

1 / 183

[MS -RPCE-Diff] - v20171201
Remote Procedure Call Protocol Extensions
Copyright © 2017 Microsoft Corporation
Release: December 1, 2017

[MS -RPCE - Diff]:

Remote Procedure Call Protocol Extensions

Intellectual Property Rights Notice for Open Specifications Documentation

Á Technical Documentation. Microsoft publishes Open Specifications documentation (ñthis
documentationò) for protocols, file formats, data portability, computer languages, and standards
support. Additionally, overview documents cover inter -protocol relationships and interactions.

Á Copyrights . This documentation is covered by Microsoft copyrights. Regardless of any other
terms that are contained in the terms of use for the Microsoft website that hosts this
documentation, you can make copies of it in order to develop implementations of the technologies

that are described in this documentation and can distribute portions of it in your implementations
that use these technologies or in your documentation as necessary to properly document the

implementation. You can also distribute in your i mplementation, with or without modification, any
schemas, IDLs, or code samples that are included in the documentation. This permission also
applies to any documents that are referenced in the Open Specifications documentation.

Á No Trade Secrets . Microsoft does not claim any trade secret rights in this documentation.
Á Patents . Microsoft has patents that might cover your implementations of the technologies

described in the Open Specifications documentation. Neither this notice nor Microsoft's delivery of
thi s documentation grants any licenses under those patents or any other Microsoft patents.
However, a given Open Specifications document might be covered by the Microsoft Open
Specifications Promis e or the Microsoft Community Promise . If you would prefer a written license,
or if the technologies described in this documentation are not covered by the Open Specifications
Promise or Communit y Promise, as applicable, patent licenses are available by contacting
iplg@microsoft.com .

Á License Programs . To see all of the protocols in scope under a specific license program and the
associated patents, visit t he Patent Map .

Á Trademarks . The names of companies and products contained in this documentation might be

covered by trademarks or similar intellectual property rights. This notice does not grant any
licenses under those rights. For a list of Microsoft trademarks, visit
www.microsoft.com/trademarks .

Á Fictitious Names . The example companies, organizations, products, domain names, email
addresses, logos, people, places, and events tha t are depicted in this documentation are fictitious.
No association with any real company, organization, product, domain name, email address, logo,
person, place, or event is intended or should be inferred.

Reservation of Rights . All other rights are reser ved, and this notice does not grant any rights other
than as specifically described above, whether by implication, estoppel, or otherwise.

Tools . The Open Specifications documentation does not require the use of Microsoft programming

tools or programming environments in order for you to develop an implementation. If you have access
to Microsoft programming tools and environments, you are free to take advantage of them. Certain
Open Specifications documents are intended for use in conjunction with publicly available standards
specifications and network programming art and, as such, assume that the reader either is familiar

with the aforementioned material or has immediate access to it.

Support. For questions and support, please contact dochelp@microsoft.com .

http://go.microsoft.com/fwlink/?LinkId=214445
http://go.microsoft.com/fwlink/?LinkId=214445
http://go.microsoft.com/fwlink/?LinkId=214448
mailto:iplg@microsoft.com
https://msdn.microsoft.com/en-us/openspecifications/dn750984

2 / 183

[MS -RPCE-Diff] - v20171201
Remote Procedure Call Protocol Extensions
Copyright © 2017 Microsoft Corporation
Release: December 1, 2017

Revision Summary

Date
Revision
History

Revision
Class Comments

10/22/2006 0.01 New Version 0.01 release

1/19/2007 1.0 Major Version 1.0 release

3/2/2007 1.1 Minor Version 1.1 release

4/3/2007 1.2 Minor Version 1.2 release

5/11/2007 1.3 Minor Version 1.3 release

6/1/2007 1.3.1 Editorial Changed language and formatting in the technical content.

7/3/2007 1.3.2 Editorial Changed language and formatting in the technical content.

7/20/2007 1.3.3 Editorial Changed language and formatting in the technical content.

8/10/2007 2.0 Major Added new content.

9/28/2007 2.0.1 Editorial Changed language and formatting in the technical content.

10/23/2007 2.1 Minor Added new content.

11/30/2007 2.1.1 Editorial Changed language and formatting in the technical content.

1/25/2008 2.1.2 Editorial Changed language and formatting in the technical content.

3/14/2008 2.1.3 Editorial Changed language and formatting in the technical content.

5/16/2008 2.1.4 Editorial Changed language and formatting in the technical c ontent.

6/20/2008 3.0 Major Updated and revised the technical content.

7/25/2008 3.1 Minor Clarified the meaning of the technical content.

8/29/2008 3.2 Minor Clarified the meaning of the technical content.

10/24/2008 4.0 Major Updated and revised the technical content.

12/5/2008 5.0 Major Updated and revised the technical content.

1/16/2009 6.0 Major Updated and revised the technical content.

2/27/2009 7.0 Major Updated and revised the technical content.

4/10/2009 8.0 Major Updated and revised the technical content.

5/22/2009 8.0.1 Editorial Changed language and formatting in the technical content.

7/2/2009 9.0 Major Updated and revised the technical content.

8/14/2009 10.0 Major Updated and revised the technical content.

9/25/2009 11.0 Major Updated and revised the technical content.

11/6/2009 11.0.1 Editorial Changed language and formatting in the technical content.

12/18/2009 12.0 Major Updated and revised the technical content.

1/29/2010 12.1 Minor Clarified the meaning of the technical content.

3 / 183

[MS -RPCE-Diff] - v20171201
Remote Procedure Call Protocol Extensions
Copyright © 2017 Microsoft Corporation
Release: December 1, 2017

Date
Revision
History

Revision
Class Comments

3/12/2010 13.0 Major Updated and revised the technical content.

4/23/2010 14.0 Major Updated and revised the technical content.

6/4/2010 15.0 Major Updated and revised the technical content.

7/16/2010 16.0 Major Updated and revised the technical content.

8/27/2010 17.0 Major Updated and revised the technical content.

10/8/2010 18.0 Major Updated and revised the technical content.

11/19/2010 19.0 Major Updated and revised the technical content.

1/7/2011 20.0 Major Updated and revised the technical content.

2/11/2011 21.0 Major Updated and revised the technical content.

3/25/2011 22.0 Major Updated and revised the technical content.

5/6/2011 23.0 Major Updated and revised the technical content.

6/17/2011 23.1 Minor Clarified the meaning of the technical content.

9/23/2011 23.1 None
No changes to the meaning, language, or formatting of the
technical content.

12/16/2011 24.0 Major Updated and revised the technical content.

3/30/2012 24.0 None
No changes to the meaning, language, or formatting of the
technical content.

7/12/2012 24.1 Minor Clarified the meaning of the technical content.

10/25/2012 25.0 Major Updated and revised the technical content.

1/31/2013 25.0 None
No changes to the meaning, language, or formatting of the
technical content.

8/8/2013 26.0 Major Updated and revised the technical content.

11/14/2013 27.0 Major Updated and revised the technical content.

2/13/2014 27.0 None
No changes to the meaning, language, or formatting of the
technical content.

5/15/2014 27.0 None
No changes to the meaning, language, or formatting of the
technical content.

6/30/2015 28.0 Major Significantly changed the technical content.

10/16/2015 28.0 None
No changes to the meaning, language, or formatting of the
technical content.

7/14/2016 28.0 None
No changes to the meaning, language, or formatting of the
technical content.

6/1/2017 29.0 Major Significantly changed the technical content.

9/15/2017 30.0 Major Significantly changed the technical content.

12/1/2017 30.0 None No changes to the meaning, language, or formatting of the

4 / 183

[MS -RPCE-Diff] - v20171201
Remote Procedure Call Protocol Extensions
Copyright © 2017 Microsoft Corporation
Release: December 1, 2017

Date
Revision
History

Revision
Class Comments

technical content.

5 / 183

[MS -RPCE-Diff] - v20171201
Remote Procedure Call Protocol Extensions
Copyright © 2017 Microsoft Corporation
Release: December 1, 2017

Table of Contents

1 Introduction 14
1.1 Glossary 14
1.2 References 17

1.2.1 Normative References 17
1.2.2 Informative References 19

1.3 Overview 27
1.4 Relationship to Other Protocols 27
1.5 Prerequisites/Preconditions 28
1.6 Applicability Statement 28
1.7 Versioning and Capability Negotiation 28
1.8 Vendor -Extensible Fields 29
1.9 Standards Assignments 29

2 Messages 30
2.1 Transport 30

2.1.1 Connection -Oriented RPC Transports 30
2.1.1.1 TCP/IP (NCACN_IP_TCP) 31
2.1.1.2 SMB (NCACN_NP) 31
2.1.1.3 SPX (NCACN_SPX) 32
2.1.1.4 NetBIOS over IPX (NCACN_NB_IPX) 32
2.1.1.5 NetBI OS over TCP (NCACN_NB_TCP) 33
2.1.1.6 NetBIOS over NetBEUI (NCACN_NB_NB) 34
2.1.1.7 AppleTalk (NCACN_AT_DSP) 34
2.1.1.8 RPC over HTTP (ncacn_http) 35

2.1.2 Connectionles s RPC Transports 35
2.1.2.1 UDP (NCADG_IP_UDP) 35
2.1.2.2 Internetwork Packet Exchange (IPX) (NCADG_IPX) 35

2.2 Message Syntax 35
2.2.1 Connection -Oriented and Connectionless RPC Messages 35

2.2.1.1 Common Types and Constants 36
2.2.1.1.1 RPC_IF_ID Type 36
2.2.1.1.2 Extended Error Information Signature Value 36
2.2.1.1.3 UUID Format 36
2.2.1.1.4 Mapping of a Context Handle 36
2.2.1.1.5 version_t 36
2.2.1.1.6 p_rt_versions_supported_t 36
2.2.1.1.7 Security Providers 37
2.2.1.1.8 Authentication Levels 37
2.2.1.1.9 Impersonation Level 38
2.2.1.1.10 Transport -Layer Impersonation Level 39

2.2.1.2 Endpoint Mapper Interface Extensions 39
2.2.1.2.1 EPT_S_CANT_PERFORM_OP 40
2.2.1.2.2 twr_t Type 40
2.2.1.2.3 error_status Type 40
2.2.1.2.4 ept_lookup Method 40
2.2.1.2.5 ept_map Method 42
2.2.1.2.6 ept_insert Method 43
2.2.1.2.7 ept_delete Method 43
2.2.1.2.8 ept_lookup_handle_free Method 43
2.2.1.2.9 ept_inq_object Method 43
2.2.1.2.10 ept_mgmt_delete Method 43
2.2.1.2.11 ept_look up_handle_t Type 43

2.2.1.3 Management Interface Extensions 44
2.2.1.3.1 rpc_if_id_vector_p_t Type 44
2.2.1.3.2 StatisticsCount Type 44

6 / 183

[MS -RPCE-Diff] - v20171201
Remote Procedure Call Protocol Extensions
Copyright © 2017 Microsoft Corporation
Release: December 1, 2017

2.2.1.3.3 rpc_mgmt_inq_stats Method 44
2.2.1.3.4 rpc_mgmt_inq_princ_name Method 44

2.2.2 Connection -Oriented RPC Messages 45
2.2.2.1 PDU Segments 45
2.2.2.2 PFC_MAYBE Flag 45
2.2.2.3 PFC_SUPPORT_HEADER_SIGN Flag 46
2.2.2.4 negotiate _ack Member of p_cont_def_result_t Enumerator 46
2.2.2.5 New Reasons for Bind Rejection 46
2.2.2.6 alloc_hint Interpretation 47
2.2.2.7 RPC_SYNTAX_IDENTIFIER 47
2.2.2.8 rpc_fault Packe t 47
2.2.2.9 bind_nak Packet 47
2.2.2.10 rpc_auth_3 PDU 48
2.2.2.11 sec_trailer Structure 49
2.2.2.12 Authentication Tokens 50
2.2.2.13 Verification Trailer 51

2.2.2.13.1 rpc_sec_verification_trailer 54
2.2.2.13.2 rpc_sec_vt_bitmask 54
2.2.2.13.3 rpc_sec_vt_header2 55
2.2.2.13.4 rpc_sec_vt_pcontext 55

2.2.2.14 BindTimeFeatureNegotiationBitmask 56
2.2.2.15 BindTimeFeatureNegotiationResponseBitmask 57

2.2.3 Connectionless RPC Messages 57
2.2.3.1 PDU Segment s................................ 58
2.2.3.2 Fault Packet 58
2.2.3.3 PF2_UNRELATED Flag 58
2.2.3.4 sec_trailer_cl Structure 58
2.2.3.5 Authentication Tokens 59
2.2.3.6 fack Packet 60

2.2.4 IDL Syntax Extensions 60
2.2.4.1 New Primitive Types 60

2.2.4.1.1 wchar_t 60
2.2.4.1.2 __int3264 60
2.2.4.1.3 __int8, __int16, __int32, __int64 60
2.2.4.1.4 int 60

2.2.4.2 Callback 61
2.2.4.3 Array of Context Handles 61
2.2.4.4 Array of Strings 61
2.2.4.5 ms_union 61
2.2.4.6 v1_enum 61
2.2.4.7 Expression in Conformant, Varying, and Union Description 62
2.2.4.8 Unencapsulated Union 62
2.2.4.9 pointer_default 62
2.2.4.10 Pointer Attributes 62
2.2.4.11 Extension to Enumerated Type 62
2.2.4.12 NDR Transfer Syntax Identifier 62
2.2.4.13 byte_count 63
2.2.4.14 range 63

2.2.4.14.1 range Attribute to Limit the Scope of Integral Values and the Number of
Elements in Pipe Chunks 63

2.2.4.14.2 range Attribute to Limit the Range of Maximum Count of Conformant Array

and String Length 63
2.2.4.15 strict_context_handle 63
2.2.4.16 type_strict_ context_handle 64
2.2.4.17 disable_consistency_check 64
2.2.4.18 Identifier Length 64

2.2.5 64 -Bit Network Data Representation 64
2.2.5.1 NDR64 Transfer Syntax Identifier 64

7 / 183

[MS -RPCE-Diff] - v20171201
Remote Procedure Call Protocol Extensions
Copyright © 2017 Microsoft Corporation
Release: December 1, 2017

2.2.5.2 NDR64 Simple Data Types 65
2.2.5.3 NDR64 Constructed Data Types 65

2.2.5.3.1 Representation Conventions 65
2.2.5.3.2 Arrays 65

2.2.5.3.2.1 Conformant Arrays 65
2.2.5.3.2.2 Varying Arrays 65
2.2.5.3.2.3 Conformant Varying Arrays 65
2.2.5.3.2.4 Multidimensional Arrays 66

2.2.5.3.3 Strings 66
2.2.5.3.3.1 Varying Strings 66
2.2.5.3.3.2 Conformant Varying Strings 66

2.2.5.3.4 Structures 66
2.2.5.3.4.1 Structure with Traili ng Gap 67
2.2.5.3.4.2 Structure Containing a Conformant Array 67
2.2.5.3.4.3 Structure Containing a Conformant Varying Array 67
2.2.5.3.4.4 Unions 67
2.2.5.3.4.5 Pipes 67

2.2.5.3.5 Pointers 68
2.2.5.3.5.1 Embedded Reference Pointers 68

2.2.6 Type Serialization Version 1 68
2.2.6.1 Common Type Header for the Serialization Stream 69
2.2.6.2 Private Header for Constructed Type 69
2.2.6.3 Primitive Type Serialization 70

2.2.7 Type Serialization Version 2 70
2.2.7.1 Common Type Header 70
2.2.7.2 Private Header 71

3 Protocol Details 72
3.1 Connectionless and Connection -Oriented RPC Protocol D etails 72

3.1.1 Common Details 72
3.1.1.1 Abstract Data Model 72

3.1.1.1.1 Security Contex t Handle 72
3.1.1.1.2 Client Credential Handle 73
3.1.1.1.3 Authorization Policy 73

3.1.1.2 Timers 74
3.1.1.3 Initialization 74
3.1.1.4 Higher -Layer Triggered Events 74

3.1.1.4.1 Causal Ordering 74
3.1.1.4.2 Impersonate Client 74

3.1.1.5 Message Processing Events and Sequencing Rules 75
3.1.1.5.1 Processing Extensions Details 75

3.1.1.5.1.1 Extension in NDR Transfer Syntax 75
3.1.1.5.1.1.1 __int3264 75
3.1.1.5.1.1.2 Binding Handle Extension 75

3.1.1.5.2 Indic ating Octet Stream as Invalid 75
3.1.1.5.3 Strict NDR/NDR64 Data Consistency Check 75

3.1.1.5.3.1 Correlation Validation 75
3.1.1.5.3.2 Target Level 5.0 76

3.1.1.5.3.2.1 Correlation Validation Checks 76
3.1.1.5.3.2.1.1 Maximum Count of a Conformant Array or Conformant Varying

Array Is Dictated by Another Parameter or Field of a Structure
 76

3.1.1.5.3.2.1.2 Maximum Count of a Conformant Structure or Conformant
Varying Structure Is Dictated by a Field of the Structure 76

3.1.1.5.3.2.1.3 Maximum Count of a Conformant Array or Conformant Varying
Array Is a Constant Defined in IDL File 76

3.1.1.5.3.2.1.4 Maximum Count of a Conformant Structure or Conformant
Varying Structure Is a Constant 76

8 / 183

[MS -RPCE-Diff] - v20171201
Remote Procedure Call Protocol Extensions
Copyright © 2017 Microsoft Corporation
Release: December 1, 2017

3.1.1.5.3.2.1.5 first_is of a Varying Array or Conformant Varying Array Is
Specified by Another Parameter or Field of a Structure 77

3.1.1.5.3.2.1.6 first_is of a Conformant Varying Structure Is Specified by a
Field in the Structure 77

3.1.1.5.3.2.1.7 first_is of a Varying Array, Conformant Varying Array, or
Conformant Varying Structure Is Not Present in IDL 77

3.1.1.5.3.2.1.8 Actual Count of a Varying Array or Conformant Varying Array Is
Dictated by Another Parameter or Field of a Structure 77

3.1.1.5.3.2.1.9 Actual Count of a Conformant Varying Structure Is Dictated by
a Field in the Structure 77

3.1.1.5.3.2.1.10 Maximum Count of a Conformant and Varying String Is Dictated

by Another Parameter or Field of a Structure 77
3.1.1.5.3.2.1.11 Union Validation 77
3.1.1.5.3.2.1.12 General Conformant Varying Validation 77

3.1.1.5.3.2.2 Additional Limitations 78
3.1.1.5.3.2.2.1 Limiting Maximum Count and Octet Stream Length 78
3.1.1.5.3.2.2.2 strict_context_handle 78
3.1.1.5.3.2.2. 3 Rejecting Insufficient Octet Stream 78
3.1.1.5.3.2.2.4 range Attribute to Limit the Scope of Integral Values and the

Number of Elements in Pipe Chunks 78
3.1.1.5.3.2.2.5 auto_handle Dep recation 78
3.1.1.5.3.2.2.6 Ignoring Alignment Gap 78

3.1.1.5.3.3 Target Level 6.0 78
3.1.1.5.3.3.1 Additional Limitations 78

3.1.1.5.3.3.1.1 type_strict_context_handle 78
3.1.1.5.3.3.1.2 Unique or Full Pointer to Conformant Array Consistency Check

 79
3.1.1.5. 3.3.1.3 range Attribute to Limit the Range of Maximum Count of

Conformant Array and String Length 79
3.1.1.5.4 Restriction on Remo te Anonymous Calls 79
3.1.1.5.5 Returning Win32 Error Values 79

3.1.1.6 Timer Events 81
3.1.1.7 Other Local Events 81

3.1.2 Client Details 81
3.1.2.1 Abstract Data Model 81

3.1.2.1.1 Server Binding Handle 81
3.1.2.2 Timers 82
3.1.2.3 Initialization 82
3.1.2.4 Higher -Layer Triggered Events 82

3.1.2.4.1 Set Server Binding Handle Client Credentials 82
3.1.2.5 Message Processing Events and Sequencing Rules 82

3.1.2.5.1 Indicating Invalid Octet Stream on Client 82
3.1.2.6 Timer Events 82
3.1.2.7 Other Local Events 82

3.1.2.7.1 Client Conformant Validation Processing for Response Data 82
3.1.2.7.1.1 Maximum Count of a Conformant Array Is Dictated by Another

Parameter or Field of a Structure 82
3.1.2.7.1.2 Offset and/or Actual Count of a Conformant Array Is Dictated by

Another Parameter or Field of a Structure 83
3.1.2.7. 1.3 Maximum Count of a Conformant and Varying String Is Dictated by

Another Parameter 83
3.1.2.7.1.4 Maximum Count of Conformant Varying String Is Not Dictated by Other

Parameters or Fields 83
3.1.2.7.1.5 Conformant Structure 83
3.1.2.7.1.6 Conformant Varying Structure 83

3.1.3 Server Details 84
3.1.3.1 Abstract Data Model 84

3.1.3.1.1 Table of Security Providers 84

9 / 183

[MS -RPCE-Diff] - v20171201
Remote Procedure Call Protocol Extensions
Copyright © 2017 Microsoft Corporation
Release: December 1, 2017

3.1.3.2 Timers 84
3.1.3.3 Initialization 84

3.1.3.3.1 Delay Use of Protocol Sequences on the Endpoint Mapper 84
3.1.3.4 Higher -Layer Triggered Events 84

3.1.3.4.1 Retrieve Protocol Sequence 84
3.1.3.4.2 Adding Elements to the Table of Security Providers 84

3.1.3.5 Message Processing Events and Sequencing Rules 85
3.1.3.5.1 Server Stub Memory Allocation Limit 85
3.1.3.5.2 Indicating Invalid Octet Stream in Server 85
3.1.3.5.3 Interpretation of Tower Encodings 85

3.1.3.6 Timer Events 85
3.1.3.7 Other Local Events 85

3.2 Connectionless RPC Protocol Details 85
3.2.1 Common Details 86

3.2.1.1 Abstract Data Model 86
3.2.1.1.1 State Machines 86
3.2.1.1.2 Send Window (Call) 86
3.2.1.1.3 Receive Window (Call) 87

3.2.1.2 Timers 87
3.2.1.3 Initialization 87
3.2.1.4 Higher -Layer Triggered Events 87

3.2.1.4.1 Building and Using a Security Context 87
3.2.1.4.1.1 Using a Security Context 89

3.2.1.4.2 Callbac ks 90
3.2.1.5 Message Processing Events and Sequencing Rules 90

3.2.1.5.1 Authentication 90
3.2.1.5.2 Overlapped Calls 90
3.2.1.5.3 Sliding Window Al gorithm 91

3.2.1.6 Timer Events 92
3.2.1.7 Other Local Events 92

3.2.2 Client Details 92
3.2.2.1 Abstract Data Model 92

3.2.2.1.1 Supports PF2_Unrelated Flag 92
3.2.2.1.2 Security Provider Identifier 92
3.2.2.1.3 Authentication Level 92
3.2.2.1.4 Activity 92
3.2.2.1.5 Collection of Activities 93
3.2.2.1.6 Collection of Inactive Activities 94
3.2.2.1.7 Client Address Space 94
3.2.2.1.8 Table of CASs 94
3.2.2.1.9 Causal Ordering Flag 94
3.2.2.1.10 Call 94

3.2.2.2 Timers 96
3.2.2.2.1 Packet Retransmission Timer 96
3.2.2.2.2 Cancel Time -Out Timer 96
3.2.2.2.3 Delayed -Ack Timer 97
3.2.2.2.4 Context -Handle Keep -Alive Timer 97
3.2.2.2.5 Inactive Activity Timer 97

3.2.2.3 Initialization 97
3.2.2.3.1 Create a Binding Handle 97
3.2.2.3.2 Specify Security Settings 97

3.2.2.4 Higher -Layer Triggered Events 98
3.2.2.4.1 Make an RPC Method Call 98

3.2.2.4.1.1 Find a CAS 98
3.2.2.4.1.2 Find an Activity 98
3.2.2.4.1.3 Find or Create a Security Context 99
3.2.2.4.1.4 Create a Call 99
3.2.2.4.1.5 Queuing Multiple Calls 99

10 / 183

[MS -RPCE-Diff] - v20171201
Remote Procedure Call Protocol Extensions
Copyright © 2017 Microsoft Corporation
Release: December 1, 2017

3.2.2.4.2 Cancel Requested 100
3.2.2.5 Message Processing Events and Sequencing Rules 100

3.2.2.5.1 REQUEST 100
3.2.2.5.2 PING 100
3.2.2.5.3 RESPONSE 100
3.2.2.5.4 FAULT 101
3.2.2.5.5 WORKING 101
3.2.2.5.6 NOCALL 101
3.2.2.5.7 REJECT 101
3.2.2.5.8 ACK 101
3.2.2.5.9 QUIT 101
3.2.2.5.10 FACK 101
3.2.2.5.11 QUACK 101

3.2.2.6 Timer Events 102
3.2.2.6.1 Inactive Activity Timer 102
3.2.2.6.2 Context -Handle Keep -Alive Timer 102
3.2.2.6.3 Delayed -Ack Timer 102

3.2.2.7 Other Local Events 102
3.2.3 Server Details 102

3.2.3.1 Abstract Data Model 102
3.2.3.1.1 Lowest -Allowed -Sequence Counter 103
3.2.3.1.2 CAS UUID 103
3.2.3.1.3 Lowest -Unused -Sequence Counter 103
3.2.3.1.4 Tab le of Security Contexts 103
3.2.3.1.5 Table of Activity IDs 103
3.2.3.1.6 Table of Client Address Spaces 104
3.2.3.1.7 Table of Active Calls per Activity 104
3.2.3.1.8 Call 104
3.2.3.1.9 CAS Context Handle List 106
3.2.3.1.10 Callback State 106

3.2.3.2 Timers 106
3.2.3.2.1 Call Fragment Retransmission Timer 106
3.2.3.2. 2 Idle Scavenger Timer 107

3.2.3.3 Initialization 107
3.2.3.4 Higher -Layer Triggered Events 107

3.2.3.4.1 Failure Semantics 107
3.2.3.4.2 Retrieving Client Identity 107
3.2.3.4.3 Context Handle Generation 107

3.2.3.5 Message Processing Events and Sequencing Rules 108
3.2.3.5.1 Failure Semantics 108
3.2.3.5.2 Sequencing in Case of Errors 108
3.2.3.5.3 Packe t Processing 108
3.2.3.5.4 REQUEST 109

3.2.3.5.4.1 STATE_INIT 109
3.2.3.5.4.2 STATE_RECEIVE_FRAGS 109
3.2.3.5.4.3 STATE_WORKING 110
3.2.3.5.4.4 STATE_SEND_FRAGS 111

3.2.3.5.5 PING 111
3.2.3.5.5.1 STATE_INIT 111
3.2.3.5.5.2 STATE_RECEIVE_FRAGS 111
3.2.3.5.5.3 STATE_WORKING 111
3.2.3.5.5.4 STATE_SEND_FRAGS 111

3.2.3.5.6 FACK 111
3.2.3.5.7 QUIT 112
3.2.3.5.8 ACK 112

3.2.3.6 Timer Events 112
3.2.3.6.1 Idle Scavenger Timer Expiry 112

3.2.3.7 Other Local Events 112

11 / 183

[MS -RPCE-Diff] - v20171201
Remote Procedure Call Protocol Extensions
Copyright © 2017 Microsoft Corporation
Release: December 1, 2017

3.3 Connection -Oriented RPC Protocol Details 113
3.3.1 Com mon Details 113

3.3.1.1 Abstract Data Model 113
3.3.1.1.1 Association 113
3.3.1.1.2 Connection 113
3.3.1.1.3 Connection Multiplex Flag 114
3.3.1.1.4 List of Connections 114
3.3.1.1.5 Table of Associations 114
3.3.1.1.6 Table of Security Provider Info 114

3.3.1.2 Timers 115
3.3.1.3 Initialization 115
3.3.1.4 Higher -Layer Triggered Events 115

3.3.1.4.1 Context Handle Scope 115
3.3.1.5 Message Processing Events and Sequencing Rules 115

3.3.1.5.1 Protocol Version Number 115
3.3.1.5.2 Building and Using a Security Context 115

3.3.1.5.2.1 Building a Security Context 115
3.3.1.5.2.2 Using a Security Context 117

3.3.1.5.3 Bind Time Feature Negotiation 119
3.3.1.5.4 Security Context Multiplexing 120
3.3.1.5.5 Primary and Secondary Endpoint Address 121
3.3.1.5.6 Presentation Context and Transfer Syntax Negotiation 121
3.3.1.5.7 Adding a New RPC Transport Connection to an Association 122
3.3.1.5.8 Multiplexed Connections 123
3.3.1.5.9 Handling of Callbacks 123
3.3.1.5.10 Keeping Connections Open After Client Sends an Orphaned PDU 123

3.3.1.6 Timer Events 123
3.3.1.7 Other Local Events 123

3.3.2 Client Details 124
3.3.2.1 Abstract Data Model 125

3.3.2.1.1 Idle Connection Cleanup Enabled 125
3.3.2.1.2 Association Active Context Handle Count 125
3.3.2.1.3 Client Call 125
3.3.2.1.4 Client Connection 127
3.3.2.1.5 Server Binding Handle 127

3.3.2.2 Timers 127
3.3.2.2.1 Connection Time -Out Timer 127
3.3.2.2.2 Communi cation Time -Out Timer 127
3.3.2.2.3 Idle Connection Cleanup Timer 128

3.3.2.3 Initialization 128
3.3.2.3.1 Create a Binding Handle 128
3.3.2.3.2 Specify Security Settings 128

3.3.2.4 Higher -Layer Triggered Events 128
3.3.2.4.1 Make a Remote Procedure Method Call 128

3.3.2.4.1.1 Resolve the Binding Handle 128
3.3.2.4.1.2 Find an Association and a Connection 128
3.3.2.4.1.3 Build Security/Presentation Context 129
3.3. 2.4.1.4 Enable Idle Connection Timeout 129

3.3.2.4.2 Release Context Handle 129
3.3.2.5 Message Processing Events and Sequencing Rules 129

3.3.2.5.1 rpc_fault PDU Processing Rules 129
3.3.2.5.2 Han dling Responses 130

3.3.2.6 Timer Events 130
3.3.2.6.1 Communication Time -Out Timer 130
3.3.2.6.2 Idle Connection Cleanup Timer Expiry 130
3.3.2. 6.3 Endpoint Mapper Requests Security Information 130

3.3.2.7 Other Local Events 131
3.3.2.7.1 Transport Connection Time -Out 131

12 / 183

[MS -RPCE-Diff] - v20171201
Remote Procedure Call Protocol Extensions
Copyright © 2017 Microsoft Corporation
Release: December 1, 2017

3.3.3 Server Details 131
3.3.3.1 Abstract Data Model 132

3.3.3.1.1 Server Connection 132
3.3.3.1.2 Number of Registered Interfaces 132
3.3.3.1.3 Preferred Transfer Syntax 132
3.3.3.1.4 Supported Transfer Syntaxes 133
3.3.3.1.5 Serve r Call 133

3.3.3.2 Timers 135
3.3.3.2.1 Connection Time -Out 135

3.3.3.3 Initialization 135
3.3.3.3.1 Server -Side Initialization 135

3.3.3.3.1.1 Registering a Protocol Sequence by a Higher -Level Protocol 135
3.3.3.3.1.2 Registering an Interface by a Hig her -Level Protocol 135
3.3.3.3.1.3 Registering a Security Provider by a Higher -Level Protocol 135
3.3.3.3.1.4 Registering a Dynamic Endpoint with Endpoint Mapper 135
3.3.3.3.1.5 Start Listening 135

3.3.3.4 Higher -Layer Triggered Events 136
3.3.3.4.1 Failu re Semantics 136
3.3.3.4.2 shutdown PDUs 136
3.3.3.4.3 Retrieve the Client Identity and Authorization Information 136

3.3.3.4.3.1 Abstract Interface GetRpcImpersonationAccessToken 136
3.3.3.4.3.2 Abstract Interface RpcImpersonateClie nt 137
3.3.3.4.3.3 Abstract Interface RpcRevertToSelf 137

3.3.3.5 Message Processing Events and Sequencing Rules 137
3.3.3.5.1 Failure Semantics 137
3.3.3.5.2 call_id Field Must Increase Monotonically 138
3.3.3.5.3 Unknown Security Provider 138
3.3.3.5.4 Maximum Server Input Data Size 138
3.3.3.5.5 Limits of Presentation Contexts Negotiated 138
3.3.3.5.6 Dropping Packets for Old Calls 139
3.3.3.5.7 Handling Protocol Errors 139
3.3.3.5.8 Sequencing in Case of Errors 139

3.3.3.6 Timer Events 139
3.3. 3.7 Other Local Events 139

3.3.3.7.1 Transport Connection Shutdown 139
3.3.3.7.2 Initialize Server Call Object Reference 139

4 Protocol Examples 141
4.1 Packet Sequence for Secure, Connection -Oriented RPC Using Kerberos as Security

Provider 141
4.2 Packet Sequence for Secure, Connection -Oriented RPC Using NTLM as Security Provider

 143
4.3 Packet Sequence of the First Non - Idempotent RPCs of a Connectionless Activity 144
4.4 Connectionless RPCs With and Without a Delayed ACK 146
4.5 Connectionless Client Communicating with a Dynamic Server Endpoint 146
4.6 Correlation Example 147
4.7 UNICODE_STRING Representation 148
4.8 Example of Structure with Trailing Gap in NDR64 148

5 Security 150
5.1 Security Considerations for Implementer s 150

5.1.1 Authentication Levels 150
5.1.2 Preferred Security Providers 150
5.1.3 Impersonation Levels 150

5.2 Index of Security Param eters 150

6 Appendix A: Full Remote Procedure Call Extensions IDL 151

7 Appendix B: Product Behavior 152

13 / 183

[MS -RPCE-Diff] - v20171201
Remote Procedure Call Protocol Extensions
Copyright © 2017 Microsoft Corporation
Release: December 1, 2017

8 Appendix C: RPC Extensions Conformance to [C706] Requirements 164
8.1 Local Interfaces 166
8.2 Implicit and NULL Binding Handles 172

9 Change Tracking 173

10 Index 174

14 / 183

[MS -RPCE-Diff] - v20171201
Remote Procedure Call Protocol Extensions
Copyright © 2017 Microsoft Corporation
Release: December 1, 2017

1 Introduction

The Remote Procedure Call Protocol Extensions define a set of extensions to the DCE 1.1: Remote
Procedure Call (RPC), as specified in [C706]. This specification assumes that the reader has familiarity
with the concepts and requirements specified in [C706]. Concepts and requirements specifie d in
[C706] are not repeated in this specification, except where required to specify how the definitions are
extended. The reader might also find it helpful to be familiar with [C441], which describes the Generic

Security Service API (GSS -API) Base.

Sectio ns 1.5, 1.8, 1.9, 2, and 3 of this specification are normative. All other sections and examples in
this specification are informative.

1.1 Glossary

This document uses the following terms:

64 - bit Network Data Representation (NDR64) : A specific instance of a remote procedure call

(RPC) transfer syntax. For more information about RPC transfer syntax, see [C706] section 14.

activity : Used as specified in [C706] section 9.5.

application configuration file (ACF) : A supplemental file that accompanies an Interface
Definition Language (IDL) specification and is used to specify stub processing rules. For more

information, see "The Attribute Configuration Source" in Part 2 of [C706] and [MS -RPCE].

authentication level : A numeric value indicating the level of authentication or message protection
that remote procedure call (RPC) will apply to a specific message exchange. For more
information, see [C706] section 13.1.2.1 and [MS -RPCE].

Authentication Service (AS) : A service that issues ticket granting tickets (TGTs), which are used
for authenticating principals within the realm or domain served by the Authentication Service.

authentication type : A numeric identifier that uniquely identifies a security provider.

big - endian : Multiple -byte values that are byte -ord ered with the most significant byte stored in the
memory location with the lowest address.

binary large object (BLOB) : A discrete packet of data that is stored in a database and is treated
as a sequence of uninterpreted bytes.

client address space (CAS) : U sed as specified in [C706] section 9.5.

connectionless RPC : An RPC protocol dialect built on top of an RPC transport that does not

support connections. For more information, see [C706] section 12.

connection - oriented RPC : A remote procedure call (RPC) prot ocol dialect built on top of an RPC
transport that supports connections. For more information, see [C706] section 12.

conversation callback : A remote procedure call (RPC) request/response message exchange

initiated by an RPC Server and received by an RPC C lient. The message exchange is internal to
the connectionless RPC engine.

correlation : In an Interface Definition Language (IDL) file, the runtime properties of one

argument dictate the allowed runtime properties of another argument.

deserialize : See unmarshal.

dynamic endpoint : A network -specific server address that is requested and assigned at run time.
For more information, see [C706].

15 / 183

[MS -RPCE-Diff] - v20171201
Remote Procedure Call Protocol Extensions
Copyright © 2017 Microsoft Corporation
Release: December 1, 2017

endpoint : A network -specific address of a remote procedure call (RPC) server process for remote
procedure calls. Th e actual name and type of the endpoint depends on the RPC protocol

sequence that is being used. For example, for RPC over TCP (RPC Protocol Sequence
ncacn_ip_tcp), an endpoint might be TCP port 1025. For RPC over Server Message Block (RPC

Protocol Sequence ncacn_np), an endpoint might be the name of a named pipe. For more
information, see [C706].

endpoint mapper : A service on a remote procedure call (RPC) server that maintains a database of
dynamic endpoints and allows clients to map an interface/object UUI D pair to a local dynamic
endpoint. For more information, see [C706].

globally unique identifier (GUID) : A term used interchangeably with universally unique
identifier (UUID) in Microsoft protocol technical documents (TDs). Interchanging the usage of

these terms does not imply or require a specific algorithm or mechanism to generate the value.
Specifically, the use of this term does not imply or require that the algorithms described in
[RFC4122] or [C706] must be used for generating the GUID. See also unive rsally unique
identifier (UUID).

interface : This term is used exactly as specified in [C706] section "Introduction to the RPC API" in
Part 2.

Interface Definition Language (IDL) : The International Standards Organization (ISO) standard
language for specifyi ng the interface for remote procedure calls. For more information, see
[C706] section 4.

listening state : A server or proxy state in which the server or proxy is able to accept and respond
to events coming from the network.

little - endian : Multiple -byte val ues that are byte -ordered with the least significant byte stored in
the memory location with the lowest address.

marshal : To encode one or more data structures into an octet stream using a specific remote
procedure call (RPC) transfer syntax (for example, marshaling a 32 -bit integer).

marshaling : The act of formatting COM parameters for transmission over a remote procedure call
(RPC). For more information, see [MS -DCOM].

Microsoft Interface Definition Language (MIDL) : The Microsoft implementation and extension
of the OSF -DCE Interface Definition Language (IDL). MIDL can also mean the Interface
Definition Language (IDL) compiler provided by Microsoft. For more information, see [MS -RPCE].

named pipe : A named, one -way, or duplex pipe for communication bet ween a pipe server and one
or more pipe clients.

NetBIOS : A particular network transport that is part of the LAN Manager protocol suite. NetBIOS
uses a broadcast communication style that was applicable to early segmented local area
networks. A protocol fam ily including name resolution, datagram, and connection services. For
more information, see [RFC1001] and [RFC1002].

NetBIOS host name : The NetBIOS name of a host (as specified in [RFC1001] section 14 and

[RFC1002] section 4), with the extensions described in [MS -NBTE].

Network Data Representation (NDR) : A specification that defines a mapping from Interface
Definition Language (IDL) data types onto octet streams. NDR also refers to the runtime
environment that implements the mapping facilities (for example, data provided to NDR). For
more information, see [MS -RPCE] and [C706] section 14.

object UUID : A UUID that is used to represent a resource available on the remote procedure call

(RPC) servers. For more information, see [C706].

16 / 183

[MS -RPCE-Diff] - v20171201
Remote Procedure Call Protocol Extensions
Copyright © 2017 Microsoft Corporation
Release: December 1, 2017

opaque : Data that the client does not use and data (or, more often, a handle) for use on the
server on behalf of the client. Opaque data is sent to the client and returned to the server and

used to access data or state information needed to process client calls/requests.

opnum : An op eration number or numeric identifier that is used to identify a specific remote

procedure call (RPC) method or a method in an interface. For more information, see [C706]
section 12.5.2.12 or [MS -RPCE].

protocol data unit (PDU) : Information that is delivere d as a unit among peer entities of a
network and that may contain control information, address information, or data. For more
information on remote procedure call (RPC) -specific PDUs, see [C706] section 12.

protocol identifier : A numeric value that uniquel y identifies an RPC transport protocol when
describing a protocol in the context of a protocol tower. For more information, see [C706]

Appendix I.

protocol tower : A protocol sequence along with its related address and protocol -specific
information. For mor e information, see [C706] section 6.

protocol variant : A protocol version that is distinct and noninteroperable from other protocol
versions when all versions are from the same group of related protocols.

remote procedure call (RPC) : A context -dependent communication protocol used primarily

between client and server. The term commonly overloaded with has three meanings.
Note definitions that much of the industry literature concerning RPC technologies uses this
term are often used interchangeably for any of the three meanings. Following are the three
definitions: (*) The : a runtime environment providing remote procedure call for communication
facilities . The preferred usage for this meaning is " between computers (the RPC runtime ". (*)
The pattern); a set of request -and - response message exchanges between computers (the RPC
exchange between two parties (typically, a client and a server). The preferred usage for this

meaning is "RPC exchange". (*) A); and the single message from an RPC exchange as defined
in (the previous definition. The preferred usage for this term is " RPC message ". For more
information about). The RPC, see specification is [C706].

RPC client : A computer on the network that sends messages using remote procedure call (RPC) as
its transport , waits for responses, and is the initiator in an RPC exchange.

RPC protocol sequence : A character string that represents a valid combination of a remote
procedure call (RPC) protocol, a network layer protocol, and a transport layer protocol, as

described in [C706] and [MS -RPCE].

RPC server : A computer on the network that waits for messages, processes them when they
arrive, and sends responses using RPC as its transport acts as the responder during a remote
procedure call (RPC) exchange.

RPC transfer syntax : A method for encoding messages defined in an Interface Definition
Language (IDL) file. Remote procedure call (RPC) can support different encoding methods or

transfer syntaxes. For more information, see [C706].

RPC transport : The underlying network servic es used by the remote procedure call (RPC) runtime

for communications between network nodes. For more information, see [C706] section 2.

security context : An abstract data structure that contains authorization information for a
particular security principa l in the form of a Token/Authorization Context (see [MS -DTYP] section
2.5.2). A server uses the authorization information in a security context to check access to
requested resources. A security context also contains a key identifier that associates mutual ly

established cryptographic keys, along with other information needed to perform secure
communication with another security principal.

17 / 183

[MS -RPCE-Diff] - v20171201
Remote Procedure Call Protocol Extensions
Copyright © 2017 Microsoft Corporation
Release: December 1, 2017

security provider : A pluggable security module that is specified by the protocol layer above the
remote procedure call (RPC) layer, and will cause the RPC layer to use this module to secure

messages in a communication session with the server. The security provider is sometimes
referred to as an authentication service. For more information, see [C706] and [MS -RPCE].

serializ ation : A mechanism by which an application converts an object into an XML
representation.

serialize : The process of taking an in -memory data structure, flat or otherwise, and turning it into
a flat stream of bytes. See also marshal.

Server Message Block (S MB) : A protocol that is used to request file and print services from
server systems over a network. The SMB protocol extends the CIFS protocol with additional
security, file, and disk management support. For more information, see [CIFS] and [MS -SMB].

stric t NDR/NDR64 data consistency check : A set of related rules for data validation during
processing of an octet stream.

stub : Used as specified in [C706] section 2.1.2.2. A stub that is used on the client is called a

"client stub", and a stub that is used on the server is called a "server stub".

universally unique identifier (UUID) : A 128 -bit value. UUIDs can be used for multiple
purposes, from tagging objects with an extremely short lifetime, to reliably identifying very

persistent objects in cross -process co mmunication such as client and server interfaces, manager
entry -point vectors, and RPC objects. UUIDs are highly likely to be unique. UUIDs are also
known as globally unique identifiers (GUIDs) and these terms are used interchangeably in the
Microsoft prot ocol technical documents (TDs). Interchanging the usage of these terms does not
imply or require a specific algorithm or mechanism to generate the UUID. Specifically, the use of
this term does not imply or require that the algorithms described in [RFC4122] or [C706] must
be used for generating the UUID.

unmarshal : In remote procedure call (RPC), the process of decoding one or more data structures
from an octet stream using a specific RPC Transfer Syntax.

well - known endpoint : A preassigned, network -specific, stable address for a particular
client/server instance. For more information, see [C706].

MAY, SHOULD, MUST, SHOULD NOT, MUST NOT: These terms (in all caps) are used as defined
in [RFC2119]. All statements of optional behavior use either MAY, SHOULD, or SHOULD NOT.

1.2 References

Links to a document in the Microsoft Open Specifications library point to the correct sect ion in the
most recently published version of the referenced document. However, because individual documents
in the library are not updated at the same time, the section numbers in the documents may not

match. You can confirm the correct section numbering by checking the Errata .

1.2.1 Normative References

We conduct frequent surveys of the normative references to assure their continued availability. If you
have any issue with finding a normative reference, please contact dochelp@microsoft.com. We will

assist you in finding the relevant information.

