

1 / 31

[MS-RDPNSC-Diff] - v20210625
Remote Desktop Protocol: NSCodec Extension
Copyright © 2021 Microsoft Corporation
Release: June 25, 2021

[MS-RDPNSC-Diff]:

Remote Desktop Protocol: NSCodec Extension

Intellectual Property Rights Notice for Open Specifications Documentation

▪ Technical Documentation. Microsoft publishes Open Specifications documentation (“this
documentation”) for protocols, file formats, data portability, computer languages, and standards
support. Additionally, overview documents cover inter-protocol relationships and interactions.

▪ Copyrights. This documentation is covered by Microsoft copyrights. Regardless of any other
terms that are contained in the terms of use for the Microsoft website that hosts this
documentation, you can make copies of it in order to develop implementations of the technologies
that are described in this documentation and can distribute portions of it in your implementations
that use these technologies or in your documentation as necessary to properly document the

implementation. You can also distribute in your implementation, with or without modification, any
schemas, IDLs, or code samples that are included in the documentation. This permission also

applies to any documents that are referenced in the Open Specifications documentation.
▪ No Trade Secrets. Microsoft does not claim any trade secret rights in this documentation.
▪ Patents. Microsoft has patents that might cover your implementations of the technologies

described in the Open Specifications documentation. Neither this notice nor Microsoft's delivery of
this documentation grants any licenses under those patents or any other Microsoft patents.
However, a given Open Specifications document might be covered by the Microsoft Open
Specifications Promise or the Microsoft Community Promise. If you would prefer a written license,

or if the technologies described in this documentation are not covered by the Open Specifications
Promise or Community Promise, as applicable, patent licenses are available by contacting
iplg@microsoft.com.

▪ License Programs. To see all of the protocols in scope under a specific license program and the
associated patents, visit the Patent Map.

▪ Trademarks. The names of companies and products contained in this documentation might be

covered by trademarks or similar intellectual property rights. This notice does not grant any
licenses under those rights. For a list of Microsoft trademarks, visit
www.microsoft.com/trademarks.

▪ Fictitious Names. The example companies, organizations, products, domain names, email
addresses, logos, people, places, and events that are depicted in this documentation are fictitious.
No association with any real company, organization, product, domain name, email address, logo,
person, place, or event is intended or should be inferred.

Reservation of Rights. All other rights are reserved, and this notice does not grant any rights other
than as specifically described above, whether by implication, estoppel, or otherwise.

Tools. The Open Specifications documentation does not require the use of Microsoft programming
tools or programming environments in order for you to develop an implementation. If you have access
to Microsoft programming tools and environments, you are free to take advantage of them. Certain
Open Specifications documents are intended for use in conjunction with publicly available standards
specifications and network programming art and, as such, assume that the reader either is familiar

with the aforementioned material or has immediate access to it.

Support. For questions and support, please contact dochelp@microsoft.com.

https://go.microsoft.com/fwlink/?LinkId=214445
https://go.microsoft.com/fwlink/?LinkId=214445
https://go.microsoft.com/fwlink/?LinkId=214448
mailto:iplg@microsoft.com
https://aka.ms/AA9ufj8
https://www.microsoft.com/trademarks
mailto:dochelp@microsoft.com

2 / 31

[MS-RDPNSC-Diff] - v20210625
Remote Desktop Protocol: NSCodec Extension
Copyright © 2021 Microsoft Corporation
Release: June 25, 2021

Revision Summary

Date
Revision
History

Revision
Class Comments

4/23/2010 0.1 Major First Release.

6/4/2010 0.1.1 Editorial Changed language and formatting in the technical content.

7/16/2010 1.0 Major Updated and revised the technical content.

8/27/2010 1.0 None
No changes to the meaning, language, or formatting of the
technical content.

10/8/2010 2.0 Major Updated and revised the technical content.

11/19/2010 2.0 None
No changes to the meaning, language, or formatting of the
technical content.

1/7/2011 3.0 Major Updated and revised the technical content.

2/11/2011 4.0 Major Updated and revised the technical content.

3/25/2011 5.0 Major Updated and revised the technical content.

5/6/2011 5.0 None
No changes to the meaning, language, or formatting of the
technical content.

6/17/2011 5.1 Minor Clarified the meaning of the technical content.

9/23/2011 5.1 None
No changes to the meaning, language, or formatting of the
technical content.

12/16/2011 6.0 Major Updated and revised the technical content.

3/30/2012 6.0 None
No changes to the meaning, language, or formatting of the
technical content.

7/12/2012 6.0 None
No changes to the meaning, language, or formatting of the
technical content.

10/25/2012 7.0 Major Updated and revised the technical content.

1/31/2013 7.0 None
No changes to the meaning, language, or formatting of the
technical content.

8/8/2013 8.0 Major Updated and revised the technical content.

11/14/2013 8.0 None
No changes to the meaning, language, or formatting of the
technical content.

2/13/2014 8.0 None
No changes to the meaning, language, or formatting of the
technical content.

5/15/2014 8.0 None
No changes to the meaning, language, or formatting of the
technical content.

6/30/2015 9.0 Major Significantly changed the technical content.

10/16/2015 9.0 None
No changes to the meaning, language, or formatting of the
technical content.

7/14/2016 9.0 None
No changes to the meaning, language, or formatting of the
technical content.

3 / 31

[MS-RDPNSC-Diff] - v20210625
Remote Desktop Protocol: NSCodec Extension
Copyright © 2021 Microsoft Corporation
Release: June 25, 2021

Date
Revision
History

Revision
Class Comments

6/1/2017 9.0 None
No changes to the meaning, language, or formatting of the
technical content.

9/15/2017 10.0 Major Significantly changed the technical content.

9/12/2018 11.0 Major Significantly changed the technical content.

4/7/2021 12.0 Major Significantly changed the technical content.

6/25/2021 13.0 Major Significantly changed the technical content.

4 / 31

[MS-RDPNSC-Diff] - v20210625
Remote Desktop Protocol: NSCodec Extension
Copyright © 2021 Microsoft Corporation
Release: June 25, 2021

Table of Contents

1 Introduction .. 5
1.1 Glossary ... 5
1.2 References .. 5

1.2.1 Normative References ... 5
1.2.2 Informative References ... 6

1.3 Protocol Overview (Synopsis) .. 6
1.4 Relationship to Other Protocols .. 7
1.5 Prerequisites/Preconditions ... 7
1.6 Applicability Statement ... 7
1.7 Versioning and Capability Negotiation ... 8
1.8 Vendor-Extensible Fields ... 8
1.9 Standards Assignments ... 8

2 Messages ... 9
2.1 Transport .. 9
2.2 Message Syntax ... 9

2.2.1 NSCodec Capability Set (TS_NSCODEC_CAPABILITYSET) 9
2.2.2 NSCodec Compressed Bitmap Stream (NSCODEC_BITMAP_STREAM) 9

2.2.2.1 NSCodec RLE Segments (NSCODEC_RLE_SEGMENTS) 13
2.2.2.2 NSCodec RLE Segment .. 13

2.2.2.2.1 NSCodec RLE Run Segment (NSCODEC_RLE_RUN_SEGMENT) 13
2.2.2.2.2 NSCodec RLE Literal Segment (NSCODEC_RLE_LITERAL_SEGMENT) 14

3 Protocol Details ... 15
3.1 Common Details .. 15

3.1.1 Abstract Data Model .. 16
3.1.1.1 Lossy Bitmap Compression Ability ... 16
3.1.1.2 Chroma Subsampling Ability ... 16
3.1.1.3 Maximum Supported Color Loss Level .. 16

3.1.2 Timers .. 16
3.1.3 Initialization ... 16
3.1.4 Higher-Layer Triggered Events ... 16
3.1.5 Processing Events and Sequencing Rules ... 17

3.1.5.1 NSCodec Capability Set ... 17
3.1.5.2 NSCodec Compressed Bitmap Stream .. 17

3.1.6 Timer Events .. 17
3.1.7 Other Local Events .. 17
3.1.8 NSCodec Bitmap Compression .. 17

3.1.8.1 NSCodec Run-Length Encoding ... 18
3.1.8.1.1 Encoding Run-Length Sequences ... 18

3.1.8.2 Padding the Red, Green, and Blue Color Planes ... 20
3.1.8.3 Compressing a Bitmap ... 21
3.1.8.4 Decompressing a Bitmap ... 22

4 Protocol Examples ... 25

5 Security ... 27
5.1 Security Considerations for Implementers ... 27
5.2 Index of Security Parameters .. 27

6 (Updated Section) Appendix A: Product Behavior.. 28

7 Change Tracking .. 29

8 Index ... 30

5 / 31

[MS-RDPNSC-Diff] - v20210625
Remote Desktop Protocol: NSCodec Extension
Copyright © 2021 Microsoft Corporation
Release: June 25, 2021

1 Introduction

The Remote Desktop Protocol: NSCodec Extension is an extension to the Remote Desktop Protocol:
Basic Connectivity and Graphics Remoting (as specified in [MS-RDPBCGR]). The aim of this extension
is to specify an image codec that can be used to encode screen images by utilizing efficient and
effective compression.

