[bookmark: _GoBack][MS-RDPEFS]:
Remote Desktop Protocol: File System Virtual Channel Extension

Intellectual Property Rights Notice for Open Specifications Documentation
· Technical Documentation. Microsoft publishes Open Specifications documentation (“this documentation”) for protocols, file formats, data portability, computer languages, and standards support. Additionally, overview documents cover inter-protocol relationships and interactions.
· Copyrights. This documentation is covered by Microsoft copyrights. Regardless of any other terms that are contained in the terms of use for the Microsoft website that hosts this documentation, you can make copies of it in order to develop implementations of the technologies that are described in this documentation and can distribute portions of it in your implementations that use these technologies or in your documentation as necessary to properly document the implementation. You can also distribute in your implementation, with or without modification, any schemas, IDLs, or code samples that are included in the documentation. This permission also applies to any documents that are referenced in the Open Specifications documentation.
· No Trade Secrets. Microsoft does not claim any trade secret rights in this documentation.
· Patents. Microsoft has patents that might cover your implementations of the technologies described in the Open Specifications documentation. Neither this notice nor Microsoft's delivery of this documentation grants any licenses under those patents or any other Microsoft patents. However, a given Open Specifications document might be covered by the Microsoft Open Specifications Promise or the Microsoft Community Promise. If you would prefer a written license, or if the technologies described in this documentation are not covered by the Open Specifications Promise or Community Promise, as applicable, patent licenses are available by contacting iplg@microsoft.com.
· Trademarks. The names of companies and products contained in this documentation might be covered by trademarks or similar intellectual property rights. This notice does not grant any licenses under those rights. For a list of Microsoft trademarks, visit www.microsoft.com/trademarks.
· Fictitious Names. The example companies, organizations, products, domain names, email addresses, logos, people, places, and events that are depicted in this documentation are fictitious. No association with any real company, organization, product, domain name, email address, logo, person, place, or event is intended or should be inferred.
Reservation of Rights. All other rights are reserved, and this notice does not grant any rights other than as specifically described above, whether by implication, estoppel, or otherwise.
Tools. The Open Specifications documentation does not require the use of Microsoft programming tools or programming environments in order for you to develop an implementation. If you have access to Microsoft programming tools and environments, you are free to take advantage of them. Certain Open Specifications documents are intended for use in conjunction with publicly available standards specifications and network programming art and, as such, assume that the reader either is familiar with the aforementioned material or has immediate access to it.
Revision Summary
	Date
	Revision History
	Revision Class
	Comments

	7/20/2007
	0.1
	Major
	MCPP Milestone 5 Initial Availability

	9/28/2007
	1.0
	Major
	Updated and revised the technical content.

	10/23/2007
	2.0
	Major
	Updated and revised the technical content.

	11/30/2007
	2.1
	Minor
	Clarified the meaning of the technical content.

	1/25/2008
	2.1.1
	Editorial
	Changed language and formatting in the technical content.

	3/14/2008
	2.1.2
	Editorial
	Changed language and formatting in the technical content.

	5/16/2008
	2.1.3
	Editorial
	Changed language and formatting in the technical content.

	6/20/2008
	2.2
	Minor
	Clarified the meaning of the technical content.

	7/25/2008
	3.0
	Major
	Updated and revised the technical content.

	8/29/2008
	3.0.1
	Editorial
	Changed language and formatting in the technical content.

	10/24/2008
	3.1
	Minor
	Clarified the meaning of the technical content.

	12/5/2008
	4.0
	Major
	Updated and revised the technical content.

	1/16/2009
	5.0
	Major
	Updated and revised the technical content.

	2/27/2009
	6.0
	Major
	Updated and revised the technical content.

	4/10/2009
	6.0.1
	Editorial
	Changed language and formatting in the technical content.

	5/22/2009
	7.0
	Major
	Updated and revised the technical content.

	7/2/2009
	8.0
	Major
	Updated and revised the technical content.

	8/14/2009
	9.0
	Major
	Updated and revised the technical content.

	9/25/2009
	10.0
	Major
	Updated and revised the technical content.

	11/6/2009
	11.0
	Major
	Updated and revised the technical content.

	12/18/2009
	12.0
	Major
	Updated and revised the technical content.

	1/29/2010
	13.0
	Major
	Updated and revised the technical content.

	3/12/2010
	14.0
	Major
	Updated and revised the technical content.

	4/23/2010
	14.1
	Minor
	Clarified the meaning of the technical content.

	6/4/2010
	15.0
	Major
	Updated and revised the technical content.

	7/16/2010
	15.0
	None
	No changes to the meaning, language, or formatting of the technical content.

	8/27/2010
	15.0
	None
	No changes to the meaning, language, or formatting of the technical content.

	10/8/2010
	15.0
	None
	No changes to the meaning, language, or formatting of the technical content.

	11/19/2010
	15.0
	None
	No changes to the meaning, language, or formatting of the technical content.

	1/7/2011
	15.0
	None
	No changes to the meaning, language, or formatting of the technical content.

	2/11/2011
	16.0
	Major
	Updated and revised the technical content.

	3/25/2011
	17.0
	Major
	Updated and revised the technical content.

	5/6/2011
	17.0
	None
	No changes to the meaning, language, or formatting of the technical content.

	6/17/2011
	17.1
	Minor
	Clarified the meaning of the technical content.

	9/23/2011
	17.1
	None
	No changes to the meaning, language, or formatting of the technical content.

	12/16/2011
	18.0
	Major
	Updated and revised the technical content.

	3/30/2012
	18.0
	None
	No changes to the meaning, language, or formatting of the technical content.

	7/12/2012
	19.0
	Major
	Updated and revised the technical content.

	10/25/2012
	20.0
	Major
	Updated and revised the technical content.

	1/31/2013
	20.0
	None
	No changes to the meaning, language, or formatting of the technical content.

	8/8/2013
	21.0
	Major
	Updated and revised the technical content.

	11/14/2013
	21.0
	None
	No changes to the meaning, language, or formatting of the technical content.

	2/13/2014
	21.0
	None
	No changes to the meaning, language, or formatting of the technical content.

	5/15/2014
	21.0
	None
	No changes to the meaning, language, or formatting of the technical content.

	6/30/2015
	22.0
	Major
	Significantly changed the technical content.

	10/16/2015
	22.0
	None
	No changes to the meaning, language, or formatting of the technical content.

	7/14/2016
	23.0
	Major
	Significantly changed the technical content.

Table of Contents
1	Introduction	9
1.1	Glossary	9
1.2	References	10
1.2.1	Normative References	10
1.2.2	Informative References	10
1.3	Overview	10
1.3.1	Protocol Initialization	10
1.3.2	Drive Redirection	12
1.4	Relationship to Other Protocols	12
1.5	Prerequisites/Preconditions	12
1.6	Applicability Statement	13
1.7	Versioning and Capability Negotiation	13
1.8	Vendor-Extensible Fields	13
1.9	Standards Assignments	13
2	Messages	14
2.1	Transport	14
2.2	Message Syntax	14
2.2.1	Common Data Types	14
2.2.1.1	Shared Header (RDPDR_HEADER)	14
2.2.1.2	Capability Header (CAPABILITY_HEADER)	15
2.2.1.2.1	Capability Message (CAPABILITY_SET)	16
2.2.1.3	Device Announce Header (DEVICE_ANNOUNCE)	17
2.2.1.4	Device I/O Request (DR_DEVICE_IOREQUEST)	18
2.2.1.4.1	Device Create Request (DR_CREATE_REQ)	20
2.2.1.4.2	Device Close Request (DR_CLOSE_REQ)	21
2.2.1.4.3	Device Read Request (DR_READ_REQ)	21
2.2.1.4.4	Device Write Request (DR_WRITE_REQ)	22
2.2.1.4.5	Device Control Request (DR_CONTROL_REQ)	23
2.2.1.5	Device I/O Response (DR_DEVICE_IOCOMPLETION)	24
2.2.1.5.1	Device Create Response (DR_CREATE_RSP)	24
2.2.1.5.2	Device Close Response (DR_CLOSE_RSP)	25
2.2.1.5.3	Device Read Response (DR_READ_RSP)	26
2.2.1.5.4	Device Write Response (DR_WRITE_RSP)	26
2.2.1.5.5	Device Control Response (DR_CONTROL_RSP)	27
2.2.1.6	RDP_LOCK_INFO	28
2.2.2	Initialization Messages	28
2.2.2.1	Server Device Announce Response (DR_CORE_DEVICE_ANNOUNCE_RSP)	28
2.2.2.2	Server Announce Request (DR_CORE_SERVER_ANNOUNCE_REQ)	28
2.2.2.3	Client Announce Reply (DR_CORE_CLIENT_ANNOUNCE_RSP)	29
2.2.2.4	Client Name Request (DR_CORE_CLIENT_NAME_REQ)	30
2.2.2.5	Server User Logged On (DR_CORE_USER_LOGGEDON)	30
2.2.2.6	Server Client ID Confirm (DR_CORE_SERVER_CLIENTID_CONFIRM)	31
2.2.2.7	Server Core Capability Request (DR_CORE_CAPABILITY_REQ)	31
2.2.2.7.1	General Capability Set (GENERAL_CAPS_SET)	32
2.2.2.7.2	Printer Capability Set (PRINTER_CAPS_SET)	34
2.2.2.7.3	Port Capability Set (PORT_CAPS_SET)	34
2.2.2.7.4	Drive Capability Set (DRIVE_CAPS_SET)	35
2.2.2.7.5	Smart Card Capability Set (SMARTCARD_CAPS_SET)	35
2.2.2.8	Client Core Capability Response (DR_CORE_CAPABILITY_RSP)	35
2.2.2.9	Client Device List Announce Request (DR_CORE_DEVICELIST_ANNOUNCE_REQ)	35
2.2.3	Drive Redirection Messages	36
2.2.3.1	Client Device List Announce (DR_DEVICELIST_ANNOUNCE)	36
2.2.3.2	Client Drive Device List Remove (DR_DEVICELIST_REMOVE)	37
2.2.3.3	Server Drive I/O Request (DR_DRIVE_CORE_DEVICE_IOREQUEST)	37
2.2.3.3.1	Server Create Drive Request (DR_DRIVE_CREATE_REQ)	37
2.2.3.3.2	Server Close Drive Request (DR_DRIVE_CLOSE_REQ)	38
2.2.3.3.3	Server Drive Read Request (DR_DRIVE_READ_REQ)	38
2.2.3.3.4	Server Drive Write Request (DR_DRIVE_WRITE_REQ)	38
2.2.3.3.5	Server Drive Control Request (DR_DRIVE_CONTROL_REQ)	39
2.2.3.3.6	Server Drive Query Volume Information Request (DR_DRIVE_QUERY_VOLUME_INFORMATION_REQ)	40
2.2.3.3.7	Server Drive Set Volume Information Request (DR_DRIVE_SET_VOLUME_INFORMATION_REQ)	41
2.2.3.3.8	Server Drive Query Information Request (DR_DRIVE_QUERY_INFORMATION_REQ)	42
2.2.3.3.9	Server Drive Set Information Request (DR_DRIVE_SET_INFORMATION_REQ)	43
2.2.3.3.9.1	RDP_FILE_RENAME_INFORMATION	44
2.2.3.3.10	Server Drive Query Directory Request (DR_DRIVE_QUERY_DIRECTORY_REQ)	45
2.2.3.3.11	Server Drive NotifyChange Directory Request (DR_DRIVE_NOTIFY_CHANGE_DIRECTORY_REQ)	46
2.2.3.3.12	Server Drive Lock Control Request (DR_DRIVE_LOCK_REQ)	47
2.2.3.4	Client Drive I/O Response (DR_DRIVE_CORE_DEVICE_IOCOMPLETION)	48
2.2.3.4.1	Client Drive Create Response (DR_DRIVE_CREATE_RSP)	48
2.2.3.4.2	Client Drive Close Response (DR_DRIVE_CLOSE_RSP)	49
2.2.3.4.3	Client Drive Read Response (DR_DRIVE_READ_RSP)	49
2.2.3.4.4	Client Drive Write Response (DR_DRIVE_WRITE_RSP)	50
2.2.3.4.5	Client Drive Control Response (DR_DRIVE_CONTROL_RSP)	50
2.2.3.4.6	Client Drive Query Volume Information Response (DR_DRIVE_QUERY_VOLUME_INFORMATION_RSP)	50
2.2.3.4.7	Client Drive Set Volume Information Response (DR_DRIVE_SET_VOLUME_INFORMATION_RSP)	51
2.2.3.4.8	Client Drive Query Information Response (DR_DRIVE_QUERY_INFORMATION_RSP)	51
2.2.3.4.9	Client Drive Set Information Response (DR_DRIVE_SET_INFORMATION_RSP)	52
2.2.3.4.10	Client Drive Query Directory Response (DR_DRIVE_QUERY_DIRECTORY_RSP)	53
2.2.3.4.11	Client Drive NotifyChange Directory Response (DR_DRIVE_NOTIFY_CHANGE_DIRECTORY_RSP)	53
2.2.3.4.12	Client Drive Lock Control Response (DR_DRIVE_LOCK_RSP)	54
3	Protocol Details	55
3.1	Common Details	55
3.1.1	Abstract Data Model	55
3.1.2	Timers	55
3.1.3	Initialization	56
3.1.4	Higher-Layer Triggered Events	56
3.1.5	Message Processing Events and Sequencing Rules	56
3.1.5.1	Processing I/O Requests and Responses	57
3.1.5.2	Processing Packet Errors	57
3.1.6	Timer Events	58
3.1.7	Other Local Events	58
3.2	Client Details	58
3.2.1	Abstract Data Model	58
3.2.2	Timers	59
3.2.3	Initialization	59
3.2.4	Higher-Layer Triggered Events	59
3.2.5	Message Processing Events and Sequencing Rules	59
3.2.5.1	Initialization Messages	59
3.2.5.1.1	Processing a Server Device Announce Response Message	59
3.2.5.1.2	Processing a Server Announce Request Message	59
3.2.5.1.3	Sending a Client Announce Reply Message	59
3.2.5.1.4	Sending a Client Name Request Message	59
3.2.5.1.5	Processing a User Logged On Message	59
3.2.5.1.6	Processing a Server Client ID Confirm Message	60
3.2.5.1.7	Processing a Server Core Capability Request Message	60
3.2.5.1.8	Sending a Client Core Capability Response Message	60
3.2.5.1.9	Sending a Client Device List Announce Request Message	60
3.2.5.2	Drive Redirection Messages	60
3.2.5.2.1	Sending a Client Device List Announce Message	60
3.2.5.2.2	Sending a Client Drive Device List Remove Message	60
3.2.5.2.3	Processing a Server Create Drive Request Message	61
3.2.5.2.4	Sending a Client Create Drive Response Message	61
3.2.5.2.5	Processing a Server Close Drive Request Message	61
3.2.5.2.6	Sending a Client Close Drive Response Message	61
3.2.5.2.7	Processing a Server Drive Read Request Message	61
3.2.5.2.8	Sending a Client Drive Read Response Message	61
3.2.5.2.9	Processing a Server Drive Write Request Message	61
3.2.5.2.10	Sending a Client Drive Write Response Message	61
3.2.5.2.11	Processing a Server Drive Control Request Message	62
3.2.5.2.12	Sending a Client Drive Control Response Message	62
3.2.5.2.13	Processing a Server Drive Query Volume Information Request Message	62
3.2.5.2.14	Sending a Client Drive Query Volume Information Response Message	62
3.2.5.2.15	Processing a Server Drive Set Volume Information Request Message	62
3.2.5.2.16	Sending a Client Drive Set Volume Information Response Message	62
3.2.5.2.17	Processing a Server Drive Query Information Request Message	62
3.2.5.2.18	Sending a Client Drive Query Information Response Message	62
3.2.5.2.19	Processing a Server Drive Set Information Request Message	62
3.2.5.2.20	Sending a Client Drive Set Information Response Message	62
3.2.5.2.21	Processing a Server Drive Query Directory Request Message	62
3.2.5.2.22	Sending a Client Drive Query Directory Response Message	62
3.2.5.2.23	Processing a Server Drive Notify Change Directory Request Message	62
3.2.5.2.24	Sending a Client Drive Notify Change Directory Response Message	62
3.2.5.2.25	Processing a Server Drive Lock Control Request Message	63
3.2.5.2.26	Sending a Client Drive Lock Control Response Message	63
3.2.6	Timer Events	63
3.2.7	Other Local Events	63
3.3	Server Details	63
3.3.1	Abstract Data Model	63
3.3.2	Timers	63
3.3.3	Initialization	63
3.3.4	Higher-Layer Triggered Events	63
3.3.5	Message Processing Events and Sequencing Rules	63
3.3.5.1	Initialization Messages	63
3.3.5.1.1	Sending a Server Device Announce Response Message	63
3.3.5.1.2	Sending a Server Announce Request Message	64
3.3.5.1.3	Processing a Client Announce Reply Message	64
3.3.5.1.4	Processing a Client Name Request Message	64
3.3.5.1.5	Sending a Server User Logged On Message	64
3.3.5.1.6	Sending a Server Core Capability Request Message	64
3.3.5.1.7	Sending a Server Client ID Confirm Message	64
3.3.5.1.8	Processing a Client Core Capability Response Message	64
3.3.5.1.9	Processing a Client Device List Announce Message	64
3.3.5.2	Drive Redirection Messages	65
3.3.5.2.1	Processing a Client List Announce Message	65
3.3.5.2.2	Processing a Client Drive Device List Remove Message	65
3.3.5.2.3	Sending a Server Create Drive Request Message	65
3.3.5.2.4	Processing a Client Create Drive Response Message	65
3.3.5.2.5	Sending a Server Close Drive Request Message	65
3.3.5.2.6	Processing a Client Close Drive Response Message	65
3.3.5.2.7	Sending a Server Drive Read Request Message	65
3.3.5.2.8	Processing a Client Drive Read Response Message	65
3.3.5.2.9	Sending a Server Drive Write Request Message	65
3.3.5.2.10	Processing a Client Drive Write Response Message	65
3.3.5.2.11	Sending a Server Drive Control Request Message	66
3.3.5.2.12	Processing a Client Drive Control Response Message	66
3.3.5.2.13	Sending a Server Drive Query Volume Information Request Message	66
3.3.5.2.14	Processing a Client Drive Query Volume Information Response Message	66
3.3.5.2.15	Sending a Server Drive Set Volume Information Request Message	66
3.3.5.2.16	Processing a Client Drive Set Volume Information Response Message	66
3.3.5.2.17	Sending a Server Drive Query Information Request Message	66
3.3.5.2.18	Processing a Client Drive Query Information Response Message	66
3.3.5.2.19	Sending a Server Drive Set Information Request Message	66
3.3.5.2.20	Processing a Client Drive Set Information Response Message	66
3.3.5.2.21	Sending a Server Drive Query Directory Request Message	66
3.3.5.2.22	Processing a Client Drive Query Directory Response Message	66
3.3.5.2.23	Sending a Server Drive Notify Change Directory Request Message	66
3.3.5.2.24	Processing a Client Drive Notify Change Directory Response Message	66
3.3.5.2.25	Sending a Server Drive Lock Control Request Message	67
3.3.5.2.26	Processing a Client Drive Lock Control Response Message	67
3.3.6	Timer Events	67
3.3.7	Other Local Events	67
4	Protocol Examples	68
4.1	Packet Sequences	68
4.2	Server Device Announce Response	69
4.3	Server Announce Request	69
4.4	Client Announce Reply	69
4.5	Client Name Request	70
4.6	Server User Logged On	70
4.7	Server Client ID Confirm	70
4.8	Server Core Capability Request	70
4.9	Client Core Capability Response	71
4.10	Client Device List Announce Request	72
4.11	Client Drive Device List Remove	72
4.12	Server Create Drive Request	72
4.13	Client Drive Create Response	73
4.14	Server Close Drive Request	73
4.15	Client Drive Close Response	73
4.16	Server Drive Read Request	73
4.17	Client Drive Read Response	74
4.18	Server Drive Write Request	75
4.19	Client Drive Write Response	76
4.20	Server Drive Control Request	76
4.21	Client Drive Control Response	76
4.22	Drive Query Volume Information Request	76
4.23	Client Drive Query Volume Information Response	77
4.24	Server Drive Set Volume Information Request	77
4.25	Client Drive Set Volume Information Response	78
4.26	Server Drive Query Information Request	78
4.27	Client Drive Query Information Response	78
4.28	Server Drive Set Information Request	79
4.29	Client Drive Set Information Response	79
4.30	Server Drive Query Directory Request	79
4.31	Client Drive Query Directory Response	80
4.32	Server Drive NotifyChange Directory Request	81
4.33	Client Drive NotifyChange Directory Response	81
4.34	Server Drive Lock Control Request	81
4.35	Client Drive Lock Control Response	82
5	Security	83
5.1	Security Considerations for Implementers	83
5.2	Index of Security Parameters	83
6	Appendix A: Product Behavior	84
7	Change Tracking	86
8	Index	88

[bookmark: section_632fe39b4e854e4fbe040f39dd9257c0][bookmark: _Toc456184887]Introduction
This document specifies the Remote Desktop Protocol: File System Virtual Channel Extension, which runs over a static virtual channel with the name RDPDR. The purpose of this protocol is to redirect access from the server to the client file system.
Sections 1.5, 1.8, 1.9, 2, and 3 of this specification are normative. All other sections and examples in this specification are informative.
[bookmark: section_98b6177ce5ee459e9d50908201199626][bookmark: _Toc456184888]Glossary
This document uses the following terms:
[bookmark: gt_79fa85ca-ac61-467c-b819-e97dc1a7a599]ASCII: The American Standard Code for Information Interchange (ASCII) is an 8-bit character-encoding scheme based on the English alphabet. ASCII codes represent text in computers, communications equipment, and other devices that work with text. ASCII refers to a single 8-bit ASCII character or an array of 8-bit ASCII characters with the high bit of each character set to zero.
[bookmark: gt_60e0e1fa-66fe-41e1-b5e3-ceab97e53506]client: A computer on which the remote procedure call (RPC) client is executing.
[bookmark: gt_07b00435-bda8-4d5f-9403-ea2c40eb7e21]device driver: The software that the system uses to communicate with a device such as a display, printer, mouse, or communications adapter. An abstraction layer that restricts access of applications to various hardware devices on a given computer system. It is often referred to simply as a "driver".
[bookmark: gt_97348f88-b452-4d16-8215-99e44b209dd7]file system (device) driver: A software abstraction layer that restricts access of applications to the nonvolatile storage hardware on a given computer system.
[bookmark: gt_4ffb96a7-5fad-488e-9438-b7707d2e4226]file system control (FSCTL): A command issued to a file system to alter or query the behavior of the file system and/or set or query metadata that is associated with a particular file or with the file system itself.
[bookmark: gt_34715e6f-1612-4b2d-a4bb-3305c56e96f5]protocol data unit (PDU): Information that is delivered as a unit among peer entities of a network and that may contain control information, address information, or data. For more information on remote procedure call (RPC)-specific PDUs, see [C706] section 12.
[bookmark: gt_434b0234-e970-4e8c-bdfa-e16a30d96703]server: A computer on which the remote procedure call (RPC) server is executing.
[bookmark: gt_09dbec39-5e75-4d9a-babf-1c9f1d499625]Server Message Block (SMB): A protocol that is used to request file and print services from server systems over a network. The SMB protocol extends the CIFS protocol with additional security, file, and disk management support. For more information, see [CIFS] and [MS-SMB].
[bookmark: gt_bce830ab-d09f-4dbd-b7c2-d7c7df1ea60c]static virtual channel: A static transport used for lossless communication between a client component and a server component over a main data connection, as specified in [MS-RDPBCGR].
[bookmark: gt_fd33af2e-e1ce-4f8e-a706-f9fb8123f9b0]Unicode character: Unless otherwise specified, a 16-bit UTF-16 code unit.
[bookmark: gt_b069acb4-e364-453e-ac83-42d469bb339e]Unicode string: A Unicode 8-bit string is an ordered sequence of 8-bit units, a Unicode 16-bit string is an ordered sequence of 16-bit code units, and a Unicode 32-bit string is an ordered sequence of 32-bit code units. In some cases, it could be acceptable not to terminate with a terminating null character. Unless otherwise specified, all Unicode strings follow the UTF-16LE encoding scheme with no Byte Order Mark (BOM).
MAY, SHOULD, MUST, SHOULD NOT, MUST NOT: These terms (in all caps) are used as defined in [RFC2119]. All statements of optional behavior use either MAY, SHOULD, or SHOULD NOT.
[bookmark: section_3c97240a72e94cd5aaf06f1fbef454c8][bookmark: _Toc456184889]References
Links to a document in the Microsoft Open Specifications library point to the correct section in the most recently published version of the referenced document. However, because individual documents in the library are not updated at the same time, the section numbers in the documents may not match. You can confirm the correct section numbering by checking the Errata.
[bookmark: section_4f3c2a4675874818b827a499497dc7d2][bookmark: _Toc456184890]Normative References
We conduct frequent surveys of the normative references to assure their continued availability. If you have any issue with finding a normative reference, please contact dochelp@microsoft.com. We will assist you in finding the relevant information.
[MS-ERREF] Microsoft Corporation, "Windows Error Codes".
[MS-FSCC] Microsoft Corporation, "File System Control Codes".
[MS-RDPBCGR] Microsoft Corporation, "Remote Desktop Protocol: Basic Connectivity and Graphics Remoting".
[MS-RDPEPC] Microsoft Corporation, "Remote Desktop Protocol: Print Virtual Channel Extension".
[MS-RDPESC] Microsoft Corporation, "Remote Desktop Protocol: Smart Card Virtual Channel Extension".
[MS-RDPESP] Microsoft Corporation, "Remote Desktop Protocol: Serial and Parallel Port Virtual Channel Extension".
[MS-SMB2] Microsoft Corporation, "Server Message Block (SMB) Protocol Versions 2 and 3".
[RFC2119] Bradner, S., "Key words for use in RFCs to Indicate Requirement Levels", BCP 14, RFC 2119, March 1997, http://www.rfc-editor.org/rfc/rfc2119.txt
[bookmark: section_5c748e3f02cf4320bd5014184b0b1685][bookmark: _Toc456184891]Informative References
[MS-RDPEA] Microsoft Corporation, "Remote Desktop Protocol: Audio Output Virtual Channel Extension".
[bookmark: section_d70d99a5722b4f42a16675ef34df9c25][bookmark: _Toc456184892]Overview
In a typical terminal server scenario, many of the nonvolatile resources used by the terminal server user (such as hard drives, flash drives, and floppy disks) are located on the client. The server exposes a file system driver that is visible to server-based applications as a hard drive, which allows the applications to access the client file systems.
The Remote Desktop Protocol: File System Virtual Channel Extension allows access between the server and the client file system drivers by redirecting all input/output requests and responses between the two. This protocol is also used as a base for some non-file system drivers (section 1.4).
[bookmark: section_006b65280684438e8c62e30c8c27f0f0][bookmark: _Toc456184893]Protocol Initialization
The following figure shows the initial packet sequence that initializes the protocol. The sequence of messages complies with the following set of rules. The first packet exchange, Server Announce Request/Client Announce Reply, simply consists of the client and server sides of the protocol exchanging version information that tells each side to which version it is speaking. The client sends a Client Name Request after sending a Client Announce Reply message. The Client Name Request contains a friendly display name for the client machine.
The next exchange, Server Core Capability Request/Client Core Capability Response, is used to exchange capabilities between the client and the server to ensure that each side records what kinds of packets are supported by the remote side.
After sending its Server Core Capability Request message, the server also sends a Server Client ID Confirm message confirming the client ID that was exchanged in the Server Announce Request/Client Announce Reply sequence.
The last initialization message sequence is initiated by the client with the Client Device List Announce Request. This packet contains information for each device that is redirected. The packet contains all redirected devices, including non–file system devices. For example, it includes the list of printers (as specified in [MS-RDPEPC]), ports (as specified in [MS-RDPESP]), and smart cards (as specified in [MS-RDPESC]). Each client device is initialized separately. The server sends a Server Device Announce Response message that indicates success or failure for that initialization.
[image: Protocol initialization]
Figure 1: Protocol initialization
In general, there is no distinguishable difference between the initial connection of the protocol and subsequent reconnections. After every disconnection, the protocol is torn down and completely re-initialized on the next connection. However, there is one difference in the protocol initialization sequence upon reconnection: if a user is already logged on, the server sends a Server User Logged On message according to the rules specified in section 3.3.5.1.5.
[bookmark: section_c77289bbc74847fd90e77a64fd5a3581][bookmark: _Toc456184894]Drive Redirection
Drives can be announced or deleted at any point in time after the connection has been established. For example, Drive redirection sequence shows the sequence for adding and removing a file system drive. The first message pair, Client Device List Announce Request/Server Device Announce Response, is optional. If the device has been announced already in the Client Device List Announce as part of the protocol initialization, this pair is not required. But if the device has been discovered on the client after the initial sequence, this pair of messages is used to announce the device to the server. The client announces only one drive at a time in this case.
The next pair of messages describes a series of I/O request messages exchanged between the client and the server. This set of messages describes the actual file system functionality redirection. Finally, the Client Drive Device List Remove message announces to the server that the file system drive has been removed from the client, and that all I/O to that device will fail in the future.
[image: Drive redirection sequence]
Figure 2: Drive redirection sequence
[bookmark: section_d88fb1af2d6142f09a555a40d3f7481c][bookmark: _Toc456184895]Relationship to Other Protocols
The Remote Desktop Protocol: File System Virtual Channel Extension is embedded in a static virtual channel transport, as specified in [MS-RDPBCGR].
Some of the packets described in this protocol are used by the Remote Desktop protocols for printers (as specified in [MS-RDPEPC]), ports (as specified in [MS-RDPESP]), and smart cards (as specified in [MS-RDPESC]).
Note Some of the structures in this protocol are mapped to Server Message Block (SMB2) protocol structures. However, there are no protocol messages or processing that depend on SMB2. See [MS-SMB2] for more information about the SMB2 protocol.
[bookmark: section_bdf4adff6280450b925baa2383d6c86d][bookmark: _Toc456184896]Prerequisites/Preconditions
The Remote Desktop Protocol: File System Virtual Channel Extension operates only after the static virtual channel transport (as specified in [MS-RDPBCGR]) is fully established. If the static virtual channel transport is terminated, no other communication over the Remote Desktop Protocol: File System Virtual Channel Extension occurs.
[bookmark: section_9811c1f3543d44f7818d4a118890306f][bookmark: _Toc456184897]Applicability Statement
The Remote Desktop Protocol: File System Virtual Channel Extension is designed to be run within the context of a Remote Desktop Protocol virtual channel established between a client and a server. This protocol extension is applicable when applications running on the terminal server access the file system physically located on a client machine.
[bookmark: section_3549d24767b94d32bd72f9ceee774792][bookmark: _Toc456184898]Versioning and Capability Negotiation
The version numbers for the client and the server are sent in the Server Announce Request (section 2.2.2.2) and Client Announce Reply (section 2.2.2.3) messages. These messages are the first to be exchanged after the static virtual channel transport is established.
The capabilities are sent in separate messages: the Server Core Capability Request (section 2.2.2.7) for the server and the Client Core Capability Response (section 2.2.2.8) for the client. Both messages have a similar structure, and are a combination of capabilities for each feature that will be transported by the static virtual channel. If a feature does not have a capability subpacket, that feature is not supported by the remote side. The following figure shows the structure of a combined capabilities message.
[image: Combined capabilities]
Figure 3: Combined capabilities
The first part of this message is a header that describes the number of capabilities in the message. After the header, an array of capabilities follows, each one of which has a common Capability header (section 2.2.1.2); this header describes the type of the capability and its length. The content of the capability depends on its type.
[bookmark: section_b070a86abe434cf6b9e97caf30a14aca][bookmark: _Toc456184899]Vendor-Extensible Fields
This protocol uses NTSTATUS values, as defined in [MS-ERREF] (section 2.3). Vendors are free to choose their own values for this field, as long as the C-bit (0x20000000) is set, indicating that it is a customer code.
[bookmark: section_6fdc569d565c4247a375b85086765fd1][bookmark: _Toc456184900]Standards Assignments
This protocol contains no standards assignments.
[bookmark: section_acefaa6dcadf489388f725c022d111f3][bookmark: _Toc456184901]Messages
The following sections specify how Remote Desktop Protocol: File System Virtual Channel Extension messages are transported and Remote Desktop Protocol: File System Virtual Channel Extension message syntax.
[bookmark: section_756948cb2ad24b04ae2dac1a2cac4a2c][bookmark: _Toc456184902]Transport
[bookmark: Appendix_A_Target_1]This protocol runs over a static virtual channel with the null-terminated ANSI encoded name "RDPDR".<1> Static virtual channels are defined in [MS-RDPBCGR] section 3.1.5.2.
[bookmark: section_50c0dd1443d44f358cb71f9232e9288d][bookmark: _Toc456184903]Message Syntax
The following sections describe Remote Desktop Protocol: File System Virtual Channel Extension message syntax.
[bookmark: section_4fb49495704241d98c7eccc6120018e4][bookmark: _Toc456184904]Common Data Types
[bookmark: section_29d4108f81634a678271e48c4b9c2a7c][bookmark: _Toc456184905]Shared Header (RDPDR_HEADER)
This header is present at the beginning of every message in this protocol. The purpose of this header is to describe the type of the message.
	0
	1
	2
	3
	4
	5
	6
	7
	8
	9
	1
0
	1
	2
	3
	4
	5
	6
	7
	8
	9
	2
0
	1
	2
	3
	4
	5
	6
	7
	8
	9
	3
0
	1