[C311] The Open Group, "DCE 1.1: Authentication and Security Services -- Document Number C311",
October 1997, http://www.opengroup.org/onlinepubs/9668899/

[C441] The Open Group, "Generic Security Service API (GSS -API) Base", C441, December 1995,

https://www2.opengr oup.org/ogsys/catalog/c441

18 / 183

[MS -RPCE-Diff] - v20171201
Remote Procedure Call Protocol Extensions
Copyright © 2017 Microsoft Corporation
Release: December 1, 2017

[C706] The Open Group, "DCE 1.1: Remote Procedure Call", C706, August 1997,
https://www2.opengroup.org/ogsys/catalog/c706

[ISO/IEC/IEEE9945 -7] International Organization for Standardization, "Information technology --
Portable Op erating System Interface (POSIX®) Base Specifications", Issue 7", 2009,
http://www.iso.org/iso/iso_catalogue/catalogue_tc/catalogue_detail.htm?csnumber=50516

[MS -APDS] Microsoft Corporation, "Authentication Protocol Domain Support".

[MS -CIFS] Microsoft Cor poration, "Common Internet File System (CIFS) Protocol".

[MS -DLTM] Microsoft Corporation, "Distributed Link Tracking: Central Manager Protocol".

[MS -DSSP] Microsoft Corporation, "Directory Services Setup Remote Protocol".

[MS -DTYP] Microsoft Corporation, " Windows Data Types".

[MS -EERR] Microsoft Corporation, "ExtendedError Remote Data Structure".

[MS -ERREF] Microsoft Corporation, "Windows Error Codes".

[MS -KILE] Microsoft Corporation, "Kerberos Protocol Extensions".

[MS -NLMP] Microsoft Corporation, "NT LAN Manager (NTLM) Authentication Protocol".

[MS -NRPC] Microsoft Corporation, "Netlogon Remote Protocol".

[MS -PAN] Microsoft Corporation, "Print System Asynchronous Notification Protocol".

[MS -RPCH] Microsoft Corporation, "Remote Procedure Call over HTTP Proto col".

[MS -RPCL] Microsoft Corporation, "Remote Procedure Call Location Services Extensions".

[MS -SMB] Microsoft Corporation, "Server Message Block (SMB) Protocol".

[MS -SPNG] Microsoft Corporation, "Simple and Protected GSS -API Negotiation Mechanism (SPNEGO)
Extension".

[MS -TLSP] Microsoft Corporation, "Transport Layer Security (TLS) Profile".

[NETBEUI] IBM Corporation, "LAN Technical Reference: 802.2 and NetBIOS APIs", 1986,
http://publibz.boulder.ibm.com/cgi -bin/bookmgr_OS390/BOOKS/BK8P7001/CCONTENTS

[RFC1 001] Network Working Group, "Protocol Standard for a NetBIOS Service on a TCP/UDP
Transport: Concepts and Methods", RFC 1001, March 1987, http://www.ietf.org/rfc/rfc1001.txt

[RFC1002] Network Working Group, "Protocol Standard for a NetBIOS Service on a TCP/UDP
Transport: Detailed Specifications", STD 19, RFC 1002, March 1987, http://www.rfc -
editor.org/rfc/rfc1002.txt

[RFC2119] Bradner, S., "Key words for use in RFCs to Indicate Requirement Levels", BCP 14, RFC
2119, March 1997, http://www.rfc -editor.org/ rfc/rfc2119.txt

[RFC2743] Linn, J., "Generic Security Service Application Program Interface Version 2, Update 1", RFC
2743, January 2000, http://www.rfc -editor.org/rfc/rfc2743.txt

[RFC4121] Zhu, L., Jaganathan, K., and Hartman, S., "The Kerberos Version 5 Generic Security
Service Application Program Interface (GSS -API) Mechanism: Version 2", RFC 4121, July 2005,
http://www.ietf.org/rfc/rfc4121.txt

19 / 183

[MS -RPCE-Diff] - v20171201
Remote Procedure Call Protocol Extensions
Copyright © 2017 Microsoft Corporation
Release: December 1, 2017

[RFC4122] Leach, P., Mealling, M., and Salz, R., "A Universally Unique Identifier (UUID) URN
Namespace", RFC 41 22, July 2005, http://www.rfc -editor.org/rfc/rfc4122.txt

[RFC4757] Jaganathan, K., Zhu, L., and Brezak, J., "The RC4 -HMAC Kerberos Encryption Types Used
by Microsoft Windows", RFC 4757, December 2006, http://www.ietf.org/rfc/rfc4757.txt

[RFC81.3] French, C ., and Salz, R., "DCE Assigned Values", RFC 81.3, December 1998,
http://www5.opengroup.org/rfc/rfc81.3.html

1.2.2 Informative References

[GSS] Piper, D., and Swander, B., "A GSS -API Authentication Met hod for IKE", Internet Draft, July
2001, http://tools.ietf.org/html/draft - ietf - ipsec - isakmp -gss-auth -07

[IPX] Microsoft Corporation, "Internetwork Packet Exchange (IPX)",
http://www.novell.com/documentation/nw6p/pdfdoc/ipx_enu/ipx_enu.pdf

[MS -NBTE] Microso ft Corporation, "NetBIOS over TCP (NBT) Extensions".

[MSDN -DceErrorInqText] Microsoft Corporation, "DceErrorInqText function",
http://msdn.microsoft.com/en -us/library/aa373623(v=VS.85).aspx

[MSDN - I_RpcBindInqLocalCltPID] Microsoft Corporation, "I_RpcBindin gInqLocalClientPID function",
http://msdn.microsoft.com/en -us/library/bb204771(VS.85).aspx

[MSDN -MesBufferHandleReset] Microsoft Corporation, "MesBufferHandleReset function",
http://msdn.microsoft.com/en -us/library/aa373980(v=VS.85).aspx

[MSDN -MesDecodeBuf HandleCreate] Microsoft Corporation, "MesDecodeBufferHandleCreate function",
https://msdn.microsoft.com/en -us/library/aa373981(v=vs.85).aspx

[MSDN -MesDecodeIncremtHdlCreate] Microsoft Corporation, "MesDecodeIncrementalHandleCreate

function", https://msdn.m icrosoft.com/en -us/library/aa373982(v=vs.85).aspx

[MSDN -MesEncodeDynBufHdlCreate] Microsoft Corporation, "MesEncodeDynBufferHandleCreate
function", https://msdn.microsoft.com/en -us/library/aa373983(v=vs.85).aspx

[MSDN -MesEncodeFixBufHdlCreate] Microsoft Co rporation, "MesEncodeFixedBufferHandleCreate
function", https://msdn.microsoft.com/en -us/library/aa373984(v=vs.85).aspx

[MSDN -MesEncodeIncremtHdlCreate] Microsoft Corporation, "MesEncodeIncrementalHandleCreate

function", https://msdn.microsoft.com/en -us/library/aa373985(v=vs.85).aspx

[MSDN -MesHandleFree] Microsoft Corporation, "MesHandleFree function",
http://msdn.microsoft.com/en -us/library/aa373986(v=VS.85).aspx

[MSDN -MesIncrementalHndReset] Microsoft Corporation, "MesIn crementalHandleReset function",
http://msdn.microsoft.com/en -us/library/aa373987(v=VS.85).aspx

[MSDN -MesInqProcEncodingId] Microsoft Corporation, "MesInqProcEncodingId function",
http://msdn.microsoft.com/en -us/library/aa373988(v=VS.85).aspx

[MSDN -MIDL] Mi crosoft Corporation, "Microsoft Interface Definition Language (MIDL)",
http://msdn.microsoft.com/en -us/library/ms950375.aspx

[MSDN -QueryContextAttributes] Microsoft Corporation, "QueryContextAttributes (General) function",
http://msdn.microsoft.com/en -us/l ibrary/aa379326%28v=vs.85%29.aspx

20 / 183

[MS -RPCE-Diff] - v20171201
Remote Procedure Call Protocol Extensions
Copyright © 2017 Microsoft Corporation
Release: December 1, 2017

[MSDN -RpcAsyncAbortCall] Microsoft Corporation, "RpcAsyncAbortCall function",
http://msdn.microsoft.com/en -us/library/aa375565(v=VS.85).aspx

[MSDN -RpcAsyncCancelCall] Microsoft Corporation, "RpcAsyncCancelCall function",
http://msdn.microsoft.com/en -us/library/aa375570(v=VS.85).aspx

[MSDN -RpcAsyncCompleteCall] Microsoft Corporation, "RpcAsyncCompleteCall function",
http://msdn.microsoft.com/en -us/library/aa375572(v=VS.85).aspx

[MSDN -RpcAsyncGetCallStatus] Microsoft Corporat ion, "RpcAsyncGetCallStatus function",
http://msdn.microsoft.com/en -us/library/aa375576(v=VS.85).aspx

[MSDN -RpcAsyncInitializeHandle] Microsoft Corporation, "RpcAsyncInitializeHandle function",
http://msdn.microsoft.com/en -us/library/aa375578(VS.85).aspx

[MSDN -RpcAsyncRegisterInfo] Microsoft Corporation, "RpcAsyncRegisterInfo function",
http://msdn.microsoft.com/en -us/library/aa375581(v=VS.85).aspx

[MSDN -RpcBindingBind] Microsoft Corporation, "RpcBindingBind function",
http://msdn.microsoft.com/en -us/libra ry/aa375583(v=VS.85).aspx

[MSDN -RpcBindingCopy] Microsoft Corporation, "RpcBindingCopy function",

http://msdn.microsoft.com/en -us/library/aa375585(v=VS.85).aspx

[MSDN -RpcBindingCreate] Microsoft Corporation, "RpcBindingCreate function",
http://msdn.microso ft.com/en -us/library/aa375587(v=VS.85).aspx

[MSDN -RpcBindingFree] Microsoft Corporation, "RpcBindingFree function",
http://msdn.microsoft.com/en -us/library/aa375588(v=VS.85).aspx

[MSDN -RpcBindingFromStringBind] Microsoft Corporation, "RpcBindingFromStringB ind function",
http://msdn.microsoft.com/en -us/library/aa375590(v=VS.85).aspx

[MSDN -RpcBindingInqAuthClientEx] Microsoft Corporation, "RpcBindingInqAuthClientEx function",

https://msdn.microsoft.com/en -us/library/aa375592(v=vs.85).aspx

[MSDN -RpcBindingInqA uthClient] Microsoft Corporation, "RpcBindingInqAuthClient function",
http://msdn.microsoft.com/en -us/library/aa375591(v=VS.85).aspx

[MSDN -RpcBindingInqAuthInfoEx] Microsoft Corporation, "RpcBindingInqAuthInfoEx function",
http://msdn.microsoft.com/en -us/l ibrary/aa375595(v=VS.85).aspx

[MSDN -RpcBindingInqAuthInfo] Microsoft Corporation, "RpcBindingInqAuthInfo function",
http://msdn.microsoft.com/en -us/library/aa375593(v=VS.85).aspx

[MSDN -RpcBindingInqObject] Microsoft Corporation, "RpcBindingInqObject functi on",

http://msdn.microsoft.com/en -us/library/aa375598(v=VS.85).aspx

[MSDN -RpcBindingInqOption] Microsoft Corporation, "RpcBindingInqOption function",
http://msdn.microsoft.com/en -us/library/aa375600(v=VS.85).aspx

[MSDN -RpcBindingReset] Microsoft Corporatio n, "RpcBindingReset function",
http://msdn.microsoft.com/en -us/library/aa375603(v=VS.85).aspx

[MSDN -RpcBindingServerFromClient] Microsoft Corporation, "RpcBindingServerFromClient function",

http://msdn.microsoft.com/en -us/library/aa375604(v=VS.85).aspx

[MS DN-RpcBindingSetAuthInfoEx] Microsoft Corporation, "RpcBindingSetAuthInfoEx function",
http://msdn.microsoft.com/en -us/library/aa375608(v=VS.85).aspx

21 / 183

[MS -RPCE-Diff] - v20171201
Remote Procedure Call Protocol Extensions
Copyright © 2017 Microsoft Corporation
Release: December 1, 2017

[MSDN -RpcBindingSetObject] Microsoft Corporation, "RpcBindingSetObject function",
http://msdn.microsoft.co m/en -us/library/aa375609(v=VS.85).aspx

[MSDN -RpcBindingSetOption] Microsoft Corporation, "RpcBindingSetOption function",
http://msdn.microsoft.com/en -us/library/aa375611(v=VS.85).aspx

[MSDN -RpcBindingToStringBind] Microsoft Corporation, "RpcBindingToString Binding function",
http://msdn.microsoft.com/en -us/library/aa375612(v=VS.85).aspx

[MSDN -RpcBindingUnbind] Microsoft Corporation, "RpcBindingUnbind function",
http://msdn.microsoft.com/en -us/library/aa375613(v=VS.85).aspx

[MSDN -RpcBindingVectorFree] Microso ft Corporation, "RpcBindingVectorFree function",
http://msdn.microsoft.com/en -us/library/aa375615(v=VS.85).aspx

[MSDN -RpcCancelThreadEx] Microsoft Corporation, "RpcCancelThreadEx function",
http://msdn.microsoft.com/en -us/library/aa375623(v=VS.85).aspx

[MS DN-RpcCancelThread] Microsoft Corporation, "RpcCancelThread function",
http://msdn.microsoft.com/en -us/library/aa375620(v=VS.85).aspx

[MSDN -RpcCertGenPrincipalName] Microsoft Corporation, "RpcCertGenPrincipalName function",

http://msdn.microsoft.com/en -us/ library/aa375625(v=VS.85).aspx

[MSDN -RpcDiagnoseError] Microsoft Corporation, "RpcDiagnoseError function",
http://msdn.microsoft.com/en -us/library/aa375627(v=VS.85).aspx

[MSDN -RpcEpRegisterNoReplace] Microsoft Corporation, "RpcEpRegisterNoReplace function" ,
http://msdn.microsoft.com/en -us/library/aa375640(v=VS.85).aspx

[MSDN -RpcEpRegister] Microsoft Corporation, "RpcEpRegister function",
http://msdn.microsoft.com/en -us/library/aa375637(v=VS.85).aspx

[MSDN -RpcEpResolveBinding] Microsoft Corporation, "RpcEpRe solveBinding function",

http://msdn.microsoft.com/en -us/library/aa375645(v=VS.85).aspx

[MSDN -RpcEpUnregister] Microsoft Corporation, "RpcEpUnregister function",
http://msdn.microsoft.com/en -us/library/aa375651(v=VS.85).aspx

[MSDN -RpcErrorAddRecord] Microso ft Corporation, "RpcErrorAddRecord function",
http://msdn.microsoft.com/en -us/library/aa375658(v=VS.85).aspx

[MSDN -RpcErrorClearInformation] Microsoft Corporation, "RpcErrorClearInformation function",
http://msdn.microsoft.com/en -us/library/aa375661(v=VS.85).aspx

[MSDN -RpcErrorEndEnumeration] Microsoft Corporation, "RpcErrorEndEnumeration function",

http://msdn.microsoft.com/en -us/library/aa375664(VS.85).aspx

[MSDN -RpcErrorGetNextRecord] Microsoft Corpo ration, "RpcErrorGetNextRecord function",
http://msdn.microsoft.com/en -us/library/aa375668(VS.85).aspx

[MSDN -RpcErrorGetNumberOfRecords] Microsoft Corporation, "RpcErrorGetNumberOfRecords
function", https://msdn.microsoft.com/en -us/library/aa375671(v=vs.85).aspx

[MSDN -RpcErrorLoadErrorInfo] Microsoft Corporation, "RpcErrorLoadErrorInfo function",

http://msdn.microsoft.com/en -us/library/aa375677(VS.85).aspx

[MSDN -RpcErrorResetEnumeration] Microsoft Corporation, "RpcErrorResetEnumeration function",
http://msd n.microsoft.com/en -us/library/aa375679(VS.85).aspx

22 / 183

[MS -RPCE-Diff] - v20171201
Remote Procedure Call Protocol Extensions
Copyright © 2017 Microsoft Corporation
Release: December 1, 2017

[MSDN -RpcErrorSaveErrorInfo] Microsoft Corporation, "RpcErrorSaveErrorInfo function",
http://msdn.microsoft.com/en -us/library/aa375684(VS.85).aspx

[MSDN -RpcErrorStartEnumeration] Microsoft Corporation, "Rp cErrorStartEnumeration function",
http://msdn.microsoft.com/en -us/library/aa375686(VS.85).aspx

[MSDN -RpcExceptionCode] Microsoft Corporation, "RpcExceptionCode function",
http://msdn.microsoft.com/en -us/library/aa375695(VS.85).aspx

[MSDN -RpcFreeAuthorizeContext] Microsoft Corporation, "RpcFreeAuthorizationContext function",
http://msdn.microsoft.com/en -us/library/aa375703(v=VS.85).aspx

[MSDN -RpcGetAuthContextForClient] Microsoft Corporation, "RpcGetAuthorizationContextForClient
funct ion", https://msdn.microsoft.com/en -us/library/aa375709(v=vs.85).aspx

[MSDN -RpcIfIdVectorFree] Microsoft Corporation, "RpcIfIdVectorFree function",
http://msdn.microsoft.com/en -us/library/aa375711(v=VS.85).aspx

[MSDN -RpcIfInqId] Microsoft Corporation, "Rpc IfInqId function", http://msdn.microsoft.com/en -
us/library/aa375714(v=VS.85).aspx

[MSDN -RpcImpersonateClient] Microsoft Corporation, "RpcImpersonateClient function",

http://msdn.microsoft.com/en -us/library/aa375720(VS.85).aspx

[MSDN -RpcMgmtEnableIdleCleanu p] Microsoft Corporation, "RpcMgmtEnableIdleCleanup function",
http://msdn.microsoft.com/en -us/library/aa375748(v=VS.85).aspx

[MSDN -RpcMgmtEpEltInqBegin] Microsoft Corporation, "RpcMgmtEpEltInqBegin function",
http://msdn.microsoft.com/en -us/library/aa3757 34(v=VS.85).aspx

[MSDN -RpcMgmtEpEltInqDone] Microsoft Corporation, "RpcMgmtEpEltInqDone function",
http://msdn.microsoft.com/en -us/library/aa375736(v=VS.85).aspx

[MSDN -RpcMgmtEpEltInqNext] Microsoft Corporation, "RpcMgmtEpEltInqNext function",

http://msdn. microsoft.com/en -us/library/aa375738(v=VS.85).aspx

[MSDN -RpcMgmtEpUnregister] Microsoft Corporation, "RpcMgmtEpUnregister function",
http://msdn.microsoft.com/en -us/library/aa375741(v=VS.85).aspx

[MSDN -RpcMgmtInqComTimeout] Microsoft Corporation, "RpcMgmtI nqComTimeout function",
http://msdn.microsoft.com/en -us/library/aa375746(v=VS.85).aspx

[MSDN -RpcMgmtInqDeftProtectLevel] Microsoft Corporation, "RpcMgmtInqDefaultProtectLevel
function", https://msdn.microsoft.com/en -us/library/aa375748(v=vs.85).aspx

[MSDN -RpcMgmtInqDfltProtectLvl] Microsoft Corporation, "RpcMgmtInqDefaultProtectLevel function",

http://msdn.microsoft.com/en -us/library/aa375748(v=VS.85).aspx

[MSDN -RpcMgmtInqIfIds] Microsoft Corporation, "RpcMgmtInqIfIds function",
http://msdn.microsoft.com/en -us/library/aa375752(v=VS.85).aspx

[MSDN -RpcMgmtInqServerPrincName] Microsoft Corporation, "RpcMgmtInqServerPrincName
function", http://msdn.microsoft.com/en -us/library/aa375756(v=VS.85).aspx

[MSDN -RpcMgmtInqStats] Microsoft Corporation, "RpcMgmtInqStats f unction",

http://msdn.microsoft.com/en -us/library/aa375759(v=VS.85).aspx

[MSDN -RpcMgmtIsServerListening] Microsoft Corporation, "RpcMgmtIsServerListening function",
http://msdn.microsoft.com/en -us/library/aa375763(v=VS.85).aspx

23 / 183

[MS -RPCE-Diff] - v20171201
Remote Procedure Call Protocol Extensions
Copyright © 2017 Microsoft Corporation
Release: December 1, 2017

[MSDN -RpcMgmtSetAuthorizatio nFn] Microsoft Corporation, "RpcMgmtSetAuthorizationFn function",
http://msdn.microsoft.com/en -us/library/aa375767(v=VS.85).aspx

[MSDN -RpcMgmtSetCancelTimeout] Microsoft Corporation, "RpcMgmtSetCancelTimeout function",
http://msdn.microsoft.com/en -us/libra ry/aa375771(v=VS.85).aspx

[MSDN -RpcMgmtSetComTimeout] Microsoft Corporation, "RpcMgmtSetComTimeout function",
http://msdn.microsoft.com/en -us/library/aa375779(v=VS.85).aspx

[MSDN -RpcMgmtSetServerStackSize] Microsoft Corporation, "RpcMgmtSetServerStackSize function",
http://msdn.microsoft.com/en -us/library/aa375783(v=VS.85).aspx

[MSDN -RpcMgmtStatsVectorFree] Microsoft Corporation, "RpcMgmtStatsVectorFree function",
http://msdn.microsoft.com/en -us/library/aa375791(v=VS.85).aspx

[MSDN -RpcMgmtStopSvrListening] Microsoft Corporation, "RpcMgmtStopServerListening function",
http://msdn.microsoft.com/en -us/library/aa375793(v=VS.85).aspx

[MSDN -RpcMgmtWaitServerListen] Microsoft Corporation, "RpcMgmtWaitServerListen function",
http://msdn.microsoft.com/en -us/library/a a375796(v=VS.85).aspx

[MSDN -RpcNetworkInqProtseqs] Microsoft Corporation, "RpcNetworkInqProtseqs function",

http://msdn.microsoft.com/en -us/library/aa375801(v=VS.85).aspx

[MSDN -RpcNetworkIsProtseqValid] Microsoft Corporation, "RpcNetworkIsProtseqValid func tion",
http://msdn.microsoft.com/en -us/library/aa375804(v=VS.85).aspx

[MSDN -RpcObjectInqType] Microsoft Corporation, "RpcObjectInqType function",
http://msdn.microsoft.com/en -us/library/aa378425(v=VS.85).aspx

[MSDN -RpcObjectSetInqFn] Microsoft Corporation, "RpcObjectSetInqFn function",
http://msdn.microsoft.com/en -us/library/aa378426(v=VS.85).aspx

[MSDN -RpcObjectSetType] Microsoft Corporation, "RpcObjectSetType function",

http://msdn.microsoft.com/en -us/library/aa378427(v=VS.85).aspx

[MSDN -RpcProtseqVectorF ree] Microsoft Corporation, "RpcProtseqVectorFree function",
http://msdn.microsoft.com/en -us/library/aa378428(v=VS.85).aspx

[MSDN -RpcRaiseException] Microsoft Corporation, "RpcRaiseException function",
http://msdn.microsoft.com/en -us/library/aa378429(v=VS. 85).aspx

[MSDN -RpcRevertToSelfEx] Microsoft Corporation, "RpcRevertToSelfEx function",
http://msdn.microsoft.com/en -us/library/aa378431(VS.85).aspx

[MSDN -RpcRevertToSelf] Microsoft Corporation, "RpcRevertToSelf function",

http://msdn.microsoft.com/en -us/li brary/aa378430(VS.85).aspx

[MSDN -RpcServerInqBindingHandle] Microsoft Corporation, "RpcServerInqBindingHandle function",
http://msdn.microsoft.com/en -us/library/aa378432(v=VS.85).aspx

[MSDN -RpcServerInqBindings] Microsoft Corporation, "RpcServerInqBindings function",
http://msdn.microsoft.com/en -us/library/aa378433(v=VS.85).aspx

[MSDN -RpcServerInqCallAttributes] Microsoft Corporation, "RpcServerInqCallAttributes function",

http://msdn.microsoft.com/en -us/library/aa378434(v=VS.85).aspx

[MSDN -RpcServerInqDeft PrincName] Microsoft Corporation, "RpcServerInqDefaultPrincName
function", https://msdn.microsoft.com/en -us/library/aa378435(v=vs.85).aspx

24 / 183

[MS -RPCE-Diff] - v20171201
Remote Procedure Call Protocol Extensions
Copyright © 2017 Microsoft Corporation
Release: December 1, 2017

[MSDN -RpcServerInqIf] Microsoft Corporation, "RpcServerInqIf function",
http://msdn.microsoft.com/en -us/library/aa378 436(v=VS.85).aspx

[MSDN -RpcServerListen] Microsoft Corporation, "RpcServerListen function",
http://msdn.microsoft.com/en -us/library/aa378437(v=VS.85).aspx

[MSDN -RpcServerRegisterAuthInfo] Microsoft Corporation, "RpcServerRegisterAuthInfo function",
http:// msdn.microsoft.com/en -us/library/aa378438(v=VS.85).aspx

[MSDN -RpcServerRegisterIf2] Microsoft Corporation, "RpcServerRegisterIf2 function",
http://msdn.microsoft.com/en -us/library/aa378440(v=VS.85).aspx

[MSDN -RpcServerRegisterIfEx] Microsoft Corporation, " RpcServerRegisterIfEx function",
http://msdn.microsoft.com/en -us/library/aa378441(v=VS.85).aspx

[MSDN -RpcServerRegisterIf] Microsoft Corporation, "RpcServerRegisterIf function",
http://msdn.microsoft.com/en -us/library/aa378439(v=VS.85).aspx

[MSDN -RpcServer SubsForNotif] Microsoft Corporation, "RpcServerSubscribeForNotification function",
https://msdn.microsoft.com/en -us/library/aa378442(v=vs.85).aspx

[MSDN -RpcServerTestCancel] Microsoft Corporation, "RpcServerTestCancel function",

http://msdn.microsoft.com/e n-us/library/aa378443(v=VS.85).aspx

[MSDN -RpcServerUnregisterIfEx] Microsoft Corporation, "RpcServerUnregisterIfEx function",
http://msdn.microsoft.com/en -us/library/aa378446(v=VS.85).aspx

[MSDN -RpcServerUnregisterIf] Microsoft Corporation, "RpcServerUnreg isterIf function",
http://msdn.microsoft.com/en -us/library/aa378445(v=VS.85).aspx

[MSDN -RpcServerUnsubForNotif] Microsoft Corporation, "RpcServerUnsubscribeForNotification
function", http://msdn.microsoft.com/en -us/library/aa378447(v=VS.85).aspx

[MSDN -RpcServerUseAllProtseqsEx] Microsoft Corporation, "RpcServerUseAllProtseqsEx function",

http://msdn.microsoft.com/en -us/library/aa378449(v=VS.85).aspx

[MSDN -RpcServerUseAllProtseqsIf] Microsoft Corporation, "RpcServerUseAllProtseqsIf function",
http://msdn.microsoft.com/en -us/library/aa378450(v=VS.85).aspx

[MSDN -RpcServerUseAllProtseqs] Microsoft Corporation, "RpcServerUseAllProtseqs function",
http://msdn.microsoft.com/en -us/library/aa378448(v=VS.85).aspx

[MSDN -RpcServerUseProtseqEpEx] Microsoft Corporation, "RpcServerUseProtseqEpEx function",
http://msdn.microsoft.com/en -us/library/aa378454(v=VS.85).aspx

[MSDN -RpcServerUseProtseqEp] Microsoft Corporation, "RpcServerUseProtseqEp function",

http://msdn.microsoft.com/en -us/library/aa378453(v=VS.85) .aspx

[MSDN -RpcServerUseProtseqEx] Microsoft Corporation, "RpcServerUseProtseqEx function",
http://msdn.microsoft.com/en -us/library/aa378455(v=VS.85).aspx

[MSDN -RpcServerUseProtseqIfEx] Microsoft Corporation, "RpcServerUseProtseqIfEx function",
http://msdn .microsoft.com/en -us/library/aa378457(v=VS.85).aspx

[MSDN -RpcServerUseProtseqIf] Microsoft Corporation, "RpcServerUseProtseqIf function",

http://msdn.microsoft.com/en -us/library/aa378456(v=VS.85).aspx

[MSDN -RpcServerUseProtseq] Microsoft Corporation, "RpcS erverUseProtseq function",
http://msdn.microsoft.com/en -us/library/aa378452(v=VS.85).aspx

25 / 183

[MS -RPCE-Diff] - v20171201
Remote Procedure Call Protocol Extensions
Copyright © 2017 Microsoft Corporation
Release: December 1, 2017

[MSDN -RpcServUseAllProtseqsIfEx] Microsoft Corporation, "RpcServerUseAllProtseqsIfEx function",
https://msdn.microsoft.com/en -us/library/aa378451(v=vs.85).aspx

[MSDN -RpcSmAllocate] Microsoft Corporation, "RpcSmAllocate function",
http://msdn.microsoft.com/en -us/library/aa378458(v=VS.85).aspx

[MSDN -RpcSmClientFree] Microsoft Corporation, "RpcSmClientFree function",
http://msdn.microsoft.com/en -us/library/aa378459(v=VS.8 5).aspx

[MSDN -RpcSmDestroyClientContext] Microsoft Corporation, "RpcSmDestroyClientContext function",
http://msdn.microsoft.com/en -us/library/aa378460(v=VS.85).aspx

[MSDN -RpcSmDisableAllocate] Microsoft Corporation, "RpcSmDisableAllocate function",
http:// msdn.microsoft.com/en -us/library/aa378461(v=VS.85).aspx

[MSDN -RpcSmEnableAllocate] Microsoft Corporation, "RpcSmEnableAllocate function",
http://msdn.microsoft.com/en -us/library/aa378462(v=VS.85).aspx

[MSDN -RpcSmFree] Microsoft Corporation, "RpcSmFree func tion", http://msdn.microsoft.com/en -
us/library/aa378463(v=VS.85).aspx

[MSDN -RpcSmGetThreadHandle] Microsoft Corporation, "RpcSmGetThreadHandle function",

http://msdn.microsoft.com/en -us/library/aa378464(v=VS.85).aspx

[MSDN -RpcSmSetClientAllocFree] Microsof t Corporation, "RpcSmSetClientAllocFree function",
http://msdn.microsoft.com/en -us/library/aa378465(v=VS.85).aspx

[MSDN -RpcSmSetThreadHandle] Microsoft Corporation, "RpcSmSetThreadHandle function",
http://msdn.microsoft.com/en -us/library/aa378466(v=VS.85). aspx

[MSDN -RpcSmSwapClientAllocFree] Microsoft Corporation, "RpcSmSwapClientAllocFree function",
http://msdn.microsoft.com/en -us/library/aa378467(v=VS.85).aspx

[MSDN -RpcSsAllocate] Microsoft Corporation, "RpcSsAllocate function",

http://msdn.microsoft.com/ en-us/library/aa378468(v=VS.85).aspx

[MSDN -RpcSsContextLockExclus] Microsoft Corporation, "RpcSsContextLockExclusive function",
http://msdn.microsoft.com/en -us/library/aa378469(v=VS.85).aspx

[MSDN -RpcSsContextLockShared] Microsoft Corporation, "RpcSsContex tLockShared function",
http://msdn.microsoft.com/en -us/library/aa378470(v=VS.85).aspx

[MSDN -RpcSsDestroyClientContext] Microsoft Corporation, "RpcSsDestroyClientContext function",
http://msdn.microsoft.com/en -us/library/aa378471(v=VS.85).aspx

[MSDN -RpcSsDi sableAllocate] Microsoft Corporation, "RpcSsDisableAllocate function",

http://msdn.microsoft.com/en -us/library/aa378472(v=VS.85).aspx

[MSDN -RpcSsDontSerializeContext] Microsoft Corporation, "RpcSsDontSerializeContext function",
http://msdn.microsoft.com/en -us/library/aa378473(v=VS.85).aspx

[MSDN -RpcSsEnableAllocate] Microsoft Corporation, "RpcSsEnableAllocate function",
http://msdn.microsoft.com/en -us/library/aa378474(v=VS.85).aspx

[MSDN -RpcSsFree] Microsoft Corporation, "RpcSsFree function", http://msdn.mi crosoft.com/en -

us/library/aa378475(v=VS.85).aspx

[MSDN -RpcSsGetThreadHandle] Microsoft Corporation, "RpcSsGetThreadHandle function",
http://msdn.microsoft.com/en -us/library/aa378476(v=VS.85).aspx

26 / 183

[MS -RPCE-Diff] - v20171201
Remote Procedure Call Protocol Extensions
Copyright © 2017 Microsoft Corporation
Release: December 1, 2017

[MSDN -RpcSsSetClientAllocFree] Microsoft Corporation, "RpcSs SetClientAllocFree function",
http://msdn.microsoft.com/en -us/library/aa378477(v=VS.85).aspx

[MSDN -RpcSsSetThreadHandle] Microsoft Corporation, "RpcSsSetThreadHandle function",
http://msdn.microsoft.com/en -us/library/aa378478(v=VS.85).aspx

[MSDN -RpcSsSwapClientAllocFree] Microsoft Corporation, "RpcSsSwapClientAllocFree function",
http://msdn.microsoft.com/en -us/library/aa378479(v=VS.85).aspx

[MSDN -RpcStringBindingCompose] Microsoft Corporation, "RpcStringBindingCompose function",
http://msdn .microsoft.com/en -us/library/aa378481(v=VS.85).aspx

[MSDN -RpcStringBindingParse] Microsoft Corporation, "RpcStringBindingParse function",
http://msdn.microsoft.com/en -us/library/aa378482(v=VS.85).aspx

[MSDN -RpcStringFree] Microsoft Corporation, "RpcStringF ree function",
http://msdn.microsoft.com/en -us/library/aa378483(v=VS.85).aspx

[MSDN -RpcTestCancel] Microsoft Corporation, "RpcTestCancel function",
http://msdn.microsoft.com/en -us/library/aa378484(v=VS.85).aspx

[MSDN -UuidCompare] Microsoft Corporation, "Uu idCompare function", http://msdn.microsoft.com/en -

us/library/aa379201(v=VS.85).aspx

[MSDN -UuidCreateNil] Microsoft Corporation, "UuidCreateNil function", http://msdn.microsoft.com/en -
us/library/aa379262(v=VS.85).aspx

[MSDN -UUidCreateSequential] Microsoft C orporation, "UUidCreateSequential function",
http://msdn.microsoft.com/en -us/library/aa379322(v=VS.85).aspx

[MSDN -UuidCreate] Microsoft Corporation, "UuidCreate function", http://msdn.microsoft.com/en -
us/library/aa379205(v=VS.85).aspx

[MSDN -UuidEqual] Micr osoft Corporation, "UuidEqual function", http://msdn.microsoft.com/en -

us/library/aa379329(v=VS.85).aspx

[MSDN -UuidFromString] Microsoft Corporation, "UuidFromString function",
http://msdn.microsoft.com/en -us/library/aa379336(v=VS.85).aspx

[MSDN -UuidHash] M icrosoft Corporation, "UuidHash function", http://msdn.microsoft.com/en -
us/library/aa379343(v=VS.85).aspx

[MSDN -UuidIsNil] Microsoft Corporation, "UuidIsNil function", http://msdn.microsoft.com/en -
us/library/aa379347(v=VS.85).aspx

[MSDN -UuidToString] Micro soft Corporation, "UuidToString function", http://msdn.microsoft.com/en -

us/library/aa379352(v=VS.85).aspx

[MSFT -RPCIFRESTRICTION] Microsoft Corporation, "RPC Interface Restriction",
http://technet2.microsoft.com/windowsserver/en/library/8836be57 -597b -4cda -bcf1 -

eb124ae5d49a1033.mspx?mfr=true

[PIPE] Microsoft Corporation, "Named Pipes", http://msdn.microsoft.com/en -us/library/aa365590.aspx

[RFC1035] Mockapetris, P., "Domain Names - Implementation and Specification", STD 13, RFC 1035,

November 1987, http://www .ietf.org/rfc/rfc1035.txt

[RFC2181] Elz, R., and Bush, R., "Clarifications to the DNS Specification", RFC 2181, July 1997,
http://www.ietf.org/rfc/rfc2181.txt

27 / 183

[MS -RPCE-Diff] - v20171201
Remote Procedure Call Protocol Extensions
Copyright © 2017 Microsoft Corporation
Release: December 1, 2017

1.3 Overview

This specification defines a set of extensions to the DCE 1.1: Remote Procedure Call (RPC)
Specification, as specified in [C706]. These extensions add new capabilities to the DCE 1.1: RPC

Specification, allow for more secure implementations to be built, and, in some cases, place additiona l
restrictions on the DCE RPC Specification.

This specification builds on and relies heavily on the DCE 1.1: RPC Specification, as specified in
[C706]. For details on the context in which each of these extensions is specified, see [C706].

The extensions a re grouped into the following categories:

Á Support for additional RPC transports, specified in section 2.1.

Á Extensions to the endpoint mapper interface designed to improve security, specified in section

2.2.1.2.

Á Extensions to the remote management interface designed to improve security, specified in section
2.2.1.3.

Á Extensions to improve diagnosis of errors returned from a remote node, specified in section
2.2.2.9 and in [MS -EERR].

Á An additional RPC transfer syntax (NDR64) to allow for better performance on 64 -bit systems,

specified in section 2.2.5.

Á An additional set of Network Data Representation (NDR) data consistency checks and Interface
Definition Language (IDL)/application configuration file (ACF) attributes to allow for more secure
processing on both the RPC client and RPC server, specified in section 3.1.1.5.2.

Á An additional set of message protection conventions to allow for better and more efficient
protection of messages transmitted on the network, specified in sections 2.2.2.11, 2.2.2.12, and
2.2.2 .13.

Á Additional capability negotiation mechanisms between clients and servers for backward

compatibility, specified in sections 2.2.2.14, 2.2.2.15, and 3.3.1.5.3.

Á Extensions to facilitate building more efficient client and server implementations, specified in
sections 2.2.2.10 and 3.3.1.5.4.

Á Miscellaneous extensions and clarifications of the DCE 1.1: RPC Specification.

1.4 Relationship to Other Protocols

This document specifies a set of extensions built on the DCE 1.1: RPC Specification, as specified in
[C706].

The extensions that require message authentication and security rely on the following protocols:
Kerberos (as specified in [MS -KILE]), Simple and Protected Generic Security Ser vice Application

Program Interface Negotiation Mechanism (SPNEGO): Microsoft Extension (as specified in [MS -

SPNG]), NT LAN Manager (NTLM) Authentication Protocol (as specified in [MS -NLMP]), Authentication
Protocol Domain Support (as specified in [MS -APDS]), Net Logon Remote Protocol (as specified in
[MS -NRPC]), and Transport Layer Security (TLS) Profile (as specified in [MS -TLSP]). These extensions
use the security protocols, using the protocol primitives as specified in [RFC2743].

The ExtendedError Remote Data Structure specified in [MS -EERR] is built on top of these extensions
and provides extended error information to an RPC client.

Name services as described in [C706] are specified in [MS -RPCL] (this is a legacy protocol that has
been deprecated).

28 / 183

[MS -RPCE-Diff] - v20171201
Remote Procedure Call Protocol Extensions
Copyright © 2017 Microsoft Corporation
Release: December 1, 2017

The R emote Procedure Call over HTTP Protocol as specified in [MS -RPCH] is built below these
extensions and enables the DCE 1.1: RPC Specification, as specified in [C706], with these extensions

to be routed over an HTTP transport in a way that is friendly to fir ewalls and provides additional
security. Details on the Remote Procedure Call over HTTP Protocol are as specified in [MS -RPCH] and

are not part of this document.

These extensions define mapping of the DCE 1.1: RPC Specification over Server Message Block (S MB),
TCP, User Datagram Protocol (UDP), Sequenced Packet Exchange (SPX), Internetwork Packet
Exchange (IPX), NetBIOS over IPX, NetBIOS over TCP, NetBIOS over NetBEUI, and AppleTalk as RPC
transports.

The following diagram illustrates the layering of these extensions over various RPC transports.

Figure 1 : RPC extensions transports

 Protocols that require a secure request - reply message exchange can use an implementation of these
extensions. Examples of protocols that use an implemen tation of these extensions include the
Directory Services Setup Remote Protocol (specified in [MS -DSSP]), Distributed Link Tracking: Central
Manager Protocol (specified in [MS -DLTM]), and Print System Asynchronous Notification Protocol

(specified in [MS -PAN]).

1.5 Prerequisites/Preconditions

These extensions presume that the client and server stubs for each RPC being executed are available

to the implementation on the RPC clie nt and RPC server, respectively.

The extensions do not impose other preconditions of their own, but they do inherit the preconditions
required by the underlying RPC transport and security provider being used for a given RPC exchange.

1.6 Applicability Stateme nt

The extensions specified herein do not change the basic applicability of the DCE 1.1: RPC
Specification, as specified in [C706], but some extensions, as described in section 1.3, improve
security. The DCE 1.1: RPC Specification and the Remote Procedure Call Protocol are meta -protocols
used to build application - level protocols. With its full set of extensions, the DCE 1.1: RPC Specification
can be used in a wide range of scenarios.

1.7 Versioning and Capability Negot iation

Á Supported Transports: These RPC extensions can be implemented on top of various RPC
transports, as specified in section 2.1. Higher - level protocols on the client either discover the RPC
transport supported by the server or know it in advance. Higher - level protocols on the clie nt can
also determine whether a server supports a given RPC transport by sending a message on the RPC

transport. If the server supports the RPC transport, the communication succeeds. If the server
does not support the RPC transport, the RPC transport eithe r returns a transport -dependent error
or returns no reply, depending on the transport. For details on client behavior in the case of no
reply, see sections 3.2.2 and 3.3.2. If the transport returns an error, an implementation -specific
error is returned to the application or the higher - level protocols.

29 / 183

[MS -RPCE-Diff] - v20171201
Remote Procedure Call Protocol Extensions
Copyright © 2017 Microsoft Corporation
Release: December 1, 2017

Á Protocol Versions: These RPC extensions do not introduce new protocol variants. The preexisting
protocol variants are specified throughout this document. RPC extensions constrain the DCE 1.1:

RPC Specificatio n, as specified in [C706], to only support protocol version 5.0 for connection -
oriented RPC, protocol version 4.0 for connectionless RPC, and protocol version 2.0 for the NDR

transfer syntax universally unique identifier (UUID). The DCE 1.1: RPC Specificat ion uses and
extends the transfer syntax negotiation mechanism, as specified in section 3.3.1.5.6 and in
[C706] chapter 12. Version negotiation is performed separately for each RPC interface, as
specified in [C706] chapter 12.

Á Security and Authentication M ethods: RPC extensions use a model with a pluggable security
provider module for the actual security and authentication work. Higher - level protocols on the
client should discover the security provider supported by the server or know them in advance.

Higher - level protocols on the client can negotiate the use of RPC security providers by sending a
message by using a given RPC security provider. If the server supports the RPC security provider,
as specified in sections 3.3.3.1, 3.2.3.5.4, and 3.3.3.5.3, the co mmunication succeeds. If the
server does not support the RPC security provider, the server returns an error, as specified in
section 3.3.3.5.3 for connection -oriented RPC protocols, or as specified in section 3.2.3.5.4 for
connectionless RPC protocols.

Á Capability Negotiation: For the capability negotiation specified in sections 2.2.2.3 and 2.2.3.3,
this protocol uses unused bits in the RPC protocol data unit (PDU) header, as specified in sections
2.2.2.3 and 2.2.3.3. This protocol also uses the bind time f eature negotiation mechanism, as
specified in section 3.3.1.5.3.

1.8 Vendor -Extensible Fields

In addition to the error codes specified in [C706], these extensions use Win32 error codes as defined
in [MS -ERREF] section 2.2. Vendors SHOULD reuse those values with their indicated meanings.
Choosing any other value runs the risk of a collision in the future.

1.9 Standards Assignments

These extensions do not introduce any standards assignments other than what is specified in [C706]

and [RFC81.3].

30 / 183

[MS -RPCE-Diff] - v20171201
Remote Procedure Call Protocol Extensions
Copyright © 2017 Microsoft Corporation
Release: December 1, 2017

2 Messages

This protocol references commonly use data types as defined in [MS -DTYP].

2.1 Tr ansport

[C706] specifies two protocol variants within connection -oriented RPC and connectionless RPC. This
specification maintains, as specified in [C706], cat egorization for the descriptions of the RPC protocol
variants.

These extensions update the protocol identifiers that are specified in [C706] Appendix I. [C706]
specifies that the protocol identifier can be one of three types:

1. An octet string derived from an interface UUID combined with a version number.

2. An octet string derived from OSI object identifiers (OIDs).

3. Single octet identifiers that are registered by the Open Software Foundation for commonly used
protocols.

The extensions specified in this documen t mandate that the third type MUST be used for all
communications.

Unless explicitly stated otherwise, the protocol identifier (used by each protocol sequence as specified
in sections 2.1.1 and 2.1.2) is as specified in the table in [C706] Appendix I.

The RPC protocol sequence strings for the RPC transports defined by these extensions are specified in
the following table. <1>

 RPC transport RPC protocol sequence string

SMB ncacn_np (see section 2.1.1.2)

TCP/IP (both IPv4 and IPv6) ncacn_ip_tcp (see section 2.1.1.1)

UDP ncadg_ip_udp (see section 2.1.2.1)

SPX ncacn_spx (see section 2.1.1.3)

IPX ncadg_ipx (see section 2.1.2.2)

NetBIOS over IPX ncacn_nb_ipx (see section 2.1.1.4)

NetBIOS over TCP ncacn_nb_tcp (see section 2.1.1.5)

NetBIOS over NetBEUI ncacn_nb_nb (see section 2.1.1.6)

AppleTalk ncacn_at_dsp (see section 2.1.1.7)

RPC over HTTP ncacn_http (see section 2.1.1.8)

2.1.1 Connection -Oriented RPC Transports

All connection -oriented RPC protocols specified in this document are carried by transport protocols
that MAY satisfy the following requirements:

Á The tra nsport protocol allows a client to establish a connection with a server given a network
address, endpoint, and, optionally, one or more network options.

31 / 183

[MS -RPCE-Diff] - v20171201
Remote Procedure Call Protocol Extensions
Copyright © 2017 Microsoft Corporation
Release: December 1, 2017

Á Each transport protocol connection is a duplex communication session that supports reliable, in
order, at -most -once delivery semantics.