Sections 1.5, 1.8, 1.9, 2, and 3 of this specification are normative. All other sections and examples in

this specification are informative.

1.1 Glossary

This document uses the following terms:

ANSI character: An 8-bit Windows-1252 character set unit.

ARGB: A color space wherein each color is represented as a quad (A, R, G, B), where A represents

the alpha (transparency) component, R represents the red component, G represents the green
component, and B represents the blue component. The ARGB value is typically stored as a 32-
bit integer, wherein the alpha channel is stored in the highest 8 bits and the blue value is stored
in the lowest 8 bits.

AYCoCg: A color space in which each color is represented as a quad (A, Y, Co, Cg), where A

represents the alpha (transparency) component, Y represents the luma (intensity) component,
and Co and Cg represent the two chrominance (color) components orange and green,
respectively.

color plane: A two-dimensional surface containing a collection of values that represent a single
component of the ARGB or AYCoCg color space.

color space: A mapping of color components to a multidimensional coordinate system. The
number of dimensions is generally two, three, or four. For example, if colors are expressed as a

combination of the three components red, green, and blue, a three-dimensional space is

sufficient to describe all possible colors. If transparency is considered one of the components of
an RGB color, four dimensions are appropriate.

little-endian: Multiple-byte values that are byte-ordered with the least significant byte stored in
the memory location with the lowest address.

run-length encoding (RLE): A form of data compression in which repeated values are

represented by a count and a single instance of the value.

MAY, SHOULD, MUST, SHOULD NOT, MUST NOT: These terms (in all caps) are used as defined
in [RFC2119]. All statements of optional behavior use either MAY, SHOULD, or SHOULD NOT.

1.2 References

Links to a document in the Microsoft Open Specifications library point to the correct section in the

most recently published version of the referenced document. However, because individual documents
in the library are not updated at the same time, the section numbers in the documents may not
match. You can confirm the correct section numbering by checking the Errata.

1.2.1 Normative References

We conduct frequent surveys of the normative references to assure their continued availability. If you
have any issue with finding a normative reference, please contact dochelp@microsoft.com. We will
assist you in finding the relevant information.

6 / 31

[MS-RDPNSC-Diff] - v20210625
Remote Desktop Protocol: NSCodec Extension
Copyright © 2021 Microsoft Corporation
Release: June 25, 2021

[MS-RDPBCGR] Microsoft Corporation, "Remote Desktop Protocol: Basic Connectivity and Graphics
Remoting".

[MS-RDPEGDI] Microsoft Corporation, "Remote Desktop Protocol: Graphics Device Interface (GDI)
Acceleration Extensions".

[MS-RDPNSC] Microsoft Corporation, "Remote Desktop Protocol: NSCodec Extension".

[RFC2119] Bradner, S., "Key words for use in RFCs to Indicate Requirement Levels", BCP 14, RFC
2119, March 1997, http://www.rfc-editor.org/rfc/rfc2119.txt

1.2.2 Informative References

None.

1.3 Protocol Overview (Synopsis)

The Remote Desktop Protocol: NSCodec Codec Extension reduces the bandwidth associated with

desktop remoting by efficiently compressing 24 bits per pixel (bpp) and 32 bpp images. This is
achieved by using the NSCodec bitmap codec. This bitmap codec is based on the bitmap compression
techniques introduced in [MS-RDPEGDI] section 3.1.9.

The [MS-RDPBCGR] PDUs that encapsulate [MS-RDPNSC] structures are summarized in the following
figure.

Figure 1: Encapsulation and sequencing of NSCodec settings and bitmaps

[MS-RDPNSC] settings are encapsulated in an NSCodec Capability Set (section 2.2.1), which is
ultimately transported in a server-to-client Demand Active PDU ([MS-RDPBCGR] section 2.2.1.13.1) or
client-to-server Confirm Active PDU ([MS-RDPBCGR] section 2.2.1.13.2). The Demand Active PDU and

7 / 31

[MS-RDPNSC-Diff] - v20210625
Remote Desktop Protocol: NSCodec Extension
Copyright © 2021 Microsoft Corporation
Release: June 25, 2021

Confirm Active PDU are transmitted during the Capabilities Exchange Phase of the RDP Connection
Sequence ([MS-RDPBCGR] section 1.3.1.1).

When the RDP Connection Sequence has run to completion, bitmap images of the user's session are
transmitted from the server to the client ([MS-RDPBCGR] section 1.3.6). NSCodec compression

techniques (section 3.1.8) and structures (section 2.2.2) are used to efficiently transport these
bitmaps so that they can be rendered on the client. NSCodec-compressed bitmaps that cannot be
cached are sent encapsulated in Set Surface Bits Surface Commands ([MS-RDPBCGR] section
2.2.9.2.1), which are ultimately transported in a server-to-client Fast-Path Surface Commands Update
([MS-RDPBCGR] section 2.2.9.1.2.1.10). NSCodec-compressed bitmaps that can be cached are sent
encapsulated in Cache Bitmap – Revision 3 ([MS-RDPEGDI] section 2.2.2.2.1.2.8) Secondary Drawing
Orders, which are ultimately transported in a server-to-client Fast-Path Orders Update ([MS-RDPEGDI]

section 2.2.2.2). Bitmap caching is discussed in [MS-RDPEGDI] section 3.1.1.1.1.

1.4 Relationship to Other Protocols

This protocol extends the Remote Desktop Protocol: Basic Connectivity and Graphics Remoting (as

specified in [MS-RDPBCGR]) by adding advanced compression techniques.

1.5 Prerequisites/Preconditions

All multiple-byte fields within a message are assumed to contain data in little-endian byte order unless
otherwise specified.

The following client prerequisites are mandatory:

▪ The client MUST advertise support for the NSCodec codec by sending the NSCodec Capability Set
(section 2.2.1) to the server as specified in section 3.1.5.1.

▪ The client MUST support a color depth of 32 bits per pixel. This means that the
RNS_UD_32BPP_SUPPORT (0x0008) flag must be set in the supportedColorDepths field of the
Client Core Data structure ([MS-RDPBCGR] section 2.2.1.3.2).

In order to receive NSCodec-compressed bitmaps within the Stream Surface Bits Surface Command
([MS-RDPBCGR] section 2.2.9.2.2), the following client prerequisites are mandatory:

▪ The client MUST support fast-path graphics output ([MS-RDPBCGR] section 2.2.9.1.2) and
acknowledge this support by specifying the FASTPATH_OUTPUT_SUPPORTED (0x0001) flag in the
General Capability Set ([MS-RDPBCGR] section 2.2.7.1.1).

▪ The client MUST support the Stream Surface Bits Surface Command ([MS-RDPBCGR] section
2.2.9.2.2). Support for this surface command MUST be advertised in the Surface Commands

Capability Set ([MS-RDPBCGR] section 2.2.7.2.9).

In order to use NSCodec-compressed bitmaps in conjunction with Bitmap Cache Secondary Drawing
Orders ([MS-RDPEGDI] sections 1.3.1.1 and 1.3.1.2.2), the following client prerequisite is mandatory:

▪ The client MUST support the Cache Bitmap - Revision 3 ([MS-RDPEGDI] section 2.2.2.2.1.2.8)
Secondary Drawing Order. Support for this caching order MUST be advertised in the Surface

Commands Capability Set ([MS-RDPBCGR] section 2.2.7.2.9).

1.6 Applicability Statement

This protocol is applicable in situations in which it is necessary to optimize the bandwidth required for
graphics remoting. The advanced compression techniques specified in this document enable the
efficient transfer of server-side images and video.

