_BGP (0xD). For dwProtocolId MIB_IPPROTO_BGP
(0xD), this MUST be set to one the following values.

Value Meaning

SUB_PROTO_IP_BGP_IBGP

0x1

Interior Border Gateway Protocol (IBGP).

SUB_PROTO_IP_BGP_EBGP

0x2

Exterior Border Gateway Protocol (EBGP).

dwMetric: The metric for dwSubProtocolId.

2.2.1.2.268 ROUTER_IKEv2_IF_CUSTOM_CONFIG_1

The ROUTER_IKEv2_IF_CUSTOM_CONFIG_1 structure<197> is used to get or set IKEv2 tunnel
configuration parameters for IKEv2 tunnel-based demand-dial interfaces.

 typedef struct _ROUTER_IKEv2_IF_CUSTOM_CONFIG_1 {
 DWORD dwSaLifeTime;
 DWORD dwSaDataSize;
 CERT_BLOB_1 certificateName;
 PROUTER_CUSTOM_IKEv2_POLICY_0 customPolicy;

272 / 547

[MS-RRASM-Diff] - v20210407
Routing and Remote Access Server (RRAS) Management Protocol
Copyright © 2021 Microsoft Corporation
Release: April 7, 2021

 CERT_BLOB_1 certificateHash;
 } ROUTER_IKEv2_IF_CUSTOM_CONFIG_1,
 *PROUTER_IKEv2_IF_CUSTOM_CONFIG_1;

dwSaLifeTime: This is the same as dwSaLifeTime in
ROUTER_IKEv2_IF_CUSTOM_CONFIG_0 (section 2.2.1.2.243).

dwSaDataSize: This is the same as dwSaDataSize in ROUTER_IKEv2_IF_CUSTOM_CONFIG_0.

certificateName: Same as certificateName in ROUTER_IKEv2_IF_CUSTOM_CONFIG_0.

customPolicy: This is the same as customPolicy in ROUTER_IKEv2_IF_CUSTOM_CONFIG_0.

certificateHash: This is the same as machineCertificateHash in
IKEV2_TUNNEL_CONFIG_PARAMS_3.

2.2.1.2.269 MPR_IF_CUSTOMINFOEX_1

The MPR_IF_CUSTOMINFOEX_1 structure<198> contains IKEv2 policy configuration of a demand-
dial interface.

 typedef struct _MPR_IF_CUSTOMINFOEX_1 {
 MPRAPI_OBJECT_HEADER_IDL Header;
 DWORD dwFlags;
 ROUTER_IKEv2_IF_CUSTOM_CONFIG_1 customIkev2Config;
 } MPR_IF_CUSTOMINFOEX_1,
 *PMPR_IF_CUSTOMINFOEX_1;

Header: This MUST be an MPRAPI_OBJECT_HEADER_IDL (section 2.2.1.2.129). The revision field
MUST be 0x02, and the type field MUST be 0x06.

dwFlags: This is the same as dwFlag in MPR_IF_CUSTOMINFOEX_0 (section 2.2.1.2.244).

customIkev2Config: Specifies the IKEv2 tunnel configuration parameters. This MUST be a pointer to

ROUTER_IKEv2_IF_CUSTOM_CONFIG_1 (section 2.2.1.2.268). The value of this member is valid
only if the dwFlag member is set to MPRAPI_IF_CUSTOM_CONFIG_FOR_IKEV2.

2.2.1.2.270 (Updated Section) L2TP_TUNNEL_CONFIG_PARAMS_1

The L2TP_TUNNEL_CONFIG_PARAMS_1 structure<199> is used to get or set configured
parameters for L2TP devices.

 typedef struct _L2TP_TUNNEL_CONFIG_PARAMS_1 {
 DWORD dwIdleTimeout;
 // encryption type to be used for L2TP
 DWORD dwEncryptionType;
 DWORD dwSaLifeTime;
 DWORD dwSaDataSizeForRenegotiation;

 PROUTER_CUSTOM_L2TP_POLICY_0 customPolicy;
 }L2TP_TUNNEL_CONFIG_PARAMS_1,
 *PL2TP_TUNNEL_CONFIG_PARAMS_1;

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

dwIdleTimeout

273 / 547

[MS-RRASM-Diff] - v20210407
Routing and Remote Access Server (RRAS) Management Protocol
Copyright © 2021 Microsoft Corporation
Release: April 7, 2021

dwEncryptionType

dwSaLifeTime

dwSaDataSizeForRenegotiation

customPolicy

dwIdleTimeout (4 bytes): Duration, in seconds, after which the connection will be disconnected if
there is no traffic. This value MUST be between 300 and 17,279,999.

dwEncryptionType (4 bytes): Specifies the encryption type to be negotiated for the L2TP tunnel-

based VPN connections. One of the following values is used.

Value Meaning

0 RRAS will not negotiate encryption.

1 RRAS requests encryption during negotiation. Negotiation will succeed even if remote RRAS
does not support encryption.

2 RRAS requires encryption to be negotiated.

3 RRAS requires maximum-strength encryption to be negotiated.

dwSaLifeTime (4 bytes): The lifetime of a security association (SA), in seconds, after which the SA
is no longer valid [RFC4306]. This value MUST be between 300 and 17,279,999.

dwSaDataSizeForRenegotiation (4 bytes): Number of kilobytes that are allowed to transfer using
ana SA. After that, the SA is renegotiated [RFC4306]. This value MUST be greater than or equal to
1024.

customPolicy (8 bytes): This MUST be a pointer to ROUTER_CUSTOM_IKEv2_POLICY_0 (section

2.2.1.2.237) that specifies the custom IPSec configurations to be used during the SA negotiation
[RFC4306]. The NULL value for this member indicates that no custom IPsec configuration is
available.

2.2.1.2.271 (Updated Section) L2TP_CONFIG_PARAMS_2

The L2TP_CONFIG_PARAMS_2 structure<200> is used to get or set the device configuration for

L2TP on a RAS server.

 typedef struct _L2TP_CONFIG_PARAMS_2 {
 DWORD dwNumPorts;
 DWORD dwPortFlags;
 DWORD dwTunnelConfigParamFlags;
 L2TP_TUNNEL_CONFIG_PARAMS_1 TunnelConfigParams;
 } L2TP_CONFIG_PARAMS_2,
 *PL2TP_CONFIG_PARAMS_2;

dwNumPorts: This is the same as dwNumPort in
L2TP_CONFIG_PARAMS_1 (section 2.2.1.2.140).139).

dwPortFlags: Same as dwPortFlags in L2TP_CONFIG_PARAMS_1.

dwTunnelConfigParamFlags: This SHOULD be set to 0x00000001 when sent and ignored on
receipt.

274 / 547

[MS-RRASM-Diff] - v20210407
Routing and Remote Access Server (RRAS) Management Protocol
Copyright © 2021 Microsoft Corporation
Release: April 7, 2021

TunnelConfigParams: L2TP tunnel related parameters. This MUST be an
L2TP_TUNNEL_CONFIG_PARAMS_1 (section 2.2.1.2.270) structure.

2.2.2 (Updated Section) File Format for Phonebook

The Phonebook<201> is an 8-bit ASCII-encoded text file that contains the names and settings for the
demand-dial connections. It includes the connection settings that can be used for establishing the
demand-dial connections. The RRASM client can remotely configure this file on the RRAS server at a
well-known name and location using any remote file management protocol (such as SMB). RRAS can

read the phonebook file from this location<202> for gathering the demand-dial connection settings.

The name and the settings for a single demand-dial connection is known as an RRAS phonebook
section (also known as RRAS phonebook entry or RRAS entry). A RRAS entry begins with the name of
the demand-dial connection, which MUST be unique. The name is followed by settings as a sequence
of key value pairs (KVP). The phonebook file can have zero (when there are no demand-dial
connections) or more RRAS entry sections.

Each RRAS entry section in the phonebook file can have the following four RRAS entry subsections:

NETCOMPONENTS, MEDIA, DEVICE, and PhoneNumber. The NETCOMPONENTS and PhoneNumber
subsections are optional, whereas MEDIA and DEVICE subsections MUST be present. There can be
multiple MEDIA subsections within a single RRAS entry section. Each MEDIA subsection can have
multiple DEVICE subsections and each DEVICE subsection in turn can have multiple PhoneNumber
subsections. When there are multiple MEDIA subsections, each subsection corresponds to a physical
device.

RRASM uses the list of phonebook entries to validate the WAN interface name as a part of specific RPC

methods as specified in section 3.1.1. For the WAN interface name to be valid, there has to be a RRAS
phonebook entry with the specified name.

2.2.2.1 RRAS entry section name

An RRAS entry section is identified by a unique RRAS entry section name. The RRAS entry section
name MUST be a minimum of one (1) character in length.

The RRAS entry section name MUST be enclosed within an open square bracket "[" and a closing
square bracket "]", followed by a carriage return and line-feed. An RRAS entry section extends from
the beginning of one RRAS entry section name to the start of the next RRAS entry section or the end
of file. Consider the following example.

 [Remote Router] CR\LF

"[Remote Router]\CR\LF" is the beginning of a RRAS entry section with the name "Remote
Router".<203>

2.2.2.2 Phonebook entry settings

Each RRAS entry section MUST consist of a sequence of key value pairs separated by a carriage return

and line feed. A key-value pair MUST be a key name followed by an equal sign "=" with the value after
the equal sign.

For example:

 Encoding=1\CR\LF

Encoding is the name of the key and 1 is its value.

275 / 547

[MS-RRASM-Diff] - v20210407
Routing and Remote Access Server (RRAS) Management Protocol
Copyright © 2021 Microsoft Corporation
Release: April 7, 2021

In cases where the value is optional, the key is followed by an equal sign "=" and a carriage return
and line feed. The value is not specified for the key.

For example:

 Encoding=\CR\LF

Here, Encoding is the name of key and it does not take a value. The implementation can assume a
default value for the key or ignore it.

The following sections provide descriptions for each key used in the phonebook file and their possible
values. All the keys MUST appear in the same order in the phonebook file as they appear here, unless

explicitly specified.

In the following sections, if an optional key is absent or for any key the value is not one of the
specified valid values, the behavior of the RRAS is implementation-specific and outside the scope of
this document. For example, if the "Encoding" key is not present, or the value of the key is not 0 or 1,

a compliant implementation can assume the value of an encoding is 1.

2.2.2.2.1 Encoding

The Encoding key specifies the encoding format for all string values in the current RRAS entry. This
key is optional. If the key is present, it SHOULD take one of the values given in the following table.

Value Meaning

0 All strings in the RRAS entry are encoded in 8-bit ASCII format.

1 All strings in the RRAS entry are encoded in UTF-8 format [RFC3629].

2.2.2.2.2 PBVersion

The PBVersion key specifies the version of the RRAS entry. This key is optional. If the key is present,
the value SHOULD be "1".

2.2.2.2.3 Type

The Type key specifies the type of the RRAS entry. This key MAY <204> be optional. This key
SHOULD take one of the values in the following table.

Value Meaning

1 Dial-up connection

2 VPN connection

5 Broadband connection<205>

2.2.2.2.4 Autologon

The Autologon key is optional and if present MUST be ignored by RRAS.

2.2.2.2.5 UseRasCredentials

276 / 547

[MS-RRASM-Diff] - v20210407
Routing and Remote Access Server (RRAS) Management Protocol
Copyright © 2021 Microsoft Corporation
Release: April 7, 2021

The UseRasCredentials key is optional and if present MUST be ignored by RRAS.

2.2.2.2.6 LowDateTime

The LowDateTime key is optional and if present MUST be ignored by RRAS.

2.2.2.2.7 HighDateTime

The HighDateTime key is optional and if present MUST be ignored by RRAS.

2.2.2.2.8 DialParamsUID

The DialParamsUID key specifies a unique identifier (an 8-bit ASCII-encoded string representation of
a decimal number) to be used on RRAS for use as a credential key for demand-dial connection. This

key is optional.

2.2.2.2.9 Guid

The Guid key specifies a unique identifier (GUID) for this RRAS entry. This key is optional.

2.2.2.2.10 BaseProtocol

The BaseProtocol key is optional and if present MUST be ignored by RRAS.

2.2.2.2.11 (Updated Section) VpnStrategy

The VpnStrategy key specifies the order in which the RRAS attempts the tunnel protocol until the
demand-dial connection succeeds. This key is optional. If the key is present, it is used only if the Type
key has the value "2" and SHOULD take one of the values in the following table..<206>

Value Name Meaning

0 MPR_VS_Default Try a series of tunnel protocols.<207>

1 MPR_VS_PptpOnly RRAS attempts PPTP only.

2 MPR_VS_PptpFirst RRAS attempts PPTP first. If PPTP fails, L2TP is tried. If L2TP fails, demand-dial
connection fails.

3 MPR_VS_L2tpOnly RRAS attempts L2TP only.

4 MPR_VS_L2tpFirst RRAS attempts L2TP first, PPTP second, and IKEv2 third.

7 MPR_VS_Ikev2Only RRAS attempts IKEv2 only.<208>

8 MPR_VS_Ikev2First RRAS attempts IKEv2 first, PPTP second, and L2TP third.

2.2.2.2.12 ExcludedProtocols

The ExcludedProtocols key specifies the protocols not to be negotiated by the RRAS. This key is an
8-bit ASCII-encoded string representation of a decimal number used as a bit field. This key is optional.
The bits are defined in the following table.

Bit number (From LSB) Network Protocol Meaning

0 (LSB) NetBEUI<209> 0 – Negotiate NetBEUI

277 / 547

[MS-RRASM-Diff] - v20210407
Routing and Remote Access Server (RRAS) Management Protocol
Copyright © 2021 Microsoft Corporation
Release: April 7, 2021

Bit number (From LSB) Network Protocol Meaning

1 – Don't negotiate NetBEUI

1 IPX<210> [RFC1634] 0 – Negotiate IPX

1 – Don't negotiate IPX

2 IPv4 [RFC1661] 0 – Negotiate IPv4

1 – Don't negotiate IPv4

3 IPv6<211> [RFC5072] 0 – Negotiate IPv6

1 – Don't negotiate IPv6

2.2.2.2.13 LcpExtensions

The LcpExtensions key specifies whether the option for LCP extensions, as defined in [RFC1570], is

enabled for the RRAS entry. This key is optional. If the key is present, it SHOULD take one of the
values in the following table.

Value Meaning

0 Do not configure LCP extensions.

1 Configure LCP extensions.

2.2.2.2.14 DataEncryption

The DataEncrypton key specifies the encryption type to be negotiated by the RRAS. This key is
optional. If the key is present, it SHOULD take one of the values in the following table.

Value Meaning

0 RRAS will not negotiate encryption.

8 RRAS requests encryption during negotiation. Negotiation will succeed even if remote RRAS does not
support encryption.

256 RRAS requires encryption to be negotiated.

512 RRAS requires maximum strength encryption to be negotiated.

2.2.2.2.15 SwCompression

The SwCompression key specifies whether the option for software compression, as defined in
[RFC1962], is enabled on the RRAS entry. This key is optional. If the key if present, it SHOULD take

one of the values in the following table.

Value Meaning

0 Do not use software compression.

1 Use software compression.

278 / 547

[MS-RRASM-Diff] - v20210407
Routing and Remote Access Server (RRAS) Management Protocol
Copyright © 2021 Microsoft Corporation
Release: April 7, 2021

2.2.2.2.16 NegotiateMultilinkAlways

The NegotiateMultilinkAlways key specifies whether the option for multilink is enabled on the RRAS

entry. This key is optional. If the key is present, it is used only if the key Type has the value "1" and
SHOULD take one of the values in the following table.

Value Meaning

0 RRAS will not negotiate multilink.

1 RRAS will negotiate multilink.

2.2.2.2.17 SkipNwcWarning

The SkipNwcWarning key is optional and if present MUST be ignored by RRAS.

2.2.2.2.18 SkipDownLevelDialog

The SkipDownLevelDialog key is optional and if present MUST be ignored by RRAS.

2.2.2.2.19 SkipDoubleDialDialog

Then SkipDoubleDialDialog key is optional and if present MUST be ignored by RRAS.

2.2.2.2.20 DialMode

The DialMode key specifies the dialing mode for the RRAS entry. This key is optional. If the key is
present, it is used only if the Type key has the value "1" and SHOULD take one of the values in the
following table.

Value Meaning

0 RRAS dials first available subentry

1 RRAS dials all the subentries

2 RRAS dials subentries as
needed<212>

2.2.2.2.21 DialPercent

The DialPercent key specifies a percent of the total bandwidth available through the currently
connected subentry, or subentries, for the demand-dial connection. If the bandwidth actually

consumed exceeds this value, then RRAS will dial an additional subentry. This key is optional.<213> If
present, it is used only if the Type key has the value "1" and the DialMode key has the value "2".
The value for this key SHOULD be a decimal number in the range 0 to 100.

2.2.2.2.22 DialSeconds

The DialSeconds key specifies the number of seconds during which the current bandwidth usage
MUST exceed the threshold specified by DialPercent before RRAS dials an additional subentry. This

key is optional.<214> If the key is present, it is used only if the Type key has the value "1" and the

279 / 547

[MS-RRASM-Diff] - v20210407
Routing and Remote Access Server (RRAS) Management Protocol
Copyright © 2021 Microsoft Corporation
Release: April 7, 2021

DialMode key has the value "2". The value for this key SHOULD be a decimal number in the range 0
to 3600.

2.2.2.2.23 HangupPercent

The HangupPercent key specifies a percent of the total bandwidth available from the currently
connected subentries for a demand-dial connection. RRAS terminates a currently connected subentry
when the total bandwidth used is less than this value. The key is optional.<215> If present, it is used
only if the Type key has the value "1" and the DialMode key has the value "2". The value for this key
SHOULD be a decimal number in the range 0 to 100.

2.2.2.2.24 HangupSeconds

The HangupSeconds key specifies the time, in seconds, that the current bandwidth usage MUST be
less than the threshold specified by HangupPercent, after which RRAS terminates a currently
connected subentry. This key is optional.<216> If present, it is used only if the Type key has the
value "1" and the DialMode key has the value "2". The value for this key SHOULD be a decimal
number in the range 0 to 3600.

2.2.2.2.25 OverridePref

The OverridePref key is optional and if present MUST be ignored by RRAS.

2.2.2.2.26 RedialAttempts

The RedialAttempts key specifies the number of times RRAS attempts to redial a connection. This
key is optional. If the key is present, it SHOULD be a decimal number in the range 0 to 99.

2.2.2.2.27 RedialSeconds

The RedialSeconds key specifies the number of seconds to wait between redial attempts. This key is
optional. If the key is present, it SHOULD be a decimal number in the range 1 and 600.

2.2.2.2.28 IdleDisconnectSeconds

The IdleDisconnectSeconds key specifies the number of seconds after which the demand-dial
connection is terminated due to inactivity. This key is optional. If the key is present, the value

SHOULD be a number in the range 0 to 4294967296.

2.2.2.2.29 RedialOnLinkFailure

The RedialOnLinkFailure key indicates whether RRAS automatically attempts to re-establish the
demand-dial connection if it is lost. This key is optional. If the key is present, it SHOULD take one of
the values in the following table.

Value Meaning

0 RRAS does not re-establish the demand-dial connection if it is lost.

1 RRAS Server establishes the demand-dial connection if it is lost.

2.2.2.2.30 CallbackMode

The CallbackMode key specifies whether the option for callback is enabled on the RRAS entry. This
key is optional. If the key is present, it is used only if the Type key has the value "1" and SHOULD
take one of the values in the following table.

280 / 547

[MS-RRASM-Diff] - v20210407
Routing and Remote Access Server (RRAS) Management Protocol
Copyright © 2021 Microsoft Corporation
Release: April 7, 2021

Value Meaning

0 Do not negotiate callback.

1 Negotiating callback is optional.

2 Callback is negotiated.

2.2.2.2.31 CustomDialDll

The CustomDialDll key is optional and if present MUST be ignored by RRAS.

2.2.2.2.32 CustomDialFunc

The CustomDialFunc key is optional and if present MUST be ignored by RRAS.

2.2.2.2.33 CustomRasDialDll

The CustomRasDialDll key specifies the file path to a custom dialer dynamic link library. This key is
optional.

2.2.2.2.34 ForceSecureCompartment

The ForceSecureCompartment key is optional and if present MUST be ignored by RRAS.

2.2.2.2.35 DisableIKENameEkuCheck

The DisableIKENameEkuCheck key specifies whether the option for verifying that enhanced key
usage (EKU) of the RRAS certificate is enabled on the RRAS entry. This key is optional.<217> If the
key is present, it is used only if the Type key has the value "2". It SHOULD take one of the values in
the following table.

Value Meaning

0 The EKU of the RRAS certificate is validated to check whether it contains the Server Auth
(1.3.6.1.5.5.7.3.1) [RFC2459] Object Identifier (OID).

1 The EKU of the RRAS certificate is not validated.

2.2.2.2.36 AuthenticateServer

The AuthenticateServer key specifies whether the RRAS authenticates the remote RRAS when
making a demand-dial connection. This key is optional. If the key is present, it SHOULD take one of
the values in the following table.

Value Meaning

0 Do not authenticate the remote RRAS.

1 Authenticate the remote RRAS.

2.2.2.2.37 ShareMsFilePrint

281 / 547

[MS-RRASM-Diff] - v20210407
Routing and Remote Access Server (RRAS) Management Protocol
Copyright © 2021 Microsoft Corporation
Release: April 7, 2021

The ShareMsFilePrint key value indicates whether the option of file and printer sharing is enabled on
the RRAS entry. This key is optional. If the key is present, it SHOULD take one of the values in the

following table.

Value Meaning

0 Disable file and printer sharing on the RRAS entry.

1 Enable file and printer sharing on the RRAS entry.

2.2.2.2.38 BindMsNetClient

The BindMsNetClient key indicates whether the option for NetBT is enabled on the RRAS entry. This
key is optional. If the key is present, it SHOULD be set either to "0" or "1". This key, along with the
value of the keys ShareMsFilePrint and IpNBTFlags, specifies whether NetBT is enabled or

not.<218>

2.2.2.2.39 SharedPhoneNumbers

The SharedPhoneNumbers key specifies whether RRAS uses the same set of phone numbers for all
the subentries in the RRAS entry. This key is optional. If the key is present, it SHOULD take one of the
values in the following table.

Value Meaning

0 Do not use same phone numbers for all subentries in the RRAS entry.

1 Use same phone numbers for all subentries in the RRAS entry.

2.2.2.2.40 GlobalDeviceSettings

The GlobalDeviceSettings key specifies whether the modem device settings are read from the RRAS
entry or not. This key is optional. If the key is present, it is used only if the Type key has the value
"1" and SHOULD take one of the values in the following table.

Value Meaning

0 Do not use the modem device settings from the RRAS entry.

1 Use the modem device settings from the RRAS entry.

2.2.2.2.41 PrerequisitePbk

The PrerequisitePbk key is optional and if present MUST be ignored by RRAS.

2.2.2.2.42 PrerequisiteEntry

The PrerequisiteEntry key is optional and if present MUST be ignored by RRAS.

2.2.2.2.43 PreferredPort

282 / 547

[MS-RRASM-Diff] - v20210407
Routing and Remote Access Server (RRAS) Management Protocol
Copyright © 2021 Microsoft Corporation
Release: April 7, 2021

The PreferredPort key contains a string that specifies the name of the preferred port to be used by
the RRAS server for the demand-dial connection. This key is optional. If this key is present its value

SHOULD be the same as the Port key.

2.2.2.2.44 PreferredDevice

The PreferredDevice key contains a string that specifies the name of the preferred device to be used
by RRAS server for the demand-dial connection. This key is optional. If this key is present its value
SHOULD be the same as that of the Device key.

2.2.2.2.45 PreferredBps

The PreferredBps key specifies the maximum connection speed for a modem, in bits per second,

associated with the preferred port. For example, it can be 115200 bits per second. The value of this
key SHOULD be a valid modem connection speed in the range 0 to 4294967296. This key is optional.
This key is ignored unless the DEVICE key is set to "modem".

2.2.2.2.46 PreferredHwFlow

The PreferredHwFlow key specifies whether to enable hardware flow control for the modem
associated with the preferred port. This key is optional.<219> This key is ignored unless the DEVICE

key is set to "modem". If the key is present, it SHOULD take one of the values given in the following
table.

Value Meaning

0 Disable hardware flow control.

1 Enable hardware flow control.

2.2.2.2.47 PreferredProtocol

The PreferredProtocol key specifies whether the modem associated with the preferred port performs
a cyclic redundancy check on the inbound and outbound data stream. This key is optional.<220> This
key is ignored unless the DEVICE key is set to "modem". If the key is present, it SHOULD take one of
the values in the following table.

Value Meaning

0 Do not perform (CRC) error checking.

1 Perform (CRC) error checking.

2.2.2.2.48 PreferredCompression

The PreferredCompression key specifies whether to compress the modem-to-modem data stream
for the modem associated with the preferred port. This key is optional.<221> This key is ignored
unless the DEVICE key is set to "modem". If the key is present, it SHOULD take one of the values in
the following table.

Value Meaning

0 Disable hardware compression.

283 / 547

[MS-RRASM-Diff] - v20210407
Routing and Remote Access Server (RRAS) Management Protocol
Copyright © 2021 Microsoft Corporation
Release: April 7, 2021

Value Meaning

1 Enable hardware compression.

2.2.2.2.49 PreferredSpeaker

The PreferredSpeaker key specifies whether the modem dial tone and connections sounds are heard
for modem associated with the preferred port. This key is optional.<222> This key is ignored unless

the DEVICE key is set to "modem". If the key is present, it SHOULD take one of the values given in
the following table.

Value Meaning

0 Disable modem speaker.

1 Enable modem speaker.

2.2.2.2.50 PreferredMdmProtocol

The PreferredMdmProtocol key is optional and if present MUST be ignored by RRAS.

2.2.2.2.51 PreviewUsePw

The PreviewUsePw key is optional and if present MUST be ignored by RRAS.

2.2.2.2.52 PreviewDomain

The PreviewDomain key is optional and if present MUST be ignored by RRAS.

2.2.2.2.53 PreviewPhoneNumber

The PreviewPhoneNumber key is optional and if present MUST be ignored by RRAS.

2.2.2.2.54 ShowDialingProgress

The ShowDialingProgress key is optional and if present MUST be ignored by RRAS.

2.2.2.2.55 ShowMonitorIconInTaskbar

The ShowMonitorIconInTaskbar key is optional and if present MUST be ignored by RRAS.

2.2.2.2.56 CustomAuthKey

The CustomAuthKey key specifies the Extensible Authentication Protocol (EAP) method type to be

used when making a demand-dial connection. This key is optional. If the key is present, it is used only
if the AuthRestrictions key is configured to negotiate EAP. It SHOULD be an 8-bit ASCII string

representation of a decimal number as defined by [IANA-EAP] section 1.2.1.

2.2.2.2.57 CustomAuthData

The CustomAuthData key specifies the configuration blob associated with an EAP method. This key is
optional. If the key is present, it is used only if AuthRestrictions key is configured to negotiate EAP.
This key contains data specific to the EAP method specified in the CustomAuthKey key.

284 / 547

[MS-RRASM-Diff] - v20210407
Routing and Remote Access Server (RRAS) Management Protocol
Copyright © 2021 Microsoft Corporation
Release: April 7, 2021

2.2.2.2.58 AuthRestrictions

The AuthRestrictions key is used to specify the authentication protocols configured for the RRAS
entry. This key is optional.<223> If the key is present, the value is a decimal number used as a bit

field. The bits are defined in the following table.

Bit number
(From LSB) Authentication Protocol Meaning

4 Password Authentication Protocol (PAP)
[RFC1334]

0 – Do not negotiate PAP

1 – Negotiate PAP.

5 Shiva Password Authentication Protocol (SPAP)
[RFC1334]

0 – Do not negotiate SPAP.

1 – Negotiate SPAP

6 MD-5 Challenge Handshake Protocol (CHAP)
[RFC2433]

0 – Do not negotiate MD5-CHAP.

1 – Negotiate MD5-CHAP.

7 Microsoft Challenge Handshake Protocol Version

1 (MSCHAPv1) [RFC2433]

0 – Do not negotiate MSCHAPv1.

1 – Negotiate MSCHAPv1.

8 Extensible Authentication Protocol (EAP)
[RFC2284]

0 – Do not negotiate EAP.

1 – Negotiate EAP.

10 Microsoft Challenge Handshake Protocol Version
2 (MSCHAPv2) [RFC2759]

0 – Do not negotiate MSCHAPv2.

1 – Negotiate MSCHAPv2.

11 Microsoft Challenge Handshake Protocol
(Windows 95 operating system compatible
MSCHAP)

0 – Do not negotiate Windows 95
compatible MSCHAP.

1 – Negotiate Windows 95 compatible
MSCHAP.<224>

12 Machine certificate authentication method for
IKEv2 [RFC4306]

0 – Do not negotiate machine certificate
authentication method for IKEv2 tunnels.

1 – Negotiate machine certificate
authentication method for IKEv2
tunnels.<225>

13 Preshared key authentication method for IKEv2

[RFC4306]

0 – Do not negotiate preshared key

authentication method for IKEv2 tunnels.

1 – Negotiate preshared key authentication
method for IKEv2 tunnels.<226>

2.2.2.2.59 TypicalAuth

The TypicalAuth key is optional and if present MUST be ignored by RRAS.

2.2.2.2.60 IpPrioritizeRemote

The IpPrioritizeRemote key is optional and if present MUST be ignored by RRAS.

2.2.2.2.61 IpInterfaceMetric

The IpInterfaceMetric key is optional and if present MUST be ignored by RRAS.

2.2.2.2.62 fCachedDnsSuffix

285 / 547

[MS-RRASM-Diff] - v20210407
Routing and Remote Access Server (RRAS) Management Protocol
Copyright © 2021 Microsoft Corporation
Release: April 7, 2021

The fCachedDnsSuffix key is optional and if present MUST be ignored by RRAS.

2.2.2.2.63 IpHeaderCompression

The IpHeaderCompression key specifies whether the option for IP header compression is enabled

on the RRAS entry. This key is optional. If the key is present, it is used only if the Type key has the
value "1" and SHOULD take one of the values in the following table.

Value Meaning

0 Disable TCP/IP header compression.

1 Enable TCP/IP header compression.

2.2.2.2.64 IpAddress

The IpAddress key specifies a static IPv4 address. This key is optional. If the key is present, it
SHOULD take one of the values in the following table.

Value Meaning

0.0.0.0 RRAS ignores this key

A valid IPv4
address. For ex:

10.10.10.1

If the key IpAssign has the value "2", RRAS requests the configured IPv4 address for the
demand-dial connection when connecting to a remote RRAS endpoint.

Otherwise RRAS ignores this key.

2.2.2.2.65 IpDnsAddress

The IpDnsAddress key specifies a static IPv4 address. This key is optional. If the key is present, it
SHOULD take one of the values in the following table.

Value Meaning

0.0.0.0 RRAS ignores this key.

A valid IPv4
address. For ex:

10.10.10.1

If the key IpNameAssign has the value "2", RRAS requests the configured IPv4 address as
the primary DNS server address from the remote RRAS endpoint when making a demand-
dial connection.

Otherwise RRAS ignores this key.

2.2.2.2.66 IpDns2Address

The IpDns2Address key specifies a static IPv4 address. This key is optional. If the key is present, it
SHOULD take one of the values in the following table.

Value Meaning

0.0.0.0 RRAS ignores this key.

A valid IPv4
address. For ex:

If the key IpNameAssign has the value "2", RRAS requests the configured IPv4 address as
the secondary DNS server address from the remote RRAS endpoint when making a demand-

286 / 547

[MS-RRASM-Diff] - v20210407
Routing and Remote Access Server (RRAS) Management Protocol
Copyright © 2021 Microsoft Corporation
Release: April 7, 2021

Value Meaning

10.10.10.1 dial connection.

Otherwise RRAS ignores this key.

2.2.2.2.67 IpWinsAddress

The IpWinsAddress key specifies a static IPv4 address. This key is optional. If the key is present, it
SHOULD take one of the values in the following table.

Value Meaning

0.0.0.0 RRAS ignores this key.

A valid IPv4
address. For ex:

10.10.10.1

If the key IpNameAssign has the value "2", RRAS requests the configured IPv4 address as
the primary WINS server address from the remote RRAS endpoint when making a demand-
dial connection.

Otherwise RRAS ignores this key.

2.2.2.2.68 IpWins2Address

The IpWins2Address key specifies a static IPv4 address. This key is optional. If the key is present, it

SHOULD take one of the values in the following table.

Value Meaning

0.0.0.0 RRAS ignores this key.

A valid IPv4 address
such as 10.10.10.1

If the key IpNameAssign has the value "2", RRAS requests the configured IPv4
address as the secondary WINS server address from the remote RRAS endpoint when
making a demand-dial connection.

Otherwise RRAS ignores this key.

2.2.2.2.69 IpAssign

The IpAssign key specifies whether to request a specific IPv4 address from the remote RRAS

endpoint for the demand-dial connection when connecting to a remote RRAS endpoint. This key is
optional. If the key is present, it SHOULD take one of the values in the following table.

Value Meaning

1 RRAS when making a demand-dial connection does not request a specific IPv4 address from the remote
RRAS endpoint.

2 RRAS requests a specific IPv4 address as specified by the value of the key IpAddress for the demand-
dial connection when connecting to a remote RRAS endpoint.

2.2.2.2.70 IpNameAssign

287 / 547

[MS-RRASM-Diff] - v20210407
Routing and Remote Access Server (RRAS) Management Protocol
Copyright © 2021 Microsoft Corporation
Release: April 7, 2021

The IpNameAssign key specifies whether to request a specific IPv4 address for the DNS and WINS
servers from the remote RRAS endpoint. This key is optional. If the key is present, it SHOULD take

one of the values in the following table.

Value Meaning

1 RRAS, when making a demand-dial connection, does not request a specific IPv4 address for the DNS and
WINS servers from the remote RRAS endpoint.

2 RRAS, when making a demand-dial connection, requests a specific IPv4 DNS and WINS server's address
as specified in keys IpDnsAddress, IpDns2Address, IpWinsAddress, and IpWins2Address
respectively from a remote RRAS endpoint.

3 Same as the value 1.

2.2.2.2.71 IpFrameSize

The IpFrameSize key is optional and if present MUST be ignored by RRAS.

2.2.2.2.72 IpDnsFlags

The IpDnsFlags key specifies the DNS configuration settings on the RRAS entry. The value is a
decimal number used as a bit field. The bits are defined as in the following table.

Bit number
(From LSB) DNS flag Meaning

0 This bit determines whether RRAS registers IPv4
and IPv6 addresses for the demand-dial
connection with DNS server.

0 – Do not register with DNS.

1 – Register with DNS.

1 This bit specifies whether RRAS registers DNS
suffixes specified as the value of the key
IpDnsSuffix in the RRAS entry with the DNS
server.

0 – Do not register DNS suffix with DNS.

1 – Register DNS suffix with DNS.

2 This bit specifies whether RRAS registers DNS
suffixes obtained when making a demand-dial
connection with the DNS server.

0 – Do not register DNS suffix with DNS.

1 – Register DNS suffix with DNS.

2.2.2.2.73 IpNBTFlags

The IpNBTFlags key specifies whether the option for NetBT is enabled on the RRAS entry. This key

is optional. If the key is present, it SHOULD be set either to "0" or "1". The meaning of these values is
implementation-specific.<227>

2.2.2.2.74 TcpWindowSize

The TcpWindowSize key specifies the TCP window size for all TCP sessions created over the demand-
dial connection. This key is optional.<228> If the key is present, it is set to a decimal number in the
range 0 to 1073725440.

2.2.2.2.75 UseFlags

The UseFlags key is optional and if present MUST be ignored by RRAS.

288 / 547

[MS-RRASM-Diff] - v20210407
Routing and Remote Access Server (RRAS) Management Protocol
Copyright © 2021 Microsoft Corporation
Release: April 7, 2021

2.2.2.2.76 IpSecFlags

The IpSecFlags key specifies whether a preshared key is configured on the RRAS entry. This key is
optional. If the key is present, it is used only if the Type key is "2" and the demand-dial connection is

made using either L2TP or IKEv2. It SHOULD take one of the following values.

Value Meaning

0 No preshared key is configured for the RRAS entry.

1 A preshared key is configured for the RRAS entry.

2 A preshared key is configured for IKEv2 tunnel in the RRAS entry and will be used to authenticate the
peer.

2.2.2.2.77 IpDnsSuffix

The IpDnsSuffix key specifies the DNS suffix configured for the RRAS entry. The key is optional. If
present, it is used only if the IpDnsFlags key is configured to use it. This key SHOULD be in the
domain name format.

2.2.2.2.78 IpCachedDnsSuffix

The IpCachedDnsSuffix key is optional and if present is ignored by RRAS.

2.2.2.2.79 (Updated Section) Ipv6Assign

The Ipv6Assign key specifies whether to request a specific IPv6 address from the remote RRAS
endpoint. This key is optional.<229> If the key is present, it takes one of the values in the following
table.

Value Meaning

1 RRAS when making a demand-dial connection does not request a specific IPv6 address from the remote
RRAS endpoint.

2 RRAS requests a specific IPv4 address as specified as the value for the keys Ipv6PrefixLength and
Ipv6AddressIPV6Address for the demand-dial connection when connecting to a remote RRAS
endpoint.

2.2.2.2.80 Ipv6PrefixLength

The Ipv6PrefixLength key specifies a static IPv6 prefix length configured for the RRAS entry. RRAS
requests the configured prefix length when making a demand-dial connection to the remote RRAS
endpoint. This key is optional.<230> If the key is present, it SHOULD be a decimal number in the

range 0 to 128.

2.2.2.2.81 Ipv6PrioritizeRemote

The Ipv6PrioritizeRemote key is optional and if present is ignored by RRAS.

2.2.2.2.82 Ipv6InterfaceMetric

The Ipv6InterfaceMetric key is optional and if present is ignored by RRAS.

289 / 547

[MS-RRASM-Diff] - v20210407
Routing and Remote Access Server (RRAS) Management Protocol
Copyright © 2021 Microsoft Corporation
Release: April 7, 2021

2.2.2.2.83 Ipv6NameAssign

The Ipv6NameAssign key specifies whether to request a specific IPv6 address for the DNS servers
from the remote RRAS endpoint. This key is optional. If the key is present, it SHOULD take one of the

values in the following table.

Value Meaning

1 RRAS when making a demand-dial connection does not request a specific IPv6 address for the DNS
servers from the remote RRAS endpoint.

2 RRAS when making a demand-dial connection requests a specific IPv6 DNS server addresses as specified
in keys Ipv6DnsAddress and Ipv6Dns2Address from a remote RRAS endpoint.

2.2.2.2.84 Ipv6DnsAddress

The Ipv6DnsAddress key specifies a static primary IPv6 DNS server address. This key is

optional.<231> If the key is present, it SHOULD take one of the values in the following table.

Value Meaning

:: RRAS ignores this key.

A valid IPv6 address.
For example: 3ffe::1

If the key Ipv6NameAssign has the value "2", RRAS requests the configured IPv6
address as the primary DNS server address from the remote RRAS endpoint when
making a demand-dial connection. Otherwise RRAS ignores this key.

2.2.2.2.85 Ipv6Dns2Address

The Ipv6Dns2Address key specifies a static secondary IPv6 DNS server address. This key is

optional.<232> If the key is present, it SHOULD take one of the values in the following table.

Value Meaning

:: RRAS ignores this key.

A valid IPv6
address. For
example:

3ffe::1

If the key Ipv6NameAssign has the value "2", RRAS requests the configured IPv6 address
as the secondary DNS server address from the remote RRAS endpoint when making a
demand-dial connection.

Otherwise RRAS ignores this key.

2.2.2.2.86 Ipv6Prefix

The Ipv6Prefix key specifies a 64-bit prefix length of the IPv6 address of the demand-dial

connection. This key is optional.<233> This key SHOULD be initialized to 0000000000000000 and
MUST be ignored on receipt. When RRAS connects to a remote RRAS endpoint, the prefix length for
the IPv6 address of the demand-dial connection is cached as a value for this key.

2.2.2.2.87 Ipv6InterfaceId

The Ipv6InterfaceId key specifies a 64-bit interface identifier for the IPv6 address of the demand-
dial connection. This key is optional.<234> This key SHOULD be initialized to 0000000000000000 and

290 / 547

[MS-RRASM-Diff] - v20210407
Routing and Remote Access Server (RRAS) Management Protocol
Copyright © 2021 Microsoft Corporation
Release: April 7, 2021

MUST be ignored on receipt. When RRAS connects to a remote RRAS endpoint, the interface identifier
for the IPv6 address of the demand-dial connection is cached as a value for this key.

2.2.2.2.88 DisableClassBasedDefaultRoute

The DisableClassBasedDefaultRoute key is optional and if present is ignored by RRAS.

2.2.2.2.89 DisableMobility

The DisableMobility key is optional and if present is ignored by RRAS.

2.2.2.2.90 NetworkOutageTime

The NetworkOutageTime key is optional and if present is ignored by RRAS.

2.2.2.2.91 ProvisionType

The ProvisionType key is optional and if present is ignored by RRAS.

2.2.2.2.92 PreSharedKey

The PreSharedKey key is optional and if present is ignored by RRAS.

2.2.2.2.93 NETCOMPONENTS

The NETCOMPONENTS key is optional and if present is ignored by RRAS.

2.2.2.2.94 ms_msclient

The ms_msclient key is optional and if present is ignored by RRAS.

2.2.2.2.95 ms_server

The ms_server key is optional and if present is ignored by RRAS.

2.2.2.2.96 MEDIA

The MEDIA key specifies the name of the media. This is also the beginning of the MEDIA RRAS Entry
subsection (henceforth called MEDIA subsection). A MEDIA subsection can contain one or more
DEVICE RRAS Entry subsections (section 2.2.2.2.100). For a Multilink phonebook entry there are
multiple MEDIA subsections, where each subsection corresponds to a physical device. All the keys in

the RRAS phonebook entry starting from the MEDIA key until the beginning of another MEDIA
subsection, or another RRAS entry or the end of RRAS phonebook file are part of a MEDIA subsection.
This key MUST be present, and it is case sensitive. If the key is absent, the demand-dial connection
cannot be made for this RRAS entry. This key SHOULD take one of the string values given in the
following table.

String Meaning

Isdn The device type is isdn.

x25 The device type is x25.

Serial The device type is modem, pad, or switch.

Rastapi For other device types.

291 / 547

[MS-RRASM-Diff] - v20210407
Routing and Remote Access Server (RRAS) Management Protocol
Copyright © 2021 Microsoft Corporation
Release: April 7, 2021

2.2.2.2.97 Port

The Port key is a string that specifies the name of the port to be used by RRAS server for the
demand-dial connection. This key MUST be present.<235> In case the key is not present, RRAS will

discard this RRAS entry.

2.2.2.2.98 Device

The Device key contains a string that specifies the name of the device to be used by the RRAS server
for the demand-dial connection. This key is optional.

2.2.2.2.99 ConnectBPS

The ConnectBPS key specifies the maximum connection speed for a modem, in bits per second. An
example speed would be 115200 bits per second. The value of this key SHOULD take a valid modem
connection speed in the range 0 to 4294967296. This key is optional. This key is ignored unless the
DEVICE key is set to "modem".

2.2.2.2.100 DEVICE

The DEVICE key specifies the case sensitive name of the device type associated with a port. This key

MUST be present. This key MUST take one of the string values given in the following table.

This key is also the beginning of DEVICE RRAS entry subsection (henceforth called DEVICE
subsection). There can be multiple DEVICE subsections within a single MEDIA subsection. For serial
media, there can be one to four DEVICE subsections, representing a pre-connect switch, modem,
X.25 PAD, and post-connect switch, and MUST appear in the same order within the RRAS phonebook
entry. If the switch is used before dialing a connection, it is known as a pre-connect switch. If it is

used after dialing a connection, it is known as post-connect switch. For all other media, there MUST be
exactly one DEVICE subsection. If this DEVICE key is missing, then RRAS will ignore the DEVICE
subsection settings.

All the keys in the RRAS phonebook entry (from the DEVICE key to the beginning of another DEVICE

subsection, or another MEDIA subsection, or another RRAS entry, or the end of RRAS phonebook file)
are part of a DEVICE subsection. Some of the following keys will be relevant only to specific device
types. Unless explicitly specified, a key will be applicable to all the device types. If a key is not

applicable to a device type it can be absent.<236>

String Meaning

Generic Generic.

Atm Asynchronous Transfer Mode (ATM).

FrameRelay Frame Relay.

Irda Infrared Data Association (IrDA) compliant device.

Isdn An ISDN card.

Modem A modem accessed through a COM port.

Pad A Packet Assembler/Disassembler.

PPPoE Point-to-Point Protocol over Ethernet.

Rastap For other devices. This is allowed only if the MEDIA key is Rastapi.

Serial A serial device.

292 / 547

[MS-RRASM-Diff] - v20210407
Routing and Remote Access Server (RRAS) Management Protocol
Copyright © 2021 Microsoft Corporation
Release: April 7, 2021

String Meaning

Sonet Sonet.

SW56 Switched 56K Access.

Switch A pre-connect switch or post-connect switch.

Vpn A virtual private network connection.

X25 An X.25 card.

2.2.2.2.101 Terminal

The Terminal key specifies whether to use a Terminal window for dialup connections. For example,
before connecting to the remote server, a terminal window opens in which the user can type modem

setup commands and view the modem's responses. This key is ignored unless the DEVICE key is set
to "Switch". This key is optional<237> . If the key is present, it SHOULD be used only with a pre-
connect switch and SHOULD take one of the values given in the following table.

Value Meaning

0 Do not display Terminal window for user input.

1 Display Terminal window for user input.

2.2.2.2.102 Name

The Name key specifies the name of the path of the custom script file that the RRAS server executes
during the demand-dial connection. This key is ignored unless the DEVICE key is set to "Switch". This

key is optional. If the key is present, it SHOULD be used only with a post-connect switch.

2.2.2.2.103 Script

The Script key specifies whether a script can run. This key is ignored unless the DEVICE key is set to
"Switch". This key is optional. If the key is present, it SHOULD be used only with a post-connect
switch and SHOULD take one of the values given in the following table.

Value Meaning

0 Do not run the script.

1 Run the script.

2.2.2.2.104 X25Pad

The X25Pad key contains a string that identifies the X.25 PAD type. This key is ignored unless the
DEVICE key is set to "Pad". This key MAY<238> be present with a valid X.25 PAD type for making a
X.25 demand-dial connection.

2.2.2.2.105 X25Address

293 / 547

[MS-RRASM-Diff] - v20210407
Routing and Remote Access Server (RRAS) Management Protocol
Copyright © 2021 Microsoft Corporation
Release: April 7, 2021

The X25Address key contains a string that identifies the X.25 address to which to connect. This key
is ignored unless the DEVICE key is set to "Pad" or "X25". This key MAY<239> be present with a valid

X.25 address for making a X.25 demand-dial connection.

2.2.2.2.106 UserData

The UserData key contains a string that specifies additional connection information supplied to the
X.25 host at connection time. This key is optional.<240> This key is ignored unless the DEVICE key
is set to "Pad" or "X25". The value for this key is ignored if the X25Address key is empty.

2.2.2.2.107 Facilities

The Facilities key contains a string that specifies the facilities to request from the X.25 host at

connection time. For example, some providers support /R to specify reverse charging. This key is
optional.<241> This key is ignored unless the DEVICE key is set to "Pad" or "X25". The value of this
key is ignored if the value is not an X25Address key.

2.2.2.2.108 PhoneNumber

The PhoneNumber key contains a string that specifies a device-type specific destination to dial a
connection. This key is optional. This key is ignored if the DEVICE key is set to "Pad", "X25" or

"Switch". This key SHOULD be present with a valid value for making a demand-dial connection.

There can be one or more phone number subsections within in a DEVICE subsection when the Type
key is set to "1". The phone number subsection contains the following keys only PhoneNumber,
AreaCode, CountryCode, CountryID, UseDialingRules, Comment, and FriendlyName. If there
are multiple phone number subsections, then the first subsection is for the primary phone number and
the others are for the alternate phone numbers.

If the Type key is set to "5". The following table describes the contents of the PhoneNumber key for
various device types.

DEVICE PhoneNumber

Modem Telephone number [E164]

Isdn Telephone number [E164]

Atm Virtual Path Identifier (VPI) and Virtual Channel Identifier [RFC2761] (VCI) values of a permanent
virtual circuit. Use the following format: p(vpi),(vci)

Example: "P0,40"

PPPoE Service name [RFC2516]

Vpn DNS name, IPv4 address, or IPv6 address

2.2.2.2.109 AreaCode

The AreaCode key specifies the telephonic area code. This key is optional. This key is ignored if the
DEVICE key is set to "Pad", "X25", or "Switch". This key is ignored unless the Type key is set to "1".
The value of key is ignored unless the UseDialingRules key is set to "1". If the key is present, it
SHOULD be a string representation of an area code.

2.2.2.2.110 CountryCode

The CountryCode key specifies the country/region code portion of the phone number, as specified in

[OB930E]. This key is optional. This key is ignored if the DEVICE key is set to "Pad", "X25", or

294 / 547

[MS-RRASM-Diff] - v20210407
Routing and Remote Access Server (RRAS) Management Protocol
Copyright © 2021 Microsoft Corporation
Release: April 7, 2021

"Switch". This key is ignored unless the Type key is set to "1". The value of the key is ignored unless
the UseDialingRules key is set to "1". If the key is present, it SHOULD be a string representation of

a country/region code.

2.2.2.2.111 CountryID

The CountryID key specifies the telephony application programming interface (TAPI) country/region
identifier. This key is optional. This key is ignored if the DEVICE key is set to "Pad", "X25", or
"Switch". This key is ignored unless the Type key is set to "1". The value of the key is ignored unless
the UseDialingRules key is set to "1". If the key is present, it MUST be a string representation of
TAPI country/region identifier.

2.2.2.2.112 UseDialingRules

The UseDialingRules key specifies whether the CountryID, CountryCode, AreaCode keys and the
custom dialing rules are used to construct the phone number. This key is optional. This key is ignored
if the DEVICE key is set to "Pad", "X25", or "Switch". This key is ignored unless the Type key is set to
"1". If the key is present, it SHOULD take one of the values given in the following table.

Value Meaning

0 Do not use CountryID, CountryCode, AreaCode keys and custom dialing rules.

1 Use CountryID, CountryCode, AreaCode keys and custom dialing rules.

2.2.2.2.113 Comment

The Comment key is optional and if present MUST be ignored by RRAS.

2.2.2.2.114 FriendlyName

The FriendlyName key is optional and if present MUST be ignored by RRAS.

2.2.2.2.115 LastSelectedPhone

The LastSelectedPhone key is optional and if present MUST be ignored by RRAS.

2.2.2.2.116 PromoteAlternates

The PromoteAlternates key specifies whether to make the alternate phone number that connects
successfully the primary phone number and move the primary phone number to the alternate list. This

key is optional. This key is ignored if the DEVICE key is set to "Pad", "X25", or "Switch". This key is
ignored unless the Type key is set to "1". If the key is present, it SHOULD take one of the values
given in the following table.

Value Meaning

0 Do not promote alternate phone numbers.

1 Promote alternate phone numbers.

2.2.2.2.117 TryNextAlternateOnFail

295 / 547

[MS-RRASM-Diff] - v20210407
Routing and Remote Access Server (RRAS) Management Protocol
Copyright © 2021 Microsoft Corporation
Release: April 7, 2021

The TryNextAlternateOnFail key specifies whether to dial the alternate phone numbers when the
primary phone number fails to connect to the remote RRAS server. This key is optional. This key is

ignored if the DEVICE key is set to "Pad", "X25", or "Switch". This key is ignored unless the Type key
is set to "1". If the key is present, it SHOULD take one of the values given in the following table.

Value Meaning

0 Do not try next alternate phone number on fail.

1 Try next alternate phone number on fail.

2.2.2.2.118 HwFlowControl

The HwFlowControl key specifies whether to enable hardware flow control for the modem. This key
is optional. This key is ignored unless the DEVICE key is set to "modem". If the key is present, it

SHOULD take one of the values given in the following table.

Value Meaning

0 Disable hardware flow control.

1 Enable hardware flow control.

2.2.2.2.119 Protocol

The Protocol key specifies whether the modem performs cyclic redundancy checks on the inbound

and outbound data stream. This key is optional. This key is ignored unless the DEVICE key is set to
"modem". If the key is present, it SHOULD take one of the values given in the following table.

Value Meaning

0 Do not perform (CRC) error checking.

1 Perform (CRC) error checking.

2.2.2.2.120 Compression

The Compression key specifies whether to compress the modem-to-modem data stream. This key is

optional. This key is ignored unless the DEVICE key is set to "modem". If the key is present, it
SHOULD take one of the values given in the following table.

Value Meaning

0 Disable hardware compression.

1 Enable hardware compression.

2.2.2.2.121 Speaker

296 / 547

[MS-RRASM-Diff] - v20210407
Routing and Remote Access Server (RRAS) Management Protocol
Copyright © 2021 Microsoft Corporation
Release: April 7, 2021

The Speaker key specifies whether the modem dial tone and connection sounds are heard. This key is
optional. This key is ignored unless the DEVICE key is set to "modem". If the key is present, it

SHOULD take one of the values given in the following table.

Value Meaning

0 Disable modem speaker.

1 Enable modem speaker.

2.2.2.2.122 MdmProtocol

The MdmProtocol key is optional and if present MUST be ignored by RRAS.

2.2.2.2.123 LineType

The LineType key specifies the type of ISDN line. This key is optional. This key is ignored unless the
DEVICE key is set to "Isdn". If the key is present, it SHOULD take one of the values given in the
following table.

Value Meaning

0 64K Digital (highest quality)

1 56K Digital

2 56K Analog (lowest quality)

2.2.2.2.124 Fallback

The Fallback key instructs RRAS to communicate at the selected line type but to negotiate a lower
quality line type if necessary. This negotiation depends on the condition of the ISDN line (for example,
noise on the line affects negotiation). This key is optional. This key is ignored unless the DEVICE key
is set to "Isdn". If the key is present, it SHOULD take one of the values given in the following table.

Value Meaning

0 Do not Negotiate Line Type.

1 Negotiate Line Type.

2.2.2.2.125 EnableCompression

The EnableCompression key specifies whether an ISDN card will compress the data before
transmitting. This key is optional. This key is ignored unless the DEVICE key is set to "Isdn". The

value of this key is ignored unless the Proprietary flag is set to "1". If the key is present, it SHOULD
take one of the values given in the following table.

Value Meaning

0 Disable hardware compression.

297 / 547

[MS-RRASM-Diff] - v20210407
Routing and Remote Access Server (RRAS) Management Protocol
Copyright © 2021 Microsoft Corporation
Release: April 7, 2021

Value Meaning

1 Enable hardware compression.

2.2.2.2.126 ChannelAggregation

The ChannelAggregation key specifies the number of ISDN channels. This key is optional. This key
is ignored unless the DEVICE key is set to "Isdn". The value of this key is ignored unless the

Proprietary key is set to "1". If the key is present, it SHOULD take values ranging from 1 to
999999999 only.

2.2.2.2.127 Proprietary

The Proprietary key specifies whether the keys EnableCompression and ChannelAggregation are
ignored. This key is optional. This key is ignored unless the DEVICE key is set to "Isdn". If the key is

present, it SHOULD take one of the values given in the following table.

Value Meaning

0 Ignore EnableCompression and ChannelAggregation flags.

1 Do not ignore EnableCompression and ChannelAggregation flags.

2.2.3 Registry Keys

The following registry keys can be configured on the RRAS server to control RRAS server
behavior.<242> These registry configurations can be performed remotely, by using the [MS-RRP]
protocol. RRAS reads these registry values during the initialization process and uses the registry

values to initialize RRASM as specified in section 3.1.1.

2.2.3.1 Transport Configuration

The various transport-specific generic configurations that are not associated with any particular
interface MUST be stored under the following registry key.

HKEY_LOCAL_MACHINE\SYSTEM\CurrentControlSet\services\RemoteAccess\RouterManagers

Under this key, there MUST be one registry key per transport with the name denoting the transport
itself. Each name MUST be one of the values IPX, IP, or IPv6.<243> For example, the IPv4 transport

configuration will be specified under the following registry key.

HKEY_LOCAL_MACHINE\SYSTEM\CurrentControlSet\services\RemoteAccess\RouterManagers\IP

The registry values defined under these keys are given in the following sections.

2.2.3.1.1 ProtocolId

The ProtocolId value represents the numeric protocol identifier corresponding to the transport
protocol name. This registry value MUST be of type REG_DWORD. It MUST be defined for each

supported transport. Possible values are in the following table.

298 / 547

[MS-RRASM-Diff] - v20210407
Routing and Remote Access Server (RRAS) Management Protocol
Copyright © 2021 Microsoft Corporation
Release: April 7, 2021

Transport Name ProtocolId Value

IPX 0x0000002B

IP 0x00000021

IPv6 0x00000057

2.2.3.1.2 (Updated Section) GlobalInfo

The GlobalInfo value represents the global transport configuration and any specific global information
for the various routing protocols and configuration that might be supported for the specific transport.
This registry value when defined MUST be of type REG_BINARY. The contents of this registry value
MUST be in the form of RTR_INFO_BLOCK_HEADER as describedspecified in section 2.2.1.2.3. It

SHOULD be defined for each transport supported.

2.2.3.1.3 (Updated Section) GlobalInterfaceInfo

The GlobalInterfaceInfo value represents the default configuration that will be applied for each
interface that is added to the specific transport. In the absence of per-interface transport
configuration, this will be the configuration applied on the interface. This registry value when defined
MUST be of type REG_BINARY. The contents of this registry value MUST be in the form of

RTR_INFO_BLOCK_HEADER as describedspecified in section 2.2.1.2.3. It MAY<244> be defined for
each transport supported.

2.2.3.2 Interface Configuration

The interfaces that are present on the RRAS server MUST be stored under the registry key

HKEY_LOCAL_MACHINE\SYSTEM\CurrentControlSet\services\RemoteAccess\Interfaces

with each subkey representing the configuration information pertaining to one interface. The subkeys
MUST be named with a zero-based index in a monotonically increasing order. For example, if there are
three interfaces in the system, the registry keys will be as follows.

HKEY_LOCAL_MACHINE\SYSTEM\CurrentControlSet\services\RemoteAccess\Interfaces\0

HKEY_LOCAL_MACHINE\SYSTEM\CurrentControlSet\services\RemoteAccess\Interfaces\1

HKEY_LOCAL_MACHINE\SYSTEM\CurrentControlSet\services\RemoteAccess\Interfaces\2

Under each interface-specific registry key, there SHOULD be transport-specific subkeys that contain
the interface-specific configuration information pertaining to the transport. For example, the IPv4
transport-specific information for an interface with index 4 will be stored under

HKEY_LOCAL_MACHINE\SYSTEM\CurrentControlSet\services\RemoteAccess\Interfaces\4\IP

2.2.3.2.1 Common Interface Configuration Values

These are the registry values that define the common properties of an interface.

2.2.3.2.1.1 InterfaceName

The Interfacename value represents the name of the interface. This MUST be a null-terminated
string of type REG_SZ. For each interface, the InterfaceName MUST be specified.

299 / 547

[MS-RRASM-Diff] - v20210407
Routing and Remote Access Server (RRAS) Management Protocol
Copyright © 2021 Microsoft Corporation
Release: April 7, 2021

2.2.3.2.1.2 Type

The Type value represents the type of the interface. This MUST be of type REG_DWORD. The value
for this MUST be as defined in the ROUTER_INTERFACE_TYPE (section 2.2.1.1.1). For each interface,

the Type MUST be specified.

2.2.3.2.1.3 Enabled

The Enabled value represents whether the interface is enabled or not. It MUST be of type
REG_DWORD. For each interface, Enabled SHOULD be specified. This The value MUST be either 0 or
1. A value of 0 MUST be interpreted as the interface is disabled and a value of 1 MUST be used to
indicate the interface is enabled. If the value is not specified, it MUST be treated as the interface is

enabled (1).

2.2.3.2.1.4 DialOutHours

The DialOutHours is applicable only for interfaces of type ROUTER_IF_TYPE_HOME_ROUTER or
ROUTER_IF_TYPE_FULL_ROUTER. This SHOULD be used to specify the dialing restrictions for the

demand-dial interfaces. This represents the times during which the dialing and connecting of the
demand-dial interface is allowed. This MUST be of type REG_MULTI_SZ as specified in [MS-RRP]

section 2.2.5. It MUST be specified in the following format.

<day><space><time range> <time range>…\0<day><space><time range>\0\0

where

<day> is a numeral that corresponds to the day of the week starting with 1 representing Monday.

<space> is the literal corresponding to one blank space.

<time range> represents the dialing hours allowed during the particular <day> and is represented in

the form "HH:MM-HH:MM" using 24-hour notation.

There can be a number of time ranges within a single day and each day's dialing hours is separated by

a \0. The last of the dialing information is followed by an additional \0 as defined for REG_MULTI_SZ.

2.2.3.2.2 Transport-specific Configuration

The following are the registry values that can be configured for a given interface, and which represent
transport and routing protocol-specific configuration for the interface.

2.2.3.2.2.1 (Updated Section) ProtocolId

The ProtocolId value is similar to the ProtocolId as describedspecified in ProtocolId section
2.42.3.1.21. The ProtocolId MUST be the value corresponding to the transport protocol subkey for
which the interface information is being specified.

2.2.3.2.2.2 InterfaceInfo

The InterfaceInfo value MUST be used to specify the transport-specific configuration for the
interface. This also includes the various routing protocol configurations applicable to the specific
transport. This MUST be of type REG_BINARY. The contents of this registry value MUST be in the form
of RTR_INFO_BLOCK_HEADER as specified in section 2.2.1.2.3.

2.2.3.2.3 IKEv2 Custom Configuration

The following are the registry values that can be configured for a given interface and that represent

the IKEv2 tunnel-specific configuration for the interface.

300 / 547

[MS-RRASM-Diff] - v20210407
Routing and Remote Access Server (RRAS) Management Protocol
Copyright © 2021 Microsoft Corporation
Release: April 7, 2021

2.2.3.2.3.1 SaMaxDataSize

The SaMaxDataSize value specifies the lifetime of the security association (SA) for IKEv2 [RFC4306]
in terms of the data transfer size, in kilobytes, after which the SA has to be renegotiated. This value

MUST be of type REG_DWORD and MUST be at least 1024.

2.2.3.2.3.2 SaLifeTime

The SaLifeTime value specifies the lifetime of the SA for IKEv2 [RFC4306], in seconds, after which
the SA has to be renegotiated. This value MUST be of type REG_DWORD and MUST be at least 300.

2.2.3.2.3.3 MachineCertificateName

The MachineCertificateName registry value specifies the subject name of the certificate that is
configured to be sent to the peer for authentication during the MM SA negotiation [RFC4306] for the
IKE2 tunnel-based VPN connections. This value MUST be of type REG_BINARY. The value itself is the
binary representation of the subject name of the certificate.

2.2.3.2.3.4 IKEv2 Custom Policies

The following are the registry values that can be configured for a given interface and that represent

the IKEv2 configurations used during MM SA and QM SA negotiation. These registry values are defined
under a subkey, "IKEv2CustomPolicy".

2.2.3.2.3.4.1 IntegrityMethod

The IntegrityMethod registry value specifies the integrity check algorithm to be negotiated during
MM SA negotiation [RFC4306]. This value MUST be of type REG_DWORD. Allowed values for this
registry value are the same as those for dwIntegrityMethod in ROUTER_CUSTOM_IKEv2_POLICY_0.

If the value is not specified for this registry value, or if this registry value is not present, the default
value INTEGRITY_SHA_256 (0x2) is assumed.

2.2.3.2.3.4.2 EncryptionMethod

The EncryptionMethod is a registry value that specifies the encryption algorithm to be negotiated
during MM SA negotiation [RFC4306]. This value MUST be of type REG_DWORD. Allowed values for

this registry value are the same as those for dwEncryptionMethod in
ROUTER_CUSTOM_IKEv2_POLICY_0. If the value is not specified for this registry value, or if this
registry value is not present, the default value CIPHER_AES_256 (0x4) is assumed.

2.2.3.2.3.4.3 CipherTransformConstant

The CipherTransformConstant registry value specifies the encryption algorithm to be negotiated
during QM SA negotiation [RFC4306]. This value MUST be of type REG_DWORD. Allowed values for

this registry value are the same as those for dwCipherTransformConstant in
ROUTER_CUSTOM_IKEv2_POLICY_0. If the value is not specified for this registry value, or if this
registry value is not present, the default value CIPHER_CONFIG_CBC_3DES (0x2) is assumed.

2.2.3.2.3.4.4 AuthTransformConstant

The AuthTransformConstant registry value specifies the hash algorithm to be negotiated during QM
SA negotiation [RFC4306]. This value MUST be of type REG_DWORD. Allowed values for this registry

value are the same as those for dwAuthTransformConstant in ROUTER_CUSTOM_IKEv2_POLICY_0.
If the value is not specified for this registry value, or if this registry value is not present, the default
value AUTH_CONFIG_HMAC_SHA_256_128 (0x2) is assumed.

2.2.3.2.3.4.5 PfsGroup

301 / 547

[MS-RRASM-Diff] - v20210407
Routing and Remote Access Server (RRAS) Management Protocol
Copyright © 2021 Microsoft Corporation
Release: April 7, 2021

The PfsGroup registry value specifies the Diffie-Hellman algorithm to be used for Quick Mode Perfect
Forward Secrecy (PFS) [RFC4306]. This value MUST be of type REG_DWORD. Allowed values for this

registry value are the same as those for dwPfsGroup in ROUTER_CUSTOM_IKEv2_POLICY_0. If the
value is not specified for this registry value, or if this registry value is not present, the default value

PFS_2048 (0x3) is assumed.

2.2.3.2.3.4.6 DHGroup

The DHGroup registry value specifies the type of Diffie-Hellman group used for Internet Key
Exchange (IKE) key generation during MM SA negotiation [RFC4306]. This value MUST be of type
REG_DWORD. Allowed values for this registry value are the same as those for dwDhGroup in
ROUTER_CUSTOM_IKEv2_POLICY_0. If the value is not specified for this registry value, or if this

registry value is not present, the default value DH_GROUP_2 (0x2) is assumed.

2.2.3.3 Ports Configuration

An RRAS server implementation can support a number of device types for remote access

requirements. Each device type can be configured with a number of ports as well as the usage of the
ports.

2.2.3.3.1 Non-modem Device Port Configurations

The port configuration for various device types given in the following table MUST be stored under the
following registry key.

HKEY_LOCAL_MACHINE\SYSTEM\CurrentControlSet\Control\Class\{4D36E972-E325-11CE-BFC1-

08002BE10318}.

The device types for which the configuration information is stored here are PPTP, L2TP, SSTP, IKEv2,
and PPPoE. This registry MUST include subkeys that are numbered from 000 and monotonically
increasing. Under each subkey, the value in ComponentId MUST be used to denote the protocol for
which the (numbered) key has the configuration information. The following table specifies the
ComponentId value and the protocol the configuration corresponds to.

ComponentId Value Device Type Driver Description

ms_sstpminiport SSTP WAN Miniport (SSTP)

ms_agilevpnminiport IKEv2 WAN Miniport (IKEv2)

ms_l2tpminiport L2TP WAN Miniport (L2TP)

ms_pptpminiport PPTP WAN Miniport (PPTP)

ms_pppoeminiport PPPoE WAN Miniport (PPPoE)

ms_ptiminiport Direct Parallel Connection Direct Parallel

For example, if the subkey having name 008 has ms_sstpminiport as the ComponentId value, the

registry path storing SSTP information will be as follows.

HKEY_LOCAL_MACHINE\SYSTEM\CurrentControlSet\Control\Class\{4D36E972-E325-11CE-BFC1-

08002BE10318}\0008.

2.2.3.3.1.1 ComponentId

The ComponentId value specifies the protocol for which the key (under which the value is defined)
comprises the configuration information. The value for this name MUST be one of the values

302 / 547

[MS-RRASM-Diff] - v20210407
Routing and Remote Access Server (RRAS) Management Protocol
Copyright © 2021 Microsoft Corporation
Release: April 7, 2021

mentioned in the preceding table. This value MUST be of type REG_SZ. This value MUST be null-
terminated.

2.2.3.3.1.2 DriverDesc

The DriverDesc value specifies the name of the device. This value MUST be of type REG_SZ. If this
value is not specified, the device MUST be considered as an invalid device for routing and remote
access.

2.2.3.3.1.3 EnableForOutboundRouting

The EnableForOutboundRouting value MUST be used to specify whether the ports of the device
type can be used for outbound demand-dial interface connections. This value MUST be of type

REG_DWORD. This MUST be configured with a value of either 0 or 1. The value 0 MUST be interpreted
as the device type is not enabled for outbound routing. The value 1 MUST be interpreted as the device
type is enabled for outbound routing.

2.2.3.3.1.4 EnableForRas

The EnableForRas value MUST be used to specify whether or not the ports for the device type can be
used for remote access. This value MUST be of type REG_DWORD. This MUST be configured with a

value of either 0 or 1. The value 0 MUST be interpreted as the device type is not enabled for remote
access, and a value of 1 MUST be interpreted as the device type is enabled for remote access.

2.2.3.3.1.5 EnableForRouting

The EnableForRouting value MUST be used to indicate whether the ports for the device type can be
used for demand-dial (or site-to-site) connectivity. This value MUST be of type REG_DWORD. This

MUST be configured with a value of 0 if the device type has to be disabled for demand-dial usage and
MUST be configured with a value of 1 if the device type has to be enabled for demand-dial usage.

2.2.3.3.1.6 CalledIDInformation

The CalledIDInformation value SHOULD be used to specify the phone number of the device to be
passed to the client as the called station ID in Bandwidth Allocation Protocol (BAP)-enabled
connections. This MUST be of type REG_MULTI_SZ as specified in [MS-RRP] section 2.2.5. Each string

in the REG_MULTI_SZ represents one phone number. For VPN device types where a phone number is
not applicable, this SHOULD be the IP address of the server configured as the called ID.

2.2.3.3.1.7 MaxWanEndpoints

The MaxWanEndpoints value MUST be used to specify the maximum number of endpoints or ports
that the device type can support. This MUST be of type REG_DWORD and can take any valid 32-bit
integer value.

2.2.3.3.1.8 WanEndpoints

The WanEndpoints value MUST be used to specify the number of endpoints or ports that the device

type is configured with. This MUST be of type REG_DWORD and can take any valid 32-bit integer as
its value. It MUST be lesser than or equal to MaxWanEndpoints value.

2.2.3.3.2 (Updated Section) Modem device Port Configurations

Modem devices can be used for dial-up networking. Modem devices that are present on the RRAS
server MUST be registered under the following registry key.

HKEY_LOCAL_MACHINE\SYSTEM\CurrentControlSet\Control\Class\{4D36E96D-E325-11CE-BFC1-
08002BE10318}.

303 / 547

[MS-RRASM-Diff] - v20210407
Routing and Remote Access Server (RRAS) Management Protocol
Copyright © 2021 Microsoft Corporation
Release: April 7, 2021

Under this registry key, for each modem, the modem-specific information MUST be present under its
own subkey. The subkey MUST be a monotonically increasing number starting with 0000. For

example,

HKEY_LOCAL_MACHINE\SYSTEM\CurrentControlSet\Control\Class\{4D36E96D-E325-11CE-BFC1-

08002BE10318}\0005

This key can be the subkey under which modem device information is present. Under this registry key,
the value in FriendlyName MUST be defined to specify the friendly name for the specific modem
device. This value MUST be of type REG_SZ and MUST be null terminated which comprises the friendly
name for the modem device.

The device usage configuration itself MUST be present under the subkey Clients\Ras. For example,

HKEY_LOCAL_MACHINE\SYSTEM\CurrentControlSet\Control\Class\{4D36E96D-E325-11CE-BFC1-

08002BE10318}\0005

If this key represents a valid modem device information, the device usage information will be present
in the following key.

HKEY_LOCAL_MACHINE\SYSTEM\CurrentControlSet\Control\Class\{4D36E96D-E325-11CE-BFC1-
08002BE10318}\0005\Clients\Ras

The registry values, EnableForOutboundRouting, EnableForRas, EnableForRouting, and

CalledIDInformation specify the device usage and these values are the same as describedspecified in
sections 2.2.3.3.1.3, 2.2.3.3.1.4, 2.2.3.3.1.5, and 2.2.3.3.1.6 respectively.

2.2.3.4 Miscellaneous Configuration Information

These registry keys specify information relevant for the RRAS server configuration that does not fall

under the previous categories.

2.2.3.4.1 RouterType

The RouterType defines the mode in which the RRAS server needs to be running. This MUST be
defined under the following registry key.

HKEY_LOCAL_MACHINE\SYSTEM\CurrentControlSet\services\RemoteAccess\Parameters

This MUST be of type REG_DWORD. This MUST be a combination of the following flag values.

Flag Value Description

ROUTER_TYPE_RAS

0x00000001

RRAS is enabled for remote access connections providing connectivity using IPv4
protocol as transport.

ROUTER_TYPE_LAN

0x00000002

RRAS is enabled for IPv4 routing over Ethernet interfaces only.

ROUTER_TYPE_WAN

0x00000004

RRAS is enabled for IPv4 routing over Ethernet as well as demand-dial interfaces.

IPV6_ROUTER_TYPE_RAS

0x00000008

RRAS is enabled for remote access connections providing connectivity using IPv6
protocol as transport.

IPV6_ROUTER_TYPE_LAN

0x00000010

RRAS is enabled for IPv6 routing over Ethernet interfaces only.

IPV6_ROUTER_TYPE_WAN RRAS is enabled for IPv6 routing over Ethernet as well as demand-dial interfaces.

304 / 547

[MS-RRASM-Diff] - v20210407
Routing and Remote Access Server (RRAS) Management Protocol
Copyright © 2021 Microsoft Corporation
Release: April 7, 2021

Flag Value Description

0x00000020

2.2.3.4.2 IKEv2 Tunnel Configuration Settings

IKEv2 tunnel configuration settings MUST be stored under the following registry path.

 HKEY_LOCAL_MACHINE\SYSTEM\CurrentControlSet\services\RemoteAccess\Parameters\IKEV2.

2.2.3.4.2.1 idleTimeout

The idleTimeout value specifies the idle Timeout value in seconds to be used with IKEv2 protocol.
This MUST be of type REG_DWORD. This is the duration in seconds after which the connection will be
disconnected if there is no traffic. This value MUST be at least 300 and have a maximum supported
value of 17,279,999.

2.2.3.4.2.2 networkBlackoutTime

The networkBlackoutTime value specifies the retransmission timeout value in seconds to be used
with IKEv2 protocol. This MUST be of type REG_DWORD. This value MUST be greater than or equal to
120 seconds.

2.2.3.4.2.3 saDataSize

The saDataSize value specifies the life time of the security association (SA) for IKEv2 [RFC4306] in

terms of the data transfer size in kilobytes, after which the SA has to be renegotiated. This value
MUST be of type REG_DWORD. This value MUST be at least 1024.

2.2.3.4.2.4 saLifeTime

The saLifeTime value specifies the life time of the security association for IKEv2 [RFC4306] in
seconds after which the SA has to be renegotiated. This value MUST be of type REG_DWORD. This

value MUST be at least 300 seconds.

2.2.3.4.2.5 TrustedRootCert

The TrustedRootCert is a registry value specifying the subject name of the certificate that will be
trusted by the server for IKEv2 certificate authentication. This value MUST be of type REG_BINARY.
The value itself is the binary representation of the subject name of the certificate. This registry value
is defined under the following registry key.

HKEY_LOCAL_MACHINE\SYSTEM\CurrentControlSet\services\RemoteAccess\Parameters\IKEV2\Allowe
dTrustedRootCerts\nnnn

Where nnnn is a monotonically increasing number starting with 0000 with each such entry
representing a unique trusted root certificate to be supported for IKEv2 peer authentication.

2.2.3.4.2.6 EncryptionType

The EncryptionType is a registry value that specifies the encryption type to be negotiated during the

SA negotiation [RFC4306] for the IKE2 tunnel-based VPN connections. This value MUST be of type
REG_DWORD and SHOULD have one of the values in the following table.

305 / 547

[MS-RRASM-Diff] - v20210407
Routing and Remote Access Server (RRAS) Management Protocol
Copyright © 2021 Microsoft Corporation
Release: April 7, 2021

Value Meaning

0 RRAS will not negotiate encryption.

1 RRAS requests encryption during negotiation. Negotiation will succeed even if remote RRAS does not
support encryption.

2 RRAS requires encryption to be negotiated.

3 RRAS requires maximum strength encryption to be negotiated.

2.2.3.4.2.7 MachineCertificateName

The MachineCertificateName is a registry value that specifies the subject name of the certificate

that is configured to be sent to the peer for authentication during the MM SA negotiation [RFC4306]
for the IKE2 tunnel-based VPN connections. This value MUST be of type REG_BINARY. The value itself

is the binary representation of the subject name of the certificate.

2.2.3.4.2.8 IKEv2 Custom Policy Configuration

The following sections specify the registry values that can be configured on an RRAS server and that
represent the IKEv2 configurations used during MM SA and QM SA negotiation for all the incoming

IKEv2 tunnel-based VPN connections. These registry values are defined under the following registry
key.

HKEY_LOCAL_MACHINE\SYSTEM\CurrentControlSet\services\RemoteAccess\Parameters\IKEV2\IKEv2
CustomPolicy.

2.2.3.4.2.8.1 IntegrityMethod

The IntegrityMethod is a registry value that specifies the integrity check algorithm to be negotiated

during MM SA negotiation [RFC4306]. This value MUST be of type REG_DWORD. Allowed values for

this registry value are the same as those for dwIntegrityMethod in
ROUTER_CUSTOM_IKEv2_POLICY_0. If the value is not specified for this registry value, or if this
registry value is not present, the default value INTEGRITY_SHA_256 (0x2) is assumed.

2.2.3.4.2.8.2 EncryptionMethod

The EncryptionMethod is a registry value that specifies the encryption algorithm to be negotiated

during MM SA negotiation [RFC4306]. This value MUST be of type REG_DWORD. Allowed values for
this registry value are the same as those for dwEncryptionMethod in
ROUTER_CUSTOM_IKEv2_POLICY_0. If the value is not specified for this registry value, or if this
registry value is not present, the default value CIPHER_AES_256 (0x4) is assumed.

2.2.3.4.2.8.3 CipherTransformConstant

The CipherTransformConstant is a registry value that specifies the encryption algorithm to be

negotiated during QM SA negotiation [RFC4306]. This value MUST be of type REG_DWORD. Allowed
values for this registry value are the same as those for dwCipherTransformConstant in
ROUTER_CUSTOM_IKEv2_POLICY_0. If the value is not specified for this registry value, or if this
registry value is not present, the default value CIPHER_CONFIG_CBC_3DES (0x2) is assumed.

2.2.3.4.2.8.4 AuthTransformConstant

The AuthTransformConstant is a registry value that specifies the hash algorithm to be negotiated
during QM SA negotiation [RFC4306]. This value MUST be of type REG_DWORD. Allowed values for

306 / 547

[MS-RRASM-Diff] - v20210407
Routing and Remote Access Server (RRAS) Management Protocol
Copyright © 2021 Microsoft Corporation
Release: April 7, 2021

this registry value are the same as those for dwAuthTransformConstant in
ROUTER_CUSTOM_IKEv2_POLICY_0. If the value is not specified for this registry value, or if this

registry value is not present, the default value AUTH_CONFIG_HMAC_SHA_256_128 (0x2) is
assumed.

2.2.3.4.2.8.5 PfsGroup

The PfsGroup is a registry value that specifies the Diffie-Hellman algorithm that is used for Quick
Mode Perfect Forward Secrecy (PFS) [RFC4306]. This value MUST be of type REG_DWORD. Allowed
values for this registry value are the same as those for dwPfsGroup in
ROUTER_CUSTOM_IKEv2_POLICY_0. If the value is not specified for this registry value, or if this
registry value is not present, the default value PFS_2048 (0x3) is assumed.

2.2.3.4.2.8.6 DHGroup

The DHGroup is a registry value that specifies the type of Diffie-Hellman group used for Internet Key
Exchange (IKE) key generation during MM SA negotiation [RFC4306]. Allowed values for this registry
value are the same as those for dwDhGroup in ROUTER_CUSTOM_IKEv2_POLICY_0. If the value is

not specified for this registry value, or if this registry value is not present, the default value

DH_GROUP_2 (0x2) is assumed.

2.2.3.4.3 SSTP Tunnel Configuration Settings

SSTP Tunnel configuration settings MUST be stored in the following registry key.

 HKEY_LOCAL_MACHINE\SYSTEM\CurrentControlSet\services\SstpSvc\Parameters.

2.2.3.4.3.1 UseHttps

The UseHttps value specifies whether the SSTP uses HTTP or HTTPS as the underlying transport. This
value MUST be of type REG_DWORD. The valid values for this are 0 and 1. A value 0 implies the use
of HTTP transport and 1 implies the use of HTTPS transport. If the value not specified, a default usage
of HTTPS (value 1) MUST be assumed.

2.2.3.4.3.2 IsHashConfiguredByAdmin

The IsHashConfiguredByAdmin value specifies whether the SSTP certificate hash values are

configured by the administrator, or if the RRAS server chooses a certificate hash on its own
automatically. This value MUST be of type REG_DWORD. The valid values for this are 0 and 1. A value
0 implies automatic certificate configuration and 1 implies the certificate was configured by the
administrator. If the value is not specified for this registry value, or if this registry value is not
present, the default setting of automatic certificate configuration is assumed.

2.2.3.4.3.3 SHA256CertificateHash

The SHA256CertificateHash value specifies the SHA 256 hash of the X.509 certificate to be used
with SSTP. This value MUST be of type REG_BINARY. It MUST be of length 32 bytes. This registry
value is used only if the registry value IsHashConfiguredByAdmin is present with the value of 1;

otherwise, this value is ignored.

2.2.3.4.3.4 SHA1CertificateHash

The SHA1CertificateHash value specifies the SHA1 hash of the X.509 certificate to be used with

SSTP. This value MUST be of type REG_BINARY. It MUST be of length 20 bytes. This registry value is
used only if the registry value IsHashConfiguredByAdmin is present with the value of 1; otherwise,
this value is ignored.

2.2.3.4.4 QuarantineInstalled

307 / 547

[MS-RRASM-Diff] - v20210407
Routing and Remote Access Server (RRAS) Management Protocol
Copyright © 2021 Microsoft Corporation
Release: April 7, 2021

The QuarantineInstalled value represents whether Quarantine Service [MSFT-NAQC] is installed or
not. It MUST be defined under the following registry key.

HKEY_LOCAL_MACHINE\SYSTEM\CurrentControlSet\services\RemoteAccess\Parameters

This MUST be of type REG_DWORD. This SHOULD be either 0 or 1. A value 0 SHOULD be used to

denote that quarantine service is not installed and a value 1 SHOULD be used to denote that
quarantine service is installed.

2.2.3.4.5 LoggingFlags

The LoggingFlags value represents the logging levels for events for the RRAS server that are in the
following table. It MUST be defined under the following registry key.

HKEY_LOCAL_MACHINE\SYSTEM\CurrentControlSet\services\RemoteAccess\Parameters

This MUST be of type REG_DWORD. This SHOULD be from 0 to 3.

Value Description

0x00000000 Logging SHOULD be disabled.

0x00000001 Log all the error category events only.

0x00000002 Log all the warning and error category events only.

0x00000003 Log all the informational, warning, and error category events.

2.2.3.4.6 ServerFlags

The ServerFlags value specifies several configuration settings for the RRAS server implementation. It
MUST be defined under the following registry key.

HKEY_LOCAL_MACHINE\SYSTEM\CurrentControlSet\services\RemoteAccess\Parameters

This MUST be of type REG_DWORD. This SHOULD be a combination of the various flag values given in
the following table.

Value Description

0x00000001 This specifies that for Callback Control Protocol (CBCP) [RFC1570] in PPP, there needs to be a

delay before the RRAS server performs the actual callback.

0x00000002 Use the Microsoft Point-to-Point Compression (MPPC) protocol to compress data sent on the
remote access or demand-dial connections.

0x00000004 NetBEUI Framing is enabled.

0x00000008 RRAS server is enabled for IPv4 traffic to be tunneled.

0x00000010 RRAS server is enabled for IPX traffic to be tunneled.

0x00000020 RRAS server is enabled for AppleTalk protocol traffic to be tunneled.

0x00000040 Shiva Password Authentication Protocol (SPAP) can be negotiated for remote access and demand-
dial connection authentication.

0x00000080 Packets between the WAN endpoints SHOULD be encrypted.

308 / 547

[MS-RRASM-Diff] - v20210407
Routing and Remote Access Server (RRAS) Management Protocol
Copyright © 2021 Microsoft Corporation
Release: April 7, 2021

Value Description

0x00000100 MSCHAP protocol can be negotiated for remote access and demand-dial connection authentication.

0x00000200 The use of LCP extensions as defined in [RFC1570] is allowed.

0x00000400 Multilink negotiation [RFC1990] is allowed for remote access and demand-dial connections.

0x00000800 PPP peer needs to be authentication.

0x00001000 Packets between WAN endpoints SHOULD be encrypted using the strongest possible algorithm.
The exact algorithm is RRAS implementation-dependent.

0x00002000 Bandwidth Allocation Control Protocol (BACP) [RFC2125] is allowed for remote access connections.

0x00004000 Remote access connections without authentication are allowed on the RRAS server.

0x00008000 EAP protocol can be negotiated for remote access and demand-dial connection authentication.

0x00010000 Password Authentication Protocol (PAP) [RFC1334] can be negotiated for remote access and
demand-dial connection authentication.

0x00020000 MD5-CHAP [RFC1994] can be negotiated for remote access and demand-dial connection
authentication.

0x00040000 IPsec needs to be negotiated for L2TP [MS-L2TPIE] tunnel type connections.

0x00080000 Packets between WAN endpoints can be unencrypted.

0x00100000 MOBIKE [RFC4555] extension support is not allowed for IKEv2 remote access connections.

0x00200000 Use of LAN Manager passwords [RFC2433] is allowed for remote access and demand-dial
connection authentication.

0x00400000 Connections to the RRAS server using directly connected serial ports can be accepted without
authentication.

0x00800000 MSCHAPv2 [MS-CHAP] can be negotiated for remote access and demand-dial connection
authentication.

0x01000000 Callback functionality using CBCP [RFC1570] is enabled.

0x02000000 Machine authentication is allowed on the RRAS server.

0x04000000 Authentication using certificates is allowed on the RRAS server.

0x08000000 RRAS server is enabled for IPv6 traffic to be tunneled.

0x10000000 Preshared key can be used for authentication using L2TP over IPsec [MS-L2TPIE].

2.2.3.4.7 ConfigurationFlags

The ConfigurationFlags value specifies whether the RRAS functionality is enabled or not. It MUST be
defined under the following registry key.

HKEY_LOCAL_MACHINE\SYSTEM\CurrentControlSet\services\RemoteAccess

This MUST be of type REG_DWORD. This SHOULD be either 0 or 1. A value 0 SHOULD be used to
specify that RRAS is disabled and a value 1 SHOULD be used to denote that RRAS is enabled.

2.2.3.4.8 AllowNetworkAccess

309 / 547

[MS-RRASM-Diff] - v20210407
Routing and Remote Access Server (RRAS) Management Protocol
Copyright © 2021 Microsoft Corporation
Release: April 7, 2021

The AllowNetworkAccess value specifies whether RRAS can route packets between interfaces or
not. It MUST be defined under one of the following registry keys.

HKEY_LOCAL_MACHINE\SYSTEM\CurrentControlSet\services\RemoteAccess\Parameters\Ip

or

HKEY_LOCAL_MACHINE\SYSTEM\CurrentControlSet\services\RemoteAccess\Parameters\Ipv6

based on whether it is specifying the setting for IPv4 or IPv6. This MUST be of type REG_DWORD. This
SHOULD be either 0 or 1. A value of 0 is used to specify that routing is not be allowed and a value of 1
is used to specify that routing is allowed.

2.2.3.4.9 EnableIn

The EnableIn value specifies whether remote access is enabled for the specific protocol (IPv4 or

IPv6) or not. It MUST be defined under one of the following registry keys.

HKEY_LOCAL_MACHINE\SYSTEM\CurrentControlSet\services\RemoteAccess\Parameters\Ip

or

HKEY_LOCAL_MACHINE\SYSTEM\CurrentControlSet\services\RemoteAccess\Parameters\Ipv6

based on whether it is specifying the setting for IPv4 or IPv6. This MUST be of type REG_DWORD. This
SHOULD be either 0 or 1. A value of 0 SHOULD be used to specify that remote access is not enabled

for the data traffic and a value of 1 SHOULD be used to specify that the remote access is enabled for
the data traffic.

2.2.3.4.10 EnableNetbtBcastFwd

The EnableNetbtBcastFwd value specifies whether remote access clients can use NETBIOS over
TCP/IP (NETBT) [RFC1002] to perform broadcast name resolution or not. It MUST be defined under
one of the following registry keys.

HKEY_LOCAL_MACHINE\SYSTEM\CurrentControlSet\services\RemoteAccess\Parameters\Ip

or

HKEY_LOCAL_MACHINE\SYSTEM\CurrentControlSet\services\RemoteAccess\Parameters\Ipv6

based on whether it is specifying the setting for IPv4 or IPv6. This MUST be of type REG_DWORD. This
SHOULD be either 0 or 1. A value of 0 SHOULD be used to specify that this service is disabled and a
value of 1 SHOULD be used to specify that this service is enabled.

2.2.3.4.11 IpAddress

The IpAddress value specifies a valid IPv4 address in dotted notation which along with IpMask
specifies the static address pool to be used to configure remote access clients and demand-dial peers.
This registry value specifies the static address range if the StaticAddressPool registry is not

configured. It MUST be defined under the following registry key.

HKEY_LOCAL_MACHINE\SYSTEM\CurrentControlSet\services\RemoteAccess\Parameters\Ip

This MUST be of type REG_SZ.

2.2.3.4.12 IpMask

The IpMask value specifies a valid IPv4 address mask in dotted notation specifying the subnet mask
or the prefix which along with IpAddress specifies the static address pool to be used to configure

310 / 547

[MS-RRASM-Diff] - v20210407
Routing and Remote Access Server (RRAS) Management Protocol
Copyright © 2021 Microsoft Corporation
Release: April 7, 2021

remote access clients and demand-dial peers, see [RFC950]. This registry value specifies the static
address range if StaticAddressPool registry is not configured. It MUST be defined under the following

registry key.

HKEY_LOCAL_MACHINE\SYSTEM\CurrentControlSet\services\RemoteAccess\Parameters\Ip

This MUST be of type REG_SZ.

2.2.3.4.13 NetworkAdapterGUID

The NetworkAdapterGUID value specifies the GUID associated with the adapter that is used to
obtain IP addresses, the DNS and WINS servers to be assigned to the remote access, and demand-dial
IPv4 remote endpoints. It MUST be defined under the following registry key.

HKEY_LOCAL_MACHINE\SYSTEM\CurrentControlSet\services\RemoteAccess\Parameters\Ip

This MUST be of type REG_SZ.

2.2.3.4.14 UseDhcpAddressing

The UseDhcpAddressing value specifies whether the RRAS server uses a DHCP server to obtain IP
addresses to be assigned for remote access and demand-dial connections. It MUST be defined under
the following registry key.

 HKEY_LOCAL_MACHINE\SYSTEM\CurrentControlSet\services\RemoteAccess\Parameters\Ip

This MUST be of type REG_DWORD. This SHOULD be either 0 or 1. A value of 0 specifies that IP
addresses for IPv4 are assigned from the static IP address pool. A value of 1 is used to specify that IP
addresses for IPv4 are obtained from a DHCP server.

2.2.3.4.15 StaticAddressPool

The StaticAddressPool registry subkey MUST be defined under the following registry key.

HKEY_LOCAL_MACHINE\SYSTEM\CurrentControlSet\services\RemoteAccess\Parameters\Ip

This in turn MUST comprise of subkeys numbered from 0, with each subkey specifying the values that
form a static address range. For example, there can be a registry key that provides one static IPv4
address range to be used to assign IPv4 addresses to remote access and demand-dial interfaces as
follows.

HKEY_LOCAL_MACHINE\SYSTEM\CurrentControlSet\services\RemoteAccess\Parameters\Ip\StaticAddr
essPool\0

These values MUST be of type REG_DWORD. Each range MUST be specified using the values "From"
and "To". The "From" value MUST specify the starting of the IPv4 address range and the "To" value
MUST specify the ending of the IPv4 address range.

2.2.3.4.16 AdvertiseDefaultRoute

The AdvertiseDefaultRoute value specifies whether the default route is advertised over IPv6 router
advertisement for remote access or demand-dial based tunnels. It MUST be defined under the

following registry key.

HKEY_LOCAL_MACHINE\SYSTEM\CurrentControlSet\services\RemoteAccess\Parameters\Ipv6.

This MUST be of type REG_DWORD. This SHOULD be either 0 or 1. A value of 0 specifies that the
default route is not advertised and a value of 1 specifies that the default route is advertised.

2.2.3.4.17 StaticPrefixPool

311 / 547

[MS-RRASM-Diff] - v20210407
Routing and Remote Access Server (RRAS) Management Protocol
Copyright © 2021 Microsoft Corporation
Release: April 7, 2021

The StaticPrefixPool key MUST be defined under the following registry key.

HKEY_LOCAL_MACHINE\SYSTEM\CurrentControlSet\services\RemoteAccess\Parameters\Ipv6

There MUST be a subkey for each IPv6 prefix and the subkey SHOULD be numbered from 0. For
example, the registry path for an IPv6 prefix could be

HKEY_LOCAL_MACHINE\SYSTEM\CurrentControlSet\services\RemoteAccess\Parameters\Ipv6\StaticPr
efixPool\0

Under this subkey, the values "From" and "To" MUST be defined of type REG_BINARY which specify
the prefix to be used for IPv6 as a 16-byte value.

2.2.3.4.18 Accounting Settings

The accounting settings for the RRAS server SHOULD be defined under the following registry key.

HKEY_LOCAL_MACHINE\SYSTEM\CurrentControlSet\services\RemoteAccess\Accounting.

2.2.3.4.18.1 AcctGroupName

The AccGroupName value specifies the name of the RADIUS server or server group that provides
accounting. It MUST be defined under the following registry key.

HKEY_LOCAL_MACHINE\SYSTEM\CurrentControlSet\services\RemoteAccess\Accounting

This value MUST be of type REG_SZ.

2.2.3.4.18.2 ActiveProvider

The ActiveProvider value defines a GUID corresponding to the current accounting provider. It MUST
be defined under the following registry key.

HKEY_LOCAL_MACHINE\SYSTEM\CurrentControlSet\services\RemoteAccess\Accounting\Providers

This MUST be of type REG_SZ. It SHOULD be either {1AA7F846-C7F5-11D0-A376-00C04FC9DA04} to

specify the default accounting provider, or {1AA7F840-C7F5-11D0-A376-00C04FC9DA04} to specify
RADIUS accounting provider.

2.2.3.4.18.3 RADIUS-based Accounting Settings

For RADIUS accounting, the RADIUS server information SHOULD be specified under the following
registry key.

HKEY_LOCAL_MACHINE\SYSTEM\CurrentControlSet\services\RemoteAccess\Accounting\Providers\{1A

A7F840-C7F5-11D0-A376-00C04FC9DA04}\Servers.<245>

There SHOULD be one subkey for each RADIUS server and the RADIUS server-specific settings
SHOULD be present under this subkey as registry values. For example, the accounting settings specific
to a RADIUS server Server1 SHOULD be present under the following registry key.

HKEY_LOCAL_MACHINE\SYSTEM\CurrentControlSet\services\RemoteAccess\Accounting\Providers\{1A
A7F840-C7F5-11D0-A376-00C04FC9DA04}\Servers\Server1.

2.2.3.4.18.3.1 Score

The Score value specifies the initial responsiveness score of the RADIUS server. This MUST be of type
REG_DWORD. This can be any valid positive integer.

2.2.3.4.18.3.2 AcctPort

312 / 547

[MS-RRASM-Diff] - v20210407
Routing and Remote Access Server (RRAS) Management Protocol
Copyright © 2021 Microsoft Corporation
Release: April 7, 2021

The AcctPort value specifies the UDP port that the RADIUS server is waiting on, for processing
accounting requests. This MUST be of type REG_DWORD. This can be any valid UDP port number on

which the RADIUS server is configured to listen for accounting messages.

2.2.3.4.18.3.3 Timeout

The Timeout value specifies the time in seconds that the RRAS server waits for a response from the
RADIUS server before trying the next configured RADIUS server. This MUST be of type REG_DWORD.
This can be any valid positive integer.