Á Each connection can be established and can be terminated. Once established, a connection allows
sending and receiving of unlimited amounts of data. Optionally, a transport can detect whether the

other party to a connection has dropped off the connection and SHOULD indicate this to RPC
runtime. The details of how and when this is handled are specified in sections 3.3.2.2.1 and
3.3.2.7.1.

In sections 2.1.1.1 through 2.1.1.8, for each transport protocol that supports these exte nsions, this
document specifies how the transport protocol fulfills the requirements given in this section and any
other relevant transport -specific details.

2.1.1.1 TCP/IP (NCACN_IP_TCP)

This protocol sequence specifies RPC directly o ver TCP/IP. There are no intermediate protocols
between TCP/IP and RPC.

When extensions that are not specified in sections 2.1.1 through 2.1.2 are enabled over the TCP

transport protocol, the network address MUST be an IPv4 or IPv6 address or a server name .<2> The
server name MUST be a Unicode string that represents either a NetBIOS host name (see [MS -NBTE]
section 2.2.1) or a fully qualified domain name (see [RFC1035] section 3.1 and [RFC2181] section
11).

The server name MUST resolve to an IPv4 or IPv6 ad dress ([RFC1001] [RFC1002]). Server names are
resolved by using GetAddrInfo or equivalent Windows APIs, which return a list of IP addresses. The
server MUST attempt to connect to each IP address returned in the list. Connections are attempted in

sequential order, a single address at a time. If the connection fails, the server MUST attempt to
connect to the next IP address in the list.

IPv4 addresses MUST be supported and IPv6 addresses SHOULD be supported.

The endpoint MUST be a 16 -bit unsigned integer port number. The network address of the server and
the endpoint are not transmitted over the network by these extensions but are used by lower - layer

protocols to set up the connection.

RPC over TCP/IP MUST use endpoint mapper well -known endpoint 135, as specif ied in [C706]
Appendix H.

2.1.1.2 SMB (NCACN_NP)

This protocol sequence specifies RPC directly over SMB. There are no intermediate protocols between

RPC and SMB.

When these extensions are enabled over the SMB transport protocol, the network a ddress used by the
client MUST be an IPv4 or IPv6 address or a server name. <3> The server name MUST be a Unicode
string that represents either a NetBIOS host name (see [MS -NBTE] section 2.2.1) or a fully qualified
domain name (see [RFC1035] section 3.1 and [RFC2181] section 11).

The endpoint MUST be a named pipe name. The network address and endpoint are not transmitted on
the network by these extensions but are used by lower - layer protocols to set up the connection.

RPC over SMB MUST use an endpoint mapper well -known endpoint of \ pipe \ epmapper.

RPC over SMB MUST use a protocol identifier of 0x0F instead of 0x10, as specified in [C706] Appendix
I. <4>

The tower encoding for RPC over SMB MUST be the same as what is spec ified in [C706] Appendix L,
for ncacn_ip_tcp. The port address MUST be the endpoint encoded into a NULL - terminated string in

32 / 183

[MS -RPCE-Diff] - v20171201
Remote Procedure Call Protocol Extensions
Copyright © 2017 Microsoft Corporation
Release: December 1, 2017

ASCII character format. The length of the string MUST be less than 0xFFFF bytes. For changes in how
these extensions interpret the tower encoding (as specified in [C706] Appendix L), see section

3.1.3.5.3.

When an application is creating a binding handle for RPC over named pipes, the application will

provide a server name, endpoint, and credentials. The server name, endpoint, and cred entials are
provided to SMB ([MS -CIFS] section 3.4.4.1) to uniquely identify the named pipe (SMB session) which
the RPC binding handle will use.

All PDUs sent over SMB MUST be sent as named pipe writes ([MS -CIFS] section 3.4.4.2), and PDUs to
be received M UST be received as named pipe reads, as specified in [MS -CIFS] section 3.4.4.3.
However, in the case of synchronous RPCs, an implementation of these extensions MAY require the
Server Message Block (SMB) Protocol (as specified in [MS -SMB])implementation to execute a

transaction encompassing the write of the last request PDU and the read of the first response PDU on
the client. The last request PDU MUST be a bind, an alter_context, or the last fragment of a request.
The first response PDU MUST be a bind_ack o r bind_nak, an alter_context_response, or the first
fragment of a response. The transaction over a write and read is as specified in [MS -CIFS]. <5>

2.1.1.3 SPX (NCACN_SPX)

This protocol sequence specifies RPC directly over SPX. There are no i ntermediate protocols between
RPC and SPX. An implementation MAY <6> support this protocol sequence.

When extensions that are not specified in sections 2.1.1 through 2.1.2 are enabled over the SPX
transport protocol, the network address MUST be either a Ne tware machine name or a network and
node number. For more information, see [IPX], IPX Addressing.

The endpoint MUST be a 16 -bit unsigned integer port number. The network address of the server and
the endpoint are not transmitted over the network by these e xtensions but are used by lower - layer
protocols to set up the connection.

RPC over SPX MUST use an endpoint mapper well -known endpoint of 34280.

2.1.1.4 NetBIOS over IPX (NCACN_NB_IPX)

This protocol sequence specifies RPC directly over NetBIOS over IPX, which MAY <7><8> be
supported. There are no intermediate protocols between RPC and NetBIOS over IPX. These extensions
define three NetBIOS mappings for RPC. The mappings are the same at the RPC level but use a
different NetBI OS transport. Some implementations can offer higher - layer protocols the opportunity to
choose the NetBIOS transport to be used. This section covers the mapping of RPC to NetBIOS over

IPX. <9>

When these extensions are enabled over the NetBIOS over IPX sess ion service, as specified in [MS -
CIFS] section 2.1.1.3, the network address MUST be a NetBIOS host name.

The endpoint MUST be an 8 -bit unsigned integer socket number. The network address and endpoint
are not transmitted on the network by these extensions b ut are used by lower - layer protocols to set
up the connection.

RPC over NetBIOS over IPX MUST use an endpoint mapper well -known endpoint of 135. RPC over

NetBIOS over IPX MUST use a protocol identifier of 0x12 instead of the value of 0x11, as specified in
[C706] Appendix I.

When communicating between a client and a server by using NetBIOS over IPX, each RPC PDU MUST
be prefixed with a 4 -octet sequence number encoded with little -endian byte ordering, as defined in the
following diagram.

33 / 183

[MS -RPCE-Diff] - v20171201
Remote Procedure Call Protocol Extensions
Copyright © 2017 Microsoft Corporation
Release: December 1, 2017

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

Sequence number

PDU (variable)

...

...

The sequence numbers SHOULD start at 0 and increase monotonically, wrapping if it exceeds 2 32 -1,
for each sent PDU on a given NetBIOS connection. The server SHOULD ignore the sequence number
values.

2.1.1.5 NetBIOS over TCP (NCACN_NB_TCP)

This protocol sequence specifies RPC directly over NetBIOS over TCP. There are no intermediate
protocols between RPC and NetBIOS over TCP. Thes e extensions define three NetBIOS mappings for

RPC. The mappings are the same at the RPC level but use a different NetBIOS transport. Some
implementations can offer higher - layer protocols the opportunity to choose the NetBIOS transport to
be used. This sec tion covers the mapping of RPC to NetBIOS over TCP, which MAY <10><11><12> be
supported.

When these extensions are enabled over the NetBIOS over TCP session service, the network address
MUST be a NetBIOS machine name, as specified in [RFC1001] and [RFC1002] .

The endpoint MUST be an 8 -bit unsigned integer port number. The network address and endpoint are

not transmitted on the network by these extensions but are used by lower - layer protocols to set up
the connection.

RPC over NetBIOS over TCP MUST use an endp oint mapper well -known endpoint of 135.

RPC over NetBIOS over TCP MUST use a protocol identifier of 0x12 instead of the value of 0x11, as
specified in [C706] Appendix I.

When communicating between a client and a server by using NetBIOS over TCP, each RPC PDU MUST
be prefixed with a 4 -octet sequence number encoded with little -endian byte ordering, as defined in the

following diagram.

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

Sequence number

PDU (variable)

...

...

The sequence numbers SHOULD start at 0 and increase monotonically, wrapping if it exceeds 2 32 -1,
for each sent PDU on a given NetBIOS connection. The server SHOULD ignore the sequence number
values.

34 / 183

[MS -RPCE-Diff] - v20171201
Remote Procedure Call Protocol Extensions
Copyright © 2017 Microsoft Corporation
Release: December 1, 2017

2.1.1.6 NetBIOS over NetBEUI (NCACN_NB_NB)

This protocol sequence specifies RPC directly over NetBIOS over NetBEUI. There are no intermediate
protocols between RPC and NetBIOS over NetBEUI. These extensions define three NetBIOS mappings

for RPC. The mappin gs are the same at the RPC level but use a different NetBIOS transport. Some
implementations can offer higher - layer protocols the opportunity to choose the NetBIOS transport to
be used. This section covers the mapping of RPC to NetBIOS over NetBEUI, which MAY<13><14> be
supported.

When these extensions are enabled over the NetBIOS over NetBEUI session service, as specified in
[NETBEUI], the network address MUST be a NetBIOS machine name, as specified in [NETBEUI].

The endpoint MUST be an 8 -bit unsigned inte ger port number. The network address and endpoint are

not transmitted on the network by these extensions but are used by lower - layer protocols to set up
the connection.

RPC over NetBIOS over NetBEUI MUST use an endpoint mapper well -known endpoint of 135.

RPC over NetBIOS over NetBEUI MUST use a protocol identifier of 0x12 instead of the value of 0x11,
as specified in [C706] Appendix I.

When communicating between a client and a server by using NetBIOS over NetBEUI, each RPC PDU

MUST be prefixed with a 4 -oct et sequence number encoded with little -endian byte ordering, as defined
in the following diagram.

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

Sequence number

PDU (variable)

...

...

The sequence numbers SHOULD start at 0 and increase monotonically, wrapping if it exceeds 2 32 -1,
for each sent PDU on a given NetBIOS connection. The server SHOULD ignore the sequence number
values.

2.1.1.7 AppleTalk (NCACN_AT_DSP)

This protocol sequence specifies RPC direct ly over AppleTalk. There are no intermediate protocols
between RPC and AppleTalk. This protocol sequence MAY <15> be supported.

RPC over AppleTalk MUST use a well -known endpoint. The endpoint MUST be an AppleTalk Data

Stream Protocol (ADSP) socket number, a s specified in [AT] section 12. When extensions that are not
specified in sections 2.1.1 through 2.1.2 are enabled over ADSP as specified in [AT], the network

address MUST be an AppleTalk name or in the format machinename@zonename. If no zone is
provided, the protocol MUST default to the client's zone. The network address and endpoint are not
transmitted on the network by these extensions but are used by lower - layer protocols to set up the
connection.

35 / 183

[MS -RPCE-Diff] - v20171201
Remote Procedure Call Protocol Extensions
Copyright © 2017 Microsoft Corporation
Release: December 1, 2017

2.1.1.8 RPC over HTTP (ncacn_http)

This protocol sequence specifies RPC over HTTP. The Remote Procedure Call over HTTP Protocol, which
is specified in [MS -RPCH], is the intermediate protocol between RPC and HTTP. RPC over HTTP v1

deviates from the requirements specified in section 2.1. 1 (as specified in [MS -RPCH] section 1.6).

Transport details are as specified in [MS -RPCH] section 2.1.

2.1.2 Connectionless RPC Transports

Earlier versions of [C706] refer to the CL_CANCEL packet as a QUIT packet and to a CANCEL_ACK

packet as a QUACK packet. The latter forms are used in this document. Connectionless RPC transports
and RPC exchanges MAY <16> be supported.

2.1.2.1 UDP (NCADG_IP_UDP)

This protocol sequence specifies RPC directly over UDP. There are no intermediate protocols between

RPC and UDP. <17>

When these extensions are enabled over the UDP transport protocol, the network address MUST be an
IP address. The endpoint M UST be a UDP port number. The network address and endpoint are not
transmitted on the network by these extensions but are used by UDP or any lower - layer protocols to
communicate with the server.

RPC over UDP MUST use endpoint mapper well -known endpoint 135 , as specified in [C706] Appendix

H. It MUST use protocol identifier 0x08, as specified in [C706] Appendix I.

2.1.2.2 Internetwork Packet Exchange (IPX) (NCADG_IPX)

This protocol sequence specifies RPC directly over IPX. There are no intermediate protocols between

RPC and IPX. <18> This protocol sequence MAY <19> be supported

When these extensions are enabled over the IPX datagram service, the network address MUST be

either a Netware machine name or a network and node number. For more information, see [IPX].

The end point MUST be a 16 -bit unsigned integer socket number. The network address and endpoint
are not transmitted on the network by these extensions but are used by lower - layer protocols to
communicate with the server.

RPC over IPX MUST use an endpoint mapper we ll -known endpoint of 34280. It MUST use protocol

identifier 0x14, as specified in [C706] Appendix I.

2.2 Message Syntax

For all non - IDL packet definitions in this section, this specification uses both [C706] definition style
and a packet diagram to facilitate understanding of how the [C706] specification is extended. In all

non - IDL packet definitions in this section, bit ordering rules are the same as what is specified in
[C706], unless explicitly stated other wise.

Unless otherwise specified, all padding octets can be set to any arbitrary value when sent and MUST
be ignored by the receiver.

2.2.1 Connection -Oriented and Connectionless RPC Messages

This section defines the messages that are common to connection -oriented RPC and connectionless
RPC protocol variants. The messages that are specific to connection -oriented RPC and connectionless
RPC are specified in their respective sections, 2.2.2 and 2.2. 3.

36 / 183

[MS -RPCE-Diff] - v20171201
Remote Procedure Call Protocol Extensions
Copyright © 2017 Microsoft Corporation
Release: December 1, 2017

2.2.1.1 Common Types and Constants

2.2.1.1.1 RPC_IF_ID Type

This extension introduces a new type defined as follows.

 typedef struct {

 UUID Uuid;

 unsigned short VersMajor;

 unsigned short VersMinor;

 } RPC_IF_ID;

Use, meaning, and the layout of these fields are the same as the rpc_if_id_t type, as specified in
[C706] Appendix N.

2.2.1.1.2 Extended Error Information Signature Value

The value for the Signature field that specifies the presence of extended error information in a
bind_nak PDU MUST be 90740320 - fad0 -11d3 -82d7 -009027b130ab. The bind_nak PDU is as specified
in [C706] section 12.6.4, and is extended as specified in s ection 2.2.2.9.

2.2.1.1.3 UUID Format

Implementations of these extensions MUST NOT enforce the restrictions on the UUID format, as
specified in [C706] Appendix A. A UUID MUST be treated as an opaque 128 -bit number.
Implementations can choose any a lgorithm to generate a UUID as long as the generated UUIDs are
unique in space and time, as specified in [C706] Appendix A. <20>

2.2.1.1.4 Mapping of a Context Handle

For an active context handle, implementations of these extensions SHOULD treat all the fields of the

ndr_context_handle , as specified in [C706] Appendix N, as a single opaque token. There MUST be a

1:1 relationship between this token and the context handle on the server. <21>

2.2.1.1.5 version_t

The version_t structure specifies the major and minor version numbers of the run - time protocols
supported by the server, as specified in [C706].

 typedef struct _version_t {

 unsigned char major;

 unsigned char minor;

 } version_t,

 *Pversion_t;

2.2.1.1.6 p_rt_versions_supported_t

The p_rt_versions_supported_t structure contains a list of the run - time protocol versions supported by

the server, as specified in [C706].

 typedef struct _p_rt_versions_supported_t {

 unsigned char n_protocols;

 [size_is(n_protocols)] version_t p_protocols[];

 } p_rt_versions_supported_t,

 *Pp_rt_versions_supported_t;

37 / 183

[MS -RPCE-Diff] - v20171201
Remote Procedure Call Protocol Extensions
Copyright © 2017 Microsoft Corporation
Release: December 1, 2017

n_protocols: The number of protocols.

p_protocols: An array of version_t structu res specifying major and minor protocol versions.

2.2.1.1.7 Security Providers

These extensions do not require support for the dce_c_rpc_authn_protocol_krb5 security provider, as
specified in [C706] section 13. All of the requirements speci fied in [C706] section 13 are removed by
these extensions. <22>

 These extensions specify the following values for the security provider.

Name Value Security provider

RPC_C_AUTHN_NONE 0x00 No Authentication

RPC_C_AUTHN_GSS_NEGOTIATE 0x09 SPNEGO

RPC_C_AUTHN_WINNT 0x0A NTLM

RPC_C_AUTHN_GSS_SCHANNEL 0x0E TLS

RPC_C_AUTHN_GSS_KERBEROS 0x10 Kerberos

RPC_C_AUTHN_NETLOGON 0x44 Netlogon

RPC_C_AUTHN_DEFAULT 0xFF Same as RPC_C_AUTHN_WINNT

On the client side, if the higher level protocol requests RPC_C_AUTHN_DEFAULT, the implementation
MUST use RPC_C_AUTHN_WINNT instead.

The security provider underlying protocol and implementation defines the number of legs and whether

the number of legs is odd or even that are used in the token exchange process th at builds a security
context. This information MAY be used for the processing of PDUs during that process.

These extensions specify the following number (if known) or even/oddness of the legs needed to build
a security context.

Name # of or Even # of Tok en Exchange Legs

RPC_C_AUTHN_NONE even

RPC_C_AUTHN_GSS_NEGOTIATE even

RPC_C_AUTHN_WINNT 3

RPC_C_AUTHN_GSS_SCHANNEL even

RPC_C_AUTHN_GSS_KERBEROS even

RPC_C_AUTHN_NETLOGON 3

RPC_C_AUTHN_DEFAULT unknown

2.2.1.1.8 Authentication Levels

These extensions specify the following values for the authentication levels.

38 / 183

[MS -RPCE-Diff] - v20171201
Remote Procedure Call Protocol Extensions
Copyright © 2017 Microsoft Corporation
Release: December 1, 2017

Name Value Meaning

RPC_C_AUTHN_LEVEL_DEFAULT 0x00 Same as RPC_C_AUTHN_LEVEL_CONNECT

RPC_C_AUTHN_LEVEL_NONE 0x01 No authentication.

RPC_C_AUTHN_LEVEL_CONNECT 0x02 Authenticates the credentials of the client and server.

RPC_C_AUTHN_LEVEL_CALL 0x03 Same as RPC_C_AUTHN_LEVEL_PKT.

RPC_C_AUTHN_LEVEL_PKT 0x04 Same as RPC_C_AUTHN_LEVEL_CONNECT but also prevents
replay attacks.

RPC_C_AUTHN_LEVEL_PKT_INTEGRITY 0x05 Same as RPC_C_AUTHN_LEVEL_PKT but also verifies that
none of the data transferred between the client and server has
been modified.

RPC_C_AUTHN_LEVEL_PKT_PRIVACY 0x06 Same as RPC_C_AUTHN_LEVEL_PKT_INTEGRITY but also
ens ures that the data transferred can only be seen
unencrypted by the client and the server.

If the higher - level application or protocol requests an authentication level that the implementation or
security provider does not support, it MUST upgrade the reque st to the next highest supported level.
RPC_C_AUTHN_LEVEL_PKT_PRIVACY MUST be supported.

On the client side, if the higher - level protocol requests RPC_C_AUTHN_LEVEL_CALL, the
implementation MUST upgrade it to RPC_C_AUTHN_LEVEL_PKT. Similarly, on the server side, if the
auth_level field of the sec_trailer structure as specified in sections 2.2.2.11 and 2.2.3.4 is
RPC_C_AUTHN_LEVEL_CALL, the implementation MUST process it in the same manner as a packet
with auth_level RPC_C_AUTHN_LEVEL_PKT.

Also, on the clie nt side, if the higher - level protocol requests RPC_C_AUTHN_LEVEL_DEFAULT, the
implementation MUST use RPC_C_AUTHN_LEVEL_CONNECT instead.

2.2.1.1.9 Impersonation Level

For secure calls, the higher - level layer protocols often specify the imp ersonation level. Various
impersonation levels, listed in the following table, allow the higher - layer protocols to control the
capabilities of the client's identity that are available to the server. While building the security context
(section 3.1.1.1.1), the client implementation passes this to the security provider on the first call to
the implementation -specific equivalent of the abstract GSS_Init_sec_context call, as specified in

[RFC2743].

Client implementations of this extension MUST support the follo wing impersonation levels. Note that
the impersonation level does not itself appear in any RPC message and, hence, the numeric values of
the following constants are implementation -specific. However, the values affect the token returned by
the implementatio n-specific equivalent of the abstract GSS_Init_sec_context_call, as specified in
[RFC2743].

Value Meaning

RPC_C_IMPL_LEVEL_IDENTITY The server can obtain information about the security context of the client
but cannot impersonate the client's security context.

The client MUST pass the GSS_C_IDENTITY_FLAG (defined in [RFC4757]
section 7.1, which extends [RFC2743]) to the implementation -specific
equivalent of the abstract GSS_Init_sec_context_call.

RPC_C_IMPL_LEVEL_IMPERSONATE The server can impersonate the client's security context on the server
system but cannot make requests to remote machines using the client
security context.

39 / 183

[MS -RPCE-Diff] - v20171201
Remote Procedure Call Protocol Extensions
Copyright © 2017 Microsoft Corporation
Release: December 1, 2017

Value Meaning

This is the default behavior, as specified in [RFC2743].

RPC_C_IMPL_LEVEL_DELEGATE The server can impersonate the client's se curity context on the server
system and can make requests to remote machines using the client's
security context.

The client MUST pass the implementation -specific equivalent of the
deleg_req_flag, as specified in [RFC2743] section 2.2.1.

If the higher - lev el protocol does not specify an impersonation level,
RPC_C_IMPL_LEVEL_IMPERSONATE MUST be used as the default.

2.2.1.1.10 Transport -Layer Impersonation Level

Some RPC transports have the capability to send the identity of the client with the request to the
server. Fo r details on how this information is used by the RPC transport, see the documentation for
the RPC transport.

Client implementations of these extensions MUST support the following impersonation levels. These
impersonation levels allow protocols above RPC to control which capabilities of the client's identity are

made available to the server. If the higher - level protocol does not provide any value for this
impersonation level, implementation of these extensions MUST allow the underlying RPC transport to
choos e the default value.

Currently the only RPC transport listed in section 2.1 that is capable of sending the impersonation
level to the server is SMB (ncacn_np). For more on how this information is used by SMB, see the
description of impersonation level in [MS-CIFS] section 2.2.4.64.

Value Meaning

SECURITY_ANONYMOUS The server cannot obtain identification information about the client, and it cannot
impersonate the client.

SECURITY_IDENTIFICATION The server can obtain information about the security context of the client but
cannot impersonate the client's security context.

SECURITY_IMPERSONATION The server can impersonate the client's security context on the server system but
cannot make requests to remote machines using the client security context.

SECURITY_DELEGATION The server can impersonate the client's security context on the server system and
can make requests to remote machines using the client's security context.

Although SECURITY_IMPE RSONATION and SECURITY_DELEGATION are permitted values and MAY be
specified on either the client or server when the authentication context is negotiated, it is up to the
higher - level protocol to interpret the resultant impersonation level (which can be dif ferent than what
the client or server specified) and perform impersonation or delegation as needed. <23>

Note These transport - layer impersonation levels are separate from the ones specified in section
2.2.1.1.9 in the sense that they are specified separate ly by an application. Although the security

meanings are the same (except that an anonymous level is not supported in section 2.2.1.1.9), the

security is applied at different layers; for example, by the transport provider versus the security
provider chose n by the application.

2.2.1.2 Endpoint Mapper Interface Extensions

An endpoint mapper interface is specified in [C706] Appendix O. These extensions update the
definition in [C706], as specified in the following sections. All parts of the definition that are not
mentioned in the following sections MUST be the same as what is specified in [C706].

40 / 183

[MS -RPCE-Diff] - v20171201
Remote Procedure Call Protocol Extensions
Copyright © 2017 Microsoft Corporation
Release: December 1, 2017

2.2.1.2.1 EPT_S_CANT_PERFORM_OP

This extension defines the EPT_S_CANT_PERFORM_OP constant to be equivalent to 0x6D8.
EPT_S_CANT_PERFORM_OP signifies general failure to perform the requested operation (method call)

on the endpoint mapper interface.

2.2.1.2.2 twr_t Type

This extension redefines the twr_t type, as specified in [C706] Appendix L, by adding a range attribute
to the tower_length field. The redefined type is specified as follow s.<24>

 typedef struct {

 [range(0,2000)] unsigned long tower_length;

 [size_is(tower_length)] BYTE tower_octet_string[];

 } twr_t,

 *twr_p_t;

The purpose and use of this structure remains unchanged with an exception related to processing, as
specified in section 3.1.3.5.3.

2.2.1.2.3 error_status Type

The error_status type is used to communicate method -specific error status to a caller.

This type is declared as follows:

 typedef unsigned int error_status;

2.2.1.2.4 ept_lookup Method

These extensions redefine the ept_lookup method, as specified in [C706] Appendix O, by way of the
following:

Á Adding the ptr attribute to the object and Ifid parameters.

Á Adding the range attribute to the max_ents parameter.

Á Removing the [idempotent] method attribute.

The re defined method is specified as follows.

 void ept_lookup(

 [in] handle_t hEpMapper,

 [in] unsigned long inquiry_type,

 [in, ptr] UUID* object,

 [in, ptr] RPC_IF_ID* Ifid,

 [in] unsigned long vers_option,

 [in, out] ept_lookup_handle_t* entry_handle,

 [in, range(0,500)] unsigned long max_ents,

 [out] unsigned long* num_ents,

 [out, length_is(*num_ents), size_is(max_ents)]

 ept_entry_t entries[],

 [out] error_status* status

);

hEpMapper: An RPC binding handle as specified in [C706] section 2.

in quiry_type: The type of inquiry to perform. It SHOULD be one of the following values. <25>

41 / 183

[MS -RPCE-Diff] - v20171201
Remote Procedure Call Protocol Extensions
Copyright © 2017 Microsoft Corporation
Release: December 1, 2017

Value Meaning

RPC_C_EP_ALL_ELTS

0x00000000

Return all elements from the endpoint map. The Ifid, vers_option, and
object parameters MUST be ignored.

RPC_C_EP_MATCH_BY_IF

0x00000001

Return endpoint map elements that contain the interface identifier specified
by the Ifid and vers_option values.

RPC_C_EP_MATCH_BY_OBJ

0x00000002

Return endpoint map elements that contain the object UUID specified by
object .

RPC_C_EP_MATCH_BY_BOTH

0x00000003

Return endpoint map elements that contain the interface identifier and
object UUID specified by Ifid, vers_option, and object.

object: Optionally specifies an object UUID. A value of NULL indicates that no object UUID is
specified.

Ifid: Optionally specifies an interface UUID. A value of NULL indicates that no interface UUID is

specified.

vers_option: The interface version constraint. MUST be one of the following values.

Value Meaning

RPC_C_VERS_ALL

0x00000001

Return endpoint map elements that contain the specified interface UUID,
regardless of the version numbers.

RPC_C_VERS_COMPATIBLE

0x00000002

Return the endpoint map elements that contain the same major versions of
the specified interface UUID and a minor version greater than or equal to the
minor version of the specified UUID.

RPC_C_VERS_EXACT

0x00000003

Return endpoint map elements that contain the specified version of the
specified interface UUID.

RPC_C_VERS_MAJOR_ONLY

0x00000004

Return endpoint map elements t hat contain the same version of the specified
interface UUID and ignore the minor version.

RPC_C_VERS_UPTO

0x00000005

Return endpoint map elements that contain a version of the specified
interface UUID less than or equal to the specified major and minor version.

entry_handle: On the first call, the client MUST set this to NULL. On successful completion of this
method, returns a context handle that the client MUST use on subsequent calls to this method. In

between calls if the client wishes to terminate t he search, it MUST close the context handle by
calling ept_lookup_handle_free.

max_ents: The maximum number of elements to be returned.

num_ents: The actual number of elements being returned.

entries: The elements that satisfy the specified search criteria .

status: MUST be a Win32 error code as specified in [MS -ERREF], 0x16c9a0cd or 0x16c9a0d6. All
values other than the ones specified in the following table MUST be treated as a failure.

Value Meaning

0x00000000 The method call returned at least one element that matched the search criteria.

0x16c9a0d6 There are no elements that satisfy the specified search criteria.

42 / 183

[MS -RPCE-Diff] - v20171201
Remote Procedure Call Protocol Extensions
Copyright © 2017 Microsoft Corporation
Release: December 1, 2017

This method has no return values.

Everything else about this method remains as specified in [C706] Appendix O. <26>

2.2.1.2.5 ept_map Method

These extensions redefine the ept_map method, as specified in [C706] Appendix O, by way of the
following:

Á Adding the ptr attribute to the obj and map_tower parameters.

Á Adding the range attribute to the max_towers parameter.

Á Removing the [idempotent] method attribute.

The resulting method definition is specified as follows.

 void ept_map(

 [in] handle_t hEpMapper,

 [in, ptr] UUID* obj,

 [in, ptr] twr_p_t map_tower,

 [in, out] ept_lookup_handle_t* entry_handle,

 [in, range(0,500)] unsigned long max_towers,

 [out] unsigned long* num_towers,

 [out, ptr, size_is(max_towers), length_is(*num_towers)]

 twr_p_t* ITowers,

 [out] error_status* status

);

hEpMapper: An RPC binding handle as specified in [C706] section 2.

obj: Optionally specifies an object UUID. A value of NULL indicates that no object UUID is specified.

Interfaces registered with a NULL object UUID will match any object UUID supplied here.

map_tower: The tower encoding to search for, as specified in [C706] App endix L.

entry_handle: On the first call, the client MUST set this to NULL. On successful completion of this
method, returns a context handle that the client MUST use on subsequent calls to this method. In
between calls if the client wants to terminate the search, it MUST close the context handle by
calling ept_lookup_handle_free.

max_towers: The maximum number of elements to be returned.

num_towers: The actual number of elements being returned.

ITowers: The tower encoding, as specified in [C706] Appendix L , of the elements found in the
endpoint map.

status: MUST be a Win32 error code, as specified in [MS -ERREF], 0x16c9a0cd or 0x16c9a0d6. All
values besides the following ones MUST be treated as failure.

Value Meaning

0x00000000 The method call returned at l east one element that matched the search criteria.

0x16c9a0d6 There are no elements that satisfy the specified search criteria.

This method has no return values.

Everything else about this method remains as specified in [C706] Appendix O. For more details, see
section 2.3.3.3 in [C706]. Note that this redefinition has no wire impact and, therefore, it is

43 / 183

[MS -RPCE-Diff] - v20171201
Remote Procedure Call Protocol Extensions
Copyright © 2017 Microsoft Corporation
Release: December 1, 2017

interoperable with the [C706] implementation, as long as the max_towers value is less than
501. <27>

2.2.1.2.6 ept_insert Method

These extensions do not require support for the ept_insert method. These extensions do not provide
an alternative method. <28>

2.2.1.2.7 ept_delete Method

These extensions remove support for the ept_delete method. A client implementation SHOULD NOT
call this method. <29>

2.2.1.2.8 ept_lookup_handle_free Method

The syntax of ept_lookup_handle_free method is as specified in [C706] Appendix O, but [C706]
Appendix O does not describe the meaning of the arguments. As such, t he meaning of the arguments
is given as follows.

 void ept_lookup_handle_free(

 [in] handle_t hEpMapper,

 [in, out] ept_lookup_handle_t* entry_handle,

 [out] error_status* status

);

hEpMapper: An RPC binding handle as specified in [C706] section 2.

entr y_handle: The context handle to free, which was received from a previous call to either
ept_lookup or ept_map.

status: On return, this MUST be set to 0x00000000.

This method has no return values.

2.2.1.2.9 ept_inq_object Method

These ext ensions remove support for the ept_inq_object method. A client implementation SHOULD
NOT call this method. These extensions do not provide an alternative method. <30>

2.2.1.2.10 ept_mgmt_delete Method

These extensions remove support for the ept_mgmt_delete method. A client implementation SHOULD

NOT call this method. These extensions do not provide an alternative method. <31>

2.2.1.2.11 ept_lookup_handle_t Type

The ept_lookup_handle_t type defines an opaque pointer that is used to represent a context handle,
as specified in [C706]. It is returned from the server to the client.

This type is declared as follows:

 typedef [context_handle] void* ept_lookup_handle_t;

44 / 183

[MS -RPCE-Diff] - v20171201
Remote Procedure Call Protocol Extensions
Copyright © 2017 Microsoft Corporation
Release: December 1, 2017

2.2.1.3 Management Interface Extensions

Remote Management Interface ([C706] Appendix Q) defines a management interface. These
extensions update the defi nition specified in [C706], as specified in the following sections. All parts of

the definition that are not mentioned in the following sections MUST be the same as specified in
[C706].

2.2.1.3.1 rpc_if_id_vector_p_t Type

These extensions redefine the rpc_if_id_vector_p_t type, as specified in [C706] Appendix N, by
changing the type of the IfId field from rpc_if_id_p_t to RPC_IF_ID . This change does not affect
the compatibility with the type defined in [C706].

The redefined structure is specified as follows.

 typedef struct {

 unsigned long Count;

 [size_is(Count)] RPC_IF_ID* IfId[];

 } rpc_if_id_vector_t,

 *rpc_if_id_vector_p_t;

2.2.1.3.2 StatisticsCount Type

These extensions introduce a new type, StatisticsCount. <32>

This type is declared as follows:

 typedef [range(0,50)] unsigned long StatisticsCount;

It is used as the count of statistics elements for various methods.

2.2.1.3.3 rpc_mgmt_inq_stats Method

These extensions redefine the rpc_mgm t_inq_stats method, as specified in [C706] Appendix Q, by
changing the type of the count parameter from unsigned long to StatisticsCount.
StatisticsCount (section 2.2.1.3.2) has a range attribute that affects compatibility with the definition in
[C706], as specified in section 3.3.1.3. The redefined method is specified as follows. <33>

 void rpc_mgmt_inq_stats(

 [in] handle_t binding_handle,

 [in, out] StatisticsCount* count,

 [out, size_is(*count)] unsigned long statistics[],

 [out] error_status_t* statu s

);

This method has no return values.

Everything else about this method remains as specified in [C706] Appendix Q.

2.2.1.3.4 rpc_mgmt_inq_princ_name Method

These extensions redefine the rpc_mgmt_inq_princ_name method, as specified in [C706] Appendix Q,
by adding a range attribute to the princ_name_size parameter. This change affects compatibility with
the definition in [C706].

The redefined method is specifie d as follows. <34>

45 / 183

[MS -RPCE-Diff] - v20171201
Remote Procedure Call Protocol Extensions
Copyright © 2017 Microsoft Corporation
Release: December 1, 2017

 void rpc_mgmt_inq_princ_name(

 [in] handle_t binding_handle,

 [in] unsigned long authn_proto,

 [in, range(0, 4096)] unsigned long princ_name_size,

 [out, string, size_is(princ_name_size)]

 char princ_name[],

 [out] error_status_ t* status

);

This method has no return values.

Everything else about this method remains as specified in [C706] Appendix Q.

2.2.2 Connection -Oriented RPC Messages

2.2.2.1 PDU Segments

A PDU can be viewed as having several different segments. These segments are as follows:

Á PDU Header: The header section of the PDU, as specified in [C706] section 12.6.

Á PDU Body: The body section of the PDU, as specified in [C 706] section 12.6. It also includes the
padding octets specified in section 2.2.2.11.

Á sec_trailer Structure: The structure specified in section 2.2.2.11.

Á Authentication Token: The authentication token binary large object (BLOB) of the PDU, as

specified in section 2.2.2.12.

Figure 2 : PDU structure

2.2.2.2 PFC_MAYBE Flag

 Implementations of these extensions MAY <35> ignore this flag. This flag is specified in [C706]
section 12.6.

46 / 183

[MS -RPCE-Diff] - v20171201
Remote Procedure Call Protocol Extensions
Copyright © 2017 Microsoft Corporation
Release: December 1, 2017

2.2.2.3 PFC_SUPPORT_HEADER_SIGN Flag

These extensions define a new PDU flag for the pfc_flags in the common header fields that are
specified in [C706] section 12.6, with the numeric value of 0x04. The new flag,

PFC_SUPPORT_HEADER_SIGN, has the same numeric value as the existing PFC_PENDING_CANCEL
flag.

The PDU type MUST be examined to determine how to interpret this flag. (The PDU types are specified
in section 2.2.2.10 and [C706] section 12.6.) For PDU types bind, bind_ack, alter_context,
alter_context_res p, and rpc_auth_3, this flag MUST be interpreted as PFC_SUPPORT_HEADER_SIGN.
For the remaining PDU types, this flag MUST be interpreted as PFC_PENDING_CANCEL.

2.2.2.4 negotiate_ack Member of p_cont_def_result_t Enumerator

These extensions specify a new member, negotiate_ack, which is added to the p_cont_def_result_t
enumeration (specified in [C706] section 12.6), with the numeric value of 3. The enumeration
SHOULD be as follows.

 typedef short enum {

 acceptance, user_rejection, provider_rejection, negotiate_ack

 } p_cont_def_result_t;

For details on how this enumerator is used, see section 3.3.1.5.3.

2.2.2.5 New Reasons for Bind Rejection

The following table briefl y describes the reject reasons used by these extensions. These reasons are
defined in [C706] section 12.6.3.1.

 Reject reason

Value Meaning

REASON_NOT_SPECIFIED 0x00 If the reason for the error does not fit any of the other reasons
specified in this section, then this rejection code SHOULD be
used.

TEMPORARY_CONGESTION 0x01 Not Used.

Client implementations of these extensions SHOULD treat this
rejection code in the same manner as
LOCAL_LIMIT_EXCEEDED.

LOCAL_LIMIT_EXCEEDED 0x02 The server could not complete the request due to lack of
resources.

PROTOCOL_VERSION_NOT_SPECIFIED 0x04 The server detected a protocol error while processing an
rpc_bind or rpc_alter_context PDU.

These extensions add two new reasons for rejection in the bind_nak packet that is specified in [C706]

section 12.6. The reasons are defined as follows.

 Reject reason

Value Meaning

authentication_type_not_recognized 0x08 Authentication type requested by client is not recognized by
server.

invalid_checksum 0x09 This rejection code is used when an unrecoverable error is
detected by the underlying security package.

47 / 183

[MS -RPCE-Diff] - v20171201
Remote Procedure Call Protocol Extensions
Copyright © 2017 Microsoft Corporation
Release: December 1, 2017

2.2.2.6 alloc_hint Interpretation

These extensions impose additional restrictions on the alloc_hint field specified in [C706] section
12.6. Implementations MUST allow for 0 to be specified, as specified in [C706]; implementations
SHOULD reject calls when the alloc_hint is nonzero but exceeds the combined stub data length of all
fragments from a fragmented request or response.

If alloc_hint is set to a nonzero value and a request or a response is fragmented into multiple PDUs,

implementations of these extensions SHOULD set the alloc_hint field in every PDU to be the
combined stub data length of all remaining fragment PDUs.

An implementation that does not follow these rules might not be able to interoperate successfully with
an implementation of these extensions.

2.2.2.7 RPC_SYNTAX_IDENTIFIER

This type is equivalent in syntax and semantics to the p_syntax_id_t type, as specifi ed in [C706]
section 12.6.

2.2.2.8 rpc_fault Packet

Connection -Oriented RPC PDUs ([C706] section 12.6) allows for stub data to be present in rpc_fault
PDUs. Clients implementing these extensions MUST ignore any stub data in an rpc_fault PDU , and
servers MUST NOT generate stub data in an rpc_fault PDU. [C706] also prescribes that if the status in
the rpc_fault PDU is 0, the actual error is in the stub data. These extensions always retrieve the actual
error from the status field in the rpc_fau lt PDU. A server implementation MUST NOT send any of the
error codes specified in section 3.3.3.5.

An implementation that does not follow these rules might not be able to interoperate successfully with
an implementation of these extensions.

Connection -ori ented RPC PDUs ([C706] section 12.6) set aside a reserved field. These extensions
specify the least significant bit of the reserved field to be a flag indicating the presence of RPC
extended error information. Details on RPC extended error information are specified in [MS -EERR]. If
RPC extended error information is present, it is specified as a variable length BLOB, and its length
MUST be calculated as alloc_hint - 0x20.

2.2.2.9 bind_nak Packet

These extensions update the bind_nak packet, as specified in [C706] section 12.6.4.5, to have the
following definition.

 typedef struct {

 unsigned char rpc_vers;

 unsigned char rpc_vers_minor;

 unsigned char PTYPE;

 unsigned char pfc_flags;

 unsigned char packed_drep[4];

 unsigned short frag_length;

 unsigned short auth_length;

 unsigned long call_id;

 unsigned short provider_reject_reason;

 p_rt_versions_supported_t versions;

 UUID Signature;

 } bind_nak;

48 / 183

[MS -RPCE-Diff] - v20171201
Remote Procedure Call Protocol Extensions
Copyright © 2017 Microsoft Corporation
Release: December 1, 2017

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

rpc_vers rpc_vers_minor PTYPE pfc_flags

packed_drep

frag_length auth_length

call_id

provider_reject_reason versions (variable)

...

...

Signature (16 bytes, optional)

...

...

These extensions add the Signature field at the end as an optional field. The presence or absence of
the Signature field MUST be determined as follows.

Assume that the client calculates the length of the PDU until the Signature field as L.

Á If the frag_length field is greater than or equal to L plus the size of t he Signature field, the client
SHOULD assume that the Signature field is present.

Á Otherwise, the client SHOULD assume that the Signature field is not present.

The Signature field MUST be interpreted as a UUID.

If the Signature field is equal to the extended error information signature value, as specified in section
2.2.1.1.2, the client MUST assume that the bind_nak PDU contains RPC extended error information

appended as a BLOB, as specified in [MS -EERR], immediately following the Signature field tha t
continues until the end of the PDU. If RPC extended error information is present, the length of the
BLOB containing it MUST be calculated as frag_length ï 0x1c.

Clients MAY <36> ignore the RPC extended error information BLOB. Clients that interpret the BL OB
MUST do so as specified in [MS -EERR].

If the Signature field is not equal to the extended error information Signature value, as specified in
section 2.2.1.1.2, the client SHOULD ignore the Signature field and all information that follows it in

this PDU.

2.2.2.10 rpc_auth_3 PDU

These extensions specify a new PDU type: rpc_auth_3. It is defined as follows.

49 / 183

[MS -RPCE-Diff] - v20171201
Remote Procedure Call Protocol Extensions
Copyright © 2017 Microsoft Corporation
Release: December 1, 2017

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

rpc_vers rpc_vers_minor PTYPE pfc_flags

drep

frag_length auth_length

call_id

pad

rpc_vers (1 byte): As specified by rpc_vers field in rpc_bind PDU in [C706] section 12.6.

rpc_vers_minor (1 byte): As specified by rpc_vers_minor field in rpc_bind PDU in [C706] section

12.6.

PTYPE (1 byte): MUST be set to 0x10.

pfc_flags (1 byte): As specified by pfc_flags field in rpc_bind PDU in [C706] section 12.6.

drep (4 bytes): As specified by drep field in rpc_bind PDU in [C706] section 12.6.

frag_length (2 bytes): As specified by frag_length field in rpc_bind PDU in [C706] section 12.6.

auth_length (2 bytes): As specified by auth_length field in rpc_bind PDU in [C706] section 12.6. It
MUST be greater than zero for this PDU type.

call_id (4 bytes): As specified by call_id field in rpc_bind PDU in [C706] section 12.6.

pad (4 bytes): Can be set to any arbitrary value when set and MUST be ignored on receipt. The pad

field MUST be immediately followed by a sec_trailer structure whose layout, location, and
alignment are as specified in section 2.2.2.11.

All the rules for processi ng PDUs specified in [C706] section 12.6, including but not limited to data
representation, pfc_flags , and protocol version numbers, MUST be applied to this PDU as well. For
more information, see section 3.3.1.5.2.

2.2.2.11 sec_trailer Structure

These extensions define the sec_trailer structure to have syntax equivalent to the
auth_verifier_co_t structure as specified in [C706] section 12.6. The two structures have the same
layout when sent on the network, but they name their fields differe ntly and, in some cases, interpret

their fields differently.

A nonzero value for the auth_length field indicates the presence of authentication information
provided by the security provider. When the auth_length field is nonzero, the sec_trailer structure

MUST be present.

For request and response PDUs, where the request and response PDUs are part of a fragmented
request or response and authentication is requested (nonzero auth_length), the sec_trailer structure

MUST be present in every fragment of the request or response.

The sec_trailer structure MUST be placed at the end of the PDU, including past stub data, when
present. The sec_trailer structure MUST be 4 -byte aligned with respect to the beginning of the PDU.
Padding octets MUST be used to align the sec_trailer structure if its natural beginning is not already 4 -
byte aligned.

50 / 183

[MS -RPCE-Diff] - v20171201
Remote Procedure Call Protocol Extensions
Copyright © 2017 Microsoft Corporation
Release: December 1, 2017

All PDUs that carry sec_trailer information share certain common fields: frag_length and
auth_length . The beginning of the sec_trailer s tructure for each PDU MUST be calculated to start

from offset (frag_length ï auth_length ï 8) from the beginning of the PDU.

The structure is defined as follows.

