
1 / 26

[MS-RDPECI] - v20240423
Remote Desktop Protocol: Core Input Virtual Channel Extension
Copyright © 2024 Microsoft Corporation
Release: April 23, 2024

[MS-RDPECI]:

Remote Desktop Protocol: Core Input Virtual Channel
Extension

Intellectual Property Rights Notice for Open Specifications Documentation

 Technical Documentation. Microsoft publishes Open Specifications documentation (“this
documentation”) for protocols, file formats, data portability, computer languages, and standards
support. Additionally, overview documents cover inter-protocol relationships and interactions.

 Copyrights. This documentation is covered by Microsoft copyrights. Regardless of any other
terms that are contained in the terms of use for the Microsoft website that hosts this

documentation, you can make copies of it in order to develop implementations of the technologies

that are described in this documentation and can distribute portions of it in your implementations
that use these technologies or in your documentation as necessary to properly document the
implementation. You can also distribute in your implementation, with or without modification, any
schemas, IDLs, or code samples that are included in the documentation. This permission also
applies to any documents that are referenced in the Open Specifications documentation.

 No Trade Secrets. Microsoft does not claim any trade secret rights in this documentation.
 Patents. Microsoft has patents that might cover your implementations of the technologies

described in the Open Specifications documentation. Neither this notice nor Microsoft's delivery of
this documentation grants any licenses under those patents or any other Microsoft patents.
However, a given Open Specifications document might be covered by the Microsoft Open
Specifications Promise or the Microsoft Community Promise. If you would prefer a written license,
or if the technologies described in this documentation are not covered by the Open Specifications

Promise or Community Promise, as applicable, patent licenses are available by contacting
iplg@microsoft.com.

 License Programs. To see all of the protocols in scope under a specific license program and the

associated patents, visit the Patent Map.
 Trademarks. The names of companies and products contained in this documentation might be

covered by trademarks or similar intellectual property rights. This notice does not grant any
licenses under those rights. For a list of Microsoft trademarks, visit

www.microsoft.com/trademarks.
 Fictitious Names. The example companies, organizations, products, domain names, email

addresses, logos, people, places, and events that are depicted in this documentation are fictitious.
No association with any real company, organization, product, domain name, email address, logo,
person, place, or event is intended or should be inferred.

Reservation of Rights. All other rights are reserved, and this notice does not grant any rights other

than as specifically described above, whether by implication, estoppel, or otherwise.

Tools. The Open Specifications documentation does not require the use of Microsoft programming
tools or programming environments in order for you to develop an implementation. If you have access
to Microsoft programming tools and environments, you are free to take advantage of them. Certain

Open Specifications documents are intended for use in conjunction with publicly available standards
specifications and network programming art and, as such, assume that the reader either is familiar
with the aforementioned material or has immediate access to it.

Support. For questions and support, please contact dochelp@microsoft.com.

https://go.microsoft.com/fwlink/?LinkId=214445
https://go.microsoft.com/fwlink/?LinkId=214445
https://go.microsoft.com/fwlink/?LinkId=214448
mailto:iplg@microsoft.com
https://aka.ms/AA9ufj8
https://www.microsoft.com/trademarks
mailto:dochelp@microsoft.com

2 / 26

[MS-RDPECI] - v20240423
Remote Desktop Protocol: Core Input Virtual Channel Extension
Copyright © 2024 Microsoft Corporation
Release: April 23, 2024

Revision Summary

Date Revision History Revision Class Comments

9/20/2023 1.0 New Released new document.

4/23/2024 2.0 Major Significantly changed the technical content.

3 / 26

[MS-RDPECI] - v20240423
Remote Desktop Protocol: Core Input Virtual Channel Extension
Copyright © 2024 Microsoft Corporation
Release: April 23, 2024

Table of Contents

1 Introduction .. 5
1.1 Glossary ... 5
1.2 References .. 5

1.2.1 Normative References ... 5
1.2.2 Informative References ... 5

1.3 Overview .. 5
1.4 Relationship to Other Protocols .. 6
1.5 Prerequisites/Preconditions ... 6
1.6 Applicability Statement ... 6
1.7 Versioning and Capability Negotiation ... 7
1.8 Vendor-Extensible Fields ... 7
1.9 Standards Assignments ... 7

2 Messages ... 8
2.1 Transport .. 8
2.2 Message Syntax ... 8

2.2.1 Namespaces .. 8
2.2.2 Common Data Types ... 8

2.2.2.1 RDP_CORE_INPUT_HEADER ... 8
2.2.2.2 PACKED_EVENT_TYPE_AND_FLAGS ... 9
2.2.2.3 TS_KEYBOARD_EVENT .. 10
2.2.2.4 TS_UNICODE_KEYBOARD_EVENT ... 11
2.2.2.5 TS_POINTER_EVENT ... 11
2.2.2.6 TS_QOE_INPUT_TIMESTAMP_EVENT ... 13
2.2.2.7 TS_RELPOINTER_EVENT .. 13
2.2.2.8 RDP_CORE_INPUT_EVENT_CONTAINER ... 15

2.2.3 Core Input Messages ... 15
2.2.3.1 RDP_CORE_INPUT_CS_INIT_REQUEST_PDU .. 15
2.2.3.2 RDP_CORE_INPUT_SC_INIT_RESPONSE_PDU .. 16
2.2.3.3 RDP_CORE_INPUT_CS_KEYBOARD_AND_MOUSE_INPUT_PDU 17

3 Protocol Details ... 18
3.1 Common Details .. 18

3.1.1 Abstract Data Model .. 18
3.1.2 Timers .. 18
3.1.3 Initialization ... 18
3.1.4 Higher-Layer Triggered Events ... 18
3.1.5 Message Processing Events and Sequencing Rules .. 18

3.1.5.1 Processing a Core Input Message .. 18
3.1.6 Timer Events .. 18
3.1.7 Other Local Events .. 18

3.2 Server Details .. 18
3.2.1 Abstract Data Model .. 18
3.2.2 Timers .. 18
3.2.3 Initialization ... 19
3.2.4 Higher-Layer Triggered Events ... 19
3.2.5 Message Processing Events and Sequencing Rules .. 19

3.2.5.1 Processing an RDP_CORE_INPUT_CS_INIT_REQUEST_PDU Message 19
3.2.5.2 Sending an RDP_CORE_INPUT_SC_INIT_RESPONSE_PDU Message 19
3.2.5.3 Processing an RDP_CORE_INPUT_CS_KEYBOARD_AND_MOUSE_INPUT_PDU