2.2.3.4.18.3.4 EnableAccountingOnOff

The EnableAccountingOnOff value specifies whether RADIUS Accounting-On and Accounting-Off

messages are to be sent by the RRAS server when it starts up and shuts down, respectively. This
MUST be of type REG_DWORD. It SHOULD be either 0 or 1. A value 0 SHOULD be used to specify that
the Accounting On/Off messages need not be sent by RRAS server and a value 1 SHOULD be used to
specify that these messages need to be sent by RRAS server.

2.2.3.4.19 Authentication Settings

The Authentication settings for the RRAS server SHOULD be defined under the following registry key.

HKEY_LOCAL_MACHINE\SYSTEM\CurrentControlSet\services\RemoteAccess\Authentication.

2.2.3.4.19.1 AuthGroupName

The AuthGroupName value specifies the name of the RADIUS server or server group that provides
authentication services. It MUST be of defined under the following registry key.

HKEY_LOCAL_MACHINE\SYSTEM\CurrentControlSet\services\RemoteAccess\Authentication.

This value MUST be of type REG_SZ.

2.2.3.4.19.2 CRPName

The CRPName value specifies the connection request policy (CRP) name which will designate whether
connection requests are processed locally or forwarded to a remote RADIUS server. It MUST be
defined under the following registry key.

HKEY_LOCAL_MACHINE\SYSTEM\CurrentControlSet\services\RemoteAccess\Authentication.

This value MUST be of type REG_SZ.

2.2.3.4.19.3 ActiveProvider

The ActiveProvider value defines a GUID corresponding to the current authentication provider. It
MUST be defined under the following registry key.

HKEY_LOCAL_MACHINE\SYSTEM\CurrentControlSet\services\RemoteAccess\Authentication\Providers.

This MUST be of type REG_SZ. It SHOULD be either {1AA7F841-C7F5-11D0-A376-00C04FC9DA04} to

specify the default authentication provider or {1AA7F83F-C7F5-11D0-A376-00C04FC9DA04} to
specify the RADIUS authentication provider.

2.2.3.4.19.4 RADIUS-based Authentication Settings

For RADIUS authentication, the RADIUS server information SHOULD<246> be specified under the
following registry key.

313 / 547

[MS-RRASM-Diff] - v20210407
Routing and Remote Access Server (RRAS) Management Protocol
Copyright © 2021 Microsoft Corporation
Release: April 7, 2021

HKEY_LOCAL_MACHINE\SYSTEM\CurrentControlSet\services\RemoteAccess\Authentication\Providers\
{1AA7F83F-C7F5-11D0-A376-00C04FC9DA04}\Servers

There SHOULD be one subkey for each RADIUS server and the RADIUS server specific settings
SHOULD be present under this subkey as registry values. For example, the authentication settings

specific to a RADIUS server Server1 SHOULD be present under the following registry key.

HKEY_LOCAL_MACHINE\SYSTEM\CurrentControlSet\services\RemoteAccess\Authentication\Providers\
{1AA7F83F-C7F5-11D0-A376-00C04FC9DA04}\Servers\Server1

2.2.3.4.19.4.1 Score

The Score value specifies the initial responsiveness score of the RADIUS server. This MUST be of type
REG_DWORD. This can be any valid positive integer.

2.2.3.4.19.4.2 AuthPort

The AuthPort value specifies the UDP port that the RADIUS server is waiting on, for processing

authentication requests. This MUST be of type REG_DWORD. This can be any valid UDP port number
on which the RADIUS server is configured to listen for authentication messages.

2.2.3.4.19.4.3 Timeout

The Timeout value specifies the time in seconds that the RRAS server waits for a response from the
RADIUS server before trying the next configured RADIUS server. This MUST be of type REG_DWORD.
This can be any valid positive integer.

2.2.3.4.19.4.4 SendSignature

The SendSignature value specifies whether a message authenticator need to be sent with each

RADIUS authentication message or not. This MUST be of type REG_DWORD. It SHOULD be either zero
(0) or one (1). A zero (0) value SHOULD be used to specify that the message authenticator need not
be sent with each RADIUS message and a one (1) value SHOULD be used to specify that message

authenticator need to be sent with each RADIUS message.

2.2.4 Error Codes

This section lists additional error codes that can be used to convey specific error conditions to the
RRASM client. These codes have been implemented in addition to the common error codes defined in
[MS-ERREF].

Return value Description

0x00000258

PENDING

An operation is pending.

0x00000259

ERROR_INVALID_PORT_HANDLE

An invalid port handle was detected.

0x0000025B

ERROR_BUFFER_TOO_SMALL

The caller's buffer is too small.

0x00000260

ERROR_DEVICE_DOES_NOT_EXIST

The specified device does not exist.

0x00000267

ERROR_PORT_NOT_FOUND

The specified port was not found.

314 / 547

[MS-RRASM-Diff] - v20210407
Routing and Remote Access Server (RRAS) Management Protocol
Copyright © 2021 Microsoft Corporation
Release: April 7, 2021

Return value Description

0x0000026A

ERROR_PORT_NOT_OPEN

The specified port is not open.

0x0000026D

ERROR_CANNOT_OPEN_PHONEBOOK

The phonebook file could not be opened.

0x0000026E

ERROR_CANNOT_LOAD_PHONEBOOK

The phonebook file could not be loaded.

0x0000026F

ERROR_CANNOT_FIND_PHONEBOOK_ENTRY

The phonebook entry for the specified connection could not be
found.

0x00000386

ERROR_UNKNOWN_PROTOCOL_ID

The specified protocol identifier is not known to the router.

0x00000387

ERROR_DDM_NOT_RUNNING

The Demand-dial Interface Manager is not running.

0x00000388

ERROR_INTERFACE_ALREADY_EXISTS

An interface with this name is already registered with the router.

0x00000389

ERROR_NO_SUCH_INTERFACE

An interface with this name is not registered with the router.

0x0000038A

ERROR_INTERFACE_NOT_CONNECTED

The interface is not connected.

0x0000038C

ERROR_INTERFACE_CONNECTED

The interface cannot be deleted, because it is connected.

0x0000038E

ERROR_ALREADY_CONNECTING

The interface is already in the process of connecting.

0x0000038F

ERROR_UPDATE_IN_PROGRESS

An update of routing information on this interface is already in
progress.

0x00000394

ERROR_INTERFACE_DISABLED

The interface is in a disabled state.

0x0000039D

ERROR_INTERFACE_HAS_NO_DEVICES

There are no routing enabled ports available for use by this
demand-dial interface.

0x000003A0

ERROR_SERVICE_IS_PAUSED

The Demand-dial Interface Manager is in a paused state. The
request could not be processed.

0x000003B4

ERROR_PROTOCOL_ALREADY_INSTALLED

The transport is already installed with the router.

0x8004A024

NETCFG_E_NO_WRITE_LOCK

Another application currently owns the lock on network
configuration.

315 / 547

[MS-RRASM-Diff] - v20210407
Routing and Remote Access Server (RRAS) Management Protocol
Copyright © 2021 Microsoft Corporation
Release: April 7, 2021

2.2.5 REMRAS Common Messages

In addition to DCOM base types and definitions specified in [MS-DCOM], additional data types are
defined in this section.

All multi-byte integer values in the messages declared in this section use little-endian byte order.

2.2.5.1 Structures

The structures specified in this section are used as fields in one or more messages in the REMRAS
DCOM interfaces.

2.2.5.1.1 (Updated Section) IPV6Address

The IPv6AddressIPV6Address structure SHOULD<247> contain an IPv6 Address.

 typedef struct tagIPV6Address
 {
 unsigned char bytes[16];
 }IPV6Address;

bytes: This is a 16-byte char array that contains IPv6 address.

316 / 547

[MS-RRASM-Diff] - v20210407
Routing and Remote Access Server (RRAS) Management Protocol
Copyright © 2021 Microsoft Corporation
Release: April 7, 2021

3 (Updated Section) Protocol Details

There are three components to the RRAS management - the RPC and DCOM interfaces, the phonebook
file settings, and the registry settings. The RPC and DCOM interfaces enable remote management of
the RRAS runtime. It comprises two RPC interfaces DIMSVC and RASRPC, and the DCOM set of
REMRAS interfaces.

The phonebook file specifies the site-to-site connection settings and RRASM validates the phonebook

entries used as a part of RRASM RPC methods using the phonebook file. The phonebook entries
(specified through the RPC methods) are valid if there are corresponding phonebook entry sections
that have the same name. The phonebook file format is describedspecified in section 2.2.2.

The registry settings specify the RRAS configuration. RRAS initializes its runtime configuration using
the registry settings describedspecified in section 2.2.3. Subsequently the RRASM RPC interfaces
provide the remote management of these runtime configuration settings. RRAS is responsible for

updating the configuration changes back to the registry store. RRAS initializes the RRASM RPC
interfaces as given in section 3.1.6.2 and 3.3.6.2. RRAS server passes the value of two of the registry

keys that impacts RRASM protocol behavior as a part of this initialization as defined in section 3.1.6.
RRASM stores these values in the ADM variables as defined in section 3.1.1. The other registry
settings do not impact the RRASM protocol behavior and only impact the configuration used by RRAS.
Both RRASM and RRAS reside on the same server. That portion of the server which implements the
management semantics, which the RRASM protocol remotely makes available remotely, is referred to

as the RRAS server or RRAS implementation.

3.1 DIMSVC Interface Server Details

For the list of methods supported by this interface, refer to Appendix A: Full IDL (section 6), UUID
(8f09f000-b7ed-11ce-bbd2-00001a181cad).

3.1.1 Abstract Data Model

This section describes a conceptual model that an implementation can maintain to participate in this

protocol. The described organization is provided to facilitate the explanation of how the protocol

behaves. This document does not mandate that implementations adhere to this model, as long as
their external behavior is consistent with that described in this document.

RRASM protocol provides the remoting capability to the underlying RRAS implementation's
management objects and methods. The following data variables affect the protocol behavior.

RouterType: This 4-byte variable specifies the currently defined RRAS role type. It is a combination
of the flags as specified under section 2.2.3.4.1. As a part of the initialization, the RRAS server
specifies this value for the RRASM server to initialize with Start DIMSVC, as defined in section

3.1.6. This value remains the same and will be refreshed only when the RRASM server is shut
down and initialized again.

SupportedTransportsList: This specifies the list of transport identifiers that are supported by RRAS.
As a part of the initialization, RRAS specifies this value for the RRASM server to initialize with
Start DIMSVC as defined in section 3.1.6. This list remains static and will be refreshed only when

the RRASM server is shut down and initialized again. Each transport identifier is a 4-byte value
and can be one of the following values.<248>

Value Meaning

PID_IPX

0x0000002B

IPX protocol

PID_IP IPv4 protocol

317 / 547

[MS-RRASM-Diff] - v20210407
Routing and Remote Access Server (RRAS) Management Protocol
Copyright © 2021 Microsoft Corporation
Release: April 7, 2021

Value Meaning

0x00000021

PID_IPV6

0x00000057

IPv6 protocol

PhonebookEntryNameList: This specifies the list of phonebook entry names (section 2.2.2.1).
The RRASM server loads the phonebook file and regenerates this list when any of the following

methods are called:

RRouterInterfaceCreate (section 3.1.4.13)

RRouterInterfaceGetInfo (section 3.1.4.14)

RRouterInterfaceSetInfo (section 3.1.4.15)

RasRpcDeleteEntry (section 3.3.4.1)

InterfaceList: This specifies the list of interfaces configured in the RRAS server. Each entry in this list
is comprised of an interface name of type LPWSTR and an interface handle of type DWORD. This

list is populated using the InterfaceName registry value (section 2.2.3.2.1.1) for each interface as
specified in section 2.2.3.2. As a part of the initialization, RRAS specifies this list with the interface
name and handle specified for each entry. The interface handle is an opaque value for RRASM.
This list is specified as a part of Start DIMSVC as defined in section 3.1.6. This list is updated
when the following methods are called:

RRouterInterfaceCreate (section 3.1.4.13)

RRouterInterfaceDelete (section 3.1.4.16)

There are no additional states maintained by RRASM other than those maintained by [MS-RPCE].

3.1.2 Timers

No timers are required beyond those used internally by the RPC to implement resiliency to network

outages, as specified in [MS-RPCE] section 3.2.3.2.1.

3.1.3 Initialization

The DIMSVC RPC interface of RRASM server MUST be initialized by RRAS as described in the Start
DIMSVC abstract interface defined in section 3.1.6. As a part of the initialization process, the RRASM

protocol server MUST register the RPC interface as specified in section 2.1.1.

3.1.4 Message Processing Events and Sequencing Rules

To receive incoming remote calls for this interface, the server MUST implement an RPC endpoint using

the UUID, 8f09f000-b7ed-11ce-bbd2-00001a181cad. As a part of the message processing, RRASM
performs validation parameters as specified under the methods in this section. It then passes the

information to the actual RRAS implementation using Invoke DIMSVC method. The Invoke DIMSVC
method will return any data required and the completion status of the operation is sent back to the
client over the DIMSVC interface of RRASM protocol.

The RRASM server MUST perform a strict Network Data Representation (NDR) data consistency check
at target level 5.0, as specified in [MS-RPCE] section 3.

In the following table, the term "Reserved for local use" means that the clients MUST NOT send the
opnum, and the server behavior is undefined because it does not affect interoperability.

318 / 547

[MS-RRASM-Diff] - v20210407
Routing and Remote Access Server (RRAS) Management Protocol
Copyright © 2021 Microsoft Corporation
Release: April 7, 2021

All methods MUST NOT throw exceptions. No exceptions are thrown beyond those thrown by the
underlying RPC protocol [MS-RPCE].

Methods in RPC Opnum order

Method Description

RMprAdminServerGetInfo Retrieves port-related configuration information for the specified
RRAS server.

Opnum: 0

RRasAdminConnectionEnum Retrieves the list of active connections.

Opnum: 1

RRasAdminConnectionGetInfo Retrieves the connection information for a specific connection.

Opnum: 2

RRasAdminConnectionClearStats Resets the statistics counters for the connection.

Opnum: 3

RRasAdminPortEnum Retrieves the list of all ports on a RRAS server, or the ports for a
specified connection.

Opnum: 4

RRasAdminPortGetInfo Retrieves the port information for a specific port.

Opnum: 5

RRasAdminPortClearStats Resets the counters for the specified port.

Opnum: 6

RRasAdminPortReset Performs access validation.

Opnum: 7

RRasAdminPortDisconnect Initiates the disconnect of the connection on a specified port.

Opnum: 8

RRouterInterfaceTransportSetGlobalInfo Sets global information for the specified IP transport.

Opnum: 9

RRouterInterfaceTransportGetGlobalInfo Gets the entire global information for the specified transport.

Opnum: 10

RRouterInterfaceGetHandle Retrieves the handle of the specified interface.

Opnum: 11

RRouterInterfaceCreate Creates an interface on a specified RRAS server.

Opnum: 12

RRouterInterfaceGetInfo Retrieves information for a specified interface on a specified RRAS
server.

Opnum: 13

RRouterInterfaceSetInfo Sets information for a specified interface on a specified server.

Opnum: 14

RRouterInterfaceDelete Deletes an interface on a specified server.

Opnum: 15

RRouterInterfaceTransportRemove Removes an existing IP transport from the RRAS server.

319 / 547

[MS-RRASM-Diff] - v20210407
Routing and Remote Access Server (RRAS) Management Protocol
Copyright © 2021 Microsoft Corporation
Release: April 7, 2021

Method Description

Opnum: 16

RRouterInterfaceTransportAdd Adds an IP transport to a specified interface.

Opnum: 17

RRouterInterfaceTransportGetInfo Retrieves information about an IP transport running on a specified
interface.

Opnum: 18

RRouterInterfaceTransportSetInfo Sets information about an IP transport running on a specified
interface.

Opnum: 19

RRouterInterfaceEnum Retrieves the list of all the interfaces from the specified server.

Opnum: 20

RRouterInterfaceConnect Establishes a connection for the specified interface.

Opnum: 21

RRouterInterfaceDisconnect Disconnects the specified interface on the specified RRASM server.

Opnum: 22

RRouterInterfaceUpdateRoutes Updates routing information for a given IP transport on a specified
interface on the RRAS server.

Opnum: 23

RRouterInterfaceQueryUpdateResult Returns the result of the last RRouterInterfaceUpdateRoutes request.

Opnum: 24

RRouterInterfaceUpdatePhonebookInfo Forces the router to pick up changes made on a specified demand-
dial interface.

Opnum: 25

RMIBEntryCreate Creates an MIB entry that is used by the RRAS to create a route entry
in the IPv4 routing table.

Opnum: 26

RMIBEntryDelete Deletes an MIB entry in an IPv4 forwarding table.

Opnum: 27

RMIBEntrySet Modifies an MIB entry in the IPv4 forwarding table.

Opnum: 28

RMIBEntryGet Retrieves the value of a RRAS MIB entry that corresponds to the
transport.

Opnum: 29

RMIBEntryGetFirst Retrieves the first value of an entry corresponding to the transport,
protocol, and the MIB entry.

Opnum: 30

RMIBEntryGetNext Retrieves the next entry corresponding to the transport protocol, and
the MIB entry.

Opnum: 31

RMIBGetTrapInfo Queries the module that set a trap event for more information about
the trap.

Opnum: 32

320 / 547

[MS-RRASM-Diff] - v20210407
Routing and Remote Access Server (RRAS) Management Protocol
Copyright © 2021 Microsoft Corporation
Release: April 7, 2021

Method Description

RMIBSetTrapInfo Specifies a handle to an event that is signaled whenever a trap needs
to be issued.

Opnum: 33

RRasAdminConnectionNotification Registers an event object with the RRAS server.

Opnum: 34

RRasAdminSendUserMessage Sends a message to the user connected on the specified connection.

Opnum: 35

RRouterDeviceEnum Retrieves the list of all the devices from the specified server.

Opnum: 36

RRouterInterfaceTransportCreate Creates a new transport on the RRAS server.

Opnum: 37

RRouterInterfaceDeviceGetInfo Retrieves information for a specified device, for a specified interface
on a specified server.

Opnum: 38

RRouterInterfaceDeviceSetInfo Sets the information for a specified device, for a specified interface on
a specified server.

Opnum: 39

RRouterInterfaceSetCredentialsEx Sets extended credentials (other than username and password)
information for an interface.

Opnum: 40

RRouterInterfaceGetCredentialsEx Retrieves extended credentials information for the specified interface.

Opnum: 41

RRasAdminConnectionRemoveQuarantine Removes quarantine filters on a dialed-in RRAS client.

Opnum: 42

RMprAdminServerSetInfo Sets port information on a specified server.

Opnum: 43

RMprAdminServerGetInfoEx Gets the device configuration information for PPTP, L2TP, SSTP, and
IKEv2 on a server.

Opnum: 44

RRasAdminConnectionEnumEx Retrieves the list of all active connections for a specified RRAS server.

Opnum: 45

RRasAdminConnectionGetInfoEx Retrieves the connection information for a specific connection.

Opnum: 46

RMprAdminServerSetInfoEx Sets the device configuration information for PPTP, L2TP, SSTP, and
IKEv2 on a specified server.

Opnum: 47

RRasAdminUpdateConnection Updates the endpoint by sending MOBIKE on a connection specified
on a specified server.

Opnum: 48

RRouterInterfaceSetCredentialsLocal Sets credentials information for an interface.

Opnum: 49

321 / 547

[MS-RRASM-Diff] - v20210407
Routing and Remote Access Server (RRAS) Management Protocol
Copyright © 2021 Microsoft Corporation
Release: April 7, 2021

Method Description

RRouterInterfaceGetCredentialsLocal Gets credentials information for an interface.

Opnum: 50

RRouterInterfaceGetCustomInfoEx Gets the tunnel-specific custom configuration for an interface.

Opnum: 51

RRouterInterfaceSetCustomInfoEx Sets the tunnel-specific custom configuration for an interface.

Opnum: 52

3.1.4.1 (Updated Section) RMprAdminServerGetInfo (Opnum 0)

The RMprAdminServerGetInfo method retrieves port-related configuration information for the

specified RRAS server using the handle hDimServer. The dwLevel defines the type of information

requested. The caller MUST pass a pointer to a valid
DIM_INFORMATION_CONTAINER (section 2.2.1.2.1). The caller SHOULD free the memory pointed to
by pInfoStruct.

 DWORD RMprAdminServerGetInfo(
 [in] DIM_HANDLE hDimServer,
 [in] DWORD dwLevel,
 [out] PDIM_INFORMATION_CONTAINER pInfoStruct
);

hDimServer: A handle to the RRASM server where the call is executed, see section 3.1.3.

dwLevel: This is of type DWORD and MUST be set to one of the following values.

Value Meaning

0 After the method returns, the memory pointed by pInfoStruct->pBuffer is interpreted
as MPR_SERVER_0 (section 2.2.1.2.61).

1 After the method returns, the memory pointed by pInfoStruct->pBuffer is interpreted
as MPR_SERVER_1 (section 2.2.1.2.63).<24762).<249>

2 After the method returns, the memory pointed by pInfoStruct->pBuffer is interpreted
as MPR_SERVER_2 (section 2.2.1.2.64).<24863).<250>

pInfoStruct: This is a pointer of type DIM_INFORMATION_CONTAINER.
DIM_INFORMATION_CONTAINER.dwBufferSize SHOULD be initialized to zero (0). Upon
successful return, the pInfoStruct->pBuffer is typecast to MPR_SERVER_0,
MPR_SERVER_1,<251> or MPR_SERVER_2<252> based on the dwLevel value.

Return Values: A 32-bit, unsigned integer value that indicates return status. A return value of

ERROR_SUCCESS (0x00000000) indicates that the operation was completed successfully;

otherwise, the return value contains an error code, as specified in [MS-ERREF] or in section 2.2.4.
All values not in the table that follows MUST be treated the same by the RRASM client.

Return value/code Description

ERROR_SUCCESS

0x00000000

The call was successful.

322 / 547

[MS-RRASM-Diff] - v20210407
Routing and Remote Access Server (RRAS) Management Protocol
Copyright © 2021 Microsoft Corporation
Release: April 7, 2021

Return value/code Description

ERROR_ACCESS_DENIED

0x00000005

The calling application does not have sufficient privileges as specified in
section 2.1.1.1.

The opnum field value for this method is 0.

When processing this call, the RRASM server MUST do the following:

▪ Validate, as specified in section 2.1.1.1, whether this method was called by a client that has
access to the method. If the client does not have access, then return error
ERROR_ACCESS_DENIED (0x00000005).

▪ If pInfoStruct is NULL, return an error other than those specified in the previous table.

▪ If dwLevel is not supported, return an error other than one of the errors specified in the preceding
table.

▪ Call the abstract interface Invoke DIMSVC method specifying the operation and the parameters
to enable RRAS server to perform the required management task.

▪ If the RRAS server processes the request successfully, populate pInfoStruct with the information

returned by the RRAS server. Return ERROR_SUCCESS (0x00000000).

▪ Otherwise return the error provided by the RRAS server.

No exceptions are thrown beyond those thrown by the underlying RPC protocol [MS-RPCE].

3.1.4.2 RRasAdminConnectionEnum (Opnum 1)

The RRasAdminConnectionEnum method retrieves the list of active connections for a specified
RRASM server identified by the handle hDimServer. The dwLevel specifies the type of information
requested. The caller MUST pass a pointer to a valid

DIM_INFORMATION_CONTAINER (section 2.2.1.2.1), where
DIM_INFORMATION_CONTAINER.dwBufferSize is initialized to zero (0). After the function
returns, the caller SHOULD free the memory pointed to by pInfoStruct.

 DWORD RRasAdminConnectionEnum(
 [in] DIM_HANDLE hDimServer,
 [in] DWORD dwLevel,
 [in, out] PDIM_INFORMATION_CONTAINER pInfoStruct,
 [in] DWORD dwPreferedMaximumLength,
 [out] LPDWORD lpdwEntriesRead,
 [out] LPDWORD lpdwTotalEntries,
 [in, out, unique] LPDWORD lpdwResumeHandle
);

hDimServer: A handle to the RRASM server where the call is executed, see section 3.1.3.

dwLevel: This is of type DWORD and SHOULD be set to one of the following values.

Value Meaning

0 After the function returns, the memory pointed to by pInfoStruct->pBuffer is interpreted
as an array of RASI_CONNECTION_0 (section 2.2.1.2.77). The size of the array is
determined by lpdwEntriesRead.

1 After the function returns, the memory pointed to by pInfoStruct->pBuffer is interpreted

as an array of RASI_CONNECTION_1 (section 2.2.1.2.78). The size of the array is

323 / 547

[MS-RRASM-Diff] - v20210407
Routing and Remote Access Server (RRAS) Management Protocol
Copyright © 2021 Microsoft Corporation
Release: April 7, 2021

Value Meaning

determined by lpdwEntriesRead.

2 After the function returns, the memory pointed to by pInfoStruct->pBuffer is interpreted
as an array of RASI_CONNECTION_2 (section 2.2.1.2.79). The size of the array is
determined by lpdwEntriesRead.

3 After the function returns, the memory pointed to by pInfoStruct->pBuffer is interpreted
as an array of RASI_CONNECTION_3 (section 2.2.1.2.80)).The size of the array is
determined by lpdwEntriesRead.

4 After the function returns, the memory pointed to by pInfoStruct->pBuffer is interpreted
as an array of RAS_CONNECTION_4_IDL (section 2.2.1.2.236). The size of the array is
determined by lpdwEntriesRead.

pInfoStruct: This is a pointer of type DIM_INFORMATION_CONTAINER, and
DIM_INFORMATION_CONTAINER.dwBufferSize is initialized to zero (0). Upon successful return,
the pInfoStruct->pBuffer is a typecast array of RASI_CONNECTION_0,

RASI_CONNECTION_1, RASI_CONNECTION_2, RASI_CONNECTION_3,<253> or
RAS_CONNECTION_4_IDL based on the dwLevel value. The array size is determined by the
value in memory pointed to by lpdwEntriesRead.

dwPreferedMaximumLength: This is of type DWORD and SHOULD specify the preferred maximum
length of the returned data (pInfoStruct->pBuffer) in bytes.

lpdwEntriesRead: This is a pointer to type DWORD and upon a successful function-call return
specifies the total number of connections enumerated from the current resume position given by

lpdwResumeHandle.

lpdwTotalEntries: This is a pointer to type DWORD and receives the total number of connections
that could have been enumerated from the current resume position given by lpdwResumeHandle.

lpdwResumeHandle: This is a pointer to type DWORD and specifies a resume handle that is used to
continue the enumeration. The lpdwResumeHandle parameter is zero (0) on the first call and left

unchanged on subsequent calls. The caller MUST pass the same returned value in the next call to
this function; otherwise, an error is returned. If the return code is ERROR_MORE_DATA, another

call can be made using this handle to retrieve more data. If the return code is not
ERROR_MORE_DATA, the handle returned SHOULD be ignored. A return value of
ERROR_SUCCESS indicates a successful completion of the enumeration. Any return value other
than ERROR_SUCCESS or ERROR_MORE_DATA indicates the failure of the enumeration.

Return Values: A 32-bit, unsigned integer value that indicates return status. A return value of
ERROR_SUCCESS (0x00000000) indicates that the operation was completed successfully;

otherwise, the return value contains an error code, as specified in [MS-ERREF] or in section 2.2.4.
All values that are not in the table that follows MUST be treated the same by the RRASM client.

Return value/code Description

ERROR_SUCCESS

0x00000000

The call was successful.

ERROR_ACCESS_DENIED

0x00000005

The calling application does not have sufficient privileges as specified in section
2.1.1.1.

ERROR_MORE_DATA

0x000000EA

Not all the data was returned with this call. To obtain additional data, call the
function again using the handle that was returned in the lpdwResumeHandle
parameter.

The opnum field value for this method is 1.

324 / 547

[MS-RRASM-Diff] - v20210407
Routing and Remote Access Server (RRAS) Management Protocol
Copyright © 2021 Microsoft Corporation
Release: April 7, 2021

When processing this call, the RRASM server MUST do the following:

▪ Validate, as specified in section 2.1.1.1, whether this method was called by a client that has

access to the method. If the client does not have access, then return error
ERROR_ACCESS_DENIED (0x00000005).

▪ If the RouterType (section 2.2.3.4.1) is ROUTER_TYPE_LAN, return an error other than those in
the preceding table.

▪ If pInfoStruct is NULL, return an error other than those in the preceding table.

▪ If dwLevel is not supported, return an error other than those in the preceding table.

▪ Call the abstract interface Invoke DIMSVC method specifying the operation and the parameters
to enable RRAS server to perform the required management task.

▪ If the RRAS server processes the request successfully, populate the information returned by RRAS

server in pInfoStruct, along with lpdwEntriesRead, lpdwTotalEntries, and lpdwResumeHandle, and
return ERROR_SUCCESS (0x00000000).

▪ Otherwise return the failure error that the RRAS server returns.

 No exceptions are thrown beyond those thrown by the underlying RPC protocol [MS-RPCE].

3.1.4.3 (Updated Section) RRasAdminConnectionGetInfo (Opnum 2)

The RRasAdminConnectionGetInfo method retrieves the connection information for a particular
connection identified by the passed handle of the connection given in hDimConnection. The RRAS
server is identified by the server handle passed in hDimServer. The dwLevel defines the type of
information requested. The caller MUST pass a pointer to a valid
DIM_INFORMATION_CONTAINER (section 2.2.1.2.1), where

DIM_INFORMATION_CONTAINER.dwBufferSize is initialized to zero (0). The caller SHOULD free
the memory pointed to by pInfoStruct.

 DWORD RRasAdminConnectionGetInfo(
 [in] DIM_HANDLE hDimServer,
 [in] DWORD dwLevel,
 [in] DWORD hDimConnection,
 [out] PDIM_INFORMATION_CONTAINER pInfoStruct
);

hDimServer: A handle to the RRASM server where the call is executed, see section 3.1.3.

dwLevel: This is of type DWORD and MUST be set to one of the following values.

Value Meaning

0 After the function returns, the memory pointed to by pInfoStruct->pBuffer is interpreted
as RASI_CONNECTION_0 (section 2.2.1.2.78).77).

1 After the function returns, the memory pointed to by pInfoStruct->pBuffer is interpreted
as RASI_CONNECTION_1 (section 2.2.1.2.79).78).

2 After the function returns, the memory pointed to by pInfoStruct->pBuffer is interpreted
as an array of RASI_CONNECTION_2 (section 2.2.1.2.79) structures.

3 After the function returns, the memory pointed to by pInfoStruct->pBuffer is interpreted
as RASI_CONNECTION_3 (section 2.2.1.2.81).80).

325 / 547

[MS-RRASM-Diff] - v20210407
Routing and Remote Access Server (RRAS) Management Protocol
Copyright © 2021 Microsoft Corporation
Release: April 7, 2021

hDimConnection: This is of type DWORD and SHOULD be set to a particular connection identifier for
which the connection information is required. Obtain this handle by calling

RRasAdminConnectionEnum (section 3.1.4.2). Since RRASM server does not maintain connection
handle information, the validation of this handle SHOULD be done by the RRAS server

implementation.

pInfoStruct: This is a pointer of type DIM_INFORMATION_CONTAINER, and
DIM_INFORMATION_CONTAINER.dwBufferSize is initialized to zero (0). Upon successful
return, the pInfoStruct->pBuffer is a cast to an array of RASI_CONNECTION_0,
RASI_CONNECTION_1, RASI_CONNECTION_2, or RASI_CONNECTION_3 structures, based
on the dwLevel value.

Return Values: A 32-bit, unsigned integer value that indicates return status. A return value of

ERROR_SUCCESS (0x00000000) indicates that the operation was completed successfully;
otherwise, the value contains an error code, as specified in [MS-ERREF] or section 2.2.4. All values
that are not in the table that follows MUST be treated the same by the RRASM client.

Return value/code Description

ERROR_SUCCESS

0x00000000

The call was successful.

ERROR_ACCESS_DENIED

0x00000005

The calling application does not have sufficient privileges as specified in
section 2.1.1.1.

The opnum field value for this method is 2.

When processing this call, the RRASM server MUST do the following:

▪ Validate, as specified in section 2.1.1.1, whether this method was called by a client that has
access to the method. If not, then return error ERROR_ACCESS_DENIED (0x00000005).

▪ If the RouterType is ROUTER_TYPE_LAN, return an error other than those in the preceding table.

▪ If pInfoStruct is NULL, return an error other than those in the preceding table.

▪ If dwLevel is not supported, return an error other than those in the preceding table.

▪ Call the abstract interface Invoke DIMSVC method specifying the operation and the parameters

to enable the RRAS server to perform the required management task.

▪ If the RRAS server successfully processes the request, populate the pInfoStruct with the
information returned by the RRAS server and return ERROR_SUCCESS.

▪ Otherwise return the error provided by the RRAS server.

No exceptions are thrown beyond those thrown by the underlying RPC protocol [MS-RPCE].

3.1.4.4 RRasAdminConnectionClearStats (Opnum 3)

The RRasAdminConnectionClearStats method resets the statistics counters for the connection
identified by the passed handle in hDimConnection. The hDimServer handle specifies the RRASM
server on which the call is executed.

 DWORD RRasAdminConnectionClearStats(
 [in] DIM_HANDLE hDimServer,
 [in] DWORD hDimConnection
);

326 / 547

[MS-RRASM-Diff] - v20210407
Routing and Remote Access Server (RRAS) Management Protocol
Copyright © 2021 Microsoft Corporation
Release: April 7, 2021

hDimServer: A handle to the RRAS server where the call is executed, see section 3.1.3.

hDimConnection: This is of type DWORD and SHOULD be set to the particular connection identifier

for which the connection statistics have to be cleared. Obtain this handle by calling
RRasAdminConnectionEnum (section 3.1.4.2). Because RRASM server does not maintain

connection handle information, the validation of this handle SHOULD be done by the RRAS server
implementation.

Return Values: A 32-bit, unsigned integer value that indicates return status. A return value of
ERROR_SUCCESS (0x00000000) indicates that the operation was completed successfully;
otherwise, it contains an error code, as specified in [MS-ERREF] or in section 2.2.4. All values that
are not in the table that follows MUST be treated the same by the RRASM client.

Return value/code Description

ERROR_SUCCESS

0x00000000

The call was successful.

ERROR_ACCESS_DENIED

0x00000005

The calling application does not have sufficient privileges as specified in

section 2.1.1.1.

The opnum field value for this method is 3.

When processing this call, the RRASM server MUST do the following:

▪ Validate, as specified in section 2.1.1.1, whether this method was called by a client that has
access to the method. If the client does not have access, return error ERROR_ACCESS_DENIED
(0x00000005).

▪ If the RouterType is ROUTER_TYPE_LAN, return an error other than one of the errors listed in the
preceding table.

▪ Call the abstract interface Invoke DIMSVC method specifying the operation and the parameters
to enable the RRAS server to perform the required management task.

▪ If the operation completed successfully, return ERROR_SUCCESS (0x00000000).

▪ Otherwise, return the error provided by the RRAS server.

No exceptions are thrown beyond those thrown by the underlying RPC protocol [MS-RPCE].

3.1.4.5 RRasAdminPortEnum (Opnum 4)

The RRasAdminPortEnum method retrieves the list of all ports on a RRAS server, or the ports for a
specified connection determined by hRasConnection. The hDimServer handle specifies the RRAS
server on which the call is executed. The dwLevel defines the type of information requested. The caller

MUST pass a pointer to a valid DIM_INFORMATION_CONTAINER (section 2.2.1.2.1), where
DIM_INFORMATION_CONTAINER.dwBufferSize is initialized to zero (0). The caller SHOULD free
the memory pointed to by pInfoStruct.

 DWORD RRasAdminPortEnum(
 [in] DIM_HANDLE hDimServer,
 [in] DWORD dwLevel,
 [in] DWORD hRasConnection,
 [in, out] PDIM_INFORMATION_CONTAINER pInfoStruct,
 [in] DWORD dwPreferedMaximumLength,
 [out] LPDWORD lpdwEntriesRead,
 [out] LPDWORD lpdwTotalEntries,
 [in, out, unique] LPDWORD lpdwResumeHandle

327 / 547

[MS-RRASM-Diff] - v20210407
Routing and Remote Access Server (RRAS) Management Protocol
Copyright © 2021 Microsoft Corporation
Release: April 7, 2021

);

hDimServer: A handle to the RRASM server where the call is to be executed, see section 3.1.3.

dwLevel: This is of type DWORD and MUST be set to the following value.

Value Meaning

0 After the function returns, the memory pointed by pInfoStruct->pBuffer is interpreted as
an array of RASI_PORT_0 (section 2.2.1.2.75). The size of the array is determined by
lpdwEntriesRead. This includes information related to the Port object during runtime. The
port objects SHOULD be initialized based on the port configurations defined by
WanEndpoints (section 2.2.3.3.1.8). The Device Name is also returned as a part of each
port information.

hRasConnection: This is of type DWORD and SHOULD be set to a particular connection identifier for

which the connection information is required. Obtain this handle by calling
RRasAdminConnectionEnum (section 3.1.4.2). If this parameter is passed as

INVALID_HANDLE_VALUE (0xFFFFFFFF), the function enumerates all the active ports configured
on the RRAS server. Since RRASM server does not maintain connection handle information, the
validation of this handle SHOULD be done by the RRAS server implementation.

pInfoStruct: This is a pointer of type DIM_INFORMATION_CONTAINER (section 2.2.1.2.1), and

DIM_INFORMATION_CONTAINER.dwBufferSize is initialized to zero (0). Upon successful
return, the pInfoStruct->pBuffer is typecast to an array of RASI_PORT_0, and the array size is
determined by the value to pointer lpdwEntriesRead.

dwPreferedMaximumLength: This is of type DWORD and SHOULD specify the preferred maximum
length of returned data (pInfoStruct->pBuffer) in bytes. If dwPreferedMaximumLength is -1 then
all existing port entries for the specified connection are returned in the buffer.

lpdwEntriesRead: This is a pointer to type DWORD. Upon successful return, this determines the

total number of ports enumerated from the current resume position given by lpdwResumeHandle.

lpdwTotalEntries: This is a pointer to type DWORD and receives the total number of ports that
could have been enumerated from the current resume position given by lpdwResumeHandle.

lpdwResumeHandle: This is a pointer to type DWORD and specifies a resume handle that is used to
continue the enumeration. The lpdwResumeHandle parameter is zero (0) on the first call and left
unchanged on subsequent calls (the caller MUST pass the same returned value in the next call to
this function; otherwise, an error is returned). If the return code is ERROR_MORE_DATA

(0x000000EA), another call can be made using this handle to retrieve more data. If the handle is
NULL upon return, the enumeration is complete. This handle is invalid (-1) for other types of error
returns.

Return Values: A 32-bit, unsigned integer value that indicates return status. A return value of
ERROR_SUCCESS (0x00000000) indicates that the operation was completed successfully;
otherwise, it contains an error code, as specified in [MS-ERREF] or section 2.2.4. All values that

are not listed in the table that follows MUST be treated the same by the RRASM client.

Return value/code Description

ERROR_SUCCESS

0x00000000

The call was successful.

ERROR_ACCESS_DENIED

0x00000005

The calling application does not have sufficient privileges.

ERROR_MORE_DATA Not all of the data was returned with this call. To obtain additional data, call

328 / 547

[MS-RRASM-Diff] - v20210407
Routing and Remote Access Server (RRAS) Management Protocol
Copyright © 2021 Microsoft Corporation
Release: April 7, 2021

Return value/code Description

0x000000EA the function again using the handle that was returned in the
lpdwResumeHandle parameter.

The opnum field value for this method is 4.

When processing this call, the RRASM server MUST do the following:

▪ Validate, as specified in section 2.1.1.1, whether this method was called by a client that has
access to the method. If the client does not have access, then return error
ERROR_ACCESS_DENIED (0x00000005).

If the RouterType (section 2.2.3.4.1) is ROUTER_TYPE_LAN, return an error other than those in
the preceding table.

▪ If pInfoStruct is NULL, return an error other than those in the preceding table.

▪ If dwLevel is not supported, return an error other than those in the preceding table.

▪ Call the abstract interface Invoke DIMSVC method specifying the operation and the parameters
to enable the RRAS server to perform the required management task.

▪ If the RRAS server successfully processes the request, populate pInfoStruct with the information
returned by the RRAS server and return ERROR_SUCCESS (0x00000000).

▪ Otherwise return the failure error status returned by RRAS server.

No exceptions are thrown beyond those thrown by the underlying RPC protocol [MS-RPCE].

3.1.4.6 RRasAdminPortGetInfo (Opnum 5)

The RRasAdminPortGetInfo method retrieves the port information for a particular port given in
hPort for a specified RRAS server using the handle hDimServer. The dwLevel defines the type of

information requested. The caller MUST pass a pointer to a valid
DIM_INFORMATION_CONTAINER (section 2.2.1.2.1), where
DIM_INFORMATION_CONTAINER.dwBufferSize is initialized to zero (0). The caller SHOULD free the

memory pointed to by pInfoStruct.

 DWORD RRasAdminPortGetInfo(
 [in] DIM_HANDLE hDimServer,
 [in] DWORD dwLevel,
 [in] DWORD hPort,
 [out] PDIM_INFORMATION_CONTAINER pInfoStruct
);

hDimServer: A handle to the RRASM server where the call is executed, see section 3.1.3.

dwLevel: This is of type DWORD and MUST be set to any of the following values.

Value Meaning

0 After the function returns, the memory pointed to by pInfoStruct->pBuffer is typecast to
RASI_PORT_0 (section 2.2.1.2.75). The size of the array is determined by
lpdwEntriesRead.

1 After the function returns, the memory pointed to by pInfoStruct->pBuffer is typecast to
RASI_ PORT_1 (section 2.2.1.2.76). The size of the array is determined by
lpdwEntriesRead.

329 / 547

[MS-RRASM-Diff] - v20210407
Routing and Remote Access Server (RRAS) Management Protocol
Copyright © 2021 Microsoft Corporation
Release: April 7, 2021

hPort: This is of type DWORD and MUST be set to the particular port identifier for which the port
information is required. Obtain this handle by calling RRasAdminPortEnum (section 3.1.4.5). Since

RRASM server does not maintain any port handle information, the validation of this handle
SHOULD be done by the RRAS server implementation.

pInfoStruct: This is a pointer of type DIM_INFORMATION_CONTAINER, and
DIM_INFORMATION_CONTAINER.dwBufferSize is initialized to zero (0). Upon successful
return, the pInfoStruct->pBuffer is typecast to an array of the RASI_PORT_0 or RASI_ PORT_1
structures, based on the dwLevel value.

Return Values: A 32-bit, unsigned integer value that indicates return status. A return value of
ERROR_SUCCESS (0x00000000) indicates that the operation was completed successfully;
otherwise, the value contains an error code, as specified in [MS-ERREF] or section 2.2.4. All values

that are not listed in the table that follows MUST be treated the same by the RRASM client.

Return value/code Description

ERROR_SUCCESS

0x00000000

The call was successful.

ERROR_ACCESS_DENIED

0x00000005

The calling application does not have sufficient privileges, as specified in
section 2.1.1.1.

The opnum field value for this method is 5.

When processing this call, the RRASM server MUST do the following:

▪ Validate, as specified in section 2.1.1.1, whether this method was called by a client that has

access to the method. If the client does not have access, then return error
ERROR_ACCESS_DENIED (0x00000005).

▪ If the RouterType is ROUTER_TYPE_LAN, return an error other than those in the preceding table.

▪ If pInfoStruct is NULL, return an error other than those in the preceding table.

▪ If dwLevel is not supported, return an error other than those in the preceding table.

▪ Call the abstract interface Invoke DIMSVC method specifying the operation and the parameters
to enable RRAS server to perform the required management task.

▪ If the RRAS server successfully processes the request, populate pInfoStruct with the information
returned by RRAS server. Return ERROR_SUCCESS (0x00000000).

▪ Otherwise return the error status returned by the RRAS server.

No exceptions are thrown beyond those thrown by the underlying RPC protocol [MS-RPCE].

3.1.4.7 RRasAdminPortClearStats (Opnum 6)

The RRasAdminPortClearStats method resets the counters for the specified port on the given server

hPort. The hDimServer handle specifies the RRASM server on which the call is to be executed.

 DWORD RRasAdminPortClearStats(
 [in] DIM_HANDLE hDimServer,
 [in] DWORD hPort
);

hDimServer: A handle to the RRASM server where the call is executed, see section 3.1.3.

330 / 547

[MS-RRASM-Diff] - v20210407
Routing and Remote Access Server (RRAS) Management Protocol
Copyright © 2021 Microsoft Corporation
Release: April 7, 2021

hPort: This is of type DWORD and MUST be set to the particular port identifier for which the port
information is required. Obtain this handle by calling RRasAdminPortEnum (section 3.1.4.5). Since

RRASM server does not maintain port handle information, the validation of this handle SHOULD be
done by the RRAS server implementation.

Return Values: A 32-bit, unsigned integer value that indicates return status. A return value of
ERROR_SUCCESS (0x00000000) indicates that the operation was completed successfully;
otherwise it contains an error code, as specified in [MS-ERREF] or section 2.2.4. All values that are
not in the table that follows MUST be treated the same by the RRASM client.

Return value/code Description

ERROR_SUCCESS

0x00000000

The call was successful.

ERROR_ACCESS_DENIED

0x00000005

The calling application does not have sufficient privileges.

The opnum field value for this method is 6.

When processing this call, the RRASM server MUST do the following:

▪ Validate, as specified in section 2.1.1.1, whether this method was called by a client that has
access to the method. If the client does not have access, then return error
ERROR_ACCESS_DENIED (0x00000005).

▪ If RouterType is ROUTER_TYPE_LAN, return an error other than those in the preceding table.

▪ Call the abstract interface Invoke DIMSVC method specifying the operation and the parameters

to enable RRAS server to perform the required management task.

▪ Return any error that the RRAS server can return while processing this request. Otherwise return
ERROR_SUCCESS (0x00000000).

No exceptions are thrown beyond those thrown by the underlying RPC protocol [MS-RPCE].

3.1.4.8 (Updated Section) RRasAdminPortReset (Opnum 7)

The RRasAdminPortReset function performs no action and always returns ERROR_SUCCESS if the
access validation succeeds.

 DWORD RRasAdminPortReset(
 [in] DIM_HANDLE hDimServer,
 [in] DWORD hPort
);

hDimServer: A handle to the RRASM server where the call is executed, see section 3.1.3.

hPort: This is of type DWORD and SHOULD be set to the particular port identifier for which the port
information is required. Obtain this handle by calling RRasAdminPortEnum (section 3.1.4.5). This

parameter is not used. Because RRASM server does not maintain port handle information, the
validation of this handle SHOULD be done by the RRAS server implementation.

Return Values: A 32-bit, unsigned integer value that indicates return status. A return value of
ERROR_SUCCESS (0x00000000) indicates that the operation was completed successfully;
otherwise it contains an error code, as specified in [MS-ERREF] or in section 2.2.4. All values not
in the following table MUST be treated the same by the RRASM client.

331 / 547

[MS-RRASM-Diff] - v20210407
Routing and Remote Access Server (RRAS) Management Protocol
Copyright © 2021 Microsoft Corporation
Release: April 7, 2021

Return value/code Description

ERROR_SUCCESS

0x00000000

The call was successful.

ERROR_ACCESS_DENIED

0x00000005

The calling application does not have sufficient privileges.

The opnum field value for this method is 7.

When processing this call, the RRASM server MUST do the following:

▪ Validate, as specified in section 2.1.1.1, whether this method was called by a client that has
access to the method. If the client does not have access, then return error
ERROR_ACCESS_DENIED (0x00000005).

▪ If RouterType is ROUTER_TYPE_LAN, return an error other than those in the preceding table.

▪ Call the abstract interface Invoke DIMSVC method specifying the operation and the parameters
to enable RRAS server to perform the required management task.

▪ Return any error that the RRAS server returns while processing this request. Otherwise return

ERROR_SUCCESS (0x00000000).

No exceptions are thrown beyond those thrown by the underlying RPC protocol [MS-RPCE].

3.1.4.9 RRasAdminPortDisconnect (Opnum 8)

The RRasAdminPortDisconnect method initiates the disconnect of the connection on a specified
port. The port SHOULD have been associated with a connection. For the disconnection to be
successful, the connection SHOULD have been in the connected state. The connection is the
established dial-up or VPN connection that has the RRAS server as its endpoint.

 DWORD RRasAdminPortDisconnect(
 [in] DIM_HANDLE hDimServer,
 [in] DWORD hPort
);

hDimServer: A handle to the RRASM server where the call is executed, see section 3.1.3.

hPort: This is of type DWORD and MUST be set to the port identifier of the port that is to be

disconnected. Obtain this handle by calling RRasAdminPortEnum (section 3.1.4.5). Since RRASM
server does not maintain port handle information, the validation of this handle SHOULD be done
by the RRAS server implementation.

Return Values: A 32-bit, unsigned integer value that indicates return status. A return value of
ERROR_SUCCESS (0x00000000) indicates that the operation was completed successfully;
otherwise, it contains an error code, as specified in [MS-ERREF] or in section 2.2.4. All values that

are not in the table that follows MUST be treated the same by the RRASM client.

Return value/code Description

ERROR_SUCCESS

0x00000000

The call was successful.

ERROR_ACCESS_DENIED

0x00000005

The calling application does not have sufficient privileges.

332 / 547

[MS-RRASM-Diff] - v20210407
Routing and Remote Access Server (RRAS) Management Protocol
Copyright © 2021 Microsoft Corporation
Release: April 7, 2021

The opnum field value for this method is 8.

When processing this call, the RRASM server MUST do the following:

▪ Validate, as specified in section 2.1.1.1, whether this method was called by a client that has
access to the method. If the client does not have access, then return error

ERROR_ACCESS_DENIED (0x00000005).

▪ If RouterType is ROUTER_TYPE_LAN, return an error other than those in the preceding table.

▪ Use the RRasAdminPortEnum method to ensure that hPort is a valid port handle of an active
connection. If it is not, return an error other than those in the preceding table.

▪ Call the abstract interface Invoke DIMSVC method specifying the operation and the parameters
to enable RRAS server to perform the required management task.

▪ Return any error that the RRAS server returns as a part of processing this request. Otherwise

return ERROR_SUCCESS (0x00000000).

No exceptions are thrown beyond those thrown by the underlying RPC protocol [MS-RPCE].

3.1.4.10 RRouterInterfaceTransportSetGlobalInfo (Opnum 9)

The RRouterInterfaceTransportSetGlobalInfo method<254> is used to set global information, for
the specified transport (IPX, IPv4, or IPv6), such as disabling IPv6 filtering.

 DWORD RRouterInterfaceTransportSetGlobalInfo(
 [in] DIM_HANDLE hDimServer,
 [in] DWORD dwTransportId,
 [in] PDIM_INTERFACE_CONTAINER pInfoStruct
);

hDimServer: A handle to the RRASM server where the call is executed, see section 3.1.3.

dwTransportId: Specifies the transport for which the information is set (IPX, IPv4, or IPv6). It MUST
be one of the following values.<255>

Value Meaning

PID_IPX

0x0000002B

IPX protocol

PID_IP

0x00000021

IPv4 protocol

PID_IPV6

0x00000057

IPv6 protocol

pInfoStruct: Specifies the pointer to a DIM_INTERFACE_CONTAINER (section 2.2.1.2.2).

The fGetGlobalInfo member of the DIM_INTERFACE_CONTAINER MUST be set to 0.

The pGlobalInfo and dwGlobalInfoSize of DIM_INTERFACE_CONTAINER MUST be set. The
rest of the fields SHOULD not be set.

The dwGlobalInfoSize field MUST be set to the size of the information passed in pGlobalInfo.

The pGlobalInfo member MUST point to a valid RTR_INFO_BLOCK_HEADER (section 2.2.1.2.3)
and RTR_TOC_ENTRY (section 2.2.1.2.4). Otherwise, an error code is returned. The acceptable

333 / 547

[MS-RRASM-Diff] - v20210407
Routing and Remote Access Server (RRAS) Management Protocol
Copyright © 2021 Microsoft Corporation
Release: April 7, 2021

RTR_TOC_ENTRY values depend on the transport and the RRAS server implementation support;
hence the RRAS server implementation SHOULD check that InfoType of RTR_TOC_ENTRY is

supported.

Return Values: A 32-bit, unsigned integer value that indicates return status. A return value of

ERROR_SUCCESS (0x00000000) indicates that the operation was completed successfully;
otherwise, it contains an error code, as specified in [MS-ERREF] or in section 2.2.4. All values that
are not in the table that follows MUST be treated the same by the RRASM client.

Return value/code Description

ERROR_SUCCESS

0x00000000

The call was successful.

ERROR_ACCESS_DENIED

0x00000005

The calling application does not have sufficient privileges, as specified in
section 2.1.1.1.

The opnum field value for this method is 9.

When processing this call, the RRASM server MUST do the following:

▪ Validate, as specified in section 2.1.1.1, whether this method was called by a client that has
access to the method. If the client does not have access, then return error
ERROR_ACCESS_DENIED (0x00000005).

▪ If pInfoStruct is NULL, return an error other than one of the errors specified in the preceding
table.

▪ If dwTransportId is not specified in the SupportedTransportsList, return an error other than

those specified in the preceding table.

▪ If the dwGlobalInfoSize information in pInfoStruct is not the same as the Size field of
RTR_INFO_BLOCK_HEADER, or if the RTR_INFO_BLOCK_HEADER is not constructed
properly according to section 2.2.1.2.3, return an error other than one of the errors in the

preceding table.

▪ Call the abstract interface Invoke DIMSVC method specifying the operation and the parameters
to enable the RRAS server to perform the required management task.

▪ Return any error value returned as a part of the RRAS server processing. Otherwise return
ERROR_SUCCESS (0x00000000).

No exceptions are thrown beyond those thrown by the underlying RPC protocol [MS-RPCE].

3.1.4.11 RRouterInterfaceTransportGetGlobalInfo (Opnum 10)

The RRouterInterfaceTransportGetGlobalInfo method<256> is used to get the entire global
information for the specified transport.

 DWORD RRouterInterfaceTransportGetGlobalInfo(
 [in] DIM_HANDLE hDimServer,
 [in] DWORD dwTransportId,
 [in, out] PDIM_INTERFACE_CONTAINER pInfoStruct
);

hDimServer: A handle to the RRASM server where the call is executed, see section 3.1.3.

334 / 547

[MS-RRASM-Diff] - v20210407
Routing and Remote Access Server (RRAS) Management Protocol
Copyright © 2021 Microsoft Corporation
Release: April 7, 2021

dwTransportId: Specifies the transport for which the information is set (IPX, IPv4, or IPv6). It
MUST be one of the following values.<257>

Value Meaning

PID_IPX

0x0000002B

IPX protocol

PID_IP

0x00000021

IPv4 protocol

PID_IPV6

0x00000057

IPv6 protocol

pInfoStruct: Pointer to DIM_INTERFACE_CONTAINER (section 2.2.1.2.1). This pointer MUST NOT be
NULL when calling this method and is allocated to the size of the DIM_INTERFACE_CONTAINER
structure. On successful completion, the structure is populated with a
DIM_INTERFACE_CONTAINER structure having valid values for dwGlobalInfoSize and

pGlobalInfo fields which the caller SHOULD free when done using it.

The fGetGlobalInfo of DIM_INTERFACE_CONTAINER MUST be set to 1. The rest of the
DIM_INTERFACE_CONTAINER fields SHOULD not be set.

The pGlobalInfo and dwGlobalInfoSize members of DIM_INTERFACE_CONTAINER will be
populated on successful completion of this method.

The pGlobalInfo member will point to a valid RTR_INFO_BLOCK_HEADER (section 2.2.1.2.3) and
RTR_TOC_ENTRY (section 2.2.1.2.4).

On successful completion dwGlobalInfoSize will be set to the size of the information being
passed in pGlobalInfo.

If dwTransportId is PID_IP or PID_IP6 and if the InfoType field in the RTR_TOC_ENTRY structure
is one of the following, pGlobalInfo MUST be interpreted as the structure in the following table.

InfoType value Meaning Structure pointed to by pGlobalInfo

MS_IP_BOOTP

0x0000270F

IP BOOTP global
configuration
information.

IPBOOTP_GLOBAL_CONFIG (section 2.2.1.
2.149)

MS_IP_IGMP

0x4137000A

IGMP global
configuration.

IGMP_MIB_GLOBAL_CONFIG (section 2.2.
1.2.173)

MS_IP_RIP

0x00000008

IP RIP global
configuration
information.

IPRIP_GLOBAL_CONFIG (section 2.2.1.2.1
64) (values specified are overwritten)

MS_IP_BGP

0x0137000E

BGP configuration. When dwTransportId is PID_IP, the
structure pointed to, at the offset is
BGP_CONFIG_HEADER (section 2.2.1.2.25
2).

When dwTransportId is PID_IP6, the
structure pointed to, at the offset is
BGP_ROUTER_V6 (section 2.2.1.2.265).

MS_IP_DHCP_ALLOCATOR

0x81372714

DHCP global
configuration

information.

IP_AUTO_DHCP_GLOBAL_INFO (section
2.2.1.2.191) (values specified are

overwritten)

335 / 547

[MS-RRASM-Diff] - v20210407
Routing and Remote Access Server (RRAS) Management Protocol
Copyright © 2021 Microsoft Corporation
Release: April 7, 2021

InfoType value Meaning Structure pointed to by pGlobalInfo

MS_IP_DNS_PROXY

0x81372713

DNS proxy global
configuration
information.

IP_DNS_PROXY_GLOBAL_INFO (section
2.2.1.2.193) (values specified are
overwritten)

MS_IP_OSPF<258>

0x0000000D

OSPF global
configuration
information specified is
retrieved. The type field
is the first field in each
of the structures and
this defines which of the
structures MUST be
used. The type field
MUST be
OSPF_PARAM_TYPE
(section 2.2.1.1.14) and
the value MUST be
corresponding to the
structures specified.

OSPF_ROUTE_FILTER_INFO (section
2.2.1.2.209)

OSPF_PROTO_FILTER_INFO (section
2.2.1.2.210)

OSPF_GLOBAL_PARAM (section
2.2.1.2.211)

OSPF_ROUTE_FILTER (section
2.2.1.2.208)

MS_IP_ALG<259>

0x8137271A

Application layer
gateway global
configuration.

IP_ALG_GLOBAL_INFO (section
2.2.1.2.201)

MS_IPV6_DHCP

0x000003E7

DHCPv6 Relay global
configuration
information.

DHCPV6R_GLOBAL_CONFIG (section
2.2.1.2.157)

MS_IP_NAT

0x81372715

IP NAT global
configuration

information.

IP_NAT_GLOBAL_INFO (section
2.2.1.2.195)

Return Values: A 32-bit, unsigned integer value that indicates return status. A return value of
ERROR_SUCCESS (0x00000000) indicates that the operation was completed successfully;

otherwise it contains an error code, as specified in [MS-ERREF] or in section 2.2.4. All values that
are not in the table that follows MUST be treated the same by the RRASM client.

Return value/code Description

ERROR_SUCCESS

0x00000000

The call was successful.

ERROR_ACCESS_DENIED

0x00000005

The calling application does not have sufficient privileges.

The opnum field value for this method is 10.

When processing this call, the RRASM server MUST do the following:

▪ Validate, as specified in section 2.1.1.1, whether this method was called by a client that has
access to the method. If the client does not have access, then return error
ERROR_ACCESS_DENIED (0x00000005).

▪ If pInfoStruct is NULL, return an error other than one of the errors specified in the preceding

table.

▪ If dwTransportId is not specified in SupportedTransportsList, return an error other than one of
the errors specified in the preceding table.

336 / 547

[MS-RRASM-Diff] - v20210407
Routing and Remote Access Server (RRAS) Management Protocol
Copyright © 2021 Microsoft Corporation
Release: April 7, 2021

▪ Call the abstract interface Invoke DIMSVC method specifying the operation and the parameters
to enable RRAS server to perform the required management task.

▪ If the RRAS server successfully processes the request, populate the returned information in the
pInfoStruct with the information returned by the RRAS server and return ERROR_SUCCESS.

▪ Otherwise return the error value provided by the RRAS server.

No exceptions are thrown beyond those thrown by the underlying RPC protocol [MS-RPCE].

3.1.4.12 RRouterInterfaceGetHandle (Opnum 11)

The RRouterInterfaceGetHandle method<260> retrieves the handle of the specified interface
lpwsInterfaceName among all the ROUTER_INTERFACE_TYPEs. The hDimServer handle determines the
RRAS server on which the call is made.

 DWORD RRouterInterfaceGetHandle(
 [in] DIM_HANDLE hDimServer,
 [in, string] LPWSTR lpwsInterfaceName,
 [in, out] LPDWORD phInterface,
 [in] DWORD fIncludeClientInterfaces
);

hDimServer: A handle to the RRAS server where the call is executed, see section 3.1.3.

lpwsInterfaceName: Pointer to a null-terminated Unicode string that specifies the name of the
interface to be retrieved.

phInterface: This is a pointer to a DWORD that receives the unique identifier of the interface
specified by lpwsInterfaceName.

fIncludeClientInterfaces: Specifies whether the method includes client interfaces while searching. If
this parameter is 0, interfaces of type ROUTER_IF_TYPE_CLIENT are ignored in the search for the

interface with the name specified by lpwsInterfaceName. If this parameter is a nonzero value and
an interface with the specified name exists, RRouterInterfaceGetHandle returns a handle to an
interface of type ROUTER_IF_TYPE_CLIENT. Since it is possible that there are several interfaces of

type ROUTER_IF_TYPE_CLIENT, the handle returned references the first interface that is found
with the name ROUTER_IF_TYPE_CLIENT specified by lpwsInterfaceName.

Return Values: A 32-bit, unsigned integer value that indicates return status. A return value of
ERROR_SUCCESS (0x00000000) indicates that the operation was completed successfully;
otherwise it contains an error code, as specified in [MS-ERREF] or in section 2.2.4. All values that
are not in the table that follows MUST be treated the same by the RRASM client.

Return value/code Description

ERROR_SUCCESS

0x00000000

The call was successful.

ERROR_ACCESS_DENIED

0x00000005

The calling application does not have sufficient privileges, as specified
in section 2.1.1.1.

The opnum field value for this method is 11.

When processing this call, the RRASM server MUST do the following:

337 / 547

[MS-RRASM-Diff] - v20210407
Routing and Remote Access Server (RRAS) Management Protocol
Copyright © 2021 Microsoft Corporation
Release: April 7, 2021

▪ Validate, as specified in section 2.1.1.1, whether this method was called by a client that has
access to the method. If the client does not have access, then return error

ERROR_ACCESS_DENIED (0x00000005).

▪ If lpwsInterfaceName is NULL, return an error other than those specified in the preceding table.

▪ If the interface name of any entry in InterfaceList is not the same as lpwsInterfaceName, return
an error other than one of the errors specified in the preceding table.

▪ Call the abstract interface Invoke DIMSVC method specifying the operation and the parameters
to enable RRAS server to perform the required management task.

▪ If the RRAS server has successfully processed the request, populate the interface handle in
phInterface. This interface handle is the same as the one present as a part of the interface-specific
entry in InterfaceList. Return ERROR_SUCCESS.

▪ Otherwise return the error provided by the RRAS server.

No exceptions are thrown beyond those thrown by the underlying RPC protocol [MS-RPCE].

3.1.4.13 (Updated Section) RRouterInterfaceCreate (Opnum 12)

The RRouterInterfaceCreate method creates an interface on a specified RRAS server,
hDimServer.<261>

 DWORD RRouterInterfaceCreate(
 [in] DIM_HANDLE hDimServer,
 [in] DWORD dwLevel,
 [in] PDIM_INFORMATION_CONTAINER pInfoStruct,
 [in, out] LPDWORD phInterface
);

hDimServer: A handle to the RRASM server where the call is executed, see section 3.1.3.

dwLevel: This is of type DWORD and MUST be set to any of the following values.

Value Meaning

0 The pInfoStruct->pBuffer MUST be set to point to a MPRI_INTERFACE_0 (section 2.2.1.2.82).81).

1 The pInfoStruct->pBuffer MUST be set to point to a MPRI_INTERFACE_1 (section 2.2.1.2.83).82).

2 The pInfoStruct->pBuffer MUST be set to point to a MPRI_INTERFACE_2 (section 2.2.1.2.84).83).

3 The pInfoStruct->pBuffer MUST be set to point to a MPRI_INTERFACE_3 (section 2.2.1.2.85).84).

pInfoStruct: This is a pointer of type DIM_INFORMATION_CONTAINER (section 2.2.1.2.1) and MUST
be set to following, based on dwLevel.

dwLevel pInfoStruct->size pInfoStruct->pBuffer

0 This MUST be set to the size of
MPRI_INTERFACE_0 (section 2.2.1.2.81).
Otherwise, an error is returned.

This MUST be set to point to
MPRI_INTERFACE_0.

Only the wszInterfaceName, fEnabled, and
dwIfType fields of MPRI_INTERFACE_0 can be
set. Setting other values has no effect.

1 This MUST be set to the size of
MPRI_INTERFACE_1 (section 2.2.1.2.82).

This MUST be set to point to
MPRI_INTERFACE_1.

338 / 547

[MS-RRASM-Diff] - v20210407
Routing and Remote Access Server (RRAS) Management Protocol
Copyright © 2021 Microsoft Corporation
Release: April 7, 2021

dwLevel pInfoStruct->size pInfoStruct->pBuffer

Otherwise, an error is returned. Only the wszInterfaceName, fEnabled,
dwIfType fields of MPRI_INTERFACE_1 can be
set. Setting other values has no effect.

2 This MUST be set to the size of
MPRI_INTERFACE_2 (section 2.2.1.2.83).
Otherwise, an error is returned.

This MUST be set to point to
MPRI_INTERFACE_2.

The dwIfType of MPRI_INTERFACE_2
SHOULD be set to
ROUTER_IF_TYPE_FULL_ROUTER. The
szAlternates of MPRI_INTERFACE_2 MUST be
set to 0.

3 This MUST be set to the size of

MPRI_INTERFACE_3 (section 2.2.1.2.84).
Otherwise, an error is returned.

This MUST be set to point to

MPRI_INTERFACE_3.

The dwIfType of MPRI_INTERFACE_3
SHOULD be set to
ROUTER_IF_TYPE_FULL_ROUTER. The
szAlternates of MPRI_INTERFACE_3 MUST be
set to 0. The values of the ipv6addrDns and
ipv6addrDnsAlt members of the
MPRI_INTERFACE_3 structure SHOULD be
ignored by the server.

If dwIfType is set to ROUTER_IF_TYPE_TUNNEL1 or ROUTER_IF_TYPE_DIALOUT in
MPRI_INTERFACE_0, MPRI_INTERFACE_1, MPRI_INTERFACE_2, or MPRI_INTERFACE_3,
an error is returned.<262>

If dwIfType is set to ROUTER_IF_TYPE_DEDICATED, ROUTER_IF_TYPE_INTERNAL, or

ROUTER_IF_TYPE_LOOPBACK, and if fEnabled is set to FALSE, an error other than one of the
errors specified in the table that follows MUST be returned.

If the dwIfType in MPRI_INTERFACE_0, MPRI_INTERFACE_1, MPRI_INTERFACE_2, or
MPRI_INTERFACE_3, is set to ROUTER_IF_TYPE_CLIENT, ROUTER_IF_TYPE_HOME_ROUTER, or

ROUTER_IF_TYPE_FULL_ROUTER, and if the RouterType is ROUTER_TYPE_LAN, an error SHOULD
be returned.

If dwIfType in MPRI_INTERFACE_0 is set to ROUTER_IF_TYPE_FULL_ROUTER, phonebook

information for the interface MUST have already been configured in the phonebook file.

If dwLevel is either 2 or 3 and none of the authentication protocol-related flags
MPRIO_RequireMsCHAP2, MPRIO_RequireCHAP, and MPRIO_RequireEAP are specified in the
dwfOptions member, then the dwEncryptionType member of the MPRI_INTERFACE_2 or
MPRI_INTERFACE_3 structures SHOULD be initialized to MPR_ET_Require and the value of the
dwfOptions member SHOULD be modified to enable the following flags by default:

▪ MPRIO_RequireEncryptedPw

▪ MPRIO_RequireDataEncryption

▪ MPRIO_RequireCHAP

▪ MPRIO_RequireMsCHAP2

phInterface: This is a pointer to a DWORD that specifies the unique identifier of the interface that is
created. This is the same as the dwInterface in MPRI_INTERFACE_0, MPRI_INTERFACE_1,
MPRI_INTERFACE_2, or MPRI_INTERFACE_3.

Return Values: A 32-bit, unsigned integer value that indicates return status. A return value of
ERROR_SUCCESS (0x00000000) indicates that the operation was completed successfully;

339 / 547

[MS-RRASM-Diff] - v20210407
Routing and Remote Access Server (RRAS) Management Protocol
Copyright © 2021 Microsoft Corporation
Release: April 7, 2021

otherwise, it contains an error code, as specified in [MS-ERREF] or in section 2.2.4. All values that
are not in the table that follows MUST be treated the same by the RRASM client.

Return value/code Description

ERROR_SUCCESS

0x00000000

The call was successful.

ERROR_ACCESS_DENIED

0x00000005

The calling application does not have sufficient privileges, as specified
in section 2.1.1.1.

The opnum field value for this method is 12.

 When processing this call, the RRASM server MUST do the following:

▪ Validate, as specified in section 2.1.1.1, whether this method was called by a client that has
access to the method. If the client does not have access, then return error
ERROR_ACCESS_DENIED (0x00000005).

▪ If pInfoStruct is NULL, return an error other than those in the preceding table.

▪ If dwLevel is not supported, return an error other than those in the preceding table.

▪ If the interface name of any entry in InterfaceList is the same as wszInterfaceName specified as
a part of MPRI_INTERFACE_0, MPRI_INTERFACE_1, MPRI_INTERFACE_2, and
MPRI_INTERFACE_3, return an error other than one of the errors specified in the preceding table.

▪ Call the abstract interface Invoke DIMSVC method specifying the operation and the parameters
to enable the RRAS server to perform the required management task.

▪ If the RRAS server processes the request successfully, populate the phInterface with the interface

handle returned by the RRAS server, add an interface entry to the InterfaceList comprising the
interface name to be the wszInterfaceName (present as a part of the MPRI_INTERFACE_0,
MPRI_INTERFACE_1, MPRI_INTERFACE_2, or MPRI_INTERFACE_3 structure) and the interface

handle to be the value filled in for phInterface. If dwLevel value is specified as 2 or 3, add the
wszInterfaceName specified as a part of MPRI_INTERFACE_2 or MPRI_INTERFACE_3 into
PhonebookEntryNameList and return ERROR_SUCCESS.

▪ Otherwise return the error status that the RRAS server returned.

No exceptions are thrown beyond those thrown by the underlying RPC protocol [MS-RPCE].

3.1.4.14 (Updated Section) RRouterInterfaceGetInfo (Opnum 13)

The RRouterInterfaceGetInfo method<263> retrieves information for a specified interface,
hInterface, on a specified RRAS server, hDimServer. This method is used to find information about

existing interfaces on the RRAS. The information is returned in pInfoStruct. The caller SHOULD free
the memory pointed to by pInfoStruct.

 DWORD RRouterInterfaceGetInfo(
 [in] DIM_HANDLE hDimServer,
 [in] DWORD dwLevel,
 [in, out] PDIM_INFORMATION_CONTAINER pInfoStruct,
 [in] DWORD hInterface
);

hDimServer: A handle to the RRASM server where the call is executed, see section 3.1.3.

dwLevel: This is of type DWORD and MUST be set to any of the following values.

340 / 547

[MS-RRASM-Diff] - v20210407
Routing and Remote Access Server (RRAS) Management Protocol
Copyright © 2021 Microsoft Corporation
Release: April 7, 2021

Value Meaning

0 After the function returns, the memory pointed to by pInfoStruct->pBuffer is interpreted as
MPRI_INTERFACE_0 (section 2.2.1.2.82).81).

1 After the function returns, the memory pointed to by pInfoStruct->pBuffer is interpreted as
MPRI_INTERFACE_1 (section 2.2.1.2.83).82).

2 After the function returns, the memory pointed to by pInfoStruct->pBuffer is interpreted as
MPRI_INTERFACE_2 (section 2.2.1.2.84).83).

3 After the function returns, the memory pointed to by pInfoStruct->pBuffer is interpreted as
MPRI_INTERFACE_3 (section 2.2.1.2.85).84).

pInfoStruct: This is a pointer of type DIM_INFORMATION_CONTAINER (section 2.2.1.2.1), and
DIM_INFORMATION_CONTAINER.dwBufferSize SHOULD be initialized to zero (0). Upon successful
return, the pInfoStruct->pBuffer is cast to an array of MPRI_INTERFACE_0,
MPRI_INTERFACE_1, MPRI_INTERFACE_2, or MPRI_INTERFACE_3 structures based on the

dwLevel values.

The dwfOptions member of MPRI_INTERFACE_2 and MPRI_INTERFACE_3 SHOULD be
updated as follows:

▪ If the dwfOptions member has neither MPRIO_RequirePAP nor MPRIO_RequireEAP, then
enable MPRIO_RequireEncryptedPw.

▪ If the dwfOptions has none of the following flags set, then enable

MPRIO_RequireMsEncryptedPw:

▪ MPRIO_RequireCHAP

▪ MPRIO_RequirePAP

▪ MPRIO_RequireEAP

▪ If the dwEncryptionType member is not set to MPR_ET_None or MPR_ET_Optional, enable
the MPRIO_RequireDataEncryption flag.

hInterface: The unique identifier of an interface. This can be obtained from

RRouterInterfaceCreate (section 3.1.4.13) or RRouterInterfaceGetHandle (section 3.1.4.12). The
interface MUST be of type ROUTER_IF_TYPE_FULL_ROUTER if dwLevel is set to 2 or 3. Because
the RRASM server does not maintain the interface handles, the RRAS server SHOULD check and
ensure that this handle value represents a valid interface handle.

Return Values: A 32-bit, unsigned integer value that indicates return status. A return value of
ERROR_SUCCESS (0x00000000) indicates that the operation was completed successfully;
otherwise, the return value contains an error code, as specified in [MS-ERREF] or in section 2.2.4.

All values that are not listed in the table that follows MUST be treated the same by the RRASM
client.

Return value/code Description

ERROR_SUCCESS

0x00000000

The call was successful.

ERROR_ACCESS_DENIED

0x00000005

The calling application does not have sufficient privileges, as specified
in section 2.1.1.1.

The opnum field value for this method is 13.

341 / 547

[MS-RRASM-Diff] - v20210407
Routing and Remote Access Server (RRAS) Management Protocol
Copyright © 2021 Microsoft Corporation
Release: April 7, 2021

 When processing this call, the RRASM server MUST do the following:

▪ Validate, as specified in section 2.1.1.1, whether this method was called by a client that has

access to the method. If the client does not have access, then return error
ERROR_ACCESS_DENIED (0x00000005).

▪ If pInfoStruct is NULL, return an error other than those in the preceding table.

▪ If dwLevel is not supported, return an error other than those in the preceding table.

▪ If the hInterface value specified is not associated with an interface entry in InterfaceList that has a
matching interface handle (value being the same), return an error other than one of the errors
specified in the preceding table.

▪ If dwLevel value is specified as 2 or 3 and lpszEntry is not present in PhonebookEntryNameList,
return an error other than one of the errors specified in the preceding table.

▪ Call the abstract interface Invoke DIMSVC method specifying the operation and the parameters
to enable RRAS server to perform the required management task.

▪ If the RRAS server has processed the request successfully, populate the pInfoStruct with the
information returned by the RRAS server and return ERROR_SUCCESS.

▪ Otherwise return the error status returned by the RRAS server.

No exceptions are thrown beyond those thrown by the underlying RPC protocol [MS-RPCE].

3.1.4.15 (Updated Section) RRouterInterfaceSetInfo (Opnum 14)

The RRouterInterfaceSetInfo method<264> sets information for a specified interface, hInterface,
on a specified server, hDimServer.

 DWORD RRouterInterfaceSetInfo(
 [in] DIM_HANDLE hDimServer,
 [in] DWORD dwLevel,
 [in] PDIM_INFORMATION_CONTAINER pInfoStruct,
 [in] DWORD hInterface
);

hDimServer: A handle to the RRASM server where the call is executed, see section 3.1.3.

dwLevel: This is of type DWORD and SHOULD be set to any of the following values.

Value Meaning

0 pInfoStruct->pBuffer MUST be set to point to a MPRI_INTERFACE_0 (section 2.2.1.2.82).81).

1 pInfoStruct->pBuffer MUST be set to point to a MPRI_INTERFACE_1 (section 2.2.1.2.83).82).

2 pInfoStruct->pBuffer MUST be set to point to a MPRI_INTERFACE_2 (section 2.2.1.2.84).83).

3 pInfoStruct->pBuffer MUST be set to point to a
MPRI_INTERFACE_3 (section 2.2.1.2.85).<263>84).<265>

pInfoStruct: This is a pointer of type DIM_INFORMATION_CONTAINER (section 2.2.1.2.1) and MUST
be set to the following, based on dwLevel.

342 / 547

[MS-RRASM-Diff] - v20210407
Routing and Remote Access Server (RRAS) Management Protocol
Copyright © 2021 Microsoft Corporation
Release: April 7, 2021

dwLevel pInfoStruct->size pInfoStruct->pBuffer

0 This MUST be set to the size of the data
being passed in
MPRI_INTERFACE_0 (section 2.2.1.2.81).

This MUST be set to point to MPRI_INTERFACE_0.

Only the fEnabled field of this structure can be
modified; the rest of the fields MUST be populated
as returned by
RRouterInterfaceGetInfo (section 3.1.4.14).

1 This MUST be set to the size of the data
being passed in
MPRI_INTERFACE_1 (section 2.2.1.2.82).

This MUST be set to point to MPRI_INTERFACE_1.

In addition to the fields for MPRI_INTERFACE_0,
lpwsDialoutHoursRestriction can be set. Setting
other values has no effect. The values MUST be
populated as returned by RRouterInterfaceGetInfo.

2 This MUST be set to the size of

MPRI_INTERFACE_2 (section 2.2.1.2.83).
Otherwise, an error is returned.

This MUST be set to point to MPRI_INTERFACE_2.

The dwIfType of MPRI_INTERFACE_0 MUST be set
to ROUTER_IF_TYPE_FULL_ROUTER.

The szAlternates of MPRI_INTERFACE_2 MUST be
set to 0.

3 This MUST be set to the size of
MPRI_INTERFACE_3 (section 2.2.1.2.84).
Otherwise, an error is returned.

This MUST be set to point to MPRI_INTERFACE_3.

The dwIfType of MPRI_INTERFACE_3 MUST be set
to ROUTER_IF_TYPE_FULL_ROUTER.

The szAlternates of MPRI_INTERFACE_0 MUST be
set to 0. The values of the ipv6addrDns and
ipv6addrDnsAlt members of MPRI_INTERFACE_3
SHOULD be ignored by the server.

If the interface type, specified at the time the interface was created using
RRouterInterfaceCreate (section 3.1.4.13), is either ROUTER_IF_TYPE_DEDICATED or

ROUTER_IF_TYPE_INTERNAL and if fEnabled is set to FALSE, an error is returned.

When the dwLevel value is either 2 or 3 and the dwfOptions member does not contain any of
the flags MPRIO_RequirePAP, MPRIO_RequireCHAP, MPRIO_RequireMsCHAP2, or

MPRIO_RequireEAP, then the dwfOptionsvaluedwfOptions value SHOULD be modified to enable
MPRIO_RequireMsCHAP2, MPRIO_RequireCHAP, and MPRIO_RequirePAP.

hInterface: The unique identifier of an interface. This can be obtained from

RRouterInterfaceCreate or RRouterInterfaceGetHandle (section 3.1.4.12). Since the RRASM
does not manage the interface handles, the RRAS server SHOULD check to ensure that this handle
is a valid interface handle.

Return Values: A 32-bit, unsigned integer value that indicates return status. A return value of
ERROR_SUCCESS (0x00000000) indicates that the operation was completed successfully;
otherwise, it contains an error code, as specified in [MS-ERREF] or in section 2.2.4. All values that
are not in the table that follows MUST be treated the same by the RRASM client.

Return value/code Description

ERROR_SUCCESS

0x00000000

The call was successful.

ERROR_ACCESS_DENIED

0x00000005

The calling application does not have sufficient privileges, as specified in
section 2.1.1.1.

The opnum field value for this method is 14.

When processing this call, the RRASM server MUST do the following:

343 / 547

[MS-RRASM-Diff] - v20210407
Routing and Remote Access Server (RRAS) Management Protocol
Copyright © 2021 Microsoft Corporation
Release: April 7, 2021

▪ Validate, as specified in section 2.1.1.1, whether this method was called by a client that has
access to the method. If the client does not have access, then return error

ERROR_ACCESS_DENIED (0x00000005).

▪ If pInfoStruct is NULL, return an error other than those in the preceding table.

▪ If dwLevel is not supported, return an error other than those in the preceding table.

▪ If the hInterface value specified is not associated with an interface entry in InterfaceList that has
a matching interface handle (value being the same), return an error other than one of the errors
specified in the preceding table.

▪ Call the abstract interface Invoke DIMSVC method specifying the operation and the parameters
to enable RRAS server to perform the required management task.

▪ Return any error that the RRAS server returns while processing this request. Otherwise return

ERROR_SUCCESS (0x00000000).

No exceptions are thrown beyond those thrown by the underlying RPC protocol [MS-RPCE].

3.1.4.16 RRouterInterfaceDelete (Opnum 15)

The RRouterInterfaceDelete method<266> deletes an interface on a specified server. The interface
MUST have been created with the RRouterInterfaceCreate (section 3.1.4.13) method.

 DWORD RRouterInterfaceDelete(
 [in] DIM_HANDLE hDimServer,
 [in] DWORD hInterface
);

hDimServer: A handle to the RRASM server where the call is to be executed, see section 3.1.3.

hInterface: A unique identifier of an interface. This can be obtained from RRouterInterfaceCreate

or RRouterInterfaceGetHandle (section 3.1.4.12). Because the RRASM server does not maintain
the interface handles, the RRAS server SHOULD check to ensure that this handle is a valid

interface handle.

Return Values: A 32-bit, unsigned integer value that indicates the return status. A return value of
ERROR_SUCCESS (0x00000000) indicates that the operation was completed successfully;
otherwise, the value contains an error code, as specified in [MS-ERREF] or in section 2.2.4. All
values that are not listed in the table that follows MUST be treated the same by the RRASM client.

Return value/code Description

ERROR_SUCCESS

0x00000000

The call was successful.

ERROR_ACCESS_DENIED

0x00000005

The calling application does not have sufficient privileges, as specified in
section 2.1.1.1.

ERROR_INTERFACE_CONNECTED

0x0000038C

The interface is connected and therefore cannot be deleted. This error is
returned if the interface is of type ROUTER_IF_TYPE_CLIENT,
ROUTER_IF_TYPE_HOME_ROUTER, or ROUTER_IF_TYPE_FULL_ROUTER.

The opnum field value for this method is 15.

When processing this call, the RRASM server MUST do the following:

344 / 547

[MS-RRASM-Diff] - v20210407
Routing and Remote Access Server (RRAS) Management Protocol
Copyright © 2021 Microsoft Corporation
Release: April 7, 2021

▪ Validate, as specified in section 2.1.1.1, whether this method was called by a client that has
access to the method. If the client does not have access, then return error

ERROR_ACCESS_DENIED (0x00000005).

▪ If the interface is of type ROUTER_IF_TYPE_CLIENT, ROUTER_IF_TYPE_HOME_ROUTER, or

ROUTER_IF_TYPE_FULL_ROUTER, and if the interface is not connected, the RRAS implementation
MUST return ERROR_INTERFACE_CONNECTED (0x0000038C).

▪ If the hInterface value specified is not associated with an interface entry in InterfaceList that has
a matching interface handle (value being the same), return an error other than one of the errors
specified in the preceding table.

▪ Call the abstract interface Invoke DIMSVC method specifying the operation and the parameters
to enable RRAS server to perform the required management task.

▪ If the RRAS server returns successfully removing the interface context from its runtime
configuration settings, and if the interface is ROUTER_IF_TYPE_FULL_ROUTER, get the interface
name present in the interface entry (from the InterfaceList) that has the same interface handle

as hInterface, remove the phone book entry with the specified interface name, and remove the
interface name from PhonebookEntryNameList. Remove the interface entry from the
InterfaceList to complete the removal of the interface.

▪ Return any error status provided by the RRAS server. Otherwise return ERROR_SUCCESS
(0x00000000).

No exceptions are thrown beyond those thrown by the underlying RPC protocol [MS-RPCE].

3.1.4.17 RRouterInterfaceTransportRemove (Opnum 16)

The RRouterInterfaceTransportRemove method<267> is used to remove an existing transport
(IPX, IPv4, or IPv6) from the RRAS server on an interface.

 DWORD RRouterInterfaceTransportRemove(
 [in] DIM_HANDLE hDimServer,
 [in] DWORD hInterface,
 [in] DWORD dwTransportId
);

hDimServer: A handle to the RRASM server where the call is to be executed, see section 3.1.3.

hInterface: A unique identifier of an interface. This can be obtained from
RRouterInterfaceCreate (section 3.1.4.13) or RRouterInterfaceGetHandle (section 3.1.4.12).
Because the RRASM server does not maintain the interface handles, the RRAS server SHOULD
check and ensure that this handle represents a valid interface handle.

dwTransportId: Specifies the transport (IPX, IPv4, or IPv6). It MUST be one of the following
values.<268> Otherwise an error other than those in the returned values table is returned.

Value Meaning

PID_IPX

0x0000002B

IPX protocol

PID_IP

0x00000021

IPv4 protocol

PID_IPV6

0x00000057

IPv6 protocol

345 / 547

[MS-RRASM-Diff] - v20210407
Routing and Remote Access Server (RRAS) Management Protocol
Copyright © 2021 Microsoft Corporation
Release: April 7, 2021

Return Values: A 32-bit, unsigned integer value that indicates return status. A return value
ERROR_SUCCESS (0x00000000) indicates that the operation was completed successfully;

otherwise, the return value contains an error code, as specified in [MS-ERREF] or in section 2.2.4.
All values that are not in the table that follows MUST be treated the same by the RRASM client.

The return value is one of the following error codes. All other values MUST be treated the same.

Return value/code Description

ERROR_SUCCESS

0x00000000

The call was successful.

ERROR_ACCESS_DENIED

0x00000005

The calling application does not have sufficient privileges, as specified in
section 2.1.1.1.

The opnum field value for this method is 16.

When processing this call, the RRASM server MUST do the following:

▪ Validate, as specified in section 2.1.1.1, whether this method was called by a client that has
access to the method. If the client does not have access, then return error

ERROR_ACCESS_DENIED (0x00000005).

▪ If dwTransportId is not specified in the SupportedTransportsList, return an error other than one
of the errors specified in the preceding table.

▪ Call the abstract interface Invoke DIMSVC method specifying the operation and the parameters
to enable RRAS server to perform the required management task.

▪ Return any error status that the RRAS server returns as a result of its processing. Otherwise

return ERROR_SUCCESS (0x00000000).

No exceptions are thrown beyond those thrown by the underlying RPC protocol [MS-RPCE].

3.1.4.18 (Updated Section) RRouterInterfaceTransportAdd (Opnum 17)

The RRouterInterfaceTransportAdd method SHOULD<269> add a transport (IPX, IPv4, or IPv6) to

a specified interface. Note that if a transport already exists on an interface it cannot be added.

 DWORD RRouterInterfaceTransportAdd(
 [in] DIM_HANDLE hDimServer,
 [in] DWORD hInterface,
 [in] DWORD dwTransportId,
 [in] PDIM_INTERFACE_CONTAINER pInfoStruct
);

hDimServer: A handle to the RRASM server where the call is to be executed, see section 3.1.3.

hInterface: The unique identifier of an interface. This can be obtained from

RRouterInterfaceCreate (section 3.1.4.13) or RRouterInterfaceGetHandle (section 3.1.4.12).
Because the RRASM server does not maintain the interface handles, the RRAS server SHOULD
check and ensure that this handle represents a valid interface handle.

dwTransportId: Specifies the transport (IPX, IPv4, or IPv6) and MUST be one of the following
values.<270> Otherwise an error, other than those in the return values table, is returned.

346 / 547

[MS-RRASM-Diff] - v20210407
Routing and Remote Access Server (RRAS) Management Protocol
Copyright © 2021 Microsoft Corporation
Release: April 7, 2021

Value Meaning

PID_IPX

0x0000002B

IPX protocol

PID_IP

0x00000021

IPv4 protocol

PID_IPV6

0x00000057

IPv6 protocol

pInfoStruct: This is a pointer of type DIM_INTERFACE_CONTAINER (section 2.2.1.2.2).

pInterfaceInfo and dwInterfaceInfoSize of DIM_INTERFACE_CONTAINER MUST be set to valid
values. All other DIM_INTERFACE_CONTAINER fields are ignored.

pInterfaceInfo points to a valid RTR_INFO_BLOCK_HEADER (section 2.2.1.2.3) and
RTR_TOC_ENTRY (section 2.2.1.2.4). Otherwise, an error is returned. The RRASM server does not

store the interface configurations for the various transports that the RRAS server supports. As part

of its processing, the RRAS server SHOULD check that InfoType of RTR_TOC_ENTRY is
supported.

Only a combination of the following entries SHOULD<271> be present in pInterfaceInfo.

Value

Meaning and conditions (interface
means the one identified by
hInterface) Structure pointed to at offset

IP_IN_FILTER_INFO

0xFFFF0001

This is the input filter that MUST be
applied to IP packets sent to the RRAS
server. The information is overwritten.
The interface MUST NOT be of type
ROUTER_IF_TYPE_INTERNAL,
ROUTER_IF_TYPE_LOOPBACK, or
ROUTER_IF_TYPE_DIALOUT.

FILTER_DESCRIPTOR (section 2.2.
1.2.5)

IP_OUT_FILTER_INFO

0xFFFF0002

This is the output filter that MUST be
applied to IP packets sent from the RRAS
server. The information is overwritten.
The interface MUST NOT be of type
ROUTER_IF_TYPE_INTERNAL,
ROUTER_IF_TYPE_LOOPBACK, or
ROUTER_IF_TYPE_DIALOUT.

FILTER_DESCRIPTOR (section 2.2.
1.2.5)

IP_INTERFACE_STATUS_I
NFO

0xFFFF0004

The interface IP status info is overwritten. INTERFACE_STATUS_INFO (sectio
n 2.2.1.2.18)

IP_ROUTER_DISC_INFO

0xFFFF0007

Router discovery information is
overwritten.

RTR_DISC_INFO (section 2.2.1.2.1
4)

IP_MCAST_BOUNDARY_I
NFO

0xFFFF000B

Multicast boundary information is added. MIB_BOUNDARYROW (section 2.2.
1.2.24)

IP_IFFILTER_INFO

0xFFFF000D

IP interface filter information is
overwritten. Interface MUST NOT be of
type ROUTER_IF_TYPE_INTERNAL,
ROUTER_IF_TYPE_LOOPBACK, or
ROUTER_IF_TYPE_DIALOUT.

IFFILTER_INFO (section 2.2.1.2.88
)

347 / 547

[MS-RRASM-Diff] - v20210407
Routing and Remote Access Server (RRAS) Management Protocol
Copyright © 2021 Microsoft Corporation
Release: April 7, 2021

Value

Meaning and conditions (interface
means the one identified by
hInterface) Structure pointed to at offset

IP_MCAST_LIMIT_INFO

0xFFFF000E

Multicast configuration information. MIB_MCAST_LIMIT_ROW (section
2.2.1.2.50)16)

IP_ROUTE_INFO

0xFFFF0005

The dwAdminStatus MUST be
IF_ADMIN_STATUS_UP if the route
information is added.

If bV4 of INTERFACE_ROUTE_INFO is
set, it indicates an IPv4 route is added;
otherwise, an IPv6 route is added.

INTERFACE_ROUTE_INFO (section
2.2.1.2.11)

IP_IN_FILTER_INFO_V6

0xFFFF0011

This is the input filter that MUST be

applied to IPv6 packets sent to the RRAS
server. The information is overwritten.
The interface MUST NOT be of type
ROUTER_IF_TYPE_INTERNAL,
ROUTER_IF_TYPE_LOOPBACK, or
ROUTER_IF_TYPE_DIALOUT.

FILTER_DESCRIPTOR_V6 (section

2.2.1.2.7)

IP_OUT_FILTER_INFO_V6

0xFFFF0012

This is the output filter that MUST be
applied to IPv6 packets sent from the
RRAS server. The information is
overwritten. The interface MUST NOT be
of type ROUTER_IF_TYPE_INTERNAL,
ROUTER_IF_TYPE_LOOPBACK, or
ROUTER_IF_TYPE_DIALOUT.

FILTER_DESCRIPTOR_V6 (section
2.2.1.2.7)

IP_DEMAND_DIAL_FILTE
R_INFO_V6

0xFFFF0013

IPv6 traffic that matches this filter
indicates that a site-to-site connection

MUST be available and all IPv6 packets
matching this filter MUST be routed into
the connection. The interface MUST be of
type ROUTER_IF_TYPE_FULL_ROUTER or
ROUTER_IF_TYPE_HOME_ROUTER and the
filters are overwritten

FILTER_DESCRIPTOR_V6 (section
2.2.1.2.7)

IP_IFFILTER_INFO_V6

0xFFFF0014

IPv6 interface filter information is
overwritten. The interface MUST NOT be
of type ROUTER_IF_TYPE_INTERNAL,
ROUTER_IF_TYPE_LOOPBACK, or
ROUTER_IF_TYPE_DIALOUT.

IFFILTER_INFO (section 2.2.1.2.88
)

MS_IP_BOOTP

0x0000270F

IP BOOTP interface, information
depending.

IPBOOTP_IF_CONFIG (section 2.2.
1.2.150)

MS_IP_IGMP

0x4137000A

IGMP interface information. IGMP_MIB_IF_CONFIG (section 2.2
.1.2.174)

MS_IP_RIP

0x00000008

IP RIP interface information. IPRIP_IF_CONFIG (section 2.2.1.2.
166)

MS_IP_DHCP_ALLOCATO
R

0x81372714

DHCP allocator interface information.

Used only with
RRouterInterfaceTransportSetGlobalInfo (
section 3.1.4.10).

IP_AUTO_DHCP_INTERFACE_INFO
(section 2.2.1.2.192)

MS_IP_DNS_PROXY

0x81372713

DNS proxy interface information. IP_DNS_PROXY_INTERFACE_INFO
(section 2.2.1.2.194)

348 / 547

[MS-RRASM-Diff] - v20210407
Routing and Remote Access Server (RRAS) Management Protocol
Copyright © 2021 Microsoft Corporation
Release: April 7, 2021

Value

Meaning and conditions (interface
means the one identified by
hInterface) Structure pointed to at offset

MS_IP_NAT

0x81372715

IP NAT interface information. IP_NAT_INTERFACE_INFO (section
2.2.1.2.197)

MS_IP_OSPF<272>

0x0000000D

OSPF interface information is added. OSPF_INTERFACE_PARAM (section
2.2.1.2.215)

MS_IPV6_DHCP

0x000003E7

DHCPv6 Relay interface information. DHCPV6R_IF_CONFIG (section 2.2.
1.2.159)

Return Values: A 32-bit, unsigned integer value that indicates return status. A return value of
ERROR_SUCCESS (0x00000000) indicates that the operation was completed successfully;
otherwise it contains an error code, as specified in [MS-ERREF] or in section 2.2.4. All values not
in the following table MUST be treated the same by the RRASM client.

Return value/code Description

ERROR_SUCCESS

0x00000000

The call was successful.

ERROR_ACCESS_DENIED

0x00000005

The calling application does not have sufficient privileges, as specified in
2.1.1.1.

The opnum field value for this method is 17.

 When processing this call, the RRASM server MUST do the following:

▪ Validate, as specified in 2.1.1.1, whether this method was called by a client that has access to the
method. If the client does not have access, then return error ERROR_ACCESS_DENIED
(0x00000005).

▪ If pInfoStruct is NULL, return an error other than those in the preceding table.

▪ If dwTransportId is not specified in the SupportedTransportsList, return an error other than

those specified in the preceding table.

▪ Call the abstract interface Invoke DIMSVC method specifying the operation and the parameters
to enable RRAS server to perform the required management task.

▪ Return any error status provided by the RRAS server processing. Otherwise return
ERROR_SUCCESS (0x00000000).

No exceptions are thrown beyond those thrown by the underlying RPC protocol [MS-RPCE].

3.1.4.19 RRouterInterfaceTransportGetInfo (Opnum 18)

The RRouterInterfaceTransportGetInfo method<273> retrieves information about a transport
running on a specified interface. The information retrieved is of the type
RTR_INFO_BLOCK_HEADER (section 2.2.1.2.3), encapsulated within a

DIM_INTERFACE_CONTAINER (section 2.2.1.2.2).