	Component
	PacketId

Component (2 bytes): A 16-bit unsigned integer that identifies the component to which the packet is sent. This field MUST be set to one of the following values.
	Value
	Meaning

	RDPDR_CTYP_CORE
0x4472
	Device redirector core component; most of the packets in this protocol are sent under this component ID.

	RDPDR_CTYP_PRN
0x5052
	Printing component. The packets that use this ID are typically about printer cache management and identifying XPS printers.

PacketId (2 bytes): A 16-bit unsigned integer. The PacketId field is a unique ID that identifies the packet function. This field MUST be set to one of the following values.
	Value
	Meaning

	PAKID_CORE_SERVER_ANNOUNCE
0x496E
	Server Announce Request, as specified in section 2.2.2.2.

	PAKID_CORE_CLIENTID_CONFIRM
0x4343
	Client Announce Reply and Server Client ID Confirm, as specified in sections 2.2.2.3 and 2.2.2.6.

	PAKID_CORE_CLIENT_NAME
0x434E
	Client Name Request, as specified in section 2.2.2.4.

	PAKID_CORE_DEVICELIST_ANNOUNCE
0x4441
	Client Device List Announce Request, as specified in section 2.2.2.9.

	PAKID_CORE_DEVICE_REPLY
0x6472
	Server Device Announce Response, as specified in section 2.2.2.1.

	PAKID_CORE_DEVICE_IOREQUEST
0x4952
	Device I/O Request, as specified in section 2.2.1.4.

	PAKID_CORE_DEVICE_IOCOMPLETION
0x4943
	Device I/O Response, as specified in section 2.2.1.5.

	PAKID_CORE_SERVER_CAPABILITY
 0x5350
	Server Core Capability Request, as specified in section 2.2.2.7.

	PAKID_CORE_CLIENT_CAPABILITY
0x4350
	Client Core Capability Response, as specified in section 2.2.2.8.

	PAKID_CORE_DEVICELIST_REMOVE
0x444D
	Client Drive Device List Remove, as specified in section 2.2.3.2.

	PAKID_PRN_CACHE_DATA
0x5043
	Add Printer Cachedata, as specified in [MS-RDPEPC] section 2.2.2.3.

	PAKID_CORE_USER_LOGGEDON
0x554C
	Server User Logged On, as specified in section 2.2.2.5.

	PAKID_PRN_USING_XPS
0x5543
	Server Printer Set XPS Mode, as specified in [MS-RDPEPC] section 2.2.2.2.

[bookmark: section_b3c3304a2e1b466797e93bce49544907][bookmark: _Toc456184906]Capability Header (CAPABILITY_HEADER)
This is a header that is embedded in the Server Core Capability Request and Client Core Capability Response. The purpose of this header is to describe capabilities for different device types.
	0
	1
	2
	3
	4
	5
	6
	7
	8
	9
	1
0
	1
	2
	3
	4
	5
	6
	7
	8
	9
	2
0
	1
	2
	3
	4
	5
	6
	7
	8
	9
	3
0
	1

	CapabilityType
	CapabilityLength

	Version

CapabilityType (2 bytes): A 16-bit unsigned integer that identifies the type of capability being described. It MUST be set to one of the following values.
	Value
	Meaning

	CAP_GENERAL_TYPE
0x0001
	General capability set (GENERAL_CAPS_SET)

	CAP_PRINTER_TYPE
0x0002
	Print capability set (PRINTER_CAPS_SET)

	CAP_PORT_TYPE
0x0003
	Port capability set (PORT_CAPS_SET)

	CAP_DRIVE_TYPE
0x0004
	Drive capability set (DRIVE_CAPS_SET)

	CAP_SMARTCARD_TYPE
0x0005
	[bookmark: Appendix_A_Target_2]Smart card capability set (SMARTCARD_CAPS_SET)<2>

CapabilityLength (2 bytes): A 16-bit unsigned integer that specifies that size, in bytes, of the capability message, this header included.
Version (4 bytes): A 32-bit unsigned integer that specifies the capability-specific version for the specific value of CapabilityType, as described in the table that follows.
	CapabilityType Value
	Version Value(s)
	Meaning

	CAP_GENERAL_TYPE
	GENERAL_CAPABILITY_VERSION_01
0x00000001
GENERAL_CAPABILITY_VERSION_02
0x00000002
	See section 2.2.2.7.1.

	CAP_PRINTER_TYPE
	PRINT_CAPABILITY_VERSION_01
0x00000001
	Version 1 of printing capabilities.

	CAP_PORT_TYPE
	PORT_CAPABILITY_VERSION_01
0x00000001
	Version 1 of port capabilities.

	CAP_DRIVE_TYPE
	DRIVE_CAPABILITY_VERSION_01
0x00000001
DRIVE_CAPABILITY_VERSION_02
0x00000002
	If the client supports DRIVE_CAPABILITY_VERSION_02, then the drive name of the redirected device can be specified by the DeviceData field of a DEVICE ANNOUNCE header, as specified in the DeviceAnnounce field description of the Client Device List Announce message (section 2.2.3.1).

	CAP_SMARTCARD_TYPE
	SMARTCARD_CAPABILITY_VERSION_01
0x00000001
	Version 1 of smart card capabilities.

[bookmark: section_f1b9dd1d2c374aac98364b0df02369ba][bookmark: _Toc456184907]Capability Message (CAPABILITY_SET)
The CAPABILITY_SET structure is used to describe the type, size, and version of a capability set exchanged between clients and servers. All Capability Messages conform to this basic structure. The Capability Message is embedded in the Server Core Capability Request and Client Core Capability Response messages.
Capability Messages are ordered as an array of CAPABILITY_SET structures contained in a Server Core Capability Request or Client Core Capability Response message; however, the presence of a Capability Message is non-compulsory. If CapabilityMessage data is not present in a Server Core Capability Request or Client Core Capability Response packet, it is assumed that all fields of the Capability Message are set to zero, with exception of the CapabilityType and CapabilityLength fields of the Header.
	0
	1
	2
	3
	4
	5
	6
	7
	8
	9
	1
0
	1
	2
	3
	4
	5
	6
	7
	8
	9
	2
0
	1
	2
	3
	4
	5
	6
	7
	8
	9
	3
0
	1

	Header

	...

	capabilityData (variable)

	...

Header (8 bytes): A CAPABILITY_HEADER structure. The CapabilityType field of the CAPABILITY_HEADER specifies the format of the data in the capabilityData field.
capabilityData (variable): Capability set data that conforms to the structure of the type specified by the CapabilityType field of the CAPABILITY_HEADER.
[bookmark: section_32e34332774b4ead8c9d5d64720d6bf9][bookmark: _Toc456184908]Device Announce Header (DEVICE_ANNOUNCE)
This header is embedded in the Client Device List Announce message. Its purpose is to describe different types of devices.
	0
	1
	2
	3
	4
	5
	6
	7
	8
	9
	1
0
	1
	2
	3
	4
	5
	6
	7
	8
	9
	2
0
	1
	2
	3
	4
	5
	6
	7
	8
	9
	3
0
	1

	DeviceType

	DeviceId

	PreferredDosName

	...

	DeviceDataLength

	DeviceData (variable)

	...

DeviceType (4 bytes): A 32-bit unsigned integer that identifies the device type. This field MUST be set to one of the following values.
	Value
	Meaning

	RDPDR_DTYP_SERIAL
0x00000001
	Serial port device

	RDPDR_DTYP_PARALLEL
0x00000002
	Parallel port device

	RDPDR_DTYP_PRINT
0x00000004
	Printer device

	RDPDR_DTYP_FILESYSTEM
[bookmark: Appendix_A_Target_3]0x00000008<3>
	File system device

	RDPDR_DTYP_SMARTCARD
[bookmark: Appendix_A_Target_4]0x00000020<4>
	Smart card device

DeviceId (4 bytes): A 32-bit unsigned integer that specifies a unique ID that identifies the announced device. This ID MUST be reused if the device is removed by means of the Client Drive Device List Remove packet specified in section 2.2.3.2.
PreferredDosName (8 bytes): A string of ASCII characters with a maximum length of eight characters that represent the name of the device as it appears on the client. This field MUST not be null-terminated if the device name is 8 characters long. The following characters are considered invalid for the PreferredDosName field:
<, >, ", /, \, |
If any of these characters are present, the DR_CORE_DEVICE_ANNOUNC_RSP packet for this device (section 2.2.2.1) will be sent with STATUS_ACCESS_DENIED set in the ResultCode field.
If DeviceType is set to RDPDR_DTYP_SMARTCARD, the PreferredDosName MUST be set to "SCARD".
Note A column character, ":", is valid only when present at the end of the PreferredDosName field, otherwise it is also considered invalid.
DeviceDataLength (4 bytes): A 32-bit unsigned integer that specifies the number of bytes in the DeviceData field.
DeviceData (variable): A variable-length byte array whose size is specified by the DeviceDataLength field. The content depends on the DeviceType field. See [MS-RDPEPC] section 2.2.2.1 for the printer device type. See [MS-RDPESP] section 2.2.2.1 for the serial and parallel port device types. See section 2.2.3.1 of this protocol for the file system device type. For a smart card device, the DeviceDataLength field MUST be set to zero. See [MS-RDPESC] for details about the smart card device type.
[bookmark: section_a087ffa8d0d54874ac7b0494f63e2d5d][bookmark: _Toc456184909]Device I/O Request (DR_DEVICE_IOREQUEST)
This header is embedded in all server requests on a specific device.
	0
	1
	2
	3
	4
	5
	6
	7
	8
	9
	1
0
	1
	2
	3
	4
	5
	6
	7
	8
	9
	2
0
	1
	2
	3
	4
	5
	6
	7
	8
	9
	3
0
	1

	Header

	DeviceId

	FileId

	CompletionId

	MajorFunction

	MinorFunction

Header (4 bytes): An RDPDR_HEADER header. The Component field MUST be set to RDPDR_CTYP_CORE, and the PacketId field MUST be set to PAKID_CORE_DEVICE_IOREQUEST.
DeviceId (4 bytes): A 32-bit unsigned integer that is a unique ID. The value MUST match the DeviceId value in the Client Device List Announce Request (section 2.2.2.9).
FileId (4 bytes): A 32-bit unsigned integer that specifies a unique ID retrieved from the Device Create Response (section 2.2.1.5.1).
CompletionId (4 bytes): A 32-bit unsigned integer that specifies a unique ID for each request. The ID is considered valid until a Device I/O Response (section 2.2.1.5) is received. Subsequently, the ID MUST be reused.
MajorFunction (4 bytes): A 32-bit unsigned integer that identifies the request function. This field MUST have one of the following values.
	Value
	Meaning

	IRP_MJ_CREATE
0x00000000
	Create request

	IRP_MJ_CLOSE
0x00000002
	Close request

	IRP_MJ_READ
0x00000003
	Read request

	IRP_MJ_WRITE
0x00000004
	Write request

	IRP_MJ_DEVICE_CONTROL
0x0000000E
	Device control request

	IRP_MJ_QUERY_VOLUME_INFORMATION
0x0000000A
	Query volume information request

	IRP_MJ_SET_VOLUME_INFORMATION
0x0000000B
	Set volume information request

	IRP_MJ_QUERY_INFORMATION
0x00000005
	Query information request

	IRP_MJ_SET_INFORMATION
0x00000006
	Set information request

	IRP_MJ_DIRECTORY_CONTROL
0x0000000C
	Directory control request

	IRP_MJ_LOCK_CONTROL
0x00000011
	File lock control request

[bookmark: Appendix_A_Target_5]MinorFunction (4 bytes): A 32-bit unsigned integer. This field is valid only when the MajorFunction field is set to IRP_MJ_DIRECTORY_CONTROL. If the MajorFunction field is set to another value, the MinorFunction field value SHOULD be 0x00000000;<5> otherwise, the MinorFunction field MUST have one of the following values.
	Value
	Meaning

	IRP_MN_QUERY_DIRECTORY
0x00000001
	Query directory request

	IRP_MN_NOTIFY_CHANGE_DIRECTORY
0x00000002
	Notify change directory request

[bookmark: section_5f71f6d2d9ff40c2bdb5a739447d3c3e][bookmark: _Toc456184910]Device Create Request (DR_CREATE_REQ)
This header initiates a create request. This message can have different purposes depending on the device for which it is issued. The device type is determined by the DeviceId field in the DR_DEVICE_IOREQUEST header.
	0
	1
	2
	3
	4
	5
	6
	7
	8
	9
	1
0
	1
	2
	3
	4
	5
	6
	7
	8
	9
	2
0
	1
	2
	3
	4
	5
	6
	7
	8
	9
	3
0
	1

	DeviceIoRequest (24 bytes)

	...

	...

	DesiredAccess

	AllocationSize

	...

	FileAttributes

	SharedAccess

	CreateDisposition

	CreateOptions

	PathLength

	Path (variable)

	...

DeviceIoRequest (24 bytes): A DR_DEVICE_IOREQUEST header. The MajorFunction field in this header MUST be set to IRP_MJ_CREATE.
DesiredAccess (4 bytes): A 32-bit unsigned integer that specifies the level of access. This field is specified in [MS-SMB2] section 2.2.13.
AllocationSize (8 bytes): A 64-bit unsigned integer that specifies the initial allocation size for the file.
FileAttributes (4 bytes): A 32-bit unsigned integer that specifies the attributes for the file being created. This field is specified in [MS-SMB2] section 2.2.13.
SharedAccess (4 bytes): A 32-bit unsigned integer that specifies the sharing mode for the file being opened. This field is specified in [MS-SMB2] section 2.2.13.
CreateDisposition (4 bytes): A 32-bit unsigned integer that specifies the action for the client to take if the file already exists. This field is specified in [MS-SMB2] section 2.2.13. For ports and other devices, this field MUST be set to FILE_OPEN (0x00000001).
CreateOptions (4 bytes): A 32-bit unsigned integer that specifies the options for creating the file. This field is specified in [MS-SMB2] section 2.2.13.
PathLength (4 bytes): A 32-bit unsigned integer that specifies the number of bytes in the Path field, including the null-terminator.
Path (variable): A variable-length array of Unicode characters, including the null-terminator, whose size is specified by the PathLength field. The protocol imposes no limitations on the characters used in this field.
[bookmark: section_3ec6627f9e0f4941a8283fc6ed63d9e7][bookmark: _Toc456184911]Device Close Request (DR_CLOSE_REQ)
This header initiates a close request. This message can have different purposes depending on the device for which it is issued. The device type is determined by the DeviceId field in the DR_DEVICE_IOREQUEST header.
	0
	1
	2
	3
	4
	5
	6
	7
	8
	9
	1
0
	1
	2
	3
	4
	5
	6
	7
	8
	9
	2
0
	1
	2
	3
	4
	5
	6
	7
	8
	9
	3
0
	1

	DeviceIoRequest (24 bytes)

	...

	...

	Padding (32 bytes)

	...

	...

DeviceIoRequest (24 bytes): A DR_DEVICE_IOREQUEST header. The MajorFunction field in this header MUST be set to IRP_MJ_CLOSE.
Padding (32 bytes): An array of 32 bytes. Reserved. This field can be set to any value, and MUST be ignored.
[bookmark: section_3192516d36a647c5987a55c214aa0441][bookmark: _Toc456184912]Device Read Request (DR_READ_REQ)
This header initiates a read request. This message can have different purposes depending on the device for which it is issued. The device type is determined by the DeviceId field in the DR_DEVICE_IOREQUEST header.
	0
	1
	2
	3
	4
	5
	6
	7
	8
	9
	1
0
	1
	2
	3
	4
	5
	6
	7
	8
	9
	2
0
	1
	2
	3
	4
	5
	6
	7
	8
	9
	3
0
	1

	DeviceIoRequest (24 bytes)

	...

	...

	Length

	Offset

	...

	Padding (20 bytes)

	...

	...

DeviceIoRequest (24 bytes): A DR_DEVICE_IOREQUEST header. The MajorFunction field in this header MUST be set to IRP_MJ_READ.
Length (4 bytes): A 32-bit unsigned integer. This field specifies the maximum number of bytes to be read from the device.
Offset (8 bytes): A 64-bit unsigned integer. This field specifies the file offset where the read operation is performed.
Padding (20 bytes): An array of 20 bytes. Reserved. This field can be set to any value and MUST be ignored.
[bookmark: section_2e25f0aaa4ce4ff3ad62ab6098280a3a][bookmark: _Toc456184913]Device Write Request (DR_WRITE_REQ)
This header initiates a write request. This message can have different purposes depending on the device for which it is issued. The device type is determined by the DeviceId field in the DR_DEVICE_IOREQUEST header.
	0
	1
	2
	3
	4
	5
	6
	7
	8
	9
	1
0
	1
	2
	3
	4
	5
	6
	7
	8
	9
	2
0
	1
	2
	3
	4
	5
	6
	7
	8
	9
	3
0
	1

	DeviceIoRequest (24 bytes)

	...

	...

	Length

	Offset

	...

	Padding (20 bytes)

	...

	...

	WriteData (variable)

	...

DeviceIoRequest (24 bytes): A DR_DEVICE_IOREQUEST header. The MajorFunction field in this header MUST be set to IRP_MJ_WRITE.
Length (4 bytes): A 32-bit unsigned integer that specifies the number of bytes in the WriteData field.
[bookmark: Appendix_A_Target_6]Offset (8 bytes): A 64-bit unsigned integer. This field specifies the file offset at which the data MUST be written. If the client advertised a minor version of at least 0x000D in the Client Announce Reply (section 2.2.2.3), then a value of 0xFFFFFFFFFFFFFFFF indicates that the client MUST treat this write request as an append operation.<6>
Padding (20 bytes): An array of 20 bytes. Reserved. This field can be set to any value and MUST be ignored.
WriteData (variable): A variable-length array of bytes, where the length is specified by the Length field in this packet. This array contains data to be written on the target device.
[bookmark: section_30662c80ec6e4ed190042e6e367bb59f][bookmark: _Toc456184914]Device Control Request (DR_CONTROL_REQ)
This header initiates a device control request. This message can have different purposes depending on the device for which it is issued. The device type is determined by the DeviceId field in the DR_DEVICE_IOREQUEST header.
	0
	1
	2
	3
	4
	5
	6
	7
	8
	9
	1
0
	1
	2
	3
	4
	5
	6
	7
	8
	9
	2
0
	1
	2
	3
	4
	5
	6
	7
	8
	9
	3
0
	1

	DeviceIoRequest (24 bytes)

	...

	...

	OutputBufferLength

	InputBufferLength

	IoControlCode

	Padding (20 bytes)

	...

	...

	InputBuffer (variable)

	...

DeviceIoRequest (24 bytes): A DR_DEVICE_IOREQUEST header. The MajorFunction field in this header MUST be set to IRP_MJ_DEVICE_CONTROL.
OutputBufferLength (4 bytes): A 32-bit unsigned integer that specifies the maximum number of bytes expected in the OutputBuffer field of the Device Control Response (section 2.2.1.5.5).
InputBufferLength (4 bytes): A 32-bit unsigned integer that specifies the number of bytes in the InputBuffer field.
IoControlCode (4 bytes): A 32-bit unsigned integer. This field is specific to the redirected device.
Padding (20 bytes): An array of 20 bytes. Reserved. This field can be set to any value and MUST be ignored.
InputBuffer (variable): A variable-size byte array whose size is specified by the InputBufferLength field.
[bookmark: section_1c412a8407764984b35c3f0445fcae65][bookmark: _Toc456184915]Device I/O Response (DR_DEVICE_IOCOMPLETION)
A message with this header indicates that the I/O request is complete. In a Device I/O Response message, a request message is matched to the Device I/O Request (section 2.2.1.4) header based on the CompletionId field value. There is only one response per request.
	0
	1
	2
	3
	4
	5
	6
	7
	8
	9
	1
0
	1
	2
	3
	4
	5
	6
	7
	8
	9
	2
0
	1
	2
	3
	4
	5
	6
	7
	8
	9
	3
0
	1

	Header

	DeviceId

	CompletionId

	IoStatus

Header (4 bytes): An RDPDR_HEADER header. The Component field MUST be set to RDPDR_CTYP_CORE, and the PacketId field MUST be set to PAKID_CORE_DEVICE_IOCOMPLETION.
DeviceId (4 bytes): A 32-bit unsigned integer. This field MUST match the DeviceId field in the DR_DEVICE_IOREQUEST header for the corresponding request.
CompletionId (4 bytes): A 32-bit unsigned integer. This field MUST match the CompletionId field in the DR_DEVICE_IOREQUEST header for the corresponding request. After processing a response packet with this ID, the same ID MUST be reused in another request.
IoStatus (4 bytes): A 32-bit unsigned integer that specifies the NTSTATUS code that indicates success or failure for the request. NTSTATUS codes are specified in [MS-ERREF] section 2.3.
[bookmark: section_99e5fca5b37a41e4bc698d7da7860f76][bookmark: _Toc456184916]Device Create Response (DR_CREATE_RSP)
 A message with this header describes a response to a Device Create Request (section 2.2.1.4.1).
	0
	1
	2
	3
	4
	5
	6
	7
	8
	9
	1
0
	1
	2
	3
	4
	5
	6
	7
	8
	9
	2
0
	1
	2
	3
	4
	5
	6
	7
	8
	9
	3
0
	1

	DeviceIoReply (16 bytes)

	...