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

auth_type auth_level auth_pad_length auth_reserved

auth_context_id

auth_type (1 byte): MUST contain an authentication type. For information on how this is used, see
sections 3.1.1.1.1, 3.3.1.5.2, and 3.1.3.1.1. If a request or response is fragmented, all PDUs from
that request or response MUST have the same auth_type .

auth_level (1 byte): MUST contain one of the authentication levels as specified in section 2.2.1.1.8.
The value serves a dual purpose. The first purpose is to specify what security protection is applied

to what segment of the PDU, as specified in section 3.3.1.5.2. The second purpose is to serve as a
parameter to the security provider that it SHOULD use to determine how to provide protection for
the respective PDU segment. For information on how security providers use that, see the
documentation for the respective security prov ider. If a request or response is fragmented, all
PDUs from that request or response MUST have the same auth_level .

auth_pad_length (1 byte): The number of padding octets, used to 16 -byte align the sec_trailer
structure, as specified earlier in this secti on. In the figure "PDU structure with verification trailer"

in section 2.2.2.13, these octets are referred to as the Authentication Padding Octets.

auth_reserved (1 byte): SHOULD be 0 on store, and SHOULD be ignored on read.

auth_context_id (4 bytes): Numeric identifier that uniquely identifies the security context that
MUST be used for this PDU within the context of the current RPC connection. For information on

security contexts, see section 3.3.1.5.4. An implementation MUST examine the drep field fr om the
RPC PDU header to determine if this field is little -endian or big -endian, as specified in [C706]
section 14.2.5. If a request or response is fragmented, all PDUs from that request or response

MUST have the same auth_context_id .

Immediately after the sec_trailer structure, there MUST be a BLOB carrying the authentication
information produced by the security provider. This BLOB is called the authentication token and MUST
be of size auth_length . The size MUST also be equal to the length from the first o ctet immediately
after the sec_trailer structure all the way to the end of the fragment; the two values MUST be the
same. For more information on what the authentication token contains, see section 2.2.2.12.

A client or a server that (during composing of a PDU) has allocated more space for the authentication
token than the security provider fills in SHOULD <37> fill in the rest of the allocated space with zero
octets. These zero octets are still considered to belong to the authentication token part of the PD U.

2.2.2.12 Authentication Tokens

These extensions require the conceptual model specified in [RFC2743] for all interactions with all
security providers. An implementation instructs the Generic Security Services (GSS) -APIïcompatible
secu rity providers to operate in a distributed computing environment (DCE) ïcompatible manner by
setting the DCE Style protocol variable. The following table details what PDU type MUST carry (in its
auth_ token segment) the output of what GSS [GSS] call during processing, as specified in section
3.3.1.5.2.2.

51 / 183

[MS -RPCE-Diff] - v20171201
Remote Procedure Call Protocol Extensions
Copyright © 2017 Microsoft Corporation
Release: December 1, 2017

 RPC PDU name GSS call producing auth_value

 Bind First call to GSS_Init_sec_context, as specified in [RFC2743] section 2.2.1.

 bind_ack First call to GSS_Accept_sec_context, as specified in [RFC2743] section 2.2.2.

 alter_context,
rpc_auth_3

Second and subsequent calls to GSS_Init_sec_context, as specified in [RFC2743] section
2.2.1.

 alter_context_resp Second and subsequent calls to GSS_Accept_sec_context, as specified in [RFC2743]
section 2.2.2.

Request If the auth_level (as specified in section 2.2.2.11) is
RPC_C_AUTHN_LEVEL_PKT_PRIVACY, call to GSS_WrapEx; else call to GSS_GetMICEx.
See section 3.3.1.5.2.2 for details.

Response If the auth_level (as specified in section 2.2.2.11) is
RPC_C_AUTHN_LEVEL_PKT_PRIVACY, call to GSS_UnwrapEx; else call to

GSS_VerifyMICEx. See section 3.3.1.5.2.2 for details.

2.2.2.13 Verification Trailer

Within exchanges in which the security provider in use does not provide integrity protection, as
specified in [C706] section 13.2.5, these extensions specify an additional provision for providing
integrity protection for certain portions of PDUs. The verification trailer encompasses several data
structures. The data structures MUST only appear in a requ est PDU, and they SHOULD be placed in
the PDU immediately after the stub data but before the authentication padding octets. Therefore, for
security purposes, the verification trailer is considered part of the PDU body. For a fragmented
request, only the la st PDU of the request MUST have a verification trailer. As a general rule,

implementations SHOULD <38> add the verification trailer on request PDUs that have portions of the
PDU that cannot be protected by the security provider while in transit on the netwo rk.

The following diagram shows a PDU body within a PDU structure, with stub data, verification trailer,
and authentication padding octets.

52 / 183

[MS -RPCE-Diff] - v20171201
Remote Procedure Call Protocol Extensions
Copyright © 2017 Microsoft Corporation
Release: December 1, 2017

Figure 3 : PDU structure with verification trailer

Client implementations MAY <39> send st ub padding octets after the stub data. To maximize
interoperability, server implementations SHOULD NOT assume that the verification trailer immediately

follows the stub data but instead SHOULD search for a sequence of octets that matches the value of
the s ignature, as specified in section 2.2.2.13.1, starting immediately after the end of the stub data
and continuing until the end of the PDU. <40>

The verification trailer consists of a header and a body. The header MUST always contain an instance
of the rpc_sec_verification_trailer structure that is specified in section 2.2.2.13.1. The beginning of the
header MUST be 4 -byte aligned with respect to the beginning of the PDU. If the stub data does not
end on a 4 -byte aligned boundary, padding octets MUST be added after the stub data. The padding

bytes SHOULD be set to 0.

The verification trailer header MUST be immediately followed by the verification trailer body. The
verification trailer body MUST consist of, at most, one instance from each of several data s tructures
called verification trailer commands, which are specified in sections 2.2.2.13.2, 2.2.2.13.3, and
2.2.2.13.4.

53 / 183

[MS -RPCE-Diff] - v20171201
Remote Procedure Call Protocol Extensions
Copyright © 2017 Microsoft Corporation
Release: December 1, 2017

Figure 4 : Verification trailer header and commands

The verification trailer commands can come in any order after the header. If more than one command
is present, the next command MUST be placed immediately after the previous one. Each command
MUST start with a common command header defined as the following.

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

command length

 typedef struct {

 USHORT command;

 USHORT length;

 } SEC_VT;

command: The commands MUST be encoded by using little -endian encoding for all fields.

Valid combinations are defined immediately after the table.

Value Meaning

SEC_VT_COMMAND_BITMASK_1

0x0001

This is an rpc_sec_vt_bitmask command, as specified in section
2.2.2.13.2.

SEC_VT_COMMAND_PCONTEXT

0x0002

This is an rpc_sec_vt_pcontext command, as specified in section
2.2.2.13.4.

SEC_VT_COMMAND_HEADER2

0x0003

This is an rpc_sec_vt_header2 command, as specified in section
2.2.2.13.3.

SEC_VT_COMMAND_END

0x4000

This flag MUST be present in the last command in the verification
trailer body.

SEC_VT_MUST_PROCESS_COMMAND

0x8000

Indicates that the server MUST proces s this command. If the server
does not support the command, it MUST reject the request.

Least significant bits 0 through 13 (including 0 and 13) are used to hold the command type and
MUST be considered a single field. Bits 14 and 15 are used to indicate c ommand processing rules.

If a server does not understand a command, it MUST ignore it unless the

SEC_VT_MUST_PROCESS_COMMAND bit is set. If the server does not understand the command
and the SEC_VT_MUST_PROCESS_COMMAND bit is set, it MUST treat the request as invalid, as if
unmarshaling failure occurred, as specified in section 3.1.3.5.2, except that a status code of 5
SHOULD be used instead of the status code specified in section 3.1.3.5.2. Any combination of a
value for the command type (bits 0 through 13) and command processing rules (bits 14 and 15) is
valid.

54 / 183

[MS -RPCE-Diff] - v20171201
Remote Procedure Call Protocol Extensions
Copyright © 2017 Microsoft Corporation
Release: December 1, 2017

length: The length field is in octets, MUST be a multiple of 4, and MUST NOT include the length of
the command header. For fixed -size commands, the length field MUST be equal to the length of

the f ixed -size command.

2.2.2.13.1 rpc_sec_verification_trailer

The definition for this structure is as follows.

 typedef struct {

 unsigned char signature[8];

 } rpc_sec_verification_trailer;

Whenever the verification trailer is present, the signature field MUST contain the following series of

octets {0x8a, 0xe3, 0x13, 0x71, 0x02, 0xf4, 0x36, 0x71}. These values have no special protocol
significance and only serve as a signature for this structure.

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

signature (ox8a, 0xe3, 0x13, 0x71)

signature (0x02, 0xf4, 0x36, 0x71)

Client sends the verification trailer header whenever it needs to send a verification trailer body. For
details on when a verification trailer body is sent, see the verification trailer commands that follow.

2.2.2.13.2 rpc_sec_vt_bitmask

This command is defined as follows.

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

command length (0x004)

bits (0x00000001)

 typedef struct {

 USHORT command;

 USHORT length;

 ULONG bits;

 } rpc_sec_vt_bitmask;

command: Least significant bits 0 through 13 MUST be SEC_VT_COMMAND_BITMASK_1. Bits 14
and 15 are as specified in section 2.2.2.13.

Note SEC_VT_COMMAND_BITMASK_1 has a value of 0x0001.

length: MUST be 0x0004.

bits: The bits field is a bitmask. A server MUST ignore bits it does not understand. Currently, there is
only one bit defined: CLIENT_SUPPORT_HEADER_SIGNING (bitmask of 0x0000000 1). If this bit is
set, the PFC_SUPPORT_HEADER_SIGN bit, as specified in section 2.2.2.3, MUST be present in the

PDU header for the bind PDU on this connection. For information on how
PFC_SUPPORT_HEADER_SIGN is used, see section 3.3.1.5.2.2. <41>

55 / 183

[MS -RPCE-Diff] - v20171201
Remote Procedure Call Protocol Extensions
Copyright © 2017 Microsoft Corporation
Release: December 1, 2017

2.2.2.13.3 rpc_sec_vt _header2

This command is defined as follows. <42>

 typedef struct {

 USHORT command;

 USHORT length;

 unsigned char PTYPE;

 unsigned char Reserved1;

 unsigned short Reserved2;

 unsigned char drep[4];

 unsigned long call_id;

 USHORT p_context_id_t;

 unsigned SHORT opnum;

 } rpc_sec_vt_header2;

command: Least significant bits 0 through 13 MUST be SEC_VT_COMMAND_HEADER2 (0x0003).
Bits 14 and 15 are as specified in section 2.2.2.13.

length: MUST be 0x0010.

PTYPE: MUST be the same as the PTYPE field in the request PDU header.

Reserved1: MUST be set to 0 when sent and MUST be ignored on receipt.

Reserved2: MUST be set to 0 when sent and MUST be ignored on receipt.

drep: MUST be the same as the drep field in the request PDU header.

call_id: MUST be the same as the call_id field in the request PDU header.

p_context_id_t: MUST be the same as the p_cont_id field in the request PDU header.

opnum: MUST be the same as the opnum field in the request PDU header.

The following table shows the format of rpc_sec_vt_header2.

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

command length (0x0010)

PTYPE Reserved1 (0) Reserved2 (0)

drep

call_id

p_cont_id opnum

2.2.2.13.4 rpc_sec_vt_pcontext

This command is defined as follows. <43>

 typedef struct {

 USHORT command;

56 / 183

[MS -RPCE-Diff] - v20171201
Remote Procedure Call Protocol Extensions
Copyright © 2017 Microsoft Corporation
Release: December 1, 2017

 USHORT length;

 RPC_SYNTAX_IDENTIFIER InterfaceId;

 RPC_SYNTAX_IDENTIFIER TransferSyntax;

 } rpc_sec_vt_pcontext;

command: Least significant bits 0 through 13 MUST be 0x0002. Bits 14 and 15 are as specified in
section 2.2.2.13.

length: MUST be set to 0x28.

InterfaceId: The interface identifier for the presentation context of the request PDU in which this
verific ation trailer appears. This MUST match the chosen abstract_syntax field from the bind or
alter_context PDU where the presentation context was negotiated. For information on how a

presentation context is negotiated, see section 3.3.1.5.6.

TransferSyntax: The transfer syntax identifier for the presentation context of the request PDU in
which this verification trailer appears. This MUST match the chosen transfer_syntax from the bind
or alter_context PDU where the presentation context was negotiated. For info rmation on how a

presentation context is negotiated, see section 3.3.1.5.6.

The following table shows the format of the rpc_sec_vt_pcontext command.

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

command length

InterfaceId

(InterfaceId cont'd for 4 rows)

TransferSyntax

(TransferSyntax cont'd for 4 rows)

2.2.2.14 BindTimeFeatureNegotiationBitmask

The bind time feature negotiation bitmask is an array of eight octets, each of which is interpreted as a

bitmask. The format of the structure is as follows.

 typedef struct {

 unsigned char Bitmask[8];

 } BindTimeFeatureNegotiationBitmask;

Bitmask: Currently, only the two least significant bits in the first element of the array are defined by
the following table.

The rest SHOULD be reserved for future extensibility. For information on how this structure and
the bits inside it are used, see section 3.3.1.5.3.

Value Meaning

SecurityContextMultiplexingSupported Client supports security context multiplexing, as specified in

57 / 183

[MS -RPCE-Diff] - v20171201
Remote Procedure Call Protocol Extensions
Copyright © 2017 Microsoft Corporation
Release: December 1, 2017

Value Meaning

0x01 section 3.3.1.5.4.

KeepConnectionOnOrphanSupported

0x02

Client supports keeping the connection open after sending the
orphaned PDU, as specified in section 3.3.1.5.10.

The following table shows the format of BindTime FeatureNegotiationBitmask.

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

Bitmask

Bitmask

2.2.2.15 BindTimeFeatureNegotiationResponseBitmask

The bind time feature negotiation response bitmask is an array of two octets, each of which is
interpreted as a bitmask. The format of the structure is as follows.

 typedef struct {

 unsigned char Bitmask[2];

 } BindTimeFeatureNegotiationResponseBitmask;

Bitmask: Currently, only the two le ast significant bits in the first element of the array are defined by
the following table. The rest SHOULD be reserved for future extensibility. For information on how
this structure and the bits inside it are used, see section 3.3.1.5.3.

Value Meaning

SecurityContextMultiplexingSupported

0x01

Server supports security context multiplexing, as specified in
section 3.3.1.5.4.

KeepConnectionOnOrphanSupported

0x02

Server supports keeping the connection open after sending the
orphaned PDU, as specified in section 3.3.1.5.10.

The following table shows the format of BindTimeFeatureNegotiationResponseBitmask.

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

Bitmask Unused

2.2.3 Connectionless RPC Messages

The format of each PDU is as specified in [C706] section 12. Connectionless RPC messages MAY <44>
be supported.

58 / 183

[MS -RPCE-Diff] - v20171201
Remote Procedure Call Protocol Extensions
Copyright © 2017 Microsoft Corporation
Release: December 1, 2017

2.2.3.1 PDU Segments

A PDU can be viewed as having several different segments. These segments are as follows:

Á PDU Header: This is the header section of the PDU, as specified in [C706] section 12.

Á PDU Body: This i s the body section of the PDU, as specified in [C706] section 12.

Á sec_trailer_cl Structure: The structure specified in section 2.2.3.4.

Á Authentication Token: The authentication token BLOB of the PDU, as specified in section 2.2.3.5.

Figure 5 : PDU structure

2.2.3.2 Fault Packet

A fault PDU MUST NOT contain any of the error codes specified in section 3.2.3.5.

2.2.3.3 PF2_UNRELATED Flag

These extensions extend the PDU format by defining the r eserved_04 bit of the second set of PDU
flags (flags2), as specified in [C706] section 12, as PF2_UNRELATED. This flag has meaning only in a
REQUEST packet.

The server SHOULD <45> set the PF2_UNRELATED flag in all conv_who_are_you2 and
conv_who_are_you_auth requests to indicate to the client that the server can correctly interpret client

requests with the flag set.

The client MUST set the PF2_UNRELATED flag in a REQUEST packet if the packet SHOULD NOT cancel
the activity's previous call sequence numbers. Fo r usage information, see section 3.

2.2.3.4 sec_trailer_cl Structure

When a PDU header's auth_proto field is nonzero, [C706] section 12.3, and section 13.3.4, specify
that the stub data of the packet is padded to the next 8 -byte bou ndary and MUST be followed by an

59 / 183

[MS -RPCE-Diff] - v20171201
Remote Procedure Call Protocol Extensions
Copyright © 2017 Microsoft Corporation
Release: December 1, 2017

auth_trailer_cl_t structure. These extensions divide the auth_trailer_cl_t type into a fixed - length
security header and a variable - length token following the security header. For information on the

authentication token, inc luding determination of its length, see section 2.2.3.5.

For request and response PDUs, where the request and response PDUs are part of a fragmented

request or where response and authentication are requested, the sec_trailer_cl structure is present in
ever y fragment of the request or response.

 typedef struct {

 unsigned char auth_level;

 unsigned char key_vers_num;

 } sec_trailer_cl;

auth_level: This field MUST be one of the authentication levels specified in section 2.2.1.1.8. The
values serve a dual pu rpose. The first purpose is to specify how security has to be applied to the
PDU, as specified in section 3.3.1.5.2. The second purpose is to serve as a parameter to the
security provider that it SHOULD use to determine how to provide protection for the PD U; for

details on how security providers use that, see the documentation for the respective security
provider. If a request or response is fragmented, all PDUs from that request or response MUST
have the same auth_level .

key_vers_num: This field is a num eric identifier that identifies the security context within the
activity that MUST be used for this PDU.

Immediately after the sec_trailer_cl structure, there MUST be a sequence of padding bytes
followed by a BLOB carrying the authentication information pr oduced by the security provider. This

BLOB is called the authentication token.

If the auth_level is RPC_C_AUTHN_LEVEL_PKT_PRIVACY , the number of padding bytes is
calculated as follows.

Number of padding bytes = MBSR4 - 2

where

Á MBSR4: MessageBlockSize of the security context rounded up to a multiple of 4.

See the documentation for the respective security provider for the value of the
MessageBlockSize . MessageBlockSize MUST be a power of 2.

For other auth_level values, the number of padding bytes is two .

2.2.3.5 Authentication Tokens

The token length is not transmitted explicitly. A recipient infers the length of the token by subtracting
the combined length of the connectionless RPC header, stub data, sec_trailer_cl, and padding bytes
from the length of the received packet, as reported by the underlying transport.

A client or a server (that, during processing, has allocated more space for the authentication token

than the security provider fills in) SHOULD <46> fill in the rest of the allocated space with zero octets.
These zero octets are still considered to belong to the authentication token part of the PDU. <47>

 RPC PDU GSS call producing auth_value

 Conv_who_are_you_auth's
in_data parameter

First call to GSS_Accept_sec_context, as specified in [RFC2743] section 2.2.2.

 Conv_wh o_are_you_auth's
out_data parameter

Second call to GSS_Init_sec_context, as specified in [RFC2743] section 2.2.1.
If the data cannot be returned in a single PDU, the server queries the

60 / 183

[MS -RPCE-Diff] - v20171201
Remote Procedure Call Protocol Extensions
Copyright © 2017 Microsoft Corporation
Release: December 1, 2017

 RPC PDU GSS call producing auth_value

remainder with calls to conv_who_are_you_auth_more().

Request PDU If the auth_level (as specified in section 2.2.3.4) is
RPC_C_AUTHN_LEVEL_PKT_PRIVACY, call to GSS_Wrap (as specified in
[RFC2743] section 2.3.3); else call to GSS_GetMIC (as specified in [RFC2743]
section 2.3.1).

Response PDU If the auth_level (as specified in section 2.2.3.4) is
RPC_C_AUTHN_LEVEL_PKT_PRIVACY, call to GSS_Unwrap (as specified in
[RFC2743] section 2.3.4); else call to GSS_VerifyMIC (as specified in
[RFC2743] section 2.3.2).

2.2.3.6 fack Packet

Implementation of these extensions MUST send or receive fack packets with the vers field set to 0 or

1. For either version, the definition of the fack PDU remains the same as defined in [C706] section
12.5.3.4. <48>

2.2.4 IDL Syntax Extensions

Extensions specified in sections 2.2.4.1 through 2.2.4.11 affect the syntax of the message, while
extensions specified in sections 2.2.4. 13 through 2.2.4.17 affect the processing of the message
without directly changing the messages. Extensions specified in section 2.2.4.18 affects neither the
syntax nor the processing of the message.

2.2.4.1 New Primitive Types

2.2.4.1.1 wchar_t

wchar_t designates a wide character type. It is treated as an unsigned short by using the rules for an
unsigned short, as specified in [C706] section 14.2.5.

A string attribute can be applied to a pointer or array of type wchar_t. This indicates a string of wide
characters, as specified in [C706] section 14.3.4. The terminator for a wide character string is two

octets of zero (0).

2.2.4.1.2 __int3264

In NDR tran sfer syntax, __int3264, as specified in [MS -DTYP] section 2.2.1, is represented as four
octets in the octet stream by using the same format as a long integer.

In 64 -Bit Network Data Representation (NDR64) transfer syntax, __int3264 is treated as hyper, as

specified in [C706] section 14.2.5.

2.2.4.1.3 __int8, __int16, __int32, __int64

Sized integer types are supported in these extensions. Applications can declare 8 -bit, 16 -bit, 32 -bit, or
64 -bit integer variables by using the __intn type specifier, where n is 8, 16, 32, or 64. __int8,
__int16, __int32, __int64 MUST be synonymous to smal l, short, long, and hyper, respectively, as
specified in [C706] section 14.2.5.

2.2.4.1.4 int

int MUST be treated as synonymous to long as specified in [C706] section 14.2.5.

61 / 183

[MS -RPCE-Diff] - v20171201
Remote Procedure Call Protocol Extensions
Copyright © 2017 Microsoft Corporation
Release: December 1, 2017

2.2.4.2 Callback

These extensions allow static callback functions to be declared i n the client side of a distributed
application. This functionality provides a way for the server to make an RPC method call to the client.

During a callback, the original client that initiates the call is defined as a callback server.

Callback routines are declared by using a callback keyword in an IDL file.

These extensions use operation numbers (opnums) to inform a callback server of the operation it
SHOULD call. Callback operations and noncallback operations use overlapping ranges of opnums
starting at z ero to identify the operation by using the following rules: Operation numbers for callback
operations MUST be generated consecutively, counting callback operations only, beginning with 0
(zero), in the order in which callback operations appear in the IDL s ource. Callback operations MUST

be excluded in calculating the operation numbers for noncallback operations. If an operation is called
in the context of a callback (for information on handling callbacks, see section 3.3.1.5.9), an
implementation of this ex tension MUST use the callback opnum range for calling the method. If an
operation is not called in the context of a callback, an implementation of this extension MUST use the
opnum range, as specified in [C706] section 5.2.1.

2.2.4.3 Array of Context Handles

These extensions extend the use of context handles (as specified in [C706] section 4.2.16.6), by
allowing arrays of context handles.

Context handles MUST be parameters, as specified in [C706] sectio n 4.2.16.6. They are valid as an
array element but MUST NOT be structure or union members and MUST NOT be the base type of a

pipe. <49>

2.2.4.4 Array of Strings

As specified in [C706] section 14.3.5, an array of strings is treated uniquely by requiring a common
string length. These extensions override this base specification as follows: An array of strings MUST be

represented as an ordered sequence of representations of the array elements.

2.2.4.5 ms_union

As an extension to the NDR definition of union alignment (as specified in [C706] section 14.3.8), these

extensions dictate that the discriminant MUST be aligned per the alignment rules of the data type of
the discriminant, and the selected arm MUST be aligned to the largest alignment of all the arms, when
ms_union is enabled. Also, in case of an array, each element of the array MUST be aligned to the
largest alignment of all the arms. ms_union MUST be ignored in NDR64 transfer syntax. ms_union
MUST be ignored for encapsulated unions.

ms_union is enabled for a union by applying the ms_union type attribute to that union in its IDL file,
or for all unions in the IDL file, by using an implementation -specific compiler option. <50>

2.2.4.6 v1_enum

Enumerated type s MUST be treated as signed 32 -bit integers when the v1_enum attribute is applied.
v1_enum MUST be ignored in NDR64 transfer syntax.

v1_enum can be enabled by specifying v1_enum when defining enumerated types in Microsoft
Interface Definition Language (MID L) [MSDN -MIDL].

62 / 183

[MS -RPCE-Diff] - v20171201
Remote Procedure Call Protocol Extensions
Copyright © 2017 Microsoft Corporation
Release: December 1, 2017

2.2.4.7 Expression in Conformant, Varying, and Union Description

In these extensions, first_ is , last_is , length_is , size_is , max_is , and union switch attributes
SHOULD accept C - language expressions that evaluate to an integer that represents the runtime value

of each specific attribute. <51>

For more information, see the example in section 4.7, U NICODE_STRING Representation.

2.2.4.8 Unencapsulated Union

These extensions extend the specification for marshaling unions to allow [in] or [in,out] parameters to

be used as the discriminant for [out] or [in,out] unencapsulated unions. As specified in [C706] section
14.3.8, the discriminant of an unencapsulated union MUST be marshaled both as the parameter
specified in the switch_is construct and as t he first part of the union representation. This custom -
marshaling is extended as follows: The discriminant of the unencapsulated union MUST be marshaled
as the parameter specified in the switch_is construct in the input or output octet stream(s) specified
by the directional attribute(s) of the parameter. In addition, the discriminant MUST be marshaled as

the first part of the union representation as specified in [C706] section 14.3.8, in the input or output

octet stream(s) specified by the directional attri bute(s) of the union.

2.2.4.9 pointer_default

With these extensions, the pointer_default attribute, as specified in [C706] section 4.2.4, is not

required. Its default value MUST be pointer_default (unique) when the attribute is absent.

2.2.4.10 Poi nter Attributes

These extensions make the following changes to the pointer attributes as defined in [C706] section

4.2.20.3.

Á These extensions MUST allow a pointer attribute, of the first pointer, specified at the reference site
(directly in the syntax of a n operation declaration) to override the pointer attribute specified at the

declared site.

Á With these extensions, if a method returns a pointer to a type, both [unique] and [ptr] types of
pointers MUST be permitted.

2.2.4.11 Extension to Enumerated Type

These exten sions extend the syntax of Enumerated Types as specified in [C706] section 4.2.13.

 <enumeration_type> ::=enum { <Identifier_tag> [, <Identifier_tag> é }

 <Identifier_tag> ::= <Identifier> [= <Identifier_literal>]

An <Identifier_literal> used in an <Ide ntifier_tag> MUST be in the range of 0 to 32,767.

2.2.4.12 NDR Transfer Syntax Identifier

[C706] Appendix I, specifies the NDR transfer syntax identifier. These extensions augment the version
number of the same NDR transfer syn tax UUID to be 2.0, as specified in the following table.

63 / 183

[MS -RPCE-Diff] - v20171201
Remote Procedure Call Protocol Extensions
Copyright © 2017 Microsoft Corporation
Release: December 1, 2017

 UUID Version Comments

 8a885d04 -1ceb -11c9 -9fe8 -08002b104860 02 Version 2.0 data representation protocol

2.2.4.13 byte_count

These extensions allow a higher - level protocol to specify the memory size in bytes of a given
parameter as the value of another parameter. This MUST be specified by the byte_count
parameter <52> attribute in an ACF, which the implementation MUST interpret as calling this
extension.

 [function - attribute - list] function - name(

 [byte_count(length - variable - name)] parameter - name,

 ...);

2.2.4.14 range

The range attribute is only applicable in strict NDR/NDR64 data consistency checking, as specified in

section 3.1.1.5.3.

2.2.4.14.1 range Attribute to Limit the Scope of Integral Values and the Number of

Elements in Pipe Chunks

The range is specified by the [range] attribute accepted by MIDL.

 [range (low - val, high - val)] type - specifier declarator.

low -val and high -val are integer constant expressions as specified in [C706] "P 14.01" in section

4.4.1.

2.2.4.14.2 range Attribute to Limit the Range of Maximum Count of Conformant

Array and String Length

MIDL extends the productions of IDL syntax with the following range definition.

 [range(low - val, high - val), <conf_range_attr>] type - specifier

 declarator

 conf_range_attr::=size_is<var_attr_list>|

 max_is<var_a ttr_list>|

 string

low -val and high -val are integer constant expressions as specified in [C706] "P 14.01" section 4.4.1.

2.2.4.15 strict_context_handle

A strict context handle is activated by a strict_context_handle attribute in an interface definition block
in an ACF. This attribute is only applicable in the strict NDR/NDR64 data consistency checking
extension specified in section 3.1.1.5.3.

64 / 183

[MS -RPCE-Diff] - v20171201
Remote Procedure Call Protocol Extensions
Copyright © 2017 Microsoft Corporation
Release: December 1, 2017

2.2.4.16 type_strict_context_handle

Type strict context handle is a ctivated by specifying the type_strict_context_handle attribute in an
interface definition block in an ACF. This attribute is only applicable in target level 6.0 of strict

NDR/NDR64 data consistency checking, as specified in section 3.1.1.5.3.

2.2.4.17 disable_cons istency_check

The Pointer attribute [disable_consistency_check] disables the check specified in section
3.1.1.5.3.3.1.2. This attribute is only applicable in the strict NDR/NDR64 data consistency checking

extension specified in section 3.1.1.5.3.

2.2.4.18 Identifie r Length

These extensions allow the user supplied identifiers in an IDL file to have a maximum length of 255

characters. The following table of allowed lengths replaces the table specified in [C706] section 4.5.

Class of ID Maximum Length (in characters)

Interface name 255

Type with transmit_as attribute 255

Type with handle attribute 255

Type with context_handle attribute 255

Type with represent_as attribute 255

Note that the constructed identifiers will hence correspondingly longer than 255. For exa mple, since
the major and minor version numbers can have upto five digits, since they are unsigned 16 -bit
integers as specified in [C706] section 6.2.3.3, the constructed identifier <interface>_v<major
version>_<minor version>_c_ifspec can have a length up to 277 characters. This is a change from

[C706] section 4.2.1.2 which limits all identifiers to 31 characters.

2.2.5 64 -Bit Network Data Representation

The 64 -Bit Network Data Representation transfer syntax is a set of modifications to the NDR transfer

syntax, as specified in [C706] chapter 14. NDR64 MAY <53> be supported.

All PDUs encoded with the NDR64 transfer syntax MUST use a value of 0x10 for the data
representation format label, as specified in [C706] section 14.1. This value indicates little -endian
integer and floating -pointer byte order, IEEE floating -point format r epresentation, and ASCII character
format, as specified in [C706] section 14.1.

2.2.5.1 NDR64 Transfer Syntax Identifier

 UUID Version Comments

71710533 -BEBA-4937 -8319 -B5D BEF9CCC36 01 NDR64 data representation protocol

65 / 183

[MS -RPCE-Diff] - v20171201
Remote Procedure Call Protocol Extensions
Copyright © 2017 Microsoft Corporation
Release: December 1, 2017

2.2.5.2 NDR64 Simple Data Types

NDR64 supports all simple types defined by NDR (as specified in [C706] section 14.2) with the same
alignment requirements except for enumerated types, which MUST be represented as signed long

integers (4 octets) in NDR64.

2.2.5.3 NDR64 Constructed Data Types

NDR64 supports constructed data types defined for NDR (as specified in [C706] section 14.3) with
some exceptions. The following sections specify differences between the ND R64 data representation

and the NDR data representation.

2.2.5.3.1 Representation Conventions

To be consistent with what is specified in [C706], diagrams describing data representation in
NDR/NDR64 extensions follow representation conventions as specified in [C706] section 14.2.1.

2.2.5.3.2 Arrays

2.2.5.3.2.1 Conformant Arrays

NDR64 represents a conformant array as an ordered sequence of representations of the array
elements preceded by an unsigned 64 -bit integer. The 64 -bit integer MUST specify the number of
array elements transmitted, including empty elements, as shown in the following figure. <54>

Figure 6 : Conformant arrays

2.2.5.3.2.2 Varying Arrays

NDR64 represents a varying array as an ordered sequence of representations of the array elements
preceded by two unsigned 64 -bit integers. The first 64 -bit integer MUST specify the offset from the
first index of the array to the first index of the actual subset being passe d. The second 64 -bit integer
MUST specify the actual number of elements being passed, as shown in the following figure. <55>

Figure 7 : Varying arrays

2.2.5.3.2.3 Conformant Varying Arrays

NDR64 represents a c onformant varying array as an ordered sequence of representations of the array
elements preceded by three unsigned 64 -bit integers. The first 64 -bit integer MUST specify the
maximum number of elements in the array. The second 64 -bit integer MUST specify th e offset from
the first index of the array to the first index of the actual subset being passed. The third 64 -bit integer
MUST specify the actual number of elements being passed. The 64 -bit integers that indicate the offset
and the actual count MUST always be present, even if the maximum count is 0 (zero). See the
following figure. <56>

66 / 183

[MS -RPCE-Diff] - v20171201
Remote Procedure Call Protocol Extensions
Copyright © 2017 Microsoft Corporation
Release: December 1, 2017

Figure 8 : Conformant varying arrays

2.2.5.3.2.4 Multidimensional Arrays

NDR64 follows the same NDR representation for multidimensional arrays, as specified in [C706]
sections 14.3.3.6 through 14.3.3.9, except for the maximum count, offset, and actual count. In
NDR64, these MUST be specified as 64 -bit unsigned integers rather than 32 -bit long integers.

2.2.5.3.3 Strings

In NDR64, the elements in a string MUST be characters, wide characters (16 -bit characters specified

by wchar_t), octets, or s tructures, all of whose elements are octets.

2.2.5.3.3.1 Varying Strings

NDR64 represents a varying string as an ordered sequence of representations of the string elements
preceded by two unsigned 64 -bit integers. The first 64 -bit integer MUST specify the offset from the
first index of the string to the first index of the actual subset being passed. The second 64 -bit integer
MUST specify the actual number of elements being passed, including the terminator.

The first 64 -bit integer (offset) MUST be 0 (zero). See the following figure.

Figure 9 : Varying strings

2.2.5.3.3.2 Conformant Varying Strings

NDR64 represents a conformant varying string as an ordered sequence of representations of the string

elements preceded by three unsigned 64 -bit integers. The first 64 -bit integer MUST specify the
maximum number of elements in the string, including the terminator. The second 64 -bit integer MUST
specify the offset from the first index of the string to the fi rst index of the actual subset being passed.
The third 64 -bit integer MUST specify the actual number of elements being passed, including the
terminator.

The second 64 -bit integer (offset) MUST be 0 (zero). See the following figure.

Figure 10 : Conformant varying strings

2.2.5.3.4 Structures

67 / 183

[MS -RPCE-Diff] - v20171201
Remote Procedure Call Protocol Extensions
Copyright © 2017 Microsoft Corporation
Release: December 1, 2017

2.2.5.3.4.1 Structure with Trailing Gap

NDR64 represents a structure as an ordered sequence of representations of the structure members.
The trailing gap from the last nonconformant and nonvarying field to the alignment of the structure

MUST be represented as a trailing pad . The size of the structure MUST be a multiple of its alignment.
See the following figure.

Figure 11 : Structure with trailing gap

For more information, see the example in section 4.8.

2.2.5.3.4.2 Structure Containing a Conforma nt Array

In the NDR64 representation of a structure that contains a conformant array, the unsigned 64 -bit long
integers that specify maximum element counts for the dimensions of the array MUST appear at the
beginning of the structure, and the array elements MUST appear in place at the end of the structure.
The diagram in the following figure shows the representation of a structure containing a
unidimensional conformant array.

Figure 12 : Structure containing a unidimensional conformant array

2.2.5.3.4.3 Structure Containing a Conformant Varying Array

In the NDR64 representation of a structure that contains a conformant varying array, the 64 -bit
maximum counts for dimensions of the array MUST appear at the beginning of the structure. The 64 -
bit offsets and the 64 -bit actual counts MUST remain in place at the end of the structure immediately
preceding the array elements. The diagram in the followi ng figure shows the representation of a

structure containing a unidimensional conformant varying array.

Figure 13 : Structure containing a unidimensional conformant varying array

2.2.5.3.4.4 Unions

NDR64 represents a union as a representation of the tag followed by a representation of the selected
member. Unions are aligned according to the largest of the union arms. The selected member is
aligned to the largest alignment of all the arms.

2.2.5.3.4.5 Pipes

68 / 183

[MS -RPCE-Diff] - v20171201
Remote Procedure Call Protocol Extensions
Copyright © 2017 Microsoft Corporation
Release: December 1, 2017

In NDR64, a pipe elem ent can be of any NDR primitive or constructed type except the following:

Á Pipes

Á Pointers

Á Either conformant or varying arrays or both conformant and varying arrays

Á Structures that contain either conformant or varying arrays or that contain both conformant a nd
varying arrays

NDR64 represents a pipe as a sequence of chunks. Each chunk is represented as an ordered sequence
of representations of the elements in the chunk. The sequence MUST be preceded by a 64 -bit
unsigned integer that specifies the number of ele ments in the chunk and MUST be followed by a 64 -bit
unsigned integer that specifies the arithmetic negate of the value of the number of elements in the
chunk, treated as a signed 64 -bit integer. The final chunk MUST contain no elements and MUST

consist onl y of two unsigned 64 -bit integers with the value 0 (zero). A chunk MUST contain, at most
231 -1 elements of the pipe (as opposed to 2 32 -1, as supported in NDR as specified in [C706]).

Figure 14 : A pipe as a sequence of chunks

2.2.5.3.5 Poi nters

A pointer representation MUST be 8 bytes. Pointer representations MUST be aligned on 8 -byte

boundaries in the octet stream.

2.2.5.3.5.1 Embedded Reference Pointers

An embedded reference pointer MUST be represented in two parts: an 8 -octet value in place that
MUST NOT be NULL and a possibly deferred representation of the referent. The algorithm for deferral
of referent is as specified by NDR in [C706] section 14.3.12. 3. NDR64 MUST NOT implement the
special case specified by NDR for arrays of reference pointers, and the 8 -octet non -NULL value MUST

always be transmitted in place.

2.2.6 Type Serialization Version 1

Type serialization version 1 is a set of extensions to the IDL/+ pickle, as specified in [C311] Part 2,
IDL/NDR Pickle. Implementations of these ext ensions allow marshaling/unmarshaling according to the

NDR transfer syntax of application -specified types by using an application -provided octet stream.

Type serialization version 1 can use either a little -endian or big -endian integer and floating -pointer

byte order but MUST use the IEEE floating -point format representation and ASCII character format.
See the following figure.

Figure 15 : Type serialization version 1

69 / 183

[MS -RPCE-Diff] - v20171201
Remote Procedure Call Protocol Extensions
Copyright © 2017 Microsoft Corporation
Release: December 1, 2017

Multiple top - level data types can be serialized into the same ty pe serialization stream in the same way
multiple parameters in a procedure are marshaling into an octet stream. A top - level data type is the

data type an application provides to the implementation of these extensions to be serialized or de -
serialized. A to p- level data type MUST be either an NDR -constructed type or a primitive type. Each

top - level data type is serialized/de -serialized as a whole, according to the rules that follow.

2.2.6.1 Common Type Header for the Serialization Stream

One common type header is created per serialization octet stream. The common header applies to all

of the typed data in the octet stream. This common type header MUST be presented by using little -
endian format in th e octet stream. The first byte of the common type header MUST be equal to 1 to
indicate this level of type serialization.

The common type header alignment MUST be aligned on an 8 -byte boundary.

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

Version Endianness CommonHeaderLength

Filler

Version (1 byte): MUST be set to 1 to indicate type serialization version 1.

Endianness (1 byte): Specifies the endianness of types serialized in the octet stream as

follows. <57>

Value Meaning

0x10 Little -endian

0x00 Big -endian

CommonHeaderLength (2 bytes): The length in bytes of this common type header. MUST be set to
8.

Filler (4 bytes): Reserved field. MUST be set to 0xcccccccc on marshaling, and SHOULD be ignored
during unmarshaling.

2.2.6.2 Private Header for Constructed Type

A top - level NDR constructed type MUST be preceded by a private header, as specified in this section.

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

ObjectBufferLength

Filler

ObjectBufferLength (4 bytes): Indicates the length of a serialized top - level type in the octet

stream. It MUST include the padding length and exclude the header itself.

Filler (4 bytes): Reserved field. MUST be set to 0 (zero) during marshaling, and SHOULD be ignored
during unmarshaling.

70 / 183

[MS -RPCE-Diff] - v20171201
Remote Procedure Call Protocol Extensions
Copyright © 2017 Microsoft Corporation
Release: December 1, 2017

The private type header MUST be aligned on an 8 -byte boundary in the octet stream. If the length of
the serialized top - level constructed type in the octet stream is not a multiple of 8 octets, t he data

MUST be padded at the end to ensure its total length is an integral multiple of 8 bytes in length.

Like a parameter in a procedure, the top - level constructed type MUST be represented in NDR format

in the octet stream following the private header.

2.2.6.3 Primitive Type Serialization

For any top - level NDR primitive type, there MUST NOT be any private header preceding the actual

type. The type MUST be aligned on an 8 -byte boundary. If the size of the primitive type is not a n
integral multiple of 8 bytes, the data MUST be padded at the end to ensure that its total length is an
integral multiple of 8 bytes.

2.2.7 Type Serialization Version 2

Version 2 of type serialization is a set of modifications to type serialization version 1, as specified in

section 2.2.6. Implementations of these extensions allow marshaling/unm arshaling of application -
specified data types by using an application -provided serialization stream, according to either NDR or
NDR64 transfer syntax.

Type serialization version 2 MUST use little -endian integer and floating -pointer byte order, IEEE
floatin g-point format representation, and ASCII character format. The first byte in the octet stream
MUST be 2 to indicate this level of type serialization.

2.2.7.1 Common Type Header

One common type header is created per serializa tion octet stream. The common header applies to all
of the typed data in the octet stream. The common type header MUST be aligned on a 16 -byte

boundary.

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

Version Endianness CommonHeaderLength

endianInfo

Reserved (16 bytes)

...

...

TransferSyntax (20 bytes)

...

...

InterfaceID (20 bytes)

...

71 / 183

[MS -RPCE-Diff] - v20171201
Remote Procedure Call Protocol Extensions
Copyright © 2017 Microsoft Corporation
Release: December 1, 2017

...

Version (1 byte): MUST be set to 2 to indicate type serialization version 2.

Endianness (1 byte): MUST be set to little -endian (0x10).

CommonHeaderLength (2 bytes): Indicates the length in bytes of the common header. MUST be

0x40.

endianInfo (4 bytes): Reserved field. MUST be set to 0xcccccccc during marshaling, and SHOULD be
ignored during unmarshaling.

Reserved (16 bytes): Reserved fields. MUST be set to 0xcccccccc during marshaling, and SHOULD
be ignored during unmarshaling.

TransferSyntax (20 bytes): RPC transfer syntax identifier used to encode data in the octet stream.

It MUST use RPC_SYNTAX_IDENTIFIER format, a s specified in section 2.2.2.7. It MUST be either

the NDR transfer syntax identifier or the NDR64 transfer syntax identifier.

InterfaceID (20 bytes): Interface identifier, as specified in the IDL file. It MUST use the interface
identifier format, as specif ied in [C706] section 3.1.9. Implementations MAY ignore the value of
this field. <58>

Similar to Type Serialization Version 1 (section 2.2.6), multiple top - level data types can be serialized
into the same type serialization stream, in the same way that mult iple parameters in a procedure are

marshaled into an octet stream. All top - level data types in the same octet stream MUST be serialized
by using the same transfer syntax as specified in the Common Type Header.

2.2.7.2 Private Header

In type serialization version 2, the private header MUST precede all top - level data types in the octet

stream.

The private type header MUST be aligned on a 16 -byte boundary. If the length of the serialized top -
level data type in the octet stream is not a multiple of 16 octets, the data must be padded at the end
to ensure that its total length is an integral multiple of 16 octets in length.

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

ObjectBufferLength

Filler

...

...

ObjectBufferLength (4 bytes): Indicates the length of a serialized top - level data type in the octet

stream. It MUST include the padding length and exclude the header itself.

Filler (12 bytes): Reserved field. MUST be set to 0 (zero).

72 / 183

[MS -RPCE-Diff] - v20171201
Remote Procedure Call Protocol Extensions
Copyright © 2017 Microsoft Corporation
Release: December 1, 2017

3 Protocol Details

RPC extensions preserve the DCE 1.1: RPC Specification [C706] model of operation between an
initiator (or client) and a responder (or server). RPC has two protocol variants: connection -oriented
and connectionless. The followi ng sections first specify protocol details that are common between
connectionless RPC and connection -oriented RPC protocol variants and then specify details particular
to each.

3.1 Connectionless and Connection -Oriented RPC Protocol Details

This section defines the protocol details that are common between connectionless RPC and connection -
oriented RPC protocol variants.

3.1.1 Common Details

This section defines the protocol details that are common between the client and server roles.

3.1.1.1 Abstract Data Model

3.1.1.1.1 Security Context Handle

Security Context Handle : A security context handle is created and populated by the security
provider but is used by the RPC runtime and higher - level protocols, as specified in sections 3.2.1.4.1
and 3.3.1.5.2. The security context handle is obtained by calling an implementation -specific

equivalent of the abstract GSS_Accept_sec_context on the server or GSS_Init_sec_context on
the client, as specified in [RFC2743]. The handle and associated resource s are released by calling the
implementation -specific GSS_Delete_sec_context equivalent.

The security context handle can be queried using the implementation -specific equivalent of
GSS_Inquire_context as specified in [RFC2743]. The information obtained from the context MUST
include the following:

Á Context Identifier : A value generated by cryptographic hash (and therefore reliably unique),
which can be used as a cross -process identifier of the security context negotiated between the
client and server during pa cket protected connectionless RPC. This value is communicated through
the key_vers_num described previously in section 2.2.3.4 and in [C706].

Á Error Value : The error value returned by the security provider if an error results during the
construction of the security context.

Á Security Provider Identifier

Á Client Credential Identity , as specified in section 3.2.1.4.1.

Á Authentication Level

Á Impersonation Level , as specified in section 2.2.1.1.9.