 DWORD RRouterInterfaceTransportGetInfo(
 [in] DIM_HANDLE hDimServer,
 [in] DWORD hInterface,
 [in] DWORD dwTransportId,
 [in, out] PDIM_INTERFACE_CONTAINER pInfoStruct

349 / 547

[MS-RRASM-Diff] - v20210407
Routing and Remote Access Server (RRAS) Management Protocol
Copyright © 2021 Microsoft Corporation
Release: April 7, 2021

);

hDimServer: A handle to the RRASM server where the call is to be executed, see section 3.1.3.

hInterface: The unique identifier of an interface. This can be obtained from
RRouterInterfaceCreate (section 3.1.4.13) or RRouterInterfaceGetHandle (section 3.1.4.12). Since

the RRASM server does not maintain the interface handles, the RRAS server SHOULD check and
ensure that this handle is a valid interface handle.

dwTransportId: Specifies the transport for which the information is retrieved (IPX, IPv4, or IPv6). It
MUST be one of the following values.<274> Otherwise an error other than those in the return
values table is returned.

Value Meaning

PID_IPX

0x0000002B

IPX protocol

PID_IP

0x00000021

IPv4 protocol

PID_IPV6

0x00000057

IPv6 protocol<275>

pInfoStruct: This is a pointer of type DIM_INTERFACE_CONTAINER. It MUST NOT be NULL.

fGetInterfaceInfo of DIM_INTERFACE_CONTAINER MUST be set to 1.

On completion of the method, pInterfaceInfo and dwInterfaceInfoSize of the pInfoStruct
fields are set. pInterfaceInfo points to a valid RTR_INFO_BLOCK_HEADER (section 2.2.1.2.3)

and RTR_TOC_ENTRY (section 2.2.1.2.4) on return.

Return Values: A 32-bit, unsigned integer value that indicates return status. A return value of

ERROR_SUCCESS (0x00000000) indicates that the operation was completed successfully;
otherwise, it contains an error code, as specified in [MS-ERREF] or in section 2.2.4. All values that
are not in the table that follows MUST be treated the same by the RRASM client.

Return value/code Description

ERROR_SUCCESS

0x00000000

The call was successful.

ERROR_ACCESS_DENIED

0x00000005

The calling application does not have sufficient privileges, as specified in
section 2.1.1.1.

The opnum field value for this method is 18.

When processing this call, the RRASM server MUST do the following:

▪ Validate, as specified in section 2.1.1.1, whether this method was called by a client that has
access to the method. If the client does not have access, then return error
ERROR_ACCESS_DENIED (0x00000005).

▪ If pInfoStruct is NULL, return an error other than those in the preceding table.

▪ If dwTransportId is not specified in the SupportedTransportsList, return an error other than
those specified in the preceding table.

350 / 547

[MS-RRASM-Diff] - v20210407
Routing and Remote Access Server (RRAS) Management Protocol
Copyright © 2021 Microsoft Corporation
Release: April 7, 2021

▪ Call the abstract interface Invoke DIMSVC method specifying the operation and the parameters
to enable RRAS server to perform the required management task.

▪ If the RRAS server processing returns successfully, populate the interface information returned by
RRAS server in pInfoStruct and return ERROR_SUCCESS (0x00000000).

▪ Otherwise return the error result provided by RRAS server.

No exceptions are thrown beyond those thrown by the underlying RPC protocol [MS-RPCE].

3.1.4.20 (Updated Section) RRouterInterfaceTransportSetInfo (Opnum 19)

The RRouterInterfaceTransportSetInfo method SHOULD<276> set information about a transport
running on a specified interface. The information is overwritten using the type
RTR_INFO_BLOCK_HEADER (section 2.2.1.2.3), encapsulated within a
DIM_INTERFACE_CONTAINER (section 2.2.1.2.2).

 DWORD RRouterInterfaceTransportSetInfo(
 [in] DIM_HANDLE hDimServer,
 [in] DWORD hInterface,
 [in] DWORD dwTransportId,
 [in] PDIM_INTERFACE_CONTAINER pInfoStruct
);

hDimServer: A handle to the RRASM server where the call is to be executed, see section 3.1.3.

hInterface: The unique identifier of an interface. This can be obtained from

RRouterInterfaceCreate (section 3.1.4.13) or RRouterInterfaceGetHandle (section 3.1.4.12).
Because the RRASM server does not maintain the interface handles, the RRAS server SHOULD
check and ensure that this handle represents a valid interface handle.

dwTransportId: Specifies the transport for which the information is set (IPX, IPv4, or IPv6). It MUST
be one of the following values.<277> Otherwise an error other than those in the return values

table is returned.

Value Meaning

PID_IPX

0x0000002B

IPX protocol

PID_IP

0x00000021

IPv4 protocol

PID_IPV6

0x00000057

IPv6 protocol

pInfoStruct: This is a pointer of type DIM_INTERFACE_CONTAINER.

pInterfaceInfo and dwInterfaceInfoSize of PDIM_INTERFACE_CONTAINER MUST be set. The

rest of the fields are ignored. The RRASM server does not store the interface configurations for the

various transports that the RRAS server supports. The RRAS server SHOULD check that the
InfoType field of RTR_TOC_ENTRY (section 2.2.1.2.4) is supported.

Only a combination of the following entries of RTR_TOC_ENTRY MUST be present in
pInterfaceInfo.<278>

351 / 547

[MS-RRASM-Diff] - v20210407
Routing and Remote Access Server (RRAS) Management Protocol
Copyright © 2021 Microsoft Corporation
Release: April 7, 2021

Value

Meaning and conditions
(interface means the one
identified by hInterface) Structure pointed to at offset

IP_INTERFACE_STATUS_INFO

0xFFFF0004

Interface IP status
information is overwritten.

INTERFACE_STATUS_INFO (sectio
n 2.2.1.2.18)

IP_ROUTER_DISC_INFO

0xFFFF0007

Router discovery information
is overwritten.

RTR_DISC_INFO (section 2.2.1.2.
14)

IP_MCAST_BOUNDARY_INFO

0xFFFF000B

Multicast boundary
information is added.

MIB_BOUNDARYROW (section 2.2.
1.2.24)

IP_IFFILTER_INFO

0xFFFF000D

IP interface filter information
is overwritten. The interface
MUST NOT be of type
ROUTER_IF_TYPE_INTERNAL,
ROUTER_IF_TYPE_LOOPBACK,
or
ROUTER_IF_TYPE_DIALOUT.

IFFILTER_INFO (section 2.2.1.2.88
)

IP_MCAST_LIMIT_INFO

0xFFFF000E

Multicast configuration
information.

MIB_MCAST_LIMIT_ROW (section
2.2.1.2.16)

IP_ROUTE_INFO

0xFFFF0005

The dwAdminStatus MUST be
IF_ADMIN_STATUS_UP if the
route information is added.

If bV4 of
INTERFACE_ROUTE_INFO is
set, it indicates an IPv4 route
is added; otherwise, an IPv6
route is added.

INTERFACE_ROUTE_INFO (section
2.2.1.2.11)

IP_IN_FILTER_INFO

0xFFFF0001

This is the input filter that
MUST be applied to IP packets
sent to the RRAS server. The
information is overwritten.
The interface MUST NOT be of
type
ROUTER_IF_TYPE_INTERNAL,
ROUTER_IF_TYPE_LOOPBACK,
or
ROUTER_IF_TYPE_DIALOUT.

FILTER_DESCRIPTOR (section 2.2.
1.2.5)

IP_OUT_FILTER_INFO

0xFFFF0002

This is the output filter that
MUST be applied to IP packets
sent from the RRAS server.
The information is
overwritten. The interface
MUST NOT be of type
ROUTER_IF_TYPE_INTERNAL,
ROUTER_IF_TYPE_LOOPBACK,
or
ROUTER_IF_TYPE_DIALOUT.

FILTER_DESCRIPTOR (section 2.2.
1.2.5)

IP_DEMAND_DIAL_FILTER_INFO

0xFFFF0009

IPv4 traffic that matches this
filter indicates that there is a
site-to-site connection
available into which all the
IPv4 packets (matching this
filter) are routed. The
information is overwritten.
The interface MUST be of type

FILTER_DESCRIPTOR (section 2.2.
1.2.5)

352 / 547

[MS-RRASM-Diff] - v20210407
Routing and Remote Access Server (RRAS) Management Protocol
Copyright © 2021 Microsoft Corporation
Release: April 7, 2021

Value

Meaning and conditions
(interface means the one
identified by hInterface) Structure pointed to at offset

ROUTER_IF_TYPE_FULL_ROUT
ER or
ROUTER_IF_TYPE_HOME_ROU
TER.

IP_IN_FILTER_INFO_V6

0xFFFF0011

This is the input filter that
MUST be applied to IPv6
packets sent to the RRAS
server. The information is
overwritten. The interface
MUST NOT be of type
ROUTER_IF_TYPE_INTERNAL,
ROUTER_IF_TYPE_LOOPBACK,
or
ROUTER_IF_TYPE_DIALOUT.

FILTER_DESCRIPTOR_V6 (section
2.2.1.2.7)

IP_OUT_FILTER_INFO_V6

0xFFFF0012

This is the output filter that
MUST be applied to IPv6
packets sent from the RRAS
server. The information is
overwritten. The interface
MUST NOT be of type
ROUTER_IF_TYPE_INTERNAL,
ROUTER_IF_TYPE_LOOPBACK,
or
ROUTER_IF_TYPE_DIALOUT.

FILTER_DESCRIPTOR_V6 (section
2.2.1.2.7)

IP_DEMAND_DIAL_FILTER_INFO_V6

0xFFFF0013

IPv6 traffic that matches this
filter indicates that a site-to-
site connection MUST be
available and all IPv6 packets
matching this filter MUST be
routed into the connection.
The interface MUST be of type
ROUTER_IF_TYPE_FULL_ROUT
ER or
ROUTER_IF_TYPE_HOME_ROU
TER. The filters are
overwritten.

FILTER_DESCRIPTOR_V6 (section
2.2.1.2.7)

IP_IFFILTER_INFO_V6

0xFFFF0014

The IPv6 interface filter
information is overwritten.
The interface MUST NOT be of
type
ROUTER_IF_TYPE_INTERNAL,
ROUTER_IF_TYPE_LOOPBACK,
or
ROUTER_IF_TYPE_DIALOUT.

IFFILTER_INFO (section 2.2.1.2.88
)

MS_IP_BOOTP

0x0000270F

IP BOOTP interface
information.

IPBOOTP_IF_CONFIG (section 2.2.
1.2.150)

MS_IP_IGMP

0x4137000A

IGMP interface information. It
can only be set once.

IGMP_MIB_IF_CONFIG (section 2.
2.1.2.174)

MS_IP_RIP

0x00000008

IP RIP interface information. IPRIP_IF_CONFIG (section 2.2.1.2
.166)

MS_IP_DHCP_ALLOCATOR DHCP allocator interface
information.

IP_AUTO_DHCP_INTERFACE_INFO
 (section 2.2.1.2.192)

353 / 547

[MS-RRASM-Diff] - v20210407
Routing and Remote Access Server (RRAS) Management Protocol
Copyright © 2021 Microsoft Corporation
Release: April 7, 2021

Value

Meaning and conditions
(interface means the one
identified by hInterface) Structure pointed to at offset

0x81372714

MS_IP_DNS_PROXY

0x81372713

DNS proxy interface
information.

IP_DNS_PROXY_INTERFACE_INFO
 (section 2.2.1.2.194)

MS_IP_NAT

0x81372715

IP NAT interface information. IP_NAT_INTERFACE_INFO (section
2.2.1.2.197)

MS_IP_OSPF<279>

0x0000000D

OSPF interface information is
set. This MUST end the
configuration buffer by
OSPF_END_PARAM_TYPE. If
passed with any other
structure, it will return an
error.

OSPF_INTERFACE_PARAM (section
2.2.1.2.215),,
OSPF_NBMA_NEIGHBOR_PARAM (
section 2.2.1.2.216)

MS_IPV6_DHCP

0x000003E7

DHCPv6 Relay interface
information. It can only be set
once.

DHCPV6R_IF_CONFIG (section 2.2
.1.2.159)

Return Values: A 32-bit, unsigned integer value that indicates return status. A return value of
ERROR_SUCCESS (0x00000000) indicates that the operation was completed successfully;
otherwise, it contains an error code, as specified in [MS-ERREF] or in section 2.2.4. All values that
are not in the table that follows MUST be treated the same by the RRASM client.

Return value/code Description

ERROR_SUCCESS

0x00000000

The call was successful.

ERROR_ACCESS_DENIED

0x00000005

The calling application does not have sufficient privileges, as specified in
section 2.1.1.1.

The Opnum field value for this method is 19.

When processing this call, the RRASM server MUST do the following:

▪ Validate, as specified in section 2.1.1.1, whether this method was called by a client that has
access to the method. If the client does not have access, then return error
ERROR_ACCESS_DENIED (0x00000005).

▪ If pInfoStruct is NULL, return an error other than those in the preceding table.

▪ If dwTransportId is not specified in SupportedTransportsList, return an error other than those
specified in the preceding table.

▪ Call the abstract interface Invoke DIMSVC method specifying the operation and the parameters

to enable the RRAS server to perform the required management task.

▪ Return any processing error that the RRAS server fails with. Otherwise return ERROR_SUCCESS
(0x00000000).

No exceptions are thrown beyond those thrown by the underlying RPC protocol [MS-RPCE].

354 / 547

[MS-RRASM-Diff] - v20210407
Routing and Remote Access Server (RRAS) Management Protocol
Copyright © 2021 Microsoft Corporation
Release: April 7, 2021

3.1.4.21 RRouterInterfaceEnum (Opnum 20)

The RRouterInterfaceEnum method<280> Retrieves the list of all the interfaces from the specified
server. The hDimServer handle specifies the RRASM server on which the call is to be executed. The

caller MUST pass a pointer to a valid DIM_INFORMATION_CONTAINER (section 2.2.1.2.1), where
DIM_INFORMATION_CONTAINER.dwBufferSize is initialized to zero (0). The caller SHOULD free
the memory pointed to by pInfoStruct.

 DWORD RRouterInterfaceEnum(
 [in] DIM_HANDLE hDimServer,
 [in] DWORD dwLevel,
 [in, out] PDIM_INFORMATION_CONTAINER pInfoStruct,
 [in] DWORD dwPreferedMaximumLength,
 [out] LPDWORD lpdwEntriesRead,
 [out] LPDWORD lpdwTotalEntries,
 [in, out, unique] LPDWORD lpdwResumeHandle
);

hDimServer: A handle to the RRASM server where the call is to be executed, see section 3.1.3.

dwLevel: This is of type DWORD and SHOULD be set to zero (0).

pInfoStruct: This is a pointer of type DIM_INFORMATION_CONTAINER.
pInfoStruct.dwBufferSize SHOULD be initialized to zero (0). Upon successful return, the
pInfoStruct->pBuffer is cast to an array of MPRI_INTERFACE_0 (section 2.2.1.2.81), and the array
size is determined by the value to pointer lpdwEntriesRead.

dwPreferedMaximumLength: This is of type DWORD and SHOULD specify the preferred maximum
length of returned data (pInfoStruct->pBuffer) in bytes. If this parameter is -1, the buffer
returned is large enough to hold all available information.

lpdwEntriesRead: This is a pointer to type DWORD. Upon successful return, this determines the
total number of connections enumerated from the current resume position given by
lpdwResumeHandle.

lpdwTotalEntries: This is a pointer to type DWORD and receives the total number of connections
that could have been enumerated from the current resume position given by lpdwResumeHandle.

lpdwResumeHandle: This is a pointer to type DWORD and specifies a resume handle used to
continue the enumeration. The lpdwResumeHandle parameter is zero (0) on the first call and left
unchanged on subsequent calls (the caller MUST pass the same returned value in the next call to
this function). If the return code is ERROR_MORE_DATA (0x000000EA), another call MAY be made
using this handle to retrieve more data. If the handle is NULL upon return, the enumeration is

complete. This handle is invalid for other types of error returns.

Return Values: A 32-bit, unsigned integer value that indicates return status. A return value of
ERROR_SUCCESS (0x00000000) indicates that the operation was completed successfully;
otherwise, it contains an error code, as specified in [MS-ERREF] or in section 2.2.4. All values that
are not in the table that follows MUST be treated the same by the RRASM client. This error code
value can correspond to a RRAS Management Protocol–specific failure, which takes a value

between 600 and 975, or any generic failure.

The return value is one of the following error codes. All other error values MUST be treated the
same.

Return value/code Description

ERROR_SUCCESS

0x00000000

The call was successful.

355 / 547

[MS-RRASM-Diff] - v20210407
Routing and Remote Access Server (RRAS) Management Protocol
Copyright © 2021 Microsoft Corporation
Release: April 7, 2021

Return value/code Description

ERROR_ACCESS_DENIED

0x00000005

The calling application does not have sufficient privileges, as specified in
section 2.1.1.1.

ERROR_MORE_DATA

0x000000EA

More information is available; the enumeration can be continued.

The opnum field value for this method is 20.

 When processing this call, the RRASM server MUST do the following:

▪ Validate, as specified in section 2.1.1.1, whether this method was called by a client that has
access to the method. If the client does not have access, then return error
ERROR_ACCESS_DENIED (0x00000005).

▪ If pInfoStruct is NULL, return an error other than those in the preceding table.

▪ If dwLevel is not supported, return an error other than those in the preceding table.

▪ Call the abstract interface Invoke DIMSVC method specifying the operation and the parameters
to enable RRAS server to perform the required management task.

▪ If the RRAS server processes the request successfully, populate the interface information in
pInfoStruct and fill the values for lpdwResumeHandle, lpdwEntriesRead, and lpdwTotalEntries as
returned by the RRAS server. If the RRAS server has updated the resume handle and there are
more entries to be enumerated, return ERROR_MORE_DATA. Otherwise, return ERROR_SUCCESS
(0x00000000).

▪ Otherwise return the error status provided by RRAS server.

No exceptions are thrown beyond those thrown by the underlying RPC protocol [MS-RPCE].

3.1.4.22 RRouterInterfaceConnect (Opnum 21)

The RRouterInterfaceConnect method<281> establishes a connection for the specified interface
hInterface if it is not already connected. The hDimServer handle specifies the RRASM server on which

the call is to be executed.

 DWORD RRouterInterfaceConnect(
 [in] DIM_HANDLE hDimServer,
 [in] DWORD hInterface,
 [in] ULONG_PTR hEvent,
 [in] DWORD fBlocking,
 [in] DWORD dwCallersProcessId
);

hDimServer: A handle to the RRASM server where the call is to be executed, see section 3.1.3.

hInterface: The unique identifier of an interface. This can be obtained from RRouterInterfaceCreate
or RRouterInterfaceGetHandle (section 3.1.4.12). Since the RRASM server does not maintain the
interface handles, the RRAS server SHOULD check and ensure that this handle is a valid interface
handle.

hEvent: The calling application MUST specify NULL for this.

fBlocking: If this parameter is set to 1, the function does not return until the connection attempt has
completed.

356 / 547

[MS-RRASM-Diff] - v20210407
Routing and Remote Access Server (RRAS) Management Protocol
Copyright © 2021 Microsoft Corporation
Release: April 7, 2021

If this parameter is set to 0, the function will return immediately. A return value of PENDING
(0x00000258) indicates that the connection attempt was successfully initiated.

dwCallersProcessId: This is for internal use and SHOULD be ignored by the server.

Return Values: A 32-bit, unsigned integer value that indicates return status. A return value of

ERROR_SUCCESS (0x00000000) indicates that the operation was completed successfully;
otherwise, it contains an error code, as specified in [MS-ERREF] or in section 2.2.4. All values that
are not in the table that follows MUST be treated the same by the RRASM client.

Return value/code Description

ERROR_SUCCESS

0x00000000

The call was successful.

ERROR_ACCESS_DENIED

0x00000005

The calling application does not have sufficient privileges, as specified in
section 2.1.1.1.

PENDING

0x00000258

An operation is pending.

The opnum field value for this method is 21. Whether the call returns immediately or is blocked is
decided by fBlocking as previously described.

When processing this call, the RRASM server MUST do the following:

▪ Validate, as specified in section 2.1.1.1, whether this method was called by a client that has
access to the method. If the client does not have access, then return error
ERROR_ACCESS_DENIED (0x00000005).

▪ If RouterType is ROUTER_TYPE_LAN, return an error other than those in the preceding table.

▪ Call the abstract interface Invoke DIMSVC method specifying the operation and the parameters
to enable RRAS server to perform the required management task.

▪ Return any error status or PENDING status that the RRAS server returns as a part of its
processing. The RRAS server MUST return PENDING if fBlocking is set to FALSE and the task of
connecting the interface is not complete. Otherwise return ERROR_SUCCESS (0x00000000).

No exceptions are thrown beyond those thrown by the underlying RPC protocol [MS-RPCE].

3.1.4.23 RRouterInterfaceDisconnect (Opnum 22)

The RRouterInterfaceDisconnect method disconnects the specified interface, hInterface. The
hDimServer handle specifies the RRASM server on which the call is to be executed.

 DWORD RRouterInterfaceDisconnect(
 [in] DIM_HANDLE hDimServer,
 [in] DWORD hInterface
);

hDimServer: A handle to the RRASM server where the call is to be executed, see section 3.1.3.

hInterface: The unique identifier of an interface. This can be obtained from
RRouterInterfaceCreate (section 3.1.4.13) or RRouterInterfaceGetHandle (section 3.1.4.12). Since
the RRASM server does not maintain the interface handles, the RRAS server SHOULD check and
ensure that this handle is a valid interface handle.

357 / 547

[MS-RRASM-Diff] - v20210407
Routing and Remote Access Server (RRAS) Management Protocol
Copyright © 2021 Microsoft Corporation
Release: April 7, 2021

Return Values: A 32-bit, unsigned integer value that indicates return status. A return value of
ERROR_SUCCESS (0x00000000) indicates that the operation was completed successfully;

otherwise, the value contains an error code, as specified in [MS-ERREF] or in section 2.2.4. All
values that are not in the table that follows MUST be treated the same by the RRASM client.

Return value/code Description

ERROR_SUCCESS

0x00000000

The call was successful.

ERROR_ACCESS_DENIED

0x00000005

The calling application does not have sufficient privileges, as specified
in section 2.1.1.1.

The opnum field value for this method is 22.

When processing this call, the RRASM server MUST do the following:

▪ Validate, as specified in section 2.1.1.1, whether this method was called by a client that has

access to the method. If the client does not have access, then return error
ERROR_ACCESS_DENIED (0x00000005).

▪ If RouterType is ROUTER_TYPE_LAN, return an error other than those in the preceding table.

▪ Call the abstract interface Invoke DIMSVC method specifying the operation and the parameters
to enable RRAS server to perform the required management task.

▪ Return any error status that the RRAS server returns while processing this request. Otherwise
return ERROR_SUCCESS (0x00000000).

No exceptions are thrown beyond those thrown by the underlying RPC protocol [MS-RPCE].

3.1.4.24 RRouterInterfaceUpdateRoutes (Opnum 23)

The RRouterInterfaceUpdateRoutes method<282> updates routing information for a given
transport on a specified interface on the RRAS server. If a routing protocol like RIP is running
([RFC1058]), the new routes learned are updated on the interface. This interface MUST be called only

when the interface state is ROUTER_IF_STATE_CONNECTED, otherwise an error is returned.

 DWORD RRouterInterfaceUpdateRoutes(
 [in] DIM_HANDLE hDimServer,
 [in] DWORD hInterface,
 [in] DWORD dwTransportId,
 [in] ULONG_PTR hEvent,
 [in] DWORD dwClientProcessId
);

hDimServer: A handle to the RRASM server where the call is to be executed, see section 3.1.3.

hInterface: The unique identifier of an interface. This can be obtained from

RRouterInterfaceCreate (section 3.1.4.13) or RRouterInterfaceGetHandle (section 3.1.4.12). Since
the RRASM server does not maintain the interface handles, the RRAS server SHOULD check and
ensure that this handle represents a valid interface handle.

dwTransportId: Specifies the transport for which routing information needs to be updated. This
MUST be one of the following values.<283>

358 / 547

[MS-RRASM-Diff] - v20210407
Routing and Remote Access Server (RRAS) Management Protocol
Copyright © 2021 Microsoft Corporation
Release: April 7, 2021

Value Meaning

PID_IPX

0x0000002B

IPX protocol

PID_IP

0x00000021

IPv4 protocol

hEvent: The calling application MUST specify NULL for this parameter.

dwClientProcessId: The current process identifier where the function is called from. If this is a

nonexistent process the method will fail with an error code, as specified in [MS-ERREF]. Otherwise
the process specified is notified.

Return Values: A 32-bit, unsigned integer value that indicates return status. A return value of
ERROR_SUCCESS (0x00000000) indicates that the operation was completed successfully;
otherwise, it contains an error code, as specified in [MS-ERREF] or in section 2.2.4. All values that
are not in the table that follows MUST be treated the same by the RRASM client.

Return value/code Description

ERROR_SUCCESS

0x00000000

The call was successful.

ERROR_ACCESS_DENIED

0x00000005

The calling application does not have sufficient privileges, as specified
in section 2.1.1.1.

The opnum field value for this method is 23.

When processing this call, the RRASM server MUST do the following:

▪ Validate, as specified in section 2.1.1.1, whether this method was called by a client that has
access to the method. If the client does not have access, then return error

ERROR_ACCESS_DENIED (0x00000005).

▪ If RouterType is ROUTER_TYPE_LAN, return an error other than those in the preceding table.

▪ If dwTransportId is not specified in the SupportedTransportsList, return an error other than
those specified in the preceding table.

▪ Call the abstract interface Invoke DIMSVC method specifying the operation and the parameters
to enable RRAS server to perform the required management task.

▪ Return any error status the RRAS server returns while processing this request. Otherwise return
ERROR_SUCCESS.

No exceptions are thrown beyond those thrown by the underlying RPC protocol [MS-RPCE].

3.1.4.25 RRouterInterfaceQueryUpdateResult (Opnum 24)

The RRouterInterfaceQueryUpdateResult method<284> returns the result of the last
RRouterInterfaceUpdateRoutes (section 3.1.4.24) request of the RRAS server for a specified transport

to update its routes for an interface. This method MUST be called only once after
RRouterInterfaceUpdateRoutes.

 DWORD RRouterInterfaceQueryUpdateResult(
 [in] DIM_HANDLE hDimServer,
 [in] DWORD hInterface,

359 / 547

[MS-RRASM-Diff] - v20210407
Routing and Remote Access Server (RRAS) Management Protocol
Copyright © 2021 Microsoft Corporation
Release: April 7, 2021

 [in] DWORD dwTransportId,
 [out] LPDWORD pUpdateResult
);

hDimServer: A handle to the RRASM server where the call is to be executed, see section 3.1.3.

hInterface: The unique identifier of an interface. This identifier can be obtained from

RRouterInterfaceCreate (section 3.1.4.13) or RRouterInterfaceGetHandle (section 3.1.4.12).
Because the RRASM server does not maintain interface handles, the RRAS server SHOULD check
and ensure that this handle represents a valid interface handle.

dwTransportId: Specifies the transport for which routing information needs to be updated. This
MUST be one of the following values.<285> Otherwise an error is returned.

Value Meaning

PID_IPX

0x0000002B

IPX protocol

PID_IP

0x00000021

IPv4 protocol

pUpdateResult: A pointer to a DWORD variable. This variable receives the result of the last call to
RRouterInterfaceUpdateRoutes; see the return values of RRouterInterfaceUpdateRoutes.

Return Values: A-32 bit, unsigned integer value that indicates return status. A return value of
ERROR_SUCCESS (0x00000000) indicates that the operation was completed successfully;
otherwise, the return value contains an error code, as specified in [MS-ERREF] or in section 2.2.4.
All values that are not in the table that follows MUST be treated the same by the RRASM client.

Return value/code Description

ERROR_SUCCESS

0x00000000

The call was successful.

ERROR_ACCESS_DENIED

0x00000005

The calling application does not have sufficient privileges, as specified in
section 2.1.1.1.

The opnum field value for this method is 24.

When processing this call, the RRASM server MUST do the following.

▪ Validate, as specified in section 2.1.1.1, whether this method was called by a client that has
access to the method. If the client does not have access, then return error
ERROR_ACCESS_DENIED (0x00000005).

▪ If dwTransportId is not specified in the SupportedTransportsList, return an error other than

those specified in the preceding table.

▪ Call the abstract interface Invoke DIMSVC method specifying the operation and the parameters
to enable RRAS server to perform the required management task.

▪ If the RRAS server processes the request successfully, update the pUdateResult with the
information provided by RRAS server and return ERROR_SUCCESS (0x00000000). Otherwise
return the error status that the RRAS server returns.

No exceptions are thrown beyond those thrown by the underlying RPC protocol [MS-RPCE].

360 / 547

[MS-RRASM-Diff] - v20210407
Routing and Remote Access Server (RRAS) Management Protocol
Copyright © 2021 Microsoft Corporation
Release: April 7, 2021

3.1.4.26 RRouterInterfaceUpdatePhonebookInfo (Opnum 25)

The RRouterInterfaceUpdatePhonebookInfo method<286> forces the router to pick up changes
made on a specified demand-dial interface, hInterface. The hDimServer handle specifies the RRASM

server on which the call is to be executed. Call this method after changes are made to a phone-book
entry for a demand-dial interface, such as ROUTER_IF_TYPE_HOME_ROUTER or
ROUTER_IF_TYPE_FULL_ROUTER.

 DWORD RRouterInterfaceUpdatePhonebookInfo(
 [in] DIM_HANDLE hDimServer,
 [in] DWORD hInterface
);

hDimServer: A handle to the RRASM server where the call is to be executed, see section 3.1.3.

hInterface: The unique identifier of an interface. This can be obtained from
RRouterInterfaceCreate (section 3.1.4.13) or RRouterInterfaceGetHandle (section 3.1.4.12).

Because the RRASM server does not maintain the interface handles, the RRAS server SHOULD
check and ensure that this handle is a valid interface handle.

Return Values: A 32-bit, unsigned integer value that indicates return status. A return value of
ERROR_SUCCESS (0x00000000) indicates that the operation was completed successfully;
otherwise, it contains an error code, as specified in [MS-ERREF] or in section 2.2.4. All values that
are not in the table that follows MUST be treated the same by the RRASM client.

Return value/code Description

ERROR_SUCCESS

0x00000000

The call was successful.

ERROR_ACCESS_DENIED

0x00000005

The calling application does not have sufficient privileges, as specified
in section 2.1.1.1.

The opnum field value for this method is 25.

When processing this call, the RRASM server MUST do the following:

▪ Validate, as specified in section 2.1.1.1, whether this method was called by a client that has
access to the method. If the client does not have access, then return error
ERROR_ACCESS_DENIED (0x00000005).

▪ Call the abstract interface Invoke DIMSVC method specifying the operation and the parameters

to enable RRAS server to perform the required management task.

▪ Return any error result the RRAS server might return while processing this request. Otherwise
return ERROR_SUCCESS (0x00000000).

No exceptions are thrown beyond those thrown by the underlying RPC protocol [MS-RPCE].

3.1.4.27 RMIBEntryCreate (Opnum 26)

The RMIBEntryCreate method<287> creates an MIB entry that is used by the RRAS to create a
route entry in the IPv4 routing table.

 DWORD RMIBEntryCreate(
 [in] DIM_HANDLE hDimServer,
 [in] DWORD dwPid,
 [in] DWORD dwRoutingPid,

361 / 547

[MS-RRASM-Diff] - v20210407
Routing and Remote Access Server (RRAS) Management Protocol
Copyright © 2021 Microsoft Corporation
Release: April 7, 2021

 [in] PDIM_MIB_ENTRY_CONTAINER pInfoStuct
);

hDimServer: A handle to the RRASM server where the call is to be executed, see section 3.1.3.

dwPid: Specifies the transport protocol.

dwRoutingPid: Specifies the routing protocol. The value of this parameter MUST be set to
IPRTRMGR_PID (0x00002710). The method MUST return an error other than those specified in the
return value table for any other value.

pInfoStuct: This is a pointer to a DIM_MIB_ENTRY_CONTAINER (section 2.2.1.2.19) structure with

valid dwMibInEntrySize and pMibInEntry fields. The dwMibOutEntrySize and pMibOutEntry
of the structure are ignored by the server for this method. dwMibInEntrySize MUST be set to
the size of data being passed in pMibInEntry. If pInfoStruct is NULL, an error other than those
specified in the return value table is returned. Otherwise, the pointer is treated as a pointer to the
DIM_MIB_ENTRY_CONTAINER structure.

Because the dwRoutingPid parameter of this method MUST take the value IPRTRMGR_PID

(0x00002710), the pMibInEntry field of pInfoStruct MUST be a pointer to
MIB_OPAQUE_INFO (section 2.2.1.2.52). The dwId and rgbyData fields of
MIB_OPAQUE_INFO MUST be set to one of the following values:

▪ dwId set to the value ROUTE_MATCHING (0x0000001F).

▪ rgbyData MUST be a pointer to a MIB_IPDESTROW (section 2.2.1.2.20) structure. A route
corresponding to data in rgbyData is added in the IPv4 route table. The route is created with the
following fields specified:

▪ ForwardRow: Contains the MIB_IPFORWARDROW (section 2.2.1.2.35) structure that
contains the route information with the following fields set:

▪ dwForwardDest

▪ dwForwardMask

▪ dwForwardPolicy

▪ dwForwardNextHop

▪ ForwardType

▪ ForwardProto

▪ dwForwardAge

▪ dwForwardNextHopAS

▪ dwForwardIfIndex

▪ dwForwardProto

▪ dwForwardMetric1

▪ dwForwardMetric2

▪ dwForwardMetric3

▪ dwForwardMetric4

▪ dwForwardMetric5

362 / 547

[MS-RRASM-Diff] - v20210407
Routing and Remote Access Server (RRAS) Management Protocol
Copyright © 2021 Microsoft Corporation
Release: April 7, 2021

▪ dwForwardPreference

▪ dwForwardViewSet: This MUST be the view information of the ForwardRow with the

following fields specified, see INTERFACE_ROUTE_INFO (section 2.2.1.2.11):

▪ dwRtInfoDest

▪ dwRtInfoMask

▪ dwRtInfoNextHop

▪ dwRtInfoMetric1

▪ dwRtInfoMetric2

▪ dwRtInfoMetric3

▪ dwRtInfoIfIndex

▪ dwRtInfoProto

▪ pMibInEntry: The following fields are set to these values irrespective of the values specified:

▪ dwForwardPolicy is set to 0.

▪ dwForwardMetric4 and dwForwardMetric5 are set to MIB_IPROUTE_METRIC_UNUSED
(-1).

▪ dwForwardPreference is set to IP_PRIORITY_DEFAULT_METRIC (0x0000007F).

If pMibInEntry is NULL, an error other than those specified in the return values table is returned.

Otherwise the pointer to pMibInEntry is cast to a pointer to MIB_OPAQUE_INFO.

If dwMibInEntrySize does not match the size of MIB_IPDESTROW an error other than those
specified in the return values table is returned.

Return Values: A 32-bit, unsigned integer value that indicates return status. A return value of
ERROR_SUCCESS (0x00000000) indicates that the operation was completed successfully;
otherwise, it contains an error code, as specified in [MS-ERREF] or in section 2.2.4. All values that
are not in the table that follows MUST be treated the same by the RRASM client.

Return value/code Description

ERROR_SUCCESS

0x00000000

The call was successful.

ERROR_ACCESS_DENIED

0x00000005

The calling application does not have sufficient privileges, as specified in
section 2.1.1.1.

The opnum field value for this method is 26.

When processing this call, the RRASM server MUST do the following:

▪ Validate, as specified in section 2.1.1.1, whether this method was called by a client that has
access to the method. If the client does not have access, then return error
ERROR_ACCESS_DENIED (0x00000005).

▪ If pInfoStruct is NULL, return an error other than those in the preceding table.

▪ If dwPid is not specified in the SupportedTransportsList, return an error other than those
specified in the preceding table.

363 / 547

[MS-RRASM-Diff] - v20210407
Routing and Remote Access Server (RRAS) Management Protocol
Copyright © 2021 Microsoft Corporation
Release: April 7, 2021

▪ Call the abstract interface Invoke DIMSVC method specifying the operation and the parameters
to enable RRAS server to perform the required management task.

▪ Return any error that the RRAS server returns while processing this request. Otherwise return
ERROR_SUCCESS (0x00000000).

No exceptions are thrown beyond those thrown by the underlying RPC protocol [MS-RPCE].

3.1.4.28 RMIBEntryDelete (Opnum 27)

The RMIBEntryDelete method<288> deletes a MIB entry in an IPv4 forwarding table. This causes

the IPv4 routing table entry to be deleted.

 DWORD RMIBEntryDelete(
 [in] DIM_HANDLE hDimServer,
 [in] DWORD dwPid,
 [in] DWORD dwRoutingPid,
 [in] PDIM_MIB_ENTRY_CONTAINER pInfoStuct
);

hDimServer: A handle to the RRASM server where the call is to be executed, see section 3.1.3.

dwPid: Specifies the transport. The value of this field MUST be as follows.

Value Meaning

PID_IP

0x00000021

An IPv4 MIB entry is to be deleted.

dwRoutingPid: Specifies the routing protocol. This MUST be 0x00002710 (10000) and indicates that
pInfoStruct MUST point to MIB_OPAQUE_QUERY (section 2.2.1.2.53). Otherwise an error other
than those specified in the return values table is returned.

pInfoStuct: This parameter MUST be a pointer to the structure

DIM_MIB_ENTRY_CONTAINER (section 2.2.1.2.19) with valid dwMibInEntrySize and
pMibInEntry fields. The parameters dwMibOutEntrySize and pMibOutEntry are ignored by the
server. dwMibInEntrySize MUST be set to the size of data being passed in pMibInEntry.

pMibInEntry MUST be a pointer to MIB_OPAQUE_QUERY. dwVarId and rgdwVarIndex of
MIB_OPAQUE_QUERY MUST be set to one of the following values that need to be deleted.

dwVarId Value
Structure that MUST to be pointed by
rgdwVarIndex Remarks

ROUTE_MATCHING

0x0000001F

MIB_IPDESTROW (section 2.2.1.2.20)

▪ rgdwVarIndex[0] MUST be
dwForwardDest

▪ rgdwVarIndex[1] MUST be
dwForwardMask

▪ rgdwVarIndex[2] MUST be
dwForwardIfIndex

▪ rgdwVarIndex[3] MUST be
dwForwardNextHop

▪ rgdwVarIndex[4] MUST be

A route with the following matching fields
specified in ForwardRow and
MIB_IPDESTROW is deleted from the IPv4
route table:

▪ dwForwardDest

▪ dwForwardMask

▪ dwForwardIfIndex

▪ dwForwardNextHop

▪ dwForwardProto

364 / 547

[MS-RRASM-Diff] - v20210407
Routing and Remote Access Server (RRAS) Management Protocol
Copyright © 2021 Microsoft Corporation
Release: April 7, 2021

dwVarId Value
Structure that MUST to be pointed by
rgdwVarIndex Remarks

dwForwardProto

IP_NETTABLE

0x00000009

MIB_IPNETTABLE (section 2.2.1.2.48)

rgdwVarIndex[0] MUST be dwIfIndex

rgdwVarIndex[1] MUST be dwAddr

An entry is deleted<289> whose interface
index matches the dwIfIndex and whose
IPv4 address matches the specified
dwAddr.

If pMibInEntry is NULL, an error other than those specified in the return value table is returned.
Otherwise, the pointer to pMibInEntry is cast to a pointer to a MIB_OPAQUE_QUERY.

If pInfoStruct is NULL, an error other than those specified in the following return value table is
returned.

If dwMibInEntrySize does not match the size of MIB_IPDESTROW (section 2.2.1.2.20) an
error other than those specified in the return value table is returned.

Return Values: A 32-bit, unsigned integer value that indicates return status. A return value of
ERROR_SUCCESS (0x00000000) indicates that the operation was completed successfully;

otherwise, it contains an error code, as specified in [MS-ERREF] or in section 2.2.4. All values that
are not in the following table MUST be treated the same by the RRASM client.

Return value/code Description

ERROR_SUCCESS

0x00000000

The call was successful.

ERROR_ACCESS_DENIED

0x00000005

The calling application does not have sufficient privileges, as specified
in section 2.1.1.1.

The opnum field value for this method is 27.

When processing this call, the RRASM server MUST do the following:

▪ Validate, as specified in section 2.1.1.1, whether this method was called by a client that has

access to the method. If the client does not have access, then return error
ERROR_ACCESS_DENIED (0x00000005).

▪ If pInfoStruct is NULL, return an error other than those in the preceding table.

▪ Validate that the dwPid is not specified in the SupportedTransportsList, return an error other
than those specified in the preceding table.

▪ Call the abstract interface Invoke DIMSVC method specifying the operation and the parameters
to enable RRAS server to perform the required management task.

▪ Return any error status returned by the RRAS server while processing the request. Otherwise
return ERROR_SUCCESS (0x00000000).

No exceptions are thrown beyond those thrown by the underlying RPC protocol [MS-RPCE].

3.1.4.29 (Updated Section) RMIBEntrySet (Opnum 28)

The RMIBEntrySet method<290> modifies an MIB entry in the IPv4 forwarding table.

 DWORD
 RMIBEntrySet(

365 / 547

[MS-RRASM-Diff] - v20210407
Routing and Remote Access Server (RRAS) Management Protocol
Copyright © 2021 Microsoft Corporation
Release: April 7, 2021

 [in] DIM_HANDLE hDimServer,
 [in] DWORD dwPid,
 [in] DWORD dwRoutingPid,
 [in] PDIM_MIB_ENTRY_CONTAINER pInfoStuct
);

hDimServer: A handle to the RRASM server where the call is to be executed, see section 3.1.3.

dwPid: Specifies the transport protocol. The value of this parameter MUST be PID_IP. The method

MUST return an error other than those specified in the return value table for any other value.

Value Meaning

PID_IP

0x00000021

An IPv4 MIB entry is to be deleted.

dwRoutingPid: Specifies the routing protocol. This MUST be 0x00002710 (10000) and indicate that
pInfoStruct MUST point to MIB_OPAQUE_QUERY (section 2.2.1.2.53). Otherwise, an error other

than those specified in the return table value is returned.

pInfoStuct: This MUST be a pointer to the structure
DIM_MIB_ENTRY_CONTAINER (section 2.2.1.2.19) with valid dwMibInEntrySize and
pMibInEntry fields. The dwMibOutEntrySize and pMibOutEntry of the structure are ignored by

the server for this method. dwMibInEntrySize MUST be set to the size of data being passed in
pMibInEntry. If pInfoStuct is NULL, an error other than those specified in the return value table
is returned. Otherwise, the pointer is treated as a pointer to the structure
DIM_MIB_ENTRY_CONTAINER.

Since the dwRoutingPid parameter of this method MUST take a value IPRTRMGR_PID
(0x00002710), the pMibInEntry field of pInfoStuct MUST be a pointer to
MIB_OPAQUE_INFO (section 2.2.1.2.52). The dwId and rgbyData fields of

MIB_OPAQUE_INFO MUST be set to one of the values in the following table.

dwId Value
Structure that MUST be
pointed to by rgbyData Remarks

ROUTE_MATCHING

0x0000001F

MIB_IPDESTROW (section 2
.2.1.2.20)

A route corresponding to data in rgbyData is added
in the IPv4 route table.

The route is created with the following fields:

ForwardRow: Contains the
MIB_IPFORWARDROW (section 2.2.1.2.35)
structure that contains the route information with the
following fields set:

▪ dwForwardDest

▪ dwForwardMask

▪ dwForwardPolicy

▪ dwForwardNextHop

▪ ForwardType

▪ ForwardProto

▪ dwForwardAge

▪ dwForwardNextHopAS

366 / 547

[MS-RRASM-Diff] - v20210407
Routing and Remote Access Server (RRAS) Management Protocol
Copyright © 2021 Microsoft Corporation
Release: April 7, 2021

dwId Value
Structure that MUST be
pointed to by rgbyData Remarks

▪ dwForwardMetric1

▪ dwForwardMetric2

▪ dwForwardMetric3

▪ dwForwardMetric4

▪ dwForwardMetric5

▪ dwForwardPreference

▪ dwForwardViewSet

▪ dwRtInfoDest

▪ dwRtInfoMask

▪ dwRtInfoNextHop

▪ dwRtInfoIfIndex

▪ dwRtInfoProto

▪ dwRtInfoMetric1

▪ dwRtInfoMetric2

▪ dwRtInfoMetric3

pMibInEntry: The following fields are set to these
values irrespective of the values specified
(INTERFACE_ROUTE_INFO (section 2.2.1.2.11)):

▪ dwForwardPolicy is set to 0.

▪ dwForwardMetric4 and dwForwardMetric5
are set to MIB_IPROUTE_METRIC_UNUSED (-1).

▪ dwForwardPreference is set to
IP_PRIORITY_DEFAULT_METRIC (0x0000007F).

IF_ROW

0x00000002

MIB_IFROW (section 2.2.1.
2.29)

Only dwAdminStatus can be set to
IF_ADMIN_STATUS_DOWN or IF_ADMIN_STATUS_UP
(see dwAdminStatus of
INTERFACE_STATUS_INFO (section 2.2.1.2.18).

367 / 547

[MS-RRASM-Diff] - v20210407
Routing and Remote Access Server (RRAS) Management Protocol
Copyright © 2021 Microsoft Corporation
Release: April 7, 2021

dwId Value
Structure that MUST be
pointed to by rgbyData Remarks

MCAST_IF_ENTRY

0x00000017

MIB_IPMCAST_IF_ENTRY (s
ection 2.2.1.2.40)

dwTtl MUST be set to less than or equal to 255.

dwRateLimit MUST NOT be set to 0.

dwIfIndex MUST be set to the index of the interface
for which the entries are being updated.

The following entries can be set only if the
operational status of the interface is
IF_OPER_STATUS_OPERATIONAL (see
dwOperStatus of MIB_IFROW:

ulInMcastOctets

ulOutMcastOctets

MCAST_BOUNDARY

0x0000001A

MIB_IPMCAST_BOUNDARY
(section 2.2.1.2.37)

If dwStatus is set to ROWSTATUS_CREATEANDGO,
the boundary information specified in
MIB_IPMCAST_BOUNDARY is created.

If dwStatusfielddwStatus field is set to
ROWSTATUS_DESTROY, the boundary information
specified in MIB_IPMCAST_BOUNDARY is deleted.

Return Values: A 32-bit, unsigned integer value that indicates return status. A return value of
ERROR_SUCCESS (0x00000000) indicates that the operation was completed successfully;

otherwise, it contains an error code, as specified in [MS-ERREF] or in section 2.2.4. All values that
are not in the table that follows MUST be treated the same by the RRASM client.

Return value/code Description

ERROR_SUCCESS

0x00000000

The call was successful.

ERROR_ACCESS_DENIED

0x00000005

The calling application does not have sufficient privileges, as specified in
section 2.1.1.1.

All error values MUST be treated the same and as long as ERROR_SUCCESS is not returned the call is
deemed failed.

The opnum field value for this method is 28.

When processing this call, the RRASM server MUST do the following:

▪ Validate, as specified in section 2.1.1.1, whether this method was called by a client that has
access to the method. If the client does not have access, then return error
ERROR_ACCESS_DENIED (0x00000005).

▪ If pInfoStuct is NULL, return an error other than specified those in the preceding table.

▪ If dwPid is not specified in the SupportedTransportsList, return an error other than those

specified in the preceding table.

▪ Call the abstract interface Invoke DIMSVC method specifying the operation and the parameters
to enable RRAS server to perform the required management task.

▪ Return any error status that the RRAS server might return while processing the request. Otherwise
return ERROR_SUCCESS (0x00000000).

No exceptions are thrown beyond those thrown by the underlying RPC protocol [MS-RPCE].

368 / 547

[MS-RRASM-Diff] - v20210407
Routing and Remote Access Server (RRAS) Management Protocol
Copyright © 2021 Microsoft Corporation
Release: April 7, 2021

3.1.4.30 (Updated Section) RMIBEntryGet (Opnum 29)

The RMIBEntryGet method<291> retrieves the value of a RRAS MIB entry that corresponds to the
transport and that matches the information specified in pInfoStuct.

 DWORD RMIBEntryGet(
 [in] DIM_HANDLE hDimServer,
 [in] DWORD dwPid,
 [in] DWORD dwRoutingPid,
 [in, out] PDIM_MIB_ENTRY_CONTAINER pInfoStuct
);

hDimServer: A handle to the RRASM server where the call is to be executed, see section 3.1.3.

dwPid: Specifies the transport protocol. The value of this parameter MUST be one from the following
table.<292> The method MUST return an error for any other values.

Value Meaning

PID_IPX

0x0000002B

An IPX protocol MIB entry is to be retrieved.

PID_IP

0x00000021

An IPv4 protocol MIB entry is to be retrieved.

PID_IPV6

0x00000057

An IPv6 protocol MIB entry is to be retrieved.

dwRoutingPid: If dwPid is PID_IP and if dwRoutingPid is 10000, then pMibInEntry MUST point to
MIB_OPAQUE_QUERY (section 2.2.1.2.53). The dwVarId field of MIB_OPAQUE_QUERY
MUST be one of the following values. pMibOutEntry MUST be interpreted as a pointer to
MIB_OPAQUE_QUERY. See section 2.2.1.2.53 for details on the structure retrieved by the
rgdwVarIndex field of MIB_OPAQUE_QUERY for different dwVarId values.

See section 2.2.1.2.54 for details on the structure retrieved by the rgdwVarIndex field of
MIB_OPAQUE_QUERY for different dwVarId values.

dwVarId Value Meaning

IF_NUMBER

0x00000000

Number of interfaces on the machine.

IF_TABLE

0x00000001

Information about interface table.

IF_ROW

0x00000002

Information about a particular interface.

IP_STATS

0x00000003

Information about the IP protocol.

IP_ADDRTABLE

0x00000004

Table of IPv4 address entries.

IP_ADDRROW

0x00000005

Information for a particular IPv4 address.

IP_FORWARDNUMBER Information about number of routes in a particular IP routing table.

369 / 547

[MS-RRASM-Diff] - v20210407
Routing and Remote Access Server (RRAS) Management Protocol
Copyright © 2021 Microsoft Corporation
Release: April 7, 2021

dwVarId Value Meaning

0x00000006

IP_FORWARDTABLE

0x00000007

Table of IPv4 route entries.

IP_NETTABLE

0x00000009

Table of ARP entries for IPv4 addresses.

IP_NETROW

0x0000000A

Information about an ARP table entry for an IPv4 address.

ICMP_STATS

0x0000000B

Statistics for ICMP messages on a particular computer.

TCP_STATS

0x0000000C

Statistics for the TCP protocol running on the local computer.

UDP_STATS

0x0000000F

Statistics for the UDP running on the local computer.

MCAST_MFE

0x00000012

Information for an IP multicast forwarding entry.

MCAST_MFE_STATS

0x00000013

Statistics associated with an MFE.

MCAST_IF_ENTRY

0x00000017

Information about an IP multicast interface.

ROUTE_MATCHING

0x0000001F

Information about a matching IP route.

BEST_IF

0x00000014

Index of the interface that has the best route to a particular destination IPv4
address.

MCAST_GLOBAL

0x00000018

Global information for IP multicast on a particular computer.

IF_STATUS

0x00000019

Status information for a particular interface.

MCAST_BOUNDARY

0x0000001A

Information about a router's scoped IPv4 multicast address boundaries.

MCAST_SCOPE

0x0000001B

Information about a multicast scope.

If dwPid is PID_IPv6IPV6 and dwRoutingPid is 10000, then pMibInEntry MUST point to

MIB_OPAQUE_QUERY (section 2.2.1.2.53). The dwVarId field of pMibInEntry MUST be one of
the following values. pMibOutEntry MUST be interpreted as a pointer to MIB_OPAQUE_QUERY.
See section 2.2.1.2.53 for details on the structure retrieved by the rgdwVarIndex field of
MIB_OPAQUE_QUERY for different dwVarId values.

dwVarId Value Meaning

0x00000001 Information about interface table.

370 / 547

[MS-RRASM-Diff] - v20210407
Routing and Remote Access Server (RRAS) Management Protocol
Copyright © 2021 Microsoft Corporation
Release: April 7, 2021

dwVarId Value Meaning

IF_TABLE

0x00000008

IP_FORWARDROW

Information about an IPv6 network route.

If dwPid is PID_IP and if dwRoutingPid is not IPRTRMGR_PID (0x00002710), then dwRoutingPid
MUST be one of the entries in the Value column and pMibInEntry MUST be the corresponding

entry in the Structure to be pointed to by pMibInEntry column in the following table. The
routing protocols specified in the following table are valid only if the protocol is already initialized
by RRAS for IPv4. RRAS initializes a protocol when a RTR_TOC_ENTRY with the InfoType
corresponding to the protocol is present in the global configuration. The
RRouterInterfaceTransportSetGlobalInfo method enables specifying the global configuration
through the pGlobalInfo member of pInfoStruct.

Value Meaning
Structure to be pointed to
by pMibInEntry. Remarks

MS_IP_BOOTP

0x0000270F

An entry in
IBOOTPMIB
needs to
be
retrieved.

IPBOOTP_MIB_GET_INPUT
_DATA

See section 2.2.1.2.152 for
details on how to populate
IPBOOTP_MIB_GET_INPUT
_DATA to retrieve different
types of MIB entries.

When this method returns
pMibOutEntry, pInfoStruct
MUST be cast to
IPBOOTP_MIB_GET_OUTPU
T_DATA. See section
2.2.1.2.157 on how to interpret
the data returned.

MS_IP_NAT

0x81372715

An entry in
the NAT
MIB needs
to be
retrieved.

IP_NAT_MIB_QUERY See
IP_NAT_MIB_QUERY (sectio
n 2.2.1.2.182) for details on
how to populate this structure
to retrieve the entries required.
The values are returned in
IP_NAT_MIB_QUERY.

MS_IP_DNS_PROXY

0x81372713

An entry in
DNS Proxy
MIB needs
to be
retrieved.

IP_DNS_PROXY_MIB_QUER
Y

See section 2.2.1.2.186 for
details on how to populate
IP_DNS_PROXY_MIB_QUER
Y. The values are returned in
IP_DNS_PROXY_MIB_QUER
Y.

MS_IP_DHCP_ALLOCAT
OR

0x81372714

An entry in
auto DHCP
MIB is
retrieved.

IP_AUTO_DHCP_MIB_QUER
Y

See section 2.2.1.2.188 for
details on how to populate
IP_AUTO_DHCP_MIB_QUER
Y. The values are returned in
the same structure.

MS_IP_OSPF<293>

0x0000000D

An entry in
OSPF MIB
needs to
be

retrieved.

MIB_DA_MSG

MIB_DA_MSG

OSPF_GLOBAL_PARAM

OSPF_ROUTE_FILTER_INFO

OSPF_PROTO_FILTER_INFO

OSPF_AREA_PARAM

371 / 547

[MS-RRASM-Diff] - v20210407
Routing and Remote Access Server (RRAS) Management Protocol
Copyright © 2021 Microsoft Corporation
Release: April 7, 2021

Value Meaning
Structure to be pointed to
by pMibInEntry. Remarks

OSPF_AREA_RANGE_PARA
M

OSPF_VIRT_INTERFACE_PA
RAM

OSPF_NBMA_NEIGHBOR_P
ARAM

If dwPid is PID_IPV6 and if dwRoutingPid is not IPRTRMGR_PID (0x00002710), then dwRoutingPid
MUST be one of the entries in the Value column and pMibInEntry MUST be the corresponding
entry in the Structure to be pointed to by pMibInEntry in the following table. The routing
protocols specified in the following table are valid only if the protocol is already initialized by RRAS

for IPv6. RRAS initializes a protocol when a RTR_TOC_ENTRY with the InfoType corresponding to
the protocol is present in the global configuration. The
RRouterInterfaceTransportSetGlobalInfo method enables specifying the global configuration
through the pGlobalInfo member of pInfoStuct.

Value Meaning
Structure to be pointed to by
pMibInEntry Remarks

MS_IPV6_DHCP

0x000003E7

An entry in
DHCPv6 Relay
agent MIB
needs to be
retrieved.

DHCPV6R_MIB_GET_INPUT_DATA See section 2.2.1.2.160 on how to
populate
DHCPV6R_MIB_GET_INPUT_DATA.
The values are retuned in
DHCPV6R_MIB_GET_OUTPUT_DATA.

pInfoStuct: This MUST be a pointer to the structure
DIM_MIB_ENTRY_CONTAINER (section 2.2.1.2.19) with valid dwMibInEntrySize and
pMibInEntry fields. dwMibInEntrySize MUST be set to the size of data being passed in

pMibInEntry. dwMibOutEntrySize and pMibOutEntry are populated by the server. The caller
frees the memory pointed to by pInfoStuct.

If dwPid is PID_IPX, dwRoutingPid MUST be one of the entries in the Value column and
pMibInEntry MUST be the corresponding entry in the Structure to be pointed to by pMibInEntry in
the return values table.

Value Meaning
Structure to be pointed to
by pMibInEntry. Remarks

IPX_PROTOCOL_BASE

0x00000000

IPX related
information.
The call was
successful.

IPX_MIB_GET_INPUT_DATA See section 2.2.1.2.105 for details
on how to populate
IPX_MIB_GET_INPUT_DATA to
retrieve different types of MIB
entries and how to interpret the
data returned.

Return Values: A 32-bit, unsigned integer value that indicates return status. A return value of

ERROR_SUCCESS (0x00000000) indicates that the operation was completed successfully;
otherwise, it contains an error code, as specified in [MS-ERREF] or in section 2.2.4. All values that
are not in the table that follows MUST be treated the same by the RRASM client.

Return value/code Description

ERROR_SUCCESS

0x00000000

The call was successful.

ERROR_ACCESS_DENIED The calling application does not have sufficient privileges, as specified in section

372 / 547

[MS-RRASM-Diff] - v20210407
Routing and Remote Access Server (RRAS) Management Protocol
Copyright © 2021 Microsoft Corporation
Release: April 7, 2021

Return value/code Description

0x00000005 2.1.1.1.

The opnum field value for this method is 29.

When processing this call, the RRASM server MUST do the following:

▪ Validate, as specified in section 2.1.1.1, whether this method was called by a client that has
access to the method. If the client does not have access, then return error
ERROR_ACCESS_DENIED (0x00000005).

▪ If pInfoStuct is NULL, return an error other than those in the preceding table.

▪ If dwPid is not specified in the SupportedTransportsList, return an error other than those
specified in the preceding table.

▪ Call the abstract interface Invoke DIMSVC method specifying the operation and the parameters

to enable RRAS server to perform the required management task.

▪ Return any error status returned by the RRAS server while processing the request. Otherwise, fill

the MIB information returned by the RRAS server in the pInfoStruct and return ERROR_SUCCESS
(0x00000000).

No exceptions are thrown beyond those thrown by the underlying RPC protocol [MS-RPCE].

3.1.4.31 (Updated Section) RMIBEntryGetFirst (Opnum 30)

The RMIBEntryGetFirst method SHOULD<294> retrieve the first value of an entry corresponding to
the transport, protocol, and the MIB entry specified in pInfoStuct.

 DWORD
 RMIBEntryGetFirst(
 [in] DIM_HANDLE hDimServer,
 [in] DWORD dwPid,
 [in] DWORD dwRoutingPid,
 [in, out] PDIM_MIB_ENTRY_CONTAINER pInfoStuct
);

hDimServer: A handle to the RRASM server where the call is to be executed, see section 3.1.3.

dwPid: Specifies the transport protocol. The value of this parameter MUST be one from the following
table.<295>

Value Meaning

PID_IPX

0x0000002B

An IPX MIB entry is to be retrieved.

PID_IP

0x00000021

An IPv4 MIB entry is to be retrieved.

PID_IPV6

0x00000057

An IPv6 MIB entry is to be retrieved.

dwRoutingPid: If dwPid is PID_IP and if dwRoutingPid is 10000, then pMibInEntry MUST point to
MIB_OPAQUE_QUERY (section 2.2.1.2.53). The dwVarId field of MIB_OPAQUE_QUERY
MUST be one of the following values. pMibOutEntry MUST be interpreted as a pointer to

373 / 547

[MS-RRASM-Diff] - v20210407
Routing and Remote Access Server (RRAS) Management Protocol
Copyright © 2021 Microsoft Corporation
Release: April 7, 2021

MIB_OPAQUE_QUERY. See section 2.2.1.2.53 for details on the structure retrieved by the
rgdwVarIndex field of MIB_OPAQUE_QUERY for different dwVarId values.

dwVarId Value Meaning

IF_NUMBER

0x00000000

Number of interfaces on the machine.

IF_TABLE

0x00000001

Information about interface table.

IF_ROW

0x00000002

Information about a particular interface.

IP_STATS

0x00000003

Information about the IP protocol.

IP_ADDRTABLE

0x00000004

Table of IPv4 address entries.

IP_ADDRROW

0x00000005

Information for a particular IPv4 address.

IP_FORWARDNUMBER

0x00000006

Information about number of routes in a particular IP routing table.

IP_FORWARDTABLE

0x00000007

Table of IPv4 route entries.

IP_NETTABLE

0x00000009

Table of ARP entries for IPv4 addresses.

IP_NETROW

0x0000000A

Information about an ARP table entry for an IPv4 address.

ICMP_STATS

0x0000000B

Statistics for ICMP messages on a particular computer.

TCP_STATS

0x0000000C

Statistics for the TCP protocol running on the local computer.

UDP_STATS

0x0000000F

Statistics for the UDP running on the local computer.

MCAST_MFE

0x00000012

Information for an IP multicast forwarding entry.

MCAST_MFE_STATS

0x00000013

Statistics associated with an MFE.

MCAST_IF_ENTRY

0x00000017

Information about an IP multicast interface.

ROUTE_MATCHING

0x0000001F

Information about a matching IP route.

BEST_IF

0x00000014

Index of the interface that has the best route to a particular destination
IPv4 address.

374 / 547

[MS-RRASM-Diff] - v20210407
Routing and Remote Access Server (RRAS) Management Protocol
Copyright © 2021 Microsoft Corporation
Release: April 7, 2021

dwVarId Value Meaning

MCAST_GLOBAL

0x00000018

Global information for IP multicast on a particular computer.

IF_STATUS

0x00000019

Status information for a particular interface.

MCAST_BOUNDARY

0x0000001A

Information about a router's scoped IPv4 multicast address boundaries.

MCAST_SCOPE

0x0000001B

Information about a multicast scope.

If dwPid is PID_IPv6IPV6 and dwRoutingPid is 10000, then pMibInEntry MUST point to
MIB_OPAQUE_QUERY. The dwVarId field of pMibInEntry MUST be one of the following
values. pMibOutEntry MUST be interpreted as a pointer to MIB_OPAQUE_QUERY. See section

2.2.1.2.53 for details on the structure retrieved by the rgdwVarIndex field of

MIB_OPAQUE_QUERY for different dwVarId values.

dwVarId Value Meaning

0x00000008

IP_FORWARDROW

Information about an IPv6 network route.

If dwPid is PID_IP and if dwRoutingPid is not IPRTRMGR_PID (0x00002710), then dwRoutingPid
MUST be one of the entries in the Value column and pMibInEntry MUST be the corresponding
entry in the Structure to be pointed to by pMibInEntry in the following table. The following
specified routing protocols are valid only if the protocol is already initialized by RRAS for IPv4.

RRAS initializes a protocol when an RTR_TOC_ENTRY with the InfoType corresponding to the
protocol is present in the global configuration. The RRouterInterfaceTransportSetGlobalInfo

method enables specifying the global configuration through the pGlobalInfo member of pInfoStuct.

Value Meaning
Structure to be pointed to by
pMibInEntry. Remarks

MS_IP_BOOTP

0x0000270F

An entry
in
IBOOTPMI
B needs
to be
retrieved.

IPBOOTP_MIB_GET_INPUT_D
ATA

See section 2.2.1.2.152 for
details on how to populate
IPBOOTP_MIB_GET_INPUT_D
ATA to retrieve different types of
MIB entries.

When this method returns
pMibOutEntry, pInfoStruct
MUST be cast to
IPBOOTP_MIB_GET_OUTPUT_DA
TA. See section 2.2.1.2.157 on
how to interpret the data
returned.

MS_IP_NAT

0x81372715

An entry
in the
NAT MIB
needs to
be
retrieved.

IP_NAT_MIB_QUERY See
IP_NAT_MIB_QUERY (section
2.2.1.2.182) for details on how
to populate this structure to
retrieve the entries required. The
values are returned in
IP_NAT_MIB_QUERY.

375 / 547

[MS-RRASM-Diff] - v20210407
Routing and Remote Access Server (RRAS) Management Protocol
Copyright © 2021 Microsoft Corporation
Release: April 7, 2021

Value Meaning
Structure to be pointed to by
pMibInEntry. Remarks

MS_IP_DNS_PROXY

0x81372713

An entry
in DNS
Proxy MIB
needs to
be
retrieved.

IP_DNS_PROXY_MIB_QUERY See section 2.2.1.2.186 for
details on how to populate
IP_DNS_PROXY_MIB_QUERY.
The values are returned in
IP_DNS_PROXY_MIB_QUERY.

MS_IP_DHCP_ALLOCAT
OR

0x81372714

An entry
in auto
DHCP MIB
is
retrieved.

IP_AUTO_DHCP_MIB_QUERY See section 2.2.1.2.188 for
details on how to populate
IP_AUTO_DHCP_MIB_QUERY.
The values are returned in the
same structure.

MS_IP_OSPF<296>

0x0000000D

An entry
in OSPF
MIB
needs to
be
retrieved.

MIB_DA_MSG

MIB_DA_MSG

OSPF_GLOBAL_PARAM

OSPF_ROUTE_FILTER_INFO

OSPF_PROTO_FILTER_INFO

OSPF_AREA_PARAM

OSPF_AREA_RANGE_PARAM

OSPF_VIRT_INTERFACE_PAR
AM

OSPF_NBMA_NEIGHBOR_PAR
AM

If dwPid is PID_IPV6 and if dwRoutingPid is not IPRTRMGR_PID (0x00002710), then dwRoutingPid

MUST be one of the entries in the Value column and pMibInEntry MUST be the corresponding
entry in the Structure to be pointed to by pMibInEntry in the following table. The following

specified routing protocols are valid only if the protocol is already initialized by RRAS for IPv6.
RRAS initializes a protocol when an RTR_TOC_ENTRY with the InfoType corresponding to the
protocol is present in the global configuration. The RRouterInterfaceTransportSetGlobalInfo
method enables specifying the global configuration through the pGlobalInfo member of
pInfoStruct.

Value Meaning
Structure to be pointed to by
pMibInEntry Remarks

MS_IPV6_DHCP

0x000003E7

An entry in
DHCPv6
Relay
agent MIB
needs to
be
retrieved.

DHCPV6R_MIB_GET_INPUT_DATA See section 2.2.1.2.160 on how to
populate
DHCPV6R_MIB_GET_INPUT_DATA. The
values are retuned in
DHCPV6R_MIB_GET_OUTPUT_DATA.

pInfoStuct: The same as in RMIBEntryGet (section 3.1.4.30).

Return Values: A 32-bit, unsigned integer value that indicates return status. A return value of
ERROR_SUCCESS (0x00000000) indicates that the operation was completed successfully;
otherwise, the return value contains an error code, as specified in [MS-ERREF] or in section 2.2.4.
All values that are not in the table that follows MUST be treated the same by the RRASM client.

376 / 547

[MS-RRASM-Diff] - v20210407
Routing and Remote Access Server (RRAS) Management Protocol
Copyright © 2021 Microsoft Corporation
Release: April 7, 2021

Return value/code Description

ERROR_SUCCESS

0x00000000

The call was successful.

ERROR_ACCESS_DENIED

0x00000005

The calling application does not have sufficient privileges, as specified
in section 2.1.1.1.

The opnum field value for this method is 30.

When processing this call, the RRASM server MUST do the following:

▪ Validate, as specified in section 2.1.1.1, whether this method was called by a client that has
access to the method. If the client does not have access, then return error
ERROR_ACCESS_DENIED (0x00000005).

▪ If pInfoStuct is NULL, return an error other than those in the preceding table.

▪ If dwPid is not specified in the SupportedTransportsList, return an error other than those
specified in the preceding table.

▪ Call the abstract interface Invoke DIMSVC method specifying the operation and the parameters

to enable RRAS server to perform the required management task.

▪ Return any error status returned by the RRAS server while processing the request. Otherwise fill
the MIB information returned by the RRAS server in the pInfoStruct and return ERROR_SUCCESS
(0x00000000).

No exceptions are thrown beyond those thrown by the underlying RPC protocol [MS-RPCE].

3.1.4.32 RMIBEntryGetNext (Opnum 31)

The RMIBEntryGetNext method<297> retrieves the next (to the previous call) entry corresponding

to the transport, protocol, and the MIB entry specified in pInfoStuct.

 DWORD
 RMIBEntryGetNext(
 [in] DIM_HANDLE hDimServer,
 [in] DWORD dwPid,
 [in] DWORD dwRoutingPid,
 [in, out] PDIM_MIB_ENTRY_CONTAINER pInfoStuct
);

hDimServer: A handle to the RRASM server where the call is to be executed, see section 3.1.3.

dwPid: The same as in RMIBEntryGet (section 3.1.4.30).

dwRoutingPid: The same as in RMIBEntryGetFirst (section 3.1.4.31).

pInfoStuct: The same as in RMIBEntryGet (section 3.1.4.30).

Return Values: A 32-bit, unsigned integer value that indicates return status. A return value of
ERROR_SUCCESS (0x00000000) indicates that the operation was completed successfully;
otherwise, the value contains an error code, as specified in [MS-ERREF] or in section 2.2.4. All
values that are not in the table that follows MUST be treated the same by the RRASM client.

377 / 547

[MS-RRASM-Diff] - v20210407
Routing and Remote Access Server (RRAS) Management Protocol
Copyright © 2021 Microsoft Corporation
Release: April 7, 2021

Return value/code Description

ERROR_SUCCESS

0x00000000

The call was successful.

ERROR_ACCESS_DENIED

0x00000005

The calling application does not have sufficient privileges, as specified
in section 2.1.1.1.

ERROR_NO_MORE_ITEMS

0x00000103

No more data available.

The opnum field value for this method is 31.

When processing this call, the RRASM server MUST do the following:

▪ Validate, as specified in section 2.1.1.1, whether this method was called by a client that has
access to the method. If the client does not have access, then return error
ERROR_ACCESS_DENIED (0x00000005).

▪ If pInfoStuct is NULL, return an error other than those in the preceding table.

▪ If dwPid is not specified in the SupportedTransportsList, return an error other than those
specified in the preceding table.

▪ Call the abstract interface Invoke DIMSVC method specifying the operation and the parameters
to enable RRAS server to perform the required management task.

▪ Return any error status returned by the RRAS server while processing the request. Otherwise fill
the MIB information returned by the RRAS server in the pInfoStruct. If there are no more MIB
entries to be returned, the RRAS server MUST return ERROR_NO_MORE_ITEMS<298>; otherwise,

return ERROR_SUCCESS (0x00000000).

No exceptions are thrown beyond those thrown by the underlying RPC protocol [MS-RPCE].

3.1.4.33 RMIBGetTrapInfo (Opnum 32)

The RMIBGetTrapInfo method<299> queries the module that set a trap event for more information
about the trap. This method cannot be called remotely.

 DWORD RMIBGetTrapInfo(
 [in] DIM_HANDLE hDimServer,
 [in] DWORD dwPid,
 [in] DWORD dwRoutingPid,
 [in, out] PDIM_MIB_ENTRY_CONTAINER pInfoStruct
);

hDimServer: A handle to the RRASM server where the call is to be executed, see section 3.1.3.

dwPid: Specifies the transport protocol. The value of this parameter MUST be one from the following

table.<300>

Value Meaning

PID_IPX

0x0000002B

An IPX MIB entry is to be retrieved.

PID_IP

0x00000021

An IPv4 MIB entry is to be retrieved.

378 / 547

[MS-RRASM-Diff] - v20210407
Routing and Remote Access Server (RRAS) Management Protocol
Copyright © 2021 Microsoft Corporation
Release: April 7, 2021

Value Meaning

PID_IPV6

0x00000057

An IPv6 entry is to be retrieved.

dwRoutingPid: Specifies the routing protocol that exported the variable.

pInfoStruct: Pointer to an opaque data structure DIM_MIB_ENTRY_CONTAINER (section 2.2.1.2.19).
The data structure's format is determined by the router manager or router manager client that is
servicing the call. The data structure MUST contain information that specifies the variable being
created and the value to assign to the variable.

Return Values: A 32-bit, unsigned integer value that indicates return status. A return value of
ERROR_SUCCESS (0x00000000) indicates that the operation was completed successfully;
otherwise, the value contains an error code, as specified in [MS-ERREF] or in section 2.2.4. All
values that are not in the table that follows MUST be treated the same by the RRASM client.

Return value/code Description

ERROR_SUCCESS

0x00000000

The call was successful.

ERROR_ACCESS_DENIED

0x00000005

The calling application does not have sufficient privileges.

The opnum field value for this method is 32.

When processing this call, the RRASM server MUST do the following:

▪ Validate, as specified in section 2.1.1.1, whether this method was called by a client that has
access to the method. If not, then return error ERROR_ACCESS_DENIED.

▪ If pInfoStruct is NULL, return an error other than one of the errors specified in the preceding

table.

▪ If dwPid is not specified in the SupportedTransportsList, return an error other than those

specified in the preceding table.

▪ Call the abstract interface Invoke DIMSVC method specifying the operation and the parameters
to enable RRAS server to perform the required management task.

▪ If the RRAS server successfully processes the request, return the information in pInfoStruct and
with the information provided by the RRAS server and return ERROR_SUCCESS (0x00000000).
Otherwise return the error result provided by the RRAS server.

 No exceptions are thrown beyond those thrown by the underlying RPC protocol [MS-RPCE].

3.1.4.34 RMIBSetTrapInfo (Opnum 33)

The RMIBSetTrapInfo method<301> specifies a handle to an event that is signaled whenever a trap
needs to be issued.

 DWORD RMIBSetTrapInfo(
 [in] DIM_HANDLE hDimServer,
 [in] DWORD dwPid,
 [in] DWORD dwRoutingPid,
 [in] ULONG_PTR hEvent,
 [in] DWORD dwClientProcessId,
 [in, out] PDIM_MIB_ENTRY_CONTAINER pInfoStruct

379 / 547

[MS-RRASM-Diff] - v20210407
Routing and Remote Access Server (RRAS) Management Protocol
Copyright © 2021 Microsoft Corporation
Release: April 7, 2021

);

hDimServer: A handle to the RRASM server where the call is to be executed, see section 3.1.3.

dwPid: Specifies the protocol ID that exported the variable.

dwRoutingPid: Specifies the routing protocol that exported the variable.

hEvent: A handle to an event that is signaled when a trap needs to be issued. This MUST be a handle
to an event on the RRAS server which is created within the process specified by
dwClientProcessId which can be signaled whenever a trap needs to be issued. Otherwise the
method SHOULD fail with an appropriate error code as specified in [MS-ERREF].

dwClientProcessId: The current process identifier.

pInfoStruct: Pointer to an opaque data structure DIM_MIB_ENTRY_CONTAINER (section 2.2.1.2.19).

The data structure's format is determined by the router manager or router manager client that is
servicing the call. The data structure MUST contain information that specifies the variable being

created and the value to assign to the variable.

Return Values: A 32-bit, unsigned integer value that indicates return status. A return value of
ERROR_SUCCESS (0x00000000) indicates that the operation was completed successfully;
otherwise, it contains an error code, as specified in [MS-ERREF] or in section 2.2.4. All values that
are not in the table that follows MUST be treated the same by the RRASM client.

Return value/code Description

ERROR_SUCCESS

0x00000000

The call was successful.

ERROR_ACCESS_DENIED

0x00000005

The calling application does not have sufficient privileges.

ERROR_INSUFFICIENT_BUFFER

0x0000007A

The opnum field value for this method is 33.

When processing this call, the RRASM server MUST do the following:

▪ Validate, as specified in section 2.1.1.1, whether this method was called by a client that has
access to the method. If not, then return error ERROR_ACCESS_DENIED.

▪ If pInfoStruct is NULL, return an error other than one of the errors specified in the preceding
table.

▪ If dwPid is not specified in the SupportedTransportsList, return an error other than one of the
errors specified in the preceding table.

▪ Call the abstract interface Invoke DIMSVC method specifying the operation and the parameters

to enable RRAS server to perform the required management task.

▪ If the RRAS server successfully processes the request, return ERROR_SUCCESS (0x00000000).
Otherwise return the error result provided by the RRAS server.

No exceptions are thrown beyond those thrown by the underlying RPC protocol [MS-RPCE].

380 / 547

[MS-RRASM-Diff] - v20210407
Routing and Remote Access Server (RRAS) Management Protocol
Copyright © 2021 Microsoft Corporation
Release: April 7, 2021

3.1.4.35 RRasAdminConnectionNotification (Opnum 34)

The RRasAdminConnectionNotification method<302> registers an event object with the RRAS
server so that, if an interface connects or disconnects, the event is signaled. The hDimServer handle

specifies on which RRAS server the call is to be executed.

 DWORD RRasAdminConnectionNotification(
 [in] DIM_HANDLE hDimServer,
 [in] DWORD fRegister,
 [in] DWORD dwClientProcessId,
 [in] ULONG_PTR hEventNotification
);

hDimServer: A handle to the RRASM server where the call is to be executed, see section 3.1.3.

fRegister: This is of type DWORD and SHOULD be set to 1, if notifications are required when an
interface is connected or disconnected. Set to 0 to unregister notifications.

dwClientProcessId: The current process identifier that determines where the function is called from.

hEventNotification: A handle to an event that is signaled after the connection is connected or

disconnected. This MUST be a handle to an event on the RRASM server which is created within the
process specified by dwClientProcessId which can be signaled on interface connect and
disconnect events. Otherwise the method SHOULD fail with an appropriate error code as specified
in [MS-ERREF].

Return Values: A 32-bit, unsigned integer value that indicates return status. A return value of
ERROR_SUCCESS (0x00000000) indicates that the operation was completed successfully;

otherwise, it contains an error code, as specified in [MS-ERREF] or in section 2.2.4. All values that
are not in the table that follows MUST be treated the same by the RRASM client.

Return value/code Description

ERROR_SUCCESS

0x00000000

The call was successful.

ERROR_ACCESS_DENIED

0x00000005

The calling application does not have sufficient privileges.

The opnum field value for this method is 34.

When processing this call, the RRASM server MUST do the following:

▪ Validate, as specified in section 2.1.1.1, whether this method was called by a client that has

access to the method. If not, then return error ERROR_ACCESS_DENIED.

▪ If hEventNotification is NULL, return an error other than those specified in the preceding table.

▪ If RouterType is ROUTER_TYPE_LAN, return an error other than those in the preceding table.

▪ Call the abstract interface Invoke DIMSVC method specifying the operation and the parameters
to enable RRAS server to perform the required management task.

▪ Return any error status the RRAS server might return while processing the request. Otherwise
return ERROR_SUCCESS.

No exceptions are thrown beyond those thrown by the underlying RPC protocol [MS-RPCE].

381 / 547

[MS-RRASM-Diff] - v20210407
Routing and Remote Access Server (RRAS) Management Protocol
Copyright © 2021 Microsoft Corporation
Release: April 7, 2021

3.1.4.36 RRasAdminSendUserMessage (Opnum 35)

The RRasAdminSendUserMessage method<303> sends a message to the user connected on the
connection specified by hDimServer.<304>

 DWORD RRasAdminSendUserMessage(
 [in] DIM_HANDLE hDimServer,
 [in] DWORD hDimConnection,
 [in, string] LPWSTR lpwszMessage
);

hDimServer: A handle to the RRASM server where the call is to be executed, see section 3.1.3.

hDimConnection: This is of type DWORD and MUST be set to a particular connection identifier for
which the connection information is required. Obtain this handle by calling

RRasAdminConnectionEnum (section 3.1.4.2). Since RRASM server does not maintain the
connection handles, the RRAS server SHOULD check and ensure that this handle represents a
valid interface handle.

lpwszMessage: A pointer to a Unicode string that specifies the message to the user. It MUST NOT be
NULL.

Return Values: A 32-bit, unsigned integer value that indicates return status. A return value of

ERROR_SUCCESS (0x00000000) indicates that the operation was completed successfully;
otherwise, the value contains an error code, as specified in [MS-ERREF] or in section 2.2.4. All
values that are not in the table that follows MUST be treated the same by the RRASM client.

Return value/code Description

ERROR_SUCCESS

0x00000000

The call was successful.

ERROR_ACCESS_DENIED

0x00000005

The calling application does not have sufficient privileges.

The opnum field value for this method is 35.

When processing this call, the RRASM server MUST do the following:

▪ Validate, as specified in section 2.1.1.1, whether this method was called by a client that has
access to the method. If the client does not have access, then return error
ERROR_ACCESS_DENIED (0x00000005).

▪ If RouterType is ROUTER_TYPE_LAN, return an error other than those specified in the preceding
table.

▪ If lpwszMessage is NULL, return an error other than one of the errors specified in the preceding
table.

▪ Call the abstract interface Invoke DIMSVC method specifying the operation and the parameters
to enable RRAS server to perform the required management task.

▪ Return any error status the RRAS server might return while processing the request. Otherwise
return ERROR_SUCCESS (0x00000000).

No exceptions are thrown beyond those thrown by the underlying RPC protocol [MS-RPCE].

382 / 547

[MS-RRASM-Diff] - v20210407
Routing and Remote Access Server (RRAS) Management Protocol
Copyright © 2021 Microsoft Corporation
Release: April 7, 2021

3.1.4.37 RRouterDeviceEnum (Opnum 36)

The RRouterDeviceEnum method<305> retrieves the list of all the devices from the specified
server. The hDimServer handle specifies the RRASM server on which the call is executed. The caller

MUST pass a pointer to a valid DIM_INFORMATION_CONTAINER (section 2.2.1.2.1), where
DIM_INFORMATION_CONTAINER.dwBufferSize is initialized to zero (0). The caller SHOULD free the
memory pointed to by pInfoStruct->pBuffer.

 DWORD RRouterDeviceEnum(
 [in] DIM_HANDLE hDimServer,
 [in] DWORD dwLevel,
 [in, out] PDIM_INFORMATION_CONTAINER pInfoStruct,
 [in, out] LPDWORD lpdwTotalEntries
);

hDimServer: A handle to the RRASM server where the call is to be executed, see section 3.1.3.

dwLevel: This is of type DWORD and MUST be set to the following value.

Value Meaning

0 After the function returns the memory pointed to by pInfoStruct->pBuffer it is interpreted
as array of MPR_DEVICE_0 (section 2.2.1.2.85). The size of the array is determined by
lpdwEntriesRead.

pInfoStruct: This is a pointer of type DIM_INFORMATION_CONTAINER (section 2.2.1.2.1), and

pInfoStruct.dwBufferSize is initialized to zero (0). Upon successful return, the pInfoStruct-
>pBuffer is a typecast array of MPR_DEVICE_0 (section 2.2.1.2.85) and the array size is
determined by the value to pointer lpdwTotalEntries.

lpdwTotalEntries: This is a pointer to type DWORD and receives the total number of devices that
have been enumerated.

Return Values: A 32-bit, unsigned integer value that indicates return status. A return value of
ERROR_SUCCESS (0x00000000) indicates that the operation was completed successfully;

otherwise, the return value contains an error code, as specified in [MS-ERREF] or in section 2.2.4.
All values that are not in the table that follows MUST be treated the same by the RRASM client.

Return value/code Description

ERROR_SUCCESS

0x00000000

The call was successful.

ERROR_ACCESS_DENIED

0x00000005

The calling application does not have sufficient privileges.

The opnum field value for this method is 36.

When processing this call, the RRASM server MUST do the following:

▪ Validate, as specified in section 2.1.1.1, whether this method was called by a client that has

access to the method. If the client does not have access, then return error
ERROR_ACCESS_DENIED (0x00000005).

▪ If pInfoStruct is NULL, return an error other than one of the errors in the preceding table.

▪ If dwLevel is not supported, return an error other than those in the preceding table.

383 / 547

[MS-RRASM-Diff] - v20210407
Routing and Remote Access Server (RRAS) Management Protocol
Copyright © 2021 Microsoft Corporation
Release: April 7, 2021

▪ Call the abstract interface Invoke DIMSVC method specifying the operation and the parameters
to enable RRAS server to perform the required management task.

▪ If the RRAS server completes the request successfully, place the returned information in
pInfoStruct and set lpdwTotalEntries to the number of entries returned by RRAS server and

return ERROR_SUCCESS (0x00000000).

▪ Otherwise return the error status provided by RRAS server.

No exceptions are thrown beyond those thrown by the underlying RPC protocol [MS-RPCE].

3.1.4.38 RRouterInterfaceTransportCreate (Opnum 37)

The RRouterInterfaceTransportCreate method<306> is used to create a new transport on the
RRAS server.

 DWORD RRouterInterfaceTransportCreate(
 [in] DIM_HANDLE hDimServer,
 [in] DWORD dwTransportId,
 [in, string] LPWSTR lpwsTransportName,
 [in] PDIM_INTERFACE_CONTAINER pInfoStruct,
 [in, string] LPWSTR lpwsDLLPath
);

hDimServer: A handle to the RRASM server where the call is to be executed, see section 3.1.3.

dwTransportId: Specifies the transport for which the information is set (IPX, IPv4, or IPv6). It MUST
be set to one of the following values.<307>

Value Meaning

PID_IPX

0x0000002B

IPX protocol

PID_IP

0x00000021

IPv4 protocol

 PID_IPV6

0x00000057

IPv6 protocol

lpwsTransportName: Pointer to a null-terminated Unicode string that specifies the name of the
transport being added. If this parameter is not specified, the dwTransportId parameter is
converted into a string and used as the transport name.

pInfoStruct: Pointer to a DIM_INTERFACE_CONTAINER (section 2.2.1.2.2). This MUST NOT be NULL.
The pGlobalInfo member of the DIM_INTERFACE_CONTAINER MUST NOT be NULL and MUST
point to a valid RTR_INFO_BLOCK_HEADER (section 2.2.1.2.3) and

RTR_TOC_ENTRY (section 2.2.1.2.4).

If dwTransportId is PID_IP or PID_IPV6, one or more of the following entries MUST be set in the
InfoType field in the RTR_TOC_ENTRY (section 2.2.1.2.4) structure while passing to the method.

Value Meaning and conditions Structure pointed to at offset

IP_PROT_PRIORITY_INFO

0xFFFF0006

IPv4 and IPv6 route priority
information is specified.

PRIORITY_INFO (section 2.2.1.2.12)

IP_PROT_PRIORITY_INFO_EX IPv4 and IPv6 route priority PRIORITY_INFO_EX (section 2.2.1.2.266)

384 / 547

[MS-RRASM-Diff] - v20210407
Routing and Remote Access Server (RRAS) Management Protocol
Copyright © 2021 Microsoft Corporation
Release: April 7, 2021

Value Meaning and conditions Structure pointed to at offset

0xFFFF0017 information is specified.

IPV6_GLOBAL_INFO

0xFFFF000F

Global lPv6 logging and filtering
information.

GLOBAL_INFO (section 2.2.1.2.9)

IP_GLOBAL_INFO

0xFFFF0003

Global lPv4 logging and filtering
information.

GLOBAL_INFO (section 2.2.1.2.9)

lpwsDLLPath: Pointer to a null-terminated Unicode string that specifies the name of the router
manager DLL for the specified transport. If this name is specified, the function sets the DLL path
for this transport to this name.<308>

Return Values: A 32-bit, unsigned integer value that indicates return status. A return value of
ERROR_SUCCESS (0x00000000) indicates that the operation was completed successfully;
otherwise, it contains an error code, as specified in [MS-ERREF] or in section 2.2.4. All values that

are not in the table that follows MUST be treated the same by the RRASM client.

Return value/code Description

ERROR_SUCCESS

0x00000000

The call was successful.

ERROR_ACCESS_DENIED

0x00000005

The calling application does not have sufficient privileges.

The opnum field value for this method is 37.

When processing this call, the RRASM server MUST do the following:

▪ Validate, as specified in section 2.1.1.1, whether this method was called by a client that has
access to the method. If the client does not have access, then return error

ERROR_ACCESS_DENIED (0x00000005).

▪ If pInfoStruct is NULL, return an error other than one of the errors specified in the preceding
table.

▪ If dwTransportId is not specified in the SupportedTransportsList, return an error other than one
of the errors specified in the preceding table.

▪ Call the abstract interface Invoke DIMSVC method specifying the operation and the parameters
to enable RRAS server to perform the required management task.

▪ Return any error status returned by the RRAS server. Otherwise return ERROR_SUCCESS.

No exceptions are thrown beyond those thrown by the underlying RPC protocol [MS-RPCE].

3.1.4.39 (Updated Section) RRouterInterfaceDeviceGetInfo (Opnum 38)

The RRouterInterfaceDeviceGetInfo method<309> retrieves information for a specified device,
dwIndex, for a specified interface hInterface, on a specified server, hDimServer.

 DWORD RRouterInterfaceDeviceGetInfo(
 [in] DIM_HANDLE hDimServer,
 [in] DWORD dwLevel,
 [in, out] PDIM_INFORMATION_CONTAINER pInfoStruct,
 [in] DWORD dwIndex,
 [in] DWORD hInterface

385 / 547

[MS-RRASM-Diff] - v20210407
Routing and Remote Access Server (RRAS) Management Protocol
Copyright © 2021 Microsoft Corporation
Release: April 7, 2021

);

hDimServer: A handle to the RRASM server where the call is executed, see section 3.1.3.

dwLevel: This is of type DWORD and MUST be set to any of the following values.

Value Meaning

0 After the function returns, the memory pointed to by pInfoStruct->pBuffer is interpreted as
MPR_DEVICE_0 (section 2.2.1.2.85).

1 After the function returns, the memory pointed to by pInfoStruct->pBuffer is interpreted as
MPR_DEVICE_1 (section 2.2.1.2.87).86).

pInfoStruct: This is a pointer of type DIM_INFORMATION_CONTAINER (section 2.2.1.2.1) and
pInfoStruct.dwBufferSize SHOULD be initialized to zero (0). Upon successful return, the
pInfoStruct->pBuffer is a typecast array of MPR_DEVICE_0 (section 2.2.1.2.85) or
MPR_DEVICE_1 (section 2.2.1.2.86), based on the dwLevel value.

dwIndex: Specifies the one-based index of the device. A multilinked demand-dial interface uses

multiple devices.

hInterface: The unique identifier of an interface. This can be obtained from
RRouterInterfaceCreate (section 3.1.4.13) or RRouterInterfaceGetHandle (section 3.1.4.12). Since
the RRASM server does not maintain interface handles, the RRAS server SHOULD check and
ensure that this handle represents a valid interface handle.

Return Values: A 32-bit, unsigned integer value that indicates return status. A return value of
ERROR_SUCCESS (0x00000000) indicates that the operation was completed successfully;

otherwise, the return value contains an error code, as specified in [MS-ERREF] or in section 2.2.4.
All values not in the following table MUST be treated the same by the RRASM client.

Return value/code Description

ERROR_SUCCESS

0x00000000

The call was successful.

ERROR_ACCESS_DENIED

0x00000005

The calling application does not have sufficient privileges.

The opnum field value for this method is 38.

When processing this call, the RRASM server MUST do the following:

▪ Validate, as specified in section 2.1.1.1, whether this method was called by a client that has

access to the method. If the client does not have access, then return error
ERROR_ACCESS_DENIED (0x00000005).

▪ If pInfoStruct is NULL, return an error other than those in the preceding table.

▪ If dwLevel is not supported, return an error other than those in the preceding table.

▪ Call the abstract interface Invoke DIMSVC method specifying the operation and the parameters
to enable RRAS server to perform the required management task.

▪ If the RRAS server successfully processes the request, fill the returned information in pInfoStruct

and return ERROR_SUCCESS (0x00000000). Otherwise return the ERROR_STATUS returned by
the RRAS server.

386 / 547

[MS-RRASM-Diff] - v20210407
Routing and Remote Access Server (RRAS) Management Protocol
Copyright © 2021 Microsoft Corporation
Release: April 7, 2021

No exceptions are thrown beyond those thrown by the underlying RPC protocol [MS-RPCE].

3.1.4.40 (Updated Section) RRouterInterfaceDeviceSetInfo (Opnum 39)

The RRouterInterfaceDeviceSetInfo method<310> sets the information for a specified device,
dwIndex, for a specified interface, hInterface, on a specified server, hDimServer.

 DWORD RRouterInterfaceDeviceSetInfo(
 [in] DIM_HANDLE hDimServer,
 [in] DWORD dwLevel,
 [in] PDIM_INFORMATION_CONTAINER pInfoStruct,
 [in] DWORD dwIndex,
 [in] DWORD hInterface
);

hDimServer: A handle to the RRASM server where the call is to be executed, see section 3.1.3.

dwLevel: This is of type DWORD and MUST be set to one of the following values.

Value Meaning

0 pInfoStruct->pBuffer MUST be set to point to MPR_DEVICE_0 (section 2.2.1.2.86).85).

1 pInfoStruct->pBuffer MUST be set to point to MPR_DEVICE_1 (section 2.2.1.2.87).86).

pInfoStruct: This is a pointer of type DIM_INFORMATION_CONTAINER (section 2.2.1.2.1) and MUST
be set to the following, based on dwLevel. The szDeviceName MUST be one of the devices as

specified by RRouterDeviceEnum. The szDeviceType specified in the structure SHOULD be
validated against the actual type of the device specified by szDeviceName. If the szDeviceType is
incorrect, the actual device type SHOULD be used by the server instead.

dwLevel pInfoStruct->size pInfoStruct->pBuffer

0 Should be set to the size of
MPR_DEVICE_0 (section 2.2.1.2.86).85).

This MUST be set to point to MPR_DEVICE_0.

1 Should be set to the size of
MPR_DEVICE_1 (section 2.2.1.2.87).86).

This MUST be set to a point to MPR_DEVICE_1.

dwIndex: Specifies the 1-based index of the device. A multilinked demand-dial interface uses
multiple devices. If the device information specified for dwIndex 1 is either a PPPoE interface or a

VPN interface, any other device information, specified (with dwIndex > 1), SHOULD be ignored. If
the device information specified for dwIndex 1 is a serial or ISDN device, the connection SHOULD
be treated as a multilink-capable connection. Any other device information, specified (with
dwIndex > 1), SHOULD be treated as device information for the individual links. Device
information with type szDeviceType, which is neither modem nor ISDN, SHOULD<311> be
ignored.

hInterface: The unique identifier of an interface. This can be obtained from

RRouterInterfaceCreate (section 3.1.4.13) or RRouterInterfaceGetHandle (section 3.1.4.12). Since
the RRASM server does not maintain the interface handles, the RRAS server implementation
SHOULD check and ensure that this handle represents a valid interface handle.

Return Values: A 32-bit, unsigned integer value that indicates return status. A return value of
ERROR_SUCCESS (0x00000000) indicates that the operation was completed successfully;
otherwise it contains an error code, as specified in [MS-ERREF] or in section 2.2.4. All values that

are not in the table that follows MUST be treated the same by the RRASM client.

387 / 547

[MS-RRASM-Diff] - v20210407
Routing and Remote Access Server (RRAS) Management Protocol
Copyright © 2021 Microsoft Corporation
Release: April 7, 2021

Return value/code Description

ERROR_SUCCESS

0x00000000

The call was successful.

ERROR_ACCESS_DENIED

0x00000005

The calling application does not have sufficient privileges.

The opnum field value for this method is 39.

When processing this call, the RRASM server MUST do the following:

▪ Validate, as specified in section 2.1.1.1, whether this method was called by a client that has
access to the method. If the client does not have access, then return error
ERROR_ACCESS_DENIED.

▪ If pInfoStruct is NULL, return an error other than those in the preceding table.

▪ If dwLevel is not supported, return an error other than those in the preceding table.

▪ Call the abstract interface Invoke DIMSVC method specifying the operation and the parameters
to enable the RRAS server to perform the required management task.

▪ Return the error status that is returned by the RRAS server while processing the request.
Otherwise return ERROR_SUCCESS.

No exceptions are thrown beyond those thrown by the underlying RPC protocol [MS-RPCE].

3.1.4.41 RRouterInterfaceSetCredentialsEx (Opnum 40)

The RRouterInterfaceSetCredentialsEx method<312> is used to set extended credentials (other
than username and password) information for an interface. This function is used to set credentials
information used for the EAP methods or used as a key that is shared between two routers (a

preshared key).

