[MS-RDPESC]:

Remote Desktop Protocol: Smart Card Virtual Channel
Extension

Intellectual Property Rights Notice for Open Specifications Documentation

* Technical Documentation. Microsoft publishes Open Specifications documentation (“this
documentation”) for protocols, file formats, data portability, computer languages, and standards
support. Additionally, overview documents cover inter-protocol relationships and interactions.

* Copyrights. This documentation is covered by Microsoft copyrights. Regardless of any other
terms that are contained in the terms of use for the Microsoft website that hosts this
documentation, you can make copies of it in order to develop implementations of the technologies
that are described in this documentation and can distribute portions of it in your implementations
that use these technologies or in your documentation as necessary to properly document the
implementation. You can also distribute in your implementation, with or without modification, any
schemas, IDLs, or code samples that are included in the documentation. This permission also
applies to any documents that are referenced in the Open Specifications documentation.

* No Trade Secrets. Microsoft does not claim any trade secret rights in this documentation.

* Patents. Microsoft has patents that might cover your implementations of the technologies
described in the Open Specifications documentation. Neither this notice nor Microsoft's delivery of
this documentation grants any licenses under those patents or any other Microsoft patents.
However, a given Open Specifications document might be covered by the Microsoft Open
Specifications Promise or the Microsoft Community Promise. If you would prefer a written license,
or if the technologies described in this documentation are not covered by the Open Specifications
Promise or Community Promise, as applicable, patent licenses are available by contacting
iplg@microsoft.com.

* License Programs. To see all of the protocols in scope under a specific license program and the
associated patents, visit the Patent Map.

* Trademarks. The names of companies and products contained in this documentation might be
covered by trademarks or similar intellectual property rights. This notice does not grant any
licenses under those rights. For a list of Microsoft trademarks, visit
www.microsoft.com/trademarks.

* Fictitious Names. The example companies, organizations, products, domain names, email
addresses, logos, people, places, and events that are depicted in this documentation are fictitious.
No association with any real company, organization, product, domain name, email address, logo,
person, place, or event is intended or should be inferred.

Reservation of Rights. All other rights are reserved, and this notice does not grant any rights other
than as specifically described above, whether by implication, estoppel, or otherwise.

Tools. The Open Specifications documentation does not require the use of Microsoft programming
tools or programming environments in order for you to develop an implementation. If you have access
to Microsoft programming tools and environments, you are free to take advantage of them. Certain
Open Specifications documents are intended for use in conjunction with publicly available standards
specifications and network programming art and, as such, assume that the reader either is familiar
with the aforementioned material or has immediate access to it.

Support. For questions and support, please contact dochelp@microsoft.com.

1/92

[MS-RDPESC] - v20210625

Remote Desktop Protocol: Smart Card Virtual Channel Extension
Copyright © 2021 Microsoft Corporation

Release: June 25, 2021

https://go.microsoft.com/fwlink/?LinkId=214445
https://go.microsoft.com/fwlink/?LinkId=214445
https://go.microsoft.com/fwlink/?LinkId=214448
mailto:iplg@microsoft.com
https://aka.ms/AA9ufj8
https://www.microsoft.com/trademarks
mailto:dochelp@microsoft.com

Revision Summary

Revision Revision
Date History Class Comments
6/1/2007 1.0 Major Updated and revised the technical content.
7/3/2007 1.0.1 Editorial Changed language and formatting in the technical content.
7/20/2007 1.0.2 Editorial Changed language and formatting in the technical content.
8/10/2007 1.0.3 Editorial Changed language and formatting in the technical content.
9/28/2007 1.0.4 Editorial Changed language and formatting in the technical content.
10/23/2007 | 1.0.5 Editorial Changed language and formatting in the technical content.
11/30/2007 | 2.0 Major Normative reference.
1/25/2008 2.0.1 Editorial Changed language and formatting in the technical content.
3/14/2008 2.0.2 Editorial Changed language and formatting in the technical content.
5/16/2008 2.0.3 Editorial Changed language and formatting in the technical content.
6/20/2008 2.0.4 Editorial Changed language and formatting in the technical content.
7/25/2008 2.0.5 Editorial Changed language and formatting in the technical content.
8/29/2008 2.0.6 Editorial Changed language and formatting in the technical content.
10/24/2008 | 2.0.7 Editorial Changed language and formatting in the technical content.
12/5/2008 3.0 Major Updated and revised the technical content.
1/16/2009 3.0.1 Editorial Changed language and formatting in the technical content.
2/27/2009 3.0.2 Editorial Changed language and formatting in the technical content.
4/10/2009 3.0.3 Editorial Changed language and formatting in the technical content.
5/22/2009 4.0 Major Updated and revised the technical content.
7/2/2009 4.0.1 Editorial Changed language and formatting in the technical content.
8/14/2009 4.0.2 Editorial Changed language and formatting in the technical content.
9/25/2009 4.1 Minor Clarified the meaning of the technical content.
11/6/2009 4.1.1 Editorial Changed language and formatting in the technical content.
12/18/2009 | 5.0 Major Updated and revised the technical content.
1/29/2010 5.1 Minor Clarified the meaning of the technical content.
3/12/2010 6.0 Major Updated and revised the technical content.
4/23/2010 7.0 Major Updated and revised the technical content.
6/4/2010 8.0 Major Updated and revised the technical content.
7/16/2010 8.0 None Fe%ﬁ:;g?iirfgem.e meaning, language, or formatting of the
8/27/2010 | 8.0 None No changes to the meaning, language, or formatting of the

2/92

[MS-RDPESC] - v20210625

Remote Desktop Protocol: Smart Card Virtual Channel Extension
Copyright © 2021 Microsoft Corporation

Release: June 25, 2021

Revision Revision

Date History Class Comments
technical content.

10/8/2010 8.0 None No ch_anges to the meaning, language, or formatting of the
technical content.

11/19/2010 | 8.0 None No ch_anges to the meaning, language, or formatting of the
technical content.

1/7/2011 8.0 None No ch_anges to the meaning, language, or formatting of the
technical content.
No changes to the meaning, language, or formatting of the

2/11/2011 8.0 None technical content.

3/25/2011 8.0 None No ch_anges to the meaning, language, or formatting of the
technical content.

5/6/2011 8.0 None No ch_anges to the meaning, language, or formatting of the
technical content.

6/17/2011 8.1 Minor Clarified the meaning of the technical content.

9/23/2011 8.1 None No ch_anges to the meaning, language, or formatting of the
technical content.

12/16/2011 | 9.0 Major Updated and revised the technical content.
No changes to the meaning, language, or formatting of the

3/30/2012 2.0 None technical content.

7/12/2012 9.0 None No ch_anges to the meaning, language, or formatting of the
technical content.

10/25/2012 | 9.0 None No chgnges to the meaning, language, or formatting of the
technical content.

1/31/2013 9.0 None No chgnges to the meaning, language, or formatting of the
technical content.

8/8/2013 10.0 Major Updated and revised the technical content.

11/14/2013 | 10.0 None No chgnges to the meaning, language, or formatting of the
technical content.

2/13/2014 10.0 None No ch_anges to the meaning, language, or formatting of the
technical content.

5/15/2014 10.0 None No ch_anges to the meaning, language, or formatting of the
technical content.

6/30/2015 11.0 Major Significantly changed the technical content.

10/16/2015 | 11.0 None No ch_anges to the meaning, language, or formatting of the
technical content.

7/14/2016 11.0.1 Editorial Changed language and formatting in the technical content.

6/1/2017 12.0 Major Significantly changed the technical content.

9/15/2017 13.0 Major Significantly changed the technical content.

12/1/2017 13.0 None No changes to the meaning, language, or formatting of the

3/92

[MS-RDPESC] - v20210625

Remote Desktop Protocol: Smart Card Virtual Channel Extension
Copyright © 2021 Microsoft Corporation

Release: June 25, 2021

Revision Revision
Date History Class Comments
technical content.
9/12/2018 14.0 Major Significantly changed the technical content.
4/7/2021 15.0 Major Significantly changed the technical content.
6/25/2021 16.0 Major Significantly changed the technical content.

[MS-RDPESC] - v20210625

Remote Desktop Protocol: Smart Card Virtual Channel Extension
Copyright © 2021 Microsoft Corporation
Release: June 25, 2021

4/92

Table of Contents

B IS I 1 o o Yo [T ot o o Y o U 10
1.1 (C [0 T1== 1 PPN 10
1.2 [LT 1 1ol 12

1.2.1 NOIrMaAtiVE REIEIENCES .ottt it i e e ra e rae et e e areeanees 12

1.2.2 INfOrmMative REfEIENCES .. ittt i e e e e e e raneaes 13
1.3 L 1 =T YT 13
1.4 Relationship to Other ProtoCoIS ..uvuiirii i e e 15
1.5 Prerequisites/Preconditionsovieiiiiiiii e 15
1.6 Applicability STatemMENT ... s 16
1.7 Versioning and Capability Negotiation ..o 16
1.8 V=13 T Lo gt =4 W =Y 1Y | F=T 5 L] (o 13 16
1.9 Standards ASSIGNMENTS. e 16

A 1 [T =T T o 1= 18
2.1 I r= 1 .17 oo] o o PP 18
2.2 COMMON DAta TYPES euuiiiiieiiit ittt e et e e e s e e s e e ne e enenes 18

2.2.1 (00T 0 2 1o 0 o 11 o o U = 18
2.2.1.1 REDIR _SCARD CONT EXT ..ttt itttttteteraeateraerneraeeaeeasernsenererneraseanennerneenens 18
2.2.1.2 REDIR_SCARDHANDLE ...ttt i st re e e e s ite s e e e e eaeeaneeas 18
2.2.1.3 (@] o] g T=Te1 ol @(e] 1 1.2 1o o 1SS 19
2.2.1.4 [oYor= 1 (@=L AN I 2 = T S 19
2.2.1.5 ReaderState CommoON_Call c.uiiiiiiiiiiiii it i siire s rasressansresranaes 19
2.2.1.6 [ST T 1]] o= 1 = 20
2.2.1.7 [T= [0 LT] 7= 1 A 20
2.2.1.8 SCardIO_ReqUESEviiiii i 20
2.2.1.9 [2=Y=To [@F= 1ol g TSI ©0e 1 11 2 2 o | o 1P 21
2200 W 0 IR V1] '3 =T Yol o V=T o 0 9 0 2 o) o 21
2.2.1.11 ReaderState _ReTUIMN .. e e e e e 21

2.2.2 TS Server-Generated StrUCEUNES . iuuiiii it i i i i e ria e e rareeanees 22
2.2.2.1 EstablishConteXt_Calloiieiiiiiii i e e e e aae e 22
2.2.2.2 (0] a1 /=) < S = | | 22
2.2.2.3 ListReaderGroups_Call.... ..o e 23
2.2.2.4 [F o ST Lo [T S = || 23
2.2.2.5 ContextAndSEriNGA_Call ... 24
2.2.2.6 ContextAndStringW_Call 24
2.2.2.7 ContextAndTWOSERINGA_Call ... e 25
2.2.2.8 ContextAndTwOoSErINGW_Call ..c.veii e 26
2.2.2.9 (oY o= W ==Y e K= N = | | 26
2.2.2.10 LocateCardsW _Call.....ccuiiiiiii i e e 27
2.2.2.11 GetStatusChangeA _Call ... e 27
2.2.2.12 GetStatusChangeW _Call ...c.oueiriiiiiii i e a e e 28
2.2.2.13 CONNECEA _Call et e e e 28
N X N ©7o) o[o V=Tt kAT = | | 28
2.2.2.15 2 =Tl 0]] 1= o 57 | S 28
2.2.2.16 HCardAndDisposition_Callc.ciiiiiiiiii i e 29
2.2.2.17 SEAtE Calleiiii it e 30
2.2.2.18 StatUS_Call tuviiiiiiiiiii i i i e areaas 30
2.2.2.19 Transmil_Call ciuiiiiii i i i i e iareaes 31
2.2.2.20 CoNErOl _Call vt e 32
2.2.2.21 GetALtriD_Call. .o e 32
2.2.2.22 SEtALLIID _Call ..iiiiiiii i e e 33
2.2.2.23 LocateCardsBYATRA _Call c..uiuiiiiiiii e e 33
2.2.2.24 LocateCardsBYATRW_Callciuiiiiiiiiii it e e e 34
2.2.2.25 [ST= [[Or= Tl a1 N = | S 34
2.2.2.26 [ST= [[Or= Tl a T3 = | S 34

5792

[MS-RDPESC] - v20210625

Remote Desktop Protocol: Smart Card Virtual Channel Extension
Copyright © 2021 Microsoft Corporation

Release: June 25, 2021

2.2.2.27 WriteCacheA _Call....cciiiiiii i e
2.2.2.28 WriteCacheW _Call..uuiiiiiiiiiiii it iii i rire s s e ranar e ssanarerans
2.2.2.29 GetTransmitCount_Call......ccoiiiiiiiiiii i
2.2.2.30 ScardAccessStartedEvent_Call....cciiiiiiiiiiiiiiiiiiie i s
2.2.2.31 GetReaderICoN_Call ittt i s aa e rsaareesraraeens
2.2.2.32 GetDeviceTypeld_Call.....ccoiiiiiiiiiiiiii e
2.2.3 TS Client-Generated StrUCTUNES ...ovviiiii i i i rneeraes
2.2.3.1 ReadCache_RetUIMN .. .o e e
2.2.3.2 EstablishContext RetUM ..iviiiii i e
2.2.3.3 LONG_REEUIN vt e
2.2.3.4 ListReaderGroups_Return and ListReaders_Return............ccccovvnennen.
2.2.3.5 LocateCards_Return and GetStatusChange_Returnccccevvnennenn
2.2.3.6 CoNtrOl _ REEUIN Lo s
2.2.3.7 12T el0]] 1=l fl 2= U 1
2.2.3.8 (0] o] aT=Tol sl =] {5 o o PSP
2.2.3.9 State REEUMN e
2.2.3.10 Status_RetUIN (i e
2.2.3.11 Transmit _ ReTUMN . ..o e
2.2.3.12 GetAttrib _REEUIM vttt e i e e eraas
2.2.3.13 GetTransmitCount_Return.......ccoiiiiiiiiiii i
2.2.3.14 GetReaderICon _RELUIM .iiiiiii i i i saaraeeraas
2.2.3.15 GetDeviceTypeld_Returncciiiiiiiiiiiii e
2.2.4 (O] o J A 2 U=T= [L] g = 1 < T
2.2.5 4o} oY olo) I e [<Y o] 1 =] ol
2.2.6 ACCESS MOAE Flags ..uviiiiiiii e
2.2.7 3 ET= [L=] = 1
2.2.8 2] WU T 0 T
3 Protocol Detailscuiiiiiiiiniininnsnrn s r s s r s r
3.1 Protocol Server Details .ivvvviiiiiii it i i i e
3. ADSEract Data MOeEl....iiiiiii i i i e
3. B 1=
3. g TR =] 2= 1o Lo o
3. Message Processing Events and Sequencing Rulesc.covviiiiiinnnnnnn,
SCARD_IOCTL_ESTABLISHCONTEXT (IOCTL 0x00090014)...............
SCARD_IOCTL_RELEASECONTEXT (IOCTL 0x00090018)ccevuene.
SCARD_IOCTL_ISVALIDCONTEXT (IOCTL 0x0009001C).....cccvvvuvnnenn.
SCARD_IOCTL_ACCESSSTARTEDEVENT (IOCTL 0x000900EQ)
SCARD_IOCTL_LISTREADERGROUPSA (IOCTL 0x00090020)
SCARD_IOCTL_LISTREADERGROUPSW (IOCTL 0x00090024)
SCARD_IOCTL_LISTREADERSA (IOCTL 0x00090028) ..ccevvvviviinennnnnnn
SCARD_IOCTL_LISTREADERSW (IOCTL 0x0009002C) ...cevvvuvivennnnnnn.

WWWWWWWWWWWWWWwWwuwwwwwwwwwrH ===
HRFRRRRRRRPRRRPRRRARRRARRPRPRRPRPRRRARRRERRRDNWONRE

SCARD_IOCTL_INTRODUCEREADERGROUPA (IOCTL 0x00090050)

4.1

4.2

4.3

4.4

4.5

4.6

4.7

4.8

4.9

.4.10 SCARD_IOCTL_INTRODUCEREADERGROUPW (IOCTL 0x00090054)
.4.11 SCARD_IOCTL_FORGETREADERGROUPA (IOCTL 0x00090058)

.4.12 SCARD_IOCTL_FORGETREADERGROUPW (IOCTL 0x0009005C)

.4.13 SCARD_IOCTL_INTRODUCEREADERA (IOCTL 0x00090060)..............
.4.14 SCARD_IOCTL_INTRODUCEREADERW (IOCTL 0x00090064).............
.4.15 SCARD_IOCTL_FORGETREADERA (IOCTL 0x00090068)cccvuvnenns
.4.16 SCARD_IOCTL_FORGETREADERW (IOCTL 0x0009006C)cven.e.
.4.17 SCARD_IOCTL_ADDREADERTOGROUPA (IOCTL 0x00090070)

.4.18 SCARD_IOCTL_ADDREADERTOGROUPW (IOCTL 0x00090074)

.4.19 SCARD_IOCTL_REMOVEREADERFROMGROUPA (IOCTL 0x00090078)
.4.20 SCARD_IOCTL_REMOVEREADERFROMGROUPW (IOCTL 0x0009007C)
.4.21 SCARD_IOCTL_LOCATECARDSA (IOCTL 0x00090098)ccvvvvrnnenee.
.4.22 SCARD_IOCTL_LOCATECARDSW (IOCTL 0x0009009C)cvvvvuvnininnns
.4.23 SCARD_IOCTL_GETSTATUSCHANGEA (IOCTL 0x000900A0)
.4.24 SCARD_IOCTL_GETSTATUSCHANGEW (IOCTL 0x000900A4)

[MS-RDPESC] - v20210625

Remote Desktop Protocol: Smart Card Virtual Channel Extension
Copyright © 2021 Microsoft Corporation

Release: June 25, 2021

6/92

3.1.4.25 SCARD_IOCTL_LOCATECARDSBYATRA (IOCTL OX000900E8)cccveuerernnnne. 58
3.1.4.26 SCARD_IOCTL_LOCATECARDSBYATRW (IOCTL OX000900EC)......ccveveverurnnn. 58
3.1.4.27 SCARD_IOCTL_CANCEL (IOCTL OX000900A8)....cccieeeenrnananannnes 59
3.1.4.28 SCARD_IOCTL_CONNECTA (IOCTL OX000900AC)veveverernrnrnnnnns 59
3.1.4.29 SCARD_IOCTL_CONNECTW (IOCTL 0x000900B0)vevvveiernrnnnnnns 59
3.1.4.30 SCARD_IOCTL_DISCONNECT (IOCTL 0x000900B8).......ccvvvvrnnnnnns 59
3.1.4.31 SCARD_IOCTL_BEGINTRANSACTION (IOCTL O0Xx000900BC)vvuvnenenernnnnnn 59
3.1.4.32 SCARD_IOCTL_ENDTRANSACTION (IOCTL 0X000900C0) ...cuvuvuinenenenenenannnen 59
3.1.4.33 SCARD_IOCTL_STATUSA (IOCTL 0X000900C8).....ccvererererarnrnininns 60
3.1.4.34 SCARD_IOCTL_STATUSW (IOCTL 0X000900CC)...cccueeerernrnrnannnns 60
3.1.4.35 SCARD_IOCTL_TRANSMIT (IOCTL 0x000900D0).....ccvevererernrnnnnns 60
3.1.4.36 SCARD_IOCTL_RECONNECT (IOCTL 0Xx000900B4)cvvvvivinnnnns 60
3.1.4.37 SCARD_IOCTL_CONTROL (IOCTL 0x000900D4)ccovvveeninanannnns 60
3.1.4.38 SCARD_IOCTL_GETATTRIB (IOCTL 0Xx000900D8).......cvvveveinininnnns 60
3.1.4.39 SCARD_IOCTL_SETATTRIB (IOCTL 0x000900DC).....cvvvereninannnnns 61
3.1.4.40 SCARD_IOCTL_STATE (IOCTL 0X000900C4)......ccvvirerernrnrnrnininnnns 61
3.1.4.41 SCARD_IOCTL_GETTRANSMITCOUNT (IOCTL 0x00090100).....ccvveuenenennnnne. 61
3.1.4.42 SCARD_IOCTL_READCACHEA (IOCTL 0x000900F0).....ccvuvunnnnnns 61
3.1.4.43 SCARD_IOCTL_READCACHEW (IOCTL 0x000900F4)vevvvnvnnnns 61
3.1.4.44 SCARD_IOCTL_WRITECACHEA (IOCTL 0Ox000900F8)cevvvnvnnnns 62
3.1.4.45 SCARD_IOCTL_WRITECACHEW (IOCTL 0x000900FC)evvvvvnvnnnns 62
3.1.4.46 SCARD_IOCTL_RELEASETARTEDEVENT.......ciiiiiiieieieieeeeeenenenenes 62
3.1.4.47 SCARD_IOCTL_GETREADERICON (IOCTL 0x00090104) 62
3.1.4.48 SCARD_IOCTL_GETDEVICETYPEID (IOCTL 0X00090108) ...eevuvuvninenenenennnenen 62
3.1.5 T EVENTS ..ttt 62
3.1.6 Other Local EVENES.....ciiiiiiiiiii e 62
3.2 Protocol Client DetailS.o 63
3.2.1 Abstract Data Model........oviiiiiiiii 63
3.2.2 0 = 63
3.2.3 INitialization ..o 63
3.2.4 Higher-Layer Triggered EVENtScoviiiiiiiiiii e 63
3.2.5 Message Processing Events and Sequencing Rulesccocvieininenens 63
3.2.5.1 Sending OUutgoiNg MESSAgES ...uuviuiieiiitiiiiiie e raeaeaaneens 63
3.2.5.2 Processing Incoming Replies........ccoeviiiiiiiiiiiiiii s 63
3.2.5.3 N FSTSET= o 1< 64
3.2.5.3.1 Sending EstablishContext Messagec.cocviiiiiiiiiiiienens 64
3.2.5.3.2 Processing EstablishContext Replyccccvvvviiiiiiiiiiiiiiienns 64
3.2.5.3.3 Sending ReleaseContext MesSsagecvvvvvviiiiiiiiiiiiiniennaenns 64
3.2.5.3.4 Processing ReleaseContext Reply.......ccoviiiiiiiiiiiiiiiiiiiiinnns 64
3.2.5.3.5 Sending IntroduceReader (ASCII) Message.......cocvvvvvviennnnennn. 64
3.2.5.3.6 Processing IntroduceReader (ASCII) Reply ...ccovvvviiiniiiiniennnns 64
3.2.5.3.7 Sending IntroduceReader (Unicode) Message.........c.cocevvvnenen. 64
3.2.5.3.8 Processing IntroduceReader (Unicode) Replycoovvvvvininennnns 64
3.2.5.3.9 Sending ForgetReader (ASCII) MeSSagecoovvvvrvniiniiennnnennns 64
3.2.5.3.10 Processing ForgetReader (ASCII) Replycocevvvviiiiiiiniiinnnnnnnns 64
3.2.5.3.11 Sending ForgetReader (Unicode) Messagecevvveinnnnnnns 65
3.2.5.3.12 Processing ForgetReader (Unicode) Replycccvvviiiiiiinnnnnnnns 65
3.2.5.3.13 Sending IntroduceReaderGroup (ASCII) Message 65
3.2.5.3.14 Processing IntroduceReaderGroup (ASCII) Replyc.cceeuenens 65
3.2.5.3.15 Sending IntroduceReaderGroup (Unicode) Message 65
3.2.5.3.16 Processing IntroduceReaderGroup (Unicode) Reply................ 65
3.2.5.3.17 Sending ForgetReaderGroup (ASCII) Message 1..........ccccenens 65
3.2.5.3.18 Processing ForgetReaderGroup (ASCII) Replyc.cevvvinnnnnnns 65
3.2.5.3.19 Sending ForgetReaderGroup (ASCII) Message 2..........c.ccceuens 65
3.2.5.3.20 Processing ForgetReaderGroup (Unicode) Replycceuuenen. 65
3.2.5.3.21 Sending AddReaderToGroup (ASCII) Message.........ccceveuenenens 65
3.2.5.3.22 Processing AddReaderToGroup (ASCII) Reply....c.cocevvviinnnnnens 66
3.2.5.3.23 Sending AddReaderToGroup (Unicode) Message.................... 66
7/92

[MS-RDPESC] - v20210625

Remote Desktop Protocol: Smart Card Virtual Channel Extension
Copyright © 2021 Microsoft Corporation

Release: June 25, 2021

Processing AddReaderToGroup (Unicode) Reply......cocvviiiiiiiininennnnnnne. 66

[MS-RDPESC] - v20210625
Remote Desktop Protocol: Smart Card Virtual Channel Extension
Copyright © 2021 Microsoft Corporation

Release: June 25, 2021

3.2.5.3.24

3.2.5.3.25 Sending RemoveReaderFromGroup (ASCII) Messageccvvvvivvininnennn. 66
3.2.5.3.26 Processing RemoveReaderFromGroup (ASCII) Replycccvvvviiiiiiiinnnnnn, 66
3.2.5.3.27 Sending RemoveReaderFromGroup (Unicode) Messageccevvvnnenne. 66
3.2.5.3.28 Processing RemoveReaderFromGroup (Unicode) Replyccocvvvvvininnnnn. 66
3.2.5.3.29 Sending ListReaderGroups (ASCII) MESSAgeccvvrriniirneinininnrnenninenss 66
3.2.5.3.30 Processing ListReaderGroups (ASCII) RePIY .icvviiiiiiiiiiiiiiiiie e 66
3.2.5.3.31 Sending ListReaderGroups (Unicode) Messagecoceveiiniiineinnnnnnnns, 66
3.2.5.3.32 Processing ListReaderGroups (Unicode) Replyccovviiiiiiiiiiiiiiiiinnenne, 66
3.2.5.3.33 Sending ListReaders (ASCII) MESSAQEiuvriiniiiiiiniiiiiiieeiiareeeaens 67
3.2.5.3.34 Processing ListReadersReply (ASCII) ReplY ...ccoiiiiiiiiiiiiiiiiiiiiieeae 67
3.2.5.3.35 Sending ListReaders (Unicode) Message........cocoviiiiiiiiiiiiiiiiiiiininnenas, 67
3.2.5.3.36 Processing ListReadersReply (Unicode) Replyc.covviiiiiiiiiiiiniiiinnnnns, 67
3.2.5.3.37 Sending LocateCards (ASCII) MESSAQE ... ciutiiiiiiiiiiiieiii i eieieeneaneaes 67
3.2.5.3.38 Processing LocateCards (ASCII) ReplY....cccviiiiiiiiiiiiiiiiiiiienee s 67
3.2.5.3.39 Sending LocateCards (Unicode) MEeSSagecviriiriiiiiiiiiiiiiiiiiineinennennes 67
3.2.5.3.40 Processing LocateCards (Unicode) Reply.....ccocviiiiiiiiiiiiniiiiniinnieneeen 67
3.2.5.3.41 Sending GetStatusChange (ASCII) MESSAge.......cevuvriininirniieininnrneneinens 67
3.2.5.3.42 Processing GetStatusChange (ASCII) Reply ..ocovvvviiiiiiiiiiiiiiiiiiiieneeene 67
3.2.5.3.43 Sending GetStatusChange (Unicode) Message........c.coovveiniieiiniinennnnns. 67
3.2.5.3.44 Processing GetStatusChange (Unicode) Replyccvvevviiiiiiiiiiiiiiniennnnnns, 68
3.2.5.3.45 Sending Cancel MESSAgEciviuiiiiiiiiiiiii e 68
3.2.5.3.46 Processing Cancel REPIY ...ivuiriiiiiiiiii i 68
3.2.5.3.47 Sending Connect (ASCII) MESSAQE.ot iuiierrireiniiereieiinerenereaereeenenes 68
3.2.5.3.48 Processing Connect (ASCII) Reply ..oeveiiiiiiiiiiiiiin e 68
3.2.5.3.49 Sending Connect (Unicode) MeSSage.......cuvviuiiiiiiiiniiiniennininnsneneennes 68
3.2.5.3.50 Processing Connect (Unicode) Replycoovveiiiiiiiiiiiiiiiiniieeeea 68
3.2.5.3.51 Sending ReCONNECt MESSAGE ...uviviiiriitiiitieit it sraeaeneenraeseneaenes 68
3.2.5.3.52 Processing Reconnect RePIYcciiiiiiiiiiiiii e 68
3.2.5.3.53 Sending DiscoNNeCt MESSAGE ...viuiiviriieiiiiiiitiiiieieneiirae e snranaeneenenes 68
3.2.5.3.54 Processing Disconnect REPIYoviiiiiiiiiiiiii e 68
3.2.5.3.55 Sending Status (ASCII) MESSAGEcuuiviuiieiiiiiiini it reeree s 69
3.2.5.3.56 Processing Status (ASCII) RePIY..iciiiiiiiiiiiiiiiiiiiiieiiiisieseenrnaneneeenes 69
3.2.5.3.57 Sending Status (Unicode) MeSSageccvviriiiiniieiiiiiiiiiieneienenene s 69
3.2.5.3.58 Processing Status (Unicode) Reply.....ccciviiiiiiiiiiiiiiiiiiininnene e 69
3.2.5.3.59 Sending State MeSSAgecciviiiiiiiiiii i 69
3.2.5.3.60 Processing State Message ReplYcovviiiiiiiiiiiiiiiiii e 69
3.2.5.3.61 Sending BeginTransaction MeSSage.......cuvuvriiriniieineneiiinienniiranrneneeenes 69
3.2.5.3.62 Processing BeginTransaction Replyccoiiiiiiiiiiiiiiii e 69
3.2.5.3.63 Sending EndTransaction MESSagevviiririiriiinineneiiiinieneiiraesneneeenes 69
3.2.5.3.64 Processing EndTransaction Replycccoiiieiiiiiiiiiiii e 69
3.2.5.3.65 Sending TransSmit MESSAGEcuviuiiiiriiiiiie it aaeaeeenes 69
3.2.5.3.66 Processing Transmit Replycociiiiiiiiii e 70
3.2.5.3.67 Sending Control MESSAgEiuviviuiiiiriiiiiie it 70
3.2.5.3.68 Processing Control REPIYc.ovvieiiiiiiiiiii e 70
3.2.5.3.69 Sending GetReaderCapabilities Message..........covviiiiiiiiiiiiiiiiiineeen 70
3.2.5.3.70 Processing GetReaderCapabilities Reply.......c.cocviiiiiiiiiiiiiiiiiieeen 70
3.2.5.3.71 Sending SetReaderCapabilities MeSsagecoveviiiiiiiiiiiiiiiiineeene 70
3.2.5.3.72 Processing SetReaderCapabilities Replycccoviiiiiiiiiii e 70
3.2.5.3.73 Sending WaitForResourceManager MeSsagecccevviiieinenniinernenennenss 70
3.2.5.3.74 Processing WaitForResourceManager Replycccoiviiiiiiiiiniiiniinnnnnes 70
3.2.5.3.75 Sending LocateCardsByATR (ASCII) MeSSage.......cccvuvuiuinrieieinrernrnnnannnss 70
3.2.5.3.76 Processing LocateCardsByATR (Unicode) Reply......ccocvviiiiiiiiiiiniiinnnnnns. 70
3.2.5.3.77 Processing LocateCardsByATR (ASCII) Reply.....cocoiiiiiiiiiininiiiienenes 70
3.2.5.3.78 Sending LocateCardsByATR (Unicode) Message........cocvvvvrvieiinninnnnnnnnen 71
3.2.5.3.79 Sending ReadCache (ASCII) MESSaQgE......ccieieruiiiiiiiniiiiiieieiereeaanenenenes 71
3.2.5.3.80 Processing ReadCache (ASCII) RepPlY .ciuiieiiiiiiiiiiiiie e 71
3.2.5.3.81 Sending ReadCache (Unicode) Message.........coovveiriieiiininiieiiineienenenns 71

8/92

3.2.5.3.82 Processing ReadCache (Unicode) Replyccoevuiiiiiiiiiiiiiii e 71
3.2.5.3.83 Sending WriteCache (ASCII) MESSAgEviitiiriiriiiiiieiiiiieiieiineineineanenes 71
3.2.5.3.84 Processing WriteCache (ASCII) RePlYccouiiiiiiiiiiiiniiiiiiin e 71
3.2.5.3.85 Sending WriteCache (Unicode) MesSageccvvviiiiiiiiiiiiiiiiiiiieinenneaes 71
3.2.5.3.86 Processing WriteCache (Unicode) Reply....ccccvviiiiiiiiiiiiiiiiiiiiiiiceeeae 71
3.2.5.3.87 Sending GetTransmitCount MeSSageccviiiiiiiiiiiiiiiiii s 71
3.2.5.3.88 Processing GetTransmitCount Replyccceviiiiiiiiiiiiiii e 71
3.2.5.3.89 Sending GetReaderIcon MeSSage......couiuiieiiiniiiiiiiiiiiiieiieeries e 72
3.2.5.3.90 Processing GetReaderIcon Replycoviiiiiiiiiiiiiiiii e 72
3.2.5.3.91 Sending GetDeviceTypeld MeSSage.......ccvuiriiiiniiiiiiiiiiiniieneareeeenes 72
3.2.5.3.92 Processing GetDeviceTypeld Reply ...coviiiiiiiiiiiiiiii e 72
3.2.6 LI L L= = V2= 72
3.2.7 (O a1 il I Y= I =T o | PP 72
4 Protocol EXamples ..icuiciiiiiiimimimie i sr s sssasss s sia s snsssasssasssssansansasnansanssassnsnnssnnsnns 73
4.1 Establish Context Callccoiriiiiiii i e e e nerneenens 74
4.2 Establish Context RetUMM ... e 74
4.3 IS o RT= T =T ol = | | P 74
4.4 (IS ol RUCT= T L= S 2] 0T o PP 74
4.5 Get Status Change Call ... e 74
4.6 Get Status Change ReLUMN ... e e e s 75
4.7 (@00 o] o =T ot Bl 6= 1 PP 75
4.8 (©7e] o] =T ot fll 2] U1 o o [P 75
4.9 Begin Transaction Callciiiiiiiii i e 75
4.10 Begin Transaction REEUMNuiiiii e e s 76
L I Y - Y o I 1= - | P 76
4,12 StAtUS RETUIN Lo e 76
L 0 T ! o T B I o= Y= [t of [0 157 P 76
L I S o T B I = Y= [t o o 2= B | f o PP 76
L S I) =Yoo ¥ =T ot (= | | PP 77
4.16 DiSCONNECE REIUMN .otuiiii i e e e e e e e raeanens 77
4.17 Release ConteXt Call. i e e e e e r e 77
4.18 Release CoNteXt REEUIMN .uiiuiiriii i e e s a s e ra s e e re s e s e e nnanrerneanens 77
L = oL 1 2 78
5.1 Security Considerations for Implementersooo i 78
5.2 Index of SecuUrity Parameters ..o e 78
6 AppendixX A: FUll IDL....ciccicrieierimserssasamsessssasassasassssassasassssassasansssansassnsssnnsassnsnsnnsnsnns 79
7 Appendix B: Product Behaviorc.ocvcrieiriemerimrriemessesassessssasassassssasassassssasassasassasansns 86
8 Change TracCKiNg . icicierierariarariarariasassarassassnsasassassnsassssassnsassssassnsassssassnsasansassnsassnnnsss 87
£ T 1 3 e 1= T 88
9/92

[MS-RDPESC] - v20210625

Remote Desktop Protocol: Smart Card Virtual Channel Extension
Copyright © 2021 Microsoft Corporation

Release: June 25, 2021

1 Introduction

This document specifies an extension (including virtual channels) to the Remote Desktop Protocol:
File System Virtual Channel Extension for supporting smart card reader-like devices.