Message .. 19
3.2.6 Timer Events .. 19
3.2.7 Other Local Events .. 19

3.3 Client Details ... 20
3.3.1 Abstract Data Model .. 20

4 / 26

[MS-RDPECI] - v20240423
Remote Desktop Protocol: Core Input Virtual Channel Extension
Copyright © 2024 Microsoft Corporation
Release: April 23, 2024

3.3.2 Timers .. 20
3.3.3 Initialization ... 20
3.3.4 Higher-Layer Triggered Events ... 20
3.3.5 Message Processing Events and Sequencing Rules .. 20

3.3.5.1 Sending an RDP_CORE_INPUT_CS_INIT_REQUEST_PDU Message 20
3.3.5.2 Processing an RDP_CORE_INPUT_SC_INIT_RESPONSE_PDU Message 20
3.3.5.3 Sending an RDP_CORE_INPUT_CS_KEYBOARD_AND_MOUSE_INPUT_PDU

Message .. 20
3.3.6 Timer Events .. 20
3.3.7 Other Local Events .. 21

4 Protocol Examples ... 22
4.1 Version and Capabilities Exchange .. 22

4.1.1 Init Request ... 22
4.1.2 Init Response ... 22

4.2 Keyboard and Mouse Input .. 22

5 Security ... 23
5.1 Security Considerations for Implementers ... 23
5.2 Index of Security Parameters .. 23

6 Appendix A: Product Behavior ... 24

7 Change Tracking .. 25

8 Index ... 26

5 / 26

[MS-RDPECI] - v20240423
Remote Desktop Protocol: Core Input Virtual Channel Extension
Copyright © 2024 Microsoft Corporation
Release: April 23, 2024

1 Introduction

The Remote Desktop Protocol: Core Input Virtual Channel Extension applies to the Remote Desktop
Protocol: Basic Connectivity and Graphics Remoting. The core input protocol is used to remote
keyboard and mouse input from a terminal server client to a terminal server.

Sections 1.5, 1.8, 1.9, 2, and 3 of this specification are normative. All other sections and examples in
this specification are informative.

1.1 Glossary

This document uses the following terms:

little-endian: Multiple-byte values that are byte-ordered with the least significant byte stored in

the memory location with the lowest address.

terminal server: A computer on which terminal services is running.

MAY, SHOULD, MUST, SHOULD NOT, MUST NOT: These terms (in all caps) are used as defined
in [RFC2119]. All statements of optional behavior use either MAY, SHOULD, or SHOULD NOT.

1.2 References

Links to a document in the Microsoft Open Specifications library point to the correct section in the
most recently published version of the referenced document. However, because individual documents
in the library are not updated at the same time, the section numbers in the documents may not
match. You can confirm the correct section numbering by checking the Errata.

1.2.1 Normative References

We conduct frequent surveys of the normative references to assure their continued availability. If you

have any issue with finding a normative reference, please contact dochelp@microsoft.com. We will
assist you in finding the relevant information.

[MS-RDPBCGR] Microsoft Corporation, "Remote Desktop Protocol: Basic Connectivity and Graphics

Remoting".

[MS-RDPEDYC] Microsoft Corporation, "Remote Desktop Protocol: Dynamic Channel Virtual Channel
Extension".

[RFC2119] Bradner, S., "Key words for use in RFCs to Indicate Requirement Levels", BCP 14, RFC
2119, March 1997, https://www.rfc-editor.org/info/rfc2119

1.2.2 Informative References

None.

1.3 Overview

The Remote Desktop Protocol: Core Input Virtual Channel Extension is used to remote keyboard and
mouse input from a terminal server client to a terminal server and replaces the Slow-Path and Fast-

Path Input Event PDUs specified in [MS-RDPBCGR] sections 2.2.8.1.1.3.1.1 and 2.2.8.1.2.

Keyboard and mouse input is generated at the client by a physical or virtual keyboard or mouse,
encoded, and then sent on the wire to the server. After this input is received and decoded by the

https://go.microsoft.com/fwlink/?LinkId=90317
https://go.microsoft.com/fwlink/?linkid=850906
mailto:dochelp@microsoft.com
%5bMS-RDPBCGR%5d.pdf#Section_5073f4ed1e9345e1b0396e30c385867c
%5bMS-RDPBCGR%5d.pdf#Section_5073f4ed1e9345e1b0396e30c385867c
%5bMS-RDPEDYC%5d.pdf#Section_3bd530209b644c9a97fc90a79e7e1e06
%5bMS-RDPEDYC%5d.pdf#Section_3bd530209b644c9a97fc90a79e7e1e06
https://go.microsoft.com/fwlink/?LinkId=90317
%5bMS-RDPBCGR%5d.pdf#Section_5073f4ed1e9345e1b0396e30c385867c

6 / 26

[MS-RDPECI] - v20240423
Remote Desktop Protocol: Core Input Virtual Channel Extension
Copyright © 2024 Microsoft Corporation
Release: April 23, 2024

server, it is injected into the session associated with the remote user, effectively remoting the
keyboard and mouse input generated at the client.

An example message flow encapsulating all of the input messages, described in section 2.2.3, and
protocol phases is presented in the following figure.

Figure 1: Messages exchanged by the core input protocol endpoints

The core input protocol is divided into two distinct phases:

 Initialization Phase

 Running Phase

The Initialization Phase occurs at the start of the connection. During this phase, the server and client
exchange the supported protocol version using RDP_CORE_INPUT_CS_INIT_REQUEST_PDU (section
2.2.3.1) and RDP_CORE_INPUT_SC_INIT_RESPONSE_PDU (section 2.2.3.2) messages. The client
initiates this exchange when the dynamic virtual channel (sections 1.4 and 2.1) over which the core

input messages will flow has been opened.

Once both endpoints are ready, the Running Phase is entered. During this phase, the client sends
keyboard and mouse events to the server encapsulated in the
RDP_CORE_INPUT_CS_KEYBOARD_AND_MOUSE_INPUT_PDU (section 2.2.3.3) message. The server
decodes these events and injects them into the user's session.

1.4 Relationship to Other Protocols

The Remote Desktop Protocol: Core Input Virtual Channel Extension is embedded in a dynamic virtual
channel transport, as specified in [MS-RDPEDYC] sections 1 to 3.

The Remote Desktop Protocol: Core Input Virtual Channel Extension replaces the TS_FP_INPUT_PDU
specified in [MS-RDPBCGR] section 2.2.8.1.2.

1.5 Prerequisites/Preconditions

The Remote Desktop Protocol: Core Input Virtual Channel Extension operates only after the dynamic
virtual channel transport is fully established. If the dynamic virtual channel transport is terminated,
the Remote Desktop Protocol: Core Input Virtual Channel Extension is also terminated. The protocol is

terminated by closing the underlying virtual channel. For details about closing the dynamic virtual
channel, see [MS-RDPEDYC] section 3.2.5.2.