	...

	FileId

	Information (optional)

DeviceIoReply (16 bytes): A DR_DEVICE_IOCOMPLETION header. The CompletionId field of this header MUST match a Device I/O Request (section 2.2.1.4) message that had the MajorFunction field set to IRP_MJ_CREATE.
FileId (4 bytes): A 32-bit unsigned integer that specifies a unique ID for the created file object. The ID MUST be reused after sending a Device Close Response (section 2.2.1.5.2).
[bookmark: Appendix_A_Target_7]Information (1 byte): An unsigned 8-bit integer. This field indicates the success of the Device Create Request (section 2.2.1.4.1). The value of the Information field depends on the value of CreateDisposition field in the Device Create Request (section 2.2.1.4.1). If the IoStatus field is set to 0x00000000, this field MAY be skipped,<7> in which case the server MUST assume that the Information field is set to 0x00. The possible values of the Information field are:
	Value
	Meaning

	FILE_SUPERSEDED
0x00000000
	A new file was created.

	FILE_OPENED
0x00000001
	An existing file was opened.

	FILE_OVERWRITTEN
0x00000003
	An existing file was overwritten.

The values of the CreateDisposition field in the Device Create Request (section 2.2.1.4.1) that determine the value of the Information field are associated as follows:
	Information field value
	CreateDisposition field value

	FILE_SUPERSEDED
	FILE_SUPERSEDE
FILE_OPEN
FILE_CREATE
FILE_OVERWRITE

	FILE_OPENED
	FILE_OPEN_IF

	FILE_OVERWRITTEN
	FILE_OVERWRITE_IF

[bookmark: section_0dae7031cfd84f14908cec06e14997b5][bookmark: _Toc456184917]Device Close Response (DR_CLOSE_RSP)
 This message is a reply to a Device Close Request (section 2.2.1.4.2).
	0
	1
	2
	3
	4
	5
	6
	7
	8
	9
	1
0
	1
	2
	3
	4
	5
	6
	7
	8
	9
	2
0
	1
	2
	3
	4
	5
	6
	7
	8
	9
	3
0
	1

	DeviceIoReply (16 bytes)

	...

	...

	Padding

DeviceIoReply (16 bytes): A DR_DEVICE_IOCOMPLETION header. The CompletionId field of this header MUST match a Device I/O Request (section 2.2.1.4) message that had the MajorFunction field set to IRP_MJ_CLOSE.
Padding (4 bytes): An array of 4 bytes. Reserved. This field can be set to any value and MUST be ignored.
[bookmark: section_d35d3f91fc5b492b80be47f483ad1dc9][bookmark: _Toc456184918]Device Read Response (DR_READ_RSP)
 A message with this header describes a response to a Device Read Request (section 2.2.1.4.3).
	0
	1
	2
	3
	4
	5
	6
	7
	8
	9
	1
0
	1
	2
	3
	4
	5
	6
	7
	8
	9
	2
0
	1
	2
	3
	4
	5
	6
	7
	8
	9
	3
0
	1

	DeviceIoReply (16 bytes)

	...

	...

	Length

	ReadData (variable)

	...

DeviceIoReply (16 bytes): A DR_DEVICE_IOCOMPLETION header. The CompletionId field of this header MUST match a Device I/O Request (section 2.2.1.4) message that had the MajorFunction field set to IRP_MJ_READ.
Length (4 bytes): A 32-bit unsigned integer that specifies the number of bytes in the ReadData field.
ReadData (variable): A variable-length array of bytes that specifies the output data from the read request. The length of ReadData is specified by the Length field in this packet.
[bookmark: section_58160a4723794c4aa99d24a1a666c02a][bookmark: _Toc456184919]Device Write Response (DR_WRITE_RSP)
 A message with this header describes a response to a Device Write Request (section 2.2.1.4.4).
	0
	1
	2
	3
	4
	5
	6
	7
	8
	9
	1
0
	1
	2
	3
	4
	5
	6
	7
	8
	9
	2
0
	1
	2
	3
	4
	5
	6
	7
	8
	9
	3
0
	1

	DeviceIoReply (16 bytes)

	...

	...

	Length

	Padding (optional)

DeviceIoReply (16 bytes): A DR_DEVICE_IOCOMPLETION header. The CompletionId field of this header MUST match a Device I/O Request (section 2.2.1.4) message that had the MajorFunction field set to IRP_MJ_WRITE.
Length (4 bytes): A 32-bit unsigned integer that specifies the number of bytes written in response to the write request.
Padding (1 byte): An 8-bit unsigned integer intended to allow the client minor flexibility in determining the overall packet length. This field is unused and MUST be ignored.
[bookmark: section_a00fbce495bb4e158182be2b5ef9076a][bookmark: _Toc456184920]Device Control Response (DR_CONTROL_RSP)
 A message with this header describes a response to a Device Control Request (section 2.2.1.4.5).
	0
	1
	2
	3
	4
	5
	6
	7
	8
	9
	1
0
	1
	2
	3
	4
	5
	6
	7
	8
	9
	2
0
	1
	2
	3
	4
	5
	6
	7
	8
	9
	3
0
	1

	DeviceIoReply (16 bytes)

	...

	...

	OutputBufferLength

	OutputBuffer (variable)

	...

DeviceIoReply (16 bytes): A DR_DEVICE_IOCOMPLETION header. The CompletionId field of this header MUST match a Device I/O Request (section 2.2.1.4) that had the MajorFunction field set to IRP_MJ_DEVICE_CONTROL.
OutputBufferLength (4 bytes): A 32-bit unsigned integer that specifies the number of bytes in the OutputBuffer field.
OutputBuffer (variable): A variable-length array of bytes whose size is specified by the OutputBufferLength field.
[bookmark: section_8445e5ee9bbf4fec83ae2e0aba393bbc][bookmark: _Toc456184921]RDP_LOCK_INFO
The RDP_LOCK_INFO packet specifies the region of the file to lock or unlock.
	0
	1
	2
	3
	4
	5
	6
	7
	8
	9
	1
0
	1
	2
	3
	4
	5
	6
	7
	8
	9
	2
0
	1
	2
	3
	4
	5
	6
	7
	8
	9
	3
0
	1

	Length

	...

	Offset

	...

Length (8 bytes): A 64-bit unsigned integer that specifies the length of the region. A value of zero is valid and MUST result in locking the zero length region.
Offset (8 bytes): A 64-bit unsigned integer that specifies the offset at which the region starts.
[bookmark: section_67e0201750d249a99d4400ab8611ff8c][bookmark: _Toc456184922]Initialization Messages
[bookmark: section_a4c0b6196e874721bdc45d2db7f485f3][bookmark: _Toc456184923]Server Device Announce Response (DR_CORE_DEVICE_ANNOUNCE_RSP)
The server responds to a Client Device List Announce Request with this message.
	0
	1
	2
	3
	4
	5
	6
	7
	8
	9
	1
0
	1
	2
	3
	4
	5
	6
	7
	8
	9
	2
0
	1
	2
	3
	4
	5
	6
	7
	8
	9
	3
0
	1

	Header

	DeviceId

	ResultCode

Header (4 bytes): An RDPDR_HEADER header. The Component field MUST be set to RDPDR_CTYP_CORE, and the PacketId field MUST be set to PAKID_CORE_DEVICE_REPLY.
DeviceId (4 bytes): A 32-bit unsigned integer. This ID MUST be the same as one of the IDs specified in the Client Device List Announce Request message. The server sends a separate Server Device Announce Response message for each announced device.
ResultCode (4 bytes): A 32-bit unsigned integer that specifies the NTSTATUS code that indicates the success or failure of device initialization. NTSTATUS codes are specified in [MS-ERREF] section 2.3.
[bookmark: section_046047aa62d849f9bf167fe41880aaf4][bookmark: _Toc456184924]Server Announce Request (DR_CORE_SERVER_ANNOUNCE_REQ)
The server initiates the protocol with this message.
	0
	1
	2
	3
	4
	5
	6
	7
	8
	9
	1
0
	1
	2
	3
	4
	5
	6
	7
	8
	9
	2
0
	1
	2
	3
	4
	5
	6
	7
	8
	9
	3
0
	1

	Header

	VersionMajor
	VersionMinor

	ClientId

Header (4 bytes): An RDPDR_HEADER header. The Component field MUST be set to RDPDR_CTYP_CORE, and the PacketId field MUST be set to PAKID_CORE_SERVER_ANNOUNCE.
VersionMajor (2 bytes): A 16-bit unsigned integer that specifies the server major version number. This field MUST be set to 0x0001.
[bookmark: Appendix_A_Target_8]VersionMinor (2 bytes): A 16-bit unsigned integer that specifies the server minor version number. This field MUST be set to one of several values<8>.
ClientId (4 bytes): A 32-bit unsigned integer that specifies the unique ID generated by the server as specified in section 3.3.5.1.2.
[bookmark: section_d6fe6d1bc1454a6f99aa4fe3cdcea398][bookmark: _Toc456184925]Client Announce Reply (DR_CORE_CLIENT_ANNOUNCE_RSP)
 The client replies to the Server Announce Request message.
	0
	1
	2
	3
	4
	5
	6
	7
	8
	9
	1
0
	1
	2
	3
	4
	5
	6
	7
	8
	9
	2
0
	1
	2
	3
	4
	5
	6
	7
	8
	9
	3
0
	1

	Header

	VersionMajor
	VersionMinor

	ClientId

Header (4 bytes): An RDPDR_HEADER header. The Component field MUST be set to RDPDR_CTYP_CORE, and the PacketId field MUST be set to PAKID_CORE_CLIENTID_CONFIRM.
VersionMajor (2 bytes): A 16-bit unsigned integer that specifies the major version number of the file system redirection protocol. This field MUST be set to 0x0001.
VersionMinor (2 bytes): A 16-bit unsigned integer that specifies the minor version number of the file system redirection protocol. This field MUST be set to one of the following values.
	Value
	Meaning

	0x000D
	Minor version 13

	0x000C
	Minor version 12

	0x000A
	Minor version 10

	0x0005
	Minor version 5

	0x0002
	Minor version 2

ClientId (4 bytes): A 32-bit unsigned integer that the client MUST set to either the ClientID field, which is supplied by the server in the Server Announce Request message, or a unique ID as specified in section 3.2.5.1.3.
[bookmark: section_902497f13b1c4aee95f81668f9b7b7d2][bookmark: _Toc456184926]Client Name Request (DR_CORE_CLIENT_NAME_REQ)
The client announces its machine name.
	0
	1
	2
	3
	4
	5
	6
	7
	8
	9
	1
0
	1
	2
	3
	4
	5
	6
	7
	8
	9
	2
0
	1
	2
	3
	4
	5
	6
	7
	8
	9
	3
0
	1

	Header

	UnicodeFlag

	CodePage

	ComputerNameLen

	ComputerName (variable)

	...

Header (4 bytes): An RDPDR_HEADER header. The Component field MUST be set to RDPDR_CTYP_CORE, and the PacketId field MUST be set to PAKID_CORE_CLIENT_NAME.
UnicodeFlag (4 bytes): A 32-bit unsigned integer that indicates the format of the ComputerName field. Only the least significant bit of this field is valid (the most significant 31 bits MUST be ignored). The least significant bit MUST be set to one of the following values.
	Value
	Meaning

	0x1
	ComputerName is in Unicode characters.

	0x0
	ComputerName is in ASCII characters.

CodePage (4 bytes): A 32-bit unsigned integer that specifies the code page of the ComputerName field; it MUST be set to 0.
ComputerNameLen (4 bytes): A 32-bit unsigned integer that specifies the number of bytes in the ComputerName field, including null terminator.
ComputerName (variable): A variable-length array of ASCII or Unicode characters, the format of which is determined by the UnicodeFlag field. This is a string that identifies the client computer name. The string MUST be null-terminated. The protocol imposes no limitations on the characters used in this field.
[bookmark: section_dfc0e8eda2424d00bb88e779e08f2f61][bookmark: _Toc456184927]Server User Logged On (DR_CORE_USER_LOGGEDON)
 The server announces that it has successfully logged on to the session.
	0
	1
	2
	3
	4
	5
	6
	7
	8
	9
	1
0
	1
	2
	3
	4
	5
	6
	7
	8
	9
	2
0
	1
	2
	3
	4
	5
	6
	7
	8
	9
	3
0
	1

	Header

Header (4 bytes): An RDPDR_HEADER header. The Component field MUST be set to RDPDR_CTYP_CORE, and the PacketId field MUST be set to PAKID_CORE_USER_LOGGEDON.
[bookmark: section_bbbb966669944cf68e650d46eb319c6e][bookmark: _Toc456184928]Server Client ID Confirm (DR_CORE_SERVER_CLIENTID_CONFIRM)
 The server confirms the client ID sent by the client in the Client Announce Reply message.
	0
	1
	2
	3
	4
	5
	6
	7
	8
	9
	1
0
	1
	2
	3
	4
	5
	6
	7
	8
	9
	2
0
	1
	2
	3
	4
	5
	6
	7
	8
	9
	3
0
	1

	Header

	VersionMajor
	VersionMinor

	ClientId

Header (4 bytes): An RDPDR_HEADER header. The Component field MUST be set to RDPDR_CTYP_CORE, and the PacketId field MUST be set to PAKID_CORE_CLIENTID_CONFIRM.
VersionMajor (2 bytes): A 16-bit unsigned integer that specifies the major version number of the file system redirection protocol. This field MUST be set to 0x0001.
VersionMinor (2 bytes): A 16-bit unsigned integer that specifies the minor version number of the file system redirection protocol. This field MUST be set to one of the following values.
	Value
	Meaning

	0x000D
	Minor version 13

	0x000C
	Minor version 12

	0x000A
	Minor version 10

	0x0005
	Minor version 5

	0x0002
	Minor version 2

ClientId (4 bytes): A 32-bit unsigned integer that confirms the unique ID value of the ClientId field, which was sent by the client in the Client Announce Reply message.
[bookmark: section_702789c3b9244bc292803221bc7d6797][bookmark: _Toc456184929]Server Core Capability Request (DR_CORE_CAPABILITY_REQ)
 The server announces its capabilities and requests the same from the client.
	0
	1
	2
	3
	4
	5
	6
	7
	8
	9
	1
0
	1
	2
	3
	4
	5
	6
	7
	8
	9
	2
0
	1
	2
	3
	4
	5
	6
	7
	8
	9
	3
0
	1

	Header

	numCapabilities
	Padding

	CapabilityMessage (variable)

	...

Header (4 bytes): An RDPDR_HEADER header. The Component field MUST be set to RDPDR_CTYP_CORE, and the PacketId field MUST be set to PAKID_CORE_SERVER_CAPABILITY.
numCapabilities (2 bytes): A 16-bit integer that specifies the number of items in the CapabilityMessage array.
Padding (2 bytes): A 16-bit unsigned integer of padding. This field is unused and MUST be ignored.
CapabilityMessage (variable): An array of CAPABILITY_SET structures (section 2.2.1.2.1). The number of capabilities is specified by the numCapabilities field.
[bookmark: section_06c7cb30303d4fa2b396806df8ac1501][bookmark: _Toc456184930]General Capability Set (GENERAL_CAPS_SET)
 This packet is embedded into Server Core Capability Request and Client Core Capability Response messages. It describes non–device-specific capabilities.
	0
	1
	2
	3
	4
	5
	6
	7
	8
	9
	1
0
	1
	2
	3
	4
	5
	6
	7
	8
	9
	2
0
	1
	2
	3
	4
	5
	6
	7
	8
	9
	3
0
	1

	Header

	...

	osType

	osVersion

	protocolMajorVersion
	protocolMinorVersion

	ioCode1

	ioCode2

	extendedPDU

	extraFlags1

	extraFlags2

	SpecialTypeDeviceCap

Header (8 bytes): A CAPABILITY_HEADER header. The CapabilityType field of this header MUST be set to CAP_GENERAL_TYPE. The Version field of this header MUST have one of the following values.
	Value
	Meaning

	GENERAL_CAPABILITY_VERSION_01
0x00000001
	Version 1. The SpecialTypeDeviceCap field of GENERAL_CAPS_SET is not present.

	GENERAL_CAPABILITY_VERSION_02
0x00000002
	Version 2. The SpecialTypeDeviceCap field of GENERAL_CAPS_SET is present.

osType (4 bytes): A 32-bit unsigned integer that is the identifier for the operating system that the capabilities are describing. The value of this field MUST be ignored.
osVersion (4 bytes): A 32-bit unsigned integer. This field is unused and SHOULD be ignored.
protocolMajorVersion (2 bytes): A 16-bit unsigned integer. This field MUST be set to 1.
protocolMinorVersion (2 bytes): A 16-bit unsigned integer. This field MUST be set to one of the values described by the VersionMinor field of the Server Client ID Confirm (section 2.2.2.6) packet.
ioCode1 (4 bytes): A 32-bit unsigned integer that identifies a bitmask of the supported I/O requests for the given device. If the bit is set, the I/O request is allowed. The requests are identified by the MajorFunction field in the Device I/O Request (section 2.2.1.4) header. This field MUST be set to a valid combination of the following values.
	Value
	Meaning

	RDPDR_IRP_MJ_CREATE
0x00000001
	Unused, always set.

	RDPDR_IRP_MJ_CLEANUP
0x00000002
	Unused, always set.

	RDPDR_IRP_MJ_CLOSE
0x00000004
	Unused, always set.

	RDPDR_IRP_MJ_READ
0x00000008
	Unused, always set.

	RDPDR_IRP_MJ_WRITE
0x00000010
	Unused, always set.

	RDPDR_IRP_MJ_FLUSH_BUFFERS
0x00000020
	Unused, always set.

	RDPDR_IRP_MJ_SHUTDOWN
0x00000040
	Unused, always set.

	RDPDR_IRP_MJ_DEVICE_CONTROL
0x00000080
	Unused, always set.

	RDPDR_IRP_MJ_QUERY_VOLUME_INFORMATION
0x00000100
	Unused, always set.

	RDPDR_IRP_MJ_SET_VOLUME_INFORMATION
0x00000200
	Unused, always set.

	RDPDR_IRP_MJ_QUERY_INFORMATION
0x00000400
	Unused, always set.

	RDPDR_IRP_MJ_SET_INFORMATION
0x00000800
	Unused, always set.

	RDPDR_IRP_MJ_DIRECTORY_CONTROL
0x00001000
	Unused, always set.

	RDPDR_IRP_MJ_LOCK_CONTROL
0x00002000
	Unused, always set.

	RDPDR_IRP_MJ_QUERY_SECURITY
0x00004000
	Enable Query Security requests (IRP_MJ_QUERY_SECURITY).

	RDPDR_IRP_MJ_SET_SECURITY
0x00008000
	Enable Set Security requests (IRP_MJ_SET_SECURITY).

ioCode2 (4 bytes): A 32-bit unsigned integer that is currently reserved for future use, and MUST be set to 0.
extendedPDU (4 bytes): A 32-bit unsigned integer that specifies extended PDU flags. This field MUST be set as a bitmask of the following values.
	Value
	Meaning

	RDPDR_DEVICE_REMOVE_PDUS
0x00000001
	Allow the client to send Client Drive Device List Remove packets.

	RDPDR_CLIENT_DISPLAY_NAME_PDU
0x00000002
	Unused, always set.

	RDPDR_USER_LOGGEDON_PDU
0x00000004
	Allow the server to send a Server User Logged On packet.

extraFlags1 (4 bytes): A 32-bit unsigned integer that specifies extended flags. The extraFlags1 field MUST be set as a bitmask of the following value.
	Value
	Meaning

	ENABLE_ASYNCIO
0x00000001
	[bookmark: Appendix_A_Target_9]Optionally present only in the Client Core Capability Response. Allows the server to send multiple simultaneous read or write requests on the same file from a redirected file system.<9>

extraFlags2 (4 bytes): A 32-bit unsigned integer that is currently reserved for future use, and MUST be set to 0.
SpecialTypeDeviceCap (4 bytes): A 32-bit unsigned integer that specifies the number of special devices to be redirected before the user is logged on. Special devices are those that are safe and/or required to be redirected before a user logs on (such as smart cards and serial ports).
[bookmark: section_0c65e5e3c730453a99005ce6d8f25de6][bookmark: _Toc456184931]Printer Capability Set (PRINTER_CAPS_SET)
This packet is embedded into Server Core Capability Request and Client Core Capability Response messages. It indicates that printer devices are supported.
	0
	1
	2
	3
	4
	5
	6
	7
	8
	9
	1
0
	1
	2
	3
	4
	5
	6
	7
	8
	9
	2
0
	1
	2
	3
	4
	5
	6
	7
	8
	9
	3
0
	1

	Header

	...

Header (8 bytes): A CAPABILITY_HEADER header. The CapabilityType field of this header MUST be set to CAP_PRINTER_TYPE, and the Version field MUST be set to 0x00000001.
[bookmark: section_ecfacbbb329b4f5abad1ad7123bb6910][bookmark: _Toc456184932]Port Capability Set (PORT_CAPS_SET)
 This packet is embedded into Server Core Capability Request and Client Core Capability Response messages. It indicates that parallel and serial port devices are supported.
	0
	1
	2
	3
	4
	5
	6
	7
	8
	9
	1
0
	1
	2
	3
	4
	5
	6
	7
	8
	9
	2
0
	1
	2
	3
	4
	5
	6
	7
	8
	9
	3
0
	1

	Header

	...

Header (8 bytes): A CAPABILITY_HEADER header. The CapabilityType field of this header MUST be set to CAP_PORT_TYPE, and the Version field MUST be set to 0x00000001.
[bookmark: section_4f018cd260ba4c7badcf55bd05cea6f8][bookmark: _Toc456184933]Drive Capability Set (DRIVE_CAPS_SET)
 This packet is embedded into Server Core Capability Request and Client Core Capability Response messages. It indicates that file system devices are supported.
	0
	1
	2
	3
	4
	5
	6
	7
	8
	9
	1
0
	1
	2
	3
	4
	5
	6
	7
	8
	9
	2
0
	1
	2
	3
	4
	5
	6
	7
	8
	9
	3
0
	1

	Header

	...

Header (8 bytes): A CAPABILITY_HEADER header. The CapabilityType field of this header MUST be set to CAP_DRIVE_TYPE, and the Version field MUST be set to DRIVE_CAPABILITY_VERSION_02.
[bookmark: section_e02de60a4d324dc7ab179d591129eb93][bookmark: _Toc456184934]Smart Card Capability Set (SMARTCARD_CAPS_SET)
[bookmark: Appendix_A_Target_10]This packet is embedded into Server Core Capability Request and Client Core Capability Response messages. It indicates that smart card devices are supported.<10>
	0
	1
	2
	3
	4
	5
	6
	7
	8
	9
	1
0
	1
	2
	3
	4
	5
	6
	7
	8
	9
	2
0
	1
	2
	3
	4
	5
	6
	7
	8
	9
	3
0
	1

	Header

	...

Header (8 bytes): A CAPABILITY_HEADER header. The CapabilityType field of this header MUST be set to CAP_SMARTCARD_TYPE, and the Version field MUST be set to 0x00000001.
[bookmark: section_f513bf87cca0488aac5c18cf18f4a7e1][bookmark: _Toc456184935]Client Core Capability Response (DR_CORE_CAPABILITY_RSP)
This packet is identical to Server Core Capability Request (section 2.2.2.7) with the exception that the PacketId field in RDPDR_HEADER (section 2.2.1.1) MUST be set to PAKID_CORE_CLIENT_CAPABILITY.
[bookmark: section_10ef9adacba24384ab607b6290ed4a9a][bookmark: _Toc456184936]Client Device List Announce Request (DR_CORE_DEVICELIST_ANNOUNCE_REQ)
 The client announces the list of devices to redirect on the server.
	0
	1
	2
	3
	4
	5
	6
	7
	8
	9
	1
0
	1
	2
	3
	4
	5
	6
	7
	8
	9
	2
0
	1
	2
	3
	4
	5
	6
	7
	8
	9
	3
0
	1

	Header

	DeviceCount

	DeviceList (variable)

	...

Header (4 bytes): An RDPDR_HEADER header. The Component field MUST be set to RDPDR_CTYP_CORE, and the PacketId field MUST be set to PAKID_CORE_DEVICELIST_ANNOUNCE.
DeviceCount (4 bytes): A 32-bit unsigned integer that specifies the number of items in the DeviceList array.
DeviceList (variable): A variable-length array of DEVICE_ANNOUNCE (section 2.2.1.3) headers. This field specifies a list of devices that are being announced. The number of entries is specified by the DeviceCount field. There is no alignment padding between individual DEVICE_ANNOUNCE structures. They are ordered sequentially within this packet.
[bookmark: section_6b0241ce0f89456db3eabd41fabaeb63][bookmark: _Toc456184937]Drive Redirection Messages
[bookmark: section_d8b2bc1c02074c15abe362eaa2afcaf1][bookmark: _Toc456184938]Client Device List Announce (DR_DEVICELIST_ANNOUNCE)
 The client announces a list of new file system devices to redirect on the server.
	0
	1
	2
	3
	4
	5
	6
	7
	8
	9
	1
0
	1
	2
	3
	4
	5
	6
	7
	8
	9
	2
0
	1
	2
	3
	4
	5
	6
	7
	8
	9
	3
0
	1

	Header

	DeviceCount

	DeviceAnnounce (variable)

	...

Header (4 bytes): An RDPDR_HEADER header. The Component field MUST be set to RDPDR_CTYP_CORE, and the PacketId field MUST be set to PAKID_CORE_DEVICELIST_ANNOUNCE.
DeviceCount (4 bytes): A 32-bit unsigned integer that specifies the number of entries in the DeviceAnnounce field.
[bookmark: Appendix_A_Target_11]DeviceAnnounce (variable): A variable-length array of DEVICE_ANNOUNCE (section 2.2.1.3) headers. The number of entries is specified by the DeviceCount field. Each entry is a DEVICE_ANNOUNCE header in which the DeviceType field MUST be set to RDPDR_DTYP_FILESYSTEM.<11> The drive name MUST be specified in the PreferredDosName field; however, if the drive name is larger than the allocated size of the PreferredDosName field, then the drive name MUST be truncated to fit. If the client supports DRIVE_CAPABILITY_VERSION_02 in the Drive Capability Set, then the full name MUST also be specified in the DeviceData field, as a null-terminated Unicode string. If the DeviceDataLength field is nonzero, the content of the PreferredDosName field is ignored. There is no alignment padding between individual DEVICE_ANNOUNCE headers. They are ordered sequentially within this packet.
Note The PreferredDosName field is used for all device types and is not limited to drives.
[bookmark: section_13bd4c0ae67447a5b31750a835defb55][bookmark: _Toc456184939]Client Drive Device List Remove (DR_DEVICELIST_REMOVE)
The client removes a list of already-announced devices from the server.
	0
	1
	2
	3
	4
	5
	6
	7
	8
	9
	1
0
	1
	2
	3
	4
	5
	6
	7
	8
	9
	2
0
	1
	2
	3
	4
	5
	6
	7
	8
	9
	3
0
	1

	Header

	DeviceCount

	DeviceIds (variable)

	...