Sections 1.5, 1.8, 1.9, 2, and 3 of this specification are normative. All other sections and examples in
this specification are informative.

1.1 Glossary

This document uses the following terms:

Answer To Reset (ATR): The transmission sent by an ISO-7816-compliant Integrated Circuit
Card (as specified in [ISO/IEC-7816-3] section 8) to a smart card reader in response to an
ISO-7816-3-based RESET condition.

ASCII: The American Standard Code for Information Interchange (ASCII) is an 8-bit character-
encoding scheme based on the English alphabet. ASCII codes represent text in computers,
communications equipment, and other devices that work with text. ASCII refers to a single 8-bit
ASCII character or an array of 8-bit ASCII characters with the high bit of each character set to
zero.

build number: A part of a sequential numbering system that is used to differentiate one version of
a software product from another.

call packet: A combination of I/0 control (IOCTL) and a data structure request from a protocol
client that corresponds to that IOCTL.

card type: A string that specifies a specific type of smart card that is recognized by Smart Cards
for Windows.

device: Any peripheral or part of a computer system that can send or receive data.
device I/0: Device input/output.
device name: The friendly, human-readable name of a device.

HRESULT: An integer value that indicates the result or status of an operation. A particular
HRESULT can have different meanings depending on the protocol using it. See [MS-ERREF
section 2.1 and specific protocol documents for further details.

I/0 control (IOCTL): A command that is issued to a target file system or target device in order
to query or alter the behavior of the target; or to query or alter the data and attributes that are
associated with the target or the objects that are exposed by the target.

Interface Definition Language (IDL): The International Standards Organization (ISO) standard
language for specifying the interface for remote procedure calls. For more information, see
C706] section 4.

Microsoft Terminal Services (TS): A component that allows a user to access applications or data
stored on a remote computer over a network connection.

Multistring: A series of null-terminated character strings terminated by a final null character
stored in a contiguous block of memory.

operating system version: A uniquely identifiable numbered string that is used to identify a
particular operating system.

protocol client: An endpoint that initiates a protocol.

10/ 92

[MS-RDPESC] - v20210625

Remote Desktop Protocol: Smart Card Virtual Channel Extension
Copyright © 2021 Microsoft Corporation

Release: June 25, 2021

https://go.microsoft.com/fwlink/?LinkId=89918
%5bMS-ERREF%5d.pdf#Section_1bc92ddfb79e413cbbaa99a5281a6c90
https://go.microsoft.com/fwlink/?LinkId=89824

protocol server: An endpoint that processes the call packet from a protocol client.
reader group name: The friendly, human-readable name for a reader group.

Remote Desktop Protocol (RDP): A multi-channel protocol that allows a user to connect to a
computer running Microsoft Terminal Services (TS). RDP enables the exchange of client and
server settings and also enables negotiation of common settings to use for the duration of the
connection, so that input, graphics, and other data can be exchanged and processed between
client and server.

remote procedure call (RPC): A communication protocol used primarily between client and
server. The term has three definitions that are often used interchangeably: a runtime
environment providing for communication facilities between computers (the RPC runtime); a set
of request-and-response message exchanges between computers (the RPC exchange); and the
single message from an RPC exchange (the RPC message). For more information, see [C706].

return packet: An encoded structure containing the result of a call packet operation executed on
the protocol client.

smart card: A portable device that is shaped like a business card and is embedded with a memory
chip and either a microprocessor or some non-programmable logic. Smart cards are often used
as authentication tokens and for secure key storage. Smart cards used for secure key storage
have the ability to perform cryptographic operations with the stored key without allowing the
key itself to be read or otherwise extracted from the card.

smart card reader: A device used as a communication medium between the smart card and a
Host; for example, a computer. Also referred to as a Reader.

smart card reader name: The friendly, human-readable name of the smart card reader. Also
referred to as a Reader Name.

Smart Cards for Windows: An implementation of the ICC Resource Manager according to

PCSC5].

static virtual channel: A static transport used for lossless communication between a client
component and a server component over a main data connection, as specified in [MS-
RDPBCGR].

TS client: A Microsoft Terminal Services program that initiates a connection.
TS server: A Microsoft Terminal Services program that responds to a request from a TS client.

Unicode: A character encoding standard developed by the Unicode Consortium that represents
almost all of the written languages of the world. The Unicode standard [UNICODES.0.0/2007]
provides three forms (UTF-8, UTF-16, and UTF-32) and seven schemes (UTF-8, UTF-16, UTF-16
BE, UTF-16 LE, UTF-32, UTF-32 LE, and UTF-32 BE).

Unicode string: A Unicode 8-bit string is an ordered sequence of 8-bit units, a Unicode 16-bit
string is an ordered sequence of 16-bit code units, and a Unicode 32-bit string is an ordered
sequence of 32-bit code units. In some cases, it could be acceptable not to terminate with a
terminating null character. Unless otherwise specified, all Unicode strings follow the UTF-16LE
encoding scheme with no Byte Order Mark (BOM).

universally unique identifier (UUID): A 128-bit value. UUIDs can be used for multiple
purposes, from tagging objects with an extremely short lifetime, to reliably identifying very
persistent objects in cross-process communication such as client and server interfaces, manager
entry-point vectors, and RPC objects. UUIDs are highly likely to be unique. UUIDs are also
known as globally unique identifiers (GUIDs) and these terms are used interchangeably in the
Microsoft protocol technical documents (TDs). Interchanging the usage of these terms does not
imply or require a specific algorithm or mechanism to generate the UUID. Specifically, the use of

11/92

[MS-RDPESC] - v20210625

Remote Desktop Protocol: Smart Card Virtual Channel Extension
Copyright © 2021 Microsoft Corporation

Release: June 25, 2021

https://go.microsoft.com/fwlink/?LinkId=90245
https://go.microsoft.com/fwlink/?LinkId=154659

this term does not imply or require that the algorithms described in [RFC4122] or [C706] must
be used for generating the UUID.

virtual channel: A communication channel available in a TS server session between applications
running at the server and applications running on the TS client.

MAY, SHOULD, MUST, SHOULD NOT, MUST NOT: These terms (in all caps) are used as defined
in [RFC2119]. All statements of optional behavior use either MAY, SHOULD, or SHOULD NOT.

1.2 References

Links to a document in the Microsoft Open Specifications library point to the correct section in the
most recently published version of the referenced document. However, because individual documents
in the library are not updated at the same time, the section numbers in the documents may not
match. You can confirm the correct section numbering by checking the Errata.

1.2.1 Normative References

We conduct frequent surveys of the normative references to assure their continued availability. If you
have any issue with finding a normative reference, please contact dochelp@microsoft.com. We will
assist you in finding the relevant information.

[C706] The Open Group, "DCE 1.1: Remote Procedure Call", C706, August 1997,
https://publications.opengroup.org/c706

Note Registration is required to download the document.

[ISO/IEC-7816-3] International Organization for Standardization, "Identification Cards -- Integrated
Circuit Cards -- Part 3: Cards with Contacts -- Electrical Interface and Transmission Protocols",
ISO/IEC 7816-3, October 2006,

http://www.iso.org/iso/home/store/catalogue tc/catalogue detail.htm?csnumber=38770

Note There is a charge to download the specification.

[ISO/IEC-7816-4] International Organization for Standardization, "Identification Cards -- Integrated
Circuit Cards -- Part 4: Organization, Security, and Commands for Interchange", ISO/IEC 7816-4,
January 2005,

http://www.iso.org/iso/home/store/catalogue tc/catalogue detail.htm?csnumber=36134

Note There is a charge to download the specification.

[MS-DCOM] Microsoft Corporation, "Distributed Component Object Model (DCOM) Remote Protocol".

[MS-DTYP] Microsoft Corporation, "Windows Data Types".

[MS-ERREF] Microsoft Corporation, "Windows Error Codes".

[MS-RDPBCGR] Microsoft Corporation, "Remote Desktop Protocol: Basic Connectivity and Graphics
Remoting".

[MS-RDPEFS] Microsoft Corporation, "Remote Desktop Protocol: File System Virtual Channel
Extension".

[MS-RPCE] Microsoft Corporation, "Remote Procedure Call Protocol Extensions".

[PCSC3] PC/SC Workgroup, "Interoperability Specification for ICCs and Personal Computer Systems -
Part 3: Requirements for PC-Connected Interface Devices", June 2007,
http://pcscworkgroup.com/Download/Specifications/pcsc3 v2.01.09.pdf

12/92

[MS-RDPESC] - v20210625

Remote Desktop Protocol: Smart Card Virtual Channel Extension
Copyright © 2021 Microsoft Corporation

Release: June 25, 2021

https://go.microsoft.com/fwlink/?LinkId=90460
https://go.microsoft.com/fwlink/?LinkId=90317
https://go.microsoft.com/fwlink/?linkid=850906
mailto:dochelp@microsoft.com
https://go.microsoft.com/fwlink/?LinkId=89824
https://go.microsoft.com/fwlink/?LinkId=89918
https://go.microsoft.com/fwlink/?LinkId=89919
%5bMS-DCOM%5d.pdf#Section_4a893f3dbd2948cd9f43d9777a4415b0
%5bMS-DTYP%5d.pdf#Section_cca2742956894a16b2b49325d93e4ba2
%5bMS-ERREF%5d.pdf#Section_1bc92ddfb79e413cbbaa99a5281a6c90
%5bMS-RDPBCGR%5d.pdf#Section_5073f4ed1e9345e1b0396e30c385867c
%5bMS-RDPBCGR%5d.pdf#Section_5073f4ed1e9345e1b0396e30c385867c
%5bMS-RDPEFS%5d.pdf#Section_34d9de58b2b540b6b970f82d4603bdb5
%5bMS-RDPEFS%5d.pdf#Section_34d9de58b2b540b6b970f82d4603bdb5
%5bMS-RPCE%5d.pdf#Section_290c38b192fe422991e64fc376610c15
https://go.microsoft.com/fwlink/?LinkId=90244

[PCSC5] PC/SC Workgroup, "Interoperability Specification for ICCs and Personal Computer Systems -
Part 5: ICC Resource Manager Definition", September 2005,
http://pcscworkgroup.com/Download/Specifications/pcsc5 v2.01.01.pdf

[RFC2119] Bradner, S., "Key words for use in RFCs to Indicate Requirement Levels", BCP 14, RFC
2119, March 1997, http://www.rfc-editor.org/rfc/rfc2119.txt

1.2.2 Informative References

None.

1.3 Overview

The following figure illustrates a baseline for terminology related to clients and servers.

/g

(Example Windows Server 2008,

Example - Wi XP
(Example - Windows XP, Windows Server 2003)

Windows Vista)

Terminal Services Client
(TS Client)
Protocol Server

Terminal Services Sarver
Pratocal Client

Figure 1: TS and protocol client-server definition

Remote Desktop Protocol (RDP) Device Redirection enables client devices (for example, printers,
smart card readers, drives, audio, serial ports, and parallel ports) to be available to server-side
applications, within the context of a single RDP session. This protocol is specified in [MS-RDPEFS].

Smart Card Redirection is an asynchronous client/server protocol, an extension (specified in [MS-
RDPEFS]) that is designed to remotely execute requests on a client's Smart Cards for Windows.
These requests would have otherwise been executed on the server. Each request is composed of two
packets: a call packet and return packet. The protocol client (Microsoft Terminal Services
(TS) server) sends a call packet after an initial announcement by the protocol server (TS client),
and will receive a return packet after the request has been completed or an error has occurred.
Remote Desktop Protocol (RDP) Device Redirection uses a static virtual channel as its transport.

Smart Card Redirection redirects the TS client-side Smart Cards for Windows. When Smart Card
Redirection is in effect, TS server application smart card subsystem calls (for example,
EstablishContext) are automatically remapped to the TS client-side Smart Cards for Windows, which
will then receive the corresponding request. Smart Card Redirection devices are only required to
understand one type of device I/0 request.

The following figure shows a high-level sequence diagram of the protocol for redirected calls. Device
Announce and Device Disconnect are handled via the lower-layer protocols.

13/92

[MS-RDPESC] - v20210625

Remote Desktop Protocol: Smart Card Virtual Channel Extension
Copyright © 2021 Microsoft Corporation

Release: June 25, 2021

https://go.microsoft.com/fwlink/?LinkId=90245
https://go.microsoft.com/fwlink/?LinkId=90317
%5bMS-RDPEFS%5d.pdf#Section_34d9de58b2b540b6b970f82d4603bdb5

Protocol Protocol
Server (TS Client (TS
Client) Server)

-_-_-_-_-_-_-_'_‘_DE‘-’i'EE Announce

*______________.Dem.l ice Discon

Figure 2: High-level protocol sequence

The following figure specifies how the messages are encoded and routed from a TS clienttoa TS
server. The following numbered list details corresponding actions related to the pictured protocol flow.

RPC Decoding RPC Encoding
[MS-RPCE] [MS-RPCE]
I]
| |
& 5 2 1
v '
Smart |[7— Smart Card |-s—4—— Pgﬂt :ri,l';tlual l—3— Srrart Card ""P;:cal-:!et_
Card 5 Redirection 1 Ext:nsut:rn . Redirection Ret
| - L — 12 - |- —Return-
APL - [M5-RDPESC) L [MS-RDPEFS] = [MS-RDPESC) bt -
| ! .
9 10 13 lfl
v v
| l
RPC Encoding RPC Decoding
[MS-RPCE] [MS-RPCE]
Terminal Services Client Terminal Services
(TS Client) Server (TS Server)
Protocol Server Protocol Client

Figure 3: Protocol flow

14/ 92

[MS-RDPESC] - v20210625

Remote Desktop Protocol: Smart Card Virtual Channel Extension
Copyright © 2021 Microsoft Corporation

Release: June 25, 2021

The input for this protocol (call packet) is a combination of an I/0 control (IOCTL) and the
corresponding structure as specified in section 3.2.5.

1. The call packet structure is encoded as specified in [MS-RPCE] section 2.2.6.
2. The packet, as specified in [MS-RPCE], is returned as a response to 1.

3. The encoded value from 2 is combined with the IOCTL and transported over RDP Device
Redirection, as specified in [MS-RDPEFS] section 2.

4. On the TS client, Remote Desktop Protocol: File System Virtual Channel Extension will route the
packet from 3 to protocol server for the Smart Card Redirection, as specified in [MS-RDPEFS]
section 2.

5. After Smart Card Redirection receives the message, the encoded structure is decoded, as specified
in [MS-RPCE] section 2.2.6.

6. The packet, decoded as specified in [MS-RPCE], is a response to 5.

7. Based on the IOCTL, the structure members are used as input parameters to the Smart Cards for
Windows, as specified in [PCSC5] section 3.

8. The output parameters including the return code are packaged into the return packet structure for
this IOCTL.

9. The return packet structure is encoded as specified in [MS-RPCE] section 2.2.6.
10. Return data, encoded as specified in [MS-RPCE], is a response to 9.

11. The encoded value from 10 is sent to RDP Device Redirection (as specified in [MS-RDPEFS]) as a
reply to the call packet from 4.

12. RDP Device Redirection (as specified in [MS-RDPEFS]) routes the reply back to the protocol client.

13. On receipt of packet from 12, the encoded structure is decoded as specified by to [MS-RPCE]
section 2.2.6.

14. In response to 13, return data is decoded as specified by [MS-RPCE].

The output from the Smart Card Redirection is the return packet. This data will then be processed by
higher layers.

1.4 Relationship to Other Protocols

This protocol extension expands Remote Desktop Protocol: File System Virtual Channel Extension [MS-
RDPEFS] functionality to provide support for Smart Cards for Windows.

This protocol relies on the Distributed Component Object Model (DCOM) Remote Protocol [MS-DCOM],
which uses remote procedure call (RPC) as its transport.

This protocol uses the Remote Procedure Call Protocol Extensions ([MS-RPCE] section 2) to encode
packet structures carried within an RDP session.
1.5 Prerequisites/Preconditions

RDP Device Redirection transport (as specified in [MS-RDPEFS] section 2.2.2.7.5) must be configured
to redirect smart card devices.

15/ 92

[MS-RDPESC] - v20210625

Remote Desktop Protocol: Smart Card Virtual Channel Extension
Copyright © 2021 Microsoft Corporation

Release: June 25, 2021

%5bMS-RPCE%5d.pdf#Section_290c38b192fe422991e64fc376610c15
https://go.microsoft.com/fwlink/?LinkId=90245
%5bMS-RDPEFS%5d.pdf#Section_34d9de58b2b540b6b970f82d4603bdb5
%5bMS-RDPEFS%5d.pdf#Section_34d9de58b2b540b6b970f82d4603bdb5
%5bMS-DCOM%5d.pdf#Section_4a893f3dbd2948cd9f43d9777a4415b0
%5bMS-RPCE%5d.pdf#Section_290c38b192fe422991e64fc376610c15
%5bMS-RDPEFS%5d.pdf#Section_34d9de58b2b540b6b970f82d4603bdb5

1.6 Applicability Statement

This specification applies to redirecting Smart Cards for Windows API-based calls for a Terminal
Services client, as specified in [PCSC5] section 3.

1.7 Versioning and Capability Negotiation

This document covers versioning issues in the following areas:

= Protocol Versions: Smart Card Redirection supports the dialects SCREDIR_VERSION_XP (1),
SCREDIR_VERSION_LONGHORN (2), and SCREDIR_VERSION_WINDOWS_8 (3).

= Capability Negotiation: The Smart Card Redirection protocol does not support negotiation of the
dialect to use. Instead, an implementation is configured with the dialect to use.

The TS server determines the dialect to use by analyzing the client build number on device
announce as specified in [MS-RDPBCGR] section 2.2.1.3.2 using the following mapping.<1>

Build Number Dialect

>= 7865 SCREDIR_VERSION_WINDOWS_8 (3)
>= 4034 and < 7865 SCREDIR_VERSION_LONGHORN (2)
< 4034 SCREDIR_VERSION_XP (1)

1.8 Vendor-Extensible Fields

This protocol uses HRESULTSs as defined in [MS-ERREF] section 2.1. Vendors can define their own
HRESULT values, provided that they set the C bit (0x20000000) for each vendor-defined value,
indicating that the value is a customer code.

This protocol uses Win32 error codes. These values are taken from the Windows error number space,
as specified in [MS-ERREF] section 2.2. Vendors SHOULD reuse those values with their indicated
meaning. Choosing any other value runs the risk of a collision in the future.

This protocol uses NTSTATUS values as specified in [MS-ERREF] section 2.3. Vendors are free to
choose their own values for this field, provided that they set the C bit (0x20000000) for each vendor-
defined value, indicating it is a that customer code.

IOCTL fields used in this specification are extensible. Vendors MUST implement the corresponding
functions.
1.9 Standards Assighments

This protocol uses the following RPC UUID for the type_scard_pack interface.

Parameter Value Reference
Remote procedure call (RPC) interface universally A35AF600-9CF4-11CD-AQ076- C706] Appendix A
unique identifier (UUID) 08002B2BD711 2.5

16 /92

[MS-RDPESC] - v20210625

Remote Desktop Protocol: Smart Card Virtual Channel Extension
Copyright © 2021 Microsoft Corporation

Release: June 25, 2021

https://go.microsoft.com/fwlink/?LinkId=90245
%5bMS-RDPBCGR%5d.pdf#Section_5073f4ed1e9345e1b0396e30c385867c
%5bMS-ERREF%5d.pdf#Section_1bc92ddfb79e413cbbaa99a5281a6c90
https://go.microsoft.com/fwlink/?LinkId=89824

17/92

[MS-RDPESC] - v20210625

Remote Desktop Protocol: Smart Card Virtual Channel Extension
Copyright © 2021 Microsoft Corporation

Release: June 25, 2021

2 Messages

The following sections specify how Remote Desktop Protocol: Smart Card Virtual Channel Extension
messages are transported, and common data types.

2.1 Transport

All messages MUST be transported over established RDP Device Extensions (as specified in [MS-
RDPEFS] section 2.1). This protocol uses the device enumerate and announcement messages, as
specified in [MS-RDPEFS] section 3.

Remote Desktop Protocol: File System Virtual Channel Extension is responsible for providing a unique
Device ID as defined in [MS-RDPEFS] section 3.1.1.

2.2 Common Data Types

All structures in this section MUST be encoded as specified in [MS-RPCE] section 2. Unless otherwise
stated, the structure MUST be initialized to zero before use.

2.2.1 Common Structures

The structures defined in the following sections are common among both TS server-generated
structures (for more information, see section 2.2.2) and TS client-generated structures (for more
information, see section 2.2.3).

2.2.1.1 REDIR_SCARDCONTEXT

REDIR_SCARDCONTEXT represents a context to Smart Cards for Windows on the TS client.

typedef struct REDIR SCARDCONTEXT {
[range (0,16)] unsigned long cbContext;
[unique] [size is(cbContext)] byte *pbContext;
} REDIR SCARDCONTEXT;

cbContext: The number of bytes in the pbContext field.
pbContext: An array of cbContext bytes that contains Smart Cards for Windows context. The data
is implementation-specific and MUST NOT be interpreted or changed on the Protocol server.

2.2.1.2 REDIR_SCARDHANDLE

REDIR_SCARDHANDLE represents a smart card reader handle associated with Smart Cards for
Windows context.

typedef struct REDIR SCARDHANDLE {
REDIR SCARDCONTEXT Context;
[range (0,16)] unsigned long cbHandle;
[size is(cbHandle)] byte *pbHandle;

} REDIR SCARDHANDLE;

Context: A valid context, as specified in REDIR _SCARDCONTEXT.

cbHandle: The number of bytes in the pbHandle field.

18/ 92

[MS-RDPESC] - v20210625

Remote Desktop Protocol: Smart Card Virtual Channel Extension
Copyright © 2021 Microsoft Corporation

Release: June 25, 2021

%5bMS-RDPEFS%5d.pdf#Section_34d9de58b2b540b6b970f82d4603bdb5
%5bMS-RDPEFS%5d.pdf#Section_34d9de58b2b540b6b970f82d4603bdb5
%5bMS-RPCE%5d.pdf#Section_290c38b192fe422991e64fc376610c15

pbHandle: An array of cbHandle bytes that corresponds to a smart card reader handle on the TS
client. The data is implementation-specific and MUST NOT be interpreted or changed on the
Protocol server.

2.2.1.3 Connect_Common

The Connect_Common structure contains information common to both versions of the Connect
function (for more information, see sections 2.2.2.13 and 2.2.2.14).

typedef struct Connect Common {
REDIR SCARDCONTEXT Context;
unsigned long dwShareMode;
unsigned long dwPreferredProtocols;
} Connect Common;

Context: A valid context, as specified in section 2.2.1.1.

dwShareMode: A flag that indicates whether other applications are allowed to form connections to
the card. Possible values of this field are specified in section 2.2.6.

dwPreferredProtocols: A bitmask of acceptable protocols for the connection, as specified in section
2.2.5.
2.2.1.4 LocateCards_ATRMask

The LocateCards_ATRMask structure contains the information to identify a card type.

typedef struct LocateCards ATRMask {
[range (0,36)] unsigned long cbAtr;
byte rgbAtr[36];
byte rgbMask([36];

} LocateCards ATRMask;

cbAtr: The number of bytes used in the rgbAtr and rgbMask fields.

rgbAtr: Values for the card's Answer To Reset (ATR) string. This value MUST be formatted as
specified in [ISO/IEC-7816-3] section 8. Unused bytes MUST be set to 0 and MUST be ignored.

rgbMask: Values for the mask for the card's ATR string. Each bit that cannot vary between cards of
the same type MUST be set to 1. Unused bytes MUST be set to 0 and MUST be ignored.

2.2.1.5 ReaderState_Common_Call

The ReaderState_Common_Call structure contains the state of the reader at the time of the call as
seen by the caller.

typedef struct ReaderState Common Call {
unsigned long dwCurrentState;
unsigned long dwEventState;
[range (0,36)] unsigned long cbAtr;
byte rgbAtr[36];
} ReaderState Common Call;

dwCurrentState: A bitmap that specifies the current reader state according to the TS client.
Possible values are specified in section 2.2.7.

19/ 92

[MS-RDPESC] - v20210625

Remote Desktop Protocol: Smart Card Virtual Channel Extension
Copyright © 2021 Microsoft Corporation

Release: June 25, 2021

https://go.microsoft.com/fwlink/?LinkId=89918

dwEventState: A bitmap that defines the state of the reader after a state change. Possible values
are specified in section 2.2.7.

cbAtr: The number of bytes used in the ATR string.

rgbAtr: The value for the card's ATR string. If cbAtr is NOT zero, this value MUST be formatted in
accordance to [ISO/IEC-7816-3] section 8. Unused bytes MUST be set to 0 and MUST be ignored.

2.2.1.6 ReaderStateA

The ReaderStateA structure contains information used in calls that only require Smart Cards for
Windows context and an ASCII string.

typedef struct ReaderStateA {
[string] const char* szReader;
ReaderState Common Call Common;
} ReaderStateA;

szReader: An ASCII string specifying the reader name.

Common: A packet that specifies the state of the reader at the time of the call. For information
about this packet, see section 2.2.1.5.

2.2.1.7 ReaderStateW

The ReaderStateW structure is a Unicode representation of the state of a smart card reader.

typedef struct ReaderStateW {
[string] const wchar t* szReader;
ReaderState Common_Call Common;

} ReaderStateW;

szReader: A Unicode string specifying the reader name.

Common: A packet that specifies the state of the reader at the time of the call. For information
about this packet, see section 2.2.1.5.

2.2.1.8 SCardIO_Request

The SCardIO_Request structure represents the data to be prepended to a Transmit command (for
more information, see section 3.1.4.35).

typedef struct SCardIO Request {

unsigned long dwProtocol;

[range (0,1024)] unsigned long cbExtraBytes;

[unique] [size_ is(cbExtraBytes)] byte *pbExtraBytes;
} SCardIO_Request;

dwProtocol: The protocol in use. Possible values are specified in section 2.2.5.
cbExtraBytes: The number of bytes in the pbExtraBytes field.

pbExtraBytes: Request data.

20/ 92

[MS-RDPESC] - v20210625

Remote Desktop Protocol: Smart Card Virtual Channel Extension
Copyright © 2021 Microsoft Corporation

Release: June 25, 2021

https://go.microsoft.com/fwlink/?LinkId=89918

2.2.1.9 ReadCache_Common

The ReadCache_Common structure contains information common to both the ReadCacheA Call and
ReadCacheW Call structures.

typedef struct ReadCache Common {
REDIR SCARDCONTEXT Context;
UUID* CardIdentifier;
unsigned long FreshnessCounter;
long fPbDataIsNULL;
unsigned long cbDatalen;

} ReadCache_ Common;

Context: A valid context, as specified in section 2.2.1.1.

CardIdentifier: A UUID that specifies the name of the smart card with which the name-value pair
is associated.

FreshnessCounter: A value specifying the current revision of the data.

fPbDataIsNULL: A Boolean value specifying whether the caller wants to retrieve the length of the
data. It MUST be set to TRUE (0x00000001) if the caller wants only to retrieve the length of the
data; otherwise, it MUST be set to FALSE (0x00000000).

cbDatalen: The length of the buffer specified on the server side. If cbDatalLen is set to
SCARD_AUTOALLOCATE with a value of OXFFFFFFFF, a buffer of any length can be returned.