8 / 31

[MS-RDPNSC-Diff] - v20210625
Remote Desktop Protocol: NSCodec Extension
Copyright © 2021 Microsoft Corporation
Release: June 25, 2021

1.7 Versioning and Capability Negotiation

This protocol builds on the basic Remote Desktop Protocol. The features provided by this extension are
negotiated during the Capabilities Exchange Phase of the RDP connection sequence ([MS-RDPBCGR]

section 1.3.1.1). In effect, this extension merely expands the set of capabilities used by the base RDP.
(RDP versioning and capability negotiation is described in [MS-RDPBCGR] section 1.7.)

1.8 Vendor-Extensible Fields

None.

1.9 Standards Assignments

None.

9 / 31

[MS-RDPNSC-Diff] - v20210625
Remote Desktop Protocol: NSCodec Extension
Copyright © 2021 Microsoft Corporation
Release: June 25, 2021

2 Messages

2.1 Transport

This protocol is an extension to the Remote Desktop Protocol: Basic Connectivity and Graphics

Remoting, and all packets are tunneled within the RDP transport ([MS-RDPBCGR] section 2.1).

2.2 Message Syntax

2.2.1 NSCodec Capability Set (TS_NSCODEC_CAPABILITYSET)

The TS_NSCODEC_CAPABILITYSET structure advertises properties of the NSCodec Bitmap Codec.
This capability set is encapsulated in the codecProperties field of the Bitmap Codec ([MS-RDPBCGR]
section 2.2.7.2.10.1.1) structure, which is ultimately encapsulated in the Bitmap Codecs Capability Set
([MS-RDPBCGR] section 2.2.7.2.10), which is encapsulated in a server-to-client Demand Active PDU

([MS-RDPBCGR] section 2.2.1.13.1) or client-to-server Confirm Active PDU ([MS-RDPBCGR] section
2.2.1.13.2).

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

fAllowDynamicFidelity fAllowSubsampling colorLossLevel

fAllowDynamicFidelity (1 byte): An 8-bit unsigned integer that indicates support for lossy bitmap
compression by reducing color fidelity ([MS-RDPEGDI] section 3.1.9.1.4).

Value Meaning

FALSE

0x00

Lossy compression is not supported.

TRUE

0x01

Lossy compression is supported.

fAllowSubsampling (1 byte): An 8-bit unsigned integer that indicates support for chroma
subsampling ([MS-RDPEGDI] section 3.1.9.1.3).

Value Meaning

FALSE

0x00

Chroma subsampling is not supported.

TRUE

0x01

Chroma subsampling is supported.

colorLossLevel (1 byte): An 8-bit unsigned integer that indicates the maximum supported Color
Loss Level ([MS-RDPEGDI] section 3.1.9.1.4). This value MUST be between 1 and 7 (inclusive).

2.2.2 NSCodec Compressed Bitmap Stream (NSCODEC_BITMAP_STREAM)

The NSCODEC_BITMAP_STREAM structure contains a stream of bitmap data compressed using
NSCodec bitmap compression techniques (section 3.1.8). The bitmap data is represented using the
AYCoCg color space ([MS-RDPEGDI] section 3.1.9.1.2).

10 / 31

[MS-RDPNSC-Diff] - v20210625
Remote Desktop Protocol: NSCodec Extension
Copyright © 2021 Microsoft Corporation
Release: June 25, 2021

NSCodec compressed bitmap data is sent encapsulated in a Set Surface Bits Surface Command ([MS-
RDPBCGR] section 2.2.9.2.1) when sending a bitmap image that MUST NOT be cached, or in the

Cache Bitmap - Revision 3 ([MS-RDPEGDI] section 2.2.2.2.1.2.8) Secondary Drawing Order when
sending a bitmap image that MUST be cached (bitmap caching is discussed in [MS-RDPEGDI] section

3.1.1.1.1). In all these cases, the data is encapsulated inside an Extended Bitmap Data ([MS-
RDPBCGR] section 2.2.9.2.1.1) structure.

The width and height of the compressed bitmap are obtained from the width and height fields of the
encapsulating Extended Bitmap Data structure.

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

LumaPlaneByteCount

OrangeChromaPlaneByteCount

GreenChromaPlaneByteCount

AlphaPlaneByteCount

ColorLossLevel ChromaSubsamplingLevel Reserved

LumaPlane (variable)

...

OrangeChromaPlane (variable)

...

GreenChromaPlane (variable)

...

AlphaPlane (variable)

...

LumaPlaneByteCount (4 bytes): A 32-bit, unsigned integer that contains the number of bytes used

by the LumaPlane field. This value MUST be greater than zero.

OrangeChromaPlaneByteCount (4 bytes): A 32-bit, unsigned integer that contains the number of
bytes used by the OrangeChromaPlane field. This value MUST be greater than zero.

GreenChromaPlaneByteCount (4 bytes): A 32-bit, unsigned integer that contains the number of
bytes used by the GreenChromaPlane field. This value MUST be greater than zero.

AlphaPlaneByteCount (4 bytes): A 32-bit, unsigned integer that contains the number of bytes used
by the AlphaPlane field.

ColorLossLevel (1 byte): An 8-bit, unsigned integer that indicates the Color Loss Level ([MS-
RDPEGDI] section 3.1.9.1.4) that was applied to the chroma values of this packet. This value
MUST be in the range 1 to 7 (inclusive).

11 / 31

[MS-RDPNSC-Diff] - v20210625
Remote Desktop Protocol: NSCodec Extension
Copyright © 2021 Microsoft Corporation
Release: June 25, 2021

ChromaSubsamplingLevel (1 byte): An 8-bit, unsigned integer that indicates whether chroma
subsampling is being used ([MS-RDPEGDI] section 3.1.9.1.3).

Value Meaning

FALSE

0x00

Chroma subsampling is not being used.

TRUE

0x01

Chroma subsampling is being used.

Reserved (2 bytes): A 16-bit field. Reserved for future use.

LumaPlane (variable): A variable-length array of bytes that contains the luma plane data.

The LumaPlaneByteCount field is used to determine whether the data is in raw format, or if it
has been RLE (2) compressed. If LumaPlaneByteCount is equal to the expected raw size of the

luma plane, the data is in raw format. If LumaPlaneByteCount is smaller than the expected size,
the data has been RLE compressed. LumaPlaneByteCount MUST NOT be larger than the
expected size of the luma plane.

If chroma subsampling is not being used, the expected raw size of the luma plane is calculated as
follows (input to the calculation is the raw image width and height).

 LumaPlaneWidth = ImageWidth
 LumaPlaneHeight = ImageHeight
 LumaPlaneByteCount = ImageWidth * ImageHeight

If chroma subsampling is being used, the expected raw size of the luma plane is calculated as

follows.

 LumaPlaneWidth = ROUND_UP_TO_NEAREST_MULTIPLE_OF_8(ImageWidth)
 LumaPlaneHeight = ImageHeight
 LumaPlaneByteCount = LumaPlaneWidth * ImageHeight

If the luma channel has been RLE compressed, this field contains an NSCodec RLE Segments
(section 2.2.2.1) structure. Otherwise, it contains the raw bytes of the color plane.

OrangeChromaPlane (variable): A variable-length array of bytes that contains the orange chroma
plane.

The OrangeChromaPlaneByteCount field is used to determine whether the data is in raw
format or has been RLE compressed. If OrangeChromaPlaneByteCount is equal to the expected
raw size of the chroma plane, the data is in raw format. If OrangeChromaPlaneByteCount is
smaller than the expected size, the data has been RLE compressed.

OrangeChromaPlaneByteCount MUST NOT be larger than the expected size of the chroma
plane.

If chroma subsampling is not being used, the expected raw size of the orange chroma plane is
calculated as follows (input to the calculation is the raw image width and height).

 ChromaPlaneWidth = ImageWidth
 ChromaPlaneHeight = ImageHeight
 ChromaPlaneByteCount = ImageWidth * ImageHeight

12 / 31

[MS-RDPNSC-Diff] - v20210625
Remote Desktop Protocol: NSCodec Extension
Copyright © 2021 Microsoft Corporation
Release: June 25, 2021

If chroma subsampling is being used, the expected raw size of the orange chroma plane is
calculated as follows.