Header (4 bytes): An RDPDR_HEADER header. The Component field MUST be set to RDPDR_CTYP_CORE, and the PacketId field MUST be set to PAKID_CORE_DEVICELIST_REMOVE.
DeviceCount (4 bytes): A 32-bit unsigned integer that specifies the number of entries in the DeviceIds field.
DeviceIds (variable): A variable-length array of 32-bit unsigned integers that specifies device IDs. The IDs specified in this array match the IDs specified in the Client Device List Announce (section 2.2.3.1) packet.
Note The client can send the DR_DEVICELIST_REMOVE message for devices that are removed after a session is connected. The server can accept the DR_DEVICE_REMOVE message for any removed device, including file system and port devices. The server can also accept reused DeviceIds of devices that have been removed, providing the implementation uses the DR_DEVICE_REMOVE message to do so.
[bookmark: section_89bb51afc54d40fb81c1d1bb353c4536][bookmark: _Toc456184940]Server Drive I/O Request (DR_DRIVE_CORE_DEVICE_IOREQUEST)
The server issues a device I/O request on a redirected file system device. Each request begins with a DR_DEVICE_IOREQUEST (section 2.2.1.4) header, in which the DeviceId field MUST be set to a device that has been announced as a file system device.
[bookmark: section_95b16fd0d530407ca310adedc85e9897][bookmark: _Toc456184941]Server Create Drive Request (DR_DRIVE_CREATE_REQ)
The server opens or creates a file on a redirected file system device.
	0
	1
	2
	3
	4
	5
	6
	7
	8
	9
	1
0
	1
	2
	3
	4
	5
	6
	7
	8
	9
	2
0
	1
	2
	3
	4
	5
	6
	7
	8
	9
	3
0
	1

	DeviceCreateRequest (variable)

	...

DeviceCreateRequest (variable): A DR_CREATE_REQ header. The PathLength and Path fields contain the file name of the file to be created. The file name does not contain a drive letter, which means that the drive is specified by the DeviceId field of the request. The DeviceId is associated with a drive letter when the device is announced in the DR_DEVICELIST_ANNOUNCE (section 2.2.3.1) message. The drive letter is contained in the PreferredDosName field.
[bookmark: section_762eb9ef3d4c43ba97fa510acb8f7b70][bookmark: _Toc456184942]Server Close Drive Request (DR_DRIVE_CLOSE_REQ)
 The server closes a file on a redirected file system device.
	0
	1
	2
	3
	4
	5
	6
	7
	8
	9
	1
0
	1
	2
	3
	4
	5
	6
	7
	8
	9
	2
0
	1
	2
	3
	4
	5
	6
	7
	8
	9
	3
0
	1

	DeviceCloseRequest (56 bytes)

	...

	...

DeviceCloseRequest (56 bytes): A DR_CLOSE_REQ header. This request closes a file opened by a Server Create Drive Request (section 2.2.3.3.1).
[bookmark: section_6180ba23e665492a9b6274418ef95c2a][bookmark: _Toc456184943]Server Drive Read Request (DR_DRIVE_READ_REQ)
 The server reads from a file on a redirected file system device.
	0
	1
	2
	3
	4
	5
	6
	7
	8
	9
	1
0
	1
	2
	3
	4
	5
	6
	7
	8
	9
	2
0
	1
	2
	3
	4
	5
	6
	7
	8
	9
	3
0
	1

	DeviceReadRequest (56 bytes)

	...

	...

DeviceReadRequest (56 bytes): A DR_READ_REQ header. The Length field contains the number of bytes to be read from the file. The Offset field specifies the offset within the file at which the read operation starts.
[bookmark: section_7566946db932415db88d9e2701518992][bookmark: _Toc456184944]Server Drive Write Request (DR_DRIVE_WRITE_REQ)
 The server writes to a file on a redirected file system device.
	0
	1
	2
	3
	4
	5
	6
	7
	8
	9
	1
0
	1
	2
	3
	4
	5
	6
	7
	8
	9
	2
0
	1
	2
	3
	4
	5
	6
	7
	8
	9
	3
0
	1

	DeviceWriteRequest (variable)

	...

DeviceWriteRequest (variable): A DR_WRITE_REQ header. The Length field contains the number of bytes to be written to the file. The Offset field specifies the offset within the file at which the write operation starts.
[bookmark: section_5d00144c28174cdfa05e57b9579d4caa][bookmark: _Toc456184945]Server Drive Control Request (DR_DRIVE_CONTROL_REQ)
The server issues a device control request on a redirected file system device.
	0
	1
	2
	3
	4
	5
	6
	7
	8
	9
	1
0
	1
	2
	3
	4
	5
	6
	7
	8
	9
	2
0
	1
	2
	3
	4
	5
	6
	7
	8
	9
	3
0
	1

	DeviceControlRequest (variable)

	...

DeviceControlRequest (variable): A DR_CONTROL_REQ header. The packet has a structure as defined in Device Control Request (section 2.2.1.4.5). The possible values for the IoControlCode field are a subset of the file system control (FSCTL) commands specified in [MS-FSCC] section 2.3. The content of the InputBuffer field is defined in the request type messages that are specified in the same section of [MS-FSCC].
The following list indicates the FSCTL commands supported by this protocol.
· FSCTL_CREATE_OR_GET_OBJECT_ID
· FSCTL_DELETE_OBJECT_ID
· FSCTL_DELETE_REPARSE_POINT
· FSCTL_FILESYSTEM_GET_STATISTICS
· FSCTL_FIND_FILES_BY_SID
· FSCTL_GET_COMPRESSION
· FSCTL_GET_NTFS_VOLUME_DATA
· FSCTL_GET_OBJECT_ID
· FSCTL_GET_REPARSE_POINT
· FSCTL_GET_RETRIEVAL_POINTERS
· FSCTL_IS_PATHNAME_VALID
· FSCTL_LMR_GET_LINK_TRACKING_INFORMATION
· FSCTL_LMR_SET_LINK_TRACKING_INFORMATION
· FSCTL_PIPE_TRANSCEIVE
· FSCTL_PIPE_WAIT
· FSCTL_QUERY_ALLOCATED_RANGES
· FSCTL_READ_FILE_USN_DATA
· FSCTL_RECALL_FILE
· FSCTL_SET_COMPRESSION
· FSCTL_SET_ENCRYPTION
· FSCTL_SET_OBJECT_ID
· FSCTL_SET_OBJECT_ID_EXTENDED
· FSCTL_SET_REPARSE_POINT
· FSCTL_SET_SHORT_NAME_BEHAVIOR
· FSCTL_SET_SPARSE
· FSCTL_SET_ZERO_DATA
· FSCTL_SET_ZERO_ON_DEALLOCATION
· FSCTL_SIS_COPYFILE
· FSCTL_WRITE_USN_CLOSE_RECORD
[bookmark: section_484e622d0e2b423c84617de38878effb][bookmark: _Toc456184946]Server Drive Query Volume Information Request (DR_DRIVE_QUERY_VOLUME_INFORMATION_REQ)
The server issues a query volume information request on a redirected file system device.
	0
	1
	2
	3
	4
	5
	6
	7
	8
	9
	1
0
	1
	2
	3
	4
	5
	6
	7
	8
	9
	2
0
	1
	2
	3
	4
	5
	6
	7
	8
	9
	3
0
	1

	DeviceIoRequest (24 bytes)

	...

	...

	FsInformationClass

	Length

	Padding (24 bytes)

	...

	...

	QueryVolumeBuffer (variable)

	...

DeviceIoRequest (24 bytes): A DR_DEVICE_IOREQUEST (section 2.2.1.4) header. The MajorFunction field in the DR_DEVICE_IOREQUEST header MUST be set to IRP_MJ_QUERY_VOLUME_INFORMATION.
FsInformationClass (4 bytes): A 32-bit unsigned integer. The possible values for this field are specified in [MS-FSCC] section 2.5. This field MUST contain one of the following values.
	Value
	Meaning

	FileFsVolumeInformation
0x00000001
	Used to query information for a volume on which a file system is mounted. The Reserved field of the FileFsVolumeInformation structure ([MS-FSCC] section 2.5.9) MUST NOT be present.

	FileFsSizeInformation
0x00000003
	Used to query sector size information for a file system volume.

	FileFsAttributeInformation
0x00000005
	Used to query attribute information for a file system.

	FileFsFullSizeInformation
0x00000007
	Used to query sector size information for a file system volume.

	FileFsDeviceInformation
0x00000004
	Used to query device information for a file system volume.

Length (4 bytes): A 32-bit unsigned integer that specifies the number of bytes in the QueryVolumeBuffer field.
Padding (24 bytes): An array of 24 bytes. This field is unused and MUST be ignored.
QueryVolumeBuffer (variable): A variable-length array of bytes. The size of the array is specified by the Length field. The content of this field is based on the value of the FsInformationClass field, which determines the different structures that MUST be contained in the QueryVolumeBuffer field. For a complete list of these structures, refer to [MS-FSCC] section 2.5. The "File system information class" table defines all the possible values for the FsInformationClass field.
[bookmark: section_68fd0688055444e8afc3f3deeb846195][bookmark: _Toc456184947]Server Drive Set Volume Information Request (DR_DRIVE_SET_VOLUME_INFORMATION_REQ)
The server issues a set volume information request on a redirected file system device.
	0
	1
	2
	3
	4
	5
	6
	7
	8
	9
	1
0
	1
	2
	3
	4
	5
	6
	7
	8
	9
	2
0
	1
	2
	3
	4
	5
	6
	7
	8
	9
	3
0
	1

	DeviceIoRequest (24 bytes)

	...

	...

	FsInformationClass

	Length

	Padding (24 bytes)

	...

	...

	SetVolumeBuffer (variable)

	...

DeviceIoRequest (24 bytes): A DR_DEVICE_IOREQUEST (section 2.2.1.4) header. The MajorFunction field in the DR_DEVICE_IOREQUEST header MUST be set to IRP_MJ_SET_VOLUME_INFORMATION.
FsInformationClass (4 bytes): A 32-bit unsigned integer. The possible values for this field are defined in [MS-FSCC] section 2.5. This field MUST contain the following value.
	Value
	Meaning

	FileFsLabelInformation
0x00000002
	Used to set the label for a file system volume.

Length (4 bytes): A 32-bit unsigned integer that specifies the number of bytes in the SetVolumeBuffer field.
Padding (24 bytes): An array of 24 bytes. This field is unused and MUST be ignored.
SetVolumeBuffer (variable): A variable-length array of bytes. The size of the array is specified by the Length field. The content of this field is based on the value of the FsInformationClass field, which determines the different structures that MUST be contained in the SetVolumeBuffer field. For a complete list of these structures, refer to [MS-FSCC] section 2.5. The "File system information class" table defines all the possible values for the FsInformationClass field.
[bookmark: section_e43dcd68298040a99238344b6cf94946][bookmark: _Toc456184948]Server Drive Query Information Request (DR_DRIVE_QUERY_INFORMATION_REQ)
The server issues a query information request on a redirected file system device.
	0
	1
	2
	3
	4
	5
	6
	7
	8
	9
	1
0
	1
	2
	3
	4
	5
	6
	7
	8
	9
	2
0
	1
	2
	3
	4
	5
	6
	7
	8
	9
	3
0
	1

	DeviceIoRequest (24 bytes)

	...

	...

	FsInformationClass

	Length

	Padding (24 bytes)

	...

	...

	QueryBuffer (variable)

	...

DeviceIoRequest (24 bytes): A DR_DEVICE_IOREQUEST (section 2.2.1.4) header. The MajorFunction field in the DR_DEVICE_IOREQUEST header MUST be set to IRP_MJ_QUERY_INFORMATION.
FsInformationClass (4 bytes): A 32-bit unsigned integer. The possible values for this field are defined in [MS-FSCC] section 2.4. This field MUST contain one of the following values.
	Value
	Meaning

	FileBasicInformation
0x00000004
	This information class is used to query a file for the times of creation, last access, last write, and change, in addition to file attribute information. The Reserved field of the FileBasicInformation structure ([MS-FSCC] section 2.4.7) MUST NOT be present.

	FileStandardInformation
0x00000005
	This information class is used to query for file information such as allocation size, end-of-file position, and number of links. The Reserved field of the FileStandardInformation structure ([MS-FSCC] section 2.4.38) MUST NOT be present.

	FileAttributeTagInformation
0x00000023
	This information class is used to query for file attribute and reparse tag information.

Length (4 bytes): A 32-bit unsigned integer that specifies the number of bytes in the QueryBuffer field.
Padding (24 bytes): An array of 24 bytes. This field is unused and MUST be ignored.
QueryBuffer (variable): A variable-length array of bytes. The size of the array is specified by the Length field. The content of this field is based on the value of the FsInformationClass field, which determines the different structures that MUST be contained in the QueryBuffer field. For a complete list of these structures, see [MS-FSCC] section 2.4. The "File information class" table defines all the possible values for the FsInformationClass field.
[bookmark: section_b5d3104b0e424cf89059e9fe86615e5c][bookmark: _Toc456184949]Server Drive Set Information Request (DR_DRIVE_SET_INFORMATION_REQ)
The server issues a set information request on a redirected file system device.
	0
	1
	2
	3
	4
	5
	6
	7
	8
	9
	1
0
	1
	2
	3
	4
	5
	6
	7
	8
	9
	2
0
	1
	2
	3
	4
	5
	6
	7
	8
	9
	3
0
	1

	DeviceIoRequest (24 bytes)

	...

	...

	FsInformationClass

	Length

	Padding (24 bytes)

	...

	...

	SetBuffer (variable)

	...

DeviceIoRequest (24 bytes): A DR_DEVICE_IOREQUEST (section 2.2.1.4) header. The MajorFunction field in the DR_DEVICE_IOREQUEST header MUST be set to IRP_MJ_SET_INFORMATION.
FsInformationClass (4 bytes): A 32-bit unsigned integer. The possible values for this field are defined in [MS-FSCC] section 2.4. The FsInformationClass field is a 32-bit value, even though the values described in [MS-FSCC] are single byte only. For the purposes of conversion, the highest 24 bits are always set to zero. This field MUST contain one of the following values.
	Value
	Meaning

	FileBasicInformation
0x00000004
	This information class is used to set file information such as the times of creation, last access, last write, and change, in addition to file attributes.

	FileEndOfFileInformation
0x00000014
	This information class is used to set end-of-file information for a file.

	FileDispositionInformation
0x0000000D
	This information class is used to mark a file for deletion.

	FileRenameInformation
0x0000000A
	This information class is used to rename a file.

	FileAllocationInformation
0x00000013
	This information class is used to set the allocation size for a file.

Length (4 bytes): A 32-bit unsigned integer that specifies the number of bytes in the SetBuffer field.
Padding (24 bytes): An array of 24 bytes. This field is unused and MUST be ignored.
SetBuffer (variable): A variable-length array of bytes. The size of the array is specified by the Length field. The content of this field is based on the value of the FsInformationClass field, which determines the different structures that MUST be contained in the SetBuffer field. For a complete list of these structures, refer to [MS-FSCC] section 2.4. The "File information class" table defines all the possible values for the FsInformationClass field with the exception of the following values.
	Value of FsInformationClass
	Meaning of content of SetBuffer field

	FileDispositionInformation
	The buffer is empty. The Length field is set to zero. It is implied that the DeletePending field of the FILE_DISPOSITION_INFORMATION structure, as described in [MS-FSCC], is set to 1.

	FileRenameInformation
	See RDP_FILE_RENAME_INFORMATION.

[bookmark: section_ae902739950b45498a11ce0f487b3c14][bookmark: _Toc456184950]RDP_FILE_RENAME_INFORMATION
RDP_FILE_RENAME_INFORMATION is a structure representing FileRenameInformation as a possible value of the FsInformationClass field. All fields have the same meaning as in FILE_RENAME_INFORMATION in [MS-FSCC] section 2.4.34. The differences are only in the layout of the fields.
	0
	1
	2
	3
	4
	5
	6
	7
	8
	9
	1
0
	1
	2
	3
	4
	5
	6
	7
	8
	9
	2
0
	1
	2
	3
	4
	5
	6
	7
	8
	9
	3
0
	1

	ReplaceIfExists
	RootDirectory
	FileNameLength

	...
	FileName (variable)

	...

ReplaceIfExists (1 byte): See [MS-FSCC] section 2.4.34 for a description of this field.
RootDirectory (1 byte): See [MS-FSCC] section 2.4.34 for a description of this field. For network operations, the value of the RootDirectory field in this structure MUST always be zero.
FileNameLength (4 bytes): See [MS-FSCC] section 2.4.34 for a description of this field.
FileName (variable): See [MS-FSCC] section 2.4.34 for a description of this field.
[bookmark: section_458019d25d5a4fd492ef8c05f8d7acb1][bookmark: _Toc456184951]Server Drive Query Directory Request (DR_DRIVE_QUERY_DIRECTORY_REQ)
The server issues a query directory request on a redirected file system device. This request is used to obtain a directory enumeration.
	0
	1
	2
	3
	4
	5
	6
	7
	8
	9
	1
0
	1
	2
	3
	4
	5
	6
	7
	8
	9
	2
0
	1
	2
	3
	4
	5
	6
	7
	8
	9
	3
0
	1

	DeviceIoRequest (24 bytes)

	...

	...

	FsInformationClass

	InitialQuery
	PathLength

	...
	Padding (23 bytes)

	...

	...

	Path (variable)

	...

DeviceIoRequest (24 bytes): A DR_DEVICE_IOREQUEST (section 2.2.1.4) header. The MajorFunction field in the DR_DEVICE_IOREQUEST header MUST be set to IRP_MJ_DIRECTORY_CONTROL, and the MinorFunction field MUST be set to IRP_MN_QUERY_DIRECTORY.
FsInformationClass (4 bytes): A 32-bit unsigned integer. The possible values are specified in [MS-FSCC] section 2.4. This field MUST contain one of the following values.
	Value
	Meaning

	FileDirectoryInformation
0x00000001
	Basic information about a file or directory. Basic information is defined as the file's name, time stamp, and size, or its attributes.

	FileFullDirectoryInformation
0x00000002
	Full information about a file or directory. Full information is defined as all the basic information, plus extended attribute size.

	FileBothDirectoryInformation
0x00000003
	Basic information plus extended attribute size and short name about a file or directory. The Reserved field of the FileBothDirectoryInformation structure ([MS-FSCC] section 2.4.8) MUST NOT be present.

	FileNamesInformation
0x0000000C
	Detailed information on the names of files in a directory.

InitialQuery (1 byte): An 8-bit unsigned integer. If the value is zero, the Path field is not included regardless of the PathLength value. If the value is set to zero, the request is for the next file in the directory specified in a previous Server Drive Query Directory Request. If such a file does not exist, the client MUST complete this request with STATUS_NO_MORE_FILES in the IoStatus field of the Client Drive I/O Response packet.
PathLength (4 bytes): A 32-bit unsigned integer that specifies the number of bytes in the Path field, including the null-terminator.
Padding (23 bytes): An array of 23 bytes. This field is unused and MUST be ignored.
Path (variable): A variable-length array of Unicode characters that specifies the directory on which this operation will be performed. The Path field MUST be null-terminated.
[bookmark: section_ed05e73de53e4261a1e1365a70ba6512][bookmark: _Toc456184952]Server Drive NotifyChange Directory Request (DR_DRIVE_NOTIFY_CHANGE_DIRECTORY_REQ)
The server issues a notify change directory request on a redirected file system device to request directory change notification.
	0
	1
	2
	3
	4
	5
	6
	7
	8
	9
	1
0
	1
	2
	3
	4
	5
	6
	7
	8
	9
	2
0
	1
	2
	3
	4
	5
	6
	7
	8
	9
	3
0
	1

	DeviceIoRequest (24 bytes)

	...

	...

	WatchTree
	CompletionFilter

	...
	Padding (27 bytes)

	...

	...

DeviceIoRequest (24 bytes): A DR_DEVICE_IOREQUEST (section 2.2.1.4) header. The MajorFunction field in the DR_DEVICE_IOREQUEST header MUST be set to IRP_MJ_DIRECTORY_CONTROL, and the MinorFunction field MUST be set to IRP_MN_NOTIFY_CHANGE_DIRECTORY.
WatchTree (1 byte): An 8-bit unsigned integer. If nonzero, a change anywhere within the tree MUST trigger the notification response; otherwise, only a change in the root directory will do so.
CompletionFilter (4 bytes): A 32-bit unsigned integer. This field has the same meaning as the CompletionFilter field in the SMB2 CHANGE_NOTIFY Request message specified in [MS-SMB2] section 2.2.35.
Padding (27 bytes): An array of 27 bytes. This field is unused and MUST be ignored.
[bookmark: section_a96fe85c620c40ce8858a6bc38609b0a][bookmark: _Toc456184953]Server Drive Lock Control Request (DR_DRIVE_LOCK_REQ)
The server issues a request to lock or unlock portions of a file.
	0
	1
	2
	3
	4
	5
	6
	7
	8
	9
	1
0
	1
	2
	3
	4
	5
	6
	7
	8
	9
	2
0
	1
	2
	3
	4
	5
	6
	7
	8
	9
	3
0
	1

	DeviceIoRequest (24 bytes)

	...

	...

	Operation

	F
	Padding

	NumLocks

	Padding2 (20 bytes)

	...

	...

	Locks (variable)

	...

DeviceIoRequest (24 bytes): A DR_DEVICE_IOREQUEST (section 2.2.1.4) header. The MajorFunction field in the DR_DEVICE_IOREQUEST header MUST be set to IRP_MJ_LOCK_CONTROL.
Operation (4 bytes): A 32-bit unsigned integer that specifies the type of the locking operation. It MUST have one of the following values:
	Value
	Meaning

	RDP_LOWIO_OP_SHAREDLOCK
0x00000002
	 The server is requesting a shared lock.

	RDP_LOWIO_OP_EXCLUSIVELOCK
0x00000003
	 The server is requesting an exclusive lock.

	RDP_LOWIO_OP_UNLOCK
0x00000004
	 The server is requesting to unlock a portion of the file.

	RDP_LOWIO_OP_UNLOCK_MULTIPLE
0x00000005
	 The server is requesting to unlock multiple portions of the file.

If this field has any other value, the request MUST be failed immediately.
F (1 bit): If this bit is set, the client MUST wait for the locking operation to complete. If this bit is not set and the region cannot be locked, the request SHOULD fail.
Padding (31 bits): 31 bits of padding. This field is unused and MUST be ignored.
NumLocks (4 bytes): A 32-bit unsigned integer that specifies the number of RDP_LOCK_INFO structures in the Locks array.
Padding2 (20 bytes): An array of 20 bytes. Reserved. This field can be set to any value and MUST be ignored.
Locks (variable): A variable-length array of RDP_LOCK_INFO structures. This field specifies one or more regions of the file to lock or unlock.
[bookmark: section_3a3a44d0a2fe41d98777d4f11a8d6963][bookmark: _Toc456184954]Client Drive I/O Response (DR_DRIVE_CORE_DEVICE_IOCOMPLETION)
 This type of message is sent by the client as a response to the Server Drive I/O Request (section 2.2.3.3).
	0
	1
	2
	3
	4
	5
	6
	7
	8
	9
	1
0
	1
	2
	3
	4
	5
	6
	7
	8
	9
	2
0
	1
	2
	3
	4
	5
	6
	7
	8
	9
	3
0
	1

	DeviceIoResponse (16 bytes)

	...

	...

DeviceIoResponse (16 bytes): A DR_DEVICE_IOCOMPLETION header. This common response header indicating the I/O response is the same as the Device I/O Response (section 2.2.1.5).
[bookmark: section_3afcdd1316be48d19c70558fd3a9a84e][bookmark: _Toc456184955]Client Drive Create Response (DR_DRIVE_CREATE_RSP)
 This message is sent by the client as a response to the Server Create Drive Request (section 2.2.3.3.1).
	0
	1
	2
	3
	4
	5
	6
	7
	8
	9
	1
0
	1
	2
	3
	4
	5
	6
	7
	8
	9
	2
0
	1
	2
	3
	4
	5
	6
	7
	8
	9
	3
0
	1

	DeviceCreateResponse (21 bytes)

	...

	...

	...

DeviceCreateResponse (21 bytes): A DR_CREATE_RSP header. This response indicates the success or failure of the opening of the specified file. It matches the common Device Create Response (section 2.2.1.5.1). If the create operation is successful, the content of the Information field in the Device Create Response message MUST have one of the following values, depending on the value of the CreateDisposition field of the Server Create Drive Request (section 2.2.3.3.1) message. In case of failure, the Information field can be set to any value, and MUST be ignored.
	Value
	Meaning

	FILE_OPENED
0x01
	The CreateDisposition field was set to FILE_OPEN_IF.

	FILE_OVERWRITTEN
0x03
	The CreateDisposition field was set to FILE_OVERWRITE_IF.

	FILE_SUPERSEDED
0x00
	The CreateDisposition field was set to any other value.

[bookmark: section_22be01c2a1a94ea39498b6b42a1512f7][bookmark: _Toc456184956]Client Drive Close Response (DR_DRIVE_CLOSE_RSP)
 This message is sent by the client as a response to the Server Close Drive Request (section 2.2.3.3.2).
	0
	1
	2
	3
	4
	5
	6
	7
	8
	9
	1
0
	1
	2
	3
	4
	5
	6
	7
	8
	9
	2
0
	1
	2
	3
	4
	5
	6
	7
	8
	9
	3
0
	1

	DeviceCloseResponse (21 bytes)

	...

	...

	...

DeviceCloseResponse (21 bytes): A DR_CLOSE_RSP (section 2.2.1.5.2) packet. The DR_CLOSE_RSP packet is sent in response to DR_DRIVE_CLOSE_REQ; it is the same as the common Device Close Response (section 2.2.1.5.2).
[bookmark: section_598c60c8bdca497b91884a1f719ddec2][bookmark: _Toc456184957]Client Drive Read Response (DR_DRIVE_READ_RSP)
 This message is sent by the client as a response to the Server Drive Read Request (section 2.2.3.3.3).
	0
	1
	2
	3
	4
	5
	6
	7
	8
	9
	1
0
	1
	2
	3
	4
	5
	6
	7
	8
	9
	2
0
	1
	2
	3
	4
	5
	6
	7
	8
	9
	3
0
	1

	DeviceReadResponse (variable)

	...

DeviceReadResponse (variable): Returns the result of the DR_DRIVE_READ_REQ; it is the same as the common Device Read Response (section 2.2.1.5.3). If successful (that is, if the IoStatus field is equal to STATUS_SUCCESS), then the amount of data read is any number between one and the number of bytes specified by the Length field in the Server Drive Read Request (section 2.2.3.3.3) message.
[bookmark: section_98c0e6a11f214f91bde33cdb8e3e428c][bookmark: _Toc456184958]Client Drive Write Response (DR_DRIVE_WRITE_RSP)
 This message is sent by the client as a response to the Server Drive Write Request (section 2.2.3.3.4).
	0
	1
	2
	3
	4
	5
	6
	7
	8
	9
	1
0
	1
	2
	3
	4
	5
	6
	7
	8
	9
	2
0
	1
	2
	3
	4
	5
	6
	7
	8
	9
	3
0
	1

	DeviceWriteResponse (variable)

	...