 DWORD RRouterInterfaceSetCredentialsEx(
 [in] DIM_HANDLE hDimServer,
 [in] DWORD dwLevel,
 [in] PDIM_INFORMATION_CONTAINER pInfoStruct,
 [in] DWORD hInterface
);

hDimServer: A handle to the RRASM server where the call is executed, see section 3.1.3.

dwLevel: Specifies the format of the credentials information. This parameter MUST be one of the
following values: 0x00000000, 0x0000001, 0x0000002, or 0x00000003. A value of zero (0)
indicates that this is EAP information, and the MPR_CREDENTIALSEX_1 structure MUST contain
EAPTLS_USER_PROPERTIES (section 2.2.1.2.128). A value of one, two, or three (these can be
used interchangeably) indicate that the credentials information is a preshared key and is

formatted as an MPR_CREDENTIALSEX_1 structure. The preshared key specifies the preshared
key to be used with IPsec for L2TP over IPsec connections.

pInfoStruct: Pointer to the DIM_INFORMATION_CONTAINER (section 2.2.1.2.1), the pBuffer pointer
of which points to the MPR_CREDENTIALSEX_1 structure that contains the credential
information to be set for the interface.

hInterface: Handle to the interface. This can be obtained from
RRouterInterfaceCreate (section 3.1.4.13) or RRouterInterfaceGetHandle (section 3.1.4.12). If

388 / 547

[MS-RRASM-Diff] - v20210407
Routing and Remote Access Server (RRAS) Management Protocol
Copyright © 2021 Microsoft Corporation
Release: April 7, 2021

dwLevel is 0x0000002 and hInterface is NULL, the preshared key is used for L2TP. Since the
RRASM server does not maintain the interface handles, the RRAS server SHOULD check and

ensure that this handle is a valid interface handle.

Return Values: A 32-bit, unsigned integer value that indicates return status. A return value of

ERROR_SUCCESS (0x00000000) indicates that the operation was completed successfully;
otherwise, it contains an error code, as specified in [MS-ERREF] or in section 2.2.4. All values that
are not in the table that follows MUST be treated the same by the RRASM client.

Return value/code Description

ERROR_SUCCESS

0x00000000

The call was successful.

ERROR_ACCESS_DENIED

0x00000005

The calling application does not have sufficient privileges, as specified in
section 2.1.1.1.

The opnum field value for this method is 40.

When processing this call, the RRASM server MUST do the following:

▪ Validate, as specified in section 2.1.1.1, whether this method was called by a client that has
access to the method. If the client does not have access, then return error
ERROR_ACCESS_DENIED (0x00000005).

▪ If pInfoStruct is NULL, return an error other than those in the preceding table.

▪ If dwLevel is not supported, return an error other than those in the preceding table.

▪ Call the abstract interface Invoke DIMSVC method specifying the operation and the parameters

to enable the RRAS server to perform the required management task.

▪ Return any error the RRAS server returns while processing the request. Otherwise return
ERROR_SUCCESS (0x00000000).

No exceptions are thrown beyond those thrown by the underlying RPC protocol [MS-RPCE].

3.1.4.42 (Updated Section) RRouterInterfaceGetCredentialsEx (Opnum 41)

The RRouterInterfaceGetCredentialsEx method<313> is used to retrieve extended (other than the
user nameusername or password) credentials information for the specified interface.

 DWORD RRouterInterfaceGetCredentialsEx(
 [in] DIM_HANDLE hDimServer,
 [in] DWORD dwLevel,
 [in, out] PDIM_INFORMATION_CONTAINER pInfoStruct,
 [in] DWORD hInterface
);

hDimServer: A handle to the RRASM server where the call is to be executed, see section 3.1.3.

dwLevel: Specifies the format of the credentials information. This parameter takes values
0x00000000, 0x00000001, 0x00000002, or 0x00000003. An error other than one of the errors in

the return values table is returned for other values. A value of 0x00000000 indicates that the
credentials information is about the EAP configuration. If the interface does not have EAP
information, the dwSize field of the MPR_CREDENTIALSEX_1 (section 2.2.1.2.87)structure
MUST be set to zero (0). Otherwise, the MPR_CREDENTIALSEX_1 structure MUST contain
EAPTLS_USER_PROPERTIES (section 2.2.1.2.128). A value of 0x00000001, 0x00000002, or

389 / 547

[MS-RRASM-Diff] - v20210407
Routing and Remote Access Server (RRAS) Management Protocol
Copyright © 2021 Microsoft Corporation
Release: April 7, 2021

0x00000003 indicates that the credentials information is a preshared key. If the interface does not
have a preshared key configured, an error other than one of the errors in the return values table

is returned. Otherwise, the preshared key is formatted as an MPR_CREDENTIALSEX_1
structure.

pInfoStruct: Pointer to a MPR_CREDENTIALSEX_1 structure that contains the preshared key or
EAP information for the interface. When the method completes successfully, the client SHOULD
free this memory.

hInterface: A handle to the interface. This can be obtained from
RRouterInterfaceCreate (section 3.1.4.13) or RRouterInterfaceGetHandle (section 3.1.4.12). The
interface MUST be of type ROUTER_IF_TYPE_FULL_ROUTER if dwLevel is 0x00000000.

Return Values: A 32-bit, unsigned integer value that indicates return status. A return value of

ERROR_SUCCESS (0x00000000) indicates that the operation was completed successfully;
otherwise, it contains an error code, as specified in [MS-ERREF] or in section 2.2.4. All values that
are not in the table that follows MUST be treated the same by the RRASM client.

Return value/code Description

ERROR_SUCCESS

0x00000000

The call was successful.

ERROR_ACCESS_DENIED

0x00000005

The calling application does not have sufficient privileges, as specified
in section 2.1.1.1.

The opnum field value for this method is 41.

When processing this call, the RRASM server MUST do the following:

▪ Validate, as specified in section 2.1.1.1, whether this method was called by a client that has
access to the method. If the client does not have access, then return error
ERROR_ACCESS_DENIED (0x00000005).

▪ If pInfoStruct is NULL, return an error other than those in the preceding table.

▪ Call the abstract interface Invoke DIMSVC method specifying the operation and the parameters
to enable RRAS server to perform the required management task.

▪ Return any error the RRAS server returns while processing the request. Otherwise return
ERROR_SUCCESS (0x00000000).

No exceptions are thrown beyond those thrown by the underlying RPC protocol [MS-RPCE].

3.1.4.43 RRasAdminConnectionRemoveQuarantine (Opnum 42)

The RRasAdminConnectionRemoveQuarantine method<314> removes quarantine filters on a
dialed-in RRAS client if the filters were applied as a result of Internet Authentication Service (IAS)
policies. This function does not remove the IPv6 quarantine filters. The hDimServer handle specifies

the RRASM server on which the call is to be executed.<315>

 DWORD RRasAdminConnectionRemoveQuarantine(
 [in] DIM_HANDLE hDimServer,
 [in] DWORD hRasConnection,
 [in] BOOL fIsIpAddress
);

hDimServer: A handle to the RRAS server where the call is to be executed, see section 3.1.3.

390 / 547

[MS-RRASM-Diff] - v20210407
Routing and Remote Access Server (RRAS) Management Protocol
Copyright © 2021 Microsoft Corporation
Release: April 7, 2021

hRasConnection: This is of type DWORD and SHOULD be set to a particular connection identifier for
which the connection information is required. Obtain this handle by calling

RRasAdminConnectionEnum (section 3.1.4.2). Since the RRASM server does not maintain the
connection handles, the RRAS server SHOULD check and ensure that this handle is a valid

connection handle.

Alternatively, this parameter specifies the IP address of the RRAS client for which to remove the
quarantine filter. The IP address MUST be specified as a DWORD in network byte order. Obtain
the IP address by calling RRasAdminConnectionEnum. If this parameter specifies an IP
address, the fIsIpAddress parameter MUST specify a TRUE value.

fIsIpAddress: Specifies a Boolean value that indicates whether the hRasConnection parameter
specifies the IP address of the client for which to remove the quarantine filters. If this parameter

is a TRUE value, hRasConnection specifies an IP address. Otherwise, hRasConnection specifies a
handle to a connection.

Return Values: A 32-bit, unsigned integer value that indicates return status. A return value of
ERROR_SUCCESS (0x00000000) indicates that the operation was completed successfully;

otherwise, it contains an error code, as specified in [MS-ERREF] or in section 2.2.4. All values that
are not in the table that follows MUST be treated the same by the RRASM client.

Return value/code Description

ERROR_SUCCESS

0x00000000

The call was successful.

ERROR_ACCESS_DENIED

0x00000005

The calling application does not have sufficient privileges.

The opnum field value for this method is 42.

When processing this call, the RRASM server MUST do the following:

▪ Validate, as specified in section 2.1.1.1, whether this method was called by a client that is a

member of the "Administrator Group". If not, then return error ERROR_ACCESS_DENIED
(0x00000005).

▪ Call the abstract interface Invoke DIMSVC method specifying the operation and the parameters
to enable RRAS server to perform the required management task.

▪ Return any error the RRAS server returns while processing the request. Otherwise return
ERROR_SUCCESS (0x00000000).

No exceptions are thrown beyond those thrown by the underlying RPC protocol [MS-RPCE].

3.1.4.44 (Updated Section) RMprAdminServerSetInfo (Opnum 43)

The RMprAdminServerSetInfo method<316> sets ports information on a specified server
hDimServer.

 DWORD RMprAdminServerSetInfo(
 [in] DIM_HANDLE hDimServer,
 [in] DWORD dwLevel,
 [in] PDIM_INFORMATION_CONTAINER pInfoStruct
);

hDimServer: A handle to the RRASM server where the call is to be executed, see section 3.1.3.

391 / 547

[MS-RRASM-Diff] - v20210407
Routing and Remote Access Server (RRAS) Management Protocol
Copyright © 2021 Microsoft Corporation
Release: April 7, 2021

dwLevel: This is of type DWORD and MUST be set to any of the following values.

Value Meaning

1 pInfoStruct->pBuffer MUST be a pointer to a MPR_SERVER_1 (section 2.2.1.2.62).

2 pInfoStruct->pBuffer MUST be a pointer to a MPR_SERVER_2 (section 2.2.1.2.63).

pInfoStruct: This is a pointer of type PDIM_INFORMATION_CONTAINER (section 2.2.1.2.1) and MUST

be set to the following, based on dwLevel.

dwLevel pInfoStruct->size pInfoStruct->pBuffer

1 This MUST be set to the size of
MPR_SERVER_1 (section 2.2.1.2.62).

This MUST be set to a pointer to a
MPR_SERVER_1 (section 2.2.1.2.62).

2 This MUST be set to the size of
MPR_SERVER_2 (section 2.2.1.2.63).

This MUST be set to a pointer to a
MPR_SERVER_2 (section 2.2.1.2.63).

Return Values: A 32-bit, unsigned integer value that indicates return status. A return value of
ERROR_SUCCESS (0x00000000) indicates that the operation was completed successfully;
otherwise, the value contains an error code, as specified in [MS-ERREF] or in section 2.2.4. All
values that are not listed in the table that follows MUST be treated the same by the RRASM client.

Return value/code Description

ERROR_SUCCESS

0x00000000

The call was successful.

ERROR_ACCESS_DENIED

0x00000005

The calling application does not have sufficient privileges.

ERROR_SUCCESS_REBOOT_REQUIRED

0x00000BC2

A system reboot is required for such a change to take
effect.<317>

The opnum field value for this method is 43.

When processing this call, the RRASM server MUST do the following:

▪ Validate, as specified in 2.1.1.1, whether this method was called by a client that has access to the
method. If the client does not have access, then return error ERROR_ACCESS_DENIED.

▪ If pInfoStruct is NULL, return an error other than those in the preceding table.

▪ If dwLevel is not supported, return an error other than one of the errors listed in the preceding
table.

▪ Call the abstract interface Invoke DIMSVC method specifying the operation and the parameters
to enable RRAS server to perform the required management task.

▪ If the RRAS server completes the processing successfully return either ERROR_SUCCESS or
ERROR_SUCCESS_REBOOT_REQUIRED<318> based on the impact of the configuration change as
indicated by the RRAS server. Otherwise return the error status.

No exceptions are thrown beyond those thrown by the underlying RPC protocol [MS-RPCE].

392 / 547

[MS-RRASM-Diff] - v20210407
Routing and Remote Access Server (RRAS) Management Protocol
Copyright © 2021 Microsoft Corporation
Release: April 7, 2021

3.1.4.45 RMprAdminServerGetInfoEx (Opnum 44)

The RMprAdminServerGetInfoEx method<319> gets the device configuration information for PPTP,
L2TP, SSTP, and IKEv2 on a server specified by hDimServer.

 DWORD RMprAdminServerGetInfoEx(
 [in] DIM_HANDLE hDimServer,
 [in, out] PMPR_SERVER_EX_IDL pServerConfig
);

hDimServer: A handle to the RRASM server where the call is to be executed, see section 3.1.3.

pServerConfig: A valid pointer to an MPR_SERVER_EX_IDL structure (section 2.2.1.2.143). This
MUST NOT be NULL. On successful return this parameter contains port information for RRAS.

Return Values: A 32-bit unsigned integer value that indicates return status. A return value of
ERROR_SUCCESS (0x00000000) indicates that the operation was completed successfully;
otherwise, it contains an error code, as specified in [MS-ERREF] or in section 2.2.4. All values that

are not in the table that follows MUST be treated the same by the RRASM client.

Return value/code Description

ERROR_SUCCESS

0x00000000

The call was successful.

ERROR_ACCESS_DENIED

0x00000005

The calling application does not have sufficient privileges.

The opnum field value for this method is 44.

When processing this call, the RRASM server MUST do the following:

▪ Validate, as specified in section 2.1.1.1, whether this method was called by a client that has

access to the method. If the client does not have access, then return error

ERROR_ACCESS_DENIED (0x00000005).

▪ Call the abstract interface Invoke DIMSVC method specifying the operation and the parameters
to enable RRAS server to perform the required management task.

▪ When the RRAS server processes the request successfully, populate pServerConfig with the
information returned by RRAS server and return ERROR_SUCCESS (0x00000000). Otherwise
return the error status provided by the RRAS server.

No exceptions are thrown beyond those thrown by the underlying RPC protocol [MS-RPCE].

3.1.4.46 RRasAdminConnectionEnumEx (Opnum 45)

The RRasAdminConnectionEnumEx method<320> retrieves the list of all active connections for a

specified RRAS server using handle hDimServer. The caller SHOULD free the memory pointed to by

pRasConections.

 DWORD RRasAdminConnectionEnumEx(
 [in] DIM_HANDLE hDimServer,
 [in] PMPRAPI_OBJECT_HEADER_IDL objectHeader,
 [in] DWORD dwPreferedMaxLen,
 [out] LPDWORD lpdwEntriesRead,
 [out] LPDWORD lpdNumTotalElements,
 [out, size_is(,*lpdwEntriesRead)]
 PRAS_CONNECTION_EX_IDL* pRasConections,

393 / 547

[MS-RRASM-Diff] - v20210407
Routing and Remote Access Server (RRAS) Management Protocol
Copyright © 2021 Microsoft Corporation
Release: April 7, 2021

 [in, out, unique] LPDWORD lpdwResumeHandle
);

hDimServer: The handle to the RRASM server where the call is to be executed, see section 3.1.3.

objectHeader: The pointer to an MPRAPI_OBJECT_HEADER_IDL structure (section 2.2.1.2.129). In
the structure, the revision field MUST be
MPRAPI_RAS_CONNECTION_OBJECT_REVISION_1, type filed MUST be
MPRAPI_OBJECT_TYPE_RAS_CONNECTION_OBJECT, and size MUST be size of
RAS_CONNECTION_EX_IDL.

dwPreferedMaxLen: This parameter is of type DWORD and SHOULD specify the preferred maximum
length of returned data (pRasConections) in bytes. If dwPreferedMaxLen is -1, the buffer returned
is large enough to hold all available information. The number of entries returned is zero (0) in the
case that dwPreferedMaxLen is less than the size of one item; otherwise, the number of entries
returned is one more than what could be accommodated in dwPreferedMaxLen bytes.

lpdwEntriesRead: This is a pointer to type DWORD. Upon a successful function call return, this

parameter determines the total number of connections enumerated from the current resume
position given by lpdwResumeHandle.

lpdNumTotalElements: This is a pointer to type DWORD and receives the total number of
connections that could have been enumerated from the current resume position given by
lpdwResumeHandle.

pRasConections: Upon successful return, this is a pointer array of
RAS_CONNECTION_EX_IDL (section 2.2.1.2.134) structures and the array size is determined

by value pointed to by lpdwEntriesRead.

lpdwResumeHandle: This is a pointer to type DWORD and specifies a resume handle used to
continue the enumeration. The lpdwResumeHandle parameter is NULL on the first call and left
unchanged on subsequent calls (caller MUST pass the same returned value in the next call to this
function). If the return code is ERROR_MORE_DATA, another call MAY be made using this handle
to retrieve more data. If the handle is NULL upon return, the enumeration is complete. This handle

is invalid for other types of error returns.

Return Values: A 32-bit unsigned integer value that indicates return status. A return value of
ERROR_SUCCESS (0x00000000) indicates that the operation was completed successfully;
otherwise, the value contains an error code, as specified in [MS-ERREF] or in section 2.2.4. All
values that are not in the table that follows MUST be treated the same by the RRASM client.

Return value/code Description

ERROR_SUCCESS

0x00000000

The call was successful.

ERROR_ACCESS_DENIED

0x00000005

The calling application does not have sufficient privileges, as specified in
section 2.1.1.1.

ERROR_MORE_DATA

0x000000EA

Not all of the data was returned with this call. To obtain additional data,
call the function again using the resume handle.

The opnum field value for this method is 45.

When processing this call, the RRASM server MUST do the following:

▪ Validate, as specified in section 2.1.1.1, whether this method was called by a client that has
access to the method. If the client does not have access, then return error
ERROR_ACCESS_DENIED (0x00000005).

394 / 547

[MS-RRASM-Diff] - v20210407
Routing and Remote Access Server (RRAS) Management Protocol
Copyright © 2021 Microsoft Corporation
Release: April 7, 2021

▪ If RouterType is ROUTER_TYPE_LAN, return an error other than those in the preceding table.

▪ Call the abstract interface Invoke DIMSVC method specifying the operation and the parameters

to enable RRAS server to perform the required management task.

▪ If the RRAS server successfully processes the request, populate pRasConections with information

about the active connections returned by the RRAS server. For successful processing, the
lpdwEntriesRead, lpdwNumTotalElements, and lpdwResumeHandle will be filled with the values
returned by the RRAS server. If there are more entries to be enumerated, the RRAS
implementation MUST return ERROR_MORE_DATA. If all the entries have been enumerated, the
RRAS implementation MUST return ERROR_SUCCESS (0x00000000).

▪ Otherwise, return the failure error status that is returned by the RRAS server.

No exceptions are thrown beyond those thrown by the underlying RPC protocol [MS-RPCE].

3.1.4.47 RRasAdminConnectionGetInfoEx (Opnum 46)

The RRasAdminConnectionGetInfoEx method<321> retrieves the connection information for a
specific connection given in hDimConnection for a specified RRAS server using handle hDimServer.

The caller SHOULD free the memory pointed to by pRasConnection.

 DWORD RRasAdminConnectionGetInfoEx(
 [in] DIM_HANDLE hDimServer,
 [in] DWORD hDimConnection,
 [in] PMPRAPI_OBJECT_HEADER_IDL objectHeader,
 [out] PRAS_CONNECTION_EX_IDL pRasConnection
);

hDimServer: A handle to the RRASM server where the call is to be executed, see section 3.1.3.

hDimConnection: This is of type DWORD and MUST be set to a particular connection identifier for
which the connection information is required. Obtain this handle by calling

RRasAdminConnectionEnumEx (section 3.1.4.46). Because the RRASM server does not maintain
the connection handles, the RRAS server SHOULD check and ensure that this handle represents a

valid connection handle.

objectHeader: A pointer to MPRAPI_OBJECT_HEADER_IDL (section 2.2.1.2.129). In the structure,
the revision field MUST be MPRAPI_RAS_CONNECTION_OBJECT_REVISION_1, the type field
MUST be MPRAPI_OBJECT_TYPE_RAS_CONNECTION_OBJECT, and the size MUST be the size of
RAS_CONNECTION_EX_IDL.

pRasConnection: Upon successful return, this is a pointer to a
RAS_CONNECTION_EX_IDL (section 2.2.1.2.134) structure.

Return Values: A 32-bit unsigned integer value that indicates return status. A return value of
ERROR_SUCCESS (0x00000000) indicates that the operation was completed successfully;
otherwise, it contains an error code, as specified in [MS-ERREF] or in section 2.2.4. All values that
are not in the table that follows MUST be treated the same by the RRASM client.

Return value/code Description

ERROR_SUCCESS

0x00000000

The call was successful.

ERROR_ACCESS_DENIED

0x00000005

The calling application does not have sufficient privileges, as specified in
section 2.1.1.1.

395 / 547

[MS-RRASM-Diff] - v20210407
Routing and Remote Access Server (RRAS) Management Protocol
Copyright © 2021 Microsoft Corporation
Release: April 7, 2021

The opnum field value for this method is 46.

When processing this call, the RRASM server MUST do the following:

▪ Validate, as specified in section 2.1.1.1, whether this method was called by a client that has
access to the method. If the client does not have access, then return error

ERROR_ACCESS_DENIED (0x00000005).

▪ If RouterType is ROUTER_TYPE_LAN, return an error other than those in the preceding table.

▪ Call the abstract interface Invoke DIMSVC method specifying the operation and the parameters
to enable RRAS server to perform the required management task.

▪ If the RRAS server successfully processes the request, populate pRasConnection with information
specific to the connection that was requested in hDimConnection. Return ERROR_SUCCESS to the
caller. If the RRAS server doesn’t complete the request successfully, return the error status

returned.

No exceptions are thrown beyond those thrown by the underlying RPC protocol [MS-RPCE].

3.1.4.48 (Updated Section) RMprAdminServerSetInfoEx (Opnum 47)

The RMprAdminServerSetInfoEx method<322> sets the device configuration information for PPTP,
L2TP, SSTP, and IKEv2 on a specified server hDimServer.

 DWORD RMprAdminServerSetInfoEx(
 [in] DIM_HANDLE hDimServer,
 [in] PMPR_SERVER_SET_CONFIG_EX_IDL pServerConfig
);

hDimServer: The handle to the RRASM server where the call is to be executed, see section 3.1.3.

pServerConfig: This is a pointer to a structure PMPR_SERVER_SET_CONFIG_EX_IDL (section

2.2.1.2.146) which contains the information required to set values on the RAS server.

Return Values: A 32-bit unsigned integer value that indicates return status. A return value of

ERROR_SUCCESS (0x00000000) indicates the operation was completed successfully; otherwise, it
contains an error code, as specified in [MS-ERREF] or in section 2.2.4. All values not in the table
that follows MUST be treated the same by the RRASM client.

Return value/code Description

ERROR_SUCCESS

0x00000000

The call was successful.

ERROR_ACCESS_DENIED

0x00000005

The calling application does not have sufficient privileges.

ERROR_SUCCESS_REBOOT_REQUIRED

0x00000BC2

A system reboot is required for such a change to take
effect.

ERROR_SUCCESS_RESTART_REQUIRED

0x00000BC3

A remote access service restart is required for such a
change to take effect.

The opnum field value for this method is 47.

When processing this call, the RRASM server MUST do the following:

396 / 547

[MS-RRASM-Diff] - v20210407
Routing and Remote Access Server (RRAS) Management Protocol
Copyright © 2021 Microsoft Corporation
Release: April 7, 2021

▪ Validate, as specified in section 2.1.1.1, whether this method was called by a client that has
access to the method. If the client does not have access, then return error

ERROR_ACCESS_DENIED (0x00000005).

▪ If pServerConfig is NULL, return an error other than those in the preceding table.

▪ Call the abstract interface Invoke DIMSVC method specifying the operation and the parameters
to enable RRAS server to perform the required management task.

▪ If the RRAS server completes the processing successfully, it MUST return either ERROR_SUCCESS,
ERROR_SUCCESS_REBOOT_REQUIRED<323>, or ERROR_RESTART_REQUIRED<324> based on
the impact of the configuration change. Otherwise return the error status.

No exceptions are thrown beyond those thrown by the underlying RPC protocol [MS-RPCE].

3.1.4.49 RRasAdminUpdateConnection (Opnum 48)

The RRasAdminUpdateConnection method<325> updates the endpoint by sending MOBIKE on a

connection specified by hDimConnection on a specified server, hDimServer.

 DWORD RRasAdminUpdateConnection(
 [in] DIM_HANDLE hDimServer,
 [in] DWORD hDimConnection,
 [in] PRAS_UPDATE_CONNECTION_IDL pServerConfig
);

hDimServer: A handle to the RRASM server where the call is to be executed, see section 3.1.3.

hDimConnection: This is of type DWORD and SHOULD be set to a particular IKEv2 connection
identifier for which the endpoint needs to be updated. Obtain this handle by calling
RRasAdminConnectionEnum (see section 3.1.4.2). Since the RRASM server does not maintain

connection handles, the RRAS server SHOULD validate this handle.

pServerConfig: This is a pointer to a RAS_UPDATE_CONNECTION_IDL structure (section
2.2.1.2.148) that contains the information required to set values on the RRAS server.

Return Values: A 32-bit unsigned integer value that indicates return status. A return value of
ERROR_SUCCESS (0x00000000) indicates that the operation was completed successfully;
otherwise, the return value contains an error code, as specified in [MS-ERREF] or in section 2.2.4.

All values that are not included in the table that follows MUST be treated the same by the RRASM
client.

Return value/code Description

ERROR_SUCCESS

0x00000000

The call was successful.

ERROR_ACCESS_DENIED

0x00000005

The calling application does not have sufficient privileges.

The Opnum field value for this method is 48.

When processing this call, the RRASM server MUST do the following:

▪ Validate, as specified in section 2.1.1.1, whether this method was called by a client that has

access to the method. If the client does not have access, then return error
ERROR_ACCESS_DENIED (0x00000005).

397 / 547

[MS-RRASM-Diff] - v20210407
Routing and Remote Access Server (RRAS) Management Protocol
Copyright © 2021 Microsoft Corporation
Release: April 7, 2021

▪ Call the abstract interface Invoke DIMSVC method specifying the operation and the parameters
to enable RRAS server to perform the required management task.

▪ Return any error status the RRAS server returns. Otherwise return ERROR_SUCCESS
(0x00000000).

No exceptions are thrown beyond those thrown by the underlying RPC protocol [MS-RPCE].

3.1.4.50 (Updated Section) RRouterInterfaceSetCredentialsLocal (Opnum 49)

The RRouterInterfaceSetCredentialsLocal method<326> is used to set credentials information for

an interface. Specifically, the user nameusername, domain name, and password that are used in user
authentication are set using this method.

 DWORD RRouterInterfaceSetCredentialsLocal(
 [in] DIM_HANDLE hDimServer,
 [in, string] LPWSTR lpwsInterfaceName,
 [in, string] LPWSTR lpwsUserName,
 [in, string] LPWSTR lpwsDomainName,
 [in, string] LPWSTR lpwsPassword
);

hDimServer: A handle to the RRASM server where the call is to be executed, see section 3.1.3.

lpwsInterfaceName: A pointer to a null-terminated Unicode string that contains the name of the
interface for which credentials need to be set. The length of the string MUST NOT be more than
256 characters, otherwise an error is returned.

lpwsUserName: A pointer to a null-terminated Unicode string that contains the name of the user on
this connection. The string length MUST NOT be more than 256 characters, otherwise an error is
returned.

lpwsDomainName: A pointer to a null-terminated Unicode string that contains the domain name.

The string length MUST NOT be more than 16 characters, otherwise an error is returned.

lpwsPassword: A pointer to a null-terminated Unicode string that contains the password of the user
on this connection. The string length MUST NOT be more than 256 characters, otherwise an error
is returned.

Return Values: A 32-bit unsigned integer value that indicates return status. A return value of
ERROR_SUCCESS (0x00000000) indicates the operation was completed successfully; otherwise it

contains an error code, as specified in [MS-ERREF] or in section 2.2.4. All values that are not in
the table that follows MUST be treated the same by the RRASM client.

Return value/code Description

0x00000000

ERROR_SUCCESS

The call was successful.

0x00000005

ERROR_ACCESS_DENIED

The calling application does not have sufficient privileges.

The opnum field value for this method is 49.

When processing this call, the RRASM server MUST do the following:

▪ Validate, as specified in section 2.1.1.1, whether this method was called by a client that has

access to the method. If the client does not have access, then return error
ERROR_ACCESS_DENIED (0x00000005).

398 / 547

[MS-RRASM-Diff] - v20210407
Routing and Remote Access Server (RRAS) Management Protocol
Copyright © 2021 Microsoft Corporation
Release: April 7, 2021

▪ If an interface with the name lpwsInterfaceName does not exist on the server, return an error
other than those described in the preceding table.

▪ Call the abstract interface Invoke DIMSVC method specifying the operation and the parameters
to enable RRAS server to perform the required management task.

▪ Return any error status the RRAS server returns. Otherwise return ERROR_SUCCESS
(0x00000000).

No exceptions are thrown beyond those thrown by the underlying RPC protocol [MS-RPCE].

3.1.4.51 (Updated Section) RRouterInterfaceGetCredentialsLocal (Opnum 50)

The RRouterInterfaceGetCredentialsLocal method<327> is used to get credentials information for
an interface. Specifically, the user nameusername, domain name, and password used in user
authentication are retrieved with this method.

 DWORD RRouterInterfaceGetCredentialsLocal(
 [in] DIM_HANDLE hDimServer,
 [in, string] LPWSTR lpwsInterfaceName,
 [out] [string] LPWSTR *lpwsUserName,
 [out] [string] LPWSTR *lpwsDomainName,
 [out] [string] LPWSTR *lpwsPassword
);

hDimServer: A handle to the RRASM server where the call is to be executed, see section 3.1.3.

lpwsInterfaceName: A pointer to a null-terminated Unicode string that contains the name of the
interface for which credentials need to be set. The length of the string MUST NOT be more than
256 characters, otherwise an error is returned. The client SHOULD free this memory.

lpwsUserName: A pointer to a null-terminated Unicode string that contains the name of the user on

this connection. The string length MUST NOT be more than 256 characters. The client SHOULD

free the memory pointed to by lpwsUserName.

lpwsDomainName: A pointer to a null-terminated Unicode string that contains the domain name.
The string length MUST NOT be more than 16 characters. The client SHOULD free the memory
pointed to by lpwsDomainName.

lpwsPassword: A pointer to a null-terminated Unicode string that contains the password of the user
on this connection. The string length MUST NOT be more than 256 characters. The client SHOULD

free the memory pointed to by lpwsPassword.

Return Values: A 32-bit unsigned integer value that indicates return status. A return value of
ERROR_SUCCESS (0x00000000) indicates the operation was completed successfully; otherwise it
contains an error code, as specified in [MS-ERREF] or in section 2.2.4. All values that are not in
the table that follows MUST be treated the same by the RRASM client.

Return value/code Description

ERROR_SUCCESS

0x00000000

The call was successful.

ERROR_ACCESS_DENIED

0x00000005

The calling application does not have sufficient privileges.

The opnum field value for this method is 50.

When processing this call, the RRASM server MUST do the following:

399 / 547

[MS-RRASM-Diff] - v20210407
Routing and Remote Access Server (RRAS) Management Protocol
Copyright © 2021 Microsoft Corporation
Release: April 7, 2021

▪ Validate, as specified in section 2.1.1.1, whether this method was called by a client that has
access to the method. If the client does not have access, then return error

ERROR_ACCESS_DENIED (0x00000005).

▪ If an interface with the name lpwsInterfaceName does not exists on the server, return an error

other than one of the errors listed in the preceding table.

▪ Call the abstract interface Invoke DIMSVC method specifying the operation and the parameters
to enable RRAS server to perform the required management task.

▪ Return any error status the RRAS server returns. Otherwise return ERROR_SUCCESS
(0x00000000).

No exceptions are thrown beyond those thrown by the underlying RPC protocol [MS-RPCE].

3.1.4.52 RRouterInterfaceGetCustomInfoEx (Opnum 51)

The RRouterInterfaceGetCustomInfoEx method<328> is used to get the tunnel-specific custom

configuration for an interface.

 DWORD RRouterInterfaceGetCustomInfoEx(
 [in] DIM_HANDLE hDimServer,
 [in] DWORD hInterface,
 [in, out] PMPR_IF_CUSTOMINFOEX_IDL pIfCustomConfig
);

hDimServer: A handle to the RRASM server where the call is to be executed; see section 3.1.3.

hInterface: The unique identifier of an interface. This can be obtained from
RRouterInterfaceCreate (section 3.1.4.13) or RRouterInterfaceGetHandle (section 3.1.4.12).
Because the RRASM server does not maintain the interface handles, the RRAS server SHOULD

check to ensure that this handle represents a valid interface handle.

pIfCustomConfig: A valid pointer to an MPR_IF_CUSTOMINFOEX_IDL (section 2.2.1.2.245)
structure. This MUST NOT be NULL. On successful return, this parameter contains tunnel-specific
custom configuration for the interface whose handle is specified in the hInterface parameter.

Return Values: A 32-bit unsigned integer value that indicates return status. A return value of
ERROR_SUCCESS (0x00000000) indicates that the operation was completed successfully;

otherwise, it contains an error code, as specified in [MS-ERREF] or in section 2.2.4. All values that
are not in the table that follows MUST be treated the same by the RRASM client.

Return value/code Description

ERROR_SUCCESS

0x00000000

The call was successful.

ERROR_ACCESS_DENIED

0x00000005

The calling application does not have sufficient privileges.

When processing this call, the RRASM server MUST do the following:

▪ Validate, as specified in section 2.1.1.1, whether this method was called by a client that has
access to the method. If the client does not have access, return the error

ERROR_ACCESS_DENIED (0x00000005).

▪ Call the abstract interface Invoke DIMSVC method, specifying the operation and the parameters,
to enable the RRAS server to perform the required management task.

400 / 547

[MS-RRASM-Diff] - v20210407
Routing and Remote Access Server (RRAS) Management Protocol
Copyright © 2021 Microsoft Corporation
Release: April 7, 2021

▪ Return any error status that the RRAS server returns. Otherwise, return ERROR_SUCCESS
(0x00000000).

No exceptions are thrown beyond those thrown by the underlying RPC protocol [MS-RPCE].

3.1.4.53 RRouterInterfaceSetCustomInfoEx (Opnum 52)

The RRouterInterfaceSetCustomInfoEx method<329> is used to set the tunnel-specific custom
configuration for an interface.

 DWORD RRouterInterfaceSetCustomInfoEx(
 [in] DIM_HANDLE hDimServer,
 [in] DWORD hInterface,
 [in, out] PMPR_IF_CUSTOMINFOEX_IDL pIfCustomConfig
);

hDimServer: A handle to the RRASM server where the call is to be executed; see section 3.1.3.

hInterface: The unique identifier of an interface. This can be obtained from
RRouterInterfaceCreate (section 3.1.4.13) or RRouterInterfaceGetHandle (section 3.1.4.12).
Because the RRASM server does not maintain the interface handles, the RRAS server SHOULD

check to ensure that this handle represents a valid interface handle.

pIfCustomConfig: A valid pointer to an MPR_IF_CUSTOMINFOEX_IDL (section 2.2.1.2.245) structure
that contains custom configurations to be set for the interface whose handle is specified in the
hInterface parameter. This MUST NOT be NULL.

Return Values: A 32-bit unsigned integer value that indicates return status. A return value of
ERROR_SUCCESS (0x00000000) indicates that the operation was completed successfully;
otherwise, it contains an error code, as specified in [MS-ERREF] or in section 2.2.4. All values that

are not in the table that follows MUST be treated the same by the RRASM client.

Return value/code Description

ERROR_SUCCESS

0x00000000

The call was successful.

ERROR_ACCESS_DENIED

0x00000005

The calling application does not have sufficient privileges.

When processing this call, the RRASM server MUST do the following:

▪ Validate, as specified in section 2.2.1.1.1, whether this method was called by a client that has
access to the method. If the client does not have access, return the error
ERROR_ACCESS_DENIED (0x00000005).

▪ Call the abstract interface Invoke DIMSVC method, specifying the operation and the parameters,
to enable the RRAS server to perform the required management task.

▪ Return any error status that the RRAS server returns. Otherwise, return ERROR_SUCCESS
(0x00000000).

No exceptions are thrown beyond those thrown by the underlying RPC protocol [MS-RPCE].

3.1.5 Timer Events

None.

401 / 547

[MS-RRASM-Diff] - v20210407
Routing and Remote Access Server (RRAS) Management Protocol
Copyright © 2021 Microsoft Corporation
Release: April 7, 2021

3.1.6 Other Local Events

Apart from the underling [MS-RPCE] specified events there are no special events for RRASM. However,
the RPC interface interacts with the underlying RRAS implementation through the following interfaces.

3.1.6.1 Invoke DIMSVC Method

The RRASM server provides the remote management capability to the RRAS implementation. The
RRAS implementation refers to the actual task of configuring and providing the routing and remote
access functionality that is outside the scope of the RRASM protocol. In order to keep the

implementation aspects separated from the semantics of the RRASM methods, this abstract interface
is defined with the RRAS implementation. With this, any RPC method request received by the RRASM
server, after the required validations done by the RRASM server, are passed to the RRAS server
through the interface. As a part of the callback, the Opnum and data structures are passed as-is to the
RRAS server. The RRAS as a part of this processing, will perform the actual management task as
defined by the semantics of the RRASM method, and will return any information requested by the

RRASM server on behalf of the remote RRASM client and return the status of the operation requested

by the RRASM server (on behalf of the RRASM client). The RRASM server then relays these return
values and data back to the remote RRASM client. The RRAS understands the data structures that the
RRASM server requires and can process and provide information in the same manner.

3.1.6.2 Start DIMSVC

This interface is invoked by RRAS when it is started to initialize the DIMSVC interface of RRASM.
RRAS reads the settings from the registry store – the configuration information in registry are
explained in section 2.2.3. RRAS passes the initialization parameters to RRASM. RRASM stores these
parameters in the corresponding ADM variables, that is, in RouterType, InterfaceList, and
SupportedTransportsList as specified in section 3.1.1.

3.1.6.3 Stop DIMSVC

This interface is invoked by RRAS when it is getting stopped. This stops the DIMSVC interface of

RRASM server and no further RPC requests are processed. RRAS in turn ensures that the runtime
configuration settings are stored back to the registry store. This way the registry setting will be

consistent with the active configuration that RRAS was having when the RRASM interface was running.

3.2 DIMSVC Interface Client Details

For definitions of DIMSVC interface methods, see section 3.1.4. For the list of methods supported by
this interface, refer to Appendix A: Full IDL (section 6).

3.2.1 Abstract Data Model

This section describes a conceptual model that an implementation can maintain to participate in this
protocol. The described organization is provided to facilitate the explanation of protocol behavior. This

document does not mandate that implementations adhere to this model, as long as their external

behavior is consistent with that described in this document.

The client is not required to maintain any information during this protocol.

3.2.2 Timers

No protocol timers are required beyond those used internally by the RPC method to implement
resiliency to network outages, as specified in [MS-RPCE].

402 / 547

[MS-RRASM-Diff] - v20210407
Routing and Remote Access Server (RRAS) Management Protocol
Copyright © 2021 Microsoft Corporation
Release: April 7, 2021

3.2.3 Initialization

The client creates an RPC binding handle to the server RPC method endpoint when an RPC method is
called. For more information on binding handles, see [C706]. The client MAY create a separate binding

handle for each method invocation, or it MAY reuse a binding handle for multiple invocations. The
client MUST create an authenticated RPC binding handle.

If the RPC interface is available, the client MUST use the RPC interface to configure the RRAS server
remotely. The client SHOULD use the registry store configuration using [MS-RRP] to configure RRAS
server as defined in section 2.2.3 when the RPC interface is not available.

3.2.4 Message Processing Events and Sequencing Rules

The client MUST pass any error received from the invocation of an RPC method to the application that
issued the RPC call. For all the methods, if ERROR_ACCESS_DENIED (0x00000005) is returned, the
client needs to make sure it has administrative privileges on the RRAS.

3.2.4.1 RMprAdminServerGetInfo (Opnum 0)

When the method completes with ERROR_SUCCESS (0x00000000) as the return value, the client
MUST free the returned buffer pInfoStruct.

3.2.4.2 RRasAdminConnectionEnum (Opnum 1)

If the return code is ERROR_MORE_DATA (0x000000EA), then call RRasAdminConnectionEnum
(Opnum 1) (section 3.1.4.2) with the handle passed in lpdwResumeHandle. If lpdwResumeHandle is
NULL, the enumeration cannot be continued.

When the method completes with ERROR_SUCCESS (0x00000000) as the return value, the client

MUST free the returned buffer pInfoStruct.

3.2.4.3 RRasAdminConnectionGetInfo (Opnum 2)

When the method completes with ERROR_SUCCESS (0x00000000) as the return value, the client
MUST free the returned buffer pInfoStruct.

3.2.4.4 RRasAdminConnectionClearStats (Opnum 3)

None beyond those specified in section 3.2.4.

3.2.4.5 RRasAdminPortEnum (Opnum 4)

If the return code is ERROR_MORE_DATA (0x000000EA), then call RRasAdminPortEnum (Opnum
4) (section 3.1.4.5) with the handle passed in lpdwResumeHandle. If lpdwResumeHandle is NULL, the
enumeration cannot be continued.

When the method completes with ERROR_SUCCESS (0x00000000) as the return value, the client

MUST free the returned buffer pInfoStruct.

3.2.4.6 RRasAdminPortGetInfo (Opnum 5)

When the method completes with ERROR_SUCCESS (0x00000000) as the return value, the client
MUST free the returned buffer pInfoStruct.

403 / 547

[MS-RRASM-Diff] - v20210407
Routing and Remote Access Server (RRAS) Management Protocol
Copyright © 2021 Microsoft Corporation
Release: April 7, 2021

3.2.4.7 RRasAdminPortClearStats (Opnum 6)

None beyond those specified in section 3.2.4.

3.2.4.8 RRasAdminPortReset (Opnum 7)

None beyond those specified in section 3.2.4.

3.2.4.9 RRasAdminPortDisconnect (Opnum 8)

None beyond those specified in section 3.2.4.

3.2.4.10 RRouterInterfaceTransportSetGlobalInfo (Opnum 9)

None beyond those specified in section 3.2.4.

3.2.4.11 RRouterInterfaceTransportGetGlobalInfo (Opnum 10)

When the method completes with ERROR_SUCCESS (0x00000000) as the return value, the client
MUST free the returned buffer pGlobalInfo pointer of the pInfoStruct.

3.2.4.12 RRouterInterfaceGetHandle (Opnum 11)

None beyond those specified in section 3.2.4.

3.2.4.13 RRouterInterfaceCreate (Opnum 12)

If dwIfType in MPRI_INTERFACE_0 is set to ROUTER_IF_TYPE_FULL_ROUTER, the phone book
information for the interface MUST have already been configured.

3.2.4.14 RRouterInterfaceGetInfo (Opnum 13)

When the method completes with ERROR_SUCCESS (0x00000000) as the return value, the client
MUST free the returned buffer pInfoStruct.

3.2.4.15 RRouterInterfaceSetInfo (Opnum 14)

When the method completes with ERROR_IKEV2_PSK_INTERFACE_ALREADY_EXISTS
(0x00000366)<330> as the return value, it means that the interface configuration was modified
successfully with the supplied information but the interface state has been changed to disabled.<331>

3.2.4.16 RRouterInterfaceDelete (Opnum 15)

If ERROR_INTERFACE_CONNECTED (0x0000038C) is returned,
RRouterInterfaceDisconnect (section 3.1.4.23) SHOULD be called before

RRouterInterfaceDelete (section 3.1.4.16) can succeed.

3.2.4.17 RRouterInterfaceTransportRemove (Opnum 16)

None beyond those specified in section 3.2.4.

404 / 547

[MS-RRASM-Diff] - v20210407
Routing and Remote Access Server (RRAS) Management Protocol
Copyright © 2021 Microsoft Corporation
Release: April 7, 2021

3.2.4.18 RRouterInterfaceTransportAdd (Opnum 17)

None beyond those specified in section 3.2.4.

3.2.4.19 RRouterInterfaceTransportGetInfo (Opnum 18)

When the method completes with ERROR_SUCCESS (0x00000000) as the return value, the client
MUST free the returned buffer pInterfaceInfo of the pInfoStruct structure.

3.2.4.20 RRouterInterfaceTransportSetInfo (Opnum 19)

None beyond those specified in section 3.2.4.

3.2.4.21 RRouterInterfaceEnum (Opnum 20)

If the return code is ERROR_MORE_DATA (0x000000EA), then the call
RRouterInterfaceEnum (section 3.1.4.21) with the handle passed in lpdwResumeHandle. If

lpdwResumeHandle is NULL, the enumeration cannot be continued.

If the method completes successfully and returns a value of either ERROR_MORE_DATA or
ERROR_SUCCESS (0x00000000), the client MUST free the returned buffer pInfoStruct.

3.2.4.22 RRouterInterfaceConnect (Opnum 21)

If the return value is PENDING (0x00000258), call RRouterInterfaceGetInfo (section 3.1.4.14) to find
out if the connection was successful or not.

3.2.4.23 RRouterInterfaceDisconnect (Opnum 22)

None beyond those specified in section 3.2.4.

3.2.4.24 RRouterInterfaceUpdateRoutes (Opnum 23)

None beyond those specified in section 3.2.4.

3.2.4.25 RRouterInterfaceQueryUpdateResult (Opnum 24)

None beyond those specified in section 3.2.4.

3.2.4.26 RRouterInterfaceUpdatePhonebookInfo (Opnum 25)

When the method completes with ERROR_IKEV2_PSK_INTERFACE_ALREADY_EXISTS (0x00000366)
as the return value, it means that the changes made to the demand-dial interface were picked up, but

the interface state has been changed to disabled.

3.2.4.27 RMIBEntryCreate (Opnum 26)

None beyond those specified in section 3.2.4.

3.2.4.28 RMIBEntryDelete (Opnum 27)

None beyond those specified in section 3.2.4.

405 / 547

[MS-RRASM-Diff] - v20210407
Routing and Remote Access Server (RRAS) Management Protocol
Copyright © 2021 Microsoft Corporation
Release: April 7, 2021

3.2.4.29 RMIBEntrySet (Opnum 28)

None beyond those specified in section 3.2.4.

3.2.4.30 RMIBEntryGet (Opnum 29)

When the method completes with ERROR_SUCCESS (0x00000000) as the return value, the client
MUST free the returned buffer pInfoStruct.

3.2.4.31 RMIBEntryGetFirst (Opnum 30)

When the method completes with ERROR_SUCCESS (0x00000000) as the return value, the client
MUST free the returned buffer pInfoStruct.

3.2.4.32 RMIBEntryGetNext (Opnum 31)

When the method completes with either ERROR_SUCCESS or ERROR_NO_MORE_ITEMS as the return

value, the client MUST free the returned buffer pInfoStruct. If ERROR_NO_MORE_ITEMS is returned,
the client MUST NOT call RMIBEntryGetNext for the same MIB table.

3.2.4.33 RMIBGetTrapInfo (Opnum 32)

When the method completes with ERROR_SUCCESS as the return value, the client MUST free the
returned buffer pInfoStruct.

3.2.4.34 RMIBSetTrapInfo (Opnum 33)

None beyond those specified in section 3.2.4.

3.2.4.35 RRasAdminConnectionNotification (Opnum 34)

None beyond those specified in section 3.2.4.

3.2.4.36 RRasAdminSendUserMessage (Opnum 35)

None beyond those specified in section 3.2.4.

3.2.4.37 RRouterDeviceEnum (Opnum 36)

When the method completes with ERROR_SUCCESS as the return value, the client MUST free the
returned buffer pInfoStruct->pBuffer.

3.2.4.38 RRouterInterfaceTransportCreate (Opnum 37)

None beyond those specified in section 3.2.4.

3.2.4.39 RRouterInterfaceDeviceGetInfo (Opnum 38)

When the method completes with ERROR_SUCCESS as the return value, the client MUST free the
returned buffer pInfoStruct->pBuffer.

406 / 547

[MS-RRASM-Diff] - v20210407
Routing and Remote Access Server (RRAS) Management Protocol
Copyright © 2021 Microsoft Corporation
Release: April 7, 2021

3.2.4.40 RRouterInterfaceDeviceSetInfo (Opnum 39)

None beyond those specified in section 3.2.4.

3.2.4.41 RRouterInterfaceSetCredentialsEx (Opnum 40)

None beyond those specified in section 3.2.4.

3.2.4.42 RRouterInterfaceGetCredentialsEx (Opnum 41)

When the method completes with ERROR_SUCCESS as the return value, the client MUST free the
returned buffer pInfoStruct.

3.2.4.43 RRasAdminConnectionRemoveQuarantine (Opnum 42)

None beyond those specified in section 3.2.4.

3.2.4.44 RMprAdminServerSetInfo (Opnum 43)

If the return code is ERROR_SUCCESS_REBOOT_REQUIRED, then the server machine needs to be

rebooted to make the changes take effect.

3.2.4.45 RMprAdminServerGetInfoEx (Opnum 44)

None beyond those specified in section 3.2.4.

3.2.4.46 RRasAdminConnectionEnumEx (Opnum 45)

If the return code is ERROR_MORE_DATA, then the call
RRasAdminConnectionEnumEx (section 3.1.4.46) with the handle passed in lpdwResumeHandle. If
lpdwResumeHandle is NULL, the enumeration cannot be continued.

When the method completes with either ERROR_SUCCESS or ERROR_MORE_DATA as the return
value, the client MUST free the returned buffer pInfoStruct.

3.2.4.47 RRasAdminConnectionGetInfoEx (Opnum 46)

None beyond those specified in section 3.2.4.

3.2.4.48 RMprAdminServerSetInfoEx (Opnum 47)

If the return code is ERROR_SUCCESS_RESTART_REQUIRED (0x00000BC3), then the RemoteAccess
service on the server needs to be restarted to make the changes take effect.

If the return value is ERROR_SUCCESS_RESTART_REQUIRED, the RRAS implementation MUST be
restarted for the changes to take effect.

3.2.4.49 RRasAdminUpdateConnection (Opnum 48)

None beyond those specified in section 3.2.4.

3.2.4.50 RRouterInterfaceSetCredentialsLocal (Opnum 49)

None beyond those specified in section 3.2.4.

407 / 547

[MS-RRASM-Diff] - v20210407
Routing and Remote Access Server (RRAS) Management Protocol
Copyright © 2021 Microsoft Corporation
Release: April 7, 2021

3.2.4.51 RRouterInterfaceGetCredentialsLocal (Opnum 50)

When the method completes with ERROR_SUCCESS (0x00000000) as the return value, the client
SHOULD free the memory pointed to by lpwsUserName, lpwsDomainName, and lpwsPassword.

3.2.4.52 RRouterInterfaceGetCustomInfoEx (Opnum 51)

None beyond those specified in section 3.2.4.

3.2.4.53 RRouterInterfaceSetCustomInfoEx (Opnum 52)

None beyond those specified in section 3.2.4.

3.2.5 Timer Events

No protocol timer events are required on the client beyond the timers required in the underlying RPC
protocol.

3.2.6 Other Local Events

No local events are maintained on the client other than the events that are maintained in the
underlying RPC protocol.

3.3 RASRPC Interface Server Details

For the list of methods supported by this interface, refer to Appendix A: Full IDL (section 6) for UUID
(20610036-fa22-11cf-9823-00a0c911e5df).

3.3.1 Abstract Data Model

This section describes a conceptual model that an implementation can maintain to participate in this

protocol. The described organization is provided to facilitate the explanation of how the protocol
behaves. This document does not mandate that implementations adhere to this model, as long as
their external behavior is consistent with that described in this document.

There are no states that are maintained for this RPC interface that would affect the RPC method
behavior for this interface.

3.3.2 Timers

No timers are required beyond those used internally by RPC to implement resiliency to network
outages, as specified in the [MS-RPCE] section 3.2.3.2.1.

3.3.3 Initialization

The RASRPC server MUST be initialized by the RRAS server using Start RASRPC as defined in section
3.3.6. As a part of initialization, the RRASM protocol MUST register the RPC interface as specified in
section 2.1.2.

3.3.4 Message Processing Events and Sequencing Rules

The RASRPC Server interface provides methods that remotely retrieve and set the configuration of
the RRAS. The version for this interface is 1.0.

408 / 547

[MS-RRASM-Diff] - v20210407
Routing and Remote Access Server (RRAS) Management Protocol
Copyright © 2021 Microsoft Corporation
Release: April 7, 2021

To receive incoming remote calls for this interface, the Rasrpc server MUST implement an RPC
endpoint using the UUID, 20610036-fa22-11cf-9823-00a0c911e5df. As a part of the message

processing, RRASM validates parameters as specified under the following methods. It then hands over
the information to the actual RRAS implementation using the Invoke RASRPC method. The Invoke

RASRPC method will provide any data required and the completion status of the operation which is
sent back to the client over the RASRPC interface of RRASM protocol.

The RASRPC server MUST perform a strict Network Data Representation (NDR) data consistency
check at target level 5.0, as specified in [MS-RPCE] section 3.

This protocol MUST indicate to the RPC runtime that it is to reject a NULL unique or full pointer with
nonzero conformant value, as specified in [MS-RPCE] section 3.

In the following table, the term "Reserved for local use" means that clients MUST NOT send the

opnum, and the server behavior is undefined because it does not affect interoperability.

The Rasrpc server implementation MUST check that the client invoking the method is an administrator
of the RRASM server. If the client invoking the method is not an administrator of the RRASM server,

the server MUST indicate the lack of access permission in the form of a specific error code. The server
SHOULD<332> throw an RPC exception with the exception code RPC_S_ACCESS_DENIED
(0x00000005) if the client does not have access permission. If the server is not throwing an

exception, it MAY<333> return a status code of E_ACCESSDENIED (0x80070005) to indicate to the
client that it does not have the required access.

The RPC methods MUST NOT throw any other exception. The other exceptions allowed are those
thrown by the underlying RPC protocol [MS-RPCE].

Methods in RPC Opnum order.

Method Description

Opnum0NotUsedOnWire Reserved for local use.

Opnum: 0

Opnum1NotUsedOnWire Reserved for local use.

Opnum: 1

Opnum2NotUsedOnWire Reserved for local use.

Opnum: 2

Opnum3NotUsedOnWire Reserved for local use.

Opnum: 3

Opnum4NotUsedOnWire Reserved for local use.

Opnum: 4

RasRpcDeleteEntry Deletes a specific RRAS entry from an RRAS Phonebook path.

Opnum: 5

Opnum6NotUsedOnWire Reserved for local use.

Opnum: 6

Opnum7NotUsedOnWire Reserved for local use.

Opnum: 7

Opnum8NotUsedOnWire Reserved for local use.

Opnum: 8

RasRpcGetUserPreferences Retrieves the configuration information.

409 / 547

[MS-RRASM-Diff] - v20210407
Routing and Remote Access Server (RRAS) Management Protocol
Copyright © 2021 Microsoft Corporation
Release: April 7, 2021

Method Description

Opnum: 9

RasRpcSetUserPreferences Sets the configuration information.

Opnum: 10

RasRpcGetSystemDirectory Retrieves the path of the system directory.

Opnum: 11

RasRpcSubmitRequest Retrieves or sets the configuration data on the RRAS server.

Opnum: 12

Opnum13NotUsedOnWire Reserved for local use.

Opnum: 13

RasRpcGetInstalledProtocolsEx Retrieves the protocol information on the RRAS server.

Opnum: 14

RasRpcGetVersion Retrieves the RASRPC server interface version.

Opnum: 15

Opnum16NotUsedOnWire Reserved for local use.

Opnum: 16

3.3.4.1 RasRpcDeleteEntry (Opnum 5)

The RasRpcDeleteEntry method deletes a specific RRAS Entry from an RRAS Phonebook path.

 DWORD RasRpcDeleteEntry(
 [in] handle_t h,
 [in, string] LPWSTR lpszPhonebook,
 [in, string] LPWSTR lpszEntry
);

h: An RPC binding handle as specified in [C706] section 2.

lpszPhonebook: A null-terminated Unicode string specifying the RRAS Phonebook path as specified in
section 2.2.2.

lpszEntry: A null-terminated Unicode string specifying the RRAS Entry name as specified in section

2.2.2.1 to be deleted.

Return Values: Specifies the return status as explained in section 2.2.1.2.218 for retcode field.

The return value can be one of the following error codes. All other error values MUST be treated
the same by the RRASM client.

Return value/code Description

ERROR_SUCCESS

0x00000000

The call was successful.

Exceptions Thrown: This method throws an exception with the exception code
RPC_S_ACCESS_DENIED (0x00000005) if the client is not an administrator on the RRASM server,
with access permission to perform the operation.<334>

410 / 547

[MS-RRASM-Diff] - v20210407
Routing and Remote Access Server (RRAS) Management Protocol
Copyright © 2021 Microsoft Corporation
Release: April 7, 2021

The opnum field value for this method is 5.

When processing this call, the RRASM server SHOULD do the following:

▪ Validate as specified in section 3.3.4 whether this method was called by a client which is an
administrator of the RRASM server.

▪ If lpszEntry is NULL, return an error other than one of the errors specified in the preceding
table.

▪ If lpszEntry is not present in PhonebookEntryNameList, return an error other than one of
the errors specified in the preceding table.

▪ Call the abstract interface Invoke RASRPC method, specifying the operation and the
parameters necessary to enable the RRASM server to perform the required management task.

▪ Return any error result that the RRASM server returns as a part of the processing. Otherwise

return ERROR_SUCCESS (0x00000000).

3.3.4.2 (Updated Section) RasRpcGetUserPreferences (Opnum 9)

The RasRpcGetUserPreferences method retrieves the configuration information. The configuration

information consists of the callback information associated with the various ports, and the number of
the last successful callback done by the RRAS. This configuration information is set by
RasRpcSetUserPreferences. (section 3.3.4.3).

 DWORD RasRpcGetUserPreferences(
 [in] handle_t h,
 [in, out] LPRASRPC_PBUSER pUser,
 [in] DWORD dwMode
);

h: An RPC binding handle as specified in [C706] section 2.

pUser: Pointer to the RASRPC_PBUSER (section 2.2.1.2.229) structure which on successful return
contains the configuration information on the RRAS server.

dwMode: This MUST be set to 2.

Return Values: Specifies the return status as explained in section 2.2.1.2.218 for the retcode field.

The return value can be one of the following error codes. All other error values MUST be treated

the same by the RRASM client.

Return value/code Description

ERROR_SUCCESS

0x00000000

The call was successful.

Exceptions Thrown: This method throws an exception with the exception code
RPC_S_ACCESS_DENIED (0x00000005) if the client is not an administrator on the RRASM server, with
access permission to perform the operation.<335>

The Opnum field value for this method is 9.

When processing this call, the RRASM SHOULD do the following:

▪ Validate as specified in section 3.3.4 whether this method was called by a client that is an
administrator of the RRASM server.<336>

411 / 547

[MS-RRASM-Diff] - v20210407
Routing and Remote Access Server (RRAS) Management Protocol
Copyright © 2021 Microsoft Corporation
Release: April 7, 2021

▪ Call the abstract interface Invoke RASRPC method, specifying the operation and the
parameters necessary to enable RRAS server to perform the required management task.

▪ Populate the pUser structure with the configuration information returned by the RRAS server
and returning ERROR_SUCCESS (0x00000000).

3.3.4.3 RasRpcSetUserPreferences (Opnum 10)

The RasRpcSetUserPreferences method sets the configuration information. The configuration
information consists of the callback information associated with the various ports, and the number of

the last successful callback done by the RRAS.

 DWORD RasRpcSetUserPreferences(
 [in] handle_t h,
 [in] LPRASRPC_PBUSER pUser,
 [in] DWORD dwMode
);

h: An RPC binding handle as specified in [C706] section 2.

pUser: Pointer to the RASRPC_PBUSER (section 2.2.1.2.229) structure which on successful return

contains the configuration information on the RRAS server.

dwMode: This MUST be set to 2.

Return Values: Specifies the return status as explained in section 2.2.1.2.218 for the retcode field.

The return value can be one of the error codes that follow. All other error values MUST be treated
the same by the RRASM client.

Return value/code Description

0x00000000

ERROR_SUCCESS

The call was successful.

Exceptions Thrown: This method throws an exception with the exception code
RPC_S_ACCESS_DENIED (0x00000005) if the client is not an administrator on the RRASM server, with

access permission to perform the operation.<337>

The opnum field value for this method is 10.

When processing this call, the RRASM SHOULD do the following:

▪ Validate as specified in section 3.3.4 whether this method was called by a client that is an
administrator of the RRASM server.

▪ Call the abstract interface Invoke RASRPC method, specifying the operation and the
parameters necessary to enable RRAS server to perform the required management task.

▪ Provide the configuration information as specified by the pUser structure to the RRAS server
for further processing and returning ERROR_SUCCESS (0x00000000).

3.3.4.4 RasRpcGetSystemDirectory (Opnum 11)

The RasRpcGetSystemDirectory method retrieves the path of the system directory.

 UINT RasRpcGetSystemDirectory(
 [in] handle_t h,

412 / 547

[MS-RRASM-Diff] - v20210407
Routing and Remote Access Server (RRAS) Management Protocol
Copyright © 2021 Microsoft Corporation
Release: April 7, 2021

 [in, out, string, size_is(uSize)]
 LPWSTR lpBuffer,
 [in, range(0, RASRPC_MAX_PATH)] UINT uSize
);

h: An RPC binding handle as specified in [C706] section 2.

lpBuffer: A null-terminated Unicode string that is populated with the path of the system directory.
The length of the string MUST be equal to uSize.

uSize: Specifies the size of the lpBuffer in Unicode characters. This value MUST be equal to 260.

Return Values: Specifies the return status as explained in section 2.2.1.2.218 for retcode field.

The return value can be one of the following error codes. All other error values MUST be treated

the same by the RRASM client.

Return value Description

0x00000000 The actual processing to retrieve the system directory on the remote server has
failed.

Any other
values

Indicate the length of the string in Unicode characters copied to the buffer.

Exceptions Thrown: This method throws an exception with the exception code
RPC_S_ACCESS_DENIED (0x00000005) if the client is not an administrator on the RRASM server, with
access permission to perform the operation.<338>

The Opnum field value for this method is 11.

When processing this call, the RRASM server SHOULD do the following:

▪ Validate as specified in section 3.3.4 whether this method was called by a client that is an

administrator of the RRASM server.<339>

▪ If uSize is less than 260, return an error other than one of the errors specified in the
preceding table.

▪ Call the abstract interface Invoke RASRPC method specifying the operation and the

parameters to enable RRAS server to perform the required management task.

▪ If all validations are successful, return the processing information result for the RRAS server
and populate the lpBuffer with the system directory path returned by the RRAS server. Return
the length of the string in Unicode characters populated to the lpBuffer.

3.3.4.5 (Updated Section) RasRpcSubmitRequest (Opnum 12)

The RasRpcSubmitRequest method retrieves or sets the configuration data on RRAS server.

 DWORD RasRpcSubmitRequest(
 [in] handle_t h,
 [in, out, unique, size_is(dwcbBufSize)]
 PBYTE pReqBuffer,
 [in] DWORD dwcbBufSize
);

hServer: An RPC binding handle as specified in [C706] section 2.

413 / 547

[MS-RRASM-Diff] - v20210407
Routing and Remote Access Server (RRAS) Management Protocol
Copyright © 2021 Microsoft Corporation
Release: April 7, 2021

pReqBuffer: A pointer to a buffer of size dwcbBufSize. The buffer MUST be large enough to hold the
RequestBuffer structure (section 2.2.1.2.217) and RequestBuffer.RB_Buffer data.

RequestBuffer.RB_Reqtype specifies the request type which will be processed by the server
and RequestBuffer.RB_Buffer specifies the structure specific to RB_Reqtype to be processed.

The structure that MUST be used for each ReqTypes value is explained in section 2.2.1.2.217. The
client MUST NOT send the ReqType other than those defined in ReqTypes (section 2.2.1.1.18).
RequestBuffer.RB_PCBIndex MUST be set to the unique port identifier whose information is
sought for ReqTypes REQTYPE_GETINFO and REQTYPE_GETDEVCONFIG. For other valid
ReqTypes, RequestBuffer.RB_PCBIndex MUST be set to zero (0).

dwcbBufSize: Size in byte of pReqBuffer.

Return Values: Specifies the return status as explained in section 2.2.1.2.218 for retcode field.

Exceptions Thrown: This method throws an exception with the exception code
RPC_S_ACCESS_DENIED (0x00000005) if the client is not an administrator on the RRASM server, with
access permission to perform the operation.<340>

Validations which SHOULD be done by the RRASM for all ReqTypes are:

▪ Return ERROR_SUCCESS (0x00000000) if one of the following conditions are met without any
further processing of the call:

▪ dwcbBufSize is less than the sum of size of RequestBuffer and 5000, i.e. if the condition
(dwcbBufSize < size of RequestBuffer + 5000) is TRUE.

▪ pReqBuffer is NULL

▪ pReqBuffer.RB_ReqType is less than zero (0) or greater than maximum ReqTypes<341>

▪ Validate as specified in section 3.3.4 whether this method was called by a client that is an
administrator of the RRASM server.

Specific RRASM behavior for each ReqTypes value follows.

REQTYPE_GETDEVICECONFIGINFO:

When processing this request, the RRASM SHOULD do the following:

▪ The dwcbBufSize that is passed in SHOULD be greater than or equal to the sum of the size of
RequestBuffer (section 2.2.1.2.217) with the RB_Buffer field specifying the
DeviceConfigInfo (section 2.2.1.2.218) structure, and the size of DeviceConfigInfo.cbBuffer.
If this is not the case, RRASM MUST return the ERROR_SUCCESS (0x00000000) setting
DeviceConfigInfo.retcode to E_INVALIDARG (0x80070057).

▪ If DeviceConfigInfo.dwVersion is not set to the version of Rasrpc Server<342>, RRASM MUST
return ERROR_SUCCESS (0x00000000) setting DeviceConfigInfo.retcode to
ERROR_NOT_SUPPORTED (0x00000032).

▪ Call the abstract interface Invoke RASRPC specifying the method and the parameters necessary
to enable RRAS server to perform the required management task.

▪ MUST set the cEntries to the number of devices returned by the RRAS.

▪ MUST check the passed in cbBuffer size, and copy the device information details
(RAS_DEVICE_INFO (section 2.2.1.2.219)) for the devices that fit in the cbBuffer size to
abdata buffer.

▪ cbBuffer MUST be set to the total size in bytes needed to hold all the device information. It MUST
be set to the value of cEntries multiplied by the size of RAS_DEVICE_INFO.

414 / 547

[MS-RRASM-Diff] - v20210407
Routing and Remote Access Server (RRAS) Management Protocol
Copyright © 2021 Microsoft Corporation
Release: April 7, 2021

▪ dwVersion MUST be set to the version of the Rasrpc server.

▪ If there is no error, ERROR_SUCCESS (0x00000000) MUST be returned setting

DeviceConfigInfo.retcode to ERROR_SUCCESS (0x00000000).

REQTYPE_SETDEVICECONFIGINFO:

When processing this request, the RRASM MUST do the following:

▪ The dwcbBufSize that is passed in SHOULD be greater than or equal to the sum of the size of
RequestBuffer (section 2.2.1.2.217) with the RB_Buffer field specifying the
DeviceConfigInfo (section 2.2.1.2.218) structure, and the size of DeviceConfigInfo.cbBuffer.
The dwcbBufSize passed in SHOULD be equal to or greater than sum of the size of
RequestBuffer, size of DeviceConfigInfo and DeviceConfigInfo.cbBuffer. If not, then
ERROR_SUCCESS (0x00000000) MUST be returned setting DeviceConfigInfo.retcode to

E_INVALIDARG (0x80070057).

▪ The DeviceConfigInfo.cbBuffer SHOULD be greater than or equal to size of all the device
information (RAS_DEVICE_INFO) as specified in DeviceConfigInfo.cEntries. If not, RRASM

MUST return ERROR_SUCCESS (0x00000000) and also set DeviceConfigInfo.retcode to
ERROR_INVALID_PARAMETER (0x00000057).

▪ Call the abstract interface Invoke RASRPC method specifying the operation and the parameters

to enable RRAS server to perform the required management task.

▪ If the RRAS implementation does not have any of the devices, RAS_DEVICE_INFO.dwError for
that device MUST be set to ERROR_DEVICE_DOES_NOT_EXIST (0x00000260).

▪ If RAS_DEVICE_INFO.fWrite is set and the RRAS implementation could not succeed in storing
the device information, then DeviceConfigInfo.retcode MUST be set to
ERROR_CAN_NOT_COMPLETE (0x000003EB).

▪ If RAS_DEVICE_INFO.dwNumEndPoints or RAS_DEVICE_INFO.dwMaxWanEndPoints is

more than the maximum supported value for the WAN endpoint on the RRAS server, it MUST be
set to the maximum supported value.

▪ If the RRAS server returns no error status, ERROR_SUCCESS (0x00000000) MUST be returned
setting DeviceConfigInfo.retcode to ERROR_SUCCESS. Otherwise return the error status
returned by the RRAS server in DeviceConfigInfo.retcode.

REQTYPE_GETINFO:

When processing this request, the RRASM SHOULD do the following:

▪ The dwcbBufSize that is passed in SHOULD be greater than or equal to the size of
RequestBuffer (section 2.2.1.2.217) with the RB_Buffer field specifying the size of the Info
structure. If not, RRASM MUST return ERROR_SUCCESS (0x00000000) setting Info.retcode to
E_INVALIDARG (0x80070057).

▪ Since the RRASM server does not manage the list of valid port identifiers, the RRAS
implementation SHOULD check if the RequestBuffer.RB_PCBIndex refers to a valid port

identifier. If the port identifier is not valid, RRASM MUST return ERROR_SUCCESS (0x00000000)
and also set Info.retcode to ERROR_PORT_NOT_FOUND (0x00000267).

▪ Call the abstract interface Invoke RASRPC method specifying the operation and the parameters
to enable RRAS server to perform the required management task.

▪ SHOULD<343> validate if the passed in RequestBuffer.RB_Dummy is equal to the size of
ULONG_PTR on the server. If it is not equal and passed in RequestBuffer.RB_Dummy is equal
to the size of DWORD, the RRASM server MUST marshal the

Rasman_InfoRASMAN_INFO.RI_ConnectionHandle from HANDLE to ULONG.

415 / 547

[MS-RRASM-Diff] - v20210407
Routing and Remote Access Server (RRAS) Management Protocol
Copyright © 2021 Microsoft Corporation
Release: April 7, 2021

▪ If the RRAS server successfully processes the request, the RRASM server MUST populate the
RequestBuffer.RB_Buffer (Info) structure with the port information provided by RRAS server

and return ERROR_SUCCESS (0x00000000).

REQTYPE_GETCALLEDID:

When processing this request, the RRASM MUST do the following:

▪ The dwcbBufSize that is passed in SHOULD be greater than or equal to the sum of the size of
RequestBuffer (section 2.2.1.2.217) with the RB_Buffer field specifying the
GetSetCalledId (section 2.2.1.2.220) structure, and the size of GetSetCalledId.rciInfo.dwSize.
If not, RRASM MUST return ERROR_SUCCESS (0x00000000) and also set
GetSetCalledId.retcode to E_INVALIDARG (0x80070057).

▪ Call the abstract interface Invoke RASRPC method specifying the operation and the parameters

to enable RRAS server to perform the required management task.

▪ GetSetCalledId.dwSize SHOULD be equal to or greater than the sum of the size of
RAS_CALLEDID_INFO (section 2.2.1.2.221) and the size of CalledId buffer to be returned. If so,

fill the GetSetCalledId.rciInfo buffer with the CalledId details returned by the RRAS server.
Otherwise GetSetCalledId.rciInfo buffer is not filled with the CalledId details.

▪ MUST set the GetSetCalledId.dwSize to the sum of the size of RAS_CALLEDID_INFO and the

size of CalledId buffer to be returned and return ERROR_SUCCESS (0x00000000).

REQTYPE_SETCALLEDID:

When processing this request, the RRASM MUST do the following:

▪ The dwcbBufSize that is passed in SHOULD be greater than or equal to the sum of the size of
RequestBuffer (section 2.2.1.2.217) with the RB_Buffer field specifying the GetSetCalledId
structure, and the size of GetSetCalledId.rciInfo.dwSize. If not, RRASM MUST return
ERROR_SUCCESS (0x00000000) setting GetSetCalledId.retcode to E_INVALIDARG

(0x80070057).

▪ Call the abstract interface Invoke RASRPC method specifying the operation and the parameters
to enable RRAS server to perform the required management task.

▪ If all validation is successful, the RRAS server MUST store the GetSetCalledId.rciInfo buffer that
contains CalledId details.

▪ Return any error the RRAS server returns while processing the request. Otherwise return
ERROR_SUCCESS (0x00000000).

REQTYPE_PORTENUM:

When processing this request, the RRASM MUST do the following:

▪ The dwcbBufSize that is passed in SHOULD be greater than or equal to the sum of the size of the
RequestBuffer structure specifying the Enum (section 2.2.1.2.225) structure, and Enum.size. If
not, RRASM MUST return ERROR_SUCCESS (0x00000000) setting Enum.retcode to

E_INVALIDARG (0x80070057).

▪ Call the abstract interface Invoke RASRPC method specifying the operation and the parameters
to enable RRAS server to perform the required management task.

▪ MUST set the Enum.entries to the number of available port devices returned by the RRAS server.

▪ MUST check the passed in Enum.size and copy all of the port information details
(RASMAN_PORT_32 (section 2.2.1.2.226)) for the ports that fit in the Enum.size to
Enum.buffer.

416 / 547

[MS-RRASM-Diff] - v20210407
Routing and Remote Access Server (RRAS) Management Protocol
Copyright © 2021 Microsoft Corporation
Release: April 7, 2021

▪ Enum.size MUST be set to the total size in bytes needed to hold all the port information.

▪ If there is no error, the server MUST return ERROR_SUCCESS (0x00000000).

REQTYPE_GETNDISWANDRIVERCAPS:

When processing this request, the RRASM MUST do the following:

▪ The dwcbBufSize that is passed in SHOULD be greater than or equal to the size of the
RequestBuffer structure with the RB_Buffer field specifying the
GetNdiswanDriverCapsStruct (section 2.2.1.2.222) structure. If not, RRASM MUST return
ERROR_SUCCESS (0x00000000) setting GetNdiswanDriverCapsStruct.retcode to
E_INVALIDARG (0x80070057).

▪ Call the abstract interface Invoke RASRPC method specifying the operation and the parameters
to enable the RRAS server to perform the required management task.

▪ If all validation is successful, populate the GetNdiswanDriverCapsStruct with the encryption
capabilities returned by the RRAS server and set GetNdiswanDriverCapsStruct.retcode to

ERROR_SUCCESS (0x00000000). If there is any error while retrieving the encryption capabilities
of RRAS, set the GetNdiswanDriverCapsStruct.retcode with the error. RRASM MUST return
ERROR_SUCCESS (0x00000000).

REQTYPE_GETDEVCONFIG:

When processing this request, the RRASM MUST do the following:

▪ The dwcbBufSize that is passed in SHOULD be greater than or equal to the sum of the size of the
RequestBuffer structure with the RB_Buffer field specifying the
GetDevConfigStruct (section 2.2.1.2.224) structure, and GetDevConfigStruct.size. If not,
RRASM MUST return ERROR_SUCCESS (0x00000000) setting GetDevConfigStruct.retcode to
E_INVALIDARG (0x80070057).

▪ Because RRASM does not maintain the list of valid port identifiers, the RRAS server SHOULD check

that RequestBuffer.RB_PCBIndex is a valid port identifier. If this is not the case, RRAS MUST

return ERROR_SUCCESS (0x00000000) setting GetDevConfigStruct.retcode to
ERROR_PORT_NOT_FOUND (0x00000267).

▪ If the device type specified by GetDevConfigStruct.devicetype does not exist on the RRAS
server, the RRAS implementation MUST return ERROR_SUCCESS (0x00000000) setting
GetDevConfigStruct.retcode to ERROR_DEVICE_DOES_NOT_EXIST (0x00000260).

▪ If the device type associated with the port as identified by RequestBuffer.RB_PCBIndex is a

value other than "MODEM", RRASM MUST return ERROR_SUCCESS (0x00000000) setting
GetDevConfigStruct.retcode to ERROR_SUCCESS (0x00000000) and
GetDevConfigStruct.size to zero (0).

▪ Call the abstract interface Invoke RASRPC method specifying the operation and the parameters
to enable RRAS server to perform the required management task.

▪ Check if GetDevConfigStruct.size is large enough to hold the device information as returned by

RRAS. If not, RRASM MUST return ERROR_SUCCESS (0x00000000) setting
GetDevConfigStruct.retcode to ERROR_BUFFER_TOO_SMALL (0x0000025B). Set the
GetDevConfigStruct.size to the size of the required buffer to hold device information.

▪ If all validation is successful, the RRAS server MUST get the device configuration information
associated with the port identified by RequestBuffer.RB_PCBIndex and fill the
GetDevConfigStruct.config buffer with the details and set the GetDevConfigStruct.size to the
size of the buffer copied to GetDevConfigStruct.config. Server MUST return ERROR_SUCCESS

(0x00000000).

417 / 547

[MS-RRASM-Diff] - v20210407
Routing and Remote Access Server (RRAS) Management Protocol
Copyright © 2021 Microsoft Corporation
Release: April 7, 2021

3.3.4.6 RasRpcGetInstalledProtocolsEx (Opnum 14)

The RasRpcGetInstalledProtocolsEx method retrieves the protocol information on the RRAS server.
The list of protocols is defined in the following return value section.

 DWORD RasRpcGetInstalledProtocolsEx(
 [in] handle_t h,
 [in] BOOL fRouter,
 [in] BOOL fRasCli,
 [in] BOOL fRasSrv
);

h: An RPC binding handle as specified in [C706] section 2.

fRouter: If set to TRUE, protocols enabled for Demand Dial are retrieved. If set to FALSE, protocols
enabled for Demand Dial are not retrieved.

fRasCli: This flag is not used and MUST be set to FALSE.

fRasSrv: If set to TRUE, retrieves the protocol enabled for RRAS incoming connections. If set to
FALSE, protocol for RRAS incoming connections are not retrieved.

Return Values: Specifies the return status as explained in section 2.2.1.2.218 for the retcode field.

The return value can be one of the error codes that follow. All other error values MUST be treated
the same by the RRASM client.

Return value Description

0x00000000 There is no protocol installed on the RRAS server or there is some error
when RRAS server retrieves the information.

0x00000001 to
0x0000000F

Specifies the protocols enabled on the RRAS server. This value SHOULD be
a combination of one or more of the following flags:

NP_Nbf (0x00000001): NetBEUI protocol is enabled.<344>

NP_Ipx (0x00000002): IPX protocol is enabled.<345>

NP_Ip (0x00000004): TCP/IPv4 protocol is enabled.

NP_Ipv6 (0x00000008): TCP/IPv6 protocol is enabled.<346>

Exceptions Thrown: This method throws an exception with the exception code

RPC_S_ACCESS_DENIED (0x00000005) if the client is not an administrator on the RRASM server, with
access permission to perform the operation.<347>

The opnum field value for this method is 14.

When processing this call, the RRASM server SHOULD do the following:

▪ Validate as specified in section 3.3.4 whether this method was called by a client that is an
administrator of the RRASM server.

▪ Call the abstract interface Invoke RASRPC method specifying the operation and the

parameters to enable RRAS server to perform the required management task.

▪ If all validation is successful, return the installed protocol information as provided by the RRAS
server.

3.3.4.7 RasRpcGetVersion (Opnum 15)

The RasRpcGetVersion method retrieves the Rasrpc server interface version.

418 / 547

[MS-RRASM-Diff] - v20210407
Routing and Remote Access Server (RRAS) Management Protocol
Copyright © 2021 Microsoft Corporation
Release: April 7, 2021

 DWORD RasRpcGetVersion(
 [in] handle_t h,
 [in, out, ref] LPDWORD pdwVersion
);

h: An RPC binding handle as specified in [C706] section 2.

pdwVersion: This is a pointer to type DWORD which, after a successful function call, specifies the
version of the Rasrpc interface.

Return Values: Specifies the return status as explained in section 2.2.1.2.218 for the retcode field

The return value can be one of the error codes that follow. All other error values MUST be treated
the same by the RRASM client.

Return value/code Description

ERROR_SUCCESS

0x00000000

The call was successful.

Exceptions Thrown: This method throws an exception with the exception code
RPC_S_ACCESS_DENIED (0x00000005) if the client is not an administrator on the RRASM server, with
access permission to perform the operation.<348>

The opnum field value for this method is 15.

When processing this call, the RRAM server SHOULD do the following:

▪ Validate as specified in section 3.3.4 whether this method was called by a client that is an
administrator of the RRASM server.<349>

▪ Call the abstract interface Invoke RASRPC method specifying the operation and the
parameters to enable the RRAS server to perform the required management task.

▪ Set the value pointed by pdwVersion to the version of RRAS server.<350>

▪ If there is no error, the server MUST return ERROR_SUCCESS (0x00000000).

3.3.5 Timer Events

No protocol timer events are required on the server beyond the timers required in the underlying RPC
protocol.

3.3.6 Other Local Events

Apart from the underlying [MS-RPCE] specified events there are no special events for RRASM.
However, the RPC interface interacts with the underlying RRAS implementation through the following
interfaces.

3.3.6.1 Invoke RASRPC Method

The RRASM server provides the remote management capability to the RRAS implementation. The
RRAS implementation refers to the actual task of configuring and providing the routing and remote
access functionality that is outside the scope of the RRASM protocol. For more information about

routing and remote access, see [MSFT-RRA].To keep the implementation aspects separate from the
semantics of the RRASM methods, this abstract interface is defined with the RRAS implementation.
With this, any RPC method request received by the RRASM server, after the required validations done

419 / 547

[MS-RRASM-Diff] - v20210407
Routing and Remote Access Server (RRAS) Management Protocol
Copyright © 2021 Microsoft Corporation
Release: April 7, 2021

by the RRASM server, are passed to the RRAS server through this interface. The Opnum and the data
structures are passed as is to the RRAS server. As part of this processing, RRAS will perform the

actual management task as defined by the semantics of the RRASM method and will return any
information requested by the RRASM server on behalf of the remote RRASM client and return the

status of the operation requested by the RRASM server (on behalf of the RRASM client). The RRASM
server then relays these return values and data back to the remote RRASM client. The RRAS
understands the data structures that the RRASM server requires and can process and provide
information in the same manner.

3.3.6.2 Start RASRPC

This interface is invoked by RRAS when it is started to initialize the RASRPC interface of RRASM.

3.3.6.3 Stop RASRPC

This interface is invoked by RRAS when it is getting stopped. This will stop the RASRPC interface of
RRASM and no further RPC requests are processed.

3.4 RASRPC Interface Client Details

For definitions of RASRPC interface methods, see section 3.4.4. For the list of methods supported by

this interface, refer to Appendix A: Full IDL (section 6).

3.4.1 Abstract Data Model

This section describes a conceptual model that an implementation can maintain to participate in this

protocol. The described organization is provided to help explain protocol behavior. This document does
not mandate that implementations adhere to this model, as long as their external behavior is
consistent with that described in this document.

The client is not required to maintain any information during this protocol.

3.4.2 Timers

No protocol timers are required beyond those used internally by the RPC method to implement
resiliency to network outages, as specified in [MS-RPCE].

3.4.3 Initialization

The client creates an RPC binding handle to the server RPC method endpoint when an RPC method is
called. For more information on binding handles, see [C706]. The client MAY create a separate binding
handle for each method invocation, or it MAY reuse a binding handle for multiple invocations. The
client MUST create an authenticated RPC binding handle.

3.4.4 Message Processing Events and Sequencing Rules

The client MUST pass any error that is received from the invocation of an RPC method to the
application that issued the RPC call. For all of the methods, if RPC_S_ACCESS_DENIED (0x00000005)
is returned as an exception or E_ACCESS_DENIED (0x80070005)<351> is returned as a return value,
the client needs to make sure it has administrative privileges on the RRAS server.

The Rasrpc server MUST perform a strict Network Data Representation (NDR) data consistency check

at target level 5.0, as specified in [MS-RPCE] section 3.

This protocol MUST indicate to the RPC runtime that it is to reject a NULL unique or full pointer with
nonzero conformant value, as specified in section 3 of [MS-RPCE].

420 / 547

[MS-RRASM-Diff] - v20210407
Routing and Remote Access Server (RRAS) Management Protocol
Copyright © 2021 Microsoft Corporation
Release: April 7, 2021

3.4.4.1 RasRpcDeleteEntry (Opnum 5)

None beyond those specified in section 3.4.4

3.4.4.2 RasRpcGetUserPreferences (Opnum 9)

When the method completes successfully with a return value of ERROR_SUCCESS, the client SHOULD
free the memory allocated by RPC. The following fields of RASRPC_PBUSER MAY contain RPC
allocated memory: pCallbacks, pLocations, pPhonebooks, pAreaCodes, pPrefixes, pSuffixes.

3.4.4.3 RasRpcSetUserPreferences (Opnum 10)

None beyond those specified in section 3.4.4

3.4.4.4 RasRpcGetSystemDirectory (Opnum 11)

None beyond those specified in section 3.4.4

3.4.4.5 (Updated Section) RasRpcSubmitRequest (Opnum 12)

Before calling the method, the client MUST set the pReqBuffer buffer and dwcbBufSize buffer size
to a size at least as large as the sum of the size of RequestBuffer and 5000. Also, the
pReqBuffer.RB_ReqType value MUST be set to one of the valid enumeration values as stated in
section 2.2.1.1.18.

Client behavior for specific ReqTypes is as follows.

REQTYPE_GETDEVICECONFIGINFO

Before calling the method, the client MUST set DeviceConfigInfo.dwVersion to the version of
Rasrpc server. The version information for the Rasrpc server can be retrieved using
RasRpcGetVersion method as describedspecified in section 3.3.4.7.

Also, the DeviceConfigInfo.cbBuffer value MUST be equal to the size of the
DeviceConfigInfo.abdata buffer.

If the returned DeviceConfigInfo.cbBuffer is more than the passed in cbBuffer size, it implies that
the passed in buffer is not big enough to hold all the device information. The client SHOULD again call

the API with DeviceConfigInfo.cbBuffer set to the size of the returned cbBuffer.

REQTYPE_SETDEVICECONFIGINFO

Before calling the method, the client MUST set the DeviceConfigInfo.cbBuffer value equal to the
size of DeviceConfigInfo.abdata buffer.

REQTYPE_PORTENUM

Before calling the method, the client MUST set the Enum.size value to the size of Enum.buffer.

If the returned Enum.size is more than the passed in Enum.size, it implies that the passed in buffer

was not big enough to hold all the ports information. The client SHOULD again call the API with
Enum.size set to the size of the returned Enum.size.

REQTYPE_GETDEVCONFIG

Before calling the method, the client MUST set the GetDevConfigGetDevConfigStruct.size value to
the size of the GetDevConfigGetDevConfigStruct.config buffer.

421 / 547

[MS-RRASM-Diff] - v20210407
Routing and Remote Access Server (RRAS) Management Protocol
Copyright © 2021 Microsoft Corporation
Release: April 7, 2021

If the returned GetDevConfigGetDevConfigStruct.retcode is set to ERROR_BUFFER_TOO_SMALL
(0x0000025B), the buffer that was passed in was not big enough to hold the device configuration

information. The client SHOULD again call the API with GetDevConfigGetDevConfigStruct.size set
to the size of returned GetDevConfigGetDevConfigStruct.size.

REQTYPE_GETCALLEDID

Before calling the method, the client SHOULD set the RequestBuffer.RB_PCBIndex to zero (0).

Also, the client MUST set the GetSetCalledId.dwSize to the sum of the size of RAS_CALLEDID_INFO
and the size of GetSetCalledId.rciInfo.bCalledId buffer size.

If the returned GetSetCalledId.dwSize is more than the passed in GetSetCalledId.dwSize, it
implies that the passed in buffer was not big enough to hold all the CalledId information. The client
SHOULD again call the API with GetSetCalledId.dwSize set to sum of the size of

RAS_CALLEDID_INFO and the returned GetSetCalledId.dwSize.

3.4.4.6 RasRpcGetInstalledProtocolsEx (Opnum 14)

None beyond those specified in section 3.4.4

3.4.4.7 RasRpcGetVersion (Opnum 15)

None beyond those specified in section 3.4.4

3.4.5 Timer Events

No protocol timer events are required on the client beyond the timers required in the underlying RPC
protocol.

3.4.6 Other Local Events

No local events are maintained on the client other than the events that are maintained in the
underlying RPC protocol.

3.5 REMRAS Interface Server Details

For the list of interfaces and methods supported by this interface, refer to Appendix A: Full IDL
(section 6). Each interface definition states its own UUID per the list specified in section 1.9.

3.5.1 Abstract Data Model

This section describes a conceptual model that an implementation can maintain to participate in this
protocol. The described organization is provided to facilitate the explanation of how the protocol
behaves. This document does not mandate that implementations adhere to this model, as long as
their external behavior is consistent with that described in this document.

There are no states that are maintained for this interface that affect the DCOM methods behavior for
this interface.

3.5.2 Timers

No timers are required beyond those used internally by RPC to implement resiliency to network
outages, as specified in the [MS-RPCE] section 3.2.3.2.1.

422 / 547

[MS-RRASM-Diff] - v20210407
Routing and Remote Access Server (RRAS) Management Protocol
Copyright © 2021 Microsoft Corporation
Release: April 7, 2021

3.5.3 Initialization

This interface uses DCOM initialization. The server MUST be considered to be initialized after a
successful activation of one of the three interfaces that are registered with the Distributed Component

Object Model (DCOM) Remote Protocol infrastructure, as specified in the [MS-DCOM] section 1.3.6.

3.5.4 Message Processing Events and Sequencing Rules

The REMRAS Server interface is composed of DCOM interfaces that enable the remote management
of RRAS implementation. Each interface inherits the IUnknown interface, as specified in the [MS-

DCOM] section 3.1.1.5.8.

To receive incoming remote calls for each interface, the server MUST implement a DCOM object that
uses the UUID stated in its section.

When processing an interface method call, the RRASM server MUST do the following:

▪ Call the abstract interface Invoke REMRAS method (section 3.5.6.1) specifying the operation and

the parameters to enable RRAS server to perform the required management task.

▪ Return any error status the RRAS server returns; otherwise, return ERROR_SUCCESS.

No exceptions are thrown beyond those thrown by the underlying RPC protocol [MS-RPCE].

In these methods some error codes are implementation-specific and are referred to as nonzero
implementation-specific error codes.

The following table lists the REMRAS interfaces and methods.

Interface Method Description

IRemoteNetworkConfig UpgradeRouterConfig Clears the existing transport configuration.

Opnum: 3

IRemoteNetworkConfig SetUserConfig This method is not used.

Opnum: 4

IRemoteRouterRestart RestartRouter The RestartRouter stops and restarts the RRAS
server.

Opnum: 3

IRemoteSetDnsConfig SetDnsConfig Updates the behavior of the Domain Name System
(DNS) name resolution on the RRAS server.

Opnum: 3

IRemoteICFICSConfig GetIcfEnabled Retrieves the status on whether Basic Firewall or
Internet Connection Firewall feature is enabled or
not on the RRAS server.

Opnum: 3

IRemoteICFICSConfig GetIcsEnabled Retrieves the status on whether Network Address
Translation (NAT) or "Internet Connection Sharing"
feature is enabled or not on the RRAS server.

Opnum: 4

IRemoteStringIdConfig GetStringFromId Returns the string corresponding to the specified
string ID.

Opnum: 3

IRemoteIPV6Config GetAddressList Returns IPv6 address information.

423 / 547

[MS-RRASM-Diff] - v20210407
Routing and Remote Access Server (RRAS) Management Protocol
Copyright © 2021 Microsoft Corporation
Release: April 7, 2021

Interface Method Description

Opnum: 3

IRemoteSSTPCertCheck CheckIfCertificateAllowedRR Checks the SSTP certificate information if it is valid
for SSTP configuration.

Opnum: 3

3.5.4.1 IRemoteNetworkConfig Interface (Opnum 3)

The IRemoteNetworkConfig interface is used to update the configuration of RRAS server.

The IRemoteNetworkConfig interface inherits the IUnknown interface, as specified in the [MS-
DCOM] section 3.1.1.5.8. Method opnum field values start with 3; opnum values 0 through 2
represent the IUnknown_QueryInterface, AddRef, and Release methods, respectively.

To receive incoming remote calls for this interface, the server MUST implement a DCOM object that
uses the UUID (66a2db1b-d706-11d0-a37b-00c04fc9da04).

In these methods, some error codes are implementation-specific and are referred to as nonzero
implementation-specific error codes.

Methods in RPC opnum Order.

Method Description

UpgradeRouterConfig Clears the existing transport configuration (sections 2.2.3.1 and 2.2.3.2).
Opnum: 3

SetUserConfig This method is not used.
Opnum: 4

3.5.4.1.1 UpgradeRouterConfig Method (Opnum 3)

The UpgradeRouterConfig method clears the existing transport configuration (section 2.2.3.1) and
interfaces (section 2.2.3.2).

 HRESULT UpgradeRouterConfig();

Return Values: The server MUST return zero if it successfully processes the message. If processing
fails, the server MUST return a nonzero HRESULT error code as defined in the [MS-DTYP] section
2.2.18, between 0x8000000 and 0xFFFFFFFF, as specified in [MS-ERREF] section 2.1. For protocol
purposes, all nonzero values MUST be treated as equivalent failures.

When processing this call, the RRASM server MUST do the following:

▪ Call the abstract interface Invoke REMRAS method specifying the operation and the parameters
to enable RRAS server to perform the required management task.

▪ Return any error status the RRAS server returns. Otherwise, return ERROR_SUCCESS.

No exceptions are thrown beyond those thrown by the underlying RPC protocol [MS-RPCE].

3.5.4.1.2 SetUserConfig Method (Opnum 4)

424 / 547

[MS-RRASM-Diff] - v20210407
Routing and Remote Access Server (RRAS) Management Protocol
Copyright © 2021 Microsoft Corporation
Release: April 7, 2021

The SetUserConfig method is not used. The server MUST return E_NOTIMPL.

 HRESULT SetUserConfig (
 [in] LPCOLESTR pszService,
 [in] LPCOLESTR pszNewGroup
);

3.5.4.2 IRemoteRouterRestart Interface (Opnum 3)

The IRemoteRouterRestart interface inherits the IUnknown interface, as specified in [MS-DCOM]
section 3.1.1.5.8. Method opnum field values start with 3; opnum values 0 through 2 represent the
IUnknown_QueryInterface, AddRef, and Release methods, respectively.

To receive incoming remote calls for this interface, the server MUST implement a DCOM object that
uses the UUID (66a2db20-d706-11d0-a37b-00c04fc9da04).

This interface contains the RestartRouter method to restart the RRAS server.

In this method, some error codes are implementation-specific and are referred to as nonzero
implementation-specific error codes.

Method in RPC Opnum order.

Method Description

RestartRouter The RestartRouter stops and restarts the RRAS server.

Opnum: 3

3.5.4.2.1 RestartRouter Method (Opnum 3)

The RestartRouter method stops and restarts the RRAS server.

 HRESULT RestartRouter([in] DWORD dwFlags);

dwFlags: This is unused and if set MUST be ignored by RRASM server.

Return Values: The server MUST return zero if it successfully processes the message. If processing
fails, the server MUST return a nonzero HRESULT error code as defined in [MS-DTYP] section

2.2.18, between 0x80000000 and 0xFFFFFFFF, as specified in [MS-ERREF] section 2.1. For
protocol purposes, all nonzero values MUST be treated as equivalent failures.

When processing this call, the RRASM server MUST do the following:

▪ Call the abstract interface Invoke REMRAS method specifying the operation and the parameters
to enable RRAS server to perform the required management task.

▪ Return any error status the RRAS server returns. Otherwise return ERROR_SUCCESS.

No exceptions are thrown beyond those thrown by the underlying RPC protocol [MS-RPCE].

3.5.4.3 IRemoteSetDnsConfig Interface (Opnum 3)

The IRemoteSetDnsConfig interface inherits the IUnknown interface, as specified in [MS-DCOM]
section 3.1.1.5.8. Method opnum field values start with 3; opnum values 0 through 2 represent the

IUnknown_QueryInterface, AddRef, and Release methods, respectively.

425 / 547

[MS-RRASM-Diff] - v20210407
Routing and Remote Access Server (RRAS) Management Protocol
Copyright © 2021 Microsoft Corporation
Release: April 7, 2021

To receive incoming remote calls for this interface, the server MUST implement a DCOM object that
uses the UUID {66a2db21-d706-11d0-a37b-00c04fc9da04}.

This interface contains method to set the Domain Name System (DNS) name resolution configuration.

In these methods, some error codes are implementation-specific and are referred to as nonzero

implementation-specific error codes.

Methods in RPC Opnum order.

Method Description

SetDnsConfig Updates the behavior of the Domain Name System (DNS) name resolution on the RRAS
server.

Opnum: 3

3.5.4.3.1 SetDnsConfig Method (Opnum 3)

The SetDnsConfig method updates the behavior of the Domain Name System (DNS) name resolution
of the Network Adapters on the RRAS server.