Á Token/Authorization Context , as specified in [MS -DTYP] section 2.5.2. This token is created by
the authentication protocols when the RPC client and server authenticate, as specified in [C706]
section 13.1 "The Generic RPC Security Model". When the Kerberos authentication protocol is used
the token is constructed as in [MS -KILE] section 3.4.5.3 "Processing Authorization Data". When

the NTLM authentication protocol is used the token is constructed as in [MS -APDS] section 3.1.5
"Processing Events and Sequencing Rules". This token can be used for impersonation or obtaining
the u ser SID or a group SID related to the RPC caller, as specified in Abstract Interface
GetRpcImpersonationAccessToken (section 3.3.3.4.3.1).

73 / 183

[MS -RPCE-Diff] - v20171201
Remote Procedure Call Protocol Extensions
Copyright © 2017 Microsoft Corporation
Release: December 1, 2017

3.1.1.1.2 Client Credential Handle

Client Credential Handle : A client credential handle is a reference to a specific set of cli ent
identity credentials. A client credential handle is a parameter used when creating a security

context handle . The client credential handle is obtained by calling an implementation -specific
equivalent of the abstract GSS_Acquire_cred call as specified i n [RFC2743]. The handle and
associated resources are released by calling the implementation -specific GSS_Release_cred
equivalent.

The value of the client credential handle MAY be used to match client identities. In those
implementations, if two handle valu e matches, then the client identities (and credentials) MUST be
guaranteed to be the same.

3.1.1.1.3 Authorization Policy

This extension introduces authorization policies that an administrator on the server machine can
deploy that restrict access to all RPC interfac es on the server.

RestrictRemoteClients : A 32 -bit value that forces RPC to perform an additional security checks for
all interfaces. The scope of this ADM element is global to the RPC server. <59> The possible values

are the following:

Flag Value Description

RPC_RESTRICT_REMOTE_CLIENT_NONE 0 Causes the server to bypass the RPC interface
restriction.

RPC_RESTRICT_REMOTE_CLIENT_DEFAULT 1 All remote anonymous calls are rejected by the RPC
runtime except calls coming in through named pipes
(ncacn_np). If an int erface is registered with the
RPC_IF_ALLOW_CALLBACKS_WITH_NO_AUTH flag,
then the interface is not restricted.

RPC_RESTRICT_REMOTE_CLIENT_HIGH 2 All remote anonymous calls are rejected by the RPC
runtime with no exemptions.

EnableAuthEpResolution : A Boolean value global to the RPC client runtime that enables

authenticated calls to the Endpoint Mapper. If the server's RestrictRemoteClients value is set to
RPC_RESTRICT_REMOTE_CLIENT_DEFAULT or RPC_RESTRICT_REMOTE_CLIENT_HIGH, the RPC
Endpoint Mapper interface MUST not be accessible anonymously. Typically, an RPC client that
attempts to make a call using a dynamic endpoint will first query the RPC Endpoint Mapper on the
server to determine what endpoint it SHOULD connect to. This query is performed an onymously,
even if the RPC client call itself is performed using RPC security. The RPC client runtime SHOULD
be configurable to perform an authenticated query to the Endpoint Mapper. This authenticated

query MUST only be performed if the actual RPC client call uses RPC authentication. <60>

There is no way for a client to discover if the EndPoint Mapper requires authenticated calls. As
described in [C706] section 2.12.4, a client can explicitly resolve a partially bound server binding
handle by calling the eq uivalent of rpc_ep_resolve_binding . A partially bound server binding
handle will also be automatically resolved by the RPC runtime when doing an RPC call using a

partially bound server binding handle. In both cases, there is no way for a client to force an
authenticated query to the end point mapper. The query to the end point mapper will use the

partially bound server binding handle security information to interact with the EndPoint Mapper. As
a consequence, if the client is not doing a secure call to the server, it won't be able to interact with
an EndPoint mapper if the EnableAuthEpResolution flag is set.

RPC_IF_ALLOW_CALLBACKS_WITH_NO_AUTH : A Boolean value maintained in the scope of an
RPC interface that overrides the behavior of RestrictRemoteClients wh en it is set to

74 / 183

[MS -RPCE-Diff] - v20171201
Remote Procedure Call Protocol Extensions
Copyright © 2017 Microsoft Corporation
Release: December 1, 2017

RPC_RESTRICT_REMOTE_CLIENT_DEFAULT, and allows the interface to process unauthenticated
calls. <61>

When processing a receive Server Call, an implementation of this protocol must perform one of the
following actions depending on the value of the RestrictRemoteClients ADM element:

Á 0 : Perform no additional checks and consider this check as successful.

Á 1 : Examine the Server Call ADM element to determine if there is a Security Context ADM
element associated with this call. If a Security Contex t exists, then this check is considered as
successful. If there is no Security Context, then examine the RPC Interface ADM element for this
Call to determine if the RPC_IF_ALLOW_CALLBACKS_WITH_NO_AUTH flag is set. If this flag
is set, then consider this ch eck as successful. If this flag is not set, then examine the Server
Connection ADM element to determine if the transport protocol is ncanc_np. If this transport

protocol is ncacn_np, then this check is considered as successful; otherwise, consider this che ck
as failed

Á 2 : Examine the Server Call ADM element to determine if there is a Security Context ADM

element associated with this call. If a Security Context exists, then this check is considered as
successful; otherwise, consider this check as failed.

The RestrictRemoteClients ADM element has no default value and implementations of this protocol

MUST determine the value through an implementation manner. <62> A higher - layer protocol MAY
provide additional authorization checks that are enforced on the Server Call. If any of the checks fail,
then an implementation of this protocol MUST respond to the client with a RPC_FAULT PDU and
terminate the connection.

3.1.1.2 Timers

There are no timers that are common between connectionless RPC and connection -oriented RPC
protocol variants.

3.1.1.3 Initialization

There is no initialization that is common between connectionless RPC and connection -oriented RPC
protocol variants.

3.1.1.4 Higher -Layer Triggered Events

3.1.1.4.1 Causal Ordering

These extensions allow for higher - level protocol s to issue method calls that are said to be causally
ordered. If any two method calls N and N+1 are specified to be causally ordered on the client, these
extensions MUST ensure that N is dispatched before N+1 on the server. On the client, the exact way
in which method calls are specified to be causally ordered is implementation -specific. On the server,
the exact way in which dispatch of N is determined to be complete so that N+1 can be dispatched is

also implementation -specific.

3.1.1.4.2 Impersonate Client

These extensions allow higher - layer protocols to use a security context to make runtime authorization
decisions on the server. When a higher - layer protocol requests the RPC runtime to impersonate the
client on the server, the RPC local server interface retrieves the security context (section 3.3.1.5.2.2)
and makes it available to the higher - layer protocol in an implementation -specific manner for the

higher - layer protocol's use in future authorization decisions. If a security context is not avai lable for
the connection, the attempt to impersonate the client fails. See section 3.3.3.4.3 for details on the
higher - level trigger event associated with retrieving the client's identity.

75 / 183

[MS -RPCE-Diff] - v20171201
Remote Procedure Call Protocol Extensions
Copyright © 2017 Microsoft Corporation
Release: December 1, 2017

3.1.1.5 Message Processing Events and Sequencing Rules

3.1.1.5.1 Processing Extensions Details

3.1.1.5.1.1 Extension in NDR Transfer Syntax

Section 2.2.4 specifies the IDL extensions that affect the syntax and processing of the messages.

3.1.1.5.1.1.1 __int3264

__int3264, as specified in [MS -DTYP] section , is represented in the octet stream as 4 octets in NDR
transfer syntax. On 32 -bit platf orms, it is represented as a 4 -byte integer in memory. On 64 -bit

platforms, it is represented as an 8 -byte integer, and the higher 4 bytes are truncated on the sender
side during marshaling and extended appropriately (signed or unsigned) on the receiving s ide during
unmarshaling.

3.1.1.5.1.1.2 Binding Handle Extension

[C706] section 4.3.5 specifies requirements for binding handle usage. In the Remote Procedure Call
Protocol, a binding handle MAY appear anywhere in a method's list of parame ters. <63>

3.1.1.5.2 Indicating Octet Stream as Invalid

The RPC runtime MUST indicate to higher - layer protocols on the client about invalid octet streams,
including different data consistency check failures, as specified in s ection 3.1.2.5.1. On the server
side, the RPC runtime MUST handle an invalid octet stream, as specified in section 3.1.3.5.2.

3.1.1.5.3 Strict NDR/NDR64 Data Consistency Check

These extensions update the DCE 1.1: RPC Specification [C706] by specifying that, during
unmarshaling, invalid octet streams SHOULD be rejected by enforcing a set of rules referred to as
strict data consistency checks. All the consistency check rules speci fied in the following sections are
also applicable to NDR64 transfer syntax. This is often referred to as robust check.

The consistency checks are grouped into categories called target levels. The two target levels are
target level 5.0 (as specified in se ction 3.1.1.5.3.2) and target level 6.0 (as specified in section
3.1.1.5.3.3). Target level 6.0 is a strict superset of target level 5.0.

A consistency check is the act of ascertaining a certain relation between two or more values in the
octet stream insid e an implementation of these extensions. If the relation is true, the consistency
check MUST be regarded as passing. If the relation is not true, the consistency check MUST be
regarded as failing. The set of consistency check rules follow, and correlation validation is the most
important one.

3.1.1.5.3.1 Correlation Validation

Correlation validation is performed between two fields or two parameters during unmarshaling. The
fields/parameters that can be correlated are defined using the prod uctions specified in [C706] section

4.4.1. In the productions that specify IDL syntax, in production 67 -69, the field with a specific
<field_attribute> is defined as being correlated to the argument specified by <Identifier>. The
argument identified by <Id entifier> is defined as dictating the correlation.

The correlation validation process MUST validate the consistency between the two correlated values in

the octet stream according to the rules that follow. Correlation validation MUST be regarded as
succeed ing if the two values are evaluated to be equal to each other; otherwise, the validation MUST
be regarded as failing. There are several basic types of correlation validation:

76 / 183

[MS -RPCE-Diff] - v20171201
Remote Procedure Call Protocol Extensions
Copyright © 2017 Microsoft Corporation
Release: December 1, 2017

Á Conformance correlation validation: Succeeds if the maximum count is equal to the evaluation
result for the correlated argument where the correlated argument is determined via the production

rules given earlier in this section.

Á Varying correlation validation: Succeeds if the actual count is equal to the evaluation result for the

corre lated argument where the correlated argument is determined via the production rules given
earlier in this section.

Á Offset correlation validation: Succeeds if the offset count is equal to the evaluation result for the
correlated argument where the correlate d argument is determined via the production rules given
earlier in this section.

Á Union correlation validation: Succeeds if the union tag is equal to the evaluation result for the
correlated argument where the correlated argument is determined via the produ ction rules given

earlier in this section.

In these extensions, an expression is allowed in conformance, varying, or union, as specified in section
2.2.4.7. Correlation validation SHOULD check the correlation between the correlated values after the

expres sion is evaluated, and MUST succeed if the correlated values are equal after evaluating the
expression.

For correlation validation usage, see the example in section 4.6.

3.1.1.5.3.2 Target Level 5.0

This section specifies target level 5.0 stric t NDR/NDR64 data consistency check correlation validation
checks. Target level 5.0 SHOULD <64> be supported.

3.1.1.5.3.2.1 Correlation Validation Checks

These extensions clarify the interpretation as specified in [C706] for the cases that follow with regard

to different correlation validation scenarios.

3.1.1.5.3.2.1.1 Maximum Count of a Conformant Array or Conformant Varying

Array Is Dictated by Another Parameter or Field of a Structure

This target level implementation of these extensions SHOULD vali date the conformance correlation
between the maximum count of the conformant array and the parameter or field dictating the

conformance. If the conformant correlation validation fails, the implementation MUST indicate the
octet stream as invalid.

3.1.1.5.3.2.1.2 Maximum C ount of a Conformant Structure or Conformant Varying

Structure Is Dictated by a Field of the Structure

This target level implementation of these extensions SHOULD validate the conformance correlation

between the maximum count of the conformant array and th e field dictating the conformance. If the
conformance correlation validation fails, the implementation MUST indicate the octet stream as invalid.

3.1.1.5.3.2.1.3 Maximum Count of a Conformant Array or Conformant Varying

Array Is a Constant Defined in IDL File

This target level implementation of these extensions SHOULD validate the conformance correlation

between the maximum count of the conformant array and the constant. If the conformance correlation
validation fails, the implementation MUST indicate the octet stream as i nvalid.

3.1.1.5.3.2.1.4 Maximum Count of a Conformant Structure or Conformant Varying

Structure Is a Constant

77 / 183

[MS -RPCE-Diff] - v20171201
Remote Procedure Call Protocol Extensions
Copyright © 2017 Microsoft Corporation
Release: December 1, 2017

This target level implementation of these extensions SHOULD validate the conformance correlation
between the maximum count of the conformant array and the constan t. If the conformance correlation

validation fails, the implementation MUST indicate the octet stream as invalid.

3.1.1.5.3.2.1.5 first_is of a Varying Array or Conformant Varying Array Is

Specified by Another Parameter or Field of a Structure

This target level implementation of these extensions SHOULD validate the offset correlation between
the offset of the varying array and the parameter or field dictating the offset. If the offset correlation
validation fails, the implementation MUST indicate the octet stream as invalid.

3.1.1.5.3.2.1.6 first_is of a Conformant Varying Structure Is Specified by a Field

in the Structure

This target level implementation of these extensions SHOULD validate the offset correlation between
the offset of the varying array and the field dictating the offset. If the offset correlation validation fails,
the implementation MUST indicate the octet stream as invalid.

3.1.1.5.3.2.1.7 first_is of a Varying Array, Conformant Varying Array, or

Conformant Varying Structure Is Not Present in IDL

This target - level implementation of these extensions SHOULD validate that the offset of the varying
array equals 0 (zero). If the offset value is not 0 (zero), the implementation MUST indicate the octet
stream as invalid.

3.1.1.5.3.2.1.8 Actual Count of a Varying Array or Conformant Varying Array Is

Dic tated by Another Parameter or Field of a Structure

This target level implementation of these extensions SHOULD validate the varying correlation between
the actual count of the varying array and the parameter or field dictating the actual count. If the
vary ing correlation validation fails, the implementation MUST indicate the octet stream as invalid.

3.1.1.5.3.2.1.9 Actual Count of a Conformant Varying Structure Is Dictated by a

Field in the Structure

This target level implementation of these extensions SHOULD validate the varying correlation between
the actual count of the varying array and the field dictating the actual count. If the varying correlation
validation fails, the implementation MUST indicate the octet stream as invalid.

3.1.1.5.3.2.1.10 Maximum Count of a Conformant and Varying String Is Dictated

by Another Parameter or Field of a Structure

This target level implementation of these extensions SHOULD validate the conformance correlation
between the maximum count of the conformant and varying string against the parameter or field
dictating the conformance, and it SHOULD also validate that the offset of the string is equal to 0
(zero). If either validation fails, the implementation MUST indicate the octet stream as invalid.

3.1.1.5.3.2.1.11 Union Validation

Similar to conformant validation, this ta rget - level implementation of these extensions SHOULD
validate the discriminant of the union against the representation of the union tag, as specified in
[C706] section 14.3.8. If the union correlation validation fails, the implementation MUST indicate the
octet stream as invalid.

3.1.1.5.3.2.1.12 General Conformant Varying Validation

78 / 183

[MS -RPCE-Diff] - v20171201
Remote Procedure Call Protocol Extensions
Copyright © 2017 Microsoft Corporation
Release: December 1, 2017

In all conformant varying cases, the maximum count MUST be equal to or greater than the sum of
actual count and offset. If this validation fails, the implementation MUST treat the octet stream as

invalid.

3.1.1.5.3.2.2 Additional Limitations

These extensions add the following limitations to those as specified in [C706].

3.1.1.5.3.2.2.1 Limiting Maximum Count and Octet Stream Length

These extensions specify that a conformant array or conformant a nd varying string SHOULD have, at
most, 2 31 -1 elements in each dimension. <65>

3.1.1.5.3.2.2.2 strict_context_handle

A context handle created by a method belonging to one interface SHOULD NOT be accepted by a
method belonging to another interface when a strict_context_han dle consistency check is activated.
For more information on syntax details, see section 2.2.4.15.

3.1.1.5.3.2.2.3 Rejecting Insufficient Octet Stream

An octet stream MUST contain sufficient data to unmarshal all the required parameters.

Implementation of these extensions SHOULD indicate the octet stream as invalid if there is insufficient
data.

3.1.1.5.3.2.2.4 range Attribute to Limit the Scope of Integral Values and the

Number of Elements in Pipe Chunks

In target level 5.0 of strict NDR/NDR64 data consistency checking, implementation of these extensions

can limit the allowed scope for integral types and pipes. If the integral data value is out of the
specified range scope, the implementation SHOULD indicate the octet stream as invalid.

Implementation of these extensions can also limit the acceptable range of elements in a pipe chunk.

The implementation SHOULD indicate the octet stream as invalid if the number of elements in a pipe
chunk is out of the specific range scope. For syntax information, see section 2.2.4.14.1.

3.1.1.5.3.2.2.5 auto_handle Deprecat ion

Implementation of this level of the extensions SHOULD NOT accept the auto_handle attribute if
specified on an interface. <66>

3.1.1.5.3.2.2.6 Ignoring Alignment Gap

The content of alignment gaps, either within a structure or before an item in the octet stream,
SHOULD be ignored.

3.1.1.5.3.3 Target Level 6.0

This section specifies target level 6.0 strict NDR/NDR64 data consistency check limitations. <67>

3.1.1.5.3.3.1 Additional Limitations

3.1.1.5.3.3.1.1 type_strict_context_handle

An implementation of these extensions at this target level can activate the type strict context handle.
When it is activated, the implementation SHOULD reject the use of context handles as an argument if

79 / 183

[MS -RPCE-Diff] - v20171201
Remote Procedure Call Protocol Extensions
Copyright © 2017 Microsoft Corporation
Release: December 1, 2017

the argument type on the method being called is diff erent from the argument type on the method that
created the context handle.

Context handles defined with unique type names are treated as being of different types for the
purpose of the type_strict_context_handle check. For example, the following two cont ext handles are

two different types.

 typedef [context_handle] void * PCTXT1;

 typedef [context_handle] void * PCTXT2;

For syntax information, see section 2.2.4.16.

3.1.1.5.3.3.1.2 Unique or Full Pointer to Conformant Array Consistency Check

A conformant array or conformant and varying string correlated with another parameter or field can
be referred by a unique pointer or full pointer. While it is allowed to have a nonzero correlated value

with a NULL pointer (as specified in [C706] section 1 4.3.10), implementations of these extensions

SHOULD indicate the octet stream as invalid if all of the following conditions are met:

Á Correlated value evaluates to be nonzero.

Á The unique or full pointer that refers to the conformant array or conformant and varying string is
NULL (0).

Á The conformant array or conformant and varying string does not have the
disable_consistency_check attribute as specified in section 2.2.4.17. <68>

3.1.1.5.3.3.1.3 range Attribute to Limit the Range of Maximum Count of

Conformant Array and Strin g Length

In target level 6.0 of strict NDR/NDR64 data consistency check, in addition to the target level 5.0
range checks, implementations of these extensions can also limit the acceptable range for conformant
array and string. Implementations can indicate the acceptable value range for the maximum count of

the conformant array when a range is applied to the conformance. The implementation SHOULD
indicate the octet stream as invalid if the maximum count of a conformant array is not in the specified
acceptab le range.

When a range is applied to a conformant and varying string without correlation, it indicates the
acceptable length, including the NULL terminator, of the string. The implementation SHOULD indicate
the octet stream as invalid if the string length, including terminator, is outside the acceptable range.
For syntax information, see section 2.2.4.14.2.

3.1.1.5.4 Restriction on Remote Anonymous Calls

For security reasons, an implementation of these extensions MAY choose to reject remote anonymous
calls. <69>

3.1.1.5.5 Retur ning Win32 Error Values

Whenever a server implementation returns an error code in the fault or reject PDU, the client

implementation MUST use the following conversion table and return the corresponding Win32 error
code to the client application. The term " not mapped" indicates that the error code value returned to
the client application is the same as in the fault or reject PDU. Otherwise, the name of the value
defined in [MS -ERREF] that is to be returned is shown. The Status Codes are defined in [C706] sec tion
N.2.

80 / 183

[MS -RPCE-Diff] - v20171201
Remote Procedure Call Protocol Extensions
Copyright © 2017 Microsoft Corporation
Release: December 1, 2017

Status Code Win32 Error Code

nca_s_comm_failure RPC_S_COMM_FAILURE

nca_op_rng_error RPC_S_PROCNUM_OUT_OF_RANGE

nca_unk_if RPC_S_UNKNOWN_IF

nca_wrong_boot_time Not mapped.

nca_s_you_crashed RPC_S_CALL_FAILED

nca_proto_error RPC_S_PROTOCOL_ERROR

nca_out_args_too_big RPC_S_SERVER_OUT_OF_MEMORY

nca_server_too_busy RPC_S_SERVER_TOO_BUSY

nca_unsupported_type RPC_S_UNSUPPORTED_TYPE

nca_s_fault_int_div_by_zero RPC_S_ZERO_DIVIDE

nca_s_fault_addr_error RPC_S_ADDRESS_ERROR

nca_s_fault_fp_div_zero RPC_S_FP_DIV_ZERO

nca_s_fault_fp_underflow RPC_S_FP_UNDERFLOW

nca_s_fault_fp_overflow RPC_S_FP_OVERFLOW

nca_s_fault_invalid_tag RPC_S_INVALID_TAG

nca_s_fault_invalid_bound RPC_S_INVALID_BOUND

nca_rpc_version_mismatch RPC_S_PROTOCOL_ERROR

nca_unspec_reject RPC_S_CALL_FAILED

nca_s_bad_actid RPC_S_CALL_FAILED_DNE

nca_who_are_you_failed RPC_S_CALL_FAILED

nca_manager_not_entered RPC_S_CALL_FAILED_DNE

nca_s_fault_cancel RPC_S_CALL_CANCELLED

nca_s_fault_ill_inst RPC_S_ADDRESS_ERROR

nca_s_fault_fp_error RPC_S_FP_OVERFLOW

nca_s_fault_int_overflow RPC_S_ADDRESS_ERROR

nca_s_fault_unspec RPC_S_CALL_FAILED

nca_s_fault_remote_comm_failure Not mapped.

nca_s_fault_pipe_empty RPC_X_PIPE_EMPTY

nca_s_fault_pipe_closed RPC_X_PIPE_CLOSED

nca_s_fault_pipe_order RPC_X_WRONG_PIPE_ORDER

nca_s_fault_pipe_discipline RPC_X_PIPE_DISCIPLINE_ERROR

nca_s_fault_pipe_comm_error RPC_S_COMM_FAILURE

81 / 183

[MS -RPCE-Diff] - v20171201
Remote Procedure Call Protocol Extensions
Copyright © 2017 Microsoft Corporation
Release: December 1, 2017

Status Code Win32 Error Code

nca_s_fault_pipe_memory RPC_S_OUT_OF_MEMORY

nca_s_fault_context_mismatch RPC_X_SS_CONTEXT_MISMATCH

nca_s_fault_remote_no_memory RPC_S_SERVER_OUT_OF_MEMORY

nca_invalid_pres_context_id RPC_S_PROTOCOL_ERROR

nca_unsupported_authn_level RPC_S_UNSUPPORTED_AUTHN_LEVEL

nca_invalid_checksum RPC_S_CALL_FAILED_DNE

nca_invalid_crc RPC_S_CALL_FAILED_DNE

nca_s_fault_user_defined Not mapped.

nca_s_fault_tx_open_failed Not mapped.

nca_s_fault_codeset_conv_error Not mapped.

nca_s_fault_object_not_found Not mapped.

nca_s_fault_no_client_stub Not mapped.

3.1.1.6 Timer Events

There are no timer events that are common between connectionless RPC and connection -oriented RPC
protocol v ariants.

3.1.1.7 Other Local Events

There are no other local events that are common between connectionless RPC and c onnection -oriented

RPC protocol variants.

3.1.2 Client Details

3.1.2.1 Abstract Data Model

This section specifies a conceptual model of possible data organization that an imple mentation
maintains to participate in this protocol. The described organization is provided to facilitate the
explanation of how the protocol behaves. This document does not mandate that implementations
adhere to this model as long as their external behavi or is consistent with that described in this

document.

3.1.2.1.1 Server Binding Handle

This document extends the definition of a server binding handle in the following way:

Á AuthIdentity : [C706] describes the auth_identity handle as a handle to a data structure that
contains the client's authentication and authorization credentials. To be compliant with this
extension, AuthIdentity replaces the generic auth_identity handle and MUST store a Client

Credential Handle . See section 3.1.2.4.1 for details on setting the Auth Identity by the higher -
layer protocol.

82 / 183

[MS -RPCE-Diff] - v20171201
Remote Procedure Call Protocol Extensions
Copyright © 2017 Microsoft Corporation
Release: December 1, 2017

3.1.2.2 Timers

There are no timers that are com mon between clients for connectionless RPC and connection -oriented
RPC protocol variants.

3.1.2.3 Initialization

There is no initialization that is common between clients for connectionless RPC and connection -
oriented RPC protocol variants.

3.1.2.4 Higher -Layer Triggered Events

3.1.2.4.1 Set Server Binding Handle Client Credentials

The higher layer protocol MAY option ally set security information for the server binding handle using

the equivalent of rpc_binding_set_auth_info() . Implementations of these extensions MUST set the
server binding handle's AuthIdentity using the output handle from calling an implementation -specific

equivalent of the abstract GSS_Acquire_cred call as specified in [RFC2743].

If the auth_identity parameter to rpc_binding_set_auth_info is NULL, the client MUST use the
default credentials of the current execution context by specifying GSS_C_NO_CRED ENTIAL.

If the auth_identity parameter to rpc_binding_set_auth_info includes credentials, the client
MUST use the supplied credentials when calling GSS_Acquire_cred .

3.1.2.5 Message Processing Events and Sequencing Rules

3.1.2.5.1 Indicating Invalid Octet Stream on Client

Implementations of these extensions MUST notify higher layers of inv alid octet streams, including data

consistency check failures, in an implementation -specific way. This can be through returning a status
code, throwing an exception, or in some other implementation -specific way that is not defined by this

specification. De tails on Win32 error codes are specified in [MS -ERREF].

3.1.2.6 Timer Events

None.

3.1.2.7 Other Local Events

3.1.2.7.1 Client Conformant Validation Processing for Response Data

In target level 5.0 of strict NDR/NDR64 data consistency check, as specified in section 3.1.1.5.3.2,
implementations of these extensions SHOULD perform the fo llowing correlation validation in the client
stub if the RPC runtime writes into client -provided memory during unmarshaling.

3.1.2.7.1.1 Maximum Count of a Conformant Array Is Dictated by Another Parameter

or Field of a Structure

This target level of implementation fo r these extensions MUST:

Á Capture the evaluation result of the parameter dictating the conformance before unmarshaling for
later use during unmarshaling.

83 / 183

[MS -RPCE-Diff] - v20171201
Remote Procedure Call Protocol Extensions
Copyright © 2017 Microsoft Corporation
Release: December 1, 2017

Á Indicate the octet stream as invalid during unmarshaling if the maximum count of the conformant
array of the response data exceeds the evaluation result of the parameter dictating the

conformance that was previously captured.

3.1.2.7.1.2 Offset and/or Actual Count of a Conformant Array Is Dictated by Another

Parameter or Field of a Structure

This target level of implementation for these extensions MUST:

Á Capture the evaluation result of the parameter dictating the conformance before unmarshaling for
later use during unmarshaling.

Á Indicate the octet stream as invalid during unmarshaling if the sum of offset and act ual count of

the conformant varying array of the response data exceeds the evaluation result of the parameter
dictating the conformance that was previously captured.

3.1.2.7.1.3 Maximum Count of a Conformant and Varying String Is Dictated by

Another Parameter

This tar get level of implementation for these extensions MUST:

Á Capture the evaluation result of the parameter dictating the conformance before unmarshaling for
later use during unmarshaling.

Á Indicate the octet stream as invalid during unmarshaling if the string l ength, including terminator,
of the response data exceeds the evaluation result of the parameter dictating the conformance
that was previously captured.

3.1.2.7.1.4 Maximum Count of Conformant Varying String Is Not Dictated by Other

Parameters or Fields

This target le vel of implementation for these extensions MUST:

Á Capture the string length, including terminator, before unmarshaling for later use during
unmarshaling.

Á Indicate the octet stream as invalid during unmarshaling if the string length, including terminator,

of the response data exceeds the evaluation result of the parameter dictating the conformance
that was previously captured.

3.1.2.7.1.5 Conformant Structure

This target level of implementation for these extensions MUST:

Á Capture the evaluation result of the field dictat ing the conformance before unmarshaling for later
use during unmarshaling.

Á Indicate the octet stream as invalid during unmarshaling if the maximum count of the conformant
structure of the response data exceeds the evaluation result of the field dictating the conformance

that was previously captured.

3.1.2.7.1.6 Conformant Varying Structure

This target level of implementation for these extensions MUST:

Á Capture the evaluation result of the field dictating the conformance before unmarshaling for later

use during unmarsha ling.

84 / 183

[MS -RPCE-Diff] - v20171201
Remote Procedure Call Protocol Extensions
Copyright © 2017 Microsoft Corporation
Release: December 1, 2017

Á Indicate the octet stream as invalid during unmarshaling if the sum of offset and actual count of
the conformant varying structure from the response data exceeds the evaluation result of the field

dictating the conformance that was previously captur ed. <70>

3.1.3 Server Details

3.1.3.1 Abstract Data Model

This section specifies the elements of the abstract data model that are common between servers for
connectionless RPC an d connection -oriented RPC protocol variants.

3.1.3.1.1 Table of Security Providers

Table of Security Providers : A server implementation MUST maintain an abstraction of a Table of
Security Providers indexed by Security Provider value as defined in section 2.2.1.1.7. The table

MUST have fields for security provider and principal name.

Higher - level protocols indicate to the RPC runtime when to add rows to the Table of Security
Providers using implementation -specific APIs. Once a row has been added to the Table of Security
Providers it cannot be removed or modified.

Many PDUs that arrive at a server have a field that selects a Security Provider (also called an
authentication type). These extensions MUST use the Security Provider in the PDU as a selector in the
Table of Security Providers to route the PDU for processing to the correct security provider.

3.1.3.2 Timers

There are no timers that are common between servers for connectionless RPC and connection -oriented
RPC protocol variants.

3.1.3.3 Initialization

3.1.3.3.1 Delay Use of Protocol Sequences on the Endpoint Mapper

On a system that supports a given protocol sequence, these extensions explicitly allow an endpoint

mapper instance to delay listening on that protocol sequence until at least one server using dynamic
endpoints on the system is listening on that protocol se quence.

Even though a system is fully capable of using a protocol sequence, it MAY choose not to listen on a
particular protocol sequence when no server is using it. Therefore, a client implementation of these
extensions MUST NOT assume that a system that is not listening on a particular protocol sequence is
necessarily incapable of supporting that protocol sequence. <71>

3.1.3.4 Higher -Layer Triggered Events

3.1.3.4.1 Retrieve Protocol Sequence

Implementations of th ese extensions MUST export to higher - layer protocols the capability to retrieve
the protocol sequence used for a particular remote procedure call (RPC). This information is available

using a binding handle as specified in [C706] section 6.2.1. Section 2.1 specifies the protocol
sequence strings corresponding to RPC transports.

3.1.3.4.2 Adding Elements to the Table of Security Providers

A higher - level protocol on the server can modify the Table of Security Providers to specify the security
providers that can be used to provide security for the context.

85 / 183

[MS -RPCE-Diff] - v20171201
Remote Procedure Call Protocol Extensions
Copyright © 2017 Microsoft Corporation
Release: December 1, 2017

1. The higher - layer protocol MUST specify a valid Security Provider value.

2. The higher - layer protocol MAY specify a server principal name depending on the requirements of

the security provider being added.

3. If the Security Provider value specified is valid, return RPC_S_OK (0x00000000). Otherwise,

return RPC_S_UNKNOWN_AUTHN_SERVICE (0x000006D3).

3.1.3.5 Message Processing Events and Sequencing Rules

3.1.3.5.1 Server Stub Memory Allocation Limit

An implementation MAY <72> choose to limit the size of server stub memory allocation.

3.1.3.5.2 Indicating Invalid Octet Stream in Server

When the RPC runtime determines that a network octet stream is invalid, it MUST indicate the failure

to the client. The form of the indication is dependent on whether the RPC protocol variant used is
connection -oriented or connectionless. For information about how a connection -oriented protocol

variant returns a server unmarsh aling failure to the client, see section 3.3.3.4.1. For information about
how a connectionless protocol variant returns a server unmarshaling failure to the client, see section
3.2.3.5.1. In either case, the status code returned MUST be 0x6f7.

Details abou t Win32 error codes are specified in [MS -ERREF].

3.1.3.5.3 Interpretation of Tower Encodings

These extensions change some details on how the tower encodings, as specified in [C706] Appendix L,

are interpreted. All provisions specified in [C706] that are not specific ally overridden here are
assumed to be the same as specified in [C706].

Á Implementations of these extensions MUST ignore the network address portion of the tower.
Therefore, the endpoint mapper MUST only accept interface registration of interfaces that are

running locally on the machine.

Á As specified, [C706] allows for any number of floors in the tower encoding. Implementations of
these extensions SHOULD reject towers with more than six floors.

3.1.3.6 Timer Events

There are no timer events that are common between servers for connectionless RPC and connection -
oriented RPC protocol variants.

3.1.3.7 Other Local Events

There are n o other local events that are common between servers for connectionless RPC and
connection -oriented RPC protocol variants.

3.2 Connectionless RPC Protocol Details

Connectionless RPC MAY <73> be supported; an implementation S HOULD instead fail connectionless
requests with an RPC_S_CANNOT_SUPPORT (0x000006e4) error.

86 / 183

[MS -RPCE-Diff] - v20171201
Remote Procedure Call Protocol Extensions
Copyright © 2017 Microsoft Corporation
Release: December 1, 2017

3.2.1 Common Details

3.2.1.1 Abstract Data Model

This section specifies a conceptual model of possib le data organization that an implementation
maintains to participate in this protocol. The described organization is provided to facilitate the
explanation of how the protocol behaves. This document does not mandate that implementations
adhere to this mode l as long as their external behavior is consistent with that described in this
document.

3.2.1.1.1 State Machines

Connectionless Protocol Machines ([C706] section 9.6) contains state machines for the client and
server roles. These extensions replace the state machines, as specified in [C706], with the state
machines specified in sections 3.2.2.1, 3.2.3.1 and 3.2.1.5.3.

3.2.1.1.2 Send Window (Call)

Send Window: The client and server SHOULD implement an abstraction of a send window in its call
object to support an implementation of a sliding window algorithm. The Windows -based c lient and
server call objects share a common packet -windowing implementation that maintains separate
windows for the data to be sent and received. For a particular call, the send window contains the
following properties:

Á Sent Fragment List : For every call, the client and server MUST maintain a Sent Fragment List

of fragment descriptors that represents the set of fragments that have been sent to the client or
server but for which a FACK has not yet been received.

The Sent Fragment List is maintained as a rin g buffer containing a number of fragment
descriptors. The maximum number of elements in the Sent Fragment List is limited by the
greater of the Outbound Fragment Window and Maximum_window_size .

Fragments are added to the Sent Fragment List when they are se nt, and are removed when a

FACK PDU is received for the corresponding fragment. Removing a fragment from the Sent

Fragment List enables further fragments to be sent.

Á Fragment_final : An unsigned 32 -bit integer representing the final fragment to be sent. It is
calculated using the size of the call to be sent divided by the Maximum_fragment_length .

Á Fragment_base : An unsigned 32 -bit integer representing the first unacknowledged fragment of
the call to be sent. It is zero initially and advanced when the receiver acknowledges one or more
additional fragments.

Á Outbound Fragment Window : The client and server maintain an unsigned 32 -bit integer

containing the window size that indicates the maximum number of unacknowledged fragments
that the remote client and server are ready to receive.

The value is initialized from the current value of the activity's Maximum_window_size .

Á Burst_length : The number of fragments to transmit at one time. Initially one; limited by the
Outbound Fragment Window . It is incremented when a FAC K is received and halved when a
receive times out as detected by the Packet Retransmission Timer . The minimum value is 0.

For details, see the discussion of Packet Transmission Behavior in section 3.2.1.5.3.

Á Send_serial_number : The serial number of the nex t packet to be sent. Initially zero;
incremented after every sent fragment and, for client implementations, every PING packet.

Á Fack_serial_number : The latest serial number acknowledged by the recipient. Initially zero;
updated when a received FACK or NOCAL L carries a higher value in its serial_num field.

87 / 183

[MS -RPCE-Diff] - v20171201
Remote Procedure Call Protocol Extensions
Copyright © 2017 Microsoft Corporation
Release: December 1, 2017

Á Maximum PDU Length : The size of the largest packet that can be sent and received by the
transport. Set to 1,024 bytes for the first call of an activity. At the end of the call, the current

value is stored i n the activity, and the next call begins with the stored value. When a FACK or
NOCALL is received, the value is updated to the lower of the local transport limit and the value in

the packet's max_tsdu field.

Á Maximum_fragment_length : The largest amount of s tub data that fits in a single PDU. It is
equal to the Maximum PDU Length minus 0x80 bytes for the RPC header and the number of
bytes required for the security trailer. It is updated whenever Maximum PDU Length is updated.

3.2.1.1.3 Receive Window (Call)

Receive Win dow : The client and server SHOULD implement an abstraction of a receive window in

its call object to support an implementation of a sliding window algorithm. The Windows -based client
and server call objects share a common packet -windowing implementation th at maintains separate
windows for the data to be sent and received. For a particular call, the receive window contains the
following properties:

Á Received Fragment List : For every call, the client and server MUST maintain a list of received
fragments indexed by fragment number, as defined in [C706] section 12.5.2.16, and also

containing the fragment's serial number. The list is used to collect fragments until all fragmen ts
for the call have been received. All fragments have been received when the receiver has received
a fragment with the flag value lastfrag , as defined in [C706] section 12.5.2.3, and all fragments
are present from fragment number zero up to and including the fragment number of the fragment
with lastfrag set.

The Received Fragment List is initially empty at the beginning of a call. The Received
Fragment List is deleted when a call is completed.

Á Receive Fragment Base : For a call, an integer variable that ind icates the lowest fragment
number which can be received and added to the Received Fragment List . A fragment with a
fragment number greater than or equal to the Receive Fragment Base value is added to the
Received Fragment List .

Á Receive serial number : The l atest fragment serial number received in this call.

3.2.1.2 Timers

There are no timers that are common between the client and server.

3.2.1.3 Initialization

There is no initialization that is common between the client and server.

3.2.1.4 Higher -Layer Triggered Events

3.2.1.4.1 Building and Using a Security Context

To make a secure call, a security context needs to be created before it can be used. The process of
creation involves exchanging one or more messages between the client and server implementations of
a security provider. This process is also called bu ilding a security context. During the process of
building a security context, a security provider can optionally exchange messages with an entity other
than the client or server (for example, a Key Distribution Center (KDC)), but this exchange is not
addre ssed in this document. The scope of a built security context is the activity. If a client wants to

use a security context on a different activity, it MUST totally rebuild it for that different activity.

88 / 183

[MS -RPCE-Diff] - v20171201
Remote Procedure Call Protocol Extensions
Copyright © 2017 Microsoft Corporation
Release: December 1, 2017

Upon receiving and processing an authentication toke n at any point in the authentication on either the
client or server, the security provider MUST indicate to RPC runtime one of three abstract results from

the processing: an error, a success, or a request for further security legs, as specified in [RFC2743]. If
the security provider indicates an error, the RPC runtime takes recovery action that is dependent on

the location of the error.

The process of building a security context MUST start on the client. The client begins the process by
using the server bi nding handle's AuthIdentity to create an authentication token using the server
binding handle's specified security provider identifier by invoking an implementation -specific
equivalent of the abstract GSS_Init_sec_context call, as specified in [RFC2743]. T he client MUST
choose a value for the key_vers_num field of the sec_trailer_cl structure such that it is unique within
the scope of the given activity. The client then MUST use the token to sign or seal one or more

request PDUs and then sends them to the s erver. If any of these steps encounters a failure, the client
RPC runtime MUST set the activity's Discard flag to TRUE and discard the activity unless it is
expecting responses to other calls belonging to the activity. For details on multiple calls on the same
activity, see section 3.2.1.5.2

When the server receives a PDU containing a nonzero auth_proto field, it checks the key_vers_num

field of the PDUs sec_trailer_cl structure. If the server does not already have a security context in the

Table of Securit y Contexts matching the key_vers_num , it MUST do the following:

Á Locate a Security Provider from the Table of Security Providers using the value in the auth_proto
field.

Á Request that it create a new security context.

Á Create a token through an implementation -specific equivalent of the abstract
GSS_Accept_sec_context call, as specified in [RFC2743].

The server MUST send the token to the client by creating a binding handle to the client and calling

conv_who_are_you_auth with the token in the in_data parameter. If the token is large enough to
require calls to conv_who_are_you_auth_more , the server MUST preserve the token in the
server's security buffer in the activity entry in the Table of Activity IDs until it has sent the entire
token to the client. If the sec urity provider returns success from processing the authentication token,

the security context is successfully created. If any of these steps encounters an error, the server
SHOULD send a fault or reject PDU, as appropriate, and discard the security context .

The client MUST provide the token to its security provider by using an implementation -specific

equivalent of the abstract GSS_Init_sec_context call, as specified in [RFC2743], and MUST send the
response token to the server in the out_data parameter of th e conv_who_are_you_auth . If the
response token is large enough to require calls to conv_who_are_you_auth_more , the client MUST
preserve the token in the client activity's security buffer , until it has returned all of the token to the
server. If the securit y provider returns success from processing the authentication token, the security
context is successfully created. If any of these steps encounters an error, the client SHOULD send a

fault or reject PDU, as appropriate, and discard the security context.

If the security provider indicates a request for further security legs, the server SHOULD send a nocall
PDU to the client and discard the security context.

For information on client and server state machines, see sections 3.2.2.1 and 3.2.3.1.

Once negotiate d, a security context SHOULD be maintained by both client and server implementations
for the lifetime of the activity it is negotiated on, unless the security provider indicates that the
context has expired by returning the SEC_E_CONTEXT_EXPIRED error when the RPC runtime attempts

to use the security context.

If security contexts are maintained, then the client SHOULD store the resultant security context
handle in the client activities security context handle property. The client SHOULD store the client
cre dential handle used to create the security context handle in the client activity's client

89 / 183

[MS -RPCE-Diff] - v20171201
Remote Procedure Call Protocol Extensions
Copyright © 2017 Microsoft Corporation
Release: December 1, 2017

credential handle property. The server SHOULD store the resultant security context handle in the
appropriate Table of Activity IDs Table of Security Contexts .

If the client received an error using the security context, it MUST attempt to build another security
context as described previously in this section.

If the server receives an error using the security context, the packet that it is currently being
processed is d iscarded.

3.2.1.4.1.1 Using a Security Context

After a security context is built, the security context (referenced by the security context handle)
can be used by the RPC runtime and higher - level protocols to perform authorization decisions. Besides
using the security context for authorization decisions, the RPC runtime can also use the security

context to create a logical stream of data that is pro tected from tampering and information disclosure
on the network.

The amount of protection applied depends on the authentication level for the security context

requested by the client when the security context is created. The authentication level is applie d in two
dimensions:

Á In the first dimension, the authentication level controls what capabilities the RPC runtime MUST

request from the security provider when the security context is being built, as detailed in the first
table that follows in this section. It is possible for a security provider to not be able to provide a
certain capability. In this case, the lack of the capability MUST be considered by the RPC runtime
as equivalent to the security provider returning an error and is handled as specified in t he
previous section.

Á In the second dimension, the authentication level controls how the RPC runtime MUST perform
PDU protection for the different PDU segments using the security context as detailed in the second

table that follows in this section.

The fol lowing table specifies the abstract capability that the RPC runtime MUST request from the
security provider when the security context is being created. The capabilities are further specified in

[RFC2743] section 1.2.1.2. The capabilities requested at each level include the ones requested at the
previous level.

 Authentication level Capability requested

RPC_C_AUTHN_LEVEL_CONNECT None

RPC_C_AUTHN_LEVEL_PKT Replay Detect

RPC_C_AUTHN_LEVEL_PKT_INTEGRITY Sequence Detect, Integrity

RPC_C_AUTHN_LEVEL_PKT_PRIVACY Confidentiality

As specified earlier in this section, once the security context is built, the RPC runtime MUST also use
the authentication level to determine how the different PDU segments are protected.

Header signing is not supported in connectionless RPC.

 Authentication level PDU header PDU body sec_trailer

RPC_C_AUTHN_LEVEL_CONNECT None None None

RPC_C_AUTHN_LEVEL_PKT None None None

RPC_C_AUTHN_LEVEL_PKT_INTEGRITY None Integrity None

90 / 183

[MS -RPCE-Diff] - v20171201
Remote Procedure Call Protocol Extensions
Copyright © 2017 Microsoft Corporation
Release: December 1, 2017

 Authentication level PDU header PDU body sec_trailer

RPC_C_AUTHN_LEVEL_PKT_PRIVACY None Confidentiality None

In the preceding table, "None" means no protection, "Integrity" means an integrity check per
[RFC2743] section 2.3.1 MUST be applied, and "Confidentiality" means that the segment MUST be
encrypted (conf_req_flag is TRUE per [RFC2743] section 2.3.3).

The above levels of protection can be applied through an implementation -specific equivalent of the
abstract GSS_Wrap call, as specified in [RFC2743]. The receiver of a protected packed can verify the

integ rity of the packet or decrypted using an implementation -specific equivalent of the abstract
GSS_Unwrap .