DeviceWriteResponse (variable): Returns the result of DR_DRIVE_WRITE_REQ; it is the same as the common Device Write Response (section 2.2.1.5.4). If successful (that is, if the IoStatus field is equal to STATUS_SUCCESS), then the number of bytes written is specified by the Length field of the Server Drive Write Request (section 2.2.3.3.4) message.
[bookmark: section_0fcfaa948ff140dea80289c1c3d5c54a][bookmark: _Toc456184959]Client Drive Control Response (DR_DRIVE_CONTROL_RSP)
 This message is sent by the client as a response to the Server Drive Control Request (section 2.2.3.3.5).
	0
	1
	2
	3
	4
	5
	6
	7
	8
	9
	1
0
	1
	2
	3
	4
	5
	6
	7
	8
	9
	2
0
	1
	2
	3
	4
	5
	6
	7
	8
	9
	3
0
	1

	DeviceIoResponse (variable)

	...

DeviceIoResponse (variable): Returns the result of DR_DRIVE_CONROL_REQ; it is the same as the common Device Control Response (section 2.2.1.5.5). The content of the OutputBuffer field is described in [MS-FSCC] section 2.3 as a reply type message.
[bookmark: section_fbdc7db8a26844208b5ece689ad1d4ac][bookmark: _Toc456184960]Client Drive Query Volume Information Response (DR_DRIVE_QUERY_VOLUME_INFORMATION_RSP)
This message is sent by the client as a response to the Server Drive Query Volume Information Request (section 2.2.3.3.6).
	0
	1
	2
	3
	4
	5
	6
	7
	8
	9
	1
0
	1
	2
	3
	4
	5
	6
	7
	8
	9
	2
0
	1
	2
	3
	4
	5
	6
	7
	8
	9
	3
0
	1

	DeviceIoReply (16 bytes)

	...

	...

	Length

	Buffer (variable)

	...

	Padding (optional)

DeviceIoReply (16 bytes): A DR_DEVICE_IOCOMPLETION (section 2.2.1.5) header. The CompletionId field of the DR_DEVICE_IOCOMPLETION header MUST match a Device I/O Request (section 2.2.1.4) that has the MajorFunction field set to IRP_MJ_QUERY_VOLUME_INFORMATION.
Length (4 bytes): A 32-bit unsigned integer that specifies the number of bytes in the Buffer field.
Buffer (variable): A variable-length array of bytes whose size is specified by the Length field. The content of this field is based on the value of the FsInformationClass field in the Server Drive Query Volume Information Request message, which determines the different structures that MUST be contained in the Buffer field. For a complete list of these structures, refer to [MS-FSCC] section 2.5. The "File system information class" table defines all the possible values for the FsInformationClass field.
Padding (1 byte): An optional, 8-bit unsigned integer that is intended to allow the client minor flexibility in determining the overall packet length. This field is unused and MUST be ignored.
[bookmark: section_828bbf31817f4539b63c4f35acfa82c7][bookmark: _Toc456184961]Client Drive Set Volume Information Response (DR_DRIVE_SET_VOLUME_INFORMATION_RSP)
This message is sent by the client as a response to the Server Drive Set Volume Information Request (section 2.2.3.3.7).
	0
	1
	2
	3
	4
	5
	6
	7
	8
	9
	1
0
	1
	2
	3
	4
	5
	6
	7
	8
	9
	2
0
	1
	2
	3
	4
	5
	6
	7
	8
	9
	3
0
	1

	DeviceIoReply (16 bytes)

	...

	...

	Length

DeviceIoReply (16 bytes): A DR_DEVICE_IOCOMPLETION (section 2.2.1.5) header. The CompletionId field of the DR_DEVICE_IOCOMPLETION header MUST match a Device I/O Request (section 2.2.1.4) that has the MajorFunction field set to IRP_MJ_SET_VOLUME_INFORMATION.
Length (4 bytes): A 32-bit unsigned integer. It MUST match the Length field in the Server Drive Set Volume Information Request.
[bookmark: section_37ef4fb16a9542009fbf515464f034a4][bookmark: _Toc456184962]Client Drive Query Information Response (DR_DRIVE_QUERY_INFORMATION_RSP)
This message is sent by the client as a response to the Server Drive Query Information Request (section 2.2.3.3.8).
	0
	1
	2
	3
	4
	5
	6
	7
	8
	9
	1
0
	1
	2
	3
	4
	5
	6
	7
	8
	9
	2
0
	1
	2
	3
	4
	5
	6
	7
	8
	9
	3
0
	1

	DeviceIoReply (16 bytes)

	...

	...

	Length

	Buffer (variable)

	...

DeviceIoReply (16 bytes): A DR_DEVICE_IOCOMPLETION (section 2.2.1.5) header. The CompletionId field of the DR_DEVICE_IOCOMPLETION header MUST match a Device I/O Request (section 2.2.1.4) that has the MajorFunction field set to IRP_MJ_QUERY_INFORMATION.
Length (4 bytes): A 32-bit unsigned integer that specifies the number of bytes in the Buffer field.
Buffer (variable): A variable-length array of bytes, in which the number of bytes is specified in the Length field. The content of this field is based on the value of the FsInformationClass field in the Server Drive Query Information Request message, which determines the different structures that MUST be contained in the Buffer field. For a complete list of these structures, refer to [MS-FSCC] section 2.4. The "File information class" table defines all the possible values for the FsInformationClass field.
[bookmark: section_16b893d55d8b49d18dcbee21e7612970][bookmark: _Toc456184963]Client Drive Set Information Response (DR_DRIVE_SET_INFORMATION_RSP)
This message is sent by the client as a response to the Server Drive Set Information Request (section 2.2.3.3.9).
	0
	1
	2
	3
	4
	5
	6
	7
	8
	9
	1
0
	1
	2
	3
	4
	5
	6
	7
	8
	9
	2
0
	1
	2
	3
	4
	5
	6
	7
	8
	9
	3
0
	1

	DeviceIoReply (16 bytes)

	...

	...

	Length

	Padding (optional)

DeviceIoReply (16 bytes): A DR_DEVICE_IOCOMPLETION (section 2.2.1.5) header. The CompletionId field of the DR_DEVICE_IOCOMPLETION header MUST match a Device I/O Request (section 2.2.1.4) that has the MajorFunction field set to IRP_MJ_SET_INFORMATION.
Length (4 bytes): A 32-bit unsigned integer. This field MUST be equal to the Length field in the Server Drive Set Information Request (section 2.2.3.3.9).
Padding (1 byte): An optional, 8-bit unsigned integer that is intended to allow the client minor flexibility in determining the overall packet length. This field is unused and MUST be ignored.
[bookmark: section_9c929407a83348938f2090c984756140][bookmark: _Toc456184964]Client Drive Query Directory Response (DR_DRIVE_QUERY_DIRECTORY_RSP)
This message is sent by the client as a response to the Server Drive Query Directory Request (section 2.2.3.3.10).
	0
	1
	2
	3
	4
	5
	6
	7
	8
	9
	1
0
	1
	2
	3
	4
	5
	6
	7
	8
	9
	2
0
	1
	2
	3
	4
	5
	6
	7
	8
	9
	3
0
	1

	DeviceIoReply (16 bytes)

	...

	...

	Length

	Buffer (variable)

	...

	Padding (optional)

DeviceIoReply (16 bytes): A DR_DEVICE_IOCOMPLETION (section 2.2.1.5) header. The CompletionId field of the DR_DEVICE_IOCOMPLETION header MUST match a Device I/O Request (section 2.2.1.4) that has the MajorFunction field set to IRP_MJ_DIRECTORY_CONTROL and the MinorFunction field set to IRP_MN_QUERY_DIRECTORY.
Length (4 bytes): A 32-bit unsigned integer that specifies the number of bytes in the Buffer field.
Buffer (variable): A variable-length array of bytes, in which the number of bytes is specified in the Length field. The content of this field is based on the value of the FsInformationClass field in the Server Drive Query Directory Request message, which determines the different structures that MUST be contained in the Buffer field. For a complete list of these structures, refer to [MS-FSCC] section 2.4. The "File information class" table defines all the possible values for the FsInformationClass field.
Padding (1 byte): An optional, 8-bit unsigned integer intended to allow the client minor flexibility in determining the overall packet length. This field is unused and MUST be ignored.
[bookmark: section_6e75ee6bf359493389d53879742269ac][bookmark: _Toc456184965]Client Drive NotifyChange Directory Response (DR_DRIVE_NOTIFY_CHANGE_DIRECTORY_RSP)
This message is sent by the client as a response to the Server Drive NotifyChange Directory Request (section 2.2.3.3.11).
	0
	1
	2
	3
	4
	5
	6
	7
	8
	9
	1
0
	1
	2
	3
	4
	5
	6
	7
	8
	9
	2
0
	1
	2
	3
	4
	5
	6
	7
	8
	9
	3
0
	1

	DeviceIoReply (16 bytes)

	...

	...

	Length

	Buffer (variable)

	...

	Padding (optional)

DeviceIoReply (16 bytes): A DR_DEVICE_IOCOMPLETION (section 2.2.1.5) header. The CompletionId field of the DR_DEVICE_IOCOMPLETION header MUST match a Device I/O Request (section 2.2.1.4) that has the MajorFunction field set to IRP_MJ_DIRECTORY_CONTROL and the MinorFunction field set to IRP_MN_NOTIFY_CHANGE_DIRECTORY.
Length (4 bytes): A 32-bit unsigned integer that specifies the number of bytes in the Buffer field.
Buffer (variable): A variable-length array of bytes, in which the number of bytes is specified in the Length field. This field has the same meaning as the Buffer field in the SMB2 CHANGE_NOTIFY Response message specified in [MS-SMB2] section 2.2.36. This buffer MUST be empty when the Server Close Drive Request (section 2.2.3.3.2) message has been issued and no drive-specific events have occurred.
Padding (1 byte): An optional, 8-bit unsigned integer intended to allow the client minor flexibility in determining the overall packet length. This field is unused and MUST be ignored.
[bookmark: section_f562f8b1cd9249c5b9cce47ed2c3f5fe][bookmark: _Toc456184966]Client Drive Lock Control Response (DR_DRIVE_LOCK_RSP)
This message is sent by the client as a response to the Server Drive Lock Control Request (section 2.2.3.3.12).
	0
	1
	2
	3
	4
	5
	6
	7
	8
	9
	1
0
	1
	2
	3
	4
	5
	6
	7
	8
	9
	2
0
	1
	2
	3
	4
	5
	6
	7
	8
	9
	3
0
	1

	DeviceIoReply (16 bytes)

	...

	...

	Padding

	...

DeviceIoReply (16 bytes): A DR_DEVICE_IOCOMPLETION (section 2.2.1.5) header. The CompletionId field of the DR_DEVICE_IOCOMPLETION header MUST match a Device I/O Request (section 2.2.1.4) that has the MajorFunction field set to IRP_MJ_LOCK_CONTROL.
Padding (5 bytes): 5 bytes of padding. This field is unused and MUST be ignored.
[bookmark: section_b1a403a2cb634bebb1d1b61942426fae][bookmark: _Toc456184967]Protocol Details
The following sections specify protocol details, including abstract data models and message processing rules.
[bookmark: section_198db65a19de49f9b30516ecd89c3264][bookmark: _Toc456184968]Common Details
[bookmark: section_210c9146c3df4e40bbbc5466d73234e0][bookmark: _Toc456184969]Abstract Data Model
This section describes a conceptual model of possible data organization that an implementation maintains to participate in this protocol. The organization is provided to explain how the protocol behaves. This document does not mandate that implementations adhere to this model, as long as their external behavior is consistent with that described in this document.
ClientId: Although this field is negotiated in the Server Announce Request (section 2.2.2.2) message, the Client Announce Reply (section 2.2.2.3) message and the Server Client ID Confirm (section 2.2.2.6) message, the protocol never processes this field after the ID has been established.
DeviceId: A unique ID that is maintained by both the client and the server for each device within a session. This unique ID is generated by the client and sent to the server in the Device Announce Header (section 2.2.1.3). For subsequent operations on the devices, both the client and server use this ID to refer to the device.
FileId: A unique ID generated by the client and sent to the server in a Device Create Response (section 2.2.1.5.1). It is used in every packet in which a Device I/O Request (section 2.2.1.4) is a header. The ID is valid until a Device Close Response (section 2.2.1.5.2) is issued by the client.
CompletionId: For I/O request calls, the server generates this unique ID and sends it to the client in the Device I/O Request (section 2.2.1.4). The client and server use this ID, in addition to the DeviceId, to refer to the request in subsequent messages. When a request is sent to the client, the server adds it to a list of outstanding requests. When the client completes the request, or when the request is canceled from the server by issuing a Device Close Request (section 2.2.1.4.2), the server removes the entry for the request from the outstanding requests list. This ID is valid until a Device I/O Response (section 2.2.1.5) packet is sent from the client to the server. A response is matched to a request if both the CompletionId and the DeviceId fields are equal.
ResultCode: The server generates these status codes in a Server Device Announce Response (section 2.2.2.1) message. If the status code is not successful, the device is not redirected and I/O operations are not issued by the server on that device.
ComputerName: This field is sent by the client in a Client Name Request (section 2.2.2.4) message, but the ComputerName field does not participate in any protocol decision. Typically, this field is used for display purposes on the server.
Capabilities: The client and server store the capability packets that they receive. Based on the fields of the capability packets, some packets will not be supported, as specified in this protocol.
[bookmark: section_af0be93602744c308f5564c680f4c49b][bookmark: _Toc456184970]Timers
No timers are used.
[bookmark: section_e28fc65c0b2d4cd99090ae17afa3e13a][bookmark: _Toc456184971]Initialization
 A virtual channel MUST be established to facilitate protocol operation. The static virtual channel is initialized as part of the basic Remote Desktop Protocol: File System Virtual Channel Extension initialization, by sending and processing a Virtual Channel PDU, as specified in [MS-RDPBCGR] section 3.1.5.2. After establishing the virtual channel this protocol continues its initialization by executing these steps:
1. The server MUST send Server Announce Request (section 2.2.2.2): this sets server version and is indication to the client to start the client sequence.
2. The client MUST reply with Client Announce Reply (section 2.2.2.3) immediately followed by Client Name Request (section 2.2.2.4): this establishes client version and name.
3. Upon receiving Client Name Request, the server MUST send Server Core Capability Request (section 2.2.2.7) followed by Server Client ID Confirm (2.2.2.6): this establishes server capabilities and confirms client version.
4. Upon receiving Server Client ID Confirm, the client MUST send Client Core Capability Response (section 2.2.2.8) and Client Device List Announce Request (section 2.2.2.9): this establishes client capabilities and list of devices to be redirected.
[bookmark: section_ebb2edf1206849cd93d62b1a65d2bbde][bookmark: _Toc456184972]Higher-Layer Triggered Events
The announcement of different devices can be triggered by an event, such as when a user has successfully logged on to a terminal server. This behavior ensures that the required devices are visible in the different stages of the logon process. For example, when the protocol is first established, only the smart card devices are announced, because only those devices are required for the logon process. After logon completes, the rest of the devices can be announced to the server. The logged-on event triggers the server to send a Server User Logged On (section 2.2.2.5) packet, which the client can use as an indication that the server is logged on.
The announcement of additional drives by the client is triggered when devices are added to the client machine. After the devices are added to the client machine, the client SHOULD announce the new drives to the server using a Client Device List Announce (section 2.2.3.1) message. When the device is removed from the client, the client sends a Client Drive Device List Remove (section 2.2.3.2) message.
I/O requests are generated in response to I/O calls that server applications make on the redirected device.
[bookmark: section_9dfe0be295074e0c9c76c4c6de98b18b][bookmark: _Toc456184973]Message Processing Events and Sequencing Rules
The DeviceId field is valid if all of the following conditions are met:
· The DeviceId field has been specified in a packet that contains the Device Announce Header (section 2.2.1.3).
· No Client Drive Device List Remove (section 2.2.3.2) has been sent for this DeviceId.
The FileId field is valid if all of the following conditions are met:
· A Device Create Response has been issued with that FileId.
· No Device Close Response has been issued with that ID.
The CompletionId field is valid if all of the following conditions are met:
· The server has sent a packet that has a Device I/O Request (section 2.2.1.4) in its header with that ID.
· No packet that has a header Device I/O Response (section 2.2.1.5) has been sent by the client with that ID.
[bookmark: section_1a8715b13afc4bd78ec29625a9ce9610][bookmark: _Toc456184974]Processing I/O Requests and Responses
This protocol connects server-based applications and client file systems such that each component is unaware of the other's local location, as specified in section 1.3. This protocol forwards server requests from the server-based application and returns replies from the client-file system. There are no specific rules implied by this protocol as to how and when a particular message is sent from the server and what the client is to reply. The rules enforced by this protocol are described by the ClientId, CompletionId, DeviceId, and FileId fields, as specified in the Abstract Data Model (section 3.1.1) and the processing instructions that follow.
There are several types of I/O requests, as specified in section 2.2.3.3. Each request is identified by its unique CompletionId and DeviceId. For each request, there is a corresponding reply, as specified in section 2.2.3.4. The CompletionId and DeviceId in the response MUST match the CompletionId and DeviceId of the request.
Each request is always initiated from the server's driver, and then sent to the client. The relevant fields for each request are retrieved from the driver. The client forwards the request to the client driver. When the request completes, the client sends an I/O response that contains the output of the request. The response is matched to its request by the DeviceId and CompletionId fields; that is, those fields MUST match.
In case of sudden termination of the underlying transport, all outstanding requests against the file system drivers are completed on both sides.
[bookmark: section_9925f2e48d5a4777a41a7ba6ef6e8bff][bookmark: _Toc456184975]Processing Packet Errors
When an unrecognized or malformed packet is received by the server or the client, the implementation SHOULD terminate the virtual channel connection. This action SHOULD be taken for any unrecognized message or field values.
If a packet is received with a length shorter than the expected length, the implementation SHOULD terminate the virtual channel connection.
Out-of-sequence packets, or the receipt of multiples of packets that are supposed to be received only once, MAY terminate the virtual channel connection.
There are no timeouts for receiving a reply for any request. A request is considered incomplete until a matching reply is received or the underlying virtual channel connection is terminated.
Error checking for a Shared Header (RDPDR_HEADER):
· If the Component field has a value that is not specified by this protocol, the implementation SHOULD terminate the virtual channel connection.
· If the PacketId field has a value that is not specified by this protocol, the implementation SHOULD terminate the virtual channel connection.
Error checking for a Capability Header (CAPABILITY_HEADER):
· If the CapabilityType field has a value that is not specified by this protocol, the implementation SHOULD terminate the virtual channel connection.
Error checking for a Device Announce Header (DEVICE_ANNOUNCE):
· If the DeviceType field has a value that is not specified by this protocol, the server SHOULD send a Server Device Announce Response (DR_CORE_DEVICE_ANNOUNCE_RSP) message with the ResultCode field set to STATUS_NOT_SUPPORTED.
Error checking for a Device I/O Request (DR_DEVICE_REQUEST):
· If a request is received that contains a DeviceId field that was not announced by the client or has been removed, the request SHOULD be ignored by the implementation.
· If the request contains MajorFunction or MinorFunction fields that are not described by this protocol, the request SHOULD be completed with a Device I/O Response message that has the IoStatus field set to STATUS_UNSUCCESSFUL.
· If the request does not have the MajorFunction field set to IRP_MJ_CREATE, and the FileId field does not contain a valid value returned in response to a Device Create Request message, or the device has been closed by a Device Close Request message, the implementation SHOULD return a response with the IoStatus field set to STATUS_UNSUCCESSFUL.
Error checking for a Device I/O Response (DR_DEVICE_IOCOMPLETION):
· If a response contains a CompletionId value that has not been sent or has been already completed, the implementation SHOULD terminate the virtual channel.
· If a response contains a DeviceId field that has never been announced or has been removed, the implementation SHOULD terminate the virtual channel.
Error checking for a DR_CORE_CLIENT_ANNOUNCE_RSP packet:
· There is no error checking for the VersionMinor and VersionMajor fields specified by the client in the DR_CORE_CLIENT_ANNOUNCE_RSP packet. However, the behavior is different depending on the version information, as follows.
· If the value of VersionMajor on the server is less than the value of VersionMajor specified by the client, then the server does not initiate capability exchange via the DR_CORE_CAPABILITY_REQ packet. Otherwise, it does.
· If the value of VersionMajor on the server is identical to the value of VersionMajor specified by the client and if the value of VersionMinor is less than 5, then the server does not initiate capability exchange via the DR_CORE_CAPABILITY_REQ packet. If the value of VersionMinor is greater than or equal to 5, then the server initiates capability exchange via the DR_CORE_CAPABILITY_REQ packet.
Note The details for client versions are specified in DR_CORE_SERVER_ANNOUNCE_REQ.The details for server versions are specified in DR_CORE_CLIENT_ANNOUNCE_RSP.
[bookmark: section_67824230f49749c9a5f5cdbd89136c8e][bookmark: _Toc456184976]Timer Events
No common timer events are used.
[bookmark: section_2674d5530c684008a3f72c839f56c7a1][bookmark: _Toc456184977]Other Local Events
There are no common local events.
[bookmark: section_492f4fc163ff442fb1b39a580813996f][bookmark: _Toc456184978]Client Details
[bookmark: section_fa3246e6b4c949a6a59d49f2c4a74187][bookmark: _Toc456184979]Abstract Data Model
The abstract data model is specified in section 3.1.1.
[bookmark: section_923712d2c5c44ff1be3cd560966f9025][bookmark: _Toc456184980]Timers
No timers are used.
[bookmark: section_9167774b677749ad828d15482fb5d0f5][bookmark: _Toc456184981]Initialization
Initialization is specified in section 3.1.3.
[bookmark: section_049849a2e3554c26a3a0ab2937390be1][bookmark: _Toc456184982]Higher-Layer Triggered Events
Higher-layer triggered events are specified in section 3.1.4.
[bookmark: section_8053a4bd0fda4f5a8eae7e7282c9b816][bookmark: _Toc456184983]Message Processing Events and Sequencing Rules
[bookmark: section_9a4f0cfbc54746e083ecac64b6ac6003][bookmark: _Toc456184984]Initialization Messages
[bookmark: section_cb1291783bf64653b528ed64cb8108af][bookmark: _Toc456184985]Processing a Server Device Announce Response Message
This response indicates the success or failure of a device announcement in the Client Device List Announce Request. The client does not take any actions that affect the protocol state. This packet informs the client whether the device specified by the DeviceId field can be redirected in the future. If the ResultCode field is set to STATUS_SUCCESS, the device MUST be redirected; any other value indicates an error.
[bookmark: section_c329489fe1594e509c6e636b95ea655f][bookmark: _Toc456184986]Processing a Server Announce Request Message
This request is initiated by the server and is the first packet that goes across this virtual channel. It indicates the server's version number and that the server is ready to start the protocol sequence. If the VersionMinor field is less than 12, the client MUST generate a new, unique ClientId by drawing a random number. This new ClientId MUST be sent in a Client Announce Reply message. If this packet appears after a sequence of other packets, it is a signal that the server has reconnected to a new session and the whole sequence has been reset. The client MUST treat this packet as the beginning of a new sequence. The client MUST also cancel all outstanding requests and release previous references to all devices.
[bookmark: section_fb986b1e2ad74f7fa1992df3c6ab8ec8][bookmark: _Toc456184987]Sending a Client Announce Reply Message
The client MUST send this reply immediately after receiving the Server Announce Request packet. It sends its own version number in the VersionMajor and VersionMinor fields. If the value of VersionMinor field from the Server Announce Request message was at least 12, the client MUST populate the ClientId field of its reply with the same value supplied by the server in the ClientId field. Otherwise, the client MUST provide a new, unique value for the ClientId field by generating a 32-bit random number. The ClientId is valid until a Client Drive Device List Remove packet is sent by the client or the protocol channel is disconnected. After the Client Drive Device List Remove packet is sent, the ClientIds in that packet MUST be reused in a subsequent Client Device List Announce packet.
[bookmark: section_9fd7e49ef3924dfcb3c46515d4af311c][bookmark: _Toc456184988]Sending a Client Name Request Message
The client MUST send this packet immediately after sending the Client Announce Reply packet. In this packet, the client specifies the client computer name in the ComputerName field, and the code page in which the name is described.
[bookmark: section_e3fe3faee12d47abb5d10d6059e04532][bookmark: _Toc456184989]Processing a User Logged On Message
This packet indicates that the user on the server is logged on, and that the client MUST now announce devices that are suitable for applications running on the server. Typically, the client sends an additional Client Device List Announce Request with an additional list of devices. If the client does not support this message, the client MUST announce its devices immediately after receiving both the Server Core Capability Request message and the Server Client ID Confirm message.
[bookmark: section_5b3b49efbe7d48ffb421900b1fd5efbc][bookmark: _Toc456184990]Processing a Server Client ID Confirm Message
This packet indicates that the server accepted the client ID that was received in the Client Announce Reply packet, or that the user logged on to the server (see section 3.3.5.1.7). The ClientId field of this packet MUST be the same as the ClientId field of the Client Announce Reply packet.
[bookmark: section_b1478ad473e446b9816d4a2ebc48a7c8][bookmark: _Toc456184991]Processing a Server Core Capability Request Message
This packet contains capabilities for every device type supported by this channel. The numCapabilities field indicates the number of sub-packets in the CapabilityMessage. Each sub-packet has a CAPABILITY_HEADER header, depending on the value of CapabilityType in this header. The client MUST reply with its own set of capabilities.
[bookmark: section_deaf4f121c394639972f5274ed3a5a8a][bookmark: _Toc456184992]Sending a Client Core Capability Response Message
[bookmark: Appendix_A_Target_12]The packet is identical to the Server Core Capability Request packet. The client MUST list the capabilities that it can support in this packet.<12> The client MUST send this packet immediately after receiving a Server Core Capability Request packet.
[bookmark: section_a0e76ffb8b8549ff955cd78a767b25c2][bookmark: _Toc456184993]Sending a Client Device List Announce Request Message
This packet can be sent by the client in one of the following cases:
· Immediately after receiving the User Logged On message.
· After receiving both the Server Core Capability Request and the Server Client ID Confirm messages from the server, if the client does not support the User Logged On message.
This packet can also be sent at any time and any number of times, to announce devices after sending the Client Name Request packet.
This packet MUST contain only devices that have not been announced by previous Client Device List Announce packets.
[bookmark: section_61951be8f32443f99a8db4d4c46295fa][bookmark: _Toc456184994]Drive Redirection Messages
This section describes data packets that are specific to drive (file system) redirection.
[bookmark: section_377fe31d4c8744efaa61947147c58fd0][bookmark: _Toc456184995]Sending a Client Device List Announce Message
[bookmark: Appendix_A_Target_13]The client MAY choose to send announce messages for each file system individually, all in one packet, or mixed with other devices. In all cases, the packet SHOULD start with a standard header, as specified in section 2.2.3.1; and the DeviceType in each announce sub-packet MUST be set to RDPDR_DTYP_FILESYSTEM.<13> The client MAY choose to send this packet if a new file system appears at any time, according to the rules defined in section 3.2.5.1.9.
[bookmark: section_ba83d0a65274448994ebc47a2e075d70][bookmark: _Toc456184996]Sending a Client Drive Device List Remove Message
[bookmark: Appendix_A_Target_14]The client MAY send this packet at any time after receiving the Server Device Announce Response message for the specified file system. Any requests to that device after sending this message MUST be considered invalid and the request will be discarded.<14>
Note The client MUST send the DR_DEVICELIST_REMOVE message for devices that are removed after a session is connected. The server can accept the DR_DEVICE_REMOVE message for any removed device, including file system and port devices. The server MUST also accept reused DeviceIds of devices that have been removed, providing the implementation uses the DR_DEVICE_REMOVE message to do so.
[bookmark: section_863a889fa5504e21a827c5ccb9466425][bookmark: _Toc456184997]Processing a Server Create Drive Request Message
This message is processed according to the rules defined in section 3.1.5.1. If the Path field of this request is equal to any of the strings described below, the request MUST be completed with STATUS_ACCESS_DENIED. The comparison is case-insensitive.
	Value of Path field
	Details