Otherwise, the returned buffer MUST NOT exceed cbDatalLen bytes. This field MUST be ignored if
fPbDataIsNULL is set to TRUE (0x00000001).

2.2.1.10 WriteCache_Common

The WriteCache_Common structure contains information common between the WriteCacheA Call and
WriteCacheW Call structures.

typedef struct WriteCache Common {
REDIR SCARDCONTEXT Context;
UUID *CardIdentifier;
unsigned long FreshnessCounter;
[range (0,65536)] unsigned long cbDatalen;
[unique] [size is(cbDatalen)] byte *pbData;
} WriteCache_ Common;

Context: A valid context, as specified in section 2.2.1.1.

CardIdentifier: A UUID that identifies the smart card with which the data SHOULD be stored.
CardIdentifier MUST be a unique value per the smart card.

FreshnessCounter: A value specifying the current revision of the data.
cbDatalLen: The number of bytes in the pbData field.

pbData: cbDatalen bytes of data to be stored.

2.2.1.11 ReaderState_Return

The ReaderState_Return structure specifies state information returned from Smart Cards for
Windows.

21/92

[MS-RDPESC] - v20210625

Remote Desktop Protocol: Smart Card Virtual Channel Extension
Copyright © 2021 Microsoft Corporation

Release: June 25, 2021

typedef struct ReaderState Return {
unsigned long dwCurrentState;
unsigned long dwEventState;
[range (0,36)] unsigned long cbAtr;
byte rgbAtr[36];

} ReaderState Return;

dwCurrentState: A bitmap that defines the current state of the reader at the time of the call.
Possible values are specified in section 2.2.7.

dwEventState: A bitmap that defines the state of the reader after a state change as seen by Smart
Cards for Windows. Possible values are specified in section 2.2.7.

cbAtr: The number of used bytes in rgbAtr.

rgbAtr: The values for the card's ATR string. Unused bytes MUST be set to zero and MUST be
ignored on receipt.

2.2.2 TS Server-Generated Structures

All structures in this section are sent from the TS server to the TS client.

2.2.2.1 EstablishContext_Call

The EstablishContext_Call structure is used to specify the scope of Smart Cards for Windows
context to be created (for more information, see section 3.1.4.1).

typedef struct EstablishContext Call {
unsigned long dwScope;
} EstablishContext Call;

dwScope: The scope of the context that will be established. The following table shows valid values of
this field.

Value Meaning
SCARD_SCOPE_USER The context is a user context; any database operations MUST be performed
0x00000000 with the domain of the user.

SCARD_SCOPE_TERMINAL | The context is a terminal context; any database operations MUST be
0x00000001 performed with the domain of the terminal. This flag is currently unused; it is
here for compatibility with [PCSC5] section 3.1.3.

SCARD_SCOPE_SYSTEM The context is the system context; any database operations MUST be
0x00000002 performed within the domain of the system.

2.2.2.2 Context_Call

The Context_Call structure contains Smart Cards for Windows context.

typedef struct Context Call {
REDIR_SCARDCONTEXT Context;
} Context Call;

22 /92

[MS-RDPESC] - v20210625

Remote Desktop Protocol: Smart Card Virtual Channel Extension
Copyright © 2021 Microsoft Corporation

Release: June 25, 2021

https://go.microsoft.com/fwlink/?LinkId=90245

Context: A valid context, as specified in section 2.2.1.1.

2.2.2.3 ListReaderGroups_Call

The ListReaderGroups_Call structure contains the parameters for the List Readers Groups call (for
more information, see sections 3.1.4.5 and 3.1.4.6).

typedef struct ListReaderGroups Call {
REDIR SCARDCONTEXT Context;
long fmszGroupsIsNULL;
unsigned long cchGroups;

} ListReaderGroups Call;

Context: A valid context, as specified in section 2.2.1.1.

fmszGroupsIsNULL: A Boolean value specifying whether the caller wants to retrieve just the length
of the data. Set to FALSE (0x00000000) in order to allow the data to be returned. Set to TRUE
(0x00000001) and only the length of the data will be returned.

cchGroups: The length of the string buffer specified by the caller. If cchGroups is set to
SCARD_AUTOALLOCATE with a value of OXFFFFFFFF, a string of any length can be returned.
Otherwise, the returned string MUST NOT exceed cchGroups characters in length, including any
null characters. When the string to be returned exceeds cchGroups characters in length, including
any null characters, ListReaderGroups Return.ReturnCode MUST be set to
SCARD_E_INSUFFICIENT_BUFFER (0x80100008). The cchGroups field MUST be ignored if
fmszGroupsIsNULL is set to TRUE (0x00000001). Also, if fmszGroupsIsNULL is set to FALSE
(0x00000000) but cchGroups is set to 0x00000000, then the call MUST succeed,
ListReaderGroups_Return.cBytes MUST be set to the length of the data, in bytes, and
ListReaderGroups_Return.msz MUST be set to NULL.

2.2.2.4 ListReaders_Call

The ListReaders_Call structure contains the parameters for the List Readers call (for more information,
see sections 3.1.4.7 and 3.1.4.8).

typedef struct ListReaders Call {
REDIR SCARDCONTEXT Context;
[range (0, 65536)] unsigned long cBytes;
[unique] [size is(cBytes)] const byte *mszGroups;
long fmszReadersIsNULL;
unsigned long cchReaders;
} ListReaders Call;

Context: A valid context, as specified in section 2.2.1.1.

cBytes: The length, in bytes, of reader groups specified in mszGroups.

mszGroups: The names of the reader groups defined in the system. Reader groups not present on
the protocol server MUST be ignored. The value of this is dependent on the context (IOCTL)
that it is used.

Value Meaning

SCARD_IOCTL_LISTREADERSA | ASCII multistring
0x00090028

SCARD_IOCTL_LISTREADERSW | Unicode multistring

23/ 92

[MS-RDPESC] - v20210625

Remote Desktop Protocol: Smart Card Virtual Channel Extension
Copyright © 2021 Microsoft Corporation

Release: June 25, 2021

Value Meaning

0x0009002C

fmszReadersIsNULL: A Boolean value specifying whether the caller wants to retrieve the length of

the data. Set to FALSE (0x00000000) to allow the data to be returned. Set to TRUE
(0x00000001), and only the length of the data will be returned.

cchReaders: The length of the string buffer specified by the caller. If cchReaders is set to
SCARD_AUTOALLOCATE with a value of OXFFFFFFFF, a string of any length can be returned.

Otherwise, the returned string MUST NOT exceed cchReaders characters in length, including any

NULL characters. When the string to be returned exceeds cchReaders characters in length,
including any null characters, ListReaders Return.ReturnCode MUST be set to

SCARD_E_INSUFFICIENT_BUFFER (0x80100008). The cchReaders field MUST be ignored if
fmszReadersIsNULL is set to TRUE (0x00000001). Also, if fmszReadersIsNULL is set to FALSE

(0x00000000) but cchReaders is set to 0x00000000, then the call MUST succeed,
ListReaders_Return.cBytes MUST be set to the length of the data in bytes, and

ListReaders_Return.msz MUST be set to NULL.

2.2.2.5 ContextAndStringA_Call

The ContextAndStringA_Call structure contains information used in calls that only require a Smart
Cards for Windows context and an ASCII string.

typedef struct ContextAndStringA Call {

REDIR SCARDCONTEXT Context;
[string] const char* sz;
} ContextAndStringA Call;

Context: A valid context, as specified in section 2.2.1.1.

sz: The value of this string depends on the context (based on IOCTL) in which this structure is used.

Value

Meaning

SCARD_IOCTL_INTRODUCEREADERGROUPA
0x00090050

Reader group name

SCARD_IOCTL_FORGETREADERGROUPA
0x00090058

Reader group name

SCARD_IOCTL_FORGETREADERA
0x00090068

Reader name

2.2.2.6 ContextAndStringW_Call

The ContextAndStringW_Call structure contains information used in calls that only require a Smart
Cards for Windows context and a Unicode string.

typedef struct ContextAndStringW Call {

REDIR SCARDCONTEXT Context;
[string] const wchar t* sz;
} ContextAndStringW Call;

[MS-RDPESC] - v20210625

Remote Desktop Protocol: Smart Card Virtual Channel Extension

Copyright © 2021 Microsoft Corporation
Release: June 25, 2021

24 /92

Context: A valid context, as specified in section 2.2.1.1.

sz: The value of this Unicode string depends on the context (based on IOCTL) in which this structure

is used.
Value Meaning
SCARD_IOCTL_INTRODUCEREADERGROUPW | Reader group name
0x00090054
SCARD_IOCTL_FORGETREADERGROUPW Reader group name
0x0009005C
SCARD_IOCTL_FORGETREADERW Reader name
0x0009006C

2.2.2.7 ContextAndTwoStringA_Call

The contents of the ContextAndTwoStringA_Call structure are used in those calls that require a valid
Smart Cards for Windows context (as specified in section 3.2.5) and two strings (friendly names).

typedef struct ContextAndTwoStringA Call ({
REDIR_SCARDCONTEXT Context;
[string] const char* szl;
[string] const char* sz2;

} ContextAndTwoStringA Call;

Context: A valid context, as specified in section 2.2.1.1.

szl: The value of this ASCII string depends on the context (based on IOCTL) in which it is used.

Value Meaning
SCARD_IOCTL_INTRODUCEREADERA Reader name
0x00090060

SCARD_IOCTL_ADDREADERTOGROUPA Reader name
0x00090070

SCARD_IOCTL_REMOVEREADERFROMGROUPA | Reader name
0x00090078

sz2: The value of this ASCII string depends on the context (based on IOCTL) in which it is used.

Value Meaning
SCARD_IOCTL_INTRODUCEREADERA Device name
0x00090060

SCARD_IOCTL_ADDREADERTOGROUPA Reader group name
0x00090070

SCARD_IOCTL_REMOVEREADERFROMGROUPA | Reader group name
0x00090078

25/ 92

[MS-RDPESC] - v20210625

Remote Desktop Protocol: Smart Card Virtual Channel Extension
Copyright © 2021 Microsoft Corporation

Release: June 25, 2021

2.2.2.8 ContextAndTwoStringW_Call

The contents of the ContextAndTwoStringW_Call structure is used in those calls that require a valid
Smart Cards for Windows context (as specified in section 3.2.5) and two strings (friendly names).

typedef struct ContextAndTwoStringW Call ({
REDIR SCARDCONTEXT Context;
[string] const wchar t* szl;
[string] const wchar t* sz2;

} ContextAndTwoStringW Call;

Context: A valid context, as specified in section 2.2.1.1.

szl: The value of this Unicode string depends on the context (based on IOCTL) in which it is used.

Value Meaning
SCARD_IOCTL_INTRODUCEREADERW Reader name
0x00090064

SCARD_IOCTL_ADDREADERTOGROUPW Reader name
0x00090074

SCARD_IOCTL_REMOVEREADERFROMGROUPW | Reader name
0x0009007C

sz2: The value of this Unicode string depends on the context (based on IOCTL) in which it is used.

Value Meaning
SCARD_IOCTL_INTRODUCEREADERW Device name
0x00090064

SCARD_IOCTL_ADDREADERTOGROUPW Reader group name
0x00090074

SCARD_IOCTL_REMOVEREADERFROMGROUPW | Reader group name
0x0009007C

2.2.2.9 LocateCardsA_Call

The parameters of the LocateCardsA_Call structure specify the list of smart card readers to search
for the specified card types. For call information, see section 3.1.4.21.

typedef struct _LocateCardsA Call {

REDIR SCARDCONTEXT Context;

[range (0, 65536)] unsigned long cBytes;

[size is(cBytes)] const byte* mszCards;

[range (0,10)] unsigned long cReaders;

[size is(cReaders)] ReaderStateA* rgReaderStates;
} LocateCardsA Call;

26/ 92

[MS-RDPESC] - v20210625

Remote Desktop Protocol: Smart Card Virtual Channel Extension
Copyright © 2021 Microsoft Corporation

Release: June 25, 2021

Context: A valid context, as specified in section 2.2.1.1.
cBytes: The number of bytes in the mszCards field.

mszCards: An ASCII multistring of card names to locate. Card names MUST be registered in
Smart Cards for Windows. Unknown card types MUST be ignored.

cReaders: The number of reader state structures.

rgReaderStates: The reader state information specifying which readers are searched for the cards
listed in mszCards.

2.2.2.10 LocateCardsW_Call

The parameters of the LocateCardsW_Call structure specify the list of smart card readers to search
for the specified card types. For more information, see section 3.1.4.22.

typedef struct LocateCardsW Call ({

REDIR SCARDCONTEXT Context;

[range (0, 65536)] unsigned long cBytes;

[size is(cBytes)] const byte* mszCards;

[range (0,10)] unsigned long cReaders;

[size is(cReaders)] ReaderStateW* rgReaderStates;
} LocateCardsW_Call;

Context: A valid context, as specified in section 2.2.1.1.

cBytes: The number of bytes in the mszCards field.

mszCards: A Unicode multistring of card names to locate. Card hames MUST be registered in
Smart Cards for Windows. Unknown card types MUST be ignored.

cReaders: The number of reader state structures.

rgReaderStates: The reader state information used to locate the cards listed in mszCards.

2.2.2.11 GetStatusChangeA_Call

The GetStatusChangeA_Call structure provides the state change in the reader as specified in section
3.1.4.23.

typedef struct GetStatusChangeA Call {

REDIR SCARDCONTEXT Context;

unsigned long dwTimeOut;

[range (0,11)] unsigned long cReaders;

[size is(cReaders)] ReaderStateA* rgReaderStates;
} GetStatusChangeA Call;

Context: A valid context, as specified in section 2.2.1.1.

dwTimeOut: The maximum amount of time, in milliseconds, to wait for an action. If this member is
set to OxFFFFFFFF (INFINITE), the caller MUST wait until an action occurs.

cReaders: The number of ReaderStates to track.

rgReaderStates: Smart card readers that the caller is tracking.

27/ 92
[MS-RDPESC] - v20210625
Remote Desktop Protocol: Smart Card Virtual Channel Extension
Copyright © 2021 Microsoft Corporation
Release: June 25, 2021

2.2.2.12 GetStatusChangeW_Call

The GetStatusChangeW_Call structure provides the state change in the Reader as specified in section
3.1.4.24.

typedef struct GetStatusChangeW Call ({

REDIR SCARDCONTEXT Context;

unsigned long dwTimeOut;

[range (0,11)] unsigned long cReaders;

[size is(cReaders)] ReaderStateW* rgReaderStates;
} GetStatusChangeW Call;

Context: A valid context, as specified in section 2.2.1.1.

dwTimeOut: Maximum amount of time, in milliseconds, to wait for an action. If set to OXFFFFFFFF
(INFINITE), the caller MUST wait until an action occurs.

cReaders: The number of ReaderStates to track.

rgReaderStates: Smart card readers that the caller is tracking.

2.2.2.13 ConnectA_Call

ConnectA_Call opens a connection to the smart card located in the reader identified by a reader
name.

typedef struct ConnectA Call ({
[string] const char* szReader;
Connect Common Common;

} ConnectA Call;

szReader: An ASCII string specifying the reader name to connect to.

Common: Additional parameters that are required for the Connect call are specified in section
3.1.4.28. For more information, see section 2.2.1.3.

2.2.2.14 ConnectW_Call

The ConnectW_Call structure is used to open a connection to the smart card located in the reader
identified by a reader name.

typedef struct ConnectW Call {
[string] const wchar t* szReader;
Connect_Common Common;

} ConnectW Call;

szReader: A Unicode string specifying the reader name to connect to.

Common: Additional parameters that are required for the Connect call. For more information, see
sections 3.1.4.29 and 2.2.1.3.

2.2.2.15 Reconnect_Call

The Reconnect_Call structure is used to reopen a connection to the smart card associated with a
valid context. For more information, see section 3.1.4.36.

28/ 92

[MS-RDPESC] - v20210625

Remote Desktop Protocol: Smart Card Virtual Channel Extension
Copyright © 2021 Microsoft Corporation

Release: June 25, 2021

typedef struct Reconnect Call {
REDIR SCARDHANDLE hCard;
unsigned long dwShareMode;
unsigned long dwPreferredProtocols;
unsigned long dwInitialization;

} Reconnect Call;

hCard: A handle, as specified in section 2.2.1.2.

dwShareMode: A flag that indicates whether other applications can form connections to this card.
For acceptable values of this field, see section 2.2.6.

dwPreferredProtocols: A bit mask of acceptable protocols for this connection. For specifics on
possible values, see section 2.2.5.

dwlnitialization: A type of initialization that SHOULD be performed on the card.

Value Meaning

SCARD_LEAVE_CARD Do not do anything.

0x00000000

SCARD_RESET_CARD Reset the smart card.
0x00000001

SCARD_UNPOWER_CARD | Turn off and reset the smart card.
0x00000002

2.2.2.16 HCardAndDisposition_Call

The HCardAndDisposition_Call structure defines the action taken on the disposition of a smart card
associated with a valid context when a connection is terminated.

typedef struct HCardAndDisposition Call {
REDIR SCARDHANDLE hCard;
unsigned long dwDisposition;

} HCardAndDisposition Call;

hCard: A handle, as specified in section 2.2.1.2.

dwDisposition: The action to take on the card in the connected reader upon close. This value is
ignored on a BeginTransaction message call, as specified in section 3.2.5.3.61.

Value Meaning
SCARD_LEAVE_CARD Do not do anything.
0x00000000

SCARD_RESET_CARD Reset the smart card.
0x00000001

SCARD_UNPOWER_CARD | Turn off and reset the smart card.
0x00000002

SCARD_EJECT_CARD Eject the smart card.

29/ 92

[MS-RDPESC] - v20210625

Remote Desktop Protocol: Smart Card Virtual Channel Extension
Copyright © 2021 Microsoft Corporation

Release: June 25, 2021

Value Meaning

0x00000003

2.2.2.17 State_Call

The State_Call structure defines parameters to the State call (as specified in section 3.1.4.40) for
querying the contents of a smart card reader.

typedef struct State Call {
REDIR SCARDHANDLE hCard;
long fpbAtrIsNULL;
unsigned long cbAtrLen;

} State Call;

hCard: A handle, as specified in section 2.2.1.2.

fpbAtrIsNULL: A Boolean value specifying whether the caller wants to retrieve the length of the
data. Set to FALSE (0x00000000) to allow the data to be returned. Set to TRUE (0x00000001),
and only the length of the data will be returned. SHOULD be set to TRUE if cbAtrLen is set to
SCARD_AUTOALLOCATE (OXFFFFFFFF).

Name | Value

FALSE | 0x00000000

TRUE 0x00000001

cbAtrLen: The length of the buffer specified on the TS server side. If cbAtrLen is set to
SCARD_AUTOALLOCATE with a value of OXFFFFFFFF, an array of any length can be returned.
Otherwise, the returned array MUST NOT exceed cbAtrLen bytes in length. When the array to be
returned exceeds cbAtrLen bytes in length, State Return.ReturnCode MUST be set to
SCARD_E_INSUFFICIENT_BUFFER (0x80100008). Also, cbAtrLen is ignored if fpbAtrIsNULL is
set to TRUE (0x00000001). If fpbAtrIsNULL is set to FALSE (0x00000000) but cbAtrLen is set
to 0x00000000, then the call MUST succeed, State_Return.cbAtrLen MUST be set to the length of
the data in bytes, and State_Return.rgAtr MUST be set to NULL.

2.2.2.18 Status_Call

Status_Call obtains the status of a connection for a valid smart card reader handle.

typedef struct _Status Call {
REDIR_ SCARDHANDLE hCard;
long fmszReaderNamesIsNULL;
unsigned long cchReaderlLen;
unsigned long cbAtrLen;

} Status_Call;

hCard: A handle, as specified in section 2.2.1.2.

fmszReaderNamesIsNULL: A Boolean value specifying whether the caller wants to retrieve the
length of the data. Set to FALSE (0x00000000) to allow the data to be returned. Set to TRUE
(0x00000001), and only the length of the data will be returned. Also, cchReaderLen is ignored if
this value is TRUE (0x00000001).

30/ 92

[MS-RDPESC] - v20210625

Remote Desktop Protocol: Smart Card Virtual Channel Extension
Copyright © 2021 Microsoft Corporation

Release: June 25, 2021

Name | Value

FALSE | 0x00000000

TRUE 0x00000001

cchReaderLen: The length of the string buffer specified on the TS server side. If cchReaderlLen is
set to SCARD_AUTOALLOCATE with a value of OXFFFFFFFF, a string of any length can be returned.
Otherwise, the returned string MUST NOT exceed cchReaderLen characters in length, including
any null characters. When the string to be returned exceeds cchReaderLen characters in length,
including any null characters, Status Return.ReturnCode MUST be set to
SCARD_E_INSUFFICIENT_BUFFER (0x80100008). The cchReaderLen field MUST be ignored if
fmszReaderNamesIsNULL is TRUE (0x00000001). Also, if fmszReaderNamesIsNULL is set to
FALSE (0x00000000) but cchReaderLen is set to 0x00000000, then the call MUST succeed,
Status_Return.cbAtrLen MUST be set to the length of the data in bytes, and Status_Return.pbAtr
MUST be set to NULL.

cbAtrLen: Unused. MUST be ignored upon receipt.

2.2.2.19 Transmit_Call

The Transmit_Call structure is used to send data to the smart card associated with a valid context.

typedef struct Transmit Call {
REDIR SCARDHANDLE hCard;
SCardIO Request ioSendPci;
[range (0,66560)] unsigned long cbSendLength;
[size is(cbSendLength)] const byte* pbSendBuffer;
[unique] SCardIO Request* pioRecvPci;
long fpbRecvBufferIsNULL;
unsigned long cbRecvLength;
} Transmit Call;

hCard: A handle, as specified in section 2.2.1.2.
ioSendPci: A packet specifying input header information as specified in section 2.2.1.8.

cbSendLength: The length, in bytes, of the pbSendBuffer field.

pbSendBuffer: The data to be written to the card. The format of the data is specific to an individual
card. For more information about data formats, see [ISO/IEC-7816-4] sections 5 through 7.

pioRecvPci: If non-NULL, this field is an SCardIO_Request packet that is set up in the same way
as the ioSendPci field and passed as the pioRecvPci parameter of the Transmit call. If the value
of this is NULL, the caller is not requesting the pioRecvPci value to be returned.

fpbRecvBufferIsNULL: A Boolean value specifying whether the caller wants to retrieve the length of
the data. MUST be set to TRUE (0x00000001) if the caller wants only to retrieve the length of the
data; otherwise, it MUST be set to FALSE (0x00000000).

Name | Value

FALSE | 0x00000000

TRUE 0x00000001

cbRecvLength: The maximum size of the buffer to be returned. MUST be ignored if
fpbRecvBufferIsNULL is set to TRUE (0x00000001).

31/92

[MS-RDPESC] - v20210625

Remote Desktop Protocol: Smart Card Virtual Channel Extension
Copyright © 2021 Microsoft Corporation

Release: June 25, 2021

https://go.microsoft.com/fwlink/?LinkId=89919

2.2.2.20 Control_Call

Normally, communication is to the smart card via the reader. However, in some cases, the ability to
communicate directly with the smart card reader is requested. The Control_Call structure provides
the ability to talk to the reader.

typedef struct Control Call {

REDIR SCARDHANDLE hCard;
unsigned long dwControlCode;
[range (0,66560)] unsigned long cbInBufferSize;
[unique] [size is(cbInBufferSize)] const byte *pvInBuffer;
long fpvOutBufferIsNULL;
unsigned long cbOutBufferSize;
} Control Call;

hCard: A handle, as specified in section 2.2.1.2.

dwControlCode: The control code for the operation. These values are specific to the hardware
device. This protocol MUST NOT restrict or define any values for this control codes.

cbInBufferSize: The size in bytes of the pvInBuffer field.

pvInBuffer: A buffer that contains the data required to perform the operation. This field SHOULD be
NULL if the dwControlCode field specifies an operation that does not require input data.
Otherwise, this data is specific to the function being performed.

fpvOutBufferIsNULL: A Boolean value specifying whether the caller wants to retrieve the length of
the data. MUST be set to TRUE (0x00000001) if the caller wants only to retrieve the length of the
data; otherwise, it MUST be set to FALSE (0x00000000).

Name | Value

FALSE | 0x00000000

TRUE 0x00000001

cbOutBufferSize: The maximum size of the buffer to be returned. This field MUST be ignored if
fpvOutBufferIsNULL is set to TRUE (0x00000001).

2.2.2.21 GetAttrib_Call

The GetAttrib_Call structure is used to read smart card reader attributes.

typedef struct GetAttrib Call {
REDIR SCARDHANDLE hCard;
unsigned long dwAttrId;
long fpbAttrIsNULL;
unsigned long cbAttrLen;

} GetAttrib Call;

hCard: A handle, as specified in section 2.2.1.2.

dwAttrld: An identifier for the attribute to get. For more information on defined attributes, see
PCSC3] section 3.1.2.

fpbAttrIsNULL: A Boolean value specifying whether the caller wants to retrieve the length of the
data. Set to FALSE (0x00000000) in order to allow the data to be returned. Set to TRUE
(0x00000001) and only the length of the data will be returned.

32/92

[MS-RDPESC] - v20210625

Remote Desktop Protocol: Smart Card Virtual Channel Extension
Copyright © 2021 Microsoft Corporation

Release: June 25, 2021

https://go.microsoft.com/fwlink/?LinkId=90244

Name | Value

FALSE | 0x00000000

TRUE 0x00000001

cbAttrLen: The length of the buffer specified on the TS Server side. If cbAttrLen is set to
SCARD_AUTOALLOCATE with a value of OXFFFFFFFF then any buffer length can be returned.
Otherwise, the returned buffer MUST NOT exceed cbAttrLen bytes in length. When the buffer to
be returned exceeds cbAttrLen bytes in length, GetAttrib Return.ReturnCode MUST be set to
SCARD_E_INSUFFICIENT_BUFFER (0x80100008). The cbAttrLen field MUST be ignored if
fpbAttrIsNULL is set to TRUE (0x00000001). Also, if fpbAttrIsNULL is set to FALSE
(0x00000000) but cbAttrLen is set to 0x00000000, then the call MUST succeed,
GetAttrib_Return.cbAttrLen MUST be set to the length of the data, in bytes, and
GetAttrib_Return.pbAttr MUST be set to NULL.

2.2.2.22 SetAttrib_Call

The SetAttrib_Call structure allows users to set smart card reader attributes.

typedef struct SetAttrib Call {
REDIR SCARDHANDLE hCard;
unsigned long dwAttrId;
[range (0, 65536)] unsigned long cbAttrLen;
[size is(cbAttrLen)] const byte* pbAttr;
} SetAttrib Call;

hCard: A handle, as specified in section 2.2.1.2.

dwAttrId: The identifier of the attribute to set. The values are write-only. For more information on
possible values, see [PCSC3] section 3.1.2.

cbAttrLen: The size, in bytes, of the data corresponding to the pbAttr field.

pbAttr: A buffer that contains the attribute whose identifier is supplied in the dwAttrId field. The
format is specific to the value being set.

2.2.2.23 LocateCardsByATRA_Call

The LocateCardsByATRA_Call structure returns information concerning the status of the smart card
of interest (ATR).

typedef struct LocateCardsByATRA Call {
REDIR SCARDCONTEXT Context;
[range (0,1000)] unsigned long cAtrs;
[size_is(cAtrs)] LocateCards_ ATRMask* rgAtrMasks;
[range (0,10)] unsigned long cReaders;
[size is(cReaders)] ReaderStateA* rgReaderStates;
} LocateCardsByATRA Call;

Context: A valid context, as specified in section 2.2.2.13.
cAtrs: The number of bytes in the rgAtrMasks field.

rgAtrMasks: An array of ATRs to match against currently inserted cards.

cReaders: The number of elements in the rgReaderStates field.

33/92

[MS-RDPESC] - v20210625

Remote Desktop Protocol: Smart Card Virtual Channel Extension
Copyright © 2021 Microsoft Corporation

Release: June 25, 2021

https://go.microsoft.com/fwlink/?LinkId=90244

rgReaderStates: The states of the readers that the application is monitoring. The states reflect what
the application determines to be the current states of the readers and that might differ from the
actual states.

2.2.2.24 LocateCardsByATRW_Call

The LocateCardsByATRW__Call structure returns information concerning the status of the smart card
of interest (ATR).

typedef struct LocateCardsByATRW Call {
REDIR_SCARDCONTEXT Context;
[range (0, 1000)] unsigned long cAtrs;
[size_is(cAtrs)] LocateCards ATRMask* rgAtrMasks;
[range (0,10)] unsigned long cReaders;
[size is(cReaders)] ReaderStateW* rgReaderStates;
} LocateCardsByATRW _Call;

Context: A valid context, as specified in section 2.2.2.14.

cAtrs: The number of bytes in the rgAtrMasks field.

rgAtrMasks: An array of ATRs to match against currently inserted cards.

cReaders: The number of elements in the rgReaderStates field.

rgReaderStates: The states of the readers that the application is monitoring. The states reflects

what the application believes is the current states of the readers and might differ from the actual
states.

2.2.2.25 ReadCacheA_Call

The ReadCacheA_Call structure is used to obtain the card and reader information from the cache.

typedef struct ReadCacheA Call {
[string] char* szLookupName;
ReadCache_ Common Common;

} ReadCacheA Call;

szLookupName: An ASCII string containing the lookup name.

Common: Additional parameters for the Read Cache call (for additional information, see section
3.1.4.42), as specified in section 2.2.1.9.

2.2.2.26 ReadCacheW__Call

The ReadCacheW__Call structure is used to obtain the card and reader information from the cache.

typedef struct _ReadCacheW Call {
[string] wchar t* szLookupName;
ReadCache_Common Common;

} ReadCacheW Call;

szLookupName: A Unicode string containing the lookup name.

Common: Additional parameters for the Read Cache call (for additional information, see section
3.1.4.43), as specified in section 2.2.1.9.

34 /92

[MS-RDPESC] - v20210625

Remote Desktop Protocol: Smart Card Virtual Channel Extension
Copyright © 2021 Microsoft Corporation

Release: June 25, 2021

2.2.2.27 WriteCacheA_Call

The WriteCacheA_Call structure is used to write the card and reader information to the cache.

typedef struct WriteCacheA Call {
[string] char* szLookupName;
WriteCache Common Common;

} WriteCacheA Call;

szLookupName: An ASCII string containing the lookup name.

Common: Additional parameters for the Write Cache call (for more information, see section
3.1.4.44), as specified in section 2.2.1.10.

2.2.2.28 WriteCacheW_Call

The WriteCacheW_Call structure is used to write the card and reader information to the cache.

typedef struct WriteCacheW Call {
[string] wchar t* szLookupName;
WriteCache Common Common;

} WriteCacheW Call;

szLookupName: An Unicode string containing the lookup name.

Common: Additional parameters for the Write Cache call (for more information, see section 2.2.1.10.

2.2.2.29 GetTransmitCount_Call

The GetTransmitCount_Call structure is used to obtain the number of transmit calls sent to the card
since the reader was introduced.

typedef struct _GetTransmitCount Call {
REDIR SCARDHANDLE hCard;
} GetTransmitCount Call;

hCard: A handle, as specified in section 2.2.1.2.

2.2.2.30 ScardAccessStartedEvent_Call

ScardAccessStartedEvent_Call is just an uninitialized 4-byte buffer that is sent as the IOCTL requires
a payload. There is no corresponding serialized structure for this call.