This protocol does not specify whether the authentication token itself is protected from tampering by
the security provider. It also does not specify ho w the security provider applies integrity or
confidentiality protection to a PDU segment. The algorithms for doing so are specific to the security
provider. For information about a security provider, see the documentation for that security provider.

3.2.1.4.2 Callba cks

Connectionless RPC protocols d o not have support for application - level callback calls.

3.2.1.5 Message Processing Events and Sequencing Rules

3.2.1.5.1 Authentication

The marshaled stub data of a client's conv_who_are_you_auth response SHOULD fit into a single
unfragmented RESPONSE packet for maximum interoperability. <74>

These extensions do not require support for the Authentication Service rpc_c_authn_dce_secret, as
specified in [C706] section 13.1.2.2. It supports authentication by using the NTLM Authentication
Protocol and Kerberos Protocol, using authentication type constants as specified in section 2.2.1.1.7.

The authentication t okens present in each PDU are specified in section 2.2.3.5. <75>

3.2.1.5.2 Overlapped Calls

These extensions extend the connectionless protocol, as specified in [C706], to allow multiple
simultaneously active calls in a single activity. This reduces the overhead of a synchronous calls, which
ordinarily require a separate activity and security context for each overlapping call. Use of the new
feature requires that both the client and server support the extension.

The processing order for calls on the server is specified in [C706] section 6.1. That definition is
preserved in these extensions. These extensions deviate from what is specified in [C706] by allowing
the [in] and [out] buffers of multiple calls to overlap in transmission.

The server conv_who_are_you2 and conv_ who_are_you_auth conversation callbacks SHOULD
set the PF2_UNRELATED bit; this indicates to the client that the server is capable of handling
overlapped calls correctly.

After the client has successfully processed a conversation callback with the PF2_UNREL ATED flag
set, it SHOULD set the client's Supports PF2_Unrelated Flag and overlap calls on any activity in the
Client Address Space for that particular RPC server if the implementation -specific methods for call
invocation allow the specification of simulta neous or asynchronous call invocations, and the higher -
layer protocol requests simultaneous or asynchronous calls.. <76> All calls where the higher - layer
protocol requests simultaneous or asynchronous behavior MUST set the Overlapping ADM element of
the call to TRUE. If Overlapping is set to TRUE, the client MUST set the PF2_UNRELATED flag in

each REQUEST packet that is sent before a call with a lower sequence number has completed. This
informs the server not to cancel or complete other active calls with lowe r sequence numbers. <77>

91 / 183

[MS -RPCE-Diff] - v20171201
Remote Procedure Call Protocol Extensions
Copyright © 2017 Microsoft Corporation
Release: December 1, 2017

When the client has not successfully processed a conversation callback with the PF2_UNRELATED
flag set, it MUST NOT overlap multiple calls of an activity. In particular, the client MUST NOT send a

REQUEST for a call until all calls with lower sequence numbers have entered STATE_ACK_PENDING ,
STATE_COMPLETE , or STATE_FAULT . The client MUST NOT set the PF2_UNRELATED flag in any

REQUEST packet.

Overlapped calls all use the same Security Context Handle associated to their parent activity . If the
activity's security context (identified by the activity's Security Context Handle) is renegotiated while
calls are overlapped, it might happen that certain PDUs will be handled with the wrong security
context and thus will fail the security verifi cation. In such a case, the packets are dropped and the
protocol relies on the Communication Time - Out Timer to resend the packet using the new security
context.

The client and server MUST NOT set the PF2_UNRELATED flag in the header of any other packet
type.

See section 3.2.2.4.1.5 for details of how overlapped calls are processed on the client.

3.2.1.5.3 Sliding Window Algorithm

[C706] sections 9.5.5, 10.1, and 10.2 allow conforming implementations broad latitude in

implem enting the sliding window algorithm for REQUEST and RESPONSE fragments. The Windows
behavior is compatible with clients and servers that use other windowing implementations conforming
to [C706]. The following section specifies the implementation of the sli ding window algorithm.

Packet Transmission Behavior. A client call sends fragments in the following three cases:

1. When the call is first instantiated, the Send Window (Call) and its properties are initialized and the
client sends a burst of fragments.

2. When a FACK or NOCALL -with -body is received from the server. The Send Window (Call) is

updated and the client sends a burst of fragments.

3. When the Packet Retransmission Timer is triggered (for more information, see section

3.2.2.2.1). The client halves the Send Window (Call) Burst_length property and sends a burst of
fragments.

When the client or server must send a burst of fragments, it attempts to send a number of fragments
equal to the Burst_length property of the Send Window (Call) ADM element. The sender fi rst
attempts to extend the window by sending never -before -sent fragments. All fragments except the last

are sent with the PF_NOFACK flag set. The last fragment sent clears the PF_NOFACK flag unless (a)
it is the final fragment of the call data, or (b) it i s overlapping a previous async call of the activity
(that is, the PF2_UNRELATED flag is set). Otherwise, it too is sent with the PF_NOFACK flag. If
fewer than Burst_length are sent because the call data is too short or the Outbound Fragment
Window property of the Send Window (Call) ADM element limit is reached, the Burst_length is
halved. If no fragments at all are sent, the lowest unacknowledged fragment is resent with the

PF_NOFACK flag cleared.

Response to Packets:

When a packet with PF_NOFACK cleared i s received, the recipient sends a FACK with a version -zero
body. The max_tdsu field is set to the maximum PDU length for the transport (for more information,
see section 2.1.2). The max_frag_size field is set to the maximum unfragmented packet length for
the transport (for more information, see section 2.1.2). The window_size field is calculated by
dividing a version -specific constant by the number of calls currently using the port. <78> For client

ports, the number of calls is typically one, but might be hi gher if multiple asynchronous calls are in
progress. If the resulting window size is less than one, it is set to one. If the resulting window size is
greater than 32, it is set to 32. The serial_num field is set to the current value of the Send Window
(Cal l) ADM element's Receive serial number property. The selack_num , selack , and header

92 / 183

[MS -RPCE-Diff] - v20171201
Remote Procedure Call Protocol Extensions
Copyright © 2017 Microsoft Corporation
Release: December 1, 2017

fragnum fields are set based on the fragments received, as specified in [C706] section 12. When an
RPC receives a fragment with a length signifying a Maximum PDU Length lar ger than the current

value in the Send Window , the implied length is calculated by rounding the total packet length down
to the nearest multiple of 8. The activity's Maximum PDU Length is then set to the lower of this

rounded value and the local transport limit. Therefore, the new value takes effect with the next call of
the activity.

3.2.1.6 Timer Events

There are no common timers between the client and server.

3.2.1.7 Other Local Events

There are no other local events that are common between the client and server.

3.2.2 Client Details

3.2.2.1 Abstract Data Model

This section specifies a conceptual model of possible data organization that an implementation
maintains to participate in this protocol. The des cribed organization is provided to facilitate the
explanation of how the protocol behaves. This document does not mandate that implementations
adhere to this model as long as their external behavior is consistent with that described in this
document.

3.2.2.1.1 Supports PF2_Unrelated Flag

Supports PF2_Unrelated Flag : The flag is a Boolean value that indicates whether the server
supports overlapping calls for a single activity. See section 4.3 for a description of the packet
exchange happening between a client and a server.

The flag is initialized to FALSE.

It is updated when a conv_who_are_you2 conversation callback is performed by the server on any
activity between the client and the server.

3.2.2.1.2 Security Provider Identifier

Security Provider Identifier : A value from the list of available security providers, as defined in
section 2.2.1.1.7.

3.2.2.1.3 Authentication Level

Authentication Level : A value from the list of authentication levels, as defined in section 2.2.1.1.8.

3.2.2.1.4 Activity

Activity : A structure that contains the followi ng information related to an activity. The elements of
the structure are:

Á Activity UUID : A unique identifier for the activity. Section 2.2.1.1.3 specifies UUID format
requirements.

Á Sequence Number : An unsigned 32 -bit integer, as specified in [C706] section 12.5.2.11. There

is no provision for overflow of sequence numbers. <79>

Á Security Context Handle

93 / 183

[MS -RPCE-Diff] - v20171201
Remote Procedure Call Protocol Extensions
Copyright © 2017 Microsoft Corporation
Release: December 1, 2017

Á Client Credential Handle : The Client Credential Handle used to create the activity's Security
Content Handle .

Á Active Call Reference counter: Counter indicating the number of active calls associated with the
activity.

Á Current Call : A reference to a Call element in the List of Active Calls. The Current Call is the call
for which the client is actively sending fragments and, possibly, waiting for a response from the
server. The Current Call is initialized for a new Activity to NULL but will be updated to a new
Call element as soon as it is created in the new activity. See section 3.2.2.4.1.5 for details of the
relationship between Current Call and the List of Active Calls .

Á Delayed - Ack Timer : The client MUST store a reference to an instance of a Delayed - Ack Timer
for the current call of this activity.

Á List of Active Calls : A list of active call elements. The list is ordered such that the most recent
call on the activi ty (the Call with the highest call_id) is always last on the list and the active call
with the lowest call_id is at the front of the list. The client MUST remove calls from the list when

they transition to STATE_COMPLETE or STATE_FAULT.

Á Context -Handle Keep -Alive Timer

Á Context Handle Count : Each activity maintains a list of active context handles as a 32 -bit

unsigned integer. Context handles are defined in [C706] section 4.2.16.6. The processing rules for
creating and releasing context handles are found in [C706] section 6.1.6. Context Handle Count
is initialized to zero when a new activity is created. Context Handle Count is incremented when
a new context handle is created and decremented when one is released.

Á Maximum_window_size : An unsigned 32 -bit in teger representing the maximum number of
unacknowledged fragments that can be sent to the server. This value is set to one for the first call
of an activity. The maximum supported value is 32. This value is continuously updated by the

window_size field of a FACK or NOCALL.

Á Maximum PDU Length : Each activity tracks the size of the largest packet that can be sent and

received by the transport. This value is set to 1,024 bytes for the first call of an activity. At the
end of each call, the current value is stor ed in the activity, and the next call begins with the stored
value. When a FACK or NOCALL is received, the value is updated to the lower of the local transport
limit and the value in the packet's max_tsdu field.

Á Last Use Timestamp : The last use timestamp i s updated whenever a PDU is sent or received for

any Call associated with the activity.

Á Security Buffer : A buffer to preserve the security token that needs to be sent in a
conv_who_are_you_auth_more , as described in section 3.2.1.4.1. The entire security t oken
MAY be stored here and sent using repeated calls to conv_who_are_you_auth_more .

Á Discard : A Boolean flag indicating that the activity will be discarded as soon as all Calls on the
activity complete. This flag is set to FALSE when the activity is alloca ted. It is set to TRUE to

prevent new calls from using the activity.

3.2.2.1.5 Collection of Activities

Collection of Activities : The CAS also maintains a list of currently active Activity elements with the
corresponding server that represent the currently active as ynchronous connections established with
the server.

A Collection of Activities is initially empty and gets a new element added when a new activity is

created. There is no limit on the number of activities that can be added to an activity collection.

94 / 183

[MS -RPCE-Diff] - v20171201
Remote Procedure Call Protocol Extensions
Copyright © 2017 Microsoft Corporation
Release: December 1, 2017

When the Active Call Reference counter for an Activity reaches zero, the Activity is removed from
the Collection of Activities and added to the Collection of Inactive Activities .

3.2.2.1.6 Collection of Inactive Activities

Collection of Inactive Activities : The CAS also maintains a list of currently inactive activity
elements with the corresponding server that represents currently inactive asynchronous connections
established with the server.

A Collection of Inactive Activities is initially empty and gets a new eleme nt added to it when the
Active Call Reference counter for an activity goes to zero.

Activity elements are removed from the Collection of Inactive Activities by the Inactive Activity
Timer.

3.2.2.1.7 Client Address Space

Definitions of the CAS identifier are specifie d in [C706] section 9.5.4.

The CAS holds data relevant to the client's view of a particular RPC server:

Á Server's transport.

Á Server's host name or address.

Á Server's endpoint, or the transport's endpoint mapper endpoint if the server endpoint is unknown.

Á Bin ding handle as specified in [C706] section 6.2.1.

The client also caches several parameters of the server instance to improve the speed and latency of
future calls:

Á Collection of Activities

Á Collection of Inactive Activities

Á Supports PF2_Unrelated Flag

The CAS caches the values from one connection to the other and uses the cached value to start a new
connection, thus providing the last seen values exposed by the server.

3.2.2.1.8 Table of CASs

Table of CASs: The client MUST maintain a Table of CASs which contains all CAS elements for the
client.

3.2.2.1.9 Causal Ordering Flag

Causal Ordering Flag : A Boolean value that indicates whether causal ordering semantics, as
described in section 3.1.1.4.1, should apply.

The default value for the causal ordering flag is FALSE

3.2.2.1.10 Call

The call is a data element that encapsulates the state associated with a client call. The client call is

specified by a state machine with the following states.

95 / 183

[MS -RPCE-Diff] - v20171201
Remote Procedure Call Protocol Extensions
Copyright © 2017 Microsoft Corporation
Release: December 1, 2017

 State Description

STATE_QUEUED The call is queued by the client and will transition to STATE_SEND_FRAGS when
possible. This is the call's initial state.

STATE_SEND_FRAGS The client is sending fragments of the call's [in] parameters to the server.

STATE_DISPATCHED The server has called the server application stub.

STATE_RECEIVE_FRAGS The server is sending fragments of the call's [out] parameters to the client.

STATE_ACK_PENDING [out] parameters are received, and the call is waiting to send an ACK packet.

STATE_COMPLETE The call completed successfully. This is a terminal sta te.

STATE_FAULT The call failed. This is a terminal state.

When a call reaches STATE_COMPLETE or STATE_FAULT , the client MUST decrement the
associated Active Call Reference counter. See section 3.2.2.4.1.2 for more information on how a call

is associated with an activity.

The call maintains several properties:

Á Call State : an implementation -specific value that represents the call state from the preceding
table.

Á A flag F_CANCE LED that is true when the client application cancels the call.

Á A counter CANCEL_EVENT_ID that identifies a particular cancellation attempt. It is an unsigned
long counter, initialized to a value of 0. The CANCEL_EVENT_ID is incremented each time before
sending QUIT message (so that the first CANCEL_EVENT_ID is 1). Sending a QUIT message

happens every time a call is being canceled and is always initiated by the client.

Á Status : A 32 -bit unsigned integer that contains the status code for the call as described in [C706]
section 2.9. See section 3.1.1.5.5 for information on processing rules related to returning status

codes to a higher - layer protocol.

Á Causal Ordering Flag

Á Send Window (Call)

Á Receive Window (Call)

Á Sequence Number : An unsigned 32 -bit integer, as spe cified in [C706] section 12.5.2.11, that
identifies this Call .

Á Overlapping : A Boolean flag that indicates whether the call SHOULD use overlapped behavior as
described in section 3.2.1.5.2. The client SHOULD set this flag to TRUE if the activity's Client
Ad dress Space Supports PF2_Unrelated Flag is set to TRUE. When the flag is set, each call
from the client MUST set the PF2_UNRELATED flag in each REQUEST packet.

Á Activity UUID : The UUID of the activity associated with the Call as specified in [C706] section

9.5.3. Initialization of the Activity UUID for a call is specified in section 3.2.2.4.1.2.

Á Packet Retransmission Timer : The Packet Retransmission Timer for the call. See section
3.2.2.2.1 for a description of the timer.

When the call reaches a terminal st ate (STATE_COMPLETE or STATE_FAULT), all the call properties
listed in the preceding list are invalidated and SHOULD be freed.

The following diagram illustrates the state transitions.

96 / 183

[MS -RPCE-Diff] - v20171201
Remote Procedure Call Protocol Extensions
Copyright © 2017 Microsoft Corporation
Release: December 1, 2017

Figure 16 : State transitions

Note The preceding conceptual data can be implemented by using a variety of techniques.

3.2.2.2 Timers

3.2.2.2.1 Packet Retransmission Timer

The packet retransmission timer is started when the client call transmits a REQUEST, FACK, PING, or
QUIT packet. The timer is canceled when the client receives a response from the server. If the timer

expires, the previously transmitted packet SHOULD be co nsidered lost, and the client SHOULD send
new packets following the procedure specified in section 3.2.1.5.3. If the call's F_CANCELED flag is
set, a QUIT packet is sent; otherwise, the packet type depends on the Call State :

Á STATE_SEND_FRAGS -> REQUEST

Á STATE_DISPATCHED -> PING

Á STATE_RECEIVE_FRAGS ->FACK

The timer interval SHOULD be initially 1 second. When a call in STATE_DISPATCHED receives a

WORKING packet or a NOCALL packet with a body that specifies a window size of zero, the timer
interval SHOULD be d oubled. The interval SHOULD be limited to a maximum of 32 seconds. In
addition, when a call's F_CANCELED flag is set, the timer interval SHOULD be limited to the max of 2

seconds or the cancel time -out. If the timer expires, the previously transmitted pack et SHOULD be
considered as lost, and the client SHOULD send new packets following the procedure specified in
section 3.2.1.5.3.

3.2.2.2.2 Cancel Time -Out Timer

The cancel time -out timer MUST be started when the client call's F_CANCELED flag is set by an
external ent ity in an implementation -specific manner <80> . The timer MUST be canceled when the

97 / 183

[MS -RPCE-Diff] - v20171201
Remote Procedure Call Protocol Extensions
Copyright © 2017 Microsoft Corporation
Release: December 1, 2017

client receives a QUACK packet whose event ID matches the call's CANCEL_EVENT_ID . If the timer
expires, the Call State MUST move into STATE_FAULT .

The default value of the t imer SHOULD be infinite. A client application SHOULD be able to specify a
value in an implementation -specific way.

3.2.2.2.3 Delayed -Ack Timer

As described in [C706] section 12.5.3.1, a client can implicitly acknowledge receipt of response by
sending a new request t o the server. The Delayed - Ack Timer creates a window where a higher - layer
protocol can submit a new call, which will be sent instead of an ACK PDU. The new call might be
already queued in the activity's List of Active Calls (see section 3.2.2.4.1.5) or mig ht be initiated
during the timer's window. The activity's Delayed - Ack Timer MUST be started when the activity's

current call enters Call State STATE_ACK_PENDING . The timer MUST be canceled when the client
initiates another call by using the same Activity .

3.2.2.2.4 Context -Handle Keep -Alive Timer

This timer SHOULD be kept per activity (not per call). <81> It SHOULD be started with an interval of
20 seconds when the client increments the activity's Context Handle Count , as long as the timer is

not already started. It SHOULD be canceled when the activity's Context Handle Count reaches zero.

3.2.2.2.5 Inactive Activity Timer

Inactive Activity Timer : The Inactive Activity Timer is responsible for monitoring inactive
activities that should be removed. The timer is global and monitors the entirety of inactive activities
using the Collection of Inactive Activities in each Client Address Space for each entry in the
Table of CASs . Th e timer is started when the RPC client runtime is started and initialized to 30

seconds.

3.2.2.3 Initialization

A client is initialized when a higher - level protocol supplies to the client -side implementation of the RPC

runtime sufficient information to start making RPCs, including the information required to create a

binding handle (see section 3.2.2.3.1) and, optionally, security setting preferences (see section
3.2 .2.3.2).

3.2.2.3.1 Create a Binding Handle

Information about creating a binding handle is specified in [C706] section 2.3.

3.2.2.3.2 Specify Security Settings

If a higher - level protocol requires security for its remote procedure method calls, it MUST supply to
the client -side implementation of the RPC the following runtime information:

Á What security provider it wants to use.

Á What authentication level it wants to use.

Á Optionally what impersonation level it wants to use.

Á A Client Credential Handle

Á Any other security provider ïspecific information necessary for the security provider to function.

98 / 183

[MS -RPCE-Diff] - v20171201
Remote Procedure Call Protocol Extensions
Copyright © 2017 Microsoft Corporation
Release: December 1, 2017

Higher - level protocols can specify security settings using the abstract interfaces as described in
Appendix C. Higher - level protocols on the Windows runtime can use the RpcBindingSetAuthInf o and

RpcBindingSetAuthInfoEx APIs.

3.2.2.4 Higher -Layer Triggered Events

3.2.2.4.1 Make an RPC Method Call

3.2.2.4.1.1 Find a CAS

The client MUST find or create a CAS contained in the Table of CASs wherein the CAS binding handle
values for host address, protocol sequence, and endpoint match the client's desired values for host
address, protocol sequence, and endpoint. A client SHOULD choose an existing CAS if a matching one
exists.

If a new CAS is created, and the server is using a dynamic endpoint, the CAS initially points to the
dyna mic endpoint for the RPC protocol sequence being used. Otherwise, the CAS refers to the server's

well -known endpoint.

3.2.2.4.1.2 Find an Activity

If the client has chosen an existing CAS , the client SHOULD use an existing compatible activity if
possible. Selection of a compatible activity within the scope of existing CAS is performed according to
the following algorithm:

Search the CAS's Collection of Activities and choose an Activity that satisfies the following conditions:

Á The Activity 's Discard flag MUST be set to FALSE.

Á If the Activity 's Current CallOverlapping flag is set to TRUE, and the Activity 's Current
CallCausal Ordering Flag is TRUE, and the Activity has one or more call elements in the List of
Active Calls , it MUST use that activity. If the server does not support the PF2_UNRELATED flag
(from the Client Address SpaceSupports PF2_UNRELATED Flag element) of the selected

activity, the client cannot begin the call until the Activity 's Current Call has completed.

Á If the Activity 's Current CallOverlapping flag is set to FALSE or the Activity 's Current Call

Casual Ordering Flag is FALSE, and the Activity has one or more call elements in the List of
Active Calls in the state STATE_ACK_PENDING, it SHOULD use that activity.

Á If a compatible activity is not fou nd in the Collection of Activities , the client MUST search the
Collection of Inactive Activities and SHOULD use an activity from that collection if one exists.

If the client finds a compatible activity during the algorithmic search just described, a second order
check is made to verify compatibility of security settings of the considered activity and the server
binding handle provided for the new RPC method calls is made. The following settings are compared:

From the Activity's Security Context Handle and t he server binding handle for the call:

Á Security Provider Identifier

Á Authentication Level

Á Impersonation Level

Security Provider Identifier, Authentication Level and Impersonation Level elements of the call's server
binding handle security settings are as de fined in [C706] section 2.7.

99 / 183

[MS -RPCE-Diff] - v20171201
Remote Procedure Call Protocol Extensions
Copyright © 2017 Microsoft Corporation
Release: December 1, 2017

In addition to the above, the activity's Client Credential Handle and the server binding handle
AuthIdentity (see section 3.1.1.1.2) MUST be equal. The implication of this check is that the new call

and the existing activity us e the same Client Credential Handle .

All elements MUST match exactly. If the security settings check fails, the algorithm continues.

If the compatible activity is found in the Collection of Activities , then increment the activity's
Active Call Reference counter.

If the compatible activity is found in the Collection of Inactive Activities , then increment the
activity's Active Call Reference counter and move the activity to the Collection of Activities . If the
compatible activity has a prior call (from the ac tivity's <List of Active Calls>) in either the
STATE_COMPLETED or STATE_ACK_PENDING state, the activity's sequence number MUST be
incremented, and the activity's delayed -ack timer MUST be canceled.

If the new call is assigned to an existing, compatible act ivity , set the call 's Activity UUID element
to the Activity UUID of the existing element.

If a compatible activity is not available, the client MUST create a new one. Its sequence number MUST

be initialized to zero and the Active Call Reference counter MUS T be set to one. Set the call 's
Activity UUID element to the Activity UUID of the new activity.

3.2.2.4.1.3 Find or Create a Security Context

The client SHOULD use the activity's current security context, represented by the activity's security
context handle , unless t he context has expired. <82> If the client chooses to create a new security
context for any reason, then it will set the activity's current security context handle equal to the
handle value for the new security context created. See section 3.2.1.4.1.1 for i nformation on creating
a security context. Each security context MUST have a unique Context Identifier (transmitted as
key_vers_num), which is specified in the sec_trailer structure, to allow the server to identify which

security context is used for a give n PDU.

3.2.2.4.1.4 Create a Call

A new call MUST be created by using the current activity ID and sequence number. The new call MUST
have Call State set to STATE_QUEUED, F_CANCELED MUST be set to false, CANCEL_EVENT_ID
MUST be set to zero, the Sent Fragment List and Received Fragment List MUST be cleared, and
the Receive Fragment Base MUST be set to zero.

The new call is added to the activity's List of Active Calls .

If the Activity's Current Call is NULL, the Activity's Current Call is set to the call just created. The
Call State (for this new call) is set to STATE_SEND_FRAGMENTS , and the client MUST send one or
more request fragments.

3.2.2.4.1.5 Queuing Multiple Calls

When a higher - layer protocol makes multiple calls on the same activity, they are queued in the

activity's List of Active Calls . Only one call can be in STATE_SEND_FRAGMENTS at any given time.

The call that is in this state is the Activity's Current Call .

If calls on the activity are not being overlapped (call's Overlapping elemen t is set to FALSE) as
described in section 3.2.1.5.2, the client MUST receive the server's response before the next call in the
queue can be processed (meaning transition to STATE_SEND_FRAGMENTS). This behavior is in
accordance with [C706]. The presence of a next queued call affects the next state of the Current Call

after it has received the server's response: if there is no next queued call, the Current Call will
transition to STATE_ACK_PENDING. The transition to STATE_ACK_PENDING triggers the initializat ion
of the Delayed -Ack Tmer. If there is a next queued call, the Current Call transitions immediately to
STATE_COMPLETE and Current Call is set to the next queued call.

100 / 183

[MS -RPCE-Diff] - v20171201
Remote Procedure Call Protocol Extensions
Copyright © 2017 Microsoft Corporation
Release: December 1, 2017

If overlapping calls are being made on the activity (call's Overlapping element is set to FALSE and
call's activity's Client Address Space Supports PF2_Unrelated Flag is set to true), the client does not

have to wait for the client to reach STATE_COMPLETE or STATE_FAULT before beginning the next call.
When overlapping calls are being made, the client will set the Activity's Current Call to the next call

in the List of Active Calls (if there is a next call) whenever the Current Call transitions to
STATE_DISPATCHED.

In all cases, calls MUST still be sent in order of their call_id and all fragm ents of one call MUST be
sent (Call transitions to STATE_DISPATCHED) before fragments of another call can be sent.

3.2.2.4.2 Cancel Requested

If the client application cancels the call, the call's F_CANCELED flag is set and CANCEL_EVENT_ID is

incremented. For details, see s ection 3.2.2.2.2.

3.2.2.5 Message Processing Events and Sequencing Rules

The packet semantics are the same as what is specified in [C706] sections 6 and 12.5.

The packet type MUST be one of the connectionless packet types specified in [C706]; otherwise, the
packet is discarded. Incoming packets MUST be proc essed while the Call State is set to
STATE_SEND_FRAGS, STATE_DISPATCHED, or STATE_RECEIVE_FRAGS; in other states, they MUST
be discarded.

For a non -REQUEST packet, the activity ID and the sequence number in the packet MUST match those
of the call itself. If the auth_proto field is nonzero, the implementation MUST compare the
auth_proto to the authentication level of the activity's Security Context Handle and then the

packet MUST be verified by using the activity's Security Context Handle , as described in s ection
3.2.1.4.1.1. Otherwise, the packet MUST be discarded silently.

A packet that has not been discarded by one of the preceding rules MUST cancel the call packet
retransmission timer, as specified in section 3.2.2.2.1. If the server uses a dynamic endpo int and the
CAS points to the endpoint mapper endpoint for the protocol, the CAS SHOULD be updated to point to

the server endpoint that sent the packet. For more information, see the protocol example in section
4.5.

The following sections define handling of specific packet types.

3.2.2.5.1 REQUEST

A REQUEST packet MUST have auth_type equal to zero, and its interface I D MUST match the
conversation manager interface as specified in [C706] Appendix P. The packet's Header.Flags.frag bit
MUST be zero. Otherwise, the packet MUST be discarded.

If the packet is accepted, it is processed as specified in [C706] Appendix P. Impl ementations of this
protocol SHOULD serialize execution of conversation manager callback calls.

3.2.2.5.2 PING

When processing a PING PDU, an implementation MUST examine the Callback Sta te (section
3.2.3.1.10). If a conversation manager callback in progress, the client MAY respond with a WORKING
packet. <83> If a conversation manager callback is not in progress, then the packet SHOULD be

discarded.

3.2.2.5.3 RESPONSE

The response fragment number is compared to the Receive Fragment Base . If the fragment number
is less than the Receive Fragment Base , then the fragment MUST be discarded. If the fragment

10 1 / 183

[MS -RPCE-Diff] - v20171201
Remote Procedure Call Protocol Extensions
Copyright © 2017 Microsoft Corporation
Release: December 1, 2017

number is gr eater than or equal to the Receive Fragment Base , then the fragment is added to the
Received Fragment List , and a FACK MUST be sent unless the packet's Header.Flags.Nofack flag is

set. If the Call State is STATE_SEND_FRAGS or STATE_DISPATCHED, the Call Sta te MUST change to
STATE_RECEIVE_FRAGS. If the fragment number indicates that all inbound fragments are received,

RPC MUST deliver the data to the client application, and the call MUST set Call State to
STATE_ACK_PENDING if there is no next queued call in t he activity's List of Active Calls . If there is a
next queued call, the call's Call State is set to STATE_COMPLETE.

All fragments related to a packet are removed from the Received Fragment List when a full packet
can be formed.

3.2.2.5.4 FAULT

The Call State MUST change to STATE_FAULT and Status set to the status code in the fault packet.

3.2.2.5.5 WORKING

All outbound fragments MUST have been received. All outbound fragments have been received when

the client's Send Window (Call)'s Fragment_base value is greater than its Fragment_final value. If
the Call Stat e is STATE_SEND_FRAGS, the Call State MUST change to STATE_DISPATCHED. When

the Call State changes to STATE_DISPATCHED, this MAY trigger a call queuing operation as specified
in section 3.2.2.4.1.5.

3.2.2.5.6 NOCALL

The Outbound Fragment Window SHOULD be updated, and the client SHOULD send a burst of
REQUEST fragments. <84>

3.2.2.5.7 REJECT

The Call State MUST change to STATE_FAULT with STATUS set to the status code in the packet.

3.2.2.5.8 ACK

The Call State SHOULD change to STATE_FAULT with STATUS set to 0x6c0.

3.2.2.5.9 QUIT

The Call State SHOULD change to STATE_FAULT with STATUS set to 0x6c0.

3.2.2.5.10 FACK

The Outbound Fragment Window MUST be updated, and the client SHOULD send a burst of
REQUEST fragments. When a FACK PDU is received, the corresponding fragmen t MUST be removed
from the Sent Fragment List .

If a FACK PDU is received for a fragment number that is higher than the fragment number for any

other fragments in the Sent Fragment List then those fragments are retransmitted.

If the server has received all request fragments, the Call State SHOULD change to
STATE_DISPATCHED. When the Call State changes to STATE_DISPATCHED, this MAY trigger a call
queuing operation as described in section 3.2.2.4.1.5.

3.2.2.5.11 QUACK

The client SHOULD check the following conditions before taking prescribed actions:

102 / 183

[MS -RPCE-Diff] - v20171201
Remote Procedure Call Protocol Extensions
Copyright © 2017 Microsoft Corporation
Release: December 1, 2017

Á If the F_CANCELED flag is false, the packet MUST be discarded. No further processing is
necessary.

Á If the packet has bo dy data of length 0, this indicates that the server has orphaned the Current
Call . F_CANCELED flag MUST be set to false and the call MUST be transitioned to

STATE_FAULT .

Á The following conditions indicate protocol errors; the packet MUST be discarded with n o additional
processing:

Á If the packet has body data, and the length of the body data is less than 9 bytes.

Á The body version is not zero.

Á The packet's event ID does not match the call's CANCEL_EVENT_ID .

Á Having received a valid QUACK where the packet's even t ID matches the call's

CANCEL_EVENT_ID , F_CANCELED flag MUST be set to false and the call MUST be transitioned
to STATE_FAULT .

3.2.2.6 Timer Events

For information on timers, see section 3.2.2.2.

3.2.2.6.1 Inactive Activity Timer

When the timer expires, the client MUST scan all activities in the Collection of Inactive Activities in
each Client Address Space for each entry in the Table of CASs , examine the activity's Last Use
Time stamp , and remove those that have been inactive for an interval that is longer than an
implementation -specific value. <85>

If the activity meets the previously described criteria, it is deleted.

After processing, the inactive activity timer is reset to an implementation -specific interval. <86>

3.2.2.6.2 Context -Handle Keep -Alive Timer

When the timer expires, the client SHOULD make a call to convc_indy specifying the activity's UUID
as the cas_uuid parameter.

3.2.2.6.3 Delayed -Ack Timer

When the timer expires, the client MUST send an ACK packet to the server and enter Call State
STATE_COMPLETE . The timer interval SHOULD be 2 seconds.

3.2.2.7 Other Local Events

None.

3.2.3 Server Details

3.2.3.1 Abstract Data Model

This section describes a conceptual mod el of possible data organization that an implementation
maintains to participate in this protocol. The described organization is provided to facilitate the
explanation of how the protocol behaves. This document does not mandate that implementations

103 / 183

[MS -RPCE-Diff] - v20171201
Remote Procedure Call Protocol Extensions
Copyright © 2017 Microsoft Corporation
Release: December 1, 2017

adhere to this model as long as their external behavior is consistent with that described in this
document.

3.2.3.1.1 Lowest -Allowed -Sequence Counter

Lowest - Allowed - Sequence Counter : A server implementation MUST maintain an abstraction of a
Lowest - Allowed - Sequence Counter for each activity which represents the sequence number of
the oldest active call initiated by the client. The initial value MUST be zero. When processing packets,
the server MUST reference the Table of Activity IDs by using the current activity ID, conside r packets
with sequence numbers less than the Lowest - Allowed - Sequence Counter as retired, and discard
the packet.

3.2.3.1.2 CAS UUID

CAS UUID : A server implementation MUST maintain an abstraction of a client address space (CAS)
universally unique identifier (UUID) t hat is an index into the CAS table.

3.2.3.1.3 Lowest -Unused -Sequence Counter

Lowest - Unused - Sequence Counter: A server implementation MUST maintain an abstraction of a
Lowest - Unused - Sequence Counter for each activity, which represents the sequence number (as

defined in [C706] section 12.5.2.11) of the next call that will be initiated by the client. The data type
is an unsigned integer and permitted values are 0 to UINT_MAX. The initial value MUST be zero.
When processing packets, the server MUST reference the Table o f Activity IDs using the current
activity ID and consider packets with sequence numbers:

Á Greater than the Lowest - Allowed - Sequence Counter , but less than the Lowest - Unused -
Sequence Counter as active and to be processed.

Á Greater than or equal to the Lowest - Unused - Sequence Counter as new packets to be
processed in the future.

3.2.3.1.4 Table of Security Contexts

Table of Security Contexts : The server maintains a list of security contexts, indexed by the security
context identifiers currently in use and containing a sec urity context handle . Lookups in the table
are permitted using the auth_context_id field in the sec_trailer (section 2.2.2.11) data structure of

the incoming PDU.

Packet integrity verification and/or encryption/decryption is performed, as described in section
3.2.1.4.1.1, using the security context handle value.

A new row is added to the table when a new security context is built.

3.2.3.1.5 Table of Activity IDs

Table of Activity IDs : The server maintains a table of activities indexed by the Activity UUID . For

each activity, it maintains the following:

Á A Lowest -Allowed -Sequence Counter.

Á A Lowest -Unused -Sequence Counter.

Á A CAS UUID.

Á If the activity is secure, a Table of Security Contexts.

Á Last Use Timestamp : The last use timestamp is updated whenever a PDU is sent or received for
any Call associated with the activity.

104 / 183

[MS -RPCE-Diff] - v20171201
Remote Procedure Call Protocol Extensions
Copyright © 2017 Microsoft Corporation
Release: December 1, 2017

Á Maximum PDU Length : An unsigned short integer (max value 64KB). Each activity tracks the
size of the largest packet that can be sent and received by the transport. This value is set to 1,024

bytes for the first call of an activity. When a FACK or NOCALL is received, the val ue is updated to
the lower of the local transport limit and the value in the packet's max_tsdu field.

Á Binding handle : Binding handle as specified in [C706] section 6.2.1.

Á Security Buffer : A buffer to preserve the security token that needs to be sent in a
conv_who_are_you_auth_more , as described in section 3.2.1.4.1. The entire security token
MAY be stored here and sent using repeated calls to conv_who_are_you_auth_more .

Á Table of Active Calls per Activity : Contains a table of all of the active calls for this activity.

When an activity is created, its CAS UUID is NULL; when a conv_who_are_you2 or
conv_who_are_you_auth call for the activity completes successfully, the activity's CAS UUID is set to

the returned value.

An incoming request PDU with a given securi ty context identifier MUST be routed to the security
context retrieved from the Table of Security Contexts row with the same security context identifier.

The Idle scavenger Timer event specifies the processing rules for removing rows from the Table of
Acti vity IDs.

3.2.3.1.6 Table of Client Address Spaces

Table of Client Address Spaces : The server maintains a Table of CASs indexed by CAS UUID , as
specified in [C706] Appendix P. For each CAS, the server maintains a CAS Context Handle List
associated with the client ad dress space. Whenever a call on an activity instantiates a context handle,
the context handle is added to the CAS Context Handle List for the activity's CAS.

The server deletes a CAS UUID and its associated context handles and activities if none of the CAS
UUIDs activities receive any packets over a 5 -minute period. This follows TIMEOUT_IDLE, as specified

in [C706] Appendix K. <87>

3.2.3.1.7 Table of Active Calls per Activity

Table of Active Calls per Activity : The server maintains a table of active calls per activity . Each call
is indexed by the call sequence number, as specified in [C706] section 9.5.3. In general, calls are
removed from the table when the call transitions to STATE_COMPLETE . Calls are also removed from
the Table of Active Calls per Activity if they h ave been idle for more than an implementation -

specific period of time. See Idle Scavenger Timer for details on idle call removal. A new entry is added
to the table when a new call arrives with a sequence number greater than or equal to the Lowest -
Unused -Sequence Counter for the activity.

There is no provision for overflow of sequence numbers sent by the client. If the sequence number
wraps around, the server will not create a new entry and in such a case will result in discarded packets
as described in sect ion 3.2.3.5.4. A client interacting with a server MUST NOT wrap around the

sequence number on a specific activity.

3.2.3.1.8 Call

Call : The server call (see the following figure) is defined by a state machine with the following states.

 State Description

STATE_I NIT The call has not received a packet. This is the initial state.

STATE_RECEIVE_FRAGS The server is still expecting fragments to form a full packet. A server registers that it
has received enough fragments when it has received all the fragments of a packet,

105 / 183

[MS -RPCE-Diff] - v20171201
Remote Procedure Call Protocol Extensions
Copyright © 2017 Microsoft Corporation
Release: December 1, 2017

 State Description

including the one indicating that it is the last fragment of the packet.

STATE_WORKING The server has dispatched the call to the application stub.

STATE_SEND_FRAGS The server is sending the reply to the client.

STATE_COMPLETE The call is no long er active. This is a terminal state.

The call maintains the following state elements:

Á Last Fragment Received Timestamp: This timestamp value is updated whenever a fragment is
received by the server.

Contrary to what is specified in [C706] Appendix P, impl ementations of these extensions MUST NOT

call conv_who_are_you. Instead, they MUST call conv_who_are_you2.

These extensions also MUST NOT call conv_are_you_there.

The server call element maintains the several properties:

Á Call State : an implementation -speci fic value that represents the call state from the preceding
table. At call creation, Call State is set to STATE_INIT.

Á Send Window (Call)

Á Receive Window (Call)

Á Callback State

Á Activity UUID : The UUID of the activity associated with the Call . This value is ex tracted from the
header of the call as specified in [C706] section 12.5.2.

Á CANCEL_EVENT_ID : An unsigned 32 -bit counter that identifies a particular cancellation attempt.

Initialized to a value of 0.

Á Sequence Number : An unsigned 32 -bit integer, as specified in [C706] section 12.5.2.11, that
identifies this Call .

Á Overlapped : Set when the client REQUEST_PDU has the PF2_UNRELATED flag set.

106 / 183

[MS -RPCE-Diff] - v20171201
Remote Procedure Call Protocol Extensions
Copyright © 2017 Microsoft Corporation
Release: December 1, 2017

Figure 17 : State diagram for server call

Note The pr eceding conceptual data can be implemented by using a variety of techniques. Any data
structure that stores the preceding conceptual data can be used in the implementation.

3.2.3.1.9 CAS Context Handle List

CAS Context Handle List : The server maintains a list of act ive context handles (as specified in
[C706] section 4.2.16.6) for each CAS. Whenever a call on an activity instantiates a context handle,

the context handle is added to the list for the activity's CAS. This list is deleted when the CAS is
deleted. The call 's Activity UUID links a call with an Activity .

3.2.3.1.10 Callback State

Callback State : A server conversation can only have a single outstanding conversation callback in
progress at a time. Callback State is a boolean value that indicates if a conversation callback is in
progress. See section 3.2.3.5.4.2 for more information on when a conversation callback is needed.

Callback State is set to true when a conversation callback is started and reset to false when it is
completed.

3.2.3.2 Timers

3.2.3.2.1 Call Fragment Retransmission Timer

The call fragment retransmission timer MUST be set when a burst of fragments (one or more) is sent
to the client. It MUST be canceled wh en the fragments are acknowledged by the client explicitly via

107 / 183

[MS -RPCE-Diff] - v20171201
Remote Procedure Call Protocol Extensions
Copyright © 2017 Microsoft Corporation
Release: December 1, 2017

FACK or implicitly by ACK or a higher -sequence REQUEST . When the timer expires, the server
SHOULD resend the burst of fragments. <88>

3.2.3.2.2 Idle Scavenger Timer

idle scavenger timer : The idle scavenge r timer is a global timer responsible for monitoring calls
and activities to detect idle state. When the RPC server initializes, the timer is initialized and the initial
timer expiration is set to an implementation -specific value. <89>

3.2.3.3 Initialization

These extensions make no changes to initialization other than what is specified in section 3.2.3.1.

3.2.3.4 Higher -Layer Triggered Events

3.2.3.4.1 Failure Semantics

A server protocol b uilt on top of these extensions can encounter a failure while executing a method
call. It can handle the failure at the application protocol layer, it can expose the failure to the RPC
protocol layer, or it can choose application -specific handling not spec ified in this document.

If it handles the error at the application protocol layer, the interaction appears to be successful from
the point of view of the RPC runtime. The [out] parameters are filled, and the RPC implementation on
the server sends a respons e PDU with the stub data (as specified in [C706] section 14.4). In this case,

the [out] parameters SHOULD indicate the occurrence of an error, although the exact mechanism for
doing so is left to the application protocol layer.

If the server implementation of the application protocol layer exposes the error to the RPC protocol
layer, it SHOULD indicate to the RPC runtime (usually through calling an API) that the method call has
failed, and, if so, it also SHOULD supply a single unsigned long number that ind icates the failure code.

In this case, the server SHOULD send back to the client a fault PDU (as specified in [C706] section

12.5.3.5) where the status field of the fault PDU is set to the failure code received from the application

protocol layer. The call then enters STATE_COMPLETE .<90>

3.2.3.4.2 Retrieving Client Identity

During the authorization process, a higher - level protocol on the server often needs to retrieve the
identity of the client making a given request. A server implementation MUS T try to retrieve the client
identity by executing the following steps in this order:

1. If the auth_proto field of the client request is nonzero, the server MUST lookup the security
context handle from the activity's Table of Security Contexts using the key _vers_num in the
sec_trailer_cl of the request and MUST request that the security provider that created the security
context retrieve the client identity. For details on how a security provider determines the client
identity, see the documentation for the respective security provider.

2. If the auth_proto field of the client request is zero, the server MUST report this to the higher -

level protocol in an implementation -specific way.

3.2.3.4.3 Context Handle Generation

If a server stub needs to create a context handle and the activity of the call has a NULL CAS UUID ,
the server SHOULD generate a conv_who_are_you2 conversation callback to determine the correct
CAS UUID . If the conversation callback fai ls, the stub SHOULD raise an exception with the status
code of the conversation callback. The CAS UUID is used to find the CAS in the Table of Client
Address Spaces . The context handle is added to the CAS Context Handle List for the CAS.

108 / 183

[MS -RPCE-Diff] - v20171201
Remote Procedure Call Protocol Extensions
Copyright © 2017 Microsoft Corporation
Release: December 1, 2017

3.2.3.5 Message Processing Events and Sequencing Rules

The packet sema ntics are as specified in [C706] section 6 and [C706] section 12.

3.2.3.5.1 Failure Semantics

If, during the processing of a method call on the server, the server encounters an error, it SHOULD
send back to the client a fault PDU (as specified in [C706] section 12.5 .3.5) where the status field of
the fault PDU is set to a descriptive status code. If an authorization policy (as specified in section
3.1.1.1.3), restricting the access to the server is deployed, and server MUST set the status field to
0x00000005 in the f ault PDU being sent back to the client. If the server is unable to send a fault PDU,
as specified here, it MUST ignore further packets with the same activity ID and sequence number.

Servers can send any status code in the status field of a fault PDU excep t the following status codes,
which a server MUST NOT send to the client. These status codes have special significance, and their
presence in the status field might be flagged as a protocol error by the client.