%5bMS-RDPEDYC%5d.pdf#Section_3bd530209b644c9a97fc90a79e7e1e06
%5bMS-RDPBCGR%5d.pdf#Section_5073f4ed1e9345e1b0396e30c385867c
%5bMS-RDPEDYC%5d.pdf#Section_3bd530209b644c9a97fc90a79e7e1e06

7 / 26

[MS-RDPECI] - v20240423
Remote Desktop Protocol: Core Input Virtual Channel Extension
Copyright © 2024 Microsoft Corporation
Release: April 23, 2024

1.6 Applicability Statement

The Remote Desktop Protocol: Core Input Virtual Channel Extension is applicable in scenarios where
the transfer of keyboard and mouse events (generated by a physical or virtual keyboard and mouse)

is required from a terminal server client to a terminal server.

1.7 Versioning and Capability Negotiation

During the Initialization phase, the server and client exchange the supported protocol version using
the RDP_CORE_INPUT_CS_INIT_REQUEST_PDU (section 2.2.3.1) and

RDP_CORE_INPUT_SC_INIT_RESPONSE_PDU (section 2.2.3.2) messages. The client initiates this
exchange when the dynamic virtual channel (sections 1.4 and 2.1) over which the core input
messages will flow has been opened.

1.8 Vendor-Extensible Fields

None.

1.9 Standards Assignments

None.

8 / 26

[MS-RDPECI] - v20240423
Remote Desktop Protocol: Core Input Virtual Channel Extension
Copyright © 2024 Microsoft Corporation
Release: April 23, 2024

2 Messages

2.1 Transport

The Remote Desktop Protocol: Core Input Virtual Channel Extension is designed to operate over a

dynamic virtual channel, as specified in [MS-RDPEDYC] sections 1 to 3. The dynamic virtual channel
name is the null-terminated ANSI character string "Microsoft::Windows::RDS::CoreInput". The usage
of channel names in the context of opening a dynamic virtual channel is specified in [MS-RDPEDYC]
section 2.2.2.1.

2.2 Message Syntax

The following sections specify the Remote Desktop Protocol: Core Input Virtual Channel Extension
message syntax. All multiple-byte fields within a message MUST be marshaled in little-endian byte
order, unless otherwise specified.

2.2.1 Namespaces

2.2.2 Common Data Types

2.2.2.1 RDP_CORE_INPUT_HEADER

The RDP_CORE_INPUT_HEADER structure is included in all core input PDUs and is used to identify
the PDU type and to specify how many keyboard or mouse events are included in the
RDP_CORE_INPUT_CS_KEYBOARD_AND_MOUSE_INPUT_PDU message that follows.

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

signature pduType eventCount padding

signature (1 byte): An 8-bit, unsigned integer that MUST always be set to 0x03.

pduType (1 byte): An 8-bit, unsigned integer that identifies the type of core input PDU

Value Meaning

PDUTYPE_CS_INIT_REQUEST
0x01

RDP_CORE_INPUT_CS_INIT_REQUEST_PDU (section
2.2.3.1)

PDUTYPE_SC_INIT_RESPONSE
0x02

RDP_CORE_INPUT_SC_INIT_RESPONSE_PDU (section
2.2.3.2)

PDUTYPE_CS_KEYBOARD_AND_MOUSE_INPUT
0x03

RDP_CORE_INPUT_CS_KEYBOARD_AND_MOUSE_INPUT_PD
U (section 2.2.3.3)

eventCount (1 byte): An 8-bit unsigned integer. If the pduType field is set to
RDP_CORE_INPUT_CS_KEYBOARD_AND_MOUSE_INPUT_PDU (0x03), then this field MUST contain
the number of the mouse and keyboard events included in the message. It MUST be set to zero
for all other values of pduType.

%5bMS-RDPEDYC%5d.pdf#Section_3bd530209b644c9a97fc90a79e7e1e06

9 / 26

[MS-RDPECI] - v20240423
Remote Desktop Protocol: Core Input Virtual Channel Extension
Copyright © 2024 Microsoft Corporation
Release: April 23, 2024

padding (1 byte): An 8-bit, unsigned integer that SHOULD be set to zero.

2.2.2.2 PACKED_EVENT_TYPE_AND_FLAGS

The PACKED_EVENT_TYPE_AND_FLAGS structure is a single byte that specifies the event type and
associated flags for each event included in the
RDP_CORE_INPUT_CS_KEYBOARD_AND_MOUSE_INPUT_PDU (section 2.2.3.3) message.

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

flags type

flags (5 bits): A 5-bit, unsigned integer that contains flags specific to the input event. Only used for

keyboard input events.

If the type field is set to INPUT_EVENT_SCANCODE (0x0).

Value Meaning

INPUT_KBDFLAGS_RELEASE
0x01

The absence of this flag indicates a key-down event, while its
presence indicates a key-release event.

INPUT_KBDFLAGS_EXTENDED
0x02

Indicates that the keystroke message contains an extended scancode.
For enhanced 101-key and 102-key keyboards, extended keys include
the right ALT and right CTRL keys on the main section of the
keyboard; the INS, DEL, HOME, END, PAGE UP, PAGE DOWN and
ARROW keys in the clusters to the left of the numeric keypad; and the
Divide ("/") and ENTER keys in the numeric keypad.

INPUT_KBDFLAGS_EXTENDED1
0x04

Used to send keyboard events triggered by the PAUSE key. A PAUSE
key press and release MUST be sent as the following sequence of
keyboard events:

 CTRL (0x1D) DOWN

 NUMLOCK (0x45) DOWN

 CTRL (0x1D) UP

 NUMLOCK (0x45) UP

The CTRL DOWN and CTRL UP events MUST both include the
FASTPATH_INPUT_KBDFLAGS_EXTENDED1 flag.

If the type field is set to INPUT_EVENT_UNICODE (0x4).

Value Meaning

INPUT_KBDFLAGS_RELEASE
0x01

The absence of this flag indicates a key-down event, while its
presence indicates a key-release event.

If the type field is set to INPUT_EVENT_SYNC (0x3).

10 / 26

[MS-RDPECI] - v20240423
Remote Desktop Protocol: Core Input Virtual Channel Extension
Copyright © 2024 Microsoft Corporation
Release: April 23, 2024

Value Meaning

INPUT_SYNC_SCROLL_LOCK
0x01

Indicates that the Scroll Lock indicator light SHOULD be on.

INPUT_SYNC_NUM_LOCK
0x02

Indicates that the Num Lock indicator light SHOULD be on.