-
N
w

0(1|2|3(4|5|6|7|8|9|0(1|2|3(4|5|6|7|8|9(0(1|2|3(4|5|6[|7|8|9|0(1

Unused

Unused (4 bytes): The field is uninitialized. It SHOULD contain random data and MUST be ignored on
receipt.

35/92

[MS-RDPESC] - v20210625

Remote Desktop Protocol: Smart Card Virtual Channel Extension
Copyright © 2021 Microsoft Corporation

Release: June 25, 2021

2.2.2.31 GetReaderIcon_Call

The GetReaderIcon_Call structure is used to obtain the reader icon from the smart card reader's INF
file.

typedef struct GetReaderIcon Call {
REDIR SCARDCONTEXT Context;
[string] wchar t* szReaderName;

} GetReaderIcon_ Call;

Context: A valid context, as specified in section 2.2.1.1.

szReaderName: A Unicode string containing the reader name.

2.2.2.32 GetDeviceTypeld_Call

The GetDeviceTypeld_Call structure is used to obtain the reader's device ID from the smart card
reader's INF file.

typedef struct GetDeviceTypeld Call {
REDIR SCARDCONTEXT Context;
[string] wchar t* szReaderName;

} GetDeviceTypeId Call;

Context: A valid context, as specified in section 2.2.1.1.

szReaderName: A Unicode string containing the lookup name.

2.2.3 TS Client-Generated Structures

These structures originate from the client process and compose part of the return packet. If the
ReturnCode field of the structure is nonzero, all other fields MUST be set to zero and MUST be
ignored on receipt.

2.2.3.1 ReadCache_Return

The ReadCache_Return structure is used to obtain the data that corresponds to the lookup item
requested in ReadCacheA_Call as specified in section 2.2.2.25, or ReadCacheW_Call as specified in
section 2.2.2.26. For more call information, see sections 3.1.4.42 and 3.1.4.43.

typedef struct ReadCache Return {
long ReturnCode;
[range (0, 65536)] unsigned long cbDatalen;
[unique] [size_ is(cbDatalen)] byte *pbData;
} ReadCache Return;

ReturnCode: HRESULT or Win32 Error codes. Zero indicates success; any other value indicates
failure.

cbDatalLen: The number of bytes in the pbData field.

pbData: The value of the look up item.

36/92

[MS-RDPESC] - v20210625

Remote Desktop Protocol: Smart Card Virtual Channel Extension
Copyright © 2021 Microsoft Corporation

Release: June 25, 2021

2.2.3.2 EstablishContext_Return

The EstablishContext_Return structure is used to provide a response to an Establish Context call (for
more information, see section 3.1.4.1.)

typedef struct EstablishContext Return {
long ReturnCode;
REDIR SCARDCONTEXT Context;

} EstablishContext Return;

ReturnCode: HRESULT or Win32 Error code. Zero indicates success; any other value indicates
failure.

Context: A valid context, as specified in section 2.2.1.1.

2.2.3.3 Long_Return

The Long_Return structure is used for return codes for calls that return only a long value.

typedef struct long Return ({
long ReturnCode;
} long Return;

ReturnCode: HRESULT or Win32 Error code. Zero indicates success; any other value indicates
failure.

2.2.3.4 ListReaderGroups_Return and ListReaders_Return

The ListReaderGroups_Return and ListReaders_Return structures are used to obtain results for those
calls that return a multistring, in addition to a long return value. For more information, see sections
3.1.4.5,3.1.4.6,3.1.4.7, and 3.1.4.8.

typedef struct _longAndMultiString Return ({
long ReturnCode;
[range (0, 65536)] unsigned long cBytes;
[unique] [size is(cBytes)] byte *msz;

} ListReaderGroups Return, ListReaders Return;

ReturnCode: HRESULT or Win32 Error code. The value returned from the Smart Card Redirection
call.

cBytes: The number of bytes in the msz array field.

msz: The meaning of this field is specific to the context (IOCTL) in which it is used.

Value Meaning

SCARD_IOCTL_LISTREADERSA ASCII multistring of readers on the system.
0x00090028

SCARD_IOCTL_LISTREADERSW Unicode multistring of readers on the system.
0x0009002C

SCARD_IOCTL_LISTREADERGROUPSA | ASCII multistring of reader groups on the system.
0x00090020

37/92

[MS-RDPESC] - v20210625

Remote Desktop Protocol: Smart Card Virtual Channel Extension
Copyright © 2021 Microsoft Corporation

Release: June 25, 2021

Value Meaning

SCARD_IOCTL_LISTREADERGROUPSW | Unicode multistring of reader groups on the system.
0x00090024

2.2.3.5 LocateCards_Return and GetStatusChange_Return

The LocateCards_Return and GetStatusChange_Return structures are used to obtain the results on
those calls that return updated reader state information. (for more information, see sections 3.1.4.21,
3.1.4.22, 3.1.4.23, 3.1.4.24, 3.1.4.25, and 3.1.4.26).

typedef struct LocateCards Return {

long ReturnCode;

[range (0, 10)] unsigned long cReaders;

[size is(cReaders)] ReaderState Return *rgReaderStates;
} LocateCards Return,
GetStatusChange Return;

ReturnCode: HRESULT or Win32 Error code. Zero indicates success; any other value indicates
failure.

cReaders: The number of elements in the rgReaderStates field.

rgReaderStates: The current states of the readers being watched.

2.2.3.6 Control_Return

The Control_Return structure is used to obtain information from a Control Call (for more information,
see section 3.1.4.37).

typedef struct _Control Return ({
long ReturnCode;
[range (0, 66560)] unsigned long cbOutBufferSize;
[unique] [size is(cbOutBufferSize)] byte *pvOutBuffer;
} Control Return;

ReturnCode: HRESULT or Win32 Error code. Zero indicates success; any other value indicates
failure.

cbOutBufferSize: The number of bytes in the pvOutBuffer field.

pvOutBuffer: Contains the return data specific to the value of the Control_Call structure.

2.2.3.7 Reconnect_Return

The Reconnect_Return structure is used to obtain return information from a Reconnect call (for more
information, see section 3.1.4.36).

typedef struct Reconnect Return {
long ReturnCode;
unsigned long dwActiveProtocol;
} Reconnect Return;

38/ 92

[MS-RDPESC] - v20210625

Remote Desktop Protocol: Smart Card Virtual Channel Extension
Copyright © 2021 Microsoft Corporation

Release: June 25, 2021

ReturnCode: HRESULT or Win32 Error code. Zero indicates success; any other value indicates
failure.

dwActiveProtocol: A flag that indicates the established active protocol. For more information on
acceptable values, see section 2.2.5 .

2.2.3.8 Connect_Return

The Connect_Return structure is used to obtain return information from a Connect call (for more
information, see sections 3.1.4.28 and 3.1.4.29).

typedef struct Connect Return {
long ReturnCode;
REDIR SCARDHANDLE hCard;
unsigned long dwActiveProtocol;
} Connect Return;

ReturnCode: HRESULT or Win32 Error code. Zero indicates success; any other value indicates
failure.

hCard: A handle, as specified in section 2.2.1.2.

dwActiveProtocol: A value that indicates the active smart card transmission protocol. Possible
values are specified in section 2.2.5.

2.2.3.9 State_Return

The State_Return structure defines return information about the state of the smart card reader (for
more information, see section 3.1.4.40).

typedef struct State Return {
long ReturnCode;
unsigned long dwState;
unsigned long dwProtocol;
[range (0,36)] unsigned long cbAtrLen;
[unique] [size is(cbAtrLen)] byte *rgAtr;
} State Return;

ReturnCode: HRESULT or Win32 Error code. Zero indicates success; any other value indicates
failure.

dwState: The current state of the smart card in the Reader. Possible values are specified in section
2.2.4.

dwProtocol: The current protocol, if any. Possible values are specified in section 2.2.5.
cbAtrLen: The number of bytes in the rgAtr field.

rgAtr: A pointer to a buffer that receives the ATR string from the currently inserted card, if available.

2.2.3.10 Status_Return

The Status_Return structure defines return information about the status of the smart card reader
(for more information, see sections 3.1.4.33 and 3.1.4.34).

typedef struct _Status_Return ({
long ReturnCode;

39/92

[MS-RDPESC] - v20210625

Remote Desktop Protocol: Smart Card Virtual Channel Extension
Copyright © 2021 Microsoft Corporation

Release: June 25, 2021

[range (0,65536)] unsigned long cBytes;
[unique] [size is(cBytes)] byte *mszReaderNames;
unsigned long dwState;
unsigned long dwProtocol;
byte pbAtr[32];
[range (0,32)] unsigned long cbAtrLen;
} Status_Return;

ReturnCode: HRESULT or Win32 Error code. Zero indicates success; any other value indicates
failure.

cBytes: The number of bytes in the mszReaderNames field.

mszReaderNames: A multistring containing the names that the reader is known by. The value of
this is dependent on the context (IOCTL) that it is used.

Value Meaning

SCARD_IOCTL_STATUSA | ASCII multistring
0x000900C8

SCARD_IOCTL_STATUSW | Unicode multistring
0x000900CC

dwState: The current state of the smart card in the reader. Possible values are specified in section
2.2.4.

dwProtocol: The current protocol, if any. Possible values are specified in section 2.2.5.

pbAtr: A pointer to a buffer that receives the ATR string from the currently inserted card, if
available.

cbAtrLen: The number of bytes in the ATR string.

2.2.3.11 Transmit_Return

The Transmit_Return structure defines return information from a smart card after a Transmit call (for
more information, see section 3.1.4.35).

typedef struct Transmit Return {
long ReturnCode;
[unique] SCardIO Request *pioRecvPci;
[range (0, 66560)] unsigned long cbRecvLength;
[unique] [size is(cbRecvLength)] byte *pbRecvBuffer;
} Transmit Return;

ReturnCode: HRESULT or Win32 Error code. Zero indicates success; any other value indicates
failure.

pioRecvPci: The protocol header structure for the instruction, followed by a buffer in which to
receive any returned protocol control information (PCI) that is specific to the protocol in use. If
this field is NULL, a protocol header MUST NOT be returned.

cbRecvLength: The size, in bytes, of the pbRecvBuffer field.

pbRecvBuffer: The data returned from the card.

40/ 92

[MS-RDPESC] - v20210625

Remote Desktop Protocol: Smart Card Virtual Channel Extension
Copyright © 2021 Microsoft Corporation

Release: June 25, 2021

2.2.3.12 GetAttrib_Return

The GetAttrib_Return structure defines attribute information from a smart card reader (for more
information, see section 3.1.4.38).

typedef struct GetAttrib Return {
long ReturnCode;
[range (0, 65536)] unsigned long cbAttrLen;
[unique] [size is(cbAttrLen)] byte *pbAttr;
} GetAttrib Return;

ReturnCode: HRESULT or Win32 Error code. Zero indicates success; any other value indicates
failure.

cbAttrLen: The number of bytes in the pbAttr field.

pbAttr: A pointer to an array that contains any values returned from the corresponding call.

2.2.3.13 GetTransmitCount_Return

The GetTransmitCount_Return structure defines the number of transmit calls that were performed on
the smart card reader (for more information, see section 3.1.4.41).

typedef struct GetTransmitCount Return ({
long ReturnCode;
unsigned long cTransmitCount;

} GetTransmitCount_Return;

ReturnCode: HRESULT or Win32 Error code. Zero indicates success; any other value indicates
failure.

cTransmitCount: The field specifies the number of successful Transmit calls (for more information,
see section 3.1.4.35) performed on the reader since it was introduced to the system.

2.2.3.14 GetReaderIcon_Return

The GetReaderlIcon_Return structure is used to obtain the data that corresponds to the lookup item
requested in the GetReaderIcon_Call as specified in section 2.2.2.31. For more information, see
section 3.1.4.48.

typedef struct GetReaderIcon Return {
long ReturnCode;
[range (0, 4194304)] unsigned long cbDatalen;
[unique, size is(cbDatalen)] byte* pbData;

} GetReaderIcon Return;

ReturnCode: HRESULT or Win32 error code. Zero indicates success; any other value indicates
failure.

cbDatalLen: The number of bytes in the pbData field.

pbData: The value of the lookup item.

41/92

[MS-RDPESC] - v20210625

Remote Desktop Protocol: Smart Card Virtual Channel Extension
Copyright © 2021 Microsoft Corporation

Release: June 25, 2021

2.2.3.15

GetDeviceTypeld_Return

The GetDeviceTypeld_Return structure is used to obtain the data that corresponds to the lookup item
requested in GetDeviceTypeld_Call as specified in section 2.2.2.32. For more information, see

section 3.1.4.47.

typedef struct GetDeviceTypeld Return ({

long ReturnCode;

unsigned long dwDeviceId;
} GetDeviceTypeld Return;

ReturnCode: HRESULT or Win32 error code. Zero indicates success; any other value indicates

failure.

dwDeviceld: The value of the lookup item.

2.2.4 Card/Reader State

The following represents the current state of the smart card reader according to Smart Cards for

Windows.

0(1|2]|3

4

5

6

7

8

w

CardReaderState

CardReaderState (4 bytes): One of the following values.

Value

Meaning

SCARD_UNKNOWN
0x00000000

The current state of the reader is unknown.

SCARD_ABSENT
0x00000001

There is no card in the reader.

SCARD_PRESENT
0x00000002

There is a card in the reader but it has not been moved into position for use.

SCARD_SWALLOWED
0x00000003

There is a card in the reader in position for use. The card is not powered.

SCARD_POWERED
0x00000004

There is power being applied to the card but the mode of the card is unknown.

SCARD_NEGOTIABLE
0x00000005

The card has been reset and is awaiting PTS negotiation.

SCARD_SPECIFICMODE
0x00000006

The card has been reset and specific communication protocols have been

established.

2.2.5 Protocol Identifier

A Protocol Identifier.

[MS-RDPESC] - v20210625

Remote Desktop Protocol: Smart Card Virtual Channel Extension

Copyright © 2021 Microsoft Corporation

Release: June 25, 2021

42 /92

3/4|5(6(7|8|9(0|1|2(3|4|5[6|7|8|9|0]|1

Protocolldentifier

ProtocolIdentifier (4 bytes): This field MUST have a value from Table A which is logically OR'ed

with a value from Table B.

Table A

Value

Meaning

SCARD_PROTOCOL_UNDEFINED

No transmission protocol is active.

0x00000000

SCARD PROTOCOL TO Transmission protocol 0 (T=0) is active. It is the asynchronous half-
0x00000001 h duplex character transmission protocol.

SCARD PROTOCOL T1 Transmission protocol 1 (T=1) is active. It is the asynchronous half-
0x00000002 - duplex block transmission protocol.

SCARD PROTOCOL Tx Bitwise OR combination of both of the two International Standards
0x00000003 - Organization (IS0) transmission protocols SCARD_PROTOCOL_TO

and SCARD_PROTOCOL_T1. This value can be used as a bitmask.

SCARD_PROTOCOL_RAW
0x00010000

Transmission protocol raw is active. The data from the smart card is
raw and does not conform to any transmission protocol.

Table B

Value Meaning

SCARD_PROTOCOL_DEFAULT | A bitwise OR with this value forces the use of the default transmission
0x80000000 parameters and card clock frequency.

SCARD_PROTOCOL_OPTIMAL | Optimal transmission parameters and card clock frequency MUST be used.
0x00000000 This flag is considered the default. No actual value is defined for this flag; it
is there for compatibility with [PCSC5] section 3.1.3.

2.2.6 Access Mode Flags

Access mode flags provide possible values for applications to connect to the smart card.

e

3/4|5(6(7|8|9(0|1](2(3|4|5[6|7|8|9|0]|1

AccessModeFlag

AccessModeFlag (4 bytes): One of the following possible values:

Value Meaning

0x00000001

SCARD_SHARE_EXCLUSIVE | This application is not willing to share this smart card with other applications.

0x00000002

SCARD_SHARE_SHARED This application is willing to share this smart card with other applications.

[MS-RDPESC] - v20210625

43/ 92

Remote Desktop Protocol: Smart Card Virtual Channel Extension

Copyright © 2021 Microsoft Corporation
Release: June 25, 2021

https://go.microsoft.com/fwlink/?LinkId=90245

Value Meaning

SCARD_SHARE_DIRECT This application demands direct control of the smart card reader; therefore, it
0x00000003 is not available to other applications.

2.2.7 Reader State

The Reader State packet has a sub-structure as shown in the following table.

=
N
w

0[{1(2|3|4|5|6|7|8|9|0(1(2[3|4|5|/6|7|8|9|0|1|2|3|4|5(6[7(8]9|0]|1

Reader State

Reader State (4 bytes): Both the dwCurrentState field and the dwEventState field, found in the
ReaderState Common_Call (section 2.2.1.5) and ReaderState Return (section 2.2.1.11)
structures, consist of the following two subfields.

0[{1(2|3|4|5|6|7|8|9(0(1(2(3|4|5|/6|7|8|9|0|1|2|3|4|5|6[7(8]9|0]|1

Count State

Count (2 bytes): The contents of this field depend on the value of the associated reader name. If
the reader name (for more information, see sections 2.2.1.6 and 2.2.1.7 for the szReader field) is
\\?PnP?\Notification, then Count is a count of the number of readers installed on the system and
all bits except SCARD_STATE_CHANGED in State MUST be zero. Otherwise, Count is a count of
the number of times a card has been inserted and/or removed from the smart card reader being
monitored.

State (2 bytes): The state of a reader. The value MUST be according to the following table.

Value Meaning

SCARD_STATE_UNAWARE The application requires the current state but does not know it. The use of

0x0000 this value results in an immediate return from state transition monitoring
services.

SCARD_STATE_IGNORE The application requested that this reader be ignored. If this bit is set in

0x0001 the dwCurrentState field of a ReaderState_Common_Call structure,

other bits MUST NOT be set in the dwEventState field of the
corresponding ReaderState_Return structure.

SCARD_STATE_CHANGED There is a difference between the state believed by the application, and
0x0002 the state known by Smart Cards for Windows.

SCARD_STATE_UNKNOWN The reader name is not recognized by Smart Cards for Windows. If this bit
0x0004 is set in the dwEventState field of the ReaderState_Return structure,

both SCARD_STATE_IGNORE and SCARD_STATE_CHANGED values MUST
be set. This bit SHOULD NOT be set in the dwCurrentState field of a
ReaderState_ Common_Call structure.

SCARD_STATE_UNAVAILABLE | The actual state of this reader is not available. If this bit is set, all of the
0x0008 following bits MUST be clear.

44 /92

[MS-RDPESC] - v20210625

Remote Desktop Protocol: Smart Card Virtual Channel Extension
Copyright © 2021 Microsoft Corporation

Release: June 25, 2021

Value

Meaning

SCARD_STATE_EMPTY
0x0010

There is no card in the reader. If this bit is set, all of the following bits
MUST be clear.

SCARD_STATE_PRESENT
0x0020

There is a card in the reader.

SCARD_STATE_ATRMATCH
0x0040

There is a card in the reader with an ATR that matches one of the target
cards. If this bit is set, SCARD_STATE_PRESENT MUST be set.

SCARD_STATE_EXCLUSIVE
0x0080

The card in the reader is allocated for exclusive use by another
application. If this bit is set, SCARD_STATE_PRESENT MUST be set.

SCARD_STATE_INUSE
0x0100

The card in the reader is in use by one or more other applications, but it
can be connected to in shared mode. If this bit is set,
SCARD_STATE_PRESENT MUST be set.

SCARD_STATE_MUTE
0x0200

The card in the reader is unresponsive or is not supported by the reader
or software.

SCARD_STATE_UNPOWERED
0x0400

This implies that the card in the reader has not been turned on.

2.2.8 Return Code

The following Smart Card Facility Codes for Windows-specific return codes MAY be returned by the

protocol server to the protocol client and are of the data type NTSTATUS, with the sev field set to

STATUS_SEVERITY_WARNING (0x2) and the reserved bit (N) set to 0.

=

415|167

ReturnCode

ReturnCode (4 bytes): One of the following return codes:

Value

Meaning

SCARD_S_SUCCESS
0x00000000

No error has occurred.

SCARD_F_INTERNAL_ERROR
0x80100001

An internal consistency check failed.

SCARD_E_CANCELLED
0x80100002

The action was canceled by a Cancel request.

SCARD_E_INVALID_HANDLE
0x80100003

The supplied handle was invalid.

SCARD_E_INVALID_PARAMETER
0x80100004

One or more of the supplied parameters could not be properly
interpreted.

SCARD_E_INVALID_TARGET

Registry startup information is missing or invalid.

[MS-RDPESC] - v20210625
Remote Desktop Protocol: Smart Card

45/ 92

Virtual Channel Extension

Copyright © 2021 Microsoft Corporation

Release: June 25, 2021

Value

Meaning

0x80100005

SCARD_E_NO_MEMORY
0x80100006

Not enough memory available to complete this command.

SCARD_F_WAITED_TOO_LONG
0x80100007

An internal consistency timer has expired.

SCARD_E_INSUFFICIENT_BUFFER
0x80100008

The data buffer to receive returned data is too small for the
returned data.

SCARD_E_UNKNOWN_READER
0x80100009

The specified reader name is not recognized.

SCARD_E_TIMEOUT
0x8010000A

The user-specified time-out value has expired.

SCARD_E_SHARING_VIOLATION
0x8010000B

The smart card cannot be accessed because of other
connections outstanding.

SCARD_E_NO_SMARTCARD
0x8010000C

The operation requires a smart card, but no smart card is
currently in the device.

SCARD_E_UNKNOWN_CARD
0x8010000D

The specified smart card name is not recognized.

SCARD_E_CANT_DISPOSE
0x8010000E

The system could not dispose of the media in the requested
manner.

SCARD_E_PROTO_MISMATCH
0x8010000F

The requested protocols are incompatible with the protocol
currently in use with the smart card.

SCARD_E_NOT_READY
0x80100010

The reader or smart card is not ready to accept commands.

SCARD_E_INVALID_VALUE
0x80100011

One or more of the supplied parameters values could not be
properly interpreted.

SCARD_E_SYSTEM_CANCELLED
0x80100012

The action was canceled by the system, presumably to log off
or shut down.

SCARD_F_COMM_ERROR
0x80100013

An internal communications error has been detected.

SCARD_F_UNKNOWN_ERROR
0x80100014

An internal error has been detected, but the source is
unknown.

SCARD_E_INVALID_ATR
0x80100015

An ATR obtained from the registry is not a valid ATR string.

SCARD_E_NOT_TRANSACTED
0x80100016

An attempt was made to end a non-existent transaction.

SCARD_E_READER_UNAVAILABLE
0x80100017

The specified reader is not currently available for use.

SCARD_P_SHUTDOWN

The operation has been stopped to allow the server application

46 /92

[MS-RDPESC] - v20210625

Remote Desktop Protocol: Smart Card Virtual Channel Extension
Copyright © 2021 Microsoft Corporation

Release: June 25, 2021

Value Meaning

0x80100018 to exit.

SCARD_E_PCI_TOO_SMALL The PCI Receive buffer was too small.

0x80100019

SCARD_E_ICC_INSTALLATION No primary provider can be found for the smart card.
0x80100020

SCARD_E_ICC_CREATEORDER The requested order of object creation is not supported.
0x80100021

SCARD_E_UNSUPPORTED_FEATURE This smart card does not support the requested feature.
0x80100022

SCARD_E_DIR_NOT_FOUND The specified directory does not exist in the smart card.
0x80100023

SCARD_E_FILE_NOT_FOUND The specified file does not exist in the smart card.
0x80100024

SCARD_E_NO_DIR The supplied path does not represent a smart card directory.
0x80100025

SCARD_E_READER_UNSUPPORTED The reader device driver does not meet minimal requirements
0x8010001A for support.

SCARD_E_DUPLICATE_READER The reader device driver did not produce a unique reader
0x8010001B name.

SCARD_E_CARD_UNSUPPORTED The smart card does not meet minimal requirements for
0x8010001C support.

SCARD_E_NO_SERVICE Smart Cards for Windows is not running.

0x8010001D

SCARD_E_SERVICE_STOPPED Smart Cards for Windows has shut down.

0x8010001E

SCARD_E_UNEXPECTED An unexpected card error has occurred.

0x8010001F

SCARD_E_NO_FILE The supplied path does not represent a smart card file.
0x80100026

SCARD_E_NO_ACCESS Access is denied to this file.

0x80100027

SCARD_E_WRITE_TOO_MANY The smart card does not have enough memory to store the
0x80100028 information.

SCARD_E_BAD_SEEK There was an error trying to set the smart card file object
0x80100029 pointer.

SCARD_E_INVALID_CHV The supplied PIN is incorrect.

0x8010002A

SCARD_E_UNKNOWN_RES_MSG An unrecognized error code was returned from a layered

47/ 92

[MS-RDPESC] - v20210625

Remote Desktop Protocol: Smart Card Virtual Channel Extension
Copyright © 2021 Microsoft Corporation

Release: June 25, 2021

Value

Meaning

0x8010002B

component.

SCARD_E_NO_SUCH_CERTIFICATE
0x8010002C

The requested certificate does not exist.

SCARD_E_CERTIFICATE_UNAVAILABLE

0x8010002D

The requested certificate could not be obtained.

SCARD_E_NO_READERS_AVAILABLE

0x8010002E

Cannot find a smart card reader.

SCARD_E_COMM_DATA_LOST
0x8010002F

A communications error with the smart card has been
detected. Retry the operation.

SCARD_E_NO_KEY_CONTAINER
0x80100030

The requested key container does not exist.

SCARD_E_SERVER_TOO_BUSY
0x80100031

Smart Cards for Windows is too busy to complete this
operation.

SCARD_E_PIN_CACHE_EXPIRED
0x80100032

The smart card PIN cache has expired.

SCARD_E_NO_PIN_CACHE
0x80100033

The smart card PIN cannot be cached.

SCARD_E_READ_ONLY_CARD
0x80100034

The smart card is read-only and cannot be written to.

SCARD_W_UNSUPPORTED_CARD
0x80100065

The reader cannot communicate with the smart card due to
ATR configuration conflicts.

SCARD_W_UNRESPONSIVE_CARD
0x80100066

The smart card is not responding to a reset.

SCARD_W_UNPOWERED_CARD
0x80100067

Power has been removed from the smart card, so that further
communication is impossible.

SCARD_W_RESET_CARD
0x80100068

The smart card has been reset, so any shared state
information is invalid.

SCARD_W_REMOVED_CARD
0x80100069

The smart card has been removed, so that further
communication is impossible.

SCARD_W_SECURITY_VIOLATION
0x8010006A

Access was denied because of a security violation.

SCARD_W_WRONG_CHV
0x8010006B

The card cannot be accessed because the wrong PIN was
presented.

SCARD_W_CHV_BLOCKED
0x8010006C

The card cannot be accessed because the maximum number of
PIN entry attempts has been reached.

SCARD_W_EOF
0x8010006D

The end of the smart card file has been reached.

SCARD_W_CANCELLED_BY_USER

The action was canceled by the user.

48 /92

[MS-RDPESC] - v20210625

Remote Desktop Protocol: Smart Card Virtual Channel Extension
Copyright © 2021 Microsoft Corporation

Release: June 25, 2021

Value Meaning

0x8010006E

SCARD_W_CARD_NOT_AUTHENTICATED | No PIN was presented to the smart card.
0x8010006F

SCARD_W_CACHE_ITEM_NOT_FOUND The requested item could not be found in the cache.

0x80100070

SCARD_W_CACHE_ITEM_STALE The requested cache item is too old and was deleted from the
0x80100071 cache.

SCARD_W_CACHE_ITEM_TOO_BIG The new cache item exceeds the maximum per-item size
0x80100072 defined for the cache.

49/ 92

[MS-RDPESC] - v20210625

Remote Desktop Protocol: Smart Card Virtual Channel Extension
Copyright © 2021 Microsoft Corporation

Release: June 25, 2021

3 Protocol Details
The following sections specify details of the Remote Desktop Protocol: Smart Card Virtual Channel
Extension, including abstract data models, interface method syntax, and message processing rules.

3.1 Protocol Server Details

3.1.1 Abstract Data Model

This section describes a conceptual model of a possible data organization that an implementation
maintains to participate in this protocol. The described organization is provided to facilitate the
explanation of how the protocol behaves. This document does not mandate that implementations
adhere to this model provided that their external behavior is consistent with that described in this
document.

The protocol server relies on an implementation of Smart Cards for Windows.
The following state MUST be kept by this protocol:

dwDeviceld: The device id assigned by Remote Desktop Protocol: File System Virtual Channel
Extension that identifies this protocol.

rgSCardContextList: List of contexts opened by the protocol server.

3.1.2 Timers

None.

3.1.3 Initialization

Initialization is triggered by the Remote Desktop Protocol: File System Virtual Channel Extension when
it enumerates all pre-logon devices. At this time, TS client initialization is performed.

If the TS server operating system version is earlier than 5.1, the device is not announced to the
TS server

The dwDeviceld field MUST be set to the device Id selected by Remote Desktop Protocol: File System
Virtual Channel Extension, and rgSCardContextList MUST be set to the empty list.
3.1.4 Message Processing Events and Sequencing Rules

Only messages of type DR_CONTROL_REQ and DR_CONTROL_RSP (as specified in [MS-RDPEFS
sections 2.2.1.4.5 and 2.2.1.5.5, respectively) are valid for this protocol. All other messages MUST be
processed according to the Remote Desktop Protocol: File System Virtual Channel Extension.

Only the control codes specified in the IOCTL Processing Rules in the following table are valid. Invalid
packets MUST be dropped without a reply.