 HRESULT SetDnsConfig(
 [in] DWORD dwConfigId,
 [in] DWORD dwNewValue
);

dwConfigId: This is of type DWORD and MUST be set to the following value.

Value Meaning

0x00010011 Indicates to the DNS name resolution on the RRAS server to not wait for name resolution
response from all the adapters.

dwNewValue: This is of type DWORD and MUST be set to 0.

Return Values: The server MUST return zero if it successfully processes the message. If processing
fails, the server MUST return a nonzero HRESULT error code as defined in [MS-DTYP] section
2.2.18, between 0x80000000 and 0xFFFFFFFF, as specified in [MS-ERREF] section 2.1. For
protocol purposes, all nonzero values MUST be treated as equivalent failures.

When processing this call, the RRASM server MUST do the following:

▪ Call the abstract interface Invoke REMRAS method specifying the operation and the parameters
to enable RRAS server to perform the required management task.

▪ Return any error status the RRAS server returns. Otherwise return ERROR_SUCCESS.

No exceptions are thrown beyond those thrown by the underlying RPC protocol [MS-RPCE].

3.5.4.4 IRemoteICFICSConfig Interface (Opnum 3)

The IRemoteICFICSConfig interface inherits the IUnknown interface, as specified in [MS-DCOM]
section 3.1.1.5.8. Method opnum field values start with 3; opnum values 0 through 2 represent the
IUnknown_QueryInterface, AddRef, and Release methods, respectively.

426 / 547

[MS-RRASM-Diff] - v20210407
Routing and Remote Access Server (RRAS) Management Protocol
Copyright © 2021 Microsoft Corporation
Release: April 7, 2021

To receive incoming remote calls for this interface, the server MUST implement a DCOM object that
uses the UUID {66a2db22-d706-11d0-a37b-00c04fc9da04}.

This interface is used to query the status of basic firewall and Network Address Translation features on
a remote RRAS server.

In these methods, some error codes are implementation-specific and are referred to as nonzero
implementation-specific error codes.

Methods in RPC Opnum order.

Method Description

GetIcfEnabled Retrieves the status on whether "Basic Firewall" or "Internet Connection Firewall" feature is
enabled or not on RRAS server.
Opnum: 3

GetIcsEnabled Retrieves the status on whether "Network Address Translation (NAT)" or "Internet
Connection Sharing" feature is enabled or not on RRAS server.
Opnum: 4

3.5.4.4.1 GetIcfEnabled Method (Opnum 3)

The GetIcfEnabled method<352> retrieves the status of whether the "Basic Firewall" or "Internet
Connection Firewall" feature is enabled on RRAS server.

 HRESULT GetIcfEnabled([out] BOOL * status);

Status: This is a pointer to a BOOL. The value of the method is either TRUE or FALSE. If TRUE,
indicates that basic firewall is enabled on the server. If FALSE, indicates that basic firewall is
disabled on the server.

Return Values: The server MUST return zero if it successfully processes the message. If processing
fails, the server MUST return a nonzero HRESULT error code, as defined in [MS-DTYP] section
2.2.18, between 0x80000000 and 0xFFFFFFFF, as specified in [MS-ERREF] section 2.1. All nonzero

values MUST be treated as equivalent failures.

When processing this call, the RRASM server MUST do the following:

▪ Call the abstract interface Invoke REMRAS method specifying the operation and the parameters
to enable RRAS server to perform the required management task.

▪ Return any error status the RRAS server returns. Otherwise return ERROR_SUCCESS.

No exceptions are thrown beyond those thrown by the underlying RPC protocol [MS-RPCE].

3.5.4.4.2 (Updated Section) GetIcsEnabled Method (Opnum 4)

The GetIcsEnabled method retrieves the status of whether the "Network Address Translation (NAT)"
or "Internet Connection Sharing" feature is enabled on RRAS.

 HRESULT GetIcsEnabled([out] BOOL * status);

427 / 547

[MS-RRASM-Diff] - v20210407
Routing and Remote Access Server (RRAS) Management Protocol
Copyright © 2021 Microsoft Corporation
Release: April 7, 2021

Status: A pointer to a BOOL. The value of the method is either TRUE or FALSE. If TRUE, indicates
that NAT is enabled on the server on at least one connection. If FALSE, indicates that NAT is not

enabled on any connection on the server.

Return Values: The server MUST return zero if it successfully processes the message. If processing

fails, the server MUST return a nonzero HRESULT error code as defined in the [MS-DTYP] section
2.2.18, between 0x80000000 and 0xFFFFFFFF, as specified in [MS-ERREF] section 2.1. All nonzero
values MUST be treated as equivalent failures.

When processing this call, the RRASM server MUST do the following:

▪ Call the abstract interface Invoke REMRAS method (section 3.5.6.1) specifying the operation and
the parameters to enable the RRAS server to perform the required management task.

▪ Return any error status the RRAS server returns. Otherwise return ERROR_SUCCESS.

No exceptions are thrown beyond those thrown by the underlying RPC protocol [MS-RPCE].

3.5.4.5 (Updated Section) IRemoteStringIdConfig Interface (Opnum 3)

The IRemoteStringIdConfig interface inherits the IUnknown interface, as specified in [MS-DCOM]

section 3.1.1.5.8. Method opnum field values start with 3; opnum values 0 through 2 represent the
IUnknown_QueryInterface, AddRef, and Release methods, respectively.

To receive incoming remote calls for this interface, the server MUST implement a DCOM object that
uses the UUID {67e08fc2-2984-4b62-b92e-fc1aae64bbbb}.

This interface is used to retrieve a detailed error string corresponding to an error.

In these methods, some error codes are implementation-specific and are referred to as nonzero
implementation-specific error codes.

Methods in RPC Opnum order.

Method Description

GetStringFromId Returns the string corresponding to the specified string ID.

Opnum: 3

3.5.4.5.1 GetStringFromId Method (Opnum 3)

The GetStringFromId method returns the string corresponding to the specified string ID.

 HRESULT GetStringFromId ([in] UINT stringId, [out] BSTR * pBstrName);

stringId: This is of type UINT and MUST be set to one of the values specified in the table below.

pBstrName: This is a localized string of type pointer to BSTR that contains the message that
corresponds to the specified stringId.

stringId pBstrName (in English)

0x64 Remrras

0x67 Remote RRAS configuration

428 / 547

[MS-RRASM-Diff] - v20210407
Routing and Remote Access Server (RRAS) Management Protocol
Copyright © 2021 Microsoft Corporation
Release: April 7, 2021

stringId pBstrName (in English)

0xC8 Microsoft Routing and Remote Access Service Authentication Servers

0xC9 Microsoft Routing and Remote Access Service Accounting Servers

0xCA Microsoft Routing and Remote Access Service Policy

0xFB Remrras enables remote RRAS configuration

0xFC Routing and Remote Access Remote Management

0xFD Routing and Remote Access Remote Management (DCOM-In)

0xFE Inbound rule to allow DCOM traffic for Routing and Remote Access (RRAS) to be remotely managed

0x280C Rules for remote management of Routing and Remote Access (RRAS) through the Routing and
Remote Access snap-in

0x12F Routing and Remote Access Remote management (RPC-In)

0x130 Inbound rule for Routing and Remote Access (RRAS) to be remotely managed by RPC/TCP

Return Values: The server MUST return zero if it successfully processes the message. If processing
fails, the server MUST return a nonzero HRESULT error code as defined in the [MS-DTYP] section
2.2.18, between 0x80000000 and 0xFFFFFFFF, as specified in [MS-ERREF] section 2.1. For

protocol purposes, all nonzero values MUST be treated as equivalent failures.

When processing this call, the RRASM server MUST do the following:

▪ Call the abstract interface Invoke REMRAS method (section 3.5.6.1) specifying the operation and
the parameters to enable RRAS server to perform the required management task.

▪ Return any error status the RRAS server returns. Otherwise return ERROR_SUCCESS.

No exceptions are thrown beyond those thrown by the underlying RPC protocol [MS-RPCE].

3.5.4.6 IRemoteIPV6Config Interface (Opnum 3)

The IRemoteIPV6Config interface inherits the IUnknown interface, as specified in the [MS-DCOM]
section 3.1.1.5.8. Method opnum field values start with 3; opnum values 0 through 2 represent the
IUnknown_QueryInterface, AddRef, and Release methods, respectively.

To receive incoming remote calls for this interface, the server MUST implement a DCOM object that

uses the UUID {6139d8a4-e508-4ebb-bac7-d7f275145897}.

This interface is used to retrieve IPv6 address information.

In these methods, some error codes are implementation-specific and are referred to as nonzero
implementation-specific error codes.

Methods in RPC Opnum order.

Method Description

GetAddressList Returns IPv6 address information.

Opnum: 3

429 / 547

[MS-RRASM-Diff] - v20210407
Routing and Remote Access Server (RRAS) Management Protocol
Copyright © 2021 Microsoft Corporation
Release: April 7, 2021

3.5.4.6.1 GetAddressList Method (Opnum 3)

The GetAddressList method retrieves IPv6 addresses on a network adapter associated with a
specified interface name and index.

 HRESULT GetAddressList(
 [in, string] wchar_t *pszInterfaceName,
 [out] DWORD *pdwNumAddresses,
 [out, size_is(, *pdwNumAddresses)] IPV6Address **ppIPV6AddressList,
 [in] DWORD dwIfIndex);

pszInterfaceName: This is a wchar string and MUST be set to the name of the network adapter
whose IPv6 addresses are to be retrieved.

pdwNumAddresses: If the method call is successful, contains the number of IPv6 addresses in

ppIPV6AddressList. If NULL, an ERROR_INVALID_ARGUMENTS error is returned.

ppIPV6AddressList: If the method call is successful, contains a pointer to a list of IPv6 addresses on

the interface. The value of pdwNumAddresses specifies the number of IPv6 addresses in the list.
Each element is of type IPV6Address (section 2.2.5.2.1). If NULL, ERROR_INVALID_ARGUMENTS
error is returned.

dwIfIndex: A DWORD that contains the interface index value of the interface specified by

pszInterfaceName.

Return Values: The server MUST return zero if it successfully processes the message. If processing
fails, the server MUST return a nonzero HRESULT error code as defined in the [MS-DTYP] section
2.2.18, between 0x80000000 and 0xFFFFFFFF, as specified in [MS-ERREF] section 2.1. All nonzero
values MUST be treated as equivalent failures.

When processing this call, the RRASM server MUST do the following:

▪ Call the abstract interface Invoke REMRAS method specifying the operation and the parameters

to enable the RRAS server to perform the required management task.

▪ Return any error status the RRAS server returns. Otherwise return ERROR_SUCCESS.

No exceptions are thrown beyond those thrown by the underlying RPC protocol [MS-RPCE].

3.5.4.7 IRemoteSSTPCertCheck Interface (Opnum 3)

The IRemoteSSTPCertCheck interface inherits the IUnknown interface, as specified in the [MS-
DCOM] section 3.1.1.5.8. Method opnum field values start with 3; opnum values 0 through 2
represent the IUnknown_QueryInterface, AddRef, and Release methods, respectively.<353>

To receive incoming remote calls for this interface, the server MUST implement a DCOM object that
uses the UUID (5ff9bdf6-bd91-4d8b-a614-d6317acc8dd8).

This interface is used to check SSTP certificates.

In these methods, some error codes are implementation-specific and are referred to as nonzero
implementation-specific error codes.

Methods in RPC Opnum order.

Method Description

CheckIfCertificateAllowedRR Checks the SSTP certificate information if it is valid for SSTP configuration.

Opnum: 3

430 / 547

[MS-RRASM-Diff] - v20210407
Routing and Remote Access Server (RRAS) Management Protocol
Copyright © 2021 Microsoft Corporation
Release: April 7, 2021

3.5.4.7.1 CheckIfCertificateAllowedRR Method (Opnum 3)

The CheckIfCertificateAllowedRR method validates whether the provided certificate is valid for

SSTP [MS-SSTP] configuration.

 HRESULT CheckIfCertificateAllowedRR(
 [in] PCWSTR adminCertName,
 [in, out] PSSTP_CERT_INFO_1 certSha1,
 [in, out] PSSTP_CERT_INFO_1 certSha256
);

adminCertName: This is a wide character string that contains the display name of the certificate.

certSha1: A pointer to SHA1 hash of the certificate. The format is as specified in section 2.2.1.2.140.

certSha256: A pointer to SHA256 hash of the certificate. The format is as specified in section

2.2.1.2.140.

At least one of these three parameters MUST have valid information, which means the caller can pass
the display name, SHA1 hash, or SHA256 hash of the certificate whose validity is being checked. If the
method call is successful and certificate details passed match the configuration, details of the
certificate configured are returned in certSha1 and certSha256.

Return Values: The server MUST return zero if it successfully processes the message. If processing
fails, the server MUST return a nonzero HRESULT error code as defined in the [MS-DTYP] section
2.2.18, between 0x80000000 and 0xFFFFFFFF, as specified in [MS-ERREF] section 2.1. For
protocol purposes, all nonzero values MUST be treated as equivalent failures.

When processing this call, the RRASM server MUST do the following:

▪ Call the abstract interface Invoke REMRAS method specifying the operation and the parameters
to enable the RRAS server to perform the required management task.

▪ Return any error status the RRAS server returns. Otherwise, return ERROR_SUCCESS.

No exceptions are thrown beyond those thrown by the underlying RPC protocol [MS-RPCE].

3.5.5 Timer Events

No protocol timer events are required on the server.

3.5.6 Other Local Events

Apart from the underlying [MS-RPCE] specified events, there are no special events for RRASM.
However, the RPC interface interacts with the underlying RRAS implementation through the REMRAS

interface.

3.5.6.1 Invoke REMRAS Method

The RRASM server provides the remote management capability to the RRAS implementation. The
RRAS implementation refers to the actual task of configuring and providing the routing and remote

access functionality that is outside the scope of the RRASM protocol. To keep the implementation
aspects separated from the semantics of the RRASM methods, this abstract interface is defined with
the RRAS implementation. Any RPC method request received by the RRASM server is passed to the
RRAS server through the interface after required validations are done by the RRASM server.

431 / 547

[MS-RRASM-Diff] - v20210407
Routing and Remote Access Server (RRAS) Management Protocol
Copyright © 2021 Microsoft Corporation
Release: April 7, 2021

As a part of the callback, the opnum and data structures are passed as-is to the RRAS server. The
RRAS server performs the actual management task as defined by the semantics of the RRASM

method, and returns any information requested on behalf of the remote RRASM client and return the
status of the operation requested by the RRASM server (on behalf of the RRASM client). The RRASM

server then relays these return values and data back to the remote RRASM client. The RRAS
understands the data structures that the RRASM server requires and can process and provide
information in the same manner.

3.6 REMRAS Interface Client Details

For definitions of interfaces and methods, see section 3.5.4. For the list of interfaces and methods
supported by this interface, refer to Appendix A: Full IDL (section 6).

3.6.1 Abstract Data Model

This section describes a conceptual model that an implementation can maintain to participate in this
protocol. The described organization is provided to facilitate the explanation of protocol behavior. This

document does not mandate that implementations adhere to this model, as long as their external
behavior is consistent with that described in this document.

The client is not required to maintain any information during this protocol.

3.6.2 Timers

No protocol timers are required beyond those used internally by the RPC method to implement
resiliency to network outages, as specified in [MS-RPCE].

3.6.3 Initialization

A client MUST initialize by creating an RPC binding handle to one of the interfaces. For more
information and a description of how to get a client-side RPC binding handle for an interface, see [MS-
DCOM].

No additional initialization is required. The client can call the method of the interfaces immediately
after binding.

3.6.4 Message Processing Events and Sequencing Rules

The client does not maintain any state. It MUST send to the server the command that is issued by the
application. All error codes are returned directly to the application.

3.6.5 Timer Events

None.

3.6.6 Other Local Events

None.

432 / 547

[MS-RRASM-Diff] - v20210407
Routing and Remote Access Server (RRAS) Management Protocol
Copyright © 2021 Microsoft Corporation
Release: April 7, 2021

4 Protocol Examples

4.1 (Updated Section) Querying Server Configuration Information

This example illustrates the use of the RPC methods defined in this specification. The methods are

used to query the configuration of the RRAS server when there are 128 ports each of PPTP, L2TP, and
SSTP.<352>. The RRAS server is configured for both routing and remote access.

The client calls the RPC method RMprAdminServerGetInfo (section 3.1.4.1) with the following
parameters:

▪ The DIM_HANDLE (section 2.2.1.1.6) that the client obtains during initialization (section 3.1.3).

▪ The level of information required. In this example, if the client specifies level 2, it will get the

maximum information.

▪ The pointer to DIM_INFORMATION_CONTAINER (section 2.2.1.2.1) (pInfoStruct) into which the

server configuration information would be passed back by the RRAS server.

When the client calls the RPC method as previously described, it returns ERROR_SUCCESS.
Additionally, the following parameter values are updated:

▪ The dwBufferSize in the pointer to DIM_INFORMATION_CONTAINER (pInfoStruct) will contain
the size of information being passed; in this case, it will be the size of

MPR_SERVER_2 (section 2.2.1.2.64).63).

▪ The pBuffer in the pointer to DIM_INFORMATION_CONTAINER (pInfoStruct) will contain the
pointer to a buffer that contains MPR_SERVER_2.

▪ The dwNumPptpPorts in MPR_SERVER_2 will contain 128, the number of PPTP ports configured
on the RRAS server.

▪ The dwPptpPortFlags in MPR_SERVER_2 will contain 0x00000003 because both routing and

remote access are configured.

▪ The dwNumL2tpPorts in MPR_SERVER_2 will contain 128, the number of L2TP ports configured
on the RRAS server.

▪ The dwL2tpPortFlags in MPR_SERVER_2 will contain 0x00000003 because both routing and
remote access are configured.

▪ The dwNumSstpPorts in MPR_SERVER_2 will contain 128, the number of SSTP ports configured
on the RRAS server.

▪ The dwSstpPortFlags in MPR_SERVER_2 will contain 0x00000003 because both routing and
remote access are configured.

The client frees the buffer pointed to by pBuffer using midl_user_free.

4.2 (Updated Section) Disconnecting a Particular User Connection

This example illustrates the use of the RPC methods defined in this specification to enumerate a
connection on the RRAS server. This example shows a Windows Server 2008 operating system server
when 10 remote access connections are active and one of the clients (foo) has connected from a
multilink (2-port) machine that is compliant with the polices on the server [MS-RNAP]. The connection
of foo is enumerated and all the ports (2) of that connection are disconnected.

The client calls the RPC method RRasAdminConnectionEnum (section 3.1.4.2) with the following
parameters:

433 / 547

[MS-RRASM-Diff] - v20210407
Routing and Remote Access Server (RRAS) Management Protocol
Copyright © 2021 Microsoft Corporation
Release: April 7, 2021

▪ The DIM_HANDLE (section 2.2.1.1.6) that the client obtains during initialization (section 3.1.3).

▪ The level of information required. In this example, the RRAS server supports level 3.<354>

▪ The pointer to DIM_INFORMATION_CONTAINER (section 2.2.1.2.1) (pInfoStruct) that the RRAS
server uses to pass the information.

▪ The dwPreferedMaximumLength is set to -1, so that the buffer returned is large enough to hold all
available information.

▪ The lpdwResumeHandle parameter is zero (0) because this is the first call.

When the client calls the RPC method as previously described, the RRAS server returns
ERROR_SUCCESS. Additionally, the following parameter values are updated:

▪ The dwBufferSize in the pointer to DIM_INFORMATION_CONTAINER (pInfoStruct) will
contain the size of information being passed; in this case, it will be 10 times the size of

RASI_CONNECTION_3 (section 2.2.1.2.81).80).

▪ The lpdwEntriesRead and lpdwTotalEntries will point to DWORD, which has a value of 10.

▪ The pBuffer in the pointer to DIM_INFORMATION_CONTAINER (pInfoStruct) will contain a
pointer to a 10-element array of RASI_CONNECTION_3.

▪ The dwVersion in RASI_CONNECTION_3 will be 1.

▪ The dwSize in each instance of RASI_CONNECTION_3 will be the size of

RASI_CONNECTION_3 in bytes.

▪ The dwConnection in RASI_CONNECTION_3 will be a unique handle to identify the connection.

▪ The wszUserName in one of the 10 instances of RASI_CONNECTION_3 will be "foo".

▪ The dwInterfaceType in RASI_CONNECTION_3 will be ROUTER_IF_TYPE_CLIENT.

▪ The guid in RASI_CONNECTION_3 will be a unique GUID to identify a connection.

▪ The PppInfo3 RASI_CONNECTION_3 will contain the PPP information of the connection.

▪ The rasQuarState in RASI_CONNECTION_3 will be RAS_QUAR_STATE_NORMAL because the

client is healthy.

▪ The timer in RASI_CONNECTION_3 will not be valid because the client is healthy.

The client then stores the dwConnection in RASI_CONNECTION_3, which has the wszUserName
"foo" in a local variable hRasConnection.

The client frees the buffer pointed to by pBuffer.

 The client calls the RPC method RRasAdminPortEnum (section 3.1.4.5) with the following parameters:

▪ The DIM_HANDLE is the same handle that the client obtains earlier during initialization.

▪ The dwLevel is set to 0.

▪ The hRasConnection is the handle that the client obtained in dwConnection in
RASI_CONNECTION_3 during the previous call RRasAdminConnectionEnum.

▪ The pointer to DIM_INFORMATION_CONTAINER (pInfoStruct) that the RRAS servers uses to
pass the information.

434 / 547

[MS-RRASM-Diff] - v20210407
Routing and Remote Access Server (RRAS) Management Protocol
Copyright © 2021 Microsoft Corporation
Release: April 7, 2021

▪ The dwPreferedMaximumLength is set to -1, so that the buffer returned is large enough to hold all
available information.

▪ The lpdwResumeHandle parameter is zero (0) because all the information required is present.

When the client calls the RPC method as previously described, the RRAS server returns

ERROR_SUCCESS. Additionally, the following parameter values are updated:

▪ The dwBufferSize in the pointer to DIM_INFORMATION_CONTAINER (pInfoStruct) will
contain the size of information being passed; in this case, it will be the size of
RASI_PORT_0 (section 2.2.1.2.76).75).

▪ The pBuffer in the pointer to DIM_INFORMATION_CONTAINER (pInfoStruct) will contain a
pointer to RASI_PORT_0.

▪ The lpdwEntriesRead will point to a DWORD that contains 2.

The client stores the dwPort in each instance of RASI_PORT_0 into a local variable array hPort[2].

The client frees the buffer pointed to by pBuffer.

The client then calls the RPC method RRasAdminPortDisconnect (section 3.1.4.9) twice with the
following parameters:

▪ The DIM_HANDLE is the same handle that the client obtains earlier during initialization.

▪ The hPort[n] handle is obtained previously by calling RRasAdminPortEnum (n= 0,1).

When the client calls the RPC method as described in this section, the method returns
ERROR_SUCCESS, and the user connection is disconnected.

4.3 (Updated Section) Creating a Demand Dial Interface on RRAS with Filters

This example illustrates the use of the RPC methods defined in this specification to create a one-way

demand-dial interface named "dd1" on the RRAS on Windows Server 2008. Then, IPv4 filtering is

enabled on the demand-dial interface so that the demand-dial is triggered whenever packets with the
source address 1.1.1.1 reach the RRAS server.

The client updates the phone book file router.pbk under the file path C:\Windows\System32 to
comprise the phonebook entry for dd1, see section 4.10 for details.

The client calls the RPC method RRouterInterfaceCreate (section 3.1.4.13) with the following

parameters:

▪ The DIM_HANDLE (section 2.2.1.1.6) that the client obtains during initialization (section 3.1.3).

▪ The level of information required. In this example, the client specifies level 0.

▪ The pointer to DIM_INFORMATION_CONTAINER (section 2.2.1.2.1) (pInfoStruct) that the RRAS
server uses to pass the information.

▪ The dwBufferSize in the pointer to DIM_INFORMATION_CONTAINER (pInfoStruct) will
contain the size of information being passed; in this case, it will be the size of

MPRI_INTERFACE_0 (section 2.2.1.2.81).

▪ The pBuffer in the pointer to DIM_INFORMATION_CONTAINER (pInfoStruct) will contain a
pointer to MPRI_INTERFACE_0.

▪ The wszInterfaceName in the pointer to MPRI_INTERFACE_0 is set to L"dd1".

435 / 547

[MS-RRASM-Diff] - v20210407
Routing and Remote Access Server (RRAS) Management Protocol
Copyright © 2021 Microsoft Corporation
Release: April 7, 2021

▪ The dwIfType in the pointer to MPRI_INTERFACE_0 is set to
ROUTER_IF_TYPE_HOME_ROUTER.

When the client calls the RPC method as previously described, it returns ERROR_SUCCESS.
Additionally, the following parameter value is updated:

▪ The hInterface specifies a unique identifier of the newly created interface.

The client stores the hInterface returned in MPRI_INTERFACE_0 into a local variable hInterface.

The client frees the buffer pointed to by pBuffer.

The client then calls the RPC method RRouterInterfaceTransportAdd (section 3.1.4.18) to add with the
following parameters:

▪ The DIM_HANDLE that the client obtains during initialization (section 3.1.3).

▪ The pointer to DIM_INTERFACE_CONTAINER (pInfoStruct) that the RRAS server uses to pass the

information.

▪ The hInterface is the handle to the interface stored locally.

▪ The dwTransportId will be set to 0x00000021 since IPv4 filters are being added.

▪ The pointer to DIM_INTERFACE_CONTAINER (pInfoStruct) that the RRAS server uses to pass the
information.

▪ The fGetInterfaceInfo in the pointer to DIM_INTERFACE_CONTAINER (pInfoStruct) is set to

0 because the client is setting information.

▪ The dwInterfaceInfoSize in the pointer to DIM_INTERFACE_CONTAINER (pInfoStruct) is set
to the size of RTR_INFO_BLOCK_HEADER (section 2.2.1.2.3) with one
RTR_TOC_ENTRY (section 2.2.1.2.4) and have the quad memory aligned data for MPR_FILTER_0
0x34.

▪ The pInterfaceInfo in the pointer to DIM_INTERFACE_CONTAINER (pInfoStruct) is set to
RTR_INFO_BLOCK_HEADER.

▪ The Version in RTR_INFO_BLOCK_HEADER is set to 1.

▪ The Size is set to 32.

▪ The TocEntriesCount is set to 1.

▪ The InfoType of RTR_TOC_ENTRY is set to IP_FILTER_ENABLE_INFO (0xFFFF0015).

▪ The InfoSize in RTR_TOC_ENTRY is set to 20 (TOC entry 16 byte + 4 bytes mprfilter).

▪ The Count in RTR_TOC_ENTRY is set to 1.

▪ The Offset is 16 and points to MPR_FILTER_0 (section 2.2.1.2.90).89).

▪ The fEnable in MPR_FILTER_0 is set to 0x00000001 to enable filtering on the RRAS server.

Having enabled filtering on the interface, the client then adds filters on the demand-dial interface. In
this example, filtering is enabled on all packets with the source address 1.1.1.1.

The client then calls the RPC method RRouterInterfaceTransportAdd with the following
parameters:

▪ The DIM_HANDLE that the client obtains during initialization (section 3.1.3).

436 / 547

[MS-RRASM-Diff] - v20210407
Routing and Remote Access Server (RRAS) Management Protocol
Copyright © 2021 Microsoft Corporation
Release: April 7, 2021

▪ The pointer to DIM_INFORMATION_CONTAINER (pInfoStruct) that the RRAS server uses to
pass.

▪ The hInterface is the handle to the interface stored locally.

▪ The dwTransportId will be set to 0x00000021 for IPv4.

▪ The pointer to DIM_INFORMATION_CONTAINER (pInfoStruct) that the RRAS server uses to
pass.

▪ The fGetInterfaceInfo in the pointer to DIM_INFORMATION_CONTAINER (pInfoStruct) is set
to 0 because the client is setting information.

▪ The dwInterfaceInfoSize in the pointer to DIM_INFORMATION_CONTAINER (pInfoStruct) is
set to 68 (filter descriptor 40 bytes + TOC entry 16 bytes + RTR_INFO_BLOCK_HEADER -Toc
12 bytes).

▪ The pInterfaceInfo in the pointer to DIM_INFORMATION_CONTAINER (pInfoStruct) is set to
RTR_INFO_BLOCK_HEADER.

▪ The Version in RTR_INFO_BLOCK_HEADER is set to 1.

▪ The Size is set to 72 (filter descriptor 40 bytes + TOC entry 32 bytes).

▪ The TocEntriesCount is set to 1.

▪ The InfoType of RTR_TOC_ENTRY is set to 0xFFFF0009.

▪ The InfoSize in RTR_TOC_ENTRY is set to 40 (the size of the filter descriptor).

▪ The Count in RTR_TOC_ENTRY is set to 1.

▪ The Offset is 32 and points to FILTER_DESCRIPTOR (section 2.2.1.2.5).

▪ The dwVersion in FILTER_DESCRIPTOR is set to 0x00000001.

▪ The dwNumFilters in FILTER_DESCRIPTOR is set to 0x00000001.

▪ The faDefaultAction in FILTER_DESCRIPTOR is set to 0x00000000.

▪ The fiFilter contains FILTER_INFO (section 2.2.1.2.6).

▪ The dwSrcAddr in FILTER_INFO is set to 0x01010101 and the rest of the fields in FILTER_INFO
are set to 0.

4.4 (Updated Section) Enumerating Interfaces and Connecting "dd1"

This example illustrates the use of the RPC methods defined in this specification to enumerate
interfaces on the RRAS server that has three demand-dial interfaces and connect dd1.

The client calls the RPC method RRouterInterfaceEnum (section 3.1.4.21) with the following

parameters:

▪ The DIM_HANDLE (section 2.2.1.1.6) that the client obtains during initialization (section 3.1.3).

▪ The level of information required is set to zero (0).

▪ The pointer to DIM_INFORMATION_CONTAINER (section 2.2.1.2.1) (pInfoStruct) into which the

information is passed by the RRAS server.

437 / 547

[MS-RRASM-Diff] - v20210407
Routing and Remote Access Server (RRAS) Management Protocol
Copyright © 2021 Microsoft Corporation
Release: April 7, 2021

▪ The dwPreferedMaximumLength is set to -1, so that the buffer returned is large enough to hold all
available information.

▪ The lpdwResumeHandle parameter is zero (0) because this is the first call.

When the client calls the RPC method as previously described, the RRAS server returns

ERROR_SUCCESS. Additionally, the following parameter values are updated:

▪ The dwBufferSize in the pointer to DIM_INFORMATION_CONTAINER (pInfoStruct) will
contain the size of information being passed. In this case, it will be three times the size of
MPRI_INTERFACE_0 (section 2.2.1.2.82).81).

▪ The pBuffer in the pointer to DIM_INFORMATION_CONTAINER (pInfoStruct) will contain the
pointer to the three-element array of MPRI_INTERFACE_0.

▪ The lpdwEntriesRead and lpdwTotalEntries will point to the DWORD whose value is 3. The client

will attempt to match wszInterfaceName of each of the entries of MPRI_INTERFACE_0.

It will store the dwInterface of the matched MPRI_INTERFACE_0 in the local variable hInterface.

After ensuring that the fEnabled field is 1, the client calls RRouterInterfaceConnect (section 3.1.4.22)
with the following parameters:

▪ The DIM_HANDLE that the client obtains during initialization (section 3.1.3).

▪ The hInterface that the client has stored locally.

▪ The hEvent is set to NULL and fBlocking is set to 1 so that the call is blocked until the connection
attempt has completed.

When the client calls the RPC method as previously described, the RRAS server returns
ERROR_SUCCESS after the connection is successful.

4.5 Querying Interface Status Through MIB

This example illustrates the use of the RPC methods defined in this specification to get the status
information for an interface on the RRAS server on which no multicast protocol is running.

The client calls the RPC method RMIBEntryGet (section 3.1.4.30) with the following parameters:

▪ The DIM_HANDLE (section 2.2.1.1.6) that the client obtains during initialization (section 3.1.3).

▪ The dwPid specifies the protocol ID that exported the variable (0x00000002) because the status is

being requested.

▪ The dwRoutingPid specifies the routing protocol that exported the variable (10000) IP.

When the client calls the RPC method as previously described, the RRAS server returns
ERROR_SUCCESS. Additionally, the following parameter values are updated:

▪ The pInfoStuct pointer to an opaque data structure
DIM_MIB_ENTRY_CONTAINER (section 2.2.1.2.19).

▪ The dwMibOutEntrySize in the pointer to DIM_MIB_ENTRY_CONTAINER.

▪ The pMibOutEntry in the pointer to DIM_MIB_ENTRY_CONTAINER will point to
MIB_OPAQUE_INFO (section 2.2.1.2.52).

▪ The dwId in MIB_OPAQUE_INFO will be set to 0x00000002.

▪ The dwIfIndex in MIB_IFSTATUS (section 2.2.1.2.30). The index that identifies the interface.

438 / 547

[MS-RRASM-Diff] - v20210407
Routing and Remote Access Server (RRAS) Management Protocol
Copyright © 2021 Microsoft Corporation
Release: April 7, 2021

▪ The dwAdminStatus will indicate the administrative status as UP.

▪ The dwOperationalStatus will indicate the operational status as UP.

▪ The bMHbeatActive will be zero (0).

4.6 (Updated Section) Updating the Connection Endpoint of an IKEv2-Based

Connection

This example illustrates the use of the RPC methods defined in this specification to enumerate a
connection on the RRAS server. In this example we consider a Windows Server 2008 R2 operating

system when 10 remote access connections are active and one of the clients (user nameusername =
joe) has connected using the IKEv2 from a machine that is compliant with the polices on the server
[MS-RNAP]. The connection of joe is enumerated and the tunnel endpoint is updated to a different
interface identified by interface index.

The client calls the RPC method RRasAdminConnectionEnumEx (section 3.1.4.46) with the following
parameters:

▪ The DIM_HANDLE (section 2.2.1.1.6) that the client obtains during initialization (section 3.1.3).

▪ The objectHeader contains the pointer to MPRAPI_OBJECT_HEADER_IDL (section 2.2.1.2.129),
revision is set to MPRAPI_RAS_CONNECTION_OBJECT_REVISION_1, type is set to
MPRAPI_OBJECT_TYPE_RAS_CONNECTION_OBJECT, and size is set to
sizeof(MPRAPI_OBJECT_HEADER_IDL).

▪ The dwPreferedMaximumLength is set to -1, so that the buffer returned is large enough to hold all
available information.

▪ The lpdwResumeHandle parameter is zero (0) as this is the first call.

When the client calls the RPC method as described above, the RRAS server returns ERROR_SUCCESS
and additionally the following parameter values are updated:

▪ The lpdwEntriesRead and lpdNumTotalElements will point to DWORD whose value is 10.

▪ The pRasConnections will contain pointer to 10 element array RAS_CONNECTION_EX_IDL.

▪ The hConnection in RAS_CONNECTION_EX_IDL will be a unique handle to identify the connection.

▪ The wszUserName in one of the 10 instances of RAS_CONNECTION_EX_IDL will be "joe".

▪ The dwInterfaceType in RAS_CONNECTION_EX_IDL will be ROUTER_IF_TYPE_CLIENT.

▪ The guid in RAS_CONNECTION_EX_IDL will be a unique GUID to identify a connection.

▪ The ProjectionInfo in RAS_CONNECTION_EX_IDL will contain the IKEv2 information of the
connection.

▪ The rasQuarState in RAS_CONNECTION_EX_IDL will be RAS_QUAR_STATE_NORMAL as the
client is healthy.

The client then stores the hConnection in RAS_CONNECTION_EX_IDL whose wszUserName is "joe"
in a local variable hRasConnection.

The client frees the buffer pointed to by pRasConections.

The client calls the RPC method RRasAdminUpdateConnection (section 3.1.4.49) with the following
parameters:

▪ The DIM_HANDLE that the client obtains during initialization (section 3.1.3).

439 / 547

[MS-RRASM-Diff] - v20210407
Routing and Remote Access Server (RRAS) Management Protocol
Copyright © 2021 Microsoft Corporation
Release: April 7, 2021

▪ hDimConnection contains the previously obtained hConnection.

▪ The pointer to RAS_UPDATE_CONNECTION_IDL (section 2.2.1.2.148) (pServerConfig) which

contains the interface index of the local interface to which the connection has to be switched.

When the client calls the RPC method as described above, the RRAS server returns ERROR_SUCCESS

and the IKEv2 connection is switched to the new interface specified in the interface index.

4.7 Retrieving the Rasrpc Server Version Info

This example illustrates the use of the Rasrpc Interface method RasRpcGetVersion as defined in this

specification. The method is used to query the version information of the Rasrpc Server when the
version is 6.

The client calls the RPC method RasRpcGetVersion (section 3.3.4.7) with the following parameters:

▪ The handle to the Rasrpc Server, where the call is to be executed that the client obtains during
initialization (section 3.3.3)

▪ The pointer to type DWORD, which on successful function call return contains the version of the
Rasrpc server.

When the client calls the RPC method as previously described, it returns ERROR_SUCCESS. The
pdwVersion points to a DWORD that contains 6 as the remote Rasrpc server version.

4.8 Retrieving Device Configuration Information

This example illustrates the use of the Rasrpc Interface method RasRpcSubmitRequest with

ReqTypes REQTYPE_GETDEVICECONFIGINFO as defined in this specification. The method is used to
query all the devices configured on the RRAS server when there are 7 devices on the RRAS - 2 Modem
devices, 4 tunnel devices (one each for PPTP, L2TP, SSTP and IKEv2) and 1 PPPoE device.

The client calls the RPC method RasRpcSubmitRequest (section 3.3.4.5) with the following

parameters:

▪ The handle to the Rasrpc Server where the call is to be executed that the client obtains during

initialization (section 3.3.3).

▪ pReqBuffer parameter is updated as follows:

▪ The pReqBuffer buffer is allocated the size of the sum of the size of RequestBuffer and 5000.

▪ pReqBuffer.RB_PCBIndex is set to zero (0).

▪ pReqBuffer.RB_Reqtype is set to 95 (REQTYPE_GETDEVICECONFIGINFO)

▪ pReqBuffer.RB_Dummy is set to the size of ULONG.

▪ pReqBuffer.Done is set to zero (0).

▪ pReqBuffer.Alignment is set to zero (0).

▪ pReqBuffer.RB_Buffer is interpreted as a DeviceConfigInfo structure and following value
for DeviceConfigInfo are set:

▪ DeviceConfigInfo.dwVersion is set to the version of Rasrpc Server. The version
information can be retrieved using RasRpcGetVersion method (section 3.3.4.7)

▪ DeviceConfigInfo.cbBuffer is set to zero (0).

440 / 547

[MS-RRASM-Diff] - v20210407
Routing and Remote Access Server (RRAS) Management Protocol
Copyright © 2021 Microsoft Corporation
Release: April 7, 2021

▪ The dwcbBufSize is set to the size of pReqBuffer.

When the client calls the RPC method as previously described, server returns ERROR_SUCCESS.

Additionally, the DeviceConfigInfo structure as pointed by pReqBuffer.RB_Buffer is updated as
follows:

▪ DeviceConfigInfo.cEntries will contain 7 as the number of device entries present on the Rasrpc
server.

▪ DeviceConfigInfo.cbBuffer will contain 3304 as the size of DeviceConfigInfo.abdata buffer
needed to contain all the device information.

▪ DeviceConfigInfo.dwVersion will contain 6 as the version of the Rasrpc server.

If DeviceConfigInfo.cbBuffer returned size is greater than the passed-in
DeviceConfigInfo.cbBuffer size, it implies that the passed-in size was not large enough to hold all

of the devices information. In that case, the client calls the RasRpcSubmitRequest method again
with DeviceConfigInfo.cbBuffer set to the returned value of DeviceConfigInfo.cbBuffer in the
first call.

If DeviceConfigInfo.cbBuffer returned size is less than or equal to the passed in
DeviceConfigInfo.cbBuffer size, DeviceConfigInfo.abdata contains an array of
RAS_DEVICE_INFO structure that contains information for each device on the server.

The client will call the RasRpcSubmitRequest method again with DeviceConfigInfo.cbBuffer set
to 3304 and all other parameters being same.

When the client calls the RPC method as described, the server returns ERROR_SUCCESS. Additionally,
the DeviceConfigInfo structure as pointed by pReqBuffer.RB_Buffer is updated as follows by the
server:

▪ DeviceConfigInfo.cEntries will contain 7 as the number of device entries present on the Rasrpc
server.

▪ DeviceConfigInfo.cbBuffer will contain 3304 as the size of DeviceConfigInfo.abdata buffer

needed to contain all the device information.

▪ DeviceConfigInfo.dwVersion will contain 6 as the version of the Rasrpc server.

▪ DeviceConfigInfo.abdata points to the array of RAS_DEVICE_INFO structures that contains
the device information.

The client frees the memory allocated to the pReqBuffer structure.

4.9 Retrieving Specific Port Information

This example illustrates the use of the Rasrpc Interface method RasRpcSubmitRequest with
ReqTypes REQTYPE_GETINFO as defined in this specification. The method is used to query the
information of a specific port with port identifier 2 which is a SSTP port.

The client calls the RPC method RasRpcSubmitRequest (section 3.3.4.5) with the following
parameters:

▪ The handle to the Rasrpc Server where the call is to be executed that the client obtains during
initialization (section 3.3.3)

▪ pReqBuffer parameter is updated as follows:

▪ The pReqBuffer buffer is allocated the size of the sum of the size of RequestBuffer and 5000.

441 / 547

[MS-RRASM-Diff] - v20210407
Routing and Remote Access Server (RRAS) Management Protocol
Copyright © 2021 Microsoft Corporation
Release: April 7, 2021

▪ pReqBuffer.RB_PCBIndex is set to 2. (Port identifier information for all the available ports
on the server can be retrieved using the RasRpcSubmitRequest with ReqTypes as

REQTYPE_PORTENUM. The RASMAN_PORT_32.P_Port contains the unique port identier for the
port.)

▪ pReqBuffer.RB_Reqtype is set to 22 (REQTYPE_GETINFO)

▪ pReqBuffer.RB_Dummy is set to the size of ULONG.

▪ pReqBuffer.Done is set to zero (0).

▪ pReqBuffer.Alignment is set to zero (0).

▪ The dwcbBufSize is set to the size of pReqBuffer.

When the client calls the RPC method as previously described, the server returns ERROR_SUCCESS.
pReqBuffer.RB_Buffer is interpreted as Info structure and contains the port information of the port

with port ID 2.

4.10 Sample Phonebook File for a Demand-dial Connection

This example illustrates the settings associated with a Demand-Dial connection "dd1". The description

for each key/value pair is given in the following table. The format of the phonebook file is defined in
section 2.2.2. The phonebook entry for "dd1" is stored inside the file router.pbk present under the
path %windir%\system32\ras on the RRAS server. The following table describes the sample
phonebook settings associated with "dd1". The first column in the following table is the sample
phonebook file representing the settings for "dd1" connection. The second column is the description of
the values for all of the settings.

Phonebook file Meaning

[dd1]\CR\LF Name of the Demand-Dial connection is "dd1"

Encoding=1\CR\LF Encoding format is UTF-8

Type=1\CR\LF Type of connection is dial-up

AutoLogon=0\ CR\LF Ignored

UseRASCredentials=0\CR\LF Ignored

LowDateTime=-300171584\CR\LF Ignored

HighDateTime=30015653\CR\LF Ignored

DialParamsUID=700993612\CR\LF A unique number

Guid=ECFE1B3644EBB744A7562E43091795ED\CR\LF A unique identifier of the Demand-Dial connection
"dd1"

BaseProtocol=1\CR\LF Ignored

VpnStrategy=0\CR\LF Ignored for Modem connection type

ExcludedProtocols=0\CR\LF Negotiate IPv4 and IPv6

LcpExtensions=1\CR\LF Enable LCP extensions

DataEncryption=8\CR\LF Request data encryption

SwCompression=1\CR\LF Enable software compression

442 / 547

[MS-RRASM-Diff] - v20210407
Routing and Remote Access Server (RRAS) Management Protocol
Copyright © 2021 Microsoft Corporation
Release: April 7, 2021

Phonebook file Meaning

NegotiateMultilinkAlways=0\CR\LF Don't negotiate multilink

SkipNwcWarning=0\CR\LF Ignored

SkipDownLevelDialog=0\CR\LF Ignored

SkipDoubleDialDialog=0\CR\LF Ignored

DialMode=1\CR\LF Dial all Modems

DialPercent=75\CR\LF Ignored since DialMode is 1

DialSeconds=120\CR\LF Ignored since DialMode is 1

HangUpPercent=10\CR\LF Ignored since DialMode is 1

HangUpSeconds=120\CR\LF Ignored since DialMode is 1

OverridePref=32\CR\LF Read CallbackMode from this entry

RedialAttempts=0\CR\LF Redial attempts is set to 0

RedialSeconds=60\CR\LF Redial seconds is set to 60

IdleDisconnectSeconds=300\CR\LF Idle disconnect seconds is set to 300

RedialOnLinkFailure=0\CR\LF Do not redial the connection on link failure

CallbackMode=0\CR\LF No callback

CustomDialDll=\CR\LF The key does not have a value

CustomDialFunc=\CR\LF Ignored

CustomRRASDialDll=\CR\LF Ignored

ForceSecureCompartment=0\CR\LF Ignored

DisableIKENameEkuCheck=0\CR\LF Ignored. This is not applicable since Type is "1".

AuthenticateServer=0\CR\LF Server authentication is disabled

ShareMsFilePrint=0\CR\LF NetBT is disabled

BindMsNetClient=0\CR\LF Microsoft Net client is disabled

SharedPhoneNumbers=1\CR\LF Phone numbers are shared for all the subentries

GlobalDeviceSettings=0\CR\LF Do not use the device settings present in the
phonebook file

PrerequisiteEntry=\CR\LF Ignored

PrerequisitePbk=\CR\LF Ignored

PreferredPort=COM3\CR\LF Preferred port name is "COM3"

PreferredDevice= Compaq 56K USB External Fax Modem
\CR\LF

Preferred device name is "Compaq 56K USB External
Fax Modem"

PreferredBps=115200\CR\LF Maximum transfer speed is 115200 bits per second
for preferred modem

443 / 547

[MS-RRASM-Diff] - v20210407
Routing and Remote Access Server (RRAS) Management Protocol
Copyright © 2021 Microsoft Corporation
Release: April 7, 2021

Phonebook file Meaning

PreferredHwFlow=1\CR\LF Hardware flow control is enabled for preferred modem

PreferredProtocol=1\CR\LF Cyclic Redundancy Check (CRC) is enabled for
preferred modem

PreferredCompression=1\CR\LF Enable hardware compression for preferred modem

PreferredSpeaker=1\CR\LF Enable modem speaker for preferred modem

PreferredMdmProtocol=0\CR\LF Ignored

PreviewUserPw=1\CR\LF Ignored

PreviewDomain=1\CR\LF Ignored

PreviewPhoneNumber=0\CR\LF Ignored

ShowDialingProgress=0\CR\LF Ignored

ShowMonitorIconInTaskBar=1\CR\LF Ignored

CustomAuthKey=0\CR\LF Ignored since AuthRestrictions not configured to
negotiate EAP

AuthRestrictions=544\CR\LF Negotiate authentication protocols Challenge
Handshake Protocol (CHAP) and Microsoft Challenge
Handshake Protocol Version 2 (MSCHAPv2)

IpPrioritizeRemote=1\CR\LF Ignored

IpInterfaceMetric=0\CR\LF Ignored

IpHeaderCompression=1\CR\LF Enable IPv4 header compression

IpAddress=0.0.0.0\CR\LF Ignored since IpAssign is 1

IpDnsAddress=0.0.0.0\CR\LF Ignored since IpNameAssign is 3

IpDns2Address=0.0.0.0\CR\LF Ignored since IpNameAssign is 3

IpWinsAddress=0.0.0.0\CR\LF Ignored since IpNameAssign is 3

IpWins2Address=0.0.0.0\CR\LF Ignored since IpNameAssign is 3

IpAssign=1\CR\LF RRAS assigns the IPv4 address

IpNameAssign=3\CR\LF RRAS assigns the IPv4 DNS and WINS address

IpDnsFlags=0\CR\LF Do not register the client IPv4 address with DNS

IpNBTFlags=0\CR\LF Disable NetBT

TcpWindowSize=0\CR\LF Ignored

UseFlags=2\CR\LF Ignored

IpSecFlags=0\CR\LF Ignored since Type is 1.

IpDnsSuffix=\CR\LF Ignored

Ipv6PrioritizeRemote=1\CR\LF Ignored

Ipv6InterfaceMetric=0\CR\LF Ignored

444 / 547

[MS-RRASM-Diff] - v20210407
Routing and Remote Access Server (RRAS) Management Protocol
Copyright © 2021 Microsoft Corporation
Release: April 7, 2021

Phonebook file Meaning

Ipv6NameAssign=1\CR\LF RRAS assigns the IPv6 DNS address

Ipv6DnsAddress=::\CR\LF Ignored since Ipv6NameAssign is 1

Ipv6Dns2Address=::\CR\LF Ignored since Ipv6NameAssign is 1

Ipv6InterfaceId=0000000000000000\CR\LF Ignored

NETCOMPONENTS=\CR\LF Ignored

ms_msclient=0\CR\LF Ignored

ms_server=0\CR\LF Ignored

MEDIA=serial\CR\LF Media name is serial

Port=COM3\CR\LF Communication port name is COM3

Device=Compaq 56K USB External Fax Modem\CR\LF Device name is "Compaq 56K USB External Fax
Modem"

ConnectBPS=115200\CR\LF Maximum transfer speed is 115200 bits per second

DEVICE=switch\CR\LF Device type is pre-connect switch

Terminal=1\CR\LF Display terminal window

DEVICE=modem\CR\LF Device type is modem

PhoneNumber=2006034\CR\LF Primary local phone number to dial is 2006034

AreaCode=\CR\LF Ignored as UseDialingRules is 0

CountryCode=91\CR\LF Ignored as UseDialingRules is 0

CountryID=91\CR\LF Ignored as UseDialingRules is 0

UseDialingRules=0\CR\LF Do not use the dialing rules

Comment=\CR\LF Ignored

FriendlyName=\CR\LF Ignored

PhoneNumber=2006035\CR\LF Alternate local phone number is 2006035

AreaCode=\CR\LF Ignored because UseDialingRules is 0

CountryCode=91\CR\LF Ignored as UseDialingRules is 0

CountryID=91\CR\LF Ignored as UseDialingRules is 0

UseDialingRules=0\CR\LF Do not use the dialing rules

Comment=\CR\LF Ignored

FriendlyName=\CR\LF Ignored

LastSelectedPhone=0\CR\LF Ignored

PromoteAlternates=0\CR\LF Do not promote alternate numbers

TryNextAlternateOnFail=1\CR\LF Try alternate number on failure of the primary
number

445 / 547

[MS-RRASM-Diff] - v20210407
Routing and Remote Access Server (RRAS) Management Protocol
Copyright © 2021 Microsoft Corporation
Release: April 7, 2021

Phonebook file Meaning

HwFlowControl=1\CR\LF Hardware flow control is enabled

Protocol=1\CR\LF Cyclic Redundancy Check (CRC) is enabled

Compression=1\CR\LF Enable hardware compression

Speaker=0\CR\LF Disable modem speaker

MdmProtocol=0\CR\LF Ignored

4.11 Registry Configuration

This section describes the sample registry settings for the various RRAS settings configured.

4.11.1 Transport Configuration

The following is a sample registry setting configuration for the IPv4 transport.

Key Name:
HKEY_LOCAL_MACHINE\SYSTEM\CurrentControlSet\services\RemoteAccess\RouterManagers\Ip

Name: ProtocolId

Type: REG_DWORD

Data: 0x21

Name: GlobalInfo

Type: REG_BINARY

Data:

 00000000 01 00 00 00 78 00 00 00 - 02 00 00 00 03 00 ff ff x.........ÿÿ
 00000010 08 00 00 00 01 00 00 00 - 30 00 00 00 06 00 ff ff 0.....ÿÿ
 00000020 34 00 00 00 01 00 00 00 - 38 00 00 00 00 00 00 00 4.......8.......
 00000030 00 00 00 00 01 00 00 00 - 06 00 00 00 02 00 00 00
 00000040 01 00 00 00 16 27 00 00 - 03 00 00 00 17 27 00 00 '.......'..
 00000050 05 00 00 00 12 27 00 00 - 07 00 00 00 03 00 00 00 '..........
 00000060 0a 00 00 00 08 00 00 00 - 78 00 00 00 00 00 00 00 x.......
 00000070 00 00 00 00 00 00 00 00 -

The GlobalInfo is the RTR_INFO_BLOCK_HEADER structure providing the following information:

GLOBAL_INFO: This specifies the transport configuration for IPv4 – specifically the filtering and

logging level.

bFilteringOn: FALSE

dwLoggingLevel: 0x00000001 – Log Errors only.

PRIORITY_INFO: This specifies the priority of the routes added through various methods. The
following is the information represented by the GlobalInfo blob. It is organized in terms of the route
type and the priority associated with it.

446 / 547

[MS-RRASM-Diff] - v20210407
Routing and Remote Access Server (RRAS) Management Protocol
Copyright © 2021 Microsoft Corporation
Release: April 7, 2021

▪ MIB_IPPROTO_LOCAL - 1

▪ MIB_IPPROTO_NT_STATIC - 3

▪ MIB_IPPROTO_NT_STATIC_NON_DOD - 5

▪ MIB_IPPROTO_NT_AUTOSTATIC - 7

▪ MIB_IPPROTO_NETMGMT - 10

▪ MIB_IPPROTO_RIP – 120

▪ SUB_PROTO_IP_BGP_EBGP – 20

▪ SUB_PROTO_IP_BGP_IBGP – 200

4.11.2 Interface Configuration

The following is a sample registry setting showing the IPv4 configuration for a demand-dial interface

with name RR2.

Key Name: HKEY_LOCAL_MACHINE\SYSTEM\CurrentControlSet\services\RemoteAccess\Interfaces\5

Name: InterfaceName

Type: REG_SZ

Data: RR2

Name: Type

Type: REG_DWORD

Data: 0x2

Name: Enabled

Type: REG_DWORD

Data: 0x1

Key Name:
HKEY_LOCAL_MACHINE\SYSTEM\CurrentControlSet\services\RemoteAccess\Interfaces\5\Ip

Name: ProtocolId

Type: REG_DWORD

Data: 0x21

Name: InterfaceInfo

Type: REG_BINARY

Data:

 00000000 01 00 00 00 fc 00 00 00 - 04 00 00 00 0a 00 ff ff ü.........ÿÿ
 00000010 8c 00 00 00 01 00 00 00 - 50 00 00 00 04 00 ff ff P.....ÿÿ
 00000020 04 00 00 00 01 00 00 00 - e0 00 00 00 07 00 ff ff à.....ÿÿ
 00000030 10 00 00 00 01 00 00 00 - e8 00 00 00 0d 00 ff ff è.....ÿÿ
 00000040 04 00 00 00 01 00 00 00 - f8 00 00 00 00 00 00 00 ø.......

447 / 547

[MS-RRASM-Diff] - v20210407
Routing and Remote Access Server (RRAS) Management Protocol
Copyright © 2021 Microsoft Corporation
Release: April 7, 2021

 00000050 00 00 00 00 00 00 00 00 - 00 00 00 00 00 00 00 00
 00000060 00 00 00 00 00 00 00 00 - 00 00 00 00 00 00 00 00
 00000070 00 00 00 00 00 00 00 00 - 00 00 00 00 00 00 00 00
 00000080 00 00 00 00 00 00 00 00 - 00 00 00 00 00 00 00 00
 00000090 00 00 00 00 00 00 00 00 - 00 00 00 00 00 00 00 00
 000000a0 00 00 00 00 00 00 00 00 - 00 00 00 00 00 00 00 00
 000000b0 00 00 00 00 00 00 00 00 - 00 00 00 00 00 00 00 00
 000000c0 00 00 00 00 00 00 00 00 - 00 00 00 00 00 00 00 00
 000000d0 00 00 00 00 0a 00 00 00 - 00 00 00 00 00 00 00 00
 000000e0 01 00 00 00 00 00 00 00 - 58 02 a4 01 08 07 00 00 X.¤.....
 000000f0 00 00 00 00 00 00 00 00 - 00 00 00 00

The InterfaceInfo is the RTR_INFO_BLOCK_HEADER specifying the following information:

MCAST_HBEAT_INFO: This specifies the multicast heartbeat configuration for the interface. In the
preceding configuration, the multicast heartbeat is disabled.

bActive: FALSE

The rest of the members of the structure MCAST_HBEAT_INFO are not applicable since it is not active.

INTERFACE_STATUS_INFO: This specifies the administrative status of the interface. In the
preceding setting, it is set to IF_ADMIN_STATUS_UP.

dwAdminStatus: IF_ADMIN_STATUS_UP

RTR_DISC_INFO: This specifies the router discovery configuration for the interface. The
advertisement is disabled in the preceding interface configuration.

wMaxAdvtInterval: 600

wMinAdvtInterval: 420

wAdvtLifetime: 1800

bAdvertise: FALSE

lPrefLevel: 0

IFFILTER_INFO: This specifies the filter setting for the IP fragments. The specified configuration has
the fragment filtering disabled.

bEnableFragChk: FALSE

4.11.3 Ports Configuration

The following is a sample registry configuration for an SSTP device. The following registry key has the
SSTP configured for remote access connections with 128 ports.

Key Name: HKEY_LOCAL_MACHINE\SYSTEM\CurrentControlSet\Control\Class\{4D36E972-E325-
11CE-BFC1-08002BE10318}\0000

Name: ComponentId

Type: REG_SZ

Data: ms_sstpminiport

Name: DriverDesc

Type: REG_SZ

448 / 547

[MS-RRASM-Diff] - v20210407
Routing and Remote Access Server (RRAS) Management Protocol
Copyright © 2021 Microsoft Corporation
Release: April 7, 2021

Data: WAN Miniport (SSTP)

Name: EnableForRas

Type: REG_DWORD

Data: 0x1

Name: EnableForRouting

Type: REG_DWORD

Data: 0

Name: EnableForOutboundRouting

Type: REG_DWORD

Data: 0

Name: MaxWanEndpoints

Type: REG_DWORD

Data: 0x3E8

Name: WanEndpoints

Type: REG_DWORD

Data: 0x80

4.11.4 Other Miscellaneous Configuration Information

The following registry value specifies the RRAS mode configured.

Key Name: HKEY_LOCAL_MACHINE\SYSTEM\CurrentControlSet\services\RemoteAccess\Parameters

Name: RouterType

Type: REG_DWORD

Data: 0x1E

The previous value corresponds to the following enumeration flags.

ROUTER_TYPE_LAN

ROUTER_TYPE_WAN

IPV6_ROUTER_TYPE_RAS

IPV6_ROUTER_TYPE_LAN

This specifies that for IPv4 LAN routing and demand-dial is enabled and remote access connections are
not enabled. For IPv6, Remote Access connections are enabled but only LAN routing is enabled.

The following registry information specifies the settings to be used for IKEv2. This specifies an idle
timeout value of 5 minutes, retransmission timeout of 30minutes, SA life time of 8 hours, and SA
datasize lifetime of 100 MB.

449 / 547

[MS-RRASM-Diff] - v20210407
Routing and Remote Access Server (RRAS) Management Protocol
Copyright © 2021 Microsoft Corporation
Release: April 7, 2021

Key Name:
HKEY_LOCAL_MACHINE\SYSTEM\CurrentControlSet\services\RemoteAccess\Parameters\IKEV2

Name: idleTimeout

Type: REG_DWORD

Data: 0x12C

Name: networkBlackoutTime

Type: REG_DWORD

Data: 0x708

Name: saLifeTime

Type: REG_DWORD

Data: 0x7080

Name: saDataSize

Type: REG_DWORD

Data: 0x19000

The following registry configuration specifies the IPv4 static address pool to be used. The address
range configured is from 10.1.1.1 to 10.1.1.100.

Key Name:

HKEY_LOCAL_MACHINE\SYSTEM\CurrentControlSet\services\RemoteAccess\Parameters\Ip

Name: UseDhcpAddressing

Type: REG_DWORD

Data: 0

Key Name:
HKEY_LOCAL_MACHINE\SYSTEM\CurrentControlSet\services\RemoteAccess\Parameters\Ip\StaticAddr
essPool\0

Name: From

Type: REG_DWORD

Data: 0xA010101

Name: To

Type: REG_DWORD

Data: 0xA010164

4.12 Querying validity of SSTP certificate

This example illustrates the use of a method in the REMRAS interface defined in this specification. The
CheckIfCertificateAllowedRR method (section 3.5.4.7.1) is used to query the configuration of the
RRAS server. The RRAS server is configured for SSTP remote access.

450 / 547

[MS-RRASM-Diff] - v20210407
Routing and Remote Access Server (RRAS) Management Protocol
Copyright © 2021 Microsoft Corporation
Release: April 7, 2021

The client first calls CoCreateInstance with the UUID of the REMRAS Interface
RemoteRouterConfig to obtain a pointer to the IUnKnown interface.

After obtaining a pointer to the IUnKnown interface, the client calls the QueryInterface method of
the IUnKnown interface with the UUID of the IRemoteSstpCertCheck interface to retrieve a

pointer to the IRemoteSstpCertCheck interface.

After a pointer to IRemoteSstpCertCheck interface is obtained, the CheckIfCertificateAllowedRR
(section 3.5.4.7) method is called with the following parameters:

▪ A string that contains the display name of the certificate to be validated, passed as
adminCertName

▪ A NULL pointer to SSTP_CERT_INFO_1 (section 2.2.1.2.140), passed as certSha1

▪ A NULL pointer to SSTP_CERT_INFO_1 (section 2.2.1.2.140), passed as certSha256

When the CheckIfCertificateAllowedRR method is called, the server enumerates all the certificates
in the SSTP certificate store [MSFT-CERT] and compares the display name of each with the value

passed in adminCertName. If there is no match, the server returns ERROR_NOT_FOUND. If there is
a match, certSha1 and certSha256 are populated with information of SHA1 and SHA256 hashes of
the certificate.

451 / 547

[MS-RRASM-Diff] - v20210407
Routing and Remote Access Server (RRAS) Management Protocol
Copyright © 2021 Microsoft Corporation
Release: April 7, 2021

5 Security

5.1 Security Considerations for Implementers

The RRAS Management Protocol allows any user to establish a connection to the RPC server. The

protocol uses the underlying RPC protocol to retrieve the identity of the caller that made the method
call as specified in [MS-RPCE]. Clients create an authenticated RPC connection. Servers use this
identity to perform specific access checks.

5.1.1 Security Considerations Specific to the RRAS Management Protocol

The RRASM data and RRASM operations specified by this implementation are to be protected by
access checks based on the identity of the RPC client.

Servers implementing this specification are not to allow anonymous RPC connections and are to
protect RRAS access to all data and operations with access control checks based on client identity.

RPC over named pipes is not to be used by clients or servers implementing this specification because
it is vulnerable to man-in-the-middle attacks. They are to use RPC over TCP/IP instead.

Using RPC_C_AUTHN_LEVEL_PKT_PRIVACY as the RPC authentication level provides data
confidentiality for the communication between client and server. The server implementing this protocol
is to support clients requesting RPC_C_AUTHN_LEVEL_PKT_PRIVACY. The server can enforce this in
order to protect the privacy of the communication between the client and the server.

5.2 Index of Security Parameters

Security parameter SECTION

RPC_C_AUTHN_GSS_NEGOTIATE Section 2.1.1.1

452 / 547

[MS-RRASM-Diff] - v20210407
Routing and Remote Access Server (RRAS) Management Protocol
Copyright © 2021 Microsoft Corporation
Release: April 7, 2021

6 (Updated Section) Appendix A: Full IDL

For ease of implementation, the full IDL is provided, where "ms-dtyp.idl" refers to the IDL found in
[MS-DTYP] Appendix A. The syntax uses the IDL syntax extensions defined in [MS-RPCE] section
2.2.4. For example, as noted in [MS-RPCE] section 2.2.4.9, a pointer_default declaration is not
required, and pointer_default (unique) is assumed.

 import "ms-oaut.idl";

 #define IN
 #define OUT

 typedef enum _ROUTER_INTERFACE_TYPE
 {
 ROUTER_IF_TYPE_CLIENT,
 ROUTER_IF_TYPE_HOME_ROUTER,
 ROUTER_IF_TYPE_FULL_ROUTER,
 ROUTER_IF_TYPE_DEDICATED,
 ROUTER_IF_TYPE_INTERNAL,
 ROUTER_IF_TYPE_LOOPBACK,
 ROUTER_IF_TYPE_TUNNEL1,
 ROUTER_IF_TYPE_DIALOUT
 } ROUTER_INTERFACE_TYPE;

 typedef enum
 {
 ROUTER_IF_STATE_UNREACHABLE,
 ROUTER_IF_STATE_DISCONNECTED,
 ROUTER_IF_STATE_CONNECTING,
 ROUTER_IF_STATE_CONNECTED
 } ROUTER_CONNECTION_STATE;

 typedef enum _RAS_QUARANTINE_STATE
 {
 RAS_QUAR_STATE_NORMAL,
 RAS_QUAR_STATE_QUARANTINE,
 RAS_QUAR_STATE_PROBATION,
 RAS_QUAR_STATE_UNKNOWN
 } RAS_QUARANTINE_STATE;

 typedef enum _RAS_PORT_CONDITION
 {
 RAS_PORT_NON_OPERATIONAL,
 RAS_PORT_DISCONNECTED,
 RAS_PORT_CALLING_BACK,
 RAS_PORT_LISTENING,
 RAS_PORT_AUTHENTICATING,
 RAS_PORT_AUTHENTICATED,
 RAS_PORT_INITIALIZING
 } RAS_PORT_CONDITION;

 typedef enum _RAS_HARDWARE_CONDITION
 {
 RAS_HARDWARE_OPERATIONAL,
 RAS_HARDWARE_FAILURE
 }
 RAS_HARDWARE_CONDITION;

453 / 547

[MS-RRASM-Diff] - v20210407
Routing and Remote Access Server (RRAS) Management Protocol
Copyright © 2021 Microsoft Corporation
Release: April 7, 2021

 typedef handle_t DIM_HANDLE;

 typedef enum _FORWARD_ACTION
 {
 FORWARD = 0,
 DROP = 1,
 }
 FORWARD_ACTION;

 typedef enum {
 MIB_IPROUTE_TYPE_OTHER = 1,
 MIB_IPROUTE_TYPE_INVALID = 2,
 MIB_IPROUTE_TYPE_DIRECT = 3,
 MIB_IPROUTE_TYPE_INDIRECT = 4,
 } MIB_IPFORWARD_TYPE;

 typedef enum {
 MIB_IPPROTO_OTHER = 1,
 MIB_IPPROTO_LOCAL = 2,
 MIB_IPPROTO_NETMGMT = 3,
 MIB_IPPROTO_ICMP = 4,
 MIB_IPPROTO_EGP = 5,
 MIB_IPPROTO_GGP = 6,
 MIB_IPPROTO_HELLO = 7,
 MIB_IPPROTO_RIP = 8 ,
 MIB_IPPROTO_IS_IS = 9,
 MIB_IPPROTO_ES_IS = 10,
 MIB_IPPROTO_CISCO = 11,
 MIB_IPPROTO_BBN = 12,
 MIB_IPPROTO_OSPF = 13,
 MIB_IPPROTO_BGP = 14,
 MIB_IPPROTO_NT_AUTOSTATIC = 10002,
 MIB_IPPROTO_NT_STATIC = 10006,
 MIB_IPPROTO_NT_STATIC_NON_DOD = 10007,
 } MIB_IPFORWARD_PROTO;

 typedef enum {
 MIB_IP_FORWARDING = 1,
 MIB_IP_NOT_FORWARDING = 2,
 } MIB_IPSTATS_FORWARDING, *PMIB_IPSTATS_FORWARDING;

 typedef enum {
 MIB_TCP_STATE_CLOSED = 1,
 MIB_TCP_STATE_LISTEN = 2,
 MIB_TCP_STATE_SYN_SENT = 3,
 MIB_TCP_STATE_SYN_RCVD = 4,
 MIB_TCP_STATE_ESTAB = 5,
 MIB_TCP_STATE_FIN_WAIT1 = 6,
 MIB_TCP_STATE_FIN_WAIT2 = 7,
 MIB_TCP_STATE_CLOSE_WAIT = 8,
 MIB_TCP_STATE_CLOSING = 9,
 MIB_TCP_STATE_LAST_ACK = 10,
 MIB_TCP_STATE_TIME_WAIT = 11,
 MIB_TCP_STATE_DELETE_TCB = 12,
 } MIB_TCP_STATE;

454 / 547

[MS-RRASM-Diff] - v20210407
Routing and Remote Access Server (RRAS) Management Protocol
Copyright © 2021 Microsoft Corporation
Release: April 7, 2021

 typedef enum {
 MIB_TCP_RTO_OTHER = 1,
 MIB_TCP_RTO_CONSTANT = 2,
 MIB_TCP_RTO_RSRE = 3,
 MIB_TCP_RTO_VANJ = 4,
 } TCP_RTO_ALGORITHM, *PTCP_RTO_ALGORITHM;

 //
 // IPv6 Internet address (RFC 2553)
 // This is an 'on-wire' format structure.
 //
 typedef struct in6_addr {
 union {
 UCHAR Byte[16];
 USHORT Word[8];
 } u;
 } IN6_ADDR, *PIN6_ADDR, *LPIN6_ADDR;

 typedef struct _DIM_INFORMATION_CONTAINER
 {
 DWORD dwBufferSize;
 [size_is(dwBufferSize)] LPBYTE pBuffer;
 }
 DIM_INFORMATION_CONTAINER, *PDIM_INFORMATION_CONTAINER;

 // RAS_CONNECTION_EX structure are redefined in this IDL to make use of versioning:
 // All the Versions of RAS_CONNECTION_EX will be defined here in RPC usable format:

 typedef struct _MPRAPI_OBJECT_HEADER_IDL
 {
 UCHAR revision;
 UCHAR type;
 USHORT size;

 }MPRAPI_OBJECT_HEADER_IDL, *PMPRAPI_OBJECT_HEADER_IDL;

 typedef struct _PPP_PROJECTION_INFO_1
 {

 // IPv4 Projection Parameters
 DWORD dwIPv4NegotiationError;
 WCHAR wszAddress[16];
 WCHAR wszRemoteAddress[16];
 DWORD dwIPv4Options;
 DWORD dwIPv4RemoteOptions;
 ULONG64 IPv4SubInterfaceIndex;

 // IPv6 Projection Parameters
 DWORD dwIPv6NegotiationError;
 UCHAR bInterfaceIdentifier[8];
 UCHAR bRemoteInterfaceIdentifier[8];
 UCHAR bPrefix[8];
 DWORD dwPrefixLength;
 ULONG64 IPv6SubInterfaceIndex;
 // LCP Options
 DWORD dwLcpError;
 DWORD dwAuthenticationProtocol;
 DWORD dwAuthenticationData;
 DWORD dwRemoteAuthenticationProtocol;
 DWORD dwRemoteAuthenticationData;
 DWORD dwLcpTerminateReason;
 DWORD dwLcpRemoteTerminateReason;
 DWORD dwLcpOptions;
 DWORD dwLcpRemoteOptions;
 DWORD dwEapTypeId;
 DWORD dwRemoteEapTypeId;

 // CCP options:

455 / 547

[MS-RRASM-Diff] - v20210407
Routing and Remote Access Server (RRAS) Management Protocol
Copyright © 2021 Microsoft Corporation
Release: April 7, 2021

 DWORD dwCcpError;
 DWORD dwCompressionAlgorithm;
 DWORD dwCcpOptions;
 DWORD dwRemoteCompressionAlgorithm;
 DWORD dwCcpRemoteOptions;

 }PPP_PROJECTION_INFO_1, *PPPP_PROJECTION_INFO_1;

 typedef struct _PPP_PROJECTION_INFO_2
 {
 // IPv4 Projection Parameters
 DWORD dwIPv4NegotiationError;
 WCHAR wszAddress[16];
 WCHAR wszRemoteAddress[16];
 DWORD dwIPv4Options;
 DWORD dwIPv4RemoteOptions;
 ULONG64 IPv4SubInterfaceIndex;

 // IPv6 Projection Parameters
 DWORD dwIPv6NegotiationError;
 UCHAR bInterfaceIdentifier[8];
 UCHAR bRemoteInterfaceIdentifier[8];
 UCHAR bPrefix[8];
 DWORD dwPrefixLength;
 ULONG64 IPv6SubInterfaceIndex;

 // LCP Options
 DWORD dwLcpError;
 DWORD dwAuthenticationProtocol;
 DWORD dwAuthenticationData;
 DWORD dwRemoteAuthenticationProtocol;
 DWORD dwRemoteAuthenticationData;
 DWORD dwLcpTerminateReason;
 DWORD dwLcpRemoteTerminateReason;
 DWORD dwLcpOptions;
 DWORD dwLcpRemoteOptions;
 DWORD dwEapTypeId;
 DWORD dwEmbeddedEAPTypeId;
 DWORD dwRemoteEapTypeId;

 // CCP options:
 DWORD dwCcpError;
 DWORD dwCompressionAlgorithm;
 DWORD dwCcpOptions;
 DWORD dwRemoteCompressionAlgorithm;
 DWORD dwCcpRemoteOptions;
 }
 PPP_PROJECTION_INFO_2, *PPPP_PROJECTION_INFO_2;

 typedef struct IKEV2_PROJECTION_INFO_1
 {

 DWORD dwIPv4NegotiationError;
 WCHAR wszAddress[16];
 WCHAR wszRemoteAddress[16];
 ULONG64 IPv4SubInterfaceIndex;

 DWORD dwIPv6NegotiationError;
 UCHAR bInterfaceIdentifier[8];
 UCHAR bRemoteInterfaceIdentifier[8];
 UCHAR bPrefix[8];
 DWORD dwPrefixLength;
 ULONG64 IPv6SubInterfaceIndex;

 DWORD dwOptions;

456 / 547

[MS-RRASM-Diff] - v20210407
Routing and Remote Access Server (RRAS) Management Protocol
Copyright © 2021 Microsoft Corporation
Release: April 7, 2021

 DWORD dwAuthenticationProtocol;
 DWORD dwEapTypeId;
 DWORD dwCompressionAlgorithm;
 DWORD dwEncryptionMethod;

 }IKEV2_PROJECTION_INFO_1, *PIKEV2_PROJECTION_INFO_1;

 typedef struct IKEV2_PROJECTION_INFO_2
 {
 DWORD dwIPv4NegotiationError;
 WCHAR wszAddress[16];
 WCHAR wszRemoteAddress[16];
 ULONG64 IPv4SubInterfaceIndex;

 DWORD dwIPv6NegotiationError;
 UCHAR bInterfaceIdentifier[8];
 UCHAR bRemoteInterfaceIdentifier[8];
 UCHAR bPrefix[8];
 DWORD dwPrefixLength;
 ULONG64 IPv6SubInterfaceIndex;

 DWORD dwOptions;

 DWORD dwAuthenticationProtocol;
 DWORD dwEapTypeId;
 DWORD dwEmbeddedEAPTypeId;
 DWORD dwCompressionAlgorithm;
 DWORD dwEncryptionMethod;
 }
 IKEV2_PROJECTION_INFO_2, *PIKEV2_PROJECTION_INFO_2;

 typedef union _PROJECTION_INFO_IDL_1 switch (UCHAR projectionInfoType) ProjectionInfoObject
 {
 case 1:
 PPP_PROJECTION_INFO_1 PppProjectionInfo;
 case 2:
 IKEV2_PROJECTION_INFO_1 Ikev2ProjectionInfo;
 }PROJECTION_INFO_IDL_1;

 typedef struct _PROJECTION_INFO_IDL_1 *PPROJECTION_INFO_IDL_1;

 typedef union _PROJECTION_INFO_IDL_2 switch (UCHAR projectionInfoType) ProjectionInfoObject
 {
 case 1:
 PPP_PROJECTION_INFO_2 PppProjectionInfo;

 case 2:
 IKEV2_PROJECTION_INFO_2 Ikev2ProjectionInfo;

 }PROJECTION_INFO_IDL_2, *PPROJECTION_INFO_IDL_2;

 typedef struct _RAS_CONNECTION_EX_1_IDL{
 MPRAPI_OBJECT_HEADER_IDL Header;
 DWORD dwConnectDuration;
 ROUTER_INTERFACE_TYPE dwInterfaceType;
 DWORD dwConnectionFlags;
 WCHAR wszInterfaceName[257];
 WCHAR wszUserName[257];
 WCHAR wszLogonDomain[16];
 WCHAR wszRemoteComputer[17];
 GUID guid;
 RAS_QUARANTINE_STATE rasQuarState;

 // Probation time
 FILETIME probationTime;

 DWORD dwBytesXmited;
 DWORD dwBytesRcved;

457 / 547

[MS-RRASM-Diff] - v20210407
Routing and Remote Access Server (RRAS) Management Protocol
Copyright © 2021 Microsoft Corporation
Release: April 7, 2021

 DWORD dwFramesXmited;
 DWORD dwFramesRcved;
 DWORD dwCrcErr;
 DWORD dwTimeoutErr;
 DWORD dwAlignmentErr;
 DWORD dwHardwareOverrunErr;
 DWORD dwFramingErr;
 DWORD dwBufferOverrunErr;
 DWORD dwCompressionRatioIn;
 DWORD dwCompressionRatioOut;

 // Currently valid only for IKEV2:
 DWORD dwNumSwitchOvers;

 // Endpoint Information
 WCHAR wszRemoteEndpointAddress[65];
 WCHAR wszLocalEndpointAddress[65];

 PROJECTION_INFO_IDL_1 ProjectionInfo;

 ULONG hConnection;
 ULONG hInterface;

 } RAS_CONNECTION_EX_1_IDL, *PRAS_CONNECTION_EX_1_IDL;

 typedef union _RAS_CONNECTION_EX_IDL switch (UCHAR revision) ConnObject
 {
 case 1: // RAS_CONNECTION_EX with version 1: (MPRAPI_RAS_CONNECTION_OBJECT_REVISION_1)
 RAS_CONNECTION_EX_1_IDL RasConnection1;
 }RAS_CONNECTION_EX_IDL;

 typedef struct _RAS_CONNECTION_EX_IDL *PRAS_CONNECTION_EX_IDL;

 typedef struct _RAS_CONNECTION_4_IDL
 {
 DWORD dwConnectDuration;
 ROUTER_INTERFACE_TYPE dwInterfaceType;
 DWORD dwConnectionFlags;
 WCHAR wszInterfaceName[257];
 WCHAR wszUserName[257];
 WCHAR wszLogonDomain[16];
 WCHAR wszRemoteComputer[17];
 GUID guid;
 RAS_QUARANTINE_STATE rasQuarState;

 // Probation time
 FILETIME probationTime;

 // Connection start time
 FILETIME connectionStartTime;

 DWORD dwBytesXmited;
 DWORD dwBytesRcved;
 DWORD dwFramesXmited;
 DWORD dwFramesRcved;
 DWORD dwCrcErr;
 DWORD dwTimeoutErr;
 DWORD dwAlignmentErr;
 DWORD dwHardwareOverrunErr;
 DWORD dwFramingErr;
 DWORD dwBufferOverrunErr;
 DWORD dwCompressionRatioIn;
 DWORD dwCompressionRatioOut;

 // Currently valid only for IKEV2:
 DWORD dwNumSwitchOvers;

 // Endpoint Information
 WCHAR wszRemoteEndpointAddress[65];

458 / 547

[MS-RRASM-Diff] - v20210407
Routing and Remote Access Server (RRAS) Management Protocol
Copyright © 2021 Microsoft Corporation
Release: April 7, 2021

 WCHAR wszLocalEndpointAddress[65];

 PROJECTION_INFO_IDL_2 ProjectionInfo;

 ULONG hConnection;
 ULONG hInterface;

 // VPN Device type
 DWORD dwDeviceType;
 }
 RAS_CONNECTION_4_IDL, *PRAS_CONNECTION_4_IDL;

 typedef struct _CERT_BLOB_1
 {
 DWORD cbData;
 [size_is(cbData)] BYTE * pbData;

 }CERT_BLOB_1,*PCERT_BLOB_1;

 typedef struct _CERT_EKU_1
 {
 DWORD dwSize;
 BOOL IsEKUOID;
 [size_is(dwSize)] WCHAR *pwszEKU;

 }CERT_EKU_1,*PCERT_EKU_1;

 typedef struct _IKEV2_TUNNEL_CONFIG_PARAMS_1 {
 DWORD dwIdleTimeout;
 DWORD dwNetworkBlackoutTime;
 DWORD dwSaLifeTime;
 DWORD dwSaDataSizeForRenegotiation;
 DWORD dwConfigOptions;
 DWORD dwTotalCertificates;
 [size_is(dwTotalCertificates)] CERT_BLOB_1* certificateNames;
 }IKEV2_TUNNEL_CONFIG_PARAMS_1, *PIKEV2_TUNNEL_CONFIG_PARAMS_1;

 typedef struct _ROUTER_CUSTOM_IKEv2_POLICY_0
 {
 // Integrity method plumbed in IKE policy
 DWORD dwIntegrityMethod;

 // Encryption method plumbed in IKE policy
 DWORD dwEncryptionMethod;

 // ESP cipher plumbed in Ipsec policy
 DWORD dwCipherTransformConstant;

 // AH Auth transform plumbed in Ipsec policy
 DWORD dwAuthTransformConstant;

 // PFS group plumbed in Ipsec policy
 DWORD dwPfsGroup;

 // DH group plumbed in IKE policy
 DWORD dwDhGroup;
 }ROUTER_CUSTOM_IKEv2_POLICY_0, *PROUTER_CUSTOM_IKEv2_POLICY_0, ROUTER_CUSTOM_L2TP_POLICY_0,
*PROUTER_CUSTOM_L2TP_POLICY_0;

 typedef struct _ROUTER_IKEv2_IF_CUSTOM_CONFIG_0
 {
 // Lifetime of a security association (SA), in seconds,
 // after which the SA is no longer valid [RFC 4306].
 DWORD dwSaLifeTime;

 // Number of kilobytes that are allowed to transfer using an SA.
 // After that, the SA will be renegotiated [RFC 4306].
 DWORD dwSaDataSize;

459 / 547

[MS-RRASM-Diff] - v20210407
Routing and Remote Access Server (RRAS) Management Protocol
Copyright © 2021 Microsoft Corporation
Release: April 7, 2021

 // SubjecName of the certificate to be used in default store
 // for machine certificate authentication.
 CERT_BLOB_1 certificateName;

 // Custom IKEv2 Policy
 PROUTER_CUSTOM_IKEv2_POLICY_0 customPolicy;
 }ROUTER_IKEv2_IF_CUSTOM_CONFIG_0, *PROUTER_IKEv2_IF_CUSTOM_CONFIG_0;

 typedef struct _ROUTER_IKEv2_IF_CUSTOM_CONFIG_1 {
 DWORD dwSaLifeTime;
 DWORD dwSaDataSize;
 CERT_BLOB_1 certificateName;
 PROUTER_CUSTOM_IKEv2_POLICY_0 customPolicy;
 CERT_BLOB_1 certificateHash;
 } ROUTER_IKEv2_IF_CUSTOM_CONFIG_1,
 *PROUTER_IKEv2_IF_CUSTOM_CONFIG_1;

 typedef struct _MPR_IF_CUSTOMINFOEX_0 {
 MPRAPI_OBJECT_HEADER_IDL Header;
 DWORD dwFlags;
 ROUTER_IKEv2_IF_CUSTOM_CONFIG_0 customIkev2Config;
 }MPR_IF_CUSTOMINFOEX_0, *PMPR_IF_CUSTOMINFOEX_0;

 typedef struct _MPR_IF_CUSTOMINFOEX_1 {
 MPRAPI_OBJECT_HEADER_IDL Header;
 DWORD dwFlags;
 ROUTER_IKEv2_IF_CUSTOM_CONFIG_1 customIkev2Config;
 } MPR_IF_CUSTOMINFOEX_1,
 *PMPR_IF_CUSTOMINFOEX_1;

 typedef union _MPR_IF_CUSTOMINFOEX_IDL switch (UCHAR revision) IfCustomConfigObject
 {
 case 1:
 MPR_IF_CUSTOMINFOEX_0 IfConfigObj1;
 case 2:
 MPR_IF_CUSTOMINFOEX_1 IfConfigObj2;

 }MPR_IF_CUSTOMINFOEX_IDL,*PMPR_IF_CUSTOMINFOEX_IDL;

 typedef struct _IKEV2_TUNNEL_CONFIG_PARAMS_2 {
 DWORD dwIdleTimeout;
 DWORD dwNetworkBlackoutTime;
 DWORD dwSaLifeTime;
 DWORD dwSaDataSizeForRenegotiation;
 DWORD dwConfigOptions;
 DWORD dwTotalCertificates;
 [size_is(dwTotalCertificates)] CERT_BLOB_1* certificateNames;

 // SubjecName of the certificate to be used in default store
 // for machine certificate authentication.
 CERT_BLOB_1 machineCertificateName;
 DWORD dwEncryptionType;
 ROUTER_CUSTOM_IKEv2_POLICY_0* customPolicy;
 }
 IKEV2_TUNNEL_CONFIG_PARAMS_2, *PIKEV2_TUNNEL_CONFIG_PARAMS_2;

 typedef struct _IKEV2_TUNNEL_CONFIG_PARAMS_3 {
 DWORD dwIdleTimeout;
 DWORD dwNetworkBlackoutTime;
 DWORD dwSaLifeTime;
 DWORD dwSaDataSizeForRenegotiation;
 DWORD dwConfigOptions;
 DWORD dwTotalCertificates;
 [size_is(dwTotalCertificates)] CERT_BLOB_1* certificateNames;

 // SubjectName of the certificate to be used in default store
 // for machine certificate authentication.
 CERT_BLOB_1 machineCertificateName;
 DWORD dwEncryptionType;

460 / 547

[MS-RRASM-Diff] - v20210407
Routing and Remote Access Server (RRAS) Management Protocol
Copyright © 2021 Microsoft Corporation
Release: April 7, 2021

 ROUTER_CUSTOM_IKEv2_POLICY_0* customPolicy;

 DWORD dwTotalEkus;
 [size_is(dwTotalEkus)] CERT_EKU_1* certificateEKUs;
 CERT_BLOB_1 machineCertificateHash;

 }
 IKEV2_TUNNEL_CONFIG_PARAMS_3, *PIKEV2_TUNNEL_CONFIG_PARAMS_3;

 typedef struct _L2TP_TUNNEL_CONFIG_PARAMS_1 {
 DWORD dwIdleTimeout;
 // encryption type to be used for L2TP
 DWORD dwEncryptionType;
 DWORD dwSaLifeTime;
 DWORD dwSaDataSizeForRenegotiation;

 PROUTER_CUSTOM_L2TP_POLICY_0 customPolicy;
 }L2TP_TUNNEL_CONFIG_PARAMS_1, *PL2TP_TUNNEL_CONFIG_PARAMS_1;

 typedef struct _IKEV2_CONFIG_PARAMS_1 {

 DWORD dwNumPorts;
 DWORD dwPortFlags;
 DWORD dwTunnelConfigParamFlags;
 IKEV2_TUNNEL_CONFIG_PARAMS_1 TunnelConfigParams;

 }IKEV2_CONFIG_PARAMS_1, *PIKEV2_CONFIG_PARAMS_1;

 typedef struct _IKEV2_CONFIG_PARAMS_2 {

 DWORD dwNumPorts;
 DWORD dwPortFlags;
 DWORD dwTunnelConfigParamFlags;
 IKEV2_TUNNEL_CONFIG_PARAMS_2 TunnelConfigParams;
 }
 IKEV2_CONFIG_PARAMS_2, *PIKEV2_CONFIG_PARAMS_2;

 typedef struct _IKEV2_CONFIG_PARAMS_3 {

 DWORD dwNumPorts;
 DWORD dwPortFlags;
 DWORD dwTunnelConfigParamFlags;
 IKEV2_TUNNEL_CONFIG_PARAMS_3 TunnelConfigParams;
 }
 IKEV2_CONFIG_PARAMS_3, *PIKEV2_CONFIG_PARAMS_3;

 typedef struct _PPTP_CONFIG_PARAMS_1 {

 DWORD dwNumPorts;
 DWORD dwPortFlags;

 }PPTP_CONFIG_PARAMS_1, *PPPTP_CONFIG_PARAMS_1;

 typedef struct _L2TP_CONFIG_PARAMS_1 {

 DWORD dwNumPorts;
 DWORD dwPortFlags;

 }L2TP_CONFIG_PARAMS_1, *PL2TP_CONFIG_PARAMS_1;

 typedef struct _L2TP_CONFIG_PARAMS_2 {

 DWORD dwNumPorts;
 DWORD dwPortFlags;
 DWORD dwTunnelConfigParamFlags;
 L2TP_TUNNEL_CONFIG_PARAMS_1 TunnelConfigParams;

 }L2TP_CONFIG_PARAMS_2, *PL2TP_CONFIG_PARAMS_2;

 #define MAX_SSTP_HASH_SIZE 32

461 / 547

[MS-RRASM-Diff] - v20210407
Routing and Remote Access Server (RRAS) Management Protocol
Copyright © 2021 Microsoft Corporation
Release: April 7, 2021

 typedef struct _SSTP_CERT_INFO_1
 {

 BOOL isDefault;
 CERT_BLOB_1 certBlob;
 }SSTP_CERT_INFO_1, *PSSTP_CERT_INFO_1;

 typedef struct _SSTP_CONFIG_PARAMS_1 {

 DWORD dwNumPorts;
 DWORD dwPortFlags;
 BOOL isUseHttps;
 DWORD certAlgorithm; // Always CALG_SHA_256
 SSTP_CERT_INFO_1 sstpCertDetails;

 }SSTP_CONFIG_PARAMS_1, *PSSTP_CONFIG_PARAMS_1;

 typedef struct _MPRAPI_TUNNEL_CONFIG_PARAMS_1 {

 IKEV2_CONFIG_PARAMS_1 IkeConfigParams;

 PPTP_CONFIG_PARAMS_1 PptpConfigParams;

 L2TP_CONFIG_PARAMS_1 L2tpConfigParams;

 SSTP_CONFIG_PARAMS_1 SstpConfigParams;

 }MPRAPI_TUNNEL_CONFIG_PARAMS_1, *PMPRAPI_TUNNEL_CONFIG_PARAMS_1;

 typedef struct _MPRAPI_TUNNEL_CONFIG_PARAMS_2 {

 IKEV2_CONFIG_PARAMS_2 IkeConfigParams;

 PPTP_CONFIG_PARAMS_1 PptpConfigParams;

 L2TP_CONFIG_PARAMS_1 L2tpConfigParams;

 SSTP_CONFIG_PARAMS_1 SstpConfigParams;

 }MPRAPI_TUNNEL_CONFIG_PARAMS_2, *PMPRAPI_TUNNEL_CONFIG_PARAMS_2;

 typedef struct _MPRAPI_TUNNEL_CONFIG_PARAMS_3 {

 IKEV2_CONFIG_PARAMS_3 IkeConfigParams;

 PPTP_CONFIG_PARAMS_1 PptpConfigParams;

 L2TP_CONFIG_PARAMS_2 L2tpConfigParams;

 SSTP_CONFIG_PARAMS_1 SstpConfigParams;

 }MPRAPI_TUNNEL_CONFIG_PARAMS_3, *PMPRAPI_TUNNEL_CONFIG_PARAMS_3;

 // MPR_SERVER_EX structure are redified in this IDL to make use of versioning:
 // All the Versions of MPR_SERVER_EX will be defined here in RPC usable format:

 typedef struct _MPR_SERVER_EX_1
 {
 MPRAPI_OBJECT_HEADER_IDL Header;
 BOOL fLanOnlyMode;
 DWORD dwUpTime;
 DWORD dwTotalPorts;
 DWORD dwPortsInUse;
 DWORD Reserved; // Added so that the structure is 8 byte
aligned

 MPRAPI_TUNNEL_CONFIG_PARAMS_1 ConfigParams;

 }MPR_SERVER_EX_1, *PMPR_SERVER_EX_1;

462 / 547

[MS-RRASM-Diff] - v20210407
Routing and Remote Access Server (RRAS) Management Protocol
Copyright © 2021 Microsoft Corporation
Release: April 7, 2021

 typedef struct _MPR_SERVER_EX_2
 {
 MPRAPI_OBJECT_HEADER_IDL Header;
 BOOL fLanOnlyMode;
 DWORD dwUpTime;
 DWORD dwTotalPorts;
 DWORD dwPortsInUse;
 DWORD Reserved; // Added so that the structure is 8 byte
aligned

 MPRAPI_TUNNEL_CONFIG_PARAMS_2 ConfigParams;
 }MPR_SERVER_EX_2, *PMPR_SERVER_EX_2;

 typedef struct _MPR_SERVER_EX_3
 {
 MPRAPI_OBJECT_HEADER_IDL Header;
 BOOL fLanOnlyMode;
 DWORD dwUpTime;
 DWORD dwTotalPorts;
 DWORD dwPortsInUse;
 DWORD Reserved; // Added so that the structure is 8 byte
aligned

 MPRAPI_TUNNEL_CONFIG_PARAMS_3 ConfigParams;
 }MPR_SERVER_EX_3, *PMPR_SERVER_EX_3;

 typedef union _MPR_SERVER_EX_IDL switch (UCHAR revision) ServerConfigObject
 {
 case 1:
 MPR_SERVER_EX_1 ServerConfig1;
 case 2:
 MPR_SERVER_EX_2 ServerConfig2;
 case 3:
 MPR_SERVER_EX_3 ServerConfig3;
 }MPR_SERVER_EX_IDL;

 typedef struct _MPR_SERVER_EX_IDL *PMPR_SERVER_EX_IDL;

 typedef struct _MPR_SERVER_SET_CONFIG_EX_1
 {
 MPRAPI_OBJECT_HEADER_IDL Header;
 DWORD setConfigForProtocols;
 MPRAPI_TUNNEL_CONFIG_PARAMS_1 ConfigParams;

 }MPR_SERVER_SET_CONFIG_EX_1, *PMPR_SERVER_SET_CONFIG_EX_1;

 typedef struct _MPR_SERVER_SET_CONFIG_EX_2
 {
 MPRAPI_OBJECT_HEADER_IDL Header;
 DWORD setConfigForProtocols;
 MPRAPI_TUNNEL_CONFIG_PARAMS_2 ConfigParams;

 }MPR_SERVER_SET_CONFIG_EX_2, *PMPR_SERVER_SET_CONFIG_EX_2;

 typedef struct _MPR_SERVER_SET_CONFIG_EX_3
 {
 MPRAPI_OBJECT_HEADER_IDL Header;
 DWORD setConfigForProtocols;
 MPRAPI_TUNNEL_CONFIG_PARAMS_3 ConfigParams;

 }MPR_SERVER_SET_CONFIG_EX_3, *PMPR_SERVER_SET_CONFIG_EX_3;

 typedef union _MPR_SERVER_SET_CONFIG_EX_IDL switch (UCHAR revision) ServerSetConfigObject
 {
 case 1:
 MPR_SERVER_SET_CONFIG_EX_1 ServerSetConfig1;
 case 2:
 MPR_SERVER_SET_CONFIG_EX_2 ServerSetConfig2;
 case 3:
 MPR_SERVER_SET_CONFIG_EX_3 ServerSetConfig3;
 }MPR_SERVER_SET_CONFIG_EX_IDL;

463 / 547

[MS-RRASM-Diff] - v20210407
Routing and Remote Access Server (RRAS) Management Protocol
Copyright © 2021 Microsoft Corporation
Release: April 7, 2021

 typedef struct _MPR_SERVER_SET_CONFIG_EX_IDL *PMPR_SERVER_SET_CONFIG_EX_IDL;

 typedef struct _RAS_UPDATE_CONNECTION_1_IDL
 {
 MPRAPI_OBJECT_HEADER_IDL Header;
 DWORD dwIfIndex;
 WCHAR wszRemoteEndpointAddress[65];
 } RAS_UPDATE_CONNECTION_1_IDL;

 typedef struct _RAS_UPDATE_CONNECTION_1_IDL *PRAS_UPDATE_CONNECTION_1_IDL;

 typedef union _RAS_UPDATE_CONNECTION_IDL switch (UCHAR revision) UpdateConnection
 {
 case 1: // MPR_SERVER_UPDATE_CONNECTION_EX with version 1:
//(MPRAPI_RAS_UPDATE_CONNECTION_OBJECT_REVISION_1)