 ChromaPlaneWidth = ROUND_UP_TO_NEAREST_MULTIPLE_OF_8(ImageWidth) / 2
 ChromaPlaneHeight = ROUND_UP_TO_NEAREST_MULTIPLE_OF_2(ImageHeight) / 2
 ChromaPlaneByteCount = ChromaPlaneWidth * ChromaPlaneHeight

If the orange chroma channel has been RLE compressed, this field contains an NSCodec RLE
Segments (section 2.2.2.1) structure. Otherwise, it contains the raw bytes of the color plane.

Depending on the values of the ColorLossLevel and ChromaSubsamplingLevel fields, the
orange chroma plane can be transformed by color loss reduction ([MS-RDPEGDI] section
3.1.9.1.4) and chroma subsampling ([MS-RDPEGDI] section 3.1.9.1.3).

GreenChromaPlane (variable): A variable-length array of bytes that contains the green chroma
plane.

The GreenChromaPlaneByteCount field is used to determine whether the data is in raw format
or has been RLE compressed. If GreenChromaPlaneByteCount is equal to the expected raw size
of the chroma plane, the data is in raw format. If GreenChromaPlaneByteCount is smaller than
the expected size, the data has been RLE compressed. GreenChromaPlaneByteCount MUST

NOT be larger than the expected size of the chroma plane.

If chroma subsampling is not being used, the expected raw size of the green chroma plane is
calculated as follows (input to the calculation is the raw image width and height).

 ChromaPlaneWidth = ImageWidth
 ChromaPlaneHeight = ImageHeight
 ChromaPlaneByteCount = ImageWidth * ImageHeight

If chroma subsampling is being used, the expected raw size of the green chroma plane is
calculated as follows.

 ChromaPlaneWidth = ROUND_UP_TO_NEAREST_MULTIPLE_OF_8(ImageWidth) / 2
 ChromaPlaneHeight = ROUND_UP_TO_NEAREST_MULTIPLE_OF_2(ImageHeight) / 2
 ChromaPlaneByteCount = ChromaPlaneWidth * ChromaPlaneHeight

If the green chroma channel has been RLE compressed, this field contains an NSCodec RLE

Segments (section 2.2.2.1) structure. Otherwise, it contains the raw bytes of the color plane.

Depending on the values of the ColorLossLevel and ChromaSubsamplingLevel fields, the
green chroma plane can be transformed by color loss reduction ([MS-RDPEGDI] section 3.1.9.1.4)
and chroma subsampling ([MS-RDPEGDI] section 3.1.9.1.3).

AlphaPlane (variable): A variable-length array of bytes that contains the alpha plane. This field
MUST NOT be present if AlphaPlaneByteCount equals 0.

If the AlphaPlaneByteCount field is greater than zero, it MUST be used to determine whether

the AlphaPlane data is in raw format or has been RLE compressed. If AlphaPlaneByteCount is
equal to the expected raw size of the Alpha plane, the data is in raw format. If
AlphaPlaneByteCount is smaller than the expected size, the data has been RLE compressed.
AlphaPlaneByteCount MUST NOT be larger than the expected size of the alpha plane.

The expected raw size of the alpha plane is calculated as follows (input to the calculation is the
raw image width and height).

 AlphaPlaneWidth = ImageWidth

13 / 31

[MS-RDPNSC-Diff] - v20210625
Remote Desktop Protocol: NSCodec Extension
Copyright © 2021 Microsoft Corporation
Release: June 25, 2021

 AlphaPlaneHeight = ImageHeight
 AlphaPlaneByteCount = ImageWidth * ImageHeight

If the alpha channel has been RLE compressed, this field contains an NSCodec RLE Segments
(section 2.2.2.1) structure. Otherwise, it contains the raw bytes of the color plane.

2.2.2.1 NSCodec RLE Segments (NSCODEC_RLE_SEGMENTS)

The NSCODEC_RLE_SEGMENTS structure contains the run-length encoded contents of a color plane
and consists of a collection of NSCodec RLE run segment (section 2.2.2.2.1) and NSCodec RLE literal
segment (section 2.2.2.2.2) structures.

RLE compression is the final stage that is applied when compressing a bitmap using NSCodec bitmap
compression (for more details, refer to the compression flow diagram in section 3.1.8.3).

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

Segments (variable)

...

EndData

Segments (variable): A variable-length field that contains an array of NSCodec RLE Run Segment
(section 2.2.2.2.1) and NSCodec RLE Literal Segment (section 2.2.2.2.2) structures.

EndData (4 bytes): A 32-bit, unsigned integer that contains the last four raw bytes of the original
color plane.

2.2.2.2 NSCodec RLE Segment

An NSCodec RLE Segment is either a Run segment (section 2.2.2.2.1) or a Literal segment (section
2.2.2.2.2). RLE segments are encapsulated in the Segments field of the NSCodec RLE Segments
(section 2.2.2.1) structure.

2.2.2.2.1 NSCodec RLE Run Segment (NSCODEC_RLE_RUN_SEGMENT)

The NSCODEC_RLE_RUN_SEGMENT structure is used to represent an RLE run (section 3.1.8.1).

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

RunValue RunConfirm RunLengthFactor1 RunLengthFactor2
(optional)

...

RunValue (1 byte): An 8-bit, unsigned integer that contains a value from the uncompressed A, Y,
Co, or Cg color plane (the Co and Cg planes MUST have color loss reduction ([MS-RDPEGDI]
section 3.1.9.1.4) applied prior to RLE compression, as specified in section 3.1.8.3). The allowed
ranges of the values contained in the A, Y, Co, and Cg color planes are specified in [MS-RDPEGDI]
section 3.1.9.1.2 (note that color loss reduction will reduce the range of the values in the Co and

Cg planes by at least half). The RunValue field MUST be equal to the RunConfirm field to
identify the structure as an NSCodec RLE Run Segment.

14 / 31

[MS-RDPNSC-Diff] - v20210625
Remote Desktop Protocol: NSCodec Extension
Copyright © 2021 Microsoft Corporation
Release: June 25, 2021

RunConfirm (1 byte): An 8-bit, unsigned integer that MUST be equal to the RunValue field value to
identify the structure as an NSCodec RLE run segment.

RunLengthFactor1 (1 byte): An 8-bit field. If this value is less than 255 (0xFF), the
RunLengthFactor2 field MUST NOT be present, and the run length (the number of times the

value of the RunValue field was repeated in the original color plane data) equals
RunLengthFactor1 + 2. If RunLengthFactor1 equals 255 (0xFF), the RunLengthFactor2 field
MUST be present, and the run length is calculated based solely on the RunLengthFactor2 field.

RunLengthFactor2 (4 bytes): An optional 32-bit field that contains the run length. This field
SHOULD NOT be used if the run length is smaller than 256.

2.2.2.2.2 NSCodec RLE Literal Segment (NSCODEC_RLE_LITERAL_SEGMENT)

The NSCODEC_RLE_RUN_SEGMENT structure is used to represent an RLE literal (section 3.1.8.1).

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

RunValue

RunValue (1 byte): An 8-bit, unsigned integer that contains a raw value from the original color
plane. Either any bytes in the RLE encoded color plane stream that follow the RunValue field
MUST NOT equal the value of the RunValue field, or the RunValue field MUST be the last
segment in the stream.

15 / 31

[MS-RDPNSC-Diff] - v20210625
Remote Desktop Protocol: NSCodec Extension
Copyright © 2021 Microsoft Corporation
Release: June 25, 2021

3 Protocol Details

3.1 Common Details

The following figure and table describe the server-side state machine.

Figure 2: Server state diagram

State Name Description

Uninitialized This is the initial state of the server. In this state, the server waits for the NSCodec
Capability Set (section 2.2.1) from the client. On receiving this capability set, the server
processes it as described in section 3.1.5.1. If it finds compatible settings, it initializes
itself and transitions to the EncodingGraphics state. Otherwise, the connection is
terminated (section 3.1.5.1).

EncodingGraphics In this state, the server examines updates to the graphics frame buffer and then
determines which regions to encode and send to the client. Bitmap data is encoded as
described in section 3.1.8.3. The server then transitions to the PackagingEncodedData
state.