Functio

n Value for

numbe | IoControlCo

r de IRP_MJ_DEVICE_CONTROL request Input packet, Output packet

5 0x00090014 SCARD_IOCTL_ESTABLISHCONTEXT EstablishContext Call (section 2.2.2.1),
EstablishContext Return (section 2.2.3.2)

50/ 92

[MS-RDPESC] - v20210625

Remote Desktop Protocol: Smart Card Virtual Channel Extension
Copyright © 2021 Microsoft Corporation

Release: June 25, 2021

%5bMS-RDPEFS%5d.pdf#Section_34d9de58b2b540b6b970f82d4603bdb5

Functio

n Value for
numbe | IoControlCo
r de IRP_MJ]_DEVICE_CONTROL request Input packet, Output packet
6 0x00090018 SCARD_IOCTL_RELEASECONTEXT Context Call (section 2.2.2.2),
Long Return (section 2.2.3.3)
7 0x0009001C SCARD_IOCTL_ISVALIDCONTEXT Context_Call (section 2.2.2.2),
Long_Return (section 2.2.3.3)
8 0x00090020 SCARD_IOCTL_LISTREADERGROUPSA ListReaderGroups Call (section 2.2.2.3),
ListReaderGroups Return (section 2.2.3.4)
9 0x00090024 SCARD_IOCTL_LISTREADERGROUPSW ListReaderGroups_Call (section 2.2.2.3),
ListReaderGroups_Return (section 2.2.3.4)
10 0x00090028 SCARD_IOCTL_LISTREADERSA ListReaders Call (section 2.2.2.4),
ListReaders_Return (section 2.2.3.4)
11 0x0009002C SCARD_IOCTL_LISTREADERSW ListReaders_Call (section 2.2.2.4),
ListReaders_Return (section 2.2.3.4)
20 0x00090050 SCARD_IOCTL_INTRODUCEREADERGRO | ContextAndStringA Call (section 2.2.2.5),
UPA Long_Return (section 2.2.3.3)
21 0x00090054 SCARD_IOCTL_INTRODUCEREADERGRO | ContextAndStringW_Call (section 2.2.2.6),
UPWwW Long_Return (section 2.2.3.3)
22 0x00090058 SCARD_IOCTL_FORGETREADERGROUPA | ContextAndStringA_Call (section 2.2.2.5),
Long_Return (section 2.2.3.3)
23 0x0009005C SCARD_IOCTL_FORGETREADERGROUP ContextAndStringW_Call (section 2.2.2.6),
W Long_Return (section 2.2.3.3)
24 0x00090060 SCARD_IOCTL_INTRODUCEREADERA ContextAndTwoStringA Call (section 2.2.2
.7), Long_Return (section 2.2.3.3)
25 0x00090064 SCARD_IOCTL_INTRODUCEREADERW ContextAndTwoStringW_Call (section 2.2.
2.8), Long_Return (section 2.2.3.3)
26 0x00090068 SCARD_IOCTL_FORGETREADERA ContextAndStringA_Call (section 2.2.2.5),
Long_Return (section 2.2.3.3)
27 0x0009006C SCARD_IOCTL_FORGETREADERW ContextAndStringW_Call (section 2.2.2.6),
Long_Return (section 2.2.3.3)
28 0x00090070 SCARD_IOCTL_ADDREADERTOGROUPA ContextAndTwoStringA_Call (section 2.2.2
.7), Long_Return (section 2.2.3.3)
29 0x00090074 SCARD_IOCTL_ADDREADERTOGROUPW ContextAndTwoStringW_Call (section 2.2.
2.8), Long_Return (section 2.2.3.3)
30 0x00090078 SCARD_IOCTL_REMOVEREADERFROMG ContextAndTwoStringA_Call (section 2.2.2
ROUPA .7), Long_Return (section 2.2.3.3)
31 0x0009007C SCARD_IOCTL_REMOVEREADERFROMG ContextAndTwoStringW_Call (section 2.2.
ROUPW 2.8), Long_Return (section 2.2.3.3)
38 0x00090098 SCARD_IOCTL_LOCATECARDSA LocateCardsA Call (section 2.2.2.9),
LocateCards Return (section 2.2.3.5)
39 0x0009009C SCARD_IOCTL_LOCATECARDSW LocateCardsW_Call (section 2.2.2.10),

LocateCards_Return (section 2.2.3.5)

[MS-RDPESC] - v20210625

Remote Desktop Protocol: Smart Card Virtual Channel Extension
Copyright © 2021 Microsoft Corporation
Release: June 25, 2021

51/92

Functio

n Value for

numbe | IoControlCo

r de IRP_MJ]_DEVICE_CONTROL request Input packet, Output packet

40 0x000900A0 SCARD_IOCTL_GETSTATUSCHANGEA GetStatusChangeA Call (section 2.2.2.11)
GetStatusChange_Return (section 2.2.3.5)

41 0x000900A4 SCARD_IOCTL_GETSTATUSCHANGEW GetStatusChangeW Call (section 2.2.2.12)
GetStatusChange_Return (section 2.2.3.5)

42 0x000900A8 SCARD_IOCTL_CANCEL Context_Call (section 2.2.2.2),
Long_Return (section 2.2.3.3)

43 0x000900AC SCARD_IOCTL_CONNECTA ConnectA Call (section 2.2.2.13),
Connect Return (section 2.2.3.8)

44 0x000900B0 SCARD_IOCTL_CONNECTW ConnectW Call (section 2.2.2.14),
Connect_Return (section 2.2.3.8)

45 0x000900B4 SCARD_IOCTL_RECONNECT Reconnect Call (section 2.2.2.15),
Reconnect Return (section 2.2.3.7)

46 0x000900B8 SCARD_IOCTL_DISCONNECT HCardAndDisposition Call (section 2.2.2.1
6), Long_Return (section 2.2.3.3)

47 0x000900BC SCARD_IOCTL_BEGINTRANSACTION HCardAndDisposition_Call (section 2.2.2.1
6), Long_Return (section 2.2.3.3)

48 0x000900C0 SCARD_IOCTL_ENDTRANSACTION HCardAndDisposition_Call (section 2.2.2.1
6), Long_Return (section 2.2.3.3)

49 0x000900C4 SCARD_IOCTL_STATE State Call (section 2.2.2.17),
State Return (section 2.2.3.9)

50 0x000900C8 SCARD_IOCTL_STATUSA Status Call (section 2.2.2.18),
Status Return (section 2.2.3.10)

51 0x000900CC SCARD_IOCTL_STATUSW Status_Call (section 2.2.2.18),
Status_Return (section 2.2.3.10)

52 0x000900D0 SCARD_IOCTL_TRANSMIT Transmit Call (section 2.2.2.19),
Transmit Return (section 2.2.3.11)

53 0x000900D4 SCARD_IOCTL_CONTROL Control Call (section 2.2.2.20),
Control Return (section 2.2.3.6)

54 0x000900D8 SCARD_IOCTL_GETATTRIB GetAttrib Call (section 2.2.2.21),
GetAttrib Return (section 2.2.3.12)

55 0x000900DC SCARD_IOCTL_SETATTRIB SetAttrib Call (section 2.2.2.22),
Long_Return (section 2.2.3.3)

56 0x000900EQ0 SCARD_IOCTL_ACCESSSTARTEDEVENT ScardAccessStartedEvent Call (section 2.2
.2.30), Long_Return (section 2.2.3.3)

57 0x000900E4 SCARD_IOCTL_RELEASETARTEDEVENT Not used.

58 0x000900E8 SCARD_IOCTL_LOCATECARDSBYATRA LocateCardsByATRA Call (section 2.2.2.23
), LocateCards_Return (section 2.2.3.5)

59 0x000900EC SCARD_IOCTL_LOCATECARDSBYATRW LocateCardsByATRW Call (section 2.2.2.2

[MS-RDPESC] - v20210625

Remote Desktop Protocol: Smart Card Virtual Channel Extension
Copyright © 2021 Microsoft Corporation
Release: June 25, 2021

52 /92

Functio

n Value for

numbe | IoControlCo

r de IRP_MJ]_DEVICE_CONTROL request Input packet, Output packet
4), LocateCards_Return (section 2.2.3.5)

60 0x000900F0 SCARD_IOCTL_READCACHEA ReadCacheA Call (section 2.2.2.25),
ReadCache Return (section 2.2.3.1)

61 0x000900F4 SCARD_IOCTL_READCACHEW ReadCacheW Call (section 2.2.2.26),
ReadCache_Return (section 2.2.3.1)

62 0x000900F8 SCARD_IOCTL_WRITECACHEA WriteCacheA Call (section 2.2.2.27),
Long_Return (section 2.2.3.3)

63 0x000900FC SCARD_IOCTL_WRITECACHEW WriteCacheW Call (section 2.2.2.28),
Long_Return (section 2.2.3.3)

64 0x00090100 SCARD_IOCTL_GETTRANSMITCOUNT GetTransmitCount Call (section 2.2.2.29),
GetTransmitCount Return (section 2.2.3.1
3)

65 0x00090104 SCARD_IOCTL_GETREADERICON GetReaderlcon Call (section 2.2.2.31),
GetReaderIcon Return (section 2.2.3.14)

66 0x00090108 SCARD_IOCTL_GETDEVICETYPEID GetDeviceTypeld Call (section 2.2.2.32),
GetDeviceTypeld Return (section
2.2.3.15)

The TS client MUST be able to process multiple requests simultaneously within the limits of its
resources.

Any errors from the Smart Cards for Windows layer MUST be transferred to the TS server and
MUST NOT be modified by the TS client. No exceptions are thrown in this protocol.

The following steps MUST be performed on each call packet received:

1.

The IoControlCode MUST be present, as specified in the preceding IOCTL Processing Rules table,
for the specific protocol version implemented.<2>

The input data type is interpreted according to the IOCTL Processing Rules table. The data MUST
be decoded as specified in [MS-RPCE] section 2.2.6.

Processing MUST be performed according to the corresponding section that follows. On success, it
MUST return a structure as specified in the preceding IOCTL Processing Rules table.

If the protocol encounters problems decoding the input or encoding the results, then
DR_DEVICE_IOCOMPLETION.IOStatus (as specified in [MS-RDPEFS] section 2.2.1.5) MUST be set
to an NTSTATUS code (as specified in [MS-ERREF] section 2.3), the most common of which appear

in the following table.

Return value/code

Description

STATUS_NO_MEMORY
0xC0000017

specified operation.

Not enough virtual memory or paging file quota is available to complete the

0xC0000001

STATUS_UNSUCCESSFUL

The requested operation was unsuccessful.

[MS-RDPESC] - v20210625
Remote Desktop Protocol: Smart Card Virtual Channel Extension
Copyright © 2021 Microsoft Corporation

Release: June 25, 2021

53/92

%5bMS-RPCE%5d.pdf#Section_290c38b192fe422991e64fc376610c15
%5bMS-ERREF%5d.pdf#Section_1bc92ddfb79e413cbbaa99a5281a6c90

Return value/code Description

STATUS_BUFFER_TOO_SMALL | The buffer is too small to contain the entry. No information has been written to
0xC0000023 the buffer.

5. On error, DR_DEVICE_IOCOMPLETION.Parameters.DeviceIOControl.OutputBufferLength MUST be
set to zero and DR_DEVICE_IOCOMPLETION.Parameters.DeviceIOControl.OutputBuffer MUST set
to NULL.

6. Otherwise, DR_DEVICE_IOCOMPLETION.IOStatus MUST be set to 0 (STATUS_SUCCESS) and
DR_DEVICE_IOCOMPLETION.Parameters.DevicelOControl.OutputBuffer MUST contain an encoding
of the structure (as specified in the preceding Message Processing Events and Sequencing Rules
IOCTL Table) as specified in [MS-RPCE] section 2.2.6.
DR_DEVICE_IOCOMPLETION.Parameters.DevicelOControl.OutputBufferLength is the length of the
data.

7. The return packet is then sent according to Remote Desktop Protocol: File System Virtual Channel
Extension.
3.1.4.1 SCARD_IOCTL_ESTABLISHCONTEXT (IOCTL 0x00090014)

Establish Context creates a new Smart Cards for Windows context specified for use in subsequent
communication with Smart Cards for Windows.

Return Values: This method sets EstablishContext Return.ReturnCode to SCARD_S_ SUCCESS on
success; otherwise, it sets one of the smart card-specific errors or one of the return codes from
Winerror.h. No specialized error codes are associated with this method.

If the call is successful, EstablishContext_Return.Context MUST be added to the rgSCardContextList
list maintained by this client.

3.1.4.2 SCARD_IOCTL_RELEASECONTEXT (IOCTL 0x00090018)

Release Context releases a previously established Smart Cards for Windows context as specified in
section 3.1.4.1. The context MUST exist in rgSCardContextList.

Return Values: This method sets Long_Return.ReturnCode (for more information, see section 2.2.3.3)
to SCARD_S_SUCCESS on success; otherwise, it sets one of the smart card-specific errors or one of
the return codes from Winerror.h. No specialized error codes are associated with this method.

If the call is successful, Context_Call.Context (for more information, see section 2.2.2.2) is removed
from rgSCardContextList.

3.1.4.3 SCARD_IOCTL_ISVALIDCONTEXT (IOCTL 0x0009001C)

Is Valid Context checks if a previously established Smart Cards for Windows context from
SCARD IOCTL ESTABLISHCONTEXT is still valid. For this call to succeed, Context_Call.Context (for
more information, see section 2.2.2.2) MUST exist in rgSCardContextList and the Smart Cards for
Windows communication channel MUST still be present.

Return Values: This method sets Long_Return.ReturnCode (for more information, see section 2.2.3.3)
to SCARD_S_SUCCESS on success; otherwise, it sets one of the smart card-specific errors or one of
the return codes from Winerror.h. No specialized error codes are associated with this method.

3.1.4.4 SCARD_IOCTL_ACCESSSTARTEDEVENT (IOCTL 0x000900EQ)

Access Started Event waits until Smart Cards for Windows is running.

54 /92

[MS-RDPESC] - v20210625

Remote Desktop Protocol: Smart Card Virtual Channel Extension
Copyright © 2021 Microsoft Corporation

Release: June 25, 2021

Return Values: This method sets Long_Return.ReturnCode (for more information, see section 2.2.3.3)
to SCARD_S_SUCCESS if Smart Cards for Windows is running; otherwise, it sets one of the smart
card-specific errors or one of the return codes from Winerror.h. No specialized error codes are
associated with this method.

3.1.4.5 SCARD_IOCTL_LISTREADERGROUPSA (IOCTL 0x00090020)

The ASCII version List Reader Groups returns the reader groups known to Smart Cards for
Windows. ListReaderGroups Return is constructed according to ListReaderGroups_Return and
ListReaders_Return and the information in ListReaderGroups Call.

Return Values: This method sets ListReaderGroups_Return.ReturnCode (for more information, see
section 2.2.3.4) to SCARD_S_SUCCESS on success; otherwise, it sets one of the smart card-specific
errors or one of the return codes from Winerror.h. No specialized error codes are associated with this
method.

3.1.4.6 SCARD_IOCTL_LISTREADERGROUPSW (IOCTL 0x00090024)

The Unicode version List Reader Groups returns the reader groups known to Smart Cards for
Windows. ListReaderGroups Return is constructed according to ListReaderGroups_Return and
ListReaders_Return and the information in ListReaderGroups Call.

Return Values: This method sets ListReaderGroups_Return.ReturnCode (for more information, see
section 2.2.3.4) to SCARD_S_SUCCESS on success; otherwise, it sets one of the smart card-specific
errors or one of the return codes from Winerror.h. No specialized error codes are associated with this
method.

3.1.4.7 SCARD_IOCTL_LISTREADERSA (IOCTL 0x00090028)

The ASCII version of List Readers returns the smart card readers known to Smart Cards for
Windows. ListReaders Return is constructed according to ListReaderGroups_Return and
ListReaders_Return and ListReaders Call.

Return Values: The method sets ListReaders_Return.ReturnCode (for more information, see section
2.2.3.4) to SCARD_S_SUCCESS on success; otherwise, it sets one of the smart card-specific errors or
one of the return codes from Winerror.h. No specialized error codes are associated with this method.

3.1.4.8 SCARD_IOCTL_LISTREADERSW (IOCTL 0x0009002C)

The Unicode version of List Readers returns the smart card readers known to Smart Cards for
Windows. ListReaders Return is constructed according to ListReaderGroups_Return and
ListReaders_Return and ListReaders Call.

Return Values: The method sets ListReaders_Return.ReturnCode (for more information, see section
2.2.3.4) to SCARD_S_SUCCESS on success; otherwise, it sets one of the smart card-specific errors or
one of the return codes from Winerror.h. No specialized error codes are associated with this method.

3.1.4.9 SCARD_IOCTL_INTRODUCEREADERGROUPA (IOCTL 0x00090050)

The ASCII version of Introduce Reader Group adds the reader group specified in
ContextAndStringA_Call.sz (for more information, see section 2.2.2.5) to the list of reader groups
known to Smart Cards for Windows.

Return Values: The method sets Long_Return.ReturnCode (for more information, see section 2.2.3.3)
to SCARD_S_SUCCESS on success; otherwise, it sets one of the smart card-specific errors or one of
the return codes from Winerror.h. No specialized error codes are associated with this method.

55/92

[MS-RDPESC] - v20210625

Remote Desktop Protocol: Smart Card Virtual Channel Extension
Copyright © 2021 Microsoft Corporation

Release: June 25, 2021

3.1.4.10 SCARD_IOCTL_INTRODUCEREADERGROUPW (IOCTL 0x00090054)

The Unicode version of Introduce Reader Group adds the reader group specified in
ContextAndStringW_Call.sz (for more information, see section 2.2.2.6) to the list of reader groups
known to Smart Cards for Windows.

Return Values: The method sets Long_Return.ReturnCode (for more information, see section 2.2.3.3)
to SCARD_S_SUCCESS on success; otherwise, it sets one of the smart card-specific errors or one of
the return codes from Winerror.h. No specialized error codes are associated with this method.

3.1.4.11 SCARD_IOCTL_FORGETREADERGROUPA (IOCTL 0x00090058)

The ASCII version of Forget Reader Group removes the reader group specified in
ContextAndStringA_Call.sz (for more information, see section 2.2.2.5) from the list of reader groups
known to the Smart Cards for Windows.

Return Values: The method sets Long_Return.ReturnCode (for more information, see section 2.2.3.3)
to SCARD_S_SUCCESS on success; otherwise, it sets one of the smart card-specific errors or one of
the return codes from Winerror.h. No specialized error codes are associated with this method.

3.1.4.12 SCARD_IOCTL_FORGETREADERGROUPW (IOCTL 0x0009005C)

The Unicode version of Forget Reader Group removes the reader group specified in
ContextAndStringW_Call.sz (for more information, see section 2.2.2.6) from the list of reader groups
known to Smart Cards for Windows.

Return Values: The method sets Long_Return.ReturnCode (for more information, see section 2.2.3.3)
to SCARD_S_SUCCESS on success; otherwise, it sets one of the smart card-specific errors or one of
the return codes from Winerror.h. No specialized error codes are associated with this method.

3.1.4.13 SCARD_IOCTL_INTRODUCEREADERA (IOCTL 0x00090060)

The ASCII version of Introduce Reader adds the device name specified in
ContextAndTwoStringA_Call.sz2 (for more information, see section 2.2.2.7) to the smart card reader
specified in ContextAndTwoStringA_Call.sz1.

Return Values: The method sets Long_Return.ReturnCode (for more information, see section 2.2.3.3)
to SCARD_S_SUCCESS on success; otherwise, it sets one of the smart card-specific errors or one of
the return codes from Winerror.h. No specialized error codes are associated with this method.

3.1.4.14 SCARD_IOCTL_INTRODUCEREADERW (IOCTL 0x00090064)

The Unicode version of Introduce Reader adds the device name specified in
ContextAndTwoStringW_Call.sz2 (for more information, see section 2.2.2.8) to the smart card
reader specified in ContextAndTwoStringW_Call.sz1.

Return Values: The method sets Long_Return.ReturnCode (for more information, see section 2.2.3.3)
to SCARD_S_SUCCESS on success; otherwise, it sets one of the smart card-specific errors or one of
the return codes from Winerror.h. No specialized error codes are associated with this method.

3.1.4.15 SCARD_IOCTL_FORGETREADERA (IOCTL 0x00090068)

The ASCII version of Forget Reader removes the smart card reader specified in
ContextAndStringA_Call.sz (for more information, see section 2.2.2.5) from the list of smart card
readers known to Smart Cards for Windows.

56 /92

[MS-RDPESC] - v20210625

Remote Desktop Protocol: Smart Card Virtual Channel Extension
Copyright © 2021 Microsoft Corporation

Release: June 25, 2021

Return Values: The method sets Long_Return.ReturnCode (for more information, see section 2.2.3.3)
to SCARD_S_SUCCESS on success; otherwise, it sets one of the smart card-specific errors or one of
the return codes from Winerror.h. No specialized error codes are associated with this method.

3.1.4.16 SCARD_IOCTL_FORGETREADERW (IOCTL 0x0009006C)

The Unicode version of Forget Reader removes the smart card reader specified in
ContextAndStringW_Call.sz (for more information, see section 2.2.2.6) from the list of smart card
readers known to Smart Cards for Windows.

Return Values: The method sets Long_Return.ReturnCode (for more information, see section 2.2.3.3)
to SCARD_S_SUCCESS on success; otherwise, it sets one of the smart card-specific errors or one of
the return codes from Winerror.h. No specialized error codes are associated with this method.

3.1.4.17 SCARD_IOCTL_ADDREADERTOGROUPA (IOCTL 0x00090070)

The ASCII version of Add Reader to Group adds the smart card reader specified in
ContextAndTwoStringA_Call.sz2 (for more information, see section 2.2.2.7).

Return Values: The method sets Long_Return.ReturnCode (for more information, see section 2.2.3.3)
to SCARD_S_SUCCESS on success; otherwise, it sets one of the smart card-specific errors or one of
the return codes from Winerror.h. No specialized error codes are associated with this method.

3.1.4.18 SCARD_IOCTL_ADDREADERTOGROUPW (IOCTL 0x00090074)

The Unicode version of Add Reader to Group adds the smart card reader specified in
ContextAndTwoStringW_Call.sz2 (for more information, see section 2.2.2.8).

Return Values: The method sets Long_Return.ReturnCode (for more information, see section 2.2.3.3)
to SCARD_S_SUCCESS on success; otherwise, it sets one of the smart card-specific errors or one of
the return codes from Winerror.h. No specialized error codes are associated with this method.

3.1.4.19 SCARD_IOCTL_REMOVEREADERFROMGROUPA (IOCTL 0x00090078)

The ASCII version of Remove Reader From Group removes the smart card reader specified in
ContextAndTwoStringA_Call.sz2 (for more information, see section 2.2.2.7).

Return Values: The method sets Long_Return.ReturnCode (for more information, see section 2.2.3.3)
to SCARD_S_SUCCESS on success; otherwise, it sets one of the smart card-specific errors or one of
the return codes from Winerror.h. No specialized error codes are associated with this method.

3.1.4.20 SCARD_IOCTL_REMOVEREADERFROMGROUPW (IOCTL 0x0009007C)

The Unicode version of Remove Reader From Group removes the smart card reader specified in
ContextAndTwoStringW_Call.sz2 (for more information, see section 2.2.2.8).

Return Values: The method sets Long_Return.ReturnCode (for more information, see section 2.2.3.3)
to SCARD_S_SUCCESS on success; otherwise, it sets one of the smart card-specific errors or one of
the return codes from Winerror.h. No specialized error codes are associated with this method.

3.1.4.21 SCARD_IOCTL_LOCATECARDSA (IOCTL 0x00090098)

The ASCII version of Locate Cards searches the readers specified in LocateCardsA_Call.mszCards (for
more information, see section 2.2.2.9). Unknown Card Types MUST be ignored. LocateCards Return
is constructed according to LocateCards_Return and GetStatusChange_Return by using the
information in LocateCardsA_Call.

57792

[MS-RDPESC] - v20210625

Remote Desktop Protocol: Smart Card Virtual Channel Extension
Copyright © 2021 Microsoft Corporation

Release: June 25, 2021

Return Values: The method sets LocateCards_Return.ReturnCode (for more information, see section
2.2.3.5) to SCARD_S_SUCCESS on success; otherwise, it sets one of the smart card-specific errors or
one of the return codes from Winerror.h. No specialized error codes are associated with this method.

3.1.4.22 SCARD_IOCTL_LOCATECARDSW (IOCTL 0x0009009C)

The Unicode version of Locate Cards searches the readers specified in LocateCardsW_Call.mszCards
(for more information, see section 2.2.2.10). Unknown Card Types MUST be ignored.

LocateCards Return is constructed according to LocateCards_Return and GetStatusChange_Return by
using the information in LocateCardsW_Call.

Return Values: The method sets LocateCards_Return.ReturnCode to SCARD_S_SUCCESS on success;
otherwise it sets one of the smart card-specific errors or one of the return codes from Winerror.h. No
specialized error codes are associated with this method.

3.1.4.23 SCARD_IOCTL_GETSTATUSCHANGEA (IOCTL 0x000900A0)

The ASCII version of Get Status Change monitors the smart card readers specified in
GetStatusChangeA_Call.rgReaderStates (for more information, see section 2.2.2.11) MUST correctly
represent the state of the Readers as known by Smart Cards for Windows.

Return Values: The method sets GetStatusChange Return.ReturnCode to SCARD_S_SUCCESS on
success; otherwise, it sets one of the smart card-specific errors or one of the return codes from
Winerror.h. No specialized error codes are associated with this method.

3.1.4.24 SCARD_IOCTL_GETSTATUSCHANGEW (IOCTL 0x000900A4)

The Unicode version of Get Status Change monitors the smart card readers specified in
GetStatusChangeW_Call.rgReaderStates (for more information, see section 2.2.2.12) MUST correctly
represent the state of the readers as known by Smart Cards for Windows.

Return Values: The method sets GetStatusChange Return.ReturnCode to SCARD_S_SUCCESS on
success; otherwise, it sets one of the smart card-specific errors or one of the return codes from
Winerror.h. No specialized error codes are associated with this method.

3.1.4.25 SCARD_IOCTL_LOCATECARDSBYATRA (IOCTL 0x000900ES8)

The ASCII version of Locate Cards By ATR searches the Readers specified in
LocateCardsByATRA_Call.rgAtrMasks (for more information, see section 2.2.2.23). Unknown card
types MUST be ignored. LocateCards Return is constructed according to LocateCards_Return and
GetStatusChange_Return by using the information in LocateCardsByATRA_Call.

Return Values: The method sets LocateCards_Return.ReturnCode (for more information, see section
2.2.3.5) to SCARD_S_SUCCESS on success; otherwise, it sets one of the smart card-specific errors or
one of the return codes from Winerror.h. No specialized error codes are associated with this method.

3.1.4.26 SCARD_IOCTL_LOCATECARDSBYATRW (IOCTL 0x000900EC)

The Unicode version of Locate Cards By ATR searches the readers specified in
LocateCardsByATRW_Call.rgAtrMasks (LocateCardsByATRW Call). Unknown Card Types MUST be
ignored. LocateCards Return is constructed according to LocateCards_Return and
GetStatusChange_Return by using the information in LocateCardsByATRW_Call.

Return Values: The method sets LocateCards_Return.ReturnCode (for more information, see section
2.2.3.5) to SCARD_S_SUCCESS on success; otherwise, it sets one of the smart card-specific errors or
one of the return codes from Winerror.h. No specialized error codes are associated with this method.

58/ 92

[MS-RDPESC] - v20210625

Remote Desktop Protocol: Smart Card Virtual Channel Extension
Copyright © 2021 Microsoft Corporation

Release: June 25, 2021

3.1.4.27 SCARD_IOCTL_CANCEL (IOCTL 0x000900A8)

The Cancel method MUST instruct Smart Cards for Windows to cancel any outstanding calls by
using the context specified by Context_Call.Context (for more information, see section 2.2.2.2).

Return Values: The method sets Long_Return.ReturnCode (for more information, see section 2.2.3.3)
to SCARD_S_SUCCESS on success; otherwise, it sets one of the smart card-specific errors or one of
the return codes from Winerror.h. No specialized error codes are associated with this method.

3.1.4.28 SCARD_IOCTL_CONNECTA (IOCTL 0x000900AC)

The ASCII version of Connect establishes a handle to a smart card reader. On success,
Connect Return is initialized according to Control Return.

Return Values: The method sets the Connect_Return.ReturnCode (for more information, see section
2.2.3.8) to SCARD_S_SUCCESS on success; otherwise, it sets one of the smart card-specific errors or
one of the return codes from Winerror.h. No specialized error codes are associated with this method.

3.1.4.29 SCARD_IOCTL_CONNECTW (IOCTL 0x000900B0)

The Unicode version of Connect establishes a smart card reader handle. On success,
Connect Return is initialized according to Control Return and the caller is given a handle to execute
additional methods on the reader.

Return Values: The method sets the Connect_Return.ReturnCode (for more information, see section
2.2.3.8) to SCARD_S_SUCCESS on success; otherwise, it sets one of the smart card-specific errors or
one of the return codes from Winerror.h. No specialized error codes are associated with this method.

3.1.4.30 SCARD_IOCTL_DISCONNECT (IOCTL 0x000900B8)

The disconnect method releases a smart card reader handle that was acquired in ConnectA Call or
ConnectW Call,using HCardAndDisposition Call.dwDisposition. After a successful call, The smart card
reader handle is released and MUST be made available to the system.

Return Values: The method sets Long Return.ReturnCode to SCARD_S_SUCCESS on success;
otherwise, it sets one of the smart card-specific errors or one of the return codes from Winerror.h. No
specialized error codes are associated with this method.

3.1.4.31 SCARD_IOCTL_BEGINTRANSACTION (IOCTL 0x000900BC)

The Begin Transaction method locks a smart card reader for exclusive access for the specified smart
card reader handle. If the caller is unable to receive exclusive access, this call MUST block until the
request can be met.

Return Values: The method sets Long_Return.ReturnCode (for more information, see section 2.2.3.3)
to SCARD_S_SUCCESS on success; otherwise, it sets one of the smart card-specific errors or one of
the return codes from Winerror.h. No specialized error codes are associated with this method.

3.1.4.32 SCARD_IOCTL_ENDTRANSACTION (IOCTL 0x000900C0)

The End Transaction method releases a smart card reader after being locked by a previously
successful call to Begin Transaction (for more information, see section 3.1.4.31).

Return Values: The method sets Long_Return.ReturnCode (for more information, see section 2.2.3.3)
to SCARD_S_SUCCESS on success; otherwise, it sets one of the smart card-specific errors or one of
the return codes from Winerror.h. No specialized error codes are associated with this method.

59/92

[MS-RDPESC] - v20210625

Remote Desktop Protocol: Smart Card Virtual Channel Extension
Copyright © 2021 Microsoft Corporation

Release: June 25, 2021

3.1.4.33 SCARD_IOCTL_STATUSA (IOCTL 0x000900C8)

The ASCII version of the Status call returns the current state of the smart card reader and any
smart card inserted. On success, Status_Return MUST be initialized according to Status Return.

Return Values: The method sets Status_Return.ReturnCode (for more information, see section
2.2.3.10) to SCARD_S_SUCCESS on success; otherwise, it sets one of the smart card-specific errors
or one of the return codes from Winerror.h. No specialized error codes are associated with this
method.

3.1.4.34 SCARD_IOCTL_STATUSW (IOCTL 0x000900CC)

The Unicode version of the Status call returns the current state of the smart card reader and any
smart card inserted. On success, Status_Return MUST be initialized according to Status Return.

Return Values: The method sets Status_Return.ReturnCode (for more information, see section
2.2.3.10) to SCARD_S_SUCCESS on success; otherwise, it sets one of the smart card-specific errors
or one of the return codes from Winerror.h. No specialized error codes are associated with this
method.

3.1.4.35 SCARD_IOCTL_TRANSMIT (IOCTL 0x000900D0)

The Transmit function sends a command to a smart card inserted to the smart card reader
associated with the smart card reader handle. On success, the command has been successfully sent to
the card and the response has been placed in Transmit Return.

Return Values: The method sets Transmit_Return.ReturnCode (for more information, see section
2.2.3.11) to SCARD_S_SUCCESS on success; otherwise, it sets one of the smart card-specific errors
or one of the return codes from Winerror.h. No specialized error codes are associated with this
method.

3.1.4.36 SCARD_IOCTL_RECONNECT (IOCTL 0x000900B4)

The reconnect method re-establishes a smart card reader handle. On success, the handle is valid
once again.

Return Values: The method sets Reconnect_Return.ReturnCode (for more information, see section
2.2.3.7) to SCARD_S_SUCCESS on success; otherwise, it sets one of the smart card-specific errors or
one of the return codes from Winerror.h. No specialized error codes are associated with this method.

3.1.4.37 SCARD_IOCTL_CONTROL (IOCTL 0x000900D4)

The Control function sends a command to a smart card reader associated with the smart card reader
handle. On success, the command has been successfully sent to the smart card reader and the
response has been placed in Control Return.

Return Values: The method sets Control_Return.ReturnCode (for more information, see section
2.2.3.6) to SCARD_S_SUCCESS on success; otherwise, it sets one of the smart card-specific errors or
one of the return codes from Winerror.h. No specialized error codes are associated with this method.

3.1.4.38 SCARD_IOCTL_GETATTRIB (IOCTL 0x000900D8)

The Get Attribute function requests an attribute of the smart card reader associated with the smart
card reader handle. On success, the attribute is copied to GetAttrib Return.