 RAS_UPDATE_CONNECTION_1_IDL UpdateConnection1;
 // New ones update here
 }RAS_UPDATE_CONNECTION_IDL;

 typedef struct _RAS_UPDATE_CONNECTION_IDL *PRAS_UPDATE_CONNECTION_IDL;

 typedef struct _DIM_INTERFACE_CONTAINER
 {
 DWORD fGetInterfaceInfo;
 DWORD dwInterfaceInfoSize;
 [size_is(dwInterfaceInfoSize)] LPBYTE pInterfaceInfo;
 DWORD fGetGlobalInfo;
 DWORD dwGlobalInfoSize;
 [size_is(dwGlobalInfoSize)] LPBYTE pGlobalInfo;
 }
 DIM_INTERFACE_CONTAINER, *PDIM_INTERFACE_CONTAINER;

 typedef struct _RTR_TOC_ENTRY
 {
 ULONG InfoType;
 ULONG InfoSize;
 ULONG Count;
 ULONG Offset;
 }
 RTR_TOC_ENTRY, *PRTR_TOC_ENTRY;

 typedef struct _RTR_INFO_BLOCK_HEADER
 {
 ULONG Version;
 ULONG Size;
 ULONG TocEntriesCount;
 RTR_TOC_ENTRY TocEntry[1]; //1 is a placeholder for TocEntriesCount
 }
 RTR_INFO_BLOCK_HEADER, *PRTR_INFO_BLOCK_HEADER;

 typedef struct _FILTER_INFO
 {
 DWORD dwSrcAddr;
 DWORD dwSrcMask;
 DWORD dwDstAddr;
 DWORD dwDstMask;
 DWORD dwProtocol;
 DWORD fLateBound;
 WORD wSrcPort;
 WORD wDstPort;
 }
 FILTER_INFO, *PFILTER_INFO;

464 / 547

[MS-RRASM-Diff] - v20210407
Routing and Remote Access Server (RRAS) Management Protocol
Copyright © 2021 Microsoft Corporation
Release: April 7, 2021

 typedef struct _FILTER_DESCRIPTOR
 {
 DWORD dwVersion;
 DWORD dwNumFilters;
 FORWARD_ACTION faDefaultAction;
 FILTER_INFO fiFilter[1]; //1 is a placeholder for dwNumFilters
 }
 FILTER_DESCRIPTOR, *PFILTER_DESCRIPTOR;

 typedef struct _FILTER_INFO_V6
 {
 BYTE ipv6SrcAddr[16];
 DWORD dwSrcPrefixLength;
 BYTE ipv6DstAddr[16];
 DWORD dwDstPrefixLength;
 DWORD dwProtocol;
 DWORD fLateBound;
 WORD wSrcPort;
 WORD wDstPort;
 }
 FILTER_INFO_V6, *PFILTER_INFO_V6;

 typedef struct _FILTER_DESCRIPTOR_V6
 {
 DWORD dwVersion;
 DWORD dwNumFilters;
 FORWARD_ACTION faDefaultAction;
 FILTER_INFO_V6 fiFilter[1]; //1 is a placeholder for dwNumFilters
 }
 FILTER_DESCRIPTOR_V6, *PFILTER_DESCRIPTOR_V6;

 typedef struct _GLOBAL_INFO
 {
 IN OUT BOOL bFilteringOn;
 IN OUT DWORD dwLoggingLevel;
 }
 GLOBAL_INFO, *PGLOBAL_INFO;

 typedef struct _INTERFACE_ROUTE_INFO
 {
 union
 {
 struct
 { // IPv4 specific
 DWORD dwRtInfoDest;
 DWORD dwRtInfoMask;
 DWORD dwRtInfoPolicy;
 DWORD dwRtInfoNextHop;
 DWORD dwRtInfoAge;
 DWORD dwRtInfoNextHopAS;
 DWORD dwRtInfoMetric1;
 DWORD dwRtInfoMetric2;
 DWORD dwRtInfoMetric3;
 };
 struct
 { // IPv6 specific
 IN6_ADDR DestinationPrefix;
 DWORD DestPrefixLength;
 IN6_ADDR NextHopAddress;
 ULONG ValidLifeTime;
 DWORD Flags;
 ULONG Metric;
 };
 };
 DWORD dwRtInfoIfIndex;

465 / 547

[MS-RRASM-Diff] - v20210407
Routing and Remote Access Server (RRAS) Management Protocol
Copyright © 2021 Microsoft Corporation
Release: April 7, 2021

 DWORD dwRtInfoType;
 DWORD dwRtInfoProto;
 DWORD dwRtInfoPreference;
 DWORD dwRtInfoViewSet;
 BOOL bV4;
 }
 INTERFACE_ROUTE_INFO, *PINTERFACE_ROUTE_INFO;

 typedef struct _PROTOCOL_METRIC
 {
 IN OUT DWORD dwProtocolId;
 IN OUT DWORD dwMetric;
 }
 PROTOCOL_METRIC, *PPROTOCOL_METRIC;

 typedef struct _PRIORITY_INFO
 {
 IN OUT DWORD dwNumProtocols;
 IN OUT PROTOCOL_METRIC ppmProtocolMetric[1];
 }
 PRIORITY_INFO, *PPRIORITY_INFO;

 typedef struct _PROTOCOL_METRIC_EX
 {
 IN OUT DWORD dwProtocolId;
 IN OUT DWORD dwSubProtocolId;
 IN OUT DWORD dwMetric;
 }PROTOCOL_METRIC_EX, *PPROTOCOL_METRIC_EX;

 typedef struct _PRIORITY_INFO_EX
 {
 IN OUT DWORD dwNumProtocols;
 IN OUT PROTOCOL_METRIC_EX ppmProtocolMetric[1];
 }PRIORITY_INFO_EX, *PPRIORITY_INFO_EX;

 typedef struct _RTR_DISC_INFO
 {
 IN OUT WORD wMaxAdvtInterval;
 IN OUT WORD wMinAdvtInterval;
 IN OUT WORD wAdvtLifetime;
 IN OUT BOOL bAdvertise;
 IN OUT LONG lPrefLevel;
 }
 RTR_DISC_INFO, *PRTR_DISC_INFO;

 #define MAX_GROUP_LEN 64

 typedef struct _MCAST_HBEAT_INFO
 {
 WCHAR pwszGroup[MAX_GROUP_LEN];
 BOOL bActive;
 ULONG ulDeadInterval;
 BYTE byProtocol;
 WORD wPort;
 }
 MCAST_HBEAT_INFO, *PMCAST_HBEAT_INFO;

 typedef struct
 {
 DWORD dwTtl;
 DWORD dwRateLimit;
 }

466 / 547

[MS-RRASM-Diff] - v20210407
Routing and Remote Access Server (RRAS) Management Protocol
Copyright © 2021 Microsoft Corporation
Release: April 7, 2021

 MIB_MCAST_LIMIT_ROW,*PMIB_MCAST_LIMIT_ROW;

 typedef struct _IPINIP_CONFIG_INFO
 {
 DWORD dwRemoteAddress;
 DWORD dwLocalAddress;
 BYTE byTtl;
 }
 IPINIP_CONFIG_INFO, *PIPINIP_CONFIG_INFO;

 typedef struct _INTERFACE_STATUS_INFO
 {
 IN OUT DWORD dwAdminStatus;
 }
 INTERFACE_STATUS_INFO, *PINTERFACE_STATUS_INFO;

 typedef struct _DIM_MIB_ENTRY_CONTAINER
 {
 DWORD dwMibInEntrySize;
 [size_is(dwMibInEntrySize)] LPBYTE pMibInEntry;
 DWORD dwMibOutEntrySize;
 [size_is(dwMibOutEntrySize)] LPBYTE pMibOutEntry;
 }
 DIM_MIB_ENTRY_CONTAINER, *PDIM_MIB_ENTRY_CONTAINER;

 typedef struct _MIB_IPFORWARDROW
 {
 DWORD dwForwardDest;
 DWORD dwForwardMask;
 DWORD dwForwardPolicy;
 DWORD dwForwardNextHop;
 DWORD dwForwardIfIndex;
 union {
 DWORD dwForwardType;
 MIB_IPFORWARD_TYPE ForwardType;
 };
 union {
 DWORD dwForwardProto;
 MIB_IPFORWARD_PROTO ForwardProto;
 };
 DWORD dwForwardAge;
 DWORD dwForwardNextHopAS;
 DWORD dwForwardMetric1;
 DWORD dwForwardMetric2;
 DWORD dwForwardMetric3;
 DWORD dwForwardMetric4;
 DWORD dwForwardMetric5;
 } MIB_IPFORWARDROW,
 *PMIB_IPFORWARDROW;

 typedef struct _MIB_IPDESTROW
 {
 MIB_IPFORWARDROW ForwardRow;
 DWORD dwForwardPreference;
 DWORD dwForwardViewSet;
 }MIB_IPDESTROW, *PMIB_IPDESTROW;

 typedef struct _MIB_IPDESTTABLE
 {
 DWORD dwNumEntries;
 MIB_IPDESTROW table[1]; //1, placeholder for dwNumEntries
 }MIB_IPDESTTABLE, *PMIB_IPDESTTABLE;

467 / 547

[MS-RRASM-Diff] - v20210407
Routing and Remote Access Server (RRAS) Management Protocol
Copyright © 2021 Microsoft Corporation
Release: April 7, 2021

 typedef struct _MIB_ROUTESTATE
 {
 BOOL bRoutesSetToStack;
 }MIB_ROUTESTATE, *PMIB_ROUTESTATE;

 typedef struct _MIB_BEST_IF {
 DWORD dwDestAddr;
 DWORD dwIfIndex;
 } MIB_BEST_IF, *PMIB_BEST_IF;

 typedef struct {
 DWORD dwGroupAddress;
 DWORD dwGroupMask;
 } MIB_BOUNDARYROW,
 *PMIB_BOUNDARYROW;

 typedef struct _MIBICMPSTATS {
 DWORD dwMsgs;
 DWORD dwErrors;
 DWORD dwDestUnreachs;
 DWORD dwTimeExcds;
 DWORD dwParmProbs;
 DWORD dwSrcQuenchs;
 DWORD dwRedirects;
 DWORD dwEchos;
 DWORD dwEchoReps;
 DWORD dwTimestamps;
 DWORD dwTimestampReps;
 DWORD dwAddrMasks;
 DWORD dwAddrMaskReps;
 } MIBICMPSTATS;

 typedef struct _MIBICMPINFO {
 MIBICMPSTATS icmpInStats;
 MIBICMPSTATS icmpOutStats;
 } MIBICMPINFO;

 typedef struct _MIB_ICMP {
 MIBICMPINFO stats;
 } MIB_ICMP,
 *PMIB_ICMP;

 typedef struct _MIB_IFNUMBER {
 DWORD dwValue;
 } MIB_IFNUMBER,
 *PMIB_IFNUMBER;

 typedef struct _MIB_IFROW {
 WCHAR wszName[256];
 DWORD dwIndex;
 DWORD dwType;
 DWORD dwMtu;
 DWORD dwSpeed;
 DWORD dwPhysAddrLen;
 BYTE bPhysAddr[8];
 DWORD dwAdminStatus;
 DWORD dwOperStatus;

468 / 547

[MS-RRASM-Diff] - v20210407
Routing and Remote Access Server (RRAS) Management Protocol
Copyright © 2021 Microsoft Corporation
Release: April 7, 2021

 DWORD dwLastChange;
 DWORD dwInOctets;
 DWORD dwInUcastPkts;
 DWORD dwInNUcastPkts;
 DWORD dwInDiscards;
 DWORD dwInErrors;
 DWORD dwInUnknownProtos;
 DWORD dwOutOctets;
 DWORD dwOutUcastPkts;
 DWORD dwOutNUcastPkts;
 DWORD dwOutDiscards;
 DWORD dwOutErrors;
 DWORD dwOutQLen;
 DWORD dwDescrLen;
 BYTE bDescr[256]; // 256, placeholder for dwDescrLen
 } MIB_IFROW;

 typedef struct _MIB_IFSTATUS {
 DWORD dwIfIndex;
 DWORD dwAdminStatus;
 DWORD dwOperationalStatus;
 BOOL bMHbeatActive;
 BOOL bMHbeatAlive;
 } MIB_IFSTATUS,
 *PMIB_IFSTATUS;

 typedef struct _MIB_IFTABLE {
 DWORD dwNumEntries;
 MIB_IFROW table[1]; //1, placeholder for dwNumEntries
 } MIB_IFTABLE, *PMIB_IFTABLE;

 typedef struct _MIB_IPADDRROW {
 DWORD dwAddr;
 DWORD dwIndex;
 DWORD dwMask;
 DWORD dwBCastAddr;
 DWORD dwReasmSize;
 unsigned short unused1;
 unsigned short wType;
 } MIB_IPADDRROW,
 *PMIB_IPADDRROW;

 typedef struct _MIB_IPADDRTABLE {
 DWORD dwNumEntries;
 MIB_IPADDRROW table[1]; //1, placeholder for dwNumEntries
 } MIB_IPADDRTABLE,
 *PMIB_IPADDRTABLE;

 typedef struct _MIB_IPFORWARDNUMBER {
 DWORD dwValue;
 } MIB_IPFORWARDNUMBER,
 *PMIB_IPFORWARDNUMBER;

 typedef struct _MIB_IPFORWARDTABLE {
 DWORD dwNumEntries;
 MIB_IPFORWARDROW table[1]; //1, placeholder for dwNumEntries
 BYTE reserved[8];
 } MIB_IPFORWARDTABLE,

469 / 547

[MS-RRASM-Diff] - v20210407
Routing and Remote Access Server (RRAS) Management Protocol
Copyright © 2021 Microsoft Corporation
Release: April 7, 2021

 *PMIB_IPFORWARDTABLE;

 typedef struct {
 DWORD dwIfIndex;
 DWORD dwGroupAddress;
 DWORD dwGroupMask;
 DWORD dwStatus;
 } MIB_IPMCAST_BOUNDARY,
 *PMIB_IPMCAST_BOUNDARY;

 typedef struct {
 DWORD dwNumEntries;
 MIB_IPMCAST_BOUNDARY table[1]; //1, placeholder for dwNumEntries
 } MIB_IPMCAST_BOUNDARY_TABLE,
 *PMIB_IPMCAST_BOUNDARY_TABLE;

 typedef struct _MIB_IPMCAST_GLOBAL {
 DWORD dwEnable;
 } MIB_IPMCAST_GLOBAL,
 *PMIB_IPMCAST_GLOBAL;

 typedef struct _MIB_IPMCAST_IF_ENTRY
 {
 DWORD dwIfIndex;
 DWORD dwTtl;
 DWORD dwProtocol;
 DWORD dwRateLimit;
 ULONG ulInMcastOctets;
 ULONG ulOutMcastOctets;
 }
 MIB_IPMCAST_IF_ENTRY, *PMIB_IPMCAST_IF_ENTRY;

 typedef struct _MIB_IPMCAST_IF_TABLE {
 DWORD dwNumEntries;
 MIB_IPMCAST_IF_ENTRY table[1]; //1, placeholder for dwNumEntries
 } MIB_IPMCAST_IF_TABLE,
 *PMIB_IPMCAST_IF_TABLE;

 typedef struct _MIB_IPMCAST_OIF {
 DWORD dwOutIfIndex;
 DWORD dwNextHopAddr;
 PVOID pvReserved;
 DWORD dwReserved;
 } MIB_IPMCAST_OIF,
 *PMIB_IPMCAST_OIF;

 typedef struct _MIB_IPMCAST_MFE {
 DWORD dwGroup;
 DWORD dwSource;
 DWORD dwSrcMask;
 DWORD dwUpStrmNgbr;
 DWORD dwInIfIndex;
 DWORD dwInIfProtocol;
 DWORD dwRouteProtocol;
 DWORD dwRouteNetwork;
 DWORD dwRouteMask;

470 / 547

[MS-RRASM-Diff] - v20210407
Routing and Remote Access Server (RRAS) Management Protocol
Copyright © 2021 Microsoft Corporation
Release: April 7, 2021

 ULONG ulUpTime;
 ULONG ulExpiryTime;
 ULONG ulTimeOut;
 ULONG ulNumOutIf;
 DWORD fFlags;
 DWORD dwReserved;
 MIB_IPMCAST_OIF rgmioOutInfo[1]; //1, placeholder for ulNumOutIf
 } MIB_IPMCAST_MFE,
 *PMIB_IPMCAST_MFE;

 typedef struct _MIB_IPMCAST_OIF_STATS {
 DWORD dwOutIfIndex;
 DWORD dwNextHopAddr;
 PVOID pvDialContext;
 ULONG ulTtlTooLow;
 ULONG ulFragNeeded;
 ULONG ulOutPackets;
 ULONG ulOutDiscards;
 } MIB_IPMCAST_OIF_STATS,
 *PMIB_IPMCAST_OIF_STATS;

 typedef struct _MIB_IPMCAST_MFE_STATS {
 DWORD dwGroup;
 DWORD dwSource;
 DWORD dwSrcMask;
 DWORD dwUpStrmNgbr;
 DWORD dwInIfIndex;
 DWORD dwInIfProtocol;
 DWORD dwRouteProtocol;
 DWORD dwRouteNetwork;
 DWORD dwRouteMask;
 ULONG ulUpTime;
 ULONG ulExpiryTime;
 ULONG ulNumOutIf;
 ULONG ulInPkts;
 ULONG ulInOctets;
 ULONG ulPktsDifferentIf;
 ULONG ulQueueOverflow;
 MIB_IPMCAST_OIF_STATS rgmiosOutStats[1]; //1, placeholder for ulNumOutIf
 } MIB_IPMCAST_MFE_STATS,
 *PMIB_IPMCAST_MFE_STATS;

 typedef struct {
 DWORD dwGroupAddress;
 DWORD dwGroupMask;
 WCHAR snNameBuffer[256];
 DWORD dwStatus;
 BYTE reserved[492];

 } MIB_IPMCAST_SCOPE,
 *PMIB_IPMCAST_SCOPE;

 typedef struct _MIB_IPNETROW {
 DWORD dwIndex;
 DWORD dwPhysAddrLen;
 BYTE bPhysAddr[8];
 DWORD dwAddr;
 DWORD dwType;
 } MIB_IPNETROW,
 *PMIB_IPNETROW;

471 / 547

[MS-RRASM-Diff] - v20210407
Routing and Remote Access Server (RRAS) Management Protocol
Copyright © 2021 Microsoft Corporation
Release: April 7, 2021

 typedef struct _MIB_IPNETTABLE {
 DWORD dwNumEntries;
 MIB_IPNETROW table[1]; //1, placeholder for dwNumEntries
 BYTE reserved[8];
 } MIB_IPNETTABLE,
 *PMIB_IPNETTABLE;

 typedef struct _MIB_IPSTATS {
 union {
 DWORD dwForwarding;
 MIB_IPSTATS_FORWARDING Forwarding ;
 };
 DWORD dwDefaultTTL;
 DWORD dwInReceives;
 DWORD dwInHdrErrors;
 DWORD dwInAddrErrors;
 DWORD dwForwDatagrams;
 DWORD dwInUnknownProtos;
 DWORD dwInDiscards;
 DWORD dwInDelivers;
 DWORD dwOutRequests;
 DWORD dwRoutingDiscards;
 DWORD dwOutDiscards;
 DWORD dwOutNoRoutes;
 DWORD dwReasmTimeout;
 DWORD dwReasmReqds;
 DWORD dwReasmOks;
 DWORD dwReasmFails;
 DWORD dwFragOks;
 DWORD dwFragFails;
 DWORD dwFragCreates;
 DWORD dwNumIf;
 DWORD dwNumAddr;
 DWORD dwNumRoutes;
 } MIB_IPSTATS,
 *PMIB_IPSTATS;

 typedef struct _MIB_MFE_STATS_TABLE {
 DWORD dwNumEntries;
 MIB_IPMCAST_MFE_STATS table[1]; //1, placeholder for dwNumEntries
 } MIB_MFE_STATS_TABLE,
 *PMIB_MFE_STATS_TABLE;

 typedef struct _MIB_MFE_TABLE {
 DWORD dwNumEntries;
 MIB_IPMCAST_MFE table[1]; //1, placeholder for dwNumEntries
 } MIB_MFE_TABLE,
 *PMIB_MFE_TABLE;

 typedef struct _MIB_OPAQUE_INFO {
 DWORD dwId;
 union {
 ULONGLONG ullAlign;
 BYTE rgbyData[1];
 };
 } MIB_OPAQUE_INFO,
 *PMIB_OPAQUE_INFO;

 typedef struct _MIB_OPAQUE_QUERY {

472 / 547

[MS-RRASM-Diff] - v20210407
Routing and Remote Access Server (RRAS) Management Protocol
Copyright © 2021 Microsoft Corporation
Release: April 7, 2021

 DWORD dwVarId;
 DWORD rgdwVarIndex[1];
 } MIB_OPAQUE_QUERY,
 *PMIB_OPAQUE_QUERY;

 typedef struct _MIB_PROXYARP {
 DWORD dwAddress;
 DWORD dwMask;
 DWORD dwIfIndex;
 } MIB_PROXYARP,
 *PMIB_PROXYARP;

 typedef struct _MIB_TCPROW {
 union {
 DWORD dwState;
 MIB_TCP_STATE State;
 };
 DWORD dwLocalAddr;
 DWORD dwLocalPort;
 DWORD dwRemoteAddr;
 DWORD dwRemotePort;
 } MIB_TCPROW,
 *PMIB_TCPROW;

 typedef struct _MIB_TCPSTATS {
 union {
 DWORD dwRtoAlgorithm;
 TCP_RTO_ALGORITHM RtoAlgorithm;
 };
 DWORD dwRtoMin;
 DWORD dwRtoMax;
 DWORD dwMaxConn;
 DWORD dwActiveOpens;
 DWORD dwPassiveOpens;
 DWORD dwAttemptFails;
 DWORD dwEstabResets;
 DWORD dwCurrEstab;
 DWORD dwInSegs;
 DWORD dwOutSegs;
 DWORD dwRetransSegs;
 DWORD dwInErrs;
 DWORD dwOutRsts;
 DWORD dwNumConns;
 } MIB_TCPSTATS,
 *PMIB_TCPSTATS;

 typedef struct _MIB_TCPTABLE {
 DWORD dwNumEntries;
 MIB_TCPROW table[1]; //1, placeholder for dwNumEntries
 BYTE reserved[8];
 } MIB_TCPTABLE,
 *PMIB_TCPTABLE;

 typedef struct _MIB_UDPROW {
 DWORD dwLocalAddr;
 DWORD dwLocalPort;
 } MIB_UDPROW,
 *PMIB_UDPROW;

473 / 547

[MS-RRASM-Diff] - v20210407
Routing and Remote Access Server (RRAS) Management Protocol
Copyright © 2021 Microsoft Corporation
Release: April 7, 2021

 typedef struct _MIB_UDPSTATS {
 DWORD dwInDatagrams;
 DWORD dwNoPorts;
 DWORD dwInErrors;
 DWORD dwOutDatagrams;
 DWORD dwNumAddrs;
 } MIB_UDPSTATS,
 *PMIB_UDPSTATS;

 typedef struct _MIB_UDPTABLE {
 DWORD dwNumEntries;
 MIB_UDPROW table[1]; //1, placeholder for dwNumEntries
 BYTE reserved[8];
 } MIB_UDPTABLE,
 *PMIB_UDPTABLE;

 typedef struct MPR_SERVER_0
 {
 BOOL fLanOnlyMode;
 DWORD dwUpTime;
 DWORD dwTotalPorts;
 DWORD dwPortsInUse;
 }
 MPR_SERVER_0,*PMPR_SERVER_0;

 typedef struct MPR_SERVER_1
 {
 DWORD dwNumPptpPorts;
 DWORD dwPptpPortFlags;
 DWORD dwNumL2tpPorts;
 DWORD dwL2tpPortFlags;
 }
 MPR_SERVER_1,*PMPR_SERVER_1;

 typedef struct MPR_SERVER_2
 {
 DWORD dwNumPptpPorts;
 DWORD dwPptpPortFlags;
 DWORD dwNumL2tpPorts;
 DWORD dwL2tpPortFlags;
 DWORD dwNumSstpPorts;
 DWORD dwSstpPortFlags;
 }
 MPR_SERVER_2,*PMPR_SERVER_2;

 typedef struct _PPP_NBFCP_INFO
 {
 DWORD dwError;
 WCHAR wszWksta[17];
 }
 PPP_NBFCP_INFO;

 typedef struct _PPP_IPCP_INFO
 {
 DWORD dwError;
 WCHAR wszAddress[16];
 WCHAR wszRemoteAddress[16];

474 / 547

[MS-RRASM-Diff] - v20210407
Routing and Remote Access Server (RRAS) Management Protocol
Copyright © 2021 Microsoft Corporation
Release: April 7, 2021

 }
 PPP_IPCP_INFO;

 typedef struct _PPP_IPCP_INFO2
 {
 DWORD dwError;
 WCHAR wszAddress[16];
 WCHAR wszRemoteAddress[16];
 DWORD dwOptions;
 DWORD dwRemoteOptons;
 }
 PPP_IPCP_INFO2;

 typedef struct _PPP_IPXCP_INFO
 {
 DWORD dwError;
 WCHAR wszAddress[16];
 }
 PPP_IPXCP_INFO;

 typedef struct _PPP_IPV6CP_INFO
 {
 DWORD dwVersion;
 DWORD dwSize;
 DWORD dwError;
 BYTE bInterfaceIdentifier[8];
 BYTE bRemoteInterfaceIdentifier[8];
 DWORD dwOptions;
 DWORD dwRemoteOptions;
 BYTE bPrefix[8];
 DWORD dwPrefixLength;
 }
 PPP_IPV6_CP_INFO,*PPPP_IPV6_CP_INFO;

 typedef struct _PPP_ATCP_INFO
 {
 DWORD dwError;
 WCHAR wszAddress[33];
 }
 PPP_ATCP_INFO;

 typedef struct _PPP_CCP_INFO
 {
 DWORD dwError;
 DWORD dwCompressionAlgorithm;
 DWORD dwOptions;
 DWORD dwRemoteCompressionAlgorithm;
 DWORD dwRemoteOptions;
 }
 PPP_CCP_INFO;

 typedef struct _PPP_LCP_INFO
 {
 DWORD dwError;
 DWORD dwAuthenticationProtocol;
 DWORD dwAuthenticationData;
 DWORD dwRemoteAuthenticationProtocol;
 DWORD dwRemoteAuthenticationData;

475 / 547

[MS-RRASM-Diff] - v20210407
Routing and Remote Access Server (RRAS) Management Protocol
Copyright © 2021 Microsoft Corporation
Release: April 7, 2021

 DWORD dwTerminateReason;
 DWORD dwRemoteTerminateReason;
 DWORD dwOptions;
 DWORD dwRemoteOptions;
 DWORD dwEapTypeId;
 DWORD dwRemoteEapTypeId;
 }
 PPP_LCP_INFO;

 typedef struct _PPP_INFO
 {
 PPP_NBFCP_INFO nbf;
 PPP_IPCP_INFO ip;
 PPP_IPXCP_INFO ipx;
 PPP_ATCP_INFO at;
 }
 PPP_INFO;

 typedef struct _PPP_INFO_2
 {
 PPP_NBFCP_INFO nbf;
 PPP_IPCP_INFO2 ip;
 PPP_IPXCP_INFO ipx;
 PPP_ATCP_INFO at;
 PPP_CCP_INFO ccp;
 PPP_LCP_INFO lcp;
 }
 PPP_INFO_2;

 typedef struct _PPP_INFO_3
 {
 PPP_NBFCP_INFO nbf;
 PPP_IPCP_INFO2 ip;
 PPP_IPV6_CP_INFO ipv6;
 PPP_CCP_INFO ccp;
 PPP_LCP_INFO lcp;
 }
 PPP_INFO_3;

 typedef struct _RASI_PORT_0
 {
 DWORD dwPort;
 DWORD dwConnection;
 RAS_PORT_CONDITION dwPortCondition;
 DWORD dwTotalNumberOfCalls;
 DWORD dwConnectDuration;
 WCHAR wszPortName[17];
 WCHAR wszMediaName[17];
 WCHAR wszDeviceName[129];
 WCHAR wszDeviceType[17];
 }
 RASI_PORT_0,*PRASI_PORT_0;

 typedef struct _RASI_PORT_1
 {
 DWORD dwPort;
 DWORD dwConnection;
 RAS_HARDWARE_CONDITION dwHardwareCondition;
 DWORD dwLineSpeed;
 DWORD dwBytesXmited;

476 / 547

[MS-RRASM-Diff] - v20210407
Routing and Remote Access Server (RRAS) Management Protocol
Copyright © 2021 Microsoft Corporation
Release: April 7, 2021

 DWORD dwBytesRcved;
 DWORD dwFramesXmited;
 DWORD dwFramesRcved;
 DWORD dwCrcErr;
 DWORD dwTimeoutErr;
 DWORD dwAlignmentErr;
 DWORD dwHardwareOverrunErr;
 DWORD dwFramingErr;
 DWORD dwBufferOverrunErr;
 DWORD dwCompressionRatioIn;
 DWORD dwCompressionRatioOut;
 }
 RASI_PORT_1,*PRASI_PORT_1;

 typedef struct _RASI_CONNECTION_0
 {
 DWORD dwConnection;
 DWORD dwInterface;
 DWORD dwConnectDuration;
 ROUTER_INTERFACE_TYPE dwInterfaceType;
 DWORD dwConnectionFlags;
 WCHAR wszInterfaceName[257];
 WCHAR wszUserName[257];
 WCHAR wszLogonDomain[16];
 WCHAR wszRemoteComputer[17];
 }
 RASI_CONNECTION_0,*PRASI_CONNECTION_0;

 typedef struct RASI_CONNECTION_1
 {
 DWORD dwConnection;
 DWORD dwInterface;
 PPP_INFO PppInfo;
 DWORD dwBytesXmited;
 DWORD dwBytesRcved;
 DWORD dwFramesXmited;
 DWORD dwFramesRcved;
 DWORD dwCrcErr;
 DWORD dwTimeoutErr;
 DWORD dwAlignmentErr;
 DWORD dwHardwareOverrunErr;
 DWORD dwFramingErr;
 DWORD dwBufferOverrunErr;
 DWORD dwCompressionRatioIn;
 DWORD dwCompressionRatioOut;
 }
 RASI_CONNECTION_1,*PRASI_CONNECTION_1;

 typedef struct _RASI_CONNECTION_2
 {
 DWORD dwConnection;
 WCHAR wszUserName[257];
 ROUTER_INTERFACE_TYPE dwInterfaceType;
 GUID guid;
 PPP_INFO_2 PppInfo2;
 }
 RASI_CONNECTION_2,*PRASI_CONNECTION_2;

 typedef struct _RASI_CONNECTION_3
 {
 DWORD dwVersion;
 DWORD dwSize;

477 / 547

[MS-RRASM-Diff] - v20210407
Routing and Remote Access Server (RRAS) Management Protocol
Copyright © 2021 Microsoft Corporation
Release: April 7, 2021

 DWORD dwConnection;
 WCHAR wszUserName[257];
 ROUTER_INTERFACE_TYPE dwInterfaceType;
 GUID guid;
 PPP_INFO_3 PppInfo3;
 RAS_QUARANTINE_STATE rasQuarState;
 FILETIME timer;
 }
 RASI_CONNECTION_3,*PRASI_CONNECTION_3;

 typedef struct _MPRI_INTERFACE_0
 {
 WCHAR wszInterfaceName[257];
 DWORD dwInterface;
 BOOL fEnabled;
 ROUTER_INTERFACE_TYPE dwIfType;
 ROUTER_CONNECTION_STATE dwConnectionState;
 DWORD fUnReachabilityReasons;
 DWORD dwLastError;
 }
 MPRI_INTERFACE_0,*PMPRI_INTERFACE_0;

 typedef struct _MPRI_INTERFACE_1
 {
 WCHAR wszInterfaceName[257];
 DWORD dwInterface;
 BOOL fEnabled;
 ROUTER_INTERFACE_TYPE dwIfType;
 ROUTER_CONNECTION_STATE dwConnectionState;
 DWORD fUnReachabilityReasons;
 DWORD dwLastError;
 LPWSTR lpwsDialoutHoursRestriction;
 }
 MPRI_INTERFACE_1, *PMPRI_INTERFACE_1;

 typedef struct _MPRI_INTERFACE_2
 {
 WCHAR wszInterfaceName[257];
 DWORD dwInterface;
 BOOL fEnabled;
 ROUTER_INTERFACE_TYPE dwIfType;
 ROUTER_CONNECTION_STATE dwConnectionState;
 DWORD fUnReachabilityReasons;
 DWORD dwLastError;
 DWORD dwfOptions;
 WCHAR szLocalPhoneNumber[129];
 PWCHAR szAlternates;
 DWORD ipaddr;
 DWORD ipaddrDns;
 DWORD ipaddrDnsAlt;
 DWORD ipaddrWins;
 DWORD ipaddrWinsAlt;
 DWORD dwfNetProtocols;
 WCHAR szDeviceType[17];
 WCHAR szDeviceName[129];
 WCHAR szX25PadType[33];
 WCHAR szX25Address[201];
 WCHAR szX25Facilities[201];
 WCHAR szX25UserData[201];
 DWORD dwChannels;
 DWORD dwSubEntries;
 DWORD dwDialMode;
 DWORD dwDialExtraPercent;
 DWORD dwDialExtraSampleSeconds;

478 / 547

[MS-RRASM-Diff] - v20210407
Routing and Remote Access Server (RRAS) Management Protocol
Copyright © 2021 Microsoft Corporation
Release: April 7, 2021

 DWORD dwHangUpExtraPercent;
 DWORD dwHangUpExtraSampleSeconds;
 DWORD dwIdleDisconnectSeconds;
 DWORD dwType;
 DWORD dwEncryptionType;
 DWORD dwCustomAuthKey;
 DWORD dwCustomAuthDataSize;
 LPBYTE lpbCustomAuthData;
 GUID guidId;
 DWORD dwVpnStrategy;
 }
 MPRI_INTERFACE_2, *PMPRI_INTERFACE_2;

 typedef struct _MPR_INTERFACE_3
 {
 WCHAR wszInterfaceName[257];
 DWORD dwInterface;
 BOOL fEnabled;
 ROUTER_INTERFACE_TYPE dwIfType;
 ROUTER_CONNECTION_STATE dwConnectionState;
 DWORD fUnReachabilityReasons;
 DWORD dwLastError;
 DWORD dwfOptions;
 WCHAR szLocalPhoneNumber[129];
 PWCHAR szAlternates;
 DWORD ipaddr;
 DWORD ipaddrDns;
 DWORD ipaddrDnsAlt;
 DWORD ipaddrWins;
 DWORD ipaddrWinsAlt;
 DWORD dwfNetProtocols;
 WCHAR szDeviceType[17];
 WCHAR szDeviceName[129];
 WCHAR szX25PadType[33];
 WCHAR szX25Address[201];
 WCHAR szX25Facilities[201];
 WCHAR szX25UserData[201];
 DWORD dwChannels;
 DWORD dwSubEntries;
 DWORD dwDialMode;
 DWORD dwDialExtraPercent;
 DWORD dwDialExtraSampleSeconds;
 DWORD dwHangUpExtraPercent;
 DWORD dwHangUpExtraSampleSeconds;
 DWORD dwIdleDisconnectSeconds;
 DWORD dwType;
 DWORD dwEncryptionType;
 DWORD dwCustomAuthKey;
 DWORD dwCustomAuthDataSize;
 LPBYTE lpbCustomAuthData;
 GUID guidId;
 DWORD dwVpnStrategy;
 ULONG AddressCount;
 IN6_ADDR ipv6addrDns;
 IN6_ADDR ipv6addrDnsAlt;
 IN6_ADDR* ipv6addr;
 }
 MPRI_INTERFACE_3,*PMPRI_INTERFACE_3;

 typedef struct _MPR_DEVICE_0
 {
 WCHAR szDeviceType[17];
 WCHAR szDeviceName[129];
 }
 MPR_DEVICE_0,*PMPR_DEVICE_0;

479 / 547

[MS-RRASM-Diff] - v20210407
Routing and Remote Access Server (RRAS) Management Protocol
Copyright © 2021 Microsoft Corporation
Release: April 7, 2021

 typedef struct _MPR_DEVICE_1
 {
 WCHAR szDeviceType[17];
 WCHAR szDeviceName[129];
 WCHAR szLocalPhoneNumber[129];
 PWCHAR szAlternates;
 }
 MPR_DEVICE_1,*PMPR_DEVICE_1;

 typedef struct _MPR_CREDENTIALSEX_1
 {
 DWORD dwSize;
 DWORD dwOffset;
 BYTE bData[1];
 } MPR_CREDENTIALSEX_1, *PMPR_CREDENTIALSEX_1;

 typedef struct _IFFILTER_INFO
 {
 BOOL bEnableFragChk;
 }IFFILTER_INFO, *PIFFILTER_INFO;

 typedef struct _MPR_FILTER_0
 {
 IN BOOL fEnable;
 }
 MPR_FILTER_0, *PMPR_FILTER_0;

 typedef struct _IPX_GLOBAL_INFO {
 ULONG RoutingTableHashSize;
 ULONG EventLogMask;
 } IPX_GLOBAL_INFO, *PIPX_GLOBAL_INFO;

 typedef struct _IPX_IF_INFO {
 ULONG AdministratorState;
 ULONG NetbiosAccept; //
 ULONG NetbiosDeliver; // Deliver Netbios broadcast packets
 } IPX_IF_INFO, *PIPX_IF_INFO;

 typedef struct _IPXWAN_IF_INFO {
 ULONG Adminstate;
 } IPXWAN_IF_INFO, *PIPXWAN_IF_INFO;

 typedef struct _IPX_STATIC_ROUTE_INFO {
 union {
 ULONG DwordAlign;
 UCHAR Network[4];
 };
 USHORT TickCount;
 USHORT HopCount;
 UCHAR NextHopMacAddress[6];
 } IPX_STATIC_ROUTE_INFO, *PIPX_STATIC_ROUTE_INFO;

480 / 547

[MS-RRASM-Diff] - v20210407
Routing and Remote Access Server (RRAS) Management Protocol
Copyright © 2021 Microsoft Corporation
Release: April 7, 2021

 typedef IPX_SERVER_ENTRY IPX_STATIC_SERVICE_INFO, *PIPX_STATIC_SERVICE_INFO;

 typedef struct _IPX_SERVER_ENTRY
 {
 USHORT Type;
 UCHAR Name[48];
 UCHAR Network[4];
 UCHAR Node[6];
 UCHAR Socket[2];
 USHORT HopCount;
 } IPX_SERVER_ENTRY, *PIPX_SERVER_ENTRY;

 typedef struct _IPX_STATIC_NETBIOS_NAME_INFO {
 union {
 ULONG DwordAlign;
 UCHAR Name[16];
 };
 } IPX_STATIC_NETBIOS_NAME_INFO, *PIPX_STATIC_NETBIOS_NAME_INFO;

 #define MAX_ADAPTOR_NAME_LEN 48

 typedef struct _IPX_ADAPTER_INFO {
 ULONG PacketType;
 WCHAR AdapterName[MAX_ADAPTOR_NAME_LEN];
 } IPX_ADAPTER_INFO, *PIPX_ADAPTER_INFO;

 typedef struct _IPX_TRAFFIC_FILTER_GLOBAL_INFO {
 ULONG FilterAction;
 } IPX_TRAFFIC_FILTER_GLOBAL_INFO, *PIPX_TRAFFIC_FILTER_GLOBAL_INFO;

 typedef struct _IPX_TRAFFIC_FILTER_INFO {
 ULONG FilterDefinition;
 UCHAR DestinationNetwork[4];
 UCHAR DestinationNetworkMask[4];
 UCHAR DestinationNode[6];
 UCHAR DestinationSocket[2];
 UCHAR SourceNetwork[4];
 UCHAR SourceNetworkMask[4];
 UCHAR SourceNode[6];
 UCHAR SourceSocket[2];
 UCHAR PacketType;
 } IPX_TRAFFIC_FILTER_INFO, *PIPX_TRAFFIC_FILTER_INFO;

 typedef struct _IF_TABLE_INDEX {
 ULONG InterfaceIndex;
 } IF_TABLE_INDEX, *PIF_TABLE_INDEX;

 typedef struct _ROUTING_TABLE_INDEX {
 UCHAR Network[4];
 } ROUTING_TABLE_INDEX, *PROUTING_TABLE_INDEX;

481 / 547

[MS-RRASM-Diff] - v20210407
Routing and Remote Access Server (RRAS) Management Protocol
Copyright © 2021 Microsoft Corporation
Release: April 7, 2021

 typedef struct _STATIC_ROUTES_TABLE_INDEX {
 ULONG InterfaceIndex;
 UCHAR Network[4];
 } STATIC_ROUTES_TABLE_INDEX, *PSTATIC_ROUTES_TABLE_INDEX;

 typedef struct _SERVICES_TABLE_INDEX {
 USHORT ServiceType;
 UCHAR ServiceName[48];
 } SERVICES_TABLE_INDEX, *PSERVICES_TABLE_INDEX;

 typedef struct _STATIC_SERVICES_TABLE_INDEX {
 ULONG InterfaceIndex;
 USHORT ServiceType;
 UCHAR ServiceName[48];
 } STATIC_SERVICES_TABLE_INDEX, *PSTATIC_SERVICES_TABLE_INDEX;

 typedef union _IPX_MIB_INDEX {
 IF_TABLE_INDEX InterfaceTableIndex;
 ROUTING_TABLE_INDEX RoutingTableIndex;
 STATIC_ROUTES_TABLE_INDEX StaticRoutesTableIndex;
 SERVICES_TABLE_INDEX ServicesTableIndex;
 STATIC_SERVICES_TABLE_INDEX StaticServicesTableIndex;
 } IPX_MIB_INDEX, *PIPX_MIB_INDEX;

 typedef struct _IPX_MIB_GET_INPUT_DATA {
 ULONG TableId;
 IPX_MIB_INDEX MibIndex;
 } IPX_MIB_GET_INPUT_DATA, *PIPX_MIB_GET_INPUT_DATA;

 typedef struct _IPXMIB_BASE {
 ULONG OperState;
 UCHAR PrimaryNetNumber[4];
 UCHAR Node[6];
 UCHAR SysName[48];
 ULONG MaxPathSplits;
 ULONG IfCount;
 ULONG DestCount;
 ULONG ServCount;
 } IPXMIB_BASE, *PIPXMIB_BASE;

 typedef struct _IPX_IF_STATS {
 ULONG IfOperState;
 ULONG MaxPacketSize;
 ULONG InHdrErrors;
 ULONG InFiltered;
 ULONG InNoRoutes;
 ULONG InDiscards;
 ULONG InDelivers;
 ULONG OutFiltered;
 ULONG OutDiscards;
 ULONG OutDelivers;
 ULONG NetbiosReceived;
 ULONG NetbiosSent;
 } IPX_IF_STATS, *PIPX_IF_STATS;

 typedef struct _IPX_INTERFACE {

482 / 547

[MS-RRASM-Diff] - v20210407
Routing and Remote Access Server (RRAS) Management Protocol
Copyright © 2021 Microsoft Corporation
Release: April 7, 2021

 ULONG InterfaceIndex;
 ULONG AdministratorState;
 ULONG AdapterIndex;
 UCHAR InterfaceName[48];
 ULONG InterfaceType;
 ULONG MediaType;
 UCHAR NetNumber[4];
 UCHAR MacAddress[6];
 ULONG Delay;
 ULONG Throughput;
 ULONG NetbiosAccept;
 ULONG NetbiosDeliver;
 ULONG EnableIpxWanNegotiation;
 IPX_IF_STATS IfStats;
 } IPX_INTERFACE, *PIPX_INTERFACE;

 typedef struct _IPX_ROUTE {
 ULONG InterfaceIndex;
 ULONG Protocol;
 UCHAR Network[4];
 USHORT TickCount;
 USHORT HopCount;
 UCHAR NextHopMacAddress[6];
 ULONG Flags;
 } IPX_ROUTE, *PIPX_ROUTE;

 typedef struct _IPX_SERVICE
 {
 ULONG InterfaceIndex;
 ULONG Protocol;
 IPX_SERVER_ENTRY Server;
 } IPX_SERVICE, *PIPX_SERVICE;

 typedef union _IPX_MIB_ROW {
 IPX_INTERFACE Interface;
 IPX_ROUTE Route;
 IPX_SERVICE Service;
 } IPX_MIB_ROW, *PIPX_MIB_ROW;

 typedef struct _IPX_MIB_SET_INPUT_DATA {
 ULONG TableId;
 IPX_MIB_ROW MibRow;
 } IPX_MIB_SET_INPUT_DATA, *PIPX_MIB_SET_INPUT_DATA;

 typedef struct _SAP_SERVICE_FILTER_INFO {
 union {
 USHORT ServiceType;
 ULONG ServiceType_align; // Ensures alignment
 };
 UCHAR ServiceName[48];
 } SAP_SERVICE_FILTER_INFO, *PSAP_SERVICE_FILTER_INFO;

 typedef struct _SAP_IF_FILTERS {
 ULONG SupplyFilterAction;
 ULONG SupplyFilterCount;
 ULONG ListenFilterAction;
 ULONG ListenFilterCount;
 SAP_SERVICE_FILTER_INFO ServiceFilter[1];
 } SAP_IF_FILTERS, *PSAP_IF_FILTERS;

483 / 547

[MS-RRASM-Diff] - v20210407
Routing and Remote Access Server (RRAS) Management Protocol
Copyright © 2021 Microsoft Corporation
Release: April 7, 2021

 typedef struct _SAP_IF_INFO {
 ULONG AdminState;
 ULONG UpdateMode;
 ULONG PacketType;
 ULONG Supply;
 ULONG Listen;
 ULONG GetNearestServerReply;
 ULONG PeriodicUpdateInterval;
 ULONG AgeIntervalMultiplier;
 } SAP_IF_INFO, *PSAP_IF_INFO;

 typedef struct _SAP_IF_CONFIG {
 SAP_IF_INFO SapIfInfo;
 SAP_IF_FILTERS SapIfFilters;
 } SAP_IF_CONFIG, *PSAP_IF_CONFIG;

 typedef struct _SAP_MIB_BASE {
 ULONG SapOperState;
 } SAP_MIB_BASE, *PSAP_MIB_BASE;

 typedef struct _SAP_IF_STATS {
 ULONG SapIfOperState;
 ULONG SapIfInputPackets;
 ULONG SapIfOutputPackets;
 } SAP_IF_STATS, *PSAP_IF_STATS;

 typedef struct _SAP_INTERFACE {
 ULONG InterfaceIndex;
 SAP_IF_INFO SapIfInfo;
 SAP_IF_STATS SapIfStats;
 } SAP_INTERFACE, *PSAP_INTERFACE;

 typedef struct _SAP_MIB_GET_INPUT_DATA {
 ULONG TableId;
 ULONG InterfaceIndex;
 } SAP_MIB_GET_INPUT_DATA, *PSAP_MIB_GET_INPUT_DATA;

 typedef struct _SAP_MIB_SET_INPUT_DATA {
 ULONG TableId;
 SAP_INTERFACE SapInterface;
 } SAP_MIB_SET_INPUT_DATA, *PSAP_MIB_SET_INPUT_DATA;

 typedef struct _RIPMIB_BASE {
 ULONG RIPOperState;
 } RIPMIB_BASE, *PRIPMIB_BASE;

 typedef struct _RIP_IF_STATS {
 ULONG RipIfOperState;
 ULONG RipIfInputPackets;

484 / 547

[MS-RRASM-Diff] - v20210407
Routing and Remote Access Server (RRAS) Management Protocol
Copyright © 2021 Microsoft Corporation
Release: April 7, 2021

 ULONG RipIfOutputPackets;
 } RIP_IF_STATS, *PRIP_IF_STATS;

 typedef struct _RIP_IF_INFO {
 ULONG AdminState;
 ULONG UpdateMode;
 ULONG PacketType;
 ULONG Supply;
 ULONG Listen;
 ULONG PeriodicUpdateInterval;
 ULONG AgeIntervalMultiplier;
 } RIP_IF_INFO, *PRIP_IF_INFO;

 typedef struct _RIP_INTERFACE {
 ULONG InterfaceIndex;
 RIP_IF_INFO RipIfInfo;
 RIP_IF_STATS RipIfStats;
 } RIP_INTERFACE, *PRIP_INTERFACE;

 typedef struct _RIP_MIB_GET_INPUT_DATA {
 ULONG TableId;
 ULONG InterfaceIndex;
 } RIP_MIB_GET_INPUT_DATA, *PRIP_MIB_GET_INPUT_DATA;

 typedef struct _RIP_MIB_SET_INPUT_DATA {
 ULONG TableId;
 RIP_INTERFACE RipInterface;
 } RIP_MIB_SET_INPUT_DATA, *PRIP_MIB_SET_INPUT_DATA;

 typedef struct _EAPTLS_HASH
 {
 DWORD cbHash;
 BYTE pbHash[20];
 } EAPTLS_HASH;

 typedef struct _EAPTLS_USER_PROPERTIES
 {
 DWORD reserved;
 DWORD dwVersion;
 DWORD dwSize;
 DWORD fFlags;
 EAPTLS_HASH Hash;
 WCHAR* pwszDiffUser;
 DWORD dwPinOffset;
 WCHAR* pwszPin;
 USHORT usLength;
 USHORT usMaximumLength;
 UCHAR ucSeed;
 WCHAR awszString[1];
 } EAPTLS_USER_PROPERTIES;

 typedef struct _IPBOOTP_GLOBAL_CONFIG {
 DWORD GC_LoggingLevel;
 DWORD GC_MaxRecvQueueSize;
 DWORD GC_ServerCount;
 } IPBOOTP_GLOBAL_CONFIG, *PIPBOOTP_GLOBAL_CONFIG;

485 / 547

[MS-RRASM-Diff] - v20210407
Routing and Remote Access Server (RRAS) Management Protocol
Copyright © 2021 Microsoft Corporation
Release: April 7, 2021

 typedef struct _IPBOOTP_IF_CONFIG {
 DWORD IC_State;
 DWORD IC_RelayMode;
 DWORD IC_MaxHopCount;
 DWORD IC_MinSecondsSinceBoot;
 } IPBOOTP_IF_CONFIG, *PIPBOOTP_IF_CONFIG;

 typedef struct _IPBOOTP_MIB_GET_INPUT_DATA {
 DWORD IMGID_TypeID;
 DWORD IMGID_IfIndex;
 } IPBOOTP_MIB_GET_INPUT_DATA, *PIPBOOTP_MIB_GET_INPUT_DATA;

 typedef struct _IPBOOTP_MIB_GET_OUTPUT_DATA {
 DWORD IMGOD_TypeID;
 DWORD IMGOD_IfIndex;
 BYTE IMGOD_Buffer[1];
 } IPBOOTP_MIB_GET_OUTPUT_DATA, *PIPBOOTP_MIB_GET_OUTPUT_DATA;

 typedef struct _IPBOOTP_IF_STATS {
 DWORD IS_State;
 DWORD IS_SendFailures;
 DWORD IS_ReceiveFailures;
 DWORD IS_ArpUpdateFailures;
 DWORD IS_RequestsReceived;
 DWORD IS_RequestsDiscarded;
 DWORD IS_RepliesReceived;
 DWORD IS_RepliesDiscarded;
 } IPBOOTP_IF_STATS, *PIPBOOTP_IF_STATS;

 typedef struct _IPBOOTP_IF_BINDING {
 DWORD IB_State;
 DWORD IB_AddrCount;
 } IPBOOTP_IF_BINDING, *PIPBOOTP_IF_BINDING;

 typedef struct _IPBOOTP_IP_ADDRESS {
 DWORD IA_Address;
 DWORD IA_Netmask;
 } IPBOOTP_IP_ADDRESS, *PIPBOOTP_IP_ADDRESS;

 typedef struct _DHCPV6R_MIB_GET_OUTPUT_DATA {
 DWORD IMGOD_TypeID; // Type of the data received
 DWORD IMGOD_IfIndex;
 BYTE IMGOD_Buffer[1];
 } DHCPV6R_MIB_GET_OUTPUT_DATA, *PDHCPV6R_MIB_GET_OUTPUT_DATA;

 typedef struct _DHCPV6R_IF_STATS {
 DWORD IS_State;
 DWORD IS_SendFailures;
 DWORD IS_ReceiveFailures;
 DWORD IS_RequestsReceived;
 DWORD IS_RequestsDiscarded;
 DWORD IS_RepliesReceived;
 DWORD IS_RepliesDiscarded;
 } DHCPV6R_IF_STATS, *PDHCPV6R_IF_STATS;

 typedef struct _DHCPV6R_MIB_GET_INPUT_DATA {
 DWORD IMGID_TypeID; // Type of the data to get
 DWORD IMGID_IfIndex;
 } DHCPV6R_MIB_GET_INPUT_DATA, *PDHCPV6R_MIB_GET_INPUT_DATA;

 typedef struct _DHCPV6R_GLOBAL_CONFIG {
 DWORD GC_LoggingLevel;
 DWORD GC_MaxRecvQueueSize;
 DWORD GC_ServerCount;
 } DHCPV6R_GLOBAL_CONFIG, *PDHCPV6R_GLOBAL_CONFIG;

 typedef struct _DHCPV6R_IF_CONFIG {
 DWORD IC_State;
 DWORD IC_RelayMode;

486 / 547

[MS-RRASM-Diff] - v20210407
Routing and Remote Access Server (RRAS) Management Protocol
Copyright © 2021 Microsoft Corporation
Release: April 7, 2021

 DWORD IC_MaxHopCount;
 DWORD IC_MinElapsedTime;
 } DHCPV6R_IF_CONFIG, *PDHCPV6R_IF_CONFIG;

 typedef struct _IPRIP_MIB_GET_INPUT_DATA {
 DWORD IMGID_TypeID;
 union {
 DWORD IMGID_IfIndex;
 DWORD IMGID_PeerAddress;
 };
 } IPRIP_MIB_GET_INPUT_DATA, *PIPRIP_MIB_GET_INPUT_DATA;

 typedef struct _IPRIP_MIB_GET_OUTPUT_DATA {
 DWORD IMGOD_TypeID;
 union {
 DWORD IMGOD_IfIndex;
 DWORD IMGOD_PeerAddress;
 };
 BYTE IMGOD_Buffer[1];
 } IPRIP_MIB_GET_OUTPUT_DATA, *PIPRIP_MIB_GET_OUTPUT_DATA;

 typedef struct _IPRIP_GLOBAL_STATS {
 DWORD GS_SystemRouteChanges;
 DWORD GS_TotalResponsesSent;
 } IPRIP_GLOBAL_STATS, *PIPRIP_GLOBAL_STATS;

 typedef struct _IPRIP_GLOBAL_CONFIG {
 DWORD GC_LoggingLevel;
 DWORD GC_MaxRecvQueueSize;
 DWORD GC_MaxSendQueueSize;
 DWORD GC_MinTriggeredUpdateInterval;
 DWORD GC_PeerFilterMode;
 DWORD GC_PeerFilterCount;
 } IPRIP_GLOBAL_CONFIG, *PIPRIP_GLOBAL_CONFIG;

 typedef struct _IPRIP_IF_STATS {
 DWORD IS_State;
 DWORD IS_SendFailures;
 DWORD IS_ReceiveFailures;
 DWORD IS_RequestsSent;
 DWORD IS_RequestsReceived;
 DWORD IS_ResponsesSent;
 DWORD IS_ResponsesReceived;
 DWORD IS_BadResponsePacketsReceived;
 DWORD IS_BadResponseEntriesReceived;
 DWORD IS_TriggeredUpdatesSent;
 } IPRIP_IF_STATS, *PIPRIP_IF_STATS;

 typedef struct _IPRIP_IF_CONFIG {
 DWORD IC_State;
 DWORD IC_Metric;
 DWORD IC_UpdateMode;
 DWORD IC_AcceptMode;
 DWORD IC_AnnounceMode;
 DWORD IC_ProtocolFlags;
 DWORD IC_RouteExpirationInterval;
 DWORD IC_RouteRemovalInterval;
 DWORD IC_FullUpdateInterval;
 DWORD IC_AuthenticationType;
 BYTE IC_AuthenticationKey[16];
 WORD IC_RouteTag;
 DWORD IC_UnicastPeerMode;
 DWORD IC_AcceptFilterMode;
 DWORD IC_AnnounceFilterMode;
 DWORD IC_UnicastPeerCount;
 DWORD IC_AcceptFilterCount;
 DWORD IC_AnnounceFilterCount;
 } IPRIP_IF_CONFIG, *PIPRIP_IF_CONFIG;

 typedef struct _IPRIP_ROUTE_FILTER {

487 / 547

[MS-RRASM-Diff] - v20210407
Routing and Remote Access Server (RRAS) Management Protocol
Copyright © 2021 Microsoft Corporation
Release: April 7, 2021

 DWORD RF_LoAddress;
 DWORD RF_HiAddress;
 } IPRIP_ROUTE_FILTER, *PIPRIP_ROUTE_FILTER;

 typedef struct _IPRIP_IF_BINDING {
 DWORD IB_State;
 DWORD IB_AddrCount;
 } IPRIP_IF_BINDING, *PIPRIP_IF_BINDING;

 typedef struct _IPRIP_IP_ADDRESS {
 DWORD IA_Address;
 DWORD IA_Netmask;
 } IPRIP_IP_ADDRESS, *PIPRIP_IP_ADDRESS;

 typedef struct _IPRIP_PEER_STATS {
 DWORD PS_LastPeerRouteTag;
 DWORD PS_LastPeerUpdateTickCount;
 DWORD PS_LastPeerUpdateVersion;
 DWORD PS_BadResponsePacketsFromPeer;
 DWORD PS_BadResponseEntriesFromPeer;
 } IPRIP_PEER_STATS, *PIPRIP_PEER_STATS;

 typedef struct _IGMP_MIB_GROUP_SOURCE_INFO_V3GET_INPUT_DATA {
 DWORD Source;
 DWORD SourceExpiryTime; //not valid for exclusion mode
 DWORD SourceUpTime;
 DWORD Flags;
 } IGMP_MIB_GROUP_SOURCE_INFO_V3, *PIGMP_MIB_GROUP_SOURCE_INFO_V3;

 typedef struct _IGMP_MIB_GET_INPUT_DATA {
 DWORD TypeId;
 USHORT Flags;
 USHORT Signature;
 DWORD IfIndex;
 DWORD RasClientAddr;
 DWORD GroupAddr;
 DWORD Count;
 } IGMP_MIB_GET_INPUT_DATA, *PIGMP_MIB_GET_INPUT_DATA;

 typedef struct _IGMP_MIB_GET_OUTPUT_DATA {
 DWORD TypeId;
 DWORD Flags; //IGMP_ENUM_FORMAT_IGMPV3 set if v3 struct
 DWORD Count;
 BYTE Buffer[1];
 } IGMP_MIB_GET_OUTPUT_DATA, *PIGMP_MIB_GET_OUTPUT_DATA;

 typedef struct _IGMP_MIB_GLOBAL_CONFIG {
 DWORD Version;
 DWORD LoggingLevel;
 DWORD RasClientStats;
 } IGMP_MIB_GLOBAL_CONFIG, *PIGMP_MIB_GLOBAL_CONFIG;

 typedef struct _IGMP_MIB_GLOBAL_STATS {
 DWORD CurrentGroupMemberships;
 DWORD GroupMembershipsAdded;
 } IGMP_MIB_GLOBAL_STATS, *PIGMP_MIB_GLOBAL_STATS;

 typedef struct _IGMP_MIB_IF_BINDING {
 DWORD IfIndex;
 DWORD IfType;
 DWORD State;
 DWORD AddrCount;
 } IGMP_MIB_IF_BINDING, *PIGMP_MIB_IF_BINDING;

 typedef struct _IGMP_MIB_IF_CONFIG {
 DWORD Version;
 DWORD IfIndex; //read only:index
 DWORD IpAddr; //read only
 DWORD IfType; //read only

488 / 547

[MS-RRASM-Diff] - v20210407
Routing and Remote Access Server (RRAS) Management Protocol
Copyright © 2021 Microsoft Corporation
Release: April 7, 2021

 DWORD Flags;
 DWORD IgmpProtocolType;
 DWORD RobustnessVariable;
 DWORD StartupQueryInterval;
 DWORD StartupQueryCount;
 DWORD GenQueryInterval;
 DWORD GenQueryMaxResponseTime;
 DWORD LastMemQueryInterval;
 DWORD LastMemQueryCount;
 DWORD OtherQuerierPresentInterval;//read only
 DWORD GroupMembershipTimeout; //read only
 DWORD NumStaticGroups;
 } IGMP_MIB_IF_CONFIG, *PIGMP_MIB_IF_CONFIG;

 typedef struct _IGMP_MIB_IF_GROUPS_LIST {
 DWORD IfIndex;
 DWORD IpAddr;
 DWORD IfType;
 DWORD NumGroups;
 BYTE Buffer[1];
 } IGMP_MIB_IF_GROUPS_LIST, *PIGMP_MIB_IF_GROUPS_LIST;

 typedef struct _IGMP_MIB_GROUP_INFO {
 union {
 DWORD IfIndex;
 DWORD GroupAddr;
 };
 DWORD IpAddr;
 DWORD GroupUpTime;
 DWORD GroupExpiryTime;
 DWORD LastReporter;
 DWORD V1HostPresentTimeLeft;
 DWORD Flags;
 } IGMP_MIB_GROUP_INFO, *PIGMP_MIB_GROUP_INFO;

 typedef struct _IGMP_MIB_IF_STATS {
 DWORD IfIndex; // same as in MIB_IF_CONFIG
 DWORD IpAddr; // same as in MIB_IF_CONFIG
 DWORD IfType; // same as in MIB_IF_CONFIG
 BYTE State; // bound/enabled
 BYTE QuerierState; // (not)querier
 DWORD IgmpProtocolType; // router/proxy, and ver(1/2/3)
 DWORD QuerierIpAddr;
 DWORD ProxyIfIndex; // IfIndex of proxy(req by mib)
 DWORD QuerierPresentTimeLeft;
 DWORD LastQuerierChangeTime;
 DWORD V1QuerierPresentTimeLeft; //obsolete
 DWORD Uptime; // seconds it has been activated
 DWORD TotalIgmpPacketsReceived;
 DWORD TotalIgmpPacketsForRouter;
 DWORD GeneralQueriesReceived;
 DWORD WrongVersionQueries;
 DWORD JoinsReceived;
 DWORD LeavesReceived;
 DWORD CurrentGroupMemberships;
 DWORD GroupMembershipsAdded;
 DWORD WrongChecksumPackets;
 DWORD ShortPacketsReceived;
 DWORD LongPacketsReceived;
 DWORD PacketsWithoutRtrAlert;
 } IGMP_MIB_IF_STATS, *PIGMP_MIB_IF_STATS;

 typedef struct _IGMP_MIB_GROUP_IFS_LIST {
 DWORD GroupAddr;
 DWORD NumInterfaces;
 BYTE Buffer[1];
 } IGMP_MIB_GROUP_IFS_LIST, *PIGMP_MIB_GROUP_IFS_LIST;

 typedef struct _IGMP_MIB_GROUP_SOURCE_INFO_V3 {
 DWORD Source;

489 / 547

[MS-RRASM-Diff] - v20210407
Routing and Remote Access Server (RRAS) Management Protocol
Copyright © 2021 Microsoft Corporation
Release: April 7, 2021

 DWORD SourceExpiryTime; //not valid for exclusion mode
 DWORD SourceUpTime;
 DWORD Flags;
 } IGMP_MIB_GROUP_SOURCE_INFO_V3, *PIGMP_MIB_GROUP_SOURCE_INFO_V3;

 typedef struct _IGMP_MIB_GROUP_INFO_V3
 {
 union {
 DWORD IfIndex;
 DWORD GroupAddr;
 };
 DWORD IpAddr;
 DWORD GroupUpTime;
 DWORD GroupExpiryTime;

 DWORD LastReporter;
 DWORD V1HostPresentTimeLeft;
 DWORD Flags;

 //v3 additions
 DWORD Version; //1/2/3
 DWORD Size; //size of this struct
 DWORD FilterType;//EXCLUSION/INCLUSION
 DWORD V2HostPresentTimeLeft;
 DWORD NumSources;
 //IGMP_MIB_GROUP_SOURCE_INFO_V3 Sources[0];

 } IGMP_MIB_GROUP_INFO_V3, *PIGMP_MIB_GROUP_INFO_V3;

 typedef struct _INTERFACE_ROUTE_ENTRY
 {
 DWORD dwIndex;
 INTERFACE_ROUTE_INFO routeInfo;
 }INTERFACE_ROUTE_ENTRY, *PINTERFACE_ROUTE_ENTRY;

 typedef struct _IP_NAT_MIB_QUERY {
 ULONG Oid;
 union {
 ULONG Index;
 UCHAR Data;
 };
 } IP_NAT_MIB_QUERY, *PIP_NAT_MIB_QUERY;

 typedef enum _IP_NAT_DIRECTION {
 NatInboundDirection = 0,
 NatOutboundDirection
 } IP_NAT_DIRECTION, *PIP_NAT_DIRECTION;

 typedef struct _IP_NAT_SESSION_MAPPING {
 UCHAR Protocol; // see NAT_PROTOCOL_* above
 ULONG PrivateAddress;
 USHORT PrivatePort;
 ULONG PublicAddress;
 USHORT PublicPort;
 ULONG RemoteAddress;
 USHORT RemotePort;
 IP_NAT_DIRECTION Direction;
 ULONG IdleTime; // in seconds
 } IP_NAT_SESSION_MAPPING, *PIP_NAT_SESSION_MAPPING;

 typedef struct _IP_NAT_ENUMERATE_SESSION_MAPPINGS {
 IN ULONG Index;
 IN OUT ULONG EnumerateContext[4];
 OUT ULONG EnumerateCount;
 OUT ULONG EnumerateTotalHint;
 OUT IP_NAT_SESSION_MAPPING EnumerateTable[1];
 } IP_NAT_ENUMERATE_SESSION_MAPPINGS, *PIP_NAT_ENUMERATE_SESSION_MAPPINGS;

 typedef struct _IP_NAT_INTERFACE_STATISTICS {

490 / 547

[MS-RRASM-Diff] - v20210407
Routing and Remote Access Server (RRAS) Management Protocol
Copyright © 2021 Microsoft Corporation
Release: April 7, 2021

 OUT ULONG TotalMappings;
 OUT ULONG InboundMappings;
 OUT ULONG64 BytesForward;
 OUT ULONG64 BytesReverse;
 OUT ULONG64 PacketsForward;
 OUT ULONG64 PacketsReverse;
 OUT ULONG64 RejectsForward;
 OUT ULONG64 RejectsReverse;
 } IP_NAT_INTERFACE_STATISTICS, *PIP_NAT_INTERFACE_STATISTICS;

 typedef struct _IP_DNS_PROXY_MIB_QUERY {
 ULONG Oid;
 union {
 ULONG Index;
 UCHAR Data;
 };
 } IP_DNS_PROXY_MIB_QUERY, *PIP_DNS_PROXY_MIB_QUERY;

 typedef struct _IP_DNS_PROXY_STATISTICS {
 ULONG MessagesIgnored;
 ULONG QueriesReceived;
 ULONG ResponsesReceived;
 ULONG QueriesSent;
 ULONG ResponsesSent;
 } IP_DNS_PROXY_STATISTICS, *PIP_DNS_PROXY_STATISTICS;

 typedef struct _IP_AUTO_DHCP_MIB_QUERY {
 ULONG Oid;
 union {
 ULONG Index;
 UCHAR Data;
 };
 ULONG Reserved;
 } IP_AUTO_DHCP_MIB_QUERY, *PIP_AUTO_DHCP_MIB_QUERY;

 typedef struct _IP_AUTO_DHCP_STATISTICS {
 ULONG MessagesIgnored;
 ULONG BootpOffersSent;
 ULONG DiscoversReceived;
 ULONG InformsReceived;
 ULONG OffersSent;
 ULONG RequestsReceived;
 ULONG AcksSent;
 ULONG NaksSent;
 ULONG DeclinesReceived;
 ULONG ReleasesReceived;
 } IP_AUTO_DHCP_STATISTICS, *PIP_AUTO_DHCP_STATISTICS;

 typedef struct _MIB_DA_MSG {
 UINT32 op_code; /* IN: MIB manager operation code */
 UINT32 ret_code; /* OUT: MIB manager return code */
 UINT32 in_snmp_id[44]; /* IN: SNMP ID array (get_next) */
 UINT32 obj_id[17]; /* IN: object ID array (get, set) */
 UINT32 attr_id; /* IN: attribute ID (set) */
 UINT32 inst_id[23]; /* IN: instance ID array (get, set) */
 UINT32 next_snmp_id[44]; /* OUT: SNMP ID array (get_next) */
 UINT32 creator; /* OUT: creator of instance (get, get_next) */
 UINT32 attr_type; /* OUT: for resolveVarBind */
 UINT32 inst_cnt; /* OUT: # of insts for caching (get_next) */
 UINT32 map_flag; /* IN: flag - is this request mapped? */
 ULONG_PTR data[32]; /* IN: attribute value (set) */
 /* OUT: entire record (get, get_next) */
 } MIB_DA_MSG;

 typedef struct _IP_AUTO_DHCP_GLOBAL_INFO {
 ULONG LoggingLevel;
 ULONG Flags;
 ULONG LeaseTime;

491 / 547

[MS-RRASM-Diff] - v20210407
Routing and Remote Access Server (RRAS) Management Protocol
Copyright © 2021 Microsoft Corporation
Release: April 7, 2021

 ULONG ScopeNetwork;
 ULONG ScopeMask;
 ULONG ExclusionCount;
 ULONG ExclusionArray;
 } IP_AUTO_DHCP_GLOBAL_INFO, *PIP_AUTO_DHCP_GLOBAL_INFO;

 typedef struct _IP_AUTO_DHCP_INTERFACE_INFO {
 ULONG Flags;
 } IP_AUTO_DHCP_INTERFACE_INFO, *PIP_AUTO_DHCP_INTERFACE_INFO;

 typedef struct _IP_DNS_PROXY_GLOBAL_INFO {
 ULONG LoggingLevel;
 ULONG Flags;
 ULONG TimeoutSeconds;
 } IP_DNS_PROXY_GLOBAL_INFO, *PIP_DNS_PROXY_GLOBAL_INFO;

 typedef struct _IP_DNS_PROXY_INTERFACE_INFO {
 ULONG Flags;
 } IP_DNS_PROXY_INTERFACE_INFO, *PIP_DNS_PROXY_INTERFACE_INFO;

 typedef struct _IP_NAT_GLOBAL_INFO {
 ULONG LoggingLevel; // see IPNATHLP.H (IPNATHLP_LOGGING_*).
 ULONG Flags;
 RTR_INFO_BLOCK_HEADER Header;
 } IP_NAT_GLOBAL_INFO, *PIP_NAT_GLOBAL_INFO;

 typedef struct _IP_NAT_TIMEOUT {
 ULONG TCPTimeoutSeconds;
 ULONG UDPTimeoutSeconds;
 } IP_NAT_TIMEOUT, *PIP_NAT_TIMEOUT;

 typedef struct _IP_NAT_INTERFACE_INFO {
 ULONG Index;
 ULONG Flags;
 RTR_INFO_BLOCK_HEADER Header;
 } IP_NAT_INTERFACE_INFO, *PIP_NAT_INTERFACE_INFO;

 typedef struct _IP_NAT_ADDRESS_RANGE {
 ULONG StartAddress;
 ULONG EndAddress;
 ULONG SubnetMask;
 } IP_NAT_ADDRESS_RANGE, *PIP_NAT_ADDRESS_RANGE;

 typedef struct _IP_NAT_PORT_MAPPING {
 UCHAR Protocol;
 USHORT PublicPort;
 ULONG PublicAddress; // OPTIONAL - see IP_NAT_ADDRESS_UNSPECIFIED
 USHORT PrivatePort;
 ULONG PrivateAddress;
 } IP_NAT_PORT_MAPPING, *PIP_NAT_PORT_MAPPING;

 typedef struct _IP_NAT_ADDRESS_MAPPING {
 ULONG PrivateAddress;
 ULONG PublicAddress;
 BOOLEAN AllowInboundSessions;
 } IP_NAT_ADDRESS_MAPPING, *PIP_NAT_ADDRESS_MAPPING;

 typedef struct IP_ALG_GLOBAL_INFO {
 ULONG LoggingLevel;
 ULONG Flags;
 } IP_ALG_GLOBAL_INFO, *PIP_ALG_GLOBAL_INFO;

 typedef struct _RIP_GLOBAL_INFO {
 DWORD EventLogMask;
 } RIP_GLOBAL_INFO,
 *PRIP_GLOBAL_INFO;

492 / 547

[MS-RRASM-Diff] - v20210407
Routing and Remote Access Server (RRAS) Management Protocol
Copyright © 2021 Microsoft Corporation
Release: April 7, 2021

 typedef struct _RIP_ROUTE_FILTER_INFO {
 UCHAR Network[4];
 UCHAR Mask[4];
 } RIP_ROUTE_FILTER_INFO,
 *PRIP_ROUTE_FILTER_INFO;

 typedef struct _RIP_IF_FILTERS {
 ULONG SupplyFilterAction;
 ULONG SupplyFilterCount;
 ULONG ListenFilterAction;
 ULONG ListenFilterCount;
 RIP_ROUTE_FILTER_INFO RouteFilter[1];
 } RIP_IF_FILTERS,
 *PRIP_IF_FILTERS;

 typedef struct _RIP_IF_CONFIG {
 RIP_IF_INFO RipIfInfo;
 RIP_IF_FILTERS RipIfFilters;
 } RIP_IF_CONFIG,
 *PRIP_IF_CONFIG;

 typedef struct _SAP_GLOBAL_INFO {
 DWORD EventLogMask;
 } SAP_GLOBAL_INFO,
 *PSAP_GLOBAL_INFO;

 typedef struct _OSPF_ROUTE_FILTER
 {
 DWORD dwAddress;
 DWORD dwMask;
 }OSPF_ROUTE_FILTER, *POSPF_ROUTE_FILTER;

 typedef enum _OSPF_FILTER_ACTION
 {
 ACTION_DROP = 0,
 ACTION_ACCEPT = 1
 }OSPF_FILTER_ACTION, *POSPF_FILTER_ACTION;

 typedef struct _OSPF_ROUTE_FILTER_INFO
 {
 DWORD type;
 OSPF_FILTER_ACTION ofaActionOnMatch;
 DWORD dwNumFilters;
 OSPF_ROUTE_FILTER pFilters[1];
 }OSPF_ROUTE_FILTER_INFO, *POSPF_ROUTE_FILTER_INFO;

 typedef struct _OSPF_PROTO_FILTER_INFO
 {
 DWORD type;
 OSPF_FILTER_ACTION ofaActionOnMatch;
 DWORD dwNumProtoIds;
 DWORD pdwProtoId[1];
 }OSPF_PROTO_FILTER_INFO, *POSPF_PROTO_FILTER_INFO;

 typedef struct _OSPF_GLOBAL_PARAM
 {
 DWORD type;
 DWORD create;
 DWORD enable;
 DWORD routerId;
 DWORD ASBrdrRtr;
 DWORD logLevel;
 }OSPF_GLOBAL_PARAM, *POSPF_GLOBAL_PARAM;

 typedef struct _OSPF_AREA_PARAM
 {
 DWORD type;
 DWORD create;
 DWORD enable;
 DWORD areaId;

493 / 547

[MS-RRASM-Diff] - v20210407
Routing and Remote Access Server (RRAS) Management Protocol
Copyright © 2021 Microsoft Corporation
Release: April 7, 2021

 DWORD authType;
 DWORD importASExtern;
 DWORD stubMetric;
 DWORD importSumAdv;
 }OSPF_AREA_PARAM, *POSPF_AREA_PARAM;

 typedef struct _OSPF_AREA_RANGE_PARAM
 {
 DWORD type;
 DWORD create;
 DWORD enable;
 DWORD areaId;
 DWORD rangeNet;
 DWORD rangeMask;
 }OSPF_AREA_RANGE_PARAM, *POSPF_AREA_RANGE_PARAM;

 typedef struct _OSPF_VIRT_INTERFACE_PARAM
 {
 DWORD type;
 DWORD create;
 DWORD enable;
 DWORD transitAreaId;
 DWORD virtNeighborRouterId;
 DWORD transitDelay;
 DWORD retransInterval;
 DWORD helloInterval;
 DWORD deadInterval;
 BYTE password[8];
 }OSPF_VIRT_INTERFACE_PARAM, *POSPF_VIRT_INTERFACE_PARAM;

 typedef struct _OSPF_INTERFACE_PARAM
 {
 DWORD type;
 DWORD create;
 DWORD enable;
 DWORD intfIpAddr;
 DWORD intfSubnetMask;
 DWORD areaId;
 DWORD intfType;
 DWORD routerPriority;
 DWORD transitDelay;
 DWORD retransInterval;
 DWORD helloInterval;
 DWORD deadInterval;
 DWORD pollInterval;
 DWORD metricCost;
 BYTE password[8];
 DWORD mtuSize;
 }OSPF_INTERFACE_PARAM, *POSPF_INTERFACE_PARAM;

 typedef struct _OSPF_NBMA_NEIGHBOR_PARAM
 {
 DWORD type;
 DWORD create;
 DWORD enable;
 DWORD neighborIpAddr;
 DWORD intfIpAddr;
 DWORD neighborPriority;
 }OSPF_NBMA_NEIGHBOR_PARAM, *POSPF_NBMA_NEIGHBOR_PARAM;

 typedef enum _RASDEVICETYPE
 {
 RDT_Modem = 0,
 RDT_X25,
 RDT_Isdn,
 RDT_Serial,
 RDT_FrameRelay,
 RDT_Atm,
 RDT_Sonet,

494 / 547

[MS-RRASM-Diff] - v20210407
Routing and Remote Access Server (RRAS) Management Protocol
Copyright © 2021 Microsoft Corporation
Release: April 7, 2021

 RDT_Sw56,
 RDT_Tunnel_Pptp,
 RDT_Tunnel_L2tp,
 RDT_Irda,
 RDT_Parallel,
 RDT_Other,
 RDT_PPPoE,
 RDT_Tunnel_Sstp,
 RDT_Tunnel_Ikev2,
 RDT_Tunnel = 0x00010000,
 RDT_Direct = 0x00020000,
 RDT_Null_Modem = 0x00040000,
 RDT_Broadband = 0x00080000
 } RASDEVICETYPE;

 typedef enum _RASMAN_STATUS {
 OPEN = 0,
 CLOSED = 1,
 UNAVAILABLE = 2,
 REMOVED = 3
 } RASMAN_STATUS;

 typedef enum _ReqTypes {
 REQTYPE_PORTENUM= 21,
 REQTYPE_GETINFO= 22,
 REQTYPE_GETDEVCONFIG= 73,
 REQTYPE_SETDEVICECONFIGINFO= 94,
 REQTYPE_GETDEVICECONFIGINFO= 95,
 REQTYPE_GETCALLEDID= 105,
 REQTYPE_SETCALLEDID= 106,
 REQTYPE_GETNDISWANDRIVERCAPS= 111
 } ReqTypes;

 typedef enum _RASMAN_STATE {
 CONNECTING = 0,
 LISTENING = 1,
 CONNECTED = 2,
 DISCONNECTING = 3,
 DISCONNECTED = 4,
 LISTENCOMPLETED = 5,
 } RASMAN_STATE;

 typedef enum _RASMAN_DISCONNECT_TYPE {
 USER_REQUESTED = 0,
 REMOTE_DISCONNECTION = 1,
 HARDWARE_FAILURE = 2,
 NOT_DISCONNECTED = 3
 } RASMAN_DISCONNECT_TYPE;

 typedef enum _RASMAN_USAGE {
 CALL_NONE = 0x00,
 CALL_IN = 0x01,
 CALL_OUT = 0x02,
 CALL_ROUTER = 0x04,
 CALL_LOGON = 0x08,
 CALL_OUT_ONLY = 0x10,
 CALL_IN_ONLY = 0x20,
 CALL_OUTBOUND_ROUTER = 0x40
 } RASMAN_USAGE;

 typedef struct _RequestBuffer {
 DWORD RB_PCBIndex;
 ReqTypes RB_Reqtype;
 DWORD RB_Dummy;
 DWORD RB_Done;
 LONGLONG Alignment;
 BYTE RB_Buffer[1];
 } RequestBuffer;
 typedef struct DeviceConfigInfo

495 / 547

[MS-RRASM-Diff] - v20210407
Routing and Remote Access Server (RRAS) Management Protocol
Copyright © 2021 Microsoft Corporation
Release: April 7, 2021

 {
 DWORD retcode;
 DWORD dwVersion;
 DWORD cbBuffer;
 DWORD cEntries;
 BYTE abdata[1];
 } DeviceConfigInfo;
 typedef struct _RAS_DEVICE_INFO
 {
 DWORD dwVersion;
 BOOL fWrite;
 BOOL fRasEnabled;
 BOOL fRouterEnabled;
 BOOL fRouterOutboundEnabled;
 DWORD dwTapiLineId;
 DWORD dwError;
 DWORD dwNumEndPoints;
 DWORD dwMaxOutCalls;
 DWORD dwMaxInCalls;
 DWORD dwMinWanEndPoints;
 DWORD dwMaxWanEndPoints;
 RASDEVICETYPE eDeviceType;
 GUID guidDevice;
 CHAR szPortName[17];
 CHAR szDeviceName[129];
 WCHAR wszDeviceName[129];
 } RAS_DEVICE_INFO, *PRAS_DEVICE_INFO;

 typedef struct _RAS_CALLEDID_INFO
 {
 DWORD dwSize;
 BYTE bCalledId[1];
 } RAS_CALLEDID_INFO, *PRAS_CALLEDID_INFO;

 typedef struct GetSetCalledId
 {
 DWORD retcode;
 BOOL fWrite;
 DWORD dwSize;
 GUID guidDevice;
 RAS_DEVICE_INFO rdi;
 RAS_CALLEDID_INFO rciInfo;
 } GetSetCalledId;

 typedef struct _RAS_NDISWAN_DRIVER_INFO
 {
 ULONG DriverCaps;
 ULONG Reserved;
 } RAS_NDISWAN_DRIVER_INFO, *P_NDISWAN_DRIVER_INFO;

 typedef struct GetNdiswanDriverCapsStruct
 {
 DWORD retcode;
 RAS_NDISWAN_DRIVER_INFO NdiswanDriverInfo;
 } GetNdiswanDriverCapsStruct;

 typedef struct GetDevConfigStruct
 {
 DWORD retcode;
 CHAR devicetype[17];
 DWORD size;
 BYTE config[1];

 } GetDevConfigStruct;

 typedef struct Enum
 {
 DWORD retcode;
 DWORD size;

496 / 547

[MS-RRASM-Diff] - v20210407
Routing and Remote Access Server (RRAS) Management Protocol
Copyright © 2021 Microsoft Corporation
Release: April 7, 2021

 DWORD entries;
 BYTE buffer[1];
 } Enum;

 typedef struct _RASMAN_PORT_32 {
 DWORD P_Port;
 CHAR P_PortName[16];
 RASMAN_STATUS P_Status;
 RASDEVICETYPE P_rdtDeviceType;
 RASMAN_USAGE P_ConfiguredUsage;
 RASMAN_USAGE P_CurrentUsage;
 CHAR P_MediaName[16];
 CHAR P_DeviceType[16];
 CHAR P_DeviceName[129];
 DWORD P_LineDeviceId;
 DWORD P_AddressId;
 } RASMAN_PORT_32;

 typedef struct _RASMAN_INFO {
 RASMAN_STATUS RI_PortStatus;
 RASMAN_STATE RI_ConnState;
 DWORD RI_LinkSpeed;
 DWORD RI_LastError;
 RASMAN_USAGE RI_CurrentUsage;
 CHAR RI_DeviceTypeConnecting [16];
 CHAR RI_DeviceConnecting [129];
 CHAR RI_szDeviceType[16];
 CHAR RI_szDeviceName[129];
 CHAR RI_szPortName[17];
 RASMAN_DISCONNECT_TYPE RI_DisconnectType;
 DWORD RI_OwnershipFlag;
 DWORD RI_ConnectDuration;
 DWORD RI_BytesReceived;
 CHAR RI_Phonebook[261];
 CHAR RI_PhoneEntry[257];
 HANDLE RI_ConnectionHandle;
 DWORD RI_SubEntry;
 RASDEVICETYPE RI_rdtDeviceType;
 GUID RI_GuidEntry;
 DWORD RI_dwSessionId;
 DWORD RI_dwFlags;
 GUID RI_CorrelationGuid;
 }RASMAN_INFO;

 typedef struct Info
 {
 union {
 DWORD retcode;
 HANDLE paddingField;
 };
 RASMAN_INFO info;
 } Info;

 #define RASRPC_MaxEntryName 256
 #define RASRPC_MaxPortName 16
 #define RASRPC_MaxDeviceName 128
 #define RASRPC_MaxPhoneNumber 128
 #define RASRPC_MAX_PATH 260

 typedef struct _RASRPC_CALLBACKLIST
 {
 WCHAR pszPortName[RASRPC_MaxPortName + 1];
 WCHAR pszDeviceName[RASRPC_MaxDeviceName + 1];
 WCHAR pszNumber[RASRPC_MaxPhoneNumber + 1];
 DWORD dwDeviceType;
 [unique] struct _RASRPC_CALLBACKLIST *pNext;
 } RASRPC_CALLBACKLIST, *LPRASRPC_CALLBACKLIST;

 typedef struct _RASRPC_STRINGLIST

497 / 547

[MS-RRASM-Diff] - v20210407
Routing and Remote Access Server (RRAS) Management Protocol
Copyright © 2021 Microsoft Corporation
Release: April 7, 2021

 {
 WCHAR psz[256];
 [unique] struct _RASRPC_STRINGLIST *pNext;
 } RASRPC_STRINGLIST, *LPRASRPC_STRINGLIST;

 typedef struct _RASRPC_LOCATIONLIST
 {
 DWORD dwLocationId;
 DWORD iPrefix;
 DWORD iSuffix;
 [unique] struct _RASRPC_LOCATIONLIST *pNext;
 } RASRPC_LOCATIONLIST, *LPRASRPC_LOCATIONLIST;

 typedef struct _RASRPC_PBUSER
 {
 BOOL fOperatorDial;
 BOOL fPreviewPhoneNumber;
 BOOL fUseLocation;
 BOOL fShowLights;
 BOOL fShowConnectStatus;
 BOOL fCloseOnDial;
 BOOL fAllowLogonPhonebookEdits;
 BOOL fAllowLogonLocationEdits;
 BOOL fSkipConnectComplete;
 BOOL fNewEntryWizard;
 DWORD dwRedialAttempts;
 DWORD dwRedialSeconds;
 DWORD dwIdleDisconnectSeconds;
 BOOL fRedialOnLinkFailure;
 BOOL fPopupOnTopWhenRedialing;
 BOOL fExpandAutoDialQuery;
 DWORD dwCallbackMode;
 [unique] LPRASRPC_CALLBACKLIST pCallbacks;
 WCHAR pszLastCallbackByCaller[129];
 DWORD dwPhonebookMode;
 WCHAR pszPersonalFile[260];
 WCHAR pszAlternatePath[260];
 [unique] LPRASRPC_STRINGLIST pPhonebooks;
 [unique] LPRASRPC_STRINGLIST pAreaCodes;
 BOOL fUseAreaAndCountry;
 [unique] LPRASRPC_STRINGLIST pPrefixes;
 [unique] LPRASRPC_STRINGLIST pSuffixes;
 [unique] LPRASRPC_LOCATIONLIST pLocations;
 DWORD dwXPhonebook;
 DWORD dwYPhonebook;
 WCHAR pszDefaultEntry[257];
 BOOL fInitialized;
 BOOL fDirty;
 } RASRPC_PBUSER, *LPRASRPC_PBUSER;

 [
 uuid(8f09f000-b7ed-11ce-bbd2-00001a181cad),
 version(0.0),
 pointer_default(unique)
]

 interface dimsvc
 {

 DWORD
 RMprAdminServerGetInfo (
 [in] DIM_HANDLE hDimServer,
 [in] DWORD dwLevel,
 [out] PDIM_INFORMATION_CONTAINER pInfoStruct

498 / 547

[MS-RRASM-Diff] - v20210407
Routing and Remote Access Server (RRAS) Management Protocol
Copyright © 2021 Microsoft Corporation
Release: April 7, 2021

);

 DWORD
 RRasAdminConnectionEnum (
 [in] DIM_HANDLE hDimServer,
 [in] DWORD dwLevel,
 [in,out] PDIM_INFORMATION_CONTAINER pInfoStruct,
 [in] DWORD dwPreferedMaximumLength,
 [out] LPDWORD lpdwEntriesRead,
 [out] LPDWORD lpdwTotalEntries,
 [in,out,unique] LPDWORD lpdwResumeHandle
);

 DWORD
 RRasAdminConnectionGetInfo (
 [in] DIM_HANDLE hDimServer,
 [in] DWORD dwLevel,
 [in] DWORD hDimConnection,
 [out] PDIM_INFORMATION_CONTAINER pInfoStruct
);

 DWORD
 RRasAdminConnectionClearStats (
 [in] DIM_HANDLE hDimServer,
 [in] DWORD hDimConnection
);

 DWORD
 RRasAdminPortEnum (
 [in] DIM_HANDLE hDimServer,
 [in] DWORD dwLevel,
 [in] DWORD hRasConnection,
 [in,out] PDIM_INFORMATION_CONTAINER pInfoStruct,
 [in] DWORD dwPreferedMaximumLength,
 [out] LPDWORD lpdwEntriesRead,
 [out] LPDWORD lpdwTotalEntries,
 [in,out,unique] LPDWORD lpdwResumeHandle
);

 DWORD
 RRasAdminPortGetInfo (
 [in] DIM_HANDLE hDimServer,
 [in] DWORD dwLevel,
 [in] DWORD hPort,
 [out] PDIM_INFORMATION_CONTAINER pInfoStruct
);

 DWORD
 RRasAdminPortClearStats (
 [in] DIM_HANDLE hDimServer,
 [in] DWORD hPort
);

 DWORD
 RRasAdminPortReset (
 [in] DIM_HANDLE hDimServer,
 [in] DWORD hPort

499 / 547

[MS-RRASM-Diff] - v20210407
Routing and Remote Access Server (RRAS) Management Protocol
Copyright © 2021 Microsoft Corporation
Release: April 7, 2021

);

 DWORD
 RRasAdminPortDisconnect (
 [in] DIM_HANDLE hDimServer,
 [in] DWORD hPort
);

 DWORD
 RRouterInterfaceTransportSetGlobalInfo(
 [in] DIM_HANDLE hDimServer,
 [in] DWORD dwTransportId,
 [in] PDIM_INTERFACE_CONTAINER pInfoStruct
);

 DWORD
 RRouterInterfaceTransportGetGlobalInfo(
 [in] DIM_HANDLE hDimServer,
 [in] DWORD dwTransportId,
 [in,out] PDIM_INTERFACE_CONTAINER pInfoStruct
);

 DWORD
 RRouterInterfaceGetHandle(
 [in] DIM_HANDLE hDimServer,
 [in,string] LPWSTR lpwsInterfaceName,
 [in,out] LPDWORD phInterface,
 [in] DWORD fIncludeClientInterfaces
);

 DWORD
 RRouterInterfaceCreate(
 [in] DIM_HANDLE hDimServer,
 [in] DWORD dwLevel,
 [in] PDIM_INFORMATION_CONTAINER pInfoStruct,
 [in,out] LPDWORD phInterface
);

 DWORD
 RRouterInterfaceGetInfo(
 [in] DIM_HANDLE hDimServer,
 [in] DWORD dwLevel,
 [in,out] PDIM_INFORMATION_CONTAINER pInfoStruct,
 [in] DWORD hInterface
);

 DWORD
 RRouterInterfaceSetInfo(
 [in] DIM_HANDLE hDimServer,
 [in] DWORD dwLevel,
 [in] PDIM_INFORMATION_CONTAINER pInfoStruct,
 [in] DWORD hInterface
);

 DWORD

500 / 547

[MS-RRASM-Diff] - v20210407
Routing and Remote Access Server (RRAS) Management Protocol
Copyright © 2021 Microsoft Corporation
Release: April 7, 2021

 RRouterInterfaceDelete(
 [in] DIM_HANDLE hDimServer,
 [in] DWORD hInterface
);

 DWORD
 RRouterInterfaceTransportRemove(
 [in] DIM_HANDLE hDimServer,
 [in] DWORD hInterface,
 [in] DWORD dwTransportId
);

 DWORD
 RRouterInterfaceTransportAdd(
 [in] DIM_HANDLE hDimServer,
 [in] DWORD hInterface,
 [in] DWORD dwTransportId,
 [in] PDIM_INTERFACE_CONTAINER pInfoStruct
);

 DWORD
 RRouterInterfaceTransportGetInfo(
 [in] DIM_HANDLE hDimServer,
 [in] DWORD hInterface,
 [in] DWORD dwTransportId,
 [in,out] PDIM_INTERFACE_CONTAINER pInfoStruct
);

 DWORD
 RRouterInterfaceTransportSetInfo(
 [in] DIM_HANDLE hDimServer,
 [in] DWORD hInterface,
 [in] DWORD dwTransportId,
 [in] PDIM_INTERFACE_CONTAINER pInfoStruct
);

 DWORD
 RRouterInterfaceEnum (
 [in] DIM_HANDLE hDimServer,
 [in] DWORD dwLevel,
 [in,out] PDIM_INFORMATION_CONTAINER pInfoStruct,
 [in] DWORD dwPreferedMaximumLength,
 [out] LPDWORD lpdwEntriesRead,
 [out] LPDWORD lpdwTotalEntries,
 [in,out,unique] LPDWORD lpdwResumeHandle
);

 DWORD
 RRouterInterfaceConnect(
 [in] DIM_HANDLE hDimServer,
 [in] DWORD hInterface,
 [in] ULONG_PTR hEvent,
 [in] DWORD fBlocking,
 [in] DWORD dwCallersProcessId
);

501 / 547

[MS-RRASM-Diff] - v20210407
Routing and Remote Access Server (RRAS) Management Protocol
Copyright © 2021 Microsoft Corporation
Release: April 7, 2021

 DWORD
 RRouterInterfaceDisconnect(
 [in] DIM_HANDLE hDimServer,
 [in] DWORD hInterface
);

 DWORD
 RRouterInterfaceUpdateRoutes(
 [in] DIM_HANDLE hDimServer,
 [in] DWORD hInterface,
 [in] DWORD dwTransportId,
 [in] ULONG_PTR hEvent,
 [in] DWORD dwClientProcessId
);

 DWORD
 RRouterInterfaceQueryUpdateResult(
 [in] DIM_HANDLE hDimServer,
 [in] DWORD hInterface,
 [in] DWORD dwTransportId,
 [out] LPDWORD pUpdateResult
);

 DWORD
 RRouterInterfaceUpdatePhonebookInfo(
 [in] DIM_HANDLE hDimServer,
 [in] DWORD hInterface
);

 DWORD
 RMIBEntryCreate(
 [in] DIM_HANDLE hDimServer,
 [in] DWORD dwPid,
 [in] DWORD dwRoutingPid,
 [in] PDIM_MIB_ENTRY_CONTAINER pInfoStuct
);

 DWORD
 RMIBEntryDelete(
 [in] DIM_HANDLE hDimServer,
 [in] DWORD dwPid,
 [in] DWORD dwRoutingPid,
 [in] PDIM_MIB_ENTRY_CONTAINER pInfoStuct
);

 DWORD
 RMIBEntrySet(
 [in] DIM_HANDLE hDimServer,
 [in] DWORD dwPid,
 [in] DWORD dwRoutingPid,
 [in] PDIM_MIB_ENTRY_CONTAINER pInfoStuct
);

 DWORD
 RMIBEntryGet(
 [in] DIM_HANDLE hDimServer,

502 / 547

[MS-RRASM-Diff] - v20210407
Routing and Remote Access Server (RRAS) Management Protocol
Copyright © 2021 Microsoft Corporation
Release: April 7, 2021

 [in] DWORD dwPid,
 [in] DWORD dwRoutingPid,
 [in,out] PDIM_MIB_ENTRY_CONTAINER pInfoStuct
);

 DWORD
 RMIBEntryGetFirst(
 [in] DIM_HANDLE hDimServer,
 [in] DWORD dwPid,
 [in] DWORD dwRoutingPid,
 [in,out] PDIM_MIB_ENTRY_CONTAINER pInfoStuct
);

 DWORD
 RMIBEntryGetNext(
 [in] DIM_HANDLE hDimServer,
 [in] DWORD dwPid,
 [in] DWORD dwRoutingPid,
 [in,out] PDIM_MIB_ENTRY_CONTAINER pInfoStuct
);

 DWORD
 RMIBGetTrapInfo(
 [in] DIM_HANDLE hDimServer,
 [in] DWORD dwPid,
 [in] DWORD dwRoutingPid,
 [in, out] PDIM_MIB_ENTRY_CONTAINER pInfoStruct
);

 DWORD
 RMIBSetTrapInfo(
 [in] DIM_HANDLE hDimServer,
 [in] DWORD dwPid,
 [in] DWORD dwRoutingPid,
 [in] ULONG_PTR hEvent,
 [in] DWORD dwClientProcessId,
 [in, out] PDIM_MIB_ENTRY_CONTAINER pInfoStruct
);

 DWORD
 RRasAdminConnectionNotification(
 [in] DIM_HANDLE hDimServer,
 [in] DWORD fRegister,
 [in] DWORD dwClientProcessId,
 [in] ULONG_PTR hEventNotification
);

 DWORD
 RRasAdminSendUserMessage(
 [in] DIM_HANDLE hDimServer,
 [in] DWORD hDimConnection,
 [in,string] LPWSTR lpwszMessage
);

 DWORD
 RRouterDeviceEnum(
 [in] DIM_HANDLE hDimServer,

503 / 547

[MS-RRASM-Diff] - v20210407
Routing and Remote Access Server (RRAS) Management Protocol
Copyright © 2021 Microsoft Corporation
Release: April 7, 2021

 [in] DWORD dwLevel,
 [in, out] PDIM_INFORMATION_CONTAINER pInfoStruct,
 [in, out] LPDWORD lpdwTotalEntries
);

 DWORD
 RRouterInterfaceTransportCreate(
 [in] DIM_HANDLE hDimServer,
 [in] DWORD dwTransportId,
 [in, string] LPWSTR lpwsTransportName,
 [in] PDIM_INTERFACE_CONTAINER pInfoStruct,
 [in, string] LPWSTR lpwsDLLPath
);

 DWORD
 RRouterInterfaceDeviceGetInfo(
 [in] DIM_HANDLE hDimServer,
 [in] DWORD dwLevel,
 [in, out] PDIM_INFORMATION_CONTAINER pInfoStruct,
 [in] DWORD dwIndex,
 [in] DWORD hInterface
);

 DWORD
 RRouterInterfaceDeviceSetInfo(
 [in] DIM_HANDLE hDimServer,
 [in] DWORD dwLevel,
 [in] PDIM_INFORMATION_CONTAINER pInfoStruct,
 [in] DWORD dwIndex,
 [in] DWORD hInterface
);

 DWORD
 RRouterInterfaceSetCredentialsEx(
 [in] DIM_HANDLE hDimServer,
 [in] DWORD dwLevel,
 [in] PDIM_INFORMATION_CONTAINER pInfoStruct,
 [in] DWORD hInterface
);

 DWORD
 RRouterInterfaceGetCredentialsEx(
 [in] DIM_HANDLE hDimServer,
 [in] DWORD dwLevel,
 [in,out] PDIM_INFORMATION_CONTAINER pInfoStruct,
 [in] DWORD hInterface
);

 DWORD
 RRasAdminConnectionRemoveQuarantine(
 [in] DIM_HANDLE hDimServer,
 [in] DWORD hRasConnection,
 [in] BOOL fIsIpAddress
);

 DWORD
 RMprAdminServerSetInfo(
 [in] DIM_HANDLE hDimServer,

504 / 547

[MS-RRASM-Diff] - v20210407
Routing and Remote Access Server (RRAS) Management Protocol
Copyright © 2021 Microsoft Corporation
Release: April 7, 2021

 [in] DWORD dwLevel,
 [in] PDIM_INFORMATION_CONTAINER pInfoStruct
);

 DWORD
 RMprAdminServerGetInfoEx(
 [in] DIM_HANDLE hDimServer,
 [in, out] PMPR_SERVER_EX_IDL pServerConfig
);

 DWORD
 RRasAdminConnectionEnumEx (
 [in] DIM_HANDLE hDimServer,
 [in] PMPRAPI_OBJECT_HEADER_IDL objectHeader,
 [in] DWORD dwPreferedMaxLen,
 [out] LPDWORD lpdwEntriesRead,
 [out] LPDWORD lpdNumTotalElements,
 [out, size_is(,*lpdwEntriesRead)] PRAS_CONNECTION_EX_IDL *pRasConections,
 [in,out,unique] LPDWORD lpdwResumeHandle);

 DWORD
 RRasAdminConnectionGetInfoEx (
 [in] DIM_HANDLE hDimServer,
 [in] DWORD hDimConnection,
 [in] PMPRAPI_OBJECT_HEADER_IDL objectHeader,
 [out] PRAS_CONNECTION_EX_IDL pRasConnection
);

 DWORD
 RMprAdminServerSetInfoEx (
 [in] DIM_HANDLE hDimServer,
 [in] PMPR_SERVER_SET_CONFIG_EX_IDL pServerConfig);

 DWORD
 RRasAdminUpdateConnection(
 [in] DIM_HANDLE hDimServer,
 [in] DWORD hDimConnection,
 [in] PRAS_UPDATE_CONNECTION_IDL pServerConfig);

 DWORD
 RRouterInterfaceSetCredentialsLocal(
 [in] DIM_HANDLE hDimServer,
 [in,string] LPWSTR lpwsInterfaceName,
 [in,string] LPWSTR lpwsUserName,
 [in,string] LPWSTR lpwsDomainName,
 [in,string] LPWSTR lpwsPassword);

 DWORD
 RRouterInterfaceGetCredentialsLocal(
 [in] DIM_HANDLE hDimServer,
 [in,string] LPWSTR lpwsInterfaceName,
 [out] [string] LPWSTR *lpwsUserName,
 [out] [string] LPWSTR *lpwsDomainName,
 [out] [string] LPWSTR *lpwsPassword);

 DWORD
 RRouterInterfaceGetCustomInfoEx(
 [in] DIM_HANDLE hDimServer,
 [in] DWORD hInterface,
 [in,out] PMPR_IF_CUSTOMINFOEX_IDL pIfCustomConfig
);

505 / 547

[MS-RRASM-Diff] - v20210407
Routing and Remote Access Server (RRAS) Management Protocol
Copyright © 2021 Microsoft Corporation
Release: April 7, 2021

 DWORD
 RRouterInterfaceSetCustomInfoEx(
 [in] DIM_HANDLE hDimServer,
 [in] DWORD hInterface,
 [in,out] PMPR_IF_CUSTOMINFOEX_IDL pIfCustomConfig
);
 }

 [
 uuid(20610036-fa22-11cf-9823-00a0c911e5df),
 version(1.0)
]

 interface rasrpc
 {

 void Opnum0NotUsedOnWire(void);

 void Opnum1NotUsedOnWire(void);

 void Opnum2NotUsedOnWire(void);

 void Opnum3NotUsedOnWire(void);

 void Opnum4NotUsedOnWire(void);

 DWORD
 RasRpcDeleteEntry(
 [in] handle_t h,
 [in, string] LPWSTR lpszPhonebook,
 [in, string] LPWSTR lpszEntry
);

 void Opnum6NotUsedOnWire(void);

 void Opnum7NotUsedOnWire(void);

 void Opnum8NotUsedOnWire(void);

 DWORD
 RasRpcGetUserPreferences(
 [in] handle_t h,
 [in, out] LPRASRPC_PBUSER pUser,
 [in] DWORD dwMode
);

 DWORD
 RasRpcSetUserPreferences(
 [in] handle_t h,
 [in] LPRASRPC_PBUSER pUser,
 [in] DWORD dwMode
);

 UINT
 RasRpcGetSystemDirectory(
 [in] handle_t h,
 [in, out, string, size_is(uSize)] LPWSTR lpBuffer,
 [in, range(0, RASRPC_MAX_PATH)] UINT uSize
);

 DWORD
 RasRpcSubmitRequest (
 [in] handle_t h,
 [in, out, unique, size_is(dwcbBufSize)] PBYTE pReqBuffer,
 [in] DWORD dwcbBufSize
);

506 / 547

[MS-RRASM-Diff] - v20210407
Routing and Remote Access Server (RRAS) Management Protocol
Copyright © 2021 Microsoft Corporation
Release: April 7, 2021

 void Opnum13NotUsedOnWire(void);

 DWORD
 RasRpcGetInstalledProtocolsEx(
 [in] handle_t h,
 [in] BOOL fRouter,
 [in] BOOL fRasCli,
 [in] BOOL fRasSrv
);

 DWORD
 RasRpcGetVersion(
 [in] handle_t h,
 [in, out, ref] LPDWORD pdwVersion
);

 void Opnum16NotUsedOnWire(void);
 }
 [
 uuid(66a2db1b-d706-11d0-a37b-00c04fc9da04),
 helpstring("IRemoteNetworkConfig Interface"),
 pointer_default(unique)
]
 interface IRemoteNetworkConfig : IUnknown
 {
 HRESULT UpgradeRouterConfig();
 HRESULT SetUserConfig(
 [in] LPCOLESTR pszService,
 [in] LPCOLESTR pszNewGroup
);
 };

 [
 uuid(66a2db20-d706-11d0-a37b-00c04fc9da04),
 helpstring("IRemoteRouterRestart Interface"),
 pointer_default(unique)
]
 interface IRemoteRouterRestart : IUnknown
 {
 HRESULT RestartRouter(
 [in] DWORD dwFlags
);
 };

 [
 uuid(66a2db21-d706-11d0-a37b-00c04fc9da04),
 helpstring("IRemoteSetDnsConfig Interface"),
 pointer_default(unique)
]
 interface IRemoteSetDnsConfig : IUnknown
 {
 HRESULT SetDnsConfig(
 [in] DWORD dwConfigId,
 [in] DWORD dwNewValue
);
 };

 [
 uuid(66a2db22-d706-11d0-a37b-00c04fc9da04),
 helpstring("IRemoteICFICSConfig Interface"),
 pointer_default(unique)
]
 interface IRemoteICFICSConfig : IUnknown
 {
 //The following methods are for determining if
 // ICF/ICS is enabled on any connection
 HRESULT GetIcfEnabled(

507 / 547

[MS-RRASM-Diff] - v20210407
Routing and Remote Access Server (RRAS) Management Protocol
Copyright © 2021 Microsoft Corporation
Release: April 7, 2021

 [out] BOOL * status
);
 HRESULT GetIcsEnabled(
 [out] BOOL * status
);
 };

 [
 uuid(67e08fc2-2984-4b62-b92e-fc1aae64bbbb),
 helpstring("IRemoteStringIdConfig Interface"),
 pointer_default(unique)
]
 interface IRemoteStringIdConfig : IUnknown
 {
 HRESULT GetStringFromId([in] UINT stringId, [out] BSTR * pBstrName);
 };

 [
 uuid(6139d8a4-e508-4ebb-bac7-d7f275145897),
 helpstring("IRemoteIPV6Config Interface"),
 pointer_default(unique)
]
 interface IRemoteIPV6Config : IUnknown
 {
 typedef struct tagIPV6Address
 {
 unsigned char bytes[16];
 }IPV6Address;

 HRESULT GetAddressList(
 [in, string] wchar_t *pszInterfaceName,
 [out] DWORD *pdwNumAddresses,
 [out, size_is(, *pdwNumAddresses)] IPV6Address **ppIPV6AddressList,
 [in] DWORD dwIfIndex
);
 };

 [
 uuid(5ff9bdf6-bd91-4d8b-a614-d6317acc8dd8),
 helpstring("IRemoteSstpCertCheck Interface"),
 pointer_default(unique)
]
 interface IRemoteSstpCertCheck : IUnknown
 {

 {

 #define PCWSTR [string] const wchar_t*

 HRESULT CheckIfCertificateAllowedRR(
 [in] PCWSTR adminCertName,
 [in, out] PSSTP_CERT_INFO_1 certSha1,
 [in, out] PSSTP_CERT_INFO_1 certSha256
);

 };

);
};

508 / 547

[MS-RRASM-Diff] - v20210407
Routing and Remote Access Server (RRAS) Management Protocol
Copyright © 2021 Microsoft Corporation
Release: April 7, 2021

7 (Updated Section) Appendix B: Product Behavior

The information in this specification is applicable to the following Microsoft products or supplemental
software. References to product versions include updates to those products.