PackagingEncodedData In this state, the server packages the encoded bitmap data in a Set Surface Bits
Surface Command or a Cache Bitmap - Revision 3 Secondary Drawing Order as
described in section 3.1.5.2. The server then transitions to the SendingData state.

SendingData In this state, the server sends the packaged bitmap data to the client. The server then
transitions back to the EncodingGraphics state.

16 / 31

[MS-RDPNSC-Diff] - v20210625
Remote Desktop Protocol: NSCodec Extension
Copyright © 2021 Microsoft Corporation
Release: June 25, 2021

3.1.1 Abstract Data Model

This section describes a conceptual model of possible data organization that an implementation
maintains to participate in this protocol. The described organization is provided to facilitate the
explanation of how the protocol behaves. This document does not mandate that implementations
adhere to this model as long as their external behavior is consistent with that described in this
document.

Note It is possible to implement the following conceptual data by using a variety of techniques as
long as the implementation produces external behavior that is consistent with that described in this
document.

3.1.1.1 Lossy Bitmap Compression Ability

The Lossy Bitmap Compression Ability store indicates whether lossy bitmap compression through the

reduction of color fidelity ([MS-RDPEGDI] section 3.1.9.1.4) is supported. This fact is communicated
as part of the NSCodec Capability Set (section 2.2.1).

3.1.1.2 Chroma Subsampling Ability

The Chroma Subsampling Ability store indicates whether chroma subsampling ([MS-RDPEGDI] section
3.1.9.1.3) is supported. This fact is communicated as part of the NSCodec Capability Set (section
2.2.1).

3.1.1.3 Maximum Supported Color Loss Level

The Maximum Supported Color Loss Level store indicates the maximum supported color loss level
([MS-RDPEGDI] section 3.1.9.1.4). This value is communicated as part of the NSCodec Capability Set
(section 2.2.1).

3.1.2 Timers

None.

3.1.3 Initialization

Bitmap compression using NSCodec bitmap compression techniques (section 3.1.8) requires that the
following settings MUST first be determined by examining the NSCodec Capability Set (section 2.2.1):

▪ Lossy Bitmap Compression Ability (section 3.1.1.1)

▪ Chroma Subsampling Ability (section 3.1.1.2)

▪ Maximum Supported Color Loss Level (section 3.1.1.3)

The NSCodec Capability Set is encapsulated in the Bitmap Codecs Capability Set ([MS-RDPBCGR]
section 2.2.7.2.10), which is encapsulated in a server-to-client Demand Active PDU ([MS-RDPBCGR]

section 2.2.1.13.1) or client-to-server Confirm Active PDU ([MS-RDPBCGR] section 2.2.1.13.2).

3.1.4 Higher-Layer Triggered Events

None.

17 / 31

[MS-RDPNSC-Diff] - v20210625
Remote Desktop Protocol: NSCodec Extension
Copyright © 2021 Microsoft Corporation
Release: June 25, 2021

3.1.5 Processing Events and Sequencing Rules

3.1.5.1 NSCodec Capability Set

The NSCodec Capability Set (section 2.2.1) structure is sent by both the client and server, and
advertises properties of the NSCodec Bitmap Codec. This capability set is encapsulated in a Bitmap
Codec ([MS-RDPBCGR] section 2.2.7.2.10.1.1) structure, which is ultimately encapsulated in the
Bitmap Codecs Capability Set ([MS-RDPBCGR] section 2.2.7.2.10), which is encapsulated in a server-
to-client Demand Active PDU ([MS-RDPBCGR] section 2.2.1.13.1) or client-to-server Confirm Active

PDU ([MS-RDPBCGR] section 2.2.1.13.2).

The sender of the NSCodec Capability Set MUST populate the fAllowDynamicFidelity,
fAllowSubsampling, and colorLossLevel fields to advertise support for lossy bitmap compression
(section 3.1.1.1), chroma subsampling (section 3.1.1.2), and the maximum supported color loss level
(section 3.1.1.3). The recipient of the NSCodec Capability Set MUST use the contents of the NSCodec
Capability Set to initialize an NSCodec compressor so as to ensure that the peer protocol entity that

receives compressed bitmap data will be able to perform decompression as outlined in section 3.1.8.4.

If the data encapsulation is invalid or errors are encountered while processing the NSCodec Capability
Set, the connection SHOULD be dropped.

3.1.5.2 NSCodec Compressed Bitmap Stream

The NSCodec Compressed Bitmap Stream (section 2.2.2) structure contains a stream of bitmap data
compressed by using NSCodec bitmap compression techniques (section 3.1.8). NSCodec compressed
bitmap data is sent encapsulated in a Set Surface Bits Surface Command ([MS-RDPBCGR] section
2.2.9.2.1) when sending a bitmap image that MUST NOT be cached, or in the Cache Bitmap - Revision
3 ([MS-RDPEGDI] section 2.2.2.2.1.2.8) Secondary Drawing Order when sending a bitmap image that
MUST be cached (bitmap caching is discussed in [MS-RDPEGDI] section 3.1.1.1.1). In all of these
cases, the data is encapsulated inside an Extended Bitmap Data ([MS-RDPBCGR] section 2.2.9.2.1.1)

structure. If the data encapsulation is invalid or errors are encountered while decompressing NSCodec
data (section 3.1.8.4), the connection SHOULD be dropped.

3.1.6 Timer Events

None.

3.1.7 Other Local Events

None.

3.1.8 NSCodec Bitmap Compression

NSCodec bitmap compression is used when the RDP session color depth is 32 bpp and the bitmap of
interest is either 24 bpp (RGB with no alpha channel) or 32 bpp (RGB with an alpha channel). The
capability of a server to encode and a client to decode with NSCodec bitmap compression is advertised

in the bitmap codec capability set ([MS-RDPBCGR] section 2.2.7.2.10).

The value of the codecGUID field of the Bitmap Codec structure ([MS-RDPBCGR] section
2.2.7.2.10.1.1) for NSCodec MUST be 0xCA8D1BB9000F154F589FAE2D1A87E2D6.

Similar to RDP 6.0 bitmap compression ([MS-RDPEGDI] section 3.1.9), the NSCodec algorithm
performs a color space conversion from ARGB to AYCoCg and uses a collection of compression
techniques to compress each of the color planes individually.

The following techniques (described in [MS-RDPEGDI] section 3.1.9.1) are used within the scope of

NSCodec bitmap compression:

18 / 31

[MS-RDPNSC-Diff] - v20210625
Remote Desktop Protocol: NSCodec Extension
Copyright © 2021 Microsoft Corporation
Release: June 25, 2021

▪ Splitting and combining color planes ([MS-RDPEGDI] section 3.1.9.1.1)

▪ Color space conversion ([MS-RDPEGDI] section 3.1.9.1.2)

▪ Chroma subsampling and super-sampling ([MS-RDPEGDI] section 3.1.9.1.3)

▪ Color loss reduction ([MS-RDPEGDI] section 3.1.9.1.4)

3.1.8.1 NSCodec Run-Length Encoding

NSCodec run-length encoding is a simple compression scheme that parses an image stream and then
encodes run lengths with minimal overhead. The algorithm is run on the stream as a whole and

encodes it into segments of two types: runs and literals. The last 4 bytes of the stream are always left
unencoded.

For example, an initial stream containing the following 12 ANSI characters:

 AAAABBCCCCCD

Would be transformed after encoding into the following stream:

 AA2BB0CC0CCCD

In this case, encoding the stream has resulted in expansion, and the original image stream is sent
instead.

For a second example, an initial stream containing the following 27 ANSI characters:

 ABCDDDTTTTGFRRRRRRRRRRRABCD

Would be transformed after encoding into the following stream:

 ABCDD1TT2GFRR9ABCD

In the case of real image streams, the likelihood of long runs is high, and consequently, the reductions
in size are significant.

3.1.8.1.1 Encoding Run-Length Sequences

NSCodec run-length encoding produces three types of sequences:

▪ Literal sequences

▪ Short run sequences

▪ Long run sequences

The data in an input stream MUST be transformed according to the following rules:

1. If there are four or fewer bytes remaining in the input stream, copy the bytes unmodified to the
output stream. The encoding is finished.

2. If the current byte to encode is followed by a byte with a different value, a literal has been

identified. Write the byte value to the output stream and advance forward in the input stream by
one byte.