INPUT_SYNC_CAPS_LOCK
0x04

Indicates that the Caps Lock indicator light SHOULD be on.

INPUT_SYNC_KANA_LOCK
0x08

Indicates that the Kana Lock indicator light SHOULD be on.

type (3 bits): A 3-bit, unsigned integer that specifies the type of input event.

Value Event Payload

INPUT_EVENT_SCANCODE
0x0

Indicates a Keyboard Event. The event payload is a
TS_KEYBOARD_EVENT (section 2.2.2.3) structure.

INPUT_EVENT_MOUSE
0x1

Indicates a Mouse Event. The event payload is a TS_POINTER_EVENT
(section 2.2.2.5) structure.

INPUT_EVENT_MOUSEX
0x2

Indicates an Extended Mouse Event. The event payload is a
TS_POINTER_EVENT (section 2.2.2.5) structure.

INPUT_EVENT_SYNC
0x3

Indicates a Synchronize Event with no event payload. This event is
used to synchronize the values of the toggle keys (for example, Caps
Lock) and to reset the server key state to all keys up. The
synchronize event SHOULD be followed by key-down events to
communicate which keyboard and mouse keys are down.

INPUT_EVENT_UNICODE
0x4

Indicates a Unicode Keyboard Event. The event payload is a
TS_UNICODE_KEYBOARD_EVENT (section 2.2.2.4) structure.

INPUT_EVENT_QOE_TIMESTAMP
0x6

Indicates a Quality-of-Experience (QoE) Timestamp Event.
The event payload is a TS_QOE_INPUT_TIMESTAMP_EVENT (section
2.2.2.6) structure.

INPUT_EVENT_RELMOUSE

0x5

Indicates a Relative Mouse Event. The event payload is a
TS_RELPOINTER_EVENT (section 2.2.2.7) structure.

2.2.2.3 TS_KEYBOARD_EVENT

The TS_KEYBOARD_EVENT is used to transmit a scan code-based keyboard event. See section 2.2.2.2
for flags associated with this event.

11 / 26

[MS-RDPECI] - v20240423
Remote Desktop Protocol: Core Input Virtual Channel Extension
Copyright © 2024 Microsoft Corporation
Release: April 23, 2024

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

keyCode

keyCode (1 byte): An 8-bit, unsigned integer. The scan code associated with the key event. The
server translates the scan code into an appropriate character depending on the language locale
and keyboard layout used in the session.

2.2.2.4 TS_UNICODE_KEYBOARD_EVENT

The TS_UNICODE_KEYBOARD_EVENT is used to transmit a Unicode-based keyboard event. See
section 2.2.2.2 for flags associated with this event.

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

unicodeCode

unicodeCode (2 bytes): A 16-bit, unsigned integer. The Unicode character input code.

2.2.2.5 TS_POINTER_EVENT

The TS_POINTER_EVENT is used to transmit a mouse wheel, move, or button event.

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

pointerFlags xPos

yPos

pointerFlags (2 bytes): A 16-bit, unsigned integer that contains flags that describes the pointer
event.

For a mouse wheel event:

Flag Meaning

PTRFLAGS_HWHEEL
0x0400

The event is a horizontal mouse wheel rotation. The only valid flags in a
horizontal wheel rotation event are PTRFLAGS_WHEEL_NEGATIVE and
the WheelRotationMask; all other pointer flags are ignored. This flag
MUST NOT be sent to a server that does not indicate support for
horizontal mouse wheel events in the Input Capability Set (MS-RDPBGCR
section 2.2.7.1.6).

PTRFLAGS_WHEEL
0x0200

The event is a vertical mouse wheel rotation. The only valid flags in a
vertical wheel rotation event are PTRFLAGS_WHEEL_NEGATIVE and the
WheelRotationMask; all other pointer flags are ignored.

PTRFLAGS_WHEEL_NEGATIVE The wheel rotation value (contained in the WheelRotationMask bit field)

12 / 26

[MS-RDPECI] - v20240423
Remote Desktop Protocol: Core Input Virtual Channel Extension
Copyright © 2024 Microsoft Corporation
Release: April 23, 2024

Flag Meaning

0x0100 is negative and MUST be sign-extended before injection at the server.

WheelRotationMask
0x01FF

The bit field that describes the number of rotation units the mouse wheel
was rotated. The value is negative if the PTRFLAGS_WHEEL_NEGATIVE
flag is set.

If both PTRFLAGS_WHEEL (0x0200) and PTRFLAGS_HWHEEL (0x0400) are specified, then
PTRFLAGS_WHEEL takes precedence.

For a mouse movement event:

Flag Meaning

PTRFLAGS_MOVE
0x0800

Indicates that the mouse position MUST be updated to the location
specified by the xPos and yPos fields.

For a mouse button event:

Flag Meaning

PTRFLAGS_DOWN
0x8000

Indicates that a click event has occurred at the position specified by the
xPos and yPos fields. The button flags indicate which button has been
clicked, and at least one of these flags MUST be set.

PTRFLAGS_BUTTON1
0x1000

Mouse button 1 (left button) was clicked or released. If the
PTRFLAGS_DOWN flag is set, then the button was clicked, otherwise it
was released.

PTRFLAGS_BUTTON2
0x2000

Mouse button 2 (right button) was clicked or released. If the
PTRFLAGS_DOWN flag is set, then the button was clicked, otherwise it
was released.

PTRFLAGS_BUTTON3
0x4000

Mouse button 3 (middle button or wheel) was clicked or released. If the
PTRFLAGS_DOWN flag is set, then the button was clicked, otherwise it
was released.

For an extended mouse button event:

Flag Meaning

PTRXFLAGS_DOWN
0x8000

Indicates that a click event has occurred at the position specified by the
xPos and yPos fields. The button flags indicate which button has been
clicked, and at least one of these flags MUST be set.

PTRXFLAGS_BUTTON1 Extended mouse button 1 (also referred to as button 4) was clicked or

13 / 26

[MS-RDPECI] - v20240423
Remote Desktop Protocol: Core Input Virtual Channel Extension
Copyright © 2024 Microsoft Corporation
Release: April 23, 2024

Flag Meaning

0x0001 released. If the PTRXFLAGS_DOWN flag is set, the button was clicked;
otherwise, it was released.