The terms "earlier" and "later", when used with a product version, refer to either all preceding
versions or all subsequent versions, respectively. The term "through" refers to the inclusive range of
versions. Applicable Microsoft products are listed chronologically in this section.

▪ Windows 2000 operating system

▪ Windows 2000 Server operating system

▪ Windows XP operating system

▪ Windows Server 2003 operating system

▪ Windows Vista operating system

▪ Windows Server 2008 operating system

▪ Windows 7 operating system

▪ Windows Server 2008 R2 operating system

▪ Windows 8 operating system

▪ Windows Server 2012 operating system

▪ Windows 8.1 operating system

▪ Windows Server 2012 R2 operating system

▪ Windows 10 operating system

▪ Windows Server 2016 operating system

▪ Windows Server operating system

▪ Windows Server 2019 operating system

▪ Windows Server 2022 operating system

Exceptions, if any, are noted in this section. If an update version, service pack or Knowledge Base
(KB) number appears with a product name, the behavior changed in that update. The new behavior
also applies to subsequent updates unless otherwise specified. If a product edition appears with the

product version, behavior is different in that product edition.

Unless otherwise specified, any statement of optional behavior in this specification that is prescribed
using the terms "SHOULD" or "SHOULD NOT" implies product behavior in accordance with the
SHOULD or SHOULD NOT prescription. Unless otherwise specified, the term "MAY" implies that the

product does not follow the prescription.

<1> Section 2.1.1.1: The RPC_C_AUTHN_LEVEL_PKT_PRIVACY authentication level is not available in

Windows 2000 Server.

<2> Section 2.1.2.1: The No Authentication service registration is specified in Windows 2000 Server.

<3> Section 2.1.2.1: Additional authentication services are not supported in Windows 2000 Server.

509 / 547

[MS-RRASM-Diff] - v20210407
Routing and Remote Access Server (RRAS) Management Protocol
Copyright © 2021 Microsoft Corporation
Release: April 7, 2021

<4> Section 2.1.2.1: The RPC_C_AUTHN_LEVEL_PKT_PRIVACY authentication level is not available in
Windows 2000 Server.

<5> Section 2.1.2.1: Windows 2000 Server supported clients connect with
RPC_C_AUTHN_LEVEL_NONE.

<6> Section 2.1.2.2<6> Section 2.1.2.2:: The "Simple and Protected GSS-API Negotiation
Mechanism" is not available in Windows 2000 Server.

<7> Section 2.1.2.2: The No Authentication service is specified in Windows 2000 Server.

<8> Section 2.1.2.2: The RPC_C_AUTHN_LEVEL_PKT_PRIVACY authentication level is not supported
in Windows 2000 Server.

:<9> Section 2.2.1.1.1: The ROUTER_IF_TYPE_TUNNEL1 value is only defined in Windows 2000
Server.

<10> Section 2.2.1.1.16: The RDT_PPPoE value is not defined in Windows 2000 Server.

<11> Section 2.2.1.1.16: The RDT_Tunnel_Sstp value is not defined in Windows 2000 Server and
Windows Server 2003.

<12> Section 2.2.1.1.16: The RDT_Tunnel_Ikev2 value is not defined in Windows 2000 Server,
Windows Server 2003, and Windows Server 2008.

<13> Section 2.2.1.1.16: The RDT_Broadband value is not defined in Windows 2000 Server.

<14> Section 2.2.1.1.22: The BGP_POLICY_DIRECTION enumeration is not available in Windows
2000 Server, Windows Server 2003, Windows Server 2008, and Windows Server 2008 R2.

<15> Section 2.2.1.1.23: The BGP_POLICY_TYPE enumeration is not available in Windows 2000
Server, Windows Server 2003, Windows Server 2008, and Windows Server 2008 R2.

<16> Section 2.2.1.1.24: The BGP_PEERING_OP_MODE enumeration is not available in Windows
2000 Server, Windows Server 2003, Windows Server 2008, and Windows Server 2008 R2.

<17> Section 2.2.1.2.4: IPv6-related information and features are not defined in Windows 2000

Server and Windows Server 2003.

<18> Section 2.2.1.2.4: The IP_PROT_PRIORITY_INFO_EX value is not available in Windows 2000
Server, Windows Server 2003, Windows Server 2008, Windows Server 2008 R2, and Windows Server
2012 operating system.

<19> Section 2.2.1.2.4: The IPINIP_CONFIG_INFO structure (section 2.2.1.2.17) is only defined in
Windows 2000 Server.

<20> Section 2.2.1.2.4: The MPR_FILTER_0 structure (section 2.2.1.2.89) is not available on

Windows 2000 Server and Windows Server 2003.

<21> Section 2.2.1.2.4: The MS_IP_OSPF value is only available on Windows 2000 Server and
Windows Server 2003.

<22> Section 2.2.1.2.4: IPX-related information and features are only defined in Windows 2000
Server.

<23> Section 2.2.1.2.7: The InfoType values 0xFFFF0011, 0xFFFF0012, or 0xFFFF0013 for IPv6 are

only defined in Windows Server 2008.

<24> Section 2.2.1.2.8: IPv6-related information and features are not defined in Windows 2000
Server and Windows Server 2003.

510 / 547

[MS-RRASM-Diff] - v20210407
Routing and Remote Access Server (RRAS) Management Protocol
Copyright © 2021 Microsoft Corporation
Release: April 7, 2021

<25> Section 2.2.1.2.11: The INTERFACE_ROUTE_INFO structure is only defined in Windows
Server 2008.

<26> Section 2.2.1.2.11: The MIB_IPFORWARDROW structure is only defined in Windows Server
2003 and Windows Server 2008.

<27> Section 2.2.1.2.11: The IP_ROUTE_INFO (0xFFFF0005) value is only defined in Windows Server
2008.

<28> Section 2.2.1.2.11: Windows implementations always return 0x00000000 for the
dwRtInfoType field when the INTERFACE_ROUTE_INFO structure is queried using the
RRouterInterfaceTransportGetInfo (section 3.1.4.19) method.

<29> Section 2.2.1.2.13: The PROTOCOL_METRIC structure is defined only in Windows 2000
Server, Windows Server 2003, Windows Server 2008, Windows Server 2008 R2, and Windows Server

2012.

<30> Section 2.2.1.2.13: Windows does not validate the dwProtocolId member of
PROTOCOL_METRIC structure to be one of the values specified in the MIB_IPFORWARD_PROTO

enumeration. A set operation (using RRouterInterfaceTransportSetGlobalInfo) with a value specified
outside of MIB_IPFORWARD_PROTO will be accepted, and the same will be returned when a get
operation (using RRouterInterfaceTransportGetGlobalInfo) is performed.

<31> Section 2.2.1.2.17: The IPINIP_CONFIG_INFO structure is only defined in Windows 2000
Server.

<32> Section 2.2.1.2.29: The dwLastChange member is not currently supported by the Network
Driver Interface Specification (NDIS). On Windows Vista, Windows Server 2008, Windows 7, and
Windows Server 2008 R2, NDIS returns zero for this member. On other versions, an arbitrary value is
returned in this member for the interfaces supported by NDIS. For interfaces supported by other
interface providers, an appropriate value might be returned.

<33> Section 2.2.1.2.32: The wType field is not defined in Windows 2000 Server.

<34> Section 2.2.1.2.35: The ForwardType field is not defined in Windows 2000 Server and

Windows Server 2003.

<35> Section 2.2.1.2.35: The ForwardProto field is not defined in Windows 2000 Server and
Windows Server 2003.

<36> Section 2.2.1.2.49: The Forwarding field is not defined in Windows 2000 Server and Windows
Server 2003.

<37> Section 2.2.1.2.55: The State field is not defined in Windows 2000 Server and Windows Server
2003.

<38> Section 2.2.1.2.56: The RtoAlgorithm field is not defined in Windows 2000 Server and
Windows Server 2003.

<39> Section 2.2.1.2.62: The port limit is determined by the Windows Server license.

<40> Section 2.2.1.2.62: The port limit is determined by the Windows Server license.

<41> Section 2.2.1.2.63: The MPR_SERVER_2 structure is not defined in Windows 2000 Server and
Windows Server 2003.

<42> Section 2.2.1.2.63: The port limit is determined by the Windows Server license.

<43> Section 2.2.1.2.63: The port limit is determined by the Windows Server license.

511 / 547

[MS-RRASM-Diff] - v20210407
Routing and Remote Access Server (RRAS) Management Protocol
Copyright © 2021 Microsoft Corporation
Release: April 7, 2021

<44> Section 2.2.1.2.63: The dwNumSstpPorts field is not defined in Windows 2000 Server and
Windows Server 2003. The port limit is determined by the Windows Server license.

:<45> Section 2.2.1.2.63: The dwSstpPortFlags field is not defined in Windows 2000 Server and
Windows Server 2003.

<46> Section 2.2.1.2.64: The PPP_NBFCP_INFO structure is only defined in Windows 2000 Server.

<47> Section 2.2.1.2.67: The PPP_IPXCP_INFO structure is only defined in Windows 2000 Server.

<48> Section 2.2.1.2.69: The PPP_ATCP_INFO structure is only defined in Windows 2000 Server.

<49> Section 2.2.1.2.71: The PPP_LCP_PAP, PPP_LCP_SPAP, and PPP_LCP_CHAP values are not
defined in Windows 2000 Server.

<50> Section 2.2.1.2.71: The PPP_LCP_CHAP_MD5 and PPP_LCP_CHAP_MS values apply to Windows
2000 Server and Windows Server 2003 only.

<51> Section 2.2.1.2.71: The PPP_LCP_PAP, PPP_LCP_SPAP, and PPP_LCP_CHAP values are not

defined in Windows 2000 Server.

<52> Section 2.2.1.2.71: The PPP_LCP_AES_128 and PPP_LCP_AES_256 values are not defined in
Windows 2000 Server and Windows Server 2003. The PPP_LCP_AES_192, PPP_LCP_GCM_AES_128,
PPP_LCP_GCM_AES_192, and PPP_LCP_GCM_AES_256 values are not available in Windows 2000
Server, Windows Server 2003, Windows Server 2008, Windows Server 2008 R2.

<53> Section 2.2.1.2.72: The PPP_IPXCP_INFO structure is only defined in Windows 2000 Server.

<54> Section 2.2.1.2.72: The PPP_ATCP_INFO structure is only defined in Windows 2000 Server.

<55> Section 2.2.1.2.73: The PPP_INFO_2 structure is not defined in Windows 2000 Server.

<56> Section 2.2.1.2.73: The PPP_IPXCP_INFO structure is only defined in Windows 2000 Server.

<57> Section 2.2.1.2.73: The PPP_ATCP_INFO structure is only defined in Windows 2000 Server.

<58> Section 2.2.1.2.74: The PPP_INFO_3 structure is not defined in Windows 2000 Server and
Windows Server 2003.

:<59> Section 2.2.1.2.77: The RAS_FLAGS_ARAP_CONNECTION value is only defined in Windows
2000 Server.

<60> Section 2.2.1.2.80: The PPP_INFO_3 structure is not defined in Windows 2000 Server and
Windows Server 2003.

<61> Section 2.2.1.2.82: The MPRI_INTERFACE_1 structure is not defined in Windows 2000
Server.

<62> Section 2.2.1.2.83: The MPRI_INTERFACE_2 structure is not defined in Windows 2000

Server.

<63> Section 2.2.1.2.83: Windows also require that the interface be registered in the registry as

specified in 2.2.3.2.1; otherwise, the interface will not be available for managing after the Remote
Access Service is restarted.

<64> Section 2.2.1.2.83: In applicable Windows Server releases, specifying a new value for
wszInterfaceInfo with MPRI_INTERFACE_2 in calls to RRouterInterfaceSetInfo results in a new

phonebook entry being created; that new entry will not be available for management.

<65> Section 2.2.1.2.83: The MPRIO_RequireSPAP and MPRIO_RequireMsCHAP values are available
in Windows 2000 Server and Windows Server 2003. The MPRIO_RequireMachineCertificates,

512 / 547

[MS-RRASM-Diff] - v20210407
Routing and Remote Access Server (RRAS) Management Protocol
Copyright © 2021 Microsoft Corporation
Release: April 7, 2021

MPRIO_UsePreSharedKeyForIkev2Initiator, and MPRIO_UsePreSharedKeyForIkev2Responder values
are not available in Windows 2000 Server, Windows Server 2003, Windows Server 2008, and Windows

Server 2008 R2.

<66> Section 2.2.1.2.83: The MPRNP_Ipx value is only defined in Windows 2000 Server. The

MPRNP_Ipv6 value is not defined in Windows 2000 Server and Windows Server 2003.

<67> Section 2.2.1.2.83: The X.25 PAD feature is only supported in Windows 2000 Server, Windows
Server 2003, and Windows Server 2003 R2 operating system. In Windows NT operating system and
Windows 2000 the szX25PadType string maps to a section name in PAD.INF.

<68> Section 2.2.1.2.83: The X.25 PAD feature is only supported in Windows 2000 Server, Windows
Server 2003, and Windows Server 2003 R2.

<69> Section 2.2.1.2.83: The MPRDM_DialAsNeeded feature is only supported in Windows 2000

Server, Windows Server 2003, and Windows Server 2003 R2. On Windows Server 2008 and Windows
Server 2008 R2, this value is ignored and treated identically to MPRDM_DialAll.

<70> Section 2.2.1.2.83: The MPRET_Direct value is supported only in Windows 2000 Server.

<71> Section 2.2.1.2.83: Support for dialing IKEv2 is not available in Windows 2000 Server, Windows
Server 2003, Windows Server 2008, and Windows Server 2008 R2.

<72> Section 2.2.1.2.84: The MPRI_INTERFACE_3 structure is not defined in Windows 2000 Server

and Windows Server 2003.

<73> Section 2.2.1.2.84: Windows also require that the interface be registered in the registry as
specified in 2.2.3.2.1; otherwise, the interface will not be available for managing after the Remote
Access Service is restarted.

<74> Section 2.2.1.2.84: In applicable Windows Server releases, specifying a new value for
wszInterfaceInfo with MPRI_INTERFACE_3 in calls to RRouterInterfaceSetInfo results in a new
phonebook entry being created; that new entry will not be available for management.

<75> Section 2.2.1.2.84: The following values: MPRIO_RequirePAP, MPRIO_RequireSPAP,

MPRIO_RequireCHAP, and MPRIO_RequireMsCHAP are not defined in Windows 2000 Server. The
values MPRIO_RequireMachineCertificates, MPRIO_UsePreSharedKeyForIkev2Initiator, and
MPRIO_UsePreSharedKeyForIkev2Responder are not available in Windows 2000 Server, Windows
Server 2003, Windows Server 2008, and Windows Server 2008 R2.

<76> Section 2.2.1.2.84: The X.25 PAD feature is only supported in Windows 2000 Server, Windows
Server 2003, and Windows Server 2003 R2. In Windows NT and Windows 2000 the szX25PadType

string maps to a section name in PAD.INF.

<77> Section 2.2.1.2.84: The X.25 PAD feature is only supported in Windows 2000 Server, Windows
Server 2003, and Windows Server 2003 R2.

<78> Section 2.2.1.2.84: The MPRDM_DialAsNeeded feature is only supported in Windows 2000
Server, Windows Server 2003, and Windows Server 2003 R2. On Windows Server 2008 and Windows
Server 2008 R2, this value is ignored and treated identically to MPRDM_DialAll.

:<79> Section 2.2.1.2.84: In the dwVpnStrategy field support for dialing IKEv2 is not available in
Windows 2000 Server, Windows Server 2003, Windows Server 2008, and Windows Server 2008 R2.

<80> Section 2.2.1.2.89: The MPR_FILTER_0 structure is not available on Windows 2000 Server
and Windows Server 2003.

<81> Section 2.2.1.2.90: The IPX_GLOBAL_INFO structure is only defined in Windows 2000 Server.

<82> Section 2.2.1.2.91: The IPX_IF_INFO structure is only defined in Windows 2000 Server.

513 / 547

[MS-RRASM-Diff] - v20210407
Routing and Remote Access Server (RRAS) Management Protocol
Copyright © 2021 Microsoft Corporation
Release: April 7, 2021

<83> Section 2.2.1.2.92: The IPXWAN_IF_INFO structure is only defined in Windows 2000 Server.

<84> Section 2.2.1.2.93: The IPX_STATIC_ROUTE_INFO structure is only defined in Windows

2000 Server.

<85> Section 2.2.1.2.94: The IPX_STATIC_SERVICE_INFO structure is only defined in Windows

2000 Server.

<86> Section 2.2.1.2.95: The IPX_STATIC_NETBIOS_NAME_INFO structure is only defined in
Windows 2000 Server.

<87> Section 2.2.1.2.96: The IPX_ADAPTER_INFO structure is only defined in Windows 2000
Server.

<88> Section 2.2.1.2.97: The IPX_TRAFFIC_FILTER_GLOBAL_INFO structure is only defined in
Windows 2000 Server.

:<89> Section 2.2.1.2.98: The IPX_TRAFFIC_FILTER_INFO structure is only defined in Windows
2000 Server.

<90> Section 2.2.1.2.99: The IF_TABLE_INDEX structure is only defined in Windows 2000 Server.

<91> Section 2.2.1.2.100: The ROUTING_TABLE_INDEX structure is only defined in Windows 2000
Server.

<92> Section 2.2.1.2.101: The SERVICES_TABLE_INDEX structure is only defined in Windows 2000

Server.

<93> Section 2.2.1.2.102: The SERVICES_TABLE_INDEX structure is only defined in Windows 2000
Server.

<93> Section 2.2.1.2.103: The SERVICES_TABLE_INDEX structure is only defined in Windows 2000
Server.

<94> Section 2.2.1.2.103: The STATIC_SERVICES_TABLE_INDEX structure is only defined in

Windows 2000 Server.

<95> Section 2.2.1.2.104: The IPX_MIB_INDEX union is only defined in Windows 2000 Server.

<96> Section 2.2.1.2.105: The IPX_MIB_GET_INPUT_DATA structure is only defined in Windows
2000 Server.

<97> Section 2.2.1.2.106<97> Section 2.2.1.2.107:: The IPXMIB_BASE structure is only defined in
Windows 2000 Server.

<98> Section 2.2.1.2.107: The IPX_IF_STATS structure is only defined in Windows 2000 Server.

<99> Section 2.2.1.2.108: The IPX_INTERFACE structure is only defined in Windows 2000 Server.

<100> Section 2.2.1.2.108: The NdisMediumWirelessWan media type is available only in Windows
2000, Windows XP, and Windows Server 2003.

<101> Section 2.2.1.2.109: The IPX_ROUTE structure is only defined in Windows 2000 Server.

<102> Section 2.2.1.2.110: The IPX_MIB_ROW union is only defined in Windows 2000 Server.

<103> Section 2.2.1.2.111: The IPX_MIB_SET_INPUT_DATA structure is only defined in Windows
2000 Server.

<104> Section 2.2.1.2.112: The SAP_SERVICE_FILTER_INFO structure is only defined in Windows
2000 Server.

514 / 547

[MS-RRASM-Diff] - v20210407
Routing and Remote Access Server (RRAS) Management Protocol
Copyright © 2021 Microsoft Corporation
Release: April 7, 2021

<105> Section 2.2.1.2.113: The SAP_IF_FILTERS structure is only defined in Windows 2000 Server.

<106> Section 2.2.1.2.114: The SAP_IF_CONFIG structure is only defined in Windows 2000 Server.

<107> Section 2.2.1.2.115: The SAP_MIB_BASE structure is only defined in Windows 2000 Server.

<108> Section 2.2.1.2.116: The SAP_IF_STATS structure is only defined in Windows 2000 Server.

<109> Section 2.2.1.2.117: The SAP_INTERFACE structure is only defined in Windows 2000 Server.

<110> Section 2.2.1.2.118: The SAP_MIB_GET_INPUT_DATA structure is only defined in Windows
2000 Server.

<111> Section 2.2.1.2.119: The SAP_MIB_SET_INPUT_DATA structure is only defined in Windows
2000 Server.

<112> Section 2.2.1.2.120: The IPX_SERVICE structure is only defined in Windows 2000 Server.

<113> Section 2.2.1.2.121: The SAP_IF_INFO structure is only defined in Windows 2000 Server.

<114> Section 2.2.1.2.125: The RIP_MIB_GET_INPUT_DATA structure is only defined in Windows
2000 Server.

<115> Section 2.2.1.2.126: The RIP_MIB_SET_INPUT_DATA structure is only defined in Windows
2000 Server.

<116> Section 2.2.1.2.129: The MPRAPI_OBJECT_HEADER_IDL structure is not available in
Windows 2000 Server, Windows Server 2003, and Windows Server 2008.

<117> Section 2.2.1.2.130: The PPP_PROJECTION_INFO_1 structure is not available in Windows
2000 Server, Windows Server 2003, and Windows Server 2008.

<118> Section 2.2.1.2.131: The IKEV2_PROJECTION_INFO_1 structure is not available in
Windows 2000 Server, Windows Server 2003, and Windows Server 2008.

<119> Section 2.2.1.2.133: The RAS_FLAGS_ARAP_CONNECTION flag is defined only in Windows
2000 Server. The RAS_FLAGS_DORMANT flag is not available in Windows 2000 Server, Windows
Server 2003, and Windows Server 2008.

<120> Section 2.2.1.2.136: The IKEV2_TUNNEL_CONFIG_PARAMS_1 structure is not available in
Windows 2000 Server, Windows Server 2003, and Windows Server 2008.

<121> Section 2.2.1.2.137: The IKEV2_CONFIG_PARAMS_1 structure is not available in Windows
2000 Server, Windows Server 2003, and Windows Server 2008.

<122> Section 2.2.1.2.137: The port limit is determined by the Windows Server license.

<123> Section 2.2.1.2.138: The PPTP_CONFIG_PARAMS_1 structure is not available in Windows
2000 Server, Windows Server 2003, and Windows Server 2008.

<124> Section 2.2.1.2.138: The port limit is determined by the Windows Server license.

<125> Section 2.2.1.2.139: The L2TP_CONFIG_PARAMS_1 structure is not available in Windows
2000 Server, Windows Server 2003, and Windows Server 2008.

<126> Section 2.2.1.2.139: The port limit is determined by the Windows Server license.

<127> Section 2.2.1.2.140: The SSTP_CERT_INFO_1 structure is not available in Windows 2000
Server, Windows Server 2003, and Windows Server 2008.

<128> Section 2.2.1.2.141: The SSTP_CONFIG_PARAMS_1 structure is not available in Windows
2000 Server, Windows Server 2003, and Windows Server 2008.

515 / 547

[MS-RRASM-Diff] - v20210407
Routing and Remote Access Server (RRAS) Management Protocol
Copyright © 2021 Microsoft Corporation
Release: April 7, 2021

<129> Section 2.2.1.2.141: The port limit is determined by the Windows Server license.

<130> Section 2.2.1.2.142: The MPR_SERVER_EX_1 structure is not available in Windows 2000

Server, Windows Server 2003, and Windows Server 2008.

<131> Section 2.2.1.2.143: The MPR_SERVER_EX_IDL union is not available in Windows 2000

Server, Windows Server 2003, and Windows Server 2008.

<132> Section 2.2.1.2.143: The MPR_SERVER_EX_3 structure is not available in Windows 2000
Server, Windows Server 2003, Windows Server 2008, Windows Server 2008 R2, and Windows Server
2012.

<133> Section 2.2.1.2.144: The MPRAPI_TUNNEL_CONFIG_PARAMS_1 structure is not available
in Windows 2000 Server, Windows Server 2003, and Windows Server 2008.

<134> Section 2.2.1.2.145: The MPR_SERVER_SET_CONFIG_EX_1 structure is not available in

Windows 2000 Server, Windows Server 2003, and Windows Server 2008.

<135> Section 2.2.1.2.147: The RAS_UPDATE_CONNECTION_1_IDL structure is not available in

Windows 2000 Server, Windows Server 2003, and Windows Server 2008.

<136> Section 2.2.1.2.148: The RAS_UPDATE_CONNECTION_IDL union is not available in
Windows 2000 Server, Windows Server 2003, and Windows Server 2008.

<137> Section 2.2.1.2.190: The MIB_DA_MSG structure is available in Windows 2000 Server and

Windows Server 2003 only.

<138> Section 2.2.1.2.201: The IP_ALG_GLOBAL_INFO structure is not available in Windows 2000
Server.

<139> Section 2.2.1.2.202: The RIP_GLOBAL_INFO structure is not defined in Windows 2000
Server.

<140> Section 2.2.1.2.204: The RIP_IF_FILTERS structure is not defined in Windows 2000 Server.

<141> Section 2.2.1.2.205: The RIP_IF_INFO structure is only defined in Windows 2000 Server.

<142> Section 2.2.1.2.206<142> Section 2.2.1.2.206:: The RIP_IF_CONFIG structure is not
defined in Windows 2000 Server.

<143> Section 2.2.1.2.207: The SAP_GLOBAL_INFO structure is not defined in Windows 2000
Server.

<144> Section 2.2.1.2.208: The OSPF_ROUTE_FILTER structure is only available in Windows 2000
Server and Windows Server 2003.

<145> Section 2.2.1.2.209: The OSPF_ROUTE_FILTER_INFO structure is only available in Windows

2000 Server and Windows Server 2003.

<146> Section 2.2.1.2.210: The OSPF_PROTO_FILTER_INFO structure is only available in
Windows 2000 Server and Windows Server 2003.

<147> Section 2.2.1.2.211: The OSPF_GLOBAL_PARAM structure is only applicable in Windows
2000 Server and Windows Server 2003.

<148> Section 2.2.1.2.212: The OSPF_AREA_PARAM structure is only applicable in Windows 2000

Server and Windows Server 2003.

<149> Section 2.2.1.2.213: The OSPF_AREA_RANGE_PARAM structure is only applicable in
Windows 2000 Server and Windows Server 2003.

516 / 547

[MS-RRASM-Diff] - v20210407
Routing and Remote Access Server (RRAS) Management Protocol
Copyright © 2021 Microsoft Corporation
Release: April 7, 2021

<150> Section 2.2.1.2.214: The OSPF_VIRT_INTERFACE_PARAM structure is only applicable in
Windows 2000 Server and Windows Server 2003.

<151> Section 2.2.1.2.215: The OSPF_INTERFACE_PARAM structure is only applicable in Windows
2000 Server and Windows Server 2003.

<152> Section 2.2.1.2.216: The OSPF_NBMA_NEIGHBOR_PARAM structure is only applicable in
Windows 2000 Server and Windows Server 2003.

<153> Section 2.2.1.2.217: The RB_Dummy field is not defined in Windows 2000 Server.

<154> Section 2.2.1.2.218: For the dwVersion field, the server version is 5 for Windows 2000
Server. Otherwise the version is 6 in applicable Windows Server releases.

<155> Section 2.2.1.2.219: For the dwVersion field, the server version is 5 for Windows 2000
Server. Otherwise the version is 6 in applicable Windows Server releases.

<156> Section 2.2.1.2.219: The fRouterOutboundEnabled field is not defined in Windows 2000
Server.

<157> Section 2.2.1.2.219: The wszDeviceName field is not defined in Windows 2000 Server.

<158> Section 2.2.1.2.228: The RI_dwSessionId field is not defined in Windows 2000 Server.

<159> Section 2.2.1.2.228: The RI_dwFlags field is not defined in Windows 2000 Server.

<160> Section 2.2.1.2.228: The RI_CorrelationGuid field is not defined in Windows 2000 Server

and Windows Server 2003.

<161> Section 2.2.1.2.230: The values PBDT_Pad and PBDT_X25 are only defined in Windows 2000
Server and Windows Server 2003. The value PBDT_PPPoE is not defined in Windows 2000 Server.

<162> Section 2.2.1.2.233: The PPP_PROJECTION_INFO_2 structure is not available in Windows
2000 Server, Windows Server 2003, Windows Server 2008, and Windows Server 2008 R2.

<163> Section 2.2.1.2.234: The IKEV2_PROJECTION_INFO_2 structure is not available in
Windows 2000 Server, Windows Server 2003, Windows Server 2008, and Windows Server 2008 R2.

<164> Section 2.2.1.2.235: The PROJECTION_INFO_IDL_2 structure is not available in Windows
2000 Server, Windows Server 2003, Windows Server 2008, and Windows Server 2008 R2.

<165> Section 2.2.1.2.236: The RAS_CONNECTION_4_IDL structure is not available in Windows
2000 Server, Windows Server 2003, Windows Server 2008, and Windows Server 2008 R2.

<166> Section 2.2.1.2.237: The ROUTER_CUSTOM_IKEv2_POLICY_0 structure is not available in
Windows 2000 Server, Windows Server 2003, Windows Server 2008, and Windows Server 2008 R2.

<167> Section 2.2.1.2.238: The IKEV2_TUNNEL_CONFIG_PARAMS_2 structure is not available in

Windows 2000 Server, Windows Server 2003, Windows Server 2008, and Windows Server 2008 R2.

<168> Section 2.2.1.2.239: The IKEV2_CONFIG_PARAMS_2 structure is not available in Windows

2000 Server, Windows Server 2003, Windows Server 2008, and Windows Server 2008 R2.

<169> Section 2.2.1.2.240: The MPRAPI_TUNNEL_CONFIG_PARAMS_2 structure is not available
in Windows 2000 Server, Windows Server 2003, Windows Server 2008, and Windows Server 2008 R2.

<170> Section 2.2.1.2.241: The MPR_SERVER_SET_CONFIG_EX_2 structure is not available in

Windows 2000 Server, Windows Server 2003, Windows Server 2008, and Windows Server 2008 R2.

<171> Section 2.2.1.2.242: The MPR_SERVER_EX_2 structure is not available in Windows 2000
Server, Windows Server 2003, Windows Server 2008, and Windows Server 2008 R2.

517 / 547

[MS-RRASM-Diff] - v20210407
Routing and Remote Access Server (RRAS) Management Protocol
Copyright © 2021 Microsoft Corporation
Release: April 7, 2021

<172> Section 2.2.1.2.243: The ROUTER_IKEv2_IF_CUSTOM_CONFIG_0 structure is not
available in Windows 2000 Server, Windows Server 2003, Windows Server 2008, andWindows Server

2008 R2.

:<173> Section 2.2.1.2.244: The MPR_IF_CUSTOMINFOEX_0 structure is not available in Windows

2000 Server, Windows Server 2003, Windows Server 2008, and Windows Server 2008 R2.

<174> Section 2.2.1.2.245: The MPR_IF_CUSTOMINFOEX_IDL structure is not available in
Windows 2000 Server, Windows Server 2003, Windows Server 2008, and Windows Server 2008 R2.

<175> Section 2.2.1.2.246: The CERT_EKU_1 structure is not available in Windows 2000 Server,
Windows Server 2003, Windows Server 2008, Windows Server 2008 R2, and Windows Server 2012.

<176> Section 2.2.1.2.247: The IKEV2_TUNNEL_CONFIG_PARAMS_3 structure is not available in
Windows 2000 Server, Windows Server 2003, Windows Server 2008, Windows Server 2008 R2, and

Windows Server 2012.

<177> Section 2.2.1.2.248: The IKEV2_CONFIG_PARAMS_3 structure is not available in Windows
2000 Server, Windows Server 2003, Windows Server 2008, Windows Server 2008 R2, and Windows

Server 2012.

<178> Section 2.2.1.2.249: The MPRAPI_TUNNEL_CONFIG_PARAMS_3 structure is not available
in Windows 2000 Server, Windows Server 2003, Windows Server 2008, Windows Server 2008 R2, and

Windows Server 2012.

<179> Section 2.2.1.2.250: The MPR_SERVER_SET_CONFIG_EX_3 structure is available in
Windows 2000 Server, Windows Server 2003, Windows Server 2008, Windows Server 2008 R2, and
Windows Server 2012.

<180> Section 2.2.1.2.251: The MPR_SERVER_EX_3 structure is not available in Windows 2000
Server, Windows Server 2003, Windows Server 2008, Windows Server 2008 R2, and Windows Server
2012.

<181> Section 2.2.1.2.252: The BGP_CONFIG_HEADER structure is not available in Windows 2000
Server, Windows Server 2003, Windows Server 2008, Windows Server 2008 R2, and Windows Server

2012.

<182> Section 2.2.1.2.253: The BGP_TOC_ENTRY structure is not available in Windows 2000
Server, Windows Server 2003, Windows Server 2008, Windows Server 2008 R2, and Windows Server
2012.

<183> Section 2.2.1.2.254: The BGP_IP_ADDRESS structure is not available in Windows 2000

Server, Windows Server 2003, Windows Server 2008, Windows Server 2008 R2, and Windows Server
2012.

<184> Section 2.2.1.2.255: The BGP_IP_PREFIX structure is not available in Windows 2000 Server,
Windows Server 2003, Windows Server 2008, Windows Server 2008 R2, and Windows Server 2012.

:<185> Section 2.2.1.2.256: The BGP_ASN_RANGE structure is not available in Windows 2000
Server, Windows Server 2003, Windows Server 2008, Windows Server 2008 R2, and Windows Server

2012.

<186> Section 2.2.1.2.257: The BGP_ROUTER_CONFIG structure is not available in Windows 2000
Server, Windows Server 2003, Windows Server 2008, Windows Server 2008 R2, and Windows Server
2012.

<187> Section 2.2.1.2.258: The BGP_POLICY_MATCH structure is not available in Windows 2000
Server, Windows Server 2003, Windows Server 2008, Windows Server 2008 R2, and Windows Server
2012.

518 / 547

[MS-RRASM-Diff] - v20210407
Routing and Remote Access Server (RRAS) Management Protocol
Copyright © 2021 Microsoft Corporation
Release: April 7, 2021

<188> Section 2.2.1.2.259: The BGP_POLICY_MODIFY structure is not available in Windows 2000
Server, Windows Server 2003, Windows Server 2008, Windows Server 2008 R2, and Windows Server

2012.

<189> Section 2.2.1.2.260: The BGP_POLICY_ACTION structure is not available in Windows 2000

Server, Windows Server 2003, Windows Server 2008, Windows Server 2008 R2, and Windows Server
2012.

<190> Section 2.2.1.2.261: The BGP_POLICY structure is not available in Windows 2000 Server,
Windows Server 2003, Windows Server 2008, Windows Server 2008 R2, and Windows Server 2012.

<191> Section 2.2.1.2.262: The BGP_PEER structure is not available in Windows 2000 Server,
Windows Server 2003, Windows Server 2008, Windows Server 2008 R2, and Windows Server 2012.

<192> Section 2.2.1.2.263: The BGP_PEER_TO_POLICIES structure is not available in Windows

2000 Server, Windows Server 2003, Windows Server 2008, Windows Server 2008 R2, and Windows
Server 2012.

<193> Section 2.2.1.2.264<193> Section 2.2.1.2.264:: The BGP_ADVERTISE structure is not

available in Windows 2000 Server, Windows Server 2003, Windows Server 2008, Windows Server
2008 R2, Windows Server 2012.

<194> Section 2.2.1.2.265: The BGP_ROUTER_V6 structure is not available in Windows 2000

Server, Windows Server 2003, Windows Server 2008, Windows Server 2008 R2, and Windows Server
2012.

<195> Section 2.2.1.2.266: The PRIORITY_INFO_EX structure is not available in Windows 2000
Server, Windows Server 2003, Windows Server 2008, Windows Server 2008 R2, and Windows Server
2012.

:<196> Section 2.2.1.2.267: The PROTOCOL_METRIC_EX structure is not available in Windows
2000 Server, Windows Server 2003, Windows Server 2008, Windows Server 2008 R2, and Windows

Server 2012.

<197> Section 2.2.1.2.268: The ROUTER_IKEv2_IF_CUSTOM_CONFIG_1 structure is not

available in Windows 2000 Server, Windows Server 2003, Windows Server 2008, Windows Server
2008 R2, and Windows Server 2012.

<198> Section 2.2.1.2.269: The MPR_IF_CUSTOMINFOEX_1 structure is not available in Windows
2000 Server, Windows Server 2003, Windows Server 2008, Windows Server 2008 R2, and Windows
Server 2012.

<199> Section 2.2.1.2.270: The L2TP_TUNNEL_CONFIG_PARAMS_1 structure is not available in
Windows 2000 Server, Windows Server 2003, Windows Server 2008, Windows Server 2008 R2, and
Windows Server 2012.

<200> Section 2.2.1.2.271: The L2TP_CONFIG_PARAMS_2 structure is not available in Windows
2000 Server, Windows Server 2003, Windows Server 2008, Windows Server 2008 R2, and Windows
Server 2012.

<201> Section 2.2.2: The client-side Remote Access Service (RAS) is not in this server-side RRASM

protocol. The client RAS creates a different default phonebook file called rasphone.pbk. If the caller
does not specify a phonebook file, the default phonebook file is used. For more information, see legacy
information in [MSDOCS-RASpbk].

<202> Section 2.2.2: The phonebook file used by Windows servers is router.pbk present under the
directory System32 under the Windows folder. For example, C:\Windows\System32\ras\router.pbk is
the file used on RRAS server where Windows folder is C:\Windows.

519 / 547

[MS-RRASM-Diff] - v20210407
Routing and Remote Access Server (RRAS) Management Protocol
Copyright © 2021 Microsoft Corporation
Release: April 7, 2021

<203> Section 2.2.2.1: On Windows 2000 Server and Windows Server 2003, the number of
characters in a RRAS entry section name cannot exceed 256 bytes. Otherwise on applicable Windows

Server releases the numbers of characters in a RRAS entry section name cannot exceed 1536 bytes.

<204> Section 2.2.2.2.3: The Type key is not optional on Windows 2000 Server, Windows Server

2003, and Windows Server 2008. Otherwise on applicable Windows Server releases the Type key is
optional.

<205> Section 2.2.2.2.3: Broadband connection value 5 is not available on Windows 2000 Server.

<205<206> Section 2.2.2.2.11: The RAS client-side RASENTRY structure, dwVpnStrategy field
uses a different set of VpnStrategy values. The following client values are not supported by the
RRASM server protocol. For more information, see legacy information in [MSDOCS-RASENTRY].

Value Name Meaning

5 VS_SstpOnly Windows Vista operating system with Service Pack 1 (SP1) and later: RAS attempts
only SSTP.

6 VS_SstpFirst Windows Vista SP1 and later: RAS attempts SSTP first followed by IKEv2, PPTP, and
then L2TP.

12 VS_PptpSstp Windows 7 and later: RAS attempts PPTP followed only by SSTP.

13 VS_L2tpSstp Windows 7 and later: RAS attempts L2TP followed only by SSTP.

14 VS_Ikev2Sstp Windows 7 and later: RAS attempts IKEv2 followed only by SSTP.

15 VS_ProtocolList Windows 10 and later: Use a Protocol List to determine the protocols to connect to.

<207> Section 2.2.2.2.11: In Windows 2000 Server, Windows Server 2003, and Windows Server

2008, RRAS attempts L2TP first. If L2TP fails, PPTP is tried. If PPTP fails, demand-dial connection fails.

In Windows Server 2008 R2, RRAS attempts PPTP first. If PPTP fails, L2TP is tried. If L2TP fails,
demand-dial connection fails.

Otherwise on applicable Windows Server releases RRAS attempts PPTP first. If PPTP fails, L2TP is tried.
If L2TP fails, IKEv2 is tried. If IKEv2 fails, demand-dial connection fails.

<208> Section 2.2.2.2.11: The IKEv2 is not available in Windows 2000 Server, Windows Server 2003,

Windows Server 2008, and Windows Server 2008 R2.

<209> Section 2.2.2.2.12: The NetBEUI network protocol is available only on Windows 2000 Server.

<210> Section 2.2.2.2.12: The IPX network protocol is available only on Windows 2000 Server.

<211> Section 2.2.2.2.12: The IPv6 network protocol is not available on Windows 2000 Server and
Windows Server 2003.

<212> Section 2.2.2.2.20: On Windows 2000 and Windows Server 2003, RRAS adjusts the number of
subentries configured for the connection as bandwidth is needed. RRAS uses DialPercent,

DialSeconds, HangupPercent, and HangupSeconds to determine when to dial or disconnect a
subentry. Otherwise on applicable Windows Server releases RRAS ignores this key and assumes the
value to be 1.

<213> Section 2.2.2.2.21: The DialPercent key is only used on Windows 2000 Server and Windows
Server 2003. Otherwise the key is ignored on applicable Windows Server releases.

520 / 547

[MS-RRASM-Diff] - v20210407
Routing and Remote Access Server (RRAS) Management Protocol
Copyright © 2021 Microsoft Corporation
Release: April 7, 2021

<214> Section 2.2.2.2.22: The DialSeconds key is only used on Windows 2000 Server and Windows
Server 2003. Otherwise the key is ignored on applicable Windows Server releases.

<215> Section 2.2.2.2.23: The HangupPercent key is only used on Windows 2000 Server and
Windows Server 2003. Otherwise the key is ignored on applicable Windows Server releases.

<216> Section 2.2.2.2.24: The HangupSeconds key is only used on Windows 2000 Server and
Windows Server 2003. Otherwise the key is ignored on applicable Windows Server releases.

<217> Section 2.2.2.2.35: The DisableIKENameEkuCheck key is ignored on Windows 2000 Server
and Windows Server 2003.

:<218> Section 2.2.2.2.38: In Windows 2000 Server and Windows Server 2003 the option to enable
NetBT on the RRAS entry is based on the values for the keys ShareMsFilePrint and
BindMsNetClient. When both key values are set to zero (0) that indicates disable NetBT. Otherwise a

value of one (1) for either or both keys indicates enable NetBT.

On Windows Server 2008 and Windows Server 2008 R2, RRAS relies on the keys ShareMsFilePrint,
BindMsNetClient, and IpNBTFlags to configure NetBT on the RRAS entry.

<219> Section 2.2.2.2.46: The PreferredHwFlow key is ignored on Windows 2000 Server.

<220> Section 2.2.2.2.47: The PreferredProtocol key is ignored on Windows 2000 Server.

<221> Section 2.2.2.2.48: The PreferredCompression key is ignored in Windows 2000 Server.

<222> Section 2.2.2.2.49: The PreferredSpeaker key is ignored in Windows 2000 Server.

<223> Section 2.2.2.2.58: The SPAP (bit 5) and MSCHAPv1 (bit 7) are present only on Windows 2000
Server and Windows Server 2003.

<224> Section 2.2.2.2.58: The Windows 95 operating system compatible MSCHAP (bit 11) is present
only on Windows 2000 Server and Windows Server 2003.

<225> Section 2.2.2.2.58: The machine certificate authentication method for IKEv2 is not available in

Windows 2000 Server, Windows Server 2003, Windows Server 2008, and Windows Server 2008 R2.

<226> Section 2.2.2.2.58: The preshared key authentication method for IKEv2 is not available in
Windows 2000 Server, Windows Server 2003, Windows Server 2008, and Windows Server 2008 R2.

<227> Section 2.2.2.2.73: The IpNBTFlags key is not available on Windows 2000 Server and
Windows Server 2003. The meaning for the combination of values for keys IpNBTFlags,
BindMsNetClient, and ShareMsFilePrint is given in the following table.

Value Meaning

0 Disable NetBT.

1 Disable NetBT if the value for the keys ShareMsFilePrint and BindMsNetClient is set to "0".

1 Enable NetBT if the value for either of the keys ShareMsFilePrint and BindMsNetClient is "1".

<228> Section 2.2.2.2.74: The TcpWindowSize key is ignored on applicable Windows Server
releases except on Windows 2000 Server and Windows Server 2003.

<229> Section 2.2.2.2.79: The Ipv6Assign key is ignored on Windows 2000 Server, Windows Server

2003, and Windows Server 2008.

521 / 547

[MS-RRASM-Diff] - v20210407
Routing and Remote Access Server (RRAS) Management Protocol
Copyright © 2021 Microsoft Corporation
Release: April 7, 2021

<230> Section 2.2.2.2.80: The Ipv6PrefixLength key is ignored on Windows 2000 Server, Windows
Server 2003, and Windows Server 2008.

<231> Section 2.2.2.2.84: The Ipv6DnsAddress key is ignored on Windows 2000 Server and
Windows Server 2003.

<232> Section 2.2.2.2.85: The Ipv6Dns2Address key is ignored on Windows 2000 Server and
Windows Server 2003.

<233> Section 2.2.2.2.86: The Ipv6Prefix key is ignored on Windows 2000 Server, Windows Server
2003, and Windows Server 2008.

<234> Section 2.2.2.2.87: The Ipv6InterfaceId key is ignored on Windows 2000 Server, Windows
Server 2003, and Windows Server 2008.

<235> Section 2.2.2.2.97: If the PBVersion key is present and is set to "1", and the Type key is

present, then this key is optional on applicable Windows Server releases except on Windows 2000
Server, Windows Server 2003, and Windows Server 2008.

<236> Section 2.2.2.2.100: In Windows 2000 Server the value of DEVICE key is same as that of
MEDIA key for all the device types other than Modem, Isdn, X25, Pad, and Switch. The X25 and Pad
device types are supported in Windows 2000 Server and Windows Server 2003. The PPPoE device type
is not supported in Windows 2000 Server.

<237> Section 2.2.2.2.101: The Terminal key is not available in Windows 2000 Server.

<238> Section 2.2.2.2.104: The X25 and Pad device types are present on Windows 2000 Server and
Windows Server 2003. Otherwise this key is ignored in applicable Windows Server releases.

<239> Section 2.2.2.2.105: The X25 and Pad device types are present on Windows 2000 Server and
Windows Server 2003. Otherwise this key is ignored in applicable Windows Server releases.

<240> Section 2.2.2.2.106<238> Section 2.2.2.2.106:: The X25 and Pad device types are present on

Windows 2000 Server and Windows Server 2003. Otherwise this key is ignored in applicable Windows
Server releases.

<241> Section 2.2.2.2.107: The X25 and Pad device types are present on Windows 2000 Server and
Windows Server 2003. Otherwise this key is ignored in applicable Windows Server releases.

<242> Section 2.2.3: Windows clients use these registry keys to manage RRAS configuration when
the RRASM server is offline.

<243> Section 2.2.3.1: The IPX value is available only in Windows 2000 Server.

:<244> Section 2.2.3.1.3: The GlobalInterfaceInfo value is defined only for the IPX transport
available only in Windows 2000.

<245> Section 2.2.3.4.18.3: The RADIUS accounting server-specific setting registry key is defined
only on Windows 2000 Server and Windows Server 2003.

<246> Section 2.2.3.4.19.4: The RADIUS authentication server-specific setting registry keys are only
defined on Windows 2000 Server and Windows Server 2003.

<247> Section 2.2.5.1.1: The IPv6-related information and features are not defined in Windows 2000
Server and Windows Server 2003.

<248> Section 3.1.1: The PID_IPX value is available only in Windows 2000. The PID_IPV6 value is
not available in Windows 2000 Server and Windows Server 2003.

522 / 547

[MS-RRASM-Diff] - v20210407
Routing and Remote Access Server (RRAS) Management Protocol
Copyright © 2021 Microsoft Corporation
Release: April 7, 2021

<247> Section 3.1.4.1: The MPR_SERVER_1 structure is not defined in Windows 2000 Server.

<248> Section 3.1.4.1: The MPR_SERVER_2 structure is not defined in Windows 2000 Server and

Windows Server 2003.

<249> Section 3.1.4.1: The MPR_SERVER_1 structure is not defined in Windows 2000 Server.

<250> Section 3.1.4.1: The MPR_SERVER_2 structure is not defined in Windows 2000 Server and
Windows Server 2003.

<251> Section 3.1.4.1: The MPR_SERVER_1 structure is not defined in Windows 2000 Server.

<252> Section 3.1.4.1: The MPR_SERVER_2 structure is not defined in Windows 2000 Server and
Windows Server 2003.

<253> Section 3.1.4.2: The RASI_CONNECTION_3 structure is not defined in Windows 2000 Server
and Windows Server 2003.

<254> Section 3.1.4.10: The RRouterInterfaceTransportSetGlobalInfo method is not available on

Windows 2000, Windows XP, Windows Vista, or Windows 7.

<255> Section 3.1.4.10: The PID_IPX value is available only in Windows 2000 Server. The PID_IPV6
value is not available in Windows 2000 Server and Windows Server 2003.

<256> Section 3.1.4.11: The RRouterInterfaceTransportGetGlobalInfo method is not available
on Windows 2000, Windows XP, Windows Vista, or Windows 7.

<257> Section 3.1.4.11: The PID_IPX value is available only in Windows 2000 Server. The PID_IPV6
value is not available in Windows 2000 Server and Windows Server 2003.

<258> Section 3.1.4.11: The MS_IP_OSPF value is only available in Windows 2000 Server and
Windows Server 2003.

<259> Section 3.1.4.11: The MS_IP_ALG value is not available in Windows 2000 Server.

<260> Section 3.1.4.12: The RRouterInterfaceGetHandle method is not available on Windows
2000, Windows XP, Windows Vista, or Windows 7.

<261> Section 3.1.4.13: The RRouterInterfaceCreate method is not supported in Windows 2000,
Windows XP, Windows Vista, and Windows 7.

<262> Section 3.1.4.13: If dwIfType is set to ROUTER_IF_TYPE_TUNNEL1, no error is returned in
Windows 2000 Server.

<263> Section 3.1.4.14: The RRouterInterfaceGetInfo method is not available on Windows 2000,
Windows XP, Windows Vista, or Windows 7.

<264> Section 3.1.4.15: The RRouterInterfaceSetInfo method is not available on Windows 2000,

Windows XP, Windows Vista, or Windows 7.

<265> Section 3.1.4.15: The MPRI_INTERFACE_3 structure is not available in Windows 2000

Server and Windows Server 2003.

<266> Section 3.1.4.16<264> Section 3.1.4.16:: The RRouterInterfaceDelete method is not
available on Windows 2000, Windows XP, Windows Vista, or Windows 7.

<267> Section 3.1.4.17: The RRouterInterfaceTransportRemove method is not available on

Windows 2000, Windows XP, Windows Vista, or Windows 7.

<268> Section 3.1.4.17: The PID_IPX value is available only in Windows 2000 Server. The
PID_IPv6IPV6 value is not available in Windows 2000 Server and Windows Server 2003.

523 / 547

[MS-RRASM-Diff] - v20210407
Routing and Remote Access Server (RRAS) Management Protocol
Copyright © 2021 Microsoft Corporation
Release: April 7, 2021

<269> Section 3.1.4.18: The RRouterInterfaceTransportAdd method is not available on Windows
2000, Windows XP, Windows Vista, or Windows 7.

<270> Section 3.1.4.18: The PID_IPX value is available only in Windows 2000 Server. The
PID_IPv6IPV6 value is not available in Windows 2000 Server and Windows Server 2003.

<271> Section 3.1.4.18: IPv6-related information and features are not defined in Windows 2000
Server and Windows Server 2003.

<272> Section 3.1.4.18: The MS_IP_OSPF value is available only in Windows 2000 Server and
Windows Server 2003.

<273> Section 3.1.4.19: The RRouterInterfaceTransportGetInfo method is not available on
Windows 2000, Windows XP, Windows Vista, or Windows 7.

<274> Section 3.1.4.19: The PID_IPX value is available only in Windows 2000 Server. The

PID_IPv6IPV6 value is not available in Windows 2000 Server and Windows Server 2003.

<275> Section 3.1.4.19: The IPV6_ROUTE_INFO and

FILTER_DESCRIPTOR_V6 (section 2.2.1.2.7) cannot be retrieved in Windows 2000 Server, Windows
Server 2003, and in Windows Server 2008.

<276> Section 3.1.4.20: The RRouterInterfaceTransportSetInfo method is not available on
Windows 2000, Windows XP, Windows Vista, or Windows 7.

<277> Section 3.1.4.20: The PID_IPX value is available on Windows 2000 Server only. The PID_IPV6
value is not available on Windows 2000 Server and Windows Server 2003.

<278> Section 3.1.4.20: IPv6-related information and features are not defined in Windows 2000
Server and Windows Server 2003.

<279> Section 3.1.4.20: The MS_IP_OSPF value is available only in Windows 2000 Server and
Windows Server 2003.

<280> Section 3.1.4.21: The RRouterInterfaceEnum method is not available on Windows 2000,

Windows XP, Windows Vista, or Windows 7.

<281> Section 3.1.4.22: The RRouterInterfaceConnect method is not available on Windows 2000,
Windows XP, Windows Vista, or Windows 7.

<282> Section 3.1.4.24: The RRouterInterfaceUpdateRoutes method is not available on Windows
2000, Windows XP, Windows Vista, or Windows 7.

<283> Section 3.1.4.24: The PID_IPX value is available only in Windows 2000 Server.

<284> Section 3.1.4.25: The RRouterInterfaceQueryUpdateResult method is not available on

Windows 2000, Windows XP, Windows Vista, or Windows 7.

<285> Section 3.1.4.25: The PID_IPX value is available only in Windows 2000 Server.

<286> Section 3.1.4.26: The RRouterInterfaceUpdatePhonebookInfo method is not available on

Windows 2000, Windows XP, Windows Vista, or Windows 7.

<287> Section 3.1.4.27: The RMIBEntryCreate method is not available on Windows 2000, Windows
XP, Windows Vista, or Windows 7.

<288> Section 3.1.4.28: The RMIBEntryDelete method is not available on Windows 2000, Windows
XP, Windows Vista, or Windows 7.

<289> Section 3.1.4.28: Not supported in Windows Server 2008 and Windows Server 2008 R2
operating system.

524 / 547

[MS-RRASM-Diff] - v20210407
Routing and Remote Access Server (RRAS) Management Protocol
Copyright © 2021 Microsoft Corporation
Release: April 7, 2021

<290> Section 3.1.4.29: The RMIBEntrySet method is not available on Windows 2000, Windows XP,
Windows Vista, or Windows 7.

<291> Section 3.1.4.30: The RMIBEntryGet method is not available on Windows 2000, Windows XP,
Windows Vista, or Windows 7.

<292> Section 3.1.4.30: The PID_IPX value is available only in Windows 2000 Server. The
PID_IPv6IPV6 value is not available in Windows 2000 Server and Windows Server 2003.

<293> Section 3.1.4.30: The MS_IP_OSPF value is available only in Windows 2000 Server and
Windows Server 2003.

<294> Section 3.1.4.31: The RMIBEntryGetFirst method is not available on Windows 2000,
Windows XP, Windows Vista, or Windows 7.

<295> Section 3.1.4.31: The PID_IPX value is available only in Windows 2000 Server. The

PID_IPv6IPV6 value is not available in Windows 2000 Server and Windows Server 2003.

<296> Section 3.1.4.31: The MS_IP_OSPF value is available only in Windows 2000 Server and

Windows Server 2003.

<297> Section 3.1.4.32: The RMIBEntryGetNext method is not available on Windows 2000,
Windows XP, Windows Vista, or Windows 7.

<298> Section 3.1.4.32: Windows returns ERROR_SUCCESS when the global configuration for

IPBOOTP is requested. Since only one global configuration is available for IPBOOTP,
RMIBEntryGetNext method is treated the same as RMIBEntryGetFirst method and the global
configuration always returns the value ERROR_SUCCESS.

<299> Section 3.1.4.33: The RMIBGetTrapInfo method is not available on Windows 2000, Windows
XP, Windows Vista, or Windows 7.

<300> Section 3.1.4.33: The PID_IPX value is available only in Windows 2000 Server. The
PID_IPv6IPV6 value is not available in Windows 2000 Server and Windows Server 2003.

<301> Section 3.1.4.34: The RMIBSetTrapInfo method is not available on Windows 2000, Windows
XP, Windows Vista, or Windows 7. This method is not invoked by Windows remotely.

<302> Section 3.1.4.35: The RRasAdminConnectionNotification method is not available on
Windows 2000, Windows XP, Windows Vista, or Windows 7. This method is not invoked by Windows
remotely.

<303> Section 3.1.4.36: The RRasAdminSendUserMessage method is not available on Windows
2000, Windows XP, Windows Vista, or Windows 7.

<304> Section 3.1.4.36: The hDimServer handle is only defined in Windows Server 2003.

<305> Section 3.1.4.37: The RRouterDeviceEnum method is not available on Windows 2000,
Windows XP, Windows Vista, or Windows 7.

<306> Section 3.1.4.38: The RRouterInterfaceTransportCreate method is not available on

Windows 2000, Windows XP, Windows Vista, or Windows 7.

<307> Section 3.1.4.38: The PID_IPX value is available only in Windows 2000 Server. The

PID_IPv6IPV6 value is not available in Windows 2000 Server and Windows Server 2003.

<308> Section 3.1.4.38: In Windows, iprtrmgr.dll MUST be present in the %systemroot%\system32
folder.

<309> Section 3.1.4.39: The RRouterInterfaceDeviceGetInfo method is not available on Windows
2000, Windows XP, Windows Vista, or Windows 7.

525 / 547

[MS-RRASM-Diff] - v20210407
Routing and Remote Access Server (RRAS) Management Protocol
Copyright © 2021 Microsoft Corporation
Release: April 7, 2021

<310> Section 3.1.4.40: The RRouterInterfaceDeviceSetInfo method is not available on Windows
2000, Windows XP, Windows Vista, or Windows 7.

<311> Section 3.1.4.40: Windows does not validate the type of devices being added for a connection.
Thus, if the devices specified are valid serial, ISDN, PPPoE, or VPN devices (as provided by the

RRouterDeviceEnum method), the addition of the VPN/PPPoE devices still succeeds and the method
returns ERROR_SUCCESS, though the functionality itself is not supported.

<312> Section 3.1.4.41: The RRouterInterfaceSetCredentialsEx method is not available on
Windows 2000, Windows XP, Windows Vista, or Windows 7.

<313> Section 3.1.4.42: The RRouterInterfaceGetCredentialsEx method is not available on
Windows 2000, Windows XP, Windows Vista, or Windows 7.

<314> Section 3.1.4.43: The RRasAdminConnectionRemoveQuarantine method is not available

on Windows 2000, Windows XP, Windows Vista, or Windows 7.

:<315> Section 3.1.4.43: The hDimServer handle is only defined in Windows Server 2003.

<316> Section 3.1.4.44: The RMprAdminServerSetInfo method is not available on Windows 2000,
Windows XP, Windows Vista, or Windows 7.

<317> Section 3.1.4.44: For each VPN Tunnel Type, Windows maintains the port configuration by
using the registry keys MaxWanEndpoints and WanEndpoints as specified in section 2.2.3.3.1.7

and section 2.2.3.3.1.8, respectively. The WanEndpoints key corresponds to the number of ports
being configured through the MPR_SERVER_1 and MPR_SERVER_2 structures. When
WanEndpoints is configured to be more than MaxWanEndpoints, a reboot is required for the
configuration change to be applied by the RRAS implementation. In such a case, Windows will return
the error code ERROR_SUCCESS_REBOOT_REQUIRED.

<318> Section 3.1.4.44: Windows will return the error value ERROR_SUCCESS_REBOOT_REQUIRED
when the configuration change requires a reboot of the machine for the settings to be applied. One

such implementation requirement is when the number of ports configured is more than the maximum
number of ports that the tunneling protocols are configured to support initially.

<319> Section 3.1.4.45: The RMprAdminServerGetInfoEx method was introduced in Windows
Server 2008 R2 and Windows 7.

<320> Section 3.1.4.46: The RRasAdminConnectionEnumEx method was introduced in Windows
Server 2008 R2 and Windows 7.

:<321> Section 3.1.4.47: The RRasAdminConnectionGetInfoEx method is not available on

Windows 2000, Windows 2000 Server, Windows XP, Windows Server 2003, or Windows Vista.

<322> Section 3.1.4.48: The RMprAdminServerSetInfoEx method is not available on Windows
2000, Windows XP, Windows Vista, or Windows 7.

<323> Section 3.1.4.48: Windows returns the error value ERROR_SUCCESS_REBOOT_REQUIRED
(0x00000BC2) when the configuration change requires a reboot of the machine for the settings to be
applied. One such instance is when the number of ports configured is more than the maximum

number of ports that the tunneling protocols are configured to support initially.

<324> Section 3.1.4.48: Windows returns the error value ERROR_SUCCESS_RESTART_REQUIRED
(0x00000BC3) when a configuration change is being done for SSTP or IKEv2, such as when the value
for the setConfigForProtocols member of MPR_SERVER_SET_CONFIG_EX_1 in pServerConfig is
specified as MPRAPI_SET_CONFIG_PROTOCOL_FOR_SSTP (0x00000004) or
MPRAPI_SET_CONFIG_PROTOCOL_FOR_IKEV2 (0x00000008).

<325> Section 3.1.4.49: The RRasAdminUpdateConnection method is not available on Windows

2000, Windows XP, Windows Vista, or Windows 7.

526 / 547

[MS-RRASM-Diff] - v20210407
Routing and Remote Access Server (RRAS) Management Protocol
Copyright © 2021 Microsoft Corporation
Release: April 7, 2021

:<326> Section 3.1.4.50: The RRouterInterfaceSetCredentialsLocal method is not available on
Windows 2000, Windows XP, Windows Vista, or Windows 7.

<327> Section 3.1.4.51: The RRouterInterfaceGetCredentialsLocal method is not available in
Windows 2000 Server, Windows Server 2003, and Windows Server 2008.

<328> Section 3.1.4.52: The RRouterInterfaceGetCustomInfoEx method is not available in
Windows 2000 Server, Windows Server 2003, Windows Server 2008, and Windows Server 2008 R2.

<329> Section 3.1.4.53: The RRouterInterfaceSetCustomInfoEx method is not available in
Windows 2000 Server, Windows Server 2003, Windows Server 2008, and Windows Server 2008 R2.

<330> Section 3.2.4.15: The error code ERROR_IKEV2_PSK_INTERFACE_ALREADY_EXISTS is not
available in Windows 2000 Server, Windows Server 2003, Windows Server 2008, and Windows Server
2008 R2.

<331> Section 3.2.4.15<329> Section 3.2.4.15:: Windows calls RRouterInterfaceGetInfo method
(section 3.2.4.14) in order to construct and fill the structures with which RRouterInterfaceSetInfo will
be called. After the structure is retrieved the RRouterInterfaceGetInfo method is used to apply the

necessary configuration modifications to the structure before RRouterInterfaceSetInfo method is
called.

<332> Section 3.3.4: Windows 2000 Server does not throw an exception to indicate the client does

not have access.

<333> Section 3.3.4: Windows 2000 Server returns the status value of E_ACCESSDENIED
(0x80070005).

<334> Section 3.3.4.1: Windows 2000 Server does not throw an RPC exception. Instead it returns an
error value of E_ACCESSDENIED (0x80070005).

<335> Section 3.3.4.2<333> Section 3.3.4.2:: Windows 2000 Server does not throw an RPC
exception. Instead it returns an error value of E_ACCESSDENIED (0x80070005).

<336> Section 3.3.4.2: Windows 2000 Server does not perform access permission validation.

<337> Section 3.3.4.3: Windows 2000 Server does not throw an RPC exception. Instead, it returns an
error value of E_ACCESSDENIED (0x80070005).

<338> Section 3.3.4.4<336> Section 3.3.4.4:: Windows 2000 Server does not throw an RPC
exception. Instead, it returns an error value of E_ACCESSDENIED (0x80070005).

<339> Section 3.3.4.4: Windows 2000 Server does not validate access permission.

<340> Section 3.3.4.5: Windows 2000 Server does not throw an RPC exception. Instead, it returns an

error value of E_ACCESSDENIED (0x80070005).

<341> Section 3.3.4.5: The maximum for ReqTypes enumeration is 122 for Windows 2000 Server,
129 for Windows Server 2003, 137 for Windows Server 2008, and 141 for Windows Server 2008 R2.

<342> Section 3.3.4.5: The version is 5 for Windows 2000 Server, 6 for Windows Server 2003,

Windows Server 2008, and Windows Server 2008 R2.

<343> Section 3.3.4.5: Validation is not available in Windows 2000 Server.

<344> Section 3.3.4.6: The NP_Nbf value is valid only in Windows 2000 Server.

<345> Section 3.3.4.6: The NP_Ipx value is valid only in Windows 2000 Server.

<346> Section 3.3.4.6<344> Section 3.3.4.6:: The NP_Ipv6 vlaue is not valid in Windows 2000
Server and Windows Server 2003.

527 / 547

[MS-RRASM-Diff] - v20210407
Routing and Remote Access Server (RRAS) Management Protocol
Copyright © 2021 Microsoft Corporation
Release: April 7, 2021

<347> Section 3.3.4.6: Windows 2000 Server does not throw an RPC exception. Instead, it returns an
error value of E_ACCESSDENIED (0x80070005).

<348> Section 3.3.4.7: Windows 2000 Server does not throw an RPC exception. Instead, it returns an
error value of E_ACCESSDENIED (0x80070005).

<349> Section 3.3.4.7: Windows 2000 Server does not validate access permission.

<350> Section 3.3.4.7: The RRAS server version is 5 for Windows 2000 Server, and 6 for Windows
Server 2003, Windows Server 2008, and Windows Server 2008 R2.

<351> Section 3.4.4: Windows 2000 Server will return a status of E_ACCESS_DENIED if the client is
not an administrator of the RRASM server.

<352> Section 3.5.4.4.1: The GetIcfEnabled method is defined only in Windows 2000 Server,
Windows Server 2003, and Windows Server 2003 R2.

<353> Section 3.5.4.7: SSTP methods in the IRemoteSSTPCertCheck interface are not available in
Windows 2000 Server, Windows Server 2003, and Windows Server 2008.

<352> Section 4.1: SSTP methods are not defined in Windows 2000 Server and Windows Server
2003.

<353<354> Section 4.2: The Information level 3 is not defined in Windows 2000 Server and Windows
Server 2003.

528 / 547

[MS-RRASM-Diff] - v20210407
Routing and Remote Access Server (RRAS) Management Protocol
Copyright © 2021 Microsoft Corporation
Release: April 7, 2021

8 Change Tracking

This section identifies changes that were made to this document since the last release. Changes are
classified as Major, Minor, or None.

The revision class Major means that the technical content in the document was significantly revised.
Major changes affect protocol interoperability or implementation. Examples of major changes are:

▪ A document revision that incorporates changes to interoperability requirements.

▪ A document revision that captures changes to protocol functionality.

The revision class Minor means that the meaning of the technical content was clarified. Minor changes
do not affect protocol interoperability or implementation. Examples of minor changes are updates to
clarify ambiguity at the sentence, paragraph, or table level.

The revision class None means that no new technical changes were introduced. Minor editorial and
formatting changes may have been made, but the relevant technical content is identical to the last

released version.

The changes made to this document are listed in the following table. For more information, please
contact dochelp@microsoft.com.

Section Description
Revision
class

1 Introduction 10932 : Added information about the RAS client. Major

1.3 Overview 10932 : Added information about the RAS client. Major

1.4 Relationship to Other Protocols 10932 : Added information about the RAS client. Major

2.2.1.2.16 MIB_MCAST_LIMIT_ROW
Moved the configurable limit information regarding the
MIB_IPMCAST_IF_ENTRY structure from the
MIB_MCAST_LIMIT_ROW_ section.

Major

2.2.1.2.37 MIB_IPMCAST_BOUNDARY 10099 : Added names of dwStatus values. Major

2.2.1.2.45 MIB_IPMCAST_OIF_STATS
10100 : Changed dwIfNextHopIPAddr to
dwNextHopAddr in the dwNextHopAddr field
description.

Major

2.2.1.2.105
IPX_MIB_GET_INPUT_DATA

10099 : Added missing TableId for value 3. Major

2.2.1.2.130 PPP_PROJECTION_INFO_1
10100 : Changed dwAuthenticatedData to
dwAuthenticationData in the dwAuthenticationData
field description.

Major

2.2.1.2.176 IGMP_MIB_GROUP_INFO

10100 : Changed interface types RAS_SERVER to
IGMP_IF_RAS_SERVER and RAS_CLIENT to
IGMP_IF_RAS_CLIENT. Removed
IGMP_ENUM_FOR_RAS_CLIENTS_ID flag that does not
exist in the code.

Major

2.2.1.2.177 IGMP_MIB_IF_STATS
10099 : Changed in LastQuerierChangeTime the
igmpInterfaceQuerier address to QuerierIpAddr.

Major

2.2.1.2.179
IGMP_MIB_GROUP_SOURCE_INFO_V3

10099 : Added section for struct
IGMP_MIB_GROUP_SOURCE_INFO_V3.

Major

2.2.1.2.180
IGMP_MIB_GROUP_INFO_V3

10099 : Added reference to new
IGMP_MIB_GROUP_SOURCE_INFO_V3 structure.

Minor

529 / 547

[MS-RRASM-Diff] - v20210407
Routing and Remote Access Server (RRAS) Management Protocol
Copyright © 2021 Microsoft Corporation
Release: April 7, 2021

Section Description
Revision
class

2.2.1.2.182 IP_NAT_MIB_QUERY
10100 : Changed instances of RMIBGetEntryFirst to
RMIBEntryGetFirst.

Major

2.2.1.2.261 BGP_POLICY

10100 : Changed eType value from MatchMaxPrefix to
MatchMaxPrefixes. And changed eAttrType values
ModifyLocalPref to NewLocalPref, ModifyNextHop to
NewNextHop, and ModifyMed to NewMed.

Major

2.2.2 File Format for Phonebook
10932 : Added product note about the RAS client
phone book.

Major

2.2.2.2.11 VpnStrategy
10932 : Added MPRI_INTERFACE values and a product
note about RAS client values.

Major

3.1.4.44 RMprAdminServerSetInfo
(Opnum 43)

10100 : Changed return value
ERROR_REBOOT_REQUIRED to
ERROR_SUCCESS_REBOOT_REQUIRED when the RRAS
server completes the processing successfully. Also
changed the return value ERROR_REBOOT_REQUIRED
to ERROR_SUCCESS_REBOOT_REQUIRED in a product
behavior note when the configuration change requires
a reboot of the machine for the settings to be applied.

Major

3.1.4.48 RMprAdminServerSetInfoEx
(Opnum 47)

10100 : Changed return value
ERROR_REBOOT_REQUIRED to
ERROR_SUCCESS_REBOOT_REQUIRED when the RRAS
server completes the processing successfully.

Major

3.4.4.5 RasRpcSubmitRequest (Opnum
12)

10100 : Changed instances of GetDevConfig to
GetDevConfigStruct when describing client behavior for
the ReqType REQTYPE_GETDEVCONFIG.

Major

6 Appendix A: Full IDL
10099 : Added struct
IGMP_MIB_GROUP_SOURCE_INFO_V3.

Major

7 Appendix B: Product Behavior Updated for this version of Windows Server. Major

8 Change Tracking Removed section MIB_MCAST_LIMIT_ROW_. Major

530 / 547

[MS-RRASM-Diff] - v20210407
Routing and Remote Access Server (RRAS) Management Protocol
Copyright © 2021 Microsoft Corporation
Release: April 7, 2021

9 Index
A

Abstract data model
 client (section 3.2.1 401, section 3.4.1 419, section 3.6.1 431)
 DIMSVC interface 401
 RASRPC interface 419
 server (section 3.1.1 316, section 3.3.1 407, section 3.5.1 421)
 DIMSVC interface 316
 RASRPC interface 407
Applicability 36

B

BGP_ADVERTISE packet 269
BGP_ASN_RANGE structure 263
BGP_CONFIG_HEADER packet 260
BGP_IP_ADDRESS structure 262
BGP_IP_PREFIX structure 262

BGP_PEER structure 268
BGP_PEER_TO_POLICIES structure 269
BGP_PEERING_OP_MODE enumeration 51
BGP_POLICY packet 266
BGP_POLICY_ACTION structure 266
BGP_POLICY_DIRECTION enumeration 50
BGP_POLICY_MATCH structure 264
BGP_POLICY_MODIFY structure 265
BGP_POLICY_TYPE enumeration 50
BGP_ROUTER_CONFIG structure 263
BGP_ROUTER_V6 structure 270
BGP_TOC_ENTRY packet 260

C

Capability negotiation 36
CERT_BLOB_1 packet 171
CERT_EKU_1 packet 256
Change tracking 528
Client
 abstract data model (section 3.2.1 401, section 3.4.1 419, section 3.6.1 431)
 DIMSVC interface 401
 RASRPC interface 419
 dimsvc interface interface 401
 initialization (section 3.2.3 402, section 3.4.3 419, section 3.6.3 431)
 DIMSVC interface 402
 RASRPC interface 419
 local events (section 3.2.6 407, section 3.4.6 421, section 3.6.6 431)
 DIMSVC interface 407
 RASRPC interface 421
 message processing (section 3.2.4 402, section 3.4.4 419, section 3.6.4 431)
 DIMSVC interface 402
 RASRPC interface 419
 overview (section 3.2 401, section 3.4 419, section 3.6 431)
 rasrpc interface interface 419
 RasRpcDeleteEntry (Opnum 5) method 420
 RasRpcGetInstalledProtocolsEx (Opnum 14) method 421
 RasRpcGetSystemDirectory (Opnum 11) method 420
 RasRpcGetUserPreferences (Opnum 9) method 420

 RasRpcGetVersion (Opnum 15) method 421
 RasRpcSetUserPreferences (Opnum 10) method 420
 RasRpcSubmitRequest (Opnum 12) method 420
 remras interface interface 431

531 / 547

[MS-RRASM-Diff] - v20210407
Routing and Remote Access Server (RRAS) Management Protocol
Copyright © 2021 Microsoft Corporation
Release: April 7, 2021

 RMIBEntryCreate (Opnum 26) method 404
 RMIBEntryDelete (Opnum 27) method 404
 RMIBEntryGet (Opnum 29) method 405
 RMIBEntryGetFirst (Opnum 30) method 405
 RMIBEntryGetNext (Opnum 31) method 405
 RMIBEntrySet (Opnum 28) method 405
 RMIBGetTrapInfo (Opnum 32) method 405
 RMIBSetTrapInfo (Opnum 33) method 405
 RMprAdminServerGetInfo (Opnum 0) method 402
 RMprAdminServerGetInfoEx (Opnum 44) method 406
 RMprAdminServerSetInfo (Opnum 43) method 406
 RMprAdminServerSetInfoEx (Opnum 47) method 406
 RRasAdminConnectionClearStats (Opnum 3) method 402
 RRasAdminConnectionEnum (Opnum 1) method 402
 RRasAdminConnectionEnumEx (Opnum 45) method 406
 RRasAdminConnectionGetInfo (Opnum 2) method 402
 RRasAdminConnectionGetInfoEx (Opnum 46) method 406
 RRasAdminConnectionNotification (Opnum 34) method 405
 RRasAdminConnectionRemoveQuarantine (Opnum 42) method 406
 RRasAdminPortClearStats (Opnum 6) method 403
 RRasAdminPortDisconnect (Opnum 8) method 403
 RRasAdminPortEnum (Opnum 4) method 402
 RRasAdminPortGetInfo (Opnum 5) method 402

 RRasAdminPortReset (Opnum 7) method 403
 RRasAdminSendUserMessage (Opnum 35) method 405
 RRasAdminUpdateConnection (Opnum 48) method 406
 RRouterDeviceEnum (Opnum 36) method 405
 RRouterInterfaceConnect (Opnum 21) method 404
 RRouterInterfaceCreate (Opnum 12) method 403
 RRouterInterfaceDelete (Opnum 15) method 403
 RRouterInterfaceDeviceGetInfo (Opnum 38) method 405
 RRouterInterfaceDeviceSetInfo (Opnum 39) method 406
 RRouterInterfaceDisconnect (Opnum 22) method 404
 RRouterInterfaceEnum (Opnum 20) method 404
 RRouterInterfaceGetCredentialsEx (Opnum 41) method 406
 RRouterInterfaceGetCredentialsLocal (Opnum 50) method 407
 RRouterInterfaceGetCustomInfoEx (Opnum 51) method 407
 RRouterInterfaceGetHandle (Opnum 11) method 403
 RRouterInterfaceGetInfo (Opnum 13) method 403
 RRouterInterfaceQueryUpdateResult (Opnum 24) method 404
 RRouterInterfaceSetCredentialsEx (Opnum 40) method 406
 RRouterInterfaceSetCredentialsLocal (Opnum 49) method 406
 RRouterInterfaceSetCustomInfoEx (Opnum 52) method 407
 RRouterInterfaceSetInfo (Opnum 14) method 403
 RRouterInterfaceTransportAdd (Opnum 17) method 404
 RRouterInterfaceTransportCreate (Opnum 37) method 405
 RRouterInterfaceTransportGetGlobalInfo (Opnum 10) method 403
 RRouterInterfaceTransportGetInfo (Opnum 18) method 404
 RRouterInterfaceTransportRemove (Opnum 16) method 403
 RRouterInterfaceTransportSetGlobalInfo (Opnum 9) method 403
 RRouterInterfaceTransportSetInfo (Opnum 19) method 404
 RRouterInterfaceUpdatePhonebookInfo (Opnum 25) method 404
 RRouterInterfaceUpdateRoutes (Opnum 23) method 404
 security settings
 dimsvc 38
 Rasrpc 39
 sequencing rules (section 3.2.4 402, section 3.4.4 419, section 3.6.4 431)
 DIMSVC interface 402
 RASRPC interface 419
 timer events (section 3.2.5 407, section 3.4.5 421, section 3.6.5 431)
 DIMSVC interface 407
 RASRPC interface 421
 timers (section 3.2.2 401, section 3.4.2 419, section 3.6.2 431)
 DIMSVC interface 401
 RASRPC interface 419

532 / 547

[MS-RRASM-Diff] - v20210407
Routing and Remote Access Server (RRAS) Management Protocol
Copyright © 2021 Microsoft Corporation
Release: April 7, 2021

Common data types 39
Common messages 40
Configuration example 448
Connection object 35
Constants 40
Creating a demand dial interface on rras with filters example 434
Creating demand dial interface with filters example 434

D

Data model - abstract
 client (section 3.2.1 401, section 3.4.1 419, section 3.6.1 431)
 DIMSVC interface 401
 RASRPC interface 419
 server (section 3.1.1 316, section 3.3.1 407, section 3.5.1 421)
 DIMSVC interface 316
 RASRPC interface 407

Data types 40
 common - overview 39
DeviceConfigInfo packet 233
DHCPV6R_GLOBAL_CONFIG structure 183
DHCPV6R_IF_CONFIG structure 184
DHCPV6R_IF_STATS structure 183
DHCPV6R_MIB_GET_INPUT_DATA structure 185
DHCPV6R_MIB_GET_OUTPUT_DATA structure 182
DIM_INFORMATION_CONTAINER structure 51
DIM_INTERFACE_CONTAINER structure 52
DIM_MIB_ENTRY_CONTAINER structure 69
DIMSVC interface - server 316
dimsvc interface interface (section 3.1 316, section 3.2 401)
Disconnecting a particular user connection example 432
Disconnecting particular user connection example 432

E

EAPTLS_HASH structure 160
EAPTLS_USER_PROPERTIES packet 161
Enum packet 237
Enumerating interfaces and connecting "dd1" example 436
Enumerating interfaces and connecting dd1 example 436
Enumerations 40
Events
 local - client (section 3.2.6 407, section 3.4.6 421, section 3.6.6 431)
 DIMSVC interface 407
 RASRPC interface 421
 local - server (section 3.1.6 401, section 3.3.6 418, section 3.5.6 430)
 DIMSVC interface 401
 RASRPC interface 418
 timer - client (section 3.2.5 407, section 3.4.5 421, section 3.6.5 431)
 DIMSVC interface 407
 RASRPC interface 421
 timer - server (section 3.1.5 400, section 3.3.5 418, section 3.5.5 430)
 DIMSVC interface 400
 RASRPC interface 418
Examples
 configuration 448
 creating a demand dial interface on rras with filters 434

 creating demand dial interface with filters 434
 disconnecting a particular user connection 432
 disconnecting particular user connection 432
 enumerating interfaces and connecting "dd1" 436
 enumerating interfaces and connecting dd1 436
 interface configuration 446
 ports configuration 447
 querying interface status through Management Information Base (MIB) 437

533 / 547

[MS-RRASM-Diff] - v20210407
Routing and Remote Access Server (RRAS) Management Protocol
Copyright © 2021 Microsoft Corporation
Release: April 7, 2021

 querying interface status through mib 437
 querying server configuration information 432
 querying validity of sstp certificate 449
 registry configuration 445
 retrieving device configuration information 439
 retrieving specific port information 440
 retrieving the rasrpc server version info 439
 sample phonebook file for a demand-dial connection 441
 transport configuration 445
 updating connection endpoint of IKEv2-based connection 438
 updating the connection endpoint of an ikev2-based connection 438

F

Fields - vendor-extensible 36
FILTER_DESCRIPTOR packet 58
FILTER_DESCRIPTOR_V6 packet 60

FILTER_INFO structure 59
FILTER_INFO_V6 structure 61
FORWARD_ACTION enumeration 42
Full IDL 452

G

GetDevConfigStruct packet 236
GetNdiswanDriverCapsStruct structure 236
GetSetCalledId packet 235
GLOBAL_INFO structure 62
Glossary 18

I

IDL 452
IF_TABLE_INDEX structure 144
IFFILTER_INFO structure 138
IGMP_MIB_GET_INPUT_DATA structure 195
IGMP_MIB_GET_OUTPUT_DATA packet 197
IGMP_MIB_GLOBAL_CONFIG 198
IGMP_MIB_GLOBAL_CONFIG structure 198
IGMP_MIB_GROUP_IFS_LIST packet 205
IGMP_MIB_GROUP_INFO 202
IGMP_MIB_GROUP_INFO structure 202
IGMP_MIB_GROUP_INFO_V3 206
IGMP_MIB_GROUP_INFO_V3 structure 206
IGMP_MIB_GROUP_SOURCE_INFO_V3 206
IGMP_MIB_GROUP_SOURCE_INFO_V3 structure 206
IGMP_MIB_IF_CONFIG structure 199
IGMP_MIB_IF_GROUPS_LIST 201
IGMP_MIB_IF_GROUPS_LIST structure 201
IGMP_MIB_IF_STATS structure 203
IKEV2_CONFIG_PARAMS_1 structure 173

IKEV2_CONFIG_PARAMS_2 structure 253
IKEV2_CONFIG_PARAMS_3 structure 258
IKEV2_PROJECTION_INFO_1 structure 167
IKEV2_PROJECTION_INFO_2 structure 246
IKEV2_TUNNEL_CONFIG_PARAMS_1 packet 172
IKEV2_TUNNEL_CONFIG_PARAMS_2 packet 252
IKEV2_TUNNEL_CONFIG_PARAMS_3 packet 256
Implementer - security considerations 451
 overview 451
 RRAS Management Protocol-specific 451
IN6_ADDR structure 63
Index of security parameters 451
Info structure 238
Informative references 28

534 / 547

[MS-RRASM-Diff] - v20210407
Routing and Remote Access Server (RRAS) Management Protocol
Copyright © 2021 Microsoft Corporation
Release: April 7, 2021

Initialization
 client (section 3.2.3 402, section 3.4.3 419, section 3.6.3 431)
 DIMSVC interface 402
 RASRPC interface 419
 server (section 3.1.3 317, section 3.3.3 407, section 3.5.3 422)
 DIMSVC interface 317
 RASRPC interface 407
Interface configuration 298
Interface configuration example 446
Interface object 32
INTERFACE_ROUTE_ENTRY 207
INTERFACE_ROUTE_ENTRY structure 207
INTERFACE_ROUTE_INFO structure 63
INTERFACE_STATUS_INFO structure 69
Interfaces - client
 dimsvc interface 401
 rasrpc interface 419
 remras interface 431
Interfaces - server
 DIMSVC 316
 dimsvc interface 316
 RASRPC 407
 rasrpc interface 407

 remras interface 421
Introduction 18
IP_ALG_GLOBAL_INFO structure 223
IP_AUTO_DHCP_GLOBAL_INFO structure 216
IP_AUTO_DHCP_INTERFACE_INFO structure 217
IP_AUTO_DHCP_MIB_QUERY structure 212
IP_AUTO_DHCP_STATISTICS structure 212
IP_DNS_PROXY_GLOBAL_INFO structure 218
IP_DNS_PROXY_INTERFACE_INFO structure 218
IP_DNS_PROXY_MIB_QUERY packet 211
IP_DNS_PROXY_STATISTICS structure 211
IP_NAT_ADDRESS_MAPPING structure 222
IP_NAT_ADDRESS_RANGE structure 222
IP_NAT_DIRECTION enumeration 45
IP_NAT_ENUMERATE_SESSION_MAPPINGS packet 208
IP_NAT_GLOBAL_INFO structure 219
IP_NAT_INTERFACE_INFO structure 220
IP_NAT_INTERFACE_STATISTICS structure 210
IP_NAT_MIB_QUERY structure 208
IP_NAT_PORT_MAPPING structure 222
IP_NAT_SESSION_MAPPING structure 209
IP_NAT_TIMEOUT structure 220
IPBOOTP_GLOBAL_CONFIG structure 178
IPBOOTP_IF_BINDING structure 181
IPBOOTP_IF_CONFIG structure 179
IPBOOTP_IF_STATS structure 181
IPBOOTP_IP_ADDRESS structure 182
IPBOOTP_MIB_GET_INPUT_DATA structure 179
IPBOOTP_MIB_GET_OUTPUT_DATA structure 180
IPINIP_CONFIG_INFO structure 68
IPRIP_GLOBAL_CONFIG structure 187
IPRIP_GLOBAL_STATS structure 187
IPRIP_IF_BINDING structure 194
IPRIP_IF_CONFIG packet 189
IPRIP_IF_STATS structure 188
IPRIP_IP_ADDRESS structure 195
IPRIP_MIB_GET_INPUT_DATA structure 185
IPRIP_MIB_GET_OUTPUT_DATA structure 186
IPRIP_PEER_STATS 195
IPRIP_PEER_STATS structure 195
IPRIP_ROUTE_FILTER structure 194
IPX_ADAPTER_INFO structure 141