19 / 31

[MS-RDPNSC-Diff] - v20210625
Remote Desktop Protocol: NSCodec Extension
Copyright © 2021 Microsoft Corporation
Release: June 25, 2021

3. If the total count of repeating byte values starting at the current position in the input stream and
before the last four bytes is larger than 1 and strictly less than 256, then a short run has been

identified. Write the current byte value to the output stream twice, and then write the count of
identical positions minus 2. Advance forward in the input stream by the number of bytes equal to

the count.

4. If the total count of repeating byte values starting at the current position and before the end of
the stream is 256 or more, a long run has been identified. Write the current byte value to the
output stream twice, write the constant 0xFF to the output stream, and then write the count of
identical positions as a 32-bit little-endian value. Advance forward in the input stream by the
number of bytes equal to the count.

Note that a run greater than 2^32 bytes is not possible, as the maximum size of an individual desktop

is capped at 4,096 x 2,048 pixels (33,554,432 bytes at 32bpp); see [MS-RDPBCGR] section 2.2.1.3.2,
specifically the desktopWidth and desktopHeight fields, which point out the server-side restriction.

The following flowchart illustrates how an input stream is processed by using the NSCodec RLE rules to
produce run-length sequences.

20 / 31

[MS-RDPNSC-Diff] - v20210625
Remote Desktop Protocol: NSCodec Extension
Copyright © 2021 Microsoft Corporation
Release: June 25, 2021

Figure 3: Encoding data by using NSCodec run-length encoding (RLE)

3.1.8.2 Padding the Red, Green, and Blue Color Planes

When subsampling of color planes is required, the planes MUST be padded. Padding ensures proper
alignment of the image geometry and can aid significantly in the implementation of subsequent

encoding algorithms.

1. The size of a padded plane is calculated as follows (input to the calculation is the plane width and

height).

 PaddedPlaneWidth = ROUND_UP_TO_NEAREST_MULTIPLE_OF_8(PlaneWidth)
 PaddedPlaneHeight = ROUND_UP_TO_NEAREST_MULTIPLE_OF_2(PlaneHeight)

21 / 31

[MS-RDPNSC-Diff] - v20210625
Remote Desktop Protocol: NSCodec Extension
Copyright © 2021 Microsoft Corporation
Release: June 25, 2021

For example, if the original image width is 500, the padded plane width is 504. If the original
image height is 200, the padded plane height is 200.

2. Color space conversion, subsampling, and color loss reduction of the padded color planes are
implemented as follows.

Subsequent transformations applied to the color planes MUST be implemented as described in
[MS-RDPEGDI] sections 3.1.9.1.2 through 3.1.9.1.4 and applied to the pixel values within the
original image area.

The pixel values contained in the padded area can have any value (depending on the
implementation) and can be configured so as to maximize the run-length compression and
minimize the overall compression/decompression algorithm execution time.

The following figure demonstrates how 3x3 and 4x3 planes are padded to produce an 8x4 plane.

Figure 4: Examples of color plane padding

3.1.8.3 Compressing a Bitmap

The overall scheme used to compress a bitmap with NSCodec bitmap compression is described in the
following figure. The usage of color reduction and chroma subsampling is negotiated in the NSCodec
capabilities set (section 2.2.1).

22 / 31

[MS-RDPNSC-Diff] - v20210625
Remote Desktop Protocol: NSCodec Extension
Copyright © 2021 Microsoft Corporation
Release: June 25, 2021

Figure 5: Compressing a bitmap

3.1.8.4 Decompressing a Bitmap

The following figure is a flowchart showing how to decompress a bitmap that is compressed with

NSCodec bitmap compression.

23 / 31

[MS-RDPNSC-Diff] - v20210625
Remote Desktop Protocol: NSCodec Extension
Copyright © 2021 Microsoft Corporation
Release: June 25, 2021

Figure 6: Decompressing a bitmap

Execution of the flowchart tasks relies on concepts and techniques introduced in this document and

[MS-RDPEGDI].

▪ Read Bitmap Parameters: The parameters describing the bitmap data are specified in the NSCodec
Compressed Bitmap Stream (section 2.2.2) which encapsulates the compressed data stream.

▪ Reading an RLE compressed plane and decompressing the plane: The compressed luma, orange
chroma (Co), green chroma (Cg), and alpha planes are contained in the NSCodec Compressed
Bitmap Stream. Each plane is composed of a series of RLE Segments (section 2.2.2.1), each

segment being either a Run Segment (section 2.2.2.2.1) or a Literal Segment (section 2.2.2.2.2).
Examples of RLE plane decompression are presented in section 4.

▪ Bit-shifting the Co and Cg plane values by the ColorLossLevel: Chroma recovery is described in
[MS-RDPEGDI] section 3.1.9.1.4.

24 / 31

[MS-RDPNSC-Diff] - v20210625
Remote Desktop Protocol: NSCodec Extension
Copyright © 2021 Microsoft Corporation
Release: June 25, 2021

▪ Super-sampling the Co and Cg planes: Chroma super-sampling is described in [MS-RDPEGDI]
section 3.1.9.1.3.

▪ Color space conversion of the luma, Co, and Cg planes: The inverse AYCoCg to ARGB color space
transformation is described in [MS-RDPEGDI] section 3.1.9.1.2.

▪ Combining of the alpha, red, green, and blue color planes: Color plane combining is described in
[MS-RDPEGDI] section 3.1.9.1.1.

Refer to section 4 to view an example that illustrates how a compressed NSCodec bitmap stream is
decompressed.

25 / 31

[MS-RDPNSC-Diff] - v20210625
Remote Desktop Protocol: NSCodec Extension
Copyright © 2021 Microsoft Corporation
Release: June 25, 2021

4 Protocol Examples

The following example shows a network dump of an image compressed using NSCodec. The image
width is 15, and the height is 10.

 COMPRESSED BITMAP DATA (158 bytes):
 00000000 71 00 00 00 07 00 00 00 0b 00 00 00 07 00 00 00 q...............
 00000010 03 01 00 00 63 63 01 64 64 00 63 63 02 64 64 00cc.dd.cc.dd.
 00000020 63 63 00 64 64 01 63 63 01 64 64 01 63 63 01 64 cc.dd.cc.dd.cc.d
 00000030 64 00 63 63 00 64 64 01 63 63 00 64 64 0c 63 63 d.cc.dd.cc.dd.cc
 00000040 00 64 64 0c 63 63 00 64 64 0c 63 63 00 64 64 0c .dd.cc.dd.cc.dd.
 00000050 63 64 64 04 63 64 63 63 00 64 64 03 63 64 64 03 cdd.cdcc.dd.cdd.
 00000060 63 63 00 64 63 63 00 64 64 03 65 63 64 64 01 63 cc.dcc.dd.ecdd.c
 00000070 64 64 00 65 64 64 06 63 64 64 00 63 63 00 64 64 dd.edd.cdd.cc.dd
 00000080 04 64 65 65 65 22 22 22 22 22 22 22 37 37 19 36 .deee"""""""77.6
 00000090 37 37 06 37 37 37 37 ff ff 90 ff ff ff ff 77.7777.......

 71 00 00 00 -> LumaPlaneByteCount = 113
 07 00 00 00 -> OrangeChromaPlaneByteCount = 7
 0b 00 00 00 -> GreenChromaPlaneByteCount = 11
 07 00 00 00 -> AlphaPlaneByteCount = 7
 03 -> ColorLossLevel = 3
 01 -> ChromaSubsamplingLevel = 1
 00 00 -> Reserved, ignored

 LUMA PLANE DECODING (113 bytes):

 00000000 63 63 01 64 64 00 63 63 02 64 64 00 63 63 00 64 cc.dd.cc.dd.cc.d
 00000010 64 01 63 63 01 64 64 01 63 63 01 64 64 00 63 63 d.cc.dd.cc.dd.cc
 00000020 00 64 64 01 63 63 00 64 64 0c 63 63 00 64 64 0c .dd.cc.dd.cc.dd.
 00000030 63 63 00 64 64 0c 63 63 00 64 64 0c 63 64 64 04 cc.dd.cc.dd.cdd.
 00000040 63 64 63 63 00 64 64 03 63 64 64 03 63 63 00 64 cdcc.dd.cdd.cc.d
 00000050 63 63 00 64 64 03 65 63 64 64 01 63 64 64 00 65 cc.dd.ecdd.cdd.e
 00000060 64 64 06 63 64 64 00 63 63 00 64 64 04 64 65 65 dd.cdd.cc.dd.dee
 00000070 65 e

 LumaPlaneWidth = ROUND_UP_TO_NEAREST_MULTIPLE_OF_8(ImageWidth) = 16
 LumaPlaneHeight = ImageHeight = 10
 Expected LumaPlaneByteCount = LumaPlaneWidth * ImageHeight = 160
 LumaPlaneByteCount < Expected LumaPlaneByteCount which implies that RLE was used.