Status codes that MUST NOT be sent by RPC ser vers

ERROR_SUCCESS (0x00000000)

STATUS_GUARD_PAGE_VIOLATION (0x80000001)

STATUS_DATATYPE_MISALIGNMENT (0x80000002)

STATUS_BREAKPOINT (0x80000003)

STATUS_ACCESS_VIOLATION (0xC0000005)

STATUS_IN_PAGE_ERROR (0xC0000006)

STATUS_ILLEGAL_INSTRUCTION (0xC000001D)

STATUS_PRIVILEGED_INSTRUCTION (0xC0000096)

STATUS_INSTRUCTION_MISALIGNMENT (0xC00000AA)

STATUS_STACK_OVERFLOW (0xC00000FD)

STATUS_POSSIBLE_DEADLOCK (0xC0000194)

STATUS_HANDLE_NOT_CLOSABLE (0xC0000235)

STATUS_STACK_BUFFER_OVERRUN (0xC0000 409)

STATUS_ASSERTION_FAILURE (0xC0000420)

3.2.3.5.2 Sequencing in Case of Errors

If a fragmented request with multiple PDUs includes a PDU with an error, implementations of these

extensions SHOULD return a fault PDU as soon as they have processed the PDU with th e error. They
SHOULD NOT wait to receive all PDUs of a fragmented request before sending the fault PDU.

3.2.3.5.3 Packet Processing

Received packets MUST have a valid RPC header, and the packet type MUST be one of the following:
REQUEST, PING, FACK, QUIT, or ACK. Other packet types MUST be discarded.

109 / 183

[MS -RPCE-Diff] - v20171201
Remote Procedure Call Protocol Extensions
Copyright © 2017 Microsoft Corporation
Release: December 1, 2017

If the PDU's activity ID matches an existing activity on the server, but the PDU's
dc _rpc_cl_pkt_hdr_t.auth_proto or sec_trailer_cl.auth_level fields do not match those in the

activity, the server SHOULD ignore the packet. <91>

Handling of specific packet types follows.

3.2.3.5.4 REQUEST

When a packet of type REQUEST is received, the server MUST exec ute the following steps:

1. Set a 32 -bit integer N to the sequence number in the packet header.

2. Using the activity ID in the message header, find the activity in the Table of Activity IDs . If the
activity is found in the Table of Activity IDs , then process th e packet according to the following
rules:

Á If N is less than the activity ID element's lowest -allowed -sequence number, the server MUST
discard the packet. <92>

Á If N is greater than or equal to the activity ID element's lowest -allowed -sequence and N is
less than the activity ID element's lowest -unused -sequence, the server MUST search for an
existing call object with Sequence Number equal to N in the Table of Active Calls per
Activity . If no call was found, the server MUST discard the message.

Á If N is greater than or equal to the activity ID element's lowest -unused -sequence, the server
MUST create a new call object with Sequence Number equal to N and add it to the Table of
Active Calls per Activity for the activity. The server MUST set the activ ity ID element's
lowest -unused -sequence to N+1. If the packet's PF2_UNRELATED flag is false, the server
MUST discard all call objects with lesser sequence from the Table of Active Calls per
Activity for the activity and set the activity ID element's lowest -allowed -sequence to N. The
server MUST set the new call's Call State to STATE_INIT.

3. If the activity ID is not found in the Table of Activity IDs , create a new entry in the Table of
Activity IDs and perform the following actions on the new entry:

Á Set the l owest -allowed -sequence counter to N.

Á Set the lowest -unused -sequence counter to N.

Á Initialize the CAS UUID to NULL.

Á Set the Last Use Timestamp to the current machine time.

Á Create a new call object with Sequence Number equal to N and add it to the Table of

Active Calls per Activity for the activity. The server MUST set the activity ID element's
lowest -unused -sequence to N+1. If the packet's PF2_UNRELATED flag is set, the server MUST
set the activity ID element's lowest -allowed -sequence to N. The server MUST s et the new
Call State to STATE_INIT.

4. If the message was not discarded, the server MUST process the message according to the current
state of the call object kept in Call State , as described in sections 3.2.3.5.4.1 through

3.2.3.5.4.4.

3.2.3.5.4.1 STATE_INIT

The server MUST clear the Sent Fragment List and Received Fragment List and reset the Receive
Fragment Base to zero. The server MUST set the Call State to STATE_RECEIVE_FRAGS and
continue with processing for that state.

3.2.3.5.4.2 STATE_RECEIVE_FRAGS

110 / 183

[MS -RPCE-Diff] - v20171201
Remote Procedure Call Protocol Extensions
Copyright © 2017 Microsoft Corporation
Release: December 1, 2017

The server MUST take the f ollowing actions for every fragment received:

1. If the packet is undersized (less than the size of the Connectionless PDU header as defined in

[C706] section 12.5.1), the server MUST drop it. No further processing is required.

2. If the packet is oversized, the server MUST drop it and send a FACK -with -body PDU indicating to

the client the current limit of the server buffer (implementation specific) using the window_size
field of the FACK PDU body as described in section 12.5.3.4 of [C706]. No further processing is
required.

3. Update the Received Fragment List .

4. Update the Last Fragment Received Timestamp of the call.

5. If a Callback State is false, check whether a conversation callback is required. If the call is not
secure, is non - idempotent, and has an unknown CAS UUID (determined by searching the Table

of Client Address Spaces), begin a conv_who_are_you2 . When the callback completes, set
the Table of Activity IDs entry CAS UUID to the value returned by the client. If the CAS UUID
is not represented in the Table of Client Address Spaces , create a new entry in the Table of

Client Address Spaces and set the new entry's CAS Context Handle List to NULL

6. If the call is secure and the server does not have a security context in the activity's Table of
Security Contexts that matches the key_vers_num in the packet's security trailer, begin a

conv_who_are_you_auth and set Callback State to true. See section 3.2.1.4.1 for more
information on how the callback generates a security context. If the server has no credentials
mat ching the packet's auth_proto field, fail the conversation callback with status 0x000006D3.

Á If the conversation callback fails, send a REJECT to the client, change the call state to
STATE_COMPLETE, remove the call from the Table of Active Calls per Activi ty , and update
the Lowest - Allowed - Sequence Counter of the activity. End Processing.

Á If the conversation callback (for the purpose of establishing a security context) succeeds, add

the resulting Security Context Handle to the activity's Table of Security Co ntexts .

7. Send a FACK PDU with a body (as specified in [C706] section 12.5.3.4) and version field value set

to 1, to the client.

8. Update the Last Use Timestamp value in the Table of Activity IDs activity entry.

9. If all receive fragments are present in the Rece ived Fragment List , or if the call uses DCE pipes,
and the server has received all the [in] arguments that are not marked with the [PIPE] attribute in
the IDL file, set Call State to STATE_WORKING and dispatch to the application stub. For

information about how the [in] arguments that are marked with the [PIPE] attribute in the IDL file
are received in an application stub through the pull procedure, refer to [C706] section 5.1.4.

10. If the received packet has the PF2_UNRELATED flag set, set Overlapped in the se rver call to
TRUE, otherwise, set it to FALSE.

3.2.3.5.4.3 STATE_WORKING

If all request fragments are received, the server MUST reply with a WORKING packet. No further
processing is required.

When a call is dispatched:

1. If the call is secure, ask the security provider to verify or decrypt the received packets, as
appropriate, follow the processing information specified in section 3.2.1.4.1.1. If an error occurs,
send a REJECT to the client, change the call state to STATE_COMPLETE, remove the call from the
activity, and update the lowest -allowed -sequence of the activity. The call is finished.

111 / 183

[MS -RPCE-Diff] - v20171201
Remote Procedure Call Protocol Extensions
Copyright © 2017 Microsoft Corporation
Release: December 1, 2017

2. Dispatch to the application stub.

3. After the application stub completes successfully, check whether a later call sequence has already

been dispatched on this activity. If so, and Ov erlapped in the server call is false, skip further
processing of this sequence.

4. If the [maybe] flag (as defined in [C706] sections 12.5.2 and 12.5.3.9) is set, no reply is needed.
Change the Call State to STATE_COMPLETE, remove the call from the activity, and update the
lowest -allowed -sequence of the activity. The call is finished.

5. Set the Call State to STATE_SEND_FRAGS, and send one or more response fragments to the
client.

3.2.3.5.4.4 STATE_SEND_FRAGS

The server MUST send a burst of RESPONSE fragments and update the Sent Fragment List. The sliding
window algorithm for RESPONSE fragments is implementation -specific. For more information, see
section 3.2.1.1.1.

The Call State changes to STATE_COMPLETE (see section 3.2.2.1.10) in one of the following
conditions:

Á If a requ est is received with the PF2_UNRELATED flag cleared and a sequence number greater

than the activity's previous call.

Á If the response fragments are acknowledged by the client, with respect to the packet's
Header.Flags.Nofack flag, as specified in section 3. 2.2.5.3.

3.2.3.5.5 PING

If the packet sequence is higher than all of the activity's active calls, the server MUST reply with a
NOCALL without body data. Otherwise, if the activity contains no active call for the packet sequence,

discard the packet.

Otherwise, the p acket matches an active call. Because client packets might be duplicated and
reordered in transit, the server MAY ignore the packet using implementation -specific criteria in order
to avoid redundant responses. <93> If not, the server MUST check the Call State , as specified in the
sections that follow.

3.2.3.5.5.1 STATE_INIT

The server MUST reply with NOCALL - with - body .

3.2.3.5.5.2 STATE_RECEIVE_FRAGS

If all request fragments for the call have been received and the state is in transition to
STATE_WORKING, the server MUST reply with WORKING. Otherwise, the server MUST reply with
FACK - with - body .

3.2.3.5.5.3 STATE_WORKING

The server MUST reply with WORKING.

3.2.3.5.5.4 STATE_SEND _FRAGS

The server MUST send a burst of RESPONSE fragments.

3.2.3.5.6 FACK

112 / 183

[MS -RPCE-Diff] - v20171201
Remote Procedure Call Protocol Extensions
Copyright © 2017 Microsoft Corporation
Release: December 1, 2017

If the Call State is not STATE_SEND_FRAGS, discard the packet. Otherwise, update the Sent
Fragment List and send a burst of RESPONSE fragments.

3.2.3.5.7 QUIT

If the packet's event ID is greater than th e call's CANCEL_EVENT_ID field, set the call's
CANCEL_EVENT_ID to the packet's event ID, remove the call from the Table of Active Calls per
Activity and send a QUACK.

If the packet's event ID is equal to the call's CANCEL_EVENT_ID , reply with a QUACK.

 If the packet's event ID is less than the call's CANCEL_EVENT_ID , discard the packet.

3.2.3.5.8 ACK

If the Call State is not STATE_SEND_FRAGS, discard the packet. Otherwise, change the Call State to
STATE_COMPLETE , remove the call from the Table of Active Calls per Ac tivity , and update the
lowest -allowed -sequence of the activity. The call is finished.

3.2.3.6 Timer Events

For more information on timers, see section 3.2.3.2.

3.2.3.6.1 Idle Sca venger Timer Expiry

When the Idle Scavenger Timer expires, the server MUST scan all activities and remove idle calls and
activities. After processing the following rules, the idle scavenger timer is reset to an
implementation -specific interval. <94>

See pro duct behavior note <95> for additional information.

Idle Call Processing : For each call in the Table of Active Calls per Activity , the server examines
the Last Fragment Received timestamp value and compares it with the current time. If the

interval is longe r than an implementation specific value <96> , the call is determined to be idle
and is removed from the Table of Active Calls per Activity .

Idle Activity Processing : For each activity in the Table of Activity IDs , the server examines the
activities Last Use Timestamp and compares it with the current time. If the interval is longer

than a period of TIMEOUT_IDLE as specified in [C706] Section 10.2.6, the activity is determined to
be idle and is deleted from the Table of Activity IDs .

When an activity is del eted, the server MUST perform the following:

Á Delete all security contexts associated with the activity's Table of Security Contexts .

Á Using the activity's CAS UUID, lookup the appropriate CAS in the Table of Client Address
Spaces , delete the Client Address Space and its CAS Context Handle List .

3.2.3.7 Other Local Events

No local events are specified for implementations of connectionless RPC servers.

113 / 183

[MS -RPCE-Diff] - v20171201
Remote Procedure Call Protocol Extensions
Copyright © 2017 Microsoft Corporation
Release: December 1, 2017

3.3 Connection -Oriented R PC Protocol Details

3.3.1 Common Details

This section defines the protocol details that are common between a connection -oriented RPC server
and a connection -oriented RPC client.

3.3.1.1 Abstract Data Model

This section specifies a conceptual model of possible data organization that an implementation
maintains to participate in this protocol. The specified organization is provided to facilitate the
explanation of how the protocol behaves. This document does not mandate that implementations
adhere to this model as long as their external behavior is consistent with that described in this
document.

3.3.1.1.1 Association

Association : An association is a set of RPC transport con nections between a client process and a
server endpoint. On the abstract level, the association can have any number of connections in it,
although memory constraints and limitations of the RPC transport that establishes these connections
mean that, in prac tice, the number of connections in an association is much more limited. All RPC
transport connections in a given association are explicitly joined to an association , as specified in

section 3.3.1.5.7. Both the client and server have an abstraction for asso ciation .

[C706] uses the phrase association group for what this specification refers to as an association .

Each association contains the following properties:

Á Binding handle as specified in [C706] section 6.2.1

Á List of Connections : All connection elements bound to this association .

Á Bind Features Bitmask : An octet bitmask that stores the result of Bind Time Feature Negotiation

as defined in section 3.3.1.5.3. When features are successfully negotiated, the bits are set as

defined in BindTimeFeatureNegotiatio nBitmask section 2.2.2.14. When these bits are set in the
client and server, they indicate that the corresponding features are supported for this association.

Á List of Supported Transfer Syntaxes : The list of all transfer syntaxes supported by the
associat ion. The content of this list is implementation -specific, and is discussed in [C706]
Appendix I.

Á Table of Presentation Contexts : A table of presentation contexts that have been negotiated by

one or more connections bound to this association .

3.3.1.1.2 Connection

Connection : A connection is an RPC - level abstraction that denotes the data structures associated
with a given RPC transport connection. There is a 1:1 relationship between an RPC transport
connection and an RPC connection. The RPC runtime on both the clien t and server maintains an

abstract data handle that is a reference for each TCP/IP connection if the RPC transport is TCP/IP.

Each connection MUST belong to exactly one association. Once a connection is tied to an
association , a connection cannot change th e association that it belongs to. If the transport is
NCACN_NP the server maintains a reference to an RPCServerGenericNamedPipeOpen (see [MS -
CIFS] section 3.5.4.1)

[C706] uses the term association for what this document refers to as a connection.

The conne ction ADM element contains the following properties:

114 / 183

[MS -RPCE-Diff] - v20171201
Remote Procedure Call Protocol Extensions
Copyright © 2017 Microsoft Corporation
Release: December 1, 2017

Á A list of associated Server Call or Client Call elements.

Á Table of Security Context Handles : A table that contains all of the security context handles

that have been negotiated with the remote client or server and indexed by the security context
identifiers currently in use. Lookups in the table are permitted using the auth_context_id field in

the sec_trailer (section 2.2.2.11) data structure of the incoming PDU. If Security Context
Multiplexing has not been negotiated, as described in section 3.3.1.5.4, the list will contain only a
single security context handle .

Packet integrity verification and/or encryption/decryption is performed, as described in section
3.3.1.5.2.2, using the security context handle value that is contained in each security context row.

A new row is added to the table when a new security context is built.

Á Connection Multiplex Flag

Á Supports Header Signing Flag : Both the client and server maintain a Boolean value flag that
indicates whe ther the remote party supports header signing as described in section 3.3.1.5.2.2.
The default value is FALSE.

Á Transport Handle : The client and server MUST maintain an abstract reference to an underlying
transport mechanism instance.

Á Association : The clie nt and server MUST maintain a reference to the association to which the

connection is tied.

Á List of Negotiated Presentation Contexts : The list of presentation contexts that have been
negotiated for this connection. See sections 3.3.1.5.6 and 3.3.2.4.1.3 fo r how elements are added
to this list.

Á NamedPipe : An RPCServerGenericNamedPipeOpen structure, see [MS -CIFS] section 3.5.4.1.

3.3.1.1.3 Connection Multiplex Flag

Connection Multiplex Flag: A value that SHOULD be maintained for each connection on both the

client and server that indicates whether the connection supports concurrent multiplexing. The flag has
3 possible values: Unknown, Yes, and No. The default value is Unknown. The mechanism u sed to
express these values is implementation -specific.

3.3.1.1.4 List of Connections

List of Connections : The client and server MUST implement an abstraction of a list of connection

elements which are bound to a given association. The list need not be ordered or in dexed by any value
specific to a particular connection.

3.3.1.1.5 Table of Associations

Table of Associations : The client and server SHOULD maintain a list of all associations. The Table
of Associations is initialized when the client and server applications are star ted and are initially
empty. Whenever a new association is created (as specified in [C706] section 9.3.3), it is added to

the table. Whenever the last connection in an association is closed, the association is removed from
the table and destroyed.

3.3.1.1.6 Table of Security Provider Info

Table of Security Provider Info : The client and server SHOULD maintain a table indexed by the
Security Provider ID value (for example, RPC_C_AUTHN_GSS_KERBEROS) that defines the

number of legs required to negotiate a security conte xt. See section 2.2.1.1.7 for more information on
security providers and section 3.3.1.5.2.1 for usage details.

115 / 183

[MS -RPCE-Diff] - v20171201
Remote Procedure Call Protocol Extensions
Copyright © 2017 Microsoft Corporation
Release: December 1, 2017

3.3.1.2 Timers

There are no timers that are common between a connection -oriented client and a connection -oriented
server.

3.3.1.3 Initialization

There is no initialization that is common between a connection -oriented cli ent and a connection -
oriented server.

3.3.1.4 Higher -Layer Triggered Events

3.3.1.4.1 Context Handle Scope

The operations on a context handle are as specified in [C706] section 5.1.6. This section clarifies the

scope of the context hand le as interpreted by these extensions. As specified in [C706] section 5.1.6,
the context handle is created by the client sending a null context handle in a method call, and by the

server returning a nonnull context handle in the stub data in the response t o the same method call.
The RPC transport connection on which the request and response are transmitted belongs to an
association, as specified in sections 3.3.1.1.1 and 3.3.1.1.2. The scope of a context handle is this
association. If a request/response exc hange on one association leads to the creation of a context
handle, and this context handle is passed to a different association, the server SHOULD reject the

request.

3.3.1.5 Message Processing Events and Sequencing Rules

3.3.1.5.1 Protocol Version Number

These extensions constrain the protocol version numbers that are used in PDUs, as specified in [C706]
section 12. These extensions recognize only major version 5 and minor version 0. If a PDU with a
different major or minor version is sent to a client or server, the client or server SHOULD return an

error. <97>

3.3.1.5.2 Building and Using a Security Context

3.3.1.5.2.1 Building a Security Context

To make a secure call, a security context needs to be created before it can be used. The process of
creation involves exchanging one or more messages between the client and server implementations of
a security provider. This process is also called building a security context.

During the process of building a security context, a security provider can optionally exchange
messages with an entity other than the client or server (for example, a KDC).

The scope of a built security context is the connection. If a client wants to use a security context on a
different connection, it MUST totally rebuild it for that different connection.

To build a security context, an RPC client and an RPC server exchange a s eries of bind/bind_ack or
alter_context/alter_context_resp PDUs with authentication information. The process MUST start on the
client, as follows:

Á If the client has already sent a bind PDU on the connection it wants to build the security context
on, it MUS T start the sequence of building a security context with an alter_context PDU.

Á If the client has not already sent a bind PDU on that connection, it MUST start the sequence of
building a security context with a bind PDU.

116 / 183

[MS -RPCE-Diff] - v20171201
Remote Procedure Call Protocol Extensions
Copyright © 2017 Microsoft Corporation
Release: December 1, 2017

The process continues on the server as follows:

Á If the server receives a bind PDU, it MUST respond with a bind_ack or bind_nak PDU.

Á If a server receives an alter_context PDU, it MUST respond with an alter_context_resp PDU or, in
the case of error, with a fault PDU.

In case of catastrophic er rors (such as an out of memory condition or buffer overrun), a server MAY
send a fault PDU or just close the connection. For information on client and server state machines, see
sections 3.3.2 and 3.3.3.

Once a client decides on the type of PDU, it MUST s tart the sequence by requesting the security
provider for an authentication token using an implementation -specific equivalent of the abstract
GSS_Init_sec_context call, as specified in [RFC2743]. See [MS -APDS] section 3.1.5 for NTLM details
and see [RFC412 1] and [MS -KILE] section 3.2.5.2 for Kerberos details. This PDU MUST be sent to the

server with authentication information added, as specified in section 2.2.2.11.

When authentication information is associated with a connection as specified in section 2.2 .2.11 and
auth_length is nonzero as specified in [C706] section 13.2.6, the Security Context contains a token

that represents the client identity populated by the security provider. See [MS -APDS] section 3.1.5
"Processing Events and Sequencing Rules" and [MS-KILE] section 3.4.5.3 "Processing Authorization
Data" for details of population of the token. See [MS -DTYP] section 2.5.2 "Token/Authorization

Context" for details of the members of tokens.

If no authentication information is obtainable as specified in section 2.2.2.11 and the transport
protocol is NCACN_NP, the security context is obtained as described in [MS -CIFS] section 3.5.4.3
supplying the Connection NamedPipe ADM element as a parameter .

The client MUST choose a value for the auth_context_id of the sec_trailer structure such that it is
unique within the scope of the given connection. Each message with an authentication token sent to
the other party is also called a security leg. Thus, th e first message from the client to the server is

also called the first leg of the security context creation. The server MUST retrieve the authentication
token and hand it off to the security provider indicated by the auth_type field.

The interaction betwe en these extensions and the security provider on the server MUST happen
through an implementation -specific equivalent of the abstract GSS_Accept_sec_context call, as
specified in [RFC2743]. Upon receiving and processing an authentication token at any leg o f the
authentication on either the client or server, the security provider MUST indicate to RPC runtime one
of three abstract results from the processing: an error, a success, or a request for further security

legs, as specified in [RFC2743]:

Á If the secur ity provider indicates an error, the RPC runtime MUST take recovery action depending
on whether this is the client or server.

Á If this is the client, the RPC runtime discards the security context and MUST NOT send any
further PDUs on that connection. It SH OULD close the connection unless it is expecting
responses on a multiplexed connection, as specified in section 3.3.1.5.8, in which case it

SHOULD set the Activity's Discard flag to TRUE. If it does not wait for all responses on a
multiplexed connection, i t MUST provide indication in an implementation -specific way to upper
layers that the outstanding calls have failed.

Á If the security provider returns an error on the server, the server MUST respond with a
bind_nak or a fault PDU, depending on the PDU that the client sent, as specified earlier. The
server SHOULD also discard the security context in this case.

Á If the security provider returns a success from processing the authentication token, the security

context is successfully created. If the security prov ider returns a success on the client, the client is
ready to use this security context. If the security provider on the server returns a success, the
server MUST still respond with a bind_ack or alter_context_resp PDU, as specified earlier. In this
case, i t SHOULD return an empty (zero - length) authentication token to the client.

117 / 183

[MS -RPCE-Diff] - v20171201
Remote Procedure Call Protocol Extensions
Copyright © 2017 Microsoft Corporation
Release: December 1, 2017

Á If the security provider indicates to the RPC runtime a request for further security legs, it MUST
always produce another authentication token along with the request for further se curity legs. In

this case, the RPC runtime MUST send another leg of the security context creation by using that
authentication token. If this happens on the client, the client MUST send an alter_context PDU.

The p_context_elem structure of the alter_contex t PDU SHOULD be the same as the content of the
PDU sent in the previous leg from the client. If this happens on the server, it MUST respond with a
bind_ack or an alter_context_resp PDU, except when a security provider has an odd number of
legs as specified in the following section, using the authentication token produced by the security
provider.

If a client has implemented a Table of Security Provider Info, then it has the knowledge of how many
legs different security providers use . If the client determi nes during lookup in this table that a given

security provider has an odd number of legs, the client SHOULD use an rpc_auth_3 PDU instead of an
alter_context PDU for the last leg. The client MUST NOT use an rpc_auth_3 PDU unless it is certain
that the curr ent leg is the last leg of exchange. The server MUST NOT respond to an rpc_auth_3 PDU.
If the processing of the authentication token from an rpc_auth_3 PDU results in an error, the RPC
runtime on the server SHOULD return a fault PDU on the first request th at uses this security context
with the status field set to the security context handle Error Value .

If a client is not sure how many legs a given security provider uses, it MUST assume that the number
of legs is even. <98>

Once negotiated, the client and se rver add the resultant security context handle to the
connection's Table of Security Context Handles .

3.3.1.5.2.2 Using a Security Context

After a security context is built, the security context can be used by the RPC runtime and higher - level

protocols to perform auth orization decisions. Besides using the security context for authorization
decisions, the RPC runtime can also use the security context to create a logical stream of data that is
protected from tampering and information disclosure on the network.

The amoun t of protection applied depends on the authentication level for the security context
requested by the client when the security context is created. The authentication level is applied in two

dimensions:

Á In the first dimension, it controls what capabilities the RPC runtime MUST request from the

security provider when the security context is being built, as detailed in the first table that follows.
It is possible for a security provider to not be able to provide a certain capability. In this case, the
lack of the capability MUST be considered by the RPC runtime as equivalent to the security
provider returning an error and MUST be handled as specified in the previous section.

Á In the second dimension, the authentication level controls how the security provider runtime MUST
perform PDU protection on the different PDU segments using the security context, as detailed in

the second table that follows.

The following table specifies the abstract capability that the RPC runtime MUST request from the
security provider w hen the security context is being created. The capabilities in the following table are
further specified in [RFC2743] section 1.2.1.2. The capabilities requested at each level include the
ones requested at the previous level.

 Authentication level Capabi lity requested

RPC_C_AUTHN_LEVEL_CONNECT None

RPC_C_AUTHN_LEVEL_PKT Replay Detect

RPC_C_AUTHN_LEVEL_PKT_INTEGRITY Sequence Detect, integrity

118 / 183

[MS -RPCE-Diff] - v20171201
Remote Procedure Call Protocol Extensions
Copyright © 2017 Microsoft Corporation
Release: December 1, 2017

 Authentication level Capabi lity requested

RPC_C_AUTHN_LEVEL_PKT_PRIVACY Confidentiality

As specified earlier, once the security context is built, the RPC runtime MUST also use the
authentication level to control how the security context is used to protect request and response PDUs
sent to the other side.

One of the first decisions that needs to be negotiated is whether the security provider on each side
supports what this specification calls header signing. Header signing is an operation in which a

security provider can provide integrity protection to a segment of the PDU such that the integrity
protection does not modify the content of that segment. The segments of the PDU are specified in
section 2.2.2.1. The RPC runtime on the client determines in an implementation -specific way if the
security provider on the client supports header signing. If it does, the first bind or alter_context PDU
that the clien t sends on a connection that carries authentication information and whose authentication
level is integrity or higher MUST have its PFC_SUPPORT_HEADER_SIGN bit set. The RPC runtime on

the server also determines in an implementation -specific way whether the security provider on the
server supports header signing, and, if it does not, it MUST respond to the client with a PDU whose

PFC_SUPPORT_HEADER_SIGN bit is cleared. If it does support header signing, it MUST respond to the
client with a PDU whose PFC_SUPP ORT_HEADER_SIGN bit is set.

Using this mechanism, the client and server agree if header signing should be done for this
connection. If both the client and server support header signing, both set the connection's Supports
Header Signing Flag to TRUE. Once agreed, the client and server apply protection to request and

response PDUs in the same way.

If the client and server Supports Header Signing Flag is TRUE, the party that sends the PDU asks
the security provider to apply the following protection to the dif ferent PDU segments.

 Authentication level PDU header PDU body sec_trailer

RPC_C_AUTHN_LEVEL_CONNECT None None None

RPC_C_AUTHN_LEVEL_PKT None None None

RPC_C_AUTHN_LEVEL_PKT_INTEGRITY Integrity Integrity Integrity

RPC_C_AUTHN_LEVEL_PKT_PRIVACY Integrity Confidentiality Integrity

If either the client or server Supports Header Signing Flag is FALSE, the RPC runtime on the
sending side asks the security provider to apply the following protection to the different PDU
segments.

 Authentication level PDU header PDU body sec_trailer

RPC_C_AUTHN_LEVEL_CONNECT None None None

RPC_C_AUTHN_LEVEL_CALL None None None

RPC_C_AUTHN_LEVEL_PKT None None None

RPC_C_AUTHN_LEVEL_PKT_INTEGRITY None Integrity None

RPC_C_AUTHN_LEVEL_PKT_PRIVACY None Confidentiality None

In the preceding tables, "None" means no protection, "Integrity" means an integrity check per
[RFC2743] section 2.3.1 MUST be applied, and "Confidentiality" means that the segment MUST be
encrypted.

119 / 183

[MS -RPCE-Diff] - v20171201
Remote Procedure Call Protocol Extensions
Copyright © 2017 Microsoft Corporation
Release: December 1, 2017

The PDU header, PDU body, and sec_trailer MUST be passed in the input message, in this order, to
GSS_WrapEx, GSS_UnwrapEx, GSS_GetMICEx, and GSS_VerifyMICEx. For integrity protection the

sign flag for that PDU segment MUST be set to TRUE, else it MUST be s et to FALSE. For confidentiality
protection, the conf_req_flag for that PDU segment MUST be set to TRUE, else it MUST be set to

FALSE.

The PDU header, PDU body, and sec_trailer from the output message of GSS_WrapEx and
GSS_VerifyMICEx MUST be sent to the other side (client or server) as part of the request or response
PDU, and the signature output MUST be sent to the other side (client or server) as the authentication
token as specified in section 2.2.2.12.

If the authentication level is RPC_C_AUTHN_LEVEL _PKT_PRIVACY, the PDU body will be encrypted.
The PDU body from the output message of GSS_UnwrapEx represents the plain text version of the

PDU body. The PDU header and sec_trailer output from the output message SHOULD be ignored.
Similarly the signature o utput SHOULD be ignored.

For further details on GSS_WrapEx, see [MS -NLMP] section 3.4.6 , [MS -KILE] section 3.4.5.4 and
[MS -TLSP] section 3.1.5.1.

For details on GSS_UnwrapEx, see [MS -NLMP] section 3.4.7 , [MS -KILE] section 3.4.5.5 and [MS -
TLSP] section 3.1.5.2.

For further details on GSS_GetMICEx, see [MS -NLMP] section 3.4.8 and [MS -KILE] section 3.4.5.6.

For further details on GSS_VerifyMICEx, see [MS -NLMP] section 3.4.9 and [MS -KILE] section 3.4.5.7.

If the authentication level is connect, the security provider MUST use for request and response PDUs
an authentication token that is optional and that does not need to be transmitted to the other side.

This protocol does not specify whether the authentication token itself is protected from tampering by
the security provider. It also does not specify how the security provider applies integrity or
confidentiality protection to a PDU segment. The algorithms for doing so are specific to the security

provider. For details about a security provider, see the docum entation for that security provider.

3.3.1.5.3 Bind Time Feature Negotiation

These extensions introduce additional rules about how a bind PDU SHOULD be composed by the client
and processed by the server, and how the response bind_ack PDU SHOULD be composed by the
server and processed by the client. [C706] sections 12.6.4.3 and 12.6.4.4 specify a bind PDU and a
bind_ack PDU. When sending a bind PDU, a client SHOULD add an element in the p_cont_elem array

that has the same value for the abstract_syntax field as the pre vious element in the p_cont_elem
array, but that MUST have exactly one element in the transfer_syntaxes array; also, its if_uuid
field MUST have the following prefix: 6CB71C2C -9812 -4540 and a version number of 1.0. If a client
does so, it is said to have i ndicated support for bind time feature negotiation. A client MUST have, at
most, one element in the p_cont_elem array that has an if_uuid with that prefix in the
transfer_syntaxes array. If a client has indicated support for bind time feature negotiation, the

message processing rule in this section SHOULD be applied by the server implementation to all
messages for this connection. If a client has not indicated support for bind time feature negotiation,
the message processing rules in this section do not app ly to this connection. <99>

If a client has indicated support for bind time feature negotiation, the eight octets immediately after
the prefix are interpreted as BindTimeFeatureNegotiationBitmask, as specified in section 2.2.2.14. If
the SecurityContextMult iplexingSupported bit is set, this means the client supports security
context multiplexing, as specified in section 3.3.1.5.4. If the KeepConnectionOnOrphan bit is set, this

means the client supports keeping the connection open after an orphaned PDU is sen t, as specified in
section 3.3.1.5.10.

As specified in [C706], section 12.6.3.1, the bind_ack PDU MUST contain the same number of
<p_result_t> elements in <p_result_list> as the number of elements in p_cont_array in the bind

120 / 183

[MS -RPCE-Diff] - v20171201
Remote Procedure Call Protocol Extensions
Copyright © 2017 Microsoft Corporation
Release: December 1, 2017

PDU. Each <p_result_t> element represents the response from the server for each element in the
p_cont_array . Thus the elements in the <p_result_list> MUST be in the same order as the elements

in the p_cont_array .

The server MUST set the corresponding p_result_t element in the p_result_ list in the bind_ack PDU

described as follows. If the server supports bind time feature negotiation, it MUST reply with the result
field in the p_result_t structure of the bind_ack PDU equal to negotiate_ack, and it MUST use the
reason field of the p_resul t_t structure as a BindTimeFeatureNegotiationResponseBitmask structure.
The server MUST set the transfer_syntax element in the p_result_t structure to zero.

If a client has set the SecurityContextMultiplexingSupported bit in the
BindTimeFeatureNegotiationR esponseBitmask structure, and the server supports security context
multiplexing, the server SHOULD set the SecurityContextMultiplexingSupported bit of the

BindTimeFeatureNegotiationResponseBitmask structure.

If the server does not support security context multiplexing, the server MUST clear the
SecurityContextMultiplexingSupported bit of the BindTimeFeatureNegotiationResponseBitmask
structure. If the SecurityContextMultiplexingSupported bit in the

BindTimeFeatureNegotiationResponseBitmask structure is set, and if the client supports security
context multiplexing, then security context multiplexing SHOULD be used on this connection, as

specified in section 3.3.1.5.4. <100>

If a client has set the KeepConnectionOnOrphanSupported bit in the
BindTimeFeatureNegot iationBitmask structure and the server supports keeping the connection open
after an orphaned PDU is received, the server SHOULD set the KeepConnectionOnOrphanSupported bit
in the BindTimeFeatureNegotiationResponseBitmask structure.

If the server does not support keeping the connection open after an orphaned PDU is received, the
server MUST clear the KeepConnectionOnOrphanSupported bit in the

BindTimeFeatureNegotiationResponseBitmask. If the KeepConnectionOnOrphanSupported bit in the
BindTimeFeatureNegotiat ionResponseBitmask is set and the client supports keeping the connection
open after an orphaned PDU is sent, the client SHOULD start keeping the connection open after
sending an orphaned PDU on the connection, as specified in Keeping Connections Open After Client
Sends an Orphaned PDU (section 3.3.1.5.10). <101>

For future extensibility, these rules MUST be applied by the server and the client to all reserved bits in
the BindTimeFeatureNegotiationResponseBitmask and BindTimeFeatureNegotiationResponseBitmask

structures:

Á If a client supports a given feature, the client MUST set the bit (or set of bits) associated with this
feature.

Á If a bit (or set of bits) used to communicate that a client supports a given feature is not set, the
server MUST assume that the c lient does not support this feature.

Á If a server does support the feature, the server MUST set the bits associated with that feature in

the BindTimeFeatureNegotiationResponseBitmask bitmask.

Á A server MUST clear all bits in the BindTimeFeatureNegotiationRe sponseBitmask bitmask that it
interprets are reserved.

Any bind time features that are successfully negotiated are stored in the client and server's
Association's Bind Features Bitmask .

3.3.1.5.4 Security Context Multiplexing

These extensions allow for a client implementation to use more than one security context per
connection. A client implementation MUST NOT do security context multiplexing unless the
Association's Bind Feature Bitmask has the SecurityContextMultiplexingSupp orted bit set.
When security context multiplexing has been negotiated, if a client needs to negotiate a new security

121 / 183

[MS -RPCE-Diff] - v20171201
Remote Procedure Call Protocol Extensions
Copyright © 2017 Microsoft Corporation
Release: December 1, 2017

context, it is allowed to do so on an existing connection subject to the constraints in the server state
machine. These extensions also int roduce some constraints and conventions along with this capability.

If there is only one security context on a given connection, and this security context has the
authentication level connect, a client and a server MAY choose not to send authentication inf ormation

for that security context. In such a case, the server MUST treat request PDUs without authentication
information as if they had Connect level authentication information, and all other security context
attributes are picked from the only security c ontext negotiated on the connection. <102>

A client MUST send authentication information for all request PDUs if the higher - level protocol on the
client has asked for the connect authentication level and there is more than one security context
negotiated fo r the connection.

A client MUST NOT build more than 2,000 security contexts per connection, but it MAY choose to

impose an even lower limit on the number of security contexts that can be built on a
connection. <103>

The server MAY enforce a limit in the number of security contexts that can be associated with a single
connection.

If a server receives a request to associate a security context with an existing connection, the server
SHOULD check that such limit has not been reached. <104>

If the new security context exceeds the server's limit, the server MUST send to the client an rpc_fault
packet with the RPC_S_PROTOCOL_ERROR error code.

If the new association would make the limit be exceeded, the server MUST send to the client an
rpc_fault packet with the R PC_S_PROTOCOL_ERROR error code.

3.3.1.5.5 Primary and Secondary Endpoint Address

Primary and Secondary Endpoint Addresses ([C706] section 9.3.3.2) allows a server to have a primary

and secondary endpoint address. These extensions recognize the syntactic rules associ ated with a
primary and secondary endpoint address, but they discard all semantic meaning of a primary and
secondary endpoint address. Servers that implement these extensions SHOULD return a secondary

endpoint address that is the same as the primary endpoi nt address. Clients that implement these
extensions SHOULD ignore the secondary endpoint address. Implementations of this protocol MUST
conform to [C706] with respect to transmitting, storing, and failure handling of the secondary
endpoint. Clients SHOULD ignore secondary endpoints that the server returns.

3.3.1.5.6 Presentation Context and Transfer Syntax Negotiation

These extensions extend and augment the message processing rules for presentation context and
transfer syntax negotiation, as specified in [C706] secti on 12.6. The scope of a presentation context in
these extensions is a connection.

The basic model for the negotiation process is that the client enumerates all transfer syntaxes it

supports, and the server chooses one of them. A detailed description of the processing rules follows.

If a client supports multiple transfer syntaxes, as listed in the List of Supported Transfer Syntaxes
in the association , the client SHOULD send multiple elements in the p_cont_elem array of the

p_cont_elem_t structure, as specif ied in [C706] section 12. The abstract_syntax field in each
element of the array SHOULD contain the same if_uuid and if_version , and the transfer_syntaxes
array of each element SHOULD have one element only. The if_uuid and if_version of the element in
the transfer_syntaxes array MUST contain the transfer syntax UUID and version number for the

transfer syntax the client is proposing.

The server responds with a bind_ack or alter_context_resp PDU depending on what PDU the client
sent to it. The server SHOULD accept, at most, one of the transfer syntaxes. Selection of a transfer
syntax is based on the following criteria:

122 / 183

[MS -RPCE-Diff] - v20171201
Remote Procedure Call Protocol Extensions
Copyright © 2017 Microsoft Corporation
Release: December 1, 2017

1. If one of the client proposed transfer syntaxes matches the server's preferred transfer syntax,
then that transfer syntax is accepted.

2. If the client does not propose a transfer syntax that matches the server's preferred transfer
syntax, the first transfer syntax in the client's list of proposed syntaxes which is also supported by

the server is accepted.

3. If none of the proposed transfer syntaxes are supported, the server MUST send a bind_ack with
all transfer syntaxes rejected.

The response of the server is a p_result_list_t structure that MUST have the same number of elements
as the p_cont_elem_t structure the client sent to it. Each array eleme nt in the p_result_list_t structure
is interpreted to correspond to the array element in the p_cont_elem_t structure in the same position
of the array. For example, the first array element in the p_result_list_t structure is interpreted to

correspond to th e first array element in the p_cont_elem_t structure. If the server does not recognize
the abstract_syntax field in an array element in the p_cont_elem_t structure, it MUST set the result
field in the p_result_list_t structure corresponding to that array e lement to
abstract_syntax_not_supported . If the server recognizes the abstract_syntax field, the server

MUST set the result field corresponding to the transfer syntax it prefers to use to the "acceptance"
value and the result field corresponding to all oth er transfer syntaxes to the "provider_rejection"

value. Both of these values are as specified in [C706] section 12.6.

The client SHOULD NOT interpret the rejection of a transfer syntax as an indication that the server will
not accept this transfer syntax a t a future date but instead SHOULD interpret the rejection as an
indication that the server prefers the transfer syntax it accepted over the other transfer syntaxes
proposed by the client. A client is allowed to propose a rejected transfer syntax at a late r time, but if it
has a choice, the client SHOULD use the transfer syntax that the server accepted instead of trying to
renegotiate a transfer syntax that was rejected earlier by the server.

If the client receives a bind_ack with no accepted transfer synta x, the client MUST fail the call. <105>

If the client attempts to negotiate a presentation context when the server already has 4000 X
NumberOfRegisteredInterfaces or greater presentation contexts, the server MUST fail negotiation
of a presentation context w ith bind_nak packet. The client behavior when receiving the bind_nak

packet is as described in [C706] section 11.1.3 (CO_CLIENT Events, RCV_BIND_NAK event).

Once negotiated, a presentation context SHOULD be maintained by both the client and server
implemen tations for the lifetime of the connection it was negotiated on by adding it to the Table of

Presentation Contexts in the association and to the List of Negotiated Presentation Contexts
in the connection .

Servers SHOULD implement at least transfer syntax NDR, as defined in this document, to allow for a
fallback transfer syntax if another transfer syntax cannot be negotiated. <106>

3.3.1.5.7 Adding a New RPC Transport Connection to an Association

The assoc_group_id field in the bind PDU is as specified in [C706] secti on 12.6.4.3. These
extensions add some constraints to the protocol specified in [C706]. If a new connection tries to join
an existing association by setting the assoc_group_id field to the value of an existing association,
the server SHOULD establish from the RPC transport whether the connection comes from the same

machine as the connection that created the association. If yes, it MUST allow the connection to join
the association. If no, it SHOULD NOT allow the connection to join the association. The only t ransports
capable of determining this conclusively are RPC over TCP, RPC over HTTP and RPC over Named Pipes.

For other transports this checks SHOULD be omitted.

Determining the identity of the client machine is performed in a transport -specific manner. F or RPC
over TCP, an implementation of this protocol MUST use the client's IP address. For RPC over HTTP, an
implementation of this protocol MUST use the Association Group ID of the client. For RPC over Named
Pipes, an implementation of this protocol MUST u se the client machine name.

123 / 183

[MS -RPCE-Diff] - v20171201
Remote Procedure Call Protocol Extensions
Copyright © 2017 Microsoft Corporation
Release: December 1, 2017

3.3.1.5.8 Multiplexed Connections

A client SHOULD <107> support concurrent multiplexing on a connection.

A client can indicate to the server that it wants to do concurrent multiplexing on a connection. It does

that by setting the PFC_CONC_ MPX bit, as specified in [C706] section 12. If the server also supports
this capability, it responds with a PDU that also has the same bit set. At this point both the client and
server MUST set the Connection Multiplex Flag to Yes. Once concurrent multiple xing on a
connection is negotiated, a client is allowed to send another request on a connection before it receives
a response on a previous request, provided that the server is in CONTEXT_NEGOTIATED or Dispatched
state. A client still MUST send all request PDUs for a fragmented request before it can move on to the
next. Each request on the connection MUST abide by the same rule.

If a client negotiates a connection that does not support concurrent multiplexing (also called an
exclusive connection), a client MUST wait for all PDUs of a response to arrive before it can send a
request PDU for the next call.

3.3.1.5.9 Handling of Callbacks

Method calls declared as callbacks have some additional rules for handling on the network compared

to calls without this attribute. A callback on the network is represented as a regular RPC except that
the direction of the PDUs is reversed. The server send s one or more request PDUs, and the client
responds with one or more response PDUs. The server MUST NOT send request PDUs while in any
state other than the Dispatch state, and a client SHOULD NOT accept callbacks in any state other than
the Wait For Respon se state.

Callbacks are allowed recourse to any level that the implementation is willing to support. That is, if a
client gets a callback, it SHOULD initiate another RPC method call by sending more request PDUs

instead of replying to the previous request. This same rule applies for the server. For the server, if it
sends one or more request PDUs during the Dispatch state, the call that is in the Dispatch state is
called a nesting or outer call. The callback call that the request PDUs sent from the server i s called a
nested or inner call. For the client, if it sends one or more request PDUs during the Wait For Response
state, the call that is in the Wait For Response state is called a nesting or outer call. The callback call
that the request PDUs sent from t he client is called a nested or inner call. Callback calls by definition

use the presentation and security context of the nesting call and MUST NOT send bind or alter_context

PDUs.

The call_id field for all request and response PDUs of a nested callback M UST be the same as the
call_id of the request/response PDUs of the nesting callback.

3.3.1.5.10 Keeping Connections Open After Client Sends an Orphaned PDU

A client implementation MUST NOT keep the connection open after sending the orphaned PDU unless
the Associatio n's Bind Feature Bitmask has the KeepConnectionOnOrphanSupported bit set.

3.3.1.6 Timer Events

There are no timer events that are common between a connection -oriented client and a connection -
oriented server.

3.3.1.7 Other Local Events

There are no other local events that are common between a connection -oriented client and a
connection -oriented server.

124 / 183

[MS -RPCE-Diff] - v20171201
Remote Procedure Call Protocol Extensions
Copyright © 2017 Microsoft Corporation
Release: December 1, 2017

3.3.2 Client Details

The following diagram defines the client state machine.

Figure 18 : Client state machine

State Description

ESTABLISHED The client has received a transport connect complete indicating that a
new transport connection has been established.

WAIT for UNSECURE_BIND_ACK The client has sent the bind PDU, in case of an unsecure call.

CONTEXT_NEGOTIATED The client is ready to send the request PDU.

WAIT for SECURE_BIND_ACK The client has sent a bind PDU, in case of a secure call.