	LPT<X>
	Where <X> has any value from 1 to 9

	COM<X>
	Where <X> has any value from 1 to 9

	PRN
	

	AUX
	

	NUL
	

	CON
	

	CLOCK$
	

[bookmark: section_2de5742d942b4bc397fe2d73278cc3b0][bookmark: _Toc456184998]Sending a Client Create Drive Response Message
This packet is generated according to the rules defined in section 3.1.5.1.
[bookmark: section_81f78f74473d4ec1b04ae65f09e7ed64][bookmark: _Toc456184999]Processing a Server Close Drive Request Message
This message is processed according to the rules defined in section 3.1.5.1. If there are any pending or incomplete I/O requests with this FileId that are about to be closed, those requests are canceled. That is, they are completed with an NTSTATUS code STATUS_CANCELLED (0xC0000120) value for the IoStatus field in the response.
[bookmark: section_4adaa77369644c3eabdb6d7865c6401e][bookmark: _Toc456185000]Sending a Client Close Drive Response Message
This packet is generated according to the rules defined in section 3.1.5.1.
[bookmark: section_9a0fa9f6d598457fa42852921839f892][bookmark: _Toc456185001]Processing a Server Drive Read Request Message
This message is processed according to the rules defined in section 3.1.5.1.
[bookmark: section_bfc12725c7c74a4cacff5afb6338b341][bookmark: _Toc456185002]Sending a Client Drive Read Response Message
This packet is generated according to the rules defined in section 3.1.5.1.
[bookmark: section_6921f8e48b4a4496a51e10ff8c80ced6][bookmark: _Toc456185003]Processing a Server Drive Write Request Message
This message is processed according to the rules defined in section 3.1.5.1.
[bookmark: section_97cd5984f9eb432ba7288f143c8b916f][bookmark: _Toc456185004]Sending a Client Drive Write Response Message
This packet is generated according to the rules defined in section 3.1.5.1.
[bookmark: section_6bb81323bfd2446ba1c7946851d522fc][bookmark: _Toc456185005]Processing a Server Drive Control Request Message
This message is processed according to the rules defined in section 3.1.5.1.
[bookmark: section_fc7ff7a5f1a1472e913225af429d9e6e][bookmark: _Toc456185006]Sending a Client Drive Control Response Message
This packet is generated according to the rules defined in section 3.1.5.1.
[bookmark: section_64a9490aebfb4fe1a75f00fb012e242d][bookmark: _Toc456185007]Processing a Server Drive Query Volume Information Request Message
This message is processed according to the rules defined in section 3.1.5.1.
[bookmark: section_f8a842776dc74f218e588542c744c935][bookmark: _Toc456185008]Sending a Client Drive Query Volume Information Response Message
This packet is generated according to the rules defined in section 3.1.5.1.
[bookmark: section_11bccb78adfe4894803966975b821d6a][bookmark: _Toc456185009]Processing a Server Drive Set Volume Information Request Message
This message is processed according to the rules defined in section 3.1.5.1.
[bookmark: section_457ed027e77b4d419696e67801eec165][bookmark: _Toc456185010]Sending a Client Drive Set Volume Information Response Message
This packet is generated according to the rules defined in section 3.1.5.1.
[bookmark: section_34636695927d4fb395bb3eb345015893][bookmark: _Toc456185011]Processing a Server Drive Query Information Request Message
This message is processed according to the rules defined in section 3.1.5.1.
[bookmark: section_563392f43cb34e9c92062a69e01b6546][bookmark: _Toc456185012]Sending a Client Drive Query Information Response Message
This packet is generated according to the rules defined in section 3.1.5.1.
[bookmark: section_f02a2293e3b0498287826c0ec0914109][bookmark: _Toc456185013]Processing a Server Drive Set Information Request Message
This message is processed according to the rules defined in section 3.1.5.1.
[bookmark: section_577de15f5b224c35a9bffd6008014569][bookmark: _Toc456185014]Sending a Client Drive Set Information Response Message
This packet is generated according to the rules defined in section 3.1.5.1.
[bookmark: section_a0a2999d5ea146f6a4928515a232fbdd][bookmark: _Toc456185015]Processing a Server Drive Query Directory Request Message
This message is processed according to the rules defined in section 3.1.5.1.
[bookmark: section_9f4269aa348d408eaeb1b442a303ba8c][bookmark: _Toc456185016]Sending a Client Drive Query Directory Response Message
This packet is generated according to the rules defined in section 3.1.5.1.
[bookmark: section_21c52236695f4a36ab32f9930b9c88bc][bookmark: _Toc456185017]Processing a Server Drive Notify Change Directory Request Message
This message is processed according to the rules defined in section 3.1.5.1.
[bookmark: section_c742332e385b4984bf74cf12391b8b96][bookmark: _Toc456185018]Sending a Client Drive Notify Change Directory Response Message
This packet is generated according to the rules defined in section 3.1.5.1. There are two distinguishable cases in which this response can indicate success:
· When any of the conditions requested in the Server Drive NotifyChange Directory Request (section 2.2.3.3.11) message are met for an event on the file system. In this case, the Buffer field contains the appropriate indication for the events.
· When the file is closed by a Server Close Drive Request (section 2.2.3.3.2). In this case, the Buffer field is empty.
[bookmark: section_75b064053363486c9671fc9ad0fd09b6][bookmark: _Toc456185019]Processing a Server Drive Lock Control Request Message
This message is processed according to the rules defined in section 3.1.5.1.
[bookmark: section_47b10fff89ba49adb4bc41e1be90ffce][bookmark: _Toc456185020]Sending a Client Drive Lock Control Response Message
This packet is generated according to the rules defined in section 3.1.5.1.
[bookmark: section_99a84faa3cae42368d7bf1027303232f][bookmark: _Toc456185021]Timer Events
There are no timer events.
[bookmark: section_8aba8df3ef894788b933310113950662][bookmark: _Toc456185022]Other Local Events
There are no other local events.
[bookmark: section_c66476f8aaab4831915c13a6e35ec439][bookmark: _Toc456185023]Server Details
[bookmark: section_eb5d7f3c3e98488693c70ec93109deba][bookmark: _Toc456185024]Abstract Data Model
The abstract data model is specified in section 3.1.1.
[bookmark: section_6781e02c297946659e8ecf1d0c7f272e][bookmark: _Toc456185025]Timers
No timers are used.
[bookmark: section_97f60e7f9af5450297f778d88db4a182][bookmark: _Toc456185026]Initialization
Initialization is specified in section 3.1.3.
[bookmark: section_2ea5ef3a3dd04f8ca43feb63ed8657f5][bookmark: _Toc456185027]Higher-Layer Triggered Events
Higher-layer triggered events are specified in section 3.1.4.
[bookmark: section_8bf93f27093d43a2961b665494f03e53][bookmark: _Toc456185028]Message Processing Events and Sequencing Rules
[bookmark: section_76aecd413e144f049a26f36ecf855551][bookmark: _Toc456185029]Initialization Messages
[bookmark: section_98893fc5f6844bfe8ddb58d03886da57][bookmark: _Toc456185030]Sending a Server Device Announce Response Message
After the server initializes its virtual file system drivers for each announced device in the Client Device List Announce Request, the server MUST send a Server Device Announce Response for each device. The server initializes ResultCode with the appropriate NTSTATUS code of the virtual file system driver initialization. NTSTATUS codes are specified in [MS-ERREF] section 2.3.
[bookmark: section_e90029c1f1404da6b137a0af77def4a5][bookmark: _Toc456185031]Sending a Server Announce Request Message
This is the first packet that the server MUST send after it establishes the transport over the virtual channel. This packet contains version information. The ClientId field MUST be set to a unique ID that will not collide with any other connection where this protocol is used.
[bookmark: section_fbd58810b29049f390e1b9f8e07e7d00][bookmark: _Toc456185032]Processing a Client Announce Reply Message
The server stores the information that it received in a Client Announce Reply message. Based on the information included in this packet, the server can perform analysis on the supported client version. The ClientId field is stored and then later sent to the client in a Server Client ID Confirm message.
[bookmark: section_03834eeec8724173b16ba453423de2e7][bookmark: _Toc456185033]Processing a Client Name Request Message
The server stores the ComputerName field into each virtual file system driver.
[bookmark: section_2ecd5c188c8c4f5d97ef794ce19e91ba][bookmark: _Toc456185034]Sending a Server User Logged On Message
With this packet, the server indicates that the user is completely logged on. It is sent when the user is logged on, or when the server reconnects to a session with an already logged-on user, immediately after it receives a Client Core Capability Response. This packet is sent only if the client's general capability set has the RDPDR_USER_LOGGEDON_PDU bit set in the extendedPDU field.
[bookmark: section_69a0e911dbf241fa97255c04b5e79cdb][bookmark: _Toc456185035]Sending a Server Core Capability Request Message
[bookmark: Appendix_A_Target_15]The server MUST send its capability request immediately after it receives the Client Announce Reply message, if the VersionMinor field of the Client Announce Reply message is at least 5.<15> If the VersionMinor field is less than 5, the client does not support capability exchange. In this case, the server sends the Server Client ID Confirm message.
[bookmark: section_8137301ceabc408d8cbf9ceefb9d515d][bookmark: _Toc456185036]Sending a Server Client ID Confirm Message
The server MUST send this packet immediately after receiving the Client Announce Reply message and when all of the following conditions are met:
· The user has logged on to the server.
· The RDPDR_USER_LOGGEDON_PDU bit is not set in the extendedPDU field of the Client Core Capability Response.
When the server VersionMinor field is less than 5, this packet MUST be sent exactly once, asynchronously with the user logged-on event.
If the client does not have the RDPDR_USER_LOGGEDON_PDU flag set, then this packet MUST be sent again when the user logs on.
The VersionMajor and VersionMinor fields of this packet are set to the server version numbers.
[bookmark: section_39c4057c141044e4b1d3768564d28e30][bookmark: _Toc456185037]Processing a Client Core Capability Response Message
The server stores all client capabilities for later use in deciding what kinds of requests the client supports.
[bookmark: section_31ac7361aadc4d299dc9c1e8a469940b][bookmark: _Toc456185038]Processing a Client Device List Announce Message
The server initializes virtual device drivers for each of the announced devices in this packet. The result of the initialization of those device drivers is sent in the Server Device Announce Response message. The server sends separate Server Device Announce Response messages for each device in the Client Device List Announce message.
[bookmark: section_77b4e4aec25a4aadbd938c9b1f35291b][bookmark: _Toc456185039]Drive Redirection Messages
[bookmark: section_ec520ad3cf9b4acf987fb3728ff3bbf7][bookmark: _Toc456185040]Processing a Client List Announce Message
The server creates a virtual file system driver for each file system device. If this message contains DeviceIds that were previously sent in a Client Device List Announce message and the DeviceIds have not been invalidated by a Client Drive Device List Remove message, the protocol MUST be terminated.
[bookmark: section_d2aa6e82a42f42cd84cd268ebe5aef33][bookmark: _Toc456185041]Processing a Client Drive Device List Remove Message
The server removes the virtual file system driver for the specified device. If the specified device was not previously announced in a Client Device List Announce message, the Processing a Client Drive Device List Remove message MUST be ignored.
[bookmark: section_61c44b69b12a4ce7848352fce29cc9d2][bookmark: _Toc456185042]Sending a Server Create Drive Request Message
The server sends the Server Create Drive Request message whenever a new file or directory is being created or when an existing file, directory, or volume is being opened. All the relevant fields are packaged in an appropriate request and are sent to the client.
[bookmark: section_6f934acb106f4f7ea721878202cf5dd0][bookmark: _Toc456185043]Processing a Client Create Drive Response Message
This message is processed according to the rules defined in section 3.1.5.1.
[bookmark: section_786811e971b649debb1f786e32d266fb][bookmark: _Toc456185044]Sending a Server Close Drive Request Message
This packet is generated according to the rules defined in section 3.1.5.1.
[bookmark: section_48a2ce85972d4ba7b2c9c494ef94e10f][bookmark: _Toc456185045]Processing a Client Close Drive Response Message
This message is processed according to the rules defined in section 3.1.5.1. All pending or incomplete I/O requests for this FileId MUST be canceled. That is, they MUST be completed with an NTSTATUS code STATUS_CANCELLED (0xC0000120).
[bookmark: section_785c5a9039974767a8914714d30f7be2][bookmark: _Toc456185046]Sending a Server Drive Read Request Message
This packet is generated according to the rules defined in section 3.1.5.1.
[bookmark: section_098c2331c004484395289f7d608a1503][bookmark: _Toc456185047]Processing a Client Drive Read Response Message
This message is processed according to the rules defined in section 3.1.5.1. The server MUST not send multiple read requests on the same file unless the ENABLE_ASYNCIO flag is set in General Capability Set message. If the flag is not set, then the server MUST wait for the read on a particular file to complete before sending the next read on the same file.
[bookmark: section_58ea32624d3a420a9a1cd527a143cd99][bookmark: _Toc456185048]Sending a Server Drive Write Request Message
This packet is generated according to the rules defined in section 3.1.5.1. The server MUST not send multiple write requests on the same file unless the ENABLE_ASYNCIO flag is set in General Capability Set message. If the flag is not set, then the server MUST wait for the write on a particular file to complete before sending the next write on the same file.
[bookmark: section_5cd228ad426d4914aa4f38a13763bfd6][bookmark: _Toc456185049]Processing a Client Drive Write Response Message
This message is processed according to the rules defined in section 3.1.5.1.
[bookmark: section_e3406adc37c04666bf8b18d4bb29148a][bookmark: _Toc456185050]Sending a Server Drive Control Request Message
This packet is generated according to the rules defined in section 3.1.5.1.
[bookmark: section_4472d64b85a84434b760f9eddbe9487b][bookmark: _Toc456185051]Processing a Client Drive Control Response Message
This message is processed according to the rules defined in section 3.1.5.1.
[bookmark: section_06e3d3a877d642d491d547e8779ac83c][bookmark: _Toc456185052]Sending a Server Drive Query Volume Information Request Message
This packet is generated according to the rules defined in section 3.1.5.1.
[bookmark: section_7a7ff839ffc948db8a8af1c254392267][bookmark: _Toc456185053]Processing a Client Drive Query Volume Information Response Message
This message is processed according to the rules defined in section 3.1.5.1.
[bookmark: section_765e90ec43844cd8a17f5c3eb07a4f4f][bookmark: _Toc456185054]Sending a Server Drive Set Volume Information Request Message
This packet is generated according to the rules defined in section 3.1.5.1.
[bookmark: section_887f198772b64da6b4bb1911df5da858][bookmark: _Toc456185055]Processing a Client Drive Set Volume Information Response Message
This message is processed according to the rules defined in section 3.1.5.1.
[bookmark: section_55628c888ebe4da9b7a5e070f4a8b76f][bookmark: _Toc456185056]Sending a Server Drive Query Information Request Message
This packet is generated according to the rules defined in section 3.1.5.1.
[bookmark: section_47a2da03e0ba448585fc7b88d5a4663d][bookmark: _Toc456185057]Processing a Client Drive Query Information Response Message
This message is processed according to the rules defined in section 3.1.5.1.
[bookmark: section_8ad4b5fd7b4d49ac8eacd3cff89889a0][bookmark: _Toc456185058]Sending a Server Drive Set Information Request Message
This packet is generated according to the rules defined in section 3.1.5.1.
[bookmark: section_f13500cb13654f2fa7d875fedb0e8268][bookmark: _Toc456185059]Processing a Client Drive Set Information Response Message
This message is processed according to the rules defined in section 3.1.5.1.
[bookmark: section_90a241606b9a4cd093ea52bce1d671c9][bookmark: _Toc456185060]Sending a Server Drive Query Directory Request Message
This packet is generated according to the rules defined in section 3.1.5.1.
[bookmark: section_b435f0bd200c435987fdd057fa7a1fb1][bookmark: _Toc456185061]Processing a Client Drive Query Directory Response Message
This message is processed according to the rules defined in section 3.1.5.1.
[bookmark: section_52f4292792744e8ca54445ef1c90420e][bookmark: _Toc456185062]Sending a Server Drive Notify Change Directory Request Message
This packet is generated according to the rules defined in section 3.1.5.1.
[bookmark: section_0e66ac5244874d7195608d61146b20b8][bookmark: _Toc456185063]Processing a Client Drive Notify Change Directory Response Message
This message is processed according to the rules defined in section 3.1.5.1.
[bookmark: section_acdde41d305443b0ac5ed72f21296090][bookmark: _Toc456185064]Sending a Server Drive Lock Control Request Message
This packet is generated according to the rules defined in section 3.1.5.1.
[bookmark: section_7dfefbdf20a14b22bee82a01990ead5d][bookmark: _Toc456185065]Processing a Client Drive Lock Control Response Message
This message is processed according to the rules defined in section 3.1.5.1.
[bookmark: section_5f6a53afd8054294bc77f41294a077ac][bookmark: _Toc456185066]Timer Events
There are no timer events.
[bookmark: section_534ed81ec78d4a0fa3c5561e1a7806db][bookmark: _Toc456185067]Other Local Events
There are no other local events.
[bookmark: section_2a2435f4f8a643a1af9bdddcf6b90e1a][bookmark: _Toc456185068]Protocol Examples
The following sections describe several operations as used in common scenarios to illustrate the function of the Remote Desktop Protocol: File System Virtual Channel Extension.
[bookmark: section_bbb6321e7d6642da9884bdd15151159c][bookmark: _Toc456185069]Packet Sequences
Packet sequence with the Server User Logged On message shows a sequence of packets for a client that supports the Server User Logged On message.
[image: Packet sequence with the Server User Logged On message]
Figure 4: Packet sequence with the Server User Logged On message
Packet sequence without the Server User Logged On message shows the differences in a packet sequence for a client that does not support the Server User Logged On message. Notice that the device announcement can happen completely asynchronously with the user logon to the server.
[image: Packet sequence without the Server User Logged On message]
Figure 5: Packet sequence without the Server User Logged On message
[bookmark: section_ce3aedecdfdc41e9b31066043da68716][bookmark: _Toc456185070]Server Device Announce Response
12 bytes, server to client
00000000 72 44 72 64 01 00 00 00 00 00 00 00
72 44 Header->RDPDR_CTYP_CORE = 0x4472
72 64 Header->PAKID_CORE_DEVICE_REPLY = 0x6472
01 00 00 00 DeviceId = 0x00000001
00 00 00 00 ResultCode = 0x00000000
[bookmark: section_7500118ac1f245ffa67ea09682940402][bookmark: _Toc456185071]Server Announce Request
12 bytes, server to client
00000000 72 44 6e 49 01 00 0c 00 01 00 00 00
72 44 Header->RDPDR_CTYP_CORE = 0x4472
6e 49 Header->PAKID_CORE_SERVER_ANNOUNCE = 0x496e
01 00 VersionMajor = 0x0001
0c 00 VersionMinor = 0x000c
01 00 00 00 ClientId = 0x00000001
[bookmark: section_b1b5cba187e042c8a4ebb4ea09d07f5c][bookmark: _Toc456185072]Client Announce Reply
12 bytes, client to server
00000000 72 44 43 43 01 00 0c 00 01 00 00 00
72 44 Header->RDPDR_CTYP_CORE = 0x4472
43 43 Header->PAKID_CORE_CLIENTID_CONFIRM = 0x4343
01 00 VersionMajor = 0x0001
0c 00 VersionMinor = 0x000c
01 00 00 00 ClientId = 0x00000001
[bookmark: section_da3f7b12a35f4e5c88373ae1a7c577b9][bookmark: _Toc456185073]Client Name Request
46 bytes, client to server
00000000 72 44 4e 43 01 00 00 00 00 00 00 00 1e 00 00 00
00000010 54 00 53 00 44 00 45 00 56 00 2d 00 53 00 45 00
00000020 4c 00 46 00 48 00 4f 00 53 00 54 00 00 00
72 44 Header->RDPDR_CTYP_CORE = 0x4472
4e 43 Header->PAKID_CORE_CLIENT_NAME = 0x434e
01 00 00 00 UnicodeFlag = 0x00000001
00 00 00 00 CodePage = 0x00000000
1e 00 00 00 ComputerNameLen = 0x0000001e (30)
54 00 53 00 ComputerName
44 00 45 00 ComputerName (continued)
56 00 2d 00 ComputerName (continued)
53 00 45 00 ComputerName (continued)
4c 00 46 00 ComputerName (continued)
48 00 4f 00 ComputerName (continued)
53 00 54 00 ComputerName (continued)
00 00 ComputerName (continued)
[bookmark: section_ff1639e3f7fc4758ad49427f3f663ce1][bookmark: _Toc456185074]Server User Logged On
4 bytes, server to client
00000000 72 44 4c 55
72 44 Header->RDPDR_CTYP_CORE = 0x4472
4c 55 Header->PAKID_CORE_USER_LOGGEDON = 0x554c
[bookmark: section_c71f612f98174b379a0764d71d072aba][bookmark: _Toc456185075]Server Client ID Confirm
12 bytes, server to client
00000000 72 44 43 43 01 00 0c 00 01 00 00 00
72 44 Header->RDPDR_CTYP_CORE = 0x4472
43 43 Header->PAKID_CORE_CLIENTID_CONFIRM = 0x4343
01 00 VersionMajor = 0x0001
0c 00 VersionMinor = 0x000c
01 00 00 00 ClientId = 0x00000001
[bookmark: section_65cbedb1f90e44cda7b73ab30e25edc3][bookmark: _Toc456185076]Server Core Capability Request
84 bytes, server to client
00000000 72 44 50 53 05 00 00 00 01 00 2c 00 02 00 00 00
00000010 02 00 00 00 00 00 00 00 01 00 0c 00 ff ff 00 00
00000020 00 00 00 00 07 00 00 00 00 00 00 00 00 00 00 00
00000030 02 00 00 00 02 00 08 00 01 00 00 00 03 00 08 00
00000040 01 00 00 00 04 00 08 00 02 00 00 00 05 00 08 00
00000050 01 00 00 00
72 44 Header->RDPDR_CTYP_CORE = 0x4472
50 53 Header->PAKID_CORE_SERVER_CAPABILITY = 0x5350
05 00 numCapabilities = 0x0005
00 00 Padding = 0x0000

CapabilityMessage
01 00 CAPABILITY_HEADER->CapabilityType =
 0x0001 (CAP_GENERAL_TYPE)
2c 00 CAPABILITY_HEADER->CapabilityLength = 0x002c (44)
02 00 00 00 CAPABILITY_HEADER->version = 0x00000002 (GENERAL_CAPABILITY_VERSION_02)
02 00 00 00 osType = 0x00000002 (OS_TYPE_WINNT)
00 00 00 00 osVersion = 0x00000000
01 00 protocolMajorVersion = 0x0001
0c 00 protocolMinorVersion = 0x000c
ff ff 00 00 ioCode1 = 0x0000ffff
00 00 00 00 ioCode2 = 0x00000000
07 00 00 00 extendedPDU = 0x00000007
00 00 00 00 extraFlags1 = 0x00000000
00 00 00 00 extraFlags2 = 0x00000000
02 00 00 00 SpecialTypeDeviceCap = 0x00000002
02 00 CAPABILITY_HEADER->CapabilityType =
 0x0002 (CAP_PRINTER_TYPE)
08 00 CAPABILITY_HEADER->CapabilityLength = 0x0008 (8)
01 00 00 00 CAPABILITY_HEADER->version = 0x00000001 (PRINT_CAPABILITY_VERSION_01)
03 00 CAPABILITY_HEADER->CapabilityType =
 0x0003 (CAP_PORT_TYPE)
08 00 CAPABILITY_HEADER->CapabilityLength = 0x0008 (8)
01 00 00 00 CAPABILITY_HEADER->version = 0x00000001 (PORT_CAPABILITY_VERSION_01)
04 00 CAPABILITY_HEADER->CapabilityType =
 0x0004 (CAP_DRIVE_TYPE)
08 00 CAPABILITY_HEADER->CapabilityLength = 0x0008 (8)
02 00 00 00 CAPABILITY_HEADER->version = 0x00000002 (DRIVE_CAPABILITY_VERSION_02)
05 00 CAPABILITY_HEADER->CapabilityType =
 0x0005 (CAP_SMARTCARD_TYPE)
08 00 CAPABILITY_HEADER->CapabilityLength = 0x0008 (8)
01 00 00 00 CAPABILITY_HEADER->version = 0x00000001 (SMARTCARD_CAPABILITY_VERSION_01)
[bookmark: section_1889f0350dde476cb9ecd7fbb2c61b8d][bookmark: _Toc456185077]Client Core Capability Response
84 bytes, client to server
00000000 72 44 50 43 05 00 00 00 01 00 2c 00 02 00 00 00
00000010 02 00 00 00 00 00 06 00 01 00 0c 00 ff ff 00 00
00000020 00 00 00 00 07 00 00 00 00 00 00 00 00 00 00 00
00000030 00 00 00 00 02 00 08 00 01 00 00 00 03 00 08 00
00000040 01 00 00 00 04 00 08 00 01 00 00 00 05 00 08 00
00000050 01 00 00 00
72 44 Header->RDPDR_CTYP_CORE = 0x4472
50 43 Header->PAKID_CORE_CLIENT_CAPABILITY = 0x4350
05 00 numCapabilities = 0x0005
00 00 Padding = 0x0000

CapabilityMessage
01 00 CAPABILITY_HEADER->CapabilityType =
 0x0001 (CAP_GENERAL_TYPE)
2c 00 CAPABILITY_HEADER->CapabilityLength = 0x002c (44)
02 00 00 00 CAPABILITY_HEADER->version = 0x00000002 (GENERAL_CAPABILITY_VERSION_02)
02 00 00 00 osType = 0x00000002 (OS_TYPE_WINNT)
00 00 00 00 osVersion = 0x00000000
01 00 protocolMajorVersion = 0x0001
0c 00 protocolMinorVersion = 0x000c
ff ff 00 00 ioCode1 = 0x0000ffff
00 00 00 00 ioCode2 = 0x00000000
07 00 00 00 extendedPDU = 0x00000007
00 00 00 00 extraFlags1 = 0x00000000
00 00 00 00 extraFlags2 = 0x00000000
02 00 00 00 SpecialTypeDeviceCap = 0x00000002
02 00 CAPABILITY_HEADER->CapabilityType =
 0x0002 (CAP_PRINTER_TYPE)
08 00 CAPABILITY_HEADER->CapabilityLength = 0x0008 (8)
01 00 00 00 CAPABILITY_HEADER->version = 0x00000001 (PRINT_CAPABILITY_VERSION_01)
03 00 CAPABILITY_HEADER->CapabilityType =
 0x0003 (CAP_PORT_TYPE)
08 00 CAPABILITY_HEADER->CapabilityLength = 0x0008 (8)
01 00 00 00 CAPABILITY_HEADER->version = 0x00000001 (PORT_CAPABILITY_VERSION_01)
04 00 CAPABILITY_HEADER->CapabilityType =
 0x0004 (CAP_DRIVE_TYPE)
08 00 CAPABILITY_HEADER->CapabilityLength = 0x0008 (8)
02 00 00 00 CAPABILITY_HEADER->version = 0x00000002 (DRIVE_CAPABILITY_VERSION_02)
05 00 CAPABILITY_HEADER->CapabilityType =
 0x0005 (CAP_SMARTCARD_TYPE)
08 00 CAPABILITY_HEADER->CapabilityLength = 0x0008 (8)
01 00 00 00 CAPABILITY_HEADER->version = 0x00000001 (SMARTCARD_CAPABILITY_VERSION_01)
[bookmark: section_21a08ad7ec3c4f53a200d72cdc980b8a][bookmark: _Toc456185078]Client Device List Announce Request
68 bytes, client to server
00000000 72 44 41 44 03 00 00 00 08 00 00 00 03 00 00 00
00000010 45 3a 00 00 00 00 00 00 00 00 00 00 08 00 00 00
00000020 02 00 00 00 44 3a 00 00 00 00 00 00 00 00 00 00
00000030 08 00 00 00 01 00 00 00 43 3a 00 00 00 00 00 00
00000040 00 00 00 00
72 44 Header->RDPDR_CTYP_CORE = 0x4472
41 44 Header->PAKID_CORE_DEVICELIST_ANNOUNCE = 0x4441
03 00 00 00 DeviceCount = 0x00000003