 Run Length decoding of the Luma plane:
 63 63 01 -> Output 0x63 3 times to the luma buffer (NSCODEC_RLE_RUN_SEGMENT)
 64 64 00 -> Output 0x64 2 times to the luma buffer (NSCODEC_RLE_RUN_SEGMENT)
 63 63 02 -> Output 0x63 4 times to the luma buffer (NSCODEC_RLE_RUN_SEGMENT)
 ...
 64 64 00 -> Output 0x64 2 times to the luma buffer (NSCODEC_RLE_RUN_SEGMENT)
 64 65 65 65 -> EndData: Output 0x64 0x65 0x65 0x65 to the luma buffer

 ORANGE CHROMA PLANE DECODING (7 bytes):
 00000000 22 22 22 22 22 22 22 """""""

 ChromaPlaneWidth = ROUND_UP_TO_NEAREST_MULTIPLE_OF_8(ImageWidth) / 2 = 8
 ChromaPlaneHeight = ROUND_UP_TO_NEAREST_MULTIPLE_OF_2(ImageHeight) / 2 = 5
 Expected ChromaPlaneByteCount = ChromaPlaneWidth * ChromaPlaneHeight = 40
 OrangeChromaPlaneByteCount < Expected ChromaPlaneByteCount which implies that RLE was used.

 Run Length decoding of the Orange Chroma plane:
 22 22 22 -> Output 0x22 36 times to the orange chroma buffer (NSCODEC_RLE_RUN_SEGMENT)
 22 22 22 22 -> EndData: Output 0x22 0x22 0x22 0x22 to the orange chroma buffer

 GREEN CHROMA PLANE DECODING (11 bytes):

 00000000 37 37 19 36 37 37 06 37 37 37 37 77.677.7777

 GreenChromaPlaneByteCount < Expected ChromaPlaneByteCount which implies that RLE was used.

26 / 31

[MS-RDPNSC-Diff] - v20210625
Remote Desktop Protocol: NSCodec Extension
Copyright © 2021 Microsoft Corporation
Release: June 25, 2021

 Run Length decoding of the green chroma plane:
 37 37 19 -> Output 0x37 27 times to the green chroma buffer (NSCODEC_RLE_RUN_SEGMENT)
 36 -> Output 0x36 to the green chroma buffer (NSCODEC_RLE_LITERAL_SEGMENT)
 37 37 06 -> Output 0x37 8 times to the green chroma buffer (NSCODEC_RLE_RUN_SEGMENT)
 37 37 37 37 -> EndData: Output 0x37 0x37 0x37 0x37 to the green chroma buffer

 ALPHA PLANE DECODING (7 bytes)
 00000000 ff ff 90 ff ff ff ff

 AlphaPlaneWidth = ImageWidth
 AlphaPlaneHeight = ImageHeight
 Expected AlphaPlaneByteCount = ImageWidth * ImageHeight = 150
 AlphaPlaneByteCount < expected AlphaPlaneByteCount which implies that RLE was used.

 Run Length decoding of the alpha plane:
 ff ff 90 -> Output 0xff 146 times to the alpha buffer (NSCODEC_RLE_RUN_SEGMENT)
 ff ff ff ff -> EndData: Output 0xff 0xff 0xff 0xff to the alpha buffer

 Using chroma recovery ([MS-RDPEGDI] section 3.1.9.1.4), chroma super-sampling ([MS-RDPEGDI]
section 3.1.9.1.3), the inverse AYCoCg to ARGB transformation ([MS-RDPEGDI] section

3.1.9.1.2), and color plane combining ([MS-RDPEGDI] section 3.1.9.1.1), obtain the ARGB image

from the luma, orange chroma, green chroma, and alpha planes (see Figure 4 for details).

 FINAL DECOMPRESSED BITMAP DATA (600 bytes):

 00000000 ff 3f 0f ff ff 3f 0f ff ff 3f 0f ff ff 40 10 ff .?...?...?...@..
 00000010 ff 40 10 ff ff 3f 0f ff ff 3f 0f ff ff 3f 0f ff .@...?...?...?..
 00000020 ff 3f 0f ff ff 40 10 ff ff 40 10 ff ff 3f 0f ff .?...@...@...?..
 00000030 ff 3f 0f ff ff 40 10 ff ff 40 10 ff ff 3f 0f ff .?...@...@...?..
 00000040 ff 3f 0f ff ff 3f 0f ff ff 40 10 ff ff 40 10 ff .?...?...@...@..
 00000050 ff 40 10 ff ff 3f 0f ff ff 3f 0f ff ff 3f 0f ff .@...?...?...?..
 00000060 ff 40 10 ff ff 40 10 ff ff 3f 0f ff ff 3f 0f ff .@...@...?...?..
 00000070 ff 40 10 ff ff 40 10 ff ff 3f 0f ff ff 3f 0f ff .@...@...?...?..
 00000080 ff 40 10 ff ff 40 10 ff ff 40 10 ff ff 40 10 ff .@...@...@...@..
 00000090 ff 40 10 ff ff 40 10 ff ff 40 10 ff ff 40 10 ff .@...@...@...@..
 000000a0 ff 40 10 ff ff 40 10 ff ff 40 10 ff ff 40 10 ff .@...@...@...@..
 000000b0 ff 40 10 ff ff 3f 0f ff ff 3f 0f ff ff 40 10 ff .@...?...?...@..
 000000c0 ff 40 10 ff ff 40 10 ff ff 40 10 ff ff 40 10 ff .@...@...@...@..
 000000d0 ff 40 10 ff ff 40 10 ff ff 40 10 ff ff 40 10 ff .@...@...@...@..
 000000e0 ff 40 10 ff ff 40 10 ff ff 40 10 ff ff 40 10 ff .@...@...@...@..
 000000f0 ff 3f 0f ff ff 3f 0f ff ff 40 10 ff ff 40 10 ff .?...?...@...@..
 00000100 ff 40 10 ff ff 40 10 ff ff 40 10 ff ff 40 10 ff .@...@...@...@..
 00000110 ff 40 10 ff ff 40 10 ff ff 40 10 ff ff 40 10 ff .@...@...@...@..
 00000120 ff 40 10 ff ff 40 10 ff ff 40 10 ff ff 3f 0f ff .@...@...@...?..
 00000130 ff 3f 0f ff ff 40 10 ff ff 40 10 ff ff 40 10 ff .?...@...@...@..
 00000140 ff 40 10 ff ff 40 10 ff ff 40 10 ff ff 40 10 ff .@...@...@...@..
 00000150 ff 40 10 ff ff 40 10 ff ff 40 10 ff ff 40 10 ff .@...@...@...@..
 00000160 ff 40 10 ff ff 40 10 ff ff 3f 0f ff ff 40 10 ff .@...@...?...@..
 00000170 ff 40 10 ff ff 40 10 ff ff 40 10 ff ff 40 10 ff .@...@...@...@..
 00000180 ff 3c 14 ff ff 3b 13 ff ff 40 10 ff ff 3f 0f ff .<...;...@...?..
 00000190 ff 3f 0f ff ff 40 10 ff ff 40 10 ff ff 40 10 ff .?...@...@...@..
 000001a0 ff 40 10 ff ff 3f 0f ff ff 40 10 ff ff 40 10 ff .@...?...@...@..
 000001b0 ff 40 10 ff ff 40 10 ff ff 40 10 ff ff 3b 13 ff .@...@...@...;..
 000001c0 ff 3b 13 ff ff 40 10 ff ff 3f 0f ff ff 3f 0f ff .;...@...?...?..
 000001d0 ff 40 10 ff ff 40 10 ff ff 40 10 ff ff 40 10 ff .@...@...@...@..
 000001e0 ff 41 11 ff ff 3f 0f ff ff 40 10 ff ff 40 10 ff .A...?...@...@..
 000001f0 ff 40 10 ff ff 3f 0f ff ff 40 10 ff ff 40 10 ff .@...?...@...@..
 00000200 ff 41 11 ff ff 40 10 ff ff 40 10 ff ff 40 10 ff .A...@...@...@..
 00000210 ff 40 10 ff ff 40 10 ff ff 40 10 ff ff 40 10 ff .@...@...@...@..
 00000220 ff 3f 0f ff ff 40 10 ff ff 40 10 ff ff 3f 0f ff .?...@...@...?..
 00000230 ff 3f 0f ff ff 40 10 ff ff 40 10 ff ff 40 10 ff .?...@...@...@..
 00000240 ff 40 10 ff ff 40 10 ff ff 40 10 ff ff 40 10 ff .@...@...@...@..
 00000250 ff 41 11 ff ff 41 11 ff .A...A..