PTRXFLAGS_BUTTON2
0x0002

Extended mouse button 2 (also referred to as button 5) was clicked or
released. If the PTRXFLAGS_DOWN flag is set, the button was clicked;
otherwise, it was released.

xPos (2 bytes): A 16-bit, unsigned integer that specifies the x-coordinate of the pointer relative to
the top-left corner of the server's desktop. This field SHOULD be ignored by the server if the

PTRFLAGS_WHEEL (0x0200) or PTRFLAGS_HWHEEL (0x0400) flag is specified in the pointerFlags
field.

yPos (2 bytes): A 16-bit, unsigned integer that specifies the y-coordinate of the pointer relative to

the top-left corner of the server's desktop. This field SHOULD be ignored by the server if the
PTRFLAGS_WHEEL (0x0200) or PTRFLAGS_HWHEEL (0x0400) flag is specified in the pointerFlags
field.

2.2.2.6 TS_QOE_INPUT_TIMESTAMP_EVENT

The TS_QOE_INPUT_TIMESTAMP_EVENT is used to enable the calculation of Quality of Experience
(QoE) metrics. This event is sent solely for informational and debugging purposes and MUST NOT be
transmitted to the server if the TS_INPUT_FLAG_QOE_TIMESTAMPS (0x0200) flag was not received in

the Input Capability Set ([MS-RDPBCGR] section 2.2.7.1.6).

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

timestamp

timestamp (4 bytes): A 32-bit, unsigned integer. A client-generated timestamp, in milliseconds, that
indicates when the current input batch was encoded by the client. The value of the first timestamp
sent by the client implicitly defines the origin for all subsequent timestamps. The server is
responsible for handling roll-over of the timestamp.

2.2.2.7 TS_RELPOINTER_EVENT

The TS_RELPOINTER_EVENT structure is used to specify relative mouse pointer movement (as
opposed to absolute positioning).

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

pointerFlags xDelta

yDelta

pointerFlags (2 bytes):

For a mouse movement event:

%5bMS-RDPBCGR%5d.pdf#Section_5073f4ed1e9345e1b0396e30c385867c

14 / 26

[MS-RDPECI] - v20240423
Remote Desktop Protocol: Core Input Virtual Channel Extension
Copyright © 2024 Microsoft Corporation
Release: April 23, 2024

Flag Meaning

PTRFLAGS_MOVE
0x0800

Indicates that the mouse position MUST be updated to the location
specified by the xPos and yPos fields..

For a mouse button event:

Flag Meaning

PTRFLAGS_DOWN
0x8000

Indicates that a press event has occurred at the position that results
from the application of the xDelta and yDelta fields to the previous
position. The button flags indicate which button has been pressed and at
least one of these flags MUST be set.

PTRFLAGS_BUTTON1
0x1000

Mouse button 1 (left button) was clicked or released. If the
PTRFLAGS_DOWN flag is set, then the button was clicked, otherwise it
was released.

PTRFLAGS_BUTTON2
0x2000

Mouse button 2 (right button) was clicked or released. If the
PTRFLAGS_DOWN flag is set, then the button was clicked, otherwise it

was released.

PTRFLAGS_BUTTON3
0x4000

Mouse button 3 (middle button or wheel) was clicked or released. If the
PTRFLAGS_DOWN flag is set, then the button was clicked, otherwise it
was released.

For an extended mouse button event:

Flag Meaning

PTRXFLAGS_DOWN
0x8000

Indicates that a press event has occurred at the position that results
from the application of the xDelta and yDelta fields to the previous
position. The button flags indicate which button has been pressed and
at least one of these flags MUST be set.

PTRXFLAGS_BUTTON1
0x0001

Extended mouse button 1 (also referred to as button 4) was clicked or
released. If the PTRXFLAGS_DOWN flag is set, the button was clicked;
otherwise, it was released.

PTRXFLAGS_BUTTON2
0x0002

Extended mouse button 2 (also referred to as button 5) was clicked or
released. If the PTRXFLAGS_DOWN flag is set, the button was clicked;
otherwise, it was released.

xDelta (2 bytes): A 16-bit signed integer that specifies the distance the pointer has moved on the x-
axis since the previous position update was sent. Negative values indicate that the pointer is
moving to the left.

15 / 26

[MS-RDPECI] - v20240423
Remote Desktop Protocol: Core Input Virtual Channel Extension
Copyright © 2024 Microsoft Corporation
Release: April 23, 2024

yDelta (2 bytes): A 16-bit signed integer that specifies the distance the pointer has moved on the y-
axis since the previous position update was sent. Negative values indicate that the pointer is

moving up.

2.2.2.8 RDP_CORE_INPUT_EVENT_CONTAINER

The RDP_CORE_INPUT_EVENT_CONTAINER structure is used to wrap event-specific information.

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

typeAndFlags event (variable)

...

typeAndFlags (1 byte): A PACKED_EVENT_TYPE_AND_FLAGS (section 2.2.2.2) structure. The

embedded type field specifies the type of event contained in the event field.

event (variable): A TS_KEYBOARD_EVENT (section 2.2.2.3), TS_UNICODE_KEYBOARD_EVENT
(section 2.2.2.4), TS_POINTER_EVENT (section 2.2.2.5), or TS_QOE_INPUT_TIMESTAMP_EVENT
(section 2.2.2.6).

2.2.3 Core Input Messages

2.2.3.1 RDP_CORE_INPUT_CS_INIT_REQUEST_PDU

The RDP_CORE_INPUT_CS_INIT_REQUEST_PDU message is sent by the client endpoint and is used to
transport supported core input protocol versions to the server.

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

header

protocolVersionMin protocolVersionMax

reserved

...

header (4 bytes): An RDP_CORE_INPUT_HEADER (section 2.2.2.1) structure. The embedded
pduType field MUST be set to PDUTYPE_CS_INIT_REQUEST (0x01).

protocolVersionMin (2 bytes): A 16-bit, unsigned integer that specifies the minimum core input

protocol version supported by the client.

Value Meaning

RDP_CORE_INPUT_PROTOCOL_VERSION_100
0x0100

Version 1.0 of the RDP Core input remoting protocol.

16 / 26

[MS-RDPECI] - v20240423
Remote Desktop Protocol: Core Input Virtual Channel Extension
Copyright © 2024 Microsoft Corporation
Release: April 23, 2024

protocolVersionMax (2 bytes): A 16-bit, unsigned integer that specifies the maximum core input
protocol version supported by the client.

Value Meaning

RDP_CORE_INPUT_PROTOCOL_VERSION_100
0x0100

Version 1.0 of the RDP Core input remoting protocol.

reserved (8 bytes): A 64-bit, unsigned integer that SHOULD be set to zero.

2.2.3.2 RDP_CORE_INPUT_SC_INIT_RESPONSE_PDU

The RDP_CORE_INPUT_SC_INIT_RESPONSE_PDU message is sent by the server endpoint and is used
to transport the selected core input protocol version to the client.