535 / 547

[MS-RRASM-Diff] - v20210407
Routing and Remote Access Server (RRAS) Management Protocol
Copyright © 2021 Microsoft Corporation
Release: April 7, 2021

IPX_GLOBAL_INFO structure 138
IPX_IF_INFO structure 139
IPX_IF_STATS structure 148
IPX_INTERFACE structure 149
IPX_MIB_GET_INPUT_DATA structure 146
IPX_MIB_INDEX structure 145
IPX_MIB_ROW structure 152
IPX_MIB_SET_INPUT_DATA structure 153
IPX_ROUTE structure 151
IPX_SERVER_ENTRY structure 140
IPX_SERVICE structure 157
IPX_STATIC_NETBIOS_NAME_INFO structure 141
IPX_STATIC_ROUTE_INFO structure 139
IPX_STATIC_SERVICE_INFO 140
IPX_TRAFFIC_FILTER_GLOBAL_INFO structure 142
IPX_TRAFFIC_FILTER_INFO structure 142
IPXMIB_BASE structure 147
IPXWAN_IF_INFO structure 139
IRemoteICFICSConfig Interface (Opnum 3) method 425
IRemoteIPV6Config Interface (Opnum 3) method 428
IRemoteNetworkConfig Interface (Opnum 3) method 423
IRemoteRouterRestart Interface (Opnum 3) method 424
IRemoteSetDnsConfig Interface (Opnum 3) method 424

IRemoteSSTPCertCheck Interface (Opnum 3) method 429
IRemoteStringIdConfig Interface (Opnum 3) method 427

L

L2TP_CONFIG_PARAMS_1 structure 174
L2TP_CONFIG_PARAMS_2 structure 273
L2TP_TUNNEL_CONFIG_PARAMS_1 packet 272
Local events
 client (section 3.2.6 407, section 3.4.6 421, section 3.6.6 431)
 DIMSVC interface 407
 RASRPC interface 421
 server (section 3.1.6 401, section 3.3.6 418, section 3.5.6 430)
 DIMSVC interface 401
 RASRPC interface 418
LPIN6_ADDR 63
LPRASRPC_CALLBACKLIST 242
LPRASRPC_LOCATIONLIST 244
LPRASRPC_PBUSER 240
LPRASRPC_STRINGLIST 243

M

Management Information Base (MIB) object 34
MCAST_HBEAT_INFO structure 67
Message processing
 client (section 3.2.4 402, section 3.4.4 419, section 3.6.4 431)
 DIMSVC interface 402
 RASRPC interface 419
 server (section 3.1.4 317, section 3.3.4 407, section 3.5.4 422)
 DIMSVC interface 317
 RASRPC interface 407
Messages
 common data types 39

 RPC common 40
 transport 38
Methods
 IRemoteICFICSConfig Interface (Opnum 3) 425
 IRemoteIPV6Config Interface (Opnum 3) 428
 IRemoteNetworkConfig Interface (Opnum 3) 423
 IRemoteRouterRestart Interface (Opnum 3) 424
 IRemoteSetDnsConfig Interface (Opnum 3) 424

536 / 547

[MS-RRASM-Diff] - v20210407
Routing and Remote Access Server (RRAS) Management Protocol
Copyright © 2021 Microsoft Corporation
Release: April 7, 2021

 IRemoteSSTPCertCheck Interface (Opnum 3) 429
 IRemoteStringIdConfig Interface (Opnum 3) 427
 RasRpcDeleteEntry (Opnum 5) (section 3.3.4.1 409, section 3.4.4.1 420)
 RasRpcGetInstalledProtocolsEx (Opnum 14) (section 3.3.4.6 417, section 3.4.4.6 421)
 RasRpcGetSystemDirectory (Opnum 11) (section 3.3.4.4 411, section 3.4.4.4 420)
 RasRpcGetUserPreferences (Opnum 9) (section 3.3.4.2 410, section 3.4.4.2 420)
 RasRpcGetVersion (Opnum 15) (section 3.3.4.7 417, section 3.4.4.7 421)
 RasRpcSetUserPreferences (Opnum 10) (section 3.3.4.3 411, section 3.4.4.3 420)
 RasRpcSubmitRequest (Opnum 12) (section 3.3.4.5 412, section 3.4.4.5 420)
 RMIBEntryCreate (Opnum 26) (section 3.1.4.27 360, section 3.2.4.27 404)
 RMIBEntryDelete (Opnum 27) (section 3.1.4.28 363, section 3.2.4.28 404)
 RMIBEntryGet (Opnum 29) (section 3.1.4.30 368, section 3.2.4.30 405)
 RMIBEntryGetFirst (Opnum 30) (section 3.1.4.31 372, section 3.2.4.31 405)
 RMIBEntryGetNext (Opnum 31) (section 3.1.4.32 376, section 3.2.4.32 405)
 RMIBEntrySet (Opnum 28) (section 3.1.4.29 364, section 3.2.4.29 405)
 RMIBGetTrapInfo (Opnum 32) (section 3.1.4.33 377, section 3.2.4.33 405)
 RMIBSetTrapInfo (Opnum 33) (section 3.1.4.34 378, section 3.2.4.34 405)
 RMprAdminServerGetInfo (Opnum 0) (section 3.1.4.1 321, section 3.2.4.1 402)
 RMprAdminServerGetInfoEx (Opnum 44) (section 3.1.4.45 392, section 3.2.4.45 406)
 RMprAdminServerSetInfo (Opnum 43) (section 3.1.4.44 390, section 3.2.4.44 406)
 RMprAdminServerSetInfoEx (Opnum 47) (section 3.1.4.48 395, section 3.2.4.48 406)
 RRasAdminConnectionClearStats (Opnum 3) (section 3.1.4.4 325, section 3.2.4.4 402)
 RRasAdminConnectionEnum (Opnum 1) (section 3.1.4.2 322, section 3.2.4.2 402)

 RRasAdminConnectionEnumEx (Opnum 45) (section 3.1.4.46 392, section 3.2.4.46 406)
 RRasAdminConnectionGetInfo (Opnum 2) (section 3.1.4.3 324, section 3.2.4.3 402)
 RRasAdminConnectionGetInfoEx (Opnum 46) (section 3.1.4.47 394, section 3.2.4.47 406)
 RRasAdminConnectionNotification (Opnum 34) (section 3.1.4.35 380, section 3.2.4.35 405)
 RRasAdminConnectionRemoveQuarantine (Opnum 42) (section 3.1.4.43 389, section 3.2.4.43 406)
 RRasAdminPortClearStats (Opnum 6) (section 3.1.4.7 329, section 3.2.4.7 403)
 RRasAdminPortDisconnect (Opnum 8) (section 3.1.4.9 331, section 3.2.4.9 403)
 RRasAdminPortEnum (Opnum 4) (section 3.1.4.5 326, section 3.2.4.5 402)
 RRasAdminPortGetInfo (Opnum 5) (section 3.1.4.6 328, section 3.2.4.6 402)
 RRasAdminPortReset (Opnum 7) (section 3.1.4.8 330, section 3.2.4.8 403)
 RRasAdminSendUserMessage (Opnum 35) (section 3.1.4.36 381, section 3.2.4.36 405)
 RRasAdminUpdateConnection (Opnum 48) (section 3.1.4.49 396, section 3.2.4.49 406)
 RRouterDeviceEnum (Opnum 36) (section 3.1.4.37 382, section 3.2.4.37 405)
 RRouterInterfaceConnect (Opnum 21) (section 3.1.4.22 355, section 3.2.4.22 404)
 RRouterInterfaceCreate (Opnum 12) (section 3.1.4.13 337, section 3.2.4.13 403)
 RRouterInterfaceDelete (Opnum 15) (section 3.1.4.16 343, section 3.2.4.16 403)
 RRouterInterfaceDeviceGetInfo (Opnum 38) (section 3.1.4.39 384, section 3.2.4.39 405)
 RRouterInterfaceDeviceSetInfo (Opnum 39) (section 3.1.4.40 386, section 3.2.4.40 406)
 RRouterInterfaceDisconnect (Opnum 22) (section 3.1.4.23 356, section 3.2.4.23 404)
 RRouterInterfaceEnum (Opnum 20) (section 3.1.4.21 354, section 3.2.4.21 404)
 RRouterInterfaceGetCredentialsEx (Opnum 41) (section 3.1.4.42 388, section 3.2.4.42 406)
 RRouterInterfaceGetCredentialsLocal (Opnum 50) (section 3.1.4.51 398, section 3.2.4.51 407)
 RRouterInterfaceGetCustomInfoEx (Opnum 51) (section 3.1.4.52 399, section 3.2.4.52 407)
 RRouterInterfaceGetHandle (Opnum 11) (section 3.1.4.12 336, section 3.2.4.12 403)
 RRouterInterfaceGetInfo (Opnum 13) (section 3.1.4.14 339, section 3.2.4.14 403)
 RRouterInterfaceQueryUpdateResult (Opnum 24) (section 3.1.4.25 358, section 3.2.4.25 404)
 RRouterInterfaceSetCredentialsEx (Opnum 40) (section 3.1.4.41 387, section 3.2.4.41 406)
 RRouterInterfaceSetCredentialsLocal (Opnum 49) (section 3.1.4.50 397, section 3.2.4.50 406)
 RRouterInterfaceSetCustomInfoEx (Opnum 52) (section 3.1.4.53 400, section 3.2.4.53 407)
 RRouterInterfaceSetInfo (Opnum 14) (section 3.1.4.15 341, section 3.2.4.15 403)
 RRouterInterfaceTransportAdd (Opnum 17) (section 3.1.4.18 345, section 3.2.4.18 404)
 RRouterInterfaceTransportCreate (Opnum 37) (section 3.1.4.38 383, section 3.2.4.38 405)
 RRouterInterfaceTransportGetGlobalInfo (Opnum 10) (section 3.1.4.11 333, section 3.2.4.11 403)
 RRouterInterfaceTransportGetInfo (Opnum 18) (section 3.1.4.19 348, section 3.2.4.19 404)
 RRouterInterfaceTransportRemove (Opnum 16) (section 3.1.4.17 344, section 3.2.4.17 403)
 RRouterInterfaceTransportSetGlobalInfo (Opnum 9) (section 3.1.4.10 332, section 3.2.4.10 403)
 RRouterInterfaceTransportSetInfo (Opnum 19) (section 3.1.4.20 350, section 3.2.4.20 404)
 RRouterInterfaceUpdatePhonebookInfo (Opnum 25) (section 3.1.4.26 360, section 3.2.4.26 404)
 RRouterInterfaceUpdateRoutes (Opnum 23) (section 3.1.4.24 357, section 3.2.4.24 404)
MIB_BEST_IF structure 71
MIB_BOUNDARYROW structure 72
MIB_DA_MSG structure 213

537 / 547

[MS-RRASM-Diff] - v20210407
Routing and Remote Access Server (RRAS) Management Protocol
Copyright © 2021 Microsoft Corporation
Release: April 7, 2021

MIB_ICMP structure 72
MIB_IFNUMBER structure 74
MIB_IFROW structure 74
MIB_IFSTATUS structure 76
MIB_IFTABLE packet 77
MIB_IPADDRROW structure 77
MIB_IPADDRTABLE packet 78
MIB_IPDESTROW structure 71
MIB_IPDESTTABLE packet 71
MIB_IPFORWARD_PROTO enumeration 43
MIB_IPFORWARD_TYPE enumeration 42
MIB_IPFORWARDNUMBER structure 79
MIB_IPFORWARDROW structure 79
MIB_IPFORWARDTABLE packet 81
MIB_IPMCAST_BOUNDARY structure 81
MIB_IPMCAST_BOUNDARY_TABLE packet 82
MIB_IPMCAST_GLOBAL structure 82
MIB_IPMCAST_IF_ENTRY structure 83
MIB_IPMCAST_IF_TABLE structure 83
MIB_IPMCAST_MFE structure 83
MIB_IPMCAST_MFE_STATS packet 85
MIB_IPMCAST_OIF structure 84
MIB_IPMCAST_OIF_STATS structure 86

MIB_IPMCAST_SCOPE structure 87
MIB_IPNETROW structure 88
MIB_IPNETTABLE structure 88
MIB_IPSTATS structure 89
MIB_IPSTATS_FORWARDING enumeration 44
MIB_MCAST_LIMIT_ROW structure 68
MIB_MFE_STATS_TABLE packet 91
MIB_MFE_TABLE packet 91
MIB_OPAQUE_INFO packet 92
MIB_OPAQUE_QUERY packet 95
MIB_PROXYARP structure 99
MIB_ROUTESTATE structure 71
MIB_TCP_STATE enumeration 44
MIB_TCPROW structure 100
MIB_TCPSTATS structure 100
MIB_TCPTABLE structure 101
MIB_UDPROW structure 102
MIB_UDPSTATS structure 102
MIB_UDPTABLE structure 102
MIBICMPINFO structure 73
MIBICMPSTATS structure 73
Miscellaneous configuration information 303
MPR_CREDENTIALSEX_1 structure 137
MPR_DEVICE_0 structure 136
MPR_DEVICE_1 structure 137
MPR_FILTER_0 structure 138
MPR_IF_CUSTOMINFOEX_0 structure 255
MPR_IF_CUSTOMINFOEX_1 structure 272
MPR_IF_CUSTOMINFOEX_IDL structure 256
MPR_SERVER_0 structure 103
MPR_SERVER_1 structure 103
MPR_SERVER_2 structure 104
MPR_SERVER_EX_1 structure 175
MPR_SERVER_EX_2 structure 254
MPR_SERVER_EX_3 structure 259
MPR_SERVER_SET_CONFIG_EX_1 structure 176
MPR_SERVER_SET_CONFIG_EX_2 structure 254
MPR_SERVER_SET_CONFIG_EX_3 structure 259
MPR_SERVER_SET_CONFIG_EX_IDL structure 177
MPRAPI_OBJECT_HEADER_IDL structure 162
MPRAPI_TUNNEL_CONFIG_PARAMS_1 structure 176
MPRAPI_TUNNEL_CONFIG_PARAMS_2 structure 253

538 / 547

[MS-RRASM-Diff] - v20210407
Routing and Remote Access Server (RRAS) Management Protocol
Copyright © 2021 Microsoft Corporation
Release: April 7, 2021

MPRAPI_TUNNEL_CONFIG_PARAMS_3 structure 258
MPRI_INTERFACE_0 structure 118
MPRI_INTERFACE_1 structure 120
MPRI_INTERFACE_2 structure 121
MPRI_INTERFACE_3 structure 129

N

Normative references 26

O

OSPF_AREA_PARAM structure 228
OSPF_AREA_RANGE_PARAM structure 229
OSPF_FILTER_ACTION enumeration 46
OSPF_GLOBAL_PARAM structure 228
OSPF_INTERFACE_PARAM structure 230
OSPF_NBMA_NEIGHBOR_PARAM structure 231
OSPF_PARAM_TYPE enumeration 46
OSPF_PROTO_FILTER_INFO structure 228
OSPF_ROUTE_FILTER structure 227
OSPF_ROUTE_FILTER_INFO packet 227
OSPF_VIRT_INTERFACE_PARAM structure 230
Overview (synopsis) 30

P

P_NDISWAN_DRIVER_INFO 236
Parameter index - security 451
Parameters - security index 451
PBGP_ASN_RANGE 263
PBGP_IP_ADDRESS 262
PBGP_IP_PREFIX 262
PBGP_PEER 268
PBGP_PEER_TO_POLICIES 269
PBGP_POLICY_ACTION 266
PBGP_POLICY_MATCH 264
PBGP_POLICY_MODIFY 265
PBGP_ROUTER_CONFIG 263
PBGP_ROUTER_V6 270
PDHCPV6R_GLOBAL_CONFIG 183
PDHCPV6R_IF_CONFIG 184
PDHCPV6R_IF_STATS 183
PDHCPV6R_MIB_GET_INPUT_DATA 185
PDHCPV6R_MIB_GET_OUTPUT_DATA 182
PDIM_INFORMATION_CONTAINER 51
PDIM_INTERFACE_CONTAINER 52
PDIM_MIB_ENTRY_CONTAINER 69
PFILTER_INFO 59
PFILTER_INFO_V6 61
PGLOBAL_INFO 62

Phonebook
 entry settings 274
 file format 274
PIF_TABLE_INDEX 144
PIFFILTER_INFO 138
PIGMP_MIB_GET_INPUT_DATA 195
PIGMP_MIB_IF_CONFIG 199
PIGMP_MIB_IF_STATS 203
PIKEV2_CONFIG_PARAMS_1 173
PIKEV2_CONFIG_PARAMS_2 253
PIKEV2_CONFIG_PARAMS_3 258
PIKEV2_PROJECTION_INFO_1 167
PIKEV2_PROJECTION_INFO_2 246
PIN6_ADDR 63

539 / 547

[MS-RRASM-Diff] - v20210407
Routing and Remote Access Server (RRAS) Management Protocol
Copyright © 2021 Microsoft Corporation
Release: April 7, 2021

PINTERFACE_ROUTE_INFO 63
PINTERFACE_STATUS_INFO 69
PIP_AUTO_DHCP_GLOBAL_INFO 216
PIP_AUTO_DHCP_INTERFACE_INFO 217
PIP_AUTO_DHCP_MIB_QUERY 212
PIP_AUTO_DHCP_STATISTICS 212
PIP_DNS_PROXY_STATISTICS 211
PIP_NAT_INTERFACE_STATISTICS 210
PIP_NAT_MIB_QUERY 208
PIP_NAT_SESSION_MAPPING 209
PIPBOOTP_GLOBAL_CONFIG 178
PIPBOOTP_IF_BINDING 181
PIPBOOTP_IF_CONFIG 179
PIPBOOTP_IF_STATS 181
PIPBOOTP_IP_ADDRESS 182
PIPBOOTP_MIB_GET_INPUT_DATA 179
PIPBOOTP_MIB_GET_OUTPUT_DATA 180
PIPINIP_CONFIG_INFO 68
PIPRIP_GLOBAL_CONFIG 187
PIPRIP_GLOBAL_STATS 187
PIPRIP_IF_BINDING 194
PIPRIP_IF_STATS 188
PIPRIP_IP_ADDRESS 195

PIPRIP_MIB_GET_INPUT_DATA 185
PIPRIP_MIB_GET_OUTPUT_DATA 186
PIPRIP_ROUTE_FILTER 194
PIPX_ADAPTER_INFO 141
PIPX_GLOBAL_INFO 138
PIPX_IF_INFO 139
PIPX_IF_STATS 148
PIPX_INTERFACE 149
PIPX_MIB_GET_INPUT_DATA 146
PIPX_MIB_INDEX 145
PIPX_MIB_ROW 152
PIPX_MIB_SET_INPUT_DATA 153
PIPX_ROUTE 151
PIPX_SERVER_ENTRY 140
PIPX_SERVICE 157
PIPX_STATIC_NETBIOS_NAME_INFO 141
PIPX_STATIC_ROUTE_INFO 139
PIPX_STATIC_SERVICE_INFO 140
PIPX_TRAFFIC_FILTER_GLOBAL_INFO 142
PIPX_TRAFFIC_FILTER_INFO 142
PIPXMIB_BASE 147
PIPXWAN_IF_INFO 139
PL2TP_CONFIG_PARAMS_1 174
PL2TP_CONFIG_PARAMS_2 273
PMCAST_HBEAT_INFO 67
PMIB_BEST_IF 71
PMIB_BOUNDARYROW 72
PMIB_ICMP 72
PMIB_IFNUMBER 74
PMIB_IFSTATUS 76
PMIB_IPADDRROW 77
PMIB_IPDESTROW 71
PMIB_IPFORWARDNUMBER 79
PMIB_IPFORWARDROW 79
PMIB_IPMCAST_BOUNDARY 81
PMIB_IPMCAST_GLOBAL 82
PMIB_IPMCAST_IF_ENTRY 83
PMIB_IPMCAST_IF_TABLE 83
PMIB_IPMCAST_MFE 83
PMIB_IPMCAST_OIF 84
PMIB_IPMCAST_OIF_STATS 86
PMIB_IPMCAST_SCOPE 87

540 / 547

[MS-RRASM-Diff] - v20210407
Routing and Remote Access Server (RRAS) Management Protocol
Copyright © 2021 Microsoft Corporation
Release: April 7, 2021

PMIB_IPNETROW 88
PMIB_IPNETTABLE 88
PMIB_IPSTATS 89
PMIB_MCAST_LIMIT_ROW 68
PMIB_PROXYARP 99
PMIB_ROUTESTATE 71
PMIB_TCPROW 100
PMIB_TCPSTATS 100
PMIB_TCPTABLE 101
PMIB_UDPROW 102
PMIB_UDPSTATS 102
PMIB_UDPTABLE 102
PMPR_CREDENTIALSEX_1 137
PMPR_DEVICE_0 136
PMPR_DEVICE_1 137
PMPR_FILTER_0 138
PMPR_IF_CUSTOMINFOEX_0 255
PMPR_IF_CUSTOMINFOEX_1 272
PMPR_IF_CUSTOMINFOEX_IDL 256
PMPR_SERVER_0 103
PMPR_SERVER_1 103
PMPR_SERVER_2 104
PMPR_SERVER_EX_1 175

PMPR_SERVER_EX_2 254
PMPR_SERVER_EX_3 259
PMPR_SERVER_SET_CONFIG_EX_1 176
PMPR_SERVER_SET_CONFIG_EX_2 254
PMPR_SERVER_SET_CONFIG_EX_3 259
PMPR_SERVER_SET_CONFIG_EX_IDL 177
PMPRAPI_OBJECT_HEADER_IDL 162
PMPRAPI_TUNNEL_CONFIG_PARAMS_1 176
PMPRAPI_TUNNEL_CONFIG_PARAMS_2 253
PMPRAPI_TUNNEL_CONFIG_PARAMS_3 258
PMPRI_INTERFACE_0 118
PMPRI_INTERFACE_1 120
PMPRI_INTERFACE_2 121
PMPRI_INTERFACE_3 129
Ports configuration 301
Ports configuration example 447
Ports object 34
PPP_ATCP_INFO structure 107
PPP_CCP_INFO structure 108
PPP_INFO structure 111
PPP_INFO_2 structure 112
PPP_INFO_3 structure 112
PPP_IPCP_INFO structure 105
PPP_IPCP_INFO2 structure 106
PPP_IPV6_CP_INFO structure 107
PPP_IPXCP_INFO structure 106
PPP_LCP_INFO structure 109
PPP_NBFCP_INFO structure 105
PPP_PROJECTION_INFO_1 structure 164
PPP_PROJECTION_INFO_2 structure 244
PPPP_IPV6_CP_INFO 107
PPPP_PROJECTION_INFO_1 164
PPPP_PROJECTION_INFO_2 244
PPPTP_CONFIG_PARAMS_1 173
PPROJECTION_INFO_IDL_1 168
PPROJECTION_INFO_IDL_2 247
PPROTOCOL_METRIC (section 2.2.1.2.13 66, section 2.2.1.2.267 271)
PPTP_CONFIG_PARAMS_1 structure 173
PRAS_CONNECTION_4_IDL 247
PRAS_CONNECTION_EX_1_IDL 169
PRAS_DEVICE_INFO 233
PRAS_UPDATE_CONNECTION_1_IDL 177

541 / 547

[MS-RRASM-Diff] - v20210407
Routing and Remote Access Server (RRAS) Management Protocol
Copyright © 2021 Microsoft Corporation
Release: April 7, 2021

PRASI_CONNECTION_0 115
PRASI_CONNECTION_1 116
PRASI_CONNECTION_2 117
PRASI_CONNECTION_3 118
PRASI_PORT_0 113
PRASI_PORT_1 114
Preconditions 35
Prerequisites 35
PRIORITY_INFO packet 66
PRIORITY_INFO_EX packet 270
PRIP_IF_STATS 159
PRIP_INTERFACE 159
PRIP_MIB_GET_INPUT_DATA 160
PRIP_MIB_SET_INPUT_DATA 160
PRIPMIB_BASE 158
Product behavior 508
PROJECTION_INFO_IDL_1 structure 168
PROJECTION_INFO_IDL_2 structure 247
Protocol Details
 overview 316
PROTOCOL_METRIC structure (section 2.2.1.2.13 66, section 2.2.1.2.267 271)
PROUTER_CUSTOM_IKEv2_POLICY_0 249
PROUTER_CUSTOM_L2TP_POLICY_0 249

PROUTER_IKEv2_IF_CUSTOM_CONFIG_0 255
PROUTER_IKEv2_IF_CUSTOM_CONFIG_1 271
PROUTING_TABLE_INDEX 144
PRTR_DISC_INFO 66
PSAP_IF_CONFIG 155
PSAP_IF_FILTERS 154
PSAP_IF_INFO 157
PSAP_IF_STATS 155
PSAP_INTERFACE 156
PSAP_MIB_BASE 155
PSAP_MIB_GET_INPUT_DATA 156
PSAP_MIB_SET_INPUT_DATA 157
PSAP_SERVICE_FILTER_INFO 153
PSERVICES_TABLE_INDEX 144
PSSTP_CONFIG_PARAMS_1 175
PSTATIC_ROUTES_TABLE_INDEX 144
PSTATIC_SERVICES_TABLE_INDEX 145

Q

Querying interface status through Management Information Base (MIB) example 437
Querying interface status through mib example 437
Querying server configuration information example 432
Querying validity of sstp certificate example 449

R

RAS_CALLEDID_INFO packet 235
RAS_CONNECTION_4_IDL structure 247
RAS_CONNECTION_EX_1_IDL structure 169
RAS_DEVICE_INFO structure 233
RAS_HARDWARE_CONDITION enumeration 42
RAS_NDISWAN_DRIVER_INFO structure 236
RAS_PORT_CONDITION enumeration 41

RAS_QUARANTINE_STATE enumeration 41
RAS_UPDATE_CONNECTION_1_IDL structure 177
RAS_UPDATE_CONNECTION_IDL 178
RAS_UPDATE_CONNECTION_IDL structure 178
RASDEVICETYPE enumeration 47
RASI_CONNECTION_0 structure 115
RASI_CONNECTION_1 structure 116
RASI_CONNECTION_2 structure 117

542 / 547

[MS-RRASM-Diff] - v20210407
Routing and Remote Access Server (RRAS) Management Protocol
Copyright © 2021 Microsoft Corporation
Release: April 7, 2021

RASI_CONNECTION_3 structure 118
RASI_PORT_0 structure 113
RASI_PORT_1 structure 114
RASMAN_DISCONNECT_TYPE enumeration 49
RASMAN_INFO structure 239
RASMAN_PORT_32 structure 238
RASMAN_STATE enumeration 49
RASMAN_STATUS enumeration 48
RASMAN_USAGE enumeration 49
RASRPC interface 407
rasrpc interface interface (section 3.3 407, section 3.4 419)
RASRPC_CALLBACKLIST structure 242
RASRPC_LOCATIONLIST structure 244
RASRPC_PBUSER structure 240
RASRPC_STRINGLIST structure 243
RasRpcDeleteEntry (Opnum 5) method (section 3.3.4.1 409, section 3.4.4.1 420)
RasRpcDeleteEntry method (section 3.3.4.1 409, section 3.4.4.1 420)
RasRpcGetInstalledProtocolsEx (Opnum 14) method (section 3.3.4.6 417, section 3.4.4.6 421)
RasRpcGetInstalledProtocolsEx method (section 3.3.4.6 417, section 3.4.4.6 421)
RasRpcGetSystemDirectory (Opnum 11) method (section 3.3.4.4 411, section 3.4.4.4 420)
RasRpcGetSystemDirectory method (section 3.3.4.4 411, section 3.4.4.4 420)
RasRpcGetUserPreferences (Opnum 9) method (section 3.3.4.2 410, section 3.4.4.2 420)
RasRpcGetUserPreferences method (section 3.3.4.2 410, section 3.4.4.2 420)

RasRpcGetVersion (Opnum 15) method (section 3.3.4.7 417, section 3.4.4.7 421)
RasRpcGetVersion method (section 3.3.4.7 417, section 3.4.4.7 421)
RasRpcSetUserPreferences (Opnum 10) method (section 3.3.4.3 411, section 3.4.4.3 420)
RasRpcSetUserPreferences method (section 3.3.4.3 411, section 3.4.4.3 420)
RasRpcSubmitRequest (Opnum 12) method (section 3.3.4.5 412, section 3.4.4.5 420)
RasRpcSubmitRequest method (section 3.3.4.5 412, section 3.4.4.5 420)
References 26
 informative 28
 normative 26
Registry configuration example 445
Registry keys 297
Relationship to other protocols 35
remras interface interface (section 3.5 421, section 3.6 431)
ReqTypes enumeration 48
RequestBuffer packet 232
Retrieving device configuration information example 439
Retrieving specific port information example 440
Retrieving the rasrpc server version info example 439
RIP_GLOBAL_INFO structure 223
RIP_IF_CONFIG structure 226
RIP_IF_FILTERS structure 224
RIP_IF_INFO structure 225
RIP_IF_STATS structure 159
RIP_INTERFACE structure 159
RIP_MIB_GET_INPUT_DATA structure 160
RIP_MIB_SET_INPUT_DATA structure 160
RIP_ROUTE_FILTER_INFO structure 224
RIPMIB_BASE structure 158
RMIBEntryCreate (Opnum 26) method (section 3.1.4.27 360, section 3.2.4.27 404)
RMIBEntryCreate method (section 3.1.4.27 360, section 3.2.4.27 404)
RMIBEntryDelete (Opnum 27) method (section 3.1.4.28 363, section 3.2.4.28 404)
RMIBEntryDelete method (section 3.1.4.28 363, section 3.2.4.28 404)
RMIBEntryGet (Opnum 29) method (section 3.1.4.30 368, section 3.2.4.30 405)
RMIBEntryGet method (section 3.1.4.30 368, section 3.2.4.30 405)
RMIBEntryGetFirst (Opnum 30) method (section 3.1.4.31 372, section 3.2.4.31 405)
RMIBEntryGetFirst method (section 3.1.4.31 372, section 3.2.4.31 405, section 7 508)
RMIBEntryGetNext (Opnum 31) method (section 3.1.4.32 376, section 3.2.4.32 405)
RMIBEntryGetNext method (section 3.1.4.32 376, section 3.2.4.32 405)
RMIBEntrySet (Opnum 28) method (section 3.1.4.29 364, section 3.2.4.29 405)
RMIBEntrySet method (section 3.1.4.29 364, section 3.2.4.29 405, section 7 508)
RMIBGetTrapInfo (Opnum 32) method (section 3.1.4.33 377, section 3.2.4.33 405)
RMIBGetTrapInfo method 377

543 / 547

[MS-RRASM-Diff] - v20210407
Routing and Remote Access Server (RRAS) Management Protocol
Copyright © 2021 Microsoft Corporation
Release: April 7, 2021

RMIBSetTrapInfo (Opnum 33) method (section 3.1.4.34 378, section 3.2.4.34 405)
RMIBSetTrapInfo method (section 3.1.4.34 378, section 7 508)
RMprAdminServerGetInfo (Opnum 0) method (section 3.1.4.1 321, section 3.2.4.1 402)
RMprAdminServerGetInfo method (section 3.1.4.1 321, section 3.2.4.1 402)
RMprAdminServerGetInfoEx (Opnum 44) method (section 3.1.4.45 392, section 3.2.4.45 406)
RMprAdminServerGetInfoEx method (section 3.1.4.45 392, section 3.2.4.45 406)
RMprAdminServerSetInfo (Opnum 43) method (section 3.1.4.44 390, section 3.2.4.44 406)
RMprAdminServerSetInfo method (section 3.1.4.44 390, section 3.2.4.44 406)
RMprAdminServerSetInfoEx (Opnum 47) method (section 3.1.4.48 395, section 3.2.4.48 406)
RMprAdminServerSetInfoEx method (section 3.1.4.48 395, section 3.2.4.48 406)
ROUTER_CONNECTION_STATE enumeration 40
ROUTER_CUSTOM_IKEv2_POLICY_0 structure 249
ROUTER_CUSTOM_L2TP_POLICY_0 249
ROUTER_IKEv2_IF_CUSTOM_CONFIG_0 structure 255
ROUTER_IKEv2_IF_CUSTOM_CONFIG_1 structure 271
ROUTER_INTERFACE_TYPE enumeration 40
ROUTING_TABLE_INDEX structure 144
RPC common messages 40
RRAS entry section name 274
RRasAdminConnectionClearStats (Opnum 3) method (section 3.1.4.4 325, section 3.2.4.4 402)
RRasAdminConnectionClearStats method (section 3.1.4.4 325, section 3.2.4.4 402)
RRasAdminConnectionEnum (Opnum 1) method (section 3.1.4.2 322, section 3.2.4.2 402)
RRasAdminConnectionEnum method (section 3.1.4.2 322, section 3.2.4.2 402)

RRasAdminConnectionEnumEx (Opnum 45) method (section 3.1.4.46 392, section 3.2.4.46 406)
RRasAdminConnectionEnumEx method (section 3.1.4.46 392, section 3.2.4.46 406)
RRasAdminConnectionGetInfo (Opnum 2) method (section 3.1.4.3 324, section 3.2.4.3 402)
RRasAdminConnectionGetInfo method (section 3.1.4.3 324, section 3.2.4.3 402)
RRasAdminConnectionGetInfoEx (Opnum 46) method (section 3.1.4.47 394, section 3.2.4.47 406)
RRasAdminConnectionGetInfoEx method (section 3.1.4.47 394, section 3.2.4.47 406)
RRasAdminConnectionNotification (Opnum 34) method (section 3.1.4.35 380, section 3.2.4.35 405)
RRasAdminConnectionNotification method 380
RRasAdminConnectionRemoveQuarantine (Opnum 42) method (section 3.1.4.43 389, section 3.2.4.43 406)
RRasAdminConnectionRemoveQuarantine method (section 3.1.4.43 389, section 3.2.4.43 406)
RRasAdminPortClearStats (Opnum 6) method (section 3.1.4.7 329, section 3.2.4.7 403)
RRasAdminPortClearStats method (section 3.1.4.7 329, section 3.2.4.7 403)
RRasAdminPortDisconnect (Opnum 8) method (section 3.1.4.9 331, section 3.2.4.9 403)
RRasAdminPortDisconnect method (section 3.1.4.9 331, section 3.2.4.9 403)
RRasAdminPortEnum (Opnum 4) method (section 3.1.4.5 326, section 3.2.4.5 402)
RRasAdminPortEnum method (section 3.1.4.5 326, section 3.2.4.5 402)
RRasAdminPortGetInfo (Opnum 5) method (section 3.1.4.6 328, section 3.2.4.6 402)
RRasAdminPortGetInfo method (section 3.1.4.6 328, section 3.2.4.6 402)
RRasAdminPortReset (Opnum 7) method (section 3.1.4.8 330, section 3.2.4.8 403)
RRasAdminPortReset method (section 3.1.4.8 330, section 3.2.4.8 403)
RRasAdminSendUserMessage (Opnum 35) method (section 3.1.4.36 381, section 3.2.4.36 405)
RRasAdminSendUserMessage method (section 3.1.4.36 381, section 3.2.4.36 405)
RRasAdminUpdateConnection (Opnum 48) method (section 3.1.4.49 396, section 3.2.4.49 406)
RRasAdminUpdateConnection method (section 3.1.4.49 396, section 3.2.4.49 406)
RRouterDeviceEnum (Opnum 36) method (section 3.1.4.37 382, section 3.2.4.37 405)
RRouterDeviceEnum method (section 3.1.4.37 382, section 3.2.4.37 405)
RRouterInterfaceConnect (Opnum 21) method (section 3.1.4.22 355, section 3.2.4.22 404)
RRouterInterfaceConnect method (section 3.1.4.22 355, section 3.2.4.22 404)
RRouterInterfaceCreate (Opnum 12) method (section 3.1.4.13 337, section 3.2.4.13 403)
RRouterInterfaceCreate method (section 3.1.4.13 337, section 3.2.4.13 403)
RRouterInterfaceDelete (Opnum 15) method (section 3.1.4.16 343, section 3.2.4.16 403)
RRouterInterfaceDelete method (section 3.1.4.16 343, section 3.2.4.16 403)
RRouterInterfaceDeviceGetInfo (Opnum 38) method (section 3.1.4.39 384, section 3.2.4.39 405)
RRouterInterfaceDeviceGetInfo method (section 3.1.4.39 384, section 3.2.4.39 405)
RRouterInterfaceDeviceSetInfo (Opnum 39) method (section 3.1.4.40 386, section 3.2.4.40 406)
RRouterInterfaceDeviceSetInfo method (section 3.1.4.40 386, section 3.2.4.40 406)
RRouterInterfaceDisconnect (Opnum 22) method (section 3.1.4.23 356, section 3.2.4.23 404)
RRouterInterfaceDisconnect method (section 3.1.4.23 356, section 3.2.4.23 404)
RRouterInterfaceEnum (Opnum 20) method (section 3.1.4.21 354, section 3.2.4.21 404)
RRouterInterfaceEnum method (section 3.1.4.21 354, section 3.2.4.21 404)
RRouterInterfaceGetCredentialsEx (Opnum 41) method (section 3.1.4.42 388, section 3.2.4.42 406)
RRouterInterfaceGetCredentialsEx method (section 3.1.4.42 388, section 3.2.4.42 406)

544 / 547

[MS-RRASM-Diff] - v20210407
Routing and Remote Access Server (RRAS) Management Protocol
Copyright © 2021 Microsoft Corporation
Release: April 7, 2021

RRouterInterfaceGetCredentialsLocal (Opnum 50) method (section 3.1.4.51 398, section 3.2.4.51 407)
RRouterInterfaceGetCredentialsLocal method (section 3.1.4.51 398, section 3.2.4.51 407)
RRouterInterfaceGetCustomInfoEx (Opnum 51) method (section 3.1.4.52 399, section 3.2.4.52 407)
RRouterInterfaceGetCustomInfoEx method 399
RRouterInterfaceGetHandle (Opnum 11) method (section 3.1.4.12 336, section 3.2.4.12 403)
RRouterInterfaceGetHandle method (section 3.1.4.12 336, section 3.2.4.12 403)
RRouterInterfaceGetInfo (Opnum 13) method (section 3.1.4.14 339, section 3.2.4.14 403)
RRouterInterfaceGetInfo method (section 3.1.4.14 339, section 3.2.4.14 403)
RRouterInterfaceQueryUpdateResult (Opnum 24) method (section 3.1.4.25 358, section 3.2.4.25 404)
RRouterInterfaceQueryUpdateResult method (section 3.1.4.25 358, section 3.2.4.25 404)
RRouterInterfaceSetCredentialsEx (Opnum 40) method (section 3.1.4.41 387, section 3.2.4.41 406)
RRouterInterfaceSetCredentialsEx method (section 3.1.4.41 387, section 3.2.4.41 406)
RRouterInterfaceSetCredentialsLocal (Opnum 49) method (section 3.1.4.50 397, section 3.2.4.50 406)
RRouterInterfaceSetCredentialsLocal method (section 3.1.4.50 397, section 3.2.4.50 406)
RRouterInterfaceSetCustomInfoEx (Opnum 52) method (section 3.1.4.53 400, section 3.2.4.53 407)
RRouterInterfaceSetCustomInfoEx method (section 3.1.4.53 400, section 3.2.4.53 407)
RRouterInterfaceSetInfo (Opnum 14) method (section 3.1.4.15 341, section 3.2.4.15 403)
RRouterInterfaceSetInfo method (section 3.1.4.15 341, section 3.2.4.15 403)
RRouterInterfaceTransportAdd (Opnum 17) method (section 3.1.4.18 345, section 3.2.4.18 404)
RRouterInterfaceTransportAdd method (section 3.1.4.18 345, section 3.2.4.18 404)
RRouterInterfaceTransportCreate (Opnum 37) method (section 3.1.4.38 383, section 3.2.4.38 405)
RRouterInterfaceTransportCreate method (section 3.1.4.38 383, section 3.2.4.38 405)
RRouterInterfaceTransportGetGlobalInfo (Opnum 10) method (section 3.1.4.11 333, section 3.2.4.11 403)

RRouterInterfaceTransportGetGlobalInfo method (section 3.1.4.11 333, section 3.2.4.11 403)
RRouterInterfaceTransportGetInfo (Opnum 18) method (section 3.1.4.19 348, section 3.2.4.19 404)
RRouterInterfaceTransportGetInfo method (section 3.1.4.19 348, section 3.2.4.19 404)
RRouterInterfaceTransportRemove (Opnum 16) method (section 3.1.4.17 344, section 3.2.4.17 403)
RRouterInterfaceTransportRemove method (section 3.1.4.17 344, section 3.2.4.17 403)
RRouterInterfaceTransportSetGlobalInfo (Opnum 9) method (section 3.1.4.10 332, section 3.2.4.10 403)
RRouterInterfaceTransportSetGlobalInfo method (section 3.1.4.10 332, section 3.2.4.10 403)
RRouterInterfaceTransportSetInfo (Opnum 19) method (section 3.1.4.20 350, section 3.2.4.20 404)
RRouterInterfaceTransportSetInfo method (section 3.1.4.20 350, section 3.2.4.20 404)
RRouterInterfaceUpdatePhonebookInfo (Opnum 25) method (section 3.1.4.26 360, section 3.2.4.26 404)
RRouterInterfaceUpdatePhonebookInfo method (section 3.1.4.26 360, section 3.2.4.26 404)
RRouterInterfaceUpdateRoutes (Opnum 23) method (section 3.1.4.24 357, section 3.2.4.24 404)
RRouterInterfaceUpdateRoutes method (section 3.1.4.24 357, section 3.2.4.24 404)
RTR_DISC_INFO structure 66
RTR_INFO_BLOCK_HEADER packet 53
RTR_TOC_ENTRY packet 54

S

Sample phonebook file for a demand-dial connection example 441
SAP_GLOBAL_INFO structure 226
SAP_IF_CONFIG structure 155
SAP_IF_FILTERS structure 154
SAP_IF_INFO structure 157
SAP_IF_STATS structure 155
SAP_INTERFACE structure 156
SAP_MIB_BASE structure 155
SAP_MIB_GET_INPUT_DATA structure 156
SAP_MIB_SET_INPUT_DATA structure 157
SAP_SERVICE_FILTER_INFO structure 153
Security
 implementer considerations 451
 overview 451
 RRAS Management Protocol-specific 451
 parameter index 451
Sequencing rules
 client (section 3.2.4 402, section 3.4.4 419, section 3.6.4 431)
 DIMSVC interface 402
 RASRPC interface 419

 server (section 3.1.4 317, section 3.3.4 407, section 3.5.4 422)
 DIMSVC interface 317
 RASRPC interface 407

545 / 547

[MS-RRASM-Diff] - v20210407
Routing and Remote Access Server (RRAS) Management Protocol
Copyright © 2021 Microsoft Corporation
Release: April 7, 2021

Server
 abstract data model (section 3.1.1 316, section 3.3.1 407, section 3.5.1 421)
 DIMSVC interface 316
 RASRPC interface 407
 DIMSVC interface 316
 dimsvc interface interface 316
 initialization (section 3.1.3 317, section 3.3.3 407, section 3.5.3 422)
 DIMSVC interface 317
 RASRPC interface 407
 IRemoteICFICSConfig Interface (Opnum 3) method 425
 IRemoteIPV6Config Interface (Opnum 3) method 428
 IRemoteNetworkConfig Interface (Opnum 3) method 423
 IRemoteRouterRestart Interface (Opnum 3) method 424
 IRemoteSetDnsConfig Interface (Opnum 3) method 424
 IRemoteSSTPCertCheck Interface (Opnum 3) method 429
 IRemoteStringIdConfig Interface (Opnum 3) method 427
 local events (section 3.1.6 401, section 3.3.6 418, section 3.5.6 430)
 DIMSVC interface 401
 RASRPC interface 418
 message processing (section 3.1.4 317, section 3.3.4 407, section 3.5.4 422)
 DIMSVC interface 317
 RASRPC interface 407
 overview (section 3.1 316, section 3.3 407, section 3.5 421)

 DIMSVC interface 316
 RASRPC interface 407
 RASRPC interface 407
 rasrpc interface interface 407
 RasRpcDeleteEntry (Opnum 5) method 409
 RasRpcGetInstalledProtocolsEx (Opnum 14) method 417
 RasRpcGetSystemDirectory (Opnum 11) method 411
 RasRpcGetUserPreferences (Opnum 9) method 410
 RasRpcGetVersion (Opnum 15) method 417
 RasRpcSetUserPreferences (Opnum 10) method 411
 RasRpcSubmitRequest (Opnum 12) method 412
 remras interface interface 421
 RMIBEntryCreate (Opnum 26) method 360
 RMIBEntryDelete (Opnum 27) method 363
 RMIBEntryGet (Opnum 29) method 368
 RMIBEntryGetFirst (Opnum 30) method 372
 RMIBEntryGetNext (Opnum 31) method 376
 RMIBEntrySet (Opnum 28) method 364
 RMIBGetTrapInfo (Opnum 32) method 377
 RMIBSetTrapInfo (Opnum 33) method 378
 RMprAdminServerGetInfo (Opnum 0) method 321
 RMprAdminServerGetInfoEx (Opnum 44) method 392
 RMprAdminServerSetInfo (Opnum 43) method 390
 RMprAdminServerSetInfoEx (Opnum 47) method 395
 RRasAdminConnectionClearStats (Opnum 3) method 325
 RRasAdminConnectionEnum (Opnum 1) method 322
 RRasAdminConnectionEnumEx (Opnum 45) method 392
 RRasAdminConnectionGetInfo (Opnum 2) method 324
 RRasAdminConnectionGetInfoEx (Opnum 46) method 394
 RRasAdminConnectionNotification (Opnum 34) method 380
 RRasAdminConnectionRemoveQuarantine (Opnum 42) method 389
 RRasAdminPortClearStats (Opnum 6) method 329
 RRasAdminPortDisconnect (Opnum 8) method 331
 RRasAdminPortEnum (Opnum 4) method 326
 RRasAdminPortGetInfo (Opnum 5) method 328
 RRasAdminPortReset (Opnum 7) method 330
 RRasAdminSendUserMessage (Opnum 35) method 381
 RRasAdminUpdateConnection (Opnum 48) method 396
 RRouterDeviceEnum (Opnum 36) method 382
 RRouterInterfaceConnect (Opnum 21) method 355
 RRouterInterfaceCreate (Opnum 12) method 337
 RRouterInterfaceDelete (Opnum 15) method 343

546 / 547

[MS-RRASM-Diff] - v20210407
Routing and Remote Access Server (RRAS) Management Protocol
Copyright © 2021 Microsoft Corporation
Release: April 7, 2021

 RRouterInterfaceDeviceGetInfo (Opnum 38) method 384
 RRouterInterfaceDeviceSetInfo (Opnum 39) method 386
 RRouterInterfaceDisconnect (Opnum 22) method 356
 RRouterInterfaceEnum (Opnum 20) method 354
 RRouterInterfaceGetCredentialsEx (Opnum 41) method 388
 RRouterInterfaceGetCredentialsLocal (Opnum 50) method 398
 RRouterInterfaceGetCustomInfoEx (Opnum 51) method 399
 RRouterInterfaceGetHandle (Opnum 11) method 336
 RRouterInterfaceGetInfo (Opnum 13) method 339
 RRouterInterfaceQueryUpdateResult (Opnum 24) method 358
 RRouterInterfaceSetCredentialsEx (Opnum 40) method 387
 RRouterInterfaceSetCredentialsLocal (Opnum 49) method 397
 RRouterInterfaceSetCustomInfoEx (Opnum 52) method 400
 RRouterInterfaceSetInfo (Opnum 14) method 341
 RRouterInterfaceTransportAdd (Opnum 17) method 345
 RRouterInterfaceTransportCreate (Opnum 37) method 383
 RRouterInterfaceTransportGetGlobalInfo (Opnum 10) method 333
 RRouterInterfaceTransportGetInfo (Opnum 18) method 348
 RRouterInterfaceTransportRemove (Opnum 16) method 344
 RRouterInterfaceTransportSetGlobalInfo (Opnum 9) method 332
 RRouterInterfaceTransportSetInfo (Opnum 19) method 350
 RRouterInterfaceUpdatePhonebookInfo (Opnum 25) method 360
 RRouterInterfaceUpdateRoutes (Opnum 23) method 357

 security settings
 dimsvc 38
 Rasrpc 39
 sequencing rules (section 3.1.4 317, section 3.3.4 407, section 3.5.4 422)
 DIMSVC interface 317
 RASRPC interface 407
 timer events (section 3.1.5 400, section 3.3.5 418, section 3.5.5 430)
 DIMSVC interface 400
 RASRPC interface 418
 timers (section 3.1.2 317, section 3.3.2 407, section 3.5.2 421)
 DIMSVC interface 317
 RASRPC interface 407
SERVICES_TABLE_INDEX structure 144
SSTP_CERT_INFO_1 packet 174
SSTP_CONFIG_PARAMS_1 structure 175
Standards assignments 36
STATIC_ROUTES_TABLE_INDEX structure 144
STATIC_SERVICES_TABLE_INDEX structure 145
Structures 51

T

TCP_RTO_ALGORITHM enumeration 45
Timer events
 client (section 3.2.5 407, section 3.4.5 421, section 3.6.5 431)
 DIMSVC interface 407
 RASRPC interface 421
 server (section 3.1.5 400, section 3.3.5 418, section 3.5.5 430)
 DIMSVC interface 400
 RASRPC interface 418
Timers
 client (section 3.2.2 401, section 3.4.2 419, section 3.6.2 431)
 DIMSVC interface 401
 RASRPC interface 419
 server (section 3.1.2 317, section 3.3.2 407, section 3.5.2 421)
 DIMSVC interface 317
 RASRPC interface 407
Tracking changes 528
Transport 38

 configuration 297
 overview 38
 security settings

547 / 547

[MS-RRASM-Diff] - v20210407
Routing and Remote Access Server (RRAS) Management Protocol
Copyright © 2021 Microsoft Corporation
Release: April 7, 2021

 client
 dimsvc 38
 Rasrpc 39
 server
 dimsvc 38
 Rasrpc 39
Transport configuration example 445
Transport object 33

U

Updating connection endpoint of IKEv2-based connection example 438
Updating the connection endpoint of an ikev2-based connection example 438

V

Vendor-extensible fields 36
Versioning 36

	1 (Updated Section) Introduction
	1.1 (Updated Section) Glossary
	1.2 References
	1.2.1 (Updated Section) Normative References
	1.2.2 (Updated Section) Informative References

	1.3 (Updated Section) Overview
	1.3.1 Interface Object
	1.3.2 Transport Object
	1.3.3 Management Information Base (MIB)
	1.3.4 Ports Object
	1.3.5 Connection Object

	1.4 (Updated Section) Relationship to Other Protocols
	1.5 Prerequisites/Preconditions
	1.6 Applicability Statement
	1.7 Versioning and Capability Negotiation
	1.8 Vendor-Extensible Fields
	1.9 Standards Assignments

	2 Messages
	2.1 Transport
	2.1.1 DIMSVC Security Settings
	2.1.1.1 Server Security Settings
	2.1.1.2 Client Security Settings

	2.1.2 Rasrpc Security Settings
	2.1.2.1 Server Security Settings
	2.1.2.2 (Updated Section) Client Security Settings

	2.1.3 Remras Security Settings

	2.2 Common Data Types
	2.2.1 RRASM RPC Common Messages
	2.2.1.1 Data Types, Enumerations, and Constants
	2.2.1.1.1 ROUTER_INTERFACE_TYPE
	2.2.1.1.2 ROUTER_CONNECTION_STATE
	2.2.1.1.3 RAS_QUARANTINE_STATE
	2.2.1.1.4 RAS_PORT_CONDITION
	2.2.1.1.5 RAS_HARDWARE_CONDITION
	2.2.1.1.6 DIM_HANDLE
	2.2.1.1.7 FORWARD_ACTION
	2.2.1.1.8 MIB_IPFORWARD_TYPE
	2.2.1.1.9 MIB_IPFORWARD_PROTO
	2.2.1.1.10 MIB_IPSTATS_FORWARDING
	2.2.1.1.11 MIB_TCP_STATE
	2.2.1.1.12 TCP_RTO_ALGORITHM
	2.2.1.1.13 IP_NAT_DIRECTION
	2.2.1.1.14 OSPF_PARAM_TYPE
	2.2.1.1.15 OSPF_FILTER_ACTION
	2.2.1.1.16 RASDEVICETYPE
	2.2.1.1.17 RASMAN_STATUS
	2.2.1.1.18 ReqTypes
	2.2.1.1.19 RASMAN_STATE
	2.2.1.1.20 RASMAN_DISCONNECT_TYPE
	2.2.1.1.21 RASMAN_USAGE
	2.2.1.1.22 BGP_POLICY_DIRECTION
	2.2.1.1.23 BGP_POLICY_TYPE
	2.2.1.1.24 BGP_PEERING_OP_MODE

	2.2.1.2 Structures
	2.2.1.2.1 DIM_INFORMATION_CONTAINER
	2.2.1.2.2 DIM_INTERFACE_CONTAINER
	2.2.1.2.3 RTR_INFO_BLOCK_HEADER
	2.2.1.2.4 RTR_TOC_ENTRY
	2.2.1.2.5 FILTER_DESCRIPTOR
	2.2.1.2.6 FILTER_INFO
	2.2.1.2.7 FILTER_DESCRIPTOR_V6
	2.2.1.2.8 FILTER_INFO_V6
	2.2.1.2.9 GLOBAL_INFO
	2.2.1.2.10 IN6_ADDR
	2.2.1.2.11 INTERFACE_ROUTE_INFO
	2.2.1.2.12 PRIORITY_INFO
	2.2.1.2.13 PROTOCOL_METRIC
	2.2.1.2.14 (Updated Section) RTR_DISC_INFO
	2.2.1.2.15 MCAST_HBEAT_INFO
	2.2.1.2.16 (Updated Section) MIB_MCAST_LIMIT_ROW 1
	2.2.1.2.17 IPINIP_CONFIG_INFO
	2.2.1.2.18 INTERFACE_STATUS_INFO
	2.2.1.2.19 DIM_MIB_ENTRY_CONTAINER
	2.2.1.2.20 MIB_IPDESTROW
	2.2.1.2.21 MIB_IPDESTTABLE
	2.2.1.2.22 MIB_ROUTESTATE
	2.2.1.2.23 MIB_BEST_IF
	2.2.1.2.24 MIB_BOUNDARYROW
	2.2.1.2.25 MIB_ICMP
	2.2.1.2.26 MIBICMPINFO
	2.2.1.2.27 MIBICMPSTATS
	2.2.1.2.28 MIB_IFNUMBER
	2.2.1.2.29 MIB_IFROW
	2.2.1.2.30 (Updated Section) MIB_IFSTATUS
	2.2.1.2.31 MIB_IFTABLE
	2.2.1.2.32 MIB_IPADDRROW
	2.2.1.2.33 MIB_IPADDRTABLE
	2.2.1.2.34 MIB_IPFORWARDNUMBER
	2.2.1.2.35 MIB_IPFORWARDROW
	2.2.1.2.36 MIB_IPFORWARDTABLE
	2.2.1.2.37 (Updated Section) MIB_IPMCAST_BOUNDARY
	2.2.1.2.38 (Updated Section) MIB_IPMCAST_BOUNDARY_TABLE
	2.2.1.2.39 (Updated Section) MIB_IPMCAST_GLOBAL
	2.2.1.2.40 (Updated Section) MIB_IPMCAST_IF_ENTRY
	2.2.1.2.41 MIB_IPMCAST_IF_TABLE
	2.2.1.2.42 (Updated Section) MIB_IPMCAST_MFE
	2.2.1.2.43 (Updated Section) MIB_IPMCAST_OIF
	2.2.1.2.44 MIB_IPMCAST_MFE_STATS
	2.2.1.2.45 (Updated Section) MIB_IPMCAST_OIF_STATS
	2.2.1.2.46 (Updated Section) MIB_IPMCAST_SCOPE
	2.2.1.2.47 MIB_IPNETROW
	2.2.1.2.48 MIB_IPNETTABLE
	2.2.1.2.49 MIB_IPSTATS
	2.2.1.2.50 MIB_MFE_STATS_TABLE
	2.2.1.2.51 MIB_MFE_TABLE
	2.2.1.2.52 MIB_OPAQUE_INFO
	2.2.1.2.53 (Updated Section) MIB_OPAQUE_QUERY
	2.2.1.2.54 MIB_PROXYARP
	2.2.1.2.55 (Updated Section) MIB_TCPROW
	2.2.1.2.56 MIB_TCPSTATS
	2.2.1.2.57 MIB_TCPTABLE
	2.2.1.2.58 (Updated Section) MIB_UDPROW
	2.2.1.2.59 MIB_UDPSTATS
	2.2.1.2.60 MIB_UDPTABLE
	2.2.1.2.61 MPR_SERVER_0
	2.2.1.2.62 MPR_SERVER_1
	2.2.1.2.63 MPR_SERVER_2
	2.2.1.2.64 PPP_NBFCP_INFO
	2.2.1.2.65 PPP_IPCP_INFO
	2.2.1.2.66 (Updated Section) PPP_IPCP_INFO2
	2.2.1.2.67 PPP_IPXCP_INFO
	2.2.1.2.68 PPP_IPV6_CP_INFO
	2.2.1.2.69 PPP_ATCP_INFO
	2.2.1.2.70 PPP_CCP_INFO
	2.2.1.2.71 PPP_LCP_INFO
	2.2.1.2.72 PPP_INFO
	2.2.1.2.73 PPP_INFO_2
	2.2.1.2.74 PPP_INFO_3
	2.2.1.2.75 RASI_PORT_0
	2.2.1.2.76 RASI_PORT_1
	2.2.1.2.77 (Updated Section) RASI_CONNECTION_0
	2.2.1.2.78 (Updated Section) RASI_CONNECTION_1
	2.2.1.2.79 (Updated Section) RASI_CONNECTION_2
	2.2.1.2.80 RASI_CONNECTION_3
	2.2.1.2.81 MPRI_INTERFACE_0
	2.2.1.2.82 MPRI_INTERFACE_1
	2.2.1.2.83 (Updated Section) MPRI_INTERFACE_2
	2.2.1.2.84 (Updated Section) MPRI_INTERFACE_3
	2.2.1.2.85 MPR_DEVICE_0
	2.2.1.2.86 MPR_DEVICE_1
	2.2.1.2.87 (Updated Section) MPR_CREDENTIALSEX_1
	2.2.1.2.88 IFFILTER_INFO
	2.2.1.2.89 MPR_FILTER_0
	2.2.1.2.90 IPX_GLOBAL_INFO
	2.2.1.2.91 IPX_IF_INFO
	2.2.1.2.92 IPXWAN_IF_INFO
	2.2.1.2.93 IPX_STATIC_ROUTE_INFO
	2.2.1.2.94 IPX_STATIC_SERVICE_INFO
	2.2.1.2.95 IPX_STATIC_NETBIOS_NAME_INFO
	2.2.1.2.96 IPX_ADAPTER_INFO
	2.2.1.2.97 IPX_TRAFFIC_FILTER_GLOBAL_INFO
	2.2.1.2.98 IPX_TRAFFIC_FILTER_INFO
	2.2.1.2.99 IF_TABLE_INDEX
	2.2.1.2.100 (Updated Section) ROUTING_TABLE_INDEX
	2.2.1.2.101 (Updated Section) STATIC_ROUTES_TABLE_INDEX
	2.2.1.2.102 (Updated Section) SERVICES_TABLE_INDEX
	2.2.1.2.103 (Updated Section) STATIC_SERVICES_TABLE_INDEX
	2.2.1.2.104 IPX_MIB_INDEX
	2.2.1.2.105 (Updated Section) IPX_MIB_GET_INPUT_DATA
	2.2.1.2.106 IPXMIB_BASE
	2.2.1.2.107 IPX_IF_STATS
	2.2.1.2.108 (Updated Section) IPX_INTERFACE
	2.2.1.2.109 IPX_ROUTE
	2.2.1.2.110 IPX_MIB_ROW
	2.2.1.2.111 IPX_MIB_SET_INPUT_DATA
	2.2.1.2.112 (Updated Section) SAP_SERVICE_FILTER_INFO
	2.2.1.2.113 (Updated Section) SAP_IF_FILTERS
	2.2.1.2.114 SAP_IF_CONFIG
	2.2.1.2.115 SAP_MIB_BASE
	2.2.1.2.116 SAP_IF_STATS
	2.2.1.2.117 SAP_INTERFACE
	2.2.1.2.118 (Updated Section) SAP_MIB_GET_INPUT_DATA
	2.2.1.2.119 SAP_MIB_SET_INPUT_DATA
	2.2.1.2.120 IPX_SERVICE
	2.2.1.2.121 SAP_IF_INFO
	2.2.1.2.122 RIPMIB_BASE
	2.2.1.2.123 RIP_IF_STATS
	2.2.1.2.124 RIP_INTERFACE
	2.2.1.2.125 (Updated Section) RIP_MIB_GET_INPUT_DATA
	2.2.1.2.126 (Updated Section) RIP_MIB_SET_INPUT_DATA
	2.2.1.2.127 EAPTLS_HASH
	2.2.1.2.128 (Updated Section) EAPTLS_USER_PROPERTIES
	2.2.1.2.129 (Updated Section) MPRAPI_OBJECT_HEADER_IDL
	2.2.1.2.130 (Updated Section) PPP_PROJECTION_INFO_1
	2.2.1.2.131 IKEV2_PROJECTION_INFO_1
	2.2.1.2.132 PROJECTION_INFO_IDL_1
	2.2.1.2.133 (Updated Section) RAS_CONNECTION_EX_1_IDL
	2.2.1.2.134 RAS_CONNECTION_EX_IDL
	2.2.1.2.135 CERT_BLOB_1
	2.2.1.2.136 IKEV2_TUNNEL_CONFIG_PARAMS_1
	2.2.1.2.137 IKEV2_CONFIG_PARAMS_1
	2.2.1.2.138 PPTP_CONFIG_PARAMS_1
	2.2.1.2.139 L2TP_CONFIG_PARAMS_1
	2.2.1.2.140 SSTP_CERT_INFO_1
	2.2.1.2.141 SSTP_CONFIG_PARAMS_1
	2.2.1.2.142 MPR_SERVER_EX_1
	2.2.1.2.143 MPR_SERVER_EX_IDL
	2.2.1.2.144 MPRAPI_TUNNEL_CONFIG_PARAMS_1
	2.2.1.2.145 MPR_SERVER_SET_CONFIG_EX_1
	2.2.1.2.146 MPR_SERVER_SET_CONFIG_EX_IDL
	2.2.1.2.147 RAS_UPDATE_CONNECTION_1_IDL
	2.2.1.2.148 RAS_UPDATE_CONNECTION_IDL
	2.2.1.2.149 IPBOOTP_GLOBAL_CONFIG
	2.2.1.2.150 IPBOOTP_IF_CONFIG
	2.2.1.2.151 IPBOOTP_MIB_GET_INPUT_DATA
	2.2.1.2.152 (Updated Section) IPBOOTP_MIB_GET_OUTPUT_DATA
	2.2.1.2.153 IPBOOTP_IF_STATS
	2.2.1.2.154 IPBOOTP_IF_BINDING
	2.2.1.2.155 (Updated Section) IPBOOTP_IP_ADDRESS
	2.2.1.2.156 DHCPV6R_MIB_GET_OUTPUT_DATA
	2.2.1.2.157 (Updated Section) DHCPV6R_GLOBAL_CONFIG
	2.2.1.2.158 DHCPV6R_IF_STATS
	2.2.1.2.159 DHCPV6R_IF_CONFIG
	2.2.1.2.160 DHCPV6R_MIB_GET_INPUT_DATA
	2.2.1.2.161 IPRIP_MIB_GET_INPUT_DATA
	2.2.1.2.162 (Updated Section) IPRIP_MIB_GET_OUTPUT_DATA
	2.2.1.2.163 IPRIP_GLOBAL_STATS
	2.2.1.2.164 (Updated Section) IPRIP_GLOBAL_CONFIG
	2.2.1.2.165 (Updated Section) IPRIP_IF_STATS
	2.2.1.2.166 IPRIP_IF_CONFIG
	2.2.1.2.167 IPRIP_ROUTE_FILTER
	2.2.1.2.168 IPRIP_IF_BINDING
	2.2.1.2.169 IPRIP_IP_ADDRESS
	2.2.1.2.170 (Updated Section) IPRIP_PEER_STATS
	2.2.1.2.171 IGMP_MIB_GET_INPUT_DATA
	2.2.1.2.172 IGMP_MIB_GET_OUTPUT_DATA
	2.2.1.2.173 IGMP_MIB_GLOBAL_CONFIG
	2.2.1.2.174 IGMP_MIB_IF_CONFIG
	2.2.1.2.175 IGMP_MIB_IF_GROUPS_LIST
	2.2.1.2.176 (Updated Section) IGMP_MIB_GROUP_INFO
	2.2.1.2.177 (Updated Section) IGMP_MIB_IF_STATS
	2.2.1.2.178 (Updated Section) IGMP_MIB_GROUP_IFS_LIST
	2.2.1.2.179 (Added Section) IGMP_MIB_GROUP_SOURCE_INFO_V3
	2.2.1.2.180 (Updated Section) IGMP_MIB_GROUP_INFO_V3
	2.2.1.2.181 INTERFACE_ROUTE_ENTRY
	2.2.1.2.182 (Updated Section) IP_NAT_MIB_QUERY
	2.2.1.2.183 IP_NAT_ENUMERATE_SESSION_MAPPINGS
	2.2.1.2.184 IP_NAT_SESSION_MAPPING
	2.2.1.2.185 IP_NAT_INTERFACE_STATISTICS
	2.2.1.2.186 IP_DNS_PROXY_MIB_QUERY
	2.2.1.2.187 IP_DNS_PROXY_STATISTICS
	2.2.1.2.188 IP_AUTO_DHCP_MIB_QUERY
	2.2.1.2.189 IP_AUTO_DHCP_STATISTICS
	2.2.1.2.190 (Updated Section) MIB_DA_MSG
	2.2.1.2.191 IP_AUTO_DHCP_GLOBAL_INFO
	2.2.1.2.192 IP_AUTO_DHCP_INTERFACE_INFO
	2.2.1.2.193 IP_DNS_PROXY_GLOBAL_INFO
	2.2.1.2.194 IP_DNS_PROXY_INTERFACE_INFO
	2.2.1.2.195 IP_NAT_GLOBAL_INFO
	2.2.1.2.196 IP_NAT_TIMEOUT
	2.2.1.2.197 IP_NAT_INTERFACE_INFO
	2.2.1.2.198 IP_NAT_ADDRESS_RANGE
	2.2.1.2.199 IP_NAT_PORT_MAPPING
	2.2.1.2.200 IP_NAT_ADDRESS_MAPPING
	2.2.1.2.201 IP_ALG_GLOBAL_INFO
	2.2.1.2.202 RIP_GLOBAL_INFO
	2.2.1.2.203 RIP_ROUTE_FILTER_INFO
	2.2.1.2.204 RIP_IF_FILTERS
	2.2.1.2.205 RIP_IF_INFO
	2.2.1.2.206 RIP_IF_CONFIG
	2.2.1.2.207 SAP_GLOBAL_INFO
	2.2.1.2.208 (Updated Section) OSPF_ROUTE_FILTER
	2.2.1.2.209 OSPF_ROUTE_FILTER_INFO
	2.2.1.2.210 OSPF_PROTO_FILTER_INFO
	2.2.1.2.211 OSPF_GLOBAL_PARAM
	2.2.1.2.212 OSPF_AREA_PARAM
	2.2.1.2.213 OSPF_AREA_RANGE_PARAM
	2.2.1.2.214 OSPF_VIRT_INTERFACE_PARAM
	2.2.1.2.215 OSPF_INTERFACE_PARAM
	2.2.1.2.216 OSPF_NBMA_NEIGHBOR_PARAM
	2.2.1.2.217 RequestBuffer
	2.2.1.2.218 DeviceConfigInfo
	2.2.1.2.219 RAS_DEVICE_INFO
	2.2.1.2.220 (Updated Section) GetSetCalledId
	2.2.1.2.221 RAS_CALLEDID_INFO
	2.2.1.2.222 GetNdiswanDriverCapsStruct
	2.2.1.2.223 RAS_NDISWAN_DRIVER_INFO
	2.2.1.2.224 (Updated Section) GetDevConfigStruct
	2.2.1.2.225 Enum
	2.2.1.2.226 RASMAN_PORT_32
	2.2.1.2.227 Info
	2.2.1.2.228 RASMAN_INFO
	2.2.1.2.229 RASRPC_PBUSER
	2.2.1.2.230 RASRPC_CALLBACKLIST
	2.2.1.2.231 RASRPC_STRINGLIST
	2.2.1.2.232 RASRPC_LOCATIONLIST
	2.2.1.2.233 (Updated Section) PPP_PROJECTION_INFO_2
	2.2.1.2.234 IKEV2_PROJECTION_INFO_2
	2.2.1.2.235 PROJECTION_INFO_IDL_2
	2.2.1.2.236 (Updated Section) RAS_CONNECTION_4_IDL
	2.2.1.2.237 ROUTER_CUSTOM_IKEv2_POLICY_0
	2.2.1.2.238 IKEV2_TUNNEL_CONFIG_PARAMS_2
	2.2.1.2.239 IKEV2_CONFIG_PARAMS_2
	2.2.1.2.240 MPRAPI_TUNNEL_CONFIG_PARAMS_2
	2.2.1.2.241 MPR_SERVER_SET_CONFIG_EX_2
	2.2.1.2.242 MPR_SERVER_EX_2
	2.2.1.2.243 (Updated Section) ROUTER_IKEv2_IF_CUSTOM_CONFIG_0
	2.2.1.2.244 MPR_IF_CUSTOMINFOEX_0
	2.2.1.2.245 MPR_IF_CUSTOMINFOEX_IDL
	2.2.1.2.246 CERT_EKU_1
	2.2.1.2.247 (Updated Section) IKEV2_TUNNEL_CONFIG_PARAMS_3
	2.2.1.2.248 (Updated Section) IKEV2_CONFIG_PARAMS_3
	2.2.1.2.249 MPRAPI_TUNNEL_CONFIG_PARAMS_3
	2.2.1.2.250 (Updated Section) MPR_SERVER_SET_CONFIG_EX_3
	2.2.1.2.251 MPR_SERVER_EX_3
	2.2.1.2.252 BGP_CONFIG_HEADER
	2.2.1.2.253 BGP_TOC_ENTRY
	2.2.1.2.254 BGP_IP_ADDRESS
	2.2.1.2.255 BGP_IP_PREFIX
	2.2.1.2.256 BGP_ASN_RANGE
	2.2.1.2.257 BGP_ROUTER_CONFIG
	2.2.1.2.258 BGP_POLICY_MATCH
	2.2.1.2.259 BGP_POLICY_MODIFY
	2.2.1.2.260 BGP_POLICY_ACTION
	2.2.1.2.261 (Updated Section) BGP_POLICY
	2.2.1.2.262 (Updated Section) BGP_PEER
	2.2.1.2.263 (Updated Section) BGP_PEER_TO_POLICIES
	2.2.1.2.264 BGP_ADVERTISE
	2.2.1.2.265 BGP_ROUTER_V6
	2.2.1.2.266 PRIORITY_INFO_EX
	2.2.1.2.267 PROTOCOL_METRIC_EX
	2.2.1.2.268 ROUTER_IKEv2_IF_CUSTOM_CONFIG_1
	2.2.1.2.269 MPR_IF_CUSTOMINFOEX_1
	2.2.1.2.270 (Updated Section) L2TP_TUNNEL_CONFIG_PARAMS_1
	2.2.1.2.271 (Updated Section) L2TP_CONFIG_PARAMS_2

	2.2.2 (Updated Section) File Format for Phonebook
	2.2.2.1 RRAS entry section name
	2.2.2.2 Phonebook entry settings
	2.2.2.2.1 Encoding
	2.2.2.2.2 PBVersion
	2.2.2.2.3 Type
	2.2.2.2.4 Autologon
	2.2.2.2.5 UseRasCredentials
	2.2.2.2.6 LowDateTime
	2.2.2.2.7 HighDateTime
	2.2.2.2.8 DialParamsUID
	2.2.2.2.9 Guid
	2.2.2.2.10 BaseProtocol
	2.2.2.2.11 (Updated Section) VpnStrategy
	2.2.2.2.12 ExcludedProtocols
	2.2.2.2.13 LcpExtensions
	2.2.2.2.14 DataEncryption
	2.2.2.2.15 SwCompression
	2.2.2.2.16 NegotiateMultilinkAlways
	2.2.2.2.17 SkipNwcWarning
	2.2.2.2.18 SkipDownLevelDialog
	2.2.2.2.19 SkipDoubleDialDialog
	2.2.2.2.20 DialMode
	2.2.2.2.21 DialPercent
	2.2.2.2.22 DialSeconds
	2.2.2.2.23 HangupPercent
	2.2.2.2.24 HangupSeconds
	2.2.2.2.25 OverridePref
	2.2.2.2.26 RedialAttempts
	2.2.2.2.27 RedialSeconds
	2.2.2.2.28 IdleDisconnectSeconds
	2.2.2.2.29 RedialOnLinkFailure
	2.2.2.2.30 CallbackMode
	2.2.2.2.31 CustomDialDll
	2.2.2.2.32 CustomDialFunc
	2.2.2.2.33 CustomRasDialDll
	2.2.2.2.34 ForceSecureCompartment
	2.2.2.2.35 DisableIKENameEkuCheck
	2.2.2.2.36 AuthenticateServer
	2.2.2.2.37 ShareMsFilePrint
	2.2.2.2.38 BindMsNetClient
	2.2.2.2.39 SharedPhoneNumbers
	2.2.2.2.40 GlobalDeviceSettings
	2.2.2.2.41 PrerequisitePbk
	2.2.2.2.42 PrerequisiteEntry
	2.2.2.2.43 PreferredPort
	2.2.2.2.44 PreferredDevice
	2.2.2.2.45 PreferredBps
	2.2.2.2.46 PreferredHwFlow
	2.2.2.2.47 PreferredProtocol
	2.2.2.2.48 PreferredCompression
	2.2.2.2.49 PreferredSpeaker
	2.2.2.2.50 PreferredMdmProtocol
	2.2.2.2.51 PreviewUsePw
	2.2.2.2.52 PreviewDomain
	2.2.2.2.53 PreviewPhoneNumber
	2.2.2.2.54 ShowDialingProgress
	2.2.2.2.55 ShowMonitorIconInTaskbar
	2.2.2.2.56 CustomAuthKey
	2.2.2.2.57 CustomAuthData
	2.2.2.2.58 AuthRestrictions
	2.2.2.2.59 TypicalAuth
	2.2.2.2.60 IpPrioritizeRemote
	2.2.2.2.61 IpInterfaceMetric
	2.2.2.2.62 fCachedDnsSuffix
	2.2.2.2.63 IpHeaderCompression
	2.2.2.2.64 IpAddress
	2.2.2.2.65 IpDnsAddress
	2.2.2.2.66 IpDns2Address
	2.2.2.2.67 IpWinsAddress
	2.2.2.2.68 IpWins2Address
	2.2.2.2.69 IpAssign
	2.2.2.2.70 IpNameAssign
	2.2.2.2.71 IpFrameSize
	2.2.2.2.72 IpDnsFlags
	2.2.2.2.73 IpNBTFlags
	2.2.2.2.74 TcpWindowSize
	2.2.2.2.75 UseFlags
	2.2.2.2.76 IpSecFlags
	2.2.2.2.77 IpDnsSuffix
	2.2.2.2.78 IpCachedDnsSuffix
	2.2.2.2.79 (Updated Section) Ipv6Assign
	2.2.2.2.80 Ipv6PrefixLength
	2.2.2.2.81 Ipv6PrioritizeRemote
	2.2.2.2.82 Ipv6InterfaceMetric
	2.2.2.2.83 Ipv6NameAssign
	2.2.2.2.84 Ipv6DnsAddress
	2.2.2.2.85 Ipv6Dns2Address
	2.2.2.2.86 Ipv6Prefix
	2.2.2.2.87 Ipv6InterfaceId
	2.2.2.2.88 DisableClassBasedDefaultRoute
	2.2.2.2.89 DisableMobility
	2.2.2.2.90 NetworkOutageTime
	2.2.2.2.91 ProvisionType
	2.2.2.2.92 PreSharedKey
	2.2.2.2.93 NETCOMPONENTS
	2.2.2.2.94 ms_msclient
	2.2.2.2.95 ms_server
	2.2.2.2.96 MEDIA
	2.2.2.2.97 Port
	2.2.2.2.98 Device
	2.2.2.2.99 ConnectBPS
	2.2.2.2.100 DEVICE
	2.2.2.2.101 Terminal
	2.2.2.2.102 Name
	2.2.2.2.103 Script
	2.2.2.2.104 X25Pad
	2.2.2.2.105 X25Address
	2.2.2.2.106 UserData
	2.2.2.2.107 Facilities
	2.2.2.2.108 PhoneNumber
	2.2.2.2.109 AreaCode
	2.2.2.2.110 CountryCode
	2.2.2.2.111 CountryID
	2.2.2.2.112 UseDialingRules
	2.2.2.2.113 Comment
	2.2.2.2.114 FriendlyName
	2.2.2.2.115 LastSelectedPhone
	2.2.2.2.116 PromoteAlternates
	2.2.2.2.117 TryNextAlternateOnFail
	2.2.2.2.118 HwFlowControl
	2.2.2.2.119 Protocol
	2.2.2.2.120 Compression
	2.2.2.2.121 Speaker
	2.2.2.2.122 MdmProtocol
	2.2.2.2.123 LineType
	2.2.2.2.124 Fallback
	2.2.2.2.125 EnableCompression
	2.2.2.2.126 ChannelAggregation
	2.2.2.2.127 Proprietary

	2.2.3 Registry Keys
	2.2.3.1 Transport Configuration
	2.2.3.1.1 ProtocolId
	2.2.3.1.2 (Updated Section) GlobalInfo
	2.2.3.1.3 (Updated Section) GlobalInterfaceInfo

	2.2.3.2 Interface Configuration
	2.2.3.2.1 Common Interface Configuration Values
	2.2.3.2.1.1 InterfaceName
	2.2.3.2.1.2 Type
	2.2.3.2.1.3 Enabled
	2.2.3.2.1.4 DialOutHours

	2.2.3.2.2 Transport-specific Configuration
	2.2.3.2.2.1 (Updated Section) ProtocolId
	2.2.3.2.2.2 InterfaceInfo

	2.2.3.2.3 IKEv2 Custom Configuration
	2.2.3.2.3.1 SaMaxDataSize
	2.2.3.2.3.2 SaLifeTime
	2.2.3.2.3.3 MachineCertificateName
	2.2.3.2.3.4 IKEv2 Custom Policies
	2.2.3.2.3.4.1 IntegrityMethod
	2.2.3.2.3.4.2 EncryptionMethod
	2.2.3.2.3.4.3 CipherTransformConstant
	2.2.3.2.3.4.4 AuthTransformConstant
	2.2.3.2.3.4.5 PfsGroup
	2.2.3.2.3.4.6 DHGroup

	2.2.3.3 Ports Configuration
	2.2.3.3.1 Non-modem Device Port Configurations
	2.2.3.3.1.1 ComponentId
	2.2.3.3.1.2 DriverDesc
	2.2.3.3.1.3 EnableForOutboundRouting
	2.2.3.3.1.4 EnableForRas
	2.2.3.3.1.5 EnableForRouting
	2.2.3.3.1.6 CalledIDInformation
	2.2.3.3.1.7 MaxWanEndpoints
	2.2.3.3.1.8 WanEndpoints

	2.2.3.3.2 (Updated Section) Modem device Port Configurations

	2.2.3.4 Miscellaneous Configuration Information
	2.2.3.4.1 RouterType
	2.2.3.4.2 IKEv2 Tunnel Configuration Settings
	2.2.3.4.2.1 idleTimeout
	2.2.3.4.2.2 networkBlackoutTime
	2.2.3.4.2.3 saDataSize
	2.2.3.4.2.4 saLifeTime
	2.2.3.4.2.5 TrustedRootCert
	2.2.3.4.2.6 EncryptionType
	2.2.3.4.2.7 MachineCertificateName
	2.2.3.4.2.8 IKEv2 Custom Policy Configuration
	2.2.3.4.2.8.1 IntegrityMethod
	2.2.3.4.2.8.2 EncryptionMethod
	2.2.3.4.2.8.3 CipherTransformConstant
	2.2.3.4.2.8.4 AuthTransformConstant
	2.2.3.4.2.8.5 PfsGroup
	2.2.3.4.2.8.6 DHGroup

	2.2.3.4.3 SSTP Tunnel Configuration Settings
	2.2.3.4.3.1 UseHttps
	2.2.3.4.3.2 IsHashConfiguredByAdmin
	2.2.3.4.3.3 SHA256CertificateHash
	2.2.3.4.3.4 SHA1CertificateHash

	2.2.3.4.4 QuarantineInstalled
	2.2.3.4.5 LoggingFlags
	2.2.3.4.6 ServerFlags
	2.2.3.4.7 ConfigurationFlags
	2.2.3.4.8 AllowNetworkAccess
	2.2.3.4.9 EnableIn
	2.2.3.4.10 EnableNetbtBcastFwd
	2.2.3.4.11 IpAddress
	2.2.3.4.12 IpMask
	2.2.3.4.13 NetworkAdapterGUID
	2.2.3.4.14 UseDhcpAddressing
	2.2.3.4.15 StaticAddressPool
	2.2.3.4.16 AdvertiseDefaultRoute
	2.2.3.4.17 StaticPrefixPool
	2.2.3.4.18 Accounting Settings
	2.2.3.4.18.1 AcctGroupName
	2.2.3.4.18.2 ActiveProvider
	2.2.3.4.18.3 RADIUS-based Accounting Settings
	2.2.3.4.18.3.1 Score
	2.2.3.4.18.3.2 AcctPort
	2.2.3.4.18.3.3 Timeout
	2.2.3.4.18.3.4 EnableAccountingOnOff

	2.2.3.4.19 Authentication Settings
	2.2.3.4.19.1 AuthGroupName
	2.2.3.4.19.2 CRPName
	2.2.3.4.19.3 ActiveProvider
	2.2.3.4.19.4 RADIUS-based Authentication Settings
	2.2.3.4.19.4.1 Score
	2.2.3.4.19.4.2 AuthPort
	2.2.3.4.19.4.3 Timeout
	2.2.3.4.19.4.4 SendSignature

	2.2.4 Error Codes
	2.2.5 REMRAS Common Messages
	2.2.5.1 Structures
	2.2.5.1.1 (Updated Section) IPV6Address

	3 (Updated Section) Protocol Details
	3.1 DIMSVC Interface Server Details
	3.1.1 Abstract Data Model
	3.1.2 Timers
	3.1.3 Initialization
	3.1.4 Message Processing Events and Sequencing Rules
	3.1.4.1 (Updated Section) RMprAdminServerGetInfo (Opnum 0)
	3.1.4.2 RRasAdminConnectionEnum (Opnum 1)
	3.1.4.3 (Updated Section) RRasAdminConnectionGetInfo (Opnum 2)
	3.1.4.4 RRasAdminConnectionClearStats (Opnum 3)
	3.1.4.5 RRasAdminPortEnum (Opnum 4)
	3.1.4.6 RRasAdminPortGetInfo (Opnum 5)
	3.1.4.7 RRasAdminPortClearStats (Opnum 6)
	3.1.4.8 (Updated Section) RRasAdminPortReset (Opnum 7)
	3.1.4.9 RRasAdminPortDisconnect (Opnum 8)
	3.1.4.10 RRouterInterfaceTransportSetGlobalInfo (Opnum 9)
	3.1.4.11 RRouterInterfaceTransportGetGlobalInfo (Opnum 10)
	3.1.4.12 RRouterInterfaceGetHandle (Opnum 11)
	3.1.4.13 (Updated Section) RRouterInterfaceCreate (Opnum 12)
	3.1.4.14 (Updated Section) RRouterInterfaceGetInfo (Opnum 13)
	3.1.4.15 (Updated Section) RRouterInterfaceSetInfo (Opnum 14)
	3.1.4.16 RRouterInterfaceDelete (Opnum 15)
	3.1.4.17 RRouterInterfaceTransportRemove (Opnum 16)
	3.1.4.18 (Updated Section) RRouterInterfaceTransportAdd (Opnum 17)
	3.1.4.19 RRouterInterfaceTransportGetInfo (Opnum 18)
	3.1.4.20 (Updated Section) RRouterInterfaceTransportSetInfo (Opnum 19)
	3.1.4.21 RRouterInterfaceEnum (Opnum 20)
	3.1.4.22 RRouterInterfaceConnect (Opnum 21)
	3.1.4.23 RRouterInterfaceDisconnect (Opnum 22)
	3.1.4.24 RRouterInterfaceUpdateRoutes (Opnum 23)
	3.1.4.25 RRouterInterfaceQueryUpdateResult (Opnum 24)
	3.1.4.26 RRouterInterfaceUpdatePhonebookInfo (Opnum 25)
	3.1.4.27 RMIBEntryCreate (Opnum 26)
	3.1.4.28 RMIBEntryDelete (Opnum 27)
	3.1.4.29 (Updated Section) RMIBEntrySet (Opnum 28)
	3.1.4.30 (Updated Section) RMIBEntryGet (Opnum 29)
	3.1.4.31 (Updated Section) RMIBEntryGetFirst (Opnum 30)
	3.1.4.32 RMIBEntryGetNext (Opnum 31)
	3.1.4.33 RMIBGetTrapInfo (Opnum 32)
	3.1.4.34 RMIBSetTrapInfo (Opnum 33)
	3.1.4.35 RRasAdminConnectionNotification (Opnum 34)
	3.1.4.36 RRasAdminSendUserMessage (Opnum 35)
	3.1.4.37 RRouterDeviceEnum (Opnum 36)
	3.1.4.38 RRouterInterfaceTransportCreate (Opnum 37)
	3.1.4.39 (Updated Section) RRouterInterfaceDeviceGetInfo (Opnum 38)
	3.1.4.40 (Updated Section) RRouterInterfaceDeviceSetInfo (Opnum 39)
	3.1.4.41 RRouterInterfaceSetCredentialsEx (Opnum 40)
	3.1.4.42 (Updated Section) RRouterInterfaceGetCredentialsEx (Opnum 41)
	3.1.4.43 RRasAdminConnectionRemoveQuarantine (Opnum 42)
	3.1.4.44 (Updated Section) RMprAdminServerSetInfo (Opnum 43)
	3.1.4.45 RMprAdminServerGetInfoEx (Opnum 44)
	3.1.4.46 RRasAdminConnectionEnumEx (Opnum 45)
	3.1.4.47 RRasAdminConnectionGetInfoEx (Opnum 46)
	3.1.4.48 (Updated Section) RMprAdminServerSetInfoEx (Opnum 47)
	3.1.4.49 RRasAdminUpdateConnection (Opnum 48)
	3.1.4.50 (Updated Section) RRouterInterfaceSetCredentialsLocal (Opnum 49)
	3.1.4.51 (Updated Section) RRouterInterfaceGetCredentialsLocal (Opnum 50)
	3.1.4.52 RRouterInterfaceGetCustomInfoEx (Opnum 51)
	3.1.4.53 RRouterInterfaceSetCustomInfoEx (Opnum 52)

	3.1.5 Timer Events
	3.1.6 Other Local Events
	3.1.6.1 Invoke DIMSVC Method
	3.1.6.2 Start DIMSVC
	3.1.6.3 Stop DIMSVC

	3.2 DIMSVC Interface Client Details
	3.2.1 Abstract Data Model
	3.2.2 Timers
	3.2.3 Initialization
	3.2.4 Message Processing Events and Sequencing Rules
	3.2.4.1 RMprAdminServerGetInfo (Opnum 0)
	3.2.4.2 RRasAdminConnectionEnum (Opnum 1)
	3.2.4.3 RRasAdminConnectionGetInfo (Opnum 2)
	3.2.4.4 RRasAdminConnectionClearStats (Opnum 3)
	3.2.4.5 RRasAdminPortEnum (Opnum 4)
	3.2.4.6 RRasAdminPortGetInfo (Opnum 5)
	3.2.4.7 RRasAdminPortClearStats (Opnum 6)
	3.2.4.8 RRasAdminPortReset (Opnum 7)
	3.2.4.9 RRasAdminPortDisconnect (Opnum 8)
	3.2.4.10 RRouterInterfaceTransportSetGlobalInfo (Opnum 9)
	3.2.4.11 RRouterInterfaceTransportGetGlobalInfo (Opnum 10)
	3.2.4.12 RRouterInterfaceGetHandle (Opnum 11)
	3.2.4.13 RRouterInterfaceCreate (Opnum 12)
	3.2.4.14 RRouterInterfaceGetInfo (Opnum 13)
	3.2.4.15 RRouterInterfaceSetInfo (Opnum 14)
	3.2.4.16 RRouterInterfaceDelete (Opnum 15)
	3.2.4.17 RRouterInterfaceTransportRemove (Opnum 16)
	3.2.4.18 RRouterInterfaceTransportAdd (Opnum 17)
	3.2.4.19 RRouterInterfaceTransportGetInfo (Opnum 18)
	3.2.4.20 RRouterInterfaceTransportSetInfo (Opnum 19)
	3.2.4.21 RRouterInterfaceEnum (Opnum 20)
	3.2.4.22 RRouterInterfaceConnect (Opnum 21)
	3.2.4.23 RRouterInterfaceDisconnect (Opnum 22)
	3.2.4.24 RRouterInterfaceUpdateRoutes (Opnum 23)
	3.2.4.25 RRouterInterfaceQueryUpdateResult (Opnum 24)
	3.2.4.26 RRouterInterfaceUpdatePhonebookInfo (Opnum 25)
	3.2.4.27 RMIBEntryCreate (Opnum 26)
	3.2.4.28 RMIBEntryDelete (Opnum 27)
	3.2.4.29 RMIBEntrySet (Opnum 28)
	3.2.4.30 RMIBEntryGet (Opnum 29)
	3.2.4.31 RMIBEntryGetFirst (Opnum 30)
	3.2.4.32 RMIBEntryGetNext (Opnum 31)
	3.2.4.33 RMIBGetTrapInfo (Opnum 32)
	3.2.4.34 RMIBSetTrapInfo (Opnum 33)
	3.2.4.35 RRasAdminConnectionNotification (Opnum 34)
	3.2.4.36 RRasAdminSendUserMessage (Opnum 35)
	3.2.4.37 RRouterDeviceEnum (Opnum 36)
	3.2.4.38 RRouterInterfaceTransportCreate (Opnum 37)
	3.2.4.39 RRouterInterfaceDeviceGetInfo (Opnum 38)
	3.2.4.40 RRouterInterfaceDeviceSetInfo (Opnum 39)
	3.2.4.41 RRouterInterfaceSetCredentialsEx (Opnum 40)
	3.2.4.42 RRouterInterfaceGetCredentialsEx (Opnum 41)
	3.2.4.43 RRasAdminConnectionRemoveQuarantine (Opnum 42)
	3.2.4.44 RMprAdminServerSetInfo (Opnum 43)
	3.2.4.45 RMprAdminServerGetInfoEx (Opnum 44)
	3.2.4.46 RRasAdminConnectionEnumEx (Opnum 45)
	3.2.4.47 RRasAdminConnectionGetInfoEx (Opnum 46)
	3.2.4.48 RMprAdminServerSetInfoEx (Opnum 47)
	3.2.4.49 RRasAdminUpdateConnection (Opnum 48)
	3.2.4.50 RRouterInterfaceSetCredentialsLocal (Opnum 49)
	3.2.4.51 RRouterInterfaceGetCredentialsLocal (Opnum 50)
	3.2.4.52 RRouterInterfaceGetCustomInfoEx (Opnum 51)
	3.2.4.53 RRouterInterfaceSetCustomInfoEx (Opnum 52)

	3.2.5 Timer Events
	3.2.6 Other Local Events

	3.3 RASRPC Interface Server Details
	3.3.1 Abstract Data Model
	3.3.2 Timers
	3.3.3 Initialization
	3.3.4 Message Processing Events and Sequencing Rules
	3.3.4.1 RasRpcDeleteEntry (Opnum 5)
	3.3.4.2 (Updated Section) RasRpcGetUserPreferences (Opnum 9)
	3.3.4.3 RasRpcSetUserPreferences (Opnum 10)
	3.3.4.4 RasRpcGetSystemDirectory (Opnum 11)
	3.3.4.5 (Updated Section) RasRpcSubmitRequest (Opnum 12)
	3.3.4.6 RasRpcGetInstalledProtocolsEx (Opnum 14)
	3.3.4.7 RasRpcGetVersion (Opnum 15)

	3.3.5 Timer Events
	3.3.6 Other Local Events
	3.3.6.1 Invoke RASRPC Method
	3.3.6.2 Start RASRPC
	3.3.6.3 Stop RASRPC

	3.4 RASRPC Interface Client Details
	3.4.1 Abstract Data Model
	3.4.2 Timers
	3.4.3 Initialization
	3.4.4 Message Processing Events and Sequencing Rules
	3.4.4.1 RasRpcDeleteEntry (Opnum 5)
	3.4.4.2 RasRpcGetUserPreferences (Opnum 9)
	3.4.4.3 RasRpcSetUserPreferences (Opnum 10)
	3.4.4.4 RasRpcGetSystemDirectory (Opnum 11)
	3.4.4.5 (Updated Section) RasRpcSubmitRequest (Opnum 12)
	3.4.4.6 RasRpcGetInstalledProtocolsEx (Opnum 14)
	3.4.4.7 RasRpcGetVersion (Opnum 15)

	3.4.5 Timer Events
	3.4.6 Other Local Events

	3.5 REMRAS Interface Server Details
	3.5.1 Abstract Data Model
	3.5.2 Timers
	3.5.3 Initialization
	3.5.4 Message Processing Events and Sequencing Rules
	3.5.4.1 IRemoteNetworkConfig Interface (Opnum 3)
	3.5.4.1.1 UpgradeRouterConfig Method (Opnum 3)
	3.5.4.1.2 SetUserConfig Method (Opnum 4)

	3.5.4.2 IRemoteRouterRestart Interface (Opnum 3)
	3.5.4.2.1 RestartRouter Method (Opnum 3)

	3.5.4.3 IRemoteSetDnsConfig Interface (Opnum 3)
	3.5.4.3.1 SetDnsConfig Method (Opnum 3)

	3.5.4.4 IRemoteICFICSConfig Interface (Opnum 3)
	3.5.4.4.1 GetIcfEnabled Method (Opnum 3)
	3.5.4.4.2 (Updated Section) GetIcsEnabled Method (Opnum 4)

	3.5.4.5 (Updated Section) IRemoteStringIdConfig Interface (Opnum 3)
	3.5.4.5.1 GetStringFromId Method (Opnum 3)

	3.5.4.6 IRemoteIPV6Config Interface (Opnum 3)
	3.5.4.6.1 GetAddressList Method (Opnum 3)

	3.5.4.7 IRemoteSSTPCertCheck Interface (Opnum 3)
	3.5.4.7.1 CheckIfCertificateAllowedRR Method (Opnum 3)

	3.5.5 Timer Events
	3.5.6 Other Local Events
	3.5.6.1 Invoke REMRAS Method

	3.6 REMRAS Interface Client Details
	3.6.1 Abstract Data Model
	3.6.2 Timers
	3.6.3 Initialization
	3.6.4 Message Processing Events and Sequencing Rules
	3.6.5 Timer Events
	3.6.6 Other Local Events

	4 Protocol Examples
	4.1 (Updated Section) Querying Server Configuration Information
	4.2 (Updated Section) Disconnecting a Particular User Connection
	4.3 (Updated Section) Creating a Demand Dial Interface on RRAS with Filters
	4.4 (Updated Section) Enumerating Interfaces and Connecting "dd1"
	4.5 Querying Interface Status Through MIB
	4.6 (Updated Section) Updating the Connection Endpoint of an IKEv2-Based Connection
	4.7 Retrieving the Rasrpc Server Version Info
	4.8 Retrieving Device Configuration Information
	4.9 Retrieving Specific Port Information
	4.10 Sample Phonebook File for a Demand-dial Connection
	4.11 Registry Configuration
	4.11.1 Transport Configuration
	4.11.2 Interface Configuration
	4.11.3 Ports Configuration
	4.11.4 Other Miscellaneous Configuration Information

	4.12 Querying validity of SSTP certificate

	5 Security
	5.1 Security Considerations for Implementers
	5.1.1 Security Considerations Specific to the RRAS Management Protocol

	5.2 Index of Security Parameters

	6 (Updated Section) Appendix A: Full IDL
	7 (Updated Section) Appendix B: Product Behavior
	8 Change Tracking
	9 Index