Return Values: The method sets GetAttrib_Return.ReturnCode (for more information, see section
2.2.3.12) to SCARD_S_SUCCESS on success; otherwise, it sets one of the smart card-specific errors

60/ 92

[MS-RDPESC] - v20210625

Remote Desktop Protocol: Smart Card Virtual Channel Extension
Copyright © 2021 Microsoft Corporation

Release: June 25, 2021

or one of the return codes from Winerror.h. No specialized error codes are associated with this
method.

3.1.4.39 SCARD_IOCTL_SETATTRIB (IOCTL 0x000900DC)

The Set Attribute function changes the value of an attribute of the smart card reader associated with
the smart card reader handle.

Return Values: The method sets Long_Return.ReturnCode (for more information, see section 2.2.3.3)
to SCARD_S_SUCCESS on success; otherwise, it sets one of the smart card-specific errors or one of
the return codes from Winerror.h. No specialized error codes are associated with this method.

3.1.4.40 SCARD_IOCTL_STATE (IOCTL 0x000900C4)

The State method returns the current state of the smart card reader and any smart card inserted.
On success, Status Return MUST be initialized as specified in section 2.2.3.10.

Return Values: The method sets State_Return.ReturnCode (for more information, see section 2.2.3.9)
to SCARD_S_SUCCESS on success; otherwise, it sets one of the smart card-specific errors or one of
the return codes from Winerror.h. No specialized error codes are associated with this method.

3.1.4.41 SCARD_IOCTL_GETTRANSMITCOUNT (IOCTL 0x00090100)

The Get Transmit Count retrieves the number of times a successful Transmit method (for more
information, see section 3.1.4.35) has been performed on the smart card reader. On success,
GetTrasmitCount Return MUST be initialized as specified in section 2.2.3.13.

Return Values: The method sets State_Return.ReturnCode (for more information, see section 2.2.3.9)
to SCARD_S_SUCCESS on success; otherwise, it sets one of the smart card-specific errors or one of
the return codes from Winerror.h. No specialized error codes are associated with this method.

3.1.4.42 SCARD_IOCTL_READCACHEA (IOCTL 0x000900F0)

The ASCII version of Read Cache retrieves cached data for a specific smart card. Data is cached
according to the smart card UUID (ReadCacheA_Call.Common.CardlIdentifier; for more information,
see section 2.2.1.9), the Card Lookup Name (ReadCacheA_Call.szLookupName; for more information,
see section 2.2.2.25), and the freshness of the data (ReadCacheA_Call.Common.FreshnessCounter;
for more information, see section 2.2.1.9). All three MUST match in order for this call to be successful.
On success, ReadCache_Return MUST be initialized as specified in section 2.2.3.1.

Return Values: The method sets ReadCache_Return.ReturnCode (for more information, see section
2.2.3.1) to SCARD_S_SUCCESS on success; otherwise, it sets one of the smart card-specific errors or
one of the return codes from Winerror.h. No specialized error codes are associated with this method.

3.1.4.43 SCARD_IOCTL_READCACHEW (IOCTL 0x000900F4)

The Unicode version of Read Cache retrieves cached data for a specific smart card in a Smart
Cards for Windows cache. Data is cached according to the smart card UUID
(ReadCacheA_Call.Common.CardIdentifier; for more information, see section 2.2.1.9), the Card
Lookup Name (ReadCacheW_Call.szLookupName; for more information, see section 2.2.2.26), and the
freshness of the data (ReadCacheW_Call.Common.FreshnessCounter; for more information, see
section 2.2.1.9). All three MUST match in order for this call to be successful. On success,
ReadCache_Return MUST be initialized as specified in section 2.2.3.1.

Return Values: The method sets ReadCache_Return.ReturnCode (for more information, see section
2.2.3.1) to SCARD_S_SUCCESS on success; otherwise, it sets one of the smart card-specific errors or
one of the return codes from Winerror.h. No specialized error codes are associated with this method.

61 /92

[MS-RDPESC] - v20210625

Remote Desktop Protocol: Smart Card Virtual Channel Extension
Copyright © 2021 Microsoft Corporation

Release: June 25, 2021

3.1.4.44 SCARD_IOCTL_WRITECACHEA (IOCTL 0x000900F8)

The ASCII version of Write Cache stores data for a specific smart card in a Smart Cards for
Windows cache. Data is cached according to the smart card UUID
(ReadCacheA_Call.szLookupName; for more information, see section 2.2.2.25), and the freshness of
the data (ReadCacheA_Call.Common.FreshnessCounter).

Return Values: The method sets Long_Return.ReturnCode (for more information, see section 2.2.3.3)
to SCARD_S_SUCCESS on success; otherwise, it sets one of the smart card-specific errors or one of
the return codes from Winerror.h. No specialized error codes are associated with this method

3.1.4.45 SCARD_IOCTL_WRITECACHEW (IOCTL 0x000900FC)

The Unicode version of Write Cache stores data for a specific smart card in a Smart Cards for
Windows cache. Data is cached according to the smart card UUID
(ReadCacheA_Call.szLookupName; for more information, see section 2.2.2.25), and the freshness of
the data (ReadCacheA_Call.Common.FreshnessCounter).

Return Values: The method sets Long_Return.ReturnCode (for more information, see section 2.2.3.3)
to SCARD_S_SUCCESS on success; otherwise, it sets one of the smart card-specific errors or one of
the return codes from Winerror.h. No specialized error codes are associated with this method

3.1.4.46 SCARD_IOCTL_RELEASETARTEDEVENT

The SCARD_IOCTL_RELEASETARTEDEVENT IOCTL value is not used.

3.1.4.47 SCARD_IOCTL_GETREADERICON (IOCTL 0x00090104)

Get Reader Icon retrieves the icon from the INF file for a specific smart card reader name (for more
information, see GetReaderIcon_Call.szReaderName, section 2.2.2.31). On success,
GetReaderIcon_Return.pbData contains the icon; for more information, see section 2.2.3.14.

Return Values: This method sets GetReaderIcon_Return.ReturnCode (for more information, see
section 2.2.3.14) to SCARD_S_SUCCESS on success; otherwise, it sets one of the smart card-specific
errors or another error code. No specialized error codes are associated with this method.

3.1.4.48 SCARD_IOCTL_GETDEVICETYPEID (IOCTL 0x00090108)

Get Device Type ID retrieves the device type from the INF file for a specific smart card reader name
(GetDeviceTypeld_Call.szReaderName; for more information, see section 2.2.2.32). On success,
GetDeviceTypeld_Return.dwDeviceld contains the device type ID; for more information, see
section 2.2.3.15.

Return Values: This method sets GetDeviceTypeld_Return.ReturnCode (for more information, see

section 2.2.3.15) to SCARD_S_SUCCESS on success; otherwise, it sets one of the smart card-specific
errors or another error code. No specialized error codes are associated with this method.

3.1.5 Timer Events

None.

3.1.6 Other Local Events

On protocol termination, the following actions are performed.

62 /92

[MS-RDPESC] - v20210625

Remote Desktop Protocol: Smart Card Virtual Channel Extension
Copyright © 2021 Microsoft Corporation

Release: June 25, 2021

For each context in rgSCardContextList, Cancel is called causing all outstanding messages to be
processed. After there are no more outstanding messages, Release Context is called on each context
and the context MUST be removed from rgSCardContextList.

3.2 Protocol Client Details

3.2.1 Abstract Data Model

This section describes a conceptual model of possible data organization that an implementation
maintains to participate in this protocol. The described organization is provided to facilitate the
explanation of how the protocol behaves. This document does not mandate that implementations
adhere to this model provided that their external behavior is consistent with that described in this
document.

The following state MUST be kept by this protocol:
dwbDeviceld: device ID of smart card redirection device.

rgOutstandingMessages: Outstanding call packets have not received a return packet.

3.2.2 Timers

No timers are required.

3.2.3 Initialization

Initialization occurs when the protocol server sends a device-announce message according to
Remote Desktop Protocol: File System Virtual Channel Extension. At that time, dwDeviceld MUST
receive the unique device ID announced. The rgOutstandingMessage field MUST be set to the
empty list.

3.2.4 Higher-Layer Triggered Events

None.
3.2.5 Message Processing Events and Sequencing Rules

3.2.5.1 Sending Outgoing Messages

Messages are constructed according to Remote Desktop Protocol: File System Virtual Channel
Extension as a device I/0 control message on the redirected device dwDeviceld. The call packet
MUST follow the format specified in IOCTL Processing Rules. The structure MUST be encoded as
specified in [MS-RPCE] section 2. The output buffer length SHOULD be set to 2,048 bytes.

The message is sent to the protocol server by using a transport as specified in [MS-RDPEFS] section
2.1.

3.2.5.2 Processing Incoming Replies
The following steps MUST be applied to each message when they are received.

If IOStatus is STATUS_BUFFER_TOO_SMALL, then the message SHOULD be retransmitted according
to Sending Outgoing Messages, doubling the previously requested buffer length.

If IOStatus is zero, the corresponding IoControlCode-specific reply processing MUST be performed.

63/92

[MS-RDPESC] - v20210625

Remote Desktop Protocol: Smart Card Virtual Channel Extension
Copyright © 2021 Microsoft Corporation

Release: June 25, 2021

%5bMS-RPCE%5d.pdf#Section_290c38b192fe422991e64fc376610c15
%5bMS-RDPEFS%5d.pdf#Section_34d9de58b2b540b6b970f82d4603bdb5

Otherwise, the call is considered a failure and the error MUST be propagated to the higher layer.

3.2.5.3 Messages

3.2.5.3.1 Sending EstablishContext Message

IoControlCode MUST be set to SCARD IOCTL ESTABLISHCONTEXT.

EstablishContext Call MUST be initialized as specified in section 2.2.2.1.

3.2.5.3.2 Processing EstablishContext Reply

The OutputBuffer MUST be decoded as EstablishContext Return, as specified in [MS-RPCE] section
2.2.6.

3.2.5.3.3 Sending ReleaseContext Message

IoControlCode MUST be set to SCARD IOCTL RELEASECONTEXT.

Context Call MUST be initialized, as specified in section 2.2.2.2.
3.2.5.3.4 Processing ReleaseContext Reply

The response message MUST be decoded as Long Return, as specified in [MS-RPCE] section 2.2.6.

3.2.5.3.5 Sending IntroduceReader (ASCII) Message

IoControlCode MUST be set to SCARD IOCTL INTRODUCEREADERA.

ContextAndTwoStringA Call MUST be initialized as specified in section 2.2.2.7 for a
SCARD_IOCTL_INTRODUCEREADERA call.

3.2.5.3.6 Processing IntroduceReader (ASCII) Reply

The OutputBuffer MUST be decoded as a Long Return.

3.2.5.3.7 Sending IntroduceReader (Unicode) Message

IoControlCode MUST be set to SCARD IOCTL INTRODUCEREADERW.

ContextAndTwoStringW Call MUST be initialized, as specified in section 2.2.2.8, for a
SCARD_IOCTL_INTRODUCEREADERW call.

3.2.5.3.8 Processing IntroduceReader (Unicode) Reply
The OutputBuffer MUST be decoded as Long Return, as specified in [MS-RPCE] section 2.2.6.

3.2.5.3.9 Sending ForgetReader (ASCII) Message

IoControlCode MUST be set to SCARD IOCTL FORGETREADERA.

ContextAndStringA Call MUST be initialized, as specified in section 2.2.2.5, for a
SCARD_IOCTL_FORGETREADERA call.

3.2.5.3.10 Processing ForgetReader (ASCII) Reply

The OutputBuffer MUST be decoded as Long Return, as specified in [MS-RPCE] section 2.2.6.

64 /92

[MS-RDPESC] - v20210625

Remote Desktop Protocol: Smart Card Virtual Channel Extension
Copyright © 2021 Microsoft Corporation

Release: June 25, 2021

%5bMS-RPCE%5d.pdf#Section_290c38b192fe422991e64fc376610c15
%5bMS-RPCE%5d.pdf#Section_290c38b192fe422991e64fc376610c15
%5bMS-RPCE%5d.pdf#Section_290c38b192fe422991e64fc376610c15
%5bMS-RPCE%5d.pdf#Section_290c38b192fe422991e64fc376610c15

3.2,5.3.11 Sending ForgetReader (Unicode) Message

IoControlCode MUST be set to SCARD _IOCTL FORGETREADERW.

ContextAndStringW Call MUST be initialized, as specified in section 2.2.2.6, for a
SCARD_IOCTL_FORGETREADERW call.

3.2.5.3.12 Processing ForgetReader (Unicode) Reply

The OutputBuffer MUST be decoded as Long Return, as specified in [MS-RPCE] section 2.2.6.

3.2.5.3.13 Sending IntroduceReaderGroup (ASCII) Message

IoControlCode MUST be set to SCARD IOCTL INTRODUCEREADERGROUPA.

ContextAndStringA Call MUST be initialized, as specified in section 2.2.2.5, for a
SCARD_IOCTL_INTRODUCEREADERGROUPA call.

3.2.5.3.14 Processing IntroduceReaderGroup (ASCII) Reply

The OutputBuffer MUST be decoded as Long Return, as specified in [MS-RPCE] section 2.2.6.

3.2.5.3.15 Sending IntroduceReaderGroup (Unicode) Message

IoControlCode MUST be set to SCARD IOCTL INTRODUCEREADERGROUPW.

ContextAndStringW_Call MUST be initialized, as specified in section 2.2.2.6, for a
SCARD_IOCTL_INTRODUCEREADERGROUPW call.

3.2.5.3.16 Processing IntroduceReaderGroup (Unicode) Reply

The OutputBuffer MUST be decoded as Long Return, as specified in [MS-RPCE] section 2.2.6.

3.2.5.3.17 Sending ForgetReaderGroup (ASCII) Message 1

IoControlCode MUST be set to SCARD IOCTL FORGETREADERGROUPA.

ContextAndStringA Call MUST be initialized, as specified in section 2.2.2.5, for a
SCARD_IOCTL_FORGETREADERGROUPA call.

3.2.5.3.18 Processing ForgetReaderGroup (ASCII) Reply

The OutputBuffer MUST be decoded as Long Return, as specified in [MS-RPCE] section 2.2.6.

3.2.5.3.19 Sending ForgetReaderGroup (ASCII) Message 2
IoControlCode MUST be set to SCARD IOCTL FORGETREADERGROUPW.

ContextAndStringW Call MUST be initialized, as specified in section 2.2.2.6, for a
SCARD_IOCTL_FORGETREADERGROUPW call.

3.2.5.3.20 Processing ForgetReaderGroup (Unicode) Reply

The OutputBuffer MUST be decoded as Long Return, as specified in [MS-RPCE] section 2.2.6.

3.2.5.3.21 Sending AddReaderToGroup (ASCII) Message

IoControlCode MUST be set to SCARD IOCTL ADDREADERTOGROUPA.

65/ 92

[MS-RDPESC] - v20210625

Remote Desktop Protocol: Smart Card Virtual Channel Extension
Copyright © 2021 Microsoft Corporation

Release: June 25, 2021

%5bMS-RPCE%5d.pdf#Section_290c38b192fe422991e64fc376610c15
%5bMS-RPCE%5d.pdf#Section_290c38b192fe422991e64fc376610c15
%5bMS-RPCE%5d.pdf#Section_290c38b192fe422991e64fc376610c15
%5bMS-RPCE%5d.pdf#Section_290c38b192fe422991e64fc376610c15
%5bMS-RPCE%5d.pdf#Section_290c38b192fe422991e64fc376610c15

ContextAndTwoStringA Call MUST be initialized, as specified in section 2.2.2.7, for a
SCARD_IOCTL_ADDREADERTOGROUPA call.

3.2.5.3.22 Processing AddReaderToGroup (ASCII) Reply

The OutputBuffer MUST be decoded as Long Return, as specified in [MS-RPCE] section 2.2.6.

3.2.5.3.23 Sending AddReaderToGroup (Unicode) Message

IoControlCode MUST be set to SCARD _IOCTL ADDREADERTOGROUPW.

ContextAndTwoStringW_Call MUST be initialized, as specified in section 2.2.2.8, for a
SCARD_IOCTL_ADDREADERTOGROUPW call.

3.2.5.3.24 Processing AddReaderToGroup (Unicode) Reply

The OutputBuffer MUST be decoded as Long Return, as specified in [MS-RPCE] section 2.2.6.

3.2.,5.3.25 Sending RemoveReaderFromGroup (ASCII) Message

IoControlCode MUST be set to SCARD IOCTL REMOVEREADERFROMGROUPA.

ContextAndTwoStringA Call MUST be initialized, as specified in section 2.2.2.7, for a
SCARD_IOCTL_REMOVEREADERFROMGROUPA call.

3.2.5.3.26 Processing RemoveReaderFromGroup (ASCII) Reply

The OutputBuffer MUST be decoded as Long Return, as specified in [MS-RPCE] section 2.2.6.

3.2.5.3.27 Sending RemoveReaderFromGroup (Unicode) Message

IoControlCode MUST be set to SCARD _IOCTL REMOVEREADERFROMGROUPW.

ContextAndTwoStringW Call MUST be initialized, as specified in section 2.2.2.8, for a
SCARD_IOCTL_REMOVEREADERFROMGROUPW call.

3.2.5.3.28 Processing RemoveReaderFromGroup (Unicode) Reply

The OutputBuffer MUST be decoded as Long Return, as specified in [MS-RPCE] section 2.2.6.

3.2.5.3.29 Sending ListReaderGroups (ASCII) Message

IoControlCode MUST be set to SCARD IOCTL LISTREADERGROUPSA.

ListReaderGroups Call MUST be initialized, as specified in section 2.2.2.3.

3.2.5.3.30 Processing ListReaderGroups (ASCII) Reply

The OutputBuffer MUST be decoded as ListReaderGroups Return, as specified in [MS-RPCE] section
2.2.6.

3.2.,5.3.31 Sending ListReaderGroups (Unicode) Message

IoControlCode MUST be set to SCARD IOCTL LISTREADERGROUPSW.

ListReaderGroups Call MUST be initialized, as specified in section 2.2.2.3.

3.2.5.3.32 Processing ListReaderGroups (Unicode) Reply

66 /92

[MS-RDPESC] - v20210625

Remote Desktop Protocol: Smart Card Virtual Channel Extension
Copyright © 2021 Microsoft Corporation

Release: June 25, 2021

%5bMS-RPCE%5d.pdf#Section_290c38b192fe422991e64fc376610c15
%5bMS-RPCE%5d.pdf#Section_290c38b192fe422991e64fc376610c15
%5bMS-RPCE%5d.pdf#Section_290c38b192fe422991e64fc376610c15
%5bMS-RPCE%5d.pdf#Section_290c38b192fe422991e64fc376610c15
%5bMS-RPCE%5d.pdf#Section_290c38b192fe422991e64fc376610c15

The OutputBuffer MUST be decoded as ListReaderGroups Return, as specified in [MS-RPCE] section
2.2.6.

3.2.5.3.33 Sending ListReaders (ASCII) Message

IoControlCode MUST be set to SCARD IOCTL LISTREADERSA.

ListReaders Call MUST be initialized, as specified in section 2.2.2.4, for an ASCII call.

3.2.5.3.34 Processing ListReadersReply (ASCII) Reply

The OutputBuffer MUST be decoded as ListReaders Return, as specified in [MS-RPCE] section 2.2.6.

3.2,5.3.35 Sending ListReaders (Unicode) Message

IoControlCode MUST be set to SCARD _IOCTL LISTREADERSW.

ListReaders Call MUST be initialized, as specified in section 2.2.2.4, for an Unicode call.

3.2.5.3.36 Processing ListReadersReply (Unicode) Reply
The OutputBuffer MUST be decoded as ListReaders Return, as specified in [MS-RPCE] section 2.2.6.

3.2.5.3.37 Sending LocateCards (ASCII) Message

IoControlCode MUST be set to SCARD IOCTL LOCATECARDSA.

LocateCardsA Call MUST be initialized as specified in section 2.2.2.9.

3.2.5.3.38 Processing LocateCards (ASCII) Reply

The OutputBuffer MUST be decoded as LocateCards Return, as specified in [MS-RPCE] section 2.2.6.

3.2.5.3.39 Sending LocateCards (Unicode) Message

IoControlCode MUST be set to SCARD IOCTL LOCATECARDSW.

LocateCardsW_Call MUST be initialized, as specified in section 2.2.2.10.

3.2.5.3.40 Processing LocateCards (Unicode) Reply
The OutputBuffer MUST be decoded as LocateCards Return, as specified in [MS-RPCE] section 2.2.6.

3.2.5.3.41 Sending GetStatusChange (ASCII) Message

IoControlCode MUST be set to SCARD IOCTL GETSTATUSCHANGEA.

GetStatusChangeA Call MUST be initialized, as specified in section 2.2.2.11.

3.2.5.3.42 Processing GetStatusChange (ASCII) Reply

The OutputBuffer MUST be decoded as GetStatusChange Return, as specified in [MS-RPCE] section
2.2.6.

3.2.5.3.43 Sending GetStatusChange (Unicode) Message

IoControlCode MUST be set to SCARD IOCTL GETSTATUSCHANGEW.

67/92

[MS-RDPESC] - v20210625

Remote Desktop Protocol: Smart Card Virtual Channel Extension
Copyright © 2021 Microsoft Corporation

Release: June 25, 2021

%5bMS-RPCE%5d.pdf#Section_290c38b192fe422991e64fc376610c15
%5bMS-RPCE%5d.pdf#Section_290c38b192fe422991e64fc376610c15
%5bMS-RPCE%5d.pdf#Section_290c38b192fe422991e64fc376610c15
%5bMS-RPCE%5d.pdf#Section_290c38b192fe422991e64fc376610c15
%5bMS-RPCE%5d.pdf#Section_290c38b192fe422991e64fc376610c15
%5bMS-RPCE%5d.pdf#Section_290c38b192fe422991e64fc376610c15

GetStatusChangeW Call MUST be initialized, as specified in section 2.2.2.12.

3.2.5.3.44 Processing GetStatusChange (Unicode) Reply

The OutputBuffer MUST be decoded as GetStatusChange Return, as specified in [MS-RPCE] section
2.2.6.

3.2.5.3.45 Sending Cancel Message

IoControlCode MUST be set to SCARD_IOCTL CANCEL.

Context_Call.Context MUST be initialized, as specified in section 2.2.2.2.

3.2.5.3.46 Processing Cancel Reply
The OutputBuffer MUST be decoded as Long Return, as specified in [MS-RPCE] section 2.2.6.

3.2.5.3.47 Sending Connect (ASCII) Message
IoControlCode MUST be set to SCARD IOCTL CONNECTA.

ConnectA Call MUST be initialized, as specified in section 2.2.2.13.

3.2.5.3.48 Processing Connect (ASCII) Reply

The OutputBuffer MUST be decoded as Connect Return, as specified in [MS-RPCE] section 2.2.6.

3.2.5.3.49 Sending Connect (Unicode) Message

IoControlCode MUST be set to SCARD IOCTL CONNECTW.

ConnectW _Call MUST be initialized, as specified in section 2.2.2.14.

3.2.5.3.50 Processing Connect (Unicode) Reply

The OutputBuffer MUST be decoded as Connect Return, as specified in [MS-RPCE] section 2.2.6.

3.2.5.3.51 Sending Reconnect Message
IoControlCode MUST be set to SCARD IOCTL RECONNECT.

Reconnect Call MUST be initialized, as specified in section 2.2.2.15.

3.2.5.3.52 Processing Reconnect Reply

The OutputBuffer MUST be decoded as Reconnect Return, as specified in [MS-RPCE] section 2.2.6.

3.2.5.3.53 Sending Disconnect Message

IoControlCode MUST be set to SCARD IOCTL DISCONNECT.

HCardAndDisposition Call MUST be initialized, as specified in section 2.2.2.16, for a
SCARD_IOCTL_DISCONNECT call.

3.2.5.3.54 Processing Disconnect Reply

The OutputBuffer MUST be decoded as Long Return, as specified in [MS-RPCE] section 2.2.6.

68/ 92

[MS-RDPESC] - v20210625

Remote Desktop Protocol: Smart Card Virtual Channel Extension
Copyright © 2021 Microsoft Corporation

Release: June 25, 2021

%5bMS-RPCE%5d.pdf#Section_290c38b192fe422991e64fc376610c15
%5bMS-RPCE%5d.pdf#Section_290c38b192fe422991e64fc376610c15
%5bMS-RPCE%5d.pdf#Section_290c38b192fe422991e64fc376610c15
%5bMS-RPCE%5d.pdf#Section_290c38b192fe422991e64fc376610c15
%5bMS-RPCE%5d.pdf#Section_290c38b192fe422991e64fc376610c15
%5bMS-RPCE%5d.pdf#Section_290c38b192fe422991e64fc376610c15

3.2.5.3.55 Sending Status (ASCII) Message

IoControlCode MUST be set to SCARD IOCTL STATUSA.

Status Call MUST be initialized, as specified in section 2.2.2.18.

3.2.5.3.56 Processing Status (ASCII) Reply

The OutputBuffer MUST be decoded as Status Return, as specified in [MS-RPCE] section 2.2.6, and
interpreted as a SCARD IOCTL STATUSA return.

3.2.5.3.57 Sending Status (Unicode) Message

IoControlCode MUST be set to SCARD_IOCTL STATUSW.

Status Call MUST be initialized, as specified in section 2.2.2.18 .

3.2.5.3.58 Processing Status (Unicode) Reply

The OutputBuffer MUST be decoded as Status Return, as specified in [MS-RPCE] section 2.2.6, and
interpreted as a SCARD IOCTL STATUSW return.

3.2.5.3.59 Sending State Message

IoControlCode MUST be set to SCARD IOCTL STATE.

State Call MUST be initialized, as specified in section 2.2.2.17, for a SCARD_IOCTL_STATE call.

3.2.5.3.60 Processing State Message Reply

The OutputBuffer MUST be decoded as State Return, as specified in [MS-RPCE] section 2.2.6, and
interpreted as a SCARD IOCTL STATE return.

3.2,5.3.61 Sending BeginTransaction Message

IoControlCode MUST be set to SCARD IOCTL BEGINTRANSACTION.

HCardAndDisposition Call MUST be initialized, as specified in section 2.2.2.16, for a
SCARD_IOCTL_BEGINTRANSACTION call.

3.2.5.3.62 Processing BeginTransaction Reply

The OutputBuffer MUST be decoded as Long Return, as specified in [MS-RPCE] section 2.2.6.

3.2.5.3.63 Sending EndTransaction Message
IoControlCode MUST be set to SCARD IOCTL ENDTRANSACTION.

HCardAndDisposition Call MUST be initialized, as specified in section 2.2.2.16, for a
SCARD_IOCTL_ENDTRANSACTION call.

3.2.5.3.64 Processing EndTransaction Reply

The OutputBuffer MUST be decoded as Long Return, as specified in [MS-RPCE] section 2.2.6.

3.2.5.3.65 Sending Transmit Message

IoControlCode MUST be set to SCARD IOCTL TRANSMIT.

69 /92

[MS-RDPESC] - v20210625

Remote Desktop Protocol: Smart Card Virtual Channel Extension
Copyright © 2021 Microsoft Corporation

Release: June 25, 2021

%5bMS-RPCE%5d.pdf#Section_290c38b192fe422991e64fc376610c15
%5bMS-RPCE%5d.pdf#Section_290c38b192fe422991e64fc376610c15
%5bMS-RPCE%5d.pdf#Section_290c38b192fe422991e64fc376610c15
%5bMS-RPCE%5d.pdf#Section_290c38b192fe422991e64fc376610c15
%5bMS-RPCE%5d.pdf#Section_290c38b192fe422991e64fc376610c15

Transmit Call MUST be initialized as specified in section 2.2.2.19.

3.2.5.3.66 Processing Transmit Reply

The OutputBuffer MUST be decoded as Transmit Return, as specified in [MS-RPCE] section 2.2.6.

3.2.5.3.67 Sending Control Message

IoControlCode MUST be set to SCARD IOCTL CONTROL.

Control Call MUST be initialized as specified in section 2.2.2.20.

3.2.5.3.68 Processing Control Reply

The OutputBuffer MUST be decoded as Control Return, as specified in [MS-RPCE] section 2.2.6.

3.2.5.3.69 Sending GetReaderCapabilities Message

IoControlCode MUST be set to SCARD IOCTL GETATTRIB.

GetAttrib _Call MUST be initialized as specified in section 2.2.2.21.

3.2.5.3.70 Processing GetReaderCapabilities Reply

The OutputBuffer MUST be decoded as GetAttrib Return, as specified in [MS-RPCE] section 2.2.6.

3.2.5.3.71 Sending SetReaderCapabilities Message
IoControlCode MUST be set to SCARD IOCTL SETATTRIB.

SetAttrib Call MUST be initialized as specified in section 2.2.2.22.

3.2.5.3.72 Processing SetReaderCapabilities Reply
The OutputBuffer MUST be decoded as Long Return, as specified in [MS-RPCE] section 2.2.6.

3.2,5.3.73 Sending WaitForResourceManager Message

IoControlCode MUST be set to SCARD IOCTL ACCESSSTARTEDEVENT.

ScardAccessStartedEvent Call MUST be initialized as specified in section 2.2.2.30. This structure
MUST NOT be encoded and MUST be sent as is.

3.2.5.3.74 Processing WaitForResourceManager Reply

The OutputBuffer MUST be decoded as Long Return, as specified in [MS-RPCE] section 2.2.6.

3.2.5.3.75 Sending LocateCardsByATR (ASCII) Message

IoControlCode MUST be set to SCARD IOCTL LOCATECARDSBYATRA.

LocateCardsByATRA Call MUST be initialized as specified in section 2.2.2.23.

3.2.5.3.76 Processing LocateCardsByATR (Unicode) Reply

The OutputBuffer MUST be decoded as LocateCards Return, as specified in [MS-RPCE] section 2.2.6.

3.2.5.3.77 Processing LocateCardsByATR (ASCII) Reply

70/ 92

[MS-RDPESC] - v20210625

Remote Desktop Protocol: Smart Card Virtual Channel Extension
Copyright © 2021 Microsoft Corporation

Release: June 25, 2021

%5bMS-RPCE%5d.pdf#Section_290c38b192fe422991e64fc376610c15
%5bMS-RPCE%5d.pdf#Section_290c38b192fe422991e64fc376610c15
%5bMS-RPCE%5d.pdf#Section_290c38b192fe422991e64fc376610c15
%5bMS-RPCE%5d.pdf#Section_290c38b192fe422991e64fc376610c15
%5bMS-RPCE%5d.pdf#Section_290c38b192fe422991e64fc376610c15
%5bMS-RPCE%5d.pdf#Section_290c38b192fe422991e64fc376610c15

The OutputBuffer MUST be decoded as LocateCards Return, as specified in [MS-RPCE] section 2.2.6.

3.2.5.3.78 Sending LocateCardsByATR (Unicode) Message

IoControlCode MUST be set to SCARD IOCTL LOCATECARDSBYATRW.

LocateCardsByATRW _Call MUST be initialized as specified in section 2.2.2.24.

3.2,5.3.79 Sending ReadCache (ASCII) Message

IoControlCode MUST be set to SCARD IOCTL READCACHEA.

ReadCacheA Call MUST be initialized as specified in section 2.2.2.25.

3.2.5.3.80 Processing ReadCache (ASCII) Reply

The OutputBuffer MUST be decoded as ReadCache Return, as specified in [MS-RPCE] section 2.2.6.

3.2,5.3.81 Sending ReadCache (Unicode) Message

IoControlCode MUST be set to SCARD IOCTL READCACHEW.

ReadCacheW Call MUST be initialized as specified in section 2.2.2.26.

3.2.5.3.82 Processing ReadCache (Unicode) Reply

The OutputBuffer MUST be decoded as ReadCache Return, as specified in [MS-RPCE] section 2.2.6.