27 / 31

[MS-RDPNSC-Diff] - v20210625
Remote Desktop Protocol: NSCodec Extension
Copyright © 2021 Microsoft Corporation
Release: June 25, 2021

5 Security

5.1 Security Considerations for Implementers

None.

5.2 Index of Security Parameters

None.

28 / 31

[MS-RDPNSC-Diff] - v20210625
Remote Desktop Protocol: NSCodec Extension
Copyright © 2021 Microsoft Corporation
Release: June 25, 2021

6 (Updated Section) Appendix A: Product Behavior

The information in this specification is applicable to the following Microsoft products or supplemental
software. References to product versions include updates to those products.

▪ Windows 7 operating system

▪ Windows Server 2008 R2 operating system

▪ Windows Server 2008 R2 operating system with Service Pack 1 (SP1)

▪ Windows 7 operating system with Service Pack 1 (SP1)

▪ Windows 8 operating system

▪ Windows Server 2012 operating system

▪ Windows 8.1 operating system

▪ Windows Server 2012 R2 operating system

▪ Windows 10 operating system

▪ Windows Server 2016 operating system

▪ Windows Server 2019 operating system

▪ Windows Server 2022 operating system

▪ Windows 11 operating system

Exceptions, if any, are noted in this section. If an update version, service pack or Knowledge Base
(KB) number appears with a product name, the behavior changed in that update. The new behavior
also applies to subsequent updates unless otherwise specified. If a product edition appears with the

product version, behavior is different in that product edition.

Unless otherwise specified, any statement of optional behavior in this specification that is prescribed
using the terms "SHOULD" or "SHOULD NOT" implies product behavior in accordance with the
SHOULD or SHOULD NOT prescription. Unless otherwise specified, the term "MAY" implies that the
product does not follow the prescription.

29 / 31

[MS-RDPNSC-Diff] - v20210625
Remote Desktop Protocol: NSCodec Extension
Copyright © 2021 Microsoft Corporation
Release: June 25, 2021

7 Change Tracking

This section identifies changes that were made to this document since the last release. Changes are
classified as Major, Minor, or None.

The revision class Major means that the technical content in the document was significantly revised.
Major changes affect protocol interoperability or implementation. Examples of major changes are:

▪ A document revision that incorporates changes to interoperability requirements.

▪ A document revision that captures changes to protocol functionality.

The revision class Minor means that the meaning of the technical content was clarified. Minor changes
do not affect protocol interoperability or implementation. Examples of minor changes are updates to
clarify ambiguity at the sentence, paragraph, or table level.

The revision class None means that no new technical changes were introduced. Minor editorial and
formatting changes may have been made, but the relevant technical content is identical to the last

released version.

The changes made to this document are listed in the following table. For more information, please
contact dochelp@microsoft.com.

Section Description Revision class

6 Appendix A: Product Behavior Updated for this version of Windows Client. Major

30 / 31

[MS-RDPNSC-Diff] - v20210625
Remote Desktop Protocol: NSCodec Extension
Copyright © 2021 Microsoft Corporation
Release: June 25, 2021

8 Index
A

Abstract data model 16
Applicability 7

B

Bitmap
 compressing - NSCodec 21
 compression - using - NSCodec 17
 decompressing - NSCodec 22

C

Capability negotiation 8
Change tracking 29
Color planes - padding - NSCodec 20

D

Data model - abstract 16

E

Event processing 17
Examples - overview 25

F

Fields - vendor-extensible 8

G

Glossary 5

H

Higher-layer triggered events 16

I

Implementer - security considerations 27
Index of security parameters 27
Informative references 6
Initialization 16
Introduction 5

L

Local events 17

M

Messages
 NSCodec Capability Set (TS_NSCODEC_CAPABILITYSET) 9
 NSCodec Compressed Bitmap Stream (NSCODEC_BITMAP_STREAM) 9

 transport 9
Messages - transport 9

N

31 / 31

[MS-RDPNSC-Diff] - v20210625
Remote Desktop Protocol: NSCodec Extension
Copyright © 2021 Microsoft Corporation
Release: June 25, 2021

Normative references 5
NSCodec
 bitmap
 compressing 21
 compression - using 17
 decompressing 22
 color planes - padding 20
 run-length encoding 18
NSCodec Capability Set (TS_NSCODEC_CAPABILITYSET) message 9
NSCodec Compressed Bitmap Stream (NSCODEC_BITMAP_STREAM) message 9
NSCODEC_BITMAP_STREAM packet 9
NSCODEC_RLE_LITERAL_SEGMENT packet 14
NSCODEC_RLE_RUN_SEGMENT packet 13
NSCODEC_RLE_SEGMENTS packet 13

O

Overview (synopsis) 6

P

Parameters - security index 27
Preconditions 7
Prerequisites 7
Product behavior 28

R

References 5
 informative 6
 normative 5
Relationship to other protocols 7
Run-length encoding - NSCodec 18

S

Security
 implementer considerations 27
 parameter index 27
Sequencing rules 17
Standards assignments 8

T

Timer events 17
Timers 16
Tracking changes 29
Transport 9
Triggered events 16
TS_NSCODEC_CAPABILITYSET packet 9

V

Vendor-extensible fields 8
Versioning 8

	1 Introduction
	1.1 Glossary
	1.2 References
	1.2.1 Normative References
	1.2.2 Informative References

	1.3 Protocol Overview (Synopsis)
	1.4 Relationship to Other Protocols
	1.5 Prerequisites/Preconditions
	1.6 Applicability Statement
	1.7 Versioning and Capability Negotiation
	1.8 Vendor-Extensible Fields
	1.9 Standards Assignments

	2 Messages
	2.1 Transport
	2.2 Message Syntax
	2.2.1 NSCodec Capability Set (TS_NSCODEC_CAPABILITYSET)
	2.2.2 NSCodec Compressed Bitmap Stream (NSCODEC_BITMAP_STREAM)
	2.2.2.1 NSCodec RLE Segments (NSCODEC_RLE_SEGMENTS)
	2.2.2.2 NSCodec RLE Segment
	2.2.2.2.1 NSCodec RLE Run Segment (NSCODEC_RLE_RUN_SEGMENT)
	2.2.2.2.2 NSCodec RLE Literal Segment (NSCODEC_RLE_LITERAL_SEGMENT)

	3 Protocol Details
	3.1 Common Details
	3.1.1 Abstract Data Model
	3.1.1.1 Lossy Bitmap Compression Ability
	3.1.1.2 Chroma Subsampling Ability
	3.1.1.3 Maximum Supported Color Loss Level

	3.1.2 Timers
	3.1.3 Initialization
	3.1.4 Higher-Layer Triggered Events
	3.1.5 Processing Events and Sequencing Rules
	3.1.5.1 NSCodec Capability Set
	3.1.5.2 NSCodec Compressed Bitmap Stream

	3.1.6 Timer Events
	3.1.7 Other Local Events
	3.1.8 NSCodec Bitmap Compression
	3.1.8.1 NSCodec Run-Length Encoding
	3.1.8.1.1 Encoding Run-Length Sequences

	3.1.8.2 Padding the Red, Green, and Blue Color Planes
	3.1.8.3 Compressing a Bitmap
	3.1.8.4 Decompressing a Bitmap

	4 Protocol Examples
	5 Security
	5.1 Security Considerations for Implementers
	5.2 Index of Security Parameters

	6 (Updated Section) Appendix A: Product Behavior
	7 Change Tracking
	8 Index