DeviceList
08 00 00 00 DeviceType = 0x00000008 (RDPDR_DTYP_FILESYSTEM)
03 00 00 00 DeviceId = 0x00000003
45 3a 00 00 PreferredDosName = 0x00003a45
00 00 00 00 PreferredDosName (continued) = 0x00000000
00 00 00 00 DeviceDataLength = 0x00000000

08 00 00 00 DeviceType = 0x00000008 (RDPDR_DTYP_FILESYSTEM)
02 00 00 00 DeviceId = 0x00000002
44 3a 00 00 PreferredDosName = 0x00003a44
00 00 00 00 PreferredDosName (continued) = 0x00000000
00 00 00 00 DeviceDataLength = 0x00000000

08 00 00 00 DeviceType = 0x00000008 (RDPDR_DTYP_FILESYSTEM)
01 00 00 00 DeviceId = 0x00000001
43 3a 00 00 PreferredDosName = 0x00003a43
00 00 00 00 PreferredDosName (continued) = 0x00000000
00 00 00 00 DeviceDataLength = 0x00000000
[bookmark: section_15445c078f654a8eb15268614083040a][bookmark: _Toc456185079]Client Drive Device List Remove
12 bytes, client to server
00000000 72 44 4d 44 01 00 00 00 01 00 00 00
72 44 Header->RDPDR_CTYP_CORE = 0x4472
4d 44 Header->PAKID_CORE_DEVICELIST_REMOVE =
 0x444d
01 00 00 00 DeviceCount = 0x00000001
01 00 00 00 DeviceIds = 0x00000001
[bookmark: section_6fffaedc45a64130bf69880cb2242d1a][bookmark: _Toc456185080]Server Create Drive Request
56 bytes, server to client
00000000 72 44 52 49 03 00 00 00 00 00 00 00 01 00 00 00
00000010 00 00 00 00 00 00 00 00 80 00 00 00 00 00 00 00
00000020 00 00 00 00 00 00 00 00 07 00 00 00 01 00 00 00
00000030 01 00 00 00 00 00 00 00
72 44 Header->RDPDR_CTYP_CORE = 0x4472
52 49 Header->PAKID_CORE_DEVICE_IOREQUEST = 0x4952
03 00 00 00 DeviceId = 0x00000003
00 00 00 00 FileId = 0x00000000
01 00 00 00 CompletionId = 0x00000001
00 00 00 00 MajorFunction = 0x00000000 (IRP_MJ_CREATE)
00 00 00 00 MinorFunction = 0x00000000
80 00 00 00 DesiredAccess = 0x00000080
00 00 00 00 AllocationSize = 0x00000000
00 00 00 00 FileAttributes = 0x00000000
00 00 00 00 SharedAccess = 0x00000000
07 00 00 00 Disposition = 0x00000007
01 00 00 00 CreateOptions = 0x00000001
01 00 00 00 PathLength = 0x00000001
00 00 00 00 Path = 0x00000000
[bookmark: section_a1417ac608284a90afa8bfdf6314dd8c][bookmark: _Toc456185081]Client Drive Create Response
21 bytes, client to server
00000000 72 44 43 49 03 00 00 00 01 00 00 00 a3 00 00 c0
00000010 00 00 00 00 00
72 44 Header->RDPDR_CTYP_CORE = 0x4472
43 49 Header->PAKID_CORE_DEVICE_IOCOMPLETION = 0x4943
03 00 00 00 DeviceId = 0x00000003
01 00 00 00 CompletionId = 0x00000001
a3 00 00 c0 IoStatus = c00000a3 (STATUS_DEVICE_NOT_READY)
00 00 00 00 FileId = 0x00000000
00 Information = 0x00
[bookmark: section_452679a57d1d48ce95d95078e028e65f][bookmark: _Toc456185082]Server Close Drive Request
56 bytes, server to client
00000000 72 44 52 49 02 00 00 00 01 00 00 00 01 00 00 00
00000010 02 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
00000020 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
00000030 00 00 00 00 00 00 00 00
72 44 Header->RDPDR_CTYP_CORE = 0x4472
52 49 Header->PAKID_CORE_DEVICE_IOREQUEST = 0x4952
02 00 00 00 DeviceId = 0x00000002
01 00 00 00 FileId = 0x00000001
01 00 00 00 CompletionId = 0x00000001
02 00 00 00 MajorFunction = 0x00000002 (IRP_MJ_CLOSE)
00 00 00 00 MinorFunction = 0x00000000
00 00 00 00 Padding = 0x00000000
00 00 00 00 Padding (continued) = 0x00000000
00 00 00 00 Padding (continued) = 0x00000000
00 00 00 00 Padding (continued) = 0x00000000
00 00 00 00 Padding (continued) = 0x00000000
00 00 00 00 Padding (continued) = 0x00000000
00 00 00 00 Padding (continued) = 0x00000000
00 00 00 00 Padding (continued) = 0x00000000
[bookmark: section_ae499cf3b399440a9992379c07e700fe][bookmark: _Toc456185083]Client Drive Close Response
20 bytes, client to server
00000000 72 44 43 49 02 00 00 00 01 00 00 00 00 00 00 00
00000010 00 00 00 00
72 44 Header->RDPDR_CTYP_CORE = 0x4472
43 49 Header->PAKID_CORE_DEVICE_IOCOMPLETION = 0x4943
02 00 00 00 DeviceId = 0x00000002
01 00 00 00 CompletionId = 0x00000001
00 00 00 00 IoStatus = 0x00000000
00 00 00 00 Padding = 0x00000000
[bookmark: section_05b93b0d652540ab92b4915323b3a069][bookmark: _Toc456185084]Server Drive Read Request
56 bytes, server to client
00000000 72 44 52 49 01 00 00 00 32 00 00 00 03 00 00 00
00000010 03 00 00 00 00 00 00 00 00 06 00 00 00 2c 00 00
00000020 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
00000030 00 00 00 00 00 00 00 00
72 44 Header->RDPDR_CTYP_CORE = 0x4472
52 49 Header->PAKID_CORE_DEVICE_IOREQUEST = 0x4952
01 00 00 00 DeviceId = 0x00000001
32 00 00 00 FileId = 0x00000032
03 00 00 00 CompletionId = 0x00000003
03 00 00 00 MajorFunction = 0x00000003 (IRP_MJ_READ)
00 00 00 00 MinorFunction = 0x00000000
00 06 00 00 Length = 0x00000600
00 2c 00 00 Offset = 0x00002c00
00 00 00 00 Offset (continued) = 0x00000000
00 00 00 00 Padding = 0x00000000
00 00 00 00 Padding (continued) = 0x00000000
00 00 00 00 Padding (continued) = 0x00000000
00 00 00 00 Padding (continued) = 0x00000000
00 00 00 00 Padding (continued) = 0x00000000
[bookmark: section_39bf0539aac8450cbfd3ada7919d5be1][bookmark: _Toc456185085]Client Drive Read Response
1556 bytes, client to server
00000000 72 44 43 49 01 00 00 00 03 00 00 00 00 00 00 00
00000010 00 06 00 00 00 00 00 00 00 00 00 00 00 00 00 00
00000020 00 00 01 00 10 00 00 00 18 00 00 80 00 00 00 00
00000030 00 00 00 00 00 00 00 00 00 00 01 00 01 00 00 00
00000040 30 00 00 80 00 00 00 00 00 00 00 00 00 00 00 00
00000050 00 00 01 00 00 00 00 00 48 00 00 00 58 60 00 00
00000060 f0 03 00 00 00 00 00 00 00 00 00 00 f0 03 34 00
00000070 00 00 56 00 53 00 5f 00 56 00 45 00 52 00 53 00
00000080 49 00 4f 00 4e 00 5f 00 49 00 4e 00 46 00 4f 00
00000090 00 00 00 00 bd 04 ef fe 00 00 01 00 00 00 06 00
000000a0 72 40 71 17 00 00 06 00 72 40 71 17 3f 00 00 00
000000b0 00 00 00 00 04 00 00 00 01 00 00 00 00 00 00 00
000000c0 00 00 00 00 00 00 00 00 44 00 00 00 01 00 56 00
000000d0 61 00 72 00 46 00 69 00 6c 00 65 00 49 00 6e 00
000000e0 66 00 6f 00 00 00 00 00 24 00 04 00 00 00 54 00
000000f0 72 00 61 00 6e 00 73 00 6c 00 61 00 74 00 69 00
00000100 6f 00 6e 00 00 00 00 00 00 00 b0 04 50 03 00 00
00000110 01 00 53 00 74 00 72 00 69 00 6e 00 67 00 46 00
00000120 69 00 6c 00 65 00 49 00 6e 00 66 00 6f 00 00 00
00000130 2c 03 00 00 01 00 30 00 30 00 30 00 30 00 30 00
00000140 34 00 62 00 30 00 00 00 1c 00 02 00 01 00 43 00
00000150 6f 00 6d 00 6d 00 65 00 6e 00 74 00 73 00 00 00
00000160 20 00 00 00 4c 00 16 00 01 00 43 00 6f 00 6d 00
00000170 70 00 61 00 6e 00 79 00 4e 00 61 00 6d 00 65 00
00000180 00 00 00 00 4d 00 69 00 63 00 72 00 6f 00 73 00
00000190 6f 00 66 00 74 00 20 00 43 00 6f 00 72 00 70 00
000001a0 6f 00 72 00 61 00 74 00 69 00 6f 00 6e 00 00 00
000001b0 2c 00 02 00 01 00 46 00 69 00 6c 00 65 00 44 00
000001c0 65 00 73 00 63 00 72 00 69 00 70 00 74 00 69 00
000001d0 6f 00 6e 00 00 00 00 00 20 00 00 00 40 00 0f 00
000001e0 01 00 46 00 69 00 6c 00 65 00 56 00 65 00 72 00
000001f0 73 00 69 00 6f 00 6e 00 00 00 00 00 36 00 2e 00
00000200 30 00 2e 00 36 00 30 00 30 00 31 00 2e 00 31 00
00000210 36 00 34 00 39 00 38 00 00 00 00 00 40 00 10 00
00000220 01 00 49 00 6e 00 74 00 65 00 72 00 6e 00 61 00
00000230 6c 00 4e 00 61 00 6d 00 65 00 00 00 54 00 73 00
00000240 6f 00 73 00 77 00 74 00 74 00 74 00 65 00 73 00
00000250 74 00 2e 00 65 00 78 00 65 00 00 00 98 00 3a 00
00000260 01 00 4c 00 65 00 67 00 61 00 6c 00 43 00 6f 00
00000270 70 00 79 00 72 00 69 00 67 00 68 00 74 00 00 00
00000280 43 00 6f 00 70 00 79 00 72 00 69 00 67 00 68 00
00000290 74 00 20 00 28 00 63 00 29 00 20 00 4d 00 69 00
000002a0 63 00 72 00 6f 00 73 00 6f 00 66 00 74 00 20 00
000002b0 43 00 6f 00 72 00 70 00 6f 00 72 00 61 00 74 00
000002c0 69 00 6f 00 6e 00 2e 00 20 00 41 00 6c 00 6c 00
000002d0 20 00 72 00 69 00 67 00 68 00 74 00 73 00 20 00
000002e0 72 00 65 00 73 00 65 00 72 00 76 00 65 00 64 00
000002f0 2e 00 00 00 2c 00 02 00 01 00 4c 00 65 00 67 00
00000300 61 00 6c 00 54 00 72 00 61 00 64 00 65 00 6d 00
00000310 61 00 72 00 6b 00 73 00 00 00 00 00 20 00 00 00
00000320 48 00 10 00 01 00 4f 00 72 00 69 00 67 00 69 00
00000330 6e 00 61 00 6c 00 46 00 69 00 6c 00 65 00 6e 00
00000340 61 00 6d 00 65 00 00 00 54 00 73 00 6f 00 73 00
00000350 77 00 74 00 74 00 74 00 65 00 73 00 74 00 2e 00
00000360 65 00 78 00 65 00 00 00 78 00 2b 00 01 00 50 00
00000370 72 00 6f 00 64 00 75 00 63 00 74 00 4e 00 61 00
00000380 6d 00 65 00 00 00 00 00 4d 00 69 00 63 00 72 00
00000390 6f 00 73 00 6f 00 66 00 74 00 20 00 28 00 52 00
000003a0 29 00 20 00 57 00 69 00 6e 00 64 00 6f 00 77 00
000003b0 73 00 20 00 28 00 52 00 29 00 20 00 4f 00 70 00
000003c0 65 00 72 00 61 00 74 00 69 00 6e 00 67 00 20 00
000003d0 53 00 79 00 73 00 74 00 65 00 6d 00 00 00 00 00
000003e0 44 00 0f 00 01 00 50 00 72 00 6f 00 64 00 75 00
000003f0 63 00 74 00 56 00 65 00 72 00 73 00 69 00 6f 00
00000400 6e 00 00 00 36 00 2e 00 30 00 2e 00 36 00 30 00
00000410 30 00 31 00 2e 00 31 00 36 00 34 00 39 00 38 00
00000420 00 00 00 00 38 00 08 00 01 00 41 00 73 00 73 00
00000430 65 00 6d 00 62 00 6c 00 79 00 20 00 56 00 65 00
00000440 72 00 73 00 69 00 6f 00 6e 00 00 00 31 00 2e 00
00000450 31 00 2e 00 30 00 2e 00 30 00 00 00 00 00 00 00
00000460 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
00000470 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
00000480 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
00000490 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
000004a0 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
000004b0 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
000004c0 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
000004d0 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
000004e0 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
000004f0 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
00000500 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
00000510 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
00000520 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
00000530 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
00000540 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
00000550 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
00000560 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
00000570 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
00000580 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
00000590 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
000005a0 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
000005b0 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
000005c0 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
000005d0 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
000005e0 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
000005f0 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
00000600 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
00000610 00 00 00 00
72 44 Header->RDPDR_CTYP_CORE = 0x4472
43 49 Header->PAKID_CORE_DEVICE_IOCOMPLETION = 0x4943
01 00 00 00 DeviceId = 0x00000001
03 00 00 00 CompletionId = 0x00000003
00 00 00 00 IoStatus = 0x00000000
00 06 00 00 Length = 0x00000600 (1536)
Rest Data ReadData (1536 bytes)
[bookmark: section_85b358f607ed4ec7b141f6a4daf3a5aa][bookmark: _Toc456185086]Server Drive Write Request
65 bytes, server to client
00000000 72 44 52 49 01 00 00 00 23 02 00 00 06 00 00 00
00000010 04 00 00 00 00 00 00 00 09 00 00 00 00 00 00 00
00000020 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
00000030 00 00 00 00 00 00 00 00 73 66 64 64 73 61 66 73
00000040 61
72 44 Header->RDPDR_CTYP_CORE = 0x4472
52 49 Header->PAKID_CORE_DEVICE_IOREQUEST = 0x4952
01 00 00 00 DeviceId = 0x00000001
23 02 00 00 FileId = 0x00000223
06 00 00 00 CompletionId = 0x00000006
04 00 00 00 MajorFunction = 0x00000004 (IRP_MJ_WRITE)
00 00 00 00 MinorFunction = 0x00000000
09 00 00 00 Length = 0x00000009 (9)
00 00 00 00 Offset = 0x00000000
00 00 00 00 Offset (continued) = 0x00000000
00 00 00 00 Padding = 0x00000000
00 00 00 00 Padding (continued) = 0x00000000
00 00 00 00 Padding (continued) = 0x00000000
00 00 00 00 Padding (continued) = 0x00000000
00 00 00 00 Padding (continued) = 0x00000000
73 66 64 64 WriteData (9 bytes)
73 61 66 73
61
[bookmark: section_7737134a25f84853bef1f36d0dbf290c][bookmark: _Toc456185087]Client Drive Write Response
21 bytes, client to server
00000000 72 44 43 49 01 00 00 00 06 00 00 00 00 00 00 00
00000010 09 00 00 00 00
72 44 Header->RDPDR_CTYP_CORE = 0x4472
43 49 Header->PAKID_CORE_DEVICE_IOCOMPLETION = 0x4943
01 00 00 00 DeviceId = 0x00000001
06 00 00 00 CompletionId = 0x00000006
00 00 00 00 IoStatus = 0x00000000
09 00 00 00 Length = 0x00000009 (9)
00 Padding = 0x00
[bookmark: section_68666d6b628f4059aa06a4144244aa54][bookmark: _Toc456185088]Server Drive Control Request
56 bytes, server to client
00000000 72 44 52 49 01 00 00 00 f8 01 00 00 08 00 00 00
00000010 0e 00 00 00 00 00 00 00 00 40 00 00 00 00 00 00
00000020 a8 00 09 00 00 00 00 00 00 00 00 00 00 00 00 00
00000030 00 00 00 00 00 00 00 00
72 44 Header->RDPDR_CTYP_CORE = 0x4472
52 49 Header->PAKID_CORE_DEVICE_IOREQUEST = 0x4952
01 00 00 00 DeviceId = 0x00000001
f8 01 00 00 FileId = 0x000001f8
08 00 00 00 CompletionId = 0x00000008
0e 00 00 00 MajorFunction = 0x0000000e (IRP_MJ_DEVICE_CONTROL)
00 00 00 00 MinorFunction = 0x00000000
00 40 00 00 OutputBufferLength = 0x00004000 (16384)
00 00 00 00 InputBufferLength = 0x00000000 (0)
a8 00 09 00 IoControlCode = 0x000900a8 (FSCTL_GET_REPARSE_POINT)
00 00 00 00 Padding = 0x00000000
00 00 00 00 Padding (continue) = 0x00000000
00 00 00 00 Padding (continue) = 0x00000000
00 00 00 00 Padding (continue) = 0x00000000
00 00 00 00 Padding (continue) = 0x00000000
[bookmark: section_d0117af0f4f4438cb41e68ea9fd0c8d1][bookmark: _Toc456185089]Client Drive Control Response
20 bytes, client to server
00000000 72 44 43 49 01 00 00 00 08 00 00 00 01 00 00 c0
00000010 00 00 00 00
72 44 Header->RDPDR_CTYP_CORE = 0x4472
43 49 Header->PAKID_CORE_DEVICE_IOCOMPLETION = 0x4943
01 00 00 00 DeviceId = 0x00000001
08 00 00 00 CompletionId = 0x00000008
01 00 00 c0 IoStatus = 0xc0000001 (STATUS_UNSUCCESSFUL)
00 00 00 00 OutputBufferLength = 0x00000000 (0)
[bookmark: section_dc6c6673a8a241c792368f1a975584a5][bookmark: _Toc456185090]Drive Query Volume Information Request
56 bytes, server to client
00000000 72 44 52 49 01 00 00 00 fa 01 00 00 08 00 00 00
00000010 0a 00 00 00 00 00 00 00 05 00 00 00 00 00 00 00
00000020 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
00000030 00 00 00 00 00 00 00 00
72 44 Header->RDPDR_CTYP_CORE = 0x4472
52 49 Header->PAKID_CORE_DEVICE_IOREQUEST = 0x4952
01 00 00 00 DeviceId = 0x00000001
fa 01 00 00 FileId = 0x000001fa
08 00 00 00 CompletionId = 0x00000008
0a 00 00 00 MajorFunction =
 0x0000000a (IRP_MJ_QUERY_VOLUME_INFORMATION)
00 00 00 00 MinorFunction = 0x00000000
05 00 00 00 FsInformationClass = 0x00000005 (FileFsAttributeInformation)
00 00 00 00 Length = 0x00000000 (0)
00 00 00 00 Padding = 0x00000000
00 00 00 00 Padding (continued) = 0x00000000
00 00 00 00 Padding (continued) = 0x00000000
00 00 00 00 Padding (continued) = 0x00000000
00 00 00 00 Padding (continued) = 0x00000000
00 00 00 00 Padding (continued) = 0x00000000
[bookmark: section_a0dbc7bd01d744f7a6c70e06c097c837][bookmark: _Toc456185091]Client Drive Query Volume Information Response
40 bytes, client to server
00000000 72 44 43 49 01 00 00 00 08 00 00 00 00 00 00 00
00000010 14 00 00 00 ff 00 27 00 ff 00 00 00 08 00 00 00
00000020 4e 00 54 00 46 00 53 00
72 44 Header->RDPDR_CTYP_CORE = 0x4472
43 49 Header->PAKID_CORE_DEVICE_IOCOMPLETION = 0x4943
01 00 00 00 DeviceId = 0x00000001
08 00 00 00 CompletionId = 0x00000008
00 00 00 00 IoStatus = 0x00000000
14 00 00 00 Length = 0x00000014 (20)
ff 00 27 00 Buffer (20 bytes)
ff 00 00 00
08 00 00 00
4e 00 54 00
46 00 53 00
[bookmark: section_d69254cd39a046a28ad6a6c948313bd9][bookmark: _Toc456185092]Server Drive Set Volume Information Request
84 bytes, server to client
00000000 72 44 52 49 02 00 00 00 06 00 00 00 02 00 00 00
00000010 0b 00 00 00 00 00 00 00 02 00 00 00 1c 00 00 00
00000020 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
00000030 00 00 00 00 00 00 00 00 16 00 00 00 54 00 65 00
00000040 73 00 74 00 20 00 56 00 6f 00 6c 00 75 00 6d 00
00000050 65 00 00 00
72 44 Header->RDPDR_CTYP_CORE = 0x4472
52 49 Header->PAKID_CORE_DEVICE_IOREQUEST = 0x4952
02 00 00 00 DeviceId = 0x00000002
06 00 00 00 FileId = 0x00000006
02 00 00 00 CompletionId = 0x00000002
0b 00 00 00 MajorFunction =
 0x0000000b (IRP_MJ_SET_VOLUME_INFORMATION)
00 00 00 00 MinorFunction = 0x00000000
02 00 00 00 FsInformationClass = 0x00000002 (FileFsLabelInformation)
1c 00 00 00 Length = 0x0000001c (28)
00 00 00 00 Padding = 0x00000000
00 00 00 00 Padding (continued) = 0x00000000
00 00 00 00 Padding (continued) = 0x00000000
00 00 00 00 Padding (continued) = 0x00000000
00 00 00 00 Padding (continued) = 0x00000000
00 00 00 00 Padding (continued) = 0x00000000
16 00 00 00 SetVolumeBuffer (28 bytes)
54 00 65 00
73 00 74 00
20 00 56 00
6f 00 6c 00
75 00 6d 00
65 00 00 00
[bookmark: section_a72c7e56521949e28c7aa8d5fd229b2e][bookmark: _Toc456185093]Client Drive Set Volume Information Response
21 bytes, client to server
00000000 72 44 43 49 02 00 00 00 02 00 00 00 22 00 00 c0
00000010 1c 00 00 00 00
72 44 Header->RDPDR_CTYP_CORE = 0x4472
43 49 Header->PAKID_CORE_DEVICE_IOCOMPLETION = 0x4943
02 00 00 00 DeviceId = 0x00000002
02 00 00 00 CompletionId = 0x00000002
22 00 00 c0 IoStatus = 0xc0000022 (STATUS_ACCESS_DENIED)
1c 00 00 00 Length = 0x0000001c
00