3.2.5.3.83 Sending WriteCache (ASCII) Message
IoControlCode MUST be set to SCARD IOCTL WRITECACHEA.

WriteCacheA Call MUST be initialized as specified in section 2.2.2.27.

3.2.5.3.84 Processing WriteCache (ASCII) Reply

The OutputBuffer MUST be decoded as Long Return, as specified in [MS-RPCE] section 2.2.6.

3.2.5.3.85 Sending WriteCache (Unicode) Message

IoControlCode MUST be set to SCARD IOCTL WRITECACHEW.

WriteCacheW Call MUST be initialized as specified in section 2.2.2.28.

3.2.5.3.86 Processing WriteCache (Unicode) Reply
The OutputBuffer MUST be decoded as Long Return, as specified in [MS-RPCE] section 2.2.6.

3.2.5.3.87 Sending GetTransmitCount Message
IoControlCode MUST be set to SCARD IOCTL GETTRANSMITCOUNT.

GetTransmitCount Call MUST be initialized as specified in section 2.2.2.29.

3.2.5.3.88 Processing GetTransmitCount Reply

The OutputBuffer MUST be decoded as GetTransmitCount Return, as specified in [MS-RPCE] section
2.2.6.

71/92

[MS-RDPESC] - v20210625

Remote Desktop Protocol: Smart Card Virtual Channel Extension
Copyright © 2021 Microsoft Corporation

Release: June 25, 2021

%5bMS-RPCE%5d.pdf#Section_290c38b192fe422991e64fc376610c15
%5bMS-RPCE%5d.pdf#Section_290c38b192fe422991e64fc376610c15
%5bMS-RPCE%5d.pdf#Section_290c38b192fe422991e64fc376610c15
%5bMS-RPCE%5d.pdf#Section_290c38b192fe422991e64fc376610c15
%5bMS-RPCE%5d.pdf#Section_290c38b192fe422991e64fc376610c15
%5bMS-RPCE%5d.pdf#Section_290c38b192fe422991e64fc376610c15

3.2.5.3.89 Sending GetReaderIcon Message

IoControlCode MUST be set to SCARD_IOCTL_GETREADERICON.
GetReaderIcon_Call MUST be initialized as specified in section 2.2.2.31.
3.2.5.3.90 Processing GetReaderIcon Reply

The OutputBuffer MUST be decoded as GetReaderIcon_Return, as specified in section 2.2.3.14.

3.2,5.3.91 Sending GetDeviceTypeld Message
IoControlCode MUST be set to SCARD_IOCTL_GETDEVICETYPEID.

GetDeviceTypeld_Call MUST be initialized as specified in section 2.2.2.32.
3.2.5.3.92 Processing GetDeviceTypeld Reply

The OutputBuffer MUST be decoded as GetDeviceTypeld_Return, as specified in section 2.2.3.15.

3.2.6 Timer Events

None.

3.2.7 Other Local Events

None.

72 /92

[MS-RDPESC] - v20210625

Remote Desktop Protocol: Smart Card Virtual Channel Extension
Copyright © 2021 Microsoft Corporation

Release: June 25, 2021

4 Protocol Examples

This example shows the messages sent to perform a simple querying of a card in the TS client
machine. It assumes that a channel has already been set up on the between the TS client and the TS
server. In addition, a PC/SC-compatible resource manager is running on the TS client and there
exists a smart card reader with a smart card inserted. The following figure represents the program
flow.

Protocol hrocotol
Server (TS Client (TS
Client) Server)
EstablishContext Call
P Establish (:ﬁuntextll
—EstablishContext Return -
—List Readers Call]
-— _ List Readers B
List Readers Return -
_‘________-—Get Status Chande Call
Get Status Change
-Get Status Change Return - -
—Connect Call
- Connect b
—Connect Return -~
- ——Beqid Transaction Call B
. Begin Transaction
-Begin Transaction Return - — - ’
Status Call
- Status B
Status Return —
_£nd Transaction Call—
- End Transaction B
—End Transaction Return -
Disconnect Call
Disconnect b
—Disconnect Return = =
Felease Context
Release Context Retyrn e

Figure 4: Protocol flow

This representation of the protocol flow is simplified in that there is only one application sending data
over this protocol. In an actual implementation there could be multiple outstanding calls at any time.

73/ 92

[MS-RDPESC] - v20210625

Remote Desktop Protocol: Smart Card Virtual Channel Extension
Copyright © 2021 Microsoft Corporation

Release: June 25, 2021

All packets are constructed as specified in sections 3.2.5 and 3.2.5.3. The Status field refers to the
IoStatus field as specified in [MS-RDPEFS] section 2.2.1.5. The CompletionlId field is also specified
in [MS-RDPEFS] section 2.2.1.5.

4.1 Establish Context Call

IoControlCode= SCARD IOCTL ESTABLISHCONTEXT
CompletionId = 0

EstablishContext Call {

dwScope = SCARD SCOPE SYSTEM

}

The CompletionlId field is specified in [MS-RDPEFS] section 2.2.1.4.

4.2 Establish Context Return

CompletionId = 0

Status = 0

EstablishContext Return {

ReturnCode = 0

Context = {cbContext = 4, pbContext = {0x00,0x00,0x01,0xcd} }

}

The Status field is specified as the IoStatus field in [MS-RDPEFS] section 2.2.1.5.

4.3 List Readers Call

IoControlCode = SCARD IOCTL LISTREADERSW
CompletionId = 0
ListReaders Call {
Context = {cbContext = 4, pbContext = {0x00,0x00,0x01,0xcd} }
cBytes = 44
mszGroups = L"SCard$DefaultReaders\0\0"
fmszReadersIsNULL = 0
cchReaders = OxFFFFFFFF

}

4.4 List Readers Return

CompletionId = 0

Status = 0

ListReaders Return {

ReturnCode = 0

cReaders =66

msz = L"Gemplus USB Smart Card Reader 0\0\0"

}

4.5 Get Status Change Call

IoControlCode = SCARD TIOCTL GETSTATUSCHANGEW
CompletionId = 0
GetStatusChangeW Call {
Context = {cbContext = 4, pbContext = {0x00,0x00,0x01,0xcd} }
dwTimeOut = 0
cReaders =1
rgReaderStates = {
{ szReader = L"Gemplus USB Smart Card Reader 0"
Common = {
dwCurrentState = SCARD STATE UNAWARE

74 /92

[MS-RDPESC] - v20210625

Remote Desktop Protocol: Smart Card Virtual Channel Extension
Copyright © 2021 Microsoft Corporation

Release: June 25, 2021

%5bMS-RDPEFS%5d.pdf#Section_34d9de58b2b540b6b970f82d4603bdb5
%5bMS-RDPEFS%5d.pdf#Section_34d9de58b2b540b6b970f82d4603bdb5
%5bMS-RDPEFS%5d.pdf#Section_34d9de58b2b540b6b970f82d4603bdb5

dwEventState = 0
cbAtr = 0
pbAtr {0}y 1}

}

4.6 Get Status Change Return

Status = 0

CompletionId = 0

GetStatusChange Return = {

ReturnCode = 0

cReaders =1

rgReaderStates = {

dwCurrentState = SCARD STATE UNAWARE

dwEventState = SCARD STATE CHANGED |
SCARD_STATE PRESENT | SCARD_STATE INUSE

cbAtr = 9

rgbAtr = {0x3b, 0xl6, 0x94,0x41, 0x73, 0x74,0x72,0x69,
0x64}

}

}

4.7 Connect Call

IoControlCode = SCARD IOCTL CONNECTW

CompletionId = 0

ConnectW Call = {

szReader = L"Gemplus USB Smart Card Reader O"

Common = {

Context = { cbContext = 4, pbContext = {0x00,0x00,0x01,0xcd} }
dwShareMode = SCARD SHARE SHARED

dwPreferredProtocols = SCARD PROTOCOL TO | SCARD PROTOCOL T1

}

}

4.8 Connect Return

CompletionId = 0

Status = 0
Connect Return = ({
ReturnCode = 0
hCard = {

Context = { cbContext = 4, pbContext = {0x00,0x00,0x01,0xcd} }
cbHandle = 4

pbHandle = {0x00,0x00,0x01,0xea}{0x00,0x00,0x01,0xea}}
dwActiveProtocol = SCARD PROTOCOL_TO

}

4.9 Begin Transaction Call

IoControlCode = SCARD TIOCTL BEGINTRANSACTION
CompletionId = 0
HCardAndDisposition Call = {

hCard = {

Context = { cbContext = 4, pbContext = {0x00,0x00,0x01,0xcd} }
cbHandle = 4

pbHandle = {0x00,0x00,0x01,0xea}}

dwDisposition = 0

75/ 92

[MS-RDPESC] - v20210625

Remote Desktop Protocol: Smart Card Virtual Channel Extension
Copyright © 2021 Microsoft Corporation

Release: June 25, 2021

4.10 Begin Transaction Return

CompletionId = 0
Status = 0

Long Return = {
ReturnCode = 0

}

4.11 Status Call

IoControlCode = SCARD IOCTL_STATUSW

CompletionId = 0

Status Call = {

hCard = {

Context = { ¢
cbHandle = 4

pbHandle = {0x00,0x00,0x01,0xea} }
fmszReaderNamesIsNULL = 0
cchReaderLen = OxFFFFFFFF
cbAtrLen = 36

}

bContext = 4, pbContext = {0x00,0x00,0x01,0xcd} }

4.12 Status Return

CompletionId = 0

IoStatus = 0

Status Return = {

ReturnCode = 0

cBytes = 66

mszReaderNames = L"Gemplus USB Smart Card Reader 0\0\O"
dwState = SCARD SPECIFICMODE

dwProtocol = SCARD PROTOCOL TO

pbAtr = {0x3b, 0x16, 0x94,0x41, 0x73, 0x74,0x72,0x69,0x64}
cbAtr = 9

}

4.13 End Transaction Call

IoControlCode = SCARD_TIOCTL_ENDTRANSACTION

CompletionId = 0

HCardAndDisposition Call = {

hCard = {

Context = { cbContext = 4, pbContext = {0x00,0x00,0x01,0xcd} }
cbHandle = 4

pbHandle = {0x00,0x00,0x01,0xea}}

dwDisposition = SCARD LEAVE CARD

}

4.14 End Transaction Return

CompletionId = 0
Status = 0

Long Return = {
ReturnCode = 0

}

76 /92

[MS-RDPESC] - v20210625

Remote Desktop Protocol: Smart Card Virtual Channel Extension
Copyright © 2021 Microsoft Corporation

Release: June 25, 2021

4.15 Disconnect Call

IoControlCode = SCARD IOCTL DISCONNECT

CompletionId = 0

HCardAndDisposition Call = {

hCard = {

Context = { cbContext = 4, pbContext = {0x00,0x00,0x01,0xcd} }
cbHandle = 4

pbHandle = {0x00,0x00,0x01,0xea}}

dwDisposition = SCARD RESET CARD

}

4.16 Disconnect Return

CompletionId = 0
Status = 0

Long Return = {
ReturnCode = 0

}

4.17 Release Context Call

IoControlCode = SCARD IOCTL RELEASECONTEXT

CompletionId = 0

Context Call = {

Context = {cbContext = 4, pbContext = {0x00,0x00,0x01,0xcd} }

}

4.18 Release Context Return

CompletionId = 0
Status = 0
Long_Return = {
ReturnCode = 0

}

77/ 92

[MS-RDPESC] - v20210625

Remote Desktop Protocol: Smart Card Virtual Channel Extension
Copyright © 2021 Microsoft Corporation

Release: June 25, 2021

5 Security

This protocol has no security aspects and relies on the underlying transport for any security.

5.1 Security Considerations for Implementers

None.

5.2 Index of Security Parameters

None.

78/ 92

[MS-RDPESC] - v20210625

Remote Desktop Protocol: Smart Card Virtual Channel Extension
Copyright © 2021 Microsoft Corporation

Release: June 25, 2021

6 Appendix A: Full IDL

For ease of implementation, the full Interface Definition Language (IDL) is provided below where
ms-dtyp.idl is the IDL as specified in [MS-DTYP] section 5 and ms-dcom.idl is the IDL as specified in
MS-DCOM] section 6.

import "ms-dtyp.idl";
import "ms-dcom.idl";

[
uuid (A35AF600-9CF4-11CD-A076-08002B2BD711),
version(1.0),
pointer default (unique)

]

interface type scard pack

{

//

// Packing for calls that use the same params

//

typedef struct REDIR SCARDCONTEXT

{
[range (0, 16)] unsigned long cbContext;
[unique] [size is(cbContext)] byte *pbContext;

} REDIR SCARDCONTEXT;

typedef struct REDIR SCARDHANDLE
{

REDIR SCARDCONTEXT Context;
[range (0, 16)] unsigned long cbHandle;
[size is(cbHandle)] byte *pbHandle;

} REDIR SCARDHANDLE;

typedef struct long Return
{

long ReturnCode;
} long Return;

typedef struct longAndMultiString Return
{

long ReturnCode;
[range (0, 65536)] unsigned long cBytes;
[unique] [size is(cBytes)] byte *msz;

} ListReaderGroups Return, ListReaders Return;

typedef struct Context Call
{

REDIR SCARDCONTEXT Context;
} Context Call;

typedef struct ContextAndStringA Call
{
REDIR SCARDCONTEXT Context;
[string] const char * sz;
} ContextAndStringA Call;

typedef struct ContextAndStringW Call
{
REDIR SCARDCONTEXT Context;
[string] const wchar t * sz;
} ContextAndStringW_Call;

typedef struct ContextAndTwoStringA Call
{
REDIR_SCARDCONTEXT Context;
[string] const char * szl;

79/ 92

[MS-RDPESC] - v20210625

Remote Desktop Protocol: Smart Card Virtual Channel Extension
Copyright © 2021 Microsoft Corporation

Release: June 25, 2021

%5bMS-DTYP%5d.pdf#Section_cca2742956894a16b2b49325d93e4ba2
%5bMS-DCOM%5d.pdf#Section_4a893f3dbd2948cd9f43d9777a4415b0

[string] const char *
} ContextAndTwoStringA Call;

typedef struct ContextAndTwoStringW Call
{
REDIR SCARDCONTEXT
[string] const wchar t *
[string] const wchar t *
} ContextAndTwoStringW Call;

//
// Call specific packing
/7
typedef struct EstablishContext Call
{
unsigned long
} EstablishContext Call;

typedef struct EstablishContext Return
{

long

REDIR_SCARDCONTEXT
} EstablishContext Return;

typedef struct ListReaderGroups Call
{

REDIR SCARDCONTEXT

long

unsigned long
} ListReaderGroups Call;

typedef struct ListReaders Call
{

s22;

Context;
szl;
sz2;

dwScope;

ReturnCode;
Context;

Context;
fmszGroupsIsNULL;
cchGroups;

REDIR SCARDCONTEXT Context;

[range (0, 65536)] unsigned long

[unique] [size is(cBytes)] const byte
long

unsigned long

} ListReaders Call;

typedef struct ReaderState Common Call
{
unsigned long
unsigned long
[range (0, 36)]1] unsigned long
byte
} ReaderState Common Call;

typedef struct ReaderStateA
{
[string] const char *
ReaderState Common Call
} ReaderStateA;

typedef struct ReaderStateW
{
[string] const wchar t *
ReaderState Common_ Call
} ReaderStateW;

typedef struct ReaderState Return
{
unsigned long
unsigned long
[range (0, 36)] unsigned long
byte
} ReaderState Return;

cBytes;
*mszGroups;
fmszReadersIsNULL;
cchReaders;

dwCurrentState;
dwEventState;
cbAtr;
rgbAtr[36];

szReader;
Common;

szReader;
Common;

dwCurrentState;
dwEventState;
cbAtr;
rgbAtr[36];

[MS-RDPESC] - v20210625

Remote Desktop Protocol: Smart Card Virtual Channel Extension

Copyright © 2021 Microsoft Corporation
Release: June 25, 2021

80/ 92

typedef struct GetStatusChangeA Call
{
REDIR SCARDCONTEXT
unsigned long
[range (0, 11)] unsigned long
[size is(cReaders)] ReaderStateA

} GetStatusChangeA Call;

typedef struct LocateCardsA Call ({

Context;

dwTimeOut;

cReaders;
*rgReaderStates;

REDIR SCARDCONTEXT Context;
[range (0, 65536)] unsigned long cBytes;

[size is(cBytes)] const byte * mszCards;
[range (0, 10)] unsigned long cReaders;

[size_is(cReaders)] ReaderStateA * rgReaderStates;

} LocateCardsA Call;

typedef struct LocateCardsW Call
{
REDIR_SCARDCONTEXT

[range (0, 65536)] unsigned long
[size is(cBytes)] const byte
[range (0, 10)] unsigned long
[size is(cReaders)] ReaderStateW

} LocateCardsW Call;

typedef struct LocateCards ATRMask
{
[range (0, 36)] unsigned long
byte
byte
} LocateCards ATRMask;

typedef struct LocateCardsByATRA Call

{
REDIR SCARDCONTEXT

[range (0, 1000)] unsigned long
[size is(cAtrs)] LocateCards ATRMask
[range (0, 10)] unsigned long
[size is(cReaders)] ReaderStateA

} LocateCardsByATRA Call;

typedef struct _LocateCardsByATRW Call

{
REDIR SCARDCONTEXT

[range (0, 1000)] unsigned long
[size_is(cAtrs)] LocateCards_ ATRMask
[range (0, 10)] unsigned long
[size is(cReaders)] ReaderStateW

} LocateCardsByATRW Call;

typedef struct GetStatusChange Return
{

long
[range (0, 10)] unsigned long
[size_is(cReaders)] ReaderState Return

} LocateCards Return, GetStatusChange Return;

typedef struct GetStatusChangeW Call
{
REDIR SCARDCONTEXT
unsigned long
[range (0, 11)] unsigned long
[size_is(cReaders)] ReaderStateW

Context;

cBytes;
*mszCards;

cReaders;
*rgReaderStates;

cbAtr;
rgbAtr[36];
rgbMask([36];

Context;

cAtrs;
*rgAtrMasks;

cReaders;
*rgReaderStates;

Context;

cAtrs;
*rgAtrMasks;

cReaders;
*rgReaderStates;

ReturnCode;
cReaders;
*rgReaderStates;

Context;

dwTimeOut;

cReaders;
*rgReaderStates;

[MS-RDPESC] - v20210625
Remote Desktop Protocol: Smart Card Virtual Channel Extension
Copyright © 2021 Microsoft Corporation
Release: June 25, 2021

81 /92

} GetStatusChangeW Call;

typedef struct Connect Common
{

REDIR_SCARDCONTEXT Context;
unsigned long dwShareMode;
unsigned long dwPreferredProtocols;

} Connect Common;

typedef struct ConnectA Call
{
[string] const char * szReader;
Connect Common Common ;
} ConnectA Call;

typedef struct ConnectW Call
{
[string] const wchar t * szReader;
Connect Common Common;
} ConnectW Call;

typedef struct Connect Return

{

long ReturnCode;
REDIR SCARDHANDLE hCard;
unsigned long dwActiveProtocol;

} Connect Return;

typedef struct Reconnect Call
{

REDIR SCARDHANDLE hCard;

unsigned long dwShareMode;

unsigned long dwPreferredProtocols;
unsigned long dwInitialization;

} Reconnect Call;

typedef struct Reconnect Return
{
long ReturnCode;
unsigned long dwActiveProtocol;
} Reconnect Return;

typedef struct HCardAndDisposition Call
{
REDIR SCARDHANDLE hCard;
unsigned long dwDisposition;
} HCardAndDisposition Call;

typedef struct State Call
{

REDIR_SCARDHANDLE hCard;
long fpbAtrIsNULL;
unsigned long cbAtrLen;

// EDITOR'S NOTE: Can be OxFFFFFFFF
} State Call;

typedef struct State Return
{

long ReturnCode;

unsigned long dwState;

unsigned long dwProtocol;
[range (0, 36)] unsigned long cbAtrLen;
[unique] [size is(cbAtrLen)] byte *rgAtr;

} State_Return;

typedef struct _Status Call

[MS-RDPESC] - v20210625

Remote Desktop Protocol: Smart Card Virtual Channel Extension
Copyright © 2021 Microsoft Corporation

Release: June 25, 2021

82 /92

REDIR SCARDHANDLE hCard;

long fmszReaderNamesIsNULL;
unsigned long cchReaderLen;
unsigned long cbAtrLen;

} Status Call;
typedef struct Status Return
{

long ReturnCode;
[range (0, 65536)] unsigned long cBytes;
[unique] [size is(cBytes)] byte *mszReaderNames;

unsigned long dwState;
unsigned long dwProtocol;
byte pbAtr[32];
[range (0, 32)] unsigned long cbAtrLen;
} Status Return;

typedef struct SCardIO Request
{
unsigned long dwProtocol;
[range (0, 1024)] unsigned long cbExtraBytes;
[unique] [size is(cbExtraBytes)] byte *pbExtraBytes;
} SCardIO Request;
typedef struct Transmit Call
{
REDIR SCARDHANDLE hCard;

SCardIO Request ioSendPci;
[range (0, 66560)] unsigned long cbSendLength;
[size is(cbSendLength)] const byte *pbSendBuffer;
[unique] SCardIO Request *pioRecvPci;
long fpbRecvBufferIsNULL;
unsigned long cbRecvLength;

} Transmit Call;
typedef struct Transmit Return

{

long ReturnCode;
[unique] SCardIO Request *pioRecvPci;
[range (0, 66560)] unsigned long cbRecvLength;
[unique] [size is(cbRecvLength)] byte *pbRecvBuffer;

} Transmit Return;

typedef struct GetTransmitCount Call
{

REDIR_SCARDHANDLE hCard;
} GetTransmitCount Call;

typedef struct GetTransmitCount Return
{
long ReturnCode;
unsigned long cTransmitCount;
} GetTransmitCount Return;

typedef struct Control Call

{
REDIR SCARDHANDLE hCard;

unsigned long dwControlCode;
[range (0, 66560)] unsigned long cbInBufferSize;
[unique] [size is(cbInBufferSize)] const byte “*pvInBuffer;
long fpvOutBufferIsNULL;
unsigned long cbOutBufferSize;
} Control Call;
typedef struct Control Return
{
long ReturnCode;
[range (0, 66560)] unsigned long cbOutBufferSize;
[unique] [size is(cbOutBufferSize)] byte *pvOutBuffer;

} Control Return;

[MS-RDPESC] - v20210625

Remote Desktop Protocol: Smart Card Virtual Channel Extension
Copyright © 2021 Microsoft Corporation

Release: June 25, 2021

83 /92

typedef struct GetAttrib Call
{

REDIR SCARDHANDLE hCard;
unsigned long dwAttrId;

long fpbAttrIsNULL;
unsigned long cbAttrLen;

} GetAttrib Call;

typedef struct _GetAttrib Return
{

long ReturnCode;
[range (0, 65536)] unsigned long cbAttrLen;
[unique] [size is(cbAttrLen)] byte *pbAttr;
} GetAttrib Return;
typedef struct SetAttrib Call
{
REDIR SCARDHANDLE hCard;
unsigned long dwAttrId;
[range (0, 65536)] unsigned long cbAttrLen;
[size is(cbAttrLen)] const byte *pbAttr;
} SetAttrib Call;
typedef struct ReadCache Common
{
REDIR SCARDCONTEXT Context;
UuIiD *CardIdentifier;
unsigned long FreshnessCounter;
long fPbDatalsNULL;
unsigned long cbDatalen;
} ReadCache Common;
typedef struct ReadCacheA Call
{
[string] char * szLookupName;
ReadCache Common Common ;
} ReadCacheA Call;
typedef struct ReadCacheW Call
{
[string] wchar t * szLookupName;
ReadCache Common Common;
} ReadCacheW Call;
typedef struct ReadCache Return
{
long ReturnCode;
[range (0, 65536)] unsigned long cbDatalen;
[unique] [size is(cbDatalLen)] byte *pbData;

} ReadCache Return;

typedef struct WriteCache Common

{
REDIR SCARDCONTEXT Context;

UUID *CardIdentifier;

unsigned long FreshnessCounter;
[range (0, 65536)] unsigned long cbDatalLen;
[unique] [size is(cbDatalen)] byte *pbData;

} WriteCache Common;

typedef struct WriteCacheA Call
{
[string] char * szLookupName;
WriteCache Common Common;
} WriteCacheA Call;

typedef struct WriteCacheW Call
{

[MS-RDPESC] - v20210625

Remote Desktop Protocol: Smart Card Virtual Channel Extension
Copyright © 2021 Microsoft Corporation

Release: June 25, 2021

84 /92

[string] wchar t * szLookupName;
WriteCache Common Common;
} WriteCacheW Call;
}

85/ 92

[MS-RDPESC] - v20210625

Remote Desktop Protocol: Smart Card Virtual Channel Extension
Copyright © 2021 Microsoft Corporation

Release: June 25, 2021

7 Appendix B: Product Behavior

The information in this specification is applicable to the following Microsoft products or supplemental
software. References to product versions include updates to those products.

= Windows XP operating system

= Windows Server 2003 operating system

= Windows Vista operating system

= Windows Server 2008 operating system

= Windows 7 operating system

= Windows Server 2008 R2 operating system
= Windows 8 operating system

= Windows Server 2012 operating system

= Windows 8.1 operating system

= Windows Server 2012 R2 operating system
= Windows 10 operating system

= Windows Server 2016 operating system

= Windows Server operating system

= Windows Server 2019 operating system

= Windows Server 2022 operating system

= Windows 11 operating system

Exceptions, if any, are noted in this section. If an update version, service pack or Knowledge Base
(KB) number appears with a product name, the behavior changed in that update. The new behavior
also applies to subsequent updates unless otherwise specified. If a product edition appears with the
product version, behavior is different in that product edition.

Unless otherwise specified, any statement of optional behavior in this specification that is prescribed
using the terms "SHOULD" or "SHOULD NOT" implies product behavior in accordance with the
SHOULD or SHOULD NOT prescription. Unless otherwise specified, the term "MAY" implies that the
product does not follow the prescription.

<1> Section 1.7: The Windows XP and Windows Server 2003 versions always use
SCREDIR_VERSION_XP. Windows Vista and Windows Server 2008 are always
SCREDIR_VERSION_LONGHORN. All other versions use SCREDIR_VERSION_WINDOWS_38.

<2> Section 3.1.4: Windows XP and Windows Server 2003 implement function numbers 5 through 58.
Windows Vista, Windows Server 2008, Windows 7, and Windows Server 2008 R2 implement function
numbers 5 through 64. All other versions implement 5 through 66.

86 /92

[MS-RDPESC] - v20210625

Remote Desktop Protocol: Smart Card Virtual Channel Extension
Copyright © 2021 Microsoft Corporation

Release: June 25, 2021

8 Change Tracking

This section identifies changes that were made to this document since the last release. Changes are
classified as Major, Minor, or None.

The revision class Major means that the technical content in the document was significantly revised.
Major changes affect protocol interoperability or implementation. Examples of major changes are:

= A document revision that incorporates changes to interoperability requirements.
= A document revision that captures changes to protocol functionality.

The revision class Minor means that the meaning of the technical content was clarified. Minor changes
do not affect protocol interoperability or implementation. Examples of minor changes are updates to
clarify ambiguity at the sentence, paragraph, or table level.

The revision class None means that no new technical changes were introduced. Minor editorial and
formatting changes may have been made, but the relevant technical content is identical to the last
released version.

The changes made to this document are listed in the following table. For more information, please
contact dochelp@microsoft.com.