WAIT for
SECURE_ALTER_CONTEXT_RESP

The client has sent a SECURE_ALTER_CONTEXT PDU and is waiting for
an answer.

WAIT_RSP The client is waiting for a response PDU.

Notes on this state machine:

125 / 183

[MS -RPCE-Diff] - v20171201
Remote Procedure Call Protocol Extensions
Copyright © 2017 Microsoft Corporation
Release: December 1, 2017

When a state does not show an error transition, these extensions handle the error from this state by
closing the connection.

When concurrent multiplexing is used on a connection, as soon as an independent logical thread of
execution makes a transition from CONTE XT_NEGOTIATED to WAIT_RSP state, another independent

logical thread of execution can make the transition from CONTEXT_NEGOTIATED to WAIT_RSP. Only
one logical thread of execution is allowed to make this transition at a given time, but multiple logical
thre ads of execution can be in the WAIT_RSP state. A client MUST NOT send any request PDU for
request N+1 before it sends all request PDUs for request N.

If concurrent multiplexing on a connection is not enabled, a client MUST NOT send any request PDU
for requ est N+1 before it receives all the response PDUs for request N.

3.3.2.1 Abstract Data Model

This section describes a conceptual model of possible data organization that an implementation
maintains to participate in this protocol. The described organization is provided to facilitate the
explanation of how the protocol behaves. This docum ent does not mandate that implementations

adhere to this model as long as their external behavior is consistent with that described in this
document.

Note The conceptual data can be implemented by using a variety of techniques.

3.3.2.1.1 Idle Connection Cleanup Enabled

Idle Connection Cleanup Enabled: A flag that, if set, indicates that cleaning up idle connections is
enabled. It MUST be clear by default.

3.3.2.1.2 Association Active Context Handle Count

Association Active Context Handle Count : The client version of the As sociation ADM element, as
described in section 3.3.1.1.1, includes a count of active context handles, stored in a 32 -bit unsigned
integer. When a new association is created, the count is zero. The Association Active Context

Handle Count is incremented when context handles are created for an association according to the
mechanisms described in [C706]. Likewise, the Association Active Context Handle Count is

decremented when context handles are released. The client SHOULD not allow the count of context
handle s to overflow the data type, although the chance of doing so without exceeding the server's
resource limits is very minimal.

3.3.2.1.3 Client Call

The client call is a data element that encapsulates the state associated with a client call . The client
call is specifi ed by a state machine with the following states.

State Description

STATE_SEND_PDUS The client is sending request PDUs of the call's [in] parameters to the server. This is the
call's initial state.

STATE_DISPATCHED The server has received all Request PDUs and is processing the request.

STATE_RECEIVE_PDU The server is sending reply PDUs of the call's [out] parameters to the client.

STATE_COMPLETE The call completed successfully. This is a terminal state.

STATE_FAULT The call failed. This is a terminal state.

The client call states are depicted in the following diagram:

126 / 183

[MS -RPCE-Diff] - v20171201
Remote Procedure Call Protocol Extensions
Copyright © 2017 Microsoft Corporation
Release: December 1, 2017

Figure 19 : Client Call State Diagram

Client Call : The client call data structure maintains state and property information relating to a
client call , as specifi ed in [C706] section 9.3.4. Each client call contains the following properties:

Á Connection : As specified in section 3.3.1.5.5, each call MUST establish and maintain an affinity
for a single connection . The mechanism of linking a call to a connection is imp lementation -
dependent. The process for determining an appropriate connection is described in section
3.3.2.4.1.2.

Á Call_id : An unsigned 32 -bit integer identifying the call, as defined in [C706] section 12.6.3.5.

127 / 183

[MS -RPCE-Diff] - v20171201
Remote Procedure Call Protocol Extensions
Copyright © 2017 Microsoft Corporation
Release: December 1, 2017

Á Communication Time - out Value : A 32 -bit intege r value that specifies a time -out period in
milliseconds for PDU transmission. This value is set by higher - level protocol in an implementation

specific manner <108> prior to making a call. See section 3.3.2.2.2 for more information on how
this affects PDU t ransmission. If not specified by the higher - layer protocol, the default value is

MAX_INT.

Á Call State : An implementation -specific value that represents the call state from the preceding
table.

3.3.2.1.4 Client Connection

Client Connection : The client connection data structure maintains state and property information
relating to a client connection. The client connection includes all of the properties of the connection

element and has the following additional properties:

Á Last Use Time : A value that indicates the last t ime the client connection handled a response
PDU.

Á Discard : A Boolean flag indicating that the Client Connection SHOULD NOT be used for new
Call s. This flag is set to FALSE when the activity is allocated. It is set to TRUE to prevent new calls
from using th e activity.

3.3.2.1.5 Server Binding Handle

Server Binding Handle : An implementation MAY extend the [C706] definition of a Binding Handle to
include additional properties.

The clients Server Binding Handle contains the following properties:

Á Communication Time - Out Value : A 32 -bit integer value that specifies a time -out period in
milliseconds for any PDU transmission using this binding handle. The default value is 15 minutes

(900,000 milliseconds). This value is set by higher - level protocol at bind time in an
implementation -specific manner. <109> See section 3.3.2.2.2 for more information on how this
affects PDU transmission.

3.3.2.2 Timers

3.3.2.2.1 Connection Time -Out Timer

Connection Time - Out Timer : Whenever a method call is pending, a higher - layer protocol or
application can instruct the RPC transport to monitor the state of the connection in an implementation -
dependent <110> manner, above and beyond the monitoring provided by default by the RPC
transport, so that if the server crashes or loses network connectivity to the client, the client can take
recovery action. A method is considered pending on the server from a client perspective if all

fragments of request have been sent and no r eplies have started arriving. Depending on the protocol
sequence for the method call, the establishment of the timer acts only as advice to the RPC runtime
system.

When this timer expires, the expiry is not noticed at the RPC protocol level but is noticed at the TCP/IP

protocol level and shows as a local event, as specified in section 3.3.2.7.1.

3.3.2.2.2 Communication Time -Out Timer

Communication Time - Out Timer: The RPC runtime on the client allows a higher - level protocol to
instruct it to set up a timer that expir es if the send of a PDU has not completed within the prescribed
time interval, or no response PDU is received within the prescribed time interval after the request PDU
has been sent. The timeout value for this timer is supplied to the RPC runtime by a high er - level
protocol. The Communication Time -Out Timer is started as soon as a PDU is sent. It is canceled when

128 / 183

[MS -RPCE-Diff] - v20171201
Remote Procedure Call Protocol Extensions
Copyright © 2017 Microsoft Corporation
Release: December 1, 2017

the corresponding response PDU is received. If a Server Binding Handle Communication Time -
Out Value and a client Call Communication Time - Out Value are both specified, the lower of the

two time -out values MUST be used. The higher - level protocol can set the communication time -out
value at any time. It is usually done when the binding handle created prior to call start is configured,

and applies to all calls using the binding handle. Once the timer is started, it can only be canceled by
the reception of the corresponding response PDU.

3.3.2.2.3 Idle Connection Cleanup Timer

When the Idle Connection Cleanup Enabled flag is set to true, the client MUST enable a glob al
timer for checking whether connections are idle. This global timer is named the Idle Connection
Cleanup Timer , and its period is set to an implementation -specific value between 1 and 40 seconds

inclusive.

On expiration of this global timer, the Idle Con nection Cleanup Timer Expiry event is fired.

3.3.2.3 Initialization

A client is initialized when a higher - level protocol supplies to the client -side imple mentation of the RPC
runtime sufficient information to start making RPCs, including the information required to create a
binding handle (see section 3.3.2.3.1) and, optionally, security setting preferences (see section
3.3.2.3.2).

3.3.2.3.1 Create a Binding Handle

The information needed to create a binding handle is as specified in [C706] section 2.

3.3.2.3.2 Specify Security Settings

If a higher - level protocol wants to use security for its remote procedure method calls, it MUST supply
to the client -side implementation of the RPC runtime information on the following:

Á What security provider to use.

Á What authentication level to use.

Á Any other security provider ïspecific information necessary for the security provider to function.

3.3.2.4 Higher -Layer Triggered Events

3.3.2.4.1 Make a Remote Proced ure Method Call

When a higher - level protocol on the client makes a remote procedure method call, the client makes a

number of choices that determine what actions are triggered.

3.3.2.4.1.1 Resolve the Binding H andle

As a first step, a client MUST ensure that the binding handle is a fully bound binding handle, and, if

not, it MUST resolve it. In this stage, these extensions conform to those specified in [C706] section
6.2.2. This specification also refers to a fu lly bound binding handle as a resolved binding handle.

3.3.2.4.1.2 Find an Association and a Connection

When a binding handle is fully bound, the client MUST find or create an association for this call. If an
association cannot be found, the client MUST attempt to cre ate a new one, as specified in [C706]
section 9.3. If the client has an existing association to the same server, identified by comparing the
server name, endpoint, and protocol in the Binding handle element of the association (section

129 / 183

[MS -RPCE-Diff] - v20171201
Remote Procedure Call Protocol Extensions
Copyright © 2017 Microsoft Corporation
Release: December 1, 2017

3.3.1.1.1), then the client SHOULD reuse that association, provided that the constraints as specified in
section 3.3.1.4.1 are kept. Within an existing association, a client can choose to use an existing

connection or create a new connection . A client is free to use any connec tion that meets the
requirements specified in this document. For any two causally ordered calls N and N+1, a client MUST

choose the same connection for N+1 that it chose for N. The client MUST not select a connection
with the Discard flag set.

If the clien t creates a new connection in an existing association, the new connection is added to the
association's List of Connections . If a new association and connection are created, the new
connection is used to initialize the association's List of Connections .

When a connection is found or created, the Client Call connection property is set to the
connection .

3.3.2.4.1.3 Build Security/Presentation Context

A client cannot execute a remote procedure method call on a connection if there is no presentation
context for the inte rface and transfer syntaxes used by the call in the List of Negotiated

Presentation Contexts . If such a presentation context already exists, the client can use it. If not,
the client follows the steps specified in section 3.3.1.5.6 and in [C706] sections 9 , 11, and 12 to

create a presentation context.

If the remote procedure method call uses security, the client MUST attempt to find or create a security
context for that call. The steps to create a security context are specified in section 3.3.1.5.2. <111>

The client SHOULD try to reuse existing presentation contexts and security contexts that are present
on the connection. If the client needs to negotiate both a new presentation context and a new security
context on the connection, the client also SHOULD do s o with a single exchange of bind/bind_ack or
alter_context/alter_context_resp, which might take multiple PDUs, where the PDUs carry both

information necessary for building the security context and information necessary for building the
presentation context . The new presentation context SHOULD be added to the List of Negotiated
Presentation Contexts in the connection , and, if not there already, to the Table of Presentation
Contexts in the association to which the connection is bound.

3.3.2.4.1.4 Enable Idle Connection T imeout

When a higher layer protocol requests that idle connection timeout be enabled, the client MUST set

the Idle Connection Cleanup Enabled flag. This enables the Idle Connection Cleanup Timer.

The Idle Connection Cleanup Enabled flag remains enabled unt il cleared.

When a higher - layer protocol requests that idle connection timeout be disabled, the client MUST clear
the Idle Connection Cleanup Enabled flag. This disables the Idle Connection Cleanup Timer.

The mechanism to set the Idle Connection Cleanup E nabled flag is implementation -specific. <112>

3.3.2.4.2 Release Context Handle

When a higher - layer protocol requests that a context handle be released using the implementation -

specific version of the abstract API rpc_sm_destroy_client_contex t() as described in [C706], this
extension requires that the related Association Active Context Handle Count MUST be
decremented.

3.3.2.5 Message Processing Events and Sequencing Rules

3.3.2.5.1 rpc_fault PDU Processing Rules

130 / 183

[MS -RPCE-Diff] - v20171201
Remote Procedure Call Protocol Extensions
Copyright © 2017 Microsoft Corporation
Release: December 1, 2017

If a client receives an rpc_fault PDU where the status field is one of the error codes specified in section
3.3.3.5.1, it SHOULD treat this as a protocol error and SHOULD return an error code to the client

application indicative of a protocol error. <113>

3.3.2.5.2 Handling Responses

If connection concurrent multiplexing is used, a cl ient might receive response PDUs for many requests
concurrently. The client MUST use the call_id field of the response PDU to determine what response
belongs to what remote procedure method call.

An implementation of these extensions on the client SHOULD e nforce a limit on the alloc_hint it
receives in the response PDU to be no more than 2 31-1.

When a response PDU is received, the client MUST update the Last Use Time on the connection time

to the current time.

3.3.2.6 Timer Events

3.3.2.6.1 Communication Time -Out Timer

If the Communication Time -Out Timer for any PDU expires, the Client Call associated with the PDU
MUST be considered canc eled. The client SHOULD send a QUIT PDU and transition the call state to
STATE_FAULT.

3.3.2.6.2 Idle Connection Cleanup Timer Expiry

When the Idle Connection Cleanup Timer expires, the client MUST enumerate all connections,

using the client's Table of Associations , and consider each connection eligible for cleanup.

The client MUST determine that a connection is eligible for cleanup if its Last Use Time is greater
than 10 seconds from the current time.

However, if the number of connections in all associations, counti ng the number of connection

elements in each association from the Table of Associations , is more than a defined threshold of
connections, <114> or the sum of the number of security context handles in all connections in an
association is more than the defin ed threshold of existing security context handles ,<115> the

client MUST determine a connection is eligible for cleanup, if its Last Use Time is greater than 5
seconds from the current time.

When the client considers the connection is eligible for cleanup, the connection MUST be closed, unless
it is the only connection for an association to the server and there is at least one active context handle
on the association as determined by examining the association's Association Active Context Handle
Count.

The Idle Connection Cleanup Timer is restarted as soon as the processing is completed.

3.3.2.6.3 Endpoint Mapper Requests Security Information

As specified, [C706] does not make it explicit what security information needs to be applied to

requests from the client to the endpoint mapper to resolve the endpoint for an interface. These
extensions prescribe that clients MAY use security for making re quests to the endpoint mapper. If they
do, the authentication type SHOULD be the same as the authentication type for the partial binding

handle that the client is trying to resolve and SHOULD have the integrity authentication level.

If a security provider uses an authentication type that is not specified here, and this authentication
type requires other parameters for the authentication, an implementation SHOULD choose values for
these parameters that maximize interoperability while making the endpoint map per requests safe
from tampering when in transit on the network. <116>

131 / 183

[MS -RPCE-Diff] - v20171201
Remote Procedure Call Protocol Extensions
Copyright © 2017 Microsoft Corporation
Release: December 1, 2017

3.3.2.7 Other Local Events

3.3.2.7.1 Transport Connection Time -Out

This event is triggered when t he RPC transport indicates to RPC that the connection has timed out.
Different RPC transports interpret this differently. Connections using NCACN_IP_TCP as the transport
time -out when the Connection Time - Out Timer expires. For information on how a given RP C
transport times out connections, see the documentation for the respective transport. When this event
occurs on a connection, all security and presentation contexts are considered invalid. All calls that are
in progress on this connection are considered f ailed, and an implementation -specific error is returned
to the higher - layer protocol. A call is considered in progress on a connection if at least one PDU has

been sent for that call and not all PDUs from the server have been received for that call.

3.3.3 Server Details

The following diagram illustrates the state machine for an RPC connection. The transitions in the

following diagram represents received PDUs.

Figure 20 : State machine for an RPC connection

State Description

ESTABLISHED The server has accepted an incoming transport connection.

Wait for
SECURE_ALTER_CONTEXT

The server has received a SECURE_BIND_PDU and replied with
SECURE_BIND_ACK_PDU. It is ready to receive the SECURE_ALTER_CONTEXT
PDUs. On receiving, the server sends back a SECURE_ALTER_CONTEXT_PDU_RESP
PDU to the client.

CONTEXT_NEGOTIATED The server received the last SECURE_ALTER_CONTEXT PDU and replied with the
last SECURE_ALTER_CONTEXT PDU response. The ser ver is ready to start
receiving REQUEST PDUs or ALTER_CONTEXT PDUs (secure or unsecure) from the
client.

132 / 183

[MS -RPCE-Diff] - v20171201
Remote Procedure Call Protocol Extensions
Copyright © 2017 Microsoft Corporation
Release: December 1, 2017

State Description

Negotiating Security The server has received a SECURE_ALTER_CONTEXT from the client and replied
with a SECURE_ALTER_CONTEXT_RESP.

RECV_PDU The server has received a request PDU.

DISPATCH The server is ready to send the response to the client.

Notes on this state machine:

When a state does not show an error transition, these extensions handle errors from this state by
closing the connection or sending a bind_nak/fault PDU, as specified in sections 3.3.1.5.2, 3.3.1.5.6,
and 3.3.3.5.7.

When concurrent multiplexing is used on a connection, as soon as an independent logical thread of
execution makes a transition from RECV_PDU state to DISPATCH, another ind ependent logical thread

of execution can make the transition from CONTEXT_NEGOTIATED to RECV_PDU. Only one logical

thread of execution is allowed to reside in the RECV_PDU state, but multiple logical threads of
execution can be in the DISPATCH state. A cli ent MUST NOT send any request PDU for request N+1
before it sends all request PDUs for request N.

If concurrent multiplexing on a connection is not enabled, a client MUST NOT send any request PDU
for request N+1 before it receives all the response PDUs for request N.

3.3.3.1 Abstract Data Model

This section specifies a conceptual model of possible data organization that an implementation
maintains to participate in this protocol. The described organization is provided to facilitate the
explanation of how the protocol behaves. This document does not mandate that implementations
adhere to this model as long as their external behavior is consistent with that described in this

document.

3.3.3.1.1 Server Connection

Server Connection : The Server Connection data structure maintains state and property
information relating to a server connection. The Server Connection includes all of the properties of
the connection element and has the following additional properties:

Á Current call_id : The server maintains a Current call_id for each connection. The Current

call_id is the highest call_id that the server has received on this connection.

Á Table of Presentation Contexts: A table of presentation contexts indexed by the presentation
context ID (which is same as the value of the p_cont_id field in the request PDU header, as
specified in [C706] s ection 12.6.4.9). An incoming request PDU with a given presentation context
ID MUST be routed to the interface retrieved from the table row with the same presentation
context ID. A new row is added to the table when a new presentation context is negotiated .

3.3.3.1.2 Number of Registered Interfaces

NumberOfRegisteredInterfaces : The RPC server maintains a global value which is the total number
of registered interfaces named NumberOfRegisteredInterfaces .

3.3.3.1.3 Preferred Transfer Syntax

Preferred Transfer Syntax : Each RPC interface registered on the server MAY contain a

UUID_type_id entifier that specifies preferred transfer syntax. The Preferred Transfer Syntax

133 / 183

[MS -RPCE-Diff] - v20171201
Remote Procedure Call Protocol Extensions
Copyright © 2017 Microsoft Corporation
Release: December 1, 2017

SHOULD be initialized to match one of the UUID_type_identifier s in the list of Supported Transfer
Synta xes. If present, this Preferred Transfer Syntax SHOULD be processed as specified in 3.3.1.5.6.

3.3.3.1.4 Supported Transfer Syntaxes

Supported Transfer Syntaxes : Each RPC interface registered on the server MAY contain an array of
UUID_type_identifi ers that specifie s the supported transfer syntaxes for the interface.

3.3.3.1.5 Server Call

The server call is a data element that encapsulates the state associated with a server call. The
server call is specified by a state machine with the following states.

State Description

STATE_RECEIVE_PDU The server is receiving request PDUs of the call's [in] parameters from the client. This is
the server's initial state.

STATE_DISPATCHED The server has received all Request PDUs and is processing the request.

STATE_SEND_PDU The server is sending reply PDUs of the call's [out] parameters to the client.

STATE_COMPLETE The call completed. This is a terminal state.

The server call states are depicted in the following diagram.

134 / 183

[MS -RPCE-Diff] - v20171201
Remote Procedure Call Protocol Extensions
Copyright © 2017 Microsoft Corporation
Release: December 1, 2017

Figure 21 : Server call state

Server Cal l : The server call data structure maintains state and property information relating to a
server call , as specified in [C706] section 9.3.4. [C706] section 2.3.3.1 specifies a client binding

handle. For these extensions, a client binding handle gives access to the Server Call object and the
associated Security Context. Each server call contains the following properties:

Á Connection : As specified in section 3.3.1.5.5, each call MUST establish and maintain an affinity
for a single connection . The mechanism of l inking a call to a connection is implementation -
dependent.

Á Call_id : An unsigned 32 -bit integer identifying the call, as defined in [C706] section 12.6.3.5.

135 / 183

[MS -RPCE-Diff] - v20171201
Remote Procedure Call Protocol Extensions
Copyright © 2017 Microsoft Corporation
Release: December 1, 2017

Á Call State : An implementation -specific value that represents the call state from the preceding
table .

3.3.3.2 Timers

3.3.3.2.1 Connection Time -Out

A higher - level protocol on the server can instruct the RPC runtime to monitor the state of the
connection in an implementation -dependent <117> manner above and beyond the monitoring
provided by default by the RPC transport, so that if the client crashes or loses network connectivity to

the server, the server can take recovery action. In the common case, the recovery action is a context
handle rundown. Depending on the protocol sequence for the method call, the establishment of the
timer acts only as advice to the RPC runtime system.

When this timer expires, the expiry is not noticed at the RPC protocol level, but it i s noticed at the
TCP/IP protocol level and shows as a local event, as specified in section 3.3.3.7.1.

3.3.3.3 Initialization

3.3.3.3.1 Server -Side Initialization

These extensions are initialized by performing the actions as specified in the following topics.

The ADM element NumberOfRegisteredInterfaces is initialized to 0.

3.3.3.3.1.1 Registering a Protocol Sequence by a Higher -Level Protocol

A higher - level protocol MUST register a protocol sequence. Without an RPC transport to deliver the
messages, these extensions cannot work.

3.3.3.3.1.2 Registering an Interface by a Higher -Level Protocol

A higher - level protocol MUST register an interface for these extensions to be useful. Even wit hout

registering an interface, these extensions can function, but they return errors, as specified in section
3.3.1.5.6, for all attempts to negotiate a presentation context, which means that no RPCs can be
made.

3.3.3.3.1.3 Registering a Security Provider by a Higher -Level Protocol

If receiving a secure call is expected, a higher - level protocol MUST indicate to the RPC runtime on the
server that it is willing to accept calls that are secured by a given security provider. The higher - level

protocol does this by register ing with the RPC runtime on the server the information specified in
section 3.1.3.1.1. <118>

3.3.3.3.1.4 Registering a Dynamic Endpoint with Endpoint Mapper

If a server is using a dynamic endpoint, it SHOULD register the list of endpoints that are associated

with the g iven interface UUID/version and object UUID with the local instance of the endpoint mapper.
This is done in an implementation -specific way. These extensions do not allow registering on nonlocal

instances of the endpoint mapper.

If a server uses a well -know n endpoint or uses a mechanism specified outside these extensions for
discovery of dynamic endpoint, it can skip this step.

3.3.3.3.1.5 Start Listening

136 / 183

[MS -RPCE-Diff] - v20171201
Remote Procedure Call Protocol Extensions
Copyright © 2017 Microsoft Corporation
Release: December 1, 2017

A server MUST instruct its RPC transport to get into listening state. The definition of a listening state
depends on the RPC transport being used. For details on a given RPC transport, see the

documentation for that RPC transport.

3.3.3.4 Higher -Layer Triggered Events

3.3.3.4.1 Failure Semantics

A server protocol built on top of these extensions can encounter a failure while ex ecuting a method
call. It has two options to handle the failure. It can handle the failure either at the application protocol

layer or at the RPC protocol layer.

If it handles the error at the application protocol layer, the interaction appears to be succ essful from
an RPC point of view. The [out] parameters are filled, and the RPC implementation on the server
sends a response PDU with the stub data, as specified in [C706] section 14.4. In this case, the [out]
parameters SHOULD indicate the occurrence of a n error, although the exact mechanism for doing so is
left to the application protocol layer.

If the error is handled at the RPC protocol layer, the server implementation of the application protocol
layer indicates to the RPC runtime (usually through calli ng an API) that the method call failed and then
supplies a single, unsigned long number that indicates the failure code. In this case, the server
SHOULD send back to the client a fault PDU (as specified in [C706] section 12.6.4.7), where the
status field o f the fault PDU is set to the failure code received from the application protocol
layer. <119>

3.3.3.4.2 shutdown PDUs

Servers MAY send shutdown PDUs, as specified in [C706] section 12.6.4.11, when they need the client
to terminate a connection and free up server resou rces. <120>

3.3.3.4.3 Retrieve the Client Identity and Authorization Information

A higher - layer protocol can call the abstract interface GetRpcImpersona tionAccessToken() ,

specified in section 3.3.3.4.3.1, to obtain an impersonation token.

3.3.3.4.3.1 Abstract Interface GetRpcImpersonationAccessToken

These extensions provide the ability for a higher - layer protocol to obtain a "Token/Authorization
Context" (as specifie d in [MS -DTYP] section 2.5.2) that represents the client making the RPC call.

Token/Authorization Context GetRpcImpersonationAccessToken(rpc_binding_handle_t);

Input Parameter : A binding handle on the server that represents a binding to a client, known as "the
client binding handle" as described in [C706] and clarified in section 3.3.1.1.6 of these extensions.

If a non -NULL binding handle argument is provided, then the server MUST interpret it as a pointer
or handle to a Server Call object.

If a NULL binding handle argument is provided then the Security Context of the client making the RPC

call is obtained as if by calling pthread_getspecific using CURRENT_CALL_OBJECT_REF_KEY (see
section 3.3.3.7.2) as a thread -specific data key to retrieve a pointer or handle to the Server Call
object.

The Server Call object contains a Security Context Handle. The Security Context Handle identifies the
required Token.

The implementation of the abstract interface GetRpcImpersonationAccessToken then returns as
output the Token/Authorization Context from the Security Context referred to by the Security
Context Handle that is a member of the Server Call object. The Token is retrieved from the security

137 / 183

[MS -RPCE-Diff] - v20171201
Remote Procedure Call Protocol Extensions
Copyright © 2017 Microsoft Corporation
Release: December 1, 2017

context by using the implementation -specific equivalent of GSS_ Inquire_context as specified in
[RFC2743] section 2.2.6. <121>

Output Parameter : A Token/Authorization context representing the client making the RPC call. The
element is of type Token/Authorization Context specified in [MS -DTYP] section 2.5.2. The Token

returned represents the identity of the client currently being served. See ([Tanenbaum] section
11.8, Security in Windows 2000).

If client Identity is not available in the form of a Token then a NULL is returned.

3.3.3.4.3.2 Abstract Interface RpcImpersonateClient

A server thread that is processing a client remote procedure call can call the RpcImpersonateClient
abstract interface to impersonate the active client.

 void RpcImpersonateClient(RPC_BINDING_HANDLE BindingHandle);

Binding handle on the server that represent s a binding to a client. The server impersonates the client
indicated by this handle.

If a NULL binding handle argument is provided then the Security Context of the client making the RPC
call is obtained as if by calling pthread_getspecific using CURRENT _CALL_OBJECT_REF_KEY (see
section 3.3.3.7.2) as a thread specific data key to retrieve a pointer or handle to the Server Call
object.

The Server Call object contains a Security Context Handle. The Security Context Handle identifies the
required Token repre sentative of the active client. The Token is retrieved from the security context
using the implementation -specific equivalent of the GSS_Inquire_context as specified in [RFC2743]
section 2.2.6. <122>

After the token is retrieved it is used by the underlying security infrastructure for access checks on
secured objects until either another call to RpcImpersonateClient is made or RpcRevertToSelf is

called. This is the equivalent to supplying the retrieved token as the Token parameter to the Access

Check Algorit hm defined in [MS -DTYP] section 2.5.3.2 whenever access checks for a secured object
are performed.

3.3.3.4.3.3 Abstract Interface RpcRevertToSelf

The server calls RpcRevertToSelf to end impersonation and to reestablish its own security identity.

 void RpcRevertToSelf(v oid);

3.3.3.5 Message Processing Events and Sequencing Rules

3.3.3.5.1 Failure Semantics

If the server encounters an error during the processing of a method call on the server, it SHOULD
send back to the client a fault PDU, as specified in [C706] section 12.6.4.7, where the status field of

the fa ult PDU is set to a descriptive status code. If the server is unable to send a fault PDU as
specified here, it MUST close the transport connection. The exact protocol primitive used for closing a
transport connection depends on the RPC transport and is doc umented in the normative reference for
that transport.

138 / 183

[MS -RPCE-Diff] - v20171201
Remote Procedure Call Protocol Extensions
Copyright © 2017 Microsoft Corporation
Release: December 1, 2017

Servers can send any status code in the status field of a fault PDU except the following status codes,
which a server MUST NOT send to the client. These status codes have special significance, and thei r

presence in the status field MAY be flagged as a protocol error by the client.

Status codes that MUST NOT be sent by RPC servers

ERROR_SUCCESS (0x00000000)

STATUS_GUARD_PAGE_VIOLATION (0x80000001)

STATUS_DATATYPE_MISALIGNMENT (0x80000002)

STATUS_BREAKPOINT (0x80000003)

STATUS_ACCESS_VIOLATION (0xC0000005)

STATUS_IN_PAGE_ERROR (0xC0000006)

STATUS_ILLEGAL_INSTRUCTION (0xC000001D)

STATUS_PRIVILEGED_INSTRUCTION (0xC0000096)

STATUS_INSTRUCTION_MISALIGNMENT (0xC00000AA)

STATUS_STACK_OVERFLOW (0xC00000FD)

STATUS_POSSIBLE_DEADLOCK (0xC0000194)

STATUS_HANDLE_NOT_CLOSABLE (0xC0000235)

STATUS_STACK_BUFFER_OVERRUN (0xC0000409)

STATUS_ASSERTION_FAILURE (0xC0000420)

3.3.3.5.2 call_id Field Must Increase Monotonically

The call_id field of any request that arrives on the server MUST monotonically increase. All PDUs of a

fragmented request MUST have the same value in the call_id field. An implementation SHOULD reject
PDUs that violate this rule, as specified in section 3.3.3.5.7. <12 3>

3.3.3.5.3 Unknown Security Provider

If a bind or alter_context PDU arrives on the server with an auth_type field set to a security provider
that is not present in the abstract table specified in section 3.1.3.1.1, an implementation of these
extensions MUST return error authentication_type_not_recognized in the bind_nak or fault PDU.

3.3.3.5.4 Maximum Server Input Data Size

The combined length of the stub data for all fragments of a request SHOULD not exceed 4 megabytes.

If it exceeds 4 megabytes, the server implementation S HOULD return a fault packet with the status
field set to 0x00000005. <124>

3.3.3.5.5 Limits of Presentation Contexts Negotiated

The server MUST restrict the number of presentation contexts to 4,000 *
NumberOfRegisteredInterfaces.

The server MUST update the value of N umberOfRegisteredInterfaces each time a new interface is
registered or unregistered. Higher - level protocols can register or unregister a new interface by using

139 / 183

[MS -RPCE-Diff] - v20171201
Remote Procedure Call Protocol Extensions
Copyright © 2017 Microsoft Corporation
Release: December 1, 2017

the abstract interfaces described in Appendix C. When running on the Windows RPC implementation,
higher - level protocols use the RpcServerRegisterIf (see [MSDN -RpcServerRegisterIf]) and

RpcServerUnregisterIf (see [MSDN -RpcServerUnregisterIf]) APIs.

If a client attempts to negotiate a presentation context over the limit, the server MUST reject the

nego tiation and reply with a bind_nak with provider_reject_reason set to local_limit_exceeded_reject
2 (0x2).

3.3.3.5.6 Dropping Packets for Old Calls

If a server implementation receives a request PDU without the PFC_FIRST_FRAG flag and there is no
active call for the c onnection, it SHOULD compare the call_id field from the PDU to the Current
call_id on the Server Connection . If the call_id field is smaller by less than 150, the server

SHOULD ignore the packet. If the call_id field is smaller by 150 or more, the server S HOULD treat
this as a protocol error, as specified in section 3.3.3.5.7. <125>

3.3.3.5.7 Handling Protocol Errors

If a server implementation encounters a condition it interprets to be a protocol error as a result of
processing a request PDU, it MUST send back to the client a fault PDU with the status field set to

0x1C01000B. This status value is specified in [C706] section N.2.

3.3.3.5.8 Sequencing in Case of Errors

In the case of a fragmented request with multiple PDUs and an error found in a nonlast PDU,
implementations of th ese extensions SHOULD return a fault PDU as soon as they have processed the
PDU with the error. They SHOULD NOT wait to receive all PDUs of a fragmented request before
sending the fault PDU.

3.3.3.6 Timer Events

For more information on timer events, see section 3.3.3.2.1.

3.3.3.7 Other Local Events

3.3.3.7.1 Transport Connection Shutdown

This event is triggered when the RPC transport indicates to RPC that a connection has timed out.
Different RPC transports interpret this differently. For details on how a given RPC transport times out
connections, see the documentation for the respective transport. When this event occurs on a

connection, all security contexts and presentation contexts are considered invalid. If the connection is
the last connection for an association, the context handles belonging to that association are run down.

3.3.3.7.2 Initialize Server Call Object Reference

This event is triggered when an RPC call occurs between a client and a server.

An RPC server associates the Server Call object with a thread of execution by using an

implementation -dependent process and MUST behave as if it is using thread -specific data in a POSIX
Thread (see [ISO/IEC/IEEE9945 -7] section 1.c) as follows:

The thread uses a unique key defined as CURRENT_CALL _OBJECT_REF as a thread -specific data key.
The thread stores a handle to the Server Call object by using pthread_setspecific using the
thread -specific data key (CURRENT_CALL_OBJECT_REF_KEY).

 pthread_setspecific(CURRENT_CALL_OBJECT_REF_KEY, Server Call obje ct);

140 / 183

[MS -RPCE-Diff] - v20171201
Remote Procedure Call Protocol Extensions
Copyright © 2017 Microsoft Corporation
Release: December 1, 2017

Note The Server Call Object handle is stored for later retrieval in the case where the RPC runtime is
invoked with a NULL client binding handle (see [C706] section 2.3.3.1 for a specification of a client

binding handle). This allows the RPC runtime t o retrieve the current call object.

141 / 183

[MS -RPCE-Diff] - v20171201
Remote Procedure Call Protocol Extensions
Copyright © 2017 Microsoft Corporation
Release: December 1, 2017

4 Protocol Examples

The following sections describe protocol examples for both connection -oriented RPC and
connectionless RPC scenarios.

4.1 Packet Sequence for Secure, Connection -Oriented RPC Using Ke rberos as

Security Provider

The following e xample shows a packet sequence for a secure, connection -oriented RPC using Kerberos
as the security provider.

Figure 22 : Packet sequence

Individual packet exchanges are specified in detail.

142 / 183

[MS -RPCE-Diff] - v20171201
Remote Procedure Call Protocol Extensions
Copyright © 2017 Microsoft Corporation
Release: December 1, 2017

SECURE_BIND: RPC bind PDU with sec_trai ler and auth_token. Auth_token is generated by calling
the implementation equivalent of the abstract GSS_Init_sec_context call. Upon receiving this, the

server calls the implementation equivalent of the abstract GSS_Accept_sec_context call, which returns
an auth_token and continue status in this example. Assume the following:

Á The client chooses the auth_context_id field in the sec_trailer sent with this PDU to be 1.

Á The client uses the RPC_C_AUTHN_LEVEL_PKT_PRIVACY authentication level, and the
Authenticati on Service (AS) is Kerberos.

Á The client sets the PFC_SUPPORT_HEADER_SIGN flag in the PDU header.

SECURE_BIND_ACK: RPC bind_ack PDU with sec_trailer and auth_token.
PFC_SUPPORT_HEADER_SIGN flag in the PDU header is also set in this example. Auth_token is
generated by the server in the previous step. Upon receiving that PDU, the client calls the

implementation equivalent of the abstract GSS_Init_sec_context call, which returns an auth_token
and continue status in this example.

SECURE_ALTER_CONTEXT: An alter_ context PDU with the auth_token obtained in the previous

step. Upon receiving this PDU, the server calls the implementation equivalent of the abstract
GSS_Accept_sec_context call, which returns an auth_token and continue status in this example.

SECURE_ALTE R_CONTEXT_RESP: An alter_context_resp PDU with sec_trailer and auth_token.

Auth_token is generated by the server in the previous step. Upon receiving that PDU, the client calls
the implementation equivalent of the abstract GSS_Init_sec_context call, which returns an auth_token
and success status in this example. The client knows the security context is ready to be used.

REQ_PDU #1: Client marshals the application data and prepares a stream of octets with the
marshaled stub data. In this example, assume that the stream is larger than one PDU and fits into two
PDUs. The client sends a request PDU that contains a header, a message body with as much stub data
as it can fit in this PDU, sec_trailer with the auth_context_id field set to 1, and auth_token

generated by the implementation -specific equivalent of the abstract GSS_WrapEx. The message body
is sealed, and the header is signed by the GSS_WrapEx. Upon receiving this PDU, the server calls the
implementation -specific equivalent of the abstract GSS_UnwrapEx cal l to verify that the packet has

not been tampered with.

REQ_PDU #2: Request PDU that contains a header, a message body with remaining stub data,
sec_trailer with the auth_context_id field set to 1, and auth_token generated by the
implementation -specific eq uivalent of the abstract GSS_WrapEx call. The message body is sealed, and

the header is signed by the GSS_WrapEx. Upon receiving this PDU, the server calls the
implementation -specific equivalent of the abstract GSS_UnwrapEx call to verify that the packet h as
not been tampered with. The server has the full octet stream with the verified stub data and
unmarshals the data, calls the server routine for this method, and waits for it to finish execution. Once
this completes, it proceeds to the next step.

RESP_PDU #1: Server marshals the application data into an octet stream with the marshaled stub

data. Assume that the marshaled stub data does not fit into a single PDU. The server sends a
response PDU that contains a header, a message body with as much stub data a s it can fit into this
PDU, sec_trailer with the auth_context_id field set to 1, and auth_token generated by the
implementation -specific equivalent of the abstract GSS_WrapEx. The message body is sealed, and the

header is signed by the GSS_WrapEx. Upon rec eiving this PDU, the client calls the implementation -
specific equivalent of the abstract GSS_UnwrapEx call to verify that the packet has not been tampered
with.

RESP_PDU #2 : Response PDU that contains a header, a message body with remaining stub data,
sec_ trailer with the auth_context_id field set to 1, and auth_token generated by the
implementation -specific equivalent of the abstract GSS_WrapEx call. The message body is sealed, and
the header is signed by the GSS_WrapEx. Upon receiving this PDU, the client calls the
implementation -specific equivalent of the abstract GSS_UnwrapEx call to verify that the packet has

143 / 183

[MS -RPCE-Diff] - v20171201
Remote Procedure Call Protocol Extensions
Copyright © 2017 Microsoft Corporation
Release: December 1, 2017

not been tampered with. Then it unmarshals the application data from the octet stream in the stub
data and returns the data to the client applicat ion.

4.2 Packet Sequence for Secure, Connection -Oriented RPC Using NTLM as Security

Provider

The following example shows a packet exchange sequence for a secure, connection -oriented RPC
using NTLM as the security provider.

Figure 23 : Packet exchange sequence

Individual packets are specified in detail.

SECURE_BIND: RPC bind PDU with sec_trailer and auth_token. Auth_token is generated by calling

the implementation equivalent of the abstract GSS_Init_sec_cont ext call. Upon receiving that, the
server calls the implementation equivalent of the abstract GSS_Accept_sec_context call, which returns
an auth_token and continue status in this example. Assume the following:

Á The client chooses the auth_context_id field i n the sec_trailer sent with this PDU to be 1.

Á The client uses the RPC_C_AUTHN_LEVEL_PKT_PRIVACY authentication level and the
Authentication Service (AS) NTLM.

Á The client sets the PFC_SUPPORT_HEADER_SIGN flag in the PDU header.

SECURE_BIND_ACK: RPC bind_ac k PDU with sec_trailer and auth_token. The
PFC_SUPPORT_HEADER_SIGN flag in the PDU header is also set in this example. Auth_token is

144 / 183

[MS -RPCE-Diff] - v20171201
Remote Procedure Call Protocol Extensions
Copyright © 2017 Microsoft Corporation
Release: December 1, 2017

generated by the server in the previous step. Upon receiving that PDU, the client calls the
implementation equivalent of th e abstract GSS_Init_sec_context call, which returns an auth_token

and continue status in this example.

RPC_AUTH_3: The client knows that this is an NTLM that uses three legs. It sends an rpc_auth_3

PDU with the auth_token obtained in the previous step. Upo n receiving this PDU, the server calls the
implementation equivalent of the abstract GSS_Accept_sec_context call, which returns success status
in this example.

REQ_PDU #1: The client marshals the application data and prepares a stream of octets with the
ma rshaled stub data. In this example, assume that the stream is larger than one PDU and fits into two
PDUs. The client sends a request PDU that contains a header, a message body with as much stub data
as it can fit in this PDU, sec_trailer with the auth_cont ext_id field set to 1, and auth_token

generated by the implementation -specific equivalent of the abstract GSS_WrapEx. The message body
is sealed, and the header is signed by the GSS_WrapEx. Upon receiving this PDU, the server calls the
implementation -speci fic equivalent of the abstract GSS_UnwrapEx call to verify that the packet has
not been tampered with.

REQ_PDU #2: Request PDU that contains a header, a message body with remaining stub data,
sec_trailer with the auth_context_id field set to 1, and auth_to ken generated by the

implementation -specific equivalent of the abstract GSS_WrapEx call. The message body is sealed, and
the header is signed by the GSS_WrapEx. Upon receiving this PDU, the server calls the
implementation -specific equivalent of the abstrac t GSS_UnwrapEx call to verify that the packet has
not been tampered with. The server has the full octet stream with the verified stub data and
unmarshals the data, calls the server routine for this method, and waits for it to finish execution. Once
this co mpletes, it proceeds to the next step.

RESP_PDU #1: Server marshals the application data into an octet stream with the marshaled stub

data. Assume that the marshaled stub data does not fit into a single PDU. The server sends a
response PDU that contains a header, a message body with as much stub data as it can fit into this
PDU, sec_trailer with the auth_context_id field set to 1, and auth_token generated by the
implementation -specific equivalent of the abstract GSS_WrapEx. The message body is sealed, and t he
header is signed by the GSS_WrapEx. Upon receiving this PDU, the client calls the implementation -
specific equivalent of the abstract GSS_UnwrapEx call to verify that the packet has not been tampered

with.

RESP_PDU #2: Response PDU that contains a header , a message body with remaining stub data,
sec_trailer with the auth_context_id field set to 1, and auth_token generated by the
implementation -specific equivalent of the abstract GSS_WrapEx call. The message body is sealed, and
the header is signed by the GSS_Wrap. Upon receiving this PDU, the client calls the implementation -
specific equivalent of the abstract GSS_UnwrapEx call to verify that the packet has not been tampered
with. Then it unmarshals the application data from the octet stream in the stub dat a and returns them

to the client application.

4.3 Packet Sequence of the First Non - Idempotent RPCs of a Connectionless Activity

The following example shows the packet exchange when a connectionless client makes two sequential
non - idempotent RPCs to a server that the client process has not previously contacted. Individual

packets are defined here.

145 / 183

[MS -RPCE-Diff] - v20171201
Remote Procedure Call Protocol Extensions
Copyright © 2017 Microsoft Corporation
Release: December 1, 2017

Figure 24 : Packet exchange

REQUEST 0 : A request PDU for the client's first call. The activity ID in the header is the newly formed
client activity ID, and the sequence number is zero. Because the client does not know the server's
boot time, the boot time in the packet header is zero.

REQ [PF2_UNRELATED] : A conv_who_are_you2 request. This is a REQUEST PDU. The activity ID is
a newly generated GUID, and the sequence number is zero because this is the first call from the
server proce ss to the client process.

The actuid parameter of the request contains the activity ID of REQUEST 0 . The boot time
parameter of the request contains the server's nonzero boot time.

The PF2_UNRELATED flag is set because the server supports this feature.

RESPONSE : A conv_who_are_you2 response. This is a RESPONSE PDU. The activity ID and sequence
number in the RPC header match the ones in REQ [PF2_UNRELATED] .

The seq parameter of the response contains zero because the lowest currently active call sequence

of actuid is zero.

The cas_uuid parameter of the response contains the client's non -NULL CAS UUID .

RESPONSE 0 : A response PDU for the client's first call. The activity ID and sequence number match
those in the REQUEST 0 .

The boot time in the packet header i s the server's nonzero boot time.

REQUEST 1 : A request PDU for the client's second call. The activity ID is the same as in REQUEST 0 ;
sequence number is one; boot time is the same as boot_time from REQ [PF2_UNRELATED] .

RESPONSE 1 : A response PDU for the client's second call. The activity ID and sequence number
match those in REQUEST 1 .

The boot time in the packet header is the server's nonzero boot time.

146 / 183

[MS -RPCE-Diff] - v20171201
Remote Procedure Call Protocol Extensions
Copyright © 2017 Microsoft Corporation
Release: December 1, 2017

4.4 Connectionless RPCs With and Without a Delayed ACK

The following example illustrates the client sending an ACK packet.

Figure 25 : Client sending an ACK packet

There is no ACK sent between the RPCs with sequence numbers 0 and 1 because less than 2 seconds
elapse between RPC 0's last response PDU and RPC 1's first request PDU.

The corresponding delay between sequence 1 and sequence 2 is larger than 2 seconds, so 2 seconds

after the last response PDU of call 1, the client sends an ACK packet whose sequence number is 1.
This does not affect the PDUs for call sequence 2.

4.5 Connectionless Client Communicating with a Dynamic Server Endpoint

The following example illustrates a connectionless client issuing a sequence of calls to a server that
uses a dynamic UDP endp oint.