[bookmark: section_69ec8c03f9a64263a32257f2d5936c1d][bookmark: _Toc456185094]Server Drive Query Information Request
56 bytes, server to client
00000000 72 44 52 49 02 00 00 00 01 00 00 00 01 00 00 00
00000010 05 00 00 00 00 00 00 00 04 00 00 00 00 00 00 00
00000020 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
00000030 00 00 00 00 00 00 00 00
72 44 Header->RDPDR_CTYP_CORE = 0x4472
52 49 Header->PAKID_CORE_DEVICE_IOREQUEST = 0x4952
02 00 00 00 DeviceId = 0x00000002
01 00 00 00 FileId = 0x00000001
01 00 00 00 CompletionId = 0x00000001
05 00 00 00 MajorFunction =
 0x00000005 (IRP_MJ_QUERY_INFORMATION)
00 00 00 00 MinorFunction = 0x00000000
04 00 00 00 FsInformatonClass = 0x00000004 (FileFsDeviceInformation)
00 00 00 00 Length = 0x00000000
00 00 00 00 Padding = 0x00000000
00 00 00 00 Padding (continued) = 0x00000000
00 00 00 00 Padding (continued) = 0x00000000
00 00 00 00 Padding (continued) = 0x00000000
00 00 00 00 Padding (continued) = 0x00000000
00 00 00 00 Padding (continued) = 0x00000000
[bookmark: section_4eb89704cc0047a996e1ed635f027e28][bookmark: _Toc456185095]Client Drive Query Information Response
56 bytes, client to server
00000000 72 44 43 49 02 00 00 00 01 00 00 00 00 00 00 00
00000010 24 00 00 00 20 f7 1d 52 cc 5b c7 01 e8 60 ac be
00000020 95 a6 c7 01 e8 60 ac be 95 a6 c7 01 00 00 00 00
00000030 00 00 00 00 16 00 00 00
72 44 Header->RDPDR_CTYP_CORE = 0x4472
43 49 Header->PAKID_CORE_DEVICE_IOCOMPLETION = 0x4943
02 00 00 00 DeviceId = 0x00000002
01 00 00 00 CompletionId = 0x00000001
00 00 00 00 IoStatus = 0x00000000
24 00 00 00 Length = 0x00000024 (36)
20 f7 1d 52 Buffer
cc 5b c7 01 Buffer (continued)
e8 60 ac be Buffer (continued)
95 a6 c7 01 Buffer (continued)
e8 60 ac be Buffer (continued)
95 a6 c7 01 Buffer (continued)
00 00 00 00 Buffer (continued)
00 00 00 00 Buffer (continued)
16 00 00 00 Buffer (continued)
[bookmark: section_eb4f91b28ae9449aa7297642b0839f3d][bookmark: _Toc456185096]Server Drive Set Information Request
92 bytes, server to client
00000000 72 44 52 49 01 00 00 00 0c 02 00 00 08 00 00 00
00000010 06 00 00 00 00 00 00 00 04 00 00 00 24 00 00 00
00000020 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
00000030 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
00000040 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
00000050 00 00 00 00 00 00 00 00 a0 00 00 00
72 44 Header->RDPDR_CTYP_CORE = 0x4472
52 49 Header->PAKID_CORE_DEVICE_IOREQUEST = 0x4952
01 00 00 00 DeviceId = 0x00000001
0c 02 00 00 FileId = 0x0000020c
08 00 00 00 CompletionId = 0x00000008
06 00 00 00 MajorFunction = 0x00000006 (IRP_MJ_SET_INFORMATION)
00 00 00 00 MinorFunction = 0x00000000
04 00 00 00 FsInformationClass = 0x00000004 (FileFsDeviceInformation)
24 00 00 00 Length = 0x00000024 (36)
00 00 00 00 Padding = 0x00000000
00 00 00 00 Padding (continued) = 0x00000000
00 00 00 00 Padding (continued) = 0x00000000
00 00 00 00 Padding (continued) = 0x00000000
00 00 00 00 Padding (continued) = 0x00000000
00 00 00 00 Padding (continued) = 0x00000000
00 00 00 00 SetBuffer (36 bytes)
00 00 00 00
00 00 00 00
00 00 00 00
00 00 00 00
00 00 00 00
00 00 00 00
00 00 00 00
a0 00 00 00
[bookmark: section_c335befc9002403cb73714adfe7067a9][bookmark: _Toc456185097]Client Drive Set Information Response
21 bytes, client to server
00000000 72 44 43 49 01 00 00 00 08 00 00 00 00 00 00 00
00000010 24 00 00 00 00
72 44 Header->RDPDR_CTYP_CORE = 0x4472
43 49 Header->PAKID_CORE_DEVICE_IOCOMPLETION = 0x4943
01 00 00 00 DeviceId = 0x00000001
08 00 00 00 CompletionId = 0x00000008
00 00 00 00 IoStatus = 0x00000000
24 00 00 00 Length = 0x00000024 (36)
00 Padding
[bookmark: section_c5883ee372e449119a34ea643110f30a][bookmark: _Toc456185098]Server Drive Query Directory Request
62 bytes, server to client
00000000 72 44 52 49 01 00 00 00 02 00 00 00 01 00 00 00
00000010 0c 00 00 00 01 00 00 00 03 00 00 00 01 06 00 00
00000020 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
00000030 00 00 00 00 00 00 00 00 5c 00 2a 00 00 00
72 44 Header->RDPDR_CTYP_CORE = 0x4472
52 49 Header->PAKID_DEVICE_CORE_IOREQUEST = 0x4952
01 00 00 00 DeviceId = 0x00000001
02 00 00 00 FileId = 0x00000002
01 00 00 00 CompletionId = 0x00000001
0c 00 00 00 MajorFunction = 0x0000000c (IRP_MJ_QUERY_DIRECTORY)
01 00 00 00 MinorFunction = 0x00000001 (IRP_MN_QUERY_DIRECTORY)
03 00 00 00 FsInformationClass = 0x00000003 (FileFsSizeInformation)
01 InitialQuery = 01
06 00 00 00 PathLength = 0x00000006

00 00 00 Padding = 0x000000
00 00 00 00 Padding (continued) = 0x00000000
00 00 00 00 Padding (continued) = 0x00000000
00 00 00 00 Padding (continued) = 0x00000000
00 00 00 00 Padding (continued) = 0x00000000
00 00 00 00 Padding (continued) = 0x00000000
5c 00 2a 00 Path
00 00 Path (continued)
[bookmark: section_dafe7d61842c4c6bac9e48095e3d21e9][bookmark: _Toc456185099]Client Drive Query Directory Response
137 bytes, client to server
00000000 72 44 43 49 01 00 00 00 01 00 00 00 00 00 00 00
00000010 75 00 00 00 00 00 00 00 00 00 00 00 8b eb e4 c4
00000020 63 a4 c7 01 f4 7d de 99 91 a6 c7 01 16 ad c9 8e
00000030 40 a4 c7 01 00 00 00 00 00 00 00 00 00 00 00 00
00000040 00 00 00 00 00 00 00 00 00 00 00 00 16 00 00 00
00000050 18 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
00000060 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
00000070 00 24 00 52 00 65 00 63 00 79 00 63 00 6c 00 65
00000080 00 2e 00 42 00 69 00 6e 00
72 44 Header->RDPDR_CTYP_CORE = 0x4472
43 49 Header->PAKID_CORE_DEVICE_IOCOMPLETION = 0x4943
01 00 00 00 DeviceId = 0x00000001
01 00 00 00 CompletionId = 0x00000001
00 00 00 00 IoStatus = 0x00000000
75 00 00 00 Length = 0x00000075 (117)
00 00 00 00 Buffer (117 bytes)
00 00 00 00
8b eb e4 c4
63 a4 c7 01
f4 7d de 99
91 a6 c7 01
16 ad c9 8e
40 a4 c7 01
00 00 00 00
00 00 00 00
00 00 00 00
00 00 00 00
00 00 00 00
00 00 00 00
16 00 00 00
18 00 00 00
00 00 00 00
00 00 00 00
00 00 00 00
00 00 00 00
00 00 00 00
00 00 00 00
00 00 00 00
00 24 00 52
00 65 00 63
00 79 00 63
00 6c 00 65
00 2e 00 42
00 69 00 6e
00
[bookmark: section_6cb086bcdeea4838821b7a943fe77af6][bookmark: _Toc456185100]Server Drive NotifyChange Directory Request
56 bytes, server to client
00000000 72 44 52 49 01 00 00 00 03 00 00 00 02 00 00 00
00000010 0c 00 00 00 02 00 00 00 00 17 00 00 00 00 00 00
00000020 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
00000030 00 00 00 00 00 00 00 00
72 44 Header->RDPDR_CTYP_CORE = 0x4472
52 49 Header->PAKID_CORE_DEVICE_IOREQUEST = 0x4952
01 00 00 00 DeviceId = 0x00000001
03 00 00 00 FileId = 0x00000003
02 00 00 00 CompletionId = 0x00000002
0c 00 00 00 MajorFunction =
 0x0000000c (IRP_MJ_DIRECTORY_CONTROL)
02 00 00 00 MinorFunction =
 0x00000002 (IRP_MN_NOTIFY_CHANGE_DIRECTORY)
00 WatchTree = 0x00
17 00 00 00 CompletionFilter = 0x00000017
00 00 00 Padding = 0x000000
00 00 00 00 Padding (continued) = 0x00000000
00 00 00 00 Padding (continued) = 0x00000000
00 00 00 00 Padding (continued) = 0x00000000
00 00 00 00 Padding (continued) = 0x00000000
00 00 00 00 Padding (continued) = 0x00000000
00 00 00 00 Padding (continued) = 0x00000000
[bookmark: section_21b1036bebbb49d9bafdcd5cd0c7ba06][bookmark: _Toc456185101]Client Drive NotifyChange Directory Response
21 bytes, client to server
00000000 72 44 43 49 01 00 00 00 02 00 00 00 00 00 00 00
00000010 00 00 00 00 00
72 44 Header->RDPDR_CTYP_CORE = 0x4472
43 49 Header->PAKID_CORE_DEVICE_IOCOMPLETION = 0x4943
01 00 00 00 DeviceId = 0x00000001
02 00 00 00 CompletionId = 0x00000002
00 00 00 00 IoStatus = 0x00000000
00 00 00 00 Length = 0x00000000
00 Padding = 0x00
[bookmark: section_e744319aff8c404f80ad66f2d40230f2][bookmark: _Toc456185102]Server Drive Lock Control Request
72 bytes, server to client
00000000 72 44 52 49 0c 00 00 00-52 00 00 00 02 00 00 00
00000010 11 00 00 00 00 00 00 00-03 00 00 00 00 00 00 00
00000020 01 00 00 00 55 55 55 55-55 55 55 55 55 55 55 55
00000030 55 55 55 55 55 55 55 55-64 00 00 00 00 00 00 00
00000040 c8 00 00 00 00 00 00 00
72 44 Header->RDPDR_CTYP_CORE = 0x4472
52 49 Header->PAKID_CORE_DEVICE_IOREQUEST = 0x4952
0c 00 00 00 DeviceId = 0x0000000c
52 00 00 00 FileId = 0x00000032
02 00 00 00 CompletionId = 0x00000002
11 00 00 00 MajorFunction = 0x00000011 (IRP_MJ_LOCK_CONTROL)
00 00 00 00 MinorFunction = 0x00000000
03 00 00 00 Operation
 = 0x00000003 (RDP_LOWIO_OP_EXCLUSIVELOCK)
00 00 00 00 F - 0
01 00 00 00	 NumLocks = 0x00000001
55 55 55 55
55 55 55 55
55 55 55 55
55 55 55 55
55 55 55 55	 Padding
64 00 00 00 00 00 00 00 - Length = 0x0000000000000064
c8 00 00 00 00 00 00 00 - Offset = 0x00000000000000c8
[bookmark: section_d197237a93614233b303e1fa227e3676][bookmark: _Toc456185103]Client Drive Lock Control Response
21 bytes, client to server
00000000 72 44 43 49 0c 00 00 00-02 00 00 00 00 00 00 00
00000010 00 00 00 00 00

72 44 Header->RDPDR_CTYP_CORE = 0x4472
43 49 Header->PAKID_CORE_DEVICE_IOCOMPLETION = 0x4943
0c 00 00 00 DeviceId = 0x0000000c
02 00 00 00 CompletionId = 0x00000002
00 00 00 00 IoStatus = 0x00000000
00 00 00 00 00 Padding

[bookmark: section_bcf484a5790e41da949687a8648423a9][bookmark: _Toc456185104]Security
The following sections specify security considerations for implementers of the Remote Desktop Protocol: File System Virtual Channel Extension.
[bookmark: section_599c4e54e9494442bac51c71ef9ca79f][bookmark: _Toc456185105]Security Considerations for Implementers
There are no security considerations for Remote Desktop Protocol: File System Virtual Channel Extension messages because all static virtual channel traffic is secured by the underlying Remote Desktop Protocol core protocol. For the implemented security-related mechanisms, see [MS-RDPBCGR] section 5.
[bookmark: section_c68a203d7c1846f7b039f5dc8a0fb6f6][bookmark: _Toc456185106]Index of Security Parameters
There are no security parameters for the Remote Desktop Protocol: File System Virtual Channel Extension.
[bookmark: section_fd28bfd9dae24a78abe1b4efa208b7aa][bookmark: _Toc456185107]Appendix A: Product Behavior
The information in this specification is applicable to the following Microsoft products or supplemental software. References to product versions include released service packs.
· Windows 2000 operating system
· Windows XP operating system
· Windows Server 2003 operating system
· Windows Vista operating system
· Windows Server 2008 operating system
· Windows 7 operating system
· Windows Server 2008 R2 operating system
· Windows 8 operating system
· Windows Server 2012 operating system
· Windows 8.1 operating system
· Windows Server 2012 R2 operating system
· Windows 10 operating system
· Windows Server 2016 operating system
Exceptions, if any, are noted below. If a service pack or Quick Fix Engineering (QFE) number appears with the product version, behavior changed in that service pack or QFE. The new behavior also applies to subsequent service packs of the product unless otherwise specified. If a product edition appears with the product version, behavior is different in that product edition.
Unless otherwise specified, any statement of optional behavior in this specification that is prescribed using the terms SHOULD or SHOULD NOT implies product behavior in accordance with the SHOULD or SHOULD NOT prescription. Unless otherwise specified, the term MAY implies that the product does not follow the prescription.
<1> Section 2.1: In Windows (unsupported in Windows 2000, Windows XP and Windows Server 2003), the client advertises the static virtual channel named "RDPSND", as defined in [MS-RDPEA]. If that channel is not advertised, the server will not issue any communication on the "RDPDR" channel.
<2> Section 2.2.1.2: Unsupported in Windows 2000.
<3> Section 2.2.1.3: Unsupported in Windows 2000.
<4> Section 2.2.1.3: Unsupported in Windows 2000.
<5> Section 2.2.1.4: In the Windows implementation, the MinorFunction field is not initialized when the MajorFunction field is set to IRP_MJ_DEVICE_CONTROL.
<6> Section 2.2.1.4.4: If the client did not advertise a minor version of at least 0x000D in the Client Announce Reply (section 2.2.2.3), then it is not possible to determine whether an offset of 0x7FFFFFFF is, in fact, an offset or an indication to treat the write request as an append operation.
<7> Section 2.2.1.5.1: All Windows versions skip the Information field if IoStatus is set to 0x00000000 and DeviceId has DeviceType set to RDPDR_DTYP_PRINT.
<8> Section 2.2.2.2:
	Value
	Meaning

	0x000C
	The following versions of Windows send this value when acting as the RDP server: Windows Vista, Windows Vista operating system with Service Pack 1 (SP1), Windows Server 2008, Windows 7, Windows Server 2008 R2, Windows 8, Windows Server 2012, Windows 8.1, Windows Server 2012 R2, Windows 10, and Windows Server 2016.

	0x000A
	Windows Server 2003 operating system with Service Pack 2 (SP2) sends this value when acting as the RDP server.

	0x0006
	Windows XP operating system Service Pack 3 (SP3) sends this value when acting as the RDP server.

	0x0005
	The following versions of Windows send this value when acting as the RDP server: Windows XP, Windows XP operating system Service Pack 1 (SP1), Windows XP operating system Service Pack 2 (SP2), Windows Server 2003, and Windows Server 2003 operating system with Service Pack 1 (SP1).

	0x0002
	Windows 2000 sends this value when acting as the RDP server.

<9> Section 2.2.2.7.1: Unsupported in Windows 2000, Windows XP, Windows Server 2003, Windows Vista, and Windows Server 2008.
<10> Section 2.2.2.7.5: Unsupported in Windows 2000.
<11> Section 2.2.3.1: Unsupported in Windows 2000.
<12> Section 3.2.5.1.8: Unsupported in Windows 2000.
<13> Section 3.2.5.2.1: Unsupported in Windows 2000.
<14> Section 3.2.5.2.2: Unsupported in Windows 2000.
<15> Section 3.3.5.1.6: Unsupported in Windows 2000.
[bookmark: section_b22a4377c2da4bb18e906dfa38804c7a][bookmark: _Toc456185108]Change Tracking
This section identifies changes that were made to this document since the last release. Changes are classified as New, Major, Minor, Editorial, or No change.
The revision class New means that a new document is being released.
The revision class Major means that the technical content in the document was significantly revised. Major changes affect protocol interoperability or implementation. Examples of major changes are:
· A document revision that incorporates changes to interoperability requirements or functionality.
· The removal of a document from the documentation set.
The revision class Minor means that the meaning of the technical content was clarified. Minor changes do not affect protocol interoperability or implementation. Examples of minor changes are updates to clarify ambiguity at the sentence, paragraph, or table level.
The revision class Editorial means that the formatting in the technical content was changed. Editorial changes apply to grammatical, formatting, and style issues.
The revision class No change means that no new technical changes were introduced. Minor editorial and formatting changes may have been made, but the technical content of the document is identical to the last released version.
Major and minor changes can be described further using the following change types:
· New content added.
· Content updated.
· Content removed.
· New product behavior note added.
· Product behavior note updated.
· Product behavior note removed.
· New protocol syntax added.
· Protocol syntax updated.
· Protocol syntax removed.
· New content added due to protocol revision.
· Content updated due to protocol revision.
· Content removed due to protocol revision.
· New protocol syntax added due to protocol revision.
· Protocol syntax updated due to protocol revision.
· Protocol syntax removed due to protocol revision.
· Obsolete document removed.
Editorial changes are always classified with the change type Editorially updated.
Some important terms used in the change type descriptions are defined as follows:
· Protocol syntax refers to data elements (such as packets, structures, enumerations, and methods) as well as interfaces.
· Protocol revision refers to changes made to a protocol that affect the bits that are sent over the wire.
The changes made to this document are listed in the following table. For more information, please contact dochelp@microsoft.com.
	Section
	Tracking number (if applicable) and description
	Major change (Y or N)
	Change type

	2.2.1.4.4 Device Write Request (DR_WRITE_REQ)
	5349 : Updated the Offset field with content to indicate when the write request becomes an append operation.
	Y
	Content update.

	2.2.1.4.4 Device Write Request (DR_WRITE_REQ)
	Updated content for this version of Windows and Windows Server.
	Y
	Content update.

	2.2.2.3 Client Announce Reply (DR_CORE_CLIENT_ANNOUNCE_RSP)
	5349 : Updated the VersionMajor and VersionMinor fields with content that indicates they are for the file system redirection protocol and included the 0x000D minor version value.
	Y
	Content update.

	2.2.2.3 Client Announce Reply (DR_CORE_CLIENT_ANNOUNCE_RSP)
	Updated content for this version of Windows and Windows Server.
	Y
	Content update.

	2.2.2.6 Server Client ID Confirm (DR_CORE_SERVER_CLIENTID_CONFIRM)
	Updated content for this version of Windows and Windows Server.
	Y
	Content update.

[bookmark: section_c914d6e2de424b17a50165922fe9082c][bookmark: _Toc456185109]Index
88 / 90
[MS-RDPEFS] - v20160714
Remote Desktop Protocol: File System Virtual Channel Extension
Copyright © 2016 Microsoft Corporation
Release: July 14, 2016
A

Abstract data model
 client (section 3.1.1 55, section 3.2.1 58)
 server (section 3.1.1 55, section 3.3.1 63)
Applicability 13

C

Capability negotiation 13
Capability response - client core 35
CAPABILITY_HEADER packet 15
CAPABILITY_SET packet 16
Change tracking 86
Client (section 3.1 55, section 3.2 58)
 abstract data model (section 3.1.1 55, section 3.2.1 58)
 higher-layer triggered events (section 3.1.4 56, section 3.2.4 59)
 initialization (section 3.1.3 56, section 3.2.3 59)
 local events (section 3.1.7 58, section 3.2.7 63)
 message processing (section 3.1.5 56, section 3.2.5 59)
 other local events 63
 sequencing rules (section 3.1.5 56, section 3.2.5 59)
 timer events (section 3.1.6 58, section 3.2.6 63)
 timers (section 3.1.2 55, section 3.2.2 59)
Client core capability response 35
Common data types 14

D

Data model - abstract
 client (section 3.1.1 55, section 3.2.1 58)
 server (section 3.1.1 55, section 3.3.1 63)
Data types 14
DEVICE_ANNOUNCE packet 17
DR_CLOSE_REQ packet 21
DR_CLOSE_RSP packet 25
DR_CONTROL_REQ packet 23
DR_CONTROL_RSP packet 27
DR_CORE_CAPABILITY_REQ packet 31
DR_CORE_CAPABILITY_RSP 35
DR_CORE_CLIENT_ANNOUNCE_RSP packet 29
DR_CORE_CLIENT_NAME_REQ packet 30
DR_CORE_DEVICE_ANNOUNCE_RSP packet 28
DR_CORE_DEVICELIST_ANNOUNCE_REQ packet 35
DR_CORE_SERVER_ANNOUNCE_REQ packet 28
DR_CORE_SERVER_CLIENTID_CONFIRM packet 31
DR_CORE_USER_LOGGEDON packet 30
DR_CREATE_REQ packet 20
DR_CREATE_RSP packet 24
DR_DEVICE_IOCOMPLETION packet 24
DR_DEVICE_IOREQUEST packet 18
DR_DEVICELIST_ANNOUNCE packet 36
DR_DEVICELIST_REMOVE packet 37
DR_DRIVE_CLOSE_REQ packet 38
DR_DRIVE_CLOSE_RSP packet 49
DR_DRIVE_CONTROL_REQ packet 39
DR_DRIVE_CONTROL_RSP packet 50
DR_DRIVE_CORE_DEVICE_IOCOMPLETION packet 48
DR_DRIVE_CREATE_REQ packet 37
DR_DRIVE_CREATE_RSP packet 48
DR_DRIVE_LOCK_REQ packet 47
DR_DRIVE_LOCK_RSP packet 54
DR_DRIVE_NOTIFY_CHANGE_DIRECTORY_REQ packet 46
DR_DRIVE_NOTIFY_CHANGE_DIRECTORY_RSP packet 53
DR_DRIVE_QUERY_DIRECTORY_REQ packet 45
DR_DRIVE_QUERY_DIRECTORY_RSP packet 53
DR_DRIVE_QUERY_INFORMATION_REQ packet 42
DR_DRIVE_QUERY_INFORMATION_RSP packet 51
DR_DRIVE_QUERY_VOLUME_INFORMATION_REQ packet 40
DR_DRIVE_QUERY_VOLUME_INFORMATION_RSP packet 50
DR_DRIVE_READ_REQ packet 38
DR_DRIVE_READ_RSP packet 49
DR_DRIVE_SET_INFORMATION_REQ packet 43
DR_DRIVE_SET_INFORMATION_RSP packet 52
DR_DRIVE_SET_VOLUME_INFORMATION_REQ packet 41
DR_DRIVE_SET_VOLUME_INFORMATION_RSP packet 51
DR_DRIVE_WRITE_REQ packet 38
DR_DRIVE_WRITE_RSP packet 50
DR_READ_REQ packet 21
DR_READ_RSP packet 26
DR_WRITE_REQ packet 22
DR_WRITE_RSP packet 26
Drive redirection messages 60
Drive reduction 12
Drive reduction messages 36
DRIVE_CAPS_SET packet 35

E

Examples 68
 client announce reply 69
 client core capability response 71
 client device list announce request 72
 client drive close response 73
 client drive control response 76
 client drive create response 73
 client drive device list remove 72
 client drive notifychange directory response 81
 client drive query directory response 80
 client drive query information response 78
 client drive query volume information response 77
 client drive read response 74
 client drive set information response 79
 client drive set volume information response 78
 client drive write response 76
 client name request 70
 drive query volume information request 76
 server announce request 69
 server client ID confirm 70
 server close drive request 73
 server core capability request 70
 server create drive request 72
 server device announce response 69
 server drive control request 76
 server drive notifychange directory request 81
 server drive query directory request 79
 server drive query information request 78
 server drive read request 73
 server drive set information request 79
 server drive set volume information request 77
 server drive write request 75
 server user logged on 70

F

Fields - vendor-extensible 13

G

GENERAL_CAPS_SET packet 32
Glossary 9

H

Higher-layer triggered events
 client (section 3.1.4 56, section 3.2.4 59)
 server (section 3.1.4 56, section 3.3.4 63)

I

Implementer - security considerations 83
Index of security parameters 83
Informative references 10
Initialization
 client (section 3.1.3 56, section 3.2.3 59)
 server (section 3.1.3 56, section 3.3.3 63)
Initialization messages 28
Introduction 9

L

Local events
 client (section 3.1.7 58, section 3.2.7 63)
 server (section 3.1.7 58, section 3.3.7 67)

M

Message processing
 client (section 3.1.5 56, section 3.2.5 59)
 sending of client core capability response 60
 sending of client device list announce request 60
 sending of client name request 59
 server (section 3.1.5 56, section 3.3.5 63)
 server client ID confirm 60
 server core capability request 60
 user logged on 59
Messages
 data types 14
 drive redirection 60
 drive reduction 36
 initialization 28
 overview 14
 syntax 14
 transport 14

N

Normative references 10

O

Other local events
 client 63
 server 67
Overview 10
Overview (synopsis) 10

P

Parameters - security index 83
PORT_CAPS_SET packet 34
Preconditions 12
Prerequisites 12
PRINTER_CAPS_SET packet 34
Product behavior 84
Protocol Details
 overview 55
Protocol initialization 10

R

RDP_FILE_RENAME_INFORMATION packet 44
RDP_LOCK_INFO packet 28
RDPDR_HEADER packet 14
References 10
 informative 10
 normative 10
Relationship to other protocols 12

S

Security
 implementer considerations 83
 overview 83
 parameter index 83
Sequencing rules
 client (section 3.1.5 56, section 3.2.5 59)
 server (section 3.1.5 56, section 3.3.5 63)
Server (section 3.1 55, section 3.3 63)
 abstract data model (section 3.1.1 55, section 3.3.1 63)
 higher-layer triggered events (section 3.1.4 56, section 3.3.4 63)
 initialization (section 3.1.3 56, section 3.3.3 63)
 local events (section 3.1.7 58, section 3.3.7 67)
 message processing (section 3.1.5 56, section 3.3.5 63)
 other local events 67
 sequencing rules (section 3.1.5 56, section 3.3.5 63)
 timer events (section 3.1.6 58, section 3.3.6 67)
 timers (section 3.1.2 55, section 3.3.2 63)
SMARTCARD_CAPS_SET packet 35
Standards assignments 13
Syntax 14

T

Timer events
 client (section 3.1.6 58, section 3.2.6 63)
 server (section 3.1.6 58, section 3.3.6 67)
Timers
 client (section 3.1.2 55, section 3.2.2 59)
 server (section 3.1.2 55, section 3.3.2 63)
Tracking changes 86
Transport 14
Triggered events - higher-layer
 client (section 3.1.4 56, section 3.2.4 59)
 server (section 3.1.4 56, section 3.3.4 63)

V

Vendor-extensible fields 13
Versioning 13
[bookmark: EndOfDocument_ST]
90 / 90
[MS-RDPEFS] - v20160714
Remote Desktop Protocol: File System Virtual Channel Extension
Copyright © 2016 Microsoft Corporation
Release: July 14, 2016
image1.bin
Server FS TS Client
Driver
Server Announce Request |
et Client Announce Reply
L Client Name Request

Server Core Capability Request —————p»

Server Client ID Confirm -

i«—— Client Core Capability Response

-«f—— Client Device List Announce Request

Server Device Announce Response (device #1) —————

Server Device Announce Response (device #2) ————— i

image2.bin
Server FS

Driver TS Client

«—— — Client Drive Device List Announce

Server Device Announce Response —————— P

Server Drive |/O Request -

«f——Client Device |/O Response

-«f)—— Client Drive Device List Remove

image3.bin
Combined Capabilities

Number of General
capabilities | | | Capability

File
System
Capability

Printing
Capability

Feature X
Capability

image4.bin
Server Client

Connection Started—i——Server Announce Request———— |
La———Cllent Announce Reply————
e Client Nome Request————
i senver Core Capabilty Request————
4———Cllent Core Capablty Response—————
- server Client ID Confirm—————»/
—User Logged On—pwi———————Server User Logged On——————;
La———Cllent Device List Announce Requiest————

L————server Device Announce Response (1)———#»;

I Server Device Anounce Response (W—|
server rve 10 Request———»-
————Ctent v 10 Response—————
4 Clent Devic List Announce Request———— oL
I Server Device Annaunce Response (V+1)—— |
—————server brve 0 Request————»
—————senver brve 0 Request———— -

{4—————client Drive 1/0 Response——————

{————Client Drive Device List Remove()—————=—Drive Unplugged—

image5.bin
Server Client

—Connection Started-

/
1
|
|
|
|
|
|

|
—User Logged On—p

|
|
|
|
| ———server Device Announce Response (1)——=
|
|
|

> rver Announce Request >
|4——————Client Announce Reply————————
|——————Cllent Name Request————————

7

- Server Core Capability Request—————#»;
+————Client Core Capability Response—————
————server Client ID Confirm——————»;

{———Client Device List Announce Request————

_ ———server Device Announce Response (N)——

L server Drive 1/0 Request———/
{4————Client Drive 1/0 Response—————