Section Description Revision class

7 Appendix B: Product Behavior | Updated for this version of Windows Client. | Major

87/ 92

[MS-RDPESC] - v20210625

Remote Desktop Protocol: Smart Card Virtual Channel Extension
Copyright © 2021 Microsoft Corporation

Release: June 25, 2021

mailto:dochelp@microsoft.com

9 Index
A

Abstract data model

client 63

server 50
Access Mode Flags packet 43
Applicability 16

Begin transaction call example 75
Begin transaction return example 76

C

Capability negotiation 16
Card Reader State packet 42
Change tracking 87
Client
abstract data model 63
higher-layer triggered events 63
initialization 63
local events 72
message processing 63
Processing Incoming Replies method 63
Sending Outgoing Messages method 63
seguencing rules 63
structures (section 2.2.1 18, section 2.2.3 36)
timer events 72
timers 63
Common data types 18
Connect call example 75
Connect return example 75
Connect Common structure 19
Connect Return structure 39
ConnectA Call structure 28
ConnectW_Call structure 28
Context Call structure 22
ContextAndStringA Call structure 24
ContextAndStringW_Call structure 24
ContextAndTwoStringA Call structure 25
ContextAndTwoStringW Call structure 26
Control Call structure 32
Control Return structure 38

D

Data model - abstract

client 63

server 50
Data types 18

common - overview 18
Disconnect call example 77
Disconnect return example 77

End transaction call example 76
End transaction return example 76
Establish context call example 74
Establish context return example 74

EstablishContext Call structure 22
EstablishContext Return structure 37
Events
local - client 72
local - server 62
timer - client 72
timer - server 62
Examples
begin transaction call 75
begin transaction call example 75
begin transaction return 76
begin transaction return example 76
connect call 75
connect call example 75
connect return 75
connect return example 75
disconnect call 77
disconnect call example 77
disconnect return 77
disconnect return example 77
end transaction call 76
end transaction call example 76
end transaction return 76
end transaction return example 76
establish context call 74
establish context call example 74
establish context return 74
establish context return example 74
get status change call 74
get status change call example 74
get status change return 75
get status change return example 75
list reader call example 74
list reader return example 74
list readers call 74
list readers return 74
overview 73
release context call 77
release context call example 77
release context return 77
release context return example 77
status call 76
status call example 76
status return 76
status return example 76

F

Fields - vendor-extensible 16
Full IDL 79

G

Get status change call example 74
Get status change return example 75
GetAttrib Call structure 32

GetAttrib Return structure 41
GetDeviceTypeld Call structure 36
GetDeviceTypeld Return structure 42
GetReaderIcon Call structure 36
GetReaderlIcon Return structure 41

[MS-RDPESC] - v20210625

Remote Desktop Protocol: Smart Card Virtual Channel Extension

Copyright © 2021 Microsoft Corporation
Release: June 25, 2021

88/ 92

GetStatusChange Return 38
GetStatusChangeA Call structure 27
GetStatusChangeW Call structure 28
GetTransmitCount Call structure 35
GetTransmitCount Return structure 41
Glossary 10

H

HCardAndDisposition Call structure 29
Higher-layer triggered events - client 63

I

IDL 79
Implementer - security considerations 78
Implementers - security considerations 78
Index of security parameters 78
Informative references 13
Initialization

client 63

server 50
Introduction 10

L

List reader call example 74
List reader return example 74
List readers call example 74
List readers return example 74
ListReaderGroups Call structure 23
ListReaderGroups Return structure 37
ListReaders Call structure 23
ListReaders Return 37
Local events

client 72

server 62
LocateCards ATRMask structure 19
LocateCards Return structure 38
LocateCardsA Call structure 26
LocateCardsByATRA Call structure 33
LocateCardsByATRW Call structure 34
LocateCardsW _Call structure 27
Long Return structure 37

Message processing
client 63
server 50
Messages
common data types 18
names 64
overview 18
processing incoming replies 63
sending outgoing messages 63
transport 18
Methods
Processing Incoming Replies 63
SCARD IOCTL ACCESSSTARTEDEVENT (IOCTL
0x000900EQ) 54
SCARD IOCTL ADDREADERTOGROUPA (IOCTL
0x00090070) 57
SCARD IOCTL ADDREADERTOGROUPW (IOCTL
0x00090074) 57

SCARD IOCTL BEGINTRANSACTION (IOCTL
0x000900BC) 59

SCARD IOCTL CANCEL (IOCTL 0x000900A8) 59

SCARD IOCTL CONNECTA (IOCTL 0x000900AC)

SCARD IOCTL CONNECTW (IOCTL 0x000900B0)

SCARD IOCTL CONTROL (IOCTL 0x000900D4) 60
SCARD IOCTL DISCONNECT (IOCTL 0x000900B8)

SCARD IOCTL ENDTRANSACTION (IOCTL
0x000900C0) 59

SCARD IOCTL ESTABLISHCONTEXT (IOCTL
0x00090014) 54

SCARD IOCTL FORGETREADERA (IOCTL
0x00090068) 56

SCARD IOCTL FORGETREADERGROUPA (IOCTL
0x00090058) 56

SCARD IOCTL FORGETREADERGROUPW (IOCTL
0x0009005C) 56

SCARD _IOCTL FORGETREADERW (IOCTL
0x0009006C) 57

SCARD _IOCTL GETATTRIB (IOCTL 0x000900D8)
60

SCARD IOCTL GETDEVICETYPEID (IOCTL
0x00090108) 62

SCARD IOCTL GETREADERICON (IOCTL
0x00090104) 62

SCARD IOCTL GETSTATUSCHANGEA (IOCTL
0x000900A0) 58

SCARD IOCTL GETSTATUSCHANGEW (IOCTL
0x000900A4) 58

SCARD IOCTL GETTRANSMITCOUNT (IOCTL
0x00090100) 61

SCARD IOCTL INTRODUCEREADERA (IOCTL
0x00090060) 56

SCARD IOCTL INTRODUCEREADERGROUPA
(IOCTL 0x00090050) 55

SCARD IOCTL INTRODUCEREADERGROUPW

(IOCTL 0x00090054) 56
SCARD IOCTL INTRODUCEREADERW (IOCTL

0x00090064) 56
SCARD IOCTL ISVALIDCONTEXT (IOCTL

0x0009001C) 54
SCARD IOCTL LISTREADERGROUPSA (IOCTL

0x00090020) 55
SCARD IOCTL LISTREADERGROUPSW (IOCTL

0x00090024) 55
SCARD IOCTL LISTREADERSA (IOCTL

0x00090028) 55
SCARD IOCTL LISTREADERSW (IOCTL

0x0009002C) 55
SCARD IOCTL LOCATECARDSA (IOCTL

0x00090098) 57
SCARD IOCTL LOCATECARDSBYATRA (IOCTL

0x000900EB8) 58
SCARD IOCTL LOCATECARDSBYATRW (IOCTL

0x000900EC) 58
SCARD IOCTL LOCATECARDSW (IOCTL

0x0009009C) 58
SCARD IOCTL READCACHEA (IOCTL 0x000900F0)

61
SCARD IOCTL READCACHEW (IOCTL

0x000900F4) 61

[MS-RDPESC] - v20210625

Remote Desktop Protocol: Smart Card Virtual Channel Extension

Copyright © 2021 Microsoft Corporation
Release: June 25, 2021

89/ 92

SCARD IOCTL RECONNECT (IOCTL 0x000900B4)
60

SCARD IOCTL RELEASECONTEXT (IOCTL
0x00090018) 54

SCARD IOCTL RELEASETARTEDEVENT 62

SCARD _IOCTL REMOVEREADERFROMGROUPA
(IOCTL 0x00090078) 57

SCARD IOCTL REMOVEREADERFROMGROUPW
(IOCTL 0x0009007C) 57

SCARD IOCTL SETATTRIB (IOCTL 0x000900DC)
61

SCARD IOCTL STATE (IOCTL 0x000900C4) 61

SCARD IOCTL STATUSA (IOCTL 0x000900C8) 60

SCARD IOCTL STATUSW (IOCTL 0x000900CC) 60

SCARD IOCTL TRANSMIT (IOCTL 0x000900D0)
60

SCARD IOCTL WRITECACHEA (IOCTL
0x000900F8) 62

SCARD IOCTL WRITECACHEW (IOCTL

0x000900FC) 62
Sending Outgoing Messages 63

Normative references 12

o

Outgoing messages - sending 63
Overview (synopsis) 13

P

Parameters - security 78
Parameters - security index 78
Preconditions 15
Prerequisites 15
Processing Incoming Replies method 63
Product behavior 86
Protocol Details
overview 50
Protocol Identifier packet 42

R

ReadCache Common structure 21
ReadCache Return structure 36
ReadCacheA Call structure 34
ReadCacheW Call structure 34
Reader State packet 44
ReaderState Common_Call structure 19
ReaderState Return structure 21
ReaderStateA structure 20
ReaderStateW structure 20
Reconnect Call structure 28
Reconnect Return structure 38
REDIR SCARDCONTEXT structure 18
REDIR SCARDHANDLE structure 18
References 12

informative 13

normative 12
Relationship to other protocols 15
Release context call example 77
Release context return example 77
Replies - processing 63

Return Code packet 45

S

SCARD IOCTL ACCESSSTARTEDEVENT (IOCTL

0x000900E0) method 54
SCARD IOCTL ADDREADERTOGROUPA (IOCTL

0x00090070) method 57
SCARD IOCTL ADDREADERTOGROUPW (IOCTL

0x00090074) method 57
SCARD IOCTL BEGINTRANSACTION (IOCTL

0x000900BC) method 59
SCARD IOCTL CANCEL (IOCTL 0x000900A8)

method 59
SCARD IOCTL CONNECTA (IOCTL 0x000900AQC)

method 59
SCARD IOCTL CONNECTW (IOCTL 0x000900B0)

method 59
SCARD_IOCTL CONTROL (IOCTL 0x000900D4)

method 60
SCARD IOCTL DISCONNECT (IOCTL 0x000900B8)

method 59
SCARD IOCTL ENDTRANSACTION (IOCTL

0x000900C0) method 59
SCARD IOCTL ESTABLISHCONTEXT (IOCTL

0x00090014) method 54
SCARD IOCTL FORGETREADERA (IOCTL

0x00090068) method 56
SCARD IOCTL FORGETREADERGROUPA (IOCTL

0x00090058) method 56
SCARD IOCTL FORGETREADERGROUPW (IOCTL

0x0009005C) method 56
SCARD IOCTL FORGETREADERW (IOCTL

0x0009006C) method 57
SCARD IOCTL GETATTRIB (IOCTL 0x000900D8)

method 60
SCARD IOCTL GETDEVICETYPEID (IOCTL

0x00090108) method 62
SCARD IOCTL GETREADERICON (IOCTL

0x00090104) method 62
SCARD IOCTL GETSTATUSCHANGEA (IOCTL

0x000900A0) method 58
SCARD IOCTL GETSTATUSCHANGEW (IOCTL

0x000900A4) method 58
SCARD IOCTL GETTRANSMITCOUNT (IOCTL

0x00090100) method 61
SCARD IOCTL INTRODUCEREADERA (IOCTL

0x00090060) method 56
SCARD IOCTL INTRODUCEREADERGROUPA (IOCTL

0x00090050) method 55
SCARD IOCTL INTRODUCEREADERGROUPW (IOCTL

0x00090054) method 56
SCARD IOCTL INTRODUCEREADERW (IOCTL

0x00090064) method 56
SCARD IOCTL ISVALIDCONTEXT (IOCTL

0x0009001C) method 54
SCARD IOCTL LISTREADERGROUPSA (IOCTL

0x00090020) method 55
SCARD IOCTL LISTREADERGROUPSW (IOCTL

0x00090024) method 55
SCARD IOCTL LISTREADERSA (IOCTL 0x00090028)

method 55
SCARD_IOCTL LISTREADERSW (IOCTL

0x0009002C) method 55

[MS-RDPESC] - v20210625

90/ 92

Remote Desktop Protocol: Smart Card Virtual Channel Extension

Copyright © 2021 Microsoft Corporation
Release: June 25, 2021

SCARD IOCTL LOCATECARDSA (IOCTL
0x00090098) method 57

SCARD IOCTL LOCATECARDSBYATRA (IOCTL
0x000900E8) method 58

SCARD IOCTL LOCATECARDSBYATRW (IOCTL
0x000900EC) method 58

SCARD IOCTL LOCATECARDSW (IOCTL
0x0009009C) method 58

SCARD IOCTL READCACHEA (IOCTL 0x000900F0)
method 61

SCARD IOCTL READCACHEW (IOCTL 0x000900F4)
method 61

SCARD IOCTL RECONNECT (IOCTL 0x000900B4)
method 60

SCARD IOCTL RELEASECONTEXT (IOCTL
0x00090018) method 54

SCARD IOCTL RELEASETARTEDEVENT method 62

SCARD_IOCTL REMOVEREADERFROMGROUPA
(IO0CTL 0x00090078) method 57

SCARD_IOCTL REMOVEREADERFROMGROUPW
(IOCTL 0x0009007C) method 57

SCARD IOCTL SETATTRIB (IOCTL 0x000900DC)
method 61

SCARD IOCTL STATE (IOCTL 0x000900C4) method
61

SCARD IOCTL STATUSA (IOCTL 0x000900C8)
method 60

SCARD IOCTL STATUSW (IOCTL 0x000900CC)
method 60

SCARD IOCTL TRANSMIT (IOCTL 0x000900D0)
method 60

SCARD IOCTL WRITECACHEA (IOCTL 0x000900F8)
method 62

SCARD IOCTL WRITECACHEW (IOCTL 0x000900FC)

SCARD IOCTL DISCONNECT (IOCTL 0x000900B8)

method 59
SCARD IOCTL ENDTRANSACTION (IOCTL

0x000900C0) method 59
SCARD IOCTL ESTABLISHCONTEXT (IOCTL

0x00090014) method 54
SCARD IOCTL FORGETREADERA (IOCTL

0x00090068) method 56
SCARD IOCTL FORGETREADERGROUPA (IOCTL

0x00090058) method 56
SCARD IOCTL FORGETREADERGROUPW (IOCTL

0x0009005C) method 56
SCARD IOCTL FORGETREADERW (IOCTL

0x0009006C) method 57
SCARD IOCTL GETATTRIB (IOCTL 0x000900D8)

method 60
SCARD IOCTL GETDEVICETYPEID (IOCTL

0x00090108) method 62
SCARD IOCTL GETREADERICON (IOCTL

0x00090104) method 62
SCARD IOCTL GETSTATUSCHANGEA (IOCTL

0x000900A0) method 58
SCARD IOCTL GETSTATUSCHANGEW (IOCTL

0x000900A4) method 58
SCARD IOCTL GETTRANSMITCOUNT (IOCTL

0x00090100) method 61
SCARD IOCTL INTRODUCEREADERA (IOCTL

0x00090060) method 56
SCARD IOCTL INTRODUCEREADERGROUPA

(IOCTL 0x00090050) method 55
SCARD IOCTL INTRODUCEREADERGROUPW

(IOCTL 0x00090054) method 56
SCARD IOCTL INTRODUCEREADERW (IOCTL

method 62
ScardAccessStartedEvent Call packet 35
SCardIO Request structure 20
Security 78
implementer considerations 78
parameter index 78
Sending Outgoing Messages method 63
Sequencing rules
client 63
server 50
Server
abstract data model 50
initialization 50
local events 62
message processing 50
SCARD IOCTL ACCESSSTARTEDEVENT (IOCTL
0x000900EQ) method 54
SCARD IOCTL ADDREADERTOGROUPA (IOCTL
0x00090070) method 57
SCARD IOCTL ADDREADERTOGROUPW (IOCTL
0x00090074) method 57
SCARD IOCTL BEGINTRANSACTION (IOCTL
0x000900BC) method 59
SCARD IOCTL CANCEL (IOCTL 0x000900A8)
method 59
SCARD IOCTL CONNECTA (IOCTL 0x000900ACQ)
method 59
SCARD IOCTL CONNECTW (IOCTL 0x000900B0)
method 59
SCARD IOCTL CONTROL (IOCTL 0x000900D4)
method 60

0x00090064) method 56
SCARD IOCTL ISVALIDCONTEXT (IOCTL

0x0009001C) method 54
SCARD IOCTL LISTREADERGROUPSA (IOCTL

0x00090020) method 55
SCARD IOCTL LISTREADERGROUPSW (IOCTL

0x00090024) method 55
SCARD IOCTL LISTREADERSA (IOCTL

0x00090028) method 55
SCARD IOCTL LISTREADERSW (IOCTL

0x0009002C) method 55
SCARD IOCTL LOCATECARDSA (IOCTL

0x00090098) method 57
SCARD IOCTL LOCATECARDSBYATRA (IOCTL

0x000900E8) method 58
SCARD IOCTL LOCATECARDSBYATRW (IOCTL

0x000900EC) method 58
SCARD IOCTL LOCATECARDSW (IOCTL

0x0009009C) method 58
SCARD IOCTL READCACHEA (IOCTL 0x000900F0)

method 61
SCARD IOCTL READCACHEW (IOCTL

0x000900F4) method 61
SCARD IOCTL RECONNECT (IOCTL 0x000900B4)

method 60
SCARD IOCTL RELEASECONTEXT (IOCTL

0x00090018) method 54
SCARD IOCTL RELEASETARTEDEVENT method 62

SCARD_IOCTL REMOVEREADERFROMGROUPA

(IOCTL 0x00090078) method 57
SCARD_IOCTL REMOVEREADERFROMGROUPW

(IOCTL 0x0009007C) method 57

[MS-RDPESC] - v20210625

Remote Desktop Protocol: Smart Card Virtual Channel Extension

Copyright © 2021 Microsoft Corporation
Release: June 25, 2021

91/92

SCARD IOCTL SETATTRIB (IOCTL 0x000900DC)
method 61
SCARD IOCTL STATE (IOCTL 0x000900C4)
method 61
SCARD IOCTL STATUSA (IOCTL 0x000900C8)
method 60
SCARD IOCTL STATUSW (IOCTL 0x000900CC)
method 60
SCARD IOCTL TRANSMIT (IOCTL 0x000900D0)
method 60
SCARD IOCTL WRITECACHEA (IOCTL
0x000900F8) method 62
SCARD IOCTL WRITECACHEW (IOCTL
0x000900FC) method 62
sequencing rules 50
structures (section 2.2.1 18, section 2.2.2 22)
timer events 62
timers 50
SetAttrib Call structure 33
Standards assignments 16
State Call structure 30
State Return structure 39
Status call example 76
Status return example 76
Status Call structure 30
Status Return structure 39
Structures
client (section 2.2.1 18, section 2.2.3 36)
server (section 2.2.1 18, section 2.2.2 22)

T

Timer events

client 72

server 62
Timers

client 63

server 50
Tracking changes 87
Transmit Call structure 31
Transmit Return structure 40
Transport 18
Transport - message 18
Triggered events - higher-layer - client 63

\'}

Vendor-extensible fields 16
Versioning 16

w

WriteCache Common structure 21
WriteCacheA Call structure 35
WriteCacheW Call structure 35

92 /92

[MS-RDPESC] - v20210625

Remote Desktop Protocol: Smart Card Virtual Channel Extension
Copyright © 2021 Microsoft Corporation

Release: June 25, 2021

	1 Introduction
	1.1 Glossary
	1.2 References
	1.2.1 Normative References
	1.2.2 Informative References

	1.3 Overview
	1.4 Relationship to Other Protocols
	1.5 Prerequisites/Preconditions
	1.6 Applicability Statement
	1.7 Versioning and Capability Negotiation
	1.8 Vendor-Extensible Fields
	1.9 Standards Assignments

	2 Messages
	2.1 Transport
	2.2 Common Data Types
	2.2.1 Common Structures
	2.2.1.1 REDIR_SCARDCONTEXT
	2.2.1.2 REDIR_SCARDHANDLE
	2.2.1.3 Connect_Common
	2.2.1.4 LocateCards_ATRMask
	2.2.1.5 ReaderState_Common_Call
	2.2.1.6 ReaderStateA
	2.2.1.7 ReaderStateW
	2.2.1.8 SCardIO_Request
	2.2.1.9 ReadCache_Common
	2.2.1.10 WriteCache_Common
	2.2.1.11 ReaderState_Return

	2.2.2 TS Server-Generated Structures
	2.2.2.1 EstablishContext_Call
	2.2.2.2 Context_Call
	2.2.2.3 ListReaderGroups_Call
	2.2.2.4 ListReaders_Call
	2.2.2.5 ContextAndStringA_Call
	2.2.2.6 ContextAndStringW_Call
	2.2.2.7 ContextAndTwoStringA_Call
	2.2.2.8 ContextAndTwoStringW_Call
	2.2.2.9 LocateCardsA_Call
	2.2.2.10 LocateCardsW_Call
	2.2.2.11 GetStatusChangeA_Call
	2.2.2.12 GetStatusChangeW_Call
	2.2.2.13 ConnectA_Call
	2.2.2.14 ConnectW_Call
	2.2.2.15 Reconnect_Call
	2.2.2.16 HCardAndDisposition_Call
	2.2.2.17 State_Call
	2.2.2.18 Status_Call
	2.2.2.19 Transmit_Call
	2.2.2.20 Control_Call
	2.2.2.21 GetAttrib_Call
	2.2.2.22 SetAttrib_Call
	2.2.2.23 LocateCardsByATRA_Call
	2.2.2.24 LocateCardsByATRW_Call
	2.2.2.25 ReadCacheA_Call
	2.2.2.26 ReadCacheW_Call
	2.2.2.27 WriteCacheA_Call
	2.2.2.28 WriteCacheW_Call
	2.2.2.29 GetTransmitCount_Call
	2.2.2.30 ScardAccessStartedEvent_Call
	2.2.2.31 GetReaderIcon_Call
	2.2.2.32 GetDeviceTypeId_Call

	2.2.3 TS Client-Generated Structures
	2.2.3.1 ReadCache_Return
	2.2.3.2 EstablishContext_Return
	2.2.3.3 Long_Return
	2.2.3.4 ListReaderGroups_Return and ListReaders_Return
	2.2.3.5 LocateCards_Return and GetStatusChange_Return
	2.2.3.6 Control_Return
	2.2.3.7 Reconnect_Return
	2.2.3.8 Connect_Return
	2.2.3.9 State_Return
	2.2.3.10 Status_Return
	2.2.3.11 Transmit_Return
	2.2.3.12 GetAttrib_Return
	2.2.3.13 GetTransmitCount_Return
	2.2.3.14 GetReaderIcon_Return
	2.2.3.15 GetDeviceTypeId_Return

	2.2.4 Card/Reader State
	2.2.5 Protocol Identifier
	2.2.6 Access Mode Flags
	2.2.7 Reader State
	2.2.8 Return Code

	3 Protocol Details
	3.1 Protocol Server Details
	3.1.1 Abstract Data Model
	3.1.2 Timers
	3.1.3 Initialization
	3.1.4 Message Processing Events and Sequencing Rules
	3.1.4.1 SCARD_IOCTL_ESTABLISHCONTEXT (IOCTL 0x00090014)
	3.1.4.2 SCARD_IOCTL_RELEASECONTEXT (IOCTL 0x00090018)
	3.1.4.3 SCARD_IOCTL_ISVALIDCONTEXT (IOCTL 0x0009001C)
	3.1.4.4 SCARD_IOCTL_ACCESSSTARTEDEVENT (IOCTL 0x000900E0)
	3.1.4.5 SCARD_IOCTL_LISTREADERGROUPSA (IOCTL 0x00090020)
	3.1.4.6 SCARD_IOCTL_LISTREADERGROUPSW (IOCTL 0x00090024)
	3.1.4.7 SCARD_IOCTL_LISTREADERSA (IOCTL 0x00090028)
	3.1.4.8 SCARD_IOCTL_LISTREADERSW (IOCTL 0x0009002C)
	3.1.4.9 SCARD_IOCTL_INTRODUCEREADERGROUPA (IOCTL 0x00090050)
	3.1.4.10 SCARD_IOCTL_INTRODUCEREADERGROUPW (IOCTL 0x00090054)
	3.1.4.11 SCARD_IOCTL_FORGETREADERGROUPA (IOCTL 0x00090058)
	3.1.4.12 SCARD_IOCTL_FORGETREADERGROUPW (IOCTL 0x0009005C)
	3.1.4.13 SCARD_IOCTL_INTRODUCEREADERA (IOCTL 0x00090060)
	3.1.4.14 SCARD_IOCTL_INTRODUCEREADERW (IOCTL 0x00090064)
	3.1.4.15 SCARD_IOCTL_FORGETREADERA (IOCTL 0x00090068)
	3.1.4.16 SCARD_IOCTL_FORGETREADERW (IOCTL 0x0009006C)
	3.1.4.17 SCARD_IOCTL_ADDREADERTOGROUPA (IOCTL 0x00090070)
	3.1.4.18 SCARD_IOCTL_ADDREADERTOGROUPW (IOCTL 0x00090074)
	3.1.4.19 SCARD_IOCTL_REMOVEREADERFROMGROUPA (IOCTL 0x00090078)
	3.1.4.20 SCARD_IOCTL_REMOVEREADERFROMGROUPW (IOCTL 0x0009007C)
	3.1.4.21 SCARD_IOCTL_LOCATECARDSA (IOCTL 0x00090098)
	3.1.4.22 SCARD_IOCTL_LOCATECARDSW (IOCTL 0x0009009C)
	3.1.4.23 SCARD_IOCTL_GETSTATUSCHANGEA (IOCTL 0x000900A0)
	3.1.4.24 SCARD_IOCTL_GETSTATUSCHANGEW (IOCTL 0x000900A4)
	3.1.4.25 SCARD_IOCTL_LOCATECARDSBYATRA (IOCTL 0x000900E8)
	3.1.4.26 SCARD_IOCTL_LOCATECARDSBYATRW (IOCTL 0x000900EC)
	3.1.4.27 SCARD_IOCTL_CANCEL (IOCTL 0x000900A8)
	3.1.4.28 SCARD_IOCTL_CONNECTA (IOCTL 0x000900AC)
	3.1.4.29 SCARD_IOCTL_CONNECTW (IOCTL 0x000900B0)
	3.1.4.30 SCARD_IOCTL_DISCONNECT (IOCTL 0x000900B8)
	3.1.4.31 SCARD_IOCTL_BEGINTRANSACTION (IOCTL 0x000900BC)
	3.1.4.32 SCARD_IOCTL_ENDTRANSACTION (IOCTL 0x000900C0)
	3.1.4.33 SCARD_IOCTL_STATUSA (IOCTL 0x000900C8)
	3.1.4.34 SCARD_IOCTL_STATUSW (IOCTL 0x000900CC)
	3.1.4.35 SCARD_IOCTL_TRANSMIT (IOCTL 0x000900D0)
	3.1.4.36 SCARD_IOCTL_RECONNECT (IOCTL 0x000900B4)
	3.1.4.37 SCARD_IOCTL_CONTROL (IOCTL 0x000900D4)
	3.1.4.38 SCARD_IOCTL_GETATTRIB (IOCTL 0x000900D8)
	3.1.4.39 SCARD_IOCTL_SETATTRIB (IOCTL 0x000900DC)
	3.1.4.40 SCARD_IOCTL_STATE (IOCTL 0x000900C4)
	3.1.4.41 SCARD_IOCTL_GETTRANSMITCOUNT (IOCTL 0x00090100)
	3.1.4.42 SCARD_IOCTL_READCACHEA (IOCTL 0x000900F0)
	3.1.4.43 SCARD_IOCTL_READCACHEW (IOCTL 0x000900F4)
	3.1.4.44 SCARD_IOCTL_WRITECACHEA (IOCTL 0x000900F8)
	3.1.4.45 SCARD_IOCTL_WRITECACHEW (IOCTL 0x000900FC)
	3.1.4.46 SCARD_IOCTL_RELEASETARTEDEVENT
	3.1.4.47 SCARD_IOCTL_GETREADERICON (IOCTL 0x00090104)
	3.1.4.48 SCARD_IOCTL_GETDEVICETYPEID (IOCTL 0x00090108)

	3.1.5 Timer Events
	3.1.6 Other Local Events

	3.2 Protocol Client Details
	3.2.1 Abstract Data Model
	3.2.2 Timers
	3.2.3 Initialization
	3.2.4 Higher-Layer Triggered Events
	3.2.5 Message Processing Events and Sequencing Rules
	3.2.5.1 Sending Outgoing Messages
	3.2.5.2 Processing Incoming Replies
	3.2.5.3 Messages
	3.2.5.3.1 Sending EstablishContext Message
	3.2.5.3.2 Processing EstablishContext Reply
	3.2.5.3.3 Sending ReleaseContext Message
	3.2.5.3.4 Processing ReleaseContext Reply
	3.2.5.3.5 Sending IntroduceReader (ASCII) Message
	3.2.5.3.6 Processing IntroduceReader (ASCII) Reply
	3.2.5.3.7 Sending IntroduceReader (Unicode) Message
	3.2.5.3.8 Processing IntroduceReader (Unicode) Reply
	3.2.5.3.9 Sending ForgetReader (ASCII) Message
	3.2.5.3.10 Processing ForgetReader (ASCII) Reply
	3.2.5.3.11 Sending ForgetReader (Unicode) Message
	3.2.5.3.12 Processing ForgetReader (Unicode) Reply
	3.2.5.3.13 Sending IntroduceReaderGroup (ASCII) Message
	3.2.5.3.14 Processing IntroduceReaderGroup (ASCII) Reply
	3.2.5.3.15 Sending IntroduceReaderGroup (Unicode) Message
	3.2.5.3.16 Processing IntroduceReaderGroup (Unicode) Reply
	3.2.5.3.17 Sending ForgetReaderGroup (ASCII) Message 1
	3.2.5.3.18 Processing ForgetReaderGroup (ASCII) Reply
	3.2.5.3.19 Sending ForgetReaderGroup (ASCII) Message 2
	3.2.5.3.20 Processing ForgetReaderGroup (Unicode) Reply
	3.2.5.3.21 Sending AddReaderToGroup (ASCII) Message
	3.2.5.3.22 Processing AddReaderToGroup (ASCII) Reply
	3.2.5.3.23 Sending AddReaderToGroup (Unicode) Message
	3.2.5.3.24 Processing AddReaderToGroup (Unicode) Reply
	3.2.5.3.25 Sending RemoveReaderFromGroup (ASCII) Message
	3.2.5.3.26 Processing RemoveReaderFromGroup (ASCII) Reply
	3.2.5.3.27 Sending RemoveReaderFromGroup (Unicode) Message
	3.2.5.3.28 Processing RemoveReaderFromGroup (Unicode) Reply
	3.2.5.3.29 Sending ListReaderGroups (ASCII) Message
	3.2.5.3.30 Processing ListReaderGroups (ASCII) Reply
	3.2.5.3.31 Sending ListReaderGroups (Unicode) Message
	3.2.5.3.32 Processing ListReaderGroups (Unicode) Reply
	3.2.5.3.33 Sending ListReaders (ASCII) Message
	3.2.5.3.34 Processing ListReadersReply (ASCII) Reply
	3.2.5.3.35 Sending ListReaders (Unicode) Message
	3.2.5.3.36 Processing ListReadersReply (Unicode) Reply
	3.2.5.3.37 Sending LocateCards (ASCII) Message
	3.2.5.3.38 Processing LocateCards (ASCII) Reply
	3.2.5.3.39 Sending LocateCards (Unicode) Message
	3.2.5.3.40 Processing LocateCards (Unicode) Reply
	3.2.5.3.41 Sending GetStatusChange (ASCII) Message
	3.2.5.3.42 Processing GetStatusChange (ASCII) Reply
	3.2.5.3.43 Sending GetStatusChange (Unicode) Message
	3.2.5.3.44 Processing GetStatusChange (Unicode) Reply
	3.2.5.3.45 Sending Cancel Message
	3.2.5.3.46 Processing Cancel Reply
	3.2.5.3.47 Sending Connect (ASCII) Message
	3.2.5.3.48 Processing Connect (ASCII) Reply
	3.2.5.3.49 Sending Connect (Unicode) Message
	3.2.5.3.50 Processing Connect (Unicode) Reply
	3.2.5.3.51 Sending Reconnect Message
	3.2.5.3.52 Processing Reconnect Reply
	3.2.5.3.53 Sending Disconnect Message
	3.2.5.3.54 Processing Disconnect Reply
	3.2.5.3.55 Sending Status (ASCII) Message
	3.2.5.3.56 Processing Status (ASCII) Reply
	3.2.5.3.57 Sending Status (Unicode) Message
	3.2.5.3.58 Processing Status (Unicode) Reply
	3.2.5.3.59 Sending State Message
	3.2.5.3.60 Processing State Message Reply
	3.2.5.3.61 Sending BeginTransaction Message
	3.2.5.3.62 Processing BeginTransaction Reply
	3.2.5.3.63 Sending EndTransaction Message
	3.2.5.3.64 Processing EndTransaction Reply
	3.2.5.3.65 Sending Transmit Message
	3.2.5.3.66 Processing Transmit Reply
	3.2.5.3.67 Sending Control Message
	3.2.5.3.68 Processing Control Reply
	3.2.5.3.69 Sending GetReaderCapabilities Message
	3.2.5.3.70 Processing GetReaderCapabilities Reply
	3.2.5.3.71 Sending SetReaderCapabilities Message
	3.2.5.3.72 Processing SetReaderCapabilities Reply
	3.2.5.3.73 Sending WaitForResourceManager Message
	3.2.5.3.74 Processing WaitForResourceManager Reply
	3.2.5.3.75 Sending LocateCardsByATR (ASCII) Message
	3.2.5.3.76 Processing LocateCardsByATR (Unicode) Reply
	3.2.5.3.77 Processing LocateCardsByATR (ASCII) Reply
	3.2.5.3.78 Sending LocateCardsByATR (Unicode) Message
	3.2.5.3.79 Sending ReadCache (ASCII) Message
	3.2.5.3.80 Processing ReadCache (ASCII) Reply
	3.2.5.3.81 Sending ReadCache (Unicode) Message
	3.2.5.3.82 Processing ReadCache (Unicode) Reply
	3.2.5.3.83 Sending WriteCache (ASCII) Message
	3.2.5.3.84 Processing WriteCache (ASCII) Reply
	3.2.5.3.85 Sending WriteCache (Unicode) Message
	3.2.5.3.86 Processing WriteCache (Unicode) Reply
	3.2.5.3.87 Sending GetTransmitCount Message
	3.2.5.3.88 Processing GetTransmitCount Reply
	3.2.5.3.89 Sending GetReaderIcon Message
	3.2.5.3.90 Processing GetReaderIcon Reply
	3.2.5.3.91 Sending GetDeviceTypeId Message
	3.2.5.3.92 Processing GetDeviceTypeId Reply

	3.2.6 Timer Events
	3.2.7 Other Local Events

	4 Protocol Examples
	4.1 Establish Context Call
	4.2 Establish Context Return
	4.3 List Readers Call
	4.4 List Readers Return
	4.5 Get Status Change Call
	4.6 Get Status Change Return
	4.7 Connect Call
	4.8 Connect Return
	4.9 Begin Transaction Call
	4.10 Begin Transaction Return
	4.11 Status Call
	4.12 Status Return
	4.13 End Transaction Call
	4.14 End Transaction Return
	4.15 Disconnect Call
	4.16 Disconnect Return
	4.17 Release Context Call
	4.18 Release Context Return

	5 Security
	5.1 Security Considerations for Implementers
	5.2 Index of Security Parameters

	6 Appendix A: Full IDL
	7 Appendix B: Product Behavior
	8 Change Tracking
	9 Index