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

header

selectedProtocolVersion protocolVersionMax

reserved

...

header (4 bytes): An RDP_CORE_INPUT_HEADER (section 2.2.2.1) structure. The embedded

pduType field MUST be set to PDUTYPE_CS_INIT_RESPONSE (0x02).

selectedProtocolVersion (2 bytes): A 16-bit, unsigned integer that contains the core input protocol
version selected by the server.

Value Meaning

RDP_CORE_INPUT_PROTOCOL_VERSION_100
0x0100

Version 1.0 of the RDP Core input remoting protocol.

protocolVersionMax (2 bytes): A 16-bit, unsigned integer that specifies the maximum core input
protocol version supported by the server.

Value Meaning

RDP_CORE_INPUT_PROTOCOL_VERSION_100
0x0100

Version 1.0 of the RDP Core input remoting protocol.

reserved (8 bytes): A 64-bit, unsigned integer that SHOULD be set to zero.

17 / 26

[MS-RDPECI] - v20240423
Remote Desktop Protocol: Core Input Virtual Channel Extension
Copyright © 2024 Microsoft Corporation
Release: April 23, 2024

2.2.3.3 RDP_CORE_INPUT_CS_KEYBOARD_AND_MOUSE_INPUT_PDU

The RDP_CORE_INPUT_CS_KEYBOARD_AND_MOUSE_INPUT_PDU message is sent by the client
endpoint and is used to remote a collection of keyboard or mouse events to the server.

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

header

inputEvents (variable)

...

header (4 bytes): An RDP_CORE_INPUT_HEADER (section 2.2.2.1) structure. The embedded
pduType field MUST be set to PDUTYPE_CS_KEYBOARD_AND_MOUSE_INPUT (0x03). The

eventCount field specifies how many events are included in this message. This allows up to 255
input events in one PDU.

inputEvents (variable): An array of RDP_CORE_INPUT_EVENT_CONTAINER (section 2.2.2.8)
structures containing input events to be processed by the server. The number of events present in

this array is specified by the embedded eventCount field in the header field.

18 / 26

[MS-RDPECI] - v20240423
Remote Desktop Protocol: Core Input Virtual Channel Extension
Copyright © 2024 Microsoft Corporation
Release: April 23, 2024

3 Protocol Details

3.1 Common Details

3.1.1 Abstract Data Model

None.

3.1.2 Timers

None.

3.1.3 Initialization

None.

3.1.4 Higher-Layer Triggered Events

No higher-layer triggered events are used.

3.1.5 Message Processing Events and Sequencing Rules

3.1.5.1 Processing a Core Input Message

All core input messages are prefaced by the RDP_CORE_INPUT_HEADER (section 2.2.2.1)
structure.

When a core input message is processed, the pduType field in the header MUST first be examined to
determine if the message is within the subset of expected messages as described in section 1.3. If the

message is not expected, it SHOULD be ignored.

3.1.6 Timer Events

None.

3.1.7 Other Local Events

No additional events are used.

3.2 Server Details

3.2.1 Abstract Data Model

None.

3.2.2 Timers

None.

19 / 26

[MS-RDPECI] - v20240423
Remote Desktop Protocol: Core Input Virtual Channel Extension
Copyright © 2024 Microsoft Corporation
Release: April 23, 2024

3.2.3 Initialization

Upon receiving the RDP_CORE_INPUT_CS_INIT_REQUEST_PDU (section 2.2.3.1) message, the server
MUST send the RDP_CORE_INPUT_SC_INIT_RESPONSE_PDU (section 2.2.3.2) message to the client,

as specified in section 3.2.5.2, to signal that the Initialization Phase is complete and that it is ready to
accept and process keyboard and mouse input.

3.2.4 Higher-Layer Triggered Events

None.

3.2.5 Message Processing Events and Sequencing Rules

3.2.5.1 Processing an RDP_CORE_INPUT_CS_INIT_REQUEST_PDU Message

The structure and fields of the RDP_CORE_INPUT_CS_INIT_REQUEST_PDU message are specified in

section 2.2.3.1.

The header field MUST be processed as specified in section 3.1.5.1. If the message is valid, the
server SHOULD send an RDP_CORE_INPUT_SC_INIT_RESPONSE_PDU (section 2.2.3.2) message to
the client, as specified in section 3.2.5.2.

3.2.5.2 Sending an RDP_CORE_INPUT_SC_INIT_RESPONSE_PDU Message

The structure and fields of the RDP_CORE_INPUT_SC_INIT_RESPONSE_PDU message are specified in
section 2.2.3.2. The message fields MUST be populated in accordance with this description. The server

MUST populate the capsSet field with a single instance of a correctly initialized capability set structure
(section 2.2.2.3).

Once the RDP_CORE_INPUT_SC_INIT_RESPONSE_PDU message has been sent to the client, the
server SHOULD be ready to accept and process keyboard and mouse input, as specified in section

3.2.5.3, that will be sent by the client using the
RDP_CORE_INPUT_CS_KEYBOARD_AND_MOUSE_INPUT_PDU (section 2.2.3.3) message.

3.2.5.3 Processing an RDP_CORE_INPUT_CS_KEYBOARD_AND_MOUSE_INPUT_PDU

Message

The structure and fields of the RDP_CORE_INPUT_CS_KEYBOARD_AND_MOUSE_INPUT_PDU message
are specified in section 2.2.3.3.

The header field MUST be processed as specified in section 3.1.5.1. If the message is valid, the
server SHOULD extract the input event parameters and then inject an appropriate synthesized input
event into the remote session.

3.2.6 Timer Events

None.

3.2.7 Other Local Events

None.

20 / 26

[MS-RDPECI] - v20240423
Remote Desktop Protocol: Core Input Virtual Channel Extension
Copyright © 2024 Microsoft Corporation
Release: April 23, 2024

3.3 Client Details

3.3.1 Abstract Data Model

None.

3.3.2 Timers

None.

3.3.3 Initialization

The client MUST send the RDP_CORE_INPUT_CS_INIT_REQUEST_PDU (section 2.2.3.1) message to

the server, as specified in section 3.3.5.1, once the dynamic virtual channel (section 2.1) is opened.
After the server responds with the RDP_CORE_INPUT_SC_INIT_RESPONSE_PDU (section 2.2.3.2), the
Initialization Phase is complete, and the client SHOULD send keyboard and mouse input generated by

the user to the server.

3.3.4 Higher-Layer Triggered Events

None.

3.3.5 Message Processing Events and Sequencing Rules

3.3.5.1 Sending an RDP_CORE_INPUT_CS_INIT_REQUEST_PDU Message

The structure and fields of the RDP_CORE_INPUT_CS_INIT_REQUEST_PDU message are specified in
section 2.2.3.1. The message fields MUST be populated in accordance with this description, and the
client MUST specify the range of protocol versions that it supports.

3.3.5.2 Processing an RDP_CORE_INPUT_SC_INIT_RESPONSE_PDU Message

The structure and fields of the RDP_CORE_INPUT_SC_INIT_RESPONSE_PDU message are specified in
section 2.2.3.2.

The header field MUST be processed as specified in section 3.1.5.1. If the message is valid, the client
SHOULD hook the keyboard and mouse input subsystem, listen for changes to the cursor shape and
position, and send updates using the RDP_CORE_INPUT_CS_KEYBOARD_AND_MOUSE_INPUT_PDU
message, as specified in section 3.2.5.3.

3.3.5.3 Sending an RDP_CORE_INPUT_CS_KEYBOARD_AND_MOUSE_INPUT_PDU

Message

The structure and fields of the RDP_CORE_INPUT_CS_KEYBOARD_AND_MOUSE_INPUT_PDU message

are specified in section 2.2.3.3. The message fields MUST be populated in accordance with this
description based on whether a keyboard scan code, Unicode character, synchronize, QOE timestamp,
or mouse event is being sent.

3.3.6 Timer Events

None.

21 / 26

[MS-RDPECI] - v20240423
Remote Desktop Protocol: Core Input Virtual Channel Extension
Copyright © 2024 Microsoft Corporation
Release: April 23, 2024

3.3.7 Other Local Events

None.

22 / 26

[MS-RDPECI] - v20240423
Remote Desktop Protocol: Core Input Virtual Channel Extension
Copyright © 2024 Microsoft Corporation
Release: April 23, 2024

4 Protocol Examples

4.1 Version and Capabilities Exchange

4.1.1 Init Request

The following are network captures of the RDP_CORE_INPUT_CS_INIT_REQUEST_PDU (section
2.2.3.1).

 00000000 03 01 00 00 00 01 00 01-00 00 00 00 00 00 00 00
 03 -> RDP_CORE_INPUT_HEADER::signature (1 Byte)
01 -> RDP_CORE_INPUT_HEADER::pduType is PDUTYPE_CS_INIT_REQUEST (1 Byte)

00 -> RDP_CORE_INPUT_HEADER::eventCount not used for PDUTYPE_CS_INIT_REQUEST (1 Byte)

00 -> RDP_CORE_INPUT_HEADER::padding (1 Byte)

00 01 -> RDP_CORE_INPUT_INIT_REQUEST_PDU::protocolVersionMin 0x0100 (2 Bytes)

00 01 -> RDP_CORE_INPUT_INIT_REQUEST_PDU::protocolVersionMax 0x0100 (2 Bytes)

00 00 00 00 00 00 00 00 -> RDP_CORE_INPUT_INIT_REQUEST_PDU::reserved (8 bytes)

4.1.2 Init Response

The following are network captures of the RDP_CORE_INPUT_SC_INIT_RESPONSE_PDU (section
2.2.3.2).

 00000000 03 02 00 00 00 01 00 01-00 00 00 00 00 00 00 00 00 00
 03 -> RDP_CORE_INPUT_HEADER::signature (1 Byte)
02 -> RDP_CORE_INPUT_HEADER::pduType is PDUTYPE_SC_INIT_RESPONSE (1 Byte)

00 -> RDP_CORE_INPUT_HEADER::eventCount not used for PDUTYPE_SC_INIT_RESPONSE (1 Byte)

00 -> RDP_CORE_INPUT_HEADER::padding (1 Byte)

00 01 -> RDP_CORE_INPUT_INIT_RESPONSE_PDU::selectedProtocolVersion 0x0100 (2 Bytes)

00 01 -> RDP_CORE_INPUT_INIT_RESPONSE_PDU::protocolVersionMax 0x0100 (2 Bytes)

00 00 00 00 00 00 00 00 -> RDP_CORE_INPUT_INIT_RESPONSE_PDU::reserved (8 bytes)

4.2 Keyboard and Mouse Input

The following are network captures of the
RDP_CORE_INPUT_CS_KEYBOARD_AND_MOUSE_INPUT_PDU (section 2.2.3.3).

 00000000 03 03 02 00 c0 c0 57 86-04 20 00 04 00 00 00 00
 03 -> RDP_CORE_INPUT_HEADER::signature (1 Byte)
03 -> RDP_CORE_INPUT_HEADER::pduType is PDUTYPE_CS_KEYBOARD_AND_MOUSE_INPUT (1 Byte)

02 -> RDP_CORE_INPUT_HEADER::eventCount 2 (1 Byte)

00 -> RDP_CORE_INPUT_HEADER::padding (1 Byte)

Event 1:

00000004 c0 c0 57 86 04

c0 -> TS_INPUT_FASTPATH_EVENT_QOE_TIMESTAMP 0xc0 (1 Byte)

c0 57 86 04 -> timestamp 0x048657c0 (4 Bytes)

Event 2:

00000009 20 00 04 00 00 00 00

20 -> TS_INPUT_FASTPATH_EVENT_MOUSE 0x20 (1 Byte)

00 04 -> TS_POINTER_EVENT::pointerFlags 0x0400 TS_FLAG_MOUSE_HWHEEL (2 Bytes)

00 00 -> TS_POINTER_EVENT::x 0 (2 Bytes)

00 00 -> TS_POINTER_EVENT::y 0 (2 Bytes)

23 / 26

[MS-RDPECI] - v20240423
Remote Desktop Protocol: Core Input Virtual Channel Extension
Copyright © 2024 Microsoft Corporation
Release: April 23, 2024

5 Security

5.1 Security Considerations for Implementers

None.

5.2 Index of Security Parameters

None.

24 / 26

[MS-RDPECI] - v20240423
Remote Desktop Protocol: Core Input Virtual Channel Extension
Copyright © 2024 Microsoft Corporation
Release: April 23, 2024

6 Appendix A: Product Behavior

The information in this specification is applicable to the following Microsoft products or supplemental
software. References to product versions include updates to those products.

 Windows 11 operating system

 Windows Server 2022, 23H2 operating system

 Windows Server 2025 operating system

Exceptions, if any, are noted in this section. If an update version, service pack or Knowledge Base
(KB) number appears with a product name, the behavior changed in that update. The new behavior
also applies to subsequent updates unless otherwise specified. If a product edition appears with the
product version, behavior is different in that product edition.

Unless otherwise specified, any statement of optional behavior in this specification that is prescribed

using the terms "SHOULD" or "SHOULD NOT" implies product behavior in accordance with the

SHOULD or SHOULD NOT prescription. Unless otherwise specified, the term "MAY" implies that the
product does not follow the prescription.

25 / 26

[MS-RDPECI] - v20240423
Remote Desktop Protocol: Core Input Virtual Channel Extension
Copyright © 2024 Microsoft Corporation
Release: April 23, 2024

7 Change Tracking

This section identifies changes that were made to this document since the last release. Changes are
classified as Major, Minor, or None.

The revision class Major means that the technical content in the document was significantly revised.
Major changes affect protocol interoperability or implementation. Examples of major changes are:

 A document revision that incorporates changes to interoperability requirements.

 A document revision that captures changes to protocol functionality.

The revision class Minor means that the meaning of the technical content was clarified. Minor changes
do not affect protocol interoperability or implementation. Examples of minor changes are updates to
clarify ambiguity at the sentence, paragraph, or table level.

The revision class None means that no new technical changes were introduced. Minor editorial and
formatting changes may have been made, but the relevant technical content is identical to the last

released version.

The changes made to this document are listed in the following table. For more information, please
contact dochelp@microsoft.com.

Section Description
Revision
class

2.2.2.2
PACKED_EVENT_TYPE_AND_FLAGS

Updated for Windows 11 v24H2 and Windows Server
2025. Added input event type
INPUT_EVENT_RELMOUSE a Relative Mouse Event.

Major

2.2.2.7 TS_RELPOINTER_EVENT
Updated for Windows 11 v24H2 and Windows Server
2025. Added section. Event is used to specify relative
mouse pointer movement.

Major

6 Appendix A: Product Behavior
Added Windows Server 2025 to the product
applicability list.

Major

mailto:dochelp@microsoft.com

26 / 26

[MS-RDPECI] - v20240423
Remote Desktop Protocol: Core Input Virtual Channel Extension
Copyright © 2024 Microsoft Corporation
Release: April 23, 2024

8 Index

A

Abstract data model
 client 20
 server 18
Applicability 6

C

Capability negotiation 7
Change tracking 25
Client
 abstract data model 20
 higher-layer triggered events 20
 initialization 20
 other local events 21
 timer events 20
 timers 20

D

Data model - abstract
 client 20
 server 18

E

Examples
 Init Request 22
 Init Response 22

F

Fields - vendor-extensible 7

G

Glossary 5

H

Higher-layer triggered events
 client 20
 server 19

I

Implementer - security considerations 23
Index of security parameters 23
Informative references 5
Initialization
 client 20
 server 19
Introduction 5

M

Messages
 syntax 8
 transport 8

N

Normative references 5

O

Other local events
 client 21
 server 19
Overview (synopsis) 5

P

Parameters - security index 23
Preconditions 6
Prerequisites 6
Product behavior 24

R

References 5
 informative 5
 normative 5
Relationship to other protocols 6

S

Security
 implementer considerations 23
 parameter index 23
Server
 abstract data model 18
 higher-layer triggered events 19
 initialization 19
 other local events 19
 timer events 19
 timers 18
Standards assignments 7
Syntax 8

T

Timer events
 client 20
 server 19
Timers
 client 20
 server 18
Tracking changes 25
Transport 8
Triggered events - higher-layer
 client 20
 server 19

V

Vendor-extensible fields 7
Versioning 7

	1 Introduction
	1.1 Glossary
	1.2 References
	1.2.1 Normative References
	1.2.2 Informative References

	1.3 Overview
	1.4 Relationship to Other Protocols
	1.5 Prerequisites/Preconditions
	1.6 Applicability Statement
	1.7 Versioning and Capability Negotiation
	1.8 Vendor-Extensible Fields
	1.9 Standards Assignments

	2 Messages
	2.1 Transport
	2.2 Message Syntax
	2.2.1 Namespaces
	2.2.2 Common Data Types
	2.2.2.1 RDP_CORE_INPUT_HEADER
	2.2.2.2 PACKED_EVENT_TYPE_AND_FLAGS
	2.2.2.3 TS_KEYBOARD_EVENT
	2.2.2.4 TS_UNICODE_KEYBOARD_EVENT
	2.2.2.5 TS_POINTER_EVENT
	2.2.2.6 TS_QOE_INPUT_TIMESTAMP_EVENT
	2.2.2.7 TS_RELPOINTER_EVENT
	2.2.2.8 RDP_CORE_INPUT_EVENT_CONTAINER

	2.2.3 Core Input Messages
	2.2.3.1 RDP_CORE_INPUT_CS_INIT_REQUEST_PDU
	2.2.3.2 RDP_CORE_INPUT_SC_INIT_RESPONSE_PDU
	2.2.3.3 RDP_CORE_INPUT_CS_KEYBOARD_AND_MOUSE_INPUT_PDU

	3 Protocol Details
	3.1 Common Details
	3.1.1 Abstract Data Model
	3.1.2 Timers
	3.1.3 Initialization
	3.1.4 Higher-Layer Triggered Events
	3.1.5 Message Processing Events and Sequencing Rules
	3.1.5.1 Processing a Core Input Message

	3.1.6 Timer Events
	3.1.7 Other Local Events

	3.2 Server Details
	3.2.1 Abstract Data Model
	3.2.2 Timers
	3.2.3 Initialization
	3.2.4 Higher-Layer Triggered Events
	3.2.5 Message Processing Events and Sequencing Rules
	3.2.5.1 Processing an RDP_CORE_INPUT_CS_INIT_REQUEST_PDU Message
	3.2.5.2 Sending an RDP_CORE_INPUT_SC_INIT_RESPONSE_PDU Message
	3.2.5.3 Processing an RDP_CORE_INPUT_CS_KEYBOARD_AND_MOUSE_INPUT_PDU Message

	3.2.6 Timer Events
	3.2.7 Other Local Events

	3.3 Client Details
	3.3.1 Abstract Data Model
	3.3.2 Timers
	3.3.3 Initialization
	3.3.4 Higher-Layer Triggered Events
	3.3.5 Message Processing Events and Sequencing Rules
	3.3.5.1 Sending an RDP_CORE_INPUT_CS_INIT_REQUEST_PDU Message
	3.3.5.2 Processing an RDP_CORE_INPUT_SC_INIT_RESPONSE_PDU Message
	3.3.5.3 Sending an RDP_CORE_INPUT_CS_KEYBOARD_AND_MOUSE_INPUT_PDU Message

	3.3.6 Timer Events
	3.3.7 Other Local Events

	4 Protocol Examples
	4.1 Version and Capabilities Exchange
	4.1.1 Init Request
	4.1.2 Init Response

	4.2 Keyboard and Mouse Input

	5 Security
	5.1 Security Considerations for Implementers
	5.2 Index of Security Parameters

	6 Appendix A: Product Behavior
	7 Change Tracking
	8 Index

